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Abstract

Carbon nanotubes are extensively investigated for their amazing mechan-
ical and electronic properties. Optically, they are excellent candidates
for on-demand single-photon sources because they can be electrically
excited and they can emit anti-bunched light at room temperature in
the telecoms bands. However, their emission efficiency is low, its origins
remain unclear and the spectral shape of their photoluminescence is
complicated.

In this work, we build an original setup combining a confocal microscope
and a fiber based micro-cavity which is both spatially and spectrally
tunable. With this device, we observed the rise of cavity quantum
electrodynamics effects by analyzing the evolution of the dipole-cavity
coupling as a function of the cavity volume. We obtained a strong
acceleration of the spontaneous emission rate, due to Purcell factors
above 100. The associated effective efficiency of the source reaches up
to 50%, leading to a brightness of up to 10%, while keeping excellent
anti-bunching features.

We observe the effect of the cavity coupling as a function of the cavity
detuning, and develop a model to account for emitters undergoing exciton-
phonon coupling in the presence of a cavity. We show that our single-
photon source is tunable on a range of frequencies more than a hundred
times higher than the cavity spectral width, opening the way to extensive
multiplexing.

Further strengthening of the coupling may open the way to the very
rich physics of one-dimensional cavity polaritons. And conversely, cavity
polaritons could be a tool to understand better the diffusion, and local-
ization properties of excitons in carbon nanotubes. Finally, the original
setup build here is extremely versatile and could be used to coupled other
types of emitters, such as nano-diamonds or molecules.

Keywords : carbon nanotubes, micro-cavities, CQED, quantum physics,
exciton, phonons



Résumé

Les nanotubes de carbone sont largement étudiés pour leurs propriétés
mécaniques et électroniques étonnantes. Optiquement, ils sont d’excellents
candidats pour les sources de photons uniques à la demande car ils peuvent
être excités électriquement et peuvent émettre une lumière dégroupée à
température ambiante dans les bandes de télécommunications. Cependant,
leur efficacité d’émission est faible, les origines de l’émission restent peu
claires et la forme spectrale de leur photoluminescence est complexe. Dans
ce travail, nous construisons une configuration originale combinant un
microscope confocal et une micro-cavité à base de fibres optiques qui est
à la fois spatialement et spectralement ajustable. Avec ce dispositif, nous
onservons l’apparition des effets de l’électrodynamique quantique en cavité
en analysant l’évolution du couplage dipôle-cavité en fonction du volume
de la cavité. Nous obtenons une forte accélération du taux d’émission
spontanée, grâce à des facteurs Purcell supérieurs à 100. L’efficacité
effective associée de la source atteint jusqu’à 50%, conduisant à une
brillance de 10%, tout en conservant d’excellentes caractéristiques de
dégroupement. Nous observons l’effet du couplage de la cavité en fonction
du désaccord de la cavité et développons un modèle pour tenir compte
de l’effet du couplage exciton-phonon en présence d’une cavité. Nous
montrons que notre source de photons uniques est accordable sur une
gamme de fréquences plus de cent fois supérieure à la largeur spectrale de
la cavité, ouvrant ainsi la voie à un multiplexage étendu. Un renforcement
supplémentaire du couplage peut ouvrir la voie à la très riche physique
des polaritons de cavité unidimensionnels. Inversement, les polaritons de
cavité pourraient être un outil pour mieux comprendre la diffusion et les
propriétés de localisation des excitons dans les nanotubes de carbone.
Enfin, la configuration expérimentale est extrêmement polyvalente et
pourrait être utilisée pour coupler d’autres types d’émetteurs, comme les
nano-diamants ou les molécules.

Mots-clefs : nanotubes de carbone, micro-cavités, CQED, physique
quantique, exciton, phonons
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INTRODUCTION

Introduction

In 1905, Albert Einstein addressed the challenge of explaining the photoelectric effect,
which consisted in a discrete exchange of energy between a light field and a metal [1].
In order to do so, he made the hypothesis that the light was composed of quanta of
energy, later to be called photons [2]. The success of his theory paved the way to
the development of quantum mechanics, and definitely anchored the idea that light
behavior was explainable only if considered both as a wave and as an ensemble of
corpuscles.

In particular, a single-photon source can be defined as a source emitting a stream
of individual photons. In such a stream, the delay between two consecutive photons
has a vanishing probability to be zero. Such a property is typical of quantum
mechanics and cannot be obtained or understood with classical tools. In the 1960s,
the production of nearly single-photons was performed by attenuating a laser source
until the probability of emitting two photons at a time became negligible. However,
given the Poissonian statistics of the coherent light emitted by lasers, this probability
could not drop to zero. The first experimental evidence for a truly anti-bunched light
was obtained with sodium atoms in the late 1970s [3], and was followed a decade
later by reliable single-photon sources [4, 5].

Since then, the field of single-photon generation has been ever developing, and
several applications are considered. In particular, photons could be used as computing
qubits, or bits of information for quantum cryptography [6, 7]. This cryptography
technique consists in a highly secured means of transmitting information, which is
protected from eavesdropping by the laws of quantum mechanics (especially the
impossibility of measuring without changing the system, and the no-cloning theorem
which states that copying quantum data is impossible). Nevertheless, in the presence
of more than one photon, quantum cryptography becomes vulnerable [8], hence the
importance of a truly single-photon source.

However, the emission of photons one by one is not the only requirement for
such applications. It should also be on-demand, which means that the generation
of photons could be triggered by optical or electric pulses ; its brightness, defined
as the probability of obtaining a photon for each excitation pulse should ideally be
one ; and the photons should be indistinguishable [9, 10], which means having the
same wave packet. Furthermore, several practical properties are sought, such as the
possibility of emitting in the telecoms bands (1.3 µm and 1.55 µm), the ability to
work at room temperature and the ease of integration in devices.

The later requirement led researchers to investigate condensed-matter nano-scale
emitters. Currently, the most advanced technology is based on quasi zero-dimensional
emitters called quantum dots. Bright on-demand single-photon sources with a high
degree of indistinguishability have now been achieved [11]. But they undergo three
major downsides : the complicated extraction of photons from the source, the
difficulty to emit at telecoms wavelengths [12], and at room temperature.

Carbon nanotubes, are an allotrope of carbon first synthesized in 1991 [13]. They
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INTRODUCTION

consist in a layer of atoms organized in a honeycomb lattice rolled up into a tube,
having a diameter in the nanometer range and a micro-metric length. Research on
these quasi one-dimensional structures have long been confined to their remarkable
mechanical (light weight, high Young modulus) and electronic (metallic or semi-
conducting, high mobility) properties [14, 15]. Until 2002, when O’Connell et al. [16]
managed to isolate nanotubes from each other by means of micelle encapsulation,
and thus to prevent the photoluminescence quenching.

The geometry of carbon nanotubes can be entirely characterized by its two chiral
indices n and m. Most of the electronic and optical properties of carbon nanotubes
can be predicted from them as well. In particular, some nanotubes are metallic while
others have a direct gap, inversely proportional to their diameter. Synthesizing a
carbon nanotube of a given species (i.e. with given chiral indices), to get a given
transition energy, is a field of research of its own. Currently, most synthesis processes
yield a distribution of species, but the post-selections can bring high purities [17].
However, the origin of the photoluminescence in carbon nanotubes is complex : the
charge carriers are confined due to the the quasi one-dimensional geometry, leading
to very stable excitons, dominating the emission up to room temperature [18]. The
exciton wave-function spills out of the tube and hence is very sensitive to the dielectric
permittivity of its surroundings [19]. As a consequence, the emission energy of a
carbon nanotube cannot be completely predicted by its chiral indices, but strongly
depends on its local environment. More over, Vialla et al. [20] showed that the
photoluminescence spectrum was significantly influenced by interactions between the
exciton and the one-dimensional phonons propagating along the nanotube axis.

In 2008, Högele et al. [21] demonstrated that a single carbon nanotube could emit
anti-bunched light at cryogenic temperature. However, the mechanism underlying
this phenomenon remains unclear. It seems that multiple excitons annihilate at a
fast rate by Auger processes [22, 23, 24] and that the remaining exciton is trapped by
an electrostatic potential in the vicinity of the nanotube, or a defect in the nanotube
lattice [25, 26]. As a matter of fact, the control of defects in nanotubes, by surface
chemistry, led recently to the demonstration of anti-bunching both in the telecoms
bands and at room temperature [27, 28].

A further asset of carbon nanotubes is their ability to be contacted and electrically
excited, which opens the way to device integrated on-demand sources [29, 30].
Nonetheless, three major drawbacks hinder their development : the difficulty to
obtain a nanotube emitting at a given wavelength (synthesis selectivity and sensitivity
to the environment), their complicated optical spectrum and their limited quantum
efficiency, i.e. their probability of emission per excitation pulse.

In this work, we couple a single carbon nanotube to a Fabry-Perot cavity. This
coupling is a powerful tool to investigate the physics underlying carbon nanotubes
photoluminescence, to address the challenge of driving the nanotube emission in the
cavity quantum electrodynamics regime in a deterministic way, and to boost their
characteristics as single-photon emitters. The so-called Purcell effect [31] consists in
an increase of the spontaneous emission rate and thus directly translates in an increase
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of the efficiency of the emitter. The smaller the volume of the cavity, the stronger
the effect. However, coupling a cavity to a single emitter requires spatial matching -
i.e. the cavity mode to be positioned on the emitter - and spectral matching - i.e. a
same frequency for the nanotube emission and the cavity mode. The conventional
monolithic cavities, mainly developed for quantum dots, are unsuited for carbon
nanotubes because of the dependence of their emission energy on their nanoscale
surroundings, with shifts largely overcoming the tuning range of such cavities. As a
consequence, the coupling of a nanotube to such devices relies on random matching,
with success rates irrelevant for applications [32].

By contrast, we adapted a flexible technology developed in the field of atomic
physics [33]. It consists in an open micro-cavity formed between a mirror located
at the apex of an optical fiber and a planar mirror on which carbon nanotubes
are dispersed with a low density. In this way, a single carbon nanotube can be
studied in free-space by confocal microscopy and the fiber Fabry-Perot cavity can
be deterministically matched spatially (lateral motion of the fiber) and spectrally
(distance between the mirrors) to the emitter.

The ability to study the same emitter without the cavity and for different cavity
lengths (different couplings) gives an invaluable insight in the rise of Cavity Quantum
Electro Dynamics effects. In the weak coupling regime, the cavity brings an increased
brightening of the single-photon source via the Purcell effect. The tunability of
the cavity also brings a mean to study the so-called cavity feeding effect [34, 35].
Atom like emitters have a linewidth narrower than the cavity in which they are
embedded. On the contrary here, carbon nanotubes have a linewidth at least an
order of magnitude larger. In this case, the cavity constrains to involve particular
phonon modes in order to match the cavity frequency. Consequently, tuning of the
cavity length brings a spectral tunability of the single-photon source.

The first chapter of this work explains the interest of coupling a single emitter
to a resonator in order to obtain directional emission and accelerated spontaneous
emission. It first covers the case of ideal two-level systems, such as atoms, in
order to derive the conventional Purcell factor formula. However, this formula is
no longer valid for realistic condensed matter emitters undergoing pure dephasing.
The generalized Purcell factor is introduced to account for the pure dephasing [35].
Different experimental devices used in condensed matter such as micro-pillars, micro-
rings or photonic cristal cavities are described and a review of the existing attempts
to couple ensemble or single carbon nanotubes to resonators is given. Finally, the
assets of a spatially and spectrally tunable micro-cavity are outlined.

The second chapter gives the theoretical background underlying the physics of
carbon nanotubes. The structural and electronic properties are derived from the
corresponding properties of graphene. The concept of excitons is introduced in the
case of bulk materials and then investigated in the particular case of one-dimensional
structures such as carbon nanotubes. The different synthesis methods available are
briefly described, as well as the techniques used to separate individual nanotubes.
Finally, the deposition process used in this work is explained.
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The third chapter covers the properties of fiber Fabry-Perot cavities. In the first
section, the resonant modes are derived theoretically and observed experimentally.
The manufacturing of the fibers, done in the Laboratoire Kastler-Brossel, is described.
The different parameters of this process are investigated to assess their impact on
the mode volume of the cavity. The coupling of the fiber mode with the cavity mode
is investigated, as well as the impact of the different losses on the finesse of the
resonator.

The fourth chapter describes the original scanning confocal microscopy setup
developed to combine free-space and cavity experiments on the very same nano-
emitter. Optical properties of single carbon nanotubes at cryogenic temperature are
experimentally investigated. The emission from carbon nanotubes seems to arise
from localized sites, which leads to a discussion of the possible trapping origin of
excitons in carbon nanotubes and the likeliness of Auger annihilation processes. The
model developed by Vialla et al. [20] concerning exciton-phonon coupling model is
introduced and compared to the experimental data recorded in this work. The effect
of the residual spectral diffusion is investigated and compared to alternative models.

The fifth chapter covers the properties of the single-photon source made by
a nanotube coupled to a fiber micro-cavity. The Purcell factor is experimentally
measured by two independent methods. The first consists in comparing the count
rates. Despite its apparent simplicity, it suffers from biases. Consequently, a more
robust method relying on lifetime measurements is introduced. A reliable and
reproducible change in the spontaneous emission rate is measured as a function
of the cavity mode volume. Finally, the anti-bunching figure is measured with a
Hanburry-Brown and Twiss experiment both in free-space and in cavity.

The sixth and last chapter explores how the original exciton-photon coupling
brings a new handle to tune the source over an exceptional frequency range. A new
model is developed to take into account the effect of the cavity on the full nanotube
emission spectrum, including the non-Lorentzian features arising from interactions
with phonons. The efficiency of the single-photon source is measured as a function
of the cavity energy. A fit to the model brings an independent evaluation of the
coupling factor between the dipole and the cavity. Finally, the impact of this coupling
on the tunability is theoretically explored for comparatively higher couplings.
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Chapter 1. Spontaneous Emission Control with a Cavity

Introduction

Developing a quantum computer, or implementing quantum cryptography, are goals
highly sought by physicists. In this frame, photons are excellent candidates to be
used as bits of information - the so called flying qubits. However, generating single,
indistinguishable, entangled photons efficiently remains a challenge.

In particular, the spontaneous emission of an atom, occurring at an energy E and
at a rate γ is non-directional, and thus difficult to use efficiently in applications. A
way to tailor this emission resides in the coupling of the emitter with a resonator. In
that case, the emission can be fully directional and, provided that the system remains
in the so-called weak-coupling regime, the spontaneous emission rate is enhanced
by a factor Fp, introduced by Purcell in 1946 [31]. Given their easy integrability in
devices, solid-state emitters are intensively investigated for single-photon sources.
In particular, increased spontaneous emission was demonstrated in quantum dots
at the end of the twentieth century [36]. Since then, several other emitters and
several geometries have arisen and improved the coupling between condensed matter
emitters and optical cavities [37, 38, 39, 40].

In 2008, Högele et al. [21] demonstrated for the first time that a carbon nanotube
can behave as a single-photon source. Since then, several works have evidenced
the assets of carbon nanotubes in view of applications : single-photon emission was
demonstrated both at room temperature and at the telecoms wavelengths [27, 28].
More over, electrical excitation was investigated [29, 30], opening the way to on-
demand electrically injected single-photon sources. However, carbon nanotubes
have an disadvantage : their efficiency is low, meaning that for one excitation the
probability of emission is well below 10% [41]. This drawback can be overcome if
the nanotube is coupled to a cavity which enhances its probability of emission by
accelerating its spontaneous emission rate.

However, matching a resonator to a carbon nanotube is more challenging than
coupling it to quantum dots because the emission energy of the nanotube is difficult
to control. Due to this difficulty, most groups work with ensemble of nanotubes up
to now, thus loosing the ability to make a single-photon source. More over, the few
attempts to couple a single emitter to a cavity mostly relied on random matching,
thus limiting the possibility for applications. On the contrary, this works offers a
method to reproducibly couple a given nanotube to a tunable micro-cavity.

In this chapter, the coupling between light and matter is introduced and a focus
is done on free-space spontaneous emission. The Jaynes-Cummings model, describing
the coupling between a two-level system and a cavity is investigated and the two
main regimes (strong and weak coupling) are defined. In the case of the later,
the Purcell factor, giving the acceleration of the spontaneous emission, is derived.
After a few examples in atomic physics, the case of solid-state emitters is discussed
both theoretically and experimentally. The different existing cavity geometries are
described. Then, the coupling of ensembles of CNT and individual nanotubes is
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discussed as well as the device used in this work.

1.1 Light - Matter Coupling

An excited two-level system can release its energy towards its electromagnetic
surrounding through a process called spontaneous emission : an electron decays from
an upper to a lower energy level by emitting a photon with the corresponding energy.
This process happens at a certain rate γ and yields an optical spectrum consisting
in a Lorentzian line of width ~γ. However, these properties are not intrinsic to
the emitter, they can be tuned if the electromagnetic surrounding of the emitter is
modified, for example by the introduction of a resonant cavity. In the following, the
case of an atom in free-space is described as well as the case in which it interacts
with a cavity (Jaynes-Cummings model).

1.1.1 Atom in free-space

In free-space, meaning in the absence of a cavity, an atom and an electromagnetic
field can interact. The three main processes are introduced and the spontaneous
emission is investigated.

Emission and absorption

The energy of an atom can only take a series of discrete values (first quantization).
For the sake of simplicity, the problem can be restricted to two levels of energy E1

and E2 > E1. The electronic population of these two states are noted N1 and N2. At
thermal equilibrium, these two populations are related by a Boltzmann distribution :

N2

N1

= e
− ∆E

kbT (1.1)

where ∆E = E2 − E1, kb is the Boltzmann constant and T is the temperature.
The interaction between the atom and an electromagnetic field corresponds to the

exchange of energy ∆E in the form of a photon of frequency ν =
∆E
h

(where h is the

Planck constant). Three kinds of interactions can occur : the spontaneous emission,
the absorption and the stimulated emission.

In the spontaneous emission process, the atom decays spontaneously from the
second level to the first level by emitting a photon of frequency ν. The photon is
emitted in a random direction with a random phase.

If an electromagnetic wave at frequency ν impinges on the atom, a photon of
energy ∆E can be absorbed by promoting one electron from state E1 to state E2.

The third process is called stimulated emission : in that case the presence of a
photon at energy hν implies the decay of a electron from E2 to E1, generating an
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Spontaneous

Emission

Stimulated

Emission
Absorption

E1

E2

Figure 1.1 – Matter and light can interact through three processes depicted in this
figure : the spontaneous emission for which a two-level system decays by generating a
photon, the absorption and the stimulated emission for which the arrival of a photon
on an excited two level system releases a second photon with the same characteristics.

additional photon at the same frequency, the same phase, same polarization and
same direction than the first.

The work undertaken during this PhD focuses on spontaneous emission and how
it is modified by the presence of a cavity.

Free-space spontaneous emission

Following [42, (ch. 10)] a lifetime limited emitter (i.e. : an emitter which spectral
width is given by the Planck constant times the inverse of its lifetime) is studied in a
large box of volume V (the volume will tend towards infinity, ie : the effect of the
box on the emitter is negligible).

The spontaneous emission rate is defined as the transition from the excited atom
in the empty box (state |e, 0〉 where e notes an excitation in the two-level system
and 0 the absence of photons in the cavity) to the state where the atom is back to
its ground level and the cavity contains one photon (state |g, 1〉 where g notes the
ground state of the two-level system and 1 the presence of a photon in the cavity).
If

−→
d is the dipole moment of the emitter,

−→
E is the electric field and H = −−→

d · −→
E is

the interaction Hamiltonian, the transition rate in free-space is given by the Fermi
golden rule :

γ =
2π
~2

|〈e, 0| − −→
d · −→

E |g, 1〉|2DoS(ω) (1.2)

where DoS(ω) is the density of states. Since the spontaneous emission is inves-
tigated, the field responsible for the transition is the vacuum field

−→
E . The norm

of the vacuum field can be obtained by equating the electromagnetic energy in the
mode volume V with the zero-point energy 1

2
~ω. As the time-averaged contributions

of the electric and magnetic field are equal, one gets :
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1.1. LIGHT - MATTER COUPLING

2
∫ 1

2
ǫ0E

2
vacdV =

1
2
~ω (1.3)

It leads to an expression for the vacuum field :

Evac =

(

~ω

2ǫ0V

)1/2

(1.4)

The matrix element is then obtained by averaging over all directions (which
brings a factor 1

3
) :

| < e, 0| − −→
d · −→

E |g, 1 > |2 =
1
3
µ2E2

vac =
µ2
~ω

6ǫ0V
(1.5)

where µ is the electric moment of the transition :

−→µ = −e (< e, 0|x|g, 1 > −→ex+ < e, 0|y|g, 1 > −→ey + < e, 0|z|g, 1 > −→ez ) (1.6)

The density of states for photon modes in free-space is given by :

DoS(ω) =
ω2V

π2c3
(1.7)

Finally, by injecting equations 1.5 and 1.7 in 1.2 one obtains the transition rate :

γ =
µ2ω3

3πǫ0~c3
(1.8)

The spontaneous emission rate of an atom in free-space simply depends on its
frequency and its transition moment.

1.1.2 Cavity coupling: the Jaynes-Cummings model

Now that the free-space spontaneous emission of an atom was introduced, the
interaction with a perfect cavity is investigated. For that purpose, the Jaynes-
Cummings model is presented.

Hamiltonian

The Jaynes-Cummings approach is a simplification of the emitter cavity-coupling
in which the cavity is considered to be lossless. The emission comes from a two
level system which couples to a single mode of the cavity. The Hamiltonian can be
expressed as :

H = HX +Hc +HI (1.9)

The emitter’s part of the Hamiltonian simply reads HX = ~ωX |e〉〈e| where ~ is
the reduced Planck constant, ωem is the two-level emission frequency and |e〉 is the
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excited state of the system. The cavity’s Hamiltonian corresponds to the energy of
a photon at the cavity frequency ωc. It reads Hc = ~ωca

†a. Finally the interaction
between the cavity and the two-level system is given by :

HI = i~g
(

â†σ̂− − σ̂+â
)

(1.10)

Where â† and â are the creation and annihilation operators for a photon in the
cavity while σ̂− and σ̂+ are the lowering and rising operators for the exciton. The
coupling energy g is half the so-called Rabi splitting :

2~g =

(

2µ2
~ω

ǫ0V

)1/2

(1.11)

The HI part of the Hamiltonian corresponds to the interaction : it links a state
in which the cavity contains n photons and an excited emitter with a state in which
the cavity contains n+ 1 photons and the emitter is at its ground level :

〈e, n|HI |g, n+ 1〉 = i~g
√
n+ 1 (1.12)

In this work, the focus is on single-photon emitters. For the sake of simplicity,
the use of the Jaynes-Cummings model is restricted to the case where there is one
and only one excitation, which can be either in the two-level system or in the cavity
(in the form of a photon). In that case, the subspace becomes (|g, 1〉,|e, 0〉) and the
Hamiltonian can be rewritten as :

H = ~

[

ωc ig
−ig ωX

]

(1.13)

A diagonalization of the Hamiltonian yields the following eigenvalues :

E± = ~(ωc − δ

2
± 1

2

√

4g2 + δ2) (1.14)

Where δ = ωc −ωX is the detuning between the cavity frequency and the emitter’s
frequency. The energy splitting ∆E = E+ − E− between these two values reads :

∆E = ~

√

4g2 + δ2 (1.15)

If one defines an angle θ such that tan θ =
2g
δ

, the eigenvectors of the problem

|Ψ±〉 are given by :

|Ψ+〉 = cos θ|g, 1〉 + sin θ|e, 0〉 (1.16)

|Ψ−〉 = sin θ|g, 1〉 + cos θ|e, 0〉 (1.17)

Here, the two states are entangled (excitation in the matter and excitation in the
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light). This entanglement is maximized if the cavity is resonant with the emitter
(δ = 0) :

|Ψ±〉 =
1√
2

(|g, 1〉 ± |e, 0〉) (1.18)

Rabi oscillations

From this model, it is possible to predict the temporal evolution of the system. In
this case, the system at t = 0 corresponds to a state where the two-level system is
excited and the cavity empty : |Ψ(t = 0)〉 = |e, 0〉 (It is assumed that the cavity and
the emitter are resonant). In the eigenstate basis, this rewrites :

|Ψ(t = 0)〉 =
1√
2

(|Ψ+〉 + |Ψ−〉) (1.19)

The evolution of the system is given by :

|Ψ(t)〉 =
1√
2

(

|Ψ+〉e−iE+t/~ + |Ψ−〉e−iE−t/~
)

(1.20)

= eiωt (−i|g, 1〉 sin (gt) + |e, 0〉 cos (gt)) (1.21)

The system oscillates between the two states : the one for which the energy is
stored in the two-level system and the one for which the energy is stored in the form
of a photon. At any time, the probability to find the excitation in the two-level
system is given by :

P (t) = |〈e, 0||Ψ(t)〉|2 = cos2 (gt) (1.22)

This coherent exchange of energy between the emitter and the cavity is called
vacuum Rabi oscillations. However, the situation investigated here is idealized.

1.2 Purcell effect

In the previous section, it was shown that the spontaneous emission not only depends
on the properties of the emitter but also on its environment. This phenomenon was
stated by Purcell in 1946 [31]. In particular, the so-called Purcell effect describes
the acceleration of the spontaneous emission when a resonant cavity surrounds the
emitter in the weak-coupling regime.

In order to go further, the Jaynes-Cummings model introduced in the previous
section is completed by the addition of losses in the cavity. An other approach,
relying the Fermi golden rule is employed to investigate the weak-coupling regime and
to derive the Purcell factor. Then, some experimental achievements are discussed.
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1.2.1 Purcell factor

The Purcell effect is the acceleration of the spontaneous emission in the weak-coupling
regime. This regime is defined and the expression of the Purcell factor derived.

The lossy cavity

In this section, two kinds of losses are considered. First, the emitter can couple to
electromagnetic modes out of the Hilbert subspace under study, at a rate γ. Second,
it is considered that the photons spend a finite amount of time τcav in the cavity. This
phenomenon can be described by the decay rate of the cavity κ, which corresponds
to the rate at which the photons are likely to leak out. The cavity can also be
characterized by its mode linewidth ~κ or by its quality factor :

Q =
ωc

κ
(1.23)

If the space is still restricted to a maximum of one excitation, it can be restricted
to the subspace |e, 0〉, |g, 1〉, |g, 0〉. Using the density matrix formalism, one can
explore two quantities : the complex electric field in the cavity, which is proportional
to 〈g, 1|ρ|g, 0〉 and the atomic dipole, which is proportional to 〈e, 0|ρ|g, 0〉. As state
|g, 1〉 decays towards state |g, 0〉 at a rate κ, and state |e, 0〉 towards state |g, 0〉 at a
rate γ, the density matrix evolution is given by [43] :







d
dt

〈g, 1|ρ|g, 0〉 = g〈e, 0|ρ|g, 0〉 − (iωX + γ
2
)〈g, 1|ρ|g, 0〉

d
dt

〈e, 0|ρ|g, 0〉 = −g〈g, 1|ρ|g, 0〉 − (iωc + κ
2
)〈e, 0|ρ|g, 0〉

(1.24)

These two equations correspond to the evolution of two classical oscillators
coupled and damped :

d2x

dt2
+ (2iωX +

κ+ γ

2
)
dx

dt
+ (

γ

2
+ iωX)(

κ

2
+ iωX) + g2x = 0 (1.25)

When the emitter is in resonance with the cavity (ωc = ωX), the complex values
λ characterizing the system’s evolution are solution of the equation :

λ2 + (2iωX +
κ+ γ

2
)λ+ (

γ

2
+ iωX)(

κ

2
+ iωX) + g2 = 0 (1.26)

The spectrum S(ω) of the emission in the cavity is a function of the roots λ± [44] :

S(ω) ∝
∣

∣

∣

∣

∣

λ+ − ωX + iκ
2

ω − λ+

− λ− − ωX + iκ
2

ω − λ−

∣

∣

∣

∣

∣

2

(1.27)

Depending on the sign of the discriminant ∆ =
(

κ−γ
2

)2 − 4g2, two solutions can
arise : the strong and the weak coupling regimes.
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Strong and weak coupling regimes

The strong coupling regime is defined by g > |κ−γ|
4

. This corresponds to the case for
which the coupling between the cavity and the emitter is stronger than the losses
of the system (the case treated in paragraph 1.1.2 falls in that category). In other
words, the photon emitted by the relaxation of the two-level system stays in the
cavity until it is reabsorbed. The solutions of equation 1.26 are given by [44] :

λ± = ωX ±
√

g2 − (κ− γ)2

16
− i

4
(κ+ γ) (1.28)

The Rabi oscillations are simply damped at a rate
γ + κ

4
given by the imaginary

part of λ±. Spectrally, this strong coupling regime is characterized by the splitting

around the resonant frequency, between two lines of width
|κ+ γ|

2
located at

ωX ±
√

g2 − (κ−γ)2

16
(real part of λ±).

Conversely, the weak coupling regime is defined by g < |κ−γ|
4

. In that case, the
losses overcome the coupling between the cavity and the emitter. In other words,
the photon emitted by the two-level system leaks out of the cavity too fast for Rabi
oscillations to happen. The roots of eq. (1.26) are [44] :

λ± = ωX ± i

√

(κ− γ)2

16
− g2 − i

4
(κ+ γ) (1.29)

This time, the real part is simply ωX : there is only one oscillation frequency for
the system, which is the frequency of the emitter. The degeneracy lift due to the
coupling is entirely canceled by the losses. However the system has two relaxation
rates γ± . In the case for which κ ≫ γ :

γ+ ≃ κ

2
(1.30)

γ− ≃ γ

2
+

2g2

κ
(1.31)

Consequently, the spontaneous emission rate of the two-level system in cavity in
the weak coupling regime γweak is given by [44] :

γweak = γ +
4g2

κ
(1.32)

This acceleration is the so-called Purcell effect. As this is the main focus of this
work, this situation is investigated in more details in the following section.

14



Chapter 1. Spontaneous Emission Control with a Cavity

0 1 2 3
0

1

P

Time

0 1 2 3
0

1

P

Time

In the 

cavity

Bulk

Weak coupling regime (Purcell) Strong coupling regime (Rabi)

Figure 1.2 – Spectral (top) and temporal (bottom) characteristics of weak coupling
(left) and strong coupling (right) regimes in the case where κ ≫ γ. In the top left
panel, the black line shows that the emission spectrum is Lorentzian. In the top
right panel, the contribution of the two states is depicted in dashed red and the total
spectrum is in black. In the bottom left, the black line shows the decay of the emitter
and the red line its decay when coupled to the cavity. In the bottom right panel, the
red line shows the damped Rabi oscillation while the dashed blacked line shows the
damping envelope. Figure adapted from [45], with the author’s permission.

15



1.2. PURCELL EFFECT

The Fermi golden rule approach

In order to calculate the Purcell factor with the Fermi golden rule, two assumptions
are made : first, the cavity is single-mode, which means here that it has only one
mode close to resonance with the emitter (the other modes are encompassed in γ).
Second, the cavity mode is a Lorentzian of Full Width at Half Maximum (FWHM)
κ =

ωc

Q
where Q is the quality factor of the cavity and ωc is the cavity resonant

frequency.
The density of states in a cavity mode is given by [42, (ch. 10)] :

DoS(ω) =
2
πκ

κ2

4(ω − ωc)2 + κ2
(1.33)

The density of states is normalized (assumption that there is only one resonant
mode) :

∫ ∞

0
DoS(ω)dω = 1 (1.34)

If one assumes that the two-level system transition is very narrow compared to κ
and happens at a frequency ω0, the density to consider is simply DoS(ω0). And
the spontaneous emission rate in the cavity mode can be calculated from the Fermi
golden rule :

γT LS→cav =
2π
~2

|〈e, 0| − −→
d · −→

E (~r)|g, 1〉|2DoS(ω0) (1.35)

As for the atom in free-space,
−→
d is the dipole moment of the emitter,

−→
E (~r) is the

local electric field at the emitter location ~r and H = −−→
d · −→

E (~r) is the interaction
Hamiltonian. Similarly to what was calculated in eq. (1.5), the matrix element can
be expressed as :

|〈e, 0| − −→
d · −→

E (~r)|g, 1〉|2 =
~ω

2ǫ0V
|~d · ~ǫ(~r)|2 (1.36)

where V is the volume of the cavity, and −→ǫ (~r) is the normalized mode function.
The Fermi golden rule rewrites as :

γT LS→cav =
2Q
~ǫ0V

|~d · ~ǫ(~r)|2 κ2

4δ2 + κ2
(1.37)

Where the detuning reads δ = ωc − ωX . The ratio between the spontaneous
emission rate in the cavity mode (eq. (1.8)) and the spontaneous emission rate in
free-space (eq. (1.37)) reads :

γT LS→cav

γ
=

3Q(λ/n)3

4π2V

|~d · ~ǫ(~r)|2
µ2

κ2

4δ2 + κ2
(1.38)

where λ is the wavelength, n the optical index of the material around the emitter
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(c/ω is replaced by (λ/n)/2π). In eq. (1.38) one can already see that a strong
acceleration of the radiative rate is submitted to two matching conditions :

• The spatial matching specifies that the emitter must be located in a maximum
of the electric field of the cavity and the dipole must be oriented along the field
(In that case |~d · ~ǫ(~r)| = µ2).

• The spectral matching specifies that the resonant energy of the cavity must
match the optical transition of the emitter (detuning δ = 0).

The Purcell factor Fp is defined in the case where both the spatial and spectral
matching are obtained. It reads :

Fp =
3Q(λ/n)3

4π2V
(1.39)

The total decay rate of the emitter in the cavity γcav is its emission in the cavity
mode γT LS→cav plus its spontaneous emission towards all space γ, if the inhibition
due to the cavity is neglected1 :

γcav = γ + γT LS→cav (1.40)

= γ(1 + Fp) (1.41)

The Purcell factor, as defined here, only depends on the cavity and quantifies
the acceleration it can provide to an atom’s spontaneous emission rate. This factors
increases linearly with the quality factor of the cavity and the inverse of its volume.
However this ideal case holds only when the emitter’s linewidth is much sharper than
the one of the cavity, which is generally not the case for condensed matter emitters.

1.2.2 High quality factor cavities

In eq. (1.39), it is visible that the Purcell factor depends mostly on two parameters :
it increases with the inverse of the the mode volume and with the quality factor.
Now, two experimental implementations of this Purcell factor is introduced.

The case of Rydberg Atoms

The first experimental proof of emitter-cavity coupling was done with Rydberg atoms
in 1983 in the group of S. Haroche [47]. A circular Rydberg state, is a state with a
high principal quantum number n2 and with maximal orbital and magnetic quantum
number (l and ml). Such Rydberg atoms have a large size, proportional to n2.
Consequently, they exhibit strong interactions with electric and magnetic fields.

1If the cavity blocks the emission towards a portion α of the space, one must consider that the
non-directional emission in the cavity becomes (1−α)γ and the total emission γ(1−α+Fp). In most
case, α is negligible and in any case, for a sizable Purcell effect Fp ≫ 1, one has : γcav ≈ γcav mode.
See ref [46] for details.
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1.2. PURCELL EFFECT

Figure 1.3 – Experimental schema of the setup built by Haroche et al. for the
first demonstration of the Purcell factor, on Rydberg atoms. Reprinted figure with
permission from Goy, Raimond, Gross, and Haroche, S, Physical review letters 50,
24 (1983) [47]. Copyright 1983 by the American Physical Society.

Experimentally, Haroche et al. used Na atoms for which the transition frequency
between the two states of interest is ν0 = 340 GHz. It corresponds to a wavelength

λ0 = 0.8 mm. Given that large wavelength, obtaining a low ratio
V

λ3
0

≈ 1 is achievable

even with a macroscopic cavity (about a millimeter cube). However, the main
difficulty resides in obtaining a significant quality factor.

The cavity used in this experiment is a Fabry-Perot resonator. It consists in
two mirrors facing each other. The interferences lead to stationary modes. The
volume of the mode depends mostly on the curvature of the mirrors while the quality
factor increases with their reflectivity. However, this quality factor is limited by the
scattering at the surface of the mirrors and their finite size (a small part of the mode
is lost at each reflection on the edges). The quality factor obtained in the experiment
mentioned above was 7.5 · 105 (since then quality factors three orders of magnitude
higher were observed [48]). As a consequence, a rough estimation of the Purcell
factor from eq. (1.39), yields Fp = 5 · 104 for a mode volume equal to λ3

0. With an
effective2 mode volume of Veff = 70 mm3, the change observed in the emission rate
of the atoms led to an experimentally estimated Purcell factor of Fp = 5 · 102.

The case of micro-sphere cavities

The Fabry-Perot cavities described above enable to observe high Purcell factor due
to their high quality factor. However, reaching lower mode volumes helps to increase
the Purcell factor, or to obtain an equivalent Purcell factor for lower wavelengths. In

2The effective mode volume is calculated from the electric field and may be different than the
geometrical volume. This topic is discussed in section 3.2.
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Chapter 1. Spontaneous Emission Control with a Cavity

Figure 1.4 – Scanning electronic microscope image of a fused-silica micro-sphere,
56 µm microns in diameter. Reprinted figure from [49] under CC BY-NC-SA 3.0
license.

this view, some researchers investigated the coupling of cooled atoms to micro-sphere
which can have both a small mode volume and very high quality factor.

Such cavities consist in a dielectric micro-sphere, as depicted in fig. 1.4, with
a refractive index higher than the one of the surrounding medium. The light
is trapped by total internal reflection around the equator of the sphere, in the
so-called whispering gallery modes (WGM). Typically, in the case of silica micro-
spheres, diameters such as 40 µm can be reached, leading to mode volume of Veff =
100 µm3 [49]. At the same time, the quality factors obtained can reach up to 1010 [50].

With such low mode volumes, it is possible to observe Purcell effect for atomic
transitions in the visible range or the infrared. However, the difficulty with this
technique arises in the coupling of light with the WGM. The coupling process is done
by frustrated total internal refraction : a material of high refractive index is brought
close to the sphere and some of the light tunnels into it. With this technique, the
typical coupling reaches 30% [49].

1.3 Purcell effect in condensed matter

Though coupling atoms to cavities led to an interesting tuning of their emission
properties, applications remained hindered by the difficulty of integrating them into
devices. In this frame, a strong interest developed for condensed matter emitters.

However, in such a case the quality factor of the cavity is no longer the limiting
factor : due to interactions with its environment, the emitter can have a quality
factor lower than the one of an atom. Consequently, for a given emitter, the strategy
for obtaining a sizable Purcell factor relies mostly on lowering the mode volume of
the cavity.

In this section, the generalized Purcell Factor for a solid state emitter coupled to
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g

δ

Figure 1.5 – An emitter with relaxation rate γ, undergoing pure dephasing modeled
by a rate γ∗ is coupled with a factor g to a cavity of linewidth κ and detuned of
δ. Adapted figure with permission from Auffeves, Gerace, Gérard, França Santos
and Andreani, Phys. Rev. B 81, 24 (2010) [35]. Copyright 2010 by the American
Physical Society.

a cavity is derived and several examples of micro-cavities are described. Finally, the
case of carbon nanotubes is discussed.

1.3.1 Purcell factor for a condensed matter emitter

In condensed matter artificial atoms, the coupling to the environment can include
phonon assisted mechanisms [51, 20] or spectral diffusion at different time scales [52,
53]. Pure dephasing phenomenons lead to a decoherent broadening of the transition
line, which can overcome the cavity’s linewidth. Indeed, in our experiment, the
typical width of the cavity is 30 µeV while the nanotube’s FWHM ranges from
300 µeV to 2 meV (while the lifetime limit of the transition is around a few µeV).

Introducing the pure dephasing in the emitter - cavity coupling

The case of the phonon assisted transitions is left for chapter 6. Following the work of
Auffèves et al. [34, 35] this section restricts to a condensed-matter emitter undergoing
pure dephasing. Its emission is described by a Lorentzian3 of width γ + γ∗ where

γ =
1
τF S

is its relaxation rate, inversely proportional to its free-space lifetime τF S.

γ∗ is an additional relaxation term that takes into account pure dephasing [35, 54].
All the parameters are summed up in figure 1.5.

The cavity itself keeps the parameters defined in the previous sections : its
frequency ωc, its FWHM κ, its quality factor Q =

ωc

κ
and the detuning δ with the

emitter of frequency ωX : δ = ωc − ωX .
The Hamiltonian of the system can be written [35] :

3Let’s underline once again that the model developed here holds only for a Lorentzian emitter.
A more general description is given in chapter 6
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H = ~ωX σ̂+σ̂− + ~ωcâ
†â+ i~g

(

â†σ̂− − σ̂+â
)

(1.42)

Where â† and â are the creation and annihilation operators for a photon in
the cavity while σ̂− and σ̂+ are the lowering and rising operators for the exciton.
The quantum evolution of the system is governed by a master equation containing
damping and dephasing terms :

ρ̇ = i~[ρ,H] + Lcav
damp + LX

damp + Ldeph (1.43)

The first damping Linblad operators is here to take into account the losses of the
cavity and reads :

Lcav
damp =

~κ

2

(

2âρâ† − â†âρ− ρâ†â
)

(1.44)

The decay rate of the emitter is described by Lx
damp :

LX
damp =

~γ

2
(2σ̂−ρσ̂+ − σ̂+σ̂−ρ− ρσ̂+σ̂−ρ) (1.45)

The third Linblad operator takes into account the pure dephasing channel :

Ldeph =
~γ∗

4
(σ̂zρσ̂z − ρ) (1.46)

where σ̂z is the Pauli matrix. The Lindblad operators are noted L = Lcav
damp +

LX
damp + Ldeph.

The population evolutions for an operator A (such as σ̂+σ̂−) can be derived by
writing :

d〈A〉
dt

=
dTr(ρA)

dt
= Tr(ρ̇A) (1.47)

= Tr((i~[ρ,H] + L)A) (1.48)

= Tr(i~ρ[H,A]) + Tr(LA) (1.49)

= i~〈[H,A]〉 + Tr(LA) (1.50)

The four operators expectation values are related by :

d

dt











〈σ̂+σ̂−〉
〈â†â〉

〈â†σ̂−〉
〈σ̂+â〉











= M











〈σ̂+σ̂−〉
〈â†â〉

〈â†σ̂−〉
〈σ̂+â〉











(1.51)

Where
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Atom Cavity

Figure 1.6 – The cavity coupled to the condensed matter emitter is formally equivalent
to a two boxes system. One box represents an ideal two-level system (atom) decays
at a rate γ while the other box represents the cavity, decaying at a rate κ. The two
boxes are coupled by an exchange rate R which depends on the detuning δ and the
pure dephasing γ∗. Adapted figure with permission from Auffeves, Gerace, Gérard,
França Santos and Andreani, Phys. Rev. B 81, 24 (2010) [35]. Copyright 2010 by
the American Physical Society.

M = ~











−γ 0 −g −g
0 −κ g g
g −g −iδ − γall

2
0

g −g 0 −γall

2
+ iδ











(1.52)

And the total dephasing term is :

γall ≡ κ+ γ + γ∗ (1.53)

One can diagonalize the matrix M in order to find its eigenvalues. In a simple
picture, one can consider that the first two, λ1 and λ2, describe what happens for the
evolution of an excitation in the matter 〈σ̂+σ̂−〉 and what happens for the evolution
of an excitation in the cavity 〈â†â〉. They read :







λ1 = −(γ +R)

λ2 = −(κ+R)
(1.54)

The parameter R describes an effective coupling rate between the cavity and the
emitter [35] :

R =
4g2

γall

(

1 +
(

2δ
γall

)2
) (1.55)

The system can be viewed as the coupling between two boxes : an ideal two-level
system box is initially launched with a quantum of energy (excitation in the emitter).
It can escape in the environment with a rate γ or in the cavity box at a rate R.
Once the excitation is in the cavity box, it can be reabsorbed by the emitter with
a probability per unit of time R or leak out of the cavity at a rate κ. This view is
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depicted in figure 1.6.

Generalized Purcell Factor

The evolution of 〈σ̂+σ̂−〉 is a mono-exponential decay with a characteristic time 1/λ1

: e−(γ+R)t. In other words, the emission rate in the cavity is γ + R = γ(1 + R/γ).
The generalized Purcell factor F ∗

p is defined as the additional emission rate in the
cavity mode at zero detuning :

F ∗
p =

R(δ = 0)
γ

(1.56)

F ∗
p =

4g2

γγall

(1.57)

In order to compare this generalized Purcell factor to the usual one, the later has
to be rewritten. The decay rate of the emitter in the cavity mode γT LS→cav is given
at resonance by (eq. (1.31)) :

γT LS→cav =
4g2Q

ωc

(1.58)

which means that the (not generalized) Purcell factor at resonance can be written :

Fp =
γT LS→cav

γ
=

4g2

γκ
(1.59)

The generalized Purcell factor is similar to the usual Purcell factor, provided
that the decay rate of the cavity is replaced by the sum of κ and the total emitter’s
linewidth γ + γ∗. In order to rewrite the generalized Purcell factor in a form similar
to equation (1.39), the emitter’s quality factor is introduced :

Qem =
ωx

γ + γ∗ (1.60)

and the effective quality factor of the cavity-emitter system Qeff :

1
Qeff

=
1
Q

+
1

Qem

(1.61)

Finally, the generalized Purcell factor at resonance reads :

F ∗
p =

3Qeff (λ/n)3

4π2V
(1.62)

In this expression the cavity’s and the emitter’s quality factors play a symmetrical
role. In fact, for our experiment, the quality factor of the cavity exceeds by two
orders of magnitude the one of the emitter, which means that the Purcell effect
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is mainly limited by the linewidth of the carbon nanotube. As in the case of the
two-level system, the generalized Purcell factor depends on the quality factor and
the inverse of the volume. However, this time the quality factor is the one of the
emitter and only sample engineering can improve it. On the cavity side, reducing
the volume is the only way to increase the spontaneous emission rate.

Efficiency of the cavity coupled emitter

When the emitter is excited, it behaves as if it had two options : one being a decay
in the environment at a rate γ, just as in free-space ; the other being a decay into
the cavity mode, at a rate R. The energy in the cavity mode itself leaks out into the
environment at a rate κ. The losses γ are non-directional, and thus complicated to
collect. On the contrary, the cavity mode losses κ can be considered as the useful ones.
The effective efficiency β of the cavity coupled emitter, is defined as the percentage
of useful losses. It is thus given by :

β =
Rκ

R+κ

γ + Rκ
R+κ

(1.63)

where Rκ
R+κ

is the rate at which the emitters relaxes towards the cavity mode and
then towards the environment .

If R > κ, it means that the energy is transfered quicker from the emitter to the
cavity than from the cavity to the environment. In other words, a photon emitted
spends a finite time in the cavity mode before it leaks out. This regime, called good
cavity regime, does not necessarily imply a coherent interaction between the emitter
and the cavity: the photon can remain in the cavity without being reabsorbed by
the emitter.

If R < κ, it means that the cavity empties out as soon as it gets a photon from the
emitter. This bad cavity regime is the one used throughout this work. In this regime,
the cavity can be considered, in the point of view of the atom, as an additional
source of losses.

1.3.2 Light confinement in semi-conductor structures

In the previous sections, the generalized Purcell factor was introduced : it gives
the acceleration of the spontaneous emission that can be obtained by tailoring the
electromagnetic surroundings of an emitter. Such a modification can be obtained by
several means, such as plasmonic or dielectric cavities. In the following paragraphs,
different solutions available in condensed matter are discussed.

Micro-pillars

A micro-pillar cavity is a special type of Fabry-Perot cavity which is now widely used
with quantum dots. It consists in a cylinder of semi-conductor, as shown in fig. 1.7,

24



Chapter 1. Spontaneous Emission Control with a Cavity

Figure 1.7 – MEB image of micro-pillars. Reprinted figure from [55], with the
author’s permission.

which can be roughly divided in three main parts : the bottom mirror, the top
mirror, and in between the cavity space in which the emitter is embedded. The two
mirrors are Distributed Bragg Reflectors (DBR), which means alternate layers of two
materials with a large optical index difference4, leading to constructive interferences
for a given range of wavelengths.

These cylindrical cavities, typical etched out from a planar cavity, are usually a
few micrometers in diameter and 10 µm high. The lowest mode volumes obtained
are 0.3 µm3 [38], about 10(λ/n)3, and the usual quality factors are 103 and can reach
several 104. The photons are emitted along the axis of the pillar. A slight difference
in the reflectivity of the two mirrors can induce a suppressed emission towards the
bottom, and thus a fully directional emission towards the top of the pillar.

It is this kind of cavities that was used to demonstrate the first acceleration of the
spontaneous emission of a QD ensemble in 1998, with a Purcell factor of up to 5 [36].
Since then, the strong coupling regime was reached with InAs QD [38], and more
recently, an improvement in the fabrication technique (discussed in section 1.3.2)
made such cavities easier to adapt to quantum dot emitters, leading to demonstration
of high brightness entangled source [56] or photon indistinguishability [57].

Micro-rings

Micro-rings or micros-disks do not rely on two mirrors to confine light. In that
case the structure is a disk with a diameter of a few microns and a thickness low
enough to allow a single stable mode λ/n (where n is the optical index). Due to the
difference of optical index between the micro-disk material and the air, the light is

4A very common structure is the so-called Bragg mirror for which each layer has a thickness
λ/4n where n is the optical index.
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Figure 1.8 – Scanning electron microscopy side view of a 2 µm diameter micro-disk.
Reprinted figure with permission from Peter, Senellart, Martrou, Lemaître, Hours
and Gérard, Physical review letters 95, 6 (2005) [58]. Copyright 2005 by the American
Physical Society.

totally reflected at the interface, leading to a three-dimensional confinement in the
structure. This kind of modes is close to the one seen for micro-sphere cavities.

Such structures can have mode volumes as low as a few (λ/n)3 and quality factors
as high as 104, leading to Purcell factors above a 100 [59]. However, the emission of
photon is done in the 2D plane of the disk, which means that it is more difficult to
extract light than in the case of micro-pillars for example. The strong coupling was
reached in 2005 with a quantum dot by E. Peter et al. [58]. And more recently, two
teams successfully coupled multiple or ensembles of nanotubes to such microrings
(section 1.3.3).

Photonic crystals

A Distributed Bragg Reflector, already introduced in the paragraph about micro-
pillars, can be considered as a 1D photonic crystal cavity : it is a periodical sequence
of alternate layers of dielectric materials that confines light in one direction of space.

The 2D photonic crystals are obtained from a membrane of a semi-conductor
material where holes are periodically created. The light propagating in the membrane
faces a lattice of holes with an index n = 1 differing strongly from the one of the
material. This lattice creates a forbidden band for photons just as a periodic lattice
of atoms creates a forbidden band for electrons. A cavity can then be created by
omitting one or several holes, as shown in figure 1.9. Vertically, the confinement is
obtained by total internal reflection.

Amongst dielectric resonators, photonic crystals are the systems with which one
can obtain the lowest optical mode volumes. It can drop down below the diffraction
limit (λ

2
)3 (and as low as 0.05 µm3) while keeping quality factors such as 5 · 104 [61].

The photons extracted come from the losses of the cavity that go in a direction
perpendicular to the membrane. The emission angular aperture is a function of the
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Cavity
Suspended

Membrane

DBR

Figure 1.9 – 2D Photonic cristal cavity : the light is confined in the membrane by
internal reflection (yellow line). The cavity is obtained by omitting a hole in the
lattice. Reprinted figure with permission from Kim, Kim and Lee, Physical Review
B 73, 23 (2006) [60]. Copyright 2006 by the American Physical Society.

inverse of the contrast of indices between the membrane and its surroundings. The
emission can be collected by a high numerical aperture objective.

The coupling of QD to such cavities was demonstrated in 2005, with a Pur-
cell factor of 8 [62]. Indistinguishability [63] and strong coupling [64] were also
demonstrated.

Plasmonic cavities

The three different kinds of cavities described above face a limitation in the reduction
of their mode volume. In order to go further, it is possible to use Surface Plasmon
(SP) modes. A surface plasmon is a coherent delocalized electron oscillation wave
propagating along the interface between a metal (typically gold or silver) and a
dielectric [65], as shown in fig. 1.10.

Even tough plasmonic cavities have a strong asset in their volume, they have
three drawbacks. First, they undergo the so-called ohmic losses : their non-radiative
decay rate increases strongly when the emitter is close to the surface [67]. As a
consequence, a trade-off must be found between increasing the Purcell factor of the
emitter (reducing its distance to the interface) and keeping reasonably low ohmic
losses (increasing its distance to the surface). This requires a positioning with a
nanometric accuracy. The second issue is a consequence of the first : as long as the
quality factor is low, it means that the spectral purity of the source is low (ie : the
spectrum of the cavity is large). Finally, the emission in surface plasmon cavities
remains non-directional [68], which would limit the brightness of devices.

A number of different geometries exist for plasmonic enhancement of a solid state
emitter : metallic nano-disks [69], metallic grating [70], metallic nano-wires [37] or
metallic antennas [71]. Whatever the geometry, the surface plasmons are confined
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Figure 1.10 – Single SPPs excited in a metallic stripe waveguide by single photons
from parametric down conversion. Reprinted figure with permission from Di Martino,
Sonnefraud, Kéna-Cohen, Tame, Özdemir, and Kim, Nano Letters 12, 5 (2012) [66].
Copyright 2012 by the American Chemical Society.

close to the interface. Consequently, the density of states is strongly increased locally
for the emitter, and the effective mode volumes can be well below the diffraction
limit. For example, De Leon et al. [72] demonstrated a Purcell factor of 75 with
silver nano-wires. In their case, the mode volume is 0.04(λ/n)3 with a quality factor
of 100.

Emitter - Cavity coupling

The previous section described different kind of cavities to which a solid-state emitter
- such as a quantum dot - can be coupled. These cavities can be classified by their
two parameters of interest : the quality factor Q and the effective mode volume Veff .

However the dependence of the Purcell factor on the ratio
(λ/n)3Q

Veff

holds only if the

cavity is matched to the emitter.
Until 2005, the matching of quantum dots to cavities was randomly achieved. The

group of Imamoglu showed for the first time a deterministic coupling with photonic
crystal cavities [73]. The method was to grow quantum dots, to locate a given one
with an AFM and to measure its spectral characteristics. A photonic crystal cavity
was then centered on the quantum dot and its resonant energy adjusted by modifying
the size of the holes.

As this method was difficult to achieve, other paths were explored, in particular
the control of the growth position of the quantum dots and the use of tunable cavities.
However, the most successful method to date to deterministically couple a quantum
dot to a cavity is in-situ lithography. This technique was developed in the team of P.
Senellart [74]. The first step consists in the growth of a planar cavity with a layer
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of quantum dots in between the mirrors. The quantum dots are then located by
means of confocal microscope and their optical characteristics are probed. Once a
target quantum dot is defined, the planar cavity is etched so as to leave a micro-pillar
precisely at the right location. The spectral matching is obtained by tuning the
diameter of the micro-pillar created. With this technique, the spatial localization
is better than 50 nm and the spectral matching is better than the linewidth of the
cavity.

1.3.3 The case of carbon nanotubes

A complete discussion of the properties of carbon nanotubes, and in particular their
optical characteristics is given in chapter 2. However, a few trends can already be
introduced.

Carbon nanotubes are often obtained, after synthesis, in powders or dilute
solutions. In such cases, the deposition of a carbon nanotube at a precise location is
difficult. Consequently, the location of a cavity must be adapted to the location of
the emitter and not the opposite. In the beginning of the 2000 the growth of carbon
nanotubes between two pillars, or over a trench was demonstrated [75].

However these improvements, which can ease spatial matching, do not solve the
second issue encountered with CNT : spectral matching. Indeed, it is still difficult to
grow carbon nanotubes selectively. Usually, the output of a synthesis is composed
of several nanotube species with emission wavelengths varying by hundreds of meV.
Furthermore, the emission energy of an individual CNT depends strongly on its
immediate surroundings, which means that CNT of the same species, coming from
the same production process, can have emission energies varying by tens of meV. As
a consequence, the spectral matching of a monolithic cavity to an individual CNT is
challenging.

Up to now, two approaches have been investigated to succeed in coupling nan-
otubes to cavities : the use of nanotube ensembles and random matching. The aim
of this project is to move to a deterministic approach and to keep enough flexibility
to perform a thorough investigation of the nanotube-cavity coupling in the CQED
regime.

Carbon nanotubes ensembles

The first study showing the coupling of an ensemble of carbon nanotubes with a
cavity was done by Gaufrès et al. [76] in 2010. In that setup, a layer of carbon
nanotubes was placed between two dielectric mirrors forming a Fabry-Perot cavity
with a quality factor of 160. The thickness of the nanotubes layer was adjusted
so that the energy of the cavity mode could roughly match the maximum of the
nanotubes emission energy distribution. With the cavity, the photoluminescence
was increased by a factor of 30 compared to a film of nanotubes in free-space, the
emission was directive in a cone of 6° and the spectral width was 5.5 meV.
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Figure 1.11 – Left : sketch of the optical cavity : a layer of nanotubes is in-between
two dielectric mirrors. Right : photoluminescence of a thin layer of nanotubes with
and without a cavity. Adapted from Gaufrès, Izard, Le Roux, Kazaoui, Marris-Morini
and Cassan, Optics express 18, 6 (2010) [76] with permission from OSA Publishing.

Very similarly, in 2013, Legrand et al. [77] coupled a film of nanotubes with
a monolithic cavity. In that case, nanotubes were dispersed in a solution with
Poly(methyl methacrylate) (PMMA). The cavity was formed by a dielectric mirror
on which a nanotubes-PMMA layer was deposited, as shown in fig. 1.12. It was
closed by a silver mirror. The cavity was spectrally tuned in resonance with a
particular nanotube species by choosing the thickness of the nanotubes-PMMA layer
(a thickness of 340 nm was used to obtain a transmission at 1.192 eV). The quality
factor of the cavity was about 30. With this monolithic cavity setup, the authors
demonstrated their ability to select the emission of a particular CNT species and
to obtain a photoluminescence spectral width of 30 meV, mainly limited by the
inhomogeneities in the layer’s thickness.

The coupling of an ensemble of nanotubes to a Fabry-Perot Cavity was also
done by Fujiwara et al. [78]. In that case, a film of CNTs was deposited in a cavity
composed either of two gold mirrors (quality factor of 50) or of two dielectric mirrors
(quality factors of 180). With this setup, they showed a blackbody emission with a
linewidth as narrow as 30 meV arising from their ensemble, around 1.5 µm.

In 2012, Gaufrès et al. [79] coupled an ensemble of carbon nanotubes to a silicon
waveguide. The waveguide was made of a 220 nm thick layer of silicon on a 1 µm layer
of silica, as shown in fig. 1.13. It had a sub-micrometer width, with a shrinkage in the
region of interaction with carbon nanotubes. A film of PFO-wrapped nanotubes was
deposited on the waveguide, resulting in a stable emission at the telecoms wavelengths
at room temperature and above. The spectral width obtained was 20 meV.

Continuing their work on photonic devices, the same team investigated in 2014
(Noury et al. [80]) the coupling of an ensemble of CNTs to micro-rings having a
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Ag mirror

PMMA/Nanotubes

Dielectric mirror

Substrate

Figure 1.12 – Left, Photoluminescence spectrum of the nanotubes-PMMA layer
(blue) and of the cavity excited at 2.331 eV and detected at normal incidence (red).
Right : sketch of the optical cavity composed of a dielectric mirror, a layer of
nanotubes-PMMA and a silver mirror. Adapted from Legrand, Roquelet, Lanty,
Roussignol,Lafosse, Bouchoule, Deleporte, Voisin and Lauret, Applied Physics Letters
102, 15 (2013). [77], with the permission of AIP Publishing.

a b

Figure 1.13 – a) Integration scheme of carbon nanotube thin layer composite with
silicon waveguide. b) Photoluminescence generated from the (9,7) nanotube under
excitation by a 800 nm pump laser, coupled in the silicon waveguide for three
temperatures (20, 60, and 100 °C). No wavelength shift or signal reduction are
observed. Adapted with permission from Gaufrès, Izard, Noury, Le Roux, Rasigade,
Gilles and Beck, and Vivien, ACS Nano 6, 5 (2012) [79]. Copyright 2012 American
Chemical Society.
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Figure 1.14 – (a) Top view of a micro-ring resonator of radius r. (b) Cross-section
of the micro-ring, with polyfluorene-wrapped s-SWNT top layer (not to scale). (c)
Scanning electron micrograph of as-fabricated micro-ring, with a radius r of 5 µm.
The scale bar is 5 µm. (d) Transmission spectra of a typical 10 µm radius micro-ring
resonator coupled to a strip waveguide (dark blue) and a reference strip waveguide
(light blue). The reference was up-shifted by 5 dBm for clarity. The nanotube
absorption corresponds to the thin Lorentzian lines. Inset depicts a close vue of one
of the resonance, fitted with a Lorentzian lineshape (solid line). Courtesy of N. Izard,
corresponding to the data published in [80].

diameters of 5 µm or 10 µm and a quality factor of up to 4000. A layer of PFO-
wrapped nanotubes was deposited on the micro-ring, as depicted in figure 1.14. In
that case, a significant number of nanotubes were deposited on the cavity so that each
of the resonant modes were coupled to several emitters. The authors showed that
the coupling led to a spectrum composed of regularly spaced peaks, with a spectral
width as low as 250 µeV and a spacing defined by the diameter of the micro-ring.

Very recently, Zakharko et al. [81] coupled a film of nanotubes to a periodic
array of gold nano-disks, as shown in fig. 1.15. These nanostructures give rise to
hybrid photonic-plasmonic modes referred to as Surface Lattice Resonances (SLRs).
The gold nanodisks had a diameter of 160 − 180nm. They formed a square lattice,
which pitch defined the resonant frequency. Nanotubes were sorted to obtain a single
species and dispersed randomly over the structure in a 100 nm film covered by a
150 nm layer PMMA. The authors demonstrated that with their device, a film of
nanotubes emitting around 1000 nm transforms into a source thant can reach the
telecoms bands if the pitch is chosen accordingly, with an intensity enhancement of
up to 15 and a spectral width of 20 meV. Furthermore, the emission was polarized
and directed in a cone as narrow as 1.5°.

Besides carbon nanotubes films, for which a high numbers of emitters couple to
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a b c

Figure 1.15 – a) Schematic illustration of a sample consisting of a glass substrate,
gold nanodisks array, a 100 nm layer of random (6,5) SWNTs and a 150 nm PMMA
layer on top. b) Normalized (to E 11 transition, top) and normalized differential
(bottom) PL spectra of pure SWNTs (black) and TE-polarized emission normal to
the sample surface with pitch 670, 830, and 1000 nm, TE and TM polarizations at
±15° for pitch 670 nm. c) Angle dependence of normalized PL for TM-polarized
emission for pitch 670 nm (at 1039 nm, green) compared to TE-polarized light at
peak positions 1054 (red), 1259 (blue), and 1521 nm (purple) corresponding to the
three samples with pitch 670, 830, and 1000 nm. Reprinted with permission from
Zakharko, Graf, Schießl, Hähnlein, Pezoldt, Gather, Malte and Zaumseil, Nano Lett.
16, 5 (2016) [81]. Published under ACS AuthorChoice License 2016.

the cavity, it is possible to couple a limited number of emitters to a photonic structure.
Pyatkov et al. [29] made a photonic crystal nanobeam cavity (PCNBC) by etching a
photonic waveguide (width 0.6 µeV) out of a layer of Si3N4 suspended over SiO2 [82],
and etching holes in the waveguide, as shown in fig. 1.16. The quality factor of the
cavity obtained was about 700 for the fundamental mode. A difference in the lengths
of the photonic crystal parts on each side of the nanobeam brought directional
emission (exactly as an asymmetry in the reflectivity of two mirrors composing a
Fabry-Perot would direct the emission in the direction of lower reflectivity). The
nanotubes were sitting either on a hole or on the dielectric part between two holes of
the cavity. They were electrically excited by means of two Au/Cr electrodes. With
this device, the authors showed an enhanced electroluminescence (by up to a factor
5), with a linewidth limited by the cavity’s one (slightly below 2 meV) and a coupling
efficiency of 75%.

Pursuing this work, the same group showed that electrically driven CNTs coupled
to a waveguide circuit could emit anti-bunched light. In the paper of Khasminskaya
et al. [30], semi-conducting nanotubes were deposited on the center of a waveguide.
The spectral width of the emitters at room temperature was about 20 meV. Two
superconducting nano-wire single-photon detectors (SNSPD) were placed on each
side of the waveguide, in order to allow on-site correlation function measurements.
With this device, at cryogenic temperature, the autocorrelation function obtained
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Figure 1.16 – a) Schematic view of the multilayer device structure consisting of two
Au/Cr electrodes (yellow) and a photonic waveguide (purple) that is etched into
the Si3N4 layer. Its central part is underetched into the SiO2 layer and holes are
formed. b) Close-up of the PCNBC illustrating the CNT (black line) in contact with
the electrodes on top of the waveguide. c) False-colored SEM image of the PCNBC
structure between two electrodes. The cavity center is precisely aligned with the
midpoint between the tips of the two electrodes. d) SEM image of the cavity center
with the waveguide and two electrodes, bridged by several SWNT. The suspended
parts of the CNTs are clearly visible, whereas the material contrast on the waveguide
top is too low to resolve the CNTs. e) f) Spectra of electrically driven CNT coupled
to the cavity for two devices. Reprinted by permission from Macmillan Publishers
Ltd: Nature Photonics Pyatkov, Futterling, Khasminskaya, Flavel, Hennrich, Kappes,
Krupke and Pernice, Nature Photon 10, 6 (2016) [29], copyright 2016.

34

https://doi.org/10.1038/nphoton.2016.70
https://doi.org/10.1038/nphoton.2016.70


Chapter 1. Spontaneous Emission Control with a Cavity

CNT (×25)

λ/
2 

ph
ot

on
ic
 m

od
e

SiO2

Ti/Pd/Au

CNT

Au mirror

PMMA Ti/Pd/Au

Ag mirror

p+silicon

100

80

60

40

20

N
or

m
al

iz
ed

 e
m

is
si
on

 in
te

ns
ity

 (a
.u

.)

01
1,200 1,400 1,600 1,800

                           Wavelength (nm) 

2,000 2,200 2,400

Filter
cutoff

Figure 1.17 – a) 3D schematic representation of the microcavity-controlled infrared
nano-light source comprising a field effect transistor integrated with a planar mi-
crocavity. b) Schematic photonic mode profile showing the geometrical overlap of
the nanotube and the spatial intensity distribution. The microcavity is formed by
the Au and Ag mirrors and the light is emitted through the top Au mirror. c)
Electroluminescence spectra with (dashed red) and without (solid gray) top gold
cavity mirrors under electrical excitation. Reprinted by permission from Macmillan
Publishers Ltd: Nature Nanotechnology Xia, Steiner, Lin, and Avouris, Nature
nanotechnology 3, 10 (2008) [85], copyright 2008.

reached down to g2(0) = 0.55 for a lifetime of about a hundred picoseconds. The
efficiency of the full device was estimated to 10−4 photons per carrier, which is
extremely high for electrically driven nanotubes [84].

Individual carbon nanotubes

In cases where a great number of nanotubes are coupled to a cavity, the particular
feature of an individual emitter are lost. In order to investigate them, it is necessary
to couple a single emitter to a resonant mode of a cavity. The carbon nanotubes

The first work concerning the coupling of an individual nanotube with a cavity
was published in 2008 by Xia et al. [85]. The Fabry-Perot cavity was made with a
silver and a gold mirror, with a quality factor of 40. In between the mirrors, three

5It is unclear here whether their is a non-perfectly anti-bunched single emitter or whether there
are two emitters. In section (5.3.2), we will choose g2(0) < 0.5 as our single-photon source criterion.
A thorough discussion is given in ref. [83].
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Figure 1.18 – (a) SEM image of a suspended nanotube attached to a micro-disk. (b)
Reflectivity image of a device measured in (c)–(f). The disk diameter is 3 µm. Blue
and red dots indicate the positions at which the data in (c),(d) and (e),(f) are taken,
respectively. The white box shows the position of the suspended nanotube. The scale
bars in (a) and (b) are 2 µm. (c) Directly measured PL spectrum of the suspended
nanotube. (d) PLE map obtained by direct measurement of the suspended nanotube.
(e) PL spectrum of nanotube emission coupled to the micro-disk. (f) PLE map of
nanotube emission coupled to the micro-disk. Reprinted from Imamura, Watahiki,
Miura, Shimada, and Kato, Applied Physics Letters 102, 16 (2013) [87], with the
permission of AIP Publishing.

stacks of dielectric were placed : PMMA, aluminum oxide and silicon oxide. By
means of this configuration, the nanotube was placed close to a field maximum and
oriented along the mirrors, to secure spatial matching, as can be seen in figure 1.17.
The carbon nanotube was electrically excited. As the resulting emission spectrum
was much larger than the cavity spectral width, the resonant matching condition was
not stringent. The authors observed that while the free-space electroluminescence
was spectrally broad (tens of meV), non-directional, and inefficient, the presence of
the cavity increased the directionality (10° to 15°) and yielded an enhancement of the
collection rate by a factor of 4, with a spectral width of 17 meV. A very similar design
was used in 2016 by Liang et al. [86] to make photo-detectors with carbon nanotubes.
With it, the authors showed a six-fold enhancement of the photoelectric conversion
efficiency, leading to a suppression of the noise and thus to a better detection and
recognition of specific signals.
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Figure 1.19 – Scanning electron micrographs of as-fabricated crystal photonic cavities.
The top left panel shows a plan view, and the middle left panel is an enlarged view
of the cavity. The bottom left panel shows a cross section of the slab structure.
The scale bars are 2 µm, 0.5 µm, and 1 µm for the top, middle, and bottom panels,
respectively.
The Top and bottom right panels show PL spectra of the cavity with and without
nanotubes. Inset shows a higher resolution spectrum of the fundamental mode.
Circles are data and the solid line is a Lorentzian fit. Reprinted from Watahiki,
Shimada, Zhao,Chiashi, Iwamoto, Arakawa,Maruyama, and Kato, Applied Physics
Letters 101, 14 (2012) [88], with the permission of AIP Publishing.

A random matching was obtained by Imamura et. al [87], who grew nanotubes
directly on micro-rings. For that they used chemical vapor deposition and were
able, with a success rate of 10%, to grow a single nanotube suspended over a trench
separating the micro-ring from the bulk material. With a quality factor of 3000 for
their WGM, they observed a modification of the PL of their tube due to the cavity.
However, as shown in figure 1.18, the spectral purity of their source was limited.

In 2012, Watahiki et al. [88] tackled the challenge of coupling a single nanotube
to a photonic cristal cavity. In that case, the cavity was made in a silicon layer with
etched holes on an oxide layer. The cavity itself consisted in three missing holes in a
line, as can be seen in figure 1.19. Micelles-encapsulated CNT were deposited on
the silicon layers leading to the coupling of a few nanotubes with the modes of the
cavity. Interestingly, this random matching enabled them to obtain the coupling of a
single nanotube to a particular cavity mode, as shown in figure 1.19. In that case,
the quality factor was 3800 (limited by the deposition of nanotubes on the device),
the spectral width was 230 µeV and the emission enhancement was estimated to at
least a factor of 50.
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Figure 1.20 – An individual carbon nanotube coupled to a nanobeam cavity. (a) A
schematic of a device. (b) Scanning electron microscope image of a device with a
suspended nanotube. Scale bar is 2 mm. (c) Typical PL spectrum of an air-mode
device coupled to a nanotube. The dots are data and the lines are Lorentzian fits.
(d) PL excitation map of the device shown in c taken with the laser polarization
perpendicular to the nanobeam. Reprinted from [32], published under the Creative
Commons CC-BY licence.

38



Chapter 1. Spontaneous Emission Control with a Cavity

The coupling of a single nanotube to a photonic crystal cavity was also investigated
by Miura et al. [32]. Their silicon nanobeam photonic crystal cavity had an extremely
small volume (obtained from FDTD calculations) of 0.02(λ/n)3 , a quality factor
of 3500 and the quality factor of other emitter was around 100. With this they
estimated the maximum reachable Purcell factor for a perfect coupling to be above
300. The spectral width obtained was 420 µeV. However, the typical success rate of
the random matching was “one in thousands”...

A spatially and spectrally tunable cavity

In the two previous sections two main ways of overcoming the coupling issues between
nanotubes and resonators were explored : the first consists in using an ensemble
of nanotubes. Statistically, a great number of emitters couple to the cavity modes,
but the downsides of this technique are that the features of a single emitter are lost
and the emission of single photons is impossible. The second method consists in the
random coupling of a single emitter with a cavity. It overcomes the two drawbacks
above mentioned but has the disadvantage of having extremely low success rate.

In this work, a completely different approach is offered : a large number of carbon
nanotubes are spin-casted on a flat dielectric mirror with a density low enough
to address a single emitter with a diffraction limited optical spot. The emitters
are investigated in free-space with a home built confocal microscope described in
chapter 4. Once an emitter is selected, a second dielectric mirror is brought above it
in order to form the cavity, as shown in fig. 1.21a. The second mirror has a concave
shape - which characteristics define the lateral confinement of the cavity - and is
located at the end face of an optical fiber, as described in chapter 3. As the fibered
mirror is located on a movable fiber, the spatial tunability is a built-in feature of
these cavities. In addition, a fine tuning of the distance between the two mirrors
brings the spectral tunability.

A similar kind of cavities, formed by two fibered mirrors, was used in 2013 by
Stapfner et al. [90] to detect the Brownian motion of a suspended carbon nanotube.
Furthermore, such fibered cavities were used by Hümmer et al. [89] to investigate the
Raman features of a single nanotube at room temperature, as shown in figure 1.21.
With a quality factor as high as 105 and a mode volume of 15λ3, they showed a
Purcell enhancement factor of 6 for the Raman spectrum.

The results obtained during this work are summarized in chapters 5 and 6,
however a few advantages of the Fabry-Perot cavities can already be announced.
Compared to the other photonic structures already described, they combine a very
reasonably mode volume (as low as 2λ3) with very high quality factors (up to 105),
largely overcoming the intrinsic quality factors of the nanotubes currently available.
As previously stated, these cavities can be spatially and spectrally matched to a
given emitter. Besides, their length can be increased by steps of λ/2. It yields
a tuning of the cavity volume, helpful to explore the dependence of the Purcell
enhancement over the volume. Last but not least, the cavity can be altogether
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Figure 1.21 – a)Schematic of the cavity formed by the end-facet of an optical fiber
(top) and a macroscopic mirror (bottom). CNTs (black lines) are deposited on the
macroscopic mirror and interact strongly with the light field when inside the cavity.
The large mirror can be positioned laterally by a nanopositioner and the cavity
length can be tuned by a piezo actuator (see black arrows). b) Raman spectra taken
with a confocal microscope (blue data points with Lorentzian fit) and the cavity,
normalized to the same intensity at the nanotube. The gray line shows the intrinsic
cavity resonance. c) Scaling of the integrated cavity-enhanced Raman intensity (red
data points) as a function of the effective length of the cavity. The red square is
evaluated from the measurement shown in b, and the solid line is the theoretically
predicted ideal and effective Purcell factor. Reprinted from [89], published under the
Creative Commons CC-BY licence.
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removed in a non-destructive way. This enables to compare directly the very same
single emitter in free-space and coupled to the cavity, a feature unreachable with
monolithic resonators.

Conclusion

In this chapter, the concept of spontaneous emission was introduced : it consists in
the emission of photons at an energy E and with a rate γ. It is possible to tailor
this rate, as well as the directionality of the emission by coupling the emitter to a
micro-cavity. In that case, the spontaneous rate in the cavity becomes γ(1 + Fp)
where Fp is the so-called Purcell factor.

For a ideal two-level system, this Purcell factors simply depends on the quality
factor of the cavity and the ratio between its volume and (λ/n)3. In atomic physics,
Fabry-Perot cavities and micro-sphere cavities were developed because of their
extremely high quality factors. However, in condensed matter, the spectral width of
the emitter can exceed the one of the cavity and a generalized Purcell factor has to
be defined to take it into account. The two parameters that can be tuned to increase
the Purcell factor become the volume of the cavity and the sample itself.

Different solid state cavities were presented : micro-pillars, microdisks, photonic
crystals. All these cavities have strong assets and have now been well developed for
emitters such as quantum dots. Their use in the case of carbon nanotube is sometimes
possible but with strong difficulties arising from their lack of tunability. The coupling
of nanotubes with resonators has relied, up to now, either on ensembles (with a loss
in the intrinsic features) or on random matching (low production efficiency). In this
work, a novel geometry of cavity is presented. It enables to localize a single carbon
nanotube with confocal microscopy and then to adapt a fibered Fabry-Perot cavity
to its position and spectral characteristics.
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Introduction

Carbon nanotubes are an allotrope of carbon, like graphene or diamond. Single-wall
nanotubes (SWNT) consist in a atomic monolayer wrapped into the form of a tube,
with a diameter ranging from 0.4 nm to 10 nm and a length comprised between a few
hundreds of nanometers and a millimeter. Multi-wall nanotubes can be considered
as multi-layers of graphene warped around themselves. The optical properties of
such tubes depend on the contribution of each layer and their interactions. This
study is restricted to SWNT1.

The goal of this work is to investigate how the coupling of a nanotube to a cavity
can enhance the optical properties of the former. Currently, it is complicated to
synthesize an ensemble of nanotubes with identical optical properties. Consequently,

1We also use the acronym CNT, without mentioning every time that they are single walled
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the study of an ensemble blurs out the intrinsic properties of each emitter. To
overcome this issue, the present work focuses on individual SWNT, referred to as
single carbon nanotubes in the text.

This chapter starts with a derivation of the structural and electronic properties of
SWNT from those of graphene. In particular metallic and semi-conducting nanotubes
are distinguished. After that, the basics of single nanotubes optical transitions are
introduced. Due to the quasi one-dimensional character of these emitters, the charge
carriers interactions are stronger compared to three-dimensional bulk materials.
Consequently, the single electron model is completed by a discussion taking into
account excitonic effects. Finally, a description of the samples used in this work is
given.

2.1 Structural and electronic properties

Single Wall Carbon Nanotubes (SWNT) are hollow cylinders that can be considered
as graphene sheets wrapped around themselves. Graphene is an allotrope of carbon
consisting in a single layer of atoms organized in an hexagonal pattern. First, some
information are given about the properties of this material and then the properties
of carbon nanotubes are derived from them.

2.1.1 Structural properties

Bravais Lattice

In a graphene sheet, the atoms are bound to their nearest neighbors by covalent sp2

bonds, with a distance aC−C = 1.42 Å. They are on the nodes of a 2-dimensionnal
triangular Bravais lattice, defined with respect to the orthonormal basis (−→ex ,

−→ey ) by
the vectors :

−→a1 =

√
3

2
a0

−→ex − a0

2
−→ey ,

−→a2 =

√
3

2
a0

−→ex +
a0

2
−→ey (2.1)

where the norm of the vectors is a0 =
√

3aC−C = 2.46 Å. The pattern associated

with this lattice is made of two carbon atoms located in (0, 0) and (
1
2
,

1
2
√

3
) (in the

(−→ex ,
−→ey ) basis), forming the so-called honeycomb lattice, as depicted in figure 2.1.

The crystal obtained has a six-fold symmetry, and belongs to the hexagonal Bravais
family.

A single wall carbon nanotube consists in a graphene sheet wrapped around itself
along a vector which is perpendicular to the nanotube’s axis, as shown in fig. 2.1.
This vector, which entirely characterizes the geometrical properties of the nanotube,
is called chiral vector and is defined as :

−→
Ch = n · −→a1 +m · −→a2 n,m integers (2.2)
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A
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T

zigzag

a2

a1

ex

ey

B

C

D

A'

nanotube axis

Ch

T

A B

C
D

armchair

Figure 2.1 – Graphene is composed of carbon atoms organized as a 2-dimensionnal
honeycomb lattice. Its basis vectors −→a1 and −→a2 are depicted in black. A carbon
nanotube can be considered as a graphene sheet wrapped around its chiral vectors−→
Ch. The basis vectors of the primitive cell of a CNT are

−→
Ch and

−→
T , where

−→
T is along

the axis of the tube. The dashed green line depicts the full zone along which the
nanotube is wrapped. All the figures in this chapter are, unless otherwise mentioned,
inspired to some extent from [91, 92, 93], with the authors permission.

The primitive cell of a carbon nanotube is defined by the chiral vector and the
smallest perpendicular vector belonging to the graphene lattice. This translation
vector is given by:

−→
T = t1 · −→a1 + t2 · −→a2 (2.3)

t1 =
2m+ n

dR

and t2 = −2n+m

dR

(2.4)

Where dR is the greatest common divisor of 2n+m and 2m+ n. The number of
carbon atoms in the primitive cell is twice the number of hexagons N , given by :

N =
‖−→
Ch ∧ −→

T ‖
‖−→a1 ∧ −→a2‖ =

2(n2 + nm+m2)
dR

(2.5)

Every pair of indices (n,m) defines a unique carbon nanotube, with a diameter,
expressed as :

dt =
|−→Ch|
π

=
a0

π

√
n2 +m2 +m · n (2.6)

Usual carbon nanotubes have a diameter varying from 0.5 nm to 3 nm, while their
length ranges from a few hundreds of nanometers to several hundreds of microns.
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Figure 2.2 – Three different carbon nanotubes. The bonds of a section perpendicular
to the tube axis are highlighted in blue. a) A (5, 5) armchair nanotube ). b) A (9, 0)
zigzag nanotube. c) A (6, 4) chiral nanotube

Finally, the wrapping angle θ, between
−→
Ch and −→a1 , is called chiral angle and

characterizes uniquely many properties of a nanotube. It is given by:

cos θ =
2n+m

2
√
n2 + nm+m2

(2.7)

Due to the six-fold symmetry of the crystal, θ is in the range [0, π/3]. The
nanotubes can be categorized with respect to their chiral angle. In particular, two
families correspond to non-chiral objects (they are not distinguishable from their
image in a mirror). The first family, defined by the indices (n, n) (or θ = π/6), has
Cis bonds perpendicular to the tube axis, as shown in figure 2.2. Due to their form,
they are called armchair, while the second family (n, 0) (θ = 0 or θ = π/3) is called
zigzag due to its Trans bonds perpendicular to the tube axis.

All the other carbon nanotubes are chiral (they can’t be superimposed to their
image in a mirror). It is worth noting that for 0 < m < n, the carbon nanotube
(n,m) with a chiral angle θ ∈ [0, π/6] is the mirror image of its enantiomer (m,n)
which has a chiral angle θ ∈ [π/6, π/3]. In the literature, the distinction between
enantiomers is usually left aside, and it is conventional to use (n,m) with n > m for
both. Nevertheless, it must be remembered that this approximation has limits. For
example, Dukovic et al. [94] showed the presence of circular dichroïsm in racemic
SWNT solutions.
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Reciprocal Lattice

In the reciprocal space, the First Brillouin Zone (FBZ) of graphene is hexagonal.
The basis vectors (

−→
b1 ,

−→
b2 ) of the primitive cell are given by :

−→
b1 =

2π√
3a0

(−→ex −
√

3−→ey ) ,
−→
b2 =

2π√
3a0

(−→ex +
√

3−→ey ) (2.8)

The first Brillouin zone is hexagonal and contains several points of high symmetry,
called Γ, M, K and K’, that have special properties concerning the band structure of
graphene. The location of these points is given by :

−→
kΓ =

−→
0

−→
kM =

−→
b1 +

−→
b2

2
(2.9)

−→
kK =

−→
b1 + 2

−→
b2

3
−→
kK′ =

2
−→
b1 +

−→
b2

3
(2.10)

The basis vector of the reciprocal space for carbon nanotubes (
−→
K1,

−→
K2) are defined

with respect to the chiral vector :
−→
K1 is collinear to

−→
Ch, while

−→
K2 is collinear to

−→
T :

−→
Ch.

−→
K1 = 2π,

−→
T .

−→
K1 = 0,

−→
Ch.

−→
K2 = 0,

−→
T .

−→
K2 = 2π (2.11)

These two vectors can also be expressed with the basis vectors of graphene’s
reciprocal space :

−→
K1 =

1
N

(t2
−→
b1 − t1

−→
b2 ),

−→
K2 =

1
N

(−m−→
b1 + n

−→
b2 ) (2.12)

Any vector of the reciprocal space
−→
k can be expressed as a function of (

−→
K1,

−→
K2) :

−→
k = k⊥

−→
K1/‖

−→
K1‖ + k‖

−→
K2/‖

−→
K2‖ (2.13)

Along the carbon nanotube axis, the periodicity is given by the translation vector−→
T . If one considers the carbon nanotube as infinitely long, k‖ is continuous and the

first Brillouin zone along the carbon nanotube is given by k‖ ∈ [− π

‖−→
T ‖

,
π

‖−→
T ‖

].

However, along the nanotube’s circumference, a translation of a vector
−→
Ch in the

real space brings one back to its starting point. This boundary condition implies
that k⊥ are discrete and satisfy the relation

−→
k .

−→
Ch = 2πµ with µ ∈ [[1, . . . , N − 1]].

This means that k⊥ = µ‖−→
K1‖.

The first Brillouin zone is thus made of N segments of length
2π

‖−→
T ‖

= ‖−→
K2‖ ,

parallel to the Carbon nanotube axis, as depicted in figure 2.3.
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K
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K'

b2
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Γ

K1

K2

ex

ey

FBZ

Figure 2.3 – Reciprocal lattice of graphene (solid gray lines), and its first Brillouin
zone (FBZ, dark gray). The reciprocal lattice of a (5, 2) CNT is depicted (dashed
lines) as well as its first Brillouin zone (solid black). The high symmetry points Γ,
M, K and K’ are indicated.

2.1.2 Electronic properties

In this section, the geometrical description of carbon nanotubes is used to explore
their electronic properties. First the band structure of graphene is derived and then
the Van Hove singularities are introduced.

Band structure of carbon nanotubes

In the frame of the tight binding approximation, a derivation taking into account up
to the second nearest neighbors yields the following band structure for graphene [95] :

Eg(
−→
k ) = ±t

√

3 + f(
−→
k ) − t′f(

−→
k ) (2.14)

f(
−→
k ) = 4 cos(

√
3

2
kxa0) cos(

1
2
kya0) + 2 cos(kya0) (2.15)

where
−→
k = (kx, ky) is a vector from the reciprocal space, t ≃ 2.7 eV is the nearest

neighbor hoping energy and t′ ≃ 0.2t is the next nearest neighbor hoping energy.
The ± sign indicates that there are two bands on either side of the E = 0 plan : the
conduction and valence bands. These bands are almost symmetrical compared to
this plan as only the second nearest neighbor contribution creates a deviation to this
symmetry. The bands around the first Brillouin zone are shown in figure 2.4.

At the absolute zero, without doping, the lower band is full (valence band) while
the upper one is empty (conduction band). These two bands join at the Fermi level
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Figure 2.4 – Band structure of graphene around the first Brillouin zone. The gap
between the valence and the conduction band is zero in K and K’ points, and the
dispersion is linear and isotropic immediately around these points. The inset shows
a Dirac cone

(E = 0) in K and K ′. Graphene is thus a zero gap semiconductor. Around these
points, the dispersion can be approximated as linear, giving rise to the so-called
Dirac cones.

As a first approximation, the dispersion relations of carbon nanotubes can be
derived form the one of graphene. Indeed, the wave-vector remains continuous along
the tube axis but is quantized along

−→
Ch, as detailed in paragraph 2.1.1. Consequently,

the dispersion relation of a carbon nanotube is composed of N linear cuts in the
band-structure of graphene. These are given by the N lines of the nanotube’s First
Brillouin Zone [96] :

Eµ = Eg(
−→
k = µ

−→
K1 + k‖

−→
K2

‖−→
K2‖

) (2.16)

with µ ∈ [[1, . . . , N − 1]] and k‖ ∈ [−π/‖−→
T ‖, π/‖−→

T ‖]

Each cut defines two bands : a valence band below the Fermi level and a
conduction band above it. As already mentioned, graphene is a zero-band gap
semi-conductor, so if one of the cuts passes by either a K or a K ′ point, the two
bands join, as shown in figure 2.5. Then, the density of state is non-zero at the Fermi
energy, and the nanotube is be metallic. Otherwise, there is a non-zero gap between
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M11
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Figure 2.5 – Band structure and density of state of a metallic nanotube (left) and a
semi-conducting one (right).

highest valence band and the lowest conduction band. The density of state at the
Fermi level is zero and the nanotube is semi-conducting.

Metallic or semi-conducting character

In order to determine whether a carbon nanotube is semi-conducting or metallic,
one can focus on the bands closest to the Fermi level, which are the bands closest
to the K (or K ′) points. As long as the linear approximation around such a point
holds, the dispersion relation of a carbon nanotube is given by [97] :

Eµ(
−→
k ) = ±

√

√

√

√

(√
3a0t

2
δk‖

)2

+ E2
µ , where Eµ =

a0t√
3d

|3µ− n+m| (2.17)

where δk‖ = (
−→
k −−→

kK).
−→
K2/‖

−→
K2‖ is the distance to K point (along the cut). At its

lowest point the energy is given by Eµ, and is a function of |3µ− n+m|. Depending
on the indices, two cases arise :

n−m = 0 mod 3 ⇒ |3µ− n+m| = 0, 3, 6, 9, ...

n−m 6= 0 mod 3 ⇒ |3µ− n+m| = 1, 2, 4, 5, 7, 8, ...
(2.18)

From there it is clear that if n − m is a multiple of 3, there is a number µ for
which |3µ − n + m| is zero, and the nanotube is metallic. in that case, Eµ = 0
and the dispersion is linear around k = 0, as can be seen in figure 2.5. While if
n − m is not a multiple of 3, |3µ − n + m| never cancels out and the nanotube is
semi-conducting. The dispersion around k = 0 is hyperbolic. Statistically, about one
third of the carbon nanotubes are metallic. Nevertheless, in this study the samples
used are enriched in semi-conducting nanotubes (see section 2.3).
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Density of state and Van-Hove singularity

The density of state (DoS) of carbon nanotubes is characteristical of their unidimen-
sional nature. In order to derive it, one has to take into account the contribution
DoSµ of each band µ, given by [96] :

DoSµ(ǫ) =
2

ℓ|kz|
∫

dkzδ(ǫ− Eµ(kz))

∣

∣

∣

∣

∣

∂Eµ

∂kz

∣

∣

∣

∣

∣

−1

(2.19)

where ℓ is the First Brillouin Zone length and the factor of 2 arises from spin
degeneracy.

After a quick derivation, one gets the full density of states DoS [97] :

DoS(E) =
2a0

π2γ0dt

∑

µ

g(E,Eµ) (2.20)

DoS(ǫ, Eµ) =



















|ǫ|/
√

ǫ2 − E2
µ if |ǫ| > Eµ

0 if |ǫ| < Eµ

1 ifEµ = 0

(2.21)

The density of state is thus diverging for carbon nanotubes, giving rise to the so
called Van Hove singularities (see figure 2.5). This phenomenon is characteristical of
ideal one-dimensional structures [98].

2.2 Optical properties

In the previous paragraphs, the structural and electronic properties of carbon nan-
otubes were described. From there on, a derivation of their optical properties should
be accessible by using the Fermi golden rule. However the low dimensionality of
the nanotubes induces specific properties : indeed, the Coulombic interactions are
enhanced compared to bulk materials and excitons are very stable (the binding
energy is around 400 meV). In this section, a single electron model is introduced and
a description of the excitonic effects is given.

2.2.1 Single electron model

Optical transition

In general, the optical properties are directly linked to the electronic properties, and
in particular the density of states. Two quantities are commonly used in optics :
the probability for an electron to relax towards a lower state W↓(~ω), by releasing
a photon, and the probability for an electron to be promoted to a higher state by
the absorption of a photon, W↑(~ω). By using Fermi Golden rule, one can evaluate
these coefficients :
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W↑(~ω) =
2π
~

∑

µ,µ′

∑

k,k′

|Mµµ′(k, k′)|2δ(Eµ′(k′) − Eµ(k) − ~ω).(1 − f(Eµ′(k′)).f(Eµ(k))

W↓(~ω) =
2π
~

∑

µ,µ′

∑

k,k′

|Mµµ′(k, k′)|2δ(Eµ′(k′) − Eµ(k) − ~ω).(1 − f(Eµ(k′)).f(Eµ′(k))

(2.22)

Where the sum is made over all the transitions between a state with wave-vector
k in a subband with index µ, and a state with vector k′ in a subband with index µ′

(as written here Eµ′(k′) > Eµ(k)). The Dirac delta ensures the conservation of energy.
The variable f(Eµ(k)) gives the electronic occupation number and (1 − f(Eµ(k′))
the hole occupation number of the µ band at energy E(k) (at thermal equilibrium,
it is the Fermi-Dirac distribution). The Mµµ′ are the matrix elements between these
states, and their derivation is beyond the scope of this work (see [99] for details)

In this manuscript, the focus is on transitions in the range of 1.3 eV to 1.5 eV, thus
lower than t ∼ 3 eV2. This implies that the states involved in the optical transition
are close to the K and K ′ points. It was shown that in this region, the matrix
elements element do not vary significantly with the wavevector [100]. The emission
and absorption characteristics are mostly defined by the electronic density of states,
and thus by the Van Hove singularities.

Selection rules and depolarizing effect

This work focuses on interband absorption and luminescence of carbon nanotubes.
In the formalism just introduced, absorption is the promotion of an electron from
a valence band |v, µ, k > to an empty state in a conduction band |c, µ′, k′ >, while
luminescence is the opposite phenomenon. The selection rules discussed here are the
links between µ and µ′, as well as between k and k′.

Let’s start with the later. As already stated, the transitions of interest have an
energy close to 1 eV, which means a wavelength close to 1 µm. This is well higher
than the characteristic size of the lattice a0 = 2.46 Å. In other words, the momentum
of the photon is negligible with respect to the size of the First Brillouin Zone of the
nanotube. Hence the first selection rule : only vertical transitions are allowed [101] :

∆~k = ~k′ − ~k = 0 (2.23)

The transitions appear vertical on a dispersion graph, such as the one of figure 2.5.
Because of the symmetries of the initial and final states, the matrix element

Mµµ′(k, k′) is zero for most combinations between bands. Actually, the selection
rules than arise from this depend on the orientation of the electric field with respect

2We recall that t is the first neighbor hoping energy
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DoS

Energy

Figure 2.6 – Orientation of the electric field with respect to the nanotube axis for
the two lowest energy transitions.

to the carbon nanotube’s axis (along
−→
T ) [102] :







∆µ = 0 if
−→
E ‖ −→

T

∆µ = ±1 if
−→
E ⊥ −→

T
(2.24)

Even if a transition is allowed, it does not mean that it is experimentally visible.
Indeed one has to take into account the oscillator strength, a non-dimensional
parameter proportional to the square of the interaction matrix element [103]. As
shown in fig. 2.6, the lowest energy transition happens when the electric field is
along the nanotube axis ( ∆µ = 0) and is responsible for the photoluminescence
signal observed throughout this work. For ∆µ = ±1, when the field polarization
is perpendicular to the tube axis, the oscillator strength is lower, as was confirmed
experimentally [104].

In the samples used in this work, the nanotubes have a typical aspect ratio
of 1000. If an electric field

−→
E is parallel to the tube, the charges created at both

ends have a limited impact and the external field felt by the tube (an all the more
so by a localized exciton) is

−→
E . The nanotube’s absorption is then governed by

the imaginary part of its electric polarizability α(ω). Now, let’s consider a field−→
E perpendicular to the nanotube’s axis. It leads to a separation of charges along
the nanotubes. This implies a screened polarizability α̃(ω) depending on the tube’s
length L and radius R [105] :

α̃(ω) =
(

α(ω)−1 +
2

LR2

)−1

(2.25)

Due to the very low diameter (below 1 nm in this work), this screening is high and
reduces the effective field felt by the nanotube (see also section 4.2.1).

Eventually, the optical transitions favored in carbon nanotubes correspond to
the transition between two nth Van Hove singularities, with a polarization along
the carbon nanotube axis. These transitions are noted Snn for the semi-conducting
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Figure 2.7 – Graphene FBZ, with isoenergetic zones in colors. The solid black lines

are the nanotube FBZ, the dashed gray lines are separated by
1
dt

. To the left, a

metallic nanotube for which there is a degeneracy lift (M+
11 and M−

11 do not have the
same energy). In the center, a Type II nanotube (S11 energy is lower than predicted

with
1
d

rule). To the right, a Type I nanotube for which the reverse happens.

nanotubes and Mnn for the metallic ones. In the conical approximation, their energies
are given by :

Snn =
2a0t√

3dt

pn avec p = 1, 2, 4, 5, 7, 8, . . . (2.26)

Mnn =
2a0t√

3dt

3n avec n ∈ N
∗ (2.27)

From these formulas one can see that the transition energy is inversely proportional
to the nanotube’s diameter, as shown in figure 2.8. And for a given diameter, a
simple rule applies : S22 = 2S11, M11 = 3S11, S33 = 4S11, etc..

Trigonal warping

In the previous section, only an isotropic and linear dispersion around K and K ′

points was considered. This is a valid approximation for optical transitions verifying
~ω ≪ 2t. This approximation is quite good for the carbon nanotubes considered in
this work, with a diameter close to 1 nm, but it is questionable for optical transitions
in the visible range, due to an effect called trigonal warping.

In order to understand what trigonal warping is, the First Brillouin Zone (FBZ)
of graphene is plotted around K points in figure 2.7. The colors indicate isoenergetic
contours, and the black lines depict the lines of the nanotubes FBZ , parallel to

vector
−→
T and spaced by

2
dt

. Among the black segments, let’s consider the three

closest to the K points, they are the one giving rise to the lowest energy Van Hove
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Figure 2.8 – Nanotubes transition energies as a function of their diameter. Reprinted
figure from [91], with author’s permission.

singularities (meaning S11, S22 and S33 for a semi-conducting nanotube). If one
considers a metallic nanotube, one of the segments passes by K point. If the nanotube
is semi-conducting, one finds that in any case the distance between K and the closest

line is
2

3dt

while the distance to the second closest is
4

3dt

. In fact, the black lines

position is given by the chiral angle of the nanotube, and the projection of
−→
ΓK over

the chiral vector
−→
Ch is a multiple of

2
3dt

:

−→
ΓK ·

−→
Ch

Ch

=
2

3dt

(2n+m) (2.28)

The isoenergetic lines around K point have a non-isotropic shape. consequently, a
cut done for a given chiral angle θ, at a given distance of K, does not have exactly
the same energy whether it is on the side of Γ or on the other side. The consequences
depend on the nanotube type :

• For metallic nanotubes, there is a degeneracy lift of the M11 transition into
two transitions noted M+

11 and M−
11, as confirmed experimentally [106].

• For semi-conducting nanotubes, one distinguishes Type I, for which
2n + m = 1 mod 3 and Type II for which 2n + m = −1 mod 3. For a given
diameter d, in the later case, the cut happens on the Γ point side while in
the former it is on the other side, and the energy is thus lower. In fact, the
energy is lower for all odd transitions, and higher for all even transitions. This
asymmetry grows larger with the chiral angle θ and increases with decreasing
diameters.

It was noted previously that the optical gap in carbon nanotubes is proportional
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to
1
d

. The modifications, compared to the linear dispersion approximation discussed

in this paragraph, imply that this law is slightly modified : a Type II carbon

nanotube has its odd transition energies increased compared to the
1
d

law, and its

even transition decreased while the opposite happens for a Type I nanotube. The
transition energies as a function of the diameter, taking into account trigonal warping,
are plotted in figure 2.8.

2.2.2 Excitonic properties

The optical properties discussed in the previous section were derived from a tight
binding model, considering that the electrons are independent from each other. This
model is relevant to describe some simple properties, such as whether a nanotube
is metallic or semi-conductor. However, it is no longer valid when one wants to
derive accurately the energy of the first optical transition. Indeed, in low dimensional
objects, the interactions between charge carriers are enhanced, leading to two main
effects : a renormalization of the gap due to the repulsive interactions between
electrons, and excitonic features. In this section, the properties of excitons in a bulk
material are introduced. Then, more details are given about the case of carbon
nanotubes.

Exciton in a bulk semiconductor

Let’s consider a bulk semiconductor with a direct gap ǫg . The valence and conduction
bands have a parabolic dispersion characterized by the effective masses m∗

c and m∗
v,

and centered in ~k = 0. In the fundamental state, the valence band (below the
Fermi level) is full and the conduction band (above the Fermi level) is empty. If one
considers that there are no interactions between charge careers (between electron
and hole), the first excited state is the one for which an electron is promoted from
the valence to the conduction band, and the energy to provide for such an event
is equal to ǫg. However, in a simple picture, one may expect the electron and the
hole left behind in the valence band - which are of opposite charge - to interact via
Coulombic force. This interaction leads to bound states called excitons, with an
energy lower than the energy of the gap.

Let’s consider a very simple model for the exciton, taking into account only the
electron-hole interactions. In the barycentric frame, the problem can be replaced by
the one of a fictive particle in a central force motion [98]. This pseudo-particle has
an effective mass M = m∗

c +m∗
h (where the effective mass of the hole is m∗

h = −m∗
v).

By analogy with the hydrogen atom, the total energy of the exciton (indexed by
quantum number α∈ N) is given by :

ǫα(
−→
K ) = ǫrenorm

g +
~

2K2

2M
− R∗

α2
(2.29)
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Figure 2.9 – Dispersion for a bulk semicon-
ductor. On the left, the independent electron
model. On the right, excitonic levels labeled
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Figure 2.10 – Absorption coeffi-
cient of a bulk material. In blue,
the independent electron case. In
red, the excitonic features are
present as single absorption lines
below the energy of the gap.

where ǫrenorm
g is the renormalized gap energy (ǫrenorm

g > ǫg),
−→
K is the wave-vector

of the exciton’s center of mass. The energy between to lowest energy exciton (α = 1,
called 1s by analogy with hydrogen) and the energy of the continuum of unbound
states (which minimum is given by α = ∞.) is called binding energy, or Rydberg

energy of the exciton R∗ =
µe4

2~2(4πǫ)2
. This is depicted in figure 2.9. The binding

energy can be re-written to let appear the Bohr radius of the exciton rB (i.e. the
mean distance between the electron and the hole):

R∗ =
~

2

2µrB
2

(2.30)

rB =
4πε~2

µe2
(2.31)

It has already been stated, in the section concerning the selection rules 2.2.1,
that the optical transitions happen for ∆

−→
k ≃ 0. Rewriting this as a function of the

wavevectors of the electron
−→
ke and the hole

−→
kh, one gets

−→
ke ≃ −−→

kh. This immediately
leads to a relation for the wave-vector of the exciton

−→
K =

−→
ke +

−→
kh ≃ 0. In other

words, the transition happens for an excitonic wave-vector equal to zero, and as long
as α is finite, the absorption (or the emission) spectrum is composed of single lines
below the renormalized energy of the gap (cf. figure 2.10).
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The influence of the bulk material on the excitons is contained in its permittivity
ǫ and in the effective masses. For most materials, the binding energy is low compared
to the gap, for example in gallium arsenide ǫg = 1.424 eV [107], R∗ = 5 meV and the
Bohr radius of the exciton is bigger than the size of the primitive cell rb = 10 nm [108].
The excitonic effects, in this case, are hardly visible at room temperature as the
thermal energy kT ≃ 26 meV is higher than the binding energy R∗.

Excitons in Carbon Nanotubes

Several features of the excitonic description given above change when one goes from
a bulk material to a low-dimensional material. Indeed, excitonic effects arise from
Coulombic interactions, thus the confinement of charge carriers in a small volume
induces an enhancement of these interactions. This means that the binding energy
increases, as well as the oscillator strength of the transition due to the first exciton
α = 1 [108].

Actually, in an ideal one-dimensional system, the excitonic binding energy di-
verges [109]. Obviously in the case of carbon nanotubes the confinement is not
strictly one dimensional, as their lateral extension is non-zero. In order to evaluate
quantitatively this phenomenon, two different methods were used. One way consisted
in starting from a 3D model in which the confinement was taken into account by
setting a small (but finite) width to the system. Semi-conducting quantum-wires
were successfully modeled by this process [110]. A second method consisted in a
regularization of the Coulombic potential [111, 112]. In that case, the description
remained one-dimensional but introduced new parameters that were determined to
fit experimental data.

In fact, excitonic effects in one-dimensional structures were first investigated
in the case of quantum wires. The binding energies found for the thinest GaAs
wires (rb = 4.5 nm) where higher than in bulk materials but of the same order of
magnitude than those found for GaAs quantum wells [113], failing to bring evidence
of the specific 1D confinement. On the contrary, the nanotubes are particularly
interesting to show these effects as their diameter can by smaller than 1 nm (about
0.7 nm in this work), and thus can display a stronger confinement than quantum-
wires. Experimentally, two-photons measurements gave the evidence that the optical
transitions in nanotubes arise from excitons [18, 114]. And the binding energy found
was about one third of the gap energy (400 meV for a 1.2 eV gap [114]), or even a little
larger for suspended nanotubes [115]. Given this large binding energy, interactions
giving rise to excitonic effects in carbon nanotubes cannot be treated as perturbations.
The binding energy is greater than kbT , making the exciton stable against thermal
agitation, even at room temperature. These features make the study of excitonic
effects easier in nanotubes than in other 2D or 1D semi-conducting nanostructures.

The nanotubes excitons are extremely sensitive to their local environment. Indeed,
a nanotube is an extreme case as each of its atoms is at its surface and the Bohr
radius of the exciton is of the order of the diameter, about 1 nm [116, 117, 118]. The
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Figure 2.11 – The optical absorption of a carbon nanotube is computed with an
independent electron model (dashed blue line). The Coulombic self-energy leads to a
gap renormalization (gray solid line) and the excitonic effects drastically change the
spectrum (solid red line). The spectrum is dominated by the transition to the first
exciton, the transition to the second is plot in the inset. Adapted from [119].

excitonic wave function spills out of the tube and makes it very sensitive to the
dielectric permittivity of its surroundings (an increase of the external permittivity
induces screening and a decrease in the transitions energies) [19]. In particular, the
presence of molecules inside or outside the walls of the nanotube partially screens
the Coulombic interactions betweens the nanotube’s charges.

Now, a theoretical calculation can be done to illustrate the effect of excitonic
interactions in carbon nanotubes : figure 2.11 shows the absorption spectrum of a
nanotube calculated by Malic et al [119]. If the Coulombic interactions are neglected,
the absorption spectrum is simply reduced to a Van Hove singularity in the range
of energies considered. However, the interaction between electrons of the valence
band implies a renormalization of the gap towards higher energies (blue shift). The
excitonic effects induce the existence of a series of lines at lower energies. The
lowest, corresponding to α = 1, is dominant in the absorption spectrum, but an
inset lets appear the second line (α = 2). One can note that the renormalization
of the gap and the stabilization of the exciton by Coulombic interactions do not
compensate exactly : a slight increase of the transition energy happens compared to
the independent electron model.

An estimation of the direction of the energy shift with the modification of the
environment is also possible from that figure. An increase in the dielectric constant
of the nanotube’s surroundings increases the screening of the interactions, which
leads to a decrease in the gap’s renormalization energy as well as in the excitonic
binding energy. As the former is larger than the later, the optical transition energy is
shifted towards the lower energies. This phenomenon explains the red shifts observed
in functionalized nanotubes [92, 93].
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Figure 2.12 – Example of the band structure of the excitonic state α = 1 for a chiral
nanotube. One state is optically active while the three others are dark. The values
indicated are for (6, 5) nanotubes and come from [121, 124].

Dark excitons

In order to reproduce the experimental absorption and emission spectra, the descrip-
tion given for the excitonic effects has to be completed : the inter-valley degeneracy
leads to a more complex excitonic structure [120, 121, 122]. Each hydrogenoïd state
α, associated with each Van Hove singularity pair is built from four bands (a valence
and a conduction band for each valley), which leads to the existence of four excitonic
bands [123].

In figure 2.12 the four bands associated with the lowest energy hydrogenoïd state
for a chiral nanotube are depicted. Two bands have their minimum for a non-zero
wavevector. They correspond to a non-zero angular momentum and thus cannot be
involved in optical transitions [123]. Such states are called dark because of their
optical inactivity. These two are specifically referred to as Dark K-momentum in the
literature. The two other bands have their minimum for a zero wavevector, however
one of these exciton is dark (while the other is optically active). Their relative energy
depends on the symmetry of the hydrogenoïd state : when α is odd, the dark exciton
is lower while it is the reverse when α is even. This dark exciton can be activated by
the application of a magnetic field [125].

Even though the Dark K-momentum excitons cannot be directly involved in
optical interactions, they can play a part in second order processes involving a photon
and a phonon. In figure 2.13 two processes are considered : the absorption of a
photon and the emission of a longitudinal optical (LO) phonon, which implies the
creation of a dark exciton with a non zero wavevector. The relaxation of this exciton
involves the emission of a photon and a LO phonon. In that case, an absorption
band can be observed above the energy of the bright excitonic state and an emission
band can be observed below. These absorption and emission bands are called phonon
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Figure 2.13 – Two phonon assisted processes involving dark excitons (depicted with
a black dot). This implies the existence of an absorption band with an energy above
the one of the bright state (blue arrows) and an emission band below (red arrows).

side bands and were experimentally observed [120, 121, 122].
To conclude on the excitonic effect, let’s emphasize that the nanotubes are an

excellent system to investigate them because of their one-dimensional characteristic.
The binding energy amounts to a few tenths of eV, which is an order of magnitude
higher than in other nanostructures. Finally, the majority of the oscillator strength
is concentrated in the lowest energy bright exciton. This transition is thus simply
referred to as S11 for semi-conducting nanotubes.

2.3 Samples

In this section, the different methods used to grow carbon nanotubes are introduced.
Afterwards, the interest of micellar suspension are described, and an explanation of
how the nanotubes are deposited by spin-coating on mirrors is given.

2.3.1 Synthesis of Carbon Nanotubes

Carbon nanotube are scarce in the natural environment, but probably exist in
common fires [126]. Their first artificial synthesis was made in the group of Ijima in
1991 [13], using an arc-discharge evaporation method, with graphite electrodes under
high temperature and low pressure. This first method, which had previously been
established for the production of fullerene had the disadvantage of creating many
different carbon allotropes, including amorphous ones. Carbon nanotubes rapidly
drew the interest of researchers, as well as industrials, due to their amazing physical
properties. This gave birth to a entire field of research, still very active now, on
their synthesis. The efforts are taking two directions : first a high purity is sought
(this means reducing the presence of amorphous carbon, limiting crystalline defects).
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Second, a control of the geometrical properties of carbon nanotubes (their diameter,
or chiral angle) is the aim of many researcher. The selectivity (meaning to capacity
to choose the (n,m) indices of the nanotubes grown) remains limited, and is often
based on post-selection. All the synthesis methods have their pros and cons. They
are all briefly introduced, though the nanotubes used during this PhD all came from
the same commercial sources.

The most common synthesis method is called Chemical Vapor Deposition
(CVD) [127] and was applied for carbon nanotubes since 1993. It consists in a clean
substrate in a temperature and pressure controlled chamber. On this substrate,
metallic catalysts (such as nickel, cobalt or iron nanoparticles) are deposited, and the
growth is started by the introduction of two gases : a process gas (such as ammonia)
and a gas containing carbon (such as methane). The carbon nanotubes start growing
on the metallic particles and their size is related to the size of the catalysts. Several
types of CVD are currently employed :

• In the High Pressure Carbon Monoxide (HiPCo) method, the reaction happens
in gas phase : the carbon monoxide (CO) provides for carbon atoms while an
iron pentacarbonyl (Fe(CO)5) is used to produce iron nanoparticles on which
the growth starts [128]. This method is designed to produce single-wall carbon
nanotubes, with diameters in the 0.7 nm to 1.2 nm range and lengths spanning
from 100 nm to 1000 nm3.

• An other method is called Cobalt Molybden Catalyst (CoMoCat). In this
case, carbon monoxide is also used as the source of carbon atoms, but the
catalysts are Cobalt nanoparticles. The specificity lies in the fact that the
Cobalt forms a non-metallic dual oxide with Molybdenum oxide (MoO3) [129].
After interaction with CO, it produces highly dispersed small metallic cobalt
clusters. This results in a higher selectivity of the nanotube chiral species
grown compared to the HiPCo method, with a majority of (6, 5) nanotubes
and other species having a nearby diameter4.

In the previous sections the properties of carbon nanotubes were introduced, and
it showed clearly that some of these properties depend critically on the nanotubes
(n,m) indices, in particular their transition energy (see section 2.2). The synthesis
processes described above are never perfectly selective, which means that several
nanotube species, with different optical transitions, cohabit. This issue is dramatic for
applications because the integration of a particular species, with given characteristics,
in not possible. However, very recently, some methods reached a success rate above
99% for a given species [17].

As for laboratory experiments, it is always possible to isolate a single carbon
nanotube after the synthesis and then study it thoroughly. In order to ease that
process, some techniques were developed to obtain nanotubes with a low density. It

3http ://www.nanointegris.com/en/hipco
4http ://www.sigmaaldrich.com/catalog/product/aldrich/773735
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Figure 2.14 – TEM image of a rope made of about a hundred carbon nanotubes.
From Thess, Lee, Nikolaev, and Dai, Science 273, 5274 (1996) [131]. Reprinted with
permission from AAAS.

is also possible to control accurately where the growth happens and thus to select the
environment of the nanotube (substrate or suspended). In our laboratory, the CVD
is optimized for bigger carbon nanotube diameters than the one this study focuses
on. Consequently, commercial solutions were employed. The micellar suspensions
used to separate nanotubes from each other are introduced in the next section.

2.3.2 Micellar suspension

Though carbon nanotube were synthesized since 1991, their photoluminescence was
observed for the first time at the beginning of the 21st century. The reason is that
they were produced as a powder in which the nanotubes formed small bundles (a
specific case can be seen in figure 2.14). These aggregates hold by Van der Waals
bonds. Though the forces involved are low, their integration over the full nanotubes
length leads to very strong binding energies, typically over a few eV µm−1, which
means over thermal agitation, even at room temperature. The issue is that bundles
lead to interactions between semi-conducting and metallic nanotubes, which in turn
lead to a quenching of the fluorescence of the formers [130].

In 2002, O’Connell et al. proposed a way to break these bundle in order to
individualize carbon nanotubes [16]. For that, an aqueous dispersion of raw single
wall carbon nanotubes was diluted in sodium dodecyl sulfate (SDS) and ultrasonic
agitation was performed. Afterwards, they used centrifugation to remove the re-
maining bundles. The nanotubes left were encapsulated in cylindrical micelles, as
depicted in figure 2.15. In these micelles, the hydrophobic part of the SDS molecules
is against the tube, and the hydrophilic one is towards the outside, which eases the
solubilization.

This method provides for homogeneous and stable individualized nanotubes
for which an optical study is possible. Though SDS is still widely used in the
production of micelle encapsulated carbon nanotubes, the ones studied in this work
were processed with an other molecule called polyfluorene (PFO). The idea of using
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Figure 2.15 – A micelle encapsulated single carbon nanotube. Separating the different
carbon nanotube species by centrifugation. From O’connell et all, Science 297, 5581
(2002) [16]. Reprinted with permission from AAAS.

aromatic polymers arose in 2007 [132], with the aim of getting a better selectivity
for some species and thus an enhancement of the percentage of photoluminescing
nanotubes in a given sample.

The sample used in this work consisted in PFO-wraped CoMoCat nanotubes,
diluted in toluene, prepared at LPS Orsay by Nicolas Izard, with a technique described
in [133]. These nanotubes-PFO co-polymers were then ultracentrifugated to eliminate
bundles. In the end, the metallic nanotubes are scarce, and the semi-conducting
ones have emission wavelengths in the near infrared (λ ≃ 900 nm).

2.3.3 Spin coating

In this section, the way carbon nanotubes are spatially individualized is presented. A
density of nanotubes low enough to obtain a single object per optical spot is sought.
This step is particularly important to make an optical study of individual objects
possible.

For that, a technique called spin coating is used. It consists in putting a drop of the
liquid containing the carbon nanotubes on a substrate and spin this substrate quickly
(1500 spins per minute). The drop splashes and the content spreads homogeneously,
forming a thin film, with a good thickness reproducibility. After a few seconds,
the liquid (toluene here) evaporates and one gets an homogeneous layer of carbon
nanotubes on the substrate. The speed of the spinning and the concentration of the
solution are the two parameters that one can adjust to tune the density of objects.
For the optical study of single carbon nanotubes, it is mandatory that the emitters
are separated from each other, in average, by a distance higher than the typical size
of a focused beam (here λ/2 . 500 nm).

After optimization of the process, a density of emitters of 0.1 µm−2 was obtained,
which is a good compromise between well separated emitters and a density high
enough for convenience. But the emitters detected from photoluminescence do
not compose the whole sample. Indeed some semi-conducting nanotube do not
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display photoluminescence, others emit out of our detection range, and some metallic
nanotubes may be present, even with PFO samples. All together, absorption measure-
ments [134] show that the density of nanotubes is about an order of magnitude higher
than the effective density of emitters (i.e. the ones detected by photoluminescence).

Carbon nanotubes are usually subject to several kinds of disruption in their
photoluminescence signal, which are discussed in section (4.3). These effects are most
likely due to their interactions with the substrate [135, 26], and in particular their
sensitivity to local charge fluctuations [53]. An experimental optimization led us to
choose to embed them in a polystyrene matrix in order to reduce these perturbations,
as well as aging.

The details about the cavities used in this work are given in chapter 3, however it
is already important to mention that the substrate on which the carbon nanotubes
are deposited, in a layer of polystyrene, is a mirror (distributed Bragg reflector,
described in 3.2.2). In this scope, polystyrene is diluted in toluene and then mixed
with PFO-wraped carbon nanotubes also diluted in toluene. The concentration of
polystyrene is experimentally optimized to obtain the desired layer thickness and the
nanotube concentration is adapted to keep the density of emitters equal to 0.1 µm−2.
The thickness of the layer is chosen to let carbon nanotubes be in a field maximum
of the cavity. Typically, the thickness used is 120 ± 5 nm.

Conclusion

In this chapter, the structural and electronic properties of carbon nanotubes were
introduced. Their optical properties depend strongly on their geometry. In particular,
the emission wavelength for semi-conducting nanotubes depends on the inverse of
their diameter. More over the confinement induced by the one-dimensional geometry
implies a strong interaction between the charge carriers, leading to stable excitons
which govern the optical properties up to room temperature.

Though progresses are constant, a completely selective synthesis is still not
available for carbon nanotubes. More over, the strong dependence of their optical
properties on their environment implies that their transition energy varies even
between two emitters of the same species. Given that, spin coating is used to make
nanotubes samples with a density optimized to allow single emitters to be coupled
with fiber Fabry-Perot microcavities.
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Introduction

Fiber Fabry-Perot cavities were designed for cold atoms physics. The technology
was developed by Jakob Reichel, from the Atom Chips team of the Laboratoire
Kastler Brossel (LKB) and the group of David Hunger, from the Ludwig-Maximilians-
Universität München. Their first goal was to obtain a small volume and very a high
finesse in order to miniaturize a Bose-Einstein Condensation setup [136], but the
technology is more versatile.

Such characteristics can be reached with laser ablation, which enables to create a
concave depression at the apex of an optical fiber, with a very low surface rough-
ness [33]. This optical fiber is then coated with a high-reflectivity dielectric stack. A
cavity can be formed with two such mirrors or with a fibered mirror and a planar
one. The former geometry is more suited to cold atoms experiments, but the later is
more convenient to study nano-emitters, which can easily be deposited on the planar
surface.

Though the technology had been developed for cold atoms, the LKB team
extended it to the field of condensed matter to study quantum wells and quantum
dots [137]. And more recently Albrecht et al. [138, 139], as well as [140], used fibered
cavities to couple single nitrogen or silicium vacancies in nanodiamonds.

In this chapter, the modes for planar-concave cavities are described and char-
acterized. Afterwards, a description of the fiber manufacturing procedure is given.
Further considerations about the field penetration in the mirrors lead to introduce
an expression of the effective cavity volume. Finally, the fiber-cavity coupling issue
is addressed and the finesse is defined. How the cavity is embedded into the global
setup is kept for chapter 5.

3.1 Cavity Planar-Concave modes

The Fabry-Perot interferometer is a textbooks classics : if two mirrors face each
other, some stationary modes are established in between. These modes depend on
the curvature of the mirrors, their reflectivity and the distance between them. A
discussion of the longitudinal resonant condition is given, as well as a description of
the spatial properties of these modes.

3.1.1 Resonant condition

Let’s consider two planar mirrors with reflection coefficients R1,2, separated by a
geometrical distance L. It is easy to show that the constructive interferences lead to
stationary modes of wavelength λn, given by the condition :

L = n · λn

2
with n ǫN∗ or L = n · c

2νn

in term of frequency (3.1)
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The spectral gap between two modes is called Free Spectral Range (FSR), and is
given by :

FSRλ = λn+1 − λn or FSRν =
c

2L
in term of frequency (3.2)

and the finesse of the cavity, defined by the ratio between the FSR and the

spectral width δν of a peak F =
FSRν

δν
, is given by :

F =
π

2 arcsin
(

1√
F

) (3.3)

F =
4
√
R1R2

(1 −
√
R1R2)2

(3.4)

For high reflectivity mirrors this formula is commonly approximated by :

F ≃ π(R1R2)1/4

1 − (R1R2)1/2
(3.5)

In this work, one mirror is planar while the other has a concave shape. In the
same way than the field is labeled along the cavity axis by a number n, two other
indices (l,m) are introduced to take into account the lateral confinement of the mode
induced by the mirror’s curvature.

Hermite-Gauss modes

Gaussian beams are a solution to the paraxial Helmholtz equation [141, (ch. 16.4)]
that describes the field established in the Fabry-Perot cavity in the paraxial approxi-
mation for a spherical mirror. The field is written as follows :































En,l,m(x, y, z) = El(x, z)Em(y, z)Zn(z)

El(x, z) = Hl

(√
2x

w(z)

)

exp
(

− x2

w2(z)

)

exp
(

−i kx2

2R(z)

)

exp(iψl(z))

Em(y, z) = Hm

(√
2y

w(z)

)

exp
(

− y2

w2(z)

)

exp
(

−i ky2

2R(z)

)

exp(iψm(z))

Zn(z) = E0
w0

w(z)
exp(−ikz)

(3.6)

where k =
2π
λ

, Hi is the ith Hermite polynomial1 and the other parameters

characterizing the beam are :

1It is defined as : Hi(X) ≡ (−1)m exp X2 ∂i

∂Xi
exp(−X2)
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• The beam transversal width :

w(z) = w0

√

1 +
(

z − z0

zR

)2

(3.7)

• The curvature of the wavefront :

R(z) = (z − z0)

(

1 +
(

zR

z − z0

)2
)

(3.8)

• The Gouy phase :

ψl(z) = (l +
1
2

) arctan
(

z − z0

zR

)

(3.9)

• The Rayleigh length :

zR =
πw2

0

λ
(3.10)

Where z0 is the position of the waist. The cavity mode is stable only if its curvature
corresponds to the one of the mirrors in z = 0 and z = L. This implies that the
beam waist is on the planar mirror, taken as the origin z0 = 0, and that Rn(L) = R,
the radius of curvature of the fibered mirror. This is depicted in figure 3.1. From
these relations, one gets the mode waist in the cavity (derivation in appendix A.1.1) :

w2
0 =

Lλ

π

√

R
L

− 1 (3.11)

In general, one can consider that the cavity is stable as long as L < R, which is
of limited importance as this work focuses on very short cavities.

Resonant frequency

After a round trip in the cavity, the phase acquired by the wave must be zero :

∆φ = 2πn, with n ǫZ (3.12)

The resonant condition is thus given by [141, (p.761)] :

νl,m,n =
c

2πL



πn+ (m+ l + 1) arccos



±
√

1 − L

R







 (3.13)

The second term, arises from the Gouy phase. For m = l = 0, one finds the
fundamental gaussian modes, separated by the FSR defined in eq. (3.2). The other
modes come in between, with a separation depending on the cavity length and the
radius of curvature of the concave mirror. These higher order modes are characterized
by a different transversal repartition of the field, with m+ l+1 lobes (see section 3.1.2
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(a) The concave mirror has a radius of
curvature R = 10 µm, the cavity length is
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(b) The concave mirror has a radius of
curvature R = 50 µm, the cavity length is
L = 8 µm and the waist is w0 = 2.3 µm

Figure 3.1 – The cavity is composed of a planar mirror on a flat substrate and a
concave mirror laser machined at the apex of an optical fiber. The curvature of the
later mirror and the cavity length define the waist, which is located on the planar
mirror.

for more details). It is noteworthy that the modes having the same m+ l value are
degenerate.

3.1.2 Spectrum of an empty cavity

Now that the (n, l,m) modes of the cavity are defined, the optical spectrum of such
a cavity is considered in order to get informations about its geometry. In this setup,
the cavity is formed between a fixed planar mirror and a movable concave mirror
manufactured at the apex of an optical fiber. The cavity length is controlled with a
nanometric precision by means of a “slip-stick” technology piezoelectric2. The other
end of the fiber is used to couple the input light, and the transmission of the cavity
can be recorded with a spectrometer and a Charged Coupled Device (CCD).

White field measurement

The spectrum of the empty planar-concave fibered micro-cavity can be obtained
by measuring the transmission of a white field (within the reflectivity range of the
mirrors) through the cavity. The typical spectrum of such an experiment is given
in figure 3.2. One can clearly see two sets of modes, corresponding to two different
longitudinal modes n. Each set is composed, from right to left, of transversal modes
with increasing m+ l indices.

By measuring the distance between the two fundamental modes, one gets the
cavity length from eq. (3.2) :

2Attocubes ANC350
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(a) Dispersion with 150 lines/cm grating.
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Figure 3.2 – A white field is send into the cavity and the transmission is dispersed
by a spectrometer before being recorded by a Charge Coupled Device.

L =
λnλn+1

2FSRλ

(3.14)

where the FSR is in units of wavelength. From equation 3.13, one finds that the

frequency gap ∆ν between the transverse modes depends only on the ratio
L

R . For

a given cavity length, measuring this gap is thus a way of measuring the radius of
curvature of the concave mirror, and a way to estimate the waist of the mode w0 :

∆ν = νl,m+1 − νl,m =
c

2πL



arccos



±
√

1 − L

R







 (3.15)

R = L sin(2π∆ν
L

c
)−2 (3.16)

w2
0 =

Lλ

π
tan

(

2π∆ν
L

c

)−1

(3.17)

In the end, such a white field measurement yields both the length and the waist
of the cavity mode, which ultimately lead to the mode volume, as discussed in
section 3.2. It is also visible in figure 3.3 that there is a lifting of the degeneracy of
the high order transverse modes, for example TEMn01 and TEMn10. This can be
explained by the ellipticity of the fibered mirror which can typically reach 10% for the
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Figure 3.3 – Compared to figure 3.2, the dispersion grating has 600 lines/cm. The
splitting between mode TEMn01 and TEMn10 is clearly visible, as well as the splitting
in higher order constant l +m modes. The (l,m) indices are noted above each peak.

smallest structures. In order to illustrate this phenomenon, the formula 3.13 can be
used to compute the resonant mode TEMn10 and TEMn01 of the same longitudinal
series n = 6. If one considers that the first is reflected in a direction where the radius
of curvature is 10 µm while the second is reflected in a direction where the radius
of curvature is 11 µm, the wavelengths obtained for a cavity length L = 3 µm are
942 nm and 945 nm. This discrepancy of L = 3 nm corresponds well to the range of
values measured with the cavities used in this work.

Transverse field distribution

The previous paragraph focused on the spectral characteristics of the cavity modes.
But it is also possible to get informations about the spatial characteristics. Indeed,
from formula 3.6, one gets the transverse intensity profile associated with the (l,m)
Hermite-Gauss mode :

Ilm ∝ ElmE
∗
lm ∝ Hl

(√
2x
w

)2

Hm

(√
2y
w

)2

exp

(

−2
x2 + y2

w2

)

(3.18)

The fundamental mode has a gaussian profile while the higher order modes are
characterized by l nodes in the x direction and m nodes in the y direction.

As in the previous section, the cavity is created by bringing a planar mirror close
to the concave mirror at the tip of the fiber and a monochromatic laser beam is
sent through the cavity. Its far-field output is directly recorded with a camera3. As
the cavity length is tuned, several modes come to resonance with the laser. By this
method, all the peaks of figure 3.3 can be assigned to a transverse electromagnetic
mode. Some examples are given in figure 3.4.

3Thorlabs DCC1645C
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(a) TEMn00 (b) TEMn10 (c) TEMn13

Figure 3.4 – Transverse modes observed on a camera at the output of the cavity.
The distorted shapes are due to the ellipticity of the concave mirror and to a non
optimized imaging system.

3.2 Cavity mode volume

One of the most important parameters of these cavities is the volume of their modes.
Considering as a first approximation that the TEMn00 mode is a cylinder of radius
w0 and of length L (a valid approximation as long as L is lower than the Rayleigh
length defined in eq. (3.10)), one gets the following expression for the volume :

V ≃ π

4
w2

0L ≃ λ

4
L3/2

√
R − L (3.19)

In order to obtain the lowest mode volume cavity, two parameters can be reduced :
the cavity length and its radius of curvature. Given the dependency on these
parameters in the volume’s formula, letting the length tend towards zero may seem
the most efficient way to decrease the volume, even at the cost of letting the radius
of curvature increase. However, as explained in section 3.2.2, the cavity’s minimum
length is limited by the field penetration in the mirrors. Consequently, a compromise
is needed between reducing R and L.

In this section details are given about how the concave mirrors are produced, in
order to explain within which limits R is chosen. Then the field penetration into the
mirrors is described in order to sketch the limits of L and derive an effective mode
volume.

3.2.1 Manufacturing of fibered mirrors

The cavities in this work are composed of a planar dielectric mirror and a second
mirror laser-machined at the apex of an optical fiber. This technology has been
developed in the past years in the Atom Chips team of the Laboratoire Kastler
Brossel, under the supervision of Jakob Reichel. The goal of their work was to get
micro-mirrors, with controlled radii of curvature and smooth surfaces.
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Figure 3.6 – Principle of laser ablation :
a CO2 laser is highly absorbed in the
first tens of microns of silica.

Laser ablation principle

In this work, the aim was to go towards very small mode volume cavities (typically
lower than 10λ3) while retaining a finesse over a few thousand. Thus the goal was
to create a concave spherical mirror, at the tip of an optical fiber, with a radius of
curvature lower than 50 µm and with a low surface roughness.

Optical fibers are usually made of melted silica, an amorphous form of SiO2. In
order to create a concave shape at their tip, one can consider mechanical machin-
ing [142] but it is be limited by the size of the instruments; chemical dissolution in
HF acid, but the shape is difficult to control [143]; or focused ion beam (FIB) which
is very accurate but for which the surface roughness is too high compared to the
requirements of the experiments considered [144, 145].

Silica is transparent in the visible and near infrared, thus laser ablation is very
hard to implement at these wavelengths and requires pulsed excitation and very high
intensities in order to take advantage of the non-linear processes. With this kind of
methods, the surface roughness obtained does not fit the requirements [146].

Nevertheless, vibration modes of Si-O-Si have a resonance around 9 µm [147] as
shown in figure 3.5. This is why a CO2 laser operating at 10.6 µm is used. When the
laser is focalised at the tip of the fiber, as depicted in figure 3.6, it is highly absorbed
in the first tens of microns of silica. Then two phenomena happen : the surface
of the fiber sublimates, creating the depression, while a little bit deeper the silica
melts, and the surface tension of the liquid obtained smooths the surface, leading to
a surface roughness of about σ = 0.2 nm [33].

This technique is now well mastered and was used to obtain micro-lenses, as well
as concave depressions. The Atom Chips team even developed a standard way of
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Chapter 3. A Fiber Fabry-Perot Microcavity

shooting the fibers, so that they can use multiple shots to tailor the shape of their
fibers. Their specialty is to create micro-mirrors with a large radius of curvature (up
to 1 mm) [148]. On the contrary, this work focuses on radii of curvature as small as
possible, which lead to slight modifications of their setup.

Fiber preparation

The fibers used in this work were intended to go into ultra high vacuum for multilayer
dielectric deposition, which forbids the use of standard acrylate coatings. This is why
copper coated fibers4, operating in the 800 nm − 1000 nm range were used. Their
diameter was 125 µm without the coating; with a mode field diameter of 6 µm for
the single mode fibers and a core of 50 µm for the multimode fibers.

The coating was removed over a few millimeters by sonication in a ClFeIII
solution5 during 20 minutes. They were cleaned with distilled water and isopropanol.
The fibers were then cleaved using a commercial setup6 which applies a tension to
the fiber and breaks it with a diamond blade. The cleave angle is critical for the laser
ablation and must be within 0.5° of the perpendicular direction to the fiber axis.

Once the fibers were cleaved they were placed in home-made mounts (see fig. 3.8)
which can hold up to 42 fibers in rows, at 2 mm from each others. Using these
mounts, the shooting can easily be processed repeatedly.

Shooting setup

The fiber shooting setup, described in figure 3.7, has two main devices : in the upper
position the fibers are imaged with an interferometer to measure the shape of their
surface. Once it is done, the plate which holds them (see fig. 3.8) is moved to a
second position, where an aspherical lens focuses the CO2 laser beam to process with
the ablation.

The interferometer is a Mirau objective working at 515 nm with a numerical
aperture of 0.4 and a working distance of 4 mm, enabling to image fully a 125 µm
diameter fiber. The interferences between the surface under study and the reference
mirror lead to fringes. Their phase depends linearly on the distance between the two
reflective surfaces :

I(x, y) = I0

(

1 + cos
(4π
λ
z(x, y)

))

(3.20)

Where z(x, y) is the depth of the surface under study. The translation stage
has an accuracy of about a nanometer. Hence, it is possible to change the distance
of the surface under study (typically by steps of λ/8 = 64 nm) and to record the
interferences. After a few steps, one can reconstruct the shape of the surface with an
accuracy of the order of 1 nm in depth and 1 µm radially [149].

4IVG Fibers Cu800 (single mode) and Cu50-125 (multimode)
5Concentration : 336 g/l
6NYFORS Auto-cleaver
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Figure 3.7 – Schema of the shooting setup : the fiber in on a translation stage, which
can switch between two positions. The shooting position is in the lower part of the
schema. In the upper part, a Mirau objective is present to analyze the surface of the
fiber before and after the shoot. Adapted from [149], with the author’s permission.

Once the surface is investigated, the fiber is shifted to the shooting position with
micrometer stages. The lateral shift simply corresponds to the distance between the
interferometer’s optical axis and the CO2 beam axis, but the longitudinal displacement
is of major importance : it controls how far the fiber surface is from the CO2 beam
waist.

As a matter of fact, the shape of the depression obtained depends mostly on
three parameters : the impulsion duration, its energy and the beam width, given by
(see eq. (3.7)) :

w(z) = w0

√

1 +
λCO2

πw2
0

(z − z0) (3.21)

where w0 is the CO2 beam waist and z0 its position compared to the surface of
the fiber.

The depression created can be approximated by a gaussian over a large range of
shooting parameters. However, the link between the Gaussian parameters and the
CO2 beam parameters is complex (see reference [150] for details). Because of this
shape, the local radius of curvature changes along the transverse coordinate, but
fortunately the variation is small close to the center. In this region the depression
can be approximated by a portion of sphere. This sphere has a radius of curvature
R, taken as the radius of curvature of the future mirror, a depth zt and a diameter
D, defined as the full width at 1/e of the gaussian profile, which is considered as the
effective diameter of the mirror, as can be seen in figure 3.9.

By use of the gaussian approximation, these parameters can be linked together
with the formula [33] :
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Figure 3.8 – Shooting setup : on
the left a Mirau objective enables
a measurement of the surface, on
the right, a CO2 laser is focused
by an aspherical lens. The fibers
are rowed in a metallic holder,
to be shot in series. Reprinted
from [149], with the author’s per-
mission.

D

zt

R

Figure 3.9 – Depression profile and
parameters : In red the shot fiber,
in blue the spherical approxima-
tion (with a radius of curvatureR).
zt is the depth of the structure,
and D its diameter, as defined in
the text.

zt ≈ D2

8R (3.22)

Consequently, these three parameters cannot be controlled independently. For
a given radius of curvature, a reduction of the depth (sought for a decrease in the
cavity length), implies a decrease of the mirror diameter, which has a cost in terms
of stability (see section 3.4.1 and [151]).

The shooting parameters (impulsion duration, energy and beam width) are not
independent. Nor are the parameters of the created structure parameters (RoC,
depth and diameter). The dependence of the later on the former and on the CO2

beam waist is quite complex. Roughly, one can state that for a given power and
impulsion length, shooting closer to the CO2 beam waist creates smaller and deeper
structures. For a given position, increasing the power or the impulsion length has a
similar impact : it makes deeper and larger structures. One seeking very small radii
of curvature should use comparatively shorter and more powerful impulsions while
one seeking shallow structure should decrease the power and increase the impulsion
length.

The Atom Chips team specialty is to create large radii of curvature (from a
hundred microns to over a millimeter), either with single or multi-shoots. For that,
the aspherical lens used has a focal f = 25.4 mm and the shots are performed several
hundreds of microns away from the beam waist.

For this work, smaller structures are sought. Consequently, an f = 12.7 mm
aspherical lens is used to focus the CO2 beam to a waist lower than 10 µm and the
fibers are shot directly at the waist of the beam. With this modification, the fibers
obtained have a radius of curvature R = 50 µm and a depth zt = 0.3 µm for the
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Figure 3.10 – Surface of a typical fiber manufactured by laser ablation. Here the
diameter is D ≃ 10 µm, the depth is zt = 1.5 µm and the radius of curvature is
RoC = 12 µm.

largest and shallowest structures. An a radius of curvature R = 8.5 µm and a depth
Z = 1.5 µm for the smallest, as displayed in figure 3.10.

Once the fibers are shot, they are sent, as well as planar mirrors, to a company7

which deposes dielectric mirrors by low loss ion beam sputtering. As they control
tightly the deposition, the surface roughness of the mirrors obtained remain equal to
the one of the surface below the coatings.

3.2.2 Effective mode volume

The cavity mode volume is more complex than the cylinder approximation introduced
in eq. (3.19). The effective mode volume felt by an emitter in the cavity is defined
with respect to the energy density as the integrated square of the field over its
maximum8 [44] :

Veff =
∫

d~rǫr(~r)| ~E(~r)|2

max
(

ǫr(~r)| ~E(~r)|2
) (3.23)

In the following paragraphs, the effect of the field penetration in the mirrors is
investigated and the impact of the fiber shape is discussed.

7Laseroptik, Garbsen
8Here, the integral in the numerator can be understood from the normalization in eq. (1.3). The

maximum function in the denominator arises from the fact that the Purcell factor is defined for the
case where the emitter is in a maximum of the cavity field.
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Field penetration in dielectric mirrors

In order to have high reflectivities and low losses, mirrors composed of multiple thin
layers of materials with a very large optical index contrast are used. By choosing
appropriately the thickness of these layers, one can reach very high reflectivities for
a given wavelength λ. The simplest structure for such dielectric mirrors is called a
Distributed Bragg Reflector (DBR) composed of m layers of the two media, each of
which has a thickness λ/4n.

In this case, the materials are silica (SiO2, n = 1.468) and tantala (Ta2O5,
n = 2.076) because they have a very low absorption in the visible and near infrared.
Moreover, the top layer is the one with the highest index because it limits the field
penetration into the mirror [152].

Let’s recall that the cavities used in this work are composed of a fibered mirror
and a planar mirror on which the emitters are deposited. The field simulation
corresponding to the coating of the fiber is presented in figure 3.11a.

As described in section 2.3.3, an extra layer containing the emitters is added on
the top of DBR. It is composed of polystyrene (n = 1.6) in which the emitters are
embedded. As the position of the emitters inside this layer is not controlled, its
thickness must ensure that at least part of them are located in the field maximum.
The modified field simulation in the case where an extra polystyrene layer of 400 nm
is added, as shown in figure 3.11b.

In fact, most of the experiments done during this work were carried out with a
different planar mirror. This commercial mirror9 had the advantage of being easily
available, and of having a reflectivity a bit lower than the fibered mirror (see section
3.3.2). This mirror was characterized with reflectivity and transmission measurements.
The structure deduced is displayed in figure 3.12a. For this mirror, the lower index
was on top, which meant that a thinner polystyrene layer was necessary to ensure
that the nanotubes could be in the field maximum. The structure experimentally
used, with a 120 nm thick layer, is shown in figure 3.12b. Unless otherwise mentioned,
all the further experiments are done with this mirror.

Due to this penetration length, three different “lengths” need to be defined for
the cavity :

• Lg is the geometrical length, meaning the distance between the surface of the
planar mirror and the surface of the bottom of the concave depression.

• LF SR is the length deduced from the measure of the Free Spectral Range. It
takes into account the penetration depth Lp into the Bragg mirror. The relation
to the geometrical length Lg is given by :

LF SR ≃ Lg + Lp (3.24)

9Edmund 47587
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The penetration length estimated for a typical cavity is 1.1 µm. In order to
obtain this value, the two mirrors are simulated (as in fig. see figure 3.11) and
the resonances are computed. The penetration length is obtained from the
difference between the geometrical length and the length defined by the FSR
obtained from these resonances.

• Len is the energetic length which measures the spatial extension of the mode.
Its definition is directly obtained from the definition of the mode volume :

Len =
∫

dzǫr(z)e2(z)
max (ǫr(z)e2(z))

(3.25)

where the mode is considered as almost cylindrical : E(~r) ≈ exp(−r2/w2
0)e(z).

From the above mentioned simulations, one gets (at λ = 900 nm) :

Len ≃ 0.425LF SR (3.26)

This length is about half the geometrical length because it measures the spatial
extension of the energy of the mode, which is mostly located close to its center
(factor 1/2 coming from the mean of a cosine square).

The effective mode volume can be estimated from the product of the energetic length
(axial length of the cylinder) and the waist (lateral extension). It is given by :

Veff ≈ πw2
0

2
Len (3.27)

The waist itself is given by eq. (3.17). In this formula, the FSR length comes in
reference with the transverse mode spacing ∆ω, while the geometrical length is
introduced in the ratio with the radius of curvature. Finally, one gets :

w2
0 =

LF SRλ

π
tan

(

2π∆ν
Lg

c

)−1

(3.28)

Veff ≈ LF SRLenλ

2 tan (2πLg∆ω/c)
(3.29)

The volume depends on the three lengths defined above, and cannot be arbitrarily
reduced because the field penetration into the dielectrics mirror implies finite FSR
and energetic lengths.

Incidence of the fiber shape

The first generation of fibers used during this PhD had been made by Benjamin
Besga during his work on quantum wells [137]. These were multimode fibers, shot
a single time, with a radius of curvature, R = 50 µm and depth zt = 0.5 µm. With
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(a) Bragg mirror composed of 12 layers of
tantala (n = 2.076) and silica (n = 1.468),
centered at 910 nm, with the high index on
top.
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(b) The same Bragg mirror with a layer
(400 nm thick) of polystyrene (n = 1.6),
containing the nanotubes, on top.

Figure 3.11 – Simulation of the electrical field penetration in a Bragg mirror. In
black, the optical index. On the top figures | ~E| is plotted in red while in the bottom
figures ǫ| ~E|2, the quantity directly involved in the cavity mode volume, is displayed
in red. Both are normalized to a maximum of 1 before reaching the mirror.

83



3.2. CAVITY MODE VOLUME

−1 0 1 2 3 4
0

0.5

1

1.5

re
fr

ac
ti

v
e 

in
d
ex

, 
ab

s(
E

)

−1 0 1 2 3 4
0

1

2

position (um)

re
fr

ac
ti

v
e 

in
d
ex

, 
n2

*
|E

|2

(a) Bragg mirror composed of 11 layers
of materials with indices n = 2.284 and
n = 1.456, centered at 970 nm, with the
lower index on top.
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(b) The same DBR mirror with a layer
(120 nm thick) of polystyrene (n = 1.6),
containing the nanotubes, on top.

Figure 3.12 – Simulation of the electrical field penetration in the planar commercial
mirror used for CNT deposition. In black, the optical index. On the top figures | ~E|
is plotted in red while in the bottom figures ǫ| ~E|2, the quantity directly involved in
the cavity mode volume, is displayed in red. Both are normalized to a maximum
of 1 before reaching the mirror.
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Figure 3.13 – Cavity mode volume as a function of the cavity geometrical length Lair,
for a R = 10 µm in solid blue and R = 50 µm in dashed red. The vertical dashed
black line indicates the typical minimum geometrical length obtained for “pencil
shape” cavities.

α

(a) The cavity length is not the depression
depth because of an angle between the fiber
axis and the planar mirror

D

De

(b) The fiber is blunt so that only a small
area, of diameter De can touch the planar
mirror.

Figure 3.14 – The principle of “pencil” shape fibers

these fibers, the minimum length obtained, estimated from FSR measurements, was
LF SR = 3.5 µm, with a mode waist estimated to w0 = 2.5 µm. The associated mode
volume was Veff = 20λ3 at λ = 900 nm.

As a reduction of this mode volume was sought, two strategies were followed :
the first and most obvious was to reduce the radius of curvature of the concave
depression, see figure 3.13. This leads to a decrease of the cavity mode’s waist and
thus to a decrease of its volume. There are two prices to pay : first the cavity’s
stability range, limited to L < R, is reduced [151]. Second, in the case of single mode
fibers, the coupling between the fiber mode and the cavity mode is reduced as well
(see section 3.3.1 for details). Several fibers were made with radii of curvature ranging
from R = 8.5 µm to R = 50 µm in order to investigate. Concave depressions with
a radius of curvature below R = 8 µm were not studied because mirror deposition
implies distortions in such cases [153].

The second strategy is linked to the fact that the effective minimum length
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Figure 3.15 – Shooting array.
Each dot represents one shoot.
The first is the one in the center,
afterwards the shots are done in
concentric circles from the outer
towards the center of the fiber.
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Figure 3.16 – A typical “pencil” shape fiber,
with R = 10 µm measured by profilome-
tery. The “flat” area around the concave
depression has a diameter smaller than
20 µm. The z scale is magnified three times
compared to the x and y scales.

obtained with the first generation of cavities was well larger than the depression
depth. This was interpreted as the sign that the fiber axis was not perfectly
perpendicular to the planar mirror, leading to an angle, as depicted in figure 3.14.
Consequently, the fibers were blunt in order to give them a “pencil” shape.

For this process, the fibers are first shot once to create the concave depression
at their center. Afterwards, they are shot about 300 hundred times between the
the concave depression and the edge (shooting pattern in figure 3.15). These
supplementary shots are done concentrically from the outer towards the inner of
the fiber. A gradient of power is set, to ensure a rather smooth “pencil” shape. In
the end, only a small area of the fiber remains at its initial height, as shown in
figures 3.16 and 3.17. A TEM image of such a fiber is displayed on the front page of
this chapter.

By means of this method, the minimum length obtained is much closer to the
depression depth. It was applied to fibers with a typical radius of curvature of
R = 10 µm and with a depression depth of zt = 1.5 µm, leading to mode volumes
about an order of magnitude smaller than with the first generation of fibers :
Veff ≈ 2λ3. The parameters of the fibers mostly used in this work are summed up
in table 3.1.

3.3 Fiber - Cavity coupling

In this section, the fiber-cavity mode coupling is investigated. First, the coupling for
single mode fibers is expressed analytically and then the advantages of going beyond
single mode fibers is described.
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Figure 3.17 – A “pencil” shape fibers observed with a microscope. the rough surface
far from the mirror reflects the shooting pattern .The diameter of the fiber is 125 µm,
the concave depression RoC is 10 µm. SEM image of such a fiber is displayed on the
front page of this chapter.

Fiber R zt D w0 LF SR,min Veff Mode
Unit µm µm µm µm µm λ3

A 50 0.5 30 2.5 3.5 20 multi
B 16 1.8 10 1.3 2.5 5 single
C 10 1.5 10 0.9 2.5 2 single

Table 3.1 – Parameters of the three fibers mostly used in this work. They are referred
to as fibers A, B or C throughout this document.

87



3.3. FIBER - CAVITY COUPLING

3.3.1 Single mode fibers

Using a single mode fiber has an advantage : the output mode of the fiber is well
defined and can be used to align spatially the cavity. A description of how the fiber
and cavity modes couple, and how this depends on the parameters of the concave
depression is given, as well as the effects of misalignment.

Mismatch between fiber and cavity modes

Concerning the coupling between the fiber mode (considered gaussian [154]) and the
cavity mode of waist w0, one can consider that for a fiber mode of transverse width

wf , the curvature of the wavefront after the mirror is given by [33] : Rf =
R

nf − 1
,

where R is the radius of curvature of the mirror and nf is the optical index of the
fiber. From this, one can find the position z0,f of the fiber mode’s waist w0,f (details
in appendix A.1.2). Assuming that the modes are aligned transversally, the coupling
efficiency ǫ is then given by [155] :

ǫ = 4





(

w0,f

w0

+
w0

w0,f

)2

+

(

λ

π
w0w0,fz0,f

)2




−1

(3.30)

A schema of the cavity and fiber mode mismatch is given in fig. 3.18 and the
efficiency is plotted as a function of the cavity length in fig. 3.19. This coupling
efficiency has a maximum plateau, which value depends on the radius of curvature
of the mirror. When the cavity length decreases below a few micrometers, or when
it is within a few micrometers of its stability bound, the coupling collapses.

Structure centering and angle between the mirrors

Let’s first consider that the fiber axis is transversally shifted with respect to the
cavity mode axis of a distance d (this can happen if the laser ablation is not perfectly
centered), as shown in figure 3.20. The coupling is then given by [155] :

ǫd = ǫe−(d/de)2

with d2
e =

2
ǫ( 1

w2
f

+ 1
w2

0

)
(3.31)

Typically, de is of the order of 3 µm with the cavities of interest, as shown in
figure 3.21. If one considers that d is lower than 1 µm (typical accuracy of the
shooting setup), this centering defect may decrease the coupling efficiency by up to
25%.

In addition to a centering inadequacy one has to consider that the two mirrors
forming the cavity are not perfectly perpendicular to each other, as depicted in
figure 3.22. If the angle between them is θ the coupling changes as follows [155] :
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w0,f

w0

Figure 3.18 – Schematic view of the
fiber-cavity mode mismatch : the cav-
ity mode has a waist w0 located on
the planar mirror while the fiber mode
has a waist w0,f located on the concave
mirror.
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Figure 3.19 – Coupling efficiency be-
tween the fiber mode and the cavity
mode, for nf = 1.54, wf = 3 µm and
radii of curvature RoC = 50 µm in
solid blue and RoC = 20 µm in dashed
red.

d

Figure 3.20 – Schematic view of the
fiber-cavity mode centering mismatch :
if the laser ablation is not properly cen-
tered the two modes are transversally
shifted of a distance d.

0 5 10 15 20
2

2.2

2.4

2.6

2.8

3

3.2

3.4

Cavity length (um)

d
e (

u
m

)

 

 

RoC=50um

RoC=20um

Figure 3.21 – Critical size for the dis-
tance between cavity axis and fiber
axis. Fiber mode wf = 3 µm and radii
of curvature RoC = 50 µm in solid
blue and RoC = 20 µm in dashed red.
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θ

Figure 3.22 – Schematic view of the
fiber-cavity mode angular mismatch :
if the two mirrors are not parallels,
the mismatch depends on the angle θ
between their axes.
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Figure 3.23 – Critical angle between
planar and concave mirrors. Fiber
mode wf = 3 µm and radii of curva-
ture RoC = 50 µm in solid blue and
RoC = 20 µm in dashed red.

ǫθ = ǫde
−(θ/θe)2

with θ2
e =

2

π2ǫ
(

(

wf

λ

)2
+
(

w0

λ

)2
) (3.32)

Concerning the angular mismatch, the loss of coupling is less important for short
cavities and for small radii of curvatures. With the cavities considered θe is always
greater than 5° as shown in figure 3.23, increasing to about 15° for the smallest
cavities. As the angle θ can be considered lower than 1° (cleave angle of the fibers),
this factor can be considered small or negligible.

3.3.2 Beyond single mode fibers

It was explained that the coupling between a single mode fiber and the cavity mode
can drop below 50% if the parameters of the cavity are not optimized or if the cavity
is misaligned. This drawback can be overcome by using a multimode fiber or by
using the planar end of the cavity as the output.

Multimode Fibers

The first generation of cavities considered in this work was made at the tip of
multimode (MM) fibers (fiber A in table 3.1), having a core of 50 µm. With such
fibers the output spectrum of the cavity was a random superposition of a great
number of modes [156]. Typically, the transverse electromagnetic modes in the cavity
were observed up to l+m ∼ 15, with decaying amplitude, as was shown in figure 3.2.

This could appear as a disadvantage because the output of the fiber is large and
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is a mix of several modes, but it brings two benefits : first the concave depression
centering is of lesser importance with such a large core : an inaccuracy of about
1 µm is insignificant. Second, what limits the output coupling of the cavity to the
fiber is the numerical aperture of the later, given by NA = sin θacc = 0.22, where
θacc is the acceptance angle of the fiber. The coupling between the output mode of
the cavity and all the modes supported by the fiber remains close to unity as long as

the divergence of the cavity mode θ0 =
λ

πw0

remains smaller than θacc . This leads

to the following condition :

w0 ≥ λ

πθacc

& 1.9 µm (3.33)

Fiber A reasonably fits this condition, but fibers B and C have lower waists.

Using the planar output of the cavity

Nevertheless, there is an other way to overcome the coupling issue between the fiber
mode and the cavity mode : using the planar mirror as the output of the cavity.
Indeed, the output on that side of the cavity is a cone, with a half angle θout given
by the divergence of the associated gaussian beam :

θout =
λ

πw0

(3.34)

where λ is the wavelength of the cavity mode and w0 is the mode’s waist (located on
the planar mirror). For the cavities used, this angle is in the range 7° < θout < 16°
(see section 5.2.1 for a measurement). It is then easy to collimate the output of the
cavity with a lens, placed a few millimeters away from the planar mirror (in this
experiment, a lens with effective focal length 18.5 mm, with a numerical aperture
NA = 0.5 is used).

This method applies indifferently whether the fiber is single or multimode. More-
over, in order to increase the extraction through the planar side, it is possible to
choose two mirrors with different reflectivities so that the cavity mode preferentially
leaks out from the chosen side. Typically with a reflectivity of 99.97% on the planar
side and 99.99% on the fiber side, about 90% of the intensity goes out through
the planar mirror. Though further applications need the fibered output, all the
experiments in this work are done using the planar output of the cavity for the sake
of simplicity.

3.4 Finesse and storage time

The cavities were described in term of volume and the coupling between cavity mode
and fiber mode was expressed. In the following, the finesse of these cavities is defined
and its measurment is explained.
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The finesse of an empty cavity is intrinsic to its mirrors and depends weakly on
its length. It is given by :

F =
π

T1 + T2 + L . (3.35)

where T1 and T2 are the transmissions of the two mirrors, and L accounts for
all the losses. The transmissions T can be tuned by changing the number of layers
of the corresponding Bragg mirror. It depends on the wavelength, but typically
goes down to 300 ppm10, at its minimum for the mirrors used in this work. Such a
transmission gives a finesse of about 10 000, if the losses are zero.

3.4.1 Losses

In order to have a good extraction of the cavity mode, it is crucial to keep the
losses L significantly lower than the transmission. A description of the different
mechanisms involving losses is thus given.

Absorption losses

An electromagnetic field that is reflected at an interface partly enters the material
(it can be transmitted or there can simply be an evanescent wave). In any case, this
field penetration leads to a partial absorption by the medium. In usual metallic
mirrors this absorption is around 1%, several orders of magnitude too high for the
requirements of the experiments considered in this work.

The firm which produces the mirrors specifies absorption losses of a few ppm
for pristine Bragg mirrors. In the planar-concave cavities, the absorption losses are
more important on the planar mirror, which has an extra polystyrene layer. However
no finesse drop was observed after such a deposition. Thus, one can consider that
the losses introduced are at least an order of magnitude lower than the transmission
(LA ∼ 20 ppm). For a higher finesse cavity, an improvement of the polystyrene
deposition and a better control of the induced losses may be necessary.

Scattering losses

In addition to the absorption losses, the surface roughness of the mirrors leads to
scattering losses, expressed by [157, 158] :

LS ≃
(4πσ
λ

)2

(3.36)

where σ is the quadratic mean roughness given by :

10ppm reads part per million and is a common unit for high reflectivity mirrors.
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σ =

√

√

√

√

1
LxLy

∫ Lx

0

∫ Ly

0
(z(x, y) − z̄(x, y))2 dxdy (3.37)

where Lx and Ly are the lateral dimensions of the surface, z is the surface height
and z̄ is its mean. As the mirrors deposition is well controlled it does not increase the
surface roughness, which remains the one of the substrate. In the case of the fiber, it
was estimated to σ = 0.2 nm, so the scattering losses amount to LS ∼ 10 ppm.

Clipping losses

Until now, it was considered that mirrors reflect the entire cavity mode into the
cavity. This is a valid approximation as long as the mirror diameter is much larger
than the mode diameter. In this work, this condition is not always fulfilled, in
particular for fibers B and C. Thus, one has to consider the finite size of the mirror,
which leads to “spillover” losses upon reflection on the edges of the cavity. For a
single reflection at the fiber, the losses read [33] :

LC,1 = exp



−2

(

D

2w(L)

)2


 (3.38)

where D is the diameter of the concave mirror and w(L) is the waist of the cavity
mode upon impact (as defined in eq. (3.7)). As the planar mirror has a diameter two
orders of magnitudes larger than D, it is considered that there are no losses upon
that reflection, so that the losses are given by the number of round trips (i.e. the
finesse) times the losses on the fibered mirror :

LC = F · LC,1 (3.39)

As a conclusion, one can consider that the cavities have a transmission of 300 ppm,
absorption and scattering losses of 30 ppm, and clipping losses as defined by eq. (3.38).
In the case of mirror with D = 10 µm and R = 10 µm, the clipping loss remain
below 100 ppm for a cavity length below 5 µm. In the case of a larger mirror, with
D = 20 µm, the losses remain completely negligible in the range of lengths used in
this study. The corresponding finesse as a function of the cavity length is given in
figure 3.24. One must note that Benediketer et al. [151] explored more thoroughly
the dependence of the finesse on the cavity length for fibered Fabry-Perot cavities. It
comes out that the finesse can collapse much more quickly than expected - typically
by a factor of two before the length reaches half the radius of curvature - due to the
non-ideal shape of the mirrors, in particular ellipticity.
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Figure 3.24 – Finesse as a function of cavity length. In blue R = 10 µm and
D = 10 µm, while in red D = 20 µm and R = 50 µm. The remaining parameters are
λ = 900 nm, and other losses of 330 ppm for each mirror.

3.4.2 Measuring the finesse

The theoretical background underlying the concept of finesse was given in sec-
tion 3.4.1. In this section, the experimental measurement is presented and the effect
of longitudinal vibrations is discussed.

Varying the cavity Length

The finesse of a Fabry-Perot is defined by :

F =
FSRλ

δλ
(3.40)

where δλ is the spectral width of a longitudinal mode. Theoretically, the finesse could
be extracted directly from figure 3.2. Unfortunately, the cavity is easily affected by
vibrations, and these vibrations increase the effective spectral width of the cavity
peaks measured with a spectrometer (details follow in paragraph 3.4.2). For this
reason, it is useful to monitor on a photodiode the output of the cavity at a fixed
wavelength while varying its length.

The length variation must be quicker than the typical timescale of the vibrations
(of the order of 1 kHz). For that, the fiber is moved with piezoelectrics slip-stick
at room temperature. A single step, of sufficient amplitude to cover at least two
longitudinal modes, is operated in a few milliseconds. The result is presented in
figure 3.25.

From this figure one can immediately deduce the finesse as the ratio of the
distance between two longitudinal peaks by the width of a peak. As long as a linear
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Figure 3.25 – The wavelength is fixed and the cavity length is swept fast while
its output is recorded with a photodiode. The ratio of the distance between two
longitudinal peaks and the width of a a peak gives the finesse of the cavity.

displacement is assumed11, it requires no scale in abscissa.
Though this method is convenient, it cannot be used at cryogenic temperature

because the displacement range of our piezoelectric translation stages is not enough
to cover two modes quickly. A way to overcome this issue is to measure the finesse
as a function of the wavelength once and for all at room temperature, and to use
these values afterwards. Unfortunately the finesse is not homogeneous over the whole
planar mirror because of the nanotubes and polystyrene deposition on its surface.
Given that, an other method to measure the finesse locally at cryogenic temperature
was developed.

Cavity ring down spectroscopy - photon storage time

A light entering in the cavity is either transmitted or lost. In the low loss limit, if
some light is stored inside the cavity, its intensity decreases exponentially with a
characteristic time τstor :

τstor =
2L

c(L + T )
=
LF
πc

(3.41)

where L is the effective cavity length and c the velocity of light. This characteristic
time is sometimes called the lifetime of the cavity, or the photon storage time in the
cavity. The later term is used in this work in order to avoid any confusion with the
solid state emitters lifetime.

In order to measure the storage time, one can perform cavity ring-down spec-
troscopy [159]. It consists in sending an input light resonant with one of the modes of

11the symmetry of the transmission peaks is a good indication of the validity of this approximation.
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Figure 3.26 – Cavity ring-down spec-
troscopy. Black solid line : detector
response. Red dashed line : cavity
transient at 870 nm. Blue dotted line :
cavity transient at 900 nm.
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Figure 3.27 – Finesse of the cavity as
a function of the wavelengths, mea-
sured by ringdown spectroscopy (see
eq. (3.41)).

the cavity and recording the transmission with an avalanche photodiode. When the
incident light is shut down, one observes a mono-exponential decay of the intensity
of the output. In order to repeat the process many times conveniently a pulsed
excitation (described in 4.1.2) is used.

The typical storage time of the cavities investigated is between 15 ps and 80 ps,
unfortunately our fastest detectors12 have a characteristical time of about 40 ps, so
the recorded signal had to be deconvolved by the measured response time of the
instrument in order to retrieve the storage time. Finally, the finesse was obtained
with equation (3.41) : F =

πτstorc

L
(the cavity effective length was obtained from

FSR measurements).
Interestingly, the finesse (or the storage time) can also be interpreted as a measure

of the mean number of round trips N before a photon goes out of the cavity :

N =
F
2π

=
cτ

2L
(3.42)

An other figure of merit of the cavities, directly linked to the finesse, is the quality
factor Q. It has already been introduced in section 1.3.1 and quantifies the ratio
between the resonant frequency ωn over the spectral width of the cavity κ :

Q =
ωn

κ
= ωnτ =

2L
λn

F (3.43)

Contrarily to the finesse, the quality factor does not depend only on the reflectivity
of the mirrors, but also on the cavity length. One can keep in mind that our cavities

12IDQ 100
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have a typical quality factor Q ∼ 105.

Vibrations and “effective finesse”

For fibered cavities, the planar mirror is fixed and the fibered mirror position can be
controlled with a nanometric precision. Nevertheless, the fiber position can vibrate
slightly, especially if it is used at low temperature (due the cryostat vibrations).

These vibrations can be decomposed into axial and lateral vibrations. The waist
of the cavity mode has a value above 1 µm, while the spectral matching of the cavity
with the emitter requires a nanometric precision. For this reason, the effect the
lateral vibrations are considered as second order compared to the axial ones, and are
neglected in this study. From equations 3.1 and 3.2, one can link a small variation of
the cavity length δL to a small variation of its resonant frequency δλ :

δL =
λδλ

2FSRλ

(3.44)

where the Free Spectral Range is in units of wavelength. To give a rough idea, it
means that for a typical cavity, at a wavelength λ = 900 nm with a FSRλ = 100 nm
and a spectral width of δλ = 30 pm, a change δL = 130 pm corresponds to a spectral
shift greater than the spectral width.

A continuous laser light, at a given wavelength λ0, is sent in the cavity and the
transmitted intensity I is recorded on a photodiode. The cavity length is swept to
cover at least two transmission modes in a slow, reproducible way, so that the width
Γ of a TEMn00 peak and the distance between two peaks in arbitrary units ∆X
can be extracted. This distance is proportional to the FSR, so that a constant of
proportionality α can be introduced : α∆X = FSRλ = λ0/2.

Once this calibration is done, the cavity length is tuned so that the resonant
frequency is at mid-slope of one of the broader peaks (close to the edge of the stop
band). At this point, the local slope is 1/Γ, assuming that the peak is Lorentzian.
So :

dI
dx

= α
dI
dL

=
1
Γ

(3.45)

Using the definition of α :

dL =
λ0Γ

2∆X
dI (3.46)

The cavity is let free and the intensity variations over time at this point are
recorded with a fast photodiode. These are converted in term of length with eq. (3.46)
and finally δL, which is twice the standard deviation of this quantity : δL = 2std(dL)
is retrieved. The typical longitudinal vibrations amount to 5 nm. At best, vibrations
as low as 1 nm are obtained (at room temperature), as shown in fig. 3.28.

Most of the vibrations take place on a time scale (milliseconds) much shorter
than the usual timescale of our measurements (seconds). This means that the cavity
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Fourier transform of figure c). In blue the
cryostat is off, in red it is on.

Figure 3.28 – Estimation of the longitudinal vibrations of the cavity.
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peaks recorded with a CCD do not reflect the real cavity spectral width, but the
cavity spectral width modulated by the vibrations. To give an example, for a cavity
of finesse 6000, with a length of 5 µm, the spectral width of the cavity peak is about
20 pm, or 8 GHz, but the width of the peak measured by white field transmission is
200 pm, or 80 GHz, due to the vibrations.

It is crucial to understand that for the solid state emitters under study this is
NOT an “effective finesse”. Indeed, the typical lifetime of nanotubes is 100 ps, and
the cavity storage time is in the same order of magnitude. At these time scales, the
cavity length can be considered as constant, as well as the mode’s energy and spectral
width. As a consequence, the vibrations do not directly affect the Purcell effect
and the intrinsic spectral width of the cavity is the relevant parameter. For a more
complete discussion of the effect of the vibrations on the experimental measurement
of the Purcell effect, refer to appendix C.

Conclusion

The cavities introduced in this work consist in a planar dielectric mirror and a concave
one laser machined at the tip of an optical fiber. The resonant Hermite-Gaussian
modes were described and measured from white-field transmission. A description of
how the characteristics of the dip created on the fiber by laser ablation can be tuned
were given, as well as their incidence on the cavity mode volume. After discussing
how the field in the cavity could be extracted, either on the fiber side or on the
planar mirror side, the finesse was described, as well as the quality factor and storage
time of these cavities.

A few numbers should be kept in mind for what follows : in the first generation
of fibers used during this PhD (fiber A), the radius of curvature was R = 50 µm, the
length was limited to Lmin ≈ 3.5 µm, leading to a cavity mode volume Veff ≈ 20λ3.
The finesse was about 6000 at 900 nm, leading to typical lifetimes of about 50 ps and
quality factors of about 105.

The second generation of fibers (fiber B and C) have a lower radius of curvature,
R = 10 µm and are blunt to reach lower length Lmin ≈ 1.5 µm, leading to mode
volumes as low as Veff ≈ 2λ3, while the finesse and quality factor remain similar.

It is now clear that these micro-cavities combine the advantages of having an
extremely high finesse13, very small mode volume and efficient extraction. In the
chapter 5 a description is given of how the flexibility obtained from the ability to
move the fiber is used to make the cavity tunable spatially and spectrally.

13Here it is willingly limited to 10 000 to match the spectral width of the emitter, but it can
reach 150 000 [149]
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Introduction

The exciton relaxation mechanisms can be understood by the study the photolumines-
cence spectrum of single carbon nanotubes. Nevertheless, as nanotubes are entirely
made of atoms at their surface, they are extremely sensitive to their environment.
This interaction creates a great number of non-radiative decay processes, and hence
a decrease in the intensity of the photoluminescence (PL). Actually, more than ten
years passed between the synthesis of CNT in 1991 and the first observation of their
PL, made available by physical isolation in micelles [16]. Even today, nanotubes are
low quantum yield emitters and their study needs a high sensitivity confocal setup.
Furthermore, the thermal broadening of the transitions blurs out the intrinsic char-
acteristics, which is why the experiments in this section are carried out at cryogenic
temperatures.
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Chapter 4. Scanning confocal microscopy of carbon nanotubes

This chapter describes the home-made confocal microscope used in this work
and present a few general characteristics of carbon nanotubes photoluminescence.
Namely the anisotropy, the saturation of the emission and the spatial localization.
Beyond that, a particular interest is taken in the shape of the nanotubes optical
spectrum. Even though this shape depends strongly on the emitters environment,
a complete model unifying the optical spectrum of CNT at low temperature was
developed in the group a few years back [20]. This model is presented shortly, and the
focus remains on the narrow-width emitters which are relevant for cavity experiments.
Finally, this chapter is concluded by studies on the time evolution of these optical
spectra. In particular, it is shown how the experiments on spectral diffusion support
the above mentioned model.

4.1 A scanning Confocal Microscope

The work presented here aims at studying the optical response of a single carbon
nanotube, which means an object with a diameter below 1 nm and in this case a
length of about 500 nm. For that, a laser beam focused to the diffraction limit is
used as the excitation source, and the photoluminescence of the object under study
is collected with a high numerical aperture lens. The setup built is a home-made
confocal microscope, which principle is introduced in this section. A description
of how the sample is raster scanned is also given. Finally the different excitation
sources are described.

4.1.1 Principle

The principle of confocal microscopy is that the excitation and the detection pass
through the same focal lens. Indeed, an excitation laser beam is focused close
to its diffraction limit (λ/2) on the sample, using an aspherical lens of numerical
aperture 0.68, focal length 3.1 mm, and working distance 1.76 mm1. If a carbon
nanotube is at the focal point, its photoluminescence is collected by the same
aspherical lens and then separated from the excitation beam with a dichroïc mirror2

(see figure 4.1). As the excitation wavelength is typically 760 nm, while the emission
is typically 900 nm, the dichroïc mirror is chosen to transmit fully wavelengths
below 850 nm and reflect totally the wavelengths above it.

As an aspherical lens is used, the focal length is not exactly the same for the
excitation than for the emission. One can choose to find a compromise between the
excitation spot diameter and the collection collimation. Otherwise, it is possible to
tune the lens position to the emission focal length and make the excitation beam
slightly divergent to compensate.

1Thorlabs C330TME-B or C330TMD-B
2Edmund Optics 69-209
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Figure 4.1 – Principle of confocal microscopy : the excitation (solid green line) and
the collection (solid red line) pass through the same focal lens. They are separated
with a dichroïc beam splitter. The collection is then filtered with a pinhole in order
to eliminate out-of-plane emission (dashed gray line).

Collection

The emission is dispersed with a 500 mm spectrometer3 and recorded with a silicium
charged coupled device4. However, before the emission beam reaches the spectrometer
with which the emission spectrum is analyzed, it passes through a pinhole. Two
lenses5 with a focal length of 100 mm are placed in a telescope configuration. The
plane in between is the conjugate image of the sample plane. A hole of 100 µm
is placed in this plan to filter the volume observed. To be accurate, it limits the
lateral zone of the sample observed to 1 µm and it reduces the depth of field as
well. This is particularly useful to increase the signal-to-noise ratio by eliminating
the photoluminescence (or elastic diffusion) of the substrate. This configuration is
widely used in physics as well as in biology for the spectroscopy of molecules or
nano-objects [160]. In the setup described here, the signal-to-noise ratio is seldom an
issue, so the pinhole part of the confocal setup is built on a removable platform. Most
of the time, it is removed and the slits of the spectrometer are used for filtration. The
emission beam is focused with a 40 mm achromatic lens on the slits (which width can
be tuned down to 10 µm). By using this configuration, single nanotubes belonging to
the following species (8, 3), (7, 5), (6, 5), (6, 4), (5, 4), (9, 1) are efficiently detected.

Finally, it is worth noting that all the experiments carried out during this work
are done at cryogenic temperature. Consequently, the sample as well as the confocal
lens are embedded into a pulsed tube cryostat. The detailed organization inside the
cryostat is given in paragraph 5.1.1.

3Princeton Instruments SP2500i, with three gratings (150, 600 and 1200 lines per millimeter)
4Princeton Instruments Pylon
5Thorlabs AC254-100-B
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Figure 4.2 – Principle of the steering mirror : the beam has a deviation α from the
optical axis. The two lenses L1 and L2, center it on the focal lens. it is then focused
on a distance d = αf from the image focal point of this last lens.

Steering mirror

The density of carbon nanotubes was already discussed in 2.3.3 : it is a compromise
between having a sufficient number of nanotubes and having a low probability of
getting two of them in the excitation spot. Though it is rather simple to find a
nanotube manually, it is interesting to be able to raster scan quickly the sample
in order to compare the different emitters, and to select the ones having the best
features for cavity experiments.

One ways of scanning the sample is to move the focusing lens. But in our case
this lens is inside the cryostat, and held on piezoelectrics slip-stick which movements
are not perfectly reproducible on large scales (over 1 µm). Thus, a steering mirror6

is used to implement the raster scan, as shown in figure 4.2.
Indeed, if a collimated beam arrives on the focal lens (of focal length f) with an

angle α, the beam spot is simply shifted by d = αf (as long as it remains in the Gauss
conditions at least). The angle of the steering mirror can be tuned precisely and
repeatedly by the application of a voltage, with a conversion factor of 26 mrad/V7

and a maximum of 10 V, which means a distance of about 100 µm.
Technically, applying an angle to the steering mirror quickly leads the beam to

fall out of the focal lens (which clear aperture is only 5 mm), so two 2 inches lenses8

of focal length f1 = 200 mm are used to redirect the beam. The first lens is at a
distance f1 from the steering mirror, the second one is at a distance 2f1 from the
first and a distance f1 separates it from the focal length. As depicted in figure 4.2,
this setup has the advantage that whatever the angle α of the steering mirror, the
beam arrives centered on the focal lens with the same angle α.

The collection beam passes through the same setup and the dichroïc beam splitter
is placed just after the steering mirror. This way the emission beam path does

6Newport FSM-300
7The repeatability is 3 µrad
8Thorlabs AC508-200-B
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(a) The sample is raster scanned over
100 µm2 by steps of 1 µm. The wavelength
of the nanotubes detected is indicated by
the colors.
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(b) Zoom on an emitter. As the emitter
size is smaller than λ/2, the scan is a mea-
surment of FWHM of the beam waist, close
to 500 nm

Figure 4.3 – Photoluminescence maps of a typical sample

not depend on the angle α after being reflected by the dichroïc beam splitter, in
particular for the pinhole part or the coupling into the spectrometer.

With this steering mirror, photoluminescence maps of the sample can be done,
with a typical size of 25 µm × 25 µm in order to find and compare carbon nanotubes.
A more tightened map can also be done to asses that the emitter is localized. Two
such maps are showed in figure 4.3.

4.1.2 Excitation

In the experiments carried out here, two sources are used : a tunable continuous wave
Ti:Sa, and a pulsed Ti:Sa working at 800 nm. Let’s note that the sources were always
filtered9 to make sure that no spurious light would hinder the PL measurements. In
this section, these sources are described, as well as the setup used to get a tunable
pulsed beam. Some details about the optical path are also given.

Continuous Wave Source

In this experiment, the main source is a continuous mode Titanium-Saphire laser10

tunable between 700 nm and 1 µm, with a line-width of 50 kHz. This laser, is
driven from a computer and can scan this range of wavelengths without any manual
operation. The only limitation, with the version used, is that a continuous scan over
more than 0.5 nm without mode hopping is not available.

Indeed, one of the features of a laser is an optical gain medium, which range
is very broad. Within this range, many longitudinal modes of the laser cavity are
available. In order to get narrower features, a Birefringent Filter (BRF) is added to

9Typically with short-pass filters such as FES 800 or FES 850 from Thorlabs
10M Squared, SolsTiS
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Figure 4.4 – Schema of our commer-
cial continuous wave laser. The gain
medium is Titanium:Sapphire. The
cavity modes are filtered by a birefrin-
gent filter (BRF) and a Fabry-Perot
called Etalon.

0

0.2

0.4

0.6

0.8

1

Wavelength

T
ra

n
sm

it
te

d
 i

n
te

n
si

ty Etalon

modes

BRF

Laser

output

Figure 4.5 – Principle of the wavelength
tuning : a wavelength range is selected by
the birefringent filter in red. A finer selec-
tion comes from the etalon filter in dashed
black. The output arises from the convo-
lution of the two, in blue, with the laser
cavity modes. Tuning the etalon spacing
changes the output wavelength, but once
the full BRF line-width is traveled, one
has to make the BRF jump farther away
to continue tuning the output wavelength.

introduce a wavelength-dependent loss into the cavity (see laser schema on figure 4.4).
Wavelength tuning is then accomplished by rotating the BRF. As the BRF tuning is
coarse, a Fabry-Perot filter called etalon is added. The spectral filtering features are
depicted on figure 4.5. The spacing of the etalon can be electronically adjusted to
tune the wavelength finely. Finally, the output wavelength of the laser can be locked
on the external cavity by tuning the laser cavity length with a piezo actuator.

It is possible to tune the etalon without moving the BRF, but it limits the scan
to the line-width of the BRF. For experiments where the precision required on the
wavelength is within the accuracy of the spectrometer, this limitation can be easily
overcome. One can move in a coordinated way the BRF and the etalon so that after
each jump of the BRF, the wavelength comes back to its value before the jump. The
laser wavelength is monitored with the spectrometer all along the experiment and
the results are computationally “stitched” together. This easy wavelength tunability
enables us to perform detailed Photoluminescence Excitation (Photoluminescence
spectrum as a function of the excitation wavelength) of single carbon nanotubes to
identify the wavelengths at which they preferentially absorb light.
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Figure 4.6 – The pulsed Ti:Sa source can be directly coupled to a fiber. Otherwise,
the beam is intercepted by a prism. It passes through four prisms to shorten
the impulsions and then through a non-linear photonic crystal fiber to generate
wavelengths from the visible to the near infrared. Courtesy of C. Raynaud.

Pulsed Wave Source

In addition to this continuous-wave laser, a pulsed Titanium:Sapphire laser11 oper-
ating at 800 nm is used. The pulses last 100 fs and the repetition rate is 80 MHz.
Pulsed excitation is particularly useful for experiments in the time domain detailed
in section 5.2.2.

As some measurements (see sections 3.4.2 and 5.2.3) require pulsed excitation
at different wavelengths, a setup was built12 to generate ultrashort tunable pulses
with this fixed wavelength Titanium-Saphire laser, as depicted in figure 4.6. Its
pulses are sent through four prisms so that the shorter wavelengths travel along a

longer path, as shown in figure 4.7. This negative dispersion index medium (
∂n

∂λ
< 0)

compresses the impulsions, which are then sent through a non-linear photonic cristal
fiber. Thanks to a non-negligible third order susceptibility, it is possible to generate
any wavelength between the blue and the infrared (an example is given in figure 4.8)
with the ultrashort input impulsions, while keeping pulses in the 100 fs range.

Excitation side

Until now, a standard confocal microscope was considered, with the addition of a
steering mirror to raster-scan the sample. This setup aims at a comparison of the
photoluminescence in free-space (i.e. in confocal microscopy) with the photolumines-
cence in cavity (see section 5.2.1). In a confocal microscope, the excitation and the
collection pass through the very same lens. In such a case the excitation in free-space
and in cavity cannot be the same (the cavity would block it), which is why a second
way of exciting the sample in free-space is available.

Once the sample is raster scanned, a nano-object selected and placed at the focal
point of the lens, the excitation beam is switched, as shown in figure 4.9. The laser
is then focused with an other lens13 (of focal 12.5 mm and numerical aperture 0.5)

11Coherent Vitesse
12This setup was built by Christophe Raynaud as a part of his master project, under the

supervision of Yannick Chassagneux.
13Edmund Optics 69-863

108



Chapter 4. Scanning confocal microscopy of carbon nanotubes

Figure 4.7 – Principle of impulsion
shortening with four prisms. Alterna-
tively, two prisms and a plane mirror
(dashed line) can be used. Courtesy of
C. Raynaud.
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Figure 4.8 – Typical spectrum of the out-
put of the non-linear photonic crystal fiber.
The spectrum can be tuned by tuning the
injection in the fiber.
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Figure 4.9 – On the left, a standard confocal setup, on the right the excitation is
switch to the back.
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4.2. LOW TEMPERATURE SINGLE NANOTUBE PHOTOLUMINESCENCE

and passes through the flat mirror on which the carbon nanotubes are deposited.
The excitation spot is much larger (about 50 µm2), but the zone collected remains
the same.

4.2 Low temperature single nanotube photolumi-
nescence

From the description given in chapter 2, one should expect a single nanotube
photoluminescence spectrum to consist in strong lines, corresponding to the different
excitonic levels, with an energy depending on the nanotube’s chiral indices. In fact,
the optical spectrum of a single carbon nanotube is more complicated, first because
it depends strongly on its surroundings and second because the transitions can be
phonon-assisted. In this section, a brief introduction of the usual photoluminescence
spectrum of carbon nanotube is given and a phonon model is introduced to account
for it.

4.2.1 Single carbon nanotube photoluminescence

A complete study of the PL characteristics of CNTs was done in the team by Fabien
Vialla [20] before this work. Compared to the former PL setup, the one described
in section 4.1, as well as the samples improvements, gave a twenty times higher
signal-to-noise ratio and an increased number of spectrally narrow emitters. Thanks
to these improvements, the measures taken during this work confirmed the previous
observations. Here, the typical features of nanotubes photoluminescence are reported.

Shape of the PL spectrum

The PL spectrum of a CNT, excited non-resonantly, can vary sensibly from one
specimen to the other due to its environment. It generally consists of a main line,
with a Lorentzian shape and a Full Width at Half Maximum (FWHM) ranging
from 40 µeV in [161] to a few meV. This main line is accompanied on both sides by
features of lesser intensity. The ratio between the integrated intensity of the main
line and the integrated intensity of the whole spectrum is called Branching Ratio
BR. It typically ranges between 0.4 and 0.9 for the nanotubes investigated.

A detailed account of the different shapes of CNT spectra is given in [92, chap.
2]. In this work the focus is on narrow FWHM nanotubes because of their strong
interest for cavity coupling (see section 1.3.1). Such a nanotube’s photoluminescence
spectrum is shown in figure 4.10.

The shape of the emission spectrum can be explained by the interactions between
the exciton and the carbon nanotube’s phonons, as already noted by Htoon et al in
2005 [162]. The central line is accounted for by the relaxation of the exciton, and
by elastic exchanges with phonons. This Lorentzian line has a width related to the
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Figure 4.10 – Photoluminescence spectrum of a single carbon nanotube taken at
10 K. One can see a central line with a width of 200 µeV and two “wings” on either
side, the high energy (or blue) wing being of lesser intensity than the lower energy
(or red) wing. Details : (6, 4) nanotube. Excitation : 760 nm, linear polarization
(along CNT axis), the excitation power is below the saturation limit, P = 0.7 · Psat.

coherence time of the exciton, including pure dephasing. As this line requires no
absorption or emission of phonons, it is called the Zero Phonon Line (ZPL), as shown
on figure 4.11a.

The red-side part of the spectrum corresponds to the emission of a photon of
lower energy assisted by the emission of a phonon, as depicted on figure 4.11b. The
phonon emission can occur for an arbitrary low temperature, and in particular, it
can occur at the cryogenic temperature used in this experiment. The blue-side part
of the spectrum corresponds to the emission of a photon of higher energy assisted by
the absorption of a phonon (figure 4.11c). This phenomenon requires the existence
of a phonon bath and is thus less likely at cryogenic temperature than at room
temperature. Consequently, the asymmetry of the two wings of the spectrum is a
direct insight in the local temperature at the location of the nanotube.

Spatial localization

The carbon nanotubes in this study have a diameter below 1 nm and a typical length
of 500 nm. This means that with a confocal setup, limited by the Rayleigh criterion,
the CNT photoluminescence must appear as a point-source.

In order to assess this characteristic, the integrated intensity of the PL was
measured at different positions separated by a 100 nm. As expected for a point-
like emitter, figure 4.12 shows that the emission map is diffraction limited. This
phenomenon can be investigated further by means of super-localization : in that
case, the intensity of the emission is fitted with a Gaussian in order to find its center.
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Figure 4.11 – Sketch of the coupling between the excitonic system (|g〉,|e〉) and the
acoustic phonons (|uq〉). The main line, or ZPL, (a) implies no interactions with
the phonons. The red-wing of the spectrum (b) is due the emission of a phonon
while the blue wing (c) is due the absorption of a phonon. At cryogenic temperature,
the later mechanism is less likely than the former. Adapted from [92, p.61], with
author’s permission.

(a) The position obtained from the fit of
the emission is indicated by a red dot.

(b) 3D view of the emission intensity.

Figure 4.12 – Map of the emission intensity (at the energy of the nanotube) as
a function of the excitation beam position. Experiment done with Théo Claude.
Details : (8, 3) nanotube. Excitation : 760 nm, linear polarization (along CNT axis),
below the saturation level. Figure layout by T. Claude.

112



Chapter 4. Scanning confocal microscopy of carbon nanotubes

  0.2

  0.4

  0.6

  0.8

  1

30

210

60

240

90

270

120

300

150

330

180 0

(a) Absorption. The polarization
of the excitation beam is tuned
over 360°.
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(b) Emission. A polarizer is put
in front of the detector and its
polarization angle is tuned over
360°.

Figure 4.13 – Intensity of the Photoluminescence emission as a function of the
polarization of (a) the excitation beam and (b) the detection setup. The experimental
data are fit to obtain the extinction ratio. Details : (6, 4) nanotube. Excitation
760 nm, P = 0.7 · Psat.

Such measurements are currently being performed by a fellow PhD candidate, Théo
Claude, and give an accuracy of 20 nm. The result of such a localization process
is indicated by a red dot in the map. With this method, in nanotubes having a
length around 2 µm, several excitons are observed along the tube, separated by about
300 nm.

Polarization and anisotropy

As already stated in paragraph 2.2.1, carbon nanotubes have a very high aspect
ratio, and thus undergo a strong depolarizing effect. This implies a strong anisotropy
of both absorption and emission [104]. The figure 4.13a shows the intensity of the
photoluminescence as a function of the excitation polarization while figure 4.13b
shows the intensity of the PL as a function of the polarization of the detection.

The PL intensity I is fitted with the expression :

I(θ) = A cos2(θ − θ0) +B sin2(θ − θ0) (4.1)

where θ is the polarization angle of the excitation (or detection) and θ0 is the
preferential direction of the nanotube. The angles found for the excitation and the
detection are the same within experimental accuracy. The extinction ratio (which
means the PL intensity at its highest over the PL intensity at its lowest) is of the
order of 5 to 10 in absorption and of the order of 10 to 20 in emission.

Indeed the nanotubes deposited are rarely straight. As the absorption occurs over
the full nanotube length it has an effective aspect ratio different than its intrinsic
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Figure 4.14 – Photoluminescence emission intensity as a function of the excitation
power. Above a certain threshold (about a few kW cm−2 in continuous wave excita-
tion), the emission intensity reaches its saturation level. Details : (6, 4) nanotube.
Excitation : 760 nm, linear polarization (along CNT axis).

one. But the emission occurs over a length which is too low to be affected by such
twists (a few nanometers, as stated in the previous paragraph). As a consequence,
the emission has the intrinsic anisotropy of the emitter while the absorption has a
reduced anisotropy. This explains why the extinction ratio is higher in emission than
in absorption.

Saturation of the emission

The intensity of the integrated photoluminescence of a CNT, under pulsed excitation,
as a function of the excitation power is presented in figure 4.14. One can clearly
see a linear increase at low power followed by a saturation of the emission at higher
power P > Psat. This feature can be explained by considering the trapped exciton
as a 2-level system [163], as discussed in section 4.2.1.

In the studies carried out here, the linear regime is overcome for an intensity
of about a few kW cm−2 under continuous excitation, in excellent agreement with
previous studies [26, 163, 164]. However, even for an emission intensity three times
lower than the saturation limit, the signal-to-noise ratio remains good enough for the
measurements performed throughout this work. Consequently, all the experiments
reported here are done with an excitation power low enough to remain in the linear
regime (between a third and a two thirds of the saturation level).

Exciton trapping

In the previous paragraphs, it was shown that the emission of a carbon nanotube
arises from a section smaller than 20 nm, and that it saturates when the pump power
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is increased. More over, Högele et al. [21] demonstrated in 2008 that nanotubes
behave as single-photon emitters, which is confirmed in section 5.3.3. This means
that the emission in the nanotube cannot arise from several sites at a time. In this
paragraph, the origins of this phenomenon are discussed.

Excitons have a Bohr radius lower than 2 nm [117] (mean distance between the
electron and the hole) and a lifetime around 100 ps. During this lifetime, the excitons
can diffuse along the nanotube axis, over a typical distance LD = 100 nm at room
temperature [165, 166]. If two excitons are created in the nanotube at a distance
smaller than LD, it is very likely that they interact through an Auger process, also
called Exciton-Exciton-Annihilation (EEA). In this process, one exciton recombines
non-radiatively and its energy is transferred by Coulombic interaction to the other
exciton. This process was evidenced experimentally [22, 23, 24]. It is extremely
efficient due to the one-dimensional geometry and happens at rate a hundred times
higher than the radiative decay14.

However, the nanotubes investigated in this work have a length around LD =
500 nm, several times higher than the exciton diffusion length. Consequently, EEA
cannot directly explain why only one exciton would survive over such a length. It
is likely that emission in such a short nanotube arises from a single site with a size
lower than LD. The trapping of the exciton is fast, and around the trapping site,
the Auger processes are possibly even faster than if the excitons are free to diffuse
along the full axis [168].

The localization of excitons in carbon nanotubes was investigated by different
works. In particular, reference [26] lists all the evidences of exciton localization
in suspended carbon nanotubes. More over, Tip-Enhanced Near Field Optical
Microscopy (TENOM) measurements at room temperature showed the presence of
localization sites with a resolution of about 15 nm [25]. A slight decrease of the
energy of the photoluminescence around these sites implies that the trapping is due
to localized electrostatic potential wells of a few tenth of meV. These wells could
be due to charges around the nanotubes, which may be brought by the surfactants
used, or the polymer matrix in which they are embedded.

Recently, Hofmann et al. [169] investigated the trapping of excitons in carbon
nanotubes by photoluminescence experiments both at room and cryogenic tempera-
ture. They conclude that trapping potentials ranging from a few meV to a few tens
of meV arise from environmental disorder (adsorbate on the nanotube surface) as
well as crystalline defects in the nanotube. As a matter of fact, the control of defects
in carbon nanotubes is now a research field of its own, and led to increased efficiency
and anti-bunching up to room temperature in doped nanotubes [27].

At cryogenic temperature, the diffusion length of excitons is unknown : it depends
on the mobility, which itself depends on the surroundings of the nanotube. In our
sample, the mean carbon nanotube length is 500 nm, though the exact distribution is
unknown. Most of the observed nanotubes (at least 90%) displayed a single emission

14In fact, this rate strongly depends on the density of excitons, as discussed in [167, chap. 3].
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line, and all the tubes investigated with a HBT setup displayed anti-bunching,
including when the pumping rate was close to the saturation limit (which suggests
the creation of several excitons). Even if the exact processes remain unclear, we can
conclude that our nanotubes are sufficiently short, that the exciton diffusion length
is sufficiently long, and that the excitons annihilation processes are sufficiently strong
to obtain a single exciton much faster than the spontaneous emission lifetime.

4.2.2 Coupling to acoustic phonons

The PL spectra of carbon nanotubes, as introduced in the previous section, consist
in three main features. The exciton is considered as a pseudo 2-level system. The
relaxation from its excited state to the ground state (annihilation of the exciton)
gives rise to a strong Lorentzian line, called the Zero Phonon Line (ZPL).

The two other features on both sides can be accounted for by phonon assisted
processes : on the low energy side, the emission of a phonon and on the high energy
side, the absorption of a phonon. In order to go beyond this qualitative approach, a
Hamiltonian is introduced to model electron-phonon interactions.

Hamiltonian of the system

A model giving analytically the coupling between an electron and a phonon was
introduced by Hung et al. [170] and improved by Duke et al. [171] in the case of
colored centers. Krummeheur et al. [172] applied such a model in the case of localized
excitons in semi-conducting quantum dots coupled to the phonons of the surrounding
3D matrix. More recently, Galand et al. [161] took into account the unidimensional
character in order to apply it to CNTs. This study was completed by Vialla et al. [20]
in our group, prior to this work.

The Hamiltonian of the system can be written as :

H = H0 +Hep (4.2)

H0 = Eg|g〉〈g| + Ee|e〉〈e| +
∑

~k ~ωkb
†
~k
b~k (4.3)

Hep = |g〉〈g| exp
(

∑

~k λgg,k(b†
~k

+ b~k)
)

+ |e〉〈e| exp
(

∑

~k λee,k(b†
~k

+ b~k)
)

(4.4)

The Hamiltonian can be divided in two parts. H0 is the Hamiltonian without
exciton-phonon interactions : the first two terms describe the energies of the ground
state |g〉 and the excited state |e〉 of the exciton. The third term describes the phonon
bath and involves a sum over all the wavevectors

−→
k , with an energy ~ωk. b†

k and bk

are the creation and annihilation operators for phonons. Finally, Hep describes the
electron-phonon interactions, driven by the matrix element λgg,k and λee,k. In the
following, λgg,k is taken as zero and λee,k is noted λk.

The speed of sound in a CNT (about 2 × 104 m/s) is an order of magnitude higher
than in the surrounding polymer matrix. As a consequence, the propagation of
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Figure 4.15 – Schema of the different acoustic phonon modes (radial breathing,
elongation and torsion) in carbon nanotubes. Adapted from [92, p.63], with author’s
permission.

phonons from the nanotube to the matrix, or conversely, is suppressed. Thus, only the
one dimensional phonons propagating in the nanotube itself are considered. Moreover,
given the spectral width of the nanotube, the study is restricted to the phonons
of low energy, introducing a broadening lower than 10 meV. As a consequence, the
optical phonons, having an energy of about 200 meV are not taken into account.

Amongst the acoustic phonons, three types of deformations can occur : radial
breathing, torsion and elongation, as depicted in figure 4.15. The radial breathing
mode has an energy of about 35 meV to 45 meV for a zero wave-vector, with an
almost flat dispersion. As it is too high to correspond to the broadening observed,
it won’t be taken into account in this work. The two other modes can be merged
in one for the purpose of this study [173, 174]. This combined mode has a linear
energy dispersion in the range of study, so the dispersion relation is ωk = v|k| with
v = 2 × 104 m/s for all chiral species.

The propagation of an acoustic phonon along a CNT introduces a deformation
of the atomic structure and thus of the potential felt by the charge career. This
modification can be taken into account with a deformation potential D [173, 175].
The coupling potential U between the exciton and an acoustic phonon is related to
the displacement of the atoms with respect to their equilibrium position −→u by :

U = D
−→∇ · −→u (4.5)

The displacement itself can be written :

−→u =
∑

~k

√

~ωk

2ρLv2

(

b†
~k

+ b~k

)−→uk (4.6)

where ρ = 1.7 × 10−15 kg/m is the lineic mass of the nanotube, considered
constant for the nanotubes investigated in this work. The ~uk are an orthonormal
basis for the acoustic modes of wave-vector

−→
k .

From the relation 4.5, one can rewrite the interaction Hamiltonian Hep :
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∑

~k

λk(b†
~k

+ b~k) = 〈Ψ|D−→∇ · −→u |Ψ〉 (4.7)

where Ψ is the wave-function of the exciton (normalization
∫

dz|Ψ(z)|2 = 1, where
z is the coordinate along the tube axis). The matrix elements λk can thus be written :

λq =

√

~ωk

2ρLv2
F (ωk) (4.8)

where L is the length of the nanotube and F is a form factor defined by the
relation :

F (ωk) = D
v

ωk

√
L
∫

dz|Ψ(z)|2duk(z)
dz

(4.9)

One can obtain the linear response function χ(t) after a Dirac excitation pulse [161,
172] :

χ(t ≥ 0) ∝ ie−iΩ̄te−t/T2 exp





∑

~k

|λk/~ωk|2(e−iωk − nk(T )|e−iωkt − 1|2 − 1)



 (4.10)

where Ω̄ = Ω − ∑

k |λk|2/~2ωk is the transition frequency. This frequency is
shifted by the so-called polaron shift frequency compared to the bare system. The
coherence time T2 introduced takes into account the dephasing due to all the processes
apart from the phonons. The term nk(T ) is the occupation number (Bose-Einstein
distribution).

By using this procedure, one can recover the PL spectrum of the nanotube.
Indeed, the absorption spectrum can be obtained from eq. (4.10) by taking the
imaginary part of the linear susceptibility (which is the Fourier transform of the
response function). And the photoluminescence emission spectrum is the image
mirror of the absorption spectrum with respect to the ZPL [172].

Confinement of the acoustic phonons

In the previous paragraph, a Hamiltonian describing the coupling between a nanotube
exciton an its acoustic phonons was given. It was shown that the photoluminescence
spectrum can be derived from a form factor defined in equation 4.9. If one considers
that the phonons propagate as planar waves : uk(z) = eikz/

√
L, the form factor

rewrites :

F (ωk) = D
∫

dz|Ψ(z)|2eikz (4.11)

Now let’s consider that the exciton is localized on length σ. Its wave-function
writes : Ψ(z) = π−1/4σ−1/2 exp(−z2/2σ2). In that case the form factor F0 reads :
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F0(ωk) = D exp
[

−(ωkσ/2v)2
]

(4.12)

Here the form factor introduces a cutoff frequency : all the phonons with an
energy above 2~v/σ won’t be able to couple due to the conservation of momentum.
If the exciton is completely delocalized, σ → ∞, then no acoustic phonons are able to
couple to the exciton. Consequently, our model requires the exciton to be localized
in carbon nanotubes, as already discussed in section 4.2.1.

To go further, one can consider the ratio α describing the probability of an
emission in the ZPL over the total probability of emission (including the ZPL and
the phonon wings). One can show that the ratio for CNT scales as [92, p. 66] :

α ∝ ωDim−2
k (4.13)

Where Dim is the dimension in the phonon bath. It is clear that for three-
dimensional phonons, as in quantum dots for example [176, 177], the ones of lower
energy are not coupled, and the shape of the ZPL is preserved. On the contrary, for
a carbon nanotube, α ∝ ω−1

q . This means that the lower the energy of the phonon,
the better it is coupled to the exciton. For phonons of very low energy, the ratio α
diverges, which means that the ZPL merges into the phonon wings, giving rise to a
large and asymmetrical profile. Even though this kind of profile is observed in some
carbon nanotubes, it does not fit the spectrum displayed in figure 4.10, where the
phonon wings are separated from the ZPL by a gap of a few meV.

In order to solve this issue, it is assumed that an acoustic barrier prevents the
propagation of phonons below a certain energy along the nanotube axis. Physically
this acoustic barrier could be due to mechanical interactions between the CNT and
the surrounding matrix, residual amorphous carbon, or a mediation by the polymer
wrapping of the nanotubes [178]. One can model the nanotube as a one-dimensional
chain of masses and springs. An acoustic barrier of height ~ωb(z) is introduced along
the nanotube axis (z coordinate). The deformation modes uq are given by :

− ω2
quq(z) = v2d

2uq(z)
dz2

− ω2
b (z)uq(z) (4.14)

If the acoustic barrier is zero, one finds plane waves. However, if this acoustic
barrier is finite, it can create a gap, blocking the propagation of the low energy
waves. For the nanotubes, this translates into a gap for acoustic phonons. Typically
a contact stiffness of 1 N/m would lead to a gap of 1 meV, which is typical for Van
der Waals liaisons [179].

An other explanation for the acoustic barrier could come from self-trapping
mechanisms [180] : in that case, due to a strong electron-phonon coupling, the charge
careers would deform the crystal lattice and lead to the creation of a potential well
trapping the charge carriers themselves. This would explain the localization of the
exciton and lead to a modification of the phonon density of states on an energy scale
of about 1 meV.
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(a) Photoluminescence spectrum of a single car-
bon nanotube taken at 10K, in blue as already
shown in figure 4.10 and fit in red.
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(b) In black, the experimental form factor, nu-
merically extracted from the photoluminescence
spectrum, see eq. (4.10). In red, the form factor
used for the fit.

Figure 4.16 – Photoluminescence of a carbon nanotube reproduced by the model
developed in the text (fits in red). The deformation potential is D = 18 eV, the
exciton localization length σ = 3.3 nm, the acoustic barrier ~ωc = 1.2 meV and the
effective temperature 20 K. Same nanotube and conditions as in figure 4.10.

Whatever its physical origin, if an acoustic barrier of height ~ωc is introduced
over the full length L of the nanotube, the form factor rewrites :

F (ωq) = F0(ω̃q)
Re(ω̃q)
ωq

(4.15)

where ω̃q =
√

ω2
q − ω2

c . This form factor is strictly zero for ωq < ωc : all the
phonon modes of low energy are suppressed. This means that the ZPL is separated
form the phonon wings by an energy corresponding to the phonon gap. Figure 4.16a
shows the same nanotube than figure 4.10 with the fit corresponding to the model
developed in this section. The parameters used for this fit are : deformation potential
D = 18 eV, exciton localization length σ = 3 nm, acoustic barrier ~ωc = 1.2 meV and
effective temperature 20 K. The corresponding form factor is displayed in figure 4.16b.

The model described in this section has a range of application larger than what
was introduced : in particular it can reproduce the shape of all the photolumines-
cence spectra observed for suspended nanotubes as well as for micelle encapsulated
nanotubes, as explained in [92, 20]. Moreover the temperature dependence of a
photoluminescence spectrum is also well explained by the model : as expected, when
the temperature increases, the emission broadens and the absorption of phonons
becomes more likely, which means that the spectrum becomes more symmetrical.
The temperature evolution of the PL spectrum of a nanotube is shown in figure 4.17
together with the corresponding fits.
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Figure 4.17 – The experimental PL intensity of a nanotube is given in blue for
different temperatures. The fits done with the model given in the text are displayed
in red. Same nanotube and conditions as in figure 4.10.
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4.3 Spectral diffusion in Carbon Nanotubes

The photoluminescence signal by carbon nanotubes is never completely constant
over time. Three types of phenomenon occur :

• Bleaching corresponds to a significant and irreversible decrease - or vanishing -
of the emission intensity. Usually the signal decreases and disappears altogether
after a few seconds or a few minutes. It is probably due to the presence of
oxygen in the vicinity of the nanotube’s wall [181]. Burying nanotubes in
polystyrene (section (2.3.3)) prevented this phenomenon from happening in
this study.

• Blinking corresponds to intermittent intensity variations - or vanishing - of the
photoluminescence. The phenomenon is common to most single emitters and
happens at time scales ranging from nanoseconds [182] to minutes [183]. It is
most likely due to interactions between the exciton and the local environment
of the nanotube and is strongly limited by polymer capping [164].

• Spectral diffusion also referred to as spectral wandering corresponds to a shift in
the emission energy of the photoluminescence. It is also limited by polymer
capping [164] but not completely suppressed. This section aims to give more
details about this phenomenon.

4.3.1 Spectral diffusion of the ZPL

Spectral diffusion is not specific to carbon nanotubes. As it distorts the emission
signal, its understanding and its suppression have been the focus of researchers
for a long time. A model explaining this behavior is the quantum-confined Stark
effect (QCSE) : the presence of an electric field around the emitter implies a shift
of the electronic and hole states energies towards opposite directions, causing a
change of the emission energy. This external field can also modify the separation
between positive and negative charge carriers, leading to a change in the overlap of
their wave-function and thus to a change of their recombination efficiency. However,
the electron-hole interaction remains strong due to the confinement [184]. The link
between an external field and a shift of the emission was experimentally demonstrated
for quantum dots [185]. Furthermore, evidences were given for the induction of PL
shift by the presence of an electrical charge at the surface of a nanorod [186].

The photoluminescence of nanotubes was first observed when they were isolated
in micelles. The photoluminescence intermittency observed at the time, at room
temperature, was ascribed to the presence of charges trapped near the exciton [187].
However, at room temperature, the spectral diffusion phenomenon is harder to
observe as the spectral width of the emission typically overcomes the spectral jumps
of the emission [188]. At cryogenic temperature, spectral diffusion was observed for
the first time in 2004, happening over tens of meV at the second time scale [189]. The
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origin of this spectral diffusion in carbon nanotubes is likely to come from interactions
with the environment and more precisely the surfactant. Indeed, it was shown that
CVD grown, surfactant free, nanotubes were displaying a stable emission [190].

More recently, Ai et al. [164] showed that burying carbon nanotubes in a polymer,
namely poly(methyl methacrylate) (PMMA), implied a strong suppression of both
the blinking and the spectral diffusion. The authors explain that heating the PMMA
capped nanotubes enables to remove surface-bound waters molecules and prevents
the apparition of spectral diffusion. However, they observe that after two weeks
of exposure at ambient air, the sample degrades. An additional heat treatment
eliminates again spectral diffusion. In this work, the polymer used is polystyrene
because it is easily diluted in toluene (in which the PFO-wrapped nanotubes are
diluted) and that the blinking and spectral diffusion was efficiently suppressed. An
aging of the sample was observed : the spectral diffusion was almost inexistent with
a fresh sample, but was strong after several months. Heating helped to decrease it
but did not give as good results as with pristine samples.

Finally, it should be noted that the spectral diffusion of carbon nanotubes
embedded in polystyrene was observed by Walden-Newman et al. [191]. Though
the spectral diffusion was suppressed at the second time-scale, they showed that it
remained strong at the nano-second time-scale, and consequently caused a broadening
of the intrinsic linewidth of the emitter. In other words, when the ZPL FWHM of a
nanotube is found to be 500 µeV on a spectrum acquired in one second, it is likely
that the intrinsic FWHM is lower and that the observed FWHM is a convolution
between the intrinsic one and the fast fluctuations of its emission energy.

4.3.2 Spectral diffusion of the Phonon Wings

Though the spectral diffusion of the main photoluminescence line of carbon nanotube
is extensively discussed in the literature, its implications for the emission wings is
rarely investigated.

Some researchers offer an explanation for the shape of the emission spectrum of
carbon nanotubes based on spectral diffusion [26]. They assume that there are no
interaction with phonons and that the spectrum simply consists in a Lorentzian line.
This Lorentzian line undergoes spectral diffusion at a fast pace. The probability
distribution of the line’s energy is responsible for the shape of the spectrum observed
at the second time scale.

The phonon coupling model is well evidenced by the investigations of Fabien
Vialla [92, 20], in particular by its ability to reproduce the temperature evolution of
the spectrum (the blue/red wing ratio corresponds to a Boltzmann factor arising
from the interactions with the phonon bath). This work offers to investigate the
validity of this model in the context of spectral diffusion. If the overall shape of the
nanotube spectrum is due to fast spectral diffusion, a spectral jump of the main line
should not display any particular correlation with the spectral jumps undergone by
the wings.
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On the contrary, for all the nanotubes investigated in this work, the spectral
diffusion consists in a shift of the whole spectrum (i.e. : the complete spectrum,
including the ZPL and the wings is simply shifted, without distortion). Experimen-
tally, the spectrum of a single carbon nanotube is acquired repeatedly during tens to
hundreds of seconds with an exposure time of 1 s.

A first way to assess that the spectrum shifts without distortion is to plot the
position of the ZPL and of the maxima of the two phonon wings. For each spectrum,
these features can be fitted with a Lorentzian curve. As one can see in figure 4.18,
the positions of the three peaks follow the same time variations. The correlation
coefficient between two of them is above 98%.

However, this method gives information only on the maxima of the ZPL and
the wings. It does not describe the full spectrum and is not well suited if the wing
maxima are less pronounced. An other way to confirm that the spectrum is simply
shifted is to use the two-sample Kolmogorov-Smirnov (KS) test [192]. This test gives
the probability for two sets of data x1 and x2 to arise from the same distribution. It
computes :

KS = max
x

(|F1(x) − F2(x)|) (4.16)

where Fi(x) is the proportion of xi values less than or equal to x. Practically,
this test returns zero if the two sets of data come from the same distribution and one
if they are completely uncorrelated. To evaluate the accuracy of this test, let’s see
its output for shot noise : a random noise of amplitude

√
I (where I is the intensity

of emission) is added to the spectrum of figure 4.18b . The process is repeated a
hundred times, as shown in figure 4.19a, it yields a value of KS = 0.033 ± 0.004.
Thus, one can consider that two sets of data having KS < 0.04 are identical.

The KS test was applied to compare each spectra of figure 4.18a to the first
spectrum. The result is shown if figure 4.19b. It yields a value of KS = 0.03 ± 0.01.
It can thus be concluded that all the spectra arise from the same distribution, with
an accuracy close to the shot noise.

An other way to confirm that the shift is the same for the whole spectrum is to
look at its derivative. As a matter of fact, the absence of distortion of the spectrum
over time implies that the spectrum at t+ δt : S(E, t+ δt) is simply the spectrum
at t, S(E, t), shifted by an energy δE :

S(E, t+ dt) = S(E + δE, t) (4.17)

As a consequence :

S(E, t+ dt) = S(E) +
∂S

∂E
δE (4.18)

An the difference between the two spectra is proportional to the derivative of the
spectrum :
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(a) Map displaying the intensity of the emis-
sion as a function of its energy and the time.
Spectral diffusion of the ZPL is clearly vis-
ible.
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(b) In blue, a spectrum acquired in 1 s (cor-
responding to one line in (a)). The po-
sition of the ZPL (resp. red wing, resp.
blue wing) is located with a Lorentzian fit
displayed in black (resp red, resp. blue).
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(c) The position of the three maxima indi-
cated in (b) is displayed along time with
the same color code.
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(d) The black dots show the position of
the blue wing maximum of intensity as a
function of the position of the ZPL position.
The red line is a linear fit.

Figure 4.18 – The photoluminescence spectrum of a (6, 4) nanotube is measured a
hundred times consecutively with an exposure of 1 s. Details : cryogenic temperature
15 K, continuous-wave excitation at 760 nm, below the saturation level. Spectrometer
grating : 1200 lines/cm
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(a) For the spectrum of figure 4.18b plus
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(b) For each line of figure 4.18a compared
to the first line.

Figure 4.19 – Kolmogorov-Smirnov (KS) test.

S(E, t+ dt) − S(E) =
∂S

∂E
δE (4.19)

If the quantity is averaged over time, one gets :

∆S =< |S(E, t+ dt) − S(E)| >∝< | ∂S
∂E

| > (4.20)

Finding a proportionality between ∆S and the average of the derivative < | ∂S
∂E

| >
is a direct proof that eq. (4.17) is true. In figure 4.20, the average of the difference
between consecutive spectra and the derivative of the mean spectrum15 are displayed.
One can see that the experiment agrees well with the expected proportionality of
these two quantities.

To conclude, all the measurements performed during this work tend to demon-
strate that spectral diffusion at the second time scale shifts the photoluminescence
spectrum of carbon nanotubes as a whole. It is a strong evidence in favor of the
phonon model developed in section 4.2.2.

Conclusion

In this chapter, the home-built confocal setup used throughout this work was described
in details. Given the excellent signal-to-noise ratio obtained, photoluminescence
measurements of single carbon nanotubes were carried out, showing usual features :
spatial localization, polarization anisotropy and saturation of the emission.

It was explained that the emission of carbon nanotubes most likely arises from

15In order to obtain the mean spectrum, all the lines in figure 4.20a are shifted to align the ZPL.
The average is then done over the columns.

126



Chapter 4. Scanning confocal microscopy of carbon nanotubes

1.376 1.378 1.38 1.382 1.384

100

200

300

400

500

Energy (eV)

T
im

e 
(s

)

(a) Map displaying the intensity of the emis-
sion as a function of its energy and the time.
Spectral diffusion of the ZPL is clearly vis-
ible.
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(b) A spectrum acquired in 1 s (correspond-
ing to one line in (a)). The position of the
ZPL is fitted with a Lorentzian fit displayed
in red.
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(c) In red the derivative of the averaged
spectrum. In blue the average of the dif-
ference between consecutive spectra.
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(d) The two quantities of figure (c) are
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Figure 4.20 – The photoluminescence spectrum of a (9, 1) nanotube is measured a
hundred times consecutively with an exposure of 1 s. Details : cryogenic temperature
15 K, continuous-wave excitation at 760 nm, P = 0.7 · Psat. Spectrometer grating :
1200 lines/cm.
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localized sites due to the environment or to crystalline defects in the nanotubes.
Around these sites, excitons annihilate at a fast rate through Auger processes, which
explains how nanotubes can emit anti-bunched light.

A model was given to account for the non-Lorentzian shape of the nanotubes
photoluminescence : it consist in a main line called the ZPL and two wings coming
from phonon assisted transitions. The asymmetry between the two wings is a direct
measurement of the local temperature of the nanotube. Finally, the spectral diffusion
phenomenon was explored in details and gave evidences for the phonon coupling
model.

In chapter 5, the setup is described more completely to explain how the cavity is
coupled to the confocal microscopy. And the Purcell enhancement obtained by the
cavity coupling is investigated.
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In 2008, Högele et al. [21] demonstrated for the first time that a carbon nanotube
can behave as a single-photon source. In their experiment, a carbon nanotube
in sodium dodecylbenzenesulfonate, deposited on a solid immersion lens, was ob-
served individually at cryogenic temperature. The second-order correlation function
measured at zero delay was as low as g(2)(0) = 0.03, which is well below the single-
photon emission criterion g(2)(0) < 0.5 (see section 5.3.2). Since then, this result has
been confirmed by Walden-Newman et al. [191] for carbon nanotubes embedded in
polystyrene, with a value of g(2)(0) = 0.15. More recently, Endo et al. [28] showed
that the anti-bunching property of CNT can be conserved at room temperature, with
g(2)(0) = 0.6. And Ma et al. [27] showed that solitary oxygen dopants in nanotubes
can yield single-photon emission at room temperature at the telecoms wavelengths
(g(2)(0) = 0.32) .

The opening towards single-photon emission at room temperature in the telecoms
bands makes nanotubes good candidates as single-photon sources. But several
drawbacks must be overcome : their emission has a low quantum efficiency, is non-
directional, and the coherence time is limited. Therefore, coupling a nanotube to a
resonator is highly sought to improve their efficiency [88, 80, 85, 77], to obtain an
emission directed into the cavity mode and to increase the spectral purity of the
source. Unfortunately, due to the lack of control of the growth or deposition processes,
current attempts rely on random spectral and spatial matching between a resonator
(microdisks [87] or photonic crystals [32]) and randomly deposited nanotubes, putting
strong limitations on the investigations of this technology.

In this work, the flexible setup introduced in section 1.3.3 is built, allowing to
tune both spatially and spectrally a cavity to match any emitter. In chapter 3, the
properties of the cavities formed by a laser-machined mirror at the apex of an optical
fiber and a planar mirror were described. In particular, it was noted that if the fiber
is movable, a change in the distance separating the mirrors corresponds to a spectral
tuning of the cavity. Moreover, as the cavity is laterally defined by the fibered mirror,
a transversal shift of the fiber brings the spatial tunability.

Given their easy tunability, fiber Fabry-Perot cavities are now more and more
used in condensed matter [193, 138]. In particular, David Hunger who was one of the
pioneers of this technology created a team dedicated to these devices. They used such
fibered cavities for ultra-sensitive imaging of gold nanoparticles [194], for NV-center
Purcell enhancement [195] as well as for Purcell-enhanced Raman spectroscopy of
carbon nanotubes [89]. All these experiments were carried out at room temperature,
which is best for applications, but blurs the intrinsic optical properties of nanotubes,
in particular concerning exciton-phonon interactions (as explained in section 4.2). In
our partner group, Benjamin Besga [196] had built a setup using a fiber Fabry-Perot
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cavity in a helium bath to study quantum well polaritons. The same kind of setup
was used by Miguel-Sanchez [197] with quantum dots. Nevertheless, in both cases the
technique consists in moving the fiber blindly along the lateral axis. For CNT, the
low PL emission signal and the high variability from one emitter to the other makes
this method irrelevant. This is why a novel setup coupling a confocal microscope
and a fiber Fabry-Perot cavity was built.

This chapter starts by describing the setup. After that two methods are discussed
to show that the cavity induces a strong brightening of the nanotube and an
acceleration of its spontaneous emission. Finally, it is shown that the cavity embedded
nanotubes behave as single-photon sources, and more over that the emission energy
is tunable.

5.1 Coupling a tunable cavity to the confocal mi-
croscope

In chapter 4, the confocal microscope setup built to characterize the nano-emitters
in free-space was described. It is now time to explain how these emitters can be
embedded in the fibered cavities. In fact, two main issues arise for such a coupling :
spectral and spatial matching.

The spectral tunability issue was fully addressed in section 3.1 : the optical cavity
is formed between the planar mirror on which the nanotubes are deposited and a
mirror located at the apex of an optical fiber. Tuning the distance between the
two of them makes it possible to bring the cavity in resonance with the emitter.
Spatial tunability requires to be able to move laterally the fiber. In order to get this
feature, as well as for the simplicity of the switching between free-space and cavity
configurations, the fiber was integrated in the center of the confocal lens.

5.1.1 Cavity Setup

The free-space configuration and the confocal setup were described in chapter 4,
however a full account of the whole setup is needed before explaining how the switch
from free-space to cavity is performed.

Cryostat organization

Let’s first give an overview of the setup : the confocal setup is the one described in
section 4.1, with the possibility of exciting the nanotube either through the confocal
lens or through the sample mirror. The only change concerning confocal microscopy
is that the confocal lens is drilled and a fiber is inserted in its center, as depicted in
fig. 5.1 and the schema of fig. 5.2. The effect of the hole on confocal microscopy is
addressed in section 5.1.2. From now on, the confocal lens with the inserted fiber is
referred to as the objective to simplify the notations.
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Figure 5.1 – Optical fiber stuck into an aspherical lens. Image taken with a scanning
electron microscope.
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Figure 5.2 – Schema of the confocal and cavity setups. On the left, the emitter is
observed in free-space, while on the right it is embedded in the microcavity. The
excitation remains the same.
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Figure 5.3 – (A larger version of this figure is on the front page of the chapter) Sketch
of the setup inside the cryostat : on the left, the objective sits on three piezoelectrics.
The fiber is inserted and stuck at its center. On the center, the sample is hold on a
copper piece directly in contact with the cold finger of the cryostat. The emitted
light is collected by a second lens located in the right part of the cryostat (not visible
here).

It must be noted that for cooling, a closed-cycle cryostat1, is used. It has the
advantage of maintaining a chamber of 10 cm3 at a stable temperature between 4 K
and 350 K during several weeks without any handling. The counterpart are the
vibrations (about 5 nm) induced by the cryostat’s compression and decompression
cycles.

Three major elements are inside the cryostat : the first is obviously the sample.
The second is the objective : as the fiber is sticked in it and has to come almost in
contact with the sample, it cannot remain at ambient temperature nor be separated
from the sample by a glass window. These two elements are depicted in fig. 5.3. The
third element is an additional lens. It is used to focus the backside excitation and to
collimate the output of the cavity.

The objective and the fiber are located on top of a stack of three piezoelectric
devices2, allowing to tune its position in the three orthogonal directions of space. At
cryogenic temperatures, these piezoelectrics can move over 4 mm with a slip-stick
process. Alternatively, they can move in a reproducible way over about 1 µm. The
coarse motion is used to switch from confocal to cavity configuration as well as
for the spatial alignment of the cavity. The spectral coupling is managed with the
reproducible motion.

The objective and the fiber are cooled, but as the piezoelectrics do not conduct
heat as well as a metal, their temperature is most likely above the one of the sample.
No particular investigation was made on this as there were no stringent conditions

1Cryostation by Montana Instruments
2Attocubes ANC 350
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on their temperature in the experiment. On the contrary, the greatest care was paid
to the cooling of the sample which is exclusively hold by copper pieces, themselves
directly in contact with the cold finger of the cryostat. The temperature sensor is
directly positioned on the backside of the sample.

Free-space to cavity switching

Before giving more details about the additional parts of the setup, outside the
cryostat, it is necessary to describe step by step how the switch from free-space to
cavity configuration is done :

• First, a raster scan of the sample is done, and a carbon nanotube is selected
(the criterion being its intensity of emission, its spectrum, etc...).

• The steering mirror is set to its medium position and the lens is moved so that
the emitter is at its focal point.

• The excitation is switched to the backside. This step enables to keep the very
same excitation in free-space and cavity. It ensures that the nanotube excited
remains the same and that the effects observed, such as increased emission rate
are due to the presence of the cavity and not to a change in the excitation. See
section 5.2.1 for further details.

• The location of the nanotube is recorded by a camera which images the plane
of the sample, as shown in figure 5.4.

• The fiber-lens ensemble is brought towards the sample. Light is injected
in the fiber, so that the location of its tip can be monitored on the above
mentioned camera. With this monitoring the position of the fiber can be
corrected compared to the location of the nanotube even if the fiber travel
path deviates from the lens optical axis.

• The collection path is switched to the cavity configuration. A telescope can
be added and adjusted to ensure an optimal collection (it compensates for
any misalignment of the lens in the cryostat which cannot be moved once the
cryostat is closed).

• Finally, the cavity length is adjusted to fit the emission wavelength of the
nanotube, as shown in figure 5.5.

This process is non-destructive so it is possible to switch back and forth from
free-space to cavity configuration as many times as needed.
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Figure 5.5 – Intensity of the photoluminescence (in colors) of a carbon nanotube
embedded in cavity as a function of the emission energy and the cavity length. As
the cavity length increases, the cavity modes shifts towards low energies. Here the
cavity mode is resonant with the CNT around 1.407 eV. Details : (6, 4) nanotube.
Excitation : 760 nm, linear polarization (along CNT axis), P = 0.7 · Psat. This
nanotube is referred to as Aleph in further figures.
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5.1.2 Lens-Fiber mounting principle

One of the goals of the setup described here was the ability to switch from free-space
experiments to cavity experiments, reproducibly, with as few re-alignment as possible.
One possibility to couple the objective and the fiber was to stick the later on the
side of the former. A disadvantage of this method comes from the fact that the
lens width (including the mount) is about 6 mm. Then, the lateral shift to switch
from cavity to free-space would have been 3 mm, a large distance which would have
implied inconvenient drifts.

Thus, a second method was implemented : it consists in drilling the lens in its
center to stick the fiber inside, as shown in figure 5.1. This way, a switch from free-
space to cavity requires only a longitudinal move and very small lateral corrections.
In the following, the drilling process is described and its consequences for confocal
microscopy are investigated.

Lens drilling principle

The free-space experiments, as introduced in section 4.1, rely on a lens of numerical
aperture 0.68, focal length 3.1 mm, and working distance 1.76 mm which collects the
emission of the nano-object.

The hole diameter is about 400 µm, sufficiently large to let the fiber and its
coating (diameter 250 µm) pass easily and sufficiently small to be able to stick the
fiber once aligned. The first generation of lenses was processed in the mechanical
workshop of the department by Nabil Garroum. For that, he used a drill of radius
0.2 mm to remove material by concentric circles. In order to avoid any crack in
the lens, or any scratch at its surface, a layer of polymer (PMMA) was deposited
before the drilling and removed afterwards. Currently, the drilling is performed by a
company3, by means of pressurized air.

Collection efficiency

The greatest care was taken to measure how the drilling of the objective changed
its properties for confocal microscopy. In appendix B, the ability of the objective
to focus is experimentally assessed. The focalized spot waist is increased by less
than 10%, and the resolving power change is estimated to be negligible. This is
important important to keep the zone observed in confocal microscopy as low as
possible. However, the most important characteristic for the confocal measurement is
the collection efficiency, as it directly affects the estimation of the quantum efficiency
of the emitter.

Let’s consider that the emission of a nanotube is dipolar, so that the intensity I
in a direction with angle χ with respect to the nanotube axis writes :

I ∝ sin2(χ) (5.1)

3Precinet
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Figure 5.6 – Sketch of the nanotube emission intensity I ∝ sin2(χ).

In Cartesian coordinates (with the nanotube axis along ~x, see figure 5.6), it
rewrites :

I ∝ 1 − cos2(χ)

∝ 1 − x2

r2 + x2

∝ 1 − x2

y2 + z2 + x2

The spherical coordinates (ρ, θ, φ) are given by :






x = ρ cos(φ) sin(θ)

ρ2 = x2 + y2 + z2
(5.2)

One can rewrite the intensity :

I(θ, φ) ∝ 1 − cos2(φ) sin2(θ) (5.3)

This leads to the following expression for the intensity integrated over a cone of
angle θmax :

Iintegrated ∝
∫ 2π

0

∫ θmax

0
I(θ, φ) sin θdθdφ (5.4)

Here θmax corresponds to the numerical aperture of the lens : θmax = asin(NA).
One can take into account the drilling by defining a minimum angle θmin (for a hole
radius of 200 µm and a focal length of 3 mm, θmin = 4°) and perform the integration
between θmin and θmax. The loss expected for the typical lenses used is this work,
compared to the case without drilling, is expected to be below 2% (in good agreement
with the experimental data of appendix B). The impact of the lens drilling on confocal
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Figure 5.7 – Fiber sticking post.

microscopy is thus considered to be negligible.

Fiber sticking and angle control

The final goal of the fiber sticking is to enable the creation of a high finesse microcavity
with a low volume. The challenges are twofold : first one wants to center the fiber on
the optical axis of the lens, so that a simple translation of the ensemble is sufficient
to switch between cavity and free-space configuration. Second, the angle made by
the fiber with the optical axis of the lens has to be small so that the cavity axis is
parallel to it.

After the fiber is shot and a mirror is deposited at its apex, the unprocessed
end of the fiber is inserted into the lens. The fiber is then pulled until less than a
centimeter protrudes. The fiber is held (by the part below the lens) by a holder
mounted on a three axis micrometer stage. It enables to center the fiber precisely
and to tune finely how much it protrudes from the lens. See the picture in figure 5.7.

The lens itself is held by a mirror mount which enables to control precisely its
orientation, and thereby the angle between the optical axis and the fiber axis.

In order to control the centering and the angle, the position of the fiber is
monitored with a long working distance objective either from the top or horizontally
in two perpendicular directions. When the fiber position is considered correct, a drop
of UV glue4 is deposited on the fiber just above the lens, as shown in figure 5.8. Then

4OP-4-20641
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(a) A drop of glue deposited on the fiber. (b) Fiber at its final position

Figure 5.8 – Fiber sticking process imaged with a long working distance objective.

by lowering and raising repeatedly the fiber, the glue flows down into the drilled
hole. The process is repeated three times to ensure that a sufficient amount of glue
is present.

Finally, the fiber is lowered until half a millimeter sticks out, and the lens is
exposed to UV during 60 s. The free end of the fiber is spliced to a common acrylate
fiber equipped with a connector to facilitate further operations.

5.2 Measuring the Purcell Factor

In chapter 1 the Purcell factor was introduced for an atom as well as the generalized
Purcell factor which applies for a broad emitter. This factor accounts for the increase
in the spontaneous emission rate of the emitter when it is coupled to a cavity. As
a carbon nanotube has a low quantum yield (see section 5.2.3), an increase in the
radiative rate directly translates into an equivalent increase of the brightness, even
for an excitation intensity below the saturation limit.

In an experimentalist point of view, an obvious measurement of this factor
consists in comparing the photon counts with and without the cavity. This method
is discussed as well as its drawback. Then, an other way to measure the Purcell
factor, relying on a direct measurement of the lifetime, is given.

5.2.1 Photon counts method

In order to characterize the increase in the emission rate due to the Purcell effect, one
can count the number of photons per second emitted in free-space, and compare it
to the number of photons emitted per second by the same nanotube once embedded
in the cavity. Nevertheless, one has to take into account the fact that part of the
increase is due to the better directionality of the emission in the cavity mode. For
this reason, the emission diagrams were investigated both in free-space and in cavity.
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Figure 5.9 – Emission diagrams of a nanotube (a) in free-space and (b) in the cavity
mode. The diagrams are normalized to the integrated emission.

All the results presented in this section were taken with fiber A, as defined in
section 3.2.2.

Emission diagram

In the setup used in this study, the carbon nanotube is embedded in a polymer matrix
with a typical thickness of 120 nm and deposited at the surface of a Distributed
Bragg Reflector (DBR), as described in section 2.3.3. The emission diagram is thus
affected by the mirror. As the structure of the DBR is known (see section 3.2.2), the
emission of a dipole antenna located 20 nm above its surface can be computed [198].
The result is shown in figure 5.9a.

One can note that a part (about 60%) of the emission is directed in the half-space
above the mirror (dark blue line) but an other part (about 40%) leaks into the
substrate and is lost (light blue). Concerning the emission into the upper half-
space, the collection is limited by the numerical aperture of the collection lens. The
one used for confocal microscopy has a numerical aperture NA = 0.68 (details in
section 4.1). From the computed emission diagram, it is estimated that around 21%
of the nanotube emission in free-space is collected. This value, and its uncertainty,
are discussed with more details in the next section.

Let’s examine the emission diagram of a nanotube in cavity. It is useful here
to recall that asymmetrical mirrors are used so that the output is mostly directed
through the planar mirror (section 3.3.2). Theoretically, the output of the cavity
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Figure 5.10 – A transverse section of the optical beam coming from the planar output
of the cavity. Details : (9, 1) nanotube. Excitation : cw, 760 nm, linear polarization
(along CNT axis), P = 0.7 · Psat. Collection with a multimode optical fiber and a
10 nm bandpass filter centered on nanotube emission wavelength (902 nm).

can be approximated by a cone of half-angle θout, given by :

θout =
λ

πw0

(5.5)

where λ is the wavelength of the emission and w0 is the waist of the mode, defined
by the geometrical parameters of the cavity (eq. (3.11)). Typically for the cavities
used in this work, the waist spans between 1 µm and 2.5 µm, which means that the
output angle is in the range 7° < θout < 16°.

The emission in the cavity configuration is collected with an aspherical lens of
numerical aperture NA = 0.5 located 12.5 mm behind the emitter. In order to
check that the cavity behaves as expected, a far field image of its output beam was
recorded. For that, a multimode fiber with a core of 105 µm, was used to record the
intensity profile of the output beam. This fiber was located on two micro-controlled
translation stages that were used to raster-scan the transverse section of the beam.
At each point, the intensity collected by the fiber was measured with an avalanche
photodiode5.

Even with the cavity enhancement of the emission, such a measure is a challenge
regarding the signal-to-noise ratio. In order to make sure that the signal collected
actually arose from a carbon nanotube and not from the scattering of the excitation
laser, the measurement was systematically repeated with the cavity tuned out of
resonance of a few nm. The corresponding maps are shown in figure 5.10.

The same measurement was repeated in two planes along the beam axis, separated
by 1 m, to estimate the beam divergence. The waist of the beam was found to be
w0 = 1.5 ± 2 mm at both positions (collimated beam). For a point-source like

5IDQ100
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emitter located at the focal point of a lens of focal f = 12.5 mm, this corresponds to
a half-angle θ = atan(w0/f) = 7°. This fitted well with the theoretical prediction
for the cavity in use (radius of curvature R = 50 µm and cavity length of 3.5 µm.
The calculated cavity mode waist was 2.3 µm leading to a theoretical divergence
half-angle θout = 7.1°).

Collection efficiency

The collection efficiencies of the setup both in free-space and cavity are given below.
For each optical element, the transmission was measured carefully and regularly
throughout the duration of this work.

These measurements were done with a power-meter, measuring at 900 nm (the
mean wavelength of the nanotubes under study). It consisted in measuring the
intensity of the light shone on the optical elements and the intensity transmitted (or
reflected in the case of dichroïc mirrors)6. The numbers given in table 5.1 are averages,
and the error bars correspond to the standard deviation over all measurements. Let’s
recall that the full sketch of the experiment is given in figure 5.4.

Free-space In free-space, it was established in section 5.2.1 that the collection of
the objective is 0.21 of the light emitted by a carbon nanotube. In fact, a strong
source of uncertainty in the detection efficiency comes from the distance between
the nanotube and the surface of the DBR, which is not controlled in the deposition
process : the nanotubes are randomly dispersed7 between the surface of the mirror
and the thickness of the polystyrene layer. In order to evaluate the uncertainty, the
collection efficiency is computed as a function of the distance between the DBR
surface and the nanotube. As one can see in figure 5.11, the efficiency increases
almost linearly with the distance between a vanishing distance (0.1) and 120 nm (the
thickness of this layer, 0.31).

In the experiments carried out during this work, the brightest nanotubes were
always selected. This means that the nanotubes studied were most likely in the
positions where the collection efficiency is above 0.21 (average position). The real
collection efficiency is thus 0.25±0.06. However, we chose to retain the minimum value,
0.21, as the collection efficiency in order to give the most conservative estimations of
the Purcell factor (the collection efficiency is underestimated, which leads to an over
estimate of the free-space photon emission and thus to an underestimation of the
Purcell factor).

Once the emission of the carbon nanotube is collected by the lens, it passes
through the window of the cryostat with a transmission of 0.95±0.02. Then the light

6As often as possible, the transmission of several elements together was measured in order to
decrease the relative uncertainty. However, for practical reasons it remains more convenient to
separate the setup into the few sub-parts outlined in table 5.1 than to measure the transmission of
the full setup at a time.

7A way to improve it would be the use of a second polymer not solvable in toluene as a spacer,
and then the addition of a very thin layer of nanotubes in polystyrene at the desired height.
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Figure 5.11 – Calculation of the collection efficiency of the aspherical lens used in
the confocal microscope setup as a function of the distance between the nanotube
and the top of the DBR.

Transmission / yield Free-space configuration Cavity configuration
Extraction βe = Fp/(1 + Fp) 0.83 − 0.99

Cavity asymmetry 0.88 ± 0.02
Collection lens 0.21 ± 0.06 0.97 ± 0.01

Cryostat window 0.95 ± 0.02 0.95 ± 0.02
Telecentric lens system 0.70 ± 0.08

Dichroïc mirror 0.97 ± 0.01 0.97 ± 0.01
Other optical parts (total) 0.55 ± 0.05 0.55 ± 0.05

Spectrometer efficiency 0.50 ± 0.05 0.50 ± 0.05
Total efficiency (βe = 1) 0.037 ± 0.015 0.21 ± 0.03

Table 5.1 – Transmission or yield of all optical parts in the setup. The first lines are
derived from the parameters of the experiment. All the following ones come from
repeated measurements and the uncertainty given comes from the standard deviation
of these measurements. As explained in the text, many optics are similar or shared
between cavity and free-space configurations.
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passes by the telecentric lens system designed for the steering mirror (section 4.1.1)
with a transmission of 0.70 ± 0.08. The dichroïc mirror which separates the emission
from the excitation reflects 0.97 ± 0.01 of the light at 900 nm. The set of mirrors
that precedes the spectrometer transmits 0.55 ± 0.05 of the light.

In order to evaluate the efficiency of the spectrometer, a light beam at 900 nm
was shone on its entrance slit. An intensity of 4.5 ± 5 nW was measured with a
power-meter. After the addition of an optical density of 4.5 ± 0.2, the number of
counts recorded by the spectrometer was 33000±200. By repeating this measurement
several times, the efficiency of the spectrometer was evaluated to 0.50 ± 0.05 .

Cavity The mirrors of the cavity have asymmetric reflectivies, so that 0.88 ± 0.02
of the signal goes out through the planar mirror. The output mode of the cavity has
an angular aperture sufficiently low to be entirely collected by the lens inside the
cryostat. The transmission of that lens is estimated to 0.97 ± 0.01. The cryostat
window and the dichroïc mirror used are similar to ones used for the free-space
path. The optics between the dichroïc mirror and the spectrometer, as well as the
spectrometer itself are the same as in free-space.

Finally, one obtains a total efficiency of ǫF S = 0.037 ± 0.015 in free-space
configuration against ǫcav = 0.21 ± 0.03 in cavity configuration. This difference arises
mostly from the difference in the emission diagrams and the better ability to collect
the very directional light coming out of the cavity. In the same way, the relative
uncertainty in free-space (50%) is much higher than in cavity (15%) because of the
uncertainty on the free-space emission collection by the confocal lens.

Results and discussion

In the previous paragraphs, it was concluded that the collection efficiency of the setup
is about six times better for an emission in cavity than in free-space. Consequently,
a natural way to evaluate the Purcell factor consists in comparing the intensity
collected in the cavity mode with respect to the intensity collected in free-space,
after correction for the collection efficiencies.

Nevertheless, the emission intensities in both configurations do not compare
readily : in the free-space case, the emission spans over a bandwidth of several meV
(ZPL and phonon wings). Whereas in the cavity mode, the emission is spectrally
narrow, as defined by the cavity’s spectral width (about 33 µeV or 8 GHz). In fact,
the cavity vibrates at high frequency (in the kilohertz range, which means faster than
the typical exposure time of the measurements carried out), as stated in section 3.4.2.
Thus, the emission in the cavity mode on a time scale over 100 ms rather spans over
a 330 ± 20 µeV or 80 ± 5 GHz spectral range.

The question which arises for an emitter larger than the cavity is the following :
is there a Purcell effect (meaning that the spontaneous emission rate of the CNT
is enhanced) or is there only a spectral filtering by the cavity ? In order to answer
this question, comparing the integrated intensities does not yield a straightforward
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(b) Photoluminescence of the nanotube in the
cavity tuned in resonance with the ZPL

Figure 5.12 – Photoluminescence of the same single CNT given in photons·GHz−1 s−1.
Nanotube Aleph, see details in fig. 5.5.

answer if the Purcell factor is not significantly higher than one. The proper way to
address this question is to compare photon spectral densities [138].

In figure 5.12, the photoluminescence spectrum of a single carbon nanotube is
expressed in photons · GHz−1 s−1 for the free-space and the cavity mode. One can
clearly see that the photon density at the maximum is enhanced by a factor of 208.
Once the six-fold better collection in cavity is taken into account, it yields a photon
density enhancement of 3±2. It can been concluded from this measurements that the
Purcell factor for this nanotube in this cavity is 3 ± 2. The vibrations of the cavity
may lead to an underestimate of the Purcell factor, as discussed in appendix C.

In order to ensure that this increase is not due to an experimental artifact, we
checked a specific signature of the Purcell effect : its volume dependence. Every
increase of the cavity length by a λ/2 step implies a significant change in the cavity
volume and consequently in the Purcell factor (eq. (1.62) shows that F ∗

p ∝ 1/V ).
For this measurement, the excitation density must be controlled with the utmost

care. Indeed, the data of figure 5.12 are taken with the continuous-wave excitation
source described in section 4.1.2 (used non-resonantly). At the excitation wavelength
λex = 760 nm, the mirrors of the cavity have a low reflectivity. Nevertheless, even a
cavity formed by mirrors with a low reflectivity, can create a significant change in
the local intensity (typically a contrast of 2 between maximum and minimum local
intensities for a symmetrical reflectivity as low as 4%). As emission and excitation
are not at the same wavelength, a step of λ/2 for the emission does not correspond
to step of λex/2 for the excitation. Thus, with every change in the cavity length,
there is a change in the excitation intensity. And, as the excitation is done below the
saturation limit, a change in the excitation intensity linearly impacts the number of

8The two signals can be fitted to Lorentzian of spectral width 300 ± 5 µeV in free-space and
330 ± 5 µeV for this particular cavity spectrum. For Lorentzian distributions, the ratio of the
integrated value to the peak value is proportional to the FWHM. As a consequence, the enhancement
factor defined by the integrated value is 10% higher than the one defined on the maximum value in
this case.

147



5.2. MEASURING THE PURCELL FACTOR

15 20 25 30

0

0.2

0.4

0.6

0.8

1

Mode number

E
m

is
si

o
n

 i
n

te
n

si
ty

 (
a.

u
.)

Figure 5.13 – Emission intensity of a (9, 1) nanotube as a function of the cavity’s
mode number for an excitation centered at 760 nm, linearly polarized along the
nanotube axis, P = 0.7 ·Psat. In red the excitation spectral width is 50 kHz, while in
blue it amounts to 10 nm (4 THz). The dots correspond to experimental data while
the lines are a guide to the eye.

photons emitted and thus the estimation of the Purcell factor.
In figure 5.13, the red curve shows the nanotube’s emission intensity as a function

of the cavity’s mode number under continuous wave excitation (spectral width of
50 kHz). One can clearly see oscillations coming from the change in the excitation
intensity. Furthermore, the envelope decreases slowly, in a pattern which fits well
with the expected 1/V dependence.

In order to address this artifact, it was decided to use a broad excitation to blur
the interferences. The source used was a supercontinuum9 with a repetition rate of
40 MHz and an emission spanning from the UV to the infrared. A set of filters enabled
to choose the excitation spectral width, while keeping its mean around 760 nm. The
blue curve in figure 5.13 shows the emission intensity of the same nanotube, under
supercontinuum excitation with a width of 10 nm (4 THz). A diminution of the
oscillations compared to the red case is visible.

Increasing further the spectral width of the excitation yielded a complete sup-
pression of the oscillations. Figure 5.14 presents the emission intensity of a single
carbon nanotube as a function of the volume of the cavity for such an excitation.
The cavity is swept back and forth twice in order to make sure that the effect is not
due to a drift over time. The oscillations are almost invisible, and the dependence in
1/V is clearly visible.

One may ascribe this feature to a misalignment artifact. Indeed, if the fiber axis
and the objective optical axis are misaligned, it implies that a change in the cavity
length also changes the lateral position of the cavity. However, a length change of
10λ/2 = 4.5 µm, for an angle of 5°, would lead to a shift of 0.4 µm, only 20% of the

9Fianium WL-SC-400-4
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Figure 5.14 – Photoluminescence of a single (9, 1) CNT in the cavity as a function of
the mode volume when the cavity length is increased by steps of λ/2. The cavity is
swept back and forth twice to eliminate any artifact. The excitation is done with a
supercontinuum and a spectral width of 30 nm centered on 760 nm, linearly polarized
along the nanotube axis and below the P = 0.7 · Psat.

mode waist. Due to this shift the position of the emitter with respect to the cavity
mode maximum of intensity would change, leading to a Gaussian decrease in the
intensity. The linear behavior shown in fig. 5.14 shows that this misalignment effect
is negligible compared to the change of volume.

Let’s note a posteriori that the excitation density effect had been taken into
account for measurements such as the one of figure 5.13. In this particular case, the
cavity length was such that the intensity for a 760 nm continuous wave excitation
was 1.05 ± 0.1 higher than in free-space.

The linear dependence in 1/V strongly supports the description of the nanotube-
cavity coupling in terms of Purcell effect. From the evaluation of the collection
intensities, one can estimate that the Purcell factor is about 3. Nevertheless, this
result suffers from a large uncertainty coming mostly from two points : the calibration
of the interference effects of the cavity on the excitation and the estimated emission
diagram in free-space. Even if the first source of error was perfectly taken care of, the
error would still amount to 30%. In oder to get a better accuracy for the quantitative
value of the Purcell factor, it was decided to obtain a direct insight into the Purcell
effect by investigating in the time domain.

5.2.2 Time domain method

The method presented here consists in measuring directly the radiative rate of the
emitter via time-resolved photoluminescence [36]. It presents several assets : first the
measurements are weakly sensitive to the excitation density and thus do not suffer
from the distortion of the excitation by the cavity. Second, the collection efficiency
becomes a simple proportionality factor and can be let aside if the effect is expressed
in term of the coupling g.
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Principle

Let’s recall that a single carbon nanotube, at least in free-space, has a quantum
yield well below 10%. In other words, if an excitation is absorbed, there is a high
probability that it decays non-radiatively, with a decay rate γNR. And there is a
much smaller probability for it to decay radiatively , with a rate γR. The total decay
rate of the emitter in the free-space γF S reads :

γF S = γR + γNR (5.6)

The quantum yield of the emitter η is the ratio of the radiative rate to the total
decay rate :

η =
γR

γR + γNR

(5.7)

Now, one can consider what happens if the emitter is placed into a cavity. In the
case of plasmonics, a metallic antenna is placed in the vicinity of the emitter and
the non-radiative rate increases when the distance reduces, leading eventually to a
drop in the quantum efficiency [67]. On the contrary here, the non-radiative rate of
the emitter remains unchanged by the cavity10 and every increase in the radiative
rate directly increases the quantum yield.

Experimentally, the coupling of an emitter to a cavity can induce a suppression
of the spontaneous emission [199]. On the contrary here, the probability to emit
into the leaky modes (ie : those not confined by the cavity) γR is nearly equal to
its value in free-space. As a matter of fact, the solid angle encompassed by the
cavity is small [46]). For a cavity of length 5 µm and a waist 2 µm (fiber A), one
can consider that a cone of half angle 22° is obstructed by the cavity, which means
about 8% of the half-space. For a cavity of length 2.5 µm and waist 1 µm (fiber C),
the result is the same. The probability to emit inside the cavity mode is given by
the (generalized) Purcell factor F ∗

p multiplied by the radiative rate (by definition).
Consequently, everything happens as if the radiative rate was multiplied by 1 + F ∗

p :

FS −→ Cavity (5.8)

γR −→ γR · (1 + F ∗
p ) (5.9)

Finally, the decay rate of the emitter in the cavity γcav is given by :

γcav = γR(1 + F ∗
p ) + γNR (5.10)

From this equation, one can already infer an important piece of information : the
Purcell effect only modifies the radiative rate of the emitter. Since γR ≪ γNR, the
change in the decay rates introduced by the cavity is expected to be small.

10The distance between the emitter and the top mirror remains much larger than in plasmonic
resonators and dielectric materials do not have Joule losses.
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Let’s introduce the lifetimes of the emitter in the free-space τF S and in the cavity
τcav :

τF S =
1
γF S

(5.11)

τcav =
1
γcav

(5.12)

The Purcell factor can be expressed as [200] :

F ∗
p =

γcav − γF S

γR

(5.13)

=
1
η

(
γcav

γF S

− 1) (5.14)

=
1
η

(
τF S

τcav

− 1) (5.15)

Where η is the free-space quantum yield defined in eq. (5.7). One must note
that the generalized Purcell factor, in equation 1.62, was derived for a broad emitter
which remains Lorentzian. It applies only to the ZPL of the spectrum. Consequently,
the efficiency η is restricted to the ZPL11. The ratio of intensities between the ZPL
and the full spectrum is called Branching Ratio BR (section 4.2.1) and typically
ranges between 0.3 and 0.9. Consequently, the link between the efficiency η and the
total efficiency ηtot including the phonon wings is given by (all the quantities being
defined in free-space) :

η = BR · ηtot (5.16)

In order to measure the Purcell factor, one needs only three quantities : the
lifetimes (or radiative rates) of the emitter in free-space and in cavity as well as the
quantum yield of the emitter.

Lifetime measurements

In order to measure the lifetime, a pulsed source is used to excite the nano-object
and the delay between the excitation and the subsequent spontaneous emission event
is recorded. The sequence is repeated and a histogram of the delays is built.

In order to perform this experiment a start-stop counter12, with a resolution of
4 ps, is used. The start channel monitors a TTL signal coming from the laser and
indicating the repetition rate. The stop channel is linked to an APD which counts
the arrival of the photons emitted by the carbon nanotube, as depicted in figure 5.15.

11In other words, the emission in the wings is regarded as leaks for the equivalent two-level
system describing the ZPL [200]

12Picoharp 300
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Figure 5.15 – Schema of the lifetime measurement setup.

Obviously, the excitation impulsion which triggers the “start” of the counter is not
the same as the one leading to the emission of the photon detected on the stop
channel. But, as the excitation is periodic, the delay between the excitation and the
detection can be mapped onto a fraction of the period between two excitations (here
τR = 12.5 ns).

Instrumental response

The histogram gives the probability distribution of the decay from the excited state.
In the simplest case, this decay is a mono-exponential which characteristical time is
the lifetime τ1 of the emitter.

The measurement works out easily if the lifetime τ1 is much higher than the
typical response time of detection system. In our case, the counter has an accuracy
of 4 ps, which is negligible compared to the typical lifetime of the nanotubes. But
the APD used in this experiment13 has typical response time τD ∼ 40 ps which limits
the global resolution of the system.

In order to measure the so called instrumental response function (IRF) of the
system, attenuated laser pulses are sent directly on the detector and the corresponding
histogram is built14. One can clearly see in figure 5.16 that the instrumental response
is far from a Dirac delta. The characteristic decrease time found by a mono-
exponential fit is 40 ± 5 ps.

The histograms measured with such a setup display a convolution of the IRF
with the intrinsic decay. A deconvolution process is thus necessary to obtain an
estimate of the intrinsic decay time, as explained in detail in section 5.2.3.

Effect of the optical path

In the experiments conducted during this work, the lifetime of a carbon nanotube
in free-space is compared to its lifetime in cavity. In order to ensure that the

13IDQ100
14It is noteworthy that the jitter of the laser is taken into account in this IRF measurement.
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Figure 5.16 – Instrumental response. In blue at 800 nm, in red at 860 nm. The solid
line corresponds to a coupling through a single mode fiber while the dashed line
corresponds to a coupling through a multimode one.

measurement reflects the intrinsic difference between these two quantities one must
control that no elements in the setup can warp the excitation pulse or induce a delay
in the photon detection.

The excitation is done with a pulsed Ti:Sa and remains identical for time-domain
studies in free-space and in cavity, as explained in 4.1.2. The effect of the cavity
itself is called photon storage. It is systematically measured and the details are given
in paragraph 5.2.3.

Finally the detection path is almost identical, as described in 5.1.1. One must
note, that contrarily to the schema on figure 5.4, for time domain experiments, the
output of the cavity is not injected into a spectrometer but into a fiber, which is
directly connected to the APD.

A photon passing through a fiber undergoes a delay which depends on its reflexion
angle inside the fiber (in ray optics description). This means that a random delay is
added to the photons passing through. In the case of single-mode fibers, this delay
depends directly on the fiber’s core size. In terms of guided modes, this corresponds
to the modal group velocity dispersion and is of course much lower for a single-mode
fiber. However, as one can see in figure 5.16, the effect of multi-mode fibers on the
IRF amounts to only 10 ps and flattens the variations with the input wavelength.
This led us to give priority to the ease of coupling and to use multimode fibers15

(with a core of 50 µm). For all the lifetime measurements performed during this work,
the same counter, the same APD, and the same fiber were used to ensure that no
distortion could come from these elements. The effect of all these elements, included
the group velocity dispersion of the fiber, are taken into account in the measured
IRF.

15Thorlabs M43L05
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Figure 5.17 – Schematic view of the nanotube’s efficiency (when excited at its
saturation level). In red, the pumping pulses (promoting the NT in its excited state),
separated by the repetition rate of the laser (τR = 12.5 ns ). In green, the nanotube
relaxes after a time given by its spontaneous emission lifetime (τF S ≪ τR). This
relaxation can be either radiative (plain green) or most likely non-radiative (faint
green)

5.2.3 Experimental Results

In this section, the emitter’s quantum efficiency is investigated and the experimental
results for the time-domain measurement of the Purcell factor are given.

Radiative yield measurement

In section 4.2.1, it was explained that the emission in CNTs probably arises from
a single localized exciton. In order to measure the radiative yield of this effective
two-level system, the PL intensity is measured as a function of the excitation power
under pulsed excitation.

Due to Auger processes, each excitation pulse leads to the existence of either zero
or one exciton in the system. When the excitation intensity is increased up to the
saturation level, one (and only one) excitation is in the system. The corresponding
energy can either relax radiatively or non-radiatively, as depicted in figure 5.17.
Consequently, the quantum yield at saturation is given by the number of photons
Nem emitted divided by the repetition frequency frep of the excitation laser :

η =
Nem

frep

(5.17)

As the collection efficiency ǫF S was calibrated in paragraph 5.2.1, the quantum
yield can be retrieved from the count rate at saturation16 :

η =
count rate

frep

· 1
ǫF S

(5.18)

The saturation measurement of the nanotube Aleph already investigated in
figure 5.12 is given in figure 5.18. One can clearly see an increase in the count rate
when the excitation intensity is increased, until it reaches the saturation plateau.

16Let’s recall that the count rate is taken as the integral of the ZPL, as stated in equation (5.16).
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Figure 5.18 – Saturation measurement of a single CNT. The num-
ber of photons per pulse takes into account the collection efficiency

(photons per pulse = count rate · 1
ǫF S

). The black dots correspond to experimental

points while the solid red curve corresponds to the saturation model for a two-level
emitter as described in the text. The saturation plateau is depicted by a dashed
gray line and the saturation value, 2% is indicated. Nanotube Aleph, see details in
fig. 5.5.

The intensity I as a function of the excitation power P is fitted to the following
function :

I = I0
P/Psat

1 + P/Psat

(5.19)

This function is typical of the saturation of a two-level system17. The parameter
I0 introduced here gives the count rate saturation level. The quantum yield η
is obtained by dividing this count rate by the collection efficiency ǫF S. Here the
excitation laser used is the one described in section 4.1.2, with a repetition rate of
80 MHz. The radiative yield for this particular nanotube is estimated to 2 ± 0.5%,
where the uncertainty arises from the evaluation of the collection efficiency.

During this work, the radiative yields of tens of single CNTs were measured. We
found values comprised between 1% and 5%, with an average of 2.5%. These values
are consistent with previous estimations [41].

17For some nanotubes the saturation does not follow this law : either the plateau is much sharper,
or sometimes one can observe a slight decrease in the count rate above a certain threshold. But in
every case, a maximum plateau is easily defined and is taken as the saturation limit to estimate η.
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Transient measurements

In order to retrieve the Purcell factor, one needs to measure the lifetime both in free-
space and in cavity. The lifetimes can be obtained by time-resolved photoluminescence
with the setup described in section 5.2.2 : a single CNT is excited with a pulsed
source and a histogram of the delay between the excitation and the collection of a
photon is built.

In free-space, once an excitation is created, there is a probability η to emit a
photon with a characteristic time τF S. This photon is detected through a collection
path containing in particular a multimode fiber and an Avalanche Photodiode (APD).
Consequently, the transient of the nanotube in the free-space SNT,F S is a convolution
of its intrinsic response RNT,F S(t) and the instrumental response Rinst(t) (already
introduced in section 5.2.2) :

SNT,F S(t) = (RNT,F S ∗Rinst)(t) (5.20)

It must be emphasized that the typical lifetime of the CNTs used in this work
is 100 ps while the instrumental response characteristical time is around 40 ps. The
later is thus non-negligible and a careful deconvolution is necessary to retrieve τF S.

In the cavity, the transient signal SNT,cav(t) is slightly more complex because
the photon emitted by the nanotube is stored into the cavity during a typical time
τstor, as explained in section 3.4.2. The transient of an empty cavity Scav(t) is a
convolution between the response of the cavity Rcav(t) (driven by τstor) and the
instrumental response :

Scav(t) = (Rcav ∗Rinst)(t) (5.21)

And the transient of a carbon nanotube in the cavity is a convolution of the
transient of the empty cavity with the response of the nanotube itself RNT,cav(t)
(driven by τcav) :

SNT,cav(t) = (RNT,cav ∗ Scav)(t) (5.22)

= (RNT,cav ∗Rcav ∗Rinst)(t) (5.23)

In order to get the lifetimes, four measurements are performed at the CNT
emission wavelength, using the same pulsed laser for the excitation (section 4.1.2) :

1. The instrumental response Rinst(t), measured by shining directly the attenuated
excitation laser on the detection system.

2. The CNT free-space transient SNT,F S(t).

3. The CNT cavity transient SNT,cav(t).

4. And the empty cavity transient Scav(t).
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(a) Nanotube Aleph, see details in fig. 5.5, fiber
A, cavity volume 20 µm3.

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6

Time (ns)

In
te

n
si

ty
 (

a.
u
.)

(b) Nanotube Ganga, fiber C, cavity volume
2 µm3, see table 5.4 line 3.

Figure 5.19 – Transient measurements for two nanotubes. Dashed blue line : in-
strumental response Rinst(t) ; solid blue line : CNT free-space transient SNT,F S(t) ;
solid red line CNT cavity transient SNT,cav(t) ; and red dashed line : empty cavity
transient Scav(t).

They are displayed in figure 5.19 for the nanotube Aleph.
A change in the intrinsic response of the nanotube cannot be directly extracted

from the measurements of the transients in free-space and in cavity because of the
cavity storage time. But a simple cross-convolution can overcome this issue. Let’s
consider the following purely experimental quantities18 :

SF S = (SNT,F S ∗ Scav)(t) = (M ∗RNT,F S)(t) (5.24)

Scav =(SNT,cav ∗Rinst)(t) = (M ∗RNT,cav)(t) (5.25)

With M =(Rinst ∗Rinst ∗Rcav)(t) (5.26)

As can readily be seen from their expressions, these quantities combine the
measured instrumental responses with the experimental signals in a way such that
they only differ by the intrinsic response of the emitter in free-space or in cavity.
Therefore, any change of the apparent dynamics of these signals can directly be
ascribed to a change in the intrinsic response. Although this approach is not usable
for a quantitative analysis, it allows for a direct visual comparison of the decays.
In figures 5.20 and 5.21, one can clearly see that the cavity decay is faster than
the free-space decay. Let’s emphasize that this method gives a direct proof of a
cavity induced reduction of the lifetime, and thus of a Purcell effect, without any
assumption on the shape of the decays, nor any assumption on the quantum yield of
the emitter.

18Let’s recall the the convolution products commute.
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Figure 5.20 – Cross convoluted transient of the nanotube. The solid red line
corresponds to Scav, the solid blue line to SF S and the dashed black one is the
reference M . It is clearly visible both in linear scale (left) and log scale (right) that
the cavity decay is faster than the free-space decay. Nanotube Aleph, see details in
fig. 5.5.
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Figure 5.21 – Cross convoluted transient of the nanotube. Same as figure 5.20 but
on the nanotube Ganga (see table 5.4 line 3). The cavity mode volume is smaller,
thus the spontaneous emission rate acceleration is more visible.
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Figure 5.22 – The solid black line corresponds to the free-space transient SNT,F S(t)
while the dashed black one corresponds to the instrumental response Rinst(t). The
convolution of the latest by a mono-exponential decay of characteristical time
τF S = 183 ps corresponds to the solid red line (the long times tail originates from
the IRF). On the left, linear scales ; on the right semi-log scale. Nanotube Aleph, see
details in fig. 5.5.

Results and discussion

As could already be expected since paragraph 5.2.2, the change introduced by the
cavity is quite small because the Purcell effect only affects the radiative rate, which
amounts only to 2% of the total. But even such little variations are significant [201].
In order to go beyond the qualitative approach of figure 5.20 and give a quantitative
value for the Purcell factor, the lifetimes must be extracted from the transients. For
that, it is assumed that the nanotube responses in free-space RNT,F S and in cavity
RNT,cav are mono-exponential decays e−t/τ · Θ(t), with characteristic times given by
the lifetimes τF S and τcav. Here Θ(t) is the Heaviside function, ensuring that the
nanotube response is zero before the excitation.

The free-space lifetime could thus be extracted by a deconvolution of the free-space
transient SNT,F S(t) with the instrumental response Rinst(t). In fact, a numerical
deconvolution often yields disappointing results, which is why the results were
obtained the other way around : the instrumental response Rinst(t) is convolved
with a mono-exponential decay of characteristical time τ until it fits the free-space
transient SNT,F S(t). Figure 5.22 shows that this procedure fits very well the free-space
transient, justifying a posteriori the use of a mono-exponential decay. The result for
the nanotube Aleph is τF S = 183 ± 4 ps.

The cavity lifetime can be evaluated following the same procedure : the empty
cavity transient Scav(t) is convolved with a mono-exponential decay in order to fit
the nanotube’s cavity transient SNT,cav(t)19. Figure 5.23 shows the result for the
nanotube Aleph. Once again the fit is very well suited to the experimental data, and

19Note that as γ∗ ≫ κ, the storage time is almost unchanged, as discussed in section (1.2.1).
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Figure 5.23 – The solid black line corresponds to the cavity transient SNT,cav(t)
while the dashed black line corresponds to the empty cavity transient Scav(t). The
convolution of the latest by a mono-exponential decay of characteristic time τcav =
203 ps corresponds to the solid red line. On the left, linear scales ; on the right
semi-log scale. Nanotube Aleph, see details in fig. 5.5.

the value extracted is τcav = 203 ± 4 ps.
Actually, for a single CNT, each transient is always acquired several times to

ensure that the lifetime difference is not due to a fluctuation. An example is given
for nanotube Aleph in fig. 5.24. By repeating the measurement several times and
taking the standard deviation, the typical uncertainty is estimated to ±4 ps. Even
though the lifetime decrease due to the cavity was limited for the cavity formed with
fiber A, averaging several measurement yielded a clear difference between the cavity
and the free-space behaviors.

The lifetimes were also measured by going back and forth between cavity and
free-space configuration for several nanotubes. As the lifetimes remained within the
error bars, it is clear that the difference does not come from burning, partial bleaching,
or aging of the CNT. Finally, the lifetime of a single CNT in cavity was measured
as function of the excitation intensity. As one can see in figure 5.25, no significant
change was observed over a decade. This ensures that even if the excitation power is
modified by interferences in the cavity (as discussed in paragraph 5.2.1), it does not
distort significantly the evaluation of the Purcell factor.

Finally, the relative change in the lifetime for the nanotube Aleph is estimated
to 0.10 ± 0.03, while the quantum yield is estimated to 0.02 ± 0.005. The Purcell
factor for this nanotube is thus F ∗

p = 5 ± 2. In other words, the radiative yield of
the CNT nanotube is enhanced by a factor of 6. The percentage of light emitted
into the cavity mode, also called extraction, is given by [36] :

βe =
F ∗

p

1 + F ∗
p

(5.27)
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Figure 5.24 – Lifetime extracted from
transient measurements for nanotube
Aleph, see details in fig. 5.5. In blue,
free-space measurements, in red cavity
measurements.
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Figure 5.25 – Cavity lifetime of a single
(9, 1) carbon nanotube (extracted by the
method explained in the text) as a function
of the excitation power (cw, 760 nm, lin-
ear polarization along the nanotube axis).
No significant change is observed over a
decade. The error bars show the typical
uncertainty ±4 ps.

It amounts to 0.83 ± 0.05. The effective efficiency β of the single-photon source in
cavity, i.e. the number of photons emitted into the cavity mode per excitation pulse,
is defined in eq. (1.63). Here R = γRF

∗
p = ηγF SF

∗
p , which leads to the formula :

β =
ηF ∗

p

1 + ηF ∗
p (1 + γF S

κ
)

(5.28)

For this nanotube, it amounts to 0.10 ± 0.03 (five times better than in free-space).
Now, let’s compare this experimental value to the theoretical value predicted by

formula (1.62). For this nanotube, fiber A is used, so the volume of the cavity is
20±2λ3 (section 3.2). The quality factor is limited by the emitter’s one, which can be
extracted from the PL spectrum displayed in figure 5.1220 : Qem ≃ 4700±100. Finally,
the optical index in the surroundings of the nanotube is the one of polystyrene :
n = 1.6. From this value, one obtains F ∗

p = 5 ± 1, in excellent agreement with the
experimental value.

Nevertheless, as the reader may have noticed, the error on the experimental result
is just as large as the error made with the photon counts method. One source of
uncertainty is the evaluation of the relative lifetime change. However, this uncertainty
can be decreased by having emitters with larger lifetimes or by enhancing the Purcell
effect. Furthermore, it can be reduced by increasing the statistics (ie averaging
repeated measurements). Unfortunately, the estimation of the Purcell effect also

20The quality factor is simply the ZPL energy over its spectral width, about 300 µeV
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5.3. SINGLE-PHOTON SOURCE

relies on the estimation of η which relies itself on the collection efficiency in the
free-space ǫF S. Any error on ǫF S creates systematical bias in the evaluation of the
Purcell factor.

A way to bypass the collection efficiency is to focus on the coupling factor g
between the nanotube and the cavity. We recall that eq. (1.57) gives a direct link
between the Purcell factor Fp and the coupling factor. In the case of a broad emitter
(γ∗ ≫ γ + κ) one obtains the simplified expression :

F ∗
p =

4g2

γRγ∗ (5.29)

where γR is the radiative lifetime and γ∗ the pure dephasing. The latter is
retrieved from the FWHM of the free-space spectrum :

~(γ + γ∗) ≃ ~γ∗ = FWHM (5.30)

With the help of eq. (5.15), one gets an expression of g as a function of the lifetimes :

g =
1
2

√

γ∗(
1
τcav

− 1
τF S

) (5.31)

This quantity does not depend on the calibration of the setup. For the nanotube
Aleph investigated here, the corresponding energy is ~g ∼ 5 ± 2 µeV.

Along this work, tens of nanotubes were investigated with time-resolved photo-
luminescence. Obviously, CNTs showed strong variations of their properties from
one specimen to another. This comes from several reasons, ranging from possible
intrinsic crystalline defects to variable local environment effects. This induces a large
distribution of emission wavelengths, linewidths or quantum yields. However, despite
this variability, the effect of the cavity was consistently observed as an acceleration
of the recombination. A relative reduction of lifetime of the order of 5 to 30% was
observed, while the free-space radiative yield spanned the 1 − 5% range, leading
to Purcell factors between 3 and 120. Similarly, the coupling g measured ranged
from 5 µeV to 70 µeV. All these values are displayed in tables 5.2, 5.3 and 5.4. As
expected, the Purcell factor and coupling values found with fiber B and C were
significantly higher than with fiber A, which had a larger volume.

5.3 Single-photon source

Using two different methods, one consisting in counting the photons emitted and
one in the time-domain, it has clearly been shown that the single carbon nanotubes
under study undergo a Purcell effect once coupled to a cavity. Now, it is necessary
to check that this cavity embedding does not affect the anti-bunching observed in
the PL emission by other teams [21, 191].

The subject is introduced by giving a few details about the statistics of a light
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5.3. SINGLE-PHOTON SOURCE

source and then the second order correlation function is defined in order to characterize
a single-photon source. Afterwards, the experimental details of the Hanbury-Brown
and Twiss setup are given and finally the results are shown and analyzed.

5.3.1 Statistics of a light source

Its is now of common knowledge for non-physicists that light can behave both as
a wave and as a stream of particles called photons. This section focuses on the
statistical properties arising from the later description. In particular, three different
statistics (Poissonian, super-Poissonian and sub-Poissonian) are introduced. It is
shown that the latest can be understood only in the photonic point of view.

For now, one can recall that in the case of a light beam observed with a photon
counter (such as an avalanche photodiode), the photon flux Φ is defined as the
average number of photons passing through a cross-section of the beam per unit of
time :

Φ =
P

~ω
(5.32)

where P is the power in the cross-section, ω the frequency of light and ~ω the
energy of a single-photon. The count rate of the detector ΦD is the average number
of counts recorded by the detector per unit of time :

ΦD = ηDΦ = ηD
P

~ω
(5.33)

where ηD is the detector quantum efficiency, defined as the number of counts per
incident photon.

Both quantities introduced here are time averages. Observing a stable beam
at long time scales with a photon detector yields a stable value for the count rate
and consequently for the photon flux. But at very short time scales, the number of
photons counted by unit of time shows fluctuations due to the discrete nature of
photons.

Poissonian source

The light coming from an ideal single mode laser is a coherent planar wave of
frequency ω, phase φ, wavevector k = ω/c and constant electric field amplitude E0

propagating along x axis :

E(x, t) = E0 sin(kx− ωt+ φ) (5.34)

The intensity of this beam - defined as the the mean of the Poynting vector - is
constant (as E0 and φ are constant). Consequently, the average flux of photon Φ is
constant.
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Chapter 5. A Purcell enhanced single-photon source

Figure 5.26 – Photon statistics for a Poissonian light (in blue), a super-Poissonian
light (in dashed black) and a sub-Poissonian light (in red). The distributions are
computed with the same mean number n̄ = 100. Adapted from [42, (ch. 5)].

At first, it would be natural to think that the beam is composed of a stream of
photons regularly spaced in time. But it is not the case : there are some fluctuations
on short time scales. Let’s consider a beam of constant power P , containing an
average number of photons n̄ per segment of length L :

n̄ = Φ
L

c
(5.35)

The probability P(n) to find exactly n photons in a segment of length L is given
by [42, (ch. 5)] :

P(n) =
n̄n

n!
e−n̄ n ǫN (5.36)

This equation corresponds to a Poissonian distribution (see figure 5.26 for a
sketch). The fluctuations of such a source around its mean value, called the variance,
is equal to the square of the standard deviation ∆n. One can show that for a
Poissonian source [42, (ch. 5)] :

∆n =
√
n̄ (5.37)

In other words, even if such a source has an average of 1 photon per unit of time
τ , it has a variance of 1. In a given amount of time τ , the number of photons emitted
is typically between 0 and 2, with a non-zero probability of being over 2. Such a
random source can obviously never be a single-photon source (i.e. : a source yielding
one and only one photon per given unit of time).

Super-Poissonian source

A super-Poissonian source is a source for which the standard deviation exceeds the
square root of its mean value :
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5.3. SINGLE-PHOTON SOURCE

∆n >
√
n̄ (5.38)

Any classical incoherent source behaves as a super-Poissonian source. It is in
particular the case of thermal sources for example. Such a source is depicted in
figure 5.26.

Sub-Poissonian source

A sub-Poissonian source is a less noisy source than a Poissonian one : it has a
narrower photon distribution defined by :

∆n <
√
n̄ (5.39)

As already stated, a Poissonian source is the less noisy one in classical physics.
It means that a sub-Poissonian source is characteristic of the quantum nature of
light. Let’s imagine a source emitting photons one by one, with a interval of time
τ constant between two photons. Then the number of photons emitted during a
time T is the floor value of the ratio T/τ . This number is perfectly constant and the
standard deviation is zero21.

It is also possible to imagine sub-Poissonian photon sources with a non-zero
variance, as shown in figure 5.26. The amount of time between two photons is not
constant, but more regular than in the case of a Poissonian source.

5.3.2 Second order correlation function

In the previous section, a classification of light was introduced, as a function of its
photon statistics. Now another way to quantify light fluctuations, according to the
second order correlation function g(2)(τ), is introduced. The experimental setup
used for the measurement of the second-order correlation function is described in
section 5.3.3.

Classical definition

One can consider two intensity measurements separated by a time delay τ . The mean
of the product of intensities is the correlation function of the intensity. The second
order correlation function is this function normalized by the mean intensities :

g(2)(τ) =
< I(t)I(t+ τ) >

< I(t) >< I(t+ τ) >
=

< E∗(t)E∗(t+ τ)E(t+ τ)E(t) >
< E∗(t)E(t) >< E∗(t+ τ)E(t+ τ) >

(5.40)

where E is the electric field, I the intensity, and < ... > denotes a time average
over a long period.

21However, unlike the coherent light emitted by lasers, single-photons phase is random.
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Chapter 5. A Purcell enhanced single-photon source

Figure 5.27 – Correlation function for a Poissonian source (in blue), a super-Poissonian
source (in dashed black) and two different sub-Poissonian sources (in red). adapted
from [42, (ch. 6)].

This autocorrelation function is even and the Cauchy’s inequality gives the
following boundaries for its values :

g(2)(τ) ≥ 0 if τ 6= 0 (5.41)

g(2)(0) ≥ 1

In the case of a Poissonian (coherent) source, one simply gets g(2)(τ) = 1 for all
times, as shown in figure 5.27. This just shows that the average time between two
photons is completely random, as depicted in figure 5.28. For a super-Poissonian
source, the second-order correlation function increases above 1, which means that
the photons tend to stick together. They are referred to as “bunched”. Nevertheless,
a description of a sub-Poissonian source cannot be given within this frame. It is
necessary to introduce a quantum definition of g(2)(τ).

Quantum definition

The definition we gave for the second order correlation function can be extended to
a quantum approach :

g(2)(r1t1, r2t2; r2t2, r1t1) =
< Ê-(r1t1)Ê-(r2t2)Ê+(r2t2)Ê+(r1t1) >

< Ê-(r1t1)Ê+(r1t1) >< Ê-(r2t2)Ê+(r2t2) >
=
< â†â†ââ >

< â†â >2

(5.42)
where the operator electric field is defined by :
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Ê(r, t) = Ê+(r, t) + Ê−(r, t) (5.43)

Ê+(r, t) = i
∑

k

(~ω/2ǫ0V )1/2
εkâk exp(−iωkt+ ik · r) (5.44)

Ê−(r, t) = (Ê+(r, t))† (5.45)

In this case, the averages < ... > are done with the density operator. Where â†

and â are creation and annihilation operators respectively.
If one takes a perfectly coherent state, defined by the relation â|α >= α|α >, one

recovers the fact that g(2)(τ) = 1 for a Poissonian source.
Let’s now consider the Hanbury-Brown and Twiss (HBT) experiment. In this

experiment, a light source is shone on a 50% beam splitter and the two outputs of
the beam splitter are monitored with photon counters. In order to understand better
what happens in the sub-Poissonian case, g(2)(τ) can be written as a function of the
number of photons counted by the two detectors [42, (ch. 6)] :

g(2)(τ) =
< n1(t)n2(t+ τ) >

< n1(t) >< n2(t+ τ) >
(5.46)

where n1(t) and n2(t+ τ) are the number of photons counted by the detectors
at time t and t+ τ . From this formula it is clear that g(2)(τ) depends on the joint
probability to detect a photon at time t on the first detector and a photon at time
t+ τ on the second detector. In particular, g(2)(0) corresponds to the probability for
two photons to arrive at the same time on the two detectors, and thus to be emitted
simultaneously.

Let’s consider the different kinds of sources : in any case, at long delays, the
probabilities of detection become uncorrelated and g(2)(τ → ∞) = 1. For a coherent
source, the probability to detect a photon on detector 2 after having detected one on
detector 1 is the same for any delay as the photons are emitted randomly. It confirms
that for such an emitter, g(2)(τ) = 1. For a bunched emitter, the photons tend to be
emitted together, and thus to arrive on the beam splitter together. Consequently, if
a photon is detected on the first detector, there is a comparatively higher probability
to detect a photon on the other detector at the same time. One recovers the fact
that for such an emitter g(2)(0) > 1.

Now let’s consider a sub-Poissonian source, for which the photons are anti-bunched.
If a photon is detected on detector 1, there is a comparatively lower probability to
find a photon on the second detector, and one gets g(2)(0) < 1. In particular, if an
emitter is perfectly anti-bunched, two photons are never emitted together, and one
gets g(2)(0) = 0. Two examples of correlation functions for anti-bunched emitters
are displayed in figure 5.27. The first shows anti-bunching while the second displays
anti-bunching followed by bunching. This means that two photons are never emitted
together but tend to be emitted with a given delay.
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τg 

Bunched

Coherent

Anti

Bunched

Figure 5.28 – Stream of photons for the three different kinds of source : coherent,
bunched and anti-bunched. In the case of coherent light, the time space between
photons is random. In the case of bunched light, they tend to stick together. On the
contrary, in the case of anti-bunched light, photons are regularly spaced. Typically
in a period of time τg as defined in the text, one finds one and only one photon
emitted.

Single-photon source criterion

In the quantum picture of the second order correlation function, it is possible to
have values ranging between 0 and 1 at zero delay : 1 ≥ g(2)(0) ≥ 0. In this case,
the light source is referred to as anti-bunched.

In fact, it is possible to show that two uncorrelated single-photon sources emitting
together lead to g(2)(0) ≥ 0.5 (for a complete discussion of the emission of uncorrelated
single-photon sources, refer to [83]). Consequently, it is commonly considered that
the criterion for a “single-photon source” is to have g(2)(0) < 0.5.

Until now we used many common-sens expressions such as “at the same time”, “one
by one” or “well separated from each other”. As physicists, such vague qualifications
are obviously unsatisfying. Let’s now try to define what is a “simultaneous” emission.

For that, let’s take a simple two level system with a lifetime τF S pumped inco-
herently with a pumping rate r. The evolution of such a system is given by :











dρe

dt
= − ρe

τF S

+ rρg

ρg = 1 − ρe

(5.47)

where ρg and ρe are the populations of the ground and excited states. If at t = 0,
a photon is emitted, one has ρe(t = 0) = 0. The solution of the system is thus given
by :

ρe(t) =
rτF S

1 + rτF S

(

1 − e
−(r+ 1

τF S
)t
)

(5.48)

For a two-level system, the probability of emission of a photon at a time τ is
proportional to the population of the excited state. And the detection of a photon
at t = 0 projects the system in its fundamental state. Thus one obtains :
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g(2)(τ) =
ρe(|τ |)
ρe(∞)

∣

∣

∣

∣

∣

ρg(0)=1

(5.49)

= 1 − e−τ/τg (5.50)

where τg = (r +
1
τF S

)−1. Consequently, the second order correlation function

displays a dip around zero delay. It is equal to zero at τ = 0 and increases towards
1 on a time scale given by τg. If the two-level system is pumped at a rate much
faster that its own decay rate, the typical time delay between two photons is given
by the repetition rate of the excitation r−1. On the contrary, if the two-level system
is pumped at a lower rate, the typical time interval between the emission of two
photons is its lifetime τF S.

To conclude, we call “single-photon source” a source with a second-order corre-
lation function dropping below 0.5 at zero delay. The photons emitted by such a
source are typically separated in time by the lifetime of the source. The situation is
depicted in figure 5.28.

5.3.3 Hanbury-Brown and Twiss setup

In order to measure the second-order correlation function, a single detector is needed.
However, every detector has a dead-time, i.e. a time during which it can’t detect
a second photon after the detection of a first. As this dead-time is much higher
than the typical rate of emission, it prevents from measuring a clear anti-bunching.
As a consequence, a two detectors configuration is commonly used. The Hanbury-
Brown and Twiss interferometer was designed by the two eponymous physicists, in
order to record intensity correlations in stellar physics. Even though it was not its
primary goal, this setup is now widely used to assess if a light emitter behaves as a
single-photon source.

Principle

The setup, as introduced in paragraph 5.3.2, is made of a 50% cube splitter and two
avalanche photodiodes (APD) used to detect the arrival of a photon, as depicted in
figure 5.29 . The two detectors and the correlation device give the joint probability
for two photons to arrive on the two detectors with a delay τ .

The two APD detectors22, emit a TTL impulsion when they detect a photon
(with an efficiency of 40% at 900 nm).

The correlation device has two channels : a START channel, which starts a
counter when a photon is detected, and a STOP channel which stops the counter
when a photon is detected (see fig. 5.30a). The time elapsed between the START

22Perkin Helmer SPCM-AQRH-16
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Figure 5.29 – Schema of a Hanbury-Brown and Twiss interferometer.

and the STOP is then recorded : it is the delay τ . The experiment is run during a
time sufficiently long to build a histogram of the delays.

A negative delay has no physical sense as the counter must be started before it
is stopped. However, a usual experimental trick consists in connecting the APDs
to the correlation counter with BNC cables of unbalanced length. This enables to
arbitrarily shift the position of the zero delay (in our case, the zero delay between
the arrival of two photons on the beam splitter corresponds to a delay of 300 ns on
the counter). The histogram obtained has negative delays with respect to the shifted
origin of the delays axis.

Finally, after an appropriate integration time, one gets a correlation histogram,
as shown in figure 5.30b. The measurement must be normalized with respect to
long delays23. Indeed, for a long delay τ → ∞, the probabilities n1 and n2 are no
longer correlated and one gets g(2)(τ → ∞) = 124. Once normalized, the histogram
corresponds to the autocorrelation of the source [42, chap. 6]. If a dip is present at
zero delay, it means that the photons are anti-bunched.

HBT under continuous excitation

Nevertheless, the visibility of this dip at zero delay depends strongly on the times
scales of different processes.

Indeed, the correlation counter has an accuracy of a few picoseconds, but the
APD used here have a resolution of 400 ps, a few times the typical lifetime of a carbon

23An other way to normalize the histogram is to perform the same measurement, during the
same time, in the same conditions with a coherent source having the same average intensity than
the source investigated.

24Technically, the normalization is done for times much greater than the lifetime of the emitter.
However, at longer time scales , the start-stop method no longer delivers the second order correlation
function. Indeed, if the time delay is too high, the counter will have had a high probability of being
stopped before this delay is reached. This artifact’s consequence is that the values obtained for
such long times drop below 1.
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(b) A histogram of these delays is built. The graph here shows
the evolution of this histogram when the integration time
is increased. The data are taken from [202] (experiment on
quantum dots).

Figure 5.30 – Principle of a photon correlation measurement.
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nanotube. The global resolution of the system is thus limited by the instrumental
response function (IRF) of the detectors - about 400 ps.

Now, let’s consider the simple model introduced in section 5.3.2. The anti-
bunching dip has a characteristical time τg = 100 ps :

g(2)
s (τ) = 1 − e−τ/τg (5.51)

For the sake of simplicity, the effect of the IRF is modeled as a convolution with a
gaussian of lifetime τR = 2

√

2ln(2)b = 400 ps.

R(t) = e− t2

2b2 (5.52)

The autocorrelation function g(2)
m (τ) obtained from the normalized HBT histogram

corresponds to the convolution of g(2)
s (τ) with R(t). At zero delay, the numerical

result is :

g(2)
m (0) = 0.62 (5.53)

In other words, due to the IRF, even a perfectly anti-bunched CNT, observed
without any background or noise would lead only to a drop of 40% at zero delay in
the autocorrelation function, which is above the single-photon criterion.

HBT under pulsed excitation

This can be overcome with pulsed excitation. Indeed, if the CNT is excited by
breve pulses (about 100 fs) separated by intervals much longer than its own lifetime
(τR = 12.5 ns here, for a lifetime of 100 ps), it behaves as a pulsed emitter.

When the carbon nanotube is shone with a sufficiently intense excitation, at least
one photon is absorbed. It leads to the emission of either zero photon (non radiative
decay), one photon (anti-bunching) or several photons (no anti-bunching).

Taking the point of view of the detectors, if a photon arrives on the start detector,
either a photon arrives on the stop detector from the same excitation pulse (the two
photons are separated by a a time lesser than the resolution of the detectors) or the
photon arrives with a later excitation pulse (the two photons are separated by n
times the repetition rate of the laser, n being an integer).

This means that the autocorrelation signal under pulsed excitation is composed
of a series of peaks, having a time width of the order of the resolution of the detectors
and separated by the repetition rate of the laser, as shown in figure 5.31. Anti-
bunching is marked by the vanishing of the peak at zero delay (it never happens
than the same pulse of excitation leads to the emission of more than one photon). It
does not depend on the resolution of the detectors and can drop down to zero for a
perfect single-photon emitter.

175



5.3. SINGLE-PHOTON SOURCE
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(a) A photon can be emitted only when the emitter is reached by an
excitation pulse. The delay between START and STOP is thus a multiple
of the laser repetition rate.
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(b) Correlation measurement under pulsed excitation. The central peak
(dashed line) disappears for a single-photon source.

Figure 5.31 – HBT under pulsed excitation
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Figure 5.32 – After-pulse emission spectrum of a typical Avalanche Photodiode,
from [203].

APD after-pulse cross-talk

Even though the APD resolution issue was bypassed by using pulsed excitation, an
other issue called “Cross talk” remains.

Indeed, silicon Avalanche Photodiodes are used because of their low dark count
rate and high quantum efficiency. In order to detect efficiently single-photons, the
diode is reversely biased above breakdown voltage. When a photon arrives, it triggers
a discharge and a current... but also a luminescence signal called after-pulse.

Even though this emission is quite weak, it leads to the detection of the breakdown
flash by the other APD . This means that the histogram contains a number of photo-
events which are not linked to the carbon nanotube emission.

As shown in figure 5.32, from ref. [203] the emission of the APD ranges from
700 nm to 1000 nm, which falls clearly in the range of this study (850 nm to 950 nm).
In order to minimize the cross talk effect we slightly tilted the optical paths leading
from the beam-splitter to the APDs in order to limit the probability for a photon to
travel directly from one to an other. Furthermore, we systematically placed a 10 nm
bandpass filter, centered on the CNT wavelength, in front of each detector. By means
of this spectral filtering, the cross-talk features remain visible in the histogram, but
do not affect the measurement.

Results and discussion

Experimentally, we carried out pulsed HBT measurements on several CNT both in
free-space and in cavity. In every case, the second order correlation function at zero
delay was found to be much lower than 0.5, which is the criterion we retained for a
single-photon source.
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Figure 5.33 – Intensity correlation measurements of a nanotube in free-space obtained
in a Hanbury-Brown and Twiss setup under pulsed excitation. The missing peak at
zero delay g(2)(0) = 0.05 ± 0.03 shows that the nanotube behaves as a single-photon
source. The signal between the first and second peaks corresponds to APD cross-talk.

In figure 5.33 we give the histogram coming from the HBT measurement of
a single nanotube in free-space. One can see a series of peaks spaced by a time
τR = 12.5 ns corresponding to the repetition rate of the laser. The peak at zero-delay
is largely suppressed, and the estimated value is g(2)(0) = 0.05 ± 0.0325. Between
the suppressed peak and the two peaks at ±τR, as well as between these peaks and
the ones at ±2τR, one can see the signature of the APD cross-talks described in
section 5.3.3.

The same measurement was carried out on the same carbon nanotube once
coupled to our micro-cavity, tuned in resonance with the ZPL. As one can see in
figure 5.34a, the cavity and the Purcell enhancement do not change the single-photon
emitter behavior of the cavity. For this particular nanotube, the value found is
g(2)(0) = 0.03 ± 0.02. If the value is slightly smaller than in free-space, it is most
likely not related to a change in the source but to the fact that we collect a much
greater number of photons in cavity mode. As the HBT signal depends quadratically
on the input intensity, the signal-to-noise ratio is lower in free-space.

For the free-space experiment and even more clearly for the cavity experiment,
one can see that the peaks siding the suppressed one have a comparatively higher
intensity than the following ones. An extended view of g(2)(τ) in cavity is given in
figure 5.34b for this purpose26.

Such bunching features were observed by Walden-Newman et al. [191]. More
precisely, they observed bunching when a part of the spectrum was selected with a
10 nm bandpass filter. However, if they filtered the emission by a 40 nm bandpass

25The uncertainty arises from the shot noise.
26Let’s note that the values of g(2)(0) indicated here were taken by removing the almost negligible

background and by normalizing with the value of g(2)(τ) far away from these bunching features.

178



Chapter 5. A Purcell enhanced single-photon source

−100 −50 0 50 100
0

20

40

60

80

100

120

time(ns)

c
o
u
n
ts

−300 −200 −100 0 100 200 300
0

50

100

150

time(ns)

c
o
u
n
ts

Figure 5.34 – Intensity correlation measurements of a nanotube in cavity obtained
in a HBT setup under pulsed excitation. The missing peak at time g(2)(0) = 0.03
shows that the nanotube still behaves as a single-photon source. A zoom is given to
show the bunching feature at short time scale and the normalization at long time
scale. The solid red line corresponds to the model of eq. 5.54.

filter, covering the full CNT spectrum, no bunching was visible. Consequently,
they ruled out the coherent or thermal properties of the emitter that would lead to
bunching features.

The authors offered an explanation to this bunching : spectral diffusion. Let’s
consider a filter selecting the right part of the spectrum, noted R. Then a conditional
probability is created for the coincidence measurement : if a photon from R starts
the HBT counter, then there is a high probability that a photon from R stops it.
This probability decreases with time as the emitter may have jumped out of the
spectral window. The time delay between two events is the a measure of the time
spent by the emitter in region R.

The resulting correlation function writes :

g2(τ, R) =

(

1 +

(

γSD

γH

− 1

)

e−γSDτ

)

(

1 − e−γF Sτ
)

(5.54)

where γH is the rate for hopping in and out of the filter spectral range, γF S is
the spontaneous emission rate and γSD is the spectral diffusion rate. In fig. 5.34b,
this model was plotted for γSD = 0.05 ns−1, 1/γF S = 100 ps and γH = 0.4γSD

27. The
good agreement between the model and the experimental data supports the theory
of a bunching induced by spectral diffusion.

27In [191], γSD is comprised between 0.05 ns−1 and 1 ns−1, 1/γF S between “less than 400 ps” and
2 ns, while 1/3γSD < γH < 2/3γSD.
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Figure 5.35 – In red, the excitation pulses of the laser, separated by the repetition
rate of the laser (τR = 12.5 ns ). In green, the nanotube relaxes after a time given by
its spontaneous emission lifetime (τF S ≪ τR).

Conclusion

Figure 5.35 sums up schematically the results of this chapter : the nanotubes are
excited by a non-resonant pulsed laser. In free-space, the probability for them to
relax radiatively is very low, while in cavity it increases strongly while retaining a
pronounced anti-bunching character. The coupling factor g is estimated to range from
5 µeV to 70 µeV, which means an order of magnitude below the intrinsic linewidth of
the nanotubes ~γ∗ ∼ 500 µeV.

Let’s compare the CNT-based single-photon source obtained with the state-of-
the-art for quantum dots. In 2016, Somaschi et al. [11] coupled a quantum dot to a
micro-pillar cavity of quality factor 12000 and obtained a Purcell factor of 7.6. With
an effective quality factor limited by the emitter’s spectral width to a few thousands
and an effective mode volume as low as 2λ3, we obtain Purcell factors F ∗

p between 5
and 120.

In the work of Somaschi et al., the quantum efficiency of the emitter was near
unity, however the brightness was limited to 65% - which is already a very high value
for quantum dots - due to the limited extraction value. In our case, the intrinsic
efficiency η of the carbon nanotubes is around 2%, but the Purcell effect directly
increases it, and the extractions βe obtained are above 98% for the lowest mode
volume cavities. Consequently, the effective efficiency (single-photon generation
efficiency into the cavity mode) β is commonly above 30% and reaches up to 50%. It
is worth noting that this value is higher than the efficiency obtained by chemical
brightening (18% in [204]). Given the asymmetry of the cavity, the brightness of our
device can reach up to 40%.

Somaschi et al. show a strong anti-bunching, with g2(0) = 0.0028 ± 0.0012 and
an indistinguishability of 0.9956 ± 0.0045 (for a brightness of 15%). In our case,
g2(0) = 0.03 ± 0.02. However, this estimation is not limited by the intrinsic behavior
of the nanotubes but by the limitations of our measurement (shot noise, residual
effect of the APDs cross-talk). The indistinguishability of the cavity-coupled CNT
remains to be experimentally measured, but should be quite low, around 0.25 [205].

To conclude, the source obtained by coupling a single carbon nanotube to a
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fiber Fabry-Perot micro-cavity displays a strong anti-bunching and its brightness
is catching up with the state-of-the-art for other emitters. For applications, the
main challenges faced are the switch from visible range to telecoms bands, the
indistinguishability and the possibility to work at room temperature.
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Introduction

In chapter 4, we showed that a single carbon nanotube coupled to a cavity in resonance
with its Zero Phonon Line is a single-photon source with a Purcell enhanced efficiency.
However, these characteristics are not restricted to the coupling with the ZPL. It
turns out that the spontaneous emission is equally enhanced if the cavity is tuned
in resonance with one of the phonon wings of the nanotube. We measured the
auto-correlation function of the source obtained for a detuning of up to 5 meV. With
g(2)(τ) = 0.02 ± 0.02, figure 6.1 clearly demonstrates a strong anti-bunching. In
opposition to atomic like emitters, such as quantum dots, the nanotubes have a large
spectrum, ranging over about 15 meV (4 THz). Whenever the cavity is in resonance
with a part of the spectrum, it acts as the effective emitter, with a spectral width
of 8 GHz (or 80 GHz including the vibrations), incoherently pumped by the carbon
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Figure 6.1 – Intensity correlation measurements of a nanotube in a cavity tuned in
resonance with one of its phonon wings. With g(2)(τ) = 0.02±0.02, the anti-bunching
is as strong as when it is tuned in resonance with the ZPL.

nanotube. This cavity feeding effect brings a widely tunable single-photon source,
opening the way to multiplexing (i.e. combining signals with different wavelengths).

As explained in chapter 3, the phonon wings are a series of replica of the exciton
purely electronic transition line, shifted by the phonon energy. Such an unconventional
spectrum is typical of CNTs. Understanding its consequences in terms of Purcell
effect is of paramount importance as it is responsible for the spectral tunability of
the single-photon source. The micro-cavity described in chapter 3 is used to handle
the exciton-phonon coupling.

The coupling of a non-Lorentzian spectrum with a cavity is beyond the generalized
Purcell model derived in chapter 1. We propose a new model in this chapter to
account for this effect. Then, the experimental measurements of the single-photon
source efficiency in cavity, over the full nanotube spectrum, is explored thoroughly.

6.1 Cavity efficiency including the phonon wings :
theoretical approach

In this section, the model of the Purcell factor described in section 1.3.1 is upgraded
in order to understand the role of the exciton-phonon coupling in the presence of a
cavity.

6.1.1 Evolution of the populations

In the first part of this section, the Hamiltonian of the system is introduced and the
populations evolution are obtained from the master equation.

The derivations may seem cumbersome to the reader. As a consequence, only
the main steps are presented and the details are left to appendix D.

185



6.1. CAVITY EFFICIENCY INCLUDING THE PHONON WINGS :
THEORETICAL APPROACH

Absorption and emission

In chapter 4, an Hamiltonian was introduced to account for the exciton-phonon
coupling in free-space. It reads :

He−p = ~ωXσ
+σ− + ~

∑

~k

ωkb
†
~k
b~k + ~σ+σ−∑

~k

(gkb~k + g∗
kb

†
~k
) (6.1)

Where the first term is the energy of the exciton, the second describes the effective
acoustic phonon bath, with a sum over wavevector ~k and the last corresponds to the
coupling gk for each phonon mode k with the exciton (section (4.2.2)). Krummheuer
et al. showed that the absorption spectrum of a carbon nanotube in free-space
Sabs

fs (ω) can be expressed as a function of its emission frequency ωX , its decay rate
γ, the pure dephasing it undergoes γ∗ and a function K(t) taking into account the
interactions with the phonon bath [172, 206, chap. 4.3.4] :

Sabs
fs (ω) = 2Re

[∫ ∞

0
dtei(ω−ωX)te− γ+γ∗

2
tK(t)

]

(6.2)

with
∫∞

−∞ Sabs(ω)dω = 2π and :

K(t) =
∏

k

exp

(

|gk|2
ω2

k

(

e−iωk(t) − n(k)|e−iωk(t) − 1|2 − 1
)

)

(6.3)

n(k) =
1

e−~ωk/kbt − 1
(6.4)

Furthermore, the emission spectrum Semi
fs (ω) is the mirror of the absorption spectrum

with respect to the ZPL (as a single electronic transition, assisted by phonons
absorption or emission, is considered here) [172], thus :

Semi
fs (ω) = 2Re

[∫ ∞

0
dtei(ω−ωX)te− γ+γ∗

2
tK∗(t)

]

(6.5)

The effect of the cavity, acting as a simple spectral filter (no dipole-cavity
coupling), is modeled by a convolution with a Lorentzian spectrum centered in zero
with a width κ :

Lcav(ω) =
1

1 +
(

2ω
κ

)2 (6.6)

The cavity modified absorption and emission spectra are defined by :

S̃abs(ω) =
(Sabs

fs ∗ Lcav)(ω)
∫ Lcav(ω)dω

(6.7)

S̃emi(ω) =
(Semi

fs ∗ Lcav)(ω)
∫ Lcav(ω)dω

(6.8)
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Hamiltonian

In the presence of the cavity, the Hamiltonian of equation (6.1) is modified and
reads [206] :

H = He−p + ~ωca
†a+ i~g(a†σ− − aσ+) (6.9)

The second term describes the energy the cavity mode (at the cavity resonant
frequency ωc) while the last, already introduced in chapter 1, gives the coupling g
between the exciton and the cavity. In analogy with section 1.3.1, the damping and
dephasing term are introduced as Linblad operators in the master equation :

L[C]ρ ≡ CρC† − 1
2

(

C†Cρ+ ρC†C
)

(6.10)

And the three operators taking into account respectively the cavity leaking rate
κ, the spontaneous emission rate γ, and the pure dephasing γ∗ are C1 ≡ √

κa,
C2 ≡ √

γσ− and C3 ≡ √
γ∗σ+σ−.

In order to simplify the expression of the Hamiltonian, the polaron shift is
introduced : the unitary transformation U is given by U ≡ σ+σ− ⊗D + σ−σ+ ⊗ 11,
with D = e−Ω and
Ω ≡ ∑

~k

(

g∗
k

ωk
b†

~k
− gk

ωk
b~k

)

. The Hamiltonian in the polaron frame reads :

H̃ ≡ U †HU = ~ω̃Xσ
+σ− + ~

∑

~k

ωkb
†
~k
b~k + ~ωcava

†a+ i~g
(

a†σ−e−Ω − aσ+eΩ
)

(6.11)

Where the polaron shift energy is absorbed in the definition of the exciton energy :

ω̃X = ωX −
∑

~k

(

g2
k

ωk

)

(6.12)

For the ease of reading, the notation ωX remains in use in further equations. We
also note that in the polaron transformation picture, C operators become C̃ ≡ U †CU ,
namely C̃1 =

√
κa , C̃2 =

√
γσ−e−Ω and C̃3 =

√
γ∗σ+σ− .

Master equation

In the interaction picture, the master equation is given by :

d

dt
ρI(t) =

1
i~

[VI(t), ρI(t)] +
3
∑

j=1

L[CjI ]ρI (6.13)

VI = i~g
(

e−iδte−ΩI(t)a†σ− − eiδteΩI(t)aσ+
)

(6.14)

where δ = ωX − ωc , ΩI(t) = e
it
∑

~k
ωkb†

~k
b~kΩe−it

∑

~k
ωkb†

~k
b~k and the sum corresponds
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to the three Lindblad operators C in the interaction picture. The populations
evolution are given by :

d〈a†a〉
dt

= geiδt〈eΩI(t)aσ+〉 + ge−iδt〈e−ΩI(t)a†σ−〉 − κ〈a†a〉 (6.15)

d〈σ+σ−〉
dt

= −geiδt〈eΩI(t)aσ+〉 − ge−iδt〈e−ΩI(t)a†σ−〉 − γ〈σ+σ−〉 (6.16)

6.1.2 Cavity efficiency

In this section, we investigate a particular phenomenon : an excitation in the matter
t = 0 which decays in the cavity mode and subsequently leaks out via the losses κ.
This process can be straightforward or can include several backs end forth between
the cavity and the matter. The efficiency of this process, i.e. the efficiency of our
single photon source, is thus given by the integrated probability of decay from the
cavity towards the environment, β = κ

∫∞
0 dt〈a†a〉 [207].

Expression of the cavity efficiency

As shown in appendix D, the terms in the population evolutions read :

eiδt〈eΩ(t)aσ+〉 = g
∫ t

0
ds e(iδ−γall)(t−s)

(

〈σ+σ−(s)eΩI(t)e−ΩI(s)〉 − 〈a†a(s)e−ΩI(s)eΩI(t)〉
)

(6.17)
Where the notation 〈σ+σ−(s)eΩI(t)e−ΩI(s)〉 stands for Tr(ρI(s)σ+σ−eΩI(t)e−ΩI(s)).

In order to go further, one can use the Non-Interaction Blip Approximation introduced
by Leggett et al. [208]. Here it means that the phonon bath is weakly modified by
the exciton-photon evolution. Dekker [209, 210] and Orth et al. [211] showed that it
is equivalent to :

〈σ+σ−(s)eΩI(t)e−ΩI(s)〉 NIBA≈ 〈σ+σ−(s)〉Tr(ρthe
ΩI(t)e−ΩI(s)) (6.18)

Where ρth is the density matrix at thermal equilibrium. The second part of the
right hand side of this equation depends only on the time difference t− s. As shown
in [206], this trace can be expressed as a function of K(t) :

Tr(ρthe
−ΩI(s)eΩI(t)) = K∗(t−s) (6.19)

As a consequence, the population evolutions can be expressed in terms of the
same K(t) function :

eiδt〈eΩ(t)aσ+〉 ≃ g
∫ t

0
ds e(iδ−γall)(t−s)

(

〈σ+σ−(s)〉K(t−s) − 〈a†a(s)〉K∗(t−s)
)

(6.20)
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Detector

Figure 6.2 – The system is composed of a pseudo-two level system which decays with
a rate γ and has an absorption/emission spectrum S̃abs/S̃emi. The decay can happen
either as a loss or towards the cavity mode. When a photon is in the cavity mode, it
can be either reabsorbed or extracted towards a detector. This simple sketch enables
to understand how to compute the efficiency of the emitter in the cavity (namely the
probability for it to decay by emitting a photon which is subsequently extracted).

where γall = γ + γ∗ + κ.
With the help of equations (6.2) and (6.5), the efficiency of the cavity-coupled

nanotube, at the cavity energy ~ωc, can be written as a function of the emission and
absorption spectra :

β(ωc) =
κS̃emi(ωc)

κS̃emi(ωc) + γS̃abs(ωc) + κγ
g2

(6.21)

Phenomenological interpretation

This formula can be understood in a simple way. As depicted in figure 6.2, the
system is composed of :

• A two-level system (plus interactions with phonons) which decays from its
excited state to its ground state at a rate γ

• A cavity which can switch from the excited state (a photon in the cavity) to
its ground state (no photon in the cavity) at a rate κ.

• The excited two-level system can decay by emitting a photon in the cavity. At
a given energy ~ω, the probability for this decay is proportional to the Purcell
factor, thus to the the coupling g2, and the relative intensity of the emission at
this energy S̃emi(ω).

• Conversely, the excited cavity can decay when the photon is absorbed by the
two level system with a rate proportional to S̃abs(ω) and the coupling g2.

The probability of decay for the cavity coupled two-level system is given by
γcav(ω) = γ + g2S̃emi(ω), the second term describing the acceleration due to the
Purcell effect. The total decay probability for the cavity, which is the inverse of the
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storage time, is given by γstorage(ω) = κ+ g2S̃abs(ω). The second term corresponds
to a decrease in the storage time, due to the probability for a photon to be absorbed
by the nanotube. The four events described above can be written in terms of
probabilities :

pNT →Cav (ω) =
g2S̃emi(ω)

γ + g2S̃emi(ω)
(6.22)

pNT →Loss (ω) =
γ

γ + g2S̃emi(ω)
(6.23)

pCav→Det (ω) =
κ

κ+ g2S̃abs(ω)
(6.24)

pCav→NT (ω) =
g2S̃abs

κ+ g2S̃abs(ω)
(6.25)

Where NT denotes the nanotubes, Cav the cavity, Loss pure losses (a photon
emitted out of the cavity mode or a non-radiative decay), Det a photon extracted from
the cavity and detected (useful loss). The efficiency corresponds to the probability
for an excitation in the matter to decay into the cavity and to decay from the cavity
towards a detector. Taking into account the possibility of re-absorption, the efficiency
is given by :

β = pNT →Cav (1 + pCav→NTpNT →Cav + ...+ (pCav→NTpNT →Cav)n + ...) pCav→Det

(6.26)
And one recovers the equation 6.21.

Efficiency of the ZPL emission

In the previous chapters, only the coupling between a Lorentzian emitter and a cavity
mode was considered. In such a case, let’s compare the efficiency formula (6.21) with
the results of chapter 1. The ZPL of a nanotube can be modeled by Lorentzian of
width γ + γ∗. For the emission and the absorption spectra, one has :

SZP L(ω) =
4π

γ + γ∗
1

1 +
(

2(ω−ωX)
γ+γ∗

)2

Where ~ωX is the exciton energy. Its convolution with Lcav(ω) leads to a spectrum
in cavity given by :

S̃ZP L(ω) =
4π
γall

1

1 +
(

2(ω−ωc)
γall

)2

As a consequence, at the the cavity resonance frequency S̃emi(ωc) = S̃abs(ωc) =
4π
γall

.

And the efficiency reads :
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βLorentzian =
κ

κ+ γ + κγγall

4g2

This result is exactly the one of eq. (1.63).
Now, the full nanotube spectrum Semi(ω) is composed of the Lorentzian SZP L(ω)

and the phonon wings SP W (ω). Let’s write it as a function of the branching ratio
BR :

Semi(ω) = BR · SZP L(ω) + (1 −BR) · SP W (ω) (6.27)

The K(t) function can also be written in two parts

K(t) = KZP L(t) +KP W (t) (6.28)

With KZP L(t) ≡ BR. By definition, the phonon wings do not contribute to
the main line :

[

∫∞
0 eiδtKP W (t)dt

]

δ=0
= 0. As a consequence, one can approximate

K(t) ≃ KZP L(t) in the population evolutions of eq. (6.16), leading to :

d〈a†a〉
dt

≈ 2g2BR ·Re
[∫ t

0
ds e−γall(t−s)

(

〈σ+σ−(s)〉 − 〈a†a(s)〉
)

]

− κ〈a†a〉(6.29)

d〈σ+σ−〉
dt

≈ −2g2BR ·Re
[∫ t

0
ds e−γall(t−s)

(

〈σ+σ−(s)〉 − 〈a†a(s)〉
)

]

− γ〈σ+σ−〉(6.30)

For a pure dephasing γ∗ much larger than the other losses, it leads to :

d〈a†a〉
dt

≈ 2g2BR ·
(

〈σ+σ−〉 − 〈a†a〉
)

− κ〈a†a〉 (6.31)

d〈σ+σ−〉
dt

≈ −2g2BR ·
(

〈σ+σ−〉 − 〈a†a〉
)

− γ〈σ+σ−〉 (6.32)

These expressions are the same than the ones of eq. (1.52) provided that the
coupling is replaced by g

√
BR. To conclude, the coupling gtot of the whole dipole

(including the ZPL and the phonon wings) with the cavity is related to the ZPL
coupling gZP L by :

gZP L = gtot
√
BR (6.33)

6.2 Experimental derivation of the cavity efficiency

In the previous section, the efficiency of an emitter (such as a carbon nanotube) in a
cavity was derived in a very general way. It depends on five quantities : first the
leaking rate of the cavity κ, second the decay rate of the emitter in the absence of
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the cavity γ, third the coupling between the emitter and the cavity, and finally the
absorption and emission spectra of the emitter.

In the following, the methods to measure the efficiency spectra are explained and
the results of the fit to the theoretical model are given. The cavity length is varied
to explore the dependence of the effect on the mode volume, and the asymptotic
limits of the efficiency are given.

6.2.1 Experimental “reconstructed” spectra

For a given cavity length, the output spectrum can not be directly compared to the
free-space spectrum as it covers only a small spectral portion of it. Nevertheless, if
one sweeps the cavity energy, one obtains a “reconstructed spectrum” that maps
out the efficiency of the CNT-cavity coupling as a function of the detuning. Even
though this process is technically very simple, many biases can arise : first, if the
nanotube undergoes spectral diffusion during the sweep, the reconstructed spectrum
is distorted. Second, one must take care of cavity’s higher order modes contribution.
One may also expect a distortion arising from the relative position of the nanotube
to the field intensity maximum as a function of the energy of the cavity. However,
the spectrum of a nanotube is only 10 nm broad (including the phonon wings) while
λ/2 ≈ 450 nm, and the intensity variation is slow close to a field maximum. As a
consequence this effect is completely negligible.

Two different techniques are described below to reconstruct the cavity efficiency
spectrum : one consists in sweeping the cavity length step by step at a slow pace.
The second consists in scanning the cavity length at a fast pace in order to obtain
an overall integration time as short as the free-space one.

Step-by step method

As the cavity linewidth (80 GHz to 500 GHz or 300 µeV to 2 meV, depending on the
vibrations) remains below the full nanotube spectrum width (at least 5 meV), a way
to reconstruct the efficiency of the NT-cavity coupling consists in changing the cavity
length step by step. Each step must be small enough so that there is an overlap
in the range of wavelengths covered by the cavity for two consecutive positions. A
spectrum is acquired at each step. Such a measurement is given in figure 6.3a : the
map shows the intensity of the output of the cavity as a function of the emission
energy (abscissa) and cavity length (ordinate).

In order to obtain the efficiency spectrum of the cavity coupled emitter from the
map of figure 6.3a, two options are available : one consists in simply summing the
map along its columns. If the dwell time of the cavity is identical for all wavelengths,
the reconstructed spectrum fairly maps out the coupling efficiency. However, when
the cavity TEM00 mode is tuned out of resonance with the ZPL towards the low
energy, the cavity’s TEM01 mode can be in resonance with the blue side of the
NT spectrum (this depends on the spacing between the transverse mode, which
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(a) PL of a nanotube in a cavity (cavity mode
width : 80 GHz). The top part of the graph
is magnified 10 times to let appear the higher
order modes.

1.365 1.37 1.375 1.38 1.385

0

0.2

0.4

0.6

0.8

1

Energy (eV)

In
te

n
si

ty
 (

a.
u
.)

(b) In blue, the spectrum obtained by summing
the map over columns. In red, the spectrum
obtained by plotting the intensity along the
TEM00 cavity mode.

Figure 6.3 – Contribution of the high order mode for a cavity with low vibrations.

ultimately depends on the radius of curvature and length of the cavity, as shown
in eq. (3.15)). More over, for a given cavity mode n, a small contribution of the
high order mode of the n− 1 series can appear. As one can see in figure 6.3b, the
contribution of the high order modes is usually much lower, if not negligible, than
the one of the TEM00.

Typically, each line in fig. 6.3a corresponds to an acquisition of 1 s, and it takes
tens to hundreds of seconds to complete the full spectrum. As the acquisition time
in free-space is typically of 1 s, a direct comparison is complicated due to residual
spectral diffusion at time-scales longer than 1 s, which can disrupt the measurement.
Indeed, when a measurement is repeated over and over on a same nanotube it yields
some variability. These variations are neither seen with all the nanotubes nor all
the time with a given nanotube. One explanation for these variations could be that
during the runs, the cavity shifts sideways and thus decreases the coupling with the
nanotube. An other explanation could be the intrinsic variability of the nanotube’s
emission spectrum. Indeed, for some nanotubes, spectral diffusion does not restrict
to a mere spectral shift, but some changes in the spectral shape can occur during a
short time every now and then. As the cavity acquisitions are long, such changes
could occur during the acquisition, leading to a distortion of the spectrum.

This step by step method was used at the beginning of the study, with very
stable nanotubes, studied with fiber A. In particular, the spectra shown in chapter 5
and the data published in [212] are done this way. Nevertheless, due to the lack of
reproducibility with fibers B and C (small radius of curvature), this method was
discarded for the study presented in this chapter.
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Figure 6.4 – a) A nanotube is in the cavity formed by a plane mirror and a concave
one at the tip of an optical fiber. The cavity length oscillates at frequency Ω to
cover the full nanotube spectrum. b) A single nanotube PL spectrum in solid black.
The spectrum of the cavity, when in resonance with the ZPL, is depicted in solid
red. As the cavity length oscillates, the cavity spectrum is shifted to the dashed red
positions.

Fast-scan method

The TEM00 mode of the cavity is positioned at an energy just below the red-wing
of the nanotube’s spectrum. By means of a fast longitudinal translation with the
piezo stage, its position is then tuned up to an energy just above the blue-wing of
the nanotube’s spectrum. The process is repeated back and forth about 25 times
in 1 s. This process is depicted in fig. 6.4. Assuming that, in average, the cavity
spends an equal amount of time at each position1, the output obtained is directly
proportional to the CNT-cavity coupling efficiency. With this fast scan method, the
total acquisition time is the same than the acquisition time in free-space ; and the
possible effects of residual spectral diffusion are the same. The price to pay for this
shorter acquisition time is obviously a decrease in the signal intensity compared to
the step by step method.

In order to evaluate the reproducibility of the measurements, a method consists
in acquiring a given number of spectra, with the fast-scan method, and to evaluate
how different they are from each other. Actually, most of the spectra are similar, but
a few of them differ strongly : they typically display a lower maximum intensity and

1It is not trivial that that the driven motion of the cavity and its additional natural vibration
end up with a equal amount of time spent at each position. Let’s first note that the spectral range
of the tuning is chosen so that the start or stop position are out of resonance, so that an excess of
time spent in these positions does not affect the measurement. Furthermore, this fast-scan was tried
while sending a white light in an empty cavity. The output intensity was constant as a function of
the wavelength, showing the absence of measurable distortions.
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Figure 6.5 – In blue the cavity coupled nanotube’s spectrum, obtained by the fast
scanning method. In red, the same measure taken a few seconds later : significant
differences in the ZPL and wing intensities are observable. Experimental details :
pulse wave excitation at 800 nm at 0.7 ·Psat. Temperature 15 K. The nanotube under
study has already been introduced as Ganga, refer to table 5.4. Unless otherwise
mentioned, all the following figures are obtained under the same experimental
condition with the same nanotube.

a broader spectral width, as shown in figure 6.5. This effect may be due spectral
diffusion or blinking, as discussed in section 6.2.1.

Analyzing all the spectra individually is not necessary and may be particularly
unsuited if the emission intensity, and thus the signal-to-noise ratio, is low. Con-
sequently, it is interesting to work with averaged spectra. Let’s take fig. 6.6 as an
example : it shows two maps with fifty acquisitions for a single nanotube. On the left,
are the raw data, and on the right the processed data. The residual spectral diffusion
is taken care of by shifting the spectra with respect to the ZPL before summing. In
order to eliminate the distorted spectra, the ZPL is fitted to a Lorentzian for each
spectrum. Here, the 36 spectra kept have a mean of 410 ± 30 µeV while 14 spectra
discarded have a mean width larger than 600 µeV.

The result of the average with and without the distorted spectra is given is
figure 6.7. The difference is moderate, but the presence of these distorted spectra
can lead to an over estimate of the intensity emitted in the wings compared to the
intensity emitted in the ZPL. As this would lead to an overestimate of the coupling
efficiency, the distorted spectra are systematically removed from our measurements.

Finally, several bunches of fifty measurements are performed. Each bunch is
averaged as described. In figure 6.8, one can see that this method is very reproducible.
This is why it was chosen to carry out all the following measurement that way.
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(a) Raw data.
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(b) Shifted data. The distorted spectra were re-
moved

Figure 6.6 – Repeated PL spectrum measurements for a carbon nanotube in cavity.
Each horizontal line corresponds to a different run. Nanotube Ganga, refer to fig. 6.5
and table 5.4.
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Figure 6.7 – In blue the cavity cou-
pled nanotube’s spectrum, obtained
by shifting the scans and removing the
distorted ones and averaging all the
remaining ones. In red, the average
without removing the distorted spec-
tra . Nanotube Ganga, refer to fig. 6.5
and table 5.4.

1.39 1.395 1.4 1.405 1.41 1.415 1.42
0

0.2

0.4

0.6

0.8

1

Energy (eV)

In
te

n
si

ty
 (

a.
u
.)

 

 

Figure 6.8 – Repeated PL spectrum
measurements for a carbon nanotube
in cavity. Each color corresponds to
an average of fifty runs. Nanotube
Ganga, refer to fig. 6.5 and table 5.4.
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6.2.2 Fit of the experimental data

In the formula giving the efficiency in cavity, some parameters can be evaluated
independently. The cavity leaking rate κ for example can be estimated either from
the parameters of the mirrors (transmission and losses) or from an empty cavity
ring-down spectroscopy, as described in section 3.4.2. The decay rate of the emitter
in the absence of the cavity, noted γ is the same as the decay rate measured in
free-space γfs in section 5.2.3. It can thus be obtained from transient measurements
in free-space.

In order to fit the experimental cavity efficiency to the model of eq. (6.21), γ and
κ were systematically obtained by these independent methods. This way, the only
free parameter of the fit was g, which is the key parameter of the effect investigated.

Absorption spectrum

The expression of the cavity efficiency in equation (6.21) includes the absorption
spectrum of the emitter. Unfortunately, the absorption spectrum of a single nanotube
is difficult to access experimentally because of its low absorption cross-section [213].
This means that the absorption is below the signal-to-noise ratio of a typical ab-
sorption experiment. In order to overcome this issue, Liu et al. [214] used crossed-
polarization techniques to record the absorption of an individual nanotube on S22.
However, the absorption on S11 (ie : corresponding to the observed emission energy)
remains out of reach at the present time.

In chapter 3, the typical photoluminescence spectrum of a nanotube was described
and its main features were explained. It consists in a main Lorentzian line called
the ZPL and phonon-wings. For a Lorentzian line at energy ωX , the corresponding
absorption is a Lorentzian line at the same energy ωX [172].

In the case of a photon emission at ωX − δω assisted by the emission of a phonon
with energy δω, the corresponding absorption happens when a photon at energy
ωX + δω is absorbed and a phonon with energy δω is emitted In other words, the
absorption spectrum is the mirror image of the emission spectrum with respect to
ωX . One can consider that a localized exciton coupled to phonons in a nanotube
is similar to the case of a molecule containing a two-level system coupled to the
vibrational modes of the molecule. It is thus no suprise that the phenomenology
is similar to the Franck-Condon effect. Practically, the emission spectrum of each
nanotube investigated is recorded and the corresponding absorption is numerically
obtained, as shown in fig. 6.9.

Fit quality

In fig. 6.10, the blue dots show the efficiency of a nanotube in cavity2, measured
as described in section 6.2.1. The black dashed line is the normalized free-space

2The experiment is done under pulsed excitation, so as to compare directly with the transient
measurement experiments discussed in chapter 5.
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Figure 6.9 – In blue the emission spectrum of a single carbon nanotube in free-space.
In red, the absorption spectrum is numerically obtained by taking the mirror image
with respect to the ZPL (an approximation valid in the case of a single electronic
transition coupled to a phonon bath). Average over a hundred spectra acquired in
1 s. Nanotube Ganga, refer to fig. 6.5 and table 5.4

photoluminescence spectrum. The difference between the two is clearly visible : in
the cavity, the phonon wings are enhanced compared to the main line.

The absorption spectrum is obtained as described above. The cavity leaking
rate is 1/κ = 15 ps and the emission rate in free-space is 1/γF S = τF S = 71 ps. The
experimental efficiency is fitted to eq. (6.21), as depicted with a red line in the figure.
The value obtained for the coupling is ~gtot = 36 µeV. It corresponds to an efficiency
of β = 30% at the peak of the spectrum, as reported on the right axis of the figure.

As one can see, the fit captures very well the change of relative intensity in the
different parts of the spectrum. In order to estimate the uncertainty on the measured
value of gtot, the experiment is repeated ten times and each set of data is fitted. The
typical standard deviation is 10% of the mean value.

6.2.3 Evolution with cavity volume

In this section, the cavity length is tuned to investigate how the exciton-phonon-cavity
coupling evolves as a function of the cavity mode volume.

Aspect of the spectra

As already introduced in section 5.2.1, the tunability of the fibered micro-cavity can
be used to measure the effect of the coupling for several orders of the Fabry-Perot
and thus different mode volumes. In the case of the cavity used in the following
experiments, formed with fiber C, the minimum length obtained corresponds to 6λ

2

(mainly due to the concave depression depth and the field penetration in the mirrors).
Though this length is the one for which the highest Purcell factor is obtained, it
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Figure 6.10 – In dashed black, the experimental emission spectrum in free-space.
The blue dots give the measured efficiency in cavity (left scale). The red line is a fit
obtained from eq. (6.21). The resulting efficiency is given by the right scale. Average
over a hundred spectra acquired in 1 s (total). Nanotube Ganga, refer to fig. 6.5 and
table 5.4.

is possible to explore the coupling for different cavity lengths (and thus different
mode volumes), provided that the cavity remains stable. Here, the cavity radius of
curvature is 10 µm, so the stability limit is about 20λ

2
.

However, the measurements carried out are restricted to a narrower range for two
reasons. First a constraint of time : acquiring enough spectra to obtain uncertainty
estimation is a long process. Even though the nanotubes used in this study are buried
in polystyrene, they still display variations over time and it is consequently better to
minimize the amount of time between measurements that are compared. The second
reason is that the Purcell effect decreases with the volume. This means that the
longer the cavity length, the longer the acquisition time for a given signal-to-noise
ratio. In the different sets of experiments carried out, cavity lengths up to 12λ

2
were

explored. Here we present a more restricted study, but with better accuracy, and for
which all the data were acquired within 24h.

In figure 6.11a, a zoom is made on the red phonon wing of the carbon nanotube
and the evolution as a function of the cavity mode number is visible in color plots.
As the reader can see, when the cavity volume decreases, the phonon wing increases
at a faster pace than the ZPL. In order to exemplify this phenomenon, the ratio
of maximum intensity between the red wing and the ZPL is plot in fig. 6.11b. A
theoretical estimation, arising from eq. (6.21) is given in blue.

Comparison with other methods

Each efficiency spectrum displayed in figure 6.11 can be fitted to the model given in
eq. (6.21), and a coupling factor gtot can be extracted. In figure 6.12a, one can see
that this coupling factor evolution is consistent with the square root of the volume, as
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(a) Evolution of the intensity of the same nan-
otube coupled for selected mode volumes, labeled
by mode number. The dashed line is the free-
space spectrum. The x axis gives the energy of
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(b) Red dots : Ratio of intensity between the
maximum of the red wing and the maximum
of the ZPL as a function of the mode number.
The errorbars come from repeated measure-
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Figure 6.11 – Efficiency spectra for a cavity coupled CNT as a function of the mode
number (from 6λ

2
to 10λ

2
). Each curve corresponds to an average over fifty spectra

acquired in 1 s (total). Nanotube Ganga, refer to fig. 6.5 and table 5.4
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Figure 6.12 – Coupling factors and Purcell factors for different mode volumes extracted
from eq. (6.21) in red. The mode volume is deduced from the cavity free spectral
range (FSR). Each point is obtained from an average over fifty spectra acquired in
1 s (total). The measurement is repeated 10 times to obtain error bars. Nanotube
Ganga, refer to fig. 6.5 and table 5.4

expected from eq. (5.31). In fig. 6.12b, the Purcell factor is obtained from eq. (5.29),
with a quantum yield ηtot = 2 ± 1%3. The slope of F ∗

p = f(λ3/V ) gives an estimated
quality factor of 6500 ± 3500, while the measured one is 3500 ± 100. We ascribe this
discrepancy to an underestimation of the free-space quantum yield of this nanotube.

The value of gtot obtained from the above mentioned fits can be compared to
the value of gZP L obtained from the transient method by means of eq. (6.33). For
the nanotube Ganga, the branching ratio is BR = 0.40. The transient measurement
method was presented in section 5.2.3 : the free-space and cavity transient of the
same nanotube are measured and the corresponding coupling factor gZP L is obtained
from eq. (5.31).

The result of the transient measurement is compared to the value obtained from
the model in figure 6.13 : the black crosses give the value of gZP L extracted from
transient measurements (the corresponding error bars come from the uncertainty
in the extraction of the lifetimes). One can see that the two different estimations
(cavity efficiency fit in red, transient measurement in black) are in good agreement
with each other. The slightly lower values obtained from the transient method could
be explained by the vibrations of the cavity, as discussed in appendix C.

3The uncertainty on the efficiency is higher than the one announced in section 5.2.1, due to a
change of lens/fiber as well as an aging of the sample, potentially modifying the effective collection
efficiency of our setup.
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Figure 6.13 – Coupling factors gZP L for different mode volumes, from lifetime
measurements (black crosses), and spectrum distortion as given by eq. (6.21) (red
dots). The dashed blue line shows the 1/

√
V behavior. The mode volume is deduced

from the cavity free spectral range (FSR). Each point is obtained from an average
over fifty spectra acquired in 1 s. The measure is repeated 10 times to obtain error
bars. Nanotube Ganga, refer to fig. 6.5 and table 5.4

Asymptotic behavior

In the measurements, the coupling between a single carbon nanotube and the cavity
remains below 50 µeV, which is roughly an order of magnitude lower than the spectral
width of the ZPL. For such coupling values, its was shown in figures 6.10 and 6.11
that the single-photon source efficiency increases faster when the cavity in tuned in
resonance with the phonon wings than with the ZPL.

In order to understand better this effect, it is worth exploring the asymptotic
behavior of eq. (6.21). Let’s explore the case in which the cavity is in resonance with
the ZPL, at a frequency ωZP L and the coupling overcomes the loss rates (g ≫ κ, γ)4.
Since, at the ZPL frequency, the normalized absorption and emission intensity are
equal, the efficiency is simply the photonic losses over the total losses :

βg→∞(ωZP L) =
κ

κ+ γ
(6.34)

When the cavity is in resonance with a phonon wing at ωZP L +δω, the absorption
and emission spectra are related to each other through a Boltzmann distribution :

S̃emi(ωZP L + δω)
S̃abs(ωZP L + δω)

≈ exp(−~δω

kbT
) (6.35)

where T is the temperature, and kb the Boltzmann constant The asymptotic
behavior is given by :

4In such a case, one switches to the strong coupling regime, and a Rabi splitting becomes visible.
However the formula for the integrated efficiency β should still hold.
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βg→∞(ωZP L + δω) =
κ

κ+ γ exp(− ~δω
kbT

)
(6.36)

In figure 6.14, the cavity efficiency is simulated for different couplings ~gtot for the
nanotube investigated in section 6.2.3. The asymptotic limit for the ZPL is drawn in
dashed black and the asymptotic behavior of the spectrum is depicted by a solid red
line. At the limit the efficiency is almost constant on the red side, but remains lower
on the blue side because at low temperature the absorption of phonons is suppressed.

In other words, this phenomenon can be viewed as a non-coherent exchange of
energy : on the blue side, a photon emitted in the cavity mode has a high chance of
being reabsorbed (emission of a phonon) before it leaks out. On the contrary, on the
red side, if a photon is emitted in the cavity mode, it has very low chances of being
reabsorbed because it would need the absorption of a phonon. Interestingly, for high
coupling values, this process enables to overcome the usual limit of eq. (6.34) and to
reach a near unity efficiency.

Conclusion

In chapter 5, we had shown that cavity embedded carbon nanotube displayed a
strong anti-bunching when the cavity mode was resonant with their zero phonon line.
In this chapter, we have demonstrated that it was the case even when the cavity
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was tuned in resonance with one of the two wings of the spectrum, and we have
measured the effective single-photon source efficiency of the source as a function of
the cavity energy.

In order to account for the Purcell enhancement of the wings, we developed a
theoretical model, extending the results described in chapter 1 to a non-Lorentzian
emitter. In this model, the system is composed of an emitter box which can decay
towards the environment (pure loss) at a rate γ and towards the cavity box at a rate
proportional to the coupling g2 and the emission spectrum of the nanotube S̃emi.
An excitation in this second box can leak out of the cavity (useful losses) at a rate
κ or be reabsorbed with a rate proportional to the coupling g2 and the absorption
spectrum of the nanotube S̃abs.

The experimental measurement were fitted to the efficiency predicted with this
model, and the evolution of the efficiency was observed as a function of the cavity
volume. Decreasing the cavity volume, or more generally increasing the coupling g,
yields a faster increase of the phonon wings than of the ZPL. At the asymptotic limit,
the efficiency of red side of spectrum should approach unity (while the blue side
efficiency would remain limited at cryogenic temperature). The range of tunability
obtained, spanning over several meV), could be a milestone towards multiplexing
with single-photon sources.
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Conclusion

Individual single-wall carbon nanotubes are impressive for their mechanical and
electronic properties [14, 15]. Their optical study has also yielded appealing results,
such as the tunability of the emission energy with the diameter, the electrical
excitation [82] and the ability to behave as a single-photon source [21]. However,
their emission origins remain unclear, its efficiency is low and the unusual spectral
shape of the photoluminescence results from peculiar electron-phonon coupling.

In such quasi one-dimensional nanostructures, the exciton binding as well as the
dynamical carrier interactions (Auger effects) are particularly strong. Consequently,
these original emitters may bring up new features in the cavity quantum electrody-
namics regime, when few - an ultimately one - excitations are tightly coupled to a
very limited number of emission modes.

In order to dig into these phenomena, our approach was to study the very same
single emitter in free-space and in the CQED regime by means of an adjustable
cavity. For that, we built a spectrally and spatially tunable Fabry-Perot cavity. The
nanotubes were deposited on a planar mirror, and a second mirror was manufactured
at the apex of an optical fiber. This configuration enabled a reproducible and
reversible free-space to cavity switch by bringing the fiber at the location of the
emitter and by adjusting the distance between the two mirrors to tune the frequency
of the cavity. This cavity device has numerous assets : mode volumes as low as 2 µm3,
quality factors up to 105, adaptability to any kind of emitter within its reflection
stop-bands, possibility to compare the behavior of the very same emitter with and
without the cavity, ability to change the mode volume (adjusting the length by
steps of λ/2), and ability to couple the emission to a fiber, which is convenient for
applications.

With this setup we observed the rise of cavity quantum electrodynamics effects
with carbon nanotubes by analyzing the evolution of the dipole-cavity coupling
as a function of the cavity volume. For the lowest volumes, we obtained a strong
acceleration of the spontaneous emission rate, due to Purcell factors above 100. In
such cases, 99% of the light was emitted into the cavity mode, and the effective
efficiency of the source reached up to 50%, leading to a brightness of up to 10%. The
anti-bunching of photons was demonstrated both in free-space and in cavity, with a
typical value of the second-order correlation function at zero delay of 0.03 ± 0.02.

It turned out that the Purcell enhancement, as well as the anti-bunched emission,
were strong not only at the ZPL frequency but also when the cavity was in resonance
with any part of the phonon broaden nanotube spectrum. In order to account for
this effect, we extended the generalized Purcell model [35] to emitters undergoing
exciton-phonon coupling. We showed that the emission in the wings was enhanced
more strongly than on the main line, and that eventually, if the coupling increased,
the efficiency should remain low on the blue side but should tend toward unity on
the red side. This would lead to an almost constant efficiency over a spectral range
more than a hundred times higher than the cavity spectral width, opening the way
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to extensive multiplexing.
This experiment has a number of perspectives. In terms of applications, the

efficiency could be increased by reducing the volume of the cavity (by reducing the
concave mirror depression depth, for example) and by obtaining carbon nanotubes
with lower spectral widths. Indeed, CNTs have all their atoms at their surface, and
thus controlling the surroundings or wrapping them into chemical molecules is a mean
of tuning their optical properties [215]. Electrical excitation is already well studied [29]
and could be implemented with this setup for a stamped or suspended nanotube.
Interestingly, as quantum transport in nanotubes is well investigated, Coulomb
blockade [216] could be used to control the injection of charge carriers, and thus master
a single-photon source at the single excitation level. In the telecoms bands, single-
photon emission was demonstrated [27, 28]. Switching to such wavelengths would only
require to change the diameter of the nanotubes. Going to room temperature may
require more efforts. Though it doesn’t prevent anti-bunching [27], it is accompanied
by a broadening of the emission, and a consequent collapse of the Purcell factor.
In the dielectric cavity approach, an alternative path using plasmonic resonators is
considered.

For quantum cryptography, a figure of merit yet to be demonstrated is indistin-
guishability. In free-space, the indistinguishability, given by the ratio between the
spontaneous emission rate to the total dephasing, is below 2%. However, when a
nanotube is coupled to a cavity, the cavity acts as the effective emitter, incoherently
pumped by the nanotube. With our parameters, the theoretical indistinguishability,
obtained from the work of Grange et al. [205], would be 25%. Counter intuitively,
this value could increase if the ratios κ/γ and g/γ decreased. For example, going to
room temperature, and thus broadening the spectrum, may significantly improve the
indistinguishability (at the expense of the brightness).

Beyond the weak coupling regime, two other pathways would be interesting. The
first would be a single-nanotube based laser. In that case, the cavity finesse must be
increased in order to let the storage time overcome the spontaneous emission lifetime.
Several photons would then co-exist in the cavity mode, while the nanotube would
be repopulated by the pump, leading to stimulated emission.

Nevertheless, the most interesting prospect relies in the strong coupling regime.
Currently, the ratio between the coupling and the losses g/(γ + γ∗) ∼ 0.1 falls
an order of magnitude too low. However, in the last months, several groups have
demonstrated photoluminescence signals with a spectral width ~(γ + γ∗) < 50 µeV ,
roughly an order of magnitude lower than our current values. With such emitters,
the strong coupling seems reachable, provided that the cavity linewidth remains
below this value, and measurable if no artifacts (such as vibrations) broaden the
cavity width. In this regime, the exchange of energy between the cavity and the
nanotube becomes coherent, leading to mixed light-matter quasi-particles called
cavity polaritons.

The physics of cavity polaritons strongly depends on the dimensionality of their
matter part. The two-dimensional cavity polaritons have yielded Bose-Einstein
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condensation [217], as well as the generation of twin photons [218], while their zero-
dimensional counterparts are investigated for optical single-photon switches [219].
Due to their narrow diameter (below 1 nm), the high interaction between charge
carriers and the associated strength in the exciton binding, carbon nanotubes are
expected to give rise to strong non-linear polaritonic effects. In particular, the Rabi
splitting is proportional to the square root of the number of photons in the cavity. If
a photon is resonantly absorbed, then a second absorption is blocked because the
corresponding transition is no longer resonant. This photon blockade effect is a path
to all optical information processing.

To conclude, this work showed that carbon nanotubes are excellent candidates
for an on-demand efficient single-photon source at room temperature in the telecoms
wavelengths. Further strengthening of the coupling may open the way to the very rich
physics of one-dimensional cavity polaritons. And conversely, cavity polaritons could
be a tool to understand better the diffusion, and localization properties of excitons
in carbon nanotubes. Finally, the original setup built here is extremely versatile
and could be used to couple to other types of emitters, such as nano-diamonds or
molecules.
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GLOSSARY

(n,m) Chiral indices of a nanotube

β Efficiency, defined as the number of photons emitted into the cavity mode per
excitation pulse

βe =
F ∗

p

1 + F ∗
p

Extraction, i.e. percentage of photons emitted into the cavity mode.

δ = ωc − ωem Frequency detuning between the cavity mode and the emitter

ǫcav Cavity collection efficiency

ǫF S Free-space collection efficiency

η = γR

γR+γNR
Free-space quantum efficency of the ZPL, i.e. number of photons

emitted in the ZPL per excitation pulse

ηtot = η/BR Free-space quantum efficency of the nanotube, i.e. number of photons
emitted in the full spectrum per excitation pulse

γ Spontaneous emission rate in free-space

γ∗ Pure dephasing

γall = κ+ γ + γ∗

γcav = 1/τcav Spontaneous emission rate in cavity

γF S = γ = 1/τF S Spontaneous emission rate in free-space

γNR Non Radiative rate of a CNT (including the emission in the phonon wings)

γR ZPL Radiative rate of a CNT, i.e. number of photons emitted in the ZPL per
second

κ = 1/τstor Cavity decay rate

F Finesse of the cavity

L Losses in a dielectric mirror

R Radius of curvature

T Transmission of a dielectric mirror
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GLOSSARY

ωc Cavity mode resonant frequency

−→
Ch Nanotube chiral vector
−→
T Nanotube translation vector

τR = 1/frep Repetition rate of the excitation laser

θ Nanotube chiral angle

θout = λ
πw0

Cavity output half-angle

BR Branching Ratio, i.e. intensity emitted in the ZPL over intensity emitted in the
full spectrum (ZPL + wings)

c Speed of light

dt Nanotube diameter

DoS Density of states

f ′ Focal length of a lens

Fp =
3Q(λ/n)3

4π2V
Purcell factor

F ∗
p =

3Qeff (λ/n)3

4π2V
Generalized Purcell factor

g Coupling factor (between a dipole and a cavity mode)

g(2)(τ) Second order auto-correlation function

gZP L Coupling factor explicitly restricted to the coupling between the ZPL and the
cavity mode

I Intensity

kb Boltzman constant

L Cavity length

n Optical index

NA Numerical Aperture

P Excitation power

Psat Excitation power at which the saturation is reached

232



GLOSSARY

Q = ωc

κ
Quality factor of the cavity mode

Qeff = ( 1
Q

+ 1
Qem

)−1 Effective quality factor (emitter + cavity)

T Tempearture (in Kelvins)

V Geometrical volume of a cavity

Veff Effective mode volume of a cavity

w0 Waist of a cavity mode

APD Avalanche Photodiode

SWNT Single Wall Carbon Nanotubes

BRF Birefringent Filter

CCD Charged Coupled Device

DBR Distributed Bragg Reflecor

FSR Free Spectral Range

BR Branching Ratio

FWHM Full Width at Half Maximum

ZPL Zero Phonon Line
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APPENDIX A : DERIVATIONS

A.1 A tunable fiber Fabry-Perot microcavity

A.1.1 Beam waist

The waist is on the planar mirror, so z0 = 0. On the concave mirror, the curvature
is and Rn(L) = R. From 3.8, one gets :























Rn(L) = L
(

1 +
(

zn
R

L

)2
)

= R

(zn
R)2 = L2(R

L
− 1) =

(

πw2
0

λn

)2

w2
0,n = Lλn

π

√

R
L

− 1

A.1.2 Fiber mode

The radius of curvature immediately after the crossing of the concave mirror is given

by Rf =
R

nf − 1
. Let’s assume that the waist is still wf , the waist at the output of

the fiber. From equations 3.7 and 3.8, and taking the concave mirror as the origin,
one has :
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Using the definition of zR,f , given in eq. 3.10, one gets the waist of the fiber
mode :
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The waist position is the given by :
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A.1. A TUNABLE FIBER FABRY-PEROT MICROCAVITY


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Finally, let’s define Zf =
πw2

f

λ
and come back to an origin on the planar mirror :
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APPENDIX B : DRILLED
OBJECTIVE

This appendix reviews the properties of the drilled objective used for confocal-cavity
experiments.

B.1 Numerical Aperture

In order to test the effect of the drilling on the lens focusing abilities, the setup
depicted in figure B.1 is mounted. A collimated laser beam (HeNe, 635 nm) is sent on
the objective. Then a high numerical aperture objective (NA=0.7) is used to observe
the image focal point of the objective. The plan is imaged with a magnification of 75
on a camera, with pixels of 5 µm1. An example is given on figure B.2.

With the help of this setup, the intensity in the focal plane is measured. The
cylindrical symmetry of the problem was taken into account by averaging the intensity
measured on concentric circles, taking the maximum of the intensity as the center.
On figure B.3a the intensity as a function of the distance to this point is plotted for
the same lens before and after the drilling.

In order to model what happens, one can consider that the incoming beam is
a linearly polarized planar wave, homogeneous over the full lens clear aperture.
The focalization is computed following the work of Richards and Wolf on aplanetic
systems [220] : any ray converging towards the focal point (fig B.4) of the lens crosses
the gaussian reference sphere F at the height at which the corresponding incident
ray entered the system in the objective space. This sphere has a radius f (focal of
the lens) and is centered on the image focal point of the lens.

The height h of the incident ray is thus given by h = f sin(θ), where θ is the
divergence angle of the converging ray. As the energy is conserved, the incoming
beam (plane wave) carries as much energy as the output beam (spherical wave). In
polar coordinates (θ, φ) :

|E2| = |E1| · cos 1/2θ (B.1)

A thorough computation gives the field at the focal point F ′ [221] :

Ef (ρ, φ, z) = −A0 [i(I0 + I2cos2φ)êx + I2cos2φêy + 2I1cosφ)êz] (B.2)

with A0 the amplitude, k the wavevector and :

1Thorlabs DCC1545C
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B.1. NUMERICAL APERTURE

Objective
NA=0.68

High NA 

Objective
NA=0.7

camera

Focal plane of the objective

Figure B.1 – Schema of the setup with
which the objective properties are eval-
uated : a plane wave is focused with
the objective and the image plan is ob-
served with a high numerical aperture
objective.

Figure B.2 – Image of the image focal plane
of the drilled objective. The colors are
inverted.

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

Distance to spot center (µm)

N
o

rm
al

iz
ed

 I
n

te
n

si
ty

(a) Experimental

0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

Distance to spot center (µm)

N
o
rm

al
iz

ed
 I

n
te

n
si

ty

(b) Theoretical

Figure B.3 – Intensity of the beam as a function of the distance to the spot center.
In blue, the lens before drilling, in red after drilling.
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Q
S

θ

Figure B.4 – The focal sphere is noted F . A ray emerging from the optical system
meets this focal sphere at the same height h at which the corresponding ray entered
the system in object space. Adapted from [220] .
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Appendix B. Drilled objective




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I0(ρ, z, α) =
∫NA

0

√
cosθsinθ · (1 + cosθ)J0(kρsinθ)eikzcosθdθ

I1(ρ, z, α) =
∫NA

0

√
cosθsin2θ · J1(kρsinθ)eikzcosθdθ

I2(ρ, z, α) =
∫NA

0

√
cosθsinθ · (1 − cosθ)J2(kρsinθ)eikzcosθdθ

(B.3)

where NA is t he numerical aperture of the lens and Jn are the Bessel functions.
In order to model the complete imaging setup, the same computation must be

done again to simulate the high numerical aperture objective and the lens which
focuses on the camera. The effect is to spread the image. In can be taken into
account with a Bessel function :

Eimage(ρi, φi, z = 0) =
∫ θmax

0

∫ 2π

0
Efocal(ρ, φ, 0)

J1(kǫα)
kǫα

ρdρdφ (B.4)

Where ǫ is the distance between the position of the object point (ρ, φ) and
the position image point (ρi, φi) considered. The simulations for a drilled and a
not-drilled lens are plotted in figure B.3b. One can see that the agreement with the
experimental data is good for the first lobe but much less for the next ones. This
limitation may come from the fact that a plane wave was considered in input, while
experimentally a gaussian beam was sent on the lens.

The waist of the focused beam is defined as :

ω =
√

2π
∫∞

0 Ef (r)2 · rdr
∫∞

0 Ef (r)2dr
(B.5)

From the simulation one can derive this waist as a function of the obstructed angle
θmin at the center of the lens2 (integration between asin(θmin) and NA), as shown in
figure B.5a. An effective numerical aperture can be defined as the numerical aperture
giving the same waist for a non-drilled lens (integration between 0 and NAeffective),
as shown in figure B.5b. Thereby, one can estimate that the effective focal spot waist
is increased by less than 10% - in good agreement with experimental data - and
that the effective numerical aperture of the drilled lens is 0.62 instead of 0.68 for the
original lens.

B.2 Resolving power

An other figure of merit of a lens is its angular resolution, or resolving power, which
means its ability to separate point-like emitters located at a small angular distance
from each other. Rayleigh stated that two point sources are separated when the
principal diffraction maximum of one image coincides with the first minimum of the
other. Considering a circular lens, the Rayleigh criterion is given by

2This angle is simply the hole radius divided by the focal of the lens.

239



B.2. RESOLVING POWER

0.05 0.1 0.15 0.2 0.25

0.46

0.47

0.48

0.49

0.5

0.51

0.52

0.53

Obstruation angle (rad)

W
ai

st
 (

µ
m

)

(a) Waist as a function of the obstructed
angle at the center.

0.46 0.48 0.5 0.52 0.54
0.5

0.55

0.6

0.65

Waist (µm)

N
u

m
er

ic
al

 A
p

er
tu

re
 

(b) Effective Numerical Aperture as a func-
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Figure B.5 – From the simulations described in the text, one can get the effective
numerical aperture of the lens, which drops from 0.68 to 0.62 after drilling.

θ = 1.22
λ

D
(B.6)

where λ is the wavelength and D is the clear aperture (diameter) of the lens. For
a drilled lens, it can be considered that the aperture is a ring, with a ratio ǫ between
the clear aperture diameter and the obstructed diameter. The intensity after such
an aperture is [222, 223] :

I(θ) =
I0

(1 − ǫ2)2

(

2J1(x)
x

− 2ǫJ1(ǫx)
x

)2

(B.7)

With x =
π

λ
D sin θ. Resolving

2J1(x)
x

− 2ǫJ1(ǫx)
x

= 0, gives the first zero of the

intensity. A numerical computation gives the new Rayleigh criterion, for ǫ = 0.1 :

θ = 1.21
λ

D
(B.8)

The resolving power of the drilled lens is almost unchanged compared to the
pristine lens.
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APPENDIX C : EFFECT OF
THE VIBRATIONS

This appendix attempts to discuss the effect of the cavity vibrations, described in
section 3.4.2, on the estimation of the Purcell factor made in chapter 5.

In order to understand this effect, it is important to sort the timescales. First,
the spontaneous emission decay time is around 100 ps. Second, the vibrations (i.e.
the random changes in the cavity mode’s energy) happen on the millisecond range.
Finally, the acquisitions take seconds to hours. Consequently, one can decouple the
different phenomenons happening at different timescales. During a whole absorption
and spontaneous emission event, the cavity has a given spectral position. As the
acquisition happens on timescales much longer, it simply corresponds to an integral
over the different detuning explored by the cavity.

For the sake of simplicity, only the ZPL of the nanotubes is considered here.
Furthermore, the spectral diffusion (which would correspond to a random shift in
the nanotube emission energy on nanosecond to minutes timescales) is not taken
into account. Consequently, the spectrum of the emitter is approximated by a
Lorentzian of width ~(γF S + γ∗) = 300 µeV centered on a emission energy E, where
~γ∗ is the pure dephasing and ~γF S = 6.6 µeV corresponds to a free-space lifetime
τF S = 1/γF S = 100 ps.

The cavity mode is modeled by a Lorentzian line of spectral width ~κ = 30 µeV at
an energy detuned of ~δ compared to the emission energy of the CNT. The vibrations
are modeled as a Gaussian probability distribution for the detuning δ :

P (δ) = Ae−(~δ)2/2α
2

(C.1)

Where the FWHM of the Gaussian is 2
√

2ln(2)α = 10~κ (typical value measured

for fiber A), and A−1 =
∫∞

−∞ e−(~δ)2/2α
2

dδ is the normalization factor.

Photon count method Let’s recall the expression of the radiative rate of the
nanotube in cavity R(δ). From eq. (1.55) and (1.56), one gets :

R(δ) =
4g2

γall

(

1 +
(

2δ
γall

)2
) (C.2)

Where ~g = 30 µeV is the coupling strength, and γall = κ+ γF S + γ∗.
The effect of the vibrations on the photon counts can thus be encompassed in a

factor V :
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V =







∫ ∞

−∞

P (δ)

1 +
(

2δ
γall

)2dδ







−1

(C.3)

F ∗
p = V · F ∗

measured

For the parameters given above, V = 1.35. In other words, the generalized Purcell
factor measured by the photon counts method, without taking into account the effect
of the vibrations, is underestimated by 35%.

Transient measurement method However, in the case of the lifetime measure-
ment, the effect of the vibrations is more subtle : when the cavity is detuned from
the nanotube, the lifetime increases, but the flux of photon decreases. Consequently,
the more the cavity is spectrally detuned, the less this position contributes to the
measurement.

The intrinsic lifetime of the nanotube in cavity (at resonance, without vibrations)
τcav can be obtained from eq. (5.31) :

τcav =

(

1
τF S

+
4g2

γall

)−1

(C.4)

With the parameters above, τcav = 62 ps. Given eq. (1.55), the lifetime measured as
a function of the detuning τ(δ) can be expressed as :

τ(δ) =









1
τF S

+
4g2

γall

(

1 +
(

2δ
γall

)2
)









−1

(C.5)

The intensity emitted as a function of the time I(t) is given by :

I(t) ∝
∫ ∞

−∞
P (δ) ·R(δ) · e−t/τ(δ)dδ (C.6)

This quantity is numerically computed for the parameters given above, as shown
in fig. (C.1). The output is fitted to a mono-exponential decay, and the character-
istical time τ ∗

cav is extracted. The effect of the vibrations on the estimation of the
Purcell factor are given by :

V2 =
τF S/τcav − 1
τF S/τ ∗

cav − 1

F ∗
p = V2 · F ∗

measured

Here, one finds V2 = 1.27, or an experimental underestimation of 27%, which
is slightly more accurate than the value obtained for the photon counts method.
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Figure C.1 – Simulation of the tran-
sient of a CNT in cavity with (blue)
and without (red) vibrations.
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Figure C.2 – Underestimation of the Pur-
cell factor as a function of the FWHM of
the vibrations of the cavity. In red the
photon count method factor V , in blue the
transient method factor V2 and in black
the ratio V/V2.

However, one can see in fig. (C.2) that if the vibrations increase this discrepancy in-
creases (almost linearly). Consequently, we conclude that the transient measurement
method, though not immune the cavity vibrations, gives in general better estimations
than the photon counts method.
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APPENDIX D : CAVITY
EFFICIENCY WITH PHONON

COUPLING

The present appendix aims to give a detailed derivation of the model introduced
in chapter 6. Let’s recall that in all this model, we remain in the weak coupling
regime. In order to ease the reading, the structure remains similar to the one of the
corresponding chapter and the main formulas are redundant. In this way, the reader
willing to read the full derivation doesn’t need to go back and forth between the
main chapter and the following work.

D.1 Populations evolution of the system

D.1.1 Hamiltonian of the system

Hamiltonian

The Hamiltonian of the system is given by:

H = ~ωXσ
+σ− +~

∑

~k

ωkb
†
~k
b~k +~ωcava

†a+~σ+σ−∑(gkb~k + g∗
kb

†
~k
) + i~g(a†σ− −aσ+)

(D.1)
The damping and dephasing terms are described in the Lindblad form in the master
equation, given by L[C]ρ ≡ CρC† − 1

2

(

C†Cρ+ ρC†C
)

. Three terms are used for
cavity losses C1 ≡ √

κa, for exciton lifetime C2 ≡ √
γσ− and for pure dephasing

C3 ≡ √
γ∗σ+σ−. Details :

L[C1]ρ ≡ κaρa† − κ

2

(

a†aρ+ ρa†a
)

(D.2)

L[C2]ρ ≡ γσ−ρσ+ − γ

2

(

σ+σ−ρ+ ρσ+σ−
)

(D.3)

L[C3]ρ ≡ γ∗σ+σ−ρσ+σ− − γ∗

2

(

σ+σ−σ+σ−ρ+ ρσ+σ−σ+σ−
)

(D.4)

= γ∗σ+σ−ρσ−σ+ − γ∗

2

(

σ+σ−ρ+ ρσ+σ−
)

(D.5)

Polaron transformation

Now, let’s use the polaron transformation (which diagonalize the Hamiltonian in
the absence of exciton-cavity coupling). The unitary transformation U is given by
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D.1. POPULATIONS EVOLUTION OF THE SYSTEM

U ≡ σ+σ− ⊗D + σ−σ+ ⊗ 11, D = e−Ω and Ω ≡ ∑

~k

(

g∗
k

ωk
b†

~k
− gk

ωk
bk

)

.
Let’s focus first on the effect of the displacement operator D over the phonon

operators. We note ξk =
gk

ωk

, in the following expressions :

D†b~kD = b~k − ξ∗
k (D.6)

D†b†
~k
D = b†

~k
− ξk (D.7)

D†D = 1 (D.8)

Thanks to these relations, we can rewrite :






D†ωkb
†
~k
b~kD = ωk(b†

~k
− ξk)(b~k − ξ∗

k)

= ωkb
†
~k
b~k − (gkb~k + g∗

kb~k) + g2
k

ωk

(D.9)

The
g2

k

ωk

term is the polaron shift. Let’s renormalize the energies in order to

remove it (in the following calculation, the tilde label is dropped) :

ω̃X = ωX −
∑

~k

(

g2
k

ωk

)

(D.10)

By applying the full operator U we get :

U †ωkb~kb~kU = ωkb~kb~k − σ+σ−(gkb~k + g∗
kb~k) (D.11)

And the other part of the Hamiltonian with phonons writes :

D†σ+σ−∑(gkb~k + g∗
kb~k)D = σ+σ−

(

gk(b~k − ξk) + g∗
k(b~k − ξ∗

k)
)

(D.12)

= σ+σ−
(

gkb~k + g∗
kb~k − g2

k

ωk

)

(D.13)

Finally, we get the following expression for the full Hamiltonian :

H̃ ≡ U †HU = ~ωXσ
+σ− +~

∑

~k

ωkb~kb~k +~ωcava
†a+ i~g

(

a†σ−e−Ω −aσ+eΩ
)

(D.14)

In the polaron transformation picture, C operators became C̃ ≡ U †CU , namely
C̃1 =

√
κa , C̃2 =

√
γσ−e−Ω and C̃3 =

√
γ∗σ+σ− . Let’s give an example of

computation :
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Appendix D. Cavity efficiency with phonon coupling

U †C2U = (σ+σ− ⊗D† + σ−σ+ ⊗ 11)
√
γσ−(σ+σ− ⊗D + σ−σ+ ⊗ 11) (D.15)

= σ−σ+√
γσ−σ+σ− ⊗D (D.16)

=
√
γσ−e−Ω (D.17)

D.1.2 Master equation

Time evolution in the interaction Picture The next step is to study the time
evolution in the interaction picture. The non-interacting Hamiltonian is given by :

H0 = ~ωXσ
+σ− + ~

∑

~k

ωkb~kb~k + ~ωcava
†a (D.18)

In the interaction picture representation, the time evolution of an operator X reads
XI(t) = eiH0t/~Xe−iH0t/~. Here the interaction is given by :

V = i~g
(

a†σ−e−Ω − aσ+eΩ
)

(D.19)

Let’s compute the different terms :

eiH0t/~ae−iH0t/~ = ei~ωcavta†aae−i~ωcavta†a (D.20)

Let’s recall that for an operator X, we the Campbell-Hausdorff formula reads :

ei~ωcava†aXe−i~ωcava†a = X + ~ωcav[ita†a,X] +
(~ωcav)2

2
[ita†a, [ita†a,X]] + ... (D.21)

Here we have X = a and [a†a, a] = −a. Thus we obtain :

eiH0t/~ae−iH0t/~ = e−i~ωcavta (D.22)

eiH0t/~a†e−iH0t/~ = ei~ωcavta† (D.23)

Now let’s focus on the σ+ operator :
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D.1. POPULATIONS EVOLUTION OF THE SYSTEM

eiH0t/~σ+e−iH0t/~ = ei~ωX tσ+σ−
ae−i~ωX tσ+σ−

(D.24)

=

(

∑

n

(i~ωXt)n

n!
(σ+σ−)n

)

σ+

(

∑

n

(−i~ωXt)n

n!
(σ+σ−)n

)

(D.25)

=

(

1 +
∑

n>0

(i~ωXt)n

n!
(σ+σ−)n

)

σ+

(

1 +
∑

n>0

(−i~ωXt)n

n!
(σ+σ−)n

)

(D.26)

= σ+ +
∑

n>0

(i~ωXt)n

n!
(D.27)

= ei~ωX tσ+ (D.28)

eiH0t/~σ−e−iH0t/~ = e−i~ωX tσ− (D.29)

Finally, the time evolution of the interaction Hamiltonian is given by :

VI = i~g
(

e−i~δte−ΩI(t)a†σ− − ei~δteΩI(t)aσ+
)

(D.30)

Where δ = ωX − ωc and ΩI(t) = eit
∑

~k
ωkb~k

b~kΩe−it
∑

~k
ωkb~k

b~k

Master Equation The master equation is then given by:

d

dt
ρI(t) =

1
i~

[VI(t), ρI(t)] +
3
∑

j=1

L[CjI ]ρI (D.31)

where the sum corresponds to the three Lindblad operators C in the interaction
picture. The population of a given state A can be obtained from :

d < A >

dt
=

dTr(ρA)
dt

= Tr(ρ̇A) (D.32)

= Tr((
1
i~

[VI(t), ρ] + L[CjI ]ρ)A) (D.33)

= −Tr( 1
i~
ρ[VI(t), A]) + Tr(L[CjI ]A) (D.34)

= − 1
i~
< [VI(t), A] > +Tr(L[CjI ]A) (D.35)

Moreover, we have :
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Appendix D. Cavity efficiency with phonon coupling

Tr(L[Cj]A) = Tr(CjρC
†
jA− 1

2
C†

jCρA− 1
2
ρC†

jCA) (D.36)

= < C†
jAC > −1

2
< C†

jCA > −1
2
< AC†

jC > (D.37)

= −1
2
< [A,C†

j ]C > −1
2
< C†[C,A] > (D.38)

Let’s compute the population evolution for 〈a†a〉 :

d〈a†a〉
dt

= − 1
i~
< [VI(t), a†a] > +Tr(L[CjI ]a†a) (D.39)

= −g < e−i~δte−ΩI(t)[a†σ−, a†a] − ei~δteΩI(t)[aσ+, a†a] > (D.40)

−1
2
< [a†a,

√
κa†]

√
κa > −1

2
<

√
κa†[

√
κa, a†a] > (D.41)

= −g < e−i~δte−ΩI(t)a†[a†, a]σ− − ei~δteΩI(t)[a, a†]σ+ > (D.42)

−κ

2
< a†[a, a†]a > −κ

2
< a†[a, a†]a > (D.43)

= geiδt〈eΩI(t)aσ+〉 + ge−iδt〈e−ΩI(t)a†σ−〉 − κ〈a†a〉 (D.44)

The same procedure leads to the other population evolution :

d〈σ+σ−〉
dt

= − 1
i~

< [VI(t), σ+σ−] > +Tr(L[CjI ]σ+σ−) (D.45)

= −g < e−i~δte−ΩI(t)[a†σ−, σ+σ−] − ei~δteΩI(t)[aσ+, σ+σ−] > (D.46)

−1
2

< [σ+σ−,
√

γσ+eΩ]
√

γσ−e−Ω > −1
2

<
√

γe−Ωσ+[
√

γσ−eΩ, σ+σ−] >(D.47)

= −geiδt〈eΩI(t)aσ+〉 − ge−iδt〈e−ΩI(t)a†σ−〉 − γ〈σ+σ−〉 (D.48)

D.2 Derivation of the coherence term

D.2.1 Trace splitting

In the following, the term 〈eΩI(t)aσ+〉 is derived. The three other coherence terms
can be derived in an analogous way, and the results are given as well.

First, the trace can be split in two parts, one over the system composed of the
exciton and the cavity mode, labeled with the index S, and the other over the
phonon bath, labeled with the index B. Since eΩI(t) is acting on the phonons only,
one obtains :

〈eΩI(t)aσ+〉 = TrB

(

TrS

(

ρI(t)aσ+
)

eΩI(t)
)

(D.49)
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The next step is to formally integrate the partial trace. We first note that, if we
restrict the study to maximum one excitation in the light or in the matter, one gets :

TrS

(

3
∑

j=1

L[C̃1]ρ aσ+
)

= TrS

(

(κaρa† − κ

2

(

a†aρ+ ρa†a
)

) aσ+
)

(D.50)

= TrS

(

κρa†aaσ+ − κ

2

(

ρaa†aσ+ + ρa†aaσ+
)

)

(D.51)

= TrS

(

−κ

2

(

ρaσ+
)

)

(D.52)

= −κ

2
TrS

(

ρI(t)aσ+
)

(D.53)

TrS

(

3
∑

j=1

L[C̃2]ρ aσ+
)

= TrS

(

(γσ−ρσ+ − γ

2

(

σ+σ−ρ+ ρσ+σ−
)

) aσ+
)

(D.54)

= TrS

(

γρσ+σ+σ−a− γ

2

(

ρaσ+σ+σ− + ρaσ+σ−σ+
)

)

(D.55)

= TrS

(

−γ

2

(

ρaσ+
)

)

(D.56)

= −γ

2
TrS

(

ρI(t)aσ+
)

(D.57)

TrS

(

3
∑

j=1

L[C̃3]ρ aσ+
)

= TrS

(

γ∗σ+σ−ρσ−σ+ − γ∗

2

(

σ+σ−ρ+ ρσ+σ−
)

aσ+
)

(D.58)

= TrS

(

γ∗ρσ−σ+aσ+σ+σ− − γ∗

2

(

ρaσ+σ+σ− + ρaσ+σ−σ+
)

)

(D.59)

= TrS

(

−γ∗

2

(

ρaσ+
)

)

(D.60)

= −γ∗

2
TrS

(

ρI(t)aσ+
)

(D.61)

Finally :

TrS

(

3
∑

j=1

L[C̃j]ρ aσ+
)

= −γ + γ∗ + κ

2
TrS

(

ρI(t)aσ+
)

(D.62)
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This implies that :

d

dt
TrS

(

ρI(t)aσ+
)

=
1
i~
< [VI(t), ρI(t)aσ+] > +

3
∑

j=1

L[CjI ]ρI(t)aσ+ (D.63)

=
1
i~
TrS

(

[VI(t), ρI(t)]aσ+
)

− γ + γ∗ + κ

2
TrS

(

ρI(t)aσ+
)

Here we have an equation of the form dX
dt

+ γallX = 1
i~
Y , with γall = γ+γ∗+κ

2
.

Consequently, the previous equation can be formally integrated as (we suppose no
coherence at the initial time t = 0) :

TrS

(

ρI(t)aσ+
)

=
1
i~

∫ t

0
ds e− γ+γ∗+κ

2
(t−s)TrS

(

[VI(s), ρI(s)]aσ+
)

(D.64)

Applying the trace over the phonon bath part to the previous expression leads to:

eiδt〈eΩ(t)aσ+〉 = eiδtTrB

(

TrS

(

ρI(t)aσ+
)

eΩI(t)
)

(D.65)

= eiδtTrB

( 1
i~

∫ t

0
ds e−γall(t−s)TrS

(

[VI(s), ρI(s)]aσ+
)

eΩI(t)
)

(D.66)

=
1
i~

∫ t

0
ds eiδte−γall(t−s)Tr

(

[VI(s), ρI(s)]aσ+eΩI(t)
)

(D.67)

Let’s use the expression of VI :

[VI(s), ρI(s)]aσ+ = i~g[e−i~δse−ΩI(s)a†σ− − ei~δseΩI(s)aσ+, ρI(s)]aσ+ (D.68)

= i~g
(

e−i~δse−ΩI(s)[a†σ−, ρI(s)]aσ+ − ei~δseΩI(s)[aσ+, ρI(s)]aσ+
)

(D.69)

As we are tracing, we can use circular permutations :

Tr([a†σ−, ρI(s)]aσ+) = Tr
(

a†σ−ρI(s)aσ+ − ρI(s)a†σ−aσ+
)

(D.70)

= Tr
(

ρI(s)aa†σ+σ− − ρI(s)a†aσ−σ+
)

(D.71)

= Tr
(

ρI(s)(1 + a†a)σ+σ− − ρI(s)a†a(1 + σ+σ−)
)

(D.72)

= Tr
(

ρI(s)σ+σ− − ρI(s)a†a
)

(D.73)

Tr([aσ+, ρI(s)]aσ+) = Tr
(

aσ+ρI(s)aσ+ − ρI(s)aσ+aσ+
)

(D.74)

= Tr
(

ρI(s)aσ+aσ+ − ρI(s)aσ+aσ+
)

(D.75)

= 0 (D.76)
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The commutator rewrites :

[VI(s), ρI(s)]aσ+ = i~ge−i~δse−ΩI(s)Tr
(

ρI(s)σ+σ− − ρI(s)a†a
)

(D.77)

And finally the coherence term is given by :

eiδt〈eΩ(t)aσ+〉 = g
∫ t

0
ds e(iδ−γall)(t−s)

(

〈σ+σ−(s)eΩI(t)e−ΩI(s)〉 − 〈a†a(s)e−ΩI(s)eΩI(t)〉
)

(D.78)
Where the notation 〈σ+σ−(s)eΩI(t)e−ΩI(s)〉 stands for Tr(ρI(s)σ+σ−eΩI(t)e−ΩI(s)).

D.2.2 Non-Interacting Blip Approximation

In 1987, Leggett et al. published a review about the dynamics of a dissipative
two-level system [208]. In this review, several approximations that were already
employed in the literature were formally combined into the so-called non-interacting
blip approximation (NIBA). The NIBA can be applied to the exciton-phonon in
cavity system. The approximations correspond first to the introduction of the free-
bath dynamics and second to the fact that the bath reduced density matrix remains
unperturbed by the exciton-phonon state. Though the NIBA was first introduced as
path integrals, Dekker [209, 210] and Orth et al. [211] showed that it is equivalent
to :

〈σ+σ−(s)eΩI(t)e−ΩI(s)〉 NIBA≈ 〈σ+σ−(s)〉Tr(ρthe
ΩI(t)e−ΩI(s)) (D.79)

where ρth is the equilibrium thermal density matrix of the bath.

D.2.3 Trace over the phonon bath

Product of displacement operators

Let’s recall that ΩI(t) = ei~
∑

~k
ωkb~k

b~kΩe−i~
∑

~k
ωkb~k

b~k , Ω =
∑

~k

(

g∗
k

ωk
b~k − gk

ωk
b~k

)

and the
displacement operator is defined as : D = e−Ω. For a generic displacement operator
Dα = eαb† − eα∗b, we have :

DαDβ = Dα+βe
1

2
(αβ∗−α∗β) (D.80)

eiωtb†bDαe
−iωtb†b = Dαeiωt (D.81)

Here we can write (for a single phonon mode) :
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D = e−Ω = D−g∗
k

/ωk
(D.82)

D† = eΩ = Dg∗
k

/ωk
(D.83)

Thus :

eΩI(t) = ei~
∑

~k
ωkb~k

b~kDg∗
k

/ωk
e−i~

∑

~k
ωkb~k

b~k (D.84)

= Dg∗
k

/ωkeiωkt (D.85)

e−ΩI(s) = D−g∗
k

/ωkeiωks (D.86)

eΩI(t)e−ΩI(s) = Dg∗
k

/ωkeiωktD−g∗
k

/ωkeiωks (D.87)

Let’s note α = g∗
k/ωke

iωkt and β = −g∗
k/ωke

iωks. Then :

1
2

(αβ∗ − α∗β) =
1
2

|gk|2
ω2

k

(

−eiωk(t−s) + e−iωk(t−s)
)

(D.88)

= − i
|gk|2
ω2

k

sin(ωk(t− s)) (D.89)

The product of displacement operators becomes :

eΩI(t)e−ΩI(s) = e
−i

|gk|2

ω2
k

sin(ωk(t−s))
Dg∗

k
/ωk(eiωkt−eiωks) (D.90)

Tracing a displacement operator

At the thermal equilibrium (βth = 1/kT ), the density matrix is given by :

ρth = (1 − e−~ωβth)
∑

n

e−~ωβthn|n〉〈n| (D.91)

For a displacement operator, we have :

Tr(ρthDα) =
∑

m

〈m|(1 − e−~ωβth)
∑

n

e−~ωβthn|n〉〈n|Dα|m〉 (D.92)

= (1 − e−~ωβth)
∑

n

e−~ωβthn〈n|Dα|n〉 (D.93)

Let’s show that :

〈n|Dα|n〉 = e−|α|2/2Ln(|α|2) (D.94)

where the Laguerre polynomials are given by :
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Ln(x) =
ex

n!
dn

dxn
(e−xxn) (D.95)

We note xpq :

xpq = 〈p|eiωta†aDe−iωta†a|q〉 (D.96)

D = eαa†−α∗a = e−|α|2/2eαa†

e−α∗a (D.97)

Then its expression is given by :

xpq = eiωt(p−q)〈p|Dα|q〉 (D.98)

= e−|α|2/2eiωt(p−q)〈p|eαa†

e−α∗a|q〉 (D.99)

= e−|α|2/2eiωt(p−q)
∑

l,m

1
l!m!

(α)m(−α∗)l〈p|(a†)mal|q〉 (D.100)

⇒ if p−m ≥ 0 then p−m = q − l ⇒ p− q = m− l (D.101)

⇒ if p−m < 0 then it’s zero (D.102)

= e−|α|2/2
∑

l,m

1
l!m!

eiωt(m−l)(α)m(−α∗)l〈p|(a†)mal|q〉 (D.103)

= e−|α|2/2
∑

l,m

1
l!m!

(αeiωt)m(−(αeiωt)∗)l〈p|(a†)mal|q〉 (D.104)

= 〈p|Dαeiωt|q〉 (D.105)

Thus :

〈n|Dα|n〉 = e−|α|2/2
∑

m

1
m!m!

(−|α|2)m〈n|(a†)mam|n〉 (D.106)

= e−|α|2/2
n
∑

m=0

1
m!m!

(−|α|2)m

√

n!
(n−m)!

√

n!
(n−m)!

(D.107)

= e−|α|2/2
n
∑

m=0

(−1)m

m!

(

n

m

)

(|α|2)m (D.108)

= e−|α|2/2Ln(|α|2) (D.109)

Consequently, we obtain :
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Tr(ρthDα) = (1 − e−ωβth)e−|α|2/2
∑

n

(e−ωβth)nLn(|α|2) (D.110)

= (1 − e−ωβth)e−|α|2/2 1
1 − e−ωβth

exp(− |α|2e−ωβth

1 − e−ωβth
) (D.111)

= exp

(

−|α|2
2

(

1 + 2
e−ωβth

1 − e−ωβth

))

(D.112)

And

< n >= Tr(ρthn̂) =
e−ωβth

1 − e−ωβth
(D.113)

We finally get :

Tr(ρthDα) = exp

(

−|α|2
2

(1 + 2 < n >)

)

(D.114)

Trace for the relevant displacement operator

Until now we have considered only one mode k. But, as all the modes commute with
each other, the result for all the modes are simply the product of the results for each
mode. In the exponential, this becomes a sum over the modes k.

Tr(ρtheΩI (t)e−ΩI (s)) (D.115)

= Tr

(

ρthe
−i

|gk|2

ω2

k

sin(ωk(t−s))
Dg∗

k
/ωk(eiωkt

−eiωks)

)

(D.116)

=
∏

k

e
−i

|gk|2

ω2

k

sin(ωk(t−s))
exp

(

−|g∗

k/ωk(eiωkt − eiωks)|2
2

(1 + 2n(k))
)

(D.117)

=
∏

k

exp
(

1
2

|gk|2
ω2

k

(

−eiωk(t−s) + e−iωk(t−s)
)

− 1
2

|gk|2
ω2

k

|(eiωkt − eiωks)|2(1 + 2n(k))
)

(D.118)

=
∏

k

exp
(

1
2

|gk|2
ω2

k

(

−eiωk(t−s) + e−iωk(t−s) − (2 − eiωk(t−s) − e−iωk(t−s))(1 + 2n(k))
)

)

(D.119)

=
∏

k

exp
( |gk|2

ω2
k

(

e−iωk(t−s) − 2n(k) − n(k)(eiωk(t−s) − e−iωk(t−s)) − 1
)

)

(D.120)

=
∏

k

exp
( |gk|2

ω2
k

(

e−iωk(t−s) − n(k)|e−iωk(t−s) − 1|2 − 1
)

)

(D.121)

≡ K(t−s) (D.122)

By following the same procedure, we can get :

Tr(ρthe
−ΩI(s)eΩI(t)) = K∗(t−s) (D.123)

And :
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eiδt〈eΩ(t)aσ+〉 = g
∫ t

0
ds e(iδ−γall)(t−s)

(

〈σ+σ−(s)〉K(t−s) − 〈a†a(s)〉K∗(t−s)
)

(D.124)

D.3 Cavity efficiency

D.3.1 Emission and absorption spectra

From the works of Mahan [206, chap. 4.3.4] and Krummeheur [172, chap. 4.3.4], one
can show that :

Sabs(ω) = 2Re
[∫ ∞

0
dtei(ω−ωX)te− γ+γ∗

2
tK(t)

]

(D.125)

For the emission spectrum, by using the ZPL mirror symmetry, one gets a similar
expression by replacing K(t) by its complex conjugate :

Semi(ω) = 2Re
[∫ ∞

0
dtei(ω−ωX)te− γ+γ∗

2
tK∗(t)

]

(D.126)

D.3.2 Laplace transforms

Introduction

Let’s use Laplace transform to go further :

F (s) =
∫ ∞

0
e−stf(t)dt (D.127)

F ∗(s∗) =
∫ ∞

0
e−stf ∗(t)dt (D.128)

We recall for the convolution two functions f and g that :

L(
∫ t

0
dsf(s)g(t− s)dt) = L(f)L(g) (D.129)

Application for K(t)

Let’s note Q(λ) = L(K). Then :

L(e(iδ−γall)(t−s)K(t− s)) =
∫ ∞

0
dte−λte(iδ−γall)tK(t) (D.130)

=
∫ ∞

0
dte−(λ−iδ+γall)tK(t) (D.131)

= Q(λ+ γall − iδ) (D.132)
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For the complex conjugate, we have :

L(e(iδ−γall)(t−s)K∗(t− s)) =
∫ ∞

0
dte−λte(iδ−γall)tK∗(t) (D.133)

=
∫ ∞

0
dte−(λ−iδ+γall)tK∗(t) (D.134)

= Q∗(λ+ γall + iδ) (D.135)

Thus :

L
(

eiδt〈eΩ(t)aσ+〉
)

= g
(

L(〈σ+σ−(s)〉)Q(λ+ γall − iδ) − L(〈a†a(s)〉)Q∗(λ+ γall + iδ)
)

(D.136)
Now, let’s define the Lorentzian function Scav which represents the empty spectrum

of the cavity :

Lcav(ω) =
1

1 +
(

2ω
κ

)2 (D.137)

Let’s compute its convolution with the absorption spectrum :

(Sabs ∗ Lcav)(ω) =
∫ ∞

−∞
dxSabs(ω − x)Scav(x) (D.138)

∝
∫ ∞

−∞
dxRe

[∫ ∞

0
dtei(ω−ωX−x)te− γ+γ∗

2
tK(t)

]

Lcav(x)(D.139)

∝ Re
[∫ ∞

0
dte− γ+γ∗

2
tK(t)

(∫ ∞

−∞
dx ei(ω−ωX−x)tLcav(x)

)]

(D.140)

∝ Re
[∫ ∞

0
dte− γ+γ∗

2
tK(t)

(

ei(ω−ωX−κ/2)t
)

]

(D.141)

∝ Re
[∫ ∞

0
dtK(t)ei(ω−ωX)te−γallt

]

(D.142)

Let’s define the cavity modified absorption and emission spectra :

S̃abs(ω) =
(Sabs ∗ Lcav)(ω)
∫ Lcav(ω)dω

(D.143)

S̃emi(ω) =
(Semi ∗ Lcav)(ω)
∫ Lcav(ω)dω

(D.144)

We have (s is the coefficient of proportionality) :

S̃abs(ω) = 2Re [Q(γall − iδ)] (D.145)
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S̃emi(ω) = 2Re [Q∗(γall + iδ)] (D.146)

Expression of the cavity efficiency

We recall the population evolutions :







d〈a†a〉
dt

= geiδt〈eΩI(t)aσ+〉 + ge−iδt〈e−ΩI(t)a†σ−〉 − κ〈a†a〉
d〈σ+σ−〉

dt
= −geiδt〈eΩI(t)aσ+〉 − ge−iδt〈e−ΩI(t)a†σ−〉 − γ〈σ+σ−〉

(D.147)

Let’s apply a Laplace transform and set λ = 0. We note : I =
∫∞

0 〈σ+σ−〉 and we
recall that

∫∞
0 〈a†a〉 = β/κ, where β is the efficiency :







0 = 2g2Re
(

IQ(γall − iδ) − β
κ
Q∗(γall + iδ)

)

− β

−1 = −2g2Re
(

IQ(γall − iδ) − β
κ
Q∗(γall + iδ)

)

− γI
(D.148)

Let’s inject the absorption and emission spectra :

Re (Q(γall − iδ)) = Re (Q(γall − i(ωX − ωc))) (D.149)

= Re
[∫ ∞

0
dtei(ωX−ωc)te− γ+γ∗+κ

2
tK(t)

]

(D.150)

= Re
[∫ ∞

0
dte−i(ωX−ωc)te− γ+γ∗+κ

2
tK∗(t)

]

(D.151)

= Re
[∫ ∞

0
dtei(ωc−ωX)te− γ+γ∗+κ

2
tK∗(t)

]

(D.152)

= S̃emi(ωc)/2 (D.153)

Re (Q∗(γall + iδ)) = S̃abs(ωc)/2 (D.154)







0 = g2
(

IS̃emi(ωc) − β
κ
S̃abs(ωc)

)

− β

1 = g2
(

IS̃emi(ωc) − β
κ
S̃abs(ωc)

)

+ γI
(D.155)

We obtain :

β =
g2S̃emi(ωc)κ

g2S̃emi(ωc)κ+ g2S̃abs(ωc)γ + κγ
(D.156)

And the final result is :

β =
S̃emi(ωc)κ

S̃emi(ωc)κ+ S̃abs(ωc)γ + κγ
g2

(D.157)
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French Summary

En 1905, Albert Einstein s’est attelé au problème de l’effet photoélectrique, qui
concernait les échanges d’énergie discrets entre un champ électromagnétique et un
métal [1]. Afin de comprendre ce phénomène, il a introduit l’idée que la lumière
est composée de quanta d’énergie, par la suite appelés photons [2]. Le succès de sa
théorie a ouvert la voie au développement de la mécanique quantique, et à ancré
l’idée que la lumière ne pouvait être comprise que si elle était à la fois considéré
comme une onde, et un ensemble de corpuscules.

En particulier, une source de photons uniques peut être définie comme une source
émettant un flux de photons individuels. Ces photons ont une probabilité nulle d’être
séparés par un retard nul, et la lumière produite est qualifiée de dégroupée. Une telle
propriété ne peut être obtenue ou comprise avec des outils classiques. Dans les années
1960, la production de photons uniques a été réalisée en atténuant une source laser
jusqu’à ce que la probabilité d’émettre deux photons à la fois devienne négligeable.
Cependant, étant donné les statistiques poissoniennes de la lumière cohérente émise
par les lasers, cette probabilité ne pouvait pas tomber à zéro. La première preuve
expérimentale d’une lumière réellement anti-grappes a été obtenue avec des atomes
de sodium à la fin des années 1970 [3]., et a été suivi une décennie plus tard par des
sources de photons uniques fiables [4, 5].

Depuis lors, le domaine de la génération de photons uniques a toujours été en
développement, et plusieurs applications sont considérées. En particulier, les photons
pourraient être utilisés comme qubits, c’est-à-dire des bits d’information pour la
cryptographie quantique [6, 7]. Cette technique consiste en un moyen hautement
sécurisé de transmettre l’information, protégée de l’espionnage par les lois de la
mécanique quantique (en particulier l’impossibilité de mesurer sans changer le système
et le théorème de non-clonage qui affirme que la copie des données quantiques est
impossible). Néanmoins, en présence de plus d’un photon, la cryptographie quantique
devient vulnérable, d’où l’importance d’une véritable source de photon unique.

Cependant, l’émission de photons un par un n’est pas la seule exigence pour une
telle source. Elle doit également être à la demande, ce qui signifie que la génération de
photons peut être déclenchée par des impulsions optiques ou électriques ; sa luminosité,
définie comme la probabilité d’obtenir un photon pour chaque impulsion d’excitation
devrait idéalement être un ; et les photons devraient être indiscernables [9, 10], ce qui
signifie avoir le même paquet d’ondes. De plus, plusieurs propriétés pratiques sont
recherchées, comme la possibilité d’émettre dans les bandes de télécommunications
(1.3 µm et 1.55 µm), la capacité à travailler à température ambiante et la facilité
d’intégration dans les dispositifs, en vue d’applications.

Cette dernière exigence a conduit les chercheurs à étudier les nano-émetteurs
de matière condensée. Actuellement, la technologie la plus avancée est basée sur
des émetteurs quasi zéro-dimensionnels appelés boites quantiques. Des sources à
photons uniques brillantes, à la demande, avec un degré élevé d’indiscernabilité, ont
maintenant été obtenues [11]. Mais les boite quantiques subissent trois inconvénients



majeurs : l’extraction compliquée des photons de la source, la difficulté à émettre à
des longueurs d’onde de télécommunications [12], et à température ambiante.

Les nanotubes de carbone, sont un allotrope du carbone synthétisé en 1991 [13].
Ils se composent d’une couche d’atomes organisés dans un réseau en nid d’abeille
enroulé en forme de tube, ayant un diamètre nanométrique et une longueur micro-
métrique. Les recherches sur ces structures quasi unidimensionnelles ont longtemps
été confinées à leurs remarquables propriétés mécaniques (poids léger, haut module
Young) et électroniques (métalliques ou semi-conducteurs, mobilité élevée) [14, 15].
Leur première étude optique a été réalisée une décennie plus tard, lorsque O’Connell
et al. [16] ont réussi à isoler les nanotubes les uns des autres au moyen d’une
encapsulation micellaire, afin d’empêcher ainsi l’extinction de la photoluminescence.

La géométrie des nanotubes de carbone peut être entièrement caractérisée par
deux indices n et m, appelés indices chiraux. La plupart des propriétés électroniques
et optiques des nanotubes de carbone peuvent être prédites à partir de ces indices.
En particulier, certains nanotubes sont métalliques tandis que d’autres ont un écart
d’énergie direct, inversement proportionnel à leur diamètre. La synthèse d’un nano-
tube de carbone d’une espèce donnée (c’est-à-dire avec des indices chiraux donnés),
pour obtenir une énergie de transition donnée, est un champ de recherche propre.
Actuellement, la plupart des processus de synthèse produisent une distribution d’es-
pèces, mais les post-sélections peuvent apporter des puretés élevées [17]. Cependant,
l’origine de la photoluminescence dans les nanotubes de carbone est complexe : les
porteurs de charge sont confinés en raison de la géométrie quasi unidimensionnelle,
conduisant à des excitons très stables, dominant l’émission jusqu’à température am-
biante. [18]. La fonction d’onde excitonique déborde du tube et le rend très sensible
à la permittivité diélectrique de son environnement [19]. En conséquence, l’énergie
d’émission du nanotube de carbone ne peut pas être complètement comprise par ses
indices chiraux, mais dépend fortement de son environnement local. De plus, Vialla
et al. [20] ont montré que le spectre de photoluminescence était influencé par les
interactions entre l’exciton et les phonons unidimensionnels se propageant le long de
l’axe des nanotubes.

En 2008, Högele et al. [21] ont démontré qu’un seul nanotube de carbone pourrait
émettre une lumière dégroupée à température cryogénique. Cependant, le mécanisme
sous-jacent à ce phénomène reste flou. Il semble que les excitons multiples s’annihilent
à un rythme rapide par les processus Auger [22, 23, 24] et que l’exciton restant est
piégé autour d’un défaut dans le réseau de nanotubes, ou autour d’une charge dans
son environnement [25, 26]. De fait, le contrôle des défauts dans les nanotubes a
conduit récemment à la démonstration de l’anti-groupement à la fois dans les bandes
de télécommunications et à température ambiante [27, 28].

Un autre atout des nanotubes de carbone est leur capacité à être contactés et
excités électriquement, ce qui ouvre la voie à des sources à la demande intégrées
[29, 30]. Néanmoins, trois inconvénients majeurs entravent leur développement : la
difficulté d’obtenir un nanotube émettant à une longueur d’onde donnée (sélectivité
de synthèse et sensibilité à l’environnement), leur spectre optique complexe et leur



efficacité quantique limitée, c’est-à-dire leur probabilité d’émission par impulsion
d’excitation.

Dans ce travail, nous proposons d’associer un seul nanotube de carbone à une
cavité de Fabry-Perot. Ce couplage est un outil puissant pour étudier la physique
sous-jacente à la photoluminescence des nanotubes de carbone et pour renforcer leurs
caractéristiques en tant qu’émetteurs à un seul photon. L’effet Purcell [31] consiste en
une augmentation du taux d’émission spontanée et se traduit donc directement par
une augmentation de l’efficacité de l’émetteur. Plus le volume de la cavité est petit,
plus l’effet est fort. Cependant, le couplage d’une cavité à un seul émetteur nécessite
une adaptation spatiale - c’est-à-dire le positionnement du mode cavité sur l’émetteur
- et une adaptation spectrale - c’est-à-dire une même fréquence pour l’émission de
nanotubes et le mode cavité. Les cavités monolithiques habituelles, développées pour
les boites quantiques, sont inadéquates pour les nanotubes de carbone en raison
de la dépendance de leur énergie d’émission sur leur environnement immédiat. En
conséquence, le couplage d’un nanotube à de tels dispositifs repose sur le couplage
aléatoire, avec des taux de succès non pertinents pour des applications [32].

En revanche, nous avons adapté une technologie flexible développée dans le
domaine de la physique atomique [33]. Elle consiste en une micro-cavité ouverte
formée entre un miroir situé au sommet d’une fibre optique et un miroir plan sur
lequel sont dispersés des nanotubes de carbone à faible densité. La fibre elle-même
est insérée dans une lentille mobile. De cette façon, un nanotube de carbone unique
peut être étudié en espace libre par microscopie confocal et la fibre Fabry-Perot
cavité peut être accordée de manière déterministe spatialement (mouvement latéral
de la fibre) et spectrale (distance entre les miroirs) à l’émetteur.

La capacité d’étudier le même émetteur sans la cavité et pour différentes longueurs
de cavité (différents couplages) donne un aperçu inestimable dans la naissance des
effets de cavité de l’électro-dynamique quantique. Dans le régime de couplage faible,
la cavité apporte un éclaircissement accru de la source de photon unique via l’effet
Purcell. L’accordabilité de la cavité apporte également un moyen d’étudier l’effet
d’alimentation de cavité prédit par Auffèves et al. [34, 35]. Les émetteurs de matière
condensée usuels ont une largeur de raie plus étroite que la cavité dans laquelle
ils sont incorporés. Au contraire ici, les nanotubes de carbone ont une largeur de
raie d’au moins un ordre de grandeur plus grande. Dans ce cas, les caractéristiques
spectrales de la lumière émise (énergie, largeur spectrale) reproduisent celles de la
cavité, indépendamment de l’émetteur. Par conséquent, l’accord de la longueur de la
cavité apporte une accordabilité spectrale de la source de photon unique.

Si le couplage surmonte les pertes du système, on atteint le régime de couplage
fort. Dans ce cas, des particules mixtes lumière-matière, appelées polaritons, sont
créées. La physique des polaritons dépend fortement de leur dimensionnalité. Les
polaritons bidimensionnels ont donné la condensation de Bose-Einstein [217], ainsi
que la génération de photons jumeaux [218], tandis que leurs homologues à zéro
dimension sont étudiés pour les commutateurs optiques à un seul photon [219]. En
raison de leur diamètre étroit (en dessous de 1 nm), et de leurs excitons fortement liés,



les nanotubes de carbone sont d’excellents candidats pour comprendre la physique
unidimensionnelle des polaritons. Et inversement, les polaritons sont un outil pour
mieux comprendre la diffusion et les propriétés de localisation des excitons dans les
nanotubes de carbone.

Ce travail a été consacré au couplage d’un seul nanotube de carbone avec une
cavité Fabry-Perot fibrée de faible volume afin d’augmenter le taux d’émission
spontanée grâce à l’effet Purcell. Les nanotubes utilisés proviennent de solutions
commerciales et ont été enveloppés dans PFO pour éviter la formation de fagots. Ils
ont été déposés, avec une densité inférieure à un spot optique (limité par diffraction),
sur un miroir diélectrique plan par centrifugation. Du polystyrène a été ajouté pour
empêcher le clignotement, le vieillissement et diminuer la diffusion spectrale.

Un microscope confocal à balayage a été construit pour étudier la photolumi-
nescence de ces nanotubes de carbone uniques à température cryogénique. Les
observations - localisation spatiale, saturation, anisotropie de polarisation - sont
cohérentes avec la littérature. Quand un nanotube de carbone est excité, plusieurs
excitons (paires électron-trou fortement liées par le confinement unidimensionnel)
sont formés et diffusent le long de l’axe des nanotubes. L’un est piégé sur un site
localisé, en raison de défauts cristallins ou de charges dans le voisinage du tube,
conduisant à l’émission de photons uniques.

Les études de photoluminescence et de diffusion spectrale tendent à confirmer
que le spectre complexe des nanotubes de carbone, composé d’un pic Lorentzien
et de deux ailes latérales, provient des interactions entre l’exciton localisé et un
bain de phonons acoustiques se propageant le long de l’axe des nanotubes. Les ailes
correspondent à l’émission d’un photon à une énergie inférieure (resp. plus élevée)
plus l’émission (resp. l’absorption) d’un phonon. L’asymétrie correspond à un facteur
de Boltzmann (à température cryogénique, l’absorption de phonons est défavorisée).
Compte-tenu du caractère unidimensionnel des phonons, leur couplage à l’exciton
devrait diverger à basse énergie, conduisant à un élargissement de la Ligne à Zéro
Phonons. Cependant, les phonons à faible énergie sont supprimés, conduisant des
largeurs de ligne aussi basses que 300 microeV.

Dans cette étude, l’efficacité des nanotubes de carbone en espace libre était
comprise entre 1% et 5%, une gamme de valeurs incompatibles avec des applications.
Par conséquent, nous avons décidé de coupler un seul nanotube à un résonateur.
Dans ce cas, l’effet Purcell améliore l’efficacité de l’émetteur et canalise l’émission en
cavité, ce qui facilite l’extraction de la lumière. Cependant, les cavités monolithiques
couramment utilisées dans la matière condensée, conçues pour fonctionner à une
longueur d’onde donnée, avec un émetteur à un endroit donné, sont mal adaptées
aux nanotubes (la synthèse ne sélectionne pas complètement leurs caractéristiques
spectrales). Les groupes qui ont essayé de faire correspondre au hasard et d’émetteur



avec un résonateur confessent des taux de réussite d’un sur des milliers [32] ...
Au contraire, notre approche consistait à construire une cavité spectralement et

spatialement accordable. Les nanotubes ont été déposés sur un miroir, et le deuxième
a été fabriqué au sommet d’une fibre optique. Au moyen d’une ablation au laser CO2,
sa forme a été contrôlée avec précision : nous avons obtenu des dépressions concaves
avec des rayons de courbures aussi faible que 10 µm , des profondeurs inférieures
à 1.5 µm, conduisant à des volumes de mode effectifs inférieurs à 2 µm3. La fibre
a été insérée dans la lentille utilisée pour la microscopie confocale afin de faciliter
le passage de l’espace libre à la cavité de manière reproductible et réversible : une
fois un nanotube étudié en espace libre, la cavité est formée en amenant la fibre
à l’emplacement de l’émetteur. L’adaptation spectrale est obtenue en ajustant la
distance entre les deux miroirs. Ces cavités ont de nombreux atouts : volume en
mode faible, facteurs de qualité jusqu’à 105 , adaptabilité à n’importe quel émetteur,
possibilité de comparer le comportement du même émetteur avec et sans cavité,
possibilité de changer le volume de mode par pas de λ/2 ; et l’émission peut être
directement couplée à une fibre, ce qui est commode pour des applications.

Avec ces cavités, nous avons démontré des facteurs Purcell jusqu’à 120 pour les
volumes de mode les plus faibles. Dans ce cas, 99% de la lumière émise est dirigée
dans le mode cavité, et l’efficacité effective de la source atteint jusqu’à 50%, ce qui
conduit à une brillance allant jusqu’à 10%. L’émission de photons uniques a été
démontrée à la fois en espace libre et dans la cavité, avec une valeur typique de la
fonction de corrélation du second ordre à zéro délai de 3.

En outre, cette émission de photon unique améliorée par effet Purcell est possible à
la fois lorsque la cavité est en résonance avec la ZPL et lorsque la cavité était accordée
vers l’aile phonon rouge ou bleue. Pour en tenir compte, nous avons développé un
modèle sur l’effet de la cavité sur le couplage exciton-phonon. Nous avons montré
que l’émission dans les ailes est renforcée par rapport à la ligne principale et que, si
le couplage augmente, l’efficacité reste faible sur le côté bleu mais tend vers l’unité
sur le côté rouge. Cela conduirait à une efficacité presque constante sur une plage
spectrale plus de cent fois supérieure à la largeur spectrale de la cavité, ouvrant ainsi
la voie au multiplexage.

Cette expérience a plusieurs perspectives. En termes d’applications, l’efficacité
pourrait être augmentée en obtenant des nanotubes de carbone avec des largeurs
spectrales inférieures et en réduisant le volume de la cavité (en réduisant par exemple
la profondeur de la dépression concave). L’excitation électrique est déjà bien étudiée
[29] et pourrait être mise en œuvre avec cette configuration pour un nanotube sus-
pendu. Dans les bandes des télécoms, l’absorption de photon unique a été démontrée
[27, 28]. Le passage à ces longueurs d’onde ne nécessiterait que le changement du
diamètre des nanotubes utilisés. Aller à la température ambiante peut nécessiter
des efforts supplémentaires. Bien que cela n’empêche pas le dégroupage [27], cela
s’accompagne d’un élargissement de l’émission, et donc d’un effondrement du facteur
Purcell.

Pour la cryptographie quantique, une figure de mérite encore à démontrer est



l’indiscernabilité. Dans l’espace libre, l’indiscernabilité, donnée par le rapport entre
le taux d’émission spontanée et le déphasage total, est inférieure à 2%. Cependant,
lorsqu’un nanotube est couplé à une cavité, cette dernière agit comme l’émetteur
effectif, pompé par le premier de manière incohérente. Avec nos paramètres, l’indis-
cernabilité théorique, obtenue à partir des travaux de Grange et al. [205], serait de
25%. Contre intuitivement, cette valeur pourrait augmenter si les rapports κ/γ et
g/γ diminuaient. Par exemple, le fait d’aller à la température ambiante, et donc
d’élargir le spectre, pourrait améliorer significativement l’indiscernabilité.

Au-delà du régime de couplage faible, deux autres voies seraient intéressantes.
La première serait laser à base de nanotubes uniques. Dans ce cas, la finesse de la
cavité doit être augmentée afin de laisser le temps de stockage dépasser la durée de
vie de l’émission spontanée. Plusieurs photons coexistent alors dans le mode cavité,
conduisant à une émission stimulée.

Néanmoins, la perspective la plus intéressante repose sur le régime de couplage
fort. Actuellement, le rapport entre le couplage et les pertes g/(γ + γ∗) ∼ 0.1
Tombe un ordre de grandeur trop bas. Cependant, au cours des derniers mois,
plusieurs groupes ont démontré des signaux de photoluminescence de largeur spectrale
~(γ + γ∗) < 50 µeV , environ un ordre de grandeur inférieur à nos valeurs courantes.
Avec de tels émetteurs, le couplage fort semble accessible, à condition que la largeur
de la cavité reste inférieure à cette valeur, et mesurable si aucun artefact (tel que les
vibrations) n’augmente la largeur spectrale de la cavité. Dans ce régime, l’échange
d’énergie entre la cavité et le nanotube serait cohérent, conduisant à des quasi-
particules mixtes lumière-matière appelées polaritons. Si ces particules sont déjà
bien connues dans le cas des points quantiques, elles restent faiblement explorées
dans leur forme unidimensionnelle. Les nanotubes de carbone sont donc d’excellents
candidats pour explorer cette physique.

Pour conclure, nous espérons que ce travail a montré que les nanotubes de carbone
ont leur propre place dans la recherche pour une source efficace à la demande de photon
unique à température ambiante dans les longueurs d’onde des télécommunications.
Un renforcement supplémentaire du couplage peut ouvrir la voie à la physique
très riche des polaritons unidimensionnels. Et pour finir, la configuration originale
présentée dans ce travail est extrêmement polyvalente et pourrait être utilisée pour
coupler d’autres types d’émetteurs, comme les nano-diamants ou des molécules.
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