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THÈSE PRÉSENTÉE

When one or more fluids are vibrated normal to the surface of a fluid or at the interface of fluids, standing waves appears on interface. This phenomenon is known as Faraday instability.

In physical terms, when imposed frequency resonates with the natural frequency of the system, wave patterns appear on the surface of the fluid. In this thesis, experiments displaying the Faraday instability are presented and described mathematically with the help of linear stability analysis. These experiments (on ground and in microgravity conditions through parabolic flights) are well thought-out by input parameters such as the vibrational amplitude and frequency which, at criticality, give rise to a wide range of patterns. These patterns form a recognizable and predictable wave structure. This thesis considers immiscible and miscible

Titre : instabilités de Faraday dans les fluides binaires

Résumé court

Alors qu'il est bien connu que le phénomène d'instabilité de Faraday est une manifestation d'ondes de gravité capillaire, son comportement lorsque les effets capillaires et gravitationnels disparaissent reste inexploré théoriquement et expérimentalement. Une étude expérimentale et théorique détaillée est réalisée pour comprendre la physique de ce phénomène dans une petite cavité rectangulaire où la proximité des murs entraîne des contraintes considérables sur les parois latérales. Un couple de liquides binaires est utilisé avec une faible tension interfaciale pour une interface presque plate. Le contrôle thermique de ce système de fluide est utilisé pour diminuer la force capillaire et d'étudier ainsi les instabilités de Faraday dans les fluides miscibles où la tension interfaciale s'annule. Afin de prendre en compte les effets gravitationnels, l'expérience a été réalisée dans des campagnes de vols paraboliques. Pour l'approche théorique, une analyse de stabilité linéaire est effectuée à l'aide d'équations de Navier-Stokes dans un système de fluide visqueux incompressible et newtonien. Ceci est réalisé grâce à une méthode de Fourier-Floquet résultant en un problème aux valeurs propres. Les comparaisons montrent des différences non négligeables. Les équations sont ensuite résolues en incluant des effets d'amortissement visqueux pour compenser les contraintes des parois latérales. Les fluides binaires ont fourni une option commode pourchanger le coefficient de tension interfaciale en augmentant la température jusqu'à la température critique, ce qui a permis de passer d'un système de fluides non miscibles à celui des fluides miscibles tout en restant audessous de la température d'ébullition. Le taux d'amortissement visqueux linéaire est mesuré expérimentalement. La correction des calculs théoriques en prenant en compte le taux d'amortissement visqueux a permis une amélioration nette des résultats et donc de mieux comprendre la prédiction de l'amplitude critique expérimentale pour les modes sousharmonique et harmonique.
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Short version of abstract:

While it is well known that the phenomenon of Faraday instability is a manifestation of vibrational acceleration, its behaviour when both the capillary and gravitational effects vanish, remains unexplored theoretically and experimentally. A detailed experimental and theoretical study is performed to understand the physics of this phenomenon in small rectangular geometry where the proximity of wall results in considerable sidewall stresses. A novel binary liquids system is utilized with low interfacial tension for a near flat interface. Thermal control of fluid system is utilized for achieving reduction in capillary force with study of miscible fluids where interfacial tension reduces to almost zero. In order to discriminate between gravity and capillarity effects, experiments were performed in parabolic flight campaigns. . For the theoretical approach a linear stability analysis is performed through Navier-Stokes equations in a Newtonian incompressible viscous fluid system. This is achieved through a Fourier Floquet method resulting into an eigenvalue problem. Equations are solved by including viscous damping effects for compensating sidewall stresses. Experimentally binary fluids provided a convenient option of changing the coefficient of interfacial tension by temperature control and going through immiscible to miscible system without change of liquid charge. Viscous damping rate is determined experimentally by measuring the linear damping rate. The correction in the theoretical calculations with the viscous damping rate helped in achieving a better understanding of the prediction of the experimental critical amplitude for sub-harmonic and harmonic modes.
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cases where the manifestation of Faraday waves requires a jump in the density across the interface and density gradient respectively. The acceleration due to parametric excitation must act perpendicular to the interface and in the case of miscible fluids, it must be parallel to the density gradient.

Experiments illustrate the effects of gravity and interfacial tension forces on the Faraday instability appearing in immiscible system within a confined boundary system. A fluid pair is picked judiciously (the Perfluorohexane Liquid FC72 and 1 Cst Silicon oil) to have a binary fluid system of experimentally achievable consolute temperature (i.e below the boiling temperature). Also, it should be nontoxic in order to avoid any accidents happening in case of leakage in parabolic flight campaign or in future experiments planned in the International space station. As the surface tension between the two liquids is very low, it leads to minimum meniscus and an almost not pinned triple contact line at wall. The influence of gravity was comprehended by carrying out experimentations on earth as well as in microgravity environment, created in a parabolic flight. The influences of density difference and interfacial tension are understood by the variation of fluid temperature utilizing a thermal bath. Experiments are performed to determine the critical threshold amplitude and to measure different forced parametric frequencies. In the chosen small rectangular geometry, critical threshold curves show discrete modes on earth. A clear drift of these modes towards lower frequency is seen as the temperature of the liquid pair approaches its consolute value, i.e., the temperature at which the binary pair is completely miscible.

For the theoretical approach, a linear stability analysis is performed through Navier-Stokes equations in a Newtonian incompressible viscous fluid system. This is achieved through a Fourier Floquet method resulting into an eigenvalue problem. The linear stability analysis approach is very popular and has been used for successful prediction of critical threshold for low frequency in large sized deep cylindrical container. Experiments in small rectangular geometries with low viscous fluid still remain unsolved with respect to theory. For the successful prediction, equations are solved by including viscous damping effects which are determined experimentally by measuring the linear damping rate.

Résumé

Les ondes superficielles ou interfaciales générées par la vibration d'un ou plusieurs fluides dans la direction perpendiculaire à l'interface, sont connues sous le nom d'instabilité de Faraday. En terme physique, lorsque la fréquence imposée résonne avec la fréquence naturelle du système, des motifs apparaissent à la surface du fluide. Dans cette thèse, les expériences montrant l'instabilité de Faraday sont présentées en comparant aux résultats de l'analyse théorique basée sur la stabilité linéaire. Les expériences sont menées avec des paramètres d'entrées comme l'amplitude et la fréquence de vibration qui donnent lieu à une large gamme de paramètres permettant d'obtenir les valeurs critiques pour détecter les instabilités de Faraday. Cette thèse traite les cas miscibles et non-miscibles où la manifestation des ondes de Faraday nécessite un saut de densité à travers l'interface et un gradient de densité respectivement.

L'accélération due à l'excitation paramétrique doit être perpendiculaire à l'interface dans le cas des fluides immiscibles et, dans le cas des fluides miscibles, elle doit être parallèle au gradient de densité.

Les expériences illustrent l'influence de la gravité et de la tension interfaciale sur l'instabilité de Faraday qui surviennent dans un système confiné de fluides non miscibles. Afin de passer facilement de ce système de fluides immiscibles au système de fluides miscibles, nous avons sélectionné judicieusement un couple de fluides binaires (le Fluorinert FC72 et 1 cst d'huile de silicone). Lorsqu'on augmente la température, la tension de surface diminue jusqu'à devenir nulle rendant ce système de fluides, miscible. De plus, il doit être non-toxique pour éviter les accidents en cas de fuite dans les campagnes de vol parabolique ou dans des expériences futures dans la station spatiale internationale et au-dessous de la température d'ébullition. La tension superficielle entre les deux liquides étant très faible, elle entraîne aussi un faible ménisque et une ligne de contact triple mobile et en phase avec la vibration.

L'influence de la gravité a été analysée en effectuant des expérimentations aussi bien sur terre qu'en microgravité lors des vols paraboliques. L'influence de la différence de densité et de la tension interfaciale a été prise en compte par la variation de la température du fluide en utilisant un bain thermique. Ces expériences ont été effectuées pour déterminer le seuil critique et pour mesurer les différentes fréquences paramétriques du système de fluides considéré. Dans la géométrie rectangulaire choisie (de dimensions relativement petites), des courbes critiques de seuil ont montré l'existence de modes discrets sur terre. Une déviation de ces seuils vers une fréquence inférieure a été observée lorsque la température de ces fluides binaires s'approchait de sa valeur critique de miscibilité.

Une analyse de stabilité linéaire est effectuée parallèlement à ces expérimentations en considérant les équations de Navier-Stokes dans un système de fluides visqueux incompressibles et newtoniens. La méthode de Fourier-Floquet est adoptée résultant en un problème aux valeurs propres. L'approche de l'analyse de la stabilité linéaire a été déjà considérée dans la littérature dans le cas d'une cellule cylindrique de grande taille et a permis Governing Equations ........................................................................................................................................... Linear Stability Analysis ...................................................................................................................................... Spatially infinite system results ........................................................................................................................ ........................................................................................................................ Miscible Instability Threshold ............................................................................................................................. 

PARABOLIC FLIGHT EXPERIMENTS

General introduction and literature review to Faraday instability

It is well known that the Faraday instability is a manifestation of gravity-capillary wave phenomena wherein nonlinear discernible wave patterns emerge (see Figure 1.1) on a fluid interface that is subjected to perpendicular oscillations and exceeding a critical value. Faraday instability is generated due to the result of the parametric resonance of interfacial wave modes with an imposed vibrational frequency. It is a phenomenon of motorized perturbation and oscillation at definite frequencies. This is unlike the regular resonance as it reveals the phenomenon of hydrodynamic instability. Faraday waves can be usually witnessed as crispation appearing on the surface in a wineglass that is buzzing like a bell or can be observed with sand particles on a vibrating plate using a violin bow as witnessed by Faraday [START_REF] Faraday | On the forms and states of fluids on vibrating elastic surfaces[END_REF]). Faraday also indicated that the note on the bow should be sufficiently loud for observation of undulations on the surface. Faraday experiments in general create peripatetic meniscus waves, starting from container wall, and standing Faraday waves inside the cell. When the forced vibration is frail, only meniscus waves ruffle the surface. However, when strong vibrations are induced to increase the energy in the system (which in turn exceeds the dissipation due to the bulk viscosity) fluid surface is destabilized to fashion Faraday waves which grow to finite amplitude. This condition signifies a threshold energy requirement which must be exceeded in order for the phenomenon to be perceived, and is straight linked to the existence of dissipation mechanisms in the system. Measurement of these thresholds and linking it to a mathematical prediction is the emphasis of this thesis.

Basic phenomenon of Faraday instability

In laboratory setting, Faraday instability is studied by using a driven harmonic oscillator, in which the oscillations are driven by varying some parameters of the system at some frequency under controlled conditions. Here, the resonant behaviour is governed by various factors such as system geometry, gravity, and interfacial tension. A comprehensive understanding of the Faraday instability thus entails a clear demarcation of the role played by each of these effects.

Interestingly, both gravity and interfacial tension play their roles which are primarily determined by the imposed frequency of excitation. In current study these two parameters have been studied in depth where the capillary force of the liquid was controlled by means of thermal bath while the effects of gravity force has been studied through parabolic flights experiments.

Faraday instability parameter such as gravity plays a dual role of aiding the instability at low frequencies of excitation and suppressing it at higher values. Though a similar effect is also manifested by interfacial tension, understanding its sole influence becomes very difficult under terrestrial gravity conditions. Due to large density gap and low interfacial tension of chosen fluids, gravity dominates here over the capillarity force for the investigated frequency range.

We have performed experiments on ground and under reduced gravity conditions for understanding the gravity and capillary effects separately.

Past experiments have had good agreement when compared to its theory in cylindrical container [START_REF] Batson | Faraday waves in small cylinders and the sidewall non-ideality[END_REF]; however similar theories with same fluids did not deliver a valid match in a small size container. Current experiments were focused to small rectangular geometries in which excited wavelength were of the order of the dimensions of the container.

In earlier investigations, experimental thresholds did not come to an agreement with the estimates of the viscous linear stability model, thus inspiring this work.

In the present study, Faraday experimentation consisted of an oscillating Hele-Shaw (for the current experimental investigation, the frequency range is chosen such that, there is no velocity motion observed in the smaller dimension of cell, (See Figure 3.5) type cell containing binary fluids and inducing oscillations of the fluids and the interface between them. Exceeding a certain threshold, the interface formed standing wave patterns with different modes. The use of binary fluids here offered a useful possibility of altering the factor of interfacial tension by temperature control (it approached to zero as the temperature raised to the upper consolute value). These fluids could freely slip along the vessel wall, signifying the reduction of stress related to the sidewalls (see section 3.2) and with near horizontal interface to realize the closest possible assumptions of the linear viscous theory. However even after picking a careful set of liquids, it has been validated that the hypothesis of stress-free sidewalls is not absolutely correct and created disparity from theory specifically in small cell sized system.

Earlier, energy dissipation during wave motion was considered with the fluid viscosity being its primary force, which is not absolutely true. Thus concept of sidewall stresses and boundary layer effects evolved. While an effective methodology [START_REF] Henderson | Single-mode Faraday waves in small cylinders[END_REF]) existed for the quantification of the sidewall stresses, past experiments did not consider thin Hele-Shaw cells. This work discussed the calculation of dissipation (caused by sidewall stresses) which is often challenging, necessitating its measurement straight from the experiment. It has been

shown that an experimental attempt can be made to study the appropriate boundary conditions, allowing prediction of threshold. This work architected a procedure to accurately predict selected modes and threshold amplitudes, and pinpointed the causes for difference which advanced the study of this rich phenomenon.

The cause originated from the fact that the two fluids contacting the compact sidewalls unavoidably yielded a static meniscus, which emitted waves during vibration exhibiting nonideal behaviour, and violating the assumption of a flat interface. More specifically the role of wall proximity caused damping of small forcing frequency. It has been shown that a damping coefficient derived from linear theory for unbounded containers with specific wave numbers might be used to describe any discrepancies between a linear model in bounded containers and experiment. It has been further found that the damping coefficient depended only upon mode structure, the mode pattern being constant over a frequency range. The correction in the theoretical calculations with the viscous damping rate helped in achieving a better understanding for the prediction of the experimental critical amplitude for sub-harmonic and harmonic modes.

Analytically the problem in hand has been solved as single mode excitation and linear stability model. Faraday instability is a non-linear phenomenon, requiring some assumptions in obtaining an analytical solution without the need of using a numerical procedure and computers. Nonlinear systems could be treated as linear system to simplify the mathematics. A simple pendulum can be a perfect example of that. If the amplitude of the pendulum is small, the pendulum obeys the rules as a linear dynamical system. However, if the amplitude is large this is no longer true. In other words, a nonlinear system can be treated as a linear system when it is close to stable state. The system equations have been derived through Navier-Stokes equations in a Newtonian incompressible viscous fluid system. A Fourier-Floquet method resulting into an eigenvalue problem has been applied to the dispersion equation. The resulting equations have been solved by a matrix system as used by [START_REF] Kumar | Parametric instability of the interface between two fluids[END_REF].

Theory has been adjusted with the damping condition and lateral dimensions were taken in account for mode discretization. Thus experiments and theory of Faraday instability were reconciled over a range of temperature in which a chosen fluid system went continuously from immiscible to miscible fluid system.

Both experimental and theoretical analysis of miscible or partially miscible fluid systems was fraught with challenges. Theoretical stability analysis of such systems became complex due to the ever-changing base state and undefined initial conditions. Difficult challenges in experiments were faced in terms of precise repeatability for which exactly same initial state for fluids needs to be posed before each experiment.

To move from immiscible to miscible state, the chosen binary fluid has properties depending on temperature (consolute). It has a notable feature of being miscible above the consolute temperature and immiscible or partially miscible below it. Furthermore, by controlling the temperature of the fluid, it was possible to control the mass diffusion coefficient, which was an important asset that regulated fluid mixing process. Constant state of mass-diffusion forces experiments have to be done precisely with specific time-interval to achieve repeatable results.

Experiments in parabolic flights were another challenge as it has time constraints and constant jitter vibration passed down to experiment. Experimental setup had to be designed to withstand hyper gravity which is a bi-product of zero-g flight path. Experimental cell had to be carefully sealed to remove any gas present in fluids and thermal bath, as bubbles could have disrupted in experiment and visuals respectively.

This thesis explains the experimental and analytical study of Faraday instability with challenges and countermeasure used for successfully prediction of its behaviour. In this dissertation some very thought-provoking phenomenon has been shown that were not investigated in the previous experiments. Modified analytical theory was successful in predicting the threshold as observed in experiments.

Faraday waves have some potential applications and contribute for the development of science. One of the direct applications of the present study is to understand mixing to extrication of droplets and air formation in capillary tubes during space enabling operations. In industrial settings Faraday waves are widely utilized for fluid prototypes for producing microscale materials such as cell spheroids and cell-seeded micro-carriers. By the knowledge of Faraday waves, attenuated layers of material can be deposited in a preferred configuration and particles in the fluid can be drawn producing precise optical instruments. In Mother Nature, Faraday waves have the role in the intensification of seismic activity through slacker sediments.

In the field of quantum mechanics, Faraday waves have been professed in Bose-Einstein Condensates.

Literature Review

The Faraday instability occurs when two fluid layers of different densities are parametrically excited and the imposed frequency resonates with the system's natural frequency. The natural frequency depends on the density difference, interfacial tension, viscosities, and geometry.

Interfacial instability generated due to the parametric excitation is commonly called as "Faraday instability". A detailed experimental and theoretical study and of its potential applications are required to understand the physics behind the phenomenon. The immiscible fluid system has been well studied in the literature but still lacks a thorough understanding, as experimental work in literature has dissimilarities with present theoretical approach. On the other hand, the case of miscible liquids, which is important to understand the processes of mixing is much less considered in previous works. For liquid sets with low interfacial tension, gravitational force on the oscillatory convection becomes dominant and in order to understand the phenomenon of capillary force, gravity free environment becomes thus necessary.

Sand figures on vibrating plates were first analyzed and described by Ernst Florens Friedrich Chladni (Leipzig, 1787). These figures are known as Cladni Figures. The phenomenon of appearance of remarkable array generated on a liquid surface near a vibrating surface was first observed by [START_REF] Oersted | ), Wheatstone (1823), and Weber (1825) as predecessors in producing and describing crispations Raman[END_REF] and subsequently reported by (Wheatstone, 1825) and [START_REF] Weber | Wellenlehre auf Experimente gegründer[END_REF]. [START_REF] Faraday | On the forms and states of fluids on vibrating elastic surfaces[END_REF] was first to report the phenomenon in detail and deduced that the frequency of excited waves is half of the applied frequency. Melde (1860) reported similar observation by generating parametric oscillations in a string by using a tuning fork to periodically vary the tension at twice the resonance frequency of the string. Mathematically, parametric oscillation was first treated as a general phenomenon by [START_REF] Rayleigh | on the crispation of fluid resting upon a vibrating support[END_REF][START_REF] Rayleigh | On the maintenance of vibration by forces of double frequency and on the propagation of waves through a medium endowed with a periodic structure[END_REF]. He presented the argument for the existence of subharmonic solution. [START_REF] Faraday | On the forms and states of fluids on vibrating elastic surfaces[END_REF] defined that generated patterns were independent of the container geometry and proved non-ideal behaviour of this phenomenon. Raman (1912) expanded Rayleigh's theory by including cubic nonlinearity into equations. Nonlinear behaviour in the Faraday wave is dependent on restorative wave forces such as buoyancy (in case of stable configuration, heavier fluid on the bottom layer) and surface tension and dissipative forces such as viscosity. The first clear and complete theoretical description of the phenomenon was given by [START_REF] Benjamin | The stability of a plane free surface of a liquid in vertical periodic motion[END_REF] who considered the instability in the inviscid limit. They condensed the inviscid fluid equations of motion in the classical form of Mathieu equation which is similar to parametric excitation of a linear harmonic oscillator.

Subsequent to inviscid hydrodynamic stability analysis by [START_REF] Benjamin | The stability of a plane free surface of a liquid in vertical periodic motion[END_REF], [START_REF] Kumar | Parametric instability of the interface between two fluids[END_REF] presented the stability of an infinite bilayer subjected to parametric vibration, including viscous effects in the Navier-Stokes equations. They performed a linear stability analysis for two infinite layers of immiscible fluids with a Fourier-Floquet analysis for the disturbed interfacial deflection. Marginal stability curves for critical amplitude (threshold value) as a function of wavenumber were obtained by setting the eigenvalue (growth rate of the Floquet exponent) to the value of zero. This analytical solution is the base of the theory used in this work which will be detailed later in the chapter 2.

It was clear from the previous research work that for problems of inviscid cell with unbounded extent, the natural frequency is very weakly dependent on interfacial tension, this property plays a role only when the side wall spacing is of the order of the capillary length. This idea continues to be true in the theory even when viscosity is taken into account as in [START_REF] Kumar | Parametric instability of the interface between two fluids[END_REF]. Now, in experiments the fluid viscosities cannot be ignored and the proximity of walls becomes important because of the viscous damping induced by wall stresses.

At high forcing frequencies, the response wavenumbers are large (short wavelengths) and they are not affected by the presence of side walls. However, at low frequencies, the wavelengths are large and the patterns, i.e., modes that are seen at the onset of instability reflect the presence and geometry of the side walls.

One of the early experiments which focused on boundary conditions was that of [START_REF] Douady | Pattern selection in Faraday instability[END_REF] who studied the effect of contact angle on the meniscus waves that inevitably form along the walls. For the purpose of removing these meniscus effects, they have tried to pin the boundaries. However such experiments are difficult to control, often leading to sloshing after the instability commences. An alternate solution is to provide a close approximation to a stress free boundary condition such that the interface will always be making a perpendicular angle to the sidewall while sliding up and down to the boundary. However, most fluids induce a contact angle with the wall and thus generate a contact angle hysteresis as discussed by [START_REF] Hocking | The damping of capillary-gravity waves at a rigid boundary[END_REF]. One way to provide a condition that is close to stress-free is to employ a fluid system wherein the upper fluid easily covers the common interface forming a very thin layer in contact with the container wall near the interface. As the walls are shaken with parametric forcing frequency the thin layer also moves in the form of "meniscus waves" and as long as the walls are spaced apart at distances several times the capillary length, there is no effect of damping. Thus, a very good agreement between theory and experiment can be obtained and this was demonstrated convincingly by Batson et al. (2013).

Our interest in the present work is to investigate the effect of side wall damping that arises from meniscus waves. If this could be accounted for, then a better comparison between theory and experiment can be obtained. Previous studies have shown that in large cylindrical cells, meniscus waves effects vanish as instability overpowers it. However, for cell size comparable to wave size meniscus, it plays an important role as shown by Henderson andMiles (1989, 1990).

The damping length has been defined by [START_REF] Edwards | Patterns and quasi-patterns in the Faraday experiment[END_REF] as ⁄

( is the frequency, is the wavenumber and is the kinematic viscosity). They studied the effects of sidewall conditions and deduced that the damping length of a standing wave must be less than that of the container size in order to ignore sidewall effects. [START_REF] Hill | The Faraday resonance of interfacial waves in weakly viscous fluids[END_REF] investigated the effects of the energy dissipation through the varying domain wall sizes. Hill's experiments did not show any effects of top and bottom walls damping (the fluid height used was deep enough to take out any effect from these walls). They also observed that side wall damping dies off fairly rapidly as the domain becomes larger. In conclusion, the wavelength of the order of the domain size suffers suppression from wall damping. [START_REF] Ito | Interface waves excited by vertical vibration of stratified fluids in a circular cylinder[END_REF] and [START_REF] Tipton | An experimental study of Faraday waves formed on the interface between two immiscible liquids[END_REF] performed experiments with two fluids layers with sidewall flow perturbations on the instability. Data presented by them were not in agreement with the [START_REF] Kumar | Parametric instability of the interface between two fluids[END_REF] Faraday viscous theory model. [START_REF] Tipton | An experimental study of Faraday waves formed on the interface between two immiscible liquids[END_REF] mentioned that their damping rate was eight times the value calculated by the linear stability viscous model. It was assumed that wall damping was playing an important role as cell diameter

for the experiments as cell size was small (35mm in their case). [START_REF] Das | Parametrically forced gravity waves in a circular cylinder and finite-time singularity[END_REF] later compared dissipation (in terms of length) in the interior of the domain ( ) to the dissipation ( ) in the Stokes layer near the boundary. The ratio of these two dissipation rates was defined by Lighthill (1978) as ⁄ ⁄ (where ⁄ is the Stokes layer thickness and is the domain length). The internal to wall damping ratio for smaller-size cells with low viscous fluids system is small, indicating that boundary layer dissipation dominates over internal dissipation.

Edwards and Fauve (1994) had shown previously that experiments conducted with low-viscosity fluids bring significant finite-size effects even when the cell size to wavelength ratio is not small (cell size/wavelength = 5). [START_REF] Henderson | Single-mode Faraday waves in small cylinders[END_REF] had compared experimental and theoretical results in rectangular and cylindrical geometries. However, [START_REF] Henderson | Faraday waves in 2:1 internal resonance[END_REF] observed that in a rectangular cylinder, the measured linear viscous damping rates are found to be higher than the predicted values, increasing drastically the value of effective viscosity. They also noted that rectangular geometries led to higher wave damping which could have come from corner stresses and Stokes boundary layer.

Another aspect of this thesis is to study the mixing generated by Faraday instability in miscible fluids. In miscible fluids system, the interface is diffused (in contrast to a singular interface in immiscible system) thus creating a gradient of density in the system driving the instability. The instability grows itself with forced vibration and ultimately destroys itself with the mixing of the liquids. The mixed volume is considerably large in comparison to the initial diffused region. agreements. They described the importance of the waiting period before the vibration is set. As the waiting time is increased, diffusion in the system weakens the driving potential and results in smaller wavelengths. One of the key observations in these studies of miscible fluids systems is that they obtained similar dispersion relations as in [START_REF] Kumar | Parametric instability of the interface between two fluids[END_REF] for immiscible fluids systems. It was considered that the reasons of growth of instability are similar to that of immiscible case while causes of stabilization differ.

The objective in the present work is to understand the reasons for the mismatch between the theory used by Batson et al. (2013) and the experimental results. This requires measuring the viscous damping rate in a rectangular container (as considered in our experimental set-up) and using the theoretical damping rate to determine the effective viscosity due to the presence of the meniscus waves. It is then used to modify the [START_REF] Kumar | Parametric instability of the interface between two fluids[END_REF] viscous theory

which can be compared with the experimental data.

Faraday instability has been studied extensively in the past, out of which inviscid theory of [START_REF] Benjamin | The stability of a plane free surface of a liquid in vertical periodic motion[END_REF] and viscous theory of [START_REF] Kumar | Parametric instability of the interface between two fluids[END_REF] marked a milestone in the development of theoretical understanding. This chapter refers to theoretical and numerical approaches of wave phenomenon as described by Faraday ( 1831), generated at the vibrating liquid surface in the direction of normal to the interface of fluids. . Faraday waves are characterized by deflection, growth and saturation of waves appearing at a flat fluid surface while vibration surpasses the critical amplitude for a particular frequency. Faraday mainly observed the wave frequency to be one half of the imposed vibrational frequency, a subharmonic response, which corresponds to a subset of parametric excitation. Following in this chapter a general idea of the mechanism of inviscid Faraday problem is explained. Further viscous analysis and linear stability analysis is explained in detail. where ̃ is periodic and and are functions of the system parameters 'p' and 'q' called as characteristic exponents. 'p', 'q' which consist of regions in which the real parts of and are negative, indicating bounded (stable) solutions, and positive value indicating an unbounded (unstable) solution. On the boundaries between stable and unstable regions, the real parts are zero.

Inviscid fluid bilayer subjected to perpendicular vibration

If

, the solution is periodic with period T = π and if the solution is periodic with period 2T = π (see Appendix B for solution of parametric equations with MATLAB code).

With the help of numerical integration of equation 2.1 it can be observed that for certain values of "p" and "q" the response " " grows without bound with half-integer frequencies with respect to the parametric frequency as shown in As for a particular geometry of confined cell, the generation of waves is constrained by its boundaries. In a closed cell, the dimensions of the cell play an important role as it allows waves with certain wave numbers only. This means that an unstable solution is constrained with a certain set of frequency and certain wavenumbers depending on the cell geometry and size.

However, the above theory cannot be used for the current problem as the viscous effect is lacking in this model, and the effect of fluid viscosity cannot merely be integrated with linear damping into the Mathieu equation. Another reason corresponds to the boundary conditions restrictions and the allowed wavenumbers. High parametric frequencies have very small spacing between any two allowed wavenumbers and thus form a continuum system. However, this thesis is focused on low frequency excitation where the wavenumbers allowed by the system form a discretized set and are strongly dependent upon the boundary conditions and the lateral geometry of the container.

Viscous fluid bilayer subjected to perpendicular vibration

This section is an extension solution towards parametric excitation of inviscid fluid. In experiments the fluid viscosities cannot be ignored and thus an inviscid theory cannot work very precisely. To develop a more inclusive theory with a viscous system, a linear stability is modelled for Newtonian incompressible viscous fluid layers in order to relate theory with experiments. A single mode excitation has been derived from the Navier-Stokes equations, taking the true nature of the fluid system. The nonlinear equations were linearized with determined base state solution and forced excitation. The equations were solved for neutral stability conditions in order to obtain critical threshold -wavenumber curves. This was achieved by a Fourier-Floquet eigenvalue method and solved numerically by a matrix system.

The current model considers an initial stable flat horizontal interface separating two distinct fluids, assuming no stresses for horizontally finite size system (see Fig. 2.4). Wavenumbers were then calculated based on finite cell size used in experiments.

The base state was stable with horizontally flat interface separating two distinct fluids. The stress-free boundary condition was assumed when horizontally finite system conditions were applied to these results, constraining on the allowed wavenumbers by the system. A case study has been presented discussing effects of various parameters like interfacial tension, viscosity, gravity to understand fluid behaviour in different circumstances.

Governing Equations

A horizontal infinite fluid bilayer with depths h 1 and h 2 of the two fluids and interface at z = 0 is submitted to a forced oscillation in the direction of gravity (See Equations of motion for Newtonian incompressible fluid in fix frame can be written as,

( ) (2.2)
Where is the velocity vector field of the fluids, P j is the pressure field, ρ j is the density with j = 1 defining for upper fluid and j = 2 for lower fluid, g is the gravity acceleration, 32

For simplicity we investigate the system in the moving frame, for transformation from fix frame to moving frame space coordinate equations can be written as,

Where 0 is the origin of fix frame, 0' is the origin of moving frame and p is a point in fluid system (2.3) Rewriting equation 2.2 in a moving frame,

( ( ) )
which gives,

( )
And finally,

( ) (2.4)
The applied acceleration on the system has been calculated as,

(2.5)

Where A is the amplitude and is the frequency.

The equation of conservation of mass can be written as,

(2.6) Vibrational acceleration will become an additional term in the equations of motion by relocating equation into a moving reference frame through velocity transformation (see equation 2.4) giving acceleration which is in the direction of the gravity. This leads to an effective gravitational acceleration to the fluids.

No-slip conditions are applicable at the top and bottom walls and continuity of velocity is applied at the interface. The momentum balance at the interface is, here is the momentum, are velocity of fluid 1 and 2 respectively. For an immiscible fluid system momentum is zero at the interface. Here is the speed of fluid interface, and is the surface normal to the interface. The surface is given explicitly as the set of points satisfying the function . Then a normal at a point on the surface is given by where is the implicit form of the evolution of the interface and is defined by . The unit vector of surface normal can be defined by | | which can also be expressed by,

| | ́ √ (2.8)
Jump momentum balance from equation 2.7 can be reduced to,

(2.9)

The differential for the motion of the interface in an infinitesimal time δt can be written as,

| | | |
Replacing U with from equation 2.9 and expanding normal vector,

| |

which can be written as, where 2H is twice the mean surface curvature and defined as,

| | √ | | √ | | | | | | | | | | | |
(2.13) tangential stress associated with gradients in surface tension.

A surface with curvature reflects a jump in normal stress across the interface. Normal stress balance can be obtained by having dot product of normal vector to stress balance equation. The temporal evolution of this equation for given imposed amplitude A and frequency ω ultimately determines the stability of the linear system. In equation 2.23, subscript j is defined for fluid 1 and 2.

Linear Stability Analysis

The stability problem was solved by Floquet theory as effective gravitational acceleration is periodic in time. The periodicity of the system was accounted by including a coefficient of .

Solutions were assumed in Floquet form in terms of coefficient , where is the complex growth rate, in the infinite Fourier series. The Fourier series were written as follows, (indices j has been omitted to simplify the writing of the equations),

∑ ̂ (2.24)
Where , k is a two-dimensional horizontal wavenumber and are defined as

k 2 = k x 2 +
k y 2 for a rectangular system. The response frequency is always chosen in the range 0 to ½ ω.

As [START_REF] Kumar | Parametric instability of the interface between two fluids[END_REF] The response frequency is set to zero for harmonic solution and ½ ω for sub harmonic solution.

The matrix B is a double banded matrix of largely 1's and 0's used to select the coupled modes , but differs slightly for the n = 0 mode. Truncation from n=0 to N results in the inclusion of the 40 coefficient in the matrix B for the n = 0 mode and is replaced with the conjugate ̅ for α = 0 and ̅ for α = ½ ω.

Spatially infinite system results

The linear equations defined above can be solved for all wavenumbers and solutions to produce a set of tongues of instability which is similar to the fins produced by the Mathieu equation in case of inviscid flow but tips are smoothed due to viscous effects and not descending to zero amplitude [START_REF] Benjamin | The stability of a plane free surface of a liquid in vertical periodic motion[END_REF]. The viscosity affects harmonic or higher harmonic solution much more compared to sub-harmonic node.

Figure 2.5: Threshold amplitude vs wave number for a horizontally infinite bilayer for a fixed frequency of 4 Hz, the first node from left represents sub harmonic (=ω/2) solution, the second node harmonic (α=ω), the third node super harmonic (α=3ω/2) and so on…

The first tongue is the solution of sub-harmonic node, the second as harmonic, the third as super-harmonic etc…, as the waves excited in these regions execute one-half, one, and three-half periods etc..., with regards to the applied frequency, respectively. In an experimental condition, the wavenumber with the lowest threshold amplitude would be excited first in the direction of increasing vibrational amplitudes. This lowest amplitude is called as critical threshold amplitude. In an experimental system that approaches the laterally infinite limit like that of [START_REF] Bechhoefer | An experimental study of the onset of parametrically pumped surface waves in viscous fluids[END_REF], the lowest threshold amplitude of sub-harmonic node would always be the point of critical threshold amplitude. Thus for a large system only sub harmonics results are observed as had been observed by [START_REF] Faraday | On the forms and states of fluids on vibrating elastic surfaces[END_REF] and [START_REF] Rayleigh | on the crispation of fluid resting upon a vibrating support[END_REF]. Increments in frequency force tongues towards right and downward as will be explained in detail in the next section of this Chapter. For infinite system such as shown in Fig. 2.4, critical threshold amplitude -frequency curve takes the shape of smooth hyperbola with infinite number of available modes and excited for the natural frequency corresponding to the excited mode (see 

Results in finite systems

Extension of the previous model to the case of a finite size cell was outlined by [START_REF] Benjamin | The stability of a plane free surface of a liquid in vertical periodic motion[END_REF] for rectangular cross-sections. For a system with a rectangular cross-section of width W and breadth L, the surface waves must satisfy the following boundary conditions, where is the deformation of interface (see equation 2.14). These constraints can be applied on all sidewalls (x=0, W and y=0, L). Finite size allowed wave numbers can then be calculated as,

√ ( ) ( )
where m, n are modes in x and y directions (for Hele-Shaw cell size such as used in present experiments, modes in the direction of width always remain zero for low frequency range. Thus here, for example, mode 1, mode 2 are referred to (m,n) as (0,1) and (0,2) respectively). Figure 2.6 shows solutions of theoretical model for critical amplitude vs wavenumber. Each tongue represents a parametric solution such as subharmonic, harmonic, super harmonic and so on. In high frequency system subharmonic solutions dominates over higher harmonic ones.

However in lower frequency domain higher harmonic solution can appear in the cell. The vertical lines in Figure 2.7 represent excitable modes as per the cell size (defined in Eq. 2.34).

The minimum amplitude of the possible solution is called the critical or the threshold amplitude for the particular frequency. c). Harmonic and even more, super-harmonic excitation is uncommon at higher frequencies. But at low frequencies in a discretized system with smaller cell size the system can skip the first sub-harmonic tongue and excite harmonic and superharmonic modes. The dimensions of the cell in the plane of interface define allowed wave numbers (see Eq. 2.34). As cell size is increased, the difference between one wavenumber to another one vanishes. For practical purposes, we can say that the larger is the cell; the smoother will be the threshold amplitude. In an almost infinite horizontal cell, the discretization of modes will disappear.

Thus for a particular fluid system heated to a defined temperature and vibrated to a fixed oscillation frequency, the needed assignment was to recognize the lowest excitation amplitude for which a discernible interfacial wave occurs. While it is conventional to expect the minimum critical threshold on sub-harmonic tongues in a laterally infinite system, the present confined system is characterized with both harmonic and sub-harmonic modes occurring over discrete bands of frequencies (see Fig. 2.7). And this was due to the fact that finite size system only allows certain wave numbers to appear which are defined by cell dimensions. As we move towards higher frequencies, a continuum of modes becomes easily available even in finite size system, as the mode spacing diminishes even less than the width of each mode. The mode spacing is roughly π/L, while the width of each mode is roughly (where , is kinematic viscosity, is density and is frequency) as discussed by [START_REF] Bechhoefer | An experimental study of the onset of parametrically pumped surface waves in viscous fluids[END_REF] The condition for having a continuum of modes is thus equivalent to .

For practical purpose infinite cell can be designed based on required frequency range. A higher frequency range would require a smaller cell for a similarity with infinite boundary or it can be said that higher frequencies correspond to situations where the range of modes is effectively continuous. For our binary fluid system, properties of fluids were varying depending on the above cited parameters and are defined based on true measurements of properties with enforced experiment like conditions. With these measurements understanding of binary fluid system has been improved and repeatability of experimental work has been validated. Interestingly, decreasing density gradient somehow imitates similar effect to decreasing gravity.

Mass Transfer in binary fluids: Variation of density

A low density difference system will have smaller wavelength, smaller critical threshold amplitude and higher probability for sub-harmonic waves. Critical threshold amplitudefrequency graph moves towards left, with a significant reduction in the range of frequency band for each mode, introducing availability of higher modes at same level of frequency. The graph starts to smooth down, indicating the same effect as the decrease in gravity or moving towards infinite side boundary system. This effect was very similar to as seen by Diwakar et al.

( 

Wall proximity conditions: effects of viscosity

In a small rectangular system, where Faraday wavelength is comparable to the container size, viscous damping plays an important role (effect of cell walls is discussed through the quantization of admissible modes. For a cell with one very small dimension (Hele-Shaw cell), walls have two effects: they force a quantization of the wavenumbers and they create local friction at the boundaries, which is not taken into account in these figures and and will be discussed in section 3.4.2) and basically intensifies the effects of viscosity. Viscous force is a stabilizing agent in the Faraday instability, which can be seen with rise in viscosity causing a damping of the tongues. Increasing amplitude threshold and smoothing of edges as well as movement of tongues slightly towards higher wavenumber can be observed. It is remarkable to note that damping effect on the higher harmonic tongues is more severe as compared to lower harmonics. This can be understood by the fact that increased frequency of waves results into increased friction between fluid molecules. Friction in fluid molecules is proportional to velocity gradients, and velocity gradients are inversely proportional to the wavelength. Thus it can be said that viscous stresses tend to dominate all processes as wavelengths get smaller and smaller. In the instability threshold graph it leads to the disappearance of higher harmonics, which can be explained by the presence of choppier waves corresponding to higher harmonics. For a large cell system, even the general viscous theory gives a good match to experiments as shown by Batson et al. (2013) utilizing [START_REF] Kumar | Parametric instability of the interface between two fluids[END_REF] theoretical model. However, it was not the case with small cell size (rectangular geometry) as explained further in experimental results (see Chapter 3).

Inviscid theory predicts a zero threshold amplitude at resonance (as seen in Figure 2.10(a), first sub-harmonic tongue tuned frequency amplitude is near to zero), whereas the actual waves must get through a viscous threshold. In actual experiments the measured bandwidth was narrow than the inviscid prediction and the measured resonant frequency was larger than the inviscid prediction.

Interfacial conditions: Variation of interfacial forces

While interfacial tension is a stabilizing force and for current set of fluids its effect was negligibly small because of its low value compared to density difference. However, interfacial tension greatly affects solution with higher wavenumbers/ higher harmonic solutions or solutions at lower frequency and act as a stabilizing agent as seen in fig. 2.11. Increase in interfacial tension upturns the probability of harmonic solutions to appear as can be seen in Figure 2.11. In simple terms as described by [START_REF] Benjamin | The stability of a plane free surface of a liquid in vertical periodic motion[END_REF], instability is proportional to the sum of gravity and interfacial tension terms,

∝ [ 𝛥 ]

For current system taken in this course of study FC -72 and 1cst silicone oil has small interfacial tension of the order of , and gravitation acceleration on earth is and wavenumbers starting from . Introducing these values in above equation shows that the ratio of interfacial term to gravity term was equivalent to 1:100. A liquid set for example water with silicone oil will show more effects for interfacial tension variation. 

Effect of gravity: Simulating Faraday instability in microgravity

Space applications like vibrating propellant in rocket engine have variable acceleration. The gravity effects have been studied historically in ISS (International Space Station) and parabolic flight. Decrease in gravity causes tongues to shift rightwards to higher wavenumbers and forces the widening of tongues. Interestingly, the rate of spreading of the first sub-harmonic tongue was much higher in comparison to higher harmonics. This movement causes smaller wavelength and spreads nodes causing higher probability of sub-harmonic waves as well the decrease in mode width. Thus, a reduced gravity solution will have continuity of modes and will behave much more like an infinite boundary system. 

Description of the experimental set-up

The experimental system considered in this study used a transparent cell containing FC-72 and 

Computer

The circulating water for the control of the liquids' temperature was actuated by a pump. The desired temperature in the circuit (with a stability of ± 0.010 °C) was achieved using a PID (proportional-integral-derivative) controlled immersion heater. The heater controller received temperature feedback from a Pt-100 probe suitably located in the circuit. Aside of the heating, the water circuit was also equipped with a feedback controlled Peltier element for cooling the liquids when required.

The cell along with the enclosure for the circulating water was mounted on a vertically oscillating platform (the total weight of the cell with enclosures and back lighting is around 3kg)

which was actuated by a linear drive with servo control of speed (see Figure 3.2 (a)). The motion of the drive was computer controlled and allowed a maximum acceleration of approximately 3g with frequencies up to 15 Hz. The amplitudes (A) and frequencies (f) were observed to be within 2% and 0.1% of their respective set values.

The onset of the instability was recorded using a high speed camera (Photron SA3 60K M2). The illumination for the imaging process was obtained through a LED light placed behind the cell, on the moving platform. Generally, the motion of the interface was captured at 250 images per second with an exposure time of 5 μs. The recorded images were digitized and calibrated into length scales from which the size of the instability (wavelengths) was measured. The error in wavelength measurements was estimated to be about ±5% based on the processed images. In order to maintain the saturation of fluids with respect to solubility, they were shaken vigorously (A = 30 mm and f =3 Hz) for 30 s followed by a wait time of 30 s before each experimental trial.

This was necessary to obtain repeatable results from the experiments. The detailed experimental equipment explanation can be seen in Appendix A. The analyses of miscible fluid systems were difficult with experimental challenges; an exact repeatability carries a demanding task in experimentations. In order to have the same initial conditions prior to experimental runs, an experimental protocol consisting of vigorously shaking the cell was set. This ensured the suppression of any eventual stratification of the two liquid layers (whose degree of miscibility increases with temperature) near the interface. Ideally, a binary fluid system should have a step transition of mixing with consolute temperature to make initial conditions less important and increase importance of interfacial thickness and tension.

Choice of Liquids

The steady existence of molecular diffusion and mixing with the rise of even slightest amount of temperature makes the meaning of exact initial conditions for experiments indefensible. The fluids considered in the present experiments have an important characteristic of being miscible above a certain temperature (consolute temperature) and partially immiscible below it. Thus, when the fluids temperatures were lowered, they become partially immiscible and separable into two distinct entities. The temperature can be subsequently increased to make them completely miscible, giving exact similar conditions before start of each experiment which could be used to analyse the influence of parametric oscillations on the evolution of instabilities. As well as, a single charge of fluids can be repeatedly utilized for all the planned experimentations.

Also, by controlling the temperature of the fluids, it was possible to alter the mass diffusion coefficient of the fluids, which was the most important property that governs the fluids mixing process. In literature it was shown that the sidewall stresses (viscous and capillary) can control the overall system dissipation, even when the capillary effects were lessened by addition of surfactant, as in the experiments of [START_REF] Henderson | Single-mode Faraday waves in small cylinders[END_REF]. FC72, a dense and inert fluorinated hydrocarbon, and 1.0 centistoke silicone oil produce an interface with very small negligible meniscus. Angling of the experimental cell resulted in uneven and rapid reappearance of the interface to a flat position, signifying low capillary sidewall stresses.

Experimental repeatability

The chosen binary fluids have a unique property of a continuous process of mass transfer. The rate of mass transfer was dependent on the system temperature, thus making the fluids' densities, viscosities and surface tension changing with temperature. For the current fluid system, densities and viscosities were measured with temperature and shown in that fluids be in an equilibrium condition with respect to the imposed temperature of the system before the initiation of vibration. However, it was difficult to attain the perfect initial condition for each experiment for a miscible fluid system such as the one used in the present experiment. The process of getting the same initial conditions makes the analysis of partial miscible fluids systems at any temperature difficult and long. The steady existence of molecular diffusion and binary fluid mixing with the rise of even a slightest amount of temperature makes the meaning of exact initial conditions for experiments indefensible. For this purpose, a process of rigorous equilibrium mixing (shaking the fluid system at given amplitude and frequency) followed by fixed waiting time has been achieved before each experiment. Densities and viscosities of fluids have been measured in these equilibrium conditions. Initial condition was used to vibrate the cell rigorously at amplitude of 25mm with frequency of 3 Hz for a period of 30 seconds (to cause complete mixing of fluid by vibrating well above critical threshold of system). It was done so that the two liquids could be in equilibrium state with the desired temperature of experiment and allow the interface to stabilize for 30 seconds before it starts perturbing the interface in the experiment. Timer was included in the program to avoid any possibility of manual errors. For the miscible case similar condition was needed. Thus, Initial condition was set up at 41 ⁰C for miscible experiment followed by raising the temperature up to film on the sidewalls that helps in maintaining the low sidewall stress and results into a lower instability threshold in comparison to the conditions when film was not present. It was important that wetting condition was similar for all experiments to offer constant stress from sidewalls for the phenomena. This was achieved with a constant waiting period after a rigorous shake of fluids.

Results and Discussion

For a particular fluid state and oscillation frequency, the essential task involves identifying the lowest excitation amplitude for which a discernible interfacial wave occurs. While it is conventional to expect a continuum of sub-harmonic modes in a laterally infinite system, the present confined system is characterized with both harmonic and sub-harmonic modes occurring over discrete bands of frequencies, as finite system only allows certain wave number to appear which is defined by cell dimensions. For a rectangular cell allowed wavenumbers can be defined as (Bejamin and Ursell, 1954),

√

Where m and n are integers and 'W' and 'L' are dimensions of rectangular cell in the plane of interface. The gap between allowed wave number gives birth to discretized solution of the problem. Within each discrete band, the critical amplitude attains minima at the natural frequency of the mode. Such a behaviour occurs on the account of a trade-off between the variation of inertial forces and the viscous dissipation, both of which increase when the imposed frequency increases. The former is destabilizing while the latter is stabilizing. The variation of inertial forces is feeble at lower frequencies and it requires a large acceleration for the instability to originate. At higher frequencies, the viscous dissipation however becomes predominant and a large imposed acceleration is once again required to attain criticality. Their cumulative effect ultimately leads to minima of the critical acceleration/amplitude at the natural frequency.

Similar to the observation of Batson et al. (2013), the high wetting nature of silicone oil allows the liquid interface to smoothly slide over the side walls. As current cell in question has dimension 35mm in long side of plane of interface and 5mm in short side of plane of interface, short side dimension is negligible enough compare to longer side for early mode appearance.

Hence, we can safely assume that the flow features are primarily two dimensional except for the occurrence of a small meniscus which gives rise to persistent harmonic excitation of the interface even before the occurrence of the actual Faraday modes for the observed frequency (as shown in figure 3.5, there is no mode observed in the width direction of the cell)The meniscus waves do not have any detrimental effect on the prediction of thresholds for the subharmonic modes for whom the bifurcation is sub-critical. The non-linear growth pattern of these detuned modes results in a perpetual growth of interfacial perturbation until the discernible interface wave ruptures into some irregular pattern. Hence for any amplitude larger than the threshold, the instability manifests itself in a matter of time and makes the prediction of the critical threshold convenient. However the time for the instability to become noticeable is inversely relative to the closeness of the applied amplitude to the threshold. Contrastingly for a harmonic mode, the bifurcation is supercritical and the amplitude of the interfacial wave saturates at a value proportional to the excessiveness of the imposed excitation to the threshold. This complicates the prediction of criticality in harmonic cases closer to the threshold; where the meniscus wave might have amplitude larger than the actual Faraday wave near to critical threshold. Hence, observing the convergence of the Faraday wave at threshold becomes difficult and it introduces a bit of uncertainty in the predicted criticality for the harmonic modes.

Immiscible Instability threshold

Experiments were performed for immiscible instability threshold below consolute temperature for temperature range 25 ⁰C -42 ⁰C as explained above and are shown in Figure 3.4. The mismatch observed in experimental threshold to theoretical threshold cannot be explained with the theoretical approach presented in this thesis (see Chapter 2). Imposed oscillation frequency and the lowest possible excitation amplitude for which a distinct visible interfacial wave occurred was measured and recorded. These experiments had shown the shifting of modes towards lower frequency as predicted qualitatively by the theory [START_REF] Benjamin | The stability of a plane free surface of a liquid in vertical periodic motion[END_REF]. Figure 3.4 shows the critical threshold amplitude, A, (on y axis) obtained for frequencies ranging between 3 and 8 Hz (on x axis) at five different temperatures, viz., 25 0 C, 38 0 C, 40 0 C, 41.5 0 C, and 42 0 C. In this temperature range, the interfacial tension coefficient and density contrast drastically diminished as the temperature of the fluids approached the consolute value (42.5 0 C). The current confined system at low frequencies was characterized by both harmonic and sub-harmonic modes occurring over discrete bands of frequencies. This was in contrast to a continuum of sub-harmonic modes that were observed in large aspect systems. The various modes have been labelled as A, B, C, etc., and shown in Fig. 3.5. Here, mode B alone was harmonic and it consists of two and half waves. The rest of the modes were sub-harmonic and feature as multiples of the half wave, i.e., A consisted of half wave, C consisted of a full wave, D consisted of one and half waves and so-forth. The different modes interconnect at codimension points where the pattern consists of a superposition of both modes, dynamically changing from one state to the other. Within each of the discrete bands, the critical amplitude attained a minimum at the natural frequency of the mode. This phenomenon is equivalent to that of a simple pendulum whose fulcrum is subject to enforced pulsations. The response amplitude of the pendulum bob reaches a peak value when the forcing amplitude of the support crosses a threshold. This critical amplitude primarily depends on the forcing frequency and attains a minimum when the parametric frequency equals the system's natural frequency.

For the present case of Faraday instability, a similar effect produces a minimum of criticality at the natural frequency of each mode and that frequency is called tuned frequency for that mode. Generally, any perturbation of the fluid interface will produce ingress of heavier fluid into the lighter fluid along the crests and the case vice-versa along the troughs. The inertial forces acting on these masses induced by the imposed acceleration provoked the onset of instability and effects such as gravity, interfacial tension and the viscous diffusion acted as restoration forces that bring back the interface to its initial flat condition.

In the case of the present experiments where the increase in temperature led to the decrease in both the density difference (note that the density of each layer changes on account of the solubility and depends on temperature, see figure 3.3a) and the interfacial tension, the earlier discussion in section 2.3, aids in understanding the fluid behaviour. The impact of changing fluid temperature on the onset characteristics has been depicted in Figure 3.4. An important feature that can be observed here is that the frequency band for each mode shrunk with an increase in the fluid temperature. This shrinkage was due to a drift of modes toward lower frequencies of excitation. In other words, the natural frequency of each mode became smaller. This did not come to a surprise as reduction in both the density difference and interfacial tension ought to lead to reduction in the natural frequency of each mode. system where the critical wavenumbers at onset for lower frequencies were small (see Figure 3.4), any change in the interfacial tension could not have a notable impact on the instability pattern. Therefore, the only significant contribution for the natural frequency came from the gravitational term, . It may be recalled that for resonant interfacial oscillations, there ought to be a match between the imposed frequency and the natural frequency of the system. Hence, for a given imposed frequency in the low frequency range, the gravitational term has to be maintained constant irrespective of the temperature of the fluids. This implies that any change in the density difference should come attended with an increase in the critical wavenumber and this is what is observed in the experiments. Only at high frequencies where the response wavenumbers are higher, the reduction in interfacial tension influences the instability.

The decrease in the interfacial tension is expected to be significant near the consolute temperature and the response wavenumber must become very large to maintain the system's natural frequency. The mode discretization therefore becomes difficult to discern and one can even expect a continuous change of wavelength with the frequency, for which the evidence starts to appear at 42 0 C (see figure 3.4). As far as the critical threshold is concerned, it is difficult to give its exact trend of variation at lower frequencies as the drifting of modes can correspondingly make a frequency either more stable or more unstable with respect to the temperature. One may see this effect for the frequency of 4.4 Hz at different temperatures in Fig. 3.4. However, a clearer pattern was apparent at higher frequencies where the curves moved towards a constant value of critical amplitude, independent of the frequency/mode.

Interestingly, this amplitude has shown an increase with the increase of temperature. In other words, the system actually became more stable with the reduction of interfacial tension (critical amplitudes decreases in Fig. 3.4). This behaviour might appear counter-intuitive as one would normally expect less stability in such situations. However, the selection of higher wavenumber that leads to larger viscous dissipation must play a stabilizing role. In other words, the instability brought in through the reduction of interfacial tension effects was overwhelmed by the viscous stabilization, particularly when the operating conditions were closer to the consolute point.

Another notable outcome of temperature change in the vicinity of the consolute value was the reduction in meniscus thickness which minimized the damping effects brought in by the meniscus waves.

In summary, we can clearly see from the ground experiments that the entire modes shift towards a lower frequency as the fluids' temperature is increased. In fact, this mode shift is what that might be expected upon inspection of the natural frequency given in equation 2.35.

However, both the density difference as well as the interfacial tension decreased with an increase in temperature and it was impossible to experimentally isolate the change happening due to one effect from the other. It was evident from the theory that the density difference plays a dominant role at low frequency and interfacial tension at high frequency.

Correction with viscous damping

To understand the physics behind these mismatches, sidewall stresses, contact angles, meniscus wave's effects were studied. In previous theoretical approaches such as [START_REF] Benjamin | The stability of a plane free surface of a liquid in vertical periodic motion[END_REF] & [START_REF] Kumar | Linear theory of Faraday instability in viscous fluids[END_REF][START_REF] Kumar | Parametric instability of the interface between two fluids[END_REF]Batson et al. (2013), meniscus waves and sidewall effects were neglected, which is in fact true for large size cylindrical cells. However the same cannot be said for small rectangular cell where damping coming from the sidewalls and internal damping within fluids motions affects the threshold.

A simple way to measure damping viscous effects is to measure the rate at which an excited mode decays once excitation force has been stopped. Thus the damping rate is measured over full grown wave decay over time under its own resistance to fluids. Viscous forces in liquids will force the instability to die out with time in the present case with the following equation, Where is the wave amplitude and is its initial value; 𝜂 is the experimental damping rate in the system. The exponential rate of decay is determined by the slope of the logarithm of the ratio of the wave amplitude ( ) scaled to the initial value ( ) and plotted against time for each frequency (see Figure 3.6). The experimental rate of damping can be plotted against frequency with corresponding modes appearing for that frequency as shown in Figure 3.7. [START_REF] Henderson | Single-mode Faraday waves in small cylinders[END_REF] made the first attempt at matching single-mode

(3.2)
experiments to a theory incorporating viscous effects. They performed experiments in large cylindrical cell with water as the operating fluid, using a surfactant to minimize the pinning of the interface to the sidewalls. The linear damping coefficient due to viscous effects in the bulk phases, given by [START_REF] Kumar | Parametric instability of the interface between two fluids[END_REF] and derived by Landau & Lifshitz (1987), ignoring interfacial effects, is given by,

𝜂 (3.3)
Where 𝜂 is the theoretical viscous damping rate used by [START_REF] Kumar | Parametric instability of the interface between two fluids[END_REF] for the wavenumber in the system of the two fluids with densities , viscosities and heights for fluids 1 and 2, respectively.

Figure 3.6: Measurements of linear damping rate at 25 ᴼC with various modes, "SH" means subharmonic mode and "H" the harmonic mode.

The theoretical curves in Figs. 3.7 were obtained by measuring the wave numbers corresponding to the applied frequency. The damping rate was found to be constant for a particular mode over a range of frequencies in the observed range. In rectangular geometry, the measured linear damping rate was found to be higher compared to the theoretical one.

This difference corresponded to the higher viscous damping rate which was incorporated in the theoretical model as an effective viscosity. The effective viscosity was defined as the value of Viscous damping does not only come from sidewalls and internal dissipation but also from bottom and top walls, where the wavelength of the standing wave is comparable to the container dimensions. The increase in effective viscosity drastically increases sub-harmonic threshold in comparison to harmonic threshold. Harmonic waves have frequency in synchronization to cell motion in contrast to subharmonic waves. Subharmonic mode influences the fluid flow on a larger extension than a harmonic one. Therefore, the effect of friction on the top and bottom walls is necessarily larger for subharmonic modes than for harmonic modes. Thus harmonic waves face much lower effects of fluid heights in comparison to subharmonic waves. However, introducing an equivalent viscosity to compensate for the lack of friction on the side walls will artificially exaggerate the friction on the top and bottom walls.

In the theoretical approach as explained in previous section, the contact angle between the interface and the side walls is assumed to be 90 o (on the wall surface). The present fluid system has been chosen with great care such that they provide a flat interface. However in these experiments it has been observed that the fluids make a small contact angle with walls, giving thus a larger sensation of the length for the fluid in the cell and corresponds to around 1-2mm / 3-5 % to the actual length of the cell. For a larger cell this deviation can be ignored but for the cell size as used in current experiments (L=35 mm), this deviation can cause noteworthy difference from theoretical calculations. This effect has been taken into account in the present calculations of the theoretical curves.

It shows that the viscous dissipation of the system for a finite size cell is dominated by walls and interfacial dissipative effects. [START_REF] Kumar | Parametric instability of the interface between two fluids[END_REF] pointed out in their analysis of a

single fluid layer open to air that if the wavelength of a standing wave becomes comparable to the filling depth, the dissipation from the bottom boundary layer becomes dominant and results in harmonic waves.

Experiments for the present cell were run at various temperatures and for complete range of frequencies in order to measure the decay of wave amplitude, once the excitation forces were stopped. The results helped us to understand the relationship between theoretical and experimental measured values of damping. As the mode number increased, theoretical and experimental viscous damping rate difference decreased. This was due to the fact that the wavelength considerably decreased and became negligible with respect to the cell size moving thus to an infinite size system. This observation was in line to the observation made by [START_REF] Hill | The Faraday resonance of interfacial waves in weakly viscous fluids[END_REF] who stated that as domain size became large enough the viscous damping diminishes. However it should be noted that the accuracy of the measurement of linear damping rate decreased with the increased in the number of waves. Data recording images had limited resolution and as the number of waves increased the accuracy of the measurement decreased.

Also for Mode A, inclusion of damping resulted in overshoots to the predicted threshold in comparison to experimental work. This is due to the fact that increased viscous damping results from boundary layer and bulk phase stresses. However for current theoretical results measured linear damping rates are naturally introduced via bulk viscous damping modelled by effective viscosities in the Navier-Stokes equations. For initial modes wall effects dominate as explained above but for higher modes wall damping effects diminish and bulk phase stresses start dominating.

Miscible Instability Threshold

Immiscible Faraday instability, as explained and analysed above, has been well studied and, with certain assumptions, provides a good prediction for experiments from theoretical work.

However miscible Faraday has generated very less attention in previous research work. This section is a brief description of miscible Faraday methodology, challenges and results in comparison to immiscible Faraday instability. It is important to understand that assumption of very thin interface as considered in immiscible fluids system is not true in miscible case.

In miscible Faraday instability the cell is initially in stable configuration with initial condition at fixed temperature below consolute temperature, then heated above consolute temperature (42.5 0 C) and let the interface grow for a required thickness for a fixed time with the diffusion process, and then after subjected to vertical vibrations. The initial phenomenon of the interface was observed similar to immiscible instability and grew itself to an extent which later led to the mixing of the liquids (see Fig. The miscible fluids situation was unlike immiscible Faraday with diffused interface and close to zero interfacial tension. In the miscible Faraday, the diffusion of momentum and species stabilize the diffused interface. Also distinct surface elevations or depressions do not exist in miscible fluids system in opposite for immiscible systems where these elevations exist due to inertial forcing from external acceleration. In its place the destabilization effect of short wavelengths is believed to occur from the transverse variation of density. In other words the destabilization of a diffuse interface in the presence of vibration is analogous to the Bénard instability where even an erstwhile quiescent layer that is stably stratified can experience sustained flow when subjected to inertial vibrations (Shukla & Narayanan, 2002). In such a problem, larger external acceleration results in small wavelength at the onset of the instability.

While immiscible system has a density jump on interface, miscible system has density gradient to initiate the instability. Near the critical threshold, immiscible Faraday instability reaches a steady state. However in miscible case, instability destroys itself, mixing fluids by convective forces eventually. Once the instability sets in, the gradients begin to weaken as a result of convective mixing. This in turn causes the waves that characterize the secondary motion, to disappear. In other words the miscible layer Faraday problem is necessarily transient and can never attain a periodic steady state unlike its immiscible counterpart.

When this interface was subjected to vibration, concentration gradients were reduced, wave structure vanished and liquids formed a mixture layer in between two pure solutions. Miscible In the miscible fluid set, the diffusion of species stabilized the mixing region in contrast to immiscible fluid set in which interfacial tension stabilized the system. As in the experiment heavier liquid was kept below and lighter liquid was filled in the upper part of the cell, so that in ground based experiments, natural convection oppose the mixing of solution with diffusion (stabilizing buoyancy force). Thus, the effect of gravitational acceleration matched with previous observations that smaller diffusion layer gives the effect of delayed development of instability. However, for higher gravity level a larger gradient of density can exist and can generate higher amplitude of wave. While inertial forcing promotes destabilization of the interface in immiscible case, miscible case has density variation to achieve the same effects.

It has been shown in Figure 3.11, sets of threshold data for cells filled with FC72 and 1 cSt silicone oil obtained in miscible fluid experiment at temperature T = 43.82 ⁰C (well above consolute temperature value which is equal to 42.7 ⁰C) with initial condition set at immiscible at temperature T = 41 ⁰C. Frequency ranges were chosen to best showcase discretization. At higher frequency, the system behaved likes an infinite system and modes started to change frequently without much change in amplitude. Lower bound of frequency is restricted with experimental constraint for achieving amplitude. However the lowest mode achieved corresponds to one wave, representing the second mode. Only sub harmonic modes were observed. The experimental data were differentiated with mode number and corresponding mode images are also presented in Fig. 3.11 (b).

Comparison between immiscible and miscible systems

The classical form of the Mathieu equation (discussed in section 2.1), depicts the parametric excitation of a linear harmonic oscillator. The dispersion law presented by [START_REF] Benjamin | The stability of a plane free surface of a liquid in vertical periodic motion[END_REF] shows that the square of the natural wave frequency of a Faraday system is determined by the fluid density and surface tension. For this particular fluid system density difference overpowers the effects of surface tension, thus giving importance to initial conditions used for miscible system. For results shown in 

Thickness of diffused interface in miscible fluids

Miscible experiments are also defined by thickness of interface before starting of vibration. This interface thickness depends on the waiting period. A constant waiting period was used to make constant interface thickness for miscible experiments. However its effects on the wavelength of the instability were of importance. Large waiting periods led to thicker interface and weaker density gradients and were found to be more unstable for defined amplitude. In simple words for defined vibrational amplitude, instability grew for lower value of frequency in long waiting period experiments. This has been shown experimentally in figure 3.13 below. 

Parabolic flight dynamics

Parabolic flights are widely used to create free-fall conditions for microgravity experiments on earth. It is easily accessible and provides cost effective interaction between the on-going experiment and researcher in zero-g environment. Though experimentalist in parabolic flight identifies gravity to be zero, the acceleration is changing in reality and the terms "microgravity"

and "zero gravity" are not thus technically correct.

Aerospace engineering has melodramatically enriched since the dawn of first human flight.

Aircrafts' pilots have become skilled in altering the forces and accelerations that passengers experience. Weightlessness is often used to describe the perception that astronauts experience during free-fall. Astronauts perceive themselves to be weightless because they are falling under the influence of the same gravitational field as the spacecraft, so there is no reaction force on the astronaut by the spacecraft. As per the Einstein's equivalence principle, no simple physical transducer can conclude if an applied acceleration is due to gravitational or inertial force and this includes the sensors in the human body also known as vestibular system that helps to keep us balanced and to give realization of directions. Zero-g parabolic flights provide similar free-fall conditions, providing experimentalist a ground to develop and collect initial data for ISS (International Space station) experiments.

For manoeuvring the parabolic flight, at a set point, the pilot gradually pulls up the nose of the aircraft and it starts climbing at an angle (see the sketch in Fig. 4.1 for the trajectory of the airplane for one parabola). This phase lasts for about 20 seconds, during which the aircraft experiences acceleration between 1.5 and 1.8 times the gravity value at the surface of the Earth, i.e. 1.5 -1.8 g. At an altitude of 7500 meters, with an angle of around 47 degrees to the horizontal and with an air speed of 650 km/h, moving from hyper-gravity phase to microgravity phase, the pilots manoeuvre to cancel the lift generated by the wing (angle of attack of the wing equals zero). While at the same time the flight engineer reduces the thrust from the engines to compensate the drag. This is because of the aircraft generating appropriate lift and thrust to produce the desired vertical and longitudinal accelerations, respectively. By following the above procedure microgravity levels of the order of 10 -2 g is obtained for the experiments.

Parabolic flights are prone to environmental conditions and are also limited by flight dynamics.

Flying in ever changing earth's environment generates some unwanted residual acceleration, which can be detrimental to physical experiments. The pilots are always trying to compensate for the disturbing forces from surrounding environment and engine vibration. As a result, the microgravity level attained in a parabolic flight has some deviations of the order of +/-0.05g at a frequency of around 1 Hz. Also mechanical vibrations caused by engines and shocks in the aircraft also exist and are noticeably higher due to the nature of the flight.

For some physical experiments even small disturbances in gravity level can affect results in great order, Faraday waves are an example of that. Section 4.3 carries out a case study for a particular parabola to study its effect on generated waves. The Faraday instabilities discussed in previous chapters have shown a great deal of dependency on gravity. It is thus interesting to understand how instabilities will behave in the absence of gravity. A relevant application of this behaviour is for the propellant dynamics in a rocket fuel tank, whereupon vibrations during take-off are known to induce Faraday initialized sloshing. Another example is related to spacecraft maneuvers done for the altitude control in orbitfor which spacecraft sends shorttimed bursts of gas in order to control their orientation, in azero-g environment. In Faraday instability, gravity not only possesses a destabilizing effect (similar to its role in the Rayleigh-

Taylor instability in half a period of vibration), but also its contribution to the natural frequency of a mode results in a shift towards higher wavenumbers when it is removed. were performed as well, but they have been found to be dependent upon initial conditions (see Chapter 3). However due to a very short period of two minutes between two parabolas of same series, it was difficult to maintain similar initial conditions.

Results and Discussion

Very importantly, for the purpose of understanding the evolution of Faraday instability in micro-gravity conditions, it is planned to carry out miscible Faraday instability experiments in the ISS. The additional benefit that comes out of the microgravity experiment is its ability to form exact diffuse interface between the fluids. Under terrestrial conditions i.e. normal gravity, there is always an alteration of the mixing region due to the convection associated with change of temperature of the liquids. This can be completely eliminated in the zero-gravity conditions.

Carrying out these experiments in the ISS is necessary due to the fact that the thermal time scales are generally large and so, performing the desired experiments within the short time offered by parabolic flights, is very challenging. Thus in zero gravity time period of 15 -20s in the parabolic flights gives only an estimated range for the threshold. It may be noted that an important challenge that will arise in zero-gravity conditions corresponds to the de-mixing of the liquids. In the absence of the gravity, there is no natural motive force that causes the liquids to separate. In this regard, some other means of separation have to be tested and implemented. Hence, various preparatory steps have to be carried out in the parabolic flights before performing the full scale experiments in the ISS. Correspondingly, different aspects of There is a crossover frequency below which the system was found to be destabilized in the absence of gravity. The existence of crossover frequency is the result of the presence of higher wave number selection in a microgravity system than earth based experiments. The microgravity experiments therefore experiences much higher viscous effects at large frequencies, resulting in higher threshold amplitudes for instability. The present experiments clearly depict the existence of this crossover frequency and its drift to lower frequencies as the coefficient of interfacial tension is decreased.

g-jitter in Parabolic Flight

This section focusses on understanding the influence of g-jitter on the evolution of Faraday In the present thesis the Faraday instability generated as a result of parametric excitation has been experimented and validated with analytical work. An intriguing experimental analysis has thus been performed to characterize Faraday waves in such regimes.

The reduction in capillarity was achieved through thermal control of a novel binary liquid system, whereas the vanishing gravity force condition was realized in a parabolic flight environment. The critical external acceleration required for the onset of instability has been generally observed to decrease in these conditions, although the corresponding critical wavelength reduces drastically so as to make the resulting viscous dissipation compensate for the loss of stability arising from the reduced capillarity and gravity forces.

The current study specially aimed to show the role of wall proximity and damping caused by frictional forces and sidewall stress for the small forcing frequency. A linear stability analysis based on Fourier-Floquet method was performed in order to get an understanding of the instability and how different parameters affected the threshold of the instability. In experimental observations, it has been validated that the assumption of stress-free sidewalls was not completely true and produced variation from theory specifically in small cell sizes. The reason came from the fact that the two liquids contacting the solid sidewalls inevitably produced a static meniscus, which emitted waves during vibration, and violated the assumptions of a flat interface and the simple viscous friction of the fluids on the wall are responsible for the discrepancy between our experimental results and existing stability analyses. The experimental data produced a precise intensity of these two effects, but they do not allow to discriminate between each component in the global discrepancy. We successfully measured the cumulative effect of both these effects (capillary waves from the meniscus and viscous friction at the walls) for the correction of the analytical model. This correction in the theoretical calculations with the viscous damping rate helped in achieving a better understanding for the prediction of the experimental critical amplitude for sub-harmonic and harmonic modes. This observation showed that the majority of the viscous damping was the result of boundary layer effects instead of internal damping for the first primary modes. For higher modes, the wall effects diminished but the bulk damping became dominant because of the increased choppiness of the waves. Viscous damping from top and bottom walls affected sub-harmonic or super-harmonic waves much higher in comparison to harmonic waves. For higher modes theoretical and experimental damping rates provided much better match thus reducing the need of viscous damping correction. From the analysis and results above one could state that the container size needs to be at least five times to the wavelength produced in the system in order to remove viscous damping effects such that the system could act as an infinite size system. A damping coefficient derived from linear theory for unbounded containers with specific wave numbers could be used to describe any discrepancies between a linear model in bounded containers and experiment. For a confined rectangular geometry, damping correction provided a way to predict the corrected threshold with theoretical calculations based on linear stability analysis. the reduction of interfacial tension with temperature increase played a counter intuitive role of making the system more stable at high frequencies due to the choppiness of waves. The explanation for this could be the secondary effect of change in the critical wavelength, which caused an increase in viscous damping, overwhelming the primary effect of change in interfacial tension.

The reduction in interfacial tension was obtained by changing the temperature of the binary fluids pair which also altered the density difference between the fluid layers. Under terrestrial conditions, the neutral curves representing the variation of critical amplitude with frequency shifted leftwards and it was difficult to associate this behaviour solely to the variation in density.

Further this work can be progressed with numerical analysis, for which phase field modelling can be an excellent choice. The phase field approach delivers a continuum thermo dynamical model able to treat multi-phase problems. An auxiliary variable -the phase field -is added to the usual set of state variables in order to provide an explicit indication of the dynamic of the phase. This parameter may take different values for different phases and undergoes a rapid but smooth variation in the interface region. In mono-component systems the density ρ (scaled by the liquid density) is the natural order parameter: ρ=1 designates the liquid region of the system and ρ≈0 the gaseous phase.

In the phase field model the interface is introduced by gradients of the phase field. The formalism is based on a free energy, giving complete setup as a single homogeneous phase. For a system in equilibrium and without interfacial mass exchange the free energy density has the form of a symmetric double-well potential with two minima corresponding to the two alternative phases. The advantage of the proposed method is that we do not need any interfacial condition (continuity of stress, kinematic condition…) in order to model the interface of the two fluids. 

A.2 Electromechanical shaker

The cell along with its coolant enclosure was mounted on a vertically oscillating platform which was actuated by a linear drive with servo control of speed (Yaskawa SGMPH Sigma II 04AAA41D). The shaker was vertically mounted with eight fastening points to the experimental frame. The motion of the drive was computer controlled and allowed a maximum acceleration 

A.3 Water Bath circuit

The circulating water was actuated by a micro pump with maximum flow rate of 2800ml/min with a high circulation in order to provide real time temperature change in the cell. The desired temperature in the circuit (with a stability of ± 0.01 0 C) was achieved using a PID controlled immersion heater. The heater controller received temperature feedback from a Pt-100 probe suitably located in the circuit (see data circuit A.6). Besides heating, the water circuit was also equipped with a feedback controlled Peltier element for cooling the liquids when required. The The PR-59 controller was linked to the computer using a RS-232 (standard for serial communication transmission of data) interface for remote control of the temperature. Along with the control of current to the Peltier module, the PR-59 also controlled the speed of the fan utilized for cooling the heat sink. The power to the controller was provided by a switching power supply of 156 W (24 VDC and maximum current 6.5 A). In addition to the control provided by PR-59, the setup also involved three other mechanisms to safeguard against any overheating. The first one involved the NC thermal switch which was placed on the side of the water block, so that the current to the TEM module would be cut-off if the local temperature on the block surface goes beyond 50 ⁰C. Secondly, a thermocouple (J type) was placed on the heat sink to additionally measure its temperature. Using the temperature measured from this probe, the current to Peltier module was either switched ON or OFF by a secondary digital temperature controller. Thirdly, a current fuse (8A maximum) was utilized to limit the current to the TEM. In principle, the above cooling circuit was provided as an auxiliary mechanism to The actual control of the circulating liquid's temperature was achieved through a small immersion heater (diameter 6.5 mm, length 40 mm, Voltage 230 V and power 50 W) that was inserted inside the water-block. The water from the exit of this block was directly fed into the cell chamber where the desired temperature of the liquid had to be maintained. The temperatures at the inlet and the exit of the cell chamber were measured using PT-100 (Platinum Resistance) resistance thermometers. Using the measured outlet temperature of the water-block, the current supplied to the heater was controlled by an i-Series 1/16 DIN PID temperature controller.

The DC pulse feedback generated by the controller (based on the water temperature) was utilized to actuate a Solid State Relay (SSR) which regulates power to the heater. As a safety precaution, the current to the heater was routed via a fast fuse of rating 1 Amps. In addition to the safety provided by the temperature controller for over-heating, two reversible thermal switches placed on the top and the sides of the water-block were utilized to restrict its surface temperature below 50 ⁰C.

In order to understand the thermal transience of the liquids enclosed within the cell, the outlet temperature at the chamber exit was also measured by another i-Series 1/16 DIN PID temperature monitor. The temperature values measured by both the controller and the monitor were logged on to a computer via RS-232 link for both storage and remote control purposes. It may be noted that the overall coolant circuit was realized using double silicone flexible tubes. The maximum volume of water that was used in the circuit was 200 ml and the maximum temperature that was attained by the water was less than 50 ⁰C.

In order to safeguard from overheating, two thermal switches with a cut-off temperature of 50 ⁰C were positioned on the water block surface close to the heater. The protection for the Peltier assembly was derived from the thermal switch positioned on the side of the water block.

In addition, a J-type thermocouple was positioned on the heat sink which controlled the current to the Peltier element through an ON-OFF controller. 
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  Figure 1.1: Faraday instability as observed by a) Edward and Fauve (1994) b) François Gallaire et al. (2017) c) W.[START_REF] Batson | Faraday waves in small cylinders and the sidewall non-ideality[END_REF] 
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  et al. (2009), Amiroudine et al. (2012) and Diwakar S.V., et al. (2015) presented results of experimental and numerical model with good qualitative and quantitative

  Figure 2.1: An infinite bilayer system

  Fig 2.2(a). For other values, the response " " can be periodically stable as shown in Fig 2.2(b) also called as critically stable and completely stable in response to vibration as shown in Fig 2.2(c).

Figure 2

 2 Figure 2.2: (a) Unstable, (b) critically stable and (c) stable interface oscillation for an ideal fluid.

  Fig 2.4).

Figure 2 . 4 :

 24 Figure 2.4: Sketch of the geometry for the linear stability analysis for Faraday instability-Twofluids infinite bilayer system.

  is to derive the normal and tangential stress boundary conditions fitting at a fluid interface defined in terms of interfacial tension . Consider an infinitesimal surface area closed by a contour and forming an infinitesimal volume. Forces present in this tiny body are inertial forces associated with acceleration of fluid within small volume balanced by body forces acting on fluid within the infinitesimal volume, hydrodynamic force exerted at the interface by the fluid from both sides and surface tension force exerted along perimeter. Hence surface force must balance hydrodynamic force. Thus, the stress balance equation can be defined as hydrodynamic force equal to force exerted by surface tension along the interface, (2.12) where, Stress (force/area) exerted by the upper layer on the lower layer, Stress (force/area) exerted by the lower layer on the upper layer, are the stress tensors defined as ( ) Normal curvature force per unit area associated with local curvature of interface and

  Fig 2.6). The MATLAB code has been made accessible in appendix C.
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 2 Figure 2.6: Critical threshold amplitude for infinite boundary system for a bilayer problem. All symbols define different modes.

  Figure 2.7: Representation of the different modes of the finite sized cell in the amplitudewavenumber diagram for immiscible fluids system and in ground-based cases for FC-72 and 1 cSt silicone oil at 25 ⁰C.

Figure 2 . 8 :

 28 Figure 2.8: Minimum critical thresholds and markers and colours represent modes T=25°C. (For cell size 35mm (L) x 5mm (W) x 29.5mm (H))
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  Figure 2.9: Decreasing density difference for FC-72 and 1cst silicone oil (top to bottom) [μ 1 =20.0 cSt and μ 2 = 12.8 cSt, γ = 2.45 dyne/cm] (a) (b)

  Communication) with variation of the fluid's temperatures. A qualitative match of Diwakar et al. (Private Communication) results in decreasing density behaviour validating the mixing phenomenon present in binary fluid system.

  Figure 2.10: Increasing Viscosity (a) μ 1 = 1.00 cSt, μ 2 = 0.64 cSt (b) μ 1 =10.00 cSt, μ 2 = 6.40 cSt (c) μ 1 =20.00 cSt and μ 2 = 12.80 cSt

  Figure 2.11: Decreasing Interfacial tension from (a) γ = 2.45 dyne/cm, (b) γ = 0.78 dyne/cm and (c) γ = 0.11 dyne/cm (values taken are predicted values with temperature variation).

  was crucial to have an understanding of the instability and parameters affecting instability. The experimental work confirmed prediction of theory qualitatively & quantitatively and the analytical study gave an insight in understanding physics behind the instability. This has been done using an electro mechanical shaker with a pair of binary fluids. Binary fluids pose a very unique property of being soluble in each other depending on the temperature and are completely miscible above consolute temperature. At below and near the consolute temperature, the surface tension between the two fluids tends to zero and so does their density difference. The results had been explored to investigate the effect of vanishing surface tension and the reduction of density difference in the development of the instability. The effect of confinement and the gravity on the development of the instability had also been investigated. The results were then compared to the theory. It has been shown that in experiments the assumption of stress-free sidewalls was not feasible and thus produces variation from established theory specifically in the vicinity of boundaries. Two liquids contacting a solid sidewall inevitably produces a static meniscus, which emits waves during vibration, and violates the assumptions of a flat interface. Also rectangular geometry produces corner stresses which were not taken into account in linear stability analysis. Fluid shearing at the sidewalls and capillary hysteresis are other examples of complex stresses which arise in real systems and must be considered. Experiments and theory of Faraday instability are observed over a range of temperature in which a choice fluid system goes from immiscible to miscible character.

1. 0 Figure 3 Figure 3

 033 Figure 3.1: (a) Experimental Cell (b) Experimental cell installed in setup

For

  analysing two fluids Faraday instability, a liquid set was necessary which (i) forms an interface that glides across the container wall, representing a minimization of the associated capillary sidewall stresses or any disturbance generated by wall effects and (ii) produces an interface with a minimum meniscus in order to achieve a near flat interface and reaches nearest possible assumptions of theory. Another important and primary goal was to have a binary fluid of accessible consolute temperature (well below the boiling temperature of fluids) and also not toxic in case of leak in parabolic flight campaign and for future experimental use in ISS (International Space Station). The meniscus waves produced by sidewalls lead to parasitic surface ripples which disturb the parametric waves generated from the vibration force. A binary fluid system consisting of Perfluorohexane (FC-72), a dense and inert fluorinated hydrocarbon, and Octamethyltrisiloxane (1.0 centistoke silicone oil), produces an interface with very small negligible meniscus. The slight pinning was verified by angling the experimental cell in an even position in which case a rapid (less than 1sec) reappearance of the interface to a flat position could be observed, which signified low sidewall stresses. Low surface tension (0.77 mN/m at T = 25 0 C corresponding to experimental value) was useful in reducing the capillary sidewall stresses. Low surface tension also leads to minimum meniscus and an almost not pinned triple contact line at wall. Silicone oil also forms a tiny film on sidewall around FC-72, making the interface floating almost stress free on side walls. The fluid consolute temperature was 42.5 ᴼC which is well below the boiling temperature of more volatile (FC-72) component of fluid system (for which boiling temperature is 56 ᴼC).

  Fig 3.3(a) and 3.3(b) respectively. The measurement of both densities (top and bottom fluid systems) clearly shows the mass transfer of fluids (the density of the top fluid phase was increasing even if temperature increases showing the partial miscibility of the two fluids). A complete mixing arises at consolute temperature (42.7 ᴼC). For the repeatability of experiments it was necessary

  43.82 ⁰C (to achieve conditions of parabolic flights for miscible experiment) and wait time of 2 minutes and 20 minutes for two different sets of data. Waiting time permits to control the interfacial thickness and density gradient due to diffusion, before starting the experiment.Experiments were performed to measure density and viscosity values of the binary fluids used in the system. For this reason, fluids were mixed in ratio of 1:1 by volume and put into temperature bath for measurement of density and viscosity values as shown in Figure3.3.

  Figure 3.3: Experimental measurement of (a) density values (b) viscosity values (c) Interfacial tension with temperature (top and bottom phase fluid were in equilibrium)
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 34 Figure 3.4: Immiscible threshold experiments compared with analytical solution (see Chapter 2).

Figure 3 . 5 :

 35 Figure 3.5: Observed Experimental modes

  viscosity which offers the same amount of resistance to the fluid motion in the theoretical model. The effective viscosities were measured from Figs. 3.7 and Eq. 3.3 by considering a mode in a band of frequencies for which the damping amplitude rate was constant to get the effective viscosities and , knowing , , and .

Figure 3

 3 Figure 3.7: Measurements of linear damping by measuring slope of viscous linear damping rate as a function of frequency. Plots are given for critical amplitude.

  Experimental results have been compared with modified analytical solutions at complete temperature range (25 ᴼC, 38 ᴼC, 40 ᴼC, 41.5 ᴼC, 42 ᴼC) in Fig.3.8. Figure3.8 shows clearly a better match between theory and experiment and validates the measured viscous damping rates which quantitatively influence greatly the input of effective viscosity in the linear model.
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 3 Figure 3.8: Direct comparison between experimental data and the theoretical results based on linear stability analysis with viscous damping correction

  Figure 3.10: Development of Faraday instability in miscible fluids, instability destroy itself and result in complete mixing

  Figure 3.11: (a) Experimental thresholds for a bilayer of FC72 (h1= 12.75mm) and 1 cSt silicone oil (h2=16.75mm) in a 35mm*29.5mm*5mm cell. Data points differentiated with colour and marker indicate the excited mode with initial conditions defined at 41 0 C and waiting time of 2 minutes (b) Interfacial modes of excitation at onset. All modes observed are sub-harmonic.

  Figure 3.11 initial condition was set at temperature T = 41 ⁰C. It is thus necessary to compare immiscible fluid system results at temperature T = 41 ⁰C with miscible fluid system. From Figure 3.12 it became evident that the initial condition used for experimental repeatability played an important role in miscible experiments results. Miscible experiments results obtained with initial condition of temperature T = 41 ⁰C, fits well with results of immiscible experiment results at temperature T = 41 ⁰C with miscible fluids results slightly unstable in comparison with the immiscible ones This comparison confirmed the theoretical deduction that density difference plays a much greater role in determining the threshold and wavelength.However miscible Faraday wave's critical threshold showed a little shift when compared to its immiscible part. As shown in the figure3.12 miscible Faraday requires a less vibrational energy (Aω 2 ) in comparison to immiscible fluid. This behaviour is explained by the fact that vanished interfacial tension in miscible fluids and lower density gap in between fluids make the system more unstable which has been shown as stabilizing agent in the previous chapters.

Figure 3 .

 3 Figure 3.12: Comparison of miscible system to corresponding immiscible system with waiting time of 2 min

Figure 3 .

 3 Figure 3.13: Comparison of miscible system with different waiting period
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  series of immiscible and miscible experiments were performed in CNES Parabolic flight campaign to determine behaviour of Faraday instabilities in gravity free environment as the Faraday instability is a demonstration of capillary-gravity waves. Current set of binary fluids gives a unique opportunity to understand its behaviour when both the capillary and gravitational effects vanish. An experimental study has been performed and discussed in previous sections where the reduction in capillarity is achieved through the temperature increase of the binary fluid system whereas the microgravity condition was realized in a parabolic flight environment. Interestingly, in microgravity environment and low surface tension region with thermal control results into a system where wall boundary effect diminished and continuum of modes are observed. Only certain experiments are performed in parabolic flight limited to time availability in parabolic campaign. Certain miscible experiments

Faraday

  Figure 4.2: Critical threshold amplitude measured in micro gravity conditions in comparison with terrestrial experiments at temperature for (a) T = 38 ⁰C, (b) T = 40 ⁰C and (c) T = 41.5 ⁰C.

  instability in micro gravity environment. The realization of zero gravity conditions is made possible by virtue of the aircraft's parabolic path wherein the outward centrifugal force exactly balances the gravitational pull on the aircraft and its occupants.Diwakar et al. (Private communication) have correspondingly shown that for low frequency excitation, the removal of gravity destabilizes the fluid layers quickly though the response waves have a lower wavelength that should have led to viscous stabilization. Incidentally, a deeper characterization of the instability behaviour in parabolic flights is complicated by these two important factors.The first issue concerns the short zero-g time window available with the parabolic flights (around 20s). Correspondingly, a precise prediction of the onset threshold of Faraday instability is not possible. As the time required to observe a tangible interfacial wave increases drastically when the threshold is approached, only a tentative range for the threshold can be estimated within the time of approximately 20s provided by the parabolic flights. The second and more severe issue concerns the ever-present errors in flight dynamics whose influence on the Faraday waves form the primary focus of this work.Ideally, the parabolic flights are meant to emulate a perfect zero-gravity condition even within the earth atmosphere. However, various factors such as atmospheric turbulence, mechanical vibrations caused by engines etc., make it challenging to create an ideal zero gravity environment. As a result, the microgravity level attained in a parabolic flight deviates of the order of +/-0.05g due to g-jitters. Though such deviations are barely detected by the human vestibular system, their influence on physical experiments like Faraday instability is not negligible. As the natural frequencies of the fluids are constrained by the imposed frequency during resonance, any perturbation in the gravity levels is immediately reflected in the wavelength of the Faraday waves. In the present work, the influence of these g-jitters has been analysed for different imposed frequencies and fluid temperatures. Correspondingly, one such scenario is illustrated in Figure4.3. In Fig. 4.3 (a), the acceleration levels are shown in x, y and z directions for one parabola with the parameter excitation of frequency 5 Hz and amplitude of 96 2.25mm. The z-component of the acceleration is the highest. The errors are within 2%, 1.5% and 1% in Z, X, and Y directions, respectively.

  Figure 4.3: (a) The different axes of the airplane represented by normal, longitudinal and lateral in Z, X and Y directions respectively (b) Acceleration data in a real-time parabola where G z , G x and G y are the acceleration perpendicular to base plane, in direction from tail to front of aircraft, and in the direction from left wing to right wing when looking into cockpit direction,

For

  miscible experiments the choice of binary fluids permitted to study different cases of miscible fluid instability without filling again the cell which is impossible in the short time parabolic flight as well as it allowed to return to exact similar charge conditions before starting of each experiment. It provided some new understanding of the physics of the capillary-gravity wave phenomenon. The value of surface tension coefficient reduced in the immiscible regime and approached to zero in a miscible system as the temperature of the fluids system was gradually increased to the consolute temperature. The system, thus uniquely provided the opportunity for understanding the sole influence of surface tension coefficient on Faraday instability at the cost of very marginal change in the viscosity values. The zero-gravity experiments unveiled the dual role of gravity and interfacial tension on the evolution of Faraday instability. Comparison of terrestrial experiment with parabolic flight experiments has shown the existence of a crossover frequency, below and above which gravity plays opposing roles. Increasing the temperature in parabolic flight environment resulted in lowering this cross-over frequency. Under microgravity condition the energy required for the appearance of instability drastically reduced and the discretization of modes disappeared even in Hele-Shaw cell for a fluid pair with low interfacial tension. However in the experimental sets,

  Figure A.1: Experimental Cell (a) Schematic diagram (b) Test cell with liquids (c) Inside confinement for flow of coolant water (d) Double confinement for parabolic flight

  Figure A.2: (a) Pictures of shaker configuration and its fixation in the rack. (b) Servo motor

  Peltier element was to provide necessary cooling of water in the circuit. The thermoelectric module (TEM) had a maximum power rating of 153W (V max = 29.8 V; I max = 8.5 A). The temperature of the water flowing out of the water-block was measured using a NTC (negative temperature coefficient) Thermistor. The temperature feedback thus obtained from the Thermistor was utilized to control the voltage applied to the TEM by a PR-59 (Proportional Controllers-59) controller.

Figure A. 3 :

 3 Figure A.3: Schematic diagram of water bath circuit

  both PID controlled heater and Peltier operated Heat sink compensate for the extra heat that might have been gained by the flowing water from lighting systems etc.

  Figure A.3: Assembly for the control of circulating water temperature (a) Heat sink assembly (b) Inside view water temperature controller (c) Heating element Heat sink with fan
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  For observing the instability to occur as a transition from a quiescent state of no flow or no interfacial deflection to a state of flow, a perturbation is introduced in velocity, pressure and space in the above equations by considering an infinitesimal perturbation of order ε of this

	Perturbing stress balance equation 2.14,		
	⟦			(	) ⟧	(2.20)
	quiescent state,				
	Thus with equation 2.19 and 2.20, tangential stress can be balanced on the interface as,
						(2.15)
						(2.21)
	where the base state velocity and initial interfacial deflection are zero. Introducing these where is the horizontal Laplacian. The normal component of stress
	perturbations and solving for same order leads to no-flow base state leads to, becomes,
	(	⟦	)	⟧		(2.16) (2.22)
	Gravitational modulation is balanced by a vertical pressure gradient as shown below with Combining kinematic condition, stress balance and continuity equation and applying leads
	perturbed equation 2.17. For a small perturbation ( to,	),
	⟦				⟧	(2.23)
						(2.17)
	To map the variables from the unknown interface positioned to z = 0, a collection of the
	Again multiplying by normal vector, terms in perturbed equation 2.15 produces the linearized domain problem,
						(2.14) (2.18)
	Kinematic condition arising from the interface position and fluid velocity produced by stress
	where is the interfacial tension and 2H is twice the mean surface curvature. The stress balance at z=0 from equation 2.11 leads to,
						(2.19)
	where is the z-component of the velocity.		

The jump in normal stress across the interface must balance the curvature force per unit area, balance at the interface defined above in equation 2.14 gives a relation between pressure and viscous tangential stress difference balanced by the force arising from surface curvature.

  This critical amplitude can be plotted against frequency in a different map inFigs. 2.8 where each mode has its own cup shape node with its own distinct curves (seeFigs. 2.7 and 2.8). The subharmonic solution dominates and the system becomes less stabilized. Patterns at higher frequencies correspond to situations where the range of modes is effectively continuous. If a curve is drawn with all minimum values from Fig.2.8, it will represent the threshold curve in the absence of mode quantization (similar to curve in Fig.2.6). Local minima and maxima appear to correspond to different tongues in the amplitude versus wave number graph. A local minima in Fig. 2.8 (say f=6.8 Hz for mode 2) represents the minimum in Fig 2.7(d) in the amplitude versus wave number graph, thus can be called as tuned frequency corresponding to that particular mode. Change from sub-harmonic to harmonic wave or vice versa corresponds to the actual jump of critical threshold from one tongue to another one (see Figs. 2.7 a-

wave number (presented in this Figure with different colours). The cup size (amplitude and frequency band) decreases with the increase in frequency and nodes in critical threshold amplitude -wavenumber

FARADAY INSTABILITY IN A MICROGRAVITY ENVIRONMENT

The aircraft is surrounded by air and thus aero-dynamic lift, drag and thrust play a major role.

At this point the aircraft follows a free-fall ballistic trajectory, i.e. a parabola, lasting approximately 20 seconds, during which weightlessness is achieved. The path of parabola is a part with one of its locus located at the centre of the earth. The peak of the parabola is achieved at around 8500 meters, at which point the speed has dropped to about 390 km/h. At the end of the weightlessness period, i.e. again at 7500 m, the aircraft must pull out of the parabolic arc, a manoeuvre which gives rise to another 20-second period of approximately 1.8 g on the aircraft. At the end of these 20 seconds the aircraft again flies a steady horizontal path at 1 g, maintaining an altitude of 6000 m. The period between the start of each parabola is three minutes, i.e. a 70 second parabolic phase (20 seconds at 1.8 g + 3 to 5 seconds of transition + 20 seconds of weightlessness + 3 to 5 seconds of transition + 20 seconds at 1.8 g), followed by a 110 second period at steady level 1 g flight. Regardless of the aircraft trajectory including large (45°) pitch-up and pitch-down attitudes, the experimentalist feel a net force perpendicular to the floor of the aircraft.

Chapter 5

Conclusion and Perspectives

Appendix A: Detailed Experimental setup A transparent experimental cell containing the test fluids was mounted on an oscillating platform. The temperature of the fluids inside the cell was controlled by a coolant medium (water) flowing over the cell which was circulated using a small pump. The actual control of the temperature of water entering the cell enclosure was carried out by a PID (proportional integral derivative) controlled immersion heater. The controller received temperature feedback from a probe suitably located in the circuit (Check data circuit A.6). Besides this heating, the water in the circuit was also cooled at the liquid-to-air heat exchanger run by a Peltier element.

A.1 Experimental Cell

Current cell used a rectangular design having internal dimensions 35mm in length, 29.3mm in height and 5 mm depth and had been chosen carefully to get discrete system (see section 2.2.4) with low frequency. The outer dimensions of the cell were 55 mm in length, 55 mm in height and 7 mm in depth. The cell consisted of a polycarbonate frame which was packed in the middle of two 55mm x 55mm x 1mm sapphire glasses at the front and the back enabling faster transfer of heat between the circulating fluid and the fluids inside the cell.

The cell was pre-sealed before experiment using a threaded screw wrapped with Poly tetra fluoroethylene (PTFE). The cell also included a special provision chamber made out of sealed hollow copper rectangular capsule for volume compensation which might be required to accommodate the thermal expansion of the liquids (See Figure A.1). Owing to the boiling point of FC-72 being 56 ⁰C, the maximum temperature that was aimed to be realized for the fluids was fixed at 50 ⁰C. The cell was enclosed in a small chamber where coolant water was circulated to maintain the desired temperature in the liquids. During the parabolic flight this whole assembly was in-turn placed inside a secondary confinement. This acted as a safety reservoir for the liquids in case of any leakage. In order to adjust with the scenario of Cabin depressurization during parabolic flight experiments, a protective vents screw was installed on the outer containment to compensate for the pressure change.

A membrane-based degasify system was utilized on a by-pass loop for the initial degassing of the water so that the instability phenomenon inside the cell was not shrouded by the bubbles formed out of dissolved gases. Using the above mechanisms, the temperature of the fluids inside the cell was accurately modified above and below the consolute temperature. Before each miscible oscillatory experiment, the fluid temperature was set below the consolute temperature to obtain a perfect separation of phases between the fluids. Once perfectly separated, the temperature was once again increased to lead the fluids into the miscible state.

A.4 Data recording Equipment

The phenomenon was recorded by a high speed camera (Photron SA3 60K M2) which was connected to a computer with a Gigabit Ethernet port (see section A.6). All motion of cell and interface phenomenon were examined using time-space data of the images, obtained from high speed digital imaging with frame rates of up to 2000 fps. The illuminations for the imaging process were obtained through a 30 W LED light placed behind the cell, on the moving platform. The power for this LED was supplied by a LED driver of capacity 50 W. In order to prevent over-heating of the LED lights, they were mounted on two cooling aggregates which were ventilated by small 12V DC fans. The motion of interface in the following presented data was captured at 500 images per second with an exposure time of 5μs. The recorded images were digitized and calibrated into length scales from which the size of the instability (wavelengths) has been measured.

A.5 Electrical circuit

A schematic of electrical circuit of the experimental setup has been shown in figure below. The yellow line in the circuit shows power connection and green light shows data connection between components.

Servo motor which takes maximum current of 2.6 ampere was connected by a single wire with 3G1.5mm 2 (15 amp capacity) wire. Another connection went for temperature control unit 115 explained above. A connection is for LED lights were located behind the experimental set-up to illuminate the cell. This cell motion and wave motion was captured by a high speed camera connected with system. An extra heater with TEM controller was also present in the system (explained in section A.3) for fast heating of experimental fluids. ------------------------------------------------------------------------ 

A.6 Data circuit

)); q = 2; a = gg; fprintf(' g = %d q = %d a = %d \n',gravity,q,a) eta = 0.00 ; % Damping in the system time = 0:0.01:80; % Time span theta0 = [0 0.25] ; % Initial values ivp = [theta0 q a eta omega] ; % Time History Analysis using ODE45 sol = ode45(@MathieuEquation,time,ivp); y = deval(sol,time); theta = y(1,:)' ; Dtheta = y( 2 ------------------------------------------------------------------------ %Here the matrix defined by the system of equations arising from the boundary conditions is constructed . The characteristic velocity solutions include z?exp(k?z) and z?exp(?kz)instead of exp(q1?z) and exp(q2?z) when q1=q2=0 and the coefficients for these solutions are calculated first.

if fexp==0 fhs =[exp(-k*h(1)), exp(k*h(1)), h(1)*exp(-k*h(1)), h(1)*exp(k*h(1)) , 0, 0, 0, 0; %no flow condition , bottom sur face 0, 0, 0, 0, exp fhs=[exp(-k*h(1)), exp(k*h(1)), exp(-q1*h(1)), exp(q1*h(1)), 0, 0, 0, 0; 0, 0, 0, 0, exp(k*h(2)), exp(-k*h(2)), exp(q2*h(2)), exp(-q2*h(2)); plot(wavelengths(:,1),thresholds(:,1),'r*',wavelengths(:,1),thresholds2(:,1), 'r*',wavelengths(:,1),thresholds3(:,1),'r*',wavelengths(:,1),thresholds4(:,1) ,'r*', wavelengths(:,2),thresholds(:,2),'g*',wavelengths(:,2),thresholds2(:,2),'g*', wavelengths(:,2),thresholds3(:,2),'g*',wavelengths(:,2),thresholds4(:,2),'g*' ) % plot(wavelengths(:,1),thresholds(:,1)*10,'b.',wavelengths(:,1),thresholds2(:, 1)*10,'b.',wavelengths(:,1),thresholds3(:,1)*10,'b.',wavelengths(:,1),thresho lds4(:,1)*10,'b.', wavelengths(:,2),thresholds(:,2)*10,'b.',wavelengths(:,2),thresholds2(:,2)*10 ,'b.',wavelengths(:,2),thresholds3(:,2)*10,'b.',wavelengths(:,2),thresholds4( :,2)*10,'b.'); % axis ([0,550,0,50]) lim (1:12) = 0; stepmatnumber = wavenumber/wavenumber; for crit = 1:12 matcrit = [thresholds(crit*stepmatnumber,1) thresholds2(crit*stepmatnumber,1) thresholds3(crit*stepmatnumber,1) thresholds4(crit*stepmatnumber,1) thresholds(crit*stepmatnumber,2) thresholds2(crit*stepmatnumber,2) thresholds3(crit*stepmatnumber,2) thresholds4(crit*stepmatnumber,2)]; 124 lim(crit) = min(matcrit)*10; end % xlabel('wavenumber k (m^{-1})') % ylabel('Vibrational Amplitude A (mm)') % tiltlevary = sprintf('Faraday Instability Critical Amplitudes @ frequency = %d', f); % title(tiltlevary) % hold on stepmat = wavenumber/1; % plot([100 100]*stepmat,[0 lim( 1 15.9 13.5 11.4 9.5 7.8 6.3 5.1 4.1 3.7 3.6 4 4.5 5.2 5.8 6.5 7.1 7.2 7.2 7 6.7 6.3 6 5.5 5 4 3.3 2.7 2.2 2 1.9 2 2.2 2.4 2.4 2.7 2.8 2.8 2.5 2.1 1.8 1.6 1.6 1.9 2 2 1.7 1.5 1.4]; experimentalred=[3.4 3.5 3.6 3.7 3.8 3.9 4 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 6 6.2 6.4 6.6 6.7 6.8 6.9 7 7.1 7.2 7.3 7.4 7.6 7.8 8 8.2 8.4 8.6 8.8 9 9.25 9.5 9.75 10];

]; for ncolor1=1:max(experimentalmode) p1 = plot(experimentalred(experimentalmode==ncolor1), experimental(experimentalmode==ncolor1), markerlist(ncolor1),'MarkerSize',12, 'MarkerEdgeColor', 'k', 'MarkerFaceColor',colorlist(ncolor1)); hold on end % % if interfacialevelrange == 2.45 % % flevelrange = frange; % % theoriticalwork1g = theoriticalwork1; % % theoriticalworkg = theoriticalwork; % % end % % if interfacialevelrange ~= 2.45 % % thresholdplot = plot(flevelrange, theoriticalworkg,'b--','MarkerSize',5);thresholdplot.Color(4)=0.3; % % end hold on Linestyle = ['-'; '--'; ': '; '-.';'-'; '--'; ': '; '-.';'-'; '--'; ': '; '-.';'-'; '--'; ': '; '-.']; 125 for ncolor=1:max(theoriticalwork1) p2 = plot(frange(theoriticalwork1==ncolor), theoriticalwork(theoriticalwork1==ncolor),Linestyle(ncolor,:),'LineWidth',nco lor); set(p2,'color',colorlist(ncolor)) set(gca,'linewidth',3) set(gca,'fontsize',22) set(gca, 'Ticklength', [0.01 0.01]) grid off hold on end hold off % graph=plot(f,theoriticalwork,'b.'); axis ([3,10,0,23]) xlabel('Applied frequency (Hz)','FontSize', 26) ylabel('Vibrational Amplitude A (mm)','FontSize', 28) % title('Gravitational acceleration =') % set(get(gca,'title'), 'Position',[4.3 18.6 1.00011],'FontSize', 28) % strmin = sprintf('g = %1.2f m^2/s',g); strmin = sprintf('1000mm, 35 mm, 30 mm (L*W*H)'); text (2,40,strmin,'HorizontalAlignment','left','VerticalAlignment','top','Font Size',16,'Color','black'); tiltlevary = sprintf('Temperature = %1.1f (^0C)',Temperatureset(range)); title(tiltlevary) % ['\Delta\rho ='], [sprintf('%1.0f kg/m^{3}'rho(1) -rho(2)]) hold on % legend ([p1,p2],'Experimental','Theoretical') % pbaspect([2.8 1 1]) filename = sprintf('range%d',range); print(filename,'-djpeg','-r500') % plot(f,theoriticalwork1*4,'r-.'); hold off close all end % g = 0.01:0.01:9.81; % graph=plot(g,ampg,'b.'); % hold on % % plot(f,theoriticalwork1*4,'r-.'); % hold off