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Abstract XV

DEesiGN AND CoNTROL Co-OPTIMIZATION FOR ADVANCED VEHICLE PROPULSION SYSTEMS
Abstract

Advanced technologies are highly demanded in automotive industry to meet the more and
more stringent regulations of fuel consumption. Co-optimization of design and control for
vehicle propulsion systems with an enhanced computational efficiency is investigated in this
thesis. Powertrain components, such as internal combustion engines, batteries, and electric
motor/generators, are analytically modeled at descriptive and predictive level correspondingly
for the development of fast-running control optimization and for the scalability of design
optimization. The minimal fuel consumption of a hybrid-electric vehicle is evaluated through
novel optimization methods. These methods - including the Selective Hamiltonian Minimization,
and the GRaphical-Analysis-Based energy Consumption Optimization — are able to evaluate
the minimal energy consumption with the enhanced computational efficiency. In addition,
the Fully-Analytic energy Consumption Evaluation method approximates the minimal energy
consumption in closed form as a function of the mission characteristics and the design parameters
of powertrain components. A few case studies are presented in details via the bi-level and uni-
level co-optimization approaches, showing an effective improvement in the computational
efficiency for the overall co-optimization process.

Keywords: design optimization, control optimization, vehicle propulsion system, hybrid electric
vehicle, electric vehicle, conventional vehicle

CO-OPTIMISATION DU DIMENSIONNEMENT ET DU CONTROLE DES GROUPES MOTOPROPULSEURS INNO-
VANTS

Résumé

Des technologies avancées sont trés demandées dans 1'industrie automobile pour respecter les
réglementations de consommation de carburant de plus en plus rigoureuses. La co-optimisation
du dimensionnement et du controle des groupes motopropulseurs avec une efficacité de calcul
améliorée est étudiée dans cette these. Les composants des groupes motopropulseurs, tels que le
moteur, la batterie et le moteur électrique, sont modélisés analytiquement au niveau descriptif
et prédictif afin de permettre une optimisation du contrdle rapide et une optimisation du dimen-
sionnement scalable. La consommation d’énergie minimale des véhicules hybrides-électriques est
évaluée par des nouvelles méthodes optimales. Ces méthodes — y compris Selective Hamiltonian
Minimization et GRaphical-Analysis-Based energy Consumption Optimization — permettent
d’évaluer une consommation minimale d’énergie avec une efficacité de calcul améliorée. De plus,
la méthode de Fully-Analytic energy Consumption Evaluation (FACE) approxime la consomma-
tion d’énergie minimale sous forme analytique en fonction des caractéristiques de la mission
et des parameétres de conception des composants du groupe motopropulseur. Plusieurs cas
d’études sont présentées en détail par rapport aux approches de co-optimisation a bi-niveaux et
a uni-niveau, ce qui montre une réduction efficace du temps de calcul requis par le processus
global de co-optimisation.

Mots clés : optimisation du dimensionnement, optimisation du contrdle, groupes moto-
propulseurs, véhicule électrique hybride, véhicule électrique, véhicule conventionnel

IFP Energies nouvelles
1 & 4, avenue de Bois-Préau — 92852 Rueil-Malmaison Cedex - France
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Introduction

Background

Transport sector consumes more than half of global oil production, which is more than
a quarter of global final energy [1] and leads to the anthropogenic CO; emissions. The
level of CO, emissions in the transport sector increased from 15% in year 1990 to
23.2% in year 2014!. In particular, road transportation, including light- and heavy-duty
vehicles, took up almost three quarters of the total amount in year 2010 [2].

Large amounts of CO, emissions have brought a series of public concerns on climate
change, energy security, environmental issues, etc. In reaction to public concerns, the
European Union (EU) legislation sets mandatory targets of emission reduction for new
vehicles. As illustrated in Fig. 1, new passenger cars and light-commercial vehicles
(vans) are subject to mandatory and stringent CO, emission standards, which is to
reduce the level of average CO, emissions to 95 and 147 g/km by year 2021 for new
passengers cars and light-commercial vehicles, respectively. Moreover, the European
Parliament recommended an "indicative range" in 2013 for a 2025 new-car CO, emission
target of 68-78 g/km (in NEDC terms) and, if “duly justified,” consideration of a lower
target as well (Fig. 1) [3].

Concerning heavy-duty vehicles, their CO, emissions are reduced by the market-
driven competition in European counties, although European market is the only major
vehicle market without mandatory CO, emission standards around the world [3].

To meet the stringent CO, emission targets, advanced technologies of vehicle design,
propulsion system design, and powertrain control are highly demanded. Concerning
vehicle design, novel vehicle propulsion systems, light-weight design, new materials, etc.
can help reduce CO, emissions. As for the design of vehicle propulsion systems, proper

selection of powertrain configurations, well-sized dimensions of powertrain compo-

IEurostat Statistics Explained — Greenhouse gas emission statistics (last update: December, 2016),
http://ec.europa.eu/eurostat/statistics-explained/index.php/Greenhouse_gas_emission_
statistics
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Figure 1 — Average CO, emissions of new cars in EU in the 2014-2030 time frame,
assuming a 3.9% per year and 6.8% per year CO, reduction scenario.

nents, and efficiency-improved powertrain components are of great help to reduce CO,
emissions. Regarding powertrain control, novel technologies, such as optimal energy
management in hybrid-electric vehicles and intelligent transportation, are capable of

further decreasing CO, emissions.

Motivation

The energy consumption and corresponding CO, emissions of a vehicle are affected
by powertrain dimensions (e.g. engine displacement), powertrain control (e.g. energy
management strategy), vehicle parameters (e.g. aerodynamic properties), missions,
etc. As an efficient approach, numeric simulation is often implemented to analyze and
validate the design of new vehicle concepts, especially for the estimation of energy
consumption. Furthermore, numeric simulation plays a vital role in the development
of powertrain control, such as the energy management strategy for a hybrid-electric
vehicle.

Numeric simulation greatly facilitates optimal designs of vehicle propulsion systems.
In a single-source vehicle (conventional or battery-electric vehicle), dimensioning pa-
rameters of powertrain components are selected to reduce energy consumption through
exhaustive or trial-and-error simulations. Compared with hybrid-electric vehicles,
single-source vehicles have a less complex powertrain control. Therefore, optimal
design of vehicle propulsion systems of single-source vehicles can be easily realized
through numeric simulations for the least energy consumption. Because of lack of
powertrain control in the numeric simulation of backward approach, the optimal design

process takes reasonable computation time.
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On the contrary, optimal design of hybrid-electric vehicles confronts high com-
plexities. The complexities are caused by multiple powertrain architectures, various
powertrain components, indispensable powertrain control, and the resulting higher
number of degrees of freedom. To achieve the minimum energy consumption, the
optimal control of powertrain must be considered rather than heuristic control during
the optimal design process. Therefore, a co-optimization of design and control problem
is raised and tailored for hybrid-electric vehicles.

To solve the co-optimization of design and control for hybrid-electric vehicles, bi-
level co-optimization approach is frequently implemented to find the optimal design
such that the energy consumption is minimized. The bi-level co-optimization approach
selects the optimal dimensioning parameters of powertrain components by an optimizer
at the outer level; whereas the energy consumption is minimized via optimal control
techniques at the inner level. Because of massive evaluations in the outer level and
the embedded optimal control of each evaluation in the co-optimization process, it
takes too much computation time to complete the. For example, it took about one
hundred hours to entirely optimize four types of parameters for the optimal design of
a parallel hybrid-electric vehicle with heuristic control laws [4]. In a co-optimization
process, it took more than eight hours to optimize the design and control parameters
in the application of series and parallel hybrid-electric vehicles [5]. Concerning the
computation time of optimal control technique, a combined dynamic programming
and Pontryagin’s minimum principle needs nine seconds to evaluate the minimum fuel
consumption [6]; whereas an enhanced dynamic programing by the implementation of

analytic formulation still requires five seconds [7].

Objective

In the subject of co-optimization of control and design for advanced vehicle propulsion
systems, the ultimate goal is to optimize the dimensioning parameters of powertrain
components for various vehicle propulsion systems within shortened computation time
compared with current technologies.

Regarding the bi-level co-optimization approach, it consists of two levels that are
dedicated to design optimization and control optimization. To achieve the reduction
of computation time in the co-optimization process, novel techniques of powertrain
control are investigated for hybrid-electric vehicles. The requirement of novel optimal
control techniques must be fast-running and accurate.

In addition to the improvement on the computational efficiency for the bi-level
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co-optimization approach, an inaugural uni-level co-optimization approach is proposed
to optimize the design of vehicle propulsion systems with the instantaneous estimation
of the minimum fuel consumption. In the uni-level co-optimization approach, the
instantaneous estimation of the minimum fuel consumption is done by a fully analytic
energy consumption estimation method (FACE) that is valid for various types of vehicle
propulsion systems, such as conventional, battery-electric, and hybrid-electric ones.
The FACE shows the explicit relation between energy consumption and dimensioning
parameters of powertrain components as well.

To achieve the aforementioned objectives, the thesis is organized with four parts.
Part I summarizes the state-of-the-art review of optimal design for current vehicle
propulsion systems in Chapter 1 and the analytic models of vehicle propulsion systems
for the development of the novel powertrain control techniques and the uni-level co-
optimization approach in Chapter 2.

Numeric evaluations of energy consumption for single-source and hybrid-electric
are introduced in Part II, where Chapter 3 describes quasi-static simulation approaches
for conventional, battery-electric, and hybrid-electric vehicles. The novel techniques of
optimal control for hybrid-electric vehicles, including Selective Hamiltonian Minimiza-
tion and Graphical-Analysis-Based Energy Consumption Optimization, are detailed in
Chapter 4. On the contrary, the fully analytic energy consumption estimation method is
presented in Part III, where the one for single-source and for hybrid-electric vehicles are
in Chapter 5 and 6, respectively.

General design issues and case studies are found in Part IV to demonstrate the
capabilities of the proposed optimal control methods and the uni-level co-optimization
approach. Chapter 7 formulates the generic optimal design problem, whereas Chapter 8
summarized several case studies including conventional, battery-electric, and hybrid-
electric vehicles. The conclusion, including contributions, limitations, and future work,

is summarized at the end of this thesis.

Contribution

The main contributions of this thesis are summarized into three aspects, which are the
descriptive and predictive analytic models of powertrain components, fast-running
methods for control optimization of hybrid-electric vehicles, and the uni-level co-
optimization of design and control for hybrid-electric vehicles.

As a fundamental to achieve the objective of this thesis, powertrain components are

modeled analytically at two different levels, which are the descriptive and predictive
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level. The analytic models of the descriptive level aim at describing energy losses of an
individual powertrain component, whereas analytic models of the predictive level are
capable of scaling a powertrain component to different dimensioning parameters in its
corresponding identified set. Thanks to the analytic models, the computation time of
the energy evaluation can be further reduced compared with the numeric simulation of
grid-point data.

Based on the analytic models of powertrain components, two types of control opti-
mization are developed that significantly reduce the computation time of the evaluation
of the minimal energy consumption for a given hybrid-electric vehicle. These two novel
control optimization techniques are Selective Hamiltonian Minimization (SHM) and
GRaphical-Analysis-Based Energy Consumption Optimization (GRAB-ECO), which
are developed based on Pontryagin’s Minimum Principle and the maximization of the
average operating efficiency of the primary energy source, respectively.

Moreover, Fully-Analytic energy Consumption Estimation (FACE) is developed to
estimate the (minimal) energy consumption for various types of vehicle propulsion
systems. The uni-level co-optimization method optimizes the dimensioning parameters
of powertrain components such that the energy consumption evaluated by FACE is min-
imized. The instantaneous estimation of energy consumption contributes to reducing
the total computation time of uni-level co-optimization process.

Part work of this thesis has been the subject of the following publications:

e Jianning Zhao, and Antonio Sciarretta. "Design and Control Co-Optimization for
Hybrid Powertrains: Development of Dedicated Optimal Energy Management Strategy."
IFAC-PapersOnLine 49.11 (2016): 277-284.

e Jianning Zhao, and Antonio Sciarretta. "A Fully-Analytical Fuel Consumption
Estimation for the Optimal Design of Light-and Heavy-Duty Series Hybrid Electric
Powertrains." No. 2017-01-0522. SAE Technical Paper, 2017.

e Jianning Zhao, Antonio Sciarretta, and Lars Eriksson. "GRAB-ECO for Minimal
Fuel Consumption Estimation of Parallel Hybrid-Electric Vehicles." Oil & Gas Science
and Technology Rev. IFP Energies nouvelles, 72.6 (2017): 39.
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Chapter

State-of-the-Art Review

State-of-the-art review of the co-optimization of design and control for advanced vehicle
propulsion systems is concisely synthesized from the latest literatures on powertrain

components and vehicle propulsion systems.

1.1 Need for Better Energy Efficiency

In response to the global climate change caused by Green-House Gas (GHG)s, CO, emis-
sions are stringently regulated on the new vehicle models in the worldwide automotive
industry. Considering CO, emissions of a Light-Duty Vehicle (LDV), regulations on
passenger cars and light-duty commercial vehicles have been adopted globally. Details
of three major automotive markets around the world are exemplified in Table 1.1. In the
near future, CO, emissions of 95 g/km and 143 g/mi are obliged to achieve in EU and
US, receptively; whereas, fuel consumption of 5 L/hkm (hkm: hundred kilometers) is
mandatory in China. Nevertheless, more stringent energy efficiency targets in terms of
CO; emissions or fuel consumption are under development. The continuously improved
energy efficiency targets advance powertrain technologies and innovations, for example,
market penetration of battery-electric and hybrid-electric vehicles.

Compared with the obliged energy efficiency targets of LDVs, the one of a Heavy-
Duty Vehicle (HDV) is less widely controlled by regulations around the world. The
main reason is due to the European countries, where a market-driven policy of the
energy efficiency is adopted rather than mandatory CO, emission targets. However,
targets of the energy efficiency of HDVs have been regulated in China and US by Phase
2 and Phase 1 (2014-2018), respectively. In the future, HDVs in all three major markets

9
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Region Target Year | Standard Type Fleet Target
European Union | 2021 CO, 95 gCO,/km
China 2020 fuel consumption | 5L/100km
United States 2025 fuel economy/ 56.2 mpg or
CO,+other GHGs | 143 gCO,/mi

Table 1.1 — Energy efficiency targets of three major automotive markets in the near
future.

must meet more stringent energy efficiency targets because of the development of CO,

emission certification, monitoring, reporting, and standards in EU.

1.2 Single-Source Vehicle

1.2.1 Conventional Vehicle

As a leading player in the automotive market, conventional vehicle must meet the strin-
gent regulations on fuel consumption and pollutant emissions. Technologies to improve
fuel efficiency concentrate on the continuous improvement of powertrain components,

which are essentially composed of an internal combustion engine, a transmission, and a

final drive (see Fig. 1.1).

ENG TRA

= mechanical connection -

Figure 1.1 — Propulsion system of a four-wheel drive conventional vehicle.

Considering internal combustion engines, their efficiencies are always under im-
provement by advanced technologies, which consist of engine downsizing technology [8],
turbocharger technology [9], friction reduction technology [10], variable compression
ratio technology [11], alternative fuels [12], and the advanced combustion technology
[13]. However, details of these technologies are out of the scope of this thesis work.

Nonetheless, some of them are used as dimensioning parameters to develop the pre-
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dictive analytic models for internal combustions. For instance, the implementation of
turbocharger affects the descriptive analytic models.

As for transmissions, current technologies include advanced gear ratio design [14],
implementation of higher gear number [15], sophisticated shift strategy [16], highly effi-
cient transmission [15], and advanced automatic transmissions [17, 18], which directly
influence the fuel consumption of a conventional vehicle. Therefore, the optimization
of transmission dimensioning parameters is capable of further improving the energy
efficiency.

In addition to technologies of engines and transmissions, stop-start systems are
implemented to conventional vehicles so that the idling fuel consumption is elimi-
nated [19]. Throughout this thesis, the idling fuel consumption is not considered in
conventional and hybrid-electric vehicles, due to the wide application of stop-start
systems.

1.2.2 Battery-Electric Vehicle

Battery electric vehicle, as a technological endpoint to achieve tank-to-wheel zero emis-
sion, is continuously penetrating the automotive market around the world. As shown in
Fig. 1.2, key powertrain components of a battery-electric vehicle consist of an electric

motor/generator, a battery, a power electronics, and a transmission.

TRA

L

=== clectrical connection
= mechanical connection

Figure 1.2 — Propulsion system of a battery-electric vehicle.

The main technological concerns on battery-electric vehicles are over the electric
vehicle range, battery cost and lifespan, performance in cold weather, maintenance,
available charging infrastructures. Nonetheless, the energy consumption of a battery-
electric vehicle can be further reduced by improvements on powertrain efficiency, power
electronics, aerodynamics, and light-weighting technologies, which enlarges electric

vehicle range in turn [20].
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Recent studies show that the optimized design of power electronics [21], suitable
topology of transmission [22], and intelligent control technologies — such as gear shift
schedule design [23] and eco-driving technique [24] — are capable of enhancing the

powertrain efficiency of a battery-electric vehicle.

1.2.3 Vehicle Propulsion System Design

To meet the desired vehicle performance, single-source vehicle propulsion systems for
conventional and battery-electric vehicles are often designed through heuristic methods,
such as an iterative process to find suitable powertrain components that meet the
requirement. Despite lack of systematic design optimization approach, the design of a
battery-electric vehicle can be optimized by finding the best dimensioning parameters
of powertrain components such that the energy consumption is minimized. A battery-
electric vehicle is optimally designed through multi-objective optimization method
by optimizing dimensioning parameters of electric motor and battery size to meet the
design targets defined by drivability parameters [25]. Alternatively, genetic algorithm
method is also used to optimize the design of an battery-electric vehicle with two-speed

dual-clutch transmission at system level [26].

1.3 Hybrid-Electric Vehicle: Architecture and Control

The propulsion system of a Hybrid Electric Vehicle (HEV) is characterized by multiple
energy sources, which are internal combustion engine and battery. A Vehicle Propulsion
System (VPS) of a hybrid-electric vehicle consists of powertrain components of conven-
tional and battery-electric vehicles. Moreover, several aspects of hybrid-electric vehicles
are of essence, including powertrain architecture, powertrain control, and VPS design,

of which the first two aspects are introduced in this section.

1.3.1 Powertrain Architecture

Hybridization of conventional vehicles can be realized in three different basic archi-
tectures, including series, parallel, and power-split architecture. Sub-configurations
of each basic architecture may exist, such as pre-transmission and through-the-road

configuration in the parallel architecture.
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Series HEV

A series hybrid-electric vehicle consists of a propulsion system in which two electrical
power sources feed a single electric traction motor that propels the vehicle. A simplified
configuration with the major powertrain components is sketched in Fig. 1.3. The
unidirectional energy converter, which is an internal combustion engine, is mechanically
coupled to an electric generator through a simple gear train or rigid connection, which
are usually referred to as Auxiliary Power Unit (APU). The bidirectional energy source
is a battery pack that provides and stores electrical energy during different operating
phase of a hybrid-electric VPS. Power electronics manages all of the electrical power

flows in the propulsion system.

== clectrical connection
= mechanical connection

Figure 1.3 — Propulsion system of a series hybrid-electric vehicle.

In a series HEV, the full electrical connection between power sources and driven
wheels is through an electric traction motor, instead of a mechanical transmission. This
substitution allows the internal combustion engine to potentially operate at the desired
region, such as maximum efficiency zone, according to the control objectives. Therefore,
the performance of the internal combustion engine, such as efficiency and emissions,
may be further improved by design and calibration. On the other hand, the absence
of transmission results in a simple powertrain structure. Furthermore, the energy
management of this hybrid architecture is simple, since internal combustion engine is

often controlled to be more efficient.

However, disadvantages of series HEV are obvious. One is the poor efficiency
of whole propulsion system resulting from multiple conversions of energy between
electrical and mechanical form. Another one is the additional cost and weight by adding
the electric motor/generator in APU. Additionally, traction motors are not so competitive

as internal combustion engines in the heavy-duty application.
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Parallel HEV

A parallel hybrid-electric vehicle consists of a propulsion system in which one mechani-
cal power and one electrical power source propel the vehicle through a transmission or
directly. Simplified configurations of parallel HEVs with the major powertrain compo-
nents are sketched in Fig. 1.4. The unidirectional energy converter (internal combustion
engine), is mechanically coupled to the driven wheels through a transmission; whereas
the bidirectional energy source (battery pack) provides and stores electrical energy in
the propelling and braking phase, respectively. Power electronics manages the electrical

power flows in the propulsion system.
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Py: Belt Starter Generator (BGS)
P;: Crankshaft Starter Generator (CSG)

P,: Pre-Transmission
Cyo: clutch (disengagement) P3: Post-Transmission
C;: clutch (start-up) P,: Axle Drive

Figure 1.4 — Propulsion system of a parallel hybrid-electric vehicle.

In a parallel HEV, the mechanical connection between internal combustion engine
and driven wheels remains the same as that in a conventional VPS. However, electric
motor/generator propels the driven wheels either through the transmission or directly
according to the coupling position between the mechanical drivetrain and electric mo-
tor/generator. Furthermore, different coupling positions result in several configurations,
which are composed of PO (belt-driven stator generator), P1 (crankshaft-mounted stator
generator), P2 (pre-transmission), P3 (post-transmission), and P4 (axle drive) as depicted
in Fig. 1.4.

As many attributes of a conventional VPS are preserved, parallel HEV allows direct
torque supply from both engine and electric motor/generator to the driven wheels,
which makes the energy losses possibly less. The vehicle propulsion system of a parallel
hybrid is compact since it is unnecessary for an additional electric generator and smaller
dimensions of the electric traction motor than that in series HEV .

However, the mechanical coupling between the engine and driven wheels with
an additional electric motor/generator causes the complex problems, such as energy

management, and drivability issues.
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Power-Split HEV

A power-split hybrid-electric vehicle consists of one mechanical and one electrical power
source propelling the vehicle through a planetary gear set. Simplified power-split HEV
with the major powertrain components is sketched in Fig. 1.5. The unidirectional energy
converter (internal combustion engine) is mechanically coupled to the driven wheels and
an electric motor/generator (denoted by EMG1) through a planetary gear set; whereas
the bidirectional energy source (battery pack) provides and stores electrical energy
via both electric motor/generators depending on vehicle’s operating modes. Power

electronics manages all of the electrical power flows in the propulsion system.

ENG

=== clectrical connection

= mechanical connection

Figure 1.5 — Propulsion system of a power-split hybrid-electric vehicle.

In a power-split HEV, the mechanical connection between internal combustion en-
gine and driven wheels is realized through a planetary gear set. Thanks to an additional
mechanical connection of the planetary gear set and another mechanical coupler, two
electric motor/generators are implemented in this architecture. Both internal combus-
tion engine and electric motor/generator EMG2 can propel the driven wheels; and both
EMG1 and EMG?2 are capable of recharging the battery.

Compared with parallel HEVs, power-split HEVs benefit better fuel economy, driv-
ability, and electric drive efficiency; however, the maximum vehicle speed and grade

capability are not as good as parallel HEVs [27].

1.3.2 Powertrain Control

In an HEV, powertrain control manages power flows to meet the desired operation.
Particularly, optimal control has been investigated for almost forty years to achieve
the minimum fuel consumption since dynamic programming was firstly introduced
in [28]. To homogeneously benchmark the optimal design of a hybrid-electric vehicle

propulsion system, optimal control techniques are implemented that consist of Dynamic



16 CHAPTER 1. State-of-the-Art Review

Programming (DP), Pontryagin’s Minimum Principle (PMP), Convex Optimization
(CVX), and their variants.

The optimal control problem of a hybrid-electric vehicle consists of finding the
optimal signal of control variables, for instance battery power in a series HEV and motor
power in a parallel HEV, such that the fuel consumption is minimized and the final
state of charge of the battery meets the desired value, such as maintaining the same as
its initial one. Assuming that battery electrochemical power is independent from the

state of charge, the optimal control problem is summarized as

tf
min fto Por(u(t), t)dt, (1.1)

s.t. X(t) = Py (u(t), t),

x(tg) = Epeo, X(tf) = Epeo,
h(u(t), t) =0,
gi(u(t),t)<0, foreachief{l,...,m},

where the optimal control problem is over time horizon [t, t f] ; the control variable u
in its admissible set U is defined depending on the hybrid powertrain architecture; the
burned fuel power P,; estimates the fuel consumption over an investigated mission; the
system dynamics x is defined by the electrochemical power of battery; the initial and
final state x are equal to the battery energy E;.o; the equality constraint h(u(t),t) refers
to the power balance; and the in-equality constraints g;(u(t),t) represent the operating
constraints due to physical limits of powertrain components. For example, the operating
power of an electric motor must be always constrained within its limits (P, € [P,,, P,,,])-

The constraint of system dynamics is not considered throughout this thesis.

Pontryagin’s Minimum Principle

Embodied by variational methods, Pontryagin’s Minimum Principle (PMP) states a
necessary condition that must hold on an optimal trajectory. For the optimal control

problem in Eq. 1.1, the Hamiltonian function is defined as
H(u(t),s(t),t) = Pef(“(t)l t) + s(£)Pye(u(t), t), (1.6)

where s is a scalar adjoint variable.
PMP states that if u*(¢) is the optimal control law for problem in Eq. 1.1, the follow-

ing conditions are satisfied: (1) the state and adjoint state must satisfy the following
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conditions:

JH

X(t) = == = P (u’(t),1), (1.7)
Js u*(t) b
JH

s()=2=| =o, (1.8)
ox w(t)

x*(to) = Epeo, (1.9)

X(tf) = Epeos (1.10)

(2) for all t € [tg, tf], u*(t) globally minimizes the Hamiltonian:
H(u(t),s*(t),t) > H(u*(t),s*(£),t), Yu € U,Vt € [to, tf],
i.e., the optimal solution u*(¢) is such that

u*(t) =argmin H(u,s",t), (1.11)
h(u,t)=0
g(u,t)<0
where s is a constant adjoint state, the minimization of Hamiltonian function can be

solved either through numeric computation or by analytic solution.

Dynamic Programming

Dynamic programming, as an alternative optimal control technique to to solve the
optimal control problem of HEVs, is based on the Bellman’s Principle of Optimality
[29]:

An optimal policy has the property that whatever the initial state and the

initial decisions are, the remaining decisions must constitute an optimal pol-

icy with regard to the state resulting from the first decisions. Alternatively,

from any point on an optimal state space trajectory, the remaining trajectory

is optimal for the corresponding problem initiated at that point.

As the Principle of Optimality implies, a complex optimal control problem is solved
by breaking the problem down into a collection of simpler subproblems, and then
computed "backwards". Accordingly, the formulation is discretized by sampling period
At to x(k) and u(k), k =0,---,N — 1. The system dynamics is expressed by a difference

equation,

x(k+1) = f(x(k), u(k), k). (1.12)
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The objective function in Eq. 1.1 is replaced by

N-1
J(u(k)) = ZPef(X(k),u(k))- (1.13)
0

In practice, implementation of DP requires the state variable to be quantified. Hence,
the curse of dimensionality is induced. As a result, computational load of DP is not

negligible, especially in the massive evaluations.

Convex Optimization

Convex Optimization (CVX) is also implemented to solve optimal control problems of
HEVs. As indicated, CVX minimizes objective function which is convex over convex
sets. Detailed theory of CVX is introduced in [30].

To implement CVX in the energy management problem of an HEV, the core is the
convexification of the optimal control problem. The objective functional and constraints
must be adapted to be convex. Therefore, the objective function in Eq. 1.1 and in-
equality constraints in Eq. 1.5 must be convex functions, and the equality constraints
Eq. 1.4 are affine. With the convex formulation, the optimal control problem can be
solved through convex optimization. However, convexification is always challenging
due to inevitable non-convex models and signals during the formulation of the optimal

control problem.

Nested Optimal Control Techniques

Recent studies present a novel method to solve the optimal control problem, which is the
nested optimal control technique. The nested technique targets to solve the drawbacks
of single optimal control techniques, such as restrictions of system dimensions in DP,
non-convex models and signals in CVX. Two representatives are summarized as follows,
which are dynamic-programming-based and convex-optimization-based nested optimal
control technique.

DP-based nested optimal control technique, as the name implies, solves the optimal
control problem directly by dynamic programming that determines the whole set of
control variables. A second optimal control technique is implemented to find the optimal
value of a few limited number of control variables. DP-based nested optimal control
technique helps to cope with the dimensionality curse of DP, which is the exponential

increment of computation time as state variables augment.
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DP-based nested optimal control technique solves the optimal control of a parallel
HEV by taking three control variables and three state variables into account [6, 31].
Through the nested optimal control technique of DP-PMP, the multi-variable mixed-
integer non-linear problem is solved with significantly reduced computation time.

A scheme of this complex optimal control technique is illustrated in Fig. 1.6a. The
battery power u3 optimized by PMP is transferred to DP for further optimization. When
determining control variable u3, the adjoint state variable in PMP is mildly tuned by
a proportional controller. The whole control variables, including gear shift command
u; and engine on/off command u;, are concurrently optimized by DP. Compared with
single DP approach, DP-PMP nested optimal control technique presents 0.4% difference
of the fuel consumption but an average 420 times reduction of the computation time [6].

To solve a similar problem, another nested methodology based on DP is proposed to
optimally determine the adjoint state variable in PMP. In [32], the objective function
is rewritten as a function of Hamiltonian function for easy implementation of DP. The
scheme of this approach is depicted in Fig. 1.6b. The objective function is minimized
by DP, in which the optimal adjoint state u3 is solved by convex optimization. Results
of fuel consumption obtained by DP(PMP)-CVX nested optimal control approach are

almost the same as that of DP. In addition, the computation time is reduced significantly.

uy, up}| | {ug, ugus} Uy, Uy}

(a) DP-PMP (b) DP(PMP)-CVX

Figure 1.6 — DP-based nested optimal control techniques.

CVX-based nested optimal control technique, solves the optimal control problem of
HEVs directly through convex optimization. To cope with the non-convex signals and
models in the optimal control problem, extra optimal control techniques can be of great
help to solve the mixed-integer problem first (such as engine on/off decision or gear
selection). Albeit CVX-DP nested optimal control technique for series HEV application
is proposed in [33], in fact, it is a DP-based nested optimal control technique because the
philosophy is the same as DP(PMP)-CVX one. The CVX-based nested optimal control

technique is implemented as reported in [34, 35].
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As illustrated in Fig. 1.7, the mechanism of CVX-PMP nested optimal control
technique solves the optimal engine on/off strategy B, by PMP, and the optimal adjoint

state s* is numerically determined.

CVX
{S: Bg {S, Be}

Figure 1.7 — CVX-based nested optimal control technique.

1.4 Hybrid-Electric Vehicle: Powertrain Design

The optimization of a vehicle propulsion system consists of the design and control opti-
mizations. Depending on different optimization methods, optimal control techniques
are applied in terms of various combinations, or only one optimization method. Com-
monly applied powertrain design methods are summarized as heuristic and optimal

design approach.

1.4.1 Heuristic Design Approach

Fundamentals of vehicle design are embedded in the basic mechanics, particularly in
Newton’s second law of motion relating force and acceleration [36]. The power and
energy requirements to internal combustion engine and electric motor/generator are
estimated by analyzing the vehicle longitudinal dynamics [37]. The power and energy
characteristics of powertrain components strongly depend on the experience of design
engineers due to the development of energy management strategy.

Heuristic design approach determines dimensioning parameters of powertrain com-
ponents to meet the technical targets. Iterative simulation is a often used in the heuristic
design approach [38, 39]. The dimensions of main powertrain components are firstly
estimated according to the technical targets. If the first estimation fails, a second one is
performed in the next iteration. The dimensions of mechanical and electrical powertrain
components are required to account for powertrain architectures [40, 41].

Evidently, the heuristic design approach is only a primary solution that needs to

optimize. Further improvement of the hybrid powertrain design can be achieved by
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considering more factors, such as fuel consumption.

1.4.2 Optimal Design Approach

Three-layer optimization problems exist in the design problem of vehicle propulsion
systems, which consists of the structural optimization, parametric optimization, and
control system optimization [42]. Moreover, the structural optimization can be ag-
gregated into the parametric optimization when the structure is parameterized in the
design problem.

Optimal design of hybrid propulsion systems faces grave inherent complexity be-
cause of the necessity of control optimization to benchmark the minimal energy con-
sumption. Basically, two types of optimizations reside in the optimal design of vehicle
propulsion systems, which are design and control optimization. The design optimiza-
tion finds the best dimensioning parameters of powertrain components such that the
energy consumption is minimized, whereas the control optimization minimizes the
energy consumption of an investigated vehicle propulsion system by identifying optimal
control laws. However, optimal control laws are developed based on optimal control
techniques and affected by dimensioning parameters of powertrain components.

Recent investigations on the optimal design of vehicle propulsion systems are classi-
fied into three categories as shown in Fig. 1.8, where D indicates the dimension-related
parameters. Three categories of optimization methods are composed of bi-level design
optimization (see Fig.1.8a), bi-level co-optimization (see Fig.1.8b), and simultaneous
co-optimization (see Fig.1.8c). Bi-level indicates that powertrain design and power-
train control are performed at separate levels with different optimization techniques;
whereas co-optimization means that both powertrain design and powertrain control are
optimized to achieve the minimum energy consumption. For example, the powertrain
dimensioning parameters are optimized in the outer level through an optimization
technique in the bi-level co-optimization method. Meanwhile, the powertrain control is
optimized with another technique in the inner level so that the minimum fuel consump-
tion is achieved. Both optimizations find the optimal dimensioning parameters such
that the fuel consumption is minimized over an investigated mission.

Furthermore, details of recent investigations are summarized and listed in Table
1.2, including reference paper, published year, design optimizer and parameter, control
optimizer, and powertrain architecture. Design parameters are summarized into the
overall set of design parameters S, which consists of internal combustion engine S,,

drivetrain (including transmission and differential) S, battery Sp, electric motor S,,,, and
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Figure 1.8 — Optimal design methods for vehicle propulsion systems.

electric generator S,. In addition, design parameters S; and S, refer to hybridization
ratio and control variables, respectively.

Various design optimizers are applied to optimize the dimensioning parameters. The
design optimizer consists of sequential quadratic programming (SQP), bundle method,
Dividing Rectangles Optimization (DIRECT), Simulated Annealing (SA), Genetic Al-
gorithms (GA), Particle Swarm Optimization (PSO), Non-dominated Sorting Genetic
Algorithm (NSGA-II), Feature-Based Generic Algorithm (FBGA), Non-Linear Program-
ming by Quadratic Lagrangian (NLPQL), General Purpose Solver (GPS), Constraint
Programming (CP), Spearman Rank Correlation Coefficient Method (SRCCM), and Re-
quirements engineering, Functional analysis, Logical design and Physical design (RFLP).
Particularly, the short line indicates that no specific nonlinear solver is applied.

Considering the control optimizer, it includes heuristic one, Hamilton—Jacobi-Bellman
method (HJB), dynamic programming (DP), combined convex optimization and Pontrya-
gin’s Minimum Principle (CVX-PMP), rule-based one (RB), combine convex optimization
and dynamic programming (CVX-DP), equivalent fuel consumption minimization strat-
egy (ECMS), vectorized hybrid optimization tool (VHOT), selective Hamiltonian mini-
mization (SHM), graphical-analysis-based energy consumption optimization (GRAB-
ECO), and fully-analytic energy consumption estimation (FACE).

Bi-Level Design Optimization

Compared with bi-level co-optimization, the bi-level design optimization refers to only
one optimization technique that is implemented to solve the optimal design problem.

However, only one problem of powertrain design and control is optimized. Therefore,
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Ref. | Year | Design Optimizer | Parameter Control Optimizer | Architecture
[43] | 1999 | SQP Si(i=eb,m) Heuristic parallel
[44] | 2004 | Bundle Method Sy HJB parallel
[4] | 2005 | DIRECT/SA/GA | S;(i =e,b,m,d) Heuristic power-split
[45] | 2007 | - Si(i=b,m,g) DP power-split
[46] | 2015 | - S; DP power-split
[47] | 2009 | - Sh DP parallel
[48] | 2012 | PSO Si(i =e,b,m) DP parallel
[34] | 2014 | CVX-PMP Sy CVX-PMP series
[49] | 2010 | - Si(i=e,b,m) PMP parallel
[50] | 2011 | - Si(i =b,m) DP parallel
[51] | 2011 | NSGA-II/DIRECT | S;(i =e,b,m, u) Heuristic series/

/SA/GA/PSO Si(i=eb,m,d) parallel
[52] | 2011 | GA/FBGA Si(i=eb,mu) GA/FBGA series
[53] | 2012 | NLPQL Si(i=eb,m,d) DP parallel
[54] | 2011 | CVX Sp CVX+RB series/parallel
[55] | 2013 | CVX Sp CVX+RB series
[56] | 2013 | CVX Si(i=eb,m) CVX+RB parallel
[33] | 2015 | CVX-DP Si(i=b,eg) CVX+DP series
[5] | 2015 | GA Si(i=a,e,b,m,u) | ECMS series/parallel
[6] | 2014 | GPS (SQP) S;(i =a,m) DP parallel
[57] | 2015 | CP/SQP/PSO/ Si(i=e,b,m) DP parallel

GA/DIRECT
[25] | 2015 | SRCCM Si(i=b,m,d) - electric vehicle
[58] | 2015 | RFLP (NSGA-II) S;(i=b) - electric vehicle
[59] | 2016 | DIRECT Si(i=e) SHM parallel
[60] | 2017 | - Si(i=e,b,m,g,d) | VHOT, FACE series

SHM, GRAB-ECO

Table 1.2 - Summary of powertrain design optimization for hybrid- and battery-electric
vehicles.

the bi-level design optimization is regarded as a partial optimization method. The
partial optimality could be achieved either at the outer loop that determines the optimal
dimensioning parameters or at the inner loop that minimizes the fuel consumption. In
[4, 43, 51], the design parameter set of hybrid-electric vehicles are optimized only at the

outer loop, yet the control laws are heuristic.

On the contrary, the bi-level design optimization solely occurs at the inner loop in
[47, 49, 50], where optimal control laws are realized by DP mainly due to the global
optimality without considering the heavy computational load. The outer loops are
performed iteratively or manually. As for power-split HEVs [45, 46], only the possible
topologies of the planetary gear sets are screened in the exhaustive research method

since the presence and absence of clutches significantly impact the operating modes of
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power-split HEV.

Bi-Level Co-Optimization

As listed in Table 1.2, the bi-level co-optimization method for the optimal design of
vehicle propulsion systems has been widely used by optimizing various objectives, for
example, the cost of hybridization and operation, the fuel economy, and the pollutant
emissions.

The bi-level co-optimization refers to the design optimization in the outer loop
and the control optimization in the inner loop. Design optimization selects the best
dimensioning parameters, whereas control optimization derives the optimal control
laws discussed in previous section. The optimal design problem that globally optimizes
the dimensioning parameters are solved by various optimization techniques, such as
DIRECT, GA, and PSO.

DIRECT

DIviding RECTangles (DIRECT) optimization algorithm is motivated by a modifi-
cation to Lipschitzian optimization that eliminates the need to specify the Lipschitz
constant [61]. It is created in order to solve difficult global optimization problems
with bound constraints and a real-valued objective function. Unfortunately, this global
optimal convergence may come at the expense of a large and exhaustive search over
the domain. In [4], a parallel hybrid-electric vehicle is optimally designed with the
implementation of heuristic control laws. Heavy computational load eventually leads
to hundred hours for the complete optimization process. Possible improvements is
proposed as well in order to overcome the slow convergence.

Genetic Algorithms

Genetic Algorithms (GA) are adaptive heuristic search methods that mimic the
natural biological evolutionary idea of natural selection and genetics. They present an
intelligent exploitation of a random search to solve optimization problems. Despite
randomized, GA use historical knowledge to direct the search into the region of better
performance within the search space. Being a global search method, GA are capable to
optimize the hybrid powertrain design once the control system optimization is achieved.
In [5], the hybrid powertrain design is optimally designed through the combination of
GA and equivalent fuel consumption minimization strategy. The fuel consumption is
minimized in the condition that the final state of charge of battery is maintained the same
as the initial one. The investigated dimensioning parameters associate with powertrain

architecture, internal combustion engine, electric motor/generator, battery, and control
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variable. Results proved the effectiveness of bi-level co-optimization approach in the
optimal design of a hybrid powertrain.

Particle Swarm Optimization

Particle Swarm Optimization (PSO) is a stochastic search method that optimizes a
problem by iteratively trying to improve a candidate solution with regard to a given
measure of quality. The change in direction and velocity of each individual particle is
the effect of cognitive, social and stochastic influences. The common goal of all group
members is to find the favourable location within a specified search space. In [48],
the primary optimization problem is to find the design parameter set S = {V,,P,,, Oy}
that minimizes the objective function subject to inequality constraints. Both objective
function and constraints are non-convex functions with respect to S. An efficient tuning
methodology of the intrinsic parameters are established by exploiting the results of

exhaustive search as a look-up table for PSO algorithm.

Simultaneous Co-Optimization

Simultaneous co-optimization means that both powertrain design and control are op-
timized through the only one optimization technique. Due to the application of one
optimization technique, powertrain design and optimal control are merged into the
same level. Thus, powertrain design and control are simultaneously optimized. The
simultaneous co-optimization is currently realized by convex optimization (CVX), which
is elaborated in [33, 55, 62]. The essence of convex optimization is to construct convex

objective function and constraints.
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Chapter

Modeling for Energy Consumption

Evaluation

Mission profiles, powertrain characteristics, and vehicle specifications, are fundamental
to the evaluation of the energy consumption of a vehicle propulsion system. In this
chapter, powertrain components of various vehicle propulsion systems are analytically
modeled at descriptive and predictive level. Specifically, descriptive analytic models
estimate the intrinsic features; whereas predictive analytic models predict those features
for components of different dimensioning parameters. In addition, vehicle load is

analytically estimated for the evaluation of energy consumption over a mission.

2.1 Modeling of Vehicle Propulsion System

Vehicle propulsion systems of conventional, battery-electric, and hybrid-electric vehi-
cles are significantly different from each other due to the composition of powertrain
components and control system. The main powertrain components are composed of
Internal Combustion Engine (ENG), Transmission (TRA), Battery (BAT), and Electric
Motor/Generator (EMG), as depicted in Fig. 2.1.

The main powertrain components are analytically modeled to estimate the energy
consumption of a vehicle over a specified mission in an accurate and rapid way. The
analytic models are control-oriented to develop optimal control techniques for hybrid-
electric vehicles. Moreover, these analytic models are design-oriented as well for the
optimization of dimensioning parameters. In other words, they are scalable. As a

consequence, the analytic models of powertrain components are established at two

27
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ENG TRA
L

= clectrical connection
= mechanical connection

Figure 2.1 — Main powertrain components of a parallel hybrid-electric vehicle.

distinct levels: the descriptive and predictive level.

At descriptive level, descriptive analytic models describe the main features of a
specific powertrain component, such as the energy losses of an ENG. The descriptive
analytic model is directly applied for the energy consumption evaluation of any given
vehicles, and for the optimal control laws identification for hybrid-electric vehicles. Pa-

rameters of descriptive analytic models are identified from each powertrain component.

At predictive level, predictive analytic models, on the other hand, allow the pre-
diction of the main features for powertrain components of different dimensioning
parameters. For instance, the power losses of an ENG of the varied engine displace-
ments can be approximated by predictive analytic models. Coefficients in predictive
analytic models are identified from the identification set of powertrain components in

the same family of technology.

To validate descriptive and predictive analytic models, estimations are compared
with grid-point data. For the sake of clarity, the results estimated by descriptive analytic
models alone are designated as description in the following sections; whereas, results

approximated by predictive analytic models are designated as prediction.

To present the accuracy of descriptive and predictive analytic models, the mean rela-
tive error between description and grid point data is denoted by e%; whereas, the relative
mean error between description and grid-point data is indicated by ¢P. Regardless of de-
scriptive or predictive error, the mean relative error, denoted by subscript ¢, is evaluated
for each powertrain component in its identification set. In contrast, the average relative
error is evaluated based on the whole identification set, and indicated by the subscript s.
Statistic characteristics between estimations (description and prediction) and grid-point

data are illustrated to supplement the mean relative error of each component.

Apart from the validation at powertrain component and identification set level,
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the accuracy of descriptive and predictive analytic models is investigated at vehicle
propulsion system level. At the propulsion system level, the energy consumption
is estimated based on different types of powertrain data for various types of vehicle
propulsion systems. The powertrain data consists of grid-point data, description, and
prediction; whereas vehicle propulsion systems include conventional, battery-electric,
and hybrid-electric vehicles. The accuracy of analytic models is most important at
vehicle propulsion system level since it determines their validity. The difference of
energy consumption of different vehicle propulsion systems will be demonstrated in
Chapter 3.3 and 4.5.

Considering the perspective of system identification, the proposed analytic models
are needed to validate with components different from the identification set, particularly
the predictive analytic models. However, analytic models of powertrain components are

validated from the corresponding identification sets due to the availability of data.

2.2 Internal Combustion Engine

As the primary power source in a conventional or hybrid-electric vehicle, an internal
combustion engine (ENG) provides mechanical power to propel the vehicle by burning
hydrocarbon-containing fuels, such as gasoline, diesel, natural gas, and bio-fuels. The
ENGs can be classified with respect to various criteria. Concerning the ignition method,
there are Spark Ignition (SI) and Compression Ignition (CI) engines. Regarding the
charging technology, it is composed of Naturally Aspirated (NA) and Turbo-Charged
(TC) method. In regard to NA engines, engineers develop various combustion modes,

such as Stoichiometric-Burn (SB) and Lean-Burn (LB) methods.

2.2.1 Dimensioning Parameter

The technological dimensioning parameter of ENGs, denoted by Z,, contains four types
of engines for light-duty vehicles, which are combinations of different engine technolo-
gies. Four types of engines are listed in Z, = {SI/NA/SB,SI/NA/LB, SI/TC, CI/TC}, and
represented by integers in the design optimization of vehicle propulsion systems.
Apart from the technological parameter 7,, dimensioning parameters of an engine
are essential to develop predictive analytic models. The overall dimensioning parameter

set is defined as

Se: {IEIVe;TEfPe’NeTINeP}r (2-1)



30 CHAPTER 2. Modeling for Energy Consumption Evaluation

where V, is engine displacement in [m?], 7, is the rated engine torque in [Nm], P, is the
rated engine power in [kW], N,r and N,p are engine speeds in [rpm] corresponding to
the rated torque and the rated power.

Although engine displacement, rated torque, and rated power are listed separately,
they are not independent from each other. The rated torque and rated power depend on

engine displacement because of the similar maximum brake mean effective pressure.

2.2.2 Analytic Model

Parameterization of the engine fuel consumption map is performed for both light- and
heavy-duty engines. Accordingly, analytic models at both descriptive and predictive

level are developed and validated separately.

At Descriptive Level

Inspired by the Willans line models [63], the descriptive analytic models of internal
combustion engines evaluate the burned fuel power as a function of engine speed and
engine brake power. The burned fuel power is converted directly from fuel consumption
maps by taking the lower heating value of fuel into account. The chosen descriptive

analytic model for light-duty engines is expressed by

ng(ﬂ)elpe) _ keo(we) + ke1(w,)Pe, P, Spec(we)’ (2.2)
keo(we) + (ko1 (we) = kep) Poc(@,) + kea Py Pp > Poc(w,)

where w, is the engine speed in [rad/s]; P, is the engine brake power of engine in [W];
P, is the engine corner power of maximal efficiency [W], whose corresponding torque is
depicted in Fig. 2.2; and P,y is the power of burned fuel in [W], which is converted from
the mass flow rate of an engine map. Parameters k,;(i = 0,1, 2) are identified for each
individual engine from the engine identification set of Table 2.4.

Concerning turbo-charged diesel engines for heavy-duty applications, the descriptive

analytic model is
Pef(weJ P,) = kez(w,) + kea(w,) P, + keS(we)Pezr (2.3)

where parameters k,;(i = 3,4, 5) are identified for each individual engine in its identifica-
tion set of Table 2.5.

In addition to analytic models of burned fuel power, the full-load torque of an ENG
is modeled analytically as well. Concerning SI/NA ENGs for light-duty applications,
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@ efficiency map Tec

we [rad/s]

Figure 2.2 — Corner torque T, of an internal combustion engine.

the analytic model of full-load torque is
Te(we) = keg + ko7, + ke8w31 (2.4)

where T, is the full-load torque. As a convention, variables with over-line (e.g. T)
indicates the maximum admissible value; whereas, the under-line (e.g. T) represents the

minimum admissible value.

Parameters k,;(i = 6,7,8) are identified by solving the following linear system that
contains the engine dimensioning parameters 7,, P,, N,r, and N,p.

10007 (1000n)2'
30 30 T
2 k€6 Ek
| N (Nerm el T (2.5)
30 30 e7 307, |’
2
1 NePT( NeTT( ke8 T(Nep
| 30 30

where T, is the engine torque at 1000 rpm for light-duty engines.

Regardless of light-duty or heavy-duty engines, turbocharged engines have a piece-
wise analytic model to approximate the full-load torque,

keo +keiowe,  w, < %
_ N 30 IN;
Teo(we) =T, TReTL ) < TNeT2 (2.6)
30 N 30
kell + kelZC‘)el We 2 & 36T2

where N,r; and N,r, are the minimal and maximal speed of the rated torque, respec-
tively.
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Parameters k.9 and k. ¢, k.11 and k.;, are identified by solving the following two

linear equation systems,

] 10007
1 TNeT1 |k, 7|
30
and
T(NeTZ k " Te
) [e ]: 307, |, (2.8)
1 /%P kelZ N
30 eP

where engine speed N,r1, N,12, and N, p are indicated in Fig. 2.3.

Nt Nors Nep
N, [rpm]

Figure 2.3 — Speed variables of turbocharged internal combustion engines.

At Predictive Level

Parameters k,;(i = 0,---,12) in descriptive analytic models in Eq. 2.2 and 2.3 are further
expressed as function of engine dimensioning parameters. As for light-duty engines,

their predictive analytic models are expressed by

V,w, ( 30c32we)
= =+ B 2.9
e0 A7 Cel - ( )
30 900c¢,5w?
kot =Cp + et ;ste , (2.10)
kez =Cegs (211)

where coefficients c,;(i = 1,---,6), depending on engine-technological parameter Z,, are
listed in Table 2.1.
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Ie Cel Ce2 Ce3 Ceq I Ce5 . Cet
SI/LB 5 2.541 | -1.892 x10°% | 3.863 x10~
Si/sp | 24X 107 | 540 e S o w10 | 1032 x10-° | +°40
Cl | 1.84x10° | 112.5 | 2.363 0 0 3.061

Table 2.1 — Values of coefficients c,;(i = 1,--,6) for light-duty engines.

The engine corner power in the piece-wise linear model of burned fuel power in Eq.
2.2 is calculated by

0.8w, T (w,), NA,
Pec(@e) =1 1000V,0, 14 W, \i7 (2.12)
o Lihelzr) oTe

where coefficients c,;(i = 7,---,14) are taken from the PERE Report [64]. Their values are
presented in Table 2.2 correspondingly for spark ignition (SI) and compression ignition
(CI) engines.

Ie Ce7 Ce8 Ce9 Cel0

SI | -1200.5 298.93 -17.586 0.56342
CI| -19950.8 3479.90 -231.809 8.25775
Z, Cell Cel2 Cel3 Celd

SI | -0.010463 | 1.132x107% | -6.645 x10~7 | 1.631 x107°
CI | -0.169919 | 2.023 x1073 | -1.292 x10™> | 3.422 x1078

Table 2.2 — Values of coefficients c,;(i = 7,---,14) for light-duty engines.

At the predictive level, the torque at 1000 rpm for light-duty engines is estimated by

1000V, 14 (we)i7
ocil==] , NA,
o Ta Bl gy

ek

11 %108V,
VY S

(2.13)
TC.

Concerning heavy-duty engines, their predictive analytic models are written as
follows:

10°V,w
kes :ﬁ(cew"'celéwe“'ceﬂwg): (2.14)
koq =10°C,1g, (2.15)
4x10°1
o5 =—————(Ce19 + Ce20@e + Ce21 @7 ), (2.16)

Vea)e
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where coefficients c,;(i = 15,---,21) are listed in Table 2.3.

Ce21
3.435 x107°

Ce20
1.024 x1073

Ce19
8.549 x1072

Ce18
1.884

Cel7
7.008 x107°

Cel6
2.190 x1073

Cel5
2.000

Table 2.3 — Values of coefficients c,;(i = 15,---,21) for heavy-duty engines.

2.2.3 Model Validation

The identification sets of engines are introduced in terms of light- and heavy-duty
applications, respectively. The whole identification set is implemented to develop
descriptive and predictive analytic models, and to validate these models. After the
demonstration of engine grid-point data in terms of maps, the mean relative error and

statistic characteristics are illustrated and discussed hereafter.

Identification Set

Due to different vehicle applications, two types of engine identification sets are used to
develop and validate the descriptive and predictive analytic models. The identification
set of light-duty engines is listed in Table 2.4, including specifications of the dimen-

sioning parameters; whereas the set of heavy-duty engines is summarized in Table 2.5,

containing corresponding specifications of the dimensioning parameters.

ID L, Ve 7, NeT Pe NeP

[L] | [Nm] | [rpm] | [kW] | [rpm]
1 CI/TC 2.2 | 292 | 2000 90 4000
2 CI/TC 1.6 | 242 | 1750 80 4000
3 CI/TC 2.0 | 324 | 2000 98 4000
4 CI/TC 2.2 | 327 | 1750 88 3000
5 CI/TC 1.5 | 202 | 2000 78 4000
6 CI/TC 20| 368 | 1750 | 121 | 4000
7 CI/TC 1.2 | 145 | 2000 43 4000
8 SI/TC 0.9 | 145 | 3000 58 5000
9 | SI/NA/LB | 1.5 | 120 | 4500 60 5500
10 | SI/NA/LB | 1.9 | 166 | 4000 82 5000
11 SI/TC 2.0 | 302 | 2500 | 150 | 5000
12 SI/TC 1.8 | 312 | 2000 | 148 | 5500
13 | SI/NA/SB | 1.0 | 95 4000 54 6000
14 | SI/NA/LB | 1.4 | 128 | 4500 70 5500

Table 2.4 — Identification set of light-duty engines.
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ID Ie Ve 7:2 NeT 7)e NeP

[L] | [Nm] | [rpm] | [kW] | [rpm]
1 | CI/TC | 9.3 | 1600 | 1050 | 235 1900
2 | CI/TC | 9.3 | 1400 | 1000 | 210 | 1700
3 | CI/TC | 12.7 | 2375 | 1000 | 335 1700
4 | CI/TC | 12.7 | 2375 | 1000 | 340 | 1700
5 | CI/TC | 12.7 | 2350 | 1000 | 358 1600
6 | CI/TC | 12.7 | 2275 | 1000 | 325 1700
7 | CI/TC | 12.7 | 2600 | 1000 | 376 | 1700
8 | CI/TC | 16.4 | 3000 | 1000 | 444 | 1700
9 | CI/TC | 16.4 | 3000 | 1000 | 490 | 1700
10 | CI/TC | 16.4 | 3500 | 1000 | 544 | 1900

Table 2.5 — Identification set of heavy-duty engines.

Result

Description and prediction of each engine are comparatively illustrated with respect
to the grid-point data. For simplicity reason, one light- and one heavy-duty engine are
exemplified individually. The comparisons among grid-point data, description, and
prediction of other engines are found in Appendix B.1.

Fig. 2.4 demonstrates the grid-point data, description, and prediction in terms of
burned fuel power for ENG ID1. As shown in Fig. 2.4c, the contour lines of prediction
are smoothest compared with the grid-point data and the description. Nonetheless, both

description and prediction present a similar trend compared with the grid-point data.

297 297 297
g g g
Z. 150 Z. 150 Z. 150
2 — 2 — 2 —
1000 2750 4500 1000 2750 4500 1000 2750 4500
Ne [rpm] N [rpm] N [rpm]
(a) grid-point data (b) description (c) prediction

Figure 2.4 — Map of burned fuel power of light-duty engine ID1.

Concerning the exemplified heavy-duty engine, the grid-point data, description, and
prediction of ENG ID2 are comparatively depicted in terms of efficiency in Fig. 2.5. Due
to confidential issues, the horizontal and vertical axis are scaled compared to original

data. The best efficiency area of prediction are enlarged significantly, as illustrated in
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Fig. 2.5c. Nevertheless, the description and prediction are still comparable with respect

to the grid-point data.

0 50 100 0 50 100
N, [%) N, [%]
(a) grid-point data (b) description (c) prediction

Figure 2.5 — Efficiency map of heavy-duty engine ID2.

Analysis

The analysis of mean relative error and linear regression is performed to evaluate the
accuracy of descriptive and predictive analytic models for both light- and heavy-duty
engines. In particular, analysis of mean relative error is completed both for each engine
and the whole engine identifications set. Then, the exemplified light- and heavy-duty
engine are used to depict their contour maps of mean relative error and the linear
regression analysis.

Mean relative errors — including the mean description error of each component &4,
the mean prediction error of each component ¢, the average description error of whole
identification set £4, and the average prediction error of whole identification set e} — are
illustrated in Fig. 2.6 for both light- and heavy-duty engines. In summary, the maximum
of mean relative error was 7.7% for light-duty engine ID10. The mean relative error of
heavy-duty engine identification set is lower than that of light-duty engine identification
set.

Considering light-duty engine ID1, its descriptive and predictive relative errors are
illustrated in Fig. 2.7a and Fig. 2.7b, respectively. Clearly, large errors occur at the high
engine speed and high load zone particularly for predictive analytic models.

Linear regression analysis is separately carried out between the description and
the grid-point data, and between the prediction and the grid-point data. The power
of burned fuel is normalized to a constant value. Fig. 2.8 presents the corresponding
characteristics. To summarize, the descriptive analytic models can well represent grid-
point data. Albeit the predictive analytic models have a smaller value of r?, it can still

predict the grid-point data for the intended study of vehicle energy consumption.
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(a) light-duty engines (b) heavy-duty engines

Figure 2.6 — Mean relative error of each engine and the whole identification set.
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Figure 2.7 — Maps of relative errors of light-duty engine ID1.
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Figure 2.8 — Comparison of burned fuel power for light-duty engine ID1.

As for the heavy-duty engine ID2, the descriptive and predictive maps of mean
relative errors are depicted in Fig. 2.9. The mean relative errors of both level analytic

models are at low level. In details, high errors only occur in extremely low load condition



38 CHAPTER 2. Modeling for Energy Consumption Evaluation

for the descriptive analytic models; whereas high errors are shifted to slightly higher-

load and lower-speed zone for the predictive analytic models.

100 6 100
S ‘s E
== 50 E= 50
St , " &
0 0 0
0 0 100 0 50 100

N, [%]

(b) predictive error map

5
N, [%)]
(a) descriptive error map

Figure 2.9 — Maps of relative errors of heavy-duty engine ID2.

Linear regression analysis is carried out for the heavy-duty engine ID2 in a similar
way as for light-duty engine ID1. Results are correspondingly summarized in Fig. 2.10,
where values of r? are presented. The high r? values indicate the goodness of developed

analytic models.
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Figure 2.10 — Comparison of burned fuel power for heavy-duty engine ID2.

2.3 Drivetrain

Drivetrain delivers power from engine or electric motor to drive wheels. The main
components of a drivetrain consist of a transmission, a final drive, and other simple
gear-trains, depending on their technologies. Compared with the universal configuration

in [65], Fig. 2.11 depicts an updated version for various vehicle propulsion systems,
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including conventional, battery-electric, and hybrid-electric vehicle. Ratios of transmis-
sion and final drive are denoted by R; and Ry, respectively; whereas parameter R,
and R, denote the ratio between engine shaft and node Nj, and the ratio gear between
electric generator shaft and note Ny, respectively. In addition, parameter R,, means the

ratio between electric motor shaft and node N,.

‘ ENG R

GEN ®, N, W
S

BAT } MOT }7?,,,

Figure 2.11 — Universal configuration of vehicle propulsion systems.

In a conventional vehicle, the drivetrain consists of transmission R, and final drive
Rra; in a battery-electric vehicle, the drivetrain is composed of simple gear-train R,
and final drive R;; in a hybrid-electric vehicle, components of drivetrain depend on
the powertrain architecture. For example, the drivetrain of a series HEV may consist
of gear-train R, and R,,; whereas, it may include transmission R;, final drive R4, and
gear-train R, in a parallel HEV. Although power-split HEVs are not investigated in this
thesis, its configuration can also be represented by the universal configuration in Fig.

2.11. Assuming the ratio of a planetary gear set is the ratio between radius of ring gear

and the one of sun gear, whichis R = 8 the Toyota Prius Hybrid can be represented
Sun
by setting corresponding ratios as follows:

Rg=1+R, (2.17)
R

Ry = ——, 2.18

" 1+R (2.18)

R, =1, (2.19)

Ry = 1. (2.20)

The ratio Ry, is the final drive of the investigated vehicle.
Considering conventional and parallel hybrid-electric vehicles, transmissions specif-
ically refer to multi-gear gearboxes alone in this thesis. In contrast, all the other gear-

trains in Fig. 2.11 are considered as simple gear-trains with only one ratio.
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Although transmissions can be classified into different types of technologies, the
investigated transmissions only include Manual Transmission (MT), Automatic Trans-
mission (AT), and Dual Clutch Transmission (DCT). Thus, the technological parameter
of stepped-ratio transmission is

7, = {MT,AT,DCT}, (2.21)

which are represented by integers.

2.3.1 Dimensioning Parameter

Except for transmission, the dimensioning parameter set of a drivetrain in generic form

is expressed as
Sy = {Rfd,Rt,Rm,Re,Rg}. (2.22)

As for transmission, the typical dimensioning parameters consist of the ratios of first
gear and last gear, and total gear number, which yields

St = {IthtllRtkth}; (2.23)

where R;; and R, are gear ratios of the first and last gear, respectively; K, is the total

gear number.

2.3.2 Analytic Model of Transmissions
Regarding stepped-ratio transmissions, both gear ratios and transmission efficiency are
parameterized at descriptive and predictive level below.
At Descriptive Level
The chosen descriptive analytic model of gear ratios for a K-speed transmission (K > 4)
is

Ri(ne) = ko + kg + kiong +kgany +kygnf, (2.24)
where R, represents the gear ratio and n; is the gear number.

Under the investigation of four-speed transmissions, parameter k4 in Eq. 2.24 is

equal to zero; whereas other parameters k;;(i = 0,1,---,3) are identified through the



2.3. Drivetrain 41

least squares fitting method. This method is implemented as well to identify descriptive
parameters for the stepped-ratio transmissions in the identification set of Table 2.7.
In regard to gear efficiency, the chosen descriptive analytic model of the transmission

power at the output shaft is modeled by

kis +kiPt, P20,
b, = P (2.25)
* |-k +—-, P <0,
kte
where P, is the transmission power at the input shaft, and P, is the transmission power

at output shaft.

At Predictive Level

The specific dimensioning parameters of a stepped-ratio transmission consist of first
gear ratio, last gear ratio, and gear number, which are summarized as { R;;, R, K; }.
Predictive analytic models of stepped-ratio transmission are developed based on the
parameters in the previous descriptive analytic models in Eq. 2.24 and 2.25. Considering
predictive analytic models of transmission gear ratio, they are written in the matrix

equation form as

ko Ct1
ki c2| |0

=Ru-Ru)| . |*+]. | (2.26)
ks Ct5 0

where the coefficients ¢;;(i = 1,---,5) depend on gear number K; and technological

parameter Z;. The values are listed in Table 2.6.

7 Ky Ct1 Ct2 Ct3 Ctq Ct5
5 [ 2.259 | -1.766 | 0.6009 -0.1 6.485 x1073
MT
_ _ -3
DET 6 | 2.041 | -1.391 | 0.4023 | -0.05578 | 2.985 x10

AT 6 | 1.786 | -1.003 | 0.2473 | -0.03035 | 1.455 x10~°

Table 2.6 — Values of coefficients ¢;;(i = 1,---,5) for stepped-ratio transmissions.

Note that, the analytic models in Eq. 2.24 and 2.26 are valid solely at the transmission
level when the final drive is single-speed. However, in some drivetrain, particularly a
dual clutch transmission (DCT), the final drive are typically of two speeds, which are
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engaged to specific gears of transmissions. In this case, ratios R;; and R are considered
in terms of the overall gear ratio of transmission and final drive.
In regard to gear efficiency, the predictive analytic models are simplified as in Eq.

2.27 and 2.28 because of limited available transmission efficiency data.

kt5 = Ct6’ (2.27)
kis = c17, (2.28)

where the coefficient c¢ is zero for light-duty transmissions, and -660.6 for heavy-duty
transmissions; the coefficient c;; is 0.95 for light-duty transmissions, and 0.977 for

heavy-duty transmissions.

2.3.3 Model Validation

The identification set of stepped-ratio transmissions for the light-duty vehicles is pre-
sented and used to identify the coefficients in predictive analytic models. After demon-
stration of results of gear ratios, the relative errors between description of gear ratio
and grid-point data and between prediction and grid-point data are comparatively
illustrated and discussed in terms of energy consumption of a reference conventional
vehicle over different missions.

The verification of efficiency model is carried out only for one transmission in heavy-
duty applications. Due to limited available data and the low energy loss, however,
the efficiency of stepped-ratio transmissions is assumed to be constant in light-duty

applications.

Identification Set

The identification set of stepped-ratio transmissions is composed of five- and six-speed
MTs, six-speed ATs, and six-speed DCTs. Main characteristics of these transmissions,
including technological parameter 7;, gear number K, speed count of final drive Ky,
and relating vehicle models, are summarized in Table 2.7. The whole identification set
of stepped-ratio transmissions is only for light-duty vehicles.

Result

Description and prediction of each stepped-ratio transmission are comparatively illus-
trated with respect to the grid-point data. The complete identification set is classified

into four groups for the presentation of results, which are five-speed MT (denoted by
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ID | 7, | Ky | Kysq | Vehicle Model
01 | MT | 5 1 Suzuki Celerio
02| MT | 5 1 Audi Al

03 | MT | 5 1 BMW 318i

04| MT | 5 1 VW Der Polo
05 | MT 5 1 Renault CLIO II
06 | MT | 6 1 Volvo V40

07 | MT | 6 1 Volvo V40

08 | MT | 6 1 Audi A3

09 | MT | 6 1 Audi A5

10 | MT | 6 1 BMW 116i

11| AT | 6 1 | Ford Kuga

12 | AT 6 1 KIA Sportage
13 | DCT | 6 2 Ford Kuga

14 | DCT | 6 2 | VW Jetta

Table 2.7 — Identification set of stepped-ratio transmissions.

MT-5), six-speed MT (denoted by MT-6), six-speed AT (denoted by AT-6), and six-speed
DCT (denoted by DCT-6).

Results of each group, including grid-point data, description, and prediction, are
summarized in Fig. 2.12 with different markers. Markers of dot (*), circle (o), and
star (+) represent the grid-point data, description, and prediction, respectively. Note
that, overall gear ratio is considered in the group of DCTs because that DCTs require

duel-speed final drive to constitute the stepped ratios.

Analysis

Analytic models of stepped ratios do not cause any energy losses in Eq. 2.24. However,
they affect the operating points of internal combustion engines by shifting engine speed
and torque. Therefore, a further analysis was completed to investigate the influences of
descriptive and prediction analytic models on the energy consumption of a reference
vehicle over two distinct missions. The investigated mission consists of New European
Driving Cycle (NEDC) and Highway Fuel Economy Test cycle (HYWFET).

Fig. 2.13 illustrates the results of energy consumption of the reference vehicle with
different transmissions from the identification set in Table 2.7. Thanks to descriptive and
predictive analytic models in Eq. 2.24 and 2.26, predictions of the energy consumption
are close to that evaluated with transmissions of grid-point data over mission profiles of
NEDC and HYWEFET. The largest error of energy consumption among the investigations
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Figure 2.12 — Gear ratio comparison of transmission identification set.

is about 2.7%.
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Figure 2.13 — Fuel consumption evaluated with grid-point data, description, and predic-
tion of stepped-ratio transmissions.

Apart from the analysis for analytic models of gear ratios, the analysis for transmis-

sion efficiency models is performed in terms of linear regression. The investigated case
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is a stepped-ratio transmission for heavy-duty applications.
As shown in Fig. 2.14, results between output power of grid-point data and the one
of prediction obtained by Eq. 2.25, 2.27, and 2.28 are presented along the normalized

axes. The 5% error lines are depicted with two dashed red lines.
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Figure 2.14 — Output power comparison of stepped-ratio transmission.

The the output power of prediction is almost the same as the output power of grid-
point data. Yet, the error reduces as the absolute magnitude of the power increase. In
other words, the smaller absolute magnitude the power is, the larger the error will be.

2.4 Battery

As an essential electric component in hybrid- and battery-electric vehicles, battery is the
energy storage component that releases electric power to propel a vehicle in traction
phase, and stores electric energy in the regenerative braking phase. As one of the major
technologies in the automotive application, the pouch shape Lithium-Ion Battery (LIB)
is classified into two types: High Energy (HE) and High Power (HP) type. These two
technological dimensioning parameters of LIB are denoted by Z,, = {HE, HP}.

2.4.1 Dimensioning Parameter

In an electrified vehicle propulsion system, battery is installed as a battery pack, which
contains numerous battery cells in series and/or parallel connection. Battery pack is
quantified by battery cell number (denoted by K;) and nominal parameters of battery
cells. Battery cell technology, battery cell number, and battery cell nominal capacity 9y,

are considered as the dimensioning parameters of batteries, which yields

Sp = {Zp, K, Qp}- (2.29)
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2.4.2 Analytic Model

Parameterization of the battery electrochemical and terminal power (denoted by P,, and
P,, respectively) is performed for both HE and HP battery cells. The electrochemical
and terminal power are calculated based on instantaneous battery state of charge and
terminal current. Accordingly, analytic models at both descriptive and predictive level
are developed to evaluate the electrochemical power as a function of battery terminal

power.

At Descriptive Level

Two different descriptive analytic models are established for specific applications. A
piece-wise linear predictive analytic model of battery is tailored for the development
of fully analytic energy consumption method for hybrid-electric vehicles, whereas a
quadratic predictive analytic model of battery is developed for better accuracy and
applied to the rest cases.

The chosen quadratic descriptive analytic model of a battery is written by
Poe(Py) = kyo + ky1 Py + ko Py, (2.30)

where parameters ky;(i = 0,1, 2) are identified for each individual battery in the identifi-
cation set of battery cells in Table 2.11.

On the other hand, the piece-wise linear descriptive model estimates the electro-
chemical power with a further limited operating range compared with the one in the

battery quadratic mode. The piece-wise linear model is expressed by

kps + kpaPy, Py, >0,
Pye(Py) = (2.31)
kb5 + kb6Pb: Pb < 0,

where parameters ky;(i = 3,---,6) are identified for each individual battery in the identi-
fication set of battery cells in Table 2.11.
At Predictive Level

Corresponding to the descriptive analytic models, two series of predictive models are

herein developed. The parameters k;(i =0,---,6) in descriptive analytic models of Eq.
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2.30 and 2.31 are further expressed as functions of battery dimensioning parameters.The
predictive analytic models for the quadratic descriptive analytic model in Eq. 2.30 are

expressed in matrix form as

K
kyo Cb1 Cp2 Cp3 Qh
kyi|=|coa Cbs  Cue le’ ) (2.32)
ky, Cp7 Cpg  Cp9 =L

Ky

where coefficients cy;(i = 1,---,9), depending on the battery technological parameter Z;
and battery cell capacity 9y, are listed in Table 2.8 and 2.9.

Ty Ch1 Ch2 Cp3 Ch4 Ch5 Ch6
HP | -9.542 | 0.5901 | -5.868 x1073 | 1.016 | -2.219 x1073 | 2.305 x10~°
HE | 0.1 0 0 0.983 | -7.617 x107% | 1.224 x107°

Table 2.8 — Values of coefficients ¢y;(i = 1,---,6) for lithium-ion battery.

1, Qp Cy7 Cpg Cho

HP - 1.904x107% | -2.068x107° | 4.812x107°

P EEE Ah | 4.489x107% | -6.017x107° 0
>53 Ah | 1.383x107% 0 0

Table 2.9 — Values of coefficients cy;(i = 7,---,9) for lithium-ion battery.

The predictive analytic models for the piece-wise linear descriptive analytic model

in Eq. 2.31 are expressed as

kb3 Cp10 0 0 0 ’Cb

kea| | 0 a2 cpi3|| Qe (2.33)
kps| |cora O 0 09
kye 0 s Che Cn17||Qp

where coefficients c;(i = 10,---,17), depending only on the battery technological param-
eter 7, are listed in Table 2.10.

2.4.3 Model Validation

The identification set of batteries is introduced and used to identify coefficients in

predictive analytic models. After the comparative illustration of battery electrochemical
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Iy Ch10 Ch11 Ch12 Cp13
HP | -0.1138 | 7.741x107% | -1.745%x1073 | 1.211x107°
HE | -0.0628 | 6.561x107% | -1.315x1073 | 8.368x107°
1y Ch14 Ch1s Chi6 Ch17
HP | -0.1767 | 6.279x1072 | -1.39x1073 | 9.548x107°
HE | -0.1328 | 6.036x1072 | -1.274x1073 | 8.496x107°

Table 2.10 — Values of coefficients c;(i = 10,---,17) for lithium-ion battery.

and terminal power of an example, the mean relative error and statistic characteristics

are presented and discussed.

Identification Set

The identification set of lithium-ion battery cells, including high energy (HE) and high
power (HP) type, is presented in Table 2.11 with technological parameter, nominal

voltage, and energy density.

ID | 7, | Qp | Nominal Voltage | Energy Density
[Ah] [V] [Wh/kg]

1 |HE | 25 3.7 162

2 |HE | 31 3.7 166

3 | HE | 40 3.7 166

4 | HE | 53 3.7 171

5 |HE | 75 3.7 178

6 | HP | 31 3.7 147

7 | HP | 40 3.7 153

8 | HP | 63 3.7 156

9 |HP | 75 3.7 159

Table 2.11 - Identification set of Li-ion battery cells.

Result

For simplicity reason, description and prediction of one exemplified battery cell are
comparatively illustrated with respect to the grid-point data. The description and
prediction are separately evaluated with the quadratic and piece-wise linear analytic
models.

Fig. 2.15 demonstrates the grid-point data, description, and prediction in terms of

electrochemical power for BAT ID2. The grid-point data, description, and prediction are
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aligned well with each other for both quadratic and piece-wise linear analytic models.
However, the maximal charging and discharging current are limited more for the piece-
wise linear analytic models. Therefore, the magnitude in Fig. 2.15b is smaller than that
in Fig. 2.15a.

20000  * Pe—=PF. B . e PR sP R
— _ 500+
= 1000 | =
= | / i

-1000 -500 : :

-1000 0 1000 2000 -500 0 500
B [W] By [W]
(a) quadratic analytic model (b) piece-wise linear analytic model
Figure 2.15 - Electrochemical power of battery cell ID2.
Analysis

The analysis of mean relative error and linear regression is performed to evaluate the
accuracy of descriptive and predictive analytic models for lithium-ion battery cells. In
particular, analysis of mean relative error is completed for both battery cells and their
whole identifications set. Then, the previous exemplified battery cell is further analysed
through linear regression method.

Results of mean relative errors — including the mean description error of each battery
cell e, the mean prediction error of each battery cell e, the average description error
of battery cell identification set e/, and the average prediction error ef — are illustrated
in Fig. 2.16. To summarize, the quadratic analytic model produces less mean relative
errors than the piece-wise linear analytic model did at both descriptive and predictive
level. Nonetheless, the maximum mean relative error is less than 10% (battery cell ID4)
which is evaluated via the piece-wise linear analytic model.

Considering the linear regression analysis for battery cell ID2, results are summa-
rized in Fig. 2.17. Both description and prediction of different types of analytic models
are separately compared with respect to the grid-point data. Obviously, high relative

errors occurs at the low absolute power region.
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Figure 2.16 — Mean relative errors of battery identification set.
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Figure 2.17 — Comparison of electrochemical power of battery for battery cell ID2.

2.5 Electric Motor/Generator

Electric Motor/Generator (EMG) is another essential component in an electrified vehicle
propulsion system to convert the energy form, such as from electric power to mechan-
ical one, or vice versa. Two types of EMGs are frequently applied in the automotive
applications, which are the Permanent Magnet Synchronous Machine (PMSM) and the
Asynchronous Induction Machine (AIM). Therefore, the technological parameter of
EMG consists of Z,, = {PMSM, AIM}.

2.5.1 Dimensioning Parameter

An EMG is dimensioned by its nominal torque and power, maximal torque and power,
maximum rotational speed in vehicle propulsion systems. In order to evaluate energy

consumptions of hybrid- and battery-electric vehicles, the dimensioning parameters are
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simplified as nominal torque and nominal power. Meanwhile, peak torque and peak

power are assumed to be identical to the nominal torque and power, respectively.

Because the nominal power is the product of the motor base speed and the nominal
torque, the dimensioning parameter of nominal power is substituted by the base speed.

Thus, the dimensioning parameter set of electric motor/generators is expressed as
Sm = {Imleer}; (234)

where 7, is the nominal torque, and ,, is the base speed. Note that, subscript m refers

to electric motor; whereas subscript g represents electric generator.

2.5.2 Analytic Model

Parameterization of the energy maps is performed to both types of EMGs. Accordingly,
analytic models at both descriptive and predictive level are separately developed and
validated. Both the losses of an electric machine and the one of power electronics are
lumped into the energy map to identify.

At Descriptive Level

Regardless of technologies of electric motor/generators, the chosen descriptive analytic
model is always expressed by

2 km4 2
Pme(a)mer) = kmO + kmlwm + kaC‘)m + km3Pm + w_Pm' (2'35)

2
m

where w,, is the rotational speed in [rad/s], P, is the mechanical power in [W], and P,,,
is the electric power in [W]. Parameters k,,;(i = 0,---,4) are identified for each individual

electric motor/generator in Table 2.14 and 2.15.

At Predictive Level

The parameters k,,;(i = 0,---,4) in the descriptive analytic model of Eq. 2.35 are further

expressed as functions of the dimensioning parameters of electric motor/generators.
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These predictive analytic models are expressed in matrix form, such as

where coefficients c,,;(i = 1,

Cm1  Cm2
Cm7 Cms
Cm13 Cml4
Cmio 0
| Cm20  Cm21

Cm3 Cm4
Cm9  Cml0
Cm1s5 Cmle
0 0
Cm22 Cm23

1
Cm5 Cm6_ T”;
Cmil Cmi2 Ty
N,
Cm17 Cm18 0
0 0 n;./\/,%,
Cm24  Cm25 30?2
e e n/\fnfm
[30x 103 ]

--+,25), depending on the technological parameter Z,,, are

listed in Table 2.12 and 2.13; whereas coefficient c,,;9 is 1 for both PMSM and AIM.

Zm Cm1 Cm2 Cm3 Cm4 Cms Cmo
PMSM 270.7 -13.738 0.0714 0.228 -3.681x107% 8.782
M 5665.7 -30.811 0.0332 -3.759 -2.618x1073 25.331
Im Cm7 Cms Cm9 Cm10 Cm11 Cm12
PMSM -1.215 0.0608 -2.778x107% | -4.775x107% | 1.331x107° -0.0374
M -0.326 0.0222 -2.621x107° | -7.089x1073 | 8.615x107° | 1.859x107°
I Cml3 Ciml4 Cmls Cmle Cml7 Cim1s
PMSM | 2.333x1073 | -7.110x107® | 7.062x107% | -3.476x107° | 1.480x10~° | 2.650x10~°
IM | -1.224x1073 | 7.484x107% | -1.114x10710 [ 5.998x107° | -4.239x107° | -1.118x107°

Table 2.12 — Values of coefficients ¢,,,;(i = 1,---

,18) for electric motor/generator.

Im Cm20 Cm21 Cm22 Cm23 Cm24 Cm25
PMSM 0.4441 -0.01356 | 7.245x107°> | 0.001948 | 2.9231x1077 | -6.7541x1073
M 1.044x1073 | 5.846x107° | -3.703x1077 | 4.650x10% | -2.359x107 | -8.128x107°

Table 2.13 — Values of coefficients c,,;(i = 20,---,25) for electric motor/generator.

2.5.3 Model Validation

The identification sets of EMGs, generated by EMTool [66], are presented at the begin-
ning in terms of PMSMs and AIMs, respectively. After the demonstration of electric

motor grid-point data in terms of contour maps, the mean relative error and statistic

characteristics are summarized and discussed.

) (2.36)
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Identification Set

Due to different vehicle applications, two types of identification sets are used to develop
and validate the descriptive and predictive analytic models. The identification set of
permanent magnet synchronous machine is listed in Table 2.14, including specifications
of dimensioning parameters; whereas the identification set of induction machines is
summarized in Table 2.15.

Note that, the maximum speed of PMSM and AIM identification set is 20 and 14
krpm, respectively. These values are close to the FLEX HEV developed by IFPEN and

early generation of Tesla’s electric motor.

D 1 (2] 3] 456 7|38
T, | [Nm] | 36 |36 | 36 | 36 | 36 | 72 | 72 | 72
Pw | [KW] |15 [ 21| 26 | 32 | 38 | 30 | 41 |53

ID 9 |10 11 12 13 14 15

7, | [Nm] | 72 | 72 | 108 | 108 | 108 | 108 | 108
Pn| [kW] | 64|75| 45 | 62 | 79 | 96 | 113

Table 2.14 - Identification set of electric motor/generators in terms of PMSM.

D 1 ]2 ]3] 4561 7] 8
7,, | [Nm] | 270 | 270 | 270 | 270 | 330 | 330 | 330 | 330
Pw | [KW] | 85 | 113 | 141 | 170 | 104 | 138 | 173 | 207
D 9 [ 10 | 11 | 12 | 13 | 14 | 15 | 16
7., | [Nm] | 390 | 390 | 390 | 390 | 450 | 450 | 450 | 450
P | [KW] | 123 | 163 | 204 | 245 | 141 | 188 | 136 | 238

Table 2.15 - Identification set of electric motor/generators in terms of AIM.

Result

Description and prediction of each electric motor/generator are comparatively illus-
trated with respect to the grid-point data. For the sake of simplicity, one PMSM and
one AIM are depicted and discussed separately. The comparison among grid-point data,
description, and prediction of other electric motor/generators are found in Appendix
B.2.

Fig. 2.18 demonstrates the grid-point data, description, and prediction in terms of
terminal electric power of PMSM ID14, whereas Fig. 2.19 illustrates the grid-point data,
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description, and prediction of AIM ID14. The high efficiency zones are enlarged with
the description and the prediction compared with the grid-point data for both electric

machines. Nonetheless, both description and prediction are still close to the grid-point
data. In addition, AIMs work better with the developed analytic models than PMSMs
do.

108
0
-108
0 10 20
N, [krpm]
(a) grid-point data (b) description (c) prediction

Figure 2.18 - Efficiency map of PMSM ID14.

T,, [Nm]

N, [krpm] N,, [krpm] N,, [krpm]
(a) grid-point data (b) description (c) prediction

Figure 2.19 - Efficiency map of AIM ID14.

Analysis

The analysis of mean relative error and linear regression are performed to evaluate the
accuracy of descriptive and predictive analytic models for both PMSMs and AIMs. In
particular, analysis of mean relative error is completed both for each electric machine
and the whole identifications set. Then, the exemplary electric machines depict their
contour maps of mean relative error and perform the linear regression analysis.

Mean relative errors — including the mean description error of each component 2,
the mean prediction error of each component ¢, the average description error of whole
identification set £¢, and the average prediction error of whole identification set e — are
illustrated in Fig. 2.20 for both PMSMs and AIMs. In summary, the maximum of mean
relative error is slightly higher than 10% for AIM ID6. The mean relative error of the
identification set of PMSM is lower than that of AIMs.
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Figure 2.20 — Mean relative error of each electric motor/generator and the whole identi-

fication set.

Considering PMSM ID14, its descriptive and predictive relative errors are illustrated
in Fig. 2.21a and 2.21b, respectively. The high errors occur at the low torque area. The

error in the low-speed high-torque in the generator mode is the intrinsic error from the

estimation of EMTool.

100 %
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El _ E —
2o sEZ ok S E
D
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N, [krpm] N, [krpm)]
(a) description error map (b) prediction error map

Figure 2.21 — Maps of relative errors of PMSM ID14.

As for AIM ID14, its descriptive and predictive relative errors are illustrated in Fig.
2.22a and 2.22b, separately. Compared with previous case, AIM ID14 shows larger low
efficiency area in description and prediction error map, respectively. Yet, the intrinsic
error of EMTool is still presented in the low-speed high-torque zone in the generator
mode.

Regarding the linear regression analysis, Fig. 2.23 and 2.24 compare the results of
electrical power of PMSM ID14 and AIM ID14, respectively. The relative error of the

description is limited within 10%, whereas most of relative error of the prediction is

limited within 10%.
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Figure 2.22 — Maps of relative errors of AIM ID14.
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Figure 2.23 — Comparison of electric power of PMSM ID14.
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Figure 2.24 — Comparison of electric power of AIM ID14.
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2.6 Vehicle Load Estimation

Apart from the dimensioning parameters of main powertrain components, vehicle
parameters affect the energy consumption as well because of the impacts on vehicle
load. In analogue to powertrain dimensioning parameter set, the vehicle parameter set

is defined as
’Sv = {mew’ CvOererv2}l (2'37)

where m, is the weight of vehicle in [kg], R,, is the wheel radius in [m], C,;(i =0,1,2)
are load parameters identified through coast-down tests.

The vehicle longitudinal dynamics is the essence in vehicle load estimation for the
energy consumption evaluation. Considering a vehicle moving on an inclined road as

depicted in Fig. 2.25, the vehicle load is evaluated by
F; = C,,Ocosa+Cvlvcosa+Cv2v2+Fgr+Pir, (2.38)

where Fg, is the gravitational force calculated by F,, = m,gsina, and F;, is the inertia

force due to acceleration and deceleration.

F,
04

Figure 2.25 - Longitudinal forces acting on a vehicle moving on an inclined road.

Considering the road load parameters C,;(i = 0,1, 2), they can be approximated with

physical ones by
Cyo = mygCyp, (2.39)
C,1 ~0, (2.40)
CuA
C,p ~ ParzarZar ;” “, (2.41)

where C,, is rolling resistance coefficient, C,, is drag coefficient, A,, is frontal area, and

Pqr is air density.
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As for the vehicle mass m,, it depends on the dimensioning parameters of powertrain

components, which yields
My = Myg + peVe + Ppy + P Py + ,”gpgf (2.42)

where y;(i = e,b,m,g) is a generic weight factor in kilogram per unit, and m, is the

baseline weight of vehicle.
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Chapter

Energy Consumption Evaluation for

Single-Source Vehicles

Apart from experimental tests, numeric simulation is a useful approach to estimate
the energy consumption of single-source and hybrid-electric vehicles. After a brief
introduction of simulation method for energy consumption evaluation, signal flows
of quasi-static simulation are summarized for various types of vehicles. The analytic
models developed in Chapter 2 are further validated at vehicle propulsion system level

in terms of energy consumption.

3.1 Simulation Method

Numeric simulation is an efficient and effective method for the energy consumption
evaluation. In general, two approaches are frequently applied to the energy consumption

simulation: one is the quasi-static approach; and the other one is the dynamic approach.

3.1.1 Quasi-static Simulation

In quasi-static simulation, the energy consumption of a vehicle is estimated based on
a given mission profile, efficiencies of the vehicle propulsion system depending on
operating conditions, and parameters of vehicle features [42, 67]. The quasi-static
simulation is performed in backward approach as sketched in Fig. 3.1.

Mission profile, including speed, road slope, etc., is discretized into many intervals
by time step At. At each interval, variables of a mission profile are assumed to be

constant.

61
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Controller

Mission . | Propulsion - Energy
Profile Vehicle 7l system “| consumption

\ 4

Figure 3.1 — Quasi-static simulation for energy consumption evaluation.

Then, vehicle load is estimated with vehicle parameters and mission variables
through the load model in Chapter 2.6. Apart from the estimation of vehicle loads,
kinetics of powertrain components are also evaluated with vehicle parameters (such as
dynamic radius of tyre), mission variables, and powertrain parameters (for instance,
final drive, transmission).

Next, vehicle load and kinetic variables are transmitted to the power source by
the drivetrain. For example, vehicle load and speed of a conventional vehicle are
transferred to the internal combustion engine in terms of torque and rotational speed,
thus leading to the estimation of instantaneous fuel consumption. In contrast, vehicle
load and speed in a battery-electric vehicle determine the torque and rotational speed
of electric motor/generator, then these signals are used to evaluate voltage and current
of battery. As a result, the instantaneous electrochemical power of battery is evaluated
with previous proposed analytic models.

Finally, the instantaneous fuel consumption of the internal combustion engine or
the electrochemical power of the battery are accumulated to the corresponding energy
consumption. Energy consumption of conventional and hybrid-electric vehicles is
measured by [L/hkm] (which is identical to [L/100km]); whereas, the metric for battery-
electric vehicles is [kWh/km)].

The quasi-static simulation is capable of the evaluation of energy consumption of
advanced vehicle propulsion systems, particularly the minimum energy consumption of
hybrid-electric vehicles. However, the physical causality cannot be respected due to the

backward formulation.

3.1.2 Dynamic Simulation

Dynamic simulation is based on a mathematical description that represents the physical
causality. The model is often formulated in forward approach using sets of ordinary
differential equations in its state-space form to describe dynamic effects in a vehicle
propulsion system.

Compared with quasi-static simulation, extra powertrain control systems and a
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particular driver model are always required, as shown in Fig. 3.2. Powertrain control
systems, such as engine control unit and transmission control unit, are lumped into the
block of Controller. Because dynamic simulation is not implemented throughout this
dissertation, this simulation method is not introduced in details. For example, a typical
forward simulation tool ALPHA [68, 69] is available to the public.

Energy
Consumption

T

Mission Driver | Propulsion > Vehicle
Profile 7| System -
A

Figure 3.2 — Dynamic simulation for energy consumption evaluation.

3.2 Simulation Set-Up

Contributions of this thesis are based on quasi-static simulation method. Therefore,

simulation set-ups are solely introduced for the quasi-static simulation in this section.

3.2.1 Mission Profile

Mission profile, also known as driving cycle, consists of historical trajectories of typical
variables, and is an essential input to energy consumption evaluation for all categories
of vehicles. Typical variables consist of speed and road slope (or, alternatively, altitude).

In general, mission profile includes two categories: the standardized driving cycles
and the real-world driving cycles. Standardized driving cycles are used for regulation
purpose. Energy consumption of a light-duty vehicle is certified by carrying out tests
over a standardized driving cycle, such as the New European Driving Cycle (NEDC)
in Fig. 3.3. As for real world driving cycles, they are recorded for specific purposes
during experimental tests, for instance, a typical mission for urban delivery vans or
trucks. More missions applied in this thesis are presented in Appendix C.2, which
consists of Federal Test Procedure — 72 (FTP-72), HighWay Fuel Economy Test Cycle
(HYWEFET), Inner City Driving Cycle (ICDC) and Suburban Driving Cycle (SUDC).
The main characteristics, including mean speed, distance, and maximal speed, are

summarized in Appendix C.1.
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Figure 3.3 — Speed trajectory of NEDC.

Additionally, the trajectory of gear shift is required for vehicles equipped with
manual transmissions. Gear shift schedules are usually provided in accordance with the
standardized driving cycles. For example, the gear shift schedules, based on [70], for

vehicles with five- or six-speed manual transmissions are depicted in Fig. 3.4.
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Figure 3.4 — Gear shift schedule over NEDC.

3.2.2 Signal Flow

Data in regard with mission profile, vehicle parameters, and vehicle propulsion system
features is vital in quasi-static simulations. Variable flows and exchanges for conven-
tional, battery-electric, and hybrid-electric vehicles, are summarized and sketched in
terms of quasi-static simulations hereafter.

The evaluation of energy consumption for a conventional vehicle is completed
through the quasi-static simulation illustrated in Fig. 3.5. A mission profile abbreviates
to MP, whereas vehicle is shorten as VEH. The main powertrain components consist
of internal combustion engine (ENG) and drivetrain (short for DRT), latter of which

mainly contains a stepped-ratio transmission and final drive.
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As shown in Fig. 3.5, vehicle speed v, acceleration 4, and gear number #, are provided
by mission profiles. Then, the rotational speed of wheels (denoted by w,,) and vehicle
load in terms of torque (denoted by T;) are evaluated with mission variables and vehicle
parameters. Then, the wheel speed and vehicle load are transmitted by the drivetrain
to the internal combustion engine. Thus, the output of drivetrain in terms of speed
wy and torque Ty is identical to the input speed and torque (indicated by w, and T,,
respectively) to the internal combustion engine. Losses due to clutches or other coupling
devices are not considered. Thanks to the determined engine speed and torque, the
instantaneous power of burned fuel is converted from the fuel mass flow rate based on
fuel consumption maps. Finally, the fuel consumption in [L/hkm] is computed over the

test mission.

Wg = We ENG Pey E.

van ow, Ty
>

MP VEH DRT

\ 4

Figure 3.5 — Quasi-static simulation for conventional vehicles.

As the other type of single-source vehicles, battery-electric vehicles only consume
electric energy stored in battery. The scheme of quasi-static simulation is depicted
in Fig. 3.6 for the energy consumption evaluation of a battery-electric vehicle. Apart
from mission profiles and vehicle parameters, the main powertrain components of a
battery-electric vehicle consist of drivetrain (DRT), electric motor/generator (EMG), and
battery (BAT). Currently, a simple drivetrain, including final drive and a single-speed
transmission, is widely implemented to battery-electric vehicles.

Due to the implementation of simple gear-trains, variables of a mission profile only
account for speed v and acceleration a. Then, vehicle load in terms of torque (7;) and
wheel speed (w,) are calculated using vehicle parameters. The output torque and
speed of the drivetrain (indicated by T; and w;) are directly transmitted to the electric
motor/generator. Thus, the speed and torque of EMG (w,, and T,,) are equal to the ones
of drivetrain. After the electric power of EMG is determined by its speed and torque,
the electric power P, is provided by the battery. Thus, the terminal power of battery P,
is assumed to be the electric power of EMG. Finally, electrochemical power of battery
P, is estimated at each time step, and then used to evaluate the energy consumption

over the test mission.

v,a wy, Ty
>

P
VEH be
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T, =Ty
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Figure 3.6 — Quasi-static simulation for battery-electric vehicles.



66 CHAPTER 3. Energy Consumption Evaluation for Single-Source Vehicles

As for hybrid-electric vehicles, the energy consumption is evaluated through quasi-
static simulations depending on powertrain architecture. In addition, an energy man-
agement strategy (Energy Management Strategy (EMS)) is requested to split the power
between different energy sources.

Considering a series HEV, mission variables and vehicle parameters are similar
to those of battery-electric vehicles. Compared with powertrain of a battery-electric
vehicle, more powertrain components are installed in a series HEV, as illustrated in Fig.
3.7. The additional components consist of an electric generator (short for GEN) and an
internal combustion engine (ENG).

Exchanges of variables and parameters are the same as in a battery-electric vehicle
except for the involvement of EMS. The electric power of electric motor (MOT) P,,, is
satisfied by the terminal power of battery P, and the electric power of generator Py,. To
minimize the energy consumption of internal combustion engine (E,f), optimal control
is required to determine control variable u. Throughout this thesis, control variable is
always defined as u(t) := Py(t) for series HEVs, and the battery final state of energy is
maintained the same as the initial one.

After the determination of control variable u, the power demand to battery (denoted
by P,) and to electric generator (indicated by P,,) are used to evaluate the electrochemical
power P, and the power of burned fuel Py, respectively. Note that, the mechanical

power of electric generator P, is identical to the mechanical power of engine F,.

P
BAT be Epe
: T, -
MP (== VEH [~/ DRT (74—
P, = P P
GEN F—3 eNG -4 £,

Figure 3.7 — Quasi-static simulation for series hybrid-electric vehicles.

The quasi-static simulation for parallel hybrid-electric vehicles is illustrated in
Fig. 3.8, where the parallel HEV is of pre-transmission congratulation. Variables and
parameters are transmitted in the same way as those are transferred in a conventional
vehicle except for the involvement of EMS. The control variable is u(t) := P,,(t) for
parallel HEVs.

Thanks to the pre-transmission configuration, the speed from drivetrain (w;) is
equal to the speed of engine (w,) and the one of electric motor (w,,). Optimal control
techniques are applied to determine the control variable in order to minimize the energy

consumption of the internal combustion engine. With determined control variable, the
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mechanical power of engine and motor (denoted by P, and P,,, respectively) are used to
compute the burned-fuel power P, and electrochemical power of battery P,,. Therefore,

the energy consumption is evaluated based on the minimized fuel energy E,.

QuA ENG

, T, v =
MP (—=5f VEH [=—tsf DRT [F4=re =
e ¢ ~ Pre = P P
S me — Q be
%, 3 Mot S BAT | £y
u=~F, %

Figure 3.8 — Quasi-static simulation for parallel hybrid-electric vehicles.
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To summarize, the quasi-static simulation in backward approach evaluates the in-
stantaneous power based on the discretized variables of the investigated mission profile
at each time step. In particular, the traditional optimal control is also realized based on
the discretized control variable. Because of the quasi-static simulation, the approach for

the energy consumption evaluation is designated as Quasi-Static Simulation (QSS).

3.3 Numeric Evaluation of Energy Consumption

In this section, energy consumption of single-source vehicles is evaluated through quasi-
static simulation (QSS) based on different types of powertrain data. The categories of
component data consist of grid-point data, description (estimated with the descriptive
analytic models), and prediction (approximated with the descriptive analytic models).
Energy consumption based on different types of powertrain data is compared, analysed,

and discussed.

3.3.1 Conventional Vehicle
Reference Vehicle

Main features of the investigated conventional vehicle are summarized in Table 3.1,
where the internal combustion engine and transmission are the engine ID1 and the dual
clutch transmission ID14 in Table 2.5 and Table 2.7, respectively.

Results and Analysis

Results of energy consumption in terms of fuel consumption (FC) are depicted in Fig.
3.9 based on three standardized missions, which are NEDC, FTP-72, and HYWFET.

The black bars represent the energy consumption evaluated with powertrain models
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Vehicle m, [kg] 1595
Rw [m] 0.308
»0 [N] 134.094
Cy [N/ m/s)] 3.746
Cyo [N/(m/s)?] 0.3486
Engine Z, CI/TC
Ve [L] 2.0
7, [Nm] 324
P, [kW] 98
Drivetrain Z; DCT-6
Ryra | 412 & 3.04

Table 3.1 — Features of investigated conventional vehicle.

of grid-point data; the blue bars indicate the evaluations based on descriptive analytic
models of powertrain components; and the cyan bars show the evaluations based on

predictive analytic models of powertrain components.
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Figure 3.9 — Fuel consumption of reference conventional vehicle based on different types
of powertrain component models.

In general, both descriptive and predictive analytic models of powertrain compo-
nents can estimate energy consumption with high accuracy. The descriptive analytic
models slightly overestimate the energy consumption over all mission profiles; whereas
the predictive analytic models illustrate less errors than the descriptive analytic models
over NEDC and HYWFET. The relative errors are quantified and summarized in Table
3.2 in terms of descriptive and predictive relative error (denoted correspondingly by &
and €P).
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Mission Profile | ¢ [%] | &P [%]
NEDC 3.28 -1.05
FTP-72 2.53 -3.24

HYWEFET 2.79 0.42

Table 3.2 — Descriptive and predictive errors of energy consumption with respect to
grid-point data.

3.3.2 Battery-Electric Vehicle

Reference Vehicle

The investigated battery-electric vehicle is specified in Table 3.3, in which battery cells
are of high energy ID4 and the electric motor/generator is PMSM ID7 in Table 2.11 and
Table 2.14, respectively. The gear ratio of drivetrain is the combination of final drive

and the motor gear ratio , which is computed by Ry =R,/ R4

Vehicle [kg] 1318
w [m] | 0.287
Cyo [N] | 94.731
Cy1 [N/(m/s)] | 5.931
C,, [N/(m/s)?] | 0.2865
Battery Zy HE
Qyp [Ah] 53
Ky 88
| Electric Motor | I, | PMSM |
7, [Nm] 108
P, [kW] 45
’ Drivetrain ‘ Ra ‘ 21 ‘

Table 3.3 — Features of investigated battery-electric vehicle.

Results and Analysis

Similar to the investigated conventional vehicle, energy consumption of the battery-
electric vehicle are evaluated based on grid-point data, descriptive analytic models,
and predictive analytic models of powertrain components. As two types of descriptive
analytic models are developed for battery, results of energy consumption are presented
into two groups, which are illustrated in Fig. 3.10a and 3.10b, respectively.

The quadratic analytic model of battery presents less errors in energy consumption
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evaluation than the piece-wise linear analytic model does. Therefore, quadratic analytic
model of battery is widely implemented in all types of electrified vehicle propulsion
systems. In contrast, the piece-wise linear battery model is only applied in the fully-
analytic energy consumption evaluation method for hybrid-electric vehicles, which aims
to involve more powertrain dimensioning parameters as well as to reduce the complexity

of combined analytic model of battery and electric motor/generator.

30 : : : 30 : ‘ ‘
BN EC Bl EC! [TJEC ENEC Il EC! [TEC?
g g
= 20 1 = 20} 1
~ ~
= <
= =
=10} L 20} 1
Q Q
M &)
0 0
NEDC FTP-72 HYWFET NEDC FTP-72 HYWFET
(a) quadratic battery model (b) piece-wise linear battery model

Figure 3.10 — Energy consumption of reference battery-electric vehicle based on different
types of powertrain component models.

Furthermore, relative errors of energy consumption of descriptive and predictive
analytic models compared with those of grid-point data are listed in Table 3.4b and 3.4a
correspondingly for the quadratic and piece-wise linear battery model. The quadratic
battery model shows higher accuracy than the piece-wise linear model. As a result, the
piece-wise linear battery model is used only in limited conditions where the quadratic

battery model is no longer feasible.

Mission Profile | €7 [%] | P [%] Mission Profile | €7 [%] | P [%]
NEDC 0 0.39 NEDC -2.42 | -8.12
FTP-72 0.56 1.12 FTP-72 -3.35 | -9.42

HYWEFET -0.90 | -0.95 HYWEFET 0.35 -4.38
(a) quadratic battery model (b) piece-wise linear battery model

Table 3.4 — Relative errors of energy consumption based on descriptive and predictive
analytic models.



Chapter

Minimal Energy Consumption of
Hybrid-Electric Vehicles

In this chapter, novel fast-running methods are proposed to estimate the minimal energy
consumption of hybrid-electric vehicles, particularly series and parallel HEVs. Bench-
marked by standard approaches of Pontryagin’s Minimum Principle, the novel methods,
Selective Hamiltonian Minimization (SHM) and GRaphical-Analysis-Based Energy Con-
sumption Optimization (GRAB-ECO), significantly decrease the computation time of

the evaluation of the minimum energy consumption for hybrid-electric vehicles.

4.1 Optimal Control Problem Formulation

Energy consumption is influenced by the powertrain control technique in a hybrid-
electric vehicle. To benchmark the energy consumption in the early design stage,
optimal control technique is applied to evaluate the minimum energy consumption. The
optimal control problem of an HEV is formulated to minimize the objective function,

which is
ty
g = | Rgtutonar (1)
to
where control variable u(t) depends on powertrain architectures, which yields

Py(t), series HEV,
u(t) = (4.2)
P,(t), parallel HEV.

71
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Considering the system dynamics x, it is independent from the system state and
defined by

X(t) = Pye(t). (4.3)

The minimal energy consumption of an HEV is tailored for the charge-sustaining
mode throughout this thesis. In other words, the final battery state of charge is x(t7) =
x(tg), thus leading to the varied electrochemical energy AEy,(tf) = 0.

According to Pontryagin’s Minimum Principle and the independence of system state,
the Hamiltonian function is expressed by

H(u(t), t) = Pop(u(t), t) +5- Pye(u(t), t), (4.4)

where s is the adjoint state variable.

Within the full control space U in-between the bottom and top boundaries of the
control variable, optimal control laws u*(¢) are determined by finding

u*(t) = argmin H(u(t),st), (4.5)

uelU
where the proper adjoint state variable s* is evaluated based on the final state of charge

requirement, which yields

AEbe(tf,S*) =0. (4.6)

The constraints in the optimal control problem consist of singularity, equality and
in-equality conditions due to powertrain limitations and models. Depending on the

hybrid architecture, the equality constraint refers to the "power balance" yielding

Pye(t) + By(t) = Pye(t), series HEV,
P, (t)+ P.(t) = P4(t), parallel HEV,

(4.7)

where P, is the electric power of traction motor satisfied by battery terminal power P,
and electric power of generator Py,; P; is the power demand of drivetrain satisfied by
engine brake power P, and mechanical power of electric motor P,,.

Concerning the inequality constraints, they originate from the physical limits of

the powertrain components and the operating limits, such as the boundaries of battery
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terminal power. However, the constraint of instantaneous battery state of charge is not

considered throughout this thesis.

4.2 Fully Numeric Solution

Based on PMP, Hybrid Optimization Tool (HOT) [71] and Vectorized Hybrid Opti-
mization Tool (VHOT) [72] are simulation tools of iterative and vectorized approach,
respectively. As standard approaches, both HOT and VHOT benchmark the performance
of novel fast-running methods in Section 4.3 and 4.4.

Because HOT and VHOT are not the main outcomes of this thesis, the basic ideas
and characteristics are briefly summarized for introduction. In both HOT and VHOT,

the control variable u(t) at each time step is quantified as
ur(t) = ug(t) + kAu, (k=0,1,---,n,), (4.8)

where 1 is the minimal admissible value of control variable u(t), Au is the control
variable step, and n,, is the resolution of discretization. According to the power balance
in Eq. 4.7, the Hamiltonian function in Eq. 4.4 is evaluated for each discretized control
variable u(t) at each time step.

The main difference between HOT and VHOT is the minimization process. The
minimal energy consumption is evaluated through iterative processes in HOT as shown
in Fig. 4.1a, whereas the minimization of energy consumption is performed through the
array operation in VHOT as depicted in Fig. 4.1b. HOT needs three loops to evaluate the
minimum energy consumption, which complete a specific mission, find optimal control
laws, and determine proper adjoint state variable. The discrepancy of the final state of
the control system is taken into account by the equivalent fuel consumption model in
Chapter 6.2.2. In contrast, VHOT minimizes the energy consumption based on array
operation. The final battery state of charge is maintained to be the same as the desired
value, thereby leading to the estimation of the proper adjoint state variable by numeric
interpolation. Thanks to the substitution of iteration with array operation, VHOT takes
much less computation time than HOT does. Relevant results are found in Section 4.5.

In the flow charts of HOT and VHOT in Fig 4.1, variable C denotes the cycle-related
variables (such as speed, acceleration); whereas D indicates the dimension-related
parameters (including dimensioning parameters of powertrain components and vehicle
parameters). Variable V(t,u,s) represents generic variables along dimensions of time ¢,

control #, and adjoint variable s.
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As a solution of LMS Imagine.Lab Amesim, HOT is introduced with details in [65,
71, 73]. The improved version VHOT is specifically reported in [72].

e ] [s][2]

| u€eu |

Pef (t‘ u, S)
Ppe(t,u,s)

| H(t,u,s) |

t-loop

| min H |
u'(t,s)

s-loop

| P |

| x(t)=x |

s
| Eef |

(a) HOT (b) VHOT

Figure 4.1 — Flow chart of PMP-based standard approaches.

4.3 Semi-Analytic Solution

A novel semi-analytic method is proposed to estimate the minimal energy consumption
for series or parallel hybrid-electric vehicles, which takes less computation time than
both HOT and VHOT. Thanks to analytic models of powertrain components, the Hamil-
tonian function is formulated in closed form in the novel method. Therefore, solution to
the minimization of Hamiltonian is derived analytically. Due to further limited possible
optimal control cases (denoted by U;(i =1,2,---)) in the full control space, this method
is designated as Selective Hamiltonian Minimization (SHM).

The flow chart of SHM is illustrate in Fig. 4.2. Compared with the full quantification
of control variable in HOT and VHOT, SHM reduces its full control space into limited
number of cases. In details, five (i = 5) cases are considered for series HEVs; whereas
six (i = 6) cases exist for parallel HEVs. Except for the dimension reduction of the
full control space, the procedure and operation of SHM is the same as that of VHOT.
Therefore, SHM can be concluded as an analytic version of VHOT.
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U;
Pef(tvuvs)
Ppe(t,u,s)

| H(t,u,s) |

| min H |
\Lu"(t,s)
| Pe®ar |

[ x(t)=x |

s*

| EEf |

Figure 4.2 — Flow chart of SHM.

4.3.1 Series Hybrid-Electric Vehicle

Analytically solvable Hamiltonian is formulated based on analytic models of powertrain
components and vehicle load given in Chapter 2. However, the Hamiltonian function
cannot be formulated in closed form due to the operation of the internal combustion

engine and electric generator.

Auxiliary Power Unit

In series HEVs, the auxiliary power unit is a combination of internal combustion engine
and electric generator. Due to the engine speed is independent from the wheel speed,
the operating condition of an Auxiliary Power Unit (APU) is totally independent from
the vehicle operating condition. To simplify the operation of an APU, it is managed to
follow the Optimal Operating Line (OOL), which represents the best operating efficiency.
Therefore, the analytic model required to formulate the closed form Hamiltonian is

given by
Pef(Pge) :ku0+kulpge+ku2pg2er (4.9)

where coefficients k,;(i = 0,1,2) are numerically identified from either the descriptive or

the predictive analytic models of internal combustion engines and electric generators.
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Hamiltonian Function

According to the power balance in Eq. 4.7, the electric power of an APU is calculated by
ee(t) = Pye(t) = Py(£). (4.10)
Combining Eq. 4.9 and 4.10, Hamiltonian in Eq. 4.4 is rewritten as

H(t,1,5) = kno + kn1 (5)Py(t) + Kpa ()P (8), (4.11)

where the control variable is u := P,(t), and parameters kj;(i = 0,1, 2) are expressed as

kno(£,8) = kyyo + Kyt Pre () + kyo Peo () + skyo, (4.12)
khl(trs) = Skbl _kul - 2ku2pme(t)! (4~13)
khQ(S) :Skb2+ku2' (414)

Due to physical limits, the operating constraints of battery are summarized as
Py(t) € [Py, Py). (4.15)

Taking the physical limits of APU (P,(t) € [O,ﬁge]) and the power balance in Eq. 4.10

into account, another operating constraint of battery is derived as

Py(t) € [Pe(t) = Pger Pure(t)]. (4.16)

Minimization of Hamiltonian

The unconstrained solution to the minimization of Hamiltonian is derived from — =0

ou
( u = DPy(t) ), which yields

kul + ZkuZPme(t) - Skbl

2 (5kpa + kua) (£17)

Pb,unc(trs) =

Considering the possible constrained solutions resulting from the physical and
operating limits of powertrain components, the constrained possible solutions to the

minimization of Hamiltonian are expressed by

Pb,cl(t) :Pme(t)i (4.18)
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Py co(t) :Pme(t)_Pgel (4.19)
Py e3(t) = Py, (4.20)
Py c4(t) = Py, (4.21)

COHSidering Ul = Pb,unc(tis)/ U2 = Pb,cl (t)/ U3 = Pb,cZ(t)f U4 = Pb,c3(t)! US = Pb,c4(t)!
the full control space U for series hybrid-electric vehicles is defined by

uelUy, Uy, Ush. (4.22)

4.3.2 Parallel Hybrid-Electric Vehicle

Being comparable to APU, the Electric Drive Unit (EDU) is applied in parallel hybrid-
electric vehicles to formulate the closed-form Hamiltonian function so that it can be
solved analytically. The EDU is a combination of the battery and electric motor, which
both have quadratic analytic models. To formulate the closed-form Hamiltonian func-

tion, an analytic model of EDU must be derived.

Electric Drive Unit

Considering the analytic model of battery in Eq. 2.30 and the one of electric motor/-
generator in Eq. 2.35, the electrochemical power of an EDU is analytically modeled
by

Pbe(Pmi (‘)m) = kuO(wm) + kul(wm)Pm(wm) + kuZ(wm)Pn%(wm)r (4'23)

where the coefficients k,,;(i = 0,1, 2) are numerically identified from either the grid-point
data, description, or prediction of batteries and electric motor/generators. Note that,

the quadratic analytic model of battery is applied for better accuracy.
Hamiltonian Function
According to the power balance in Eq. 4.7, the engine power is calculated by
Pe(t) = Pa(t) = Py(t). (4.24)
Combining Eq. 4.23 and 4.24, the Hamiltonian function in Eq. 4.4 is re-written by

H(t,u,5) = kno(t,8) + kn1 (£,5)Pys() + ki (£,5)PA (1), (4.25)
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where the control variable is u := P,,(t). The parameters ky;(i = 0,1, 2) are

kno(t,5) = keo(t) + Ke1 (1)Pa(t) + koo (£)PF (1) + skyo (1), (4.26)
ki1 (£, 8) = sk (8) = ke1 (1) = 2keo(£)Pa(t), (4.27)
ko (t,5) = skua(t) + kea (), (4.28)

where parameter k,; is null when light-duty engines are applied.

As given by Eq.4.25, the closed-form Hamiltonian is formulated as a quadratic
function of control variable P,,, despite the piece-wise linear model for light-duty
engines in Eq.2.2. In fact, only the first case of the piece-wise linear model is considered,
because the complete range of engine efficiency has been fully considered in this case.

To remind that engine corner power P,. represents the best efficiency of an engine.

Considering the physical limits, the constraints of electric motor/generator are given
by

Pu(t) € [By(8), Pon(t)]. (429)

In addition, the physical limits of internal combustion engine (Pe(t) € [O,Fe(t)]) and
the power balance in Eq. 4.24 result a second constraint, which is

Pyn() € [Pa(6) = Pelt), Pa(1)]. (4.30)

Apart from operating constraints, an extra discontinuity in Eq. 2.2 is considered that
leads to the mechanical power of electric motor

Py (t) = By (t) = Pe(2). (4.31)

Minimization of Hamiltonian

The unconstrained solution to the Hamiltonian minimization is derived by o 0 (
u

1t = P,y(t) ), which yields

ke1 (£) + 2kea () Py (t) — skiy (t)
2 (skyo(t) + keo(t))

Pm,unc(trs) = (4~32)

The possible constrained solutions resulting from the operating constraints of pow-
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ertrain components are expressed as

Pmcl :Pd(t)r (4'33)

Pm,c2 = Pd(t)_ﬁe(t)l (434)

Pm,c3 :ﬁm(t)! (4'35)

Pm,c4 :Bm(t)' (4'36)
As for the discontinuous solution, it is written by

Pm,sl :Pd(t)_Pec(t)- (4-'37)

Considering Uy := Py, ,c(t,5), Uy := Py 1(t), Us := Py g1 (t), Ug 1= Py e3(t), Us :=
Py.ca(t), Ug := Py, c2(t), the full control space U for parallel hybrid-electric vehicles is
defined by

ue{Uy, Uy, Ugh- (4.38)

4.3.3 Summary

One unconstrained solution and a limited number of constrained and discontinuous
solutions owing to operating limits and discontinuity of analytic models constitute the
full control space U of the Selective Hamiltonian Minimization (SHM). The computation
time of SHM benefits from the decreased dimensions of the full control space U.

Compared with HOT and VHOT, SHM is characterized by an analytic solution of
the Hamiltonian function. Although the engine on/off signal is not handled explicitly in
the minimization of Hamiltonian, the corresponding case of engine off exists in the full
control space. However, analytic method cannot find a suitable adjoint state variable s*
such that the varied electrochemical energy of battery meets the requirement.

Furthermore, it is impossible to evaluate the energy consumption through a closed-
form solution along the time dimension. In other words, SHM evaluates the minimal
energy consumption step by step along the time dimension. The procedure and opera-
tion of energy consumption minimization of SHM is the same as VHOT.

4.4 Approximate Solution

It is always not enough to reduce the computation time of minimal energy consumption

estimation for hybrid-electric vehicles as the optimal design of vehicle propulsion
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systems is always time-consuming. An extreme fast-running sub-optimal method,
GRAB-ECO, is proposed to approximate the minimal energy consumption for series and
parallel HEVs.

4.4.1 Fundamentals of GRAB-ECO

GRAB-ECO, standing for GRaphical-Analysis-Based Energy Consumption Optimization,
approximates the minimal energy consumption by maximizing the average operating
efficiency of the primary energy source, which has the worst efficiency. The primary
energy source is the auxiliary power unit in a series HEV, and the internal combustion
engine in a parallel HEV.

The working flow of GRAB-ECO is summarized and sketched in Fig. 4.3. The
GRAB-ECO is characterized by a best-efficiency indicator I,(t), permutation of variables

I,(7), and limited operating modes.

.

| 1,() |

T
I.(t+ At) = 1,(t)

|

| u(t) |

tr
f Py (1) dt
t

0

| x(7*) = xg |

| Eef |

Figure 4.3 — Flow chart of GRAB-ECO.

The best-efficiency indicator evaluates the ratio between the demanded power to the
power of the best efficiency of the primary energy source (e.g. APU in series hybrid-
electric vehicles, and engine in parallel hybrid-electric vehicles) as well as determines
the operating mode at each time step.

In regard with operating modes over a given mission, they consist of the electric
vehicle operation and hybrid vehicle operation. In each operating mode, two sub-

modes are categorized in terms of the fixed mode and flexible mode. Therefore, the
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four operating modes are the fixed electric vehicle mode (ev0), the flexible electric vehicle
mode (ev1), the fixed hybrid vehicle mode, and the flexible hybrid vehicle mode (hvl). A
mathematical definition of these four operating modes will be found in Step 2 in the

following section.

4.4.2 Essential Steps of GRAB-ECO

GRAB-ECO consists of four essential steps: the evaluation of best-efficiency indicator,
the determination of instantaneous operating mode, the approximation of battery state

of charge, and the estimation of minimal energy consumption.

Step 1: Indicator Evaluation

An indicator evaluates the distance between the power demand and the best-efficiency
operating condition of the primary power source. Thus, this indicator is designated as
the best-efficiency indicator. The higher the best-efficiency indicator, the greater the op-
portunity to shift the operation of the primary energy source to the best-efficiency point.
On the other hand, the lower the best-efficiency indicator, the higher the opportunity to
eliminate the operation of the primary energy source. In the unconstrained condition,

the best-efficiency indicator I, is evaluated by

P;E(t), series HEV,
L(t) = Pd”(”;; (4.39)
, arallel HEV,
Po(t) P

where F,;, is the absolute electrical power of the best-efficiency operating point of APU,
P, the power demand of the electric motor in a series HEV, P; is the power demand of
the drivetrain in a parallel HEV, and P,. is the corner power of an internal combustion
engine.

When the indicator I,(t) = 0, the primary energy source does not provide any power.
In other words, an HEV could be in standstill condition or in pure battery electric
vehicle operating condition. When the indicator I,(t) = 1, the primary energy source is
working at its best efficiency regardless of the battery operating conditions. An example
of the unconstrained best-efficiency indicator I, is illustrated in Fig. 4.4 for a parallel

HEV. The power of drivetrain estimated over NEDC is presented as well.
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Figure 4.4 — Example of best-efficient indicator and power of drivetrain over NEDC.

Step 2: Mode Determination

To explicitly determine the vehicle operating mode, a sorted best-efficiency indicator I,(7)
is obtained according to a new time series 7. The new time series 7 is the permutation of

time ¢, such that
L(t +At) > I(7), VT € [to, ], (4.40)

where At is the time step, t; and f7 correspond to the first and last time step of the
investigated mission. For example, a mapping between the actual discrete time index
(denoted by t) and the sorted index (denoted by 7) is illustrated in Fig. 4.5.

1200

8001 ]
=

[¢b}

E 400 ]
-

0 400 800 1200
Time ¢ [s]

Figure 4.5 — Example of mapping between actual and sorted time index over NEDC.

Based on the sorted best-efficiency indicator I,(7) over time series 7 (see Fig. 4.6),
operating constraints of powertrain components are sorted and then considered to
determine vehicle operating modes. The basic idea to cope with the operating constraints

is to maximize the instantaneous operating efficiency of the primary energy source at
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each time interval either by eliminating the engine operation or by implementing the

maximal efficiency of the primary energy source. An example of the implementation of

constraints is reported in [60].
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Figure 4.6 — Example of sorted variables over NEDC.

The operating modes of a series HEV and of a parallel HEV are correspondingly

determined by

and

Poe (),

Pie (),

Pie(T) = Papu(T),

Pie(T) = Papu (1),
Py(7),
Py(7),
Py(T) = Pec(7),
Py(T) = Pec(T),

T €[19,11),
T, T,

*

T e (15, 1),

[
(
(
[

T € [12, 7],

T € [19,11),
T € (1y,T"),
T € (7%, 13),

T € [Ty, 7).

(4.41)

(4.42)

As shown in Fig. 4.7, the determination of the operating mode of a parallel HEV is

exemplified. The green area refers to the operating mode ev0, when time 7 € [7y, 71 ];

the cyan area represents the operating mode ev1, when time 7 € (t;,7*]; the magenta

area indicates the operating mode hv1, while time 7 € (77, 1;); and, the red area is the

operating mode hv0, while time 7 € [1;, 7¢].
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x10%

Figure 4.7 — Operating mode determination of GRAB-ECO for parallel HEVs.

The time instant 7; and 7, are correspondingly defined by

{T] : Ie(Tl) <0Nn Ie(Tl + At) > O}, (443)
{T2 : Ie(TZ) <IN Ie(TZ + At) > 1} (444)

As for the time instant 7%, it is an essential time instant that is introduced in the

following step.

Step 3: State Approximation

According to the operating modes determined in the previous step, the resulting electro-

chemical energy of the battery in each operating mode is calculated by

T
Ebe,evO = ZW(UEVO(T))At, (445)

=T
i
Epeno = ) ¥ (ttnyo(T))At, (4.46)

=T,

Ebeert (T) = ) Wity ()AL, (4.47)

=T
(P)

Epent (T) = ) W(upn ()AL, (4.48)
="

where W represents the generic function that evaluates the electrochemical power of

battery of a given HEV.

The essential time instant 7%, affected by the requirement of the final state of charge of
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the battery, is found in-between the instant 7; and 7,. As a result, the flexible operating
modes evl and hvl are segmented by the time instant 7* that is evaluated using the
algorithm of root-finding in terms of interpolation. In other words, the turning point t*

is a time instant such that
AE(t) =0, (4.49)
where the varied electrochemical energy of battery is calculated by

AEbe(T*) = Ebe,evO + Ebe,th + Ebe,evl (T*) + Ebe,hvl (T*)- (4-50)

Fig. 4.8 presents the resulting electrochemical energy of battery in each operating
mode. The varied electrochemical energy AE,, is depicted as a function of time 7.
Numeric interpolation is used to evaluate the essential time instant 7* marked with a
black bullet.

x107
- Ebe,hv() + Ebe,evl (7—) Ebe,ev() + Ebe,hvl (7 ) — AEbe (T

=" —

\l-\/ -
m _O 5 L 4
-1
T0 5l T* ToTf

Time 7 [s]

Figure 4.8 — Resulting electrochemical energy of battery in accordance with the operating
modes.

Step 4: Energy Estimation

As a consequence of the essential time instant determination, the control variable of a

series HEV is simplified as

u(t) = - (4.51)
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whereas the control variable of a parallel HEV is
u(t) = h (4.52)

Consequently, the minimal energy consumption of an HEV in terms of series or

parallel architecture is approximated by

tf
E.f = ZCD(u*(T))At, (4.53)
T=T"
where @ represents the generic function to evaluate the burned fuel power for an HEV.

4.4.3 Summary

GRAB-ECO approximates the minimal energy consumption of HEVs based on the
maximization of average operating efficiency of the primary energy source. Compared
with SHM, GRAB-ECO further decreases the control space U to only two operating
conditions (electric and hybrid condition). Consequently, GRAB-ECO has the potential
to further reduce the computation time compared with SHM. The results will be found

in the following section.

4.5 Evaluation of Minimal Energy Consumption

In this section, minimal energy consumption of hybrid-electric vehicles is evaluated
through QSS based on different types of powertrain component models, which consist
of grid-point data, description (estimated with the descriptive analytic models), and
prediction (approximated with the descriptive analytic models).

For each kind of powertrain component models, various methods are applied to
evaluate the minimal energy consumption, including SHM, GRAB-ECO, HOT and
VHOT. The performance of SHM and GRAB-ECO is benchmarked by HOT and VHOT
in terms of fuel consumption and computation time. The corresponding computation
time is the average value of twenty repetitions in terms of CPU time. Evaluations of
minimum energy consumption are performed in MATLAB R2015b on a i7-4810QM
CPU @ 2.80 GHz machine with 16 GB RAM.

Results of the minimum energy consumption as well as the average computation time

of the investigated hybrid-electric vehicles are comparatively illustrated over various
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investigated missions. Considering the evaluation based on HOT, the error of the final
state of charge is compensated by the equivalent fuel consumption model introduced in
Chapter 6.2.2; whereas the proper adjoint state variable s is found by the root-finding
algorithm of Newton’s method. The discretization step the adjoin variable s in VHOT
is maintained the same as in SHM. As for the discretization step of time is always one

second for all investigated methods.

4.5.1 Series Hybrid-Electric Vehicle
Reference Vehicle

Main features of the investigated series HEV are summarized in Table 4.1, where the
internal combustion engine, electric generator, battery, and electric motor correspond to
ENG ID7 in Table 2.5, PMSM ID6 in Table 2.14, BAT ID4 in Table 2.11, and PMSM ID11
in Table 2.14.

Vehicle m, [kg] 1648
Ry, [m] | 0.308
Cyo [N] | 152.383
C,1 [N/(m/s)] | 1.346
C,» [N/(m/s)?] | 0.3751
Engine Z, | CI/TC
V. [L]| 12
7, [Nm] 145
P, [kW] 43
Electric Generator I, ‘ PMSM
7, [Nm] 72
Py [kW 30
Battery Zy HE
Qy [Ah] 53
Ky 96
’ Electric Motor ‘ . ‘ PMSM ‘
7,» [Nm] 108
P [kW] 45
’ Drivetrain ‘ Ra ‘ 9.7 ‘

Table 4.1 — Main features of investigated series hybrid-electric vehicle.
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Results and Analysis

Fig. 4.9 shows minimal energy consumption in terms of fuel consumption evaluated
through various minimization methods over NEDC. Moreover, the minimal fuel con-
sumption is estimated based on different types of powertrain component models. The
black, blue, and cyan bars correspondingly indicate the evaluation based on grid-point
data, descriptive analytic models, and predictive ones.

The main errors were caused by the powertrain component models (in terms of
grid-point data, descriptive analytic models, and predictive models). This was always
true to all of the minimization methods including HOT, VHOT, SHM, and GRAB-ECO.
However, the discrepancies among the energy consumption evaluated based on the same
type of powertrain component model but different minimization methods are not so

significant as the typology of powertrain component models.

6 : ‘ ‘
B EC ElrC [TFCY
=
~
=,
O 2¢ ]
=
0

HOT VHOT SHMGRAB-ECO
Figure 4.9 — Minimal energy consumption of reference series HEV over NEDC.

In addition, the exact errors of minimal energy consumption between grid-point data
and descriptive analytic models and between grid-point data and predictive analytic
models are listed in Table 4.2. In summary, the predictive analytic models of powertrain
components are able to evaluate the minimal energy consumption of series HEVs

through the proposed minimization methods in this chapter.

HOT | VHOT | SHM | GRAB-ECO
e (%] | -4.26 | -4.07 | -4.43 -4.19
eP[%] | 213 | 2.26 | 2.06 2.69

Table 4.2 — Relative errors of minimal fuel consumption over NEDC.

The average computation time is summarized in Table 4.3 in terms of CPU time
in [s]. The CPU time is the mean value of the computation time of twenty repetitions.

Computation time is denoted by ¢, ¢, and ! corresponding to the average time asso-
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ciated with grid-point data, descriptive, and predictive analytic models. Specifically,
SHM minimized energy consumption within tens of milliseconds, which was about ten
times less than that of VHOT. Moreover, GRAB-ECO took seven to twelve milliseconds,
which was about six times less than that of SHM.

The analytic models either at descriptive level or at predictive level shortened the
computation time compared with the grid-point data. Significant computation time
abatement was achieved by GRAB-ECO that shrunk the dimension of full control space .
Therefore, the smaller dimension of the full control space results in the less computation

time of minimal energy consumption evaluation.

HOT | VHOT | SHM | GRAB-ECO
t5[s] | 963.93 [ 0.4607 | 0.0916 | 0.0124
t77s] | 838.11 | 0.5302 | 0.0412 |  0.0070
¥ [s] | 675.69 | 0.4379 | 0.0410 |  0.0069

Table 4.3 — Comparison of average computation time over NEDC.

Apart from NEDC, the reference series HEV is also investigated over FTP-72 and HY-
WEFET. Results of energy consumption over FTP-72 and HYWFET are correspondingly
illustrated in Fig. 4.10a and 4.10b. Observations of the minimal energy consumption
over NEDC were also true to those over FTP-72 and HYWFET.

6 : : : 6 : : :
B FC Il rC’ [TFC B FC ElrC’ [TFC

= =

~ ~

= =

O 2 ] O 27 1
e &

0 0
HOT VHOT SHMGRAB-ECO HOT VHOT SHMGRAB-ECO
(a) FTP-72 (b) HYWFET

Figure 4.10 — Minimal energy consumption of reference series HEV over FTP-72 and
HYWFET.

The relative errors of minimal energy consumption are summarized in Table 4.4
and 4.5 for FTP-72 and HYWFET, respectively. The discrepancies of minimal energy
consumption between grid-point data and of predictive analytic models were higher over

HYWEFET. In addition, the minimal energy consumption was significantly overestimated



90 CHAPTER 4. Minimal Energy Consumption of Hybrid-Electric Vehicles

with powertrain models of predictive analytic models over HYWFET, compared with

other missions.

HOT | VHOT | SHM | GRAB-ECO
e? (%] | -4.46 | -4.14 | -4.66 -3.75
eP[%] | 1.94 | 229 | 1.96 2.55

Table 4.4 — Relative errors of minimal fuel consumption over FTP-72.

HOT | VHOT | SHM | GRAB-ECO
e [%] | -0.45 | -0.34 | -1.12 -0.32
P [%] | 6.65 | 6.55 | 4.96 6.03

Table 4.5 — Relative errors of minimal fuel consumption over HYWFET.

As for average computation time of each evaluation, they are listed in Table 4.6
and 4.7 for FTP-72 and HYWFET, respectively. Apart from the significant abatement
of computation time by SHM and GRAB-ECO, the average computation time also
associated with the duration of missions. However, the average computation time of

GRAB-ECO seemed not to be affected by the duration of missions.

Table 4.6 — Comparison of average computation time over FTP-72.

HOT | VHOT | SHM | GRAB-ECO
tS[s] | 1246.95 | 0.48280 | 0.10300 | 0.0128
t?[s] | 915.02 | 0.74540 | 0.04740 0.0073
t! [s] | 988.95 | 0.67450 | 0.04740 | 0.0071

HOT | VHOT | SHM | GRAB-ECO
t2[s] | 700.89 [ 0.2943 [ 0.0536 |  0.0121
t4[s] | 538.21 | 0.6169 | 0.0333 |  0.0076
¥ [s] | 538.98 | 0.3308 | 0.0270 |  0.0068

Table 4.7 — Comparison of average computation time over HYWFET.

4.5.2 Parallel Hybrid-Electric Vehicle
Reference Vehicle

Main features of the investigated parallel HEV are summarized in Table 4.8, where
battery is BAT ID1 in Table 2.11, and electric motor is PMSM ID5 in Table 2.14.
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Vehicle m, [kg] | 1814
R, [m] | 0.317
Cyo [N] | 93.5
Cy1 [N/(m/s)] | 5.29
C,» [N/(m/s)?] | 0.536
Engine 7, | SI/NA
V, [L] 1.4
7, [Nm] 130
P, [kW] 60
Battery o HP
Qp [Ah] | 31
Ky 60
Electric Motor ‘ Z. ‘ PMSM
7., [Nm] 36
P [kW] 38
Drivetrain I, | MT-5
Rfd 3.7

Table 4.8 — Main features of investigated parallel hybrid-electric vehicle.

Results and Analysis

Fig. 4.11 illustrates the minimal energy consumption evaluated via various minimization
methods over NEDC based on different powertrain component models. The black, blue,
and cyan bars correspondingly represent the evaluations based on grid-point data,
descriptive analytic models, and predictive ones.

The main errors were from SHM and GRAB-ECO with powertrain components
models in terms of grid-point data. In fact, the minimal energy consumption via SHM
is not strictly based on powertrain model of grid-point data due to the analytic nature
of Hamiltonian function. As for GRAB-ECO with powertrain model of grid-point data,
the error may be caused by the discretization level of driving cycle, and the non-strict
fulfillment of final state of charge of the battery.

Detailed figures of the relative errors of minimal energy consumption are summa-
rized in Table 4.9. In summary, both SHM and GRAB-ECO can evaluate the minimal
energy consumption for parallel HEVs. Predictive analytic models of powertrain compo-
nents were able to provide very similar minimal energy consumption for parallel HEVs
compared with powertrain model of grid-point data.

The computation time of each evaluation is listed in Table 4.10 in terms of CPU time
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Figure 4.11 — Minimal energy consumption of reference parallel HEV over NEDC.

HOT | VHOT | SHM | GRAB-ECO
e?[%] | -0.06 | -0.10 | -3.01 3.49
eP[%] | -0.63 | -0.67 | -3.22 2.78

Table 4.9 — Relative errors of minimal fuel consumption over NEDC.

in [s]. Significant computation time abatement was achieved by GRAB-ECO through
shrinking the dimensions of control space.

Specifically, SHM minimized energy consumption within hundred of milliseconds,
which was about threes times less than that of VHOT. Moreover, GRAB-ECO approxi-
mated the minimal energy consumption with eight to thirteen milliseconds, which was
about ten times less than that of SHM.

HOT [ VHOT | SHM | GRAB-ECO
t5 [s] | 204.78 | 0.2759 | 0.0928 0.0135
t?[s] | 224.82 | 0.3263 | 0.0912 0.0083
t! [s] | 224.46 | 0.2722 | 0.0918 0.0081

Table 4.10 — Comparison of average computation time over NEDC.

In addition to NEDC, the reference parallel HEV is investigated over FTP-72 and
HYWFET. The minimal energy consumption are depicted in Fig. 4.10. Regardless of
missions, the minimal energy consumption obtained through different optimal control
techniques but with the same powertrain model typology was close to each other.

Exact errors of the minimal energy consumption are summarized in Table 4.11 and
4.12 for FTP-72 and HYWFET, respectively. The largest one was less than 4%.

The average computation time of evaluations is separately listed in Table 4.13 and
4.14 for FTP-72 and HYWFET. Apart from the significant abatement of computation
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Figure 4.12 — Minimal energy consumption of reference parallel HEV over FTP-72 and
HYWFET.

HOT | VHOT | SHM | GRAB-ECO
e [%] | 0.01 | 0.01 |-3.42 3.17
eP [%] | -0.12 | -0.10 | -2.88 3.69

Table 4.11 - Relative error of fuel consumption over FTP-72.

HOT | VHOT | SHM | GRAB-ECO
e (%] | -3.71 | -3.69 | -0.33 1.02
eP[%] | -3.10 | -3.04 | 0.87 2.27

Table 4.12 — Relative errors of minimal fuel consumption over HYWFET.

time of SHM and GRAB-ECO, the average computation time was mission-dependent as
well. This dependency was significant to HOT, VHOT, and SHM, except for GRAB-ECO.

Table 4.13 — Comparison of average computation time over FTP-72.

Table 4.14 — Comparison of average computation time over HYWFET.

HOT | VHOT | SHM | GRAB-ECO
t5[s] | 221.84 | 0.3143 | 0.1056 | 0.0138
t77s] | 262.14 | 0.3071 | 0.1041 |  0.0085
t? [s] | 285.07 [ 0.3254 [ 0.1056 |  0.0082

HOT | VHOT | SHM | GRAB-ECO
t5[s] | 243.23 [ 0.1896 | 0.0656 | 0.0132
t77s] | 187.30 | 0.1887 | 0.0638 |  0.0091
t?[s] | 186.82 [ 0.1915 [ 0.0648 |  0.0080
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To summarize, the average computation time of energy consumption minimization
was gradually diminished from hundreds of seconds via HOT, to a few hundreds of
milliseconds via VHOT, to about hundred of milliseconds through SHM, finally to about
ten of milliseconds through GRAB-ECO. Meanwhile, the accuracy of minimal energy

consumption was maintained at the same level.
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Chapter

Analytic Energy Consumption of

Single-Source Vehicles

In comparison with Quasi-Static Simulation (QSS), FACE is developed to fast approxi-
mate energy consumption and to optimize dimensioning parameters of a vehicle propul-
sion system. Based on reference vehicles and specific missions, FACE analytically
approximates the energy consumption of single-source vehicles, including conventional
and battery-electric vehicles. Sensitivity of powertrain dimensioning parameters is
presented in simplified expressions for the intuition purpose. The FACE is further

compared with QSS in terms of the energy consumption.

5.1 Conventional Vehicle

FACE, standing for Fully-Analytic energy Consumption Estimation, analytically ap-
proximates the energy consumption of a conventional vehicle with dimension-related
parameters and cycle-related parameters. Dimension-related parameters consist of
dimensioning parameters of powertrain components and vehicles. The dimension-
related parameters are vehicle-dependent, such as engine displacement and vehicle
mass. Cycle-related parameters are in function of mission variables, such as velocity
and acceleration. For conventional vehicles, gear sequence is also a mission variable.
For example, a cycle-related parameter can be v2an,. Details of the dimension- and
cycle-related parameters are found in the following section.

Considering the evaluation of energy consumption, the dimension-related param-

eters are originated from the investigated conventional vehicle; whereas cycle-related

97
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parameters are determined a priori based on a reference vehicle. Moreover, cycle-related
parameters are influenced by the status of the internal combustion engine. Specifically,
an engine converts burned fuel to mechanical power in propulsion phase; whereas the
engine does not consume any fuel during the braking condition. Moreover, the idling

fuel consumption is assumed to omit due to the adoption of stop-start systems.

5.1.1 Fully Analytic Energy Consumption Estimation

Due to high performance of an internal combustion engine, the operating points over a
standardized mission are often concentrated at low speed and low- and mid-load area
in its efficiency map. Thus, only the first case of the light-duty engine piece-wise model
is implemented in FACE. Combining analytic models of internal combustion engine in
Eq. 2.2 (only first case), transmission in Eq. 2.24 and 2.25, and vehicle load model in Eq.
2.38, the power of burned fuel at time ¢ is written by

kel Cvov + kel Cvlvz + kel Cv21/3 + kelva

P :k ’
of =R ¥ T ks

(5.1)

where P, is valid only when vehicle load F; > 0.

Descriptive parameters in Eq. 5.1, such as k,g, k.1, and k;5, are substituted with
their corresponding predictive models introduced in Chapter 2. Thus, dimensioning
parameters constitute the dimension-related parameters, which depend on the inves-
tigated vehicle. Then, cycle-related parameters are separated in each term of the full
expansion of Eq. 5.1. Because of the implementation of a reference vehicle, cycle-related
parameters are constant in FACE.

Consisting of dimension-related variables and cycle-related parameters, FACE for

conventional vehicles is expressed as

i=5,j=1,k=8

E;r = Z D;iixCijk, (5.2)
i=1,j=0,k=0

where D;j; are dimension-related variables of the investigated vehicle, and C; . are cycle-
related parameters of a reference vehicle, subscripts i, j, k correspond to the exponents
of velocity, acceleration, and gear number.

The dimension of the full expansion of Eq. 5.2 is so large that both dimension-and
cycle-related parameters are simplified. Details of each dimension-related parameter

are found in Appendix D.1. As for the cycle-related parameters based on a reference
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vehicle, they are summarized by

Cijk = Zvi(t)af(t)n’;(t)m, (5.3)

teo
where the mission variables —including, velocity v, acceleration a, and gear shift schedule
n; — the set of effective time steps o, and the time interval At are involved.

The set of effective time steps o is defined by
o={t: F(t)>0,telty, tf]}, (5.4)

where F; is vehicle load estimated in Eq. 2.38, o is the set of valid time steps based on

the reference vehicle.

Since not all of the combinations of i, j, and k exist in FACE, the valid combinations

for conventional vehicles are summarized as

i =1,jk ={00,01,02,03,04,10},

i =2,jk ={00,01,02,03,04,05,06,07,08,10,11,12,13,14},

i = 3,jk =1{00,01,02,03,04,05,06,07,08,10,11,12,13,14,15,16,17,18}, (5.5)
i = 4,k ={00,01,02,03,04,05,06,07,08},

i =5,k ={00,01,02,03,04,05,06,07,08]}.

5.1.2 Sensitivity of Dimensioning Parameters

Although FACE is developed, relations between energy consumption and powertrain di-
mensioning parameters are implicit in Eq. 5.2. To make FACE more intuitive, sensitivity
of powertrain dimensioning parameters proffers explicit relations below.

Concerning dimensioning parameters of internal combustion engines, the energy

consumption is a linear function of engine displacement, which yields
Eef(ve) = Ke0 + Ke1 Ve, (5.6)

where parameters «...) are generic and derived from Eq. 5.2. Expressions of parameters
x will not be fully expanded for simplicity reason.
Regarding the dimensioning parameters of drivetrain, quadratic models are feasible

to the gear ratios of first and last gear (R; and Ry) and the ratio of final drive (Ryg4),
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which are given by

E;f(Ri1) =xt0+ kiR + KtZthp (5.7)
Eef(Rtk) = K3+ Keg Ry + Kt2Rt2kz (5.8)
Eef(Rfd) = KdO"'Klefd"'KdZR?’d' (5.9)

Note that, the overall gear ratios are considered for R;; and Ry if the final drive is
of multiple speeds. Meanwhile, the ratio R is assumed to be one in this condition.

In addition, energy consumption is also expressed as functions of vehicle parameters.
Since parameter C, is approximated by C,( =~ m,gC,,, the relations between the energy

consumption and vehicle parameters are separately presented as

E.f(Cya) = Kpo + %u1 Co, (5.10)
E;r(Cy1) = Kp2 +%43C01, (5.11)
Ef(Cyo) = Kpg +%u5Cy0, (5.12)
E;f(my) =Ky + Ky7my (5.13)

5.2 Battery-Electric Vehicle

To optimize the dimensioning parameters of powertrain components, FACE is also
developed for battery-electric vehicles with single-speed transmissions. Similar to con-
ventional vehicles, FACE estimates the energy consumption of a battery-electric vehicle
with dimension- and cycle-related parameters. Dimension-related parameters associate
with a battery-electric vehicle to investigate, including battery, electric motor/generator,
and single-speed transmission; whereas cycle-related parameters are mission-dependent

and reference-vehicle-dependent constants.

In a battery-electric vehicle, battery is discharged as an energy source to propel the
vehicle. Yet, it can also be charged to recuperate energy during braking. These operations
segment the analytic model of battery electrochemical power into to conditions because
of the efficiency of the drivetrain. The standstill operation is included in the propelling

operation.
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5.2.1 Fully Analytic Energy Consumption Estimation

The consumed electrochemical power of battery is calculated in a piecewise function
by combining analytic models of battery in Eq. 2.30 (the quadratic model), electric
motor/generator in Eq. 2.35, and single-speed transmission in Eq. 2.22 and 2.25, and
vehicle load model in Eq. 2.38.

In the fully expanded electrochemical power of battery, the same items of mis-
sion variables are merged that account for the cycle-related parameters. The rest
terms, consisting of powertrain dimensioning parameters and constants, make up the
dimension-related parameters.

Because of its too large dimension, the expression of FACE for battery-electric

vehicles is simplified as
2 i bp
Ep, = § D] cﬁ] (B=1,2), (5.14)

where f refers traction (f = 1) and braking operation (f = 2); Df}g

parameters in accordance with vehicle operating conditions; and ij are cycle-related

are dimension-related

parameters based on a reference vehicle.
The detailed dimension-related parameters are listed in Appendix D.2; whereas the

cycle-related parameters of a reference battery-electric vehicle are summarized as

ch= Y vnan, (6=1,2) (5.15)
tEO'bf;
where o4 are sets of time steps corresponding to vehicle operating conditions.

The time sets op(B = 1,2) in accordance with the operating conditions of a reference

vehicle are summarized in an overall time set oy, which yields

_Jopr ={t: F(t) > 0}
O—bﬂ_{ﬁbz:{tiﬁ(tKO}}. (516

\%

The existing combinations of i and j in Eq. 5.14 and 5.15 are summarized as

i=1{0,1,2,3,4,5,6,7,8},
i=1{0,1,2,3,4,5,6), ]
i=1{0,1,2,3,4},j

0,
L,
2,

(5.17)
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i={0,1,2},j=3,
i={0},j=4

Because of the implemented transmissions, the FACE in this section is dedicated to

battery-electric vehicles of single-speed transmissions.

5.2.2 Sensitivity of Dimensioning Parameters

Explicit relations between energy consumption and powertrain dimensioning parame-
ters (including vehicle parameters ) are formulated to make FACE intuitive and obvious.
Concerning dimensioning parameters of battery, FACE is nonlinear as a function of

battery cell number Kj, and battery cell capacity Q; as expressed by

Kp
Epe(Kp) :KbO"'Kbl]Cb"'IC_;; (5.18)
Epe(Qp) = Kp3 + k4 Qp + K359, (5.19)

Regarding to dimensioning parameters of electric motor/generators, FACE is a fourth
degree polynomial as a function of rated torque 7, and of base speed N,,. The quartic

polynomials are re-written by

Ebe(Tm) =Kmot Kmle + KmZTrr% + Km3Tnf + Km4TnA11x (5-20)

Ebe(Nm) =Kms t+ Km6Nm + Kﬂl7N13[ + Km8Nn31 + Km9Nn%' (5~21)

With regard to dimensioning parameters of a drivetrain, high nonlinearity of FACE

exists, such as

4
_ i Kds  Kde | K47
Ebe(Rt)— ;KdiR;+?t+R—%+R—?, (522)
4
j Kd5 | Kde | Kdz
Ebe(Rfd) = KdiRz a7t + 2 + 7 (5.23)
; ! Rfa Ria Rig

Relations between energy consumption and vehicle parameters are given by

Ebe(CUZ) =Ky T Kp1 Cv2 + Kv2C32 + Kv3C32 + Kv4C:;12r (5~24)

Ebe(cvl) =Kys5 + Kv6cv1 + KU7C31 + Kv8C31 + Kv9cqé;111 (5~25)
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2 3 4
Ebe(CVO) =Kyi0 t Kvllch + K’VIZCVO + Kv13C7/0 + K’U14C7/O' (5-26)

_ 2 3 4
Epe(my) = Ky15 + Ky16My + Ky171, + Ky181M5, + Ky 1971, (5.27)

5.3 Analytic Evaluation of Energy Consumption

FACE is applied to approximate the energy consumption of several single-source vehicles.
The energy consumption is compared based on the evaluation with different methods,
such as of FACE and Quasi-Static Simulations (QSS). The predictive analytic models of
powertrain components are applied to the evaluation of energy consumption through
FACE. Instead, the grid-point data is used in the evaluation via QSS. As a result, errors

of different types of powertrain data is introduced.

5.3.1 Conventional Vehicle

Conventional vehicles of different engine technologies but same drivetrain and vehicle
are investigated through both FACE and QSS. Note that, the type of powertrain models
in FACE is different from that in QSS.

Reference Vehicles

Main characteristics of the investigated conventional vehicles are summarized in Table
5.1. The reference vehicle (Vehicle I) and the investigated vehicles (Vehicle II, III, and
IV) have the same vehicle parameters and drivetrain. The varied dimension-related
variables are composed of engine displacement and the engine rated torque and power.
In addition, Vehicle I is used to estimate the cycle-related parameters for the evaluation

of fuel consumption of Vehicle II, III, and IV over various missions.

Results and Analysis

Comparisons of fuel consumption are illustrated in Fig. 5.1. The highest error between
FACE and QSS is presented by Vehicle I over FTP-72, which is 3.85%. As for the
least one, it is about 0.83% of Vehicle II over HYWFET. However, there are several
sources of errors that could impact the comparisons. Firstly, models of powertrain
components are different, which are grid-point data and predictive analytic model.
Secondly, FACE is developed based on the first case of light-duty engine model in Eq.

2.2, which means engine power that is larger than the corner power (P, > P,.) requires
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Vehicle I [ 0 | 1 vV
m, [kg] 1595
R, [m] 0.3017
Cyo [N] 134.094
Cy1 [N/(m/s)] 3.747
Cy2 [N/(m/s)?] 0.3486
Engine Z, | CI/TC | SI/TC | SI/NA/LB | SI/NA/SB
V. [L]| 21 2.1 1.9 1.9
7, [Nm] 292 302 166 166
P, [kW] 90 150 80 80
Drivetrain Z; DCT-6
Rya 412 & 3.04

Table 5.1 — Main features of investigated conventional vehicles.

less fuel consumption. The reference cycle-related parameters may affect the energy
consumption as well. In addition, accumulative effect is not negligible due to repeated

or very similar operating points.

Taking the errors between models of powertrain components into account, good
accuracy allows FACE to approximate fuel consumption and to optimize powertrain

dimensioning parameters.

5.3.2 Battery-Electric Vehicle

Two battery-electric vehicles with different electric motor/generators are investigated to

show the accuracy of FACE.

Reference Vehicles

Features of the investigated battery-electric vehicles are listed in 5.2, in which Vehicle I
is the reference vehicle for the evaluation of cycle-related parameters.The dimension-

related variables are composed of the rated torque and power of electric motors.

The battery-electric vehicles are investigated through QSS and FACE over three
missions. The energy consumption is depicted in Fig. 5.2. Considering the powertrain
model of the electric motor/generators, grid-point data is implemented in the evaluation

of QSS; whereas predictive analytic models are applied in the approximation of FACE.
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I QSS IlFACE

B QSS IlFACE

0
NEDC FTP-72 HYWFET NEDC FTP-72 HYWFET
(a) Vehicle I (b) Vehicle II
10 10
B QSS I FACE B QSS I FACE
g
4
=
~
=
O
~ 2.
0
NEDC FTP-72 HYWFET NEDC FTP-72 HYWFET
(c) Vehicle III (d) Vehicle IV

Figure 5.1 — Fuel consumption of conventional vehicles evaluated through QSS and

FACE.

Vehicle I [ I
m, [kg] 1648
R, [m] | 0.3952
Coo [N] | 141.947

Cy1 [N/(m/s)] 1.153

C,» [N/(m/s)?] | 0.3952

Battery 1y HE
Qyp [Ah] 31
Ky 192
Electric Motor I PMSM

7., [Nm] | 108 | 108
P [KW] | 79 | 45

Drivetrain Ri| 14

Table 5.2 — Main features of investigated battery-electric vehicles.
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Results and Analysis

Results of energy consumption of the reference and investigated vehicles are shown
in Fig. 5.2, where Vehicle I is the reference. The energy consumption of Vehicle I is
evaluated via the fully analytic approach, in which the cycle-related parameters do not
cause any error. The greatest error of 7.69% is found, which is mainly caused by the
model errors between grid-point data and the predictive analytic models of the electric
motor/generator.

However, the differences of energy consumption of Vehicle II are smaller than
Vehicle I over all investigated missions. FACE universally underestimates the energy
consumption. The errors are caused by powertrain models, reference vehicle, and
cumulation of similar operations of the electric motor/generator. Nonetheless, Vehicle

II shows a good approximation (see Fig. 5.2b).

B QSS [lTFACE B QSS IFACE

0
NEDC FTP-72 HYWFET NEDC FTP-72 HYWFET

(a) Vehicle I (b) Vehicle II

Figure 5.2 — Energy consumption of battery-electric vehicles evaluated with QSS and
FACE



Chapter

Analytic Minimal Energy
Consumption of Hybrid-Electric
Vehicles

Compared with single-source vehicles, the mandatory control optimization for the
evaluation of the minimal energy consumption significantly augments the complexity of
the development of Fully-Analytic energy Consumption Estimation (FACE) for hybrid-
electric vehicles. Nevertheless, FACE is developed based on distinct ideas for series and

parallel hybrid-electric vehicles.

6.1 Series Hybrid-Electric Vehicle

For series hybrid-electric vehicles, FACE approximates the minimal energy consumption
based on further simplified GRAB-ECO. The simplification requires an analytic model
of an Auxiliary Power Unit (APU).

6.1.1 Auxiliary Power Unit

The operating point of an APU owning the best efficiency is analytically modeled by

128kgor”  128kg 'Ry 128kgpm” Ry, , 125kg3p,

p3vewei PSVe P3Ve P3@ei

15625k 4p?V,
_ ¢ L L (6.1)
128n°Rgpsw,; di da

Hapu =~
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where n;(i =1, 2) and d;(i = 1, 2) are numerator and denominator terms, respectively;
and p,;(i = 1,---,11) are polynomials, some of which are nested in n;(i = 1, 2) and
d;(i=1,2).

Fig. 6.1 depicts the efficiency of the best-efficiency point evaluated with analytic
model (denoted by 7;,,), and the efficiency of the optimal operating line (indicated
by 114pu) as a function of engine speed for different gear ratios R, between the internal

combustion engine and the electric generator.

40 ‘ 40 ‘

771117'! ‘ 77{9;‘1)11 77(11’" ‘ n;‘pu
X 35| | X5l ,
s s /_‘_\
30 /‘-/‘—_’_\ 30 L L
1000 2000 3000 4000 1000 2000 3000 4000
Ne [rpm] Ne [rpm]
(a) Re=23 (b) Rg=3.5

Figure 6.1 — Best-efficiency point of APU in terms of gear ratio.

As a supplementary, the impacts of engine displacement on the best-efficiency point
of APU are illustrated in Fig. 6.2a. The developed analytic model of best-efficiency point
can predict the best efficiency.

40 ‘ . 40 ‘ .
= Napu ‘ na,pu Tapu ‘ n{:pu
=351 Y ]
30 : : 30 : :
1000 2000 3000 4000 1000 2000 3000 4000
Ne [rpm] Ne [rpm]
(a)V,=1.2L (b)V,=2.21L

Figure 6.2 — Best-efficiency point of APU in terms of engine displacement.
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6.1.2 Fully Analytic Energy Consumption Estimation

Considering the optimal control problem of series HEVs, it is simplified based on GRAB-
ECO. The idea is to assume that a series HEV drives like a battery-electric vehicle over
a given mission. At the end of the mission, battery is depleted due to various external
resistances and powertrain efficiencies. The depleted energy is ultimately recuperated
by recharging the battery with APU that works at its best-efficiency operating point.

Based on the developed analytic model of the best-efficiency point of an APU in
Eq. 6.1, FACE fully involves dimensioning parameters of internal combustion engines,
electric generators, and simple gear train R, for series hybrid-electric vehicles.

The FACE combines the consumed electrochemical energy of battery-electric vehicles
in Eq. 5.14 and the analytic model of APU in Eq. 6.1. Therefore, FACE is expressed as

B
Y, Pl(nAt
tEO‘bIg
Eef = * ’ (/J) = 17 2); (6.2)
Napu

where time sets oyg(f = 1,2) are the same as those for battery-electric vehicles.
The analytic model of best-efficiency point is independent from the cycle-related
parameters. As a result, the minimal energy consumption model in Eq. 6.2 can be
further simplified by lumping the analytic model in Eq. 6.1 into dimension-related

variables, which yields

bB B
Eof = pfct, (p=1,2) (6.3)

2 i=8,j=4
p=1

i=0,j=0

Despite the same form as battery-electric vehicles, FACE approximates the minimal
fuel energy consumption for series HEVs. The analytic model relating to APU in Eq.
6.3 is involved in the dimension-related variables ’ijﬂ. Concerning the cycle-related
parameters in Eq. 6.3, they are exactly the same as that for battery-electric vehicle in Eq.

5.15.

6.2 Parallel Hybrid-Electric Vehicle

FACE for parallel hybrid-electric vehicles is developed based on SHM with a few essen-
tial assumptions Thus, the anticipated difficulties consist of combined analytic model
of battery and electric motor/generator, estimation of the proper adjoint state variable,

and an analytic model of the minimal energy approximation. Methods to resolve these
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problems are individually introduced hereafter.

6.2.1 Analytic Model of Assembled Battery and Motor

In Section 4.3, Selective Hamiltonian Minimization (SHM) is developed based on the
quadratic analytic model of battery in Eq. 2.30 for the sake of better accuracy, full
operating range, and resulting shorter computational time. However, the analytic
model of assembled battery and electric motor in Eq. 4.23 cannot directly account
for dimensioning parameters of battery and electric motor/generator. Therefore, the
bi-linear model of battery in Eq. 2.31, instead of the quadratic one, is implemented to
encompass dimensioning parameters of battery and electric motor. Consequently, the
analytic model of the combined battery and electric motor is given by

kps + Kpa (Ko + K1 @ + ko @2) + kpakpyz Py + kb‘*’;’"‘* P2, p,>0,

Pye = ) koekns (6.4)
ka+kb6(km0+kmlwm+km2wm)+kb6km3pm+ P Pm! Pm <0.
m

As a result, the possible solutions to the optimal control problem in Eq. 4.38 is

rewritten by

where Py, ;,,c1(t,5) and Py, ,4c2(t,5), corresponding to two cases of the bi-linear model of

battery, are expressed by

(kel (t) - Skb4km3) 0)51(1‘)
2Skb4km4

(ko1 () = skyekinz) w%(t).
25kb6km4

, (6.6)

Pm,uncl(t’s) =

Pm,uncz(tis) = (6.7)
Additionally, the adapted control space is further simplified by u € {y; : i =1,---,7},
where subscript i indicates the it" functional in the control space in Eq. 6.5.

A comparison has been made between the energy consumption based on the piece-
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wise linear and the quadratic battery model. Selctive Hamiltonian Minimization (SHM)
is applied to evaluate the energy consumption of a reference vehicle. As illustrated
in Fig. 6.3, the bilinear model of battery has different level of errors depending on
missions. The discrepancy of minimal fuel consumption is negligible over NEDC; where
the differences over FTP-72 and HYWFET are slightly increased (the error is about
2.34%).

- Quadratié [ ] Bi-Linear

NEDC FTP-72 HYWFET

Figure 6.3 — Minimal fuel consumption of different battery models.

6.2.2 Equivalent Energy Consumption Model

To develop FACE based on SHM, an analytic model, known as the equivalent energy
consumption model, is proposed to evaluate the minimal energy consumption. The

equivalent energy consumption model is

tf
Egf'(s)= Z(p;f(t) +5B;, (1) At, (6.8)

t=t,

where E;‘ZV is the equivalent fuel energy consumption, s is the adjoint state variable, P v is

the burned fuel power resulting from optimal control laws, and P}, is the electrochemical
power of battery based on optimal control laws.

The minimal energy consumption and the equivalent energy consumption are com-
pared for an exemplified parallel hybrid-electric vehicle, as illustrated in Fig. 6.4. The
energy of battery Ey,, of burned fuel E,f, and of equivalent energy consumption E;?v
are presented as a function of adjoint state variable s. The minimal energy consumption
is indicated by a red dot crossed by a horizontal red dashed line, which is determined

by the proper adjoint state variable of the reference vehicle s"/.
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Figure 6.4 — Equivalent minimal fuel consumption of hybrid-electric vehicles.

As observed in Fig. 6.4, the minimal energy consumption is assumed to be approx-
imated by the equivalent energy consumption for any given adjoint variable s, which

yields
Ef~ E:;’v(s), Vs. (6.9)

The equivalent energy consumption can approximate the minimal energy consump-
tion for a hybrid-electric vehicle when the adjoint state variable s, is chosen. To further
precise the approximation of equivalent fuel consumption, the adjoint state variable of
a reference vehicle is used, thereby leading to

E.f= Ej}”(s”f ). (6.10)

6.2.3 Fully Analytic Energy Consumption Estimation

Based on the equivalent energy consumption model and a reference hybrid-electric

vehicle, the Fully Analytic fuel Energy Consumption Estimation (FACE) is expressed by

Ep= ) Divc+sl Y pfes, (6.11)

i,j,€v i,j,€v

where ijev and Df-’].” are dimension-related parameters relating to engine and battery, re-
spectively; ij” denotes cycle-related parameters derived from a reference hybrid-electric
vehicle, parameters 7,j,€,and v are given by i =0,---,6; j =0,---,2; e =1,---,10; v =

1,---,K;; and s"f is the adjoint state variable of the reference vehicle.
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Considering the dimension-related parameters, they are further clustered into K;
groups due to the stepped-ratio transmission. The dimension-related parameters are
given in Appendix E.2 because of too many equations. The cycle-related parameters are

summarized as

c = Z vi(H)al ()AL, (6.12)

tE€0e,

where the time set o, is defined by

ooy ={{t): (5,5 ) = ue(t,57F), Ky(t) = v} (6.13)

The valid combinations of i and j for hybrid-electric vehicles are summarized as

i=10,1,2,3,4,5,6},j =0,
i=10,1,2,3},j=1, (6.14)
i=1{0},j=2

A possible optimal control solution is exemplified to show how dimension- and
cycle-related parameters are derived. The burned fuel power in the first unconstrained

condition (e = 1) is expressed by

PlY =DSV v + D5 v? + D5V v + Dy vt + DY v + DEyYve + DSV va + D5 Y v?a. (6.15)

Consequently, the energy of burned fuel in the unconstrained condition is evaluated

by

Ky

1v _ elv elv 2 elv 3 elv 4
By =) (o Y vemsh Y vten Y vtemg Y o
v=1 teoy, teoy, teoy, teoy,
elv 5 elv 6 elv elv 2
2o Y oDl Y b4 Y var gl Zva)
teoy, teoy, teoy, teoy,
K, i=6,j=1
_ eev eV
-y ) oy 610
v=1i=0,j=0

The sensitivity of dimensioning parameters are not presented owing to the high
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nonlinearity of FACE for parallel HEVs.

6.3 Analytic Evaluation of Minimal Energy Consumption

Energy consumption of hybrid-electric vehicles of series and parallel architectures is
evaluated through FACE and compared the one via QSS.

6.3.1 Series Hybrid-Electric Vehicle
Reference Vehicles

A baseline series hybrid-electric vehicle and the one of partially varied dimensioning
parameters are separately investigated with FACE and VHOT. Features of these two

series HEVs are summarized in Table 6.1.

Vehicle I
m, [kg] 1400
R, [m] 0.36
Cyo [N] | 137.74
Cu1 [N/(m/s ] 0
v2 [N/(m/s)?] | 0.432
Engine Z, CI
V, [L] 0.7
7, [Nm] 66
P, [kW] 44
Electric Generator ‘ I, ‘ PMSM
7, [Nm|] 90
Py [kW] 49
Battery A HE
&y [kWh] 7
Electric Motor \ I \ PMSM
7., [Nm] 250
P [KW] | 98 | 120

Table 6.1 — Main features of investigated series hybrid-electric vehicles.
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Results and Analysis

The energy consumption in terms of fuel consumption are depicted for the reference and
investigated vehicle in Fig. 6.5. The FACE approximates the minimal fuel consumption
almost the same as the one by VHOT. The differences is mainly caused by the power
losses of the electric components due to the simplified assumption for series hybrid-

electric vehicles.

B QSS Il FACE B QSS Il FACE

0
NEDC FTP-72 NEDC FTP-72

(a) Vehicle I (b) Vehicle II

Figure 6.5 — Minimal energy consumption of reference and investigated series hybrid-
electric vehicles.

6.3.2 Parallel Hybrid-Electric Vehicle
Reference Vehicles

Concerning parallel hybrid-electric vehicles, the characteristics of the reference parallel
HEV Vehicle I and the investigated one Vehicle II are summarized in Table 6.2. The
main difference is the installed internal combustion engine. When scaling the engine
displacement for Vehicle II, the maximum brake effective pressure is maintained within
10% variation at most so that the scaled engine can be practical. The minimal energy
consumption of Vehicle I and II is evaluated through both FACE and VHOT.

Results and Analysis

The minimum energy consumption of Vehicle I and I is illustrated and compared in Fig.
6.6 over NEDC and HYWFET. Concerning Vehicle I, the minimum energy consumption
approximated by FACE is the same as the one evaluated through QSS in terms of VHOT.
This is due to the application of the same type powertrain model. As for Vehicle II,
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Vehicle I | I
m, [kg] 1814
R, [m] 0.3173
Cyo [N] 93.5
Cy1 [N/(m/s)] 5.29
C,2 [N/(m/s)?] 0.536
Engine Z, | SI/NA/SB
V. [L] | 1.40 | 1.26
7, [Nm] 130
P, [kW] 60
Battery Iy HP
Qy, [Ah] 31
Ky 54
’ Electric Motor ‘ L, ‘ PMSM ‘
7, [Nm] 28
P [kW] 37
’ Drivetrain ‘ I ‘ MT-5 ‘

Table 6.2 — Main features of investigated parallel hybrid-electric vehicles.

the minimal energy consumption of FACE is slightly higher than the one of VHOT.

However, the differences is neglected due to its small magnitude.

B QSS Il FACE B QSS EFACE

0
NEDC HYWFET NEDC HYWFET

(a) Vehicle I (b) Vehicle II

Figure 6.6 — Minimal energy consumption of reference and investigated parallel hybrid
electric vehicles.
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Chapter

Optimal Design Problem Formulation

In this chapter, generic issues relating to the optimal design of a vehicle propulsion sys-
tem are briefly discussed, including the design objective and constraints. Furthermore,
the problem of the optimal design for a vehicle propulsion system is formulated and

solved through the bi-level and uni-level co-optimization approach.

7.1 Design Objective

Design of Vehicle Propulsion Systems (VPSs) is confronted with high complexities due
to powertrain technology (conventional, battery-electric, or hybrid-electric vehicles),
powertrain architecture (in particular, series, parallel, and power-split architecture
for HEVs), powertrain component (mechanical and electrical ones, such as internal
combustion engine, transmission, battery, electric motor/generator), powertrain con-
trol (powertrain control optimization for the minimal energy consumption in HEVs).
Meanwhile new vehicle product offerings must concurrently response to meet customer
wants and regulatory requirements. To cope with these complexities, the optimal design
technique is highly requested to achieve the desired requirements, for instance, lower
energy consumption.

Throughout this thesis, the objective of the optimal design problem for vehicle
propulsion systems is solely to minimize the energy consumption by finding the best

dimensioning parameters of powertrain components, which yields

in £(d), 7.1
min (d) (7.1)
s.t. gi(d)<0, foreachie{l,...,m}, (7.2)

119
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hj(d):O, foreach je{l,...,n}, (7.3)

where d presents generic dimensioning parameters to optimize that is defined by d €
{S S, U5, US,US,, U Sg}, Saam 1s the admissible design space that is constrained by
desired requirements, £(d) represents the energy consumption, and g;(d) and h;(d)
indicate generic equality and in-equality constraints.

In particular, the objective function £(d) depends on powertrain technologies. Con-

sidering a conventional vehicle, the design objective function is

£(d) = ff P(t,d) dt; (7.4)

whereas, the objective function for battery-electric vehicles is

L(d) = th Py, (t,d) dt. (7.5)
to

The objective function of hybrid-electric vehicles is more complex than that of single-
source ones because of the inevitability of control optimization for the evaluation of the

minimal energy consumption. Thus, the objective function of the optimal design is

t
[Z(d):‘[ Pef(u(t),t,d)dt. (7.6)
to

7.2 Design Constraint

Constraints of the optimal design for vehicle propulsion systems are introduced and
partially determined by the parameters of vehicle attributes, such as top speed, acceler-
ation, and gradeability. Simple analytic models are developed to evaluate the design

constraints based on the required vehicle attributes.

7.2.1 Vehicle Attribute

The considered constraints in the design problem of vehicle propulsion systems mainly
consist of vehicle performance parameters, which are known as vehicle attributes.
Despite comprehensive vehicle attributes discussed in [27], the most interesting ones are
composed of vehicle top speed v;,,, gradeability of start-up a;; and of high speed a5, and

standstill acceleration time from 0 to 100 km/h t1y. Apart from the aforementioned
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parameters, all-electric range D is of high interest, particularly for plug-in hybrid-

electric and battery-electric vehicles.

Top Speed

As a frequent mentioned vehicle attribute of light-duty vehicles, the top speed (denoted
by v4,p) is defined as a constant cruising speed that is determined by the available power
and the resistance on a flat road.

The tractive effort is further simplified, because the energy consumption of the
rolling friction is typically one order of magnitude smaller than the aerodynamic friction
consumed power at vehicle top speed. Thus, the approximation of the maximum traction

power for passenger cars is written as

3
Par CarAarvtop
2 ’

Pz',v ~ (i=em), (7.7)
where e indicates internal combustion engine in a conventional or hybrid-electric vehicle,

whereas m refers to electric motor in a battery-electric or plug-in hybrid-electric vehicle.

Gradeability

Gradeability is a relevant metric for both light- and heavy-duty vehicles. It is defined
as the grade which a vehicle can overcome at a certain speed. The approximated
tractive effort of a vehicle climbing an uphill road with a slope a without accounting for

powertrain efficiency is

(mngrr cosa +my,gsina + O.SpWCarAa,vﬁ)Rw )
Tia = R , (i =e,m), (7.8)

where R is the dimensioning parameter of a drivetrain.
Correspondingly, the further simplified estimation of the maximum tractive power
is
P, , = m,gv(sina +C,,cosa), (i =e,m). (7.9)
In addition to the gradeability, a similar performance parameter, i.e. startability, is
considered as well for both light- and heavy-duty vehicles [74]. The startability is only

considered when a vehicle starts movement from standstill. Note that, the full load of

vehicle is applied in both gradeability and startability estimation.
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Acceleration Performance

The acceleration performance is usually described by the accelerating time from stand-
still to 100 km/h or to 60 mph and the distance covered from zero speed to a certain
speed on level road. Using Newton’s second law, the acceleration time t;(y obtained

from the maximum tractive effort is evaluated by

100/3.6
_ My
tlo“‘f TR/R, —m,gCr — 050 Corda? V- (7.10)
0 idl/ Ry v8Lrr ParCarfiar

The acceleration time from standstill to 100 km/h is not only valid for engine-based
and hybrid-electric vehicles, but for some powerful battery-electric vehicles as well.
Moreover, the acceleration time #; is not able to compute directly due to the highly
dynamic effects. A further simplified model between acceleration time and the maximal
power of the main tractive powertrain component (such as internal combustion engine
or electric motor/generator) is expressed as

2
MyV100 .
tioo = oo 5+ (E=e,m), (7.11)
1,t

where c;199 = 0.877 for diesel engine vehicles, c;199 = 0.929 for gasoline engine vehicles,
and c;199 = 0.767 for battery-electric vehicles.

A simple yet direct verification of the acceleration time model in Eq. 7.11 is demon-
strated in Fig. 7.1 for conventional vehicles. The published acceleration time is denoted
by t190, whereas the estimated acceleration time is indicated by tlljoo. The estimated

acceleration time agreed with the published one.

20 ‘ ‘ ‘ 20
=10 oy * =10 * K
+~ +~
y=x y=x
% R* =0.8810 R* =0.8831
0 : : 0 : : ‘
0 5 10 15 20 0 5 10 15 20
tmo [S} thO [S]
(a) gasoline engine (b) diesel engine

Figure 7.1 — Comparison of estimated and published acceleration time for conventional
vehicles.
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As for acceleration time of battery-electric vehicles, Fig. 7.2 shows the comparison
between the estimated values and the published ones. Despite further simplified model

in Eq. 7.11, the estimations of acceleration time agreed well with data.

20
=10} *
a3
i *
* * y=x
R? =0.9428
0 L L L
0 5 10 15 20
t100 [8]

Figure 7.2 — Comparison of estimated and published acceleration time for battery-
electric vehicles.

All-Electric Range

All-electric range is an essential design constraint for plug-in hybrid-electric and battery-
electric vehicles. The all-electric range is determined by the applicable energy of battery

and the specific energy consumption of a battery-electric vehicle, which yields

Eb =D 0 — (7.12)

where Ej, is the applicable energy of battery, D is the desired all-electric range.

7.2.2 Design Space

Design space is the admissible range of dimensioning parameters resulting from the de-
sign constraints. Vehicle attribute significantly affects the rated power and rated torque
of the power sources, such as internal combustion engine, electric motor/generator.

As a consequence, the rated power of internal combustion engine or electric motor/-

generator in different vehicle applications must satisfy
Py 2 max{Py, Pos Pyl (i = em). (7.13)

As for the rated torque of an internal combustion engine or electric motor/generator,
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it is expressed as
T, 2T, (i=em). (7.14)

In regard to the desired all-electric range, the minimal applicable energy of a battery

is constrained as
&, > Ep, (7.15)

where £ is the applicable energy of battery to size.

Additionally, implicit constraints on the dimensioning parameters of powertrain
components are taken into account. For instance, battery must be capable of providing
sufficient electrical power to electric motor/generator during vehicle operation. Con-
sidering an internal combustion engine, its rated torque is not independent from its

displacement, which yields
To = Cot Ve (7.16)

where the coefficient c,; is 148.63 Nm/L for CI/TC engines, 161.81 Nm/L for SI/TC
engines, and 93.44 Nm/L for SI/NA engines.
Furthermore, its torque of the rated power is linearly modeled as a function of engine

displacement, which is given by
Tep = CepVer (7.17)

where the coefficient c,, is 116.34 Nm/L for CI/TC engines, 136.80 Nm/L for SI/TC
engines, and 85.63 Nm/L for SI/NA engines.

Coefficients in Eq. 7.16 and 7.17 are further validated with the light-duty engines in
Table 2.4. Fig. 7.3a, 7.4a, and 7.5a illustrate the comparison of the rated torque and the
estimated one for engines in terms of SI/TC, SI/NA, and CI/TC, respectively; whereas
the comparison of the torque of rated power is correspondingly depicted in Fig. 7.3b to
7.5b.
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(a) rated torque

=250+

TeP

Z.

Te P

TeP

450

50

450

250

50

450

250 |

50

* JeP 4977:33

09 11 13 15 1.7 19 21
Ve [L]

(b) torque of rated power

* Tep ——Tp

IR

1 1.25 1.5 1.75 2

Ve [L]

(b) torque of rated power

* Tep ——Tlp

IR

1 125 15 175 2
V. [L]

(b) torque of rated power



126 CHAPTER 7. Optimal Design Problem Formulation

7.3 Design Method

The design optimization, particularly combining with control optimization for hybrid-
electric vehicles, is commonly solved through a multidisciplinary system design opti-
mization framework [75], for instance, through the bi-level co-optimization approach.
As an alternative, the uni-level co-optimization approach is proposed as well, thanks to

the development of FACE for hybrid-electric vehicles.

7.3.1 Bi-Level Co-Optimization Approach

Bi-level co-optimization approach is characterized by two optimizers that minimize the
energy consumption at two distinct levels, in which are specifically for powertrain design
and powertrain control. At the level of powertrain design, dimensioning parameters are
optimized to get the global minimal fuel consumption; optimal powertrain control is
applied to evaluate the minimum fuel consumption at the level of powertrain control
for an investigated vehicle.

A flow chart of bi-level co-optimization approach is illustrated in Fig. 7.6. Di-
mensioning parameters are initialized and transferred to control optimizer. Then the
minimal fuel consumption of vehicle propulsion systems is minimized by the design
optimizer so that the optimal dimensioning parameters are determined. Once exit
criteria are satisfied, the bi-level co-optimization process is completed and terminated.
Due to two types of optimizations, the bi-level co-optimization approach is tailored for
hybrid-electric vehicles.

Design S
& Parameter set Control optimizer

Initialization (-+)

Design optimizer Objective

Termination (DIRECT) L(d)

Figure 7.6 — Scheme of bi-level co-optimization approach.

The blue blocks in Fig. 7.6 represent operations relating to the powertrain design op-
timization in the outer loop; whereas the violet blocks are associated with the powertrain
control optimization in the inner loop. Throughout this thesis, the design optimization
is solely performed through DIRECT, whereas the control optimization is carried out by
the methods presented in Chapter 4.
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However, the bi-level co-optimization approach can be applied to single-source
vehicles by replacing the powertrain control optimization with quasi-static simulation.
Consequently, dimensioning parameters of single-source vehicles are optimized through

the bi-level design optimization approach.

7.3.2 Uni-Level Co-Optimization Approach

As the development of FACE for single-source and hybrid-electric vehicles, the dimen-
sioning parameter optimization can be regarded as a nonlinear programming problem,
consisting of objective function (which is FACE) and general constraints (from the
requirement of vehicle attributes).

By implementing FACE, the powertrain design optimization for hybrid-electric
vehicles is performed in a uni-level co-optimization approach (see Fig.7.7) because
powertrain control optimization is embedded in FACE. This uni-level co-optimization
approach is much more complex compared with the bi-level co-optimization approach
due to the high inherent nonlinearity of FACE, and the lack of suitable nonlinear solvers.
However, the nonlinear solver is possibly replaced by simple method, such as the
full space search method. Specific nonlinear solvers and optimization algorithms are

introduced within corresponding case studies in Chapter 8.

D

min yort = f(D)

yOPt popt

Figure 7.7 — Scheme of uni-level co-optimization approach.
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Chapter

Optimal Design of Vehicle Propulsion
Systems

Theories of analytic models of powertrain components, bi-level co-optimization, and
uni-level co-optimization through FACE are applied to several case studies, including
conventional, battery-electric and hybrid-electric vehicles. The energy consumption
is always minimized by optimizing dimensioning parameters of powertrain compo-
nents over specific missions through the bi-level co-optimization and the uni-level

co-optimization approach.

8.1 Design Optimization of a Conventional Vehicle

The vehicle propulsion system of a reference conventional vehicle is optimized to
further reduce energy consumption through the bi-level design optimization and uni-
level design optimization approach. After the introduction of the main features of the
powertrain and vehicle parameters, the optimal design problem describes the design
constraints, resulting design space, and characteristics of design approaches. Results of

optimized dimensioning parameters are comparatively presented and discussed.

8.1.1 Reference Vehicle

The main features of the reference conventional vehicle are listed in Table 8.1, including
vehicle parameters [76], and dimensioning parameters of internal combustion engine

and drivetrain in Table 2.4 and 2.7, respectively.

129
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Vehicle m, [kg] 1595
Rw [m] 0.308
»0 [N] 134.094
Cy [N/ m/s)] 3.7465
C,» [N/(m/s)?] 0.3486
Engine Z, CI/TC
V, [L] 2.15
7, [Nm] 292
P, [kW] 90
Drivetrain Z; DCT-6
Ryra | 412 & 3.04

Table 8.1 — Features of reference conventional vehicle.

8.1.2 Optimal Design Problem

The optimal design problem specifies the design constraints based on the reference
conventional vehicle and the resulting design space. Moreover, the applied nonlinear

solver in the uni-level co-optimization approach is specified in this case study.

Constraints

Based on the reference vehicle, design constraints consist of vehicle top speed, accelera-

tion time from 0 to 100 km/h, and gradeability, which lead to

vehicle top speed in [km/h]: > 200,
acceleration time to 100 in [s]: < 13.5,
gradeability in [%] : > 30.

The dimensioning parameters to optimize are summarized by {Z,, V,, Z;}, where Z,
contains SI/NA/SB, SI/NA/LB, and CI/TC; Z; includes six-speed manual and automated
transmission. Moreover, technological parameters Z, and Z; are represented by integers
corresponding to different technologies.

Based on the desired top speed, the rated power of engine is initially constrained
according to Eq. 7.1b. By combining Eq. 7.16 and 7.17, the minimum engine displace-
ment of each engine technology is estimated, thus leading to the overall minimum of
engine displacement V, > 1.82 L.

As for the transmission technological parameter Z;, the ratio of last gear Ry is
determined by the required top speed; whereas the ratio of first gear R;; is determined

by the engine displacement and the required gradeability.
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Approaches

Both approaches of bi-level and uni-level design optimization are implemented to
optimize dimensioning parameters of powertrain components. DIRECT is applied in
the bi-level design optimization approach.

Considering the uni-level design optimization, a nonlinear solver is applied to
minimize the objective functional, which is FACE. As a nonlinear programming problem,
the uni-level optimization is solved by the function "fmincon" in MATLAB. However,
"fmincon" cannot handle the integer design parameters. Therefore, the uni-level design
optimization repeats all the combinations of the integer parameters, which are the

technological parameters of engine and transmission.

8.1.3 Result and Discussion

The optimized dimensioning parameters are reported in terms of bi-level and uni-level
design optimization. In addition, the impact of missions on the optimal dimensioning

parameters are investigated and discussed as well.

Impact of Optimization Approach

The reference vehicle is optimized separately through the bi-level design optimization
(with quasi-static simulation in the inner loop) and the uni-level design optimization
(with FACE) over NEDC. Because of implementation of QSS, results of the bi-level
design optimization approach are denoted by QSS in this whole chapter. On the other
hand, FACE is used to indicate the results of the uni-level design optimization approach.

As illustrated in Fig. 8.1, results of fuel consumption based on bi-level and uni-level
design optimization are compared with the fuel consumption of the reference vehicle.
About 8.27% of fuel consumption was saved by optimizing the design parameters
of powertrain components over NEDC. Furthermore, both optimization approaches
obtained the same improvement on fuel consumption.

In addition, the optimal dimensioning parameters are listed in Table 8.2, where VehR,
VehNb, and VehNu stand for the reference conventional vehicle, optimized powertrain
through the bi-level design optimization, and through the uni-level design optimization,
respectively. Considering the results of the uni-level design optimization, the optimal
design problem was solved by a nonlinear solver "fmincon" under the assumption that
the initial solution referred to the reference vehicle. The initial solution did not affect
the optimal solution of dimensioning parameters due to the convexity of FACE for

conventional vehicles. Despite the restriction of integers, uni-level design optimization
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FC [L/hkm]

Ref. Qss FACE

Figure 8.1 — Energy consumption of optimized and reference conventional vehicles over
NEDC.

presented the same results of optimal dimensioning parameters as the bi-level design

optimization.
Zo | Ve[l] | T.[Nm] | P [kW] | Z; | Ru | Ree
VehR | CI/TC | 2.25 292 90 MT-6 | 14.25 | 2.31
VehNb | CI/TC | 1.82 270 89 MT-6 | 11.39 | 2.26
VehNu | CI/TC | 1.82 270 89 MT-6 | 11.39 | 2.26

Table 8.2 — Dimensioning parameters of optimized conventional vehicles via bi- and
uni-level optimization approach based on NEDC.

Additionally, comparison of vehicle performance between the reference and the
optimized one is presented in Table 8.3. With further reduced fuel consumption, the
optimized vehicle propulsion system had a slightly higher top vehicle speed, poorer
acceleration time, and lower gradeability. Nevertheless, both performance parameters
satisfied the design constraints. The history of acceleration from 0 to 100 km/h is
illustrated in Fig.8.2, where the initial acceleration capability of the optimized vehicle

was worse than the reference one.

Viep km/h | ty09 [s] | a [%]
VehR 197 9.6 63.99
VehN 201 11.6 42.39

Table 8.3 — Vehicle performance of optimized conventional vehicle compared with
reference one.

Concerning computation time, the bi-level design optimization needed about 44
min to complete the entire optimization process with 20 iterations and 447613 function

evaluations; whereas, the uni-level design optimization only took about 0.56 s with 9
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Figure 8.2 — Acceleration performance of optimized and reference conventional vehicles.

iterations and 22 function evaluations. Obviously, the uni-level design optimization sig-
nificantly decreased the computation time compared with bi-level design optimization

approach.

Impact of Mission

Under the same design considerations, the reference vehicle is optimized via the uni-
level design optimization approach over two other missions, which are FTP-72 and
HYWEFET.

Results of the energy consumption of each optimized vehicle propulsion system are
illustrated in Fig. 8.3. The largest improvement of energy consumption (about 9%)
was achieved by the optimized vehicle over FTP-72 (VehF); while the least (about 3%)
was obtained by that over HYWFET (VehH). However, the optimized dimensioning
parameters of different missions are identical to each other as summarized in Table 8.4.

Thus, missions did not affect the optimal dimensioning parameters.

10 Il VehR Il VehN !
sl Bl VehF [] VehH
£
£ ° o
oyl I
@)
I |
0 0

NEDC FTP-72 HYWFET

Figure 8.3 — Energy consumption of optimized conventional vehicles over different
missions.
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L, Ve [L] | 7. [Nm] | P, [kW] 1 R Rie
VehN | CI/TC | 1.82 270 89 MT-6 | 11.39 | 2.26
VehF | CI/TC | 1.82 270 89 MT-6 | 11.39 | 2.26
VehH | CI/TC | 1.82 270 89 MT-6 | 11.39 | 2.26

Table 8.4 — Dimensioning parameters of optimized conventional vehicles based on
various missions.

8.2 Design Optimization of a Battery-Electric Vehicle

Both bi-level and uni-level design optimization are applied to minimize the electrical
energy consumption of a reference battery-electric vehicle, therefore enlarging the all-
electric range. The investigated dimensioning parameters are associated with battery
and electric motor/generator. The structure of this case study is maintained the same
as previous one, which consists of the introduction of a reference vehicle, further

explanation of optimal design problem, and result discussion.

8.2.1 Reference Vehicle

Table 8.5 reports the main features of the reference battery-electric vehicle, consisting of
vehicle parameters [77], dimensioning parameters of battery, electric motor/generator,
and drivetrain. The battery and electric motor/generator are referred to the identifica-
tion sets in Table 2.10 and 2.14, respectively. A single-speed transmission is installed in

the drivetrain.

Table 8.5 — Features of reference battery-electric vehicle.

Vehicle [kg] 1648
»[m] | 0.3017
Cyo [N] | 141.9465
Cy1 [N/(m/s)] | 1.1530
C,» [N/(m/s)?] | 0.3952
Battery 7z HE
Qy, [Ah] 31
K, 192
’ Electric Motor ‘ T ‘ PMSM ‘
7., [Nm] 108
P [kW] 78
’ Drivetrain ‘ Ra ‘ 14 ‘
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8.2.2 Optimal Design Problem

Specific design constraints of the reference battery-electric vehicle are introduced with
the resulting design space of the investigated dimensioning parameters. Further expla-
nations regarding to the optimal design problem are given the clarify the powertrain

design optimization, especially the uni-level design optimization.

Constraints

Based on the reference battery-electric vehicle, the technical targets, including top
vehicle speed, acceleration time from 0 to 100 km/h, gradeability, and all-electric range

are summarized as

vehicle top speed in [km/h] : > 140,

acceleration time to 100 in [s]: < 13.5,
gradeability in [%] : > 25,
all-electric range in [km]: > 130.

The investigated dimensioning parameters are listed in {Qy, Ky, 7,,, N,,}, where Q;,
and N, are integer parameters. The battery cells of high-energy type are considered
only because of better all-electric range, although another type of battery cell can also
be investigated.

According to the constraint of top vehicle speed, the lower boundary of the rated
power of electric motor is calculated by Eq. 7.11. Concerning the gradeability, the
lower boundary of the rated torque of electric motor is evaluated through Eq. 7.8. The
base speed of electric motor is within the base speeds of identification set of electric
motor/generators in Table 2.14. As for their upper boundaries, random values are
chosen without losing fidelity.

As for the battery, capacity of cells is referred to the identification set of battery of
high-energy type in Table 2.11. Note that, the upper boundary is limited to 53 Ah for the
sake of consistent predictive analytic models. The battery-cell number K}, is randomly
chosen but meet the requirement of all-electric range. In addition, battery must provide
sufficient power to propel the electric motor/generator. Consequently, resulting design

Space are

Q, €[25, 53], (8.1)
Ky € [90, 285], (8.2)
T, €[110, 277], (8.3)
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N, € [4000, 8500], (8.4)
P, €[73, 150]. (8.5)

Although no additional constraints are considered, battery terminal power has been
cross-verified to meet the requirement of acceleration and the operating limits over

investigated missions.

Approaches

Both approaches of the bi-level and uni-level design optimization are implemented to
optimize the mentioned dimensioning parameters of battery and electric motor/gener-
ator. The bi-level design optimization in done by DIRECT as the one in the previous
case.

Regarding the uni-level design optimization, a new method of full-space search,
instead of the "fmincon" function of MATLAB, is applied to optimize the dimensioning
parameters. The reason is due to the higher nonlinearity of FACE for battery-electric
vehicles than that for conventional vehicles.

Based on discretization of the design space, the full-space search method minimizes
the energy consumption through multi-dimensional array operation that is effective for

limited quantity of dimensioning parameters.

8.2.3 Result and Discussion

The optimized dimensioning parameters are summarized in terms of the bi-level and
uni-level design optimization. In addition, the impact of missions on the optimized

dimensioning parameters are investigated and discussed.

Impact of Optimization Approach

Fig. 8.4 compares the minimal energy consumption of the optimized vehicle through the
bi-level (denoted by QSS) and the uni-level design optimization approach (indicated by
FACE). Both the bi-level and uni-level design optimization reduced the minimal energy
consumption to the same level, which was about 7.4% less than that of the reference
vehicle.

As listed in Table 8.6, the optimal dimensioning parameters via the bi-level (marked
by VehNb) and the uni-level design optimization (marked by VehNu) are compared

with the ones of the reference vehicle (VehR). The optimized dimensioning parameters
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Ref. QSS

FACE

Figure 8.4 — Energy consumption of reference and optimized battery-electric vehicles
over NEDC.

of VehNb and VehNu were almost the same to each other. The slight difference were
probably caused by the discretization of the design space.

Compared with the reference vehicle, the battery capacity was increase to the upper
boundary due to the lowest internal resistance of battery cells. Larger sizes of electric
motor/generator were chosen because of the improved operating efficiency. For example,
the electrical energy of electric motor in propulsion was reduced about 7% with respect

to the reference vehicle.

Qp [Ah] | Ky | T,y [Nm] | Py [KW] | Ny [rpm]
VehR 31 [ 192] 108 79 6985
VehNb | 53 | 113 | 274 150 5232
VehNu | 53 [110| 277 150 5163

Table 8.6 — Dimensioning parameters of optimized battery-electric vehicles via bi- and
uni-level optimization approach based on NEDC.

A comparison of vehicle performance between the reference vehicle (VehR) and
the optimized vehicle (VehN) is listed in Table 8.7. The optimized vehicle had similar
top speed and all-electric range, but further enhanced gradeability and acceleration
performance. The history of acceleration from 0 to 100 km/h is depicted in Fig.8.5 for
both the reference and optimized vehicle, where a larger size of electric motor/generator
improved the acceleration performance.

The computation time of the bi-level design optimization was about 12.7 s with
100 iterations and 2995 function evaluations. However, the computation time of the
uni-level design optimization through multi-dimensional array operation only took 1.25

s, which was an improvement of one order of magnitude.
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Viep [km/h] | t190 [s] | a [%] | All-Electric Range [km|]
VehR 143 12.4 21.2 134
VehN 143 5.6 64.0 133

Table 8.7 — Vehicle performance of optimized battery-electric vehicle compared with
reference one.
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Figure 8.5 — Acceleration performance of optimized and reference battery-electric vehi-
cle.

Impact of Mission

The reference vehicle is optimized based on two other missions through the bi-level
design optimization, in order to verify the impact of missions.

As illustrated in Fig. 8.6, the minimized energy consumption is compared between
the optimized vehicles and the reference one. Apart from VehR and VehN, VehF and
VehH represented the optimized vehicle based on FTP-72 and HYWFET, respectively.
Among all of the optimized vehicles, the largest reduction of 7.4% was achieved by the
one over NEDC; whereas the least energy consumption reduction of 3.5% was achieved
over HYWFET.

The optimization of vehicle propulsion system design was affected by missions. The
optimized vehicle VehN presented similar energy consumption to the other mission-
dependent optimized vehicles. This is probably due to NEDC combines the urban and
extra-urban driving conditions.

Table 8.8 summarizes the optimal dimensioning parameters over the investigated
missions. The mission influenced the optimal dimensioning parameters of battery. How-
ever, the dimensioning parameters of electric motor/generator were almost maintained
the same, since they were heavily affected by the design constraints.

Based on the optimized dimensioning parameters in Table 8.8, the performance

of the optimized vehicles are summarized in Table 8.9. The significant difference was
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Figure 8.6 — Energy consumption of optimized battery-electric vehicles over different
missions.

Qb [Ah] ICb Tm [Nm] 7)m [kW] Nm [rpm]
VehN 53 113 274 150 5232
VehF 53 121 261 150 5473
VehH 35 285 274 150 5232

Table 8.8 — Dimensioning parameters of optimized battery-electric vehicles based on
various missions.

the all-electric-range due to the applicable energy of battery and the specific energy

consumption.
Viep [km/h] | t1g9 [s] | @ [%] | All-Electric Range [km]
VehN 143 5.6 64.0 133
VehF 143 5.7 60.0 150
VehH 143 5.6 64.0 221

Table 8.9 — Vehicle performance of optimized battery-electric vehicles based on various
missions.

8.3 Co-Optimization of a Series Hybrid-Electric Truck

VHOT, GRAB-ECO, and FACE are applied to optimize the dimensioning parameters of
the propulsion system of a series hybrid-electric truck for better fuel savings.
8.3.1 Reference Vehicle

As reported in Table 8.10, the main features of the reference vehicle are summarized

including vehicle parameters, internal combustion engine, electric generator, battery,
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and electric motor.

Vehicle | m, [kg] | 13500
R, [m] | 0.44
Engine 7z, CI
V., [L] 4.8
7,[Nm] | 818
P, [kW] 167
Electric Generator ‘ Z, ‘ PMSM
7, [Nm] | 400
Py [kW] 70
Battery ya LiB
Qp [Ah] 138
Ky 48
Electric Motor \ - \ AIM
7, [Nm] | 450
P [kW] 103

Table 8.10 — Main features of investigated series hybrid-electric vehicle.

8.3.2 Co-Optimization Problem
Constraints

In comparison with light-duty vehicles, vehicle attributes of heavy-duty vehicles are
not explicit, except for the gradeability. Powertrain dimensioning parameters of the
reference series hybrid-electric truck is optimized without considering any extra require-
ments of vehicle attributes. The design objective is to minimize fuel consumption of the
reference powertrain over the real-world driving cycles.

The investigated dimensioning parameters include {Rg, Ky, Tm,Pm}, where battery
number K is an integer parameter. Without taking extra vehicle attributes into account,
the dimensioning parameters of R, and K} are restricted to a range based on the
reference values. As for the electric motor for the traction purpose, the design space is
strictly constrained at the lower boundary derived from the gradeability. Without losing

reality, deign space of the dimensioning parameters are written as

Ry €[0.9,1.1], (8.6)
K, € [40,56], (8.7)
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7, € [400,550], (8.8)
T,, € [103,140]. (8.9)

Approaches

Instead of the bi-level co-optimization, each dimensioning parameter is separately
evaluated through VHOT, GRAB-ECO, and FACE with the discretized design space.
The real-world missions are solely applied to the heavy-duty vehicles. Therefore, the
investigated missions are based on real-world driving cycles, such as the Inner-City
Driving Cycle ICDC and the Sub-Urban Driving Cycle SUDC (see Fig. 8.7 and 8.8).
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Figure 8.7 — Speed trajectory of ICDC.
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Figure 8.8 — Speed trajectory of SUDC.

8.3.3 Result and Discussion

Concerning the dimensioning parameter R, it only influenced the efficiency of auxiliary

power unit, but not on the vehicle performance. Fig. 8.9 summarizes the influence of R,
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on the minimal fuel consumption over ICDC and SUDC. The fuel consumption slightly
decreased as the gear ratio increased due to the efficiency increment of best-efficiency

point of the auxiliary power unit.
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Figure 8.9 — Energy consumption in function of gear ratio between engine and generator.

As shown in Fig. 8.10, battery cell number slightly reduced the minimal fuel
consumption over ICDC; whereas, the impact of battery cell number on the minimal
fuel consumption was negligible. However, FACE showed different prediction of the
minimal fuel consumption over ICDC. Note that, the increment of battery cell number
did not change the gross weight of the heavy-duty truck, but reduce the maximum
allowable payload. Therefore, a smaller number of battery cells was favored in the

condition that the all-electric range could meet the requirement.
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Figure 8.10 — Energy consumption in function of battery cell number.

As for the traction motor, effects of the rated torque is depicted in Fig. 8.11. Over
both missions, the minimal fuel consumption was significantly reduced by enlarging
the rated torque of the traction motor. With the increase of the rated torque, the base
speed of the traction motor decreased, leading to a squeeze of the high efficiency zone at
lower motor speed, where the operating points distributed. In addition, the increment

of rated torque would further enhanced the gradeability compared with the reference
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series hybrid-electric truck.
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Figure 8.11 — Energy consumption in function of rated torque of traction motor.

Fig. 8.12 presents the influence of the rated power of the traction motor on the
minimal fuel consumption. The increment of the rated power led to an opposite effects
compared with the rated torque. While maintaining the rated torque, the high efficiency
zone was shifted to higher speed as the rated power increased. As a result, the average

efficiency of motor operating points was reduced.
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Figure 8.12 — Energy consumption in function of rated power of traction motor.

Table 8.11 reports the computation time of evaluations via VHOT, SHM, and FACE
over missions of ICDC and SUDC. Compared with the computation time of VHOT,
GRAB-ECO reduced the computation time by orders of magnitude; whereas FACE took

the least computation time.

VHOT | GRAB-ECO | FACE
t(ICDC) [s] | 634.4 15 1.05
t(SUDC) [s] | 885.2 15.3 1.10

Table 8.11 — Average computation time of each function evaluation.
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8.4 Co-Optimization of a Parallel Hybrid-Electric Vehicle

A parallel plug-in hybrid-electric vehicle is investigated to reduce energy consumption
over given missions. Bi-level co-optimization is applied to optimize the dimensioning
parameters of the reference vehicle and to investigate the impact of the different tech-
niques of control optimization and of missions on the minimal energy consumption.
In addition, the uni-level co-optimization based on FACE is implemented to optimize
dimensioning parameters of powertrain components such that the energy consumption

is minimized.

8.4.1 Reference Vehicle

The reference parallel hybrid-electric vehicle is a light-duty plug-in vehicle of P2 config-

uration, whose main features are summarized in Table 8.12.

Vehicle m, [kg] 1814
R, [m] 0.3173
Cyo [N] 93.5
Cy1 [N/(m/s)] 5.29
C,, [N/(m/s)?] 0.536
Engine Z, | SI/NA/SB
Ve [L] 1.4
7, [Nm] 131
P, [kW] 60
Battery 1y HP
9y, [Ah] 31
Ky 60
’ Electric Motor ‘ L. ‘ PMSM
7,, [Nm] 36
P [kW] 38
Drivetrain Z; MT5
Ron 3.31

Table 8.12 — Main features of investigated parallel hybrid-electric vehicle.

8.4.2 Co-Optimization Problem

The co-optimization problem of powertrain design and control is briefly formulated

including design constraints, the investigated dimensioning parameters, and their
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resulting design space. The co-optimization problem is solved through both bi-level and

uni-level co-optimization approaches.

Constraints

The vehicle performance is described in terms of two modes: the conventional and

electric vehicle mode. Thus, the main design constraints are summarized as

vehicle top speed in [km/h] : > 145,
vehicle top speed in [km/h] in electric mode: > 55,
acceleration time to 100 in [s] : <13,
acceleration time to 50 in [s] in electric mode: <9,
gradeability in [%] : > 25,
gradeability in [%] in electric mode: >13.

The dimensioning parameters to optimize are listed in {Z,, V,, Z;, P,, Ky}, where
engine technology Z,, transmission technology Z;, and battery cell number K, are integer
variables.

According to the desired top vehicle speed and acceleration time in conventional
vehicle mode, the lower boundary of engine displacement of each engine technology is
individually evaluated through Eq. 7.11 and 7.16. Furthermore, the lower boundary
of the design space of the engine displacement is set to the minimum value of the four
types of engines. However, effective penalty function will be applied to avoid violation
of lower boundaries corresponding to engine types.

Despite two types of transmissions, the gear ratios are defined by the predictive
analytic model of transmission in Eq. 2.24 and 2.26. The last gear is evaluated to satisfy
the top vehicle speed at the engine speed of rated power; whereas the first gear meets
the demanded torque for the desired gradeability.

As for the rated power of electric motor, its lower boundary is calculated to meet the
requirement of acceleration time in electric mode. Moreover, the battery cell number
allows the battery to provide sufficient power to the electric motor/generator.

Consequently, the resulting design space is summarized as

7, e{SI/NA/SB SI/NA/LB, SI/TC, CI/TC}, (8.10)

€[1.17, 2.65], (8.11)
Le{MT 5, MT-6}, (8.12)
Py €21, 57], (8.13)
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Ky €[31, 100]. (8.14)

Approaches

Bi-level co-optimization is implemented to optimize the previously mentioned dimen-
sioning parameters. Moreover, two different techniques for powertrain control opti-
mization are applied in the bi-level co-optimization approach, which are VHOT and
SHM.

Based on FACE, the uni-level co-optimization approach is applied to optimize a
single dimensioning parameter within its design space as well. Due to high nonlinearity
of FACE for parallel hybrid-electric vehicles, the exhaustive search method is applied as

a design optimization technique.

8.4.3 Result and Discussion

Results of several investigations on the optimization of dimensioning parameters, the
impact of techniques of powertrain control, and the influences of missions are reported

and discussed as follows.

Comparison with Reference Vehicle

Compared with the fuel consumption of the reference vehicle, the trajectory of fuel
consumption (marked by FC) and function evaluation (denoted by K¢,) through the bi-
level co-optimization approach is illustrated in Fig. 8.13. As the iteration increased, the
minimal fuel consumption became stabilized. The minimized fuel consumption of the
optimized vehicle was reduced by 21% compared with the reference vehicle. However,
the function evaluation augmented exponentially as iteration increased, thereby leading

to significant increment of computation time.

Impact of Control Optimizer

Concerning the control optimization through SHM and VHOT, the trajectories of their
fuel consumption and function evaluations are comparatively depicted in Fig. 8.14.
The minimized fuel consumption of VHOT was slightly higher than that of SHM.
Furthermore, the bi-level co-optimization via VHOT required more iterations than that
through SHM under the same exit criteria of DIRECT. Yet both of them had similar

number of function evaluations.
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Figure 8.13 — Trajectory of bi-level co-optimization through SHM.
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Figure 8.14 — Trajectory comparison of bi-level co-optimization through SHM and
VHOT.

The detailed computational characteristics are summarized in Table 8.13. The VHOT
took twice as much average time per function evaluation as SHM did. However, the
average computation time of SHM was larger than the one in Chapter 4.5.2. The reason

is due to extra time required to handling the data in-between two optimization levels.

Iteration | Evaluation | CPU Time [h] | Average Time [s]
SHM 26 54568 1.77 0.1165
VHOT 29 56451 3.94 0.2511

Table 8.13 — Computational characteristics of bi-level co-optimization via SHM and
VHOT.

Table 8.14 reports the dimensioning parameters of the optimized vehicle over NEDC
through SHM and VHOT. Except for the type of internal combustion engine, remaining
dimensioning parameters were different from each other due to different techniques of

powertrain control optimization. The optimal dimensioning parameters of VehN(SHM)
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were evaluated via VHOT, resulting a higher fuel consumption (4.00 L/hkm) than
VehN(VHOT). The same situation occurred that VehN(SHM) had a lower fuel consump-
tion than VehN(VHOT) evaluated through SHM. Therefore, the different optimal design
parameters were caused by the implementation of the powertrain control optimization

techniques.

Ie Ve [L] It 7)m [kW] ’Cb
VehN(SHM) | CI/TC | 1.24 | MT-5 | 22.0 | 48
VehN(VHOT) | CI/TC | 1.40 | MT-5 23.9 54

Table 8.14 — Dimensioning parameters of optimized parallel hybrid-electric vehicles
based on SHM and VHOT.

Additionally, a few relevant signals, including speed of engine and motor (w, and
w,,), demanded power at wheels( P,,), engine power (F,), and state of charge of battery (
marked as SOC) are comparatively depicted in Fig. 8.15 in terms of SHM and VHOT.
Although the final SOC is not the same as the initial one, the difference between those two

was handled in the evaluation of minimal fuel consumption by interpolation method.

Impact of Mission

The vehicle propulsion system of the reference vehicle is further optimized over extra
missions, which are FTP-72 and HYWFET. The control optimization in the bi-level
co-optimization approach is uniformly done through SHM.

As depicted in Fig. 8.16, fuel consumption of the optimized vehicles were compared
with the reference vehicle over each investigated mission. VehN, VehF, and VehH
referred to the optimized vehicles based on NEDC, FTP-72, and HYWEFET, respectively.
To summarize, the minimal fuel consumption was mission-dependent. Because NEDC
consists of the urban and extra-urban driving condition, VehN was the good compromise
among these three missions.

The percentage of tractive energy and operating time of each mode are illustrated
in Fig. 8.17 for the corresponding optimized vehicles. Mode 0 indicated the standstill
condition; whereas the other modes corresponded to the sequential elements in Eq. 4.38.
In particular, mode 1 was the unconstrained solution; mode 2 was the pure electric
mode; and mode 3 was hybrid mode that engine worked at best-efficiency condition.

Table 8.15 summarizes the computational characteristics through the bi-level co-
optimization approach. Compared with the computation time of a single function

evaluation in Chapter 4.5.2, the average computation time of a single function eval-
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Figure 8.15 — Trajectory of relevant signals over NEDC.

uation increased over tested missions due to the data manipulation in-between two
optimization levels. Moreover, the average computation time was affected by the dura-
tion of the investigated missions.

As listed in Table 8.16, the dimensioning parameters of optimized vehicles are
compared with the ones of the reference vehicle. Optimal dimensioning parameters

were mission-dependent. Despite the same type of transmission, the resulting gear
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Figure 8.16 — Energy consumption of reference and optimized parallel hybrid-electric
vehicles over different missions.
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Figure 8.17 — Operating mode percentage in terms of time and demanded energy.

Iteration | Evaluation | CPU Time [h] | Average Time [s]
VehN 26 54569 1.77 0.1165
VehF 27 58587 3.51 0.2163
VehH 29 112733 2.78 0.0889

Table 8.15 — Computational characteristics of bi-level co-optimization approach based
on various missions.

ratios according to different engine displacements are summarized in Table 8.17. Note
that, the optimized gear ratios did not take extra constraints into account.

As a consequence of the optimal dimensioning parameters, vehicle performance
of each optimized vehicle is summarized in Table 8.18. Due to the restriction of the
optimal gear ratio, the maximum vehicle speed in electric vehicle mode did not reach 50

km/h over HYWFET. The acceleration performance in both conventional and electric
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L, Ve [L] | 7, [Nm] | P, [kW] L P [KW] | Ky
VehR | SI/NA/SB | 1.40 130 60 MT-5 38 36
VehN CI/TC 1.24 184 60 MT-5 22 48
VehF CI/TC 2.00 297 97 MT-5 22 48
VehH CI/TC 1.00 149 49 MT-5 22 82

Table 8.16 — Dimensioning parameters of optimized parallel hybrid-electric vehicles
based on various missions.

R Ri2 | Ris | Ruu | Ris | Ry

VehR | 15.506 | 8.213 | 5.815 | 4.425 | 3.483 | 27.12
VehN | 14.757 | 8.181 | 5.393 | 3.943 | 3.189 | 38.10
VehF 9.121 5.734 | 4.298 | 3.551 | 3.163 | 26.92
VehH | 18.249 | 9.697 | 6.072 | 4.186 | 3.205 | 44.93

Table 8.17 — Gear ratios of optimized parallel hybrid-electric vehicles based on various
missions.

vehicle mode is illustrated in Fig. 8.18.

Vtop [km/h] t100 [S] o [%] Vtop,ev [km/h] tso [S] Hey [0/0]
VehR 137 19.89 | 22.92 79 7.72 10.48
VehN 150 14.10 | 31.59 56 9.16 12.14
VehF 151 9.44 31.59 80 10.06 8.55
VehH 144 18.05 | 31.59 48 NA 18.15

Table 8.18 — Performance of optimized parallel hybrid-electric vehicles based on various
missions.
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Figure 8.18 — Acceleration performance of optimized and reference parallel hybrid-
electric vehicles.
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Uni-Level Co-Optimization Approach

The uni-level co-optimization is applied to optimize the dimensioning parameters of
powertrain components in the reference vehicle so that the energy consumption is
minimized. Due to the high nonlinearity of FACE, the full-space search method is
implemented to separately optimize two dimensioning parameters, including engine
displacement and capacity of battery cells.

The engine displacement is optimized within the space in Eq. 8.11. Result of the
minimal fuel consumption is illustrated as a function of the engine displacement in
Fig. 8.19. The minimal fuel consumption was a linear function of engine displacement,
indicating downsizing of internal combustion engines was still helpful to reduce the fuel
consumption. Under the same the requirement of vehicle performance, the optimum

engine displacement was the smallest value and saved the most fuel.
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Figure 8.19 - Influence of engine displacement on fuel consumption.

The capacity of battery cells Q, is investigated through the uni-level co-optimization
approach. The design space of Qy, is from 31 to 53 Ah. As shown in Fig. 8.20, the
minimum fuel consumption was achieved by the largest capacity of battery cell within
its design space. The reason is simply due to the least internal resistance of the 53 Ah
battery cell.

Considering the total computation time, it was about 0.4 s for the optimization of

two dimensioning parameters through the uni-level co-optimization approach.
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Figure 8.20 — Influence of battery cell capacity on fuel consumption.

8.5 Co-Optimization of a Parallel Hybrid-Electric Truck

In this case study, a prototype of hybrid-electric truck is optimized to reduce fuel
consumption. Based on the analysis of experimental data, optimizations are performed
on two aspects, which are powertrain control optimization and powertrain design
optimization.

Concerning the control optimization, the minimal fuel consumption is achieved by
optimal control laws with or without the consideration of the optimization of gear shift
strategy. In regard with design optimization, fuel consumption is further minimized by

optimizing dimensioning parameters of powertrain components.

8.5.1 Reference Vehicle

The reference truck is a parallel hybrid-electric truck in terms of P2 configuration.
The main features of powertrain components are listed in Table 8.19, whereas the

investigated mission is shown in Fig. 8.21.
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Figure 8.21 — Investigated mission for reference hybrid-electric truck.
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Vehicle m, [kg] | 17000
Ry, [m] 0.5
CarAar [mz] 6
Engine Z, | CI/TC
V. [L] 9
7, [Nm] 1600
P, [kW] | 235
Battery Zy LiB
Ep [kWh] 18
Electric Motor Z, | PMSM
7, [Nm] 1050
P [kW] 150
Drivetrain I, | AMT-12
Rra 3.07

Table 8.19 — Main features of investigated parallel hybrid-electric truck.

A particular model of rolling resistance tailored for heavy-duty vehicles is imple-

mented, which is by
Crr(v): Cr,iso"'a(vz_v(%)"'b(v_vo)x (8-15)

where the speed v and v are in [km/h], coefficients C, ;;,, a, and b refer to [78].

8.5.2 Co-Optimization Problem

As stated, optimization analysis of the reference hybrid-electric truck is performed at two

distinct aspects: powertrain control optimization and powertrain design optimization.

Control Optimization

Control optimization is performed to benchmark the minimal fuel consumption of the
reference hybrid-electric truck. The control optimization contains a single optimization
of control laws splitting the power between different energy sources, and a combined
optimization of control laws and gear shift strategy.

Considering the powertrain control optimization, both VHOT and SHM are im-
plemented based on the grid-point data and predictive analytic models, respectively.
Therefore, the accuracy of predictive models are cross-verified. Concerning the com-

bined control optimization, gear shift strategy is optimized only through SHM by
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enlarging the full control space in the array operation.

Design Optimization

As for the powertrain design optimization, no design constraint is applied due to
the limited range of the design space compared with dimensioning parameters of
real powertrain components. The investigated dimensioning parameters consist of
{Ve, Iy, Rfa, IC;,}, where transmission technology Z; and battery cell number K; are
integer variables.

The design space of engine displacement is slightly enlarged with respect to the real
powertrain components, due to the high fidelity of the predictive analytic models. Thus,

the design space of engine displacement is
V. €[8, 18]. (8.16)
The design space of the transmission technological parameter is
I, € (AMT-12, AMT-14}, (8.17)

where AMT-12 stands for automated manual transmission of 12 speeds, and AMT-14
for that of 14 speeds.

As for the ratio of final drive, the design space is
Rra€(2.5 4.9] (8.18)

where boundary values are collected from public available brochures of Scania’s trucks.
The design space of battery cell number is evenly deviated based on the one of
reference vehicle.
The bi-level co-optimization approach is used to optimize the dimensioning parame-
ters of powertrain components through the combination of DIRECT and SHM.

8.5.3 Result and Discussion
Comparison of VHOT and SHM

The minimal fuel consumption of the reference vehicle evaluated by VHOT is based on
the original data of powertrain components; whereas SHM evaluates the minimal fuel
consumption based on analytic models of powertrain components. Fig. 8.22 shows the

minimized fuel consumption evaluated based on VHOT and SHM. The discrepancy of
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the minimized fuel consumption was about 0.35 L/hkm (about 1.9%). Therefore, SHM

was capable of minimizing fuel consumption.

FC [L/hkm]

VHOT SHM

Figure 8.22 — Minimal fuel consumption of the reference hybrid-electric truck.

Minimization of Fuel Consumption through Control Optimization

Considering different control optimizations, the minimized fuel consumption is com-
paratively illustrated in Fig. 8.23. The fuel consumption of the reference vehicle was
denoted by REF; whereas EMO and GSO indicate the minimal fuel consumption eval-
uated with optimal energy management strategy, and the combined optimal energy
management with the optimal gear shift, respectively. The improvements of EMO and
GSO on the fuel consumption corresponded to about 33% and 41% compared with the
reference vehicle. A further improvement of 7% on fuel consumption was obtained by

adding optimal gear shift strategy.

FC [L/hkm]

REF EMO GSO

Figure 8.23 — Minimized fuel consumption of different powertrain control optimizations.

Additionally, the cumulative electrochemical power of battery is presented in Fig.
8.24. The final varied electrochemical energy was required to be the same as the

reference one. Despite slight differences between the optimized final energy and the
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reference one, the minimized fuel consumption had accounted for the difference of

varied electrochemical energy of battery.
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Figure 8.24 — Trajectory of varied electrochemical energy of battery over investigated
mission.

The optimized gear shift schedule obtained through the gear shift optimization
(GSO) is presented in Fig. 8.25. The highest gear number in the optimized gear shift
schedule was less frequently used compared with that in the reference vehicle.

16

—REF—GSO

12

Figure 8.25 — Optimized gear shift schedule over the mission.

Fig. 8.26 shows the comparison of the operating points of the engine based on
reference data, single energy management optimization, and combined optimization
with optimal gear shift schedule. As optimization level increased, the operating points of
the internal combustion engine were shifted to concentrate on the higher efficiency area.
Compared with reference data, energy management optimization removed the operating
points at boundaries. Moreover, the gear shift optimization centralized operating points

at the highest efficiency zone.
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Figure 8.26 — Operating points of internal combustion engine on its fuel consumption
map.

Minimization of Fuel Consumption through Design Optimization

In the bi-level co-optimization approach, the dimensioning parameters of powertrain
components are optimized to further reduce fuel consumption. However, the electric
motor/generator is always maintained the same in the investigation of powertrain design
optimization.

As shown in Fig. 8.27, the fuel consumption of optimized powertrain and the one of
gear shift optimization are compared with the reference vehicle. Slight reduction of fuel
consumption was achieve by the powertrain optimization, which was about 1.6%.

The optimal dimensioning parameters are summarized in Table 8.20. The optimal
battery cell number was the upper boundary of its design space. The improvement on
battery was not significant because of its high efficiency and the limited design space.
As the engine downsized and the operating points shifted, the fuel consumption was

further reduced through powertrain design optimization.

FC [L/hkm]

REF GSO PDO

Figure 8.27 — Minimized fuel consumption of powertrain control and design optimiza-
tions.
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Ve [L] 7 Rya
Reference 9.3 AMT-12 | 3.07
Optimized | 8.0 | AMT-14 | 4.34

Table 8.20 — Dimensioning parameters of optimized hybrid-electric truck.
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Conclusion

Summary

In this thesis, the subject of co-optimization of control and design for advanced propul-
sion systems has been investigated. The background and state-of-the-art review in
Chapter 1 presents the current situation of control and design optimization for ad-
vanced vehicle propulsion systems, particularly for hybrid-electric vehicles. Optimal
control of hybrid-electric vehicle tends to be more complex in order to speed up opti-
mization and contain more control variables. Bi-level optimization is a widely applied
approach for the optimal design of hybrid-electric vehicles. Reducing computation time
of the bi-level optimization approach becomes one important target.

Analytic models of the main powertrain components of a hybrid-electric vehicle
are described at descriptive and predictive level. Descriptive analytic models describe
individual powertrain components, including internal combustion engine, drivetrain,
battery, and electric motor/generator; whereas predictive analytic models are capable of
representing an entire class of similar components as a function of their dimensioning
parameters. In addition to analytic models of powertrain components, the analytic
model of vehicle load is also introduced as a function of coast-down coefficients and
speed.

Chapter 3 summarizes quasi-static simulation methods of energy consumption
evaluation for various types of vehicles. The typology is composed of conventional
vehicle and battery-electric vehicle in the class of single-source vehicles, as well as
series and parallel hybrid vehicles in the family of hybrid-electric vehicles. In the
last section, single-source vehicles are evaluated through quasi-static simulations in
backward approach in order to further validate the accuracy of analytic models of
powertrain components.

Two novel methods of control optimization, namely SHM and GRAB-ECO, are intro-
duced in details for series and parallel hybrid-electric vehicles in Chapter 4. SHM is

161
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a PMP-based optimal control technique characterized by semi-analytic nature. Semi-
analytic refers to analytic solutions to the minimization of Hamiltonian function; how-
ever, numeric evaluation of energy consumption works alongside the dimension of time.
Thanks to the analytic solutions, the full control space in SHM is reduced to limited
number of cases, thus leading to a short computation time. As for GRAB-ECO, it is
developed based on the maximization of average operating efficiency of the primary
energy sources that have the worst efficiency of energy conversion. With GRAB-ECO, the
control space is further diminished to only two cases. Therefore, GRAB-ECO requires
even less computation time than SHM. In the last section, both SHM and GRAB-ECO
are benchmarked by the standard approaches of PMP.

Fully-Analytic energy Consumption Estimation (FACE) is developed for single-
source vehicles, as introduced in Chapter 5. As an analytic model for energy con-
sumption approximation, FACE is the sum of numerous terms that are in function of
dimensioning-related variables and cycle-related parameters. The dimensioning-related
variables are expressed as a function of dimensioning parameters of powertrain com-
ponents, whereas the cycle-related parameters are constant values that are evaluated
a priori of a reference vehicle. FACE for conventional and battery-electric vehicles is
introduced separately, and then validated by comparing the results with those through
quasi-static simulation in the last section.

Chapter 6 also presents the FACE dedicated to series and parallel hybrid-electric
vehicles. As for series hybrid-electric vehicles, FACE is developed based on GRAB-
ECO with further simplifications; whereas, FACE for parallel hybrid-electric vehicles
results from SHM. Nevertheless, development of FACE for hybrid electric vehicles faces
same difficulties, which are the development of suitable analytic models of assembled
components (such as, auxiliary power unit in series hybrid-electric vehicles and electric
drive unit in parallel hybrid-electric vehicles), and the treatment of optimal control for
minimal energy consumption. Similarly to the one for single-source vehicles, FACE for
hybrid-electric vehicles also depends on reference vehicles and missions. The capability
of approximation of the minimal energy consumption is benchmarked by the quasi-static
simulation method in the last section.

Based on previously established theories, co-optimization of control and design for
advanced vehicle propulsion systems is formulated with generic issues in Chapter 7,
and then investigated with specific case in Chapter 8. Particularly, Chapter 7 restates
the design objectives, summarizes generic design constraints, and introduces the co-
optimization approaches.

A few cases studies of co-optimization of control and design are investigated through
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the bi-level optimization and uni-level co-optimization approaches. These cases consist
of a conventional vehicle, a battery-electric vehicle, a series hybrid-electric truck, a
parallel hybrid-electric vehicle in light-duty application, and a parallel hybrid-electric
truck.

Contribution and Limitation

Contribution

In the subject of co-optimization of control and design for advanced vehicle propulsion
systems, the energy consumption has been successfully minimized with the improved
bi-level co-optimization and newly developed uni-level co-optimization approach. The

main contributions of this thesis are summarized in three aspects as follows.

Dual-Level Analytic Models

Dual-level analytic models are developed for the main powertrain components, includ-
ing internal combustion engines, stepped-ratio transmissions, batteries, and electric
motor/generators. The descriptive analytic models describe an individual given compo-
nent, are directly applied in the evaluation of energy consumption for various types of
vehicles, and benefit the development of analytic Hamiltonian function. The predictive
analytic models represent an entire class of similar components as a function of the
dimensioning parameters, and are applied to the optimization of vehicle propulsion
system design.

The average error of the identification set of light-duty engines is about 2.62% and
5.24% at descriptive and predictive level, respectively; whereas the one of heavy-duty
engines is about 1.49% and 2.88% at descriptive and predictive level, respectively.

Over NEDC, the average error of fuel consumption is 0.02% and 1.36% due to
the analytic models of stepped-ratio transmissions at descriptive and predictive level,
respectively. For the same reason, the average error of fuel consumption is 0.20% and
0.61% over HYWFET.

Concerning the average error of quadratic battery model, it is 1.41% and 1.48% at
descriptive and predictive level, respectively. As for the piece-wise linear battery model,
it is 5.14% and 6.56%. Despite higher average error and less operating range, piece-wise
linear model is applied only in the application of FACE for parallel hybrid-electric
vehicles so that the dimensioning parameters of battery and electric motor/generator

can be optimally sized.
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The average error of the identification set of electric motor/generator of PMSM is
3.79% and 4.59% at descriptive and predictive level, respectively. While, the one of AIM
is 2.61% and 4.81%, respectively.

Fast-Running Control Optimizations

The fast-running control optimizations are essential in reducing the computation time in
the bi-level co-optimization approach. Successful fast-running optimal control methods
are developed that are SHM and GRAB-ECO.

SHM is a semi-analytic optimal control technique based on PMP. Minimizing the
analytic Hamiltonian function in SHM results in reduced size of full control space
with respect to standard approaches of PMP, thus leading to less computation time.
Compared with VHOT, the computation time can be reduced from half second to fifty
milliseconds.

GRAB-ECO approximates the minimal energy consumption of hybrid-electric vehi-
cles based on the maximization of the average operating efficiency of the primary energy
source that has the worst efficiency. The control space of GRAB-ECO is further reduced
to two operations: pure electric operation and hybrid operation. With good accuracy of
the minimal energy consumption approximation, GRAB-ECO can further reduce the

computation time to about ten milliseconds.

Fully-Analytic Design Optimization

Thanks to the analytic models of powertrain components and vehicle load, FACE has
been developed for single-source and hybrid-electric vehicles. FACE approximates
energy consumption for various vehicle with their dimensioning parameters only. The
cycle-related parameters in FACE are evaluated a priori based on reference vehicles.
Considering the optimal design of vehicle propulsion systems, FACE can be min-
imized by different types of nonlinear solvers or even the exhaustive search method.
Regardless of the nonlinear solver, the computation time of FACE only takes a few

seconds, which is much less than the bi-level optimization approach.

Limitation

Considering the fast-running control optimizations for hybrid-electric vehicles, both
SHM and GRAB-ECO evaluate the minimal energy consumption without considering

the instantaneous constraints of state variable, which is the state of charge of battery.
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As for FACE except for series hybrid-electric vehicles, it requires reference values of
cycle-related parameters and the adjoint state variable. The dependency of reference

vehicle would limit the application of FACE.

Future Work

Despite the contributions completed, many opportunities are for extending this thesis.

Several aspects are briefly introduced below.

State Constraint

As the instantaneous state constraints were not considering in SHM and GRAB-ECO,
their influences on the minimal energy consumption of hybrid-electric vehicle need to

be assessed in terms of accuracy and computation time.

Power-Split Hybrid-Electric Vehicle

In this thesis, only series and parallel hybrid-electric vehicles have been investigated
due to limited time. Power-split hybrid-electric vehicles should also be included to

exhaustively optimize the design of vehicle propulsion system.

Vehicle Design Criteria

The design constraints of the case studies only considers fundamental design crite-
ria, such as the top speed of vehicle, gradeability, acceleration, and all-electric range.
However, there are still more design criteria that may affect the optimal dimensioning
parameters. Therefore, more realistic optimal design for vehicle propulsion systems

will benefit from the consideration of abundance of design criteria.

Dedicated Solver for FACE

Optimal design of a vehicle propulsion system via the uni-level co-optimization is
actually a nonlinear programming problem. In this case, a nonlinear solver of MATLAB
has been used in the case study of a conventional vehicle. However, this nonlinear
solver failed the other case studies for a battery- and hybrid-electric vehicle because
of increased nonlinearity of FACE. Therefore, a dedicated solver is highly required for
the FACE so that the optimal dimensioning parameters are easily found and the energy

consumption is minimized.
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Appendix

Résumé

Des technologies avancées sont trées demandées dans 1’industrie automobile pour re-
specter les réglementations de consommation de carburant de plus en plus rigoureuses.
La co-optimisation du dimensionnement et du controle des groupes motopropulseurs
avec une efficacité de calcul améliorée est étudiée dans cette these.

Afin d’effectuer la co-optimisation, les composants du groupe motopropulseur du
véhicule — y compris les moteurs, les boites de vitesses, les batteries et les moteurs
électriques — sont modélisés analytiquement. Ces modéles analytiques sont développés
au niveau descriptif et prédictif. Les modeles descriptifs décrivent les composants
individuels du groupe motopropulseur, tandis que les modeles prédictifs sont capables
de représenter une classe entiere de composants similaires en fonction des parametres
de dimensionnement.

Ces modeles sont appliqués selon I'approche quasi statique backward pour évaluer
la consommation d’énergie des véhicules a moteur, des véhicules électriques et des
véhicules électriques hybrides sur des profils de mission donnés. En particulier, la
consommation d’énergie des véhicules hybrides-électriques est minimisée avec des tech-
niques de controle optimales pour tout ensemble de parametres de dimensionnement
donné.

Les lois de controle optimales basées sur le Principe Minimum de Pontryagin (PMP)
sont utilisées comme base de référence. Une variante du PMP, la Selective Hamiltonian
Minimization (SHM), est appliquée pour évaluer la consommation d’énergie minimale
dans un temps de calcul raccourci par rapport au PMP standard. Grace aux modeles
analytiques développés, la fonction Hamiltonienne peut étre exprimée sous une forme
analytique et, par conséquent, un probleme d’optimisation sans contraintes peut étre
résolu de maniére analytique. Les contraintes imposées par les limites physiques des
composants peuvent modifier I’espace de controle de SHM, dont la taille est cependant
considérablement réduite par rapport au PMP standard.

Une méthode supplémentaire, la GRaphical-Analysis-Based energy Consumption
Optimization (GRAB-ECO), est développée pour approximer la consommation d’énergie
minimale des véhicules hybrides-électriques a travers de la maximisation de l'efficacité
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opérationnelle moyenne de la source d’énergie primaire (la source avec la plus mauvaise
efficacité de conversion d’énergie). Avec GRAB-ECO, l'espace de controle est encore
diminué par rapport a la SHM, ce qui entraine une réduction supplémentaire du temps
de calcul.

Une méthode de calcul de la consommation d’énergie entierement analytique (FACE)
est ensuite établie sur la base des modeles analytiques des composants et, pour les
véhicules hybrides-électriques, les approximations susmentionnées de la consommation
d’énergie minimale. Avec FACE, la consommation d’énergie (minimale) de tous les
types de systémes de propulsion est calculée sous forme analytique en fonction des
caractéristiques du cycle et des parametres de dimensionnement.

En ce qui concerne l'optimisation de la conception des groupes motopropulseurs,
I'approche a deux niveaux a été étudié, dans lequel 'optimiseur du design est un algo-
rithme d’optimisation mathématique, tandis que 'optimiseur du controle est soit la SHM
soit la GRAB-ECO. Alternativement, FACE est appliqué pour optimiser directement les
parametres de dimensionnement sur la base des fonctions analytiques développées.

Plusieurs cas d’étude sont présentées en détail dans cette these, ce qui montre une
réduction efficace du temps de calcul requis par le processus global de co-optimisation
par rapport aux techniques standard.



Appendix

Contour Maps of Chapter 2

Additional graphical results of powertrain components are illustrated in this chapter.
The associated components contain the internal combustion engine for light- and heavy-
duty applications. Moreover, results of electric motor/generator, including PMSMs and
AIMs, are summarized as well.

B.1 Internal Combustion Engine

Remained results of internal combustion engines are illustrated in terms of grid-point
data, description, and prediction. Features of these engines are listed in Table 2.4 and
2.5 for light- and heavy-duty applications, respectively.

The remained light-duty engines are illustrated in Fig. B.1-B.13, whereas the rest
heavy-duty engines are depicted in Fig. B.14-B.22.
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(a) data (b) description (c) prediction

Figure B.1 — Map of burned fuel power of light-duty engine ID2.
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Figure B.2 — Map of burned fuel power of light-duty engine ID3.
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Figure B.3 — Map of burned fuel power of light-duty engine ID4.
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Figure B.4 — Map of burned fuel power of light-duty engine ID5.
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Figure B.5 — Map of burned fuel power of light-duty engine ID6.
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Figure B.6 — Map of burned fuel power of light-duty engine ID7.
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Figure B.7 — Map of burned fuel power of light-duty engine ID8.
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Figure B.8 — Map of burned fuel power of light-duty engine ID9.
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Figure B.9 — Map of burned fuel power of light-duty engine ID10.
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Figure B.10 — Map of burned fuel power of light-duty engine ID11.
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Figure B.11 — Map of burned fuel power of light-duty engine ID12.
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Figure B.12 — Map of burned fuel power of light-duty engine ID13.
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Figure B.13 — Map of burned fuel power of light-duty engine ID14.
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Figure B.14 — Efficiency map of heavy-duty engine ID1.
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Figure B.15 — Efficiency map of heavy-duty engine ID3.
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Figure B.16 — Efficiency map of heavy-duty engine ID4.
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Figure B.17 — Efficiency map of heavy-duty engine ID5.
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Figure B.18 — Efficiency map of heavy-duty engine ID6.
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Figure B.19 — Efficiency map of heavy-duty engine ID7.
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Figure B.20 — Efficiency map of heavy-duty engine ID8.
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Figure B.21 — Efficiency map of heavy-duty engine ID9.
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Figure B.22 — Efficiency map of heavy-duty engine ID10.

B.2 Electric Motor/Generator

Remained results of electric motor/generator are illustrated in terms of grid-point data,
description, and prediction. Features of these electric machines are listed in Table 2.14
and 2.15 for PMSM and AIM, respectively.

The remained PMSMs are illustrated in Fig. B.23-B.36, whereas the rest AIMs are
depicted in Fig. B.37-B.51.
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Figure B.23 — Efficiency map of PMSM ID1.
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Figure B.24 — Efficiency map of PMSM ID2.
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Figure B.25 — Efficiency map of PMSM ID3.
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Figure B.26 — Efficiency map of PMSM ID4.
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Figure B.27 — Efficiency map of PMSM ID5.
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Figure B.28 — Efficiency map of PMSM ID6.
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Figure B.29 — Efficiency map of PMSM ID7.
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Figure B.30 — Efficiency map of PMSM ID8.
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Figure B.31 - Efficiency map of PMSM ID9.
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Figure B.32 — Efficiency map of PMSM ID10.
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Figure B.33 — Efficiency map of PMSM ID11.
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Figure B.34 — Efficiency map of PMSM ID12.
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Figure B.35 — Efficiency map of PMSM ID13.
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Figure B.36 — Efficiency map of PMSM ID15.
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Figure B.37 — Efficiency map of AIM ID1.
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Figure B.38 — Efficiency map of AIM ID2.
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Figure B.39 — Efficiency map of AIM ID3.
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Figure B.40 — Efficiency map of AIM ID4.
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Figure B.41 — Efficiency map of AIM ID5.
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Figure B.42 — Efficiency map of AIM ID6.
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Figure B.43 — Efficiency map of AIM ID7.
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Figure B.44 — Efficiency map of AIM ID8.
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Figure B.45 — Efficiency map of AIM ID9.
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Figure B.46 — Efficiency map of AIM ID10.

N,, [krpm]

(b) description (c) prediction

Figure B.47 — Efficiency map of AIM ID11.
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Figure B.48 — Efficiency map of AIM ID12.
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Figure B.49 — Efficiency map of AIM ID13.
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Figure B.50 - Efficiency map of AIM ID15.
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Figure B.51 - Efficiency map of AIM ID16.



Appendix

Implemented Missions

In this chapter, additional implemented missions of this thesis are briefly introduced in
terms of characteristics and trajectories. The implemented missions are composed of
the New European Driving Cycle (NEDC), the Federal Test Procedure (FTP-72) cycle,
the Highway Fuel Economy Test (HYWFET) cycle, the Inner City Driving Cycle (ICDC),
and the Suburban Driving Cycle (SUDC).

C.1 Main Characteristics

The main characteristics of the previously mentioned missions are summarized in Table
C.1, where distance of trip Dy;p, trip duration t;y1,, idling time t;., average speed vyq,
and maximal speed v,,,, are included.

NEDC | FIP-72 | HYWFET | ICDC | SUDC
Dyip [km] | 10.9 12.1 16.5 90 211
tioral IS] | 1180 | 1370 765 11175 | 18000
tite [S] | 267 259 0 2850 | 3274
Vavg [km/h] | 3335 | 315 77.7 39.03 | 495
Vmax [km/h] | 120 | 91.25 96.4 99 92

Table C.1 — Features of various missions applied in this thesis.

C.2 Graphical Illustration

Apart from the trajectory of NEDC is depicted in Chapter 3, history of remained missions
are individually illustrated in Fig. C.1-8.8.
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Figure C.1 - Speed trajectory of FTP-72.
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Figure C.2 — Gear shift schedule of FTP-72.
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Figure C.4 — Gear shift schedule of HYWFET.



Appendix

Detailed Dimension-Related
Parameters of Chapter 5

Due to the huge size and large quantity of the dimension-related parameters in Eq. 5.2
and 5.14, they are composed individually in Section D.1 for conventional vehicles and
in Section D.2 for battery-electric vehicles.

In the following dimension-related equations, the descriptive parameters k---) may
exist for the sake of equation size. These descriptive parameters k---) can be further
replaced with the predictive coefficients c(---) through analytic models of powertrain
components at predictive level that are described in Chapter 2.

D.1 Conventional Vehicle

_ Ce3C1/0 + CelktORdee
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101 = — 1 faz (D.2)
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D.2 Battery-Electric Vehicle

The dimension-related parameters of battery-electric vehicles are clustered into two
categories because of depleting or charging condition of battery corresponding to the
propulsion or braking operations.

Dimension-related parameters of the depleting condition of battery are
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20 =

4154 414 212
ded ded ded
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. 4Cy0Cyokpakp knsR2, N 6CyCy1kpokmakysR2, N C2 ky1kyusR2,
kiRj kiRj kiRj
2Cy0Cpokp1kmsR2 N 4C,0CyrkpokimakiusRy N Cyokuokr,y
252 2 2
K2R K2R, K2
N 2C,1kpakpi ks N Coikpikima N 2C2 o kpokmskis N 2C,0kpokpmokimaRa
ka ka K kaRy
R N kp1km3R5 N 2kpokmi k3R
Ry R R
bl _ 12Cv0C31kb2k72n5vai + 12C30Cv2kb2kr2n5va;4u + 4Cv2kb2kmlkm5va12u
T R i
N 12C,0Cy1kpokpaksm, R, N 2C,okp1 ks, R, N 4C, 1 kpokiokmsmy, Ry,
352 2752 2
KR K2R2 K2R,

+ 2CV0kb2k72n4mv " 4CvOkakmE'>kmSmv n 2kb2km2km4vad
k3 k kiRy,
kyam? (k3 (K24 + 2K3kins ) RS + 6Cy1kakakmsRERE +6(C2) +2Cy0Cy2 ) k25 RE )
kAR
FAY

, (D.66)

, (D.67)

b1 _
Dy, =

(D.68)
b1 _ 4Cv2kb2k;5ng§u
BT
b 4Cu0Cy i knoka Ry N 12C2,Cy1 Cookyoki s R, . 4Cy1 Cyokprkp ks R2,
T iR R}
. 6Cy0C1 kpokmaks RE, . 6C2Cookpokpmakms RS, N 2Cy1 Cozkpr ks Rz,
kiR kiR kiR
N 2C2 kyokpakms Ry N 4C,0CookpokynkysRy, N 2Cy0Cyrkpak?,
kIR 4 kIR 4 k7
N 2Cy2kpokm1 king . Cookp1kmg N 4Cy0Co1kpokmzkms N 2Cy1kpokimakimnaRa
ka kq k3 kaRy
N 2C,0kpokmskmaR3 N 2kpokokms R
ksR2, R3
b _ 4C3 kyok2 cm, RY . 24C,0Cy1 Cyokpok2 sm, R N 6C2, kpokyakysmy, R2,
" kiR kiRg kiRa
N 12Cy0Cyokyokyakyusmy, Ry, N 4Cyokpokppkmsmy Ry . 2Cy1kpaky gy
kXR2 kiR k3

, (D.69)

, (D.70)
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n 4Cv1kb2km3km5mv i 2kb2le3km4vafl

% R , (D.71)
bl 6Cv2kb2km5m12/R12u (kdkm4R§ + 2Cv1km5R12u)
32 = k4R4 ’ (D72)
a’%d
Dbl _ koka R N 2C, 1 kpokmskma Ry . 2CokprkpokinaRa N C,1kuoksg
40 R%} de%, dew k;
. 2Cy0Coakpak?, . 2C2 kyokmskons . 4Cy0Cyokporkyzkins N 4C1 Cpokpokmakims Ry
2 2 2 2
K2 K2 K2 K2Ry
N 2C2 kyakmi ks R, N 2C) kyokmakins R, N 12C,0Cp1 CoakpokmakmsR2,
252 352 352
kiR kiR kiR
C2 ky1kusR2 N Chkyok2 RE  6C2,C2kppk2 sRE  12CyC2 Cpokyok? SR,
252 Py 414 44 ’
kiR kiR kiR kiR
(D.73)
i 12Cy0Chkyok s sm, Ry, . 12C2, C,okyok? sm, RE .\ 12Cy1 Cyokpokmakmsnt, R,
41 — 44 4154 3122
kiR kiR kiR
2C,okyok? 1y, AC, o kpokmskysm
+ v k; m4"v 4 v2 2k§13 m5 v’ (D.74)
bl _ 6C32kb2k515m12;R§u
42= ARd ) (D.75)
a’*d
oL _ 12C,Cy1 Crkpokps Ry, . 4CJ| Cyakpoky s Ry, N 6Cy0CorkpokmakinsRE,
50 = Y i 3552
kR4 kR4 kiR
. 6C2, CyokpakmakysR2, N 2C2, kpokmakis Ry . 2Cy1 Cyakpak? 4
k3R3 kIR 4 k3
. 4Cv1Cv2:§2km3km5 N 2Cv2kb;k;§km47€§} (D.76)
d dflw
b1 6CTkuokusmyRE (kakyaRE +2C,1kpsR2 )
Dbl = i , (D.77)
a’*d
Yl 4Co0CorkioknsRy  6CH CookiokysRy  6Cu1 ChokinkmaknsRE  Cookyokys
ip4 44 352 2
kiR 4 kiR kiR ky
2 2
N M, (D.78)
ki

bl _ 4C,kyokp sy Ry,
61 — A4
ded

, (D.79)
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2C32kb2km5R%/ (kdkm4R§ + 2Cv1km5R12u)

b1
- D.80)
20 yp— , (
ded
4
g(l) _ Cvzkakrznstfz (D.81)
ipd )
ded
where R is defined as
Rd = Rmed; (D.82)

and the parameter k; is equal to the coefficient c;;.

Dimension-related parameters of the charging condition of battery are expressed as

kpoRS + (k1 RE + CZok3kinsR2 ) (ko1 RE + kyokp1 RS + ClokuokZknsR2)

b2
- D.83)
00 4 4 (
Ry
by 2Cu0kgknsmy RS (ko1 R + 2k (ki RS + C2ok2k,us R )
Db = R , (D.84)
R
kzkm5m R2 (kblR +2kb2km1R2 +6C50kb2k2km5R )
DS% - 4 ’ (DSS)
Ry
4C,okpok k2 sm3RY
8%2 v R4 m5 , (D.86)
kpokk2 smiRY,
b2 b2% " ms5
04~ R4 ’ (D.87)
pi2 4CV0CV1kb2kd6km5R4 2C,0Cy1kp1 k3 gkmsR2, 4cvoc 1kpak3 ek ks R2,
4 2
R, R Rd
2Cy0kb2kd6km4km5R n 2C30kb2kd6km2km5Rw + kblkm2Rd + 2kb2km1km2Rd
Rz 7?’d Rw Rw
+ Cyokprkackma + 2Cyokpokackmi kmas (D.88)
N 12C2,Cy1kpokok2,sm, Ry 2Cv1kb1k kmsmy R, v, 4C, 1 kyo k3t ks, R,
4 2 2
R; R R
6Ckkkka 4Ckk2kka
20021 36" maRm5 v0Ab2 d67€m2 m5 My Ry +kb1kd6km4my
R2 d
+ 2kb2kd6km1km4mv, (D89)
by 2keok3knsm2Ry (ko R3 +3Cy0kaRy (KnaRE +2Cy1kakysR3))
Dy5 = , (D.90)

R
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2kyok3kinsm3R (kyuaR2 +2Cy1kaksR2) )

= = , (D.91)
d
b2 6Co0CaikiokickasRa N 4CJ Coakpakgekns Ra N Coikpi kskmsRa,
20 — 4 4 2
R R R
d d d
+ ZCVOCVZkb1k§6km5R12u + 2C31 kbzkgékmlkmSR%u + 4Cv0Cv2kb2k§6km1km5R%u
R2 R? R?
d d d
+ 6C§()Cv1kb2k36km4km5R12u N 4Cv0Cv1kb2k§6km2km5Rw + 2Cv0kb2kd6km2km4Rd
Rz Rd Rw
d
kpok? R% kyikysR3 2kyokmikpsR3
o 2mad | OV T | TURmI Ty 2 ok k2 + Cotkpt kagkima
R3, R3, R,
+2Cy1kpokaskmi kima + 2Co0kpok ks koms, (D.92)
pa  12Cy0Clikyokckasmy Ry, N 12C2,Cyokpok k2 sm, RY N 2C,okp1 k3 ks, R2,
21— 4 4 2
R R R
d d d
n 4Cv2kb2k§6kmlkm5va12u n 12Cv0Cv1kb2k26km4km5vagz n 4Cvlkb2k§6km2km5vaw
2 2
R R: Ra
2kb kd kiiokyam Rd
+ e n]i, = +2CV0kb2k§6krzn4mv +4Cv0kb2k§6km3km5mv' (D.93)
pa  6Cokyokiekn sm2Ry, N 12C,Cyokpakj k2 sm2RE, N 6Cy1kpakdkmakmsm2R2,
22 = 1 4 2
Ry Ry Ry
+kpok2 k2 ym2 + 2kyo k3 ks ks, (D.94)
by ACuokpokiksm3Re,
23 = 4 ’ (D95)
Ra
pa 4Co0Cokyakygkn s Ry, N 12C2,C,1 Cpokpok k2,5 RE N 2C,1 Cyokpi k3 ks R,
30 — 4 4 2
R R R
d d d
" 4Cyy CVZkb2k§6kmlkm5R12u " 6Cv0C31 kb2k26km4km5R12u n 6C30Cv2kb2k36km4km5R$u
R2 R? R?
d d d
4 2C31 kb2k§6km2km5Rw + 4Cv0Cv2kb2k§6km2km5Rw + 2Cv1kb2kd6km2km4Rd
Ra Ra Ry
2C, 0kpokaokmskmaR%  2kyokpoks RS
+ voTb2 (;62 m37md™d + b2 7;223 m3’d + 2CvOCv1kb2k§6ky2n4 + CvZkblkd6km4
w w
+2Cyokpakaskmi kima +4Co0Cy1 kpokdskmskms, (D.96)

b2 ACH kyokygkn s, Ry, N 24C,0Cy1 Cyokpokj k2 smy RE, N 6C2 kpok3 kakysm, R2,
31 — 4 4 2
Rd Rd Rd
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n 12CvOCv2kb2k§16km4km5va12u + 4Cv2kb2k§6km2km5vaw " 2kb2kd6km3km4va§

R3 R R?,
+2C, 1 kyok3 k2 gy, + AC, 1 kyok3 ks ks, (D.97)
by 6Cuakok ksmIRE (kinaRG +2Cy1kaknsR3 )
32 = 4 » (D98)
Rd
o _ kpok2,R5 .\ 2C,1kpokaskmskmaR] . 2CuokpokaskmakmaRa
WoRY R2, Ry
" 4Cv1 Cv2kb2k§6km2km5Rw " ngkblk§6km5R12u n chzkakﬁékmlkmSRlzu
Ra R R?
+ zcglkb2k26km4km5R12u + 12CVOCV1Cv2kb2k36km4km5R12u + Cglkb2k§6ki5R§/
2 2 4
Rd Rd Rd
6C30C52kb2k36kr2n5Ri 12Cv0C31Cv2kb2k36k345R§/ 2 e k2 K2
+ R + R +Cikpokyeksy
+2C,0Cookyaka k2 s+ 2C2 kiok kinskms + 4C,0 Cookyaki ks ks, (D.99)
b _ 12C,0C2kpok k2,sm, RY N 12C2, Cpokpokok2,sm,RY
41 Ré Rﬁ
12C,1 Cpokpok3 Kpak,sm, R2
4 vl v2lh 7;3 AT TV 2 C ok k2 41y + 4Cy 2Ky ok ks ks 1y,
d
(D.100)
2 41.2 2p4
Z% _ 6Cv2kbzkd{:m5vaw; (DlOl)
7?’d
pa  12C00Cy1 CookiokcknsRe N 4C3, Cyokpok k2 sRE N 6Cy0C2rkpak3 kmaks R,
e R Ry R
6C2y Cookpok skmakmsRe,  2CT kyokickmokms Ry 2CyakyokaskmskmaR
+ + +
R2 Ra RZ,
+2Cy1 Cookpakd k2 +4Cy1 Cookpok 3 gkimskms, (D.102)
by 6CIkuok ksmy R, (kiaRE +2Cy1kakysRY)
DY = . , (D.103)
Rd
3 4 1.2 4 2 2 4 1.2 4 2 3
b _ 4CyCokyak ks Ry N 6C3, Coykpokickp s R, N 6Cy1 Cookpokdckmakys R,
” R R; R;
C2 kyok2 k2 , +2C2 kyok? k,u3k D.104
T CookpaK gl t+ 2802 K 46" m3Km5, ( . )
4C3 ky,k2k? -m, R4
o2 tidms Vv (D.105)

R
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2C3 kyok3 ks R2 (ka3 + 2C, 1 kakyns R

b2
= : (D.106
70 R§ )
Ch kyokik? sRY
pp2 = Zv2b2d s v (D.107)

4
Rd
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Appendix

Detailed Dimension-Related
Parameters of Chapter 6

Dimension-related parameters of FACE for series and parallel hybrid electric vehicles
are summarized in this chapter.

E.1 Series Hybrid Electric Vehicle

d;

= p3Ve(16384kgom ' REps — 8192Kkg ' Rp3we; + 16384k ' PRI py vy
—16384kg27(18724p3a)61+16384kg27z18724p6wm 16000kg370"RgVe(P2Pg — P3P5Wei)
+15625kgap?Pg V2 — 15625keap; P3P,V wei)z, (E.1)
= —641 R piwy( — 65536k, *REpIpIw?; + 163840k, SR pIpgpo Vi),
+32768kg1n18R3(p§w§i(5p8p9v —2p3) + pepaV7 ) - 65536k, R pIplwy;
+163840kgr 70 *Rgp3pgPo V7 wy; — 16384kgr ' *RepspaVi we;
+65536k,y 70 SR PPV Wei — 32000kg3 7 R Ve(P3wei (P23 @ei (5PgPo VY7
—2P%)_P10P§V )+2P5P6P Ve ) 62500kg4p;p3p7 Ve @y,
+ 156250kg4p%p3p8p91/e a)ei + 62500kg4p1p4p6p81/€ - 15625kg4p11p3pgve4we,- ),

(E.2)
= 20971 512n277z4 (819218 R3( - 2keopg + kg1 RoP3wei — 2kg1 RoPswei + 2kga REp3 w2
— 2kga Ry ) + 125Ve(128ke3 0 RE(P2P6 — P3P5Wei)
+125kgap, Ve(psPaei ~ P1Pe))) - (E.3)
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4kg0p§p§a) 1Okg0p3p9V a) 4kg1Rgp§p%wm 1Okg1Rgp3p9V w

d2 = -
iV P PaVe P
IOknggp3p9V a) P 125kg3p10p§v3w§i . 125kg3p2p§p§wfi
3 647° 321%p;
) 625kg3pop3PoViwy; ) 125kg3p3pspe V2w ) 15625ke4pip3p2Vews;
647°pg 32m° 40967(18Rgp8
78125kgspip3poViws;  15625keap  p3P4PsVs @2 B 15625kgsp,, P3V3 w3,
81927'8RZp3 40967 '8R} 163847 18R}
4kgr, R2p3prws;
22 eP3P7
+2kg1 RgP3PeVew?; - pg " L~ kgpRIPIVew]; + 4k RIp3pP, Ve,
8
P = 16C610T(4a)3‘ + 8C611T(30) .+ 466127-(20)?1‘ + 266137'(61)?1. + Cel4we7i + 1286‘577'(7
5 2

+ 64c38n6wez +32¢,o1° wy;,

Py = 16C310T(4(1) -+ 8C611T(3a) .+ 4C812T(2w?i + 2Cel3T(C¢)ZZ- + Cel4w98i + 128C37T(7a)ei

6 5 3

+ 64c, g7 W,i»

w i+ 320,97
=32¢,1 % +2000¢,10C,370 w3 + 1000¢,11cp3 3 w0 + 500¢,12¢,37 % w>
P3 = el e10Ce3 ei e11Ce3 ei e12Ce3 ei
+2500,13Ce3 TS, + 125¢,14Co3@7; +960c,07 we; + 16000¢,3¢,77"
6 5 2
+8000c,3¢,87° we; +4000c,3¢,91° wy;,
_ 4 2 3.3 2 4 5 6 6
p4 = 48C310T( a)ei + 32C311T( a)ei + 20C312T( a)ei + 1268137'(a)ei + 7Cel4a)ei + 64Ce8T(
5
+ 64c,9T0° Wi,

p5—3263107'(4a) +20C811T[3a) +12C612T( CL) +7Cel37'(a) +4Cel4(1.) +64Ce7T(7

5 2

+ 64,510 W, + 48C,9T00 @ w5,

P = 16,1 0 +4000c,10c,37* w3 +2500¢,11 3w + 1500¢,) 500370 @2,
+875¢,13Ce3 TS, +500¢,14Co3w7; + 960c,57 w,; +8000¢,3¢,77”
+8000¢,3,878 W, + 6000¢,3C,07° @2,

p; = 16cel7'(8Ve + 4OOOceloce3n4Vea) + 25006311Ce37'( V, a) T+ 1500C312Ce37'( V, a)
+875¢,13Ce3 TV, w8, + 500¢,14Co3 V@] + 960c,07" Vow,; +8000¢,3¢,,7 V,

+ 800063878V, w,; + 6000¢,3¢07V, w2,

Pg = 32¢01 T we; +2000¢,1gco3 et wl; + 1000c511c63n3w5. +500¢,1 ¢35 @,

+ 2SOcel3ce3nw + 125cel4ce3w + 960c62n + 16OOOCe3ce7n Wei
+8000¢,3¢,870 w? +4000¢,3C,07° @2,
Po = 1200¢,10c370 % +1000¢,11 €37 3: + 750¢,1 2C03 70> Wh; + 525¢,13Ce3 W),

+350¢,14Ce3@% + 964,70 +800¢,3¢,87° +1200¢,3C,97° w,;,

Pig = 48C5107'C4a)ezi + 4066117'(30); + 30C612T(2w§i + 216313710); + 14C614wgi + 32C38T(6

(E.10)

(E.11)

(E.12)

(E.13)
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+48C,0T° w,;, (E.14)

P11 = 384:06’62107{80)31' + 53766'6106’6117(7(()651' + 3584C€10C6127’(6(1)e6i + 2304C610Cel37’(5(1)e7i
+1440¢,10C,147 @8, +12288¢,10ce7 70"  wei + 12288¢,1pc gm0 w?;

60)51- + 2304C611C312T(5a); + 1440C811C313T(4C()§i

9 3 2

+10240¢,10Ceo1" w,; + 1792¢; 7
880 Sw? +12288 1002 +10240 Yw?

+ Ce11Ce14T Wy; + Ce11Ce7 T " W,; + Ce11Ce8Tl Wy,

+7680C,11Coom5 w5 +720c2 ;1 P + 880¢,12¢,13° w): + 528,124 W,

9 3 8 4 7 5 2 2 10
+10240¢,12¢,770" w,; +7680¢,12C,8T" W,; + 5376C,12C,9T" w,; + 264c; 31" w,,;
+312013C,14TwL +7680¢,13¢,7 T i +5376¢,13¢,87 @)+ 3584c¢,13Com° w®:
+91¢2 w7 + 5376014071 w2+ 3584¢,14Co8T WS, + 2304c, 1400 W,

+8192¢,7¢,om" 2 +4096¢% 72 + 122885007 Wi + 61442t Y w?.. (E.15)

E.2 Parallel Hybrid Electric Vehicle

To reduce the dimension of dimension-related parameters of FACE for parallel hybrid-
electric vehicles, the piece-wise linear model of light-duty engines in Chapter 2.2.2 has
been rewritten as

Pr(w,P,) = ka(‘)e + kflwe2 + (ku + kf?)we + kf4(‘)e2)Pel P, < Ppe(we),
ST kpowe + ky1? + (kpa — Kps + Kpswe + Kya?)Pec + KysPoy P> Peclwe)
(E.16)
where parameters k;(i = 0,---,5) are derived from Chapter 2.2.2.
The dimension-related parameters are given as follows.
Cookra  kroRan
DElV — v + i (E17)
1o kt6 Rw
keym
DelY = sz ’ (E.18)
t6
2 2
Dl _ Cvok3Ran . Cuikyr . kiR, ~ kszan%i . kpokus R, R2, (E.19)
20 kis Ry ki R%; Zkb4km4R12,/S 2km4R%, .
kesm, R
Dy = L=, (E.20)
t6-\w
Dl _ CuokfaR3, CutkfsRan s Cookra kpokss R, R2, N kp3knsR3, R, (E.21)
% kigR? kiR kee kpakmaRos 2Ky R, .
2
elv _ kf4vadTZ’ (E22)

31 — 2
kt6Rw
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2 4 p2
ely _ CorkpaRy,  Cuokf3Ran ~ kokrsRG, Rz, ~ kisRa R kpaknsR5 R,
0 kigR? kiR kpakmaRis — 2kpakyaRis 2Ry
(E.23)
2 5 p2
5 - s .
kigR? kpakpaRos
2 6 p2
ey __ KpaRanRm (E.25)
60 — 6 .7 .
2kb4km4RwS
Cuokra  kpoRan
De2V — v + , (E.26)
10 kt6 Rw
keom
D= kz %, (E.27)
t6
2 52 p2
De2v _ CookrsRan . Corkyr s kR, ~ kesRauRin  kpokusR3, R, (E.28)
20 ki Ry ke R2  2kpck,4R%s 2k, R2 '
k 3vadn
D€2V — f , E.29
21 kt6Rw ( )
v _ CookpaRe,  CurkysRan  Cookpr  kpokysRy, Ry kysknsRG, Ry (£.30)
30 kisR2, kisRu ki kpokmaRys 2kpaRS '
kram,R?
g{vz—fi v dn, (E.31)
t6Rw
2 p4 p2
02y _ CuikraR,  CuzkpsRay ~ kpokesRy, R, ~ k3R anRin .\ kpaknsRy, R,
40 kt6R12u kt6Rw kb6km4R3/S 2k56km4R%/S 2km4R;}u ’
(E.32)
2 5 p2
e2v _ Cvzkf4Rdn _ kf3kf4Ranm (E.33)
P keRL  kekmaRis
2 6 p2
e2v _ kf4Ranm (E 34)
60 — 6 .’ .
2kb6km4Rw5
3
Dle] v =y, .35)
Dt =0, E.36)
kroRan  kpakpekscRan
pesy = SO, , (E.37)
10 Rw Rw
kriRE, kpakprkeR3,  kpsksekpcR3
D;gv p noy 2 L. 2 ”, (E.38)
w w w
keokegke RS keskerke R3S kpakpekpc RS
D5 = f20f87F e dn | ZFTfT S dn | Zf4Tf 6T dn, (E.39)

R}, R,



E.2. Parallel Hybrid Electric Vehicle 209

4 4
kyskpskpcRy, s kfaksrkecRy,

Desv — E.40
s 2 o (E.40)
keakesks R
Dggv_ f4 f85fc dTl, (E4:1)
Ry
kroRan kpakgekscRan
Der: f ) E.42
10 R, + R, ( )
ke R2  kpokgrkecR% kpskrokscR2
Desy — f12d11+ f2 f72fc dn  °f3 f62fc dn. (E.43)
Rz, R3, Ry
3 3 3
cov _ KpokpskpcRy, kpskprkpcRy,  KpakpekpcRy,
sy _ S ST fean, (E.44)
Rw Rw Rw
keskegkeeRE  kpgkerke RA
DEsY = f3 f84fc dn  "f4 f74fc dn (E.45)
R Ry
krakrgks R
pesy = rastiRan, (E.46)
Ry
c Okf2 kaRdn kuRanme
De7v: v + _ i E.47
10 kt6 Rw Rw ( )
m
,Dzﬂv_ sz V’ (E.48)
t6
CookisRan  Coikrr kpR?% ki3R2 R, T
Dgz)v: v0ORf3 dn+ vl f2+ flzdn_ f3 dnzm m’ (E.49)
kt6Rw kt6 Rw Rw
k 3vadn
eV — f , (E.50)
21 kt6Rw
o7y Ckaf4R§n Cvlkf3Rdn Cv2kf2 kf4R?ianTm
v - CooksiRay p 222 i (E.51)
kigR3 ki Ry ke R;,
kqm,R>
gZV: f4 Vzdn’ (E.52)
kt6Rw
CoikpsR2 CyuokssR
Z)v: vl f42 dn+ v2hf3 dn’ (E.53)
kt6Rw kt6Rw
Cyok 4R
g%vz v2 f42 d”, (E54)
kt6Rw
Cookrr  kpoRan  kp2RanRimT
pesv _ ¥ f 4 _ _m’ E.55
10 kee R, Ry ( )
krom
Dﬁv: sz V’ (E.56)
t6
2 2
Dy — CookpsRan  Cotkpa  kpiRG, kf3RanmIm, (E.57)

kis Ry ki R%} R%,
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where the variable R, is further split into each gear ratio.
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Ré&umé:

Des technologies avancees sont trés demandées
dans l'industrie automobile pour respecter les
réglementations de consommation de carburant
de plus en plus rigoureuses. La co-optimisation
du dimensionnement et du contrde des groupes
motopropulseurs avec une efficacitéde calcul
améioré est éudiee dans cette thése.

Les composants des groupes motopropulseurs,
tels que le moteur, la batterie et le moteur
dectrique, sont moddisé& analytiquement au
niveau descriptif et prédictif afin de permettre
une optimisation du contrde rapide et une
optimisation du dimensionnement scalable. La
consommation d'éergie minimale des véhicules
hybrides-&ectriques est &aluée par des
nouvelles méhodes optimales. Ces méhodes —

Titre : Co-Optimisation du Dimensionnement et du Contrde des Groupe Motopropulseurs Innovants

Mots clé : optimisation du dimensionnement, optimisation du contrde, groupes motopropulseurs,
véhicule dectrique hybride, vénicule &ectrique, véhicule conventionnel

y compris Selective Hamiltonian Minimization
et GRaphical-Analysis-Based energy
Consumption Optimization — permettent
d'é&aluer une consommation minimale d'énergie
avec une efficacitéde calcul améiorée. De plus,
la mé&hode de Fully-Analytic energy
Consumption Evaluation (FACE) approxime la
consommation d'éergie minimale sous forme
analytique en fonction des caractéistiques de la
mission et des paramétres de conception des
composants du groupe motopropulseur.

Plusieurs cas d’études sont présentées en détail
par rapport aux approches de co-optimisation a
bi-niveaux et auni-niveau, ce qui montre une
ré&luction efficace du temps de calcul requis par
le processus global de co-optimisation.

Abstract :

Advanced technologies are highly demanded in
automotive industry to meet the more and more
stringent regulations of fuel consumption. Co-
optimization of design and control for vehicle
propulsion systems with an enhanced
computational efficiency is investigated in this
thesis.

Powertrain components, such as internal
combustion engines, batteries, and electric
motor/generators, are analytically modeled at
descriptive and predictive level
correspondingly for the development of fast-
running control optimization and for the
scalability of design optimization. The minimal
fuel consumption of a hybrid-electric vehicle is
evaluated through novel optimization methods.

Title : Design and Control Co-Optimization for Advanced Vehicle Propulsion Systems

Keywords : design optimization, control optimization, vehicle propulsion system, hybrid-electric
vehicle, battery-electric vehicle, conventional vehicle

These methods — including the Selective
Hamiltonian Minimization, and the GRaphical-
Analysis-Based energy Consumption
Optimization — are able to evaluate the minimal
energy consumption with the enhanced
computational efficiency. In addition, the
Fully-Analytic energy Consumption Evaluation
method approximates the minimal energy
consumption in closed form as a function of the
mission characteristics and the design
parameters of powertrain components.

A few case studies are presented in details via
the bi-level and uni-level co-optimization
approaches, showing an effective improvement
in the computational efficiency for the overall
co-optimization process.
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