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Quanti�cation of Tissue Perfusion using Contrast-Enhanced

Ultrasound: Toward Robust Exam Comparison

by

Maxime Doury

Abstract
Quanti�cation of tissue perfusion from dynamic contrast-enhanced ultrasound data relies
on appropriate modeling of the curve representing the evolution of the contrast-agent con-
centration inside the studied tissue. Many factors, experimental or physiological, make
inter-subject or intra-subject comparison of these perfusion parameters di�cult. In this the-
sis, the reproducibility and the comparison of various quanti�cation methods was investi-
gated through preclinical test-retest experiments and through simulations. �e investigated
methods were: the log-normal model, the one-compartment model using an arterial input
function, and the one-compartment model using a reference tissue. �e preclinical experi-
ments revealed the di�culty to estimate an arterial input function directly from the image, as
well as the necessity to locally correct for the time of arrival of the contrast agent in the tissue
in order to ensure the model accurately �ts the experimental enhancement curves. A regu-
larized linear estimation of the parameters of the one-compartment model using a reference
tissue taking advantage ofmultiple tissue regions was then proposed to obtain homogeneous
relative values of the tissue blood �ow and tissue blood volume, expressed relatively to the
parameter value inside the reference tissue. �e improved robustness and reproducibility of
the method was demonstrated. �e in�uence of factors such as the exam duration, the sam-
pling frequency, the number of tissue regions in the analysis, and the noise amplitude were
investigated through simulations, and allowed us to formulate recommendations regarding
the acquisition and the analysis of contrast-enhanced ultrasound studies.
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Quanti�cation de la perfusion tissulaire en échographie de contraste:

vers la comparaison robuste d’examens

par

Maxime Doury

Résumé
La quanti�cation de la perfusion tissulaire à partir de données dynamiques d’échographie
de contraste repose sur une modélisation appropriée de la cinétique de la concentration en
agent de contraste dans le tissu étudié. De nombreux facteurs, expérimentaux ou physio-
logiques, rendent la comparaison inter ou intra-individu de ces paramètres de perfusion
di�cile. Dans cette thèse, la reproductibilité et la comparaison de di�érentes méthodes de
quanti�cation ont été étudiées dans le cadre d’une étude préclinique de test-retest et sur des
simulations numériques. Les méthodes étudiées ont été : le modèle log-normal, le modèle
compartimental avec fonction d’entrée et le modèle compartimental avec tissu de référence.
Les études précliniques ontmontré la di�culté d’estimation d’une fonction d’entrée artérielle
et la nécessité de corriger localement le temps d’arrivée de l’agent de contraste dans le tissu
pour que l’approximation des cinétiques expérimentales par le modèle soit de qualité suf-
�sante. Une estimation linéaire sous contrainte des paramètres du modèle compartimental
avec tissu de référence tirant pro�t de di�érentes zones d’intérêt dans l’image a été ensuite
proposée pour obtenir à l’échelle régionale et/ou locale des valeurs relatives cohérentes de
débit sanguin tissulaire et de volume sanguin tissulaire, exprimées par rapport aux valeurs
dans le tissu de référence. Il a été montré que cette approche est la plus robuste et la plus
reproductible. L’in�uence des facteurs tels que la durée d’acquisition, la fréquence d’échan-
tillonnage, le nombre de régions utilisées et l’amplitude du bruit a été étudiée sur des simu-
lations et a permis de formuler des recommandations pour l’acquisition et le traitement des
études en échographie de contraste.
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Résumé étendu

Introduction

Cette thèse e�ectuée au sein du Laboratoire d’Imagerie Biomédicale (LIB) a été �nancée par

la Fondation pour la Recherche Médicale (FRM). Le projet global consiste à développer un

outil de classi�cationmulti-paramétrique des tissus tumoraux exploitant diverses modalités

d’imagerie ultrasonore, i.e. l’échographie quantitative, l’élastosonographie et l’échographie

de contraste. Les données serviront au développement d’un modèle réaliste de croissance

tumorale ainsi que de la réponse aux traitements anti-tumoraux. Une première étape clé

de ce projet sur laquelle portait mon travail de thèse a consisté à estimer de façon précise

et reproductible des paramètres de perfusion à partir de données de contraste ultrasonore,

ce a�n de les utiliser dans un contexte de suivi longitudinal et pour modéliser l’évolution

tumorale.

La quanti�cation de la perfusion est une tâche di�cile, en e�et des variations peuvent in-

tervenir entre les examens, que ce soit au niveau expérimental ou physiologique. Ce proces-

sus s’avère néanmoins crucial pour étudier la croissance de tumeurs, avec ou sans traitement.

Si l’imagerie de contraste permet d’étudier la perfusion in-vivo, la comparaison quantitative

d’examens reste di�cile en raison du manque de reproductibilité des acquisitions. De nom-

breuses méthodes de quanti�cation de la perfusion ont été développées pour analyser des

données à une échelle globale, ce qui masque les variations spatiales de la perfusion tissu-

laire, et ne permet pas d’exploiter les relations entre les paramètres locaux. Le but de cette

thèse est de rendre l’estimation de paramètres de perfusion robuste aux variations inter-

examens, a�n de rendre possible la comparaison d’examens tout en révélant l’hétérogénéité

spatiale de la perfusion. Notre étude se concentre sur la quanti�cation en échographie de

contraste, cependant les méthodes proposées pourraient-être étudiées pour la quanti�ca-

tion avec d’autres modalités d’imagerie de contraste.

Lemanuscrit est divisé en trois parties. La première partie cherche à établir un état de l’art

des méthodes de quanti�cation de la perfusion développées pour les di�érentes modalités

d’imagerie de contraste. La seconde partie étudie la reproductibilité des paramètres obtenus

à l’aide de di�érentes approches ainsi que les relations qui unissent les di�érents paramètres
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estimés avec ces approches. En particulier sont comparés une approche semi-quantitative,

un modèle à un compartiment alimenté par une fonction d’entrée artérielle, et un modèle

à un compartiment utilisant un tissu de référence. En�n, dans la troisième partie nous pré-

sentons une nouvelle approche d’estimation dumodèle à un compartiment utilisant un tissu

de référence exploitant l’hétérogénéité spatiale des motifs de perfusion au sein de la tumeur.

Partie I. Quanti�cation de la perfusion : état de l’art

Dans cette première partie, composée du Chapitre 2, nous établissons un état de l’art des

méthodes développées pour quanti�er la perfusion. Ce Chapitre présente une sélection de

méthodes de quanti�cation fondatrices, ainsi que leur évolution à travers les di�érentes mo-

di�cations qui y ont été apportées pour surmonter di�érentes limites. Leur usage est décliné

pour chaque modalité d’imagerie (TEP, TDM, IRM et échographie).

Les méthodes de quanti�cation ont été classées en trois catégories : semi-quantitatives,

déconvolution, ou compartimentales. Les approches semi-quantitatives extraient des para-

métres caractérisant la cinétique de la concentration en agent de contraste et sont cour-

rament utilisées pour caractériser la perfusion tissulaire, mais les paramètres de ces modèles

n’ont pas de lien direct avec la physiologie. Les approches de déconvolution, ainsi que la ma-

jorité des approches compartimentales, nécessitent la connaissance de la fonction d’entrée

artérielle. La fonction d’entrée artérielle peut-être obtenue par prélèvements sanguins, ou

directement dans l’image. Cependant, les prélèvements sanguins sont invasifs, en particu-

lier les prélèvements artériels, et en raison des fortes concentrations en agent de contraste

observées dans les artères l’estimation directe de la fonction d’entrée artérielle dans l’image

est a�ectée par des artefacts, notamment les e�ets de saturation et de volume partiel.

Les di�cultés rencontrées lors de l’estimation de la fonction d’entrée artérielle ontmotivé

le développement de méthodes utilisant un tissu de référence, permettant la quanti�cation

relative de la perfusion. En e�et, un tissu de référence peut être choisi dans une région plus

grande qu’une artère et bien perfusée, réduisant ainsi les risques de saturation et de volume

partiel. Desmodèles compartimentaux sont courrament utilisés pour quanti�er la perfusion

et d’autres mécanismes plus complexes incluant di�usion extravasculaire et métabolisme

en TEP, en TDM et en IRM. Cette partie s’achève sur le constat que si un certain nombre
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de transferts ont été opérés d’une modalité d’imagerie à une autre, à notre connaissance

les modèles compartimentaux, qu’ils utilisent une fonction d’entrée artérielle ou un tissu

de référence, n’ont pas été appliqués à la quanti�cation de la perfusion en échographie de

contraste.

Partie II. Reproductibilité des méthodes de quanti�cation existantes en

échographie de contraste et les relations entre les di�érentes méthodes

Cette partie est composée duChapitre 3 dans lequel nous avons étudié la reproductibilité des

paramètres de perfusion estimés par di�érentes méthodes de quanti�cation sur des données

d’échographie de contraste, et du Chapitre 4 qui complète le Chapitre précédent en établis-

sant les relations théoriques et empiriques entre les paramètres des di�érents modèles, qui

permettent de justi�er pleinement le choix des paramètres sélectionnés dans l’étude de re-

productibilité.

L’étude présentée dans le Chapitre 3 a fait l’objet d’une publication dans Physics and Me-

dicine in Biology sous le titre ‘̀Quanti�cation of tumor perfusion using dynamic contrast-

enhanced ultrasound : impact of mathematical modelinǵ’. Nous y présentons une étude de

reproductibilité des paramètres de perfusion en échographie de contraste réalisée sur quatre

souris porteuses de tumeurs colorectales. Chaque souris a subi quatre examens test-retest

d’échographie de contraste avec injection automatique d’un bolus de microbulles suivant un

protocole développé au laboratoire. Les acquisitions étaient espacées de quinze minutes a�n

de garantir l’élimination totale des microbulles avant chaque nouvelle acquisition. La région

perfusée des tumeurs (en excluant la partie nécrotique) a ensuite été segmentée en 32 ré-

gions, permettant la dé�nition de 32 cinétiques. Ce découpage régional a été choisi a�n de

montrer l’hétérogénéité de la perfusion tumorale tout en garantissant un rapport signal sur

bruit su�sant permettant la quanti�cation. En�n, diverses méthodes de quanti�cation ont

été appliquées à ces cinétiques régionales a�n d’estimer des paramètres de perfusion et il a

été possible de les comparer.

En particulier, nous avons comparé la reproductibilité des paramètres de perfusion es-

timés par les méthodes suivantes : (a) une approche basée sur le modèle log-normal (LN)
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estimant des paramètres semi-quantitatifs, notamment l’aire sous la courbe AUC et le taux

de remplissageWIR, (b) un modèle à un compartiment utilisant une fonction d’entrée ar-

térielle (AIF) estimant des paramètres absolus, i.e. le volume sanguin tissulaire V , le �ux

sanguin tissulaire F, et par déduction la constante de transfert kT = F
V , (c) un modèle à un

compartiment utilisant un tissu de référence (RT), conduisant à l’estimation de paramètres

relatifs, le volume sanguin tissulaire relatif rVRT , le �ux sanguin tissulaire relatif rFRT , ainsi

que la constante de transfert dans le tissu d’intérêt kT , et par déduction la constante de trans-

fert dans le tissu de référence kR = rV ⋅kT
rF . Dans cette étude, les troismodèles ont été ajustés aux

cinétiques de perfusion expérimentales enminimisant l’erreur au sens des moindres carrés à

l’aide d’algorithmes de minimisation non-linéaires. La valeur du paramètre kR a été �xée de

façon systématique à une valeur estimée à partir d’une modélisation compartimentale avec

fonction d’entrée artérielle. En e�et ce paramètre n’est pas identi�able dans la formulation

non-linéaire du modèle.

A�n d’étudier l’e�et de la normalisation sur la reproductibilité des paramètres de perfu-

sion, nous avons dé�ni des paramètres relatifs à partir des paramètres du modèle LN, notés

rAUC et rWIR, et des paramètres absolus du modèle monocompartimental avec fonction

d’entrée artérielle AIF, notés rVAIF et rFAIF , en les normalisant par leur valeur dans le tissu

de référence précédemment décrit. En�n, la prise en compte du temps d’arrivée du bolus

dans le tissu étudié étant souvent négligée dans les autres modalités d’imagerie, nous avons

étudié son impact sur la qualité de modélisation des données de perfusion.

La nécessité de prendre en compte le temps d’arrivée du bolus dans le tissu d’intérêt a

été démontrée en étudiant la qualité de la modélisation obtenue avec les di�érents modèles

compartimentaux avec et sans estimation d’un temps de retard. En e�et, lorsqu’aucun temps

de retard n’est pris en compte dans les modèles, le nombre de régions présentant une mo-

délisation de mauvaise qualité est égal à 212 pour le modèle AIF et à 56 pour le modèle RT,

sur un total de 512 régions étudiées dans l’étude test-retest (4 × 4 × 32). Ce nombre s’élève à
19 quel que soit le modèle (AIF ou RT) lorsque le temps de retard est pris en compte.

Sur les études test-retest, les paramètres absolus du modèle LN se sont montrés peu re-

productibles avec des coe�cients de variation médians pour les 32 régions de l’ordre de 30%

pour AUC et 40% pourWIR, suggérant une forte sensibilité des paramètres aux variations
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inter-examens. Les paramètres absolus du modèle AIF se sont révélés plus reproductibles

avec des coe�cients de variation médians de l’ordre de 25% pour V et 35% pour F. Ce-

pendant l’étude a démontré la sensibilité de ces paramètres à la fonction d’entrée artérielle

utilisée, et les di�cultés rencontrées lors de son estimation dans l’image en raison de la pe-

tite taille de l’artère dans le champ de vue et des fortes concentrations en agent de contraste

observées dans les gros vaisseaux. La normalisation des paramètres des modèles LN etAIF,

donnant ainsi naissance auxmodèles rLN et rAIF, a permis une réduction signi�cative de la

variabilité inter-examen. En e�et, les paramètres liés au volume sanguin tissulaire, rAUC et

rVAIF , ont des coe�cients de variation médians de l’ordre de 20%, tandis que les paramètres

liés au �ux sanguin tissulaire, rWIR et rFAIF , ont des coe�cients de variation médians lé-

gèrement supérieurs à 30%. L’estimation directe de paramètres relatifs à l’aide du modèle

RT s’est révélée la plus reproductible de l’étude, avec des coe�cients de variation médians

légèrement inférieurs à 20% pour rVRT et à 30% pour rFRT .

L’impact de la fonction d’entrée sur les valeurs des paramètres absolus et relatifs du mo-

dèle AIF a été étudié en comparant les valeurs obtenues pour un examen donné, avec deux

fonctions d’entrée estimées dans les images suite à deux types de seuils. Les paramètres ab-

solus se sont montré extrêmement sensibles à la fonction d’entrée artérielle, V et F pouvant

varier du simple au double dans certaines régions. Les paramètres relatifs du modèle rAIF

se sont montré plus robustes aux variations de la fonction d’entrée artérielle, en particulier

rVAIF est pratiquement insensible à la fonction d’entrée utilisée dans notre étude.

Le Chapitre 4 présente les relations existant entre les paramètres des di�érents modèles

étudiés dans le Chapitre 3, i.e. LN, rLN,AIF et RT, sous l’hypothèse d’un modèle comparti-

mental alimenté par une fonction d’entrée artérielle. Les relations sont d’abord établies théo-

riquement en établissant les dé�nitions analytiques des paramètres d’unmodèle en fonction

des paramètres d’un autre modèle, puis empiriquement à travers une étude de corrélation

des paramètres estimés par les di�érentsmodèles. En particulier, les paramètres desmodèles

LN et rLN ont été exprimés en fonction des paramètres du modèleAIF pour trois fonctions

d’entrée di�érentes, i.e. dans les deux cas idéalisés que sont l’entrée de type Dirac et de type

porte, mais également dans le cas général. Ce chapitre démontre notamment les relations

entre le paramètre AUC et le paramètre de volume sanguin tissulaire V d’une part, et entre
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le paramètreWIR et le paramètre de �ux sanguin tissulaire F d’autre part. Ce constat a mo-

tivé notre sélection de paramètres issus du modèle LN dans le Chapitre 3 puisque d’autres

paramètres auraient pu être étudiés (WOR, MTT), mais les relations avec les paramètres

de �ux sanguin tissulaire et de volume sanguin tissulaire étaient moins directes. Il montre

également la sensibilité des paramètres semi-quantitatifs à la fonction d’entrée artérielle, et

con�rme l’intérêt de la normalisation par une région de référence pour s’absoudre de cette

dépendance. L’intérêt de la normalisation est également con�rmé empiriquement, en e�et la

corrélation entre les paramètres relatifs des di�érents modèles est beaucoup plus forte que

celle entre les paramètres absolus.

Partie III. Proposition et évaluation d’une nouvelle méthode de quanti�-

cation

Dans cette troisième partie, nous présentons d’abord une approche d’estimation reposant

sur une formulation linéaire du modèle RT qui a été proposée initialement pour d’autres

modalités d’imagerie de contraste (TEP et IRM), notée rLin. Les méthodes de résolution li-

néaires ont l’avantage de procéder à l’estimation directe des paramètres minimisant la fonc-

tion d’erreur, permettant ainsi d’éviter les problèmes liés à l’initialisation des paramètres tout

en accélérant l’estimation. Par ailleurs, cemodèle permet l’estimation d’un paramètre supplé-

mentaire, i.e. la constante de transfert du tissu de référence kR. Cependant, cette formulation

conduit potentiellement à di�érentes valeurs de ce paramètre qui bien évidemment devrait

être unique. Pour pallier à cet inconvénient, nous avons proposé une nouvelle méthode d’es-

timation régularisée, notée rReg, exploitant le fait que plusieurs régions soient analysées

conjointement en s’assurant qu’une valeur unique du paramètre kR soit estimée pour toutes

les régions d’un même examen. Nous avons par la suite étudié la robustesse de ces deux mo-

dèles rLin et rReg aux variations inter-examens, à des phénomènes physiologiques comme

la recirculation, à des paramètres d’acquisition, et à di�érentes stratégies dans l’analyse des

données. À notre connaissance ce type d’approche n’a été proposé dans aucune desmodalités

d’imagerie de perfusion.

Les équations des modèles rLin et rReg sont d’abord développées brièvement dans le
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Chapitre 5. En e�et, le Chapitre 5 qui étudie la reproductibilité des paramètres de perfusion

estimés avec les deux approches a fait l’objet d’une publication courte suite à la présentation

de ces travaux lors du congrès IEEE International Ultrasonics Symposium (IUS) qui s’est tenu

à Tours en septembre 2016. Le Chapitre 6 étudie spéci�quement l’impact de la recircula-

tion des microbulles sur la justesse et la précision des estimations réalisées avec di�érents

modèles, en utilisant des cinétiques de perfusion simulées de façon réaliste à l’aide du mo-

dèle AIF. Cette étude a fait l’objet d’une publication intitulée ‘̀Impact of Recirculation in

Dynamic Contrast-Enhanced Ultrasound : A Simulation Studý’ et publiée dans la revue In-

novation and Research in BioMedical Engineering (IRBM). Dans le Chapitre 7 sont détaillés

les développements théoriques qui ont amené le développement du modèle rReg, puis nous

avons étudié l’impact de divers paramètres sur la justesse et la précision des estimations.

Nous nous somme notamment intéressés aux paramètres d’acquisition comme la durée des

examens ou la fréquence d’échantillonage, mais aussi à des stratégies d’analyse comme le

nombre de régions d’intérêt ou le choix du tissu de référence. Nous prévoyons de soumettre

une version revue de ce Chapitre pour publication dans la revueMedical Image Analysis.

Dans le Chapitre 5, les paramètres de perfusion estimés à l’aide des méthodes rLin et

rReg sont comparés, en terme de reproductibilité, aux paramètres desmodèlesLN et rLN, en

se basant la même étude test-retest que celle détaillée dans le Chapitre 3. Lemodèle rLin s’est

révélé être l’approche relative la moins robuste aux variations inter-examens, notamment en

termede paramètre de �uxpuisque nous avons obtenuun coe�cient de variationmédian su-

périeur à 40% pour rFrLin. Cette forte variabilité montre la faible identi�abilité du paramètre

kR et son impact sur les autres paramètres du modèle, notamment sur rFrLin. Elle explique

également la pratique courante qui consiste à ne pas estimer kRmais à utiliser une valeur �xe

provenant de la littérature ou d’expériences préalables pour stabiliser l’estimation des autres

paramètres, comme nous l’avons fait avec le modèle RT présenté dans le Chapitre 3. L’ap-

proche régularisée rReg s’est montrée la plus reproductible dans cette étude, puisque nous

avons obtenu des coe�cients de variationmédians inférieurs à 20%pour rVrReg , et inférieurs

à 30% pour rFrReg , dans notre étude test-retest.

Dans le Chapitre 6, nous avons étudié la sensibilité à la recirculation des paramètres

estimés à l’aide des modèles LN, rLN, rLin et rReg. En e�et la recirculation de l’agent de
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contraste dans le tissu étudié est un problème connu mais rarement pris en compte dans

les approches de quanti�cation de la perfusion in vivo en échographie de contraste. Pour

s’absoudre de ce phénomène, une approche simpliste consiste à ‘̀coupeŕ’ les données avant

que la recirculation n’intervienne. Nous avons donc également étudié la capacité de cette

technique à estimer des paramètres de perfusion en l’appliquant aux modèles LN et rLN,

dont les variantes sont notées LNWI et rLNWI .

Les paramètres absolus du modèle LN se sont révélés particulièrement sensibles à la

recirculation en raison de leur forte dépendance à la fonction d’entrée artérielle. En ce qui

concerne le modèle relatif rLN, l’estimation du paramètre rAUC s’est montrée robuste à la

recirculation, cependant le paramètre rWIR reste sensible à la recirculation. Les approches

LNWI et rLNWI se sont révélées peu robustes, en e�et malgré l’accord entre les paramètres

estimés avec et sans recirculation, le nombre réduit d’échantillons utilisés durant l’ajustement

du modèle ne permet pas d’ajuster le modèle correctement à la phase descendante de la

cinétique, et rend l’estimation particulièrement sensible au bruit.

Les paramètres de �ux et de volume sanguin tissulaires relatifs des modèles rLin et rReg

se sont révélés peu sensibles à la recirculation, avec un léger avantage pour le modèle rLin,

ce qui con�rme la robustesse structurelle des modèles compartimentaux à cet égard. En re-

vanche, l’estimation des paramètres kT et kR par le modèle rLin est sujette à de fortes erreurs

variant d’une région à l’autre, et ce même en l’absence de recirculation. Le modèle rReg n’est

pas a�ecté par ce phénomène et montre une erreur d’estimation très faible pour ces deux

paramètres. En outre, si les paramètres rVrReg et rFrReg sont globalement plus a�ectés par la

recirculation que les paramètres rVrLin et rFrLin, l’erreur est plus homogène entre les di�é-

rentes régions d’intérêt en utilisant le modèle rReg, permettant ainsi une comparaison des

paramètres régionaux plus robuste.

Dans le Chapitre 7, nous avons étudié l’impact de di�érents facteurs, pouvant être la

source d’erreurs de quanti�cation, sur les paramètres de perfusion desmodèles rLin et rReg.

Nous nous somme intéressés aux facteurs liés aux paramètres de l’acquisition, comme le ni-

veau de bruit dans les cinétiques, la durée des examens ou la fréquence d’échantillonage, ou

aux facteurs dépendant de la stratégie d’analyse, comme le nombre de régions d’intérêt ou

les caractéristiques du tissu de référence choisi. Nos études de simulation ont montré que les
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paramètres du modèle rLin sont a�ectés par des biais systématiques variant d’une région à

l’autre. L’utilisation dumodèle rReg permet de réduire les variations régionales du biais d’es-

timation, en particulier en ce qui concerne les paramètres kT et kR, mais aussi les paramètres

rV et rF dans une moindre mesure. L’estimation de l’approche rReg s’est également montrée

plus robuste et plus homogène que l’estimation de l’approche rLin en cas d’acquistions plus

courtes ou moins bien échantillonnées. En�n, l’impact du choix du tissu de référence sur la

justesse de l’estimation a été démontré à travers notre étude de simulation, mais une étude

plus approfondie reste à mener a�n de mieux en appréhender les mécanismes.

Conclusion

Le modèle rReg s’est avéré être prometteur pour quanti�er la perfusion, et nous avons dé-

montré son applicabilité en échographie de contraste dans ce manuscrit. Si l’objectif est de

quanti�er la perfusion dans plusieurs régions d’intérêt (ces régions pouvant être de taille va-

riable), nous recommandons de prendre en compte les relations existant entre les di�érents

paramètres régionaux pour éviter les incohérences entre régions, tout en rendant l’estima-

tion plus robuste. Le modèle rReg peut-être appliqué à une échelle plus �ne, i.e. à l’échelle

du pixel ou du macro-pixel, pour mieux étudier l’hétérogénéité fonctionnelle du tissu étu-

dié. Cependant l’absence de correspondance pixel à pixel dans notre étude test-retest nous a

poussé à utiliser un découpage régional, permettant ainsi une comparaison des paramètres

d’une étude à l’autre.

La majorité des acquisitions d’échographie de contraste se font encore en 2D, rendant

ainsi la comparaison d’examens di�cile. Il est en e�et impossible de s’assurer que le même

plan soit imagé dans deux examens acquis à quelques jours d’intervalle, et c’est encore plus

di�cile lorsque l’on étudie l’évolution d’un tissu (type tissu tumoral) dont la forme et la taille

changent entre les examens (lié à la croissance tumorale ou à la réponse à une thérapie). Nous

recommandons donc l’usage de données 3D lorsque cela est possible, en particulier lorsque

l’on cherche à réaliser un suivi longitudinal. Les développements récents en échographie

3D sont donc prometteurs pour les applications de suivi tumoral. En e�et l’échographie de

contraste sera alors capable de rattraper les modalités d’imagerie tomographiques, donnant

ainsi accès à des informations plus pertinentes sur la forme, la taille, la structure et la fonction
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des lésions, tout en permettant une imagerie en temps-réel, non-ionisante et peu coûteuse.

L’imagerie de contraste 3D est systématique en TEP avec une résolution isotrope, elle est

plus limité en TDM, et se développe en IRM. La capacité du modèle rReg à être appliqué à

ces modalités d’imagerie doit-être étudiée plus en détails, et nécessitera parfois des adapta-

tions pour prendre en compte les caractéristiques du tissu étudié et de l’agent de contraste

ou du traceur injecté. En e�et, l’adaptation de la méthode d’estimation régularisée à diverses

architectures de modèles compartimentaux doit-être réalisée. Par ailleurs, l’étude de la per-

fusion dans le foie nécessiterait d’autres adaptations du modèle, notamment par la prise en

compte d’une entrée portale en plus de l’entrée artérielle. Les structures vasculaires dans le

rein se traduisant par plusieurs ‘̀phaseś’ de perfusion dues à la superposition au niveau ma-

croscopique de di�érentes structures vascularisées de façon très di�érentes, le modèle doit

être adapté pour les prendre en compte. En e�et l’utilisation du rein comme tissu de réfé-

rence, en prenant en compte les di�érentes phases, pourrait encore améliorer la qualité de

l’estimation.

L’impact du tissu de référence sur les paramètres de perfusion du modèle rReg a été

démontré dans le Chapitre 7, cependant une étude approfondie est nécessaire pour mieux

dé�nir les caractéristiques du tissu de référence idéal, mais aussi pour comprendre l’impact

du choix d’un tissu de référence non-idéal. Inclure plusieurs tissus de référence dans le mo-

dèle pourrait rendre l’estimation des paramétres plus robustes aux caractéristiques des tissus

de référence.

Pour conclure, le choix d’une méthode de quanti�cation de la perfusion reste une tâche

di�cile qui dépend des données et du but de l’étude. La comparaison d’examens est parti-

culièrement di�cile en raison des variations expérimentales et physiologiques qui se pro-

duisent entre les examens. Cette thèse a démontré la capacité du modèle relatif à un com-

partiment à quanti�er la perfusion à partir de données d’échographie de contraste de façon

reproductible et robuste à l’échelle régionale, révélant ainsi l’hétérogénéité fonctionnelle des

tumeurs étudiées et rendant plus robustes les comparaisons intra-examen et inter-examen. Il

est absolument nécessaire de prendre en compte les relations entre les paramètres de perfu-

sion des di�érents tissus étudiés, puisque nous avons démontré l’intérêt de cette approche sur

la justesse, la robustesse et la reproductibilité de l’estimation des paramètres dans le modèle
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rReg. Il faut noter que les modèles utilisant un tissu de référence se sont montré plus repro-

ductibles et robustes que lesmodèles utilisant une fonction d’entrée artérielle sur les données

que sur lesquelles nous avons travaillé, mais ce point sera peut-être remis en cause si les di�-

cultés rencontrées dans l’estimation de la fonction d’entrée artérielle arrivent à être surmon-

tées. En�n notons que sous thérapie, l’usage de tissus de référence pour suivre l’évolution de

la perfusion de tumeurs sous thérapie soulève une question quant à l’e�et des traitements sur

le tissus de référence, notamment en ce qui concerne les traitements anti-angiogéniques.

Dans la continuité de ces travaux, nous souhaitons confronter les paramètres de perfu-

sion estimés par le modèle rReg aux résultats obtenus en histologie pour valider la méthode.

Les paramètres de perfusion du modèle rReg pourraient être utilisés pour réaliser une clas-

si�cation des tissus tumoraux en trois classes, selon qu’ils soient nécrotiques, hypoxiques

ou proliférants. Les résultats de cette classi�cation alimenteront alors un modèle réaliste de

croissance tumrale prenant en compte la réponse thérapeutique.

xv



xvi



Contents

Cover page i

Abstract iii

Résumé iv

Résumé étendu v

Contents xxi

List of Figures xxxi

List of Tables xxxiv

1 Introduction 3

1.1 Cancer and tumor microenvironment . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Perfusion imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Aims and outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3.1 Aims . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3.2 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

I Quanti�cation of perfusion: state of the art 13

2 Quanti�cation of perfusion exams: A review 17

2.1 Semi-quantitative methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

xvii



2.1.1 Generalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.1.2 Nuclear medicine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1.3 X-ray imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1.4 Magnetic resonance imaging . . . . . . . . . . . . . . . . . . . . . . . . 21

2.1.5 Ultrasound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2 Deconvolution methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.2.1 Generalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.2.2 Nuclear medicine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.2.3 X-ray imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.2.4 Magnetic resonance imaging . . . . . . . . . . . . . . . . . . . . . . . . 48

2.2.5 Ultrasound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.3 Compartmental models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

2.3.1 Generalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

2.3.2 Nuclear medicine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

2.3.3 X-ray imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

2.3.4 Magnetic resonance imaging . . . . . . . . . . . . . . . . . . . . . . . . 66

2.3.5 Ultrasound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

II Reproducibility of the existingmethods and the relations between
them 99

3 Quanti�cation of tumor perfusion usingDCE-US: impact ofmathematicalmod-

eling 103

3.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

3.3 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

3.3.1 Animals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

3.3.2 Image acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

3.3.3 Data pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

xviii



3.4 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

3.4.1 Quanti�cation of tumor perfusion . . . . . . . . . . . . . . . . . . . . 107

3.4.2 Data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

3.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

3.5.1 Model comparison through quality of �t criteria . . . . . . . . . . . . 112

3.5.2 Model comparison through coe�cients of variation . . . . . . . . . . 113

3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

4 Relations between perfusion parameters: theoretical and experimental consider-

ations 121

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

4.2 �eory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

4.3 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

III Proposition and assessment of a new quanti�cation method 135

5 RegularizedLinearResolutionof aOne-CompartmentModel to Improve theRe-

producibility of Perfusion Parameters in CEUS 139

5.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

5.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

5.3 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

5.3.1 Animals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

5.3.2 Image acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

5.4 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

5.4.1 Data pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

5.4.2 De�nition of the four models . . . . . . . . . . . . . . . . . . . . . . . 143

5.4.3 Data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

xix



5.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

5.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

5.8 One vascular compartment model (OVC) . . . . . . . . . . . . . . . . . . . . . 149

6 Impact of Recirculation in Dynamic Contrast-Enhanced Ultrasound: a Simula-

tion Study 157

6.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

6.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

6.3 �eory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

6.3.1 One-compartment vascular model . . . . . . . . . . . . . . . . . . . . 160

6.3.2 Simpli�ed recirculation model . . . . . . . . . . . . . . . . . . . . . . . 160

6.3.3 Noise model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

6.3.4 Perfusion quanti�cation methods . . . . . . . . . . . . . . . . . . . . . 162

6.4 Experimental design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

6.4.1 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

6.4.2 Data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

6.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

6.5.1 ModelM1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

6.5.2 ModelM2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

6.5.3 ModelM3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

6.5.4 ModelM4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

6.5.5 ModelM5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

6.5.6 ModelM6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

6.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

6.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

7 Error Sources A�ecting Relative Quanti�cation of CEUS 177

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

7.2 �eory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

7.2.1 Simulation models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

xx



7.2.2 Quanti�cation models . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

7.3 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

7.3.1 Simulations of CEUS data . . . . . . . . . . . . . . . . . . . . . . . . . 179

7.3.2 Data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

7.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

7.4.1 Noise level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

7.4.2 Exam duration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

7.4.3 Sampling period . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

7.4.4 Reference tissue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

7.4.5 Number of regions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

7.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

7.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

8 Conclusion 213

List of publications 221

xxi



xxii



List of Figures

2-1 Examples of semi-quantitative parameters are illustrated on the mean ki-

netics (black dots) inside the perfused area of a murine tumor observed

in contrast-enhanced ultrasound and �tted with a log-normal model (red

dashed line): the wash-in rate (WIR, in green), the time-to-peak (TTP, in

cyan), the peak enhancement (PE, in orange), and the area under the curve

(AUC, in dark blue). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2-2 Block diagrams and�rst-order di�erential equations of compartmentalmod-

els with (a) one tissue compartment, (b) two tissue compartments, (c) three

tissue compartments. CA(t) is the contrast-agent concentration in arterial
blood,CV(t) is the tissue vascular concentration,CI(t) is the tissue intersti-
tial concentration, CC(t) is the tissue cellular concentration. K1 is the unidi-
rectional transfer rate of contrast-agent from blood to tissue vascular space

and is related to blood �ow and capillary permeability. k2 is the unidirec-

tional transfer rate of contrast-agent from the tissue vascular space to blood

and is de�ned as K1
VD
, where VD is the contrast-agent fractional distribution

volume. Similarly k3 and k4 are the unidirectional transfer rates of contrast-

agent between tissue vascular space and interstitial space, and k5 and k6 are

the unidirectional transfer rates of contrast-agent between interstitial space

and intracellular space. K1 is classically expressed in milliliter of blood per

minute permilliliter of tissue (mL.min−1.mL−1), and the other rate constants

k2, k3, . . . , k6 in fraction of contrast-agent per minute (min−1). . . . . . . . . . 57

xxiii



3-1 Illustration of the data pre-processing steps. Le�:�e contours of the tumor

and its necrotic core have been overlaid on a contrast enhanced image (in

ochre color).�e perfused tumor area was divided into 4 radial layers and 8

angular sectors. A reference tissue region (in green color) and a renal cortex

region (in blue color) were also delineated. Right: Mean kinetics associated

with the non-necrotic part of the tumor, the reference tissue, and the renal

cortex. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

3-2 Automated detection of the AIF: parametric maps TTP and PE inside the

artery region; segmentation results and associatedAIFwith: (a) rPE∗ = 50%
and ∆TTP∗ = 3 s (in green color); (b) rPE∗ = 70% and ∆TTP∗ = 2.5 s (in
blue color). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

3-3 Comparison of the volume-based and �ow-based parameters obtained for

the four test-retest exams (R1, R2, R3, and R4) of themousem1: linear regres-

sions between (a) rVRT and AUC, (b) rVRT and V , (c) rVRT and rAUC, (d)

rVRT and rVAIF , (e) rFRT andWIR, (f) rFRT and F, (g) rFRT and rWIR, (h)

rFRT and rFAIF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

3-4 Boxplot showing the coe�cients of variation of blood volume parameters

(le�) andblood�owparameters (right) estimatedwith the aLN, rLN, aAIFd,

rAIFd, and rRTd models. For each box, the bold line represents the me-

dian value, the bottom and top lines the �rst and third quartiles. Dotted

lines extend to the most extreme data points which are less than 1.5 times

the interquartile range. Outlier points are displayed with empty circles. Two

groups of parameterswere built (horizontal lines below the parameter names)

such that there were no signi�cant intra-group di�erences while there were

statistically signi�cant inter-group di�erences (marked by ∗). . . . . . . . . . 115

xxiv



4-1 (a-b) Median (of 16 values) coe�cient of determination (R2) of the least-

squares linear regression between pairs of parameters (θ i , θ j) computed for
the 32 sub-regions of one exam: (a) parameters derived from the aLN ap-

proach; (b) volume (AUC, V and rVRT), �ow (WIR, F and rFRT) and time

delay (∆T , dt and DRT) parameters respectively computed with aLN, aAIFd

andRTdmodels. (c-d)Coe�cients of determination (R2) of the least-squares

linear regression computed when pooling the 512 sub-regions together: (c)

R2 between pairs of volume parameters computed with aLN, aAIFd, rLN,

rAIFd and RTdmodels, (d) R2 between pairs of �ow parameters computed

with aLN, aAIFd, rLN, rAIFd and RTdmodels. . . . . . . . . . . . . . . . . . 125

5-1 Illustration of the data pre-processing steps. Le�: �e contours of the per-

fused tumor area have been overlaid on a contrast-enhanced image (in blue

color).�is area was automatically divided into 4 radial layers and 8 angular

sectors as shown by the spiderweb patterns. A RT region (in orange color)

was also delineated. Right: Mean TICs associated with the perfused area of

the tumor, and the RT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

5-2 Boxplot showing the CV of blood volume (le�) and blood �ow (right) esti-

mated with the LN, rLN, rLin, and rLinRegmodels. . . . . . . . . . . . . . . 147

5-3a One-compartment model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

5-3b One-compartment model with additional time-delay parameter. . . . . . . . 151

5-3c Block diagram of the relative one-compartment model in case of a single

region of interest. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

5-3d Block diagram of the relative one-compartment model for regional quan-

ti�cation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

xxv



5-4 Top: original C(t) (blue dots) and noise �ltered C f (t) (orange line) time-
intensity curves, the horizontal line shows the 20% of maximum intensity

threshold, and the vertical line shows t20%. Middle: �ltered time-intensity

curve C f (t) (orange line) cropped to t ≤ 20%, and the tangent to C f (t)
with maximum upslope gradient for t ≤ t20%, and the vertical line shows the

estimated time delayD. Bottom: gradient of the cropped noise �ltered time-
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Chapter 1

Introduction

�is thesis addresses the quanti�cation of tumor perfusion using contrast-enhanced ultra-

sound imaging. In this chapter, we present the biological and technical context that moti-

vated this thesis. �e research was performmed at the Laboratoire d’Imagerie Biomédicale

(LIB), and was �nanced by the Fondation pour la Recherche Médicale (FRM) through grant

DBS20131128436. �e global project aims at developing amultiparametric tumor tissue clas-

si�cation tool, based on multiple ultrasound imaging modalities, including quantitative ul-

trasound, elastosonography, and contrast-enhanced ultrasound. �e data should be used

to develop a realistic tumor growth model, as well as an appropriate treatment response

prediction model [7]. �e �rst step of this project was therefore the accurate estimation of

parameters from ultrasound data in order to obtain reproducible results and use them in

longitudinal studies.

1.1 Cancer and tumor microenvironment

A tumor is a neoplasm composed of mutated cells undergoing abnormal growth. All tumors

are not cancers, in particular benign tumors are not cancers, they are not invasive and usually

not life-threatening. Cancer is in fact synonym of malignant tumor.

In 2000, Hanahan and Weinberg [3] proposed the �rst generation of cancer hallmarks,

i.e. six acquired traits that di�erentiate cancerous cells from benign tumors and normal tis-

sues:
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1. Cancerous cells are able to generate their own mitogenic growth signals, and do not

rely on the growth signals from the surrounding environment.

2. Cancerous cells are insensitive to the anti-growth signals originating from the sur-

rounding environment.

3. Cancerous cells are immune to apoptotic signals, emitted by the environment, and

controlling the death of malfunctioning cells.

4. �e number of replication cancerous cells can achieve is unlimited.

5. A�er cancerous cells reached a point where further proliferation is limited by the sup-

ply in oxygen and nutrients, they switch to an angiogenic state that triggers the con-

struction of a supplying vascular network, allowing rapid cell proliferation despite its

chaotic structure.

6. When nutrients and space become limiting growth factors, cancerous cells are able

to migrate and invade surrounding tissues where nutrients and space are not limiting

factors to create new cancerous cell colonies known as metastases.

Later, in 2011, Hanahan and Weinberg [4] proposed a second generation of cancer hall-

marks that include the six acquired traits presented in the previous paragraph, but they add

four more hallmarks:

1. Cancerous cells are able tomodify their metabolism tomost e�ectively support tumor

proliferation.

2. Cancerous cells are resistant to immunological destruction by lymphocytes andmacrophages.

3. Cancerous cells exhibit unstable genomes favoring genetic mutations, that o�en result

in an accelerated tumor progression.

4. Immune cells �ghting the proliferation of cancer cells cause tissue in�ammation, which

can contribute to the acquired traits presented in their �rst paper.



1.1. CANCER AND TUMORMICROENVIRONMENT 5

Treatment of cancer �e three major treatments of cancer are surgery, radiotherapy, and

chemotherapy.

Surgery aims at removing the whole tumor, however this procedure is highly invasive.

Radiotherapy consists in the irradiation of the tumor by high-energy X-rays, gamma-rays

or charged particles, damaging cancerous cells, but also the surrounding tissues. �ese two

techniques are only applicable to localized solid tumors, and some cancerous cells can re-

main a�er the treatment.

If the cancer has spread throughout the body, chemotherapy is o�en used to eliminate

remaining and migrating cells a�er removal of the primary tumor by means of surgery or

radiotherapy. Chemotherapy relies on the injection of a cytotoxic agent, which main pur-

pose is to eradicate the remaining cancerous cells. Cytotoxic agents however, are not speci�c

of cancerous cells and are globally toxic for the patient, limiting the injected doses. More-

over, since cancerous cells are highly prone to mutations, they can develop a resistance to

the cytotoxic agent.

Recently, anti-angiogenic treatments were proposed to disrupt or to limit the develop-

ment of new vascular structures providing the tumor with the oxygen and nutrients neces-

sary for cell division, therefore limiting further growth of the tumor. �ese treatments were

shown to normalize the chaotic neovascularization in tumors, allowing a more e�cient de-

livery of cytotoxic therapies inside the tumor. However, since many pathways regulating an-

giogenesis exist, cancerous cells can bypass the targeted pathway and activate another one,

making the tumor resistant to the anti-angiogenic treatment.

Cancer monitoring Surgery, radiotherapy, and chemotherapy directly target cancerous

cells, and an e�cient treatment should have a direct impact on the size of the tumor. �ere-

fore, morphological criteria were proposed to assess tumor response to therapy. �e classical

RECIST andWHO criteria are based on the changes in tumor diameter, and give an indica-

tion on the evolution of the disease, i.e. stable, regressive, or progressive.

Oppositely, anti-angiogenic treatments do not target cancerous cells, but rather the neo-

vascularization of the tumor. �ey do not have a direct impact on the size of the tumor,

especially at the early stages of the treatment. �erefore, classical morphological criteria fail
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to reveal the e�ciency of such treatments. Quanti�cation of tumor angiogenesis and of the

response to anti-angiogenic treatments requires the development of functional criteria as-

sessing the microvascularization of tumor tissues. Microvascularization can be observed in

vivo using functional imaging, and in particular through perfusion imaging.

1.2 Perfusion imaging

Perfusion imaging is a branch ofmedical imaging that focuses on the visualization and char-

acterization of tissue vascularization. A tracer or contrast-agent is injected intravascularly,

either as a bolus or as an infusion, and the passage of the tracer in the tissue is observed using

one of the various imaging modalities presented below. Indeed, despite the various physical

phenomena involved during image acquisition in the various contrast-enhanced imaging

modalities, analysis of the passage of the contrast agent follows the same general principle.

Nuclear medicine Nuclear medicine regroups imaging modalities using radioactive trac-

ers. Planar scintigraphy uses gamma-emitting tracers and a single gamma camera, yielding

projections images of the tracer concentration. Single-photon emission computed tomog-

raphy (SPECT) uses the same tracers as scintigraphy, but uses a rotating gamma camera to

create three-dimensional volumes of the tracer concentration. Positron emission tomogra-

phy (PET) uses a positron-emitting tracer, and a coincident detection of the two gamma

rays resulting from the annihilation of the positron emitted during the beta decay of the

radioactive isotope.

Radioactive isotopes are usually attached to a biological molecule, forming a radiotracer

that follows the distribution of the biological molecule and enables its tracking in biological

systems.

X-ray computed tomography (CT) X-ray computed tomography uses a combination of

multiple planar X-ray projections with varying angles to produce three-dimensional images,

the resulting volumes show the absorption of X-rays. �e contrast agents used for X-ray

computed tomography are usually iodinated compounds that were chosen for their high
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radiodensity, resulting in a strong absorption of the X-ray beams, and for their fast renal

elimination. Additionally, they exhibit a linear relation between the X-ray attenuation and

the concentration of contrast-agent.

Magnetic resonance imaging (MRI) MRI is based on nuclear magnetic resonance that

exploits the ability of some atoms to absorb and emit radio frequencies when placed in an

external magnetic �eld. Typically, the imaged nuclides are protons present in tissues com-

posed of water molecules. In this case, magnetic resonance images are formed bymeasuring

the spin-lattice (T1) and spin-spin (T2) relaxation times of the protons inside the studied tis-

sue.

Magnetic resonance contrast agents are usually paramagnetic substances that shorten

the T1 relaxation time of the protons inside the observed tissues, for instance Gadolinium

chelates are widely used. Most Gadolinium-based contrast agents di�use from the blood

pool to the interstitial space through the capillary surface. However intravascular contrast

agents were also developed for magnetic resonance imaging, but their usage is mainly re-

stricted to research. Endogenous tracers are also being developed for MRI, for instance

arterial spin labelling (ASL) allows tracking of spin-labelled arterial blood and alleviates the

need for injection of a exogenous contrast agent.

Contrast-enhanced ultrasound (CEUS) Ultrasound images are formed by sending se-

quences of ultrasound pulses inside the tissue using a transducer, the ultrasound pulses are

re�ected by scatterers in the tissue, and the re�ected pulses are then recorded by the trans-

ducer. �e recorded signals are processed to retrieve the time of �ight of the echo, determin-

ing the location of the scatterer in the image, as well as the strength of the echo, determining

the image intensity associated to the scatterer.

Coated gas-�lled microbubbles are used as ultrasound contrast agents for their ability to

oscillate asymmetrically when exposed to acoustic waves, and for their size that makes them

resonate in the ultrasound frequency domain [2]. �eir size being nearly the same as the size

of a red blood cell, they can go everywhere in the vascular system, from the largest arter-

ies to the smallest capillaries, and they do not leak in the interstitial space. Microbubbles
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exhibit a strong and speci�c non-linear response to ultrasound pulses. �is non-linearity

is exploited by ultrasound scanners using speci�c background-cancelling sequences to pro-

duce contrast-speci�c images, e.g. harmonic imaging [5], subharmonic imaging [1], contrast

pulse sequencing (CPS) [6].

Microbubbles can be disrupted using ultrasoundpulseswith highmechanical indices [8].

�is phenomenon allows a type of acquisition speci�c of contrast-enhanced ultrasound in

addition to conventional approaches. Indeed, a�er a continuous infusion of microbubbles

reached its steady-state, a series of disruptive pulses is sent, then the re�lling of the mi-

crobubbles in the tissue is observed in real-time using a low mechanical contrast-speci�c

sequence to ensure minimum destruction of the microbubbles.

Indeed, the spatial resolution of contrast-enhanced ultrasound images depends on the

central frequency of the ultrasound probe, but is usually of about 100 µm. �e spatial reso-

lution of nuclear medicine images is generally much coarser, for instance the resolution of

PET images is typically about 0.5 cm. Additionally, ultrasound images can be acquired at

high frame rates, i.e. ranging from 1 Hz tomore than 1 kHz using plane wave imaging. �ese

�ne temporal resolutions can however be obtained without sacri�cing the image spatial res-

olution or quality. �is is for instance not true in MRI where a compromise must be made

between the temporal resolution, the spatial resolution, and the signal to noise ratio.

Contrast-enhanced ultrasound is a non-ionizing imaging modalities, enabling repeated

acquisitionswithout exposing the patient to radiations. �is is especially important in pathol-

ogy monitoring and treatment response monitoring applications. Contrast-enhanced ultra-

sound is the only real-time perfusion imaging modality available in clinical routine, allow-

ing direct visualization of the passage of microbubbles in the imaging plane on the scanner

terminal, whereas tomographic imagingmodalities, i.e. SPECT, PET, X-ray CT orMRI, usu-

ally require o�ine precessing to generate the dynamic perfusion volume. Ultrasound scan-

ners are smaller than other imaging apparatuses, most scanners are actually designed to be

moved around the patient and are therefore mounted on wheels. Some miniature scanners,

speci�cally designed for mobility applications, even include batteries for autonomous usage.

Additionally, ultrasound scanners are much cheaper than other imaging apparatus, and do

not require expensive or short-lived consumables.
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1.3 Aims and outline

1.3.1 Aims

Reliable quanti�cation of tumor perfusion is a challenging yet necessary task to establish

cancer diagnosis and monitor tumors undergoing therapy. Contrast-enhanced imaging is a

great tool to assess perfusion, however quantitative exam comparison remains di�cult be-

cause of the poor reproducibility of the acquisitions. Moreover, most of the perfusion quan-

ti�cation methods are developed to estimate parameters at a global scale, therefore either

hiding the local variations in tissue perfusion or not accounting for the relations between

the local estimates. �is thesis aims atmaking the estimation of perfusion parameters robust

to inter-exam changes, in order to enable exam comparison while revealing the spatial het-

erogeneity of the tissue vascular function. Various quanti�cation approaches will therefore

be investigated in this thesis, including semi-quantitative approaches, and compartmental

models using either an arterial input function or a reference tissue. Additionally, various

estimation methods and their impact on the estimated parameters will be investigated. Our

study focused on contrast-enhanced ultrasound data, however the proposed quanti�cation

methods could be investigated in other perfusion imaging modalities.

1.3.2 Outline

�e document is divided into three parts. In the �rst part we establish a state of the art of

the methods for quanti�cation of perfusion. In the second part we assess the reproducibility

of existing quanti�cation methods. And in the third part we propose a new quanti�cation

method, and then assess its reproducibility and its sensitivity to various factors.

Part I - Quanti�cation of perfusion: state of the art Chapter 2 presents a state of the art

of the methods that have been proposed for the quanti�cation of perfusion, and in partic-

ular using medical imaging. Quanti�cation approaches are classi�ed into three categories:

semi-quantitative, deconvolution-based, or compartmentalmodels. Indeed, the two last cat-

egories consider an arterial input function, and compartmental modeling is a speci�c case

of deconvolution. Some main studies from the literature were reviewed, focusing on earlier
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work at the origin of methodological developments.

Part II - Reproducibility of the existingmethods and the relations between them Chap-

ter 3 studies the impact of mathematical modeling on the reproducibility of perfusion pa-

rameters through preclinical test-retest experiments. �is study revealed the sensitivity of

absolute semi-quantitative parameters to inter-exam variations in experimental or physio-

logical conditions. It also showed the superiority of of normalized parameters, and more

precisely of the reference tissue model, in terms of reproducibility. Chapter 4 extends the

work from Chapter 3 by �rst establishing theoretically and then verifying experimentally

the relations between the parameters of the various models. �e existence of these relations

shows the ability of semi-quantitative parameters to reveal relative variations of the vascular

function.

Part III - Proposition and assessment of a new quanti�cation method Chapter 5 �rst

presents a new regularized linear estimation method for the reference tissue model, and

compares its parameters to those obtained using the classical linear estimation method in

terms of reproducibility. �is study proves the superior robustness of the regularized esti-

mates to inter-exam variations. �en Chapter 6 compares the robustness of the two models

to contrast-agent recirculation through simulation experiments. And Chapter 7 studies the

accuracy and the precision of the models when varying intrinsic characteristics of the data,

e.g. exam duration, noise level, or quanti�cation strategies, e.g. reference tissue, number of

regions.
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Part I

Quanti�cation of perfusion:

state of the art





Foreword

In the �rst part of this thesis, we reviewed the methodological developments of perfusion

quanti�cation methods. Various modalities were historically used to assess perfusion, from

themost invasive requiring catheterization for blood sampling to themost advanced in-vivo

imaging techniques, however they all require injecting a tracer to monitor its concentration

throughout the experiment. Quanti�cation of perfusion consists in the estimation of param-

eters characterizing the physiology of the tissue under investigation, in particular regarding

the distribution of blood or the exchanges between blood and tissue.

Chapter 2 addresses the threemain quanti�cation approaches used to characterize perfu-

sion exams, i.e. semi-quantitative, deconvolution, and compartmental. �e semi-quantitative

approaches are the most intuitive, they derive perfusion parameters directly from the tracer

concentration curves, from which physiological parameters can be derived. Deconvolution

approaches consider the tissue as a black-box system fed by an arterial input, and estimate

the tissue response to an instantaneous injection making few assumptions on the underly-

ing physiology and tracer characteristics. Deconvolutions result in impulse responses with

unknown shapes, from which perfusion parameters are usually derived. Compartmental

models can be viewed as explicit deconvolution, where the shape of the impulse response in

known and parameterized by physiologically relevant parameters.

�emethods are presented by imagingmodalities, howevermethodological transfers be-

tween modalities was common and was emphasized when a clear continuity was observed.

�e evolution of a technique is presented chronologically when possible to reveal the incre-

mental development of the methods.

N.B. All the references cited in this part of the thesis are pooled together and presented at the end of Part I.
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Chapter 2

Quanti�cation of perfusion exams:

A review

Generally speaking, quanti�cation of perfusion consists in deriving parameters from blood

�ow measurements, regardless of the method used for the measure. �is topic has been

on the table, and continuously evolving, long before perfusion imaging existed. Indeed,

G.N. Stewart introduced indicator dilution theory, starting with the founding paper pub-

lished in the Journal of Physiology in 1897 [139]. Indicator dilution theory was originally

developed to quantify perfusion using blood sampling data. It relates tracer concentration

curves to physical measurements, i.e. blood �ow, blood volume, and mean transit time,

assuming a stationary �ow system and an instantaneous injection of a known quantity of

tracer. W.F. Hamilton went further, corrected some approximations made by Stewart. Even

before Stewart andHamilton, hemodynamics of the heart had been studied through indirect

measurements and reported in German language by Volkmann [159] and Vierordt [157] in

the 1850s, and later through direct measurements by Stolnikow [140] and Tigerstedt [150].

�is chapter fundamentally aims to review the various methods used to quantify perfu-

sion exams acquired using one of the imagingmodality brie�y presented inChapter 1. Quan-

ti�cation of perfusion exams is possible assuming the signal intensity is linearly related to the

concentration of tracer in the tissue. Verifying this assumption is not included in the scope

of this thesis, it will therefore be considered true in the following of this manuscript. Addi-

tionally, perfusion imaging modalities yields macroscopic measurements, i.e. at the pixel or
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voxel level, and does not give direct access to microscopic measurements, i.e. at the cellular

or molecular level. �erefore, an image-based measurement is really a mixture of multiple

signals corresponding to the various vascular structures present inside the unitary volume

of interest.

Realistically, this review of perfusion quanti�cation techniques cannot be close to com-

prehensive, instead it tackles the subject from the three anglesmentioned therea�er, and em-

phasis the major landmarks of the perfusion quanti�cation landscape. Section 2.1 presents

semi-quantitative methods, extracting parameters directly either from raw or noise-�ltered

enhancement curves. �en Section 2.2 presents deconvolution-based quanti�cation meth-

ods, estimating the impulse response in the tissue of interest by means of blind or regular-

ized deconvolution. Finally, compartmental models accounting for the various interactions

of the contrast agent with the tissue are presented in Section 2.3.

2.1 Semi-quantitative methods

2.1.1 Generalities

Semi-quantitativemethods are probably among themost intuitive as they extract perfusion-

related parameters directly from raw, interpolated, or noise-�ltered enhancement curves.

�ey are however not directly related to any physiological function and are prone to changes

in experimental or physiological conditions. �ey are therefore o�en used as relative indi-

cators of perfusion and contrast agent transit time [105], allowing intra-exam comparisons.

Examples of semi-quantitative parameters include the peak enhancement [39, 113, 114,

121], the time to peak enhancement [32, 39, 114], maximum upslope gradient, also known as

wash-in rate [39, 113], the area under the enhancement curve [32]. We also considered semi-

quantitative the perfusion parameters based on indicator dilution theory that were derived

from the previously cited parameters [15, 63, 78, 103, 105, 106, 119, 120]. Figure 2-1 shows

graphical representations of the above mentioned semi-quantitative parameters.
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Figure 2-1: Examples of semi-quantitative parameters are illustrated on the mean kinetics
(black dots) inside the perfused area of a murine tumor observed in contrast-enhanced ul-
trasound and �tted with a log-normal model (red dashed line): the wash-in rate (WIR, in
green), the time-to-peak (TTP, in cyan), the peak enhancement (PE, in orange), and the
area under the curve (AUC, in dark blue).

2.1.2 Nuclear medicine

Semi-quantitative parameters have been used to di�erentiate stenosed from healthy kidney

in scintigraphy exams, i.e. a nuclear medicine technique using a gamma camera, following

bolus injection of [99mTc]DTPA.

For instance, Hilson et al. [63] and later Peters et al. [120] both proposed an enhancement-

based perfusion index, which is commonly de�ned as the ratio of the tissue blood �ow to

the cardiac output. On the one hand, Hilson et al. [63] de�ned the perfusion index as the

ratio of the area under the arterial curve to the area under the renal curve, both curves are

integrated up to the arterial peak. On the other hand, Peter et al. de�ned the perfusion index

as the ratio of the maximum upslope of the renal curve normalized for the injected quantity

to the maximum upslope of the integrated arterial curve normalized for the area under the

arterial enhancement curve, andmultiplied by a constant converting the number of received

gamma photons into a unit of activity [119, 120].

Nally et al. [113] reported signi�cant di�erences in the wash-in rate, curve width at 75%

of the peak enhancement, and maximum enhancement in normal and stenosed kidney in a

canine model.

2.1.3 X-ray imaging

Derived from the work of Peters et al. [120], semi-quantitative parameters were also pro-

posed by Miles et al. in 1991 to quantify renal cortical and medullary perfusion in X-ray
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computed tomography (CT) with bolus injection of Iodine [103, 105]. �e proposed perfu-

sion index was de�ned as the ratio of the maximum slope in the tissue curve and the peak

enhancement of the arterial curve. �e method was successively used to quantify perfu-

sion in the pancreas [107], solitary pulmonary nodules [178], lymphoma masses [36], lung

adenocarcinoma [142], and more generally to study tumor angiogenesis [104, 142].

Miles et al. also adapted the method to account for both arterial and venous perfusion

of the liver, using the splenic enhancement as venous input because the portal vein was not

present in the image [106]. Arterial perfusion was calculated using the maximum slope be-

fore peak splenic enhancement, while venous perfusion was calculated using the maximum

slope a�er peak splenic enhancement.

In 1995 Blomley et al. proposed the liver subtraction method to quantify liver perfu-

sion [15]. Instead of estimating the upslope in the late liver enhancement curve, they �rst

subtracted the splenic enhancement curve multiplied by the ratio of arterial to splenic ar-

terial perfusion, i.e. the ratio of the maximum slope in the early liver enhancement curve

to the maximum slope in the spleen. �e maximum slope of the corrected enhancement

curve is then used to calculate portal perfusion. In this study, the time and value of peak

enhancement were obtained using a gamma variate �t, allowing a �ner estimation of these

parameters. Whenever possible the authors used the enhancement curve in the portal vein

instead of the splenic vein. Authors demonstrated the use of portal perfusion in one pa-

tient with metastatic livers, as well as in four patients with cirrhotic livers. Facing the small

number of cases in the previous study, a collaborating group extended the application of

the method in cirrhotic livers with more cases [153]. �ey estimated arterial and portal per-

fusion in a group of twenty patients with viral-induced cirrhosis and in fourteen controls.

While arterial perfusion did not di�er between groups, they found a signi�cant reduction

in portal perfusion among patients compared to controls, and a strong correlation between

portal perfusion and the prothrombin ratio which is an indicator of hepatic parenchymal

damage.

Inspired by the work of Miles et al., the method was adapted by Koenig et al. in 1998

to quantify perfusion in the brain in order to detect and assess cerebral ischemia in acute

stroke [78]. While arterial enhancement could be estimated from small vessels present in the
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image, it was not used due to peak attenuation by partial volume e�ects. Instead, the peak

venous enhancement in the superior sagittal sinus was used. �e authors reported relatively

small approximation error, with slightly �attened enhancement curves, explained by the

short transit time of the contrast agent in brain tissues. �e cerebral blood �ow, commonly

noted CBF, is the equivalent of the perfusion index in brain tissues. �e authors de�ned it as

the ratio of themaximum slope of the tissue enhancement curve to the peak enhancement in

the superior sagittal sinus. �e fractional cerebral blood volume, commonly noted CBV, was

de�ned as the ratio of the peak tissue enhancement to the peak enhancement in the superior

sagittal sinus. In a following study [75], the authors assess the linearity, the spatial resolution,

and the sensitivity to noise of CBF through simulations and phantom study, and investigated

the relative CBF estimated using large hemispherically mirrored regions of interest using

follow-up CT and MR data. �ey reported a systematic underestimation of CBF correlated

with the cardiac output of the patient, a good linearity of relative CBF, and recommend using

the relative parameter as a predictor of the reversibility of an ischemic stroke.

2.1.4 Magnetic resonance imaging

Following themethodological developments of Gadolinium-DTPA complex (Gd-DTPA) by

Brasch et al. [19], Weinmann et al. [164], andWesbey et al. [165] in 1984 supported by quali-

tative visual analysis, various applications of the technique emerged in the �eld of oncology.

Quanti�cation attempts started with the work of Felix et al. [44] in 1985 using Gd-DTPA

enhanced images acquired 5minutes a�er injection of the contrast agent. Results were com-

pared with pre-contrast MR images obtained using various acquisition sequences and X-ray

CT imaging with injection of a iodinated contrast agent. �ey obtained accurate contours

of brain tumor and necrosis with no signi�cant enhancement in the region exhibiting peri-

tumoral edema. �ey also attempted to di�erentiate the various types of tumor included in

their study based on the contrast index before and a�er injection of Gd-DTPA.�e index is

de�ned as the ratio of signal intensity in the tumor tissue to the signal intensity in normal

brain tissue. It is the �rst semi-quantitative parameter used for Gd-DTPA enhanced MRI.

Revel et al. [131] assessed the di�erence in signal intensity between the pre-contrast

and 25-minute post-contrast images acquired in the largest section of subcutaneous human
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breast tumors implanted inmice. Signal intensity in the tissue were normalized by the signal

intensity in a corn-oil phantom visible in every image. Limited by the temporal resolution

of their acquisition, authors do not comment on the temporal evolution of signal intensity,

despite intermediate acquisitions performed respectively 5 and 15 minutes a�er Gd-DTPA

injection.

Pettersson et al. [121] performed repeated acquisitions of multiple MR sequences in rab-

bits subcutaneously implantedwith aVx2 tumormodel, and additional inducedhemorrhage

in surrounding muscle tissue. Temporal evolution of enhancement is assessed more �nely

than in previous studies, acquiring an image every 2.5 minutes for the �rst 10 minutes a�er

injection of Gd-DTPA and then every 5 minutes for the following 20 minutes. �is allowed

the authors to observe that no substantial enhancement occurred in abnormal tissues a�er

10 minutes, however they only reported on variations of peak signal intensity.

In 1989, Erlemann et al. [39] investigated dynamic contrast-enhanced MRI using a T1-

weighted spin-echo sequence every 20 seconds following bolus injection of Gd-DTPA as

a tool to di�erentiate tumors from healthy tissue in musculoskeletal lesions. �eir primary

result was an increase in contrast-to-noise ratio between tumor andmuscle compared to T2-

weighted images, and a decrease in contrast-to-noise ratio between tumor and bonemarrow

or fatty tissue compared to non-enhanced T1-weighted images. Additionally, they estimated

the baseline signal intensity, the maximum signal intensity, and the time-lapse between the

start of the injection and the point of maximum signal intensity. Using these estimates, the

de�ned the signal intensity ratio as the percentage of increase over the baseline signal in-

tensity, as well as the relative enhancement slope. �ey observed an increase of the signal

intensity ratios and relative enhancement slope in malignant tumors compared to benign

tumors, the latter showing smaller overlap betweenmalignant and benign groups. Enhance-

ment slope enabled malignancy prediction with an accuracy of 79.7% using a cuto� value

of 30%/min. �ey also reported lower peak intensity ratios and wash-in rates in areas with

necrosis or peritumoral edema.

Wilke et al. [168] investigated the use of contrast-enhancedmagnetic-resonance imaging

for the quanti�cation ofmyocardial perfusion in a canine study, and compared the estimated

parameters to the blood �ow obtained using radiolabelled microspheres. A bolus of Gd-
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DTPA was injected during Turbo-FLASH acquisition, and a six circular regions of interest

were delineated in the myocardium, as well as one region of interest in each ventricular

cavity, yielding a total of nine regional time-intensity curves. All the time-intensity curves

were �ttedwith a gamma-variate curve to both correct for recirculation, and limit the impact

of extravascular di�usion, using only the samples occurring before the curves decreases to

70% of its peak value. �e mean transit time of each curve was calculated numerically, and

the correlation of its inverse, of the time of peak intensity, as well as the initial slope (de�ned

as the ratio of the peak intensity to the time of peak intensity) with absolute myocardial

blood �ow estimates from radiolabelled microspheres were investigated. Good correlations

with the ground truth (r ≥ 0.89) were reported for the three semi-quantitative parameters
cited above.

Verstraete et al. [156] also reported on the ability to di�erentiate benign frommalignant

musculoskeletal lesions, using imaging and quanti�cation techniques similar to those used

by Erlemann et al. [39]. Despite the higher temporal resolution of 2.41 seconds possible in

their study, their �ndings are likewise nuanced because of the overlap of parameters between

highly vascularized benign lesions and the malignant ones.

Baur et al. [13] reported higher signal intensity ratios a�er injection of Gd-DTPA in pa-

tients with intermediate-grade and high-grade di�use malignant bone marrow in�ltration

in the spine compared to healthy patients. Nonetheless, theywere unable to detect low-grade

lesions using this technique, and reported large variabilities in all patient groups.

2.1.5 Ultrasound

�e current section addresses the semi-quantitative methods used to quantify perfusion us-

ing ultrasound. Refer to Section 1.2 for more information on contrast-enhanced ultrasound

as a perfusion imaging modality, including the nature of the contrast-agent, the image for-

mation processes, as well as the various injection techniques. Methods assessing perfusion

using bolus injection are �rst presented, followed bymethods speci�c to continuous infusion

injection.

As a foreword to this section, indicator dilution theory as �rst formalized by Stewart

[139] and later by Hamilton et al. [57] is valid under the condition that the mass of contrast-
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agent is conserved through the time of the acquisition. Since 1979, it is known that a portion

of the intravenously injected microbubbles are �ltrated through the lungs [22, 101] , i.e. be-

fore their �rst pass in the tissue of interest. Moreover, a portion of the following passes is

�ltered by the Kup�er cells in the liver [73, 174]. Additionally, Lampaskis and Averkiou [86]

con�rmed that imaging using a high mechanical index disrupts a non-negligible number of

microbubbles, and demonstrated thatmost of themicrobubbles disrupted during imaging at

a lowmechanical-index are actually naturally disrupted. �emass conservation condition is

therefore usually not respected in contrast-enhanced ultrasound, even in �rst-pass studies.

Semi-quantitative methods based on indicator dilution theory were nonetheless extensively

used to quantify perfusion in contrast-enhanced ultrasound exams.

Bolus injection

Model-free quanti�cation methods

Fromanhistorical standpoint, Bommer et al. [18]were the �rst to report indicator-dilution

curves using contrast-enhanced ultrasound data in an abstract published in �e American

Journal of Cardiology in 1978. Authors used a photometer to quantify the evolution of sig-

nal intensity, as visualized on the screen of the monitor. �e enhancement resulted from the

venous injection of a bolus of microbubbles, obtained bymicrocavitations through rapid in-

jection of dextrose in water. �e indicator-dilution curves were quanti�ed in terms of time

from peak enhancement to 50% decay, and to 90% decay. �e latter was found correlated to

the cardiac-output, and enabled the di�erentiation of patients with low and normal cardiac

index. In the same issue of �e American Journal of Cardiology, the same group applied

the same technique to produce indicator-dilution curves in another cardiac study [31]. �ey

used the ultrasound images themselves to identify patients with intracardiac shunts, but also

the mean clearance time of the indicator-dilution curves to identify patients with tricuspid

regurgitation, and severe congestive failure.

At the same period, Hagler et al. [56] presented early data of videodensitometry data for

the quanti�cation of le�-to-right shunts using echographic acquisitions with direct injection

of a bolus of ultrasound contrast-agent (i.e. indocyanine green dye) in the le� ventricle.

�ey estimated the ratio of le�-to-right shunt, which they de�ned as the ratio of the area
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under the curve in the right ventricle to the area under the curve in the le� ventricle, and

showed an strong correlation of echographic measurements with both indicator-dilution

anddyemeasurements. Meltzer et al. [100] extended thiswork and investigated the relevance

of a mono-exponential model to �t the wash-out curve, as suggested by indicator-dilution

theory. �iswas assessed by �tting a linearmodel to the log-transformed time-density wash-

out curve, exhibiting excellent correlationwith experimental data. �ey therefore concluded

on the relevance of the log wash-out slope, and established its relation to the contrast agent

disappearance rate.

Following the early work of Armstrong et al. [4] and Tei et al. [144], Ten Cate et al. [145]

investigated the use of contrast-enhanced echography for the assessment of myocardial per-

fusion following intracoronary injection of a bolus injection of microbubbles in a canine

study with varying coronary artery �ow (using a hydraulic occluder) to simulate ischemia,

and with injection of Dipyridamole to dilate the coronary bed and therefore simulate hyper-

emia. �e microbubbles in this study were investigated in a previous study of the same

group, ensuring they were small enough to circulate through capillaries without getting

trapped [43]. Semi-quantitative functional parameters were extracted from log-compressed

time-intensity curves, i.e. the half wash-in time, half wash-out time (ignoring the recircu-

lation by �tting a mono-exponential model), peak intensity time and value, and total curve

duration. �ey found signi�cant changes in total curve duration, and in half wash-in and

wash-out times, for both ischemia and hyperemia in comparison with control measure-

ments. Interobserver and intraobserver variability, as well as injection reproducibility was

assessed for the half wash-out time, with respective correlation coe�cients of 0.98, 0.86, and

0.78. In addition, the relative systolic wall thickening was also estimated, and while it corre-

lated well with the coronary artery �ow measured by an electromagnetic �owmeter placed

directly on the artery, no correlation was foud with the ultrasound half wash-out time.

A few years later, Vandenberg et al. [155] performed a similar canine study with induced

ischemia and hyperemia, intending to predictmyocardial blood �ow from semi-quantitative

parameters derived from contrast-enhanced ultrasound time-intensity curves. In addition

to peak intensity time and value, they investigated the use of the wash-in rate. Peak intensity

value andwash-in rate were found correlated tomyocardial blood �ow, however correlations
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weremoderate (r = 0.67 and 0.51 respectively). However, the relative changes of the wash-in
rate exhibited a stronger correlation (r = 0.77) with the relative changes of the myocardial
blood �ow, i.e. with induced ischemia and hyperemia.

In a clinical study, Ten Cate et al. [146] estimated the total curve duration, the area under

the curve, and the half wash-out time from time-intensity curves obtained in the ventricu-

lar septum from end-diastolic images. �ey performedmultiple regression analysis between

the parameters extracted from contrast-enhanced ultrasound data to angiographic parame-

ters, i.e. the percentage of coronary area stenosis, and the minimal lumen area, derived from

data acquired using the protocol described in [167]. Authors reported relations of various

natures between the above-mentioned parameters, i.e. linear, inverse, exponential, and loga-

rithmic. In particular, the strongest correlation was found between the area under the curve

and the percentage of coronary area stenosis (exponential relation). Additionally, while all

correlation were found signi�cant, this couple of parameters was the only one with a strong

correlation (r ≥ 0.8). Noting the discrepancies between the pre-clinical and the clinical
results, the authors suggest they found their sources in modi�cations of the experimental

setup, i.e. the injection method or the nature of the ultrasound contrast agent.

In 1990, Bleeker et al. [14] evaluated the stability, size, and ultrasonic properties of multi-

ple ultrasond contrast agents, and investigated the feasibility of blood�owestimation through

in vitro experiments. �eir �ndings were in favor of the Albunex contrast agent, which were

the only microbubbles exhibiting su�ciently longlasting stability (i.e. in size and number)

when exposed to ultrasound waves. In addition, a linear relation between the concentra-

tion of microbubbles and both backscatter coe�cient (i.e. re�ected power) and attenuation

coe�cient (i.e. transmitted power) was reported for low concentrations. �ey also found

strong linear relations between the ultrasonic properties of the contrast agent and the �ow

estimated using an indicator-dilution theory. �ey emphasis the questionability of using

grey-levels from ultrasound images to characterize blood �ow, and instead recommend us-

ing attenuation based on transmission techniques, or backscattering a�er proper correction

of signal attenuation. In vitro experiments showed strong relations between the ultrasonic

properties of Albunex contrast agent and the �ow estimated using indicator-dilution theory.

A somehow similar in vitro study was conducted a few years later by Heidenreich et al.
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[61], however the proposed quanti�cation model makes use of an input function as a refer-

ence instead of the injected quantity used by Bleeker et al. [14], and extends the indicator-

dilution model to estimate the tissue blood volume and mean transit time, in addition to

the tissue blood �ow. �e model is based on the estimation of the area under the curve and

mean transit time for both input and studied tissues. �e ratio of the area under the curve

in the studied tissue to the input yields the tissue blood volume, the system mean transit

time is approximated as twice the di�erence in mean transit times, and the tissue blood

�ow was classically de�ned as the ratio of tissue blood volume to system mean transit time.

In vitro calibration data revealed the log-compressed nature of the data in the experimental

system, allowing linearization of the video intensity for low tomoderate concentrations, and

therefore conversion to volumetric concentration ofmicrobubbles. Excellent agreement was

found between measured and estimated �ow rates, using 39 measurements at low concen-

tration. Authors report on the di�culty to �nd a pure blood pool in the ultrasound imaging

plane, but also to image both tissue and input with su�cient sensitivity and without satura-

tion artifacts respectively because of the limited dynamic range of commercial ultrasound

scanners. Additionally they comment on the simplicity of the model which allows to alle-

viate the signal attenuation artifacts which are o�en non-negligible in-vivo, and on the im-

possibility to ensure conservation of the contrast agent quantity and properties throughout

the acquisition.

Aronson et al. [5], from the same research group, later assessed the model described

above in-vivo, in an attempt to quantify kidney perfusion in a canine study. A total of 58

bolus injections of microbubbles with varying concentrations (23 for aortic measurements,

and 35 for cortical measurements), and 93 bolus injections with modulated blood �ow (57

reduction, 10 increase, and 26 controls), were performed in 9 dogs. Blood �ow was con-

troled by means of a renal artery occluder for �ow reduction, and dopamine or fenoldopam

infusion for �ow increase. A major limitation of this study lies in the fact that renal and

aortic data did not originate from the same injection, as a di�erent dose of contrast-agents

was used to extract the time-intensity curves in the two regions of interest. Additionally,

the injected doses were ajusted empirically in order to obtain complete opaci�cation of the

region of interest, without reaching the signal saturation threshold. Direct measurements
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of blood �ow were performed using an electromagnetic �owmeter, for comparison with the

value estimated using contrast-enhanced ultrasound. �e major �ndings of this study are

the evidence of a strong correlation between the injected concentration and the pixel in-

tensity, for both cortical and aortic measurements, and strong correlation of the estimated

blood �ow with in-situ �owmeasurements with a tendency to overestimate blood �ow. Au-

thors discuss the various pitfalls of contrast-enhanced ultrasound that could in�uence the

accuracy of the method, including possible changes in blood volume in the modulated �ow

experiments, signal attenuation, and electronic thresholding. �ey �nally conclude on the

inability to perform absolute quanti�cation of blood �owwith the existing apparatus, stating

that the major requirements lie in increased linearity and dynamic range.

Schwarz et al. [135] investigated the use of the wash-out rate from log-transformed time-

intensity curves following bolus injection, as well as the ratio of the wash-out rates from two

bolus injections with varying �ow rates. Time-intensity curves were obtained using various

backscatter intensity techniques, i.e. radio frequency, video intensity, pulsed wave Doppler,

and intravascular Doppler. Authors obtained strong correlations of the wash-out rate with

the in vitro �ow rate, however they reported di�erent slopes in two chambers with varying

mixing volume. �e relative wash-out rate not only exhibited excellent correlations with the

relative �ow rate, it also yielded a good agreement of the slopes obtained in the two mixing

chambers. �ese results suggest the independence of the relative wash-out rate to themixing

volume, and the ability of this parameter to accurately characterize changes in blood �ow.

Wiencek et al. [166] investigated the various steps necessary to achieve accurate quan-

ti�cation of contrast echocardiography using indicator-dilution theory. �e proposed ap-

proach assumes the arterial input function is knownbeforehand, i.e. the time-intensity curve

in a pure blood pool like the aortic root or in the le� ventricle, in order to relax the need for

standardized injection and physiological conditions. Authors ackowledge the di�culty of

estimating the input function using a single injection, and suggest performing two separate

injections to avoid saturation and non-linearities caused by high contrast-agent concentra-

tions. �ey emphasis the necessity for a consistent and con�ned range of microbubble size,

as the intensity of the signal backscattered by a single bubble is non-linearly proportional to

the diameter of the bubble. �e importance of conservation of contrast-agent quantity and
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properties throughout the acquisition of the ultrasound images was outlined, and the impact

of hydrostatic pressure and gas saturation level of the solution as reported in the litterature

was investigated. �e choice of the representation of the time-intensity curves, i.e. video

intensity, log-transformed intensity, or concentration from calibration data, and its impact

on the estimated parameters were discussed. A possible explanation for undetected changes

when using the peak intensity as an indicator of blood �ow was proposed, authors related

it to signal saturation and illustrate this phenomenon in simple cases where the changes in

blood �ow are caused by a change in blood volume only or in transit time only. Additionally,

electronic issues resulting from signal acquisition, signal processing, and electronic thresh-

olding were discussed. Physiological factors like tissue-dependant hematocrit were also in-

vestigated. Finally, methods which showed promising results in preliminary studies at the

time of the review (i.e. 1993) were reported, including various alternative imaging schemes

(e.g. acoustic velocity, radiofrequency data, second harmonic imaging).

Model-based quanti�cation methods

In 1989, Kaul et al. [68] proposed a �rst-order gamma variate model to quantify blood

�ow using consecutive contrast-enhanced echocardiography acquisitions in an open-chest

canine studywith varying blood �ow. �ey compared their results in themyocardium and in

the coronary bed with the transmural myocardial blood �ow measured using radiolabelled

microspheres, and to direct coronary �ow measurements obtained by an electromagnetic

�owmeter. �ey studied the in�uence of the injection site by performing their experiments

in two groups of eight dogs. In the �rst group, dogs were injected a bolus of microbubbles in

the circum�ex artery, while in the second group they were injected in the le�main coronary.

Authors reported a good correlation of both myocardial and coronary blood �ow measure-

ments with the parameter of the gamma variate model which in�uences the width of the

modeled enhancement curve, α, for both groups (mean r = 0.81 and 0.96 respectively), but
a poor correlation of the peak intensity (mean r = 0.63 and 0.39 respectively). Pooling esti-
mates from the eight dogs did not a�ect the correlation with α for the �rst group (r = 0.80),
however for the second group, pooling data considerably dropped the correlation (r = 0.23).
Scattered plots reveal the varying slopes obtained in the di�erent dogs, emphasizing the im-
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pact of the injection site. Indeed, when injecting in the le�main coronary the contrast agent

is dispersed through the coronary tree, making quanti�cation of myocardial blood �ow in-

trinsically relative. Authors suggested that absolute quanti�cation of myocardial blood �ow

may be possible, injecting closer to the branches of the coronary tree, but were well aware

that the proposed semi-quantitative parameters are not absolute themselves.

Tiemann et al. [147] investigated the ability of harmonic power Doppler imaging to yield

quantitative perfusion parameters, as this modality inherently destroys microbubble to pro-

duce contrast-speci�c images [148], through in vitro experiments, and ex vivo experiments

in a porcine heart. �ey compared the time-intensity curves obtained from harmonic power

Doppler, and the time-concentration curves of ICGmeasured with an extravascular densit-

ometer, to direct �ow measurements from a calibrated ultrasonic �owmeter. Authors �tted

a log-normal model to the experimental curves, since this model has been commonly used

to �t indicator-dilution curves [141, 171], and was later applied in cardiology studies [10, 92].

�e area under the curve and the mean transit time of the �tted model were estimated for

both modalities. While the area under the curve expectedly correlated with the injected

quantity of ultrasound contrast agent, the inverse of the mean transit time obtained using

microbubbles and ICG measurements exhibited very strong correlation to the direct �ow

measurements in both in vitro and ex vivo setups. However, the mean transit time ob-

tained with harmonic power Doppler time concentration curves was slightly lower than

with ICG densitometry, especially for high �ow rates. While most studies used electromag-

netic �owmeters as ground truth, this one used an ultrasonic transit-time �owmeter. �e

presence of ultrasonic microbubbles could therefore in�uence the ground truth �ow mea-

surement, and possibly a�ect the correlation between ultrasonic measurements, however

measurements were in agreement with densitometric ICG measurements which alleviates

the suspicion.

In 2000, Postert et al. [123] proposed an empiricalmodel for the quanti�cation of cerebral

perfusion time-intensity curves following intravenous injection of a bolus of microbbubles,

imaged through the acoustic temporal bone window using phase-inversion harmonic ul-

trasound imaging, contrast burst imaging, and time variance imaging for comparison. �e

model accounts for the baseline-intensity and for the maximum intensity variation, i.e. the
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peak-intensity minus the baseline-intensity. Moreover, the wash-in of the bolus is mod-

eled by a logistic curve with adjustable steepness and delay, despite authors describe it as

step function, and the destruction of microbubbles is modeled by an exponential decay.

However, none of the model parameters is directly related to the physiology or to physical

measurements. Authors used the peak-intensity, as well as the time to peak-intensity ex-

tracted parameters from themodeled time-intensity curves as semi-quantitative parameters

to compare the values obtained using the three modalities of contrast-enhanced ultrasond

cited above, and in four regions of interest of nine healthy patients. �e study concludes by

stating the higher sensitivity of contrast burst imaging and time variance imaging compared

to phase-inversion harmonic imaging.

However, three years later, a study by Eyding et al. [40] to which Postert collaborated,

investigated the 90% peak width as an additional parameters to characterize time-intensity

curves from phase-inversion harmonic imaging �tted with this model. Semi-quantitative

parameterswere evaluated in �ve regions of interest of the established ipsilateral view, i.e. imag-

ing only the hemisphere on the probe side, using an imaging depth of 100 mm, and nine

regions of interest using the novel bilateral view, i.e. allowing simultaneous imaging of both

hemishperes with a single probe, using an imaging depth of 150 mm, of fourteen healthy

patients. Consecutive transtemporal acquisitions following intravenous injection of two dif-

ferent ultrasound contrast agents were performed in each view of each patient, with twenty

minute intervals, with for comparison purposes. �e authors reported the sensitivity of

peak-intensity to depth, and the ability to di�erentiate arteries using either time parameter.

In a following study [82], the same group performed another transtemporal contrast-

enhanced ultrasound study using the bilateral approach with a single bolus injection in

twenty healthy patients. A total of fourteen regions of interest was delineated in both hem-

ishperes, yielding as many time-intensity curves, from which were estimated the same three

semi-quantitative parameters a�er �tting the empirical model described above. Peak inten-

sity was once again excluded from further analysis because of the strong variations among

patients. Because of the small amount of corresponding regions in the study, only descrip-

tive data is presented in the form of aligned boxplots, as if all patients exhibited the same

median value. �e authors recommended the use of the time parameters, in particular the
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time to peak intensity, as estimated with the bilateral protocol. �ey believe it could be a

relevant indicator to help characterize lesions in patients with acute strokes, provided that

one of the hemispheres is una�ected and can be used as a reference.

In 2006, Elie et al. [38] �led a patent application for quanti�cation approach developed

speci�cally for contrast-enhanced ultrasound. �e formulation of the mathematical medel

is empirical, and is inspired from the model �rst proposed by Eyding et al. [40], replacing

both the numerator and the denominator terms by sigmoid functions. A dozen of semi-

quantitative parameters that can be derived from the �tted model for vascularization and

tumoral angiogenesis detection are listed by the authors, i.e. peak time, peak value, wash-in

time, mean transit time, area under the curve, wash-in rate, area under the wash-in, and

under the wash-out.

�e group later used the patentedmodel in an early attempt to assess the e�cacy of a dis-

ruptive anti-angiogenic treatment [90]. �ey assessed tumor vasculature through the peak

time and peak value, as well as the full-width at half maximum, in four groups of ten mice,

respectively imaged at 5, 15 minutes, one hour, six hours, and twenty-four hours a�er treat-

ment injection, and compared the post-treatment contrast-enhanced ultrasound results to

pre-treatment results. Results were also compared to power Doppler and histology �nd-

ings. �ey reported a progressive decrease in peak-intensity value reaching its minimum

six hours a�er injection of the anti-angiogenic treatement, and opposite e�ects in time to

peak-intensity and in the full-width at half maximum.

In 2003, Mischi et al. [111] proposed the local density random walk model for charac-

terization of tissue perfusion in contrast-enhanced ultrasound with bolus injection of mi-

crobubbles. �e model, �rst proposed by Sheppard and Savage [136] characterizes the dilu-

tion process through a mono-dimensional approximation of the vascular network, i.e. ves-

sels are considered as straight tubes with constant �ows, and a Brownian motion of the

contrast-agent following bolus injection is assumed. A novel estimation method based on a

two-phase multiple linear regression is proposed, aleviating the need for initialization and

assumptions on the nature of the time-intensity curve. �ey also proposed a correction for

the systematic negative estimation bias in the area under the curve, that was shown propor-

tional to the noise level through simulations. From the �tted time-intensity curve, the area
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under the curve and the mean transit time are extracted. �en �ow and volume parame-

ters are derived using the injected quantity of contrast-agent and indicator-dilution theory.

�ey tested their model in vitro, and compared the �ow estimated with contrast-enhanced

ultrasound with the direct �ow measurements of an electromagnetic �owmeter. �e �tted

curves were strongly correlated to the experimental data (r2 > 0.95), and so were the four
estimated and measured �ow values (r2 > 0.99).

In 2004, Mischi et al. [108] presented a method to quantify blood volume using the

�ow and mean transit time estimated in two time-intensity curves derived from contrast-

enhancedultrasoundbolus acquisitions, i.e. respectively acquired upstreamanddownstream

of the volume of interest. �e expression of blood volume is derived from indicator-dilution

theory, and is expressed as the product of the di�erence inmean transit times with the blood

�ow. �e local density random walk model and the �rst passage time model were �tted to

time-intensity curves to estimate the mean transit time and the �ow, and the blood volumes

and mean transit times estimated using the two models were then compared through both

in vitro and in vivo clinical experiments. �ese two models were described by Walley and

Sheppard [160] andWise [172], themain di�erence between thembeing that the second only

accounts for the �rst passage of the indicator through the sampling site. �eywere compared

by Bogaard et al. [17] in conductivity and thermodilution curves, but this comparison had

never been performed for time-intensity curves derived from contrast-enhanced ultrasound

data. Note that the �ow was estimated as the ratio of the injected dose to the area under the

�tted curve following to indicator-dilution equations presented by Stewart [139] andHamil-

ton [57]. �e authors reported a good agreement between the true and estimated values

obtained in the in vitro experiments despite some discrepancies, especially for high blood

volumes, and a good agreement between the two models for the clinical data in the absence

of ground truth.

In 2008, Mischi et al. [110] established the relation of the commonly-used gamma variate

model to indicator-dilution theory using a one-dimensional multi-compartmental approx-

imation of the vascular network. �ey �rst gave a physical interpretation, that consists in

de�ning a blood vessel as a cascade of equal mixing chambers, each compartment having a

constant �ow, and an exponential impulse response with a time constant equal to the ratio of
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the compartment blood �ow to the compartment blood volume. �ey also gave a stochastic

intrepretation, that models the dilution impulse response at a given distance from the injec-

tion site, assuming a Poisson distribution of the number of individual particle wash-out to

the next compartment. �en they revealed the inverse relation between the parameters of

the two interpretations, yielding an expression of the tissue impulse response as a function of

the wash-out rate and the mean transit time which respects indicator-dilution theorems in

the case of an ideal Dirac injection. �ey �nally established the relation of the gamma vari-

atemodel with the local density randomwalkmodel using the previously presented physical

interpretation. Based on the previously presented methodology [108], the authors were able

to estimate the volume of dilution between two measurements of the same bolus, i.e. before

and a�er the passage of the bolus in the volume to be estimated. �ey performed in vitro

experiments with bolus injection, and compared the ability of the two models to estimate

the dilution volume in a varying �ow setup. �eir in vitro �ndings were compared to those

obtained in vivo, through a cardiac clinical study including twenty patients. Time-intensity

curves in the le� and right ventricle of the heart were derived from contrast-enhanced ultra-

sound acquisitions following bolus injection of microbubbles in an antecubital vein, using

the same imaging apparatus and injection protocol than in vitro. �ey reported that both

models were able to accurately �t both in vitro and in vivo time-intensity curves, and re-

ported on the sensitivity of the local density random walk to initialization. In vitro, the

volume estimations were almost perfectly correlated to the real values using either model,

and in good agreement in terms of absolute values, despite the underestimation in the largest

volume case. In vivo, because no ground truthwas available, they reported on the di�erences

in the estimates of the twomodels against themean estimated value through a Bland-Altman

plot, and showed a mean di�erence of 63.1 mL with a standard deviation of 69.7 mL, repre-

senting 11.1% of the overall mean estimated volume.

In 2011, Kuenen et al. [85] proposed a modi�ed local density random walk model to

reveal di�usion instead of perfusion, motivated by the assumption that this process better

re�ects tumor angiogenesis. �ey observed that one of the parameters of the local density

random walk model is related to the di�usion coe�cient, but that it cannot be interpreted

locally in-vivo because of its dependance on the distance from the injection site. �ey there-
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fore proposed the replacement of the global boundary condition assuming a Dirac bolus

injection, which time and distance are needed, by a local boundary condition assuming a

normally distributed spatial concentration pro�le at the time immediately preceding the

passage of the bolus at the sampling location. Replacing the old global boundary condition

by the new local one yields a new expression of the local density random walk model, from

which a local di�usion-related parameter κ can be derived, de�ned as the ratio of the di�u-

sive time to the squared convective time. �e accuracy of the method was investigated by

�tting the model to synthetic time-intensity curves simulated using the convective di�usion

equation. �e model was able to �t the simulated curves accurately, and κ was estimated

with a mean relative error of 4%. However, when considering curves with recirculation and

therefore �tting the model on cropped curves, the authors reported a higher mean relative

error of 10%. Clinical relevance of the method was assessed in a preliminary study including

�ve datasets from four patients with con�rmed prostate cancer, that were referred for radical

ablation of the prostate. Parametric maps of κ were compared to histology-based tissue clas-

si�cation, i.e. based on the level of cell di�erenciation. In all patients, authors were able to

discriminate cancerous from healthy tissue, i.e. cancerous regions were associated with high

κ values. �e tissue classi�cation power of both classical semi-quantitative parameters and

the parameters of the proposed model was investigated. Optimal threshold values used for

classi�cation were estimated through histogram analysis. �e authors acknowledge that the

proposed di�usion-related parameter, κ, was not the most sensitive investigated parameter,

however it was the only one with both sensitivity and speci�city above 80%. It also exhibited

the highest area under the receiver operating characteristic curve with a value of 0.909.

In an attempt to monitor the microvascularity of colorectal metastasis in the liver of

patients undergoing anti-cancer treatment, Averkiou et al. [6] investigated the use of the ra-

tio of the wash-in time in the metastasis to the wash-in time in normal liver parenchyma.

�ey proposed an empirical model based on the error function to estimate the wash-in

time of respiratory-gated time-intensity curves inmetastatic and normal tissues obtained by

contrast-enhanced ultrasonography. �e function under investigation is a time-delayed er-

ror function, member of the sigmoid family, with varying rise time andmaximum intensity,

�tted to the wash-in of the time-intensity curve. Authors stated the rise time parameter is
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linearly related to the wash-in time. �ey performed a reproducibility study in �ve untreated

patients with a total of twelve acquisitions, with varying injected quantity and/or injection

duration of contrast-agent from one acquisition to another. While the wash-in time in the

metastatic tissue exhibited variations up to 30%, the wash-in time ratio was more repro-

ducible exhibiting an average deviation of 9%, with a maximum of 16%, revealing the e�ect

of normalization. �e ability of the wash-in time ratio to assess treatment e�ciency was in-

vestigated in a longitudinal study, performed in seven patients undergoing a combination of

cytotoxic and antiangiogenic treatments. Major �ndings include the ability to discriminate

good from bad responders to therapy, the ground truth responder classi�cation being as-

sessed by experts using conventional criteria, i.e. number and size of the lesions, blood tests

for serum tumor markers, and liver function tests. Indeed, four out of �ve good responders

exhibited a signi�cant rise of the wash-in time ratio a�er the �rst therapy cycle, revealing the

early normalization of the lesion microvascularity, and the mean increase in wash-in time

ratio among the good responders at the end of the treatment was 75%.

Infusion injection

In 1998, Wei et al. [162] proposed an explicit model to quantify myocardial perfusion. For

this method, microbubbles were injected as a continuous infusion. When the micro-bubble

concentration reached a steady state, high mechanical index ultrasound pulses were used to

disrupt microbubbles in the myocardium with increasing pulsing interval. �is technique

is known as intermittent imaging. �e video intensity, which was assumed proportional to

the concentration in microbubbles, was plotted as a function of the pulsing interval. �en

an exponential function with plateau value A and rate constant β was �tted. Assuming a

constant beam elevation,Wei et al. [162] demonstrated that blood �ow F was proportional to

the slope at the origin, i.e. Aβ. �e authors validated their approach in vitro, but also ex vivo

and in vivo in a canine study. �emethod was later validated for perfusion quanti�cation of

the kidney, estimating both cortical andmedullary blood �ow in another canine study [163].

�e development of power pulse inversion imaging by Simpson and Burns [138] in 1997,

allowing real-time imaging of lowmicrobubble concentration at lowmechanical index [149].

Tiemann et al. [149] in 1999 andMasugata et al. [98] in 2001 demonstrated the use of power
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pulse inversion to image the replenishment of tissue following a single series ofmicrobubble-

disrupting pulses in real-time. Both studies also reveal that themodel proposed byWei et al.

[162] could be used to accurately �t real-time replenishment curves.

In 2001, Schlosser et al. [134] applied the same model to quantify renal perfusion, and

compared the estimated parameters according to the acquisition sequence, i.e. power pulse

inversion [138] vs. pulse inversion [21]. �e authors disclosed highly di�erent perfusion

parameter values according to the acquisition scheme, which yielded signi�cantly di�erent

values of both parameters. However, they were able to distinguish large arteries in the renal

hilum from smaller arteries in the renal cortex, using either of the schemes, and either of

the parameters.

In 2003, Krix et al. [80] presented a hyperbolic model to quantify perfusion using either

intermittent or real-time imaging, relying on physiological considerations, and accounting

for the distribution of blood velocities in the tissue. �emodel assumes a spherical distribu-

tion of blood vessel directions with varying blood velocity. �is assumption yields an initial

linear increase of the concentration until the vessels perpendicular to the imaging planewith

the highest velocity are fully re�lled. A�er the initial linear increase in signal intensity, the

fully �lled vessels do not contribute to signal increase anymore. �is yields a non-linear

increase until only the vessels with the lowest velocity remain to be fully �lled. Finally, all

the vessels present in the imaging plane are fully �lled and a plateau intensity is reached.

Authors describe an iterative method to estimate the instant of maximum and mean veloc-

ity. �ey state the slope of the replenishment curve observed at these times can be used to

evaluate the maximum blood velocity in the region of interest, assuming the width of the

ultrasound beam is known. �e in�uence on the width of the blood velocity distribution

is visually described. �e method was evaluated in a murine study with continuous infu-

sion and intermittent imaging, followed by a bolus injection and intermittent imaging as

well [81].

Potdevin et al. [124] investigated the mis�t of the exponential model to re�ll curves and

proposed the use of the error function instead. �ey introduced a time-delay parameter in

their model in order to better re�ect experimental data. �ey also investigated the impact

of observing multiple blood velocities in the region of interest, as well as the e�ect of the
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point spread function of the imaging system through a simulation study and concluded that

replenishment curves contain more information that just mean transit time. For instance

they were able to reveal the presence of abnormal vascular structures, such as shunting,

i.e. direct �ow from the arterial system to the venous system without passing through the

capillary bed. In a latter study, they proposed an adaptation of the model to quantify local

replenishment curves in tissues with complex vascular structures. Replenishment curves are

�rst normalized according to the estimated depth-dependent pixel intensity in a pixel con-

taining only blood. �emodel accounts for the speci�c angles, lengths, and velocities of the

various vascular structures in the studied tissue [125]. �ey also used their model as a tissue

classi�er tool, determining tissue type as the prede�ned vascular model that best �tted the

enhancement curve in the least squares sense. However, applying the simpler exponential

model with the average tissue mean transit time on normalized data yielded accurate tissue

classi�cationmaps, suggesting that themajor factor di�erentiating the replenishment curves

of the various tissue types is actually mean transit time. �e additional information could

be used to characterize vascular properties more �nely. In spite, while their is no physical

evidence why the exponential model should �t replenishment curves, it remains a good ap-

proximation and allows accurate di�erentiation among tissue types. �is is especially true

when applied to noisy replenishment curves.

Arditi et al. [3] introduced a new formalism for the quanti�cation of real-timedestruction-

replenishment acquisitions using a low mechanical index. �e authors emphasize the im-

portance of linearizing ultrasound data according to the type and settings of the imaging

equipment, as opposed to grey levels intensities directly extracted from the log-compressed

images visible on themonitor. More importantly, they present a perfusionmodel accounting

for the variety in blood �ow velocity and direction, assuming a model accurately describ-

ing the distribution of transit times is known (e.g. log-normal distribution). �e method

achieves a better description of the S-shaped replenishment curves that can be observed.

In 2009, Quaia et al. [126] proposed a model re�ecting the drag (related to �ow) and dif-

fusion (not related to �ow) ofmicrobubbles in blood, and accounting for the variety of blood

velocities and directions. �is variety is modeled as the sum of a variable number of piece-

wise linear replenishment curves. �e model was validated through in vitro experiments
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using a dialysis cartridge with tubular capillaries, and in vivo experiments in the renal cortex

of 12 healthy volunteers, separated in two age groups. While it achieved a signi�cantly bet-

ter �t than the exponential model using aWilcoxon signed-rank test, whether the proposed

model was using two, three, or four di�erent tracts, the di�erences in the mean squared er-

ror remained extremely small and exhibited non-negligible overlap. Furthermore, while the

authors report a signi�cant di�erence in the initial replenishment slope among the two age

groups using the proposed model, based a Mann-Whitney U-test, they do not report on the

slope di�erences obtained using the exponential model, nor on the apparent concordance

of the plateau values obtained using the two models.

2.2 Deconvolution methods

2.2.1 Generalities

Deconvolution-basedmethods aremodel-free approaches, assuming a linear and stationary

system without any assumption on the underlying structures and processes [88]. Resolving

the deconvolution equations necessitates the knowledge of at least two measurements: an

input function, and either a residual measurement (i.e. the amount of tracer remaining in

the system) or an output measurement (i.e. the amount of tracer leaving the system). In

particular, dynamic perfusion imaging grants access to spatially-distributed measurements

of the residual tissue function.

�e resolution process aims at estimating the impulse-response function of the system,

which is theoretically independant on the input, and because no assumption is made on the

structure of the system, no assumption is made on the shape of the impulse-response func-

tion or on the unit of the measurements. Additionally, the impulse-response function can

be seen as the probability distribution of the contrast particles transit times [89]. Parameters

describing the systemic response of the vascular system can therefore be derived from the

impulse-response function estimated by deconvolution.

In 1962, Zierler [180] established the relevance of the impulse response to assess indicator-

dilution curves. He deeply investigated the theoretical aspects of indicator-dilution theory,
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the conditions for its validity, and the consequences when they are not respected, including

when a sudden injection is not truly instantaneous. �is section established the theoreti-

cal basis for deconvolution of indicator-dilution curves. In another section addressing the

impact of recirculation, he established the role of the Laplace transform when solving con-

volution integrals, as found in his theoretical framework.

In 1966, Coulam et al. [26] proposed deconvolution to estimate the impulse response of

coronary and renal circulatory systems, as well as the global circulatory impulse response, in

a canine studywith one dog. Because a perfect impulse injection is not achievable in practice,

the impulse response cannot be estimated directly from the downstream time-concentration

curve. �erefore bolus injections of indocyanine green dye were performed in a pulmonary

artery and blood was sampled at various downstream sites. Deconvolution of the down-

stream curves by the upstream curve was performed in the frequency domain by simple

division of the Fourier coe�cients, and the inverse transform was applied to obtain the im-

pulse response in the time domain. �e accuracy of the estimationwas assessed both visually

and numerically, through time-domain convolution of the estimated impulse response with

the upstream curve, yielding an estimate of the downstream curve. Using simulations, the

role of the number of harmonics present in the upstream curves was investigated. Indeed,

for low numbers of harmonics, oscillations could occur in the impulse response, yielding

inaccurate estimation. �e authors suggest intra-ventricular injection would alleviate this

issue, as the upstream curve would contain more harmonics.

In 1970, Maseri et al. [97] used deconvolution to estimate the impulse response of the

pulmonary circulatory system. Two tracers were injected simultaneously, the �rst one in

the pulmonary artery, and the second one in the le� ventricle. Both tracers were sampled at

the same site, at the aortic root, yielding two time-concentration curves. �e authors used

Laplace transforms to demonstrate that deconvolving the �rst time-concentration curve by

the second one yields the impulse response of the pulmonary circulatory system, indepen-

dently of the systemic recirculation of the tracers. �e deconvolution was performed using

numerically without any curve �tting, despite the reported unstability of the solution. In

order to limit this instability, the experiments were adapted consequently. Visual checking

was used to assess the accuracy of the estimation, and manual correction was performed
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when necessary. Biases induced by correction of recirculation through mono-exponential

interpolation of the wash-out were reported in case of early recirculation.

A popular matrix-based deconvolution technique was proposed by Valentinuzzi and

MontaldoVolachec [154] in 1975. �emethod relies on thematrix formulation of the convo-

lution process, however the set of derived linear equations is solved successively, therefore

avoiding matrix inversion which is known to be an ill-conditioned problem. Authors ac-

knowledge the sensitivity of the technique to noise, and warn about the impact of imperfect

noise �ltering on the estimation process. �e role of the sampling interval is also discussed,

the authors reveal that increasing it can only improve estimation accuracy up to a point, but

demonstrated that increasing it too much could actually increase the estimation error.

In 1976, a deconvolution method said to be insensitive to noise, recirculation, and im-

pulse response shape was proposed by Knopp et al. [77] to assess the impulse response of

the coronary bed. �e method was tested in a canine study with intra-ventricular injection

dye injection, and simultaneous blood sampling at the aortic root and in the coronary sinus.

�e technique �rst models the impulse response as a weighted sum of delayed statistical

distributions with unit area, which allowed predetermination of the convolved curves and

aleviated the signal periodicity condition, and then iteratively minimized the �t error us-

ing a gradient descent algorithm. Impulse functions were �rst investigated, however other

distribution functions were chosen to reduce the computational load while making the es-

timation more robust and ensuring similar quality of �t. Experiments reveal right-skewed

impulse responses with prolonged tails, suggesting non-monoexponential downslopes ex-

pected using classical unimodal functions, i.e. lagged-normal, gamma-variate, lognormal.

�e authors compared their estimates of mean and standard deviation of transit times to the

estimates from previous studies, performed by the same group, but focused on other vas-

cular structures, i.e. lungs [76], descending aorta [12], and femoral artery [11]. Despite the

reported parametric overlap, authors observed a rise of the relative variation of transit times

correlated with the complexity of the vascular structures, which they justi�ed by reminding

that di�erent pathways have di�erent mean transit times and �ows.

As soon as 1973, Gamel et al. [48] published a review of the various pitfalls a�ecting the

deconvolution process when estimating tissue impulse responses from indicator-dilution



42 CHAPTER 2. QUANTIFICATION OF PERFUSION EXAMS: A REVIEW

curves. �e impact of noise on the estimation of the impulse response by the direct method

was �rst demonstrated on simulated data, establishing the necessity of either using an ap-

propriate noise �ltering technique, enforcing some predetermined form to the impulse re-

sponse, or applying some kind of regularization to the estimation process in order to avoid

oscillations and negative values. Six estimation methods enforcing either of the above men-

tioned strategies were then investigated regarding various considerations. �e impact of the

data starting point was investigated, especially in the output curve which is usually widely

spread and delayed. �e authors report poor impulse response estimation in case of noisy

time-varying data, despite the accuracy of the reconvolved curves. �en the impact of the

numerical approximation which is a consequence discretization process was investigated,

while trapezoidal integration exhibited lower error than rectangular integration, bothmeth-

ods proved extremely sensitive to noise.

Additionally, in 1984 Lassen [87] warned about the inability to estimate the blood �ow

unless the shape of the impulse response is accurately knownprior to deconvolution. He said

this was necessary in order to accurately determin the height of the initial bolus. And while

this is not the object of his letter, he also warned about the lack of direct relations between

blood �ow and the various semi-quantitative parameters proposed in the litterature.

2.2.2 Nuclear medicine

Following the development of renography based on gamma-camera acquisitions by Short

et al. [137], Kenny et al. [69] used a deconvolution technique �rst presented in [47], based

on the Laplace transform, in an attempt to make the estimation of the kidney function in-

dependent on the spread of the bolus when it enters the kidney, and assessed it in a clinical

study. �e approach accounts for both the establishment of an equilibrium of the tracer in

the extravascular space, spread of the bolus during its passage through the kidney, and the

removal of the tracer from blood by the kidney assuming bi-exponential clearance in the

cardiac measurements. �e impulse response of the kidney vascular network was estimated

from the Laplace-derived formula established in the paper, involving the renal time-activity

curve, its derivative, its integral and various constants to be estimated. Because scintigra-

phy is a projection imaging technique, the background activity was subtracted using the
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regions between the two kidneys to obtain the activity as speci�c to the kidney as possible.

�is was encouraged by the similarity of the activity curves in this region with those of the

nephrectomy sites observed in ��een kidney-ablated subjects. Authors were able to distin-

guish healthy kidneys from those a�ected by various diseases, indeed all a�ected kidneys

exhibited longer minimum, mean, and maximum transit times, and a wider transit time

distribution. Additionally, they were able to distinguish between the various studied dis-

eases using the same criteria. Appledorn [2] responded to the publication and expressed his

disagreement regarding the formulation of the clearance function, arguing that the input to

the renal system depends on the negative time derivative of the cardiac curve. He explained

his reasoning mathematically, assuming a two-compartment model previously presented in

the litterature [30], and proposed a correction for the renal input function.

Di�ey et al. [34] proposed the use of thematrix-based deconvolutionmethod, �rst gener-

ically introduced by Valentinuzzi and Montaldo Volachec [154], to quantify the impulse re-

sponses of the renal parenchyma and renal pelvis to a bolus injection of 99mTc-DTPA. �ey

used the iterative data-bounding technique prior to deconvolution for noise removal, the

technique is detailed in [33]. Non-renal activity is assumed qualitatively similar to arterial

activity, thus the correction is simply applied by setting the �rst term of the impulse response

equal to the second one. �e impulse response of the renal parenchyma was obtained by de-

convoluting the parenchymal curve by the arterial curve. �e impulse reponse of the renal

pelvis was obtained by deconvoluting the pelvic curve by the parenchymal curve. Account-

ing for the regional variations of tracer retention enabled the authors to di�erentiate between

patients with and without pelvic obstruction, and proved to be an e�cient tool to assess the

renal function. Authors regret that the spatial resolution of the gamma-camera did not en-

able to distinguish between cortical and medulary structures.

In 1979, a Fourier-based deconvolution technique, relying on the same computational

technique as [26], was proposed by Alderson et al. [1] to quantify le�-to-right cardiac shunts

from time-activity curves from scintigraphy following bolus injection of [99mTc]pertechnetate
in a canine study. �e shunt quanti�cation technique used the gamma-�tting technique �rst

presented byMaltz and Treves [96], and was preceded by either low-pass �ltering in the fre-

quency domain, or smoothing of the deconvolved curves in the time domain, in order to
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reduce the high frequency components, and thus the oscillations observed in the obtained

impulse responses. �e ability of the technique to estimate the impulse response in case of

either prolonged or fragmented bolus was investigated. �e technique was able to signi�-

cantly improve the accuracy of the shunt estimation in case of prolonged bolus, and while

time-domain smoothing improved the accuracy of the estimates, frequency domain �ltering

proved more e�cient. However none of the techniques yielded satisfactory results in case

of fragmented bolus.

2.2.3 X-ray imaging

In 1982, Axel [8] proposed a deconvolution technique to estimate the mean transit time of

contrast-enhanced X-ray CT acquired in the brain, where iodinated tracers do not di�use

in the extravascular space. Because the only considered parameter under investigation is

the mean transit time, the authors consider the shape of the impulse response unimportant,

with only a measure of its width being required. Authors demonstrates this by estimating

the impulse response as an exponential function, a Fermi function or a step function. �e

Fermi and the step functions yielded similar estimations of the mean transit time, however

the exponential function yielded lower values of the parameter. Additionally, the Fermi and

step function achieved slightly better �ts than the exponential function, but the di�erence

was not found signi�cant. �e method previously in presented in [7], was used as a refer-

ence. �emean transit time was de�ned as the di�erence of the �rst moments of the tissular

and vascular curves following gamma-variate �tting. �emean transit time estimated using

this method seem to best agree with the mean transit time values obtained using the expo-

nential impulse response. �e author assumes that the impulse response function in most

tissues are likely to have a squared shape with rounded corner, which the Fermi function

can easily approximate. �ey comment on the insensitivity of the method to noise com-

pared to transform-based methods, as well as recirculation without needing curve �tting

and extrapolation.

In 1992, Yeung et al. [176] presented a single photon absorptiometry method to quantify

arterial concentration of iodinated contrast agents using blood sampling, and investigated

it through both preclinical and clinical experiments. A deconvolution method was used for
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the quanti�cation, it was proposed by the research group the same year, however while the

paper was submitted it seems it has never been published. �e only given details are that it

uses a non-negative least square algorithm [91] to ensure that only physiologically relevant

positive values can occur in the impulse response function, and that estimated functionmust

be smooth. In 1999, Cenic et al. [24] reused the deconvolution method to quantify dynamic

perfusion computed-tomography following bolus injection of iopamidol in white rabbits.

�ree regions of interest were de�ned in the brain, i.e. two in the parietal regions, and one

in the basal ganglia. Multiple arteries were present in the image, i.e. ear arteries, postcommu-

nicating arteries, and internal carotid arteries. In order to limit the impact of partial volume

e�ects, the chosen artery was the one with the largest cross section seen in the image which

resulted in the highest peak average intensity, typically an ear artery. Additionally, partial

volume e�ects were corrected by �rst �tting a gaussian curve to the non-contrast pro�le of

the artery to obtain its standard deviation. �is parameter was used to estimate a partial

volume scaling factor, using a formula resulting from phantom experiments of tubes with

known inner diameters and tracer concentrations. Finally the arterial intensities were di-

vided by this factor to correct for partial volume e�ect. Non-contrast scan intensities were

subtracted from the average curves in the three regions of interest, as well as from the av-

erage arterial curve. Deconvolution allowed the estimation of the impulse response, which

was then used to derive the mean transit time as the ratio of the area under the curve to its

plateau value [8]. �e cerebral blood volume was de�ned as the ratio of the area under the

enhancement curve inside the tissue of interest to the area under the arterial input func-

tion [7]. Finally, the cerebral blood �ow was de�ned using the central volume principle as

the ratio of the cerebral blood volume to the tracer mean transit time [180]. For comparison

purposes, the regional cerebral blood �ow was also estimated using microspheres measure-

ments, which was considered the ground truth. Fluorescent microspheres with varying col-

ors were injected in the le� atrium one minute before every contrast-enhanced computed

tomography acquisition, blood was sampled in the femoral artery during two minutes a�er

the injection. Rabbit brains were then excised a�er the last computed tomography acqui-

sition, and cerebral blood �ow was estimated using the method presented in [62]. �e au-

thors report good agreement of the measured regional cerebral blood �ow as they obtained
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a slope close to unity in a linear regression analysis, and correlation between measurements

was good yet not excellent (r = 0.837). When repeated studies were performed, i.e. in �ve of
the six rabbits included in the study due to sudden death of the sixth rabbit, no signi�cant

di�erences were found between the parameters from the various acquisitions, however the

computed-tomography estimates of regional blood �owwere ten percentmore variable than

the one estimated using microspheres.

In 2001, Wintermark et al. [170] compared the results of two deconvolution methods to

quantify perfusion computed-tomography exams, using stable xenon computed-tomography

as a reference. �e �rst deconvolution is performed using a commercial so�ware, known

as CT Perfusion (GE Medical Systems). �e so�ware basically uses an improvement of the

method proposed byCenic et al. [24], allowing processing of pixel-by-pixel parametricmaps

with improved stability, by means of a singular value decomposition [54] enforcing noise

�ltering through thresholding of the singular values. Additionally, the computation time

is considerably reduced using this method, which makes it usable in clinical routine. �e

second method uses a least squares minimization technique with improved stability, taking

advantage of prior rank determination through QR decomposition with pivoting, i.e. de-

composition of thematrix of shi�ed observations as the product of an orthogonal matrix, an

upper triangular matrix, and a permutation matrix [53]. �e authors report a good agree-

ment between the reference method and both the commercial package and the presented

method estimates of cerebral blood �ow (R2 = 0.79 and 0.67 respectively), as well as be-
tween the two investigated deconvolutionmethods (R2 = 0.72). However, the methods were
shown to di�er in terms of spatial �ltering of the parametric maps, as well as in the detection

thresholds of vessels. Indeed, regions with arterial branches are �ltered away using the com-

mercial so�ware, while they exhibit a higher cerebral blood �ow using the improved least

squares method. Note that these regions with branches are neither visible in the reference

method.

In 2002, Eastwood et al. [37] used the commercial perfusion quanti�cation so�ware pre-

sented above to quantify brain perfusion in patients with acute stroke. Hoe�ner et al. [64]

provided a review of the technique, as well as the various applications, and limitations of this

quanti�cation so�ware. �e larger anterior artery was used as an arterial input function, and
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the superior sagittal sinuswas used as a venous out�ow function. �edeconvolutionmethod

requires arterial and venous measurements in order to compare the shape and height of the

time-attenuation curve of each pixel with the shape and height of the arterial and venous

time-attenuation curves before proceeding to the actual deconvolution, i.e. the estimation

of the tissue impulse response. �e cerebral blood volume was then derived as the area un-

der the tissue impulse response, the cerebral blood �ow as the plateau value of the tissue

impulse response, and the mean transit time as the ratio of these two parameters. �e au-

thors report signi�cant di�erences between the healthy and a�ected hemispheres in either of

the three parameters derived from the deconvolution of signals. �ey also observed signif-

icant di�erences between low-enhancement and normal-enhancement regions for cerebral

blood �ow and cerebral blood volume. Additionally, inter and intra observer variation were

investigated and showed good agreement between and within observers.

In 2001, Cuenod et al. [28] proposed a deconvolution-based method for the quanti�-

cation of perfusion in rats with metastasis in the liver using contrast-enhanced computed

tomography accounting for both arterial and portal supplies, with bolus injection of iobi-

tridol, a iodinated contrast-agent. Because the arterial and portal components are totally

mixed in the sinusoidal capillaries, the system assumes a common impulse response for

both components shaped as a Weibul function, however the two inputs are weighted. �is

technique allows the estimation of the hepatic blood �ow, which can be separated in two

components, yielding the arterial and portal blood �ows, and the tissue blood volume. �e

method di�ers from classical deconvolution because of the strong a priori on the shape of

the impulse response, which is de�ned parametrically, considerably reducing the number of

parameters to estimate but also the �exibility of the method. �e mean transit time of the

contrast agent was also estimated from the impulse response of the system. Additionally,

the complementary weights of the two blood supplies allow the estimation of a parameters

called the hepatic perfusion index, which is the ratio of the arterial blood �ow to the total

blood �ow. �e perfusion ofmicro andmacrometastases were compared to normal liver tis-

sue using the above cited parameters, and signi�cant di�erences were found in mean transit

time, total hepatic blood �ow, and portal blood �ow for both types of metastases, but also

in hepatic perfusion index and the tissue blood volume for macro metastases. �e theoreti-
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cal aspects of the deconvolution method were presented in more details in [29]. �is study

actually investigates the use of two contrast agents, a classical iodinated contrast agent that

di�uses in the extravascular space, i.e. iobitridol, and a macromolecular iodinated contrast

agent thatmostly remains in the intravascular space with little capillary leakage, i.e. carboxyl

dextran. �e authors report larger estimates of themean transit time using themacromolec-

ular contrast agent. Moreover, when comparing hepatic perfusion indices in normal liver

tissue with metastatic tissue, they observed much larger values in the metastasis, as well as

a large reduction in hepatic blood �ow, and lower tissue blood volume. �e method proved

robust to recirculation, which alleviates the necessity for gamma-variate �tting to get rid of

recirculation. �is is particulary important in the liver, since arterial and portal components

partially overlap.

In 2009, Kudo et al. [84] investigated variants of the singular value decomposition decon-

volutionmethod, �rst developed for delay-insensitive deconvolution of magnetic resonance

data, and their sensitivity to the tracer time delay for quanti�cation of contrast-enhanced

computed tomography data. �e authors compared regional blood �ow, regional blood vol-

ume, and mean transit time estimates of the standard singular value decomposition algo-

rithm, to the estimates of a delay-insensitive block-circulant deconvolution method intro-

duced by Wu et al. [173], as well as a delay-corrected deconvolution method proposed by

Ibaraki et al. [65]. �e three methods were investigated on synthetic datasets varying the

tracer delay in the le� hemisphere. �e block-circulant approach was the most insensitive

to tracer delay while the standard method was the most sensitive, and the delay-corrected

method yielded intermediate results.

2.2.4 Magnetic resonance imaging

In 1990, Rosen et al. [133] proposed a review of the contrast agents usable for perfusion

imaging using magnetic resonance, depending on the property involved, i.e. relaxivity or

susceptibility, and adressed the di�erent perfusion quanti�cation techniques for contrast-

enhanced magnetic resonance data, o�en inspired by the advances in the other perfusion

imaging modalities. �e main goal the authors wanted to reach was the estimation of tis-

sue blood �ow, and they rely on the central blood volume principle established by Stewart
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[139], which de�nes tissue blood �ow as the ratio of the tissue blood volume to the mean

transit time. �ey recommended estimating the mean transit time through deconvolution,

suggesting the use of Fourier-based methods [26], and proposed the tissue blood volume as

the ratio of the areas under the tissular and arterial curves, as proposed by Lassen et al. [89]

for indicator-dilution theory, and Axel [7] for perfusion computed-tomography imaging.

In 1994, Rempp et al. [129] investigated susceptibilityGd-DTPA2-enhancedMRI to quan-

tify cerebral perfusion in a clinical studywith twelve healthy patients with intact blood-brain

barrier. A dual FLASH sequence was used, allowing interleaved acquisition in two parallel

sections, one being the section of interest, the other one containing the feeding arteries. �e

arterial input function was estimated directly in the imaging plane, either in the carotid or in

the vertebral arteries, and the segmentation was performed on pixel-by-pixel maps of semi-

quantitative parameters, i.e. the full width at half maximum, peak intensity, and time to peak

intensity. More precisely, adaptive thresholding was �rst performed on the full width at half

maximum and peak intensity maps, and only pixels with peak intensities over 75% of the

maximum intensity in the image were retained. �e authors de�ned the regional cerebral

blood volume as the ratio of the area under the curve in the tissue of interest to the area

under the arterial input function, as suggested by indicator-dilution theory, but corrected

this estimate for both brain tissue density and hematocrit variations from arteries to smaller

blood vessels. Fourier deconvolution enforcing noise �ltering by means of a Wiener �lter

was used to estimate the impulse response of the tissue of interest. �en the mean transit

time was estimated as the ratio of the area under the impulse response to its height. Regional

cerebral blood volume and blood �ow were estimated in both gray and white matter for ev-

ery patient. �e authors report an overall decrease of both perfusion parameters with age,

and suggest this explains the large standard deviations of their estimates.

In 1995,Wilke et al. [169] used a low-order vascular transport operator, presented in [74],

tomodel the tissue impulse response usingMRIwith bolus injection of an intravascular con-

trast agent, i.e. polylysine-Gd-DTPA. �ey compared their perfusion estimates in the my-

ocardium of dogs, with and without induced coronary stenosis, to the perfusion parameters

obtained using radiolabelled microspheres. Contrast signal intensities were normalized ac-

cording to the pre-contrast values, as well as from the signal intensities observed in an oil
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phantom placed under the chest of the dogs. �e vascular transport operator accounts for

the pure delay of the contrast agent, but also for the dispersion of the bolus by means of a

fourth-order linear di�erential operator, resulting from the combination of two attenuated

second-order operators in series. �e model is therefore parameterized by two parameters

only, i.e. the mean transit time of the impulse response, and the relative dispersion which is

de�ned as the ratio of the standard deviation of the impulse response to itsmean transit time.

�e model is �tted using a fast iterative derivative-free approach presented in [25], which

performs non-linear least-squares �tting without making assumptions on the data variance

through data weighting. Despite imperfect registration between magnetic resonance esti-

mates and tissue analysis for quanti�cation of microspheres, good agreement between the

measurements was reported regarding bothmyocardial blood volume andmyocardial blood

�ow. Myocardial segments that were hypoperfused because of coronary stenosis were accu-

rately identi�ed using the proposed method.

In 1996, Østergaard et al. [116] reviewed the various deconvolution approaches which

had already been applied for the quanti�cation of perfusion using contrast-enhanced imag-

ing using simulated magnetic resonance data, especially in the case of cerebral imaging

where the tracers remain intravascular thanks to the blood-brain barrier. �emethods were

divided between model-based and model-free approaches, the former referring to a one-

compartment model with exponential impulse response [41], the latter referring to either

transform approaches through the Fourier method [26], algebraic approaches through a

matrix-basedmethod [154] with an additional regularization term enforcing decreasing im-

pulse response, or SVD approaches through a classical method with �ltering of components

which singular values are close to zero [34]. �e weight of the regularization term in the

algebraic method, as well as the thresholding value for the SVD approach were determined

empirically, and chosen as the values that yielded the most accurate impulse responses and

cerebral blood �ow estimates on twelve representative simulated cases. Multiple factors and

their impact on the regional cerebral blood �ow estimates were investigated in this simu-

lation study, i.e. noise, shape of the impulse response, cerebral blood �ow, cerebral blood

volume, and time-delay. Expectedly, the model-based approach was not able to correctly es-

timate cerebral blood �ow when the shape of the impulse response was not exponential and
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therefore did not match the single-compartment model assumption. �e Fourier method

proved sensitive to the cerebral blood �ow, indeed the estimation error was negatively corre-

lated with the simulated value, but also to the simulated vascular structure. �e regularized

algebraic approach proved to overestimate blood �ow for a low cerebral blood volume (3%),

and to yield more accurate estimates for higher cerebral blood volume (4.5%), the authors

therefore concluded on the sensitivity of themethod to cerebral blood volume. However the

authors discuss the possible role of the regularization weight in these variations, as modi-

fying the cerebral blood volume e�ectively modi�es the signal to noise ratio, which could

then di�er from the conditions for which the weight was optimized. While the opposite be-

haviour seems to be observable in the SVD estimates, the authors considered that the bias

in the estimation of cerebral blood �ow was insensitive to cerebral blood volume. Addition-

ally, when a time delay was added to the simulated curve, the SVD greatly underestimated

cerebral blood �ow, in particular for large simulated �ow values, emphasizing the need for

delay correction prior to the estimation process. Model-free approaches were able to esti-

mate cerebral blood �ow accurately, however they generally failed to accuratly match the

shape of the impulse response function. Globally, all approaches were less precise in case of

shorter mean transit time values, which the authors justi�ed as a consequence of the arte-

rial input function varying slowly compared to the mean transit time, which determines the

time-scale of the impulse response to be estimated.

�e second part of the study [115] confronts the models assessed through simulations

to experimental contrast-enhanced magnetic resonance data acquired in six healthy sub-

jects, as well as in four clinically relevant cases, following automatic bolus injection of para-

magnetic contrast-agents, i.e. Dy-DTPA-BMA, and Gd-DTPA respectively. An additional

model-based approachwas introduced in the experimental part of the study, i.e. the decreas-

ing part of a Gaussian was proposed as an ad-hoc intermediate between the exponential

(one-compartment model) and the square (plug-�ow model) impulse responses. All image

sequences were �ltered using a 3 × 3 averaging kernel prior to deconvolution. �e arterial
input function was estimated in pixels located around the middle cerebral artery. �e time-

concentrations curves used for quanti�cation were not converted in actual units, instead

a constant hematocrit throughout the brain was assumed, and white matter was used as a
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reference. Additionally, because time-delays tended to bias the estimation of blood �ow in

the simulation study discussed above, the in�uence of this parameter was investigated in

multiple slices by comparing the estimation of the arterial input function along the middle

central artery. �is study revealed very little dispersion and delay along major arteries, and

the authors mainly attribute this delay to the delay between the acquisition of the di�er-

ent slices. �ey however suggested that appropriate time correction should be applied when

quantifyingmultiple slices using a common arterial input function estimated in a single slice.

However, some cases exhibited time-delays in regions supplied by other arteries, in partic-

ular the cerebellum, and in the occipital region which are mainly supplied by the posterior

cerebral artery. For all approaches the cerebral blood �ow was de�ned as the maximum

of the impulse response curve, and the cerebral blood volume as its area under the curve.

In healthy patients, the exponential and SVD approaches yielded very similar parametric

maps. �e regularized algebraic approach yielded very high �ow in the grey matter which

can be explained by the high cerebral blood volume in this tissue. �e Fourier approach

yielded poor contrast between the grey and white matters, con�rming the sensitivity of the

method to the cerebral blood volume and vascular structure. Strong di�erences, i.e. almost

2-fold, were observed between the cerebral blood �ows estimated using the exponential and

Gaussian models, indeed a better agreement was found between the SVD and exponential

approaches. Moreover, the �t quality was considerably lower using the Gaussian model,

suggesting that the exponential model is a better approximation to model cerebral impulse

response.

Inspired by the work of Axel [8] for quanti�cation of perfusion computed-tomography,

in 1998 Jerosch-Herold et al. [66] proposed a Fermi function to model the myocardial im-

pulse response in an attempt to quantify themyocardial perfusion reserve from the �rst pass

of a bolus of Gd-DTPA imaged using a multislice MRI technique. Interestingly, the convo-

lution operation was performed as a product in the frequency domain, following Fourier

transform, but the non-linear least-square �tting was performed in the time-domain, fol-

lowing inverse Fourier transform of the convolved functions. Since two measurements are

necessary to estimatemyocardial perfusion reserve, twomagnetic resonance sequenceswere

acquired to assess this parameter in nine patients with suspectedmicrovascular disease. �e
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�rst acquisition was performed at rest, and the second was performed during adenosine-

induced maximum hyperemia. Fermi-based deconvolution was then performed for both

exams, using the le� ventricle blood pool as an input function. �e myocardial blood �ow

was de�ned as the maximum value of the Fermi function, i.e. initial value, and the my-

ocardial blood reserve was obtained as the ratio of the hyperemic blood �ow to the basal

blood �ow. �e coronary �ow reserve estimated in the le� anterior coronary artery using

intracoronary Doppler ultrasound was used as a gold standard. Good agreement was found

between the reference measurement and the perfusion reserve estimated in the le� anterior

coronary artery region (r = 0.84) with a regression slope close to the unit but with high
uncertainty (0.98 ± 0.24). Moreover, even if the data were not presented, agreement be-
tween the perfusion in the le� anterior coronary artery region and the perfusion reserve

averaged over the entire myocardium was reported. �ey also assessed the ability of the

method to estimate blood �ow reserve from synthetic data, resulting from random solutions

of the multiple-pathway perfusion model described in [83] with simulated uniform random

noise. �e authors report excellent correlation between the simulated and estimated values

(r = 0.98) with a regression slope close to the unit (1.04 ± 0.029). However, accounting for
capillary permeability responsible for the leakage of contrast agent in the interstitial space in

the simulation process, i.e. varying the permeability surface area product, had a direct im-

pact on the simulated curves, but induced a variation of less than ten percent in the estimates

of themyocardial perfusion reserve. �e impact of varying upstreambolus dispersion, capil-

lary permeability, blood volume, blood �ow, sampling frequency, and injection speed on the

estimated parameters was also investigated by simulation. �e authors concluded the ability

of model-based deconvolution to determine the myocardial perfusion reserve in perfusion

magnetic resonance exams.

2.2.5 Ultrasound

In 2004, Mischi et al. [108] proposed a semi-quantitative method to assess pulmonary blood

volume in cardiac contrast-enhanced exams. �e semi quantitative aspects of the methods

are discussed in details in Section 2.1.5. However, prior to being �tted by either the local den-

sity random walk or �rst passage time models, the time-intensity curves were deconvolved
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using aWiener �lter to correct for the non-instantaneous bolus injection. Because the bolus

was injected using an automatic system, the arterial input function was not estimated from

image measurements in this study, instead it was modeled as a 0.8 second rectangle func-

tion corresponding to the settings of the electronic injector. �e ability of theWiener �lter to

accurately recover the original or simulated time-intensity curve from noise-corrupted con-

volved curves was assessed. �e two investigated methods yielded stable and reproducible

volume estimates over the investigated range of �ows, however the local density random

walk was generally more accurate, and the �rst passage time model tended to overestimate

the distribution volume in their experiments.

In 2005, Mischi et al. [109] used the same deconvolution method, but this time applied

it to the estimation of the impulse response of a vascular system located between two mea-

surement sites. In particular, the goal of the study was to propose an accurate measurement

of the forward ejection fraction, even in case of leakage through the mitral valve, but avoid-

ing the invasive intra-ventricular injection and replacing it by intravenous injection. To

meet this goal, the authors propose estimating the impulse response from the attenuation-

corrected time-intensity curve measured in the le� ventricle, and using the signal measured

in the le� atrium as an input function to their deconvolution algorithm. �emethod yielded

a noisy estimation of the le�-ventricular impulse response. Assuming a one-compartment

model for the le� ventricle, an exponential curve was �tted to its downslope, fromwhich the

forward ejection fraction can be derived. �e accuracy and precision of the deconvolution

method was assessed through simulations with varying signal to noise ratio and forward

ejection fraction, and good agreement between the simulated and estimated values of both

blood volume (R2 = 0.99) obtained using themethodology previously described in [108] (see
Section 2.1.5). Experimental contrast-enhanced ultrasound datawere acquired in twenty pa-

tients with leaking mitral valve following the injection of a small quantity of microbubbles,

therefore limiting commonly observed saturation artifacts. �e forward ejection fraction

was estimated with and without deconvolution, i.e. �tting the exponential function to ei-

ther the deconvolved or original le�-ventricular time-intensity curves, and the results were

compared to the ejection fraction estimated using an established bi-plane echocardiographic

method [20]. �e results without deconvolution clearly underestimated the ejection fraction
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as measured by the reference method, despite a seamingly good correlation of the two mea-

surements. However, using the deconvolution-based method an excellent agreement of the

estimates is reported, indeed the correlation is high (R2 = 0.93) with a mean bias of 1.6%,
and a standard deviation of 8%, demonstrating the feasibility of the method.

In 2012, Gauthier et al. [49] used a deconvolution method based on singular value de-

composition, but enforcing Tikhonov regularization to reduce the rapid oscillations in the

impulse response function, and �nally the impulse response was �tted by the explicit model

proposed by Elie et al. [38] and presented in Section 2.1.5. �e blood �ow and the blood

volume were then derived from the model �tted to the estimated impulse response, and

were respectively de�ned as the peak value, and the area under the curve. �e additional

regularization term was weighted, and the determination of this weighting parameter was

determined using the L-curve method described in [58]. �e reproducibility of the method

was assessed through both in vitro and in vivo experiments, and was compared to the semi-

quantitative parameters extracted from the time-intensity curve �tted with the same explicit

model, without deconvolution. �e in vitro experiments consisted in �ve acquisition fol-

lowing bolus injection of microbubbles in phantom composed of a feeding pipe and three

interwined pipes, injecting two di�erent volumes of contrast agent. �e absolute param-

eters tend to be slightly less variable than the semi-quantitative parameters of the method

without prior deconvolution, however no statistical tests were reported, and neither were

the estimated parameter values, preventing the validation of this quanti�cation method by

comparison to the in vitro experimental parameters. In vivo, three consecutive acquisitions

were performed in �ve tumor-bearing mice, using an arterial input function estimated di-

rectly from the imaging plane in a feeding vessel that was previously detected using Power

Doppler imaging. In terms of reproducibility, the quantitative parameters obtained by de-

convolution was found superior to the semi-quantitative parameters derived from the mod-

eled curve. Once again, only the variability of the parameters was reported, the estimated

values were not reported, and no statistical analysis was performed.

In 2013, Jirik et al. [67] proposed a contrast-enhanced ultrasound acquisition scheme re-

ferred to as bolus-and-burst for it combines bolus injection and destruction-replenishment,

as well as a blind deconvolution method, speci�c to their custom acquisition scheme, for si-
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multaneous estimation of the arterial input function and the tissue impulse response. As the

name suggests, the acquisition is divided in twomain parts. �e �rst part consists of a classi-

cal lowmechanical index image acquisition to image the passage of a bolus of microbubbles

injected intravenously. �en, at the end of the bolus-phase, when the concentration of con-

trast agent in the tissue decays rather slowly, a sequence of high mechanical index pulses are

sent to disrupt the circulating microbubbles. �e second part is another classical low me-

chanical index acquisition to image the replenishment of contrast agent in the tissue. A blind

deconvolution algorithm is then applied to the average time-intensity curve in the tissue of

interest. �e quanti�cation is divided in two parts as well. First a rough estimation of the

tissue impulse response is performed from the destruction-replenishment curve using the

quantitative formulation of the popular monoexponential model proposed by [158]. �is

initial impulse response estimate is then used to roughly estimate the arterial input function

by deconvolution of the bolus-phase. In the second part, the arterial input function and

the tissue impulse response are re�ned by multichannel deconvolution, considering the two

parts of the acquisition are independent measurements with a common impulse response.

To ensure physiologically relevant and smooth estimation of the arterial input function, a

positivity constraint as well as a Tikhonov regularization are enforced. �e authors investi-

gated several techniques to address the problem of absolute quanti�cation, and retained the

use of a population-based scaling constant resulting from previous acquisitions in feeding

arteries with lower contrast agent doses, as proposed by Taxt et al. [143] for MRI. �e esti-

mates of the mean time obtained using proposed method proved less sensitive to the num-

ber of pixels in the regions of interest than the estimates of the destruction-replenishment

method in terms of accuracy and precision.

2.3 Compartmental models

2.3.1 Generalities

�e major assumption underlying compartmental modeling used to model contrast agents

time-concentration curves is that the tissue under investigation consists of three well-mixed
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Figure 2-2: Block diagrams and �rst-order di�erential equations of compartmental models
with (a) one tissue compartment, (b) two tissue compartments, (c) three tissue compart-
ments. CA(t) is the contrast-agent concentration in arterial blood, CV(t) is the tissue vas-
cular concentration, CI(t) is the tissue interstitial concentration, CC(t) is the tissue cellular
concentration. K1 is the unidirectional transfer rate of contrast-agent from blood to tissue
vascular space and is related to blood �ow and capillary permeability. k2 is the unidirec-
tional transfer rate of contrast-agent from the tissue vascular space to blood and is de�ned
as K1

VD
, where VD is the contrast-agent fractional distribution volume. Similarly k3 and k4 are

the unidirectional transfer rates of contrast-agent between tissue vascular space and inter-
stitial space, and k5 and k6 are the unidirectional transfer rates of contrast-agent between
interstitial space and intracellular space. K1 is classically expressed in milliliter of blood per
minute per milliliter of tissue (mL.min−1.mL−1), and the other rate constants k2, k3, . . . , k6
in fraction of contrast-agent per minute (min−1).

subcompartments: a vascular space fed by an ‘̀input functioń’, an interstitial space, and a

cellular space. �e other assumptions are that the quantity of contrast agent inside the sys-

tem is conserved, and that the quantity of contrast agent leaving a compartment is propor-

tional to the quantity inside it. �e exchanges of contrast agent between the compartments

are modeled using �rst-order di�erential equations, establishing the relations between the

concentration of contrast agent in each compartment in terms of physiological parameters,

i.e. blood �ow rates, tissue volumes, transfer constants. Figure 2-2 shows examples of classi-

cal compartmental tissue models with increasing number of compartments, along with the

associated �rst-order di�erential equations de�ning the transport of contrast-agent between

compartments in terms of transfer constants.

Compartmental models estimate the tissue impulse response of a tissuemaking assump-

tions on its shape, depending on the characteristics of the tissue, as well as the characteritics

of the contrast agent, i.e. �ow limitation, membrane limitation, transport mechanism, bind-

ing, excretion, metabolism [50]. Resolving the di�erential equations yields explicit paramet-

ric formulations for the tissue impulse response, and allows direct estimation of the phys-
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iological parameters. �e explicit formulation of the impulse response function improves

the stability of the estimation by reducing the number of degrees of freedom compared to

deconvolution.

Early use of compartmental models to �t indicator-dilution curves was based on the

Fickś principle that relates the blood �ow to the arterial and venous measurements [71, 72].

In 1944, Kety and Schmidt [72] derived a method to estimate cerebral blood �ow from ar-

terial and ven‘ous blood sampling during inhalation of nitrous oxyde, and assessed it in a

clinical experiment with eleven subjects. �e method corrected for the rise of the time-

concentration curve using a �xed ratio of the amplitude of themonoexponentialmodel �tted

to the decay phase. Following these developments, the authors proposed a one-compartment

model based on the same principle to assess fractional blood �ow and fractional blood vol-

ume assuming a perfectly di�usible tracer [70].

In 1959, Renkin [130] studied capillary permeability to 42K in skeletal muscles using an-

other di�usionmodel based on Fick’s law through in vivo radioactivity measurements of the

arterial and venous blood. �e authors were among the �rst to use the permeability surface

product as a combined parameter of the model, and established its correspondance to the

maximum capillary clearance possible for a given substance assuming an in�nite �ow. How-

ever they proposed a method to quantify the clearance at any �ow rate assuming the perme-

ability surface product is known. �ey suggested that variations of the estimated permeabil-

ity surface product were due to hemodynamic factors following either of the three follow-

ing pattern: arteriovenous shunting, inhomogeneous �ow distribution, or �ow-dependant

perfusion network. �ey were however unable to determine which pattern was actually ex-

plaining the correlation between blood �ow and permeability surface product in their data.

In 1963, Crone [27] developed the indicator di�usion method that relates the capillary

permeability to blood �ow, capillary surface area, and initial extraction which corresponds

to the fractional reduction of the arterial concentration, however litterature values for the

two �rst parameters were used and only the initial extraction was estimated. �e authors

performed blood sampling experiments in dogs with injection of Evan’s blue dye or a com-

bination of inulin and sucrose to study the capillary permeability of these substances inmul-

tiple tissues, i.e. brain, kidney, liver, lung, hind limb, by means of invasive catheterization.
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�eir study contradicts the results of Renkin [130], and suggest that the discrepencies are due

to a conceptual di�erence between the two studies regarding the de�nition of ‘̀extractioń’.

But also because in the approach proposed by Renkin [130], the presence of tracer outside

capillaries was neglected despite the steady state reached by the system during the experi-

ment. Oppositely the approach proposed in this study relies on non-steady state measure-

ments, ensuring lower extracapillary concentrations, and allowing accurate permeability es-

timates.

�e theoretical developments presented in the three approaches above served as the

foundation for compartmental analysis of perfusion exams. �e following sections present

the adaptation of compartmental models to quantify perfusion in nuclear medicine, x-ray,

magnetic resonance, and ultrasound imaging. When comparing approaches, one should

consider the characteristics of the tracer (intravascular vs. di�using, reversible vs. irreversible),

the characteristics of the vasculature in the tissue of interest (single vs. dual input), the esti-

mation method (linear vs. non-linear).

2.3.2 Nuclear medicine

Many compartmental analysis developments in the �eld of nuclear medicine, and in partic-

ular positron emission tomoraphy (PET), were motivated by metabolic studies such as the

consumption of glucose. �esemetabolic measurements were permited by the development

of labelled tracers, and in particular of labelled glucose. Indeed, at the cellular level high con-

sumption of glucose is synonym of fast metabolism. Studying the consumption of glucose

can reveal information on the cellular activity in the tissue, which is particularly relevant to

study neuronal activity or to detect tumors and assess their malignancy.

In 1981, Gjedde [52] used a formula from Crone [27], and the previous developments

of the group presented in [51], to derive two integral methods to estimate rate constants of

glucose from blood to brain tissues in rats using scintigraphy measurements of blood sam-

pled following the injection of a mixture of a 3H-labelled substance (D-glucose, L-glucose,

D-mannitol, or sucrose), with 14C-butanol and 111InCl. �emethods consider the exchanges

between the capillary and extracellular spaces, as well as the metabolic pools re�ecting con-

sumption of glucose by brain cells. �e �rst method estimated the initial rate constant as the
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di�erence of the total amount of tracer in the brain and the amount of plasma in brain twenty

seconds a�er injection, normalized by the area under the arterial curve up to twenty seconds.

�e second method exploited dynamic measurements to derive a graphical method, allow-

ing the conjoint estimation of initial rate constant, and plasma volume, respectively as the

slope, and intercept in the linear regression analysis of the ratio of the total amount of tracer

in the brain to the arterial concentration, and the ratio of the total amount of tracer that

passed in the artery to the arterial concentration. �eir experiments led them to the con-

clusion that the two methods estimated two di�erent transfer rates, re�ecting at least two

transport mechanisms, i.e. a high a�nity system with low capacity, and a low a�nity system

with high capacity.

Similarly, Patlak et al. [118] proposed a graphical analysis method in 1983 to estimate

transfer constants across the blood-brain barrier for irreversible tracers. �e method is able

to estimate the in�ux rate in any membrane system composed of at least one region with

reversible exchanges without metabolisation where the tracer rapidly equilibrates with the

plasma and one regionwith irreversible exchanges. �emethods consists in ploting the ratio

of the curve in the tissue of interest to the plasmatic curve vs. the ratio of the integral of the

plasmatic curve to the plasmatic curve, and �tting a a�ne model to the linear portion of

the resulting curve that corresponds to the steady-state of the system. �e slope of the �tted

linear model yields the in�ux rate from plasma to tissue, while the intercept yields an upper

bound to the reversible plus plasmatic fractional volumes.

Patlak and Blasberg [117] then generalized the method to analyze time-intensity curves

using a reversible reference tissue instead of the arterial measurement, yielding an estimate

of the ratio of the in�ux rate of the tissue to the sum of the reversible and plasmatic frac-

tional volumes. �ey also addressed cases when tracer binding is incomplete in the irre-

versible compartment, for both arterial and reference measurements, and presented speci�c

applications of themethod in the case of one reversible region (with or without reÂŋversible

binding) and one irreversible region.

In 1990, Logan et al. [93] proposed a graphical analysis method to analyze the kinetics of

reversible tracers, binding reversibly to receptors or enzyme, and applied it to estimate the

parameters of the three-compartment model to characterize the binding of a radiolabeled
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cocaine complex in a PET study. �is is an extension of the method proposed by Gjedde

[52] to account for rapid binding and unbinding of the tracer where the graphical analysis

is performed similarly. Arterial blood was sampled throughout the experiment, and the ar-

terial concentration in radiolabeled cocaine complex was used as an input of the model. In

terms of two-compartment model, the distribution volume can be derived from the slope

of the linear portion of the plot. In terms of three-compartment model, an additional mea-

surement is necessary to determine the ratio of binding to unbinding rate from the ratio

of the slopes in a receptor tissue to a non-receptor tissue assuming the plasmatic volume is

negligible.

�e authors later extended the graphical analysis method to estimate distribution vol-

ume ratios [95], de�ned as the ratio of the distribution volume of a tracer in a receptor tissue

to a receptor-free tissue. �e method allows the estimation of the distribution volume ra-

tio from studies without arterial blood sampling, using only the curves extracted from the

image in two regions. �e direct distribution volume ratio estimation using the proposed

method was compared to the ratio of the distribution volumes in the two tisues obtained

using blood sampling data in a PET study with injection of 11C-labelled raclopride or d-

threo-methylphenidate. �e method requires the knowledge of the average tissue to blood

rate constant, as well as the determination of the initial time at which the slope should be

estimated, which can be obtained from baseline experiments requiring blood sampling for

calibration.

In case of noisy data, this linear formulation of the compartmental modeling can yield

underestimated distribution volume estimates because the errors are cumulative in the in-

tegral terms [45]. Logan et al. [94] proposed a strategy to remove the bias in the graphi-

cal analysis method, using the generalized linear least-squares algorithm proposed by Feng

et al. [46] to determine the distribution volume directly for one-compartment models or

as a smoothing technique prior to graphical analysis for more complex model structures.

�e authors demonstrated the improved accuracy of the new estimation method, applied to

evaluate either the distribution volume using an arterial input function, or the distribution

volume ratio using a refrence tissue, in PET experiments following injection of 11C-labelled

raclopride or d-threo-methylphenidate. To estimate the distribution volume, an arterial in-
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put function was measured (for both tracers) from sampled blood.

In 1984, Hawkins et al. [60] used a two-compartment model based on the equation of

the graphical analysis with a vascular component to evaluate the blood-brain barrier per-

meability in human brains using PET exams and 68Ga-EDTA as a tracer. However they

directly estimated the parameters of the model using a non-linear least-squares algorithm

to �t the model, a�er resolution of the di�erential equations that relates the curve in the

tissue of interest to the arterial blood sampling measurements. �e non-linear resolution of

the equations yields a convolution formulation assuming a monoexponential decay in the

tissue impulse reponse. �e method was used to estimate in�ux and out�ux rate constants,

as well as the blood volume fraction from which estimates of the regional cerebral blood

volume corrected for the di�erences in hematocrit were derived, and compared it to direct

estimation obtained using a three-compartment model previously described by Phelps et al.

[122].

In 1996, Ziegler et al. [179] compared a dual-input and a single-input one-compartment

model regarding their ability to quantify blood �ow in dog liver using dynamic PET data

following injection of a bolus of 15O-labelled water. �e dual-input model accounts for the

arterial and portal supplies of the liver, using direct measurements resulting from blood

sampling in the aorta and in the portal vein. In the single-input model the determination of

the portal supply is part of the �tting procedure, and is derived from the arterial measure-

ment resulting from blood sampling by considering a gut compartment, based on a one-

compartment model, which distribution volume was �xed and derived from post-mortem

experiments in dogs. Additionally the models correct for time-delays and dispersion using

the method presented in [102]. Both models make the assumption that the blood supplies

di�use instantaneously from vasculature to the liver tissue, and that the volume of distri-

bution of the tracer is the same for arterial and portal blood. For both models, the volume

of distribution in the liver was not estimated but �xed for all experiments using the average

value of the ratio of the arterial to liver concentrations in the late phase, assuming an equlib-

rium was reached. �e authors investigated the impact of this parameter on the estimation

process, and reported a high sensitivity of liver blood �ow, dispersion and �t accuracy to

the �xed distribution volume value. �e single-input model additionally enforces a �xed
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ratio of gut tissue to liver tissue volume. Poor agreement of the blood �ow estimates of the

dual-input and single-input models was found with microsphere measurements, however

the single-input model performed slighlty better.

In 1984, Blomqvist [16] proposed a linear formulation of a three-compartment model,

accounting for both metabolized and unmetabolized tracer, presented by Raichle et al. [127]

obtained by rearranging and integrating twice the second-order di�erential equations re-

lating the arterial concentration to the tissue concentration. �e method was used to de-

rive functional maps from dynamic PET data of various tracers labelled with 11C, i.e. 11C-

methionine, 11C-deoxyglucose, 11C-glucose. �e authors did not report the method used to

acces the arterial tracer concentration. �e three-compartment model was composed of a

vascular compartment, and two extravascular compartments, one representing the extravas-

cular space exchanging with the plasma, where the tracer is unmetabolized, and the other

representing the metabolized compartment. �e authors estimated the tracer transfer rate

constants from blood to tissue and from tissue to blood, as well as its metabolizing rate, by

solving the system of equations using a linear least-squares methods. �e proposed linear

estimation method was compared to the non-linear estimation of the three-compartment

model, and good agreement were found between the estimates of the two methods, espe-

cially for blood to tissue transfer rate, and for the cerebral metabolic rate for glucose utiliza-

tion, a composite index which de�nition can be found in [128].

In 2001, Gunn et al. [55] reviewed the compartmental models used for quanti�cation of

dynamic PET data, whether assessing perfusion, metabolism or ligand binding. �is theo-

retical study investigates both models using arterial input functions andmodels using refer-

ence tissues, as well as reversible and irreversible tracers, regardless of the number of com-

partments involved. General solutions for the impulse response are given in the form of sum

of weighted exponential functions, which weight and rate constant have to be determined.

�e authors di�erentiated micro parameters, i.e. the actual rate constant parameterizing the

model, from macro parameters, i.e. global parameters de�ned as a function of the model

rate constants, and showed that all the micro parameters of a perfusion model cannot be

estimated individually, instead one should interpret the macro parameters in terms of the

micro parameters, as the estimation of the latter was shown to be more stable. Additionally,
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investigating models using a reference tissue region they showed that the macro parameters

are expressed relatively to the reference region, and proposed a correction for the bias in

graphical estimation methods when the contribution of blood in the reference and studied

tissues cannot be neglected.

In 2006, Watabe et al. [161] also proposed a review of compartmental models for quan-

ti�cation of dynamic PET data, especially addressing the models for the quanti�cation of

binding tracers. �e classical model counts four compartments, i.e. an arterial compartment

exchanging with a free compartment, that exchanges with a speci�c binding compartment,

and a non-speci�c binding compartment. �e speci�c binding compartment is generally the

compartment of interest when studying binding tracers. If the non-speci�c binding com-

partment is in equilibrium with the free compartment, then these compartments can be

merged, reducing the number of parameters by two. Similarly, the simple one-compartment

model, that only considers the exchanges between plasma and tissue through two rate con-

stant parameters, can be used in �ow limiting conditions, i.e. when a quick equilibrium is

reached between the free compartment and the binding compartment, or when using non-

binding intravascular tracers.

2.3.3 X-ray imaging

In 1992, Yeung et al. [177] used a two-compartement model to quantify the blood-to-brain

impulse response of iopadimol, as well as plasmatic blood volume, using dynamic X-ray

CT in a clinical study of brain tumors. �e two compartments correspond to the cerebral

plasma space and the extravascular extracellular space, exchanging tracer with each other

through the blood brain barrier assuming permeability limiting conditions. �e arterial

measurements resulted from blood sampling measurements in a radial artery. �e clinical

experiments revealed the ability of the estimated parameters to di�erentiate between healthy

white and gray matter, tumor tissue, andmetastatic tissue. Indeed, higher values of both pa-

rameters were found in tumors and metastases. Additionally, parametric maps of blood to

brain impulse response and plasmatic blood volume were derived from the dynamic perfu-

sion images, revealing the tumor functional heterogeneity.

In 1999, Tsushima [152] used a graphical analysis technique based on the work of Patlak
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et al. [118] to estimate the fractional blood volume and the contrast clearance rate per unit

volume of tissue (which is closely related to glomerular �ltration), using perfusion X-ray CT

of healthy (n = 82) and diabetic (n = 33) human kidneys following the intravenous injection

of a bolus of iodinated contrast agent. �e model uses an image-based arterial input func-

tion de�ned as the average enhancement curve in the manually segmented abdominal aorta

region. �e authors reported a negative correlation of the patient age with the fractional

clearance rate, but not with the fractional blood volume despite a tendency to decrease with

age. A linear relation was found between X-ray CT estimates and the creatinine clearance

rate obtained from urine sampling, which was the clinical reference method to estimate the

glomerular �ltration rate.

In 1999, Harvey et al. [59] used the same method to estimate the contrast clearance rate

and the fractional blood volume of various tumor types in an attempt to assess tumor re-

sponse to radiotherapy. Acquisitions were performed before treatement for baseline, then

early and late response exams were acquired one or two, and six to twelve weeks a�er treate-

ment, respectively. Authors showed an increase in the clearance rate as well as in the frac-

tional blood volume in the early response exams, indicating an hyperemic response to radio-

therapy. Later exams revealed a decrease in parameter values compared to the early response,

but still exhibited larger values when compared to the baseline experiments.

In 2000, Materne et al. [99] used a dual-input compartmental model, similar to the

model proposed by Ziegler et al. [179] for PET, to characterize liver perfusion from dynamic

contrast-enhancedX-ray CT experiments accounting for both arterial and portal blood sup-

plies. �e proposed method accounted for time-delays, but not for dispersion as originally

proposed by Ziegler et al. [179]. �e arterial and portal curves were extracted directly from

the dynamic images, which was not possible with PET data due to the poor spatial resolu-

tion of the imaging modality. Twomodels were actually considered, in the �rst one only the

liver tissue component was considered, and in the second one the measured kinetics was

considered a linear combination of the tissular, arterial, and portal components. Hepatic,

arterial, and portal perfusion indices were derived from the estimated model parameters.

�e perfusion obtained with the �rst approach exhibited a strong correlation with micro-

sphere measurements, which was not true for the second approach. �e reproducibility of
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the �rst approach was then investigated in a clinical experiment with healthy patients, and

a good inter- and intra-observer agreement was reported.

2.3.4 Magnetic resonance imaging

In 1999, To�s et al. [151] introduced compartmental models for the quanti�cation of perfu-

sion parameters using di�usible tracers in dynamic contrast-enhanced MRI, as well as a set

of standardized notations for these parameters. �e authors adapted themethods developed

for quanti�cation of PET based on an arterial input function [27, 70, 130] to MRI assuming

the contribution of intravascular contrast-agent to signal intensity can be ignored. �ey then

derived a generalized model parameterized by the transfer constant from plasma to tissue

noted Ktrans, the extravascular extracellular space volume fraction noted Ve , and de�ned

the rate constant as the ratio of these two parameters, noted kep. �e transfer constant is

equivalent to the permeability surface area product under permeability-limited conditions,

to blood �ow under �ow-limited conditions, and to extraction ratio under mixed condi-

tions. �ey also showed that the rate constant parameter is the decay rate of the exponential

impulse response by solving the �rst-order di�erential equation of the generalized model.

�is paper is much theoretical, however it assumes the arterial input function is estimated

from the dynamic MR images, which measures whole blood contrast-agent concentration

(as opposed to blood plasma) and shoud therefore be corrected for the hematocrit. �is pa-

per became a standard in the �eld of perfusion imaging for MRI, for it introduced a set of

clear and general notations that can be used to model the kinetics of any di�usible contrast

agent.

In 2004, Murase [112] proposed a linear formulation of the generalized kinetics model

presented by To�s et al. [151], additionally accounting for the vascular component of the sig-

nal. �e main di�erence with the non-linear formulation originates in the resolution of the

�rst-order di�erential equation, for which the author integrates both sides of the di�erential

equation. �e tracer concentration in the tissue of interest is de�ned as the linear combi-

nation of the integral of the arterial measurement, the integral of the tissue measurement,

and the arterial measurement itself, respectively weighted by the sum of the blood to tissue

transfer constant with the product of the tissue to blood transfer constant with the volume



2.3. COMPARTMENTAL MODELS 67

fraction of blood in the tissue, the tissue to blood transfer constant, and the volume fraction

of blood in the tissue. �e non-linear and linear resolutionmethods were compared through

simulations in terms of accuracy and precision of the estimates, but also in terms of sensitiv-

ity to the sampling frequency. �e linear method was extensively faster, and more accurate

in low to moderate noise conditions, and less sensitive to the sampling interval. Addition-

ally, the linear resolution method does not require initial values for the parameters, making

the estimation method more robust.

In 2005, Balvay et al. [9] investigated the sensitivity of two compartmental models for

quanti�cation of contrast-enhanced MRI to the duration of the acquisition using a new cri-

teria to assess the quality of �t of the models in a preclinical study in mice with human pro-

static tumors implantes subcutaneously. A one-compartment model accounting for tissue

perfusion only, and a two-compartment model accounting for both perfusion and perme-

ability were �tted non-linearly to the mean enhancement curve in the tumor region using

an image-based plasma measurement from the heart le� ventricle. �e one-compartment

model was not able to accurately �t the full-length mean enhancement curve in the tumor

region and yielded biased tissue blood �ow and fractional blood volume, but it was able

to accurately �t shorter curves where permeability can be neglected and yielded parameter

estimates comparable to those of the two-compartment model for full-length data.

In 1998, Kovar et al. [79] faced limitations regarding the duration of their contrast-

enhancedMRI acquisitions, and proposed a compartmental model using the contrast-agent

kinetics in a reference tissue, such as a muscle, as well as litterature values of perfusion rate,

extraction fraction, and extracellular volume in the chosen reference tissue to estimate the

vascular input function. �is scheme was developed to reduce the high sampling frequency

necessary to obtain a well resolved arterial input function, while avoiding invasive proce-

dures, e.g. blood sampling. �ey then used the estimated input function to estimate the

product of the perfusion rate and the extraction fraction in the tissue of interest. �e equa-

tions of the model were derived from the di�erential form of the model proposed by Kety

[70]. �e method was investigated in a preclinical magnetic resonance study of rats with

implanted mammary and prostate tumors to assess the distribution of a di�usible paramag-

netic tracer.
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Later, in 2005 Yankeelov et al. [175] proposed a method similar to that of Kovar et al.

[79], they however derived their equations from the integral form of the model proposed by

Kety [70] and used the standardized notations of To�s et al. [151]. �is formulation avoids

the estimation of the arterial input function, and litterature values of the transfer constant

from plasma to tissue and the distribution volume of the tracer in the reference tissue were

used to directly derive estimates of these parameters in the tissue of interest. �emodel was

investigated through simulations to reveal the sensitivity of the model parameters to noise

and to reference values. �e distribution volume parameter proved robust to noise using the

proposed method, however the transfer constant from blood to tissue decreased with rising

noise amplitude. �e authors also discussed the possibility to avoid the use of litterature

values characterizing the reference tissue by de�ning relative parameters as the ratio of a

parameter in the tissue of interest to its value in the reference tissue.

In 2008, Faranesh and Yankeelov [42] proposed a modi�cation of the model presented

by Yankeelov et al. [175] to account for the intravascular tracer contribution to signal in-

tensity in either or both of the studied and reference tissues. Given litterature values of the

vascular parameters characterizing the reference tissue, the arterial input function was es-

timated using two di�erent formula depending on whether the vascular component was

considered. �e estimated arterial input function was then used to estimate the perfusion

parameters of the studied tissue assuming a two-compartment model, with or without a

vascular compartment, and the linear formulation of the model introduced byMurase [112].

Simulations were conducted incorporating the vascular term, and the accuracy and preci-

sion of the parameters estimated using the modi�ed reference region model were assessed

using themodel accounting for intravascular tracer in both the studied and reference tissues

as a gold standard. �e simulations revealed that accounting for the vascular term in both

the studied and reference tissues made the estimation exponentially dependent on the noise

amplitude, although accounting for the fractional plasma volume in the studied tissue only

yielded inaccurate estimation of all parameters. �e e�ect of the sampling frequency on the

accuracy of the vascular parameter estimation revealed complex behavior. �e authors gave

recommendations on whether the vascular term should be incorporated in the model de-

pending on the information that can be found in the litterature about the expected range of



2.3. COMPARTMENTAL MODELS 69

vascular volumes in the studied and reference tissues, as well as on the ability of the sampling

frequency to capture the vascular peak in the reference tissue kinetics.

In 2013, Cárdenas-Rodríguez et al. [23] derived a linear formulation of the reference re-

gion model when the contribution of vascular tracer to signal intensity can be neglected in

both the studied and reference tissues, as proposed by Yankeelov et al. [175]. �e linear for-

mulation is obtained by integrating both sides of the equation derived by Yankeelov et al.

[175] instead of solving it by part. �e concentration of tracer in the tissue of interest is ex-

pressed as the linear combination of the tracer kinetics in the reference tissue, of its integral,

and of the integral of the kinetics in the tissue of interest. �eweights of this linearmodel are

respectively the relative blood to tissue transfer constant, the ratio of the transfer constant

in the tissue of interest to the fractional distribution volume, and the rate constant in the

tissue of interest. �ese weights can therefore be estimated using a linear least-square �tting

algorithm. �e authors compared the linear and non-linear estimation methods through

simulation experiments, and studied the accuracy and the precision of the estimates, as well

as the sensitivity of the parameters to the sampling frequency, the noise amplitude, the values

of the parameters, and the shape of the arterial input function used to simulate the studied

and reference kinetics. Expectedly, in addition to alleviate the need for initialization values,

the linear resolution method proved more accurate, especially for low sampling frequencies

and high noise amplitudes.

2.3.5 Ultrasound

To our knowledge, no proper compartmental approach had been proposed prior to the

method proposed in [35] and inChapter 5 of this document. Indeed, compartmentalmodels

exhibit simple structures in contrast-enhanced ultrasound because themicrobubbles remain

strictly in the vascular bed, alleviating the need for additional extravascular compartments.

Recently, a compartmental model was used to characterize contrast-enhanced ultra-

sound data by Rizzo et al. [132]. However the method is based on a gamma-variate model

of the circulating bubbles with the addition of an irreversible compartment representing a

fraction of microbubbles that can get trapped in complex vasculature. �is compartment is

modeled by the addition of the integral of the �tted gamma-variate curve to the model, and
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the weight of this termmust be estimated. �emodel was �tted at the pixel level using a vari-

ational Bayes estimator which priors were derived from the non-linear �t of the samemodel

at the regional level. �e authors reported a better �t in half of the pixel using the model

with the irreversible compartment compared to a simple gamma-variate model in a cohort

of 99 subjects su�ering from arthritis. �ey designed an automatic algorithm to detemine

which model should be used according to the data. �e fraction of trapped microbubbles

also improved classi�cation of patients with rheumatoid and non-rheumatoid arthritis.

2.4 Discussion

From an experimental standpoint, the pioneering studies reviewed in this chapter su�er

from major limitations which can be explained by the simultaneous development of the

imaging technology, contrast agents, and quanti�cation approaches.

Many of these studies used preliminary ultrasound contrast agents, known to be unstable

and irregular in size, yielding poor resistance to injection and ultrasound pulses, as well as

inconsistencies of the ultrasound signal. All these characteristics made the quanti�cation

process of early studies extremely di�cult.

Additionally, early contrast-enhanced imaging techniques were not contrast speci�c and

exhibited low sensitivity, especially in the capillaries. Moreover, contrast-enhanced ultra-

sound data was o�en acquired using a high mechanical index, causing the disruption of a

large number of microbubbles. Intermittent, or transient, imaging accounted for the disrup-

tive nature of the highmechanical index but intrinsically forbit real-time perfusion imaging.

While microbubbles increased the sensitivity of Doppler techniques, allowing visualization

of small and deep vessels, it fails to image the capillaries, and was generally of poor help

to characterize moving structures. Real-time non-destructive contrast-speci�c ultrasound

imaging only arose with the development of pulse inversion sequences using lowmechanical

index in the late 1990s.

Most quanti�cation approaches developed for contrast-enhancedultrasound rely on indicator-

dilution theory. One of themain assumption underlying indicator-dilution theory is that the

mass of the indicator is conserved throughout the experiment. In vitro studies usually ap-
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proximatively respect this conditionwhen lowmechanical index imaging is used, this is why

these experiments are o�en extremely conclusive, and yield perfusion parameters in good

agreement with the ground truth. However, in vivo, in addition to the natural and induced

disruption, circulating microbubbles are partially �ltrated through the lungs and liver, the

mass conservation principle is therefore not respected.

Model-free quanti�cation was common in early studies, it is however inherently sensi-

tive to noise, especially as contrast-enhanced ultrasound time-intensity curves are corrupted

by a multiplicative noise. �erefore quantifying perfusion using parameters dependant on

the peak-intensity is extremely unreliable, as it corresponds to the highest noise amplitude.

In pioneering cardiac studies, sampling frequencies were low and did not allow accurate

characterization of the high-frequency wash-in resulting from bolus injection, therefore nu-

merous studies focused on contrast-agent wash-out.

Following methodological and computational developements, model-based quanti�ca-

tion was proposed to �t time-intensity curves, and allowed the estimation of many semi-

quantitative parameters. While physical explanations were found for some explicit models,

most studies merely used the models for noise �ltering, correction of recirculation and time

interpolation. Indeed, semi-quantitative parameters were estimated from �tted curves, then

blood �ow and blood volume estimates were derived from indicator dilution theory.

Whether extracted directly from the time-intensity curve or from the modeled curve,

semi-quantitative parameters are inherently sensitive to experimental conditions. For in-

stance, area under the curve, peak-intensity or even wash-in and wash-out rates, are directly

related to the injected dose, moreover time parameters such as the wash-in and wash-out

times, the time to peak-intensity or themean transit time of the contrast agent are in�uenced

by the site, speed and duration of the injection.

In addition, physiological parameters such as heart rate or even blood pressure can a�ect

the kinetics or the ultrasound response of the microbubbles, and therefore a�ect the time-

intensity curves. Because semi-quantitative parameters are directly extracted from the time-

intensity curve, they su�er from physiological inter-exam variations too. �is is also true for

the replenishment of tissues following disruptive pulses in the case of infusion injection.

Because of the sensitivity of the semi-quantitative parameters to both experimental and
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physiological conditions, and because indicator-dilution theory is hardly applicable to contrast-

enhanced ultrasound as discussed above, one should consider the derived parameters as

relative indicators of perfusion, but certainly not as absolute parameters.

Deconvolution approaches estimate the response of a tissue to an instantaneous injec-

tion of tracer using an arterial inputmeasurement, a tissuemeasurement, and none or little a

priori on the shape of the estimated impulse tissue response. Deconvolution methods based

on the matrix formulation rely onmatrix inversion, which is known to be an ill-conditioned

problem. Iterative algorithms were proposed to estimate the tissue impulse response with-

out inverting the matrix, however they are extremely sensitive to noise as they are prone to

cumulative error. Unconstrained or poorly constrained deconvolution can sometimes yield

impulse responses with negative values, which is not physiologically possible. Constrained

and regularized deconvolution were proposed to estimate positive, decreasing and smooth

impulse response functions, but still few assumptions are made on the shape of the tissue

response.

�e shape of the estimated curves can be extremely heterogeneous depending on the es-

timation method and constrains, and extracting parameters can be di�cult. To reduce the

sensitivity of the deconvolution to noise and to limit oscillations of the tissue response, noise

�ltering techniques can be enforced rather simply in Fourier or singular value decomposi-

tion or by direct �ltering of the time-intensity curve, but even small �ltering errors can yield

imprecise estimates.

Compartmentalmodeling roughly consist in amodel-based deconvolutionwith strong a

priori on the shape of the tissue impulse response and a reduced number of physiologically

relevant parameters. �e small number of degrees of freedom restricts the shape of the

input function convolved with the tissue impulse respons to a limited set of possible curves,

making the estimation process less sensitive to noise. Linear formulations of these models

can alleviate the need for initialization, but also make the estimation process more robust to

noise, yielding stable estimates with fewer or sparser samples as discussed in Chapter 7.

An arterial measurement is required for some semi-quantitative approaches, by almost

all deconvolution approaches, and by most compartmental models. Accurate arterial mea-

surement allows the normalization of the tissue measurement and the estimation of perfu-
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sion parameters that are independant of the injection.

Arterial measurement can be performed through blood sampling, this technique is es-

pecially popular in the �elds of nuclear medicine and radiology as continuous radioactivity

measurements apparatus have been extensively developed and commercialized. Nonethe-

less, patient needs to be catheterized and this procedure remains invasive.

Image-based arterial measurements are extremely unreliable regardless of the imaging

modality. Indeed the aorta is not always present in the �eld of view and a large artery

feeding the tissue of interest can be hard to identify, especially in two-dimensional data.

Additionally, partial volume e�ect, attenuation and saturation artifacts can a�ect the mea-

sured signal intensity. Indeed, in most modalities a trade-o� must be made between space

and time resolution, and the small size of the artery combined to the high speed of a bo-

lus in an artery makes the estimation of the arterial input function extremely di�cult. In

contrast-enhanced ultrasound the noise is multiplicative, which makes the high-intensity

arterial measurements highly unreliable.

A healthy reference tissue can be chosen in the image to normalize the perfusion param-

eters in the tissue interest by their value in the reference region. �e reference region should

be chosen in a large, homogeneous and well perfused tissue to limit partial volume e�et and

saturation artifacts in addition to reducing the noise in the reference tissue enhancement

curve.

Direct estimation of relative perfusion parameters can also be obtained using compart-

mental modeling, alleviating the need for an arterial measurement. �e relative perfusion

quanti�cationmethods were generally formulated with a single enhancement curve to char-

acterize, even though they were o�en applied later to the region or even pixel level.

Whether �tting an explicit model to a single tissue curve for noise �ltering or estimating

quantitative parameters using a compartmentalmodel usingmultiples enhancement curves,

one should consider time-delay parameters. Indeed, time-delay parameters are o�en over-

looked in the litterature, however they play a crucial role in the estimation of perfusion

parameters as �tting a model without a time-delay parameter or prior delay correction can

induce a bias in the estimation. A few methods were presented as delay-insensitive, some

other methods actually include time-delay parameters in their equations, and commercial
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so�wares certainly correct for delay, but to our knowledge no study reported on the absolute

or relative values of such parameters, or exploited parametric maps revealing the timeline

of the bolus arrival in the studied tissue.



A�erword

�e development of quanti�cation methods o�en came along with the development of the

imaging modality itself. Semi-quantitative approaches are the most intuitive approaches,

they are generally used to characterize perfusion data in the early stage of the imaging tech-

nique, they are however subject to inter-examphysiological and experimental changes. �en

physiological parameters are o�en derived from semi-quantitative parameters characteriz-

ing the tracer kinetic in the tissue of interest and in an artery, they however su�er from the

same limitations as semi-quantitative parameters, but are also a�ected by the di�culty of

estimating the arterial curve.

Ultrasound contrast agents are not anymore in their early development stages, on the

contrary they reached a point where their behavior is well understood and where they can

be used routinely for some clinical applications. While the ultrasound imaging technique

is not new at all, it was using analog signal processing for a long period of time. It however

reached a turning point with the development of numerical ultrasound scanners, exploiting

the development of high-end graphical hardware which allows parallel computing to allow

complex real-time signal processing. �is turning point suggest future development of the

imaging technique, in particular with the joint development of ultrafast plane wave imaging

and three-dimensional ultrasound probes.

Regarding contrast-enhanced ultrasound, which is the core modality addressed in this

thesis, semi-quantitative approaches are by far the most commonly used approaches. In-

deed, many manufacturers of ultrasound scanners and contrast-agent implemented these

techniques in commercial so�wares, which explains their popularity in clinical appication.

A few approaches relying ondeconvolutionwere also proposed for characterization of contrast-

enhanced ultrasound exams, but compartmental modeling remains extremely rare in the
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ulrasound litterature. �is can be explained by the dependance of the majority of these

techniques on the ability to perform an accurate arterial measurement. However accurate

measurement is not always possible as arterial regions are usually small and exhibit high

tracer concentration, making the estimated curve subject to saturation and partial volume

e�ects. Finding an artery can be especially tricky in two-dimensional data, and even more

limiting when attempting to compare two or more exams. Indeed, imaging the exact same

plane is extremely di�cult even for experienced radiologists, especially in the case of evolv-

ing tissues like growing tumors or when monitoring the e�ect of a treatment. �e impact of

the arterial function on the parameters of a one-compartment model for quanti�cation of

contrast-enhanced ultrasound data will be investigated in Chapter 3.

When an arterial input function cannot be estimated, or at least not accurately, another

tissue present in the image can be used as a reference for comparison purposes. Just like

the absolute values, the relative or normalized perfusion parameters can be used to per-

form relative comparison of the tissues observable in a single exam. However, parameter

normalization allows comparison of the same tissue observed in di�erent exams, using the

reference tissue as a basis for comparison, and assuming the reference tissue did not change

between the two exams. �e reproducibility of relative approaches will be investigated in

the following part of the thesis.
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Part II

Reproducibility of the existing methods

and the relations between them





Foreword

In the second part of this thesis, we perform an in-depth investigation of three major perfu-

sion quanti�cation techniques. �e techniques investigated are a semi-quantitative method

using the log-normal distribution, a one-compartment model using an image-based arte-

rial measurement, and a one-compartment model using an image-based reference tissue.

�e �rst two methods yield absolute parameters while the third directly yields relative pa-

rameters. Relative parameters were derived from the absolute parameters, their value inside

a tissue of interest are de�ned as the ratio of the absolute parameter value in the tissue of

interest to the absolute parameter value in the reference tissue. In an attempt to reveal the

spatial functional heterogeneity of tumors while ensuring reasonable signal-to-noise ratio in

the time-intensity curves, the models were �tted to regional time-intensity curves resulting

from the cutout of the perfused tumor area.

Barrois et al. [2] previously proposed an original criterion based on amultiplicative noise

model to re�ect the characteristics of noise in ultrasound data. �e criterion was not used in

this study since it was unable to �t the regional data accurately despite using the least-square

estimates as initial values. Instead, we optimized a conventional least-squared criterion and

use a non-linear estimation method to �t all models to data.

�e log-normal model is commonly used in the litterature to �t perfusion curves, and

in particular contrast-enhanced ultrasound data. It is mainly used to �lter out the noise of

the time-intensity curves, and semi-quantitative parameters are usually derived from the

�tted curve, e.g. the area under the curve, the peak enhancement, or the wash-in rate. �e

log-normal model was used to �t the global mean time-intensity curve inside the perfused

area of tumors [4]. �is study revealed a poor reproducibility of the global semi-quantitative

parameters despite the improvement resulting from the use of an automatic injection setup,
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which was also used in Chapter 3.

Compartmentalmodeling performs a ‘̀normalizatioń’ of the studied time-intensity curve

by the input of the system throughdeconvolution, theoreticallymaking parameters indepen-

dant on the characteristics of the tracer injection, i.e. quantity, duration. Compartmental

approaches were primarily developed for nuclear medicine imaging techniques, they were

then extended to other perfusion imaging modalities, in particular to contrast-enhanced

magnetic resonance imaging. �e one-compartment model is the most basic form of com-

partmental model, and is particularly designed for intravascular tracers like ultrasound con-

trast agents. However no reference of this model applied to contrast-enhanced ultrasound

data was found in the litterature. �e method allows the estimation of absolute perfusion

parameters, i.e. tissue blood �ow, and tissue blood volume. However, as discussed in Chap-

ter 2, arterial measurements derived from the image are subject to artifacts, and are in fact

not always possible.

To alleviate the need for arterial measurements, relative methods making use of a ref-

erence tissue instead were developed [28], allowing direct estimation of relative perfusion

parameters. �ese relative parameters are closely related to the absolute parameters, except

they are normalized according to the reference tissue. �e reference tissue can be selected in

a large and homogeneous region, free of large blood vessels, reducing the in�uence of noise,

contrast saturation, and partial volumes.

�e reproducibility of the regional parameters estimated using two absolute methods

and three relativemethods was investigated through test-retest experiments in order to limit

the inter-exam changes to their minimum. Additionally, the impact of accounting for the

time taken by the tracer to arrive in the tissue of interest on the reproducibility of the esti-

mated perfusion parameter was studied. �e experimental setup and the results are reported

in Chapter 3 which is the content of the article that we published in Physics in Medicine and

Biology [6]. In Chapter 4, we propose an extention of this work establishing the relations be-

tween the parameters of the di�erent models mentioned above, �rst theoretically, and then

experimentally through a correlation study.

N.B. All the references cited in this part of the thesis are pooled together and presented at the end of Part II.



Chapter 3

Quanti�cation of tumor perfusion using

DCE-US: impact of mathematical

modeling

3.1 Abstract

Dynamic Contrast Enhanced Ultrasound has been proposed to monitor tumor therapy, in

complement to volume measurements. To assess the variability of perfusion parameters

in ideal conditions, four consecutive test-retest studies were acquired in a tumor model of

mouse, using controlled injections. �e impact of mathematical modeling on parameter

variability was then investigated. Coe�cients of variation (CV) of tissue blood volume (BV)

and tissue blood �ow (BF) based-parameters were estimated inside 32 sub-regions of the

tumors, comparing the log-normal (LN) model with a one-compartment model fed by an

arterial input function (AIF) and improved by the introduction of a time delay parameter.

Relative perfusion parameters were also estimated by normalization of the LN parameters

and normalization of the one-compartment parameters estimated with the AIF, using a ref-

erence tissue (RT) region. A direct estimation (rRTd) of relative parameters based on the

one-compartment model without using the AIF was also obtained by using the kinetics in-

side the RT region. Results on test-retest studies show that absolute regional parameters
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have high CV, whatever the approach, with median values of about 30% for BV, and 40%

for BF.�e positive impact of normalization was established, showing a coherent estimation

of relative parameters, with reduced CV (about 20% for BV and 30% for BF using the rRTd

approach). �ese values were signi�cantly lower (p < 0.05) when compared to CV of abso-
lute parameters. �e rRTd approach provided the smallest CV and should be preferred for

estimating relative perfusion parameters.

3.2 Introduction

Reliable quanti�cation of tumor perfusion is a challenging objective in order to establish

cancer diagnosis and to monitor therapy. Tumor perfusion can be assessed through vari-

ous imaging modalities, including PET, Dynamic Contrast Enhanced (DCE) MR, CT, and

ultrasound (DCE-US).

Compared to DCE-MRI, DCE-CT and PET, the main advantages of DCE-US are its

real-time, non-ionizing, and cost-e�ective characteristics. Moreover, as micro-bubbles do

not di�use in the extra-vascular space, DCE-US studies re�ect only the tissue vasculature.

Di�erent acquisition protocols are available including bolus and destruction-replenishment

during infusion [26]. �e present work focuses on bolus injections, since this acquisition

mode is the most widely used [3].

It is currently recommended for bolusDCE-US studies to estimate semi-quantitative pa-

rameters using explicit models, such as the Log-Normal model [19]. However, it was shown

that these semi-quantitative parameterswere sensitive to various factors [20]: scanner-related

(e.g. frequency, mechanical index, dynamic range, focal length), patient-related (e.g. blood

pressure, tissue motion, physiological interaction), and bubble-related (e.g. bubble type,

concentration, preparation, injection) factors. �e quanti�cation of bolus DCE-US stud-

ies thus remains a major challenge.

In an attempt to make quanti�cation of tissue perfusion less sensitive to external factors,

quantitative approaches based on indicator dilution theory and commonly used for PET,

DCE-MRI or DCE-CT exams [16, 21, 25] could be applied to DCE-US data. �ese methods

estimate tissue blood volume and tissue blood �ow parameters by performing a speci�c de-
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convolution of the tissue time-intensity curve inside the tumor by anArterial Input Function

(AIF) measured in the imaging plane. Similarly to what was done in above cited imaging

modalities, a compartmental approach was recently proposed for DCE-US [5]. Precisely, a

one-compartment model was proposed since the contrast agent remains in the blood. �is

approach de�nes a set of admissible curves for the transfer function (mono-exponential

functions), and the estimation of parameters is then regularized intrinsically. It can thus be

distinguished from blind deconvolution, as recently proposed in DCE-US [7, 12]. Indeed,

these approaches require establishing strong constraints on the transfer functions, due to

their large number of unknown parameters.

�e present study aimed at comparing di�erent modeling approaches and at studying

the reproducibility of perfusion parameters in test-retest measurements on a mouse tumor

model, acquired using controlled injections [4]. �ree absolute modeling approaches in-

cluding a Log-Normal model and a one-compartment model without and with a time delay

were �rst compared. In a second time, relative perfusion parameters were de�ned by nor-

malizing the values obtained in the tumor with values obtained in a reference tissue region,

and �ve relative derived models were studied.

3.3 Materials

3.3.1 Animals

Murine Colon Carcinoma (CT26) were used. Tumor fragments (20-40 mm3) were im-

planted subcutaneously 24 days prior to the experiment in the right �ank of four Balb/C

mice. All experiments were conducted in accordance with the institutional guidelines and

the recommendations for the care and use of laboratory animals.

Prior to imaging, animals were individually placed in an induction chamber, where anes-

thesia was induced with 4% iso�urane in air with delivery rate of 1 L/min. Anesthesia was

maintained with 2% iso�urane in air delivered by a face mask with the same delivery rate.

�e temperature of the animal was regulated using a thermostatic heating plate (Minerve,

Esternay, France). Each mouse was secured in position with surgical tape so that the oper-
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ator could not inadvertently reposition it during the procedure.

3.3.2 Image acquisition

Dynamic contrast-enhanced US sequences were acquired using a 15L8W transducer and a

Sequoia 512US system (Acuson, Siemens,MountainView, CA,USA)with constantmechan-

ical index (0.1), dynamic range (80 dB), and time gain compensation settings. �e imaging

plane was selected as the largest cross-section of the tumor and the probe was �xed to a

support in the selected position.

A bolus of 50 µL of SonoVue (Bracco Suisse SA, Geneva, Switzerland) diluted to 20%was

injected at a rate of 4.5 mL/min using a controlled injection system to improve acquisition

reproducibility [4]. �is diluted concentration was proposed to reduce attenuation artifacts.

Each acquisition consisted of a 4minute dual-mode recording, including B-Mode and Con-

trast Pulse Sequencing (CPS) images, using a frame rate of 3 Hz during the �rst 30 seconds

(including the wash-in phase and the beginning of the wash-out phase), and 1 Hz for the re-

maining time. Four consecutive (test-retest) studies were acquired for each mouse without

any modi�cation in the setup. Fi�een minute breaks were observed between acquisitions to

ensure the destruction of all circulating micro-bubbles.

3.3.3 Data pre-processing

Linear echo-power kinetics were extracted from log-compressed video data using a vali-

dated home-made so�ware calibrated using dose-ranging data [18]. Both probe and animal

motion were assumed negligible for the selected sequences.

Tumors were segmented on the B-mode acquisition and necrotic zones were excluded as

previously described [4]. In order to further reveal spatial heterogeneity inside the tumor, a

regional analysis of the tumor area was performed. Dividing the non-necrotic tumor region

into 32 sub-regions according to 4 radial layers and 8 angular sectors (Figure 3-1) provided a

good compromise between showing heterogeneity while preserving the signal to noise ratio

of the time-intensity curves and the spatial matching of the sub-regions between the four

test-retest studies.
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Figure 3-1: Illustration of the data pre-processing steps. Le�: �e contours of the tumor
and its necrotic core have been overlaid on a contrast enhanced image (in ochre color). �e
perfused tumor area was divided into 4 radial layers and 8 angular sectors. A reference tissue
region (in green color) and a renal cortex region (in blue color) were also delineated. Right:
Mean kinetics associated with the non-necrotic part of the tumor, the reference tissue, and
the renal cortex.

3.4 Methods

3.4.1 Quanti�cation of tumor perfusion

Table 3.1 summarizes the main features of the eight methods tested, three absolute and �ve

relative, for tumor perfusion quanti�cation. Some methods require the de�nition of an ar-

terial region in order to estimate the AIF, its estimation is presented in section 3.4.1. Relative

quanti�cation methods require the selection of a reference tissue region (labeled with sub-

script R). �is region was segmented in order to de�ne a homogeneous area, while being

large enough in order to reduce noise in�uence on the subsequent analysis (Figure 3-1).

For all methods, quantitative parameters were derived by the minimization of the root-

mean-square error between the time-intensity curve inside the tumor, CT(t), and the cor-
responding �tted curve, using an interior-point algorithm (MATLAB, MathWorks, Natick,

MA, USA). To make the comparison between models easier, we focused on volume-based,

�ow-based, and time delays parameters.
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Acronym Model Name Input data Eq. Parameters
AIF/RT

aLN Log-Normal No/No (3.1) AUC ,WIR, ∆
aAIF One-Compartment Yes/No (3.2) V , F
aAIFd One-Compartment with delay Yes/No (3.2) V , F , d

rLN Relative Log-Normal No/Yes (3.1,3.3) rAUC , rWIR,D
rAIF Relative One-Compartment Yes/Yes (3.2,3.4) rVAIF , rFAIF
rAIFd Relative One-Compartment with delay Yes/Yes (3.2,3.4) rVAIF , rFAIF ,DAIF
rRT Relative Reference Tissue No/Yes (3.5,3.6) rVRT , rFRT
rRTd Relative Reference Tissue with delay No/Yes (3.5,3.6) rVRT , rFRT ,DRT

Table 3.1: Synthesis of the di�erent models tested. �e �rst three models propose absolute
quanti�cation. �e last �ve models propose relative quanti�cation.

Absolute Log-normal model: aLN [19].

�e kinetics CT(t) is �tted according to the equation (3.1):

CT(t) = AUCT
√

2πσT(t−∆T)
exp (− [ln (t−∆T)−µT]2

2σT 2 ) if t > ∆T ,

= 0 otherwise,
(3.1)

where AUCT is the area under the CT curve, µT and σT are the expectation and standard

deviation of the distribution CT(τ)/AUCT when substituting ln(t−∆T)with τ, and ∆T rep-

resents the time shi� between the start of the acquisition and the arrival of the contrast agent

in the tumor. As the area under the curve AUCT is related to the tissue blood volume [22]

and the wash-in rateWIRT (derived from AUCT , µT and σT) is related to the tissue blood

�ow [3], these two parameters were estimated in addition to ∆T in the remaining analysis.

One-Compartment model with an Arterial Input Function: aAIF and aAIFd

[9]. �e mathematical expression of CT(t) is given by equation (3.2):

CT(t) = FT ∫ t−dT
0 CA (τ) exp−

FT
VT

(t−dT−τ) dτ if t ≥ dT ,

= 0 otherwise,
(3.2)
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where CA(t) is the kinetics inside the feeding artery (the AIF), VT the tissue blood volume

(in %), FT the tissue blood �ow (in s−1), and dT (in s) the time-delay of the contrast agent

from the feeding artery to the tumor. When it is neglected (dT = 0), the model is noted
aAIF. When it is estimated in addition to VT and FT , the model is noted aAIFd.

To estimate the AIF, a bounding box surrounding arterial vessels was �rst de�ned ac-

cording to anatomical considerations and high values of enhancement (see Figure 3-1). Peak

Enhancement (PE) and Time To Peak (TTP) parametricmaps were then computed for each

pixel of the bounding box. �emaximal value of PE (PEmax) and theminimal value of TTP

(TTPmin) were extracted. Pixels verifying PE/PEmax ≥ rPE∗ and TTP − TTPmin ≤ ∆TTP∗

were considered as part of the artery region (Figure 3-2), where rPE∗ and ∆TTP∗ are em-

pirically chosen cut-o� values, equal to 50% and 3 s, unless speci�ed di�erently. �e AIF,

CA(t), was computed as the geometric mean of the kinetics inside the artery region and
modeled using the LN model (3.1).
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Figure 3-2: Automated detection of the AIF: parametricmaps TTP and PE inside the artery
region; segmentation results and associated AIF with: (a) rPE∗ = 50% and ∆TTP∗ = 3 s (in
green color); (b) rPE∗ = 70% and ∆TTP∗ = 2.5 s (in blue color).

Relative Log-Normal model: rLN.

�is model estimates three relative parameters: the relative area under the curve rAUC, the

relative wash-in rate rWIR, and the time delay between the arrival of the contrast in the

tumor and the reference tissue DT−R according to equation (3.3):

rAUC = AUCT

AUCR
, rWIR = WIRT

WIRR
, and DT−R

LN = ∆T − ∆R , (3.3)
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where (AUCT , WIRT , ∆T) and (AUCR, WIRR, ∆R) are the absolute LN parameters esti-

mated in the tumor and in the reference tissue respectively using equation (3.1).

Relative One-Compartment model with an Arterial Input Function: rAIF and rAIFd.

�is model estimates three parameters: the relative blood volume rVAIF , the relative blood

�ow rFAIF and the time delay between the arrival of the contrast in the tumor and the refer-

ence tissue DT−R
AIF according to equation (3.4):

rVAIF =
VT

VR
, rFAIF =

FT
FR
, and DT−R

AIF = dT − dR , (3.4)

where (VT , FT , dT) and (VR, FR, dR) are the perfusion parameters estimated in the tumor and

in the reference tissue respectively using the AIF according to equation (3.2). �is method

is referred to as rAIF when DT−R
AIF is set to zero and rAIFd otherwise.

Relative One-Compartment model using the Reference Tissue kinetics: rRT and rRTd

[17, 27]. �is model estimates three parameters: the relative blood volume rVRT , the relative

blood �ow rFRT and the time delay between the arrival of the contrast in the tumor and

the reference tissue DT−R
RT , the subscript RT being used for distinguishing this approach from

the previous one (section 3.4.1). Assuming that the tumor and the reference region have

a common AIF, the kinetics CR(t) and CT(t) can be described by equation (3.2). When
replacing CA(t) by its expression as a function of CR(t) in equation (3.2), CT(t) can then
be described by equation (5):

CT (t) = rFRT[CR (t − DT−R
RT )

+ (kR − kT) ∫ t−DT−R
RT

dR CR (τ) e−kT(t−DT−R
RT −τ)dτ] if t ≥ dT ,

= 0 otherwise,

(3.5)

where kR = FR/VR and kT = FT/VT . �e parameter kR was chosen as themean value of the kR
values estimated with the relative AIF approach (rAIFd) and was set to 0.15. �e parameters

rFRT , kT andDT−R
RT were estimated by solving equation (3.5). �e parameter rVRT was then
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deduced using equation (3.6):

rVRT =
VT

VR
= FT
kT

kR
FR

= rFRT
kR
kT
. (3.6)

�e method is referred to as rRT when DT−R
RT is set to zero and rRTd otherwise.

3.4.2 Data analysis

For each model, the quantitative assessment of the �t was achieved using the normalized

root mean square error (NRMSE), and the fraction of information that is modeled (FMI),

as de�ned in [1]. �e NRMSE was de�ned by:

NRMSE =

√
1
nt ∑

nt
t=1 (C f it (t) − C (t))2

maxt(C(t)) −mint(C(t)) , (3.7)

where C and C f it are the observed and �tted kinetics and nt is the total number of frames.

A good �t corresponds to NRMSE close to 0 and FMI close to 100%. For each sub-region,

results for which FMI < 90% were judged as poor quality �ts.

In order to assess the reproducibility of the parameters θhl of the mouse ml (l from 1 to

4) in the sub-region sh (h from 1 to 32), coe�cients of variation CV hl were estimated using

the four test-retest studies, as follows:

CV hl =

√
1
4∑

4
k=1(θhl(k) − µhl)2

µhl , where µhl = 1
4

4

∑
k=1

θhl(k), (3.8)

θhl(k) being the parameter θhl estimated for the kth test-retest study (with k from 1 to

4). As parameters θhl(k) corresponding to poor quality �ts were removed, missing values
were replaced using multivariate imputation according to the R package {mice}, ’Multivari-

ate Imputation by Chained Equations’ [23], in order to compute CV hl using four values

systematically.

Statistical tests were performed to compare goodness of �t criteria and coe�cients of

variation between the di�erent models, using the R package {coin}, ’Conditional Inference

Procedures in a Permutation Test Framework’ [11]. �eywere considered as signi�cant when
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Model All data FMI > 90%
NRMSE FMI NRMSE FMI N

aLN 5.75 [4.70-7.41] 99.4 [98.5-99.8] 5.63 [4.62-7.00] 99.4 [98.8-99.8] 28
aAIF 9.95⋆† [6.03-24.2] 94.7⋆† [45.2-98.3] 6.72○ [5.12-9.20] 97.8○ [95.5-98.9] 212
aAIFd 6.21 [4.71-8.43] 98.7⋆ [97.3-99.4] 6.04 [4.66-8.20] 98.8⋆ [97.6-99.4] 19
rRT 7.72⋆‡ [5.83-9.85] 97.6⋆‡ [94.9-98.7] 7.45⋆‡ [5.71-9.34] 97.8⋆‡ [95.6-98.8] 56
rRTd 6.32 [4.91-8.21] 98.7⋆ [97.2-99.4] 6.18 [4.85-8.00] 98.8⋆ [97.6-99.4] 19

Table 3.2:Median [�rst-third quartiles] values of NMRSE and FMI (in %) obtained for the
di�erent models. N is the number of sub-regions where FMI < 90%. Signi�cant di�erences
between aLN and any other model are indicated by ⋆. In addition, signi�cant di�erences
between aAIF (resp. rRT) and aAIFd (resp. rRTd) are indicated by † (resp. ‡). �e symbol
○ indicates that comparisons were not reported due to the high number of missing data.

p values were less than 0.05. As all the tests were conducted on paired data, when goodness

of �t criteria were removed (due to poor quality �ts), they were replaced with imputed data.

�e non-parametric Friedman test with post-hoc analysis (Tukey’s HSD test) was chosen for

dealing with multiple comparisons.

3.5 Results

3.5.1 Model comparison through quality of �t criteria

Table 3.2 shows the quartile values of the quality of �t criteria (NRMSE and FMI), which

are computed for the 512 (4 × 4 × 32) tumor sub-regions for the �ve models: aLN, aAIF,
aAIFd, rRT, and rRTd. Since the NMRSE and FMI criteria obtained by the three relative

methods rLN, rAIF and rAIFd are identical to those obtained by aLN, aAIF and aAIFd,

these results are not reported in Table 3.2. Additionally, quartile values are provided for

the N sub-regions verifying FMI > 90%. Due to the large portion of missing data for the
aAIF model when considering only good �ts (the number of excluded regions, N , being

equal to 212), results of hypothesis testing were not presented for that speci�c case. �e

aLN model shows slightly better quality criteria than the other models (these di�erences

are signi�cant for FMI in all cases, and signi�cant for NRMSE in case of aAIF and rRT

models). �e introduction of the time delay parameter (aAIFd, rAIFd and rRTd models)
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signi�cantly improved the modeling quality, according to both criteria. Furthermore, the

number of cases for which FMI < 90% was largely reduced when taking into account the
time delays. For these reasons, results obtained without time delays (aAIF, rAIF and rRT)

were not further reported.

3.5.2 Model comparison through coe�cients of variation

All mean values and standard deviations of the perfusion parameters are given for each

mouse in Appendix, in Table 3.4. Figure 3-3 illustrates for one speci�c mouse (m1) the com-

parison between the parameters estimated by the di�erent models. It shows a high corre-

lation between the volume-based parameters: AUC, rAUC, V , rVAIF , and rVRT as well as a

high correlation between the �ow-based parameters:WIR, rWIR, F, rFAIF , and rFRT . �is

�gure shows also that there is a large range of values for each parameter within one tumor,

demonstrating that perfusion parameters inside the di�erent sub-regions of the tumor are

far from being similar. Finally, it proves that the slopes may be quite di�erent from one

study to another, and that the use of relative parameters contributes to largely reduce the

di�erences between the test-retest studies, the estimation of rFAIF being less robust than the

estimation of rWIR or rFRT for this speci�c example. Table 3.3 illustrates the in�uence of

the AIF choice on the estimation of volume, �ow, and time delay parameters. On this spe-

ci�c exam, two AIF were generated, the �rst one (AIF1) with thresholds rPE∗ = 50% and
∆TTP∗ = 3 s, the second one (AIF2) with thresholds rPE∗ = 70% and ∆TTP∗ = 2.5 s (as
shown in Figure 3-2). �e variations were very large for V and F parameters, while they

remained moderate for rFAIF and time delays, and very low for rVAIF .

V (%) rVAIF(%) F (10−3 s−1) rFAIF (%) dT (s) DT−R
AIF (s)

AIF1 8.02 ± 3.89 84.5 ± 40.9 6.54 ± 5.37 8.83 ± 7.24 2.4 ± 3.4 1.4 ± 3.4
AIF2 4.65 ± 2.25 85.2 ± 41.3 3.20 ± 2.61 10.1 ± 8.21 2.0 ± 3.3 1.6 ± 3.3

Table 3.3: Mean ± standard deviation of the parameters estimated with the aAIFd and
rAIFdmodels, using two di�erent sets of cut-o�s to generate the AIF functions.

Finally, Figure 3-4 shows the distributions of the coe�cients of variation of volume-

based and �ow-based parameters, computed according to equation (3.8). Relative volume
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Figure 3-3: Comparison of the volume-based and �ow-based parameters obtained for the
four test-retest exams (R1, R2, R3, and R4) of the mouse m1: linear regressions between (a)
rVRT and AUC, (b) rVRT and V , (c) rVRT and rAUC, (d) rVRT and rVAIF , (e) rFRT andWIR,
(f) rFRT and F, (g) rFRT and rWIR, (h) rFRT and rFAIF .

parameters (rAUC, rVAIF , and rVRT) have signi�cantly lower CV than absolute volume pa-

rameters (AUC and V ). No signi�cant di�erence was found when comparingWIR, F, and

rWIR, but the CV of these parameters are signi�cantly higher than those of rFAIF and rFRT .

Numerical values of these mean CV are given for each mouse in Appendix, in Table 3.5.

3.6 Discussion

Using a test-retest study with a controlled bolus injection, it was possible to assess the vari-

ability of DCE-US perfusion parameters. To reduce this variability, the interest of estimat-

ing relative parameters, which necessitates the de�nition of a reference tissue region, was

practically demonstrated. Our study also shows the importance of choosing an appropriate

method for the estimation of the parameters, because estimation methods have an impact

on parameter variability. �us the reference tissue approach (rRTd) can be recommended,

since it is the most robust method when considering the volume-based and the �ow-based

parameters simultaneously.

�e recommendations of the EFSUMB for DCE-US quanti�cation in oncology suggest
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Figure 3-4: Boxplot showing the coe�cients of variation of blood volume parameters (le�)
and blood �ow parameters (right) estimated with the aLN, rLN, aAIFd, rAIFd, and rRTd
models. For each box, the bold line represents the median value, the bottom and top lines
the �rst and third quartiles. Dotted lines extend to the most extreme data points which are
less than 1.5 times the interquartile range. Outlier points are displayed with empty circles.
Two groups of parameters were built (horizontal lines below the parameter names) such
that therewere no signi�cant intra-group di�erenceswhile therewere statistically signi�cant
inter-group di�erences (marked by ∗).

to estimate parameters such as AUC andWIR from explicitly de�nedmodels, e.g. using the

aLNmodel. To reduce the variability of the estimated parameters, Dizeux et al. proposed a

controlled injection system [4]. However, the present study shows that the di�erences be-

tween two consecutive exams are still not negligible for a regional analysis. Since in PET

and DCE-MRI, deconvolution approaches and compartmental models have proved their

e�ciency to make parameters more robust to inter-exam changes, we decided to test some

of these approaches. �e most commonly used methods require the estimation of an ar-

terial input function. Deconvolution approaches were recently proposed to quantify tissue

perfusion in DCE-US [7]. �ese approaches estimate the transfer function of the system

(depending on a large number of parameters), and to avoid aberrant solutions, this estima-

tion needs to be regularized. Following this idea, the one-compartment model with time

delay is a deconvolution depending on three parameters only. When the time delay is set to
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0, (aAIFmodel), we have shown that the quality of �t is worse than the one obtained when

using the explicit aLN model. When introducing a time delay parameter, an option that is

unfortunately generally overlooked [13], a muchmore accurate �t of regional tumor kinetics

was obtained. Indeed, the quality of �t using aLN (depending on four parameters) and this

aAIFdmodel was equivalent in terms of NRMSE.

Our study shows the crucial role of the AIF estimation in the variability of the perfusion

parameters (see Table 3.3). When focusing the �eld of view in themain plane of the tumor, it

can be di�cult to estimate the AIF robustly (see Figure 3-2). Indeed, AIF measurements in

small vessels can be a�ected by partial volume e�ects, yielding underestimation of the signal

intensity. �us coe�cients of variation deduced from the aAIFd model can be high. Note

that some problems could also occur in larger vessels, including non-linearities between

concentration and measured signal, and attenuation artifacts [15].

�e use of relative parameters was suggested to overcome the di�culties of estimating

the AIF for a compartmental model in DCE-MRI [27]. Clinical studies have reported the

interest of estimating normalized perfusion parameters in DCE-US [8, 10, 14]. Using sys-

tematically three models (rLN, rAIFd, rRTd), our study reinforces the interest of estimating

relative parameters. �e choice of a reference tissue region is less critical than the segmen-

tation of an artery. Indeed, a larger structure can be used, reducing segmentation errors and

the impact of partial volume e�ect. Furthermore, as the contrast concentration is lower, the

quanti�cation errors due to non-linearity are reduced. Kidney regions were initially tested

but �nally excluded because of the overlap of cortical, proximal tubular and distal tubular

compartments. Muscular regions that could be delineated on the four exams were �nally

chosen.

Recirculation is a major problem when dealing with modeling techniques adapted to

�rst-pass studies. However, its quantitative impact is reduced in DCE-US when compared

to other modalities since the destruction of microbubbles, in the lungs in particular, makes

the number of microbubbles much smaller in the second pass (and following) than it is in

the �rst pass. We deliberately did not try to model the recirculation, when we chose the aLN

model to �t tumor kinetics or when we �rst �t the AIF using the aLN model. In addition,

using simulated data, we showed that the practical impact on parameters estimation when
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neglecting the recirculation was limited, especially for relative parameters, since the coe�-

cients of variation between parameters estimated with and without simulating the recircula-

tion e�ect were less than the ones estimated through the test-retest studies (this recirculation

e�ect was about 5% on CV values with the rRTd approach).

�e use of normalized parameters induced a signi�cant reduction of coe�cients of vari-

ation in our test-retest study. Furthermore, estimating relative volume and �ow parameters

using equation (3.5), which eliminates the need for an AIF, is more robust than using the

AIF directly. It should also be noted that the small 3D displacements occurring between

the four test-retest studies can partly explain the CV, due to the imperfect spatial alignment

between sub-regions from one exam to the following one.

Figure 3-3 reveals strong correlations between the di�erent parameters computed inside

a same sub-region, and a large variation of these parameters according to the tumor sub-

regions. �us, whatever the model used, all the �ow-based or volume-based parameters

can reveal spatial tumor heterogeneity. However, when it comes to the comparison of lon-

gitudinal exams, it is crucial to have comparable parameter values. �us, the estimation of

relative parameters seem to be themost powerful solution, provided that the reference tissue

characteristics are not modi�ed between exams. Some interesting results have been recently

shown [24] for a longitudinal study using a 3D DCE-US approach. Compared with the 2D

approach, the 3D approach enables assessment of the whole tumor and should be preferred

for tumor monitoring.

3.7 Conclusion

�is study aimed at proposing valuablemodeling ofDCE-US studies to estimate reliable per-

fusion parameters in a murine model of tumor. First, it was shown that a one-compartment

model based on anAIF, and completed by the estimation of a time-delay parameter, could �t

kinetics as closely as the explicit log-normal model. Second, a comprehensive comparison

of the parameters estimated by di�erent approaches was proposed, showing high correla-

tions between the volume-based and �ow-based parameters respectively estimated. Based

on test-retest studies with controlled injections, a large variability (up to 40%) of regional
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perfusion parameters was established due to the inherent variations of experimental and

physiological conditions for the log-normal modeling and to the di�culties in estimating

a correct AIF in the image �eld of view for the compartmental approach. To reduce this

variability, the use of relative values of these regional perfusion parameters was proposed,

requiring in all cases the delineation of a reference tissue region. To estimate these relative

parameters, the reference tissue model proved to be the most reliable computing approach.

�us we recommend the use of this model to estimate reliable relative perfusion parameters.

Appendix

�is appendix gives the numerical results that were obtained for each mouse (m1, m2, m3,

and m4), including mean values and standard deviations of regional parameters (Table 3.4)

and coe�cients of variation of these parameters (Table 3.5).

Absolute parameters Relative parameters

AUC (a.u.) V (%) rAUC (%) rVAIF (%) rVRT (%)

m1 3.47 ± 1.82 8.61 ± 4.31 87.2 ± 37.9 87.6 ± 41.5 85.9 ± 41.2
m2 5.97 ± 2.08 17.6 ± 6.60 11.2 ± 3.19 18.1 ± 6.25 13.2 ± 3.51
m3 6.74 ± 3.51 12.9 ± 6.40 144 ± 81.3 131 ± 73.0 132 ± 75.2
m4 7.90 ± 4.23 21.2 ± 11.6 57.9 ± 30.6 62.3 ± 33.1 59.4 ± 31.6

WIR (a.u. s−1) F (s−1) rWIR (%) rFAIF(%) rFRT (%)

m1 3.30 ± 2.66 4.94 ± 4.07 29.7 ± 23.4 21.9 ± 21.9 27.0 ± 20.3
m2 4.70 ± 3.03 6.49 ± 3.45 17.7 ± 10.2 17.2 ± 8.34 16.1 ± 11.0
m3 4.88 ± 4.19 3.64 ± 2.90 32.9 ± 28.6 36.4 ± 27.7 25.1 ± 21.0
m4 6.63 ± 5.30 5.21 ± 3.59 23.7 ± 19.0 26.4 ± 18.2 18.0 ± 13.6
Delay ∆ (s) d (s) DT−R

LN (s) DT−R
AIF (s) DT−R

RT (s)

m1 5.5 ± 3.4 3.2 ± 4.1 −1.9 ± 3.4 2.7 ± 4.2 3.9 ± 4.7
m2 2.8 ± 2.5 5.7 ± 4.7 0.7 ± 2.4 4.2 ± 4.5 5.3 ± 4.0
m3 3.2 ± 2.8 7.4 ± 5.6 0.4 ± 3.1 3.6 ± 5.5 4.4 ± 5.8
m4 4.4 ± 2.4 7.0 ± 4.6 −0.8 ± 2.3 5.9 ± 4.5 5.6 ± 4.7

Table 3.4: Mean ± standard deviation of the volume, �ow and delay parameters estimated
in the di�erent sub-regions of the tumor, for the four test-retest exams, a�er multiple im-
putation of missing values due to poor �t quality. Values of WIR and F are multiplied by
1000.
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Absolute parameters Relative parameters

CVAUC CVV CVrAUC CVrVAIF CVrVRT

m1 34.7 ± 10.6 30.2 ± 17.1 22.4 ± 14.4 24.6 ± 17.5 24.7 ± 17.3
m2 26.2 ± 6.83 26.7 ± 9.85 15.0 ± 6.51 21.8 ± 9.99 15.3 ± 7.01
m3 31.0 ± 12.3 26.6 ± 10.9 37.2 ± 16.8 35.2 ± 17.8 35.2 ± 18.7
m4 20.7 ± 10.6 23.3 ± 9.93 18.8 ± 8.68 19.0 ± 7.61 17.8 ± 8.17

CVWIR CVF CVrWIR CVrFAIF CVrFRT

m1 42.4 ± 12.4 35.4 ± 12.5 33.4 ± 14.9 75.5 ± 19.9 29.6 ± 13.2
m2 44.4 ± 11.0 34.4 ± 7.23 27.4 ± 10.9 23.4 ± 9.94 33.1 ± 18.7
m3 45.3 ± 18.5 46.9 ± 17.7 50.9 ± 17.7 36.8 ± 16.6 38.3 ± 21.3
m4 34.9 ± 18.9 33.3 ± 17.3 38.3 ± 21.2 27.1 ± 13.7 29.4 ± 15.8

Table 3.5: Mean ± standard deviation of the coe�cients of variation (CV), expressed in
percentage, of volume and �ow parameters estimated for each sub-region a�er multiple im-
putation of missing values due to poor �t quality. CV were not computed for time delays,
since their values can be either positive or negative.
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Chapter 4

Relations between perfusion parameters:

theoretical and experimental

considerations

4.1 Introduction

�is chapter is a complement to the work presented in Chapter 3, and relies on the same

experimental data, mathematical models, and notations. It aims at establishing the rela-

tions between the semi-quantitative perfusion parameters commonly derived from the Log-

Normal model, and the relations between these parameters and the quantitative parameters

of the one-compartment model. �e relations between parameters were �rst established

theoretically, and then experimentally through correlation studies.

4.2 �eory

�is section gives the closed-form expressions of AUC, PE, TTP, MTT ,WIR,WOR, and

TD parameters for the Log-Normal model, aLN (Table 4.1), and for the one-compartment

model, aAIFd (Table 4.2). �e equations of themodels are given in Section 3.4.1 of Chapter 3.

AUC was de�ned as the in�nite integral of the function, PE as the value taken by the

function where its derivative is null, TTP the time where the function derivative is null,
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MTT as the expected value of the function normalized by its AUC, the WIR and WOR

as the derivative of the function where its second order derivative is null, and TD as the

time-delay of the function.

AUC A

TTP eµ−σ 2

PE A e
σ2
2 −µ

σ
√

2π

MTT eµ+ σ2
2

WIR A
σ
√

2π ( y
σ 2 − 1) e

2y−2µ− y2

2σ2 , where y = 3σ 2+σ
√

σ 2+4
2

WOR A
σ
√

2π (1 − z
σ 2 ) e

2z−2µ− z2
2σ2 , where z = 3σ 2−σ

√

σ 2+4
2

TD ∆T

Table 4.1: Closed-form expressions of perfusion parameters using the aLN model, WOR
being the absolute value of the maximum negative slope.

AIF Kδ (t) Krecta (t) CA (t)
AUC KVT KVT VT ∫ +∞0 CA (τ)dτ

TTP 0 a {tP ∣ CT (tP − dT) = VTCA (tP)}

PE KFT KVT
a (1 − e−

aFT
VT ) FT e

−
FT
VT

tP ∫ tP
0 CA (τ) e

FT
VT

τdτ

MTT VT
FT

VT
FT +

a
2

VT
FT +MTTCA

WIR ∞ KFT
a

FT (CA (tI) − 1
VT
CT (tI − dT))

{tI ∣ dCT
dt (tI − dT) = VT

dCA
dt (tI) , dCA

dt (tI) > 0}

WOR KF2T
VT

KFT
a (1 − e−

aFT
VT ) FT (CA (tO) − 1

VT
CT (tO − dT))

{tO ∣ dCT
dt (tO − dT) = VT

dCA
dt (tO) , dCA

dt (tO) < 0}
TD dT dT dT

Table 4.2: Closed-form expressions of perfusion parameters using a one-compartment
model (aAIFd) and assuming three di�erent shapes of AIF: impulse function (δ), rectangle
function of width a and height 1/a, recta(t), and general case CA(t). In the �rst two cases,
K stands for the injected concentration. In the general case, MTTCA stands for the mean
transit time of CA(t).
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AIF Kδ (t) Krecta (t) CA (t)
rAUC VT

VR

VT
VR

VT
VR

rWIR – FT
FR

FT(CA(tI ,T)− 1
VT

CT(tI ,T−dT))

FR(CA(tI ,R)− 1
VR

CR(tI ,R−dR))

{tI,T ∣ dCT
dt (tI,T − dT) = VT

dCA
dt (tI,T) , dCA

dt (tI,T) > 0}
{tI,R ∣ dCR

dt (tI,R − dR) = VR
dCA
dt (tI,R) , dCA

dt (tI,R) > 0}
rTD dT − dR dT − dR dT − dR

Table 4.3: Closed-form expressions of the relative perfusion parameters using a relative one-
compartment model (rAIFd) and assuming three di�erent shapes of AIF: impulse function
(δ), rectangle function of width a and height 1/a, recta(t), and general case CA(t). In the
�rst two cases, K stands for the injected concentration.

4.3 Data Analysis

Coe�cients of determination R2θ i ,θ j
were estimated from the least-squares linear regression

between the 32 regional estimates of parameters θh
i and θh

j , one estimate per sub-region

sh). �ese coe�cients were computed independently for each of the 16 DCE-US studies
(4 mice ml × 4 test-retest studies Rk). A linear regression was also computed between sets

of 512 parameters (the 32 sub-regions of the 16 studies were polled together) to assess the

consistency of the relationships between parameters.

4.4 Results

�e heat maps shown in Figure 4-1 correspond to R2θ iθ j
coe�cients from the linear regres-

sions between pairs of parameters (θ i , θ j). Figure 4-1 (a) shows the R2 coe�cients be-
tween all pairs of parameters derived from the aLN model. It reveals strong linear rela-

tionships between some of the parameters, especially median (R2AUC ,PE), median (R2PE ,WIR),
median (R2WIR,WOR). �e formal non-linear relationships between these parameters (ex-
pressed in Table 4.1) generate high linear links and thus information redundancy. For that

reason we further focused on three derived parameters: AUC, which is related to tissue

blood volume V , according to the closed-form expressions given in Table 4.2,WIR, which

is mainly related to tissue blood �ow F), and the delay parameter ∆. In addition, Table 4.3
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shows the formal relations between the relative value of AUC (rAUC) and WIR (rWIR)

and the parameters of the aAIFd model. It reveals that rAUC and rV are equivalent, and

that rWIR is linearly related to rF in the general case of input function, the proportionality

coe�cient depending on CA (t). �ese theoretical identi�cations were con�rmed experi-
mentally by Figure 4-1 (b) which shows strong linear relationships between volume (�rst 3

rows/columns) and �ow parameters (middle 3 rows/columns). For instance, the linear re-

gressions between AUC, V and rVRT all yielded median R2 values greater than 0.95. �e

same trend is observed forWIR, F and rFRT . �e correlations between volume parameters

and �ow parameters are medium (median (R2V ,F) < 0.50). Finally for the time parameters
(last 3 rows/columns), there is a high correlation between d andD but there is no correlation

between ∆ and the other time delays (median (R2) < 0.15).
Figure 4-1 (c) and Figure 4-1 (d) show the trends observed on �ow and volume param-

eters when pooling parameters issued from all the exams. �ere is a very high correlation

(R2 > 0.95) between the relative volume parameters rAUC, rVAIF , and rVRT and a high

correlation (R2 > 0.75) between the relative �ow parameters rWIR, rFAIF , and rFRT . Corre-

lations are poor (R2 < 0.20) between absolute and relative volume parameters, and medium
between absolute and relative �ow parameters (R2 < 0.55). Since the intra-exam correlations
between volume (resp. �ow) parameters are high, the correlation over pooled data re�ects

the inter-exam consistency of linear regression slopes: it is much higher for relative volumes

(or �ows) than for absolute volumes (or �ows). Figure 3-3 from Chapter 3 illustrates this

trend for one speci�c mouse (m1).
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Figure 4-1: (a-b) Median (of 16 values) coe�cient of determination (R2) of the least-squares
linear regression between pairs of parameters (θ i , θ j) computed for the 32 sub-regions of
one exam: (a) parameters derived from the aLN approach; (b) volume (AUC, V and rVRT),
�ow (WIR, F and rFRT) and time delay (∆T , dt and DRT) parameters respectively com-
puted with aLN, aAIFd and RTd models. (c-d) Coe�cients of determination (R2) of the
least-squares linear regression computed when pooling the 512 sub-regions together: (c)
R2 between pairs of volume parameters computed with aLN, aAIFd, rLN, rAIFd and RTd
models, (d) R2 between pairs of �ow parameters computed with aLN, aAIFd, rLN, rAIFd
and RTdmodels.
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4.5 Discussion

�eequations given inTable 4.1 were used inChapter 3, and later in this thesis, to analytically

derive the perfusion parameter values from the �tted Log-Normalmodel, therefore avoiding

numerical approximations.

Interestingly, Figure 4-1 reveals strong correlations between the parameters estimated by

the various approaches, however Figure 3-3 shows large variations of the regression slopes

between exams. �us all the parameters can be used to assess spatial tumor heterogeneity.

However, when it comes to the comparison of longitudinal exams, it is crucial to have com-

parable parameter values. �us, relative parameters seem to be the most powerful solution,

provided that the reference tissue can be de�ned in each exam, and that its characteristics

are not modi�ed between successive exams.

Some studies stated that AUC is related to tissue blood �ow, this theoretical and exper-

imental study demonstrates its relation to tissue blood volume instead.

4.6 Conclusion

A comprehensive comparison of the parameters estimated by di�erent approaches was pro-

posed, showing high correlations between the volume-based and �ow-based parameters re-

spectively estimated.



A�erword

�e analytical expression of the area under the curve reveals its straightforward relation

with the fractional blood volume. �is semi-quantitative parameter is proportional to the

physiological parameter, and can be used for relative comparison of tissues observed in a

single exam. Furthermore, using the normalized area under the curve successfully corrects

for the inter-exam variations, and therefore makes the comparison more robust.

�e relation of the wash-in rate with the tissue blood �ow ismore complex, andwhile the

normalized parameter is analitically and empirically proportional to the normalized blood

�ow, the slope of the relation varies from one experiment to another. �is explains the

weaker improvement observed in terms of reproducibility for the normalized wash-in rate

compared to the absolute value.

�is study reveals the sensitivity of the arterial measurement to segmentation. Indeed,

arterial regions exhibiting both small areas and high signal intensities, small changes in the

segmentation can result in large changes in the mean arterial curve. In addition, a log-

normalmodelwas �tted to the arterial curve for noise-�ltering prior to quanti�cation. Given

the noise level in those high intensity regions, the �tted curve is likely biased. Absolute

perfusion parameters were strongly a�ected by varyiation of the segmented artery region,

however relative parameters exhibited a better agreement.

�is formulation of the reference tissue model introduces an unidenti�able parameter,

i.e. the rate constant in the reference tissue. In this study, this parameter was given the

mean value obtained with the one-compartment model using the arterial measurement.

And while the estimated parameters are most likely biased depending on the discrepency

of the �xed parameter value with its actual value, direct estimation of relative perfusion pa-

rameters was the most robust approach in our study. In the next part of this thesis, a linear



130
CHAPTER 4. RELATIONS BETWEEN PERFUSION PARAMETERS: THEORETICAL AND EXPERIMENTAL

CONSIDERATIONS

formulation of the reference tissue model is presented to address this issue, along with a

regularized estimation scheme to improve parameter reproducibility and comparability.
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Part III

Proposition and assessment of a new

quanti�cation method





Foreword

Chapter 3 revealed the superior reproducibility of the relative perfusion parameters esti-

mated by the reference tissue model. However, as discussed in the a�erword of the sec-

ond part of this thesis, the formulation of the reference tissue model used in this study was

achieved using a �xed value of parameter kR,i.e. the rate constant characterizing the time-

intensity curve in the reference tissue. In the third and last part of this thesis, we propose

a linear formulation of the reference tissue model alleviating the need for a �xed value of

kR [6], and assess it using both experimental and simulated data.

Using the linear formulation for regional analysis, i.e. includingmultiple regions of inter-

est, a di�erent value of parameter kR should be estimated for each region. Such discrepancies

in the values of kR can also a�ect the value of the other perfusion parameters. �is issue is

further discussed in Chapter 5, where a new regularized estimation method ensuring a sin-

gle value of kR is estimated for all the regions of interest of an exam. �e reproducibility of

the linear resolutionmethod and of the proposed regularized method are assessed using the

same test-retest experiments as presented in Chapter 3, and compared to the absolute and

normalized parameters of the Log-Normal model, i.e. AUC, rAUC,WIR, rWIR. �is work

was published in the proceedings of the IEEE International Ultrasonics Symposium (IUS) [9].

�e reviewers of [9] raised an interesting question regarding the impact of recircula-

tion on the perfusion parameters estimated in our contrast-enhanced ultrasound test-retest

study. Chapter 6 addresses this issue in depth and studies the impact of recirculating mi-

crobubbles on the accuracy and precision of the perfusion parameters through a simulation

study. A simple recirculation model was used, it was however able to re�ect the various

passes of the bolus, as well as its dispersion and attenuation. An intuitive approach to limit

the impact of recirculation consist in �tting the model to the part of data acquired before
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recirculation occurs, thus a classical and a cropped version of the Log-Normal model were

assessed. Oppositely, compartmental models are build to account for recirculation. �e ro-

bustness of the linear reference tissue model and of its regularized version to recirculation

was assessed. A revised version of this work was submitted to Innovation and Research in

BioMedical Engineering (IRBM) [8].

Chapter 7 formally details the linear and regularized estimation methods to solve the

reference tissue model. It provides a full development of the method proposed in [10]. In

addition, this Chapter aims at evaluating the sensitivity of perfusion parameters to varying

data characteristics, and analysis method settings. In particular, the impact of acquisition

duration, acquisition frequency, noise amplitude, number of regions used for the regulairza-

tion, as well as the characteristics of the reference tissue were investigated. In order to pro-

vide a ground truth, synthetic data based on preclinical experiments was generated using a

one-compartment model. �is Chapter is an extended version of a paper that we planned

to submit toMedical Image Analysis.

N.B. All the references cited in this part of the thesis are pooled together and presented at the end of
Part III.



Chapter 5

Regularized Linear Resolution of a

One-Compartment Model to Improve the

Reproducibility of Perfusion Parameters

in CEUS

5.1 Abstract

Contrast-enhanced ultrasound (CEUS) has been proposed to monitor tumor therapy, in

complement to size measurements. Estimating reliable perfusion parameters from CEUS

studies is essential in order to propose adapted therapy options according to the parame-

ter values. �e variability of these parameters was assessed in an ideal case of consecutive

test-retest CEUS studies, in a mouse tumor model. �e impact of mathematical modeling

on parameter variability was investigated on these data. Four models were compared in 32

tumor sub-regions : the log-normal model (LN), the relative LN model (rLN) where pa-

rameters of LN are normalized by the parameters estimated inside a reference tissue (RT)

region, a linear resolution of a one-compartment model based on the RT (rLin), a modi�ed

version of rLin implementing regularization (rLinReg) to ensure coherent results between

the di�erent sub-regions of the tumor. Results show that LN model had highest coe�cients
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of variation. �e positive impact of normalization using RT (rLN) was established, show-

ing reduced coe�cients of variation. �e rLin approach showed large variations especially

for �ow parameters. Its regularization version, rLinReg, greatly improved parameter re-

producibility while providing coherent results between the sub-regions. In conclusion,the

rLinReg approach provided the smallest coe�cients of variations and should be preferred

for estimating perfusion parameters in CEUS.

5.2 Introduction

Reliable quanti�cation of tumor perfusion is a challenging, yet necessary, milestone to reach

in order to e�ciently monitor tumor growth and treatment e�ciency. Contrast-enhanced

ultrasound (CEUS) is a non-invasive tool allowing real-time quantitative vascular imaging:

for every sampling time and every pixel in the image, the linearized signal intensity is pro-

portional to the concentration of contrast agent for low concentrations.

Recommendations for the quanti�cation of CEUS studies rely on explicit modeling of

time-intensity curves (TICs), e.g. using a log-normalmodel [7]. �en, semi-quantitative pa-

rameters are usually derived directly from themodeled TIC, e.g. area under the curve (AUC)

and wash-in rate (WIR). �ese parameters are directly a�ected by inter-exam changes oc-

curring either in physiology, e.g. heart rate, blood pressure, or in experimental conditions,

e.g. injected quantity, or injection speed [18]. Controlled injections and compartmental

modeling have been proposed to reduce this variability [10]. To overcome the issues re-

lated to the estimation of a correct arterial input function, the use of a reference tissue (RT)

region (e.g. [6]) has been successfully tested [10]. In the present study, a linear formulation of

the one-compartment model is presented and evaluated. �is formulation allows the eval-

uation of an otherwise unidenti�able parameter, characterizing the RT region, which value

had to be set arbitrarily to 0.15. To prove the interest of this new approach, the coe�cients

of variation of perfusion parameters estimated at a regional scale were compared using four

di�erent approaches: 1) the log-normal model (LN), 2) the relative LN model (rLN), where

parameters are normalized by the (LN) parameters estimated inside the RT region, 3) a lin-

ear resolution of the one-compartment model based on the RT region (rLin), 4) a modi�ed



5.3. MATERIALS 143

version of rLin implementing regularization (rLinReg) to ensure a coherent estimation of

the ratio between blood �ow and blood volume in the RT region when taking into account

the di�erent sub-regions in the tumor.

5.3 Materials

5.3.1 Animals

All experiments were conducted in accordance with the institutional guidelines and the rec-

ommendations for the care and use of laboratory animals. �ey were based on a murine

model ofMurine Colon Carcinoma (CT26). Tumor fragments (20-40mm3) were implanted

24 days prior to the CEUS acquisitions in the right �ank of Balb/C mice. Anesthesia was

maintained during the whole acquisition through a face mask delivering 2% iso�urane in

air delivered at a 1 L/min rate.

5.3.2 Image acquisition

Tumors were imaged in their largest cross-section plane, mice motion was limited using

surgical tape securing animal position during and between acquisitions. A controlled injec-

tion system was used to inject, at a rate of 4.5 mL/min, a 50 µL bolus of SonoVue (Bracco

Suisse SA, Geneva, Switzerland) diluted to 20%. Meanwhile, dynamic contrast-enhanced

US sequences were acquired using a 15L8W transducer coupled to a Sequoia 512 US system

(Acuson, Siemens, Mountain View, CA, USA) in dual-mode, i.e. anatomical B-Mode along

with Contrast Pulse Sequencing (CPS) images. Mechanical index was set to 0.1, dynamic

range to 80 dB, and time gain compensation was applied. �e frame rate was set to 3 Hz

during the �rst 30 seconds (including the wash-in phase and the beginning of the wash-out

phase), and 1 Hz for the remaining time.

For the fourmice in the study, four consecutive (test-retest) data-setswere acquiredwith-

out anymodi�cation in the setup. Fi�eenminute breakswere observed between acquisitions

to ensure the disruption of previously injected micro-bubbles.
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Figure 5-1: Illustration of the data pre-processing steps. Le�: �e contours of the perfused
tumor area have been overlaid on a contrast-enhanced image (in blue color). �is area was
automatically divided into 4 radial layers and 8 angular sectors as shown by the spiderweb
patterns. A RT region (in orange color) was also delineated. Right: Mean TICs associated
with the perfused area of the tumor, and the RT.

5.4 Methods

5.4.1 Data pre-processing

Linear echo-powerTICswere calibrated from log-compressed video data using a laboratory-

made so�ware. Both probe and animal motion were assumed negligible for the selected

sequences.

Tumors (herea�er labeled with subscript T) were segmented on the B-Mode images and

the non-perfused areas were removed for data analysis. In order to preserve the signal-

to-noise-ratio (SNR) of the TICs while revealing the spatial heterogeneity of the tumor, a

regional analysis of the tumor area was performed. �e perfused tumor region was divided

into NT = 32 sub-regions according to 4 radial layers and 8 angular sectors (Figure 5-1).
�en mean regional TICs C i

T(t), for i = 1, ...NT were computed. As three of the four quan-

ti�cationmethods require the selection of a RT region, for eachmouse, this RT region (here-

a�er labeled with subscript R) was chosen to be easily identi�able on the di�erent test-retest

studies. A muscular region close to the kidney was generally selected, the renal cortex being

excluded from the RT region due to the complexity of perfusion patterns observed inside

this structure.

Finally for each sub-region, a time delay parameter, Di , representing the time of arrival



5.4. METHODS 145

of the contrast agent in the considered region, was estimated as follows:

Di =maxt
d2

dt2
(C i

T ∗W ∗W), (5.1)

where W is an average �lter with a �xed width empirically set to 2.0 seconds. Using this

speci�c time delay, all regional TICs were registered in time for subsequent analysis.

5.4.2 De�nition of the four models

Log-Normal model (LN)

�is method based on the log-normal distribution was recommended by the EFSUMB for

quanti�cation of tumor perfusion in clinical studies [7]. �e TIC inside the i th region of the

tumor, C i
T(t), is �tted according to equation (5.2):

C i
T(t) = Ai

T
√

2πσ i
T t
exp(− [ln(t)−µ iT]

2

2σ i
T
2 ) if t ≥ 0,

= 0 otherwise.
(5.2)

Regional parameters Ai
T , µ i

T , and σ i
T were estimated for each sub-region. Semi-quantitative

parameters are then derived from the model, including AUC i andWIR i . �ese parameters

depend, in a non-linear way, on the parameters of the LN model, Ai , µ i , and σ i . Relations

have been established, both analytically and experimentally, between parameters derived

from the LNmodel and physiological parameters, showing AUC i is related to blood volume,

andWIR i to blood �ow [10].

Normalized log-normal model (rLN)

Regional relative parameters: rAUC i and rWIR i were derived from the parameters esti-

mated with the (LN) model in the tumor sub-regions (AUC i
T ,WIR i

T) and those estimated

in the RT region (AUCR,WIRR). �ey were de�ned as follows:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

rAUC i = AUC i
T/AUCR ,

rWIR i =WIR i
T/WIRR .

(5.3)
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Simple one-compartment model (rLin)

�e resolution of the one-compartment model follows the graphical analysis technique in-

troduced by Patlak et al. for the quanti�cation of irreversible tracers in PET. �e method,

based on compartmental modeling, estimates blood-related physiological parameters by

means of linear regression, assuming the arterial input function (AIF) is known [16]. �is

linear approach is generalized to reversible tracers [13]. �ese approaches have also been

adapted to relax the need for blood sampling or AIF measurement and the kinetics inside

a RT region was then used (see for instance [6]). �is resolution was adapted to CEUS

data, considering the ultrasound contrast agent is strictly intra-vascular. Considering a one-

compartment model to describe �ow exchanges inside the tissue, the following equations

can be written for each sub-region, i = 1, . . . ,NT :

dC i
T (t)
dt

= F i
T .CA (t) − F i

T
V i
T
C i

T (t) . (5.4)

In (5.4) CA (t) represents the arterial input function feeding the tissue, while V i
T stands for

the fractional blood volume, and F i
T for the blood �ow in the sub-region i.

Considering jointly the TIC inside the RT region and the TICs in the tumor, and assum-

ing a common feeding input for the RT region and the tumor, we have the following set of

equations:
⎧⎪⎪⎪⎨⎪⎪⎪⎩

dCR(t)
dt = FR .CA (t) − FR

VR
CR (t) ,

dC i
T(t)
dt = F i

T .CA (t) − F i
T

V i
T
C i

T (t) ,∀i .
(5.5)

Rearranging the �rst equation, CA (t) can be isolated and expressed as a function of
CR (t), and then replaced by its new expression in the NT following equations, yielding the

next system:
⎧⎪⎪⎪⎨⎪⎪⎪⎩

CA (t) = 1
FR
dCR(t)
dt + 1

VR
CR (t) ,

dC i
T(t)
dt = F i

T
FR
dCR(t)
dt + F i

T
VR
CR (t) − F i

T
V i
T
C i

T (t) .
(5.6)

A�er integration over time (from 0 to t), and de�nition of the parameters rF i = F i
T/FR ,

rV i = V i
T/VR, and k iT = F i

T/V i
T , the last equations of the system become:

C i
T (t) = rF iCR (t) + rV ik iT ∫ t

0
CR (τ)dτ − k iT ∫ t

0
C i

T (τ)dτ. (5.7)



5.4. METHODS 147

For each sub-region i, a sub-system of N linear equations (5.7) is computed, obtained for

N successive values of t. N is the total number of dynamic frames. Solving this sub-system

of N linear equations, the parameters rF i , rV i , and k iT can thus be estimated in the least-

squares sense. Using this approach, the NT linear equations corresponding to the di�erent

sub-regions are thus solved independently.

Regularization of the one-compartment model (rLinReg)

Using the previously described rLin model, NT di�erent values of kR = FR/VR can be de-

rived, using the estimation of rF i , rV i , and k iT and the relation between the four parameters:

kR =
FR
F i
T

F i
T

V i
T

V i
T

VR
= rV i .k iT

rF i for i = 1, . . . ,NT . (5.8)

As the kR values do not depend on sub-region i, the simple estimation proposed by rLin can

introduce some inconsistencies kR and possible biases in some rF i , rV i , and k iT values. To

solve this issue, and consider one single value for kR (whatever the number of sub-regions

in the tumor), the regularized approach solves the system of equations (Eq. 5.7), under the

following constraints:
rV i .k iT
rF i = K , ∀i = 1, . . . ,NT , (5.9)

where K is a constant (equal to kR). �e system is solved globally for the NT sub-regions.

Brie�y, the value of kR is successively modi�ed, thus providing a unique least-squares solu-

tion for the 3NT parameters (rF i , rV i , and k iT), until the optimization of the �t for the whole

set of NT sub-regions.

5.4.3 Data analysis

For each model, a vector (Θ) ofM perfusion parameters (θm) was estimated in each tumor

sub-region (i = 1, . . . , 32) of each mouse ( j = 1, . . . , 4) for each repeated acquisition (k =
1, . . . , 4), providing 512 results of curve �tting, Θi j

k , per model. �e �t quality was assessed

quantitatively, using the fraction of modeled information, FMI, according to [1].

�e reproducibility of the perfusion parameters was then deduced for each sub-region of
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each mouse by computing coe�cients of variation CV(θm)i j de�ned for the four repeated
studies, as the ratio between the standard deviation and the mean value µ i j

m of the parameter

(θm)i jk :

CV(θm)i j =

√
1
4∑

4
k=1((θm)i jk − µ i j

m)2

µ i j
m

. (5.10)

Parameters corresponding to poor quality �ts (FMI > 90%) were replaced using multi-
variate imputation by chained equations with the R module {mice} [21]. �is strategy was

de�ned to compute the CV using four values systematically.

Statistical tests were �nally applied to compare the CV of the parameters estimated using

the four models. Signi�cant di�erences in the CV distributions were assessed using the

Friedman test and the associated post-hoc analysis for multiple comparisons. Distribution

means were considered as signi�cantly di�erent when p-values were less than 0.05.

5.5 Results

Model LN rLN rLin rLinReg

FMI 99.3% 99.3% 98.8% 98.1%
Nrem 28 28 1 39

Table 5.1: Median values of FMI obtained for the four models and number of sub-regions
Nrem, out of 512, for which FMI < 90%.

Table 5.1 shows themedian values of the FMI obtained for the fourmodels and the num-

ber of regions excluded from further statistical analysis because of bad �t quality.

Figure 5-2 displays a boxplot of the 128 coe�cients of variation of blood volume param-

eters and blood �ow parameters obtained for the four models LN, rLN, rLin, and rLinReg.

�e p-values obtained a�er the post-hoc analysis of the Friedman test are shown in Ta-

ble 5.2, signi�cant di�erences in parameter distributions are emphasized in bold.

In terms of blood volume parameters, the LNmodel is the most variable with a median

value of the coe�cient of variation (CV) equal to 28.5%. Using the rLinmodel, the median

CV tends to be lower (22.2%), however the di�erence is not statistically signi�cant. Models
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Figure 5-2: Boxplot showing the CV of blood volume (le�) and blood �ow (right) estimated
with the LN, rLN, rLin, and rLinRegmodels.

Volume parameters Flow parameters

rLinReg rLin rLN rLinReg rLin rLN

LN 0.001 0.1 0.003 7 × 10−6 0.96 0.74
rLN 0.995 0.73 5 × 10−4 0.49
rLin 0.52 8 × 10−7

Table 5.2: p-values obtained in the post-hoc analysis of the Friedman test. Signi�cant results
(p < 0.05) in bold.

rLN and rLinReg yield signi�cantly more reproducible blood volume parameters than LN,

with median CV values of 20.0% and 19.7%, respectively. For the blood �ow parameters,

models rLin and LN appear to the most variable parameters with medians of CV equal to

40.8% and 39.6%, respectively. �e rLNmodel tends to yield lower CV, with a median value

of 34.1%. Finally the mean CV of blood �ow using the rLinRegmodel is equal to 29.4%. It

is signi�cantly lower than the CV of blood �ow obtained with the three other models.

5.6 Discussion

�e number of sub-regions was chosen to reveal some spatial heterogeneity in the vascular

network of the tumor, while ensuring regions were large enough to guarantee reasonable
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signal to noise ratios in regional TICs. Increasing the number of regions would reveal spatial

heterogeneity more �nely, at the expense of the accuracy of the estimates.

Both physiological and experimental variations get in the way of accurate quanti�cation

and exam comparison, a�ecting blood circulation, as well as measurements accuracy [18].

�e semi-quantitative parameters of the LNmodel, recommended for tumor quanti�cation,

were found highly sensitive to inter-exam changes in our study and resulted in the least

reproducible parameters.

When compared to the LN model, the normalized version, the rLN model reduces the

variability of parameters. If the reduction of variability for blood �ow parameters was not

statistically signi�cant, it was signi�cant for blood volume parameters. �us normalization

using a RT region has a real potential to improve exam comparison.

Similarly to the rLN approach, the rLin model uses the RT region, but in addition, it

assumes a one-compartment model to describe contrast exchanges between large vessels

and micro-vascular areas in tissue. �e �rst resolution method, which was tested in the

present study and proposes to estimate three unknown parameters per sub-region, yields

highly variable parameters, especially in terms of blood �ow. However, the median CV of

blood volume was reduced when compared to AUC CV, estimated with the LNmodel. �is

method was implemented in a naive way, resulting in inconsistent values of parameter kR in

the di�erent tumor sub-regions.

�e rLinRegmodel was built to overcome these inconsistencies, ensuring a single value

of kR. Enforcing a common value of kR in sub-regions comes down to impose a �xed ratio

between the �rst and second terms of Eq. 5.7. �e number of degrees of freedomwas thus re-

duced. �e combined use of normalization through a RT region and regularization respects

the compartmental modeling paradigm while yielding the most reproducible parameters in

our study.

5.7 Conclusion

Using the LN model, derived parameters have high coe�cients of variation. �e positive

impact of normalization using a reference tissue region on parameter reproducibility was
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established. �e rLinReg approach takes into account the di�erent sub-regions involved in

the quanti�cation, yielding a single value of parameter kR common to all tumor sub-regions.

In addition, this spatial regularization signi�cantly reduces coe�cients of variations of the

blood �ow parameter and should therefore be preferred to estimate spatially-distributed

perfusion parameters.

Appendix

5.8 One vascular compartment model (OVC)

A vascularized tissue is considered an homogeneous compartment fed by an artery. �e

vascular compartment is parameterized by tissue blood volume V , and tissue blood �ow F,

since the distribution of microbubbles is restricted to the vascular space [10, 11]. Figure 5-3a

shows a diagram representing the structure of the model. An additional time-delay param-

eter D, re�ecting the transit time of the contrast agent from the feeding artery to the tissue

of interest, was introduced to describe experimental data more accurately, thus avoiding a

bias in the estimation of the vascular parameter. Figure 5-3b shows a diagram of the time-

delayed one-compartment model. �e mathematical expression of this model is given by

Equation (5.12):

Ċ (t − D) = F ⋅ CA (t) − F
V ⋅ C (t − D) , ∀t ≥ D,

= 0 otherwise.
(5.11)

where CA is the arterial input function, C is the modeled TIC inside the tissue of interest,

and Ċ is the time derivative of C. �is equation integrates as

C (t) = F ∫ t

0
CA (τ) e− F

V (t−D−τ)dτ,∀t ≥ D, 0 else. (5.12)

Given an AIF CA(t), and the set of three perfusion parameters V , F, and D, the associated
TIC C(t) can be simulated.
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Relative OVCmodel (rOVC)

A relative OVC model can be derived from the previously presented OVC model, consid-

ering conjointly one tissue of interest with TIC C i
T(t), and one reference tissue with TIC

CR(t):
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ĊR (t − DR) = FR ⋅ CA (t) − FR
VR
⋅ CR (t − DR) , ∀t ≥ DR ,

= 0 otherwise ;

Ċ i
T (t − D i

T) = F i
T ⋅ CA (t) − F i

T
V i
T
⋅ C i

T (t − D i
T) , ∀t ≥ D i

T ,

= 0 otherwise.

(5.13)

�e �rst equation of the system of equations (5.13) can be rearranged as

CA(t) = 1
FR ⋅ ĊR(t − DR) + 1

VR
⋅ CR(t − DR) ∀t ≥ DR ,

= 0 otherwise.
(5.14)

Figures 5-3c and 5-3d respectively show a diagram of the rOVC model in case of a single

tissue of interest, and in case of NT tissues of interest.

Replacing CA(t) in the second equation of system (5.13) by its expression in equation
(5.14), Ċ i

T(t) can be expressed as

Ċ i
T (t − D i

T) = F i
T

FR ⋅ ĊR (t − DR) + F i
T

VR
⋅ CR (t − DR)

− F i
T

V i
T
⋅ CT i (t − DT i) , ∀t ≥ D i

T ,

= 0 otherwise.

(5.15)

De�ning the relative �ow as rF i = V i
T/VR, the relative volume as rV i = V i

T/VR, and the rate

C
A
(t) C

T
(t)

F
T

k
T
 = F

T
 / V

T

Figure 5-3a: One-compartment model.
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constant in the ith tissue of interest as k iT = F i
T/V i

T , the previous equation rewrites

Ċ i
T (t − D i

T) = rF i ⋅ ĊR (t − DR) + rV i ⋅ k iT ⋅ CR (t − DR)
−k iT ⋅ C i

T (t − D i
T) , ∀t ≥ D i

T ,

= 0 otherwise.

(5.16)

Assuming initial concentrations are equal to zero in both tissues, Ċ i
T in Eq. 5.16 integrates

in exponential form [23], yielding

C i
T (t − D i

T) = rF i ⋅ (kR − k iT) ⋅ ∫
t
0 CR (τ − DR) ⋅ e−k

i
T ⋅(t−DR−τ)dτ

+rF i ⋅ CR (t − DR) ∀t ≥ D i
T ,

= 0 otherwise,

(5.17)

where kR = FR/VR is the rate constant in the reference tissue.

Using such a formulation, Equation (5.17) is not linearly solvable. A non-linear resolu-

tion method must therefore be used in order to estimate vascular parameters rF i , rV i , k iT ,

and kR, in each of the NT tissues of interest, as well as the time-delay parameters D i
T , and

DR. �is approach has been investigated in Chapters 3 and 4, andwas therefore not included

in the study. Instead we used the linear formulation presented in the following Section.

C
A
(t)

F
T

k
T
 = F

T
 / V

T

Δ
T

C
T
(t)

Figure 5-3b: One-compartment model with additional time-delay parameter.
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Figure 5-3c: Block diagram of the relative one-compartmentmodel in case of a single region
of interest.
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Figure 5-3d: Block diagram of the relative one-compartment model for regional quanti�ca-
tion.
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Linear resolution of the rOVCmodel (rLin)

Alternatively, under similar assumptions, Ċ i
T in Eq. 5.16 can be integrated over time, yielding

the following expression of C i
T [6]

C i
T (t − D i

T) = rF i ⋅ CR (t − DR) + rV i ⋅ k iT ⋅ ∫
t
0 CR (τ − DR)dτ

−k iT ⋅ ∫
t
0 C i

T (τ − D i
T)dτ, ∀t ≥ D i

T ,

= 0 otherwise.

(5.18)

Assuming time delay parametersD i
T andDR are estimated beforehand using themethod

presented in Section 5.8, TICs can be time-shi�ed, mimicking an ideal case with no delay in

bolus arrival. Variables x i (t), y i (t) are time-shi�ed versions of the TIC in the ith tissue of
interest and its integral. �ey are de�ned ∀t ∈ [0, L − D i

T], as

x i (t) = C i
T (t + D i

T) ,
y i (t) = − ∫ t

0 C i
T (τ + D i

T)dτ.
(5.19)

Similarly, variables u (t), v (t) are time-shi�ed versions of the reference TIC and its integral.
�ey are de�ned ∀t ∈ [0, L − DR], as

u (t) = CR (t + DR) ,
v (t) = ∫ t

0 CR (τ + DR)dτ.
(5.20)

Eq. 5.18 can be interpreted as an overdetermined system of NS linear equations [4],

i.e. one equation for each time sample t. It can therefore be written

x i (t) = a i ⋅ u (t) + b i ⋅ v (t) + c i ⋅ y i (t) ∀t ≥ D i
T , (5.21)

where coe�cients a i , b i , and c i are de�ned as

a i = rF i , b i = rV i ⋅ k iT , c i = k iT . (5.22)

�e system can be solved using a linear least-squares resolution method, yielding esti-
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mates of parameters a i , b i , and c i by minimization of the squared �t error εi

argmin
{a i ,b i ,c i}

εi , where εi = ∑
t
(x i (t) − a i ⋅ u (t) − b i ⋅ v (t) − c i ⋅ y i (t) )

2
. (5.23)

Vascular parameters of the rLinmodel can then be derived easily using

rF i = a i , rV i = b i/c i , and k iT = c i . (5.24)

�e linear resolution of the rOVCmodel will be referred to as rLin in the following. For

the case of a single region, NT = 1, the rLinmodel is equivalent to the method proposed by
Cárdenas-Rodríguez et al. [6].

Regularized linear resolution of the rOVCmodel (rReg)

Estimating rF i , rV i , and k iT in NT tissues using the rLinmodel, NT values of parameter kR
can be derived as a linear combination of the rLinmodel parameters:

kR =
FR
F i
T

F i
T

V i
T

V i
T

VR
= rV i ⋅ k iT

rF i = b i

a i (5.25)

When there are more than one tissue of interest (NT > 1), NT values of parameter kR
can be derived from the parameters of the rLin model. However, these NT values of kR
characterize the same reference tissue, associated to a single reference TIC CR (t). A unique
value of kR should therefore be estimated per exams in order to avoid discrepancies between

the NT tissues of interest.

�e linear relation between parameters of the rLin model provided by Eq. 5.25 can be

used as a constraint to ensure the NT derived values of kR are consistent across tissues. Sub-

stituting in Eq. 5.21 yields

x i (t) = a i ⋅ (u (t) + kR ⋅ v (t)) + c i ⋅ y i (t) , (5.26)

which rewrites

x i (t) = a i ⋅w (t) + c i ⋅ y i (t) (5.27)
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where w (t) is de�ned by

w (t) = u (t) + kR ⋅ v (t) ,
= CR (t − DR) + kR ⋅ ∫ t

0 CR (τ − DR)dτ.
(5.28)

When a value of parameter kR is provided, the NT linear system equations de�ned in

Eq. 5.26 are independently solvable using a linear least-squares resolution method, mini-

mizing the squared error, e i :

argmin
{a i ,c i}

e i , where e i = ∑
t
(x i (t) − [a i ⋅w (t) + c i ⋅ y i (t)] )

2
. (5.29)

Since the value of kR is necessary to de�ne w (t), its value must be determined. We pro-
posed a non-linear iterative optimization scheme that estimates the value of kR by iteratively

minimizing the normalized mean squared error, E:

argmin
kR

E , where E = ∑
i

√
e i/N i

S

∣x i (t)∣∞
, (5.30)

N i
S being the number of samples in x i(t), i.e. the number of time samples verifying t ∈

[0, L − D i
T], and ∣x i (t)∣∞ is the uniform norm of x i (t) de�ned as the maximum absolute

value in the regional time-shi�ed curve. Vascular parameters were then derived from the

model estimates as

rF i = a i , rV i = kR ⋅ a i

c i
, and k iT = c i . (5.31)

Estimation of time-delay parameters

As stated in the presentation of the rLin and rRegmodels, time-delay parameters are known

beforehand, and TICs shi�ed in time in order to correct for time-delays prior to solving the

linear system of equations. �e determination method of the time-delay parameter, noted

D, of a generic TIC, noted C (t), was de�ned in order to determine the time of arrival of the
�rst microbubbles in the tissue of interest. �is is a di�cult task because of the noise present

in data. We propose here an empirical estimation method adapted to contrast-enhanced

ultrasound data.
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Figure 5-4: Top: original C(t) (blue dots) and noise �ltered C f (t) (orange line) time-
intensity curves, the horizontal line shows the 20% ofmaximum intensity threshold, and the
vertical line shows t20%. Middle: �ltered time-intensity curve C f (t) (orange line) cropped
to t ≤ 20%, and the tangent to C f (t) with maximum upslope gradient for t ≤ t20%, and
the vertical line shows the estimated time delay D. Bottom: gradient of the cropped noise
�ltered time-intensity curve Ċ f (t) (pink line), the horizontal black line shows the 20% of
maximum gradient threshold, and the vertical line shows the estimated time-delay D.

C (t) was noise-�ltered twice by a moving-average �lter of width 2 seconds, yielding
C f (t). �e time t20% at whichC f (t) reaches 20% of itsmaximumvalue sets an upper bound
of D. C f (t) was then truncated, keeping only the part where t ≤ t20%. �e derivative of

C f (t), noted Ċ f (t), was approximated by convolution of the TICwith the central di�erence
operator [22]. Finally, assuming no oscillation occurred in the TIC prior to bolus arrival, D

was de�ned as the time at which the derivative Ċ f (t) reaches 20% of its value at t = t20%:

D ≤ t20% ∧ Ċ f (D) = 0.2 × Ċ f (t20%) . (5.32)

Figure 5-4 illustrates the time-delay estimation process on an example contrast-enhanced

ultrasound time-intensity curve.



Chapter 6

Impact of Recirculation in Dynamic

Contrast-Enhanced Ultrasound: a

Simulation Study

6.1 Abstract

Objectives�e impact of recirculation on the quanti�cation of perfusion is o�en neglected.

It can however introduce a bias or some variability in the estimation of perfusion param-

eters and thus hamper comparison between exams. Methods Time-intensity curves (TICs)

were simulated using a one-compartment model fed by an arterial input function (AIF). A

simple model was developed to simulate recirculation in the AIF. Using AIF with and with-

out recirculation, and sets of regional perfusion parameters, TICs corresponding to di�erent

tissue regions were simulated by convolution of the AIFs with the transfer function associ-

ated to each region. 150 simulations for each of the 10 noise levels were then computed. For

each simulated study, six quanti�cation methods based on either Log-Normal modeling or

relative compartmental modeling were tested. Variations of the conventional Log-Normal

model were also investigated, including using parameters estimated in a reference tissue for

normalization purposes, and �tting only the �rst phase of the TIC to avoid recirculation. Re-

sults�e impact of recirculation varies according to the quanti�cation method. Restricting
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parameter estimation to the �rst samples of the TICs, before recirculation occurs, appears

to be the worst strategy. Errors are largely minimized when using a reference tissue to estab-

lish relative parameters. �e most robust approach is the compartmental modeling based

on a reference tissue and applied to multiple regions with a regularization constraint. Con-

clusion�is simulation study demonstrates the in�uence of recirculation on the estimation

of perfusion parameters. To reduce the impact of this unavoidable e�ect, the quanti�cation

method based on compartmental modeling and using a reference tissue appear to be the

most reliable strategy.

6.2 Introduction

With the advent of contrast agents, perfusion imaging has been developed for di�erentmed-

ical imaging modalities, including PET, CT, MRI, and more recently ultrasound. Perfusion

parameters including regional tissue blood volume and tissue blood �ow are functional in-

dices which can help in the diagnosis of some vascular abnormalities, such as ischemia.

Vascular modi�cation in tumors is also a key application of perfusion imaging and can be

used in order to assess tumor diagnosis or tumor monitoring [7].

A widely used approach to estimate perfusion parameters relies on bolus injections of

contrast agent and dynamic recording of frames. However the quanti�cation of signal and

the estimation of perfusion parameters throughmathematical modeling remains a hard task

andhas generated a lot of researchwork [20]. An accurate and robust estimation of perfusion

parameters is of course crucial to compare perfusion imaging exams meaningfully. �is is

primordial in order to allow inter-subject exams or to perform monitoring. Among the

di�erent mathematical models that have been proposed in contrast-enhanced ultrasound

(CEUS) studies, little attention has been devoted to compartmental modeling, despite its

wide use in PET orMRI studies. Indeed, explicit modeling using for instance a Log-Normal

function is o�en recommended to analyze dynamic data [7, 17]. Of course di�erent reasons

can explain this restricted use of the compartmental approach; among them the di�culty

in estimating a correct arterial input function in dynamic ultrasound images can be cited.

To get rid of this di�culty which occurs also while using other imaging techniques, some
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authors in PET imaging and more recently in MRI have proposed to use a reference tissue

in order to de�ne relative perfusion parameters [6, 23], de�ned as the ratio between the

perfusion parameters in the tissue of interest and the perfusion parameters de�ned in the

reference tissue. Our group has recently shown the practical interest of this approach in a

test-retest protocol applied to a murine tumor model [9, 10].

As no absolute gold-standard exists for preclinical or clinical studies, simulations can be

used to assess the performance of di�erent models and compare them. Of course, as it is

quite complex to reproduce in silico the complexity of in vivo, the extrapolation of simula-

tions to real cases should be done very carefully. However they can be used to focus on one

speci�c trait and to quantify its impact. In the present study, the studied trait was recircula-

tion, since this process is o�en overlooked when quantifying CEUS exams. �is is especially

true in small animals, where recirculation occurs quickly and can overlap with the �rst pass

of the bolus of micro-bubbles in tissues, a�ecting the time-intensity curves (TICs) used for

quanti�cation.

For the present study, a one-compartmental model was assumed to be representative of

the underlying physiology that is observable at a regional scale. Di�erent values of perfu-

sion parameters (tissue blood �ow, tissue blood volume and time-delays) were simulated

in order to better apprehend the spatial heterogeneity that can be observed inside a tumor.

�e values of these parameters were derived from results obtained in a preclinical study in

order to be coherent with practical observations. In addition to recirculation, the impact

of signal to noise ratio was studied. For the modelling approach, two versions of the Log-

Normal model (absolute and relative), and two versions of the relative one-compartment

model (one based on a single region, one taking advantage from the existence of multiple

regions) were considered. In addition, in order to limit the impact of recirculation while es-

timating perfusion parameters with the Log-Normal model, a simple and popular strategy

was tested which consists in using the �rst samples of TICs, i.e. samples acquired before re-

circulation occurs [15]. �ese six perfusion quanti�cation methods were �tted to simulated

TICs to study the precision and the accuracy of the estimated perfusion parameters.
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6.3 �eory

6.3.1 One-compartment vascular model

Consider N vascularized tissue regions Ti , i = 1, ..,N in a spatial domain, each region be-
ing an homogeneous compartment fed by the same arterial input function (AIF), CA. �is

mono-compartmental hypothesis is realistic since the distribution of microbubbles is re-

stricted to the vascular space [11]. Each tissue TIC, CTi , is characterized by a tissue blood

volume Vi , and a tissue blood �ow Fi . Since introducing a time-delay parameter in this

model was shown to improve the quality of �t in tumor tissues [10], a parameter Di re-

�ecting the transit time of the contrast agent from the feeding artery to the tissue was also

considered. �emathematical relationship between the tissue TIC and the TIC in its feeding

artery is given by equation 6.1:

CTi = CA ∗ hFi ,Vi ,D i (6.1)

where hFi ,Vi ,D i(t) = Fi ⋅ e−
Fi
Vi

(t−D i)∀t ≥ Di , 0 else, represents the transfer function of the i th

tissue region.

6.3.2 Simpli�ed recirculation model

A�er injection in a vein, the bolus ofmicrobubbles travels through the lungs andheart cham-

bers before being distributed in the whole body through the arterial system. A�er this �rst

pass in the tissues, microbubbles return to the venous system for another circulation loop.

During each loop, the bolus is attenuated by the natural disruption of microbubbles, and

their �ltration through the lungs and the liver. Additionally, the bolus length spreads in

time because of the inhomogeneous path length of the individual microbubbles [5].

An AIF with recirculation, CAw , can therefore be approximated by a sum of consecutive

passes of the bolus in the region of interest (equation 6.2):

CAw (t) = CA1(t) +
NR

∑
r=1

Rr (t) , (6.2)

where CA1(t) is the TIC of the �rst pass of the bolus, Rr(t) is the TIC of the rth recirculation,
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Figure 6-1: Simulated TICs with (orange) and without recirculation (blue) corresponding
to noise-free AIF (top), examples of noise-free and noisy TICs in the fourth tissue region
(middle) and in the reference tissue (bottom). �e �rst hundred seconds are displayed here.

and NR is the number of recirculation loops which are taken into account. �e TIC, CA1(t),
thus represents the AIF without recirculation.

To go further in the simulation process, a simpli�ed recirculationmodel was de�ned, as-

suming a constant recirculation period γ, a constant recirculation fraction β (the fraction of

microbubbles remaining from the previous bolus pass taking into account bubble disruption

and �ltration), a constant spread factor α through the di�erent recirculation loops, and an

exponential spread and decay of the signal. �e rth recirculation TIC, Rr(t), was simulated
by equation 6.3:

Rr (t − rγ) = βr

αrCA1 (
t

αr ) (6.3)

Examples of AIF with and without recirculation are shown in Figure 6-1 (�rst row). For the

present study, CA1(t) is represented by a log-normal function, CAw(t) is computed using
α = 2, β = 30%, γ = 20 s and NR = 7. TICs were simulated for a total duration of 165 s with a
frame rate of 3 Hz.
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6.3.3 Noise model

A multiplicative noise model following a gamma distribution [2] while constraining the

mean intensity to be 1 (unit mean). Indeed, a unit mean distribution for a multiplicative

noise is the equivalent of a zero-centered distribution for additive noise. A gamma distri-

bution is de�ned by two parameters: its shape parameter κ, and its scale parameter θ. En-

forcing a unit mean is equivalent to set θ = 1/κ, the noise distribution p (v) is then de�ned
by equation 6.4:

p (v) = 1/Γ(κ) κκ vκ−1 e−vκ ,∀ v ≥ 0. (6.4)

�e parameter κ controls the sharpness of the noise distribution, and is related to the stan-

dard deviation of the noise distribution by σ = 1/√κ.

6.3.4 Perfusion quanti�cation methods

Six perfusion quanti�cation methods (M1 −M6) were tested and compared. Among them,

four relative approaches (M3 − M6) making use of an in-plane reference tissue (R) were

proposed to make parameters more robust to inter-exam changes (due to unavoidable ex-

perimental or physiological varying conditions). Furthermore, the last method (M6) takes

advantage of the multiple regions that can be de�ned inside an image.

MethodsM1 and M2 - Log-Normal model (LN)

�e Log-normal function is an explicit model that depends on four parameters, it is fre-

quently used to �t TICs, in particular from dynamic contrast-enhanced ultrasound stud-

ies [17]. From this model, the area under the curve AUCi , which is proportional to the tissue

blood volume (see Appendix for proof) and τi a time parameter re�ecting the delay between

the beginning of the acquisition and the arrival of the �rst microbubbles in the tissue of in-

terest are directly estimated. In addition, the wash-in rate (WIRi), that is the maximal slope

of the uptake part of the TIC, a parameter related to the tissue blood �ow (see Appendix

for proof), is commonly derived. Appendix shows the analytical expression of the AUC and

WIR parameters, using the conventional expression of the Log-Normal model. For the �rst

method (M1), all the time samples are analyzed while for the second model (M2), the analy-
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sis is restricted to the �rst pass of the bolus, which roughly corresponds to the wash-in and

the start of the wash-out phases.

MethodsM3 andM4 - relative Log-Normal model (rLN)

�e relative Log-Normal models propose the comparison of the LNmodel parameters esti-

mated in the tissue region i (AUCi ,WIRi , and τi) with the corresponding values estimated

in the reference tissue R (AUCR,WIRR, and τR), following equation 6.5:

rAUCi =
AUCi

AUCR
, rWIRi =

WIRi

WIRR
, ∆ = τi − τR . (6.5)

For the methodM3, all the time samples are analyzed while for the methodM4, the analysis

is restricted to the �rst pass of the bolus.

MethodsM5 - relative one-compartment model (rLin)

�e model M5 is derived from the one-compartment model presented in Section 6.3.1. It

was proposed to take into account the multiple cases for which the estimation of the AIF

is tricky, see for instance [10]. It assumes that the tissue region and the reference tissue are

parallel single compartments, fed by a common AIF. Writing equation (6.1) respectively for

CTi and CR, and rearranging them, a convolution equation that is independent of the AIF

can be deduced. Four related perfusion parameters [10] can then be estimated as de�ned by

equation 6.6:

rFi = Fi/FR , rVi = Vi/VR , ki = Fi/Vi , δi = Di − DR . (6.6)

When the time delay δi is estimated (de�ned as the in�ection point a�er temporal �ltering),

the convolution equation can be written as follows:

Wi(t) = rFi ⋅ X(t) + rVi ⋅ ki ⋅ Y(t) − ki ⋅ Zi(t),∀t ≥ δi . (6.7)

withWi(t)=CTi(t−δi), X(t)=CR(t−δR),Y(t)= ∫ t
0 CR (τ − δR)dτ, and Zi(t)= ∫ t

0 CTi (τ − δi)dτ.

�e three parameters rFi , rVi , and ki can thus be estimated using a linear regression which

minimizes the least-squares error. For that reason the method M5 is noted rLin. It was
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introduced in [9] following Patlak’s approach [16].

Method M6 - Regularized relative one compartment model (rReg)

�is approach was proposed in [9] to overcome the limitations of the rLin model when it is

applied to N (N being more than one) tissue regions. Indeed, the estimation of N values of

rFi , rVi , and ki provides N potentially di�erent values of kR = FR/VR, since kR = FR
F i
T

F i
T

V i
T

V i
T

VR
=

rVi .k i
rFi . �e discrepancy of the values of kR can be overcome by forcing this parameter to have

the same value across the di�erent regions, i.e. forcing a common ratio between rV i .k iT and

rF i across all tissue regions. In summary, an iterative estimation method was proposed,

each iteration being conducted in two steps : �rst a value for kR= rVi .k i
rFi is chosen, then the

3N values rFi , rVi , and ki are estimated by applying N linear optimization processes under

constraints, this two-step procedure being repeated in order tominimize a global error term

de�ned as the sum of the N errors of the N �ttings. As compartmental approaches take into

account recirculation inherently, the truncation approach de�ned for Log-Normal based

models was not tested for modelsM5 andM6.

6.4 Experimental design

6.4.1 Simulations

Simulations were derived from the small animal experiments described in [10]. For that

study, the tumor area was divided into 32 regions (N = 32) and a reference tissue were
considered, yielding 33 TICs. For the present study, two sets of 33 TICswere generated, using

two di�erent arterial input functions: CA1(t), based on a log-normal model, and CAw(t),
directly derived from CA1(t) according to equation (6.2) to simulate recirculation (Figure 6-
1). Reference perfusion parameters Fi , Vi , Di , VR, FR, and DR, displayed on Figure 6-2, were

chosen according to values estimated on an experimental data set. �e (N + 1) TICs CTi and

CR(t) were simply derived using equations (6.1) and (6.4). Fig. 6-1 shows two examples of
such simulated TICs. For each con�guration (without and with recirculation), noise-free

and noisy TICs were simulated (see Figure 6-1. Ten noise levels with σ varying from 0.05 to
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Figure 6-2: Bull’s-eyes representation of the perfusion parameters used to simulate the 32
regional TICs, CTi (large circle), and the reference TIC, CR (bottom right disk). From le�
to right: tissue blood volume (V ), tissue blood �ow (F), time-delay (D), and rate constant
(k). �e scale displayed in red color shows relative parameters: rV , rF, δ as de�ned by
equation (6.6).

0.5 were de�ned and in each case, 150 realizations were considered. A Log-Normal model

was �tted to each simulated noise-free CTi TIC (generated using CA1(t)), yielding reference
values for AUCi ,WIRi and τi .

6.4.2 Data analysis

For each simulated TIC Cn j
hi(t), associated with con�guration h (for h = 1, the AIF is CA1(t),

for h = 2 the AIF isCAw(t)), region i (i = 1, ..., 32), noise level n (n = 0, ..., 10) and realization
j ( j = 1, ..., 150), the di�erent perfusion parameters Θn j

hi(Mm) were estimated using the six
methods (Mm, m = 1, ..., 6) presented in Section 6.3.4. As the methods M2 and M4 were

de�ned to be less sensitive to recirculation, the LN model was �tted to the 20 �rst seconds

following the time-delay estimated for each TIC, since γ = 20 seconds was the recirculation
period used for simulation.

For parameters related to the tissue blood �ow or to the tissue blood volume, the relative

estimation error, expressed in %, was de�ned as follows:

En j
hi(Mm) =

Θn j
hi(Mm) − Λi(Mm)
Λi(Mm)

(6.8)

where Λi(Mm) is the reference value of the perfusion parameter estimated in the i th tis-
sue region using methodMm. For time-delay parameters the absolute estimation error was

de�ned in seconds as:

En j
hi(Mm) = Θn j

hi(Mm) − Λi(Mm), (6.9)
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6.5 Results

Fig. 6-3 shows statistical results related to the perfusion parameters estimated inside one

speci�c region (i = 4) using the six models (Mm) described in section 6.3.4, Θn
h4(Mm). In-

deed, the simulated values Λ4(Mm) and the median, �rst, and third quartile values over the
150 simulations of parameters are represented as a function of the noise level (index n, prox-

ied by σ). �ese results are displayed for simulations without (h = 1) and with recirculation
(h = 2).

In complement to Fig. 6-3, Fig. 6-4, 6-5, and 6-6 display bull’s-eye representations of the

median estimation errors in the 32 regions for an intermediate noise level (σ = 0.25, n = 6),
E6hi(Mm), for the six quanti�cation methods and the two conditions of recirculation.

6.5.1 ModelM1

When focusing on data without recirculation, the LN model (model M1) is robust, it es-

timates accurate values of AUCi and WIRi , whatever the level of noise. In particular, the

intermediate noise level yields relevant estimates in all tissue regions. �e time delay seems

to be the less robust parameter but does not impact the reliability of the other parameters.

When introducing the recirculation model, the estimation of AUCi (median error of about

25%), and in a less extent the estimation ofWIRi (median error of about -15%) are biased,

but the bias does not vary with noise. For the estimation of time-delays, behaviors similar

to the LN model without recirculation can be observed.

6.5.2 ModelM2

When using the LNmodel restricted to the earliest phase (modelM2), both AUCi andWIRi

parameters are respectively largely under and over estimated, whatever the con�guration,

i.e. without and with recirculation. Some disparities exist between regional parameters: the

smallest values of tissue blood �ow or tissue blood volume tend to provide larger relative

estimation errors.
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Figure 6-3: Median values (large symbols), �rst and third quartiles (small symbols) of pa-
rameters estimated for the fourth tissue region CT4 (outer ring, upper halve, right octant).
First column: tissue blood volume related parameters, second column: tissue blood �ow
related parameters, third column: time-delay related parameters, fourth row: rate constants
in the tissue region and reference tissue. Constant lines in black represent simulated values,
blue lines the estimation corresponding to the LN model, red lines the estimation corre-
sponding to the LN model restricted to earliest phase. Yellow color stands for rLin model,
while purple color stands for rReg model. For all of the cases, �lled symbols correspond to
the con�guration without recirculation, while empty symbols correspond to the con�gura-
tion with recirculation.
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6.5.3 Model M3

As expected, the rLN model (model M3) for data without recirculation is robust, and pro-

vides accurate values of rAUCi and rWIRi , whatever the level of noise and for the interme-

diate noise level, the estimation is relevant in all regions. As anticipated, when introducing

recirculation, the estimation of rAUCi was rather accurate but the estimation of rWIRi was

biased (bias invariant with noise), especially for smaller values of simulated tissue blood

�ow.

6.5.4 ModelM4

When using the rLN model restricted to the earliest phase (model M4), both rAUCi and

rWIRi parameters were respectively largely under and over estimated, whatever the con-

�guration: without and with recirculation. Results show similar trends to those observed

when using the LN model restricted to the earliest phase (modelM2).

6.5.5 Model M5

�e rLin model (model M5) accurately estimates relative tissue blood volume and relative

tissue blood �ow parameters, exhibiting small biases, but the precision depends on the noise

level. �e estimation of time delays parameters appears to be robust. Biases are larger when

taking into account studies with recirculation, but remain in most cases moderate (less than

15%). Considering rate constants, someheterogeneity in estimated kR valueswas found. �is

con�rms our assumption, since no constraints are applied to this speci�c values. Moreover,

related errors appear in the estimates of kTi .

6.5.6 ModelM6

Compared with the model M5, results using model M6 are improved. By construction, a

constant value of kR is estimated for all the subregions (slightly underestimated in the case

shown in Figure 6-6), and consequently the relative error in the estimation of kTi is highly

homogeneous across tissue regions and almost constant. Indeed the largest median relative
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error on kTi is observed for the highest value of simulated kTi . �e rRegmodel estimates rel-

ative blood �owparameters and relative blood tissue parameters, withmedian relative errors

generally less than 5%without recirculation for the intermediate noise level (see Fig. 6-6). Of

course, recirculation yields higher estimation errors, nevertheless they remain below 7% in

most cases and appear to be more homogeneous across the 32 subregions than the estimates

of modelM5.

6.6 Discussion

�is study aimed at comparing the behavior of di�erent models suitable for quanti�cation

of perfusion in contrast-enhanced ultrasound studies. Our whole analysis was based on

simulated studies in order to have an irrefutable gold standard and to compare the di�erent

methods in terms of precision and accuracy. �e model describing contrast displacement

relies on a one-compartment model, that has proved to be valid to describe contrast en-

hancement in a murine tumor model [10]. In order to introduce some variations in the tis-

sue blood �ows, tissue blood volumes and time-delays, re�ecting the regional heterogeneity

among tissue regions, as observable with ultrasound. N regions inside the simulated tissue

of interest were introduced, each one being characterized by its set of perfusion parame-

ters. In addition an arterial input function was �rst simulated using a single Log-Normal

function, then approximated by a sum of modi�ed Log-Normal functions to mimic recircu-

lation. Although the deformation of the �rst-pass is quite simplistic, this approach enables

us to consider two con�gurations: one idealized con�gurationwithout recirculation and one

con�guration closer to physiological conditions introducing recirculation. Finally di�erent

signal to noise conditions were simulated using a multiplicative noise model, as opposed

to an additive Gaussian model, re�ecting conditions encountered in contrast-enhanced ul-

trasound. Using 150 noisy simulations for each condition guarantees a representative set

of possibilities, allowing generalization of the results, as well as enabling the study of the

precision of the estimations.

�e use ofmedian and quartile operators to assess the estimation errors was necessary to

reduce the impact of outliers, which were mostly found in the estimates of the rLin model.
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Using relative estimation errors (as opposed to absolute estimation errors) for tissue blood

�ow and tissue blood volume parameters allows easy comparison of the errors obtained for

parameters with di�erent simulated values.

As expected, results of this study exhibit lower precision of the estimated parameters

with decreasing signal to noise ratio. Interestingly, most of the methods are not strongly

a�ected by the signal to noise ratio in terms of accuracy (re�ected by the median error on

parameters). In addition, perfusion parameters were found less accurate when estimated

with recirculation, compared to the estimates without recirculation.

�e Log-Normal model, when applied to the whole duration of the study is robust to

noise. However this model is subject to recirculation error. To get rid of this dependency,

a naive approach consists in limiting the estimation of Log-Normal model to the �rst sam-

ples of the TIC (before recirculation occurs). However this solution appears to be unstable,

providing estimates with huge discrepancies when compared to simulated parameters and

also showing a large dependency to noise. �is naive approach should therefore be abso-

lutely avoided when dealing with dynamic perfusion data. Indeed results are not accurate

for both con�gurations, i.e. with or without recirculation. �us the present simulation study

also emphasizes the need for acquisitions with su�ciently long durations in order a reliably

estimate perfusion parameters, and in particular when relying on the Log-Normal model

for quanti�cation.

�e use of a reference tissue to normalize perfusion parameters was already recom-

mended following a test-retest study that was conducted on dynamic contrast-enhanced

ultrasound acquisitions performed on small animals [10]. Normalization was also proposed

by a clinical study in order to enable the comparison of perfusion parameters estimated using

contrast-enhanced ultrasound data and contrast-enhanced computerized tomography [12].

�e present simulation study con�rms the interest of normalization when looking at the

accuracy and precision of the estimated parameters. Despite the use of the division opera-

tor that could be impacted by noise issues, normalized parameters are more accurate than

“absolute” parameters when introducing recirculation in simulated TICs. As recirculation

is physiological and cannot be suppressed experimentally, our results emphasis the need to

address this question when dealing with real data.
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Comparing the estimation of the relative parameters using the rLN model, it appears

that the rAUC parameter is more precise than the rWIR parameter. �is experimental re-

sult is in concordance with the theory, as detailed in the appendix section of this paper.

�e di�erences which are observed between the estimated and simulated values of rAUC

in case of recirculation can partly be explained by the �tting of a Log-Normal model to the

reference tissue prior to quanti�cation. �is step is useful to reduce the impact of noise

but slightly inaccurate to represent TICs with recirculation, the use of a model-free noise-

�ltering technique should thus be investigated. To summarize it is important to note that

in case of recirculation, the rAUC is more representative of the simulated parameters than

AUC.

�e linear resolution of the relative one-compartment approach (method M5) was in-

troduced to process contrast-enhanced ultrasound studies in [9]. It ensures the �tting error

reaches its global minimum, as opposed to the non-linear approach used in [10]. Further-

more, linear resolution signi�cantly reduces computing-time. Some aberrant values of per-

fusion parameters can however be found since parameters were not bounded during the

estimation process. As indicated in the theory section, applying this method independently

to multiple regions yields multiple values of kR, this e�ect was also shown in Figure 6-3 and

Figure 6-6. MethodM6 enforces a single value of kR across tissue regions. As a consequence,

the approach yields spatially regularized estimates of kT , slightly biased. As expected, the im-

pact of recirculation on estimates ofmodelsM5 andM6 is rather low, however not negligible.

�is e�ect could be partly explained by the approximation of the TIC inside the reference

tissue by the Log-Normal model which does not account for recirculation. �is prior mod-

eling was performed in order to reduce the impact of noise on the relative perfusion param-

eters. �e median relative errors on these parameters are all less than 7%, even in presence

of recirculation, which acceptable. �is is illustrated in Figure 6-6 for an intermediate noise

level.

�e estimation of absolute values of perfusion parameters is possible, at least theoret-

ically. It would however require an accurate estimation of the arterial input function. Its

proper estimation from image data is a large research question which is not fully solved,

even considering other perfusion imaging modalities such as MRI or PET. Some problems
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are inherent to ultrasound data, ranging from the calibration of signal intensity according

to the amount of injected contrast agent, to issues resulting from the use of 2D (and not

3D) data. Additionally, the estimation of such a function in small vessels, surrounding a tu-

mor for instance, is subject to partial volume e�ects, along with small displacements e�ects.

�erefore, when quantifying CEUS data, we recommend using relative parameters, i.e. pa-

rameters normalized according to a reference tissue. �e chosen reference tissue should be

accessible and rather homogeneous. However the robustness of the rLin and rReg models

to the choice of the reference tissue remains to be fully investigated.

6.7 Conclusion

�is study was designed to investigate the impact of recirculation on the quanti�cation of

contrast-enhanced ultrasound exams, by means of simulations based on experimental data.

Fitting a Log-Normal model on the �rst pass of the bolus implies a reduction of the number

of points used to �t the model and yields unstable estimates, especially on noisy data. �is

solution is thus inappropriate. Modeling methods such as compartmental modeling, that

account for recirculation intrinsically, are indeed the most robust to recirculation. Making

use of a reference tissue, the estimation of relative parameters appears to be robust. Taking

advantage of the multiple regions, and enforcing estimation of a single rate constant charac-

terizing the reference tissue, provides stable estimates, especially when comparing parame-

ter estimates across regions. �is approach is therefore recommended because of its reduced

sensitivity to recirculation, and better homogeneity of the estimates inside the considered

�eld of view.

Appendix

Taking into account the generic expression of the Log-Normal model:

A√
2πσ(t − τ)

exp(−[ln (t − τ) − µ]2

2σ2
)
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and considering the formal de�nitions of the area under the curve and of the wash-in rate,

it can be deduced:

AUC = A

WIR = A
σ
√
2π

( y
σ2

− 1) e2y−2µ−
y2

2σ2

with y = 3σ 2 + σ
√

σ 2 + 4
2

�ese equations were directly used to compute the AUC andWIR parameters from a Log-

Normal approximation.

AUC andWIR can also be derivedwhen considering a one-compartment vascularmodel,

their expression is computed for two cases in the following table: one simpli�ed case assum-

ing that CA(t) follows a gate function and the general case. In addition relative parameters
rAUC and rWIR are formally computed when considering a reference tissue. Using the

gate function for CA(t) shows a strong equivalence between AUC and tissue blood volume

V , but also between WIR and tissue blood �ow F. �us, for that case, rAUC = rV and

rWIR = rF. Using the general shape for CA(t) shows that AUC is strictly proportional to

V , and that rAUC = rV . Furthermore,WIR is related to F, but rWIR is not strictly identical

to rF, since a corrective factor ρ is introduced. �is factor depends of the time of in�ection

(denoted tI) of each TIC and explains why the rWIR is generally not strictly equivalent to

rF.

AIF Krecta (t) CA (t)
AUC KVT VT ∫ +∞0 CA (τ)dτ

WIR KFT
a

FT (CA (tI) − 1
VT
CT (tI − DT))

{tI ∣ dCT
dt (tI − DT) = VT

dCA
dt (tI) ,

dCA
dt (tI) > 0}

rAUC rV rV

rWIR rF ρ ⋅ rF

Table 6.1: Analytic expressions of perfusion parameters using a one-compartment model
and assuming two di�erent shapes of AIF: rectangle function of width a and height 1/a,
recta(t), and general case CA(t). In the �rst case, K stands for the injected concentration.



Chapter 7

Error Sources A�ecting Relative

Quanti�cation of CEUS

7.1 Introduction

In Chapter 5 we studied the impact of inter-exam changes on perfusion parameters esti-

mated fromCEUS data, whether occurring at the experimental or physiological level. Addi-

tionally, a simulation study addressing the issue of recirculation in CEUS quanti�cation was

presented in Chapter 6. In these studies we showed the superiority of the one-compartment

reference tissue model in terms of reproducibility. In particular, the linear formulation of

this model and its regularized version yielded the most reproducible and robust perfusion

parameters among the investigated methods. In this Chapter we investigate other potential

sources of error a�ecting quanti�cation using these two models through a series of simu-

lation experiment with varying factors, and by assessing the accuracy and precision of the

estimated perfusion parameters. �ese include data intrinsic characteristics, i.e. noise level,

exam duration, sampling time; as well as quanti�cation strategy, i.e. analysis scale, estima-

tion method, reference tissue selection.
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7.2 �eory

7.2.1 Simulation models

In this section, the two models employed to simulate synthetic noisy CEUS data are pre-

sented. First, the one vascular compartment model was used to generate noiseless time-

intensity curves (TICs), with known physiology-related perfusion parameters. �en, be-

cause of themultiplicative nature of the noise in ultrasound data, a parametricmultiplicative

noise model was used to corrupt the simulated noiseless TICs.

Multiplicative noise model

A multiplicative noise model following a gamma distribution and enforcing unit mean was

used, i.e. meanv p (v) = 1, inspired by Barrois et al. [3]. A unit mean distribution for a
multiplicative noise is the equivalent of a centered distribution for additive noise.

A gamma distribution is parameterized by two parameters: the shape parameter k, and

the scale parameter θ. Enforcing a unit mean is equivalent to set θ = 1/k, the noise distribu-
tion p (v) is therefore parameterized by a single shape parameter, k, as

p (v) = 1/Γ(k) kk vk−1 e−vk ,∀ v ≥ 0. (7.1)

�e shape parameter k is related to the standard deviation by the relation σ = 1/√k, allowing

modulation of the noise level in simulated TICs. Fig. 6-1 shows an example of multiplicative

random noise on simulated TICs for k = 16, corresponding to σ = 0.25. Unless speci�ed
di�erently, this value of σ was used as the default standard deviation of the noise distribution

and 150 random noise sequences were generated from this distribution.

7.2.2 Quanti�cation models

Two di�erent relative quanti�cationmethods, making use of a reference tissue, derived from

the previously described OVCmodel are described. �e following methods are intended to

estimate perfusion parameters from NT tissues in a single CEUS exam. �e TIC in the ith
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tissue of interest is noted C i
T(t), where i ∈ [[1,NT]], and the TIC in the chosen reference

tissue is noted CR(t). All TICs are de�ned for t ∈ [0, L] and count NS samples.

7.3 Materials and Methods

7.3.1 Simulations of CEUS data

Simulation process

Regional perfusion parameters were derived from experimental data �tted with the OVC

model presented in Section 5.8. �e arterial input function was derived from a preclinical

study using the segmentationmethodpresented inChapter 3. A log-normalmodelwas �tted

to the resulting arterial curve for noise-�ltering purposes. Regional enhancement curves

corresponding to di�erent tissues of interest were simulated using the OVC model, along

with themodel parameters estimated in di�erent regions of the tumor, and the arterial input

function. A reference tissue region was similarly simulated. �e perfusion parameters of the

OVC model used for simulation are presented in Figure 7-1. �e associated time-intensity

curves simulated for each tumor region, as well as for the reference tissue are displayed in

Figure 7-2.
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Figure 7-1: Absolute perfusion parameters used for simulation with the OVCmodel, i.e. tis-
sue blood volume, VT and VR (dimensionless), tissue blood �ow, FT and FR (in s−1), tissue
rate constant, kT and kR (expressed in s−1), and time delay, DT and DR (in s). Bullseye view
of the parameters in the 32 tumor regions. �e bottom disks represent the parameters used
to simulated the reference tissue region, the middle disk being the original value used for all
experiments. �e other disks are, from le� to right, the half, two thirds, three halves, and
double of the original value, used to study the in�uence of the reference tissue.
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Figure 7-2: Time-intensity curves inside of each of the 32 tumor regions (top grid), and
in the reference tissue (bottom), simulated using the OVC. Each plot shows the simulated
noiseless curve (orange line) in the region, i.e. σ = 0, as well as the curve with simulated
multiplicative noise (blue dots), i.e. σ = 0.25.
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Varying factors

Noise level �e in�uence of noise was investigated by varying parameter σ , i.e. the stan-

dard deviation of the multiplicative noise model. σ was varied linearly with increments of

0.05 from 0, corresponding to a noiseless conditions, to 0.5, corresponding to high noise

conditions. For each noise level, 150 random noise sets following the multiplicative gamma

noise model were generated.

Exam duration Various exam durations were investigated by varying the number of sam-

ples in the simulated data. �e exam duration was varied from 50 seconds to 165 seconds

with 5 seconds increments.

Sampling period Simulated noiseless enhancement curves were resampled using varying

sampling periods to study the impact of this parameter on the accuracy and precision of the

estimation. �e sampling period was varied from 0.1 to 1.0 second with 0.1 increments, this

range being representative of the acquisition settings that can be found in contrast-enhanced

ultrasound studies.

Reference tissue �ereference tissue is characterized by the parameters of theOVCmodel,

i.e. VR, FR (and thus kR =
FR
VR
). �e impact of these parameters on the accuracy and the pre-

cision of the quanti�cation process using the rLin and the rRegmodels was investigated. In

particular, the tissue blood volume, the tissue blood �ow of the reference tissue were varied

by scaling either or both of them by
1
2
,
2
3
, 1,
3
2
, and 2. Because of the relation between the

three parameters, they cannot be varied individually. It is however possible to �x one of

the parameters while varying the two others. �e disks at the bottom Figure 7-1 shows the

various values of the perfusion parameters used to simulate the reference tissue enhance-

ment curve, the middle disk being the value obtained from experimental data, i.e. the values

which were used for the other simulations.

Numberof regions Various regional segmentationwere performed varying the number of

tumor regions as powers of two, ranging from 1 to 32. For each segmentation, the parameters
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Figure 7-3: Relative perfusion parameters used for simulation varying the number of tumor
regions NT from 1 (le�) to 32 (right), i.e. relative tissue blood volume, rV , relative tissue
blood �ow, rF, tissue rate constant, kT .

of the OVC model were estimated using the mean enhancement curve in each correspond-

ing tumor region. Figure 7-3 shows the simulated values of the perfusion parameters for the

various segmentations with a varying number of regions. �e absolute perfusion parame-

ters of the OVC model were used to derive the parameters of the rOVC model using the

de�nitions of Eq. 5.16. �e derived parameters were then used as ground truth to evaluate

the accuracy of the perfusion parameters estimated using the rLin and the rRegmodels.

7.3.2 Data analysis

�e accuracy and the precision of the parameters estimated using the rLin and the rReg

models were respectively investigated through the median value, and either the standard

deviation or the interquartile range, of the relative estimation error over 150 random noise

samples. �e relative estimation error of parameter θ, noted rEθ , is expressed in percent and

de�ned as

rEθ = 100 ×
θest − θsim

θsim
(7.2)

i.e. the di�erence between the estimated parameter θest and the simulated parameter θsim,

normalized by the simulated value. �e estimation error ED = Dest − Dsim is used to assess
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Figure 7-4: Correspondence of the regions between bullseye (le�) and grid (right) repre-
sentation.

the estimation of the relative time-delay parameter.

7.4 Results

In this section we present the results of our simulation experiments. Figure 7-4 provides the

correspondance between regions, depending on the type of data to be presented. Indeed,

color-coded bullseyes were used when a single value had to be represented per region, but

grids of plots were used to show the regional results as a function of a simulation parameter,

i.e. noise level, exam duration, and sampling period.

In Figures 7-5a to 7-7e, each plot represents a tumor region, i.e. the top row corresponds

to the outer rim and the bottom row to the inner rim, the columns correspond to the clock-

wise ordering of the regions on a rim starting with the le� region above the horizontal line.

7.4.1 Noise level

Figures 7-5a to 7-5e show the relative estimation error of the relative tissue blood volume

(Figure 7-5a), relative tissue blood �ow (Figure 7-5b), the rate constants in the tumor (Fig-

ure 7-5c) and reference (Figure 7-5d) tissues, and the relative time-delay (Figure 7-5e) ob-

tained using the rLin and rRegmodels, as a function of the noise level simulated in the data,

i.e. the standard deviation of the multiplicative noise model.

Expectedly, for the four parameters of both models, the interquartile range of the rela-

tive estimation bias increased with the noise level, and no relation was found between the
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noise level and the median value of the relative estimation error. In terms of relative tissue

blood volume (see Figure 7-5a), the two models were hardly di�erentiable. Inside a given

region, themedian relative estimation error value can be di�erent with a slight advantage for

the rLin model, but the precision of the estimation is however generally comparable. Ad-

ditionally, the rRegmodel makes the estimation bias of rV more consistent across regions.

Regarding relative blood �ow (see Figure 7-5b), the rLinmodel was generally more accurate

than the rReg model. However the estimation of rF was less precise and more sensitive to

noise using the rLinmodel. In terms of the rate constant in tumor tissues (see Figure 7-5c),

the rRegmodel proved both more accurate and more precise than the rLinmodel. Indeed,

the rReg model exhibited an extremely consistent estimation bias across regions, with an

average of -3%, and a lower sensitivity to noise. �e rLinmodel on the other hand, yielded

estimates of kT with highly variable biases, i.e. themedian bias reaching 40% in one of the re-

gions, and overestimating the parameter in some regions while underestimating it in others.

A common value of the rate constant in the reference tissue (see Figure 7-5d), kR, was esti-

mated for all tumor regions using the rReg model. �e regularized model underestimated

kR by 5% in average in our experiments and exhibited a rather low sensitivity to noise. Op-

positely, the estimates of the rLin model were extremely inconsistent across regions, and

were more sensitive to noise in most regions.
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Figure 7-5a: Median (large symbols) and �rst and third quartiles (small symbols) of the
relative estimation error for the relative blood volume (rV ) estimated in the 32 tumor regions
using the rLin (yellow diamonds) and rReg (purple squares) models, as a function of the
noise level.
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Figure 7-5b: Median (large symbols) and �rst and third quartiles (small symbols) of the
relative estimation error for the relative blood �ow (rF) estimated in the 32 tumor regions
using the rLin (yellow diamonds) and rReg (purple squares) models, as a function of the
noise level.
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Figure 7-5c: Median (large symbols) and �rst and third quartiles (small symbols) of the
relative estimation error for the rate constant in the tumor (kT) estimated in the 32 tumor
regions using the rLin (yellow diamonds) and rReg (purple squares) models, as a function
of the noise level.
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Figure 7-5d: Median (large symbols) and �rst and third quartiles (small symbols) of the
relative estimation error for the rate constant in the reference tissue (kR) estimated in the
32 tumor regions using the rLin (yellow diamonds) and rReg (purple squares) models, as a
function of the noise level.
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Figure 7-5e:Median (large symbols) and �rst and third quartiles (small symbols) of the es-
timation error (in seconds) for the relative time-delay (D) estimated in the 32 tumor regions
using the rLin (yellow diamonds) and rReg (purple squares) models, as a function of the
noise level.

7.4.2 Exam duration

Figures 7-6a to 7-6e show the impact of the exam duration on the relative estimation error

of the perfusion parameters of the rLin and rReg models, i.e. relative tissue blood volume

(Figure 7-6a), relative tissue blood �ow (Figure 7-6b), the rate constants in the tumor (Fig-

ure 7-6c) and in the reference tissue (Figure 7-6d), and the relative time-delay (Figure 7-6e).

Regarding relative blood volume (see Figure 7-6a), the rRegmodel was able to estimate

the parameter accurately, and to reach a steady state with exams as short as 80 seconds for

the simulated noise level, i.e. σ = 0.25. Oppositely, the rLin model only yielded accurate
estimates using the whole exam duration, i.e. 165 seconds, and at the exception of one re-

gion it overall underestimated rV . Comparably, the relative blood �ow (see Figure 7-6b)

was steadily estimated using the rReg model with exams as short as 50 seconds, despite an

average overestimation of less than 4%. �e estimates of rF given by the rLin were found

more sensitive to the duration of the exam, and generally overestimated rF for very short

exams, the estimates �rst decreasing and then increasing linearly with the exam duration.

Regarding the rate constant in the tumor (see Figure 7-6c), the rLin model was unable to
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Figure 7-6a: Median (large symbols) and �rst and third quartiles (small symbols) of the
relative estimation error for the relative blood volume (rV ) estimated using the rLin (yellow
diamonds) and rReg (purple squares) models, as a function of the exam duration.

accurately estimate the parameter for incomplete exams, and exhibited strong biases in short

exams, again varying from one exam to another. �e rReg model was able to steadily and

uniformly estimate parameter kT , despite the tendency of the median relative estimation

error to slightly decrease with the exam duration for exams lasting more than 100 seconds.

Moreover, the estimation of kT was more precise using the rReg model. For both models,

the bias in the estimation of kR, the rate constant in the reference tissue (see Figure 7-6d),

was strongly correlated to the bias in the estimation of kT .
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Figure 7-6b: Median (large symbols) and �rst and third quartiles (small symbols) of the
relative estimation error for the relative blood �ow (rF) estimated using the rLin (yellow
diamonds) and rReg (purple squares) models, as a function of the exam duration.
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Figure 7-6c: Median (large symbols) and �rst and third quartiles (small symbols) of the
relative estimation error for the rate constant in the tumor (kT) estimated using the rLin
(yellow diamonds) and rReg (purple squares) models, as a function of the exam duration.
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Figure 7-6d: Median (large symbols) and �rst and third quartiles (small symbols) of the
relative estimation error for the rate constant in the reference tissue (kR) estimated using
the rLin (yellow diamonds) and rReg (purple squares) models, as a function of the exam
duration.
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Figure 7-6e: Median (large symbols) and �rst and third quartiles (small symbols) of the
estimation error (in seconds) for the relative time-delay (D) estimated using the rLin (yellow
diamonds) and rReg (purple squares) models, as a function of the exam duration.
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7.4.3 Sampling period

Figures 7-7a to 7-7e show the impact of the sampling period on the relative estimation error

of the perfusion parameters of the rLin and rReg models, i.e. relative tissue blood volume

(Figure 7-7a), relative tissue blood �ow (Figure 7-7b), the rate constants in the tumor (Fig-

ure 7-7c) and in the reference tissue (Figure 7-7d), and the relative time-delay (Figure 7-7e).

Varying the sampling period over the investigated range, i.e. from 0.1 to 1 second, did

not have a signi�cant impact on the accuracy of the estimation of the relative tissue blood

volume parameter using both the rLin and rRegmodels (see Figure 7-7a), and only a slight

decrease in precision was observed for larger sampling period. Similarly to the varying noise

level experiments, the bias in the estimation bias of rV was more consistent across regions

using the rReg model, with the median relative estimation errors generally inferior to 4%.

�e estimates of rF, the relative tissue blood �ow, exhibited a tendency to decrease with

increasing sampling period, especially in regions with large simulated kT values. While in

most regions the estimates of rF from the rReg model get closer to zero for large sampling

periods, one region underestimated the parameter by more than 20%. �e estimates of rF

from the rLinmodel exhibited a similar trend, but in addition they were overall more sen-

sitive to the sampling period in terms of precision, and less consistent across regions. In

terms of rate constant in the tumor (see Figure 7-7c), the rReg model yielded consistent

negative biases across regions, and generally yielded more precise estimates than the rLin

model. For both models, a slight decrease of the estimates of kT with the sampling period

was observed for both models in most regions, but stronger negative slopes were observed

in regions with larger simulated kT . �e rate constant in the reference tissue was estimated

consistently across tumor regions using the rReg model (see Figure 7-7d), and the estima-

tion was overall more accurate and precise with this model. Indeed, the estimation of kR
using the rLinmodel was extremely imprecise in some regions.
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Figure 7-7a: Median (large symbols) and �rst and third quartiles (small symbols) of the
relative estimation error for the relative tissue blood volume (rV ) estimated using the rLin
(yellow diamonds) and rReg (purple squares) models, depending on the sampling period
used for simulation.
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Figure 7-7b:Median (large symbols) and �rst and third quartiles (small symbols) of the rel-
ative estimation error for the relative tissue blood �ow (rF) estimated using the rLin (yellow
diamonds) and rReg (purple squares) models, depending on the sampling period used for
simulation.
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Figure 7-7c: Median (large symbols) and �rst and third quartiles (small symbols) of the
relative estimation error for the rate constant in the tumor (kT) estimated using the rLin
(yellow diamonds) and rReg (purple squares) models, depending on the sampling period
used for simulation.
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Figure 7-7d: Median (large symbols) and �rst and third quartiles (small symbols) of the
relative estimation error for the rate constant in the reference tissue (kR) estimated using
the rLin (yellow diamonds) and rReg (purple squares) models, depending on the sampling
period used for simulation.
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Figure 7-7e: Median (large symbols) and �rst and third quartiles (small symbols) of the
estimation error (in seconds) for the relative time-delay (D) estimated using the rLin (yellow
diamonds) and rReg (purple squares) models, depending on the sampling period used for
simulation.

7.4.4 Reference tissue

�e e�ect of varying the characteristics of the reference tissue on the accuracy and preci-

sion of the estimation process are displayed in Figures 7-8a to 7-8d. In any of these four

Figures, the �rst and fourth lines correspond to �xed values of the tissue blood volume VR

with varying tissue blood �ow FR, the second and ��h lines correspond to �xed values of FR
with varying VR, and the third and sixth lines correspond to �xed values of kR with varying

values of bothVR and FR. Each bullseye displays themedian relative estimation error in each

of the 32 tumor regions for the considered parameter.

�e relative tissue blood volume (see Figure 7-8a), rV , estimated using the rLin model

revealed sensitive to variations of parameter kR. Indeed, an increase in kR resulted in in-

creased positive or negative biases, along with increased heterogeneity of the bias across

regions. Using the rReg model reduced the discrepancies across regions compared to the

rLinmodel, but varying kR one way or the other overestimated the values of rV . Similarly,

the relative blood �ow (see Figure 7-8b), rF, estimated using either the rLin model or the

rReg model were sensitive to variations of kR. Larger biases were found using the rReg



7.4. RESULTS 197

model, however larger discrepancies across regions were observed in the estimation biases

of the rLinmodel. For both models, rF was underestimated in regions with large simulated

kT , while the other regions were overestimated. �e smallest biases in the estimation of rF

were found for two thirds of the original kR value. In case of �xed kR values, using lower

values of both FR and VR yielded slightly overestimated rV and rF values using both mod-

els. Regarding the rate constant in the tumor (see Figure 7-8c), kT , large discrepancies can

be observed using the rLin model, and they tend to increase with decreasing values of kR.

Using the rRegmodel, the bias in the estimation of kT increased for lower values of kR. Ad-

ditionally, discrepancies across regions are almost inexistent using the rReg model, except

in regions with large simulated kT values, revealing the e�ect of regularization. Biases close

to zero were found in most regions simulating the reference tissue curve using two thirds

of the original kR value. �e rate constant in the reference tissue (see Figure 7-8d), kR, ex-

hibited behaviors extremely similar to those of kT , whether estimated using the rLinmodel

or the rRegmodel. In case of �xed kR values, using lower values of both FR and VR yielded

slightly underestimated kT and kR values using both models.
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Figure 7-8a: Bullseyes of the median relative estimation error for the relative tissue blood
volume (rV ) estimated using the rLin (top) and rReg (bottom) models depending on the
characteristics of the reference tissue used for simulation.
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Figure 7-8b: Bullseyes of the median relative estimation error for the relative tissue blood
�ow (rF) estimated using the rLin (top) and rReg (bottom) models depending on the char-
acteristics of the reference tissue used for simulation.
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Figure 7-8c: Bullseyes of the median relative estimation error for the rate constant in the
tumor (kT) estimated using the rLin (top) and rReg (bottom) models depending on the
characteristics of the reference tissue used for simulation.
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Figure 7-8d: Bullseyes of the median relative estimation error for the rate constant in the
reference tissue (kR) estimated using the rLin (top) and rReg (bottom) models depending
on the characteristics of the reference tissue used for simulation.
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7.4.5 Number of regions

�e impact of varying the number of regions on the accuracy and precision of the estimates

of the rLin and rReg models is shown in Figures 7-9a to 7-9d. Indeed, each �gure corre-

sponds to a parameter, and the �rst line represents the accuracy of the estimation through

themedian relative estimation error, while the second line represents the precision of the es-

timation through the standard deviation of the relative estimation error. �e relative tissue

blood volume rV (see Figure 7-9a) from the rLin and rReg models were slightly underes-

timated using both methods, the latter however yielded more homogeneous median biases

across regions. �e rLinmodel was particularly imprecise in the region exhibiting the larger

value of kT . For both models, no signi�cant e�ect of the number of regions on the accuracy

and precision of the estimates of rV was observed in our simulations. Using the rLinmodel,

increasing the number of regions resulted in a lower precision of the regional estimates of

rF, the relative tissue blood �ow (see Figure 7-9b). �e rRegmodel yielded slightly more bi-

ased estimates of rF, but increasing the number of regions included in the analysis increased

the precision of the estimation for studies including two or more regions.

Overall, the biases in the estimates of rF from the rReg model were more consistent

across tumor regions. �e rate constant in the tumor kT (see Figure 7-9c) was globally over-

estimated using the rLin model, except in the region with the largest simulated kT value

where it was underestimated. �e most imprecise estimation of kT with this model were

also found in the four regions exhibiting the largest simulated values of kT .

Using the rRegmodel considerably reduced the median value of the estimation bias for

studies including four ormore regions, as well as its standard deviation for studies with eight

or more regions. Additionally, the estimation is more homogeneous across regions in terms

of both accuracy and precision. Regarding kR, the rate constant in the reference tissue (see

Figure 7-9d), the precision and the homogeneity of the estimates from the rLinmodel clearly

decreases with the number of regions, while the precision actually increases using the rReg

model. Increasing the number of regions increased the heterogeneity of the biases in the kR
estimates of the rLin model. �e kR estimates of the rReg model exhibit a slight negative

bias, which does not change much when changing the number of regions



7.4. RESULTS 203

-10

-5

0

5

10

N
T

Median

Standard

deviation

1 2 4 8 16 32

0

2

4

6

8

10

-10

-5

0

5

10

N
T

Median

Standard

deviation

1 2 4 8 16 32

0

2

4

6

8

10

Figure 7-9a: Bullseyes of the median value and the standard deviation of the relative esti-
mation error for the relative tissue blood volume (rV ) estimated using the rLin (top) and
rReg (bottom) models depending on the number of regions NT .
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mation error for the relative tissue blood volume (rF) estimated using the rLin (top) and
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Figure 7-9c: Bullseyes of the median value and the standard deviation of the relative esti-
mation error for the rate constant in the tumor (kT) estimated using the rLin (top) and rReg
(bottom) models depending on the number of regions NT .
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Figure 7-9d: Bullseyes of the median value and the standard deviation of the relative esti-
mation error for the rate constant in the reference tissue (kR) estimated using the rLin (top)
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7.5 Discussion

In 2001, Logan et al. [14] investigated strategies to remove the bias in the graphical anal-

ysis of positron emission tomography data, which is basically a resolution method for the

OVC model, i.e. with a known arterial input function, but the study was also extended to

the rOVC model, i.e. with a reference tissue. �e linear formulation of the rOVC model,

named rLin in this study, was assessed through simulation experiments with various noise

levels, and various strategies were proposed to reduce the estimation bias of the distribution

volume ratio, which is the generalization for the relative tissue blood volume when address-

ing non-intravascular tracers. We �rst proposed the rReg model in [9] as a new strategy

to improve parameter reproducibility in a test-retest preclinical study, and here we inves-

tigated the ability of the method to improve the homogeneity of the bias in the resolution

of the rOVCmodel by taking advantage of the functional heterogeneity among the studied

tissues.

�e regularization greatly improved the homogeneity of the estimation across regions.

In some cases the regularization actually induced stronger bias in the estimation, however

the biases are more homogeneous across regions, allowing meaningful regional comparison

of the perfusion parameters. Moreover, the rLin approach was largely outperformed by the

rReg, especially regarding the accuracy of the rate constant estimates, kT and kR, but also

regarding the relative tissue blood volume and �ow parameters, rV and rF. �e regulariza-

tion also made the estimation more robust to the acquisition settings over the investigated

range, studied via the exam duration and the sampling period.

�eoretically, the number of regions included in the analysis should not have any impact

on the parameters of the rLin model as every regional enhancement curve is modeled in-

dividually. In practice, increasing the number of regions and the underlying heterogeneity

resulted in a large variability of the bias across regions. Varying the number of regions re-

veals the importance of regularizing parameter kR across tumor regions, as implemented by

the rRegmodel, by comparison with the rLinmodel. �e impact or regularization is mea-

surable not only on kR, but also on the other parameters. In this study, simulations did not

account for the variations of the signal to noise ratio depending on the size of the region.
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Instead it investigates solely the impact of the number of regions included in the analysis

on the accuracy and precision of the estimates depending on whether the approach is reg-

ularized for parameter kR by keeping the noise level constant regardless of the number of

regions.

�e rate constant in the tumor, kT , appears to be related to the bias in the estimation of

perfusion parameters using bothmodels. In particular for the rRegmodel, the region with a

simulated kT value larger than kR, and more generally regions with large kT values, yielded

estimates of kT more biased than the other regions. �is phenomenon was reported by

Cárdenas-Rodríguez et al. [6] in a simulation study assessing the ability of the rLin model

to accurately quantify perfusion in contrast-enhanced magnetic resonance imaging data.

�e authors of this study applied the rLin model pixel by pixel, overlooking the relations

between the local perfusion parameters. However, regions with large kT values yielded ac-

curate estimates of rV , while regions with small kT values yielded more biased estimates of

the parameter. Our experiments also reveal that estimation biases can either be positive or

negative in a given region, depending on the value of kR.

Our study revealed that the choice of the reference tissue plays a crucial role in the ac-

curacy and precision of the perfusion parameters estimated using the rRegmodel, it should

therefore be further investigated. Indeed, it is necessary to identify the ideal reference tis-

sue in order to improve the robustness of the estimation. A deeper and �ner understanding

of the relations between the characteristics of the reference tissue and the estimated per-

fusion parameters may allow correction of the estimation bias in case the ideal reference

tissue does not exist in the image. Our study reveals that halving VR or doubling FR, which

both result in doubling kR, has almost the same impact on the estimation bias. Actually,

the least biased estimation overall was obtained using two thirds of the original kR value,

i.e. kR = 2
3 × 0.0693 = 0.0462. Additionally, increasing the values of both VR and FR, while

enforcing �xed values of kR, increased the accuracy of the estimates of the rRegmodel. �is

suggests that a well perfused tissue should be preferred, i.e. a tissue with a high tissue blood

�ow and high tissue blood volume.

Di�erent simulation studies should be conducted to investigate the applicability of the

rRegmodels to contrast-enhanced images acquired using other imaging modalities in case
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of intravascular tracers, or in permeability-limited and �ow-limited conditions with di�us-

ing tracers, i.e. when permeability or blood �ow is much larger than the other one [19], or

when the data only re�ects one of the processes [1]. Indeed, the range of investigated pa-

rameters should be adapted to the imaging modality of interest, for instance the sampling

period and the exam duration are usually longer in othermodalities than in ultrasound. Ad-

ditionally, the multiplicative noise model used for simulation is speci�c of ultrasound data,

and the data was simulated using theOVCmodel to re�ect the intravascular characteristics

of ultrasound contrast agents.

7.6 Conclusion

A simulation study based on preclinical contrast-enhanced ultrasound experiments was

conducted to assess and compare the accuracy and precision of two estimation methods

for the rOVC model, a one-compartment model using a reference tissue. �e rLin model

relies on the linear formulation of the rOVCmodel, and estimates perfusion parameters in

each region of analysis individually. A limitation of this approach lies in the existence of a

perfusion parameter that characterizes the unique reference tissue di�erently for each tu-

mor region, i.e. the rate constant kR. However, since the same reference tissue is used to

analyse all the regions, this parameter should be homogeneous across the di�erent regions.

�e rRegmodel is based on the rLinmodel, but it takes advantage of the functional diversity

of the regions under analysis, and ensures that the rate constant of the reference tissue is the

same across all the regions.

�ese simulation studies demonstrated the superiority of the rReg model in terms of

accuracy and precision. �e regularization of kR also made the biases more homogeneous

across regions, making comparison of regional parameters more meaningful. Additionally,

the rRegmodel relaxes the requirements for temporal resolution and exam duration, allow-

ing accurate estimation of perfusion parameters in shorter acquisitions with low temporal

resolution. Our experiments suggest that the regularization improve the accuracy and pre-

cision of the estimation if at least four regions are included in the analysis. Regarding the

number and the size of the regions under analysis, a compromise should be made to re-
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veal the spatial heterogeneity of the tissue, while limiting the noise level to ensure accurate

estimation of the perfusion parameters.

Indeed the choice of the reference tissue is crucial as it has a signi�cant impact on the

accuracy of the estimation, and should be further investigated. We were however able to

draw some recommendations regarding its selection. �e rate constant parameter is critical

when selecting the reference tissue, a region exhibiting a rate constant larger than the rate

constants in the regions of analysis yielded more accurate parameters in our experiments.

However an optimal value of kR seems to exist, and this issue needs to be further investi-

gated on real examples. Furthermore, using a well perfused reference tissue, i.e. a tissue with

high tissue blood volume and tissue blood �ow, appears to provide more accurate perfusion

parameters.



A�erword

In the third part of this thesis, we proposed and assessed a new quanti�cation model based

on a one-compartment model using a reference tissue that allows simultaneous, robust, and

homogeneous estimation of perfusion parameters in multiple regions. �e model ensures

that a single value of the rate constant characterizing the reference tissue is estimated across

the various regions of analysis through regularization of this parameter.

In Chapter 5 we �rst demonstrated the superiority of the approach in terms of parameter

reproducibility through preclinical test-retest experiments. Indeed, the regularized model

yielded themost reproducible perfusion parameters among the investigatedmethods. �en,

the robustness of the model to recirculation of the contrast agent throughout the course

of the acquisition was assessed on simulated data in Chapter 6. �is study con�rmed the

robustness of compartmental models to recirculation, and revealed the sensitivity of semi-

quantitative parameters to this physiological phenomenon. Finally, in Chapter 7 we investi-

gated the impact of acquisition characteristics, i.e. noise level, exam duration, and sampling

period, as well as analysis strategies, i.e. number of regions, choice of reference tissue. �e

regularized model proved robust to noise, and relaxed the requirements for temporal res-

olution and exam duration. Additionally, regularizing the estimation of kR made the esti-

mation more homogeneous across regions, allowing meaningful comparison of perfusion

parameters between regions. �e choice of the reference tissue was proved to a�ect param-

eter estimation, and the role of parameter kR was revealed. �is �rst analysis pushes us to

recommend the use of a large and well perfused tissue as a reference.
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Chapter 8

Conclusion

�e review of the semi-quantitative, deconvolution, and compartmental methods used to

quantify tissue perfusion enables us to identify some common methods which are used

in various imaging modalities. Semi-quantitative approaches are o�en used as perfusion

indicators, especially in combination with indicator dilution theory, indeed they are eas-

ily derived from contrast enhancement curve in the tissue of interest only. Deconvolution

methods and classical compartmental models require the knowledge of the input function,

which is an arterial input function and can either be obtained through blood sampling or

from the image. However blood sampling is invasive, especially when arterial blood sam-

ples are drawn. Additionally, because of their small cross-section and their high contrast

agent concentrations, image-based estimation su�ers from various artifacts, e.g. partial vol-

ume, saturation. �e di�culties in the detection of the arterial input function yielded to the

development of reference tissue models for relative quanti�cation of perfusion. Indeed, a

reference tissue can be selected in a large, well perfused area of the image, alleviating the

risks of partial volume e�ect, and saturation artifacts. While compartmental models and

reference tissue models were used to quantify perfusion in PET, X-ray CT, and MRI exams,

they were never applied to contrast-enhanced ultrasound data to the best of our knowledge.

In Chapter 3 we compared a semi-quantitative approach based on the log-normal model

LN to a one-compartment model using an arterial input function (AIF) in terms of repro-

ducibility through preclinical test-retest contrast-enhanced ultrasound experiments. �is

study revealed the higher reproducibility of AIFmodel compared to the semi-quantitative
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parameters of the LNmodel. But the study also revealed the di�culties encountered in the

estimation of the arterial input function and the impact of these variations on the estimated

perfusion parameters. Normalizing perfusion parameters of the LN and AIF models ac-

cording to a reference tissue improved inter-exam reproducibility. �e direct estimation of

relative perfusion parameters using a one-compartment reference tissue (RT) yielded the

most reproducible parameters in our test-retest study. Moreover, the quality of �t of the

model was assessed for the three models, and regions with bad �t quality were removed

from further statistical analysis. �eAIF and RTmodels were �tted without accounting for

the regional time-delays, resulting in a large number of regionswith bad �t quality. When ac-

counting for time-delays, the LNmodel best �tted the curves overall, but it was also found to

be the model that yielded the most regions with bad �t quality. And theAIF and RT yielded

comparable �t quality, and the same number of regions with bad �t quality.

In Chapter 4 we established the relations between the parameters of the LN, AIF, and

RTmodels. �ese relations reveal the strong link between the semi-quantitative parameters

of the LNmodel and the parameters of the compartmental approaches, but also explain the

inter-exam variations observed in semi-quantitative parameters which are due to variations

in the arterial input function between successive exams. Normalizing perfusion parameters

according to a reference tissue which has similar perfusion characteristics between the dif-

ferent exams results in an improved robustness to inter-exam variations. �ese analytical

considerations were also veri�ed experimentally in preclinical test-retest data.

In Chapter 5 we presented a linear formulation of theRTmodel derived from Patlak and

revealed its limitations when considering multiple tissues of interest or multiple regions in

a single tissue. We proposed a new regularized linear estimation method (rReg) for the rel-

ative perfusion parameters of RT model, and compared it to the standard non-regularized

linear estimation method (rLin). �e rReg model takes advantage of the functional het-

erogeneity of the tissue of interest to regularize the estimation according to the reference

tissue. �e reproducibility of the two models, rLin and rReg, was assessed on the same

preclinical test-retest data as in our previous studies (Chapter 3 and Chapter 3). Regular-

ization signi�cantly improved the reproducibility of perfusion parameters, in particular the

reproducibility of relative blood �ow estimated by rReg.
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In Chapter 6 and Chapter 7, we assessed the accuracy and precision of the estimates

of the rLin and rReg models through simulation experiments. In these two studies, the

robustness of perfusion parameters was assessed in terms of accuracy, through the median

estimation error, and precision, through interquartile range of the estimation error.

Chapter 6 focuses on the impact of recirculating contrast agent on the estimated perfu-

sion parameters. �e accuracy and the precision of the LN and rLNmodels were assessed,

and the simplistic approach consisting in �tting only the part of the kinetics acquired before

the recirculation occurs was also investigated. �e absolute parameters of the LN model

were expectedly a�ected by recirculation, and the simplistic strategy to alleviate the impact

of recirculation yielded strongly biased parameters. Regarding the rLN model parameters,

rAUC was found robust to recirculation, however rWIR was not, and applying the sim-

plistic strategy actually resulted in more biased perfusion parameters. �is study revealed

the increased robustness of the rReg model to recirculation compared to the rLin model.

Indeed, both models yielded biased perfusion parameters, however the median bias largely

varies from one region to another using the rLinmodel. �ese variations were considerably

reduced using the rRegmodel, showing the ability of themodel to quantify perfusion homo-

geneously across tumor regions, and therefore allowing meaningful intra-exam parameter

comparison.

In Chapter 7 we presented the rReg in more details, and studied the impact of vary-

ing data characteristics, including the noise, the exam duration, and the sampling period,

as well as the impact of quanti�cation choices, including the characteristics of the reference

tissue, and the number of tissue regions. �is study focused on the rLin and rRegmodels, as

these two approaches were found the most accurate and robust in Chapter 6. Compared to

the parameters of the rLinmodel, the parameters of the rRegmodel were found more pre-

cise in strong noise conditions, especially regarding the relative tissue blood �ow parameter

rF. Moreover, the rReg model was able to accurately quantify perfusion exams as short as

80 seconds, while the rLinmodel required the entire 165 seconds kinetics to accurately esti-

mate parameters. Overall, the median bias in the estimation of the rRegmodel parameters

was more homogeneous across tumor regions than for the rLinmodel. �e characteristics

of the reference tissue in�uenced the estimation accuracy, but while our results suggest that
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a well perfused reference tissue would result in a more accurate quanti�cation, further in-

vestigation is necessary to better understand this phenomenon and better characterize the

ideal reference tissue.

Overall, the rReg model proved a promising perfusion quanti�cation tool, and its ap-

plicability to contrast-enhanced ultrasound data was demonstrated in this thesis. �e main

outcome of this work is to take into account some redundancies when dealing with multiple

regions which can be used to improve the estimation. �e rReg model could be applied to

reveal tumor functional heterogeneity at a �ner scale, considering pixels or macro-pixels as

regions for instance. In order to alleviate the impact of noise in local contrast enhancement

curves on the robustness of the estimation, one should consider noise-�ltering techniques,

or alternatively estimating the local perfusion parameters with a �xed value of parameter kR
resulting from prior regional analysis. �e lack of pixel-to-pixel correspondence in our test-

retest experiments motivated the regional cutout used in this work to ensure meaningful

inter-exam parameter comparison.

Two-dimensional data still represents the majority of contrast-enhanced ultrasound ex-

ams nowadays, making inter-exam comparison on the same individual di�cult. Indeed it

is particularly di�cult to ensure that the exact same imaging plane is selected in two exams

performed days apart, and this is especially true when monitoring evolving tissues where

structures change in shape and size, e.g. tumor growth, treatment response. �erefore we

would highly recommend the use of three-dimensional perfusion imaging whenever possi-

ble, in particularwhen it comes to examcomparison. �e recent performance improvements

of three-dimensional ultrasound scanners is therefore promising for tumor monitoring. In-

deed ultrasound imaging will be able to catch up on tomographic imagingmodalities, giving

access to a more relevant information regarding the shape, size, structure, and function of

the lesions, while retaining its real-time, non-ionizing, and cost-e�ective characteristics.

�ree-dimensional perfusion imaging is vastly available in PET, and X-ray CT, and pos-

sibly inMRI.�e application of the rRegmodel to other perfusion imagingmodalities could

be further investigated. Of course it would require some adaptations to account for the un-

derlying compartmental model (with multiple compartments instead of a single compart-

ment). Further adaptation would also be necessary in order to study perfusion in the liver,
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an appropriate model would account for both the arterial and portal blood supplies of the

tissue. Similarly, the vascular network of the kidney is complex and results inmultiple perfu-

sion phases. Using the kidney as a reference tissue without taking this spatial heterogeneity

into account may provide erroneous conclusions. �e incorporation of the multiple phases

in the kidney remains to be fully developed.

�e impact of the reference tissue on the perfusion parameters of the rReg model was

shown in Chapter 7, however a �ner study is necessary to better de�ne the characteristics of

the ideal reference tissue and characterize the impact of an non-ideal reference tissue. Ac-

counting for multiple reference tissues may alleviate the sensitivity of themodel estimates to

the characteristics of the reference tissues. For instance, Yang et al. [2] used multiple refer-

ence tissues to estimate the arterial input function in contrast-enhancedmagnetic resonance

exams.

Choosing the appropriate quanti�cationmethod to assess tissue perfusion through contrast-

enhanced exams remains a complex problem that heavily depends on the data and on the

goal of the study. Exam comparison is particularly di�cult because of variations occurring

between exams at both the experimental and physiological levels. �is thesis demonstrated

the ability of one-compartment models to quantify contrast-enhanced ultrasound exams

reproducibly and robustly at a regional scale when using a reference tissue to overcome the

di�culties in the estimation of the arterial input function. Indeed, reference tissue models

proved more reproducible and robust than arterial input function models overall, however

this may not hold if accurate image-based estimation of the arterial input function is achiev-

able. We emphasis the necessity to consider the relations between the perfusion parameters

of various tissues, or tissue regions, as this proved to considerably improve the accuracy,

robustness, and reproducibility of perfusion parameters in the rReg approach. It addition-

ally shows the functional heterogeneity of tumors while enabling meaningful intra-exam

and inter-exam comparison. However, using reference tissues to monitor the perfusion of

tumors undergoing therapy raises a question regarding the e�ect of the treatment on the

reference tissue, especially in the case of anti-angiogenic treatments.

Future work includes the confrontation of the perfusion parameters estimated using the

rReg model to histological �ndings for further validation of the method. �e perfusion
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parameters of the rReg model could then be used to classify tumor tissues into necrotic,

hypoxic, and non-hypoxic classes. We then intend to use the tissue classi�cation results to

drive a realistic tumor growthmodel that accounts for treatment response inspired by Ribba

et al. [1].
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