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Titre : instabilités de Faraday dans les fluides binaires 

Résumé court 

Alors qu'il est bien connu que le phénomène d'instabilité de Faraday est une manifestation 

d'ondes de gravité capillaire, son comportement lorsque les effets capillaires et gravitationnels 

disparaissent reste inexploré théoriquement et expérimentalement. Une étude expérimentale 

et théorique détaillée est réalisée pour comprendre la physique de ce phénomène dans une 

petite cavité rectangulaire où la proximité des murs entraîne des contraintes considérables sur 

les parois latérales. Un couple de liquides binaires est utilisé avec une faible tension interfaciale 

pour une interface presque plate. Le contrôle thermique de ce système de fluide est utilisé pour 

diminuer la force capillaire et d’étudier ainsi les instabilités de Faraday dans les fluides miscibles 

où la tension interfaciale s’annule. Afin de prendre en compte les effets gravitationnels, 

l'expérience a été réalisée dans des campagnes de vols paraboliques. Pour l'approche 

théorique, une analyse de stabilité linéaire est effectuée à l'aide d'équations de Navier-Stokes 

dans un système de fluide visqueux incompressible et newtonien. Ceci est réalisé grâce à une 

méthode de Fourier-Floquet résultant en un problème aux valeurs propres. Les comparaisons 

montrent des différences non négligeables. Les équations sont ensuite résolues en incluant des 

effets d'amortissement visqueux pour compenser les contraintes des parois latérales. Les 

fluides binaires ont fourni une option commode pourchanger le coefficient de tension 

interfaciale en augmentant la température jusqu’à la température critique, ce qui a permis de 

passer d’un système de fluides non miscibles à celui des fluides miscibles tout en restant au-

dessous de la température d’ébullition. Le taux d'amortissement visqueux linéaire est mesuré 

expérimentalement. La correction des calculs théoriques en prenant en compte le taux 

d'amortissement visqueux a permis une amélioration nette des résultats et donc de mieux 

comprendre la prédiction de l'amplitude critique expérimentale pour les modes sous-

harmonique et harmonique. 

 

Mots clés: INSTABILITÉS, FARADAY, FLUIDES BINAIRES, VOLS PARABOLIQUES, ANALYSE DE STABILITE LINEAIRE 

 

Institut de Mécanique et d'Ingénierie 
ENSCBP bât A, 16 avenue Pey-Berland, 33607 PESSAC Cedex 
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Title: Faraday instability in binary fluids 

Short version of abstract:  

While it is well known that the phenomenon of Faraday instability is a manifestation of 

vibrational acceleration, its behaviour when both the capillary and gravitational effects vanish, 

remains unexplored theoretically and experimentally. A detailed experimental and theoretical 

study is performed to understand the physics of this phenomenon in small rectangular 

geometry where the proximity of wall results in considerable sidewall stresses.  A novel binary 

liquids system is utilized with low interfacial tension for a near flat interface. Thermal control of 

fluid system is utilized for achieving reduction in capillary force with study of miscible fluids 

where interfacial tension reduces to almost zero. In order to discriminate between gravity and 

capillarity effects, experiments were performed in parabolic flight campaigns. . For the 

theoretical approach a linear stability analysis is performed through Navier-Stokes equations in 

a Newtonian incompressible viscous fluid system. This is achieved through a Fourier Floquet 

method resulting into an eigenvalue problem. Equations are solved by including viscous 

damping effects for compensating sidewall stresses. Experimentally binary fluids provided a 

convenient option of changing the coefficient of interfacial tension by temperature control and 

going through immiscible to miscible system without change of liquid charge. Viscous damping 

rate is determined experimentally by measuring the linear damping rate. The correction in the 

theoretical calculations with the viscous damping rate helped in achieving a better 

understanding of the prediction of the experimental critical amplitude for sub-harmonic and 

harmonic modes. 

Keywords: FARADAY, INSTABILITY, BINARY FLUIDS, PARABOLIC FLIGHT, LINEAR STABILITY ANALYSIS 
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Abstract 

When one or more fluids are vibrated normal to the surface of a fluid or at the interface of 

fluids, standing waves appears on interface. This phenomenon is known as Faraday instability. 

In physical terms, when imposed frequency resonates with the natural frequency of the system, 

wave patterns appear on the surface of the fluid. In this thesis, experiments displaying the 

Faraday instability are presented and described mathematically with the help of linear stability 

analysis. These experiments (on ground and in microgravity conditions through parabolic 

flights) are well thought-out by input parameters such as the vibrational amplitude and 

frequency which, at criticality, give rise to a wide range of patterns. These patterns form a 

recognizable and predictable wave structure. This thesis considers immiscible and miscible 

cases where the manifestation of Faraday waves requires a jump in the density across the 

interface and density gradient respectively. The acceleration due to parametric excitation must 

act perpendicular to the interface and in the case of miscible fluids, it must be parallel to the 

density gradient.  

Experiments illustrate the effects of gravity and interfacial tension forces on the Faraday 

instability appearing in immiscible system within a confined boundary system. A fluid pair is 

picked judiciously (the Perfluorohexane Liquid FC72 and 1 Cst Silicon oil) to have a binary fluid 

system of experimentally achievable consolute temperature (i.e below the boiling 

temperature). Also, it should be nontoxic in order to avoid any accidents happening in case of 

leakage in parabolic flight campaign or in future experiments planned in the International space 

station. As the surface tension between the two liquids is very low, it leads to minimum 

meniscus and an almost not pinned triple contact line at wall. 

The influence of gravity was comprehended by carrying out experimentations on earth as well 

as in microgravity environment, created in a parabolic flight. The influences of density 

difference and interfacial tension are understood by the variation of fluid temperature utilizing 

a thermal bath. Experiments are performed to determine the critical threshold amplitude and 

to measure different forced parametric frequencies. In the chosen small rectangular geometry, 

critical threshold curves show discrete modes on earth. A clear drift of these modes towards 
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lower frequency is seen as the temperature of the liquid pair approaches its consolute value, 

i.e., the temperature at which the binary pair is completely miscible.  

For the theoretical approach, a linear stability analysis is performed through Navier-Stokes 

equations in a Newtonian incompressible viscous fluid system. This is achieved through a 

Fourier Floquet method resulting into an eigenvalue problem. The linear stability analysis 

approach is very popular and has been used for successful prediction of critical threshold for 

low frequency in large sized deep cylindrical container. Experiments in small rectangular 

geometries with low viscous fluid still remain unsolved with respect to theory. For the 

successful prediction, equations are solved by including viscous damping effects which are 

determined experimentally by measuring the linear damping rate.  
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Résumé 

Les ondes superficielles ou interfaciales générées par la vibration d'un ou plusieurs fluides dans 

la direction perpendiculaire à l’interface, sont connues sous le nom d'instabilité de Faraday. En 

terme physique, lorsque la fréquence imposée résonne avec la fréquence naturelle du système, 

des motifs apparaissent à la surface du fluide. Dans cette thèse, les expériences montrant 

l'instabilité de Faraday sont présentées en comparant aux résultats de l'analyse théorique 

basée sur la stabilité linéaire. Les expériences sont menées avec des paramètres d'entrées 

comme l'amplitude et la fréquence de vibration qui donnent lieu à une large gamme de 

paramètres permettant d’obtenir les valeurs critiques pour détecter les instabilités de Faraday. 

Cette thèse traite les cas miscibles et non-miscibles où la manifestation des ondes de Faraday 

nécessite un saut de densité à travers l'interface et un gradient de densité respectivement. 

L'accélération due à l'excitation paramétrique doit être perpendiculaire à l'interface dans le cas 

des fluides immiscibles et, dans le cas des fluides miscibles, elle doit être parallèle au gradient 

de densité. 

Les expériences illustrent l’influence de la gravité et de la tension interfaciale sur l'instabilité de 

Faraday qui surviennent dans un système confiné de fluides non miscibles. Afin de passer 

facilement de ce système de fluides immiscibles au système de fluides miscibles, nous avons 

sélectionné judicieusement un couple de fluides binaires (le Fluorinert  FC72 et 1 cst d'huile de 

silicone). Lorsqu’on augmente la température, la tension de surface diminue jusqu’à devenir 

nulle rendant ce système de fluides, miscible. De plus, il doit être non-toxique pour éviter les 

accidents en cas de fuite dans les campagnes de vol parabolique ou dans des expériences 

futures dans la station spatiale internationale et au-dessous de la température d’ébullition.  La 

tension superficielle entre les deux liquides étant très faible, elle entraîne aussi un faible 

ménisque et une ligne de contact triple mobile et en phase avec la vibration. 

L'influence de la gravité a été analysée en effectuant des expérimentations aussi bien sur terre 

qu'en microgravité lors des vols paraboliques. L'influence de la différence de densité et de la 

tension interfaciale a été prise en compte par la variation de la température du fluide en 

utilisant un bain thermique. Ces expériences ont été effectuées pour déterminer le seuil 
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critique et pour mesurer les différentes fréquences paramétriques du système de fluides 

considéré. Dans la géométrie rectangulaire choisie (de dimensions relativement petites), des 

courbes critiques de seuil ont montré l’existence de modes discrets sur terre. Une déviation de 

ces seuils vers une fréquence inférieure a été observée lorsque la température de ces fluides 

binaires s’approchait de sa valeur critique de miscibilité. 

Une analyse de stabilité linéaire est effectuée parallèlement à ces expérimentations en 

considérant les équations de Navier-Stokes dans un système de fluides visqueux 

incompressibles et newtoniens. La méthode de Fourier-Floquet est adoptée résultant en un 

problème aux valeurs propres. L'approche de l'analyse de la stabilité linéaire a été déjà 

considérée dans la littérature dans le cas d’une cellule cylindrique de grande taille et a permis 

de prédire le seuil critique dans le cas des basses fréquences. En revanche, les expériences dans 

les géométries rectangulaires de petite taille dans le cas d’un fluide peu visqueux sont restées 

non résolues par rapport à la prédiction théorique. Nous avons résolu ce problème en incluant 

des effets d'amortissement visqueux dans notre modèle théorique et qui sont déterminés 

expérimentalement en mesurant le taux d'amortissement linéaire. 
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Nomenclature 

Roman Symbols 

  Applied amplitude         m 

  Function defining implicit form of evolution of interface    ----- 

f* Crossover frequency         Hz 

  Gravitational acceleration (9.81 m/s2)      m/s2 

   Height of top fluid layer         m 

   Height of bottom fluid layer         m 

  Identity tensor         ----- 

   Twice the mean surface curvature       m-1 

  Wavenumber          m-1 

  Unit vector in direction of gravity       ----- 

   Stokes layer thickness         m 

  Length of experimental cell        m 

  Momentum          kg/m2s 

  Fourier mode in depth direction       ----- 

  Normal unit vector to the interface       ----- 

  Fourier mode in lateral direction       ----- 

  Pressure field          Pa 

  Square of the natural wave frequency of a Faraday system    s-2 

  Parametric amplitude         m/s2 

   Base state pressure         Pa 

  Change in pressure due to perturbation      Pa 

  Distance of a point from origin in fixed frame system    m  

   Distance of a point from origin in moving frame system    m 

  Distance between origins of fixed to moving frames     m 

  Time           s 

  Stress tensor          N/m2 

  Velocity vector of interface        m/s 
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  Velocity vector of fluids        m/s 

  Change in velocity vector due to perturbation     m/s 

   - Component of velocity        m/s 

  Width of experimental cell        m 

  Interface position         m 

 

Greek Symbols 

   Density of top fluid layer        kg/m3 

   Density of bottom fluid layer        kg/m3 

  Applied frequency         Hz 

  Interfacial tension         N/m 

  Dynamic Viscosity of fluid                  (N.s)/m2 

  Kinematic Viscosity of fluid        m2/s 

  Infinitesimal perturbation for all variables      ----- 

  Change in interface location due to perturbation     m 

  Wave response amplitude        m 

  Wave response frequency        Hz 

  Complex growth rate         ----- 

 

Indices 

j Common fluid indices (1,2) 

1 Top fluid 

2 Bottom fluid 

0 Initial / base state 

x X – component 

xz    surface  

 

Mathematical symbols 

  
  Horizontal divergence 
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Abbreviations 

cSt Centistokes 

FC-72 Perfluorohexane 

ISS International Space Station 

NTC Negative temperature coefficient 

PID Proportional integral derivative 

PR-59 Proportional Controllers-59 

PTFE Poly tetra fluoroethylene 

PT-100 Platinum Resistance 

RS-232 Recommended Standard 232 

RTD Resistance Temperature Detector 

SSR Solid state relay 

TEM Thermoelectric module 
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It is well known that the Faraday instability is a manifestation of gravity-capillary wave 

phenomena wherein nonlinear discernible wave patterns emerge (see Figure 1.1) on a fluid 

interface that is subjected to perpendicular oscillations and exceeding a critical value. Faraday 

instability is generated due to the result of the parametric resonance of interfacial wave modes 

with an imposed vibrational frequency. It is a phenomenon of motorized perturbation and 

oscillation at definite frequencies. This is unlike the regular resonance as it reveals the 

phenomenon of hydrodynamic instability. Faraday waves can be usually witnessed as crispation 

appearing on the surface in a wineglass that is buzzing like a bell or can be observed with sand 

particles on a vibrating plate using a violin bow as witnessed by Faraday (Faraday, M., 1831). 

Faraday’s violin bow instigated the plate to vibrate in a systematic motion at a certain 

frequency shaping tiny ripples of sand particles. These waves appear first at the centre of 

vibration and spread out towards nodal lines. Faraday later did detailed experiment with liquids 

such as water or mercury and noted that the fluid layer vibrating frequency is half of the 

applied frequency. He also observed that appearing patterns on the surface is same regardless 

of its container shape. This observation was an insight to the nonlinear behaviour of the 

phenomenon (see Figure 1.1(b)).  

              

       (a)                                               (b)                                                         (c) 

Figure 1.1: Faraday instability as observed by a) Edward and Fauve (1994) b) François Gallaire et 

al. (2017) c) W. Batson (2013) 

 

Faraday also indicated that the note on the bow should be sufficiently loud for observation of 

undulations on the surface. Faraday experiments in general create peripatetic meniscus waves, 
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starting from container wall, and standing Faraday waves inside the cell. When the forced 

vibration is frail, only meniscus waves ruffle the surface. However, when strong vibrations are 

induced to increase the energy in the system (which in turn exceeds the dissipation due to the 

bulk viscosity) fluid surface is destabilized to fashion Faraday waves which grow to finite 

amplitude. This condition signifies a threshold energy requirement which must be exceeded in 

order for the phenomenon to be perceived, and is straight linked to the existence of dissipation 

mechanisms in the system. Measurement of these thresholds and linking it to a mathematical 

prediction is the emphasis of this thesis. 

 

1.1 Basic phenomenon of Faraday instability 

In laboratory setting, Faraday instability is studied by using a driven harmonic oscillator, in 

which the oscillations are driven by varying some parameters of the system at some frequency 

under controlled conditions. Here, the resonant behaviour is governed by various factors such 

as system geometry, gravity, and interfacial tension. A comprehensive understanding of the 

Faraday instability thus entails a clear demarcation of the role played by each of these effects. 

Interestingly, both gravity and interfacial tension play their roles which are primarily 

determined by the imposed frequency of excitation. In current study these two parameters 

have been studied in depth where the capillary force of the liquid was controlled by means of 

thermal bath while the effects of gravity force has been studied through parabolic flights 

experiments.  

Faraday instability parameter such as gravity plays a dual role of aiding the instability at low 

frequencies of excitation and suppressing it at higher values. Though a similar effect is also 

manifested by interfacial tension, understanding its sole influence becomes very difficult under 

terrestrial gravity conditions. Due to large density gap and low interfacial tension of chosen 

fluids, gravity dominates here over the capillarity force for the investigated frequency range. 

We have performed experiments on ground and under reduced gravity conditions for 

understanding the gravity and capillary effects separately. 
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Past experiments have had good agreement when compared to its theory in cylindrical 

container (Batson, W. 2013); however similar theories with same fluids did not deliver a valid 

match in a small size container. Current experiments were focused to small rectangular 

geometries in which excited wavelength were of the order of the dimensions of the container. 

In earlier investigations, experimental thresholds did not come to an agreement with the 

estimates of the viscous linear stability model, thus inspiring this work.  

In the present study, Faraday experimentation consisted of an oscillating Hele-Shaw (for the 

current experimental investigation, the frequency range is chosen such that, there is no velocity 

motion observed in the smaller dimension of cell, (See Figure 3.5) type cell containing binary 

fluids and inducing oscillations of the fluids and the interface between them. Exceeding a 

certain threshold, the interface formed standing wave patterns with different modes. The use 

of binary fluids here offered a useful possibility of altering the factor of interfacial tension by 

temperature control (it approached to zero as the temperature raised to the upper consolute 

value). These fluids could freely slip along the vessel wall, signifying the reduction of stress 

related to the sidewalls (see section 3.2) and with near horizontal interface to realize the 

closest possible assumptions of the linear viscous theory. However even after picking a careful 

set of liquids, it has been validated that the hypothesis of stress-free sidewalls is not absolutely 

correct and created disparity from theory specifically in small cell sized system.  

Earlier, energy dissipation during wave motion was considered with the fluid viscosity being its 

primary force, which is not absolutely true. Thus concept of sidewall stresses and boundary 

layer effects evolved. While an effective methodology (Henderson & Miles, (1990)) existed for 

the quantification of the sidewall stresses, past experiments did not consider thin Hele-Shaw 

cells. This work discussed the calculation of dissipation (caused by sidewall stresses) which is 

often challenging, necessitating its measurement straight from the experiment. It has been 

shown that an experimental attempt can be made to study the appropriate boundary 

conditions, allowing prediction of threshold. This work architected a procedure to accurately 

predict selected modes and threshold amplitudes, and pinpointed the causes for difference 

which advanced the study of this rich phenomenon.  
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The cause originated from the fact that the two fluids contacting the compact sidewalls 

unavoidably yielded a static meniscus, which emitted waves during vibration exhibiting non-

ideal behaviour, and violating the assumption of a flat interface. More specifically the role of 

wall proximity caused damping of small forcing frequency. It has been shown that a damping 

coefficient derived from linear theory for unbounded containers with specific wave numbers 

might be used to describe any discrepancies between a linear model in bounded containers and 

experiment. It has been further found that the damping coefficient depended only upon mode 

structure, the mode pattern being constant over a frequency range. The correction in the 

theoretical calculations with the viscous damping rate helped in achieving a better 

understanding for the prediction of the experimental critical amplitude for sub-harmonic and 

harmonic modes.  

Analytically the problem in hand has been solved as single mode excitation and linear stability 

model. Faraday instability is a non-linear phenomenon, requiring some assumptions in 

obtaining an analytical solution without the need of using a numerical procedure and 

computers.  Nonlinear systems could be treated as linear system to simplify the mathematics. A 

simple pendulum can be a perfect example of that. If the amplitude of the pendulum is small, 

the pendulum obeys the rules as a linear dynamical system. However, if the amplitude is large 

this is no longer true. In other words, a nonlinear system can be treated as a linear system 

when it is close to stable state. The system equations have been derived through Navier-Stokes 

equations in a Newtonian incompressible viscous fluid system. A Fourier-Floquet method 

resulting into an eigenvalue problem has been applied to the dispersion equation. The resulting 

equations have been solved by a matrix system as used by Kumar and Tuckerman (1994). 

Theory has been adjusted with the damping condition and lateral dimensions were taken in 

account for mode discretization. Thus experiments and theory of Faraday instability were 

reconciled over a range of temperature in which a chosen fluid system went continuously from 

immiscible to miscible fluid system. 

Both experimental and theoretical analysis of miscible or partially miscible fluid systems was 

fraught with challenges. Theoretical stability analysis of such systems became complex due to 
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the ever-changing base state and undefined initial conditions. Difficult challenges in 

experiments were faced in terms of precise repeatability for which exactly same initial state for 

fluids needs to be posed before each experiment.  

To move from immiscible to miscible state, the chosen binary fluid has properties depending on 

temperature (consolute). It has a notable feature of being miscible above the consolute 

temperature and immiscible or partially miscible below it. Furthermore, by controlling the 

temperature of the fluid, it was possible to control the mass diffusion coefficient, which was an 

important asset that regulated fluid mixing process. Constant state of mass-diffusion forces 

experiments have to be done precisely with specific time-interval to achieve repeatable results.  

Experiments in parabolic flights were another challenge as it has time constraints and constant 

jitter vibration passed down to experiment. Experimental setup had to be designed to 

withstand hyper gravity which is a bi-product of zero-g flight path. Experimental cell had to be 

carefully sealed to remove any gas present in fluids and thermal bath, as bubbles could have 

disrupted in experiment and visuals respectively.   

This thesis explains the experimental and analytical study of Faraday instability with challenges 

and countermeasure used for successfully prediction of its behaviour. In this dissertation some 

very thought-provoking phenomenon has been shown that were not investigated in the 

previous experiments. Modified analytical theory was successful in predicting the threshold as 

observed in experiments.  

Faraday waves have some potential applications and contribute for the development of 

science. One of the direct applications of the present study is to understand mixing to 

extrication of droplets and air formation in capillary tubes during space enabling operations. In 

industrial settings Faraday waves are widely utilized for fluid prototypes for producing micro-

scale materials such as cell spheroids and cell-seeded micro-carriers. By the knowledge of 

Faraday waves, attenuated layers of material can be deposited in a preferred configuration and 

particles in the fluid can be drawn producing precise optical instruments. In Mother Nature, 

Faraday waves have the role in the intensification of seismic activity through slacker sediments.  
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In the field of quantum mechanics, Faraday waves have been professed in Bose-Einstein 

Condensates. 

1.2 Literature Review 

The Faraday instability occurs when two fluid layers of different densities are parametrically 

excited and the imposed frequency resonates with the system’s natural frequency. The natural 

frequency depends on the density difference, interfacial tension, viscosities, and geometry. 

Interfacial instability generated due to the parametric excitation is commonly called as "Faraday 

instability". A detailed experimental and theoretical study and of its potential applications are 

required to understand the physics behind the phenomenon. The immiscible fluid system has 

been well studied in the literature but still lacks a thorough understanding, as experimental 

work in literature has dissimilarities with present theoretical approach. On the other hand, the 

case of miscible liquids, which is important to understand the processes of mixing is much less 

considered in previous works. For liquid sets with low interfacial tension, gravitational force on 

the oscillatory convection becomes dominant and in order to understand the phenomenon of 

capillary force, gravity free environment becomes thus necessary. 

Sand figures on vibrating plates were first analyzed and described by Ernst Florens Friedrich 

Chladni (Leipzig, 1787). These figures are known as Cladni  Figures. The phenomenon of 

appearance of remarkable array generated on a liquid surface near a vibrating surface was first 

observed by (Oersted, 1813) and subsequently reported by (Wheatstone, 1825) and (Weber, 

1825). Faraday (1831) was first to report the phenomenon in detail and deduced that the 

frequency of excited waves is half of the applied frequency. Melde (1860) reported similar 

observation by generating parametric oscillations in a string by using a tuning fork to 

periodically vary the tension at twice the resonance frequency of the string. Mathematically, 

parametric oscillation was first treated as a general phenomenon by Rayleigh (1883, 1887). He 

presented the argument for the existence of subharmonic solution. Faraday (1831) defined that 

generated patterns were independent of the container geometry and proved non-ideal 

behaviour of this phenomenon. Raman (1912) expanded Rayleigh’s theory by including cubic 

nonlinearity into equations. Nonlinear behaviour in the Faraday wave is dependent on 
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restorative wave forces such as buoyancy (in case of stable configuration, heavier fluid on the 

bottom layer) and surface tension and dissipative forces such as viscosity. The first clear and 

complete theoretical description of the phenomenon was given by Benjamin and Ursell (1954) 

who considered the instability in the inviscid limit. They condensed the inviscid fluid equations 

of motion in the classical form of Mathieu equation which is similar to parametric excitation of 

a linear harmonic oscillator.  

Subsequent to inviscid hydrodynamic stability analysis by Benjamin and Ursell (1954), Kumar & 

Tuckerman (1994) presented the stability of an infinite bilayer subjected to parametric 

vibration, including viscous effects in the Navier-Stokes equations. They performed a linear 

stability analysis for two infinite layers of immiscible fluids with a Fourier-Floquet analysis for 

the disturbed interfacial deflection. Marginal stability curves for critical amplitude (threshold 

value) as a function of wavenumber were obtained by setting the eigenvalue (growth rate of 

the Floquet exponent) to the value of zero. This analytical solution is the base of the theory 

used in this work which will be detailed later in the chapter 2. 

It was clear from the previous research work that for problems of inviscid cell with unbounded 

extent, the natural frequency is very weakly dependent on interfacial tension, this property 

plays a role only when the side wall spacing is of the order of the capillary length. This idea 

continues to be true in the theory even when viscosity is taken into account as in Kumar and 

Tuckerman (1994). Now, in experiments the fluid viscosities cannot be ignored and the 

proximity of walls becomes important because of the viscous damping induced by wall stresses. 

At high forcing frequencies, the response wavenumbers are large (short wavelengths) and they 

are not affected by the presence of side walls. However, at low frequencies, the wavelengths 

are large and the patterns, i.e., modes that are seen at the onset of instability reflect the 

presence and geometry of the side walls.  

One of the early experiments which focused on boundary conditions was that of Douady and 

Fauve (1988) who studied the effect of contact angle on the meniscus waves that inevitably 

form along the walls. For the purpose of removing these meniscus effects, they have tried to 

pin the boundaries. However such experiments are difficult to control, often leading to sloshing 
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after the instability commences. An alternate solution is to provide a close approximation to a 

stress free boundary condition such that the interface will always be making a perpendicular 

angle to the sidewall while sliding up and down to the boundary. However, most fluids induce a 

contact angle with the wall and thus generate a contact angle hysteresis as discussed by 

Hocking (1987). One way to provide a condition that is close to stress-free is to employ a fluid 

system wherein the upper fluid easily covers the common interface forming a very thin layer in 

contact with the container wall near the interface. As the walls are shaken with parametric 

forcing frequency the thin layer also moves in the form of “meniscus waves” and as long as the 

walls are spaced apart at distances several times the capillary length, there is no effect of 

damping. Thus, a very good agreement between theory and experiment can be obtained and 

this was demonstrated convincingly by Batson et al. (2013).  

Our interest in the present work is to investigate the effect of side wall damping that arises 

from meniscus waves. If this could be accounted for, then a better comparison between theory 

and experiment can be obtained. Previous studies have shown that in large cylindrical cells, 

meniscus waves effects vanish as instability overpowers it. However, for cell size comparable to 

wave size meniscus, it plays an important role as shown by Henderson and Miles (1989, 1990). 

The damping length has been defined by Edwards and Fauve (1994) as         
 

 
        ⁄  

(  is the frequency,   is the wavenumber and   is the kinematic viscosity). They studied the 

effects of sidewall conditions and deduced that the damping length of a standing wave must be 

less than that of the container size in order to ignore sidewall effects. Hill (2002) investigated 

the effects of the energy dissipation through the varying domain wall sizes. Hill’s experiments 

did not show any effects of top and bottom walls damping (the fluid height used was deep 

enough to take out any effect from these walls). They also observed that side wall damping dies 

off fairly rapidly as the domain becomes larger. In conclusion, the wavelength of the order of 

the domain size suffers suppression from wall damping.  

Ito et al. (1999) and Tipton & Mullin (2004) performed experiments with two fluids layers with 

sidewall flow perturbations on the instability. Data presented by them were not in agreement 

with the Kumar and Tuckerman (1994) Faraday viscous theory model. Tipton & Mullin (2004) 
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mentioned that their damping rate was eight times the value calculated by the linear stability 

viscous model. It was assumed that wall damping was playing an important role as cell diameter 

for the experiments as cell size was small (35mm in their case). Das & Hopfinger (2008) later 

compared dissipation (in terms of length) in the interior of the domain (  ) to the dissipation 

(  ) in the Stokes layer near the boundary. The ratio of these two dissipation rates was defined 

by Lighthill (1978) as     ⁄      ⁄  (where        ⁄      is the Stokes layer thickness and   

is the domain length). The internal to wall damping ratio for smaller-size cells with low viscous 

fluids system is small, indicating that boundary layer dissipation dominates over internal 

dissipation.  

Edwards and Fauve (1994) had shown previously that experiments conducted with low-viscosity 

fluids bring significant finite-size effects even when the cell size to wavelength ratio is not small 

(cell size/wavelength = 5). Henderson and Miles (1990) had compared experimental and 

theoretical results in rectangular and cylindrical geometries. However, Henderson and Miles 

(1989) observed that in a rectangular cylinder, the measured linear viscous damping rates are 

found to be higher than the predicted values, increasing drastically the value of effective 

viscosity. They also noted that rectangular geometries led to higher wave damping which could 

have come from corner stresses and Stokes boundary layer.  

Another aspect of this thesis is to study the mixing generated by Faraday instability in miscible 

fluids. In miscible fluids system, the interface is diffused (in contrast to a singular interface in 

immiscible system) thus creating a gradient of density in the system driving the instability. The 

instability grows itself with forced vibration and ultimately destroys itself with the mixing of the 

liquids. The mixed volume is considerably large in comparison to the initial diffused region. 

Zoueshtiagh et al. (2009), Amiroudine et al. (2012) and Diwakar S.V., et al. (2015) presented 

results of experimental and numerical model with good qualitative and quantitative 

agreements. They described the importance of the waiting period before the vibration is set. As 

the waiting time is increased, diffusion in the system weakens the driving potential and results 

in smaller wavelengths. One of the key observations in these studies of miscible fluids systems 

is that they obtained similar dispersion relations as in Kumar and Tuckerman (1994) for 
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immiscible fluids systems. It was considered that the reasons of growth of instability are similar 

to that of immiscible case while causes of stabilization differ.  

The objective in the present work is to understand the reasons for the mismatch between the 

theory used by Batson et al. (2013) and the experimental results. This requires measuring the 

viscous damping rate in a rectangular container (as considered in our experimental set-up) and 

using the theoretical damping rate to determine the effective viscosity due to the presence of 

the meniscus waves. It is then used to modify the Kumar and Tuckerman (1994) viscous theory 

which can be compared with the experimental data. 
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Chapter 2 

Theory of parametric instability 
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Faraday instability has been studied extensively in the past, out of which inviscid theory 

of Benjamin and Ursell (1954) and viscous theory of Kumar and Tuckerman (1994) marked a 

milestone in the development of theoretical understanding. This chapter refers to theoretical 

and numerical approaches of wave phenomenon as described by Faraday (1831), generated at 

the vibrating liquid surface in the direction of normal to the interface of fluids. . Faraday waves 

are characterized by deflection, growth and saturation of waves appearing at a flat fluid surface 

while vibration surpasses the critical amplitude for a particular frequency. Faraday mainly 

observed the wave frequency to be one half of the imposed vibrational frequency, a sub-

harmonic response, which corresponds to a subset of parametric excitation. Following in this 

chapter a general idea of the mechanism of inviscid Faraday problem is explained. Further 

viscous analysis and linear stability analysis is explained in detail. 

 

2.1 Inviscid fluid bilayer subjected to perpendicular vibration 

Benjamin and Ursell (1954) described this phenomenon successfully by assuming non viscous 

fluids and thus reducing mathematical calculation by great deal and reducing inviscid fluid 

motion in standard form (McLachlan, 1947) of Mathieu equation derived from non-viscous 

Navier-Stokes equation 

   

   
 (            )                                                            

Where   is the wave response amplitude, t is time, p is the square of the natural wave 

frequency of a Faraday system, determined by the fluid densities        , surface tension (  , 

and wavenumber ( ), and q is the parametric amplitude. They are defined as, 
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      are the heights of the two fluid layers (see Figure 2.1) 

 

Figure 2.1: An infinite bilayer system 

 

With the help of Floquet’s theory, the Mathieu equation (periodic linear differential equations 

of the form  ̈        with a defined period and gives the state of the stability of solutions) can 

be solved for two independent solutions of the form       ̃    and       ̃    where  ̃    is 

periodic and   and    are functions of the system parameters ‘p’ and ‘q’ called as characteristic 

exponents. ‘p’, ‘q’ which consist of regions in which the real parts of   and    are negative, 

indicating bounded (stable) solutions, and positive value indicating an unbounded (unstable) 

solution. On the boundaries between stable and unstable regions, the real parts are zero. 

If         , the solution is periodic with period T = π and if             the solution is 

periodic with period 2T = π (see Appendix B for solution of parametric equations with MATLAB 

code).  

 

With the help of numerical integration of equation 2.1 it can be observed that for certain values 

of “p” and “q” the response “ ” grows without bound with half-integer frequencies with 

respect to the parametric frequency as shown in Fig 2.2(a). For other values, the response “ ” 

can be periodically stable as shown in Fig 2.2(b) also called as critically stable and completely 

stable in response to vibration as shown in Fig 2.2(c). 
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(a)                                                (b)                                            (c) 

Figure 2.2: (a) Unstable, (b) critically stable and (c) stable interface oscillation for an ideal fluid.  

The inviscid theory for Faraday waves is helpful for understanding the fundamental physical 

behaviour, including mode dispersion. For a closed cell experimental condition, each amplitude 

and frequency gives a point on the stability chart, and one can determine whether solution is 

stable or unstable, 

 

Figure 2.3: Stability chart for Mathieu Equation, where ω/2, ω, 3ω/2 represent oscillation 

period of standing Faraday waves with one-half, one, and three half of the imposed frequency.  

By determining such a solution, one can also determine the stability boundaries. For the infinite 

bilayer fluids case shown in Fig. 2.1, one can define amplitude versus wave number graph for 

each imposed frequency as shown in Fig. 2.3. As for a particular geometry of confined cell, the 
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generation of waves is constrained by its boundaries. In a closed cell, the dimensions of the cell 

play an important role as it allows waves with certain wave numbers only. This means that an 

unstable solution is constrained with a certain set of frequency and certain wavenumbers 

depending on the cell geometry and size. 

 

However, the above theory cannot be used for the current problem as the viscous effect is 

lacking in this model, and the effect of fluid viscosity cannot merely be integrated with linear 

damping into the Mathieu equation. Another reason corresponds to the boundary conditions 

restrictions and the allowed wavenumbers. High parametric frequencies have very small 

spacing between any two allowed wavenumbers and thus form a continuum system. However, 

this thesis is focused on low frequency excitation where the wavenumbers allowed by the 

system form a discretized set and are strongly dependent upon the boundary conditions and 

the lateral geometry of the container.  

 

2.2 Viscous fluid bilayer subjected to perpendicular vibration 

This section is an extension solution towards parametric excitation of inviscid fluid. In 

experiments the fluid viscosities cannot be ignored and thus an inviscid theory cannot work 

very precisely. To develop a more inclusive theory with a viscous system, a linear stability is 

modelled for Newtonian incompressible viscous fluid layers in order to relate theory with 

experiments. A single mode excitation has been derived from the Navier-Stokes equations, 

taking the true nature of the fluid system. The nonlinear equations were linearized with 

determined base state solution and forced excitation. The equations were solved for neutral 

stability conditions in order to obtain critical threshold – wavenumber curves. This was 

achieved by a Fourier-Floquet eigenvalue method and solved numerically by a matrix system. 

The current model considers an initial stable flat horizontal interface separating two distinct 

fluids, assuming no stresses for horizontally finite size system (see Fig. 2.4). Wavenumbers were 

then calculated based on finite cell size used in experiments.  
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The base state was stable with horizontally flat interface separating two distinct fluids. The 

stress-free boundary condition was assumed when horizontally finite system conditions were 

applied to these results, constraining on the allowed wavenumbers by the system. A case study 

has been presented discussing effects of various parameters like interfacial tension, viscosity, 

gravity to understand fluid behaviour in different circumstances. 

 

2.2.1 Governing Equations 

A horizontal infinite fluid bilayer with depths h1 and h2 of the two fluids and interface at z = 0 is 

submitted to a forced oscillation in the direction of gravity (See Fig 2.4).  

 

Figure 2.4: Sketch of the geometry for the linear stability analysis for Faraday instability- Two-

fluids infinite bilayer system. 

Equations of motion for Newtonian incompressible fluid in fix frame can be written as, 

   (            )             
           (2.2) 

 

Where    is the velocity vector field of the fluids, Pj is the pressure field, ρj is the density with j = 

1 defining for upper fluid and j = 2 for lower fluid, g is the gravity acceleration, 
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For simplicity we investigate the system in the moving frame, for transformation from fix frame 

to moving frame space coordinate equations can be written as, 

 

Where 0 is the origin of fix frame, 0’ is the origin of moving frame and p is a point in fluid 

system 

           
 

  

  
  

   

  
 

     

  
 

 

           
 

        
 

                        (2.3) 

Rewriting equation 2.2 in a moving frame, 

   (           (       
 )        )             

          

which gives, 

   (               )            
              

     

  
  

And finally, 

    (              )            
                      

 

(2.4) 

The applied acceleration on the system has been calculated as,  

            

              

                (2.5) 

 

Where A is the amplitude and   is the frequency.  



33 
 

The equation of conservation of mass can be written as, 

 

        (2.6) 

Vibrational acceleration will become an additional term in the equations of motion by 

relocating equation into a moving reference frame through velocity transformation (see 

equation 2.4) giving acceleration which is in the direction of the gravity. This leads to an 

effective gravitational acceleration to the fluids. 

 

No-slip conditions are applicable at the top and bottom walls and continuity of velocity is 

applied at the interface. The momentum balance at the interface is, 

 

                                                                    

 

here   is the momentum,       are velocity of fluid 1 and 2 respectively. For an immiscible 

fluid system momentum is zero       at the interface. Here   is the speed of fluid interface, 

and   is the surface normal to the interface. The surface is given explicitly as the set of points 

      satisfying the function          . Then a normal at a point         on the surface is given 

by            where            is the implicit form of the evolution of the interface and is 

defined by                             . The unit vector of surface normal can be defined 

by               |          | which can also be expressed by, 

 

 
   

                  

|                  |
 

      ́       ́

√     
     

  

 
(2.8) 

Jump momentum balance from equation 2.7 can be reduced to,  

                

               

           (2.9) 
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The differential for the motion of the interface in an infinitesimal time δt can be written as,  
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Replacing U with       from equation 2.9 and expanding normal vector, 

 
  

  
         |  |                                                                   

which can be written as, 

                      at            (2.11) 

 

The next step is to derive the normal and tangential stress boundary conditions fitting at a fluid 

interface defined in terms of interfacial tension  . Consider an infinitesimal surface area closed 

by a contour and forming an infinitesimal volume. Forces present in this tiny body are inertial 

forces associated with acceleration of fluid within small volume balanced by body forces acting 

on fluid within the infinitesimal volume, hydrodynamic force exerted at the interface by the 

fluid from both sides and surface tension force exerted along perimeter. Hence surface force 

must balance hydrodynamic force. Thus, the stress balance equation can be defined as 

hydrodynamic force equal to force exerted by surface tension along the interface, 

 

                                                                   (2.12) 

where, 

       Stress (force/area) exerted by the upper layer on the lower layer,  

       Stress (force/area) exerted by the lower layer on the upper layer, 

       are the stress tensors defined as                  (    
 ) 
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       Normal curvature force per unit area associated with local curvature of interface and 

where 2H is twice the mean surface curvature and defined as, 
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   |  |     
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       |  | 

   |  |     
 (2.13) 

    tangential stress associated with gradients in surface tension. 

 

A surface with curvature    reflects a jump in normal stress across the interface. Normal stress 

balance can be obtained by having dot product of normal vector to stress balance equation. 

The jump in normal stress across the interface must balance the curvature force per unit area,  

 

                        

 

                    
                         

         

 

Again multiplying by normal vector, 

 

                      
                         

        

                     

(2.14) 

 

where   is the interfacial tension and 2H is twice the mean surface curvature. The stress 

balance at the interface defined above in equation 2.14 gives a relation between pressure and 

viscous tangential stress difference balanced by the force arising from surface curvature.  
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For observing the instability to occur as a transition from a quiescent state of no flow or no 

interfacial deflection to a state of flow, a perturbation is introduced in velocity, pressure and 

space in the above equations by considering an infinitesimal perturbation of order ε of this 

quiescent state, 

            

                            (2.15) 

      

 

where the base state velocity and initial interfacial deflection are zero. Introducing these 

perturbations and solving for same order leads to no-flow base state leads to,  

 

   (                )         
           

                                (2.16) 

 

Gravitational modulation is balanced by a vertical pressure gradient as shown below with 

perturbed equation 2.17. For a small perturbation (    ), 

 

         
                   

       
                 (2.17) 

 

To map the variables from the unknown interface positioned to z = 0, a collection of the      

terms in perturbed equation 2.15 produces the linearized domain problem, 

 

 

 

                  
    (2.18) 

Kinematic condition arising from the interface position and fluid velocity produced by stress 

balance at z=0 from equation 2.11 leads to, 

 

       (2.19) 

 

where   is the z-component of the velocity. 
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Perturbing stress balance equation 2.14, 

 

 ⟦                     (   )
 
   ⟧           (2.20) 

 

Thus with equation 2.19 and 2.20, tangential stress can be balanced on the interface as,  

 

           
                

                   (2.21) 

 

where   
                   is the horizontal Laplacian. The normal component of stress 

becomes, 

 

 ⟦                   ⟧                      (2.22) 

 

Combining kinematic condition, stress balance and continuity equation and applying   
  leads 

to, 

 

⟦           
      

 
                          

   ⟧                    (2.23) 

 

The temporal evolution of this equation for given imposed amplitude A and frequency ω 

ultimately determines the stability of the linear system. In equation 2.23, subscript j is defined 

for fluid 1 and 2. 

 

2.2.2 Linear Stability Analysis 

The stability problem was solved by Floquet theory as effective gravitational acceleration is 

periodic in time. The periodicity of the system was accounted by including a coefficient of      . 

Solutions were assumed in Floquet form in terms of coefficient     , where   is the complex 
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growth rate, in the infinite Fourier series. The Fourier series were written as follows, (indices j 

has been omitted to simplify the writing of the equations), 

 

 
                     ∑              

 

      

 ̂      
    

(2.24) 

 

Where          , k is a two-dimensional horizontal wavenumber and are defined as k2 = kx
2 + 

ky
2 for a rectangular system. The response frequency   is always chosen in the range 0 to ½ ω. 

As Kumar & Tuckerman (1994) discussed, only   = 0 (harmonic) and   = ½ ω (sub-harmonic) 

lead to instability; for all other values of  , the interface was completely stable. Eliminating the 

pressure field, by taking the          of the 0th order perturbed Navier-stokes equation and 

combining with continuity equation, we get, 

 

                   (2.25) 

 

Solution of above equation by introducing expanded Fourier series are the fourth-order 

ordinary differential equation governing each Fourier mode, n, for  , 

 

            
 

 
                      (2.26) 

 

to which the solution can be written as, 

 

                                  (2.27) 

 

where  

 
  

     
         

   
 

(2.28) 
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Conditions for no-flow and no-slip boundary conditions on the top and bottom surfaces 

        and        respectively for fluid 1 and 2 are, 

 

                      (2.29) 

 

Boundary conditions at interface z = 0 are, 

 

                                    

                   (2.30) 

                               

 

Inserting boundary conditions (equation in 2.30) into equation 2.23 leads to, 

 

 ⟦                     
                 ⟧                

      
    

 
                

(2.31) 

 

Here identity        
 

 
             is used giving relation of    mode to      and      

modes. Truncated to a finite number of modes N, with the growth constant σ set to zero, the 

stability of the linearized problem can be casted as an eigenvalue problem for solutions of 

neutral stability and their corresponding eigenvalues being the amplitudes A at which they 

occur. They can be expressed as  

 

                                                                              

 

Here, matrix D is generated from left hand side of equation 2.32 and operates on eigenvector Ϛ. 

The response frequency is set to zero for harmonic solution and ½ ω for sub harmonic solution. 

The matrix B is a double banded matrix of largely 1’s and 0’s used to select the coupled modes 

 , but differs slightly for the n = 0 mode. Truncation from n=0 to N results in the inclusion of the 
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    coefficient in the matrix B for the n = 0 mode and is replaced with the conjugate    ̅ for α = 

0 and   ̅ for α = ½ ω. 

 

2.2.3 Spatially infinite system results 

The linear equations defined above can be solved for all wavenumbers and solutions to 

produce a set of tongues of instability which is similar to the fins produced by the Mathieu 

equation in case of inviscid flow but tips are smoothed due to viscous effects and not 

descending to zero amplitude (Benjamin and Ursell, 1954). The viscosity affects harmonic or 

higher harmonic solution much more compared to sub-harmonic node.   

 

 

Figure 2.5: Threshold amplitude vs wave number for a horizontally infinite bilayer for a fixed 

frequency of 4 Hz, the first node from left represents sub harmonic (=ω/2) solution, the second 

node harmonic (α=ω), the third node super harmonic (α=3ω/2) and so on… 

 

The first tongue is the solution of sub-harmonic node, the second as harmonic, the third as 

super-harmonic etc…, as the waves excited in these regions execute one-half, one, and three-
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half periods etc..., with regards to the applied frequency, respectively. In an experimental 

condition, the wavenumber with the lowest threshold amplitude would be excited first in the 

direction of increasing vibrational amplitudes. This lowest amplitude is called as critical 

threshold amplitude. In an experimental system that approaches the laterally infinite limit like 

that of Bechhoefer et al. (1995), the lowest threshold amplitude of sub-harmonic node would 

always be the point of critical threshold amplitude. Thus for a large system only sub harmonics 

results are observed as had been observed by Faraday (1831) and Rayleigh (1883). Increments 

in frequency force tongues towards right and downward as will be explained in detail in the 

next section of this Chapter. For infinite system such as shown in Fig. 2.4, critical threshold 

amplitude – frequency curve takes the shape of smooth hyperbola with infinite number of 

available modes and excited for the natural frequency corresponding to the excited mode (see 

Fig 2.6). The MATLAB code has been made accessible in appendix C.  

 

Figure 2.6: Critical threshold amplitude for infinite boundary system for a bilayer problem. All 

symbols define different modes. 
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2.2.4 Results in finite systems 

Extension of the previous model to the case of a finite size cell was outlined by Benjamin & 

Ursell (1954) for rectangular cross-sections. For a system with a rectangular cross-section of 

width W and breadth L, the surface waves must satisfy the following boundary conditions, 

  

  
       

  

  
                                                                       

where   is the deformation of interface (see equation 2.14). These constraints can be applied 

on all sidewalls (x=0, W and y=0, L). Finite size allowed wave numbers can then be calculated as, 

  √(
  

 
)
 

 (
  

 
)
 

                                                                          

where m, n are  modes in x and y directions (for Hele-Shaw cell size such as used in present 

experiments, modes in the direction of width always remain zero for low frequency range. Thus 

here, for example, mode 1, mode 2 are referred to (m,n) as (0,1) and (0,2) respectively). Figure 

2.6 shows solutions of theoretical model for critical amplitude vs wavenumber. Each tongue 

represents a parametric solution such as subharmonic, harmonic, super harmonic and so on.  

 
(a)                                                                                           (b) 
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(c)                                                                                           (d) 

 
(e)                                                                                                   (f) 

Figure 2.7: Representation of the different modes of the finite sized cell in the amplitude-

wavenumber diagram for immiscible fluids system and in ground-based cases for FC-72 and 1 

cSt silicone oil at 25 ⁰C. 

In high frequency system subharmonic solutions dominates over higher harmonic ones. 

However in lower frequency domain higher harmonic solution can appear in the cell. The 

vertical lines in Figure 2.7 represent excitable modes as per the cell size (defined in Eq. 2.34). 

The minimum amplitude of the possible solution is called the critical or the threshold amplitude 

for the particular frequency. This critical amplitude can be plotted against frequency in a 

different map in Figs. 2.8 where each mode has its own cup shape node with its own distinct 

wave number (presented in this Figure with different colours). The cup size (amplitude and 

frequency band) decreases with the increase in frequency and nodes in critical threshold 
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amplitude – wavenumber curves (see Figs. 2.7 and 2.8). The subharmonic solution dominates 

and the system becomes less stabilized. Patterns at higher frequencies correspond to situations 

where the range of modes is effectively continuous. If a curve is drawn with all minimum values 

from Fig. 2.8, it will represent the threshold curve in the absence of mode quantization (similar 

to curve in Fig. 2.6). Local minima and maxima appear to correspond to different tongues in the 

amplitude versus wave number graph. A local minima in Fig. 2.8 (say f=6.8 Hz for mode 2)  

represents the minimum in Fig 2.7(d) in the amplitude versus wave number graph, thus can be 

called as tuned frequency corresponding to that particular mode. Change from sub-harmonic to 

harmonic wave or vice versa corresponds to the actual jump of critical threshold from one 

tongue to another one (see Figs. 2.7 a-c). Harmonic and even more, super-harmonic excitation 

is uncommon at higher frequencies. But at low frequencies in a discretized system with smaller 

cell size the system can skip the first sub-harmonic tongue and excite harmonic and super-

harmonic modes. The dimensions of the cell in the plane of interface define allowed wave 

numbers (see Eq. 2.34). As cell size is increased, the difference between one wavenumber to 

another one vanishes. For practical purposes, we can say that the larger is the cell; the 

smoother will be the threshold amplitude. In an almost infinite horizontal cell, the discretization 

of modes will disappear. 

Thus for a particular fluid system heated to a defined temperature and vibrated to a fixed 

oscillation frequency, the needed assignment was to recognize the lowest excitation amplitude 

for which a discernible interfacial wave occurs.  While it is conventional to expect the minimum 

critical threshold on sub-harmonic tongues in a laterally infinite system, the present confined 

system is characterized with both harmonic and sub-harmonic modes occurring over discrete 

bands of frequencies (see Fig. 2.7). And this was due to the fact that finite size system only 

allows certain wave numbers to appear which are defined by cell dimensions.  As we move 

towards higher frequencies, a continuum of modes becomes easily available even in finite size 

system, as the mode spacing diminishes even less than the width of each mode. The mode 

spacing is roughly π/L, while the width of each mode is roughly                (where        

        ,   is kinematic viscosity,   is density and   is frequency)  as discussed by Bechhoefer 

et al. (1995) The condition for having a continuum of modes is thus equivalent to           . 
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For practical purpose infinite cell can be designed based on required frequency range. A higher 

frequency range would require a smaller cell for a similarity with infinite boundary or it can be 

said that higher frequencies correspond to situations where the range of modes is effectively 

continuous.  

 

Figure 2.8: Minimum critical thresholds and markers and colours represent modes T=25°C. (For cell size 

35mm (L) x 5mm (W) x 29.5mm (H)) 

 

2.3 A case study on effects of parameters 

Fluid mixtures show a wide variety of properties when studied over extended ranges of 

temperature and accelerations. Phase equilibrium is one of the most interesting areas of 

investigation which can provide information on different types of molecular interaction. 

Faraday instability like any other phenomenon in physics is an outcome of simple properties of 

the fluids or constituents active in the experimentation. The properties are basically statistical 

in nature. The common fluid parameters such as density, viscosity, surface tension are prime 
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for the instability phenomenon as explained earlier, and their effects can help us in 

comprehending real phenomenon with variables such as gravity, temperature etc. It was thus 

important to understand that changing these parameters such as temperature will disturb 

geometric packing fraction of fluid mixture and reduced depth of potential for equal 

concentration of each liquid component in mixtures. In turn, all fluid properties become a 

function of temperature. Thus while doing the theoretical analysis for comparison with 

experiments, corrected values need to be taken into account to understand and validate the 

phenomenon with theory. Apart from that, a mixture has its own variation in properties 

because of interaction between molecules of two fluids. Any mixture of two fluids can show 

affinity (increased intermolecular forces) or aversion between its constituent molecules. For 

example, current binary fluid set has increased affinity with second fluid with increasing 

temperature. Variation of properties can also change the volume of fluid or its pressure. In 

certain physical experiments it was important to keep volume or pressure of the system 

constant in order to avoid extra uncontrollable presence of variables in the results.  

 

For our binary fluid system, properties of fluids were varying depending on the above cited 

parameters and are defined based on true measurements of properties with enforced 

experiment like conditions. With these measurements understanding of binary fluid system has 

been improved and repeatability of experimental work has been validated.  

 

2.3.1 Mass Transfer in binary fluids: Variation of density 

A binary fluid behaviour is a parametrical emphasis of the phase equilibrium of fluid mixture 

systems. The experimented binary fluid system has a very interesting property of mass transfer 

when a small variation of temperature was introduced. Binary fluids start moving towards its 

new equilibrium state which includes partial mixing of one fluid into another. Current binary 

fluids show an increase in affinity towards each other molecules and change its equilibrium 

position with increasing temperature. Experiments conducted for current set of liquids (FC-72 & 
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1 cSt Silicone oil), confirm variation of density due to mixing and have been discussed in this 

thesis in detail.  

 

To study temperature effects for immiscible fluids (where variation of temperature causes 

variation of density of top and bottom layers), which was an important aim of this thesis, the 

variation of density difference becomes an inevitable part of study. Mixing of binary fluids 

result into decrease in density difference, which in turn is a main parameter of Faraday 

instability phenomenon. We can simulate this effect by defining a function generating values of 

   and    with temperature based on measured and tested values in laboratory settings with 

controlled temperature conditions (See section 3.3). Decreasing density difference results into a 

domination of subharmonic waves as can be seen in Figure 2.9 (a)-(c). Another effect of 

decreasing density gap is the vanishing discretization making the system globally unstable.  

  

(a) 
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(b) 

 

 (c) 

                                          

Figure 2.9: Decreasing density difference for FC-72 and 1cst silicone oil (top to bottom) [μ1 

=20.0 cSt and μ2 = 12.8 cSt,  γ = 2.45 dyne/cm]  (a)       
  

          
  

    (b)    

    
  

          
  

     

(c)        
  

           
  

   

Interestingly, decreasing density gradient somehow imitates similar effect to decreasing gravity. 

A low density difference system will have smaller wavelength, smaller critical threshold 

amplitude and higher probability for sub-harmonic waves. Critical threshold amplitude – 

frequency graph moves towards left, with a significant reduction in the range of frequency 

band for each mode, introducing availability of higher modes at same level of frequency. The 

graph starts to smooth down, indicating the same effect as the decrease in gravity or moving 

towards infinite side boundary system. This effect was very similar to as seen by Diwakar et al. 

(Private Communication) with variation of the fluid’s temperatures. A qualitative match of 

Diwakar et al. (Private Communication) results in decreasing density behaviour validating the 

mixing phenomenon present in binary fluid system. 
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2.3.2 Wall proximity conditions: effects of viscosity 

In a small rectangular system, where Faraday wavelength is comparable to the container size, 

viscous damping plays an important role (effect of cell walls is discussed through the 

quantization of admissible modes. For a cell with one very small dimension (Hele-Shaw cell), 

walls have two effects: they force a quantization of the wavenumbers and they create local 

friction at the boundaries, which is not taken into account in these figures and and will be 

discussed in section 3.4.2) and basically intensifies the effects of viscosity. Viscous force is a 

stabilizing agent in the Faraday instability, which can be seen with rise in viscosity causing a 

damping of the tongues. Increasing amplitude threshold and smoothing of edges as well as 

movement of tongues slightly towards higher wavenumber can be observed. It is remarkable to 

note that damping effect on the higher harmonic tongues is more severe as compared to lower 

harmonics. This can be understood by the fact that increased frequency of waves results into 

increased friction between fluid molecules. Friction in fluid molecules is proportional to velocity 

gradients, and velocity gradients are inversely proportional to the wavelength. Thus it can be 

said that viscous stresses tend to dominate all processes as wavelengths get smaller and 

smaller. 

 

(a) 
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(b) 

 

 

(c) 

 

Figure 2.10:        
  

          
  

                        Increasing Viscosity (a) μ1 = 

1.00 cSt, μ2 = 0.64 cSt (b) μ1 =10.00 cSt, μ2 = 6.40 cSt  

(c) μ1 =20.00 cSt and μ2 = 12.80 cSt 

 

In the instability threshold graph it leads to the disappearance of higher harmonics, which can 

be explained by the presence of choppier waves corresponding to higher harmonics. For a large 

cell system, even the general viscous theory gives a good match to experiments as shown by 

Batson et al. (2013) utilizing Kumar and Tuckerman (1994) theoretical model. However, it was 
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not the case with small cell size (rectangular geometry) as explained further in experimental 

results (see Chapter 3). 

 

Inviscid theory predicts a zero threshold amplitude at resonance (as seen in Figure 2.10(a), first 

sub-harmonic tongue tuned frequency amplitude is near to zero), whereas the actual waves 

must get through a viscous threshold. In actual experiments the measured bandwidth was 

narrow than the inviscid prediction and the measured resonant frequency was larger than the 

inviscid prediction. 

 

2.3.3 Interfacial conditions: Variation of interfacial forces  

While interfacial tension is a stabilizing force and for current set of fluids its effect was 

negligibly small because of its low value compared to density difference. However, interfacial 

tension greatly affects solution with higher wavenumbers/ higher harmonic solutions or 

solutions at lower frequency and act as a stabilizing agent as seen in fig. 2.11. Increase in 

interfacial tension upturns the probability of harmonic solutions to appear as can be seen in 

Figure 2.11. In simple terms as described by Benjamin and Ursell (1954), instability is 

proportional to the sum of gravity and interfacial tension terms,  

  ∝ [ 
  

  

𝛥 
    ]

 
 

                                                          

 

For current system taken in this course of study FC -72 and 1cst silicone oil has small interfacial 

tension of the order of                ,                and gravitation acceleration on 

earth is               and wavenumbers starting from              . Introducing these 

values in above equation shows that the ratio of interfacial term to gravity term was equivalent 

to 1:100. A liquid set for example water with silicone oil will show more effects for interfacial 

tension variation.   
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(a) 

 

(b) 

 

(c) 
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Figure 2.11: Decreasing Interfacial tension from (a) γ = 2.45 dyne/cm, (b) γ = 0.78 dyne/cm and 

(c) γ = 0.11 dyne/cm (values taken are predicted values with temperature variation). 

       
  

          
  

                                     

2.3.4 Effect of gravity: Simulating Faraday instability in microgravity 

Space applications like vibrating propellant in rocket engine have variable acceleration. The 

gravity effects have been studied historically in ISS (International Space Station) and parabolic 

flight. Decrease in gravity causes tongues to shift rightwards to higher wavenumbers and forces 

the widening of tongues. Interestingly, the rate of spreading of the first sub-harmonic tongue 

was much higher in comparison to higher harmonics. This movement causes smaller 

wavelength and spreads nodes causing higher probability of sub-harmonic waves as well the 

decrease in mode width. Thus, a reduced gravity solution will have continuity of modes and will 

behave much more like an infinite boundary system.  

 

 
 

(a) 
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(b) 

 

 

(c) 

Figure 2.12: Decreasing gravity from (a) g = 9.81 m/s2, (b) g = 4.91 m/s2 and (c) g = 10-4 m/s2. 

       
  

  
        

  

  
          

    

  
   μ1 =20.0 cSt and μ2 = 12.8 cSt] 
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Chapter 3 

Ground based experiments of Faraday instability 
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The theoretical part was crucial to have an understanding of the instability and 

parameters affecting instability. The experimental work confirmed prediction of theory 

qualitatively & quantitatively and the analytical study gave an insight in understanding physics 

behind the instability. This has been done using an electro mechanical shaker with a pair of 

binary fluids. Binary fluids pose a very unique property of being soluble in each other depending 

on the temperature and are completely miscible above consolute temperature. At below and 

near the consolute temperature, the surface tension between the two fluids tends to zero and 

so does their density difference. The results had been explored to investigate the effect of 

vanishing surface tension and the reduction of density difference in the development of the 

instability. The effect of confinement and the gravity on the development of the instability had 

also been investigated. The results were then compared to the theory. It has been shown that 

in experiments the assumption of stress-free sidewalls was not feasible and thus produces 

variation from established theory specifically in the vicinity of boundaries. Two liquids 

contacting a solid sidewall inevitably produces a static meniscus, which emits waves during 

vibration, and violates the assumptions of a flat interface. Also rectangular geometry produces 

corner stresses which were not taken into account in linear stability analysis. Fluid shearing at 

the sidewalls and capillary hysteresis are other examples of complex stresses which arise in real 

systems and must be considered. Experiments and theory of Faraday instability are observed 

over a range of temperature in which a choice fluid system goes from immiscible to miscible 

character. 

 

3.1 Description of the experimental set-up  

The experimental system considered in this study used a transparent cell containing FC-72 and 

1.0 cSt Silicone oil taken at equal proportions by volume. The temperature of these liquids, 

which determines the coefficient of interfacial tension, was controlled by circulating water 

around the cell. The actual configuration of the cell has been shown in Figure 3.1. The outer 

dimensions of the cell were 55 mm (width) × 55 mm (height) × 7 mm (depth). The cell consisted 

of a polycarbonate frame which was sandwiched between two 55 mm × 55 mm × 1 mm 
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(thickness) sapphire glasses at the front and the back. The use of sapphire material reduced the 

resistance for heat transfer between the liquids and the circulating water. A sealed copper 

capsule with trapped air was placed in contact with the silicone oil in the cell interior. This 

capsule easily contracted/expanded to compensate for the thermal expansion/contraction of 

the liquids. The dimensions of the inner region encompassed by the liquids (excluding the 

volume occupied by the copper capsule) were 35 mm (width) × 29.3 mm (height) × 5 mm 

(depth). The current cell depth of 5 mm is an optimum value considering the necessity for 

attaining faster thermal equilibrium of liquids with the circulating water, particularly in the 

parabolic flight experiments. Though a cell even narrower than 5mm would have suited better 

both for heating/cooling of liquids and for making the interfacial tension effects dominant, it 

has been avoided so that the critical amplitude remains within the measurement range of the 

current linear oscillator. Note that the critical amplitude increases drastically with the increase 

in wall proximity. 

  

(a)                                                                     (b) 

Figure 3.1: (a) Experimental Cell (b) Experimental cell installed in setup 

In the present configuration, the binary liquids were filled through the side hole by suitably 

tilting the cell to completely evacuate the air. Once the cell was fully filled with liquids, the hole 

was sealed using a threaded screw wrapped with PTFE (Poly tetra fluoroethylene).  

Camera 

Experimental cell 

LED backlight 
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 (a) 

               

(b) 

Figure 3.2: (a) Sketch of the experimental setup in which electro mechanical shaker used to 

initiate the vibration of Fluid (b) Pictures of experimental setup 

Experimental 

cell 

High Speed 

Camera 

Counter 

weight of 

vibrational 

setup 

Computer 
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The circulating water for the control of the liquids’ temperature was actuated by a pump. The 

desired temperature in the circuit (with a stability of ± 0.010 °C) was achieved using a PID 

(proportional–integral–derivative) controlled immersion heater. The heater controller received 

temperature feedback from a Pt-100 probe suitably located in the circuit. Aside of the heating, 

the water circuit was also equipped with a feedback controlled Peltier element for cooling the 

liquids when required. 

The cell along with the enclosure for the circulating water was mounted on a vertically 

oscillating platform (the total weight of the cell with enclosures and back lighting is around 3kg) 

which was actuated by a linear drive with servo control of speed (see Figure 3.2 (a)). The 

motion of the drive was computer controlled and allowed a maximum acceleration of 

approximately 3g with frequencies up to 15 Hz. The amplitudes (A) and frequencies (f) were 

observed to be within 2% and 0.1% of their respective set values.  

The onset of the instability was recorded using a high speed camera (Photron SA3 60K M2). The 

illumination for the imaging process was obtained through a LED light placed behind the cell, on 

the moving platform. Generally, the motion of the interface was captured at 250 images per 

second with an exposure time of 5 μs. The recorded images were digitized and calibrated into 

length scales from which the size of the instability (wavelengths) was measured. The error in 

wavelength measurements was estimated to be about ±5% based on the processed images. In 

order to maintain the saturation of fluids with respect to solubility, they were shaken vigorously 

(A = 30 mm and f =3 Hz) for 30 s followed by a wait time of 30 s before each experimental trial. 

This was necessary to obtain repeatable results from the experiments. The detailed 

experimental equipment explanation can be seen in Appendix A.  

 

3.2 Choice of Liquids 

For analysing two fluids Faraday instability, a liquid set was necessary which (i) forms an 

interface that glides across the container wall, representing a minimization of the associated 

capillary sidewall stresses or any disturbance generated by wall effects and (ii) produces an 
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interface with a minimum meniscus in order to achieve a near flat interface and reaches 

nearest possible assumptions of theory. Another important and primary goal was to have a 

binary fluid of accessible consolute temperature (well below the boiling temperature of fluids) 

and also not toxic in case of leak in parabolic flight campaign and for future experimental use in 

ISS (International Space Station). The meniscus waves produced by sidewalls lead to parasitic 

surface ripples which disturb the parametric waves generated from the vibration force.  A 

binary fluid system consisting of Perfluorohexane (FC-72), a dense and inert fluorinated 

hydrocarbon, and Octamethyltrisiloxane (1.0 centistoke silicone oil), produces an interface with 

very small negligible meniscus. The slight pinning was verified by angling the experimental cell 

in an even position in which case a rapid (less than 1sec) reappearance of the interface to a flat 

position could be observed, which signified low sidewall stresses. Low surface tension (0.77 

mN/m at T = 25 0C corresponding to experimental value) was useful in reducing the 

capillary sidewall stresses. Low surface tension also leads to minimum meniscus and an almost 

not pinned triple contact line at wall. Silicone oil also forms a tiny film on sidewall around FC-

72, making the interface floating almost stress free on side walls. The fluid consolute 

temperature was     42.5 ᴼC which is well below the boiling temperature of more volatile (FC-72) 

component of fluid system (for which boiling temperature is 56 ᴼC). 

The analyses of miscible fluid systems were difficult with experimental challenges; an exact 

repeatability carries a demanding task in experimentations. In order to have the same initial 

conditions prior to experimental runs, an experimental protocol consisting of vigorously shaking 

the cell was set. This ensured the suppression of any eventual stratification of the two liquid 

layers (whose degree of miscibility increases with temperature) near the interface. Ideally, a 

binary fluid system should have a step transition of mixing with consolute temperature to make 

initial conditions less important and increase importance of interfacial thickness and tension. 

The steady existence of molecular diffusion and mixing with the rise of even slightest amount of 

temperature makes the meaning of exact initial conditions for experiments indefensible. The 

fluids considered in the present experiments have an important characteristic of being miscible 

above a certain temperature (consolute temperature) and partially immiscible below it. Thus, 

when the fluids temperatures were lowered, they become partially immiscible and separable 
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into two distinct entities. The temperature can be subsequently increased to make them 

completely miscible, giving exact similar conditions before start of each experiment which could 

be used to analyse the influence of parametric oscillations on the evolution of instabilities. As 

well as, a single charge of fluids can be repeatedly utilized for all the planned experimentations. 

Also, by controlling the temperature of the fluids, it was possible to alter the mass diffusion 

coefficient of the fluids, which was the most important property that governs the fluids mixing 

process.  In literature it was shown that the sidewall stresses (viscous and capillary) can control 

the overall system dissipation, even when the capillary effects were lessened by addition of 

surfactant, as in the experiments of Henderson & Miles (1990). FC72, a dense and inert 

fluorinated hydrocarbon, and 1.0 centistoke silicone oil produce an interface with very small 

negligible meniscus. Angling of the experimental cell resulted in uneven and rapid 

reappearance of the interface to a flat position, signifying low capillary sidewall stresses.  

 

3.3 Experimental repeatability 

The chosen binary fluids have a unique property of a continuous process of mass transfer. The 

rate of mass transfer was dependent on the system temperature, thus making the fluids’ 

densities, viscosities and surface tension changing with temperature. For the current fluid 

system, densities and viscosities were measured with temperature and shown in Fig 3.3(a) and 

3.3(b) respectively. The measurement of both densities (top and bottom fluid systems) clearly 

shows the mass transfer of fluids (the density of the top fluid phase was increasing even if 

temperature increases showing the partial miscibility of the two fluids). A complete mixing 

arises at consolute temperature (42.7 ᴼC). For the repeatability of experiments it was necessary 

that fluids be in an equilibrium condition with respect to the imposed temperature of the 

system before the initiation of vibration. However, it was difficult to attain the perfect initial 

condition for each experiment for a miscible fluid system such as the one used in the present 

experiment. The process of getting the same initial conditions makes the analysis of partial 

miscible fluids systems at any temperature difficult and long. The steady existence of molecular 

diffusion and binary fluid mixing with the rise of even a slightest amount of temperature makes 
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the meaning of exact initial conditions for experiments indefensible. For this purpose, a process 

of rigorous equilibrium mixing (shaking the fluid system at given amplitude and frequency) 

followed by fixed waiting time has been achieved before each experiment.  Densities and 

viscosities of fluids have been measured in these equilibrium conditions. Initial condition was 

used to vibrate the cell rigorously at amplitude of 25mm with frequency of 3 Hz for a period of 

30 seconds (to cause complete mixing of fluid by vibrating well above critical threshold of 

system). It was done so that the two liquids could be in equilibrium state with the desired 

temperature of experiment and allow the interface to stabilize for 30 seconds before it starts 

perturbing the interface in the experiment. Timer was included in the program to avoid any 

possibility of manual errors. For the miscible case similar condition was needed. Thus, Initial 

condition was set up at 41 ⁰C for miscible experiment followed by raising the temperature up to 

43.82 ⁰C (to achieve conditions of parabolic flights for miscible experiment) and wait time of 2 

minutes and 20 minutes for two different sets of data. Waiting time permits to control the 

interfacial thickness and density gradient due to diffusion, before starting the experiment.  

Experiments were performed to measure density and viscosity values of the binary fluids used 

in the system. For this reason, fluids were mixed in ratio of 1:1 by volume and put into 

temperature bath for measurement of density and viscosity values as shown in Figure 3.3.  
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(a) 

 

(b) 
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Figure 3.3: Experimental measurement of (a) density values (b) viscosity values (c) Interfacial 

tension with temperature (top and bottom phase fluid were in equilibrium) 

 

Another important aspect in maintaining initial condition was to observe wetting behaviour of 

the FC72-silicone oil film and the stick-slip behaviour of the contact line. Silicone oil creates a 

film on the sidewalls that helps in maintaining the low sidewall stress and results into a lower 

instability threshold in comparison to the conditions when film was not present. It was 

important that wetting condition was similar for all experiments to offer constant stress from 

sidewalls for the phenomena. This was achieved with a constant waiting period after a rigorous 

shake of fluids. 

  

3.4 Results and Discussion 

For a particular fluid state and oscillation frequency, the essential task involves identifying the 

lowest excitation amplitude for which a discernible interfacial wave occurs.  While it is 

conventional to expect a continuum of sub-harmonic modes in a laterally infinite system, the 
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present confined system is characterized with both harmonic and sub-harmonic modes 

occurring over discrete bands of frequencies, as finite system only allows certain wave number 

to appear which is defined by cell dimensions. For a rectangular cell allowed wavenumbers can 

be defined as (Bejamin and Ursell, 1954), 

  √
    

  
 

    

  
                                                                  

Where m and n are integers and ‘W’ and ‘L’ are dimensions of rectangular cell in the plane of 

interface. The gap between allowed wave number gives birth to discretized solution of the 

problem. Within each discrete band, the critical amplitude attains minima at the natural 

frequency of the mode. Such a behaviour occurs on the account of a trade-off between the 

variation of inertial forces and the viscous dissipation, both of which increase when the 

imposed frequency increases. The former is destabilizing while the latter is stabilizing. The 

variation of inertial forces is feeble at lower frequencies and it requires a large acceleration for 

the instability to originate. At higher frequencies, the viscous dissipation however becomes 

predominant and a large imposed acceleration is once again required to attain criticality. Their 

cumulative effect ultimately leads to minima of the critical acceleration/amplitude at the 

natural frequency. 

Similar to the observation of Batson et al. (2013), the high wetting nature of silicone oil allows 

the liquid interface to smoothly slide over the side walls. As current cell in question has 

dimension 35mm in long side of plane of interface and 5mm in short side of plane of interface, 

short side dimension is negligible enough compare to longer side for early mode appearance. 

Hence, we can safely assume that the flow features are primarily two dimensional except for 

the occurrence of a small meniscus which gives rise to persistent harmonic excitation of the 

interface even before the occurrence of the actual Faraday modes for the observed frequency  

(as shown in figure 3.5, there is no mode observed in the width direction of the cell)The 

meniscus waves do not have any detrimental effect on the prediction of thresholds for the sub-

harmonic modes for whom the bifurcation is sub-critical. The non-linear growth pattern of 

these detuned modes results in a perpetual growth of interfacial perturbation until the 
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discernible interface wave ruptures into some irregular pattern. Hence for any amplitude larger 

than the threshold, the instability manifests itself in a matter of time and makes the prediction 

of the critical threshold convenient. However the time for the instability to become noticeable 

is inversely relative to the closeness of the applied amplitude to the threshold. Contrastingly for 

a harmonic mode, the bifurcation is supercritical and the amplitude of the interfacial wave 

saturates at a value proportional to the excessiveness of the imposed excitation to the 

threshold. This complicates the prediction of criticality in harmonic cases closer to the 

threshold; where the meniscus wave might have amplitude larger than the actual Faraday wave 

near to critical threshold. Hence, observing the convergence of the Faraday wave at threshold 

becomes difficult and it introduces a bit of uncertainty in the predicted criticality for the 

harmonic modes. 

 

3.4.1 Immiscible Instability threshold 

Experiments were performed for immiscible instability threshold below consolute temperature 

for temperature range 25 ⁰C – 42 ⁰C as explained above and are shown in Figure 3.4. The 

mismatch observed in experimental threshold to theoretical threshold cannot be explained 

with the theoretical approach presented in this thesis (see Chapter 2). Imposed oscillation 

frequency and the lowest possible excitation amplitude for which a distinct visible interfacial 

wave occurred was measured and recorded. These experiments had shown the shifting of 

modes towards lower frequency as predicted qualitatively by the theory (Benjamin and Ursell, 

1954). Figure 3.4 shows the critical threshold amplitude, A, (on y axis) obtained for frequencies 

ranging between 3 and 8 Hz (on x axis) at five different temperatures, viz., 25 0C, 38 0C, 40 0C, 

41.5 0C, and 42 0C. In this temperature range, the interfacial tension coefficient and density 

contrast drastically diminished as the temperature of the fluids approached the consolute value 

(42.5 0C). The current confined system at low frequencies was characterized by both harmonic 

and sub-harmonic modes occurring over discrete bands of frequencies. This was in contrast to a 

continuum of sub-harmonic modes that were observed in large aspect systems. The various 

modes have been labelled as A, B, C, etc., and shown in Fig. 3.5. Here, mode B alone was 
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harmonic and it consists of two and half waves. The rest of the modes were sub-harmonic and 

feature as multiples of the half wave, i.e., A consisted of half wave, C consisted of a full wave, D 

consisted of one and half waves and so-forth. The different modes interconnect at co-

dimension points where the pattern consists of a superposition of both modes, dynamically 

changing from one state to the other. Within each of the discrete bands, the critical amplitude 

attained a minimum at the natural frequency of the mode. This phenomenon is equivalent to 

that of a simple pendulum whose fulcrum is subject to enforced pulsations. The response 

amplitude of the pendulum bob reaches a peak value when the forcing amplitude of the 

support crosses a threshold. This critical amplitude primarily depends on the forcing frequency 

and attains a minimum when the parametric frequency equals the system’s natural frequency. 

For the present case of Faraday instability, a similar effect produces a minimum of criticality at 

the natural frequency of each mode and that frequency is called tuned frequency for that 

mode. Generally, any perturbation of the fluid interface will produce ingress of heavier fluid 

into the lighter fluid along the crests and the case vice-versa along the troughs. The inertial 

forces acting on these masses induced by the imposed acceleration provoked the onset of 

instability and effects such as gravity, interfacial tension and the viscous diffusion acted as 

restoration forces that bring back the interface to its initial flat condition. 

In the case of the present experiments where the increase in temperature led to the decrease 

in both the density difference (note that the density of each layer changes on account of the 

solubility and depends on temperature, see figure 3.3a) and the interfacial tension, the earlier 

discussion in section 2.3, aids in understanding the fluid behaviour. The impact of changing fluid 

temperature on the onset characteristics has been depicted in Figure 3.4. An important feature 

that can be observed here is that the frequency band for each mode shrunk with an increase in 

the fluid temperature. This shrinkage was due to a drift of modes toward lower frequencies of 

excitation. In other words, the natural frequency of each mode became smaller. This did not 

come to a surprise as reduction in both the density difference and interfacial tension ought to 

lead to reduction in the natural frequency of each mode.  
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Figure 3.4: Immiscible threshold experiments compared with analytical solution (see Chapter 2). 

 

     

      

Figure 3.5: Observed Experimental modes 

Larger wavelengths corresponded to density difference dominance and smaller wavelengths 

corresponded to interfacial tension and viscosity dominance. Considering the present confined 

system where the critical wavenumbers at onset for lower frequencies were small (see Figure 

3.4), any change in the interfacial tension could not have a notable impact on the instability 
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pattern. Therefore, the only significant contribution for the natural frequency came from the 

gravitational term,          . It may be recalled that for resonant interfacial oscillations, 

there ought to be a match between the imposed frequency and the natural frequency of the 

system. Hence, for a given imposed frequency in the low frequency range, the gravitational 

term has to be maintained constant irrespective of the temperature of the fluids. This implies 

that any change in the density difference should come attended with an increase in the critical 

wavenumber and this is what is observed in the experiments. Only at high frequencies where 

the response wavenumbers are higher, the reduction in interfacial tension influences the 

instability. 

The decrease in the interfacial tension is expected to be significant near the consolute 

temperature and the response wavenumber must become very large to maintain the system’s 

natural frequency. The mode discretization therefore becomes difficult to discern and one can 

even expect a continuous change of wavelength with the frequency, for which the evidence 

starts to appear at 42 0C (see figure 3.4). As far as the critical threshold is concerned, it is 

difficult to give its exact trend of variation at lower frequencies as the drifting of modes can 

correspondingly make a frequency either more stable or more unstable with respect to the 

temperature. One may see this effect for the frequency of 4.4 Hz at different temperatures in 

Fig. 3.4. However, a clearer pattern was apparent at higher frequencies where the curves 

moved towards a constant value of critical amplitude, independent of the frequency/mode. 

Interestingly, this amplitude has shown an increase with the increase of temperature. In other 

words, the system actually became more stable with the reduction of interfacial tension (critical 

amplitudes decreases in Fig. 3.4). This behaviour might appear counter-intuitive as one would 

normally expect less stability in such situations. However, the selection of higher wavenumber 

that leads to larger viscous dissipation must play a stabilizing role. In other words, the instability 

brought in through the reduction of interfacial tension effects was overwhelmed by the viscous 

stabilization, particularly when the operating conditions were closer to the consolute point. 

Another notable outcome of temperature change in the vicinity of the consolute value was the 

reduction in meniscus thickness which minimized the damping effects brought in by the 

meniscus waves. 
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In summary, we can clearly see from the ground experiments that the entire modes shift 

towards a lower frequency as the fluids’ temperature is increased. In fact, this mode shift is 

what that might be expected upon inspection of the natural frequency given in equation 2.35. 

However, both the density difference as well as the interfacial tension decreased with an 

increase in temperature and it was impossible to experimentally isolate the change happening 

due to one effect from the other. It was evident from the theory that the density difference 

plays a dominant role at low frequency and interfacial tension at high frequency.  

 

3.4.2 Correction with viscous damping 

To understand the physics behind these mismatches, sidewall stresses, contact angles, 

meniscus wave’s effects were studied. In previous theoretical approaches such as Benjamin and 

Ursell (1954) & Kumar and Tuckerman (1994) & Batson et al. (2013), meniscus waves and 

sidewall effects were neglected, which is in fact true for large size cylindrical cells. However the 

same cannot be said for small rectangular cell where damping coming from the sidewalls and 

internal damping within fluids motions affects the threshold. 

A simple way to measure damping viscous effects is to measure the rate at which an excited 

mode decays once excitation force has been stopped. Thus the damping rate is measured over 

full grown wave decay over time under its own resistance to fluids. Viscous forces in liquids will 

force the instability to die out with time in the present case with the following equation, 

 

Where      is the wave amplitude and      is its initial value; 𝜂    
     is the experimental 

damping rate in the system. The exponential rate of decay is determined by the slope of the 

logarithm of the ratio of the wave amplitude (    ) scaled to the initial value (    ) and plotted 

against time for each frequency (see Figure 3.6). The experimental rate of damping can be 

plotted against frequency with corresponding modes appearing for that frequency as shown in 

Figure 3.7. Henderson & Miles (1990) made the first attempt at matching single-mode 

                
   

         (3.2) 
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experiments to a theory incorporating viscous effects. They performed experiments in large 

cylindrical cell with water as the operating fluid, using a surfactant to minimize the pinning of 

the interface to the sidewalls. The linear damping coefficient due to viscous effects in the bulk 

phases, given by Kumar & Tuckerman (1994) and derived by Landau & Lifshitz (1987), ignoring 

interfacial effects, is given by,  

 

 

𝜂    
        

                     

                    
 (3.3) 

Where 𝜂    
     is the theoretical viscous damping rate used by Kumar & Tuckerman (1994) for the 

wavenumber   in the system of the two fluids with densities        , viscosities       and 

heights       for fluids 1 and 2, respectively. 

 

Figure 3.6:  Measurements of linear damping rate at 25 ᴼC with various modes, “SH” means 

subharmonic mode and “H” the harmonic mode. 
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The theoretical curves in Figs. 3.7 were obtained by measuring the wave numbers 

corresponding to the applied frequency. The damping rate was found to be constant for a 

particular mode over a range of frequencies in the observed range. In rectangular geometry, 

the measured linear damping rate was found to be higher compared to the theoretical one. 

This difference corresponded to the higher viscous damping rate which was incorporated in the 

theoretical model as an effective viscosity. The effective viscosity was defined as the value of 

viscosity which offers the same amount of resistance to the fluid motion in the theoretical 

model. The effective viscosities were measured from Figs. 3.7 and Eq. 3.3 by considering a 

mode in a band of frequencies for which the damping amplitude rate was constant to get the 

effective viscosities    and    , knowing   ,   ,    and   .   

      

       

Figure 3.7: Measurements of linear damping by measuring slope of viscous linear damping rate 

as a function of frequency. Plots are given for critical amplitude. 
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Viscous damping does not only come from sidewalls and internal dissipation but also from 

bottom and top walls, where the wavelength of the standing wave is comparable to the 

container dimensions. The increase in effective viscosity drastically increases sub-harmonic 

threshold in comparison to harmonic threshold. Harmonic waves have frequency in 

synchronization to cell motion in contrast to subharmonic waves. Subharmonic mode 

influences the fluid flow on a larger extension than a harmonic one. Therefore, the effect of 

friction on the top and bottom walls is necessarily larger for subharmonic modes than for 

harmonic modes. Thus harmonic waves face much lower effects of fluid heights in comparison 

to subharmonic waves. However, introducing an equivalent viscosity to compensate for the lack 

of friction on the side walls will artificially exaggerate the friction on the top and bottom walls. 

 

In the theoretical approach as explained in previous section, the contact angle between the 

interface and the side walls is assumed to be 90o (on the wall surface). The present fluid system 

has been chosen with great care such that they provide a flat interface. However in these 

experiments it has been observed that the fluids make a small contact angle with walls, giving 

thus a larger sensation of the length for the fluid in the cell and corresponds to around 1-2mm / 

3-5 % to the actual length of the cell. For a larger cell this deviation can be ignored but for the 

cell size as used in current experiments (L=35 mm), this deviation can cause noteworthy 

difference from theoretical calculations. This effect has been taken into account in the present 

calculations of the theoretical curves. 

It shows that the viscous dissipation of the system for a finite size cell is dominated by walls and 

interfacial dissipative effects. Kumar & Tuckerman (1994) pointed out in their analysis of a 

single fluid layer open to air that if the wavelength of a standing wave becomes comparable to 

the filling depth, the dissipation from the bottom boundary layer becomes dominant and 

results in harmonic waves.  

Experiments for the present cell were run at various temperatures and for complete range of 

frequencies in order to measure the decay of wave amplitude, once the excitation forces were 

stopped. The results helped us to understand the relationship between theoretical and 
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experimental measured values of damping. As the mode number increased, theoretical and 

experimental viscous damping rate difference decreased. This was due to the fact that the 

wavelength considerably decreased and became negligible with respect to the cell size moving 

thus to an infinite size system. This observation was in line to the observation made by Hill 

(2002) who stated that as domain size became large enough the viscous damping diminishes.  

Experimental results have been compared with modified analytical solutions at complete 

temperature range (25 ᴼC, 38 ᴼC, 40 ᴼC, 41.5 ᴼC, 42 ᴼC) in Fig.3.8. Figure 3.8 shows clearly a 

better match between theory and experiment and validates the measured viscous damping 

rates which quantitatively influence greatly the input of effective viscosity in the linear model.  
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Figure 3.8: Direct comparison between experimental data and the theoretical results based on 

linear stability analysis with viscous damping correction 
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Figure 3.9: Interfacial modes of excitation. B alone is harmonic, all other modes are sub-

harmonic. 

 

However it should be noted that the accuracy of the measurement of linear damping rate 

decreased with the increased in the number of waves. Data recording images had limited 

resolution and as the number of waves increased the accuracy of the measurement decreased. 

Also for Mode A, inclusion of damping resulted in overshoots to the predicted threshold in 

comparison to experimental work. This is due to the fact that increased viscous damping results 

from boundary layer and bulk phase stresses. However for current theoretical results measured 

linear damping rates are naturally introduced via bulk viscous damping modelled by effective 

viscosities in the Navier-Stokes equations. For initial modes wall effects dominate as explained 

above but for higher modes wall damping effects diminish and bulk phase stresses start 

dominating.  

 

3.4.3  Miscible Instability Threshold  

Immiscible Faraday instability, as explained and analysed above, has been well studied and, 

with certain assumptions, provides a good prediction for experiments from theoretical work. 

However miscible Faraday has generated very less attention in previous research work. This 

section is a brief description of miscible Faraday methodology, challenges and results in 
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comparison to immiscible Faraday instability. It is important to understand that assumption of 

very thin interface as considered in immiscible fluids system is not true in miscible case.  

In miscible Faraday instability the cell is initially in stable configuration with initial condition at 

fixed temperature below consolute temperature, then heated above consolute temperature 

(42.5 0C) and let the interface grow for a required thickness for a fixed time with the diffusion 

process, and then after subjected to vertical vibrations. The initial phenomenon of the interface 

was observed similar to immiscible instability and grew itself to an extent which later led to the 

mixing of the liquids (see Fig. 3.10). The instability grew and ended with complete mixing of two 

liquids over a volume.  This mixed volume was found to be considerably larger than the initial 

diffuse region.  

      

(a)                                                                                     (b) 
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(c)                                                                                      (d) 

Figure 3.10: Development of Faraday instability in miscible fluids, instability destroy itself and 

result in complete mixing 

The miscible fluids situation was unlike immiscible Faraday with diffused interface and close to 

zero interfacial tension. In the miscible Faraday, the diffusion of momentum and species 

stabilize the diffused interface. Also distinct surface elevations or depressions do not exist in 

miscible fluids system in opposite for immiscible systems where these elevations exist due to 

inertial forcing from external acceleration. In its place the destabilization effect of short 

wavelengths is believed to occur from the transverse variation of density. In other words the 

destabilization of a diffuse interface in the presence of vibration is analogous to the Bénard 

instability where even an erstwhile quiescent layer that is stably stratified can experience 

sustained flow when subjected to inertial vibrations (Shukla & Narayanan, 2002). In such a 

problem, larger external acceleration results in small wavelength at the onset of the instability.  

While immiscible system has a density jump on interface, miscible system has density gradient 

to initiate the instability. Near the critical threshold, immiscible Faraday instability reaches a 

steady state. However in miscible case, instability destroys itself, mixing fluids by convective 

forces eventually. Once the instability sets in, the gradients begin to weaken as a result of 

convective mixing. This in turn causes the waves that characterize the secondary motion, to 
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disappear. In other words the miscible layer Faraday problem is necessarily transient and can 

never attain a periodic steady state unlike its immiscible counterpart. 

When this interface was subjected to vibration, concentration gradients were reduced, wave 

structure vanished and liquids formed a mixture layer in between two pure solutions. Miscible 

threshold also had dependency on the fluid interface thickness which is in turn a function of the 

waiting time before initiation of vibrating motion. The existence of diffusion layer shortens the 

time of a rise of instability at the interface. For this study experiments were done with fixed 

waiting period to study effects of the interfacial thickness.  

 

(a) 
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(b) 

Figure 3.11:  (a) Experimental thresholds for a bilayer of FC72 (h1= 12.75mm) and 1 cSt silicone 

oil (h2=16.75mm) in a 35mm*29.5mm*5mm cell. Data points differentiated with colour and 

marker indicate the excited mode with initial conditions defined at 41 0C and waiting time of 2 

minutes (b) Interfacial modes of excitation at onset. All modes observed are sub-harmonic. 

 

In the miscible fluid set, the diffusion of species stabilized the mixing region in contrast to 

immiscible fluid set in which interfacial tension stabilized the system. As in the experiment 

heavier liquid was kept below and lighter liquid was filled in the upper part of the cell, so that in 

ground based experiments, natural convection oppose the mixing of solution with diffusion 

(stabilizing buoyancy force). Thus, the effect of gravitational acceleration matched with 

previous observations that smaller diffusion layer gives the effect of delayed development of 

instability. However, for higher gravity level a larger gradient of density can exist and can 

generate higher amplitude of wave. While inertial forcing promotes destabilization of the 

interface in immiscible case, miscible case has density variation to achieve the same effects.  

It has been shown in Figure 3.11, sets of threshold data for cells filled with FC72 and 1 cSt 

silicone oil obtained in miscible fluid experiment at temperature T = 43.82 ⁰C (well above 

consolute temperature value which is equal to 42.7 ⁰C) with initial condition set at immiscible 

at temperature T = 41 ⁰C.  Frequency ranges were chosen to best showcase discretization. At 

higher frequency, the system behaved likes an infinite system and modes started to change 

frequently without much change in amplitude. Lower bound of frequency is restricted with 

experimental constraint for achieving amplitude. However the lowest mode achieved 

corresponds to one wave, representing the second mode.  Only sub harmonic modes were 
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observed. The experimental data were differentiated with mode number and corresponding 

mode images are also presented in Fig. 3.11 (b).  

 

3.4.4 Comparison between immiscible and miscible systems 

The classical form of the Mathieu equation (discussed in section 2.1), depicts the parametric 

excitation of a linear harmonic oscillator. The dispersion law presented by Benjamin & Ursell 

(1954) shows that the square of the natural wave frequency of a Faraday system is determined 

by the fluid density and surface tension. For this particular fluid system density difference 

overpowers the effects of surface tension, thus giving importance to initial conditions used for 

miscible system. For results shown in Figure 3.11 initial condition was set at temperature T = 41 

⁰C. It is thus necessary to compare immiscible fluid system results at temperature T = 41 ⁰C with 

miscible fluid system.  

From Figure 3.12 it became evident that the initial condition used for experimental 

repeatability played an important role in miscible experiments results. Miscible experiments 

results obtained with initial condition of temperature T = 41 ⁰C, fits well with results of 

immiscible experiment results at temperature T = 41 ⁰C with miscible fluids results slightly 

unstable in comparison with the immiscible ones This comparison confirmed the theoretical 

deduction that density difference plays a much greater role in determining the threshold and 

wavelength.   

However miscible Faraday wave’s critical threshold showed a little shift when compared to its 

immiscible part. As shown in the figure 3.12 miscible Faraday requires a less vibrational energy 

(Aω2) in comparison to immiscible fluid. This behaviour is explained by the fact that vanished 

interfacial tension in miscible fluids and lower density gap in between fluids make the system 

more unstable which has been shown as stabilizing agent in the previous chapters. 
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Figure 3.12: Comparison of miscible system to corresponding immiscible system with waiting 

time of 2 min 

3.4.5 Thickness of diffused interface in miscible fluids 

Miscible experiments are also defined by thickness of interface before starting of vibration. This 

interface thickness depends on the waiting period. A constant waiting period was used to make 

constant interface thickness for miscible experiments. However its effects on the wavelength of 

the instability were of importance. Large waiting periods led to thicker interface and weaker 

density gradients and were found to be more unstable for defined amplitude. In simple words 

for defined vibrational amplitude, instability grew for lower value of frequency in long waiting 

period experiments. This has been shown experimentally in figure 3.13 below. 
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Figure 3.13: Comparison of miscible system with different waiting period 
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Chapter 4 

FARADAY INSTABILITY IN A MICROGRAVITY ENVIRONMENT 
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It is well known that the Faraday instability is a manifestation of gravity-capillary wave 

phenomena wherein discernible wave patterns emerge on a fluid interface that is subjected to 

perpendicular oscillations. Here, the resonant behaviour is governed by various factors such as 

the system geometry, gravity, and interfacial tension. A comprehensive understanding of the 

Faraday instability thus entails a clear demarcation of the role played by each of these effects. 

Interestingly, both gravity and interfacial tension play conflicting roles which are primarily 

determined by the imposed frequency of excitation. For example, it has been shown by Batson 

et al. (2013) that the gravity plays a dual role of aiding the instability at low frequencies of 

excitation and suppressing it at higher values. Though a similar effect is also manifested by 

interfacial tension, understanding its sole influence becomes very difficult under terrestrial 

gravity conditions as the density difference effects dominate here over the capillarity. Hence, 

performing experiments under reduced gravity conditions were very essential and the micro-

gravity platform (where density difference effects are vanishing) offered by aircrafts that follow 

parabolic trajectories are very conducive in this regard. It may be noted that such a study was 

motivated not only from an academic point of view, but also with regard to relevant 

applications involving fluidic and microfluidic systems in the space station. 

The present experiments on Faraday instability involves oscillating a Hele-Shaw type cell 

containing binary fluids, perpendicular to their interface during the zero-g phase of a parabolic 

flight. The use of binary fluids here provided a convenient option of changing the coefficient of 

interfacial tension by temperature control. Here, the interfacial tension between the fluids pair 

approached to zero as their temperature tends to the upper consolute value and there is no 

drastic alteration to the other properties of the fluid layers.  

Micro-gravity experiments with a gravity level of the order of 10−2 g were conducted on-board 

an aircraft undergoing a parabolic path. For this purpose we participated in three CNES 

parabolic flight campaigns for zero-g experiments (CNES PFC VP115, 11-22/05 2015, CNES PFC 

VP123, 14-25/03 2016 & CNES PFC VP128, 27/03-07/04 2017). This chapter discusses the flight 

dynamics, microgravity experiments, associated results in comparison with ground-based 

results, challenges and uncertainty in the microgravity experiments. 
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4.1 Parabolic flight dynamics 

Parabolic flights are widely used to create free-fall conditions for microgravity experiments on 

earth. It is easily accessible and provides cost effective interaction between the on-going 

experiment and researcher in zero-g environment. Though experimentalist in parabolic flight 

identifies gravity to be zero, the acceleration is changing in reality and the terms "microgravity" 

and "zero gravity” are not thus technically correct.  

Aerospace engineering has melodramatically enriched since the dawn of first human flight. 

Aircrafts’ pilots have become skilled in altering the forces and accelerations that passengers 

experience. Weightlessness is often used to describe the perception that astronauts experience 

during free-fall. Astronauts perceive themselves to be weightless because they are falling under 

the influence of the same gravitational field as the spacecraft, so there is no reaction force on 

the astronaut by the spacecraft. As per the Einstein's equivalence principle, no simple physical 

transducer can conclude if an applied acceleration is due to gravitational or inertial force and 

this includes the sensors in the human body also known as vestibular system that helps to keep 

us balanced and to give realization of directions. Zero-g parabolic flights provide similar free-fall 

conditions, providing experimentalist a ground to develop and collect initial data for ISS 

(International Space station) experiments.  

For manoeuvring the parabolic flight, at a set point, the pilot gradually pulls up the nose of the 

aircraft and it starts climbing at an angle (see the sketch in Fig. 4.1 for the trajectory of the 

airplane for one parabola). This phase lasts for about 20 seconds, during which the aircraft 

experiences acceleration between 1.5 and 1.8 times the gravity value at the surface of the 

Earth, i.e. 1.5 – 1.8 g. At an altitude of 7500 meters, with an angle of around 47 degrees to the 

horizontal and with an air speed of 650 km/h, moving from hyper-gravity phase to microgravity 

phase, the pilots manoeuvre to cancel the lift generated by the wing (angle of attack of the 

wing equals zero). While at the same time the flight engineer reduces the thrust from the 

engines to compensate the drag. This is because of the aircraft generating appropriate lift and 

thrust to produce the desired vertical and longitudinal accelerations, respectively. By following 

the above procedure microgravity levels of the order of 10-2 g is obtained for the experiments.  
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The aircraft is surrounded by air and thus aero-dynamic lift, drag and thrust play a major role. 

At this point the aircraft follows a free-fall ballistic trajectory, i.e. a parabola, lasting 

approximately 20 seconds, during which weightlessness is achieved.  

 

Figure 4.1: Path of one parabola in a parabolic flight. Approximately 20 second of microgravity 

time available for experiment in each parabola.  

 

The path of parabola is a part with one of its locus located at the centre of the earth. The peak 

of the parabola is achieved at around 8500 meters, at which point the speed has dropped to 

about 390 km/h. At the end of the weightlessness period, i.e. again at 7500 m, the aircraft must 

pull out of the parabolic arc, a manoeuvre which gives rise to another 20-second period of 

approximately 1.8 g on the aircraft. At the end of these 20 seconds the aircraft again flies a 

steady horizontal path at 1 g, maintaining an altitude of 6000 m. The period between the start 

of each parabola is three minutes, i.e. a 70 second parabolic phase (20 seconds at 1.8 g + 3 to 5 

seconds of transition + 20 seconds of weightlessness + 3 to 5 seconds of transition + 20 seconds 

at 1.8 g), followed by a 110 second period at steady level 1 g flight. Regardless of the aircraft 

trajectory including large (45°) pitch-up and pitch-down attitudes, the experimentalist feel a net 

force perpendicular to the floor of the aircraft. 
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Parabolic flights are prone to environmental conditions and are also limited by flight dynamics. 

Flying in ever changing earth’s environment generates some unwanted residual acceleration, 

which can be detrimental to physical experiments.  The pilots are always trying to compensate 

for the disturbing forces from surrounding environment and engine vibration. As a result, the 

microgravity level attained in a parabolic flight has some deviations of the order of +/-0.05g at a 

frequency of around 1 Hz. Also mechanical vibrations caused by engines and shocks in the 

aircraft also exist and are noticeably higher due to the nature of the flight. 

For some physical experiments even small disturbances in gravity level can affect results in 

great order, Faraday waves are an example of that. Section 4.3 carries out a case study for a 

particular parabola to study its effect on generated waves.  The Faraday instabilities discussed 

in previous chapters have shown a great deal of dependency on gravity. It is thus interesting to 

understand how instabilities will behave in the absence of gravity. A relevant application of this 

behaviour is for the propellant dynamics in a rocket fuel tank, whereupon vibrations during 

take-off are known to induce Faraday initialized sloshing. Another example is related to 

spacecraft maneuvers done for the altitude control in orbitfor which spacecraft sends short-

timed bursts of gas in order to control their orientation, in azero-g environment. In Faraday 

instability, gravity not only possesses a destabilizing effect (similar to its role in the Rayleigh-

Taylor instability in half a period of vibration), but also its contribution to the natural frequency 

of a mode results in a shift towards higher wavenumbers when it is removed.  

  

4.2 Results and Discussion 

A series of immiscible and miscible experiments were performed in CNES Parabolic flight 

campaign to determine behaviour of Faraday instabilities in gravity free environment as the 

Faraday instability is a demonstration of capillary-gravity waves. Current set of binary fluids 

gives a unique opportunity to understand its behaviour when both the capillary and 

gravitational effects vanish. An experimental study has been performed and discussed in 

previous sections where the reduction in capillarity is achieved through the temperature 
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increase of the binary fluid system whereas the microgravity condition was realized in a 

parabolic flight environment. Interestingly, in microgravity environment and low surface 

tension region with thermal control results into a system where wall boundary effect 

diminished and continuum of modes are observed. Only certain experiments are performed in 

parabolic flight limited to time availability in parabolic campaign. Certain miscible experiments 

were performed as well, but they have been found to be dependent upon initial conditions (see 

Chapter 3). However due to a very short period of two minutes between two parabolas of same 

series, it was difficult to maintain similar initial conditions. 

Very importantly, for the purpose of understanding the evolution of Faraday instability in 

micro-gravity conditions, it is planned to carry out miscible Faraday instability experiments in 

the ISS. The additional benefit that comes out of the microgravity experiment is its ability to 

form exact diffuse interface between the fluids. Under terrestrial conditions i.e. normal gravity, 

there is always an alteration of the mixing region due to the convection associated with change 

of temperature of the liquids. This can be completely eliminated in the zero-gravity conditions. 

Carrying out these experiments in the ISS is necessary due to the fact that the thermal time 

scales are generally large and so, performing the desired experiments within the short time 

offered by parabolic flights, is very challenging. Thus in zero gravity time period of 15 − 20s in 

the parabolic flights gives only an estimated range for the threshold. It may be noted that an 

important challenge that will arise in zero-gravity conditions corresponds to the de-mixing of 

the liquids. In the absence of the gravity, there is no natural motive force that causes the liquids 

to separate. In this regard, some other means of separation have to be tested and 

implemented. Hence, various preparatory steps have to be carried out in the parabolic flights 

before performing the full scale experiments in the ISS. Correspondingly, different aspects of 

Faraday instability are aimed to be addressed in the present parabolic campaign. Microgravity 

experiments also confirmed the existence of a crossover frequency (f*), on either side of which 

gravity plays opposing roles (See Fig. 4.2(c)). Crossover frequency is the frequency below which 

the system was found to be destabilized in the absence of gravity. For immiscible experiments 

effects of temperature are studied using the binary liquids system described in Chapter 3, for 

temperatures T = 38 0C, 40 0C and T = 41.5 0C. Variation of temperature was set only before 5 
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and 8 minutes break between two series of parabola, such that enough time is available for 

setting initial condition to make liquids in equilibrium before start of each series of 

temperature. Figure 4.2 presents the threshold curves for the three above-mentioned 

temperatures in the immiscible regime in ground-based and parabolic flight environments. 

 

(a) 
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(b) 

 

(c) 

Figure 4.2: Critical threshold amplitude measured in micro gravity conditions in comparison 

with terrestrial experiments at temperature for (a) T = 38 ⁰C, (b) T = 40 ⁰C and (c) T = 41.5 ⁰C. 

One of the most important observations is the loss of clear discretization of the instability 

under microgravity conditions as has been observed in the terrestrial experiments. It results 

now into a continuum mode system. These aspects of the experiments indicate that in 

microgravity environment even smaller size cell can behave as an infinite boundary system. 

There is a crossover frequency below which the system was found to be destabilized in the 

absence of gravity. The existence of crossover frequency is the result of the presence of higher 

wave number selection in a microgravity system than earth based experiments. The 

microgravity experiments therefore experiences much higher viscous effects at large 

frequencies, resulting in higher threshold amplitudes for instability. The present experiments 

clearly depict the existence of this crossover frequency and its drift to lower frequencies as the 

coefficient of interfacial tension is decreased. 
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4.3 g-jitter in Parabolic Flight 

This section focusses on understanding the influence of g-jitter on the evolution of Faraday 

instability in micro gravity environment. The realization of zero gravity conditions is made 

possible by virtue of the aircraft’s parabolic path wherein the outward centrifugal force exactly 

balances the gravitational pull on the aircraft and its occupants. Diwakar et al. (Private 

communication) have correspondingly shown that for low frequency excitation, the removal of 

gravity destabilizes the fluid layers quickly though the response waves have a lower wavelength 

that should have led to viscous stabilization. Incidentally, a deeper characterization of the 

instability behaviour in parabolic flights is complicated by these two important factors. 

The first issue concerns the short zero-g time window available with the parabolic flights 

(around 20s). Correspondingly, a precise prediction of the onset threshold of Faraday instability 

is not possible. As the time required to observe a tangible interfacial wave increases drastically 

when the threshold is approached, only a tentative range for the threshold can be estimated 

within the time of approximately 20s provided by the parabolic flights. The second and more 

severe issue concerns the ever-present errors in flight dynamics whose influence on the 

Faraday waves form the primary focus of this work. 

Ideally, the parabolic flights are meant to emulate a perfect zero-gravity condition even within 

the earth atmosphere. However, various factors such as atmospheric turbulence, mechanical 

vibrations caused by engines etc., make it challenging to create an ideal zero gravity 

environment. As a result, the microgravity level attained in a parabolic flight deviates of the 

order of +/-0.05g due to g-jitters. Though such deviations are barely detected by the human 

vestibular system, their influence on physical experiments like Faraday instability is not 

negligible. As the natural frequencies of the fluids are constrained by the imposed frequency 

during resonance, any perturbation in the gravity levels is immediately reflected in the 

wavelength of the Faraday waves. In the present work, the influence of these g-jitters has been 

analysed for different imposed frequencies and fluid temperatures. Correspondingly, one such 

scenario is illustrated in Figure 4.3. In Fig. 4.3 (a), the acceleration levels are shown in x, y and z 

directions for one parabola with the parameter excitation of frequency 5 Hz and amplitude of 
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2.25mm. The z-component of the acceleration is the highest. The errors are within 2%, 1.5% 

and 1% in Z, X, and Y directions, respectively.  Figure 4.3 (b) shows the z-component of the 

gravity together with the wavelength of the Faraday wave measured at different time instants 

within the timeframe of this single parabola.  

 

(a) 

  

        (b)                                                                                   (c) 

     

(d) 

Figure 4.3: (a) The different axes of the airplane represented by normal, longitudinal and lateral 

in Z, X and Y directions respectively (b) Acceleration data in a real-time parabola where Gz, Gx 

and Gy are the acceleration perpendicular to base plane, in direction from tail to front of 

aircraft, and in the direction from left wing to right wing when looking into cockpit direction, 
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respectively (c) gravity level at the z-direction and wavelength at selected time instants (d) 

Faraday instability showing varying wavelength within one parabola. Frequency f = 5 Hz and 

amplitude A = 2.25 mm.  

Several images obtained during this parabola are shown in Fig. 4.3 (d) and are analysed for 

determining the wavelength, oscillation period etc. Interestingly, contrary to a constant 

wavelength behaviour observed for earth based experiments, parabolic flight experiments have 

varying wavelengths ranging from 2.67 mm to 4.00 mm with an error of 0.05 mm. The 

difference is quite large (over 30% change). 

 
(a) 

 

             
(b) 

 

Figure 4.4: (a) gravity level and wavelength at selected time instants (b) Faraday instability 

showing variation wavelength within one parabola. Frequency = 7 Hz and amplitude = 2.25mm. 
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Out of many observed cases another one is also presented in Figure 4.4 where the wavelength 

is varied from 2.25 mm to 2.75 mm (18% difference). In microgravity condition, the 

determination of the exact wavelength and the mode thus becomes a tedious task due to small 

disturbances (g-jitters) present in the aircraft and corresponding variation in wavelength. The 

forced acceleration in y direction is less than 1% of gravitation acceleration, which is generally 

considered to be an ideal condition. But, even this slight disturbance forces the interface to 

slant and provide varying boundary length. These results indicate a great shift of experimental 

results in parabolic flight and provide requirements for corrections in order to  reach truthful 

results.   
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(a) 

 
(b) 

 

(c) 

Figure 4.5: Examples of variation of wavelength for (a) f = 2Hz; A, 5mm (b) f = 9Hz; A, 2mm  

(c) f = 2Hz; A, 1.5mm 

It is important to note that g-jitter experiments cannot be planned and observation of such 

experimental data is dependent of large data collection. As well as in certain parabolas, the g-

jitter completely destroys the interface thus not allowing any probability of recording such 

observation. Following are few example in Fig. 4.5 observed in the parabolic flight campaign 

showcasing the variation in wavelength.  
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Chapter 5 

Conclusion and Perspectives 
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In the present thesis the Faraday instability generated as a result of parametric 

excitation has been experimented and validated with analytical work. An intriguing 

experimental analysis has thus been performed to characterize Faraday waves in such regimes. 

The reduction in capillarity was achieved through thermal control of a novel binary liquid 

system, whereas the vanishing gravity force condition was realized in a parabolic flight 

environment. The critical external acceleration required for the onset of instability has been 

generally observed to decrease in these conditions, although the corresponding critical 

wavelength reduces drastically so as to make the resulting viscous dissipation compensate for 

the loss of stability arising from the reduced capillarity and gravity forces. 

The current study specially aimed to show the role of wall proximity and damping caused by 

frictional forces and sidewall stress for the small forcing frequency. A linear stability analysis 

based on Fourier-Floquet method was performed in order to get an understanding of the 

instability and how different parameters affected the threshold of the instability. In 

experimental observations, it has been validated that the assumption of stress-free sidewalls 

was not completely true and produced variation from theory specifically in small cell sizes. The 

reason came from the fact that the two liquids contacting the solid sidewalls inevitably 

produced a static meniscus, which emitted waves during vibration, and violated the 

assumptions of a flat interface and the simple viscous friction of the fluids on the wall are 

responsible for the discrepancy between our experimental results and existing stability 

analyses.  The experimental data produced a precise intensity of these two effects, but they do 

not allow to discriminate between each component in the global discrepancy. We successfully 

measured the cumulative effect of both these effects (capillary waves from the meniscus and 

viscous friction at the walls) for the correction of the analytical model. This correction in the 

theoretical calculations with the viscous damping rate helped in achieving a better 

understanding for the prediction of the experimental critical amplitude for sub-harmonic and 

harmonic modes. This observation showed that the majority of the viscous damping was the 

result of boundary layer effects instead of internal damping for the first primary modes. For 

higher modes, the wall effects diminished but the bulk damping became dominant because of 

the increased choppiness of the waves. Viscous damping from top and bottom walls affected 
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sub-harmonic or super-harmonic waves much higher in comparison to harmonic waves. For 

higher modes theoretical and experimental damping rates provided much better match thus 

reducing the need of viscous damping correction. From the analysis and results above one 

could state that the container size needs to be at least five times to the wavelength produced in 

the system in order to remove viscous damping effects such that the system could act as an 

infinite size system. A damping coefficient derived from linear theory for unbounded containers 

with specific wave numbers could be used to describe any discrepancies between a linear 

model in bounded containers and experiment. For a confined rectangular geometry, damping 

correction provided a way to predict the corrected threshold with theoretical calculations 

based on linear stability analysis.  

For miscible experiments the choice of binary fluids permitted to study different cases of 

miscible fluid instability without filling again the cell which is impossible in the short time 

parabolic flight as well as it allowed to return to exact similar charge conditions before starting 

of each experiment. It provided some new understanding of the physics of the capillary-gravity 

wave phenomenon. The value of surface tension coefficient reduced in the immiscible regime 

and approached to zero in a miscible system as the temperature of the fluids system was 

gradually increased to the consolute temperature. The system, thus uniquely provided the 

opportunity for understanding the sole influence of surface tension coefficient on Faraday 

instability at the cost of very marginal change in the viscosity values.  

The zero- gravity experiments unveiled the dual role of gravity and interfacial tension on the 

evolution of Faraday instability. Comparison of terrestrial experiment with parabolic flight 

experiments has shown the existence of a crossover frequency, below and above which gravity 

plays opposing roles. Increasing the temperature in parabolic flight environment resulted in 

lowering this cross-over frequency. Under microgravity condition the energy required for the 

appearance of instability drastically reduced and the discretization of modes disappeared even 

in Hele-Shaw cell for a fluid pair with low interfacial tension. However in the experimental sets, 

the reduction of interfacial tension with temperature increase played a counter intuitive role of 

making the system more stable at high frequencies due to the choppiness of waves. The 
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explanation for this could be the secondary effect of change in the critical wavelength, which 

caused an increase in viscous damping, overwhelming the primary effect of change in interfacial 

tension. 

The reduction in interfacial tension was obtained by changing the temperature of the binary 

fluids pair which also altered the density difference between the fluid layers. Under terrestrial 

conditions, the neutral curves representing the variation of critical amplitude with frequency 

shifted leftwards and it was difficult to associate this behaviour solely to the variation in 

density. 

Further this work can be progressed with numerical analysis, for which phase field modelling 

can be an excellent choice. The phase field approach delivers a continuum thermo dynamical 

model able to treat multi-phase problems. An auxiliary variable - the phase field - is added to 

the usual set of state variables in order to provide an explicit indication of the dynamic of the 

phase. This parameter may take different values for different phases and undergoes a rapid but 

smooth variation in the interface region. In mono-component systems the density ρ (scaled by 

the liquid density) is the natural order parameter: ρ=1 designates the liquid region of the 

system and ρ≈0 the gaseous phase. 

In the phase field model the interface is introduced by gradients of the phase field. The 

formalism is based on a free energy, giving complete setup as a single homogeneous phase. For 

a system in equilibrium and without interfacial mass exchange the free energy density has the 

form of a symmetric double-well potential with two minima corresponding to the two 

alternative phases. The advantage of the proposed method is that we do not need any 

interfacial condition (continuity of stress, kinematic condition…) in order to model the interface 

of the two fluids. 
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Appendix A:  Detailed Experimental setup 

A transparent experimental cell containing the test fluids was mounted on an oscillating 

platform. The temperature of the fluids inside the cell was controlled by a coolant medium 

(water) flowing over the cell which was circulated using a small pump. The actual control of the 

temperature of water entering the cell enclosure was carried out by a PID (proportional integral 

derivative) controlled immersion heater. The controller received temperature feedback from a 

probe suitably located in the circuit (Check data circuit A.6).  Besides this heating, the water in 

the circuit was also cooled at the liquid-to-air heat exchanger run by a Peltier element.  

A.1 Experimental Cell 

Current cell used a rectangular design having internal dimensions 35mm in length, 29.3mm in 

height and 5 mm depth and had been chosen carefully to get discrete system (see section 2.2.4) 

with low frequency. The outer dimensions of the cell were 55 mm in length, 55 mm in height 

and 7 mm in depth. The cell consisted of a polycarbonate frame which was packed in the 

middle of two 55mm x 55mm x 1mm sapphire glasses at the front and the back enabling faster 

transfer of heat between the circulating fluid and the fluids inside the cell. 

The cell was pre-sealed before experiment using a threaded screw wrapped with Poly tetra 

fluoroethylene (PTFE). The cell also included a special provision chamber made out of sealed 

hollow copper rectangular capsule for volume compensation which might be required to 

accommodate the thermal expansion of the liquids (See Figure A.1). Owing to the boiling point 

of FC-72 being 56 ⁰C, the maximum temperature that was aimed to be realized for the fluids 

was fixed at 50 ⁰C. The cell was enclosed in a small chamber where coolant water was 

circulated to maintain the desired temperature in the liquids. During the parabolic flight this 

whole assembly was in-turn placed inside a secondary confinement. This acted as a safety 

reservoir for the liquids in case of any leakage. In order to adjust with the scenario of Cabin de-

pressurization during parabolic flight experiments, a protective vents screw was installed on the 

outer containment to compensate for the pressure change.  
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(a)       (b)  

             

(c)       (d)  

Figure A.1: Experimental Cell (a) Schematic diagram (b) Test cell with liquids (c) Inside 

confinement for flow of coolant water (d) Double confinement for parabolic flight 

 

A.2 Electromechanical shaker  

The cell along with its coolant enclosure was mounted on a vertically oscillating platform which 

was actuated by a linear drive with servo control of speed (Yaskawa SGMPH Sigma II 

04AAA41D). The shaker was vertically mounted with eight fastening points to the experimental 

frame. The motion of the drive was computer controlled and allowed a maximum acceleration 
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of 3g with frequencies up to 15 Hz. The amplitudes and frequencies were observed to be within 

1% and 0.1% of their respective set values. The oscillating platform was actuated by a linear 

drive with servo control of speed. The linear drive unit also included a complementary platform 

which helped in balancing the dynamic load on the rack. The oscillating platform was aided by a 

position switch which helped in fixing the base point of oscillations. Also to safe guard against 

the position overshoot/undershoot, two limits switches were provided next to the linear drive.   

 

                  

(a)                                                                  (b) 

Figure A.2: (a) Pictures of shaker configuration and its fixation in the rack. (b) Servo motor 
 

A.3 Water Bath circuit 

The circulating water was actuated by a micro pump with maximum flow rate of 2800ml/min 

with a high circulation in order to provide real time temperature change in the cell. The desired 

temperature in the circuit (with a stability of ± 0.01 0C) was achieved using a PID controlled 

immersion heater. The heater controller received temperature feedback from a Pt-100 probe 

suitably located in the circuit (see data circuit A.6).  Besides heating, the water circuit was also 

equipped with a feedback controlled Peltier element for cooling the liquids when required. The 

Servo Motor Table Mount for 

experimental 

setup 

Counter weight 



111 
 

role of the Peltier element was to provide necessary cooling of water in the circuit. The 

thermoelectric module (TEM) had a maximum power rating of 153W (Vmax = 29.8 V; Imax = 8.5 

A). The temperature of the water flowing out of the water-block was measured using a NTC 

(negative temperature coefficient) Thermistor. The temperature feedback thus obtained from 

the Thermistor was utilized to control the voltage applied to the TEM by a PR-59 (Proportional 

Controllers-59) controller. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A.3: Schematic diagram of water bath circuit 

The PR-59 controller was linked to the computer using a RS-232 (standard for serial 

communication transmission of data) interface for remote control of the temperature. Along 

with the control of current to the Peltier module, the PR-59 also controlled the speed of the fan 

utilized for cooling the heat sink. The power to the controller was provided by a switching 

power supply of 156 W (24 VDC and maximum current 6.5 A). In addition to the control 

provided by PR-59, the setup also involved three other mechanisms to safeguard against any 

overheating. The first one involved the NC thermal switch which was placed on the side of the 

water block, so that the current to the TEM module would be cut-off if the local temperature 

on the block surface goes beyond 50 ⁰C.  Secondly, a thermocouple (J type) was placed on the 

heat sink to additionally measure its temperature. Using the temperature measured from this 

probe, the current to Peltier module was either switched ON or OFF by a secondary digital 

temperature controller. Thirdly, a current fuse (8A maximum) was utilized to limit the current 

to the TEM. In principle, the above cooling circuit was provided as an auxiliary mechanism to 
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compensate for the extra heat that might have been gained by the flowing water from lighting 

systems etc.   

The actual control of the circulating liquid’s temperature was achieved through a small 

immersion heater (diameter 6.5 mm, length 40 mm, Voltage 230 V and power 50 W) that was 

inserted inside the water-block. The water from the exit of this block was directly fed into the 

cell chamber where the desired temperature of the liquid had to be maintained. The 

temperatures at the inlet and the exit of the cell chamber were measured using PT-100 

(Platinum Resistance) resistance thermometers. Using the measured outlet temperature of the 

water-block, the current supplied to the heater was controlled by an i-Series 1/16 DIN PID 

temperature controller. 

The DC pulse feedback generated by the controller (based on the water temperature) was 

utilized to actuate a Solid State Relay (SSR) which regulates power to the heater. As a safety 

precaution, the current to the heater was routed via a fast fuse of rating 1 Amps. In addition to 

the safety provided by the temperature controller for over-heating, two reversible thermal 

switches placed on the top and the sides of the water-block were utilized to restrict its surface 

temperature below 50 ⁰C. 

In order to understand the thermal transience of the liquids enclosed within the cell, the outlet 

temperature at the chamber exit was also measured by another i-Series 1/16 DIN PID 

temperature monitor. The temperature values measured by both the controller and the 

monitor were logged on to a computer via RS-232 link for both storage and remote control 

purposes. It may be noted that the overall coolant circuit was realized using double silicone 

flexible tubes. The maximum volume of water that was used in the circuit was 200 ml and the 

maximum temperature that was attained by the water was less than 50 ⁰C.  

In order to safeguard from overheating, two thermal switches with a cut-off temperature of 50 

⁰C were positioned on the water block surface close to the heater. The protection for the 

Peltier assembly was derived from the thermal switch positioned on the side of the water block. 

In addition, a J-type thermocouple was positioned on the heat sink which controlled the current 

to the Peltier element through an ON-OFF controller. 
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(a) 

         

 

(b) 
 

 
 (c) 

Figure A.3: Assembly for the control of circulating water temperature (a) Heat sink assembly (b) 
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A membrane-based degasify system was utilized on a by-pass loop for the initial degassing of 

the water so that the instability phenomenon inside the cell was not shrouded by the bubbles 

formed out of dissolved gases. Using the above mechanisms, the temperature of the fluids 

inside the cell was accurately modified above and below the consolute temperature. Before 

each miscible oscillatory experiment, the fluid temperature was set below the consolute 

temperature to obtain a perfect separation of phases between the fluids. Once perfectly 

separated, the temperature was once again increased to lead the fluids into the miscible state. 

A.4 Data recording Equipment  

The phenomenon was recorded by a high speed camera (Photron SA3 60K M2) which was 

connected to a computer with a Gigabit Ethernet port (see section A.6). All motion of cell and 

interface phenomenon were examined using time-space data of the images, obtained from high 

speed digital imaging with frame rates of up to 2000 fps. The illuminations for the imaging 

process were obtained through a 30 W LED light placed behind the cell, on the moving 

platform. The power for this LED was supplied by a LED driver of capacity 50 W. In order to 

prevent over-heating of the LED lights, they were mounted on two cooling aggregates which 

were ventilated by small 12V DC fans. The motion of interface in the following presented data 

was captured at 500 images per second with an exposure time of 5μs. The recorded images 

were digitized and calibrated into length scales from which the size of the instability 

(wavelengths) has been measured. 

 

A.5 Electrical circuit 

A schematic of electrical circuit of the experimental setup has been shown in figure below. The 

yellow line in the circuit shows power connection and green light shows data connection 

between components.  

Servo motor which takes maximum current of 2.6 ampere was connected by a single wire with 

3G1.5mm2 (15 amp capacity) wire. Another connection went for temperature control unit 
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explained above. A connection is for LED lights were located behind the experimental set-up to 

illuminate the cell. This cell motion and wave motion was captured by a high speed camera 

connected with system. An extra heater with TEM controller was also present in the system 

(explained in section A.3) for fast heating of experimental fluids. 

 

A.6 Data circuit 

A schematic of data circuit of the experimental setup is shown in the figure below. Data links in 

the experiment were present to communicate the information to motor unit, temperature 

control and data recording equipment. Applied amplitude and frequency were communicated 

to linear drive unit with the help of a computer while monitoring the fluid temperature. The 

wave patterns were recorded by a high speed camera. 
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Appendix B:  MATLAB Code for inviscid fluids 

% To plot the Response and Phase plane for the Mathieu's Equation 
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
%|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
%-------------------------------------------------------------------------- 
% Mathieu Equation is z''(t)+eta.z'(t)+(a-qsin(omega*t))*(z) = 0 
clc ; clear all ; close all; 
% Characteristic Exponents of the Mathieu Equation 
result(1:10) = 0; 
for gg = 1:1:10; 
omega = 2*pi*1; 
rowp1 = 999.97; 
rowp2 = 956.10; 
h1    = 0.02; 
h2    = 0.02; 
k     = 8; 
EARTH_GRAVITY = 9.8; 
gravity = gg/10*EARTH_GRAVITY; 
gamma = 1; 
amplitude = 8; 
% q = ((rowp1 - rowp2)*omega*omega*amplitude)/(rowp1*coth(k*h1)+ 

rowp2*coth(k*h2)); 
% a = ((rowp1 - rowp2)*gravity*k - gamma*k*k*k)/((rowp1*coth(k*h1)+ 

rowp2*coth(k*h2))); 
q = 2; 
a = gg; 
fprintf('     g = %d   q = %d    a = %d \n',gravity,q,a) 
eta = 0.00 ;                 % Damping in the system 
time = 0:0.01:80;          % Time span 
theta0 = [0 0.25] ;         % Initial values 
ivp = [theta0 q a eta omega] ; 
% Time History Analysis using ODE45 
sol = ode45(@MathieuEquation,time,ivp); 
y = deval(sol,time); 
theta = y(1,:)' ; 
Dtheta = y(2,:)' ; 
% Time History plot 
figure ;                
plot(time,theta) ;   
xlabel('time','FontSize', 26) ; 
ylabel('Amplitude','FontSize', 26); 
set(gca,'linewidth',3) 
set(gca,'fontsize',22) 
set(gca, 'Ticklength', [0.01 0.01]) 
grid off 
 % Phase plane plot 
% figure ;                
% plot(theta,Dtheta,'b') ;     
% hold on ; 
% plot(theta0(1),theta0(2),'or') ; 
% xlabel('Z') ; 
% ylabel('SECOND SOLUTION') ; 
% axis equal ; 
% hold off ; 
[pks,locs] = findpeaks(theta); 
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frequency = diff(locs); 
modifiedfrequency = frequency(find(frequency < 100)); 
modifiedfrequency = mean(modifiedfrequency); 
result(round(gg)) = 100/modifiedfrequency; 
filename = sprintf('range8%d',gg*10); 
print(filename,'-djpeg','-r500') 
end 

 

function xdot = MathieuEquation(t,x) 
% Mathieu Equation is y''(z)+eta.y'(z)+(a-qsin(omega*t))(y) = 0 
% Written into two first order differential equations 
% y'(z) = x  
% x'(z) = -eta.y'(z)-(a-qsin(2z))(y) 
% 
n = length(x) ; 
xdot=zeros(n,1); 
theta = x(1) ; 
Dtheta = x(2) ; 
q = x(3) ; 
a = x(4) ; 
eta = x(5) ; 
omega = x(6); 
xdot(1) = Dtheta; 
xdot(2) = -eta*Dtheta-(a-q*sin(omega*t))*theta; 
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Appendix C:  MATLAB Code for viscous fluids 

% To plot the threshold vibrational amplitude with frequency 
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
%|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
%-------------------------------------------------------------------------- 
clear all 
clc 
format long 

  
%%%%%%%%%%%% Required Parameter INPUT %%%%%%%%%%% 
rhoset=[1622,885             %1 
1609.564815,890.9178378      %2 
1597.648148,895.4912432      %3 
1593.166667,910.1007135      %4 
1492.12963,930.0972973       %5 
1472.8,978.5                 %6 
1325.0544,975                %7   
1280.7024,985                %8 
1228.7024,997                %9 
1393,1055];                  %10 %densities 1 (bottom) and 2 (top), kg/(m^3) 
nu1set=[0.42,0.95            %1 
18.993,22.587                %2 
17.118,20.462                %3 
15.243,18.337                %4 
13.368,16.212                %5 
18.493,19.087                %6 
10.618,11.962                %7 
8.6805,10.8995               %8 
7.8,9.8                      %9 
5.7,7.8];                    %10 %kinematic viscosities 1 and 2, centistokes 
gammaset=[2.133 1.5375  1.2993  1.0611  0.8229  0.5847  0.3117  0.2276  

0.1856  0.1083]/1000;%interfacial tension , kg /(sˆ2) 
Temperatureset = [25,30,32,34,36,38,40,41,41.5,42]; 
hset = [0.01281,0.01719 
0.01304,0.01696 
0.01308,0.01692 
0.01301,0.01699 
0.01284,0.01716 
0.01251,0.01749 
0.01182,0.01818 
0.01129,0.01871 
0.01099,0.01901 
0.01067,0.01933]; %layer heights 1 and 2, meters 
g_set = [9.81 0.00001]; 
wavenumber_set = [87.18 87 87 87 87 87 87 86.43 86 86]; 
gi = 0; 
range = 1; 
for range = 1; %gravitational acceleration , m/(sˆ2)     
g = g_set(1); 
frange = []; 
gi = gi+1; 
rho = rhoset(range,:); 
gamma = gammaset(range); 
nu1 = nu1set(range,:); 
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h = hset(range,:); 
wavenumber = wavenumber_set(range)/1; 
fi=0; 
theoriticalwork (1:20) = 0; 
theoriticalwork1 (1:20) = 0; 
f = 3.00; 
fstep = 0.01; 
while f<=3.6 
fstep = fstep + 0.01; 
if fstep >= 0.025 
fstep = 0.025; 
end 
f = f+fstep; %imposed frequency , Hz 
fi=fi+1; 
%k=800; %wavenumber , mˆ-1 
sigma=0; %mode growth rate , sˆ-1, zero for neutral stability 
N=12; %Fourier series cutoff 

  
%%%%%%%% Calculation proceeds from HERE %%%%%%%%% 
    thresholds=zeros(46,2) ; %calculation output variable, and contains the 

harmonic and subharmonic neutral stability amplitudes 
    thresholds2=zeros(46,2); 
    thresholds3=zeros(46,2); 
    thresholds4=zeros(46,2); 
    nu=nu1/1e6 ; %kinemat viscosity conversion , cSt to mˆ 2 / s 
    mu=rho.*nu; %dynamic viscosity calculation, kg/m*s 
    omega=2*pi*f ; %frequency conversion , Hz to radians/s 
    Index=0; 
for alpha=[0, 1/2*omega]  
    count=1; 
    Index=Index+1; 
    numodenu = 0; 
    for k = wavenumber:wavenumber:wavenumber*12;  
        numodenu = numodenu+1; 
        if numodenu == 1 
            nu = [0.64 1]*51.32/(1e6); 
        elseif numodenu == 2 
            nu = [0.64 1]*16.24/(1e6); 
        elseif numodenu == 3 
            nu = [0.64 1]*9.06/(1e6); 
        elseif numodenu == 4 
            nu = [0.64 1]*6.90/(1e6); 
        elseif numodenu == 5.51 && alpha ~= 0 
            nu = [0.64 1]*2.79/(1e6);  
        elseif numodenu == 12.58 && alpha == 0 
            nu = [0.64 1]*2.79/(1e6); 
        elseif numodenu == 6 
            nu = [0.64 1]*5.51/(1e6); 
        elseif numodenu > 6 
            nu = [0.64 1]*5.51/(1e6); 
        end 
        mu=rho.*nu; 
           INDEX1=0; 
            INDEX1=INDEX1+1; 
                D=zeros(2*(N+1)) ; %eigenvalue problem D?matrix initialize 
                for n=0:N; %loop to calculate the D-matrix coefficients for 

each Forier mode n  
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                    fexp =(sigma+1i*(alpha+n*omega)) ; %Fourier Floquet 

exponent 
                    q1=sqrt(k^2+1/nu(1)*fexp) ; %characteristic solution 

exponent1 
                    q2=sqrt(k^2+1/nu(2)*fexp) ; %characteristic solution 

exponent2 
                    b=zeros(8,1); %initialization of inhomogeneity in 

boundary condition system of equations 
                    b(8)=fexp; %insertion of Floquet exponent arising from 

kinematic condition 
        %Here the matrix defined by the system of equations arising from the 

boundary conditions  is constructed . The characteristic velocity solutions 

include z?exp(k?z) and z?exp(?kz)instead of exp(q1?z) and exp(q2?z) when 

q1=q2=0 and the coefficients for these solutions are calculated first. 
                    if fexp==0 
                        fhs =[exp(-k*h(1)), exp(k*h(1)), h(1)*exp(-k*h(1)), 

h(1)*exp(k*h(1)) , 0, 0, 0, 0; %no flow condition , bottom sur face  
                            0, 0, 0, 0, exp(k*h(2)), exp(-k*h(2)), 

h(2)*exp(k*h(2)),h(2)*exp(-k*h(2)) ; %no flow ,top surface 
                            k*exp(-k*h(1)), -k*exp(k*h(1)), h(1)*k*exp(-

k*h(1))+exp(-k*h(1)),-h(1)*k*exp(k*h(1))+exp(k*h(1)), 0, 0, 0, 0; %no slip 

condition , bottom surface 
                            0, 0, 0, 0, k*exp(k*h(2)), -k*exp(-k*h(2)), 

h(2)*k*exp(k*h(2))+exp(k*h(2)), -h(2)*k*exp(-k*h(2))+exp(-k*h(2)) ; %no slip, 

top surface 
                            -1, -1, -1, -1, 1, 1, 1, 1,; %continuity of 

velocity at the interface 
                            -k, k, -1, -1, k, -k, 1, 1; %continuity of 

velocity zderivative at the interface 
                            -mu(1)*2*k^2 ,-mu(1)*2*k^2, -mu(1)*(k^2+2*k), -

mu(1)*(k^2-2*k), mu(2)*2*k^2, mu(2)*2*k^2, mu(2)*(k^2+2*k), mu(2)*(k^2-2*k) ; 

% continuity of tangential stresses at the interface 
                            1, 1, 1, 1, 0, 0, 0, 0] ; %kinematic condition. 

equally can be written as 0 , 0 , 0 , 0 ,1 , 1 , 1 ,1] 
                        coeff=fhs\b ; %calculation of the velocity profile 

coefficients 
                        dz1=coeff(1)*k-coeff(2)*k+coeff(3)-coeff(4); 

%evaluation of first z?derivative of the lower layer velocity profile at z=0 
                        dzzz1=coeff(1)*k^3-

coeff(2)*k^3+coeff(3)*3*k^2+coeff(4)*3*k^2; %third z?derivative of the lower 

layer 
                        dz2=coeff(5)*k-coeff(6)*k+coeff(7)-coeff(8); %first 

z?derivative of the upper layer 
                        dzzz2=coeff(5)*k^3-

coeff(6)*k^3+coeff(7)*3*k^2+coeff(8)*3*k^2; %third z?derivative of the upper 

layer 
                        Dn=(rho(2)*fexp+3*mu(2)*k^2)*dz2-mu(2)*dzzz2-

((rho(1)*fexp+3*mu(1)*k^2)*dz1-mu(1)*dzzz1)+((rho(2)-rho(1))*g-

gamma*k^2)*k^2; %evaluation of the D?matrix coefficients for each Fourier 

mode n 
                    else %calculation for when q1=q2 are not zero . Same 

format as above . 
                        fhs=[exp(-k*h(1)), exp(k*h(1)), exp(-q1*h(1)), 

exp(q1*h(1)), 0, 0, 0, 0; 
                            0, 0, 0, 0, exp(k*h(2)), exp(-k*h(2)), 

exp(q2*h(2)), exp(-q2*h(2)); 
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                            k*exp(-k*h(1)), -k*exp(k*h(1)), q1*exp(-q1*h(1)), 

-q1*exp(q1*h(1)), 0, 0, 0, 0; 
                            0, 0, 0, 0, k*exp(k*h(2)), -k*exp(-k*h(2)), 

q2*exp(q2*h(2)), -q2*exp(-q2*h(2)); 
                            -1, -1, -1, -1, 1, 1, 1, 1,; 
                            k, -k, q1, -q1, -k, k, -q2, q2; 
                            mu(1)*2*k^2, mu(1)*2*k^2, mu(1)*(k^2+q1^2), 

mu(1)*(k^2+q1^2), -mu(2)*2*k^2, -mu(2)*2*k^2, -mu(2)*(k^2+q2^2), -

mu(2)*(k^2+q2^2); 
                            1, 1, 1, 1, 0, 0, 0, 0]; 
                        coeff=fhs\b; 
                        dz1=coeff(1)*k-coeff(2)*k+coeff(3)*q1-coeff(4)*q1; 
                        dzzz1=coeff(1)*k^3-coeff(2)*k^3+coeff(3)*q1^3-

coeff(4)*q1^3 ; 
                        dz2=coeff(5)*k-coeff(6)*k+coeff(7)*q2-coeff(8)*q2; 
                        dzzz2=coeff(5)*k^3-coeff(6)*k^3+coeff(7)*q2^3-

coeff(8)*q2^3 ; 
                        Dn=(rho(2)*fexp+3*mu(2)*k^2)*dz2-mu(2)*dzzz2-

((rho(1)*fexp+3*mu(1)*k^2)*dz1-mu(1)*dzzz1)+((rho(2)-rho(1))*g-

gamma*k^2)*k^2; 
                    end 
                    D(2*n+1, 2*n+1)=real(Dn); %placement of the real and 

imaginary components Dn in the Dmatrix 
                    D(2*n+1, 2*n+2)=-imag(Dn); 
                    D(2*n+2, 2*n+1)=imag(Dn); 
                    D(2*n+2, 2*n+2)=real(Dn); 
                end 
                B=zeros(2*(N+1)) ; %construction of the B matrix 
                if alpha==0; %harmonic 
                    B(1,3)=2; 
                    B(3:2*(N+1) ,1:2*N)=eye(2*N); 
                    for i =1:2*(N-1) 
                        B(2+i,4+i)=1; 
                    end 
                else %subharmonic 
                    B(1,1) =1; 
                    B(2,2) =-1; 
                    B(3:2*(N+1),1:2*N)=eye(2*N); 
                    for i =1:2*N 
                        B(i,2+i)=1; 
                    end 
                end 

  
                [eigenvecs,eigenvals]=eig(D,1/2*(rho(2)-rho(1))*k^2*B); 

%solution of the eigenvalue problem 
                eigenvals=diag(eigenvals); 
                %stop 
                index1=0; %routine used to sort through the obtained 

eigenvalues 
                for index2=1:length(eigenvals) % 
                    if isnan (eigenvals(index2)) %NaN eigenvalues ignored 
                    elseif isinf(eigenvals(index2)) %infinite eigenvalues 

ignored 
                    elseif abs(imag(eigenvals(index2)))>1e-6 %super tiny 

eigenvalues ignored 
                    elseif eigenvals(index2)<0 %negative eigenvalues ignored 
                    else 
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                        index1=index1+1; %index set for positive eigenvalues 
                        evals(index1)=eigenvals(index2); %eigenvalue stored 

in evals vector 
                        if abs(imag(evals(index1)))<1e-6 %disposal of super 

tiny complex parts 
                            evals(index1)=real(evals(index1)); 
                        end 
                    end 
                end 
                evals=sort(evals); %sorting of the obtained eigenvalues 
                evals2=100/omega^2*evals; %conversion from acceleration 

Aomegaˆ2 to amplitude A, centimeters 
                thresholds(count,Index)=evals2(1,1); %output variable 
                sizeevl = size(evals2); 
                if sizeevl>1 
                thresholds2(count,Index)=evals2(1,2); 
                else 
                thresholds2(count,Index) = 99999999; 
                end 
                if sizeevl>2 
                thresholds3(count,Index)=evals2(1,3); 
                else 
                thresholds3(count,Index) = 99999999;    
                end 
                if sizeevl>3 
                thresholds4(count,Index)=evals2(1,4); 
                else 
                thresholds4(count,Index) = 99999999;    
                end 
                wavelengths(count,Index)=k; 
                count=count+1; 
    end 
    nu = [0.64 1]/1e6; 
    mu = rho.*nu; 
end 
% % % 

plot(wavelengths(:,1),thresholds(:,1),'r*',wavelengths(:,1),thresholds2(:,1),

'r*',wavelengths(:,1),thresholds3(:,1),'r*',wavelengths(:,1),thresholds4(:,1)

,'r*', 

wavelengths(:,2),thresholds(:,2),'g*',wavelengths(:,2),thresholds2(:,2),'g*',

wavelengths(:,2),thresholds3(:,2),'g*',wavelengths(:,2),thresholds4(:,2),'g*'

) 
% 

plot(wavelengths(:,1),thresholds(:,1)*10,'b.',wavelengths(:,1),thresholds2(:,

1)*10,'b.',wavelengths(:,1),thresholds3(:,1)*10,'b.',wavelengths(:,1),thresho

lds4(:,1)*10,'b.', 

wavelengths(:,2),thresholds(:,2)*10,'b.',wavelengths(:,2),thresholds2(:,2)*10

,'b.',wavelengths(:,2),thresholds3(:,2)*10,'b.',wavelengths(:,2),thresholds4(

:,2)*10,'b.'); 
% axis([0,550,0,50]) 
lim (1:12) = 0; 
stepmatnumber = wavenumber/wavenumber; 
for crit  = 1:12 
matcrit = [thresholds(crit*stepmatnumber,1) thresholds2(crit*stepmatnumber,1) 

thresholds3(crit*stepmatnumber,1) thresholds4(crit*stepmatnumber,1) 

thresholds(crit*stepmatnumber,2) thresholds2(crit*stepmatnumber,2) 

thresholds3(crit*stepmatnumber,2) thresholds4(crit*stepmatnumber,2)]; 
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    lim(crit) = min(matcrit)*10; 
end 
% xlabel('wavenumber k (m^{-1})') 
% ylabel('Vibrational Amplitude A (mm)') 
% tiltlevary = sprintf('Faraday Instability Critical Amplitudes @ frequency = 

%d', f); 
% title(tiltlevary)       
% hold on 
stepmat = wavenumber/1; 
% plot([100 100]*stepmat,[0 lim(1)],'r--',[200 200]*stepmat,[0 lim(2)],'r--

',[300 300]*stepmat,[0 lim(3)],'r--',[400 400]*stepmat,[0 lim(4)],'r--',[500 

500]*stepmat,[0 lim(5)],'r--',[600 600]*stepmat,[0 lim(6)],'r--'); 
indexmin = find(lim == min(lim)); 
xmin = stepmat*indexmin*100; 
ymin = lim(indexmin); 
% strmin = ['Critical Threshold = ',num2str(ymin) 'mm' char(10) 'Critical 

Mode = ' num2str(indexmin)]; 
% text(xmin,ymin,strmin,'HorizontalAlignment','left'); 
% filename = sprintf('frequency%d',(f*100 + 1)); 
% print(filename,'-djpeg') 
% hold off 
theoriticalwork(fi) = ymin(1); 
theoriticalwork1(fi) = indexmin(1); 
frange = [frange f]; 
end 
% % ampg(gi) = ymin; 
% % wavenug (gi) = indexmin; 
% % f = 0.1:0.1:10; 
markerlist='vop>*h<.xs^dvop>*h<.xs^dvop>*h<.xs^dvop>*h<.xs^dvop>*h<.xs^dvo'; 
colorlist='mcrgbkmcrgbwkmcrgbkmcrgbkmcrgbkmcrgbkmcrgbwkmcrgbkmcrgbwkmcrgbk'; 
experimental=[19    15.9    13.5    11.4    9.5 7.8 6.3 5.1 4.1 3.7 3.6 4   

4.5 5.2 5.8 6.5 7.1 7.2 7.2 7   6.7 6.3 6   5.5 5   4   3.3 2.7 2.2 2   1.9 2   

2.2 2.4 2.4 2.7 2.8 2.8 2.5 2.1 1.8 1.6 1.6 1.9 2   2   1.7 1.5 1.4]; 
experimentalred=[3.4    3.5 3.6 3.7 3.8 3.9 4   4.1 4.2 4.3 4.4 4.5 4.6 4.7 

4.8 4.9 5   5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 6   6.2 6.4 6.6 6.7 6.8 6.9 7   

7.1 7.2 7.3 7.4 7.6 7.8 8   8.2 8.4 8.6 8.8 9   9.25    9.5 9.75    10]; 
experimentalmode = [1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   

1   1   5   5   5   5   5   2   2   2   2   2   2   2   2   2   2   2   2   2   

2   2   3   3   3   3   3   3   3   3   4   4   4   4]; 
for ncolor1=1:max(experimentalmode) 
p1 = plot(experimentalred(experimentalmode==ncolor1), 

experimental(experimentalmode==ncolor1), markerlist(ncolor1),'MarkerSize',12, 

'MarkerEdgeColor', 'k', 'MarkerFaceColor',colorlist(ncolor1)); 
hold on 
end 
% % if interfacialevelrange == 2.45 
% % flevelrange = frange; 
% % theoriticalwork1g = theoriticalwork1; 
% % theoriticalworkg = theoriticalwork; 
% % end 
% % if interfacialevelrange ~= 2.45 
% % thresholdplot = plot(flevelrange, theoriticalworkg,'b--

','MarkerSize',5);thresholdplot.Color(4)=0.3; 
% % end 
hold on 
Linestyle = ['- '; '--'; ': '; '-.';'- '; '--'; ': '; '-.';'- '; '--'; ': '; 

'-.';'- '; '--'; ': '; '-.']; 
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for ncolor=1:max(theoriticalwork1) 
p2 = plot(frange(theoriticalwork1==ncolor), 

theoriticalwork(theoriticalwork1==ncolor),Linestyle(ncolor,:),'LineWidth',nco

lor);  
set(p2,'color',colorlist(ncolor)) 
set(gca,'linewidth',3) 
set(gca,'fontsize',22) 
set(gca, 'Ticklength', [0.01 0.01]) 
grid off 
hold on 
end  
hold off 
% graph=plot(f,theoriticalwork,'b.'); 
axis([3,10,0,23]) 
xlabel('Applied frequency (Hz)','FontSize', 26) 
ylabel('Vibrational Amplitude A (mm)','FontSize', 28) 
% title('Gravitational acceleration  =') 
% set(get(gca,'title'),'Position',[4.3 18.6 1.00011],'FontSize', 28) 
% strmin = sprintf('g = %1.2f m^2/s',g); 
strmin = sprintf('1000mm, 35 mm, 30 mm (L*W*H)'); 
text(2,40,strmin,'HorizontalAlignment','left','VerticalAlignment','top','Font

Size', 16, 'Color','black'); 
tiltlevary = sprintf('Temperature = %1.1f (^0C)',Temperatureset(range)); 
title(tiltlevary) 
% ['\Delta\rho ='], [sprintf('%1.0f kg/m^{3}'rho(1) - rho(2)])       
hold on 
% legend([p1,p2],'Experimental','Theoretical') 
% pbaspect([2.8 1 1]) 
filename = sprintf('range%d',range); 
print(filename,'-djpeg','-r500') 
% plot(f,theoriticalwork1*4,'r-.'); 
hold off 
close all 
end 
% g = 0.01:0.01:9.81; 
% graph=plot(g,ampg,'b.'); 
% hold on 
% % plot(f,theoriticalwork1*4,'r-.'); 
% hold off 

 

 

 

 

 

 

 

 


