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A B S T R A C T

Most of current recommendation systems are based on ratings (i.e. numbers
between 0 and 5) and try to suggest a content (movie, restaurant...) to a user.
These systems usually allow users to provide a text review for this content in
addition to ratings. It is hard to extract useful information from raw text while
a rating does not contain much information on the content and the user. In this
thesis, we tackle the problem of suggesting personalized readable text to users
to help them make a quick decision about a content.

More specifically, we first build a topic model that predicts personalized movie
description from text reviews. Our model extracts distinct qualitative (i.e., which
convey opinion) and descriptive topics by combining text reviews and movie
ratings in a joint probabilistic model. We evaluate our model on an IMDB dataset
and illustrate its performance through comparison of topics.

We then study parameter inference in large-scale latent variable models, that
include most topic models. We propose a unified treatment of online inference
for latent variable models from a non-canonical exponential family, and draw
explicit links between several previously proposed frequentist or Bayesian meth-
ods. We also propose a novel inference method for the frequentist estimation
of parameters, that adapts MCMC methods to online inference of latent vari-
able models with the proper use of local Gibbs sampling. For the specific latent
Dirichlet allocation topic model, we provide an extensive set of experiments and
comparisons with existing work, where our new approach outperforms all pre-
viously proposed methods.

Finally, we propose a new class of determinantal point processes (DPPs) which
can be manipulated for inference and parameter learning in potentially sublinear
time in the number of items. This class, based on a specific low-rank factoriza-
tion of the marginal kernel, is particularly suited to a subclass of continuous
DPPs and DPPs defined on exponentially many items. We apply this new class
to modelling text documents as sampling a DPP of sentences, and propose a
conditional maximum likelihood formulation to model topic proportions, which
is made possible with no approximation for our class of DPPs. We present an
application to document summarization with a DPP on 2500 items, where the
summaries are composed of readable sentences.

keywords : topic models, online learning, latent variable models, unsuper-
vised learning, determinantal point processes, latent Dirichlet allocation.
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R É S U M É

La plupart des systèmes de recommandation actuels se base sur des évalua-
tions sous forme de notes (i.e., chiffre entre 0 et 5) pour conseiller un contenu
(film, restaurant...) à un utilisateur. Ce dernier a souvent la possibilité de com-
menter ce contenu sous forme de texte en plus de l’évaluer. Il est difficile
d’extraire de l’information d’un texte brut tandis qu’une simple note contient
peu d’information sur le contenu et l’utilisateur. Dans cette thèse, nous tentons
de suggérer à l’utilisateur un texte lisible personnalisé pour l’aider à se faire
rapidement une opinion à propos d’un contenu.

Plus spécifiquement, nous construisons d’abord un modèle thématique prédis-
ant une description de film personnalisée à partir de commentaires textuels.
Notre modèle sépare les thèmes qualitatifs (i.e., véhiculant une opinion) des
thèmes descriptifs en combinant des commentaires textuels et des notes sous
forme de nombres dans un modèle probabiliste joint. Nous évaluons notre mod-
èle sur une base de données IMDB et illustrons ses performances à travers la
comparaison de thèmes.

Nous étudions ensuite l’inférence de paramètres dans des modèles à variables
latentes à grande échelle, incluant la plupart des modèles thématiques. Nous
proposons un traitement unifié de l’inférence en ligne pour les modèles à vari-
ables latentes à partir de familles exponentielles non-canoniques et faisons ex-
plicitement apparaître les liens existants entre plusieurs méthodes fréquentistes
et Bayesiennes proposées auparavant. Nous proposons aussi une nouvelle méth-
ode d’inférence pour l’estimation fréquentiste des paramètres qui adapte les
méthodes MCMC à l’inférence en ligne des modèles à variables latentes en util-
isant un échantillonnage de Gibbs local. Pour le modèle thématique d’allocation
de Dirichlet latente, nous fournissons une vaste série d’expériences et de com-
paraisons avec des travaux existants dans laquelle notre nouvelle approche est
plus performante que les méthodes proposées auparavant.

Enfin, nous proposons une nouvelle classe de processus ponctuels détermi-
nantaux (PPD) qui peut être manipulée pour l’inférence et l’apprentissage de
paramètres en un temps potentiellement sous-linéaire en le nombre d’objets.
Cette classe, basée sur une factorisation spécifique de faible rang du noyau
marginal, est particulièrement adaptée à une sous-classe de PPD continus et de
PPD définis sur un nombre exponentiel d’objets. Nous appliquons cette classe
à la modélisation de documents textuels comme échantillons d’un PPD sur les
phrases et proposons une formulation du maximum de vraisemblance condi-
tionnel pour modéliser les proportions de thèmes, ce qui est rendu possible sans
aucune approximation avec notre classe de PPD. Nous présentons une applica-
tion à la synthèse de documents avec un PPD sur 2500 objets, où les résumés sont
composés de phrases lisibles.
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1
I N T R O D U C T I O N

The amount of text and the number of documents available on the Internet have
recently skyrocketed. The types and uses of documents are very diverse. For
instance, reviews of products you may find in recommender systems (e.g., Yelp1,
Amazon2, IMDB3) convey an opinion and are crowd-sourced. On the other hand,
newspapers or scientific papers are neutral and written by professionals. We
identify other sources of text. Websites like Quora4 or Stackoverflow5 are used
as questions and answers (Q & A) platforms where users expose questions or
issues they are trying to solve (e.g., math problems) while other users propose
possible solutions. Search engines represent another source of text. The user
makes a request—usually formulated with text—and the aim of a search engine
is to suggest the most relevant content(s) to this request. The recent emergence
of personal assitants (e.g., Siri6, “Ok Google”7, Alexa8) gives us a glimpse of new
sources of text. These devices turn vocal commands into text requests as inputs
for search engines.

A common problem for these applications is to process a huge amount of
text (potentially millions or billions of documents or requests). In particular,
the extraction of useful information for a given task is proving to be difficult.
Note that the definition of usefulness clearly depends on the application. For
recommender systems, the user intends to choose a content from a list as quickly
as possible. Useful reviews could be those which help users to make a quick
opinion about a content. For search engines, computing a distance between
any text request and any available content would be useful. In practice, this
distance is learned from examples of requests and enables the engine to suggest
efficiently the closest content to the user’s query.

In this context, Technicolor9 is a worldwide leader in the media and enter-
tainment sector. The company is specialized in movie creation, production and
distribution. It delivers solutions for content management (such as creation,
imaging, finishing, preparation) and offers a wide range of services for provid-
ing digital entertainment (such as movies) at home through Pay-TV operators
and network service providers. Consequently, the motivations for this work

1http://www.yelp.com
2http://www.amazon.com
3http://www.imdb.com
4http://www.quora.com
5http://stackoverflow.com/
6http://www.apple.com/ios/siri/
7http://madeby.google.com/home/
8http://www.amazon.com/echo
9http://www.technicolor.com/
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were to look for new methods including text to recommend movies for users at
home.

In this thesis we focus on services including crowd-sourced reviews such as
Yelp, IMDB, the Fork10, Amazon etc. For this type of service, the main issue is to
help users to assess contents (restaurants, movies, products) as fast as possible.
While many recommender systems are based on rating prediction [Ricci et al.,
2011], the solution of most commercial services to this issue is to reduce the
quantity of information (reviews, ratings) absorbed by the user before making a
decision. We can identify various strategies of commercial services to implement
this solution. While all the services propose the “Sort by” feature for reviews,
they also have an additional specific feature on top of that when browsing a
particular content:

• On Yelp, selected sentences are displayed based on key-words they contain.
The key-words are highlighted and correspond to specific aspects (served
dishes or ingredients, location, quality of service, etc.) of the restaurant.
The platform also allows the user to characterize any existing review as
useful, funny or cool. An user can then quickly assess the “quality” of a re-
view before reading it, based on the number of useful, funny or cool already
assigned to this review.

• On IMDB, the useful feature is also implemented, but through a yes or no
question: Was the above review useful to you?. The reviews can be ranked in
the “Sort by” feature by computing the proportion of useful assignments
for each review (i.e., the score of a review is the number of “yes” answers
divided by the total number of answers for this review; the reviews with
maximal scores will be first displayed).

• On Amazon, the Top customer reviews (reviews with the highest rating), Top
critical reviews (reviews with the lowest rating) and the Most recent customer
reviews are all displayed on the first page of the product and it is easy
to access to the reviews with a given rating. The useful feature is also
implemented—as in Yelp—to quickly assess the quality of a review.

• On the Fork, the platform allows the user to assess a given restaurant with
a global rating and several “sub-ratings” to evaluate the different aspects of
the restaurants (food, service, setting, value for price among others). The user
can also specify the occasion for visiting the restaurant (on your own, with
friends, with family, romantic or business). As a result, the average rating of
each aspect is displayed on the homepage of a given restaurant so the user
has a quick overview of the aspects for this restaurant. For more details on
restaurant, the user can also filter the reviews by occasion.

We remark that in any case, the selected reviews or features displayed are not
personalized (i.e., do not depend on the user browsing the website) and the user

10http://www.thefork.com
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usually needs to manually select and parse the particular reviews she needs to
read to make her final opinion. Even if the selection process is greatly simplified
by the different platforms, the effort made by the user may still be significant.

Given these commercial solutions, our goal is to automate and personalized
the suggestions to the users, based on the history of reviews and ratings of
many different users. More precisely, the ultimate goal of this work is to build
a model that would automatically suggest a personalized list of contents to the
user together with a (short) personalized readable text attached to each content
describing the (as accurate as possible) opinion of the user on this content. In
this thesis, we build a line of work towards this ultimate goal, taking advantage
of substantial existing work on information retrieval.

1.1 introduction to information retrieval

The term “information retrieval” (IR) was first used by Mooers [1950]. It gathers
all the techniques to extract information from a large corpus of text documents.
The retrieved information can take the form of meta-data, latent representation
(as in topic models), documents or other types of contents (as in search engines).
The applications derived from IR are numerous [Aggarwal and Zhai, 2012]. For
instance, IR covers text classification [Nigam et al., 1999, Rennie, 2001], docu-
ment clustering [Pereira et al., 1993] or semantic features extraction [Deerwester
et al., 1990, Dumais, 1994, Hofmann, 1999b,a]. Given our initial objective of text
recommendation to users, we focus on semantic features extraction—also known
as topic models. This particular field of IR covers techniques able to identify and
gather words that have similar meanings from a corpus of documents. In this
section, we present the document representation mostly used in topic models
and the first techniques to extract semantic features from text.

1.1.1 Bag-of-words representation of document

The bag-of-words representation is the most widely used representation of doc-
uments and was first introduced by Harris [1954]. Given a corpus of D docu-
ments C = {X1, . . . , XD}, we denote V the size of the vocabulary, i.e., the number
of different words used in the corpus. In the bag-of-words representation, the
document i of C is represented as a vector Xi ∈ RV , with:

∀v ∈ J1, VK, (Xi)v =

{
ni

v > 0 if word v occurs in the i-th document of C,
0 otherwise.

In this representation, ni
v represents the “score” of word v in document i. A first

natural approach consists in setting ni
v to the frequency of word v in document i,

but other more evolved scores are used in practice, such as term frequency-
inverse document frequency (TF-IDF) [Hiemstra, 2000]. In this representation,
neither the order of words nor the structure of the documents (e.g., sentences,
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punctuation, etc.) are taken into consideration. The co-occurrences of words
are the only structure represented with bag-of-words, which is often enough
information to extract semantics, i.e., to gather words with similar (semantic)
meaning.

It is possible to model documents with more complex representations but a lot
of technical obstacles arise from these representations. A 2-gram is defined as a
pair of consecutive words in a larger sequence of words (i.e., a sentence or a doc-
ument). In a 2-gram representation, we consider all the single words and pairs
of consecutive words (i.e., the sequences of 1 or 2 consecutive words) that occur
in corpus C. If we denote M the number of such sequences in corpus C, the asso-
ciated representation of document i is a vector X̂i ∈ RM with (X̂i)m = ni

m > 0 if
the sequence m occurs in document i and 0 otherwise, with a similar definition
of ni

m than ni
v in bag-of-words. This representation is more complete because

it models all the possible pairs of words occurring in corpus C in addition to
single words, but it is very complicated to manipulate in practice as M � V.
Another con of this representation is that even if M is large, only a small num-
ber of sequences actually conveys semantics. For instance, if we consider of
corpus of long documents (e.g., newspapers with hundreds of words per doc-
uments), among the different pairs of consecutive words (i.e., 2-grams) in the
corpus, only a very small portion appears more than once and among the pairs
appearing more than once in the corpus, only a very few of them actually con-
vey semantics. As a result, in a 2-gram representation, the signal to noise ratio
is very low we have to make a lot more effort to extract semantics. It is even
more difficult if we consider higher order n-grams (i.e., sequences of n consecu-
tive words), with n > 2. See for instance Jelinek and Mercer [1980], Katz [1987],
Kneser and Ney [1995].

1.1.2 First topic models

From the bag-of-words representations descrived above, the first IR models are
algebraic models, in which documents are represented as vectors. One of the
first applications is the vector space model [Salton et al., 1975], where the bag-
of-words representation with TF-IDF score is used for document retrieval. The
objective is similar to search engines, namely, return the (stored) document that
best matches the (incoming) user’s text query. The similarity between the user’s
query and each stored document is computed with the cosine similarity, i.e.,
as the (normalized) scalar product between the bag-of-words representations of
the query and the document. This first approach is clearly not scalable: given
a query, one needs to compute D scalar products of size V, where D is the
number of stored documents and V is the size of the vocabulary. If the number
of documents D is several billions and the vocabulary contains several thousands
words, the time to return a document from a single query may be too long with
this representation.
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A first extension of this model is the latent semantic analysis (LSA) or indexing
(LSI) model [Deerwester et al., 1990]. Given a corpus C = {X1, . . . , XD} where
Xi ∈ RV is the bag-of-words representation of document i, we consider the term-
document matrix TD ∈ RV×D, defined as follows:

TD =

X1

  · · ·

 XD

 .

We reduce the dimension of the document representation by first computing the
SVD decomposition of TD: TD = Pdiag (σ) Q>, where P ∈ RV×r and Q ∈ RD×r

are the singular vectors of TD and σ ∈ Rr is the vector of the non-zero singular
values of TD. In particular, we can represent document i of the corpus as a vector
of size r using the following identity:

Xi = Pxi = Pdiag(σ)qi,

where qi ∈ Rr is the i-th row of Q and xi = diag(σ)qi ∈ Rr is the r-dimensional
representation of document i. The vector xi ∈ Rr corresponds to the weights
given by document i to the r left-singular vectors, i.e., the r columns of P. In
other words, xi corresponds to the coordinates of Xi in the vectorial space of
dimension r in RV with orthonormal basis the r columns of P. As the matrix P is
orthogonal, we simply compute the r-dimensional representation xi of document
i from Xi as follows:

xi = P>Xi.

This transformation corresponds to a change of basis and can thus be extended
to any bag-of-words representation. Given a bag-of-words X ∈ RV , the corre-
sponding r-dimensional transformation x is given by:

x = P>X.

In particular, if we consider the transformation of the bag-of-words represen-
tation of an incoming query, the cosine similarity between this query and any
(stored) document of corpus C is a scalar product of size r (instead of V above).

However, as the rank r of the term-document matrix may be large (i.e., close
to V), we can reduce even more the dimension of the transfomation. We first
choose the K largest singular values σK ∈ RK of TD and the corresponding K sin-
gular vectors PK ∈ RV×K and QK ∈ RD×K. The matrix T̂K = PKdiag(σK)(QK)

>

is the best (in Frobenius norm) rank-K approximation of TD [Eckart and Young,
1936]. We then use the following approximation to compute the K-dimensional
representation of document i:

Xi = Pdiag(σ)qi ≈ PKdiag(σK)(qK)
i,

where (qK)
i ∈ RK is the i-th row of QK. Given this approximation and given that

PK is orthogonal, we obtain the transformation x̂i ∈ RK of Xi with the following
formulation:

x̂i = (PK)
>Xi.
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The intuition is that the complete representation of Xi in the basis P is xi ∈ Rr.
With this new representation x̂i ∈ RK, we only consider the K coordinates with
the highest importance (which is conveyed by σ) to represent Xi. We use the
same reasoning to extend this new transformation to any bag-of-words repre-
sentation: x = (PK)

>X ∈ RK. The cosine similarity between any two documents
(e.g., an incoming query and a stored document) is now computed as a scalar
product of size K, which is potentiatlly much smaller than r and V.

In the LSA model, the choice of the dimension K is manual and leads to a
tradeoff between the precision of the approximation and the desired computa-
tional complexity. The higher the value of K, the more faithful is the repre-
sentation but the higher the computational cost (both in terms of storage and
similarity computation).

Another interesting aspect of the LSA model is that each term can also be
represented as a vector of size K. In the term-document matrix TD, the v-th term
of the vocabulary is represented by the v-th row Yv ∈ RD. We use the matrix
(T̂K)

> and similar formulations than above applied to (TD)
> to transform Yv to

a K-dimensional vector:

(Yv) = Qdiag(σ)(pv) ≈ (QK)diag(σK)(pK)
v,

where pv ∈ Rr is the v-th row of P and (pK)
v ∈ RK is the v-th row of PK. The

representation yv ∈ RK of Yv is thus given by:

yv = (QK)
>Yv.

This additional term representation is useful for many applications (e.g., find
relations between terms such as synonymy or antinomy, term clustering).

The main limitation of the LSA model and its extensions (e.g., the topic-based
vector space model [Becker and Kuropka, 2003]) is its underlying assumption
that words and documents follow a joint Gaussian distribution (where negative
log-likelihood is a squared Frobenius norm). This assumption comes from the
fact that the rank-K approximation of the term-document matrix TD computed
with SVD is obtained by minimizing the Frobenius norm ‖TD −M‖F over all
possible rank K matrices M. Thus, as only positive integers are observed in
the term-document matrix with word counts representation, Poisson and multi-
nomial distributions are more adapted. For other scores than counts such as
TF-IDF, the observed entries are positive and the Gaussian prior is still not ap-
propriate. In the following, we present the probabilistic extensions of LSA for
modelling words and documents with Poisson and multinomial distributions.

1.2 probabilistic topic models

The LSA model [Deerwester et al., 1990] presented above is a dimension reduc-
tion model, where we assume the words and documents are generated from at
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most K latent features. This constraint is set as a rank constraint on the term-
document matrix TD in LSA and the fitting is done with the Frobenius norm:

T̂K =


arg min
M∈RV×D

‖TD −M‖F

s.t. rank(M) = K.

As a result, the latent features correspond to the singular vectors of the term-
document matrix. Several limitations appear in this model. First, as discussed
above, the implicit Gaussian assumption of the LSA model does not match Pois-
son and multinomial observations. Then, if the number of documents D is large,
the SVD decomposition of the term-document matrix may be intractable to com-
pute in practice. Another issue in practice is that if D′ new documents are added
to the training set, it is very costly to compute the SVD decomposition on the
V × (D + D′) matrix and it is not straightforward to include the contribution of
the D′ new documents to update the latent features (i.e., to update the singular
vectors and singular values of the new term-document matrix).

Probabilistic topic models offer solutions to these limitations. The four main
characteristics to define such models are listed below:

• As LSA and previously described models, probabilistic topic models are
unsupervised. This type of models is easily transposable to different
datasets as no annotation is required. Manual setting is reduced as much
as possible;

• Probabilistic topic models are latent variable models. Each observation
is described as a mixture of latent features. This property is particularly
useful because the number of latent features is usually much smaller than
the initial number of dimensions (for instance, in LSA, the initial dimension
is the size of the vocabulary V and is reduced to K � V in practice);

• Most of topic models are generative. Documents are generated from a
mixture of latent components and any previously unseen (or test) docu-
ment can still be described with the latent components learned from the
training documents. In this context, the best model will be the one which
has the best generative power, i.e., capable of accurately describe any un-
seen document coming from the same distribution—in practice, the same
dataset—than the training documents;

• As induced by the name, the generative process is based on particular prob-
ability distributions. They offer flexibility of modelling. As mentionned
above, they offer a solution to the limitations of LSA and the Gaussian
modelling assumption.

The LSA model falls in the first two categories (unsupervised and latent variable
model) but we cannot generate new documents from the learned parameters
(singular vectors and singular values in LSA) and the learned paramaters are
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not probability distributions parameters, even if we can prove that this model
best fits observations drawn from a Gaussian distributions.

Mixture of unigrams [Nigam et al., 2000]

The first model example in this context is the mixture of unigrams model [Nigam
et al., 2000]. The assumption is that each document d is generated by first choos-
ing a mixture component z ∈ {1, . . . , K}, called topic, then generating the doc-
ument according to the distribution p(d|z). The probabililty of document d is
given by:

p(d) =
K

∑
z=1

p(z)p(d|z).

In the mixture of unigrams model, the naive Bayes assumption is used in or-
der to model p(d|z). Given the topic z of document d, the words of this doc-
ument are assumed independently distributed. The probability of document
d = (v1, v2, . . . , vNd) is then, under the naive Bayes assumption:

p(d) =
K

∑
z=1

p(z)
Nd

∏
i=1

p(vi|z).

The graphical representation of the mixture of unigrams model is presented in Fig-
ure 1a. In this particular model, the naive Bayes assumption matches the bag-of-
words representation. We denote X ∈ RV the bag-of-words representation with
frequency score of document d = (v1, . . . , vNd), i.e., Xv = nv for v ∈ {vi}i=1,...,Nd

and Xv = 0 otherwise, where nv is the number of occurrences of word v in doc-
ument d. We then write the probability of document d as follows:

p(d) =
K

∑
z=1

p(z)p(X|z),

with p(X|z) = ∏V
v=1 p(v|z)Xv . This formulation suggests a multinomial distribu-

tion for the conditional p(X|z), which matches the observations. The parameters
of the model are the distribution p(z), z = 1, . . . , K and the conditional p(v|z), for
v = 1, . . . , V and z = 1, . . . , K, which makes K + VK parameters. In practice, the
parameters are estimated by maximum likelihood of a corpus C = {d1, . . . , dD},
where documents are independent:

max
p(z),p(v|z)

L = ∏
d∈C

p(d).

This maximization is done with EM algorithm [Dempster et al., 1977].
As each document is attached to a single topic z, the intuition of this model

is that words occurring in the same document are associated to the same topic,
represented by the hidden variable z ∈ {1, . . . , K}. Each topic z is also associated
to the conditional p(v|z) for v = 1, . . . , V. We expect that words that have the
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z vn

n = 1 . . . Nd

d = 1 . . . D

(a) Mixture of unigrams.

z vnd

n = 1 . . . Nd

d = 1 . . . D

(b) pLSI.

Figure 1: Graphical representation of two probabilistic topic models. White
nodes represent hidden variables and colored nodes represent ob-
served variables.

highest probability p(v|z) to appear under the topic z exhibit semantic similarity.
In other words, we expect the semantics of topic z ∈ {1, . . . , K} to be conveyed
within the conditional (p(v|z))v=1,...,V .

One limitation of the mixture of unigrams model is that in practice we rather
expect that a document is generated from a mixture of different topics. For
instance, if we consider restaurant reviews, we expect that the topics discussed
in the reviews are, for instance, related to the food, the price, the service, the
atmosphere. It is not correct to assume that all the reviews only tackle one of
these topics. We rather have to consider that in all the reviews, the topics are
tackled with different proportions for each review. In the restaurant reviews
example, some users mostly assess the food and the service in their review while
other users tackle the food and the price of the meal.

Probabilistic semantic indexing [Hofmann, 1999b]

A first extension of the mixture of unigrams model that considers each document
is generated from a mixture of topics is the probabilistic latent semantic indexing
(pLSI) model [Hofmann, 1999b], also known as the probabilistic latent semantic
analysis (pLSA) model [Hofmann, 1999a]. This model is a probabilistic extension
of the LSA model [Deerwester et al., 1990] described above and aims at fixing
the (wrong) Gaussian assumption underlying the LSA model. In the pLSI model,
the joint probability of word v and document d, namely p(v, d), is parameterized.
The underlying generative process with pLSI is the following:

1. Select the document d in a corpus C = {d1, . . . , dD} with probability p(d);

2. For each of the Nd words of document d:

a) Choose a latent topic z ∈ {1, . . . , K} with p(z|d);
b) Choose a word v ∈ {1, . . . , V} with probability p(v|z).

More formally, the joint probability model on (v, d) is:

p(v, d) = p(d)p(v|d), with p(v|d) =
K

∑
z=1

p(v|z)p(z|d).
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Note that in this model, one latent variable (or topic) z ∈ {1, . . . , K} is attached
to each word v of document d (i.e., Nd hidden variables in document d), while
in the mixture of unigrams model only one topic z is attached to each document.
Another distinction is the probability p(z|d) which depends on the document d
in the pLSI model while p(z) is indepedent to the documents in the mixture of
unigrams model. The graphical representation of the pLSI model is presented in
Figure 1b.

The parameters of the model are the document distribution p(d), the latent
variables distribution for each document p(z|d) and the topic distributions p(v|z).
In the end the number of parameters is D +KD +KV = K(D + 1+V). The max-
imum log-likelihood of the corpus C = {d1, . . . , dD} gives an estimate of these
parameters:

max
p(d),p(z|d),p(v|z)

L = ∑
d∈C

∑
v∈d

nd
v log [p(v, d)] ,

where nd
v is the number of occurrences of word v in document d. The EM al-

gorithm is used for this maximization. Note that pLSI is not generative, as the
probability of unseen documents p(dnew) is not known and is estimated for train-
ing documents only. The document variable d is only a document index in the
corpus. In other words, given the parameters of the model, we can not generate
new documents.

We can link the pLSI model to the LSA model with an alternative fomulation
of the joint probability p(v, d). We use the identity p(d)p(z|d) = p(z)p(d|z) in
the model to compute an equivalent formulation:

p(v, d) =
K

∑
z=1

p(z)p(v|z)p(d|z).

In this formulation, the occurence of word v is independent from document
d given the topic associated to word v: p(v, d|z) = p(v|z)p(d|z). If we denote
T̃ ∈ RV×D the matrix such that T̃vd = p(v, d), P̃ ∈ RV×K the matrix such that
P̃vz = p(v|z), Q̃ ∈ RD×K the matrix such that Q̃dz = p(d|z) and σ̃ ∈ RK the
vector such that σ̃z = p(z), the joint probability model T̃ can be written as a
matrix product:

T̃ = P̃diag(σ̃)Q̃,

which makes a clear link between pLSI and LSA. While in LSA, the K latent fac-
tors PK and QK are orthogonal singular vectors, in pLSI the matrices P̃ and Q̃ are
not orthogonal and correspond to conditional distributions of the model. The
main difference between LSA and pLSI thus resides in the objective function.
The Frobenius norm used in LSA implicitly models the term-document coeffi-
cients with a Gaussian distribution. As a result, the approximation TK of TD
with LSA is not faithful to the observations—integer word counts—and may
even contain negative entries. On the contrary, pLSI properly defines a proba-
bilistic model of the term-document co-occurrences based on multinomial sam-
pling. The objective function is the likelihood function of the observations and
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we can show that the maximum likelihood computation with pLSI corresponds
to the minimization of the Kullback-Leibler divergence between the empirical
distribution (TD) and the model (T̃):

arg min
p(d),p(z|d),p(v|z)

KL
(

TD||T̃
)

s.t. rank(T̃) = K.

In practice, the pLSI model is more flexible and better handles polysemy than
LSA. As the latent factors are not necessarily orthogonal, pLSI model allows
correlation between latent topics p(v|z), which is more realistic. In LSA, the
orthogonality of latent topics typically implies that any word v of the vocab-
ulary only falls in a single category, i.e., in the extreme case, p(v|z∗) ≈ 1 and
p(v|z) ≈ 0 for z 6= z∗. However, for polysemous words, this constraints does not
hold. For instance, in a movie reviews dataset, we expect that words like shoot,
mole or model appear in two different topics. The word shoot may be related to
the cinematography or the action to fire a gun. The word mole may refer to the
animal or an infiltrated spy. The word model may refer to a miniature object or a
mannequin.

The pLSI model can be seen as a nonnegative matrix factorization (NMF)
model [Dhillon and Sra, 2005] with specific (non Gaussian) generative assump-
tions on the term-document matrix. While the multinomial distributions are
adapted to documents, the model may be adapted to fit any type of positive
data [Paatero and Tapper, 1994, Lee and Seung, 1999].

The main limitations of the pLSI model are the number of parameters which
grows linearly with the number of observed documents D and the fact that this
model is not generative and has a limited predictive power on unseen docu-
ments.

In the next section, we describe the latent Dirichlet allocation model (LDA)
model [Blei et al., 2003] which intends to make the best of both mixture of un-
igrams and pLSI models. On the one hand, the mixture of unigrams model is
generative and has a fixed number of parameters. On the other hand, with pLSI
the documents are modelled as mixtures of different topics. The LDA model
combines these advantages.

1.3 lda , existing extensions and applications

The latent Dirichlet allocation (LDA) model [Blei et al., 2003] is a generative
extension of the pLSI model. In LDA, the topic distribution

(
p(v|z)

)
v=1,...,V is

denoted βz ∈ RV , with the constraints ∑v βz
v = 1. The difference with pLSI

is that the topic proportions vector of document d is a parameter in pLSI (de-
noted

(
p(z|d)

)
z=1,...,K above), while in LDA the topic proportions vector is a

random variable, denoted θ, set with a Dirichlet prior. More formally, document
d is generated as follows:
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K

Figure 2: Graphical representation of LDA. White nodes represent hidden vari-
ables and colored nodes represent observed variables.

1. Draw the topic proportions θ of document d, with θ ∼ Dirichlet(α);

2. For each of the Nd words of document d:

a) Choose a latent topic z ∼ Multinomial(θ);

b) Choose a word v ∼ Multinomial(βz).

The parameters of the model are the topic matrix β ∈ RV×K and the Dirichlet
prior α ∈ RK on the document topic proportions, that is KV + K parameters.
The probability of document d generated with LDA is given by:

p(d|α, β) =
∫

θ
p(θ|α) ∏

v∈d

(
K

∑
z=1

p(z|θ)p(v|z, β)

)
dθ.

This probability is intractable to compute in practice, so the EM algorithm can
not be applied directly to the LDA model. The maximum likelihood is instead
estimated with variational EM [Blei et al., 2003, Hoffman et al., 2013], Gibbs
sampling [Griffiths and Steyvers, 2002] or moment matching [Podosinnikova
et al., 2015]. We tackle and propose a new online inference scheme (i.e., inference
from streams of documents) for intractable latent variable models in Chapter 3.

As the previous presented models, the generative process of LDA can be seen
as a factorization on the bag-of-words representation X ∈ RV of document d,
considered as a random variable. In the LSA model, the underlying generative
process is:

X ∼ Gaussian(Px, IV), (LSA)

where P ∈ RV×K is an orthogonal matrix and x ∈ RK is a low-dimension rep-
resentation of X. In the mixture of unigrams model (MU), each document is
generated from a single feature z:

X|z ∼ Multinomial(P̂z, Nd), (MU)

where P̂z ∈ RV is a topic vector P̂z
v = p(v|z). In the pLSI model, each document d

has its own factorization model:

X|d ∼ Multinomial(P̃x̃, Nd), (pLSI)
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where P̃ ∈ RV×K is a topic matrix P̃vz = p(v|z) and x̃ ∈ RK is a vector of joint
distribution x̃z = p(d|z)p(z) = p(d, z). Finally, in LDA, given the topic propor-
tions θ, the generative process is independent of the document. In other words,
the distribution X|θ does not depend on the document and is factorized as:

X|θ ∼ Multinomial(βθ, Nd), (LDA)

where β ∈ RV×K is a topic matrix βz
v = p(v|z) [Buntine and Jakulin, 2005].

In LDA, each document is modelled with a mixture of different topics and the
number of parameters does not depend on the size of the corpus. In particu-
lar, online inference—i.e., learn the parameters from streams of data—is much
more practical than with the other presented methods. The LDA model is eas-
ily enhanced by adding new variables (see next section). Even if the resulting
generative process is much more sophisticated, the inference scheme for these
extensions is usually very similar to the LDA inference, which explains the at-
tractiveness of this model. As a matter of fact, the LDA model is widely popular
(almost 20,000 citations; pLSI has 4000 citations), has been used for many appli-
cations and has led to many extensions.

1.3.1 Extensions of LDA

There exist many extensions of LDA to match particular applications or to cor-
rect a specific limitation of the model.

Topic coherence improvement.

In the LDA model, when the number of topics K is very large, some topics
are “junk” topics, namely topics that are not consistent around an aspect (e.g.,
food or service in a restaurant reviews dataset). A solution to this issue is to
automatically filter out these “junk” topics by ranking them [AlSumait et al.,
2009]. Another solution is to regularize the objective function [Newman et al.,
2011]. The empirical judgement of topics by users is discussed by Chang et al.
[2009].

Topic structure.

The first extensions of LDA found in the litterature are related to the structure
of the topic matrix. In LDA, the topics are represented by β ∈ RV×K as a list
of K independent discrete distributions on the vocabulary of size V, where the
number of topics K is set manually. One of the limitations of LDA is that it does
not model the correlation between topics although we expect that a document
about politics is more likely to also tackle elections than sport. In the correlated
topic model (CTM) [Blei and Lafferty, 2007] the Dirichlet prior on θ in LDA (the
topic proportions of the document) is replaced by a logistic normal distribution
to parameterize and learn the correlation between topics. As a result, on top of
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learning a topic matrix β, explicit links between the K topics are learned and
we can represent the topics as a graph where an edge between two topics is set
if their correlation is high enough (see Blei and Lafferty [2007] for more details
and examples of such graphs). A related model is the latent topic network
model (LTN) [Foulds et al., 2015], where the Dirichlet prior on θ is replaced by
a conditional random field (CRF). A graph of topics is thus learned with this
model. Another approach to model the correlation of topics is to put a prior
on the topic matrix β, parameterized as a sum of regression factors [Paul and
Dredze, 2012].

Non-parametric approaches.

Another limitation of the LDA model is the number of topics K which has to
be set manually. Several non-parametric extensions of LDA adaptively learn the
number of topics from the documents. For instance, in the hierarchical Dirichlet
process (HDP) [Teh et al., 2006], a list of topics is iteratively updated by adding
or removing topics of the list. More complex structures than lists are also used
to model the topics. Both the nested Chinese restaurant process (nCRP) [Blei
et al., 2010] and the nested hierarchical Dirichlet process (nHDP) [Paisley et al.,
2014] learn a (non-parametric) tree of topics from documents. In this tree, the
root topic is the most generic while a leaf topic is very specific (e.g., sport is the
parent topic of soccer and baseball). See an efficient algorithm for such models
in Chapter 3.

Multi-scale topics.

The LDA model does not consider the structure of the documents, i.e., the sen-
tences and the order of words. In the multi-grain LDA (MG-LDA) model [Titov
and McDonald, 2008], two scales of topics are learned. A list of “global” topics
describing a whole document and a list of “local” topics describing sentences.
Consequently, this models takes into account the structure of the documents
while still keeping the practical bag-of-words representation for the documents
and sentences.

Dynamic topic models.

In the LDA model, the temporal order of documents is not considered. However,
for large dynamic datasets such as news, the topics discussed in the news ten
years ago are probably strongly different than the topics of nowadays news. In
the dynamic topic model (DTM) [Blei and Lafferty, 2006], a discrete evolution of
the topic matrix is considered by grouping documents in temporal bins. The con-
tinuous time extension of the DTM model, called continuous time dynamic topic
model (cDTM) [Wang et al., 2012], in which the timestamp of each document is
considered. Other approaches to model the temporal evolution of text datasets
represent words co-occurences as a dynamic graph over time [Palla et al., 2016].
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Opinion mining.

In the ASUM model [Jo and Oh, 2011], a hidden “sentiment” variable is attached
to each sentence and is used to extract positive and negative topics. In the
topic sentiment mixture model [Mei et al., 2007], each of the K latent features is
divided in three topics: one neutral, one positive and one negative topic. In the
restaurant reviews example, each aspect—food, service, atmosphere, price—would
be attached to three topics that respectively convey neutral, positive and negative
words about this aspect. In this model, the underlying generative process of a
document is the following: we first choose one of the K features, then one of the
three sentiment (expected to be neutral, positive or negative), finally we sample
a word from the corresponding topic (e.g., topic of positive word distribution
about food). These three steps are performed by sampling from multinomial
distributions. In the joint sentiment/topic model (JST) [Lin and He, 2009], S lists
of K topics are learned, each list corresponding to a sentiment (typically, S = 3
to model K neutral, K positive and K negative topics). The generative process for
words is the following: one of the sentiment features s ∈ {1, . . . , S} is choosen,
then one of the K topics of list s is sampled and finally a word from this topic
is drawn. Note that in the JST model, there is not necessarily correspondance
between neutral, positive and negative topics. It may happen that the price aspect
only appears in the neutral list of topics while the food aspect appears in the
positive and negative list of topics (but not in the neutral list).

Recommendation.

In crowd-sourced review services such as Yelp, IMDB, Amazon etc., each user
assesses a particular content (e.g., a movie, a restaurant, a product) with a numer-
ical rating together with a detailed text comment of her opinion on the different
aspects of the content. A recommender system is built by combining ratings and
text reviews in LDA. In the supervised LDA model [Mcauliffe and Blei, 2008],
the rating is parameterized as a response to the corresponding text review. As
a result, given an unseen text review, the model is able to predict the rating at-
tached to this review. Each topic learned with this model is attached to a score
which represents the influence of this topic on the final rating. Another solution
to combine rating and text in LDA given by McAuley and Leskovec [2013] is to
explicitly parameterize the topic proportions of the review θ as a function of the
rating r attached to the review. We propose in Chapter 2 an extension of LDA to
combine ratings and text reviews in which we distinguish the topics that convey
opinion from descriptive (neutral) topics.

1.3.2 Limitations

In a recommender system where we want to suggest contents together with
personalized text, the main limitation of the presented topic models is the bag-
of-words representation. Indeed, with this representation, we can only suggest
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bag-of-words documents to user, i.e., lists of single words. For instance, if you
are suggested the movie Batman, a topic model like LDA would probably attach
the words batman, action, good, movie, robin. The issue is that this list of words
may not be intuitive to make a decision about the content. It would be more
intuitive to have readable sentences such as Batman is a good action movie. This
requires to represent differently the documents and in particular to model the
dependency between words of a document. In the next section, we discuss other
approaches to represent and model documents; see also Chapter 4.

1.4 beyond lda and bag-of-words representation

As explained above, the bag-of-words representation for documents is practical
but totally dismisses the structure of a document. In particular, both the order
of words and sentences cutting are ignored and words are assumed to be (con-
ditionnally) independent, which is an issue. Indeed, we expect that, if we are
given the word vn in the n-th position of a document, the distribution of the pre-
ceding word p(vn−1|vn) is different than the distribution of the following word
p(vn+1|vn). For instance, in a restaurant review, if we know that vn = hot, it is
more likely that the preceding word is good and the following word is dog than
the other way around (good hot dog is more likely to appear than dog hot good).
More formally:

p(vn+1 = dog|vn = hot)� p(vn+1 = good|vn = hot),
p(vn−1 = dog|vn = hot)� p(vn−1 = good|vn = hot).

In LDA and other topic models, this order relation is ignored.
A n-gram is defined as a sequence of n consecutive words (v1, v2, . . . , vn). The

order is important here as for instance (v1, v2) 6= (v2, v1) for n = 2. Note that in a
bag-of-words representation, the pairs (v1, v2) and (v2, v1) are strictly equivalent.
The n-gram class model [Brown et al., 1992] addresses the problem of predicting
a word given the n− 1 previous words in a sample of text. In this model, instead
of directly estimating the distributions p(v|v1, v2, . . . , vn−1) which require Vn − 1
parameters, a class c ∈ {1, . . . , C} is associated to each words and the model
follows the assumption:

p(v|v1, v2, . . . , vn−1) = p(v|cn)p(cn|c1, . . . , cn−1),

where ci is the class of the word in position i in the sequence. This assumption
follows the intuition that the vocabulary may be clustered in C classes of words
and words in the same class are interchangeable in a sample of text. For instance,
if we have to finish the sentence “My appointment is on ___”, the words Monday
and Thursday are equally probable to occur. Therefore, they would be assigned
the same class and the number of parameters to fill the sentence is reduced
from V to C. If the size of the vocabulary V is large, this modelling assumption
reduces significantly the number of parameters involved. Brown et al. [1992]
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propose algorithms to approximate the maximum likelihood of the 2-gram class
model.

However, the n-gram models are not generative as their goal is to predict
the last word of a n-gram given the n − 1 previous words. The bigram topic
model [Wallach, 2006] combines the LDA model with a 2-gram (or bigram)
model. In this model, the word vt in position t is generated from the previ-
ous word vt−1 and the chosen mixture for this word zt ∈ {1, . . . , K}. The context
vt−1 has an influence on the generative process. The parameters learned are
the distributions p(vt|vt−1, zt) which correspond to V × K topics (instead of K
topics in LDA). While the choice of topic zt for word t is the same than for
LDA p(zt|θ), each word is now generated from the topic matrix φ ∈ RVK×V ,
with φ

(j,k)
v = p(vt = v|vt−1 = j, zt = k). The combination of the LDA model with

a bigram model results in a generative model that takes the structure of the
document (or the context) into consideration. If we extend this model to n-
grams with n > 2, namely model the distributions p(vt|zt, vt−1, vt−2, . . . , vt−n+1),
the number of parameters required grows exponentially with the length of the
n-gram O(KVn) with no further assumptions, which becomes computationally
intractable for large vocabulary V.

Other scalable approaches have been developped to model long contexts. One
recently popular approach use word embeddings. The princple is to map each
word v of the vocabulary in a r-dimensional space. Given a corpus C of observed
documents, the vectors (Xv ∈ Rr)v=1,...,V associated to words of the vocabulary
are learned from C by minimizing a cost function (or maximizing a likelihood)
on the embeddings. This cost function is typically set so that words that are
used in similar context (i.e., interchangeable words) have similar embeddings.

This word embeddings approach has recently gain popularity with the skip-
gram (or word2vec) model [Mikolov et al., 2013b]. In this model, the online
inference of the embeddings is efficiently implemented and requires absolutely
no supervision. The principle is to maximize the likelihood of words in a win-
dow:

L =
T

∑
t=1

∑
−c≤j≤c,j 6=0

log p(vt+j|vt).

The window (vt−c, . . . , vt−1, vt+1, . . . , vt+c) is the context of word vt and the win-
dow size c is manually set in practice. In the skip-gram model, the probability
p(vt+j|vt), for −c ≤ j ≤ c, is parameterized as a soft-max function of the embed-
dings:

p(vt+j|vt) =
exp (〈Xvt+j , Xvt〉)
V
∑

w=1
exp (〈Xw, Xvt〉)

.

This raw skip-gram formulation is impractical as the computational cost of the
gradient ∇ log p(vt+j|vt) is proportional to the vocabulary size V, which is large
for real datasets (104 − 107). Along with this skip-gram model, Mikolov et al.
[2013b] combine different tricks to efficiently maximize the likelihood L. Conse-
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quently, this model and other related word embeddings models have been used for
many applications as word vectors are quickly computed and the comparison of
two words is efficient. For instance, this type of models covers question answer-
ing [Mikolov et al., 2013a, Bordes et al., 2014], document classification [Kusner
et al., 2015, Huang et al., 2016], automatic translation [Zou et al., 2013].

Even if the word embeddings models are powerful tools to effectively param-
eterize the structure of documents, they only provide seperate representations
for words of the vocabulary. Given the vectors associated to every words of
the vocabulary, it is not straightforward to compute the representation of a full
sentence or a full document as a vector. We propose in Chapter 4 a document
model based on determinantal point processes (DPP). In our model, a document
is represented as a list of sentences and each document is generated by selecting
a subset of all the possible sentences. The probability of a subset is parameter-
ized with a DPP. Note that with our representation, the sentences of a document
are not independent. We apply our model to document summarization where
we propose readable summaries of restaurant reviews.

1.5 contributions

In this thesis, given the models previously described, we make the following
contributions to the problem of suggesting personalized annotated content to
the users:

• Chapter 2. We first observe that topic models like LDA mostly extract
descriptive words and give a very low importance to words that convey
opinion. We propose a model that leverages ratings together with reviews
to distinguish qualitative and descriptive words. While several existing
methods include ratings in the LDA model (e.g., Mcauliffe and Blei [2008],
McAuley and Leskovec [2013]), their goal is to improve the rating predic-
tion by adding the text information. Moreover, topics that convey opinion
are not clearly identifiable with such methods. As we want to suggest text
to the user, our method rather leverages ratings to improve review predic-
tion. We run and evaluate our method on a movie reviews dataset. Not
only does our model improve the overall predictive power compared to
existing work but it also extracts meaningful positive and negative topics
that are automatically identifiable. This work is accepted at the 13th In-
ternational Conference on Machine Learning and Data Mining (MLDM)
2017.

• Chapter 3. For very large corpora or online review services, it is convenient
nay necessary to process the dataset little by little. We provide a method to
efficiently learn parameters from streams of data when the model posteri-
ors are intractable to compute (which is usually the case for topic models).
There exist many online inference schemes for the LDA model but the
link between these methods is not explicit. We propose a unifying frame-
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work to draw explicit links between these methods and propose a new on-
line method in this framework that outperforms the previously proposed
schemes. This work is under revision at JMLR.

• Chapter 4. Determinantal point processes (DPPs) are useful to model di-
versity for subset selection problems. These models suffer from a high
computational cost when the number of items to choose from is large. We
propose a new class of DPPs based on a specific low-rank factorization of
the marginal kernel, which is particularly suited to DPPs defined on expo-
nentially many items. We apply this new class to modelling text documents
as sampling a DPP of sentences, and propose a conditional maximum likeli-
hood formulation to model topic proportions, which is made possible with
no approximation for our class of DPPs. More precisely, given the topic
proportions, a document is generated with our model by selecting a subset
of diverse sentences among all the possible sentences and the probability
distribution over the subsets of sentences (i.e., over the possible documents)
is formulated as a DPP. We present an application to document summariza-
tion on a restaurant reviews dataset with a DPP on 2500 items. We observe
that our model is able to generate meaningful summaries and extract word
embeddings and topics that convey semantics, while keeping a reasonable
computational complexity. This work is submitted to ICML 2017.
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2
P E R S O N A L I Z E D R E V I E W P R E D I C T I O N W I T H L AT E N T

D I R I C H L E T A L L O C AT I O N

Crowdsourced review services allow any user to assess contents (e.g., movies,
restaurants, hotels) through both numerical rating and free form text. They ex-
ploit the ratings to suggest contents to users while making raw reviews available
for users to get a precise opinion on a particular content. As it is tedious to ex-
tract useful information among thousands of reviews, it is more intuitive and
less time consuming for users to access a personalized summary of the other
users’ opinions on each content. In this regard, many existing implementations
either manually label each content—e.g., with the genre—or select “useful” re-
views to read in order to make a quick opinion on the particular content.

These existing approaches suffer from several limitations. First, the textual
information—labels of contents or “useful” reviews—provided by the system is
not personalized and may not be adapted to every user. The aspects decribed in
the selected “useful” reviews may not be decisive in the opinion of every user
and the labels of contents may be too generic to make a decision. The labelling
of the movies is also a cumbersome human task.

Consequently, our goal is to suggest the user a personalized text summary
of what could be her opinion on each content she visits, in order to enhance
recommender systems.

In our approach, we combine both text reviews and numerical ratings to au-
tomatically predict the words a user would employ to assess an unseen content.
We leverage topic models to separate descriptive information and qualitative in-
formation in distinct topics. This distinction between descriptive and qualitative
information is crucial as it enables to decompose the reviews in (1) the aspects
evaluated in the reviews and (2) the opinion attached to these aspects. Without
this distinction, it is impossible to automatically identify the decisive aspects in
the opinion of the user. We extend the LDA (latent Dirichlet allocation) model
[Blei et al., 2003] to include ratings along with texts.

Our contributions are (1) extensions of LDA in order to separate descrip-
tive and qualitative topics in a corpus of text reviews using movie ratings and
(2) their theoretical evaluation and comparison to state of the art [McAuley and
Leskovec, 2013, Mcauliffe and Blei, 2008] for the task of word prediction. As a
by-product (3) we show that profiling users from reviews is not possible with
this method because of the diversity of movies reviewed and opinions expressed
by users. Note that this work can easily be generalized to other types of content
such as restaurants, hotels and products. We have indeed applied our models
on a restaurant dataset with similar observations and performance.
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This work will be published in the proceedings of the 13th International Con-
ference on Machine Learning and Data Mining (MLDM) 2017.

2.1 topic extraction with lda

We define a corpus as a list of documents and a document (e.g., a single user
review) as a list of words. In this section we present the methodology we use to
pre-process raw text reviews. We then describe two types of topic models. The
first type of model only applies to text while the second type of model applies
to text and ratings. Each review is generated by a user on a movie. We apply
each type of model to three different corpora, depending on wether a document
is (1) a single review, (2) the concatenation of reviews related to a single movie
or (3) the concatenation of reviews written by a single user. These three different
processes with the two types of models lead us to six different models.

2.1.1 Pre-processing Reviews

Many words in reviews are not relevant for our purpose as they convey neither
qualitative nor descriptive information (e.g., stop words), or because they appear
too frequently in reviews and are too generic (e.g., movie, film, scene in movie
reviews).

We first remove the stop words using the NLTK toolbox [Bird et al., 2009] and
words appearing in more than 20% of the reviews (for instance, movie appears
in 80% of the reviews). We choose 20% as a threshold because it only filters out
very frequent words. We then select from the remaining words the 10,000 most
frequent words in the database. We observe that in our IMDB dataset of 97,000

reviews (we use a subset of the dataset decribed by Diao et al. [2014] that spreads
over 5,900 movies and 2,400 users), after filtering, each word appears in at least
10 reviews, which means only words that appear in less than 10 reviews—i.e.,
0.01% of the dataset—have been pruned.

2.1.2 LDA and Extensions

Let D be the number of documents of a corpus W = {w1, . . . , wD}, V = 10, 000
the number of words in the vocabulary and K the number of latent topics in
the corpus. Each topic φk corresponds to a distribution on the V words. For
each document d, LDA infers a discrete distribution θd over the K topics. In
practice, the inference may be done using variational EM [Blei et al., 2003], Gibbs
sampling [Griffiths and Steyvers, 2004] algorithm or online learning [Hoffman
et al., 2010]. As detailed in Chapter 3, LDA is a generative model applied to
a corpus of text documents which assumes that the n-th word wd

n of the d-th
document is generated as follows:

• Choose θd ∼ Dirichlet(α),
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LDA-O, 1 doc = 1 review LDA-C, 1 doc = 1 movie
comedy best action horror love comedy horror action love animation
funny great comic thriller family funny original die son animated
laugh love great best romantic laugh remake hard best toy
fun old best killer comedy joke gore bad mother voice
love totally fun great beautiful fun scary hero comedy pixar
great award x-man kill best hilarious dead john beautiful child
best funny kill bad young great scare fight young great
hilarious benjamin fight dark romance sex scream bruce brother disney

Table 1: Top 5 topics extracted with LDA-O and LDA-C, K = 128 (ordered by im-
portance θ̂k =

1
D ∑d θd

k ).

• For each word wd
n ∈ wd:

– Choose a topic zd
n ∼ Mult(θd),

– Choose a word wd
n ∼ Mult(φzd

n).

In a recommendation setting, each review refers to a unique (user, movie) pair.
One could use this information to learn specific topics of (movies, users) pairs
and get a more precise representation of the reviews. In our baseline model,
noted LDA-O, we run LDA on a corpus where each document is a single review
(i.e., we consider that reviews are independently generated).

We then aggregate our reviews accounting for the fact that multiple reviews
either belong to a movie or to a user. We build user profiles in LDA by constrain-
ing the topic document distribution θ to be the same for all the reviews written
by the same user. It is equivalent to considering a new corpus where each doc-
ument is the concatenation of all the reviews written by a single user. We refer
to this model as LDA-U and we refer to the topic document distributions θu in-
ferred with LDA-U as “topic user distributions”, where u ∈ {1, . . . , Nu} denotes
users. The same aggregation is done to profile movies with the corpus where a
document is the aggregation of all the reviews belonging to the same movie. We
refer to this model as LDA-C and we refer to the topic document distributions θc

as “topic movie distributions”, where c ∈ {1, . . . , Nc} denotes movies.

Inferred Topics.

Topic consistency is an empirical notion that we use in the rest of the chapter. A
strongly consistent topic has all its top words belonging to the same lexical field.
This notion can be applied to any list of words such as a document or a corpus.

Parameter K influences the consistency of the descriptive topics. Ideally, we
would like each topic to represent a movie feature, e.g. actors, genres, or sequels.

After multiple experiments with values of K between 8 and 260, we observed
that for K ≤ 30, the descriptive topics mix several features. On the contrary,
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for K ≥ 150, each feature is spread over multiple topics and topic consistency
decreases. In Table 1, K = 128 is a good compromise 1.

The first 5 topics inferred with the models LDA-O and LDA-C proposed above
are presented in Table 1. As the topics extracted with LDA-U are not consistent,
they are not presented. We observe that topics in LDA-O and LDA-C are very
consistent around a genre, an actor, a director or a sequel. The main difference
between these two methods is that there are more outliers in LDA-O topics than
in LDA-C topics. These outliers are generic words appearing frequently enough
in the corpus to influence the topics. These words are not frequent enough to be
removed during the filtering (e.g., best, action, review). In LDA-C, the aggregation
of reviews related to the same movie lowers the impact of these outliers.

The corpus used in LDA-C is consistent because reviews of the same movie
share a common vocabulary, each document of this corpus brings out words
associated to the movie and lowers the influence of noisy words in the topics.
We also observe that topics obtained with our models are mostly descriptive
and that very few qualitative information is “lost” in the middle of the topics,
making it difficult to tell a user whether or not she would like a movie.

2.1.3 Inclusion of Ratings in the Inference Process

Given the lack of qualitative in the top words of the topics, we introduce a
method to extract qualitative topics (i.e., words with a positive or negative con-
notation) using numerical ratings in addition to text reviews. Given a text re-
view and the corresponding rating, we expect user’s opinion to be conveyed in
the text and summarized in the rating. Ideally, positive (resp. negative) words
should be more likely to appear in a high (resp. low) rated review. In order to
keep the model simple, we reduce first numerical ratings (initially between 1

and 10) to binary ratings {−1,+1}. Using these new ratings, we infer a positive
(resp. negative) topic from +1 (resp. −1) reviews in a new generative model.

Rating Reduction.

We use a standard rating prediction technique [Koren et al., 2009] to extract
users and movie features given ratings. We denote by D the number of re-
views, rd the rating of the d-th review, related to user ud ∈ {1, . . . , Nu} and
movie cd ∈ {1, . . . , Nc} with d ∈ {1, . . . , D}. We first model the ratings to be gen-
erated as a sum of a user factor and a movie factor (ANOVA, Casella and Berger
[2002]):

rd = µ + aud + bcd + ε, d ∈ {1, . . . , D},

with ε ∼ N (0, σ2). We optimize (au), (bc) and µ as the solution of a penalized
(in L2 norm) least-squares problem.

1For restaurants, the number of features is smaller and the optimal value of K is around 60.
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Figure 3: Graphical representation of the model LDA-R-C including reduced rat-
ings applied on D documents. White nodes represent hidden variables
and colored nodes represent observed variables. The observed rating
rd is not reported for the sake of clarity.

The training ratings are reduced to −1 if the following residual is negative
and to +1 if the residual is positive:

r̂d =

{
+1 if rd − (aud + µ) ≥ 0
−1 otherwise.

In the model, µ represents the average rating, bc the average deviation from µ of
ratings on movie c, au the average deviation from µ of ratings from user u. We
consider here that a review is positive (r̂d = +1) if user ud rated movie cd with a
higher score than her average rating (aud + µ). The reduced rating r̂d represents
the binary user opinion.

For any test review t, the user opinion r̂t is unknown. This quantity is then a
random variable with:

Pr[r̂t = +1] = Pr(bct + ε ≥ 0|a, b)
Pr[r̂t = −1] = 1− Pr[r̂t = +1].

During prediction of the review t, we use these probabilities to extract a mixture
of positive and negative words.

Qualitative Topics Inference

We use these reduced ratings (r̂d) to infer qualitative topics. We consider a
corpus where each document is a single review. We denote by D the number
of documents, by cd ∈ {1, . . . , Nc} and r̂d ∈ {−1,+1} respectively the movie
and reduced rating of the d-th document, d = 1, . . . , D. K is the number of
descriptive topics, i.e., the number of topics extracted with LDA-C. Given K, the
corresponding topic movie distributions θc, c ∈ {1, . . . , Nc} inferred with LDA-C
on the D reviews and the reduced ratings (r̂d), we extract a positive topic and
a negative topic with the following generative model. For each word wd

n of the
d-th document wd:

• Draw md
n ∼ Bernoulli(pd)
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• If md
n is a success (md

n = 1):

– Choose wd
n ∼ Multinomial(Ψr̂d

), with r̂d ∈ {+1,−1}

• Otherwise (md
n = 0):

– Choose a topic zd
n ∼ Multinomial(θcd

)

– Choose wd
n ∼ Multinomial(φzd

n).

In other words, if md
n is a success, wd

n is qualitative otherwise wd
n is descriptive.

We still infer K descriptive topics with this method, represented by {φ1, . . . , φK}.
The main difference with LDA-C is that we only infer φ, Ψ parameters, knowing
topic document distributions θ. We also learn the proportion of qualitative/de-
scriptive words in each document pd, embedded with a Dirichlet prior. In the
following, we refer to this model as LDA-R-C. The graphical representation of
LDA-R-C is presented Figure 3.

We build two additional models by replacing in LDA-R-C the topic movie distri-
butions θc by the topic document distributions θd, d = 1 . . . D—model LDA-R—or
by the topic user distributions θu, u = 1 . . . Nu—model LDA-R-U.

For the three models, the inference is done with a variational EM algorithm
adapted from LDA inference [Blei et al., 2003]—see Appendix 2.A for complete
derivations. We also run a full EM for learning at the same time both topics
(parameters φ, Ψ) and topic distribution (parameter θ). As the algorithm is very
sensitive to initialization, we observe that random initialization gives poor re-
sults while initialization with parameters resulting from LDA-O leads to a steady
state. Indeed, LDA-O returns a local miminum of the full algorithm.

Inferred Topics.

As the qualitative topics extracted with LDA-R-U are not consistent, they are not
presented. The qualitative topics inferred with LDA-R and LDA-R-C are presented
in Table 2. In both LDA-R and LDA-R-C the average proportion 1

D ∑d pd of qualita-
tive words in documents is 10%. Some qualitative words appear in the top words
of the opposed topic (e.g., bad comes up in the positive topic of LDA-R). In our
model, each training document d is assigned to only one qualitative topic—Ψ+1

or Ψ−1—depending on the corresponding rating r̂d. Consequently, if a positive
word frequently appears in low rated reviews—e.g., in negation phrases—it is
likely to be a top negative word and vice versa. Some neutral words also come
up in these qualitative topics (e.g., suppose). These words appear in reviews of
different types of movies and are then in the tail of descriptive topics. They are
still used frequently enough to have an influence on the qualitative topics.

2.2 evaluation

In this section we evaluate our model for the review prediction task. Using our
models, a review prediction is a discrete distribution over the V words of the
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LDA-R LDA-R-C
great bad great bad
best worst bad great
nice boring love boring
bad waste best worst
entertaining stupid original stupid
original terrible entertaining totally
love suppose definitely waste

Table 2: Positive (left column) and negative (right column) topic inferred with
LDA-R and LDA-R-C, K = 32 topics.

vocabulary given a set of training reviews W and a test couple (ut, ct) of user,
movie. The evaluation of such prediction is done by splitting the review dataset
in a training set and a testing set. The parameters of the model are learned on
the training set and evaluated on the test set.

Methodology.

Given a test review w, the best predictor maximizes the likelihood P(w|W) of the
test review, P depending on the model. We then use the log-perplexity measure
defined by LP = − log P(w|W) to evaluate our models. The log-perplexity is
a theoretical measure of the quality of the model for the word prediction task;
it is not an indicator of user satisfaction. As shown by Chang et al. [2009],
the perplexity is not suited to measure user satisfaction. However, perplexity
measures the precision of the prediction, which is what we need in order to
compare our models to the state of the art.

For LDA-O, the likelihood is intractable to compute. We approximate P(w|W)
with the “left-to-right” evaluation algorithm [Wallach et al., 2009] applied to each
test document. This algorithm is a mix of particle filtering and Gibbs sampling,
easily adjustable to other graphical models. For LDA-C, as the topic distributions
are learned for each movie (resp. user), the likelihood of a new review is com-
puted for movies (resp. users) seen in the training corpus through pointwise
estimation. Finally, we adapt the “left-to-right” algorithm to approximate the
likelihood of LDA-R and LDA-R-C for each test document.

We compare our models to two existing approaches. In the model proposed by
McAuley and Leskovec [2013], authors use words and ratings to predict ratings
by learning a mapping function between LDA parameters and rating matrix fac-
torization parameters. We refer to this model as HFT (which stands for “hidden
factors as topics”). In the model proposed by Mcauliffe and Blei [2008], authors
incorporate scores directly in LDA in order to predict the score of a new review
given the words used. We refer to this model as SLDA. These two methods will
be discussed in related works. Both HFT and SLDA use documents and ratings
associated to each document to infer similar parameters than LDA—i.e., topics
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φ and topic proportions θ. While the application presented by Mcauliffe and
Blei [2008] and McAuley and Leskovec [2013] is rating prediction, we can use
the parameters φ and θ inferred with these methods to predict words of new
reviews.

We could not compare to the method described by Ling et al. [2014] because
of the lack of information available to implement the method accurately.

The review dataset was collected from IMDB, with a catalogue of 5,900 movies,
2,400 users and 97,000 reviews—a subset of the data described by Diao et al.
[2014]. We apply our models to 10 random splits of train and test sets, represent-
ing respectively 90% and 10%. Each movie and each user of a testing set is seen
at least once in the corresponding train reviews.

Figure 4 presents the average log-perplexity measures per word on the test sets
for LDA-O, LDA-C, LDA-R, LDA-R-C, HFT and SLDA. Given the poor topic consistency
observed with LDA-U and LDA-R-U and their poor performance, we do not display
perplexity for these models.
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Figure 4: Average log-perplexity per word of the presented models on test re-
views.

Evaluation.

The number of topics K is the unique input of LDA and its extensions. It repre-
sents the dimension of the latent topic document distribution θ. The Perplexity
on test sets still decreases at K = 128 for LDA-C and LDA-R, which means we do
not reach overfitting with K ≤ 128.
LDA-O overfits the training reviews as it infers one distribution over topics

(θ) by review. This method does not catch the structure of the vocabulary in
the reviews as all reviews are processed separately. The predictions with LDA-O
are then polluted by frequent words which appear in the inferred topics and
lower the quality of the predictions. Conversely, the aggregation of reviews in
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LDA-C improves the consistency of the topics and generates better movie profiles
(through topics movie distribution θc). LDA-C outperforms LDA-O.

By comparing the performance of LDA-O and LDA-R, we can observe that includ-
ing reduced ratings in LDA-O improves perplexity for all values of K. Indeed, for
all K, descriptive topics of LDA-R contain noisy words. The representation of the
qualitative words in the training set results in an important decrease of perplex-
ity compared with LDA-O.

The consistency of qualitative topics in LDA-R makes predictions outperform
LDA-R-C. Predictions with LDA-R-C are also beaten by predictions with LDA-C. The
consistency of descriptive topics of LDA-C is affected when including ratings.

With HFT the topic-document distribution θ is mapped to matrix factoriza-
tion parameters. The objective being optimized can be expressed as a sum:
f =(rating prediction error)−(corpus likelihood). The quality of word predic-
tion is deteriorated as the objective is not directly the corpus likelihood. As a
result, HFT is the worst predictor.
SLDA overfits at K = 32 as it infers one distribution over topics (θ) by review.

This model includes ratings in LDA to infer a score along each topic. As a result,
SLDA extracts descriptive and qualitative topics but they may not be automat-
ically differentiated (score associated with a descriptive topic may be as high
as the score associated with a positive/negative topic). SLDA is able to extract
qualitative and descriptive information from the reviews but is outperformed by
LDA-C and LDA-R for all values of K.

Even if the best predictors are LDA-R and LDA-C, the most practical model is
LDA-R-C for three main reasons. Performances of LDA-R-C (in terms of perplex-
ity) are comparable to the best models. This model is the only model combining
strongly consistent descriptive topics with consistent qualitative topics. LDA-R
suffers from polluted descriptive topics while LDA-C does not infer any qualita-
tive information. The profiles of movies θc extracted with LDA-R-C are useful to
compute a distance between movies—e.g., with the Kullback-Leibler divergence.
As a result, one could recommend movies to a cold start user (i.e., user with an
insufficient number of reviews) with LDA-R-C.

2.3 empirical discussion

In this section, we present the 8 most significant topics out of 100 topics inferred
with LDA-R-C, SLDA and HFT in Table 3. The comparison of the topics is a premise
to the analysis of words prediction. Indeed, for any LDA based algorithm, the
probability of occurence of word w is given by ∑k θ>k φk

w, where θ represents the
topic proportions of the current review and φ the inferred topic matrix. A topic
vector φk may be seen as the probabilities of occurence of words in a review
generated from a single topic i.e., θk = 1 and ∀j 6= k, θj = 0.

Note that this section is an empirical discussion and that it does not replace
a formal evaluation with real users that is planned for future works due to the
complexity of the task (methodologically and business-wise).
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LDA-R-C, 1 doc = 1 movie
Qualitative Descriptive

Q1 Q2 T1 T2 T3 T4 T5 T6

great bad funny horror animation child alien action
love waste comedy scary disney family space car
best boring laugh house voice father earth jones
beautiful worst fun scare animated son sci-fi fast
perfect stupid great creepy toy mother science bad
excellent money hilarious suspense pixar daughter planet agent
far suppose joke ghost adult kevin fiction fun
enjoy long star gore child boy ship diesel
long awful love night fun young ape rock
wonderful pretty brooks remake princess town crew chase

SLDA
T1 T2 T3 T4 T5 T6 T7 T8

(1.01) (-1.59) (0.73) (0.89) (0.91) (0.80) (0.70) (1.20)
enjoy bad funny horror voice family alien classic
surprise worst comedy scary animation father space era
entertaining terrible laugh scare disney mother earth noir
fun waste joke house animated son science today
nice horrible hilarious creepy toy child planet early
pretty awful fun atmosphere child daughter fiction silent
great worse parody ghost adult young sci-fi modern
enjoyable stupid satire haunt pixar parent ship kane
interesting boring gag gore cartoon boy predator simple
definitely crap silly disturbing age brother scientist citizen

HFT
T1 T2 T3 T4 T5 T6 T7 T8

action vampire comedy horror animation father sci-fi hulk
franchise dracula funny halloween disney son science fox
installment twilight sandler slasher pixar fanning space banner
diesel blade hilarious scary animated dakota mars car
explosion beckinsale ferrell eli wall-e dad spaceship bana
sequel helsing laugh scare costner precious planet ross
cgi underworld wedding house nemo boy earth wax
stunt jacob joke myers chicken mother robot racing
vin bella gag creepy toy bike scientist eric
fun edward comedic carrie dreamworks parent alien norton

Table 3: 8 topics extracted with LDA-R-C, SLDA and HFT, K = 100 and the associ-
ated score for SLDA (see Mcauliffe and Blei [2008] for details).

Both LDA-R-C and SLDA extract qualitative topics, while we could not extract
qualitative topics with HFT. The descriptive topics of the three methods are con-
sistent around genres, sequels, actors or directors. We observe that the two
methods LDA-R-C and SLDA extract similar topics (Table 3, topics T1 to T5 ex-
tracted with LDA-R-C are similar to topics T3 to T7 extracted with SLDA). From
topics extracted with LDA-R-C, T1 is consistent around comedy, T2 around horror,
T3 around animation, T4 around family, T5 around science-fiction. We can see the
same consistency for topics T3 to T7 with SLDA. We observe that topics extracted
with LDA-R-C share more top words with SLDA than with HFT. Indeed, the in-
ference schemes of LDA-R-C and SLDA are close (i.e., variational EM), leading to
similar topics. For instance, in Table 3, 6 out of 10 top words of topic T1 ob-
tained with LDA-R-C also appear in the top of SLDA’s topic T3. In the same way,
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topics T2 to T5 extracted with LDA-R-C are respectively closer to topics T4 to T7

extracted with SLDA than topics T4 to T7 extracted with HFT.
The difference between LDA-R-C and SLDA is that with LDA-R-C we obtain two

distinct sets of words. A first set of words that illustrates the rating of the users—
corresponding to topics Q1 and Q2 in Table 3—and a second set of words that
the user would employ to describe a movie—topics T1 to T6 in Table 3. There is
no such distinction in SLDA as the output is a single list of topics associated with
a score. We notice that most of the extracted topics with SLDA are descriptive—
e.g., topics T3 to T8 in Table 3—and qualitative topics are associated to high
scores (in absolute value)—e.g., topics T1 and T2 in Table 3. However, some de-
scriptive topics are associated with high scores—e.g., topic T8 in Table 3—which
makes difficult the distinction between qualitative and descriptive topics. As our
model LDA-R-C extracts two sets of topics, there is no possible confusion between
descriptive and qualitative topics. SLDA extracts a single list of topics and it is
difficult nay impossible to automatically classify the topics as a qualitative or a
descritpive.

In HFT, the parameters of LDA are linked to rating prediction parameters. As
a result, the top words of the topics are still centered around generic genres,
sequels, actors, directors but also contain words related to specific movies. For
instance, in Table 3, the topic T4 extracted with HFT is centered around comedy
and contains the words sandler, ferrell which are specific actor names and wedding
which is a specific part of a plot. In the topic T5 extracted with HFT, centered
around animation movies, we find the words wall-e, nemo which are specific titles
and costner which is an actor name. The top words in both LDA-R-C and SLDA
topics are more generic, leading to better predictions. Indeed, it is more likely
that a review about a comedy movie contains funny than wedding, as only few
comedy movies are related to a wedding.

2.4 related work

Several techniques have been proposed to extract information from raw text data.
LDA [Blei et al., 2003] is a probabilistic model that infers hidden topics given a
text corpus where each document of the corpus can then be represented as topic
probabilities. The assumption behind LDA is that each document is generated
from a mixture of topics and the model infers the hidden topics and the topic
proportions of each document. For increasing consistency of inferred topics, a
regularized version of LDA is proposed by Newman et al. [2011]. This regu-
larized version puts structured priors on the hidden topics. The parameters of
the prior are pre-computed and consist in a “covariance” matrix which captures
the short-range dependencies between words. This matrix has a regularization
effect on the topics. The authors compare different priors. We increase the consis-
tency of topics even further by aggregating reviews in LDA. Titov and McDonald
[2008] present a LDA based model with two types of topics; this model infers
global topics that contain the different types of movie being reviewed, while the
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local topics extract the specific aspects of the movies. Instead, we chose to add
qualitative information in the LDA topics, similar to the model proposed by Lin
and He [2009] where a sentiment label is inferred for each document. The dif-
ference with our method is that we leverage the ratings found in movie reviews
datasets to extract qualitative and descriptive information in separate topics.

In the rating prediction area, McAuley and Leskovec [2013] propose a trans-
formation between LDA parameters and collaborative filtering parameters. Nu-
merical ratings and words are processed in two separated models. Instead, we
combine scores and words in the same LDA model. The model proposed by
Mcauliffe and Blei [2008] infers parameters from both a text corpus and numer-
ical ratings. The model is then able to predict a score given a new text. We
use a similar approach to predict directly a list of words instead of numerical
ratings. The model proposed by Ling et al. [2014] combines LDA with matrix
factorization to predict ratings. The main difference with our approach is that
we distinguish qualitative and descriptive words in the topics while the topics
inferred by Ling et al. [2014] mix qualitative and descriptive words. Their model
is also suited for rating prediction while we focus on word prediction.

2.5 conclusion

We have proposed six LDA-based models for word prediction from crowdsourced
reviews and ratings. We show on an IMDB dataset that our LDA-R-C model com-
bining movie profiling and ratings performs slightly better than the state of the
art. It builds a set of descriptive topics that convey the features of movies—
e.g., genres, actors, directors—and contain the words the user would employ to
describe a movie. It also builds a set of qualitative topics that convey the opin-
ion of users about movies and contain the words that influence—positively or
negatively—the final ratings of users.

While studying our LDA-U model, we came to the conclusion that it is difficult
to build a user profile as each user writes reviews about very different movies
expressing very different opinions.

For now, our models only extract two qualitative topics (positive and negative).
We plan to build models that would extract a wider range of qualitative topics
by reducing the observed ratings to a wider range of values than {+1,−1}.

The review prediction is currently based on single words prediction, which
is not intuitive for users. We plan to predict readable sentences which would
facilitate evaluation by users with A/B testing. Implemented with readable re-
views or tags, our model could be integrated in a recommender to provide a
personalized opinion summary to users for each content.
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A P P E N D I X

2.a variational derivation of lda-r-c
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Figure 5: Graphical representation of the model LDA-R-C including reduced rat-
ings applied on D documents. White nodes represent hidden variables
and colored nodes represent observed variables. The observed rating
rd is not reported for the sake of clarity.

In this section, we provide the full variational derivation of our model LDA-R-C
presented Figure 5. Our objective is to maximize the likelihood of the observed
corpus of documentsW = {w1, . . . , wD}:

p(W|ω, {θcd}d, η, {r̂d}d) =
D

∏
d=1

p(wd|ω, θcd
, η, r̂d).

As this likelihood is intractable to compute, we maximize an approximation
of the likelihood L(q) = ∑D

d=1 Ld(q) over a variational family of distributions.
Following Hoffman et al. [2013], we have for any wd ∈ W :

log p(wd|ω, θcd
, η, r̂d) ≥Eq[log p(wd, zd, md, pd, φ, Ψ|ω, θcd

, η, r̂d)]

−Eq[log q(zd, md, pd, φ, Ψ)]

≡Ld(q),

where q represents the variational model. We choose the variational model q to
be in the meanfield variational family:

q(zd, md, pd, φ, Ψ) = q(φ|λ)q(Ψ|Λ)q(pd|πd)
N

∏
n=1

q(zd
n|αd

n)q(m
d
n|µd

n),

with, ∀d = 1, . . . , D:

• q(φk|λk) ∼Dirichlet(λk) with λk ∈ RV and k = 1, . . . , K,
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• q(Ψs|Λs) ∼Dirichlet(Λs) with Λs ∈ RV and s ∈ {+1,−1},

• q(pd|πd) ∼Dirichlet(πd) with πd ∈ R2,

• q(zd
n|αd

n) ∼Multinomial(αd
n) with αd

n ∈ RK, ∑k αd
n,k = 1 and n = 1, . . . , N,

• q(md
n|µd

n) ∼Multinomial(µd
n) with µd

n ∈ R2, µd
n,1 + µd

n,2 = 1 and n = 1, . . . , N.

We also have:

p(wd, zd, md, pd, φ, Ψ|ω, θcd
, η, r̂d) =p(φ|η)p(Ψ|η)p(pd|ω)

×
N

∏
n=1

p(wd
n|φ, Ψ, zd

n, rd, md
n)p(zd

n|θcd
)p(md

n|pd),

with, ∀d = 1, . . . , D:

• p(φk|η) ∼Dirichlet(η1) with η ∈ R and k = 1, . . . , K,

• p(Ψs|η) ∼Dirichlet(η1) with η ∈ R and s ∈ {+1,−1},

• p(pd|ω) ∼Dirichlet(ω) with ω ∈ R2,

• p(zd
n|θcd

) ∼Multinomial(θcd
) with θcd ∈ RK, ∑k θcd

k = 1 and n = 1, . . . , N,

• p(md
n|pd) ∼Multinomial(pd) with pd ∈ R2, pd

1 + pd
2 = 1 and n = 1, . . . , N,

• p(wd
n|φ, Ψ, zd

n, rd, md
n) ∼Multinomial

(
φzd

n 1[md
n = 0] + Ψrd

1[md
n = 1]

)
.

We then maximize L(q) by iteratively maximizing L(q) with respect to vari-
ational parameters λ, Λ, π, α, µ (E-step) then maximizing L(q) with respect to
hyperparameters ω, η (M-step).

2.A.1 Variational E-step

For the E-step, we maximize L(q) with respect to variational parameters λ, Λ,
π, α, µ by alternatively setting the gradient of L(q) with respect to each para-
mater to zero. It gives the following updates for the variational parameters,
for n = 1, . . . , N, k = 1, . . . , K, i = 1, 2 and s ∈ {−1,+1}:

αd
n,k ∝ θcd

k exp
[
µd

n,1

(
ψ(λk

wd
n
)− ψ(∑j λk

j )
)]

,

πd
i = ωi + ∑N

n=1 µd
n,i,

µd
n,1 ∝ exp

[
ψ(πd

1) + ∑K
k=1 ψ(λk

wd
n
)− ψ(∑j λk

j )
]

,

µd
n,2 ∝ exp

[
ψ(πd

2) + ∑s∈{−1,+1} ψ(Λs
wd

n
)− ψ(∑j Λs

j)
]

,

λk
v = η +

D
∑

d=1
∑Nd

n=1 µd
n,1αd

n,k1[wd
n = v],

Λs
v = η + ∑

d:rd=s
∑Nd

n=1 µd
n,21[wd

n = v].
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ψ is the digamma function: ψ(x) = d
dx ln Γ(x).

2.A.2 Variational M-step

For the M-step, we maximize L(q) with respect to the hyperparameters ω, η. We
use the Newton method for each parameter, using the same scheme than in LDA
Blei et al. [2003]. We have the following derivatives for ω:

∂
∂ωi
L(q) = D

(
ψ(∑j ωj)− ψ(ωi)

)
+ ∑D

d=1

(
ψ(πd

i ),−ψ(∑j πd
j )
)

∂2

∂ωi∂ωj
L(q) = Dψ′(∑l ωl)− 1[i = j]Dψ′(ωi).

We have the following derivatives for η

∂
∂ηL(q) = (K + 2)V (ψ(Vη)− ψ(η)) +

V
∑

v=1

(
K
∑

k=1
ψ(λk

v) + ∑
s∈{−1,+1}

ψ(Λs
v)

)

−V

(
K
∑

k=1
ψ(

V
∑

v=1
λk

v) + ∑
s∈{−1,+1}

ψ(
V
∑

v=1
Λs

v)

)
,

∂2

∂η2L(q) = (K + 2)V (Vψ′(Vη)− ψ′(η)) .

We maximize L(q) with respect to ω by doing iterations of Newton steps until
convergence:

ω(t+1) = ω(t) − H−1∇ω(t)L(q),

where H is the Hessian H = ∇2
ω(t)L(q). We then maximize L(q) with respect to

η by again doing iterations of Newton steps until convergence:

η(t+1) = η(t) −
[

∂2

(∂η(t))2
L(q)

]−1(
∂

∂η(t)
L(q)

)
.
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3
O N L I N E B U T A C C U R AT E I N F E R E N C E F O R L AT E N T
VA R I A B L E M O D E L S W I T H L O C A L G I B B S S A M P L I N G

Probabilistic graphical models provide general modelling tools for complex data,
where it is natural to include assumptions on the data generating process by
adding latent variables in the model. Such latent variable models are adapted
to a wide variety of unsupervised learning tasks [Koller and Friedman, 2009,
Murphy, 2012]. In this chapter, we focus on parameter inference in such latent
variable models where the main operation needed for the standard expectation-
maximization (EM) algorithm is intractable, namely dealing with conditional
distributions over latent variables given the observed variables; latent Dirichlet
allocation (LDA) [Blei et al., 2003] is our motivating example, but many hier-
archical models exhibit this behavior, e.g., ICA with heavy-tailed priors. For
such models, there exist two main classes of methods to deal efficiently with
intractable exact inference in large-scale situations: sampling methods or varia-
tional methods.

Sampling methods can handle arbitrary distributions and lead to simple infer-
ence algorithms while converging to exact inference. However it may be slow to
converge and non scalable to big datasets in practice. In particular, although ef-
ficient implementations have been developed, for example for LDA [Zhao et al.,
2014, Yan et al., 2009], MCMC methods may not deal efficiently yet with contin-
uous streams of data for our general class of models.

On the other hand, variational inference builds an approximate model for the
posterior distribution over latent variables—called variational—and infer param-
eters of the true model through this approximation. The fitting of this variational
distribution is formulated as an optimization problem where efficient (determin-
istic) iterative techniques such as gradient or coordinate ascent methods apply.
This approach leads to scalable inference schemes [Hoffman et al., 2013], but due
to approximations, there always remains a gap between the variational posterior
and the true posterior distribution, inherent to algorithm design, and that will
not vanish when the number of samples and the number of iterations increase.

Beyond the choice of approximate inference techniques for latent variables,
parameter inference may be treated either from the frequentist point of view, e.g.,
using maximum likelihood inference, or a Bayesian point of view, where the pos-
terior distribution of the parameter given the observed data is approximated.
With massive numbers of observations, this posterior distribution is typically
peaked around the maximum likelihood estimate, and the two inference frame-
works should not differ much [Van der Vaart, 2000].

In this chapter, we focus on methods that make a single pass over the data to
estimate parameters. We make the following contributions:
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1. We review and compare existing methods for online inference for latent
variable models from a non-canonical exponential family in Section 3.1,
and draw explicit links between several previously proposed frequentist
or Bayesian methods. Given the large number of existing methods, our
unifying framework allows one to understand differences and similarities
between all of them.

2. We propose in Section 3.2 a novel inference method for the frequentist es-
timation of parameters, that adapts MCMC methods to online inference
of latent variable models with the proper use of “local” Gibbs sampling.
In our online scheme, we apply Gibbs sampling to the current observa-
tion, which is “local”, as opposed to “global” batch schemes where Gibbs
sampling is applied to the entire dataset.

3. After formulating LDA as a non-canonical exponential family in Section 3.3,
we provide an extensive set of experiments in Section 3.5, where our new
approach outperforms all previously proposed methods. In particular, us-
ing Gibbs sampling for latent variable inference is superior to variational
inference in terms of test log-likelihoods. Moreover, Bayesian inference
through variational methods perform poorly, sometimes leading to worse
fits with latent variables of higher dimensionality.

This work is under revision at JMLR.

3.1 online em

We consider an exponential family model on random variables (X, h) with param-
eter η ∈ E ⊆ Rd and with density [Lehmann and Casella, 1998]:

p(X, h|η) = a(X, h) exp
[
〈φ(η), S(X, h)〉 − ψ(η)

]
. (1)

We assume that h is hidden and X is observed. The vector φ(η) ∈ Rd represents
the natural parameter, S(X, h) ∈ Rd is the vector of sufficient statistics, ψ(η) is
the log-normalizer, and a(X, h) is the underlying base measure. We consider
a non-canonical family as in many models (such as LDA), the natural parame-
ter φ(η) does not coincide with the model parameter η, that is, φ(η) 6≡ η; we
however assume that φ is injective.

We consider N i.i.d. observations (Xi)i=1,...,N from a distribution t(X), which
may be of the form P(X|η∗) =

∫
h p(X, h|η∗)dh for our model above and a certain

η∗ ∈ E (well-specified model) or not (misspecified model). Our goal is to obtain
a predictive density r(X) built from the data and using the model defined in (1),
with the maximal expected log-likelihood Et(X) log r(X).
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3.1.1 Maximum likelihood estimation

In the frequentist perpective, the predictive distribution r(X) is of the form
p(X|η̂), for a well-defined estimator η̂ ∈ E . The most common method is the EM
algorithm [Dempster et al., 1977], which is an algorithm that aims at maximizing
the likelihood of the observed data, that is,

max
η∈E

N

∑
i=1

log p(Xi|η). (2)

More precisely, the EM algorithm is an iterative process to find the maximum
likelihood (ML) estimate given observations (Xi)i=1,...,N associated to hidden
variables (hi)i=1,...,N. It may be seen as the iterative construction of lower bounds
of the log-likelihood function [Bishop, 2006]. In the exponential family set-
ting (1), we have, by Jensen’s inequality, given the model defined by η′ ∈ E
from the previous iteration, and for any parameter η ∈ E :

log p(Xi|η) = log
∫

p(Xi, hi|η)dhi

≥
∫

p(hi|Xi, η′) log
p(Xi, hi|η)
p(hi|Xi, η′)

dhi

=
∫

p(hi|Xi, η′) (〈φ(η), S(Xi, hi)〉−ψ(η)) dhi−Ci(η
′)

= 〈φ(η), Ep(hi|Xi,η′) [S(Xi, hi)]〉 − ψ(η)− Ci(η
′),

for a certain constant Ci(η
′), with equality if η′ = η. Thus, EM-type algorithms

build locally tight lower bounds of the log-likelihood in (2), which are equal to

〈φ(η), ∑N
i=1 si〉 − Nψ(η) + cst,

for appropriate values of si ∈ Rd obtained by computing conditional expecta-
tions with the distribution of hi given Xi for the current model defined by η′

(E-step), i.e., si = Ep(hi|Xi,η′) [S(Xi, hi)]. Then this function of η is maximized to
obtain the next iterate (M-step). In standard EM applications, these two steps
are assumed tractable. In Section 3.2, we will only assume that the M-step is
tractable while the E-step is intractable.

Standard EM will consider si = Ep(hi|Xi,η′) [S(Xi, h)] for the previous value of
the parameter η for all i, and hence, at every iteration, all observations Xi,
i = 1, . . . , N are considered for latent variable inference, leading to a slow “batch”
algorithm for large N.

Incremental EM [Neal and Hinton, 1998] will only update a single element
si coming from a single observation Xi and update the corresponding part of
the sum ∑N

j=1 sj without changing other elements. In the extreme case where a
single pass over the data is made, then the M-step at iteration i maximizes

〈φ(η),
i

∑
j=1

Ep(hj|Xj,ηj−1)

[
S(Xj, hj)

]
〉 − iψ(η),

with respect to η. In the next section, we provide a (known) other interpretation
of this algorithm.
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3.1.2 Stochastic approximation

Given our frequentist objective Et(X) log p(X|η) to maximize defined as an ex-
pectation, we may consider two forms of stochastic approximation [Kushner
and Yin, 2003], where observations Xi sampled from t(X) are processed only
once. The first one is stochastic gradient ascent, of the form

ηi = ηi−1 + ρi
∂ log p(Xi|η)

∂η
,

or appropriately renormalized version thereof, i.e., ηi = ηi−1 + ρiH−1 ∂ log p(Xi|η)
∂η ,

with several possibilities for the d × d matrix H, such as the negative Hessian
of the partial or the full log-likelihood, or the negative covariance matrix of
gradients, which can be seen as versions of natural gradient—see Titterington
[1984], Delyon et al. [1999], Cappé and Moulines [2009]. This either leads to
slow convergence (without H) or expensive iterations (with H), with the added
difficulty of choosing a proper scale and decay for the step-size ρi.

A key insight of Delyon et al. [1999], Cappé and Moulines [2009] is to use a
different formulation of stochastic approximation, not explicitly based on stochastic
gradient ascent. They consider the stationary equation Et(X)

[
∂ log p(X|η)

∂η

]
= 0 and

expand it using the exponential family model (1) as follows:

∂ log p(X|η)
∂η

=
∂ log

∫
p(X, h|η)dh
∂η

= φ′(η)Ep(h|X,η) [S(X, h)]− ψ′(η).

Given standard properties of the exponential family, namely

ψ′(η) = φ′(η)Ep(h,X|η) [S(X, h)] 1,

and assuming invertibility of φ′(η), this leads to the following stationary equa-
tion:

Et(X)

[
Ep(h|X,η) [S(X, h)]

]
= Ep(h,X|η) [S(X, h)] .

1Proof: Given (1),
∫

X,h p(X, h|η)d(X, h) = 1 ⇒ ψ(η) = log
[∫

X,h a(X, h)e〈φ(η),S(X,h)〉d(X, h)
]
.

We then derive this identity with respect to η, which gives:

ψ′(η) =

∫
X,h φ′(η)S(X, h)a(X, h)e〈φ(η),S(X,h)〉d(X, h)∫

X,h a(X, h)e〈φ(η),S(X,h)〉d(X, h)

=
φ′(η)

∫
X,h S(X, h)a(X, h)e〈φ(η),S(X,h)〉d(X, h)

eψ(η)

= φ′(η)
∫

X,h
S(X, h)p(X, h|η)d(X, h)

= φ′(η)Ep(h,X|η) [S(X, h)] .
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This stationary equation states that at optimality the sufficient statitics have
the same expectation for the full model p(h, X|η) and the joint “model/data”
distribution t(X)p(h|X, η).

Another important insight of Delyon et al. [1999], Cappé and Moulines [2009]
is to consider the change of variable s(η) = Ep(h,X|η) [S(X, h)] on sufficient statis-
tics, which is equivalent to

η = η∗(s) ∈ arg max 〈φ(η), s〉 − ψ(η),

(which is the usual M-step update). See Cappé and Moulines [2009] for detailed
assumptions allowing this inversion. We may then rewrite the equation above
as

Et(X)

(
Ep(h|X,η∗(s)) [S(X, h)]

)
= s.

This is a non-linear equation in s ∈ Rd, with an expectation with respect to t(X)
which is only accessed through i.i.d. samples Xi, and thus a good candidate for
the Robbins-Monro algorithm to solve stationary equations (and not to minimize
functions) [Kushner and Yin, 2003], which takes the simple form:

si = si−1 − ρi
(
si−1 −Ep(hi|Xi,η∗(si−1)) [S(Xi, hi)]

)
,

with a step-size ρi. It may be rewritten as{
si = (1− ρi)si−1 + ρiEp(hi|Xi,ηi−1)

[S(Xi, hi)]

ηi = η∗(si),
(3)

which has a particularly simple interpretation: instead of computing the expec-
tation for all observations as in full EM, this stochastic version keeps tracks of
old sufficient statistics through the variable si−1 which is updated towards the
current value Ep(hi|Xi,ηi−1)

[S(Xi, hi)]. The parameter η is then updated to the
value η∗(si). Cappé and Moulines [2009] show that this update is asymptotically
equivalent to the natural gradient update with three main improvements: (a) no
matrix inversion is needed, (b) the algorithm may be accelerated through Polyak-
Ruppert averaging [Polyak and Juditsky, 1992], i.e., using the average η̄N of all
ηi instead of the last iterate ηN, and (c) the step-size is particularly simple to set,
as we are taking convex combinations of sufficient statistics, and hence only the
decay rate of ρi has to be chosen, i.e., of the form ρi = i−κ, for κ ∈ (0, 1], without
any multiplicative constant.

incremental view. For the specific stepsize ρi = 1/i, the online EM algo-
rithm (3) corresponds exactly to the incremental EM presented above [Neal and
Hinton, 1998], as then

si =
1
i

i

∑
j=1

Ep(hj|Xj,ηj−1)
[S(Xj, hj)].

See Mairal [2014] for a detailed convergence analysis of incremental algorithms,
in particular showing that step-sizes larger than 1/i are preferable (we observe
this in practice in Section 3.5).
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monte carlo methods . There exist alternative methods to the EM algo-
rithm based on Monte Carlo sampling to compute the maximum likelihood. For
instance, the Monte Carlo EM method (MCEM) [Wei and Tanner, 1990] is a
general Bayesian approach (i.e., η is a random variable) to approximate the max-
imizer of the posterior distribution p(η|X, h) with Monte Carlo sampling. More
precisely, in the MCEM method, similarly to EM, a surrogate function of the
log-likelihood is used, given by:

Q(η, ηt) =
∫

h
log[p(η|X, h)]p(h|X, ηt)dh.

The function Q is approximated by sampling the latent variables h from the
current conditional p(h|X, ηt):

Q̂(η, ηt) =
P

∑
i=1

log p(η|X, hi),

where (hi)i=1,...,P are the samples drawn from the conditional p(h|X, ηt). The
approximation Q̂ is then maximized with respect to η. Note that this method is
a bacth method, namely, samples are drawn over all the dataset.

Other sequential Monte Carlo methods (SMC) apply particle methods to the
approximation of the posterior p(η|X, h) [Kantas et al., 2015].

The two Monte Carlo methods mentionned above also consist in sufficient
statistics updates for the class of models considered here.

3.2 online em with intractable models

The online EM updates in (3) lead to a scalable algorithm for optimization when
the local E-step is tractable. However, in many latent variable models—e.g.,
LDA, hierarchical Dirichlet processes [Teh et al., 2006], or ICA [Hyvärinen et al.,
2004]—it is intractable to compute the conditional expectation Ep(h|X,η)[S(X, h)].

Following Rohde and Cappé [2011], we propose to leverage the scalability
of online EM updates (3) and locally approximate the conditional distribution
p(h|X, η) in the case this distribution is intractable to compute. We will however
consider different approximate methods, namely Gibbs sampling or variational
inference. Our method is thus restricted to models where the hidden variable
h may naturally be splitted in two or more groups of simple random variables.
Our algorithm is described in Algorithm 1 and may be instantiated with two
approximate inference schemes which we now describe.
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Algorithm 1 Gibbs / Variational online EM

Input: η0, s0, κ ∈ (0, 1].
for i = 1, . . . , N do
• Collect observation Xi,
• Estimate p(hi|Xi, ηi−1) with sampling (G-OEM) or variational inference
(V-OEM),
• Apply (3) to sufficient statistics si and parameter ηi with ρi = 1/iκ,

end for
Output: η̄N = 1

N ∑N
i=1 ηi or ηN.

3.2.1 Variational inference: V-OEM

While variational inference had been considered before for online estimation
of latent variable models, in particular for LDA for incremental EM [Sato et al.,
2010], using it for online EM (which is empirically faster) had not been proposed
and allows us to use bigger step-sizes (e.g., κ = 1/2). These methods are based
on maximizing the negative variational “free-energy”

Eq(h|η)

[
log

p(X, h|η)
q(h|η)

]
, (4)

with respect to q(h|η) having a certain factorized form adapted to the model
at hand, so that efficient coordinate ascent may be used. See, e.g., Hoffman
et al. [2013]. We now denote online EM with variational approximation of the
conditional distribution p(h|X, η) as V-OEM.

3.2.2 Sampling methods: G-OEM

MCMC methods to approximate the conditional distribution of latent variables
with online EM have been considered by Rohde and Cappé [2011], who apply lo-
cally the Metropolis-Hasting (M-H) algorithm [Metropolis et al., 1953, Hastings,
1970], and show results on simple synthetic datasets. While Gibbs sampling is
widely used for many models such as LDA due to its simplicity and lack of
external parameters, M-H requires a proper proposal distribution with frequent
acceptance and fast mixing, which may be hard to find in high dimensions. We
provide a different simpler local scheme based on Gibbs sampling (thus adapted
to a wide variety of models), and propose a thorough favorable comparison on
synthetic and real datasets with existing methods.

The Gibbs sampler is used to estimate posterior distributions by alternatively
sampling parts of the variables given the other ones [see Casella and George,
1992, for details], and is standard and easy to use in many common latent vari-
able models. In the following, the online EM method with Gibbs estimation of
the conditional distribution p(h|X, η) is denoted G-OEM.
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As mentioned above, the online EM updates correspond to a stochastic approx-
imation algorithm and thus are robust to random noise in the local E-step. As a
result, our sampling method is particularly adapted as it is a random estimate of
the E-step—see a theoretical analysis by Rohde and Cappé [2011], and thus we
only need to compute a few Gibbs samples for the estimation of p(h|Xi, ηi−1). A
key contribution of our work is to reuse sampling techniques that have proved
competitive in the batch set-up and to compare them to existing variational ap-
proaches.

3.2.3 “Boosted” inference

As the variational and MCMC estimations of p(h|Xi, ηi−1) are done with iterative
methods, we can boost the inference of Algorithm 1 by applying the update in
the parameter η in (3) after each iteration of the estimation of p(h|Xi, ηi−1). In
the context of LDA, this was proposed by Sato et al. [2010] for incremental EM
and we extend it to all versions of online EM. With this boost, we expect that
the global parameters η converge faster, as they are updated more often. In the
following, we denote by G-OEM++ (resp. V-OEM++) the method G-OEM (resp. V-OEM)
augmented with this boost.

3.2.4 Variational Bayesian estimation

In the Bayesian perspective where η is seen as a random variable, we either
consider a distribution based on model averaging, e.g., r(X) =

∫
p(X|η)q(η)dη

where q(η) ∝ ∏N
i=1 p(Xi|η)p(η) is the posterior distribution, or

r(X) = p(X|η̄),

where η̄ is the summary (e.g., the mean) of the posterior distribution q(η), or of
an approximation, which is usually done in practice [see, e.g., Hoffman and Blei,
2015] and is asymptotically equivalent when N tends to infinity.

The main problem is that, even when the conditional distribution of latent variables
is tractable, it is intractable to manipulate the joint posterior distribution over
the latent variables h1, . . . , hN, and the parameter η. Variational inference tech-
niques consider an approximation where hidden variables are independent of
the parameter η, i.e., such that

p(η, h1, . . . , hN|X1, . . . , XN) ≈ q(η)
N

∏
i=1

q(hi),

which corresponds to the maximization of the following lower bound—called Ev-
idence Lower BOund (ELBO)—on the log-likelihood log p(X1, . . . , Xn) [Bishop,
2006]: ∫

q(η)
N

∏
i=1

q(hi) log
p(η)∏n

i=1 p(Xi, hi|η)
q(η)∏N

i=1 q(hi)
dηdh1 · · · dhN.
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The key insight from Hoffman et al. [2010], Broderick et al. [2013] is to consider
the variational distribution q(η) as the global parameter, and the cost function
above as a sum of local functions that depend on the data Xi and the variational
distribution q(hi). Once the local variational distribution q(hi) is maximized
out, the sum structure may be leveraged in similar ways than for frequentist
estimation, either by direct (natural) stochastic gradient [Hoffman et al., 2010]
or incremental techniques that accumulate sufficient statistics [Broderick et al.,
2013]. A nice feature of these techniques is that they extend directly to models
with intractable latent variable inference, by making additional assumptions on
q(hi) (see for example the LDA situation in Section 3.3).

In terms of actual updates, they are similar to online EM in Section 3.2.1, with
a few changes, but which turn out to lead to significant differences in practice.
The similarity comes from the expansion of the ELBO as

Eq(η)

[ N

∑
i=1

Eq(hi)
log

p(Xi, hi|η)
q(hi)

]
+ Eq(η)

[
log

p(η)
q(η)

]
.

The left hand side has the same structure than the variational EM update in
(4), thus leading to similar updates, while the right hand side corresponds to
the “Bayesian layer”, and the maximization with respect to q(η) is similar to the
M-step of EM (where η is seen as a parameter).

Like online EM techniques presented in Section 3.2, approximate inference
for latent variable is used, but, when using Bayesian stochastic variational in-
ference techniques, there are two additional sources of inefficiencies: (a) extra
assumptions regarding the independence of η and h1, . . . , hN, and (b) the lack of
explicit formulation as the minimization of an expectation, which prevents the
simple use of the most efficient stochastic approximation techniques (together
with their guarantees). While (b) can simply slow down the algorithm, (a) may
lead to results which are far away from exact inference, even for large numbers
of samples (see examples in Section 3.5).

Beyond variational inference, Gibbs sampling has been recently considered
by Gao et al. [2016]: their method consists in sampling hidden variables for
the current document given current parameters, but (a) only some of the new
parameters are updated by incrementally aggregating the samples of the current
document with current parameters, and (b) the method is slower than G-OEM (see
Section 3.5).

3.3 application to lda

LDA [Blei et al., 2003] is a probabilistic model that infers hidden topics given
a text corpus where each document of the corpus can be represented as topic
probabilities. In particular, the assumption behind LDA is that each document
is generated from a mixture of topics and the model infers the hidden topics
and the topic proportions of each document. In practice, inference is done using
Bayesian variational EM [Blei et al., 2003], Gibbs sampling [Griffiths and Steyvers,
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2004, Wallach, 2006] or stochastic variational inference [Hoffman et al., 2010,
Broderick et al., 2013, Sato et al., 2010].

hierarchical probabilistic model . Let C = {X1, . . . , XD} be a corpus
of D documents, V the number of words in our vocabulary and K the number of
latent topics in the corpus. Each topic βk corresponds to a discrete distribution
on the V words (that is an element of the simplex in V dimensions). A hidden
discrete distribution θi over the K topics (that is an element of the simplex in K
dimensions) is attached to each document Xi. As detailed in Chapter 1, LDA is
a generative model applied to a corpus of text documents which assumes that
each word of the ith document Xi is generated as follows:

• Choose θi ∼ Dirichlet(α),

• For each word xn ∈ Xi =
(

x1, . . . , xNXi

)
:

– Choose a topic zn ∼ Multinomial(θi),

– Choose a word xn ∼ Multinomial(βzn).

In our settings, an observation is a document Xi = (x1, . . . , xNXi
) where for all

1 ≤ n ≤ NXi , xn ∈ {0, 1}V and ∑V
v=1 xnv = 1. Each observation Xi is associated

with the hidden variables hi, with hi ≡ (Zi = (z1, . . . , zNXi
), θi). The vector θi

represents the topic proportions of document Xi and Zi is the vector of topic
assignments of each word of Xi. The variable hi is local, i.e., attached to one ob-
servation Xi. The parameters of the model are global, represented by η ≡ (β, α),
where β represents the topic matrix and α represents the Dirichlet prior on topic
proportions.

We derive the LDA model in Section 3.3.1 to find φ, S, ψ and a such that the
joint probability p(Z, θ|X, α, β) is in a non-canonical exponential family (1).

We may then readily apply all algorithms from Section 3.2 by estimating
the conditional expectation EZ,θ|X,α,β[S(X, Z, θ)] with either variational inference
(V-OEM) or Gibbs sampling (G-OEM). See Sections 3.3.2 and 3.3.3 for online EM
derivations. Note that the key difficulty of LDA is the presence of two interact-
ing hidden variables Z and θ.

3.3.1 LDA and exponential families

An observation X is a document of length NX, where X = (x1, . . . , xNX), each
word is represented by xn ∈ {0, 1}V with ∑V

v=1 xnv = 1. Our corpus C is a set
of D observations C = (X1, . . . , XD). For each document Xi a hidden variable θi

is associated, corresponding to the topic distribution of document Xi. For each
word xn of document Xi a hidden variable zn ∈ {0, 1}K is attached, correspond-
ing to the topic assignment of word xn. We want to find φ, S, ψ and a such that,
the joint probability is in the exponential family (1):

p(X, Z, θ|β, α) = a(X, Z, θ) exp [〈φ(β, α), S(X, Z, θ)〉 − ψ(β, α)] ,
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given an observation X and hidden variables Z and θ. For the LDA model, we
have:

p(X, Z, θ|β, α) =
NX

∏
n=1

p(xn|zn, β)p(zn|θ)p(θ|α) =
NX

∏
n=1

K

∏
k=1

V

∏
v=1

[
(βk

v)
xnv θk

]znk
p(θ|α),

which we can expand as:

p(X, Z, θ|β, α) = exp

[
NX

∑
n=1

K

∑
k=1

znk log θk

]
× exp

[
NX

∑
n=1

K

∑
k=1

V

∑
v=1

xnvznk log βk
v

]

× exp

[
K

∑
k=1

(αk − 1) log θk + B(α)

]
,

with B(α) = log
[
Γ
(

∑K
i=1 αi

)]
−∑K

i=1 log[Γ(αi)], where Γ is the gamma function.
We deduce the non-canonical exponential family setting φ, S, ψ a:

S(X, Z, θ) =

 S1
kv ≡

[ NX
∑

n=1
znkxnv

]
kv

S2
k ≡ [log θk]k

 , (5)

φ(β, α) =

 φ1
kv ≡

[
log βk

v
]

kv

φ2
k ≡ [αk]k

 , (6)

with S1, φ1 ∈ RK×V and S2, φ2 ∈ RK,

ψ(β, α) =
K

∑
i=1

log[Γ(αi)]− log

[
Γ

(
K

∑
i=1

αi

)]
, (7)

and

a(X, Z, θ) = exp

[
K

∑
k=1

(
NX

∑
n=1

znk − 1

)
log θk

]
.

The one-to one mapping between the sufficient statistics s = (s1

s2) and (β, α) is
defined by:

(β, α)∗[s] =

 arg maxβ≥0,α≥0 〈φ(β, α), s〉 − ψ(β, α)

s.t. β>1 = 1,

where 1 denotes the vector whose all entries equal 1. The objective function
above 〈φ(β, α), s〉 − ψ(β, α) is concave in β from the concavity of log and concave
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in any αk for α ≥ 0 as the function B(α) is concave as the negative log-partition
of the Dirichlet distribution. We use the Lagrangian method for β:

L(β, λ) =
K

∑
k=1

V

∑
v=1

s1
kv log βk

v + λ>(β>1− 1),

with λ ∈ RK. The derivative of L is set to zero when:

∀(k, v),
s1

kv
βk

v
+ λk = 0⇒ λk = −

V

∑
v=1

s1
kv,

as ∑V
v=1 βk

v = 1. We then have (β∗(s))kv = s1
kv/∑j s1

kj. This mapping satisfies the
constraint β ≥ 0 because for any observation X and hidden variable Z, we have
S1(X, Z)kv ≥ 0. This comes from (5) and the fact that ∀(n, k, v), (xnv, znk) ∈ {0, 1}2.
We find the condition on α by setting the derivatives to 0, which gives ∀k ∈ J1, KK:

s2
k −Ψ([α∗(s)]k) + Ψ

(
K

∑
i=1

[α∗(s)]i

)
= 0,

where Ψ : x 7→ ∂
∂x [log Γ](x) is the digamma function. Finally, (α∗(s), β∗(s)) satis-

fies ∀(k, v): 
(β∗(s))kv ≡

[
s1

kv
∑j s1

kj

]
kv

Ψ([α∗(s)]k)−Ψ
(

K
∑

i=1
[α∗(s)]i

)
= s2

k.
(8)

The parameter α∗ is usually estimated with gradient ascent [Blei et al., 2003, Hoff-
man et al., 2010]. We can also estimate α with the fixed point iteration [Minka,
2000] which consists in repeating the following update until convergence:

αnew
k = Ψ−1

(
Ψ
(

∑K
i=1 αold

i

)
+ s2

k

)
.

We use the fixed point iteration to estimate α∗ as it is more stable in practice. We
study different updates for α in Appendix 3.8.

We can now apply Algorithm 1 to LDA. The only missing step is the estima-
tion of the conditional expectation EZ,θ|X,αt,βt [S(X, Z, θ)], with X = (x1, . . . , xNX)
and Z = (z1, . . . , zNX). We explain how to approximate this expectation with
variational inference and Gibbs sampling.

3.3.2 Variational online EM applied to LDA (V-OEM)

In this section we explain how to approximate EZ,θ|X,αt,βt [S(X, Z, θ)] with varia-
tional inference, in the frequentist setting. See Hoffman et al. [2013] for detailed
derivations of variational inference for LDA in the Bayesian setting (from which
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the updates in the frequentist setting may be easily obtained). The idea behind
variational inference is to maximize the Evidence Lower BOund (ELBO), a lower
bound on the probability of the observations:

p(X) ≥ ELBO(X, p, q),

where q represents the variational model. In the case of LDA, the variational
model is often set with a Dirichlet(γ) prior on θ and a multinomial prior on Z
[Hoffman et al., 2013]:

q(Z, θ) = q(θ|γ)
NX

∏
n=1

q(zn|ζn). (9)

We then maximize the ELBO with respect to γ and ζ, which is equivalent to min-
imizing the Kullback-Leibler (KL) divergence between the variational posterior
and the true posterior:

max
γ,ζ

ELBO(X, p, q)⇔ min
γ,ζ

KL[p(Z, θ|X)||q(θ, Z)]. (10)

We solve this problem with block coordinate descent, which leads to iteratively
updating γ and ζ as follows:

ζnk ∝
V

∏
v=1

(
βk

v

)xnv
exp [Ψ(γk)] , (11)

γk = αk + ∑NX
n=1 ζnk. (12)

We then approximate EZ,θ|X,αt,βt [S(X, Z, θ)] with the variational posterior. Given
(5) and (9), we have:

Ep(Z,θ|X)[S(X, Z, θ)] ≈ Eq(Z,θ)[S(X, Z, θ)] =


(

∑
NXt+1
n=1 ζnkxnv

)
kv(

Ψ(γk)−Ψ
(

∑K
j=1 γj

))
k

 . (13)

The variational approximation of Ep(Z,θ|X)[S(X, Z, θ)] is then done in two steps:

1. Iteratively update ζ with (11) and γ with (12),

2. Ep(Z,θ|X)[S(X, Z, θ)]← Eq(Z,θ|γ,ζ)[S(X, Z, θ)] with equation (13).

As γ and ζ are set to minimize the distance between the variational posterior
and the true posterior (10) we expect that this approximation is close to the true
expectation. However, as the variational model is a simplified version of the true
model, there always remains a gap between the true posterior and the variational
posterior.
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3.3.3 Gibbs online EM applied to LDA (G-OEM)

In this section we explain how to approximate EZ,θ|X,αt,βt [S(X, Z, θ)] with Gibbs
sampling.

expectation of S1 . Given (5), we have ∀k ∈ J1, KK, ∀v ∈ J1, VK:

EZ,θ|X,α,β

[
(S1(X, Z))kv

]
= EZ,θ|X,α,β

[
NX

∑
n=1

znkxnv

]

=
NX

∑
n=1

∫
Z,θ

znkxnv p(zn, θ|X, β, α)dθdz

=
NX

∑
n=1

xnv p(znk = 1|X, β, α).

We see that we only need the probability of z, and can thus use collapsed Gibbs
sampling [Griffiths and Steyvers, 2004]. We have, following Bayes rule:

p(znk = 1|z−n, X, β, α) ∝ p(xn|znk = 1, β)p(znk = 1|z−n, α),

where z−n is the topic assignments except index n. In the LDA model, each
word xn is drawn from a multinomial with parameter βzn , which gives:

p(xn|znk = 1, β) =
V

∑
v=1

xnvβk
v.

In the following, we use the notation βk
xn ≡ ∑V

v=1 xnvβk
v for the sake of simplicty.

We then use the fact that the topic proportions θ has a Dirichlet(α) prior, which
implies that Z|α follows a Dirichlet-multinomial distribution (or multivariate
Pólya distribution). As a result, the conditional distribution is:

p(znk = 1|z−n, α) =
N−n,k + αk

(NX − 1) + ∑j αj
,

with N−n,k the number of words assigned to topic k in the current document,
except index n. Finally, we have the following relation [Griffiths and Steyvers,
2004]:

p(znk = 1|z−n, X, β, α) ∝ βk
xn ×

N−n,k + αk

(NX − 1) + ∑j αj
. (14)

We estimate p(znk = 1|X, β, α) with Gibbs sampling by iteratively sampling topic
assignments zn for each word, as detailed in Algorithm 2. We average over the
last quarter of samples to reduce noise in the final output. We then incorporate
the output in Algorithm 1.
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expectation of S2 . Given (5), we also have ∀k ∈ J1, KK, ∀v ∈ J1, VK:

EZ,θ|X,α,β[(S
2(X, Z))k] = EZ,θ|X,α,β[log θk].

On the one hand, we have:

p(Z, θ|X, β, α) = p(Z|θ, X, β, α)p(θ|X, β, α) = C(α)
K

∏
k=1

θ

(
∑

NX
n=1 znk

)
+αk−1

k ,

with C(α) =
Γ(∑K

i=1 αi)
∏K

i=1 Γ(αi)
. On the other hand:

p(Z, θ|X, β, α) ∝ p(θ|Z, α)p(Z|X, β).

We deduce from the two identities:

p(θ|Z, α) ∝
K

∏
k=1

θ

(
∑

NX
n=1 znk

)
+αk−1

k ⇒ θ|Z, α ∼ Dirichlet
(

α + ∑NX
n=1 zn

)
.

Finally, the expectation is:

EZ,θ|X,α,β[(S
2(X, Z))k] =EZ,θ|X,α,β[log θk]

=EZ|X,β,α

[
Eθ|Z,α [log θk]

]
=EZ|X,β,α

[
Ψ
(
[α(s)]k +

NX
∑

n=1
znk

)]
−Ψ

(
K
∑

i=1
[α(s)]i + NX

)
,

as the distribution of θ|Z, α is Dirichlet
(

α +
NX
∑

n=1
zn

)
. We use the values of z

sampled with Algorithm 2 to estimate this expectation. More precisely, keeping
notations of Algorithm 2:

EZ|X,β,α

[
Ψ
(
[α(s)]k + ∑NX

n=1 znk

)]
≈ 1

P

P

∑
t=1

Ψ
(
[α(s)]k + ∑NX

n=1 zt
nk

)
.

3.3.4 Bayesian Approach

In a Bayesian setting, we consider β as a random variable, with β ∼ Dirichlet(b1),
with b ∈ R and 1 ∈ RV denotes the vector whose all entries equal 1. The vari-
ational distribution of the global parameter β is set to q(βk|λk) = Dirichlet(λk),
with λk ∈ RV ∀k = 1, . . . , K. The main difference with the frequentist methods
above (G-OEM and V-OEM) is to optimize the ELBO with respect to the variational
parameters (λk)k. In practice, it is equivalent to replace βk

v by exp
[
Eq[log βk

v]
]

in all the updates above (i.e., in Equation (11) for V-OEM and in Equation (14) for
G-OEM). The variational parmater λk ∈ RV is updated with stochastic gradient
on the ELBO, which gives, at iteration t:

λk(t + 1) = ρtλ
k(t) + (1− ρt)λ̂

k, (15)

with λ̂k ∈ RV , λ̂k
v = b + DEq

[
S1

kv
]
, where D is the total number of documents

in the dataset and b is the prior on βk [Hoffman et al., 2013].
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Algorithm 2 Gibbs sampling scheme to approximate p(znk = 1|X, β, α)

Input: β, α, X.

Initialization: Z0
n ∼ Mult([β̄k

xn ]k=1,...,K), with β̄k
xn =

βk
xn

∑j β
j
xn
∀n ∈ J1, NXK.

for t = 1, 2, . . . , P do
Compute random permutation σt on J1, NXK,
for n = 0, 1, . . . , NX do
• Set Zt

−n =
{
(zt

σt(i))1≤i<n, (zt−1
σt(i))n<i≤NX

}
,

• Compute ∀k, p(zσt(n)k = 1|Zt
−n, X, β, α) with Equation (14),

• Sample zt
σt(n) ∼ Mult

[
p(zσt(n)|Zt

−n, X, β, α)
]
,

end for
end for
for n = 0, 1, . . . , NX do

Set Zt
−n =

{
(zt

i)1≤i<n, (zt
i)n<i≤NX

}
for t ≥ 3

4 P,

p(znk = 1|X, β, α)← 4
P

P
∑

t= 3
4 P

p(znk = 1|Zt
−n, X, β, α)

end for
Output: ∀k, ∀n: (zt

n)t=1,...,P, p(znk = 1|X, β, α).

3.4 application to hierarchical dirichlet process (hdp)

The HDP model [Teh et al., 2006] is a generative process to model documents
from an infinite set of topics βk, k = 1, 2, 3, . . .. Each topic is a discrete distribu-
tion of size V, the size of the vocabulary. Each topic is associated to a weight
πk ∈ [0, 1], representing the importance of the topic in the corpus. For each doc-
ument d, the (infinite) topic proportions νd are drawn from νd ∼ Dirichlet(bπ).
We then generate words with a similar scheme to LDA scheme. More formally
a corpus is generated as follows:

1. Draw an infinite number of topics βk ∼ Dirichlet(η), for k ∈ {1, 2, 3, . . .};

2. Draw corpus breaking proportions π̄k ∼ Beta(1, α), for k = 1, 2, 3, . . .; with
πk = σk(π̄);

3. For each document d:

a) Draw document-level topic proportions: νd ∼ Dirichlet(bπ);

b) For each word n in d:

i. Draw topic assignment zdn ∼ Multinomial(νd);

ii. Draw word wn ∼ Multinomial(βzdn).

In practice, we set the initial number of topics to T = 2. We then increase the
number of topics used in the corpus using Gibbs sampling and the formula
p(zdn > T|X, η) ∝ b(1−∑T

i=1 πi). See Section 3.4.2 for details.
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3.4.1 HDP and Exponential Families

We consider an exponential family model on random variables (X, h) with pa-
rameter η ∈ E ⊆ Rd and with density:

p(X, h|η) = a(X, h) exp [〈φ(η), S(X, h)〉 −Ψ(η)] .

In the case of HDP, an observation X is a document of length NX, where (as
for LDA) X = (x1, . . . , xNX), xn ∈ {0, 1}V and ∑V

v=1 xnv = 1. In the frequentist
approach, the parameters of the model are global, represented by η ≡ (β, π),
where β represents the corpus topics, π represents the corpus breaking propor-
tions. Our corpus C is a set of D observations C = (X1, . . . , XD). For each
document Xd, the associated hidden variables are νd ∈ [0, 1]K corresponding to
document-level topic proportions. For each word xn of document Xd, a hidden
variable zn ∈ {0, 1}T is attached, corresponding to the topic assignment of word
xn.

We want to find φ, S, ψ and a such that, the joint probability is in the exponen-
tial family:

p(X, Z, ν|β, π) = a(X, Z, ν) exp [〈φ(β, π), S(X, Z, ν)〉 − ψ(β, π)] ,

given an observation X and hidden variables Z and ν. For the HDP model, we
have:

p(X, Z, ν|β, π) =p(ν|π)
NX

∏
n=1

p(xn|zn, β)p(zn|ν)

=W(π) ∏
k∈N∗

(νk)
bπk−1

NX

∏
n=1

∏
k
(νk)

znk ∏
v
(βk,v)

xnvznk

= exp [−ψ(π)] exp

[
∑
k

log νk

(
NX

∑
n=1

znk − 1

)]

× exp

[
∑
k
(bπk) log νk

]

× exp

[
∑
k,v

log βk,v

NX

∑
n=1

xnvznk

]
,

with ψ(π) = ∑k log Γ(bπk)− log Γ(b).We deduce the exponential family setting
φ, S, a:

S(X, Z, ν) =

 S1
k ≡ [log νk]k

S2
kv ≡

[ NX
∑

n=1
znkxnv

]
kv

 , (16)

φ(β, π) =

 φ1
k ≡ [bπk]k

φ2
kv ≡ [log βk,v]kv

 , (17)
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with

a(X, Z, ν) = exp

[
∑
k

log νk

(
NX

∑
n=1

znk − 1

)]
.

The one-to one mapping between the sufficient statistics s = (s1, s2)> and (β, π)
is defined by:

(β, π)∗[s] =

 arg maxβ≥0,1≥π≥0 〈φ(β, π), s〉 − ψ(β, π)

s.t. β>1 = 1,

where 1 denotes the vector whose all entries equal 1.

With the same computation than LDA, β∗(s)kv ≡
[

s2
kv

∑j s2
kj

]
. We find π∗(s) by

solving:

π∗(s) = arg max
1≥π≥0

K

∑
k=1

(
bπks1

k − log Γ(bπk)
)
+ log Γ(b ∑

k
πk),

which gives:

Ψ(bπ∗(s)k)−Ψ

(
b ∑

i
π∗(s)i

)
= s1

k.

where Ψ : x 7→ ∂
∂x [log Γ] (x) is the digamma function. We estimate (bπ)∗ with

the fixed point iteration which consists in repeating the following update until
convergence:

(bπ)new
k = Ψ−1

(
Ψ

(
∑

i
(bπi)

old

)
+ s1

k

)
.

Finally, (β, π)∗[s] satisfies ∀(k, v):
(β∗(s))kv =

[
s2

kv
∑j s2

kj

]
Ψ(bπ∗(s)k)−Ψ (b ∑i π∗(s)i) = s1

k.

3.4.2 Inference with online EM

In this section, we explain how to approximate EZ,ν|X,η[S(X, Z, ν)] with Gibbs
sampling from a frequentist and a Bayesian perspective. In particular, as the
total number of topics is infinite, we need to keep track of the previously used
topics and iteratively extend the number of topics considered.

Gibbs online EM (G-OEM)

In our frequentist G-OEM approach, η is a parameter. The Gibbs sampling scheme
to approximate EZ,ν|X,η[S(X, Z, ν)] is different from LDA and a probability of
adding a new topic to the current list is computed at each iteration, as explained
below.
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expectation of S1 . We have:

EZ,ν|X,η[S
1(X, Z, ν)]k = EZ,ν|X,η [log νk]

= EZ|X,η

[
Ψ

(
bπk +

NX

∑
n=1

znk

)]
−Ψ

(
b ∑

i
πi + NX

)
,

and we use the values of z sampled with Gibbs sampling to compute:

EZ|X,η

[
Ψ

(
bπk +

NX

∑
n=1

znk

)]
≈ 1

P

P

∑
t=1

Ψ

(
bπk +

NX

∑
n=1

zt
nk

)
.

expectation of S2 . We have:

EZ,ν|X,η[S
2(X, ν)]kv = EZ,ν|X,η

[
NX

∑
n=1

znkxnv

]
=

NX

∑
n=1

xnv p(znk = 1|X, η)

sampling z|X, η . If T is the current number of topics, we have:

∀k ∈ {1, . . . , T}, p(znk = 1|z−n, X, η) ∝ (N−n
k + bπk)× p(xn|zni = 1, cik = 1, η)

∝ (N−n
k + bπk)× βk,xn ,

and the probability of sampling a new topic is given by:

p(zn > T|z−n, X, η) ∝ b

(
1−

T

∑
t=1

πk

)
/V.

When a new topic is generated, we initialize πT+1 with π̄T+1 ∼ Beta(1, α) and
πT+1 = π̄T+1 ∏T

t=1 (1− π̄t).

Bayesian approach: VarGibbs [Wang and Blei, 2012]

In a Bayesian settings where βk ∼ Dirichlet(η); q(βk|λ) = Dirichlet(λk) and
πk ∼ Beta(1, a); q(πk|ak, bk) = Beta(ak, bk), the sampling scheme is different as
we also sample π and an auxiliary variable sdk corresponding to the number
of “tables” serving “dish” k in “restaurant” d (in the fomulation of HDP as a
Chinese restaurant process; see Wang and Blei [2012] for details).
Sampling z:

p(znk = 1|z−n, λ, π) ∝ (N−n
dk + bπk)

N−n
kxn

+ λkxn

N−n
k + ∑v λkv

.

Sampling s:

p(sdk|Ndk, bπk) =
Γ(bπk)

Γ(bπk + Ndk)
S(Ndk, sdk) (bπk)

sdk ,
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with S(n, m) are unsigned Stirling number of the first kind.
Sampling π:

p(π̄k) ∝ π̄
ak−1+∑d∈S sdk
k (1− π̄k)

bk−α+∑d∈S ∑∞
j=k+1 sdj

We then set: 

λ̂kv = η + D
NX
∑

n=1
znkxnv

âk = 1 + Dsdk

b̂k = α + D
∞
∑

j=k+1
sdj

(18)

and λt+1 = (1− ρt)λt + ρtλ̂; at+1 = (1− ρt)at + ρt â; bt+1 = (1− ρt)bt + ρtb̂.
In practice, for each document we sample the hidden variables z for each word

and compute the topic counts Ndk for topic k in document d, then we sample the
variable s. Finally, we perform the online EM algorithm by making the approx-
imation Ep(h|X,η)[S(X, h)] ≈ Eq(h)[S(X, h)], which corresponds to equation (18).
Note that in this Bayesian approach, the parameters (λ, a, b) represent the distri-
bution parameters of the random variables β and π.

3.5 evaluation

We evaluate our method by computing the likelihood on held-out documents,
that is p(X|β, α) for any test document X. For LDA, the likelihood is intractable
to compute. We approximate p(X|β, α) with the “left-to-right” evaluation al-
gorithm [Wallach et al., 2009] applied to each test document. This algorithm
is a mix of particle filtering and Gibbs sampling. On any experiments, this
leads essentially to the same log-likelihood than Gibbs sampling with sufficiently
enough samples—e.g., 200. In the following, we present results in terms of log-
perplexity, defined as the opposite of the log-likelihood − log p(X|η). The lower
the log-perplexity, the better the corresponding model. In our experiments, we
compute the average test log-perplexity on Nt documents. We compare eight
different methods:

• G-OEM (our main algorithm): Gibbs online EM. Online EM algorithm with
Gibbs estimation of the conditional distribution p(h|X, η) (Algorithm 2).
Frequentist approach and step-size ρi = 1/

√
i;

• V-OEM++: variational online EM (also a new algorithm). Online EM algo-
rithm with variational estimation of the conditional distribution p(h|X, η),
augmented with inference boosting from Section 3.2.3. Frequentist ap-
proach and step-size ρi = 1/

√
i;

• OLDA: online LDA [Hoffman et al., 2010]. Bayesian approach which maxi-
mizes the ELBO from Section 3.2.4, with natural stochastic gradient ascent
and a step-size ρi = 1/

√
i;
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• VarGibbs: Sparse stochastic inference for LDA [Mimno et al., 2012]. This
method also maximizes the ELBO but estimates the variational expecta-
tions q(Z, θ) with Gibbs sampling instead of iterative maximization of vari-
ational parameters — see Section 3.3.2;

• SVB: streaming variational Bayes [Broderick et al., 2013]. A variational
Bayesian equivalent of V-OEM with step-size ρi = 1/i;

• SPLDA: single pass LDA [Sato et al., 2010]. The difference with V-OEM++ is
that ρi = 1/i and the updates in α done with a Gamma prior (see Ap-
pendix 3.8);

• SGS: streaming Gibbs sampling [Gao et al., 2016]. This method is related
to G-OEM with ρi = 1/i. In this method, α is not optimized and set to a
constant Cα. For comparison purposes, for each dataset, we set Cα to be the
averaged final parameter α̂ obtained with G-OEM on the same dataset: Cα =
1
K ∑k α̂k. For each observation, only the last Gibbs sample is considered,
leading to extra noise in the output;

• LDS: Stochastic gradient Riemannian Langevin dynamics sampler [Patter-
son and Teh, 2013]. The authors use the Langevin Monte Carlo methods
on probability simplex and apply their online algorithm to LDA. For this
method and only this method, we set to P = 200 the number of internal
updates.

For existing variational methods—OLDA, SVB, SPLDA—β is a random variable with
prior q(β). We estimate the likelihood p(X|β̂, α) with the “left-to-right” algo-
rithm by setting β̂ = Eq[β] for Bayesian methods. For simplicity, we only present
our results obtained with G-OEM and V-OEM++. Indeed, the inference boost pre-
sented in Section 3.3 is only beneficial for V-OEM. A detailed analysis is presented
in Appendix 3.6.1.

3.5.1 Explicit links for LDA

In this section, we propose to make the links between the methods listed above
explicit, using the framework described in Section 3.3 for the particular LDA
model. We present in Table 4 a summary of the compared method.

category : In the frequentist approach, β is a parameter and is updated with
Equation (8), as the “M-step” in online EM.

In a Bayesian setting, β is a random variable with prior β ∼ Dirichlet(b1), with
b ∈ R and 1 ∈ RV denotes the vector whose all entries equal 1. The variational
distribution of the global parameter β is then set to q(βk|λk) = Dirichlet(λk),
with λk ∈ RV ∀k = 1, . . . , K. The variational parameter λk is updated by maxi-
mizing the ELBO with stochastic gradient ascent (Equation (15)).
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Table 4: Comparison of existing methods for LDA.

Category EZ|X,η[S(X, Z)] Step-size ρt Update for α

G-OEM frequentist Gibbs sampling free fixed point

V-OEM frequentist variational free fixed point

OLDA Bayesian variational free gradient ascent

VarGibbs Bayesian Gibbs sampling free α fixed

SVB Bayesian variational fixed: 1/t gradient ascent

SPLDA Bayesian variational fixed: 1/t Gamma prior

SGS frequentist Gibbs sampling fixed: 1/t α fixed

estimation of EZ|X,η[S(X, Z)]: For LDA, the expectation EZ|X,η[S(X, Z)]
can either be estimated with Gibbs sampling—Equation (14)—or with varia-
tional approximation—Equation (10).

step-size : Some of the methods listed above (SVB,SPLDA and SGS) are in-
cremental, which means the sufficient statistics are incrementally aggregated
st = st−1 + EZt|Xt,η[S(Xt, Zt)] . For LDA, it exactly corresponds to a step-size
ρt = 1/t in the online EM setting, even though the link is not explicit in the
corresponding papers.

For the other listed methods, the step-size exponent κ is chosen arbitrarily in
[0.5, 1), with ρt = 1/tκ. However, results are mostly presented with κ = 1/2 and
ρt = 1/

√
t.

3.5.2 General settings

initialization. We initialize randomly η ≡ (β, α). For a given experiment,
we initialize all the methods with the same values of (β, α) for fair comparison,
except SPLDA that has its own initilization scheme—see Sato et al. [2010] for more
details.

minibatch . We consider minibatches of size 100 documents for each update
in order to reduce noise [Liang and Klein, 2009]. In the case of online EM in
Equation (3), we estimate an expectation for each observation of the minibatch.
We update the new sufficient statistics s towards the average of the expectations
over the minibatch. We do the same averaging for all the presented methods.

number of local updates . For all the presented methods, we set the num-
ber of passes through each minibatch to P = 20. For G-OEM, this means that we
perform 20 Gibbs sampling for each word of the minibatch. All other methods
access each document 20 times (e.g., 20 iterations of variational inference on

56



Table 5: Datasets.

Dataset #documents NX #words

Synthetic 1,000,000 60 1,000

Wikipedia
1

1,010,000 162.3 7702

IMDB2
614,589 82.2 10,000

Amazon movies
3

338,565 75.4 10,000

New York Times
4

299,877 287.4 44,228

Pubmed
4

2,100,000 82.0 113,568

each document). For G-OEM, inference with larger values for P (e.g., P = 50 or
P = 100) leads to very similar results.

datasets . We apply the methods on six differents datasets, summarized in
Table 5 (NX is the average length of documents). Following Blei et al. [2003],
the synthetic dataset has been generated from 10 topics and the length of each
document drawn from a Poisson(60). The 10 topics are inferred with online LDA
[Hoffman et al., 2010] from 50,000 reviews of the IMDB dataset with a vocabulary
size of 10,000. We only consider the entries of the 1,000 most frequent words of
this dataset that we normalize to satisfy the constraint ∑v βk

v = 1.
The words in the datasets IMDB, Wikipedia, New York Times, Pubmed and

Amazon movies are filtered by removing the stop-words and we select the most
frequent words of the datasets. For the synthetic dataset, IMDB, Pubmed and
Amazon movies, the size of the test sets is Nt = 5,000 documents. For Wikipedia
and New York Times, the test sets contain Nt = 2,000 documents. We run the
methods on 11 differents train/test splits of each dataset. For all the presented
results, we plot the median from the 11 experiments as a line—solid or dashed.
For the sake of readability, we only present the same plots with error bars be-
tween the third and the seventh decile in Appendix 3.A and Appendix 3.B.

computation time . For each presented method and dataset, the computa-
tional time is reported in Table 6. Although all methods have the same running-
time complexities, coded in Python, sampling methods (G-OEM, VarGibbs and
SGS) need an actual loop over all documents while variational methods (OLDA,
SVB, SPLDA and V-OEM++) may use vector operations, and may thus be up to twice
faster. This could be mitigated by using efficient implementations of Gibbs sam-
pling on minibatches [Yan et al., 2009, Zhao et al., 2014, Gao et al., 2016]. Note
also that to attain a given log-likelihood, our method G-OEM is significantly faster

1Code available from Hoffman et al. [2010]
2Dataset described in Diao et al. [2014]
3Data from Leskovec and Krevl [2014]
4UCI dataset [Lichman, 2013]

57



Table 6: Average computational time (in hours) for each method — K = 128.

IMDB Wikipedia NYT Pubmed

G-OEM 13h 55h 30h 58h

V-OEM++ 9h 37h 20h 54h

OLDA 7h 33h 8h 30h

VarGibbs 12h 50h 28h 54h

SVB 7h 34h 9h 30h

SPLDA 9h 37h 20h 54h

SGS 11h 48h 27h 50h

LDS 7h 17h 12h 40h

and often attains log-likelihoods not attainable by other methods (e.g., for the
dataset New York Times).

step-size . In the following, we compare the results of our methods G-OEM
and V-OEM++ with κ = 1/2, i.e., the step-size ρt = 1/

√
t, without averaging. De-

tailed analysis of different settings of our method can be found in Appendix 3.6.
In particular, we compare different step-sizes and the effect of averaging over
all iterates. We also compare the performance of OLDA with different step-sizes
in Appendix 3.6.2 and observe that results are very similar for all the step-sizes
that we try. Note that for incremental methods (SVB, SPLDA, SGS), the step-size
is fixed to ρt = 1/t. For LDS, we run the method with parameters as close as
possible to our method for fair comparison.

3.5.3 Results on LDA

Results obtained with the presented methods applied to LDA on different text
datasets for different values of the number K of topics are presented in Figure 6.
Performance through iterations (i.e., as the number of documents increases) is
presented in Figure 9. We first observe that for all experiments, our new method
G-OEM performs better—often significantly—than all existing methods. In partic-
ular, it is highly robust to diversity of datasets.

influence of the number of topics K. As shown in Figure 6, for syn-
thetic data in plot (a), although the true number of topics is K∗ = 10, SPLDA,
OLDA, VarGibbs and SGS perform slightly better with K = 20, while G-OEM has
the better fit for the correct value of K; moreover, SVB has very similar perfor-
mances for any value of K, which highlights the fact that this method does not
capture more information with a higher value of K. LDS performs very poorly
on this dataset—for any value of K the log-perplexity is around 400—and is not
displayed in Figure 6 (a) for clarity.
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On non-synthetic datasets in plots (b)-(f), while the log-perplexity of frequen-
tist methods—G-OEM, V-OEM++ and SPLDA—decreases with K, the log-perplexity
of variational Bayesian methods—OLDA and SVB—does not decrease significantly
with K. As explained below, our interpretation is that the actual maximiza-
tion of the ELBO does not lead to an improvement in log-likelihood. The hy-
brid Bayesian method VarGibbs—which uses Gibbs sampling for local updates
(θ, z) and variational updates for global parameters (β, α)—performs much bet-
ter than the variational Bayesian methods. Our interpretation is that the objec-
tive function maximized with VarGibbs is a much better approximation of the
log-likelihood than the ELBO.

In terms of robustness, G-OEM and LDS are the only methods that do not display
overfitting on any dataset. However, LDS is only competitive for the highest
values of K— K ≥ 500.

performance through iterations . As shown in Figure 9, for synthetic
data in plot (a), after only few dozens of iterations—few thousands of docu-
ments seen—G-OEM, V-OEM++ and VarGibbs outperform the other presented meth-
ods. Variational Bayesian methods again do converge but to a worse parameter
value. On real datasets in plots (b)-(f), G-OEM and VarGibbs are significantly
faster; we can indeed still observe that after around 100 iterations—10,000 docu-
ments seen—G-OEM and VarGibbs perform better than other methods on all the
datasets except Pubmed, where the performances of G-OEM, V-OEM++, VarGibbs
and SPLDA are similar.

variational vs . sampling . Our method G-OEM directly optimizes the like-
lihood with a consistent approximation, and performs better than its variational
counterparts SPLDA and V-OEM++ in all experiments. The hybrid method VarGibbs
is less robust than G-OEM as it performs either similarly to G-OEM—for the datasets
Wikipedia, New York Times and Pubmed—or worse than G-OEM and its varia-
tional counterparts SPLDA and V-OEM++—for the datasets IMDB and Amazon.

frequentist vs . bayesian. In all our experiments we observe that fre-
quentist methods—G-OEM, V-OEM++ and SPLDA—outperform variational Bayesian
methods—OLDA and SVB. As described in Section 3.2.4, variational Bayesian meth-
ods maximize the ELBO, which makes additional strong independence assump-
tions and here leads to poor results. For example, as the number K of topics
increases, the log-likelihood goes down for some datasets. In order to investi-
gate if this is an issue of slow convergence, we show on Figure 7 (dotted black
line) that running P = 100 internal updates in OLDA to get a finer estimate of
the ELBO for each document may deteriorate the performance. Moreover, Fig-
ure 8 presents the evolution of the ELBO, which does always increase when
K increases, showing that the online methods do optimize correctly the ELBO
(while not improving the true log-likelihood). See Appendix 3.7 for additional
results on the convergence of the ELBO. The results are mitigated for the hybrid
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(e) Dataset: Pubmed
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(f) Dataset: Amazon movies

Figure 6: Perplexity on different test sets as a function of K, the number of topics
inferred. Best seen in color.
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Figure 7: OLDA. Perplexity on different test sets as a function of K for OLDA with
P = 10 (red) and P = 100 (black) internal updates.

Bayesian method VarGibbs. The performance of this method is either similar to
G-OEM and V-OEM++ or significantly worse than both G-OEM and V-OEM++.

small step-sizes vs . large step-sizes . SPLDA is a variational method
which is equivalent to V-OEM++, but with a step-size 1/i, which is often slower
than bigger step-sizes [Mairal, 2014], which we do observe—see Appendix 3.6.2
for a further analysis on the effect of the choice of step-sizes as 1/iκ on G-OEM.
Note that we run all the methods on a fixed (finite) number of observations. If we
were to extend to infinite datasets, the difference between the step-sizes should
be the speed of convergence. However, even if the number of observations is
large, the gap between the step-sizes is still significant to justify the use of 1/

√
t

for the step-size. Indeed, when considering large datasets, the contribution of
each iteration at the end of the pass over the data is squeezed by the step-size
in 1/t. When the number of observations is large enough to prevent the use of
batch algorithms but still insufficient for an online algorithm to converge in one
pass, a possible solution could be to consider constant step-sizes in order to con-
verge even faster to a local maxima. As proposed, we do not have any guarantee
for our methods to converge with constant step-sizes, but previous works have
shown the benefits of using constant step-sizes under certain assumptions (e.g.,
Bach and Moulines [2013])

3.5.4 Empirical analysis

In this section we provide a qualitative empirical analysis on the topics extracted
with the different methods. We note this is clearly a subjective analysis but it
stresses the benefits of a “better” inference mechanism in terms of log-likelihood
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Figure 8: Dataset: IMDB. Evidence Lower BOund (ELBO) computed on test sets
(20 internal iterations and 1 pass over the dataset). Left: ELBO through
iterations with K = 128. Right: ELBO as a function of the number of
topics K.

[Chang et al., 2009]. Examples of eight topics extracted with G-OEM and OLDA on
the IMDB dataset of movie reviews are presented in Table 7 page 65.

We first compute the KL divergence between the K = 128 topics extracted
with G-OEM and the K = 128 topics extracted with OLDA. We run the Hungarian
algorithm on the resulting distance matrix to assign each topic extracted with
G-OEM to a single topic of OLDA. We choose manually eight topics extracted with
G-OEM that are representative of the usual behavior, and display the eight corre-
sponding topics of OLDA assigned with the above method.

We observe that the topics extracted with G-OEM are more consistent than top-
ics extracted with OLDA: topics of G-OEM precisely describe only one aspect of the
reviews while the topics of OLDA tend to mix several aspects in each topic. For
instance, the words of topic 1 extracted with G-OEM are related to horror movies.
The words of the corresponding topic extracted with OLDA mix horror movies —
e.g., horror, scary — and ghost movies — e.g., ghost, haunt. In this OLDA topic
1, we can also observe less relevant words, like effective, mysterious, which are
not directly linked with horror and ghost vocabularies. We can make the same
remarks with topic 2 and topic 3, respectively related to comedy movies and ro-
mantic comedy movies. In topic 2 extracted with G-OEM, the least related words to
comedy are names of characters/actors — i.e., steve and seth — while the words
not related to comedy in topic 25 of OLDA are more general, belonging to a differ-
ent lexical field — e.g., sport, site, progress, brave, definition. In topic 3 of G-OEM, all
the presented words are related to romantic comedy while in topic 3 of OLDA, the
words old, hard and review are not related to this genre.

We also observe that G-OEM extracts strongly “qualitative” topics — topic 4

and topic 5 — which is not done with OLDA. Indeed, it is difficult to group the
top words of topic 4 or topic 5 of OLDA in the same lexical field. Except dialogue
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(f) Amazon movies, K = 128

Figure 9: Perplexity through iterations on different test sets with the presented
methods. Best seen in color.
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and suppose, all the top words of topic 4 of G-OEM are negative words. These two
words may appear in a lot of negative sentences, leading to a high weight in this
topic. In topic 5 of G-OEM, the words absolutely and visual are non strictly positive
words while the thirteen other words in this topic convey a positive opinion.
The word absolutely is an adverb much more employed in positive sentences
than negative or neutral sentences, which can explain its high weight in topic 5.

The topic 6 of both G-OEM and OLDA can be considered as a “junk” topic, as for
both method, most of its top words are contractions of modal verbs or frequent
words — e.g., didn’t, isn’t, wait, bad. The contractions are not filtered when
removing the stop words as they are not included in the list of words removed1.

For both G-OEM and OLDA, the top words of topic 7 are general words about
movies. These words are usually employed to describe a movie as a whole —
e.g., narrative, filmmaker.

Finally, the top words of topic 8 of G-OEM are related to the situation of the
scenes. We could not find such topic in the other presented methods and we
can see that the top words of topic 8 of OLDA — supposedly close to topic 8 of
G-OEM — are related to family movies. Each word of topic 8 of G-OEM — except
group and beautiful — are related to a spatial location, and may help answer the
question “where does the scene take place?”.

1See NLTK toolbox [Bird et al., 2009] for the exhaustive list of stop words.
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3.5.5 Results on HDP

For the HDP model, we compare our G-OEM method to the Bayesian VarGibbs
[Wang and Blei, 2012] method. We set the initial number of topics to T = 2. We
present in Figure 10 results obtained with G-OEM and VarGibbs applied to both
LDA and HDP. Results with error bars are presented in Appendix 3.C. For both
LDA and HDP, G-OEM outperforms the Bayesian method VarGibbs.
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Figure 10: Perplexity through iterations on different test sets with G-OEM and
VarGibbs applied to both LDA and HDP. Best seen in color.

3.6 gibbs/variational online em analysis

In this section we evaluate the proposed methods G-OEM and V-OEM with different
settings in terms of step-sizes, averaging outputs and boosting internal updates.

3.6.1 Effect of inference boosting on G-OEM and V-OEM

The effect of the inference boost as described in Section 3.2.3 on G-OEM and V-OEM
with synthetic and IMDB datasets is presented in Figure 11 and in Figure 12. It
leads to a minor improvement for G-OEM++ and a significant one for V-OEM++.
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Figure 11: G-OEM. Perplexity on different test sets as a function of the number
of topics K for regular EM and boosted EM (++). We observe that for
almost all datasets, there is no significant improvement when boosting
the inference. Our interpretation is that each Gibbs sample is noisy
and does not provide a stable boost. Best seen in color.
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(b) IMDB dataset.
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Figure 12: V-OEM. Perplexity on different test sets as a function of the number of
topics K for regular EM and boosted EM (++). We observe that boost-
ing inference improves significantly the results on all the datasets ex-
cepted on Wikipedia where V-OEM and V-OEM++ have similar perfor-
mances. The variational estimation of the posterior is finer and finer
through iterations. When updating the parameters at each iteration
of the posterior estimation, the inference is indeed boosted. Best seen
in color.

3.6.2 Step-sizes and averaging

We apply G-OEM with different stepsizes ρi =
1
iκ . Note that because we average

sufficient statistics, there is no needed proportionality constants. We first com-
pare the performance of the last iterate ηN (without averaging) and the average
of the iterates η̄N = 1

N ∑N
i=0 ηi (with averaging) for different values of κ.
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Results are presented in Figure 13 on the synthetic data and in Figure 16 on
the IMDB dataset. For κ ∈

[
0, 1

2

[
, averaging improves the performance while for

κ ∈
]

1
2 , 1
]
, averaging deteriorates the performance. For κ = 1

2 , averaging is only
slightly beneficial on IMDB dataset. For constant stepsizes κ = 0 the averaging
improves significantly the performance, as the iterates do not converge and tend
to oscillate around a local optimum [Bach and Moulines, 2013]. We can expect
the same effect for κ ∈

[
0, 1

2

[
as the function n 7→ 1

nκ deacreases slowly for such

values of κ. For κ ∈
]

1
2 , 1
]
, the stochastic gradient ascent scheme is guaranteed to

converge to a local optimum [Bottou, 1998]. The averaging then deteriorates the
performance as it incorporates the first iterates, which gets the last iterate away
from local optimum. However, the stepsize 1/i (κ = 1) is not competitive. The
performance with κ = 0.75 is only slightly better on IMDB dataset. The setting
κ = 1

2 represents a good balance between first and last iterates. For this step-
size, performances with or without averaging are similar but results without
averaging seem to be more stable, hence our choice for all our other simulations.

We also apply OLDA with different step-sizes ρt = τ/tκ for different values of
τ, κ. Results are presented in Figure 14 without error bars and in Figure 15 with
error bars. For OLDA, results are very similar for any step-size.
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Figure 13: Dataset: synthetic. Perplexity on different test sets as a function of
the exponent κ—the corresponding stepsize is ρi =

1
iκ —for G-OEM with

averaging (left) and without averaging (right). The number of topics
inferred K goes from 5 (the lightest) to 20 (the darkest). Best seen in
color.
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Figure 14: Evolution of perplexity on different test sets as a function of the num-
ber of documents analyzed. For OLDA, we compare the performance
with different step-sizes ρt = τ/tκ for different values of τ, κ. Solid
line: κ = 1/2; Dashed line: κ = 1.
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Figure 15: Evolution of perplexity on different test sets as a function of the num-
ber of documents analyzed, with error bars. For OLDA, we compare the
performance with different step-sizes ρt = τ/tκ for different values of
τ, κ. Solid line: κ = 1/2; Dashed line: κ = 1.

70



0.0 0.25 0.5 0.75 1.0
κ

655

660

665

670

675

680

685

690

lo
g 

pe
rp

le
xi

ty

K=8

K=16

K=32

K=64

K=128

(a) With averaging

0.0 0.25 0.5 0.75 1.0
κ

655

660

665

670

675

680

685

690

lo
g 

pe
rp

le
xi

ty

K=8

K=16

K=32

K=64

K=128

(b) Without averaging

Figure 16: Dataset: IMDB. Perplexity on different test sets as a function of the
exponent κ—the corresponding stepsize is ρi = 1

iκ —for G-OEM with
averaging (left) and without averaging (right). The number of topics
inferred K goes from 8 (the lightest) to 128 (the darkest). Best seen in
color.

3.7 evolution of the elbo

Figure 17 presents the evolution of the ELBO for online LDA (OLDA) and SVB
on different test sets. We compute the ELBO on test documents as described
by Hoffman et al. [2010]. This plot helps us to observe that even if the ELBO
reaches a local maximum (i.e., it stabilizes), the quality of the model in terms
of perplexity is not controllable. We can also see in Figure 17 that the ELBO is
much better optimized with K = 128 than with other values of K for both SVB
and OLDA, that is, as expected, latent variables of higher dimensionality lead to
better fits for the cost function which is optimized. However, for several datasets
the performance in terms of perplexity is better with low values of K (K = 8 or
K = 16) than with high dimensional variables (K = 64 or K = 128).

Table 8: Comparison of log-perplexity levels reached with OLDA and SVB on
IMDB dataset.

P = 200, 4 passes P = 20, 1 pass
OLDA 682.6±3.7 681.9±3.9
SVB 683.8±3.8 684.5±3.8
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Figure 17: Evidence Lower BOund (ELBO) computed on different test sets. Top:
ELBO through iterations, with 4 passes over each dataset and 200

internal iterations. Bottom: ELBO as a function of the number of
topics K, with 20 internal iterations and 1 pass over each dataset. Best
seen in color.

In order to check if more internal iterations could help variational Bayesian
methods, we present in Table 8 the values of perplexity reached by OLDA when
running 4 passes over each dataset with P = 200 internal iterations 1 pass over
each dataset with P = 20 internal iterations. We observe that the ELBO con-
verges quickly to a local optimum and doing ten times more internal iterations
does not change significantly the final performance.

3.8 updates in α

In this section we compare the different types of updates for α. Figure 18

presents results obtained on synthetic dataset for fixed point iteration algorithm
[Minka, 2000] and by putting a gamma prior on α [Sato et al., 2010]. We observe
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that the fixed point method leads to better performance for G-OEM and G-OEM++.
For V-OEM, the gamma updates better perform for κ = 1

2 . The performances of
the gamma updates and the fixed point method are very similar for V-OEM++.
Note that the algorithm V-OEM++ with κ = 1 and gamma updates on α is exactly
equivalent to SPLDA [Sato et al., 2010]. The performance of this method can be
improved by setting κ = 1

2 with any update on α.
We also observe that fixing α to αtrue that generated the data does not neces-

sarily lead to better performance.
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Figure 18: Dataset: Synthetic, K = 10. Perplexity on different test sets for dif-
ferent types of updates for α; for boosted methods, we use the same
inference for α for local and global updates. NO: α is fixed and set to
αtrue that generated the data; FP: fixed point iteration; Gam: gamma
prior on α [Sato et al., 2010]. Best seen in color.

3.9 conclusion

We have developed an online inference scheme to handle intractable conditional
distributions of latent variables, with a proper use of local Gibbs sampling within
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online EM, that leads to significant improvements over variational methods and
Bayesian estimation procedures. Note that all methods for the same problem are
similar (in fact a few characters of code away from each other); ours is based on a
proper stochastic approximation maximum likelihood framework and is empiri-
cally the most robust. It would be interesting to explore distributed large-scale
settings [Broderick et al., 2013, Yan et al., 2009, Gao et al., 2016] and potentially
larger (e.g., constant) step-sizes that have proved efficient in supervised learn-
ing [Bach and Moulines, 2013].
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A P P E N D I X

3.a performance with different K, with error bars

The performance of the presented methods for different values of K on the dif-
ferent datasets is presented in Figure 19. We plot the median from the 11 exper-
iments as a line—solid or dashed—and a shaded region between the third and
the seventh decile.

3.b performance through iterations , with error bars

The performance through iterations of the presented methods on the different
datasets is presented in Figure 20. We plot the median from the 11 experiments
as a line—solid or dashed—and a shaded region between the third and the
seventh decile.

3.c results on hdp, with error bars

The performance through iterations of the G-OEM and VarGibss applied to both
LDA and HDP is presented in Figure 21. We plot the median from the 11 exper-
iments as a line—solid or dashed—and a shaded region between the third and
the seventh decile.
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Figure 19: Perplexity on different test sets as a function of K, the number of
topics inferred. Same as Figure 6, but with error bars. Best seen in
colors.
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Figure 20: Perplexity through iterations on different test sets with the presented
methods. Same as Figure 9, but with error bars. Best seen in colors.
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Figure 21: Perplexity through iterations on different test sets with G-OEM and
VarGibbs applied to both LDA and HDP. Best seen in color.
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4
D O C U M E N T S U M M A R I Z AT I O N W I T H D E T E R M I N A N TA L
P O I N T P R O C E S S E S ( D P P )

Determinantal point processes (DPPs) show lots of promises for modelling diver-
sity in combinatorial problems, e.g., in recommender systems or text processing
[Kulesza and Taskar, 2011, Gillenwater et al., 2012a, 2014], with algorithms for
sampling [Kang, 2013, Affandi et al., 2013, Li et al., 2016a,b] and likelihood com-
putations based on linear algebra [Mariet and Sra, 2015, Gartrell et al., 2016,
Kulesza and Taskar, 2012].

While most of these algorithms have polynomial-time complexity, determi-
nantal point processes are too slow in practice for large numbers N of items to
choose a subset from. Simplest algorithms have cubic running-time complexity
and do not scale well to more than N = 1000. Some progress has been made
recently to reach quadratic or linear time complexity in N when imposing low-
rank constraints, for both learning and inference [Mariet and Sra, 2016, Gartrell
et al., 2016].

This is not enough, in particular for applications in continuous DPPs where
the base set is infinite, and for modelling documents as a subset of all possible
sentences: the number of sentences, even taken with a bag-of-word assumption,
scales exponentially with the vocabulary size. Our goal in this chapter is to
design a class of DPPs which can be manipulated (for inference and parameter
learning) in potentially sublinear time in the number of items N.

In order to circumvent even linear-time complexity, we consider a novel class
of DPPs which relies on a particular low-rank decomposition of the associated
positive definite matrices. This corresponds to an embedding of the N potential
items in a Euclidean space of dimension V. In order to allow efficient inference
and learning, it turns out that a single operation on this embedding is needed,
namely the computation of a second-order moment matrix, which would take
time (at least) proportional to N if done naively, but may be available in closed
form in several situations. This computational trick makes a striking parallel
with positive definite kernel methods [Scholkopf and Smola, 2001, Shawe-Taylor
and Cristianini, 2004], which use the “kernel trick” to work in very high dimen-
sion at the cost of computations in a smaller dimension.

In this chapter we make the following contributions:

– We propose in Section 4.2 a new class of determinantal point processes
(DPPs) which is based on a particular low-rank factorization of the marginal
kernel. Through the availability of a particular second-moment matrix, the
complexity for inference and learning tasks is polynomial in the rank of the
factorization and thus often sublinear in the total number of items (with
exact likelihood computations).

79



– As shown in Section 4.3, these new DPPs are particularly suited to a sub-
class of continuous DPPs (infinite number of items), such as on [0, 1]m, and
DPPs defined on the V-dimensional hypercube, which has 2V elements.

– We propose in Section 4.4 a model of documents as sampling a DPP of
sentences, and propose a conditional maximum likelihood formulation to
model topic proportions. We present an application to document summa-
rization with a DPP on 2500 items.

This work is under submission at ICML 2017.

4.1 review of determinantal point processes

In this chapter, for simplicity, we consider a very large finite set X , with cardi-
nality |X | = N, following Kulesza and Taskar [2012]. In several places, we will
consider an infinite set (see, e.g., Section 4.2.4) [Affandi et al., 2013, Lavancier
et al., 2015].

A determinantal point process (DPP) on a set X is a probability measure on
2X , the set of all subsets of X . It can either be represented by an L-ensemble
[Borodin and Rains, 2005] L(x, y), for x, y ∈ X or by its marginal kernel K(x, y),
which we refer to as the “K-representation” and the “L-representation”. In this
chapter, K and L will be N × N matrices, with elements K(x, y) and L(x, y) for
x, y ∈ X . Both L and K are potentially large matrices, as they are indexed by
elements of X .

A sample X drawn from a DPP on X is a subset of X , namely X ⊆ X . In the
“K-representation” of a DPP, for any set A ⊂ X , we have:

P(A ⊆ X) = det KA,

where KA is the matrix of size |A| × |A| composed of pairwise evaluations of
K(x, y) for x, y ∈ A. If we denote by “4” the positive semidefinite order on sym-
metric matrices (i.e., A 4 B ⇔ (B− A) is positive semidefinite), the constraint
on K is 0 4 K 4 I so that the DPP is a probability measure.

In the “L-representation”, for any set A ⊂ X , we have

P(X = A) =
det LA

det(I + L)
. (19)

The constraint on L is L < 0.
Given a DPP and its two representations L and K, we can go from L to K as

K = I − (I + L)−1 and vice-versa as L = K(I − K)−1. The L-representation only
exists when K ≺ I, where “≺” denotes the positive definite order of symmetric
matrices (i.e., A ≺ B ⇔ (B− A) is positive definite). We denote by DPP(K, L)
the DPP defined by the matrices (K, L) such that L = K(I − K)−1.

Several tasks can be solved, e.g., marginalization, conditioning, etc., that are ei-
ther easy in the L-representation or in the K-representation. For instance, (condi-
tional) maximum likelihood when observing sets is easier in the L-representation,
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as the likelihood of an observed set A ⊆ X is directly obtained with L through
Eq. (19). Conversely, the expected number of selected items, E[|X|] for a DPP
defined by L, K is easily computed with K as E[|X|] = tr K [Kulesza and Taskar,
2012].

The DPPs model aversion between items. For instance, if X is drawn from a
DPP(K, L), the probability that items i and j are together included in X is

P({i, j} ⊆ X) = KiiKjj − (Kij)
2.

This probability then decreases with similarity Kij between item i and item j.
This key aversion property makes DPPs useful to document summarization (see
Section 4.4) where we want to select sentences that covers the most the document
while avoiding redundancy.

approximate computations . In practice, the key difficulty is to deal with
the cubic complexity in |X | of the main operations — determinant and com-
putations of inverses. In their work, Kulesza and Taskar [2012] propose a low-
rank model for the DPP matrix L, namely L(x, y) = q(x)〈φ(x), φ(y)〉q(y), where
q(x) ∈ R+ corresponds to a “quality” measure of x and φ(x) ∈ Rr, ‖φ(x)‖ = 1
corresponds to the “diversity” feature (or embedding) of x. In matrix notations,
we have L = Diag(q)ΦΦ>Diag(q). In particular, they show that most of the
computations are based on the matrix C = Φ>Diag(q2)Φ ∈ Rr×r. As Φ ∈ RN×r,
they achieve an overall complexity O(Nr2). In their application to document
summarization, they only parameterize and learn the “quality” vector q, fixing
the diversity features Φ, whereas we also parameterize and learn Φ.

More recently, Gartrell et al. [2016] use a low rank factorization of L (L = UU>,
with U ∈ RN×r) and apply accelerated stochastic gradient ascent on the log-
likelihood of observed sets for learning U. They achieve a linear complexity
in N: O(Nr2). Mariet and Sra [2016] propose a Kronecker factorization of
L: L = L1 ⊗ L2 where ⊗ is the Kronecker product, Li ∈ RNi×Ni and N = N1N2.
They use a fixed point method (with the Picard iteration) to maximize the like-
lihood, that consists in alternatively updating L1 and L2 with a computational
complexity O(N3/2) if N1 ≈ N2 ≈

√
N.

However, when the set X is very large (e.g., exponential) or infinite, even
linear operations in N = |X | are intractable. In the next sections, we provide
a representation of the matrices L and K together with an optimization scheme
that makes the optimization of the likelihood tractable even when the set X is
too large to perform linear operations in N = |X |.

4.2 a tractable family of kernels

We consider the family of matrices decomposed as a sum of the identity matrix
plus a specific low-rank term, where the column-space of the low-rank term is
fixed. We show that if K is in the family (with its additional constraint that
K ≺ I), so is L, and vice-versa.
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4.2.1 Low-rank family

We consider a feature map φ : X → RV , a probability mass function p : X → R+,
a scalar σ ∈ R+ and a symmetric matrix B ∈ RV×V . The kernel K(x, y) is
constrained to be of the form:

K(x, y) = σ1x=y + p(x)1/2φ(x)>Bφ(y)p(y)1/2. (20)

In matrix notation, this corresponds to

K = σI + Diag(p)1/2ΦBΦ>Diag(p)1/2,

with Φ ∈ R|X |×V and B ∈ RV×V . With additional constraints detailed below,
this defines a valid DPP, for which the L-representation can be easily derived in
the form

L(x, y) = α1x=y + p(x)1/2φ(x)>Aφ(y)p(y)1/2, (21)

with α ∈ R+ and A ∈ RV×V . The following proposition is a direct consequence
of the Woodbury matrix identity:

Proposition 1 The kernel K defined in Eq. (20) is a valid DPP if
(a) σ ∈ [0, 1],
(b) 0 4 B 4 (1− σ)(Φ>Diag(p)Φ)−1.
It corresponds to the matrix L defined in Eq. (21) with σ = α

α+1 and

B =
1

(α + 1)2

[
A−1 +

1
α + 1

Φ>Diag(p)Φ
]−1.

Moreover, we may use the matrix determinant lemma to obtain

det(L + I) = det[(α + 1)I]det[A]

×det
(

A−1 +
1

α + 1
Φ>Diag(p)Φ

)
,

which is expressed through the determinant of a V×V matrix (instead of N × N).
We may also go from L to K as α = σ

1−σ and

A =
1

(1− σ)2

[
B−1 − 1

1− σ
Φ>Diag(p)Φ

]−1.

4.2.2 Tractability

From the identities above, we see that a sufficient condition for being able to
perform the computation of L and its determinant is the availability of the matrix

Σ = Φ>Diag(p)Φ = ∑
x∈X

p(x)φ(x)φ(x)> ∈ RV×V .

In the general case, computing such an expectation would be (at least) linear
time in N, but throughout this chapter, we assume this is available in polynomial
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time in V (and not in N). As shown in Section 4.3, many standard distributions
satisfy this property.

Note that this resembles the kernel trick, as we are able to work implicitly in
a Euclidean space of dimension N while paying a cost proportional to V. In
our document modelling example, we will have N = 2V , and hence we achieve
sublinear time.

We can compute other statistics of the DPP when K, L belong to the presented
family of matrices. For instance, the expected size of a set X drawn from the
DPP represented by K, L is:

E[|X|] = tr K = σ|X |+ tr (BΣ) . (22)

Given φ(x), the parameters are the distribution p(x) on X , A ∈ RV×V and
α ∈ R+. If X is very large, it is hard to learn p(x) from observations and p(x) is
thus assumed fixed. We also have to assume that α is proportional to 1/|X | or
zero when X is infinite as the first term of E[|X|] in Eq. (22), α

α+1 |X |, must be
finite.

4.2.3 Additional low-rank approximation

If V is large, we use a low-rank representation for A:

A = γI + U Diag(θ)U>, (23)

with γ ∈ R+, θ ∈ Rr
+ and U ∈ RV×r. All the exact operations on L are then

linear in V, i.e., as O(Vr2). See details in Appendix 4.D. Moreover, the parameter
θ can either be global or different for each observation, which gives flexibility to
the model in the case where observations come from different but related DPPs
on X . For instance, in a corpus of documents, the distance between words
(conveyed by U) may be different from one document to another (e.g., field and
goal may be close in a sport context, not necessary in other contexts). This can be
modelled through θ as topic proportions of a given document (see Section 4.4).

Note that the additional low-rank assumption (23) corresponds to an em-
bedding x ∈ X 7→ U>φ(x) ∈ Rr, where φ(x) is fixed and U is learned. When
V � N, the gain in complexity compared to O(Nr2) [Gartrell et al., 2016] or
O(N3/2) [Mariet and Sra, 2016] is significant. For instance, if we consider the
ground set X = {0, 1}V , we have V = log2(N). The operations on L with our
formulation are then sublinear in N = 2V , i.e., as O

(
log2(N)r2). This complex-

ity allows us to treat much larger problems
(
i.e., V � 20 for X = {0, 1}V) that

are intractable with previously achieved complexities.

4.2.4 Infinite X

Although we avoid dealing rigorously with continuous-state DPPs in this work
[Affandi et al., 2013, 2014, Bardenet and Titsias, 2015], we note that when dealing
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with exponentially large finite sets X or infinite sets, we need to set σ = α = 0
to avoid infinite (or too large) expectations for the numbers of sampled elements
(which we use in experiments for N = 2V).

Note moreover, that in this situation, the kernel K is formulated as

K(x, y) = p(x)1/2p(y)1/2φ(x)>Bφ(y),

the rank of the matrix K is thus at most V, which implies that the number of
sampled elements has to be less than V. This is not an issue in our experiments
as V corresponds to the vocabulary size and we do not encounter documents
with more than V sentences.

We can sample from the very large DPP as soon as we can sample from a
distribution on X with density proportional to p(x)φ(x)>Aφ(x). Indeed, one
can sample from a DPP by first selecting the eigenvectors of L, each with proba-
bility λi/(λi + 1)—where the λi’s are the eigenvalues of L—and then projecting
the canonical basis vectors—one per item—on this subset of eigenvectors. The
density for selecting the first item is proportional to the squared norm of the
latter projection (see Algorithm 1 of Kulesza and Taskar [2012] for more details).
Given our fomula for L, all the required densities can be expressed as being pro-
portional to p(x)φ(x)>Aφ(x). In our simulations, we use instead a discretized
scheme.

4.2.5 Learning parameters with maximum likelihood

In this section, we present how to learn the parameters of the model, correspond-
ing to the matrix A.

We have access to the likelihood through observations. We denote the ob-
servations by X1, . . . , XM, with Xi ⊆ X , drawn from a density µ(X). Each set
Xi is a set of elements Xi = {xi

1, . . . , xi
|Xi|
}, with xi

j ∈ X . We denote by `(X|L)
the log-likelihood of a set X given a DPP matrix L. Our goal is to maximize
the expected log-likelihood under µ, i.e., Eµ(X)[`(X|L)]. As we only have ac-
cess to µ through observations, we maximize an estimation of Eµ(X)[`(X|L)],
i.e., L(L) = 1

M ∑M
i=1 `(Xi|L). As the log-likelihood of a set X ⊆ X is given by

`(X|L) = log det LX − log det(L + I), our objective function becomes:

L(L) =
1
M

M

∑
i=1

(
log det LXi − log det(I + L)

)
. (24)

In the following, we assume p fixed and we only learn A in its form (23).
In practice we minimize a penalized objective, that is, for our parameterization

of A in Eq. (23),
F(L) = −L(L) + λR(U, θ),

where L is the log-likelihood of a train set of observations [Eq. (24)] and R is a
penalty function. We choose the penalty R(U, θ) = ‖θ‖1 + ‖U‖2

1,2 where ‖.‖1 is
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the `1 norm and ‖U‖1,2 = ∑r
i=1 ‖ui‖2, where ‖.‖2 is the `2 norm and ui is the i-th

column of U. The group sparsity norm ‖.‖2
1,2 allows to set columns of U to zero

and thus learn the number of columns.
This is a non non-convex problem made non smooth by the group norm. Fol-

lowing Lewis and Overton [2013], we use BFGS to reach a local optimum of our
objective function.

4.3 examples

In this section, we review our three main motivating examples: (a) orthonormal
basis based expansions applicable to continuous space DPPs; (b) standard or-
thonomal embedding with X = {1, . . . , N} and (c) exponential set X = {0, 1}V

for applications to document modelling based on sentences in Section 4.4.

4.3.1 Orthonormal basis based expansions

We consider a fixed probability distribution p(x) on X and an orthonormal basis
of the Euclidean space of square integrable (with respect to p) functions on X .
We consider φ(x)i as the value at x of the i-th basis function. Note that this
extends to any X , even not finite by going to Hilbert spaces.

We consider A = Diag(a) and B = Diag(b) two diagonal matrices in RV×V .
Since φ(x) is an orthonormal basis, we have:

Σ = ∑
x∈X

p(x)φ(x)φ(x)> = I,

with a similar result for any subsampling of φ(x) (that is keeping a subset of the
basis vectors).

For example, for X = [0, 1], p(x) the uniform distribution, α = 0 and φ(x) the
cosine/sine basis, we obtain the matrix L(x, y) = φ(x)>Diag(a)φ(y) which is a
1-periodic function of x− y, and we can thus model any of these functions. This
extends to X = [0, 1]m by tensor products, and hyperspheres by using spherical
harmonics [Atkinson and Han, 2012].

truncated fourier basis . In practice, we consider the truncated Fourier
orthonormal basis of RV with V = 2d + 1, i.e., φ1(x) = 1, φ2i(x) =

√
2 cos(2πix)

and φ2i+1 =
√

2 sin(2πix), for i ∈ {1, . . . , d} and x ∈ X . If A = Diag(a) is diag-
onal, then L(x, y) = φ(x)>Diag(a)φ(y) is a 1-periodic function of x − y, with
only the first d frequencies, which allows us to learn covariance functions which
are invariant by translation in the cube. We could also use the K-representation
K(x, y) = φ(x)>Bφ(y), with B = Diag(b) diagonal in [0, 1], but the log-likelihood
maximization is easier in the L-representation.

We use this truncated basis to optimize the log-likelihood L(L) on finite ob-
servations [Eq. (24)] , i.e., Xi ⊆ X and |Xi| < ∞. In particular, the normaliza-
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tion constant is computed efficiently with this representation of L as we have
det(L + I) = ∏V

i=1(ai + 1).

non-parametric estimation of the stationary covariance func-
tion. We may learn any 1-periodic function of x− y for L(x, y) or K(x, y) and
we do so by choosing the truncated Fourier basis of size V, we could also use
positive definite kernel techniques to perform non-parametric estimation.

running time complexity. For general continuous ground set X = [0, 1]m,
with m ≥ 1, the running time complexity is still controlled by V = (2d + 1)m, d
corresponding to the number of selected frequencies in each dimension of the
Fourier basis (with a ∈ RV). The value of d may be adjusted to fit the complexity
in O(Vκ3) or O(dmκ3), where κ is the size of the biggest observation (i.e., the
largest cardinality of all observed sets).

4.3.2 Standard orthonormal embeddings

In this section, we consider DPPs on the set X = {1, . . . , V} (i.e., N = V). We
choose the standard orthonormal embedding, that is Φ = I which gives the ex-
pression L = αI + U Diag(θ)U>, taking γ = 0 in Eq. (23). For this particular
model, the complete embedding ΦU = U is learned and the distribution p(x)
is included in U. This is only possible when V is small. This model is suited
to item selection, where groups of items are observed (e.g., shopping baskets)
and we want to learn underlying embeddings of these items (through param-
eter U). Again, the size of the catalog V may be very large. Note that unlike
existing methods leveraging low-rank representations of DPPs [Mariet and Sra,
2016, Gartrell et al., 2016], the parameter θ in our representation can be different
for each observation, which makes our model more flexible.

4.3.3 X = {0, 1}V

In this section, we consider DPPs on the set X = {0, 1}V . For large values of
V, direct operations on matrices L, K may be impossible as X is exponential,
|X | = 2V . In particular, we consider the model where φ(x) = x, i.e., Φ ∈ R2V×V

(in other words we simply embed {0, 1}V in RV).
As mentioned above, the tractability of the DPP(L, K) on X = {0, 1}V depends

on the expectation Σ = ∑x∈X p(x)xx>. For particular distributions p(x), Σ can
be computed in closed form. For instance, if p(x) corresponds to V indepen-
dent Bernouillis, i.e., p(x) = ∏V

i=1 π
xi
i (1− πi)

1−xi , the expectation quantity is
Σ = Diag(π(1− π)) + ππ>. If the independent Bernoullis are exchangeable,
i.e., all π’s are equal, we have Σ = π(1− π)I + π211>. Note that we can use the
real numbers πi as prior information, for instance by setting them to empirical
frequencies of each word.

86



The tractability of our model is extended to the case X = NV with Poisson

variables. Indeed, if p(x) = ∏V
i=1

e−λi λ
xi
i

xi!
for x ∈ NV , the expectation of xx> over

X is Σ = Diag(λ) + λλ>.
Note that the tractability of the model is not restricted to these two examples

of p(x) (Bernouilli and Poisson) and can be easily extended to other distributions
p(x) (e.g., Gaussian) combined with other features φ(x). The distribution p(x)
corresponds to a prior knowledge on the considered items.

Given these examples, we assume in the following that:

Σ = ∑
x∈X

p(x)xx> = Diag(ν) + µµ>.

The complexity of operations on the matrix L with this structure is O(Vr2)—
instead of O(2Vr2) if working directly with L; see Appendix 4.D for details. If
we use the factorization of Σ above:

tr K =
α

α + 1
2V +

1
(α + 1)2 tr

[(
Diag(ν) + µµ>

)
×
( 1

α + 1
(Diag(ν) + µµ>) + A−1

)−1
]

.

This identity suggests that we replace α by α2−V in order to select a finite set
X ⊆ X . For large values of V, α = 0 is the key choice to avoid infinite number
of selected items.

4.4 dpp for document summarization

We apply our DPP model to document summarization. Each document X is
represented by its sentences, X = (x1, . . . , x|X|) with xi ∈ X = {0, 1}V . The
variable V represents the size of the vocabulary, i.e., the number of possible
words. A sentence is then represented by the set of words it contains, ignoring
their exact count and the order of the words. We want to extract the summary of
each document as a subset of observed sentences. We use the structure described
in Section 4.2.1 to build a generative model of documents. Let K ∈ R2V×2V

be
the marginal kernel of a DPP on the possible sentences X . We consider that the
summary Y ⊆ X of document X is generated from the DPP(K, L) as follows:

1. Draw sentences X = (x1, . . . , x|X|) from DPP represented by L,

2. Draw summary Y ⊆ X from DPP represented by LX.

In practice, we observe a set of documents and we want to infer the word em-
beddings U and the topic proportions θ for each document. In the following
we consider that α and γ are fixed. We also denote by L(U, θ) ≡ L(L) the
log-likelihood of observations [Eq. (24)] for simplicity as our DPP matrix L is
encoded by U and θ.
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(a) DPP. (b) I.i.d.

Figure 22: Comparison of points drawn from a DPP (left) independently from
uniform distribution (right).

The intuition behind this generative model is that the sentences of a document
cover a particular topic (the topic proportions are conveyed by the variable θ)
and it is very unlikely to find sentences that have the same meaning in the same
document. In this sense, we want to model aversion between sentences of a
document.

parameter learning . As explained in Section 4.3.3, we assume that Σ
is available in closed form, with Σ = Diag(ν) + µµ>. The log-likelihood of an
observed document X is `(X|L) = log det LX − log det(L + I). The computation
of the second term, log det(L + I), is untractable to compute in reasonable time
for any L when V ≥ 20, since L ∈ R2V×2V

. We can still compute this value
exactly for structured L coming from our model with complexity O(Vr2) (see
Appendix 4.D for details).

We infer the parameters U and θ by optimizing our regularized objective func-
tion F(U, θ) = −L(U, θ) + λR(U, θ) with respect to U and θ alternatively. In
practice, we perform 100 iterations of L-BFGS for the function U 7→ F(U, θ) and
100 iterations of L-BFGS for each function θi 7→ F(U, θ), for i = 1, . . . , M. The op-
timization in U can also be done with stochastic gradient descent (SGD) [Bottou,
1998], using a mini-batch Dt of observations at iteration t: U ← U − ρtGt(U),
with Gt(U) the unbiased gradient:

Gt(U) = − 1
|Dt| ∑

i∈Dt

∇U`(Xi|L(U, θi)) + λ∇UR(U, θ).
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Figure 24: Performance for ground set X = {1, . . . , V} as a function of r.
(a,b) Same θ for all the observations; (c) A different θ for each ob-
servation.

4.5 experiments

4.5.1 Datasets

We run experiments on synthetic datasets generated from the different types
of DPPs described above. For all the datasets, we generate the observations
using the sampling method described by Kulesza and Taskar [2012] (Algorithm 1

page 16) and perform the evaluation for 10 different datasets. This method draws
exact samples from a DPP matrix L and its eigendecomposition (which requires
N to be less than 1000). For the evaluation figures, the mean and the variance
over the 10 datasets are respectively displayed as a line and a shaded area around
the mean.

continuous set [0, 1]m . We describe in Section 4.3.1 a method to learn from
subsets drawn from a DPP on a continuous set X . As sampling from continuous
DPPs is not straightforward and approximate [Affandi et al., 2013], we consider
a discretization of the set [0, 1]2 into the discrete set {0, 1/N, . . . , (N − 1)/N}2.
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Figure 25: Performance for ground set X = {0, 1}V as a function of r with a
different θ for each observation.

Note that this discretization only affects the sampling scheme. We generate a
dataset from the ground set X = {0, 1/N, . . . , (N − 1)/N}2 with the DPP rep-
resented by L(x, y) = φ(x)>Diag(a)φ(y) , with embedding φ(x) ∈ RN2

the dis-
crete Fourier basis of (RN)2, i.e., for (i, j) ∈ {1, . . . , N}2, φ(x)i,j = ψ(x1)iψ(x2)j

with functions ψ(z)1 = 1, ψ(z)2k =
√

2 cos(2πkz) and ψ(z)2k+1 =
√

2 sin(2πkz),
for k = 1, . . . , (N − 1)/2. With notations of Section 4.3.1 we have V = N2.
For (i, j) ∈ {0, . . . , N − 1}2, we set a(i,j) = CiCj ãi ãj, with C0 = 1, ã0 = 1 and
Ci = 1/

√
2, ãi = 1/iβ for i ≥ 1. We choose N = 33 (i.e., V = N2 = 1069) and

β = 2 for the experiments. We present in Figure 22 two samples: a sample
drawn from the DPP described above and a set of points that are i.i.d. sam-
ples from the uniform distribution on X . We observe aversion between points
of the DPP sample that are distributed more uniformly than points of the i.i.d.
samples.

items set. We generate observations from the ground set X = {1, . . . , V},
which corresponds to the matrix L = αI + U Diag(θ)U>. For these observations,
we set V = 100, r = 5, α = 10−5. For each dataset, we generate U and θ randomly
with different seeds accross the datasets.

exponential set. We generate observations from the set X = {0, 1}V with
φ(x) = x. In this case, we set V = 10, r = 2, α = 10−5, γ = 1/V. As we need
the eigendecomposition of L ∈ R2V×2V

for sampling, we could not generate
exact samples with higher orders of magnitude for V. However, we can still
optimize the likelihood for ground sets with large values of V and we run exper-
iments on real document datasets, where the size of the vocabulary is V = 500
(i.e., |X | = 2500 ≈ 10150).

For both ground sets X = {1, . . . V} and X = {0, 1}N, we consider two types
of datasets: one dataset where all the observations are generated with the same
DPP matrix L and another dataset where observations are generated with a
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Table 9: Examples of reviews with extracted summaries (of size l = 5 sentences)
colored in blue.

Review 1
Ate here once each for dinner and Sunday brunch. [Dinner was great.] [We
got a good booth seat and had some tasty food.] I ordered just an entree since
I wasn’t too hungry. The guys ordered appetizers and salad and I couldn’t
resist trying some. The risotto with rabbit meatballs was so good. [Corn
soup, good.] [And my duck breast, also good.] I was happy. [The sides were
good too.] Potatoes and asparagus. Came back for Mother’s Day brunch. Â
Excellent booth table at the window, so we could watch our valeted car. Pretty
good service. Good food. No complaints.
Review 2
This will be my 19 month old’s first bar. :D I came here with a good friend
and my little guy. We shared the double pork chop and the Mac n Cheese.
[The double pork chop was delicious.....] [Huge portions and beautifully
prepared vegetables.] [What a wonderful selection of butternut squash,
spinach, cauliflower and mashed potato.] We were very impressed with the
chop, meat was tender and full of flavor. [The mac n cheese, was okay.] I
would definitely go back for the pork chop... might want to try the fried
mushrooms too. [Place surprisingly was pretty kid friendly.] The bathroom
actually had a bench I could change my little guy!

different matrix L(θi) for each observation. For the second type of dataset, the
embedding U is common to all the observations while the variable θi differs
from one observation to another.

real dataset. We consider a dataset of 100,000 restaurant reviews and min-
imize the objective function F(U, θ) mentioned above. We first remove the stop-
words using the NLTK toolbox [Bird et al., 2009]. Among the remaining words,
we only keep the V = 500 most frequent words of the dataset. After filtering, the
average number of sentences per review is 10.5 and each sentence contains on
average 4.5 words. We use the proposed DPP structure to (1) learn word embed-
ding U from observations and (2) extract a summary for each review using the
model of Section 4.4. Given a document X, the inferred parameters U and θ(X)
and the corresponding DPP matrix L, we extract the l sentences summarizing
the document X by solving the following maximization:

Y∗ ∈ arg max
Y⊆X, |Y|=l

det(LY)

det(LX + I)
.

In practice we use the greedy MAP algorithm [Gillenwater et al., 2012b] to
extract the summary Ŷ of document X, as an approximation of the MAP Y∗
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with the usual submodular maximization approximation guarantee [Krause and
Golovin, 2012].

4.5.2 Evaluation

We evaluate our optimization scheme with two metrics. First, we compare the
log-likelihood on the test set obtained with the inferred model L to the test log-
likelihood with the model that generated the data L∗. We use this metric when
the data is generated with a single set of parameters over the dataset (i.e., the
same DPP matrix L is used to generate all the observations) as in such case the
difference of test log-likelihood between two models (L∗ − L) is an estimation
of the Kullback-Leibler divergence between the two models.

We also consider a distance between the inferred embedding U and the em-
bedding that generated the data U∗. As the performance is invariant to any
permutation of column in the matrix U (together with indices of θ) and to a scal-
ing factor — both (U, θ) and ( 1√

γU, γθ) correspond to the same DPP matrix L
— we consider the following distance that compares the linear space produced
with U ∈ RV×r and U∗ ∈ RV×r∗ :

D(U, U∗) = ‖U(U>U)−1U>U∗ −U∗‖F/‖U∗‖F,

where ‖.‖F is the Frobenius norm. This distance is invariant to scaling and
rotation and is equal to zero when U and U∗ span the same space in RV . In par-
ticular, if we generate randomly the r columns of Z ∈ RV×r, the expectation of
the distance to U∗ is EZ[D(Z, U∗)] = 1− r

V . We display this quantity as “chance”
in the following. As the number of columns in U ∈ RV×r and U ∈ RV×r∗ is dif-
ferent, we can not use losses similar to what is used in independent component
analysis [Hyvärinen et al., 2004]. The distance D(U, U∗) seems appropriate here
as it measures if we recover the correct subspace for a sufficiently small rank and
allows us to compare matrices of different shapes.

continuous set [0, 1]2 . We compare our inference method to the best diag-
onal DPP Lη∗ = η∗ I, where η∗ ∈ R maximizes the log-likelihood.

items set, X = {1, . . . , V}. We compare our inference method to the Picard
iteration on full matrices proposed by Mariet and Sra [2015]. As they only con-
sider the scenario where all the observations are drawn from the same DPP, we
only compare to our method in that case.

4.5.3 Synthetic datasets

continuous set [0, 1]2 . We present the difference in log-likelihood between
the inferred model and the model that generates the data as a function of the
iterations in Figure 23. The comparison between the resulting kernel and the
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kernel that generates the data is presented in Appendix 4.A. We observe that
our model performs significantly better than the η∗ I kernel and converges to the
the true log-likelihood.

items set & exponential set. We present the difference in log-likelihood
and the distance of embeddings U between the inferred model and the model
that generates the data as a function of the rank r of the representation in
Figure 24 for the ground set X = {1, . . . , V} and in Figure 25 for the ground
set X = {0, 1}V . For set X = {0, 1}V , results for observations generated from
the same DPP (i.e., with a single θ for the whole dataset) are presented in Ap-
pendix 4.D as we recover the parameter U∗ with the same precision for any reg-
ularization coefficient λ. We observe that the penalization may deteriorate the
performance in terms of log-likelihood but significantly improves the quality of
the recovered parameters. In practice, as our penalization R induces sparsity we
recover sparse θ when r > r∗. For both ground sets, the parameter U∗ that gen-
erated the data is recovered for r∗ < r < V. In matrix factorization, increasing
the size of the factors leads to fewer or no local minima [Haeffele et al., 2014],
which is consistent with the fact that we only recover U∗ for r > r∗.

For the items set X = {1, . . . , V}, while the datasets are generated with r∗ = 5,
we observe the parameter U∗ is only recovered when we optimize with r ≥ 30.
We also observe that our method performs better than the Picard iteration of
Mariet and Sra [2015] in terms of log-likelihood. The Picard iteration updates
the full matrix L and there is no tradeoff between the rank and the closeness of
spanned subspaces, conveyed by D(U, U∗).

For the exponential set X = {0, 1}V , r∗ = 2 and the parameter U∗ is recovered
for r ≥ 6.

4.5.4 Real dataset.

Summaries with l = 5 sentences of two reviews are presented in Table 9. The
corresponding embeddings U are presented in Table 10 and Table 11. We observe
that our method is able to extract sentences that describes the opinion of the user
on the restaurant. In particular, the sentences extracted with our method convey
commitment of the user to aspects (food, service,...) while other sentences of the
reviews only describe the context of the meal.

Columns of U

We present four embeddings (i.e., columns of U ∈ RV×r) out of r = 10 learned
on a restaurant reviews dataset with our DPP structure in Table 10 below. We
display the 20 words with the highest absolute values for each column of U. We
observe that our embeddings extract qualitative words (e.g., good, great, friendly).
Even if the embeddings are not as consistent as topics extracted with topic mod-
els (e.g., LDA), we can distinguish different aspects of restaurants with the em-
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beddings. For instance, words with positive values in embedding 1 are related
to the food (e.g., cream, love, crispy, tomato); words with positive values in embed-
ding 2 are associated to the service aspect (with service, friendly, staff, attentive).
Moreover, they already lead to good summaries.

Table 10: Four embeddings (columns of U) inferred with r = 10 on restaurant
reviews dataset.

Embed. 1 Uw,1
love 0.19

could 0.11

large 0.11

cream 0.1
crispy 0.1
tomato 0.09

meat 0.09

ice 0.08

sauce 0.08

mouth 0.08

...
...

back -0.48

sushi -0.51

place -0.51

pretty -0.53

really -0.58

come -0.64

great -0.73

service -0.79

food -1.08

good -2.08

Embed. 2 Uw,2
service 0.74

friendly 0.36

nice 0.33

good 0.24

pretty 0.24

staff 0.24

price 0.15

experience 0.14

well 0.14

attentive 0.13

...
...

would -0.26

think -0.27

try -0.28

restaurant -0.28

one -0.3
amazing -0.33

like -0.57

get -0.64

love -0.73

place -1.05

Embed. 3 Uw,3
great 0.99

food 0.8
service 0.4
star 0.32

worth 0.26

place 0.26

price 0.25

back 0.21

wait 0.2
definitely 0.18

...
...

also -0.27

tasty -0.28

fresh -0.31

salad -0.32

delicious -0.36

really -0.4
nice -0.43

like -0.44

chicken -0.45

order -0.59

Embed. 4 Uw,4
place 0.75

great 0.41

good 0.35

really 0.28

love 0.21

nice 0.16

service 0.16

atmosphere 0.14

get 0.14

friendly 0.13

...
...

could -0.21

dinner -0.21

menu -0.25

restaurant -0.27

well -0.28

come -0.37

eat -0.38

food -0.39

time -0.4
price -0.4
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Rows of U

From the embeddings U, we can also compute similarity between words using
the rows of U. We use the cosine similarity, i.e., for words v, w ∈ {1, . . . , V}:

Cos(v, w) =
〈Uv, Uw〉
‖Uv‖2‖Uw‖2

,

where Uv ∈ Rr is the vth row of U. We present ten examples of words with
their closest words for cosine similarity in Table 11. We observe that our word
embeddings also capture context from the sentences. For instance, the closest
words to food are mostly adjective applicable to food (e.g., solid, average, decent,
expensive). We observe the same characteristic for the words of the top row in
Table 11. For adjectives of the bottom row in Table 11 (i.e., good, tender, tasty
and dry), the closest words are either synonnyms/antonyms or nouns that may
have the characteristic conveyed by the corresponding adjective. For instance,
among the closest words to tender, the words juicy and flavorful have similar
meaning than tender, hard is an antonym while gnocchi, shrimp, sausage may be
characterized as tender. Finally, the closest words to time are mostly words that
convey temporal meaning (e.g., late, day, open, saturday)

4.6 conclusion

In this chapter, we propose a new class of determinantal point processes that can
be run on a huge number of items because of a specific low-rank decomposition.
This allowed parameter learning for continuous DPPs and new applications such
as document modelling and summarization.

We apply our model on exponential set X = {0, 1}V to model documents, it
would be interesting to apply our inference to the infinite ground set X = NV as
suggested in this chapter. We would also like to study the inference in continous
exponential set X = RV using our decomposition.

While we focused primarily on DPPs to model diversity, it would also be
interesting to consider other approaches based on submodularity [Djolonga and
Krause, 2014, Djolonga et al., 2016] and study the tractability of these models for
exponantially large numbers of items.

We acknowledge support from the CIFAR program in Learning in Machines
& Brains.
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Table 11: Ten examples of cosine similarity between words (i.e., between rows of
U) with r = 10 on restaurant reviews dataset.

food Cos
solid 0.97

delivery 0.91

average 0.9
indian 0.9
decent 0.88

overall 0.86

expensive 0.85

quality 0.83

italian 0.83

sunday 0.82

service Cos
slow 0.93

friendly 0.91

fast 0.9
quick 0.88

delivery 0.87

extremely 0.85

staff 0.83

experience 0.8
average 0.77

good 0.75

decor Cos
unique 1.0
vibe 0.95

warm 0.87

date 0.87

atmosphere0.85

damn 0.82

cool 0.81

beach 0.79

broth 0.76

run 0.73

atmosphereCos
cool 0.94

unique 0.88

view 0.85

wonderful 0.85

decor 0.85

fun 0.82

vibe 0.82

date 0.81

kind 0.79

pancake 0.78

meal Cos
cheap 0.97

drink 0.97

sunday 0.96

though 0.96

sushi 0.94

city 0.93

overall 0.92

visit 0.91

well 0.91

bad 0.91

good Cos
location 0.98

look 0.96

hit 0.93

bad 0.9
ever 0.9
quick 0.87

okay 0.87

pretty 0.86

sure 0.85

city 0.85

tender Cos
juicy 0.96

hard 0.95

flavorful 0.93

light 0.93

gnocchi 0.89

shrimp 0.89

sausage 0.89

real 0.88

water 0.88

main 0.87

tasty Cos
awesome 0.99

fresh 0.97

delicious 0.96

people 0.95

course 0.92

beer 0.92

fill 0.92

fish 0.91

nice 0.9
server 0.9

dry Cos
light 0.93

inside 0.93

ingredient 0.92

salty 0.91

potato 0.9
sausage 0.89

meat 0.89

put 0.88

tender 0.85

kinda 0.85

time Cos
late 0.97

day 0.97

open 0.97

first 0.96

saturday 0.93

far 0.92

visit 0.91

last 0.9
though 0.89

price 0.88
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A P P E N D I X

4.a continuous set [0, 1]2

In this section, we present a comparison between the true marginal kernel (that
generates the data) K∗ and the inferred marginal kernel Kt. More precisely,
X = [0, 1]2 and we compute the induced distance from the center point q = (1

2 , 1
2)

to any point x ∈ X , i.e., K(x, q). We show in Figure 26 a comparison between the
true distance K∗(x, q) and the inferred distance Kt(x, q) after t = 100 iterations.

0 1

0

1

K ∗ (x, q)

0.000

0.004

0.008

0.012

0.016

0.020

0.024

0.028

0.032

0 1

0

1

Kt(x, q)

0.000

0.004

0.008

0.012

0.016

0.020

0.024

0.028

0.032

Figure 26: Comparison of K∗ and Kt.

4.b picard iteration

We apply the Picard iteration of Mariet and Sra [2015] on the synthetic “items”
datasets (i.e., observations are generated from L = αI + U Diag(θ)U>) with N =
100 items. We present the evolution of the objective function through the iter-
ations with the Picard iteration in Figure 27. We observe a similar evolution
than presented in the original paper [Mariet and Sra, 2015]. This however led in
Figure 24 to a lower likelihood than L-BFGS on U.

4.c exponential set X = {0, 1}V

We present the difference in log-likelihood and the distance if embeddings U
between the inferred model and the model that generates data as a function of
the rank r of the representation in Figure 28.
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Figure 27: Picard iteration [Mariet and Sra, 2015]. Evolution of the objective
function (train log-likelihood) as a function of the iterations.
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Figure 28: Performance for ground set X = {0, 1}V as a function of r. (a,b) Same
θ for all the observations; (c) A different θ for each observation.

4.d summary as a subsample – parameter learning

We assume that ∑x∈X p(x)φ(x)φ(x)> = Diag(ν) + µµ>. The log-likelihood of
an observed document X is expressed as `(X|L) = log det LX − log det(L + I).
The computation of the second term, log det(L + I), is untractable to compute in
reasonable time for any L when V ≥ 20, since L ∈ R2V×2V

. We can still compute
this value for structured L. When L = αI + Diag(p)1/2ΦAΦ>Diag(p)1/2, we
have, using the matrix determinant lemma and Woodbury identity:

det(L + I) = det[(α + 1)I]det A det
(

A−1 +
1

α + 1
Φ>Diag(p)Φ

)
.
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We then have, if ρ = 1
α+1 :

log det
(

A−1 + ρ Diag(ν) + ρµµ>
)
= log

[
1 + ρµ>

(
A−1 + ρ Diag(ν)

)−1
µ

]
+ log det(A−1 + ρ Diag(ν))
(matrix determinant lemma)

= log
[
1 + µ>

(
Diag(1/ν)−Diag(1/ν)(ρA + Diag(1/ν))−1 Diag(1/ν)

)
µ
]

+ log det(A−1 + ρ Diag(ν))
(Woodbury identity).

If we consider A = γI + U Diag(θ)U>, we have:

(ρA + Diag(1/ν))−1 =
[
(ργI + ρU Diag(θ)U> + Diag(1/ν)

]−1

=Diag
(

ν

1 + νργ

)
−Diag

(
ν

1 + νργ

)
U

×
(

Diag(1/ρθ) + U>Diag
(

ν

1 + νργ

)
U
)−1

×UT Diag
(

ν

1 + νργ

)
,

log det(A−1+ρ Diag(ν))

= log det
[

Diag(
1
γ
+ ρν)− 1

γ
U
(

Diag(γ/θ) + U>U
)−1

U>
]

(Woodbury identity on A−1)

= log det
[(

Diag(γ/θ) + U>U
)
− 1

γ
U>Diag

(
γ

1 + νγρ

)
U
]

− log det(Diag(γ/θ) + U>U) + log det(
I
γ
+ ρ Diag(ν))

= log det
[

Diag(γ/θ) + U>Diag
(

νγρ

1 + νγρ

)
U
]

− log det(Diag(γ/θ) + U>U) + log det(
I
γ
+ ρ Diag(ν)),

log det(A) = log det(Diag(1/θ) +
1
γ

U>U) + ∑
k

log θk + V log γ.

In the end, the computation of log det(L + I) only needs matrix products of size
V and inversions of size r.

99



5
C O N C L U S I O N

The ultimate goal of this work is to suggest any user a personalized list of con-
tents with a short readable text attached to each content, where this short text
conveys the opinion the user may form about the corresponding content. We
proposed a line of work towards this goal. In particular, we present new topic
models and new inference schemes for these models to help the users quickly
assess previously unseen contents. Given the work developped in this thesis, the
possible future directions are the following:

• Througout this thesis, we evaluate the performance of the presented meth-
ods with predictive likelihood (e.g., following Wallach et al. [2009] for
LDA). In particular, we only use empirical results—such as topics extracted
with our methods—to illustrate the models when applied to real datasets.
Following a heavy line of work on the evaluation of topic coherence such
as Newman et al. [2010], Mimno et al. [2011], Lau et al. [2014], Röder et al.
[2015], it would be interesting to measure the impact of our methods on
topic coherence. It would also be interesting to include the presented mod-
els in a recommender systems and measure the impact of the model on the
speed of choice and the satisfaction of the user.

• We could study topic models in decentralized networks [Colin and Dupuy,
2016], i.e., networks with limited communication between nodes. In such
networks, it is typically impossible to efficiently centralize data or to glob-
ally aggregate intermediate results: agents can only communicate with
their immediate neighbors, often in a completely asynchronous fashion. It
would be interesting to build an inference scheme for topic models suited
to such networks and investigate empirical differences between topics ex-
tracted in a decentralized settings compared to online inference proposed
in Chapter 3.

• Following Brunel et al. [2017] and Urschel et al. [2017], it would be intereset-
ing to investigate the theoretical convergence guarantees for the maximum
likelihood estimator of DPP as presented in Chapter 4. More specifically,
as we propose a specific low-rank factorization of the marginal kernel, we
would like to look for guarantees on the maximum likelihood estimator for
such low-rank matrices.

• Moreover, we apply the DPP model presented in Chapter 4 to text sum-
marization, where we are able to summarize a single review with readable
sentences. It would be interesting to build a model able to summarize a
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full corpus of documents. This kind of model would be for instance use-
ful in crowd-sourced review services (such as Yelp or IMDB) where we
could automatically suggest the user the most relevant sentences among
all the previous reviews. In particular, it would be interesting to enhance
the DPP model with other information than text only (e.g., the ratings, the
useful score, content class such that genre for movies of type of food for
restaurants) in order to personalize the recommendation and get closer to
the ultimate goal presented at the beginning of this thesis. While we are
able to extract word embeddings with our formulation of DPPs, it would
be interesting to extract other embeddings, for instance on the genres of
movies or the types of products, in order to compute distances between
these genres or types of products.

• We also would like to apply the DPP model of Chapter 4 to computer
vision. More specifically, we would like to tackle the problem of diver-
sity of the outputs proposed by computer vision models. For instance, let
us consider the problem of multi-class segmentation. The goal is to accu-
rately assign a single class to every pixel among K possible classes. While
existing models cast this problem as an optimization problem, there has re-
cently been an interest in extracting diverse quality outputs from the model
[Kirillov et al., 2015, Batra et al., 2012, Dey et al., 2015]. In this problem of
mutli-class segmentation, if you select the M segmentations with the best
values for the objective function, it is very likely that these M outputs only
differ from only few pixels. The motivations for diverse outputs resides in
the fact that computer vision tasks are often addressed by a series of mod-
ules (e.g., layers in a neural network) where each module generates several
hypotheses as input to the next module. A good practice in this structure
is to consider diverse options at each module in order to avoid premature
commitment to a low quality feature that would destroy the quality of the
final output [Viola and Jones, 2001, Felzenszwalb and McAllester, 2007]. In
this context, the DPPs are perfectly suited as a model to generate diverse
outputs. In the particular case of the multi-class segmentation problem,
it would be interesting to learn a distance between the K possible classes
(through class embeddings) from examples of such segmentations and to
have the possibility to sample diverse segmentations. Another computer
vision problem is the estimation of the pose of persons in an image where
it is very unlikely that two persons stands at the same place in a picture.
In this case, the DPP could promote spaced pose estimations with a higher
probability.
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Résumé 
La plupart des systèmes de recommandation actuels se 

base sur des évaluations sous forme de notes (i.e., chiffre 

entre 0 et 5) pour conseiller un contenu (film, 

restaurant...) à un utilisateur. Ce dernier a souvent la 

possibilité de commenter ce contenu sous forme de texte 

en plus de l'évaluer. Il est difficile d'extraire de 

l'information d'un texte brut tandis qu'une simple note 

contient peu d'information sur le contenu et l'utilisateur. 

Dans cette thèse, nous tentons de suggérer à l'utilisateur 

un texte lisible personnalisé pour l'aider à se faire 

rapidement une opinion  à propos d'un contenu. 

 

Plus spécifiquement, nous construisons d'abord un 

modèle thématique prédisant une description de film 

personnalisée à partir de commentaires textuels. Notre 

modèle sépare les thèmes qualitatifs (i.e., véhiculant une 

opinion) des thèmes descriptifs en combinant des 

commentaires textuels et des notes sous forme de 

nombres dans un modèle probabiliste joint. Nous 

évaluons notre modèle sur une base de données IMDB et 

illustrons ses performances à travers la comparaison de 

thèmes. 

 

Nous étudions ensuite l'inférence de paramètres dans des 

modèles à variables latentes à grande échelle, incluant la 

plupart des modèles thématiques. Nous proposons un 

traitement unifié de l'inférence en ligne pour les modèles 

à variables latentes à partir de familles exponentielles 

non-canoniques et faisons explicitement apparaître les 

liens existants entre plusieurs méthodes fréquentistes et 

Bayesiennes proposées auparavant. Nous proposons 

aussi une nouvelle méthode d'inférence pour l'estimation 

fréquentiste des paramètres qui adapte les méthodes 

MCMC à l'inférence en ligne des modèles à variables 

latentes en utilisant proprement un échantillonnage de 

Gibbs local. Pour le modèle thématique d'allocation de 

Dirichlet latente, nous fournissons une vaste série 

d'expériences et de comparaisons avec des travaux 

existants dans laquelle notre nouvelle approche est plus 

performante que les méthodes proposées auparavant.  

 

Enfin, nous proposons une nouvelle classe de processus 

ponctuels déterminantaux (PPD) qui peut être manipulée 

pour l'inférence et l'apprentissage de paramètres en un 

temps potentiellement sous-linéaire en le nombre d'objets. 

Cette classe, basée sur une factorisation spécifique de 

faible rang du noyau marginal, est particulièrement 

adaptée à une sous-classe de PPD continus et de PPD 

définis sur un nombre exponentiel d'objets. Nous 

appliquons cette classe à la modélisation de documents 

textuels comme échantillons d'un PPD sur les phrases et 

proposons une formulation du maximum de vraisemblance 

conditionnel pour modéliser les proportions de thèmes, ce 

qui est rendu possible sans aucune approximation avec 

notre classe de PPD. Nous présentons une application à 

la synthèse de documents avec un PPD sur 2
500

 objets, 

où les résumés sont composés de phrases lisibles. 

Abstract 
Most of current recommendation systems are based on 

ratings (i.e. numbers between 0 and 5) and try to suggest 

a content (movie, restaurant...) to a user. These systems 

usually allow users to provide a text review for this 

content in addition to ratings. It is hard to extract useful 

information from raw text while a rating does not contain 

much information on the content and the user. In this 

thesis, we tackle the problem of suggesting personalized 

readable text to users to help them make a quick decision 

about a content. 

 

More specifically, we first build a topic model that predicts 

personalized movie description from text reviews. Our 

model extracts distinct qualitative (i.e., which convey 

opinion) and descriptive topics by combining text reviews 

and movie ratings in a joint probabilistic model. We 

evaluate our model on an IMDB dataset and illustrate its 

performance through comparison of topics. 

 

We then study parameter inference in large-scale latent 

variable models, which include most topic models. We 

propose a unified treatment of online inference for latent 

variable models from a non-canonical exponential family, 

and draw explicit links between several previously 

proposed frequentist or Bayesian methods. We also 

propose a novel inference method for the frequentist 

estimation of parameters, which adapts MCMC methods 

to online inference of latent variable models with the 

proper use of local Gibbs sampling. For the specific latent 

Dirichlet allocation topic model, we provide an extensive 

set of experiments and comparisons with existing work, 

where our new approach outperforms all previously 

proposed methods. 

 

Finally, we propose a new class of determinantal point 

processes (DPPs) which can be manipulated for inference 

and parameter learning in potentially sublinear time in the 

number of items. This class, based on a specific low-rank 

factorization of the marginal kernel, is particularly suited 

to a subclass of continuous DPPs and DPPs defined on 

exponentially many items. We apply this new class to 

modelling text documents as sampling a DPP of 

sentences, and propose a conditional maximum likelihood 

formulation to model topic proportions, which is made 

possible with no approximation for our class of DPPs. We 

present an application to document summarization with a 

DPP on 2
500

 items, where the summaries are composed of 

readable sentences. 

Keywords 
topic models, online learning, latent variable 

models, unsupervised learning, determinantal point 

processes, latent Dirichlet allocation. 

 

Mots Clés 
modèles thèmatiques, apprentissage en ligne, 

modèles à variables latentes, apprentissage non 

supervisé, processus ponctuels determinantaux, 

allocation de Dirichlet latente. 
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