
HAL Id: tel-01694135
https://theses.hal.science/tel-01694135

Submitted on 26 Jan 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Managing and modeling web service evolution in SOA
architecture

Wei Zuo

To cite this version:
Wei Zuo. Managing and modeling web service evolution in SOA architecture. Web. Université de
Lyon, 2016. English. �NNT : 2016LYSEI068�. �tel-01694135�

https://theses.hal.science/tel-01694135
https://hal.archives-ouvertes.fr

N°d’ordre NNT : 2016LYSEI068

THESE de DOCTORAT DE L’UNIVERSITE DE
LYON

opérée au sein de
(L’institut National des Sciences Appliquées de

Lyon)

Ecole Doctorale N° 512
(Informatique et Mathematiques)

Spécialité de doctorat : Informatique
Discipline : Informatique

Soutenue publiquement le 05/07/2017, par :
(Wei ZUO)

Managing and Modeling Web
Service Evolution in SOA

Architecture

Devant le jury composé de :
NURCAN, Selmin HDR Université Panthéon Sorbonne, Paris 1 Rapporteur
VERDIER, Christine Professeur Université de Grenoble Alpes Rapporteur
MARET, Pierre Professeur Université Jean Monet Examinateur
AMGHAR, Youssef Professeur INSA-Lyon Directeur de thèse
BENHARKAT, Nabila Maître de Conférences Co-directrice de

thèse

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI068/these.pdf
© [W. Zuo], [2016], INSA Lyon, tous droits réservés

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI068/these.pdf
© [W. Zuo], [2016], INSA Lyon, tous droits réservés

Cette liste est mise à jour annuellement par le Département FEDORA en collaboration avec les Ecoles Doctorales.

INSA LYON Année Universitaire 2015-2016
Service Scolarité
Bât Camille Claudel

ECOLES DOCTORALES – SPECIALITES
A REMPLIR LORS DE VOTRE INSCRIPTION
A établir obligatoirement avec votre directeur de thèse

 Nom : _____ZUO________________ Prénom : _______Wei_____________ Signature :

ECOLES DOCTORALES
n° code national

SPECIALITES Cocher la case

correspondante

ED CHIMIE DE LYON

(Chimie, Procédés, Environnement)

EDA206

Chimie

Procédés

Environnement







HISTOIRE, GEOGRAPHIE, AMENAGEMENT, URBANISME,
ARCHEOLOGIE, SCIENCE POLITIQUE, SOCIOLOGIE,

ANTHROPOLOGIE
(ScSo)

EDA483

Géographie – Aménagement - Urbanisme



ELECTRONIQUE, ELECTROTECHNIQUE, AUTOMATIQUE

(E.E.A.)

EDA160

Automatique

Génie Electrique

Electronique, micro et nanoélectronique, optique et laser

Ingénierie pour le vivant

Traitement du Signal et de l'Image











EVOLUTION, ECOSYSTEMES, MICROBIOLOGIE ,
MODELISATION

(E2M2)

EDA 341

Paléoenvironnements et évolution

Micro-organismes, interactions, infections

Biologie Evolutive, Biologie des Populations, écophysiologie

Biomath-Bioinfo-Génomique évolutive

Ecologie des communautés, fonctionnement des écosystèmes,
écotoxicologie











INFORMATIQUE ET MATHEMATIQUES DE LYON

(InfoMaths)
EDA 512

Informatique

Informatique et applications

Mathématiques et applications







INTERDISCIPLINAIRE SCIENCES-SANTE

(EDISS)
EDA205

Biochimie

Physiologie

Ingénierie biomédicale







ED MATERIAUX DE LYON

EDA 034

Matériaux



MEGA DE LYON

(MECANIQUE, ENERGETIQUE, GENIE CIVIL, ACOUSTIQUE)

(MEGA)

EDA162

Mécanique des Fluides

Génie Mécanique

Biomécanique

Thermique Energétique

Génie Civil

Acoustique













 Pour le Directeur de l’INSA Lyon

Et par délégation
Marie-Christine BAIETTO
Directrice du Département FEDORA
Formation par la Recherche Et des Etudes Doctorale

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI068/these.pdf
© [W. Zuo], [2016], INSA Lyon, tous droits réservés

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI068/these.pdf
© [W. Zuo], [2016], INSA Lyon, tous droits réservés

i

Managing and Modeling Web Service Evolution in SOA
Architecture

Abstract

The context of this thesis concerns the evolution of web services in SOA
architectures. We mean by evolution all changes of one or more elements of the
service contract resulting each time a new version of the service. In addition, we
are in the event where versions of services are preserved and maintained as they
cannot be all used simultaneously. We are also interested in this thesis, in the
effects of these developments on the entire information system and the actors
who interact with services. This work is therefore in the field of service versions
management with significant ramifications in the areas of business processes
and software development. To ensure a smooth and consistent transition between
the different versions of a Web service, we advocate for a change-centric model
in which necessary changes are identified, planned, implemented, tested, and
then notified to all necessary stakeholders. A major consequence of changes in
Web services is to review the mechanisms that bind organization applications to
these Web services. This review is usually time-consuming and error-prone and
sometimes requires the suspension of ongoing operations prior to shifting to new
applications. To mitigate this review’s consequences on applications,
organizations tend to be passive by either ignoring the changes or delaying their
adoption. In either case there is a high risk that providers of Web services stop
supporting old versions (e.g., too costly to maintain), forcing organizations to
take immediate actions, which could turn into chaos. Even if an organization is
willing to embrace the changes, there are no guarantees that the transition to a
new version will be a success. Organizations end-up using different versions of
the same Web service, which is simply “unhealthy”.

This thesis aims to build a holistic model for managing the Web Service
evolution in service-oriented architecture taking into account services versions.
The main work of this thesis is a set of theoretical models and approaches that
facilitate the Web Service consumer and provider to handle the issues of Web
Service evolution. Additionally, we also provide an implementation
methodology which presents and validates the feasibility of the proposed model.
Along with the theory and practice contribution of the work, we build a
complete scenario to evaluate the whole work. The main contributions are i) the
development of holistic theoretical change-centric model for managing Web
Service evolution, ii) the change specification for representing Web Service
evolution in the context of versions management, iii) the change impact analysis
approach for Web Service evolution, and iv) a semi-automatic client adaptation
for Web Service evolution.

Key words: Web Service, evolution, changes, dynamic, adaptation, WSDL,
impact analysis, programming.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI068/these.pdf
© [W. Zuo], [2016], INSA Lyon, tous droits réservés

ii

Gestion et Modélisation pour l’Evolution des Services Web dans
L’Architecture SOA

Résume

Cette thèse traite de l’évolution des services web dans les architectures
SOA. L’évolution s’entend ici comme tout changement impactant les contrats
de service à chaque nouvelle version de service. Nous nous inscrivons
volontairement dans le cadre de la préservation des versions et de leurs
utilisations par des compositions de services ou par des applications
quelconques. Nous nous intéressons également aux effets et impacts de ces
changements sur l’ensemble du système d’information en particulier sur les
acteurs et les processus d’affaires. Ce travail se situe principalement dans le
domaine de la gestion des versions de services avec des ramifications dans le
domaine des processus d'affaires et du génie logiciel. Afin de pouvoir utiliser
des versions différentes en fonction de règles imposées par les consommateurs
de service ou les fournisseurs, nous proposons un modèle capable de prendre en
compte les changements en termes d’identification, de planification,
d’implémentation, de tests et de notifications aux acteurs du système
d’information. Dans ce contexte, un des problèmes majeurs est celui de relier les
applications et les consommateurs aux nouveaux services. La résolution de
problème est a priori difficile si on considère que les solutions qui pourraient y
être apportées sont consommatrices en temps d’exécution, génératrice d’erreurs
voire entrainant des arrêts de services. Ce coût du changement conduit souvent à
ne pas entreprendre des évolutions ce qui en fin de compte est dommageable
pour les organisations en général. Quoi qu’il en soit, les migrations de services
d’une version à une autre peuvent conduire les consommateurs à éviter les
nouvelles versions en dépit de la plus-value que ces dernières peuvent apporter
car trop couteuses à maintenir).

Pour répondre à cette problématique, nous proposons un modèle holistique
capable de décrire l'évolution des services dans les architectures SOA en prenant
en compte les différentes versions de services durant leur cycle de vie. Ce
modèle fait l'objet d'une méthodologie spécifique qui conduit à son implantation
avec pour but de montrer sa faisabilité et sa validité. Cette méthodologie
s'appuie sur un scenario qui permet de confronter toutes les notions du modèle.
Plus précisément, nos contributions portent sur i) l'élaboration d'un modèle
orienté-changement pour modéliser l'évolution des services, ii) une spécification
semi-formelle pour la représentation interne de l'évolution en prenant en compte
les versions de services, iii) une approche analytique pour interpréter l'évolution
des services sur le système d'information, et iv) une adaptation semi-
automatique de la partie client lors de l'évolution de services.

Mots-Clés: service Web, evolution, changements, dynamique, adaptation,
WSDL, analyse d’ impact, programmation.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI068/these.pdf
© [W. Zuo], [2016], INSA Lyon, tous droits réservés

iii

Table of contents

Abstract ... i

Résume ... ii

Table of contents .. iii

List of figures ... vi

List of tables ... ix

1. Introduction ... 1

1.1 Research context ... 2

1.1.1 Web Service evolution in SOA .. 3

1.2 Motivation ... 4

1.3 Research questions .. 5

1.4 Research methodology .. 6

1.5 Contributions ... 7

Part I: State of art .. 10

I.1 State of art overview .. 11

I.2 Software evolution ... 11

I.2.1 Software evolution issues ... 13

I.2.2 Dynamic software evolution and adaptation ... 14

I.2.2.1 DYMOS ... 14

I.2.2.2 K-Component... 15

I.2.2.3 OSGi .. 17

I.3 Web Service evolution ... 17

I.3.1 Service oriented architecture .. 17

I.3.2 Web services evolution issues ... 19

I.3.3 Corrective approaches ... 20

I.3.3.1 Chain of adapters ... 21

I.3.3.2 WSDarwin ... 22

I.3.3.3 Gensis .. 23

I.3.4 Preventive approaches .. 25

I.4 Evolution impact analysis .. 27

I.4.1 Impact analysis at the service side .. 28

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI068/these.pdf
© [W. Zuo], [2016], INSA Lyon, tous droits réservés

iv

I.4.2 Impact analysis at the consumer side .. 29

I.5 Discussion .. 30

I.5.1 Why not RESTful Web Services? ... 30

I.6 Summary .. 32

Part II: Contributions .. 34

II.1 Motivation scenario .. 35

II.1.1 Information model of the scenario... 36

II.1.2 Web Service implementation of the scenario .. 40

II.1.3 Web Service evolution of the scenario .. 41

II.1.4 Summary ... 42

II.2 Change-Centric model for web service evolution .. 44

II.2.1 Web Service changes ... 44

II.2.1.1 Roles involved in Web Service evolution ... 46

II.2.1.2 Change specification of Web Service ... 47

II.2.2 Programming framework for Web Service evolution 53

II.2.2.1 Web Service evolution APIs ... 54

II.2.3 Resource management for runtime versioning .. 55

II.2.4 Impact analysis for Web Service evolution ... 56

II.2.4.1 Web Service evolution impact analysis on Web Service client applications
 ... 57

II.2.4.2 Adaptable Web Service changes ... 61

II.2.4.3 Web Service evolution impact analysis on Web Service compositions 62

II.2.4.4 Discussion .. 63

II.2.5 Client adaptation for Web Service evolution ... 64

II.2.5.1 Overview .. 64

II.2.6 Summary ... 65

II.3 Execution model ... 67

II.3.1 System architecture ... 67

II.3.2 Web Service provider .. 69

II.3.2.1 Programming framework .. 69

II.3.2.2 Generating Web Service changes ... 70

II.3.2.3 Examples of the evolution script for the motivation scenario 74

II.3.2.4 Versions isolation and resource management ... 84

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI068/these.pdf
© [W. Zuo], [2016], INSA Lyon, tous droits réservés

v

II.3.2.5 Web Service performance monitor ... 86

II.3.3 Web Service consumer .. 88

II.3.3.1 Implementation of the impact analysis ... 89

II.3.3.2 Implementation of the client adaptation ... 93

II.3.4 Summary ... 95

II.4 Evaluation ... 96

II.4.1 General description .. 96

II.4.2 Evaluation for the Web Service generation ... 98

II.4.2.1 Change action 1 for TS ... 99

II.4.2.2 Change action 2 & 3 & 4 for TS ... 99

II.4.3 Evaluation for the impact analysis... 101

II.4.4 Evaluation for the client adaptation ... 103

II.4.5 Limitations ... 108

Part III: Conclusions and perspectives .. 110

III.1 Conclusion .. 111

III.2 Perspectives ... 112

III.2.1 Future work on the Change-centric model for Web Service evolution 112

III.2.2 Future work on the Web Service evolution .. 113

III.2.3 Web Service evolution and the Big Data .. 115

Bibliography.. 117

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI068/these.pdf
© [W. Zuo], [2016], INSA Lyon, tous droits réservés

vi

List of figures

Figure 1 Lehman’s feedback for software evolution [9] .. 12

Figure 2 Overview of DYMOS architecture .. 15

Figure 3 General SOA communication model ... 19

Figure 4 Kaminski’s chain of adapters [28] ... 21

Figure 5 Overview of WSDarwin [30] .. 22

Figure 6 Adaptation process of WSDarwin [33] ... 23

Figure 7 Treiber’s Adaptive Programming Framework for Web Service Evolution
[42] ... 25

Figure 8 Andrikopoulos’s Web Service compatibility [21] 26

Figure 9 Overview of Marcelo’s Change Management Framework [67] 28

Figure 10 Dependency Model for Impact Analysis [68] 29

Figure 11 The working process of operation “plan travel” 36

Figure 12 TrainTicketService portType .. 37

Figure 13 Input and Output Message of “checkAvailable” 37

Figure 14 The structure of the complexType “PayModel” 38

Figure 15 The portType of “YouthHotelService” ... 38

Figure 16 Input and Output Message of “checkAvailableRoomNum” 38

Figure 17 The portType of the “BankService” .. 39

Figure 18 Input and Output Message of “pay” .. 39

Figure 19 The structure of “BillModel” .. 40

Figure 20 The “Change-Centric” SOA .. 44

Figure 21 The original version of the Web Service ... 45

Figure 22 The evolved version of the Web Service ... 45

Figure 23 Web Service Evolution in SOA ... 47

Figure 24 Leitner’s Changes Model .. 48

Figure 25 Juric’s WSDL extension .. 49

Figure 26 The process for evolving a Web Service ... 53

Figure 27 Part of the scripting API .. 55

Figure 28 Version Management for Change-centric Model 56

Figure 29 Part of the scripting API .. 57

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI068/these.pdf
© [W. Zuo], [2016], INSA Lyon, tous droits réservés

vii

Figure 30 Adding an element e10 to the Web Service information model 59

Figure 31 Modifying the e5 to the Web Service information model 59

Figure 32 Deleting the e2 from the Web Service information model 59

Figure 33 Impact Matrix for the motivation scenario .. 63

Figure 34 Web Service consumer for adaptation to the evolution 65

Figure 35 System Overview of Change-centric Model ... 68

Figure 36 Overview of programming framework .. 69

Figure 37 Internal process of execution engine ... 70

Figure 38 Class Diagram for Web Service Changes ... 71

Figure 39 Pseudo code for adding an operation .. 72

Figure 40 Pseudo code for generating changes ... 73

Figure 41 Evolution Script for the change action 1 of TS 74

Figure 42 Generated change descriptions of the adding “bookFlight” action 75

Figure 43 Generated change descriptions of the adding “arg0” action 75

Figure 44 Generated change descriptions of the adding “amount” action 76

Figure 45 Generated change descriptions of the adding “customerID” action 76

Figure 46 Generated change descriptions of the adding “return” action 76

Figure 47 Generated change descriptions for the change action 1 of TS 77

Figure 48 Evolution Script for the change action 2 of TS 78

Figure 49 Generated change descriptions of the adding “customerID” action 78

Figure 50 Generated change descriptions for the change action 2 of TS 79

Figure 51 Evolution Script for the change action 3 of TS 80

Figure 52 Generated change descriptions of the modifying “arg0” action 80

Figure 53 Generated change descriptions for the change action 3 of TS 80

Figure 54 Evolution Script for the change action 4 of TS 81

Figure 55 Evolution Script for the change action 3 of HS 82

Figure 56 Generated change descriptions for the modifying operation action 83

Figure 57 Evolution Script for the change action 4 of HS 83

Figure 58 Generated change descriptions for the modifying operation action 84

Figure 59 javassist.Loader.loadClass() .. 85

Figure 60 Resource Loading mechanism for the Web Service versioning 85

Figure 61 The Weaving process of the Performance Monitor............................... 86

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI068/these.pdf
© [W. Zuo], [2016], INSA Lyon, tous droits réservés

viii

Figure 62 Execution Engine integrates Performance Monitor Weaver 87

Figure 63 Weaving code for Web Service Performance Monitoring 88

Figure 64 Process for Web Service client to analyze the Web Service changes ... 90

Figure 65 Check the availability of the Web Service .. 91

Figure 66 Web Service Dependencies ... 92

Figure 67 Generating Web Service Proxy ... 93

Figure 68 Interface of the Web Service TrainTicketService 94

Figure 69 Generating Web Service Proxy ... 94

Figure 70 Overview of testing system ... 97

Figure 71 Result for Change Action 1 for TS .. 99

Figure 72 Result for Change Action 2 for TS .. 100

Figure 73 Result for Change Action 3 for TS .. 100

Figure 74 Result for Change Action 4 for TS .. 100

Figure 75 Generating Web Service Proxy for C2HS ... 104

Figure 76 Generating Web Service Proxy for C3HS ... 105

Figure 77 Cost of Client Adaptation .. 107

Figure 78 Class Graph for Web Service Evolution ... 114

Figure 79 Web Service Self-healing .. 115

Figure 80 Big Data analysis on the Web Service evolution 116

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI068/these.pdf
© [W. Zuo], [2016], INSA Lyon, tous droits réservés

ix

List of tables

Table 1 The change impact and Entities [41] .. 24

Table 2 The compatible types of Web Service Changes 26

Table 3 Comparison of the Web Service evolution related approaches 33

Table 4 The changes of TS .. 41

Table 5 The changes of HS .. 42

Table 6 The Roles and Behaviors in Evolution SOA .. 46

Table 7 XML Annotations for Change Specification .. 51

Table 8 The Adaption Behavior ... 61

Table 9 Tools and Frameworks Involved .. 67

Table 10 The changes action 1 of TS .. 74

Table 11 The changes action 2 of TS .. 77

Table 12 The changes action 3 of TS .. 79

Table 13 The changes action 4 of TS .. 81

Table 14 The changes action 3 of HS .. 82

Table 15 The changes action 4 of HS .. 83

Table 16 Test Environment .. 98

Table 17 Result of Impact Analysis for Web Service Evolution 101

Table 18 Dependency Information .. 102

Table 19 Result of Lowed Impact Analysis for Web Service Evolution 103

Table 20 Adaption Behaviors for the Adaptable Change Actions 104

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI068/these.pdf
© [W. Zuo], [2016], INSA Lyon, tous droits réservés

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI068/these.pdf
© [W. Zuo], [2016], INSA Lyon, tous droits réservés

1

1. Introduction

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI068/these.pdf
© [W. Zuo], [2016], INSA Lyon, tous droits réservés

2

1.1 Research context
We live in a dynamic world. New business opportunities (e.g., fair trade)

rise daily, new IT gadgets (e.g., tablets) enhance productivity, and new
applications (e.g., Facebook) bridge the gap between people. Like any
traditional software, Web services are subject to continuously changing and need
to be dynamic so they can respond to users’ constant changing needs and
requirements. To cope with changes Web services are fine-tuned in terms of the
functionalities they offer and the non-functional performance they achieve. We
refer to the fine-tuning as Web service evolution. It is defined as a continuous
development process of a Web service through a series of consistent and
unambiguous change. Web service evolution is always expressed through the
creation, provisioning, and decommissioning of different variants of the service
called versions – during its life time.

To ensure a smooth and consistent transition between the different versions
of a Web service, we advocate for a change-centric model in which necessary
changes are identified, planned, implemented, tested, and then notified to all
necessary stakeholders. This model also establishes who did what, when, and
where. A major consequence of changes in Web services is to review the
mechanisms that bind organization applications to these Web services. This
review is usually time-consuming and error-prone and sometimes requires the
suspension of ongoing operations prior to shifting to new applications. To
mitigate this review’s consequences on applications, organizations tend to be
passive by either ignoring the changes or delaying their adoption. In either case
there is a high risk that providers of Web services stop supporting old versions
(e.g., too costly to maintain), forcing organizations to take immediate actions,
which could turn into chaos. Even if an organization is willing to embrace the
changes, there are no guarantees that the transition to a new version will be a
success. Organizations end-up using different versions of the same Web service,
which is simply “unhealthy”.

The context of this thesis concerns the evolution of web services in SOA
architectures. We mean by evolution all changes of one or more elements of the
service contract resulting each time a new version of the service. In addition, we
are in the eventwhere versions of services are preserved and maintained as they
cannot all be used simultaneously. We are also interested in this thesis, in the
effects of these developments on the entire information system and the actors
who interact with services. This work is therefore in the field of service versions
management with significant ramifications in the areas of business processes
and software development.

By studying the history of software engineering, it is commonly admitted
that the most important features which the software engineers are seeking for are
modularization and dynamization. The modularization requires that the different
software modules should be separated with explicit boundaries to improve the
efficiency of development and maintenance. The dynamization requires that the

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI068/these.pdf
© [W. Zuo], [2016], INSA Lyon, tous droits réservés

3

software should be able to be adjusted at runtime to lower the cost of updating it
by shutting it down. In addition, the need for managing versions of Web
Services leads to some difficulties in the maintenance of applications. A
software architecture which presents higher modularization and dynamization is
usually proved more successful. During the past dozen years, most of the efforts
are made for the dynamization feature. One of the best is so called Service
Oriented Architecture (SOA). Within SOA, service consumer uses a set of
strategies and constraints to discover and select the useful Web Services.
Usually, once a Web Service is discovered and selected to be integrated in the
business process, service consumer and service provider are in a long term
relationship. Except particular situations, there is no need to repeat the search
process to discover another service. Therefore, it is legitimate to ask what to do
if one of the software functional modules is changed when the business is still
working. The software evolution which safe dynamic feature brings more
complex challenges particularly within a large scale distributed environment
which is the case of SOA.

1.1.1 Web Service evolution in SOA

Web Service is a type of software and thus it is also subject of evolution.
Compared to traditional software, Web service is a bit special because it brings
both convenience and challenges to deal with the question of the evolution of
SOA. These can be summarized in:

Conveniences

– SOA is designed with a set of standard specifications. The existing
Web Service tools perfectly support modern SOA specifications like
Service Component Architecture (SCA), Enterprise Service Bus
(ESB), and BPEL etc. They provide a good platform to take further
research on the specification of “changes”.

– Web Service separates the concerns of software. The participants do
not need to know the implementation details of the Web Services.
The problem of the evolution of the Web service will then decline in
issues related to the interface, quality of service (QoS) protocols, the
business semantics, etc.).

Challenges

– Web Service is deployed and works in distributed environments.
Heterogeneous devices, languages, platforms and limited resources
make the context of evolution quite hard. Modeling information
system taking into account the Web Service Evolution is a complex
task.

– Web Service often belongs to service composition. A change of one
Web Service will propagate the impact to the whole business

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI068/these.pdf
© [W. Zuo], [2016], INSA Lyon, tous droits réservés

4

process. The impact analysis will be more challenging when the
Web service evolution happens in SOA.

– The participants1 of Web Service have weak control of each other.
SOA is designed with respect to the loose-coupling principle. The
changes induced by Web Service evolution are difficult to overcome
the participants.

W3C defines other notions attached to Web Service. One can highlight for
example Business Process Execution Language (BPEL). Web Ontology
Language for Web Service (OWL-S) which consists in a set of markup language
constructs for describing the properties and capabilities of Web services. The
Web Service evolution has to deal with the new features (semantics, business
protocols etc.) that are different from the traditional software.

1.2 Motivation
The research in the domain of Web Service evolution aims at improving the

enterprise agility and flexibility. When this is applied to the SOA context,
modeling evolution of Web Service is even more urgent to be carried out.
Normally, the problem of software evolution is handled through well designed
application architecture to reach forward-compatibility and backward-
compatibility. Usually this is carried out by people with a high experience in the
field of software engineering. However, when the problem is applied in the SOA
environment, the huge number of Web Services and the participants that are out
of control result in great challenges for the traditional approaches.

For the Web Service providers, current tools such as Apache CXF, .Net,
Eclipse, WebLogic and so on can easily help them to develop and deploy Web
Services. However, such tools are limited to establish a mechanism to facilitate
evolution-oriented Web Service development. Firstly, the Web Service changes
are not formally modeled and propagated. The changes only exist in the heads of
the designers and engineers. Secondly, current tools do not support dynamic
Web Service evolution. Most of them require the developers to modify the static
source code of the Web Services rather than the abstract service models, which
decrease the agility of enterprise business. There is lack of the tools which can
help the providers to change and deploy the Web Services with high level APIs
at runtime.

For the Web Service consumer, when a Web Service has been changed by
publishing a new version, the consumer may be interested in the new version.
The consumer may also want to be consistent with the new version to profit
from the advantages introduced by the new version such as bug fix, function
enhancement, and improvement of Quality of Service (QoS). Moreover, some of
the Web Service providers in some cases do not maintain a versioning strategy

1 A participant can be any consumer, provider, developer, and broker of web service

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI068/these.pdf
© [W. Zuo], [2016], INSA Lyon, tous droits réservés

5

for their Web Services. The substitution strategy is always applied for these
cases. Therefore, the consumers are forced to deal with the changes of the Web
Service evolution. No matter the consumers are passively or initiatively
involved in the issue of Web Service compatibility, it is necessary to build the
models and tools for them to deal with Web Service changes.

For the Web Service integrators who make use of a set of the existing Web
Services to orchestrate or choreograph enterprise business processes, they will
be also interested in the evolution of Web Services with publishing new versions.
The Web Service evolution will firstly affect its client application. Then the
impact of the Web Service evolution can be higher in terms of costs on the
information system.

In summary, to perform dynamic software evolution for Web Services, it is
necessary to develop a set of models and tools to support the Web Service
stakeholders with the related issues. However, the research in the domain on
Web Service evolution is still facing great challenges. In practical, most of the
contributions are based on domain experiences and best practices to manage
Web Service evolution. They always try to solve the problems using techniques
of classic software engineering. In the community, researchers are still
struggling with many issues in this field. These challenges will be presented in
Part I.

1.3 Research questions
From the previous discussion, it is clear that there is necessary to deal with

the issues of Web Service evolution in a context including services versions. A
set of models and tools are required to support the stakeholders to produce,
analyze and react to the changes that are involved with the evolution process. To
properly define the boundaries of the research problem in this thesis, we adopt
the following preconditions and assumptions:

1. We assume that either the Web Service or the Web Service client is
designed under the principle of concerns separation. This can ensure
that the change of the Web Service only refers to the change of Web
Service interfaces. Any changes to the implementation of the Web
Service do not affect the stakeholders.

2. We do not specify the pattern of Web Service composition in this
thesis (choreography, orchestration or SCA). We assume that the
model and the process of the Web Service composition are known in
advance.

By defining the boundaries of the research, we decompose the problem of
Web Service evolution into the following research questions:

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI068/these.pdf
© [W. Zuo], [2016], INSA Lyon, tous droits réservés

6

1. How to model the Web Service evolution? How to model the Web
Service changes and the behavior of the stakeholders during the
Web Service evolution.

2. How to extract exactly and completely the changes for the
stakeholders? There are many solutions in the community. However,
a question remains: how to ensure the completion and accuracy.

3. How to evolve the Web Service at runtime in a graceful manner?

4. How to analyze impact of the Web Service changes? How to
analyze the impact for the Web Service client and how to analyze
the impact for the composed Web Services?

5. How to determine the compatibility of the Web Service client
applications and the evolved Web Service?

6. How to adapt the Web Service client applications to the evolved
Web Services in an automatically and dynamically way?

The term “Web Service” indicates the general concept for the popular
software services based on Web applications. The theory model in this paper can
be used to treat with any services in a uniform manner. However, in this thesis,
we specify this term as the SOAP-based Web Service rather than RESTful Web
Service. In Section I.5, we discuss why the SOAP-based Web Service is chosen.

1.4 Research methodology
This research aims to provide a set of models and tools to facilitate the Web

Service stakeholders (provider, consumer and broker) to deal with Web Service
evolution in the context of versions management. We are trying to build a
systematic theory and related programming techniques to solve the problems.
Thus, we focus on both the theory models and the engineering approaches.
Particularly, we decompose the research process into 5 steps:

STEP 1: Problem Definition

First of all, we determine the problem that we will put effort to solve. The
problem of Web Service evolution comes from the general software versioning
issues. The goal in this step is to obtain the evolution related problems that are
concerned by Web Service stakeholders and construct the boundaries of the
research. However, when the research progresses the research questions and
boundaries may evolve with the state of art of the research.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI068/these.pdf
© [W. Zuo], [2016], INSA Lyon, tous droits réservés

7

STEP 2: Dive into the State of Art

When the problem has been defined, the second step is to explore the
literature to find out the explicit approaches in the community, which problems
have been solved, and which are the current challenges. The literature can also
provide a concrete catalog for the defined problem. This does much help for us
to make clear the structure of the knowledge in this field and provide a holistic
view of the research situation. In this step, we divided the major problem into
several sub problems. Especially, we have studied both academic publications
and industry attempts to establish the state of art.

 STEP 3: Define the model

To solve a problem theoretically, the important step before developing the
approach is to build a model for this solution. The theory model defines the roles
and behaviors of the approach, indicates the path to solve the problems, and
describes the system architecture of the solution. The model is an abstract of the
solution to the problem that is defined in step 1.

STEP 4: Implementation

The research target is to build an approach to deal with the Web Service
evolution problems. It must be partly or fully implemented to validate the
availability and reliability of the approach since the research object is the type
of software. Moreover, the implemented prototype can be also used to make the
tests for evaluating the model.

STEP 5: Evaluation

When the prototype of the approach has been finished, it is time to work out
a scenario to evaluate the model. We design a set of tests to obtain the
experiment result of the proposed approach as well as the approaches listed in
the literatures. In the end of this step, a conclusion is made to comment the
experiment results. It must state what are the advantages and disadvantages of
this model and if the model has solved the initial problem.

1.5 Contributions
This thesis aims to build a holistic model for managing the Web Service

evolution in service-oriented architecture taking into account services versions.
The main work of this thesis is a set of theoretical models and approaches that
facilitate the Web Service consumer and provider to handle the issues of Web
Service evolution. Additionally, we also provide an implementation

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI068/these.pdf
© [W. Zuo], [2016], INSA Lyon, tous droits réservés

8

methodology which presents and validates the feasibility of the proposed model.
Along with the theory and practice contribution of the work, we build a
complete scenario to evaluate the whole work. We present a list here to
summarize the main contributions.

– Holistic theoretical change-centric model for managing Web
Service evolution. Unlike the contributions listed in chapter 2
which provide some approaches to address the problem, this thesis
presents a full-stack theory and solution to deal with Web Service
evolution. This work firstly defines all the types of roles and
behaviors during Web Service evolution. Secondly, this work covers
the whole lifecycle of Web Service changes during the evolution
process. By this way we consider a family of Web Service composed
by all its versions.

– Change specification for representing Web Service evolution in
the context of versions management. This thesis uses a theoretical
and formal model to define and represent the Web Service changes
during the evolution. Along with the formal description of the Web
Service changes, a set of traces is also built for describing Web
Service changes based on XML.

– Change impact analysis approach for Web Service evolution.
Analyzing the impact of Web Service changes is an important task
for all the approaches that are related to Web Service evolution. To
deal with the evolution for the Web Service consumers, the first step
is to obtain the impact that may be caused by the evolution. In this
thesis we study the current analysis approaches and then propose an
impact analysis model for both of the client applications and the
Web Service compositions.

– Semi-automatic client adaptation for Web Service evolution. To
facilitate the Web Service stakeholders to react to the Web Service
evolution constitutes the last contribution of our work. Through
analyzing the impact of the Web Service evolution, we propose a
model and a recommended architecture for the client applications of
the Web Service. This model defines and determines the interface
compatibility between the Web Service and its consumers. Moreover,
a prototype is presented to evaluate the model on JavaEE platform.

The rest of the thesis will be organized into the following parts. Part I
presents the related works related to the software evolution and Web Service
evolution. In Part II, Section II.1 introduces the motivation scenario that we use
to describe our problems. Then in Section II.2, a theory model for Web Service
evolution is presented. In Section II.3, we describe how to implement the
proposed model in Section II.1. Section II.4 will take an evaluation on the whole

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI068/these.pdf
© [W. Zuo], [2016], INSA Lyon, tous droits réservés

9

model. Finally in Part III, we will make a conclusion on this thesis and have
perspectives in future research.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI068/these.pdf
© [W. Zuo], [2016], INSA Lyon, tous droits réservés

10

Part I: State of art

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI068/these.pdf
© [W. Zuo], [2016], INSA Lyon, tous droits réservés

11

I.1 State of art overview
The issue of Web Service evolution comes from the domain of software

maintenance and their configuration. Given that companies take a service
orientation and choose to migrate their software on service-oriented architecture,
it is urgent to improve the theories around the management of the evolution of
services in this context of SOA. So the Web Service evolution becomes a widely
discussed topic in the community. In this part of the thesis, we are going to
analyze literature which covers both of the concepts of the Web Service
versioning and the evolution of the Web Services in the SOA architecture. We
have also covered the state of the art in the domain of the software development
in order to review the tools and models which are used to deal with the software
development.

In Part I, we study and present the state of the art in the field of the research
on Web Service evolution. We investigate the evolution issues in software
engineering, service-oriented architecture, change management and business
process. We present both of the contributions and the issues brought by the
literatures. For each literature listed in this chapter, we propose to outline the
problems which are not addressed. Then we conclude this chapter with a
summary of the challenges in the current state of art.

I.2 Software evolution
The earliest pioneering research on software evolution was conducted by M.

M. Lehman et al in [6, 7, 8, and 9] since 1969. As Lehman writes in [6], the
evolution is an intrinsic, feedback driven, property of software. At this stage,
researchers established the point that the real world software systems require
continuous changes and enhancements to satisfy new and changed user
requirements and expectations, to adapt to new and emerging business models
and organizations, to adhere to changing legislation, to cope with technology
innovation, and to preserve the system structure from deterioration [7]. The
software evolution is more like a general software maintenance and
configuration.

According to Lehman’s summary in [9] with his “35 years’ study on
software evolution”, the nature of evolution can be concluded with its causes,
properties, characteristics, consequences, impact, management, control and
exploitation. Lehman and his colleagues consider that the changing and adapting
requirements from the real world software systems drives the application evolve
with an inevitable and continual feedback showing in Figure 1.

By studying the natures of software evolution and the IBM programming
processes, Lehman contributed the 8 laws of software evolution in [9] that
govern software evolution. According to Lehman, the 8 laws are still applicable
to all the systems that are compatible with E-type specifications.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI068/these.pdf
© [W. Zuo], [2016], INSA Lyon, tous droits réservés

12

Figure 1 Lehman’s feedback for software evolution [9]

The first three laws were proposed in 1974.

1. Continuing Change: The software system must be continually
adapted, otherwise it will be less useful.

2. Increasing Complexity: The complexity of a software program will
increase unless the people make efforts to maintain or reduce the complexity.

3. Self-Regulation: The software program evolution process is self-
regulated.

Then in 1980, Lehman introduced 2 additional laws to the theory.

4. Conservation of Organizational Stability: The average effective
global activity rate in a system is invariant during a product’s life time.

5. Conservation of Familiarity: The next release of the evolved system
should be statistically invariant to the previous release.

One more law was introduced in a footnote in 1991.

6. Continuing Growth: Functional content of a program must be
continually increased to maintain user satisfaction over its lifetime.

The 2 remaining laws were introduced in [9] with a conclusion.

7. Declining Quality: The software system will be of quality if it is
rigorously maintained and adapted to the changing environment.

8. Feedback System: The software programming process must be
treated to be successfully modified or improved with multi-loop and multi-
feedback systems.

Lehman’s theory on the software system (or E-type system) establishes a
basis of guidelines, methodologies and thoughts for further research in this field.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI068/these.pdf
© [W. Zuo], [2016], INSA Lyon, tous droits réservés

13

In the early stage, people discussed more about principles, laws and policies
than concrete approaches or models that could be widely applicable.

I.2.1 Software evolution issues
Software evolution always implies two questions:

1. How to evolve the software?

2. How should one (re)act with software that has evolved?

Evolving the software in a better way and reacting to the software evolution
in an automatic way are the two basic issues in the field of software evolution.
For the first question, traditional solution is to improve the approaches of
software development and deployment. To the second question, the users of
services have to accommodate with incompatible interfaces of modified modules
and must adapt to these changes. Normally the solutions to software evolution
are categorized as static evolution and dynamic evolution.

– Static evolution: refactoring the software at development stage and
redeploy the new version by shutting down the running application.
Static evolution does not need to deal with the state transfer of
software and can ensure the quality before it is online. However,
static evolution makes the software temporarily unavailable and thus
it may cause loses for enterprise business.

– Dynamic evolution: adjusting the behavior of the software at
runtime without breaking down the business. Dynamic evolution
improves the software adaptability and can be more competitive in
the modern complex and distributed environments.

Dynamic software evolution is more compliant with the rapid development
computing environment. This is why it attracted the attention of the research
community. However, the problems that it brings are also challenging:

1. The dynamic software evolution removes the test stage from the
development process. This requires that there must be a set of more
effective mechanism to ensure the quality of the dynamic generated
software.

2. The dynamic software evolution needs to deal with the impact that
the evolution induces on the customers.

3. Dynamic software evolution brings the issue of how to deal with the
stateful Web Service. The topic of the dynamic software evolution is
proposed to meet the fast changing environment of the software.
However, the evolved version of the software cannot be compatible
with business processes without further intervention of the humans.
For example, if the customer has finished the order online for
booking a flight ticket and is going to pay when the website is

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI068/these.pdf
© [W. Zuo], [2016], INSA Lyon, tous droits réservés

14

updating its software services, the information of the order may be
lost or mismatched with the new version of the Web site.

4. Dynamic software evolution brings more complex challenges when
people try to apply it to the large scale distributed environment,
especially the Web Service dynamic evolution in the Service
Oriented Architecture.

I.2.2 Dynamic software evolution and adaptation
The studies on software evolution conducted by Lehman have presented the

basic rules for evolving or maintaining the software. They present the rules and
models for software evolution allowing the software to change in the best way.
However, most of the rules and models are just for solving the problems in
general static maintenance or evolution of software [10-15]. With the further
development of software engineering, the execution environment of software
became more dynamic and complex. Traditional methods of maintenance and
software evolution are facing major challenges related to various customers
quickly changing needs. Therefore, some researchers begin to propose new
models and tools for evolving the software at runtime to meet the more complex
requirements.

In the past, the most common approach to perform the versioning to the
software is to shut down the system and then install the new versions [16]
according to Gupta D et al. However, this type of modification sometimes
induces unacceptable delay to the business. Dynamic software evolution is
different from the general traditional software maintenance and configuration.
According to Gupta D, the latter one controls changes to preserve the integrity
of the software when dealing with dynamic software system, but it still installs
the changes in the traditional static manner. Dynamic evolution requires the
software to be able to adjust its behaviors at runtime. Most of the adjustments
may be taken to react to the changes of user requirements and execution
environments. In this context, we can cite the following examples.

I.2.2.1 DYMOS

In the beginning of this research, researchers and engineers developed
several systems that allowed runtime modification to the programs. Insup Lee
presented the DYMOS (a DYnamic MOdification System) in 1983 in his PhD
dissertation [17]. Before Lee’s work, the modifications to the running program
had to be done by patching machine code. DYMOS realized a mechanism to
modify and recompile the source code of procedures and modules that need to be
replaced. Then the modified code can be inserted to the program architecture to
run parallel with the other processes.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI068/these.pdf
© [W. Zuo], [2016], INSA Lyon, tous droits réservés

15

As shown in Figure 2, in DYMOS the programmer passes the modification
commands to the system. Four modules are prepared to handle the 3 types of
commands.

Figure 2 Overview of DYMOS architecture

- Edit command which is passed to the Editor module. The Editor Module
locates and modifies the source code from the Source Code Manager module.
The Editor module will generate a set of source code of a certain procedure or
module.

– Compile command which is passed to the Compiler module. The
Compiler module compiles the modified source code from the Editor
module and generates the new object code.

– Update command which is accepted by the Run-Time Support
System for the inserting of the new object code into the execution
memory.

DYMOS can accept only the changes that will be correctly compiled with
system. Actually, DYMOS only accepts commands with large granularity. The
modification command encapsulates the logic for generating a procedure or
module. The programmers are unable to get the details of the procedure or
module. Generally speaking, the modified code is prepared in advance. The
system is designed with an architecture that can support dynamically inserting
program code into the system. In summary, DYMOS presents general principles
for modifying the running software system. It can modify the running program
with adding / updating the modules with the large granularity changes for the
architecture. DYMOS is the foundation of the successive solutions to deal with
the problems about runtime evolution. However, the modification is limited and
this approach only supports the runtime evolution on the system designed with
the specific architecture. In other words, users can modify the system
dynamically with change actions such as “add a module” but cannot perform the
change action such as “modify a parameter”.

I.2.2.2 K-Component

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI068/these.pdf
© [W. Zuo], [2016], INSA Lyon, tous droits réservés

16

To achieve adaptable software evolution, it is widely accepted 2 types of
approaches:

1. Separating adaptation logic from computational code.

2. Building adaptable architecture for dynamic evolution.

Regarding to the guidelines above, Dowling J. et al in [18, 19] choose to
build dynamic software architectures to enable adaptable features of software
systems. To achieve such dynamic architectures, the architecture meta-model so
called K-component is introduced. K-Components are components with
architecture meta-model and adaptation contracts to support their dynamic
reconfiguration. According to Dowling, K-component builds configuration
graph to describe the software architecture for the part of adaptation logic. In K-
component, the reconfiguration of the software architecture is presented by
pursuing graph transformation. To ensure the meaningful transformations, K-
component framework introduces the adaptation contracts. An adaptation
contract contains a series of conditional rules for the transformation of the meta-
level configuration graph.

For the part of computational logic, K-component uses K-IDL (presented by
OMG-CORBA) to define the components of the software. All the components
are dynamically generated and compiled. The components can be either
primitive or composite. K-component generates and compiles primitive
components at runtime. The composite components are combined under the
abstract configuration contracts.

According to the K-component and its previous contributions, an effective
adaptive system must follow the 3 principles:

1. Dynamic code generation is the only way to realize software runtime
evolution.

2. A system should be built with uncoupled components. The high
dependency of the components on each other may lead to
unexpected compiling errors.

3. To enable dynamic evolution, it’s unavoidable to specify the
adaptable software architecture.

K-component framework defines a meta-model for software architecture to
provide possibilities for dynamic adaptation. K-component does not model the
changes when the software evolves. This makes it difficult the cooperation with
the other participants in the system. Moreover, K-component does not explicitly
explain how to realize the adaptation events, which is the challenge of software
adaptation. K-component aims at achieving an evolvable architecture by
defining the meta-model. But it does come with any implementations or
approaches on components substitution, which is also important in the field of
software evolution.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI068/these.pdf
© [W. Zuo], [2016], INSA Lyon, tous droits réservés

17

I.2.2.3 OSGi

To improve the efficiency use of the limited resources in the embedded
devices, applications are often required to start only the necessary modules and
stop the unnecessary modules at runtime. Then IBM and SUN developed an
architecture specification called OSGi (Open Service Gateway initiative) [20]. It
describes a modular system and a service platform for the Java programming
language that implements a complete and dynamic component model. OSGi
defines a rigorous component boundary by making use of the bytecode isolation
mechanism of Java class loader. The static external dependencies of the
component must be explicitly specified in the meta data file of each component.
Such a modularization definition makes it easy to perform dynamic substitution
for the components. OSGi can start, stop and replace any of its components at
runtime. It’s designed with a SOA similar service system. The service objects of
the OSGi components provide software services by publishing the service to the
registry of OSGi. OSGi maintains the service provider, broker and consumer.
When the OSGi components are evolved with a new version, OSGi
automatically forward the consumers’ requests to the new service objects that
come from the new version. OSGi solves the problems of software evolution
from an engineering perspective and provides a complete implementation.
However, OSGi does not concern the software adaptation. It will definitely
produce errors when the updated OSGi services have been changed in interface.
Moreover, just like any previous contributions, OSGi does not treat with objects
state migration when updating the components. The substituted components will
lose all the saved sessions or states.

I.3 Web Service evolution

I.3.1 Service oriented architecture
Service-oriented architecture is a model that is used to transform the

components of an information system into services which can be integrated to
build cross-business processes. Services are provided to other components via a
communication protocol, typically over a network. The principles of service-
orientation are independent of any vendor, product or technology.

This model often uses the industry standards such as Web Service
Description Language (WSDL), Simple Object Access Protocol (SOAP) and
Universal Description, Discovery and Integration (UDDI). SOA has been
quickly and widely accepted with the following principles that bring great
advantages for enterprises business:

– Standardization. SOA requires using a set of common languages
for the distributed heterogeneous applications to publish, discover
and communicate with each other.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI068/these.pdf
© [W. Zuo], [2016], INSA Lyon, tous droits réservés

https://en.wikipedia.org/wiki/Service_(systems_architecture)
https://en.wikipedia.org/wiki/Java_(programming_language)
https://en.wikipedia.org/wiki/Component_model

18

– Modularization. A functional module is defined as a service which
is suggested to be highly encapsulated with larger granularity.

– Separation of concerns. A service uses standard interfaces to
expose its internal logics. The details of the implementation are
obviously hidden. This allows implementing the service with
different technologies and platforms.

– Autonomy. A service should have full control over its internal
logical.

– Loose-coupling. SOA advocates weakening the control of the
software services on other services. Furthermore, a service should
avoid of directly requesting another service.

Compared to the other principles, the most important one is the
standardization. It defines the specifications for all the types of application to
discover and communicate with each other. In one hand, this also makes it
possible to make use of legacy systems to cooperate with modern novel
technologies. In another hand, the standard interface description makes it
possible to implement the service with different languages, platforms, object
model, or messaging systems. To establish the standardization of SOA, W3C
published the specification that uses a standard interface definition model called
WSDL (Web Service Description Language).

WSDL defines the details of the abstract service information model.
According to the specification of WSDL, a service is defined as a network
endpoint, or ports. A WSDL document uses the following elements in the
definition of a Web Service:

– Types – a container for data type definitions (such as XSD).

– Message – an abstract, typed definition of the data being
communicated.

– Operation – an abstract description of an action supported by the
service.

– Port Type – an abstract set of operations supported by one or more
endpoints.

– Binding – a concrete protocol and data format specification for a
particular port type.

– Port – a single endpoint defined as a combination of a binding and a
network address.

– Service – a collection of related endpoints. [1]

Besides the standard interface description, SOA also defines a general
communication model which is shown in Figure 3. Basically, there are 3 roles in
this model.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI068/these.pdf
© [W. Zuo], [2016], INSA Lyon, tous droits réservés

19

– Web Service provider (SP). SP designs, develops, publishes and
maintains the Web Service.

– Web Service broker (SB). SB maintains a Web Service Registry
which stores the information of a list of Web Services that are
published by different SPs.

– Web Service consumer (SC). SC designs and develops the client
applications which post invocation requests for the Web Services.

Figure 3 General SOA communication model

When the system is ready, SP publishes WSDL documents and the other
information (Semantics, QoS, Yellow page etc.) to the Web Service Registry of
SB. SC obtains the WSDL documents of its target service through the discovery
action. Then the client application of SC creates a stub for local execution
environment (for example a Java object in JVM) according to the obtained
WSDL document. The stub handles the logic of the client application and
encapsulates the invocation request into SOAP message for transferring on
HTTP to the address indicated by the WSDL document. The Web Service parses
and handles the SOAP message. Then it encapsulates the result into SOAP
message and returns it to the client application of SC.

I.3.2 Web services evolution issues
The questions are similar as traditional software evolution:

1. How to model Web Service evolution?

2. How to analyze the impact of Web Service evolution on applications
and information system?

3. How to perform adaptation when dealing with Web Service
evolution?

To face these challenges, researchers have contributed with lots of
approaches, models and tools.

The key problem of service evolution is that the compatibility between the
service and its consumers may change when the service evolves. One of the
major objectives of the research on Web Service evolution is to reduce the

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI068/these.pdf
© [W. Zuo], [2016], INSA Lyon, tous droits réservés

20

unexpected effect caused by incompatibilities. As concluded by Andrikopoulos
in [21], we also categorize the approaches of service evolution as corrective and
preventive evolution.

Corrective – adaptation-based approaches that actively enforce the non-
breaking of existing consumers by modifying the service, and

Preventive – that attempt to confine and forbid changes that would disrupt
the consumers (instead of fixing them).

I.3.3 Corrective approaches
Some researchers consider that the evolution of Web Service is not

controllable for all the actors. Because the Web Service provider and consumer
have weak control on each other, none of them could predict or expect the
changes of the Web Service in future. Then the distributed environment is
supposed to produce service mismatches all the time. The corrective approaches
aim at eliminate these mismatches between Web Service provider and consumer.
In these contributions, service adaptation is always adopted to minimize the
impact of the mismatches.

Adaptation has been introduced in the component-based software area
where adapting a component-based system means modifying one or more of its
components. In practice, most components cannot be integrated directly into a
system because they are incompatible. The adaptation component aims to
generate the most automatic as possible, adapters to compensate the gap between
the interfaces and / or components behavior. Several adaptation approaches have
been proposed for example in [22-27].

In [22] the authors propose a model-based adaptation approach focusing on
software interface mismatch appearing at the behavioral level. The approach
takes as input the behavioral interfaces of components to be adapted, and an
adaptation contract - an abstract description of the constraints which must be
respected to make the involved components work together. Given these two
elements, an adapter protocol is generated in an automatic way. A synchronous
vector method is provided for the adaptation contract language to make explicit
the interactions. The work in [23] focuses on the signature level component
adaptation such as names and parameters, and proposes a checking mechanism
to find the signature level mismatch. In [24], the authors build an approach that
uses a classification of component mismatches and identifies some patterns to be
used for eliminating them. In [25], the authors address the problem of whether
incompatible component interfaces can be made based on game theory by
inserting a converter between them which satisfies specified requirements.

Compared to traditional component adaptation, the research on Web Service
adaptation focuses mainly on the evolution of the service interfaces and

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI068/these.pdf
© [W. Zuo], [2016], INSA Lyon, tous droits réservés

21

compositions. The adaptation may happen at both of the service side and the
consumer side to correct the mismatches.

I.3.3.1 Chain of adapters

Kaminski presented an adaptive design for Web Service evolution in [28] to
realize backwards compatibility for the evolving Web Services. Kaminski
considers that the traditional versioning approaches for Web Service failed in
treating with the following issues:

– Keeping backward compatibility for the Web Service clients.

– One Data source for all the versions.

– Avoiding of bugs propagation caused by code duplication.

– Unconstraint evolution.

If the system does not cover these issues, the design may break some rules
and principles of software engineering. So Kaminski developed a design called
chain of adapters as shown in Figure 4 to deal with the versioning of Web
Services.

Figure 4 Kaminski’s chain of adapters [28]

Kaminski develops one or several adapters for each version of the Web
Service. Each of the adapters translates the user’s request into a compatible one
to its target version. An adapter could adapt one version to any target version
that exists in the system. The adapters do not contain any business logic. In the
whole system, there only exists one instance of the Web Service and one data
source. The design of the adapter chain chooses to adapt the Web Service
evolution at the service side since Kaminski believes that only the Web Service
provider understands correctly what has been changed and how to adapt to the
new versions. However, the disadvantages are also obvious:

1. Kaminski does not point out how to realize these adapters. There are
no more steps to describe how to generate these adapters for
dynamic and automatic adaptation.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI068/these.pdf
© [W. Zuo], [2016], INSA Lyon, tous droits réservés

22

2. When the Web Service is under great load pressure, the performance
decreases because the chain of the translation actions of the adapters.

3. Not all the types of changes can be adapted to the current version.
For example, if the consumer requests a deleted operation, the
adapter has to request an old version of the Web Service, which
breaks the initiative of this design.

Despite these drawbacks, the approach based on adapter chain solves the
version problems based on the principles of software engineering. It explains
how to manage Web Service evolutions more efficiently. Especially, it provides
a possibility to enable backward compatibility for the evolving Web Service at
the service provider side. However, it does not dive into all the problems that are
related to the topic of Web Service evolution and adaptation such as the impact
analysis.

I.3.3.2 WSDarwin

Marios Fokaefs presented WSDarwin and related contributions in several
papers [29-32]. WSDarwin is a toolkit which could support the clients to co-
evolve with the Web Services. Differently from Kaminski’s adapter chain,
WSDarwin attempts to solve the mismatches from the client side. First of all in
[29], Fokaefs develops an approach called VTracker to compare the differences
between XML documents. Using VTracker, the Web Service consumer could
automatically determines the changes between two versions of the WSDL
documents. Then in [30], Fokaefs describes the Overview of WSDarwin shown
in Figure 5.

Figure 5 Overview of WSDarwin [30]

When the client proxy meets an invocation fault for one of the Web Service
since the service has been evolved, the client proxy will uses the VTracker tool
to compare the differences of the WSDL document from its previous version.
Under the assistance of the provider proxy, the client proxy could automatically
translate the requests to make it adaptable with new version of the WSDL
document. The adaptation process shown in Figure 6 is similar as the generation
of the adapters for the component adaptation.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI068/these.pdf
© [W. Zuo], [2016], INSA Lyon, tous droits réservés

23

Figure 6 Adaptation process of WSDarwin [33]

The client proxy of WSDarwin will generate a client stub for the new
version of the Web Service according to the changes that detected by VTracker.
The generation processes is taken on the fly. So the invocation and adaptation is
totally transparent to the client applications. WSDarwin provides a solution to
help the Web Service consumer adapts to and survives in the “nature”. This
approach refers to Charles Darwin’s “It is not the strongest of the species that
survive, but the one most responsive to change”. Kaminski treats the Web
Service clients as the nature and adapts the Web Service to the nature. Fokaefs
treats the Web Services as the nature and adapts the Web Service clients to the
nature. WSDarwin is a complete solution to deal with Web Service evolution
including the changes discovery, adapter generation and impact analysis.
However, some imperfections are still found in WSDarwin.

1. The principal drawback of WSDarwin and other similar approaches
such as those presented in [33-37] is that they treat the syntactic
differences of the interface documents as the changes when they are
dealing with Web Service evolution. Most of them use the
differential methods to obtain the differences of two Web Service
versions by comparing the WSDL documents.

2. WSDarwin does not indicate how the Web Service provider could
perform the adaptation assistance.

3. WSDarwin does not explain how to resolve the potential problems in
the adaptation processes such as “how to deal with the dependencies
and name spaces when generating and compiling the client stub”. In
fact, WSDarwin seems not implementable by most of the popular
platforms such as Java.

I.3.3.3 Gensis

Treiber and his colleagues from Vienna University contributed the Gensis
and related technologies in [38-42] for Web Service evolution. To cover this
topic, Treiber et al. firstly analyze the Web Service changes in [38] and develops

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI068/these.pdf
© [W. Zuo], [2016], INSA Lyon, tous droits réservés

24

Gensis to facilitate the programming evolvable Web Services. The Web Service
changes that are triggered by different sources will have impacts on different
parties. As shown in Table 1, they concluded the qualitative result of the impact
of Web Service changes and the related entities that involved in the Web Service
Evolution.

The entities implied in the Web Service evolution include the provider,
developer, integrator, and user. The changing primitives include the interface,
implementation, Service Level Agreement (SLA), QoS, usage, pre-pos
conditions and feedback. This table encourages the researchers to make further
contributions on the type, trigger and impact of the Web Service changes.
Treiber et al did not cover all the types of changes in their successive work in
[41, 42]. But they developed Gensis and a programming model as shown in
Figure 7 for adaptive computing on the interface and implementation changes
during Web Service evolution.

Gensis is a framework which provides high level programming APIs for
modifying Web Service including the interface and implementation. Especially,
Gensis reorganizes the Web services at the provider side and build a set of
behavior modules for migrating to different hosts. A behavior module is an
atomic entity which is composed of one or more Web Services. It is strictly self-
contained so that it can be independently deployed. Gensis gives the system the
ability of modifying Web Service at runtime. However, the programming model
does not explain which kinds of changes need to be adapted. In fact, Gensis does
not model Web Service evolution. It is just a programming framework for
developing Web Service with high level APIs. Many of the issues involved in
Web Service evolution such as the change management, versioning, and
adaptation are not discussed.

Table 1 The change impact and Entities [41]

Observed
Change Trigger Impact on Modification of Effect on

Interface Provider, User,
Service,
Integrator

Integrator,
Developer

Implementation QoS, SLA, Usage

Implementation Developer Integrator, User Implementation QoS, Interface
QoS Usage Provider Implementation,

Interface
Interface, QoS, SLA,
Usage

Usage User Provider Contact user SLA, QoS
Requirement User,

Integrator
Provider,
Developer

Interface,
Implementation,
SLA

Usage

SLA Provider User, Developer,
Integrator

Usage Requirement, QoS,
Implementation

Pre-Post
Conditions

Provider,
Developer

User, Integrator SLA Implementation

Feedback User,
Integrator

Provider,
Developer

SLA Usage

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI068/these.pdf
© [W. Zuo], [2016], INSA Lyon, tous droits réservés

25

Figure 7 Treiber’s Adaptive Programming Framework for Web Service Evolution [42]

I.3.4 Preventive approaches
Some other researchers, especially the ones from the industry field,

advocate the preventive approaches when dealing with Web Service evolution
for the following reasons:

1. The adaptation behaviors for both of the providers and consumers
will lead the system to an irreversible chaos states since the
corrective approaches assume that the evolution of the Web Service
cannot be confined.

2. Not all the changes need to be adapted and not all the changes can
be adapted without manual intervention.

3. The corrective approach does not lower the cost of the evolution of
the Web service as they promise with an effort on automation. The
cost of the effort is just moved to maintain the adapters.

Preventive approaches try to confine the changes that may be produced
during the evolution process. They believe that the best practice is to evolve the
Web Service in a more graceful way. They always build explicit or implicit
agreements between the Web Service provider and consumer constraining the
evolution of the services to make it compatible for the consumers. Contributions
presented in [21, 43-58] fall in this type of approach. Most of them try to
develop the compatible service versioning strategies to fit the requirements of
the consumers. Andrikopoulos in his Ph.D thesis [21] has presented a typical
and complete preventive solution for Web Service evolution. Before any further
actions, preventive approaches firstly need to determine which changes are
compatible. Andrikopoulos defines the Web Service full compatibility as the one
which satisfies both horizontal and vertical compatibility as shown in Figure 8.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI068/these.pdf
© [W. Zuo], [2016], INSA Lyon, tous droits réservés

26

Figure 8 Andrikopoulos’s Web Service compatibility [21]

Horizontal compatibility or interoperability of two services expresses the
fact that the services can participate successfully in an interaction as service
provider and service consumer. Vertical compatibility or substitutability (from
the provider’s perspective) or replaceability (from the consumer’s perspective)
of service versions expresses the requirements that allow the replacement of one
version by another in a given context. The changes that meet both horizontal and
vertical compatibility of the Web Service are called “T-Shaped changes” (as
shown in the above figure). Secondly, preventive approaches should decide
which changes are compatible for the evolution. Andrikopoulos concluded the
backward compatible changes during his dissertation in Table 2.

Table 2 The compatible types of Web Service Changes

Change Backwards Compatible
Add (Optional) Message Data Types to Input Yes
Add (New) Operation (and respective Message Data Types) Yes
Remove Operation No
Modify Operation (Includes renaming and changing parameters,
parameter order and message exchange pattern.) No

Modify Message Data Types No
Modify Service Implementation (As long as it has no effect on the
service interfaces.) Yes

According to Andrikopoulos, the implementation changes do not affect the
invocation of the Web Service, so only the interface changes are considered.
Finally, the preventive approaches introduce the service contracts to help the
providers and the consumers to make an agreement on the use and the evolution
of the Web Service. This service contract describes the changing patterns of the
Web Service. It ensures that all the changes can fall in the T-Shaped changes
set.

The adaptive and preventive approaches have been both widely discussed
and applied. From the industry’s perspective, preventive approaches seem more
practical since it is easy to reach the goal. Conversely, the adaptive approaches

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI068/these.pdf
© [W. Zuo], [2016], INSA Lyon, tous droits réservés

27

are facing great challenges when dealing with the adaptation dynamically and
intelligently.

In practice, most of the Web Service changes are caused by changes of
business, environment, policies and context. The adaptation for the Web Service
interfaces [59-66] does not actually solve the problems. They could just provide
a supporting platform and some possibilities to deal with these problems at the
software engineering level. At the business level or the semantic level, these
problems become more complicated. Researchers have to seek for more models
and even more domain knowledge to improve the correctness and completion for
the adaptation. Let's note that in this thesis, the proposed solution falls in the
adaptive approaches from the following perspectives:

1. One of the principles of SOA is to uncouple the software
components or services. More contracts between the Web Service
providers and consumers will limit the development of SOA.

2. SOA systems should be designed with an open environment.
Regarding the increasing of Web Service providers and consumers,
the control of the stakeholders of each other will be weaker and
weaker. However, the preventive approaches imply intervention on
business processes to respect service contracts.

3. It is difficult to have an extensive and complete adaptive approach.
Methods, models, and tools to standardize the Web Service evolution,
are still necessary to reach the objective of a well adaptive approach.

I.4 Evolution impact analysis
Before performing an adaptive evolution of Web service, most approaches

should carry out an impact analysis of changes. The approaches of the impact
assessment are distinguished into three categories:

– Impact analysis at the service side.

– Impact analysis at the consumer side.

– Impact analysis on the Web Service compositions.

The first one is used to estimate the impact of the Web Service evolution on
its consumers to decide if the Web Service should be evolved and which changes
should be performed on the Web Service. The second one is considered to
estimate the impact of the Web Service evolution on a single consumer for
determine further strategies reacting to the evolution. The third one allows the
estimation of the impact of the Web Service evolution on the whole business
process. To complete Treiber’s qualitative impact analysis presented in Section
I.3.3.3, in this thesis we will focus on both of the qualitative and the quantitative
feature of impact analysis.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI068/these.pdf
© [W. Zuo], [2016], INSA Lyon, tous droits réservés

28

I.4.1 Impact analysis at the service side
Marcelo Yamashita in [67] presents the change impact analysis based on

usage profile. This approach permits to empower providers with an
understanding of the overall impact of changes in the whole set of client
applications, enabling sound decisions on evolution strategies. The key point of
Marcelo’s approach is to introduce an interceptor within the Change
Management Framework at the service side as shown in Figure 9.

The interceptor captures the interaction information between the Web
Service and the consumer. Then the profile manager translates the raw
information into “Usage Profile” which records how the Web Service consumers
depend on the Web Service by several metrics. Marcelo’s original metrics
include: i) the number of applications and, ii) the number of requests of an
operation or number of times a message was exchanged. Finally, the Version
Manager will decide the compatibility between the new version and the client.
The set of compatible changes and the determination algorithm are similar as
Andrikopoulos’s. All the analysis for the clients will be rolled up to the final
result to reveal how much incompatibility will be induced by evolving the Web
Service. After the analysis, the Web Service provider can estimate the risk of
losing customers if he performs the evolution. This approach supports their
decision making for evolving or not.

Figure 9 Overview of Marcelo’s Change Management Framework [67]

Marcelo showed that the impact analysis of the Web Service evolution
should be connected with the usage of the consumers. Unfortunately, Marcelo’s
contribution seems far from the final target of the research on Web Service
evolution.

1. Marcelo does not specify a detailed model for the metrics of the
Usage Profile. This question of which metric will be used is left for
the users of the framework.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI068/these.pdf
© [W. Zuo], [2016], INSA Lyon, tous droits réservés

29

2. This approach can only answer the question of how much
incompatibility will be induced by the evolution. It could not
provide more precise prediction on the impact. All changes do not
affect web services in the same manner.

3. This approach only supports the decision to make evolve the Web
Service or not. It could not provide solutions to adapt to the
evolution. It does not contribute anything on reducing the cost of
evolution. It does not contribute anything on reducing the cost of
evolution.

I.4.2 Impact analysis at the consumer side
Shuying WANG in [68-71] proposed a dependency impact analysis model

for Web Service evolution. Dependency model is an approach for analyzing the
dependency links among Web Services which work in collaboration. It extracts
the degree of dependency for each link between the elements in one Web
Service (so called intra relation) or between services (so called inter relation) as
show in Figure 10.

Figure 10 Dependency Model for Impact Analysis [68]

Shuying counts all the elements which exist in the WSDL file and note
them as changeable primitives. The model aggregates all the dependency
relations within a dependency matrix. Then, Shuying obtains the final impact of
the Web Service evolution by multiplying the dependency matrix by the changes
matrix. It is a foundation for most of the successive works in this field such as
[70-78].

Let’s consider the figure from Shuying’s model. For the customer service,
e2->e1, e3->e1, e5->e4, e6->e1, e6->e2, e6->e3, and e6->e4 are defined as intra-
service dependencies with a value 1. For the order service, e3->e2, e4->e1, e4-
>e2, e6->e5, e7->e2, e7->e2 are also defined as intra-service dependencies. For
the relation between the order service and customer service, e5 of S2->e4 of S1,

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI068/these.pdf
© [W. Zuo], [2016], INSA Lyon, tous droits réservés

30

e6 of S2->e5 of S1, e7 of S2->e6 of S1 are defined as inter-service
dependencies. Any of the changes on an element will induce a change vector.
For example, according to the intra service relation matrix, the change of
element e1 for Customer service s1 will cause the change of the elements e2, e3,
and e6. The change vector is then represented as <1, 1, 1, 0, 0, 1>. Then the
impact of this change is expressed as the product of the dependency value by the
change value (if changed it is 1 or not 0). The advantages of dependency model
include: i) the ease of understanding and extending; ii) the quickness of
implementing the model in real world systems. However, the disadvantages are
also obvious:

– Too simple dependency between elements. In the dependency model,
all the types of dependencies between elements are set to the same
value. It does not consider the relationships betwin the elements in
business and the practical cases.

– Manually retrieving dependencies. The model assumes that the
dependencies are known at design time. When the system scale
becomes larger and the Web Service evolves more quickly, the
model will cost too many manual operations.

– Change types confusion. The model does not distinguish the change
types add, remove and modify. It considers that each type of change
result the same impact. Different types of changes will definitely
induce different impact on the client.

Shuying WANG uses his dependency matrix to analyze the impact of the
Web Service evolution on the business processes. It counts all the dependencies
among all the member services in a composition and uses these dependency
relations for calculating Web Service impact. Actually, what this approach
calculates is the entropy of dependencies among all the member services. It
provides an overview of the impacts but does not support any further actions
such as Web Service adaptation.

I.5 Discussion

I.5.1 Why not RESTful Web Services?
When one talks about Web Services in the industry field, one always refers

to the two types of Web Services:

– RPC style Web Service, especially the SOAP-based Web Service. It
uses XML based standard document description (WSDL) and
message transferring format (SOAP). SOAP-based Web Service
follows the style of remote procedure call (RPC).

– REST (Representational State Transfer) Web Services or RESTful
Web Services. Presented by Dr. Roy Fielding in 2000, it proposes to

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI068/these.pdf
© [W. Zuo], [2016], INSA Lyon, tous droits réservés

31

treat the Web Service as a type resource rather than a remote
procedure. It uses standard HTTP or HTTPS protocols and standard
HTTP method such as GET, POST, DELETE and so on.

Both of the two types of Web Services are widely discussed and adopted in
the enterprise applications. For a long time, the researchers and developers have
taken much effort on the SOAP-based Web Service and its related techniques.
SOAP-based Web Service has been extended with lots of industry specifications
such as Enterprise Service Bus (ESB), BPEL-S, OWL-S, and Service Level
Agreement. However, RESTful Web Service has captured attention from the
practitioners of Internet since several leading enterprises (amazon, yahoo and
google) have decided to migrate from SOAP-based Web Service to RESTful
Web Service. Anyone who talks about the techniques of Web Service should not
ignore the RESTful ones.

RESTful Web Service advocates to simplifying the service-oriented
architecture. It abandons the XML format to exchange messages. Instead, JSON
is the recommended format because of the fast parsing speed. RESTful proposes
to use directly the standard HTTP methods to operate the Web Services that are
considered as Web resources. RESTful Web Service does not constraint the
approach to build it, so the Web Service providers can use any Web Server
container to implement RESTful Web Services. Compared to SOAP-based
approaches, RESTful Web Service does not constraint the format for exchanging
messages, so it does not need to create a local agent for sending and receiving
messages. Therefore, RESTful Web Service is considered more lightweight than
the traditional RPC approaches.

Unfortunately, RESTful Web Service only defines the style to construct
service-oriented architectures. Currently, it lacks of many industry standards
which is important to realize software automation. RESTful does not define the
approach and specification to describe the concrete Web Service information
model. Now many restful Web Services cannot be discovered and invoked by
software applications since they do not have standard description specifications
such as WSDL. Though we have found that there are some attempts to deal with
this problem such as Google Discovery service format, Web Application
Description Language (WADL), and IBM’s WSDL-based REST description,
they do not seem to become or will become the industry standards. Most of the
RESTful Web Service APIs are read and used by humans rather than software
applications. This is useful when the enterprise is providing the relatively stable
Web APIs to the public. However, when it is applied to the complex enterprise
business processes, the lack of standard definitions for RESTful Web Services
will greatly lower the software automation and intelligence. Relatively, SOAP-
based approaches are supported by lots of languages and standard specifications,
it is more suitable for solving the problems that come from the dynamic and
complex distributed systems.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI068/these.pdf
© [W. Zuo], [2016], INSA Lyon, tous droits réservés

32

I.6 Summary
In this section, we have explored the related contributions in the field on

Web Service evolution. We firstly introduced the early contributions on software
evolution. Researchers focused more on the architectures to facilitate the
software reconfiguration and the model of software evolution. Secondly we
introduced the dynamic evolution and adaptation of software. When the software
met the more complex environment in the distributed computing world, the
software evolution was facing great challenges in reacting to the environment at
runtime. In this stage, people were trying hard to develop the architectures and
tools to enable the software being reconfigured and modified dynamically.
Thirdly, we explored the issues about Web Service evolution. When more and
more enterprises choose SOA as the principle to develop and deploy software
services, the approaches for managing software services need to be renewed for
reducing the cost of developing and maintaining applications. Especially, we
compared the preventive approaches and adaptive approaches for Web Service
evolution. Finally, we presented the impact analysis approaches when people
deal with the Web Service evolution.

The selected contributions that we mentioned above have been proved
successful for dealing with the problems that are related to Web Service
evolution. However, challenges still exist to make the software be more close to
the ideal shape in the field of Web Service evolution.

Firstly, the change management does not provide enough supports for
enabling Web Service evolution. Most of the contributions, such as IBM
Research’s typical change management framework in [79-83] try to obtain the
Web Service changes through comparing two versions of WSDL documents.
However, as we have mentioned above, these differential approaches can only
obtain differences, not changes. Different understandings for the results of the
differential methods can lead to different results of the changes.

Secondly, there is still lack of models for Web Service evolution. Current
models only focus on one or a few aspects of Web Service evolution. For
example, Foaeks [29-31] focuses on the adaptation when the Web Service has
been evolved. His approach is not interested to develop Web services.
Andrikopoulos in [13] only focuses on the preventive evolution model. He does
not pay attention to the impact and adaptation. Actually, each of the aspects of
Web Service evolution should be modeled in a holistic way.

Thirdly, the impact analysis of Web Service evolution only stays in the
stage of quantitative analysis. It provides the reference solution to the further
strategies of the Web Service stakeholders. However, it is not the solution.

Table 3 shows the aspects that the typical approaches related to the field of
Web Service evolution cover and compare them to Wei’s approach [100-103] in
this thesis.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI068/these.pdf
© [W. Zuo], [2016], INSA Lyon, tous droits réservés

33

Finally, we have argued in the last Section I.5, why we did not deal with
RESTful Web Services.

What we are seeking for are a set of models, tools, and frameworks to
facilitate stakeholders to deal with Web Service evolution more efficiently. The
proposed approach in this thesis aims at reducing the manual cost when evolving,
analyzing, and reacting to the Web Service evolution.

Table 3 Comparison of the Web Service evolution related approaches

Evolution

Model
Impact

Analysis
Client

Adaptation
Service

Adaptation
Programming

Support

Andrikopoulos [13] Preventive None None None None

Kaminski [18] Corrective None None Adapter-
Chain None

WSDarwin [20] Corrective None Semi-
automatic None None

Gensis [27] Corrective None None None Strong
Marcelo[44] None Usage-Profile None Future Plan None

Wang Shuying [45] None Dependency
Model None None None

Wei[100-103] Change-centric
Corrective Precise Semi-

automatic None Strong

Approache

Aspects

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI068/these.pdf
© [W. Zuo], [2016], INSA Lyon, tous droits réservés

34

Part II: Contributions

1 Motivation scenario
2 Change-Centric Model for Web

Service Evolution
3 Execution Model
4 Evaluation

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI068/these.pdf
© [W. Zuo], [2016], INSA Lyon, tous droits réservés

35

II.1 Motivation scenario
For explaining the proposed approach in a practical way and validate it with

simulation, in Section I.1, we will present a scenario which presents the
problems of Web Service evolution from the perspective of software
engineering. As we mentioned for several times, the proposed approach aims at
reducing the Web Service evolution related cost. As we know most of the cost
comes from the development and maintenance of software. So in this section, we
will present most of the technology details of the scenario such as WSDL
descriptions and class graphs.

This scenario is based on the Travel Planning Service (TPS). TPS integrates
thousands of Hotel Services (HS) and Train Ticket Services (TS) to provide the
service of booking transport tickets and hotels for its clients. In normal
situations, the clients can book any tickets and hotels that the TPS selects for
them. However, when we deal with evolution of Web services, and we are faced
with thousands of TS and HS, it is hard to make them evolve to improve the
quality and functionality of services. Since there are thousands of competitors,
the Web Service providers are facing great pressure for publishing new versions.
For their client TPS, as the Web Services HS and TS are continuously evolving,
it has to adjust the client application and usage strategies to ensure the business
process not to be broken down. Firstly, it should obtain the changing
information of the Web Services. Secondly, it should find out what kind of
changes can affect and how they affect the client applications. Finally, TPS
needs to determine how to adapt the client applications to the evolution of HS
and TS.

We present the scenario in this section to describe the motivation of the
proposed approach. In the rest sections of Part II and Part III, we will review
this scenario to present examples for the theoretical model. We will also present
how the approach solves the problems of this scenario in the evaluation section
in Part II.

Travel Planning Service (TPS) is a scenario for describing how to realize
the service of travel planning by Web Service based applications. A customer
uses some basic information as the input to obtain the reservation for the
transportation and accommodation. TPS calculates the best itinerary and
accommodation places for the customer and generates the bills for paying. Then
the customer pays for the bills at the Bank Service. Finally, TPS obtains the
reservation of the transportation and accommodation and return to the customer.
Figure 11 shows the process of the operation “plan travel”. The thin solid arrows
show the mapping relationship between the process and the Web Service.

Each process for this operation has invoked a Web Service in this system.
Generally, TPS depends on HS, TS, and BS (Bank Service) for this operation as
shown in Figure 11 with dotted arrows. The composition of this operation is
hard coded in TPS. TPS is a Web Service integrator and provides composite

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI068/these.pdf
© [W. Zuo], [2016], INSA Lyon, tous droits réservés

36

Web Service to the customer. Our concern isn't the evolution of TPS because it
does not affect the others stakeholders of this operation.

Figure 11 The working process of operation “plan travel”

II.1.1 Information model of the scenario
To describe the information models and the evolution issues of the involved

Web Services, we need to present the Web Service description documents for
each service. To make it more convenient for the reading, we only use the
simplified descriptions. The detailed WSDL files will be presented in the
appendix.

Figure 12 shows the portType of one of the TS “TrainTicketService”. It
contains two operations of “checkAvailable” and “bookTrainTickets”. The
operation “checkAvailable” is used by TPS to verify if the customer’s request
can be satisfied. The operation “bookTrainTickets” is used for perform the
booking command.

The input and output messages of the operation “checkAvailable” are
shown in Figure 13. The element “arg0” indicates the required departure time of
the train. The element “arg1” indicates the number of the required tickets. The

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI068/these.pdf
© [W. Zuo], [2016], INSA Lyon, tous droits réservés

37

element “arg2” indicates the identifier of the train. The output message of the
operation returns a Boolean value to decide if the requirement is satisfied.

Figure 12 TrainTicketService portType

Figure 13 Input and Output Message of “checkAvailable”

The WSDL description of the input and output messages of the operation
“bookTrainTickets” are similar as the ones of “checkAvailable”. The difference
is that the operation “bookTrainTickets” returns a ComplexType called
“PayModel”, which indicates the payment model for the travel plan. The
structure of the “PayModel” is shown in Figure 14. The element “account”
indicates the identifier of the target account that the customer wants to transfer
money to. The element “bankService” indicates the reference of the bank service
in a string value. The customer needs to transfer money to the specified account
of the specified bank service.

Figure 15 shows the portType of one of the HS “YouthHotelService”. It
contains 2 operations of “bookHotelRooms” and “checkAvailableRooms”. The
operation “checkAvailableRooms” is used for obtaining the number of the
available rooms with specified conditions. The operation “bookHotelRooms” is
used for booking the rooms with the specified input message.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI068/these.pdf
© [W. Zuo], [2016], INSA Lyon, tous droits réservés

38

Figure 14 The structure of the complexType “PayModel”

Figure 15 The portType of “YouthHotelService”

Figure 16 shows the XML schema of the operation
“checkAvailableRoomNum”. The input message contains three elements. The
element “arg0” indicates the room type with a string parameter. The element
“arg1” indicates the start date of the reservation. The element “arg2” indicates
the end date of the reservation. The output of this operation is an integer value
which indicates the available number of the rooms that satisfy the requirements.

Figure 16 Input and Output Message of “checkAvailableRoomNum”

Similarly, the operation “bookHotelRooms” has the same input message.
The output message of this operation is also a “PayModel” that is shown in
Figure 14.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI068/these.pdf
© [W. Zuo], [2016], INSA Lyon, tous droits réservés

39

Figure 17 shows the portType of one of the BS “BankService”. It contains 3
operations of “pay”, “generateBillModel” and “checkBillPayed”. The operation
“pay” is used for the customer to perform the payment action. This is done by
TPS in this scenario. The operation “generateBillModel” is used by HS and TS
in this scenario to create bills for paying. The operation “checkBillPayed” is
used by TPS for verifying if the customer has paid the bill.

Figure 17 The portType of the “BankService”

Figure 18 Input and Output Message of “pay”

Figure 18 shows the XML schema for the operation “pay”. The element
“arg0” indicates the identifier of the target account in this bank service. The
element “arg1” indicates the source account which will transfer money. The
element “arg2” indicates the object of the bill with a complexType of
“BillModel”.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI068/these.pdf
© [W. Zuo], [2016], INSA Lyon, tous droits réservés

40

“BillModel” is requested by HS or TS and generated by BS. It is used for
identifying the payment transaction which contains the information of
transaction identifier and the amount of payment. The structure of the Bill is
shown in Figure 19.

Figure 19 The structure of “BillModel”

The operation “generateBillModel” is requested by the enterprises which
create accounts in this bank service. In this scenario the Web Service
“YouthHotelService” and “TrainTicketService” do this. When there is payment
request for HS and TS, they will invoke the operation “generateBillModel” to
obtain the bill and send it back the customer. Then the customer pays for the bill
and completes the process of the reservation. The operation “checkBillPayed” is
used by HS and TS to verify if the bill is paid. This is not important for this
scenario, so we ignore the descriptions.

II.1.2 Web Service implementation of the scenario
We have introduced the interface description of the Web Service as the

information model. Generally, the Web Service consumers are only interested in
the description documents of the Web Service such as WSDL, OWL-S, SLA,
and so on. When the Web Service has been evolved, the change of the Web
Service implementation sometimes implies the change of the Web Service
semantics. It may not induce invocation errors for the Web Service consumers,
but it cannot ensure the result of the invocation for the new versions is
completely correct. However, at the Web Service provider’s side, the evolution
can usually happen on both of the descriptions and the implementations of the
Web Service during the Web Service evolution. It is unavoidable to concern the
implementation when talking about Web Service evolution. Web Service
evolution involves the process of software development. One of the goals of the
proposed approach is to reduce the cost of the Web Service evolution. A set of
high level APIs must be provided to deal with the changes on both of the
interface and implementation.

In this scenario, we do not provide the details of the implementation of each
of the presented Web Services since it does not affect the evaluation in Part II.
However, we will provide the method to deal with the changes of Web Service
implementation.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI068/these.pdf
© [W. Zuo], [2016], INSA Lyon, tous droits réservés

41

II.1.3 Web Service evolution of the scenario
Normally, all the Web Services used by TPS will cooperate in long-time

with it. However, the Web Service providers of HS, BS, and TS are continuously
driving their developers and business designers to evolve the Web Services to
meet the more and more complex environment and the competition pressure.
Web Service evolves through publishing new versions with lots of changes
generated. The reasons that drive the Web Service evolve can be fairly various.
To fix the bugs, enhance the functionalities, and comply with the upper layer
policies can all induce Web Service changes.

In this scenario, we assume that there are thousands of HS and TS but only
one BS used by TPS. We assume that the thousands of HS and TS quickly
evolve their Web Services. As a result, the development and deployment of the
Web Service struggle hardly with the time. The client applications of TPS also
encounter lots of troubles. It cannot predict and control the changes of the
services. They have to develop methods and tools to obtain and deal with the
changes during the Web Service evolution.

Table 4 The changes of TS

Change
Primitive

Initiative Change
Action

Description

Operation Enhance
Functionality add

Add a new operation named
“bookFlight” to provide additional
air transportation.

Element Policy
Change add

The input message of the operation
“bookTrainTickets” must be
updated since the government
requires this service to provide the
customer personal information. But
according to the policy, this is not
necessary and is adaptable.

Element
Enhance

Functionality

modify

The type of the element “arg0” of
the input message “checkAvailable”
will be replaced by the standard
date type “dateTime”.

Implementation Fix Bugs modify
The implementation of the
operation “bookTrainTickets” will
be rewritten

In this scenario, each provider of the HS, TS, and BS evolves his Web
Services in different ways. To simplify our presentation, we assume that we use
the same model for HS and TS. Then we also assume that there are 4 types of
changes for all the TS as shown in Table 4. Each HS performs all the changes by
loop with rollback evolution. We assume that the whole system is deployed in a
very large distributed environment. Each of the HS and TS will evolve in a very
fast speed. In the evaluation section in Part II, we will set the evolution

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI068/these.pdf
© [W. Zuo], [2016], INSA Lyon, tous droits réservés

42

frequency as that the change will happen every 3 seconds with this scenario.
There is no possibility to employ someone to obtain, analyze, and adapt the
client applications to the evolution in such a short time.

Similarly, we also design 4 types of changes for HS in Table 5.
Table 5 The changes of HS

Change
Primitive

Initiative
Change
Action

Description

Implementation Enhance
Functionality modify

The provider ameliorates the
quality of the service to provide
better experience.

Element Policy
Change add

The input message of the operation
“bookHotelRooms” must be
updated by adding an element
“customer identifier” since the
government requires this
information when the customer
wants to book a hotel.

Operation Policy
Change modify

The name of the operation
“bookHotelRooms” will be renamed
to “bookRooms” for simplification.

Output Message Policy
Change delete

The operation
“checkAvailableRoomNum” does
not need to return a message since
it will be obtained by other means.

For BS, the change of BS does not affect very much the TPS since it is
relatively stable. So we do not make it evolve in this scenario. All the Web
Services are evolving with high speeds. The Web Service providers usually do
not maintain all the versions of the Web Services since it will waste too much
resources.

II.1.4 Summary
In this section, we have described the business process of an operation

“plan travel” for TPS. We also presented the interface descriptions of each
involved Web Service. Now we have got the full scope of the scenario.
Thousands of HS and TS are constantly publishing new versions which contain
the changes on the interface or implementation of their Web Services. We have
also described the changes that will occur during the evolution. When TPS
meets the evolution of HS and TS, the old version of the invocation can usually
generate errors or incorrect results. At this time, he has always 3 options:

– Discard the evolved service and choose another similar one that
satisfies the client application.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI068/these.pdf
© [W. Zuo], [2016], INSA Lyon, tous droits réservés

43

– Do nothing with the evolution and return an exception to the users.

– Modify the client application to adapt it to the evolving Web
Service.

No matter which option will be chosen by TPS, it must obtain the
information of the evolution, estimate the impact of the evolution and then make
decision.

The first option seems feasible because it does not need to change the client
applications and does not need to deal the Web Service evolution. If the first
option cannot be realized, TPS has to choose the second option. In this scenario,
we assume that the Web Services are similar on interface definition. However,
they are actually different with each other since they have different business
logics and semantics. The first option is nearly impossible in this scenario. As
we have mentioned above, the Web Service provider does not maintain too many
versions for one Web Service because it is a waste of resources. So TPS does
not have too many chances to use the old version when the Web Services of TS
or HS are evolving in such a high speed. Then if the Web Services that they are
using have been evolved, there is no possibility to keep using the previous
compatible versions of the Web Service. At last, TPS has to choose the second
option to throw exceptions for the customers and interrupt the business.

Generally speaking, the third option is the best way to help TPS deal with
the Web Service evolution of HS and TS. To adapt the client applications to the
evolving Web Service, TPS needs to firstly discover exactly what the changes
are, secondly find out if and which of the changes can be adapted, and thirdly
decide how to take adaptation.

However, current approaches presented in Part I have less discussed the
solutions which can cover all the issues mentioned above. We will start to
present our contributions for the issues of Web Service evolution in Part II.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI068/these.pdf
© [W. Zuo], [2016], INSA Lyon, tous droits réservés

44

II.2 Change-Centric model for web

service evolution
Everything evolves along with the time. To control the evolution, one must

to catch the things which do not change. When the Web Service evolves along
with the time, the only things that never change are the changes. Web Service
delta is a set of changes from one version to its next version of the Web Service.
Delta comes from the mind of the Web Service provider at design time and is
executed by the Web Service developer. Once determined, delta will never
change again and it keeps globally the system consistent during the whole
lifecycle of the Web Service. Once designed in a standard and formalized way, it
becomes the consensus for all the stakeholders to understand Web Service
evolution. Most of the current approaches consider Web Service delta as the
result of evolution so they propose different approaches to find it out. In this
thesis, we take into account of another aspect of delta. We make that delta can
be considered as both the reasons and results of Web Service evolution. Once
delta comes out of the mind of Web Service provider, it involves all the
stakeholders to take corresponding actions that are related to evolution. That
means, all the actions that are performed under guiding of delta when evolution
occurs in SOA include: 1) the actions of designing, executing, and publishing
the Web Services versions belongs to the provider, 2) the actions of storing and
distributing Web Service versions belongs to the broker, and 3) the actions of
monitoring, analyzing, and adapting to versions belongs to the consumer. The
Web Service provider develops delta rather than the Web Service versions. The
Web Service broker manages delta rather than Web Service versions. The Web
Service consumer reacts to the delta rather than the Web Service versions.

Figure 20 indicates that delta actually can be involved throughout the
behaviors in SOA, which is so called “change-centric”.

Figure 20 The “Change-Centric” SOA

II.2.1 Web Service changes

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI068/these.pdf
© [W. Zuo], [2016], INSA Lyon, tous droits réservés

45

Current solutions to manage Web Service evolution have required too much
work on the discovery of the Web Service changes. Typical approaches are
analyzing the Web Service description documents (WSDL, OWL-S) to find out
the differences between two versions of the Web Service. The advantage of such
approaches is that it does not need to build any other mechanism to discover the
changes. Current SOA system and related frameworks can well support the
obtaining and parsing the description documents. However, the differences do
not refer to the changes. The approaches which obtain the changes by analyzing
the differences can usually lead to ambiguity. For example, imagine that we
have a piece of WSDL description as shown in Figure 21.

Figure 21 The original version of the Web Service

And after the Web Service has been evolved, we got another piece of
WSDL description as shown in Figure 22.

Figure 22 The evolved version of the Web Service

Now there are two possibilities to obtain the changes by current differential
approaches.

1. The semantics doesn’t change: Updating the operation
“bookTrainTickets” to rename it to “bookTickets”.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI068/these.pdf
© [W. Zuo], [2016], INSA Lyon, tous droits réservés

46

2. The semantics changes: Delete the operation “bookTrainTickets”
and add a new operation named “bookTickets”.

These two cases are both right if we use VTracker and similar tools to
analyze the WSDL documents of the two versions. However, it is obvious that
the two possibilities are totally different and will have different impact on the
consumers. For the first possibility, the Web Service only changes the name of
the operation “bookTrainTickets” and does not change the semantics, the
implementation, and the other related primitives. The client applications only
need to modify the interface to invoke the Web Service correctly. For the second
possibility, the operation “bookTrainTickets” will be never available since it is
deleted. The new operation “bookTickets” will have new semantics and cannot
be directly used by the old version of the client applications without any
analysis. Whatever the choice adopted by different tools, one can not really
understand what were the changes.The Web Service changes come from the
mind of the Web Service provider who is responsible of the maintenance and
development of the Web Service. The Web Service provider is the first one and
the only one who understands what the changes really are when the Web Service
has evolved. According to this assumption, we consider to model the Web
Service changes at the provider side and propagate the changes over the system.
The underlying framework that we will present in this thesis will be responsible
for hiding the details of the creation and propagation of the Web Service
changes. It helps the system to control the whole lifecycle of the Web Service
changes.

II.2.1.1 Roles involved in Web Service evolution

Before demonstrating how to control the changes in the system, we firstly
define the participants that are related to the Web Service evolution.

Table 6 The Roles and Behaviors in Evolution SOA

Roles Behaviors

Provider • Designs / Creates / Modifies / Delete Web Services
• Designs / Creates / Implements Web Service changes

Broker
• Maintains Web Service registries
• Maintains Web Service changes registries
• Propagates Web Service changes

Consumer
• Develops client applications
• Subscribe evolution events
• Reacts to the Web Service evolution

In typical SOA model introduced in the introduction section, the roles are
provider, broker and consumer that are related to the Web Service interaction.
The Web Service broker works like the Web Service registry which accepts the
Web Service providers to publish their Web Services. The Web Service provider
develops the Web Services and publishes them to the Web Service broker. The

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI068/these.pdf
© [W. Zuo], [2016], INSA Lyon, tous droits réservés

47

Web Service consumer looks up in the registry of the Web Service broker to
select the Web Service desired and bind to it.

When the issue of Web Service evolution is posed in the typical SOA model,
the behaviors of each role will be a little different. We use Table 6 to describe
the roles and the evolution related behaviors of each role.

We also use Figure 23 to describe the interactions among the roles to deal
with Web Service evolution on the basis of the SOA model.

The provider plans, designs, and implements the changes and provides the
infrastructure for deploying Web service instances. When a provider publishes a
new version of a Web service on the registry of the broker, the Web Service
changes from the previous version are also published along with the WSDL
documents. Actually, the Web Service changes are extensions for the WSDL
documents. The broker then adjusts its registry by keeping track of all the
changes per version and notifies consumers of the changes. Consumer includes
client application developers and final users of the Web services. When the
consumer obtains the WSDL documents, he also obtains the Web Service
changes. Finally the consumer might decide to adapt their client applications to
respond to these changes.

Figure 23 Web Service Evolution in SOA

II.2.1.2 Change specification of Web Service

II.2.1.2.1 Classic models for Web Service changes
The Web Service changes are always related to the behaviors of the Web

Service during the evolution. Thus, we will need a standard Changes
Specification which ensures the consensus on the formalization of the Web
Service changes for all the stakeholders.

Current Web Service information model such as WSDL and OWL-S do not
report on the version related information. Classical contributions on the
classification and description of the Web Service changes include Leitner [62]
and Juric [83] which have presented their own changes models.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI068/these.pdf
© [W. Zuo], [2016], INSA Lyon, tous droits réservés

48

Leitner explicitly defines the primitives and types of changes as shown in
Figure 24. This classification scheme distinguishes three top-level types of
changes: (1) Non- Functional Changes are all changes in the non-functional
interface of the Web service as defined above, (2) Interface Changes represent
all changes in the functional interface, and (3) Semantic Changes cover all
changes that are not contained in the WSDL description of the service, such as a
changed understanding (but not changed structure) of operations, parameters or
return values.

Figure 24 Leitner’s Changes Model

Leitner’s model covers most of the possible changes for the real world Web
Service evolution. He does not think that the non-functional changes including
QoS and semantic changes should be considered when dealing with Web Service
evolution for the following reasons:

1. The QoS changes are monitored at runtime. One cannot define the
exact values of QoS when evolving the Web Service.

2. The semantic description such as SAWSDL is not widely applied in
the real world system.

In other words, Leitner only focuses on the interface changes to manage
Web Service evolution. Unfortunately, not all the changeable primitives in
WSDL interfaces are covered and there is no further discussion on how to model
the Web Service changes formally. For example, the changes of the messages
are not included in Leitner’s model.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI068/these.pdf
© [W. Zuo], [2016], INSA Lyon, tous droits réservés

49

Unlike Leitner’s model, Juric builds a complete set of XML extensions for
current UDDI and WSDL specification to identify the Web Service changes. The
main contribution of this approach is that it creates new tags for WSDL and
UDDI documents for Web Service changes related description. For example, it
introduces the tag <wsdlx:version> for WSDL documents as shown in Figure 25.

This type of description does not describe the changes. Instead, it describes
the “differences”.

Figure 25 Juric’s WSDL extension

Juric uses the <wsdlx:version> tag to identify the different parts for each
version of the Web Service. One WSDL document will contain all the
descriptions of all the versions. Although it has some special tags for decreasing
the unnecessary descriptions for versioning information, the size of the WSDL
document will be also unacceptably huge if it is applied in a system that evolve
quickly. When there are too many versions for one Web Service, the system will
encounter performance decreasing on the following aspects:

– Huge size WSDL documents will block too much of the network
bandwidth.

– It will cost too much time the parse the huge WSDL documents.

– The WSDL document will become unreadable.

II.2.1.2.2 Definition of Web Service changes
After having studied the existing models for Web Service changes, we

worked out our own Changes Specification to formally describe the changes.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI068/these.pdf
© [W. Zuo], [2016], INSA Lyon, tous droits réservés

50

We define the Web Service information model to point out the primitives
that are sensitive of Web Service evolution.

Definition II.1.1: a Web service is characterized by 3 dimensions WSD
where:

I: interface, WSDL annotations and XML Schemas

: Semantics, OWL based descriptions

Q: QoS properties

SD

= 



Definition II.1.2: when a Web service WSi is subject to changes, we
consider the delta noted as ∆ between two versions:

Δ (vj , vj−1) = vj(WSi)− vj−1(WSi),
Similarly, we have

vj(WSi) = Δ �vj , vj−1� + vj−1(WSi),

 and

vj−1(WSi) = vj(WSi)− Δ �vj , vj−1�

This can ensure that each version of the Web Service is able to rollback and
able to rollforward.

vj(WSi) indicates version j of Web service i. One also notes the change
description with three dimensions:

ΔD�vj, vj−1� = { ΔI�vj, vj−1�,ΔS�vj, vj−1�,ΔQ�vj, vj−1� }.

Definition II.1.3: According to Definition II.1.2, Web service evolution is
defined by:

ΩD = {Δj / Δj−1 ≪ Δj <=> vj−1(Si) ≪ vj(Si)},
The expression a b means that a precedes b.

Web Service interface changes can directly affect the invocation. So we
must firstly define the Web Service interface.

Definition II.1.4: A Web Service interface { , }I T OP= , where T is a set of
Web Service schema complex types (defined in WSDL) and 1 2 3{ , , ... }nT t t t t= . t
is a sequence of e which represents the schema element (tag :xs element< >
defined in WSDL) which belongs to the sequence of complex type t .

{ , , }OP It Ot N= where It represents input message of the operation and
1 2 3{ , , ... }nIt it it it it= . Ot represents the output message of the operation and

1 2 3{ , , ... }nOt ot ot ot ot= . N represents the signature of the operation. And for the
Web Service interface, we have:

, , , , , ,it It ot Ot t T e it e ot e t e I∀ ∈ ∈ ∈ ∃ → → → ∈ .

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI068/these.pdf
© [W. Zuo], [2016], INSA Lyon, tous droits réservés

51

Then we can define the Web Service changes on interface.

Definition II.1.5. 1(,)I
j jv v −∆ is denoted as a set of interface changes that

1 1(,)I
j j j jv v I I− −∆ = − , where 1 2 3{ , , ... }I

nc c c c∆ = and ,n n nc a e=< > . e represents
a changed primitive in the Web Service. So we denote ,I A I∆ =< > . A is a set
of change actions among{ , , }delete add modify .

We have explicitly defined the Web Service evolution and related interface
changes in this section. As we have mentioned above, the Web Service changes
comes from the Web Service provider’s mind and are propagated by Web
Service broker. In next section, we will introduce how to produce the formal
described changes with our programming framework.

II.2.1.2.3 XML Annotation of Web Service changes
Unlike the previous description of Web Service changes, the proposed

approach in this thesis extends current WSDL annotations to independently and
directly describe the changes by <change> tags. Each WSDL document will
have a version and change descriptions by extended tags. Table 10 contains a
part of the tags, attributes and contents of the extensions. The XML annotation
presented is the implementation of the abstract Change Specification.

Table 7 XML Annotations for Change Specification

Tags Attributes Values Description

<changeoperation>

type * {add, modify,
delete}

The change types for the
operation. The “modify” type
only modifies the signature
of the operation.

name * [xsstring] The name of the operation
that needs to be changed.

adapt [xsboolean]

Specify if the change is
adaptable. “add” type is set
to “true” by default, unless is
“false” by default.

<changeinput>

type * {add, modify,
delete}

The change types for the
input. The type “modify” only
modifies the signature of the
input.

name * [xsstring] The name of the input that
needs to be changed.

operation
* [xsstring] The name of operation to

which the input belongs to.

adapt [xsboolean] Specifies if the change is
adaptable or not.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI068/these.pdf
© [W. Zuo], [2016], INSA Lyon, tous droits réservés

52

Tags Attributes Values Description

<changeoutput>

type * {add, modify,
delete}

The change types for the
output. The “modify” type
only modifies the signature
of the operation.

name * [xsstring] The name of the output that
needs to be changed.

operation
* [xsstring] The name of operation to

which the output belongs to.

adapt [xsboolean] Specifies if the change is
adaptable or not.

<changecomplexType>

type * {add, modify,
delete}

The change types for the
“complexType”. The “modify”
type only modifies the
signature of the
“complexType”.

name * [xsstring]
The name of the
“complexType” that needs to
be changed.

adapt [xsboolean]

Specifies if the change is
adaptable or not. “add” type
is set to “true” by default,
unless it is “false” by default.

<changemessage>

type * {add, modify,
delete}

The change types for the
“message”. The “modify”
type only modifies the
signature of the “message”.

name * [xsstring] The name of the “message”
that needs to be changed.

adapt [xsboolean]

Specify if the change is
adaptable or not. “add” type
is set to “true” by default,
unless it is “false” by default.

<changeelement>

type * {add, modify,
delete}

The change types for the
WSDL tag <xselement>. The
“modify” type only modifies
the signature of the
<xselement>.

name * [xsstring] The name of the “element”
that needs to be changed.

parent * {[xsstring]}
The parent of the element.
Usually it is <xsschema> or
<xscomplexType>

adapt [xsboolean]

Specify if the change is
adaptable or not. “add” type
is set to “true” by default,
unless it is “false” by default.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI068/these.pdf
© [W. Zuo], [2016], INSA Lyon, tous droits réservés

53

Actually, the XML tags support more changes to describe by further
extensions. We only present the ones that involved with Web Service interfaces
in WSDL document at current stage.

II.2.2 Programming framework for Web Service evolution
The previous work on the programming such as Gensis for Web Service

evolution, described above in the state of the art, aims at enabling the Web
Service developers to program the Web Service with high level APIs. The
programming framework can reduce the cost of the Web Service development as
well as operation and maintenance.

Compared with Gensis, in this thesis, the programming framework does not
only support high level APIs, but also it records also each change action to the
Web Service and automatically generates the formalized Web Service changes
that meet the XML extensions presented above. When the Web Service provider
is going to make evolve a Web Service, he should follow the steps of: 1) design
changes, 2) apply or execute changes, and 3) deploy the new versions. The
whole process is shown in Figure 26.

Figure 26 The process for evolving a Web Service

The first step is to develop a plan to evolve the Web service. The supplier
must clearly define what part of the Web Service will be changed and what is

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI068/these.pdf
© [W. Zuo], [2016], INSA Lyon, tous droits réservés

54

the result of the expected change.The provider needs to build up a set of
evolution scripts as input of the Web Service evolution execution engine.

The second step is to apply the changes and generate the new version of
Web service. We provide an execution engine to analyze and execute the scripts
described in the first step. The execution is performed on both the information
and implementation aspects of Web services. The Web service instance is
generated by the bytecode operation module of the execution engine. The input
of the execution engine includes a complete Web service instance deployed in
the Web Service container and the designed scripts from the first step. The
output of the execution is a complete Web service instance identified with a new
version including the documents, the source code and the byte code.

When a new version is generated by the execution engine, a change
description will be also published on the broker following the third step. The
broker maintains the registry of the Web services published by different
providers and stores the subscription information with the Web service
consumers and the Web service evolution event that they are interested in. The
data structure of the Web service registry in the Web service broker can be
considered as a list of Web service descriptions.

II.2.2.1 Web Service evolution APIs

To obtain a new version of the Web Service, the proposed model generates
the change description for each version with the execution engine. The
generation process is totally transparent for the Web Service developers. What
they only need to learn is the scripting APIs to let the execution know how to
execute the changes.

The scripting framework is a set of APIs which help the Web Service
developers to program the Web Service evolution at high level. It hides the
details of the generation of the changes and directly produces a new version of
the Web Service including the WSDL descriptions and implementations.

Take a look at the “Document Operation” in Figure 26, we pick up a piece
of the script API including the “Interface” class and the “Operation” class for
example as shown in Figure 27 to explain how the API produces the Web
Service changes.

When the programming script is executed by the execution engine, the
change description will be also generated in XML format. If the Web Service
provider makes evolve the Web Service with the programming framework, all
the changes will be captured.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI068/these.pdf
© [W. Zuo], [2016], INSA Lyon, tous droits réservés

55

Figure 27 Part of the scripting API

II.2.3 Resource management for runtime versioning
We have introduced the programming framework for Web Service

evolution. When we mentioned that the Web Service execution engine picks up
the Web Service from the Web Service container, we implied that the Web
Service evolution happens at run time. The execution engine accepts the
evolution scripts and performs the Web Service evolution on the fly. However,
when there exist multiple versions in the Web Service container, the latter can
waste much of the memory resources. This can directly induce performance
decrease and event stack overflow. For static evolution, there is no such problem
since the resources are saved in the persistent drivers such as hard disk.

We consider that the Web Service is actually a package of code resources.
When the execution engine has to create a Web Service, it will manage all the
resources that are included in the Web Service.

To isolate all the versions of one Web Service, the Web Service container
usually allocate independent resource spaces to each version. This type of
resource management will waste lots of system resources. It will cause great
performance bottleneck when there are lots versions and lots of Web Services
are deployed.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI068/these.pdf
© [W. Zuo], [2016], INSA Lyon, tous droits réservés

56

The change-centric model uses the inherited resource loaders to manage
runtime Web Service versions as shown in Figure 28. The resources of each
version of the Web Service are managed by the resource loader. The modified
resource for one version, for example the interface and implementation
bytecode, will be automatically specified with “changed” tags as the one notated
by “1” in Figure 28. The circle notated by “4” is specified with “manual” tags.
When the resource loader is prepared to load the resources, it firstly checks if
the resource is specified with the two tags. If yes, it will load the resource to
current loader. If no (for example circle “2” and “3”), the loading job will be
delegated to its parent loader. The parent loader corresponds to the previous
version from which the current version has evolved.

Figure 28 Version Management for Change-centric Model

① Changed resource.
②③Unchanged resource
④Manual defined changed resource

II.2.4 Impact analysis for Web Service evolution
The Web Service evolution can directly affect the invocation of the client

applications and even the whole business. To help the stakeholders who are
involved with the impact of the Web Service evolution to deal with it, the first
step is to estimate the impact. Current approaches can estimate part of the
impact such as Wang in [45] and Yamashita in [44]. As we have discussed the
limitations of them, we will present the impact analysis model for Web Service
evolution which can eliminate these limitations. The impact analysis is
categorized as the impact analysis on the client applications and the impact
analysis on the Web Service composition.

The impact analysis will answer the two questions:

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI068/these.pdf
© [W. Zuo], [2016], INSA Lyon, tous droits réservés

57

1. How much is the cost for the stakeholders to adapt to the changes?

2. If the evolved Web Service is adaptable for the consumers?

II.2.4.1 Web Service evolution impact analysis on Web Service client
applications

Definition II.1.5 has defined ,I A I∆ =< > . The interface changes of the Web
Service may result in some side-effects on the clients such as:

– The unexpected results of the invocation from the Web Service.

– Fatal errors of the client application.

– Incorrect understanding of the consumer for the Web Service.

To estimate the cost of using the new version after the evolution, it is
necessary to introduce a metric which could provide a quantitative view of the
side-effects that are caused by the Web Service changes during the Web Service
evolution. We denote I∆ as this type of metric which indicates a float numeric
value varying from 0 and 1. It measures the change impact of the Web Service
evolution and the cost that must be taken for the consumers to adapt to the
evolution. I∆ also indicates the compatibility degree of the new version of Web
Service to its clients. 0I∆ = always means that the new version of the Web
Service is completely compatible with the applications of its current consumers
without any updates to them. A greater value of I∆ indicates a greater impact on
the applications of the current clients.

On concluding the side-effects that may be caused by the Web Service
changes, we consider that the value of I∆ depends on 3 aspects: 1) the changes;
2) the usage of the consumer; 3) the Web Service information model.

Firstly, the change impact depends on the types and the numbers of the
changes. Unfortunately, only adding new operations, adding output messages,
adding new schemas and adding new complex types are compatible with the
current clients of the service. The rest types of changes can directly or
potentially affect the consumers. The more changes may induce a greater impact
degree on the clients.

Figure 29 Part of the scripting API

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI068/these.pdf
© [W. Zuo], [2016], INSA Lyon, tous droits réservés

58

Secondly, the change impact depends on the client usages of the service.
Different consumers may have different dependencies on one Web Service.
These dependencies can be retrieved through analyzing the historical behaviors
records of the consumers. Differently from Wang’s dependency model [68], we
consider that the same change actions (add, remove or modify) to the different
elements of the Web Service may cause different impacts on the same consumer.
For example, there are two operations in the HS shown in Figure 29. BookHotel
has been invoked for 1000 times. TransferMoney has been called for 200 times.
We consider the impact degree of changing BookHotel should have a greater
value than the changing TransferMoney on its consumer TravelService.

Thirdly, the change impact also depends on the changing of the dependency
graph for the Web Service information model. When a change action is taken to
the Web Service, the availability of the Web Service is also changed due to the
change of the Web Service information model. Some of the change may not
affect the current invocation of the clients, but it may potentially affect the
future invocation since it has changed the understanding of the consumers for
the Web Service. The contribution of the changing of the Web Service
information model is determined by the changing type and the number of the
changed primitives. For example in Figure 30- Figure 32 which shows the
changing of the Web Service information model.

The change action of adding an element on the Web Service information
model can directly change the global understanding of the consumers on the
Web Service even if this change action is completely adaptable for the Web
Service client applications. This type of changing scenario always refers to the
change action of adding a message the Web Service interface. This contribution
of changing the Web Service information model is roughly set as 1/10=0.1.

Figure 31 shows that a modification on e5 also induces another
modification on e9. This type of changing scenario always refers to the
modification on the name of the Web Service so that the input message, output
message and the complex type have all been influenced. In this case, the
contribution of changing the Web Service information model is roughly set as
2/9=0.2222.

Figure 32 shows that the change action of deleting e2 induces the delete
action for all of its sub elements e4, e5, e6, e8, e9. All of the mentioned
elements will be also deleted. In this case, the contribution of changing the Web
Service information model is roughly set as 6/9=0.6667. Considering all the
possible factors listed above, we can give the following definition of I∆ .

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI068/these.pdf
© [W. Zuo], [2016], INSA Lyon, tous droits réservés

59

Figure 30 Adding an element e10 to the Web Service information model

Figure 31 Modifying the e5 to the Web Service information model

Figure 32 Deleting the e2 from the Web Service information model

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI068/these.pdf
© [W. Zuo], [2016], INSA Lyon, tous droits réservés

60

Definition II.1.6. The change impact of Web Service evolution on the
clients represents the metric of the side-effect on the clients that may be caused
by the changes during the Web Service evolution. We assume that a service is
changed from 1vS to 2vS . Then the change impact of this evolution is denoted
as impact∆ and:

1 2
1

((,),) () (,)
n

v v i i
i

I S S m IC c d e m∆
=

= ×∑

(,)id e m represents the dependency between the consumer m and ie . n
represents the total number of changes happen to the Web Service. 1i ve S∈ and
will be introduced in Definition 7. ()iIC c indicates the impact of change ic and
will be introduced in Definition II.1.7.

Definition II.1.7. The impact of change action ic depends on the Web
Service information model and the change type. For a given Web Service S , we
denote the impact of one change action c as ()IC c and:

() () ()IC c IF c IR c= +

Definition II.1.8. ()IF c indicates the impact of change c to the Web
Service information model and:

1 , () add
| | 1

() 0, () modify
1 , () delete

| | 1

if a c
S

IF c if a c

if a c
S

 = += =

 =

−

where a(c) indicates the action type of change c .

Definition II.1.9. ()IR c represents the impact caused by the type of change
action c . It depends on whether the change action is compatible or not. We have
noted in Section I.3.4 that the limited types of changes in Web Service evolution
are compatible. Now we use Θ to denote the set of compatible changes in Web
Service evolution.

1,
()

0,
if c

IR c
if c

∉Θ
=  ∈Θ

Definition II.1.10. (,)xd e m represents the dependency degree between the
consumer m on the element xe in the Web Service. It is determined by the
historical invocation records of consumer m to Web Service element xe .

1

(,)
() 1

x
x n

i
i

kd e m
k

=

=
+∑

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI068/these.pdf
© [W. Zuo], [2016], INSA Lyon, tous droits réservés

61

where ik represents the invocation times of the consumer m to the element
i of the current version of the Web Service.

II.2.4.2 Adaptable Web Service changes

Section II.2.1.2.3 has presented the XML annotations for describing the
Web Service changes. We have noticed that there is an attribute named “adapt”
with a type of <xsboolean> for each type of “change” tags. Normally, this
attribute is automatically assigned by the execution engine according to the
compatible changes that we mentioned above. Actually, there are two
possibilities to make the Web Service changes adaptable to the old version of
the client applications.

1. The changes do not affect any of the elements that are not used by
the Web Service consumer. For example, adding an operation or
changing an input message that a consumer does not use both fall in
this type.

2. The changes do not affect the types of the invocation of the client
applications and the semantics of the Web Service. For example,
changing the signature of an operation and the “adapt” attribute of
this change tag is set to “true” falls in this type.

Table 8 The Adaption Behavior

Change c Adaptation behavior b Description

<changeoperation
type=”modify”,
adapt=”true”>

<adaptoperation
type=”default”>

default adaptation action
is to directly invoke the
evolved Web Service by
changing the name of the
operation

<changeelement
type=”add” adapt=”true”
parent=”[xscomplexType]”
>

<adaptelement type=”value”>
[value]
</adaptelement>

Assign a default value
(null) to the additional
element on the already
known complex type.

<changeelement
type=”delete”
adapt=”true”
parent=”[xscomplexType]”
>

<adaptelement
type=”default”>

Ignore the value for the
deleted element of one
complex type

<changeinput
type=”delete”
adapt=”true”
parent=”[xsschema]”>

<adaptinput type=”default”>

The same as the
adaptation for deleting
element.

<changeinput type=”add”
adapt=”true”
parent=”[xsschema]”>

<adaptinput type=”value”>
<sequence><adaptelement
type=”value”>[value]</adapt
element>
</sequence></adaptinput>

The same as the
adaptation for adding an
element for a complex
type.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI068/these.pdf
© [W. Zuo], [2016], INSA Lyon, tous droits réservés

62

With consideration of the two possibilities, we have the formal descriptions
for the adaptable Web Service evolution. A Web Service change c is an
adaptable change if it satisfies at least one the following conditions.

Adaptation Condition 1: Let’s assume that ,c a e=< > , if (,) 0d e m = ,
then c is an adaptable change for consumer m .

Adaptation Condition 2: if ()c adapt true= and there exists an adaptation
behavior specified by the provider for consumer m noted as ()b m , then c is an
adaptable change for consumer m .

For the adaptation behavior, Table 11 lists part of the possible types.

To assign the adaptable changes can greatly reduce the cost of evolution for
the client applications. To evaluate how the Web Service can support this
feature, we define another attribute for the quality of the service so called
“Adaptability”.

Definition II.1.11: The attribute adaptability indicates how the version of
the Web Service supports the backward compatibility for their consumers and:

The denominator represents the number of generated changes when one

version is published comparing with its previous version. The numerator
represents the number of adaptable changes among all the changes.

When the Web Service integrator is considering selecting its desired Web
Service, he may also want to know if and how the Web Service is compatible
with its client applications during its life cycle.

II.2.4.3 Web Service evolution impact analysis on Web Service
compositions

The Web Services always work within compositions to complete the
business process. The impact of the Web Service evolution on the compositions
is determined by how the member services of the composition depend on each
other. If more than one member services are changed during the evolution, the
impact on the composition is the sum of each impact of the member service on
the composition. The impact analysis on the Web Service composition is taken
for the Web Service integrators or the users to have a quantified view of the
effect of the composition that may be caused by the evolution of the Web
Services. It also measures the effort that should be taken to adapt the
composition to the evolution.

adaptablechanges
adaptability

changess

N
QoS

N
=

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI068/these.pdf
© [W. Zuo], [2016], INSA Lyon, tous droits réservés

63

Figure 33 Impact Matrix for the motivation scenario

We have got the result of the evolution impact on the client applications.
Then we can get the evolution impact on the whole compositions through an
impact matrix evolved from the dependency matrix illustrated by Wang [44].
Taking the scenario described in Section II.1 as the example, we have the impact
matrix as shown in Figure 33.

Definition II.1.12. Given a Web Service evolution composition, the impact
of Web Service evolution on the composition is denoted as IP and:

1
((),)

n m

i j
i i j

IP I S S∆
= =

=∑∑

Taking Figure 33 as an example, the evolution of TS, BS and HS will result
in an impact on the whole business process with the value of:

1 2 1 2 1 2

1 2

1 2

((,),) ((,),) ((,),)
((,),)
((,),)

v v v v v v

v v

v v

IP I BS BS TS I TS TS TPS I HS HS TPS
I BS BS TPS
I BS BS HS

∆ ∆ ∆

∆

∆

= + + +

+

II.2.4.4 Discussion

In Section II.2.4, we have explained how to analyze the impact of the Web
Service evolution for the client application and the Web Service composition.
For the client application, the evolving Web Services may cause impact on them.
These impacts can cause incorrect results or even fatal errors to the business
processes. To lower the side effect of the Web Service evolution, we proposed a
method to analyze the impact of the Web Service evolution on the client
applications. This method provides the foundation for any stakeholders to deal
with Web Service evolution. We analyze the impact of the Web Service
evolution in both of the quantitative and qualitative aspects. Qualitative analysis
helps the client application to determine if the Web Service evolution is
adaptable. Quantitative analysis helps the Web Service consumers to estimate

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI068/these.pdf
© [W. Zuo], [2016], INSA Lyon, tous droits réservés

64

the costs of adaptation for the Web Service evolution. Besides, we also provide
a method to analyze the impact of Web Service evolution on the Web Service
composition based on Wang’s dependency model.

With the proposed approach, we could precisely locate the problems of the
Web Service evolution. To be closer to the intelligent software, we need the
methods to solve these problems. So in next section we will present the
approach of client adaptation for the Web Service evolution.

II.2.5 Client adaptation for Web Service evolution
When the Web Service consumers have obtained and analyzed the changes,

it is possible to make further strategies to adapt the client applications to the
evolution to keep the business processes unbroken. However, the client
applications do not adapt to the evolution automatically and dynamically. Thus,
people need a mechanism to facilitate the Web Service consumers to react to the
Web Service evolution more agilely.

Fokaefs’s approach for WSDarwin shows that the generation of the client
stub is the only way to adapt the application to the changes. However,
WSDarwin only support the adaptation to the limited originally compatible
changes as listed in Table 2. To adapt more types of Web Service changes to the
client application dynamically, we need a corresponding new method.

II.2.5.1 Overview

Firstly we introduce the overview of the Web Service we propose to
perform client adaptation as shown in Figure 34.

The Invocation Interceptor is used for intercepting the dependency relation
information that we mentioned in Definition II.1.10. It obtains the dependency
information and transfers it for the Impact Analyzer.

The Evolution Monitor is used for discovering and obtaining the change
descriptions that are published by the Web Service provider. Then it also
transfers the change descriptions for the Impact Analyzer.

The Impact Analyzer accepts the dependency information and change
description from the upper layer modules and generates the information about
the impact of the evolution on this consumer as described in Section II.2.4.

The Adaptation Designer analyzes the result of the Impact Analyzer to
determine if and which of the Web Service changes could be adapted. Once it
determines that the Web Service evolution can be adapted, it will generate the
adaptation strategies that are corresponding to the adaptation behaviors
described in Table 11 for the Web Service Proxy Factory.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI068/these.pdf
© [W. Zuo], [2016], INSA Lyon, tous droits réservés

65

The Web Service Proxy Factory generates the Web Service references for
the Client Business Module. Normally, the Client Business Module invokes the
Web Services through the framework that we provide for the Web Service client
application by the Web Service interfaces. The generated Web Service
references always implement the interface. Thus, the Web Service references
can be always compatible with the Web Service Client Business Module. The
process of adaptation is entirely transparent to the Client Business Module. The
detailed method and algorithm will be introduced in Section II.3.3.2 with the
implementation of the client adaptation.

Figure 34 Web Service consumer for adaptation to the evolution

II.2.6 Summary
In Section II.2, we have described several aspects of the change-centric

Web Service evolution model.

The Web Service provider is responsible for maintaining and evolving the
Web Service. The provider maintains the Web Service container and Web
Service execution engine. When the user is planning a Web Service evolution,
he firstly prepares an evolution script following the API in Section II.2.2.1. This
script is actually a formalized implementation of the user’s evolution idea. When
the script is imported in the execution engine, the execution engine starts to
work with the Web Service evolution. The execution engine grabs the deployed
Web Service instance which is specified by the script as the previous version.
Then it executes the script to generate both of the interface and implementation

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI068/these.pdf
© [W. Zuo], [2016], INSA Lyon, tous droits réservés

66

parts of the new version of the Web Service as well as the changes descriptions.
Notice that the changes descriptions are automatically generated by the
programming framework of the execution engine. The changes descriptions obey
the change specification that presented in Section II.2.1.2. When the new
version is generated, the execution engine starts to deploy the new version.
When the execution engine deploys the new version to local Web Service
container, it uses the resource management that introduced in Section II.2.3 to
manage multiple versions of the service. When the execution engine deploys the
new version to the Web Service broker’s Web Service Registry, it also publishes
the changes descriptions to the Web Service broker’s change interests registry.

The Web Service consumer is responsible for maintaining the client
applications and reacting to the Web Service evolution. To keep the client
business unbroken, the Web Service consumer should be facilitated to adapt the
client applications to the Web Service evolution. However, before the reactions,
the consumer should firstly be equipped with the impact analysis as introduced
in Section II.2.4 for the Web Service evolution. The impact analysis aims at
estimate the compatibility between the client application and the evolved Web
Service and the adaptability of the evolved Web Service. The compatibility
evaluation is quantitative analysis to estimate the cost of adapting the client
application to the evolution. With the compatibility evaluation, the decision
maker could have a quantitative view of the impact of the Web Service
evolution to support his further decision on whether to manually modify the
client applications to adapt to the Web Service evolution. The adaptability
evaluation is qualitative analysis to estimate how many of the Web Service
changes during the evolution could be adaptable. The adaptation behaviors that
are defined in Table 8 determine the adaptable changes and the related
adaptation methods. Finally in Section II.2.5, we briefly introduced the method
for client adaptation for Web Service evolution.

Generally speaking, we have presented a theory model to make a set of
specifications for multiple aspects of the Web Service evolution including
versioning, change management, discovery, adaptation and execution. However,
some of the details are lack and we did not describe how these theory models
can be applied with the software systems and the proposed scenario. In next
section, we will introduce the implementation of the change-centric model on
Java platform to cover these shortages in this section.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI068/these.pdf
© [W. Zuo], [2016], INSA Lyon, tous droits réservés

67

II.3 Execution model
In last section, we have presented the theoretical models and methods to

deal with Web Service evolution in several aspects. In this section, we will
describe how to implement each part of the proposed model with software
engineering technologies. We will show how to build a system that uses the
popular real world technologies to facilitate the stakeholders to deal with Web
Service evolution. The implementation part will be presented based on the Java
platform and related tools and frameworks from the perspective of software
engineering. Most of the implementation descriptions will be accompanied with
a set of algorithms and critical code. Especially, some examples that are related
with the motivation scenario are also presented along with the implementation.
To make it clear to specify the implementation of the proposed approach, we
denote the implementation of the change-centric model as the Web Service
Evolution Platform.

In this section, the presentation is separated in two major parts. The first
part introduces the implementation of the programming framework and
execution engine of Web Service provider. The second part introduces the
implementation of the Web Service impact analysis and the client application
adaptation for the Web Service consumer. Finally, there is a conclusion to
analyze the advantage and limitations of the implementation.

Table 9 shows the tools that are involved within the execution model.
Table 9 Tools and Frameworks Involved

Items Version Descriptions
Apache CXF Version 3.04 Web Service Toolkit

JBoss Javassist Version 3.20GA Generating Web Service code
Groovy Library Version 2.6 Scripting Engine for Web Service evolution

dom4j Version 1.6.1 Generating Web Service change descriptions
Java Development

Toolkit Version 1.7 Basic runtime

Eclipse Development
Environment Version Mars Development Environment

Play Framework Version 2.4 Web Server
HttpClient Version 4.4.1 Connecting Web server and stakeholders

II.3.1 System architecture
Figure 35 shows the architecture of the proposed execution model. All the

parts in this figure have been presented and discussed in previous sections. In
Section II.3, we will introduce how to implement them using our proposed
execution model.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI068/these.pdf
© [W. Zuo], [2016], INSA Lyon, tous droits réservés

68

Figure 35 System Overview of Change-centric Model

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI068/these.pdf
© [W. Zuo], [2016], INSA Lyon, tous droits réservés

69

II.3.2 Web Service provider

The Web Service provider is responsible to develop, evolve and maintain
the Web Services. According to the motivation scenario, the Web Service
provider quickly updates his Web Services by publishing new versions. In the
change-centric model, the Web Service provider uses the programming
framework to provide evolution script to describe the requirements for
publishing the new versions of the Web Services. The execution engine at the
Web Service provider side executes the input scripts and creates the instance of
the new version of the Web Services.

II.3.2.1 Programming framework

The programming framework for the change-centric model organizes a set
of APIs to help the Web Service developers to quickly publish new versions.
The system overview of the implementation of the programming framework is
shown in Figure 36.

Figure 36 Overview of programming framework

The execution engine is actually a groovy shell which accepts the script, the
imported packages and the Web Service WS1 will be injected into the Groovy
Shell. The evolution script is written by Web Service developers to specify the
description of the evolution process. The imported packages are the Java
packages that are specified by the users for the Groovy Shell to resolve the
dependencies. The execution engine extracts the model of the Web Service
instance of WS1 from the Web Service container in the memory or from the
persistence devices under the guiding of the evolution script. When the
execution is finished, a new instance WS1’ is generated and deployed in the
Web Service container.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI068/these.pdf
© [W. Zuo], [2016], INSA Lyon, tous droits réservés

70

When the Web Service is evolving, the groovy shell of the execution engine
is firstly injected with a Java object named “service”. This object is a copy of
the existing Web Service WS1. It includes the service object and is created in a
new namespace and within a new resource manager. The users operate this
object to realize Web Service evolution execution by calling its public
operations.

Especially, the internal process of the execution engine is shown in Figure
37

Figure 37 Internal process of execution engine

The evolution script is injected into the Groovy Shell. The target of the
Groovy Shell is to produce an implementation object and an interface object.
The implementation object and the interface object are both java objects that
include the changed information specified by the Evolution Script. Both of the
two objects will be handled by Javassist component which produce the java
classes and objects for CXF. The interface object is also used by dom4j
component to produce the change description in XML format. The
implementation object also contains changes. However, usually the
implementation changes do not affect the consumers. The user will determine if
the implementation change will be handled by dom4j component. The CXF
component takes the Web Service objects as input. The Web Service objects
include the necessary parameters for CXF to publish Web Service:

– Service Class (Java interface).

– Service Bean (Java class).

– Publish Address (java.lang.String).

Once the CXF component generated the Web Service and dom4j generated
the change descriptions, the publisher component will publish both of the two to
the Web Service broker as an evolved Web Service.

II.3.2.2 Generating Web Service changes

The Groovy Shell handles user’s evolution script and generates the Web
Service changes. This process is completely automatic and transparent for the
Web Service developers. Before introducing the generation process for the Web

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI068/these.pdf
© [W. Zuo], [2016], INSA Lyon, tous droits réservés

71

Service changes, we should understand the model of the Web Service changes.
In Section II.2.1.2 we described the model for Web Service changes. For the
implementation in Java platform, the class diagram for the changes package is
shown in Figure 38 with the part of interface changes. The implementation
changes are not included.

Figure 38 Class Diagram for Web Service Changes

We can see that each changeable primitive has a field named “changes”
with the type of “java.util.ArrayList” which is used to record all the changes
during the evolution on this object. For each change operation, there will be one
or more objects of the abstract class “Change” being added to the list as we have
introduced in Section II.2.2.1. In this phase, the programming framework
records all the Web Service changes for each change action. Now we will give
the pseudo code shown in Figure 39 which is used for recording the Web
Service changes for change action of adding an operation to an existing Web
Service.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI068/these.pdf
© [W. Zuo], [2016], INSA Lyon, tous droits réservés

72

Once a version of the Web Service is executed by the execution engine, the
execution engine will firstly create a timestamp in long type to ensure that all
the changes are generated at the same time and to avoid of multi change being
performed on the same target. For example, when a new operation is added to
the interface, a new input message is also added automatically. If the Web
Service developer modifies the input message by adding the necessary xml
elements to the complex type of the message later, there are two changes on the
same object. Finally for the stakeholders who are interested in this change, they
may obtain different results by different XML parsing tools since the procedure
of parsing the XML document is disordered. This can usually lead to ambiguity
for different consumers.

Figure 39 Pseudo code for adding an operation

When the evolution script is executed, an instance of the java class
ServiceModel is created which includes the service changes, service class
(Interface), bean class (Implementation), class pool for dependencies. The next
step is to generate the XML descriptions for the service changes. As we have
mentioned that in Figure 38 that there are 4 types of sub class that extends the
abstract Change class. So now we need to explore the instance of changes of

1. package zw.provider.execution.api.serivce.interf

2. long timeStamp=getTimeStamp();
3. ArrayList<Change> changes=getChanges();
4. Interface interf=getInterface();
5. ArrayList<Operation> operations=getOperations();

6. function newOperation(String operationName)
7. {
8. Operation operation=new Operation(operationName);
9. operations.add(operation);
10. Change change=new OperationChange();
11. change.operator=”add”;
12. change.target=operationName;
13. change.timestamp=timeStamp;
14. setTimeStamp(timestamp++);
15. change.result=””;
16. changes.add(change);

17. //Add Input Message
18. Input input=operation.addInput();
19. //Add OutputMessage
20. Output input=operation.addOutput();
21. change.children.add(input.changes);
22. change.children.add(output.changes);
23. return operation;
24. }

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI068/these.pdf
© [W. Zuo], [2016], INSA Lyon, tous droits réservés

73

ServiceModel to find out all the changes. For simplifying, we only introduce
how to generate interface changes as shown in Figure 40.

Figure 40 Pseudo code for generating changes

1. createAnnotation(“change”) as annotation_change
2. For change_I in changes of Interface
3. If change_I instanceof OperationChange
4. CreateAnnotation(“changeoperation”) as annotation_op
5. annotation_op.name=change_I.target.
6. annotation_op.type=change_I.operator
7. If annotation_op.type==”add” annotation_op.adapt=”true”
8. else annotation_op.adapt=”false”
9. If change_I.adapt == “true” and annotation_op.type==”modify” or “delete”
10. annotation_op.createAnnotation(“adaptoperation”)
11. annotation_op.timestamp=change_I.timestamp
12. annotation_change.addChild(annotation_op);
13. If change_I instanceof InputChange
14. CreateAnnotation(“changeinput”) as annotation_input
15. annotation_input.name=change_I.target
16. annotation_input.type=change_I.operator
17. annotation_input.adapt=”false”
18. If change_I .adapt== “true”
19. annotation_input.createAnnotation(“adaptinput”)
20. annotation_input.timestamp=change_I.timestamp
21. annotation_change.addChild(annotation_input);
22. If change_I instanceof OutputChange
23. CreateAnnotation(“changeoutput”) as annotation_output
24. annotation_output.name=change_I.target
25. annotation_ output.type=change_I.operator
26. annotation_ output.adapt=”false”
27. If change_I .adapt== “true”
28. annotation_ output.createAnnotation(“adapt output”)
29. annotation_ output.timestamp=change_I.timestamp
30. annotation_change.addChild(annotation_output);
31. If change_I instanceof ElementChange
32. CreateAnnotation(“changeelement”) as annotation_element
33. annotation_ element.parent=change_I.parent
34. annotation_ element.name=change_I.target
35. annotation_ element.type=change_I.operator
36. annotation_ element.adapt=”false”
37. If change_I .operator== “add” or “modify”
38. annotation_ element.createAnnotation(“xselement”, change_I.source)
39. If change_I .adapt== “true”
40. annotation_ element.createAnnotation(“adapt element”)
41. annotation_ element.timestamp=change_I.timestamp
42. annotation_change.addChild(annotation_element);
43.
44. change_I.createAnnotation(“children”) as children_I
45. For change_child in change_I.children
46. Repeat 3 with change_child
47. Return annotation_change

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI068/these.pdf
© [W. Zuo], [2016], INSA Lyon, tous droits réservés

74

II.3.2.3 Examples of the evolution script for the motivation scenario

To demonstrate more explicitly how the programming framework works,
now we give the examples of the programming script for the implementation of
the motivation scenario. According to the Table 5, there are 4 types of changes
for TS.

II.3.2.3.1 Example of the implementation for the change action 1 of TS
We have described the details for the change action 1 of TS in the scenario

section as show in Table 10.
Table 10 The changes action 1 of TS

Change
Primitive

Initiative
Change
Action

Description

Operation Enhance
Functionality add

Add a new operation named
“bookFlight” to provide
additional air transportation.

 For the changing action 1 of TS, the programming script is shown in Figure
41.

Figure 41 Evolution Script for the change action 1 of TS

1. Service service=createService(“http://localhosts:9001/TransportService”,”1.0”);
2. Interface interf=service.getInterface();
3. Operation op_addBookFlight_interface=Interf.newOperation(“bookFlight”);
4. Input input=op_addBookFlight_interface.getInput();
5. input.addElement(“tns:date”);
6. input.addElement(“xsint”,”amount”);
7. input.addElement(“xsstring”,”customerID”);
8. Output output= op_addBookFlight_interface.getOutput();
9. output.addElement(“tns:PayModel”,”return”);

10. Implementation impl=service.getImplementation();
11. Service.impl.Operation

op_addBookFlight_impl=impl.newOperation(“bookFlight”);
12. Service.impl.Input input_impl= op_addBookFlight_impl.getInput();
13. input_impl.addElement(“zw.util.Date”);
14. input_impl.addElement(“int”);
15. input_impl.addElement(“java.lang.String”);
16. Service.impl.Output output_impl= op_addBookFlight_impl.getOutput();
17. output_impl.setElement(“zw.util.PayModel”);
18. Service.impl.Body body= op_addBookFlight_impl.getBody();
19. body.setText(“return new

PayModel(\“TS\”,\”BS\”,$2*5,\”TSTrans_\”+this.counter++);”);

20. service.execute();
21. service.publish(“http://localhosts:9001”,”1.1”);

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI068/these.pdf
© [W. Zuo], [2016], INSA Lyon, tous droits réservés

75

When this piece of script is executed by the groovy shell, an evolved
version of TS is generated and published to the address
“http://localhost:9001/TransportService/V1.1”. At the same time, a change
description is also generated. The key lines of changes generations are line 3, 5,
6, 7, 9.

Line 3 adds a new empty operation named “bookFlight” to TS. Once this
line is executed, the execution engine generates the following contents to the
Web Service interface.

– Input Message named “bookFlight”.

– Complex Type named “bookFlight”

– Output Message name “bookFlightResponse”.

– Complex Type named “bookFlightResponse”

– Operation named “bookFlight”.

And also the change description of the adding action is generated as shown
in Figure 42.

Figure 42 Generated change descriptions of the adding “bookFlight” action

Notice that adding an operation to a Web Service interface is an adaptable
change in default.

Line 5 adds a new xml element named “arg0” to the input message of the
operation “bookFlight” of TS. Once this line is executed, the execution engine
generates the following contents to the Web Service interface.

– The xml element named “arg0” with the type of “tns:date” to the
Complex Type “bookFlight” of the message “bookFlight”.

And also the change description of this adding xml element action is
generated as shown in Figure 43.

Figure 43 Generated change descriptions of the adding “arg0” action

Notice that adding the xml element “arg0” to a message is not an adaptable
change by default.

Line 6 adds a new xml element named “amount” to the input message of the
operation “bookFlight” of TS. Once this line is executed, the execution engine
generates the following contents to the Web Service interface.

<changeelement type=”add” name=”arg0”
parent=” bookFlight” adapt=”false”>
 <xselement name=”arg0” type=”tns:date”/>
</changeelement>

<changeoperation type=”add” name=”bookFlight”
adapt=”true” timestamp=”0”>
</changeoperation>

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI068/these.pdf
© [W. Zuo], [2016], INSA Lyon, tous droits réservés

76

– The xml element named “amount” with the type of “xsint” to the
Complex Type “bookFlight” of the message “bookFlight”.

And also the change description of this adding xml element action is
generated as shown in Figure 44.

Figure 44 Generated change descriptions of the adding “amount” action

Notice that adding the xml element “amount” to a message is not an
adaptable change by default.

Line 7 adds a new xml element named “customerID” to the input message
of the operation “bookFlight” of TS. Once this line is executed, the execution
engine generates the following contents to the Web Service interface.

– The xml element named “customerID” with the type of “xsstring” to
the Complex Type “bookFlight” of the message “bookFlight”.

And also the change description of this adding xml element action is
generated as shown in Figure 45.

Figure 45 Generated change descriptions of the adding “customerID” action

Notice that adding the xml element “customerID” to a message is not an
adaptable change by default.

Line 9 adds a new xml element named “return” to the output message of the
operation “bookFlight” of TS. Once this line is executed, the execution engine
generates the following contents to the Web Service interface.

– The xml element named “return” with the type of “tns:PayModel” to
the Complex Type “bookFlightResponse” of the message
“bookFlightResponse”.

And also the change description of this adding xml element action is
generated as shown in Figure 46.

Figure 46 Generated change descriptions of the adding “return” action

<changeelement type=”add” name=”return” parent=” bookFlightResponse”
adapt=”false”>
 <xselement name=”amount” type=”tns:PayModel”/>
</changeelement>

<changeelement type=”add” name=”customerID”
 parent=” bookFlight” adapt=”false”>
 <xselement name=”amount” type=”xsstring”/>
</changeelement>

<changeelement type=”add” name=”amount”
 parent=” bookFlight” adapt=”false”>
 <xselement name=”amount” type=”xsint”/>
</changeelement>

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI068/these.pdf
© [W. Zuo], [2016], INSA Lyon, tous droits réservés

77

Notice that adding the xml element “return” to a message is not an
adaptable change by default.

Finally, the execution engine will generate a completely Web Service
changes description as shown in Figure 47.

Figure 47 Generated change descriptions for the change action 1 of TS

II.3.2.3.2 Example of the implementation for the change action 2 of TS
We have described the details for the change action 2 of TS in the scenario

section as show in Table 11.
Table 11 The changes action 2 of TS

Change
Primitive

Initiative Change Action Description

element Policy
Change add

The input message of the operation
“bookTrainTickets” must be updated by
adding an input parameter “customerID”
since the government requires this
service to provide the customer
personal information. But according to
the policy, this is not necessary and is
adaptable.

<evolution target=http://localhost:9001/TransportService
 previousVersion=”1.0” version=”1.1”/>
<changeoperation type=”add” name=”bookFlight” adapt=”true”>
</changeoperation>

<changeelement type=”add” name=”arg0”
parent=”bookFlight” adapt=”false”>
 <xselement name=”arg0” type=”tns:date”/>
</changeelement>

<changeelement type=”add” name=”amount”
parent=” bookFlight” adapt=”false”>
 <xselement name=”amount” type=”xsint”/>
</changeelement>

<changeelement type=”add” name=”customerID”
parent=” bookFlight” adapt=”false”>
 <xselement name=”customerID” type=”xsstring”/>
</changeelement>

<changeelement type=”add” name=”return”
parent=” bookFlightResponse” adapt=”false”>
 <xselement name=”return” type=”tns:PayModel”/>
</changeelement>

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI068/these.pdf
© [W. Zuo], [2016], INSA Lyon, tous droits réservés

http://localhost:9001/TransportService

78

 For the changing action 2 of TS, the programming script is shown in Figure
48.

Figure 48 Evolution Script for the change action 2 of TS

When this piece of script is executed by the groovy shell, an evolved
version of TS is generated and published to the address
“http://localhost:9001/TransportService/V1.1”. At the same time, a change
description is also generated. The key lines of changes generations are line 5 and
9.

Line 5 adds a new xml element named “customerID” to the input message
of the operation “bookTrainTickets” of TS. Once this line is executed, the
execution engine generates the following contents to the Web Service interface.

– The xml element named “customerID” with the type of “xsstring” to
the Complex Type “bookTrainTickets” of the message
“bookTrainTickets”.

And also the change description of this adding xml element action is
generated as shown in Figure 49.

Figure 49 Generated change descriptions of the adding “customerID” action

Notice that adding the xml element “customerID” to a message is not an
adaptable change by default. However, here we set it as “true” because the client

<changeelement type=”add” name=”customerID” parent=”operation:
bookTrainTickets:input” adapt=”true”>
 <xselement name=”arg0” type=”xsstring”/>
 </changeelement>

1. Service service
=createService(“http://localhosts:9001/TransportService”,”1.1”);
//change the interface
2. Interface interf=service.getInterface();
3. Operation op_ bookTrainTickets

_interface=Interf.getOperation(“bookTrainTickets”);
4. Input input=op_ bookTrainTickets _interface.getInput();
5. input.addElement(“xsstring”,”customerID”);

//change the implementation

6. Implementation impl=service.getImplementation();
7. Service.impl.Operation op_ bookTrainTickets

_impl=impl.getOperation(“bookTrainTickets”);
8. Service.impl.Input input_impl= op_ bookTrainTickets _impl.getInput();
9. input_impl.addElement(“java.lang.String”);
10. service.execute();
11. service.publish(“http://localhosts:9001”,”1.2”);

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI068/these.pdf
© [W. Zuo], [2016], INSA Lyon, tous droits réservés

79

application has to take the adaptation for it. About the adaptation process, we
will present it later in Section II.3.3.

Finally, the execution engine will generate completely Web Service changes
description as shown in Figure 50.

Figure 50 Generated change descriptions for the change action 2 of TS

II.3.2.3.3 Example of the implementation for the change action 3 of TS
We have described the details for the change action 3 of TS in the scenario

section as show in Table 12.
Table 12 The changes action 3 of TS

Change
Primitive

Initiative Change Action Description

element
Enhance

Functionality

modify

The type of the element
“arg0” of the input message
“checkAvailable” will be
replaced by the standard date
type “dateTime”.

 For the changing action 3 of TS, the programming script is shown in Figure
51.

When this piece of script is executed by the groovy shell, an evolved
version of TS is generated and published to the address
“http://localhost:9001/TransportService/V1.2”. At the same time, a change
description is also generated. The key lines of changes generations are line 5 and
9.

Line 5 modifies the xml element named “arg0” of the input message of the
operation “checkAvailable” of TS. Once this line is executed, the execution
engine generates the following contents to the Web Service interface.

– The xml element named “arg0” with the type of “xsdataTime” to the
Complex Type “checkAvailable” of the message “checkAvailable”.

Notice that line 9 sets the type of the parameter with “java.util.Date”. This
type will be automatically translated into “xsdateTime” for the XML document
by the Web Service engine (eg. CXF).

<evolution target=http://localhost:9001/TransportService
 previousVersion=”1.0” version=”1.1”>

<changeelement type=”add” name=”customerID” parent=”operation:
bookTrainTickets:input” adapt=”true”>
 <xselement name=”arg0” type=”xsstring”/>
 </changeelement>

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI068/these.pdf
© [W. Zuo], [2016], INSA Lyon, tous droits réservés

http://localhost:9001/TransportService

80

Figure 51 Evolution Script for the change action 3 of TS

And also the change description of this modifying xml element action is
generated as shown in Figure 52.

Figure 52 Generated change descriptions of the modifying “arg0” action

Notice that modifying the xml element “arg0” of the message is not an
adaptable change by default. However, here we specify it as “false” because we
are not going to take the adaptation for it. About the adaptation, we will present
it later in Section III.3.3.

Another thing should be noticed is that the modification on the input
message is always accompanied by the modification on the body of the method.
Here we just ignore it. We only concern on what will be presented to the Web
Service consumer.

Finally, the execution engine will generate a completely Web Service
changes description as shown in Figure 53.

Figure 53 Generated change descriptions for the change action 3 of TS

<evolution target=”http://localhost:9001/TransportService”
previousVersion=”1.2” version=”1.3”>

<changeelement type=”modify” name=”arg0” parent=”operation:
checkAvailable:input” adapt=”false”>
 <xselement name=”arg0” type=”xsdataTime”/>
 </changeelement>

<changeelement type=”modify” name=”arg0” parent=”operation:
checkAvailable:input” adapt=”false”>
 <xselement name=”arg0” type=”xsdataTime”/>
 </changeelement>

1. Service service
=createService(“http://localhosts:9001/TransportService”,”1.2”);
//change the interface
2. Interface interf=service.getInterface();
3. Operation op_ checkAvailable _interface=
Interf.getOperation(“checkAvailable”);
4. Input input=op_ checkAvailable _interface.getInput();
5. input.setElement(“arg0”,”arg0”,”xsdataTime”,false);
//change the inmplementation

6. Implementation impl=service.getImplementation();
7. Service.impl.Operation op_ checkAvailable

_impl=impl.getOperation(“checkAvailable”);
8. Service.impl.Input input_impl= op_ checkAvailable _impl.getInput();
9. input_impl.modifyParameter(0, java.util.Date);
10. service.execute();
11. service.publish(“http://localhosts:9001”,”1.3”);

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI068/these.pdf
© [W. Zuo], [2016], INSA Lyon, tous droits réservés

81

II.3.2.3.4 Example of the implementation for the change action 4 of TS
We have described the details for the change action 4 of TS in the scenario

section as show in Table 13.
Table 13 The changes action 4 of TS

Change
Primitive

Initiative
Change
Action

Description

Implementation Fix Bugs modify
The implementation of the
operation “bookTrainTickets”
will be rewritten

 For the changing action 4 of TS, the programming script is shown in Figure
54.

Figure 54 Evolution Script for the change action 4 of TS

When this piece of script is executed by the groovy shell, an evolved
version of TS is generated and published to the address
“http://localhost:9001/TransportService/V1.3”. At the same time, a change
description is also generated. The key lines of changes generations are line 4.

Line 4 modifies the body of the operation “bookTrainTickets” which is
fixed with eliminate the bugs. Because the change of fixing bugs does not affect
the client, the execution engine does not need to add the change description for
this change action.

II.3.2.3.5 Example of the implementation for the change action 1 of HS
This type of change has the similar description as the example in II.2.3.2.4.

So we omitted this description.

1. Service service
=createService(“http://localhosts:9001/TransportService”,”1.3”);

//change the implementation

2. Implementation impl=service.getImplementation();
3. Service.impl.Operation op_ bookTrainTickets

_impl=impl.getOperation(“bookTrainTickets”);
4. op_ bookTrainTickets _impl.setBody(“
5.
6. //Fixed body
7.
8. “,adapt=true);
9. service.execute();
10. service.publish(“http://localhosts:9001”,”1.4”);

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI068/these.pdf
© [W. Zuo], [2016], INSA Lyon, tous droits réservés

82

II.3.2.3.6 Example of the implementation for the change action 2 of HS
This type of change has the similar description as the example in II.2.3.2.2.

So we also omitted this description.

II.3.2.3.7 Example of the implementation for the change action 3 of HS
We have described the details for the change action 3 of HS in the scenario

section as show in Table 14.
Table 14 The changes action 3 of HS

Change
Primitive

Initiative
Change
Action

Description

Operation Policy
Change modify

The name of the operation
“bookHotelRooms” will be
renamed to “bookRooms” for
simplifying.

 For the changing action 3 of HS, the programming script is shown in

Figure 55.

When this piece of script is executed by the groovy shell, an evolved
version of HS is generated and published to the address
“http://localhost:9001/HotelService/V1.3”. At the same time, a change
description is also generated. The key lines of changes generations are line 4.

Line 4 modified the name of the operation “bookHotelRooms” to
“bookRooms” for simplifying the invocation from the consumers. Once this line
is executed, the execution engine modifies the following contents to the Web
Service interface.

Figure 55 Evolution Script for the change action 3 of HS

– The operation named “bookHotelRooms” is changed into
“bookRooms”.

1. Service service=createService(“http://localhosts:9001/HotelService”,”1.2”);

//change interface
2. Interface interf=service.getInterface();
3. Operation op_ bookHotelRooms

_interface=Interf.getOperation(“bookHotelRooms”);
4. op_ bookHotelRooms _interface.setName(“bookRooms”,adapt=true);
//change implementation

5. Implementation impl=service.getImplementation();
6. Service.impl.Operation op_ bookHotelRooms

_impl=impl.getOperation(“bookHotelRooms”);
7. op_ bookHotelRooms _impl.setName(“bookRooms”);
8. service.execute();
9. service.publish(“http://localhosts:9001”,”1.3”);

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI068/these.pdf
© [W. Zuo], [2016], INSA Lyon, tous droits réservés

83

– The message named “bookHotelRooms” is changed into
“bookRooms”.

– The message named “bookHotelRoomsResponse” is changed into
“bookRoomsResponse”.

– And the related complex type names.

And also the change description of this adding xml element action is
generated as shown in Figure 56.

Figure 56 Generated change descriptions for the modifying operation action

II.3.2.3.8 Example of the implementation for the change action 4 of HS
We have described the details for the change action 4 of HS in the scenario

section as show in Table 15.
Table 15 The changes action 4 of HS

Change
Primitive

Initiative
Change
Action

Description

Output
Message

Policy
Change delete

The operation “checkAvailableRoomNum”
does not need to return a message since it
will be obtained by other means.

For the changing action 4 of HS, the programming script is shown in Figure
57.

Figure 57 Evolution Script for the change action 4 of HS

1. Service service=
createService(“http://localhosts:9001/HotelService”,”1.3”);

//change interface
2. Interface interf=service.getInterface();
3. Operation op_ checkAvailableRoomNum

_interface=Interf.getOperation(“checkAvailableRoomNum”);
4. op_ checkAvailableRoomNum _interface.deleteOutput();

//change implementation
5. Implementation impl=service.getImplementation();
6. Service.impl.Operation op_ checkAvailableRoomNum

_impl=impl.getOperation(“checkAvailableRoomNum”);
7. op_ checkAvailableRoomNum _impl.setReturnType(null);
8. service.execute();
9. service.publish(“http://localhosts:9001”,”1.4”);

<changeoperation type=”modify” name=” bookHotelRooms adapt=”true”>
< value>bookRooms</ value>

</changeoperation>

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI068/these.pdf
© [W. Zuo], [2016], INSA Lyon, tous droits réservés

84

When this piece of script is executed by the groovy shell, an evolved
version of HS is generated and published to the address
“http://localhost:9001/HotelService/V1.4”. At the same time, a change
description is also generated. The key lines of changes generations are line 4.

Line 4 deletes the output message of the operation
“checkAvailableRoomNum”. Once this line is executed, the execution engine
also deletes the following contents to the Web Service interface.

– The message named “checkAvailableRoomNumResponse”.

– And the related complex type names.

And also the change description of this action is generated as shown in
Figure 58.

Figure 58 Generated change descriptions for the modifying operation action

II.3.2.4 Versions isolation and resource management

Usually, the Java objects of the different versions of the Web Services
always run in the same Java Virtual Machine (JVM) instance. All the versions of
one Web Service share the same Web Service name (ex. TransportService) but
different version identifiers (ex. V1.0, V1.1, V1.2…). Each version of the Java
object should be separated by different class loaders. For example, in the
change action 1 of TS in the scenario section, the Resource Manager is
implemented by javassist.ClassPool which includes a list of bytecode resources
(java classes). Each object of the javassiss.ClassPool is managed by an object of
javassist.Loader. The class of javassist.Loader implements the abstract class of
java.lang.ClassLoader. A little difference of the javassist.Loader from
java.lang.ClassLoader is the class loading algorithm. The class loading strategy
for javassist.Loader is shown as Figure 59.

We find that the loader will firstly search the local class pool to get the
resource if there is no specified delegation. If the resource is found locally, the
loader will load the resource and return it. If the resource is not found, the
loading will be delegated to the parent loader. All the resource loaders of the
versions of the Web Services share the same parent class loader which is the
context class loader of the main thread (CCL). CCL is a standard app class
loader implemented by Apache CXF which is responsible for loading the system
resources such as “java.lang.*”.

As shown in Figure 60, the instance of the javassist.ClassPool of the TS
version 1.1 (CP2) inherits from the instance of the javassist.ClassPool of the TS
version 1.0 (CP1). When the version 1.1 is created, the CP2 will refer the list of

<changeoutput type=”delete” name=” checkAvailableRoomNum
adapt=”true”>

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI068/these.pdf
© [W. Zuo], [2016], INSA Lyon, tous droits réservés

85

resources of CP1. When the execution engine has modified the resources (red
ones in Figure 60), the resources are created locally in CP2.

Figure 59 javassist.Loader.loadClass()

As a result, the resources TransportService and TransportServiceImpl are
loaded locally in CP2 by the loader. The resources PayModel and the other Web
Service related dependencies are loaded by delegating to the parent loader for
version 1.0 and loaded in CP1.

Figure 60 Resource Loading mechanism for the Web Service versioning

protected Class loadClass(String name, boolean resolve)
throws ClassFormatError, ClassNotFoundException
{
 name = name.intern();
 synchronized (name) {
 Class c = findLoadedClass(name);
 if (c == null) {
 c = loadClassByDelegation(name);
 }
 if (c == null) {
 c = findClass(name); //search the local class pool
 }
 if (c == null) {
 c = delegateToParent(name);
 }
 if (resolve) {
 resolveClass(c);
 }
 return c;
 }
}

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI068/these.pdf
© [W. Zuo], [2016], INSA Lyon, tous droits réservés

86

Finally, all the instances of the Web Service resources of different versions
are isolated through the class loading mechanism. And also the system avoids of
a waste of space though the class pool inheritance mechanism.

II.3.2.5 Web Service performance monitor

This section introduces the implementation of an extra functionality of the
Web Service execution engine which will be used in the evaluation section. This
is not included in the main contributions of this thesis, but it is important to
build the basis for testing and evaluating the proposed change-centric model.

Before the execution engine creates the instance for each version of the
Web Service, it also weaves the block of monitoring code (shown in Figure 47)
for the implementation of each operation of the Web Services to capture the
information of the invocation latencies. The object of the performance
monitoring is to evaluate the impact of the proposed evolution approaches on the
runtime performance of the Web Services. As shown in Figure 61, the weaving
process follows the principle of Aspect-Oriented Programming (AOP) [84, 85].
The weaving process is entirely transparent for the Web Service programmers
and is executed at runtime in memory through the monitoring framework. Two
blocks are weaved in each of the Web Service methods which contain the Java
signature “public”. The weaved Java classes are recompiled at runtime with an
independent class loader and an independent namespace. The recompiling
process is also implemented by JBoss-Javassist as well as the execution engine.
The two weaving blocks compute the execution time of the current method and
report it to the performance repository of the monitor center. The Monitor
Center is a global single instance which collects the performance information of
all the versions of the Web Service that deployed in one Web Service provider.

Figure 61 The Weaving process of the Performance Monitor

The Web Service performance does not affect the business logic of the Web
Service implementation. The Web Service is loaded from static storages and
changed at runtime. The weaving process has a little influence on the runtime

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI068/these.pdf
© [W. Zuo], [2016], INSA Lyon, tous droits réservés

87

performance of the Web Service. In this thesis, we assume that this little impact
can be ignored.

Actually in practice, the performance monitor is integrated in the execution
engine as shown in Figure 62. Before each version of the Web Service is
published, it will be firstly passed to the performance monitor of the execution
engine to weave the monitor blocks. This AOP process compiles and generates
the desired Web Service instances with the function of performance monitor
transparently. So it can report the more precise latency of the methods of the
Web Service than any other external monitor tools and services.

Figure 62 Execution Engine integrates Performance Monitor Weaver

Figure 63 present the implementation code for the weaving process in Java.
This method takes the type of “java.lang.Class” and the current binding address
of the Web Service as input and generates an object of the “java.lang.Class”
which has been weaved with the monitor blocks. The weaver firstly injects a
local static field named “myAddress” to store the publishing address of the Web
Service so that the weaving blocks can report the correct Web Service addresses
to the Monitor Center. Then the weaver injects the monitor blocks for each
method of the input instance which is the type of “java.lang.Class”. Finally it
calls the method “addNewLatency” of the global instance
“zw.Provider.Monitor”. For the sake of simplication of this prototype, the
performance monitor exists in the same JVM instance with all the Web Service,
so the calling is the direct Java style. In future, the calling process can be
implemented in the other ways such as remote method invoke.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI068/these.pdf
© [W. Zuo], [2016], INSA Lyon, tous droits réservés

88

Figure 63 Weaving code for Web Service Performance Monitoring

II.3.3 Web Service consumer
The Web Service consumer is responsible for reacting to the Web Service

evolution. As described in the scenario section, the Web Service of the TS and
HS evolve in a very fast speed so that it is a great pressure for the Web Service
consumer to deal with the Web Service evolution. The changes that occur during
the Web Service evolution have different types in different levels. To keep the
client business unstopped, the Web Service consumer has to catch up with the
evolution of the Web Services in using. Otherwise, the consumer has to stop the
client application and choose another Web Service. The last option may drive
the consumer to change the business logics of the client applications if the
consumer cannot find a new Web Service which provides the same functionality
for the consumer. This process may induce great manual effort which may result
in loss of cost and time. For the Web Service consumer, the first option will be

1. public static Class weave(Class clazz,String address)
2. {
3. Class c=null;
4. ClassPool cp = ClassPool.getDefault();
5. try {
6. CtClass ctClazz=cp.get(clazz.getName());
7. Loader loader=new

Loader(Thread.currentThread().getContextClassLoader(),cp);
8. loader.delegateLoadingOf("zw.provider.Monitor");
9. CtField f=CtField.make("public String myAddress=\""+address+"\";",

ctClazz);
10. ctClazz.addField(f);
11. for(CtMethod m:ctClazz.getDeclaredMethods())
12. {
13. m.addLocalVariable("monitor$startTime", CtClass.longType);
14. m.addLocalVariable("monitor$endTime", CtClass.longType);
15. m.insertBefore("zw.provider.Monitor.getInstance()
.addNewCall(myAddress,\""+m.getName()+"\");");
16. m.insertBefore("monitor$startTime=
System.currentTimeMillis();");
17. m.insertAfter("monitor$endTime=System.currentTimeMillis();");
18. m.insertAfter("zw.provider.Monitor.getInstance()
.addNewLatency(myAddress,\""+m.getName()+"\",monitor$endTime-
monitor$startTime);");
19. }
20. c=ctClazz.toClass(loader);
21. } catch (Exception e) {
22. e.printStackTrace();
23. }
24. return c;
25. }

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI068/these.pdf
© [W. Zuo], [2016], INSA Lyon, tous droits réservés

89

better to deal with Web Service evolution. In this scenario, we assume that the
consumer could not use a Web Service with an old version which is originally
fully compatible with the current client applications of the consumer for the
following reasons.

1. The Web Service evolves in a very fast speed so that the Web
Service provider only maintains a limited number of the Web
Service versions. Thus, the Web Service consumer is not always
able to obtain the compatible old version.

2. The Web Service always evolves with the enhancement of the
functionality or the quality of the service. The Web Service
consumer is encouraged to adapt the client applications to the
evolution to benefit the better Web Service.

Thus, the tasks of the Web Service consumer to deal with the Web Service
evolution are:

1. To estimate the impact of the Web Service evolution on the client
applications to determine if and how to adapt to the Web Service
evolution.

2. To adapt the client applications to the Web Service at runtime.

There is one convention of the usage of the evolution platform for the Web
Service consumer. The Web Service consumer communicates with Web Service
by interface. The reference object of the Web Service is generated by the
programming framework.

II.3.3.1 Implementation of the impact analysis

In section I.2.4, we have introduced the model of impact analysis on the
change-centric Web Service evolution model. According to the presentation in
section I.2.4, this analysis requires that the client application should build a
mechanism to obtain, parse and deal with the Web Service changes as well as to
retrieve the dependencies from the client application to the Web Service. Thus,
the content for this section is divided into 2 parts. Section II.3.3.1.1 introduces
how to build a mechanism to obtain and analyze the Web Service changes.
Section II.3.3.1.2 introduces how to extract the dependency relations between
the Web Service consumer and the Web Services.

II.3.3.1.1 Web Service changes analysis
Web Service is used to build a communication mechanism for

heterogeneous platform and application components though a set of industry
standards. Besides, SOA defines the cooperation patterns for different roles
involved. It indicates the method for the Web Service consumer to look up and
bind to the expected Web Service.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI068/these.pdf
© [W. Zuo], [2016], INSA Lyon, tous droits réservés

90

To communicate with heterogeneous applications, there should be a Web
Service Description Language to describe the functions and messages for a Web
Service. To communicate with the Web Service changes, there should be also a
Web Service changes description as we have presented in Section II.2. For the
topic of managing Web Service evolution, people also needs to be equipped with
communication mechanism to help the Web Service consumers and providers to
synchronize the Web Service changes.

As described in Section II.3.1, the generated Web Service will be published
in the Web Service broker as a document in XML format. To make the client be
aware of the updating information from the remote machine, there are basically
3 options in the industry world. The first one is to synchronize the data of the
client with the server only when the client meets the unexpected result. The
second one is to make the requester to post heart beating message for the remote
server like comet in [86] and Sencha EXTJS direct in [87]. The third one is to
build an independent communication mechanism with a set of new protocols
such as Web Socket in [88].

In Section I.3.3.2 with Figure 5, WSDarwin use a feedback loop in the
adaptation process. The Web Service client starts the adaptation process which
includes obtaining the versioning information only when the invocation meets an
error. This approach falls into the first option. In Section I.4.1 with Figure 9,
Marcelo’s change management framework advocates synchronizing the client
application every time when the client posts a request to the Web Service to
ensure that the invocation will not result in the failures. WSDarwin’s feedback
approach can avoid of ambiguity understanding for the updating of the Web
Service versions when it encounters the invocation faults. However, WSDarwin
does not explain how to obtain and analyze the Web Service changes. No one
ensures that the client application can correctly and precisely locate the root
cause of the fault.

Figure 64 Process for Web Service client to analyze the Web Service changes

In summary, the design for the implementation for analyzing the Web
Service changes in the change-centric model should follow the principles:

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI068/these.pdf
© [W. Zuo], [2016], INSA Lyon, tous droits réservés

91

– Feedback invocation.

– Version information updating.

Based on the loop presented by WSDarwin, we improve the process for the
client application to obtain and analyze the Web Service as shown in Figure 64.

Normally, the Web Service consumer uses the evolution platform that we
propose to control the invocation of the Web Services. The evolution platform
consistently provides the Web Service reference for the Web Service client
applications to complete the business. The client applications will check the
availability of the Web Service with the specified version ID each time when the
request for invocation is coming. The method for checking the availability is
simply to obtain the HTTP response by sending a “GET” HTTP request for the
location of the WSDL document of the version of the Web Service. The detailed
code for Java platform is shown in Figure 65.

Figure 65 Check the availability of the Web Service

If the version of the Web Service is available, the client applications will be
granted with the available Web Service reference. If the Web Service is not
available, the consumer will look up the version information on the Web Service
to check if there is new version published for this Web Service. When the
consumer obtains the Web Service evolution information which contains the
Web Service change description, the consumer analyzes the Web Service
changes to find out the impact of the Web Service evolution on the client and
the adaptability of new version for the client applications. If the new version of
the Web Service is adaptable, the Web Service evolution platform will take the
client adaptation and return a new Web Service reference to the Web Service
client application.

Notice that no matter the new version of the Web Service is adaptable or
not, the evolution platform will always report the Web Service impact to the
consumer for them to make further decision to react to the Web Service
evolution.

public boolean checkAvailability(wsdlLocation) {
try {

 HttpURLConnection.setFollowRedirects(false);
 HttpURLConnection connection =
(HttpURLConnection) new URL (wsdlLocation).openConnection();
 connection.setRequestMethod("GET");
 return connection.getResponseCode() ==
HttpURLConnection.HTTP_OK;
 } catch (Exception e) {
 return false;
 }
}

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI068/these.pdf
© [W. Zuo], [2016], INSA Lyon, tous droits réservés

92

II.3.3.1.2 Implementation of the impact analysis of the Web Service changes on the
client

Section II.3.3.1.2 introduces the approach for obtain and retrieve the Web
Service changes. To implement the Web Service impact analysis presented in
Section II.2.4, the Web Service consumer needs also to retrieve the dependency
information from the consumer to the Web Service. Wang in [68] has introduced
the dependency model which contains “intra” and “inter” relations between two
Web Services. In this step, we do not consider the intra relations specified by
Wang between two Web Services. But similarly, we also introduce the inter and
intra relations for the Web Service and its client.

Assuming that each Web Service primitive that exists in the WSDL
description is denoted as e . And the dependency graph which describes the
intra-service relation is shown in Figure 66 as an example.

Figure 66 Web Service Dependencies

The primitives of e1-e7 represent the corresponding relations of the
primitives for “TrainTicketService”. For any primitive that is determined as the
dependency by the Web Service client at each time when the invocation
happens, we consider that all of its children will also be added to the
dependency set. They are called the intra-service relations. The dependency
from the client to the set is so called inter-service relations. And when the
evolution happens, all of its children will be also influenced. There is one
problem for retrieving the dependencies. The intra-service relations are
determined by the explicitly presented WSDL descriptions. There may still be
some implicit intra-service dependency relations that are difficult to discover.
For example, an internal process of an operation calls another operation of the
Web Service. For this issue, it should introduce the other methodologies such as
the approaches in [89-91]. However this is beyond the scope of this thesis. We
only use the explicit descriptions in current stage.

For example for e2 in Figure 66, when e2 is invoked by a client application,
e4-e7 and e3 will be all added to the dependency set and be considered to
contribute to the value of k of Definition II.1.10 in Section II.2.4.1.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI068/these.pdf
© [W. Zuo], [2016], INSA Lyon, tous droits réservés

93

II.3.3.2 Implementation of the client adaptation

The part of the impact analysis for the Web Service evolution will report
two types of information. The first one is the quantitative impact of the Web
Service evolution on the client applications which reveals the compatibility of
the new version for the old version of the client applications. The second is the
adaptability of the Web Service which reveals that fact that if the new version of
the Web Service is adaptable for the client applications. Once it is determined
that the new versions is adaptable, the client application will automatically
adjust its behavior to make itself fully compatible with the new version. Notice
that this approach does not attempt to explain how to develop strategies for
client application. It just provides a mechanism to facilitate client adaptation.
The further decisions involve with business process have to be made by human
brains.

The common idea for the adaptation is to generate a new temporary proxy
similar as an adapter for the upper layer requesters as shown in Figure 67.

Figure 67 Generating Web Service Proxy

There are two Web Service versions WS2 and WS1. The client application
does not communicate directly with the Web Service. The proxy translates the
requests for each version of the Web Service. The following steps show how to
generate the proxy in Java platform.

1. Generate a new class which implements the current client proxy for
the Web service.

2. Generate a new interface to the new version of the Web service
according to the changes.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI068/these.pdf
© [W. Zuo], [2016], INSA Lyon, tous droits réservés

94

3. Create a new member with the type of the new interface in step 2 for
the new class in step 1 which refers to the new versions of Web
service with correct format.

4. Set the body of the modified operation as calling the new operation.

5. Return a Web Service reference (WS Ref) of a new instance of the
generated class to consumer.

We take the adaptation for the second change of TS described in Section
II.1 as an example. By default, the change action of adding an XML element to
the input message of an operation is inadaptable. However, the Web Service
developer or the provider sets the property “adapt” to “true” for this adding xml
element. When the Web Service client meets this case, the Web Service client
has to take adaptation for this change action. Assuming that currently the Web
Service client is using this Web Service through an interface as shown in Figure
68:

Figure 68 Interface of the Web Service TrainTicketService

Figure 69 Generating Web Service Proxy

When executing the step 1, the generated new class is shown in FFigure 69.
The constructor of the new proxy creates a new Web Service reference to the

package zuowei.provider;
import org.apache.cxf.frontend.ClientProxyFactoryBean;
public class ITrainTicketService$v11$classProxy implements
ITrainTicketService$v10 {
 public ITrainTicketService$v11 ref;
 public PayModel bookTrainTickets(Date date, int num, String trainID)
 {
 return ref.bookAirTicket(date,num,trainID, “”);
 }
 public ITrainTicketService$v11$classProxy(String serviceAddress)
 {

ClientProxyFactoryBean factory = new ClientProxyFactoryBean();
factory.setServiceClass(ITrainTicketService$v11.class);

 factory.setAddress(serviceAddress);
 ref = (ITrainTicketService$v11) factory.create();
 }
}

package zuowei.provider;

@javax.jws.WebService
public interface ITrainTicketService$v10 {

 public Ticket bookTrainTicket(Date date, int num, String trainID);

}

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI068/these.pdf
© [W. Zuo], [2016], INSA Lyon, tous droits réservés

95

new version of the Web Service. When the client application calls any of the
operations of the Web Service, the proxy translates them into the request to the
new version. In default, this adding element with the type of string passes a
string value “” to the operation. The new proxy is entirely generated and
compiled at runtime by the module of JBOSS-javassist.

Therefore, the Web Service client application can still obtain the Web
Service reference by using the old version of the Web Service interface. It
cannot be aware of any changes on the usage of the Web Service.

II.3.4 Summary
In this section, we have introduced the implementation of the change-

centric model to facilitate Web Service evolution for the Web Service provider
and consumer from the perspective of software engineering. We use a series of
code, pseudo code, algorithms, UML graphs and examples to describe how to
realize the project which implements the change-centric model presented in
Section II.2.

For the Web Service providers, the evolution platform enables them to
modify and publish the Web Service versions at runtime with high level APIs.
Under the support of the evolution platform, the Web Service provider can also
publish the formalized description for the Web Service changes during the
evolution processes. The Web Service changes are automatically generated by
the programming framework that the evolution platform provides according the
modification that the providers or developers take on the Web Service. Thus, the
system can ensure that all the Web Service stakeholders have the same correct
and standard understanding on the Web Service changes.

For the Web Service consumers, the evolution platform enables them to
retrieve and analyze the Web Service changes that are published by the Web
Service providers. The evolution platform can also help the consumers to
analyze the impact of the Web Service changes through calculating the Web
Service dependencies. Finally, we presented the implementation for the client
adaptation. According to the analysis of the change impact, the evolution
platform generates and compiles automatically and dynamically the proxy
adapters to facilitate the Web Service consumer to adapt their client applications
to the new versions of the Web Service. The evolution platform also reports the
result of the impact analysis to the Web Service consumers to help them make
further decision to react to the Web Service evolution.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI068/these.pdf
© [W. Zuo], [2016], INSA Lyon, tous droits réservés

96

II.4 Evaluation
In last section, we have described the execution model for the proposed

change-centric Web Service evolution model. By the implementation and related
monitor system, we can take experiments to evaluate the proposed approaches in
this section. The objectives of the evaluation include:

1. Validate the feasibility of the proposed change-centric model.

2. Test the performance of the implementation.

3. Estimate the impact of the implementation on the original system.

We have built a working scenario in Section II.1. In this section, the
evaluation will be taken based on this scenario to show how the proposed model
can work with the scenario and how the model performs. We use lots of testing
data, tables and charts to present the results.

To simplify the evaluation progress, we also list 3 items that we are going
to evaluate:

1. Evaluation for the performance of Web Service generation with the
scenario.

2. Evaluation for the impact analysis of the Web Service evolution
with the scenario.

3. Evaluation for the client adaptation with the scenario.

We organize this section as follows. Section II.4.1 describes the general
process of the evaluation. Section II.4.2 evaluates the performance of the Web
Service generation. Section II.4.3 evaluates the impact analysis. Section II.4.4
evaluates the client adaptation. Section II.4.5 concludes this section.

II.4.1 General description
In this section, we try to build several testing cases to take experiments for

evaluating the proposed model. In Figure 70, we present the architecture of the
testing system. There are 3 monitors which collect the testing data. The first one
is located in the process of client adaptation which is responsible to capture the
adaptation actions that the client application takes. The second is located in the
process of collecting and analyzing the Web Service changes which is
responsible to capture the impact analysis result that taken by the evolution
platform. The third is located in the process of generating Web Service versions
which is responsible to capture the latency of this process.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI068/these.pdf
© [W. Zuo], [2016], INSA Lyon, tous droits réservés

97

Figure 70 Overview of testing system

Table 16 presents the test environment that we use to generate the result
data.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI068/these.pdf
© [W. Zuo], [2016], INSA Lyon, tous droits réservés

98

As described in the scenario section, we have defined the settings and pre-
conditions for the evaluation as following list.

– The two Web Service providers evolve their Web Services (TS and
HS) in a very fast speed (higher than 1 minute per version).

– TPS uses lots of instances (more than 50) of TS and HS and has to
deal with the evolution for each of them.

– When each of the Web Service has been changed according to the
description presented in Table 4, it also takes the corresponding roll
back change and loop as so on. For example, each time when the TS
has taken the change action 1 (adding an operation “bookFlight”), it
will also taken a reverse change action (deleting an operation
“bookFlight”).

Table 16 Test Environment

Items Descriptions
Machine Hasee K580s i7 D1

Hard Drive Crucial 120G SSD + Toshiba 1T HD
Memory Kingston 16G

CPU Intel i7-3610Q 2.3GHz
Operation System Windows 7 Home Premium SP1

Graphics Intel HD Graphics 4000+NVDIA GeForce GT 650

II.4.2 Evaluation for the Web Service generation
The evolution platform facilitates the Web Service provider with the high

level evolution APIs for Web Service and the ability of dynamic Web Service
evolution. In general, this process shortens the interval of publishing new
versions and lowers the cost of updating the system by shutting down the
machines. However, dynamic generation of the Web Service still results in
performance decrease in practical systems comparing to the normal publishing
actions. In Section II.4.2, the evaluation is to estimate how the performance will
be decreased with the Web Service generation. The testing process is to compare
the latency of the publishing action with and without Web Service generation for
each Web Service with a very high frequency of 1 version per 10 mile seconds.
The evolution script for each Web Service is listed in Section II.3.2.3. The
evaluation base line is the normal publishing action typically using
“org.apache.cxf.frontend.ServiceFactoryBean.create ()” method. Then for each
change action of the two Web Services TS and HS, the testing results are shown
in Figure 71– Figure 76.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI068/these.pdf
© [W. Zuo], [2016], INSA Lyon, tous droits réservés

99

II.4.2.1 Change action 1 for TS

The change action 1 for TS is to add an operation to the existing Web
Services. We stimulate the process by continuously adding the operation to its
last version to examine if the generation process cost too much time when the
Web Service adds more things to its model.

Figure 71 Result for Change Action 1 for TS

We can see that in Figure 71, when there are more and more operations
added to the Web Service, the latency for publishing increases because it needs
more time for Apache CXF to create the instance of the Web Service especially
the WSDL documents. However, the latency for Web Service generation
remains at a stable level even when the Web Service becomes bigger. Compared
to publishing the Web Service, the latency of the Web Service generation is
almost ignorable.

II.4.2.2 Change action 2 & 3 & 4 for TS

The change actions 2, 3, 4 for TS are similar to a Web Service since they
are both change actions to modify the messages of the Web Service. The results
of the three simulations also show that they behave similar in the patterns of the
chart. To simulate the three change actions, we do the change actions and the
opposite rollback change action and loop so on.

No matter how the Web Service execution engine modifies the Web Service
messages and how long it will take to publish the Web Services, the latency of
the Web Service generation almost remains at a relatively low and stable value.
Peaks occasionally occur. Notice that the average value of the latency for
change action 4 is a little lower than the change action 2 and 3 because the
change action 4 only changes the implementation of the Web Service. It does not
change the interface. The latency growths for publishing Web Service of change

0

500

1000

1500

2000

2500

1 10

19

28

37

46

55

64

73

82

91

10
0

La
ta

en
cy

(m

s)

Verisons

Change Action 1 for TS

Publishing

Generation

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI068/these.pdf
© [W. Zuo], [2016], INSA Lyon, tous droits réservés

100

actions 2, 3, and 4 are less than change action 1. They are caused by CXF Web
Service management.

Figure 72 Result for Change Action 2 for TS

Figure 73 Result for Change Action 3 for TS

In conclusion, the Web Service execution engine makes little impact on the
runtime performance of publishing the Web Services when it generates the Web
Service versions dynamically.

Figure 74 Result for Change Action 4 for TS

0

50

100

150

1 38

75

11
2

14
9

18
6

22
3

26
0

29
7

33
4

37
1

La
ta

en
cy

(m

s)

Verisons

Change Action 2 for TS

Publishing

Generation

0

50

100

150

200

1 35

69

10
3

13
7

17
1

20
5

23
9

27
3

30
7

34
1

37
5

La
ta

en
cy

(m

s)

Verisons

Change Action 3 for TS

Publishing

Generation

0

50

100

150

200

1 35

69

10
3

13
7

17
1

20
5

23
9

27
3

30
7

34
1

37
5

La
ta

en
cy

(m

s)

Verisons

Change Action 4 for TS

Publishing

Generation

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI068/these.pdf
© [W. Zuo], [2016], INSA Lyon, tous droits réservés

101

II.4.3 Evaluation for the impact analysis
Table 17 Result of Impact Analysis for Web Service Evolution

Change
Action Change Action

IR
Def

II.1.9

IF
Def

II.1.8

IC
Def

II.1.7

d
Def

II.1.10
IC d×

C1TS

Operation:
 bookFlight Add 0 1/23 0.0435 0 0

XML Element:
arg0 Add 0 1/23 0.0435 0 0

XML Element:
amount Add 0 1/23 0.0435 0 0

XML Element:
customerID Add 0 1/23 0.0435 0 0

Message:
bookFlight Add 0 1/23 0.0435 0 0

Message:
bookFlight
Response

Add 0 1/23 0.0435 0 0

XML Element:
bookFlight

return
Add 0 1/23 0.0435 0 0

C2TS
XML Element:

bookTrainTickets
customerID

Add 1 1/23 1.0435 0.0268 0.0280

C3TS
XML Element:
checkAvailable

arg0
Modify 1 0 1 0.0357 0.0357

C4TS Implementation:
bookTrainTickets Modify 0 0 0 0.0268 0

C1HS Implementation:
bookHotelRooms Modify 0 0 0 0.0390 0

C2HS
XML Element:

bookHotelRooms
customerID

Add 1 1/17 1.0588 0.0390 0.0413

C3HS Operation:
bookHotelRooms Modify 1 0 0 0.0390 0

C4HS

XML Element:
checkAvailable

RoomNumReponse
return

delete 1 1/16 1.0625 0.0519 0.0551

When the Web Service provider TS and HS have generated lots of new
versions during the Web Service evolution, TPS has to estimate the impact of
the changes caused by the evolution for each Web Services. For the change
actions that we listed in Table 4 and Table 5, we got the result of the impact
values showing in Table 17 according to the analysis model presented in Section
II.2.4. Notice that “C1TS” means the change action 1 of TS.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI068/these.pdf
© [W. Zuo], [2016], INSA Lyon, tous droits réservés

102

According to the Table 17, there are something meaningful with the data
presented in the Table.

– The change action of adding an operation is totally adaptable for a
Web Service client. (C1TS)

– The change action of modifying the implementation is totally
adaptable for a Web Service client. (C4TS, C1HS)

– The change action of renaming a Web Service is totally adaptable
for a Web Service client since the system can automatically adapt
the client to this change action. (C3HS)

– The change action of modifying an element that is more dependent
for a Web Service client can causes higher impact. (C2TS compared
with C3TS)

– The change action on an element in a smaller Web Service results in
a higher impact. (C2HS compared to C2TS)

– The change action of removing an element can result in high impact.
(C4HS)

Table 18 Dependency Information

Consumer Dependent Operation Dependent
Service

Calls (k)

TPS checkAvailable TS 2000

TPS bookTrainTicket TS 1500

TPS checkAvailableRoomNum HS 2000

TPS bookHotelRooms HS 1500

Table 17 shows the impact analysis result without the adaptation
mechanism that the evolution platform provides for the system. With the support
of the client adaptation, the Web Service consumer can lower the impact of the
Web Service evolution as shown in Table 19. We have indicated in Section
II.3.2.3 that which of the change actions are set with an attribute “adapt” to
“true”.

The cell where is marked with “m” means that the change action is
manually defined as adaptable change. The last change action “C4HS” has not
been specified with “adapt=true” by the Web Service provider. That means it
may cost more to adapt the client application to the Web Service evolution by
manual operations.

That is to say, the adaptation of the proposed model can reduce the value of
the change impact (IC d×). According to Table 19, the change impact of C2TS,
C2TS, and C2HS have been reduced. The change impact of C4HS cannot be
decreased because the change action is not adaptable.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI068/these.pdf
© [W. Zuo], [2016], INSA Lyon, tous droits réservés

103

Table 19 Result of Lowed Impact Analysis for Web Service Evolution

Change
Action Change Action

Lowered
IR

Def
 II.1.9

IF
Def

II.1.8

IC
Def

II.1.7

d
Def

II.1.10

Lowered
IC d×

C1TS

Operation:
 bookFlight Add 0 1/23 0.0435 0 0

XML Element:
arg0 Add 0 1/23 0.0435 0 0

XML Element:
amount Add 0 1/23 0.0435 0 0

XML Element:
customerID Add 0 1/23 0.0435 0 0

Message:
bookFlight Add 0 1/23 0.0435 0 0

Message:
bookFlightRespons

e
Add 0 1/23 0.0435 0 0

XML Element:
bookFlight

return
Add 0 1/23 0.0435 0 0

C2TS
XML Element:

bookTrainTickets
customerID

Add 0 (m) 1/23 0.0435 0.0268 0.0011

C3TS
XML Element:
checkAvailable

arg0
Modify 1 0 0 0.0357 0.0357

C4TS Implementation:
bookTrainTickets Modify 0 0 0 0.0268 0

C1HS Implementation:
bookHotelRooms Modify 0 0 0 0.0390 0

C2HS
XML Element:

bookHotelRooms
customerID

Add 0 (m) 1/17 0.0588 0.0390 0.0023

C3HS Operation:
bookHotelRooms Modify 0 (m) 0 0 0.0390 0

C4HS

XML Element:
checkAvailableRoo

mNumReponse
return

delete 1 1/16 1.0625 0.0519 0.0551

II.4.4 Evaluation for the client adaptation
In the last section, we have obtained the impact of each change action. In

Table 19, the impact value for a change action lowered IC d× where it is 0
indicates that this change action can be automatically adapted by the evolution

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI068/these.pdf
© [W. Zuo], [2016], INSA Lyon, tous droits réservés

104

platform for the Web Service consumer. Normally, the attribute “adapt” is
defined by Web Service provider with a corresponding adaption behavior
indicated in Table 8. In our experiments, we have defined an adaption behavior
for each adaptable change presented in Table 19 (C2TS, C2HS and C3HS)
action as shown in Table 20.

According to Table 20, the evolution platform will automatically and
dynamically generate new Web Service references for the Web Service
consumers to enable them to catch up with the new version of the Web Service
by using the old version of the client.

For C2TS, the automatically generated proxy is shown in Figure 67
presented in Section II.3.3.2.

Table 20 Adaption Behaviors for the Adaptable Change Actions

Change Action Adapt Behavior

C2TS
<adaptelement type=”value”>
</adaptelement>

C2HS
<adaptelement type=”value”>
</adaptelement>

C3HS <adaptoperation type=”default”>

For C2HS, the automatically generated proxy is shown in Figure 75.

Figure 75 Generating Web Service Proxy for C2HS

For C3HS, the automatically generated proxy is shown in Figure 76.

The generation process for adapting the client applications to the Web
Service evolution is not free. There will also be performance decrease
comparing with the normal usage, especially when the Web Service evolves in a

package zuowei.provider;
import org.apache.cxf.frontend.ClientProxyFactoryBean;
public class YouthHotelService$v11$classProxy implements
IYouthHotelService$v10 {
 public IYouthHotelService$v11 ref;
 public PayModel bookHotelRooms(String type, Date start, Date end)
 {
 return ref.bookHotelRooms(type, start, end, “”);
 }
 public YouthHotel$v11$classProxy(String serviceAddress)
 {

ClientProxyFactoryBean factory = new ClientProxyFactoryBean();
factory.setServiceClass(IYouthHotelService$v11.class);

 factory.setAddress(serviceAddress);
 ref = (IYouthHotelService$v11) factory.create();
 }
}

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI068/these.pdf
© [W. Zuo], [2016], INSA Lyon, tous droits réservés

105

high speed. To understand the performance decrease for the Web Service client
adaptation, we need to observe the latency for the Web Service invocation from
the perspective of the business module of the client application. To evaluate the
performance, we set the Web Service invocation without client application as
the base line. We let the Web Service client application of TPS continuously
invoke the planning trip business and capture the latency for each of the
invocation 10 times per second and 2000 times in total. At the provider side, the
provider periodically modifies the Web Service TS and HS with C2TS, C2HS,
and C3HS with the frequency of 1 time per second. When a new version of the
Web Service is published, the old one is deprecated so that the client application
of TPS can only visit the newest version. If occasionally the client application
cannot obtain the new published version, it will keeps waiting and searching for
the newest version on the broker.

Figure 76 Generating Web Service Proxy for C3HS

By pre-estimation, the cost of the performance for the client adaptation
includes 3 parts:

– The test of checking the availability. This is mainly determined by
the network status. In this scenario, we run all the tests in one single
machine, so this part contributes little to the result.

– The re-look up for the evolved Web Services.

– The adaptation including retrieving the changes through XML parser,
analyzing the impact, and the creation of the proxies.

 As a result, the generated data is shown in Figure 77. We can see that the
cost of the client adaptation varies from 20 to 80 ms for the latency of the Web
Service invocation. Most of the performance lost is contributed by the creation
of the Web Service client by Apache CXF. Peaks only appear when HS and TS

package zuowei.provider;
import org.apache.cxf.frontend.ClientProxyFactoryBean;
public class YouthHotelService$v11$classProxy implements
IYouthHotelService$v10 {
 public IYouthHotelService$v11 ref;
 public PayModel bookHotelRooms(String type, Date start, Date end)
 {
 return ref.bookRooms(type, start, end);
 }
 public YouthHotel$v11$classProxy(String serviceAddress)
 {

ClientProxyFactoryBean factory = new ClientProxyFactoryBean();
factory.setServiceClass(IYouthHotelService$v11.class);

 factory.setAddress(serviceAddress);
 ref = (IYouthHotelService$v11) factory.create();
 }
}

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI068/these.pdf
© [W. Zuo], [2016], INSA Lyon, tous droits réservés

106

take evolution by publishing new versions. The average cost of the client
adaptation is only around 45 mille seconds. This result proves that the proposed
approach for client adaptation is worth of further investigation in the aspect of
engineering.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI068/these.pdf
© [W. Zuo], [2016], INSA Lyon, tous droits réservés

107

Figure 77 Cost of Client Adaptation

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI068/these.pdf
© [W. Zuo], [2016], INSA Lyon, tous droits réservés

108

II.4.5 Limitations
The proposed model performs quite well during the experiments except

some blind sites. We present the defects and limitations from two perspectives.
The first is the theoretical part which reveals the limitations of the proposed
model. The second is the engineering part in which there seems to be some
unhealthy problems during the experiments.

From the theoretical perspective, there are two main problems exist in the
model:

1. The types of change actions during Web Service evolution are
limited. Until now we only introduce the methods to deal with
interface changes and part of the methods for dealing with the
implementation changes. However, there are more extra types of
changes in practical systems and they are also very interesting for
the stakeholders. There should be more ideas for generating,
propagating, analyzing and taking adaptation to more types of
changes.

2. The Web Service client adaptation is fairly constraint with the
adaptation types. Only several adaptation behaviors are defined in
Table 1. This is quite complex since the change of the Web Service
systems always implies the change of the business logics. To
automate the issues of Web Service evolution in the upper layer,
people must prepare more complex domain knowledge and business
rules. However, modeling the domain knowledge is a little far away
from the software systems and is not included in the context of this
thesis.

From the engineering perspective, some metrics perform quite problematic
during the evaluation progress.

1. In Section II.4.2, the latency of generating the Web Service
increases significantly along with the increase of the number of the
published Web Service versions. For Figure 71, this is normal
because we constantly add more operations to the Web Service
which makes it more and more bloated so the cost for the creation of
the WSDL documents increases. However, it is quite confusing that
Figure 72, Figure 73, and Figure 74 also perform like this since we
did not add too many things to the Web Service. Through a set of
tests for each of the components, we have found that the Apache
CXF was the bottleneck. But after all, the generation of the Web
Service is very safe if the number of the maintained Web Service in
one single JVM is under 100. In practice, this is a common case.

2. The impact analysis lacks of more complex scenarios to assess its
reliability. In this scenario, we only define 4 types of changes for
each of HS and TS. To compare the results for each type of change

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI068/these.pdf
© [W. Zuo], [2016], INSA Lyon, tous droits réservés

109

action, we properly explained why the value is high or low. But it is
quite complex to speak out which value is the best and which value
can be considered as safe and so on.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI068/these.pdf
© [W. Zuo], [2016], INSA Lyon, tous droits réservés

110

Part III: Conclusions and perspectives

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI068/these.pdf
© [W. Zuo], [2016], INSA Lyon, tous droits réservés

111

III.1 Conclusion
In this thesis, we have presented a model for Web Service evolution which

facilitates the Web Service stakeholders to deal with the issues involved in Web
Service evolution. Let’s go back to the questions that we proposed in the
introduction section and see how the proposed model answers them.

1. How to model Web Service Evolution?

In this thesis, we define the roles and their corresponding
responsibilities during the Web Service evolution. Firstly, we
explained what the Web Service evolution is through defining the
Web Service changes, and secondly when to take actions to deal
with the Web Service evolution. Thirdly we provided the methods
and tools to deal with the Web Service for each of the stakeholders.

2. How to extract exactly and completely the changes for the
stakeholders?

In our change-centric model, the Web Service stakeholder does not
need to retrieve the Web Service changes through different
approaches like in the past since they can result in omissions and
even errors. Each of the published versions of a Web Service is
accompanied with a Web Service change description which is
generated automatically by using the underlying programming
framework at the provider side. Thus, all of the other participants
like the brokers and the consumers can keep the same understanding
for the changes as the provider.

3. How to evolve the Web Service at runtime in a graceful manner?

The programming framework introduces the script system with a set
of high level APIs which makes it easy for the Web Service
developer to evolve the Web Service at runtime. The script system
takes the user’s commands as input and automatically applies them
on both of the interfaces and implementations of the deployed Web
Services. The Web Service developer does not need to maintain the
versions of the Web Service and does not need to involve in the
management of the changes.

4. How to analyze impact of the Web Service changes?

Thanks to the definition of the Web Service evolution and the
formalization of the Web Service change description. The Web
Service consumer can obtain the correct and complete set of the
Web Service changes. Then we proposed a method for the impact
analysis of the Web Service changes according to 3 facts. The first
is that the impact of the Web Service evolution depends on the
change itself. The second is that the impact of the Web Service
evolution depends on the usage of each consumer. The second is

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI068/these.pdf
© [W. Zuo], [2016], INSA Lyon, tous droits réservés

112

that the impact of Web Service evolution depends on how the
change action alters the Web Service information model. Based on
the 3 facts, the change-centric model proposes an impact analysis
method to help the Web Service consumer to determine if the Web
Service is adaptable and estimate the cost of adapting to the Web
Service evolution.

5. How to adapt the Web Service client applications to the evolved
Web Services in an automatic and dynamic way.

After analyzing the impact of the Web Service evolution, the Web
Service consumer can determine which changes are compatible,
adaptable, and inadaptable. Once the change is considered as an
adaptable change, the client application can take automatically and
dynamically adaptation by a specified architecture style and a
progress of proxy generation. The client adaptation is semi-
automatic because it needs the support at the provider side to
specify the “adapt” attribute.

At last, a set of experiments have been performed to evaluate the proposed
model. The results in the evaluation section show that the proposed model and
implementation present well in dealing with the issues presented in the proposed
motivation scenario in Section II.1. It could support both of the Web Service
provider and the consumer to deal with the Web Service evolution in a graceful
way and little performance lost to the system.

In general, this thesis contributes both of the theoretical study and
engineering work to the issues of the Web Service evolution. Although the
experiments show that all the promises have been realized except few limitations,
this is only the beginning of our perspectives.

III.2 Perspectives

III.2.1 Future work on the Change-centric model for Web Service
evolution

Firstly, we present the future work that may be done for this thesis which
could cover the existing limitations, disadvantages, and defects.

As we have mentioned in Section II.4.5, there should be more work to be
done on extending the types of changes for the change-centric model. At least
the following types of changes should be considered.

Semantic changes. Before, people are only interested in the Web Service
interfaces and do not pay attention to how the Web Service is implemented when
they are using the Web Service. Now, as the Web Service interface descriptions

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI068/these.pdf
© [W. Zuo], [2016], INSA Lyon, tous droits réservés

113

are more and more constraint in the discovery and ranking for the Web Services
and the number of the Web Service become larger and larger, more and more
researchers in the community are involved in the issues of Web Service
semantics. The Web Service semantics describe the meanings of multiple
aspects of the Web Service with the ontology of the domain knowledge. It is
quite useful in discovering and selecting the Web Service in a very large pool. In
current stage, the Web Service semantics are relatively more stable than the Web
Service interfaces so less people focus on the evolution of the Web Service
semantics. However, with the growth of the Web Services, there will be more
and more scenarios in which the stakeholders have to take into account the
evolution of the Web Service semantics.

QoS changes. Strictly speaking, the change of the quality of service is not
or not only decided by the Web Service provider so it is not suitable to adopt the
proposed model in this thesis to deal with QoS changes. For a certain consumer,
the meaningful QoS is the set of parameter values that he observes from his
point of views. There is no need for the generation of the Web Service changes
and no need for the propagation of the Web Service changes. Furthermore, the
adaptation is also complicated and needs more extra studies on this QoS changes.

Change-centric model is also limited when dealing with the changes which
are involved in lots of dependencies. In current stage in Section II.2.3, we
present the resource management by manually marking the changed or
unchanged resources to determine if they will be loaded or be linked with the
old ones. If too many resources that the Web Service is dependent on need to be
marked as changed, it will be also costing time when evolving the Web Services.

Another limitation is the way to deal with the status of the Web Service.
Unlike the restful Web Service which recommends using stateless Web Services,
the SOAP based Web Service usually holds the transaction states for the
business process. No matter the online system is shut down or not when
evolving the Web Service, the retired version of the Web Service will lose all
the transaction states at runtime. To migrate the Web Service status from one
version to another is quite complex and needs more discussions.

III.2.2 Future work on the Web Service evolution

After describing the future work of this thesis, we secondly discuss the
future of Web Service evolution. As we mentioned in the introduction section,
the major target of our research on the software engineering is to realize
dynamization and modularization. Furthermore, the major target of the research
on the Web Service evolution is to realize the autonomic computing.

The research on the Web Service evolution pays more attention to the
dynamization aspect of the Web Service. We emphasize the dynamic features of
the system in many places in this thesis such as dynamically generating the Web

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI068/these.pdf
© [W. Zuo], [2016], INSA Lyon, tous droits réservés

114

Service versions and dynamically taking client adaptation. In fact, the dynamic
Web Service evolution is only the first step. The final target is to build a type of
software component which could adapt itself to the environment through
dynamically adjusting its runtime behavior.

The Figure 78 is showing that the circle becomes bigger when the further
achievement is made on the Web Service. Initially people are developing Web
Services functionalities. When people intend to make use of these functionalities
across the platforms and environments, they have to build a series of standard
descriptions for the Web Service to encapsulate the Web Services such as
interface, semantics and QoS. A further step is to grant the Web Service systems
the abilities of Web Service evolution such as descriptions, impact analysis,
generations, monitors and strategies through a set of models and tools. This step
is covered in this thesis. And then a final step is to enable the Web Service with
self-healing, self-managing, self-adaptation and auto-composition.

Figure 78 Class Graph for Web Service Evolution

Autonomic computing advocates to enable the Web Service to
automatically and intelligently adjust its internal behaviors to fix the problems,
optimize the resources, adapt to the environments, and protect the Web Service
itself once it is deployed at runtime. Let’s take a preliminary simple scenario
that shown in Figure 79.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI068/these.pdf
© [W. Zuo], [2016], INSA Lyon, tous droits réservés

115

Figure 79 Web Service Self-healing

There is a Web Service named “WeatherReportService” which provides
several operations to provide all the data of metrics of the weather. In one
moment, the operational manager finds that all the operations of this Web
Service present the unhealthy patterns on the monitor view and many of their
customers are blocked by the great latencies. After a series similarity analysis,
random walking, and root cause rankings [92], he finds that the operation
“QueryRain” results in a great cost in the garbage collection process. To rapidly
recover the whole Web Service temporarily, the most effective method is to
shutdown the operation “QueryRain()” so that the other operations can work
normally. The behavior of the detecting and shutdown is actually a type of the
self-healing process. And one of the key features of the systems like this is the
ability of the Web Service dynamic evolution.

III.2.3 Web Service evolution and the Big Data

The example we proposed in Figure 79 is part of the application
performance management (APM). As widely known, the four steps of APM is to
1) monitor, 2) analyze, 3) optimize, and 4) predict. Figure 79 can actually cover
the first 3 steps. Nowadays, the hottest topic for prediction is the technology of
big data. The big data technology reveals the intrinsic features of the things
without common logical reasoning. Instead, it takes effect by modeling and
analyzing all of its related data using the computer technologies such as machine
learning, data mining, and cloud computing. In normal situation, most of the

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI068/these.pdf
© [W. Zuo], [2016], INSA Lyon, tous droits réservés

116

people consider that the Web Service belongs to or partly belongs to the cloud
computing. In future, the next target of the research on the Web Service
evolution is also the prediction using the big data technologies.

The Web Service developers and the managers of system operation handle
the mistakes and the problems of the Web Services. However, none of them can
discover the natures of the Web Service when it evolves like any other creatures
so no one can predict the upcoming behaviors of the Web Services. Now if we
consider the big data technologies, what can be done next?

We have built a change specification which provides a standard and formal
definition for the Web Service changes in this thesis. Each published version is
accompanied with a change description in XML format. The change description
is propagated through the whole system and analyzed by anyone who is
interested in the evolution of the Web Service. However, it is not the ending. If
we collects all the change descriptions from all the Web Service brokers, we
actually obtain a Web Service Evolution Repository as shown in Figure 80
which can be used for the big data technologies to analyze and predict the future
of software services.

Figure 80 Big Data analysis on the Web Service evolution

In this Figure we give some examples of the result of the Web Service
evolution analysis using the big data. Taking the first one as an example, it is
quite possible that the shopping service may add an operation named
“checkSoldPrice” because it is close to the sales season in Europe every year.
Then for the Web Service integrators and consumers who are using the shopping
service, they are recommended to add new features to their applications to
integrate this feature of the shopping services.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI068/these.pdf
© [W. Zuo], [2016], INSA Lyon, tous droits réservés

117

Bibliography
[1] Web Service Architecture. [Online] available at:

https://www.w3.org/TR/ws-arch/
[2] Pan W, Chen S, Feng Z. Service-Oriented ontology and its

evolution[M]//Advances in Grid and Pervasive Computing. Springer
Berlin Heidelberg, 2012: 109-121.

[3] Sathyavathy P, Sneha C, Uma B, et al. Semantic and QoS based Web
Service Selection using a Multi Agent System[C]//IICAI. 2005: 2521-
2533.

[4] Ryu S H, Casati F, Skogsrud H, et al. Supporting the dynamic evolution
of web service protocols in service-oriented architectures[J]. ACM
Transactions on the Web (TWEB), 2008, 2(2): 13.

[5] Xie Q, Wu K, Xu J. QoS driven web services evolution[C]//Complex,
Intelligent and Software Intensive Systems (CISIS), 2011 International
Conference on. IEEE, 2011: 329-334.

[6] Lehman M M. Programs, life cycles, and laws of software evolution[J].
Proceedings of the IEEE, 1980, 68(9): 1060-1076.

[7] Lehman M M, Belady L A. Program evolution: processes of software
change[M]. Academic Press Professional, Inc., 1985.

[8] Lehman M M. Laws of software evolution revisited[M]//Software
process technology. Springer Berlin Heidelberg, 1996: 108-124.

[9] Lehman M M, Ramil J F. Software evolution—Background, theory,
practice[J]. Information Processing Letters, 2003, 88(1): 33-44.

[10] Agusa K. Software Engineering Evolution[C]//Software Evolution, 2004.
Proceedings. 7th International Workshop on Principles of. IEEE, 2004:
3-8.

[11] Mens T, Buckley J, Zenger M, et al. Towards a taxonomy of software
evolution[C]//Proceedings of the International Workshop on
Unanticipated Software Evolution. 2003 (LAMP-CONF-2003-005).

[12] Oreizy P, Medvidovic N, Taylor R N. Architecture-based runtime
software evolution[C]//Proceedings of the 20th international conference
on Software engineering. IEEE Computer Society, 1998: 177-186.

[13] Gurguis S A, Zeid A. Towards autonomic web services: Achieving self-
healing using web services[C]//ACM SIGSOFT Software Engineering
Notes. ACM, 2005, 30(4): 1-5.

[14] Becker S, Brogi A, Gorton I, et al. Towards an engineering approach to
component adaptation[M]. Springer Berlin Heidelberg, 2006.

[15] Canfora G. Software evolution in the era of software
services[C]//Software Evolution, 2004. Proceedings. 7th International
Workshop on Principles of. IEEE, 2004: 9-18.

[16] Gupta D, Jalote P, Barua G. A formal framework for on-line software
version change[J]. Software Engineering, IEEE Transactions on, 1996,
22(2): 120-131.

[17] Lee I. Dymos: a dynamic modification system[D]. University of
Wisconsin, Madison, 1983.

[18] Dowling J, Cahill V, Clarke S. Dynamic software evolution and the k-
component model[C]//Workshop on Software Evolution, OOPSLA. 2001,
2001.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI068/these.pdf
© [W. Zuo], [2016], INSA Lyon, tous droits réservés

https://www.w3.org/TR/ws-arch/

118

[19] Dowling J, Cahill V. The k-component architecture meta-model for self-
adaptive software[M]//Metalevel Architectures and Separation of
Crosscutting Concerns. Springer Berlin Heidelberg, 2001: 81-88.

[20] OSGi Alliance. [Online] available at: http://www.osgi.org.
[21] Andrikopoulos V. A theory and model for the evolution of software

services[R]. School of Economics and Management, 2010.
[22] Canal C, Poizat P, Salaun G. Model-based adaptation of behavioral

mismatching components[J]. Software Engineering, IEEE Transactions
on, 2008, 34(4): 546-563.

[23] Xie X, Zhang W. A checking mechanism of software component
adaptation[C]//Grid and Cooperative Computing, 2006. GCC 2006. Fifth
International Conference. IEEE, 2006: 347-354.

[24] Chainbi W, Mezni H, Ghedira K. An autonomic computing architecture
for self-* Web services[M]//Autonomic Computing and Communications
Systems. Springer Berlin Heidelberg, 2009: 252-267.

[25] Passerone R, De Alfaro L, Henzinger T A, et al. Convertibility
verification and converter synthesis: Two faces of the same
coin[C]//Proceedings of the 2002 IEEE/ACM international conference on
Computer-aided design. ACM, 2002: 132-139.

[26] Hiel M, Weigand H, Van Den Heuvel W J. An adaptive service-oriented
architecture [M]//Enterprise Interoperability III. Springer London, 2008:
197-208.

[27] Di Nitto E, Ghezzi C, Metzger A, et al. A journey to highly dynamic,
self-adaptive service-based applications[J]. Automated Software
Engineering, 2008, 15(3-4): 313-341.

[28] Kaminski P, Müller H, Litoiu M. A design for adaptive web service
evolution [C] // Proceedings of the 2006 international workshop on Self-
adaptation and self-managing systems. ACM, 2006: 86-92.

[29] Fokaefs M, Mikhaiel R, Tsantalis N, et al. An empirical study on web
service evolution[C]//Web Services (ICWS), 2011 IEEE International
Conference on. IEEE, 2011: 49-56.

[30] Fokaefs M, Stroulia E. WSDarwin: Automatic web service client
adaptation[C]//Proceedings of the 2012 Conference of the Center for
Advanced Studies on Collaborative Research. IBM Corp., 2012: 176-191.

[31] Fokaefs M, Stroulia E. The WSDarwin Toolkit for Service-Client
Evolution[C]//Web Services (ICWS), 2014 IEEE International
Conference on. IEEE, 2014: 716-719.

[32] Fokaefs M, Stroulia E. WSDARWIN: A Decision-Support Tool for Web-
Service Evolution[C]//Software Maintenance (ICSM), 2013 29th IEEE
International Conference on. IEEE, 2013: 444-447.

[33] Marwaha P, Banati H, Bedi P. WSDL-TC: Temporal Customization of
Web Services[J]. Journal of Network and Innovative Computing, 1(2013):
234-247.

[34] Banati H, Bedi P, Marwaha P. WSDL-temporal: An approach for change
management in web services[C]//Uncertainty Reasoning and Knowledge
Engineering (URKE), 2012 2nd International Conference on. IEEE, 2012:
44-49.

[35] Chaturvedi A. Automated Web Service Change Management AWSCM-A
Tool[C]//Cloud Computing Technology and Science (CloudCom), 2014
IEEE 6th International Conference on. IEEE, 2014: 715-718.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI068/these.pdf
© [W. Zuo], [2016], INSA Lyon, tous droits réservés

http://www.osgi.org/

119

[36] Wang Y, Wang Y. A survey of change management in service-based
environments[J]. Service Oriented Computing and Applications, 2013,
7(4): 259-273.

[37] Romano D, Pinzger M. Analyzing the evolution of web services using
fine-grained changes[C]//Web Services (ICWS), 2012 IEEE 19th
International Conference on. IEEE, 2012: 392-399.

[38] Treiber M, Juszczyk L, Schall D, et al. Programming evolvable web
services[C]//Proceedings of the 2nd International Workshop on
Principles of Engineering Service-Oriented Systems. ACM, 2010: 43-49.

[39] Treiber M, Andrikopoulos V, Dustdar S. Calculating service fitness in
service networks[C]//Service-Oriented Computing. ICSOC/ServiceWave
2009 Workshops. Springer Berlin Heidelberg, 2010: 283-292.

[40] Treiber M, Truong H L, Dustdar S. Semf-service evolution management
framework[C]//Software Engineering and Advanced Applications, 2008.
SEAA'08. 34th Euromicro Conference. IEEE, 2008: 329-336.

[41] Juszczyk L, Truong H L, Dustdar S. Genesis-a framework for automatic
generation and steering of testbeds of complexweb
services[C]//Engineering of Complex Computer Systems, 2008. ICECCS
2008. 13th IEEE International Conference on. IEEE, 2008: 131-140.

[42] Treiber M, Truong H L, Dustdar S. On analyzing evolutionary changes
of web services[C]//Service-Oriented Computing–ICSOC 2008
Workshops. Springer Berlin Heidelberg, 2009: 284-297.

[43] Andrikopoulos V, Benbernou S, Papazoglou M P. Managing the
evolution of service specifications[C]//Advanced Information Systems
Engineering. Springer Berlin Heidelberg, 2008: 359-374.

[44] Vara J M, Verde J, Andrikopoulos V, et al. An EMF-based toolkit for
reasoning on web services evolution[C]//Proceedings of the workshop on
ACadeMics Tooling with Eclipse. ACM, 2013: 4.

[45] Papazoglou M P. The challenges of service evolution[C]//Advanced
Information Systems Engineering. Springer Berlin Heidelberg, 2008: 1-
15.

[46] Chaturvedi A. Automated Web Service Change Management AWSCM-A
Tool[C]//Cloud Computing Technology and Science (CloudCom), 2014
IEEE 6th International Conference on. IEEE, 2014: 715-718.

[47] Zou Z L, Fang R, Liu L, et al. On synchronizing with web service
evolution[C]//Web Services, 2008. ICWS'08. IEEE International
Conference on. IEEE, 2008: 329-336.

[48] Kajko-Mattsson M, Lewis G A, Smith D B. Evolution and maintenance
of soa-based systems at sas[C]//Hawaii International Conference on
System Sciences, Proceedings of the 41st Annual. IEEE, 2008: 119-119.

[49] J. Kenyon, “Web service versioning and deprecation,” Jan. 2003.
[Online]. Available: http://soa.sys-con.com/node/39678

[50] J. Evdemon, “Principles of service design: Service versioning,” Aug.
2005. [Online]. Available: http://msdn.microsoft.com/en-
us/library/ms954726.aspx

[51] M. Russell, “Manage message contract changes with versioning,” Aug.
2005. [Online]. Available:
http://www.ibm.com/developerworks/web/library/wa-msgvers/index.
html

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI068/these.pdf
© [W. Zuo], [2016], INSA Lyon, tous droits réservés

http://soa.sys-con.com/node/39678
http://msdn.microsoft.com/en-us/library/ms954726.aspx
http://msdn.microsoft.com/en-us/library/ms954726.aspx

120

[52] M. Endrei, M. Gaon, J. Graham, K. Hogg, and N. Mulholland, “Moving
forward with web services backward compatibility,” May 2006. [Online].
Available: http:// www.ibm.com/developerworks/java/library/ws-soa-
backcomp/index.html?ca=drs-

[53] G. Bechara, “Web services versioning,” Apr. 2007. [Online]. Available:
http: //www.oracle.com/technology/pub/articles/web services
versioning.html

[54] K. Jerijærvi and J. Dubray, “Contract versioning, compatibility and com-
posability,” Dec. 2008. [Online]. Available:
http://www.infoq.com/articles/ contract-versioning-comp2

[55] D. Parachuri and S. Mallick, “Service versioning in SOA,” Dec. 2008.
[Online]. Available: http://www.infosys.com/offerings/IT-services/soa-
services/ white-papers/pages/index.aspx

[56] G. Flurry, “Service versioning in SOA,” Oct. 2008. [Online]. Avail- able:
http://www.ibm.com/developerworks/websphere/techjournal/0810 col
flurry/ 0810 col flurry.htm

[57] Narayan A, Singh I. Designing and versioning compatible Web
services[J]. IBM DeveloperWorks, 2007, 28: 30.

[58] K. Brown and M. Ellis, “Best practices for web services versioning,” Jan.
2004. [Online]. Available at:
http://www.ibm.com/developerworks/webservices/library/ws-version/

[59] Kajko-Mattsson M, Lewis G A, Smith D B. A framework for roles for
development, evolution and maintenance of SOA-based
systems[C]//Proceedings of the international workshop on systems
development in SOA environments. IEEE Computer Society, 2007: 7.

[60] Liu R, Chen F, Yang H, et al. Agent-based web services evolution for
pervasive computing[C]//Software Engineering Conference, 2004. 11th
Asia-Pacific. IEEE, 2004: 726-731.

[61] R. Fang, L. Lam, L. Fong, D. Frank, C. Vignola, Y. Chen, and N. Du, “A
version- aware approach for web service directory,” in ICWS 2007, Jul.
2007, pp. 406–413.

[62] P. Leitner, A. Michlmayr, F. Rosenberg, and S. Dustdar, “End-to-End
versioning support for web services,” in IEEE International Conference
on Services Computing, 2008., vol. 1, Jul. 2008, pp. 59–66.

[63] Kajko-Mattsson M, Tepczynski M. A framework for the evolution and
maintenance of web services[C]//null. IEEE, 2005: 665-668.

[64] R. Weinreich, T. Ziebermayr, and D. Draheim, “A versioning model for
enterprise services,” in Advanced Information Networking and
Applications Workshops, 2007, AINAW ’07. 21st International
Conference on, vol. 2, 2007, pp. 570–575.

[65] K. Becker, A. Lopes, D. S. Milojicic, J. Pruyne, and S. Singhal,
“Automatically determining compatibility of evolving services,” in
ICWS 2008, 2008, pp. 161–168.

[66] Khater M, Malki M. An approach for adapting web services
[C]//Multimedia Computing and Systems, 2009. ICMCS'09. International
Conference on. IEEE, 2009: 56-61.

[67] Yamashita M, Vollino B, Becker K, et al. Measuring change impact
based on usage profiles[C]//Web Services (ICWS), 2012 IEEE 19th
International Conference on. IEEE, 2012: 226-233.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI068/these.pdf
© [W. Zuo], [2016], INSA Lyon, tous droits réservés

http://www.ibm.com/developerworks/websphere/techjournal/0810%20col%20flurry/%200810%20col%20flurry.htm
http://www.ibm.com/developerworks/websphere/techjournal/0810%20col%20flurry/%200810%20col%20flurry.htm
http://www.ibm.com/developerworks/webservices/library/ws-version/

121

[68] Wang S, Capretz M A M. A dependency impact analysis model for web
services evolution[C]//Web Services, 2009. ICWS 2009. IEEE
International Conference on. IEEE, 2009: 359-365.

[69] Wang S, Capretz M A M. Dependency and entropy based impact analysis
for service-oriented system evolution[C]//Proceedings of the 2011
IEEE/WIC/ACM International Conferences on Web Intelligence and
Intelligent Agent Technology-Volume 01. IEEE Computer Society, 2011:
412-417.

[70] Yau S S, Ye N, Sarjoughian H S, et al. Toward development of adaptive
service-based software systems[J]. Services Computing, IEEE
Transactions on, 2009, 2(3): 247-260.

[71] Na J, Gao Y, Zhang B, et al. Improved adaptation of Web service
composition based on change impact probability[C]//Dependability
(DEPEND), 2010 Third International Conference on. IEEE, 2010: 146-
153.

[72] Feng Z, Chiu D K W, He K. A Service Evolution Registry with Alert-
Based Management[C]//Service Science and Innovation (ICSSI), 2013
Fifth International Conference on. IEEE, 2013: 123-130.

[73] Feng Z, He K, Peng R, et al. Taxonomy for evolution of service-based
system[C]//Services (SERVICES), 2011 IEEE World Congress on. IEEE,
2011: 331-338.

[74] Mateos C, Crasso M, Rodriguez J M, et al. Measuring the impact of the
approach to migration in the quality of web service interfaces[J].
Enterprise Information Systems, 2015, 9(1): 58-85.

[75] Oliva G, Gerosa M, Milojicic D, et al. A change impact analysis
approach for workflow repository management[C]//Web Services
(ICWS), 2013 IEEE 20th International Conference on. IEEE, 2013: 308-
315.

[76] Qi S, Li B, Liu C, et al. A Trust Impact Analysis Model for Composite
Service Evolution[C]//Software Engineering Conference (APSEC), 2012
19th Asia-Pacific. IEEE, 2012, 1: 73-78.

[77] Wang M, Cui L Z. An impact analysis model for distributed web service
proces[C]//Computer Supported Cooperative Work in Design (CSCWD),
2010 14th International Conference on. IEEE, 2010: 351-355.

[78] Wang Y, Yang J, Zhao W. Service change analyzer: An enabling tool for
change management in service-based business processes[C]//e-Business
Engineering (ICEBE), 2011 IEEE 8th International Conference on. IEEE,
2011: 237-244.

[79] Motahari Nezhad H R, Benatallah B, Martens A, et al. Semi-automated
adaptation of service interactions[C]//Proceedings of the 16th
international conference on World Wide Web. ACM, 2007: 993-1002.

[80] Fang R, Chen Y, Fong L, et al. A version-aware approach for web
service client application[C]//Integrated Network Management, 2007.
IM'07. 10th IFIP/IEEE International Symposium on. IEEE, 2007: 401-
409.

[81] Frank D, Lam L, Fong L, et al. Using an interface proxy to host
versioned web services[C]//Services Computing, 2008. SCC'08. IEEE
International Conference on. IEEE, 2008, 2: 325-332.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI068/these.pdf
© [W. Zuo], [2016], INSA Lyon, tous droits réservés

122

[82] Fang R, Lam L, Fong L, et al. A version-aware approach for web service
directory[C]//Web Services, 2007. ICWS 2007. IEEE International
Conference on. IEEE, 2007: 406-413.

[83] Juric M B, Sasa A, Brumen B, et al. WSDL and UDDI extensions for
version support in web services[J]. Journal of Systems and Software,
2009, 82(8): 1326-1343.

[84] Kongdenfha W, Saint-Paul R, Benatallah B, et al. An aspect-oriented
framework for service adaptation[M]//Service-Oriented Computing–
ICSOC 2006. Springer Berlin Heidelberg, 2006: 15-26.

[85] Aspect Oriented Programming. [Online] available at
http://docs.jboss.org/aop/1.0/aspect-
framework/userguide/en/html/what.html

[86] Comet Technology. [Onlline] available at:
https://en.wikipedia.org/wiki/Comet_(programming)

[87] Sencha EXTJS [Online] available at :
https://docs.sencha.com/extjs/6.0/backend_connectors/direct/specificatio
n.html

[88] Web Socket. [Online] available at http://www.websocket.org/.
[89] Na J, Gao Y, Zhang B, et al. Improved adaptation of Web service

composition based on change impact probability[C]//Dependability
(DEPEND), 2010 Third International Conference on. IEEE, 2010: 146-
153.

[90] Kongdenfha W, Motahari-Nezhad H R, Benatallah B, et al. Mismatch
patterns and adaptation aspects: A foundation for rapid development of
web service adapters[J]. Services Computing, IEEE Transactions on,
2009, 2(2): 94-107.

[91] Feng Z, He K, Ma Y, et al. A Requirements-Driven and Aspect-Oriented
Approach for Evolution of Web Services Composition[C]//Web Mining
and Web-based Application, 2009. WMWA'09. Second Pacific-Asia
Conference on. IEEE, 2009: 201-204.

[92] Kim M, Sumbaly R, Shah S. Root cause detection in a service-oriented
architecture[J]. ACM SIGMETRICS Performance Evaluation Review,
2013, 41(1): 93-104.

[93] Buckley J, Mens T, Zenger M, et al. Towards a taxonomy of software
change[J]. Journal of Software Maintenance and Evolution: Research and
Practice, 2005, 17(5): 309-332.

[94] Bennett K H, Rajlich V T. Software maintenance and evolution: a
roadmap[C]//Proceedings of the Conference on the Future of Software
Engineering. ACM, 2000: 73-87.

[95] Becker K, Lopes A, Milojicic D, et al. Automatically determining
compatibility of evolving services[C]//Web Services, 2008. ICWS'08.
IEEE International Conference on. IEEE, 2008: 161-168.

[96] Aguilera M K, Mogul J C, Wiener J L, et al. Performance debugging for
distributed systems of black boxes[C]//ACM SIGOPS Operating Systems
Review. ACM, 2003, 37(5): 74-89.

[97] Zhao X, Zhang Y, Lion D, et al. lprof: A non-intrusive request flow
profiler for distributed systems[C]//11th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 14). 2014: 629-
644.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI068/these.pdf
© [W. Zuo], [2016], INSA Lyon, tous droits réservés

http://docs.jboss.org/aop/1.0/aspect-framework/userguide/en/html/what.html
http://docs.jboss.org/aop/1.0/aspect-framework/userguide/en/html/what.html
https://en.wikipedia.org/wiki/Comet_(programming)
https://docs.sencha.com/extjs/6.0/backend_connectors/direct/specification.html
https://docs.sencha.com/extjs/6.0/backend_connectors/direct/specification.html
http://www.websocket.org/

123

[98] Mei H, Huang G, Xie T. Internetware: A software paradigm for internet
computing[J]. Computer, 2012 (6): 26-31.

[99] Li J, Xiong Y, Liu X, et al. How does web service API evolution affect
clients?[C]//Web Services (ICWS), 2013 IEEE 20th International
Conference on. IEEE, 2013: 300-307.

[100] Zuo Wei, Youssef Amghar & Benharkat Aïcha-Nabila (2015). « The
Impact Analysis Model for Web Service Evolution. ». IEEE/WIC/ACM
International Conference on Web Intelligence and Intelligent Agent
Technology, 9 décembre 2015, Singapore (Singapour), pp 457-
460. doi : 10.1109/WI-IAT.2015.199. HAL : hal-01278226

[101] W. Zuo, Y. Amghar, A. Benharkat. Programming Framework based on
change-centric web service evolution model. In The 4th International
Symposium on Web Services (WSS’2014), Sfax, Tunisia. 2014.

[102] W. Zuo, A. Benharkat, Y. Amghar. Holistic and Change-centric Model
for Web Service Evolution. In 2014 SERVICES Workshops-IEEE
Fourth International Workshop on the Future of Software Engineering
for/in the Cloud (FoSEC- 2014), IEEE ed. Anchorage, Alaska. 2014

[103] W. Zuo, A. Benharkat, Y. Amghar. Change-centric Model for Web
Service Evolution . In IEEE ICWS 2014,ALASKA. 2014

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI068/these.pdf
© [W. Zuo], [2016], INSA Lyon, tous droits réservés

http://dx.doi.org/10.1109/WI-IAT.2015.199
https://hal.archives-ouvertes.fr/hal-01278226
https://liris.cnrs.fr/publis/publi_aut/?id=4341
https://liris.cnrs.fr/publis/publi_aut/?id=27
https://liris.cnrs.fr/publis/publi_aut/?id=13
https://liris.cnrs.fr/publis/?id=6655
https://liris.cnrs.fr/publis/?id=6655

	Notice XML
	Page de titre
	Abstract
	Résume
	Table of contents
	List of figures
	List of tables
	1. Introduction
	1.1 Research context
	1.1.1 Web Service evolution in SOA

	1.2 Motivation
	1.3 Research questions
	1.4 Research methodology
	1.5 Contributions

	Part I: State of art
	I.1 State of art overview
	I.2 Software evolution
	I.2.1 Software evolution issues
	I.2.2 Dynamic software evolution and adaptation
	I.2.2.1 DYMOS
	I.2.2.2 K-Component
	I.2.2.3 OSGi

	I.3 Web Service evolution
	I.3.1 Service oriented architecture
	I.3.2 Web services evolution issues
	I.3.3 Corrective approaches
	I.3.3.1 Chain of adapters
	I.3.3.2 WSDarwin
	I.3.3.3 Gensis

	I.3.4 Preventive approaches

	I.4 Evolution impact analysis
	I.4.1 Impact analysis at the service side
	I.4.2 Impact analysis at the consumer side

	I.5 Discussion
	I.5.1 Why not RESTful Web Services?

	I.6 Summary

	Part II: Contributions
	II.1 Motivation scenario
	II.1.1 Information model of the scenario
	II.1.2 Web Service implementation of the scenario
	II.1.3 Web Service evolution of the scenario
	II.1.4 Summary

	II.2 Change-Centric model for web service evolution
	II.2.1 Web Service changes
	II.2.1.1 Roles involved in Web Service evolution
	II.2.1.2 Change specification of Web Service
	II.2.1.2.1 Classic models for Web Service changes
	II.2.1.2.2 Definition of Web Service changes
	II.2.1.2.3 XML Annotation of Web Service changes

	II.2.2 Programming framework for Web Service evolution
	II.2.2.1 Web Service evolution APIs

	II.2.3 Resource management for runtime versioning
	II.2.4 Impact analysis for Web Service evolution
	II.2.4.1 Web Service evolution impact analysis on Web Service client applications
	II.2.4.2 Adaptable Web Service changes
	II.2.4.3 Web Service evolution impact analysis on Web Service compositions
	II.2.4.4 Discussion

	II.2.5 Client adaptation for Web Service evolution
	II.2.5.1 Overview

	II.2.6 Summary

	II.3 Execution model
	II.3.1 System architecture
	II.3.2 Web Service provider
	II.3.2.1 Programming framework
	II.3.2.2 Generating Web Service changes
	II.3.2.3 Examples of the evolution script for the motivation scenario
	II.3.2.3.1 Example of the implementation for the change action 1 of TS
	II.3.2.3.2 Example of the implementation for the change action 2 of TS
	II.3.2.3.3 Example of the implementation for the change action 3 of TS
	II.3.2.3.4 Example of the implementation for the change action 4 of TS
	II.3.2.3.5 Example of the implementation for the change action 1 of HS
	II.3.2.3.6 Example of the implementation for the change action 2 of HS
	II.3.2.3.7 Example of the implementation for the change action 3 of HS
	II.3.2.3.8 Example of the implementation for the change action 4 of HS

	II.3.2.4 Versions isolation and resource management
	II.3.2.5 Web Service performance monitor

	II.3.3 Web Service consumer
	II.3.3.1 Implementation of the impact analysis
	II.3.3.1.1 Web Service changes analysis
	II.3.3.1.2 Implementation of the impact analysis of the Web Service changes on the client

	II.3.3.2 Implementation of the client adaptation

	II.3.4 Summary

	II.4 Evaluation
	II.4.1 General description
	II.4.2 Evaluation for the Web Service generation
	II.4.2.1 Change action 1 for TS
	II.4.2.2 Change action 2 & 3 & 4 for TS

	II.4.3 Evaluation for the impact analysis
	II.4.4 Evaluation for the client adaptation
	II.4.5 Limitations

	Part III: Conclusions and perspectives
	III.1 Conclusion
	III.2 Perspectives
	III.2.1 Future work on the Change-centric model for Web Service evolution
	III.2.2 Future work on the Web Service evolution
	III.2.3 Web Service evolution and the Big Data

	Bibliography

