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École doctorale n�386
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M. Francis Bach
INRIA-ENS Paris, Directeur de thèse
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Abstract
Many problems in machine learning are naturally cast as the minimization of

a smooth function defined on a Euclidean space. For supervised learning, this in-
cludes least-squares regression and logistic regression. While small-scale problems
with few input features may be solved efficiently by many optimization algorithms
(e.g., Newton’s method), large-scale problems with many high-dimensional features
are typically solved with first-order techniques based on gradient descent, leading to
algorithms with many cheap iterations.

In this manuscript, we consider the particular case of the quadratic loss. In the
first part, we are interested in its minimization, considering that its gradients are
only accessible through a stochastic oracle that returns the gradient at any given
point plus a zero-mean finite variance random error. We propose different algorithms
to efficiently solve these minimization problems in many cases. In the second part,
we consider two applications of the quadratic loss in machine learning: unsupervised
learning, specifically clustering and statistical estimation, specifically estimation with
shape constraints.

In the first main contribution of the thesis, we provide a unified framework for
optimizing non-strongly convex quadratic functions, which encompasses accelerated
gradient descent, averaged gradient descent and the heavyball method. They are
studied through second-order difference equations for which stability is equivalent to
an O(1/n2

) convergence rate. This new framework suggests an alternative algorithm
that exhibits the positive behavior of both averaging and acceleration.

The second main contribution aims at obtaining the optimal prediction error rates
for least-squares regression, both in terms of dependence on the noise of the problem
and of forgetting the initial conditions. Our new algorithm rests upon averaged
accelerated gradient descent and is analyzed under finer assumptions on the covariance
matrix of the input data and the initial conditions of the algorithm which leads to
tighter convergence rates expressed with dimension-free quantities.

The third main contribution of the thesis deals with the minimization of composite
objective functions composed of the expectation of quadratic functions and a convex
function. We show that stochastic dual averaging with a constant step-size has a
convergence rate O(1/n) without strong convexity assumption, extending earlier re-
sults on least-squares regression to any regularizer and any geometry represented by
a Bregman divergence.

As a fourth contribution, we consider the problem of clustering high-dimensional
data. We present a novel sparse extension of the discriminative clustering framework
and propose a natural extension for the multi-label scenario. We also provide the
first theoretical analysis of this formulation with a simple probabilistic model and
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an efficient iterative algorithm with better running-time complexity than existing
methods.

The fifth main contribution of the thesis deals with the seriation problem, which
consists in permuting the rows of a given matrix in such way that all its columns
have the same shape. We propose a statistical approach to this problem where the
matrix of interest is observed with noise and study the corresponding minimax rate
of estimation of the matrices. We also suggest a computationally efficient estimator
whose performance is studied both theoretically and experimentally.

Keywords: Convex optimization, acceleration, averaging, stochastic gradient, least-
squares regression, stochastic approximation, dual averaging, mirror descent, discrim-
inative clustering, convex relaxation, sparsity, statistical seriation, permutation learn-
ing, minimax estimation, shape constraints.
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Résumé

De nombreux problèmes en apprentissage automatique sont formellement équiv-
alents à la minimisation d’une fonction lisse définie sur un espace euclidien. Plus
précisément, dans le cas de l’apprentissage automatique supervisé, cela inclut la ré-
gression par moindres carrés et la régression logistique. Alors que les problèmes de
petite taille, avec peu de variables, peuvent être résolus efficacement à l’aide de nom-
breux algorithmes d’optimisation (la méthode de Newton par exemple), les problèmes
de grande échelle, avec de nombreuses données en grande dimension, sont, quant à
eux, généralement traités à l’aide de méthodes du premier ordre, dérivées de la de-
scente de gradient, conduisant à des algorithmes avec de nombreuses itérations peu
coûteuses.

Dans ce manuscrit, nous considérons le cas particulier de la perte quadratique.
Dans une première partie, nous nous intéressons à la minimisation de celle-ci dans
l’hypothèse où nous accédons à ses gradients par l’intermédiaire d’un oracle stochas-
tique. Celui-ci retourne le gradient évalué au point demandé plus un bruit d’espérance
nulle et de variance finie. Nous proposons différents algorithmes pour résoudre effi-
cacement ce problème dans de multiples cas. Dans une seconde partie, nous con-
sidérons deux applications différentes de la perte quadratique à l’apprentissage au-
tomatique : la première en apprentissage non-supervisé, plus spécifiquement en par-
titionnement des données, et la seconde en estimation statistique, plus précisément
en estimation sous contrainte de forme.

La première contribution de cette thèse est un cadre unifié pour l’optimisation
de fonctions quadratiques non-fortement convexes. Celui-ci comprend la descente
de gradient accélérée, la descente de gradient moyennée et la méthode de la balle
lourde. Ces méthodes sont étudiées grâce à des équations aux différences finies du
second ordre dont la stabilité est équivalente à une vitesse de convergence O(1/n2

)

de la méthode étudiée. Ce nouveau cadre nous permet de proposer un algorithme
alternatif qui combine les aspects positifs du moyennage et ceux de l’accélération.

La deuxième contribution est d’obtenir le taux optimal d’erreur de prédiction
pour la régression par moindres carrés en fonction de la dépendance, à la fois au bruit
du problème et à l’oubli des conditions initiales. Notre nouvel algorithme tire son
origine de la descente de gradient accélérée et moyennée et nous l’analysons sous des
hypothèses plus fines sur la matrice de covariance des données et sur les conditions
initiales de l’algorithme. Cette nouvelle analyse aboutit à des taux de convergence
plus tendus qui ne font pas intervenir la dimension du problème.

La troisième contribution de cette thèse traite du problème de la minimisation
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de fonctions composites qui sont la somme de l’espérance de fonctions quadratiques
et d’une régularisation convexe. Nous montrons qu’utilisée avec un pas constant, la
méthode duale moyennée converge vers la solution du problème à la vitesse O(1/n)
sans hypothèse de forte convexité. Cela étend les résultats existants sur la régression
par moindres carrés aux cas régularisés et aux différentes géométries induites par une
divergence de Bregman.

Dans une quatrième contribution, nous considérons le problème de partition-
nement de données de grande dimension. Nous présentons ainsi une nouvelle ex-
tension parcimonieuse du partitionnement discriminatif et son extension naturelle
au cas de données avec de multiples labels. Nous analysons aussi cette formulation
théoriquement, et ce pour la première fois, à l’aide d’un modèle probabiliste simple
et nous proposons un nouvel algorithme itératif ayant une meilleure complexité que
les méthodes existantes.

La dernière contribution de cette thèse aborde le problème de la sériation. Celui-
ci consiste à permuter les lignes d’une matrice afin que ses colonnes aient toutes
une forme identique. Nous adoptons une approche statistique et, dans le cas où
la matrice est observée avec du bruit, nous étudions les taux d’estimation minimax
correspondants. Nous proposons aussi un estimateur computationellement efficace et
nous étudions ses performances d’un point de vue théorique et pratique.

Mots-clés : Optimisation convexe, accélération, moyennage, gradient stochastique,
régression par moindres carrés, approximation stochastique, algorithme dual moyenné,
descente miroir, partitionnement discriminatif, relaxation convexe, parcimonie, séri-
ation statistique, apprentissage de permutation, estimation minimax, contraintes de
forme.
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Contributions

This thesis is divided into two parts. Chapter 2 to 4 discuss stochastic optimization
of quadratic functions, while Chapter 5 and Chapter 6 concern applications of the
quadratic loss in machine learning. Each chapter can be read independently of the
others.

Chapter 1: This chapter is an introduction to statistical learning, convex optimiza-
tion, stochastic approximation and online learning, which are the main topics of this
manuscript. We overview the basic theoretical results through the unifying lens of
the least-squares problem.

Chapter 2: This chapter considers a general framework for stochastic non-strongly
convex quadratic optimization problems, including accelerated gradient descent, av-
eraged gradient descent and the heavyball method. We provide a joint analysis ex-
plaining existing behavior and design a novel intermediate algorithm that exhibits the
positive aspects of both acceleration (quick forgetting of initial conditions) and aver-
aging (robustness to noise). This chapter is based on the article of Flammarion and
Bach [2015], in the Proceedings of the International Conference on Learning Theory.

Chapter 3: This chapter presents a new algorithm, based on averaged accelerated
regularized gradient descent, for optimizing quadratic objective functions whose gra-
dients are only accessible through a stochastic oracle. We prove it achieves jointly the
optimal prediction error rates for least-squares regression, both in terms of forgetting
the initial conditions in O(1/n2

), and in terms of dependence on the noise and the
dimension d of the problem, as O(d/n). We also analyze it through finer assumptions
on the initial conditions and the Hessian matrix, leading to dimension-free quantities
that may still be small while the “optimal” terms above are large. This chapter is
based on the article of Dieuleveut et al. [2017], in the Journal of Machine Learning
Research.

Chapter 4: This chapter considers the problem of minimizing composite objective
functions composed of the expectation of quadratic functions and an arbitrary convex
function. We prove the stochastic dual averaging algorithm converges at rate O(1/n)
without strong convexity assumptions. This extends earlier results on least-squares
regression to all convex regularizers and all geometries induced by a Bregman diver-
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gence. This chapter is based on the article of Flammarion and Bach [2017], in the
Proceedings of the International Conference on Learning Theory.

Chapter 5: This chapter considers the problem of clustering high-dimensional data.
The commonly used unsupervised learning algorithms have problems identifying the
different clusters since they are easily perturbed by adding a few noisy dimensions
to the data. This chapter considers the discriminative clustering formulation which
aims at linearly separating noise from signal, i.e., finding a projection of the data that
extracts the signal and removes the noise. We provide the first theoretical analysis
of this formulation and a new efficient iterative algorithm with a complexity which
depends only linearly on the number of observations, thus improving over previous
results. We also propose a novel sparse extension to discriminative clustering to han-
dle data with many irrelevant dimensions and we naturally extend these formulations
to the multi-label scenarios where data share different labels, both potentially leading
to interesting applications. This chapter is based on the article of Flammarion et al.
[2017], in the Journal of Machine Learning Research.

Chapter 6: This chapter considers the seriation problems which consists in per-
muting the rows of a matrix in such way that all its columns have the same shape.
While such problems are hard in general, it can be shown that some subproblems
can be solved efficiently using spectral methods. However little is known about the
robustness to noise of these methods. We study the minimax rate of estimation when
the matrix is observed with noise by providing an upper bounds for the performance of
the least-squares estimator together with corresponding lower bound. Unfortunately
the least-squares estimator is intractable. Consequently we present a computationally
efficient substitute estimator and analyze its rates of convergence both theoretically
and numerically. This chapter is based on the article of Flammarion et al. [2016],
under submission to Bernoulli.

N. Flammarion and F. Bach. From averaging to acceleration, there is only a step-size.
In Proceedings of the International Conference on Learning Theory (COLT), 2015.

A. Dieuleveut, N. Flammarion, and F. Bach. Harder, Better, Faster, Stronger Con-
vergence Rates for Least-Squares Regression. In Journal of Machine Learning Re-
search, 2017.

N. Flammarion and F. Bach. Stochastic Composite Least-Squares Regression with
convergence rate O(1/n). In Proceedings of the International Conference on Learn-
ing Theory (COLT), 2017.

N. Flammarion, P. Balamurugan and F. Bach. Robust Discriminative Clustering
with Sparse Regularizers. In Journal of Machine Learning Research, 2017.

N. Flammarion, C. Mao and P. Rigollet. Optimal Rates of Statistical Seriation.
Under submission to Bernoulli , 2016.

2



Chapter 1

Introduction

1.1 Machine Learning
Machine learning is a recent scientific domain at the interface of applied math-

ematics, statistics and computer science. It aims at giving a machine the ability
to produce a predictive analysis based on existing data and it applies to a tremen-
dous variety of domains ranging from computer vision, natural language processing,
advertising, bio-informatics, robotics, speech processing and economics. Its utmost
challenge is to design general methods that can be applied across all of these domains.
Machine learning has been particularly important in the current context of big data,
that is a context of increasing data volumes, improved access to data and facilitated
data collection.

Learning can be very loosely defined as the ability to answer a question after
observing data. The related learning problems may be described through the inter-
action between the learner and the environment. An algorithm able to detect if a cat
appears in an image, first needs to be trained on a dataset of examples. This dataset
would consist of many pictures with a label saying if a cat is present or not. On the
basis of this training it would design a rule to decide if there is a cat in a new picture.
This is what is called supervised learning. In contrast for image segmentation, the
learner receives all the images without label and he has to automatically detect the
contours of objects in it. This is what is called unsupervised learning.

This thesis is centered around optimization methods for supervised learning. None-
theless we will still consider extensions to unsupervised learning in Chapter 5. We
note there are also other extensions (e.g., reinforcement learning) but they are outside
the scope of this manuscript.

1.2 Supervised Machine Learning
Supervised machine learning aims at understanding the relationship between ele-

ments of an arbitrary input set X and elements of an arbitrary output set Y . Typically
X = Rd for a large d and Y is a finite set or a subset of R. For example:

— X is a set of images that contains a hand-written number and Y is the set of
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associated numbers. A picture is coded through the grey level of its pixels and
X = [0, 1)d for d pixels and Y = {0, . . . , 9}.

— X summarizes the air pollution, the crime rate, the high-school quality, the
percent of green spaces around certain neighborhoods and Y = R depicts the
housing prices.

Unfortunately an output y 2 Y cannot be always expressed exactly as a function
of an input x 2 X since there may be some random noise or unknown factors. So,
instead the couple (X, Y ) is modeled as random variables. Therefore we aim to predict
the output Y associated to the input X where it is given that (X, Y ) is sampled from
an unknown distribution D. We do this prediction through a predictor which is
defined as a measurable function h : X ! Y . The set of all predictors is denoted by
F(X ,Y). A predictor is also called a hypothesis or an estimator. In order to measure
the performance of a predictor we define a loss function ` : Y ⇥Y ! R where `(y, y0)
is the loss incurred when the true output is y whereas y0 is predicted. For instance:
Classification: Y is a finite set and `(y, y0) = y 6=y0 is the 0 � 1 loss. In binary

classification this would be Y = {0, 1}.
Least-squares regression: X = R and `(y, y0) = |y � y0|2. Least-squares regres-

sion is the main topic of this thesis and one of the most classical problems of
statistical learning. It will be used to illustrate numerous examples throughout
this introduction. In particular we shall be considering the parametric least-
squares framework: we shall assume a linear parameterization of the predictor,
h(x) = h✓,�(x)i where the features �(x) 2 Rd are designed by experts using
their knowledge of the phenomenon, or are independently learned, e.g., with
neural networks [Bengio et al., 2013]. These features have a key importance in
practice because linear predictors with relevant features may be more efficient
than non-linear predictors. Furthermore we note that a linear parametrization
in ✓ does not imply a linear parametrization in x since � may be non-linear.

The quality of a prediction is measured by the generalization error (also called
risk) of a predictor defined by

L(h) = E
(X,Y )⇠D`(Y, h(X)).

This is the averaged loss incurred when the learner predicts Y by h(X) and the data
(X, Y ) are sampled following D. Thus the learner wants to solve the minimization
problem

min

h2F(X ,Y)

L(h).

The solution of this problem (when it exists) is called the Bayes predictor. For
least-squares regression the generalization error of a predictor h can be decomposed
as

L(h) =
1

2

E[Y � E(Y |X)]

2

+

1

2

E[E[Y |X]� h(X)]

2.

In other words E[Y |X] is the Euclidean projection of Y onto the set L2

(X) of the
square integrable functions of X. Consequently L(h) is always larger than 1

2

E[Y �

4



E[Y |X]]

2 and the Bayes predictor is (in this particular case)

h⇤
(x) = E[Y |X = x].

Regrettably since the distribution D is unknown, this function is not computable.
Therefore we assume that the learner is observing a finite training set of points
Sn = ((X

1

, Y
1

), . . . , (Xn, Yn)) which are sampled independently from the unknown
law D and wants to use them to predict the output Y associated to the input X,
where (X, Y ) is sampled from D independently from Sn. This task is formalized
through a learning algorithm: a function A : [n�1

(X ⇥ Y)

n ! F(X ⇥ Y) which
relates a training set Sn to a predictor A(Sn). Since the training set Sn is random,
the generalization error of the predictor A(Sn) is a random variable and the quality
of a learning algorithm A is measured by ESnL(A(Sn)), where the expectation is
measured with respect to the distribution of Sn. Alternatively L(A(Sn)) may be
controlled in probability.

Let us stress that we adopt the distribution-free approach of Vapnik and Chervo-
nenkis [1971, 1974]; see, e.g., Devroye et al. [1996]. There is no assumptions on the
distribution D and the method has to be efficient independently of it. In contrast
classical statistics first assumes a particular statistical model for the distribution D
and then estimate the parameters of this model. This approach will be temporar-
ily taken in Chapter 6. It is also different from the probably approximately correct
(PAC) learning framework introduced by Valiant [1984] but the comparison is out-
side the scope of this introduction. Interested readers can see the monograph by
Shalev-Shwartz and Ben-David [2014] for more precisions on these frameworks.

As the distribution D is unknown the Bayes predictor cannot be directly computed
and the generalization error cannot even be minimized. Instead the training set Sn

is used to approximate these objects. There are two principal ways to address this
problem:
Local averaging methods: They estimate the Bayes predictor E[Y |X = x] by av-

eraging the Yi’s corresponding to the Xi’s close to x. This includes, for example,
the Nadaraya-Watson estimator [Nadaraya, 1964, Watson, 1964] or the k-nearest
neighbors algorithm Cover and Hart [1967]. These methods are well studied and
efficient for dimensions of small to middle scale compared to n [see, e.g., Hastie
et al., 2009].

Empirical Risk Minimization (ERM): It approximates the generalization error
by the training error (also called empirical risk) ˆL defined by the average error
over the sample Sn

ˆL(g) =
1

n

n
X

i=1

`(Yi, h(Yi)),

and considers its minimizer [see, e.g., Vapnik, 1998]. This method raises two
principal issues:
Statistical problem: How well does the minimizer of the empirical risk per-

form? This question will be studied in Section 1.4.
Optimization problem: How to minimize the empirical risk ˆL? This question
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will be examined in Section 1.5.
We will succinctly address these two questions through the lens of the least-squares
regression. First of all we will introduce the mathematical framework adopted in this
thesis.

1.3 Mathematical Framework
We shall now consider the Euclidean space Rd of dimension d 2 N⇤ endowed with

the natural inner product h·, ·i and the Euclidean norm k · k
2

.
The central concept in this thesis is convexity :

Definition 1. A set C 2 Rd is said to be convex if for all ✓
1

, ✓
2

2 C and all t 2 (0, 1),

(1� t)✓
1

+ t✓
2

2 C.

While classical functional analysis does not attach the same importance to convex
functions as to convex sets [Clarke, 2013], the former is a key concept for optimization
theory:

Definition 2. A extended-valued function f : Rd ! R [ {+1} is said to be convex
if for all ✓

1

, ✓
2

2 Rd and all t 2 (0, 1),

f
�

(1� t)✓
1

+ t✓
2

)  (1� t)f(✓
1

) + tf(✓
2

).

When f is twice differentiable this condition is equivalent to a symmetric positive-
definite Hessian. It is worth noting that these concepts of convexity are independent
of the notions of norm or even distance. Indeed convex sets and convex functions
only need the basic operations of a vector space to be defined. The class of convex
functions is very general and this thesis is restricted, for convenience, to the convex
functions which are closed (their epigraphs epi(f) = {(✓,↵) 2 Rd ⇥ R : f(✓)  ↵}
are closed sets) and proper (not identically +1). We refer to the monographes by
Rockafellar [1970], Hiriart-Urruty and Lemaréchal [2001] for more details on convex
analysis.

Conceptually, convexity enables to turn a local information about the function
into a global one. For example a local minimum is automatically a global minimum
or even more importantly, the gradient rf(✓) at a point ✓ 2 Rd provides a global
linear lower-bound on the function f .

Functions met in machine learning applications often have additional properties.
A continuously differentiable function f is said to be L-smooth for L 2 R

+

when
the gradient of f is L-Lipschitz. When f is twice differentiable, this is equiva-
lent to a global upper-bound on the Hessian of f . Thus this assumption provides
a quadratic upper bound on the function value. For example, the empirical risk
ˆL(h) = 1

n

Pn
i=1

`(Yi, h(Xi)) is usually smooth when the loss function ` is smooth and
the data Xi are almost surely (abbreviated to from now on as a.s.) bounded.

On the other side a function f is µ-strongly convex for µ 2 R
+

if f � µ
2

k · k2
2

is
convex. When f is twice differentiable this is equivalent to a global lower-bound on
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the Hessian of f and then this assumption provides a quadratic lower-bound on the
function value. In this sense, µ measures the curvature of the function f .

strongly convex and smooth functions have several interesting properties we will
not review here [see, e.g., Nesterov, 2004]. Moreover these two assumptions are
connected: if f is µ-strongly convex then its Fenchel conjugate f ⇤ is 1/µ-smooth
[Hiriart-Urruty and Lemaréchal, 2001, Theorem 4.2.1]. On the other hand, contrary
to convexity, both smoothness and strong convexity depend on the norm considered
and Bauschke et al. [2016] recently relaxed this dependency.

1.4 Analysis of Empirical Risk Minimization
Since the data distribution D is unknown, the generalization error is approximated

by the training error ˆL(h) =

1

n

Pn
i=1

`(Yi, h(Yi)) which may be optimized to obtain
a predictor h. Firstly we notice that the predictor h(x) = yi xi(x) has a training
error ˆL(h) = 0 whereas its generalization error may be arbitrarily large. This is the
overfitting phenomenon which appears when the prediction fits the data too closely
and does not try to generalize enough. To prevent this effect, one may either adopt:
Constraint formulation: The hypothesis class is restricted to a smaller subset G ⇢

F . The empirical risk minimization for this class is the learning algorithm
defined by

ˆh = argmin

h2G
ˆL(h).

A bias may be created by restricting too much the class of predictor and the
sub-class has to be fixed in advance (without observing the data).

Penalized formulation: A penalization �(h) is added to the empirical risk ˆL(h)
and one solves the problem

min

h2F
ˆL(h) + ��(h) for � 2 R

+

.

The penalization �(h) controls the complexity of the predictor h by implicitly
inducing a tradeoff between predictors with a small training error but a large
value of �(h) and predictors with larger training error but smaller penalization
�(h). The penalization also induces a bias since the predictor would be the min-
imizer of the penalized problem which is different from the initial non-penalized
problem.

Even if the penalized and constraint formulations are equivalent by convex duality
[Borwein and Lewis, 2000, Sec. 4.3], the penalized formulation is easier to use in
practice from an algorithmic point of view since (a) unconstrained optimization is
easier, (b) there are efficient ways to set the value �. On the other hand the constraint
formulation is more appropriate for the theoretical analysis [Bach et al., 2012, p.7].

The generalization error of the ERM predictor ˆh can be decomposed as follows:

L(ˆh)� L(h⇤
) = L(ˆh)�min

h2G
L(h)

| {z }

Estimation error

+min

h2G
L(h)� L(h⇤

)

| {z }

Approximation error
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Estimation error: It appears because the training error is an estimate of the gener-
alization error. It depends on the size of the training set and on the complexity
of the class G.

Approximation error: It measures how much is lost from restricting the set of
predictors. It does not depend on the sample size.

Thus there is a so-called bias-variance tradeoff : choosing a large class results in a
small approximation error and a large estimation error since it leads to overfitting.
We note that choosing a small class with dedicated structure may help in terms of
computational complexity. It is also worth noting that only the estimation error
depends on the predictor ˆh. We denote by ˜h = argminh2G L(h). The estimation error
is uniformly bounded by

L(ˆh)� L(˜h) = L(ˆh)� ˆL(ˆh) + ˆL(ˆh)� ˆL(˜h)
| {z }

0

+

ˆL(˜h)� L(˜h)

 2 sup

g2G
|L(h)� ˆL(h)|.

Under Lipschitz assumptions on the loss, this supremum is typically of order
O(1/

p
n) [Boucheron et al., 2013]. When the loss function is, in addition, µ-strongly

convex, Sridharan et al. [2009], Boucheron and Massart [2011] show that the esti-
mation error is of order O(1/µn) by directly bounding L(ˆh) � L(˜h) without using a
uniform bound as above.

We only consider here linear predictors, i.e., linearly parameterized by ✓ 2 Rd

as h(x) = h✓,�(x)i for features �(x) 2 Rd. The error of a parameter ✓ is directly
defined as L(✓) = L(h✓,�(·)i) by a slight abuse of notation. The generalization error
is assumed to be minimized among all linear predictors and we denote by ✓⇤ one of
its minimizer 1:

✓⇤ 2 arg min

✓2Rd
L(✓).

It is important to emphasize that the Bayes predictor h⇤ is never assumed to be
linear as in the classical regression analysis (which assumes a well-specified linear
model Y = h✓⇤, Xi+ " for some independent zero-mean noise ").

Parametric least-squares regression. For linear least-squares regression this
bias-variance decomposition takes the form

L(✓)� L(h⇤
) =

1

2

E[E[Y |X]� h✓⇤,�(x)i]2 + 1

2

h✓⇤ � ✓,E[�(x)⌦ �(x)](✓⇤ � ✓)i

=

1

2

E[E[Y |X]� h✓⇤,�(x)i]2 + 1

2

k✓⇤ � ✓k2
⌃

,

where the covariance matrix of the features is denoted by ⌃ = E[�(x) ⌦ �(x)]. By
setting the gradient of the generalization error to 0, the optimum ✓⇤ satisfies the

1. The generalization error does not always attain its global minimum, e.g., in logistic regression

when the model is not well-specified [Bach, 2010].
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normal equation
⌃✓⇤ = E[�(X)Y ].

This implies, when ⌃ is full-rank, that ✓⇤ = ⌃

�1E[�(X)Y ]. We will consider the
ordinary least-squares estimator ˆ✓ which is the minimizer of the training error over
linear predictors. Some authors also consider the ridge estimator [Hoerl, 1962] which
is the solution of the `

2

-regularized training error minimization min✓2Rd ˆL(✓)+�k✓k2
2

.
We will now study the estimation error in the linear least-squares framework. It

is a random variable which depends on the training-set Sn and its expectation can be
decomposed as:

1

2

Ekˆ✓ � ✓⇤k2
⌃

= kEˆ✓ � ✓⇤k2
⌃

| {z }

Estimation bias

+ EkEˆ✓ � ˆ✓k2
⌃

| {z }

Estimation variance

.

Note that we only compare to the class of linear predictors. In particular, this predic-
tor has a greater error than the Bayes predictor. This analysis becomes very simple
when the input data Xn are assumed to be deterministic: this is the fixed design
framework.

Fixed design analysis. We consider here that the input observations (X
1

, . . . , Xn)

are deterministic. To emphasize this aspect, we denote them by (x
1

, . . . , xn). The only
randomness is thus in the sampling of the Yi. We use the notation ˆ

⌃ =

1

n

Pn
i=1

�(xi)⌦
�(xi) = �

>
� and ~Y = [Y

1

, . . . , Yn]
> 2 Rn. For the sake of clarity, the design matrix

� is assumed to be of rank d. This assumption may be relaxed using Moore-Penrose
pseudo-inverse. Then

✓⇤ = (�

>
�)

�1

�

>E[~Y ] and ˆ✓ = (�

>
�)

�1

�

>~Y .

Therefore the estimation error is

L(ˆ✓)� L(✓⇤) =
�

�

⇧(E~Y � ~Y )

�

�

2

,

where the orthogonal projection matrix is denoted by ⇧ = �(�

>
�)

�1

�

>. And the
expected estimation error is

EL(ˆ✓)� L(✓⇤) = tr(⇧ var

~Y ).

If ~Y satisfies var

~Y 4 �2I. Then

L(ˆ✓)� L(✓⇤)  �2d/n.

Equality is obtained when var(Yi) = �2 and the full-rank assumption on the design
matrix may be relaxed to provide a bound of the form �2rank(X)/n. We also note
that one obtains high-probability bounds using extra-assumptions on the distribution
of the noise [van der Vaart and Wellner, 1996].

This result provides an upper-bound on the estimation error of the least-squares
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estimator. However a different proof could improve upon this bound and a different
estimator could also provide better performance. The minimax theory [Tsybakov,
2009] was developed as a way to handle at once all possible learning algorithms from a
given class. This field which takes its roots in information theory [Cover and Thomas,
2006] provides a systematic way to show uniform bounds on their performance, even
though this may at first appear daunting. An estimator ˆ✓ is minimax optimal and a
positive sequence ( n)n�0

is the minimax rate of estimation over the class ⇥ if there
exist constants c, C > 0 such that

sup

✓2⇥
Ekˆ✓ � ✓k2

2

 c n,

and
lim inf

n!1
inf

˜✓
sup

✓2⇥
 �1

n Ek˜✓ � ✓k2
2

� C 0,

where the infimum is over all estimators (measurable functions of the data). In the
fixed design setting, it is possible to show that �2d/n is optimal over Rd [Tsybakov,
2009].

Random design analysis. The input observations are not assumed deterministic
anymore. We start with the classical asymptotic study which assumes d fixed and n
going to 1. We denote by " = h✓⇤,�(X)i � Y and ⇠ = "�(X). By the law of large
numbers �

>
�

P! ⌃ and �Y
P! E[�(X)Y ]. We also assume here ⌃ < µI for µ > 0.

Therefore ˆ✓
P! ✓⇤ by the continuous mapping theorem. The Delta method [van der

Vaart, 1998, Chapter 3] may be applied to obtain asymptotic normality:

p
n(ˆ✓ � ✓⇤)

D! N(0,⌃�1E[⇠ ⌦ ⇠]⌃�1

).

This matches the Cramer-Rao bound [Casella and Berger, 1990] and therefore this
estimator is asymptotically optimal. One proceeds in the same way to asymptotically
bound the estimation error

n[L(ˆ✓)� L(✓⇤)]
D! 1

2

trW(⌃

�1/2E[⇠ ⌦ ⇠]⌃�1/2, 1),

where W(⌃, k) is the Wishart distribution with variance matrix ⌃ and k degrees of
freedom. Under the assumption E⇠⌦⇠ 4 �2

⌃, the asymptotic variance is bounded by
�2d
n

as in the fixed design analysis. Using Taylor expansions, this asymptotic analysis
can be extended to any loss functions.

The non-asymptotic study is more involved. It has been pursued by Györfi
et al. [2006], Audibert and Catoni [2011], Hsu et al. [2014], Lecué and Mendelson
[2016], Oliveira [2016]. Hsu et al. [2014] obtain results from fixed design anal-
ysis using that ⌃

1/2
ˆ

⌃

�1

⌃

1/2 is concentrated around the identity. They consider
¯✓ = E[ˆ✓|X

1

, . . . , Xn], the conditional expectation of the least-squares estimator which
is equal to ¯✓ = ˆ

⌃

�1

ˆE[Xh⇤
(Y )], where the empirical expectation is denoted by ˆE. We

10



sketch below the main lines of their proof which holds on the decomposition

⌃

1/2
(

ˆ✓ � ✓⇤) = ⌃

1/2
(

ˆ✓ � ¯✓) + ⌃

1/2
(

¯✓ � ✓⇤)

= ⌃

1/2
ˆ

⌃

�1/2
ˆE[ˆ⌃�1/2X(Y � h⇤

(Y ))]

+⌃

1/2
ˆ

⌃

�1

⌃

1/2
ˆE[⌃�1/2X(h⇤

(X)�X>✓⇤)].

They first observe that ˆE[ˆ⌃�1/2X(Y � h⇤
(Y ))] is related to the fixed design excess

loss and goes to E[Y � h⇤
(X)] = 0. The second term ˆE[⌃�1/2X(h⇤

(X) � X>✓⇤)]
corresponds to the approximation error and will be close to E[X(h⇤

(X)�X>✓⇤)] = 0

by optimality of ✓⇤. Under sub-Gaussian assumptions on the noise ", Hsu et al. [2014]
show that L(ˆ✓) � L(✓⇤) = O(x�2d/n) probability with exponentially close to 1 (at
least 1� exp(�cdx)). Similar results were obtained by Lecué and Mendelson [2013].

Under much weaker assumptions on the noise, Lecué and Mendelson [2016] provide
a weak polynomial probability estimate:

Theorem 1. There exist absolute constants c
0

, c
1

, c
2

for which the following holds.
Assume there exists  for which

Eh✓,�(X)i4  (Eh✓,�(X)i2)2 8✓ 2 Rd,

and � = (E("4))1/4 < 1. Let n � (c
0

)2d. Then, for every � > 0 with probability
1� exp(�n/c

1

2)� �,

L(ˆ✓)� L(✓⇤)  c
2

6

�

�2d

n
.

Oliveira [2016] obtains stronger polynomial probability under stronger assump-
tions on the noise. Even so Lecué and Mendelson [2016] explain it is impossible to
get an exponential probability estimate without stronger moment assumptions.

Tsybakov [2003], Shamir [2015] show this rate is also optimal in the random design
setting. Besides, it is worth noting a lower bound in the fixed design framework does
not directly imply a lower bound in the random design setting [Tsybakov, 2009,
Sec 2.7.2].

To conclude, for the parametric least-squares regression, the prediction error is
O(�2d/n) under very light assumptions. Yet these sharp results are very challenging
and their non asymptotic analysis is very recent. Even though (as will become clear
later) this thesis is centered on techniques which avoid minimizing the empirical risk,
we will now present some optimization methods which achieve that goal.

1.5 Complexity Results in Convex Optimization
This thesis is focused on convex optimization and mainly on the study of optimiza-

tion algorithms for quadratic functions. Nowadays, optimization is indeed divided
between convex problems (which can be efficiently solved) and non-convex problems
(for which there are no efficient and generic methods).

Interestingly, this distinction was initially drawn between linear and non-linear
problems. Linear programming is now essentially solved: (a) in practice since 1947

11



by Dantzig’s simplex algorithm (with an exponential worst-case complexity); (b) in
theory by Khachiyan [1979] who achieved polynomial complexity using the ellipsoid
method (with very slow convergence in practice); and (c) in both theory and practice
since Karmakar [1984] proposed the first efficient polynomial-time algorithm using
interior point methods.

This winding path from practical to theoretical progress has fed and inspired con-
vex optimization since the seminal works of von Neumann [1963] and those of Kuhn
and Tucker [1951]. Nemirovski and Yudin [1979] first showed that all convex mini-
mization problems with a first-order oracle can theoretically be solved in polynomial
time using the ellipsoid method, but with slow convergence in practice. Then Nes-
terov and Nemirovskii [1994] extended the interior point method to efficiently solve
a wider class of convex problems.

However when the complexity of problems becomes higher, this generic solver
becomes inefficient and older first-order methods are preferred at the cost of precision
to the advantage of many cheap iterations. Unfortunately there is no unified analysis
for these large-scale problems and the algorithmic choices are constrained by the
problem structure. This has prompted both theoreticians and practitioners to move
away from black-box optimization and leverage the specifics of the problem being
considered to design better adapted algorithms.

Therefore large-scale optimization contributes to blur the frontier between con-
vexity and non-convexity by defining new common territories, i.e., algorithms which
can efficiently solve different problems indifferently of their convex aspects [Ge et al.,
2016, Jin et al., 2016].

1.5.1 Black Box Optimization and Lyapunov Analysis

We consider the general optimization problem:

min

✓2C
f(✓),

where C is a convex set and f is a convex function. In order to conceptualize the
optimization task, we adopt the black box framework defined by Nemirovski and Yudin
[1979]. The convex set C is known to the algorithm but not the objective function f .
The only assumption made on f is that it belongs to some class of functions F . The
information about f is obtained through interacting with an oracle. When queried at
a given point ✓, the first-order oracle we consider here, answers by giving the function
value f(✓) and the gradient rf(✓). Therefore a first-order black box procedure is a
sequence of mappings (�n)n�0

where �n : Cn⇥ (Rd
)

n⇥Rn ! C. The algorithm starts
from ✓

0

= �
0

and then iterates:

✓n = �n�1

�

✓
0

, . . . , ✓n�1

,rf(✓
0

), . . . ,rf(✓n�1

), f(✓
0

), . . . , f(✓n�1

)

�

.

Our aim is to determine the oracle complexity of the problem. This is the number
of oracle queries necessary to solve the problem at a precision of ", i.e., to find an
admissible point ✓ 2 C such that f(✓)�min

˜✓2C f(
˜✓)  ". To that purpose we should:
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(a) find an algorithm whose convergence rate matches the desired rate, this would
imply an upper bound on the complexity; (b) provide a lower-bound on the complexity
by showing that no admissible method can solve the problem faster. This is usually
done by finding a particular function for which it is possible to bound from below the
performance of any method.

We note that oracle complexity does not directly provide information about the
computational complexity of the method since the oracle query and the mapping �n

may be computationally demanding. Therefore we will also pay attention to the com-
putational complexity of each method. This explains why we often restrict ourselves
to algorithms with finite-order iteration of the form:

✓n = �n�1

(✓n�k, . . . , ✓n�1

,rf(✓n�k), . . . ,rf(✓n�1

), f(✓n�k) . . . , f(✓n�1

)).

They can be reformulated (after a change of variable ⇥n = (✓n1 , . . . , ✓n)) as iterative
processes of the form

⇥n = Fn�1

(⇥n�1

).

To prove the convergence of these dynamical systems, it is common to rely on Lya-
punov theory. It goes back to Lyapunov [1892] who showed that all the trajectories
of the ordinary differential equation (ODE)

ẋ(t) = Ax(t)

goes to zero (the ODE is stable) if and only if there exists a symmetric positive-definite
matrix P such that

A>P + PA 4 0.

This is the origin of Lyapunov’s first method which is based on the equivalence
for the linear iterative process

✓n = A✓n�1

between

lim

n!1
✓n = 0

[Oldenburger, 1940]() ⇢(A) < 1

[Stein, 1952]() 9P < 0; A>PA� P 4 0.

The matrix P solution of the Lyapunov inequality A>PA � P 4 0 can be found
analytically using convex optimization [Boyd et al., 1994] and ensures the convergence
of the iterative process. Lyapunov theory has been frequently applied to control
theory with major works from Lur’e and Postnikov [1944], Popov [1961], Kalman
[1963], Yakubovich [1971]. This method can be extended to non-linear processes,
by linearizing the iterative procedure [Perron, 1929, Ostrowski, 1966]. It can also
be applied directly to optimization [Polyak, 1987] or by using more complex control
theory tools [Lessard et al., 2016].

Most stability results for difference equations [Ortega and Rheinboldt, 2000] have
been obtained as discrete analogues of corresponding results for differential equa-
tions [see, e.g., LaSalle and Lefschetz, 1961]. Lyapunov’s second method [Hahn, 1958,
Kalman and Bertram, 1960] is the most common and general method to prove con-
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✓n

✓n+1

��nrf(✓n)

Figure 1-1 – Gradient descent.

vergence of iterative processes. Its idea is to introduce a nonnegative function V (the
so-called Lyapunov function) which will decrease along the sequence of iterates, i.e.,
V (✓n+1

)  V (✓n) and therefore ensure the convergence of the method [see Polyak,
1987, Sec 2.2, for more details]. Therefore finding such a function V may prove
the convergence of the iterative system and converse results ensure existence of a
Lyapunov function for a stable iterative system [Halanay, 1963, Driver, 1965]. Un-
fortunately there is no systematic way to find Lyapunov functions in practice. There
are some classical solutions such as f(✓)� f(✓⇤) or k✓� ✓⇤k2, but these do not always
work. In general, theoreticians have to use their experience to design them.

1.5.2 Smooth Optimization

In this section we present a panel of methods for optimizing a smooth function.
We do not aim at being comprehensive and we refer to Nesterov [2004], Bubeck [2015]
for surveys. We first present the gradient method dating back to Cauchy [1847] which
will be the starting point for more refined first-order techniques.

Gradient descent. With a first-order oracle, the simplest minimization algorithm
is to consider the Euler discretization of the continuous gradient flow ⌘̇ = �rf(⌘).
It starts from a vector ✓

0

, and iterates

✓n = ✓n�1

� �nrf(✓n�1

),

for a step-size sequence (�n). The gradient step is illustrated in Figure 1-1. An
L-smooth function f is quadratically upper-bounded as

f(✓)  f(✓n�1

) + hrf(✓n�1

), ✓ � ✓n�1

i+ L

2

k✓ � ✓n�1

k2,
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and therefore the gradient update is the minimizer of this first-order approximation
of f

✓n = arg min

✓2Rd

n

hrf(✓n�1

), ✓i+ 1

2�n
k✓ � ✓n�1

k2
o

. (1.1)

This step is also the steepest descent direction since

arg min

kdk1

hrf(✓n�1

), di = � rf(✓n�1

)

krf(✓n�1

)k .

We now present the first convergence result.

Proposition 1. Let f be a L-smooth convex function. Then gradient descent with
�n = 1/L satisfies

f(✓n)� f(✓⇤)  Lk✓
0

� ✓⇤k2
n

.

Moreover, if f is µ-strongly convex,

f(✓n)� f(✓⇤)  (1� µ/L)n[f(✓
0

)� f(✓⇤)].

Convergence rates for gradient descent were first studied for quadratic functions
by Kantorovitch [1945] and for convex functions by Vainberg [1960], Goldstein [1962],
Polyak [1963], Levitin and Polyak [1966]. Proofs of convergence date back to seminal
works of Temple [1939], Curry [1944], Crockett and Chernoff [1955]. We sketch the
proof for quadratic convex functions since it will be used as a stepping stone when
proving more general results later in the manuscript. We denote f(✓) = 1

2

h✓,⌃✓i �
hb, ✓i, which attains its global optimum at ✓⇤ = ⌃

�1b. The gradient descent iteration
is explicitly

✓n � ✓⇤ =
⇣

I � 1

L
⌃

⌘

(✓n�1

� ✓⇤) =
⇣

I � 1

L
,⌃
⌘n

(✓
0

� ✓⇤)

and therefore

f(✓n)� f(✓⇤) =
1

2

�

�

�

⌃

1/2
⇣

I � 1

L
⌃

⌘n

(✓
0

� ✓⇤)
�

�

�

2

 (1� µ/L)2n[f(✓
0

)� f(✓⇤)],

which concludes the proof in the strongly convex case. Otherwise when µ = 0, we
use the inequality ⌃

�

I � 1

L
⌃

�

2n 4 L/nI.
The gradient descent is adaptive to the problem difficulty. Indeed the step-size

does not depend on the value of µ. On the other hand the result is proven for constant
step-size, but line-search techniques are also possible [Boyd and Vandenberghe, 2004,
Sec 9.3].

Lower-bounds on the convergence rates. After having shown that gradient
descent algorithms yield convergence rate O(

1

n
) for L-smooth problems and O((1 �

µ/L)n) when the function is also µ-strongly convex, it is natural to wonder whether
these rates are optimal or if other algorithms exist with better convergence rates.
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✓n�1 ✓n ⌘n

gradient step

✓n+1

accelerated gradient step

Figure 1-2 – Accelerated gradient descent.

This question was first answered positively by Nemirovski and Yudin [1979] and later
presented, in a simplified form, by Nesterov [2004]. Interested readers can also see
the recent work of Arjevani and Shamir [2016] on this topic.

Proposition 2. Let n  (d � 1)/2, ✓
0

2 Rd and L > 0. There exists a L-smooth
convex function f with a global minimizer ✓⇤ such that for any first-order method.

f(✓n)� f(✓⇤) � 3

32

Lk✓⇤ � ✓
0

k2
(n+ 1)

2

.

The number of iterations can not be too large compared to the dimension of
the problem. Note this restriction is necessary since the ellipsoid method [Ben-Tal
and Nemirovski, 2001, Sec. 5.2 ] converges at exponential rate for n larger than d.
Moreover this lower-bound is still informative about the first steps, when n is small
compared to d. Surprisingly, the worst-case function designed to prove this result is
quadratic. In this sense, quadratic functions are not easier to optimize than smooth
functions. Regarding the strongly convex case, Nesterov [2004] provides a lower bound
O
⇣

�

p
L�p

µp
L+

p
µ

�n
⌘

for the oracle complexity.
Clearly, there is a gap between the lower bounds and the performance of gradient

descent in Proposition 1. But the lower bounds are not to blame as it turns out they
are matched by a slightly more involved algorithm, which we describe now.

Accelerated gradient descent. Taking inspiration from conjugate gradient, Ne-
mirovsky and Yudin [1983] proposed the first method with optimal convergence rates.
However this method needed some kind of line-search and was not practical. Nes-
terov [1983] presented an optimal algorithm which only needs a first-order oracle.
Nesterov’s accelerated gradient can be described as follows: start from ✓

0

= ⌘
0

2 Rd

and then iterate

✓n = ⌘n�1

� 1

L
rf(⌘n�1

)

⌘n = ✓n + �n(✓n � ✓n�1

),
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where the momentum coefficient �n 2 R is chosen to accelerate the convergence rate
and has its roots in the heavy-ball algorithm from Polyak [1964]. Figure 1-2 illustrates
the difference between gradient and accelerated gradient steps. For this algorithm one
obtains the following result.

Proposition 3. Let f be a L-smooth convex function. Then for �n =

n�1

n�2

,

f(✓n)� f(✓⇤)  2Lk✓
0

� ✓⇤k2
(n+ 1)

2

.

Moreover let f be also µ strongly convex. Then for �n =

p
L�p

µp
L+

p
µ
,

f(✓n)� f(✓⇤)  Lk✓
0

� ✓⇤k2
⇣

1�
r

µ

L

⌘n

.

The algorithm was initially proposed by Nesterov [1983, 2004] with a more complex
momentum term. The simplified version we present here is due to Tseng [2008]. Beck
and Teboulle [2009], Schmidt et al. [2011] both proposed very concise proofs of these
optimal convergence rates. It is worth noting that the accelerated gradient method is
not adaptive to strong convexity. Indeed the value of µ is needed to obtain the linear
convergence rate. Nesterov [2013], O’Donoghue and Candès [2013] proposed the use
of restart heuristics to resolve this issue. Indeed Arjevani and Shamir [2016] show
that no methods with fixed sequences of step-sizes can achieve the accelerated rate,
unless the parameter µ is known. This method is not a descent algorithm and often
exhibits an oscillatory behavior. This will be further detailed in Chapter 2. Until
recently, accelerated gradient descend lacked an intuitive interpretation, contrary to
the standard gradient descent. This has been addressed by Allen-Zhu and Orecchia
[2017], Bubeck et al. [2015], and in a series of works on the connection with differential
equations by Su et al. [2014], Krichene et al. [2015], Wibisono et al. [2016], Wilson
et al. [2016], Attouch et al. [2016a], Attouch and Peypouquet [2016].

1.5.3 Specificity of Quadratic Functions

Minimizing a quadratic function f is equivalent to solving a linear system of equa-
tions, i.e., rf(✓) = 0. For instance, in least-squares regression, the ERM predictor is
directly given by the normal equation

�

>
�

ˆ✓ = �

~Y , (1.2)

which is a set of d equations for d unknowns. Hence, the methods we presented
so far may appear inefficient or needlessly complicated for solving such problems.
Nevertheless the worst case function used to prove the lower bound in Proposition 2
is quadratic and accordingly quadratic problems are just as hard as any smooth
problem. We introduce presently two methods dedicated to minimizing quadratic
functions.
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Numerical algebra. First one may prefer to directly solve the system in Eq. (1.2)
by using numerical linear algebra algorithms. The complexities of these methods can
usually be decomposed as O(d3+nd2) to form �

>
�, O(nd2) to form �

~Y and O(d3) to
solve the linear system. Gaussian elimination could be used to solve the linear system
in Eq. (1.2) as any linear system but this approach is oblivious to the specific form
of the empirical covariance �

>
�. One may thus prefer methods based on singular

value decomposition or QR decomposition when � is full rank [see, e.g., Golub and
Van Loan, 2013]. These methods rely on well-known linear algebra, but can only be
used for small to medium scale problems (typically d  10

4). For large scale problems
they are not suitable since they do not leverage the special structure of the problem
and the conjugate gradient algorithm may be favored instead.

Conjugate gradient algorithm. Hestenes and Stiefel [1952] introduced the con-
jugate gradient method which corresponds to the momentum algorithm

✓n = ✓n�1

� �nrf(✓n�1

) + �n(✓n�1

� ✓n�2

)

with (�n, �n) solutions of the two dimensional optimization problem:

min

�,�
f
�

✓n�1

� �rf(✓n�1

) + �(✓n�1

� ✓n�2

)

�

.

This line search procedure can be explicitly solved when f is a quadratic function with
the same computational complexity as a gradient computation. The explicit method
is detailed by Golub and Van Loan [2013]. Surprisingly this method converges to
the solution ✓⇤ of the problem in at most d steps and the behavior of the method is
globally controlled by [Polyak, 1987]

f(✓n)� f(✓⇤)  min

nLk✓
0

� ✓⇤k2
2

8n2

, 4 exp (�2

p

µ/Ln)[f(✓
0

)� f(✓⇤)]
o

.

We note that the method converges at the optimal linear rate without knowing the
strong convexity constant µ, in contrast to the accelerated gradient method. Non-
linear extensions of the conjugate gradient are presented by Nocedal and Wright
[2006].

1.5.4 Extension to Composite Optimization

When the function f is no longer smooth, gradient descent with constant step size
fails be to consistent [Bertsekas, 1999]. Shor [1962], Ermoliev [1966], Polyak [1967]
solve this issue by showing that the projected sub-gradient method with decreasing
step size O(1/

p
n) converges at rate O(1/

p
n) when the average of the iterates is

considered as output of the method [Shor et al., 1985]. When the function is also µ-
strongly convex, the projected sub-gradient method with step-size O(1/µn) converges
at rate O(log(n)/µn) and at rate O(1/µn) when non-uniform average is used. More-
over Nemirovsky and Yudin [1983] show these rates are optimal among first-order
methods.
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C

✓n ✓n+1

⇧C��nrf(✓n)

Figure 1-3 – Projected subgradient. We denote by ⇧C the Euclidean projection on
the convex set C.

Yet there is a crucial difference between the class of smooth problems (with
bounded smoothness constant) and the class of all convex problems since conver-
gence rates are downgraded from O(1/n2

) to O(1/
p
n). However the structure of the

function as well as the reason for non-smoothness are often known. For instance the
objective function is sometimes the sum of a smooth and a non-smooth function, as
in Lasso or constrained problems. These are composite problems of the form:

min

✓2Rd
f(✓) + g(✓),

where f is an L-smooth function accessible through a first-order oracle and g is a
simple convex function in a sense that will be explained below.

As with the gradient descent for smooth functions, at each iteration the smooth
function f is linearized around the current iterate ✓n. Then proximal gradient meth-
ods, also called forward-backward splitting methods [see, e.g., Beck and Teboulle,
2009, Wright et al., 2009, Combettes and Pesquet, 2011] consider the iterate

✓n+1

= arg min

✓2Rd

⇢

f(✓n) + hrf(✓n), ✓ � ✓ni+ L

2

k✓ � ✓nk2
2

| {z }

Linearization of the smooth component

+ g(✓)
|{z}

Non-smooth term

�

.

For instance when g = C is the indicator function of a convex set C, proximal gradient
is tantamount to projected gradient as depicted in Figure 1-3. This update may be
efficiently written in the terms of proximal operator defined by Moreau [1962] as
Proxg(⌘) = argmin✓2Rd{1

2

k✓ � ⌘k2
2

+ g(✓)}:

✓n+1

= arg min

✓2Rd

⇢

1

L
g(✓) +

1

2

�

�

�

✓ � �✓n � 1

L
rf(✓n)

�

�

�

�

2

2

�

= Prox 1
Lg

⇣

✓n � 1

L
rf(✓n)

⌘

.

Therefore this method is only used in practice with simple functions g whose proximal
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operator is computable effectively. This is the case if there exists a closed form
expression and several examples are provided by Bach et al. [2012].

Surprisingly Beck and Teboulle [2009], Nesterov [2013] show convergence results
similar to smooth optimization with the proofs following the same general guidelines.

1.5.5 Extension to Non-Euclidean Geometry

Until now, we have derived dimension-free convergence rates under Lipschitz as-
sumptions on the function or on its gradient with respect to the Euclidean geometry.
When these assumptions are with respect to different norms, the above convergence
rates still apply but the dimension d of the space appears in the bound. For example,
if the gradient of a function f is bounded in the `1-norm by a constant B > 0,
it is bounded in the `

2

-norm as krf(✓)k
2

 B
p
d. Thus algorithms which work

with different geometries may yield convergence rates with better dependency on the
dimension.

Let h : Rd ! R be a differentiable convex function such that its gradient rh is a
bijection of Rd. The Bregman divergence associated with the function h is defined as

Dh(✓1, ✓2) = h(✓
1

)� h(✓
2

)� hrh(✓
2

), ✓
1

� ✓
2

i, ✓
1

, ✓
2

2 Rd.

It may be interpreted as a generalized squared distance which provides a new geometry
standing in for the Euclidean one. Incidentally, the latter is recovered by considering
h(·) = 1

2

k · k2
2

.
With the aim of solving the constrained problem min✓2C f(✓) under the Bregman

geometry, Nemirovski and Yudin [1979] introduce the mirror descent algorithm which
may be defined by the update

✓n = argmin

✓2C

�

�nhrf(✓n�1

), ✓i+Dh(✓, ✓n�1

)

 

,

started from ✓
0

2 C. The Bregman divergence has replaced the Euclidean distance in
the definition of the gradient descent iteration in Eq. (1.1). This contemporary proxi-
mal definition is due to Beck and Teboulle [2003]. Mirror descent can be equivalently
written as a greedy gradient update followed by a projection step

rh(�n) = rh(✓n�1

)� �nrf(✓n�1

) (greedy update)
✓n = argmin

✓2C
Dh(✓,�n). (projection step)

Let us take a step backward and forget about the Euclidean structure. The gradient
rf(✓n�1

) belongs to the dual space whereas the iterate ✓n�1

lives in the primal space.
Thus the gradient iteration no longer makes sense. Instead Nemirovski and Yudin
[1979] propose first to map the current iterate ✓n�1

to the dual space with rh(✓n�1

),
and perform there the gradient update rh(✓n�1

)� �nrf(✓n�1

). The resulting point
is then mapped back in the primal space and projected with regards to the Bregman
divergence in the convex set C. This is depicted in Figure 1-4.
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dual space dual space

primal space primal spaceC C

✓n ✓n

rh

rh(✓n)
��nrf(✓n)

rh(�n+1

)

rh�1

⇧

h
C

�n+1

✓n+1

rh(�n)

rh(�n�1

)

rh(�n+1

)rh(�n+1

)

��nrf(✓n)
rh�1

rh�1

⇧

h
C

�n+1

⇧

h
C

�n

Figure 1-4 – Mirror descent versus dual averaging. Left: mirror descent. Right: dual
averaging. We denote by ⇧

h
C the Bregman projection on the convex set C defined in

the projection step.

Mirror descent has to be associated with its cousin dual averaging initially in-
troduced by Nesterov [2009] which considers a lazy gradient update started from
✓
0

,�
0

2 C

rh(�n) = rh(�n�1

)� �nrf(✓n�1

) (lazy update)
✓n = argmin

✓2C
Dh(✓,�n). (projection step)

Taking �
0

such that rh(�
0

) = 0, dual averaging can also be written under the
following simpler expression (still started from ✓

0

2 C)

✓n = argmin

✓2C

n

⌦

n�1

X

i=1

�i+1

rf(✓i), ✓
↵

+ h(✓)
o

.

The greedy and lazy aspects of these methods as well as what differentiates them
will be explained in detail in Chapter 4. As initially desired, mirror descent and
dual averaging algorithms adapt to the geometry provided by the Bregman diver-
gence. When the function f is assumed to be B-Lipschitz with respect to an ar-
bitrary norm k · k and the mirror map h is µ-strongly convex with respect to the
same norm, then these methods yield an optimal convergence O(BD/

p
µn) where

D2

= sup✓1,✓22C{h(✓1) � h(✓
2

)}. Nesterov [2007], Krichene et al. [2015] have acceler-
ated these algorithms when the function is smooth with respect to some non-Euclidean
geometry. Bauschke et al. [2016] have recently redefined the concept of smoothness
for non-Euclidean geometry. Furthermore these methods have also been extended to
the composite setting by Duchi et al. [2010], Xiao [2010].
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Convex µ-Strongly convex
B-Lipschitz
Projected sub-gradient BD/

p
n B2D/µn

L-Smooth
Accelerated gradient Lk✓

0

� ✓⇤k2/n2

(1�pL/µ)nk✓
0

� ✓⇤k2
Quadratic
Conjugate gradient min{d, Lk✓

0

� ✓⇤k2/n2} min{d, (1�pL/µ)nk✓
0

� ✓⇤k2}
Table 1.1 – Convergence rates for deterministic optimization.

1.5.6 Conclusion

We summarize the different rates of convergence provided so far in Table 1.1. Our
goal is to minimize the generalization error of a machine learning problem. But we
have seen that the estimation error was O(1/

p
n) in the Lipschitz case and O(1/n)

in the strongly convex case. This is the key insight of Bottou and Bousquet [2008],
Shalev-Shwartz and Srebro [2008] who explain there is no need to optimize below esti-
mation error for machine learning applications. We present now a different approach
which directly minimizes the generalization error.

1.6 Stochastic Approximation

1.6.1 Classical Stochastic Approximation

Stochastic approximation historically aims at finding a zero of a function h :

Rd ! Rd which cannot be directly computed but is accessible through samples.
For instance in the dosage of chemical products, experiments make it possible to
sample the function h at certain points: the result of the experiment is the true value
perturbed by some random noise h(✓) + ".

Traditional deterministic techniques may be used to solve the non-linear system
h(✓) = 0. At each iteration, an estimate of the value of h(✓n) is built, for example,
by approximating it by its means over the samples. This is the sample average
approximation approach by Kleywegt et al. [2002]; see, e.g., Shapiro et al. [2014] for
a review. This technique is unstable and time-consuming because at each iteration
enough samples need to be computed to properly approximate the function value.
Instead Robbins and Monro [1951] propose to use each sample once by considering
the noisy fixed point iteration:

✓n = ✓n�1

� �n[h(✓n) + "n],

where "n is typically assumed to be an i.i.d. sequence of zero-mean finite variance noise
and (�n) is a sequence of step-size. Convergence results are usually asymptotic and
assume the existence of a well behaving Lyapunov function [Polyak, 1976, Duflo, 1997].
Ermoliev [1969], Robbins and Siegmund [1971] show the almost-surely convergence
of the iterates and Chung [1954], Sacks [1958], Fabian [1968] show their asymptotic
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normality, both if the step-size satisfies the conditions

1
X

i=1

�i = 1 and
1
X

i=1

�2i < 1.

These results directly extend to minimization of a function f by finding a zero of
its gradient rf (we note that no convexity is assumed).

Therefore the goal of stochastic approximation can be equivalently defined as
minimizing a function f given only unbiased estimates rfn+1

(✓n) of its gradient
rf(✓n) at certain points ✓n. Indeed in a lot of applications, the exact gradient of
a function is not tractable because of errors in the measurements or in the Monte
Carlo evaluation of expected values. Yet noisy unbiased estimates of the gradient are
accessible and cheap. As noticed by Bottou and Le Cun [2005] this directly includes
the usual machine learning situation of minimization of the generalization error

L(✓) = Efn(✓) for fn(✓) = l(yn, h✓, xni),

observing estimate rfn(✓) = l0(yn, h✓, xni)xn of the true gradient rL(✓) = Erfn(✓).
But its applicability is much broader and goes far beyond convex optimization [Ben-
veniste et al., 1990, Kushner and Yin, 2003].

1.6.2 Convex Stochastic Optimization

When we want to minimize a function which is only available through unbiased
estimates of the function values or its gradients, stochastic gradient descent is the key
algorithm. It takes the form

✓n = ✓n�1

� �nrfn(✓n�1

),

where �n is a step-size sequence chosen depending on the situation. Here we consider
the classical stochastic approximation framework [Kushner and Yin, 2003, Borkar,
2008]. That is, we let (Fn)n�0

be an increasing family of �-fields such that for each
✓ 2 Rd and for all n � 1 the random variable rfn(✓) is square-integrable and Fn-
measurable with E[rfn(✓)|Fn�1

] = rf(✓). Polyak [1990], Ruppert [1988] consider
instead the average of the iterates ¯✓n =

1

n

Pn�1

i=1

✓i as the output of the algorithm.
This is the averaged stochastic gradient descent.

In machine learning applications, when the objective function is the expectation
of a loss function, the running-time complexity of the stochastic gradient is O(nd)
after n iterations. This has to be compared with the O(n2d) complexity of gradient
descent on the training error computed with n data (computing a gradient which is
an average of n terms costs O(nd)).

The global minimax rates of convergence are known since Nemirovsky and Yudin
[1983] for convex non-smooth problems and Tsypkin and Polyak [1974], Nazin [1989]
for strongly convex non-smooth problems. For convex problems the minimax rate is
O(1/

p
n) and it is attained by averaged stochastic gradient descent with step-size �n =
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C/
p
n [Zhang, 2004]. When in addition, the function is assumed µ-strongly convex,

the minimax rate becomes O(1/(µn)) and is still attained by averaged stochastic
gradient but with a smaller step-size �n = C/µn and a non-uniform average [Rakhlin
et al., 2012, Lacoste-Julien et al., 2012]. Yet the minimax rate is the same for non-
smooth functions as it is in deterministic optimization. Moreover the proofs in the
two settings are very similar. The proof techniques are different for the lower-bounds
and use tools from statistics and information theory. They are clearly presented and
extended by Agarwal et al. [2012], Raginsky and Rakhlin [2011].

The stochastic gradient algorithm has been extended to the proximal case by Duchi
and Singer [2009], Hu et al. [2009], Xiao [2010] and to the non-Euclidean setting by
Nemirovski et al. [2009], Lan [2012].

1.6.3 Smooth and Strongly Convex Stochastic Optimization

We have seen that smoothness plays a central role in the context of deterministic
optimization but for stochastic optimization, smoothness only leads to improvements
on constants, not on the rate itself. The minimax rate remains O(1/

p
n) for non-

strongly convex problems. Moreover accelerated gradient descent is notorious for not
being robust to random or deterministic noise in the gradient [d’Aspremont, 2008,
Schmidt et al., 2011, Devolder et al., 2014] and Hu et al. [2009], Lan [2012] advocate
small step-size C/n3/2 to obtain convergence rate O(1/

p
n).

The story is different for strongly convex problems. When the function is non-
smooth, stochastic gradient descent is not adaptive to strong convexity since the
step-size has to depend on µ in order to obtain fast rates. Moreover the choice of the
constant in the step-size C/µn is very sensitive as noted by Nemirovski et al. [2009].

Yet for smooth and strongly convex functions, Polyak and Juditsky [1992] show
that averaged stochastic gradient with larger step size �n = Cn�↵ for ↵ 2 (1/2, 1)
has a convergence rate of order O(1/n) independent of the strong convexity constant.
This idea is developed by Bach and Moulines [2011] who provide a non-asymptotic
analysis of averaging for smooth functions. They show that averaged stochastic gra-
dient with step-size �n = C/n↵ has a rate of convergence O(1/n + 1/(µn)2) for µ-
strongly convex problems and O(1/n1�↵

) for convex problems. Therefore this method
with step-size �n = C/

p
n is adaptive to strong convexity with convergence rate

O(min(1/µn), 1/
p
n) for all smooth problems. Bach [2014] extends these results to

logistic regression which is not globally strongly convex. We also note than the ben-
efits of averaging may be understood through the lens of two-time scale stochastic
approximation [Borkar, 1997].

Typical high-dimensional machine learning problems have very correlated vari-
ables so that the strong convexity constant µ may be arbitrarily small. This makes
convergence rates O(1/(µn)) useless and makes non-strongly convex scenario more
suitable. Thus we aim at obtaining algorithms with convergence rate O(1/n) that
are robust to arbitrarily small strong convexity constants.
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✓
0

✓⇤
¯✓n

✓n

Figure 1-5 – Markov chain interpretation.

1.6.4 Least-Mean-Squares Algorithm

When applied to least-squares f(✓) =

1

2

E[(yn � h�(xn), ✓i)2], stochastic gradi-
ent descent is known as the least-mean-square algorithm [Macchi, 1995]. In signal
processing theory, it is usually studied (a) without averaging, (b) with decreasing
step-size and (c) with strong convexity assumption ⌃ = E[�(X)⌦ �(X)] < µI. Bach
and Moulines [2013], following Györfi and Walk [1996], propose a non-asymptotic
analysis of the averaged least-mean-square algorithm with constant-step size

✓n = ✓n�1

� �(h�(xn), ✓n�1

i � yn)�(xn). (1.3)

The sequence (✓n) is a homogeneous Markov chain [Meyn and Tweedie, 2009] which,
under appropriate conditions, converges in distribution to its unique stationary distri-
bution ⇡�. The average of the stationary distribution is denoted by ¯✓� =

R

✓⇡�(d✓).
Taking the expectation in Eq. (1.3) and remembering that ✓⇤ = ⌃

�1E[�(x)y] one
obtains

E✓n = E✓n�1

� �⌃(E✓n�1

� ✓⇤).

Recall that limn!1 E✓n =

¯✓� and ⌃ is invertible. It follows that ¯✓� = ✓⇤. The ergodic
theorem then shows that ¯✓n converges almost surely to ¯✓�. The central limit theorem
for Markov chains also implies that nEk¯✓n � ✓⇤k2

⌃

has a finite limit. Therefore, the
Markov chain interpretation explains the averaged iterates converge to ✓⇤ pointwise,
and that the rate of convergence of E[f(✓n) � f(✓⇤)] is of order O(1/n), whereas ✓n
does not converge to ✓⇤ but oscillates around it. This is summarized in Figure 1-5.

In addition Bach and Moulines [2013] show that under similar assumptions to
that of the analysis of least-squares with random design and without assuming strong
convexity,

Ef(¯✓n)� f(✓⇤)  4R2k✓
0

� ✓⇤k2
n

+

4�2d

n
.

The performance of this algorithm is then decomposed as the sum of: (a) a bias term
which depends on the deviation between the initial point of the algorithm and the
solution of the problem and characterizes how fast initial conditions are forgotten and
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(b) a variance term, which depends on the covariance of the noise in the gradients
and describes the effect of this noise.

We have already seen that the variance term O(�2d/n) is optimal over all esti-
mators. However the bias term O(1/n) is suboptimal since the optimal optimization
algorithm forgets the initial condition as O(1/n2

). Therefore there is a mismatch
between the optimization and the statistics theories which will be investigated to a
great extent in Chapter 3. This is relevant in practice since the bias term can be sig-
nificantly larger than the variance term. It may consequently be useful to accelerate
its convergence.

1.6.5 Finite Sum Problems

We end this section with an intermediate problem, related both to deterministic
optimization and to stochastic approximation, which has gained a lot of attention
these past years. We consider here a finite sum problem of the form:

f(✓) =
1

k

k
X

i=1

fi(✓),

where f
1

, . . . , fk are L-smooth-functions, possibly µ-strongly convex. An important
example is the empirical risk studied in Section 1.4.

The function f is deterministic, thus contrary to stochastic approximation we have
a full access to its gradient. The function f can therefore be optimized with gradient
descent:

✓n = ✓n�1

� �n�1

k

k
X

i=1

rfi(✓n�1

)

with a linear convergence rate O(exp(�nµ/L)). However the complexity of com-
puting rf(✓n�1

) is O(dk) at each iteration. The running time complexity is then
O(dkL/µ log(1/")) and can be decreased to O(dk

p

L/µ log(1/")) using accelerated
gradient descent.

Stochastic gradient descent can also be applied to f , sampling with replacement,
at each iteration, i(n) 2 {1, . . . , n} (see recent work by Gürbüzbalaban et al. [2015],
Shamir [2016] for results on sampling without replacement) and iterating

✓n = ✓n�1

� �n�1

rfi(n)(✓n�1

).

The convergence rate O(L/(µn)) is slower but the running time complexity O(Ld/(µ"))
is independent of k. So stochastic gradient descent achieves rapidly low accuracy
whereas deterministic algorithm should be preferred when high accuracy is desired.

Schmidt et al. [2017], Shalev-Shwartz and Zhang [2013] propose two new methods,
respectively stochastic averaged gradient (SAG) and stochastic dual coordinate ascent
(SDCA) which both combine linear convergence and O(d) complexity by iteration.
These methods have a running time complexity O(d(k + L/µ) log(1/")). Initially,
SDCA applied only to a restricted set of problems (minimization `

2

-regularized train-
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Convex µ-Strongly convex
B-Lipschitz
Averaged gradient descent BD/

p
n B2D/µn

L-Smooth
Averaged gradient descent O(1/

p
n) O(1/µn)

Least-squares
Averaged gradient descent O(�2d/n+R2k✓⇤k2

2

) [Jain et al., 2016]
Finite sum
Accelerated SDCA, SVRG O

⇣

exp

�� n
k

�

+

p
Lk
n2

⌘

O
⇣

exp

�� n

k+
p

Lk/µ

�

⌘

Table 1.2 – Convergence rates for stochastic approximation.

ing error with linear predictions) and required duality but these two assumptions have
been recently lifted by Shalev-Shwartz [2016a]. Johnson and Zhang [2013] obtain the
same running time complexity through a different method that can be understood
in terms of variance reduction.. These methods do not contradict lower bounds seen
in the previous section since they hold due to the special structure of the objective
function.

Shalev-Shwartz and Zhang [2014], Zhang and Xiao [2015], Nitanda [2014], Lin
et al. [2015] obtain accelerated versions of these algorithms with running time com-
plexities O(d(k+

p

kL/µ) log(1/")) and O(k log 1/") +
p

kL/") when the function is
not strongly convex. They are shown to be optimal by Agarwal and Bottou [2015],
Lan and Zhou [2015], Arjevani and Shamir [2016], Woodworth and Srebro [2016].

1.6.6 Conclusion

The different rates of convergence for stochastic convex optimization are summa-
rized in Table 1.2. Stochastic approximation techniques enable to directly optimize
the generalization error and provide predictors with optimal estimation error. More-
over their estimation rates are much simpler to prove than analyzing (a) the statistical
performance of the minimizer of the empirical risk as in Section 1.4 and (b) the con-
vergence rate of the optimization method (studied in Section 1.5).

Shalev-Shwartz [2016b] points out that the minimizer of the empirical risk may
have better statistical properties than the predictor obtained with stochastic gradient
descent even if they have an estimation error of the same order. In particular this
latter seems to be more efficient to predict rare events. Therefore this fact emphasizes
the importance to efficiently optimize finite sum objective functions with dedicated
methods (SAG, SDCA, SVRG) with the intended target of rapidly minimizing the
empirical risk [Frostig et al., 2015].

Stochastic approximation methods have the significant advantage of being on-
line and new data are instantly taken into account. Yet the i.i.d. assumption on
the streamed data is quite strong. We will explain now how online learning lifts
the assumption that the sequence being observed is independently sampled from an
unknown distribution.
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1.7 Online Convex Optimization

Online learning studies sequential decision processes. It may be viewed as an
extension of statistical learning to a sequential setting without independence of the
data. The setting is even harder: an adversary maliciously and adaptively picks the
data in order to confuse the learner. A comprehensive survey on this very active field,
closely related to game theory, was written by Cesa-Bianchi and Lugosi [2006]. We
present here the online convex optimization framework defined by Zinkevich [2003]
following Gordon [1999]: let C be a non empty convex set. At each iteration n the
learner

— predicts a vector ✓n
— observes a convex loss function fn : C ! R
— suffers the loss fn(✓n).

He wants to minimize his regret:

Rn =

n
X

i=1

fi(✓i)� inf

✓2C

n
X

i=1

fi(✓).

Following Shalev-Shwartz [2012], Hazan [2012], only linear functions fn(✓) =

hxn, ✓i for xn 2 Rd are considered here. Indeed results on linear functions are straight-
forwardly lifted to general convex functions, using the inequality fn(✓n) � fn(✓) 
hrfn(✓n), ✓n � ✓i for all ✓ 2 C and considering the linear proxy ˆfn(✓) = hrfn(✓n), ✓i.

Hannan [1957] initially proposes to predict ✓n = argmin✓2C
Pn�1

i=1

fi(✓), the best
vector so far. However Kalai and Vempala [2005] show that the regret Rn of this
simple strategy (they name follow the leader) can sometimes be O(n). Following
the time-varying potential method presented by Cesa-Bianchi and Lugosi [2006, Sec.
11.6], Shalev-Shwartz and Singer [2007] and Abernethy et al. [2008] propose to add a
regularization h : C ! R to the previous approach. The follow the regularized leader
(FTRL) algorithm considers at each iteration n the update

✓n = argmin

✓2C

n�1

X

i=1

fi(✓) + h(✓).

It may be directly interpreted as the online extension of the dual averaging algo-
rithm presented in Section 1.5.5. Nevertheless the primal-dual approach of Shalev-
Shwartz and Singer [2007] is more general and may lead to different algorithms. We
also note FTRL recovers for special choices of constraint set C and regularization h
the online gradient descent by Zinkevich [2003] and the exponentiated gradient by
Kivinen and Warmuth [1997].

We can also take a different iterative approach and consider the online extensions
of mirror descent and dual averaging algorithms introduced Section 1.5.5. In online
learning, they are respectively denoted by greedy and lazy online mirror descent. As
their deterministic counterparts, these two methods consider two sequences (�n) and
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(✓n) and respectively update:

rh(�n) = rh(✓n�1

)� ⌘fn�1

(greedy update)
rh(�n) = rh(�n�1

)� ⌘fn�1

, (lazy update)

Then ✓n is obtained by projecting according to the Bregman divergence

✓n = argmin

✓2C
Dh(✓,�n).

In the linear case, the lazy online mirror descent is equivalent to the FTRL ap-
proach as remarked by Hazan and Kale [2010].

Under strong convexity assumptions on the regularization h, and B-Lipschitz
assumptions on the functions fn, Shalev-Shwartz [2007], Abernethy et al. [2008] show
that the regret of FTRL is Rn = O(B

p
n). Moreover when the loss functions fn are

also µ-strongly convex, Hazan et al. [2007], Shalev-Shwartz and Kakade [2009] show
the regret becomes logarithmic Rn = O(B2

log n/µ). These rates are known to be
optimal [Takimoto and Warmuth, 2000, Shalev-Shwartz, 2007].

Furthermore Littlestone [1989] explains online learning results can be converted
into statistical learning results by considering the average ¯✓n =

1

n

Pn�1

i=0

✓i as output
of the learning algorithm. This has been strengthened by Cesa-Bianchi et al. [2004],
Zhang [2005] to results on high probability.

Application to online linear regression. We illustrate this setting on online
linear regression where we observe sequentially deterministc data (x

1

, y
1

, . . . , xn, yn) 2
(X ⇥ Y)

n and want to design a predictor which achieves small regret

Rn =

n
X

i=1

(hxi, ✓ii � yi)
2 � inf

✓2C

n
X

i=1

(hxi, ✓i � yi)
2.

This is the online learning setting applied to the least-squares functions fn(✓) =

(hxn, ✓i � yn)2. The FTRL approach may be used with an `
2

-regularization h(✓) =
1

2

k✓k2
2

to obtain a predictor

✓n = arg min

✓2Rd

n�1

X

i=1

(h✓, xii � yi)
2

+ k✓k2

similar to the one of the ridge regression [Hoerl and Kennard, 1970]. Its regret is not
generally bounded, though [Cesa-Bianchi and Lugosi, 2006, Theorem 11.7].

Vovk [2001], Azoury and Warmuth [2001] solve this issue making the predictor
non linear. The Vovk-Azoury-Warmuth predictor is the non linear predictor hn(x) =
h✓xn, xi where ✓xn is given by

✓xn = arg min

✓2Rd

n�1

X

i=1

(h✓, xii � yi)
2

+ k✓k2 + h✓, xi2.
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The additional term (compared with the ridge regression predictor) h✓, xi2 may be
interpreted as the loss being incurred at time n when yn is estimated by 0. ✓xn

n has
the following close form:

✓xn
n =

⇣

I +
n
X

i=1

xi ⌦ xi

⌘�1

⇣

n�1

X

i=1

yixi

⌘

,

which can be sequentially computed with complexity O(d2) thanks to the Sherman-
Morrison formula. For this predictor, the following convergence result holds [Cesa-
Bianchi and Lugosi, 2006, Theorem 11.8].

Proposition 4. The Vovk-Azoury-Warmuth predictor on (x
1

, y
1

, . . . , xn, yn) 2 (Rd ⇥
R)n satisfies

1

n

n
X

i=1

(h✓xi
i , xii � yi)

2 � inf

✓2Rd

n

1

n

n
X

i=1

(h✓, xii � yi)
2

+

1

n
k✓k2

2

o

 dB2

log(1 + nR2/d)

n
, (1.4)

where B2

= maxi2{1,...,n} y2i and R2

= maxi2{1,...,n} kxik2
2

.

Therefore in the setting of online learning, with no assumption on the generation of
the data, we obtain an O(d log(n)/n) bound on the regret for least-squares problems.
Furthermore Cesa-Bianchi and Lugosi [2006] show the optimality of this bound. We
also note Rakhlin and Sridharan [2014] extend this method to online non-parametric
regression.

1.8 Digest of Least-Squares Regression
We summarize here the different results seen so far for the particular example of

the least-squares regression:

min

✓2Rd
L(✓) =

1

2

E(h�(X), ✓i � Y )

2,

where (X, Y ) are random variables of unknown distribution D. We remind that the
covariance matrix is denoted by ⌃ = E[�(X)⌦ �(X)] and is only assumed invertible.
Thus its eigenvalues may be arbitrarily small, in contrast with a recent work by Jain
et al. [2016]. The global minimum of L(✓) is denoted by ✓⇤.

We consider not being limited in terms of sample complexity and are instead
interested in the running time complexity of the different methods.

Empirical risk minimization. In Section 1.4, the generalization error L is first
approximated by the training error ˆL(✓) = 1

2n

Pn
i=1

(h�(xi), ✓i � yi)2. Its minimizer ˆ✓
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Estimation Oracle Running-time
error complexity complexity

ERM
Conjugate gradient O(

�2d
n
) d O(

�2d3

"
)

Regularized ERM
Accelerated SDCA O(

�2d
n
)

˜O(

�2d+k✓⇤k2R�d1/2

"
)

˜O(

�2d2+k✓⇤k2R�d3/2

"
)

S.A.
SGD O(

�2d+R2k✓⇤k2
n

) O(

�2d+R2k✓⇤k2
"

) O(

�2d2+dR2k✓⇤k2
"

)

Online Learning
¯hn predictor O(

�2d log(n)+R2k✓⇤k2
n

)

˜O(

�2d+R2k✓⇤k2
"

) ?

Table 1.3 – Complexities of least-squares regression. ˜O ignores logarithmic factors.
S.A. denotes stochastic approximation.

achieves under reasonable assumptions on (X, Y ):

L(ˆ✓)� L(✓⇤) = O
⇣�2d

n

⌘

.

This quadratic function is efficiently solved with the conjugate gradient algorithm
presented in Section 1.5.3. The solution ˆ✓ is obtained in at most d iterations and
the complexity of each iteration is O(nd) (the cost of computing a gradient of ˆL).
Therefore the total running time complexity is O(

�2d3

"
).

Regularized risk minimization. The `
2

-regularized training error ˆL�(✓) = �k✓k2
2

+

1

2n

Pn
i=1

(h�(xi), ✓i� yi)2 may also be considered. Hsu et al. [2014] show its minimizer
ˆ✓� achieves, under suitable assumptions, a similar estimation rate

L(ˆ✓�)� L(✓⇤) = O
⇣�2d

n
+ �k✓⇤k2

2

⌘

.

Thus � = O(

�2d
k✓⇤k22n

) is taken to obtain L(ˆ✓�) � L(✓⇤) = O(�2d/n). Furthermore the
regularization may be leveraged by using fast optimization methods dedicated to finite
sum of strongly convex functions. Accelerated-SDCA has a running time complexity
O(d(n + R

p

n/� log(1/"))). Replacing with the value of �, the global running time
complexity becomes ˜O(

�2d2+k✓⇤k2R�d3/2

"
).

Stochastic approximations. The generalization error may also be directly opti-
mized using stochastic gradient descent with constant step size and averaging, as in
Section 1.6.4. One directly obtains a running time complexity O(

�2d2+dR2k✓⇤k2
"

).
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Online learning. The Vovk-Azoury-Warmuth predictor presented in Section 1.7
guarantees an O(d log(n)/n) bound on the regret for any sequence (x

1

, y
1

, . . . , xn, yn).
When the data are actually i.i.d., the average predictor ¯hn defined by

¯hn(x) =
1

n

n
X

i=1

h✓xi , xi

can be taken into account. Classic online to batch conversion techniques ensure an
estimation error O(�2d/n+R2k✓⇤k2

2

/n). The main downside of this method is that it
is unclear how to efficiently compute this average. It may be relaxed in ˜hn(x) = h˜✓n, xi
where ˜✓n is defined by ˜✓n =

1

n

Pn
i=1

✓xi
i but the independence between ˜✓n and xn is

then lost and the statistical properties of this estimator are not well understood.
Hence the best running time complexity of these methods is O(

�2d2+dR2k✓⇤k2
"

) with a
minimax optimal variance term �2d2/" and a suboptimal bias term O(

dR2k✓⇤k2
"

). Actu-
ally a bias term with a decrease in 1/

p
" is expected since it is the optimal rate of con-

vergence for first-order optimization of smooth non-strongly convex quadratic func-
tions. This issue will be the quest of the two following chapters of this manuscript.
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Part I

Stochastic Approximation and
Least-Squares Regression
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Chapter 2

Multistep Methods for Quadratic
Optimization

Abstract

We show that accelerated gradient descent, averaged gradient descent and the
heavy-ball method for quadratic non-strongly convex problems may be reformulated
as constant parameter second-order difference equation algorithms, where stability
of the system is equivalent to convergence at rate O(1/n2

), where n is the number
of iterations. We provide a detailed analysis of the eigenvalues of the corresponding
linear dynamical system, showing various oscillatory and non-oscillatory behaviors,
together with a sharp stability result with explicit constants. We also consider the
situation where noisy gradients are available, where we extend our general convergence
result, which suggests an alternative algorithm (i.e., with different step sizes) that
exhibits the good aspects of both averaging and acceleration.

This chapter is based on our work: “From Averaging to Acceleration, There is
Only a Step-size”, N. Flammarion and F. Bach, published in the Proceedings of the
International Conference on Learning Theory (COLT), 2015.

2.1 Introduction

Many problems in machine learning are naturally cast as convex optimization
problems over a Euclidean space; for supervised learning this includes least-squares
regression, logistic regression, and the support vector machine. Faced with large
amounts of data, practitioners often favor first-order techniques based on gradient
descent, leading to algorithms with many cheap iterations. For smooth problems, two
extensions of gradient descent have had important theoretical and practical impacts:
acceleration and averaging.

Acceleration techniques date back to Nesterov [1983] and have their roots in mo-
mentum techniques and conjugate gradient [Polyak, 1987]. For convex problems, with
an appropriately weighted momentum term which requires to store two iterates, Nes-
terov [1983] showed that the traditional convergence rate of O(1/n) for the function
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values after n iterations of gradient descent goes down to O(1/n2

) for accelerated
gradient descent, such a rate being optimal among first-order techniques that can
access only sequences of gradients [Nesterov, 2004]. Like conjugate gradient methods
for solving linear systems, these methods are however more sensitive to noise in the
gradients; that is, to preserve their improved convergence rates, significantly less noise
may be tolerated [d’Aspremont, 2008, Schmidt et al., 2011, Devolder et al., 2014].

Averaging techniques which consist in replacing the iterates by the average of all
iterates have also been thoroughly considered, either because they sometimes lead to
simpler proofs, or because they lead to improved behavior. In the noiseless case where
gradients are exactly available, they do not improve the convergence rate in the con-
vex case; worse, for strongly convex problems, they are not linearly convergent while
regular gradient descent is. Their main advantage comes with random unbiased gra-
dients, where it has been shown that they lead to better convergence rates than the
unaveraged counterparts, in particular because they allow larger step-sizes [Polyak
and Juditsky, 1992, Bach and Moulines, 2011]. For example, for least-squares regres-
sion with stochastic gradients, they lead to convergence rates of O(1/n), even in the
non-strongly convex case [Bach and Moulines, 2013].

In this chapter, we show that for quadratic problems, both averaging and accel-
eration are two instances of the same second-order finite difference equation, with
different step-sizes. They may thus be analyzed jointly, together with a non-strongly
convex version of the heavy-ball method [Polyak, 1987, Section 3.2]. In presence of
random zero-mean noise on the gradients, this joint analysis allows to design a novel
intermediate algorithm that exhibits the good aspects of both acceleration (quick
forgetting of initial conditions) and averaging (robustness to noise).

In this chapter, we make the following contributions:
– We show in Section 2.2 that accelerated gradient descent, averaged gradient de-

scent and the heavy-ball method for quadratic non-strongly convex problems
may be reformulated as constant parameter second-order difference equation algo-
rithms, where stability of the system is equivalent to convergence at rate O(1/n2

).
– In Section 2.3, we provide a detailed analysis of the eigenvalues of the corre-

sponding linear dynamical system, showing various oscillatory and non-oscillatory
behaviors, together with a sharp stability result with explicit constants.

– In Section 2.4, we consider the situation where noisy gradients are available, where
we extend our general convergence result, which suggests an alternative algorithm
(i.e., with different step sizes) that exhibits the good aspects of both averaging
and acceleration.

– In Section 2.5, we illustrate our results with simulations on synthetic examples.

2.2 Second-Order Iterative Algorithms for Quadratic
Functions

In this chapter, we consider minimizing a convex quadratic function f : Rd ! R
defined as:

f(✓) = 1

2

h✓, H✓i � hq, ✓i, (2.1)
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with H 2 Rd⇥d a symmetric positive semi-definite matrix and q 2 Rd. Without
loss of generality, H is assumed invertible (by projecting onto the orthogonal of
its null space), though its eigenvalues could be arbitrarily small. The solution is
known to be ✓⇤ = H�1q, but the inverse of the Hessian is often too expensive to
compute when d is large. The excess cost function may be simply expressed as
f(✓n)� f(✓⇤) =

1

2

h✓n � ✓⇤, H(✓n � ✓⇤)i.

2.2.1 Second-order Algorithms

In this chapter we study second-order iterative algorithms of the form:

✓n+1

= An✓n +Bn✓n�1

+ cn, (2.2)

started with ✓
1

= ✓
0

in Rd, with An 2 Rd⇥d, Bn 2 Rd⇥d and cn 2 Rd for all n 2 N⇤.
We impose the natural restriction that the optimum ✓⇤ is a stationary point of this
recursion, that is, for all n 2 N⇤:

✓⇤ = An✓⇤ +Bn✓⇤ + cn. (✓⇤-stationarity)

By letting �n = ✓n� ✓⇤ we then have �n+1

= An�n+Bn�n�1

, started from �
0

= �
1

=

✓
0

� ✓⇤. Thus, we restrict our problem to the study of the convergence of an iterative
system to 0.

In connection with accelerated methods, we are interested in algorithms for which

f(✓n)� f(✓⇤) =
1

2

h�n, H�ni (2.3)

converges to 0 at a speed of O(1/n2

). Within this context we impose that An and Bn

have the form:

An =

n
n+1

A and Bn =

n�1

n+1

B 8n 2 N with A,B 2 Rd⇥d. (n-scalability)

By letting ⌘n = n�n = n(✓n � ✓⇤), we can now study the simple iterative system with
constant terms ⌘n+1

= A⌘n + B⌘n�1

, started at ⌘
0

= 0 and ⌘
1

= ✓
0

� ✓⇤. Showing
that the function values f(⌘n) remain bounded, we directly have from Eq. (2.3), the
convergence of f(✓n) to f(✓⇤) at the speed O (1/n2

). Thus the n-scalability property
allows to switch from a convergence problem to a stability problem.

For feasibility concerns the method can only access H through matrix-vector prod-
ucts. Therefore A and B should be polynomials in H and c a polynomial in H times q,
if possible of low degree. The following theorem clarifies the general form of iterative
systems which share these three properties (see proof in Appendix 2.B).

Theorem 2. Let (Pn, Qn, Rn) 2 (R[X])

3 for all n 2 N, be a sequence of polynomials.
If the iterative algorithm defined by Eq. (2.2) with An = Pn(H), Bn = Qn(H) and cn =

R(H)q satisfies the ✓⇤-stationarity and n-scalability properties, there are polynomials
(

¯A, ¯B) 2 (R[X])

2 such that:

An = 2

n
n+1

�

I � 1

2

�

¯A(H) +

¯B(H)

�

H
�

,
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Bn = �n�1

n+1

�

I � ¯B(H)H
�

and cn =

1

n+1

�

n ¯A(H) +

¯B(H)

�

q.

Note that our result prevents An and Bn from being zero, thus requiring the
algorithm to strictly be of second order. This illustrates the fact that first-order
algorithms as gradient descent do not have the convergence rate in O(1/n2

).
We now restrict our class of algorithms to lowest possible order polynomials, that

is, ¯A = ↵I and ¯B = �I with (↵, �) 2 R2, which correspond to the fewest matrix-
vector products per iteration, leading to the constant-coefficient recursion for ⌘n =

n�n = n(✓n � ✓⇤):

⌘n+1

= (I � ↵H) ⌘n + (I � �H) (⌘n � ⌘n�1

) . (2.4)

Expression with gradients of f . The recursion in Eq. (2.4) may be written with
gradients of f in multiple ways. In order to preserve the parallel with accelerated
techniques, we rewrite it as:

✓n+1

=

2n
n+1

✓n � n�1

n+1

✓n�1

� n↵+�
n+1

f 0�n(↵+�)
n↵+�

✓n � (n�1)�
n↵+�

✓n�1

�

. (2.5)

It may be interpreted as a modified gradient recursion with two potentially different
affine (i.e., with coefficients that sum to one) combinations of the two past iterates.
This reformulation will also be crucial when using noisy gradients. The allowed values
for (↵, �) 2 R2 will be determined in the following sections.

2.2.2 Examples

Averaged gradient descent. We consider averaged gradient descent (referred to
from now on as “Av-GD”) [Polyak and Juditsky, 1992] with step-size � 2 R defined by
 n+1

=  n��f 0
( n) and ✓n+1

=

1

n+1

Pn+1

i=1

 i. When computing the average online as
✓n+1

= ✓n +
1

n+1

( n+1

� ✓n) and seeing the average as the main iterate, the algorithm
becomes (see proof in Appendix 2.B.2):

✓n+1

=

2n
n+1

✓n � n�1

n+1

✓n�1

� �
n+1

f 0�n✓n � (n� 1)✓n�1

�

.

This corresponds to Eq. (2.5) with ↵ = 0 and � = �.

Accelerated gradient descent. We consider the accelerated gradient descent (re-
ferred to from now on as “Acc-GD”) [Nesterov, 1983] with step-sizes (�, �n) 2 R2:

✓n+1

= !n � �f 0
(!n), !n = ✓n + �n(✓n � ✓n�1

).

For smooth optimization, the accelerated literature [Nesterov, 2004, Beck and Teboulle,
2009] uses the step-size �n = 1 � 3

n+1

and their results are not valid for bigger step-
size �n. However �n = 1� 2

n+1

is compatible with the framework of Lan [2012] and is
more convenient for our set-up. This corresponds to Eq. (2.5) with ↵ = � and � = �.
Note that accelerated techniques are more generally applicable, e.g., to composite
optimization with smooth functions [Nesterov, 2013, Beck and Teboulle, 2009].
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Heavy ball. We consider the heavy-ball algorithm (referred to from now on as
“HB”) [Polyak, 1964] with step-sizes (�, �n) 2 R2 :

✓n+1

= ✓n � �f 0
(✓n) + �n(✓n � ✓n�1

),

when �n = 1� 2

n+1

(we note that typically �n is constant for strongly convex problems).
This corresponds to Eq. (2.5) with ↵ = � and � = 0.

2.3 Convergence with Noiseless Gradients
We study the convergence of the iterates defined by Eq. (2.4). This is a second-

order iterative system with constant coefficients that it is standard to cast in a linear
framework [see, e.g., Ortega and Rheinboldt, 2000]. We may rewrite it as:

⇥n = F⇥n�1

, with ⇥n =

✓

⌘n
⌘n�1

◆

and F =

✓

2I � (↵ + �)H �H � I
I 0

◆

2 R2d⇥2d.

Thus ⇥n = F n
⇥

0

. Following O’Donoghue and Candès [2013], if we consider an
eigenvalue decomposition of H, i.e., H = PDiag(h)P> with P an orthogonal matrix
and (hi) the eigenvalues of H, sorted in decreasing order: hd = L � hd�1

� · · · �
h
2

� h
1

= µ > 0, then Eq. (2.4) may be rewritten as:

P>⌘n+1

= (I � ↵Diag (h))P>⌘n + (I � �Diag (h))
�

P>⌘n � P>⌘n�1

�

. (2.6)

Thus there is no interaction between the different eigenspaces and we may consider,
for the analysis only, d different recursions with ⌘in = p>i ⌘n, i 2 {1, ..., d}, where
pi 2 Rd is the i-th column of P :

⌘in+1

= (1� ↵hi) ⌘
i
n + (1� �hi)

�

⌘in � ⌘in�1

�

. (2.7)

2.3.1 Characteristic Polynomial and Eigenvalues

In this section, we consider a fixed i 2 {1, . . . , d} and study the stability in the
corresponding eigenspace. This linear dynamical system may be analyzed by studying

the eigenvalues of the 2⇥2-matrix Fi =

✓

2� (↵ + �)hi �hi � 1

1 0

◆

. These eigenvalues

are the roots of its characteristic polynomial which is:

det(xI � Fi) = (x (x� 2 + (↵ + �)hi) + 1� �hi) = x2 � 2x
�

1� �↵+�
2

�

hi

�

+ 1� �hi.

To compute the roots of the second-order polynomial, we compute its discriminant:

�i =
�

1� �↵+�
2

�

hi

�

2 � 1 + �hi = hi

��

↵+�
2

�

2

hi � ↵
�

.

Depending on the sign of the discriminant �i, there will be two real distinct eigen-
values (�i > 0), two complex conjugate eigenvalues (�i < 0) or a single real eigen-

39



0 1 2 3 4

0

1

2

AvGD

AccGD
HB

Real

Complex

�hi

↵hi

Figure 2-1 – Area of stability of the algorithm, with the three traditional algorithms
represented. In the interior of the triangle, the convergence is linear.

value (�i = 0).
We will now study the sign of �i. In each different case, we will determine

under what conditions on ↵ and � the modulus of the eigenvalues is less than one,
which means that the iterates (⌘in)n remain bounded and the iterates (✓n)n converge
to ✓⇤. We may then compute function values from Eq. (2.3) as f(✓n) � f(✓⇤) =

1

2n2

Pd
i=1

(⌘in)
2hi =

1

2

Pd
i=1

(�i
n)

2hi.
The various regimes are summarized in Figure 2-1: there is a triangle of values

of (↵hi, �hi) for which the algorithm remains stable (i.e., the iterates (⌘n)n do not
diverge), with either complex or real eigenvalues. In the following lemmas (see proof
in Appendix 2.C), we provide a detailed analysis that leads to Figure 2-1.

Lemma 1 (Real eigenvalues). The discriminant �i is strictly positive and the algo-
rithm is stable if and only if

↵ � 0, ↵ + 2�  4/hi, ↵ + � > 2

p

↵/hi.

We then have two real roots r±i = ri ±
p
�i, with ri = 1 � (

↵+�
2

)hi. Moreover, we
have:

(�i
n)

2hi =
(�i

1

)

2

hi

4n2

⇥

(ri +
p
�i)

n � (ri �
p
�i)

n
⇤

2

�i

. (2.8)

Therefore, for real eigenvalues, ((�i
n)

2hi)n will converge to 0 at a speed of O(1/n2

)

however the constant �i may be arbitrarily small (and thus the scaling factor ar-
bitrarily large). Furthermore we have linear convergence if the inequalities in the
lemmas are strict.

Lemma 2 (Complex eigenvalues). The discriminant �i is stricly negative and the
algorithm is stable if and only if

↵ � 0, � � 0, ↵ + � <
p

↵/hi.
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We then have two complex conjugate eigenvalues: r±i = ri ±
p�1

p��i. Moreover,
we have:

(�i
n)

2

hi =
(�i

1

)

2

n2

sin

2

(!in)
�

↵� (

↵+�
2

)

2hi

�⇢2n. (2.9)

with ⇢i =
p
1� �hi, and !i defined through sin(!i) =

p��i/⇢i and cos(!i) = ri/⇢i.

Therefore, for complex eigenvalues, there is a linear convergence if the inequalities
in the lemma are strict. Moreover, ((�i

n)
2hi)n oscillates to 0 at a speed of O(1/n2

)

even if hi is arbitrarily small.

Coalescing eigenvalues. When the discriminants go to zero in the explicit formu-
las of the real and complex cases, both the denominator and numerator of ((�i

n)
2hi)n

will go to zero. In the limit case, when the discriminant is equal to zero, we will
have a double real eigenvalue. This happens for � = 2

p

↵/hi � ↵. Then the eigen-
value is ri = 1 � p

↵hi, and the algorithm is stable for 0 < ↵ < 4/hi, we then have
(�i

n)
2hi = hi(�i

1

)

2

(1 � p
↵hi)

2(n�1). This can be obtained by letting �i goes to 0 in
the real and complex cases (see also Appendix 2.C.3).

Summary. To conclude, the iterate (⌘in)n = (n(✓in � ✓i⇤))n will be stable for ↵ 2
[0, 4/hi] and � 2 [0, 2/hi � ↵/2]. According to the values of ↵ and � this iterate will
have a different behavior. In the complex case, the roots are complex conjugate with
magnitude

p
1� �hi. Thus, when � > 0, (⌘in)n will converge to 0, oscillating, at ratep

1� �hi. In the real case, the two roots are real and distinct. However the product
of the two roots is equal to

p
1� �hi, thus one will have a higher magnitude and

(⌘in)n will converges to 0 at rate higher than in the complex case (as long as ↵ and �
belong to the interior of the stability region).

Finally, for a given quadratic function f , all the d iterates (⌘in)n should be bounded,
therefore we must have ↵ 2 [0, 4/L] and � 2 [0, 2/L� ↵/2]. Then, depending on the
value of hi, some eigenvalues may be complex or real.

2.3.2 Classical Examples

For particular choices of ↵ and �, displayed in Figure 2-1, the eigenvalues are
either all real or all complex, as shown in the table below.

Av-GD Acc-GD Heavy ball
↵ 0 � �
� � � 0

�i (�hi)
2 ��hi(1� �hi) ��hi(1� �hi

4

)

r±i 1, 1� �hi

p
1� �hie±i!i e±i!i

cos(!i)
p
1� �hi 1� �

2

hi

⇢i
p
1� �hi 1
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Averaged gradient descent loses linear convergence for strongly convex problems,
because r+i = 1 for all eigensubspaces. Similarly, the heavy ball method is not adap-
tive to strong convexity because ⇢i = 1. However, accelerated gradient descent, al-
though designed for non-strongly convex problems, is adaptive because ⇢i =

p
1� �hi

depends on hi while ↵ and � do not. These last two algorithms have an oscillatory
behavior which can be observed in practice and has been already studied [Su et al.,
2014].

Note that all the classical methods choose step-sizes ↵ and � either having all the
eigenvalues real or complex; whereas we will see in Section 2.4 that it is significant to
combine both behaviors in the presence of noise.

2.3.3 General Bound

Even if the exact formulas in Lemmas 1 and 2 are computable, they are not easily
interpretable. In particular when the two roots become close, the denominator will go
to zero, which prevents us from bounding them easily. When we further restrict the
domain of (↵, �), we can always bound the iterate by the general bound (see proof in
Appendix 2.D):

Theorem 3. For ↵  1/hi and 0  �  2/hi � ↵, we have

(⌘in)
2  min

⇢

2(⌘i
1

)

2

↵hi

,
8(⌘i

1

)

2n

(↵ + �)hi

,
16(⌘i

1

)

2

(↵ + �)2h2

i

�

. (2.10)

These bounds are shown by dividing the set of (↵, �) in three regions where we
obtain specific bounds. They do not depend on the regime of the eigenvalues (complex
or real); this enables us to get the following general bound on the function values,
our main result for the deterministic case.

Corollary 1. For 0  ↵  1/L and 0  �  2/L� ↵:

f(✓n)� f(✓⇤)  min

⇢k✓
0

� ✓⇤k2
↵n2

,
4k✓

0

� ✓⇤k2
(↵ + �)n

�

. (2.11)

We can make the following observations:

– The first bound k✓0�✓⇤k2
↵n2 corresponds to the traditional acceleration result, and

is only relevant for ↵ > 0 (that is, for Nesterov acceleration and the heavy-ball
method, but not for averaging). We recover the traditional convergence rate
of second-order methods for quadratic functions in the singular case, such as
conjugate gradient [Polyak, 1987, Section 6.1].

– While the result above focuses on function values, like most results in the non-
strongly convex case, the distance to optimum k✓n� ✓⇤k2 typically does not go to
zero (although it remains bounded in our situation).

– When ↵ = 0 (averaged gradient descent), then the second bound 4k✓0�✓⇤k2
(↵+�)n

provides
a convergence rate of O(1/n) if no assumption is made regarding the starting point
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Figure 2-2 – Trade-off between averaged and accelerated methods for noisy gradients.

✓
0

, while the last bound of Theorem 3 would lead to a bound 8kH�1/2
(✓0�✓⇤)k

2

(↵+�)2n2 , that
is a rate of O(1/n2

), only for some starting points.
– As shown in Appendix 2.E by exhibiting explicit sequences of quadratic functions,

the inverse dependence in ↵n2 and (↵ + �)n in Eq. (2.11) is not improvable.

2.4 Quadratic Optimization with Additive Noise
In many practical situations, the gradient of f is not available for the recursion

in Eq. (2.5), but only a noisy version. In this chapter, we only consider additive
uncorrelated noise with finite variance.

2.4.1 Stochastic Difference Equation

We now assume that the true gradient is not available and we rather have access
to a noisy oracle for the gradient of f in Eq. (2.5). We assume that the oracle outputs
a noisy gradient f 0�n(↵+�)

n↵+�
✓n � (n�1)�

n↵+�
✓n�1

� � "n+1

. The noise ("n) is assumed to be
uncorrelated zero-mean with bounded covariance, i.e., E["n ⌦ "m] = 0 for all n 6= m
and E["n ⌦ "n] 4 C, where A 4 B means that B � A is positive semi-definite.

For quadratic functions, for the reduced variable ⌘n = n�n = n(✓n � ✓⇤), we get:

⌘n+1

= (I � ↵H)⌘n + (I � �H)(⌘n � ⌘n�1

) + [n↵ + �]"n+1

. (2.12)

Note that algorithms with ↵ 6= 0 will have an important level of noise because of the

term n↵"n+1

. We denote by ⇠n+1

=

✓

[n↵ + �]"n+1

0

◆

and we now have the recursion:

⇥n+1

= F⇥n + ⇠n+1

, (2.13)

which is a standard noisy linear dynamical system [see, e.g., Arnold, 1998] with un-
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correlated noise process (⇠n). We may thus express ⇥n directly as ⇥n = F n�1

⇥

1

+

Pn
k=2

F n�k⇠k, and its expected second-order moment as

E
�

⇥n⇥
>
n

�

= F n�1

⇥

1

⇥

>
1

(F n�1

)

>
+

n
X

k=2

F n�kE
�

⇠k⇠
>
k

�

(F n�k
)

>.

In order to obtain the expected excess cost function, we simply need to compute

tr

✓

0 0

0 H

◆

E
�

⇥n⇥
>
n

�

, which thus decomposes as a term that only depends on initial

conditions (which is exactly the one computed and studied in Section 2.3.3), and a
new term that depends on the noise.

2.4.2 Convergence Result

For a quadratic function f with arbitrarily small eigenvalues and uncorrelated
noise with finite covariance, we obtain the following convergence result (see proof in
Appendix 2.F); since we will allow the parameters ↵ and � to depend on the time we
stop the algorithm, we introduce the horizon N :

Theorem 4 (Convergence rates with noisy gradients). With E["n ⌦ "n] = C for all
n 2 N, for ↵  1

L
and 0  �  2

L
� ↵. Then for any N 2 N, we have:

Ef(✓N)� f(✓⇤) 

min

⇢k✓
0

� ✓⇤k2
↵N2

+

(↵N + �)2

↵N
tr(C),

4k✓
0

� ✓⇤k2
(↵ + �)N

+

4(↵N + �)2

↵ + �
tr(C)

�

.

We can make the following observations:

– Although we only provide an upper-bound, the proof technique relies on direct
moment computations in each eigensubspace with few inequalities, and we con-
jecture that the scalings with respect to N are tight.

– For ↵ = 0 and � = 1/L (which corresponds to averaged gradient descent), the
second bound leads to 4Lk✓0�✓⇤k2

N
+

4 tr(C)

L
, which is bounded but not converging to

zero. We recover a result from Bach and Moulines [2011, Theorem 1].
– For ↵ = � = 1/L (which corresponds to Nesterov’s acceleration), the first bound

leads to Lk✓0�✓⇤k2
N2 +

(N+1) tr(C)

L
, and our bound suggests that the algorithm diverges,

which we have observed in our experiments in Appendix 2.A.

– For ↵ = 0 and � = 1/L
p
N , the second bound leads to 4Lk✓0�✓⇤k2p

N
+

4 tr(C)

L
p
N

, and we
recover the traditional rate of 1/

p
N for stochastic gradient in the non-strongly

convex case.
– When the values of the bias and the variance are known we can choose ↵ and
� such that the trade-off between the bias and the variance is optimal in our
bound, as the following corrollary shows. Note that in the bound below, taking
a non-zero � enables the bias term to be adaptive to hidden strong convexity.
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Corollary 2. For ↵ = min

n

k✓0�✓⇤k
2

p
trCN3/2 , 1/L

o

and � 2 [0,min{N↵, 1/L}], we have:

Ef(✓N)� f(✓⇤)  2Lk✓
0

� ✓⇤k2
N2

+

4

p
trCk✓

0

� ✓⇤kp
N

.

2.4.3 Structured Noise and Least-Squares Regression

When only the noise total variance tr(C) is considered, as shown in Section 2.4.4,
Corollary 2 recovers existing (more general) results. Our framework however leads to
improved result for structured noise processes frequent in machine learning, in par-
ticular in least-squares regression which we now consider but also in others problems
[see, e.g. Bach and Moulines, 2013].

Assume we observe independent and identically distributed pairs (xn, yn) 2 Rd⇥R
and we want to minimize the expected loss f(✓) = 1

2

E[(yn � h✓, xni)2]. We denote by
H = E(xn ⌦ xn) the covariance matrix which is assumed invertible. The global
minimum of f is attained at ✓⇤ 2 Rd defined as before and we denote by rn =

yn�h✓⇤, xni the statistical noise, which we assume bounded by �. We have E[rnxn] =

0. In an online setting, we observe the gradient (xn ⌦ xn)(✓ � ✓⇤) � rnxn, whose
expectation is the gradient f 0

(✓). This corresponds to a noise in the gradient of
"n = (H � xn ⌦ xn)(✓ � ✓⇤) + rnxn. Given ✓, if the data (xn, yn) are almost surely
bounded, the covariance matrix of this noise is bounded by a constant times H. This
suggests to characterize the noise convergence by tr(CH�1

), which is bounded even
though H has arbitrarily small eigenvalues.

However, our result will not apply to stochastic gradient descent (SGD) for least-
squares, because of the term (H � xn ⌦ xn)(✓ � ✓⇤) which depends on ✓, but to
a “semi-stochastic” recursion where the noisy gradient is H(✓ � ✓⇤) � rnxn, with a
noise process "n = rnxn, which is such that E["n ⌦ "n] 4 �2H, and has been used
by Bach and Moulines [2011] and Dieuleveut and Bach [2015] to prove results on
regular stochastic gradient descent. We conjecture that our algorithm (and results)
also applies in the regular SGD case, and we provide encouraging experiments in
Section 2.5.

For this particular structured noise we can take advantage of a large �:

Theorem 5 (Convergence rates with structured noisy gradients). Let ↵  1

L
and

0  �  3

2L
� ↵

2

. For any N 2 N, Ef(✓N)� f(✓⇤) is upper-bounded by:

min

⇢k✓
0

� ✓⇤k2
N2↵

+

(↵N + �)2

↵�N2

tr(CH�1

),
4Lk✓

0

� ✓⇤k2
(↵ + �)N

+

8(↵N + �)2 tr(CH�1

)

(↵ + �)2N

�

.

We can make the following observations:

– For ↵ = 0 and � = 1/L (which corresponds to averaged gradient descent), the
second bound leads to 4Lk✓0�✓⇤k2

N
+

8 tr(CH�1
)

N
. We recover a result from Bach and

Moulines [2013, Theorem 1]. Note that when C 4 �2H, tr(CH�1

)  �2d.
– For ↵ = � = 1/L (which corresponds to Nesterov’s acceleration), the first bound
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leads to Lk✓0�✓⇤k2
N2 + tr(CH�1

), which is bounded but not converging to zero (as
opposed to the the unstructured noise where the algorithm may diverge).

– For ↵ = 1/(LNa
) with 0  a  1 and � = 1/L, the first bound leads to

Lk✓0�✓⇤k2
N2�a +

tr(CH�1
)

Na . We thus obtain an explicit bias-variance trade-off by changing
the value of a.

– When the values of the bias and the variance are known we can choose ↵ and �
with an optimized trade-off, as the following corrollary shows:

Corollary 3. For ↵ = min

n

k✓0�✓⇤kp
L tr(CH�1

)N
, 1/L

o

and � = min {N↵, 1/L} we have:

Ef(✓N)� f(✓⇤)  max

⇢

5 tr(CH�1

)

N
,
5

p

tr(CH�1

)Lk✓
0

� ✓⇤k
N

,
2k✓

0

� ✓⇤k2L
N2

�

.

2.4.4 Related Work

Acceleration and noisy gradients. Several authors [Lan, 2012, Hu et al., 2009,
Xiao, 2010] have shown that by using a step-size proportional to 1/N3/2 accelerated
methods with noisy gradients lead to the same convergence rate of O

�

Lk✓0�✓⇤k2
N2 +

k✓0�✓⇤k
p

tr(C)

p
N

�

as in Corollary 2, for smooth functions. Thus, for unstructured noise,
our analysis provides insights in the behavior of second-order algorithms, without
improving bounds. We get significant improvements for structured noises.

Least-squares regression. When the noise is structured as in least-square regres-
sion and more generally in linear supervised learning, Bach and Moulines [2011] have
shown that using averaged stochastic gradient descent with constant step-size leads
to the convergence rate of O

�Lk✓0�✓0k2
N

+

�2d
N

�

. It has been highlighted by Défossez and
Bach [2015] that the bias term Lk✓0�✓⇤k2

N
may often be the dominant one in practice.

Our result in Corollary 3 leads to an improved bias term in O(1/N2

) with the price
of a potentially slightly worse constant in the variance term. However, with optimal
constants in Corollary 3, the new algorithm is always an improvement over averaged
stochastic gradient descent in all situations. If constants are unknown, we may use
↵ = 1/(LNa

) with 0  a  1 and � = 1/L and we choose a depending on the
emphasis we want to put on bias or variance.

Minimax convergence rates. For noisy quadratic problems, the convergence rate
nicely decomposes into two terms, a bias term which corresponds to the noiseless
problem and the variance term which corresponds to a problem started at ✓⇤. For
each of these two terms, lower bounds are known. For the bias term, if N  d,
then the lower bound is, up to constants, Lk✓

0

� ✓⇤k2/N2 [Nesterov, 2004, Theo-
rem 2.1.7]. For the variance term, for the general noisy gradient situation, we show in
Appendix 2.H that for N  d, it is (trC)/(L

p
N), while for least-squares regression,

it is �2d/N [Tsybakov, 2009]. Thus, for the two situations, we attain the two lower
bounds simultaneously for situations where respectively Lk✓

0

� ✓⇤k2  (trC)/L and
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Figure 2-3 – Quadratic optimization with regression noise. Left � = 1, r = 1. Right
� = 0.1, r = 10.

Lk✓
0

� ✓⇤k2  d�2. It remains an open problem to achieve the two minimax terms in
all situations.

Other algorithms as special cases. We also note as shown in Appendix 2.G
that in the special case of quadratic functions, the algorithms of Lan [2012], Hu
et al. [2009], Xiao [2010] could be unified into our framework (although they have
significantly different formulations and justifications in the smooth case).

2.5 Experiments
In this section, we illustrate our theoretical results on synthetic examples. We

consider a matrix H that has random eigenvectors and eigenvalues 1/km, for k =

1, . . . , d and m 2 N. We take a random optimum ✓⇤ and a random starting point
✓
0

such that r = k✓
0

� ✓⇤k = 1 (unless otherwise specified). In Appendix 2.A, we
illustrate the noiseless results of Section 2.3, in particular the oscillatory behaviors and
the influence of all eigenvalues, as well as unstructured noisy gradients. In this section,
we focus on noisy gradients with structured noise (as described in Section 2.4.3), where
our new algorithms (referred to as “OA”) show significant improvements.

We compare our algorithm to other stochastic accelerated algorithms, that is,
AC-SA [Lan, 2012], SAGE [Hu et al., 2009] and Acc-RDA [Xiao, 2010] which are
presented in Appendix 2.G. For all these algorithms (and ours) we take the optimal
step-sizes defined in these papers. We show results averaged over 10 replications.

Homoscedastic noise. We first consider an i.i.d. zero mean noise whose covariance
matrix is proportional to H. We also consider a variant “OA-at” of our algorithm with
an any-time step-size function of n rather than N (for which we currently have no
proof of convergence). In Figure 2-3, we take into account two different set-ups. In
the left plot, the variance dominates the bias (with r = k✓

0

� ✓⇤k = �). We see that
(a) Acc-GD does not converge to the optimum but does not diverge either, (b) Av-GD
and our algorithms achieve the optimal rate of convergence of O(�2d/n), whereas (c)
other accelerated algorithms only converge at rate O(1/

p
n). In the right plot, the
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Figure 2-4 – Least-Square Regression. Left � = 1, r = 1. Right � = 0.1, r = 10.

bias dominates the variance (r = 10 and � = 0.1). In this situation our algorithm
outperforms all others.

Application to least-squares regression. We now see how these algorithms be-
have for least-squares regressions and the regular (non-homoscedastic) stochastic gra-
dients described in Section 2.4.3. We consider normally distributed inputs. The
covariance matrix H is the same as before. The outputs are generated from a lin-
ear function with homoscedatic noise with a signal-to-noise ratio of �. We consider
d = 20. We show results averaged over 10 replications. In Figure 2-4, we consider
again a situation where the variance dominates the bias (left) and vice versa (right).
We see that our algorithm has the same good behavior as in the homoscedastic noise
case and we conjecture that our bounds also hold in this situation.

2.6 Conclusion
We have provided a joint analysis of averaging and acceleration for non-strongly

convex quadratic functions in a single framework, both with noiseless and noisy gra-
dients. This allows us to define a class of algorithms that can benefit simultaneously
from the known improvements of averaging and acceleration: faster forgetting of
initial conditions (for acceleration), and better robustness to noise when the noise
covariance is proportional to the Hessian (for averaging).

Our current analysis of our class of algorithms in Eq. (2.5), that considers two
different affine combinations of previous iterates (instead of one for traditional accel-
eration), is limited to quadratic functions; an extension of its analysis to all smooth
or self-concordant-like functions would widen its applicability. Similarly, an extension
to least-squares regression with natural heteroscedastic stochastic gradient, as sug-
gested by our simulations, would be an interesting development. At this point, it is
tempting to consider algorithms which use the last three iterates rather than the last
two. In particular, we investigate the effect of blending acceleration and averaging in
Chapter 3.
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Appendix

2.A Additional Experimental Results
In this appendix, we provide additional experimental results to illustrate our the-

oretical results.

2.A.1 Deterministic Convergence

Comparaison for d = 1. In Figure 2.A.1, we minimize a one-dimensional quadratic
function f(✓) = 1

2

✓2 for a fixed step-size ↵ = 1/10 and different step-sizes �. In the
left plot, we compare Acc-GD, HB and Av-GD. We see that HB and Acc-GD both
oscillate and that Acc-GD leverages strong convexity to converge faster. In the right
plot, we compare the behavior of the algorithm for different values of �. We see that
the optimal rate is achieved for � = �⇤ defined to be the one for which there is a
double coalescent eigenvalue, where the convergence is linear at speed O(1�p

↵L)n.
When � > �⇤, we are in the real case and when � < �⇤ the algorithm oscillates to
the solution.

Comparison between the different eigenspaces. Figure 2.A.2 shows interac-
tions between different eigenspaces. In the left plot, we optimize a quadratic function
of dimension d = 2. The first eigenvalue is L = 1 and the second is µ = 2

�8. For
Av-GD the convergence is of order O(1/n) since the problem is “not” strongly convex
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Figure 2.A.1 – Deterministic case for d = 1 and ↵ = 1/10. Left: classical algorithms,
right: different oscillatory behaviors.
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Figure 2.A.3 – Deterministic case for d = 20 and � = 1/10. Left: m = 2. Right:
m = 8.

(i.e., not appearing as strongly convex since nµ remains small). The convergence is
at the beginning the same for HB and Acc-GD, with oscillation at speed O(1/n2

),
since the small eigenvalue prevents Acc-GD from having a linear convergence. Then
for large n, the convergence becomes linear for Acc-GD, since µn becomes large. In
the right plot, we optimize a quadratic function in dimension d = 5 with eigenvalues
from 1 to 0.1. We show the function values of the projections of the iterates ⌘n on
the different eigenspaces. We see that high eigenvalues first dominate, but converge
quickly to zero, whereas small ones keep oscillating, and converge more slowly.

Comparison for d = 20. In Figure 2.A.3, we optimize two 20-dimensional quadratic
functions with different eigenvalues with Av-GD, HB and Acc-GD for a fixed step-size
� = 1/10. In the left plot, the eigenvalues are 1/k2 and in the right one, they are 1/k8,
for k = 1, . . . , d. We see that in both cases, Av-GD converges at a rate of O(1/n) and
HB at a rate of O(1/n2

). For Acc-GD the convergence is linear when µ is large (left
plot) and becomes sublinear at a rate of O(1/n2

) when µ becomes small (right plot).
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Figure 2.A.4 – Quadratic optimization with additive noise.

2.A.2 Noisy Convergence with Unstructured Additive Noise

We optimize the same quadratic function, but now with noisy gradients. We
compare our algorithm to other stochastic accelerated algorithms, that is, AC-SA
[Lan, 2012], SAGE [Hu et al., 2009] and Acc-RDA [Xiao, 2010], which are presented
in Appendix 2.G. For all these algorithms (and ours) we take the optimal step-sizes
defined in these papers. We plot the results averaged over 10 replications.

We consider in Figure 2.A.4 an i.i.d. zero mean noise of variance C = I. We see
that all the accelerated algorithms achieve the same precision whereas Av-GD with
constant step-size does not converge and Acc-Gd diverges. However SAGE and AC-
SA are anytime algorithms and are faster at the beginning since their step-sizes are
decreasing and not a constant (with respect to n) function of the horizon N .

2.B Proofs of Section 2.2

2.B.1 Proof of Theorem 2

Let (Pn, Qn, Rn) 2 (R[X])

3 for all n 2 N be a sequence of polynomials. We
consider the iterates defined for all n 2 N⇤ by

✓n+1

= Pn(H)✓n +Qn(H)✓n�1

+R(H)q,

started from ✓
0

= ✓
1

2 Rd. The ✓⇤-stationarity property gives for n 2 N⇤:

✓⇤ = Pn(H)✓⇤ +Qn(H)✓⇤ +Rn(H)q.

Since ✓⇤ = H�1q we get for all q 2 Rd

H�1q = Pn(H)H�1q +Qn(H)H�1q +Rn(H)q.
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For all q̃ 2 Rd we apply this relation to vectors q = Hq̃:

q̃ = Pn(H)q̃ +Qn(H)q̃ +Rn(H)Hq̃ 8q̃ 2 Rd,

and we get
I = Pn(H) +Qn(H) +Rn(H)H 8n 2 N⇤.

Therefore there are polynomials (

¯Pn, ¯Qn) 2 (R[X])

2 and qn 2 R for all n 2 N⇤ such
that we have for all n 2 N:

Pn(X) = (1� qn)I +X ¯Pn(X)

Qn(X) = qnI +X ¯Qn(X)

Rn(X) = �(

¯Pn(X) +

¯Qn(X)). (2.14)

The n-scalability property means that there are polynomials (P,Q) 2 (R[X])

2 inde-
pendent of n such that:

Pn(X) =

n

n+ 1

P (X),

Qn(X) =

n� 1

n+ 1

Q(X).

And in connection with Eq. (2.14) we can rewrite P and Q as:

P (X) = p̄+X ¯P (X),

Q(X) = q̄ +X ¯Q(X),

with (p̄, q̄) 2 R2 and (

¯P , ¯Q) 2 (R[X])

2. Thus for all n 2 N:

qn =

n� 1

n+ 1

q̄ (2.15)

¯Qn(X) =

n� 1

n
Q(X)

n

n+ 1

p̄ = (1� qn) (2.16)

¯Pn(X) =

n

n+ 1

P (X).

Eq. (2.15) and Eq. (2.16) give:

n

n+ 1

p̄ =

✓

1� n� 1

n+ 1

q̄

◆

.

Thus for n = 1, we have p̄ = 2. Then �n�1

n+1

q̄ = 2n
n+1

� 1 =

n�1

n+1

and q̄ = �1. Therefore

Pn(H) =

2n

n+ 1

I +
n

n+ 1

¯P (H)H
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Qn(H) = �n� 1

n
I + ¯Q(H)H

Rn(H) = �
✓

n ¯P (H) + (n� 1)

¯Q(H)

n+ 1

◆

.

We let ¯A = �(

¯P +

¯Q) and ¯B =

¯Q so that we have:

Pn(H) =

2n

n+ 1

✓

I �
✓

¯A(H) +

¯B(H)

2

◆

H

◆

Qn(H) = �n� 1

n

�

I � ¯B(H)H
�

Rn(H) =

✓

n ¯A(H) +

¯B(H)

n+ 1

◆

,

and with �n = ✓n � ✓⇤ for all n 2 N, the algorithm can be written under the form:

�n+1

=



I�
✓

n

n+1

¯A(H)+

1

n+1

¯B(H)

◆

H

�

�n +

✓

1� 2

n+1

◆

⇥

I� ¯B(H)H
⇤

(�n� �n�1).

2.B.2 Av-GD as Two-Steps Algorithm

We show now that when the averaged iterate of Av-GD is seen as the main iterate
we have that Av-GD with step-size � 2 R is equivalent to:

✓n+1

=

2n

n+ 1

✓n � n� 1

n+ 1

✓n�1

� �

n+ 1

f 0�n✓n � (n� 1)✓n�1

�

.

We remind

 n+1

=  n � �f 0
( n),

✓n+1

= ✓n +
1

n+ 1

( n+1

� ✓n).

Thus, we have:

✓n+1

= ✓n +
1

n+ 1

( n+1

� ✓n)

= ✓n +
1

n+ 1

( n � �f 0
( n)� ✓n)

= ✓n +
1

n+ 1

(✓n + (n� 1)(✓n � ✓n�1

)� �f 0
(✓n + (n� 1)(✓n � ✓n�1

))� ✓n)

=

2n

n+ 1

✓n � n� 1

n+ 1

✓n�1

� �

n+ 1

f 0
(n✓n � (n� 1)✓n�1

).
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Figure 2.C.1 – Stability in the real case, with all contraints plotted.

2.C Proof of Section 2.3

2.C.1 Proof of Lemma 1

The discriminant �i is strictly positive when
�

↵+�
2

�

2

hi�↵ > 0. This is always true
for ↵ strictly negative. For ↵ positive and for hi 6= 0, this is true for |↵+�

2

| >p↵/hi.
Thus the discriminant �i is strictly positive for

↵ < 0 or
↵ � 0 and

n

� < �↵� 2

p

↵/hi or � > �↵ + 2

p

↵/hi

o

.

Then we determine when the modulus of the eigenvalues is less than one (which
corresponds to �1  r�i  r+i  1).

r+i  1 ,
v

u

u

thi

 

✓

↵ + �

2

◆

2

hi � ↵

!


✓

� + ↵

2

◆

hi
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✓
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2

◆

2

hi � ↵

!


✓
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2

◆

hi

�

2

and
↵ + �

2

� 0

, hi↵ � 0 and
↵ + �

2

� 0

, ↵ � 0 and ↵ + � � 0.

Moreover, we have :
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hi � ↵
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 2�
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hi � ↵

!




2�
✓

� + ↵

2

◆

hi

�

2
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◆
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2
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!
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◆

hi +

✓
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2

◆

hi

�

2
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✓
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2

◆

 2/hi

, �hi↵  4� 4

✓

� + ↵

2

◆

hi and
�

2

 2/hi � ↵

2

, �  2/hi � ↵/2 and �  4/hi � ↵.

Figure 2.C.1 (where we plot all the constraints we have so far) enables to conclude
that the discriminant �i is strictly positive and the algorithm is stable when the
following three conditions are satisfied:

↵ � 0

↵ + 2�  4/hi

↵ + � � 2

p

↵/h
1

.

For any of those ↵ et � we will have:

⌘in = c
1

(r�i )
n
+ c

2

(r+i )
n
.

Since ⌘i
0

= 0, c
1

+ c
2

= 0 and for n = 1, c
1

= ⌘i
1

/(r�i � r+i ); we thus have:

⌘in =

⌘i
1

2

(r+i )
n � (r�i )

n

p
�i

.

Thus, we get the final expression:

(�i
n)

2hi =
(�i

1

)

2

4n2

�⇥

ri +
p
�i

⇤n � ⇥ri �
p
�i

⇤n 2

�i/hi

.

2.C.2 Proof of Lemma 2

The discriminant �i is strictly negative if and only if
�

↵+�
2

�

2

hi � ↵ < 0. This
implies |↵+�

2

| <p↵/hi. The modulus of the eigenvalues is |r±i |2 = 1� �hi. Thus the
discriminant �i is strictly negative and the algorithm is stable for

↵, � � 0

↵ + � <
p

↵/hi,

as shown in Figure 2.C.2.

55



0 1 2 3 4

0

1

2

�hi

↵hi

�

1

< 0

|r±i |  1

|r±i | = 1

�i = 0

Figure 2.C.2 – Stability in the complex case, with all constraints plotted.

For any of those ↵ et � we have:

⌘in = [c
1

cos(!in) + c
2

sin(!in)]⇢
n
i ,

with ⇢i =
p
1� �hi, sin(!i) =

p��i/⇢i and cos(!i) = ri/⇢i. Since ⌘i
0

= 0, c
1

= 0

and we have for n = 1, c
2

= ⌘i
1

/(sin(!i)⇢i). Therefore

⌘in = ⌘i
1

sin(!in)p��i

(1� �hi)
n/2,

and
(�i

n)
2hi =

(�i
1

)

2

n2

sin

2

(!in)

sin

2

(!i)/hi

(1� �hi)
n�1.

2.C.3 Coalescing Eigenvalues

When � = 2

p

↵/hi�↵, the discriminant �i is equal to zero and we have a double
real eigenvalue:

ri = 1�
p

↵hi.

Thus the algorithm is stable for ↵ < 4

hi
. For any of those ↵ et � we have:

⌘in = (c
1

+ nc
2

)rn.

This gives with ⌘i
0

= 0, c
1

= 0 and c
2

= ⌘i
1

/r. Therefore

⌘in = n⌘i(1�
p

↵hi)
n�1,

and:
(�i

n)
2hi = hi(�

i
1

)

2

(1�
p

↵hi)
2(n�1).

In the presence of coalescing eigenvalues the convergence is linear if 0 < ↵ < 4/hi

and hi > 0, however one might worry about the behavior of ((�i
n)

2hi)n when hi
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becomes small. Using the bound x2

exp(�x)  1 for x  1, we have for ↵ < 4/hi:

hi(1�
p

↵hi)
2n

= hi exp(2n log(|1�
p

↵hi|))
 hi exp(�2nmin{

p

↵hi, 2�
p

↵hi})
 hi

min{p↵hi, 2�
p
↵hi}2

 max

⇢

1

↵
,

hi

(2�p
↵hi)

2

�

.

Therefore we always have the following bound for ↵ < 4/hi:

(�i
n)

2hi  (�i
1

)

2

4n2

max

⇢

1

↵
,

hi

(2�p
↵hi)

2

�

.

Thus for ↵hi  1 we get:

(�i
n)

2hi  (�i
1

)

2

4n2↵
.

2.D Proof of Theorem 3

2.D.1 Sketch of the Proof

We divide the domain of validity of Theorem 3 in three subdomains as explained
in Figure 2.D.4. On the domain described in Figure 2.D.1 we have a first bound on
the iterate ⌘in:

Lemma 3. For 0  ↵  1/hi and 1�p
1� ↵hi < �hi < 1 +

p
1� ↵hi, we have:

(⌘in)
2  (⌘i

1

)

2

↵hi

.

And on the domain described Figure 2.D.2 we also have:

Lemma 4. For 0  ↵  1/hi and �  ↵ we have:

(⌘in)
2  2(⌘i

1

)

2

↵hi

.

These two lemmas enable us to prove the first bound of Theorem 3 since the
domain of this theorem is included in the intersection of the two domains of these
lemmas as shown in Figure 2.D.4.

Then we have the following bound on domain described in Figure 2.D.3:

Lemma 5. For 0  ↵  2/hi and 0  �  2/hi � ↵, we have:

|⌘in|  min

(

2

p
2n

p

(↵ + �)hi

,
4

(↵ + �)hi

)

.
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Figure 2.D.3 – Validity of Lemma
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Figure 2.D.4 – Area of Theorem 3

Since the domain of definition of Theorem 3 is included in the domain of definition
of Lemma 5 (as shown in Figure 2.D.4), this lemma proves the last two bounds of the
theorem.

2.D.2 Outline of the Proofs of the Lemmas

– We find a Lyapunov function G from R2 to R such that the sequence (G(⌘in, ⌘
i
n�1))

decrease along the iterates.
– We also prove that G(⌘in, ⌘

i
n�1

) dominates ck⌘ink2 when we want to have a bound
on k⌘ink2 of the form 1

c
G(⌘i

1

, ⌘i
0

) =

1

c
G(✓i

0

� ✓i⇤, 0).
For readability, we remove the index i and take hi = 1 without loss of generality.

2.D.3 Proof of Lemma 3

We first consider a quadratic Lyapunov function
✓

⌘n
⌘n�1

◆>

G
1

✓

⌘n
⌘n�1

◆

with G
1

=

✓

1 ↵� 1

↵� 1 1� ↵

◆

. We note that G
1

is symmetric positive semi-definite for ↵  1. We

recall Fi =

✓

2� (↵ + �) � � 1

1 0

◆

.
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For the result to be true we need for 0  ↵  1 and 1�p
1� ↵ < � < 1+

p
1� ↵

two properties:
F>
i G

1

Fi 4 G
1

, (2.17)

and
↵

✓

1 0

0 0

◆

4 G
1

. (2.18)

Proof of Eq. (2.18). We have:

G
1

� ↵

✓

1 0

0 0

◆

= (1� ↵)

✓

1 1

1 1

◆

< 0 for ↵  1.

Proof of Eq. (2.17). Since � 7! Fi(�)>G1

Fi(�) � G
1

is convex in � (G
1

is sym-
metric positive semi-definite), we only have to show Eq. (2.17) for the boundaries of
the interval in �. For x 2 R⇤

+

:
✓

x2 � x x
1 0

◆>✓
1 �x2

�x2 x2

◆✓

x2 � x x
1 0

◆

�
✓

1 �x2

�x2 x2

◆

= �(1� x2

)

2

✓

1 0

0 0

◆

4 0.

This especially shows Eq. (2.17) for the boundaries of the interval with x = ±p
1� ↵.

Bound. Thus, because ⌘
0

= 0, we have

↵⌘2n+1

 ⇥

>
nG1

⇥n  ⇥

>
n�1

G
1

⇥n�1

 ⇥

>
0

G
1

⇥

0

 ⌘2
1

.

This shows that for 0  ↵  1/hi and 1�p
1� ↵hi < �hi < 1 +

p
1� ↵hi:

(⌘in)
2  (⌘i

1

)

2

↵hi

.

2.D.4 Proof of Lemma 4

We consider now a second Lyapunov function G
2

(⌘n, ⌘n�1

) = (⌘n � r⌘n�1

)

2 �
�(⌘n�1

)

2. We have:

G
2

(⌘n, ⌘n�1

) = (⌘n � r⌘n�1

)

2 ��⌘2n�1

= (r⌘n�1

� (1� �)⌘n�2

)

2 ��⌘2n�1

= (r2 ��)⌘2n�1

+ (1� �)2⌘2n�2

� 2(1� �)r⌘n�1

⌘n�2

= ((1� �)⌘2n�1

+ (1� �)(r2 ��)⌘2n�2

� 2(1� �)r⌘n�1

⌘n�2

= (1� �)[(⌘n�1

� r⌘n�2

)

2 ��(⌘n�2

)

2

].

= (1� �)G
2

(⌘n�1

, ⌘n�2

).
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Where we have used twice r2�� = (1��) and ⌘n = 2r⌘n�1

� (1��)⌘n�2

. Moreover
G

2

(⌘n, ⌘n�1

) can be rewritten as:

G
2

(⌘n, ⌘n�1

) = (1� ↵ + �

2

)(⌘n � ⌘n�1

)

2

+

↵� �

2

(⌘n�1

)

2

+

↵ + �

2

(⌘n)
2.

Thus for ↵ + �  2 and �  ↵ we have:

↵

2

(⌘n)
2  G

2

(⌘n, ⌘n�1

) = (1� �)n�1G
2

(⌘
1

, ⌘
0

) = (1� �)n�1

(⌘
1

)

2.

Therefore for ↵ + �  2/hi and �  ↵, we have:

(⌘in)
2  2(⌘i

1

)

2

↵hi

.

2.D.5 Proof of Lemma 5

We may write ⌘n as
⌘n = r⌘n�1

+ (r
+

)

n
+ (r�)

n.

Moreover, we have:
|(r

+

)

n
+ (r�)

n|  2,

therefore for ↵ + �  2,

|⌘n|  r|⌘n�1

|+ 2  2

1� rn

1� r
 2

1� (1� (

↵+�
2

))

n

(

↵+�
2

)

.

Thus
|⌘n|  2

(

↵+�
2

)h
.

Moreover for all u 2 [0, 1] and n � 1 we have 1�(1�u)n  p
nu, since 1�(1�u)n  1

and 1� (1� u)n = u
P

(1� u)k  nu. Thus

|⌘n|  2

p
n

q

(

↵+�
2

)

.

Therefore for 0  ↵  2/hi and ↵ + �  2/hi we have:

|⌘in|  min

(

2

p
2n

p

(↵ + �)hi

,
4

(↵ + �)hi

)

.

2.E Lower Bounds
We have the following lower-bound for the bound shown in Corollary 1, which

shows that depending on which of the two terms dominates, we may always find a
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sequence of functions that makes it tight.

Proposition 5. Let L � 0. For all sequences 0  ↵n  1/L and 0  �n  2/L�↵n,
such that ↵n + �n = o(n↵n) there exists a sequence of one-dimensional quadratic
functions (fn)n with second-derivative less than L such that:

lim↵nn
2

(fn(✓n)� fn(✓⇤)) =
k✓

0

� ✓⇤k2
2

.

For all sequences 0  ↵n  1/L and 0  �n  2/L�↵n, such that n↵n = o(↵n + �n),
there exists a sequence of one-dimensional quadratic functions (gn)n with second-
derivative less than L such that:

limn(↵n + �n)(gn(✓n)� gn(✓⇤)) =
(1� exp(�2))

2 k✓
0

� ✓⇤k2
4

.

Proof of the first lower-bound. For the first lower bound we consider 0  ↵n 
1/L and 0  �n  2/L� ↵, such that ↵n + �n = o(n↵n). We define fn = ⇡2/(4↵nn2

)

and we consider the sequence of quadratic functions fn(✓) =
fn✓2

2

. We consider the
iterate (⌘n)n defined by our algorithm. We will show that

lim↵nfn(⌘n) =
⌘2
1

2

.

We have, from Lemma 2,

fn(⌘n) =
⌘2nfn
2

=

⌘2
1

sin

2

(!nn)⇢2nn
2↵n(1� ⇡2

(↵n+�n)
2

(4↵nn)2
)

.

Moreover,

⇢2nn =

✓

1� �n⇡2

4↵nn2

◆n

= exp

✓

n log

✓

1� �n⇡2

4↵nn2

◆◆

= 1 + o(1),

since �n

↵nn
= o(1). Also, 1� ⇡2

(↵n+�n)
2

(4↵nn)2
= 1 + o(1), since ↵n + �n = o(n↵n). Moreover

sin(!n) =

p��n

⇢n
=

p
fn

q

↵n � (↵n+�n)
2

4

fnp
1� �nfn

= ⇡/(2n) + o(1/n),

thus !n = ⇡/(2n) + o(1/n) and sin(n!n) = 1 + o(1).

Proof of the second lower-bound. We consider now the situation where the
second bound is active. Thus we take sequences (↵n) and (�n), such that n↵n =

o(↵n + �n). We define gn =

2

n(↵n+�n)
+

4↵n
(↵n+�n)

2 and consider the sequence of quadratic
functions gn(✓) =

gn✓2

2

. We will show for the iterate (⌘n) defined by our algorithm
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that:

limn(↵n + �n)(gn(✓n)� gn(✓⇤)) =
(1� exp(�2))

2 k✓
0

� ✓⇤k2
4

.

We will use Lemma 1. We first have

�n =

✓

↵n + �n
2

◆

2

g2n � ↵ngn = gn

✓

↵n + �n
2

◆

1

n
.

Thus (n�n)/gn =

�

↵n+�n

2

�

and

p

�n =

s

✓

1

n

◆

2

+

2↵n

n(↵n + �n)

=

1

n

r

1 +

2↵nn

↵n + �n

=

1

n
+

↵n

↵n + �n
+ o

✓

↵n

↵n + �n

◆

.

Moreover
rn = 1� ↵n + �n

2

gn = 1� 1

n
� 2↵n

↵n + �n
.

Thus
r
+

= 1� ↵n

↵n+�n
+ o

✓

↵n

↵n + �n

◆

,

and
rn
+

= exp(n log(r
+

)) = exp

✓

� n↵n

↵n + �n

◆

+ o

✓

n↵n

↵n + �n

◆

= 1 + o(1).

Furthermore
r� = 1� 2

n
� 3↵n

↵n+�n
+ o

✓

↵n

↵n + �n

◆

,

and

rn� = exp(n log(r
+

)) = exp

✓

�2� 3↵nn

↵n + �n

◆

+ o

✓

n↵n

↵n + �n

◆

= exp(�2) + o(1).

Thus
(rn

+

� rn�)
2

= (1� exp(�2))

2

+ o(1).

Finally, we have:

(↵n + �n)n[gn(✓n)� gn(✓⇤)] =

↵n + �n
2n

k✓
0

� ✓⇤k2 [r
n
+

� rn�]
2

4�n/gn

=

k✓
0

� ✓⇤k2
4

[rn
+

� rn�]
2

=

k✓
0

� ✓⇤k2
4

(1� exp(�2))

2

+ o(1).
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2.F Proofs of Section 2.4

2.F.1 Proofs of Theorem 4 and Theorem 5

We decompose again vectors in an eigenvector basis of H with ⌘in = p>i ⌘n and
"in = p>i "n:

⌘in+1

= (1� ↵hi)⌘
i
n + (1� �hi)(⌘

i
n � ⌘in�1

) + (n↵ + �)"in+1

.

We denote by ⇠in+1

=

✓

[n↵ + �]"in+1

0

◆

and we have the reduced equation:

⇥

i
n+1

= Fi⇥
i
n + ⇠in+1

.

Unfortunately Fi is not Hermitian and this formulation will not be convenient for
calculus. Without loss of generality, we assume r�i 6= r+i even if it means having

r�i � r+i goes to 0 in the final bound. Let Qi =

✓

r�i r+i
1 1

◆

be the transfer matrix of

Fi, i.e., Fi = QiDiQ
�1

i with Di =

✓

r�i 0

0 r+i

◆

and Q�1

i =

1

r�i �r+i

✓

1 �r+i
�1 r�i

◆

. We can

reparametrize the problem in the following way:

Q�1

i ⇥

i
n+1

= Q�1

i Fi⇥
i
n +Q�1

i ⇠in+1

= Q�1

i FiQiQ
�1

i ⇥

i
n +Q�1

i ⇠in+1

= Di(Q
�1

i ⇥

i
n) +Q�1

i ⇠in+1

.

With ˜

⇥

i
n = Q�1

i ⇥

i
n and ˜⇠in = Q�1

i ⇠in we now have:

˜

⇥

i
n+1

= Di
˜

⇥

i
n +

˜⇠in+1

, (2.19)

with now Di Hermitian (even diagonal).
Thus it is easier to tackle using standard techniques for stochastic approximation

[see, e.g., Polyak and Juditsky, 1992, Bach and Moulines, 2011]:

˜

⇥

i
n = Dn�1

i
˜

⇥

i
1

+

n
X

k=2

Dn�k
i

˜⇠ik.

Let Mi =

✓

h1/2
i h1/2

i

0 0

◆

, we then get using standard martingale square moment in-

equalities, since for n 6= m, "in and "im are uncorrelated (i.e., E["in"im] = 0):

EkMi
˜

⇥

i
nk2 = kMiD

n�1

i
˜

⇥

i
1

k2 + E
n
X

k=2

kMiD
n�k
i

˜⇠ikk2.

This is a bias-variance decomposition; the left term only depends on the initial con-
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dition and the right term only depends on the noise process.

We have with Mi =

✓

h1/2
i h1/2

i

0 0

◆

, MiQ
�1

i =

✓

0 h1/2
i

0 0

◆

, and Mi
˜

⇥

i
n =

✓p
hi⌘in�1

0

◆

.

Thus, we have access to the function values through:

kMi
˜

⇥

i
nk2 = hi(⌘

i
n�1

)

2.

Moreover we have ⇥

i
1

=

✓

�i
1

/(r�i � r+i )
��i

1

/(r�i � r+i )

◆

. Thus

kMiD
n�1

i
˜

⇥

i
1

k2 = (�i
1

)

2hi

�

(r+i )
n�1 � (r�i )

n�1

�

2

(r+i � r�i )
2

.

This is the bias term we have studied in Section 2.3.3 which we bound with Theorem
3. The variance term is controlled by the next proposition.

Proposition 6. With E[("in)2] = ci for all n 2 N, for ↵  1/hi and 0  �  2/hi�↵,
we have

1

(n� 1)

2

E
n
X

k=2

kMiD
n�k
i

˜⇠ikk2  min

(

2(↵(n� 1) + �)2

↵�(4� (↵ + 2�)hi)(n� 1)

2

ci
hi

,

16((n� 1)↵ + �)2

(n� 1)(↵ + �)2
ci
hi

, 2
(↵(n� 1) + �)2

(n� 1)↵
ci,

8(↵(n� 1) + �)2

↵ + �
ci

)

.

The last two bounds prove Theorem 4.
We note that if we restrict � to �  3/(2hi)� ↵/2, then 4� (↵ + 2�)hi � 1 and

the first bound of Proposition 6 is simplified to 2(↵(n�1)+�)2

↵�(n�1)

2
ci
hi

. This allows to conclude
to prove Theorem 5.

2.F.2 Proof of Corollary 3

We let ⌫ =

k✓0�✓⇤kp
L tr(CH�1

)

and consider three different regimes depending on ⌫ and
L.

If ⌫ < 1/L, we have ⌫/N < 1/L and thus ↵ = ⌫/N and � = ⌫. Therefore

k✓
0

� ✓⇤k2
N2↵

+

(↵N + �)2

↵�N2

tr(CH�1

) =

k✓
0

� ✓⇤k2
⌫N

+

4 tr(CH�1

)

N


p

L tr(CH�1

)k✓
0

� ✓⇤k
N

+

4 tr(CH�1

)

N

 5 tr(CH�1

)

N
,

where we have used
p
Lk✓

0

� ✓⇤k <
p

tr(CH�1

) since ⌫ < 1/L.
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If ⌫ > 1/L and ⌫ < N/L, we have ↵ = ⌫/N and � = 1/L. Therefore

k✓
0

� ✓⇤k2
N2↵

+

(↵N + �)2

↵�N2

tr(CH�1

)  k✓
0

� ✓⇤k2
⌫N

+

4 tr(CH�1

)

L⌫N


p

L tr(CH�1

)k✓
0

� ✓⇤k
N

+

4 tr(CH�1

)

N

 5

p

L tr(CH�1

)k✓
0

� ✓⇤k
N

,

where we have used
p
Lk✓

0

� ✓⇤k >
p

tr(CH�1

) since ⌫ > 1/L.
If ⌫ > N/L, we have ↵ = 1/L and � = 1/L. Therefore

k✓
0

� ✓⇤k2
N2↵

+

(↵(N � 1) + �)2

↵�N2

tr(CH�1

) =

Lk✓
0

� ✓⇤k2
N2

+ tr(CH�1

)

 Lk✓
0

� ✓⇤k2
N2

+

Lk✓
0

� ✓⇤k2
N2

 2Lk✓
0

� ✓⇤k2
N2

,

where we have used that the real bound in Proposition 6 is in fact in (N � 1)↵ + �,
(see Lemma 6) and that tr(CH�1

) < Lk✓0�✓⇤k2
N2 since ⌫ > N/L.

2.F.3 Proof of Proposition 6

Proof Outline

To prove Proposition 6 we will use Lemmas 6, 7 and 8, that are stated and proved
in Section 2.F.3.

We want to bound E[
Pn

k=2

kMiD
n�k
i

˜⇠ikk2] and according to Lemma 6, we have an
explicit expansion using the roots of the characteristic polynomial:

EkMiD
n�k
i

˜⇠ikk2 = hi((k � 1)↵ + �)2E[("i)2] [(r
�
i )

n�k � (r+i )
n�k

]

2

(r�i � r+i )
2

.

Thus, by bouding (k � 1)↵ + � by (n� 1)↵ + �, we get

E
n
X

k=2

kMiD
n�k
i

˜⇠ikk2  hi((n� 1)↵ + �)2E["i2]
n
X

k=2

[(r�i )
n�k � (r+i )

n�k
]

2

(r�i � r+i )
2

. (2.20)

Then, we have from Lemma 7 the inequality:

n�2

X

k=0

[(r�i )
k � (r+i )

k
]

2

[(r�i )� (r+i )]
2

 2� �hi

4↵�h2

i (1� (

1

4

↵ +

1

2

�)hi)
.
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Therefore

E
n
X

k=2

kM1/2
i Dn�k

i
˜⇠ikk2 

E["i2]
hi

((n� 1)↵ + �)2

4↵�

2� �hi

(1� (

1

4

↵ +

1

2

�)hi)
.

This allows to prove the first part of the bound. The other parts are much simpler
and are done in Lemma 8. Thus, adding these bounds gives for ↵  1/hi and
0  �  2/hi � ↵:

1

(n� 1)

2

E
n
X

k=2

kMiD
n�k
i

˜⇠ikk2  min

(

2(↵(n� 1) + �)2

↵�(n� 1)

2

(4� (↵ + 2�)hi)

c

hi

,

16((n� 1)↵ + �)2

(n� 1)(↵ + �)2
c

hi

, 2
(↵(n� 1) + �)2

(n� 1)↵
ci,

8((n� 1)↵ + �)2

↵ + �
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Some Technical Lemmas

We first compute an explicit expansion of the noise term as a function of the
eigenvalues of the dynamical system.
Lemma 6. For all ↵  1/hi and 0  �  2/hi � ↵ we have

EkMiD
n�k
i

˜⇠ikk2 = hi((k � 1)↵ + �)2E[("i)2] [(r
�
i )

n�k � (r+i )
n�k

]

2

(r�i � r+i )
2

.

Proof. We first turn the Euclidean norm into a trace, using that tr[AB] = tr[BA] for
two matrices A and B and that tr[x] = x for a real x.

EkMiD
n�k
i

˜⇠ikk2 = TrDn�k
i Mi

>MiD
n�k
i E[˜⇠ik(˜⇠ik)

>
], (2.21)

This enables us to separate the noise term from the rest of the formula. Then we
compute the latter from the definition of ˜⇠ik in Eq. (2.19) :

E[˜⇠ik(˜⇠ik)
>
] =

((k � 1)↵ + �)2

(r�i � r+i )
2

E[("i)2]
✓
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�1 1

◆

.

And the first part of Eq. (2.21) is equal to:
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i Mi

>MiD
n�k
i = hi

 

(r�i )
2(n�k)

(r�i )
(n�k) � (r+i )

(n�k)

(r�i )
(n�k) � (r+i )

(n�k)
(r+i )

2(n�k)

!

,

because Di =
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and Mi =
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. Therefore:
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E["i2][(r�i )n�k � (r+i )
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]

2.
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In the following lemma, we bound a certain sum of powers of the roots.

Lemma 7. For all ↵  1/hi and 0  �  2/hi � ↵ we have

n�2

X

k=0
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(r�i )
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k
]

2

[(r�i )� (r+i )
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2
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i (1� (

1

4

↵ +

1

2

�)hi)
.

We first note that when the two roots become close, the denominator and the
numerator will go to zero, which prevents from bounding the numerator easily. We
also note that this bound is very tight since the difference between the two terms goes
to zero when n goes to infinity.

Proof. We first expand the square of the difference of the powers of the roots and
compute their sums.
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n
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�

.

This sum is therefore equal to the sum of one term we will compute explicitly and
one other term which will go to zero. We have for the first term:
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and
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Therefore the first term is equal to:
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and the sum can be expanded as:
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In
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2 .
Then we simplify the first term of this sum using the explicit values of the roots.
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Even if Jn will be asymptotically small, we want a non-asymptotic bound, thus
we will show that Jn is always positive.

In the real case [(r�i )� (r+i )]
2 � 0 and using a2 + b2 � 2ab, for all (a, b) 2 R2, we
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and Jn � 0 in the real case.
In the complex case, [(r�i )� (r+i )]

2  0, and using z2 + z̄2  2zz̄ for all z 2 C, we
have
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and Jn � 0 in the complexe case.
Therefore we always have:
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However we can also bound roughly Eq. (2.20) using Theorem 3 since we recall
we have ⌘in =

[(r�i )

n�(r+i )

n
]

2

(r�i �r+i )

2 . This gives us the following lemma which enables to prove
the second part of Proposition 6.
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Lemma 8. For all ↵  1/hi and 0  �  2/hi � ↵ we have
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Proof. From Lemma 6, we get
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2.G Comparison with Additional Other Algorithms

2.G.1 Summary

When the objective function f is quadratic and for correct choices of step-sizes,
the AC-SA algorithm of Lan [2012], the SAGE algorithm of Hu et al. [2009] and the
Accelerated RDA algorithm of Xiao [2010] are all equivalent to:

✓n+1

= [I � �n+1

Hn+1

]✓n +
n� 2

n+ 1

[I � �n+1

Hn+1

](✓n � ✓n�1

) + �n+1

"n+1

,

where we use Hn✓ + "n as an unbiased estimate of the gradient and �n as step-size
which values will be specified later.

Lan [2012] and Hu et al. [2009] only consider bounded cases by projecting their
iterates on a bounded space. Xiao [2010] deals with the unbounded case and prove
the following convergence result:

Theorem 6. [Xiao, 2010, Theorem 6]. With E["n⌦ "n] = C, for step-size �n  n�1

n
�

with �  1/L, we have

Ef(✓n)� f(✓⇤)  4k✓
0

� ✓⇤k2
n2�

+

n��2

trC

3

.

This result is significantly more general than ours since it is valid for composite
optimization and general noise on the gradients.

We now present the different algorithms and show they all share the same form.
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2.G.2 AC-SA

Lemma 9. AC-SA algorithm with step size �n and �n and gradient estimate Hn+1

✓n+
"n+1

is equivalent to:
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Proof. We recall the general AC-SA algorithm:
— Let the initial points xag

1
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1

, and the step-sizes {�n}n1
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be given.
Set n = 1
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n ,
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— Step 3. Set n ! n+ 1 and go to step 1.
When f is quadratic we will have G(xmd
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These give the result for ✓n = xag
n .

2.G.3 SAGE

Lemma 10. The algorithm SAGE with step-sizes Ln and ↵n is equivalent to:
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.

Proof. We recall the general SAGE algorithm:
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— Let the initial points x
0

= z
0

= 0, and the step-sizes {�n}n1

and {Ln}n1

be
given.
Set n = 1

— Step 1. Set xn = (1� ↵n)yn�1

+ ↵nzn�1

,
— Step 2. Call the Oracle for computing G(xn, ⇠n) where E[G(xn, ⇠n)] = f 0

(xn).
Set
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zn = zn�1

� ↵�1

n (xn � yn)
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These give the result for ✓n = yn.

2.G.4 Accelerated RDA Method

Lemma 11. The algorithm AccRDA with step-sizes � and ↵n is equivalent to:
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Proof. We recall the general Accelerated RDA method:
— Let the initial points w

0

= v
0

, A
0
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0

= 0 and the step-sizes {↵n}n1

and
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be given.
Set n = 1
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+ ↵n and ✓n =
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.
— Step 2. Compute the query point un = (1� ✓n)wn�1

+ ✓nvn�1

— Step 3. Call the Oracle for computing gn = G(un, ⇠n) where E[G(un, ⇠n)] =
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f 0
(un), and update the weighted average g̃n
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+ ✓ngn.

— Step 4. Set vn = v
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With �n = � we have vn = vn�1
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2.H Lower Bound for Stochastic Optimization for
Least-Squares

In this section, we show a lower bound for optimization of quadratic functions
with noisy access to gradients. We follow very closely the framework of Agarwal
et al. [2012] and use their notations. The only difference with their Theorem 1 in the
different choice of two functions f+

i and f�
i , which we choose to be:

f±
i (x) = ci(xi ± r

2

)

2,
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with a non-increasing sequence (ci) to be chosen later. The function g↵ that is opti-
mized is thus:
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.

This function is quadratic and its Hessian has eigenvalues equal to 2ci/d. Thus, its
largest eigenvalue is 2c

1

/d, which we choose equal to L.
Noisy gradients are obtained by sampling d independent Bernoulli random vari-

ables bi, i = 1, . . . , d, with parameters (1
2

+↵i�) and using the gradient of the random
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. The variance of the random gradient is
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The function g↵ is minimized for x = �↵�r, and the discrepancy measure between
two functions g↵ and g� is greater than
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Since the vectors ↵, � 2 {�1, 1}d are so that their Hamming distance �(↵, �) � d/4
for ↵ 6= �, we have a discrepancy measure greater than 3cdr

2�2

16

. Thus, for a an
approximate optimality of " =

cdr
2�2

38

, we have, following the proof of Theorem 1
(equation (29)) from Agarwal et al. [2012], for N iterations of any method that
accesses a random gradient, we have:

1/3 � 1� 2

16Nd�2 + log 2

d log(2/
p
e)

.

Thus, for d large, we get, up to constants, �2 � 1/N and thus " � r2cd
N

.
For c

1

= 2Ld and ci = L
p
d for the remaining ones, we get (up to constants):

" � V

L

p
d

N
.

This leads to the desired result for N  d.
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Chapter 3

Optimal Convergence Rates for
Least-Squares Regression through
Stochastic Approximation

Abstract

We consider the optimization of a quadratic objective function whose gradients are
only accessible through a stochastic oracle that returns the gradient at any given point
plus a zero-mean finite variance random error. We present the first algorithm that
achieves jointly the optimal prediction error rates for least-squares regression, both in
terms of forgetting the initial conditions in O(1/n2

), and in terms of dependence on
the noise and dimension d of the problem, as O(d/n). Our new algorithm is based on
averaged accelerated regularized gradient descent, and may also be analyzed through
finer assumptions on initial conditions and the Hessian matrix, leading to dimension-
free quantities that may still be small in some distances while the “optimal” terms
above are large.

This chapter is extracted from the paper Harder, Better, Faster, Stronger Con-
vergence Rates for Least-Squares Regression, in collaboration with A. Dieuleveut and
F. Bach, accepted in the Journal of Machine Learning Research.

We do not present here the extension to kernel regression and content ourself with
a brief excerpt of Section 3.5 on tighter bounds. Indeed these two contributions will
be presented in the thesis of Aymeric Dieuleveut.

3.1 Introduction
Many supervised machine learning problems are naturally cast as the minimiza-

tion of a smooth function defined on a Euclidean space. This includes least-squares
regression, logistic regression [see, e.g., Hastie et al., 2009] or generalized linear mod-
els [McCullagh and Nelder, 1989]. While small problems with few or low-dimensional
input features may be solved precisely by many potential optimization algorithms
(e.g., Newton method), large-scale problems with many high-dimensional features are
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typically solved with simple gradient-based iterative techniques whose per-iteration
cost is small.

In this chapter, we consider a quadratic objective function f whose gradients are
only accessible through a stochastic oracle that returns the gradient at any given
point plus a zero-mean finite variance random error. In this stochastic approximation
framework [Robbins and Monro, 1951], it is known that two quantities dictate the
behavior of various algorithms, namely the covariance matrix V of the noise in the
gradients, and the deviation ✓

0

� ✓⇤ between the initial point of the algorithm ✓
0

and any of the global minimizer ✓⇤ of f . This leads to a “bias/variance” decomposi-
tion [Bach and Moulines, 2013, Hsu et al., 2014] of the performance of most algorithms
as the sum of two terms: (a) the bias term characterizes how fast initial conditions
are forgotten and thus is increasing in a well-chosen norm of ✓

0

� ✓⇤; while (b) the
variance term characterizes the effect of the noise in the gradients, independently of
the starting point, and with a term that is increasing in the covariance of the noise.

For quadratic functions with (a) a noise covariance matrix V which is proportional
(with constant �2) to the Hessian of f (a situation which corresponds to least-squares
regression) and (b) an initial point characterized by the norm k✓

0

� ✓⇤k2, the optimal
bias and variance terms are known separately from the optimization and statistical
theories. On the one hand, the optimal bias dependency after n iterations is propor-
tional to Lk✓0�✓⇤k2

n2 , where L is the largest eigenvalue of the Hessian of f . This rate is
achieved by accelerated gradient descent [Nesterov, 1983, 2004], and is known to be
optimal if the number of iterations n is less than the dimension d of the underlying
predictors, but the algorithm is not robust to random or deterministic noise in the
gradients [d’Aspremont, 2008, Schmidt et al., 2011, Devolder et al., 2014]. On the
other hand, the optimal variance term is proportional to �2d

n
[Tsybakov, 2009]; it is

known to be achieved by averaged gradient descent [Bach and Moulines, 2013], for
which the bias term only achieves Lk✓0�✓⇤k2

n
instead of Lk✓0�✓⇤k2

n2 .
Our first contribution in this chapter is to present a novel algorithm which attains

optimal rates for both the variance and the bias terms. This algorithm analyzed in
Section 3.4 is averaged accelerated gradient descent; beyond obtaining jointly optimal
rates, our result shows that averaging is beneficial for accelerated techniques and
provides a provable robustness to noise.

While optimal when measuring performance in terms of the dimension d and
the initial distance to optimum k✓

0

� ✓⇤k2, these rates are not adapted in many
situations where either d is larger than the number of iterations n (i.e., the number
of observations for regular stochastic gradient descent) or Lk✓

0

� ✓⇤k2 is much larger
than n2. Our second contribution is to provide in Section 3.5 an analysis of a new
algorithm (based on some additional regularization) that can adapt our bounds to
finer assumptions on ✓

0

� ✓⇤ and the Hessian of the problem, leading in particular to
dimension-free quantities that can thus be extended to the Hilbert space setting (in
particular for non-parametric estimation).

This chapter is organized as follows: in Section 3.2, we present the main problem
we tackle, namely least-squares regression, then introduce the two algorithms that
we consider in Section 3.2.2, as well as the two types of oracles on the gradient in
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Averaged Averaged
Algorithm Accelerated

Algorithm
Dimension dependent
rates Section 3.3 Section 3.4
Additive Noise Lemma 12⌃ Theorem 8
Multiplicative Noise Theorem 7⌃ \

Table 3.1 – Organization of Chapter 3. ⌃: We extend results from [Bach and Moulines,
2013] to the setting in which extra regularization is added; \: it is still an open problem
to get results in the accelerated setting for a multiplicative noise oracle.

Section 3.2.3. In Section 3.3, we present new results for averaged stochastic gradient
descent that set the stage for Section 3.4, where we present our main novel result
leading to an accelerated algorithm which is robust to noise. Our tighter analysis of
convergence rates based on finer dimension-free quantities is presented in Section 3.5.
Organization of the main results is summarized in the Table 3.1 bellow.

3.2 Least-Squares Regression
In this section, we present our least-squares regression framework, which is risk

minimization with the square loss, together with the main assumptions regarding
our model and our algorithms. These algorithms will rely on stochastic gradient
oracles, which will come in two kinds, an additive noise which does not depend on
the current iterate, which will correspond in practice to the full knowledge of the
covariance matrix, and a “multiplicative/additive” noise, which corresponds to the
regular stochastic gradient obtained from a single pair of observations. This second
oracle is much harder to analyze.

3.2.1 Statistical Assumptions

We consider the following general setting:
— H is a d-dimensional Euclidean space with d � 1.
— The observations (xn, yn) 2 H ⇥ R, n � 1, are independent and identically

distributed (i.i.d.), and such that Ekxnk2 and Ey2n are finite.
— We consider the least-squares regression problem, namely the minimization of

the expected loss f(✓) = 1

2

E(hxn, ✓i � yn)2 which is a quadratic function.
We first introduce an assumption on the distribution of xn.

Covariance matrix. We denote by ⌃ = E(xn ⌦ xn) 2 Rd⇥d the population co-
variance matrix, which is the Hessian of f at all points. Without loss of generality,
we can assume ⌃ is invertible by reducing H to the minimal subspace where all xn,
n � 1, lie almost surely. This implies that all eigenvalues of ⌃ are strictly positive
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(but they may be arbitrarily small). Following Bach and Moulines [2013], we assume
there exists R > 0 such that

Ekxnk2xn ⌦ xn 4 R2

⌃, (A
1

)

where A 4 B means that B�A is positive semi-definite. This assumption implies in
particular that (a) Ekxnk4 is finite and (b) tr⌃ = Ekxnk2  R2 since taking the trace
of the previous inequality we get Ekxnk4  R2Ekxnk2 and using Cauchy-Schwarz
inequality we get Ekxnk2 

p

Ekxnk4  R
p

Ekxnk2.
Assumption (A

1

) is satisfied, for example, for least-square regression with almost
surely bounded data, since kxnk2  R2 almost surely implies Ekxnk2xn ⌦ xn 4
E
⇥

R2xn⌦xn

⇤

= R2

⌃. This assumption is also true for data with infinite support and
a bounded kurtosis for the projection of the covariates xn on any direction z 2 H,
e.g, for which there exists  > 0, such that:

8z 2 H, Ehz, xni4  hz,⌃zi2. (3.1)

Indeed, by Cauchy-Schwarz inequality, Equation (3.1) implies for all (z, t) 2 H2, the
following bound Ehz, xni2ht, xni2  hz,⌃ziht,⌃ti, which in turn implies that for
all positive semi-definite symmetric matrices M,N , we have Ehxn,Mxnihxn, Nxni 
 tr(M⌃) tr(N⌃). Equation (3.1), which is true for Gaussian vectors with  = 3, thus
implies (A

1

) for R2

=  tr⌃ = Ekxnk2.
In the next two paragraphs, we introduce some quantities that will be important

in the analysis, in order to get tighter bounds.

Eigenvalue decay. Most convergence bounds depend on the dimension d of H.
However it is possible to derive dimension-free and often tighter convergence rates
by considering bounds depending on the value tr⌃

b for b 2 [0, 1]. Given b, if we
consider the eigenvalues of ⌃ ordered in decreasing order, which we denote by si,
then tr⌃

b
=

P

i s
b
i , and the eigenvalues decay 1 at least as (tr⌃

b
)

1/b

i1/b
. Moreover, it is

known that (tr⌃

b
)

1/b is decreasing in b and thus, the smaller the b, the stronger the
assumption. For b going to 0 then tr⌃

b tends to d and we are back in the classical low-
dimensional case. When b = 1, we simply get tr⌃ = Ekxnk2, which will correspond
to the weakest assumption in our context.

Optimal predictor. In finite dimension the regression function f(✓) = 1

2

E(hxn, ✓i�
yn)2 always admits a global minimum ✓⇤ = ⌃

†E(ynxn). When initializing algorithms
at ✓

0

= 0 or regularizing by the squared norm, rates of convergence generally depend
on k✓⇤k, a quantity which could be arbitrarily large.

However there exists a systematic upper-bound 2 k⌃ 1
2 ✓⇤k  2

p

Ey2n. This leads
naturally to the consideration of convergence bounds depending on k⌃r/2✓⇤k for r  1.

1. Indeed for any i � 1, we have is

b

i

Pi

t=1 s
b

t

 tr(⌃b).
2. Indeed for all ✓ 2 Rd

and in particular ✓ = 0, by Minkowski’s inequality, k⌃ 1
2
✓⇤k �

p

Ey2
n

=
p

Eh✓⇤, xn

i2 �pEy2
n

pE(h✓⇤, xn

i � y

n

)2 pE(h✓, x
n

i � y

n

)2 pE(y
n

)2.
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In infinite dimension this will correspond to assuming k⌃r/2✓⇤k < 1. This new
assumption relates the optimal predictor with sources of ill-conditioning (since ⌃ is
the Hessian of the objective function f), the smaller r, the stronger our assumption,
with r = 1 corresponding to no assumption at all, r = 0 to ✓⇤ in H and r = �1 to a
convergence of the bias of least-squares regression with averaged stochastic gradient
descent in O

�k⌃�1/2✓⇤k2
n2

�

[Dieuleveut and Bach, 2015, Défossez and Bach, 2015]. In
this chapter, we will use arbitrary initial points ✓

0

and thus our bounds will depend
on k⌃r/2

(✓
0

� ✓⇤)k.
Finally, we make an assumption on the joint distribution of (xn, yn).

Noise. We denote by "n = yn�h✓⇤, xni the residual for which we have E["nxn] = 0.
Although we do not have E["n|xn] = 0 in general unless the model is well-specified,
we assume the noise to be a structured process such that there exists � > 0 with

E["2nxn ⌦ xn] 4 �2

⌃. (A
2

)

Assumption (A
2

) is satisfied for example for data almost surely bounded or when the
model is well-specified, (e.g., yn = h✓⇤, xni+ "n, with ("n)n2N i.i.d. of variance �2 and
independent of xn).

3.2.2 Averaged Gradient Methods and Acceleration

We focus in this chapter on stochastic gradient methods with and without ac-
celeration for the least-squares function regularized by �

2

k✓ � ✓
0

k2 for � 2 R+. The
regularization will be useful when deriving tighter convergence rates in Section 3.5,
and it has the additional benefit of making the problem �-strongly convex. Stochas-
tic gradient descent (referred to from now on as “SGD”), applied to the regularized
problem, can be described for n � 1 as

✓n = ✓n�1

� �f 0
n(✓n�1

)� ��(✓n�1

� ✓
0

), (3.2)

starting from ✓
0

2 H, where � > 0 is either called the step-size in optimization or
the learning rate in machine learning, and f 0

n(✓n�1

) is an unbiased estimate of the
gradient of f at ✓n�1

, that is, its conditional expectation given all other sources of
randomness is equal to f 0

(✓n�1

).
Accelerated stochastic gradient descent is defined, for the regularized problem, by

an iterative system with two parameters (✓n, ⌫n) satisfying for n � 1

✓n = ⌫n�1

� �f 0
n(⌫n�1

)� ��(⌫n�1

� ✓
0

)

⌫n = ✓n + �
�

✓n � ✓n�1

�

, (3.3)

starting from ✓
0

= ⌫
0

2 H, with �, � 2 R2 and f 0
n(✓n�1

) described as before. It may
be reformulated as the following second-order recursion

✓n = (1� ��)
�

✓n�1

+ �(✓n�1

� ✓n�2

)

�� �f 0
n

�

✓n�1

+ �(✓n�1

� ✓n�2

)

�

+ ��✓
0

.
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The momentum coefficient � 2 R is chosen to accelerate the convergence rate
[Nesterov, 1983, Beck and Teboulle, 2009] and has its roots in the heavy-ball algorithm
from Polyak [1964]. We especially concentrate here, following Polyak and Juditsky
[1992], on the average of the sequence

¯✓n =

1

n+ 1

n
X

i=0

✓n, (3.4)

and we note that it can be computed online as ¯✓n =

n
n+1

¯✓n�1

+

1

n+1

✓n.
The key ingredient in the algorithms presented above is the unbiased estimate on

the gradient f 0
n(✓), which can take two forms that we now describe in our setting.

3.2.3 Additive versus Multiplicative Stochastic Oracles on the
Gradient

We consider the standard stochastic approximation framework [Kushner and Yin,
2003]. That is, we let (Fn)n�0

be the increasing family of �-fields that are generated by
all variables (xi, yi) for i  n, and such that for each ✓ 2 H the random variable f 0

n(✓)
is square-integrable and Fn-measurable with E[f 0

n(✓)|Fn�1

] = f 0
(✓), for all n � 0.

Consequently it is of the form

f 0
n(✓) = f 0

(✓)� ⇠n, (A
3

)

where the noise process ⇠n is Fn-measurable with E[⇠n|Fn�1

] = 0 and E[k⇠nk2] is
finite. We will consider two different gradient oracles.

Additive noise. The first oracle is the sum of the true gradient f 0
(✓) and an inde-

pendent zero-mean noise that does not depend on ✓. This oracle is equal to

f 0
n(✓) = ⌃✓ � ynxn. (3.5)

Since f 0
(✓) = ⌃✓�Eynxn, the oracle above has a noise vector ⇠n = ynxn �Eynxn in-

dependent of ✓ and therefore satisfies Assumption (A
3

). Furthermore we also assume
that there exists ⌧ 2 R such that

E[⇠n ⌦ ⇠n] 4 ⌧ 2⌃, (A
4

)

that is, the noise has a particular structure adapted to least-squares regression. For
optimal results for unstructured noise, with convergence rate for the noise part in
O(1/

p
n), see Lan [2012]. Our oracle above with an additive noise which is inde-

pendent of the current iterate corresponds to the first setting studied in stochastic
approximation [Robbins and Monro, 1951, Duflo, 1997, Polyak and Juditsky, 1992].
While used by Bach and Moulines [2013] as an artifact of proof, for least-squares
regression, such an additive noise corresponds to the situation where the distribu-
tion of x is known so that the population covariance matrix is computable, but the
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distribution of the outputs (yn)n2N remains unknown. Thus it may be seen as an
intermediate set-up between regression estimation with fixed and random design [see,
e.g., Györfi et al., 2006, Section 1.9].

Assumption (A
4

) will be satisfied, for example if the outputs are almost surely
bounded because E[⇠n ⌦ ⇠n] 4 E[y2nxn ⌦ xn] 4 ⌧ 2⌃ if y2n  ⌧ 2 almost surely. But it
will also be for data satisfying Equation (3.1) since we will have

E[⇠n ⌦ ⇠n] 4 E[y2nxn ⌦ xn] = E[(h✓⇤, xni+ "n)
2xn ⌦ xn]

4 2E[h✓⇤, xni2xn ⌦ xn] + 2�2

⌃

4 2(k⌃1/2✓⇤k2 + �2

)⌃ 4 2(4E[y2n] + �2

)⌃,

and thus Assumption (A
4

) is satisfied with ⌧ 2 = 2(4E[y2n] + �2

).

Stochastic noise (“multiplicative/additive”). This corresponds to:

f 0
n(✓) = (hxn, ✓i � yn)xn = (⌃+ ⇣n)(✓ � ✓⇤)� ⌅n, (3.6)

with ⇣n = xn ⌦ xn � ⌃ and ⌅n = (yn � hxn, ✓⇤i)xn = "nxn. This oracle corresponds
to regular SGD, which is often referred to as the least-mean-square (LMS) algorithm
for least-squares regression, where the noise comes from sampling a single pair of
observations. While still satisfying Assumption (A

3

), it combines an additive noise
⌅n independent of ✓ as in Eq. (3.5) and a multiplicative noise ⇣n. This multiplicative
noise makes this stochastic oracle harder to analyze which explains why it is often
approximated by an additive noise oracle. However it is the most widely used and
most practical one. Note that for the oracle in Eq. (3.6), from Equation (A

2

), we have
E[⌅n ⌦ ⌅n] 4 �2

⌃. It has a similar form to Assumption (A
4

) which is valid for the
additive noise oracle in Eq. (3.5): we use different constants �2 and ⌧ 2 to highlight
the difference between these two oracles.

3.3 Averaged Stochastic Gradient Descent
In this section, we provide convergence bounds for regularized averaged stochastic

gradient descent. The main novelty compared to the work of Bach and Moulines
[2013] is (a) the presence of regularization, which will be useful when deriving tighter
convergence rates in Section 3.5 and (b) a much simpler proof. We first consider the
additive noise in Section 3.3.1 before considering the multiplicative/additive noise in
Section 3.3.2.

3.3.1 Additive Noise

We study here the convergence of the averaged SGD recursion defined by Eq. (3.2)
under the simple oracle defined in Eq. (3.5). For least-squares regression, it takes the
form:

✓n =

⇥

I � �⌃� ��I
⇤

✓n�1

+ �ynxn + ��✓
0

. (3.7)
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This is an easy adaptation of the work of Bach and Moulines [2013, Lemma 2] for the
regularized case.

Lemma 12. Assume (A
4

). Consider the recursion in Eq. (3.7) with any regular-
ization parameter � 2 R

+

and any constant step-size � such that �(⌃ + �I) 4 I.
Then

Ef(¯✓n)�f(✓⇤) 
⇣

�+
1

�n

⌘

2

k⌃1/2
(⌃+�I)�1

(✓
0

�✓⇤)k2+
⌧ 2 tr

⇥

⌃

2

(⌃+ �I)�2

⇤

n
. (3.8)

We can make the following observations:
— The proof (see Appendix 3.A) relies on the fact that ✓n � ✓⇤ is obtainable in

closed form since the cost function is quadratic and thus the recursions are
linear, and follows from Polyak and Juditsky [1992].

— The constraint on the step-size � is equivalent to �(L + �) 6 1 where L is the
largest eigenvalue of ⌃ and we thus recover the usual step-size from deterministic
gradient descent [Nesterov, 2004].

— When n tends to infinity, the algorithm converges to the minimum of f(✓) +
�
2

k✓�✓
0

k2 and our performance guarantee becomes �2k⌃1/2
(⌃+�I)�1

(✓
0

�✓⇤)k2.
This is the standard “bias term” from regularized ridge regression [Hsu et al.,
2014] which we naturally recover here. The term ⌧2

n
tr

⇥

⌃

2

(⌃+�I)�2

⇤

is usually
referred to as the “variance term” [Hsu et al., 2014], and is equal to ⌧2

n
times the

quantity tr

⇥

⌃

2

(⌃ + �I)�2

⇤

, which is often called the degrees of freedom of the
ridge regression problem [Gu, 2013].

— For finite n, the first term in Eq. (3.8) is the usual bias term which depends
on the distance from the initial point ✓

0

to the objective point ✓⇤ with an
appropriate norm. It includes a regularization-based component which is pro-
portional to �2 and optimization-based component which depends on (�n)�2.
The regularization-based bias appears because the algorithm tends to minimize
the regularized function instead of the true function f .

— Given Eq. (3.8), it is natural to set �� =

1

n
, and the two components of the bias

term are exactly of the same order leading to 4

�2n2k⌃1/2
(⌃+ �I)�1

(✓
0

� ✓⇤)k2.
It corresponds up to a constant factor to the bias term of regularized least-
squares [Hsu et al., 2014], but it is achieved by an algorithm accessing only
n stochastic gradients. Note that when � or � depend on n, this term is not
necessarily of order O(n�2

), as the numerator might be arbitrarily large. Note
also that here as in the rest of the chapter, we only prove results in the finite
horizon setting, meaning that the number of samples is known in advance and
the parameters �,� may be chosen as functions of n, but remain constant along
the iterations (when � or � depend on n, our bounds only hold for the last
iterate).

— Note that the bias term can also be bounded by 1

�n
k⌃1/2

(⌃+�I)�1/2
(✓

0

� ✓⇤)k2
only when k✓

0

� ✓⇤k is finite (note the difference in the powers of n and (⌃ +

�I)�1). See the proof in Appendix 3.A.2 for details.
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— The second term in Eq. (3.8) is the variance term. It depends on the noise
in the gradient. When this one is not structured the variance turns to be also
bounded by � tr

�

⌃(⌃+�I)�1E[⇠n⌦⇠n]
�

(see Appendix 3.A.3) and we recover for
� = O(1/

p
n), the usual rate of 1p

n
for SGD in the smooth case [Shalev-Shwartz

et al., 2009].
— Overall we get the same performance as the empirical risk minimizer with fixed

design, but with an algorithm that performs a single pass over the data.
— When � = 0 we recover Lemma 2 of Bach and Moulines [2013]. In this case

the variance term ⌧2d
n

is optimal over all estimators in H [Tsybakov, 2009] even
without computational limits, in the sense that no estimator that uses the same
information can improve upon this rate.

3.3.2 Multiplicative/Additive Noise

When the general stochastic oracle in Eq. (3.6) is considered, the regularized LMS
algorithm defined by Eq. (3.2) takes the form:

✓n =

⇥

I � �xn ⌦ xn � ��I
⇤

✓n�1

+ �ynxn + ��✓
0

. (3.9)

We have a very similar result with an additional corrective term (second line below)
compared to Lemma 12.

Theorem 7. Assume (A
1,2). Consider the recursion in Eq. (3.9). For any regular-

ization parameter � 2 R+ and for any constant step-size � such that 2�(R2

+2�)  1

we have:

Ef(¯✓n)�f(✓⇤) 6 3

⇣

2�+

1

�n

⌘

2

k⌃1/2
(⌃+ �I)�1

(✓
0

� ✓⇤)k2+ 6�2

n+ 1

tr

⇥

⌃

2

(⌃+�I)�2

⇤

+3

�

�

(⌃+ �I)�1/2
(✓

0

� ✓⇤)
�

�

2

tr(⌃(⌃+ �I)�1

)

�2(n+ 1)

2

.

We can make the following remarks:
— The proof (see Appendix 3.B) relies on a bias-variance decomposition, each term

being treated separately. We adapt a proof technique from Bach and Moulines
[2013] which considers the difference between the recursions in Eq. (3.9) and in
Eq. (3.7).

— As in Lemma 12, the bias term can also be bounded by 1

�n
k⌃1/2

(⌃+�I)�1/2
(✓

0

�
✓⇤)k2 and the variance term by � tr[⌃(⌃ + �I)�1⇠n ⌦ ⇠n] (see proof in Appen-
dices 3.B.4 and 3.B.5). This is useful in particular when considering unstruc-
tured noise.

— The variance term is the same as in the previous case. However there is a
residual term that now appears when we go to the fully stochastic oracle (second
line). This term will go to zero when � tends to zero and can be compared to
the corrective term which also appears when Hsu et al. [2014] go from fixed to
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random design. Nevertheless our bounds are more concise than theirs, making
significantly fewer assumptions and relying on an efficient single-pass algorithm.

— In this setting, the step-size may not exceed 1/(2(R2

+ 2�)), whereas with an
additive noise in Lemma 12 the condition is �  1/(L+�), a quantity which can
be much bigger than 1/(2(R2

+ 2�)), as L is the spectral radius of ⌃ whereas
R2 is of the order of tr(⌃). Note that in practice, computing L is as hard
as computing ✓⇤ so that the step-size � / 1/R2 is a good practical choice.
See Défossez and Bach [2015] for larger allowed step-sizes that require more
information.

— For � = 0 the error is bounded by 3(1+d)

(�n)2
k⌃�1/2

(✓
0

� ✓⇤)k2 + 6�2d
n+1

. We recover
results from Défossez and Bach [2015] with a non-asymptotic bound but we lose
the advantage of having an asymptotic equivalent (i.e., a limit rather than an
upper-bound). We note that the assumption (A

1,2) are close to the minimal
assumptions required to obtain the optimal rate of convergence of �2d/n [Lecué
and Mendelson, 2016, Oliveira, 2016]

3.4 Accelerated Stochastic Averaged Gradient De-
scent

We study the convergence under the stochastic oracle from Eq. (3.5) of averaged
accelerated stochastic gradient descent defined by Eq. (3.3) which can be rewritten
for the least-squares function f as a second-order iterative system with constant
coefficients:

✓n =

⇥

I � �⌃� ��I
⇤⇥

✓n�1

+ �(✓n�1

� ✓n�2

)

i

+ �ynxn + ��✓
0

. (3.10)

When using averaging, we refer to this algorithm as “averaged-accelerated-SGD”.

Theorem 8. Assume (A
4

). For any regularization parameter � 2 R
+

and for any
constant step-size �(⌃ + �I) 4 I, we have for any � 2 ⇥1�

p
��

1+

p
��
, 1
⇤

, for the recursion
in Eq. (3.10):

Ef(¯✓n)�f(✓⇤)  2

⇣

�+
36

�(n+ 1)

2

⌘

k⌃1/2
(⌃+�I)�1/2

(✓
0

�✓⇤)k2+8⌧ 2
tr

⇥

⌃

2

(⌃+ �I)�2

⇤

n+ 1

.

The numerical constants are partially artifacts of the proof (see Appendices 3.C
and 3.D). Thanks to a wise use of tight inequalities, the bound is independent of �
and valid for all � 2 R

+

. This results in the simple following corollary for � = 0,
which corresponds to the particularly simple recursion (with averaging to obtain ¯✓n):

✓n =

⇥

I � �⌃
⇤

(2✓n�1

� ✓n�2

) + �ynxn. (3.11)
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Corollary 4. Assume (A
4

). For any constant step-size �⌃ 4 I, we have for � = 1,

Ef(¯✓n)� f(✓⇤)  36

k✓
0

� ✓⇤k2
�(n+ 1)

2

+ 8

⌧ 2d

n+ 1

. (3.12)

We can make the following observations:
— The proof technique relies on direct moment computations in each eigensubspace

obtained by O’Donoghue and Candès [2013] in the deterministic case. Indeed
as ⌃ is a symmetric matrix, the space can be decomposed on an orthonormal
eigenbasis of ⌃, and the iterations are decoupled in such an eigenbasis. Al-
though we only provide an upper-bound, this is in fact an equality plus other
exponentially small terms as shown in the proof which relies on linear algebra,
with difficulties arising from the fact that this second-order system can be ex-
pressed as a linear stochastic dynamical system with non-symmetric matrices.
We only provide a result for additive noise.

— The first bound 1

�n2k✓0�✓⇤k2 in Eq. (3.12) corresponds to the usual accelerated
rate. It has been shown by Nesterov [2004] to be the optimal rate of convergence
for optimizing a quadratic function with a first-order method that can access
only to sequences of gradients when n  d. We recover by averaging an algo-
rithm dedicated to strongly convex function the traditional convergence rate for
non-strongly convex functions. Even if it seems surprising, the algorithm works
also for � = 0 and � = 1 (see also simulations in Section 3.6).

— The second bound in Eq. (3.12) also matches the optimal statistical perfor-
mance ⌧2d

n
described in the observations following Lemma 12. Accordingly this

algorithm achieves joint bias/variance optimality (when measured in terms of
⌧ 2 and k✓

0

� ✓⇤k2).
— We have the same rate of convergence for the bias when compared to the

regular Nesterov acceleration without averaging studied in Chapter 2, which
corresponds to choosing �n = 1 � 2/n for all n. However if the problem is
µ-strongly convex, this latter was shown to also converge at the linear rate
O
�

(1 � �µ)n
�

and thus is adaptive to hidden strong convexity (since the al-
gorithm does not need to know µ to run). This explains that it ends up con-
verging faster for quadratic function since for large n the convergence at rate
1/n2 becomes slower than the one at rate (1 � �µ)n even for very small µ.
This is confirmed in our experiments in Section 3.6. Thanks to this adaptivity,
we can also show using the same tools and considering its weighted average
˜✓n =

2

n(n+1)

Pn
k=0

k✓k that the bias term of Ef(˜✓n) � f(✓⇤) has a convergence
rate of order

�

�2 +

1

�2
(n+1)

4

�k⌃1/2
(⌃ + �I)�1

(✓
0

� ✓⇤)k2 without any change
in the variance term. This has to be compared to the bias of averaged SGD
�

� +

1

�(n+1)

2

�k⌃1/2
(⌃ + �I)�1

(✓
0

� ✓⇤)k2 in Section 3.3 and may lead to faster
convergence for the bias in presence of hidden strong convexity.

— Overall, the bias term is improved whereas the variance term is not degraded
and acceleration is thus robust to noise in the gradients. Thereby, while second-
order finite difference methods for optimizing quadratic functions in the singular
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case, such as conjugate gradient [Polyak, 1987, Section 6.1] are notoriously
highly sensitive to noise, we are able to propose a version which is robust to
stochastic noise.

— Note that when there is no assumption on the covariance of the noise we still
have the variance bounded by �n

2

tr

⇥

⌃(⌃ + �I)�1V
⇤

; setting � = 1/n3/2 and
� = 0 leads to the bound k✓0�✓⇤k2p

n
+

trVp
n
. We recover the usual rate for accelerated

stochastic gradient in the non-strongly convex case [Xiao, 2010]. When the
values of the bias and the variance are known, we can achieve the optimal
trade-off of Lan [2012] R2k✓0�✓⇤k2

n2 +

k✓0�✓⇤k
p
trVp

n
for � = min

n

1/R2, k✓0�✓⇤kp
trV n3/2

o

.

3.5 Tighter Dimension-Independent Convergence Rates
We have seen in Corollary 4 that the averaged accelerated gradient algorithm

achieves the lower bounds ⌧ 2d/n and L
n2k✓0 � ✓⇤k2 for the prediction error. However

the algorithm behaves often better than in the worst-case scenarios corresponding to
the lower bounds. Indeed the algorithm still predicts well when the dimension d is
much larger than n or when the norm of the optimal predictor k✓⇤k2 is huge. Actually
gradients algorithms are adaptive to the difficulty of the problem as presented in the
following corollary for the averaged accelerated algorithm.

Corollary 5. Assume (A
4

), for any constant step-size �(⌃ + �I) 4 I, we have for
� =

1

�(n+1)

2 and � 2 ⇥1� 2

n+2

, 1
⇤

, for the recursion in Eq. (3.10):

Ef(¯✓n)� f(✓⇤)  min

r2[0,1], b2[0,1]
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k⌃r/2
(✓

0

� ✓⇤)k2
�1�r

(n+ 1)

2(1�r)
+ 8

⌧ 2�b tr(⌃b
)

(n+ 1)

1�2b

�

.

We can make the following observations:
— This corollary is a direct consequence of Theorem 9 by Dieuleveut et al. [2016]

considered for � = (�n2

)

�1. It extends previously known bounds in the kernel
least-mean-squares setting [Dieuleveut and Bach, 2015] with the use of an extra
regularization.

— The algorithm is independent of r and b, thus all the bounds for different values
of (r, b) are valid. This is a strong property of the algorithm, which is indeed
adaptative to the regularity and the effective dimension of the problem (once
� is chosen). In situations in which either d is larger than n or Lk✓

0

� ✓⇤k2 is
larger than n2, the algorithm can still enjoy good convergence properties, by
adapting to the best values of b and r.

— For b = 0 we recover the variance term of Corollary 4, but for b > 0 and fast
decays of eigenvalues of ⌃, the bound may be much smaller; note that we lose
in the dependency in n, but typically, for large d, this can be advantageous.

— For r = 0 we recover the bias term of Corollary 4 and for r = 1 (no assumption
at all) the bias is bounded by k⌃1/2✓⇤k2  4R2, which is not going to zero. The
smaller r is, the stronger the decrease of the bias with respect to n is (which is
coherent with the fact that we have a stronger assumption).
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Figure 3-1 – Synthetic problem (d = 25) and � = 1/R2. Left: Bias. Right: Variance.

In the companion paper of Dieuleveut et al. [2016], we show that in the setting of
non parametric learning in kernel spaces, these bounds lead to the optimal statistical
rate of convergence.

3.6 Experiments
We illustrate now our theoretical results on synthetic examples. For d = 25 we

consider normally distributed inputs xn with random covariance matrix ⌃ which has
eigenvalues 1/i3, for i = 1, . . . , d, and random optimum ✓⇤ and starting point ✓

0

such that k✓
0

� ✓⇤k = 1. The outputs yn are generated from a linear function with
homoscedastic noise with unit signal to noise-ratio (�2

= 1), we take R2

= tr⌃ the
average radius of the data and a step-size � = 1/R2 and � = 0. The additive noise
oracle is used. We show results averaged over 10 replications.

We compare the performance of averaged SGD (AvSGD), AccSGD (usual Nesterov
acceleration for convex functions) and our novel averaged accelerated SGD from Sec-
tion 3.4 AvAccSGD (which is not the averaging of AccSGD because the momentum
term is proportional to 1 � 3/n for AccSGD instead of being equal to 1 for AvAcc-
SGD), on two different problems: one deterministic (k✓

0

� ✓⇤k = 1, �2

= 0) which
will illustrate how the bias term behaves, and one purely stochastic (k✓

0

� ✓⇤k = 0,
�2

= 1) which will illustrate how the variance term behaves. For the bias (left plot of
Figure 3-1), AvSGD converges at speed O(1/n), while AvAccSGD and AccSGD con-
verge both at speed O(1/n2

). However, as mentioned in the observations following
Corollary 4, AccSGD takes advantage of the hidden strong convexity of the least-
squares function and starts converging linearly at the end. For the variance (right
plot of Figure 3-1), AccSGD is not converging to the optimum and keeps oscillating
whereas AvSGD and AvAccSGD both converge to the optimum at a speed O(1/n).
However AvSGD remains slightly faster in the beginning.

Note that for small n, or when the bias Lk✓
0

� ✓⇤k2/n2 is much bigger than the
variance �2d/n, the bias may have a stronger effect, although asymptotically, the
variance always dominates. It is thus essential to have an algorithm which is optimal
in both regimes; this is achieved by AvAccSGD.
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3.7 Conclusion
In this chapter, we showed that stochastic averaged accelerated gradient descent

was robust to structured noise in the gradients present in least-squares regression.
Beyond being the first algorithm which is jointly optimal in terms of both bias and
finite-dimensional variance, it is also adapted to finer assumptions such as fast decays
of the covariance matrices or optimal predictors with large norms.

Our current analysis is performed for least-squares regression. While it could be
directly extended to smooth losses through efficient online Newton methods [Bach and
Moulines, 2013], an extension to all smooth or self-concordant-like functions [Bach,
2014] would widen its applicability. Moreover, our accelerated gradient analysis is
performed for additive noise (i.e., for least-squares regression, with knowledge of the
population covariance matrix) and it would be interesting to study the robustness of
our results in the contexts of least-mean squares and online learning. Our analysis
relies on single observations per iteration and could be made finer by using mini-
batches [Cotter et al., 2011, Dekel et al., 2012], which should not change the variance
term but could impact the bias term. Finally, it would be appealing to consider
proximal extensions of this algorithm. In Chapter 4 we take a first step towards this
goal by studying a proximal extension of averaged gradient descent.
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Appendix

3.A Proofs of Section 3.3
3.A.1 Proof of Lemma 12

We proof here Lemma 12 which is the extension of Lemma 2 of Bach and Moulines
[2013] for the regularized case. The proof technique relies on the fact that recursions
in Eq. (3.7) are linear since the cost function is quadratic which allows us to obtain
✓n � ✓⇤ in closed form.

For any regularization parameter � 2 R
+

and any constant step-size �(⌃+�I) 4 I
we may rewrite the regularized stochastic gradient recursion in Eq. (3.7) as:

✓n � ✓⇤ =

⇥

I � �⌃� ��I
⇤

(✓n�1

� ✓⇤) + �⇠n + ��(✓
0

� ✓⇤).

We thus get for n � 1 the expansion
✓n � ✓⇤ = (I � �⌃� ��I)n(✓

0

� ✓⇤) + �
n
X

k=1

(I � �⌃� ��I)n�k⇠k

+��
n
X

k=1

(I � �⌃� ��I)n�k
(✓

0

� ✓⇤)

= (I � �⌃� ��I)n(✓
0

� ✓⇤) + �
n
X

k=1

(I � �⌃� ��I)n�k⇠k

+�
⇥

I � (I � �⌃� ��I)n
⇤

(⌃+ �I)�1

(✓
0

� ✓⇤)

= (I � �⌃� ��I)n[I � �(⌃+ �I)�1

](✓
0

� ✓⇤) + �
n
X

k=1

(I � �⌃� ��I)n�k⇠k

+�(⌃+ �I)�1

(✓
0

� ✓⇤).

We then have using the definition of the average

n(¯✓n�1

� ✓⇤) =

n�1

X

j=0

(✓j � ✓⇤)

=

n�1

X

j=0

(I � �⌃� ��I)j[I � �(⌃+ �I)�1

](✓
0

� ✓⇤)

+�
n�1

X

j=0

j
X

k=1

(I � �⌃� ��I)n�k⇠k + n�(⌃+ �I)�1

(✓
0

� ✓⇤).
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For which we will compute the two sums separately

n�1

X

j=0

(I � �⌃� ��I)j[I � �(⌃+ �I)�1

](✓
0

� ✓⇤)

=

1

�

⇥

I � (I � �⌃� ��I)n
⇤

(⌃+ �I)�1

[I � �(⌃+ �I)�1

](✓
0

� ✓⇤),

and

�
n�1

X

j=0

j
X

k=1

(I � �⌃� ��I)j�k⇠k = �
n�1

X

k=1

⇣

n�1

X

j=k

(I � �⌃� ��I)j�k
⌘

⇠k

= �
n�1

X

k=1

⇣

n�1�k
X

j=0

(I � �⌃� ��I)j
⌘

⇠k

=

n�1

X

k=1

⇥

I � (I � �⌃� ��I)n�k
⇤

(⌃+ �I)�1⇠k.

Gathering the three terms together, we thus have

n(¯✓n�1

� ✓⇤) =
1

�

⇥

I � (I � �⌃� ��I)n
⇤

(⌃+ �I)�1

[I � �(⌃+ �I)�1

](✓
0

� ✓⇤)

+

n�1

X

k=1

⇥

I � (I��⌃���I)n�k
⇤

(⌃+�I)�1⇠k+n�(⌃+�I)�1

(✓
0

�✓⇤)

=

h

1

�

⇥

I�(I��⌃���I)n⇤[I��(⌃+�I)�1

]+n�I
i

(⌃+�I)�1

(✓
0

�✓⇤)

+

n�1

X

k=1

⇥

I � (I � �⌃� ��I)n�k
⇤

(⌃+ �I)�1⇠k.

Using standard martingale square moment inequalities which amount to consider ⇠i,
i = 1, . . . , n independent, the variance of the sum is the sum of variances and we have
for V = E⇠n ⌦ ⇠n

n2Ek⌃1/2
(

¯✓n�1

� ✓⇤)k2 =
Pn�1

k=1

tr

⇥

I � (I � �⌃� ��I)n�k
⇤

2

⌃(⌃+ �I)�2V

+

�

�

�

h

1

�

⇥

I�(I��⌃���I)n⇤[I��(⌃+�I)�1

]+n�I
i

⌃

1/2
(⌃+�I)�1

(✓
0

�✓⇤)
�

�

�

2

. (3.13)

Since all the matrices in this equality are symmetric positive-definite we are allowed
to bound

h

1

�

⇥

I � (I � �⌃� ��I)n
⇤

[I � �(⌃+ �I)�1

] + n�I
i

4
⇣

1

�
+ n�

⌘

I (3.14)
⇥

I � (I � �⌃� ��I)n�k
⇤

2 4 I.
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This concludes proof of the Lemma 12

Ek⌃1/2
(

¯✓n�1

� ✓⇤)k2 
⇣

1

n�
+ �
⌘

2

k⌃1/2
(⌃+ �I)�1

(✓
0

� ✓⇤)k2

+

1

n
tr⌃(⌃+ �I)�2V. (3.15)

3.A.2 Proof When Only k✓0 � ✓⇤k Is Finite

Unfortunately k⌃�1

(✓
0

� ✓⇤)k may not be finite. However we can use that for all
u 2 [0, 1] we have 1�(1�u)n

nu
 1 since 1�(1�u)n

u
=

Pn
k=0

(1� u)k  n and it yields
h

1

�

⇥

I � (I � �⌃� ��I)n
⇤

[I � �(⌃+ �I)�1

] + n�I
i

[⌃+ �I]�1

4
h

1

�

⇥

I � (I � �⌃� ��I)n
⇤

+ n�I
i

[⌃+ �I]�1

4
h

1

�

⇥

I � (I � �⌃� ��I)n
⇤

[⌃+ �I]�1

+ n�[⌃+ �I]�1

i

4 I + nI.

Combining with Eq. (3.14) we have

�

�

�

h

1

�

⇥

I � (I � �⌃� ��I)n
⇤

[I � �(⌃+ �I)�1

] + n�I
i

⌃
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(⌃+ �I)�1
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⇣
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�
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⌘

k⌃1/2
(⌃+ �I)�1/2

(✓
0

� ✓⇤)k2,

which implies that

Ek⌃1/2
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¯✓n�1

� ✓⇤)k2  2

⇣
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n�
+ �
⌘

k⌃1/2
(⌃+ �I)�1/2

(✓
0

� ✓⇤)k2

+

1

n
tr⌃(⌃+ �I)�2V, (3.16)

which is interesting when only k✓
0

� ✓⇤k is finite.

3.A.3 Proof When The noise Is Not Structured

The bound in Eq. (3.15) becomes less interesting when the noise is not structured.
However using the same technique we have that

⇥

I�(I��⌃���I)n�k
⇤

2

(⌃+�I)�1 4
(n� k)�I and we get the following upper-bound on the variance

n
X

k=1

tr

⇥

I � (I � �⌃� ��I)n�k
⇤

2

⌃(⌃+ �I)�2V  �
n
X

k=1

(n� k) tr⌃(⌃+ �I)�1V

 �
n(n+ 1)

2

tr⌃(⌃+ �I)�1V.
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Therefore we get

Ek⌃1/2
(

¯✓n�1

� ✓⇤)k2 
⇣

1

n�
+ �
⌘

2

k⌃1/2
(⌃+ �I)�1

(✓
0

� ✓⇤)k2

+ � tr⌃(⌃+ �I)�1V, (3.17)

which is meaningful when the noise is not structured.

3.B Proof of Theorem 7

In this section, we will prove Theorem 7. The proof relies on a decomposition of
the error as the sum of three main terms which will be studied separately. We state
decomposition in Section 3.B.1 then prove upper bounds for the different terms in
Sections 3.B.2 and 3.B.3.

3.B.1 Expansion of the Recursion

We may rewrite the regularized stochastic gradient recursion as:

✓n =

⇥

I � �xn ⌦ xn � ��I
⇤

✓n�1

+ �"nxn + �hxn, ✓⇤ixn + ��✓
0

✓n � ✓⇤ =

⇥

I � �xn ⌦ xn � ��I
⇤

(✓n�1

� ✓⇤) + �"nxn + ��(✓
0

� ✓⇤).

For i > k, let

M(i, k) =
⇥

I � �xi ⌦ xi � ��I
⇤ · · · ⇥I � �xk ⌦ xk � ��I

⇤

be an operator from H to H. We have the expansion

✓n � ✓⇤ = M(n, 1)(✓
0

� ✓⇤) + �
n
X

k=1

M(n, k + 1)"kxk + �
n
X

k=1

M(n, k + 1)�(✓
0

� ✓⇤).

Our goal is to study these three terms separately and bound k⌃1/2
(

¯✓n � ✓⇤)k for each
of them.

3.B.2 Regularization-Based Bias Term

This is the term: ✓n � ✓⇤ = �
Pn

k=1

M(n, k + 1)�(✓
0

� ✓⇤), which corresponds to
the recursion

✓n � ✓⇤ =
�

I � �xn ⌦ xn � ��I
�

(✓n�1

� ✓⇤) + ��(✓
0

� ✓⇤), (3.18)

initialized with ✓
0

= ✓⇤, and no noise.
Following the proof technique of Bach and Moulines [2013], we are going to con-

sider a related recursion by replacing in Equation (3.18) the operator xn ⌦ xn by its
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expectation ⌃. Thus, we consider ⌘n defined as

⌘n � ✓⇤ = �
n
X

k=1

(I � �⌃� ��I)n�k�(✓
0

� ✓⇤),

which satisfies the recursion (with initialization ⌘
0

= ✓⇤) and

⌘n � ✓⇤ =
⇥

I � �⌃� ��I
⇤

(⌘n�1

� ✓⇤) + ��(✓
0

� ✓⇤).

In order to bound k⌃1/2
(✓n � ✓⇤)k, we will independently bound k⌃1/2

(⌘n � ✓⇤)k and
k⌃1/2

(✓n � ⌘n)k using Minkowski’s inequality.

Bounding k⌃1/2
(✓n � ⌘n)k. We have ✓

0

� ⌘
0

= 0, and

✓n � ⌘n =

⇥

I � �xn ⌦ xn � ��I
⇤

(✓n�1

� ⌘n�1

) + �
⇥

⌃� xn ⌦ xn

⇤

(⌘n�1

� ✓⇤).

We can now bound the recursion for ✓n � ⌘n as follows, using standard online
learning proofs [Nemirovski et al., 2009]:

k✓n � ⌘nk2 6 k✓n�1

� ⌘n�1

k2 � 2�
⌦

✓n�1

� ⌘n�1

, (xn ⌦ xn + �I)(✓n�1

� ⌘n�1

)

↵

+2�
⌦

✓n�1

� ⌘n�1

,
⇥

⌃� xn ⌦ xn

⇤

(⌘n�1

� ✓⇤)
↵

+�2
�

�

⇥

xn ⌦ xn + �I
⇤

(✓n�1

� ⌘n�1

)� ⇥⌃� xn ⌦ xn

⇤

(⌘n�1

� ✓⇤)
�

�

2

.

By taking conditional expectations given Fn�1

, we get, using first the fact that E(⌃�
xn⌦xn|Fn�1

) = 0 and the inequality (a+ b)2  2(a2+ b2), then developing and using
E[(xn ⌦ xn)

2

]  R2

⌃, which is assumption A
1

.

E
�k✓n � ⌘nk2|Fn�1

�

6 k✓n�1

� ⌘n�1

k2 � 2�
⌦

✓n�1

� ⌘n�1

, (⌃+ �I)(✓n�1

� ⌘n�1

)

↵

+2�2E
�

�

�

⇥

xn ⌦ xn + �I
⇤

(✓n�1

� ⌘n�1

)

�

�

2|Fn�1

�

+2�2E
�

�

�

⇥

⌃� xn ⌦ xn

⇤

(⌘n�1

� ✓⇤)
�

�

2|Fn�1

�

6 k✓n�1

� ⌘n�1

k2 � 2�
⌦

✓n�1

� ⌘n�1

, (⌃+ �I)(✓n�1

� ⌘n�1

)

↵

+2�2
⌦

✓n�1

� ⌘n�1

, (R2

⌃+ �2I + 2�⌃)(✓n�1

� ⌘n�1

)

↵

+2�2R2h⌘n�1

� ✓⇤,⌃i
6 k✓n�1

� ⌘n�1

k2 + 2�2R2h⌘n�1

� ✓⇤,⌃(⌘n�1

� ✓⇤)ii
�2�

⇥

1� �(R2

+ 2�)
⇤⌦

✓n�1

� ⌘n�1

,⌃(✓n�1

� ⌘n�1

)

This leads by taking full expectations and moving terms to

E
⌦

✓n�1

�⌘n�1

,⌃(✓n�1

�⌘n�1

)

↵

6 1

2�
⇥

1��(R2

+2�)
⇤

⇥

Ek✓n�1

�⌘n�1

k2�Ek✓n�⌘nk2
⇤

+

�R2

1� �(R2

+ 2�)
h⌘n�1

� ✓⇤,⌃(⌘n�1

� ✓⇤)i.
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Thus, if �(R2

+ 2�) 6 1

2

E
⌦

✓n�1

� ⌘n�1

,⌃(✓n�1

� ⌘n�1

)

↵

6 1

�

⇥

Ek✓n�1

� ⌘n�1

k2 � Ek✓n � ⌘nk2
⇤

+2�R2Eh⌘n�1

� ✓⇤,⌃(⌘n�1

� ✓⇤)i.

This leads to, summing and using initial conditions ✓
0

� ⌘
0

= 0, then using convexity
to upper bound

⌦

¯✓n � ⌘̄n,⌃(¯✓n � ⌘̄n)
↵  1

n+1

Pn
k=0

⌦

✓k � ⌘k,⌃(✓k � ⌘k)
↵

,

E
⌦

¯✓n � ⌘̄n,⌃(¯✓n � ⌘̄n)
↵

6 2�R2

n+ 1

n
X

k=0

h⌘k � ✓⇤,⌃(⌘k � ✓⇤)i.

Bounding k⌃1/2
(⌘n � ✓⇤)k. Moreover we have:

⌘n � ✓⇤ = �(⌃+ �I)�1

(✓
0

� ✓⇤)� (I � �⌃� ��I)n
⇥

�(⌃+ �I)�1

(✓
0

� ✓⇤)
⇤

⌘̄n � ✓⇤ = �(⌃+ �I)�1

(✓
0

� ✓⇤)� 1

n+ 1

n
X

k=0

(I � �⌃� ��I)k
⇥

�(⌃+ �I)�1

(✓
0

� ✓⇤)
⇤

= �(⌃+ �I)�1

(✓
0

� ✓⇤)

� 1

n+ 1

��1

(⌃+ �I)�1

⇥

I � (I � �⌃� ��I)n+1

⇤⇥

�(⌃+ �I)�1

(✓
0

� ✓⇤)
⇤

.

This leads using Minkowski inequality to
�

Ek⌃1/2
(⌘n � ✓⇤)k2

�

1/2 6 k�⌃1/2
(⌃+ �I)�1

(✓
0

� ✓⇤)k
�

Ek⌃1/2
(⌘̄n � ✓⇤)k2

�

1/2 6 k�⌃1/2
(⌃+ �I)�1

(✓
0

� ✓⇤)k.

Thus this part is such that
q

Ek⌃1/2
(

¯✓n�✓⇤)k26 k�⌃1/2
(⌃+�I)�1

(✓
0

�✓⇤)k+
q

2�R2k�⌃1/2
(⌃+�I)�1

(✓
0

�✓⇤)k2
6 k�⌃1/2

(⌃+ �I)�1

(✓
0

� ✓⇤)k
�

1 +

p

2�R2

�

,

that gives the first bound on the regularization-based bias

Ek⌃1/2
(

¯✓n � ✓⇤)k2 6 k�⌃1/2
(⌃+ �I)�1

(✓
0

� ✓⇤)k2
�

1 +

p

2�R2

�

2

. (3.19)

3.B.3 Expansion without the Regularization Term

We will follow here the outline of the proof of Györfi and Walk [1996] which
considers a full expansion of the function value k⌃1/2

(

¯✓n� ✓⇤)k2. This corresponds to

✓n � ✓⇤ = M(n, 1)(✓
0

� ✓⇤) + �
n
X

k=1

M(n, k + 1)"kxk.
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We have

E
n
X

i=0

n
X

j=0

h✓i�✓⇤,⌃(✓j�✓⇤)i = E
n
X

i=0

k⌃1/2
(✓i�✓⇤)k2+2E

n�1

X

i=0

n
X

j=i+1

h✓i�✓⇤,⌃(✓j�✓⇤)i.

Moreover,

E
n�1

X

i=0

n
X

j=i+1

h✓i � ✓⇤,⌃(✓j � ✓⇤)i

= E
n�1

X

i=0

n
X

j=i+1

⌧

✓i � ✓⇤,⌃



M(j, i+ 1)(✓i � ✓⇤) +
j
X

k=i+1

M(j, k + 1)�"kxk

��

= E
n�1

X

i=0

n
X

j=i+1

h✓i � ✓⇤,⌃M(j, i+ 1)(✓i � ✓⇤)i because "kxk and ✓i are independent,

= E
n�1

X

i=0

n
X

j=i+1

h✓i � ✓⇤,⌃(I � �⌃� ��I)j�i
(✓i � ✓⇤)i

because M(j, i+ 1) and ✓i are independent,

= E
n�1

X

i=0

D

✓i�✓⇤, ��1

⌃(⌃+�I)�1

⇥

(I��⌃���I)�(I��⌃���I)n�i+1

⇤

(✓i � ✓⇤)
E

6 E
n
X

i=0

D

✓i � ✓⇤, �
�1

⌃(⌃+ �I)�1

(I � �⌃� ��I)(✓i � ✓⇤)
E

using (⌃+ �I) 4 I,

= ��1E
n
X

i=0

h✓i � ✓⇤,⌃(⌃+ �I)�1

(✓i � ✓⇤)i � E
n
X

i=0

h✓i � ✓⇤,⌃(✓i � ✓⇤)i.

We thus simply need to bound ��1E
Pn

i=0

h✓i � ✓⇤,⌃(⌃ + �I)�1

(✓i � ✓⇤)i, to get a
bound on n2Ek⌃1/2

(

¯✓n � ✓⇤)k2.

Recursion on operators. We have:

E
⇥

M(i, k)⌃(⌃+�I)�1M(i, k)⇤
⇤

= E
h

M(i, k + 1)

⇥

I � �xk ⌦ xk � ��I
⇤

⌃(⌃+ �I)�1

⇥

I � �xk ⌦ xk � ��I
⇤

M(i, k + 1)

⇤
i

= E
h

M(i, k + 1)

⇣

⌃(⌃+ �I)�1 � 2�⌃+ �2
⇥

xk ⌦ xk

+�I
⇤

⌃(⌃+ �I)�1

⇥

xk ⌦ xk + �I
⇤

⌘

M(i, k + 1)

⇤
i

4 E
h

M(i, k + 1)

⇥

⌃(⌃+ �I)�1 � 2�⌃

+�2(R2

+ 2�)⌃
⇤

M(i, k + 1)

⇤
i

= E
h

M(i, k + 1)⌃(⌃+ �I)�1M(i, k + 1)

⇤
i
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��(2� �(R2

+ 2�))E
h

M(i, k + 1)⌃M(i, k + 1)

⇤
i

,

which leads to

E
h

M(i, k + 1)⌃M(i, k + 1)

⇤
i

4 1

�(2� �(R2

+ 2�))
⇣

E
h

M(i, k + 1)⌃(⌃+ �I)�1M(i, k + 1)

⇤
i

� E
h

M(i, k)⌃(⌃+ �I)�1M(i, k)⇤
i⌘

.

(3.20)

Using the operator T on matrices defined below, this corresponds to showing

(I � �T )
⇥

⌃(⌃+ �I)
⇤

4 ⌃(⌃+ �I)� �⌃.

Noise term. For ✓
0

� ✓⇤ = 0, we have:

Eh✓i � ✓⇤,⌃(⌃+ �I)�1

(✓i � ✓⇤)i

= �2E
i
X

k=1

i
X

j=1

"jx
⇤
jM(i, j + 1)

⇤
⌃(⌃+ �I)�1M(i, k + 1)"kxk by expanding all terms,

= �2E
i
X

k=1

"kx
⇤
kM(i, k + 1)

⇤
⌃(⌃+ �I)�1M(i, k + 1)"kxk using independence,

= �2 tr

✓ i
X

k=1

E"2kxkx
⇤
kEM(i, k + 1)

⇤
⌃(⌃+ �I)�1M(i, k + 1)

◆

6 �2�2

tr

✓ i
X

k=1

EM(i, k + 1)⌃M(i, k + 1)

⇤
⌃(⌃+ �I)�1

◆

using our assumption regarding the noise.

Using the recurrence between operators

Eh✓i � ✓⇤,⌃(⌃+ �I)�1

(✓i � ✓⇤)i

6 ��2

2� �(R2

+ 2�)
tr

i
X

k=1

✓

E
h

M(i, k + 1)⌃(⌃+ �I)�1M(i, k + 1)

⇤
⌃(⌃+ �I)�1

i

�E
h

M(i, k)⌃(⌃+ �I)�1M(i, k)⇤⌃(⌃+ �I)�1

i

◆

6 ��2

2� �(R2

+ 2�)
tr

✓

E
h

M(i, i+ 1)⌃(⌃+ �I)�1M(i, i+ 1)

⇤
⌃(⌃+ �I)�1

i

�E
h

M(i, 1)⌃(⌃+ �I)�1M(i, 1)⇤⌃(⌃+ �I)�1

i

◆

by summing,

6 ��2

2� �(R2

+ 2�)
tr⌃

2

(⌃+ �I)�2.
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This implies that for the noise process

Ek⌃1/2
(

¯✓n � ✓⇤)k2 6
✓

�2

n+ 1

tr

⇥

⌃

2

(⌃+ �I)�2

⇤

◆

1

1� �(R2/2 + �)
.

Note that when � tends to zero, we recover the optimal variance term.

Noiseless term. Without noise, we then need to bound:

��1E
n
X

i=0

h✓i � ✓⇤,⌃(⌃+ �I)�1

(✓i � ✓⇤)i,

with ✓i � ✓⇤ = M(i, 1)(✓
0

� ✓⇤), that is

��1E
n
X

i=0

tr

h

M(i, 1)⇤⌃(⌃+ �I)�1M(i, 1)(✓
0

� ✓⇤)(✓0 � ✓⇤)
⇤
i

.

We follow here the proof of Défossez and Bach [2015] and consider the operator T
from symmetric matrices to symmetric matrices defined as

TA = (⌃+ �I)A+ A(⌃+ �I)� �E
⇥

(xn ⌦ xn + �I)A(xn ⌦ xn + �I)
⇤

.

of the form TA = (⌃+ �I)A+ (⌃+ �I)A� �SA.
The operator S is self-adjoint and positive. Moreover:

hA, SAi = E tr

⇥

A(xn ⌦ xn + �I)A(xn ⌦ xn + �I)
⇤

= tr

⇥

2A2�⌃+ �2A2

⇤

+ E tr

⇥hxn, Axni2
⇤

6 tr

⇥

2A2�⌃+ �2A2

⇤

+ E tr

⇥kxnk2xn ⌦ xn, A
2

⇤

(Cauchy-Schwarz inequality)
6 tr

⇥

2A2�⌃+ �2A2

⇤

+R2

tr⌃A2

6 (R2

+ 2�) tr
⇥

⌃+ �I]A2.

We have for any symmetric matrix A:

EM(i, 1)⇤AM(i, 1) = (I � �T )iA.

Thus,

E
n
X

i=0

tr

h

M(i, 1)⇤⌃(⌃+ �I)�1M(i, 1)(✓
0

� ✓⇤)(✓0 � ✓⇤)
⇤
i

=E
n
X

i=0

hh(I��T )iA,E
0

ii

with E
0

= (✓
0

� ✓⇤)(✓0 � ✓⇤)⇤ and A = ⌃(⌃+ �I)�1. This leads to

��1Ehh��1T�1

(I � (I � �T )n+1

)A,E
0

ii,

where hh·, ·ii denote the dot-product between self-adjoint operators.
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The sum is less than its limit for n ! 1, and thus, we can get rid of the term
(I � �T )n+1, and we need to bound

��2hhM,E
0

ii = ��2hhT�1

(⌃(⌃+ �I)�1

), E
0

ii,

with M := T�1

⇥

⌃(⌃+ �I)�1

⇤

, i.e., such that

⌃(⌃+ �I)�1

= (⌃+ �I)M +M(⌃+ �I)� �E(xn ⌦ xn + �I)M(xn ⌦ xn + �I)

= (⌃+ �I)M +M(⌃+ �I)� �SM. (3.21)

So that :

M =

⇥

(⌃+�I)⌦I+I ⌦ (⌃+�I)
⇤�1⇥

⌃(⌃+�I)�1
⇤

+�
⇥

(⌃+�I)⌦I+I⌦(⌃+�I)
⇤�1

SM

=

1

2

⌃(⌃+ �I)�2

+ �
⇥

(⌃+ �I)⌦ I + I ⌦ (⌃+ �I)
⇤�1

SM.

The operator (⌃+ �I)⌦ I + I ⌦ (⌃+ �I) is self adjoint, and so is its inverse, thus:

hhM,E
0

ii = hh1
2

⌃(⌃+ �I)�2

+ �3
⇥

(⌃+ �I)⌦ I + I ⌦ (⌃+ �I)
⇤�1

SM,E
0

ii

=

1

2

hh⌃(⌃+ �I)�2, E
0

ii+ �hhSM,
⇥

(⌃+ �I)⌦ I + I ⌦ (⌃+ �I)
⇤�1

E
0

ii

=

1

2

tr(⌃(⌃+ �I)�2E
0

) + �hhSM,
⇥

(⌃+ �I)⌦ I + I ⌦ (⌃+ �I)
⇤�1

E
0

ii.

Moreover,

E
0

= (✓
0

� ✓⇤)(✓0 � ✓⇤)
⇤

= (⌃+ �I)1/2(⌃+ �I)�1/2
(✓

0

� ✓⇤)(✓0 � ✓⇤)
⇤
(⌃+ �I)�1/2

(⌃+ �I)+1/2

4 [(✓
0

� ✓⇤)
⇤
(⌃+ �I)�1

(✓
0

� ✓⇤)] (⌃+ �I),

as (⌃+�I)�1/2
(✓

0

� ✓⇤)(✓0� ✓⇤)⇤(⌃+�I)�1/2 4 (✓
0

� ✓⇤)⇤(⌃+�I)�1

(✓
0

� ✓⇤)I. Thus,
as [(⌃ + �I)⌦ I + I ⌦ (⌃ + �I)]�1 is an non-decreasing operator on (Sn(R),4) (see
technical Lemma 16 in Appendix 3.D):

⇥

(⌃+ �I)⌦ I + I ⌦ (⌃+ �I)
⇤�1

E
0

4
⇥

(⌃+ �I)⌦ I + I ⌦ (⌃+ �I)
⇤�1

�

[(✓
0

� ✓⇤)
⇤
(⌃+ �I)�1

(✓
0

� ✓⇤)](⌃+ �I)
�

=

(✓
0

� ✓⇤)⇤(⌃+ �I)�1

(✓
0

� ✓⇤)

2

I.

Thus as SM is positive :

��2hhM,E
0

ii  1

2�2
tr(⌃(⌃+ �I)�2E

0

) +

(✓
0

� ✓⇤)⇤(⌃+ �I)�1

(✓
0

� ✓⇤)

2�
tr(SM).
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Moreover we can upper bound tr(SM) : using Equation (3.21) we have

tr(⌃(⌃+ �I)�1

) = 2 tr(⌃+ �I)M � � trE(xn ⌦ xn + �I)M(xn ⌦ xn + �I)

then, using Assumption (A
1

) :

trE(xn⌦xn+�I)M(xn⌦xn+�I) 6 R2

trM⌃+2 trM⌃�+�2 trM 6 (R2

+2�) trM(⌃+�I).

This implies

tr

⇥

⌃(⌃+�I)�1
⇤

>
�

2

R2

+ 2�
� �
�

trE(xn ⌦ xn + �I)M(xn ⌦ xn + �I),

> 1

R2

+2�
trE(xn ⌦ xn+�I)M(xn ⌦ xn+�I) since �(R2

+2�) 6 1,

> 1

R2

+ 2�
trSM.

Thus finally:

��2hhM,E
0

ii  1

2�2
trE

0

⌃(⌃+ �I)�2

+

(✓
0

� ✓⇤)⇤(⌃+ �I)�1

(✓
0

� ✓⇤)

2�
(R2

+ 2�) tr(⌃(⌃+ �I)�1

),

which leads to the desired error term.

3.B.4 Proof When Only k✓0 � ✓⇤k Is Finite

When � = 0, without noise, we then need to bound:

��1E
n
X

i=0

h✓i � ✓⇤, ✓i � ✓⇤i,

with ✓i � ✓⇤ = M(i, 1)(✓
0

� ✓⇤), that is

��1E
n
X

i=0

tr

h

M(i, 1)⇤M(i, 1)(✓
0

� ✓⇤)(✓0 � ✓⇤)
⇤
i

.

By definition of M(i, 1) we have that EM(i, 1)⇤M(i, 1) 4 I leading to

��1E
n
X

i=0

h✓i � ✓⇤, ✓i � ✓⇤i  (n+ 1)k✓
0

� ✓⇤k2
�

.

For the regularization-based bias we also have

k�⌃1/2
(⌃+ �I)�1

(✓
0

� ✓⇤)k2  �k⌃1/2
(⌃+ �I)�1/2

(✓
0

� ✓⇤)k2.
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3.B.5 Proof When the Noise Is Not Structured

For k✓
0

� ✓⇤k = 0 we have ✓n � ✓⇤ = �
Pn

k=1

M(n, k + 1)"kxk which leads to

Ek⌃1/2
(✓n � ✓⇤)k2 = �2

n
X

k=1

trEM(n, k + 1)

⇤
⌃M(n, k + 1)V,

where V = E"2kxkx⇤
k. And using the recursion on operators in Eq. (3.20) by changing

order of elements we have

E
h

M(n, k + 1)

⇤
⌃M(n, k + 1)

i

4 1

�(2� �(R2

+ 2�))
⇣

E
h

M(n, k + 1)

⇤
⌃(⌃+ �I)�1M(n, k + 1)

i

� E
h

M(n, k)⇤⌃(⌃+ �I)�1M(n, k)
i⌘

.

And by adding the terms

Ek⌃1/2
(✓n � ✓⇤)k2 4 �2

�(2� �(R2

+ 2�))
tr⌃(⌃+ �I)�1V,

We conclude by convexity

Ek⌃1/2
(

¯✓n � ✓⇤)k2 4 �2

�(2� �(R2

+ 2�))
tr⌃(⌃+ �I)�1V.

3.C Convergence of Accelerated Averaged Stochas-
tic Gradient Descent

We now prove Theorem 8. We thus consider iterates satisfying Eq. (3.10), under
Assumptions (A

3

), (A
4

). We consider a fixed step size � such that �(⌃+�I) 4 I. See-
ing Eq. (3.10) as a linear second order for ✓n, we will derive from exact calculations a
decomposition of the errors a sum of three terms that will be studied independently.
The proof is organized as follows: in Section 3.C.1, we state the formulation as a
second order linear system and derive the three main terms that have to be stud-
ied (see Lemma 13). Section 3.C.2 studies asymptotic behaviors of the three terms,
ignoring some exponentially decreasing terms, in order to give insight of how they
behave. This section is not necessary for the proof, indeed a direct and exact calcu-
lation in the eigenbasis of ⌃, following O’Donoghue and Candès [2013], is provided in
Section 3.C.3. Results are summed up in Section 3.C.4.

3.C.1 General Expansion

We study the regularized stochastic accelerated gradient descent recursion defined
for n � 1 by

✓n = ⌫n�1

� �f 0
(⌫n�1

)� ��(⌫n � ✓
0

) + �⇠n

100



⌫n = ✓n + �(✓n � ✓n�1

),

starting from ✓
0

= ⌫
0

2 H. We may rewrite it for a quadratic function f : ✓ 7!
1

2

h✓ � ✓⇤,⌃(✓ � ✓⇤)i for n � 2 as

✓n =

⇥

I � �⌃� ��I
⇤⇥

✓n�1

+ �(✓n�1

� ✓n�2

)

i

+ �⇠n + ��✓
0

+ �⌃✓⇤,

with ✓
0

2 H and ✓
1

=

⇥

I � �⌃� ��I
⇤

✓
0

+ �⇠
1

+ ��✓
0

+ �⌃✓⇤.
And by centering around the optimum, we get:

✓n � ✓⇤ =
⇥

I � �⌃� ��I
⇤⇥

✓n�1

� ✓⇤ + �(✓n�1

� ✓⇤ � ✓n�2

+ ✓⇤)
i

+ �⇠n + ��(✓
0

� ✓⇤).

Thus this is a second order iterative system which is standard to cast in a linear form

⇥n = F⇥n�1

+ �⌅n + ��⇥�, (3.22)

with T = I��⌃���I, F =

✓

(1 + �)T ��T
I 0

◆

, ⇥n =

✓

✓n � ✓⇤
✓n�1

� ✓⇤

◆

, ⇥
0

=

✓

✓
0

� ✓⇤
✓
0

� ✓⇤

◆

,

⌅n =

✓

⇠n
0

◆

and ⇥� =

✓

✓
0

� ✓⇤
0

◆

.

We are interested in the behavior of the average ¯

⇥n =

1

n+1

Pn
k=0

⇥k for which we
have the following general convergence result:

Lemma 13. For all � 2 R
+

and � such that �(⌃ + �I) 4 I and any matrix C the
average of the iterates ⇥n defined by Eq. (3.22) satisfy for Pk

(def)
= C1/2

(I � F k
)(I �

F )

�1, with ˜

⇥

0

= ⇥

0

� ��(I � F )

�1

⇥�,

Eh¯⇥n, C ¯

⇥ni  2 (��)2 kC1/2
(I � F )

�1

⇥�k2 + 2

(n+ 1)

2

kPn+1

˜

⇥

0

k2

+

�2

(n+ 1)

2

n
X

j=1

trPjV P>
j .

The error thus decomposes as the sum of three main terms:
— the two first ones are bias terms, one arising from the regularization (the first

one), and one arising computation (the second one),
— a variance term. which is the last one.
We remark that as we have assumed that ⌃ is invertible, the matrix I �F can be

shown to be invertible for all the considered �.
The regularization-based term will be studied directly whereas the two others will

be studied in two stages. First a heuristic will lead to an asymptotic bound then an

exact computation will give a non-asymptotic bound. Then using C = H =

✓

⌃ 0

0 0

◆

would give a convergence result on the function value and C =

✓

I 0

0 0

◆

a result on

the iterate. The end of the section is devoted to the proof of this lemma.
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Proof. The sequence ⇥n satisfies a linear recursion, from which we get, for all n � 1:

⇥n = F n
⇥

0

+ �
n
X

k=1

F n�k
⌅k + ��

n
X

k=1

F n�k
⇥�

= F n
⇥

0

+ �
n
X

k=1

F n�k
⌅k + ��(I � F n

)(I � F )

�1

⇥�.

We study the averaged sequence: ¯

⇥n =

1

n+1

Pn
k=0

⇥k . We get, using the identity
Pn�1

k=0

F k
= (I � F n

)(I � F )

�1,

¯

⇥n =

1

n+ 1

n
X

k=0

F k
⇥

0

+

�

n+ 1

n
X

k=1

k
X

j=1

F k�j
⌅j +

��

n+ 1

n
X

k=1

(I � F k
)(I � F )

�1

⇥�.

With
˜

⇥

0

= ⇥

0

� ��(I � F )

�1

⇥�,

and
Pn

k=1

(I � F k
) =

Pn
k=0

(I � F k
) = [n+ 1� (I � F n+1

)(I � F )

�1

].

Using summation formulas for geometric series, we derive:

¯

⇥n =

1

n+ 1

(I � F n+1

)(I � F )

�1

˜

⇥

0

+

�

n+ 1

n
X

k=1

k
X

j=1

F k�j
⌅j + ��(I � F )

�1

⇥�

=

1

n+ 1

(I � F n+1

)(I � F )

�1

˜

⇥

0

+

�

n+ 1

n
X

j=1

�

n
X

k=j

F k�j
�

⌅j + ��(I � F )

�1

⇥�

=

1

n+ 1

(I � F n+1

)(I � F )

�1

˜

⇥

0

+

�

n+ 1

n
X

j=1

�

n�j
X

k=0

F k
�

⌅j + ��(I � F )

�1

⇥�

=

1

n+1

(I�F n+1

)(I�F )

�1
˜

⇥

0

+

�

n+1

n
X

j=1

(I�F n+1�j
)(I�F )

�1
⌅j+��(I�F )

�1

⇥�

=

1

n+1

(I�F n+1
)(I�F )

�1

˜

⇥

0

+

�

n+1

n
X

j=1

(I�F j
)(I�F )

�1

⌅n+1�j+��(I�F )

�1
⇥�.

Using martingale square moment inequalities which amount to consider ⌅i, i = 1, ..., n
independent, so that the variance of the sum is the sum of variances, and denoting
by V = E[⌅n ⌦ ⌅n] we have for any positive semi-definite C,

Eh¯⇥n, C ¯

⇥ni =

�

�

�

C1/2

✓

1

n+ 1

(I � F n+1

)(I � F )

�1

˜

⇥

0

+ ��(I � F )

�1

⇥�

◆

�

�

�

2

+

�2

(n+ 1)

2

n
X

j=1

tr(I � F j
)(I � F )

�1V (I � F>
)

�1

(I � F j
)

>C,
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where C1/2 denotes a symmetric square root of C. Define Pk
(def)
= C1/2

(I � F k
)(I �

F )

�1, we have, Using Minkowski’s inequality and inequality (a+ b)2  2(a2 + b2) for
any a, b 2 R,

Eh¯⇥n, C ¯

⇥ni =
�

�

�

1

n+ 1

Pn+1

˜

⇥

0

+ ��C1/2
(I � F )

�1

⇥�

�

�

�

2

+

�2

(n+ 1)

2

n
X

j=1

trPjV P>
j

 2 (��)2 kC1/2
(I�F )

�1

⇥�k2+2kPn+1

˜

⇥

0

k2
(n+ 1)

2

+

�2

(n+1)

2

n
X

j=1

trPjV P>
j .

This concludes proof of Lemma 13.

3.C.2 Asymptotic Expansion

To give the main terms that we expect, we first provide an asymptotic analy-
sis, which shall only be understood as an insight and is not necessary for the proof.
Operator F will have only eigenvalues smaller than 1, thus |||F j||| will decrease ex-
ponentially to 0 as j ! 1 (even if |||F ||| 3 might be bigger than 1). The asymptotic
analysis relies on ignoring all terms in which F j appears. We thus approximately
have:

Eh¯⇥n, C ¯

⇥ni  2 (��)2 kC1/2
(I � F )

�1

⇥�k2 + 2

�

�

�

C1/2 1

n+ 1

(I�F n+1

)(I�F )

�1

˜

⇥

0

�

�

�

2

+

�2

(n+ 1)

2

n
X

j=1

tr(I � F j
)(I � F )

�1V (I � F>
)

�1

(I�F j
)

>C

⇡ 2 (��)2 kC1/2
(I � F )

�1

⇥�k2 + 2

�

�

�

C1/2 1

n+ 1

(I � F )

�1

˜

⇥

0

�

�

�

2

+

�2

(n+ 1)

2

n
X

j=1

tr(I � F )

�1V (I � F>
)

�1C,

where, as it has been explained ⇡ stands for an equality up to terms that will decay
exponentially. However, these terms have to be studied very carefully, what will be
done in the Section 3.C.3.

Using the matrix inversion lemma we have for C =

✓

c 0

0 0

◆

,

I � F =

✓

(1 + �)(�⌃+ ��I)� �I �(I � (�⌃+ ��I))
�I I

◆

(I � F )

�1

=

✓

(�⌃+ ��I)�1 �
�

I � (�⌃+ ��I)�1

�

(�⌃+ ��I)�1

(1 + �)I � �(�⌃+ ��I)�1

◆

(3.23)

C1/2
(I � F )

�1

=

✓

c1/2(�⌃+ ��I)�1 �c1/2
�

I � (�⌃+ ��I)�1

�

0 0

◆

.

3. |||F ||| denotes the operator norm of F , i.e., supkxk1 kFxk.
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Regularization based term. This gives for the regularization based term

�

�

�

C1/2
(I�F )

�1

⇥�

�

�

�

2

=

�

�

�

�

�

✓

c1/2(�⌃+��I)�1 �c1/2
�

I�(�⌃+��I)�1
�

0 0

◆✓

✓
0

� ✓⇤
0

◆

�

�

�

�

�

2

=

✓

1

�

◆

2

k(c1/2(⌃+ �I)�1

(✓
0

� ✓⇤))k2. (3.24)

The computation of this term is exact (not asymptotic).

Bias term. For the bias term we have

˜

⇥

0

= ⇥

0

� ��(I � F )

�1

⇥�

=

✓

✓
0

� ✓⇤
✓
0

� ✓⇤

◆

� ��

✓

(�⌃+ ��I)�1 �
�

I � (�⌃+ ��I)�1

�

(�⌃+ ��I)�1

(1 + �)I � �(�⌃+ ��I)�1

◆✓

✓
0

� ✓⇤
0

◆

=

✓

✓
0

� ✓⇤
✓
0

� ✓⇤

◆

� ��

✓

(�⌃+ ��I)�1

(✓
0

� ✓⇤)
(�⌃+ ��I)�1

(✓
0

� ✓⇤)

◆

=

✓

[I � �(⌃+ �I)�1

](✓
0

� ✓⇤)
[I � �(⌃+ �I)�1

](✓
0

� ✓⇤)

◆

.

Thus this gives for the dominant term

�

�

�

C1/2
(I � F )

�1

˜

⇥

0

�

�

�

2

=

�

�

�

�

�

✓

c1/2(�⌃+ ��I)�1 �c1/2
�

I � (�⌃+ ��I)�1

�

0 0

◆

˜

⇥

0

�

�

�

�

�

2

= k(c1/2[(1��)(�⌃+��I)�1+�I][I��(⌃+�I)�1](✓
0

�✓⇤)k2.

And if c commutes with ⌃ we have the bound for � 2 [

1�
p
��

1+

p
��
, 1]

�

�

�

C1/2
(I � F )

�1

˜

⇥

0

�

�

�

2

 (

(1� �)

��
+ �)k(c1/2[I � �(⌃+ �I)�1

](✓
0

� ✓⇤)k2

 (

2p
��

+ 1)k(c1/2[I � �(⌃+ �I)�1

](✓
0

� ✓⇤)k2.

Variance term. And for the variance term with V =

✓

v 0

0 0

◆

, we have C1/2
(I �

F )

�1V 1/2
=

✓

c1/2(�⌃+ ��I)�1v1/2 0

0 0

◆

, and

trC1/2
(I � F )

�1V (I � F>
)

�1C1/2
= tr c(�⌃+ ��I)�1v(�⌃+ ��I)�1.

This gives the three dominant terms. However in order to control the remainders
we have to compute the eigenvalues more carefully, as done in the next section.
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3.C.3 Direct Computation without the Regularization Based
Term

We derive now direct computation both the bias and variance terms. This is not
required for the regularization based term whose previous expression in Eq. (3.24) is
already non-asymptotic. Following O’Donoghue and Candès [2013] we consider an
eigen-decomposition of the matrix F , in order to study independently the recursion
on eigenspaces. We assume ⌃ has eigenvalues (si) and we decompose vectors in an
eigenvector basis of ⌃ we denote by (pi), with ✓in = p>i ✓n and ⇠in = p>i ⇠n and we have
the reduced equation:

⇥

i
n+1

= Fi⇥
i
n + �⌅i

n+1

.

with ⇥

i
0

=

˜

⇥

i
0

, Fi =

✓

(1 + �)Ti ��Ti

1 0

◆

, with Ti = 1� �si � ��.

Computing initial point ˜

⇥

i
0

. ˜

⇥

i
0

= ⇥

i
0

� ��(I �Fi)
�1

⇥

i
�, with ⇥

i
0

=

✓

✓i
0

� ✓i⇤
✓i
0

� ✓i⇤

◆

,

⇥

i
� =

✓

✓i
0

� ✓i⇤
0

◆

and (I � Fi)
�1 given in Eq. (3.23). Thus

˜

⇥

i
0

=

✓

✓i
0

� ✓i⇤
✓i
0

� ✓i⇤

◆

� ��

(�si + ��)

✓

1 �((�si + ��)� 1)

1 (1 + �)(�si + ��)� �

◆✓

✓i
0

� ✓i⇤
0

◆

=

✓

(1� �
�+si

)(✓i
0

� ✓i⇤)
(1� �

�+si
)(✓i

0

� ✓i⇤)

◆

. (3.25)

Study of spectrum of Fi. Depending on �, Fi may have two distinct complex
eigenvalues of same modulus, only one (double) eigenvalue, or two real eigenvalues.
We only consider the two former cases, which we detail below.

Indeed, the characteristic polynomial

�Fi(X)

def
= det(XI � Fi) = X2 � (1 + �)(1� �(si + �))X + �(1� �(si + �))

has discriminant �i = (1��(si+�))((1+�)2(1��(si+�))�4�) which is non positive

as far as � 2 [��; �+], with �� =

1�
p

�(si+�)

1+

p
�(si+�)

, �
+

=

1+

p
�(si+�)

1�
p

�(si+�)
.

Two Distinct Eigenvalues

We first assume that Fi has two distinct complex eigenvalues

r± =

(1 + �)(1� �(si + �))±p�1

p��i

2

which are conjugate. Thus the roots are of the form ⇢ie±i!i with ⇢i=
p

�(1��(si+�)),
cos(!i) =

(1+�)(1��(si+�))
2⇢i

, !i 2 [�⇡/2; ⇡/2] and sin(!i) =

p
��i

2⇢i
.
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Let Qi =

✓

r�i r+i
1 1

◆

be the transfer matrix into an eigenbasis of Fi, i.e., Fi =

QiDiQ
�1

i with Di =

✓

r�i 0

0 r+i

◆

and Q�1

i =

1

r�i �r+i

✓

1 �r+i
�1 r�i

◆

.

Computing Pi,k. We first compute the matrix Pi,k: With

C1/2
i =

✓p
ci 0

0 0

◆

, C1/2
i Qi =

✓

r�i
p
ci r+i

p
ci

0 0

◆

we have

C1/2
i Qi(I �Dk

i )(I �Di)
�1

=

p
ci

 

1�(r�i )

k

1�r�i
r�i

1�(r+i )

k

1�r+i
r+i

0 0

!

,

and, when developing and regrouping terms which depend on k, we get :

Pi,k = C1/2
i Qi(I �Dk

i )(I �Di)
�1Q�1

i

=

p
ci

r�i � r+i

 

1�(r�i )

k

1�r�i
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k
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r+i

1�(r+i )

k

1�r+i
r�i r

+

i � 1�(r�i )

k

1�r�i
r+i r

�
i

0 0

!

=

p
ci

 

1

(1�r�i )(1�r+i )

�r+i r�i
(1�r�i )(1�r+i )

0 0

!

�
p
ci
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(r�i )
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� (r+i )

k+1

1�r+i

(r+i )

k+1
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!

.

We also have Pi,k = C1/2
i Qi(I �Dk

i )(I �Di)
�1Q�1

i =

Pk�1

j=0

Ri,j with

Ri,j = C1/2
i QiD

j
iQ

�1

i

=

p
ci

✓

(r�i )
j+1

(r+i )
j+1
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◆

Q�1
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p
si

r�i � r+i

✓

(r�i )
j+1 � (r+i )

j+1 �r+i (r
�
i )

j+1

+ r�i (r
+

i )
j+1

0 0

◆

,

but computing error terms based in Ri,j before summing these errors gives a looser
error bound than a tight calculation using Pi,k. More precisely, if we use Pi,k⇥

i
0

=

Pk�1

j=0

Ri,j⇥
i
0

to upper bound kPi,k⇥
i
0

k  Pk�1

j=0

kRi,j⇥
i
0

k, we end up with a worse
bound.

Bias term. Thus, for the bias term:

Pi,k⇥
i
0

=

p
ci✓

i
0

1� r+i r
�
i

(1� r�i )(1� r+i )
�

p
ci✓i

0

r�i � r+i

 h

(r�i )
k+1

1�r+i
1�r�i

� (r+i )
k+1

1�r�i
1�r+i

i

0

!
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=

p
ci✓i

0

p

(1� r�i )(1� r+i )

0

@

⇥

(1�r+i r�i )�⇢ki A1

⇤

p
(1�r�i )(1�r+i )

0

1

A ,

where
⇢kiA1

=

(r�i )
k+1

(1� r+i )
2 � (r+i )

k+1

(1� r�i )
2

r�i � r+i
.

This can be bound with the following lemma

Lemma 14. For all ⇢ 2 (0, 1) and ! 2 [�⇡/2; ⇡/2] and r± = ⇢(cos(!)±p�1 sin(!))
we have:

�

�

�

�

1� r+r� � ⇢k|A
1

|
|1� r+|

�

�

�

�

 3 + 3⇢k  6 (3.26)

We note that the exact constant seems empirically to be 2. This lemma is proved
as Lemma 17 in Appendix 3.D. This gives for the bias term

kPi,k⇥
i
0

k =

p
ci(✓i

0

)

p

(1� r�i )(1� r+i )

⇥

1

p

(1� r�i )(1� r+i )

�

(1� r+i r
�
i )� ⇢kiA1

� ⇤

 6

p
ci(✓i

0

)

p

�(si + �)
,

since:

(1� r�i )(1� r+i ) = 1� 2Re (r+i ) + |r+i |2
= 1� (1 + �)(1� �(si + �)) + �(1� �(si + �))

= �(si + �).

We also have a looser bound using Pi,k⇥
i
0

=

Pk�1

j=0

Ri,j⇥
i
0

.

Ri,j⇥
i
0

=

p
ci✓i

0

r�i � r+i

�

(1� r+i )(r
�
i )

j+1 � (1� r�i )(r
+

i )
j+1

�

=

p
ci✓

i
0

✓

(r�i )
j+1 � (r+i )

j+1

r�i � r+i
� r+i (r

�
i )

j+1 � r�i (r
+

i )
j+1

r�i � r+i

◆

(De Moivre’s formula)

=

p
ci✓

i
0

✓

⇢j+1

i sin(!i(j + 1))

⇢i sin(!i)
� ⇢iei!i⇢j+1

i e�i!i(j+1) � ⇢ie�i!i⇢j+1

i e+i!i(j+1)

⇢ie�i!i � ⇢iei!i

◆

=

p
ci✓

i
0

✓

⇢j+1

i sin(!i(j + 1))

⇢i sin(!i)
� ⇢j+1

i

e�i!ij � e+i!ij

e�i!i � ei!i

◆

=

p
ci✓

i
0

✓

⇢ji sin(!i(j + 1))

sin(!i)
� ⇢j+1

i

sin(!ij)

sin(!i)

◆

 (1 + e�1

)

p
ci✓

i
0

using Lemma 18 (see proof in Appendix 3.D),

which also gives for the bias term

kPi,k⇥
i
0

k  (1 + e�1

)

p
ci✓

i
0

k.
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Thus we have the final bound:

kPi,k⇥
i
0

k2  min

(

36

ci(✓i
0

)

2

�(si + �)
, 6n(1 + e�1

)

ci(✓i
0

)

2

p

�(si + �)
, n2

(1 + e�1

)

2ci(✓
i
0

)

2

)

.(3.27)

Variance term. As for the variance term, with Vi=

✓

vi 0

0 0

◆

, we have trPi,kViPi,k =

�

�

�

Pi,k

✓p
vi
0

◆

�

�

�

2

.

�

�

�

Pi,k

✓p
vi
0

◆

�

�

�

=

p
vici

(1� r�i )(1� r+i )

"

1 +

(r�i )
k+1

(1� r+i )� (r+i )
k+1

(1� r�i )

r+i � r�i

#

=

p
vici

�(si + �)

"

1� ⇢kiBi,k

#

,

where

⇢kiBi,k = �(r�i )
k+1

(1� r+i )� (r+i )
k+1

(1� r�i )

r+i � r�i
,

which we can bound using the following Lemma:

Lemma 15. For all ⇢ 2 (0, 1) and ! 2 [�⇡/2; ⇡/2] and r± = ⇢(cos(!)±p�1 sin(!))
we have:

�

�

�

�

⇢kBk

�

�

�

�

 1.75.

Where we note that the exact majoration seems to be 1.3. This Lemma is proved
as Lemma 19 in Appendix 3.D.

We can also have a looser bound using Pi,k

✓

v1/2i

0

◆

=

Pk�1

j=0

Ri,j

✓

v1/2i

0

◆

and

Ri,j

✓

v1/2i

0

◆

=

p
civi

r�i � r+i

�

(r�i )
j+1 � (r+i )

j+1

�

=

p
civi

⇢j+1

i sin(!i(j + 1))

⇢i sin(!i)

 (j + 1)

p
civi, using the inequality | sin(k!i)|  k| sin(!i)|

and
�

�Pi,k

✓

v1/2i

0

◆

�

� 
p
civi(k+1)k

2

.

This gives for the Variance term

n
X

k=1

trPi,kViPi,k  vici

n
X

k=1

min

(

⇥

1� ⇢kiB1,k

⇤

2

�2(si + �)2
,

⇥

1� ⇢kiB1,k

⇤

k(k + 1)

2�(si + �)
,
k2

(k + 1)

2

4

)
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 vici min

(

8n

�2(si + �)2
,
(n+ 1)

3

2�(si + �)
,
(n+ 1)

5

20

)

. (3.28)

One Coalescent Eigenvalue

We now turn to the case where F has two coalescent eigenvalues, which happens
when the discriminant � = 0. We assume that Fi has one coalescent eigenvalue
ri =

(1+�)(1��(si+�))
2

. Then, with � = 1�
p

�(si+�)

1+

p
�(si+�)

, ri = (1+�)(1��(si+�))
2

= 1�p�(si + �).

Then Fi can be trigonalized as Fi = QiDiQ
�1

i with Qi =

✓

ri 1

1 0

◆

, Di =

✓

ri 1

0 ri

◆

and Q�1

i =

✓

0 1

1 �ri

◆

. We note that for all k � 0, then Dk
i = rk�1

i

✓

ri k
0 ri

◆

.

Computing Pi,k. We first compute Pi,k:

(I
2

�Di)
�1

=

✓

1

1�ri

1

(1�ri)2

0

1

1�ri

◆

and

(I
2

�Dk
i )(I2 �Di)

�1

=

 

1�rki
1�ri

1�rki
(1�ri)2

� krk�1
i

1�ri

0

1�rki
1�ri

!

.

Thus with C1/2
i Qi =

✓p
ciri

p
ci

0 0

◆

we have

C1/2
i Qi(I2 �Dk

i )(I2 �Di)
�1

=

p
ci

 

1�rki
1�ri

ri
1�rki

(1�ri)2
� krki

1�ri

0 0

!

.

And, computing as previously the matrices products, we derive:

Pi,k = C1/2
i Qi(I2 �Dk

i )(I2 �Di)
�1Q�1

i

=

p
ci

 

1�rki
(1�ri)2

� krki
1�ri

1�rki
1�ri

ri � (

1�rki
(1�ri)2

� krki
1�ri

)ri
0 0

!

=

p
ci

 

1�rki
(1�ri)2

� krki
1�ri

1�rki
(1�ri)2

(ri)2 +
krk+1

i
1�ri

0 0

!

=

p
ci

1� ri

 

1�rki
1�ri

� krki �1�rki
1�ri

(ri)2 + krk+1

i

0 0

!

.

Bias term. We thus have:

Pi,k⇥
i
0

=

p
ci

1� ri

 

1�rki
1�ri

� krki �1�rki
1�ri

(ri)2 + krk+1

i

0 0

!

✓

✓i
0

✓i
0

◆
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= ✓i
0

p
ci

✓

(1� rki )
1+ri
1�ri

� krki
0

◆

,

and this gives for the bias term:

kPi,k⇥
i
0

k2 = (✓i
0

)

2ci
h

(1� rki )
1 + ri
1� ri

� krki

i

2

= (✓i
0

)

2ci
h

1 + ri
1� ri

�
⇣

k +

1 + ri
1� ri

⌘

rki

i

2

,

developing the product, then using formulas for ri,

kPi,k⇥
i
0

k2 = (✓i
0

)

2ci
h

2�p�(si+�)
p

�(si+�)
�
⇣

k+
2�p�(si+�)
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�(ci+�)

⌘
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�(si+�))
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=

(✓i
0

)

2ci
�(si+�)

h
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�

k
p

�(si+�) +2�
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�(si+�)
�
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p

�(si+�))
k
i

2

=

(✓i
0

)

2ci
�(si + �)

h
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p

�(si + �)� �2 + (k � 1)

p

�(si + �)
�

(1�
p

�(si + �))k
i

2

 4

(✓i
0

)

2ci
�(si + �)

, using Lemma 20 in Appendix 3.D. (3.29)

Variance term. With V =

✓

vi 0

0 0

◆

,

trPi,kV Pi,k

=

si
(1�ri)2

 

1�rki
1�ri �krki �1�rki

1�ri (ri)
2

+krk+1

i

0 0
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✓
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0 0

◆

 

1�rki
1�ri �krki �1�rki

1�ri (ri)
2

+krk+1

i
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!>

=

sivi
(1� ri)2
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=

vihi
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i
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=

vihi

�(si + �)(1� ri)2
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vihi
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1� (1 + k
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�(si + �))(1�
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,

and
n
X

k=1

trPi,kV Pi,k =

visi
�2(si + �)2

n
X

k=1

h

1� (1 + k
p

�(si + �))(1�
p

�(si + �))k
i

2

 n
visi

�2(si + �)2
using Lemma 20 in Appendix 3.D. (3.30)
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Alternative bounds for the bias and the variance term, as in Equations(3.24), (3.27)
may be derived as well. Combining all these results, we are now able to state Theo-
rem 8.

3.C.4 Conclusion

Combining results from Lemma 13, and Equations (3.24), (3.27), (3.28), with
c = ⌃, and using the following simple facts:

— For the least squares regression function, with c = ⌃, Eh¯⇥n, C ¯

⇥ni = Ef(¯✓n)�
f(✓⇤).

— Under assumption A
3

, A
4

, we have V 4 ⌧ 2⌃.
— The squared norm of a vector is the sum of its squared components on the

orthonormal eigenbasis. For example kPn+1

⇥

0

k2 =Pd
i=1

kPi,n+1

⇥

i
0

k2.
— For any regularization parameter � 2 R

+

and for any constant step-size �(⌃+

�I) 4 I, for any � 2 ⇥1�
p
��

1+

p
��
, 1
⇤

, matrix F will have only two distinct complex
eigenvalues or two coalescent eigenvalues.

Proposition 7. Under (A
4,5), for any regularization parameter � 2 R

+

and for any
constant step-size �(⌃+ �I) 4 I we have for any � 2 ⇥1�

p
��

1+

p
��
, 1
⇤

, for the recursion in
Eq. (3.10):

Ef(¯✓n)� f(✓⇤)  2�k�1/2⌃1/2
(⌃+ �I)�1

(✓
0

� ✓⇤)k2

+

d
X

i=1

2

(n+ 1)

2

min

⇢

36

ci(˜✓i
0

)

2

�(si + �)
, 6n(1 + e�1

)

ci(˜✓i
0

)

2

p

�(si + �)
,

n2

(1 + e�1

)

2ci(˜✓
i
0

)

2

�

+

d
X

i=1

�2

(n+ 1)

2

vici min

(

8n

�2(si + �)2
,
(n+ 1)

3

2�(si + �)
,
(n+ 1)

5

20

)

.

This implies, using the Equation (3.25) for the initial point, using ci = �i and re-
grouping sums as traces or norms:

Ef(¯✓n)� f(✓⇤)  2�k�1/2⌃1/2
(⌃+ �I)�1

(✓
0

� ✓⇤)k2

+ 2min

⇢

36k⌃1/2
(⌃+�I)�1/2

(✓
0

�✓⇤)k2
�(n+ 1)

2

, (1+e�1

)

2k⌃1/2
(✓

0

�✓⇤)k2
�

+ min

(

8 tr(V ⌃(⌃+ �I)�2

)

n+ 1

, n� tr(V ⌃(⌃+ �I)�1

)

)

,

which gives exactly Theorem 8 using V 4 ⌧ 2⌃ in the Variance term, and �1/2(⌃ +

�I)�1/2 4 I in the first term.
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3.D Technical Lemmas
The following sequence of Lemmas appear in the proof. They are mostly inde-

pendent and rely on simple calculations.

Lemma 16. The operator
⇥

(⌃+�I)⌦I+I⌦(⌃+�I)
⇤�1 is a non-decreasing operator

on (Sn,4).
Proof. Lemma means that for two matrices M,N 2 Sn(R) such that M 4 N , then

⇥

(⌃+ �I)⌦ I + I ⌦ (⌃+ �I)
⇤�1

M 4
⇥

(⌃+ �I)⌦ I + I ⌦ (⌃+ �I)
⇤�1

N.

It is equivalent to show that for any symmetric positive matrix A 2 S+

n ,
⇥

(⌃+ �I)⌦ I + I ⌦ (⌃+ �I)
⇤�1

A 2 S+

n (R).

We consider a matrix A 2 S+

n (R). A can be decomposed as a sum of (at most) n
rank one matrices A =

Pn
i=1

!i!>
i , with !i 2 Rn. We thus just have to prove that for

some ! 2 Rn,
⇥

(⌃+ �I)⌦ I + I ⌦ (⌃+ �I)
⇤�1

!!> 2 S+

n (R).
Let ⌃ =

P

i>0

µiei ⌦ ei is the eigenvalue decomposition of ⌃, then

⇥

(⌃+ �I)⌦ I + I ⌦ (⌃+ �I)
⇤�1

!!>
=

X

i,j>0

h!, eiih!, eji
µi + µj + 2�

ei ⌦ ej.

Thus, in the orthonormal basis of eigenvectors, this is thus Hadamard product
between

X

i,j>0

h!, eiih!, ejiei ⌦ ej = !!>

and the matrix C =

⇣

�

1

µi+µj+2�

�

i,j>0

⌘

. Matrix C is a Cauchy matrix and is thus
positive. Moreover the Hadamard product of two positive matrices is positive, which
concludes the proof.

Remark: surprisingly, the inverse operator (⌃ + �I) ⌦ I + I ⌦ (⌃ + �I) is not
non-decreasing. Indeed, 4 is not a total order on Sn so we may have that an operator
is non-decreasing and its inverse is not.
Lemma 17. For all ⇢ 2 (0, 1) and ! 2 [�⇡/2; ⇡/2] and r± = ⇢(cos(!)±p�1 sin(!))
we have:

�

�

�

�

1� r+r� � ⇢k|A
1

|
|1� r+|

�

�

�

�

 min{1 + ⇢+ e�1

+ 4⇢k, 2 + ⇢+
p
5⇢k+1}  6. (3.31)

Proof. We note that ⇢kiA1

is a real number as is is a quotient of pure complex numbers,
which come from the difference between a complex and its conjugate. We first write
A

1

as a combination of sine and cosine functions:

⇢kiA1

=

(r�i )
k+1

(1� r+i )
2 � (r+i )

k+1

(1� r�i )
2

r�i � r+i
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= �(r�i )
k+1 � (r+i )

k+1 � 2r�i r
+

i ((r
�
i )

k � (r+i )
k
) + (r�i r

+

i )(r
�
i )

k�1 � (r+i )
k�1

)

⇢i sin!i

= �⇢
k+1

i sin((k + 1)!i)� 2⇢k+2

i sin(k!i) + ⇢k+3

i sin((k � 1)!i)

⇢i sin!i

.

This quantity can be simplified when ⇢ ! 1 or ! ! 0. We thus modify the
expression of A

1

to make these dependencies clearer:

�A
1

=

sin((k + 1)!i)� 2⇢i sin(k!i) + ⇢2i sin((k � 1)!i)

sin!i

=

(cos(!)�⇢)(sin(k!)�⇢ sin((k�1)!))+cos(k!) sin(!)�⇢ cos((k�1)!) sin(!)

sin!i

developing sin(a+ b) = sin(a) cos(b) + cos(a) sin(b) and regrouping terms,

=

(cos(!)� ⇢)2 sin((k � 1)!) + (cos(!)� ⇢) sin(!) cos((k � 1)!)

sin!i

+

cos(k!) sin(!)� ⇢ cos((k � 1)!) sin(!)

sin!i

=

(cos(!)�⇢)2 sin((k�1)!)

sin!i

+(cos(!)�⇢) cos((k�1)!)+cos(k!)�⇢ cos((k�1)!)

simplifying expression, then developing the cosine,

=

(cos(!)�⇢)2 sin((k�1)!)

sin!i

+2(cos(!)�⇢) cos((k�1)!)+sin(!) sin((k�1)!).(3.32)

So that in that final expression all the terms behave relatively simply when ⇢! 1 or
! ! 0. We want to upper bound:

�

�

�

�

1� r+r� � ⇢k|A
1

|
|1� r+|

�

�

�

�

.

We thus consider separately the first and second term.

1� r+i r
�
i

|1� r+i |
=

1� ⇢2

|1� r+i |
 1 + ⇢ (exact if ! = 0).

Then, using Equation (3.32):

�⇢ki |A1

|
|1�r+i |

= ⇢k
(cos(!)�⇢)2 sin((k�1)!)

sin!i
+2(cos(!)� ⇢) cos((k�1)!) + sin(!) sin((k�1)!)
p

(1� ⇢ cos!)2 + ⇢2 sin2

(!)
.

Considering separately the three terms in the numerator, using numerous times that
for any a, b 2 [0; 1], |a� b|  1� ab:
�

�

�

�

�

⇢k (cos(!)�⇢)2 sin((k�1)!)
sin!i

p

(1� ⇢ cos!)2 + ⇢2 sin2

(!)

�

�

�

�

�

 ⇢k
(cos(!)� ⇢) sin((k � 1)!)

sin!i
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as |(cos(!)� ⇢)|  1� ⇢ cos(!),

 ⇢k
(cos(!)�1) sin((k�1)!)

sin!i

+⇢k
(1�⇢) sin((k�1)!)

sin!i

writing cos(!)� ⇢ = cos(!)� 1 + 1� ⇢

 ⇢k(1� ⇢)(k � 1) + ⇢k
(cos(!)� 1) sin((k � 1)!)

sin!i

as | sin((k � 1)!)|  |(k � 1) sin(!)|,
 ⇢k(1�⇢)k�(1�⇢)⇢k+⇢k (cos(!)�1) sin((k�1)!)

sin!i

writing cos(!)� 1 = 2 sin

2

(!/2),

 ⇢k(1 + (1� ⇢))k � ⇢k � (1� ⇢)⇢k + ⇢k
2 sin

2

(!/2)

sin!i

using 1 + (1� ⇢)k  (1 + (1� ⇢))k,

 ⇢k(1 + (1� ⇢))k � ⇢k � (1� ⇢)⇢k + ⇢k tan(!/2)

and as tan(!/2)  1 for |!|  ⇡/2,

 1� (1� ⇢)⇢k

using ⇢k(1 + (1� ⇢))k = (1� (1� ⇢)2)k  1,

And for the second and third term:

2

�

�

�

�

�

⇢k
(cos(!)� ⇢) cos((k � 1)!)
p

(1� ⇢ cos!)2 + ⇢2 sin2

(!)

�

�

�

�

�

 2⇢k,

�

�

�

�

�

⇢k
+sin(!) sin((k � 1)!)

p

(1� ⇢ cos!)2 + ⇢2 sin2

(!)

�

�

�

�

�

 ⇢k.

Thus:
�

�

�

�

1� r+i r
�
i � ⇢ki |A1

|
|1� r+i |

�

�

�

�

 1 + ⇢+ 1 + 3⇢k.

We also have

| ⇢k (cos(!)�⇢)2 sin((k�1)!)
sin!i

p

(1�⇢ cos!)2+⇢2 sin2

(!)
|  ⇢k

(cos(!)� ⇢) sin((k � 1)!)

sin!i

 ⇢k(1� ⇢)(k � 1) + ⇢k
(cos(!)� 1) sin((k � 1)!)

sin!i

 (1� 1

k + 1

)

k+1�(1�⇢)⇢k+⇢k (cos(!)�1) sin((k�1)!)

sin!i

 e�1 � (1� ⇢)⇢k + ⇢k
sin

2

(!/2)

sin!i

.
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Using that

k sup

x2[0;1]
xk
(1� x) = k

1

k + 1

(1� 1

k + 1

)

k

= (1� 1

k + 1

)

k+1

= exp((k + 1) ln((1� 1

k + 1

))  e�1, (3.33)

we get
�

�

�

�

1� r+i r
�
i � ⇢ki |A1

|
|1� r+i |

�

�

�

�

 1 + ⇢+ e�1

+ 4⇢k

We can also change 3⇢k into
p
5⇢k We have used that |(⇢� cos(!))|  (1� ⇢ cos(!)).

Lemma 18. For any ⇢i 2 (0; 1), for any !i 2 [�⇡/2; ⇡/2]

⇢ji sin(!i(j + 1))

sin(!i)
� ⇢j+1

i

sin(!ij)

sin(!i)
 1 + e�1.

Proof.

⇢ji sin(!i(j + 1))

sin(!i)
� ⇢j+1

i

sin(!ij)

sin(!i)
= ⇢ji

✓

sin(!i(j + 1))� ⇢i sin(!ij)

sin(!i)

◆

= ⇢ji

✓

(cos(!i)� ⇢i) sin(!ij)

sin(!i)
+ cos(j!i)

◆

 ⇢ji ((1� ⇢i)j + 1)

 1 + e�1 using (3.33).

Lemma 19. For all ⇢ 2 (0, 1) and ! 2 [�⇡/2; ⇡/2] and r± = ⇢(cos(!)±p�1 sin(!))
we have:

�

�

�

�

⇢kiB1,k

�

�

�

�

 1.75 (3.34)

Proof. Once again, as the considered quantity is real, we first express it as a combi-
nation of sine and cosine functions. We then use some simple trigonometric trics to
upper bound the quantity.

⇢kiB1,k = �(r�i )
k+1

(1� r+i )� (r+i )
k+1

(1� r�i )

r+i � r�i

= �2Im
⇥

(r�i )
k+1

(1� r+i )
⇤

p��i

as it is the difference between a complex
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and its conjugate,

= �Im
⇥

⇢ki e
�(k+1)i!i

(1� ⇢i cos(!i)� i⇢i sin(!i))
⇤

sin!i⇢i
developing the product,

= ⇢ki
cos((k + 1)!i) sin(!i)⇢i + sin((k + 1)!i)(1� ⇢i cos(!i))

sin!i⇢i

= ⇢ki

h

⇢i cos((k + 1)!i) + (1� ⇢i cos(!i))
sin((k + 1)!i)

sin!i

i

and simplifying.

Let’s turn our interest to the second part of the quantity. We denote by

⇤ =

�

�

�

�

⇢ki (1� ⇢i cos(!i))
sin((k + 1)!i)

sin!i

�

�

�

�

,

and

⇤ =

�

�

�

�

⇢ki (1� ⇢i + ⇢i(1� cos(!i)))
sin((k + 1)!i)

sin!i

�

�

�

�

introducing an artificial + ⇢i � ⇢i,

 ⇢ki

�

�

�

�

(1� ⇢i)
sin((k + 1)!i)

sin!i

�

�

�

�

+ ⇢ki

�

�

�

�

⇢i(1� cos(!i))
sin((k + 1)!i)

sin!i

�

�

�

�

by triangular inequality,

 ⇢ki

�

�

�

�

(1� ⇢i)(k + 1)

�

�

�

�

+ ⇢ki

�

�

�

�

⇢i sin
2

(

!

2

)

1

2 cos(

!
2

) sin(

!
2

)

�

�

�

�

using 1� cos(!i) = 2 sin

2

(

!

2

)

 ⇢ki (1� ⇢i)k + ⇢ki (1� ⇢) + ⇢ki

�

�

�

�

⇢i sin
2

(

!

2

)

1

2 cos(

!
2

) sin(

!
2

)

�

�

�

�

 (1� (1� ⇢i))
k
(1 + (1� ⇢i))

k � ⇢ki +
1

2(k + 1)

+ ⇢ki

�

�

�

�

⇢i
2

tan(

!

2

)

�

�

�

�

 (1� (1� ⇢i)
2

)

k
+

1

4

+

1

2

 1 +

1

4

+

1

2

� ⇢ki .

Thus
�

�

�

�

⇢kiB1,k

�

�

�

�

= ⇢ki + 1 +

1

4

+

1

2

� ⇢ki  1 +

1

4

+

1

2

= 1.75.

Lemma 20. For any si, �,� 2 R3

+

such that �(si + �)  1, for any k 2 N, we have
the two following highly related identities:

0  2�
p

�(si + �)� �2 + (k � 1)

p

�(si + �)
�

(1�
p

�(si + �))k  2

0  1� (1 + k
p

�(si + �))(1�
p

�(si + �))k  1.

Proof. Proof relies on the trick, for any ↵ 2 R, n 2 N: 1 + n↵  (1 + ↵)n. For the
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first one:
p

�(si + �) +
�

2 + (k � 1)

p

�(si + �)
�

(1�
p

�(si + �))k =

=

p

�(si + �) + (1�
p

�(si + �))k +
�

1 + (k � 1)

p

�(si + �)
�

(1�
p

�(si + �))k


p

�(si + �) + (1�
p

�(si + �)) +
�

1 + (k � 1)

p

�(si + �)
�

(1�
p

�(si + �))k�1

 1 + (1� �(si + �))k�1  2.

For the second one:

0  (1 + k
p

�(si + �))(1�
p

�(si + �))k  (1� �(si + �))k  1.
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Chapter 4

Dual Averaging Algorithm for
Composite Least-Squares Problems

Abstract

We consider the minimization of composite objective functions composed of the
expectation of quadratic functions and an arbitrary convex function. We study the
stochastic dual averaging algorithm with a constant step-size, showing that it leads
to a convergence rate of O(1/n) without strong convexity assumptions. This thus
extends earlier results on least-squares regression with the Euclidean geometry to
(a) all convex regularizers and constraints, and (b) all geometries represented by a
Bregman divergence. This is achieved by a new proof technique that relates stochastic
and deterministic recursions.

This chapter is extracted from the paper: Stochastic Composite Least-Squares
Regression with convergence rate O(1/n), in collaboration with F. Bach published in
the Proceedings of the International Conference on Learning Theory (COLT), 2017.

4.1 Introduction
Many learning problems may be cast as the optimization of an objective func-

tion defined as an expectation of random functions, and which can be accessed only
through samples. In this chapter, we consider composite problems of the form

min

✓2Rd
Ez`(z, ✓) + g(✓), (4.1)

where for any z, `(z, ·) is a convex quadratic function (plus some linear terms) and g
is any extended-value convex function.

In a machine learning context, `(z, ✓) is the loss occurred for the observation z and
the predictor parameterized by ✓, f(✓) = Ez`(z, ✓) is its generalization error, while the
function g represents some additional regularization or constraints on the predictor.
Thus in this chapter we consider composite least-squares regression problems, noting
that solving such problems effectively leads to efficient algorithms for all smooth
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losses by using an online Newton algorithm [Bach and Moulines, 2013], with the
same running-time complexity of O(d) per iteration for linear predictions.

When g = 0, averaged stochastic gradient descent with a constant step-size
achieves the optimal convergence rate of O(1/n) after n observations, even in ill-
conditioned settings without strong convexity [Jain et al., 2016], with precise non-
asymptotic results that depend on the statistical noise variance �2 of the least-squares
problem, as �2d/n, and on the squared Euclidean distance between the initial predic-
tor ✓

0

and the optimal predictor ✓⇤, as k✓
0

� ✓⇤k2
2

/n.
In this chapter, we extend this O(1/n) convergence result in two different ways:

— Composite problems: we provide a new algorithm that deals with composite
problems where g is (essentially) any extended-value convex function, such as
the indicator function of a convex set for constrained optimization, or a norm
or squared norm for additional regularization. This situation is common in
many applications in machine learning and signal processing [see, e.g., Rish and
Grabarnik, 2014, and references therein]. Because we consider large steps-sizes
(that allow robustness to ill-conditioning), the new algorithm is not simply a
proximal extension; for example, in the constrained case, averaged projected
stochastic gradient descent with a constant step-size is not convergent, even for
quadratic functions.

— Beyond Euclidean geometry: Following mirror descent [Nemirovski and
Yudin, 1979] and recent work of Bauschke et al. [2016], our new algorithm can
take into account a geometry obtained with a Bregman divergence Dh associated
with a convex function h, which can typically be the squared Euclidean norm
(leading to regular stochastic gradient descent in the non-composite case), the
entropy function, or the squared `p-norm. This will allow convergence rates pro-
portional to Dh(✓⇤, ✓0)/n, which may be significantly smaller than k✓

0

� ✓⇤k2/n
in many situations.

In order to obtain these two extensions, we consider the stochastic dual averaging
algorithm of Nesterov [2009] and Xiao [2010] which we present in Section 4.2, and
study under the particular set-up of constant step-size with averaging, showing in
Section 4.3 that it also achieves a convergence rate of O(1/n) even without strong
convexity. This is achieved by a new proof technique that relates stochastic and
deterministic recursions.

Given that known lower-bounds for this class of problems are proportional to
1/
p
n for function values, we established our O(1/n) results with a different criterion,

namely the Mahalanobis distance associated with the Hessian of the least-squares
problem. In our simulations in Section 4.5, the two criteria behave similarly. Finally,
in Section 4.4, we shed additional insights of the relationships between mirror descent
and dual averaging, in particular in terms of continuous-time interpretations.

4.2 Dual Averaging Algorithm
In this section, we introduce dual averaging as well as related frameworks, together

with new results in the deterministic case.
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4.2.1 Assumptions

We consider the Euclidean space Rd of dimension d endowed with the natural
inner product h·, ·i and an arbitrary norm k · k (which may not be the Euclidean
norm). We denote by k · k⇤ its dual norm and for any symmetric positive-definite
matrix A, by k ·kA =

ph·, A·i the Mahalanobis norm. For a vector ✓ 2 Rd, we denote
by ✓(i) its i-th coordinate and by k✓kp = (

Pd
i=1

|✓(i)|p)1/p its `p-norm. We also denote
the convex conjugate of a function f by f ⇤

(⌘) = sup✓2Rdh⌘, ✓i � f(✓). We remind
that a function f is L-smooth with respect to a norm k · k if for all (↵, �) 2 Rd ⇥Rd,
krf(↵) �rf(�)k⇤  Lk↵ � �k and is µ-strongly convex if for all (↵, �) 2 Rd ⇥ Rd

and g 2 @f(�), f(↵) � f(�) + hg,↵� �i+ µ
2

k↵� �k2 [see, e.g., Shalev-Shwartz and
Singer, 2006].

We consider problems of the form:

min

✓2X
 (✓) = f(✓) + g(✓), (4.2)

where X ⇢ Rd is a closed convex set with non empty interior. Throughout this
chapter, we make the following general assumptions:
(A1) f : Rd ! R [ {+1} is a proper lower semicontinuous convex function and is

differentiable on ˚X (the interior of X ).
(A2) g : Rd ! R [ {+1} is a proper lower semicontinuous convex function.
(A3) h : Rd ! R[ {+1} with dom h\ dom g = X , ˚dom h\ dom g 6= ;. Moreover

h is a Legendre function [Rockafellar, 1970, chap. 26]:
— h is a proper lower semicontinuous strictly convex function, differentiable

on ˚dom h.
— The gradient of h is diverging on the boundary of dom h (i.e., for any se-

quence (✓n) converging to a boundary point of dom h, limn!+1krh(✓n)k =

1). Note that rh is then a bijection from ˚dom h to ˚dom h⇤ whose inverse
is the gradient of the conjugate rh⇤.

(A4) The function  = f+g attains its minimum over X at a certain ✓⇤ 2 Rd (which
may not be unique).

Note that we adopt the same framework as Bauschke et al. [2016] with the difference
that a convex constraint C can be handled with more flexibility: either by considering
a Legendre function h whose domain is C or by considering the hard constraint g(✓) =
C(✓) (equal to 0 if ✓ 2 C and +1 otherwise).

4.2.2 Dual Averaging Algorithm

In this section we present the dual averaging algorithm (referred to from now
on as “DA”) for solving composite problems of the form of Eq. (4.2). It starts from
✓
0

2 ˚dom h and ⌘
0

= rh(✓
0

) and iterates for n � 1 the recursion

⌘n = ⌘n�1

� �rf(✓n�1

)

✓n = rh⇤
n(⌘n), (4.3)
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with hn = h + n�g and � 2 (0,1) (commonly referred to as the step-size in op-
timization or the learning rate in machine learning). We note that equivalently
✓n 2 argmax✓2Rd{h⌘n, ✓i � hn(✓)}. When h =

1

2

k · k2
2

and g = 0, we recover gra-
dient descent.

Two iterates (⌘n, ✓n) are updated in DA. The dual iterate ⌘n is simply proportional
to the sum of the gradients evaluated in the primal iterates (✓n). The update of the
primal iterate ✓n is more complex and raises two different issues: its existence and its
tractability. We discuss the first point in Appendix 4.A and assume, as of now, that
the method is generally well defined in practice. The tractability of ✓n is essential
and the algorithm is only used in practice if the functions h and g are simple in the
sense that the gradient rh⇤

n may be computed effectively. This is the case if there
exists a closed form expression. Usual examples are given in Appendix 4.I.

Euclidean case and proximal operators. In the Euclidean case, Eq. (4.3) may
be written in term of the proximal operator defined by Moreau [1962] as Proxg(⌘) =
argmin✓2X{1

2

k✓ � ⌘k2
2

+ g(✓)}:

✓n=argmin

✓2X

n

h�⌘n, ✓i+n�g(✓)+
1

2

k✓k2
2

o

=argmin

✓2X

n

1

2

k✓�⌘nk2
2

+n�g(✓)
o

=Prox�ng(⌘n).

DA is in this sense related to proximal gradient methods, also called forward-backward
splitting methods [see, e.g., Beck and Teboulle, 2009, Wright et al., 2009, Combettes
and Pesquet, 2011]. These methods are tailored to composite optimization problems:
at each iteration f is linearized around the current iterate ✓n and they consider the
following update

✓n+1

= argmin

✓2X

n

h�rf(✓n), ✓i+ �g(✓) +
1

2

k✓ � ✓nk2
2

o

= Prox�g(✓n � �rf(✓n)).

Note the difference with DA which considers a dual iterate and a proximal operator
for the function n�g instead of �g (see additional insights in Section 4.4).

From non-smooth to smooth optimization. DA was initially introduced by
Nesterov [2009] to optimize a non-smooth function f with possibly convex constraints
(g = 0 or g = C). It was extended to the general stochastic composite case by Xiao
[2010] who defined the iteration as

✓n = argmin

✓2X

n

1

n

n�1

X

i=0

hzi, ✓i+ g(✓) +
�n
n
h(✓)

o

,

where zi is an unbiased estimate 1 of a subgradient in @f(✓i) and (�n)n�1

a nonneg-
ative and nondecreasing sequence of real numbers. This formulation is equivalent to
Eq. (4.3) for constant sequences �n = 1/�. Xiao [2010] proved convergence rates of
order O(1/

p
n) for convex problems with decreasing step-size C/

p
n and O(1/(µn))

1. Their results remain true in the more general setting of online learning.
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for problems with µ-strongly convex regularization with constant step-size 1/µ. DA
was also studied with decreasing step-sizes in the distributed case by Duchi et al.
[2012], Dekel et al. [2012], Colin et al. [2016] and combined with the alternating di-
rection method of multipliers (ADMM) by Suzuki [2013]. It was further shown to
be very efficient in manifold identification by Lee and Wright [2012] and Duchi and
Ruan [2016].

Relationship with mirror descent. The DA method should be associated with
its cousin mirror descent algorithm (referred to from now on as “MD”), introduced by
Nemirovski and Yudin [1979] for the constrained case and written under its modern
proximal form by Beck and Teboulle [2003]

✓n = argmin

✓2X

�

�hrf(✓n�1

), ✓i+Dh(✓, ✓n�1

)

 

,

where we denote by Dh(↵, �) = h(↵)�h(�)�hrh(�),↵��i the Bregman divergence
associated with h. Moreover it was later extended to the general composite case by
Duchi et al. [2010]

✓n = argmin

✓2X

�

�hrf(✓n�1

), ✓i+ �g(✓) +Dh(✓, ✓n�1

)

 

. (4.4)

DA was initially motivated by Nesterov [2009] to avoid new gradients to be taken into
account with less weight than previous ones. However, as an extension of the Eu-
clidean case, DA essentially differs from MD on the way the regularization component
is dealt with. See more comparisons in Section 4.4.

Relationship with online learning. DA was traditionally studied under the on-
line learning setting [Zinkevich, 2003] of regret minimization and is related to the
“follow the leader” approach [see, e.g., Kalai and Vempala, 2005] as noted by McMa-
han [2011]. More generally, the DA method may be cast in the primal-dual algorith-
mic framework of Shalev-Shwartz and Singer [2006] and Shalev-Shwartz and Kakade
[2009].

4.2.3 Deterministic Convergence Result for Dual Averaging

In this section we present the convergence properties of the DA method for op-
timizing deterministic composite problems of the form in Eq. (4.2), for any smooth
function f (see proof in Appendix 4.B).

Proposition 8. Assume (A1-4). For any step-size � such that h� �f is convex on
˚X we have for all ✓ 2 X

 (✓n)�  (✓)  Dh(✓, ✓0)

�(n+ 1)

.

Moreover assume g = 0, and there exists µ 2 R such that f �µh is also convex on ˚X
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then we have for all ✓ 2 X

f(✓n)� f(✓)  (1� �µ)n
Dh(✓, ✓0)

�
.

We can make the following remarks:
— We adapt the proofs of Chen and Teboule [1993], Bauschke et al. [2016] to the

composite case and the DA method by including the regularization component
g in the Bregman divergence. If g was differentiable we would simply use Dhn =

Dh+n�g and prove the following recursion:

Dhn(✓⇤, ✓n)�Dhn�1(✓⇤, ✓n�1

) = �Dhn�1(✓n, ✓n�1

) + �hrf(✓n�1

), ✓n�1

� ✓ni
� �(g(✓n)� g(✓))� �hrf(✓n�1

), ✓n�1

� ✓⇤i.

Since g is not differentiable, we extend instead the notion of Bregman divergence
to the non-smooth case in Appendix 4.B.2 and show the proof works in the same
way.

— Related work: A result on MD with analogue assumptions was first presented
by Bauschke et al. [2016]. DA was analyzed for smooth functions in the non-
composite case where g = 0, by Dekel et al. [2012] in the stochastic setting and
by Lu et al. [2016] in the deterministic setting. The technique to extend the
Bregman divergence to analyze the regularization component has its roots in
the time-varying potential method in online learning [Cesa-Bianchi and Lugosi,
2006, Chapter 11.6] and the “follow the regularized leader” approach [Abernethy
et al., 2008].

— This convergence rate is suboptimal for the class of addressed problems. Indeed
accelerated gradient methods achieve the convergence rate of O(L/n2

) in the
composite setting [Nesterov, 2013], such a rate being optimal for optimizing
smooth functions among first-order techniques that can access only sequences
of gradients [Nesterov, 2004].

— Classical results on the convergence of optimization algorithms in non-Euclidean
geometries assume on one hand that the function h is strongly convex and on
the other hand the function f is Lipschitz or smooth. Following Bauschke et al.
[2016], we consider a different assumption which combines the smoothness of f
and the strong convexity of h on the single condition h � �f convex. For the
Euclidean geometry where h(✓) = 1

2

k✓k2
2

, this condition is obviously equivalent
to the smoothness of the function f with regards to the `

2

-norm. Moreover,
under arbitrary norm k · k, this is also equivalent to assuming h µ-strongly
convex and f L-smooth (with respect to this norm). However it is much more
general and may hold even when f is non-smooth, which precisely justifies the
introduction of this condition [see examples described by Bauschke et al., 2016].

— The bound adapts to the geometry of the function h through the Bregman
divergence between the starting point ✓

0

and the solution ✓⇤ and the step-size
� which is controlled by h. Therefore the choice of h influences the constant in
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the bound. Examples are provided in Appendix 4.I.

4.3 Stochastic Convergence Results for Quadratic Func-
tions

In this section, we consider a symmetric positive semi-definite matrix ⌃ 2 Rd⇥d

and a convex quadratic function f defined as

(A5) f(✓) = 1

2

h✓,⌃✓i � hq, ✓i, with q 2 Rd in the column space of ⌃,

so that f has a global minimizer ✓
⌃

2 Rd. Without loss of generality 2, ⌃ is as-
sumed invertible, though its eigenvalues could be arbitrarily small. The global so-
lution is known to be ✓

⌃

= ⌃

�1q, but the inverse of the Hessian is often too ex-
pensive to compute when d is large. The function may be simply expressed as
f(✓n) =

1

2

h✓n � ✓
⌃

,⌃(✓n � ✓
⌃

)i+ f(✓
⌃

) and the excess of the cost function  = f + g
as

 (✓n)�  (✓⇤) = h✓⇤ � ✓
⌃

,⌃(✓n � ✓⇤)i+ g(✓n)� g(✓⇤) (linear part)

+

1

2

h✓n � ✓⇤,⌃(✓n � ✓⇤)i (quadratic part) .

The first-order condition of the optimization problem in Eq. (4.2) is 0 2 rf(✓⇤) +
@g(✓⇤) + @ X (✓⇤). By convexity of g, we have g(✓n) � g(✓⇤) � hz, ✓n � ✓⇤i for any
z 2 @g(✓⇤). Moreover X (✓n) � X (✓⇤) = 0 � hz, ✓n � ✓⇤i for any z 2 @ X (✓⇤) since
✓n, ✓⇤ 2 X by definition. Therefore this implies that the linear part g(✓n) � g(✓⇤) +
hrf(✓⇤), ✓n � ✓⇤)i is non-negative and we have the bound

1

2

k✓n � ✓⇤k2
⌃

  (✓n)�  (✓⇤). (4.5)

We derive, in this section, convergence results in terms of the distance k✓n � ✓⇤k⌃
which takes into account the ill-conditioning of the matrix ⌃ and is a lower bound
in the excess of function values. Furthermore it directly implies classical results for
strongly convex problems.

In many practical situations, the gradient of f is not available for the recursion in
Eq. (4.3), and we have only access to an unbiased estimate rfn+1

(✓n) of the gradient
of f at ✓n. We consider in this case the stochastic dual averaging method (referred
to from now on as “SDA”) defined the same way as DA as

⌘n = ⌘n�1

� �rfn(✓n�1

)

✓n = rh⇤
n(⌘n), (4.6)

for ✓
0

2 ˚dom h and ⌘
0

= rh(✓
0

). Here we consider the stochastic approximation

2. By decomposing ✓ in ✓ = ✓k + ✓? with ✓? 2 Null(⌃) and h✓?, ✓ki = 0 and considering

 (✓) = f(✓k) + g̃(✓k) where g̃(✓k) = inf
✓?2Null(⌃) g(✓? + ✓k).
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framework [Kushner and Yin, 2003]. That is, we let (Fn)n�0

be an increasing family
of �-fields such that for each ✓ 2 Rd and for all n � 1 the random variable rfn(✓)
is square-integrable and Fn-measurable with E[rfn(✓)|Fn�1

] = rf(✓). This includes
(but also extends) the usual machine learning situation where rfn is the gradient of
the loss associated with the n-th independent observation. We will consider in the
following two different gradient oracles.

4.3.1 Additive Noise

We study here the convergence of the SDA recursion defined in Eq. (4.6) under
an additive noise model:
(A6) For all n � 1, rfn(✓) = rf(✓) � ⇠n, where the noise (⇠n)n�1

is a square-
integrable martingale difference sequence (i.e., E[⇠n|Fn�1

] = 0) with bounded
covariance E[⇠n ⌦ ⇠n] 4 C.

With this oracle and for the quadratic function f , SDA takes the form

⌘n = ⌘n�1

� �(⌃✓n�1

� q) + �⇠n
✓n = rh⇤

n(⌘n). (4.7)

We obtain the following convergence result on the average ¯✓n =

1

n

Pn�1

k=0

✓k which is
an extension of results from Bach and Moulines [2013] to non-Euclidean geometries
and to composite settings (see proof in Appendix 4.C).

Proposition 9. Assume (A2-6). Consider the recursion in Eq. (4.7) for any con-
stant step-size � such that h� �f is convex. Then

1

2

Ek¯✓n � ✓⇤k2
⌃

 2min

(

Dh(✓⇤, ✓0)

�n
;

krh(✓
0

)�rh(✓⇤)k2
⌃

�1

(�n)2

)

+

4

n
tr⌃

�1C.

We can make the following observations:
— The proof in the Euclidean case [Bach and Moulines, 2013] highly uses the

equality ✓n � ✓
⌃

= (I � �⌃)(✓n�1

� ✓
⌃

) which is no longer available in the non-
Euclidean or proximal cases. Instead we adapt the classic proof of convergence
of averaged SGD of Polyak and Juditsky [1992] which rests upon the expansion
Pn

k=0

rfk+1

(✓k) =
Pn

k=0

(⌘k � ⌘k+1

)/� = (⌘
0

� ⌘n+1

)/�. The crux of the proof
is then to consider the difference between the iterations with and without noise,
⌘sto
n � ⌘det

n , which happens to satisfy a similar recursion as Eq. (4.7) but started
from the solution ✓⇤. The quadratic nature of f is used twice: (a) to bound
k⌘sto

n � ⌘det
n k

⌃

�1 ⇠ p
n, and (b) to expand rf(¯✓n) = rf(✓n) ⇠ ⌘sto

n �⌘0
�n

+ 1/
p
n.

— As for Proposition 8, the constraint on the step-size � depends on the function
h. Moreover the step-size � is constant, contrary to previous works on SDA
[Xiao, 2010] which prove results for decreasing step-size �n = C/

p
n for the

convex case (and with a convergence rate of only O(1/
p
n)).

— The first term is the “bias” term. It only depends on the “distance” from the
initial point ✓

0

to the solution ✓⇤ as the minimum of two terms. The first one
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recovers the deterministic bound of Proposition 8. The second one, specific
to quadratic objectives, leads to an accelerated rate of O(1/n2

) for some good
starting points such that krh(✓

0

)�rh(✓⇤)k2
⌃

�1 < 1, thus extending the result
from Chapter 2.

— The second term is the “variance” term which depends on the noise in the gra-
dients. When the noise is structured (such as for least-squares regression), i.e,
there exists � > 0 such that C 4 �2

⌃, the variance term becomes �2d
n

which is
optimal over all estimators in Rd without regularization [Tsybakov, 2003]. How-
ever the regularization g does not bring statistical improvement as possible, for
instance, with `

1

-regularization. We believe this is due to our proof technique.
Indeed, in the case of linear constraints, Duchi and Ruan [2016] recently showed
that the primal iterates (✓n) follow a central limit theorem (CLT), namely

p
n¯✓n

is asymptotically normal with a covariance precisely restricted to the active con-
straints. This supports that SDA may leverage the regularization (the active
constraints in their case) to get better statistical performance. We leave such
non-asymptotic results to future work.

Assumption (A6) on the gradient noise is quite general, since the noise (⇠n) is
allowed to be a martingale difference sequence (correct conditional expectation given
the past, but not necessarily independence from the past). However it is not verified
by the oracle corresponding to regular SDA for least-squares regression, where the
noise combines both an additive and a multiplicative part, and its covariance is then
no longer bounded in general (it will be for g the indicator function of a bounded
set).

4.3.2 Least-Squares Regression

We consider now the least-squares regression framework, i.e, risk minimization
with the square loss. Following Bach and Moulines [2013], we assume that:
(A7) The observations (xn, yn) 2 Rd ⇥ R, n � 1, are i.i.d. distributed with finite

variances Ekxnk2
2

< 1 and Ey2n < 1.
(A8) We consider the least-squares regression problem which is the minimization of

the quadratic function f(✓) = 1

2

E(hxn, ✓i � yn)2.
(A9) We denote by ⌃ = E[xn ⌦ xn] the population covariance matrix, which is

the Hessian of f at all points. Without loss of generality, we reduce Rd to
the minimal subspace where all xn, n � 1, lie almost surely. Therefore ⌃ is
invertible and all the eigenvalues of ⌃ are strictly positive, even if they may be
arbitrarily small.

(A10) We denote the residual by ⇠n = (yn � h✓⇤, xni)xn. We have E[⇠n] = 0 but
E[⇠n|xn] 6= 0 in general (unless the model is well-specified). There exists � > 0

such that E[⇠n ⌦ ⇠n] 4 �2

⌃.
(A11) There exists  > 0 such that for all z 2 Rd, Ehz, xni4  hz,⌃zi2.
(A12) The function g is lower bounded by some constant which is assumed by sake

of simplicity to be 0.
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(A13) There exists L > 0 such that Lh� 1

2

k · k2
⌃

is convex.
Assumptions (A7-9) are standard for least-squares regression, while Assumption

(A10) defines a bounded statistical noise. Assumption (A11) is commonly used in
the analysis of least-mean-square algorithms [Macchi, 1995] and says the projection
of the covariates xn on any direction z 2 Rd have a bounded kurtosis. It is true for
Gaussian vectors with  = 3. Assumption (A13) links up the geometry of the func-
tion h and the objective function f ; for example for `p-geometries, L is proportional
to Ekxk2q where 1/p+ 1/q = 1 (see Corollary 7 in Appendix 4.I).

For the least-squares regression problem, the SDA algorithm defined in Eq. (4.6)
takes the form:

⌘n = ⌘n�1

� �
�hxn, ✓n�1

i � yn
�

xn

✓n = rh⇤
n(⌘n). (4.8)

This corresponds to a stochastic oracle of the form rfn(✓) = (⌃+ ⇣n)(✓�✓⌃)� ⇠n for
✓ 2 Rd, with ⇣n = xn⌦xn�⌃. This oracle combines an additive noise ⇠n satisfying the
previous Assumption (A6) and a multiplicative noise ⇣n which is harder to analyze.

We obtain a similar result compared to Proposition 9 at the cost of additional
corrective terms.

Proposition 10. Assume (A2-4) and (A7-13). Consider the recursion in Eq. (4.8)
for any constant step-size � such that �  1

4Ld
. Then

1

2

Ek¯✓n � ✓⇤k2
⌃

 2

Dh(✓⇤, ✓0)

�n
+

32d

n

�

�2

+k✓⇤ � ✓
⌃

k2
⌃

�

+

16d

n2

✓

5Dh(✓⇤, ✓0)

�
+ g(✓

0

)

◆

.

We can make the following remarks:
— The proof technique is similar to the one of Proposition 9. Nevertheless its

complexity comes from the extra multiplicative noise ⇣n in the gradient estimate
(see Appendix 4.D).

— The result is only proven for �  1/(4Ld) which seems to be a proof artifact.
Indeed we empirically observed (see Section 4.5) that the iterates still converge
to the solution for all � 6 1/(2Ekxnk2

2

).
— The global bound leads to a rate of O(1/n) without strong convexity, which is

optimal for stochastic approximation, even with strong convexity [Nemirovsky
and Yudin, 1983]. We recover the terms of Proposition 9 pertubed by: (a)
one corrective term of order O(d/n) which depends on the distance between
the solution ✓⇤ and the global minimizer ✓

⌃

of the quadratic function f , which
corresponds to the covariance of the multiplicative noise at the optimum, and (b)
two residual terms of order O(d/n2

). It would be interesting to study whether
these two terms can be removed.

— As in Proposition 9, the bias is also O
�

1

(�n)2
krh(✓

0

)�rh(✓⇤)k2
⌃

�1

�

for specific
starting points (see proof in Appendix 4.D for details).

— It is worth noting that in the constrained case (g = C for a bounded convex set
C), the covariance of the noisy oracle is simply bounded by ( tr⌃r2+�2

)⌃ where
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we denote by r = max✓2C k✓� ✓
⌃

k
2

(see Appendix 4.D.1 for details). Therefore
Proposition 9 already implies 1

2

Ek¯✓n � ✓⇤k2
⌃

 2

Dh(✓⇤,✓0)
�n

+

8d
n
(�2

+ r2 tr⌃).
Moreover the result holds then for any step-size � 6 1/L, which is bigger than
allowed for g = 0 [Bach and Moulines, 2013].

4.3.3 Convergence Results on the Objective Function

In this section we present the convergence properties of the SDA method on the
objective function  = f + g rather than on the norm k · k

⌃

.
We first start with a disclaimer: it is not possible to obtain general non-asymptotic

results on the convergence of the SDA iterates in term of function values without
additional assumptions on the regularization g. We indeed show in Appendix 4.E that,
even in the simple case of a linear function f(✓) = ha, ✓i, for a 2 Rd, we can always
find, for any finite time horizon N , a quadratic non-strongly convex regularization
function gN such that for any unstructured noise of variance �2, the function value
 N(✓) = f(✓) + gN(✓) evaluated in the SDA iterates at time N is lowerbounded by

 N(
¯✓N)�  N(✓⇤) � �2

12

.

This lower bound is specific to the SDA algorithm and we underline that the regular-
ization gN depends on the horizon N . However this result still prevents the possibility
of a universal non-asymptotic convergence result on the function value for the SDA
iterates for general quadratic and linear functions. We note that this does not apply
to the setting of Proposition 9 and Proposition 10 since ⌃ = 0 for a linear function and
the vector q defining the linear term hq, ✓i cannot be in the column space of ⌃, thus
violating Assumption (A5). We conjecture that in the setting of Assumption (A5),
the lower bound is O(1/

p
n) as well.

We now provide some specific examples for which we can prove convergence in
function values.

Quadratic objectives with smooth regularization. When there exists a con-
stant Lg � 0 such that Lgf � g is convex on ˚X then results from Propositions 9 and
10 directly imply convergence of the composite objective to the optimum through

 (¯✓n)�  (✓⇤)  (Lg + 1)

2

k¯✓n � ✓⇤k2
⌃

= O(1/n),

with precise constants from Propositions 9 and 10. Indeed we have in that case (Lg+

1)f� convex and this would be directly implied by Proposition 11 in Appendix 4.B.
An easy but still interesting application is the non-regularized case (g = 0) when

the optimum ✓⇤ is the global optimum ✓
⌃

of f , because then  (✓)� (✓⇤) = 1

2

k✓�✓⇤k2
⌃

.
Thus this extends previous results on function values [Bach and Moulines, 2013] to
non-Euclidean geometries.
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Constrained problems. When g is the indicator function of a convex set C then
by definition the primal iterate ✓n 2 C and by convexity ¯✓n 2 C. Therefore  (¯✓n) =
f(¯✓n) + C(¯✓n) = f(¯✓n) and we obtain with the Cauchy-Schwarz inequality:

f(¯✓n)� f(✓⇤) = hrf(✓⇤), ¯✓n � ✓⇤i+ 1

2

k¯✓n � ✓⇤k2
⌃

 k✓⇤ � ✓
⌃

k
2

k¯✓n � ✓⇤k⌃ +

1

2

k¯✓n � ✓⇤k2
⌃

= O
⇣k✓⇤ � ✓

⌃

k
2p

n

⌘

,

with precise constants from Propositions 9 and 10. Hence we obtain a global rate of
order O(1/

p
n) for the convergence of the function value in the constrained case.

These rates may be accelerated to O(1/n) for certain specific convex constraints
or when the global optimum ✓

⌃

2 C; Duchi and Ruan [2016] recently obtained asymp-
totic convergence results for the iterates in the cases of linear and `

2

-ball constraints
for linear objective functions. Their results can be directly extended to asymptotic
convergence of function values and very probably to all strongly convex sets [see, e.g.,
Vial, 1983]. However, even for the simple `

2

-ball constrained problem, we were not
able to derive non-asymptotic convergence rates for function values.

However the global rate of order O(1/
p
n) is statically non-improvable in general.

In Appendix 4.F, we relate the stochastic convex optimization problem [Agarwal et al.,
2012] to the statistical problem of convex aggregation of estimators [Tsybakov, 2003,
Lecué, 2006]. These authors showed lower bounds on the performance of such estima-
tors which provide us lower bounds on the performance of any stochastic algorithm to
solve constrained problems. In Proposition 14 and Proposition 16 of Appendix 4.F,
we derive more precisely lower bound results for linear and quadratic functions for
certain ranges of n and d confirming the optimality of the convergence rate O(1/

p
n).

This being said, in our experiments in Section 4.5, we observed that the convergence
of function values follows closely the convergence in the Mahalanobis distance.

4.4 Parallel Between Dual Averaging and Mirror De-
scent

In this section we compare the behaviors of DA and MD algorithms, by high-
lighting their similarities and differences, in particular in terms of continuous-time
interpretation.

4.4.1 Lazy versus Greedy Projection Methods

DA and MD are often described in the online-learning literature as “lazy” and
“greedy” projection methods [Zinkevich, 2003]. Indeed, the difference between these
two methods is more apparent in the Euclidean projection case (when g = C and
h =

1

2

k · k2
2

). MD is then projected gradient descent and may be written under its
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Figure 4-1 – Lazy versus greedy projection. In red: greedy projection. In black: lazy
projection.

primal-dual form as:

⌘md
n = ✓md

n�1

� gmd
n with gmd

n 2 @f(✓md
n�1

) and ✓md
n = argmin

✓2C
k⌘md

n � ✓k
2

.

Whereas DA takes the form

⌘da
n = ⌘da

n�1

� gda
n with gda

n 2 @f(✓da
n�1

) and ✓da
n = argmin

✓2C
k⌘da

n � ✓k
2

.

Therefore, imagining the subgradients gn are provided by an adversary without the
need to compute the primal sequence (✓n), no projections are needed to update the
dual sequence (⌘da

n ), and this one moves far away in the asymptotic direction of
the gradient at the optimum rf(✓⇤). Furthermore the primal iterate ✓da

n is simply
obtained, when required, by projecting back the dual iterate in the constraint set.
Conversely, the MD dual iterate ⌘md

n update calls for ✓md
n�1

, and therefore a projection
step is unavoidable. Thereby MD iterates (⌘md

n , ✓md
n ) are going, at each iteration,

back-and-forth between the boundary and the outside of the convex set C. This is
illustrated in Figure 4-1

4.4.2 Strongly Convex Cases

MD converges linearly for smooth and strongly convex functions f , in the absence
of a regularization component [Lu et al., 2016] or for Euclidean geometries [Nesterov,
2013]. However we were not able to derive faster convergence rates for DA when
the function f or the regularization g are strongly convex. Moreover the only results
we found in the literature are about (a) an alteration of the dual gradient method
[Devolder et al., 2013, Section 4] which is itself a modification of DA with an additional
projection step proposed by Nesterov [2013] for smooth optimization, (b) the strongly
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convex regularization g which enables Xiao [2010] to obtain a O(1/µn) convergence
rate in the stochastic case.

At the simplest level, for h =

1

2

k · k2
2

and f = 0, MD is equivalent to the proximal
point algorithm [Martinet, 1970] ✓md

n = argmin✓2Rd

�

g(✓) + 1

�
k✓ � ✓md

n�1

k2
2

 

, whereas
DA, which is not anymore iterative, is such that ✓da

n = argmin✓2Rd

�

g(✓) + 1

�n
k✓k2

2

 

.

For the squared `
2

-regularization g(✓) =

⌫
2

k✓ � ✓⇤k2
2

, we compute exactly (see Ap-
pendix 4.G)

g(✓md
n )� g(✓⇤) =

⇣

1

�⌫

⌘n

[g(✓md
0

)� g(✓⇤)] and g(✓da
n )� g(✓⇤) =

g(✓da
0

)� g(✓⇤)

(1 + ⌫�n)2
.

Therefore the convergence of DA can be dramatically slower than MD. However when
noise is present, its special structure may be leveraged to get interesting results.

4.4.3 Continuous Time Interpretation of DA et MD

Following Nemirovsky and Yudin [1983], Bolte and Teboulle [2003], Krichene et al.
[2015], Wibisono et al. [2016] we propose a continuous interpretation of these methods
for g twice differentiable. Precise computations are derived in Appendix 4.H.

The MD iteration in Eq. (4.4) may be viewed as a forward-backward Euler dis-
cretization of the MD ODE [Bolte and Teboulle, 2003]:

˙✓ = �r2h(✓)�1

[rf(✓) +rg(✓)]. (4.9)

On the other hand, the ODE associated to DA takes the form

˙✓ = �r2

(h(✓) + tg(✓))�1

(rf(✓) +rg(✓)). (4.10)

It is worth noting that these ODEs are very similar, with an additional term tg(✓) in
the inverse mapping r2

(h(✓) + tg(✓))�1 which may slow down the DA dynamics.
In analogy with the discrete case, the Bregman divergences Dh and Dh+tg are

respectively Lyapunov functions for the MD and the DA ODEs [see, e.g., Krichene
et al., 2015] and we notice in Appendix 4.H the continuous time argument really
mimics the proof of Proposition 8 without the technicalities associated with discrete
time. Moreover we recover the variational interpretation of Krichene et al. [2015],
Wibisono et al. [2016], Wilson et al. [2016]: the Lyapunov function generates the
dynamic in the sense that a function L is first chosen and secondly a dynamics, for
which L is a Lyapunov function, is then designed. In this way MD and DA are the
two different dynamics associated to the two different Lyapunov functions Dh and
Dh+tg. We also provide in Appendix 4.H a slight extension to the noisy-gradient case.

4.5 Experiments
In this section, we illustrate our theoretical results on synthetic examples. We

provide additional experiments on a machine learning benchmark in Appendix 4.K.

132



0 2 4 6

log
10

(n)

-4

-3

-2

-1

0

lo
g

1
0
[f

(
θ
)-

f(
θ

*
)]

SGD C/R 2

SGD C/R 2n 1/2

SDA C/R 2

SDA C/R 2n 1/2

0 2 4 6

log
10

(n)

-4

-3

-2

-1

0

lo
g

1
0
||
θ
-θ

*
||
Σ2

SGD C/R 2

SGD C/R 2n 1/2

SDA C/R 2

SDA C/R 2n 1/2

Figure 4-1 – Simplex-constrained least-squares regression with synthetic data. Left:
Performance on the objective function. Right: Performance on the Mahalanobis norm
k · k2

⌃

.

Simplex-constrained least-squares regression with synthetic data. We con-
sider normally distributed inputs xn 2 Rd with a covariance matrix ⌃ that has ran-
dom eigenvectors and eigenvalues 1/k, for k = 1, . . . , d and a random global optimum
✓
⌃

2 [0,+1)

d. The outputs yn are generated from a linear function with homosce-
datic noise with unit signal to noise-ratio (�2

= 1). We denote by R2

= tr⌃ the
average radius of the data and we show results averaged over 10 replications.

We consider the problem of least-squares regression constrained on the simplex
�d of radius r = k✓

⌃

k
1

/2 , i.e., min✓2r�d
E(hxn, ✓i � yn)2, for d = 100. We compare

the performance of SDA and SGD algorithms with different settings of the step-
size �n, constant or proportional to 1/

p
n. In the left plot of Figure 4-1 we show the

performance on the objective function and on the right plot, we show the performance
on the squared Mahalanobis norm k · k2

⌃

. All costs are shown in log-scale, normalized
so that the first iteration leads to f(✓

0

) � f(✓⇤) = 1. We can make the following
observations (we only show results on Euclidean geometry since results under the
negative entropy geometry were very similar):

— With constant step-size, SDA converges to the solution at rate O(1/n) whereas
the SGD algorithm does not converge to the optimal solution.

— With decaying step-size �n = 1/(2R2

p
n), SDA and SGD converge first at rate

O(1/
p
n), then at rate O(1/n), taking finally advantage of the strong convexity

of the problem.

— We note (a) there is no empirical difference between the performance on the
objective function and the squared distance k ·k2

⌃

, (b) with decreasing step-size,
SGD and SDA behave very similarly.
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4.6 Conclusion
In this chapter, we proposed and analyzed the first algorithm to achieve a conver-

gence rate of O(1/n) for stochastic composite objectives, without the need for strong
convexity. This was achieved by considering a constant step-size and averaging of the
primal iterates in the dual averaging method.

Our results only apply to expectations of quadratic functions (but to any addi-
tional potentially non-smooth terms). In fact, constant step-size stochastic dual av-
eraging is not convergent for general smooth objectives; however, as done in the non-
composite case by Bach and Moulines [2013], one could iteratively solved quadratic
approximations of the smooth problems with the algorithm we proposed in this chap-
ter to achieve the same rate of O(1/n), still with robustness to ill-conditioning and
efficient iterations. Finally, it would be worth considering accelerated extensions to
achieve a forgetting of initial conditions in O(1/n2

) as was done for averaged gradient
descent in Chapter 3. After having studied the stochastic optimization of quadratic
functions, we now shift our focus towards two applications of the quadratic loss in
machine learning.
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Appendix

4.A Unambiguity of the Primal Iterate
We describe here conditions under which the primal iterate ✓n in Eq. (4.3) is

correctly defined. Since h is strictly convex, h⇤
n is continuously differentiable on

˚dom h⇤
n [see Hiriart-Urruty and Lemaréchal, 2001, Theorem 4.1.1]. Therefore the

primal iterate ✓n is well defined if the dual iterate ⌘n 2 ˚dom h⇤
n. It is, for example,

the case under two natural assumptions as shown by the next lemma which is an
adaption of Lemma 2 by Bauschke et al. [2016].

Lemma 21. We make the following assumptions:
(B1) h or g is supercoercive.
(B2) argmin✓2X  (✓) is compact and h bounded below.
Under (B1) or (B2) the primal iterates (✓n) defined in Eq. (4.3) are well defined.

Proof. Since h is strictly convex, h⇤
n is continuously differentiable on ˚dom h⇤

n [see
Hiriart-Urruty and Lemaréchal, 2001, Theorem 4.1.1]. Therefore the primal iterate
✓n is well defined if the dual iterate ⌘n 2 ˚dom h⇤

n.
— If h or g is supercoercive then hn is supercoercive [see Bauschke and Combettes,

2011, Proposition 11.13] and it follows from Hiriart-Urruty and Lemaréchal
[2001, Chapter E, Proposition 1.3.8] that dom h⇤

n = Rd.
— If argmin✓2X{ (✓)} is compact then  + X is coercive. Moreover

h⇤
n(⌘n) = sup

✓2X

�h⌘n, ✓i � hn(✓)
 

since X ⇢ dom h

= � inf

✓2X

n

h(✓) + �
n
X

i=1

(g(✓) + f(✓i�1

) + hrf(✓i�1

), ✓ � ✓i�1

i)
o

+�
n
X

i=1

(f(✓i�1

)� hrf(✓i�1

), ✓i�1

i)

 � inf

✓2X

�

h(✓)+n�(g(✓)+f(✓))
 

+�
n
X

i=1

(f(✓i�1

)�hrf(✓i�1

), ✓i�1

i),

by convexity of f . Therefore ⌘n 2 ˚dom h⇤
n since  + X is coercive and h

bounded below [see Bauschke and Combettes, 2011, Proposition 11.15].
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4.B Proof of Convergence of Deterministic DA
We first describe a new notion of smoothness defined by Bauschke et al. [2016].

Then we present our extension of the Bregman divergence to the non-smooth function
g to finally prove Proposition 8.

4.B.1 A Lipschitz-Like/Convexity Condition

Classical results on the convergence of optimization algorithms in non-Euclidean
geometry assume on one hand that the function h is strongly convex and on the other
hand the function f is Lipschitz or smooth. Following Bauschke et al. [2016], we
consider a different assumption which combines the smoothness of f and the strong
convexity of h on a single condition called Lipschitz-like/Convexity Condition by
Bauschke et al. [2016] and denoted by (LC):
(LC) There exists a constant L 2 (0,+1) such that Lh� f is convex on ˚X .
For Euclidean geometry, this condition is obviously equivalent to the smoothness of
the function f with regards to the `

2

-norm. Moreover, under an arbitrary norm
k · k, assuming h µ-strongly convex and f L-smooth clearly implies, by simple convex
computation, (LC) with constant L/µ. However (LC) is much more general and
may hold even when f is non-smooth what precisely justifies the introduction of this
condition. Many examples are described by Bauschke et al. [2016]. Furthermore
this notion has the elegance of pairing well with Bregman divergences and leading to
more refined proofs as shown in the following proposition which summarizes equivalent
properties of (LC).

Proposition 11 (Bauschke et al. [2016]). Assume (A1-4). For L > 0 the following
conditions are equivalent:

— Lh� f is convex on ˚X , i.e., (LC) holds,
— Df (↵, �)  LDh(↵, �) for all (↵, �) 2 X ⇥ ˚X .

Furthermore, when f and h are assumed twice differentiable, then the above is equiv-
alent to

r2f(✓) 4 Lr2h(✓) for all ✓ 2 ˚X .

4.B.2 Generalized Bregman Divergence

The Bregman divergence was defined by Bregman [1967] for a differentiable convex
function h as

Dh(↵, �) = h(↵)� h(�)� hrh(�),↵� �), for (↵, �) 2 dom h⇥ ˚dom h. (4.11)

It behaves as a squared distance depending on the function h and extends the
computational properties of the squared `

2

-norm to non-Euclidean spaces. Indeed
most proofs in Euclidean space rest upon the expansion k✓n � ✓⇤ � �rf(✓n)k2

2

=

k✓n�✓⇤k2
2

+�2krf(✓n)k2
2

�2�hrf(✓n), ✓n�✓⇤i which is not available in non-Euclidean
geometry. Therefore the Bregman divergence comes to rescue and is used to compute
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a deviation between the current iterate of the algorithm and the solution of the prob-
lem and, seemingly, used as an non-Euclidean Lyapunov function [Chen and Teboule,
1993]. It has been widely used in optimization [see, e.g., Bauschke and Borwein, 1997,
for a review].

We follow this path and include the regularization component g of the objective
function  = f + g in the Bregman divergence for the sake of the analysis. If g
was differentiable we would simply use Dh+n�g. Since g is not differentiable, Dhn is
not well defined. However for (↵, ⌘) 2 dom h ⇥ ˚dom h⇤

n, we denote by extension for
✓ = rh⇤

n(⌘):
˜Dn(↵, ⌘) = hn(↵)� hn(✓)� h⌘,↵� ✓i. (4.12)

This extension is different from the one defined by Kiwiel [1997]. It is worth not-
ing that if there exists µ such that ↵ = rh⇤

n(µ), we recover the classical formula
˜Dn(↵, ⌘) = Dh⇤

n
(⌘, µ) which is well defined since h⇤

n is differentiable. Yet ˜Dn is de-
fined more generally since such a µ does not always exist. The next lemma relates
˜Dn to Dh and is obvious if g is differentiable since Dhn = Dh + �nDg.

Lemma 22. Let n � 0, ↵ 2 dom h and ⌘ 2 ˚dom h⇤
n, then with ✓ = rh⇤

n(⌘),

˜Dn(↵, ⌘) � Dh(↵, ✓). (4.13)

Proof. ✓ = rh⇤
n(⌘), thus ⌘ 2 @hn(✓) and by elementary calculus rule @hn(✓) =

rh(✓) + n�@g(✓). Consequently ⌘ �rh(✓) 2 n�@g(✓) and by convexity of g

˜Dn(↵, ⌘)�Dh(↵, ✓) = n�



g(↵)� g(✓)�
⌧

⌘ �rh(✓)

�n
,↵� ✓

��

� 0.

4.B.3 Proof of Proposition 8

We assume their exists a constant L > 0 such that Lh� f is convex on ˚X and we
assume the step-size �  1/L. We first show that the Bregman divergence decreases
along the iterates [see, e.g., Chen and Teboule, 1993, Beck and Teboulle, 2003, Bach,
2015]. For all ✓ 2 X ,

˜Dn(✓, ⌘n)� ˜Dn�1

(✓, ⌘n�1

) = hn�1

(✓n�1

)� hn(✓n) + hn(✓)� hn�1

(✓)

�h⌘n, ✓ � ✓ni+ h⌘n�1

, ✓ � ✓n�1

i
= hn�1

(✓n�1

)� hn�1

(✓n)� �(g(✓n)� g(✓))

+h⌘n�1

, ✓n � ✓n�1

i+ h⌘n � ⌘n�1

, ✓n � ✓i
= � ˜Dn�1

(✓n, ⌘n�1

)� �(g(✓n)� g(✓))

��hrf(✓n�1

), ✓n � ✓i.

Therefore for all ✓ 2 X ,
˜Dn(✓, ⌘n)� ˜Dn�1

(✓, ⌘n�1

) = � ˜Dn�1

(✓n, ⌘n�1

) + �hrf(✓n�1

), ✓n�1

� ✓ni
� �(g(✓n)� g(✓))� �hrf(✓n�1

), ✓n�1

� ✓i. (4.14)
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It follows from Proposition 11 and Lemma 22

f(✓n)� f(✓n�1

) + hrf(✓n�1

), ✓n � ✓n�1

i  LDh(✓n, ✓n�1

)  LDn�1

(✓n, ✓n�1

),

and from the convexity of f ,

�hrf(✓n�1

), ✓n�1

� ✓i  f(✓)� f(✓n�1

).

And Eq. (4.14) is bounded by

˜Dn(✓, ⌘n)� ˜Dn�1

(✓, ⌘n�1

)  �( (✓)�  (✓n)) + (�L� 1)Dh(✓n, ✓n�1

).

Thus for �  1/L,

˜Dn(✓, ⌘n)� ˜Dn�1

(✓, ⌘n�1

)  �( (✓)�  (✓n)).

Taking ✓ = ✓n�1

we note that the sequence { (✓n)}n�0

is decreasing and we obtain
for �  1/L,

 (✓n)�  (✓)  1

n+ 1

n
X

k=0

[ (✓i)�  (✓)]  Dh(✓, ✓0)� ˜Dn(✓, ⌘n)

�(n+ 1)

. (4.15)

We assume now that the non-smooth part g = 0 and there exists µ � 0 such that
f � µh is convex. So Proposition 11 implies

�hrf(✓n�1

), ✓n�1

� ✓i  f(✓)� f(✓n�1

)� µDh(✓, ✓n�1

),

which gives with Eq. (4.14) the better bound

Dh(✓, ✓n)�Dh(✓, ✓n�1

)  �(f(✓)� f(✓n))� �µDh(✓, ✓n�1

) + (�L� 1)Dh(✓n, ✓n�1

).

And for �  1/L, this can be simplified as

Dh(✓, ✓n)  (1� �µ)Dh(✓, ✓n�1

) + �(f(✓)� f(✓n)).

The sequence {f(✓n)}n�0

is still decreasing and we obtain by expanding the recursion

Dh(✓, ✓n)  (1� �µ)nDh(✓, ✓0) +
n
X

k=1

(1� �µ)n�k�(f(✓)� f(✓k))

 (1� �µ)nDh(✓, ✓0) +
n
X

k=1

(1� �µ)n�k�(f(✓)� f(✓k))

 (1� �µ)nDh(✓, ✓0) +
n
X

k=1

(1� �µ)n�k�(f(✓)� f(✓n))

 (1� �µ)nDh(✓, ✓0) + �
1� (1� �µ)n

�µ
(f(✓)� f(✓n)).
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Thus for all ✓ 2 X ,

1� (1� �µ)n

µ
(f(✓n)� f(✓)) +Dh(✓, ✓n)  (1� �µ)nDh(✓, ✓0),

and
f(✓n)� f(✓)  �µ(1� �µ)n

1� (1� �µ)n
Dh(✓, ✓0)

�
 (1� �µ)n

Dh(✓, ✓0)

�
,

since (1� �µ)2  1� �µ implies �µ/(1� (1� �µ)n)  1.

4.C Proof of Proposition 9

In this section, we will prove Proposition 9. The proof relies on considering the
difference between the iteration with noise we denote by (⌘n, ✓n) and without noise we
denote by (!n,�n), which happens to verify a similar recursion as the SDA recursion.

— We first show in Lemma 23 that the distance Ek⌘n � !nk2
⌃

�1 is of order n.
— Then in Lemma 24 we show that Ek¯✓n � ¯�nk2

⌃

is of order O(1/n), by: (a)
noticing that Ek¯✓n � ¯�nk2

⌃

is of order Ek⌘n�!nk2
⌃�1

n2 +

variance
n

, (b) combining this
with the result of Lemma 23.

4.C.1 Two Technical Lemmas

We first present and prove two technical lemmas.

Bound on the Difference of Two Dual Iterates

In the following lemma we show that the difference between two dual iterates that
follow the same recursion is of order n. This will be used with the iteration with noise
(⌘n, ✓n) and without noise (!n,�n).

Lemma 23. Let us consider two sequences of iterates (µk,↵k) and (⌫k, �k) which
satisfy the recursion µn � ⌫n = µn�1

� ⌫n�1

� �⌃(↵n�1

� �n�1

) + �⇠n, ↵n = rh⇤
n(µn)

and �n = rh⇤
n(⌫n) and assume that � is such that 2h��f is convex then for all n � 0

Ekµn � ⌫nk2
⌃

�1  kµ
0

� ⌫
0

k2
⌃

�1 + n�2 tr⌃�1C.

Proof. We first expand the square.

kµn+1

� ⌫n+1

k2
⌃

�1 = kµn � ⌫nk2
⌃

�1 + �2k[⌃(↵n � �n)� ⇠n+1

]k2
⌃

�1

�2�h⌃(↵n � �n)� ⇠n+1

,⌃�1

(µn � ⌫n)i
= kµn � ⌫nk2

⌃

�1 + �2k↵n � �nk2
⌃

+ �2k⇠n+1

k2
⌃

�1

�2�2h↵n � �n, ⇠n+1

i � 2�h↵n � �n � ⌃

�1⇠n+1

, µn � ⌫ni.
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And taking the expectation

E[kµn+1

� ⌫n+1

k2
⌃

�1 |Fn] = kµn � ⌫nk2
⌃

�1 + �2E[k⇠n+1

k2
⌃

�1 |Fn]

+�2k↵n � �nk2
⌃

� 2�2E[h↵n � �n, ⇠n+1

i|Fn]

�2�E[h↵n � �n)� ⌃

�1⇠n+1

, µn � ⌫ni|Fn]

= kµn � ⌫nk2
⌃

�1 + �2 tr⌃�1E[⇠n+1

⌦ ⇠n+1

|Fn]

+�2k↵n � �nk2
⌃

� 2�2h↵n � �n,E[⇠n+1

|Fn]i
�2�h↵n � �n)� ⌃

�1E[⇠n+1

|Fn], µn � ⌫ni
= kµn � ⌫nk2

⌃

�1 + �2 tr⌃�1C

+�2k↵n � �nk2
⌃

� 2�h↵n � �n, µn � ⌫ni.

Moreover, using the definition of ↵n and �n, with ⇤ = �k↵n��nk2
⌃

�2h↵n��n, µn�⌫ni,

⇤ = h�⌃(↵n � �n)� 2(µn � ⌫n),↵n � �ni
= h�rf(↵n)�rf(�n)� 2(rh(↵n)�rh(�n)),↵n � �ni

�2h(µn �rh(↵n))� (⌫n �rh(�n)),↵n � �ni
= hr(�f � 2h)(↵n)�r(�f � 2h)(�n),↵n � �ni

�2h(µn �rh(↵n))� (⌫n �rh(�n)),↵n � �ni.

Using the h-smoothness of f and assuming that � is such 2h� �f is convex,

hr(�f � 2h)(↵n)�r(�f � 2h)(�n),↵n � �ni  0,

and as explained in the proof of Lemma 22, µn � rh(↵n) 2 @n�g(↵n) and ⌫n �
rh(�n) 2 @n�g(�n) and consequently

h(µn �rh(↵n))� (⌫n �rh(�n)),↵n � �ni � 0,

by convexity of g. This explains that

�k↵n � �nk2
⌃

� 2h↵n � �n, µn � ⌫ni  0.

Then, taking the global expectation, we have shown that

Ekµn+1

� ⌫n+1

k2
⌃

�1  Ekµn � ⌫nk2
⌃

�1 + �2 tr⌃�1C,

which concludes the proof.

Bound on the Difference of the Average of Two Primal Iterates

In the following lemma we adapt the classic proof of averaged SGD by Polyak
and Juditsky [1992] to show that the difference between two averaged primal iterates,
which follow the same recursion, is of order O(1/n).

Lemma 24. Let us consider two sequences of iterates (µk,↵k) and (⌫k, �k) which
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satisfy the recursion µn � ⌫n = µn�1

� ⌫n�1

� �⌃(↵n�1

� �n�1

) + �⇠n, ↵n = rh⇤
n(µn)

and �n = rh⇤
n(⌫n) and assume that � is such that 2h��f is convex then for all n � 0

Ek↵̄n � ¯�nk2
⌃

 4

kµ
0

� ⌫
0

k2
⌃

�1

(�n)2
+

4

n
tr⌃

�1C.

Proof. Let us consider two sequences of iterates (µk,↵k) and (⌫k, �k) which satisfy
the recursion µn � ⌫n = µn�1

� ⌫n�1

� �⌃(↵n�1

� �n�1

) + �⇠n, ↵n = rh⇤
n(µn) and

�n = rh⇤
n(⌫n). This can be written as

⌃(↵n � �n) =
µn � ⌫n � µn+1

+ ⌫n+1

�
+ ⇠n+1

.

Thus we obtain

⌃

1/2

n�1

X

i=0

(↵i � �i) =

⌃

�1/2
(µ

0

� ⌫
0

� µn + ⌫n)

�
+

n�1

X

i=0

⌃

�1/2⇠i+1

.

Finally, using that by convexity (a+ b)2  2(a2 + b2), this leads to

n2Ek↵̄n � ¯�nk2
⌃

 2E
�

�

�

⌃

�1/2
(µ

0

� ⌫
0

)

�
+

n�1

X

i=0

⌃

�1/2⇠i+1

�

�

�

2

2

+ 2E
�

�

�

⌃

�1/2
(µn � ⌫n)

�

�

�

�

2

2

.

Using martingale second moment expansions, we obtain

Ek↵̄n � ¯�nk2
⌃

 2Ekµ
0

� ⌫
0

k2
⌃

�1

(�n)2
+ 2

Ekµn � ⌫nk2
⌃

�1

(�n)2
+

2

n2

n�1

X

i=0

tr⌃

�1E(⇠i+1

⌦ ⇠i+1

).

We compute
Pn�1

i=0

tr⌃

�1E(⇠i+1

⌦ ⇠i+1

) =

Pn�1

i=0

tr⌃

�1C = n tr⌃

�1C and, using
Lemma 23, we bound Ekµn � ⌫nk2

⌃

�1 as

Ekµn � ⌫nk2
⌃

�1

(�n)2
 kµ

0

� ⌫
0

k2
⌃

�1

(�n)2
+

1

n
tr⌃

�1C.

This implies the final bound

Ek↵̄n � ¯�nk2
⌃

 4

kµ
0

� ⌫
0

k2
⌃

�1

(�n)2
+

4

n
tr⌃

�1C.

4.C.2 Application of Lemma 24 to Prove Proposition 9

First of all we define the sequence

⌘⇤n = rh(✓⇤)� n�rf(✓⇤). (4.16)
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By definition of ✓⇤, �rf(✓⇤) 2 @g(✓⇤) then ⌘⇤n 2 @(h + n�g)✓⇤ and ✓⇤ = rh⇤
n(⌘

⇤
n).

Therefore the sequence ⌘⇤n is obtained by iterating DA started from the solution of
the problem ✓⇤.

We note then than Lemma 24 applied to (µn = ⌘n,↵n = ✓n) and (⌫n = ⌘⇤n, �n = ✓⇤)
gives the first bound of Proposition 9.

On the other hand, when considering the noiseless iterates (!n,�n) defined by
!n = !n�1

� �⌃(�n�1

� ✓
⌃

) and �n = rh⇤
n(!n), started from the same point �

0

= ✓
0

,
we obtain, following Proposition 8, for � such that h� �f is convex, the bound

1

2

k¯�n � ✓⇤k2
⌃

  (¯�n)�  (✓⇤)  Dh(✓⇤, ✓0)

�n
.

Therefore, considering the difference between the semi-stochastic and the noiseless
iterate (⌘n�!n) which verifies the same equation ⌘n�!n = ⌘n�1

�!n�1

� �⌃(✓n�1

�
�n�1

) + �⇠n with ✓
0

� �
0

= 0 as initial value, we may apply Lemma 24 to show

Ek¯✓n � ¯�nk2
⌃

 4

n
tr⌃

�1C.

And by the Cauchy-Schwarz inequality

Ek¯✓n � ✓⇤k2
⌃

 2Ek¯✓n � ¯�nk2
⌃

+ 2Ek¯�n � ✓⇤k2
⌃

 8

n
tr⌃

�1C + 4

Dh(✓⇤, ✓0)

�n
,

which proves the second bound of Proposition 9.
It is worth noting that the condition on the step-size of Lemma 23 is less restrictive

than in Proposition 9. Indeed for all � such that 2h � �f is convex, the difference
between the dual iterates of the stochastic and deterministic recursions stay close
but the deterministic iterates only converge to the solution for � such that h� �f is
convex.

4.D Proof of Proposition 10

In this section, we prove Proposition 10. The proof technique is similar to Propo-
sition 9 but with the additional difficulty of the multiplicative noise.

We first note that Assumption (A11) is equivalent by the Cauchy-Schwarz in-
equality to

Ehxn,Mxnihxn, Nxni   tr(M⌃) tr(N⌃), (4.17)

for all positive semi-definite symmetric matrices M and N , see, e.,g., proof in Chap-
ter 3. We will often use, in the following demonstrations, Eq. (4.17) and its direct
corollary

hxn,Mxnixn ⌦ xn 4  tr(M⌃)⌃, (4.18)

without always referring to it.
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4.D.1 A Simple Proof for the Bounded Constrained Case

We first prove Proposition 10 for the constrained case. It is then a simple corollary
of Proposition 9.

Let us denote by C a bounded convex set and consider the constrained problem
(g = 1C). We remind that the general stochastic oracle for SDA in least-squares
regression is

rfn(✓) = (⌃+ ⇣n)(✓ � ✓
⌃

)� ⇠n, for ✓ 2 Rd,

with ⇣n = xn ⌦ xn � ⌃. We denote by r = max✓2C k✓ � ✓
⌃

k
2

and we show that the
noise covariance is directly bounded, despite the multiplicative noise:

E
h

�rfn(✓)�rf(✓)
�⌦ �rfn(✓)�rf(✓)

�

i

4 2E
⇥

⇣n(✓� ✓⌃)⌦ (✓� ✓
⌃

)⇣n
⇤

+2E⇠n⌦ ⇠n,

and using Assumption (A11)

E
⇥

⇣n(✓ � ✓
⌃

)⌦ (✓ � ✓
⌃

)⇣n
⇤

4 r2E⇣n⇣n 4 r2(tr⌃)⌃.

Therefore

E
h

�rfn(✓)�rf(✓)
�⌦ �rfn(✓)�rf(✓)

�

i

4 2

�

�2

+ r2(tr⌃)
�

⌃.

Hence Proposition 9 already implies for all step-size such that h� �f is convex

1

2

Ek¯✓n � ✓⇤k2
⌃

 2

Dh(✓⇤, ✓0)

�n
+

8d

n
(�2

+ r2 tr⌃).

4.D.2 A General Result

We prove in this section a more general result than Proposition 10 under the
additional assumption
(A14) There exists b 2 [0, 1] and µb > 0 such that h� µb

2

k · k2
⌃

b is convex.

Proposition 12. Assume (A2-4) and (A7-14). Consider the recursion in Eq. (4.8).
For any constant step-size � such that �  min{ µb

4 tr⌃

1�b ,
1

Ld
}. Then

1

2

Ek¯✓n � ✓⇤k2
⌃

 2

Dh(✓⇤, ✓0)

�n
+

24

n
tr⌃

�1C +

16d�

nµb

trC⌃

�b

+

8d

n

✓

4� tr⌃1�b

µb

+3

◆

k✓⇤�✓⌃k2
⌃

+80

d

�n2

Dh(✓⇤, ✓0)+
16d

n2

g(✓
0

).

We note Assumption (14) is always satisfied for b = 1, for which it is Assumption
(13). Therefore Proposition 12 directly implies Proposition 10 as a corollary. We
prove now two auxiliary lemmas which will be used in the proof of the Proposition 12.
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4.D.3 Two Auxiliary Results for Least-Squares Objectives

For b 2 [0, 1], we denote by Tb the operator Tb = E[hx,⌃�bxix⌦x]. We first prove
that, for least-square objectives, the sum of the function evaluated along the primal
iterates remains bounded.

Lemma 25. Let us consider the recursion ⌘n = ⌘n�1

��xn⌦xn(✓n�1

� ✓⇤)+�⇠n and
assume g is positive and there exist µb such that h � µb

2

k · k2
⌃

b is convex and  such
that Tb 4  tr(⌃1�b

)⌃, then for �  µb/(4 tr⌃1�b
) and ✓ 2 X we have

E
n
X

i=0

[ (✓i)�  (✓)] +
⇣

1� 4� tr(⌃1�b
)/µb

⌘

n
X

i=0

1

2

Ek✓i � ✓k2
⌃

 Dh(✓, ✓0)� EDh(✓, ✓n+1

)

�
+(n+1)�/µb tr⌃

�bC+4(n+1) tr(⌃1�b
)/µbf(✓)+g(✓

0

).

We note that we can also obtain a bound depending on 2 (✓) rather than 4f(✓)
with a similar proof.

Proof. Let denote by fn(✓) = xn ⌦ xn(✓ � ✓
⌃

) + ⇠n. Then following the proof of
Proposition 8 (see Eq. (4.14)) we have the expansion

˜Dn(✓, ⌘n)� ˜Dn�1

(✓, ⌘n�1

)  ��(g(✓n)� g(✓))� �hrfn(✓n�1

), ✓n�1

� ✓i
�Dh(✓n, ✓n�1

) + �hrfn(✓n�1

), ✓n�1

� ✓ni. (4.19)

Since h� µb

2

k ·k2
⌃

b is convex, using Proposition 11, we get that Dh(✓n, ✓n�1

) � µb

2

k✓n�
✓n�1

k2
⌃

b . Let denote by A = �Dh(✓n, ✓n�1

),+�hrfn(✓n�1

), ✓n�1

� ✓ni,

A  �µb

2

k✓n � ✓n�1

k2
⌃

b + �hxn ⌦ xn(✓n�1

� ✓
⌃

) + ⇠n, ✓n�1

� ✓ni
 �µb

2

k✓n � ✓n�1

k2
⌃

b

+

D�⌃�b/2

p
µb

[xn ⌦ xn(✓n�1

� ✓
⌃

) + ⇠n],⌃
b/2pµb✓n�1

� ✓n
E

 �2µb

2

kxn ⌦ xn(✓n�1

� ✓
⌃

) + ⇠nk2
⌃

�b

�1

2

k�⌃b/2pµb(✓n � ✓n�1

)� �⌃�b/2
p
µb

[xn ⌦ xn(✓n�1

� ✓
⌃

) + ⇠n]k2
2

 �2

2µb

kxn ⌦ xn(✓n�1

� ✓
⌃

) + ⇠nk2
⌃

�1

 �2

µb

k✓n�1

� ✓
⌃

k2Tb
+

�2

µb

k⇠nk2
⌃

�b .

Thus, taking the conditional expectation and assuming that  is such that Tb 4
 tr(⌃1�b

)⌃ we obtain

� E[Dh(✓n, ✓n�1

)Fn�1

] + �Ehrfn(✓n�1

), ✓n�1

� ✓niFn�1

]
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 �2 tr(⌃1�b
)

µb

k✓n�1

� ✓
⌃

k2
⌃

+

�2

µb

tr⌃

�bC.

Taking again the conditional expectation in Eq. (4.19), we have for ✓ 2 X

E[ ˜Dn(✓, ⌘n)|Fn�1]� ˜Dn�1(✓, ⌘n�1)  �2

µb

tr(⌃

1�b
)k✓n�1

� ✓
⌃

k2
⌃

+

�2

µb

tr⌃

�bC

��E[hxn ⌦ xn(✓n�1

� ✓
⌃

) + ⇠n, ✓n�1

� ✓i|Fn�1

]

��(E[g(✓n)|Fn�1

]� g(✓))

 �2

µb

tr(⌃

1�b
)k✓n�1�✓⌃k2

⌃

��h✓n�1�✓⌃,⌃(✓n�1�✓)i

+

�2

µb

tr⌃

�bC � �(E[g(✓n)|Fn�1

]� g(✓)).

And we note that

��h✓n�1

� ✓
⌃

,⌃(✓n�1

� ✓⇤)i = ��[f(✓n�1

)� f(✓⇤)]� �

2

k✓n�1

� ✓k2
⌃

.

Therefore

E[ ˜Dn(✓⇤, ⌘n)|Fn�1

]� ˜Dn�1

(✓⇤, ⌘n�1

)  ��[f(✓n�1

)� f(✓⇤) + E[g(✓n)|Fn�1

]� g(✓⇤)]

��
2

⇣

1� 4

�

µb

tr(⌃

1�b
)

⌘

k✓n�1

� ✓
⌃

k2
⌃

+2

�2

µb

tr(⌃

1�b
)k✓ � ✓

⌃

k2
⌃

+

�2

µb

tr⌃

�bC.

Taking the total expectation we obtain

Ef(✓n�1

)� f(✓⇤) + Eg(✓n)� g(✓⇤)] +
1

2

⇣

1� 4

�

µb

tr(⌃

1�b
)

⌘

k✓n�1

� ✓
⌃

k2
⌃

 E ˜Dn�1

(✓⇤, ⌘n�1

)� E ˜Dn(✓⇤, ⌘n)

�
+ 2

�

µb

tr(⌃

1�b
)k✓ � ✓

⌃

k2
⌃

+

�

µb

tr⌃

�bC,

which, summing from i = 0 to i = n, leads to

n
X

i=0

[Ef(✓i)� f(✓⇤) + Eg(✓i)� g(✓⇤)]] +
⇣

1� 4

�

µb

tr(⌃

1�b
)

⌘

n
X

i=0

1

2

k✓i � ✓
⌃

k2
⌃



Dh(✓⇤, ✓0)� E ˜Dn+1

(✓⇤, ⌘n+1

)

�
+ 4

�

µb

tr(⌃

1�b
)(n+ 1)k✓ � ✓

⌃

k2
⌃

+ (n+ 1)

�

µb

tr⌃

�bC � Eg(✓n+1

) + g(✓
0

).

The result follows if g is non negative.

We now present an extension of Lemma 23 to least-squares objectives.
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Lemma 26. Let us consider two sequences of iterates (µk,↵k) and (⌫k, �k) which
satisfy the recursion µn�⌫n = µn�1

�⌫n�1

��xn⌦xn(↵n�1

��n�1

)+�⇠n, ↵n = rh⇤
n(µn)

and �n = rh⇤
n(⌫n) and denote by C = E[xn ⌦ xn] for n � 0. Assume that � is such

that h� �T is convex. Then

Ekµn � ⌫nk2
⌃

�1  Ekµ
0

� ⌫
0

k2
⌃

�1 + 2�2n tr⌃

�1C.

We note that the condition h � �T is rather restrictive since bounds on T are
often of the form d times a matrix. For instance Eq. (4.17) directly implies T 4 d⌃.
Even for independent normal data xn with diagonal covariance matrix ⌃ we are able
to derive the equality T = (d+ 2)⌃.

Proof. We expand

kµn � ⌫nk2
⌃

�1 = kµn�1

� ⌫n�1

k2
⌃

�1 + �2kxn ⌦ xn(↵n�1

� �n�1

) + ⇠nk2
⌃

�1

�2�hxn ⌦ xn(↵n�1

� �n�1

) + ⇠n,⌃
�1

(µn�1

� ⌫n�1

)i.

Taking conditional expectations, we get

E[kµn�⌫nk2
⌃

�1 |Fn�1] = kµn�1

�⌫n�1

k2
⌃

�1 + �2E[kxn ⌦ xn(↵n�1��n�1)+⇠nk2
⌃

�1 |Fn�1

]

�2�E[hxn ⌦ xn(↵n�1

� �n�1

) + ⇠n,⌃
�1

(µn�1

� ⌫n�1

)i|Fn�1

]

= kµn�1�⌫n�1k2
⌃

�1+�2E[kxn ⌦ xn(↵n�1��n�1)+⇠nk2
⌃

�1 |Fn�1]

�2�h↵n�1

� �n�1

, µn�1

� ⌫n�1

i.

Using (a+b)2  2a2+2b2 and denoting by B = E[kxn⌦xn(↵n�1

��n�1

)+⇠nk2
⌃

�1 |Fn�1

],
this leads to

B  2E[kxn ⌦ xn(↵n�1

� �n�1

)k2
⌃

�1 |Fn�1

] + 2E[k⇠nk2
⌃

�1 |Fn�1

]

 2k↵n�1

� �n�1

k2E[xn⌦xn⌃
�1xn⌦xn|Fn�1]

+ 2 tr⌃

�1E["n ⌦ "n|Fn�1

]

 2k↵n�1

� �n�1

k2T + 2 tr⌃

�1C,

with T = E[x⌦ x⌃�1x⌦ x]. Thus we obtain

E[kµn � ⌫nk2
⌃

�1 |Fn�1

]  kµn�1

� ⌫n�1

k2
⌃

�1 + 2�2 tr⌃�1C

�2�hµn�1

� ⌫n�1

� �T (↵n�1

� �n�1

),↵n�1

� �n�1

i
 kµn�1

� ⌫n�1

k2
⌃

�1 + 2�2 tr⌃�1C,

assuming that � is such h� � 1

2

k · k2T is convex (as in the proof of Lemma 23). Taking
global expectations, we have shown that

Ekµn � ⌫nk2
⌃

�1  Ekµn�1

� ⌫n�1

k2
⌃

�1 + 2�2 tr⌃�1C.
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4.D.4 Bound on the Difference between Two Averages of Pri-
mal Variables

We present now the following lemma with is an analogue of Lemma 24 for the least-
squares problem. It shows that the difference between the average of two sequences
of primal iterates which follow the same recursion is O(1/n).

Lemma 27. Let us consider two sequences of iterates (µk,↵k) and (⌫k, �k) which
satisfy the recursion µn�⌫n = µn�1

�⌫n�1

��xn⌦xn(↵n�1

��n�1

)+�⇠n, ↵n = rh⇤
n(µn)

and �n = rh⇤
n(⌫n). For n � 0 denote by C = E[xn ⌦ xn]. Assume that � is such that

h� �T is convex and there exists  such that T 4 d⌃. Then

Ek↵̄n � ¯�nk2
⌃

 4

d� 1

n2

n�1

X

i=0

Ek↵i � �ik2
⌃

+ 4

k⌘
0

� µ
0

k2
⌃

�1

(�n)2
+

8

n
tr⌃

�1C.

Proof. Using the expansion µn � ⌫n = µn�1

� ⌫n�1

� �xn ⌦ xn(↵n�1

� �n�1

) + �⇠n,
we derive

⌃(↵n � �n) = (⌃� xn+1

⌦ xn+1

)(↵n � �n) + xn+1

⌦ xn+1

(↵n � �n)

= (⌃� xn+1

⌦ xn+1

)(↵n � �n) +
µn � ⌫n � µn+1

+ ⌫n+1

�
+ ⇠n+1

.

We obtain by summing n times

⌃

1/2

n�1

X

i=0

(↵i � �i) =

n�1

X

i=0

⌃

�1/2Xi+1

+

⌃

�1/2
(µ

0

� ⌫
0

� µn + ⌫n)

�
+

n�1

X

i=0

⌃

�1/2⇠i+1

,

where we denote by Xi = (⌃ � xi ⌦ xi)(↵i�1

� �i�1

) which is a square-integrable
martingale difference sequence. We use (a+ b)2  2(a2 + b2) to obtain

k(↵̄n� ¯�n)k2
⌃

 2

n2

�

�

�

n�1

X

i=0

⌃

�1/2Xi+1

+

⌃

�1/2
(µ

0

�⌫
0

)

�
+

n�1

X

i=0

⌃

�1/2⇠i+1

�

�

�

2

2

+2

kµn�⌫nk2
⌃

�1

(�n)2
.

Therefore using martingale square moment inequalities which here amount to consid-
ering the variance of the sum as the sum of the variance, we have

Ek(↵̄n � ¯�n)k2
⌃

 4

n2

n�1

X

i=0

EkXi+1

k2
⌃

�1 + 2

kµ
0

� ⌫
0

k2
⌃

�1

(�n)2

+ 2

Ekµn � ⌫nk2
⌃

�1

(�n)2
+

4

n2

n�1

X

i=0

tr⌃

�1E(⇠i+1

⌦ ⇠i+1

). (4.20)
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— The variance term may be bounded as

n�1

X

i=0

tr⌃

�1E(⇠i+1

⌦ ⇠i+1

) 
n�1

X

i=0

tr⌃

�1C  n tr⌃

�1C.

— Following Lemma 26 we bound the dual iterates Ekµn � ⌫nk2
⌃

�1 as

Ekµn � ⌫nk2
⌃

�1

(�n)2
 kµ

0

� ⌫
0

k2
⌃

�1

(�n)2
+

2

n
tr⌃

�1C.

— The martingale difference sequence (Xi) satisfies

Ek⌃�1/2Xi+1

k2
2

 Eh(⌃�xi+1

⌦ xi+1

)(↵i��i),⌃�1

(⌃�xi+1

⌦ xi+1

)(↵i��i)i
 h↵i��i,E[(⌃�xi+1

⌦ xi+1

)

>
⌃

�1

(⌃�xi+1

⌦ xi+1

)](↵i��i)i
 h↵i � �i, [E(xi+1

⌦ xi+1

)

>
⌃

�1xi+1

⌦ xi+1

� ⌃](↵i � �i)i
 h↵i � �i, [T � ⌃](↵i � �i)i
 (d� 1)k↵i � �ik2

⌃

.

Consequently we obtain in Eq. (4.20)

Ek⌃1/2
(↵̄n � ¯�n)k2

2

 4

d� 1

n2

n�1

X

i=0

Ek↵i � �ik2
⌃

+ 4

kµ
0

� ⌫
0

k2
⌃

�1

(�n)2
+

8

n
tr⌃

�1C.

4.D.5 Application of Lemma 27 to the Proof of Proposition 12

We are now able to prove Proposition 12 using Lemma 27.
Firstly we can directly apply Lemma 27 to (µn = ⌘n,↵n = ✓n) and (⌫n = ⌘⇤n, �n =

✓⇤) where (⌘⇤n, ✓⇤) are defined in Eq. (4.16). This implies

Ek⌃1/2
(

¯✓n � ✓⇤)k2
2

 4

d� 1

n2

n�1

X

i=0

Ek✓i � ✓⇤k2
⌃

+4

krh(✓
0

)�rh(✓⇤)k2
⌃

�1

(�n)2
+

8

n
tr⌃

�1C.

Following Lemma 25, the primal variables (✓i) satisfy

n�1

X

i=0

Ek✓i � ✓⇤k2
⌃

 2

Dh(✓⇤, ✓0)

�
+ 2

n�

µb

tr⌃

�bC +

8n� tr⌃1�b

µb

f(✓⇤) + 2g(✓
0

).

This leads to the final bound

Ek⌃1/2
(

¯✓n � ✓⇤)k2
2

 8

d� 1

�n2

Dh(✓⇤, ✓0) + 4

krh(✓
0

)�rh(✓⇤)k2
⌃

�1

(�n)2

+ 8

1

n
tr⌃

�1C + 8

d� 1

n

�

µb

[tr⌃

�bC + 4 tr⌃1�bf(✓⇤)] + 8

d� 1

n2

g(✓
0

). (4.21)
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This bound depends on k · k
⌃

�1 which may be infinite. For this reason we compare
again the noisy iterate ✓n to the noiseless iterate we still denote by (�n). We remind
these iterates verify the recursion

!n = !n�1

� �⌃(�n�1

� ✓
⌃

).

Therefore the difference (⌘n � !n) satisfies the same form of recursion as (⌘n):

⌘n � !n = r⌘n�1

� !n�1

� �xn ⌦ xn(✓n�1

� �n�1

) + �"n,

with a different noise "n = ⇠n � [xn ⌦ xn � ⌃](�n�1

� ✓
⌃

) and 0 for initial value.
Although the noise "n is different from ⇠n, its covariance is still bounded by

1

3

E["n ⌦ "n] 4 E[⇠n ⌦ ⇠n] + E[[xn ⌦ xn � ⌃](�n�1

� ✓⇤)⌦ (�n�1

� ✓⇤)[xn ⌦ xn � ⌃]]

+E[[xn ⌦ xn � ⌃](✓⇤ � ✓
⌃

)⌦ (✓⇤ � ✓
⌃

)[xn ⌦ xn � ⌃]]

4 E[⇠n ⌦ ⇠n]� E[⌃(�n�1

� ✓⇤)
⌦2

⌃]� E[⌃(✓⇤ � ✓
⌃

)

⌦2

⌃]

+E[xn ⌦ xn(�n�1

� ✓⇤)
⌦2xn ⌦ xn] + E[xn ⌦ xn(✓⇤ � ✓

⌃

)

⌦2xn ⌦ xn]

4 E[⇠n ⌦ ⇠n] + (� 1)

�k�n�1

� ✓⇤k2
⌃

+ k✓⇤ � ✓
⌃

k2
⌃

�

⌃,

where we have use that for z 2 Rd, Ehz, xni4  hz,⌃zi. We may apply Proposition 8
and obtain

E["n ⌦ "n] 4 3C +

6(� 1)

�n
Dh(✓⇤, ✓0)⌃+ 6(� 1)f(✓⇤).

Thereby Lemma 27 can be applied with ✓
0

= ↵
0

and we get

Ek¯✓n � ¯�nk2
⌃

 4

d� 1

n2

n�1

X

i=0

Ek✓i � �ik2
⌃

+

8

n
tr⌃

�1E["n ⌦ "n].

As before we apply Lemma 25 to have

n�1

X

i=0

Ek✓i � �ik2
⌃


"

2

n�1

X

i=0

Ek✓i � ✓⇤k2
⌃

+ 2

n�1

X

i=0

k�i � ✓⇤k2
⌃

#


"

8Dh(✓⇤, ✓0)

�
+

n�

µb

4 tr⌃

�bC +

16n� tr⌃1�b

µb

f(✓⇤) + 4g(✓
0

)

#

.

Therefore

Ek¯✓n � ¯�nk2
⌃

 4

d� 1

n2

"

8

Dh(✓⇤, ✓0)

�
+

n�

µb

4 tr⌃

�bC+

16n� tr⌃1�b

µb

f(✓⇤)+4g(✓
0

)

#

+

8

n

"

3 tr⌃

�1C +

6(� 1)

�n
Dh(✓⇤, ✓0)d+ 6(� 1)f(✓⇤)d

#

.
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And rearranging terms we obtain

Ek¯✓n� ¯�nk2
⌃

 80

d

�n2

Dh(✓⇤, ✓0)+
642d�

nµb

tr⌃

1�bf(✓⇤)+
16d�

nµb

trC⌃

�b

+

16d

n2

g(✓
0

)+

24

n
tr⌃

�1C+

48d

n
f(✓⇤).

And by the Cauchy-Schwarz inequality (Ek¯✓n�✓⇤k2
⌃

 2Ek¯✓n� ¯�nk2
⌃

+ 2Ek¯�n�✓⇤k2
⌃

)

1

2

Ek¯✓n � ✓⇤k2
⌃

 2

Dh(✓⇤, ✓0)

�n
+

24

n
tr⌃

�1C +

16d�

nµb

trC⌃

�b

+

16d

n

⇣

4� tr⌃1�b

µb

+ 3

⌘

f(✓⇤) + 80

d

�n2

Dh(✓⇤, ✓0) +
16d

n2

g(✓
0

),

which proves the second bound of Proposition 12.

4.D.6 A Corollary of Proposition 12 for h with an Euclidean
Behavior

When h rather behaves as an Euclidean norm, we may replace Assumptions (A12-
13) by the following:
(A12’) There exists µh > 0 such that h� µh

2

k · k2
2

is convex.
(A13 ’) There exists R2 such that E[kxnk2

2

xn ⌦ xn] 4 R2

⌃.
And Proposition 12 implies the following corollary.

Corollary 6. Assume For any constant step-size � such that �  min{ µh

4R2 ,
R2

4d
}.

Then

1

2

Ek¯✓n � ✓⇤k2
⌃

 2

Dh(✓⇤, ✓0)

�n
+

8

n

⇣

3 +

4�R2

µh

⌘⇣

�2d+ dk✓⇤ � ✓
⌃

k2
⌃

⌘

+

16d

n2

⇣

5Dh(✓⇤, ✓0)

�
+ g(✓

0

)

⌘

.

This corollary would pave the way for a general result for larger step-size � without
the condition �  R2

4d
. Unfortunately the latter seems not improvable, as noted after

Lemma 26.

4.E Lower Bound for Non-Strongly Convex Quadratic
Regularization

We derive, in this section, a lower bound on the performance of SDA when f is
the linear form f(✓) = ha, ✓i with a 2 Rd and g is a non-strongly convex quadratic
function. We assume that the vector a is not available and we only have access to
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estimates of the gradient

rfn(✓) = a+ ⇠n for n � 1, (4.22)

where (⇠n) is an uncorrelated zero-mean noise sequence with bounded covariance.

Proposition 13. For any d � 2, L > 0; � > 0 and finite time horizon N � 1, there
exists a quadratic function g L-smooth such that for any uncorrelated zero-mean noise
sequence (⇠n) with bounded covariance E[⇠n⌦⇠n] = �2LId, SDA with constant step-size
� applied with the oracle Eq. (4.22) satisfies

 (¯✓N)�  (✓⇤) � �2

12

min{(L�)2, 1}.

Proof. For sake of clarity, we consider d = 2 and a = 0. Thus f(✓) = Eh⇠n, ✓i = 0.

Let g(✓) =

1

2

h✓, A✓i be a quadratic form with A =

✓

L 0

0 µ

◆

for L � µ > 0 with

µ possibly arbitrary small. The noise (⇠n) is assumed to be uncorrelated zero-mean
with bounded covariance E[⇠n ⌦ ⇠n] = �2LI

2

. The stochastic dual algorithm with
step-size � takes the form:

✓n = rh⇤
n(�n� ¯⇠n)

= argmin

✓2Rd

n

h¯⇠n, ✓i+ 1

2

h✓, A✓i+ 1

2n�
k✓k2

2

o

= �n(I + �nA)�1

¯⇠n.

And

¯✓n =

�

n

n�1

X

k=1

k
X

j=1

k(I + �kA)�1

1

k
⇠j

=

�

n

n�1

X

j=1

⇣

n�1

X

k=j

(I + �kA)�1

⌘

⇠j.

Therefore using standard martingale square moment inequalities

Eh¯✓n, A¯✓ni =

�2

n2

n
X

j=1

E
D

⇠j
⇣

n
X

k=j

(I + �kA)�1

⌘

, A
⇣

n
X

k=j

(I + �kA)�1

⌘

⇠j
E

=

�2�2L

n2

tr

n
X

j=1

⇣

n
X

k=j

(I + �kA)�1

⌘

A
⇣

n
X

k=j

(I + �kA)�1

⌘

I
2

=

�2�2L

n2

n
X

j=1

h

L
⇣

n
X

k=j

1

1 + �Lk

⌘

2

+ µ
⇣

n
X

k=j

1

1 + �µk

⌘

2

i

.
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And

Eh¯✓n, A¯✓ni � �2�2L

n2

h L

(1 + �Ln)2
+

µ

(1 + �µn)2

i

n
X

j=1

(n� j)2

� n�2�2L

3

h L

(1 + �Ln)2
+

µ

(1 + �µn)2

i

� n�2�2

3

µ

(1 + �µn)2

� �2L

12

min

⇣

nµ�2,
1

µn

⌘

.

Conclude by taking µ = L/N .
The proof is the same for d � 2 by considering A = diag(L, . . . , L, Lµ) with d� 1

L.

4.F Lower Bound for Stochastic Approximation Prob-
lems

In this section we relate the problem of aggregation of estimators to the stochastic
convex optimization problem, i.e., minimizing a convex function, given only unbiased
estimates of its gradients. We will consider the regression and the classification with
hinge loss problems which will individually provide lower bounds for quadratic and
linear functions. We follow here Tsybakov [2003], Lecué [2006], Agarwal et al. [2012].

4.F.1 Oracle Complexity of Stochastic Convex Optimization

Beforehand we describe the stochastic oracle model formalism as done by Ne-
mirovsky and Yudin [1983], Agarwal et al. [2012], Raginsky and Rakhlin [2011]. For
a given class of problems we aim to determine lower bounds on the number of queries
to a stochastic first-order oracle needed to optimize to a certain precision any function
in this class. To this end we have the following definition.

Definition 3 (Agarwal et al. [2012]). For a given constraint convex set C, and a
function class S, a first-order stochastic oracle is a random mapping ⇡ : C ⇥ S !
R⇥ Rd of the form

�(✓, f) = (

˜f(✓), g(✓)),

such that
E ˜f(✓) = f(✓); Eg(✓) = rf(✓),

and there exists a constant C < 1 such that for every ✓ 2 Rd

E[kg(✓)�rf(✓)k2]  C(1 + k✓k2).

The class of first-order stochastic oracle is denoted by �. A stochastic approx-
imation algorithm M is a method which approximately minimizes a function f by
querying, at each iteration i, the oracle at the point ✓i. The oracle answers with the
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information �(✓i, f) and the method uses all the information {�(✓
0

, f), . . . ,�(✓i, f)}
to build a new point ✓i+1

. For n 2 N we denote by Mn the class of all such methods
that are allowed to make n queries. As done by Agarwal et al. [2012], we denote the
error of the method M on the function f after n steps as

"n(M, f, C,�) = f(✓n)�min

✓2C
f(✓).

Given a class of functions S, an oracle � and a convex constraint set C, Agarwal et al.
[2012] also defines the minimax error as

"⇤n(S, C,�) = inf

M2Mn

sup

f2S
E�"n(M, f, C,�).

We will lower bound this minimax error by relating convex stochastic approxima-
tion with convex aggregation of estimators [Juditsky and Nemirovski, 2000, Tsybakov,
2003].

4.F.2 Convex Aggregation of Estimators

Let (X ,A) be a measurable space and Y ⇢ R . We consider random variables
(X, Y ) on X ⇥ Y with probability distribution denoted by ⇡. We observe n i.i.d.
pairs Dn = {(X

1

, Y
1

), . . . , (Xn, Yn)} which follow the law ⇡ and we want to predict
the output Y for any feature X 2 X by a prediction f(X) for a measurable function
f from X to R. For this purpose we want to minimize the risk defined by

A(f) = E[`(f(X), Y )],

for any measurable function f from X to R and ` : Y ⇥ Y ! R a loss function.
We consider we have access to d different arbitrary estimators F = {f

1

, . . . , fd}
with values in Y . We denote their convex hull by C = conv(f

1

, . . . , fd). The aim of
convex aggregation is to build a new estimator which is a convex combination of the
different fi and behaves as the best among the estimators fi. The aggregation problem
is equivalent to a minimization problem over the simplex �d since for f 2 C there is
✓ 2 �d such that f =

Pd
i=1

✓(i)fi. Therefore, defining B(✓) = A
⇣

Pd
i=1

✓(i)fi
⌘

, we
have

min

f2C
A(f) = min

✓2�d

B(✓).

We denote by F : X ! Rd, x 7! (f
1

(x), . . . , fd(x)) the function whose the ith coordi-
nate is the function fi, and we have

B(✓) = E[`(hF (X), ✓i, Y )].

Therefore the convex aggregation problem of minimizing A(f) over the convex hull
of F is formally equivalent to the stochastic approximation problem of minimizing,
over the simplex �d, the function B(✓) = E[`(hF (X), ✓i, Y )], given only unbiased
estimates of its gradient rBn(✓) = r`(hF (xn), ✓i, yn). Hence lower bounds on convex
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aggregation problems provide lower bounds on stochastic approximation problems
studied in this chapter.

4.F.3 Aggregation in Regression and Application to Oracle
Complexity of Stochastic Quadratic Optimization

We first consider the regression problem for which Y = R. We rely substantially
on Tsybakov [2003]. The regression model is

Yi = f⇤(Xi) + ⇠i, for i = 1, . . . , n,

where X
1

, . . . , Xn are i.i.d. random vectors of X of law PX and ⇠i are i.i.d. Gaussian
N (0, �2

) random variables such that (⇠
1

, . . . , ⇠n) is independent of (X
1

, . . . , Xn) and
f⇤ : X ! R is the regression function. Regression problem aims to estimate the
unknown regression function f⇤ based on the data Dn by minimizing the risk

Areg(f, f⇤) = E(f(X)� f⇤(X))

2.

The problem of the optimal rate of convex aggregation has been studied by Tsybakov
[2003]. We reintroduce his notations and assumptions for sake of completeness.

Let denote by F
0

= {f : kfk1  L} for L > 0 and assume that
(B1) There exists a cube S ⇢ X such that PX admits a bounded density µ on S

w.r.t. the Lebesgue measure and µ(x) � µ
0

> 0 for all x 2 S.
(B2) There exists a constant c

0

such that d  c
0

exp(n).
We have the following result

Theorem 9 (Theorem 2, Tsybakov [2003]). Under assumptions (B1-2) we have

sup

f1,...,fd2F0

inf

Tn

sup

f⇤2F0

⇥

EDnAreg(Tn, f⇤)�min

f2C
Areg(f, f⇤)

⇤ � c⇣n(d),

for some constant c > 0 and any integer n, where infTn denotes the infimum over all
estimators, EDn denotes the expectation with regard to the probability distribution of
the data Dn and

⇣n(d) =

(

d/n if d  p
n

q

1

n
log

�

dp
n
+ 1

�

if d >
p
n.

We relate now the problem of convex aggregation of regression functions to the
problem of stochastic quadratic functions optimization. Consider F = {f

1

, . . . , fd}
the set of estimators given by Proposition 9 and denote by F : X ! Rd, x 7!
(f

1

(x), . . . , fd(x)). For f 2 C, there is ✓ 2 �d such that f =

Pd
i=1

✓(i)fi and we
obtain

Areg(f, f⇤) = E[(h✓, F (X)i � f⇤(X))

2

] = B(✓),

where B(✓) = h✓,E[F (X)⌦F (X)], ✓i�2h✓E[f⇤(X)F (X)]i+E[f⇤(X)

2

] is a quadratic
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function. This set enables us to construct a difficult subclass of quadratic functions:

Gquad =

n

B(✓) =
1

2

E[(h✓, F (X)i � f⇤(X))

2

]; f⇤ 2 F
0

o

.

We also define the first-order stochastic oracle �quad on Gquad as follows

�quad(✓, f) =

✓

1

2

(h✓, F (x)i � f⇤(x))
2, (h✓, F (x)i � f⇤(x))F (x)

◆

, for x ⇠ PX .

We can optimize B with a stochastic approximation algorithm M 2 Mn to obtain
✓n 2 �d and therefore build a estimator Tn =

Pd
i=1

✓n(i)fi which belongs to C.
Moreover we have

Areg(Tn, f⇤) = B(✓n) and min

f2C
Areg(f, f⇤) = min

✓2�d

B(✓).

Consequently, for the oracle �quad and the class Gquad Proposition 9 implies that

"⇤n(Gquad,�d,�quad) � c⇣n(d). (4.23)

And we have proven the following minimax oracle complexity.

Proposition 14. Let �d be the simplex. Then there exists universal constants c
0

> 0

and c > 0 such that the minimax oracle complexity over the class Squad of quadratic
functions satisfies the following lower bounds:

— For d  p
n

sup

�2�
"⇤n(Squad,�d,�) � c

d

n
.

— For
p
n  d  c

0

exp(n)

sup

�2�
"⇤n(Squad,�d,�) � c

s

1

n
log

⇣ dp
n
+ 1

⌘

.

We note that without assumption on d the lower-bound for the class of quadratic
functions is of order O(1/n) but in high-dimensional settings it becomes of order
(1/

p
n). Nevertheless we will see in the next section this lower-bound is always of

order (1/
p
n) for the class of linear functions.

4.F.4 Aggregation in Classification and Application to Oracle
Complexity of Stochastic Linear Optimization

We consider now the classification problem with the hinge loss for which Y =

{�1, 1}. We follow very closely the framework of Lecué [2006, 2007] and use their
notations. We still consider random variables (X, Y ) on X ⇥ Y with probability
distribution denoted by ⇡. We observe n i.i.d. pairs Dn = {(X

1

, Y
1

), . . . , (Xn, Yn)}

155



which follow the law ⇡ and we want to predict the label Y for any feature X 2 X by
minimizing the hinge risk defined by

Acla(f) = Emax(1� Y f(X), 0),

for any measurable function f from X to R. We consider we have access to d different
estimators F = {f

1

, . . . , fd} with values in [�1, 1]. We denote their convex hull by
C = conv(f

1

, . . . , fd). Lecué [2006, Theorem 1] and Lecué [2007, Theorem 2] provide
a lower bound on this aggregation problem for classification we adapt to our specific
case.

Proposition 15 ( Adaptation of Theorem 2 of Lecué [2007] for  = 1). Let d, n
be two integers such that 2 log

2

d  n. We assume that the input space X is infinite.
There exists an absolute constant c > 0, and a set of prediction rules F = {f

1

, . . . , fn}
such that for any real-valued procedure Tn, there exists a probability measure ⇡, for
which

EDn [Acla(Tn)]�min

f2C
(Acla(f)) � c

r

log d

n
.

Proof. Theorem 2 of Lecué [2007] is stated under an additional Margin assumption
MAH() (see definition and notation below Eq. (9) in Lecué [2007]) on the probability
distribution ⇡, i.e., there exists a constant c

0

such that

E[|f(X)� f ⇤
(X)|]  c

0

(A(f)� A⇤
)

1/,

for any function f on X with values in [�1, 1]. Therefore taking  ! 1, we can
always consider c

0

= 2. And the constant c() in Theorem 2 of Lecué [2007] is

c() = c
0

(4e)�1

2

�2(�1)/(2�1)

(log 2)

�/(2�1),

which goes when  ! 1 to c1 =

p
2/(4e

p
log 2). Hence taking  ! 1 in Theorem

2 of Lecué [2007] implies Proposition 15. We could also have plugged arguments of
the proof of Theorem 14.5 of Devroye et al. [1996] to directly prove this result.

We relate now the problem of convex aggregation of classifiers to the problem of
optimizing a linear function on the simplex. Consider the set of prediction rules F =

{f
1

, . . . , fn} given by Proposition 15 and denote by F : X ! Rd, x 7! (f
1

(x), . . . , fd(x)).
For f 2 C, there is ✓ 2 �d such that f =

Pd
i=1

✓(i)fi and we obtain

Acla(f) = Emax(1� Y hF (X), ✓i, 0).

On the other hand, when the fi are valued in [�1, 1], the classification problem
becomes equivalent to maximize the expectation EY f(X) since the hinge loss is linear
on [�1, 1]:

Y 2 {�1, 1}, f(X) 2 [�1, 1]=)Y f(X) 2 [�1, 1]=)Emax(1�Y f(X), 0)=1�EY f(X).
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Combining both, we obtain that

Acla(f) = 1� hE[Y F (X)], ✓i = 1 + C(✓),

where C(✓) = �hE[Y F (X)], ✓i is a linear function. This set enables us to construct
a difficult subclass of linear functions

Glin = {C(✓) = �hE[Y F (X)], ✓i; (X, Y ) ⇠ ⇡}.

We also define the first-order stochastic oracle �lin on Glin as follows

�lin(✓, f) =
⇣

hyF (x), ✓i, yF (x)
⌘

, for (x, y) ⇠ ⇡.

As before we may optimize C with a stochastic approximation algorithm M 2 Mn

to obtain ✓n 2 �d and therefore build a estimator Tn =

Pd
i=1

✓n(i)fi which belongs
to C. Moreover we have

Acla(Tn) = C(✓n) and min

f2C
Acla(f) = min

✓2�d

C(✓).

Consequently, for the oracle �lin and the class Glin Proposition 9 implies that

"⇤n(Glin,�d,�lin) � c

r

log d

n
. (4.24)

And we have proven the following minimax oracle complexity.

Proposition 16. Let �d be the simplex. Then there exists universal constant c > 0

such that the minimax oracle complexity over the class Slin of linear functions satisfies
the following lower bound for 2 log

2

d  n

sup

�2�
"⇤n(Slin,�d,�) � c

r

log(d)

n
.

4.G Lower Bounds on the Rates of Convergence of
DA and MD Algorithms

Let us consider in this section that f = 0, g(✓) = 1

2⌫
k✓ � ✓⇤k2

2

and h =

1

2

k✓k2
2

. In
this case, for n � 1, MD iterates (✓md

n ) verify

✓md
n = argmin

✓2Rd

n

1

2⌫
k✓ � ✓⇤k2

2

+

1

2�
k✓ � ✓md

n�1

k2
2

o

.

Therefore ✓md
n = ✓⇤ +

1

�⌫
(✓md

n�1

� ✓⇤), ✓md
n � ✓⇤ =

1

(�⌫)n
(✓md

0

� ✓⇤) and

g(✓md
n )� g(✓⇤) =

g(✓md
0

)� g(✓⇤)

(�⌫)2n
.
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Whereas DA iterates (✓da
n ) satisfy

✓da
n = argmin

✓2Rd

n

1

2⌫
k✓ � ✓⇤k2

2

+

1

2�n
k✓k2

2

o

.

We compute ✓da
n =

�⌫n
�⌫n+1

✓⇤ and

g(✓da
n )� g(✓⇤) =

g(✓da
0

)� g(✓⇤)

(1 + ⌫�n)2
.

4.H Continuous Time Interpretation of DA et MD

Following Nemirovsky and Yudin [1983], Bolte and Teboulle [2003], Krichene et al.
[2015] we propose a continuous interpretation of these methods for g twice differen-
tiable. We note this could be extended for g non-smooth with differential inclusions.

Derivation of the ordinary differential equation (ODE). The first-order opti-
mality condition of the MD iteration in Eq. (4.4) �rf(✓n)+�rg(✓n+1

)+rh(✓n+1

)�
rh(✓n) can be rearranged as

rh(✓n+1

)�rh(✓n)

�
= �rf(✓n)�rg(✓n+1

).

Noting @trh(✓) = r2h(✓) ˙✓, this is exactly a forward-backward Euler discretization
of the MD ODE [Bolte and Teboulle, 2003]:

˙✓ = �r2h(✓)�1

[rf(✓) +rg(✓)]. (4.25)

On the other hand, considering the DA iteration in Eq. (4.3) we obtain

⌘n � ⌘n�1

�
= �rf(✓n�1

) and ⌘n = n�rg(✓n) +rh(✓n). (4.26)

Combining both parts in Eq. (4.26) leads to the single equation

n�
rg(✓n)�rg(✓n�1

)

�
+rg(✓n�1

) +

rh(✓n)�rh(✓n�1

)

�
= �rf(✓n�1

),

which is the explicit Euler discretization of the ODE @t(trg(✓) +rh(✓)) = �rf(✓).
Therefore the ODE associated to DA takes the form

˙✓ = �r2

(h(✓) + tg(✓))�1

(rf(✓) +rg(✓)). (4.27)

It is worth noting that this ODE is very similar to the MD ODE in Eq. (4.25), with
an additional term tg(✓) in the inverse mapping r2

(h(✓) + tg(✓))�1 which may thus
slow down the DA dynamic.
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Lyapunov analyzes. Lyapunov functions are used to prove convergence of the
solutions of ODEs. In analogy with the discrete case, the Bregman divergence is
a Lyapunov function for these ODEs [see, e.g., Bolte and Teboulle, 2003, Krichene
et al., 2015] since

@tDh(✓⇤, ✓(t)) = @t[h(✓⇤)� h(✓(t))� hrh(✓(t)), ✓⇤ � ✓(t)i]
= �hrh(✓(t)), ˙✓(t)i+ hr2h(✓(t)) ˙✓(t), ✓(t)� ✓⇤i+ hrh(✓(t)), ˙✓(t)i
= hr2h(✓(t)) ˙✓(t), ✓(t)� ✓⇤i.

For the MD ODE in Eq. (4.25) we obtain

@tDh(✓⇤, ✓(t)) = �hrf(✓(t)) +rg(✓(t)), ✓(t)� ✓⇤i
  (✓⇤)�  (✓(t)) (by convexity of  ).

Integrating, this yields with Jensen inequality

 (¯✓(t))�  (✓⇤)  1

t

Z t

0

�

 (✓(s))�  (✓⇤)
�

ds  Dh(✓⇤, ✓(0))�Dh(✓⇤, ✓(t))

t
,

for ¯✓(t) =

1

t

R t

0

✓(s)ds. This is the same convergence result as in the discrete time.
For the DA ODE in Eq. (4.27) we obtain

@tDh+tg(✓⇤, ✓(t)) = @t[(h+ tg)(✓⇤)� (h+ tg)(✓(t))� hr(h+ tg)(✓(t)), ✓⇤ � ✓(t)i]
= g(✓⇤)� h(rh(✓(t)) + trg(✓(t))), ˙✓(t)i+ g(✓(t))

+h@t(rh+ trg)(✓(t)), ✓(t)� ✓⇤i+ h(r+ trg)h(✓(t)), ˙✓(t)i
= g(✓⇤)� g(✓t)� hrf(✓(t)), ✓(t)� ✓⇤i.

Therefore by convexity of f , @tDh+tg(✓⇤, ✓(t))   (✓⇤)�  (✓(t)) and we obtain

 (¯✓(t))�  (✓⇤)  Dh(✓⇤, ✓(0))�Dh+tg(✓⇤, ✓(t))

t
.

The continuous time argument really mimics the proof of Proposition 8 without the
technicalities associated with the discrete time. We remind that we recover the vari-
ational interpretation of Krichene et al. [2015], Wibisono et al. [2016], Wilson et al.
[2016]: the Lyapunov function generates the dynamic in the sense that a function L
is first chosen and secondly a dynamics, for which L is a Lyapunov function, is then
designed. In this way MD and DA are the two different dynamics associated to the
two different Lyapunov functions Dh and Dh+tg.

Extension to the noisy-gradient case. We consider now we only have access
to noisy estimates of the gradient as in Section 4.3 and propose a continuous-time
interpretation of these stochastic methods. Stochastic MD and SDA may be viewed,
in their primal-dual forms, as discretizations of the following stochastic differential
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equations (SDE). For stochastic MD

d⌘(t) = �[rf(✓(t)) +rg(✓(t))]dt+ �dW (t)dt and ⌘(t) = rh(✓(t)),

and for SDA

d⌘(t) = �rf(✓(t))dt+ �dW (t)dt and ⌘(t) = r(h+ tg)(✓(t)),

where Wt is a Wiener process and � > 0. We note that the regularization g does not
take part in the SDA SDE which explains this dynamic is efficient in presence of noise.
In contrast, the stochastic MD SDE is corrupted by the presence of the gradient rg
which may not behaves well for non-smooth g. This continuous-time interpretation
of stochastic algorithms could lead to further insights but is outside the scope of this
chapter.

4.I Examples of Different Geometries
We describe now different examples of concrete geometries and how SDA is then

implemented for well known regularizations g.

Euclidean distance. The simplest geometry is obtained by taking the function
h(✓) = 1

2

k✓k2
2

, which is a Legendre function on dom h = Rd. Its associated Bregman
divergence is also the squared Euclidean distance Dh(↵, �) =

1

2

k↵ � �k2
2

. Therefore
(LC) is equivalent to the smoothness of the function f and we return to classic results
on proximal gradient descent.

— Projection: Let g = C be the indicator of a convex set C. The SDA method
yields to the projected method

✓n = min

✓2C

�

�

�

✓ + �
n�1

X

k=0

rfk+1

(✓k)
�

�

�

2

2

.

— `
2

-regularization: Let g =

1

2

k · k2Q where Q < 0, we directly have rh⇤
n(⌘) =

(I + n�Q)

�1⌘ and the SDA method comes back to

✓n = ✓n�1

� (��1I + nQ)

�1

(Q✓n�1

+rfn(✓n�1

)), for n � 1,

which is a standard gradient descent on f + g with a structured decreasing
step-size �n = (��1I + nQ)

�1.
— `

1

-regularization: Let g = �k · k
1

, we can compute the primal iterate with, for
i = 1, . . . , d, rih⇤

n(⌘) = sign(⌘(i))max(|⌘(i)| � n��, 0) . Therefore the SDA
method is equivalent, for i = 1, . . . , d, to the iteration:

✓n(i) = � sign

⇣

n�1

X

k=0

rifk+1

(✓k)
⌘

max

✓

�

�

�

n�1

X

k=0

rifk+1

(✓k)
�

�

�

� n��, 0

◆

.
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Yet since convergence results hold on the average of the iterates ¯✓n, SDA pro-
vides less sparse solutions than other methods which rather consider final iter-
ates as outputs.

Kullback-Leibler divergence. The negative entropy h(✓) =
Pn

i=1

✓(i) log(✓(i)) is
a Legendre function on dom h = (0,1)

n whose associated Bregman divergence is the
Kullback-Leibler divergence

Dh(↵, �) =
n
X

i=1

↵(i) log
⇣↵(i)

�(i)

⌘

+

n
X

i=1

(�(i)� ↵(i)),

and its conjugate gradient mapping is rih⇤
(⌘) = exp(⌘i)� 1 for i = 1, . . . , d.

When constrained on the simplex �d, h is 1-strongly convex with respect to the
`
1

-norm [see, e.g., Beck and Teboulle, 2003, Proposition 5.1], and (LC) holds, for
example, if f is smooth with regards to the `

1

-norm. This illustrates one of the
non-Euclidean benefit since Lipschitz constants under the `1-norm are smaller than
under the `

2

-norm.
This geometry is particularly appropriated to constrained minimization on the

simplex �d. With g(✓) =

�d
, SDA update is the dual averaging analogue of the

exponentiated gradient algorithm [Kivinen and Warmuth, 1997]:

✓n(i) =
exp(⌘n(i))

Pd
j=1

exp(⌘n(j))
for i = 1, . . . , d.

`p-norm. The choice h =

1

2(p�1)

k · k2p for p 2 (1, 2] is believed to adapt to the
geometry of learning problem and is often used with p = 1 + 1/ log(d) in association
with `

1

-regularization [see, e.g., Duchi et al., 2010]. Its Fenchel conjugate is the
squared conjugate norm h⇤

=

1

2(q�1)

k · k2q for 1/p+1/q = 1 and its conjugate gradient
mapping is rih⇤

(⌘) =

sign(⌘(i))|⌘(i)|q�1

(q�1)k⌘kq�2
q

[see, e.g., Gentile and Littlestone, 1999]. For
`
1

-regularization, this yields to:

rih
⇤
n(⌘) = rih

⇤�
sign(⌘(i))max(|⌘(i)|� n��, 0)

�

for i = 1, . . . , d.

The function h is 1-strongly convex with respect to the `p-norm [see, e.g., Hanner,
1956]. Therefore (LC) holds if f is smooth with respect to the the `p-norm. However
when the function f considered is quadratic as in Section 4.3, we can directly show
that (LC) holds under tighter conditions on the Hessian matrix ⌃ (see proof in
Appendix 4.J).

Proposition 17. Assume that f(✓) = 1

2

h✓,⌃✓i and h(✓) = 1

2(p�1)

k✓k2p. Then h� �f
is convex for any constant step-size � such that

�  min

↵

k↵k2p
h↵,⌃↵i .
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When ⌃ = E(x⌦x) is a covariance matrix as in Section 4.3.2, h↵,⌃↵i = Ehx,↵i2 
Ekxk2qk↵k2p by Hölder inequality, and Proposition 17 admits the following corollary.

Corollary 7. Assume that f(✓) =

1

2

E(hx, ✓i � y)2, h(✓) =

1

2

k✓k2p and q such that
1/p+ 1/q = 1. Then h� �f is convex for any constant step-size � such that

�  1/Ekxk2q.

Therefore we may use the algorithm with bigger step-size than in the Euclidean
case. Moreover when the algorithm is started from ✓

0

= 0, the Bregman divergence is
Dh(✓⇤, ✓0) =

1

2(p�1)

k✓⇤k2p and the bias in Proposition 8 would be bounded by Ekxk2qk✓⇤k2p
2(p�1)

.
For high-dimension problems, taking q = 1 + log(d) (with p ⇠ 1 and q ⇠ +1)

yields to bounds depending on the `
1

-norm of the optimal predictor and the `1-norm
of the features which is advisable for sparse problems.

4.J Proof of Proposition 17

We consider here h(✓) =

1

2(p�1)

k✓k2p. For ✓ 2 Rd, h is twice differentiable. Its
gradient is

rih(✓) =
sign(✓(i))|✓(i)|p�1

(p� 1)k✓kp�2

p

,

and its Hessian may be written for ↵ =

2�p
(p�1)

k✓k�2(p�1)

p , u(i) = k✓k2�p
p ✓(i)p�2 and

v(i) = ✓(i)p�1 for i = 1, . . . , d, as

r2h(✓) = Diag(u) + ↵vv>,

The function h � �f is convex if and only if r2h(✓) 4 �⌃ for all ✓ 2 Rd. This
condition is equivalent to

min

✓
min

↵

h↵,r2h(✓)↵i
h↵,⌃↵i � �.

A sufficient condition is that Diag u < �⌃. After a change of variables, u may
be written as u(i) = ⌘(i)p�2 where ⌘(i) = |✓(i)|/k✓kp satisfies

Pd
i=1

⌘(i)p = 1 and
⌘(i) � 0. Hence for all ✓,↵ 2 Rd

h↵,r2h(✓)↵i �
d
X

i=1

↵(i)2u(i) =
d
X

i=1

↵(i)2⌘(i)p�2,

which implies

min

✓2Rd
h↵,r2h(✓)↵i � min

⌘2Rd

d
X

i=1

↵(i)2⌘(i)p�2 such that
d
X

i=1

⌘(i)p = 1 and ⌘(i) � 0.
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This optimization problem is equivalent with v(i) = ⌘(i)p to the one the simplex �d

min

v2Rd

d
X

i=1

↵(i)2v(i)1�2/p such that
d
X

i=1

v(i) = 1 and ⌫(i) � 0,

for which we define the Lagrangian L(v,�, µ) =Pd
i=1

↵(i)2v(i)1�2/p � h�, vi + ⌫(1�
Pd

i=1

v(i)) for � 2 Rd
+

and µ 2 R. Its gradient is rv(i)L(v,�, µ) = (1�2/p)↵(i)2/v(i)2/p�
�(i) � ⌫. Writing the KKT condition for this problem [see, e.g., Boyd and Vanden-
berghe, 2004], we have that (v,�, ⌫) is optimal if and only if (1� 2/p)↵(i)2/v(i)2/p �
�(i)� ⌫ = 0,

Pd
i=1

v(i) = 1 and for all i; �(i) � 0, v(i) � 0 and �(i)v(i) = 0. These
conditions are satisfied by v(i) = ↵(i)pPd

i=1 a(j)
p , ↵(i) = 0 and ⌫ = (1� 2p)(

Pd
i=1

a(j)p)2/p.
Hence the minimum value is

d
X

i=1

↵(i)2v(i)1�2/p
=

d
X

i=1

↵(i)2
↵(i)p�2

(

Pd
i=1

a(j)p)1�2/p
=

Pd
i=1

a(j)

(

Pd
i=1

a(j)p)1�2/p
= k↵k2p.

Consequently
h↵,r2h(✓)↵i � k↵k2p,

and h� �f is convex for �  min↵2Rd
k↵k2p
h↵,⌃↵i .

4.K Standard Benchmarks
We have considered the sido dataset which is often used for comparing large-

scale optimization algorithms. This is a finite binary classification dataset with finite
number of observations with outputs in {�1, 1}. We have followed the following
experimental protocol: (1) remove all outliers, i.e., sample points xn whose norms is
greater than 5 times the average norm. (2) divide the dataset in two equal parts, one
for training, one for testing, (3) start the algorithms from ✓

0

= 0, (4) sample within
the training dataset with replacement, for 100 times the number of observations in
the training set; a dashed line marks the first effective pass in all plots, (5) compute
averaged cost on training and testing data based on 10 replications. All cost are
shown in log-scale, normalized to that the first iteration leads to  (✓

0

)�  (✓⇤) = 1.
We solved a `

1

-regularized least-squares regression for three different values of `
1

-
regularization: (1) one with the �⇤ which corresponds to the best generalization error
after 500 effective passes through the train set, (2) one with �⇤/8 and (3) one with
256�⇤.

We compare five algorithms: averaged SGD with constant step-size, average SGD
with decreasing step-size C/(R2

p
n), SDA with constant step-size, SDA with decreas-

ing step-size C/(R2

p
n) and SAGA with constant step-size [Defazio et al., 2014], which

showed state-of-the-art performance in the set-up of finite data sets. We consider the
theoretical value of step-size which ensures convergence. We note the behaviors are
comparable to the situation where step-sizes with the best testing error after one
effective pass through the data (testing powers of 4 times the theoretical step-size)
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are used.
We can make the following observations:

— We show results for � = �⇤ in Figure 4.K.1. SAGA, constant-step-size SDA
and constant-step-size SGD exhibit the best behavior for both settings of step-
size. However the training error of SGD does not converge to 0. On the other
hand, SGD and SDA with step-size decaying as C/R2

p
n are slower. SAGA

and constant-step-size SDA exhibit some overfitting after more than 10 passes
on the regularized objective  .

— We show results for � = �⇤/8 in Figure 4.K.2. The problem is then very little
regularized and the behavior of constant-step-size SGD gets closer to constant-
step-size SDA. There is here still overfitting for the regularized objective  .

— We show results for � = 256�⇤ in Figure 4.K.1. The problem is then much more
regularized. In this case the regularization has an important weight and the
stochasticity of the quadratic objective plays a minor role. Therefore SAGA
exhibits the best behavior, despite strong early oscillations, with a linear con-
vergence but reaches a saturation point after few passes over the data. On the
other hand, constant-step-size SDA exhibits a sublinear convergence which is
faster at the beginning and catches up with SAGA at the end. Constant-step-
size SGD is not converging to the solution.

To conclude, constant-step-size SDA behaves similarly to SAGA which is specially
dedicated to the set-up of finite data sets. For larger datasets, where only a single
pass is possible, SAGA could not be run. Moreover SAGA does not come with
generalization guarantees while SDA does (if a single pass is made).
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Figure 4.K.1 – Test and train performances for `
1

-regularized least-squares regression
on the sido dataset with � = �opt. Left: test performance. Right: train performance.
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-regularized least-squares regression
on the sido dataset with � =
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8

. Left: test performance. Right: train performance.
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-regularized least-squares regres-
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Part II

Applications of the Quadratic Loss in
Machine Learning
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Chapter 5

Application to Discriminative
Clustering

Abstract

Clustering high-dimensional data often requires some form of dimensionality re-
duction, where clustered variables are separated from “noise-looking” variables. We
cast this problem as finding a low-dimensional projection of the data which is well-
clustered. This yields a one-dimensional projection in the simplest situation with two
clusters, and extends naturally to a multi-label scenario for more than two clusters. In
this chapter, (a) we first show that this joint clustering and dimension reduction for-
mulation is equivalent to previously proposed discriminative clustering frameworks,
thus leading to convex relaxations of the problem; (b) we propose a novel sparse
extension, which is still cast as a convex relaxation and allows estimation in higher
dimensions; (c) we propose a natural extension for the multi-label scenario; (d) we
provide a new theoretical analysis of the performance of these formulations with a
simple probabilistic model, leading to scalings over the form d = O(

p
n) for the affine

invariant case and d = O(n) for the sparse case, where n is the number of examples
and d the ambient dimension; and finally, (e) we propose an efficient iterative al-
gorithm with running-time complexity proportional to O(nd2), improving on earlier
algorithms for discriminative clustering with the square loss, which had quadratic
complexity in the number of examples.

This chapter is extracted from the paper Robust Discriminative Clustering with
Sparse Regularizers, in collaboration with B. Palaniappan and F. Bach, accepted in
the Journal of Machine Learning Research.

5.1 Introduction

Clustering is an important and commonly used pre-processing tool in many ma-
chine learning applications, with classical algorithms such as K-means [MacQueen,
1967], linkage algorithms [Gower and Ross, 1969] or spectral clustering [Ng et al.,
2002]. In high dimensions, these unsupervised learning algorithms typically have
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problems identifying the underlying optimal discrete nature of the data; for exam-
ple, they are quickly perturbed by adding a few noisy dimensions. Clustering high-
dimensional data thus requires some form of dimensionality reduction, where clus-
tered variables are separated from non-informative “noise-looking” (e.g., Gaussian)
variables.

Several frameworks aim at linearly separating noise from signal, that is finding
projections of the data that extracts the signal and removes the noise. They differ in
the ways signals and noise are defined. A line of work that dates back to projection
pursuit [Friedman and Stuetzle, 1981] and independent component analysis [Hyväri-
nen et al., 2004] defines the noise as Gaussian while the signal is non-Gaussian [Blan-
chard et al., 2006, Le Roux and Bach, 2013, Diederichs et al., 2013]. In this work,
we follow De la Torre and Kanade [2006], Ding and Li [2007], along the alternative
route where one defines the signal as being clustered while the noise is any non-
clustered variable. In the simplest situation with two clusters, we may project the
data into a one-dimensional subspace. Given a data matrix X 2 Rn⇥d composed of
n d-dimensional points, the goal is to find a direction w 2 Rd such that Xw 2 Rn

is well-clustered, e.g., by K-means. This is equivalent to identifying both a direction
to project, represented as w 2 Rd and the labeling y 2 {�1, 1}n that represents the
partition into two clusters.

Most existing formulations are non-convex and typically perform a form of alter-
nating optimization [De la Torre and Kanade, 2006, Ding and Li, 2007], where given
y 2 {�1, 1}n, the projection w is found by linear discriminant analysis (or any bi-
nary classification method), and given the projection w, the clustering is obtained by
thresholding Xw or running K-means on Xw. As shown in Section 5.2, this alternat-
ing minimization procedure happens to be equivalent to maximizing the (centered)
correlation between y 2 {�1, 1}n and the projection Xw 2 Rd, that is

max

w2Rd,y2{�1,1}n

(y>⇧nXw)2

k⇧nyk2
2

k⇧nXwk2
2

,

where ⇧n = In � 1

n
1n1

>
n is the usual centering projection matrix (with 1n 2 Rn

being the vector of all ones, and In the n ⇥ n identity matrix). This correlation is
equal to one when the projection is perfectly clustered (independently of the number
of elements per cluster). Existing methods are alternating minimization algorithms
with no theoretical guarantees.

In this chapter, we relate this formulation to discriminative clustering formula-
tions [Xu et al., 2004, Bach and Harchaoui, 2007], which consider the problem

min

v2Rd, b2R, y2{�1,1}n

1

n
ky �Xv � b1nk2

2

, (5.1)

with the intuition of finding labels y which are easy to predict by an affine function
of the data. In particular, we show that given the relationship between the number of
positive labels and negative labels (i.e., the squared difference between the respective
number of elements), these two problems are equivalent, and hence discriminative
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clustering explicitly performs joint dimension reduction and clustering.
While the discriminative framework is based on convex relaxations and has led to

interesting developments and applications [Zhang et al., 2009, Li et al., 2009, Joulin
et al., 2010a,b, Wang et al., 2010, Niu et al., 2013, Huang et al., 2015], it has several
shortcomings when used with the square loss: (a) the running-time complexity of the
semi-definite formulations is at least quadratic in n, and typically much more, (b)
no theoretical analysis has ever been performed, (c) no convex sparse extension has
been proposed to handle data with many irrelevant dimensions, (d) balancing of the
clusters remains an issue, as it typically adds an extra hyperparameter which may be
hard to set. In this chapter, we focus on addressing these concerns.

When there are more than two clusters, one considers either the multi-label or the
multi-class settings. The multi-class problem assumes that the data are clustered into
distinct classes, i.e., a single class per observation, whereas the multi-label problem
assumes the data share different labels, i.e., multiple labels per observation. We
show in this work that discriminative clustering framework extends more naturally
to multi-label scenarios and that this extension has the same convex relaxation.

A summary of the contributions of this chapter follows:

— In Section 5.2, we relate discriminative clustering with the square loss to a
joint clustering and dimension reduction formulation. The proposed formulation
takes care of the balancing hyperparameter implicitly.

— We propose in Section 5.3 a novel sparse extension to discriminative clustering
and show that it can still be cast through a convex relaxation.

— When there are more than two clusters, we extend naturally the sparse formu-
lation to a multi-label scenario in Section 5.4.

— We then proceed to provide a theoretical analysis of the proposed formulations
with a simple probabilistic model in Section 5.5, which effectively leads to scal-
ings over the form d = O(

p
n) for the affine invariant case and d = O(n) for the

1-sparse case.
— Finally, we propose in Section 5.6 efficient iterative algorithms with running-

time complexity for each step equal to O(nd2), the first to be linear in the
number of observations n for discriminative clustering with the square loss.

Throughout this chapter we assume that X 2 Rn⇥d is centered, a common pre-
processing step in unsupervised (and supervised) learning. This implies that X>

1n =

0 and ⇧nX = X.

5.2 Joint Dimension Reduction and Clustering

In this section, we focus on the single binary label case, where we first study
the usual non-convex formulation, before deriving convex relaxations based on semi-
definite programming. Some of the following results are already known in the litera-
ture however we state them here for completeness.
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5.2.1 Non-Convex Formulation

Following De la Torre and Kanade [2006], Ding and Li [2007], Ye et al. [2008],
we consider a cost function which depends on y 2 {�1, 1}n and w 2 Rd, which is
such that alternating optimization is exactly (a) running K-means with two clusters
on Xw to obtain y given w (when we say “running K-means”, we mean solving the
vector quantization problem exactly), and (b) performing linear discriminant analysis
to obtain w given y.

Proposition 18 (Joint clustering and dimension reduction for two clusters). Given
X 2 Rn⇥d such that X>

1n = 0 and X has rank d, consider the optimization problem

max

w2Rd,y2{�1,1}n

(y>Xw)2

k⇧nyk2
2

kXwk2
2

. (5.2)

Given y, the optimal w is obtained as w = (X>X)

�1X>y, while given w, the optimal
y is obtained by running K-means on Xw.

This equivalence might be straightforward however it has not been precisely stated
in the literature to the best of our knowledge.

Proof. Given y, we need to optimize the Rayleigh quotient w>X>yy>Xw
w>X>Xw

with a rank-
one matrix in the numerator, which leads to w = (X>X)

�1X>y. Given w, we show
in Appendix 5.A, that the averaged distortion measure of K-means once the means
have been optimized is exactly equal to (y>Xw)2/k⇧nyk2

2

.

Algorithm. The proposition above leads to an alternating optimization algorithm.
Note that K-means in one dimension may be run exactly in O(n log n) [Bellman, 1973].
After having optimized with respect to w in Eq. (5.2), we then need to maximize with
respect to y the function y>X(X>X)

�1X>y

k⇧nyk22
, which happens to be exactly performing K-

means on the whitened data (which is now in high dimension and not in 1 dimension).
At first, it seems that dimension reduction is simply equivalent to whitening the data
and performing K-means; while this is a formally correct statement, the resulting
K-means problem is not easy to solve as the clustered dimension is hidden in noise;
for example, algorithms such as K-means++ [Arthur and Vassilvitskii, 2007], which
have a multiplicative theoretical guarantee on the final distortion measure, are not
provably effective here because the minimal final distortion is not small (since the
clusters are corrupted by some noisy dimensions), and the multiplicative guarantee
is then meaningless.

5.2.2 Convex Relaxation and Discriminative Clustering

The discriminative clustering formulation in Eq. (5.1) may be optimized for any
y 2 {�1, 1}n in closed form with respect to b as b =

1

>
n (y�Xv)

n
=

1

>
n y
n

since X is
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centered. Substituting b in Eq. (5.1) leads us to

min

v2Rd

1

n
k⇧ny �Xvk2

2

=

1

n
k⇧nyk2

2

�max

w2Rd

(y>Xw)2

kXwk2
2

, (5.3)

where v is obtained from any solution w as v = w y>Xw
kXwk22

. Thus, given

(y>1n)2

n2

=

1

n2

�

#{i, yi = 1}�#{i, yi = �1}�2 = ↵ 2 [0, 1], (5.4)

which characterizes the asymmetry between clusters and with k⇧nyk2 = n(1 � ↵),
we obtain from Eq. (5.3), an equivalent formulation to Eq. (5.2) (with the added
constraint) as

min

y2{�1,1}n, v2Rd

1

n
k⇧ny �Xvk2

2

such that
(y>1n)2

n2

= ↵. (5.5)

This is exactly equivalent to a discriminative clustering formulation with the square
loss [Bach and Harchaoui, 2007] with an explicit cluster balance constraint. Conse-
quently we have formally established that the discriminative clustering formulation
in Eq. (5.5) is related to the joint clustering and dimension reduction formulation in
Eq. (5.2). Following Bach and Harchaoui [2007], we may optimize Eq. (5.5) in closed
form with respect to v as v = (X>X)

�1X>y. Substituting v in Eq. (5.5) leads us to

min

y2{�1,1}n

1

n
y>
�

⇧n �X(X>X)

�1X>�y such that
(y>1n)2

n2

= ↵. (5.6)

This combinatorial optimization problem is NP-hard in general [Karp, 1972, Garey
et al., 1976]. Hence in practice, it is classical to consider the following convex relax-
ation of Eq. (5.6) [Luo et al., 2010]. For any admissible y 2 {�1,+1}n, the matrix
Y = yy> 2 Rn⇥n is a rank-one symmetric positive semi-definite matrix with unit
diagonal entries and conversely any such Y may be written in the form Y = yy> such
that y is admissible for Eq. (5.6). Moreover by rewriting Eq. (5.6) as

min

y2{�1,1}n

1

n
tr yy>

�

⇧n �X(X>X)

�1X>� such that
1

>
n (yy

>
)1n

n2

= ↵,

we see that the objective and constraints are linear in the matrix Y = yy> and
Eq. (5.6) is equivalent to

min

Y <0, rank(Y )=1 diag(Y )=1

1

n
trY

�

⇧n �X(X>X)

�1X>� such that
1

>
nY 1n

n2

= ↵.
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Then dropping the non-convex rank constraint leads us to the following classical
convex relaxation:

min

Y <0, diag(Y )=1

1

n
trY

�

⇧n �X(X>X)

�1X>� such that
1

>
nY 1n

n2

= ↵. (5.7)

This is the standard (unregularized) formulation, which is cast as a semi-definite
program. The complexity of interior-point methods is O(n7

), but efficient algorithms
in O(n2

) for such problems have been developed due to the relationship with the max-
cut problem [Journée et al., 2010, Wen et al., 2012]. We note that convex relaxation
techniques are also used for semi-supervised methods [De Bie and Cristianini, 2003].

Given the solution Y , one may traditionally obtain a candidate y 2 {�1, 1}n
by running K-means on the largest eigenvector of Y or by sampling [Goemans and
Williamson, 1995]. In this chapter, we show in Section 5.5 that it may be advantageous
to consider the first two eigenvectors.

5.2.3 Unsuccessful Full Convex Relaxation

The formulation in Eq. (5.7) imposes an extra parameter ↵ that characterises the
cluster imbalance. It is tempting to find a direct relaxation of Eq. (5.2). It turns out
to lead to a trivial relaxation, which we outline below.

When optimizing Eq. (5.2) with respect to w, we obtain the following optimization
problem

max

y2{�1,1}n

y>X(X>X)

�1X>y

y>⇧ny
,

leading to a quasi-convex relaxation as

max

Y <0, diag(Y )=1

trY X(X>X)

�1X>

tr⇧nY
,

whose solution is found by solving a sequence of convex problems [Boyd and Van-
denberghe, 2004, Section 4.2.5]. As shown in Appendix 5.B, this may be exactly
reformulated as a single convex problem:

max

M<0, diag(M)=1+

1>M1
n2

trMX(X>X)

�1X>.

Unfortunately, this relaxation always leads to trivial solutions, and we thus need to
consider the relaxation in Eq. (5.7) for several values of ↵ = 1

>
nY 1n/n2 (and then

the non-convex algorithm can be run from the rounded solution of the convex prob-
lem, using Eq. (5.2) as a final objective). Alternatively, we may solve the following
penalized problem for several values of ⌫ > 0:

min

Y <0, diag(Y )=1

1

n
trY

�

⇧n �X(X>X)

�1X>�
+

⌫

n2

1

>
nY 1n. (5.8)

172



For ⌫ = 0, Y = 1n1
>
n is always a trivial solution. As outlined in our theoretical section

and as observed in our experiments, it is sufficient to consider ⌫ 2 [0, 1].
By convex duality [Borwein and Lewis, 2000, Sec. 4.3], both constrained relax-

ation in Eq. (5.7) and penalized relaxation in Eq. (5.8) are formally equivalent for
specific choice of constraint parameter ↵ and penalization parameter ⌫. We will see
in Section 5.6 that the formulation in Eq. (5.8) is more suitable for algorithmic design
[Bach et al., 2012].

5.2.4 Equivalent Relaxations

Optimizing Eq. (5.5) with respect to v in closed form as in Section 5.2.2 is feasible
with no regularizer or with a quadratic regularizer. However, if one needs to add more
complex regularizers, we need a different relaxation. Therefore we now propose a new
formulation of the discriminative clustering framework. We start from the penalized
version of Eq. (5.5),

min

y2{�1,1}n, v2Rd

1

n
k⇧ny �Xvk2

2

+ ⌫
(y>1n)2

n2

, (5.9)

which we expand as:

min

y2{�1,1}n, v2Rd

1

n
tr⇧nyy

> � 2

n
trXvy> +

1

n
trX>Xvv> + ⌫

(y>1n)2

n2

, (5.10)

and relax as, using Y = yy>, P = yv> and V = vv>,

min

V,P,Y

1

n
tr⇧nY � 2

n
trP>X +

1

n
trX>XV + ⌫

1

>
nY 1n

n2

s.t.
✓

Y P
P> V

◆

< 0, diag(Y ) = 1. (5.11)

When optimizing Eq. (5.11) with respect to V and P , we get exactly Eq. (5.8). In-
deed, the optimum is attained for V=(X>X)

�1X>Y X(X>X)

�1 and P=Y X(X>X)

�1

as shown in Appendix 5.C.1. Therefore, the convex relaxation in Eq. (5.11) is equiv-
alent to Eq. (5.8).

However, we get an interesting behavior when optimizing Eq. (5.11) with respect
to P and Y also in closed form. For ⌫ = 1, we obtain, as shown in Appendix 5.C.2,
the following closed form expressions:

Y = Diag(diag(XVX>
))

�1/2XVX>
Diag(diag(XVX>

))

�1/2

P = Diag(diag(XVX>
))

�1/2XV,

leading to the problem:

min

V <0

1� 2

n

n
X

i=1

p

(XVX>
)ii +

1

n
tr(V X>X). (5.12)

173



The formulation above in Eq. (5.12) is interesting for several reasons: (a) it is formu-
lated as an optimization problem in V 2 Rd⇥d, which will lead to algorithms whose
running time will depend on n linearly (see Section 5.6), (b) it allows for easy adding
of regularizers (see Section 5.3), which may be formulated as convex functions of
V = vv>. At first sight this seems to be valid only for ⌫ = 1. However we now
propose a reformulation which can handle all possible ⌫ 2 [0, 1) through a simple
data augmentation.

Reformulation for any ⌫. When ⌫ 2 [0, 1), we may reformulate the objective
function in Eq. (5.9) as follows:

k⇧ny �Xvk2
2

+ ⌫
(y>1n)2

n
= k⇧ny �Xv + ⌫

y>1n
n

1nk2
2

�
�

⌫y>1n
�

2

n
+ ⌫

�

y>1n
�

2

n

= ky �Xv � (1� ⌫)
y>1n
n

1nk2
2

+

⌫
�

(1� ⌫)y>1n
�

2

(1� ⌫)n

= min

b2R
ky �Xv � b1nk2

2

+

⌫n

1� ⌫
b2, (5.13)

since ky �Xv � b1nk2
2

+

⌫n
1�⌫

b2 can be optimized in closed form with respect to b as
b = (1 � ⌫)y

>
1n

n
. Note that the weighted imbalance ratio (1 � ⌫)y

>
1n

n
is made as an

optimization variable in Eq. (5.13). Thus we have the following reformulation

min

v2Rd, y2{�1,1}n

1

n
k⇧ny �Xvk2

2

+ ⌫
(y>1n)2

n2

= min

v2Rd,b2R, y2{�1,1}n

1

n
ky �Xv � b1nk2

2

+

⌫

1� ⌫
b2, (5.14)

which is a non-centered penalized formulation on a higher-dimensional problem in
the variable

�

v
b

� 2 Rd+1. In the rest of the chapter, we will focus on the case ⌫ = 1

for ease of exposition. This enables the use of the formulation in Eq. (5.12), which
is easier to optimize. It is worth noting that this is not an algorithmic restriction.
Of course any problem with ⌫ 2 [0, 1) can be treated with equal ease by adding a
constant term and a quadratic regularizer.

5.3 Regularization

There are several natural possibilities. We consider norms ⌦ such that ⌦(w)2 =

�(ww>
) for a certain convex function �; all norms have that form [Bach et al., 2012,

Proposition 5.1]. When ⌫ = 1, Eq. (5.12) then becomes

max

V <0

2

n

n
X

i=1

p

(XVX>
)ii � 1

n
tr(V X>X)� �(V ). (5.15)
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The quadratic regularizers �(V ) = tr⇤V have already been tackled by Bach and
Harchaoui [2007]. They consider the regularized version of problem in Eq. (5.3)

min

v2Rd

1

n
k⇧ny �Xvk2

2

+ v>⇤v, (5.16)

optimize in closed form with respect to v as v = (X>X + n⇤)�1X>y. Substituting v
in Eq. (5.16) leads them to

min

Y <0, diag(Y )=1

1

n
trY

�

⇧n �X(X>X + n⇤)�1X
�

.

In this chapter, we propose a novel sparse extension to discriminative clustering frame-
work with the square loss. Specifically we formulate a non-trivial sparse regularizer
which is a combination of weighted squared `

1

-norm and `
2

-norm. It leads to

�(V ) = tr[Diag(a)V Diag(a)] + kDiag(c)V Diag(c)k
1

, (5.17)

such that �(vv>) =

Pd
i=1

a2i v
2

i +

�

Pd
i=1

ci|vi|
�

2. This allows to treat all situations
simultaneously, with ⌫ = 1 or with ⌫ 2 [0, 1). To be more precise, when ⌫ 2 [0, 1),
we can consider in Eq. (5.14), a problem of size d+ 1 with a design matrix [X, 1n] 2
Rn⇥(d+1), a direction of projection

�

v
b

� 2 Rd+1 and different weights for the last
variable with ad+1

=

⌫
1�⌫

and cd+1

= 0.

Note that the sparse regularizers on V introduced in this chapter are significantly
different when compared to the sparse regularizers on variable v in Eq. (5.3), for ex-
ample, considered by Wang et al. [2013]. A straightforward sparse regularizer on v in
Eq. (5.3), despite leading to a sparse projection, does not yield natural generalizations
of the discriminative clustering framework in terms of theory or algorithms.

In our analysis and experiments for the balanced clusters (when ⌫ = 1), the sparse
regularization � = �k · k

1

, for � 2 R will often be considered. This is equivalent to
setting a = 0d and c =

p
�1d in Eq. (5.17). The problem in Eq. (5.15) then becomes

max

V <0

2

n

n
X

i=1

p

(XVX>
)ii � 1

n
tr(V X>X)� �kV k

1

. (5.18)

The sparse regularizers considered in this chapter have a significant algorithmic
appeal for certain applications in computer vision [Bojanowski et al., 2013, Alayrac
et al., 2016], audio processing [Lajugie et al., 2016] and natural language processing
[Grave, 2014]. They also lead to robust cluster recovery under minor assumptions
as will be illustrated on a simple example in Section 5.5. The practical benefits of
the sparse regularizers will be further demonstrated using empirical evaluation on
synthetic and real data sets in Section 5.7.
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5.4 Extension to Multiple Labels

The discussion so far has focussed on two clusters. Yet it is key in practice to
tackle more clusters. It is worth noting that the discrete formulations in Eq. (5.2) and
Eq. (5.5) extend directly to more than two clusters. However two different extensions
of the initial problems Eq. (5.2) or Eq. (5.5) are conceivable. They lead to problems
with different constraints on different optimization domains and, consequently, to
different relaxations. We discuss these possibilities next.

One extension is the multi-class case. The multi-class problem which is dealt with
by Bach and Harchaoui [2007] assumes that the data are clustered into K classes and
the various partitions of the data points into clusters are represented by the K-
class indicator matrices y 2 {0, 1}n⇥K such that y1K = 1n. The constraint y1K = 1n

ensures that one data point belongs to only one cluster. However as discussed by Bach
and Harchaoui [2007], by letting Y = yy>, it is possible to lift these K-class indicator
matrices into the outer convex approximations CK = {Y 2 Rn⇥n

: Y = Y >, diag(Y ) =

1n, Y < 0, Y 4 1

K
1n1

>
n } [Frieze and Jerrum, 1995], which is different for all values of

K. Note that letting K = 2 corresponds to the previous sections.

In this chapter, we consider a different novel extension for discriminative clustering
to the multi-label case. The multi-label problem assumes that the data share k labels
and the data-label membership is represented by matrices y 2 {�1,+1}n⇥k. In other
words, the multi-class problem embeds the data in the extreme points of a simplex,
while the multi-label problem does so in the extreme points of the hypercube.

The discriminative clustering formulation of the multi-label problem is

min

v2Rd⇥k, y2{�1,1}n⇥k

1

n
k⇧ny �Xvk2F , (5.19)

where the Frobenius norm is defined for any vector or rectangular matrix as kAk2F =

trAA>
= trA>A. Letting k = 1 here corresponds to the previous sections. The

discrete ensemble of matrices y 2 {�1,+1}n⇥k can be naturally lifted into Dk = {Y 2
Rn⇥n

: Y = Y >, diag(Y ) = k1n, Y < 0}, since diag(Y ) = diag(yy>) =

Pk
i=1

y2i,i =
k. As the optimization problems in Eq. (5.7) and Eq. (5.8) have linear objective
functions, we can change the variable from Y to ˜Y = Y/k to change the constraint
diag(Y ) = k1n to diag(

˜Y ) = 1n without changing the optimizer of the problem.
Thus the problems can be solved over the relaxed domain D = {Y 2 Rn⇥n

: Y =

Y >, diag(Y ) = 1n, Y < 0} which is independent of k.

Note that the domain D is similar to that considered in the problems in Eq. (5.8)
and Eq. (5.11) and these convex relaxations are the same regardless of the value of
k. Hence the multi-label problem is a more natural extension of the discriminative
framework, with a slight change in how the labels y are recovered from the solution
Y (we discuss this in Section 5.5.3).
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5.5 Theoretical Analysis
In this section, we provide the first theoretical analysis for the discriminative

clustering framework with the square loss. We start with the 2-clusters situation:
the non-sparse case is considered first and analysis is provided for both balanced and
imbalanced clusters. Our study for the sparse case currently only provides results for
the simple 1-sparse solution. However, the analysis also yields valuable insights on
the scaling between n and d. We then derive results for multi-label situation.

For ease of analysis, we consider the constrained problem in Eq. (5.7), the penal-
ized problem in Eq. (5.8) or their equivalent relaxations in Eq. (5.12) or Eq. (5.18)
under various scenarios, for which we use the same proof technique. We first try
to characterize the low-rank solutions of these relaxations and then show in certain
simple situations the uniqueness of such solutions, which are then non-ambiguously
found by convex optimization. Perturbation arguments could extend these results by
weakening our assumptions but are not within the scope of this chapter, and hence
we do not investigate them further in this section.

5.5.1 Analysis for 2 Clusters: Non-Sparse Problems

In this section, we consider several noise models for the problem, either adding
irrelevant dimensions or perturbing the label vector with noise. We consider these
separately for simplicity, but they could also be combined (with little extra insight).

Irrelevant Dimensions

We consider an “ideal” design matrix X 2 Rn⇥d such that there exists a direction
v along which the projection Xv is perfectly clustered into two distinct real values
c
1

and c
2

. Since Eq. (5.2) is invariant by affine transformation, we can rotate the
design matrix X to have X = [y, Z] with y 2 {�1, 1}n, which is clustered into +1

or �1 along the direction v =

�

1

0d�1

�

. Then after being centered, the design matrix
is written as X = [⇧ny, Z] with Z = [z

1

, . . . , zd�1

] 2 Rn⇥(d�1). The columns of Z
represent the noisy irrelevant dimensions added on top of the signal y.

Balanced Problem

When the problem is well balanced (y>1n = 0), y is already centered and ⇧ny = y.
Thus the design matrix is represented as X = [y, Z]. We consider here the penalized
formulation in Eq. (5.8) with ⌫ = 1 which is the only scenario where we are able to
provide a theoretical analysis.

Let us assume that the columns (zi)i=1,...,d�1

of Z are i.i.d. with symmetric distri-
bution z, with Ez = Ez3 = 0 and such that kzk1 is almost surely bounded by R � 0.
We denote by Ez2 = m its second moment and by Ez4/(Ez2)2 = � its (unnormalized)
kurtosis.

Surprisingly the clustered vector y happens to generate a solution yy> of the
relaxation Eq. (5.8) for all possible values of Z (see Lemma 35 in Appendix 5.D.2 ).
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However the problem in Eq. (5.8) should have a unique solution in order to always
recover the correct assignment y. Unfortunately the semidefinite constraint Y < 0

of the relaxation makes the second-order information arduous to study. Due to this
reason, we consider the other equivalent relaxation in Eq. (5.12) for which V⇤ = vv> is
also solution with v / (X>X)

�1X>y (see Lemma 36 in Appendix 5.D.3). Fortunately
the semidefinite constraint V < 0 of the problem in Eq. (5.12) may be ignored since
the second-order information in V of the objective function already provides unicity
for the unconstrained problem. Hence we are able to ensure the uniqueness of the
solution with high probability.

Proposition 19. Let us assume d � 3, � > 1 and m2 � ��3

2(d+��4)

:
(a) If n � d2R4

1+(d+�)m2

m2
(��1)

, V⇤ is the unique solution of the problem in Eq. (5.12) with
high probability.
(b) If n � d2R4

min{m2
(��1),2m2,2m} , v is the principal eigenvector of any solution of the

problem in Eq. (5.12) with high probability.

Let us make the following observations:
— Proof technique: The proof relies on a computation of the Hessian of f(V ) =

2

n

Pn
i=1

p

(XVX>
)ii� 1

n
trX>XV which is the objective function in Eq. (5.12).

We first derive the expectation of r2f(V ) with respect to the distribution of X.
By the law of large numbers, it amounts to have n going to infinity in r2f(V ).
Then we expand the spectrum of this operator Er2f(V ) to lower-bound its
smallest eigenvalue. Finally we use concentration theory on matrices, following
Tropp [2012], to bound the Hessian r2f(V ) for finite n.

— Effect of kurtosis: We remind that � > 1, with equality if and only if z
follows a Rademacher law (P(z = +1) = P(z = �1) = 1/2). Thus, if the noisy
dimensions are clustered, then unsurprisingly, our guarantee is meaningless.
Note that the constant � behaves like a distance of the distribution z to the
Rademacher distribution. Moreover, � = 3 if z follows a standard normal
distribution.

— Scaling between d and n: If the noisy variables are not evenly clustered
between the same clusters {±1} (i.e., � > 1), we recover a rank-one solution as
long as n = O(d3); while, as long as n = O(d2), the solution is not unique but
its principal eigenvector recovers the correct clustering. Moreover, as explained
in the proof, its spectrum would be very spiky.

— The assumption m2 � ��3

2(d+��4)

is generally satisfied for large dimensions. Note
that m2d is the total variance of the irrelevant dimensions, and when it is
small, i.e., when m2  ��3

2(d+��4)

, the problem is particularly simple, and we can
also show that V⇤ is the unique solution of the problem in Eq. (5.12) with high
probability if n � d2R4

m2 . Finally, note that for sub-Gaussian distributions (where
�  3), the extra constraint is vacuous, while for super-Gaussian distributions
(where � � 3), this extra constraint only appears for small m.

— This result provides the first guarantee for discriminative clustering. However
similar theoretical results have been derived for K-means by Ostrovsky et al.
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[2006] and Gaussian mixtures by Kalai et al. [2010], Moitra and Valiant [2010],
where separation conditions between the two clusters are derived, under which
the clustering problem is efficiently solved. It would be of great interest to relate
these separation conditions to our condition on n and d but this is outside the
scope of this work.

Noise Robustness for the 1-Dimensional Balanced Problem

We assume now that the data are one-dimensional and are perturbed by some
noise " 2 Rn such that X = y + " with y 2 {�1, 1}n. The solution of the relaxation
in Eq. (5.8) recovers the correct y in this setting only when each component of y and
y + " have the same sign (this is shown in Appendix 5.D.5). This result comes out
naturally from the information on whether the signs of y and y + " are the same or
not. Further if we assume that y and " are independent, this condition is equivalent
to k"k1 < 1 almost surely.

Unbalanced Problem

When the clusters are imbalanced (y>1n 6= 0), the natural rank-one candidates
Y⇤ = yy> and V⇤ = vv> are no longer solutions of the relaxations in Eq. (5.8) (for
⌫ = 1) and Eq. (5.12), as proved in Appendix 5.D.6. Nevertheless we are able to
characterize some solutions of the penalized relaxation in Eq. (5.8) for ⌫ = 0.

Lemma 28. For ⌫ = 0 and for any non-negative a, b 2 R such that a+ b = 1,

Y = ayy> + b1n1
>
n

is solution of the penalized relaxation in Eq. (5.8).

Hence any eigenvector of this solution Y would be supported by the directions y

and 1n. Moreover when the value ↵⇤ = (

1

>
n y
n
)

2 is known, it turns out that we can
characterize some solutions of the constrained relaxation in Eq. (5.7), as stated in the
following lemma.

Lemma 29. For ↵ � ↵⇤,

Y =

1� ↵

1� ↵⇤
yy> +

⇣

1� 1� ↵

1� ↵⇤

⌘

1n1
>
n

is a rank-2 solution of the constrained relaxation in Eq. (5.7) with constraint param-
eter ↵.

The eigenvectors of Y enable to recover y for ↵⇤  ↵ < 1. We conjecture (and
checked empirically) that this rank-2 solution is unique under similar regimes to those
considered for the balanced case. The proof would be more involved since, when ⌫ 6= 1,
we are not able to derive an equivalent problem in V for the penalized relaxation in
Eq. (5.8) similar to Eq. (5.12) for the balanced case. We also note that Lemmas 28
and 29 will be direct consequences of Lemma 32 in Section 5.5.3.

179



Thus Y being rank-2, one should really be careful and consider the first two
eigenvectors when recovering y from a solution Y . This can be done by rounding
the principal eigenvector of ⇧nY⇧n =

1�↵
1�↵⇤

⇧ny(⇧ny)> as discussed in the following
lemma.

Lemma 30. Let yev be the principal eigenvector of ⇧nY⇧n where Y is defined in
Lemma 29, then

sign(yev) = y.

Proof. By definition of Y , yev =

q

1�↵
1�↵⇤

⇧ny thus sign(yev) = sign(⇧ny) and since
↵  1 then sign(⇧ny) = sign(y �p

↵1n) = y.

In practice, contrary to the standard procedure, we should, for any ⌫, solve the
penalized relaxation in Eq. (5.8) and then do K-means on the principal eigenvector
of the centered solution ⇧nY⇧n instead of the solution Y to recover the correct y.
This procedure is followed in our experiments on real-world data in Section 5.7.2.

5.5.2 Analysis for 2 Clusters: 1-Sparse Problems

We assume here that the direction of projection v (such that Xv = y) is l-sparse
(by l-sparse we mean kvk

0

= l). The `
1

-norm regularized problem in Eq. (5.18) is
no longer invariant by affine transformation and we cannot consider that X = [y, Z]
without loss of generality. Yet the relaxation Eq. (5.18) seems experimentally to only
have rank-one solutions for the simple l = 1 situation. Hence we are able to derive
some theoretical analysis only for this case. It is worth noting the l = 1 case is simple
since it can be solved in O(d) by using K-means separately on all dimensions and
ranking them. Nonetheless the proposed scaling also holds in practice for l > 1 (see
Figure 5-1b).

Thereby we consider data X = [y, Z] with y 2 {�1, 1}n and Z 2 Rn⇥(d�1) which
are clustered in the direction v = [1, 0, . . . , 0]> 2 Rd. When adding a `

1

-penalty, the
initial problem in Eq. (5.5) for ↵ = 0 is

min

y2{�1,1}n, v2Rd

1

n
ky �Xvk2

2

+ �kvk2
1

. (5.20)

When optimizing in v this problem is close to the Lasso [Tibshirani, 1996] and a
solution is known to be v⇤i = (y>y + n�)�1y>y =

1

1+�
, 8i 2 J and v⇤i = 0, 8i 2

{1, 2, . . . , d} \ J, where J is the support of v⇤. The candidate V⇤ = v⇤v⇤> is still a
solution of the relaxation in Eq. (5.18) (see Lemma 39 in Appendix 5.E.1) and we
will investigate under which conditions on X this solution is unique. Let us assume
as before (zi)i=1,...,d are i.i.d. with distribution z symmetric with Ez = Ez3 = 0, and
denote by Ez2 = m and Ez4/(Ez2)2 = �. We also assume that kzk1 is almost surely
bounded by 0  R  1. We are able to ensure the uniqueness of the solution with
high-probability.
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Proposition 20. Let us assume d � 3.
(a) If n � dR2

1+(d+�)m2

m2
(��1)

, V⇤ is the unique solution of the problem Eq. (5.12) with high
probability.
(b) If n � dR2

m2
(��1)

, v⇤ is the principal eigenvector of any solution of the problem
Eq. (5.12) with high probability.

The proof technique is very similar to the one of Proposition 19. With the function
g(V ) =

2

n

Pn
i=1

p

(XVX>
)ii��kV k

1

� 1

n
trX>XV , we can certify that g will decrease

around the solution V⇤ by analyzing the eigenvalues of its Hessian.
The rank-one solution V⇤ is recovered by the principal eigenvector of the solution

of the relaxation Eq. (5.18) as long as n = O(d). Thus we have a much better scaling
when compared to the non-sparse setting where n = O(d2). We also conjecture a
scaling of order n = O(ld) for a projection in a l-sparse direction (see Figure 5-1b for
empirical results).

The proposition does not state any particular value for the regularizer parameter
�. This makes sense since the proposition only holds for the simple situation when
l = 1. We propose to use � = 1/

p
n by analogy with the Lasso.

5.5.3 Analysis for the Multi-Label Extension

In this section, the signals share k labels which are corrupted by some extra
noisy dimensions. We assume the centered design matrix to be X = [⇧ny, Z] where
y 2 {�1,+1}n⇥k and Z 2 Rn⇥(d�k). We also assume that y is full-rank 1. We denote
by y = [y

1

, . . . , yk] and ↵i =

⇣

y>i 1n

n

⌘

2

for i = 1, . . . , k. We consider the discrete
constrained problem

min

v2Rd⇥k, y2{�1,1}n⇥k

1

n
k⇧ny �Xvk2F such that

1

>
n yy

>
1n

n2

= ↵2, (5.21)

and the discrete penalized problem for ⌫ = 0

min

v2Rd⇥k, y2{�1,1}n⇥k

1

n
k⇧ny �Xvk2F . (5.22)

As explained in Section 5.4, these two discrete problems admit the same relax-
ations in Eq. (5.7) and Eq. (5.8) we have studied for one label. We now investigate
when the solution of the problems in Eq. (5.21) and in Eq. (5.22) generate solutions
of the relaxations in Eq. (5.7) and Eq. (5.8).

By analogy with Lemma 28, we want to characterize the solutions of these re-
laxations which are supported by the constant vector 1n and the labels (y

1

, . . . , yk).
Their general form is Y = ỹAỹ> where A 2 Rk⇥k is symmetric semi-definite positive
and ỹ = [1n, y]. However the initial y is easily recovered from the solution Y only

1. This assumption is fairly reasonable since the probability of a matrix whose entries are

i.i.d. Rademacher random variables to be singular is conjectured to be 1/2 + o(1) [Bourgain et al.,

2010].
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when A is diagonal. To that end the following lemma derives some condition under
which the only matrix A such that the corresponding Y satisfies the constraint of the
relaxations in Eq. (5.7) and Eq. (5.8) is diagonal.

Lemma 31. The solutions of the matrix equation diag(ỹAỹ>) = 1n with unknown
variable A are diagonal if and only if the family {1n, (yi)1ik, (yi � yj)1i<jk} is
linearly independent where we denoted by � the Hadamard (i.e., pointwise) product
between matrices.

In this way we are able to characterize the solution of relaxations in Eq. (5.7) and
Eq. (5.8) with the following result:

Lemma 32. Let us assume that the family {1n, (yi)1ik, (yi � yj)1i<jk} is linearly
independent. If ↵ � ↵

min

= min

1ik
{↵i} with (↵i)1ik defined above Eq. (5.21), the so-

lutions of the constrained relaxation in Eq. (5.7) supported by the vectors (1n, y1, . . . , yk)
are of the form:

Y = a2
0

1n1
>
n +

k
X

i=1

a2i yiy
>
i ,

where (ai)0ik satisfies
Pk

i=0

a2i = 1 and a2
0

+

Pk
i=1

a2i↵i = ↵.
Moreover the solutions of the penalized relaxation in Eq. (5.8) for ⌫ = 0 which are

supported by the vectors (1n, y1, . . . , yk) are of the form:

Y = a2
0

1n1
>
n +

k
X

i=1

a2i yiy
>
i ,

where (ai)0ik satisfies
Pk

i=0

a2i = 1.

In the multi-label case, some combinations of the constant matrix 1n1
>
n and the

rank-one matrices yiy>i are solutions of constrained or penalized relaxations. Fur-
thermore, under some assumptions on the labels (yi)1ik, these combinations are
the only solutions which are supported by the vectors (1n, y1, . . . , yk). And we conjec-
ture (and checked empirically) that under assumptions similar to those made for the
balanced one-label case, all the solutions of the relaxation are supported by the fam-
ily (1n, y1, . . . , yk) and consequently share the same form as in Lemma 32. Thus the
eigenvector of the solution Y would be in the span of the directions (1n, y1, . . . , yk).

Let us consider an eigenvalue decomposition of Y = FF>
=

Pk
i=0

�ieie>i and
denote by M = [a

0

1n, a1y1, . . . , akyk] where (ai)0ik are defined in Lemma 32. Since
MM>

= FF>, there is an orthogonal transformation R such that FR = M . We
also denote the product FR by FR = [⇠

0

, . . . , ⇠K ]. We propose now an alternating
minimization procedure to recover the labels (y

1

, . . . , yk) from M .

Lemma 33. Consider the optimization problem

min

M2M, R2Rk⇥k
: R>R=Ik

kFR�Mk2F ,
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where M = {[a
0

1n, a1y1, . . . , akyk], a 2 Rk+1

: kak
2

= 1, yi 2 {±1}n}.
Given M , the problem is equivalent to the orthogonal Procrustes problem [Schöne-

mann, 1966]. Denote by U�V > a singular value decomposition of F>M . The optimal
R is obtained as R = UV >. While given R, the optimal M is obtained as

M =

1

pk⇠
1

k2
1

+ k⇠
2

k2
1

+ . . .+ k⇠kk2
1

[k⇠
0

k
1

sign(⇠
0

), . . . , k⇠kk1 sign(⇠k)].

Proof. We give only the argument for the optimization problem with respect to M .
Given R, the optimization problem in M is equivalent to max

a2Rk+1
tr(FR)

>M s.t. kak
2

=

1, y 2 {�1, 1}n⇥k and tr(FR)

>M = a
0

⇠>
0

1n +
Pk

i=1

ai⇠>i yi . Thus by property of the
dual norms the solution is given by yi = sign(⇠i) and ai =

k⇠ik1p
k⇠1k21+k⇠2k21+...+k⇠kk21

.

The minimization problem in Lemma 33 is non-convex; however we observe that
performing few alternating optimizations is sufficient to recover the correct (y

1

, . . . , yk)
from M .

5.5.4 Discussion

In this section we studied the tightness of convex relaxations under simple scenar-
ios where the relaxed problem admits low-rank solutions generated by the solution
of the original non-convex problem. Unfortunately the solutions lose the character-
ized rank when the initial problem is slightly perturbed since the rank of a matrix is
not a continuous function. Nevertheless, the spectrum of the new solution is really
spiked, and thus these results are quite conservative. We empirically observe that the
principal eigenvectors keep recovering the correct information outside these scenar-
ios. However this simple proof mechanism is not easily adaptable to handle perturbed
problems in a straightforward way since it is difficult to characterize the properties of
eigenvectors of the solution of a semi-definite program. Hence we are able to derive
a proper theoretical study only for these simple models.

5.6 Algorithms

In this section, we present an optimization algorithm which is adapted to large n
settings, and avoids the n-dimensional semidefinite constraint.

5.6.1 Reformulation

We aim to solve the general regularized problem which correponds to Eq. (5.15)

max

V <0

2

n

n
X

i=1

p

(XVX>
)ii� 1

n
trV (X>X +nDiag(a)2)�kDiag(c)V Diag(c)k

1

. (5.23)
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We consider a slightly different optimization problem:

max

V <0

1

n

n
X

i=1

p

(XVX>
)ii � kDiag(c)V Diag(c)k

1

s.t. trV (

1

n
X>X +Diag(a)2) = 1. (5.24)

When c is equal to zero, then Eq. (5.24) is exactly equivalent to Eq. (5.23); when
c is small (as will typically be the case in our experiments), the solutions are very
similar—in fact, one can show by Lagrangian duality that by a sequence of problems
in Eq. (5.24), one may obtain the solution to Eq. (5.23).

5.6.2 Smoothing

By letting A=

X>X
n

+Diag(a)2, we consider a strongly convex approximation of
Eq. (5.24) as:

max

V <0

1

n

n
X

i=1

p

(XVX>
)ii � kDiag(c)V Diag(c)k

1

� " tr[(A
1
2V A

1
2
) log(A

1
2V A

1
2
)]

s.t. tr(A
1
2V A

1
2
) = 1, (5.25)

where � trM log(M) is a spectral convex function called the von Neumann en-
tropy [von Neumann, 1927]. The difference in the two problems is known to be
" log(d) [Nesterov, 2007]. As shown in Appendix 5.G.1, the dual problem is

min

u2Rn
+,C2Rd⇥d

:|Cij |6cicj

1

2n

n
X

i=1

1

ui

+ �"
�

A� 1
2
�

1

2n
X>

Diag(u)X � C
�

A� 1
2
�

, (5.26)

where �"
(M) is an "-smooth approximation to the maximal eigenvalue of the matrix

M .

5.6.3 Optimization Algorithm

In order to solve Eq. (5.26), we split the objective function into a smooth part
F (u, C) = �"

�

A� 1
2

�

1

2n
X>

Diag(u)X � C
�

A� 1
2

�

and a non-smooth part H(u, C) =

I|Cij |6cicj +
1

2n

Pn
i=1

1

ui
. We may then apply FISTA [Beck and Teboulle, 2009] updates

to the smooth function �"
(A� 1

2
(

1

2n
X>

Diag(u)X � C)A� 1
2
), along with a proximal

operator for the non-smooth terms I|Cij |6cicj and 1

2n

Pn
i=1

1

ui
, which may be computed

efficiently. See details in Appendix 5.G.2.

Running-time complexity. Since we need to project on the SDP cone of size d at
each iteration, the running-time complexity per iteration is O(d3 + d2n); given that
often n > d, the dominating term is O(d2n). It is still an open problem to make this
linear in d. Our function being O(1/")-smooth, the convergence rate is of the form
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O(1/("t2)). Since we stop when the duality gap is " log(d) (as we use smoothing, it
is not useful to go lower), the number of iterations is of order 1/("

p

log(d)). The
proposed algorithm is a clear improvement over the existing approach by Bach and
Harchaoui [2007] which is quadratic in n.

5.7 Experiments

We implemented the proposed algorithm in Matlab. The code is available in
https://drive.google.com/uc?export=download&id=0B5Bx9jrp7celMk5pOFI4UGt0ZEk.
Two sets of experiments were performed: one on synthetically generated data sets
and the other on real-world data sets. The details about experiments follow.

5.7.1 Experiments on Synthetic Data

In this section, we illustrate our theoretical results and algorithms on synthetic
examples. The synthetic data were generated by assuming a fixed clustering with
↵⇤ 2 [0, 1], along a single direction and the remaining variables were whitened. We
consider clustering error defined for a predictor ȳ as 1� (ȳ>y/n)2, with values in [0, 1]
and equal to zero if and only if y = ȳ.

Phase transition. We first illustrate our theoretical results for the balanced case
in Figure 5-1. We solve the relaxation in Eq. (5.12) and Eq. (5.18) for a large range
of d and n using the cvx solver [Grant and Boyd, 2008, 2014]. We show the results
averaged over 4 replications and take � = 1/

p
n for the sparse problems. In Figure 5-

1a we investigate whether cvx finds a rank-one solution for a problem of size (n, d) (the
value is 1 if the solution is rank-one and 0 otherwise). We compare the performance
of the algorithms without `

1

-regularization in the affine invariant case and with `
1

-
regularization in the 1-sparse case. We observe a phase transition with a scaling
over the form n = O(d2) for the affine invariant case and n = O(d) for the 1-sparse
case. This is better than what is expected by the theory and corresponds rather to
the performance of the principal eigenvector of the solution. It is worth noting that
it may be uncertain to really distinguish between a rank-one solution and a spiked
solution.

We also solve the relaxation for 4-sparse problems of different sizes d and n and plot
the clustering error. We compare, in Figure 5-1b, the performance of the formulation
in Eq. (5.12) (without `

1

-regularization) which corresponds to the affine invariant case,
against the `

1

-regularized formulation in Eq. (5.18). We notice a phase transition of
the clustering error with a scaling over the form n = O(d2) for the affine invariant case
and n = O(d) for the 4-sparse case. It supports our conjecture on the scaling of order
n = O(ld) for l-sparse problems. Comparing left plots of Figure 5-1a and Figure 5-1b,
we observe that the two phase-transitions occur at the same scaling between n and
d. Thus there are few values of (n, d) for which the cvx solver finds a solution whose
rank is stricly larger than one and whose principal eigenvector has a low clustering
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Figure 5-1 – Phase transition plots.

error. This illustrates, in practice, this solver aims to find a rank-one solution under
the improved scaling n = O(d2).

Unbalanced case. We generate an unbalanced problem for d = 10, n = 80 and
↵⇤ = 0.25 and we average the results over 10 replications. We compare the clustering
error for the constrained and the penalized relaxations in Eq. (5.7) and Eq. (5.8) when
we consider the sign of the first or second eigenvector and when we use projection
technique defined as (⇧nY(2)

⇧n)(1) where Y
(k) is the best rank-k approximation of Y ,

to extract the information of y. We see in Figure 5-2 that (a) for the constrained
case, the range of ↵ such that the sign of y is recovered is cut in two parts where
one eigenvector is correct, whereas the projection method performs well on the whole
set. (b) For the penalized case, the correct sign is recovered for ⌫ close to 0 by the
first eigenvector and the projection method whereas the second one performs always
badly. (c) When there is zero noise the rank of the solution is one for ↵ 2 {↵⇤, 1}, two
for ↵ 2 (↵⇤, 1) and greater otherwise. These findings confirm our analysis. However,
when y is corrupted by some noise this result is no longer true.

Runtime experiments. We generated data with a k-sparse direction of projec-
tion v by adding d�k noise variables to a randomly generated and rotated k-dimension
data. The scalability of the FISTA based optimization algorithm illustrated in Sec-
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Figure 5-2 – Unbalanced problem for n = 80, d = 10 and ↵⇤ = 0.25. Left: Clustering
error for the constrained relaxation. Middle: Rank of the solution for different level
of noise �. Right: Clustering error for the penalized relaxation.

tion 5.6.3 to solve Eq. (5.24) (with c =

p
�1d, a = 0d) was compared against a

benchmark cvx solver (which solves Eq. (5.18)). Experiments were performed for
� = 0 and � = 0.001, the coefficient associated with the sparse kV k

1

term. For
a fixed d, cvx breaks down for large n values (typically n > 1000). Similarly, the
runtime required by cvx is generally high for � = 0 and is comparable to our method
for � = 0.001. This behavior is illustrated in Figure 5-3.

When � = 0, the problem reduces exactly to the original Diffrac problem [Bach
and Harchaoui, 2007]. In the plots in Figure 5-3a our implementation using FISTA
is compared to the baseline Diffrac which is solved with max-cut SDP [Boumal et al.,
2014]. We observed that our method is comparable in terms of runtime and clustering
performance of low-rank methods for max-cut. However, for � > 0, the equivalence
with max-cut disappears.

The plots in these figures show the behavior of FISTA for two different stop-
ping criteria: " = 10

�2/ log(d) and " = 10

�3/ log(d). It is observed that the choice
10

�3/ log(d) gives a better accurate solution at the cost of more number of iterations
(and hence higher runtime). For sparse problems in Figure 5-3b, we see that cvx gets
a better clustering performance (while crashing for large n); the difference would be
reduced with a smaller duality gap for FISTA.

Clustering performance. Experiments comparing the proposed method (Eq. (5.24)
with c =

p
�1d and a = 0d solved using FISTA based optimization algorithm, and

Eq. (5.18) solved using benchmark cvx solver) with K-means and alternating opti-
mization are given in Figure 5-4. K-means is run on the whitened variables in Rd.
Alternating optimization is another popular method proposed by Ye et al. [2008] for
dimensionality reduction with clustering (where alternating optimization of w and y
is performed to solve the non-convex formulation (5.2)). The plots show that both K-
means and alternating optimization fail when only a few dimensions of noise variables
are present. The plots also show that with the introduction of a sparse regularizer
(corresponding to the non-zero �) the proposed method becomes more robust to noisy
dimensions. As observed earlier, the performance of FISTA is also sensitive to the
choice of ".

Finally we give a comparison of sparse discriminative clustering (cvx and FISTA)
with max-margin clustering [Li et al., 2009] in Figure 5-5. While square loss is used
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Figure 5-3 – Scalability experiments.
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Figure 5-4 – Comparison with k-means and alternating optimization, n = 100.

in our framework, hinge loss is used in max-margin clustering. We have also included
the behavior of K-means and alternating optimization methods in Figure 5-5 for
completeness. From this plot, it is clear that the max-margin clustering is sensitive
to noisy dimensions present in the data. Sparse discriminative clustering with square
loss is able to maintain zero cluster error for a large number of noisy dimensions,
while the performance of max-margin clustering starts deteriorating after adding a
few noisy dimensions. However, we note from Figure 5-5 that for large dimensions,
the hinge loss used in max-margin clustering is observed to provide a better solution
than the square loss used in our framework.

5.7.2 Experiments on Real-World Data

Experiments on two-class data. Experiments were conducted on real two-class
classification datasets 2 to compare the performance of sparse discriminative clustering
against non-sparse discriminative clustering, alternating optimization, K-means and
max-margin clustering algorithms. For sparse and non-sparse discriminative cluster-
ing, we consider the problem in Eq. (5.24) and the algorithm detailed in Section 5.6.3
(with the regularization c = 0 for the non-sparse case). The alternating optimization
method is described in Proposition 18. For the two-class datasets, the clustering per-
formance for a cluster ȳ 2 {+1,�1}n obtained from an algorithm under comparison,

2. The data sets were obtained from https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/

datasets/
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Figure 5-5 – Comparison with k-means, alternating optimization and max-margin
clustering (mmc), n = 100. The plots for FISTA, cvx and mmc correspond to the
best choice of regularization parameters.

was computed as 1 � (ȳ>y/n)2, where y is the original labeling. Here we explicitly
compare the output of clustering with the original labels of the data points.

The dataset details and clustering performance results are summarized in Ta-
ble 5.1. The experiments for discriminative clustering were conducted for differ-
ent values of a, c 2 {10�3, 10�2, 10�1}1d associated with the `

2

-regularizer and `
1

-
regularizer respectively. The range of cluster imbalance parameter was chosen to
be ⌫ 2 {0.01, 0.25, 0.5, 0.75, 1}. Note that for ⌫ 6= 1, the reformulation given in
Eq. (5.14) was used, as explained in Section 5.3 after Eq. (5.17). The results given
in Table 5.1 pertain to the best choices of these parameters. Similarly, the values
of regularization parameter for max-margin clustering [Li et al., 2009] were chosen
from the set {10�5, 10�4, 10�3, 10�2, 0.1, 1, 10} and the cluster balance parameter was
chosen from {0.1, 0.2, . . . , 0.9}. The results for alternating optimization and K-means
show the average cluster error (and standard deviation) over 10 different runs. These
results show that the cluster error is quite high for many datasets. This is primarily
due to the absence of an ambient low-dimensional clustering of the two-class data,
which can be identified by the simple linear model presented in this chapter. Since
K-means does not provide explicit dimensionality reduction, it might not be able to
take advantage of the existence of an ambient low-dimensional clustering of the two-
class data and its performance is poor. The results show that max-margin clustering
achieves best clustering performance on most datasets. This improved performance
of max-margin clustering may be due to the use of hinge loss, as opposed to square
loss used in discriminative clustering in this chapter. However for the heart dataset,
we note that the sparse version with the square loss performs significantly better than
the non-sparse version with the hinge loss (see additional experiments in Figure 5-
5). The results also show that adding sparse regularizers to discriminative clustering
helps in a better cluster identification when compared to the non-sparse case.
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Dataset n d Cluster Error
S. Non-S. Alternating K-means Max-margin

D.C. D.C. Optimization Clustering

Heart 270 3 0.52 0.61 0.97 ± 0.03 0.91 ± 0.09 0.93
Diabetes 768 8 0.88 0.88 0.91 ± 0.05 0.93 ± 0.06 0.88
Breast-cancer 683 10 0.15 0.15 0.48 ± 0.17 0.68 ± 0.24 0.15
Australian 690 14 0.5 0.5 0.88 ± 0.17 0.87 ± 0.21 0.5
Liver-disorder 345 6 0.97 0.97 0.99 ± 0.01 0.99 ± 0.01 0.73
Sonar 208 60 0.92 0.95 0.98 ± 0.02 0.99 ± 0.01 0.92
DNA(1 vs 2,3) 1400 180 0.75 0.83 0.99 ± 0.01 0.98 ± 0.02 0.71
a1a 1605 113 0.74 0.75 0.98 ± 0.02 0.8 ± 0.08 0.69
w1a 2270 290 0.11 0.11 0.92 ± 0.08 0.16 ± 0.06 0.11

Table 5.1 – Experiments on two-class datasets (S.D.C. means sparse discriminative
clustering, and Non-S. D.C. non sparse discriminative clustering.)

Experiments on real multi-label data. Experiments were also conducted on the
Microsoft COCO dataset 3 to demonstrate the effectiveness of the proposed method
in discovering multiple labels. We considered n = 2000 images from the dataset, each
of which was labeled with a subset of K = 80 labels. The labels identified the objects
in the images like person, car, chair, table, etc. and the corresponding features for
each image were extracted from the last layer of a conventional convolutional neural
network (CNN). The CNN was originally trained over the imagenet data [Krizhevsky
et al., 2012].

For each image in the dataset, we obtained d = 1000 features. We then performed
discriminative clustering on the 2000 ⇥ 1000 data matrix X and obtained the label
matrix Y which was then subjected to the alternating optimization procedure (see
Section 5.5.3).

It is clearly unlikely to recover perfect labels; therefore we now describe a way of
measuring the amount of information which is recovered. In order to extract mean-
ingful cluster information from the result so-obtained, we computed the correlation
matrix Yk⇧nYtrue where Ytrue is the n⇥K label matrix containing actual labels and ⇧n

is the n⇥n centering matrix In� 1

n
1n1

>
n . The k predicted labels are present in the Yk

matrix. In order to choose an appropriate value of k, we plotted Tr(�Ytrue�Yk
) (shown

in Figure 5-6 along with a K-means baseline), where �Yk
= Yk(Yk

>Yk)
�1Y >

k . From
these plots, we chose k = 30 to be a suitable value for our interpretation purposes.

After choosing an arbitrary value of k = 30, we plotted the correlations between
the actual and predicted labels. The heatmap of the normalized absolute correlations
is given in Figure 5-7, where the columns and rows corresponding to the 80 true labels
and 30 predicted labels respectively, are ordered according to the sum of squared
correlations (the top-scoring labels appear to the left-bottom). From this plot, we
extract following highly correlated labels: person, dining table, car, chair, cup, tennis
racket, bowl, truck, fork, pizza, showing that these labels were partially recovered by

3. Dataset obtained from http://mscoco.org/dataset

191



0 10 20 30 40 50 60 70 80
0

2

4

6

8

10

12

Num labels

T
r(
Φ
(Y

tr
u
e
)
*
Φ
(Y

k
))

 

 

alt−min

k−means

Figure 5-6 – Plot of Tr(�Ytrue�Yk
).

True labels

P
re

d
ic

te
d
 l
a
b
e
ls

 

 

0.02

0.04

0.06

0.08

0.1

0.12

Figure 5-7 – Heatmap of correlations, Yk⇧nYtrue with k = 30, with columns and rows
ordered according to the sum of squared correlations.

our unsupervised technique (note that the CNN features are learned with supervision
on the different dataset Imagenet, hence there is still some partial supervision).

5.8 Conclusion
In this chapter, we provided a sparse extension of the discriminative clustering

framework, and gave a first analysis of its theoretical performance in the totally
unsupervised situation, highlighting provable scalings between ambient dimension d,
number of observations and “clusterability” of irrelevant variables. We also proposed
an efficient algorithm which is the first of its kind to be linear in the number of
observations for discriminative clustering with the square loss. Our work could be
extended in a number of ways, e.g., extending the sparse analysis to l-sparse case with
higher l,extending the framework to nonlinear clustering using kernels, considering
related weakly supervised learning extensions [Joulin and Bach, 2012], going beyond
uniqueness of rank-one solutions, and improving the complexity of our algorithm
to O(nd), for example using stochastic gradient techniques.
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Appendix

5.A Joint Clustering and Dimension Reduction

Given y, we need to optimize the Rayleigh quotient w>X>yy>Xw
w>X>Xw

with a rank-one
matrix in the numerator, which leads to w = (X>X)

�1X>y. Given w, we will show
that the averaged distortion measure of K-means once the means have been optimized
is exactly equal to (y>⇧nXw)2/k⇧nyk2

2

. Given the data matrix X 2 Rn⇥d, K-means
to cluster the data into two components will tend to approximate the data points in
X by the centroids c

+

2 Rd and c� 2 Rd such that

X ⇡ (y + 1n)

2

c>
+

� (y � 1n)

2

c>� (since y 2 {�1, 1}n)

=

y

2

(c>
+

� c>�) +
1

2

1n(c
>
+

+ c>�).

The objective of K-means can now be written as problem KM:

min

y,c+,c�

�

�

�

�

X � y

2

(c>
+

� c>�)�
1

2

1n(c
>
+

+ c>�)

�

�

�

�

2

F

= min

y,c+,c�

�

�

�

�

X � (y + 1n)

2

c>
+

� (1n � y)

2

c>�

�

�

�

�

2

F

= min

y,c+,c�
kXk2F + kc>

+

k2F
�

�

�

�

(y + 1n)

2

�

�

�

�

2

+ kc>�k2F
�

�

�

�

(1� yn)

2

�

�

�

�

2

+2c>�c+
(y + 1n)

2

>
(1n � y)

2

� 2 trX>
✓

(y + 1n)

2

c>
+

+

(1n � y)

2

c>�

◆

= min

y,c+,c�
kXk2F + kc>

+

k2F
1

2

(n+ 1

>
n y) + kc>�k2F

1

2

(n� 1

>
n y)� 2c>

+

X>
✓

y + 1n

2

◆

�2c>�X
>
✓

1n � y

2

◆

.

Fixing y and minimizing with respect to c
+

and c�, we get closed-form expressions
for c

+

and c� as

c
+

=

X>
(y + 1n)

(n+ 1

>
n y)

and c� =

X>
(1n � y)

(n� 1

>
n y)

.
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Substituting these expressions in KM, we have the following optimization problem
in y:

min

y
kXk2F � 1

2

kX>
(y + 1n)k2F

(n+ 1

>
n y)

� 1

2

kX>
(1n � y)k2F

(n� 1

>
n y)

= min

y
kXk2F � 1

2

trXX>
(y + 1n)(y + 1n)

>

(n+ 1

>
n y)

� 1

2

trXX>
(1n � y)(1n � y)>

(n� 1

>
n y)

= min

y
kXk2F � 2

(n+ 1

>
n y)

trXX>
✓

y + 1n

2

◆✓

y + 1n

2

◆>

� 2

(n� 1

>
n y)

trXX>
✓

1n � y

2

◆✓

1n � y

2

◆>

= min

y
trXX> � 2

(n+ 1

>
n y)

trXX>
✓

y + 1n

2

◆✓

y + 1n

2

◆>

� 2

(n� 1

>
n y)

trXX>
✓

1n � y

2

◆✓

1n � y

2

◆>

= min

y
trXX>

✓

I � 1

2(n+ 1

>
n y)

(yy> + 1n1
>
n + y1>n + 1ny

>
)

� 1

2(n� 1

>
n y)

(1n1
>
n + yy> � 1ny

> � y1>n )

◆

.

By the centering of X, we have 1

>
nX = 0 and hence trXX>

1n1
>
n = trXX>

1ny> =

trXX>y1>n = 0. Therefore, we obtain

min

y
trXX>

✓

I � 1

2(n+ 1

>
n y)

(yy>)� 1

2(n� 1

>
n y)

(yy>)

◆

= min

y
trXX>

✓

I � (yy>)

✓

1

2(n+ 1

>
n y)

+

1

2(n� 1

>
n y)

◆◆

= min

y
trXX>

✓

I � (yy>)

✓

n

n2 � (1

>
n y)

2

)

◆◆

= min

y
trXX>

✓

I � nyy>

n2 � (1

>
n y)

2

◆

.

Thus we have the equivalent K-means problem as

min

y2{�1,1}n

1

n
trXww>X>

⇣

I � n

n2 � (y>1)2
yy>

⌘

= 1� max

y2{�1,1}n

(w>X>y)2

n2 � (y>1)2
.

Thus the averaged distortion measure of K-means with the optimized means is
(y>⇧nXw)

2

k⇧nyk22
.
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5.B Full (Unsuccessful) Relaxation

It is tempting to find a direct relaxation of Eq. (5.2). It turns out to lead to a
trivial relaxation, which we outline in this section. When optimizing Eq. (5.2) with
respect to w, we obtain max

y2{�1,1}n
y>X(X>X)

�1X>y
y>⇧ny

, leading to a quasi-convex relaxation

as max

Y <0,
diag(Y )=1

trY X(X>X)

�1X>

tr⇧nY
. Unfortunately, this relaxation always leads to trivial solu-

tions as described below.
Consider the quasi-convex relaxation

max

Y <0,diag(Y )=1

trY X(X>X)

�1X>

tr⇧nY
. (5.27)

By definition of ⇧n this relaxation is equal to:

max

Y <0,diag(Y )=1

1

n

trY X(X>X)

�1X>

1� 1

>
n Y 1n

n2

.

Let A = {Y < 0, diag(Y ) = 1} the feasible set of this problem and define B = {M <
0, diag(M) = 1 +

1

>
nM1n

n2 }. Let Y 2 A, then M defined by M =

Y

1� 1>n Y 1n
n2

belongs to

B since 1 +

1

>
nM1n

n2 = 1 +

1

>
n Y 1n

n2�1

>
n Y 1n

=

1

1� 1>n Y 1n
n2

= diag(M). Reciprocally for M 2 B,

we can define Y =

M

1+

1>n M1n
n2

, such that diag(Y ) = 1 and Y 2 A and then verify that

M =

Y

1� 1>n Y 1n
n2

. Thus the problem Eq. (5.27) is equivalent to the relaxation

max

M<0,diag(M)=1+

1>n M1n
n2

1

n
trMX(X>X)

�1X>. (5.28)

The Lagrangian function of this problem can be written as:

L(µ) = trMX(X>X)

�1X> � µ

n

>
[diag(M)� 1n � 1

>
nM1n

n2

1n]

= trM [X(X>X)

�1X> �Diag(µ) +
1

>
nµ

n2

1n1
>
n ] +

1

n
µ>

1n.

Using L(µ) and the PSD constraint M < 0, the dual problem is given by

min

µ

µ>
1n

n
s.t. Diag(µ)� 1

>
nµ

n2

1n1
>
n < X(X>X)

�1X>.

Since X(X>X)

�1X> < 0, this implies for the dual variable µ:

Diag(µ)� 1

>
nµ

n2

1n1
>
n < 0 , 1

>
n Diag(µ)�1

1n  n2

µ>
1n
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,
n
X

i=1

1

µi

 n2

Pn
i=1

µi

, 1

n

n
X

i=1

1

µi

 1

1

n

Pn
i=1

µi

.

However for ⌫ 2 Rn , the harmonic mean
⇥

1

n

Pn
i=1

1

⌫i

⇤�1 is always smaller than the
arithmetic mean 1

n

Pn
i=1

⌫i with equality if and only if ⌫ = c1n for c 2 R.
Thus the dual variable µ is constant and the diagonal constraint simplifies itself

as a trace constraint. Therefore the problem is equivalent to the trivial relaxation
whose each eigenvector of X(X>X)

�1X> is solution

max

M<0, tr(M)=n+
1>n M1n

n

trMX(X>X)

�1X>.

5.C Equivalent Relaxation

5.C.1 First Equivalent Relaxation

We start from the penalized version of Eq. (5.5),

min

y2{�1,1}n, v2Rd

1

n
k⇧ny �Xvk2

2

+ ⌫
(y>1n)2

n2

, (5.29)

which we expand as:

min

y2{�1,1}n, v2Rd

1

n
tr⇧nyy

> � 2

n
trXvy> +

1

n
trX>Xvv> + ⌫

(y>1n)2

n2

, (5.30)

and relax as, using Y = yy>, P = yv> and V = vv>,

min

V,P,Y

1

n
tr⇧nY � 2

n
trP>X +

1

n
trX>XV + ⌫

1

>
nY 1n

n2

s.t.
✓

Y P
P> V

◆

< 0, diag(Y ) = 1. (5.31)

When optimizing Eq. (5.31) with respect to V and P , we get exactly Eq. (5.8). Indeed
we solve this problem by fixing the matrix Y such that Y = Y

0

and diag(Y
0

) = 1n.
Then the Lagrangian function of the problem in Eq. (5.31) can be written as

L(A) =

1

n
tr⇧nY � 2

n
trP>X +

1

n
trX>XV + ⌫

1

>
nY 1n

n2

+ trA(Y � Y
0

)

=

✓

Y P
P> V

◆✓

1

n
⇧n +

⌫
n21n1

>
n + A �1

n
X

�1

n
X> 1

n
X>X

◆

� trAY
0

.
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Using L(A) and the psd constraint
✓

Y P
P> V

◆

< 0, we write the dual problem as

min

A
trAY

0

s.t.
✓

1

n
⇧n +

⌫
n21n1

>
n + A �1

n
X

�1

n
X> 1

n
X>X

◆

< 0.

From the Schur’s complement condition of
✓

1

n
⇧n +

⌫
n21n1

>
n + A �1

n
X

�1

n
X> 1

n
X>X

◆

< 0, we

obtain 1

n
⇧n +

⌫
n21n1

>
n + A < 1

n
X(X>X)

�1X>. Substituting the bound for A we get
the optimal objective function value

D⇤
=

1

n
trX(X>X)

�1X>Y
0

� 1

n
tr⇧nY0

� ⌫

n2

1

>
nY0

1n.

Note that the optimal dual objective value D⇤ corresponds to a fixed Y
0

. Hence by
maximizing with respect to Y we obtain exactly Eq. (5.8) and therefore, the convex
relaxation in Eq. (5.11) is equivalent to Eq. (5.8). Moreover the Karush-Kuhn-Tucker
(KKT) conditions gives

P> �X + V X>X = 0 and � Y X + PX>X = 0

Thus the optimum is attained for P=Y X(X>X)

�1 and V=(X>X)

�1X>Y X(X>X)

�1.

5.C.2 Second Equivalent Relaxation

For ⌫ = 1, we solve the problem in Eq. (5.31) by fixing the matrix V = V
0

. Then
the Lagrangian function of this problem can be written as

ˆL(µ,B) =

1

n
tr⇧nY � 2

n
trP>X +

1

n
trX>XV + ⌫

1

>
nY 1n

n2

+µ>
(diag(Y )� 1n) + trB(V � V

0

)

=

✓

Y P
P> V

◆✓

1

n
In + diag(µ) �1

n
X

�1

n
X> 1

n
X>X +B

◆

� µ>
1n � trBV

0

.

Using ˆL(µ,B) and the psd constraint
✓

Y P
P> V

◆

< 0, the dual problem is given by

min

µ,B
µ>

1n + trBV
0

s.t.
✓

1

n
In + diag(µ) �1

n
X

�1

n
X> 1

n
X>X +B

◆

< 0.

From the Schur’s complement condition of
✓

1

n
In + diag(µ) �1

n
X

�1

n
X> 1

n
X>X +B

◆

< 0, we

obtain B < 1

n2X>
diag(µ+1n/n)�1X � 1

n
X>X. Substituting the bound for B we get

the dual problem as

min

µ
µ>

1n +
1

n2

trV
0

X>
diag(µ+ 1n/n)

�1X � 1

n
trV

0

X>X

197



min

µ

n
X

i=1

 

µi +
1

n2µi + n
x>
i V0

xi

!

� 1

n
trV

0

X>X.

Solving for µi, we get
µ⇤
i =

1

n

q

x>
i V0

xi � 1

n
.

Substituting µ⇤
i into the dual obkective function, we get the optimal objective function

value
ˆD =

2

n

n
X

i=1

p

(XVX>
)ii � 1� 1

n
trV

0

X>X.

Furthermore the KKT conditions gives

Y diag(⌫ + 1n/n)� 1

n
PX>

= 0 and P>
diag(⌫ + 1n/n)� 1

n
V X>

= 0.

Thus we obtain the following closed form expressions:

P = Diag(diag(XVX>
))

�1/2XV

Y = Diag(diag(XVX>
))

�1/2XVX>
Diag(diag(XVX>

))

�1/2.

The optimal dual objective value ˆD corresponds to a fixed V
0

. Therefore, maximizing
with respect to V leads to the problem:

min

V <0

1� 2

n

n
X

i=1

p

(XVX>
)ii +

1

n
tr(V X>X). (5.32)

5.D Auxiliary Results for Section 5.5.1

5.D.1 Auxiliary Lemma

The matrix X(X>X)

�1X> has the following properties [see, e.g., Freedman, 2009].

Lemma 34. The matrix H = X(X>X)

�1X> is the orthogonal projection onto the
column space of the design matrix X since:

— H is symmetric.
— H is idempotent (H2

) = H.
— X is invariant under H, that is HX = X.

5.D.2 Rank-One Solution of the Relaxation Eq. (5.8)

We denote by (xi)i=1...n the lines of X.

Lemma 35. The rank-one solution Y⇤ = yy> is always solution of the relaxation
Eq. (5.8).
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Proof. We give an elementary proof of this result without using convex optimization
tools. Using lemma 34 we have Hy = y, thus

trHY⇤ = trHyy> = tr yy> = n.

Moreover all M < 0 can always be decomposed as
Pn

i=1

�iuiu>
i with �i � 0 and

(ui)i=1,...,n an orthonormal family. Since H is an orthogonal projection (ui)
>Hui =

(Hui)
>Hui = kHuik2  kuik2  1. Thus

trHM =

n
X

i=1

�i trHui(ui)
>
=

n
X

i=1

�i(ui)
>Hui


n
X

i=1

�i = trM.

Then for all matrix M feasible we have trHM  n since diag(M) = 1n and trHY⇤ =

n which conclude the lemma.

5.D.3 Rank-One Solution of the Relaxation Eq. (5.12)

Lemma 36. The rank-one solution V⇤ = vv> is always solution of the relaxation
Eq. (5.12).

Proof. The Karush-Kuhn-Tucker (KKT) optimality conditions for the problem are
for the dual variable A 4 0:

1

n

n
X

i=1

xix>
i

p

x>
i V xi

� 1

n
XX>

= A and AV = 0 (Complementary Slackness).

Since x>
i w = yi,

p

x>
i V⇤xi = |yi| = 1, V⇤ and the dual variable A = 0 satisfy the KKT

conditions and then V⇤ is solution of this problem.

5.D.4 Proof of Proposition 19

In the following lemma, we use a Taylor expansion to lower-bound f around its
minimum.

Lemma 37. For d � 3 and � 2 [0, 1).
If � � 3 and m2  ��3

2(d+��4)

, then with probability at least 1� d exp
�� �2nm2

2R4d2

�

, for
any symmetric matrix �:

f(V⇤)� f(V⇤ +�) > 2(1� �)m2k�k2F + o(k�k2) � 0.

Otherwise with probability at least 1� d exp
�� �2nµ1

4R4d2

�

, for any symmetric matrix
�:

f(V⇤)� f(V⇤ +�) > (1� �)µ
1

k�k2F + o(k�k2) � 0,
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with µ
1

� m2
(��1)

1+(d+��2)m2 . Moreover we also have with probability at least 1 � d exp
� �

�2nµ2

4R4d2

�

, for any symmetric matrix � 2 �

?
min

:

f(V⇤)� f(V⇤ +�) > (1� �)µ
2

k�k2F + o(k�k2) � 0,

where µ
2

= min{2m2,m2

(� � 1), 2m} and �

min

=

✓

1 0

0 c
min

Id�1

◆

is defined in the

proof and satisfies
|c

min

|  m

|(d+ � � 2)m2 � 1| .

This lemma directly implies Proposition 19.

Proof. For � 2 S(d) and � 2 R we compute for f(V ) =

1

n

Pn
i=1

p

x>
i V xi,

d2

d�2
f(V + ��) = � 1

4n

n
X

i=1

(x>
i �xi)

2

p

x>
i (V + ��)xi

3

.

Thus the second directional derivative in V = V⇤ along � is

r2

�

f(V⇤) = lim

�!0

d2

d�2
f(V + ��) = � 1

4n

n
X

i=1

(x>
i �xi)

2.

Let Tx be the semidefinite positive quadratic form of S(d) defined for � 2 S(d), by

Tx : � 7! (x>
�x)2. (5.33)

Then it exists a positive linear operator Tx from S(d) to S(d) such that Tx(�) =

h�, Tx�i.
Therefore the function f will be stricly concave if for all directions � 2 S(d)

1

n

n
X

i=1

Txi(�) > 0. (5.34)

We will bound the empirical expectation in Eq. (5.34) by first showing that its
expectation remains away from 0. Then we will use a concentration inequality for
matrices to control the distance between the sum in Eq. (5.34) and its expectation.

We first derive conditions so that the result is true in expectation, i.e. for the
operator T defined by T = ETx for x following the same law as (y, z>)>. We denote
by m = Ez2 and by � = Ez4/m2 its kurtosis.

We let � =

✓

a b>

b C

◆

and then have x>
�x = a+ 2yb>z + z>Cz. Thus

Tx(�) = a2 + 4ayb>z + 2az>Cz + 4b>(zz>)b+ (z>Cz)2 + 4yb>z(z>Cz).

Therefore we can express the value of the operator T only in function of the elements
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of �:

T (�) = (a+m trC)

2

+4mkbk2
2

+2m2kC�Diag(diag(C))k2F +m2

(�� 1)k diag(C)k2,

where we have used

E(z>Cz)2 = E
X

i,j,k,l

zizjzkzlci,jck,l

= E
X

i

(zi)
4c2i,i + E

X

i,k 6=i

z2i z
2

kci,ick,k + 2E
X

i,j 6=i

z2i z
2

j c
2

i,j

= �m2

X

i

c2i,i +m2

X

i,k 6=i

ci,ick,k + 2m2

X

i,j 6=i

c2i,j

= m2

(� � 3)

X

i

c2i,i +m2

X

i,k

ci,ick,k + 2m2

X

i,j

c2i,j

= m2

(� � 3)k diag(C)k2 +m2

�

2kCk2F + tr(C)

2

�

= m2

(� � 3)k diag(C)k2 +m2

�

2kC �Diag(diag(C))k2F + tr(C)

2

�

.

Since � � 1, we get

T (�) � (a+m trC)

2

+ 4mkbk2
2

+ 2m2

(kCk2F � k diag(C)k2).

Thus T (�) = 0 if and only if � = 1 with b = 0d�1

and C = diag(c) with c>1d = � a
m2

.
With the condition � = 1 meaning that var(z2) = 0 and thus z2 is constant a.s., i.e.
z follows a Rademacher law.

However we would like to bound T (�) away from zero by some constant and for
that we are looking for the smallest eigenvalue of the operator ETx. Unfortunately
we are not able to solve the optimization problem

min

�2S(d),k�k2F=1

T (�),

and we have to compute all the spectrum of this operator to be able to find the
smallest using ETx� = 1/2rT (�) .

We have

1/2rT (�) =

0

@

a+m tr(C) 2mb>

2mb (a+m tr(C))m
2

Id�1

+ 2m2C
+m2

(� � 3)Diag(diag(C))

1

A .

— For all b 2 Rd�1 we have for � =

✓

0 b>

b 0

◆

, 1/2rT (�) = 2m�. Thus 2m is an

eigenvalue of multiplicity d� 1.

— For all C 2 R(d�1)⇥(d�1) with diag(C) = 0d�1

we have for � =

✓

0 0

0 C

◆

,

1/2rT (�) = 2m2

�. Thus 2m2 is an eigenvalue of multiplicity (d�1)(d�2)

2

.
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— For all c 2 Rd�1 with c>1d�1

= 0 we have for � =

✓

0 0

0 diag(C)

◆

,

1/2rT (�) = m2

(��1)�. Thus m2

(��1) is an eigenvalue of multiplicity d�2.

— For all a, c 2 R2 we have for � =

✓

a 0

0 cId�1

◆

,

1/2rT (�) =

✓

a+m(d� 1)c 0

0 [ma+m2

(d+ � � 2)c]Id�1

◆

= Diag

h

✓

1 m1

>
d�1

m1d�1

(d+ � � 2)m2Id�1

◆✓

a
c1d�1

◆

i

.

Thus an eigenvalue of
✓

1 (d� 1)m
m (d+ � � 2)m2

◆

with an eigenvector [a, c]> would

be an eigenvalue of the operator ETx with a corresponding eigenvector
✓

a 0

0 cId�1

◆

.

This matrix has two simple eigenvalues

µ± =

1 + (d+ � � 2)m2 ±p(1 + (d+ � � 2)m2

)

2 � 4m2

(� � 1)

2

. (5.35)

Moreover when we add all the multiplicity of the found eigenvalues we get d � 1 +

(d�1)(d�2)

2

+d�2+2 =

d(d+1)

2

which is the dimension of S(d), therefore we have found
all the eigenvalues of the linear operator ETx.

We will prove now than the smallest eigenvalue is µ� when the dimension d is
large enough with regards to m2 and 2m2 otherwise.

Lemma 38. Let µ
1

and µ
2

be the two smallest eigenvalues of the operator ETx. Let
us assume that d � 3 (the case d = 2 will also be done in the proof).

If � � 3 and m2  ��3

2(d+��4)

then

µ
1

= 2m2.

Otherwise

µ
1

= µ� � m2

(� � 1)

1 + (d+ � � 2)m2

and µ
2

= min{2m2,m2

(� � 1), 2m}.

Moreover we denote by �

min

=

✓

1 0

0 c
min

Id�1

◆

the eigenvector associated to µ�

for which we have set without loss of generality the first component a = 1. Then

|c
min

|  m

|(d+ � � 2)m2 � 1| .

Unfortunately µ� can become small when the dimension increases as explained
by the tight bound µ� � m2

(��1)

1+(d+��2)m2 . However the corresponding eigenvector have a
particular structure we will be able to exploit.
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Proof. First we note that µ�  m2

(� � 1) and compute

µ� � 2m2 , 1 + (d+ � � 2)m2 �
p

(1 + (d+ � � 2)m2

)

2 � 4m2

(� � 1)� 4m2 � 0

, 1 + (d+ � � 2)m2 � 4m2 �
p

(1 + (d+ � � 2)m2

)

2 � 4m2

(� � 1)

, (1 + (d+ � � 2)m2 � 4m2

)

2 � (1 + (d+ � � 2)m2

)

2 � 4m2

(� � 1)

and 1 + (d+ � � 6)m2 � 0

, 16m4 � 8m2

(1 + (d+ � � 2)m2

) � �4m2

(� � 1)

and 1 + (d+ � � 6)m2 � 0

, 2(d+ � � 4)m2  � � 3 and 1 + (d+ � � 6)m2 � 0.

— If d = 2,
— If �  3 we have necessary that �  2 and the first equation gives m2 �

3��
2(2��)

and the second m2  1/(4��). Thus we should have (4��)(3��) 
2(2� �) which is not possible since the polynomial �2 � 5� + 8 � 0.

— If � � 3, the first equation gives m2  ��3

2(��2)

 1 and the second m2 
1/(4� �)  ��3

2(��2)

 1 for �  4 and is always satisfied otherwise.
— If d � 3, the first equation implies that � � 3 for which the second equation is

always satisfied. It also implies that m2  ��3

2(d+��4)

 1.

We denote by �

min

=

✓

1 0

0 c
min

Id�1

◆

the eigenvector for which we have set without

loss of generality a = 1 and

c
min

=

�1

2(d� 1)m

h

p

((d+ � � 2)m2 � 1)

2

+ 4(d� 1)m2 � (d+ � � 2)m2

+ 1

i

.

Consequently c
min

 0 and by convexity of the square root we have

p

((d+ � � 2)m2 � 1)

2

+ 4(d� 1)m2  ((d+ � � 2)m2 � 1) +

2(d� 1)m2

|(d+ � � 2)m2 � 1| .

Therefore
|c

min

|  m

|(d+ � � 2)m2 � 1| .

We will control now the behavior of the empirical expection by its expectation
thanks to concentration theory. By definition Tx is a symmetric positive linear oper-
ator as its projection T?

x onto the orthogonal space of �
min

. We can thus apply the
Matrix Chernoff inequality from Tropp [2012, Theorem 5.1.1] to these two operators
using kTxkop  kxx>k2  tr(xx>

)

2  kxk4
2

 R4d2 Then:

P
 

�
min

⇣

X

k=1

Txk

⌘

 n�µ
1

!

 d
he�(1��)

��

inµ1/(2R4d2)

 de�(1��)2nµ1/(4R4d2),
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P
 

�
min

⇣

X

k=1

T?
xk

⌘

 n�µ
2

!

 d
he�(1��)

��

inµ2/(2R4d2)

 de�(1��)2nµ2/(4R4d2),

For m = 1 and d � 3 we have µ
1

= µ� � ��1

�+d
� min{��1

2�
, ��1

2d
} � min{1/3, ��1

2d
}.

5.D.5 Noise Robustness for the 1-Dimensional Balanced Prob-
lem

We want a condition on " such that the solution of the relaxation recovers the
right y. We recall the dual problem of the relaxation Eq. (5.8)

minµ>
1n s.t. Diag(µ) < X(X>X)

�1X>.

The KKT conditions are:
— Dual feasibility: Diag(µ) < X(X>X)

�1X>.
— Primal feasibility: Diag(Y ) = 1n and Y < 0.
— Complimentary slackness : Y [Diag(µ)�X(X>X)

�1X>
] = 0

For Y = yy> a rank one matrix, the last condition implies Diag(µ)y = Hy and

µi =
(X(X>X)

�1X>y)i
yi

.

For X = y+", we denote by ỹ = y+", then X(X>X)

�1X>
=

ỹỹ>

kỹk2 and X(X>X)

�1X>y =

ỹ>y
kỹk2 ỹ. Thus

µi =
ỹ>y

kỹk2
ỹi
yi
.

Assume that all ỹiyi have the same sign, without loss of generality we assume ỹiyi > 0.
By definition of µ, µ � 0. To show the dual feasibility we have to show that Diag(µ) <
H which is equivalent to Diag(

ỹi
yi
) < ỹỹ>

ỹ>y
, to In � Diag(

q

yi
ỹi
)

ỹỹ>

ỹ>y
Diag(

q

yi
ỹi
) < 0 and

to
P

yiỹi  ỹ>y which is obviously true. Reciprocally if µ is dual feasible then
Diag(µ) < 0 and all the ỹiyi have the same sign.

Therefore we have shown that y is solution of the relaxation Eq. (5.8) if and only
if all the ỹiyi have the same sign. If " and y are independent this is equivalent to
k"k1  1 a.s.

5.D.6 The Rank-One Candidates Are Not Solutions of the Re-
laxation

We assume now that 1>n y 6= 0 thus y 6= ⇧ny, which means we do not have the same
proportion in the two clusters. Let us assume that ⇧ny takes two values {⇡y�, ⇡y+}
that is by definition of ⇧n ⇡y+ = 1 � 1

>
n y
n

and ⇡y� = �1 � 1

>
n y
n

. For V⇤ defined as
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before, we get x>
i V⇤xi = (⇡yi)2 and with I± the set of indices such that ⇧nyi = ⇡y±,

the KKT conditions for V = V⇤ can be written as

1

n

h

X

i2I+

⇣

1

⇡y
+

� 1

⌘

xix
>
i +

X

i2I�

⇣

1

�⇡y� � 1

⌘

xix
>
i

i

= An 4 0 and AnV⇤ = 0.

We check that with n± = #{I±}:

w>Anw = 0 =

X

i2I+

⇣

1

⇡y
+

� 1

⌘

(⇡y
+

)

2

+

X

i2I�

⇣

1

�⇡y� � 1

⌘

(⇡y�)
2

= n
+

⇣

1

⇡y
+

� 1

⌘

(⇡y
+

)

2

+ n�

⇣

1

�⇡y� � 1

⌘

(⇡y�)
2

= n
+

⇡y
+

� n�⇡y� � �n
+

(⇡y
+

)

2

+ n�(⇡y�)
2

�

= y>⇧ny � (⇧ny)
>
⇧ny = y>⇧ny � y>⇧ny = 0.

And An =

1

2n

⇥

P

i2I+ ↵+

xix>
i +

P

i2I� ↵�xix>
i

⇤

with ↵
+

=

�

1

⇡y+
� 1

�

and ↵� =

�

1

�⇡y�
� 1

�

. Unfortunately ↵
+

↵�  0, and An is not necessary negative. Even worse
we will show that EA is not semi-definite negative which will conclude the proof since
by the law of large number lim

n!1
1

n
An = EA. Assume that the proportions of the two

clusters stay constant with n± = ⇢±n, then

EA = ⇢
+

↵
+

✓

(⇡y
+

)

2

0

0 I

◆

+ ⇢�↵�

✓

(⇡y�)2 0

0 I

◆

.

And ⇢
+

↵
+

(⇡y
+

)

2

+ ⇢�↵�(⇡y�)2 = 0 since w>Anw = 0. Then

⇢
+

↵
+

+ ⇢�↵� =

⇢
+

⇡y� � ⇢�⇡y+ � ⇡y
+

⇡y�
⇡y

+

⇡y�

=

�(⇢
+

+ ⇢�)� 1

>
n y
n
(⇢

+

� ⇢�) + (1� (1

>
n y)

2

)

�(1� (

1

>
n y
n
)

2

)

=

1

>
n y
n
(⇢

+

� ⇢�) + (

1

>
n y
n
)

2

)

(1� (

1

>
n y
n
)

2

)

=

2(

1

>
n y
n
)

2

(1� (

1

>
n y
n
)

2

)

� 0.

Thus A =

2(1

>
n y)2

(n2�(1

>
n y)2)

✓

0 0

0 I

◆

is not semi-definite negative and V⇤ is not solution of

the relaxation Eq. (5.12).

5.E Auxiliary Results for Sparse Extension

5.E.1 There Is a Rank-One Solution of the Relaxation Eq. (5.18)

Lemma 39. The rank-one solution V⇤ = v⇤v⇤> is solution of the relaxation Eq. (5.18)
if the design matrix X is such that 1

n
X>X has all its diagonal entries less than one.
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Proof. The KKT conditions are

1

n

n
X

i=1

xix>
i

p

x>
i Wxi

� �U � 1

n
X>X = A 4 0 and AW = 0,

with U such that Uij = sign(Wij) if Wij 6= 0 and Uij 2 [�1, 1] otherwise. For
V⇤ = v⇤v⇤> this gives

A =

(1 + �)

n
X>X � �U � 1

n
X>X = �

hX>X

n
� U

i

,

with U
1,1 = 1, and Ui,j 2 [�11] otherwise. We check that AV⇤ = 0. If the design

matrix X satsifies assumption (A1), we can choose a sub-gradient U such that the
dual variable A = 0 and thus V⇤ is solution. Otherwise by property of semi-definite
matrices, there is a diagonal entry of 1

n
X>X which is bigger than 1 which prevents A

to be semi-definite negative since the corresponding diagonal entry of X>X
n

� U will
be positive. This shows that V⇤ does not solve the problem.

5.E.2 Proof of Proposition 20

Lemma 40. For � 2 [0, 1), with probability 1 � 5d2 exp
� � �2n(��1)

2dR4
(1/m2

+�+d)

�

, for any
direction � such that V⇤ +� < 0, we have:

g(V⇤)� g(V⇤ +�) > (1� �)
h

�k��Diag(�)k
1

+

� � 1

� + d+ 1/m2

(1 + �)3

4

kDiag(�)k2
2

i

+o(k�k2)
� 0.

Moreover we also have with probability at least 1 � 5d2 exp
� � �2nm2

(��1)

2dR4

�

, for any
symmetric matrix � such that V⇤ +� < 0 and Diag(�) 2 (e

min

)

?:

g(V⇤)�g(V⇤+�)>(1��)
h

�k��Diag(�)k
1

+m2

(��1)

(1+�)3

4

kDiag(�)k2
2

i

+o(k�k2)�0.

where e
min

= [1, c
min

1d�1

] is defined in the proof and satisfies

|c
min

|  m

|(d+ � � 2)m2 � 1| .

Proof Outline

We will investigate under which conditions on X the solution is unique, first for
a deterministic design matrix. We make the following deterministic assumptions on
X for �, ⇣ � 0 and S ⇢ Rd:
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(A1) kX>X
n

k1  1 (A3) kZ>Z
n

�Diag(diag(

1

n
Z>Z))k1  �

(A2) kZ>y
n

k1  � (A4) �S
min

�X�2
(X�2

)

>

n

� � ⇣ > 0.

Where we denoted by � the Hadamard (i.e., pointwise) product between matrices
and �S

min

the minimum eigenvalue of a linear operator restricted to a subspace S.
Then with g(V ) =

2

n

Pn
i=1

p

x>
i V xi��kV k

1

� 1

n
trX>XV , we can certify that g will

decrease around the solution V⇤.

Lemma 41. Let us assume that the noise matrix verifies assumption (A1,A2,A3,A4),
then for all direction � such that V⇤ +� < 0 and diag(�) 2 S we have:

g(V⇤)�g(V⇤+�) � �(1��)k��Diag(diag(�))k
1

+⇣
(1 + �)3

4

kDiag(�)k2
2

+o(k�k2) > 0.

Let us assume now that (zi)i=1,.,d are i.i.d of law z symmetric with Ez = Ez3 = 0,
Ez2 = m = 1, Ez4/(Ez2)2 = � and such that kzk1 is a.s. bounded by 0  R 
1. Then the matrix X satisfies a.s. assumption (A1). Using multiple Hoeffding’s
inequalities we have

Lemma 42. If z does not follow a Rademacher law, the design matrix X satsifies
assumptions (A1,A2,A3,A4) with probability greater than 1 � 8d2 exp

� � �2n(��1)

2d(�+d)R4

�

for S = Rd, and with probability greater than 1 � 8d2 exp
� � �2nmin{��1,2}

2dR4

�

for S =

[1, c
min

1d�1

]

? where cmin is defined in the proof and satisfies

|e
min

|  1

d+ � � 3

.

This lemma concludes the proof of proposition 20. We will now prove these two
lemmas.

Proof of Lemma 41

Proof. Since the dual variable A for the PSD constraint is 0 (see the proof of lemma
39), this constraint W < 0 is not active and we will show that the function decreases
in a set of directions � which include the one for which V⇤ +� < 0.

Therefore we consider a direction � =

✓

a b>

b C

◆

, with C < 0, which is slightly

more general than V⇤+� < 0. We denote by f(W ) =

2

n

Pn
i=1

p

x>
i Wxi� 1

n
trX>XW

the smooth part of g. By Taylor-Young, we have for all W :

f(W )� f(W +�) = �hf 0
(W ),�i � 1

2

h�, f 00
(W )�i+ o(k�k2).

Thus:

g(W )�g(W +�) = �hf 0
(W ),�i� 1

2

h�, f 00
(W )�i+�(kW +�k

1

�kWk
1

)+o(k�k2).
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In W = V⇤ this gives with X>X =

✓

n y>Z
Z>y Z>Z

◆

,

g(W )� g(W +�) = ��hX
>X

n
,�i � 1

2

h�, f 00
(V⇤)�i

+�(a+ 2kbk
1

+ kCk
1

) + o(k�k2)
= �

⇥

2(kbk
1

� 1

n
b>Z>y) + kCk

1

� 1

n
tr(Z>ZC)

⇤

�1

2

h�, f 00
(V⇤)�i+ o(k�k2).

And with Hölder’s inequality and assumption (A2)

kbk
1

� 1

n
b>Z>y � kbk

1

(1� k 1
n
Z>yk1) � (1� �)kbk

1

.

Nevertheless we will show in lemma 43 that kCk
1

� 1

n
tr(Z>ZC) � (1 � �)kC �

diag(C)k
1

, thus

g(W )� g(W +�) � �(1� �)(2kbk
1

+ kC � diag(C)k
1

) + o(k�k2). (5.36)

However in Eq. (5.36), g(W )� g(W +�) = 0 for b = 0 and C diagonal, therefore we
have to investigate second order conditions, i.e. to show for � = diag(e) with e 2 Rd

that �h�, f 00
(V⇤)�i > 0.

And with assumption (A4)

� 4

(1 + �)3
hdiag(e), f 00

(V⇤) diag(e)i =

1

n

n
X

i=1

(x>
i diag(e)xi)

2

=

1

n

n
X

i=1

(

d
X

j=1

ej(x
j
i )

2

)

2

=

1

n

n
X

i=1

e>[x�2

i (x�2

i )

>
]e

� �
min

�X�2

(X�2

)

>

n

�kek2 � ⇣kek2
2

.

Thus we can conclude:

g(W )� g(W +�) � �(1� �)(2kbk
1

+ kC � diag(C)k
1

) + ⇣
(1 + �)3

4

kek2
2

+ o(k�k2).
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Auxiliary Lemma

Lemma 43. For all matrix C symmetric semi-definite positive we have under as-
sumptions (A1) and (A3):

tr

⇣

S � Z>Z

n

⌘

C � (1� �)kC � diag(C)k
1

> 0.

Proof. We denote by ⌃

n
=

Z>Z
n

. We always have kCk
1

� tr(⌃

nC) = tr(S � ⌃

n
)C

where Si,j = sign(Ci,j), thus if diag(C) > 0 then diag(S) = 1 and diag(S � ⌃

n
) � 0

from assumption (A1). Moreover since ⌃

n
i,j 2 [�1, 1] then sign(S � ⌃

n
) = sign(S).

Thus tr(S � ⌃

n
)C =

P

i Ci,i(S � ⌃

n
)i,i +

P

i 6=j Ci,j(S � ⌃

n
)i,j � P

i 6=j Ci,j(S �
⌃

n
)i,j � 0. Furthermore from assumption (A3) |(⌃n

)i,j|  � for i 6= j. Therefore

tr(S � ⌃

n
)C �

X

i 6=j

Ci,j(S � ⌃

n
)i,j �

X

i 6=j

|Ci,j|(1� �) � (1� �)kC � diag(C)k
1

> 0.

If there is a diagonal element of C which is 0, then all the corresponding line and
column in C will also be 0 and we can look at the same problem as before by erasing
of C and ⌃

n the corresponding column and line.

Proof of Lemma 42

Proof. We will first show that the noise matrix Z satisfies assumptions (A2,A3). By
Hoeffding’s inequality we have with probability 1� 2 exp(��2n/(2R2

))

1

n
|

n
X

i=1

zji |  �.

Then, since the law of z is symmetric yizi will have the same law as zi and with
probability 1� 2 exp(��2n/(2R2

)), the design matrix Z satisfies assumption (A2):

kZ
>y

n
k1  �.

Likewise we have with probability 1� 2 exp(��2n/(2R4

)) that for j 6= j0

| 1
n

n
X

i=1

zji z
j0

i |  �.

Thus we also have with probability 1� 2d2 exp(��2n/(2R4

)) that Z satisfies assump-
tion (A3):

k 1
n
Z>Z � diag(

1

n
Z>Z)k1  �.

Thus with probability 1� 4d2 exp(��2n/(2R4

)), the noise matrix Z satisfies assump-
tions (A1, A2, A3).
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We proceed as in the proof of proposition 19 to show that X satisfies assumption
(A4). We first derive a condition to have the result in expectation, then we use an
inequality concentration on matrix to bound the empirical expectation. This will be
very similar, but we will get a better scaling since � is diagonal.

Using the same arguments as in the proof of proposition 19 we have for the diagonal
matrix � = diag(e) with e = (a, c) 2 Rd:

e>E(x�2

(x�2

)

>
)e = E(x>

�x)2 = (a+mc>1n�1

)

2

+m2

(� � 1)kck2
2

> 0 if � > 1.

We can show that m2

(��1) is an eigenvalue of multiplicity d�2 and µ± are eigenvalues
of multiplicity one of the operator � 7! E(x>

�x)2 with eigenvectors e± . Thus we
have

�
min

(Ex�2

(x�2

)

>
) =

1 + (d+ � � 2)m2 �p(1 + (d+ � � 2)m2

)

2 � 4m2

(� � 1)

2

� m2

(� � 1)

1 + (d+ � � 2)m2

, (5.37)

and
�
e?�
min

(Ex�2

(x�2

)

>
) = m2

(� � 2).

Moreover

�
max

⇣

x�2

(x�2

)

>
⌘

= (x�2

)

>x�2

=

d
X

j=1

(xi)
4  dR4.

Thus we can apply the Matrix Chernoff inequality from [Tropp, 2012] for µS =

�S
min

(Ex�2

(x�2

)

>
):

P
 

�S
min

⇣X�2

(X�2

)

>

n

⌘

 (1� �)µS

!

 de��2nµS/(2dR4
).

Thus with probability 1� 5d2 exp(��2nµ�/(2dR4

)) the design matrix X satisfies
assumption (A1,A2,A3,A4) with ⇣ = (1 � �)µ� and S = Rd. And with probability
1 � 5d2 exp(��2nmin{� � 1, 2}/(2dR4

)) the design matrix X satisfies assumption
(A1,A2,A3,A4) with ⇣ = (1� �)min{� � 1, 2} and S = e?�.

5.F Proof of Multi-Label Results

We first prove the lemma 31:

Proof. Let A 2 Rk⇥k symmetric semi-definite positive such that diag(ỹAỹ>) = 1n,
then

diag(ỹAỹ>) =
k
X

i=0

ai,i1n + 2

k
X

i=1

a
0,iyi + 2

X

1i<jk

ai,jyi � yj
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thus

2

k
X

i=1

a
0,iyi + 2

X

1i<jk

ai,jyi � yj = (1�
k
X

i=0

ai,i)1n

And this system admits as unique solution 0n if and only if the family
{1n, (yi)1ik, (yiyj)1i<jk} is linearly independent.

Then we prove the lemma 32:

Proof. Since a
0

+

Pk
i=1

a2i↵i � ↵
min

Pk
i=0

a2i = ↵
min

we should have ↵ � ↵
min

. We
have already seen that such Y satisfies the constraint. The KKT conditions are:
B = diag(µ)�H � ⌫11> < 0 and BY = 0. Since yi = ⇧nyi +

(y>i 1n)

n
1n.

Hyi = H⇧nyi + (y>i 1n)H1n

= ⇧ny = (yi � 1

>
n yi
n

1n).

Thus

HY =

k
X

i=1

a2iHyiy
>
i

=

k
X

i=1

a2i (yi �
1

>
n yi
n

1n)y
>
i

=

k
X

i=1

a2i (yiy
>
i � 1

>
n yi
n

1ny
>
i )

and tr(HY ) =

Pk
i=1

a2i (n� n↵i) = n(1� a2
0

+ a2
0

� ↵) = n(1� ↵).
Furthermore since 1

>
n diag(Y ) = n and 1

>
nM1n = n2↵, for µ = 1n and ⌫ = 1/n,

B.Y = n�n(1�↵)�n↵ = 0. And since B = In� 1

n
1n1

>
n �H, B2

= B and B>
= B,

thus B is a symmetric projection and consequently symmetric semi-definit positive.
Hence the primal variable Y and the dual variables µ = 1n and ⌫ = 1/n satisfy

the KKT conditions, thus Y is solution of this problem.

5.G Efficient Optimization Problem

5.G.1 Dual Computation

We consider the following strongly convex approximation of Eq. (5.24), augmented
with the von-Neumann entropy:

max

V <0

1

n

n
X

i=1

p

(XVX>
)ii � kDiag(c)V Diag(c)k

1

� " tr[(A
1
2V A

1
2
) log(A

1
2V A

1
2
)]

s.t. tr(A
1
2V A

1
2
) = 1.
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Introducing dual variables, we have

min

u2Rn
+,C:|Cij |6cicj

max

V <0

1

2n

n
X

i=1

⇣

ui((XVX>
)ii) +

1

ui

⌘

� trCV

�" tr[(A 1
2V A

1
2
) log(A

1
2V A

1
2
)]

s.t. tr(A
1
2V A

1
2
) = 1.

By fixing u and C, and letting Q = A
1
2V A

1
2 , we can write the max problem as

max

Q<0

trA� 1
2
(

1

2n
X>

Diag(u)X � C)A� 1
2Q� " tr[Q log(Q)]

s.t. trQ = 1.

This problem is of the form

max

Q<0

trDQ� "
n
X

i=1

�i(Q) log �i(Q) s.t. trQ = 1

where D = A� 1
2
(

1

2n
X>

Diag(u)X � C)A� 1
2 and �i(Q) denotes the i-th largest eigen

value of the matrix Q. If we consider the matrix D to be of the form D = U Diag(✓)U>

with ✓ denoting the vector of ordered eigen values of D, then it turns out that at
optimality Q has the form Q = U Diag(�)U>, with � denoting the ordered vector of
eigen values of Q.

Therefore the above optimization problem can be cast in terms of � as:

max

�2Rn
✓>� � "

n
X

i=1

�i log �i s.t.
n
X

i=1

�i = 1.

The solution of this problem is �i = e✓i/"Pn
j=1 e

✓j/"
, which leads to

min

✓2Rn
�"
(✓) = " log

n
X

i=1

⇣

e
✓i
"

⌘

.

In terms of the original matrix variables, we have min�"
(D) = " log tr e

D
" . Using the

appropriate expansion of D, we have the overall optimization problem as

min

u2Rn
+,C:|Cij |6cicj

1

2n

n
X

i=1

1

ui

+ �"
(A� 1

2
(

1

2n
X>

Diag(u)X � C)A� 1
2
). (5.38)

At optimality, we have

A
1
2V A

1
2
=

⇣

e
(A

� 1
2 ( 1

2nX> Diag(u)X�C)A
� 1

2 )

"

⌘

/ tr
⇣

e
(A

� 1
2 ( 1

2nX> Diag(u)X�C)A
� 1

2 )

"

⌘

.
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The error of approximation is at most " log d and the Lipschitz constant associated
with the function �"

(

˙

) is 1

"
.

5.G.2 Algorithm Details

We write the optimization problem Eq. (5.38) as:

min

u2Rn
+

F (u, C) +H(u, C)

where

H(u, C) = �"
(A� 1

2
(

1

2n
X>

Diag(u)X � C)A� 1
2
)

is the smooth part and

F (u, C) = IC:|Cij |6cicj +
1

2n

n
X

i=1

1

ui

is the non-smooth part.
The gradient ru of H(u, C) with respect to u is

ru = diag(B>U Diag(�)U>B).

where B =

1p
2n
A� 1

2X> and the gradient of H(u, C) with respect to C is

rC = (A� 1
2U Diag(�)U>A� 1

2
).

The Lipschitz constant L associated with the gradient rH(u, C) is

L =

2

"
max

⇣

�max(B
>B � B>B),�2max(A

�1

)

⌘

, (5.39)

where �max(M) denotes the maximum eigen value of matrix M . Computing L takes
O(max(n, d)3) time and L needs to be computed once at the beginning of the algo-
rithm.

The resultant FISTA procedure is described in Algorithm 1. Note that the FISTA
procedure first computes intermediate iterates (ūk� 1

2 , ¯Ck� 1
2
) (Step 7, Algorithm 1)

by taking descent steps along the respective gradient directions. Then two distinct
problems in u and C (respectively Steps 8 and 9 in Algorithm 1) are solved. The
sub-problem in u (Step 8) can be efficiently solved using a Newton procedure followed
by a thresholding step, as illustrated in Algorithm 2. The sub-problem in C (Step 9)
can also be solved using a simple thresholding step.
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Algorithm 1 FISTA Algorithm to solve Eq. (5.38)
1: Input X.
2: Compute Lipschitz constant L.
3: Let (u0, C0

) be an arbitrary starting point.
4: Let (ū0, ¯C0

) = (u0, C0

), t
0

= 1.
5: Set the maximum iterations to be K.
6: for k = 1, 2, . . . , K do . The loop can also be terminated based on duality gap.
7: (ūk� 1

2 , ¯Ck� 1
2
) =

⇣

ūk � 1

L
rūk , ¯Ck � 1

L
r

¯Ck

⌘

.

8: Obtain uk
= argminu2Rn

+

n

L
2

ku� ūk� 1
2k2 + 1

2n

Pn
i=1

1

ui
} by Algorithm 2.

9: Obtain Ck
= argminC

n

IC:|Cij |6cicj +
L
2

kC � ¯Ck� 1
2k2F
o

by thresholding.

10: tk =
1+

p
1+4t2k�1

2

.
11: (ūk, ¯Ck

) = (uk, Ck
) +

(tk�1�1)

tk

⇣

(uk, Ck
)� (uk�1, Ck�1

)

⌘

.
12: end for
13: Output (uK , CK

).

Algorithm 2 Newton method to solve u sub-problem

1: Input uk� 1
2 , n, L.

2: u0

i = max(u
k� 1

2
i , 1

(2nL)
1
3
), i = 1, 2, . . . , n.

3: Set M to be the max number of Newton steps.
4: for t = 1, 2, . . . ,M do
5: for i = 1, 2, . . . , n do

6: ut
i =

2nL(ut�1
i )

3u
k� 1

2
i +3ut

i

2(nL(ut�1
i )

3
+1)

.
7: end for
8: end for
9: Output max(uM, 0).
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Chapter 6

Application to Isotonic Regression
and Seriation Problems

Abstract

Given a matrix, the seriation problem consists in permuting its rows in such way
that all its columns have the same shape, for example, they are monotone increasing.
We propose a statistical approach to this problem where the matrix of interest is
observed with noise and study the corresponding minimax rate of estimation of the
matrices. Specifically, when the columns are either unimodal or monotone, we show
that the least-squares estimator is optimal up to logarithmic factors and adapts to
matrices with a certain natural structure. Finally, we propose a computationally
efficient estimator in the monotonic case and study its performance both theoretically
and experimentally. Our work is at the intersection of shape constrained estimation
and recent work that involves permutation learning, such as graph denoising and
ranking.

This chapter is extracted from the paper: Optimal rates of Statistical Seriation,
in collaboration with C. Mao and P. Rigollet, submitted to Bernoulli.

6.1 Introduction

The consecutive 1’s problem (C1P) [Fulkerson and Gross, 1964] is defined as fol-
lows. Given a binary matrix A the goal is to permute its rows in such a way that the
resulting matrix enjoys the consecutive 1’s property : each of its columns is a vector
v = (v

1

, . . . , vn)> where vj = 1 if and only if a  j  b for two integers a, b between
1 and n.

This problem has its roots in archeology and especially sequence dating where the
goal is to recover the chronological order of sepultures based on artifacts found in
these sepultures where the entry Ai,j of matrix A indicates the presence of artifact
j in sepulture i. In his seminal work, egyptologist Flinders Petrie [1899] formulated
the hypothesis that two sepultures should be close in the time domain if they present
similar sets of artifacts. Already in the noiseless case, this problem presents an in-
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teresting algorithmic challenge and is reducible to the famous Travelling Salesman
Problem [Gertzen and Grötschel, 2012] as observed by statistician David Kendall
[1963, 1969, 1970, 1971] who employed early tools from multidimensional scaling as a
heuristic to solve it. C1P belongs to a more general class of so-called seriation prob-
lems that consist in optimizing various criteria over the discrete set of permutations.
While such problems are hard in general, it can be shown that a subset of the these
problems, including C1P, can be solved efficiently using spectral method [Atkins et al.,
1998] or convex optimization [Fogel et al., 2013, Lim and Wright, 2014]. However,
little is known about the robustness to noise of such methods.

In order to set the benchmark for the noisy case, we propose a statistical seriation
model and study optimal rates of estimation in this model. Assume that we observe
an n⇥m matrix Y = ⇧A+Z, where ⇧ is an unknown n⇥ n permutation matrix, Z
is an n⇥m noise matrix and A 2 IR

n⇥m is assumed to belong to a class of matrices
that satisfy a certain shape constraint. Our goal is to give estimators ˆ

⇧ and ˆA so
that ˆ

⇧

ˆA is close to ⇧A. The shape constraint can be the consecutive 1’s property,
but more generally, we consider the class of matrices that have unimodal columns,
which also include monotonic columns as a special case. These terms will be formally
defined at the end of this section.

The rest of the chapter is organized as follows. In Section 6.2 we formulate the
model and discuss related work. Section 6.3 collects our main results, including uni-
form and adaptive upper bounds for the least-squares estimator together with corre-
sponding minimax lower bounds in the general unimodal case. In Section 6.4, for the
special case of monotone columns, we propose a computationally efficient alternative
to the least-squares estimator and study its rates of convergence both theoretically
and numerically. Appendix 6.A is devoted to the proofs of the upper bounds, which
use the metric entropy bounds proved in Appendix 6.B. The proofs of the information-
theoretic lower bounds are presented in Appendix 6.C. In Appendix 6.D, we study
the rate of estimation of the efficient estimator for the monotonic case. Appendix 6.E
contains a delayed proof of a trivial upper bound. Appendix 6.F presents new bounds
for unimodal regression implied by our analysis, which are minimax optimal up to
logarithmic factors.

Notation. For a positive integer n, define [n] = {1, . . . , n}. For a matrix A 2
IR

n⇥m, let kAkF denote its Frobenius norm, and let Ai,· be its i-th row and A·,j be
its j-th column. Let Bn

(a, t) denote the Euclidean ball of radius t centered at a in
IR

n. We use C and c to denote positive constants that may change from line to line.
For any two sequences (un)n and (vn)n, we write un . vn if there exists an absolute
constant C > 0 such that un  Cvn for all n. We define un & vn analogously. Given
two real numbers a, b, define a ^ b = min(a, b) and a _ b = max(a, b).

Denote the closed convex cone of increasing 1 sequences in IR

n by Sn = {a 2 IR

n
:

a
1

 · · ·  an}. We define Sm to be the Cartesian product of m copies of Sn and we
identify Sm to the set of n⇥m matrices with increasing columns.

For any l 2 [n], define the closed convex cone Cl = {a 2 IR

n
: a

1

 · · ·  al}\{a 2
1. Throughout the chapter, we loosely use the terms “increasing” and “decreasing” to mean “mono-

tonically non-decreasing” and “monotonically non-increasing” respectively.
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IR

n
: al � · · · � an}, which consists of vectors in IR

n that increase up to the l-th entry
and then decrease. Define the set U of unimodal sequences in IR

n by U =

Sn
l=1

Cl. We
define Um to be the Cartesian product of m copies of U and we identify Um to the set
of n⇥m matrices with unimodal columns. It is also convenient to write Um as a union
of closed convex cones as follows. For l = (l

1

, . . . , lm) 2 [n]m, let Cm
l = Cl1 ⇥ · · ·⇥ Clm .

Then Um is the union of the nm closed convex cones Cm
l , l 2 [n]m.

Finally, let Sn be the set of n⇥n permutation matrices and define M =

S

⇧2Sn
⇧Um

where ⇧Um
= {⇧A : A 2 Um}, so that M is the union of the n!nm closed convex

cones ⇧Cm
l ,⇧ 2 Sn, l 2 [n]m.

6.2 Problem Setup and Related Work

In this section, we formally state the problem of interest and discuss several lines
of related work.

6.2.1 The Seriation Model

Suppose that we observe a matrix Y 2 IR

n⇥m, n � 2 such that

Y = ⇧

⇤A⇤
+ Z , (6.1)

where A⇤ 2 Um, ⇧ 2 Sn and Z is a centered sub-Gaussian noise matrix with variance
proxy �2 > 0. More specifically, Z is a matrix such that E[Z] = 0 and, for any
M 2 IR

n⇥m,

E
⇥

exp

�

Tr(Z>M)

�⇤  exp

⇣�2kMk2F
2

⌘

,

where Tr(·) is the trace operator. We write Z ⇠ subGn,m(�2

) or simply Z ⇠ subG(�2

)

when dimensions are clear from the context.
Given the observation Y , our goal is to estimate the unknown pair (⇧⇤, A⇤

). The
performance of an estimator (

ˆ

⇧, ˆA) 2 Sn ⇥ Um, is measured by the quadratic loss:

1

nm
kˆ⇧ ˆA� ⇧

⇤A⇤k2F .

In particular, its expectation is the mean squared error. Since we are interested in
estimating ⇧

⇤A⇤ 2 M, we can also view M as the parameter space.
In the general unimodal case, upper bounds on the above quadratic loss do not

imply individual upper bounds on estimation of the matrix ⇧

⇤ or the matrix A⇤ due
to lack of identifiability. Nevertheless, if we further assume that the columns of A⇤

are monotone increasing, that is A⇤ 2 Sm, then the following lemma holds.

Lemma 44. If A⇤, ˜A 2 Sm, then for any ⇧

⇤, ˜⇧ 2 Sn, we have that

k ˜A� A⇤k2F  k˜⇧ ˜A� ⇧

⇤A⇤k2F ,
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and that
k˜⇧A⇤ � ⇧

⇤A⇤k2F  4k˜⇧ ˜A� ⇧

⇤A⇤k2F .

Proof. Let a, b 2 Sn and b⇡ = (b⇡(1), . . . , b⇡(n)) where ⇡ : [n] ! [n] is a permutation.
It is easy to check that

Pn
i=1

aibi �
Pn

i=1

aib⇡(i), so ka � bk2
2

 ka � b⇡k2
2

. Applying
this inequality to columns of matrices, we see that

k ˜A� A⇤k2F  k ˜A� ˜

⇧

�1

⇧

⇤A⇤k2F = k˜⇧ ˜A� ⇧

⇤A⇤k2F ,

since A⇤, ˜A 2 Sm. Moreover, k˜⇧A⇤ � ˜

⇧

˜AkF = kA⇤ � ˜AkF , so

k˜⇧A⇤ � ⇧

⇤A⇤kF  kA⇤ � ˜AkF + k˜⇧ ˜A� ⇧

⇤A⇤kF  2k˜⇧ ˜A� ⇧

⇤A⇤kF ,

by the triangle inequality and the previous display.

Lemma 44 guarantees that k˜⇧A⇤ � ⇧

⇤A⇤kF is a pertinent measure of the perfor-
mance of ˜⇧. Note further that k˜⇧A⇤�⇧

⇤A⇤kF is large if ˜⇧ misplaces rows of A⇤ that
have large differences, and is small if ˜

⇧ only misplaces rows of A⇤ that are close to
each other. We argue that, in the seriation context, this measure of distance between
permutations is more natural than ad hoc choices such as the trivial 0/1 distance or
popular choices such as Kendall’s ⌧ or Spearman’s ⇢.

Apart from Section 6.4 (and Appendix 6.D), the rest of this chapter focuses on
the least-squares (LS) estimator defined by

(

ˆ

⇧, ˆA) 2 argmin

(⇧,A)2Sn⇥Um

kY � ⇧Ak2F . (6.2)

Taking ˆM =

ˆ

⇧

ˆA, we see that it is equivalent to define the LS estimator by

ˆM 2 argmin

M2M
kY �Mk2F . (6.3)

Note that in our case, the set of parameters M is not convex, but is a union of n!nm

closed convex cones and it is not clear how to compute the LS estimator efficiently. We
discuss this aspect in further details in the context of monotone columns in Section 6.4.
Nevertheless, the main focus of this chapter is the least-squares estimator which, as
we shall see, is near-optimal in a minimax sense and therefore serves as a benchmark
for the statistical seriation model.

6.2.2 Related Work

Our work falls broadly in the scope of statistical inference under shape constraints
but presents a major twist: the unknown latent permutation ⇧

⇤.

Shape Constrained Regression

To set our goals, we first consider the case where the permutation is known and
assume without loss of generality that ⇧⇤

= In. In this case, we can estimate individ-
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ually each column A⇤
·,j by an estimator ˆA·,j and then get an estimator ˆA for the whole

matrix by concatenating the columns ˆA·,j. Thus the task is reduced to estimation of
a vector ✓⇤ which satisfies a certain shape constraint from an observation y = ✓⇤ + z
where z ⇠ subGn,1(�2

).
When ✓⇤ is assumed to be increasing we speak of isotonic regression [Barlow et al.,

1972]. The LS estimator defined by ˆ✓ = argmin✓2Sn
k✓�yk2

2

can be computed in closed
form in O(n) using the Pool-Adjacent-Violators algorithm (PAVA) [Ayer et al., 1955,
Barlow et al., 1972, Robertson et al., 1988] and its statistical performance has been
studied by Zhang [2002] (see also works by Nemirovski et al. [1985], Donoho [1990],
van de Geer [1990], Mammen [1991], van de Geer [1993] for similar bounds using
empirical process theory) who showed in the Gaussian case z ⇠ N(0, �2In) that the
mean squared error behaves like

1

n
Ekˆ✓ � ✓⇤k2

2

⇣
⇣�2V (✓⇤)

n

⌘

2/3

, (6.4)

where V (✓) = maxi2[n] ✓i � mini2[n] ✓i is the variation of ✓ 2 IR

n. Note that 2/3 =

2�/(2� + 1) for � = 1 so that this is the minimax rate of estimation of Lipschitz
functions [see, e.g., Tsybakov, 2009].

The rate in Eq. (6.4) is said to be global since it holds uniformly over the set
of monotone vectors with variation V (✓⇤). Recently, Chatterjee et al. [2015] have
initiated the study of adaptive bounds that may be better if ✓⇤ has a simpler structure
in some sense. To define this structure, let k(✓) = Card({✓

1

, · · · , ✓n}) denote the
cardinality of entries of ✓ 2 IR

n. In this context, Chatterjee et al. [2015] showed that
the LS estimator satisfies the adaptive bound

1

n
Ekˆ✓ � ✓⇤k2

2

 C inf

✓2Sn

⇣k✓ � ✓⇤k2
n

+

�2k(✓)

n
log

en

k(✓)

⌘

. (6.5)

This result was extended by Bellec [2015] to a sharp oracle inequality where C = 1.
This bound was also shown to be optimal in a minimax sense by Chatterjee et al.
[2015], Bellec and Tsybakov [2015].

Unlike its monotone counterpart, unimodal regression where ✓⇤ 2 U has received
sporadic attention [Shoung and Zhang, 2001, Köllmann et al., 2014, Chatterjee and
Lafferty, 2015]. This state of affairs is all the more surprising given that unimodal
density estimation has been the subject of much more research [Bickel and Fan, 1996,
Birge, 1997, Eggermont and LaRiccia, 2000, Daskalakis et al., 2012, 2013, Turnbull
and Ghosh, 2014]. It was recently shown by Chatterjee and Lafferty [2015] that the
LS estimator also adapts to V (✓⇤) and k(✓⇤) for unimodal regression:

1

n
kˆ✓ � ✓⇤k2

2

. min

⇣

�4/3
⇣V (✓⇤) + �

n

⌘

2/3

,
�2

n
k(✓⇤)3/2(log n)3/2

⌘

(6.6)

with probability at least 1 � n�↵ for some ↵ > 0. The exponent 3/2 in the second
term was improved to 1 in the new version by Chatterjee and Lafferty [2015] after the
first version of our current paper was posted. Note that the exponents in Eq. (6.6)
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are different from the isotonic case. Our results will imply that they are not optimal
and in fact the LS estimator achieves the same rate as in isotonic regression. See
Corollary 10 for more details. The algorithmic aspect of unimodal regression has
received more attention [Frisen, 1986, Geng and Shi, 1990, Bro and Sidiropoulos,
1998, Boyarshinov and Magdon-Ismail, 2006] and Stout [2008] showed that the LS
estimator can be computed with time complexity O(n) using a modified version of
PAVA. Hence there is little difference between isotonic and unimodal regressions from
both computational and statistical points of views.

Latent Permutation Learning

When the permutation ⇧

⇤ is unknown the estimation problem is more involved.
Noisy permutation learning was explicitly addressed by Collier and Dalalyan [2016]
where the problem of matching two sets of noisy vectors was studied from a statistical
point of view. Given n ⇥ m matrices Y = A⇤

+ Z and ˜Y = ⇧

⇤A⇤
+

˜Z, where
A⇤ 2 IR

n⇥m is an unknown matrix and ⇧

⇤ 2 IR

n⇥n is an unknown permutation
matrix, the goal is to recover ⇧

⇤. It was shown by [Collier and Dalalyan, 2016] that
if mini 6=j kAi,· � Aj,·k2 � c�

�

(log n)1/2 _ (m log n)1/4
�

, then the LS estimator defined
by ˆ

⇧ = argmin

⇧2Sn
k⇧Y � ˜Y k2F recovers the true permutation with high probability.

However they did not directly study the behavior of kˆ⇧A⇤ � ⇧

⇤A⇤k2F .
In his celebrated paper on matrix estimation, Sourav Chatterjee [2015] describes

several noisy matrix models involving unknown latent permutations. One is the
nonparametric Bradley-Terry-Luce (NP-BTL) model where we observe a matrix Y 2
IR

n⇥n with independent entries Yi,j ⇠ Ber(Pi,j) for some unknown parameters P =

{Pi,j}1i,jn where Pi,j 2 [0, 1] is equal to the probability that item i is preferred
over item j and Pj,i = 1 � Pi,j. Crucially, the NP-BTL model assumes the so-
called strong stochastic transitivity (SST) [Davidson and Marschak, 1959, Fishburn,
1973] assumption: there exists an unknown permutation matrix ⇧ 2 IR

n⇥n such
that the ordered matrix A = ⇧

>P⇧ satisfies A
1,k  · · ·  An,k for all k 2 [n].

Note that the NP-BTL model is a special case of our model in Eq. (6.1) where
m = n and Z ⇠ subG(1/4) is taken to be Bernoulli. Chatterjee [2015] proposed an
estimator ˆP that leverages the fact that any matrix P in the NP-BTL model can
be approximated by a low rank matrix and proved [Chatterjee, 2015, Theorem 2.11]
that n�2k ˆP � Pk2F . n�1/4, which was improved to n�1/2 by Shah et al. [2017] for a
variation of the estimator. This method does not yield individual estimators of ⇧ or
A, and Chatterjee and Mukherjee [2016] proposed estimators ˆ

⇧ and ˆA so that ˆ

⇧

ˆAˆ

⇧

>

estimates P with the same rate n�1/2 up to a logarithmic factor. The non-optimality
of this rate has been observed by Shah et al. [2017] who showed that the correct rate
should be of order n�1 up to a possible log n factor. However, it is not known whether
a computationally efficient estimator could achieve the fast rate. A recent work by
Shah et al. [2016] explored a new notion of adaptivity for which the authors proved
a computational lower bound, and also proposed an efficient estimator whose rate of
estimation matches that lower bound.

Also mentioned by Chatterjee [2015] is the so-called stochastic block model that
has since received such extensive attention in various communities that it is futile to
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attempt to establish a comprehensive list of references. Instead, we refer the reader
to the article by Gao et al. [2015] and references therein. This paper establishes
the minimax rates for this problem and its continuous limit, the graphon estimation
problem and, as such, constitutes the state-of-the-art in the statistical literature. In
the stochastic block model with k � 2 blocks, we assume that we observe a matrix
Y = P + Z where P = ⇧A⇧>,⇧ 2 IR

⇥n is an unknown permutation matrix and A
has a block structure, namely, there exist positive integers n

1

< . . . < nk < nk+1

:= n,
and k2 real numbers as,t, (s, t) 2 [k]2 such that A has entries

Ai,j =

X

(s,t)2[k]2
as,t1I{ns  i  ns+1

, nt  j  nt+1

} , i, j 2 [n] .

While traditionally, the stochastic block model is a network model and therefore per-
tains only to Bernoulli observations, the more general case of sub-Gaussian additive
error is also explicitly handled by Gao et al. [2015]. For this problem, Gao, Liu and
Zhou have established that the least-squares estimator ˆP satisfies n�2k ˆP � Pk2F .
k2/n2

+ (log k)/n together with a matching lower bound. Using piecewise constant
approximation to bivariate Hölder functions, they also establish that this estimator
with a correct choice of k leads to minimax optimal estimation of smooth graphons.
Both results exploit extensively the fact that the matrix P is equal to or can be well
approximated by a piecewise constant matrix and our results below take a similar
route by observing that monotone and unimodal vectors are also well approximated
by piecewise constant ones. Moreover, we allow for rectangular matrices.

In fact, our result can be also formulated as a network estimation problem but on
a bipartite graph, thus falling at the intersection of the above two examples. Assume
that n left nodes represent items and that m right nodes represent users. Assume
further that we observe the n ⇥ m adjacency matrix Y of a random graph where
the presence of edge (i, j) indicates that user j has purchased or liked item i. Define
P = E[Y ] and assume SST across items in the sense that there exists an unknown n⇥n
permutation matrix ⇧

⇤ such that P = ⇧

⇤A⇤ and A⇤ is such that A⇤
1,j  · · ·  A⇤

n,j

for all users j 2 [m]. This model falls into the scope of the statistical seriation model
in Eq. (6.1).

6.3 Main Results

6.3.1 Adaptive Oracle Inequalities

For a matrix A 2 Um, let k(A·,j) = Card({A
1,j, . . . , An,j}) be the number of

values taken by the j-th column of A and define K(A) =

Pm
j=1

k(A·,j). Observe
that K(A) � m. The first theorem shows that the LS estimator adapts to the
complexity K.

Theorem 10. For A⇤ 2 IR

n⇥m and Y = ⇧

⇤A⇤
+ Z, let (

ˆ

⇧, ˆA) be the LS estimator
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defined in Eq. (6.2). Then the following oracle inequality holds

1

nm
kˆ⇧ ˆA� ⇧

⇤A⇤k2F . min

A2Um

⇣

1

nm
kA� A⇤k2F + �2

K(A)

nm
log

enm

K(A)

⌘

+ �2

log n

m
(6.7)

with probability at least 1� e�c(n+m), c > 0. Moreover,

1

nm
Ekˆ⇧ ˆA�⇧

⇤A⇤k2F . min

A2Um

⇣

1

nm
kA�A⇤k2F +�2

K(A)

nm
log

enm

K(A)

⌘

+�2

log n

m
. (6.8)

Note that while we assume that A⇤ 2 Um in Eq. (6.1), the above oracle inequalities
hold in fact for any A⇤ 2 IR

n⇥m even if its columns are not assumed to be unimodal.
The above oracle inequalities indicate that the LS estimator automatically trades

off the approximation error kA�A⇤k2F for the stochastic error �2K(A) log(enm/K(A)).
If A⇤ is assumed to have unimodal columns, then we can take A = A⇤ in Eq. (6.7)

and Eq. (6.8) to get the following corollary.

Corollary 8. For A⇤ 2 Um and Y = ⇧

⇤A⇤
+ Z, the LS estimator (

ˆ

⇧, ˆA) satisfies

1

nm
kˆ⇧ ˆA� ⇧

⇤A⇤k2F . �2

⇣K(A⇤
)

nm
log

enm

K(A⇤
)

+

log n

m

⌘

with probability at least 1 � e�c(n+m), c > 0. Moreover, the corresponding bound with
the same rate holds in expectation.

The two terms in the adaptive bound can be understood as follows. The first
term corresponds to the estimation of the matrix A⇤ with unimodal columuns if the
permutation ⇧

⇤ is known. It can be viewed as a matrix version of the adaptive bound
in Eq. (6.5) in the vector case. The LS estimator adapts to the cardinality of entries
of A⇤ as it achieves a provably better rate if K(A⇤

) is smaller while not requiring
knowledge of K(A⇤

). The second term corresponds to the error due to the unknown
permutation ⇧

⇤. As m grows to infinity this second term vanishes, because we have
more samples to estimate ⇧⇤ better. If m � n, it is easy to check that the permutation
term is dominated by the first term, so the rate of estimation is the same as if the
permutation is known.

6.3.2 Global Oracle Inequalities

The bounds in Theorem 10 adapt to the cardinality of the oracle. In this subsec-
tion, we state another type of upper bounds for the LS estimator (

ˆ

⇧, ˆA). They are
called global bounds because they hold uniformly over the class of matrices whose
columns are unimodal and that have bounded variation. Recall that we call variation
of a vector a 2 IR

n the scalar V (a) � 0 defined by

V (a) = max

1in
ai � min

1in
ai .
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We extend this notion to a matrix A 2 IR

n⇥m by defining

V (A) =
⇣

1

m

m
X

j=1

V (A·,j)
2/3
⌘

3/2

.

While this 2/3-norm may seem odd at first sight, it turns out to be the correct
extrapolation from vectors to matrices, at least in the context under consideration
here. Indeed, the following upper bound, in which this quantity naturally appears, is
matched by the lower bound of Theorem 13 up to logarithmic terms.

Theorem 11. For A⇤ 2 IR

n⇥m and Y = ⇧

⇤A⇤
+ Z, let (

ˆ

⇧, ˆA) be the LS estimator
defined in Eq. (6.2). Then it holds that

1

nm
kˆ⇧ ˆA � ⇧

⇤A⇤k2F . min

A2Um

h

1

nm
kA � A⇤k2F +

⇣�2V (A) log n

n

⌘

2/3i

+ �2

log n

n ^m
.

(6.9)

with probability at least 1 � e�c(n+m), c > 0. Moreover, the corresponding bound with
the same rate holds in expectation.

If A⇤ 2 Um, then taking A = A⇤ in Theorem 11 leads to the following corollary
that indicates that the LS estimator is adaptive to the quantity V (A⇤

).

Corollary 9. For A⇤ 2 Um and Y = ⇧

⇤A⇤
+ Z, the LS estimator (

ˆ

⇧, ˆA) satisfies

1

nm
kˆ⇧ ˆA� ⇧

⇤A⇤k2F .
⇣�2V (A⇤

) log n

n

⌘

2/3

+ �2

log n

n ^m

with probability at least 1 � e�c(n+m), c > 0. Moreover, the corresponding bound with
the same rate holds in expectation.

Akin to the adaptive bound, the above inequality can be viewed as a sum of a
matrix version of Eq. (6.4) and an error due to estimation of the unknown permuta-
tion.

Having stated the main upper bounds, we digress a little to remark that the proofs
of Theorem 10 and Theorem 11 also yield a minimax optimal rate of estimation (up to
logarithmic factors) for unimodal regression, which improves the bound in Eq. (6.6).
We discuss the details in Appendix 6.F.

6.3.3 Minimax Lower Bounds

Given the model Y = ⇧

⇤A⇤
+ Z where entries of Z are i.i.d. N(0, �2

) random
variables, let (ˆ⇧, ˆA) denote any estimator of (⇧⇤, A⇤

), i.e., any pair in Sn⇥IR

n⇥m that
is measurable with respect to the observation Y . We will prove lower bounds that
match the rates of estimation in Corollary 8 and Corollary 9 up to logarithmic factors.
The combination of upper and lower bounds, implies simultaneous near optimality of
the least-squares estimator over a large scale of matrix classes.
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For m  K
0

 nm and V
0

> 0, define Um
K0

=

�

A 2 Um
: K(A)  K

0

 

and
Um

(V
0

) =

�

A 2 Um
: V (A)  V

0

 

. We present below two lower bounds, one for the
adaptive rate uniformly over Um

K0
and one for the global rate uniformly over Um

(V
0

).
This splitting into two cases is solely justified by better readability but it is worth
noting that a stronger lower bound that holds on the intersection Um

K0
\ Um

(V
0

) can
also be proved and is presented as Proposition 21.

Theorem 12. There exists a constant c 2 (0, 1) such that for any K
0

� m, and any
estimator (

ˆ

⇧, ˆA), it holds that

sup

(⇧,A)2Sn⇥Um
K0

IP

⇧A

h

1

nm
kˆ⇧ ˆA� ⇧Ak2F & �2

⇣K
0

nm
+

log l

m

⌘i

� c,

where l = min(K
0

�m,m)+1 and IP

⇧A is the probability distribution of Y = ⇧A+Z.
It follows that the lower bound with the same rate holds in expectation.

In fact, the lower bound holds for any estimator of the matrix ⇧

⇤A⇤, not only
those of the form ˆ

⇧

ˆA with ˆA 2 Um. The above lower bound matches the upper
bound in Corollary 8 up to logarithmic factors.

Note the presence of a log l factor in the second term. If l = 1 then K
0

= m
which means that each column of A is simply a constant block, so ⇧A = A for any
⇧ 2 Sn. In this case, the second term vanishes because the permutation does not
play a role. More generally, the number l � 1 can be understood as the maximal
number of columns of A on which the permutation does have an effect. The larger
l, the harder the estimation. It is easy to check that if l � n the second term in the
lower bound will be dominated by the first term in the upper bound.

A lower bound corresponding to Corollary 9 also holds:

Theorem 13. There exists a constant c 2 (0, 1) such that for any V
0

� 0, and any
estimator (

ˆ

⇧, ˆA), it holds that

sup

(⇧,A)2Sn⇥Um
(V0)

IP

⇧A

h

1

nm
kˆ⇧ ˆA� ⇧Ak2F &

��2V
0

n

�

2/3
+

�2

n
+

�2

m
^m2V 2

0

i

� c ,

where IP

⇧A is the probability distribution of Y = ⇧A + Z. The lower bound with the
same rate also holds in expectation.

There is a slight mismatch between the upper bound of Corollary 9 and the lower
bound of Theorem 13 above. Indeed the lower bound features a term �2

m
^ m2V 2

0

instead of just �2

m
. In the regime m2V 2

0

< �2

m
, where A has very small variation,

the LS estimator may not be optimal. Proposition 22 indicates that a matrix with
constant columns obtained by averaging achieves optimality in this extreme regime.

6.4 Further Results in the Monotone Case
A particularly interesting subset of unimodal matrices is Sm, the set of n ⇥ m

matrices with monotonically increasing columns. While it does not amount to the
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seriation problem in its full generality, this special case is of prime importance in the
context of shape constrained estimation as illustrated by the discussion and references
in Section 6.2.2. In fact, it covers the example of bipartite ranking discussed at the
end of Section 6.2.2. In the rest of this section, we devote further investigation to
this important case. To that end, consider the model in Eq. (6.1) where we further
assume that A⇤ 2 Sm. We refer to this model as the monotone seriation model. In
this context, define the LS estimator by

(

ˆ

⇧, ˆA) 2 argmin

(⇧,A)2Sn⇥Sm

kY � ⇧Ak2F .

Since Sm is a convex subset of Um, it is easily seen that the upper bounds in Theo-
rem 10 and 11 remain valid in this case. The lower bounds of Theorem 12 (with log l
replaced by 1) and Theorem 13 also extend to this case; see Appendix 6.C.

Although for unimodal matrices the established error bounds do not imply any
bounds on estimation of A⇤ or ⇧

⇤ in general, for the monotonic case, however,
Lemma 44 yields that

k ˆA� A⇤k2F _ 1

4

k(ˆ⇧� ⇧

⇤
)A⇤k2F  kˆ⇧ ˆA� ⇧

⇤A⇤k2F .

so that the LS estimator (

ˆ

⇧, ˆA) also leads to good individual estimators of ⇧⇤ and
A⇤ respectively.

Because it requires optimizing over a union of n! cones ⇧Sm, no efficient way of
computing the LS estimator is known since. As an alternative, we describe a simple
and efficient algorithm to estimate (⇧

⇤, A⇤
) and study its rate of estimation.

Let K(A) and V (A) be defined as before. Moreover, for a matrix A 2 Sm, let J
denote the set of pairs of indices (i, j) 2 [n]2 such that Ai,· and Aj,· are not identical.
Define the quantity R(A) by

R(A) =
1

n
max

I⇢[n]2

|I|=n

X

(i,j)2I\J

⇣ kAi,· � Aj,·k2
2

kAi,· � Aj,·k21
^ mkAi,· � Aj,·k2

2

kAi,· � Aj,·k2
1

⌘

. (6.10)

It can be shown (see Appendix 6.D) that 1  R(A)  p
m. Intuitively, the quantity

R(A) is small if the difference u of any two rows of A is either very sparse (kuk
2

/kuk1
is small) or very dense (mkuk

2

/kuk
1

is small). Indeed, for any nonzero vector u 2 IR

m,
kuk2

2

/kuk21 � 1 with equality achieved when kuk
0

= 1, and mkuk2
2

/kuk2
1

� 1 with
equality achieved when all entries of u are the same.

For matrices with small R(·) values, it is possible to aggregate the information
across each row to learn the unknown permutation ⇧

⇤ in a simple fashion. Recovering
the permutation ⇧

⇤, is equivalent to ordering (or ranking reversely) the rows of ⇧⇤A⇤

from their noisy version Y .
One simple method to achieve this goal, which we call RankSum, is to permute

the rows of Y so that they have increasing row sums. However, it is easy to observe
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that this method fails if

A⇤
=

2

6

6

6

4

p
m 0 . . . 0

2

p
m 0 . . . 0

...
...

...
n
p
m 0 . . . 0

3

7

7

7

5

(6.11)

where A⇤
i,1 = i

p
m and entries of Z are i.i.d. standard Gaussian variables, because

the sum of noise in a row has order
p
m which is no less than the gaps between row

sums of A⇤. In fact, R(A⇤
) = 1 and it should be easy to distinguish the two types of

rows of A⇤, for example, by looking at the first entry of a row. This motivates us to
consider the following method called RankScore.

For i, i0 2 [n], define

�A⇤
(i, i0) = max

j2[m]

(A⇤
i0,j � A⇤

i,j) _
1p
m

m
X

j=1

(A⇤
i0,j � A⇤

i,j)

and define �Y (i, i0) analogously. The RankScore procedure is defined as follows:
1. For each i 2 [n], define the score si of the i-th row of Y by

si =
n
X

l=1

1I(�Y (l, i) � 2⌧)

where ⌧ := C�
p

log(nm) for some tuning constant C (see Appendix 6.D for
more details).

2. Then order the rows of Y so that their scores are increasing, with ties broken
arbitrarily.

The RankScore procedure recovers an order of the rows of Y , which leads to an
estimator ˜

⇧ of the permutation. Then we define ˜A 2 Sm so that ˜

⇧

˜A is the projection
of Y onto the convex cone ˜

⇧Sm. The estimator (

˜

⇧, ˜A) enjoys the following rate of
estimation.

Theorem 14. For A⇤ 2 Sm and Y = ⇧

⇤A⇤
+ Z, let (˜⇧, ˜A) be the estimator defined

above using the RankScore procedure with threshold ⌧ = 3�
p

(C + 1) log(nm), C > 0.
Then it holds that

1

nm
k˜⇧ ˜A� ⇧

⇤A⇤k2F . min

A2Sm

⇣

1

nm
kA� A⇤k2F + �2

K(A)

nm
log

enm

K(A)

⌘

+ (C + 1)�2

R(A⇤
) log(nm)

m
,

with probability at least 1� e�c(n+m) � (nm)

�C for some constant c > 0.

The quantity R(A⇤
) only depends on the matrix A⇤. If R(A⇤

) is bounded loga-
rithmically, the estimator (˜⇧, ˜A) achieves the minimax rate up to logarithmic factors.
In any case, R(A⇤

)  p
m, so the estimator is still consistent with the permutation

error (the last term) decaying at a rate no slower than ˜O(

1p
m
). Furthermore, it is
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Figure 6-1 – Estimation errors of three estimators for two deterministic A⇤ of size
n⇥ n. Left: rows of A⇤ are 1-sparse; Right: columns of A⇤ are identical.

worth noting that R(A⇤
) is not needed to construct (

˜

⇧, ˜A), so the estimator adapts
to R(A⇤

) automatically.

Remark 4. In the same way that Theorem 11 follows from Theorem 10, we can
deduce from Theorem 14 a global bound for the estimator (

˜

⇧, ˜A) which has rate

⇣�2V (A⇤
) log n

n

⌘

2/3

+ �2

⇣

log n

n
+R(A⇤

)

log(nm)

m

⌘

.

We conclude this section with a numerical comparison between the RankSum and
RankScore procedures.

Consider the model in Eq. (6.1) with A⇤ 2 Sm and assume without loss of general-
ity that ⇧⇤

= In. For various n⇥m matrices A⇤, we generate observations Y = A⇤
+Z

where entries of Z are i.i.d. standard Gaussian variables. The performance of the
estimators given by RankScore and RankSum defined above is compared to the per-
formance of the oracle ˆAoracle defined by the projection of Y onto the cone Sm. For
the RankScore estimator we take ⌧ = 6. The curves are generated based on 30 equally
spaced points on the base-10 logarithmic scale, and all results are averaged over 10

replications. The vertical axis represents the estimation error of an estimator ˆ

⇧

ˆA,
measured by the sample mean of log

10

�

1

nm
kˆ⇧ ˆA� A⇤k2F

�

unless otherwise specified.
We begin with two simple examples for which we set n = m. In the left plot of

Figure 6-1, A⇤ is defined as in Eq. (6.11). As expected, RankSum fails to estimate the
true permutation and performs very poorly. On the other hand, RankScore succeeds
in recovering the correct permutation and has roughly the same performance as the
oracle. Because the difference of any two rows of A⇤ is 1-sparse, R(A⇤

) = 1 according
to Eq. (6.10) and the discussion thereafter. Hence, Theorem 14 predicts the fast rate,
which is verified by the experiment. The right plot illustrates another extreme case;
more precisely, we set A⇤ to be the matrix with all m columns equal to 1

n
(1, · · · , n)>.

The difference of any two rows of A⇤ is constant across all entries, so again we have
R(A⇤

) = 1 by Eq. (6.10). Thus RankScore achieves the fast rate as expected. Note
that RankSum also performs well in this case.
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Figure 6-2 – Estimation errors of the oracle (dashed lines) and RankScore (solid lines)
for different regimes of (n,m) and randomly generated A⇤ of size n⇥m. Left: K(A⇤

) =

5m; Right: V (A⇤
)  1.

In Figure 6-2, we compare the performance of RankScore to that of the oracle
in three regimes of (n,m). The matrices A⇤ are randomly generated for different
values of n and m as follows. For the right plot, A⇤ is generated so that V (A⇤

)  1,
by sorting the columns of a matrix with i.i.d. U(0, 1) entries. For the left plot, we
further require that K(A⇤

) = 5m by uniformly partitioning each column of A⇤ into
five blocks and assigning each block the corresponding value from a sorted sample of
five i.i.d. U(0, 1) variables.

Since the oracle knows the true permutation, its behavior is independent of m,
and its rates of estimation are bounded by logn

n
for K(A⇤

) = 5m and (

logn
n

)

2
3 for

V (A⇤
) = 1 respectively by Theorem 10 and 11. (The difference is minor in the

plots as n is not sufficiently large). For RankScore, the permutation term dominates
the estimation term when m = n1/2 by Theorem 14. From the plots, the rates of
estimation are better than ˜O(n�1/4

) predicted by the worst-case analysis in both
examples. For m = n, we also observe rates of estimation faster than the worst-case
rate ˜O(n�1/2

) and close to the oracle rates. We could explain this phenomenon by
R(A⇤

) <
p
m, but such an interpretation may not be optimal since our analysis is

based on worst-case deterministic A⇤. Potential study of random designs of A⇤ is left
open. Finally, for m = n3/2, the permutation term is of order ˜O(n�3/4

) theoretically,
in between of the oracle rates for the two cases. Indeed RankScore has almost the
same performance as the oracle experimentally. Overall Figure 6-2 illustrates the
good behavior of RankScore in this random scenario.

To conclude our numerical experiments, we consider the n ⇥ n lower triangular
matrix A⇤ defined by A⇤

i,j = 1I(i � j). For this matrix, it is easy to check that
K(A⇤

) = 2n � 1 and R(A⇤
) ⇡ p

n. We plot in Figure 6-3 the estimation errors of
˜

⇧

˜A, ˜

⇧A⇤ and ˜A given by RankScore, in addition to the oracle. By Theorem 14, the
rate of estimation achieved by ˜

⇧

˜A is of order ˜O(n�1/2
), while that achieved by the

oracle is of order ˜O(n�1

) since there is no permutation term. The plot confirms this
discrepancy. Moreover, 1

n2k˜⇧A⇤�A⇤k2F is an appropriate measure of the performance
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Figure 6-3 – Various estimation errors of the oracle and RankScore for the triangular
matrix.

of ˜⇧ by Lemma 61 and 44, and the plot suggests that the rates of estimation achieved
by ˜

⇧A⇤ and ˜

⇧

˜A are about the same order. Finally ˜A seems to have a slightly faster
rate of estimation than ˜

⇧

˜A, so in practice ˜A could be used to estimate A. However
we refrain from making an explicit conjecture about the rate.

6.5 Discussion
While computational aspects of the seriation problem have received significant

attention, the robustness of this problem to noise was still unknown to date. To
overcome this limitation, we have introduced in this chapter the statistical seriation
model and studied optimal rates of estimation by showing, in particular, that the
least-squares estimator enjoys several desirable statistical properties such as adaptiv-
ity and minimax optimality (up to logarithmic terms).

While this work paints a fairly complete statistical picture of the statistical seri-
ation model, it also leaves many unanswered questions. There are several logarithmic
gaps in the bounds. In the case of adaptive bounds, some logarithmic terms are
unavoidable as illustrated by Theorem 12 (for the permutation term) and also by sta-
tistical dimension consideration explained by Bellec [2015] (for the estimation term).
However, a more refined argument for the uniform bound, namely one that uses cov-
ering in `

2

-norm rather than `1-norm, would allow us to remove the log n factor from
the estimation term in the upper bound of Corollary 9. Such an argument is provided
by Birman and Solomjak [1967], Anuchina et al. [1979], van de Geer [1991] for the
larger class of vectors with bounded total variation [see, e.g., Mammen and van de
Geer, 1997] but we do not pursue sharp logarithmic terms in this work. For the per-
mutation term, log n in the upper bound of Corollary 8 and log l in the lower bound
of Theorem 12 do not match if l < n. We do not seek answers to these questions in
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this chapter but note that their answers may be different for the unimodal and the
monotone case.

Perhaps the most pressing question is that of computationally efficient estima-
tors. Indeed, while statistically optimal, the least-squares estimator requires search-
ing through n! permutations, which is not realistic even for problems of moderate
size, let alone genomics applications. We gave a partial answer to this question in the
specific context of monotone columns by proposing and studying the performance of
a simple and efficient estimator called RankScore. This study reveals the existence of
a potentially intrinsic gap between the statistical performance achievable by efficient
estimators and that achievable by estimators with access to unbounded computation.
A similar gap is also observed in the SST model for pairwise comparisons by Shah
et al. [2017]. We conjecture that achieving optimal rates of estimation in the seriation
model is computationally hard in general but argue that the planted clique assump-
tion that has been successfully used to establish statistical vs. computational gaps
by Berthet and Rigollet [2013], Ma and Wu [2015], Shah et al. [2016] for example,
is not the correct primitive. Instead, one has to seek for a primitive where hardness
comes from searching through permutations rather than subsets.
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Appendix

6.A Proof of the Upper Bounds

Before proving the main theorems, we discuss two methods adopted in recent
works to bound the error of the LS estimator in shape constrained regression, in a
general setting. Consider the least-squares estimator ˆ✓ of the model y = ✓⇤+z, where
✓⇤ lies in a parameter space ⇥ and z is Gaussian noise. One way to study Ekˆ✓� ✓⇤k2

2

is to use the statistical dimension [Amelunxen et al., 2014] of a convex cone ⇥ defined
by

E
h⇣

sup

✓2⇥, k✓k21

h✓, zi
⌘

2

i

.

This has been successfully applied to isotonic and more general shape constrained
regression by Chatterjee et al. [2015], Bellec [2015].

Another prominent approach is to express the error of the LS estimator via what
is known as Chatterjee’s variational formula, proved by Chatterjee [2014] and given
by

kˆ✓ � ✓⇤k
2

= argmax

t�0

⇣

sup

✓2⇥,k✓�✓⇤k2t

h✓ � ✓⇤, zi � t2

2

⌘

. (6.12)

Note that the first term is related to the Gaussian width [see, e.g., Chandrasekaran
et al., 2012] of ⇥ defined by E[sup✓2⇥h✓, zi], whose connection to the statistical di-
mension was studied by Amelunxen et al. [2014]. The variational formula was first
proposed for convex regression by Chatterjee [2014], and later exploited in several
different settings, including matrix estimation with shape constraints by Chatterjee
et al. [2017] and unimodal regression by Chatterjee and Lafferty [2015]. Similar ideas
have appeared in other works, for example, analysis of empirical risk minimization
[Mendelson, 2015], ranking from pairwise comparison [Shah et al., 2017] and isotonic
regression [Bellec, 2015]. Bellec [2015] has used the statistical dimension approach to
prove spectacularly sharp oracle inequalities that seem to be currently out of reach for
methods based on Chatterjee’s variational formula in Eq. (6.12). On the other hand,
Chatterjee’s variational formula seems more flexible as computations of the statistical
dimension based on tools developed by Amelunxen et al. [2014] are currently limited
to convex sets ⇥ with a polyhedral structure. In this chapter, we use exclusively
Chatterjee’s variational formula.
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6.A.1 A Variational Formula for the Error of the LS Estimator

We begin the proof by stating an extension of Chatterjee’s variational formula.
While we only need this lemma to hold for a union of closed convex sets we present
a version that holds for all closed sets. The latter extension was suggested to us by
Pierre C. Bellec [2016] in a private communication.

Lemma 45. Let C be a closed subset of IRd. Suppose that y = a⇤ + z where a⇤ 2 C
and z 2 IR

d. Let â 2 argmina2C ky � ak2
2

be a projection of y onto C. Define the
function fa⇤ : IR+

! IR by

fa⇤(t) = sup

a2C\Bd
(a⇤,t)

ha� a⇤, zi � t2

2

.

Then we have
kâ� a⇤k

2

2 argmax

t�0

fa⇤(t). (6.13)

Moreover, if there exists t⇤ > 0 such that fa⇤(t) < 0 for all t � t⇤, then kâ�a⇤k
2

 t⇤.

Proof. By definition,

â 2 argmin

a2C

⇣

ka� a⇤k2
2

� 2ha� a⇤, zi+ kzk2
2

⌘

= argmax

a2C

⇣

ha� a⇤, zi � 1

2

ka� a⇤k2
2

⌘

.

Together with the definition of fa⇤ , this implies that

fa⇤(kâ� a⇤k
2

) � hâ� a⇤, zi � 1

2

kâ� a⇤k2
2

� sup

a2C\Bd
(a⇤,t)

⇣

ha� a⇤, zi � 1

2

ka� a⇤k2
2

⌘

� sup

a2C\Bd
(a⇤,t)

ha� a⇤, zi � t2

2

= fa⇤(t) .

Therefore Eq. (6.13) follows.
Furthermore, suppose that there is t⇤ > 0 such that fa⇤(t) < 0 for all t � t⇤. Since

fa⇤(kâ� a⇤k
2

) � fa⇤(0) = 0, we have kâ� a⇤k
2

 t⇤.

Note that this structural result holds for any error vector z 2 IR

d and any closed
set C which is not necessarily convex. In particular, this extends the results by
Chatterjee [2014] and Chatterjee and Lafferty [2015] which hold for convex sets and
finite unions of convex sets respectively.

6.A.2 Proof of Theorem 10

For our purpose, we need a standard chaining bound on the supremum of a sub-
Gaussian process that holds in high probability. The interested readers can see the
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proof, for example, by van Handel [2014, Theorem 5.29], and refer to the monograph
of Ledoux and Talagrand [1991] for a more detailed account of the technique.
Lemma 46 (Chaining tail inequality). Let ⇥ ⇢ IR

d and z ⇠ subG(�2

) in IR

d. For
any ✓

0

2 ⇥, it holds that

sup

✓2⇥
h✓ � ✓

0

, zi  C�

Z

diam(⇥)

0

p

logN(⇥, k · k
2

, ") d"+ s

with probability at least 1�C exp(� cs2

�2
diam(⇥)

2 ) where C and c are positive constants.

Let ˜A 2 Um. To ligthen the notation, we define two rates of estimation:

R
1

= R
1

(

˜A, n) = �
⇣

r

K(

˜A) log
enm

K(

˜A)
+

p

n log n
⌘

(6.14)

and
R

2

= R
2

(

˜A, n) = �2

⇣

K(

˜A) log
enm

K(

˜A)
+ n log n

⌘

. (6.15)

Note that R
2

 R2

1

 2R
2

.
Lemma 47. Suppose Y = A⇤

+Z where A⇤ 2 IR

n⇥m and Z ⇠ subG(�2

). For ˜A 2 Um

and all t > 0, define

f
˜A(t) = sup

A2M\Bnm
(

˜A,t)

hA� ˜A, Y � ˜Ai � t2

2

.

Then for any s > 0, it holds simultaneously for all t > 0 that

f
˜A(t)  CR

1

t+ tkA⇤ � ˜AkF � t2

2

+ st (6.16)

with probability at least 1� C exp(� cs2

�2 ), where C and c are positive constants.

Proof. Define ⇥ = ⇥M(

˜A, 1) =

S

��0

{B � � ˜A : B 2 M \ Bnm
(� ˜A, 1)} (see also

Definition in Eq. (6.22)). In particular, ⇥ ⇢ Bnm
(0, 1) and 0 2 ⇥. Since M is a finite

union of convex cones and thus is star-shaped, by scaling invariance,

sup

A2M\Bnm
(

˜A,t)

hA� ˜A,Zi = t sup

B2M\Bnm
(t�1

˜A,1)

hB � t�1

˜A,Zi  t sup
M2⇥

hM,Zi.

By Lemma 46, with probability at least 1� C exp(� cs2

�2 ),

sup

M2⇥
hM,Zi  C�

Z

2

0

p

logN(⇥, k · kF , ") d"+ s .

Moreover, it follows from Lemma 54 that

logN(⇥, k · kF , ")  C"�1K(

˜A) log
enm

K(

˜A)
+ n log n .
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Combining the previous three displays, we see that

sup

A2M\Bnm
(

˜A,t)

hA� ˜A,Zi  C�t

Z

2

0

r

C"�1K(

˜A) log
enm

K(

˜A)
+ n log n d"+ st

 C�t
r

K(

˜A) log
enm

K(

˜A)
+ C�t

p

n log n+ st

= CR
1

t+ st

with probability at least 1� C exp(� cs2

�2 ). Therefore

f
˜A(t) = sup

A2M\Bnm
(

˜A,t)

hA� ˜A, Y � ˜Ai � t2

2

 sup

A2M\Bnm
(

˜A,t)

hA� ˜A,Zi+ sup

A2M\Bnm
(

˜A,t)

hA� ˜A,A⇤ � ˜Ai � t2

2

 CR
1

t+ st+ tkA⇤ � ˜AkF � t2

2

with probability at least 1� C exp(� cs2

�2 ) simultaneously for all t > 0.

We are now in a position to prove the adaptive oracle inequalities in Theorem 10.
Recall that (

ˆ

⇧, ˆA) denotes the LS estimator defined in Eq. (6.2). Without loss of
generality, assume that ⇧

⇤
= In and Y = A⇤

+ Z.
Fix ˜A 2 Um and define f

˜A as in Lemma 47. We can apply Lemma 45 with
a⇤ =

˜A, z = Y � ˜A, y = Y and â =

ˆ

⇧

ˆA to achieve an error bound on kˆ⇧ ˆA � ˜AkF ,
since ˆ

⇧

ˆA 2 argminM2M kY � Mk2F . To be more precise, for any s > 0 we define
t⇤ = 3C

1

R
1

+2kA⇤� ˜AkF +2s where C
1

is the constant in Eq. (6.16). Then it follows
from Lemma 47 that with probability at least 1�C exp(� cs2

�2 ), it holds for all t � t⇤

that
f

˜A(t)  C
1

R
1

t+ tkA⇤ � ˜AkF � t2

2

+ st < 0 .

Therefore by Lemma 45,

kˆ⇧ ˆA� ˜AkF  t⇤ = 3C
1

R
1

+ 2kA⇤ � ˜AkF + 2s ,

and thus
kˆ⇧ ˆA� A⇤kF  C(R

1

+ kA⇤ � ˜AkF ) + 2s (6.17)

with probability at least 1� C exp(� cs2

�2 ).

In particular, if s = R
1

, then s � �
p
n+m as K(

˜A) � m. We see that with
probability at least 1� C exp(� cs2

�2 ) � 1� e�c(n+m),

kˆ⇧ ˆA� A⇤kF . R
1

+ kA⇤ � ˜AkF
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and thus

kˆ⇧ ˆA� A⇤k2F . kA⇤ � ˜Ak2F + �2K(

˜A) log
enm

K(

˜A)
+ �2n log n .

Finally, Eq. (6.7) follows by taking the infimum over ˜A 2 Um on the right-hand side
and dividing both sides by nm.

Next, to prove the bound in expectation, observe that Eq. (6.17) yields

IP

h

kˆ⇧ ˆA� A⇤k2F � C(R
2

+ kA⇤ � ˜Ak2F ) � s
i

 C exp(� cs

�2

),

where R
2

is defined in Eq. (6.15). Integrating the tail probability, we get that

Ekˆ⇧ ˆA� A⇤k2F � C(R
2

+ kA⇤ � ˜Ak2F ) .
Z 1

0

exp(� cs

�2

) ds =
�2

c

and therefore
Ekˆ⇧ ˆA� A⇤k2F . R

2

+ kA⇤ � ˜Ak2F .

Dividing both sides by nm and minimizing over ˜A 2 Um yields Eq. (6.8).

6.A.3 Proof of Theorem 11

In the setting of isotonic regression, Bellec and Tsybakov [2015] derived global
bounds from adaptive bounds by a block approximation method, which also applies
to our setting. For k 2 [n], let

Uk =
�

a 2 U : Card({a
1

, . . . , an})  k
 

.

Define k⇤
=

⌃� V (a)2n
�2

log(en)

�

1/3⌥. The lemma below is very similar to Lemma 2 of Bellec
and Tsybakov [2015] and their proof also extends to the unimodal case with minor
modifications. We present the result with proof for completeness.

Lemma 48. For a 2 U and k 2 [n], there exists ã 2 Uk such that

1p
n
kã� ak

2

 V (a)

2k
. (6.18)

In particular, there exists ã 2 Uk⇤ such that

1

n
kã� ak2

2

 1

4

max

⇣⇣�2V (a) log(en)

n

⌘

2/3

,
�2

log(en)

n

⌘

.

Moreover,

�2k⇤

n
log(en)  2max

⇣⇣�2V (a) log(en)

n

⌘

2/3

,
�2

log(en)

n

⌘

.

Proof. Let a = min(a
1

, an), ā = maxi2[n] ai and i
0

2 argmaxi2[n] ai. For j 2 [k � 1],
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consider the intervals

Ij =
h

a+
j � 1

k
V (a), a+

j

k
V (a)

i

,

and Ik =
h

a+ k�1

k
V (a), ā

i

. Also for j 2 [k], let Jj = {i 2 [n] : ai 2 Ij}. We define the

vector ã 2 IR

n by ãi = a +

j�1/2
k

V (a) for i 2 [n], where j is uniquely determined by
i 2 Ij. Since a is increasing on {1, . . . , i

0

} and decreasing {i
0

, . . . , n}, so is ã. Thus
ã 2 Uk. Moreover, |ãi � ai|  V (a)

2k
for i 2 [n], which implies Eq. (6.18).

Next we prove the latter two assertions. Since k⇤
= d� V (a)2n

�2
log(en)

�

1/3e, if ã 2 Uk⇤ and
k⇤

= 1 then
1

n
kã� ak2

2

 V (a)2

4

 �2

4n
log(en)

and
�2k⇤

n
log(en) =

�2

n
log(en).

On the other hand, if k⇤ > 1, then

1

n
kã� ak2

2

 V (a)

4(k⇤
)

2

 1

4

��2V (a) log(en)

n

�

2/3

and
�2k⇤

n
log(en)  2

��2V (a) log(en)

n

�

2/3
.

It is straightforward to generalize the lemma to matrices. For k 2 [n]m, we write
k = (k

1

, . . . , km) and let

Um
k = {A 2 Um

: Card({A
1,j, . . . , An,j}) = kj for 1  j  m}.

Then K(A) =
Pm

j=1

kj for A 2 Um
k . Define k⇤ by

k⇤
j =

l⇣ V (A·,j)
2n

�2

log(en)

⌘

1/3m

.

Lemma 49. For A 2 Um, there exists ˜A 2 Um
k⇤ such that

1

nm
k ˜A� Ak2F  1

4

⇣�2V (A) log(en)

n

⌘

2/3

+

�2

4n
log(en)

and
�2K(

˜A)

nm
log(en)  2

⇣�2V (A) log(en)

n

⌘

2/3

+

2�2

n
log(en) .

Proof. Applying Lemma 48 to columns of A, we see that there exists ˜A 2 Um
k⇤ such
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that
1

n
k ˜A·,j � A·,jk2

2

 1

4

max

⇣

��2V (A·,j) log(en)

n

�

2/3
,
�2

n
log(en)

⌘

and
�2k⇤

j

n
log(en)  2max

⇣

��2V (A·,j) log(en)

n

�

2/3
,
�2

n
log(en)

⌘

.

Summing over 1  j  m, we get that

1

nm
k ˜A� Ak2F  1

4m

⇣�2

log(en)

n

⌘

2/3
m
X

j=1

V (A·,j)
2/3

+

�2

log(en)

4n

=

1

4

⇣�2V (A) log(en)

n

⌘

2/3

+

�2

4n
log(en) ,

and similarly

�2K(

˜A)

nm
log(en)  2

⇣�2V (A) log(en)

n

⌘

2/3

+

2�2

n
log(en) .

For A 2 Um, choose ˜A 2 Um
k⇤ according to Lemma 49. Then

1

nm
k ˜A� A⇤k2F  2

nm
kA� A⇤k2F +

2

nm
k ˜A� Ak2F

 2

nm
kA� A⇤k2F +

5

4

⇣�2V (A) log n

n

⌘

2/3

+

5�2

4n
log n (6.19)

by noting that log(en)  2.5 log n for n � 2, and similarly

�2K(

˜A)

nm
log(en)  5

⇣�2V (A) log n

n

⌘

2/3

+

5�2

n
log n . (6.20)

Plugging Eq. (6.19) and Eq. (6.20) into the right-hand side of Eq. (6.7) and Eq. (6.8),
and then minimizing over A 2 Um, we complete the proof.

6.B Metric Entropy

In this section, we study various covering numbers or metric entropy related to
the parameter space of the model in Eq. (6.1). First recall some standard definitions
that date back at least to Kolmogorov and Tihomirov [1961]. An "-net of a subset
G ⇢ IR

n with respect to a norm k · k is a set {w
1

, · · · , wN} ⇢ G such that for any
w 2 G, there exists i 2 [N ] for which kw�wik  ". The covering number N(G, k·k, ")
is the cardinality of the smallest "-net with respect to the norm k · k. Metric entropy
is defined as the logarithm of a covering number. In the following, we will consider
the Euclidean norm unless otherwise specified.
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6.B.1 Cartesian Product of Cones

Lemma 51 below bounds covering numbers of product spaces and is useful in later
proofs. We start with a well-known result on the covering number of a Euclidean ball
with respect to the `1-norm [see, e.g., Massart, 2007, Lemma 7.14, for an analogous
result].

Lemma 50. For any " 2 (0, 1],

N
⇣

Bm
(0, 1), k · k1,

"p
m

⌘

 (C/")m,

for some constant C > 0.

Proof. We aim at bounding the covering number of a Euclidean ball by cubes. Let
{x1, . . . , xM} be a maximal "p

m
-packing of Bm

(0, 1) with respect to the `1-norm,
where a �-packing of a set G with respect to a norm k · k is a set {w

1

, · · · , wN} ⇢ G
such that kwi � wjk � � for all distinct i, j 2 [N ]. Then this set is necessarily an
"p
m

-net of Bm
(0, 1) by maximality, so N(Bm

(0, 1), k · k1, "p
m
)  M . Consider the

cubes with side length "p
m

centered at xi for 1  i  M . These cubes are disjoint
and contained in the set Bm

(0, 1) + Qm
(

"p
m
), where Qm

(

"p
m
) is the cube with side

length "p
m

centered at the origin in IR

m. Since Qm
(

"p
m
) ⇢ Bm

(0, "),

M Vol

⇣

Qm
� "p

m

�

⌘

 Vol

⇣

Bm
(0, 1) +Qm

� "p
m

�

⌘

 Vol(Bm
(0, 1 + "))

 Vol(Bm
(0, 2)).

This proves the following bound on the covering number in terms of a volume ratio:

N
⇣

Bm
(0, 1), k · k1,

"p
m

⌘

 Vol(Bm
(0, 2))

Vol(Qm
(

"p
m
))

 Cmm�m/2

"mm�m/2
= (C/")m.

Now we study the metric entropy of a Cartesian product of convex cones. Let
{Ii}mi=1

be a partition of [n] with |Ii| = ni and
Pm

i=1

ni = n. For a 2 IR

n, the
restriction of a to the coordinates in Ii is denoted by aIi 2 IR

ni . Let Ci be a convex
cone in IR

ni and C = C
1

⇥ · · ·⇥ Cm.

Lemma 51. With the notation above, suppose that aIi 2 Ci \ (�Ci). Then for any
t > 0 and " 2 (0, t],

logN
�C \ Bn

(a, t), k · k
2

, "
�  m log

Ct

"
+

m
X

i=1

logN
⇣

Ci \ Bni
(aIi , t), k · k2,

"

3

⌘

for some constant C > 0.
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Proof. Since a product of balls Bn1
(0, "p

m
)⇥ · · ·⇥Bnm

(0, "p
m
) is contained in Bn

(0, "),
one could try to cover C \ Bn

(a, t) by such products of balls. It turns out that this
yields an upper bound of order m3/2, which is too loose for our purpose. Fortunately,
the following argument corrects this dependency.

Without loss of generality, we assume that t = 1. We construct a 3"-net of
C \ Bn

(a, 1) as follows. First, let NB be an "
2

p
m

-net of Bm
(0, 1) with respect to the

`1-norm. Define
ND =

n

µ 2 NB : min

i2[m]

µi � � 1

2

p
m

o

.

Note that µi+
1p
m

> 0 for µ 2 ND, and let Nµi be a (µi+
1p
m
)"-net of Ci\Bni

(aIi , µi+

1p
m
). Define Nµ = Nµ1 ⇥ · · ·⇥Nµm , i.e.,

Nµ = {w 2 IR

n
: w = (wI1 , · · · , wIm), wIi 2 Nµi}.

We claim that
S

µ2ND
Nµ is an 3"-net of C \ Bn

(a, 1).
Fix v 2 C \Bn

(a, 1). Let vIi 2 IR

ni be the restriction of v to the component space
IR

ni . Then vIi 2 Ci. Let � 2 IR

m be defined by �i = kvIi �aIik2, so k�k
2

= kv�ak
2


1. Hence we can find µ 2 NB such that kµ��k1  "

2

p
m

. In particular, for all i 2 [m],
µi � �i� "

2

p
m

� � 1

2

p
m

, so µ 2 ND. Moreover, kvIi�aIik2 = �i < µi+
1p
m

and vIi 2 Ci,
so by definition of Nµi , there exists wIi 2 Nµi such that kwIi � vIik2  (µi +

1p
m
)".

Let w = (wI1 , . . . , wIm) 2 Nµ. Since
m
X

i=1

µ2

i 
m
X

i=1

(�i + |�i � µi|)2 
m
X

i=1

2�2i +
"2

2

 5

2

,

we conclude that
kw � vk2

2


m
X

i=1

⇣

µi +
1p
m

⌘

2

"2  7"2.

Therefore
S

µ2ND
Nµ is a 3"-net of C \ Bn

(a, 1).
It remains to bound the cardinality of this net. By Lemma 50, |ND|  |NB| 

(C/")m. Moreover, recall that Nµi is a (µi +
1p
m
)"-net of Ci \Bni

(aIi , µi +
1p
m
). Since

aIi 2 Ci \ (�Ci), for any t > 0, Ci \ Bni
(aIi , t) = {x + aIi : x 2 Ci \ Bni

(0, t)}. Hence
we can choose the net so that

|Nµi | = N
⇣

Ci \ Bni
�

0, µi +
1p
m

�

, k · k
2

,
�

µi +
1p
m

�

"
⌘

= N(Ci \ Bni
(0, 1), k · k

2

, ")

= N(Ci \ Bni
(aIi , 1), k · k2, ") .

As |Nµ| 
Qm

i=1

|Nµi |, therefore
�

�

�

[

µ2ND

Nµ

�

�

�


⇣C

"

⌘m
m
Y

i=1

N(Ci \ Bni
(aIi , 1), k · k2, ") .

Taking the logarithm completes the proof.
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6.B.2 Unimodal Vectors and Matrices

Recall that Sn denotes the closed convex cone of increasing vectors in IR

n. First,
we prove a result on the metric entropy of Sn intersecting with a ball using Lemma 51.

Lemma 52. Let b 2 IR

n be such that b
1

= · · · = bn. Then for any t > 0 and " > 0,

logN(Sn \ Bn
(b, t), k · k

2

, ")  C"�1t log(en).

Proof. The majority of the proof is due to Lemma 5.1 in an old version of the article
of Chatterjee and Lafferty [2015], but we improve their result by a factor

p
log n and

provide the whole proof for completeness.
The bound holds trivially if " > t, since the left-hand side is zero. It also clearly

holds when n = 1. Hence we can assume without loss of generality that "  t and
n = 2n0 � 2. Moreover, assume that t = 1 for simplicity and the proof will work for
any t > 0. Let I = {1, . . . , n0} and observe that

logN(Sn \ Bn
(b, 1), k · k

2

, ")  2 logN(Sn0 \ Bn0
(bI , 1), k · k2, "/

p
2 ) .

Let k be the smallest integer for which 2

k > n0. We partition I into k blocks Aj =

I \ [2

j, 2j+1

) for j 2 [k] and let mj = |Aj|. Since Sn0 ⇢ Sm1 ⇥ · · · ⇥ Smk
, Lemma 51

yields that

logN
�Sn0 \ Bn0

(bI , 1), k · k2, "/
p
2

�

 k log
C

"
+

k
X

j=1

logN
⇣

Smj \ Bmj
(bAj , 1), k · k2,

"

3

p
2

⌘

. (6.21)

We know from Chatterjee [2014, Lemma 4.20] that for any c  d and n � 1,

logN
⇣

Sn \ [c, d]n \ Bn
(b, 1), k · k

2

, "
⌘

 C
p
n(d� c)

"
.

For each a 2 Sn\Bn
(0, 1), it holds that |ai|  1p

i
for i 2 I (since either |al| � |ai| for all

l  i or |al| � |ai| for all i  l  n; see e.g. Dai et al. [2014]), so maxi2Aj |ai|  2

�j/2.
Also mj  2

j, so we get that

logN
⇣

Smj \ Bmj
(bAj , 1), k · k2,

"

3

p
2

⌘

 C

"

for all j 2 [k]. Substituting this bound into Eq. (6.21) and noting that k  log

2

n, we
reach the conclusion

logN(Sn0 \ Bn0
(bI , 1), k · k2, "/

p
2)  C"�1

log(en) .

Next, we study the metric entropy of the set of matrices with unimodal columns.
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Recall that Cl = {a 2 IR

n
: a

1

 · · ·  al} \ {a 2 IR

n
: al � · · · � an} for l 2 [n]. For

l = (l
1

, . . . , lm) 2 [n]m, define Cm
l = Cl1 ⇥ · · · ⇥ Clm . Moreover, for A 2 IR

n⇥m, t > 0

and C ⇢ IR

n⇥m, define

⇥C(A, t) =
[

��0

{B � �A : B 2 C \ Bnm
(�A, t)} (6.22)

=

[

��0

⇣

C \ Bnm
(�A, t)� �A

⌘

.

Note that in particular ⇥C(A, t) ⇢ Bnm
(0, t).

Lemma 53. Given A 2 IR

n⇥m and l = (l
1

, . . . , lm) 2 [n]m, define K(A)=
Pm

j=1

k(A·,j)

and k(A·,j) = Card({A
1,j, . . . , An,j}). Then for any t > 0 and " > 0,

logN
�

⇥Cm
l
(A, t), k · kF , "

�  C"�1tK(A) log
enm

K(A)
.

Proof. Assume that "  t since otherwise the left-hand side is zero and the bound
holds trivially. For j 2 [m], define Ij,1 = [lj] and Ij,2 = [n]\[lj]. Define kj,1 = k(AIj,1,j)

and kj,2 = k(AIj,2,j). Let { =

Pm
j=1

(kj,1+kj,2) and observe that K(A)  {  2K(A).

Moreover, let {Ij,1
1

, . . . , Ij,1kj,1
} be the partition of Ij,1 such that AIj,1i ,j is a constant

vector for i 2 [kj,1]. Note that elements of Ij,1i need not to be consecutive. Define the
partition for Ij,2 analogously.

For j 2 [m] and i 2 [kj,1] (resp. [kj,2]), let SIj,1i ,j (resp. SIj,2i ,j) denote the set of

increasing (resp. decreasing) vectors in the component space IR

|Ij,1i | (resp. IR

|Ij,2i |).
Lemma 52 implies that

logN(SIj,ri ,j \ B|Ij,ri |
(AIj,ri ,j, t), k · kF , ")  C"�1t log(e|Ij,ri |).

As a matrix in IR

n⇥m can be viewed as a concatenation of { =

Pm
j=1

(kj,1 + kj,2)

vectors of length |Ij,ri |, r 2 [2], j 2 [m], we define the cone S⇤ in IR

n⇥m by S⇤
=

Qm
j=1

Q

2

r=1

Qkj,r
i=1

SIj,ri ,j, which is clearly a superset of Cm
l . It also follows that A 2

S⇤ \ (�S⇤
), and thus by Lemma 51 and the previous display,

logN(S⇤ \ Bnm
(A, t), k · kF , ")  { log

Ct

"
+

m
X

j=1

2

X

r=1

kj,r
X

i=1

C"�1t log(e|Ij,ri |)

 C"�1t{ + C"�1t{ log

e
P

j,r,i |Ij,ri |
{

 C"�1tK(A) log
enm

K(A)
,

where we used the concavity of the logarithm and Jensen’s inequality in the second
step, and that K(A)  {  2K(A) in the last step.

Since A 2 S⇤\(�S⇤
) (the cone S⇤ is pointed at A) we have that S⇤\Bnm

(�A, t)�
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�A = S⇤ \ Bnm
(0, t) for any � � 0. In view of Definition in Eq. (6.22), it holds

⇥S⇤
(A, t) =

[

��0

S⇤ \ Bnm
(�A, t)� �A = S⇤ \ Bnm

(�A, t)� �A , 8� � 0 .

In particular, taking � = 1, we get ⇥S⇤
(A, t) = S⇤ \ Bnm

(A, t) � A. Moreover,
Cm
l ⇢ S⇤, so that ⇥Cm

l
(A, t) ⇢ ⇥S⇤

(A, t) = S⇤ \ Bnm
(A, t) � A. Thus the metric

entropy of ⇥Cm
l
(A, t) is subject to the above bound as well.

Finally, we consider the metric entropy of ⇥M(A, t) for A 2 IR

n⇥m, t > 0 and
M =

S

⇧2Sn
⇧Um. The above analysis culminates in the following lemma which we

use to prove the main upper bounds.

Lemma 54. Let A 2 IR

n⇥m and K(A) be defined as in the previous lemma. Then
for any " > 0 and t > 0,

logN
�

⇥M(A, t), k · kF , "
�  C"�1tK(A) log

enm

K(A)
+ n log n.

Proof. Assume that "  t since otherwise the left-hand side is zero and the bound
holds trivially. Note that Um

=

S

l2[n]m Cm
l , and that M =

S

⇧2Sn
⇧Um. Thus M

is the union of nmn! cones of the form ⇧Cm
l . By Definition in Eq. (6.22), ⇥M(A, t)

is also the union of nmn! sets ⇥

⇧Cm
l
(A, t), each having metric entropy subject to the

bound in Lemma 53. Therefore, a union bound implies that

logN
�

⇥M(A, t), k · kF , "
�  logN

�

⇥Cm
l
(A, t), k · kF , "

�

+ log(nmn!)

 C"�1tK(A) log
enm

K(A)
+m log n+ n log n

 C"�1tK(A) log
enm

K(A)
+ n log n,

where the last step follows from that K log(enm/K) � m log n for m  K  nm and
that "  t.

6.C Proof of the Lower Bounds
For minimax lower bounds, we consider the model Y = ⇧

⇤A⇤
+ Z where entries

of Z are i.i.d. N(0, �2

). The Varshamov-Gilbert lemma [Massart, 2007, Lemma 4.7]
is a standard tool for proving lower bounds.

Lemma 55 (Varshamov-Gilbert). Let � denote the Hamming distance on {0, 1}d
where d � 2. Then there exists a subset ⌦ ⇢ {0, 1}d such that log |⌦| � d/8 and
�(!,!0

) � d/4 for distinct !,!0 2 ⌦.

We also need the following useful lemma.
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Lemma 56. Consider the model y = ✓ + z where ✓ 2 ⇥ ⇢ IR

d and z ⇠ N(0, �2Id).
Suppose that |⇥| � 3 and for distinct ✓, ✓0 2 ⇥, 4�  k✓ � ✓0k2

2

 �2

8

log |⇥| where
� > 0. Then there exists c > 0 such that

inf

ˆ✓
sup

✓2⇥
IP✓

⇥kˆ✓ � ✓k2F � �
⇤ � c.

Proof. Let IP✓ denote the probability with respect to ✓+z. Then the Kullback-Leibler
divergence between IP✓ and IP✓0 satisfies that

KL(IP✓, IP✓0) =
k✓ � ✓0k2F

2�2

 log |⇥|
16

 log(|⇥|� 1)

10

,

since |⇥| � 3. Applying [Tsybakov, 2009, Theorem 2.5] with ↵ =

1

10

gives the
conclusion.

6.C.1 Proof of Theorem 12

We define Um
K0
(V

0

) = Um
K0

\Um
(V

0

) and MK0(V0

) =

S

⇧2Sn
⇧Um

K0
(V

0

). Define the
subset of MK0(V0

) containing permutations of monotonic matrices by MS
K0
(V

0

) =

{⇧A 2 MK0(V0

) : ⇧ 2 Sn, A 2 Sm}. Since each estimator pair (

ˆ

⇧, ˆA) gives an
estimator ˆM =

ˆ

⇧

ˆA of M = ⇧A, it suffices to prove a lower bound on k ˆM �Mk2F . In
fact, we prove a stronger lower bound than the one in Theorem 12.

Proposition 21. Suppose that K
0

 m(

16n
�2 )

1/3V 2/3
0

�m. Then

inf

ˆM
sup

M2MK0 (V0)

IPM

h

1

nm
k ˆM �Mk2F � c�2

K
0

nm

+ c max

1lmin(K0�m,m)+1

min

⇣�2

m
log l,m2l�3V 2

0

⌘i

� c0 (6.23)

for some c, c0 > 0, where IPM is the probability with respect to Y = M + Z. This
bound remains valid for the parameter subset MS

K0
(V

0

) if l = 1 or 2.

Note that the bound clearly holds for the larger parameter space MK0 =

S

⇧2Sn
⇧Um

K0
.

By taking l = min(K
0

�m,m) + 1 and V
0

large enough, we see that the assumption
in Proposition 21 is satisfied and the second term becomes simply �2

m
log l, so The-

orem 12 follows. In the monotonic case, by the last statement of the proposition,
if K

0

� m + 1 then taking l = 2 and V
0

large enough yields a lower bound of rate
�2

(

K0
nm

+

1

m
) for the set of matrices A with increasing columns and K(A)  K

0

.
The proof of Proposition 21 has two parts which correspond to the two terms

respectively. First, the term �2

K0
nm

is derived from the proof of lower bounds for
isotonic regression by Bellec and Tsybakov [2015]. Then we derive the other term
�2

m
log l for any 1  l  min(K

0

�m,m)+1, which is due to the unknown permutation.
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Lemma 57. Suppose that K
0

 m(

16n
�2 )

1/3V 2/3
0

�m. For some c, c0 > 0,

inf

ˆM
sup

M2MS
K0

(V0)

IPM

⇥k ˆM �Mk2F � c�2K
0

⇤ � c ,

where IPM is the probability with respect to Y = M + Z.

Proof. We adapt the proof of Bellec and Tsybakov [2015, Theorem 4] to the case of
matrices. Let Vj = V

0

for all j 2 [m]. Since

K
0

 m
�

16n

�2

�

1/3
V 2/3
0

�m =

m
X

j=1

h

�

16n

�2

�

1/3
V 2/3
j � 1

i

,

we can choose kj 2 [n] so that kj  (

16n
�2 )

1/3V 2/3
j and K

0

=

Pm
j=1

kj. According to
Lemma 55, there exists ⌦ ⇢ {0, 1}K0 such that log |⌦| � K

0

/8 and �(!,!0
) � K

0

/4
for distinct !,!0 2 ⌦. Consider the partition [K

0

] = [j
m=1

Ij with |Ij| = kj. For
each ! 2 ⌦, let !j 2 {0, 1}kj be the restriction of ! to coordinates in Ij. Define
M! 2 IR

n⇥m by

M!
i,j =

b(i� 1)kj/ncVj

2kj
+ �j!b(i�1)kj/nc+1

,

where �j = �
8

p

kj/2n. It is straightforward to check that k(M·,j)  kj, V (M·,j)  Vj

and M·,j is increasing, so M is in the parameter space. Moreover, for distinct !,!0 2
⌦,

kM! �M!0k2F � c
m
X

j=1

n

kj
�2j �(!

j, (!0
)

j
) � c�2

m
X

j=1

�(!j, (!0
)

j
) = c�2K

0

.

On the other hand,

kM! �M!0k2F  2

m
X

j=1

n

kj
�2j �(!

j, (!0
)

j
)  �2

64

�(!,!0
)  �2K

0

64

 �2

8

log |⌦|.

Applying Lemma 56 completes the proof.

For the second term in Eq. (6.23), we first note that the bound is trivial for l = 1

since log l = 0. The next lemma deals with the case l = 2.

Lemma 58. There exist constants c, c0 > 0 such that for any K
0

� m+1 and V
0

� 0,

inf

ˆM
sup

M2MS
K0

(V0)

IPM

h

k ˆM �Mk2F � cnmin

�

�2,m3V 2

0

�

i

� c0 ,

where IPM is the probability with respect to Y = M + Z.

Proof. By Lemma 55, there exists ⌦ ⇢ {0, 1}n such that log |⌦| � n/8 and �(!,!0
) �

n/4 for distinct !,!0 2 ⌦. For each ! 2 ⌦, define M! 2 IR

n⇥m by setting the first
column of M! to be ↵! and all other entries to be zero, where ↵ = min

�

�
8

,m3/2V
0

�

.
Then
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1. M! 2 MS
K0
(V

0

) since K(M) = m+1  K
0

, V (M)  V
0

and we can permutate
the rows of M! so that its first column is increasing;

2. kM!�M!0k2F � min(

�2

64

,m3V 2

0

) �(!,!0
) � min(

n�2

256

, n
4

m3V 2

0

) for distinct !,!0 2
⌦;

3. kM! �M!0k2F  �2

64

�(!,!0
)  �2

64

n  �2

8

log |⌦| for !,!0 2 ⌦.
Applying Lemma 56 completes the proof.

For the previous two lemmas, we have only used matrices with increasing columns.
However, to achieve the second term in Eq. (6.23) for l � 3, we need matrices with
unimodal columns. The following packing lemma is the key.

Lemma 59. For l 2 [m], consider the set M of n⇥m matrices of the form

M =

(

1 for exactly one ji 2 [l] for each i 2 [n],

0 otherwise.

For " > 0, define k = b "2n
2

c. Then there exists an "
p
n-packing P of M such that

|P| � ln�k
(

k
en
)

k if k � 1 and |P| = ln if k = 0.

Proof. There are l choices of entries to put the one in each row of M , so |M| = ln.
Fix M

0

2 M. If kM � M
0

kF  "
p
n where M 2 M, then M differs from M

0

in at
most k rows. If k = 0, taking P = M gives the result. If k � 1 then

�

�M \Bnm
(M

0

, "
p
n)
�

� 
✓

n

k

◆

lk  �en
k

�k
lk .

Moreover, let P be a maximal "
p
n-packing of M. Then P is also an "

p
n-net, so

M ⇢ SM02P Bnm
(M

0

, "
p
n). It follows that

ln = |M| 
X

M02P

�

�M \ Bnm
(M

0

, "
p
n)
�

�  |P| · �en
k

�k
lk .

We conclude that |P| � ln�k
(

k
en
)

k.

For notational simplicity, we now consider 2  l  min(K
0

� m,m) instead of
3  l  min(K

0

�m,m) + 1.

Lemma 60. There exist constants c, c0 > 0 such that for any K
0

� m, V
0

� 0 and
2  l  min(K

0

�m,m),

inf

ˆM
sup

M2MK0 (V0)

IPM

h

k ˆM �Mk2F � cnmin

�

�2

log(l + 1),m3

(l + 1)

�3V 2

0

�

i

� c0 ,

where IPM is the probability with respect to Y = M + Z.

Proof. Set " = 1/2 and let P be the
p
n/2-packing given by Lemma 59. If k = bn

8

c =
0, then log |P| = n log l. Now assume that k � 1. Since (

x
en
)

x is decreasing on [1, n],
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we have that |P| � l7n/8( 1

8e
)

n/8. Hence for l � 2,

log |P| � 7n

8

log l � n

8

log(8e) � n

4

log l . (6.24)

Moreover, for each M
0

2 P , consider the rescaled matrix

M = min

⇣�

8

r

log l

2

,
�m

l

�

3/2
V
0

⌘

M
0

.

1. We can permute the rows of M
0

so that each column has consecutive ones (or
all zeros), so M 2 M. Moreover,

K(M) = 2l +m� l  min(m,K
0

�m) +m  K
0

and

V (M) 
⇣

1

m

l
X

j=1

�

(m/l)3/2V
0

�

2/3
⌘

3/2

= V
0

,

so M 2 MK0(V0

) for M
0

2 P .
2. For M

0

,M 0
0

2 P , kM
0

�M 0
0

k2F � n/4, so

kM �M 0k2F = min

⇣�2

log l

128

, (m/l)3V 2

0

⌘

kM
0

�M 0
0

k2F

� min

⇣ �2

512

n log l,
n

4

�m

l

�

3

V 2

0

⌘

.

3. For M
0

,M 0
0

2 P , kM
0

�M 0
0

k2F  2kM
0

k2F + 2kM 0
0

k2F  4n, so by Eq. (6.24),

kM �M 0k2F  �2

log l

128

kM
0

�M 0
0

k2F  �2

32

n log l  �2

8

log |P| .

Since log l � 1

2

log(l + 1) for l � 2, applying Lemma 56 completes the proof.

Combining Lemma 57, 58 and 60, and dividing the bound by nm, we get Eq. (6.23)
because the max of two terms is lower bounded by a half of their sum. The last
statement in Proposition 21 holds since Lemma 57 and 58 are proved for matrices
with increasing columns.

6.C.2 Proof of Theorem 13

The proof will only use Lemma 57 and 58, so the lower bound of rate (

�2V0
n

)

2/3
+

�2

n
+min(

�2

m
,m2V 2

0

) holds even if the matrices are required to have increasing columns.
The last term min(

�2

m
,m2V 2

0

) is achieved by Lemma 58, so we focus on the trade-
off between the first two terms. Suppose that (16n

�2 )
1/3V 2/3

0

� 3, in which case the first
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term (

�2V0
n

)

2/3 dominates the second term. Then m(

16n
�2 )

1/3V 2/3
0

�m � 2m. Setting

K
0

=

⌅

m
�

16n

�2

�

1/3
V 2/3
0

�m
⇧

,

we see that K
0

� ⌅m
2

(

16n
�2 )

1/3V 2/3
0

⇧

. Lemma 57 can be applied with this choice of K
0

.
Then the term c�2

K0
nm

is lower bounded by c(�
2V0
n

)

2/3.
On the other hand, if (16n

�2 )
1/3V 2/3

0

 3, then the second term �2

n
dominates the

first up to a constant. To deduce a lower bound of this rate, we apply Lemma 55 to
get ⌦ ⇢ {0, 1}m such that log |⌦| � m/8 and �(!,!0

) � m/4 for distinct !,!0 2 ⌦.
For each ! 2 ⌦, define M! 2 IR

n⇥m by setting every row of M! equal to �
8

p
n
!>.

Then
1. M! 2 Um

(V
0

) since V (M!
) = 0;

2. kM! �M!0k2F =

�2

64

�(!,!0
) � c�2m;

3. kM! �M!0k2F =

�2

64

�(!,!0
)  �2

64

m  �2

8

log |⌦|.
Hence Lemma 56 implies a lower bound on 1

nm
k ˆM �Mk2F of rate �2m

nm
=

�2

n
.

6.D Matrices with Increasing Columns

For the model Y = ⇧

⇤A⇤
+Z where A⇤ 2 Sm and Z ⇠ subG(�2

), a computation-
ally efficient estimator (˜⇧, ˜A) has been constructed in Section 6.4 using the RankScore

procedure. We will bound its rate of estimation in this section. Recall that the defi-
nition of (˜⇧, ˜A) consists of two steps. First, we recover an order (or a ranking) of the
rows of Y , which leads to an estimator ˜

⇧ of the permutation. Then define ˜A 2 Sm

so that ˜

⇧

˜A is the projection of Y onto the convex cone ˜

⇧Sm. For the analysis of
the algorithm, we deal with the projection step first, and then turn to learning the
permutation.

6.D.1 Projection

In fact, for any estimator ˜

⇧, if ˜A is defined as above by the projection correspond-
ing to ˜

⇧, then the error k˜⇧ ˜A�⇧

⇤A⇤k2F can be split into two parts: the permutation
error k(˜⇧� ⇧

⇤
)A⇤k2F and the estimation error of order ˜O(�2K(A⇤

)).
The proof of the following oracle inequality is very similar to that of Theorem 10,

so we will sketch the proof without providing all the details.

Lemma 61. Consider the model Y = ⇧

⇤A⇤
+ Z where A⇤ 2 Sm and Z ⇠ subG(�2

).
For any ˜

⇧ 2 Sn, define ˜A 2 Sm so that ˜

⇧

˜A is the projection of Y onto ˜

⇧Sm. Then
with probability at least 1� e�c(n+m),

k˜⇧ ˜A � ⇧

⇤A⇤k2F . min

A2Sm

⇣

kA � A⇤k2F + �2K(A) log
enm

K(A)

⌘

+ k(˜⇧ � ⇧

⇤
)A⇤k2F .
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Proof. Assume without loss of generality that ⇧

⇤
= In. Let A 2 Sm and define

f
˜

⇧A(t) = sup

M2˜

⇧Sm\Bnm
(

˜

⇧A,t)

hM � ˜

⇧A, Y � ˜

⇧Ai � t2

2

.

Since Sm
= Cm

l with l = (n, . . . , n), by Lemma 53,

logN
�

⇥

˜

⇧Sm(A, t), k · kF , "
�  C"�1tK(A) log

enm

K(A)
.

Using the proof of Lemma 47, we see that

f
˜

⇧A(t)  C�t

r

K(A) log
enm

K(A)
+ tk˜⇧A� A⇤kF � t2

2

+ st

with probability at least 1�C exp(� cs2

�2 ). Then the proof of Theorem 10 implies that
with probability at least 1� e�c(n+m),

k˜⇧ ˜A� A⇤k2F . �2K(A) log
enm

K(A)
+ k˜⇧A� A⇤k2F

. �2K(A) log
enm

K(A)
+ kA� A⇤k2F + k˜⇧A⇤ � A⇤k2F .

Minimizing over A 2 Sm yields the desired result.

The idea of splitting the error into two terms as in Lemma 61 has appeared in
previous works by Shah et al. [2017], Chatterjee and Mukherjee [2016].

6.D.2 Permutation

By virtue of Lemma 61, it remains to control the permutation error k˜⇧A⇤�⇧

⇤A⇤k2F
where ˜

⇧ is given by the RankScore procedure defined in Section 6.4. Recall that for
i, i0 2 [n],

�A⇤
(i, i0) = max

j2[m]

(A⇤
i0,j � A⇤

i,j) _
1p
m

m
X

j=1

(A⇤
i0,j � A⇤

i,j)

and �Y (i, i0) is defined analogously. Since columns of A⇤ are increasing,

�

�

�A⇤
(i, i0)

�

�

= kA⇤
i0,· � A⇤

i,·k1 _ 1p
m
kA⇤

i0,· � A⇤
i,·k1 . (6.25)

Recall that the RankScore procedure is defined as follows. First, for i 2 [n], we
associate with the i-th row of Y a score si defined by

si =
n
X

l=1

1I(�Y (l, i) � 2⌧) (6.26)
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for the threshold ⌧ := 3�
p

log(nm��1

) where � is the probability of failure. Then we
order the rows of Y so that the scores are increasing with ties broken arbitrarily.

This is equivalent to requiring that the corresponding permutation ⇡̃ : [n] ! [n]
satisfies that if si < si0 then ⇡̃�1

(i) < ⇡̃�1

(i0). Define ˜

⇧ to be the n⇥ n permutation
matrix corresponding to ⇡̃ so that ˜

⇧⇡̃(i),i = 1 for i 2 [n] and all other entries of ˜

⇧ are
zero. Moreover, let ⇡⇤

: [n] ! [n] be the permutation corresponding to ⇧

⇤.
To control the permutation error, we first state a lemma which asserts that if the

gap between two rows of A⇤ is sufficiently large, then the permutation defined above
will recover their relative order with high probability.

Lemma 62. There is an event E of probability at least 1� � on which the following
holds. For any i, i0 2 [n], if �A⇤

(i, i0) � 4⌧ , then ⇡̃�1 � ⇡⇤
(i) < ⇡̃�1 � ⇡⇤

(i0).

Proof. Since Z ⇠ subG(�2

), Zi,j and 1p
m

Pm
j=1

Zi,j are sub-Gaussian random variables
with variance proxy �2. A standard union bound yields that

max

⇣

max

i2[n],j2[m]

|Zi,j|,max

i2[n]

1p
m

�

�

�

m
X

j=1

Zi,j

�

�

�

⌘

 ⌧ = 3�
p

log(nm��1

)

on an event E of probability at least 1� 2(nm+ n) exp(� ⌧2

2�2 ) � 1� �.
In the sequel, we make statements that are valid on the event E . Since Y⇡⇤

(i),j =

A⇤
i,j + Zi,j, by the triangle inequality,

|�Y (⇡
⇤
(i), ⇡⇤

(i0))��A⇤
(i, i0)|  2⌧. (6.27)

Suppose that �A⇤
(i, i0)�4⌧ . We claim that s⇡⇤

(i)<s⇡⇤
(i0). If �Y (⇡⇤

(l), ⇡⇤
(i)) � 2⌧ , for

l 2 [n], then �A⇤
(l, i) � 0 by Eq. (6.27). Since A⇤ has increasing columns, �A⇤

(l, i0) �
4⌧ . Again by Eq. (6.27), �Y (⇡⇤

(l), ⇡⇤
(i0)) � 2⌧ . By definition in Eq. (6.26), we see

that s⇡⇤
(i)  s⇡⇤

(i0). Moreover, �A⇤
(i, i0) � 4⌧ so �Y (⇡⇤

(i), ⇡⇤
(i0)) � 2⌧ . Therefore

s⇡⇤
(i) < s⇡⇤

(i0). According to the construction of ⇡̃, ⇡̃�1 � ⇡⇤
(i) < ⇡̃�1 � ⇡⇤

(i0).

Next, recall that for a matrix A 2 Sm, J denotes the set of pairs of indices
(i, j) 2 [n]2 such that Ai,· and Aj,· are not identical. The quantity R(A) is defined by

R(A) =
1

n
max

I⇢[n]2

|I|=n

X

(i,j)2I\J

⇣ kAi,· � Aj,·k2
2

kAi,· � Aj,·k21
^ mkAi,· � Aj,·k2

2

kAi,· � Aj,·k2
1

⌘

.

For any nonzero vector u 2 IR

m, kuk2
2

/kuk21 � 1 with equality achieved when kuk
0

=

1, and kuk2
2

/kuk2
1

� m�1 with equality achieved when all entries of u are the same.
Hence R(A) � 1. Moreover, kuk2

2

 kuk
1

kuk1 by Hölder’s inequality, so kuk22
kuk21

^
mkuk22
kuk21

 p
m as the product of the two terms is no larger than m. The equality

is achieved by u = (1, . . . , 1, 0, . . . , 0) where the first
p
m entries are equal to one.

Therefore,
R(A) 2 ⇥1,pm

⇤

.
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Intuitively, the quantity R(A) is small if the difference of any two rows of A is either
very sparse or very dense.

Lemma 63. There is an event E of probability at least 1� � on which

k˜⇧A⇤ � ⇧

⇤A⇤k2F . �2R(A⇤
)n log(nm��1

) .

Proof. Throughout the proof, we restrict ourselves to the event E defined in Lemma 62.
To simplify the notation, we define ↵i = A⇤

⇡̃�1�⇡⇤
(i),· � A⇤

i,·. Then

k˜⇧A⇤ � ⇧

⇤A⇤k2F =

n
X

i=1

kA⇤
⇡̃(i),· � A⇤

⇡⇤
(i),·k22 =

X

i2I

k↵ik2
2

, (6.28)

where I is the set of indices i for which ↵i is nonzero. For each i 2 I,

k↵ik2
2

= min

⇣ k↵ik2
2

k↵ik21
,
mk↵ik2

2

k↵ik2
1

⌘

·max

⇣

k↵ik21,
k↵ik2

1

m

⌘

= min

⇣ k↵ik2
2

k↵ik21
,
mk↵ik2

2

k↵ik2
1

⌘

·�A⇤
�

i, ⇡̃�1 � ⇡⇤
(i)
�

2 (6.29)

by Eq. (6.25).
Next, we proceed to showing that |�A⇤

(i, ⌫(i))|  4⌧ for any i 2 [n], where
⌫ = ⇡̃�1�⇡⇤. To that end, note that if �A⇤

(i, ⌫(i)) > 4⌧ , in which case �A⇤
(i, i0) > 4⌧

for all i0 2 I 0 := {i0 2 [n] : i0 � ⌫(i)}, then it follows from Lemma 62 that on E ,
⌫(i) < ⌫(i0), 8 i 2 I 0. Note that |⌫(I 0)| = |I 0| = n�⌫(i)+1. Hence ⌫(i) < ⌫(i0), 8 i 2
I 0 implies that ⌫(i)  n� |⌫(I 0)| = ⌫(i)�1, which is a contradiction. Therefore, there
does not exist such i 2 [n] on E . The case where �A⇤

(i, ⌫(i)) < �4⌧ is treated in a
symmetric manner.

Combining this bound with Eq. (6.28) and Eq. (6.29), we conclude that

k˜⇧A⇤ � ⇧

⇤A⇤k2F .
X

i2I

min

⇣ k↵ik2
2

k↵ik21
,
mk↵ik2

2

k↵ik2
1

⌘

· ⌧ 2

. �2R(A⇤
)n log(nm��1

) .

by the definitions of R(A⇤
) and ⌧ .

6.D.3 Proof of Theorem 14

The bound is an immediate consequence of Lemma 61 and Lemma 63 with � =

(nm)

�C for C > 0.

6.E Upper bounds in a Trivial Case
In Theorem 13, we have observed the term �2

m
^m2V (A)2, whereas the LS estimator

only has �2

m
log n in the upper bounds. The next proposition shows that in the case
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m2V (A)2  �2

m
, we can simply use an averaging estimator that achieves the term

m2V (A)2.

Proposition 22. For Y = ⇧

⇤A⇤
+ Z where Z ⇠ subG(�2

), let ˆ

⇧ = In and ˆA be
defined by ˆAi,j =

1

n

Pn
k=1

Yk,j for all (i, j) 2 [n]⇥ [m]. Then,

1

nm
kˆ⇧ ˆA� ⇧

⇤A⇤k2F . �2

n
+m2V (A)2

with probability at least 1� exp(�m) and

1

nm
Ekˆ⇧ ˆA� ⇧

⇤A⇤k2F . �2

n
+m2V (A)2 .

Proof. Recall that V (A) = (

1

m

Pm
j=1

Vj(A)2/3)3/2. Since the `
2

-norm of a vector is no
larger than the ` 2

3
-norm,

m
X

j=1

Vj(A)
2 

⇣

m
X

j=1

Vj(A)
2/3
⌘

3

= m3V (A)2.

On the other hand,

ˆAi,j =
1

n

n
X

k=1

A⇤
k,j +

1

n

n
X

k=1

Zk,j ,

so we have that

kˆ⇧ ˆA� ⇧

⇤A⇤k2F
=
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 2nm3V (A)2 + 2

X

j2[m]

g2j ,

where gj =

1p
n

Pn
k=1

Zk,j for j 2 [m] so that g
1

, . . . , gm are centered sub-Gaussian
variables with variance proxy �2. It is well-known that Eg2j . �2, so

Ekˆ⇧ ˆA� ⇧

⇤A⇤k2F . nm3V (A)2 +m�2.

Moreover, since (g
1

, . . . , gm) is a sub-Gaussian vector with variance proxy �2, it follows
from Hsu et al. [2012, Theorem 2.1] that

Pm
j=1

g2j . �2m with probability at least
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1� exp(�m). On this event,

kˆ⇧ ˆA� ⇧

⇤A⇤k2F . nm3V (A)2 +m�2.

Dividing the previous two displays by nm completes the proof.

6.F Unimodal Regression

If the permutation in the main model in Eq. (6.1) is known, then the estimation
problem simply becomes a concatenation of m unimodal regressions. In fact, our
proofs imply new oracle inequalities for unimodal regression. Recall that U denotes
the cone of unimodal vectors in IR

n. Suppose that we observe

y = ✓⇤ + z ,

where ✓⇤ 2 IR

n and z is a sub-Gaussian vector with variance proxy �2. Define the LS
estimator ˆ✓ by

ˆ✓ 2 argmin

✓2U
k✓ � yk2

2

.

Moreover let k(✓) = Card({✓
1

, . . . , ✓n}) and V (✓) = maxi2[n] ✓i �mini2[n] ✓i.

Corollary 10. There exists a constant c > 0 such that with probability at least 1�n�↵,
↵ � 1,

1

n
kˆ✓ � ✓⇤k2

2

. min

✓2U

⇣

1

n
k✓ � ✓⇤k2

2

+ �2

k(✓)

n
log

en

k(✓)

⌘

+ ↵�2

log n

n
(6.30)

and
1

n
kˆ✓ � ✓⇤k2

2

. min

✓2U

h

1

n
k✓ � ✓⇤k2

2

+

⇣�2V (✓) log n

n

⌘

2/3i

+ ↵�2

log n

n
.

The corresponding bounds in expectation also hold.

Proof. The proof closely follows that of Theorem 10 and Theorem 11.
First note that the term n log n in the bound of Lemma 54 comes from a union

bound applied to the set of permutations, so it is not present if we consider only the
set of unimodal matrices Um instead of M. Hence taking m = 1 in the lemma yields
that

logN
�

⇥U(˜✓, t), k · k2, "
�  C"�1t k(˜✓) log

en

k(˜✓)
.

For ˜✓ 2 U , define

f
˜✓(t) = sup

✓2U\Bn
(

˜✓,t)

h✓ � ˜✓, y � ˜✓i � t2

2

.

Following the proof of Lemma 47 and using the above metric entropy bound, we see
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that
f
˜✓(t)  C�t

r

k(˜✓) log
en

k(˜✓)
+ tk˜✓ � ✓⇤k

2

� t2

2

+ st

with probability at least 1 � C exp(� cs2

�2 ). Then the proof of Theorem 10 gives that
with probability at least 1� C exp(� cs2

�2 ),

kˆ✓ � ✓⇤k
2

 C
⇣

�
r

k(˜✓) log
en

k(˜✓)
+ k˜✓ � ✓⇤k

2

⌘

+ 2s .

Taking s = C�
p
↵ log n for ↵ � 1 and C sufficiently large, we get that with probability

at least 1� n�↵,

kˆ✓ � ✓⇤k2
2

. �2k(˜✓) log
en

k(˜✓)
+ k˜✓ � ✓⇤k2

2

+ ↵�2

log n .

Minimizing over ˜✓ 2 U yields Eq. (6.30). The corresponding bound in expectation
follows from integrating the tail probability as in the proof of Theorem 10.

Finally, we can apply the proof of Theorem 11 with m = 1 to achieve the global
bound.

Note that the bounds in Corollary 10 match the minimax lower bounds for iso-
tonic regression of Bellec and Tsybakov [2015] up to logarithmic factors. Since every
monotonic vector is unimodal, lower bounds for isotonic regression automatically hold
for unimodal regression. Therefore, we have proved that the LS estimator is minimax
optimal up to logarithmic factors for unimodal regression.

A result similar to Eq. (6.30) was obtained by Bellec [2015] in its revision that
was prepared independently and contemporaneously to this chapter. Chatterjee and
Lafferty [2015] also improved their bounds to having optimal exponents after the first
version of our current paper was posted. Interestingly Bellec [2015] employs bounds
on the statistical dimension by leveraging results from Amelunxen et al. [2014], and
Chatterjee and Lafferty [2015] use both the variational formula and the statistical
dimension. Moreover, their results are presented in the well-specified case where
✓⇤ 2 U and ✓ = ✓⇤.
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Chapter 7

Conclusion and Future Work

7.1 Summary of the Thesis

In this thesis, we focused on some problems specific to optimization of quadratic
functions and their applications to machine learning.

In our first contribution we provided a unified framework for minimizing non-
strongly convex quadratic functions, both with noiseless and noisy gradients. It en-
compassed averaged gradient descent, accelerated gradient descent and the heavy ball
method. They were jointly analyzed as constant parameter second-order difference
equation algorithms, where stability of the system was equivalent to convergence at
rate O(1/n2

). This suggested a new class of algorithms that could profit at the same
time from the known enhancements of averaging and acceleration: faster forgetting
the initial conditions (for acceleration), and improved robustness to noise when the
noise covariance was proportional to the Hessian (for averaging).

In our second main contribution, we continued this pursuit and showed that
stochastic averaged accelerated gradient descent was robust to structured noise in
the gradients present in least-squares regression. Consequently we proposed the first
algorithm that achieved simultaneously the optimal prediction error rates for least-
squares regression, both in terms of forgetting the initial conditions in O(1/n2

), and
in terms of dependence on the noise and dimension d of the problem, as O(�2d/n).
Furthermore we also provided an analysis adapted to finer assumptions such as fast
decays of the covariance matrices or optimal predictors with large norms leading to
dimension-free quantities that may still be small in some distances while the “optimal”
terms above were large.

In our third main contribution we extended the problem studied beforehand to
composite settings where the objective function is composed of the expectation of
quadratic functions and an arbitrary convex function. We showed that stochastic
dual averaging algorithm with a constant step-size achieved a convergence rate of
O(1/n) for stochastic composite objectives, without strong convexity assumptions.
Accordingly we widened the previous results on least-squares regression of Bach and
Moulines [2013] to all convex regularizers and all geometries which may be represented
by a Bregman divergence.
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In our fourth main contribution we considered the problem of clustering high-
dimensional data by finding a low-dimensional projection of the data which was well-
clustered. We related this formulation to the discriminative clustering framework
with the square loss for which we proposed a novel sparse extension and provided
the first theoretical analysis. We also proposed a new efficient algorithm with an
improved linear complexity in the number of observations and a natural extension to
the multi-label scenario.

In our final contribution we considered the seriation problem which consists in
permuting the rows of an observed matrix in such way that all its columns have
the same shape. When the matrix was observed with additional random noise, we
analyzed the minimax rates of estimation and we also designed a computationally
efficient estimator in case the columns of the initial matrix were monotone increasing.
A theoretical and experimental studies of this estimator were also provided.

7.2 Perspectives
Our work has triggered a few questions, which are still open.
1. Our current analysis of algorithms presented in Chapter 2 and Chapter 3 is only

provided for additive noise, e.g., for least-squares regression, with knowledge of
the population covariance matrix. This drawback raises two different issues: (a)
common applications use the stochastic oracle with a multiplicative noise, (b)
the stochastic oracle with additive noise has a computational complexity O(d2)
(for multiplying the Hessian and the iterate). Thus the total running-time com-
plexity is O(�2d3/n) which is comparable to the one obtained by minimizing the
empirical risk with the conjugate gradient. Nevertheless Jain et al. [2017] have
recently provided a lower-bound which prevents from directly extending our
results to least-squares regression with multiplicative noise without assuming
extra assumptions. This will lead to future work.

2. Algorithms studied in Chapter 2, Chapter 3 and Chapter 4 only work with
quadratic functions. In fact, these constant step-size stochastic algorithms are
not converging for general smooth objectives. However each of these methods
may be extended to non-quadratic functions through online Newton algorithm
[Bach and Moulines, 2013] which iteratively solves quadratic approximations of
the smooth problems with the algorithm to achieve the same rate O(1/n).

3. Research on connections between discrete and continuous dynamics has recently
gained interest in the optimization community. For the moment it enables to
have a deeper intuition on accelerated gradient descent by drawing links be-
tween the proofs of convergence of the discrete and continuous dynamics. One
of the strength of continuous dynamics is that their corresponding Lyapunov
functions are significantly easier to design. This advantage can be leveraged
to provide Lyapunov functions for discrete dynamics by discretizing the one
corresponding to the continuous dynamic. Therefore further investigating these
connections may yield to systematic proofs of convergence of optimization algo-
rithms. This may be used to prove the convergence of online Newton algorithm
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[Bach and Moulines, 2013] by considering its connection with continuous dy-
namics studied by Alvarez et al. [2002], Attouch et al. [2016b]. On the other
hand an extension to stochastic approximation and corresponding stochastic
differential equations would provide great insights by studying and discretizing
the resulting diffusions.

4. While stochastic gradient descent is broadly used by practitioners and inten-
sively studied by theoreticians, the choice of its step-size remains heuristic.
Yet its performance depends highly on how the step-size is tuned and decreased
over time. For quadratic functions, we studied the behavior of constant step-size
which is easy to calibrate. However for general convex functions the stochastic
gradient descent with constant step-size is not converging and the choice of its
decrease remains challenging. Thus parameter-free methods are very popular
[see, e.g., Kingma and Ba, 2015] and deserve further investigations.

5. Designing better stochastic algorithms for non-convex optimization is also very
challenging. It could take several forms to avoid saddle-points and insure con-
vergence to local minima: (a) by exploiting second order information (b) by
adding Gaussian noise to the gradient estimate in stochastic gradient descent
as in Langevin algorithms [Dalalyan, 2014, Durmus and Moulines, 2017, Durmus
et al., 2016].

6. We have only provided a computationally efficient estimator for statistical se-
riation in the simple case of matrix with monotonic columns. We conjectured
that achieving optimal rates of estimation in the seriation model is computation-
ally hard in general. However we could also investigate approximate message
passing [Donoho et al., 2009, Mézard and Montanari, 2009], and auto-encoder
[Hazan and Ma, 2016] techniques which might efficiently solved this problem.
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vaev, G. P. Prokopov, I. D. Sofronov, and R. P. Fedorenko. Teoreticheskie osnovy
i konstruirovanie chislennykh algoritmov zadach matematicheskŏı fiziki. “Nauka”,
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Résumé
De multiples problèmes en apprentissage automatique
consistent à minimiser une fonction lisse sur un espace
euclidien. Pour l’apprentissage supervisé, cela inclut les
régressions par moindres carrés et logistique. Si les pro-
blèmes de petite taille sont résolus e�cacement avec de
nombreux algorithmes d’optimisation, les problèmes de
grande échelle nécessitent en revanche des méthodes
du premier ordre issues de la descente de gradient.

Dans ce manuscrit, nous considérons le cas particulier
de la perte quadratique. Dans une première partie, nous
nous proposons de la minimiser grâce à un oracle sto-
chastique. Dans une seconde partie, nous considérons
deux de ses applications à l’apprentissage automatique :
au partitionnement de données et à l’estimation sous
contrainte de forme.

La première contribution est un cadre unifié pour
l’optimisation de fonctions quadratiques non-fortement
convexes. Celui-ci comprend la descente de gradient ac-
célérée et la descente de gradient moyennée. Ce nou-
veau cadre suggère un algorithme alternatif qui combine
les aspects positifs du moyennage et de l’accélération.

La deuxième contribution est d’obtenir le taux optimal
d’erreur de prédiction pour la régression par moindres
carrés en fonction de la dépendance au bruit du pro-
blème et à l’oubli des conditions initiales. Notre nouvel
algorithme est issu de la descente de gradient accélérée
et moyennée.

La troisième contribution traite de la minimisation de
fonctions composites, somme de l’espérance de fonc-
tions quadratiques et d’une régularisation convexe. Nous
étendons les résultats existants pour les moindres car-
rés à toute régularisation et aux di�érentes géométries
induites par une divergence de Bregman.

Dans une quatrième contribution, nous considérons le
problème du partitionnement discriminatif. Nous propo-
sons sa première analyse théorique, une extension par-
cimonieuse, son extension au cas multi-labels et un nou-
vel algorithme ayant une meilleure complexité que les
méthodes existantes.

La dernière contribution de cette thèse considère le pro-
blème de la sériation. Nous adoptons une approche sta-
tistique où la matrice est observée avec du bruit et nous
étudions les taux d’estimation minimax. Nous proposons
aussi un estimateur computationellement e�cace.

Mots Clés
Optimisation convexe, accélération, moyennage, gra-
dient stochastique, régression par moindres carrés,
approximation stochastique, algorithme dual moyenné,
descente miroire, partitionnement discriminatif, relaxa-
tion convexe, parcimonie, sériation statistique, appren-
tissage de permutation, estimation minimax, contraintes
de forme.

Abstract
Many problems in machine learning are naturally cast
as the minimization of a smooth function defined on a
Euclidean space. For supervised learning, this includes
least-squares regression and logistic regression. While
small problems are e�ciently solved by classical opti-
mization algorithms, large-scale problems are typically
solved with first-order techniques based on gradient de-
scent.

In this manuscript, we consider the particular case of
the quadratic loss. In the first part, we are interested
in its minimization when its gradients are only accessi-
ble through a stochastic oracle. In the second part, we
consider two applications of the quadratic loss in ma-
chine learning: clustering and estimation with shape con-
straints.

In the first main contribution, we provided a unified frame-
work for optimizing non-strongly convex quadratic func-
tions, which encompasses accelerated gradient descent
and averaged gradient descent. This new framework
suggests an alternative algorithm that exhibits the pos-
itive behavior of both averaging and acceleration.

The second main contribution aims at obtaining the op-
timal prediction error rates for least-squares regression,
both in terms of dependence on the noise of the problem
and of forgetting the initial conditions. Our new algorithm
rests upon averaged accelerated gradient descent.

The third main contribution deals with minimization of
composite objective functions composed of the expec-
tation of quadratic functions and a convex function. We
extend earlier results on least-squares regression to any
regularizer and any geometry represented by a Bregman
divergence.

As a fourth contribution, we consider the the discrimina-
tive clustering framework. We propose its first theoretical
analysis, a novel sparse extension, a natural extension
for the multi-label scenario and an e�cient iterative al-
gorithm with better running-time complexity than existing
methods.

The fifth main contribution deals with the seriation prob-
lem. We propose a statistical approach to this problem
where the matrix is observed with noise and study the
corresponding minimax rate of estimation. We also sug-
gest a computationally e�cient estimator whose perfor-
mance is studied both theoretically and experimentally.

Keywords
Convex optimization, acceleration, averaging, stochas-
tic gradient, least-squares regression, stochastic approx-
imation, dual averaging, mirror descent, discriminative
clustering, convex relaxation, sparsity, statistical seri-
ation, permutation learning, minimax estimation, shape
constraints.


