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Mots clefs :
de coques.

Résumé : Nous nous intéressons dans cette thése
& loptimisation conjointe de forme et d’anisotropie
pour les structures surfaciques. Nous nous focalisons
dans un premier temps sur l'analyse de ces structures
minces modélisées par des coques. Le modéle utilisé
pour décrire le comportement mécanique est celui de
Naghdi communément utilisé pour les coques modéré-
ment épaisses et qui permet de prendre en compte
leffet transverse de déformation. La discrétisation par
méthode éléments finis est réalisée avec des éléments
Lagrange standards de classe C°. Nous considerons
la simulation d’assemblage de coques en utilisant la
méthode des éléments finis avec joint (mortier). Cette
méthode est flexible, elle est adaptée a 'utilisation de
maillages localement raffinés et/ou non-conformes, c-

Optimisation, forme & anisotropie, isogéometrie, formalisme polaire, modeéle de Naghdi, jonction

a-d non coincidents. La deuxiéme partie se consacre
a la définition d’un paramétrage pour la conception
optimale de champ d’anisotropie. Notre approche se
base sur l'utilisation conjointe du formalisme polaire
pour représenter le tenseur d’élasticité et le principe
isogéométrique permettant de paramétrer les champs
d’anisotropie par des fonctions de type B-splines. La
derniére partie est dédiée a l'optimisation conjointe
de forme et de propriétés matériaux. Le nombre de
paramétres d’optimisation dans ’approache proposée
est maitrisé puisque les paramétres d’optimisation sont
les coordonnées des points de contréle. Nous consid-
érons principalement pour 'optimisation un critére de
type compliance.

Title :

Shape and anisotropy optimization by an isogeometric-polar method

Keywords : Optimization, shape & anisotropy, isogeometry, polar formalism, Naghdi’s shell, junction of shells.

Abstract : This thesis tackles the problem of the shape
and anisotropy optimization of shell structures. The
first part of this work focuses on the analysis of the
shell model. The mechanical behavior of the structure
is described using the Naghdi’s shell model which al-
lows to take into account the transverse shear deforma-
tion. This model is typically used for shallow shells. We
use a standard Lagrange C° finite elements discretiza-
tion and we numerically simulate the shell assemblings
by means of the mortar technique. This approach en-
ables the application of local refinements and the use of
nonconforming mesh discretizations. The second part of

this thesis aims at defining an effective parameterization
for the optimal design of the shell’s distributed elastic
properties. The method adopted is based on the joint
use of a polar formalism to represent the elastic tensor
and an isogeometric technique for the parameterization
of the elastic tensor fields by CAD-based functions such
as B-splines. The number of design variables thus only
depends on the control points coordinates making the
approach numerically manageable. The last part is de-
voted to the joint optimization of both the material
properties and shape of the shell using the structure
compliance as objective function.
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Introduction

Optimal design is a natural concern in many daily tasks. This issue is of particular interest in
several fields of application such as civil engineering, automotive and aerospace where the chal-
lenge of construction of lightweight structures, which are environmentally friendly and consume
less fuel, is of major importance. Such a task is very challenging because the optimal design
is subjected to a lot of constraints; basically the optimal design, for instance the lightweight
design, must keep ensuring good functionalities or performances. Different types of structures
are concerned, namely the surface structures such as plates and shells which represent a prepon-
derant part of the construction; for instance surface structures represent more than 70% of an
automobile.

Since many decades, composite structures are intensively used thanks to their mechanical be-
haviour and their high stiffness-to-weight ratio. The perpetual advances in composite material
technology favour their fabrication through different techniques such as additive manufacturing
(3D printing) and reduce the barriers to their intensive use and integration in construction, in
order to take benefit of the flexibilities. These structures offer many flexibilities from a standpoint
of geometry and elastic properties fine-tuning in comparison to standard material such as steel.
In order to exploit those flexibilities the use of optimization and mathematical programming
techniques is necessary.

Structural optimization can be performed at various scales of a design, namely the shape and the
material. The admissible design depends on the kind of optimization which usually is classified
into three classes: shape optimization, sizing and topological optimization. The first involves the
shape as design variables and the topology is not changed in its frame, i.e, roughly, no appearance
or disappearance of holes with respect to the initial design. In the second type of optimization the
variables are the geometrical parameters such as length (beam cross-section), width or thickness
and also material elastic properties coefficients such as Young modulus and Poisson’s ratio. The
last type of optimization mentioned is the most complex one which allows to handle complex
geometries. Roughly speaking, in this kind of optimization, the topology can change and the
design parameter is commonly a density function which defines the distribution of the mate-
rial. This class of optimization mainly concerns mass reducing problems. Among this common
classification, sizing at a first appearance seems the most “simple” due to the fact that topology
is commonly fixed within this frame (length, cross-beam sizing). But this class of optimization
encompasses various optimizations and hide complexity. For instance topological optimization
can also be viewed as sizing of material properties constituted of two phases (one strong and
the other weak defining void-hole-), so that material optimization can also be considered as a
full-blown structural optimization type at the same title as the topological one.

In this thesis, we consider a mixture of both the shape and material optimization of shell struc-
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tures, which are part of the most predominant basic components encountered in automotive. The
standard optimization process in industry is complex and heterogeneous. Indeed, optimization is
quite interdisciplinary, it combines many counterparts such as modelling, design, and computer
science techniques namely simulation and mathematical programming. All these components do
not coexist naturally and homogeneously. Basically, the structure designed using the Computa-
tional Aided Design (CAD) software must be supplied to a structural analysis in a Computer
Aided Engineering (CAE) environment, in order to compute the structural response using nu-
merical methods such as Finite Element Analysis (FEA) which further allows to compute the
performance (objective function) to be optimized or the constraints. The FEA analysis being
made on a mesh of the structure, the transit from the CAD to CAE is done at a price of an
expensive meshing step. Moreover, the optimization, in this classical manner, is performed on
the same structural analysis mesh and the shape design variables are the mesh points coor-
dinates. On another hand, when a material design is tackled, the material properties design
variables are usually set discrete per finite element. This approach has several drawbacks. First,
the time-consuming CAD-mesh conversion deteriorates the initial design and thus the structural
response; and consequently the optimization performed does not correspond exactly to the one
of the original design. This procedure is also intrusive. In fact, due to the lack of optimal and
efficient mesh generator, the meshing step must be controlled and adjusted by a specialist. Sec-
ondly, the computational complexity of the optimization problem is very important and requires
huge numerical resources. It has been shown in [4] that for complex engineering structures the
conversion between the original geometry and the mesh takes up to almost 80% of the total
analysis time. Also, the optimal design is subject to many constraints relative to the regularity
of the shape which cannot be taken into account easily. Basically, the material properties are
desired to be continuous, with continuous fibre orientation to be manufactured by numerically
controlled devices. To summarize, the meshing conversion of the original CAD geometry affects
the quality of the numerical solution. This conversion step deteriorates harshly the optimal so-
lution. The resulting design from the optimization process is no longer a CAD object but a
mesh. One thus needs a costly step of mesh-to-CAD conversion. To tackle this, a new technique
called isogeometric has recently emerged. It allows to reduce the gap between the CAD and
CAE environments. Isogeometric analysis, pioneered by R.T Hughes [28], offers the possibility
of integrating the NURBS-based CAD design tools into the (FEA) CAE environment. In fact,
within this framework, the classical interpolation basis functions in FEA model are replaced
by the CAD-basis functions, i.e the Bézier, Splines and NURBS. The isogeometric designation
was later widened to a set of techniques which use the design basis functions to define a given
quantity of interest.

This thesis stems from the desire of Renault to dispose of efficient and accurate tools capa-
ble to help the optimal design of surface structures and is in the continuation of research done
this recent past with the thesis of P. de Nazelle [35] and in parallel to the work of S. Julisson
[39] which was concerned with shape optimization under acoustic criterion. In this thesis, we are
more specifically interested in shape and material design for anisotropic shells. The manuscript
is organised as follows:

o Chapter 1: we briefly present a state of the art and introduce the general issue concerning
the shape and material design problem.
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o Chapter 2: the chapter recalls the derivation of the Naghdi equations for anisotropic
shells used in this thesis. Shells structures are bi-dimensional structures slender through one
dimension (the thickness), so that they are commonly identified by their middle-surfaces.
Thus defining their middle-surfaces by an injective regular mappings (to be precise), one can
derive form the classical three-dimensional mechanical equations the specific equations of
shell structures. The advantages of this model are several: the mechanical problem is defined
on the parametric bi-dimensional domain associated to the mapping of the middle-surface,
the problem is intrinsically parameterized by the mapping and finally from a numerical
point of view the reduction of the analysis complexity.

o Chapter 3: this chapter is devoted to the generalization of the Naghdi shell model to
assembled structures. From the standard model valid for regular shells defined by mean
of one mapping, we derive the variational problem for structures made of an assembling
of shells. The matching conditions at the interfaces are consequences of the efforts and
moments transmission at the interfaces. We further describe the practical implementation
aspects and the discretization of the problem using a mortar method which is a commonly
used technique in domain decomposition problem. It allows to handle and enforce weakly
the matching conditions, in an integral sense, in the variational space. The interest of this
approach is that it allows to use non-conforming discretizations. The non-conformity can
occur at two levels: the functional one, that is the finite elements used can be different, while
the other is relative to the meshing and allows many flexibilities such as local refinements
and independent mesh generations. We conclude the chapter with relevant numerical results
which validate the implementations. Illustrations involving nonconforming meshes are also
given.

o Chapter 4: this chapter deals with the discretization of the elastic properties. We de-
velop an approach based on the polar formalism and isogeometric techniques. The polar
technique allows to represent the elastic tensor through its invariants and angles; so do-
ing, it exhibits the main characteristic feature of anisotropy, i.e property dependence to
direction, which turns to be interesting for the design problem in comparison to Cartesian
representation. With an isogeometric approach, these invariants are parameterized using
B-splines polynomial functions. This yields to a drastic reduction of the number of design
variables and constraints of the optimization problem allowing to envisage the treatment
of material properties design of more complex geometries. In this chapter, we discuss two
choices for the parameterization of the design variables. The chapter is concluded by some
relevant numerical results which prove the capability of the proposed isogeometric-polar
method.

o Chapter 5: in this chapter, we focus on shape and material design problem. Shell model
naturally favours the use of isogeometric techniques. In fact the mechanical problem is
already parameterized by the shape through the metric and curvature tensors, and the
Christoffel symbols. The shape and elastic parameters are both parameterized using CAD-
basis functions and particularly in this work with B-spline functions, conversely to the
standard way of setting the elastic material properties (constant per element). In order to
envisage a possible use of gradient-based algorithm for the optimization, we compute the
derivative of the mechanical problem and of the criterion with respect to the design control
parameters. A particular attention is devoted to the derivative of the matching matrix

3
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involved in the definition of the mechanical problem for assembling of shells structures.
The objective function considered is notably the compliance. We conclude the chapter
with some numerical results.

o The manuscript ends with a conclusion and perspectives for future developments.
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1.1 Optimization issues

Structural optimization is of crucial importance in industry and engineering where the challenge
of construction of lightweight and optimally designed structures with respect to specific criteria
is of paramount importance. The reduction and the scarcity of the natural resources create the
need of optimization techniques in order to rationalize the use of the available resources. This
question is intimately linked to the reduction of the cost of conception, indeed proportional to
the weight and quantity of material used. To that accomplishment the constructor can work on
different features or parameters such as the geometry (shape), the constituent material and the
size of different structural elements. In this quest of lightness, the shell structures occupy an
important part. In fact, they are very attractive thanks to their excellent mechanical properties
and aesthetic advantages; for instance they count for almost 70% of the total constituents of a
car, see Fig. 1.1.
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Figure 1.1  Structural assemblage of a car (Source de Nazelle [35])

Many efforts are devoted to the development of practical numerical methods and tools for design-
ers. Fortunately, the growth of the numerical and computer resources has favored the development
of various types of structural optimization and at the same time create the need of their tight
integration in the optimal design process (in many areas such as automotive, aeronautic, civil
engineering etc).

1.2 Structural optimization classification

In optimization, the design variables are the set of chosen design parameters in regards to which
the objective function and structural response can be sensitive. The goal of the optimization
strategy and the relative mathematical programming tools is then to, based on the sensitivity,
set them properly; in order to find a set of optimal parameters, defining an optimal design, which
minimize a given objective function over an admissible space. The admissible space depends on
the type of the design variables and on the constraints to which they are subjected. These design
parameters and their corresponding structural optimization can be classified in three mains
classes, namely topology, sizing and shape.

o Topology optimization searches for the best material distribution within a prescribed do-
main [5]. In this type of optimization the topology is not fixed a priori. There exists several
methods for topology optimization. In the homogeneization method, introduced by [54],
further popularized by Bendsoe and Kikuchi|7], the shape is defined through density distri-
bution taking the value 0 for void (where the matter can be saved) and 1 for full presence
of material. The main drawback of this method is the introduction of composite mate-
rials, corresponding to intermediate distributions, which induces that a shape with clear
boundaries is rarely obtained. One of the most used techniques to address this is the Solid
Isotropic Material with Penalization (SIMP) method [6]. Another method of topological
optimization without introducing intermediate material densities is through boundary vari-
ation techniques. In that class of methods, the interface boundaries are explicitly optimized.



1.3. General formulation of an optimization problem

The most well-known is the level-set method [1]|. This technique has been applied in many
references such as, shortly, Delgado [33] and Dapogny [29].

o In sizing optimization, the design variables are some geometric parameters such as some
characteristic dimensions: length, height, thickness, cross-sectional area of a bar or param-
eter such as elastic constants. Regarding the material optimization, one is looking for the
best elastic properties, i.e the elastic coefficients, and more generally, in order to enjoy more
flexibility, the optimal distribution of the elastic material properties. This type of structure
can nowadays be conceived thanks to the development of digital and manufacturing 3D
printing. This type of optimization concerns anisotropic or laminated structures, mainly in
the form of plate and shells composite.

o In shape optimization, the design variables are generally some control points describing
the geometry. The topology is fixed; indeed, the connectivity between geometric element
could not be modified and if a shape with single connectivity is initially chosen the optimal
solution belong to the same class of domain. There is no insertion or deletion of hole.

Each of the cited structural optimization has its advantages and shortcomings. An undeniable
advantage of topology optimization in regards to the two other types of structural optimization
is that no restriction is placed on the topology thus the space of admissible design is enlarged.
However, the drawback is the presence of composite, intermediate densities, which make the
resulting design, even the best one, hardly manufacturable in practice, unless a specific post-
processing is performed. Regarding the shape optimization, the advantage basically is that the
topology is fix and already interesting variation of the shape can be obtained comparatively
to some shape sizing structural. However, the drawback can be the possible use of unsuitable
geometric representation, as will be highlighted subsequently. These optimizations are generally
performed separately. Usually topology optimization is used as a tool for finding new design
concepts at the early stage of a design, whereas sizing and shape optimizations are used at a
later stage for detailed design. Several approaches aim at combining both structural optimizations
in order to take advantage of the both; we can mention the following references [12] and [77].

1.3 General formulation of an optimization problem

A structural optimization problem, independently to the type, is composed of three main con-
stituents. A given model which governs the behaviour of the design, the admissible design space
with its induced design parameters space and, finally, the objective function associated to the
criterion which is to be minimized or maximized. Since maximization is equivalent to minimize
the negative of the gain, one just focuses on minimization problem.

Given a three-dimensional structure {2, consider a static problem defined as:

—div(e) = f, on Q
o-n = g only (1.1)
u = ug, only.

where u is the displacement of the structure, I'g and I'; are two non-intersecting parts of the
boundary 0f2. On the boundary Ty, the displacement u is assigned to be equal to g, while on
I'; some natural conditions prescribing the value of the traction are given. n is the outer unit

7
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normal vector, g the traction force and f is the body force.
We suppose that €2 is made of homogeneous elastic material thus the stress o and the strain e
second rank tensors are related through the elasticity tensor E, as stated by the Hooke’s law:

o =E : e and componentwise o9 = EY klekl.
€ is the small strain tensor, defined as a symmetrized displacement gradient:
1
€= i(Vu + VTu).
The elastic tensor [E satisfies the classical minor and major symmetries, respectively read as
ik — gtk and Bk — gk

Let us denote by d the vector collecting the design variables which define the design and let
Eqa be the space of admissible design which encompasses some inequality constraints, bound
constraints. These constraints involve for instance bounded mass, maximum stress, maximum
compliance, maximum displacement, etc. When the design involves the material optimization,
the material properties design parameters must satisfy at least some constraints resulting from
the positive-definiteness constraint on the elastic tensor.

Given an objective function J : ;4 — R, the optimization problem is stated as follows: find the
optimal design variables d* associated to the optimal design Q* such that

J(d*) = min J(d), such that (1.1) and d € &,4. (1.2)

J(d) is for instance the total mass or eigenfrequency of vibration, the compliance etc. Usually,
J(d) depends on the state variables which in turn depend implicitly on the design variables. We
then denote the objective function by J(d,u(d)).

1.4 Classical analysis and optimization approach

Solving problem (1.1) involves the resolution of problem 1.1 for each design candidate in or-
der to compute the corresponding objective function. The mechanical problem cannot be solved
analytically, unless for trivial geometry, loads and boundary conditions. In practice, an approx-
imated solution is generally computed using the finite element analysis (FEA). FEA is based
on a variational approach whose problem is further discretized using, e.g., a Galerkin method.
The variational formulation allows to obtain a weak formulation of (1.1) and is equivalent to
the principle of virtual work in mechanics. Basically, the generic form of the variational problem
associated to (1.1) is:

Find u € V such that

JoE:e(u)e(v)d = [, fvdQ + [i. gvdly, for all v e V. (1.3)

In the above equation, df) and dI'; are respectively volume and surface elements, and V is an
appropriated variational space with the boundary condition on T.

8
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The objective function corresponding to the compliance, i.e the work of applied loads, is basically

defined as

Jda@)=; [

Q

o e(u)df = /

fudQ+/ g udl.
Q I

The variational problem is solved on a mesh of the design. Based on this mesh, one also constructs
a discrete space V}, associated to V. Using the geometric discretization, one approximates the
continuous integral over ) as a sum of elementary integrals over the elements constituting dis-
cretizing mesh often called finite elements mesh (FEM). The discrete space and its interpolation
polynomial basis functions depend on the regularity of the solution. Considering, for instance,
the case of problem with C° continuity, the most widespread used in most CAE software are
Lagrange and Hermite polynomials.

On the other hand, the optimization is generally performed based on the FEA mesh. The ge-
ometry control variables are usually the nodal points coordinates of the mesh and the elastic
properties are basically discretized as constant per element.

Parameterized
shape (CAD)

l

[ Mesh
l Optimizer
e

NOK
OK

{ Optimal solution }

Figure 1.2 Standard optimization process of shape design. The process
is constituted of three main blocks: a meshing conversion step which
deteriorates the geometry which is further submitted to the FEA software
and finally the optimizer.

The drawback of this traditional approach is that it yields to severe unaccuracies at both the
analysis and optimization steps. First, the geometric representation on which the FEA is per-
formed is not the exact one and hence the structural response does not correspond to that of the
exact structure. Furthermore, the optimization also is performed on an approximated geometry.
Because of the continuous change of the finite element mesh through the optimization process it
is difficult to ensure that the accuracy of the FEA remains preserved. The meshing suitability
and the regularity constraints on the shape occupies a preponderant place in such an approach.
Different works focus on this point. In fact, one must avoid distortions of the FEM grid and
remeshing must be performed at each iteration in order to maintain the regularity of the FE

9
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near the boundary [36]. In [57] the authors have worked on optimal design processes where the
computer program combines automatic remeshing, mesh adapatation and design change. As a
last step, once the optimal geometry mesh is found, a time consuming step of conversion from the
resulting optimal “mesh” to an exact geometry (CAD) object must be performed. For material
properties design, the complexity and the size of problem with this kind of standard process is
huge. The complexity is of the order of the number of elements and highly dependent on the
refinement of the FEM needed for analysis convergence.

In the framework of topology optimization problems, we emphasize that the formulation is sim-
ilar but the design is now the density function. Roughly speaking, one searches for the optimal
material properties distribution in a given bounded domain. In the original approach, described
in the pioneering work of Bendsoe [7]: the topology optimization consists in finding the optimal
distribution of material. The elastic tensor is set of the form

Eijkl — XQmAijkl

where the constants AY* are the elastic constants of the material employed for the design, Q,,
a subset of () with with material and X, represents the indicator function on €,

Xgm(m)—{ (1) ifx e Q,,

otherwise.

The void material is to be understand in the sense of matter with weak material properties have
“weak elastic properties”. The design space constraint usually involves fix volume constraint on
the amount of (strong) material used which, indeed, is commonly expensive. The volume is
typically defined as

Vol(Q) = / Xo,. da.
Q

During the past few years the isogeometric method allows to abort the time consuming and
quality degrading meshing step and intents to unify the geometry representation on CAD and
CAE environment. The isogeometric concept is based on geometric representation. Thus a brief
historic on geometric representation in CAD environment is subsequently reviewed.

It appears so far that a crucial point for the optimization is the parameterization of the design
and the associated design parameters which have to be driven through the design process. A huge
number of design parameters as in the case of FEA-based optimization allows to explore widely
the design space but present the shortcoming of yielding to non smooth design, with singularity
which therefore are not manufacturable, in addition to the complexity of their corresponding
problem. Other approach exists and attenuate these shortcomings. We can cite the morphing.
Roughly speaking, within this approach, the design is separated in some groups or components
and the element belonging to the same component are moved jointly. Here the design variables
are the position coordinates associated to the blocks. By doing so, the initial connectivity within
each component is preserved and the resulting design is smooth. However, the price to paid is that
the design space exploration is reduced and also a priori suitable decomposition is required. The
mesh-CAD conversion is commonly made through filtering techniques but the post-processing
result is highly sensitive to the filtering parameters. This step deteriorates the optimal solutions
which present few reliability.

10
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1.5 The Isogeometric method

The standard FEA-based shape optimization involves different representations of the design,
namely the CAD design and its mesh approximation. The isogeometric method [28],[37] devel-
oped these few past years aim at the reduction of this heterogeneity due to the presence of many
representations of the same geometry. This method encompasses isoparametric technique which
consists on the approximation of the solution of a given problem or a quantity of interest by
using the same parameterization in regards to the object to which they are associated. This
is transcribed in the partial differential equation solving framework by the substituting of the
classical finite element basis functions with those associated to the design geometric represen-
tation. The trial functions used are then NURBS, B-Spline or Bezier functions. Such a kind of
choice is possible since these functions satisfy the requisites of the classical FEA trial functions,
commonly the linear independence and the unit partition property.The concept has been widen
to optimization problem within which the design variables are some CAD parameters, i.e the
control points coordinates. Among the amount of references we can cite non exhaustively [40, 23],
and specially mentioned [56] which is concerned with both shape and material optimal design.

1.6 Synthesis

We have recalled in this introductory chapter the different ingredients of structural optimization
and have highlighted the particular role play the the parameterization. Our approach throughout
this manuscript falls within the isogeometric method regarding the optimal design. We empha-
size that the analysis, i.e solving of the mechanical problem, will be performed using classical
finite element method, since the concern in the ideal design process is that one mainly needs a
resulting optimal design which is already a CAD object. A special representation of the elastic
properties is discussed in chapter 4.
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Introduction

Among the different approaches to justify shell models we can cite the asymptotic development
approach and the direct:

o Asymptotic methods are generally used to describe a limit behavior of a model or equation
when a given parameter tends to zero. In the case of shell model this approach is used
to derive the bi-dimensional mechanical model from three-dimensional equations when
the thickness goes to zero. The model is derived, as shown in [27], [34], after a proper
expansion of the three-dimensional elasticity equations in term of the thickness parameter.
The asymptotic method is commonly used to justify the model for thin shell structures:
the well-known Koiter’s model [41] similar to the Kirchoff-Love model for plate structures.

o In the direct approach, the bi-dimensional model is derived with the help of assumption on
the displacement field and a direct use of three-dimensional Hooke’s law as firstly introduced
by Naghdi [55]. An integration over the thickness is then made to derived the bi-dimensional
model, [64], [9].

We describe in this chapter the second approach leading to the well-known model of Naghdi cor-
responding to the Reissner-Mindlin plate model. The Naghdi shell model is valid for moderately
thick structure and allows to mechanically take into account for the shear deformation. In fact,
unlike the Kirchoff-Love model, which assumes that the normal fiber to the middle-surface of
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the shell remains an orthogonal straight line to the middle-surface after deformation, the Naghdi
shell model assume that the normal fiber, which remains a straight line after deformation can
rotate.

A practical interest of bi-dimensional models is that analytically and numerically they reduce
the complexity of the mechanical problem comparatively to the three-dimensional one. In fact,
analytically the problem is defined on a parametric bi-dimensional domain of curvilinear coor-
dinates instead of the three-dimensional body. However, an inherent drawback to such a kind
of model is the spurious phenomenon of numerical locking [22]. This phenomenon is due to the
approximation of the three-dimensional model by a bi-dimensional one and is not investigated
in this thesis.

2.1 Differential geometry

Let £3 be the three-dimensional Euclidean space, equipped with the standard orthonormal basis
(O, e1,e3,e3). The dot symbol “-” denotes the standard Euclidean scalar product, || || the asso-
ciated norm and A the wedge product.

Throughout the sequel; a bold character denotes a tensor or a vector. Given x a generic point
in €3, we will denote x its position vector with respect to the origin in the Cartesian frame,
x := Ox.

The subscript comma stands for differentiation; for instance “, 7”7 stand for the derivative with
respect to the j-th coordinate. Latin indexes range in the set {1,2,3}, except when they are
used to index sequences. Greek indexes range in {1,2} excepted when they are underlined. For
compactness and simplicity reasons, we use the Einstein summation convention over repeated
subscript or superscript index, otherwise explicitly stated. For instance

3
G”e] — Z G’LJeJ — Giaea + Gi3€3 _ Gilel + Gi2€2 + Gi3€3.
j=1

Now, we introduce the element of differential geometry which held to define locally quantities
parameterized by the mapping of the shell’s middle-surface and to derive the shell equations.
The following synthesis of different geometry used can be found in Ciarlet [25].

2.1.1 Differential geometry of surface

Let w be an open bounded set of R?, and consider an immersion ® € C?(w, £3); suppose that the
surface 2 is defined as the image of the domain w through the mapping or chart ®, i.e 2 := ®(w).
The surface €2 is defined as

Q = {m € & such that m = ®(¢), £ € &}. (2.1)
An illustration of such a definition is provided in Figure 2.1.
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&2

D(£1,6)

&1

Figure 2.1 Definition of a three-dimensional surface §2, as image of the
domain @ through the mapping ®. In the further applications, see chapter
3 and 5, we will assume that the surface are defined by CAD patches so
that the reference domain is the dimensionless unique square, w = [0, 1]%.

Let a, = ® , be the covariant vector which, see Figure 2.1, is tangent to the coordinate line
of the surface with constant curvilinear coordinate £“. The vectors a; and as span the tangent
plane to Q at ®(£1, £2). The surface Q is regular in the sense that the covariant vectors a, are
linearly independent, so we can define the normal vector ag by

a; A\ az

Q3 = ——. 2.2
5= Tay Aag] (2.2)

Metric and curvature tensors

We define the metric tensor (resp. the curvature tensor) a = (ang) (resp. b = (byg)) whose
covariant components are:

a3 = aq - ag, and byg :=a,3-a3 = —a33 - An. (2.3)

The former allows to compute the elements of length, area and to measure angles on the surface
) while the latter allows to measure the curvature of the surface.
Let d€2 be the element of area on the middle-surface

dQ) = v/adS, where a = det((anp)) = ar1a22 — a12a12.

dS is the element of area on the parametric domain w. In the case where w is a unit square
dS = detde?.

Given a parametric curve n € I — (£%) = (¢p®(n)) € w, with I a bounded interval of R, the
element of length ds is defined as

o
on

9¢°
on

~—

ds = s(n)dn; where s°(1)) = aag(0(1) (1)~ (7). (2.4)
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We associate to the vectors a,, their dual vectors a® called contravariant vectors defined by
a’ - a, =67, with 2 = 5,5 the Kronecker delta symbol. (2.5)

The third contravariant vector is a® = az. The contravariant components of the metric tensor

are a®® := a® - a® and with the help of (2.5)
(aaﬁ) = (aaﬂ)_l-

Considering the definition of the covariant and contravariant basis, we have
a® = a3 =0, and agy = 1.

These different forms of the metric tensor allow to perform a change between covariant and con-
travariant tensor quantities defined on the surface §2; for instance we define the mixt components
of the curvature tensor b as follows

bg = aP7h,, = ag ‘a3 = —agq a’.

Levi-Cevita symbols
Let &€ = (énp) = (6*8) be the permutation symbols é,q = 0, and éj9 = —é; = 1. The Levi-
Cevita symbols e, and e®? are defined as follows

ag Aa, = eagaﬁ, azgANa® = eaﬁalg and a, A ag = eqpas, (2.6)

where eqp := \/aéqp and P = ﬁéaﬁ are the permutation tensor on the middle-surface.

Covariant derivatives

Let I'0s be the Christoffel symbols of the first kind, i.e the contravariant components of the
covariant basis vector derivative written in the covariant basis; namely

s =aqps-a’. (2.7)

The curvature tensor and the Christoffel symbols allow to compute the (covariant or contravari-
ant) derivative with respect to the curvilinear coordinate. In fact, using (2.5), (2.7)

as5 = (an,5 - a%)as + (aq,s - a3)ag = ['3a, + bagas. (2.8)
Also, we have
a% = (a% - as)a’” + (a% - ag)ag = —Tgza” + bas. (2.9)

Now, consider a vector field v = v;a’ defined by the its covariant components; the derivative &
of v with respect to £? can be computed, thanks to the chain rule as

Vg = vq,pa” + voaf’ﬁ + v3 gaz + v3az g.
Using (2.8) and (2.9), one finally obtains
Vo= (an — baﬁvg)aa + (U3|ﬁ + b%’Uo—)ag,

where the symbol g denotes the covariant derivative operation with respect to ¢8 defined below

{Ua,B = Vap Vsl 5 (2.10)
Ugm = vgﬁ.
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2.1. Differential geometry

2.1.2 Differential geometry for curvilinear 3D body

Let ® be an immersion in C?(w,&3) and Q be the surface Q = ®(w), we will denote €2, the
following three-dimensional body of thickness ¢ and middle-surface 2

Q= {a; € R3, such that x = ®(¢h,€2) + &3ag for all (¢1,€2,€3) € w x [—%, ;]} (2.11)

where ag is the unit normal vector to the middle-surface and €2 is the normal coordinate along

a3 at a point ®(¢1,€2).

We may now define the covariant vectors g, at any point x € €); of the three-dimensional body
ga = q)t,a =a, + 533.37@ = ag — f?)bgax - (52 - fgbé)a)\

g3 = asg

(2.12)

The element of volume dV on §; is defined as

dV = \/gd¢*de?de?, with /g = (g1 A g2) - as.
As a first step, to compute /g, we have

g1 A g2 = (07 — £01) (55 — £'0)ax A as.
Using the formula (2.6), we have

g1 x g2 = (67 — £367)(65 — €°b5)vaexpas
=Va[(1 - &%1)(1 — £2b3) — (£%67)(€%by)]as.

Rearranging as sequence of ¢2 and taking the scalar product with ag, we obtain
VG = (1= 808 + (£%)%det(b)))v/a, with det(b]) = bibs — bbb},
It is usual to write /g as

Vi = (1—2HE + K(6%?)Va, (2.13)
where H = %bg is the mean curvature and K = det(bg) is the Gaussian curvature of the
midsurface.

The thickness is assumed small enough in order to have 1-2H&+ K (£3)? > 0 for all €3 € [—£, L].
Indeed, if this quantity were negative the definition (2.11) of Q; does not make sense, i.e negative
volume.

Let €45 and é*# be the Levi-Cevita symbols associated to the three-dimensional body

~ - 1
€ap = \/9€ap and gh = %eaﬁ.

The contravariant vectors g’ associated to g; are such that

g =azand gz N g, = éaﬁgﬁ-
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Chapter 2. Naghdi Shell Model

We have
gl = &% ey — E30%ep,)a .
We conclude this section by defining the covariant derivative corresponding to three-dimensional
body, the analogous of formula (2.10) for a surface. Given a three-dimensional vector field U :=
Uiglu
Uy :=U,; g =Ui; — T}

iUk
The Christoffel symbols being defined by I‘fj = g;; - g*. Reader interested may refer to the

aforementioned reference [27].

2.2 Mechanical model

A shell is a structure occupying a region in the three-dimensional space with one dimension
small in regards to its two other main characteristic dimensions so that it can be identified with
a surface. Hence, given a regular immersion ® € C?(w,&3), a shell of middle-surface € and
thickness ¢t will be defined by formula (2.11). The vector ag is the unit vector along the normal
fibre to €.

We focus in this section on the definition of the Naghdi shell model. We start by the kinematical
assumptions of this model, compute the corresponding strain tensor and finally, in order to
compute the strain energy, we specify the elastic properties feature and state the Naghdi shell
equation.

2.2.1 Kinematic assumptions

The Naghdi model is based on the following assumptions on the normal fiber:

o the normal fiber is a straight line in the reference configuration which is orthogonal to the
middle-surface,

o the normal fiber remains a straight line which does not stretch and is not restricted to stay
normal to the middle-surface of the deformed configuration.

Thus, in the Naghdi model, the displacement field of the three-dimensional shell is defined by five
functions: three covariant components of displacement and two covariant components of rotation.
More precisely, let W(-,-) be the infinitesimal rotation vector of the normal fiber and u be the
displacement vector of the middle-surface, we set

. 1
u=uwya’, ¥(u,s)=es,ay + ie’muap\ag. (2.14)
The displacement U of a particle located at ®(¢1,¢2) + ¢3ag is defined by
U=u+&a3A¥(u,s) =u(e!, &) + E3s,a%. (2.15)

In the following, for simplicity reasons, we do not note explicitly the dependence of u;, s, and a;
with respect to the curvilinear coordinates & = (£,). We note u = (u;) and s = (s, ) respectively
the vectors composed of covariant components of displacement and rotation. Also, we further
noted ¥(u,s) = ¥(u, s).
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2.2. Mechanical model

2.2.2 Constitutive equations

In the case of shell, we assume that the elastic body is curvilinearly anisotropic: the equivalent
directions from point to point are not parallel but follow a conventionally chosen coordinate lines.
Let then assume that the strain and stress are defined by covariant and contravariant components
on the curvilinear basis, i.e 0 := 0%(g; ® g;) and € = €;;(g’ ® g’) respectively be the Cauchy
stress tensor and the three-dimensional linearised strain tensor. The coefficients E%* are then
the contravariant components of the elastic tensor written in the local basis of the shell:

E=E"(g g ®e o).

If the material properties are homogeneous throughout the thickness, i.e. independent of &3, it
is commonly assumed that

E:Eijkl(ai®aj®ak®al). (2.16)

Elastic coefficients in local basis

In general, the elastic properties of the constitutive material of the shell are given in an arbitrary
frame, called the material frame and the coefficients E%* in the local basis, (2.16), are not initially
known. Thus, for the purpose of setting up the mechanical equations, one has to perform a basis
change in order to compute the elastic coefficients E“* from the elastic tensor coefficient given
in the material frame.

Let us denote by AY* the coefficients of the tensor E in the material frame (mi, my, m3), we
have

E = AP (m, ® m, ® m, ® m,) = B (a; ® a; ® a; ® ay). (2.17)
Let G; be the contravariant components of the material frame basis vectors my,, such that

m, = G;ai. (2.18)
Thus injecting the formula (2.18) into (2.17), we have

E = AP Gla; ® Gla; ® Gra, © Glay.
Thus the contravariant components of the elastic tensor are:

EM = (GLGIGEGL) APT™s, (2.19)

Formula (2.19) defines the contravariant components in terms of the elastic coefficients given in
the material frame. We illustrate below a possible convention for the definition of the material
frame.
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Chapter 2. Naghdi Shell Model

Curvilinear material frame

Let us introduce the orthogonal basis vectors d; defined such that
d3 = a3 and dg € span{a;,as}.

It is generally assumed that ms = d3 = a3 so that the vectors m, are defined through a rotation
of a given angle 6(&) = 6 of the vectors d,, around the normal vector as. The angle 6 fixes the
material frame on the geometry and is referred to as the orthotropy angle in chapter 4 and 5.

m; = cosf dy+sinf dy
my = —sinfdy+cosf ds . (2.20)
m3 = ag

One can define the reference frame basis vector d; as follows: Given a fixed integer o € {1, 2}

d3 = ag e aﬁ

d, = A= , more precisely dj = ————. 2.21
_od lesaa”] (2:21)

di = doAdg

The orthogonality property in the previous definition results from equation (2.5), page 18. After
the definition of the contravariant component of the elastic tensor, we specify subsequently the
elastic symmetries of the elastic tensor in any arbitrary material frame.

Elastic symmetries

For a general anisotropic material, there are 81 elastic coefficients. Thanks to the minor and major
symmetry the number of independent elastic coefficients A¥*" is reduced to 21. But the material
can possess some proper symmetries, that give some relations between the elastic coefficients
so further reducing the number of independent elastic coefficients. These relations come from
the existence of one or more planes of symmetry which leave invariant the elastic properties to
reflection operation. More precisely, noting R = (R;) the second-rank tensor associated to the
reflection transformation, we have

ijkl __ pi pj pk pl TS
AUM — Ri R RERL APOTS, (2.22)

Monoclinic symmetry:

A monoclinic material is a material which possesses one plane of symmetry leaving invariant
the elastic tensor by reflection. Let us assume that mj is the orthogonal axis to that plane of
symmetry. Thus the matrix form of the tensor R is

1 0 0
R=101 0
0 0 —1
Using Eq. (2.22), we have the following eight relations (respectively 6 for the first and 2 for the
second)
A% = and A*333 =0, (2.23)

Thus the total number of independent elastic coefficients is 13.
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2.2. Mechanical model

Orthotropic material:

An orthotropic material is a material which posses two mutually perpendicular planes of sym-
metry. Let us assume the planes of symmetry are span{m;, ms} and span{m;, ms}. The matrix
form of the corresponding tensor is

-1 0 0
R=10 1 0
0 0 -1

This symmetry in fact, turns to add a new plane of symmetry to the one defined above, in (2.23).
Symmetry with respect to span{m;j, ms} induces the following new relations to (2.23)

A3312 _ 42212 _ 41323 _ 41211 _ (2.24)
Thus the number of independent elastic coefficients is 9.
REMARK 2.2.1
o Given the vectors m;; symmetry of principal direction m; yields to the relations consisting

of vanishing the elastic coefficients with odd number of index .

o One finds in a straightforward fashion that adding a new symmetry of principal direction
m; does not add any relations to those defined above. Thus orthotropic material are often
referred to as material possessing three mutually orthogonal planes of symmetry.

We subsequently consider orthotropic material

2.2.3 Strain, stress and energies
The Hooke’s law implies

o'l = Eikley = BNy 4 2EU¢ 53 4 Fii33¢s,. (2.25)

Strain and stress tensors definition

The covariant strain coefficients are defined as [see [27]|, Theorem 3.2.1 page 117|
1 .
61‘]‘ = §(U1||] + U]HZ)’ Wlth UzH] = U}j - 8- (226)
The plane and anti-plane (transverse shear) components of the strain tensor are

€ap(u,s) = vap(u)+Exap(u, s)
6043(“'7 S) = 7063(”7 8)7 )

where 7,3, Va3 and xpg are respectively the membrane and bending strain tensors

’704,3(11’) = %(uaw =+ u5|a) - boa,Bu3
Xos(u,s) = 1 (sam + 5510 — bdap(w) — bgdm(u)) (2.27)
’7043(11% S) = %(Sa + bguo + UB,a)
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Chapter 2. Naghdi Shell Model

In the above equation, u, g designates the covariant derivative of u, with respect to the curvi-
linear coordinate ¢% and dxp(w) = uyp, — bayus.

Shell models are based plane stress state assumption, i.e the transverse normal component of
stress is neglected?®:

0% =0. (2.28)
The transverse normal stress component is

o33 = E33kle,, — E33n Ex +2 B3¢\, 4 B33y,
and condition (2.28) yields to

E33/\“6)\M 4 2E33/\36)\3
€33 = — o . (2.29)

and thanks to the symmetry with respect to the middle-surface (A33%3 = 0 — E333 = (), we
have

E33)\/,L

€33 = —We)\u. (230)

Injecting (2.30) in (2.25), and using the fact that the middle-surface is a surface of symmetry so
that E**3 = 0, the Hooke’s law is returned as follows:

0% = Qe
o.oe?: — 2Ea3ﬁ,3663

where Q := (Q*P*) is the plane reduced elastic tensor:

EaﬁS3E33/\u

BAn BA
QY = (B — 3333

and E := (E*353) is the anti-plane part of the elastic tensor.

Strain energy:

Now we consider the strain energy
1 afs a3
Ey(u,s) = 5 /. {U €ap + 40 Eag} dV.
Q

Making the following approximation dV ~ /adSd¢3, the strain energy is

Baws) =5 [ [ {Q w0 + 260, (w5 0s(w) )

 (€P2Q (w8 (1 8) + 4B 55 (u, 8)703(u, 5) | vads g,

*In addition to (2.28), in the Koiter’s model, the transverse strain is assumed to be zero, €q3 = 0.
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2.2. Mechanical model

where dS' is the element area on the parametric domain of the shell.
We have, after a through-the-thickness integration

1 N t2
Bu(uss) 25 [ HQ ™0 105(0) + 00 8) s, 7)

+AEP 55 (u, 8)Ya3(v, 7) }/adS.

Let N*8 M8 Q@ respectively the resultant force, moment and shear force per unit of area,
defined as

(2.32)

t i 3
Not = [ ot st a7 = [ oo syt Not = [ ot 239

t t t
2 2 2

Then, we finally obtain

t3
NeB = tQaﬁ/\“%\u(u), MP = ﬁQaﬁ)‘“XAu(u, s), N = 2tEa3*33753(u, s) (2.34)

Now let us define the different parts of the strain energy:

o The bending strain energy, denote with a superscript “b”:
1
EY = 2/ My, 5(u, 8)v/adsS.
w

o The shear-membrane (complementary to the bending) strain energy, denoted with a su-
perscript “b”:

1

EY = 5 /{N“ﬂ’w(u, 8) + 2N %y,3(u, 5)}/adS.

2.2.4 Naghdi’s equation

Assume that the middle-surface is subjected to a load p = p’a; per element of area, a resultant
force N = N'a;, a moment M = éaﬁMaaﬁ on I'y := ®(v1), 11 € w. The middle-surface is
assumed clamped at its boundary.

PROBLEM 2.2.1 (Principle of virtual work) Let V(w) be an appropriated space of admissible
displacement and rotation, with taking into account the boundary condition. The virtual work
principle problem associated to the equilibrium problem is: Find [u, s] € V(w) such that

a([u, s], [v,r]) = l([v,r]), for all [v,7] € V(w). (2.35)

[ is the virtual work of the applied loads, defined as
l([v,7]) = /pivi\/&dS—i— /(Nivi + M%ry)dl (2.36)
w ¥

dl being the element of length on ®(y1) and a(-,-) is the strain energy bilinear form

a([u, s], [v,7]) :/

w

t2
t{Qaﬁ/\u'Y)\u(u)’Yaﬁ (U) + ﬁQaﬁ)\uX)\,u (u, S)XQB(U7 T)+

Ea353753 (u, 8)Ya3(v, ) }adS.

(2.37)
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Chapter 2. Naghdi Shell Model

In the previous problem, the bilinear form is associated to the stiffness of the shell. For eigenfre-
quency analysis one has to defined the bilinear form b associated to the virtual work associated
to the acceleration loads. Let us denote by p the volume density of the shell. We have

b([u, s], [v,7]) = /pﬂVdV

where U is the acceleration associated to the displacement U.
Setting up U = U, with ¢ the time parameter, A\ and U respectively the eigenvalue and the

corresponding eigenvector, the bilinear form b is

b(, ], [0, 7]) = —A2 /Q pluga’ + 500 (0,09 + €37 50°)v/adSde?.

Taking into account of the fact that a?® = an,3 = 0, asz = 1; one finally obtains after a
throughout-the-thickness integration

2

t
b([u, 8], [v,7]) ~ —\? / pt <U3U3 + a®Puqvg + 12@“’83&7“5> Vads. (2.38)

w

Throughout the following, we consider that the shell is unloaded and subjected to a clamping
boundary conditions at I'

PROBLEM 2.2.2 (Dynamic variational equation) The variational problem is
Find  [u;, s6] € [V(w)]?, A € R such that
a([u, s, [v,7]) + b([u, 8], [v,r]) = 0, for all [v;,7,] € [V(w)]?

2.3 On the existence results

In order to discuss existence results on the variational problem, we introduce the following
Sobolev spaces.

Sobolev spaces

We define the following Sobolev spaces which will be useful for discussion on the existence results
of Naghdi’s model.

Let us consider the bounded domain w C R2, and let d > 2 be an integer; we denote by
L%(w) := [L*(w)]? and || - [|o.», the norm in the spaces L?(w) and L2(w) defined as follows: Given
w € L2(w) and w := (w;), € L4 (w)

1/2 d
[wllo, := {/ lwIQdS} ; and [lwllow = {lewillﬁ,w}
w i=1

Given an integer m > 1, H™(w) denotes the usual Sobolev space of L?-integrable functions with
derivatives of order < m also L*-integrable. In particular, we consider

1/2

HY(w) = {w € L*(w), such that d,w € L*(w)}.
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2.3. On the existence results

Let 79 C Ow be a part of the boundary of positive length, the space H{ (w) of functions of H(w)
vanishing on ~q is

H}(w) = {ve HY(w), v=10on v} (2.39)
Analogously to L2(w), we define the space H' (w) := [H(w)]?
H!(w) = {v = (v;)L, such that v; € H'(w)}

and || - ||1,» the associated norm defined as

d
o= Il
=1

[v

and
2

lwllf o = lwlew + Y llwald (2.40)

a=1

After this brief definition of the functional spaces needed.

THEOREM 2.3.1 Assume that the plane and anti-plane parts Q*PM and E“383 are such that: for
any second order symmetric tensor T = (7;5) there are two positive constants Cy > 0 and Ce > 0
such that:

2
Q"M rnitas 2 Oy Y Irapl o and B rgams > 3 raali . (241)
of a=1

Then
i) the bilinear form (2.37) is V(w)-elliptic , with V(w) = [H} (w)]?
ii) for any applied loads p € L?(w), N € L2(y1) and M € L%(v;), the problem 2.2.1 have a

unique solution in [H3(w)]?

Sketch of the proof. As the linear form in (2.36) is continuous on H}(w), the claim #4) is a direct
consequence of claim i) and of the following Lax-Milgram lemma:

LEMMA 2.3.1 (Lax-Milgram lemma) Let V' be a Hilbert space. Assume that the bilinear form
a:V xV = R is continuous and elliptic, i. e there exists M,c > 0 such that

a(u,v) < Mlullv||lvllv and a(v,v) = c[[v]lv. (2.42)
Assume that I(-) : V — R is linear continuous, i.e there exists ¢y > 0 such that

l(v) < cql|vllv, for allve V.
Then the variational equation

a(u,v) =1l(v), Yo eV

has a unique solution u € V.
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Chapter 2. Naghdi Shell Model

To complete the proof of theorem 2.3.1 it remains to prove 7). To this end, let us introduce the
space V(w)

Ve(w) := {[v,7] € [L*(w)]’ such that v,5(v) € L*(w) Xas(v) € L*(w) and 7a3(v) € L*(w)}.
Then equipped with

o the semi-norm [v,7] = | - |cw

2 2
|7, S|g,w = Z ‘%Xﬂ%,w + |Xaﬂ|(2),w + Z |’7a3|(2),w'
a,f=1 a=1

o and the norm [v,7] — || - |cw
3 2
H’l", 'SHg,w = Z ||Ui”(2),w + Z ||$04”(2),w + |v7r|(2),w
i=1 a=1

the space V,(w) is an Hilbert space which obviously contains H} (w).
Hypothesis (2.41) implies that there exists a constant C' > 0 such that

a([v,r], [v,7]) > C]v,r]%w
and the remaining of the demonstration consists to prove that:
a) The norms || ||c,, and || ||1. are equivalent over the space H!(w).

b) The semi-norm | - |, is actually equivalent to the norm || - ||, over the space H}(w).

Points a) and b) proves that the bilinear form is H(w) elliptic.
Point a) is consequence of the following Korn’s inequality given and proved in Ciarlet [25] and

[10], 9]
LEMMA 2.3.2 (Korn’s inequality) There exists a constant C > 0 such that

[0 7)llew = Cll(v, 7)1, for all (v,r) € Ve(w)

Hence || - ||1w and || - ||ew are equivalent over the space Ve(w).

Arguing by contradiction, we can see that if point b) were false, we could find a point (v,r) €
Ve(w) such that [|v, 7|y = 1 and ||v, 7|l = 0. The following lemma 2.3.3 proves that v,r is
necessary of the form (2.43) and due to the boundary condition (v,r) = (0,0).
LEMMA 2.3.3 Let (u, s) be an element in the space H' (w) that satisfies

Yap(U) = Xap(®, 8) = Yas(u, s) = 0.
Then
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2.4. Synthesis

o there exist two constant vectors ¢ € R3,d € R? such that

. 1
wal(§) = c+dAO(E), withd = e Bay + §6Aaua‘ A3 (2.43)

o Moreover u; = B, = 0 if the following boundary conditions are satisfied

U; = Po =0 on y9 C dw, lengthyy > 0.

2.4 Synthesis

We have recalled in this chapter the Naghdi’s shell model used for the structural analysis. To do
so, we have introduced the essential of differential geometry which allows to define a mechanical
problem parameterized by the shape. This bi-dimensional model describes mainly the average
mechanical behaviour of the three-dimensional shell, namely the one of its middle-surface. How-
ever this model is only valid for shell defined by a single regular mapping. The focus of the next
chapter is the definition of problem involving an assembling of shells.
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CHAPTER 3

Naghdi shell junctions with
Nonconforming Discretization

Real-life structures met in engineering are commonly heterogeneous structures. This heterogene-
ity can be structural or geometric. The structural heterogeneity holds when different materials
and kind of structures, such as beams, plates, shells, rods, are joined together. The latter comes
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Chapter 3. Naghdi shell junctions with Nonconforming Discretization

from the geometry features, and concerns structures which are defined by a collection of non-
overlapping smooth regular sub-structures, joined together through physical interfaces. Then one
needs to paid interest to the shell problem in a general geometric decomposition case.

Valuable interest has been devoted to the subject in [48] for plates. The analysis has latter been
extended to shells having general shapes [46, 47|. The considered model in these papers is Koi-
ter’s. We also mention the work of [43] which has considered the junction between moderately
thick shells using a nonconforming finite element. The finite element used is the DKT (Discrete
Kirchoff-Triangle) element which allows to enforce the Kirchoff constraints, i.e vanishing of the
transverse-shear deformation, at some given points while keep using a C? finite element approx-
imation. In [43], the author has used the mortar technique for the construction of the discrete
space corresponding to the finite element analysis. We can notice the existence, in the literature,
of a formulation of the Naghdi’shell model in Cartesian coordinates [16, 17|. In this formulation,
the unknowns are described in Cartesian coordinates instead of local covariant basis. The interest
of this formulation is that it is valid for shell with curvature discontinuities. Similar formulation
also exists for Koiter model [15]. Reader interested may refer to [18| for the finite element con-
cerns with this formulation in the case of Naghdi’s model.

We consider in this chapter the junction between general shells using the Naghdi shell models.
In the first part of the chapter, we set the frame of geometric decomposition for shell and the
related notations. Further we define the variational problem corresponding to an assembling of
shells. This problem is defined from the standard problem described in the previous chapter
and taking into account for the continuity of the displacement and rotation. We consider in the
remaining of the chapter the finite element aspects and end with some numerical results. The
key point in the finite element section is the construction of the discrete space based on a mortar
method.

3.1 General equations for an assembling of shells

In this section, we focus on the variational problem of generally assembled structures. We start by
specifying the geometric decomposition, notations, the junction conditions and the mechanical
problem.

3.1.1 Geometric decomposition aspects

Let us suppose that the middle-surface €2 is decomposed into N disjoints non-overlapping regular
middle-surfaces (£2;) which are defined through a set of bounded parametric domains wy, C R?
and regular mappings ®; € C?(wy;R3): Q is piecewise “regular” and defined by a collection of
mappings ® = (Px),_;.y, and a product of the parametric domains

N
w = H Wk .
k=1

For the sake of clarity, we use the same curvilinear coordinates notation for the different domains
as much as possible; while they should be denoted (& (k) f?k)) Also, for the sake of simplicity, we
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3.1. General equations for an assembling of shells

suppose that the decomposition is conforming in the following sense: the common part between
two middle-surfaces is either empty, a vertex or an entire interface.

N
ﬁzUﬁk, and Q, N, =0V k # p. (3.1)
k=1

Let I denote the interface between the two disjoint middle-surfaces of indexes n and m, i.e
=09, NQ,,. (3.2)

In order to explicit the middle-surface indexes to which refer the interfaces, we denote ' = D) = plm).
and M%) designates the interface I' view from the middle-surface Q. Conversely, the notation

k(1) will refer to the fact that the middle-surface of index k& has I'' in common with another
middle-surface Qg, k # k.

We denote by v'*) c dwy, k € {n,m}, the parametric interface associated to T'¥). We also

assume that both of the parametric interfaces /(%) are defined as the images of a common para-

metric bounded interval 4/ through their respective bi-dimensional vector value mappings !*):

Pury 1 €Y CR = € = (01 (), Py (m) € /) C R (33)
Thus, the different interfaces are defined as

k) = {P € R? such that p = Dr(puy (), m € 'yl} , ke {n,m}. (3.4)
Figure 3.1 shows an assembling of two shells and the chain of transformations which define the
physical interfaces T'%). Let d Si(k) be the element of length on ‘) such that d Si(k) = Su(k) (n)dn.
We have

A%, O
2 (k) (k) l
Sigry (M) = an o aask) (i) (n), 1 €Y

with a,g(x) the components of the metric tensor associated to .

REMARK 3.1.1 For the sake of brevity, throughout the following, we omit the curvilinear coordi-
nate 7 for the quantities of interface. For instance, we simply write a,g(x) instead of aqgx)(cot).
Also, we assume that the index [ is used for interface index and range in {1, - - - , L} while k, n and
m are used for middle-surface and range in {1,---, N}. Hence there is no Einstein summation
on the lower and upper repeated indexes [, k, n and m.

The i-th component of the covariant (resp. j-th contravariant) vector of € is noted a;y)

(resp. a’ (’“)). The corresponding covariant and contravariant components of metric tensor are
respectively denoted a;j(), a" (k) Given two disjoint domains of indexes n and m, we denote
ai(m) — gilm) . 4.

j(n) j(n)
The contravariant and covariant Levi-Civita symbols (e®?(%)) and €ap(k), associated to the
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Pi(m) Pi(n)

@

,Yl

Figure 3.1 Illustration of an assembling of two shells, which are each
defined as an image of their respective bi-dimensional domain. The para-
metric interfaces v/(*) are the images of a common interval ~!

shell of index k, are e*?F) = \/%Tkéaﬁ and eqgr) = \/ak€ap; ar being the element of area,

ap = ay1(k)a22(k) — a%Q(k). We equip the different interfaces with their unit tangent vector t;,)
tl(k) = tloék)aa(k)-

8 «
The contravariant components of the unit tangent vector tj;,, = % / Si(k) are defined conve-
niently in order to have a consistently oriented global middle-surface 2. The covariant components
of the tangent vector are

k) = aaﬂ(k)tf(k).

Given a boundary I'y C 912, of label “b”, we denote Z; the following set of indexes
Ty,={ke{l,---,N}, such 9 N T, # 0}.

For any index i € 7, we define the parametric curvilinear domain ;)

Yoy = {§ € Ow; such that ®;(§) € Ty}

and d ;) the corresponding element of length on I'y;) := ® (7)) such that I'y = U Ly
€Ty
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3.1. General equations for an assembling of shells

3.1.2 Junction conditions

Let u;) and s,(x) be respectively the covariant components of displacement and rotation as-
sociated to . Let w(y) := (uik)), S(x) = (Sa(r)) be their corresponding covariant components
vectors. The Cartesian displacement vector of Q is u®) = ui(k)ai(k). Let w*)(.,.) denote the
Cartesian rotation vector of ag,

1
T (u, s) = eo"\(k)sa(k)a,\(k) + ieo‘)‘(’“)uA(k”aag(k) (no summation over k).

We suppose that the thickness is constant all over the shell structure. The Cartesian displacement
vector U¥) associated to a particle located at (&) + £3a3(k)

t t
UO =u® + Eaygy x 0B (u,s), € €[5, 7]

In this present framework of assembling of shells, u and s designate respectively the covariant
components vectors of the displacement and rotation all over the middle-surface €2 such that

w = (ug, u, u3) € [H (w)]? and s := (s, 59) € [H(w)]?, (3.5)

where
N
H'(w) := [ H'(wi) = {w = (wg))k=1.n, such that wy € H' (wp)}. (3.6)
k=1

Given a covariant field w € H'(w), wt®) .= (CINTES denotes the restriction of w to the paramet-

ric interface 4/¥). We note respectively u!®) and w!(¥) the restrictions of the Cartesian vectors
of displacement u®) and rotation ¥¥) to the interface (%)

ul®) = ué(k)ai(k) and @) (u,s) = Ga)\(k)slogk)a)\(k) + %ew(k)“l)\(@aak)' (3.7)

The junction conditions are basically the following [9]:
u'™ = u'™ and ¢ gy, =@M gy forall L€ {1, L}, (3.8)

The former corresponds to the continuity of the displacement of the middle-surface €2 and the
latter to the continuity of the tangential rotation along the different interfaces. We emphasize
that the relations in Eq. (3.8) are on vectors in Cartesian coordinates. The displacement equality
entails componentwise

These continuity conditions on the displacement and rotation are respectively due to the trans-
mission of the internal forces and moments at the interface. The equality of displacements appears
natural while the only continuity condition on the tangential component of rotation is due to the
plane moment assumption used in shell model.
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3.1.3 General mechanical problem

In this section, we define the global mechanical problem (virtual work principle). We start by
defining the equilibrium problem which corresponds to the minimization of the energy functional
under the continuity constraints of the displacement fields.

3.1.3.1 General equilibrium problem

Now, we consider the equilibrium problem of the middle-surface 2. The energy of the assembled
shells is defined as

Tlu,s) = Jallu, ), fu,s]) ~ ([u, ),

where a is the bilinear form defined as a : [H'(w)]® x [H}(w)]® — R

N
a([u, 8], [u, s]) = > agy([ug, Su) (W), s@))
k=1

and [ : [H'(w)]® — R is the linear form of potential energy of the applied loads

N
([, 8]) = Ly ([ (i)

k=1

agyy and [y are respectively the strain energy bilinear form and the linear form associated
associated to the Q. In the case of assembled shells, [u,s]| is solution of the minimization
problem of J(-) subjected to the continuity constraints across the interfaces. Let Vj(w) and
V;(w) be two subsets of [H!(w)]®. Vj(w) is the space with the essential boundary conditions on
a part of 9Q and V(w) is the space with the junction conditions (3.8). The generic form of the
variational problem corresponding to the minimization problem is the following

PRrROBLEM 3.1.1 Find [u, s] € V(w) := Vj(w) N Vj(w) such that:

a(lu, 5], [v,7]) = l([v,7]), ¥ [v,7] € V(w)

3.1.3.2 The state equation

We start by specifying the loads acting on 2. Let consider that  is subjected to applied resultant
force and moment at its boundary I'y C 0€2. Without loss of generality, consider that the middle-
surface undergoes the following system loads

o each () is submitted to a surface load py
o a resultant force and moment Ny and My on 'y, k € 4

o clamping boundary condition at '), k € Zop.
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3.1. General equations for an assembling of shells

We introduce the space
H}(w ={ve H'(w) such that vy = 0 on Yoy, k € To}
and consider the following product space with boundary conditions
V(w) = {[v,7] € [H}(w)]® such that (3.8) holds}. (3.9)

Let [v, 7] be the components of an admissible virtual displacement (defined as in 3.5), the cor-
responding virtual work of applied loads is:

N
l([v,T]) = Z/ Pk - V \/7(154- Z/ Nk V (k) +Mk W( )( (m,T(m)) dll(k) (3.10)
k=1 kel Y V1K)
The variational formulation is:
PROBLEM 3.1.2 Find [u, s] € V(w) such that:
a([u, s], [v,7]) = ([v,7]), V [v,7] € V(w)
where
N
a([u, Za Uk), S ] [U(k)ur(k)])'
k=1

The bilinear form a (-, -) is defined analogously to (2.37)

ay([wwys s, vy ry)) = / H{ QP E) 3 (v 1)) Yo (i) +
Wk

a 3.11
Qm“ X (01 T (1)) X (k) S(1) )+ (3.11)

E°‘3B3(k)763( k) T (k) Va3 (W(k)s 8(k)) 1V A S

where Q%) = (QP (k) EF) = (E383(k)) and dS), are respectively the reduced plane, the anti-
plane parts of the elastic tensor of the constitutive material associated to €2 and the element of
area aver wg. We, analogously to a(k)(-, -), define the linear form associated to € as

Ly ([v,7]) = / i, - v Vad€ + Lyer, / (Nk v 1y + M, Wk)(”(k)ﬁ(k))) d Ty()
Wi

Y1(k)

with 1 the usual indicator function.

For the subsequent, let us equip the space [H!(w)]® with its corresponding broken norm and

semi-norm, respectively denoted || - |1, and | - |14 for [v,7] € [H (w)]?
N

|’U r”l w Z ||'U (k)T H%,wkv and |’U,’I”|iw = Z |’U(k)7r(k)’%,wk‘
k=1
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THEOREM 3.1.1 Assume for any k € {1,--- ,N} that QP MF¥) and E*383K) gre such that: for
any second order symmetric tensor T = (1;;) there exist two positive constants Cy > 0 and Ce > 0

such that:
2 2
Qo‘ﬁ’\“(k)ﬂurag > Cy Z |Ta5|iw and E“3B3(k)7537a3 > Ce Z |Ta3|%,w' (3.12)
o,f=1 o=l
Then

i) the bilinear form (3.11) is V(w)-elliptic

ii) for any applied loads system such that py, € L%(wy), N € LQ(’yl(k)) and My, € LQ(’yl(k))
for any k € {1,--- , N}, the Problem 3.1.2 has a unique solution in V(w).

The proof stands on the same Lax-Milgram lemma 2.3.1 in page 27 as in the case of mono-shell
problem. The clue point for the well-posedness remains the demonstration that the bilinear form
a(+,-) is V(w)-elliptic and follows the same line as in the case of shell defined through a single
injective immersion.

In the present case, one defines, in analogous manner to the mono-shell case, a product space
N

V(w) = H Ve(wg) equipped with its norm and semi-norm respectively denoted by || ||¢ . and
k=1
|

€,w

N N
[0, 7112 = o), 7|12, and 0,72, =" gy, ryl2e,
k=1 k=1

and proves that

o the broken Hl-norm || |1, over the space H!(w) and the norm || || are equivalent.
o the semi-norm | - |c, is a norm over the space [H}(w)]® and is equivalent to the norm
[y

As in the mono-shell case, the infinitesimal displacement lemma and the boundary condition
plays a key role in order to have a([v,7],[v,7]) = 0 = vi) = 1) = 0 for all k& € Zp and
thanks to the continuity conditions v;x) = rqm) =0 for all k € {1,--- ,N}.

Now, we focus on the resolution of the global problem using finite element method. We use
the mortar method to solve the Problem (3.1.2). The mortar method [11] is based on the fact
that the continuity conditions are handled weakly in the equations (3.13),(3.14). Indeed, the
conditions are defined in an integral sense, and satisfied against some test functions.

o The first condition in (3.8) is a vector equality which componentwise in an integral sense
is

/ (ui(n)sl(n) — ag((g;)ué-(m)sl(m))f dn=0, Vf e Lz(fyl) ie€{1,2,3}. (3.13)
,-Yl
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3.2. Finite element space - Mortar method for shell

o In the same manner, the equality of the tangential component of the rotation is
! — gl dn =0, Vf € L*(y' 3.14
, t (S)SZ(n) t (s)sl(m) f n=>y, f € (7 )a ( : )
v

where the tangential rotation is noted !Z/tl (k)(-) at the interface I'*) and defined as

I(k), Ik
ORI

I(k L )ik
7, (s) = —— (515

Vay,
In the next section we discuss the mortar aspect and the implementation. The key point re-
sides in the appropriate choice of the test functions against which the constraints are stated in
(3.13), (3.14).

3.2 Finite element space - Mortar method for shell

The mortar method has been originally developed to couple different nonconforming discretiza-
tions such as spectral and finite element methods in order to take advantage of both methods.
Generally, spectral approximation is well adapted for regular solutions and finite element ap-
proximation is used for problems with complex geometries. Different applications have shown
that the framework of application of this method is very large and is not only limited to the
preconceived idea of spectral and finite element coupling only. The mortar method has further
been extended to different finite element elements discretization coupling. The crucial point of
the discretization is the construction of the discrete space: the problems on each subdomain are
discretized using independent finite dimensional spaces, and the mortar is defined on the inter-
faces between the subdomains to enforce the transfer or matching conditions. The method is
nonconforming because the discrete space is not included in the exact one. The interest of using
the mortar method is that the meshes and finite element discretizations can be generated and
performed independently, i.e locally to each middle-surface.

The key point of the mortar method is the construction of the discrete space at the interfaces.
In the case of Naghdi shell model which is a second-order elliptic partial differential equations,
discretized using C%-finite element, we use the standard mortar discretization as described in [8].
In fact the mortar principle does not depend on the operator of the partial differential equations
of the physics. We emphasize that the mortar technique has been used in the framework of
isogeometric analysis in [19]. Reader interested may refer to [74]-chapter 1- for a general overview
on the method.

3.2.1 Discrete problem

In order to define the discrete problem, we first introduce the triangulation of numerical simula-
tion with aim at defining first the discrete space.

We consider that the domains wy are polygonal such that they can perfectly be covered with
some meshes of triangulation wy,z),

Ng
Wh(k) = U Tixy, Tix) being the element of index i of the mesh wy,(y).
i=1
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Let hy be a mesh diameter associated to wy(y) defined as
hy, = max diamTj ), diam being the diameter
(2

and h := max. hi be the global mesh parameter.

The meshes are assumed regular in the following sense:
o the intersection of two distinct elements is either empty, a node or an entire common edge.

o considering p}; as the biggest inscribed circle’s diameter in the element Tj); there exists
o > 0 such that

P> o0, Vhe{l, - N}
Iy,

3.2.1.1 Discrete space

For simplicity, we assume that the displacement and rotation components are discretized using
the same finite elements. Hence, let X}, be the finite dimensional space corresponding to the
discretization of u;;) and s,y on the subdomain wy. Let us then note Xj, ) = [Xh(k)]5 the
discrete space associated to both of the displacement and rotation components, and X} the
discrete space corresponding to the global problem without taking into account for the matching
conditions. The main idea -see [61, 76|- for the discretization of the global problem consists in

N
extracting from the basis of X; = H Xn(k) an independent basis for Vp,, the subspace of Xj,

k=1
with the displacement and tangential rotation continuity conditions. To that end, we introduce,

for each interface I, W(+!) a trace space defined on 4! which inherits its discretization from
one side of the interface v¥). In our case, X n(k) 18 the space of continuous piecewise polynomial
functions generally interpolated using classical Lagrange polynomials.

Xnwy ={v e C’O(wh(k)) such that v € Py, (T) for all T' € wyy }, (3.15)

where Py, is the space of polynomials of degree dj, > 0. Let T'*%) be the trace of the mesh
associated to the parametric interface v/*). We assume that the space W(~) is defined using
the non-mortar mesh trace as

WY = {w € C°(y!™) such that w € Py, (e), e € T'™}. (3.16)

In the above definition e is a segment of the trace mesh T"™. On other words, W(~!) is chosen
as the trace space of the (Lagrange) test functions of Xj,(,,) and the junction conditions are then:

Vie{l, - L}
[ sty = @l s )£ dn =0, ¥ € WO, for i € {1,2,3) (3.17)

.
/ l(spt“”) (7)s1my — U () sy £ = 0, Y € W, (3.18)

.

Hence, the global space Vy, is defined as
Vi, = {[v, 7] € X}, such that (3.17) and (3.18) hold} (3.19)
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3.2. Finite element space - Mortar method for shell

3.2.1.2 Discrete form of shells assembling problem

We now consider the definition of the discrete problem defined on the space V. In the finite
element framework, the solution of the discrete problem is distinguished from the one of the
continuous problem with a subscript h, highlighting the approximation of the continuous solution
and the dependence with respect to the geometry mesh and the discretization parameter.

PROBLEM 3.2.1 Let us still note [u, s] the discrete solution approximating the continuous solu-
tion of Problem 3.1.2. The discrete problem is:

Find [u, s|] € V}, such that
ah([u’ S], [v,r]) = lh([’v’r})’ v [’U,’I‘] € Vy,

ap(-,-) and I (-) are respectively the bilinear and linear forms written as the sum of integrals
over wy k) and eventually with use of an appropriate integration quadrature.

N N
an([w, 8], [0,7]) = angy (U, S@) Wy Tw)) and ([, 7]) =Y g (W), o))
k=1 =1

angk) (U@, s@)ls vy, ray)) = Z/T > wiagy (g (€), 500 ()], o) (&), may(€:)]) (3.20)

&; and w; are respectively the quadrature points and the associated weights; with n, the number
of quadrature points.

The discrete problem involves the choice of a discretization space for the unknown functions. In
the classical finite element framework for C° problem such as Naghdi’s shell model, a Lagrange
interpolation function is a common choice. In the case of mortar method the matching conditions
have to be discretized and appropriate space has to be chosen.

The discretization of the general problem is made through the following steps:

o the different local problems (without considering the junctions conditions) are discretized
independently as in the “conforming” case using their proper finite elements, which can
be of different degrees. This step constitues on the assembling of the system local to each

domain, i.e ap)([Ww)> Si)ls [V@&)> Tw)]) = Ihe) (V) T i)

o at a second step, the junction conditions are considered by using the shape functions of an
appropriate space W(’yl), against which the continuity is satisfied. We made the standard
choice of W(~4!) as the trace space derived from the discrete space X h(n) Over the non-mortar
side §2,,(;). This step yields to a matrix form of the conditions (3.17) and (3.18)

o at a third step, one defines some degrees of freedom (at the interface) of the non-mortar
side in terms of the (independent) degrees of freedom. The independent degrees of freedom
can sometimes involves some non-mortar side degrees of freedom.This step yields to a local
junction which defines some non-mortar degrees of freedom in terms of the independent
degrees of freedom
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Chapter 3. Naghdi shell junctions with Nonconforming Discretization

o as a last step, one defines a global matrix which allows to take into account for the local
junction conditions and defines the global Problem 3.2.1. The link between the initial
degrees of freedom and the set of independent degrees of freedom is made through a global
junction matrix which involves the local junction matrix.

REMARK 3.2.1 For the second step, we emphasize that the space W(’yl) can be set independently
of the discretizations used on (), k € {n,m}. In fact its corresponding shape functions, defined
on the interval 4!, can be totally independent of the discretizations used on Q) and Q). The
only requirement is that the dimension of the space, i.e the number of spanning shape functions,
must be of appropriate dimension in order to have a well-posed problem.

3.2.2 Mortar principle on an abstract problem

Let us consider the following abstract problem involving the domain decomposition with two
domains:

PROBLEM 3.2.2 (Problem for description) Find w = (w®,--- ,w™)) € H'(w) such that: V k €

{n,m}

’b(w(k),v(k)) = I(v™®)

, Vv e H'(w) such that ! = p!(m) 3.21
wl(n) — wl(m)

where b and [ are respectively the bilinear for and linear form of the basic problem.

We recall that the matching condition in integral form is

/l (W™ sy — W™ s1,0) f = 0, Vf € W(H). (3.22)
.

Local interpolation

Let & = (&,€7) be the coordinates of the nodes of the triangulation wy,) and (p,gk)) be the
corresponding shape functions of X )

Xh() := span { (pgk))izl:Nk} '

Hence the interpolation of the restriction of w to wy is
dy,
k
wh () = 3" w&p" ()
i=1

wz(k) = wk(¢&,;) are the degrees of freedom of the function and dj, is the number of degrees of
freedom. The shape functions are assumed independent and satisfy the following unit partition
and d-Kronecker properties:

Veew, Y pPe) =1 (3.23)
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and
p(€,) = 6,5, for & € wh)- (3.24)

We further introduce w®) = (wgk)) R the vector of degrees of freedom of the domain wy, and
1=1:aL

w, the vector of degrees of freedom overall w.

Construction of the junction

We introduce Sy the set of indexes of degrees of freedom which are on the parametric inter-
face ~!(k)

Si(k) = {i € {1,---, N}, such that &, € fyl(k)}.

We define Sy the complement of Sy, VI € {1,---, L}, i.e the set of degrees of freedom which
are considered as interior, in the sense that they are not on interface

Sogky = {i € {1,---, Ny}, such that i & Sy, VI € {1,--- ,L}}.

Let us note dj(;,y = Card(Syy,)) the number of degrees of freedom of w® on the interface /%),

The dimension of the space W(7!) can be at most equal to di(n)- The space W(+!) of trace space
associated to the discretization, inherited from the non-mortar side, is

W) = {f € C°(!) such that f(n) = Y fp{”(€), with € = gy (n), 1 € 1} (3.25)
JESi(n)

Let us denote respectively by w!(®) the “trace of degrees of freedom” on T'*) < ~!%); and k)
the interior degrees of freedom of a function w*)

w'® = {wgk), such that i € Sy}, (3.26)

w'®) = {wgk), such that i € Sy }- (3.27)

Let us note B®) and £f(*) the matrix form of the bilinear and linear forms. The “discrete” form
of the considered problem 3.2.2 is

PROBLEM 3.2.3 (Discrete form of the problem) Find w € RM x R™2 such that

y(k")TB(k)w(k") = Q(k)Tf(k), Such that

m) > Vv € R% x R% such that o' = !,

(3.28)

where v!(%) = Z w§k)P§-’|jz<n) (&), €€ ~HE),
JESI(k)
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The matrix form of the global problem without considering the matching condition is

" . B™ w(™ " . £(n)
w0 yim] [ B<m>] [w(m)} S ERR) [f(m)} (3.29)
—_— SN——
B £

Our purpose subsequently is to define the global problem which enforces the matching condition
in the matrix form associated to the general problem on the assembling of domains.

Matrix form of the junction

Thanks to the independence of the shape functions (p(-n)

i ) , the continuity in integral sense
’ieSl(n)

(3.22), page 42 is satisfied if and only if
/l(wl(") (&) 100y (1) — W™ (€ () S1(m) (77))2?§n)(</31(n)(77)) =0, Vj € Sm
g

where £ is the curvilinear coordinates associated to (. In the previous equation we have

&k) = Pury(n) and the continuity @, (&) = Pn(€(n)) for n € AL,
The restriction w'®) of w®) to 4/*) is defined as

W B )= 3w (i ).

iESl(k)
Thus the matrix form of (3.22) is
Ml(n)wl(n) _ Ml(m)wl(m)

)

where M!®*) is the matrix of dimensions (di(n), dix)), of components

v]

M}A(k) = /l pgn)(f(n))pgk)(5(k))5l(k)(77)d777 ,Z € {1> T 7dl(n)}73 € {17 T 7dl(k)})
v

where i (resp j) is the global numbering in Sj(, (resp. Sy)) corresponding to i€ {l-- s i) }
(resp j € {1, s diky}) - We finally define the non-mortar interface degrees of freedom as

w'™ = RO | with RO = ML) 1vHm) (3.30)

Matrix form of the global problem

Using the partition of the degrees of freedom (3.26) and (3.27), we arrange the global vector of
degrees of freedom as follows

w = (wo(n) wl®  l(m) wo(m)) . (3.31)
The definition of the local matching matrix involved in the problem (3.28) is given below.
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PROPOSITION 3.2.1 Let us introduce the following vector of independent degrees of freedom w
associated to global problem

ET = (wo(n) wl(m) wo(m)) .

The global matching matriz M which defines w in terms of the independent degrees of freedom
vector w is then
To(n)
and w = Mw (3.32)
0
IO(m)
To(ry is the identity matriz associated to the free interior degrees of freedom of the domain of
index k. We highlight that Io(,) = diag(Ié(m),Ig(m)), where Ié(m
to the free and independent degrees of freedom on the mortar interface and 18 ) 18 the identity
matriz associated to the interior degrees of freedom of w, which are not on the interfaces.

) 1s the identity matrix associated

REMARK 3.2.2 Before going further, we recall that likewise as the solution w, the admissible
function must also satisfy the matching conditions. Thus, given an admissible test function v,
we have similar relation (3.32) for v with its corresponding w.

Now we state the matrix form of the global problem which enforces the matching conditions
defined previously.

PROBLEM 3.2.4 The matrix form of the global Problem 3.2.3 is: Find w € R —di(n) 5 Rm
such that

"B, w = 0'f,, for all T € R x R*~%m «— B,,w = f,, with (3.33)
with

B,, = MTdiag(B™,B™)M, and f,, = MTf, fT = [f(") f(™)].
REMARK 3.2.3 We have assumed in the previous problem that the matrices B¥) are rearranged
conveniently in regards to the new ordering of the degrees of freedom, introduced in Eq. (3.31)
Bo(n) Bl(n)

0 0

B(™ = and B =

l

The block-matrix B,Cn(k) = ([Bf(k)];j)M is of dimensions d,.() X d.) of components

BEW]; = by (07,95, i € Sy and j € Seqpy-

Similarily for the right hand side
£n) — [fO(n) fl(”)] and fM — [fl(m) fO(m)] ,

with f7®) = ( f{ (k))é is a column vector of dimension d,.(;) of components
(2

7o = l(k)(pi’“)), i € Sp(k)-

(2

Now, we consider in particular the matching conditions of a global shell problem.
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3.2.3 Mortar method implementation for shell junction

Let u(y,) and sy be respectively the degrees of freedom vectors corresponding to w gy and s(). In

*®) and slcgk) respectively the restriction

*) and §f§k> their corresponding

the same vein, as in the above abstract problem, being uﬁ
(%) we denote by gﬁ

vectors of (finite element) degrees of freedom, while gg(k) and §g(k) are the degrees of freedom

vectors in the interior of €. For sake of simplicity, we suppose that both the displacement and
rotation components are discretized using the same finite element.

First, we focus on the continuity condition of the displacement fields of the assembling of middle-
surfaces. The matrix form of (3.17) reads:

of u;(y) and s, to the parametric interface y

-1

MOyl — [Ml(m)]ggé.(m), with summation over j € {1,2,3}.

[Ml(m)}g denotes the matrix on the mortar side of dimension (dj(,),djm)). For a given couple
(i,7) € {1,2,3}2, the components [M;gm)]z of [Ml(m)]g are

l j ] n m
[M,;E;m)]g = Al az((,:;)p;(o J(&m)PY™ (€ my) S10m) () dln.
The matrix M®)’s components are defined as

M) = A 25 (€)PE (€ y)siny ().

Thus the matrix form of the continuity of the displacement vector is

M
MMl = MMM with MH = <[5? X M(’)]Jf) = M®
- - ! '/ (i,)€{1,2,3}? MO
and M ™) is the 3 x 3 block matrix of dimension di(n) X di(m):
<[ ]Z>(i,j)€{1,2,3}2
Regarding the other junction condition, we introduce the matrices Mlq(,k) such that
I(k I(k)1a
My = (M) )aeq1.2)-
The components [Mgk)]gq of the (sub-block) matrix [Mﬁ,ﬁ’“)}a are defined as
(k)1 a (k) (n v
Mg = (<) / B ()PP €y s (mdn, @ = {1, 2P\
Thus the matrix form of Equation (3.18) is
Mﬁp(”)gl(w — Mgmgl(m). (3.34)
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3.2. Finite element space - Mortar method for shell

The tangential rotation continuity (and the associated corollary, i.e the independence of the
normal component of rotation) implies that only one of the rotation covariant components of
Q) can be defined through Equation (3.34). Then, one has to extract a sub-matrix of “full

rank”, i.e invertible, which corresponding rotation will be defined.
l(n

Let us consider a given integer number a € {1,2}, and assume that t; ) # 0 so we can define

the rotation sf§”). Thus we have

[Mgn)]agog”) = Mg)§(l) (no summation over o) (3.35)
where

MY = (M M) and 5O = (stm S00)T

Now, for the purpose of defining the global junction, let us note Rﬁ) and Rg) respectively the
matrices associated to the junction of the displacement and rotation, such that

w'™ = RO and s = [RV)2s0),

-1
where R{) = [Mi(n)}*lML(m) and [R(Wl)]a = ([Mgn)]o‘) Mg). Let us note [Rg)]a = [Rgm) Rgn) .

The matrices Rgm) and Rgn) are respectively the sub-block matrices associated to the mortar

and non-mortar degrees of freedom /™) and §f)7(n), and are of respective dimensions (dj(,, 2d;(mm))

and (dy(n), di(n))

I(m lnoé_1 I(m I(n lnoé_1 l(n)1&
Ry = (M) vy, Ry = (M) v
From now one, let us note o = @, we introduce the vectors

ub = [gl(n) PUORORINED él(m)} and TY = [gz(m) Q) §l(m)j|_

Finally, we define the local matching matrix

-Rg)
Il(n)

v
1) _ I(n I(m H _ v
MO — Rw() RW() and UD = MOT

1"

where Iip("), Ilw(m) and Iz(m) are respectively the identity matrices of respective sizes (dl(n), din)), (2dl(m), 2d)(m))
and (3dl(m)7 3dl(m))

Let UK .= (go(k),§0(k)) be the interior degrees of freedom corresponding to €. We consider

the vectors of degrees of freedom

UT = [0 y® ydm] and TT = [Uom g UO(m)}_
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Chapter 3. Naghdi shell junctions with Nonconforming Discretization

The global matrix is

10(n)

M = M®
IO(m)

I°%) is the identity matrix of dimensions (5 x do(r), 5 X do(r)) associated to interior degrees of
freedom U2K)

3.2.4 Finite elements implementation

There exist several numerical methods for the solving of PDEs problems. Their common purpose
is the construction of an approximation of a continuous solution which most of the time cannot
be computed analytically. One of them, most widespread used, is the Finite Element Method. In
its framework, the approximated solution is the solution of a discrete problem which is commonly
a Galerkin approximation of the continuous problem. The key point is then the construction of
an appropriate finite dimensional discrete space associated to the problem meshing. Naturally,
attached to the meshing, the discrete solution is considered as a piecewise polynomial function
(in each element). Its discrete space is characterized by the kind of shape basis functions used
and depends of the required regularity by the variational problem solution.

Our purpose subsequently is to define the discrete problem and show the finite element ap-
proximation aspects using Lagrange interpolation. For the purpose of ease the discretization the
variational problem is first put in matrix form and then the FEM discretization is depicted.

3.2.4.1 Matrix form of the variational problem

Let us define the functional vector F(-,-) of the three-dimensional displacement covariant com-
ponents and their derivatives

F(v,r) = [Ui Vi T8 Tﬁ,ar = [111 v1,1 V12 T2 T2 7“2,2]
Taking into account for the elastic tensor symmetry and using the Voigt notations, we set:
yi= (11 722 2m2)", x=(x11 X2z 2x12)" and v, = (2713 2723)".

Let us introduce the matrices M,, M, and M; respectively associated to the membrane, bending
and shear tensors. M, and M, are both of dimensions (3, 15) and Mj is of dimensions (2, 15)

Y(-) = M, F(-, %) x(-, %) = M, F(-,x) and ~,(-, %) = MF(-, ). (3.36)

These different matrices depend explicitly of the geometry through the metric, curvature tensors
and Christoffel symbols. Let us define the row vectors of dimension 15 x 1:

o relatively to the membrane and bending strain components:
P = [Thy 6405 (0463 +020%) T2, $(026%+050%) 0263 —bap Oixs).

af afs

= [—x?f X xah X7 x

B
X >
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3.2. Finite element space - Mortar method for shell

o finally for the shear strain components

2723 1= [ b

00 b 000, 6206006 00].

In the previous definitions 01, represents a zero row vector of dimension n and

Xol = [(T95 + babSs + b3T%,) 0305 + 0568 1305 +b302], o € {1,2}
ng = [béb)\/g —i—bz\;bm 0 O]
aB 0 ostol ligis2 4 5261 (3'37)
X1 _[ a”ps 2(a,8+aﬁ)]
Xs7 =0 10205 +46L03) 026%].

11

The matrices My, M, and Mj’s rows are respectively A 4220 94120 T 3220 9012 and

2,713, 2,}/23.

PROPOSITION 3.2.2 Consider an open bounded subset w C R? and an injective immersion ®
which defines the middle-surface Q2 and let t > 0 be the shell’s thickness. Let Q and E respectively
be the reduced plane and anti-plane parts of the elastic tensor. The matriz expression of the
bilinear form associated to the strain energy is

a([u, s], [v,r]) = /{FT(v,r) AF(u,s)+FT(v,r)"DF(u, s)+FT(v,r)SF(u, s)}/ad€, (3.38)

w

where

o A:=t 1\/IF:YFQM7 s the matriz associated to the membrane strain

oDD:= %M;QMX the matriz associated to the bending strain

o S:=tM! E M, is the matriz associated to the shear strain.

In analogous manner, for the virtual work of the applied loads, we have:

PROPOSITION 3.2.3 Let us consider that the middle-surface is subjected to a surface load p =
p'a;, a resultant effort and moment N = N'a and M = \/a(M?a' — M'a?) on its boundary
®(v1). The matriz form of the linear form is

l([v,r]):/Lp-F('v,r)\/adﬁ—i-/ (L, - F(v,7) + Ly, - F(v,7))d 11,
w 7

where

LT:=[p' Oix2 p* Oixa p* Oix2 Oixg)
L] := [N' Oix2 N? Oix2 N® O1x2 Orxg

LT, := [O1x3 Oix3 Oixs M' O1x2 M? 01x2].

m
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Chapter 3. Naghdi shell junctions with Nonconforming Discretization

3.2.4.2 Local discretization

Let uZ (resp. sé) be the j-th degree of freedom of the i-th displacement vector component uf
(resp. a-th rotation vector component s). We have

ul(€) = ulp;(€) and sk =Y sip;(€).
=1 i=1

where p;, j = 1:ng are the Lagrange polynomial basis functions.

Nea

nK
Given a polynomial w"(€) = Z wip;(€), the derivative w” (&) of w” with respect to &7 is
j=1

wh (&) = wip;(€).
j=1

Adopting the convention dyf = f, we define the matrix D := (D;; = 0;—1p;(§)) of

size 3 X ng such that:

[w(.ﬁ) w (&) w72(§)]T:D(§) [wl w2 .. wnK]T_

Let us consider the matrix DP,, of dimension 15 x (5ng)

1=1:3,7=1ng

D
D

D
D

Let now U" be the vector of dimension 5 nx composed of the degrees of freedom of displacement
and rotation arranged consecutively

. . T
Qh: (ug)jilrnK (S?X)jzlan:| )

hence F(u”, s") = DP,U".
Let ax(-,-) denote the restriction to the element K of the bilinear form a(-,-)

ak([u”, "], p", 7)) = / (VI DP] A DP, U, + V] DP}, D DP, U, (3.3
K .
+ V] DP] S DP,, U, }adS

A is the elementary stiffness matrix (restricted to the element K), of dimensions 5ngx X bng,
associated to the discretization of the bilinear form

Ay = /KAK(ﬁ)dS
where
Ak (&) = {DP],(§) A(§) DP,(§) + DPJ (&) D(§) DP,(€) + DP] (&) S(€) DP,(£)} vVa(€).
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3.2. Finite element space - Mortar method for shell

The elementary stiffness matrix A i is computed after an appropriate integration scheme in order
to compute the integral in equation (3.39) -as recall in (3.20).There exist various quadrature rules
for numerical integrations [30]. One usually uses a Gauss-quadrature integration, which for n,
points of quadrature is exact for the integration of a polynomial of degree 2n, — 1. After the
local evaluation, one finally assembles the global matrix by adding the elementary contributions
from the different finite elements. Reader may refer to [26, 24| for a deep insight on the finite
element aspects.

3.2.4.3 P, Lagrange interpolation

We have used a P»-Lagrange interpolation for the displacement and rotation components. Con-
sider a non-degenerated element of vertexes A; of coordinates (n],75), ¢ =1 : 3. The dimension
of the polynomial space is dim(P,) = ("H)QM = nk. Let us consider a point X of coordinates

€ = (£4,€2) and let \; denote its barycentric coordinates

[ X A1 A X Ao
)\Z‘ = )\Z = )
(5) HAlAQ /\A1A3||

where i + 1 and i + 2 are defined from a cyclic permutation of the indexes (1,2, 3); for instance
“34+1=1, 3+2=2". For a P,-Lagrange approximation the degrees of freedom are defined at
the three vertexes and the middle nodes of the three edges, as shown in Figure 3.2. Their local
(barycentric) coordinates are reported on Table 3.1.

Point (A1, A2, Ag) s
Ay (1,0,0)
As (0,1,0) )
As (0,0,1) 1
b (0,3.3) y
bp (5.0.3)
b3 (%a %a 0) b A2
Table 3.1 Barycentric coordinates of a P» Ay s
interpolation.

Figure 3.2 P-finite element

The six polynomial basis functions are defined by

pi(§) = X(¢)

p2(§) = A3(8)

p3(€) = A3(8) (3.40)
pa(§) = 4Xa(€)A3(8)

p5(§) = 4 (€)A3(8)

p6(§) = 4M1(€)A2(8)

The polynomials effectively statisfy the properties (3.23) and (3.24). Figure 3.3 shows the shapes
of the trace functions used for the mortar-method. The representation at the left corresponds to
the middle-nodes b; and the one at the right side corresponds to the vertices A;.

51



Chapter 3. Naghdi shell junctions with Nonconforming Discretization

Basis function at the middle node P»-Lagrange Basis function at the vertix node P»-Lagrange

1 1

0.8 0.8
0.6 0.6

w w
< o4 & 04
0.2 0.2
A
0 "

&(on A\; =0) &(on N =0)

Figure 3.3 Trace functions of the Lagrange P, basis functions.

We give some numerical results in the next section.

3.3 Numerical results

We first start by specifying the parameterization of the mid-surfaces.

Shape parameterization:

The shape functions ®; are Bezier polynomial functions (of class C°°) of order 4 and the para-
metric domain is the unit square wy := w = [0,1]2. The middle-surface Q is thus defined by

mean of 16 control points noted p;;), (4,7) € {0,---,n = 3}2. Their corresponding bivari-
[

ate Bernstein polynomials B;; : w — [0,1] are defined as usual through tensor product of the

univariate Bernstein polynomial b : [0,1] — [0, 1] of order n + 1, with n = 3:

n % n—i), .1 n n : i il
bi'(n) =Cy(1 - 77)( )77 , and Bij(£17£2) =b; (gl)bj (52, with Cj, = m

The shape function ®j is defined as

3
D¢t &%) = Z pij(k)Bij(§17€2)'

1,7=0

The global geometric continuity conditions, in the case of shell assembling, are simply reduced to
the equivalence between the control points of different domains which have a common interface,
i.e the equalities of their coordinates. In such a kind of configuration, the domain 7! = v =
[0,1], forall 1 < [ < L, and the interface parametric functions ©'®) are simply one of the
following vector value functions ¢;, i € {1,---,4}, parameterizing the boundary dw, as shown

on Figure 3.4.
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3.3. Numerical results

®3
w ©2
L (1,0)

P24
Figure 3.4 From left to right an example of middle-surface with the asso-
ciated control points and the parametric interfaces with their associated
mappings defined as follows:

801(77) = (77’ 0)? Y2 = (1777)7 ¥3 = (1 -1 1) and 804(77) = (03 1- 77)'

REMARK 3.3.1 As can be seen from the parametric functions ¢; of the interfaces, the tangent
vectors are just one of the in-plane covariant basis vectors. More precisely, the tangent vector
corresponding to ¢;, i € {1,3} is co-linear to a; and for ¢ € {2,4} it is co-linear to ay. Thus in
regards to the covariant component of the rotation which is defined with the tangential continuity
constraint -see Equation (3.35)-:
o in the case where gol(”) = ¢; with i € {1, 3}, one can define §12(n) in terms of s(™ and §l1(n).
o while, for 7 € {2,4} one will define sll(n) in terms of 5™ and glz(n).

3.3.1 Vibration frequencies of a plate

The first example concerns the vibration analysis of a plate shell. The unit square plate is free
without boundary condition, and is made of isotropic material of following characteristics

E =210 GPa and v = 0.3, p = 7300 Kg/m?.

The first six eigenvalues correspond to rigid body motion. For the frequencies of rank greater
than six, comparison is made with theoretical values f* given in formula 3.41

_—
i A
7 13.49
1 tE 8 19.79
er\2 2
() 27127 12p(1 — v2)’ (341) 9 24.43
10 35.02
11 35.02
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Mono-shell case

Figure 3.5 shows the non rigid vibration modes of rank seven to eleventh.

u Magnitude
5.766e-01
ku.aazu

£0.2883

lU.IMIS
0.000e+00

3.5.a — 7th eigenvector deformation

u Magnitude

6.160e-01
Eu.mm

£0.308

EU. 154
0.000e+00

» <

3.5.c — 9th eigenvector deformation

u Magnitude

4.959¢-01
Ea.sma

£0.24795

E0.12397
0.000e+00

—

3.5.b — 8th eigenvector deformation

u Magnitude
6.575e-01
‘0.49312

£ 0.32874

lU.IMST
0.000e+00

3.5.d — 10th eigenvector deformation

u Magnitude

6575e-01
ku.m 12

:0.32874

[’0.]6437
0.000e+00

3.5.e — 11th eigenvector deformation

Figure 3.5 Representation of the vibration modes 7 to 12 for the free

plate
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3.3. Numerical results

Table 3.2 shows the comparison of the computed eigenvalues with the theoretical. We remark
that the maximum relative error is less that 1%, which prove the validity of the implementation.
We further adopt the following notations: given an index 7, f*, f* and r}* stand respectively for
the exact eigenvalue, the computed eigenvalue for the geometric decomposition with n patches

and the percentage of relative error, r}' = It f;c £ x 100.

N feo(Hz) f) (Hz) 1l (%)

7 10.454  10.454  0.000

8 15.336 15.20 0.887

9 18.932 18.84 0.487

10 27.139  27.129  0.037

11 27139 27130  0.033
Table 3.2 Comparison of the computed eigenvalues corresponding to
free-plate with the theoretical ones. The analysis was performed with a
mesh of 1681 nodes and 3200 elements: the total number of degrees of
freedom is 8405.

Even if the results are satisfactory, a general remark on the convergence of the eigenvalues is
that the convergence is by superior values, i.e the eigenvalues tend to the theoretical values by
superior values, see Figure 3.6.

10.65 | ]

N

T10.55 | .

10.45 |- N

Np 104
Figure 3.6 Illustration of the convergence of the 7th eigenvalue as the
meshing step diminishes. Np represents the number of degrees of free-
dom.

This is explained by the fact that the stiffness matrix becomes over-stiffened as the discretization
parameter tends to zero. This observation may correspond to the numerical locking phenomenon
which induces spurious modes [3|. The reference frequencies ff*, said exact, against which the
computed frequencies are compared correspond to a Kirchoff-Love plate and are solution of a
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Chapter 3. Naghdi shell junctions with Nonconforming Discretization

bi-Laplacian problem. This may explain the fact that the convergence curve of f71 passes under
the line of the reference value f7*. Indeed, we use a Naghdi’s shell model which corresponds to
a Reissner-Mindlin’s plate.

Assembling of plate-shells

In order to validate the implementation of the junction, we also made the same analysis with
a 2 x 2 checkboard decomposition of the initial plate. The total number of degrees of freedom
corresponding to the overall assembling is 8820 (8491 after considering the junction). Thus the
total numbers of degrees of freedom for the both cases are almost similar so the results are com-
parable.

Table 3.3 shows the comparison of the computed eigenvalues with the theoretical ones, the rela-
tive differences with respect to the exact eigenvalues and also the relative differences A f; between
the frequencies fi1 and fz4

N° f! (Hz) rf (%) Afi (%)
7 10449 0.048  -0.048
8 15205 0.854  -0.007
9 18843 0471  -0.005
10 27125  0.052  -0.015
11 27125 0.052  -0.018

Table 3.3 Comparison of the computed eigenvalues corresponding to
free-plate decomposed into 2 x 2 patches. Comparison is made with re-

spect to the theoretical values and we also compute the relative error

4 p1
between the eigenvalues of the two cases. Af; = flfizlfl x 100.

The maximum relative error Af; between the eigenvalues of the different cases is less than
5 x 1072% proving that the junction technique gives good results.

Non-conforming meshes case

We conclude this example by illustrating the flexibility of our implementation of junction. We
consider a non-conforming meshing discretization of the plate. The plate is still decomposed into
a 2 x 2 patches and the sub-plates located at the bottom-left and upper-right have 8405 degrees
of freedom while the other two sub-plates have 2205 degrees of freedom. The total number of
degrees of freedom is 21220 and finally 20894 after taking into account the junction conditions.
Table 3.4 shows the values of the eigenvalues and the relative errors rf in respect to the exact
eigenvalues. One remarks that while gaining a flexibility in one hand, the drawback on the other
hand is the lost of accuracy on the double eigenvalues 10th and 11th, which are not equal.

56



3.3. Numerical results

Ne fi(Hz) o (%)

7 10.440 0.134

8 15.21 0.822

9 18.823  0.577

10 27.062  0.284

11 27.065  0.273
Table 3.4 Eigenvalues and errors corresponding to the nonconforming
meshing of the 2 x 2 decomposition of the plate.

u Magnitucle

5.782e-01
EIJ 43364

£0.28909

Eﬂ.l4455
8.301e-07

Figure 3.7 7th frequency corresponding to the nonconforming discretiza-
tion of the 2 x 2-plate.

We remark that we have gained some accuracy in the computed eighth frequency to the detriment
of the other frequencies. However the maximun value of the relative error is less that 0.82% (better
than 0.85% in the previous case of conforming meshings). Figure 3.7 shows the magnitude of
the displacement field corresponding to the seventh eigenfrequency and the representation of the
physical mesh on the plate.

3.3.2 Vibration frequencies of a 3D L-plate

We now consider a L-plate composed of two unit square plate-shells joined orthogonally and non-
coplanar. The structure is free and made of the same isotropic material as in the previous example.
The validation is made by comparing the computed eigenfrequencies with some references ones
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Chapter 3. Naghdi shell junctions with Nonconforming Discretization

given in [39] and obtained with the Code-Aster (an open FEA software developed by Electricité

de France - EDF).

The analysis was performed using a mesh with 1089 nodes and 2048 elements. The total number
of degrees of freedom is 41990. The first six deformation corresponding to the rigid body motion

are plotted on Figure 3.8.
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u Magnitude
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u Magnitude
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EEI 08455
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Figure 3.8 Representation of the first six eigenmodes of deformation of

the L-plate.

And the following first six non rigid modes are plotted in Figure 3.9.
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u Magnitude
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3.9.a — 7th eigenvector deformation
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3.9.c — 9th eigenvector deformation
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3.9.e — 11th eigenvector deformation
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3.9.b — 8th eigenvector deformation
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[0.08383
0.000e+00
3.9.d — 10th eigenvector deformation

u Magnitude
4.981e-01
k0.3736

£0.24907

lU. 12453
0.000e+00

>

3.9.f — 12th eigenvector deformation

Figure 3.9 Representation of the first six eigenvectors of deformation

corresponding to the free L-plate.

The values of the first six eigenvalues of deformation are given in Table 3.5. The reference values
used are computed with 79056 degrees of freedom. The notations ff, f25t and ri2 stand respec-
tively for the computed eigenvalues with the two orthogonal plates, the Code Aster reference
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ast _

2
values and the percentage of relative error 7‘12 = i qutfi x 100.

N° f2Hz fo5t (Hz) 2 (%)

T 3.227 3.224 -0.093

8 5.527 5.526 -0.018

9 7.525 7.503 -0.293

10 12224  12.216 -0.065

11 17.649 17.614 -0.199

12 19.924 19.85 -0.373
Table 3.5 Comparison of the computed eigenvalues corresponding to
free-L-plate with the reference eigenvalues computed with the Code-
Aster software.

The computed frequencies are acceptable. Indeed, the maximum of relative error is ~ 0.3%.

3.3.3 Frequency analysis of a cylindrical shell

We consider a cylindrical shell with the following geometric and material characteristics
R=0.3m, H=0.6mv=0.3, E=3x10° MPa and p = 7.3 kg/m>.

Here also, we compare the computed eigenvalues with those found with Code Aster. The values
of the eigenfrequencies are reported in Table 3.6. We remark that the errors are relatively small
(less that 2.5%).

Ne  fiHz)  f*(Hz) (%)

1 166 x10~° - -
2 1.11 x 1072 - -
3 1.11x1072 - -
4 343 x1072 - -
5 1.72x 1071 - -
6 1.72x107! - -
7 2.7679 2.7523  -0.569
8 2.7679 2.7523  -0.568
9 3.7712 3.6815  -2.437
10 3.7712 3.6816  -2.435
11 7.8116 7.7846  -0.347
12 7.8560 7.7846  -0.917

Table 3.6 Eigenvalues corresponding to a free cylindrical shell and the
relative errors with respect to the reference values.

We emphasize that the rigid body motion eigenvalues are not exactly zero. This is one of the
drawbacks of the C? finite element, which needs a very fine mesh for convergence.
Figure 3.10 shows the first four non rigid body modes.
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3.10.a — 7-8th eigenvector deformation
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3.10.c — 11-12th eigenvector deformation
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3.10.b — 9-10th eigenvector deformation
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3.10.d — 13-14th eigenvector deformation

Figure 3.10 Representation of the first four non rigid body modes.

3.3.4 Rectangular plate under pointwise load

Now we consider a rectangular plate benchmark, as described in [49]. The geometric and material

characteristics of the plate are described on Figure 3.11.

e}

L

L = 1=2

E = 1.7472x 107, v =0.3
p = 1,t=10"2

q = 4x10%a;.

Figure 3.11 Geometric and material characteristics of the plate
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Chapter 3. Naghdi shell junctions with Nonconforming Discretization

The validation is based on the reference value of displacement amplitude at the center of the
plate which is ug =5.60 x 1076, For symmetry reasons, we consider in our simulation only the
quarter of the plate, and the load is %. The displacement field magnitude of the plate is plotted
on Figure 3.12. The number of elements and nodes are respectively 512 and 289, and the total
number of degrees of freedom 21125.

\ u Magnitude
5.614e-06

\ E4.2Ie-6

*2.807e-6

E 1.404e-6
0.000e+00

Figure 3.12 Displacement field corresponding to the plate under concen-
trated load and the control polygon associated to the shape mapping

Table 3.7 shows the relative error on the third component of the displacement, at GG, in the case
of one patch and four patches.

1 patch 2 x 2 patches
ddls  ub(x107%) 71 (%) | ddls uf(x107%) (%)
245 1.00 82.074 - - -
405 2.32 58.530 | 980 4.29 23.476
1445 5.02 10.287 | 1620 5.03 10.205
5445 5.54 1.101 | 5780 5.55 0.975
21125 5.61 -0.159 | 21780 5.62 -0.370

Table 3.7 Relative errors on the vertical component of displacements.
ug represents the third component of the displacement computed with

n patches and r" = % % 100 is the relative error

Figure 3.13 shows the variation of uj, with respect to the number of degrees of freedom.
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10-°
— . —
—
5 N
4+ N |
—.—uG
—~0 uG
3 N
921 N
1+ N
| | | | |
0 0.5 1 1.5 2

Np(degrees of freedom) -10%

Figure 3.13 Convergence of the displacement vertical component. The
reference value u¢ is plotted in green and the values ué in blue

Non-conforming case

We also perform the same analysis with taking into account for a geometric decomposition and
non-conforming meshings. We assume that the plate is decomposed into a 2 x 2 square plates. The
plate which contains the point supporting the concentrated load has a finest mesh. We consider
the following case of local refinement: the finest mesh over the plate supporting the concentrated
load is left fixed and the meshings associated the other three plates are refined. Table 3.8 shows
the relative errors with respect to the total number of DOFs. One remarks that with only 9780
DOFs, one attains an acceptable relative error of 0.032%, which is surpinsingly better than the
relative error for a uniformly refined mesh with only one patch and 21125 DOFs.

2 x 2 patches
ddls  ug(x107%) (%)
5820 4.04 27.914

6180 5.08 9.361
6660 5.40 3.625
9780 5.60 0.032

Table 3.8 Relative errors on the vertical component of displacement.
The number of degrees of freedom of the plate with the fixed finest mesh
is 5445

One draws that the local refinement allows to set the meshing optimally and obtain a good
approximation in regards to the reference solution, through using a minimal number of DOFs.
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Chapter 3. Naghdi shell junctions with Nonconforming Discretization

The displacement field magnitude corresponding to this analysis is plotted on Figure 3.14. The
physical mesh is plotted on the same figure.

u Magnitude
5.598e-06

4.2e-6

—2.8e-6

E'I 4e-6
0.000e+00

Figure 3.14 Displacement field with local refinement with a fixed finest
mesh for the sub-plate supporting the concentrated load. The total num-

ber of DOFs is 9780

Local discretization error

We close this section by considering the study of the local discretization error in case of junction.
We consider as reference solution the one corresponding to the finest discretization, obtained
using one mapping and discretized with 21125 degrees of freedom, see Table 3.7. We perform the
analysis for a 2 X 2 geometric decomposition. Let ulh denoted the approximated displacement for
the [-th level of refinement and u} be the reference solution obtained with the finest mesh.
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3.3. Numerical results

i Juh —upl Ju —upllo i Jup—upl i —upllo
1 3.73x1077 155x10°% 1 573x1077 928 x10°%
2 297x1077 1.05x 1078 2 431x1077 6.32x10°8
3 295x1077 224x10°8 3 391x1077 4.73x10°8
4 1.02x1077 255x107° 4 146 %1077 4.60 x 107°
5 0.84x1077 1.18 x 10710 5 0.86x 1077 7.66 x 10710
a — Error corresponding to the first patch b — Error corresponding to the second patch
i ug —upli lug, —ugllo i Jup —uph [[up, — upllo
1 573x1077 9.28 x 1078 1 12.95x 1077 35.56 x 10~8
2 439x1077 6.43x10°8 2 10.88x 1077 24.44 x 108
3 391x1077 4.73x10°8 3 892x1077 1598 x 108
4 147 %1077 4.60 x 1079 4 310x1077 13.70 x 107*
5 0.85x 1077 7.66 x 10710 5 1.16x 1077 37.88 x 10710

¢ — Error corresponding to the third patch d — Error corresponding to the fourth patch

Table 3.9 Discretization errors local to each patch. | |1 stands for the
strain energy semi norm and || ||o for the standard Le-norm

One remarks on the Table 3.9 that the local discretization errors of the patches of indexes 1 and
3 are similar. In fact the mechanical problems in theses patches are the same: they both have the
clamping and symmetry boundary conditions and are unloaded. The global discretization errors
(sum of the local errors) are reported on Table 3.10.

N° ]u — uh L2

1 157x107% 37.94x1078
2 1.28x107% 26.04 x 1078
3 1.09x107% 1747 x 1078
4 039%x107% 1.54x10°8
5 0.19x107% 0.39x1078

Table 3.10 Global discretization error

Figure 3.15 illustrates the variation of the error as the mesh refinement is performed. One remarks
that the global discretization error dimunishes.

65



Chapter 3. Naghdi shell junctions with Nonconforming Discretization

Error
Brror

0 0.5 1 1.5 0 0.5 1 1.5
1/N, 1072 1/N, 1072

Figure 3.15 Global discretization error

3.4 Synthesis

In this chapter, we have discussed the junction for Naghdi shell structures. The junction involves
the continuity of displacement and tangential rotation fields. The finite element used for the
discretisation of the classical mono shell problem is a Lagrange one. In this case of junction, the
continuity or matching conditions have been weakly enforced in the variational space as well as in
the discrete space using the mortar technique. The approach involves the choice of an appropriate
space of functions against which the continuities are stated. We have made the standard choice
of defining the mortar space as the trace space associated to the discretization of the non-mortar
side. The proved interest of the method, through the numerical results, is its suitability which
allows to mesh each domain independently and thus using nonconforming meshes.

The numerical results have been shown in the case of conforming geometric assembling and
finite element discretization. A perspective from the finite element approximation point of view
can be the coupling of different orders of Lagrange finite elements. Regarding the geometry,
the extension to the assembling of shells defined through mappings of different degrees can be
investigated, but is complex since it involves many tricky points. For instance the definition of
the interface, the careful computation of the intersections of elements along the interface, the
ensuring of the coherence of the integration quadrature points from side to side for the definition
of the mortar conditions.
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Anisotropy and shape optimal design
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CHAPTER 4

Anisotropy properties and material
optimization
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4.1 Introduction

The optimization of distributed, i.e. locally varying, material properties is an interesting chal-
lenge for modern structure design. Such type of structures can today be manufactured using
numerically controlled machines for the deposition of reinforcing fibers in an isotropic matrix.
Anisotropic laminates having elastic properties varying point-wise can so be realized. The possi-
bility of tayloring locally the elastic properties gives new interesting possibilities or flexibilities to
designers, who, in turn, need effective mathematical methods for the design of the optimal elastic
fields. In practice, one or more elastic tensor fields E(z) are to be designed over a structure .
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Chapter 4. Anisotropy properties and material optimization

To this purpose, we propose here a new method to formulate problems concerning the optimal
distribution of material properties for anisotropic plates and shells with given geometry.
Assume that () is submitted to a system of loads f, the optimization problem dealt with in this
chapter can be stated as follows:

PROBLEM 4.1.1 Find an optimal elastic tensor field E* : x € Q — E*(z) such that

E* = argmin J(E), J is the compliance J(E) := / f-udQ
Q

where u is solution of a state equation.

For static problems, this last is the equation of equilibrium that can be given in a variational
form as

/ €(v) :E: e(u)dr = / f-vdQ, forallv eV,
Q Q

where:

o V is an appropriate functional vector space tuned to take into account for the boundary
conditions

o € is the symmetric linearized strain tensor.

In structural analysis, the variational problem is commonly solved by the Finite Element Method.
The problem is discretized through a mesh 2, of the structure, h being a mesh parameter. Within
this framework, the discretization of the material properties is generally based on the Finite El-
ement mesh and the material properties defined as constant per element, see [20], [38], [50].
This technique does not yield to a convenient discretization for the structural optimization prob-
lem 4.1.1 and has serious shortcomings: the number of design variables (DV) is mesh-depending
and can be of thousands; and the elastic properties (mainly the fiber orientations) are not con-
tinuous.

Also, the value of the elastic variables cannot be free: for a single-layer structure, the elastic
moduli must respect some bounds on the elastic constraints, see [44], imposed by the positive-
ness of the work done by the applied forces. For a laminate, the elastic variables must satisfy
similar but more restrictive bounds [68], called “geometrical bounds”. These bounds correspond
to the impossibility of realizing, by a laminate, all the admissible combinations of the values of
the elastic moduli.

It is apparent that if such a kind of discretization is adopted for the structural design, the op-
timization problem will have a large, sometimes huge, number of DV and constraints. Hence it
should be interesting to formulate the optimization problem using a different discretization of
the anisotropic elastic fields, so as to reduce the number of DV and constraints, though still using
a Finite Element Discretization (as fine as needed) for the structural analysis.

To such a purpose, in this chapter, we propose an approach based on one side on the polar for-
malism for the representation of the elastic tensor and, on the other side, on the parameterization
of the polar parameters fields by means of B-spline functions. This allows a drastic reduction of
the number of DV that are reduced to just the parameters of the B-spline and, most important,
to use a unique set of elastic or geometric constraints for the polar parameters instead of a set
for each finite element.

70



4.2. The polar formalism

Some recent papers [51], [75], concerning variable angle tow, and elastic properties design, dis-
cuss parameterization of elastic properties with B-spline functions. The first is based on the polar
formalism and concerns the case of multi-scale level optimization of laminates. The considered
criteria for both papers is the first buckling load. In this chapter, we discuss the parameterization
problem of the elastic tensor and highlight the relevant B-spline properties which allow to have
an efficient parameterization and sufficient finite set of constraint for optimization problem. We
propose two parameterizations: one that we call conformal in regards to the constraints to be
respected. In that case all the power functions, which appear in the constraint, are approximated
with B-spline functions of the same orders and basis functions. The second case is called direct
parameterization and is conformal with respect to the parameterized fields, namely the polar
moduli. In this case the parameterization concerns directly the polar parameters fields and not
their power functions intervening in the constraints. These polar moduli are still parameterized
using B-spline functions of the same orders and basis functions.

The chapter is organized as follows:

o in Section 4.2, we recall the essentials of the polar formalism

o in Section 4.3, we detail the representation of the polar parameters fields by B-spline
functions and the sufficient conditions on the control parameters. We distinguish two kinds
of parameterization, and discuss a B-spline flexibility helping to ensure a good exploration
of the admissible space

o section 4.4 is dedicated to the formalization of optimal problems for anisotropic structures
with locally varying properties. The considered criterion is the compliance

o finally, Section 4.5 contains some examples showing the effectiveness of the method.

4.2 The polar formalism

An anisotropic material has elastic properties changing with the direction. Such properties are
expressed by the elastic tensor. The main goal when designing such material is to set up the
optimal distribution of the elastic properties. In optimal design of anisotropy, it is suitable to
make use of the polar formalism, introduced by Verchery [72] in 1979, to represent the elastic
tensor using just invariants and angles. This formalism allows to easily represent rotations and
the constraints on the design variables (polar parameters) due to the mutual dependence of the
elastic coeflicients.

Moreover, the polar formalism allows to split the elastic tensor into its isotropic and anisotropic
parts; hence it offers the possibility to target and explicitly tune the anisotropy. More details on
the polar formalism can be found in [66], [68], and [71]. This formalism has successefully been
applied to different plane anisotropy problems, see e.g. [20], [52].

4.2.1 Polar formalism representation

For a second order symmetric tensor
Lll L12
L= ( 12 722 />
L~ L
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Chapter 4. Anisotropy properties and material optimization

the polar parameters T', R, @ are defined by:

1 1
T = §tr(L):§(L11+L22)
LIl 122\ 2 LY = T+ Rcos2d
R — (2> +(L12)2 = L'? = Rsin2¢ . (4.1)
19 L??2 = T — Rcos2d
2L
tan2d5 = m

T and R are invariants; T represents the spherical part and R the deviatoric one. The parameter
@ is an angle whose choice fixes the frame.

Now, assume that E is the plane elastic tensor in the material frame (mj, mo) and let E? be its
representing matrix

Ellll E1122 E1112

EP = E1122 E2222 E2212
E1112 E2212 E1212

The independent elastic coefficients E*PM are expressed in the polar formalism as:

) S To + 217 + Rocos 4Py + 4Rq cos 2d1.

EM?2 — Rysinddy + 2R; sin 29, .

EMN22 —  _Ty 4 2T — Rycos4d. 4.2
EY2 — T, — Rycosddy. 42
E?2 — _Rysindd + 2R, sin 29, .

E???22 — Ty 4+ 2T 4 Rycos4dy — 4Ry cos 29, .

where Ty, T are the isotropy invariants and Ry, Ry, @9 —®1 are the invariants of the anisotropic
part. The choice of one of the two polar angles fixes the frame. As ®y— @ is an invariant, choosing
@ or &1 corresponds to choose a frame and to fix the value of the other angle. Usually, the axis
m; is set in the direction of the highest elastic modulus EM™1 5o that ¢ = 0.

This formalism is also convenient to compute the elastic tensor in a rotated frame. Let us consider
(d1, d2) a basis obtained by a counter clockwise rotation through an angle 6.

mo A

d

d; = cosf my+sinf my
dy = —sinf mj + cos6 my

d;

o

m; (@1 = O)
The components E*S* (@), of E in the frame (d;, dy), are obtained by changing &, into
b, — 0, a €{0,1} in Equation (4.2).
It can be shown, see [66], that the polar invariants are linked to the elastic symmetries. In
particular, ordinary orthotropy corresponds to the condition

By — b, :K%; K=0,1. (4.4)
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4.2. The polar formalism

The value of K is very important in optimization problems; in fact, it has been seen in several
cases [67] that changing K from 0 to 1 or vice-versa transforms an optimal solution into an

anti-optimal one (i.e the best to the worst). If we fix the frame choosing $; = 0, then &y = K%,
so, for an orthotropic layer, we have:
( EMY0) = Tp+ 2Ty + R cos 40 + 4Ry cos 20
EM2(9) = —REsin 40 — 2Ry sin 20
1122 - _ —_ RK
E 0) = —Top+2T1 — Ry cos 46 (4.5)

(0)
E22(0) = Ty — R cos 40
EY22(9) = REsin 40 — 2R, sin 20
| E22(0) = To+2T) + R cos 40 — 4Ry cos 20

with RE = (1)K Ry.

Two other special orthotropies exist: square symmetry (i.e of elastic properties periodic of 7),
corresponding to the condition Ry = 0 and Rp-orthotropy, corresponding to Ry = 0. For more
details on this subject, the reader is referred to [65], [66].

REMARK 4.2.1 To summarize, in the polar formalism, the following six parameters define the
elastic tensor in any frame:

o two isotropic invariants Ty, T7;

o three anisotropic invariants Ry, R, &9 — 1. For ordinarily orthotropic layers, these can
be replaced by the two quantities Ré( and Ry, still representing the three invariants

o the angle @; fixing the frame.

For the case considered in the following, that of orthotropic tensors, a further reduction is possible
using the variable Ré( :in the end, the only DV are Ré( , R1 and &1; the sign of Ré( gives the value
of K, i.e the type of orthotropy. We finally remark that isotropy corresponds to Ry = R; = 0.

REMARK 4.2.2 (Reduction of the number of DV)

Let us consider the particular case of a laminate composed by identical layers of polar parameters
T({J, TlL, Ré:, Rf, @é:, @f, and let Ty, Th, Ro, Ry, ®9, 1 be the polar parameters of the
laminate. It has been shown in the [70] that for laminates with identical layers it is:

n = TF,

T = TE. (4.6)

Hence, in design problems where the basic material is chosen (i.e the constituents are chosen
for each layer and remain constant everywhere in Q) Ty and 7; cannot be modified, they are
no more DV. This is a real advantage given by the use of the polar formalism: the number of
unknown is reduced from six to four: Ry, R, @9 — @1 and @1; this last fixing the orientation.
In the particular case of ordinary orthotropic material they are just three R{)( , R1, &1, as said
above.

4.2.2 Constraints on the parameters

The elastic moduli are submitted to two types of constraints:
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Chapter 4. Anisotropy properties and material optimization

o Elastic constraints, see [69], resulting from the positive definiteness of the matrix EP:

T\[To + RE] > 2R?
To > |RE| (4.7)
R, >0

o Geometric constraints: it can be shown, see [68], that laminates composed by identical layers
cannot realize all the possible combinations of the values of the elastic moduli. We could
say, in some words, that laminates form a “more restricted” elastic class. Mathematically
speaking, this corresponds to the fact that the bounds of the laminate elastic tensors are
not (4.7) but some other more restrictive ones. For laminates composed by identical layers,
the elastic tensors for extension and bending are respectively

1 [3
A = h/ Edz
t
A (4.8)
D — 12 [2 o
= 3/ z°Edz

NN

where ¢ is the laminate thickness and z the vertical coordinate, with z = 0 corresponding
to the location of the mid-surface of the laminate.

Then it can be shown, see [68], that for A and D, bounds (4.7) must be replaced by other
constraints called the geometric bounds that for ordinary orthotropy are:

RK
2(%) - s T
Ry < RL

Since equation (4.9) is more restrictive than (4.7), when the problem concerns the design of a
laminated structure, eq. (4.7) must be replaced by eq. (4.9), otherwise, one could obtain some
values for the components of A or D that cannot be realized in practice through a laminate
composed by identical plies.

4.3 Parametrization tailored to the polar formalism

We assume the elastic tensor field to be designed under the form of B-spline functions; the
question is then to define a set of constraints on the control points of the B-spline which ensure
that the inequalities (4.7) or (4.9) are satisfied pointwise. Two parameterizations for R; are
relevant:

o a conformal parameterization: R; is parametrized as the square root of a positive B-spline;
the interest of this change of variable is to simplify the constraints (4.7), (4.9) which
become linear. The drawback is that the elastic coefficients and the constraints are no
more differentiable at Ry = 0;
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4.3. Parametrization tailored to the polar formalism

o a direct parametrization: R; is parameterized by a B-spline but —see Propostion 4.3.4— the
constraints on the control points depend on the number of control points. However it offers
the advantage to make the elasticity tensor differentiable with respect to the control points
of the polar parameters.

The main results of this Section, given in the Propositions 4.3.2 , 4.3.3 and 4.3.4, are direct
consequences of the following definition of a B-spline.

DEFINITION 4.3.1 (B-spline curve) Let K = (gj);.jg be a non decreasing sequence of real numbers
such that &g =0 and &,,.4 =1,

1. the j-th B-spline basis function of degree d (or order d + 1) is the numerical mapping N C{
defined recursively as follows: for 1 <k <dand 0<j<n+d— (k+1)

N(€) = wja(ON]_1 (&) + (1 = wis1,a( )N (E), (4.10)
where
o Ng (&) = { (1) lfelijevjhirj SO , for 0 < j < n+d—1 starts the recurrence

o wj ) is defined by

£ wik(€) ={ el G <E< G

0 otherwise .

In the above definition of w;x, it is adopted the convention 8 =1.

2. A B-spline of degree d is a numerical mapping C' which is in the n-dimensional space Sp(K, d)

\n—1
spanned by the set of functions Ny(K) := (Né)n .
J:

3. The coordinates p; of C' € Sp(K,d), in this basis, are called control points of the B-spline
C; in other words, a B-spline is written as

C€) =Y Ni€)p; for€eR. (4.11)

We define in the following Remarks some commonly used terminology.

REMARKS 4.3.1 1) The set K will be called knot vector of the B-spline and the number n. of
control points of a given B-spline is linked to its degree d by

card(K) =n.+d+ 1= n. = n.

2) The distinct knots are called break-points. A break-point ¢ is said of multiplicity m if there
exists an index j and there are m knots &1, € K (0 < k < m — 1) such that § = &1 =
o = E&iym—1 = & A break-point is said of full multiplicity if its multiplicity order is equal to
the B-spline order d + 1.
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EXAMPLE 4.3.1 If the knot vector K is {0,0,0,0,1,1,1,1} and d = 3, the restriction to [0, 1] of
the basis functions of Sp(KC, d) are the polynomials

NJ(€) =(1-¢€> Nj(€)=3(1-€>% N =31-£¢ Nj¢)=¢

In this case 0 and 1 are break-points of full multiplicities, the generic B-spline
3 .
C() = > pilN3(6)
i=0

satisfies C'(0) = pp and C(1) = p3 and is called clamped B-spline.

Y

w

Figure 4.1 Ezample of clamped B-spline. In this particular case, the control
points: po = —2.0, p1 = 0.25, p2 = 0.8 and ps = —2.0 are not all negative while
C(€) <0 for all £ €10,1].

DEFINITION 4.3.2 (Bivariate B-spline) Let d = (d1,d2) and IC = (K1, K2) be two pairs of integer
numbers and knot-vectors. A bivariate B-spline is a mapping in the vector space spanned by the
tensor products

B : €:=(¢1,€%) € R? » B (£) == Nj, (€)M}, (€?),

where N} € Ng, (K1) and MgQ € Ng,(K2). This space will be still denoted by Sp(IC, d), being
understood that IC is a Cartesian product of the knot vectors in the two coordinate directions
and d := (dy,ds) is a couple of degrees when the B-spline is bivariate.

From now on, for notation simplicity reasons, we use a unique index instead of the multi-index
such that: for each given (p,q) € {0, ,n1 — 1} x {0,--- ,ny — 1} we associate a conveniently
defined unique index i :=i(p,q) = ¢ X n1 +p, with i € {0,--- ,n12 — 1} and nj2 = ny X ng. Hence
the B-spline qu is denoted Bfi.

We summarize in the following Proposition the properties of the bivariate B-splines which are
used in the paper.

PROPOSITION 4.3.1 Let IC = (K1, K2) and d = (di,d2) be two couples of knot vectors and integer
numbers.
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4.3. Parametrization tailored to the polar formalism

i) The B-spline basis functions of Sp(KC,d) are such that
VEecw: =6, x (62,6 2] andi e {0,--- ,np — 1} 0 < Biy(€) < 1. (4.12)

ii) Moreover if the end knot-points are of full multiplicity the B-spline functions satisfy the
unit partition property
ni2—1

VEcw, Y Bi€) =1 (4.13)

=0

iii) If C is a B-spline in Sp(KC,d) of control points c¢* then the relationships ¢t < 0 for all i
entail that C(€) < 0 for any € € w. The example 4.3.1 shows that the converse is false.

iv) If P and Q are two B-splines in Sp(IC,d) then for any (a,b,c) € R? the linear combination
C = aP + bQ + c is a B-spline which belongs to Sp(IC,d). Moreover, if p* and ¢' denote
respectively the control points of P and Q, the control points ¢ of C are given by

& =ap' +bg +c

Proof. The proofs of properties i) and ii) are given in [31]. Property iii) is a consequence of
the positiveness property of the B-spline basis functions. For the property iv), we see from the
equation (4.13) that the constant function £ — ¢ can be written as

niz—1
c= Y cBj(&) forall § €w
=0
and thus ¢ is a “B-spline function” in Sp(IC, d); and the result falls from the fact that Sp(KC, d)
is a vector space.

O

REMARK 4.3.2 B-splines do not generally interpolate the endpoints of the control polygon. Their
associated knot vectors define the influence of the control points or parameters. The control
polygon will coincide with the B-spline’s surface at a knot of full multiplicity. We will consider
knot vectors with first and last knot breakpoints of full multiplicity with respect to the orders of
the B-spline function. This point is necessary for the property 4.12 in the Proposition 4.3.1.

4.3.1 Conformal parameterization

In this case, the polar parameters Ré( and R% are parametrized by B-splines and we show in
the Proposition 4.3.2 that this allows to reduce the non-linear constraints (4.7) to the linear
constraints (4.15) set on the control points.

PROPOSITION 4.3.2 Let d = (dy,d2) and IC = (K1, K2) be two pairs of integers and knot-vectors.
Assume that R and Ry are two B-spline parametrizations of R? and Ré( in Sp(IC, d), written as

ni2—1 ni2—1
R(E) = Y r'Bi(€), Ro(&) = > r0Bi(E) (4.14)
=0 =0

7



Chapter 4. Anisotropy properties and material optimization

where n; = card(Ky) — do — 1 (a = 1,2). If the following inequalities

=Ty < 7’6<T0
rt > 0 (4.15)
Ti[To+ry) > 2

are satisfied ¥ (i,7) € {0,--- ,n1} x {0,--- ,na} then the inequalities (4.7) are satisfied for all
£ cw.

Proof. As Ty can be written as

niz—1

Ty = Z ToBY (&) V € € w,

=0

the property 4ii) of Proposition 4.3.1 shows that if rj < Tp for all i then we have Ro(€) — Tp < 0
for all £ € w, which is precisely the first of the inequalities (4.7). The other inequalities can be
proved in the same manner. O

REMARK 4.3.3 As the angle @; does not appear nor in the geometric nor in the elastic con-
straints, different parametrizations can be considered for the orthotropy angle. Of course, the
box constraints —m < @1 < 7 exist for @;. Then, we give in the following Proposition a result
for &1 analogous to that of Proposition 4.3.2.

PROPOSITION 4.3.3 Let K¢ = (K?,K3) and d® = (d?,d3) be two couples of knot-vectors and
integers. Assume that the polar variable &1 € Sp(IC?, d¢) is written as follows:

4
Mg~

1
P1(€) = Z BBl (£).

i=0
Then the inequalities
<P <m, Vie{0, - ,np—1} (4.16)
imply —m < ®1(&) < 7 for all € € w.
REMARK 4.3.4 The bounds specified in the previous proposition take into account for the pe-

riodicity of the trigonometric functions which appear in the polar expressions of the elasticity
tensor components.

4.3.2 Direct parameterization

In this subsection, we assume that the polar parameter R; is parametrized by a B-spline and we
have the following result:

PROPOSITION 4.3.4 Let Ry and Rg be two B-spline parametrizations of the polar moduli Ry and
Ré( , written as:

nig—1 niz2—1
Ri(€) = > riBi€) and Ro(€) = Y rhBi(E).
=0 =0
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4.3. Parametrization tailored to the polar formalism

Then the inequalities

73(16 +'T6)

2(ri)? —
() - =5

<0, Vie{0,---,np—1} (4.17)
imply the inequality (4.7), to be satisfied for every § € w.

Proof. We start the proof with the following technical Lemma which shows that the square R?
of a B-spline R € Sp(K,d) can be bounded above by a B-spline R, € Sp(IC, d).

LEMMA 4.3.1 Let then F be the vector space spanned by a (n + 1)-uple (f;);—, of real valued
mappings defined on w, satisfying the following conditions:

0<fi(€)<land Y fi(&) =1 foral £cw.
=0

Then for any f € F there is fo € F such that

fE)2 < fu(&) forall € € w.

n
Moreover if f = z:vlfZ then f, can be chosen as the following linear combination of the basis-
k=0
functions (fi)?zo

n

fa=m+1)> () f* (4.18)

k=0

Proof. we have

n n—1 n
FE? =D ()2 () +2D ) (&) (i f'(8)). (4.19)
k=0 k=0 >k

The second term of the right hand side of (4.19) is bounded above as follows:

n—1 n

2D D (e E)wuf(€) <

n—1 n

< {(vef"(€)* + (v f'(€))*} (by Young’s inequality) (4.20)
>k

D {5 (&) + () f1(&)} (as 0 < f(§) < 1);
0>k

S
- o
—

IN

k

then, rearranging the indexes in an appropriate manner, we have

n—1 n n
DD A @) + ) F1 (&)Y =n ()1 (€). (4.21)
k=0 I>k k=0
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Chapter 4. Anisotropy properties and material optimization

Using the inequalities (4.20), (4.21) in (4.19), one gets:

n

FE? < (n+1)> (k) (&)

k=0

which proves the formula (4.18). O

To complete the proof of Proposition 4.3.4 we use the Lemma 4.3.1 with F = Sp(K,d) and
f = Rq; then there is a B-spline R, in Sp(K, d) such that

(R1(€))? < Ra(€) V € € w;

now the property iii) of the Proposition 4.3.1 shows that the inequalities of Proposition 4.3.4
entail

Ti(To + Ro((€)) —2Ra(§) 20V € € w.
By definition of R, this last inequality implies
Ti(To + Ro((€)) — 2(R1(€)* 2 0V £ € w,

which is precisely (4.7);. O

The parameterizations stated above for the polar parameters allow, when considering the opti-
mization problem (4.1.1), to reduce the number of design variables which are now the control
points of their parameterizing B-spline functions. But the Example 4.3.1 and Figure 4.1 shows
that defining the constraints directly on the control points (see Propositions 4.3.4, 4.3.3, 4.3.2)
can lead to a reduction of the design space exploration. However it is possible to use B-spline
flexibility to define that constraint on new control parameters in order to enlarge the admissible
space exploration. More specifically, once the parametrizations of the polar parameters are set,
considering the resulting B-spline constraint function, one can use subdivision or knot insertion
flexibility of B-spline to define some new more interpolating control points. By doing so, we can
define new control parameters which are linear combinations of the original control points and
more suitable for the definition of more accurate constraints. This yields to ‘“relax” the bounds
of variation on the design variables (control points) and allow to enlarge the admissible space
exploration. The constraints will then be checked on the new control points.

EXAMPLE 4.3.2 (B-spline flexibility for the constraints). Subdivision operation is a well known
flexibility given by B-spline function. The idea was first defined for Bezier curves and surfaces
with the Casteljau algorithm, see [58]. This algorithm allows to evaluate a Bezier function at
some given parametric coordinates and also, at the same time, to split or subdivise the Bezier
curve at that specific parametric coordinate. The subdivision technique has been generalized for
B-spline functions by Cox-De-Boor [31], [62].
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4.4. Formulation of the optimization problem

po = lo
Figure 4.2 Illustration of subdivision on the B-spline curve Cp, with the
control points {l;, r;}, i€ {0,--- ,3} of its two subdivising B-spline curve C; and C-.

The new calculated control points satisfy the sufficient conditions

Looking at Figure 4.2, the control parameters p; are the design variables while the parameters
{l;,r;} are just used to check the admissibility of the control parameters p;. One can choose a
priori a certain level of subdivision at which the “sufficient constraints” will be checked on the
new computed control points.

These flexibilities help to increase the number of interpolated control parameters and also make
the control polygon be much closer to the function, see [62]. By doing so, we tend to sufficient
and necessary conditions but we also increase the number of constraints. However, we propose to
keep optimizing on the initial control points. In fact, the new added control points by subdivision
are linked to the initial ones thanks to the linear recursive relations, see [62], and are just useful
for more refined or accurate constraints.

REMARK 4.3.5 It appears clearly, on one hand, that the choice of the proposed B-spline based
parameterizations yields to an acceptable number of design parameters but to some sufficient
constraints on the control points which can induce a restriction on the design space exploration.
On the other hand, the search of good exploration, by means of B-spline flexibility, of the design
space by defining some more precise or accurate constraints on new control points obtained by
subdivision, can be expensive. One has to tradeoff the number of constraints versus accuracy or
design parameters space exploration.

4.4 Formulation of the optimization problem

Let us consider the optimization problem (4.1.1) which consists in the minimization of an objec-
tive function J(E).

We focus on an optimization problem which consists in minimizing the compliance of 2. The
structural response depends on the reduced plane elastic tensor, thus we note the compliance
J(EP)

J(EP) = /wf wds.

Without loss of generality the following developments are made in the case of geometric bound
constraints on the elastic properties.
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Chapter 4. Anisotropy properties and material optimization

4.4.1 Design parameters

We recall that for the sake of simplicity, we subsequently use the notation Ry and R; respectively
for Ré( and R%. Given a basic layer of polar parameters T, OL , T lL , Ré, RlL , we introduce the
dimensionless parameters

(0}

Pa = ﬁa o€ {07 ]-}7 Pa € [lavua]
«
where [, and u, are the lower and upper bounds of the dimensionless parameters: [lg, ug] =
[—1,1], and [l1,u1] = [0,1]. So the geometric constraints (4.9) can be rewritten as:
201 -1 < po
o e [-1,1] . (4.22)
P1 € [07 1]

Then, we consider equivalently the optimization of the dimensionless parameters
Pa : w — [la, uq] and the polar angle @1 : w — [—m7, 7).

Let (KC,,d,) and (Kg,ds) be the knot vectors and orders of the B-spline parameterizations of
Pa, and of &1. We note by Bf) and Bj the B-spline basis functions of p, and ®;

P

”/1)2*1 njp,—1
pa(8) = D phBy&), a €{0,1}, P1(&) = > ®:iBy(£).
=0 =0

The admissible spaces of the discretized problem P, and Pg are
P, = {pa € Sp(KC,,d,) such that py € [lq, uq) and 200 —pi —1<0, foralli=0: nfy — 1p} ,
Po = {1 € Sp(Ke,ds) such that , @} € [—m, 7], for all i = 1:nf, — 1}
Then the global discrete parameters admissible space is
P=P,®Ps.
For the optimal design problem is: Find the polar parameters (p}, $1) such that

(p;? éf) = argmin J(p()vpl?@l)'
(po,p1,21)EP

In order to use a gradient-based method for the optimization the objective function and the
constraints have to be derivated with respect to the polar parameters.

4.4.2 Derivatives with respect to the polar parameters

Let us denote by K the stiffness matrix, associated to the FEM discretization of the bilinear
form a in state equation -Problem 2.2.1, F the vector of applied loads and u the FEM vector of
degrees of freedom, i.e the components of the displacement [u, s].
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4.4. Formulation of the optimization problem

4.4.2.1 Derivatives of the compliance
The matrix form of the Eq. (2.35), page 25 is then:

Ku=F (4.23)
and the compliance is then

J(pos /P, ®1) = F - .

The applied loads being independent of the elastic tensor, the derivative of the compliance with
respect to a given parameter p is

IpJ(po,/p1,P1) =F - 0pu, p € {p,,P1} and v € {0,1}.

Also, the derivative of the state equation (4.23) with respect to p is

HKu+Kpu=0,F=0 = Ju=-K'[9,Ku]. (4.24)

So the derivatives of the compliance with respect to the anisotropic polar parameters p € {pq, ®1}
are:

9y J(pos/p1,D1) = 0p(F-u) =F-gpu=-F-K '[9,K u] = —u-9,K u.

The last equality falls from the symmetry of K. To compute the derivative of the compliance
with respect to the polar parameters, one needs the derivative of the stiffness matrix with respect
to these parameters.

4.4.2.2 Derivatives of the stiffness

The bilinear form a being linear in terms of the stiffness elastic tensor, the derivative 9,K of
the stiffness matrix with respect to the polar parameters is equal to the matrix associated to the
following symmetric bilinear form:

Bpa(u, v) = / Hy()  [,EP (pos /1y B1)] : v (w)+
p w (4.25)

12 X(V) 2 (0B (po, /o1, P1)] = x(w) +73(v) : [GE(P1)] : v5(u)}d Q2

where EP = Q = (Qaﬁ’)\u) and E® are respectively the reduced plane and anti-plane parts of the
elasticity tensor, see Equation (2.37) page 25.

Let p’ be the control points associated to the B-spline parameterization p. The derivative of the
elastic tensor with respect to the p' is:

apiEp(pOa \/pT, ¢1) = apEp(pU? \/pTa Ql) apipa with p € {1007 P1, Ql} (426)

Before computing the derivative of the elastic tensor with respect to those design control param-
eters, we specify the derivatives with respect to the different polar parameter fields p.
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Chapter 4. Anisotropy properties and material optimization

o Derivative with respect to pg

cosd4®P, —cosdd; —sinddq
— sin4®1 sin 491 — cos 494

0o EP (po, v/P1,P1) = R(l)’ <— cosdd,  cosdd; sin 49,

o Derivative with respect to p;

RL 4 cos 2P, 0 —25sin 2¢,
8p1Ep(po, \/Ph@l) = L 0 —4cos2P; —2sin2¢; | .
2/P1 \ “2sin26, —2sin20, 0

o Derivative with respect to &

s, E? (po, /p1,P1) =

—4R0 sin 4@1 — 8R1 sin 2@1 4R0 sin 4@1 —4R0 COS 4@1 — 4R1 COS 2@1
4Ry sin 494 8R sin 291 — Ry sin 494 4Ry cos 491 — 4Ry cos 294
—Rpcos 491 —4R1cos2®1  4Rpcos 491 — 4R cos 291 4R sin 49,

Now, to compute the derivative of the antiplane part of E¢ = (E3°‘36 )a,p=1:2 With respect
to the orthotropy angle we use its polar representation, as for any (plane) second order
tensor, which allows to have the derivative in a straightforward manner. Let T, R and ¢
be the polar parameters associated to E%, defined through Equation (4.1). The derivative
with respect to the orthotropy angle &, is:

sin2(p —P1)  —cos2(p — Pq)

0o, B (®1) = 2R, (— cos2(p — P1) —sin2(p — Pq)

) 9 8pOLEa :)2><2.

Finally, the derivatives with respect to the design variables p’ are obtained by applying a chain
rule:

Oy EP (po, \/p1, P1)(€) = By (€) x OEP(po, /p1,P1) and

, (4.27)
O E*(21)(€) = By (§) x SE*(P1)

4.5 Numerical Results

In the following, we show some examples of material design of anisotropic shell structures.

Parameterization:
The B-spline functions representing the different polar parameters are defined through open knot
vectors of the form

K®=1{0,---,0,1,---,1}, a € {1,2
» =1 } {1,2}
dp+1 dp+1

with d,, the function degree. Thus the number of control parameters, for a given polar parameter
field p € {pa, P}, is (d? + 1) x (dP + 1).

In practice, shell geometries are usually defined using several patches joined together in a con-
forming manner; i.e. the common part between two geometries is either empty, a vertex or an
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4.5. Numerical Results

entire edge. In that case, the polar parameters associated to each shell are interpolated using the
same B-spline basis functions so that the continuity constraint on the elastic properties is set
in a straightforward manner by equating the values of the control points corresponding to their
common interfaces for each polar parameter field.

Algorithm:

For the numerical results, we have used NLopt, a free/open-source library for NonLinear OP-
Timization. It includes the implementation of numerous optimization algorithms adapted for
global and local optimizations. The library involves different types of algorithm such as Moving
Asymptote Method (MMA), COBYLA (Constrained Optimization by Linear Approximation)
which can be gradient-based or derivative-free, for local and global optimization searches. We
have used the Cobyla algorithm which appears to yield to the best optimization results among
the different algorithms.

Material properties of the basic layer:

We consider a material with the following properties for all the numerical examples:

E;y = 9000 MPa,
Ey = E3=161 MPa,
V91 = 31 = 026, and V93 — 026,

Gi3 = G2 =61 MPa, Gaz = = 61.54 MPa

Eo
2(1+I/23)

which corresponds to a transversally isotropic material of principal direction along the axis 1.
The polar parameters of the reduced and anti-plane parts of the elastic tensor are:

In plane elastic behaviour E,
Polars parameters

To[MPa] 1166.53
T, [MPa] 1156.99
RE[MPa] 1105.53
R1[MPa| 1106.21
P (deg) 0
Out plane elastic behaviour E,
Polar parameters

T[MPa] 62.44
R[MPa] 1.44
d(deg) 0

Table 4.1 Table of polar parameters corresponding to the different part
of the elastic tensor.

The volume density and the thickness of the shells are:

p = 1.58x103kg/m?

t = 3x10°m. (4.28)
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Chapter 4. Anisotropy properties and material optimization

We further consider different cases of optimization:

o one with orthotropy angle as design variable, within which one is seeking for the optimal
orientation of a given fixed material

o the second with Ré( and R; as design variables corresponds to seek to the optimal material
with a given fixed orthotropy orientation

o the last concerning the joint optimization of the polar moduli and angle corresponds to
seek for the optimal material and the appropriate orientation on the geometry.

For the last two cases, we consider that the resulting optimal properties R[If and R; achieved a
laminate composed of identical basic layer. Hence the isotropic polar parameters are disregarded
for the optimization. As consequence, we use the geometric bound constraints on the polar mod-
uli RE, Ry.

4.5.1 Plate under two in-plane concentrated loads

We consider a plate clamped at its side [DC] and subjected to two concentrated loads F4 and Fp
at the two vertexes A, B:

F4 = (N, N,,0) and Fp = (—N,, N,,,0), with N, = N, = 1000N.

Figure 4.3 shows the boundary and the loading conditions on the plate

clamped edge

Figure 4.3 Boundary and loading conditions of the plate.
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4.5. Numerical Results

Orthotropy direction optimization:
We first consider the exclusive optimization of the material frame orientation, @;. Initially, the

axis with the highest stiffness is put along the axis 2, 1 = 7.
The Figure 4.4 shows the optimal orthotropy direction.
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Figure 4.4 Optimal orthotropy direction distribution and the corre-
sponding displacement field

The structure is stressed in compression then the optimal fibers are in the loading direction, near
the points A and B.

Optimization of the moduli Ré( and Rj:

In the present case of optimization, the initial orthotropy angle &1 = 7 is kept fixed and we
consider the design of the moduli Ré( and Rj. The initial distributions of Ré( and R; are con-
stant fields, equal to those of the basic layer. Figure 4.5 shows the optimal distributions of Rg
and Ry.
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ROK (P Rl (Pa)
1.106e+09 11056409

E5.5e+a Es.ztym
o £5 52048
~_55e+8 [2.765»@

E-'I.'I 06e+09 0.000e+00

Figure 4.5 From left to the right the optimal distribution of Ré( and R;

We remark that the values of Ré( are negatives near the two loading regions, which means that
in the plate there are present at the same time the two types of orthotropy, those with K = 0
and with K = 1. The former is present near the loading points while the latter is anywhere else.

Optimization of &4, Ré( and Rj:

As last case, we consider the joint optimization of the elastic moduli and of the orientation
of the material frame, i.e the orthotropy direction.

Figure 4.6 shows the distribution of the different moduli. In this case, we remark that R{ is
nonnegative which means that all the plate has the same type of ordinary orthotropy everywhere.

ROK (Pch R1 (Pa)
1.106e+09 1.105e409
t5.5e+8 E8.29a+8
2o Es,.sze«»a
- -5.5e+8 £ 2.76e+8
E-'I.'I 06e+09 EU.UUUG"’GU

-

Figure 4.6 Optimal distribution of the polar parameters R(If and R;
corresponding to the plate under two concentrated loads.

Figure 4.7 shows the optimal orthotropy direction. The fiber are oriented on the loading direction
near the points A and B.
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Figure 4.7 Optimal orthotropy direction orientation: the fibers are lo-
cally in the loading directions and anywhere else in the 1 axis direction.

We remark that close to the loaded region, the orthotropy orientation constitutes a kind of arch
which imposts are at the loading points and the keystone located at the middle line perpendicular
to the edge [AB] and [C'D].
Table 4.2 shows the optimal design compliances corresponding to the different cases of optimiza-

tion.

compliance A, J(%) NoP

initial 23.13 0 -

(®1,4) 3.41 85.256 16
(RK,4), (R1,4) 1.72 92.570 32
(®1,4), (RK.4), (Ry,4) 1.10 95.231 48

Table 4.2 Information related to the different cases of optimization

(plate under point-wise loads)

In the above table the notation (p,d+ 1) designate that the parameter p has been parameterized
with the B-spline of open knot vector of degree d and d + 1 control points in each paramet-
ric coordinate direction. The notation NoP designates the number of parameters, A,yJ =

Jopt -
Jinzt

x 100 the percentage of the relative gain on the compliance with respect to the initial
compliance; Jin;e and Jop being respectively the compliance with the initial and optimal elastic
tensor fields.
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1 \
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Figure 4.8 Comparison of the deformations corresponding to the differ-
ent cases of optimization: at the left the entire plate deformations and
at the right the zooms near the loading region

One remarks on Figure 4.8 that the deformation of each different cases of optimization is better
than the deformation corresponding to the initial material. The diminishing of the compliance
and the ranks of performance after the different optimizations are also noticeable on Figure 4.8
and are consistent with the Table 4.2.

4.5.2 Anisotropy design of a cantilever

Now, we consider the optimal anisotropy design of a cantilever, see Fig 4.9. More precisely,
the plate is clamped along its left boundary and subjected along the opposite side to a uniform
tangential force. The considered design criterion is the compliance. The polar parameters are sub-
jected to geometric bound constraints. Thus the design problem corresponds to the optimization
of the elastic properties distribution of the homogenized properties of a laminate.

‘ C
& l
LQ/ I
S bbb f=—fey, f=1000N
I !
= l
‘ 4
: B
4 a=2b
2 L
1
Figure 4.9 Boundary and loading conditions of the plate with tangential
load.
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4.5. Numerical Results

The geometry is defined through a 2x2 assembled plates. The polar parameters are parameterized
with a B-spline of order 3 of open uniform knot vector ¥ = {0,0,0, 1,1, 1}. The number of control
points per polar parameter field is 9 is over each sub-plate. Taking into account for the continuity
condition across the different interfaces, the total number of variables per type of polar field is

further reduced to 21.

Orthotropy orientation design

We first optimize the orthotropy direction of the material. The fiber was initially along the
direction e;. Figure 4.10 shows the optimal orthotropy direction.
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Figure 4.10 Optimal distribution of the orthotropy direction.

Polar moduli R{){ and R; design

Now, we consider the optimization of the two anisotropic polar moduli. Their distributions were
initially uniform, i.e of constant value over all the plate. We emphasize that the considered
constraint is the geometric bound and not the elastic one. The distribution of the optimal field
Ré( is plotted on figure 4.11. We remark that there exist two kinds of orthotropy. The orthotropy

K =0 is in both the lower and upper sides of the plate.

R
—

ROK (Pc)
1.106e+09

ls.ssew

=0
[' -5.53e+8

-1.106e+09

Figure 4.11 Optimal distribution of the polar modulus Rg .
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Figure 4.12 shows the optimal distribution of the polar parameter R;. The field is also symmetric
with respect to the median line of [BC], the loading edge.

R1 (Pa)
1.105e+09
ia.zeew
"5 52648

E2.?M

0.000e+00

Figure 4.12 Optimal distribution of the polar modulus R{( .

The parameters are taylored so as that the lower and upper edges have the highest elastic
coefficient E111! which allows to resist to flexure; in fact Eq111 = Tp+ 2711 +Ré( +4R;. Secondly,
the stress inside the structure being mostly shear, the elastic properties are taylored in order to
have highest value for E1'?2 by setting R < 0. Indeed, to increase the stiffness to a shear with
an orthotropy angle ¢ = 5 deg one needs a K = 1 orthotropy.

Polar moduli and orientation design

At last, we consider the joint optimization of the orthotropy direction and the polar moduli. The
optimal orthotropy direction field is represented in Figure 4.13.

Figure 4.13 Optimal distribution of the orthotropy

Figures 4.14 and 4.15 respectively show the optimal distribution of the polar moduli R(I){ and R;.
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Figure 4.14 Optimal distribution of the parameter Ré(
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Figure 4.15 Optimal distribution of the parameter Ry

The orthotropy direction is orthogonal to the edge [AD], with clamping boundary condition.
The upper and lower sides of the plate have a K = 0 orthotropy with ¢; ~ 7. These settings
of orthotropy and angle orientation allow to resist to flexural stresses. We still notice, as in the
previous optimization, the presence of a K = 1 orthotropy inside the plate where there is a shear
stress.

Table 4.3 summarize the informations relative to the different cases of design.

J Ay (%) NoP

initial 0.21 0 -
(¥1,3) 0.05  74.286 9
(RK.3), (R1,3) 0.03  84.810 42

(®1,3), (RK,3), (R1,3) 0.03  86.286 63
Table 4.3 Informations relative to the different cases of design (plate
with tangential edge load)

Figure 4.16 shows the deformations corresponding to the initial material and those associated to
the different cases of optimization.
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Figure 4.16 Deformation corresponding to the different case of design of
the plate subjected to vertical edge force, with an amplification factor

x 200.

One remarks that the deformed configuration associated to the optimal designs of Ré( , 1 and
P, R{)( and Ry are almost confounded to the reference state of the initial design: the most
influent parameters are the moduli R and R;.

4.5.3 Cylinder shell under torsional load

This case deals with a cylindrical shell which is subjected to a torsional load. The cylinder is of
radius r = 0.18m, of height h = 0.5m, and is clamped at its basis. The applied loads correspond
to a twisting moment at the upper circular boundary. Letting a; be the tangent vector to the
circular boundary, the applied load is f = f a;, with f =2 x 10*N.

The orthotropy direction is initially oriented along the generatrix, i.e #; = 7. The cylinder is
defined through five patches, on the circumference. Thus, the parameterization of the different
polar parameters is made through five piecewise continuous bivariate B-spline polynomials.
The deformation being axial, we only post-process the field of displacement. Figure 4.17 shows
the initial displacement field.
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Figure 4.17 Initial displacement field induced by the torsional load on

the cylindrical shell.

Orthotropy direction design:

We first start with an optimization of the orthotropy direction only. The optimal angle is obtained
through a third order B-spline polynomials: the total number of control parameters is equal to 30.
The optimal angle field is globally constant, ®; = 7. Figure 4.18 shows the optimal orthotropy

direction.

(X
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183 vi‘»”%é«;t){i

i
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Figure 4.18 The optimal orthotropy direction.

Although the angle was parameterized with a biquadratic B-spline function, the optimizer was

able to find the constant solution.

Polar moduli R and R; design:
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We again consider an optimization case in which the design variables are the two moduli Ré( and
R;. The different parameters were also parameterized with a third order B-spline functions: the
number of variables is equal to 60. Figure 4.19 shows the different distributions of the moduli
RE (at the left) and Ry (at the right).

0K (Po)
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Figure 4.19 Ré( and R; optimal distributions

We remark that R{f is uniformly negative, i.e there exists only one kind of orthotropy with K = 1.

Angle and polar moduli design:

For this example, we optimize conjointly all the polar parameters. Figure 4.20 shows the optimal
distributions of R, R;. We remark on Figure 4.21 that the angle is almost ¢ = 7 everywhere
and the modulus Ré( is now positive. Indeed, the orthotropy phase here was explicitly designed,
through the angle @;.

ROK (Pa) R1(Pc)
11060409 1.105e+09
k5_533+3 E8.29B+8
Fecor 7 "5 52648
¢ -5.5e+8 +2.76e+8
l-I.IEIéa-H:l? EU.UUUB*OU

Figure 4.20 The distributions of the polar parameters
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Figure 4.21 Optimal orthotropy direction corresponding to the optimal
material on the cylinder under torsion.

Table 4.4 summarizes the informations relative to the different cases of optimization.

compliance ratio (%) NoP

initial 62.62 0 -
(®1,3) 23.67 62.201 30

(RE,3), (R1,3) 1.75 97.205 60
(®1,3), (RK,3), (R1,3) 1.68 97.317 90

Table 4.4 Informations related to the different cases of optimization
(cylindrical shell under torsional load)

4.5.4 Anisotropy design of a plate submitted to torsion

We conclude the numerical results with a case of joint optimization of the polar parameters.
In what follows, we are given a plate clamped at a boundary and subjected to torsional load
at the opposite side. The torsion is produced by two concentrated loads of opposite directions
fi = +f e3, f =1 x 103N. The description of the problem is similar to the one described in
Figure 4.3, replacing the loads at the points A and B respectively by F4 =f_ and Fg =f,.

All the polar parameters are parameterized using 4 control points in each parametric direction,
i.e 16 control points for each. The optimal orthotropy orientation is plotted in Figure 4.22.
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Figure 4.22 Optimal orthotropy direction corresponding to the optimal

design.
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Figure 4.23 shows from left to right the optimal polar moduli Ré{ and R;.
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Figure 4.23 From left to right, the optimal polar parameters Rg and R,
for a plate submitted to torsional load.

The fibers are orientated so that they are perpendicular to the edge with boundary condition at
the middle-line region and are distributed almost symmetrically from the edge with boundary
condition towards the points with concentrated loads.

Figure 4.24 shows the deformation of the frame of the plate corresponding to the initial material
and the optimal one.
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Figure 4.24 Comparison of the deformations of the plate corresponding
to the initial and optimal material. In red color the plate in its reference
configuration, in black the deformation corresponding to the initial ma-
terial, finally in green the deformation obtained with the optimal elastic
properties.

One remarks in Figure 4.24 that the deformed configuration corresponding to the optimal ma-
terial is almost coincident with the undeformed plate. The compliance was initially equal to
1.331 x 10% and for the optimal design found 4.791 x 104, which represents a drastic reduction
of 96.400 %.

4.6 Synthesis

The optimal design of anisotropy is of crucial importance in industry. Such kind of problem
has generally large number of variables. We have proposed here two relevant parameterizations
based on the use of B-spline properties. At first stage, the interest is that they allow to reduce the
number of DV. In the other hand, the semi-infinite pointwise elastic or geometric constraints on
the elastic tensor field are replaced with a finite set of constraints defined on the control points
of the elastic parameters. The price to paid is that the derived constraints are sufficient and
not necessary. This sufficiency condition can be weakened and tends to necessary one by using
B-spline flexibilities such as subdivision or knot insertion. We have shown some applications by
considering several optimization problems with compliance criterion. For almost each example
we have considered different combinations of polar parameters design. The numerical results
show that the parameterizations allow to obtain optimal solution and to tailor continuous elastic
properties with possible significant local variations.
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5.1 Introduction

A shell model allows to parameterize the mechanical equation by the shape thanks to geometric
quantities such as Christoffel symbols, metric and curvature tensors. The dependence of the
mechanical problem to the material properties is naturally integrated, through the constitutive
laws by means of the elastic tensor coefficients. This enables to optimize elegantly the shape using
exact parameterization. As for the second aspect of the structure, the constituting material, we
have discussed and derived in the previous chapter a material property discretization which allows
to describe continuously the elastic properties. This formulation was based on B-spline function
parameterization and allows to reduce the size of the design problem. We focus in this chapter
on the development of both shape and material optimal design in the isogeometric framework.
Geometry and material properties of the structure are both defined by B-spline functions and
the design parameters are the control points coordinates. Different kinds of regularity constraints
can be taken into account for the shape.

We focus in this chapter on the optimal design of shape and anisotropy of shell structures.
The optimization process implemented to do so can rapidly become complex and heterogeneous.
Indeed shape optimization is quite interdisciplinary, it combines many counterparts such as
modelling, design, simulation, mathematical programming and computer science techniques. On
the one hand, the design is defined on a CAD software. On the other hand, the analysis of the
mechanical response, needed for computing the objective function, is commonly made using the
finite element method based on a mesh approximating the exact geometry in a CAE environment.
And finally, the optimization problem is set on this mesh [14]. Hence the so-defined optimization
problem does not fit the original one which should involve the exact geometry. Nevertheless, once
performed, the resulting optimal design has to be integrated in the CAD design environment.
This involves a very costly step of mesh-CAD conversion process.

During the last few, a new method called isogeometric was developped to intend to reduce the
gap between the design environment and those of structural response analysis and optimization.
In fact isogeometric refers to numerical techniques in which the solution or a quantity of interest
of a given problem is discretized with the basis functions describing the exact geometry in an
isoparametric sense. Introduced by T.R. Hugues [37], these methods were first implemented in
the frame of structural and computational fluid dynamic coupling.

Extensive works and researches have recently been devoted to the Isogeometric method which
principle is based on a direct link and integration of the numerical analysis, optimization and the
design process in the same environment. For optimization, the design variables are the control
points associated to the NURBS functions [23] and sometimes their weights [60].

Our optimization problem is set in an isogeometric framework which, in fact, appears quite
naturally when using shell models. These models offer a natural setting towards the integration
of the isogeometric method since the mechanical problem is parameterized by the exact geometry
mapping.

This chapter is organized as follows: we start by describing the parameterization using B-splines
functions. We further focus on optimization problem. At a first instance, we consider the case of
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simple geometry defined through one shell, and after consider a multi-shell geometry. In order to
perform the sensitivity analysis which would be useful in the case of gradient-based optimization
algorithms, we compute the derivatives of the stiffness matrix and the work of the applied loads
with respect to the design parameters. The sensitivity is directly carried out with respect to the
discrete parameters (control points co-ordinates) and mechanical problem is considered under its
discrete (matrix) form.

5.2 Isogeometric shape parameterization

The isogeometric approach is based on the parameterization of fields of interest by mean of the
blending functions associated to the geometry. In CAD environment, these functions are typically
some Bézier, B-spline and NURBS functions. Splines are a more general form of Bezier functions
introducted in [13], which are further generalized by NURBS functions. The idea of Bezier was
to define curves and surfaces as polynomial functions with vectorial coefficients, e.g. the control
points coordinates. The basis functions are the Bernstein polynomials. The advantage of doing
so is that ot enables to define smooth cuves and surfaces. The aim of this section is to briefly
recall the parameterization with B-spline functions [62].

Let w := [0,1]? denote the bi-dimensional parametric set, often referred to as a patch. Let us
note £ := (&1, €2) the parametric coordinates in w. Assume that each parametric direction is
partitioned using a knot vector 3¢ comprising a non-decreasing sequence of real numbers called
knots

¥ = {5?7537 T 7§ga+da+1}7 with 5]? < gl?-‘,—lv

where &}, nq, and d, represent a knot, the number of univariate spline basis functions defined with
the a-th knot vector, and the polynomial degree. Also d,+1 is called order of the spline function.
The knots do not require to be distinct, they can have a given multiplicity. The multiplicities
define the influence of the control points. Let us assume that the number of distinct knot elements
is kq < ng + do + 1. The distinct knot points are called breakpoint knots and are denoted

Aio‘, i€{l, -+, ko) and their corresponding multiplicity, integer numbers noted mg, satisfy
ko
me‘:na—i—da—i—l.
i=1

The multivariate spline basis polynomials are defined in a straightforward manner as tensor
product of the univariate spline basis polynomial functions by, which are defined recursively as
follows.

DEFINITION 5.2.1 Let @ := [0, 1] be the parametric domain partitioned with the knot vector
Y= (&), i € {1,---,n+d+ 1}, where n and d are respectively the number of spline basis
polynomial functions and their degree. The univariate spline functions bgl are defined recursively
from (the Cox-de-Boor formula) [32]

0 otherwise

b?(g):{ 1 if & <&<&in ie{l ntd) (5.1)
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and for all p > 0

§—& p-1 Sitpt1 — & p-1 .
Wie) = S5 gp Sepr1 =& e mddal— .
i (6) T () + Cipir — G L &), ie{l,--- ,n+d+1-p} (5.2)

where the convention § = 0 is adopted in (5.2).
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Figure 5.1 B-splines basis functions corresponding to the knot vector
¥ =40,0,0,0,0.25,0.5,0.75,1,1,1, 1}, with d = 3.

Let us note B1 (X, d) the space of univariate B-spline polynomial functions
Bi(%,d) =span{b?, i € {1,--- ,n}}.

Figure 5.1 shows the B-spline basis function (b?)i:h? corresponding to the knot vector ¥ =
{0,0,0,0,0.25,0.5,0.75,1,1,1,1}.

A univariate B-spline function is defined as a linear combination of the basis functions b¢. Letting
¢i be the coefficients associated to the definition of a function C' € B1(X, d), we have

n

C(&) = ebl(€). (5.3)

=1

A curve is defined by means of some control points weighted by their associated B-spline basis
polynomial. Let us denote by C the curve defined through the parametric function ¢ € B1(%,d) :
O CeRS

#(&) ==Y pibf ().
=1

The shell’s middle-surface is defined through a mapping from a bi-dimensional parametric domain
w into R3. We thus focus on bivariate spline definition.

104



5.2. Isogeometric shape parameterization

DEFINITION 5.2.2 Given two knot vectors X% = (£8);=1:n, +d,+1 Partitioning each direction of w,

the corresponding bivariate spline functions of degree d are defined in a straightforward fashion
as

bik(€) = b (€MD (€2), (5.4)

where d = (d,) and bf‘* are the univariate spline basis functions of degree d, defined through
the knot vector .

Let’s now recall some general properties of the B-spline functions:
o they are non-negative: bf" (&) >0 for all £

o they have local supports: supp(bf“) = (& § a1 )

o the functions b?a are at least of regularity C% ~™e m,, being the maximum multiplicity of
the knot breakpoint in the a-th direction.

We will assume subsequently that éf‘ = é,?a — 1 =0 and also that the knot vector is opened or
clamped, i.e the multiplicity numbers m{* = mj, = d, + 1. This in fact yields to a geometry
(surface) which interpolates the end-points. '

Let B2(X, d) denote the spline space defined as

Jj=1ling

Bo (X, d) = span{ (bfj)

i=1:ny

The properties recalled above are naturally inherited by multivariate spline basis.

Assume that the middle-surface is defined through a bivariate function ® : w — R? of the space
B2(X,d), by a finite set of weighting coefficients p;; := (x4, yij, 2i) € R? called control points.
More precisely

ni,n2

®(E) = Y pib(6).

1,j=1

For simplicity reasons, we introduce and use as much as possible a unique-index for the numbering
of the control points: i = i(p,q) — i = (¢—1)n1+p, and i € {1,--- ,n12 = nina}. So the function
® can be rewritten as

() = Zpibf‘(s) (5.5)

5.2.1 Multiple patches

A general curve (resp. surface) can be defined through many parametric curves (resp. surfaces)
joined together. One of the most important advantages of a B-spline based parameterization is
that the continuity and regularity constraints of the general curve (resp. surface) are defined
through a finite set of algebraic relations on the control points. We, further, assume that the
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joining is conforming in the sense that the common part between two surfaces is either empty
or an entire boundary curve. We state below the regularity constraint on curve and surface.
Subsequently, we denote by p;(xy (resp. p; j(x)) the control point of index i (resp. (i, j)) associated
to the patch of index k; and ¢ is used to denote the control points of any given interface. Hence
g;(1) is the i-th control point of the interface I

5.2.1.1 Curve junction conditions

Let us consider two sets of control points (pi(k.)) k € {n,m} which define the curves Cy,

i=1n’
images of the parametric domains wy, := [0, 1] by the polynomial functions ¢, € B1(2®), d;,); =)
being their respective open knot vector of length ng + di, + 1 and dj, the degree of the associated

B-spline basis functions.

Figure 5.2 Illustration of a Cl-regularity on the junction of
two B-splines curves of order 4 and of knot vector XD(*) =
{0,0,0,0,1,1,1,1}, k € {n,m}.

Let us assume that the curve C,, and C,, are respectively joined at the endpoint and the starting
point, i.e respectively at the parametric coordinates £ = 1 and £ = 0. One writes the continuity
constraint

¢m(1) = ¢1(0) = Pp(m) = Pi(n) = Q- (5.6)
For a C'-continuity, we have the condition

G (1) = ¢5,(0).
The derivative of the B-spline basis function - see [59] page 59 - is

W (€) A (3 e N (3]

b — & Sitpr1 — Sit1
Since the knot vector is clamped such that & = --- =&441 =0, {1 = - = &pagr1 = 1t
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o for & = 0 the only non-zero basis functions are:

d d
- - )
Ept2 — &2 Ear2 — &2

o for £ =1 the only non-zero basis functions are:

- d
B §n+d - gn

vd'(0) = bd=1(€) and b (0)

d

bd’ -
n (1) - C

b (1) and b _,'(1) = b (1),

Moreover because b%~1(1) = b471(0) = 1, then we have

and b/ (1) = bl _, (1) = —*

bd'(0) = —b¢'(0) = = :
2(0) = -7 (0) = ¢ — C

Hence for a C'l-regularity, in addition to the condition (5.6), we have

1 1 §d+2 §dt2
1-¢&, (ql _pnfl(m)> = 7(2?2(71) - ql) = P2(n) = (1 + 1_ gn) - 1_ gnpnfl(m)' (57)

g
For a C*-regularity the number of independent control points is 2 x n — (a4 1): (pi(m))izl-n and

(pl-(n))i:a o Indeed, the control points (pi(n)) are defined from some control points of

i=l:a+1
the (mortar) patch of index m.

5.2.1.2 Surface junction conditions

Now, let us consider two B-spline surfaces Q, k € {n, m} defined as the images of the parametric
domains wy, := [0,1]2 by the bivariate polynomial functions ® € By(X*, d},)

with B*) = (Ea(k) = (5?(k))i:1;na(k)+da(k)+1)) and dj, = (dar))-

Let (pi i), © € {1, -+ ;g }, J € {1, ,no)} be the control points associated to the map-
ping ®. Let us assume for the illustrative case that the two adjacent surfaces are joined along an
interface (a curve) I'! corresponding to the image of the parametric lines £ € [0, 1] — Pum) (1,62 =
§) by @, for Qp, and £ = ¢y, (§) = (0,£2 = &) by @, for Q,. The joining being assumed con-
forming ny() = n2, day = d2 and »2k) = %2V k € {n,m}. Hence

o the continuity condition is

v f € [07 1]7 @m(l,g) = @n(0,§)
Pry,jim) = Plim) = Gy ¥V J € {1, ,na}

o moreover the C-continuity entails V j € {1,--- ,ns}
VE € [0,1], @n/(1,€) = 2'(0,€)

di(m) di(n)
—1 o (G — Py —15(m) = +—— (P2,j(n) — G1))
1 _57%0(1@3) J L(m)—HJ 6d1(n)+2 J J . (5.9)
dym) Sdyoy+2

i-€. P2 j(n) (%)) = Prygomy—1,5(m)) + @)
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In the case where 21" = »1(") = »31 and di(n)y = di(m) = d1, we have

o 1 551-"—2 5(%1"!‘2
P2jm) =\ L+ T | 40— T g1 Prn—Lij(m)-
ni ni

Pa4(n)

Figure 5.3 Illustration of the junction between the patches 2, and €,,.
Le control points colored in green are defined from the mortar control
points. In case of CY continuity, only the green control points on the
interface are defined from the mortar control points. For C'-continuity
all the green control points are defined from the mortar control points

Figure 5.3 illustrates the junction between two patches and the linking between the control
points. The control points colored in black and red are certainly independent.

In the next sections, we will assume that the geometry parameterization is conforming in the
sense that the elementary curves or surfaces composing a general curve or surface are defined
using the same knot vectors and same orders.

5.2.1.3 Matrix associated to the geometric regularity

In the case of a C%regularity, o € {0, 1}, the number of independent control points is nf, =
2 X n12 — (@ + 1)ng. Let us denote by p = (p;)i=1:ng, the set of independent control points,
arranged as follows:

o the ni2 independent control points of the patch 2,

PI(ij) = Pij(m) I(i,7) =(j—1) xng+ i withie {1,--- ,n1} and j € {1, - ,na}
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o the nia — (a+ 1) X ny independent control points of the patch €,

Pr(ij) = Pijim) 1(3,7) = (j —1) x ng +i with i € {a+2,--- ,n1} and j € {1,--- ,na}.

The set of control points of the surface Q = Q,,, U £, is denoted p = (p;)i=1:2xn;, sSuch that: for
(&S {17 7”1}7 ] € {17 7”2} and I(Zaj> = (]_1) X ng +1

PrGig) = Pij(m)

, with I,(i,5) = na2 + I(i, §).
Pr.Gi5) = Pijn)

Let G be the matrix of geometric definition for the C'“-regularity, such that
p=6°p.

j=L:n
The previous equality is to be understood coordinate-wise. The matrix G¢ = (gf‘j) " s
k 1=1:2Xn12
defined as follows:

1. for the independent control points of €2,,
gf‘l =1,ie{l,-- ,nia}
2. the independent control points of Q,,; for all i € {a+2,n;1} and j € {1, -+ ,na}
9r6.9).06.9) = b
where 1(i,j) = nio+(j—1) xne+iand J(i,5) = nia+(j—1) x (n1 —(a+1))+ (i — (a+1));

3. for the interface control points (pl,j(n)) of Q,, -continuity-; for j € {1, -+ ,na}

Jj=1lng

91y =Land I(j) =niz + (j — 1) xng + 1, J(j) =j x ng

4. Specifically for a C''-regularity, we have for the control points P2,j(n), J € {1, ,na}

97G).J(m—p.) = 8> and 3 € {0,1},
where the real number cg is defined as
1 + 5514*2 lf ﬁ _ 0
-,

LSy g
&l =

Cp =

and the indices I(j) and J(i,j) are defined as
I(j) =ma2+ (G —1) xn+1, J@Gj)=(—1) xnz+1i.

REMARK 5.2.1 In an analogous manner to the geometry, we introduce the following notations
in regards to the discretization of the polar parameters:
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Chapter 5. Simultaneous optimization of shape and anisotropy

o ((ﬁil(k) ) 45 denote the control points associated to the discretization of the orthotropy
=1y

angle field &1 on the patch Qy

o ( f)(k)) (resp. (pi(k)) ) are the control points associated to the discretization of
i=1mnf, i=1mf,

. . . R . S
the dimensionless moduli pg = RIS + (resp. p1 = %), for a conforming parameterization of
1

0
Ry.

We introduce @ (resp. p,) and @, (resp. p,), analogue of p (resp. p) for the polar parameters.
They are related through their respective matrices denoted gg and QS; QS is of dimensions
2 n§, x (2 n§, —n§), for e € {P,p}. We only consider a continuity conditions on the polar
parameters. Hence we introduce d = ( p, @1, py, Z)1> the set of independent shape and material

design variables and d = (p, @1, py, p;) the set of control points associated to the assembling
of patches. Obviously, in the case of geometry composed of one patch d = d.

After the previous geometric considerations, we focus in the next section on the optimization

problem in the case of a middle-surface defined by one patch and we present the related sensitivity
study aspects.

5.3 Anisotropy and shape optimization

Subsequently, for the sake of simplicity, u := [u, s] and v := [v,r] stand respectively for the
three-dimensional displacement vector of the middle-surface and a given admissible virtual dis-
placement.

Let us consider the optimization problem which consists in the minimization of the compliance
with respect to the shape and material:

d* = argmin J(u), with J(u) =I(u)
d€€uq (510)
s. t. a(u,v) =1(v), for all v e V(w)

where d is the set of both elastic and shape design variables. &,4 is a properly specified admissible
design space which takes into account the constraints on the polar parameters as described in
chapter 4 and those on the geometry which will be laid out further in subsection 5.4.3.

Using the polar formalism, one can express the plane elastic tensor components QM as

Qaﬁ/\u(@l) _ Gg/Gﬁ,G)\/GZ,QAO‘/ﬁ/N#/ (@1)’

where G = (G;) is the transformation matrix from the orthonormal frame (d;, d2,ds) onto the
covariant frame

G; = ai . dj, dj = G;al

and Q := (Qaﬁ)‘“) is the plane reduced elastic tensor in the material frame defined as

Aoa,833A33)\u

AaBAp . paBAp
Q =4 A3333
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5.3. Anisotropy and shape optimization

Analogously, for the anti-plane writes
Ea3ﬂ3(¢)1) _ Gf\szA)\B/\?)(@l).

In the previous expression A”* are the components of the elastic tensor given in the material
framework as introduced in chapter 2.

In order to use a gradient based optimization method one has to study the sensitivity of the
objective function and constraints, namely the mechanical state equation, with respect to the
design variables. There exists two main ways to compute the sensitivity: the direct and the
adjoint approach. The latter is a classical approach in optimal control theory [45] and also in
structural optimization [21] and [42]. The adjoint method relies on the definition of a Lagrangian
function to compute the objective function derivative, and thus on the introduction of some
Lagrange multipliers associated to the constraints. Both sensitivity can be performed on the
continuum problem or on its discretized form |2, 63]. The present minimization problem of
compliance criterion subjected to the mechanical equation constraint is self-adjoint because the
Lagrange multiplier associated to the mechanical equation is solution of the same mechanical.
Hence the derivative can be computed by the direct approach. We consider the compliance
objective function in its discrete form, i.e

J(d,u(d))=f-u
where f is a vector depending on the applied load and u the vector of degrees of freedom associated
to the discretization of the displacement field.
PROPOSITION 5.3.1 Let us consider the discrete form of the state equation
Ku = f with K the stiffness matriz.
The derivative of the objective function with respect to the design variable d is

Oq J(d,u(d)) = 204f - u—u K u. (5.11)

Proof. Indeed, the derivative of the discrete form of the state equation yields to

0g Ku+K dju=09;f = du=K 1(9,f —9; K u). (5.12)
Thus the derivative of the objective function with respect to p is

g J(d,u) = 04f -u+f-Jyu. (5.13)
By substuting the (5.12) in (5.13), we obtain

Oy J(d,u) = Ogf -u+f- K1 (9,f — 93 K u),
and finally we have

g J(d,u) =20;f -u—u JyK u. (5.14)

O

In order to compute the gradient of the objective function with respect to the design parameters,
we focus on the derivatives of the elementary quantities with respect to the parameters.
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Chapter 5. Simultaneous optimization of shape and anisotropy

5.3.1 Derivatives with respect to the shape

The derivative of the strain energy bilinear form with respect to the control point coordinates
involves the derivatives of the metric, curvature tensors and the Christoffel symbols. These quan-
tities are expressed through some derivatives of the shape mapping with respect to the curvilinear
coordinates. The derivative of these elementary quantities are obtained by the usual chain rule.

PROPOSITION 5.3.2 Let us consider a shape function ® € By(2,d) N C?(w,R?), i.e

ni2

O(&) = Dp(&)e”, with D(&) =D _[pilsb(€),

i=1

with [p;]r = pi - ek the k-th coordinate of the i control point p; € R3.
The first two derwatives of ®, a, and a, g, are defined by

ni ni2

aa(€) =) pi0ab¥(€), ans =D pifasbl ().
=1 i=1

We emphasize that, according to the previous proposition, the metric tensor components are
defined in a straightforward way. Using the contravariant metric, one can define the contravariant
vectors, the Christoffel symbols and the different curvature tensor components. Let’s now get
interested in the derivatives with respect to the control points and their coordinates.

PROPOSITION 5.3.3 Let us consider the function ® € By(X,d) N C?(w,R3), we define
;@ (€) := b(€) and Of D(€) == b{(€) ex, k € {1,2,3}.

0; 1s the derivative with respect to the control point p; and 8{“ is the derivative with respect to
the k-th coordinate of the control point of index i.
Analogously, the derivatives of the vectors a, and a, g with respect to the i-th control point are:

aiaa(g) = (%bzd(ﬁ) and aiaa,/;i = 8aﬁbfl(£).
Finally the derivatives with respect to k-th coordinate of the i-th control point is

0Fan(€) = ep0ub(€) and 0fas 5 = €,0asb?(€)

The derivatives of the mapping function ® with respect to a control point is simply equal to
the corresponding blending function of that control point. Also, the derivative with respect to
a given coordinate is equal to the Euclidean space canonical basis vector (of that coordinate)
weighted by the corresponding blending function of its control point.

We state in the next lemma the derivative of the different quantities of the strain energy bilinear
form -see (2.35) page 25- with respect to the control point coordinates.
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5.3. Anisotropy and shape optimization

LEMMA 5.3.1 Let ® € By(X,d) N C?(w,R?) such that a,, o € {1,2} are linearly independent.
Then:

dFaa = Oabl(&)en

Ofans = [ag]k0ab?(€) + [aalkDsb(€)

oFa = 2a [a"]x0,b%(€)

Oaz = —lag)u(9.bE(€)a")

ofa® = —[a"x(9ubfa") + [a ] (a™,b!)ag

g = el o, 5.15
azkaa,ﬁ - aaﬁb;j(s) er ( )
Tg, = [a%udsob + {a““bao[as]k ~ Fga[aa}k} 9,b%(€)

Ofbag = [as]k0asbf (&) — T4 4[as]5 0,08 (€)

g = [asl(a™0pubT) — {bh[a]k + a®bsa[at]k+
ngaax[aﬂk}aubg(@

The proof uses the following lemma which is proven in [9]- Lemma 3.2.1, page 299-.

LEMMA 5.3.2 Let ® € Bo(X,d) N C?(w,R3) be an injective mapping such that a,, o € {1,2}
are linearly independent. For all ¥ € C%(w,R?), we have

8q>aa\1/ = \I’,a

Opa0p(P)V = ag-V,+a, Vg

doa(P)T = 2a(®)(a" T ,)

8q>a3(‘1))\11 = (a3 \I/ )a“( )

dpa”V = —(a U )a (@) + a (@) (as(®) - ¥, )as(P)

DoaP (D)W = —[a"(B)a%(®) + a(®)a’(@)] -V, (5.16)
8q,aa,5(<1>)\11 = \ ,aB

0sI'G, ¥ = a%(®) Vg, + [0 (P)bso(P)az(P) — ', (P)a*(®)] - ¥,

Opbap(®)¥ = as(P) Wap — I 5(P)(as(P) - ¥ u)

Oab3(R)V = a™(P)(as(®)  V,5u) — [b5(D)a" (@) + a™ (@)bpa(®)a (P)+

T (®)a™ (®)as(@)] - ¥

Readers may refer to [9] for the proof which is most technical with the use of the classical chain
rule.

The derivative in the Lemma 5.3.1 are straightforwardly obtained from the Lemma 5.3.2 by
substituting W with the corresponding derivative of the mapping with respect to the control
point coordinates. More precisely, for the computation of a given derivative with respect to the
k-th coordinate of the control point of index i, one sets ¥ = 9¥®(§) = bley.

5.3.2 Derivatives of the strain bilinear form

In the next proposition, we specify the derivative of the bilinear form with respect to any given
shape parameter d.

PROPOSITION 5.3.4 Let 0y denotes the derivative with respect to a given parameter d € d. We
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Chapter 5. Simultaneous optimization of shape and anisotropy

have
t{aanﬁ)\u'Y)\,u-aﬁ (u; U) + Qaﬂ/\uad’}’)\,u-aﬁ(u; ’U)

dual[u.s).lo,r) = |
+ tQ{aanﬁ)\MX)\uuﬁ([u? S]? [’U, T]) + QaﬂkuadX)\u-aﬁ([uv 5]7 [Uv T])}

+ 0aE***P 3 o.5([w, s); [v,7]) + E*¥P0473 0.5([u, s]; [v,7]) }vadg
+ / t{QO‘B}\HV}\waﬁ (u; 'U) + tQQa/B)\'uXA/L-aB (’U,; ’U)
+ E3a36737a.5([u, s]; [v, r])}2*1a*1/28da dg

where for expansion reduction, we set for z € {v, x}
ZAu-aB('; *) 1= Z)\,u(')zaﬁ(*) and 8pz)\,u-a6('7 *) 1= 8dz)\u(’)za6(*) + Z/\u(’)adzaﬁ(*)
23 0.8(5 %) = 230()235(%) and Opz3.0.8(+, %) 1= Oaz3a(-)2z38(*) + 23q(-)Oaz3p(*)

o The derivatives of the elastic tensor components with respect to the shape parameter d are
expressed as follows:

8anB>\u = 8d(Gg/Gg/Gﬁ/G/’j/)QAalﬁ/A/‘w (@1)

0aE3% = 0y(GIGR) AN (1)
o The derivatives with respect to a material properties design variable are expressed by

A A fal / /)\/ /
0aQ M = (GG, GGl 0aQY P YW (1)
04E%3 = (GSGR)0g AN (@y).

The following proposition gives the derivative of the strain components with respect to the control

point coordinates.
PROPOSITION 5.3.5 Let consider a mapping function ® € C?(w,R3) and ¥ € C?(w,R?) .

o The derivative of the membrane, bending and shear strains covariant components with re-

spect to @ are:
0Yap¥ = —OQFZ/B\IIuU — OpbagWus
OoxXap¥ = —0a173Vs, — dobpWdrg(u) — OpbyVdya (u)
+ 00 (T5 Ve + 0abrgTus) + b3 (06T, Vo + Opbra Pus)

00Ya3V = 0302 Vu,-.
o Assume that ® € C%*(w,R?) N By(X,d), the derivative with respect to the control point

coordinates are then:
@kfyag = —8ngﬂug — 8fba5u3
k _ k1o k1 ki)

KQUU + 8fb,\au3)

+ b3 (OFTS 5 Tug + OFbrgus) + b3(0F
O Yoz = OFbT U,

Now we focus on the linear form, i.e the work of the applied loads.
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5.3. Anisotropy and shape optimization

5.3.3 Derivatives of the linear form

In order to define the derivatives of the linear associated to the applied loads, we have to distin-
guish two cases: when the applied loads are geometry dependent and when the applied loads are
independent from the geometry.

5.3.3.1 Geometry dependent loads

Assume that the middle-surface is subjected to applied resultant force N = N iaj, a moment
vector M := M X az = eaﬁMo‘afB on its edge I'y = ®(71) and a surface force p = p‘a;. Let us
denote by [, the linear form associated to that geometric dependent loads

) = [ poadg+ [ (Vo + M0 Lin)n

1

where dL(n) = L(n)dn is the element of length along I'; = ®(y1) and

/2

0™ 6906}1
L(n):=< —ao3—— .
() {877 p an

It is assumed that ~; is defined as the image on a bounded interval I through a bidimensional

vector mapping ¢, i.e (%) :n — (£% = ¢%(n)) € .
The derivative with respect to the k-th coordinate of the control point of index 7 is

8flg(u, s) = /piui(21a1/28£“a) d€ +/ (Niui + M“sa)afL(n)dn,
w Iy

with

0 08
k _ o1 -1/2 J 9P ok b
07 L(n) =2""L(n) { an 05 anp an }

We notice that a particular geometry dependent load is the normal pressure, which for a geometry
with sufficiently small thickness is of the form p = pag; p being the amplitude of the applied
pressure per area.

5.3.3.2 Geometry independent loads

Now we suppose that the applied loads are defined by means of their Cartesian components,
denoted by a hat symbol:

g=J'e; = g’a;, with g € {p, N}.

with ¢/ := g-a’ = §'[a’]’ the contravariant components. Thus the derivative of the corresponding
contravariant components with respect to (i, k) is

Ofg" = (g- 0fa’) = g'[oja"]".

We stress the point that we do not assume applied moment to be independent of the geometry.
This could not be consistent with the fact that it must hold the plane moment constraint for

115



Chapter 5. Simultaneous optimization of shape and anisotropy

each admissible design: M - a3 = 0.
Then the derivative of the linear form is

af li(u,s) = /piui(Q_la_l/Qaf a)d£+/NiuiafL(n)d77

+/‘9§€pi Uz‘\/adEJr/afNi u;i L(n)dn
For pointwise loads:

Let [, be the work of some pointwise concentrated loads f, = f;ei, at some points P, = (I>(£p) €.
r being the number of points. The corresponding linear form and its derivative are respectively

lp(u,8) =) fyui(€y)
p=1
and
o1y, ) = 37 0 s (€,
p=1

At this step, the design problem takes account of a shell defined through one chart. We have
defined the derivative with respect to the control points coordinate of the strain energy bilinear
form and the linear form. We recall that the applied loads and the corresponding linear form
is considered independent of the material properties with respect to which the bilinear form’s
derivatives have already been computed in Chapter 4.

We consider in the next section the design problem corresponding to a structure defined from a
set of connected piecewise regular shells. We will mostly focus on the derivative of the junction
conditions (matching of the displacement and rotation) which are involved in the definition of
the global mechanical problem.

5.4 Sensitivity for an assembling of shells

General shell structures cannot be defined from a single regular surface or mapping, as presented
so far. This section is devoted to the sensitivity of the junction operator defined in chapter 3
which is involved in the definition of shell assembling problem. In fact, one has to study the
sensitivity of the junction conditions with respect to the shape design parameters and also take
into account the geometry continuity when defining the derivatives of the mechanical problem.

5.4.1 Problem setting

Now, we assume that the optimization problem involves an assembling of shells. The mechanical
problem is of the form: Find u such that

Ku="f.
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5.4. Sensitivity for an assembling of shells

U is the vector of independent degrees of freedom, f = MTf is the corresponding load vector and
K is the stiffness matrix

K = MTKM,

where M is the mechanical junction matrix.
Now we consider that the minimization problem is: Find p* such that

d* = argmin J (@), with J(u) = fa
de€aa (5.17)

s.t. Ku=f

5.4.2 Gradient for an assembling of shells

We consider the matrix G¢ which takes into account the algebraic relations between the control
points of the multi-patches and the independent control points, for a C“-continuity.

Let 8;(k) denote the derivative with respect to the i-th coordinate of the control point pj) of
index j associated to patch Q, fori € {1,2,3} and j € {1, - ,n12}. We introduce the derivatives
vector V* defined as

Vi — (ai(m) i L gim) i) i) i) ) = (00) 1oy
(‘}; denote the derivative with respect to the i-th coordinate of the j-th independent control point

p;j and set Vi= (é;) - the vector of derivatives with respect to the i-th coordinate of the
J=1ingy

independent control points p. Hence, we have
@’L’ — [ga]TvZ
which componentwise, for given a function f, is

2Xn19

0 f= ayx0f
r=1

The gradient of derivatives with respect to coordinates of the set of control points p is

~ ~

V=[Vl V2 V3] and V f = [Vif V2f V3f].

5.4.3 Constraints on the design’s geometry
Bounded area constraint

Let us consider two nonnegative real numbers 4; and 4,. One can assume that the problem is
subjected to a bounded area constraint on A the area of the assembling of shells:
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with A defined as

A= ) Vayde.

ke{nm} ¥k
The derivative with respect to [p;]; -the i-th coordinate of the j-th independent control point is

2Xn12
3 o4 %
GA= Y aiA
r=1
ni2 ni2

=D gAY gy, 0 A
r=1 r=1
i(k i(k
where a,f A= 87( )\/Ek.

REMARK 5.4.1 The structure could also be subjected to a bounded constraint on the perimeter
(length) £ := Zke{n,m} I, of a given boundary of the assembling denoted C = C,, U C,,. The
derivative 3{“ L with respect to the design variable [p;]x is computed in an analogous manner as

depicted previously for the area A; I being the length of Ci. Also, we emphasize that since the
patches are assumed to be defined with clamped knot vectors, the only meaningful derivatives

of L, afi(’“)c, to be computed are those such that p, is related to definition of the boundaries
Ck, k € {n,m}.

Location or place constraint

In practice, a structure is subjected to location or place constraint often called box constraint.
This constraint is expressed as bounded constraints on a given set of control points. Let B, denote

the set of indices of control points p; with bound constraints. Typically B C {1,---,2 X ni2}.
Let 1; and u; respectively denote the lower and upper bound on the control point p; such that
li § u;.

i <pi<u

which componentwise is
[li]j < [p,]k < [ui]j, for all ] S {1,2,3}.

We recall that: given v € R?, the notation [v]; designates the j-th coordinate of v.
The control point p; being defined as

niy nfy
pi = Z giwPr and componentwise [p;]; = Z gir[Prljs
r=1 r=1

we have
Olpile = 6195
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REMARK 5.4.2 A short comment on the set B.. B, is typically composed of the set of indices of
cthe ontrol points that allow to have independent constraints, which are independent:

B. = Bc(m) U Bc(n)
with
o for a C%-continuity

Bc(m) = {17 T 7n12(m)}
Bemy = {n1g@m) + (4 — 1) X nyy + 4 ,for i € {2,--- ;nymy} and j € {1, ,na}}

o for a C'-continuity

Bemy =1 — 1) X nigmy + 4, i €{1,- -+ ;nypmy — 1}, 4 €1{1,--+ ,na}}
Beny = {nig@m) + (G — 1) X ny) +j s for i € {2,--- ,nypy} and j € {1,--- ,na}}.

Concretely, considering the case depicted on Figure 5.2

o for a C%-continuity the bounded variations will bear on the control points P1(m)s P2(m)s P3(m)s
Pa(m) = QU5 P2(n)s P3(n) and Dy(n)

o for a C'-continuity, the bounded variations will bear on the control points P1(m)» P2(m)s P3(m);
D2(n), P3(n) and py,) since the point ¢; belong to the segment [pg(m),pQ(n)].

The derivatives with respect to the design variables involve the computation of the elementary
derivatives with respect to the control points coordinates, which are linked or defined by means
of the design variables. The derivative of the objective function is still computed as in (5.11).
This implies that one needs to compute some derivatives of the junction matrix with respect to
the design parameters. Indeed, the derivative with respect to any design variable is

0iJ(d,u(d)) =20f -u—u IK u (5.18)
where
0K = 9!MTKM + MT0:K M + MK 0:M and 0if = 0iMf.

Subsequently, we define the junction matrix sensitivity principle on a general problem and then
focus on the specific case of shell problem. For the sake of simplicity, we do not consider the
boundary condition aspects.

5.4.4 General overview on the derivative of the junction

Let’s here again consider the general form of the domain decomposition problem 3.2.3, described
at page 43 with B and £f*) respectively the matrix form of the bilinear and linear forms of a
given variational problem. Consider the problem under its matrix form

B,,w =f,,, with

B,, = MTdiag(B™,B(™)M, and f,, = MTf, £T = [f() f(m)].
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The derivative of B,,, would obviously be computed using a chain rule through the derivatives
of M and those of B(*).

Considering the derivative of the global matching matrix defined in 3.2.1, one notices that the
derivative of the block matrices which define the “interior”, i.e independent, degrees of freedom
with respect to any arbitrary shape parameter equals zero. In fact these degrees of freedom are
identically conserved, and this, independently to the geometry; concretely

Oo(n)
9;RW

OgM =
¢ Oé(m)

0
OO(m)

where Og(p), Oé(m), and 08 ) are zero matrices of consistent dimensions with respect to the
definition of M. Using the chain rule and the following well-known result on the derivative of
the inverse of a matrix:

for a given invertible matrix N, 9;N~ 1 = -N~1 9; N N1,
we can define the derivative of R() by
adR(l) — —[Ml(")]_lﬁd Ml(n)Rl + [Ml(n)]_lad Ml(m)

The derivative of the objective function involves the computation of quantities of the form
v79,B,,w. Using the chain rule, one obtains

04B;,, = MT9;BM + M™B 9;M + [8dM]TBM

PROPOSITION 5.4.1 Based on the partitioning introduced in (3.26), (3.27), let us consider the
corresponding arrangement of the matriz B™

0(n) 0(n)
B - | 0
Bl(n) Bl(n)

where Bz (,]:) is the matriz part of B®) whose rows and columns are respectively restricted to the
degrees of freedom of type i and j.
And we have the following relations:

(@]
vTo;M"BMw = vT9;MTB™w

0(n l
= 0], [[OROIB g + [0.R]TB

EZ@M} :

"M'BI;M w = v"B™ 9, Muw

— I(n) l I(n) 1
- QO(n)TBQ(n)adR( ) + Ql(n)Bl(n)adR( ):| wy
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REMARK 5.4.3 The decomposition in the previous computation can be further refined for Blo((:))

and Bé((z)) to strictly consider only the rows and columns corresponding to the set of interior

degrees of freedom which are connected to the interface degrees of freedom.

After having presented the principle for a general problem, we now focus on the derivative of the
shell’s junction conditions with respect to the shape parameters.

5.4.5 Sensitivity of the shells junction

(k) (k)

In the following, we respectively denote by ui and sloé the restrictions of ugk)
gi(k) and §lcgk) their corresponding finite element degrees of freedom; while ug(k)

and s(()k) to A1k

and sg(k) denote

the interior degrees of freedom vectors. We set u = (gé(k)> s and s = (§gk)) e
1=1: a=L

5.4.5.1 Matrix form of the junction conditions

For the sake of simplicity, we suppose that the displacement and rotation are discretized using
the same finite elements.

Displacement continuity
We recall that the matrix form corresponding to the displacement continuity condition (3.13) is
—1

MOyl — [Ml(m)]ggz(m), with summation over j € {1,2,3}.

[Ml(m)}z denotes the matrix on the mortar side of dimension (dj(), dj(m))-
For a given (i,7) € {1,2,3}2, the(p, §)-th component [(M;l,gm))]f of [Ml(m)]g is set as

I(m ] j(m n m
(M"Y = Al af((n))Pé (&)™ (€ m)) S1m) (M), g € Sy
The matrix M®)’s components are defined as
l n n
Méq) = Ll P (€)™ (€ ) s10my (), @ € Sy

Thus the matrix form of the continuity of the displacement vector is

M ) — V™) 17) iy ML) — ({531 x Ma)]g)

Z?]

M (™) is the 3 x 3 block matrix of dimension di(n) X di(m):

MLm= <[M1(m) aj) ,
) (i.5)€{1,2,3}2
M) = (55 X M(l)) is a 3 x 3 diagonal block-matrix of diagonal matrix equal to
(i,)€{1,2,3}2

MO,
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Tangential rotation continuity

Regarding the other junction condition (3.14), we introduce the matrices Mgk), k € {n,m} such

that
1(k 1(k) 1o
Mgv( )= ([Mw( )] )ae{1,2}-

The components [M,fp(k)]g‘q of the block matrix [Mgk)]o‘ are defined as

Mg = (1) / g I (€)pP (E ey sy (), @ = {1, 2R\
with ¢ defined as follows
Gy = 1, and ¢n) = tin) - tigm)-
The matrix form of the rotation continuity condition is
ML sl = VL™ g, (5.19)

We emphasize that special attention must be paid to this condition: in fact one agrees that we
have one equation for two covariant components of rotation. Thus only one of the (non-mortar)
rotation covariant components can be defined from (5.19). So we have to extract a sub-matrix
of “full rank”, i.e invertible, whose corresponding rotation will be defined.

Given a € {1,2}, we set 0 = @ € {1,2}\{a}, we suppose that the matrix [Mgk)]" is of full-rank

so we can define the rotation géf”). Thus we have
[Mgk)]agla(”) = Mg)g(l) (no summation over «),

where

)
MY = (M M) and 8O = (slom g00)" (5.20)

In this case, we insist on the fact that the independent degrees of freedom are not exclusively
from the mortar side like for the displacement; s are the independent degrees of freedom of

rotations associated to the interface I'" which allows to define the non-mortar rotation degrees

of freedom gf)E”) )

Local displacement and rotation matrix junction

Let us note RQ(LZ ) and Rg) respectively the matrices associated to the junction of the displacement
and rotation, such that

w!™ = ROy and s/ = [RV]2s0), (5.21)
N\ —1
where R = [ML™]-1MY™ and [RY] = ([Mgn)]a) MY,

Let us note [Rg)] = Rgm) Rgn)]. The matrices Rgm) and Rgn) are respectively the block
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5.4. Sensitivity for an assembling of shells

. . l
matrices associated to the mortar and non-mortar degrees of freedom s and §g(n), and are of

respective dimensions (d;(,), 2d;(,,)) and (dy(), dj(n)), in this present illustrative case.
We introduce the following vectors

I(m)

U = [gzm) s o i) glm)| and TV = [ylm) gl §z(m)}_

Hence, we define the local matching matrix at the [-th interface as

R0 _
Il(”)
4
MO = R RI™| and UG = MOTY (5.22)
™
_ 1,")

where Ilw(n) is associated to the independent rotation’s degrees of freedom of the non-mortar side

l(n) l(m)
20 ) 11/8
Iﬁm) is associated to the independent displacement’s degrees of freedom of the mortar side. Their

respective dimensions are (dl(n)7 dl(n))7 (Cll(m), dl(m)) and (Bdl(m)v 3dl(m))

is associated to the rotation’s degrees of freedom of the mortar side st(™ and finally

Finally, one can define the global matching matrix corresponding the junction at the inter-
face T'. Let UK .= (u9*) s0()) be the interior degrees of freedom corresponding to wy,. We
consider the following vectors of degrees of freedom

UT = [U0 g yotm] and T = [Uo(n) g? Uo<m>]

The global matrix is

IO(n)

M — MO . (5.23)
T0(m)

So we obtain U = MU and the global problem is defined in a similar way to the abstract
case described above. The general junction matrix corresponding to the discrete problem can be
defined in an analogous manner to the general framework.

The concern of the next section is to define the derivative of the junction conditions.

5.4.5.2 Derivatives of the junction matrix

The derivative of the global junction matrix only involves the derivative of the local junction or
matching matrices of each interface.

To this purpose, we first consider that the non-mortar and mortar geometries are independent;
we hence compute the derivatives with respect to the shape design variables (control point
coordinates) with no regards to the continuity constraints on the shape, i.e the algebraic relations
between the control points are not used.

To keep consistent with 8;(k) denoting the derivative with respect to the i-th coordinate of
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Chapter 5. Simultaneous optimization of shape and anisotropy

the control point p;() -see 5.4.2 page 117-, we denote Ofik) the derivative with respect to the
geometric parameter d of the patch of index k. When the belonging patch of these parameters
is unimportant we simply use the notation dy.

PROPOSITION 5.4.2 The derivative 04M of the global junction matriz (5.23) is

00(n)
IgM = oMW
OO(m)
The derivative 9gMW of the local junction matriz associated to the I-th interface, (5.22) is defined
as follows
o RY ]
I(n
l OlIEl | l
M) = aRL™ 9, RU™ (5.24)
o™
_ 0" |

where 0'F) and 0°F) are null matrices of dimensions consistent with the definition of M.

Before going further, we stress the point that, in order to compute the derivative (%M(l), the
matrices on the non-mortar side, namely [pr(n)]a and M!™  formally depend only of the non-

)

mortar geometry, while the matrices M) and Mg depend on both the non-mortar and mortar

geometric quantities, respectively through the basis change matrix A} = (aj (m)) for u and the

i(n)
tangent vector transformation ¢,,) and the passage of the matrix [Mgn)]" from the left hand
side of (5.19) to the right hand side of (5.20).
Now, we focus on the derivative of the local junction matrices with respect to a shape design
parameters.

Displacement junction matrix

The following propositions lead to the computation of the derivative of the junction matrix Rg )

associated to the displacement continuity.

PROPOSITION 5.4.3 The derivatives of the matrices associated to the displacement continuity are

oMM = ([ ™))

7’ 7j
with

; 1k . )
[0aM' )] = ([%Mﬁ(@ )H)M’ pef{l, - dimy}t and g € {1, dyuy}-

In respect of the non-mortar side, MW being exclusively dependent on non-mortar geometric
parameters, we have

oM™ = (55 0.,MY) with 97 MO = 67 (9 0)) .
p.q

1,7 P4/ b
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5.4. Sensitivity for an assembling of shells

The components of 9;MW are defined as follows
l n n
QM) = / 2 €n))PY (€ny)Dasigoy (m) .
v

As for the derivative associated to the mortar side, we first define the derivative of the basis

change matriz Agnm)) — (O“Z((Z;))

8((im)az((;r;) = a;,) - aém)aj(m)’ and B(gn)ag((;r;) = aj(m) - 8((1n)ai(”).
So we have

oMY = / O D (6 )P (6 )ty (m) .
8§m)[M,§§m’]¥ = / l (aC(lM)ag((:;)Sl(m)+ag((:3)8c(lm)5l(m)(n)> P (€0 )PY™ (€ ) ).
Y

Thus the derivative of the local matching matriz, associated to the displacement constraint, with

respect to

o a non-mortar shape design variable is:

o the mortar shape design variable is:

Tangential rotation matrix junction

Now, we focus on the derivative of the junction matrix defining one of the rotation covariant
components.

PROPOSITION 5.4.4 Considering the junction matriz (5.21) associated to the tangential continu-
I(n)

ity of the rotation, and assuming that the defined rotation is sq , i.e.
Dia In)ra) "L gl

Ry = (IMg")) s

the derivative with respect to a geometric parameter d from either n(l) or m(l) side is
—1 -1

QulRy1" = 2 (IMy™17) - MY+ (IMy™)7) oy

The first term of the r.h.s is obviously equal to
I(n)ra) 1 1)1 00y (1

() oY)

Now, focussing on 8dM(l), we have
l m n)1a

oMYy = (9,ML™ duML™)e)

where the derivative with respect to
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Chapter 5. Simultaneous optimization of shape and anisotropy

o a non-mortar design variable is thus
n)\ g0 n l(m n l(n)1o
oMY — (N o)
o a mortar design variable, on the other hand, is

m l m m n
M = (o o).

Where Ogn) is a zero matriz of size (dj(ny, dy(n))-

Hence, the derivative of the junction [Rg)]“ with respect to

o a non-mortar design variable is
n Dia lna_ln I(n)ap (1 lna_ln l
Of RYY = — (Ivg)) o v Ry (i) oy vy
o a mortar design variable

m a n)a -1 m n -1 m m n
8c(l )[Rg)] _ ([Mg )] ) ac(l )Mg) — [([Mg )]a) a{(j )Mg ) in() )

We specify below the derivatives 8dMlW(") and 8d1\/[fp(m) which serve to the computation of the
derivatives of the junction matrix described above.

PROPOSITION 5.4.5 The derivative of the scalar ¢y associated to the tangent vector transfor-
mation s

O cumy = 0 tuay -ty 03 iy = 0, k € {n,m} and k € {m,n}\{k}.

The derivative of Mgk) with respect to a shape variable d from either non-mortar or mortar side
18

) _ o
oM = (1M )ae{m}‘

The components of the matrix [GdMgk)]o‘ are

_ _1
[8de£'“)]%,@ =(-1* /l O4(ay, Qtla(k)cl(k)sl(k))pén) (&n))PS) (& y i,
Y

_1
The deriative Oq(ay, thk)cl(k)sl(k)) is defined using the chain rule

—1/2,1(k 1 _3 _1
Oular, " taih cumsim) = (—50aar @ * 6 + a2 dat)eypysiny
_1
+ a2t (Qaciry sy + Cigr) Oasigry)-
We have described above the computation of all the necessary quantities needed for the sensitivity
analysis in the case of structure composed of assembled patches. The next section is devoted to

some optimization numerical results.
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5.5. Numerical results

5.5 Numerical results

5.5.1 Optimal design of a circular plate

Now, we consider the joint optimal design with respect to the shape and the material properties.
Each polar parameter is parameterized through a five order B-spline function of open knot
vector and five control points in each parametric direction. Because of symmetry reasons, the
optimization is performed on the quarter of the structure.

In this subsection, we consider the optimal design problem of a circular plate which is subjected
to its own weight. The shell is simply supported at its circular boundary. The geometry and the
problem data are represented on Figure 5.4.

p = 1.58 x 10°Kg/m?
sym t=3x10"%m

r = 1m.

sym

Figure 5.4 Circular plate geometry and boundary condition.

The elastic properties are:
Fy = E = 9000 x 10°Pa
E; = E5 =161 x 10°Pa

Vig = V93 =V = 0.26

E
V13 = 0.26 and G13 = ﬁ
v

G12 = G23 =61 x 106Pa.
The polar parameters corresponding to the plane reduced elastic tensor are:

To =1.17x10°Pa, T1 =1.16 x 10°Pa
RE =1.11x10°Pa, Ry = 1.11 x 10°Pa, and ¢; = 0.

The polar parameters of the anti-plane part of the elastic tensor are:
T =62.44 x 10°, R =1.44 x 10°, ¥ = 0.

We first consider the optimal design for an optimization of the shape, and then consider the joint
optimization of both shape and elastic properties.
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Chapter 5. Simultaneous optimization of shape and anisotropy

5.5.1.1 Optimal shape design

The problem is subjected to bound constraints on the control points which are allowed to take
only positive z—coordinate. The edge with simply-supported boundary condition is subjected to
fix place constraint, i.e the control points defining this boundary are kept fixed. The design is also
subjected to bounded area and symmetry constraint. Let €, be the tolerance on the variation
of the design area denoted by A. The constraint is:

-Al < A < Au, with Au = (1 + Etol)-AOa and -Al = (1 - Etol)AO~

where Ay, A; and A, are respectively the initial design area, the lower and upper bound on the
design area. For the following optimization €;,; = 0.3.

Let d be a non-negative integer. The polar parameters are defined through open knot vector of
the form

2 ={0,---,0,1,---,1}, a € {1,2}.
N N—
d+1 d+1

Isotropic material:

We first suppose that the structure is made of isotropic material and set R6< = Ry = 0. The
optimal shape computed is represented on Figure 5.5. In this case the three coordinates of the
control points are optimized. Hence the number of design parameters is 12. The number of
constraints is 26 (2 for the bounded area constraint and 2 x 12 for the bound constraints on the
control points coordinates).

Figure 5.5 Optimal shape corresponding to the circular plate with
isotropic material under weight-load.

This structure is a cupola, and is the most optimal shape to carry the strain energy in a membrane
and minimize the bending. Indeed, the membrane energy part was initially equal to £ = 1.35%
and for the optimal solution it is £ = 98.35%. Figure 5.6 shows the history of the compliance
during optimization.
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Figure 5.6 History of the compliance for the shape optimal design of the
circular plate with isotropic material.

The history of the contributions of the membrane-shear and bending parts of the strain energy
(compliance) is plotted on Figure 5.7.

100 - -
80 | .
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= 40f .
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Figure 5.7 History of the variations of the different internal energies
to the total strain energy (compliance) for the optimal design of the
isotropic circular plate.

The initial structure of which energy is carried by the bending term while the optimal structure’s
energy is carried on the Membrane-Shear (M-S) term. The figure illustrates the transition from

the bending dominant state to the membrane one.
Figure 5.8 shows the area variation throughout the iterations.
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Figure 5.8 Shape design: Variation of the area of the shell during opti-
mization. A, is the upper bound of the area variation and A is the area
of the design.

We remark that the optimizer tends to increase rapidly the area and that there are few iterations
during which the upper bound constraint is violated. During the last iteration, the optimizer
ensures the constraint.

Orthotropy orientation and shape design:

We consider the optimal design of the shape and orthotropy orientation. In that case, for a
given material, one is looking for the optimal shape and the optimal orthotropy orientation.The
orthotropy angle, initially 1 = Jrad, is parameterized with the open knot vector of degree 3
and four control points in each parametric direction.

The optimal shape is represented on Figure 5.9

Figure 5.9 Orthotropy and shape design: Illustration of the optimal
shape corresponding to the circular plate under weight-load.
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Figure 5.10 represents the orthotropy direction on the geometry.

Figure 5.10 Orthotropy direction for the joint design of orthotropy and

angle.

Comparing Figure 5.10 to the initial orthotropy, we remark that the orientation did not change,
the optimal geometry is still a membrane shell. One can thus conclude, from the results, that

the stiffness and optimality come mostly from the geometry.
The history of the objective function associated to this optimization is plotted on Figure 5.11.

T
WI
2, |
o
g
Q
) 1, |
0, |
| | | | | | |

0 10 20 30 40 50 60
iter. number
Figure 5.11 Orthotropy and shape optimization: History of the objective

function throughout optimization.

The variation of the contributions of Ej and Ej are plotted in Figure 5.12. In this case, similarly
to the previous example, the transition from bending to membrane state is visible.
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Figure 5.12 History of the contribution the different internal energies to
the total strain energy (compliance) throughout optimization.

Initially, we have Ej, = 86% and for the optimal design E}, = 10%, and Ey = 90%. We emphasize
that, in comparison to the initial bending part of the isotropic case, the initial bending part
in this present anisotropic case is lower. This highlights the role of the anisotropic part of the
material properties.

Regarding the history of the objective function 5.11 there is a sudden rise of the objective cost
after the first six iterations. These first steps, indeed, correspond to the initial phase of the
optimization routine which at the beginning perform some evaluation of some disturbances of
the initial design in order to construct an approximation of the objective function. The rising
corresponds to the starting of disturbance with respect to the orthotropy angle control parame-
ters. These first iterations illustrate the impact or influence of the shape design parameters on
the objective function. The variation of the area, see Figure 5.13, corroborates the fact that the
sudden variation of the cost function after six iterations corresponds to disturbances of only the
orthotropy control parameters. In fact the area of the following iterations are equal to the initial
area.

The energy state of the design become stable after the 45th iteration, i.e convergence has been
reached after approximatively 45 iterations.

5.5.1.2 Anisotropy and shape design

We finally consider the joint optimization of the polar parameters and shape. The polar param-
eters are subjected to geometric bound on their control parameters and the orthotropy angle to
bound constraints on its corresponding control parameters.

The polar parameters are still defined through using an open knot vector of order 3 and 4 control
points for each coordinate direction. The number of design variables is thus equal to 60 and the
number of constraints is 173. Among the constraints there is 49 constraints on the angle control
parameters which corresponds to one level of refinement (using subdivision flexibility) in each
coordinate direction, 16 for the geometric bound constraints for the two polar parameters moduli
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Figure 5.13 Orthotropy and shape design: Variation of the area of the
shell during optimization. A, is the upper bound of the area variation
and A is the area of the design.

and the remaining for the geometric constraints (bounded variations of the control points and
two inequality constraints for the upper and lower bounds on the area).
The optimal shape is plotted on Figure 5.14.

Figure 5.14 anisotropy and shape design: Optimal shape corresponding
to the circular plate under weight-load.

As in the previous case the optimal design’s shape is a cupola, which is the most optimal mem-
brane structure. The direction of orthotropy field is plotted on Figure 5.15.
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\
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Figure 5.15 Anisotropy and shape design: Optimal orthotropy direction
field of the optimal design corresponding to the circular plate under
weight-load.

The optimal orthotropy direction tends to be along the meridional lines. The polar parameters
moduli are plotted on Figure 5.16.

ROK (Pci) R1 (Pa)
1.106e+05 1.106e+09
[8.2?e+ﬂ ls.aaw
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-2 76048 59 7748
‘ﬂ.ﬂﬂﬂs*ﬂﬂ ‘D.DODB"’DO

Figure 5.16 Anisotropy and shape design: Optimal polar moduli fields of
the optimal design corresponding to the circular plate under weight-load.

One remarks that these parameters are uniform on the structure and the only present orthotropy

is for K = 1.
Figure 5.17 shows the variation of the compliance throughout the optimization.
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Figure 5.17 Anisotropy and shape optimization: History of the objective
function throughout optimization.

o

The membrane energy part to the total strain energy of the optimal design is 93.34%. The Figure
5.18 shows the transition of the energy from bending to membrane.
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Figure 5.18 Anisotropy and shape design: History of the contribution
the different internal energies to the total strain energy (compliance)
throughout optimization.

Figure 5.19 shows the variation of the area during the optimization.
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Figure 5.19 Anisotropy and shape design: Variation of the area of the
shell during optimization.

Asin the case of orthotropy and shape design, we remark that at the beginning of the optimization
procedure, the iterations with A4 = Ay corresponding to design having the initial shape and
disturbed angle and/or polar parameters, the objective function rises. This confirms that the
geometry has an important incidence on the objective function. After the initial phase iterations
of the optimizer which helps to define the approximation of the objective function, the objective
function decreases “continuously”. The optimizer decreases rapidly the compliance by increasing
the area of the shell to the extent that the bound constraints on the area are violated at some
iterations. However, the final optimal design computed satisfies the constraints.

One can conclude from the previous results that the stiffness mostly comes from the geometry.
In fact the polar moduli are distributed uniformly and are almost constant over the shell. The
joint optimization of the anisotropy and shape yields to a more optimal design. Indeed for the
orthotropy and shape design, we have E,,s = 90%, while for the joint anisotropy and shape
optimization we have E,,; = 93.34%.

5.5.2 Optimization of a holed circular plate

In the present case, we consider the optimization of a holed circular plate which is simply sup-
ported at its external boundary and subjected to an uniformly distributed vertical load at its
inner smallest crown. The geometric feature and conditions are represented on Figure 5.20.

136



5.5. Numerical results
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Figure 5.20 Geometric and boundary conditions of the circular holed
plate

The elastic properties, thickness and volume density are the same as in the first example. For
symmetry reason, the optimization is performed on the quarter of the structure. The geometry is
defined by two sub-structures joined together as described in Figure 5.20. The design is subject
to C! regularity constraints between the two parts and to a G-continuity through the two planes
containing the edges with symmetry conditions.

Different configurations of optimal design are also considered in this case.

5.5.2.1 Optimal shape with isotropic material

We start by the optimal design of the structure made of isotropic material, by getting rid of the
anisotropic part, i.e setting R(If =R; =0.

The tolerance on the upper bound of the area is €, = % The control points associated to the
circular boundary with simply-supported condition are kept fixed while those defining the internal
circular crow, which carries the applied load, are constrained to have the same z-coordinate. The
number of design variables is 25.

The optimal shape found is plotted on Figure 5.21.
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Figure 5.21 Shape design: Optimal shape corresponding to the holed
circular plate under edge load.

The history of the compliance and the variation of membrane-shear and bending energy describ-
ing the state of the design during the optimization are respectively plotted on Figure 5.22 and
5.23.
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Figure 5.22 Circular holed plate: History of the objective function
throughout shape optimization for the isotropic case.
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Figure 5.23 Contribution of the different internal energies to the total
strain energy (compliance) throughout the optimization of the holed cir-
cular plate with isotropic material.

The scalar Fp was initially equal to 98.35% and the one corresponding to the optimal design is
equal to 1.12%. The Figure 5.23 illustrates the changeover from the bending dominant state to

the membrane one.
The Figure 5.24 shows the variation of the area throughout optimization.
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Figure 5.24 Variation of the area of the shell during shape optimization
of the holed circular plate with isotropic material.

5.5.2.2 Optimal shape for the anisotropic circular plate

We consider the optimization of the shape of the circular plate with anisotropic material and
impose the same constraints as in the previous case. Here, the control points are allowed to change
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but only along the z-direction. The number of design variables after considering the constraints
is 9. The total number of constraints associated is 24. The angle of orthotropy is &1 = 7.
The optimal shape is plotted on Figure 5.25.

Figure 5.25 Shape design with anisotropy material with an orthotropy
angle 1 = 7: Optimal shape corresponding to the holed circular plate
under edge load.

and the orthotropy direction associated on Figure 5.26.

Figure 5.26 Orthotropy direction on the optimal shape design

The optimizer finds a structure with important outline and curvature which creates some pro-
nounced load patches allowing the transmission of the load to the basis of the structure.
Figure 5.27 shows the history of the objective function throughout optimization.
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Figure 5.27 Circular holed plate: History of the objective function
throughout shape optimization for the anisotropic material case.

The compliance was initially equal to 58.5 and for the optimal computed shape it is 2.14 x 1072.

We have a significant stiffening of 99.963%.
Figure 5.28 shows the variation of the energy states of the design. However the bending part of

energy remains substantially high.
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Figure 5.28 Shape design of anisotropic holed circular plate: History
of the contribution of the different internal energies to the total strain
energy (compliance) throughout optimization.

As in the previous case, we remark that the initial part of the bending energy to the total strain

energy drops from 98.26% to 12.7% for the optimal design.
Figure 5.29 shows the variation of the area during the optimization.
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Figure 5.29 Shape design of holed circular plate: Variation of the area
of the shell during optimization.

One remarks that the optimizer continuously increases the area of the design and that the upper
bound constraint is perfectly satisfied.

5.5.2.3 Shape and anisotropy optimal design

We presently consider the joint optimization of the shape and material properties of the circular
holed plate. The initial orthotropy angle is still ®; = 7. The polar parameters are defined through
open knot vector of order 3 and 3 control points in each coordinate direction. Thus in addition
to the 9 shape design variables, one have 15 design variables for each polar parameters; in fact
18 = 9 x 2 control parameters, reduced to 15 thanks to the continuity constraint. The total
number of constraints is 159.

Figure 5.30 shows the optimal shape obtained and the orthotropy direction.

Figure 5.30 Optimal shape for the joint anisotropy and shape design of
the holed circular plate.
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The optimal structure is almost a cone frustum. This can either be explained by the fact that the
load is applied in the es direction, and there is a slight curvature on the trunk in order to carry
in membrane as much as possible the applied load or because the tolerance on the area variation
which could be too restrictive, see Figure 5.35. Figure 5.31 shows the orthotropy direction on
the geometry. We remark that the fiber are clearly oriented towards the loading direction. In
this case the geometry is regular without any particular outline and the role of the fiber in the
stiffening and optimal design is highlighted.
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Figure 5.31 Optimal orthotropy direction corresponding to the joint
anisotropy and shape design of the holed circular plate.

Figure 5.32 shows the optimal polar moduli Ré( and Rj.
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Figure 5.32 Distribution of the optimal polar moduli Ré< and Rj.
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Chapter 5. Simultaneous optimization of shape and anisotropy

The field of the parameter R(l)( is uniform and seemingly constant over all the structure and
we note the presence of only one kind of orthotropy K = 0. Considering, the definition of the
elastic tensors in term of the polar parameters, one can see that the joint positive values of
the polar moduli with an orthotropy angle equal to zerocorresponds to increasing the elastic
coefficient EM1! which is an effective design in the present example. Indeed, the 1-axis in our
case is initially the radial direction of the holed circular plate. The values of the polar modulus
R, indicates that the stiffness is set increasing from the top to the circular ground of the design,
to which the load and effort are transmitted.

The applied load is normal to the initial flat middle-surface, and thus the structure is in a bending
dominant state. The optimal design is the one which maximizes the membrane-shear energy part
of the total energy. Figure 5.33 shows the transition of the energy from a bending state to the
membrane-shear one.
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Figure 5.33 Contribution of the different internal energies to the total
strain energy (compliance) throughout optimization.

The energy of the initial structure is carried by the bending term while the optimal structure’s
energy is carried by the Membrane-Shear (M-S) term. The figure illustrates the transition from
the bending dominant state to the membrane one.

As can be seen in Figure 5.33, the convergence in the standpoint of energy state has already
been attained after 60 iterations. The strain energy which initially was bending predominant
Ey, = 98.3% is membrane dominant for the optimal shell ~ 97.2%.

Figure 5.34 shows the history of the objective function.
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Figure 5.34 History of the objective function

Figure 5.35 represents the variation of the area during the optimization.
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Figure 5.35 Variation of the area of the shell during optimization corre-
sponding to the joint shape and anisotropy design of the holed circular
plate

On notices that the area continuously increases and the upper bound constraint on the area is
always satisfied. The results of the different optimizations performed are gathered in Table 5.1.
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Chapter 5. Simultaneous optimization of shape and anisotropy

Material
Anisotropic Isotropic
Design 0 1 2 4 0 1
Compliance 58.5 2.14x 1072 N/O 2.78 x 1073 4.3 452x1073
En(%) 1.74 87.19 97.54 1.65 97.45

Table 5.1 Summary of the different optimizations concerning the holed
circular plate.

In the previous table the integer numbers have the following meanings: initial design (0), shape
optimization (1), orthotropy angle and shape design (2), the three polar parameters and shape
design (4) and finally N/O stands for Not Optimized.

5.5.3 Plate submitted to torsional load

In what follows, we consider a square plate of unit length clamped at one boundary and subjected
to torsional load at the opposite side. The torsion is produced by two concentrated loads at the
two vertices of this edge, see Figure 5.36 with f = f e3, and f = 1000N.

A

Figure 5.36 Geometric description of the plate under torsion

In order to satisfy iso-loading, the design is subjected to fix place constraint on the four edges,
i.e the corresponding control points are kept fixed. The orthotropy is initially oriented with an
angle #1 = 0 and along the x-axis direction. The design is subjected to bounded area constraints
of tolerance €;,; = 0.2. The plate is defined by an assembling of 2 x 2 square plates of length
0.25m, each parameterized through a cubic B-splines with open knot vectors and four control
points.

We consider different cases of optimization. The first one concerns the optimal shape when the
design is composed of isotropic material; after we consider the shape design when the material is
anisotropic, the joint design of shape and the orthotropy orientation, and at last the joint design
of the anisotropy and the shape. Figure 5.37 shows, respectively from left to right, the optimal
shape obtained in the case of isotropic and anisotropic materials.
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5.37.a — Isotropic material case 5.37.b — Anisotropic material case

Figure 5.37 Optimal design corresponding to the shape optimizations
with isotropic and anisotropic material for the plate under torsion

We remark that in the case of isotropic material, the outline is global whereas in the case of
anisotropic material it is localized nearby the loading region.
Figure 5.38 shows the optimal design corresponding to the cases (2) and (4).

5.38.a — Shape and orthotropy 5.38.b — Anisotropy and shape

Figure 5.38 Optimal shape corresponding to the joint orthotropy/shape
design and global anisotropy/shape design

The associated orthotropy direction fields are represented on figure 5.39.
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Chapter 5. Simultaneous optimization of shape and anisotropy

5.39.a — Shape and orthotropy 5.39.b — Anisotropy and shape

Figure 5.39 Optimal orthotropy direction corresponding to the joint or-
thotropy /shape design and global anisotropy /shape design

The polar moduli R£< and R; corresponding to the optimization (4) are represented on Figure
5.40.
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5.40.a — Optimal distribution of the parameter REX 5.40.b — Optimal distribution of the parameter R;

Figure 5.40 Optimal polar moduli corresponding to the joint design of
the global anisotropy and the shape.

Table 5.2 summarizes the different optimization results.

148



5.5. Numerical results

Material
Anisotropic Isotropic
Design 0 1 2 4 0 1
Compliance 1471.83 14.73 5.59  3.77 96.69 4.98
En (%) 3.28 91.71 94.78 94.98 16.48 93.05

Table 5.2 Summary of the different optimizations concerning the plate
under torsional load.

The common characteristic in the different optimization cases is that the optimal shape presents
interesting curvatures. For isotropic material the curvature is smooth, and global while in the
design optimization involving the anisotropic material the curvature is mostly localized nearby
the loaded region. We remark also that the optimal shape corresponds to those which are in
membrane dominated state, see 5.2. We can mention that the joint optimization of anisotropy
and shape yields to a substantially better structure according to the values of the compliance
and E,,.

5.5.4 Optimal design of a square plate under weight-load

We consider in this example a plate subjected to its own weight. The constitutive material
composing the plate is the same as in the previous examples. The plate’s thickness is ¢ = 3 X
10~2m. The orthotropy angle is initially ®; = 7. The plate is assumed to be clamped at two
opposite sides; which are also considered to be fixed for the optimization problem. The tolerance
on the area bounds is €, = 0.3. Each polar parameter is parameterized with a quadratic spline,
i.e the total number of control points are 9.

Shape and material design

We finally consider the joint optimization of the shape and the polar parameters. The total
number of design variables is 35; 8 for the shape and 27 for the polar parameters. Figure 5.41
shows the optimal shape and the orthotropy direction.
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Figure 5.41 Optimal shape for the joint anisotropy and shape design of
the plate under weight-load

The optimal fibres are oriented uniformly perpendicular to the edges with clamping conditions
and the shape is like a reverse catenary, which in fact is the shape which minimizes the bending.

The parameters R(l){ and R; are represented on Figure 5.42.
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Figure 5.42 Distribution of the optimal polar moduli Ré( and Ry of the
joint shape and material design of the plate under weight-load

One remarks that the moduli are constant over the optimal shape. The set of polar parameters
found, namely ®; = 0 rad, R[If = ROL and Ry = RY, are in fact those which maximize at the
same time the elastic moduli E™! and E??22. The evolution of the compliance and the area

throughout optimization are plotted on Figure 5.43.
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5.43.a — Objective function 5.43.b — Design area
Figure 5.43 History of the objective function and area respectively from
left to right.
Material
Anisotropic Isotropic
Design 0 1 2 4 0 1
Compliance 12.96 x 1072 1.04 x 1072 1.55 x 1073 3.80 x 10~* 4.88 x 1072 9.29 x 1074
E. (%) 18.51 94.69 96.68 95.56 20.33 95.31

Table 5.3 Summary of the different optimizations concerning the plate
under weight-load.

In these different cases the optimal shapes are similar. Analyzing the results in Table 5.3, one
concludes that, for the optimizations which involve the anisotropic material, the best design is
obtained when a joint design of the shape and all the polar parameters is performed. A common
characteristic of the optimal design is that the membrane-shear contribution to the total strain
energy is ~ 95%.

Figure 5.44 shows the history of the internal energy through the optimization. We emphasize
that in both cases of anisotropic and material design, the substantially high part of membrane
energy ~ 20%, corresponding to the initial designs is due to the shear forces contribution.
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Figure 5.44 History corresponding to the internal energies.

5.6 Synthesis

We focused in this chapter on the optimal design involving the shape design. Some joint opti-
mization of both shape and material have been considered. The first part of this chapter was
devoted to the shape parameterization using B-spline functions. We have further specified the
derivatives with respect to the shape design variables which can allow to use gradient-based opti-
mization algorithms. The derivative when the design involves assembling of shells is computed in
the standard way but involves the derivative of the local junction matrix (of displacement and ro-
tation continuities). Several examples presented show the interest of the joint isogeometric-polar
formalism coupling.
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Conclusion and Perspectives

Conclusion

The first part of this thesis was mostly devoted to shell analysis aspects. We proposed in chap-
ter 3 a new approach for the analysis of shells assembling. The method described involves the
well-known mortar technique which is commonly used in domain decomposition. The advantage
of this technique is that the meshing of each shell can be performed independently thanks to the
enhancement of nonconforming discretizations.

The second part of this manuscript dealt with the optimization of shell structures. In the first
half, we focused on a suitable parameterization of the elastic tensor using on one side a polar
formalism, which allows to represent the elastic tensor by means of invariants and angles (the
so-called polar parameters), and on the other an isogeometric approach through a B-spline based
parameterization for the above polar parameters. The proposed approach possesses several ad-
vantages. First, it allows to exhibit the different aspects of the elastic material and to properly
reveal the anisotropy features, i.e the dependence of the elastic behavior with respect to the
fiber reinforcement direction. Second, the different parameters of the elastic tensor are explicit,
i.e the isotropic and the anisotropic parts to be designed are clearly identified. And third, the
parameterization introduced allows to reduce the number of design variables and constraints
satisfied by the elastic tensor coefficients. Several material design problems have been solved to
show the effectiveness of the method and its capability to tailor locally the material properties
distribution.

The last topic treated in this work was the shape and anisotropy design of shells. For that pur-
pose we have considered the case of a structure defined through a unique regular mapping and
also the case of an assembling of shells. A polar formalism for the elastic tensor representation
and an isogeometric (B-spline) parameterization for the polar parameters and the shape are ap-
plied. Several optimization examples are performed involving structures in bending dominated
state.

Perspectives

From a mechanical analysis standpoint, further works can be done by implementing a noncon-
forming discretization, i.e an analysis with finite elements of different orders from one shell to
another. The approach developed in this work can be extended to nonconforming junctions for
which the interface between shells is not necessarily an entire parametric curve. Another perspec-
tive could be to work on techniques allowing to avoid the numerical locking which is inherent to
most of shell finite elements.
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As for the shell structure optimization, the computation of the derivatives performed can further
be useful for an optimizer using a gradient-based algorithm. Future works and applications may
consider more complex geometries such as those found in an industral context. This task is not
trivial since the geometry from CAD software is often made of trimmed surfaces. Finally the op-
timal design of composite shells might further be investigated. In fact the optimization problem
involving the optimal design of anisotropy tackled in this thesis can be viewed as a first step
towards the design of composite structures through a bilevel optimization: one level concerning
the design of the homogenized elastic properties of the laminate and the second level relative to
the definition of the optimal stacking sequences corresponding to the global homogenized elas-
tic properties retrieved at that first level. The second level optimal design could be performed
through a genetic algorithm such as BIANCA [73], [53].
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A5.2 Optimisation . . . . . . ... 176

A.1 DMotivations

Le conception (design) optimale est une question naturelle qui se pose dans de nombreuses
taches quotidiennes. Cette question est rencontrée dans plusieurs domaines tels que le génie
civil, I'aéronautique et I’automobile ot le défi de construction de structures légéres, respectueuses
de ’environnement et consommant moins de carburant, est d’'une importance primordiale. Une
telle tache présente beaucoup de challenges car la conception optimale est soumise & beau-
coup de contraintes. En effet, la conception optimale, par exemple la plus légére, doit permettre
d’assurer de bonnes fonctionnalités ou performances. Différents types de structures sont con-
cernés, a savoir les structures de surfaciques telles que les plaques et les coques qui représentent
une part prépondérante des constructions; par exemple, les structures surfaciques représentent
plus de 70% d’une automobile (voir Figure 1.1 page 6).

Depuis de nombreuses décennies, les structures composites sont intensivement utilisées grace a
leur comportement mécanique et a leur intéressant rapport rigidité-poids élevé etc... Les progres
perpétuels dans la technologie des matériaux composites favorisent leur fabrication par différentes
techniques telles que I'enroulement filamentaire, la RT'M (Resin Transfert Molding) -injection de
résine- et la fabrication additive (impression 3D) et réduisent les obstacles & leur intégration dans
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les constructions. Ces structures offrent de nombreux avantages d’un point de vue géométrique
et, concernant I'aspect matériau, une réelle flexibilité d’ajustement ou de dimensionnement des
propriétés élastiques comparativement aux matériaux standards comme l’acier. L’exploitation de
cette flexibilité nécessite 'utilisation des techniques d’optimisation et de programmation math-
ématique pour 'optimisation structurelle.

L’optimisation structurelle peut étre envisagée a différentes échelles d’une structure, a savoir
la forme et le matériau constituant. La conception admissible dépend du type d’optimisation
considéré. On distingue habituellement trois classes d’optimisation : I'optimisation de forme, de
dimensionnement et 'optimisation topologique. Le premier implique la forme comme variable
de conception et la topologie n’est pas modifiée, c’est-a-dire aucune apparition ou disparition de
trous par rapport a la conception initiale. Dans le deuxiéme type d’optimisation, les variables
sont les parameétres géométriques tels que la longueur, section de poutre, la largeur ou ’épaisseur,
ainsi que les coefficients de propriétés élastiques du matériau tels que le module Young et le co-
efficient de Poisson. Le dernier type d’optimisation citée est le plus complexe mais il permet
de gérer des géométries complexes. Dans ce type d’optimisation, la topologie peut changer et
le paramétre de conception est généralement une fonction de densité qui définit la distribution
du matériau. Cette classe d’optimisation concerne principalement les problémes de réduction de
masse. Il convient de souligner, au vue de cette classification, que le dimensionnement semble
a une premiére vue le plus “simple” en raison du fait que la topologie est connue et fixe. Mais
cette classe d’optimisation englobe diverses optimisations et cache une réelle complexité. Par
exemple, 'optimisation topologique peut aussi étre considérée comme un dimensionnement des
propriétés de matériaux composés de deux phases (une forte et 'autre faible, définissant le vide).
Ainsi, optimisation de matériaux peut également étre considérée comme un type d’optimisation
structurelle a part entiére, au méme titre que l'optimisation topologique.

Dans cette thése, nous considérons ’optimisation & la fois de la forme et des propriétés matériaux
de structures surfaciques, qui représentent une part prépondérante d’une automobile. Le proces-
sus d’optimisation standard dans I'industrie est complexe et hétérogéne. En effet, 'optimisation
est interdisciplinaire et associe plusieurs composantes telles que les techniques de conception, de
simulation et de calcul scientifique. Toutes ces composantes ne cohabitent pas naturellement de
maniére homogéne. En effet, la structure initiallement congue, a ’aide d’un logiciel de concep-
tion assistée par ordinateur (CAO), doit étre fournie a un logiciel de simulation pour une analyse
structurale, dans un environnement d’Ingénierie Assistée par Ordinateur (IAO), afin de calculer
la réponse structurelle a 1’aide de méthodes numériques telles que 'analyse par une méthode
d’éléments finis (MEF) qui permet en outre de calculer la performance (fonction objectif) a op-
timiser. ’analyse MEF étant faite sur un maillage de la structure, le passage de la CAO a I'TAO
se fait au prix d’une cotiteuse étape de maillage. D’une part, ’optimisation de forme, de maniére
classique, est effectuée sur le méme maillage ayant servi & ’analyse structurelle et les variables
de conception de forme sont, dans ce contexte, les coordonnées des points de maillage. D’autre
part, lorsqu’une conception de matériau est abordée, les variables de conception des propriétés
du matériau sont habituellement définies discrétes par éléments finis.

Cette approche présente plusieurs inconvénients. Premiérement, la conversion CAO-maillage qui
prend un temps considérable détériore la conception initiale et donc la réponse structurelle; et
par conséquent, 'optimisation effectuée ne correspond pas exactement & celle de la conception
originale. Il a été démontré dans [4] que pour les structures complexes, la conversion entre la
géométrie d’origine (CAO) et le maillage représente prés de 80% du temps total de I'analyse.
Cette procédure est également intrusive. En raison du manque de générateur de maillage efficace,

158



A.1. Motivations

I’étape de maillage doit étre controlée et ajustée par un spécialiste. Deuxiémement, la complexité
du probléme d’optimisation est trés importante et demande d’énormes ressources numériques.
En outre, la conception optimale est soumise & de nombreuses contraintes relatives a la régularité
de la forme qui ne peuvent étre prises en compte facilement. Les propriétés matériaux doivent
aussi satisfaire des contraintes de continuité (des fibres) et de fabricabilité par des outils qui sont
controlés numériquement.

En résumé, la conversion de la géométrie de CAO, considérée comme exacte, en maillage (une
approximation) affecte la qualité de 'analyse structurelle qui, de ce fait, détériore sévérement
la solution optimale. La conception résultant du processus d’optimisation n’étant plus une CAO
mais un maillage, une étape de conversion de maillage-CAO est donc indispensable mais cotiteuse.
Ces derniéres années ont vu I’émergence d’une nouvelle technique appelée isogéométrique qui per-
met de réduire le fossé entre les environnements de CAO et de TAO. L’analyse isogéométrique,
développée par R.T Hughes [28], offre la possibilité d’intégrer les outils d’'TAO aux outils de
conception CAQO. Dans ce cadre, les fonctions de base d’interpolation classiques de MEF sont
remplacées par les fonctions de base CAO, c¢’est-a-dire des fonctions de Bézier, Splines et NURBS.
La désignation isogéométrique a ensuite été élargie a I’ensemble des techniques qui utilisent les
fonctions de base de décrivant la géométrie pour définir une quantité d’intérét donnée.
L’optimisation standard de la forme et des propriétés matériaux basée sur les méthodes éléments
finis implique différentes représentations géométriques, a savoir la conception de la CAO et son
approximation (maillage). La méthode isogéométrique vise donc & réduire cette hétérogénéité.
En effet, cette méthode englobe le concept isoparamétrique qui consiste & approcher la solution
d’un probléme donné ou une quantité d’intérét donné en utilisant le méme paramétrage que celui
de ‘T'objet” auquel elle est associée. Ceci se traduit dans le cadre de résolution d’équations aux
dérivées partielles par la substitution des fonctions classiques d’éléments finis par celles associées
a la représentation géométrique de la structure. Les fonctions test utilisées sont donc les fonctions
NURBS, B-Spline ou de Bézier. Un tel choix est possible car ces fonctions satisfont les propriétés
des fonctions test classiques de MEF; notamment I'indépendance linéaire et la propriété de parti-
tion de 'unité. Le concept a été élargi aux problémes d’optimisation. Dans ce cadre, les variables
de conception sont des paramétres de CAO, notamment les coordonnées des points de controle.
Parmi les références, nous pouvons citer non-exhaustivement [40, 23|, et spécialement mentionné
[56] qui concerne la conception optimale de la forme et du matériau.

Cette thése découle de la volonté de Renault de disposer d’outils capables d’aider a la concep-
tion optimale des structures surfaciques et est dans la continuité des recherches effectuées ces
derniéres années avec la thése de P. de Nazelle [35] et S. Julisson [39]. Nous nous concentrons
spécifiquement dans cette thése sur la conception optimale de formes et de propriétés matériaux
pour les structures surfaciques (coques) anisotropes.

Le manuscrit est principalement composée de cing chapitres. Un premier chapitre introductif de
rappel rapide de I’état de I’art (voir chapitre 1, page 1). Les deux chapitres suivants concernent le
modéle mécanique d’analyse structurelle sachant que les deux derniers traitent de la conception
optimale de structure. Dans le chapitre 4 nous abordons la discrétisation et 'optimisation des
propriétés matériaux. Et pour finir, dans le chapitre 5, nous nous intéressons & ’optimisation de
forme.
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A.2 Modéle de coques de Naghdi

Nous rappelons dans ce chapitre le modéle mécanique qui définit le comportement mécanique de
structure utilisé dans la suite de la thése. Nous introduisons les notations classiques de géométrie
différentielle. Les indices grecs prennent leurs valeurs dans 1’ensemble {1, 2} et les indices latins
dans l'ensemble {1,2,3}, quand ils ne se apportent pas & une suite et sauf mention contraire. Il
est réguliérement, sauf mention contraire, fait usage de la convention de sommation d’Einstein
sur les indices répétés permettant une briéveté dans la définition d’une somme; par exemple

3 3

wivt = ugv® + usv® = uivt + ugv? + ugv’.

Les quantités en gras sont des vecteurs, tenseurs et e; = e’ désignent les vecteurs de la base
canonique
e’ = @161 + @262 + @363.

On note &3 l'espace euclidien rapporté & la base canonique (eg,es, e3) et a l'origine O. Etant
donné un point P € £2, on note p = OP son vecteur position.

Géométrie différentielle

Nous définissons une coque comme une structure tridimensionnelle dont une dimension (1’épaisseur)
est négligeable devant ses autres dimensions caractéristiques, de sorte qu’elle est généralement
identifiable & une surface. On note ¢ > 0 I’épaisseur de la coque. Un point P de la coque est
défini a ’aide d’un point M sur la surface moyenne €2 et une composante suivant la normale &
la surface moyenne.

On suppose que la surface moyenne 2 est définie comme 'image d’un domaine bidimensionnel
w C R? par une carte ® € C?(w, R3). On note & = (¢4, £2) les coordonnées curvilignes dans w et
€3 la composante suivant la fibre normale & la surface moyenne de vecteur normal unitaire as.

Q= {mc & tel que m = ®(§), £ €@}

On définit la base covariante a, = ® . La coque est supposée réguliére, c’est a dire telle que a;
et ag soient linéairement indépendants

\/5 = ||a1 AN aQH #0.
Le vecteur as est donc naturellement défini comme
ag Nag = eypas, eqa = Oeteg=—eg = \/6

eqp représente les composantes covariantes des symboles de Levi-Civita.
La base contravariante a®, duale de a,, est définie par

=

a,-a’ = 55, as Aa, = e®Pa’ avec e =0, et e!? = -2 = ¢
On note (aqg) le tenseur métrique de calcul de longueur, d’aire et de mesure d’angle
GqpB = Aq - Ag.

160



A.2. Modéle de coques de Naghdi

Les composantes contravariantes du tenseur métrique sont définies par
a® = a% - a® et (a®7) = (aqs) .
Les composantes covariantes b,z du tenseur de courbure sont définies par

bog = an3 - a3.
Les composantes mixtes sont bﬁ = a:ga -ag = aPby,.

On peut donc définir le vecteur a, g( resp. af‘ﬁ), dérivée de a,, (resp. a%) par rapport a &8, par
ay3 = (aa8- ai)ai =I'gpas + bapas
a% = (af"ﬁ . al-)ai = —I'5,a% + bzas.

On note € la coque de surface moyenne 2 et d’épaisseur ¢

tt
272

Les vecteurs de la base covariante sont définis comme

QG ={pef’ p=20(&) +&%s (£¢&)cwx]| I}

8o = aq + 5333,01 =ag — béa)\ = ,U,Z\Ma)\? et gz = ag

avec p) = 0) — £3b).

Hypothése cinématique

Le modéle de coque de Naghdi se base sur les hypothéses suivantes

o La fibre normale est une ligne droite dans 1’état initial et reste une ligne droite aprés
déformation

o La fibre normale peut subir une rotation aprés déformation (contrairement au modéle de
Koiter, avec ’hypothése de Kirchoff-Love)

o La contrainte est supposée paralléle.

Le déplacement de la coque est donc décrit a 1’aide de 5 degrés de liberté : un vecteur déplace-
ment de la surface moyenne de composantes covariantes u; et la rotation de la fibre normale de
composantes covariantes s,. On note u = (u;), 8 = (8,) les vecteurs de composantes covariantes
de déplacement et rotation. Les vecteurs cartésiens de déplacement et de rotation sont :

A 1
u=wa’ et ¥(u,s)=eVs a5+ ieaﬁumaag.

Ol g = Uq,p — I'ggus designe la dérivée covariante.

On note respectivement € = €;;(g' ® g’) et o0 = 0¥(g; ® g;) les tenseurs de déformation et de
contrainte associés & la coque. D’aprés la loi de Hooke, liant le tenseur de déformation au tenseur
de contraintes, on a :

o=E:e o7 = Fke,.
Le tenseur K satisfait les relations de symmétries majeure et mineure respectivement

Eijk’l — Ek‘ll] et EZ]k‘l — E’lek‘
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Coefficients élastiques

Les coefficients élastiques sont généralement mesurés et définis dans le repére dit matériau,
indépendant de la géométrie. On note m; les vecteurs du repére matériau, tels que m; -m; = 4;;.
Ainsi donc m’ = m,. Soit AP4"® les composantes du tenseur d’élasticité dans le repére matériau;
on a Apgrs = AP, On considere que le matériau est orthotrope. Ceci induit donc les relations
suivantes :

Aaﬁ33 — 5aﬁAa5337 Aaﬁ)\3 — O’Aa512 — (5(11562 + 5&2561)A1212’ et Aa353 — 5045‘401353.

528 désigne le symbole de Kronecker §*% =1 si o = 3, et 0 sinon.
On observe que les composantes contravariantes E* du tenseur d’élasticité sont

B9 = GLGIGFGLAPT™S | avec m; = Gla; et G] =m, - al.

En prenant en compte I’hypothése de contrainte paralléle ¢33 = 0, pour un tenseur d’élasticité
orthotrope, on a

E33)\u
€33 = T 3333

On observe donc que les contraintes tangentielles sont

Ea633E33)\p,

o8 — QO"B)‘“@\”, avec Qaﬁku = FoPM _ 73333

Les composantes covariantes du tenseur de déformation sont définies par

1
¢ij =5 (Ui g+ U 8i)

On peut montrer, aprés quelques calculs, que les composantes tangentielles et de cisaillement
transverse du tenseur de déformation sont:

eoz,B(ua 3) = '704,8(“’) + §3Xaﬂ(u> S)
€a3(, 8) = Ya3(u, s)
Yap €t Xap sont respectivement les tenseurs de déformation en membrane et en flexion; 43 les

composantes de déformation en cisaillement.
L’énergie de déformation E; est défini par

Ed('u’? S) = \/Q t {Qaﬁ)\ﬂe)\ﬂ(u7 S)EQﬁ(’U;, S) + 4Ea3ﬁ36a3(u7 8)6(13(“7 S)} \/&ds d§37

avec dS I'élément d’aire dans w.

L’énergie de déformation dans le cas de coques s’obtient en intégrant suivant I’épaisseur. On
définit aprés utilisation du principe des travaux virtuels les deux problémes bidimensionnels :
statique et dynamique (étude de fréquences de vibration).

Nous précisons de maniére détaillée dans le chapitre 2 le probléme mécanique dans le cas d’un
chargement statique et dans le cas d’une étude de fréquences de vibration. Nous terminons en
rappelant le résultat d’existence et d’unicité de solution.
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A.3 Jonction de coques de Naghdi et discrétisation non-conformes

Nous définissons dans ce chapitre le modéle mécanique pour les assemblages de coques et nous
nous intéressons par la suite & sa discrétisation par la méthode des éléments finis.

Il existe deux principales approches pour la prise en compte des conditions de continuité : la
méthode mixte et la méthode directe. Nous implémentons la méthode directe selon le principe
de la méthode mortier (joint), qui permet d’intégrér les contraintes de continuité dans ’espace
variationnel. Les contraintes de continuité sont définies de maniére faible; elles sont satisfaites
contre des fonctions test convenablement choisies. L’intérét d’une telle approche est qu’elle per-
met de prendre en compte des maillages non-coincidents (non-conformes) et de discrétiser les
problémes associés a chaque coque de maniére indépendante.

A.3.1 Considérations geémétriques

On considére une surface moyenne générale ) definie comme

N
0= U Q.
k=1

Chaque surface ), est supposée réguliére, définie comme I'image d’un domaine wj, C R? par une
carte ®y € C?(wy, R3).

Nous supposons que la décomposition géométrique correspondant & €2 est conforme dans le sens
ou l'intersection entre deux surfaces moyennes distinctes est soit vide, un point ou une interface
toute entiére notée I''. T représente 'interface physique (une courbe dans l'espace Euclidien),
avec | € {1,---, L} l'indice de I'interface

Vie{l,---,L} 3n(l) #m(l) € {1,---, N} such that I* = Q,,;) N Q-

La notation k(l) dans l'expression ci-dessus, avec k € {n,m}, fait réference au fait que la sur-
face Q; dispose de I' comme interface commune avec une autre surface moyenne. De maniére
analogue, on pourra écrire ‘) pour désigner l'interface I' vue de la coque €. Soit ’yl(k) € Jwy,
I'interface paramétrique associée a l'interface I'F) = @(71(’“)). On suppose que les interfaces
~®) sont toutes deux définies comme images dun intervalle 4! par leurs cartes respectives

k) = (@?Ek)) Ainsi donc les interfaces physiques sont définies comme

A P L) (P, Tlk)

On associe naturellement & chaque coque € sa base covariante (resp. contravariante) dont les
vecteurs sont notes a;y,) (resp. a’ (k)). Une notation similaire est utilisée pour les composantes

covariantes (resp. contravariantes) du tenseur métrique angx) (resp. ao‘ﬁ(k)). Ainsi le vecteur

tangent fl(k) en un point ®x(wyx)(n)), 1 € ~! de linterface THF) | est défini par

i e} e} 8(/3?@)
tl(k) = tl(k)aa(k), avec tl(k‘) = T’r]
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Le tangente unitaire t;(;) est alors définie par

tik)

tl(k) = tloék)aa(k)’ avec tlozk) = = = .
aaﬁ(k)t?(k)tlﬁ(k)

A.3.2 Raccordement entre coques

On désigne par u;;) et s, k) respectivement les composantes covariantes du champ de déplace-
ment de la surface moyenne (2 et la rotation de la fibre normale de vecteur unitaire ag(;). On
introduit ’espace H' (w)

N
H'(w) = HHl(wk) = {w = (w™)— 1.y tel que wy, € Hl(wk)} .
i=1

Quand w représente une composante covariante, on utilise la notation wy). Ainsi on note u; =
(witky) et w = (u1,u2,us) € [H(w)]?. De maniére analogue s = (s1,s2) € [H'(w)]%.
Les vecteurs Cartesian de déplacement u(®) et de rotation ¥(¥) sont définis comme

. 1
u(k) = uz(k)az(k) et Ep(k) (u, 8) = eaﬁ(k)sa(k)aﬂ(k) + ieaﬁ(k)ulg(kﬂaag(k)

ot e®3() sont les composantes contravariantes de symboles de Levi-Civita

L) _ o22(0) _ 1200 _ _ 21(8) 1

=7

Soit une fonction scalaire w = (w(k))k:L N définie sur w, on note w'®) 1a restriction de (!

I'interface ~'k): (k) la notation
wi(k)

¥

= W (g |yl - Pour une fonction vectorielle w = (W(k)>k:1~N’
désigne le vecteur composé de restriction de chaque composante cartésienne de wk) =

a’ a linterface /().

Conditions de jonctions

Les conditions de jonction de la coque sont
u'™ = ul™ et W) (y, 5) - tin) = P (4, ) - tin)-

La premiére correspond & la continuité du déplacement de la surface moyenne et est une con-
séquence de la transmission des efforts aux interfaces, sachant que la deuxiéme correspond & la
continuité des composantes tangentielles de rotations et est conséquence de la transmission des
moments et de I’hypothése de moment plan pour les modéles de coques.

Soient tgk) = aaﬂ(k)tlﬁ(k) les composantes covariantes du vecteur tangent unitaire t;). Ainsi on a

l(k))'

W(k) (’ll,, S) . tl(k) = E!'/t(k) (u, S) = (Sl(k)té(k) — SQ(k)tl

1
Vay,
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En particulier, pour la rotation tangentielle, vue du coté €2,,), on a

m m 1 I(m I(m
PO, 8) -ty = 0" (0, 8) = 7 i) i) (s10m 5™ = st ™).

La continuité du déplacement global de la surface €2 implique

j(m)

i) = ali sy avee ally) = &l - ayq,.

Probléme général

Le probléme générale pour ’assemblage de coques est
PROBLEM A.3.1 Trouver [u, s] € V(w) tel que
a([u, s}, [v,7]) = ([v,7]) V [v,7] € V(w).

o La forme bilinéaire a(-,-) est définie comme

afu, s, [v,7]) = > agy ([, S@)s [0 T@w))
avec a(y)(+, -) la forme bilinéaire associée a la surface moyenne €2y

agy ([Wwys Siy)ls 0wy 7)) =/ t{ QMR g (k) ) Y (v k) )+

Wg

2
¢ PR o (i) S (i) X (V) T (k) )+

E353W) s (wiy, 8783 (V1) (1)) VS

o dS désigne 1'élément d’aire sur le domaine (paramétrique) de référence w.

o La forme linéaire [(-) est définie

N
([o,r]) =Dl ([v, 7))
k=1
avec l(k)(-) la forme linéaire associée au travail virtuel des forces appliquées a la coque €.

Nous nous intéressons pour la méthode mortier & ces conditions sous forme faible. La condition
sur le déplacement est

/ sy = @l i simy)ddn, ¢ € W) € L)
;

et W(4!) étant un espace bien choisi.
On a une relation analogue pour la condition de continuité sur la rotation tangentielle.
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A.3.3 Meéthode mortier

Le point essentiel de la méthode mortier réside dans le choix de I'espace W(4!) au niveau de
chaque interface. Nous décrivons briévement le principe de la méthode mortier utilisée dans le
chapitre 3.

On consideére le probléme : Trouver w € V(w) tel que, pour tout v € V(w)

bw™®, vy = ().

V(w) C HY(w) est le sous-espace dit contraint qui intégre la contrainte de continuité globale du
champ w d’un sous-domaine a l'autre

V() = {w e H'(w) tel que w'® =™ v i€ (1, L)},

On considere wy,y) la triangulation associée au domaine wg, composée de ny éléments

N
wniey = J T
=1

On note Xy espace discret de dimension finie associé au probléme local sur le sous-domaine
wg. L’espace X est, dans le cas standard, 'ensemble des fonctions continues, polynomiales
par morceaux

Xnwy ={v € C%(wy) tel que v € Py, (T) pour tout T' € wy k) }-

O dj, désigne le degré du polynome d’interpolation de w®) sur Wh(k) et Py l'ensemble des
polynémes de degré d € N. On définit I'espace produit X = Hszl Xh(x) des fonctions polyno-
miales par sous-domaines tel que

X, = {w tel que w® e X}

Probléme local discret

Soient Nj, le nombre de noeuds du maillage wy,) et §; = () les coordonnées du iéme noeud.

On note p§k) les fonctions de forme correspondantes. Elles sont indépendantes et vérifient les

propriétés usuelles

Ny,
k k
(&) =dyet D p(€) =1,V € wnp.
i=1
L’espace Xy est alors défini comme

Xh(k) = span {(pgk))izlsz} -
(

Pour tout w®) e Xh(k), 1l existe wik) tel que

Ny
w®) &) = ngk)pgk) (&) avec wgk) = w® (&;)-
i=1

(k))

Les coefficients (w; ) sont les degrés de liberté. On introduit les notations suivantes relatives
aux degrés de liberté et a leurs partitionnements :
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(e]

le vecteur de degrés de liberté restreint au sous-domaine wy, est noté w®) = (wgk))
le vecteur de degrés de liberté sur ’ensemble des sous-domaines est noté w = (M(l), e ,Q(N ))
Si(k) I'ensemble des indices de degrés de liberté sur I'interface paramétrique k)
Sy ={i € {1,---, Ni} tel que £ € *yl(k)}
So(k) le complémentaire de (Sl(k)) I=1.L) I’ensemble des indices de degrés de liberté considérés

comme intérieur dans le sens oil ils ne correspondent pas & des noeuds qui sont sur une
interface

L
Soky = {15+ s Nk }\ U Si(k)
=1

w!®) = (wz(k))iesl(m les degrés de liberté restreints a l'interface v/*) et dy(y = card(Sy))

wO(F) — (wgk))ieso(@ Pensemble des degrés de liberté “intérieurs”.

La forme matricielle du probléme discret, local au sous-domaine wy, est: Trouver w®) e RNk tel

P OTBE) (k) — ,()Tg(h),

La matrice B®) et le vecteur £*) de dimensions respectives Ni X Nj et Np, sont définis par

B(k) = (bl]) avec bZ] = b(p(k)7p§k))7 (Zvj) € {17 e aNk}Z

)

£k = (fj(k))j:I:Nk avec f](k):l(pgk))

Afin de procéder a la discrétisation du probléme avec décomposition de domaine, on définit
I'espace W(+') comme I’ensemble des fonctions trace des fonctions test du coté non-mortier,
c-a~-d du sous-domaine w;,()

W) = {f € C°G!) tel que f(n) = Y f;p\"(€) avec € = @iy (n)}
ieSl(n)

PROBLEM A.3.2 (Probléme global) Trouver w € H'(w) telque : Vk=1:Netl=1:L

b(w(k), U(k)) = l(v(k))

W) = plm) Vv e H (w) tel que v/ = ¢!(m) (A1)

C’est a dire trouver w € V(w) tel que

b(w™,v®)) = 1)), Vv € V(w),

N

Notons Ny le nombre de degrés de liberté sur ’ensemble des sous-domaines Ny = ZNk' Le

k=1

probléme discret correspondant dans une formulation standard est alors
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PROBLEM A.3.3 (Probléme global “discret”) Trouver w € X, de vecteur de degrés de liberté
associé w € R4 tel que

sEBEHE) = BT

- W) lm) , Vv e Xy tel que o/ = yl(m), (A.2)

avec v!(®) n € ’Yl = ol(k) (n) = Z v§k)p§k)(<ﬁz(k) (m)).

iESl(k)

Le probléme discret avec une formulation de type mortar est:

PROBLEM A.3.4 (Probléme global discret avec mortar) Trouver w € RV, vecteur de degrés de
liberté de w € X, tel que

v OBE B = OTER) oy eV, (A.3)

avec

Vi, = {w € Xy, tel que / (wl(”)sl(n) — wl(m)sl(m))pgn)dn =0, pour tout i € Sl(n)} . (A4)
,Yl

En définissant la matrice M*)| de dimension di(n) X diy:

M = / €y E)sin (. T € {1, digy ) € {1, diy), (A.5)
v

I'intégrale dans 'espace Vy,, Eq. (A.4), peut s’écrire sous la forme matricielle

Ml(n)wl(n) _ Ml(m)wl(m) )

Dans I'expression (A.5), i (resp j) sont les indices correspondant & 7 (resp j) dans la numérotation
globale, i € Sy(,) (resp. j € Syx))-

Ainsi, les degrés de liberté w'(™ peuvent alors étre définis en fonction des degrés de liberté du
coté mortier

w'™ = RO ayvee RO = ML) 1MHm)., (A.6)

Pour la suite,

o on réarrange le vecteur de degrés de liberté w comme suit

QT:(MO(TL) wl®  qlm) wo(m)),

o on introduit le vecteur de degrés de liberté indépendants w
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L’ensemble des degrés de liberté sur le domaine w est défini, en fonction des degrés de liberté
libres ou indépendants, par la matrice M, appelée matrice de raccord

IO(n)
R®

l )
Togm)
(m)

0
I
To() est la matrice identité associée au degrés de liberté intérieurs d’indices Sy(x). En particulier

(A7)

pour k = m, on a Iy, = diag(If)(m)7 Ig(m)); ol Ié(m) (resp. Ig(m)) est la matrice identité associée
aux degrés de liberté d’indice S,y (resp. So(m))-
Le probléme discret avec mortar est alors :

PROBLEM A.3.5 (Probléme global mortar sous forme matricielle) Trouver @ € RY4=%) tel que
?'B,,w = v'f,,.

ou B,, et f,, sont respectivement la matrice et le vecteur associés au probléme global avec
intégration des contraintes de raccord par la méthode de type mortier

B,, = MTBM, B = diag(B™, B™); f,, = MTf, fT = (f(») (), (A.8)

Nous décrivons la méthode dans le chapitre 3 spécifiquement pour les assemblages de coques.

A.4 Optimisation d’anisotropie et propriétés matériaux

Dans ce chapitre nous nous focalisons sur la définition d’une discrétisation adaptée pour ’optimisation
des propriétés matériaux. La motivation pour I’approche que nous proposons provient du fait
que la discrétisation des variables dans le processus standard d’optimisation structurale se base
sur la résolution par la méthode éléments finis et conduit & un nombre de variables et contraintes
d’optimisation (la complexité) qui dépend du nombre des éléments finis.

L’approche que nous proposons repose d’une part sur la représentation du tenseur d’élasticité
a 'aide de paramétres polaires et d’autre part a sur la discrétisation de ces paramétres par
des fonctions B-splines. Le formalisme polaire permet de définir le tenseur d’élasticité a ’aide
d’invariants et d’angles. Il repose sur un changement de variables complexes et présente plusieurs
advantages dont notamment le fait que le tenseur d’élasticité dans un repére obtenu par rotation
s’obtient simplement par soustraction d’angles. La discrétisation avec des fonctions B-splines
permet d’avoir un nombre de variables réduit, des propriétés matériaux réguliéres et de pou-
voir définir un nombre limité de contraintes assurant le respect de contraintes qui doivent étre
strictement vérifiées en tout point de la structure.

A.4.1 Formalisme polaire

Les parties plane et hors-plan du tenseur d’élasticité, apparaissant dans la forme bilinéaire as-
sociée a I’énergie de déformation, aprés prise en compte de I’hypothése de contraintes paralléles,
sont respectivement QM et E*373 Nous les représentons & ’aide du formalisme polaire que
nous rappelons ci-dessous.
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Parameétres polaires tenseur plan d’ordre 2

On considére un tenseur symétrique du second ordre L = (L*?). La représentation correspon-
dante en formalisme polaire est:

LY =T + Rcos2®
L' = Rsin2d
L? =T — Rcos2d

Les paramétres polaires T, R et @ sont définis en fonction des composantes L*? par

1 1
T = —tr(L) = = (LM + L??)
2 2
A1 122\ 2
2L12
tan 29 = m

Paramétres polaires tenseur plan d’ordre 4

On considére un tenseur plan d’ordre 4 E, de matrice représentative

Ellll E1122 E1112

EP = E1122 E2222 E2212
E1112 E2212 E1212

Les coefficients E**M sont définis en formalisme polaire par

EMW — Ty 4 9T, + Rycos 4Py + 4R, cos 2P,

EM2  —  Rysind®g + 2R, sin 24,
EW22 — _T, 42T, — Rycos 4Py

1212 (A.9)
E = Ty — Rgcosddy

E'222 — _Rysinddy + 2R, sin 2&,
E?22  — Ty + 2T + Ry cos 4Py — 4Ry cos 2d,

En supposant que les coefficients E*PM sont les coefficients dans le repére orthonormé (mp, my).
On note (dj,ds2) le repére obtenu par rotation d’un angle ¢

d; = cosfm; + sin fmy

ds = —sinfm; + cos fmsy

Notons E*M(6) les composantes du tenseur d’élasticité dans le repére (dy, ds). Les coefficients
EBM(f) sont obtenus en substituant @, < &, — 6, avec o € {0, 1}.

To, 11, Ry et Ry sont des modules et &g et @1 des angles. Ty, 11, Ry, R1 et &g — @1 sont des
invariants du tenseur E :

o Ty et T} sont les invariants de la partie sphérique
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o Ry et Ry sont liés a la partie déviatorique (anisotrope).

La différence d’angles est invariante, ainsi seul 'un deux est libre. L’angle @, fixe le repére. Un
choix usuel consiste & poser @1 = 0 et correspond & définir la plus forte rigidité suivant le premier
axe.

Les symétries élastiques peuvent étre définies en fonction des paramétres polaires. On a par
exemple :

o pour une symétrie isotrope
Ry =Ry =0.
o pour une orthotropie ordinaire on a la relation
By — By = K%, avec K € {0,1}.
On s’intéresse a des matériaux orthotropes ordinaires. Le coefficient K définit le type d’orthotropie
et joue un réle important en optimisation. Typiquement, le changement d’une valeur a l'autre

change une solution optimale en anti-optimale (vice-versa).
En posant ¢1 = 0, &9 = K7, on a pour une élasticité ordinaire orthotrope:

( EMY(0) = Ty + 2T + R cos 40 + 4Ry cos 20
EM2(9) = —REsin 40 — 2R sin 20
EN2(0) = —Ty+ 2T — R cos 40 (A.10)
E@212(0) = Ty — Rl cos 46 '
E22(9) = REsin 40 — 2Ry sin 260
| E22(0) = To+2T) + R cos 40 — 4Ry cos 20
avec RE = (=1)K Ry
Contraintes sur les paramétres polaires
Les contraintes élastiques de définie-positivité de E sont :
T\[To + REK] > 2R?
Ty > |REK] . (A.11)

R >0

Dans le cas de matériau composite constitué de couches avec des matériaux identiques dont les
paramétre polaires sont notés avec un exposant “L”, on a

To = Ty
o (A.12)
Tl == Tl
Les contraintes de bornes géométriques sont
2 RK
2 <1%> s T
Ré( < R%’ . (A.13)
Ry < Rf
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Elles sont plus restrictives que les contraintes élastiques. En effet les composites constituent une
classe restreinte de matériaux. Ainsi lors de 'optimisation des composites les contraintes élas-
tiques (A.11) sont remplacées par les contraintes géométriques (A.13). D’autre part, pour les
composites dont les couches sont faites d’'un méme matériau de base, avec les conditions (A.12),
le nombre de paramétres polaires & optimiser se réduit & trois : R{f , Ryet@.

A.4.2 Discrétisation des paramétres polaires

On propose deux types de paramétrage, principalement guidés par la contrainte quadratique
figurant parmi les contraintes élastiques ou géométriques :

o le premier, dit conforme, consiste 3§ paramétrer R{f et R} par des B-splines de mémes
vecteurs de knots et mémes ordres

o le second, dit direct, revient & paramérer R; et R5< par des B-splines de mémes vecteurs
de knots et mémes ordres.

Les fonctions B-splines sont définies a I’aide de polynomes B-splines avec des coefficients appelés
points de contréle. On note Bg les polynémes B-splines définis a ’aide de vecteurs de knots
3 = (X9),_1.9- X% représente le vecteur de knots dans la direction paramétrique associée a la
coordonnée £ et est constitué d’'une séquence croissante de nq + dq + 1 réels appelés knots, avec
d = (dq). Les fonctions Bfij sont définies par produit tensoriel de polynomes de base B-splines
d’une variable, qui eux mémes sont définis de maniére récursive grace a la formule de Cox-de-
Boor (voir (4.3.1) page 75). Les polynomes de B-splines ainsi définis sont de degrés d, suivant
la coordonnée £<.

Les fonctions de B-splines vérifient entre autres les propriétés de positivité

0<BYE) <1, Vécw.
En choisissant les vecteurs de knots X% = (§%)i=0:n.+d. tels que

£ =68 = =€, bno =bnurz = =€ L4,

les polynoémes de base vérifient la propriété de partition de 'unité

ni—1na—1

Y Bj®)=1Veécw

i.j=0

Soit Sp(X,d) C C°(w) l'espace des fonctions B-splines de dégrés d définies par n, points de
contréle dans la direction paramétrique £

ni,n2
Sp(E,d):=< P:w— Rtel que P(§) = Z ping (€)
l’]:1

Dans la définition précédente, les p* sont les points de controle associés aux polynomes de base
]
Bj.
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A.4.3 Prise en compte de contraintes

On s’intéresse a des contraintes de la forme :

C§) :=a P(§)+bQ(§) +c<0.

En supposant que P,Q € Sp(X,d) sont tels que les points de début et de fin des vecteurs de
knots X% sont de multiplicité compléte, c’est-a-dire égale & d,, + 1. En notant p* et ¢* les points
de controle de P et @, on a

V(i,5) € {0, ,ny —1} x{0,--- ,no—1} ap? +b¢7 +c<0=C(£) <0, V£ € w.

Il s’agit de conditions suffisantes mais non nécessaires. Nous discutons plus en détail, au chapitre
4 page 69, les deux paramétrages proposés, leurs avantages et leurs limites propres. La principale
limite provient du fait que les contraintes sur les points de controle sont fortes, elles peuvent
donc restreindre la capacité d’exploration de ’espace de conception. Des résultats numeériques
sont finalement présentés.

A.5 Optimisation conjointe de formes et propriétés matériaux

Le modéle mécanique de coque permet de paramétrer le probléme mécanique par la forme, ce
qui rend possible I’étude de sensibilité de la mécanique par rapport & la forme. On s’intéresse
dans un cadre isogéométrique & des fonctions définies par des cartes B-splines. Les variables de
conception des propriétés matériaux et de forme sont donc les coordonnées des points de controle.

A.5.1 Géomeétrie et paramétrage de la forme

On considére que la coque 2 est définie & 1’aide de cartes B-splines ® € C?(w,R3) N By(X, d).
Dans le cas général d’assemblage de coques, on pose

N
=%
k=1
chaque surface moyenne ), étant I'image du domaine paramétrique wy = [0, 1]? par sa carte

O = @i(k)ei. On note p; j(x) les coordonnées des points de controle, d’indices (3, j), associés a

), € C2(wp, R3) N By(SH), dy = (dagry)), tels que

ni,n2

ou(€) = > pijn B (€).

1,j=1

k) et dy. sont les vecteurs de knots et les ordres des fonctions B-splines associées & ®;. Pour
des raisons de simplicité, et sans perte de généralité, on suppose que

=k =3, da(k) = da €t Ng(k) = Na pour tout k € {1, , N}.
Ainsi on a

biijk(k) = bg, pour tout (4,7) € {1,--- ,n1} x {1,--- ,na}.
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Conditions de continuités (géométrique)

Supposons que linterface T'* entre les deux sous-domaines Q) et 2, correspond respec-
tivement aux coordonnées paramétriques 5(1n) =1et 5(1m) = 0. On suppose d’une part que la
décomposition est conforme, c’est-a-dire que l'interface entre deux sous-domaines est soit vide,
soit un point, soit une courbe entiére; et d’autre part que la paramétrisation est conforme et que
les vecteurs de knots associés a T'%) sont identiques et définissent des B-splines de mémes ordres.
Les points de controle correspondant & I'interface sont alors :

o du coté “mortier” TH™) (pn,j(m))jzlm.
o du coté “non-mortier” TH™) (plaj("))jzlm'
La contrainte de continuité C°

@ (1,07 (1)) = @ (0, 07, (1)

se traduit par simple coincidence ou égalité des points de controle:

Pryjtm) = PLi(n) = Pj» V5 € {1+ na}. (A.14)

D’autre part, la contrainte de continuité C' se traduit, en plus des égalités de continuité CY,
par :

P, (1, solz(m)(n)) = @7, (0, 8012(n) (), pour tout n € 7.

Cette condition implique les relations suivantes sur les points de controle:

d1 dl
1 — 51 (pnl,j(m) _pnl—l,j(m)> f E (pQ,] pl,j(n))'
n1+di ni di1+2 2
En tenant compte du fait que les vecteurs knots sont encastrés, c-a-d, £ =0, i € {1,--- ,d; +1}

et =1, i€{m+1,-,n+d +1}, ona

1 1
T g Prugim) = Pra-1jm) = 7 (P2jim) = Prjom):
ni

gdl +2

En prenant en compte les relations de continuité, on a

1 1
—a1 (G0 = Pru-iom) = g (Pje ~ G)
n1 di+2
1 §Cll (A.15)
+2
=D2,j(n) = i) (1 + §n1 ) ~ Pr—15(m) 7 _15%1 )

Matrice de raccord géométrique

On note que dans le cas d'une continuité C*, a € {0, 1} onanj xng+(ny—(a+1)) X ny points

j=Lling j=Lin

de contréle indépendants : (10Z J(m))z Ly (pw(n))z N +2 - . Plus précisément
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o pour une simple continuité C° le nombre de points de controle indépendants est 71 X1 —na,
Jj=1lng Jj=1lng

(pivj(m))izl:nl ? (plv](n))z:2n1

o concernant une continuité C', on ny X ny — 2 X ng points de controle indépendants,
Jj=1lmo Jj=1lno
(pi,j(m))izhm ) (pi,j(”))i:&m :

On pose p = [(pij(m))zzfsf (p”(n))zzll::j et on introduit p le vecteur de points de controéle

indépendants. Pour des raisons de simplicité, on utilise un mono-indice avec p = (p;)

i=1nfy
Pi=1lmny, = (pij(m))'z':llanj:l:nQ
~ J=1lmn2
Pi=nip+1ng, = (pij("))i=a+2;n1 , avec nia =ng X ng et n{y =2 X njg — (a + 1) X na.

n{; est le nombre de points de controle indépendants pour une régularité C*. Au vue de I’équation
(A.15), on introduit le coefficient cg

1 sif=0
cg = & .
o (1+ 72 sif=1

On note G“ la matrice de raccord géométrique pour une continuité C'* exprimant les points de
contréle p en fonction des points de controle indépendants p

p=6p.
Dans le cas d’une continuité C%, avec a € {0, 1}, il s’agit d’une matrice de dimensions (2 x ni2, nfy).

Coefficients de la matrice Gg¢

La matrice G% de raccord géométrique pour une régularié C'%,

1. Pour les points de contréle indépendants du c6té mortier
gii =1, i€ {1, ,nia}.
2. Pour les points de controle sur 'interface c6té non-mortier
Iniei) =L nli) =ni2+ (G —1) x ny +1and c(j) = j xn1, j € {1,-- ,na}.
3. Pour les points de controle indépendants c6té non-mortier
9765065 =L i €{a+2, ni}, jE{L - na},
avec
I(i,j) = (= 1) xny +1i) +nie, et J(i,5) =ni2+ (G —1) x (n1 — (a+1))+ (i — (a+1))
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4. De plus pour une régularité C', a =1 on a : pour j € {1,--- ,ns} et g € {0,1}

91(3).J(m—B.4) = €8
ott le nombre réel cg est défini par
éé1+2 : _
1+ gl if 8=0
ni

_fne if g=1
1—¢L, -

Cp =

9

avec I(j) et J(7,7) tels que :

I)=n2+ (G —1)xn+1, Ji,5) = —1) x ng + 1.

A.5.2 Optimisation

Les variables d’optimisation de forme sont alors les coordonnées des points de controle indépen-
dants (p;)

Jj=1lng"
Nous considérons comme fonction objectif la compliance dont la fonction cott J est définie par

J(u)=u"Ku=fTu

Soit p un paramétre de conception (point de contrdle) de forme ou de propriétés matériaux. On
trouve aisément, en calculant d,u a I'aide de 'équation d’état Ku = f, que

OpJ (1) = 20,fTu — u"Ku.

Gradient pour assemblage de coques

On note 6Z(k) la dérivée par rapport a la j-éme coordonnée de pjy), i-éme point de controle

définissant la surface moyenne €. On désigne par 8! la dérivée par rapport a la j-éme coordonnée

du point de contrdle indépendant p;, i € {1,--- ,nf} et j € {1,2,3}. On pose ViE) 1e vecteur
de dérivées par rapport a la j-éme coordonnée de la coque

vitk) — (3{< )L 3%(1;) ,
On pose VI = [Vj(m) Vj(”)]. V7 représente le vecteur de dérivées par rapport a la j-éme

coordonnée sans prise en compte de la condition de liaison géométrique. Le vecteur V7 de dérivées
par rapport & la j-éme coordonnée des points de contréle indépendants p est défini par

VI = [TV

Le gradient par rapport a I’ensemble des coordonnées des points de controle indépendants p est
alors V = [Vl V2 V3] .

176



Résumé de thése

Dérivée de la matrice de raccord

Dans le cas d’assemblage de coques, et d’utilisation d’'une méthode de gradient, il s’avére néces-
saire de calculer la dérivée de la matrice de raccord mécanique liée & la contrainte de continuité
de déplacement et de la composante tangentielle de rotation, par rapport aux variables de con-

ception liées aux interfaces, dans le présent cadre illustratif (pnhj(n)) et (P1,j(m))

j=1lmng j=ling’

En effet, en considérant par exemple ’équation (A.8) page 169, on a
B,, = M"BM = 9,B,, = 0,M"BM + M"0,BM + MTB0, M.
On retrouve que

0
0
9,M — @3

0

0 étant une matrice nulle de dimensions consistantes avec la définition de M (equation (A.7)
page 169). De la formule (A.6) page 168, on a

apR(l) _ ap[Ml(n)}—lMl(m) + [Ml(n)]—laMl(m)
_ _[Ml(n)]—lale(n) + [Ml(n)]—l + [Ml(n)]—laMl(m) (A.lﬁ)
— _[Ml(n)]—lale(n)R(l) + [Ml(n)]_laMl(m)

On s’intéresse dans le chapitre 5 a4 'optimisation de forme et propriétés matériaux dans le cas de
coques. On décrit les différents aspects de calcul de gradient pour les assemblages de coques. Ce
calcul implique notamment la prise en compte du raccordement mécanique entre les coques et
du raccordement géométrique des patches entre eux avec la matrice G%. Le chapitre se termine
par des exemples numériques sur I'optimisation de forme et 'optimisation conjointe forme et
propriétés matériaux.
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