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Introduction

“Constraint inspires creativity.”

Biz STONE

“TRADITIONAL computing paradigms are currently reaching fundamental limits.

Alternative computing approaches exploiting the rich dynamics of coupled

oscillators could provide a solution to this problem. ”



2 INTRODUCTION

FROM face and speech recognition, movie recommendations and text translation to au-

tonomous vehicles, targeted advertising and fraud detection, there is a colossal demand

for human-like “artificial intelligence” in this era of massive data processing.

Personal or corporate computers, hand-held devices and even everyday objects and appli-

ances are increasingly required to go beyond logic and arithmetic operations that represent the

realm of traditional computing, and to perform cognitive tasks in which humans usually excel.

Recent breakthroughs in machine learning algorithms have opened a wide range of applica-

tions that were long thought to be out of reach for computers. Image recognition algorithms

now outperform humans in several situations [1], and in 2016 a computer won against a human

grandmaster at the strategic Go game [2].

Computer architectures and underlying complementary metal-oxide semiconductor (CMOS)

transistor technologies have been optimized for decades to perform billions of successive logic

and arithmetic operations per second with high precision and without error. At the architec-

tural level, computers use separate units for memory and computation, which induces a com-

munication overhead called the von Neumann bottleneck.

Most cognitive algorithms, however, have fundamentally different requirements. They func-

tion optimally in a massively parallel and distributed way, and are tolerant to noise and errors,

which makes traditional computers ill suited for such algorithms. Efforts are being made to

increase parallelism in computers with the advent of thousand-core graphics processing units

(GPU), to gain efficiency by reducing floating point precision, and to accelerate certain opera-

tions used by cognitive algorithms using specialized hardware such as tensor processing units

(TPU). Despite those improvements, supercomputers running machine learning algorithms

may require kilowatts (≈ 600kW for the Go game) or more to perform tasks that the human

brain executes with 20 watts [3] using unreliable neurons arranged in a parallel and distributed

topology that fuses computing and memory.

With information technology representing 10% of the worldwide electricity consumption in

2013 [4], CMOS technology reaching scaling limits [5], and increasing demand for low-power

cognitive computing in hand-held devices and Internet of things (IoT), these observations have

revived interest into alternative, and often brain-inspired computing systems. Many of these al-

ternative schemes employ dynamical systems as a computing substrate, exploiting the natural

energy minimization in physical systems to perform computations inspired by the dynamics

observed in the brain.

In particular, some approaches seek to leverage the dynamics of coupled oscillators for

computing. Oscillatory phenomena are very common in nature, and have been observed at

different scales in the human brain where they seem to have a computational role. Mathe-

matical studies also show that even small networks of a few coupled oscillators exhibit com-

plex dynamics including chaos, phase transitions and synchronizations. Moreover, recent ad-

vances in nanotechnology have allowed the fabrication of nano-scale, low-power and highly

integrable oscillator devices. These advances have triggered a surge of interest into the design
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of oscillator-based computing chips that could perform cognitive tasks efficiently by exploiting

the rich physics of coupled nano-oscillators.

However, proposed oscillator-based computing systems are not yet competitive with tra-

ditional CMOS due to the limitations of their architectures, the intrinsic constraints of nano-

oscillator technologies, and lack of powerful algorithms to run them in real-life contexts.

THIS thesis proposes and investigates new oscillator-based computing architectures com-

patible with current nano-oscillator technologies, and provides specially designed ma-

chine learning algorithms allowing them to process real-life cognitive tasks efficiently.

The first chapter of the thesis provides an intuition of oscillator dynamics, and their po-

tential computational role in the human brain. The mathematical origin of the computa-

tional capabilities of coupled oscillators is then explained through simple models. Using these

concepts, existing nano-oscillator technologies are detailed, together with their potential for

oscillator-based computing. An overview of existing computing architectures using those os-

cillators is then provided.

The second chapter presents a promising oscillator-based pattern classification idea that

was originally proposed in a purely mathematical context. A readout circuitry is designed and

its robustness investigated in order to propose a full-featured oscillator-based pattern classifi-

cation architecture. A thorough simulation analysis is then performed to investigate the com-

patibility of this architecture to the constraints of nano-technologies, as well as its scalability.

The chapter ends by presenting possible improvements and alternative versions of the archi-

tecture.

The third chapter presents a particular nano-oscillator technology: the spintronic vortex

nano-oscillator. It establishes a model of the device compatible with circuit simulation tools,

and uses it to show the compatibility of the device with the requirements of the proposed

oscillator-based classification architecture. A circuit coupling multiple oscillators to imple-

ment the oscillator-based classifier of Chapter 2 is then designed. A mathematical description

of the system, together with circuit simulations are used to investigate the compatibility of its

behavior to the one described in the case of generic oscillators in the second chapter.

The fourth chapter investigates learning algorithms that can be applied to the oscillator-

based classifier in order to train it to solve real-life classification tasks. After introducing ma-

chine learning principles and terminology, the theory of the oscillator-based classifier architec-

ture is translated into the framework of machine learning. A novel learning algorithm tailored

to this architecture is proposed, and its operation is tested on typical machine learning tasks.

Modifications of the architecture are then proposed to increase its computational power and

their effect is investigated on different classification tasks. Algorithms for an alternative version

of the architecture are also proposed and tested.

The fifth and last chapter focuses on a radically different approach. A true hardware ran-

dom bitstream generator based on purely stochastic nano-oscillators is proposed and investi-
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gated experimentally. The quality of the resulting bitstream is evaluated to confirm the validity

of the approach, and the effects of different environmental perturbations are investigated. The

generated random bits are then used in the context of probabilistic computing to feed a simu-

lated architecture performing low-power e-mail classification as spam or not spam.



Chapter 1

The computational power of

oscillations

“If you have pendulum clocks on the wall and start them all

at different times, after a while the pendulums will all swing

in synchronicity. The same thing happens with heart cells

in a Petri dish: they start beating in rhythm even when

they’re not touching one another.”

Henry Louis MENCKEN

“COUPLED oscillations are ubiquitous in nature and follow complex synchro-

nization dynamics. This Chapter explains how inspiration can be drawn

from oscillations present in the brain in order to leverage modern nanoscale oscilla-

tors for efficient computing. ”
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THIS CHAPTER defines the context of the thesis and its motivations. After introducing cou-

pled oscillators and the complex synchronizations they exhibit, it presents existing nano-

oscillator technologies capable of producing these behaviors on chip, and reviews architectures

leveraging their dynamics to achieve unconventional computing tasks.

Coupled oscillations and synchronization

In 2000, people walking at similar paces on the newly opened London’s Millennium bridge

caused vibrations that spontaneously synchronized their step, which further amplified the vi-

brations until the bridge started to sway [6]. This phenomenon intuitively illustrates how oscil-

lators (the humans walking) can synchronize when they interact (through the vibrations they

induce on the bridge).

Such coupled oscillations and synchronizations are ubiquitous in the environment: clap-

ping audiences spontaneously synchronize [7], circadian rhythms align to daylight cycles [8],

swarms of crickets end up chirping in unison [9], metronomes on the same table synchro-

nize [8], alternating current power grids stabilize by aligning their phases [10, 11]. Such phe-

nomena are also observed at higher scales such as stock markets [8] and ecosystems them-

selves [12].

This section provides an intuitive introduction to coupled oscillations and synchroniza-

tions, as well as their potential role in the human brain.

Intuitive definition of coupled oscillators and synchronization

Resonators and auto-oscillators

All systems with a periodic or quasi-periodic behavior can be seen as generalized oscillators.

Their frequencies are defined as the number of periods per second, and their state is defined by

an internal value called the phase. The way in which their oscillations are sustained separate

them into two main categories: resonators and auto-oscillators.

In resonators, oscillation is induced and maintained by a periodic source of power acting

on a system at a given frequency that does not depend on the state of the system [8]. A simple

example is a child on a swing being pushed by a blind parent, that is at a constant frequency

and regardless of the position of the swing. The swing then exhibits sustained oscillations only

when the frequency of the pushes is close to its resonant frequency, which is defined by the res-

onator parameters such as the length of the swing ropes. Because they amplify the oscillations

of a periodic source around their resonant frequency, resonators are mainly used as amplifiers

or filters. For example guitar bodies resonate to amplify the sound of the strings, while RLC

filters can discard frequencies that are far from their resonance. However, they always require

a modulated power source to oscillate.

On the contrary, auto-oscillators only require a constant power source but its effect de-
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pends on the state of the oscillator, which allows sustained oscillations. The net effect of the

power source is effectively modulated by the oscillator itself, and an isolated auto-oscillator ex-

hibits self-sustained oscillation at its natural frequency which is defined by its parameters [8]. A

typical example is the battery-powered pendulum clock which triggers a magnetic push every

time it reaches an extremal position. Other examples of auto-oscillators include direct current

motors, menstrual cycles, neurons, or blinking fireflies [8]. Note that an auto-oscillator can be

built by coupling a resonator with a feedback system.

Oscillator coupling and synchronization

It is convenient to introduce the concepts of oscillator coupling and synchronization through

the example of fireflies. Male individuals from most firefly species use periodic light signals

(bioluminescent blinking) to signal their presence to females. It has been observed that the

males from a given species quickly synchronize their signals and start blinking in unison to al-

low females of the same species to locate them more efficiently [13]. Each blinking firefly can

be modeled as an auto-oscillator as it has an internal self-sustained periodic clock advancing

at its natural frequency and making the firefly blink at the end of each period. Fireflies from

the same species have similar natural frequencies. As shown in Figure 1.1, a firefly can perceive

the blinking of neighboring fireflies and every time it perceives a signal, it takes an action de-

pending on the current state of its own clock. If it happens in the first half-period, it means that

the firefly blinked before its neighbor, to which it responds by slightly nudging its clock back in

time to reduce its advance. On the contrary, if a neighboring flash is detected during the second

half-period, the clock is nudged forward in time to catch up and blink slightly sooner the next

time [8, 14]. Through this mechanism, neighboring fireflies end up synchronizing until all the

males of the species in the area blink in unison. This is a typical example of coupled oscillators

that synchronize in frequency locking (they blink at the same frequency), and phase alignment

(they blink at the same time).

The amplitude by which firefly i nudges its clock when firefly j flashes corresponds to the

coupling strength from oscillator j to oscillator i . Typically, the stronger the coupling strength,

the more oscillators interact, and the more effectively they can synchronize. The coupling

strength is a critical parameter as it determines the dynamics of an ensemble of coupled os-

cillators. For example, heart pacemaker cells need to pulsate in perfect synchrony to avoid

fibrillation and are therefore strongly coupled, unlike some areas in the brain where excessive

synchronization between neurons causes epilepsy [9].
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Figure 1.1: The internal clock of the firefly on the left reaches the end of a period which causes
the firefly to blink. When they perceive it, the neighboring fireflies on the right adjust
their internal clocks: the top one is in advance so it nudges its clock back in time
while the bottom one lags behind and nudges its clock forward. This brings them
closer to synchrony with the firefly that blinked.

Another important concept in oscillator networks is natural frequency mismatch. When

two fireflies have clocks running at different speeds, they behave like auto-oscillators with dif-

ferent natural frequencies. The difference between their natural frequencies is called the natu-

ral frequency mismatch. At low mismatch, synchronization is harder but the two oscillators can

still synchronize by locking at a common frequency. However, synchronization becomes im-

possible above a threshold mismatch value. In the case of fireflies, this threshold has evolved so

that males of the same species can synchronize despite small variations in their clock speeds,

but Figure 1.2 shows that different species have very distinct natural frequencies, thus leverag-

ing this property to minimize interference.

Figure 1.2: Time trace of the flashes recorded on two different firefly species. The two species
have distinct natural frequencies which prevents synchronization between them.
Reproduced from [15].

Even though the firefly example provides the basic intuition behind coupled oscillators, it

represents a simple case. Networks of oscillators coupled in more complex topologies have

been shown to exhibit advanced synchronization behaviors, chaos and multi-scale oscillation

states [16, 17]. Many of these behaviors have also been observed in the human brain, which

suggests that the brain could be using these complex dynamics for functional purposes.
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Oscillations in the brain

From single neuron fluctuations to whole brain rhythmic signals, oscillations have been ob-

served in the brain at multiple scales and linked to its activity.

Neurons and synapses

Neurons are living cells thought to be the main information processing units of the brain.

The human brain contains a network of about 100 billion highly interconnected neurons [18],

which integrate, transform and transmit electrochemical signals from multiple neurons or sen-

sory organs, towards multiple other neurons or motor organs. This neural network is highly re-

current and exhibits diverse connectivity topologies at multiple scales. Neurons are connected

to each other through nano-scale electro-chemical channels called synapses through which in-

formation typically travels unidirectionally, from the pre-synaptic neuron to the post-synaptic

neuron.

Figure 1.3 provides a simple high level schematic of a neuron and shows its three main func-

tional parts: the synapses, the dendrites, and the axon. Dendrites are tree-shaped ramifications

of the cell body that receive information from other neurons through synapses and convey it to

the cell. The axon is a single long projection of the cell that transmits signals from the cell body

to post-synaptic neurons, and therefore acts as an outbound information channel.

Figure 1.3: Schematic centered on a neuron connected to two other (cropped) neurons. The
axon visible on the left can transmit an action potential to the neuron in the middle
through a synaptic connection. This event is then channeled by the dendrites of the
neuron in the center and integrated in its soma, along with other events received
from other synapses. This integration can induce an action potential that is then
transmitted by the axon towards the dendrites of the neuron on the right.

More precisely, the neuron is an excitable cell that maintains a gradient of ionic concen-

trations across its outer membrane, and therefore a voltage called membrane potential. When

a limited voltage perturbation occurs, the resting state potential is progressively restored by

ion pumps. However, when a sufficiently important positive voltage perturbation (depolariza-

tion) occurs, an electrochemical pulse called an action potential is generated, quickly travels
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through the axon, and activates the synapses at its extremity. This emission of an action poten-

tial is called firing or spiking. As they are connected to the dendrites of post-synaptic neurons,

those activated synapses then perturb the voltages of these neurons in turn. If the combined

depolarization induced by all its pre-synaptic neurons is sufficient, a post-synaptic neuron fires

as well. Once a neuron has fired, it enters a depletion period called the refractory period and

during which it is unable to fire. After the refractory period, the neuron returns to its resting

state [19].

Synapses can be excitatory and contribute to post-synaptic neuron firing, or inhibitory and

prevent the post-synaptic neuron from firing. The amplitude of the perturbation they induce is

also an important factor as different synapses have different weights in the integration process

of post-synaptic neurons. The total effect of an activated synapse on its post-synaptic neuron

varies from synapse to synapse, and can also depend on brain-scale hormonal signals or on

the types and states of pre and post-synaptic neurons [19, 20]. Furthermore, the properties of

synapses and neurons can change on longer time scales as part of the learning capabilities of

the brain [19, 21].

The interplay of those excitatory and inhibitory phenomena in complex and recurrent neu-

ral networks gives rise to oscillations at multiple scales that could be a means of information

processing.

Neural oscillations

Periodically firing neurons are common in human and animal nervous systems, and all neu-

rons can be seen as auto-oscillators as they fire periodically when subject to a constant stimu-

lus. However, certain neurons do not require external stimulation to fire periodically. Ensem-

bles of interacting neurons can also show auto-oscillatory group behavior at a higher scale.

Neurons of a particular class, called endogenous oscillators, spontaneously fire periodically

due to fluctuations of their own membrane potentials, and continue to oscillate when isolated

from other neurons. These neurons behave like auto-oscillators, and their internal clocks can

be accelerated or slowed down by other neurons, thus allowing synchronization [22–24].

Figure 1.4: Schematic of a half-center oscillator composed of two coupled neurons firing alter-
natively, and the time traces of their membrane voltages. Adapted from [25].

In other cases, the interaction between multiple neurons gives rise to higher scale auto-

oscillatory behaviors. A well-studied example is the half-center oscillator, a simple network of
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two coupled neurons commonly found in the nervous systems of animals [26]. Figure 1.4 shows

a half-center oscillator composed of neurons A and B. The effective interactions between the

two neurons are both excitatory and inhibitory. When neuron A fires, it inhibits neuron B, pre-

venting it from firing. However, this incoming spike also triggers a slow depolarization process

in neuron B, eventually leading to neuron B firing. The same process then happens to neu-

ron A. The membrane voltages of the two neurons plotted in Figure 1.4 show the periodic and

alternating behavior of the two neurons. Half-center oscillators behave like auto-oscillators,

and in the case when external inhibitory or excitatory signals are applied to their neurons, their

frequencies decrease or increase respectively, which allows coupled half-center oscillators to

interact and synchronize [25, 27].

At higher scales, oscillations involving large numbers of neurons can also be studied by

measuring mean electric or magnetic fields around given areas of the brain (electroencephalog-

raphy/EEG, magnetoencephalography/MEG) or by detecting increased blood supply resulting

from local neural activity (functional magnetic resonance imaging, positron emission tomog-

raphy, near-infrared spectroscopy). These techniques allowed the observation of both local os-

cillations and disparate groups of neurons oscillating in synchrony throughout the brain [28].

Figure 1.5 presents oscillations measured by electroencephalography (EEG) by detecting

large scale oscillations of the average electric potential of entire areas of the brain. The ob-

served oscillations can be used to detect the awareness state, sleep cycles, diagnose epilepsy

and brain damage [29], or even control robots by thought [30]. This suggests that oscillatory

neural activity is tightly linked to the function of the brain.

One example of a well studied neural oscillator is the circadian clock, which allows humans

and other mammals to keep track of the time of day. The circadian clock is an ensemble of

about 20,000 neurons of which many fire in synchrony and generate a 24-hour rhythm. This

network behaves as an auto-oscillator that actively synchronizes to day-night cycles [31]. Other

important examples of pace keeping auto-oscillators observed in the nervous system of most

vertebrates are central pattern generators. They consist of an ensemble of neurons, often in-

cluding endogenous and half-center oscillators, that oscillate at a tunable natural frequency

to coordinate rhythmic motor actions, including for example swimming and walking. Their

operation involves highly diverse and tunable synchronization capabilities [24].

Oscillatory behaviors are also associated to advanced cognitive activity and data process-

ing. For example, gamma oscillations, which are 30 - 100 Hz neural oscillations observed in

large areas of the brain, were linked to attention, memory and motor mechanisms [32–34].

These observations have motivated an important research effort to understand the way infor-

mation could be encoded and processed by neural oscillations.
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Figure 1.5: An example of electroencephalogram (EEG): time signal of the voltage measured
on the scalp of a sleeping patient, showing different oscillatory patterns at different
sleep stages. Credits: Univ. South Carolina Infant Development Laboratory and
Nature Group.

Oscillator-based information processing in the brain

Contrary to the transistors used by computers, neurons are slow (hundreds of activations per

second at most) but activate in a massively parallel way, show a high degree of variability as

each neuron is substantially different from the others, and appear to be noisy and unreliable.

It was shown that synapses have a probabilistic nature and can fail to transmit a signal more

than 90% of the time [35]. Moreover, significant random noise has been observed in neural

activity [36]. The way the brain robustly encodes and processes information is therefore funda-

mentally different from traditional computers, and coupled oscillations and synchronizations

are often considered as one of the mechanisms used by the brain to achieve this purpose [19].

It is likely that multiple coding schemes are used by the nervous system. The simplest one

is rate coding which consists in encoding an analog value as the spiking frequency of neu-

rons. Early experiments have shown that the sensory neurons of a muscle produce spikes at a

frequency that increases with the weight applied on the muscle [37]. This coding scheme is be-

lieved to be very common in sensory and motor neurons, and is also present in multiple other

areas of the brain [19].

Information can also be encoded in the joint activity of an ensemble of neurons sensitive to

different stimuli (population coding). It has been observed for example that the synchroniza-

tion of different subsets of neurons encodes frequency-domain information when listening to

spoken vowels [38].

Temporal coding, on the other hand, appears to encode information in the timing of emit-

ted spikes, and phase-of-fire coding in particular can represent information as the timing of

a spike relative to a background oscillation. Activity consistent with this mechanism appears

in the hippocampus of mice and is thought to be a means of encoding the distance to visually

observed landmarks. It is known as the theta precession. A background neural theta oscillation

(4 - 8 Hz) is present in this area of the brain. As the mouse approaches the landmark, some of

its neurons start to fire, and the closer it gets, the closer their spikes align with the background

theta oscillation [20, 39].
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Those neural coding schemes usually involve large populations of neurons which makes

them statistically robust to individual neuron variability, noise and lack of reliability. More-

over, oscillators made of large synchronized ensembles of neurons are less subject to noise and

behave in a more stable and deterministic way than single neurons [40].

However, noise and probabilistic behaviors can also be seen as assets for efficient data pro-

cessing in the brain [36]. Studies have shown that synaptic stochasticity can improve informa-

tion transmission [41], filter redundant information [42], and that noise can induce or improve

the synchronization of neural oscillations [43–47].

Coupled oscillations in the brain appear to be linked to data processing tasks, which sug-

gests that the brain could be leveraging the complex dynamics of oscillator networks for com-

putational purposes. This is a major source of inspiration for the design of neuro-inspired un-

conventional computing architectures but requires an understanding of oscillator theory, as

well as oscillator network modeling and simulation techniques.

Understanding auto-oscillator systems

In 1665, Christiaan Huygens first recognized the phenomenon of oscillator synchronization [8].

Since then, important theoretical and experimental research efforts have been deployed to un-

derstand and theorize oscillators and systems of coupled oscillators. As a result, various types

of oscillators showing different behaviors have been identified, modeled and simulated.

Relaxation oscillators

Relaxation oscillators as defined by van der Pol [48] are a very common type of oscillator involv-

ing dynamics at two distinct time scales: each period contains intervals of slow (integration)

and fast (firing) motion. Their oscillations typically do not resemble a smooth sine wave, but a

sequence of pulses. A pedagogical example of a relaxation oscillator is the water tank presented

in Fig. 1.6(a). The tap water fills the tank, progressively increasing its water level (integration).

When it reaches a threshold, the tank is emptied quickly (firing), and the cycle repeats. The

water outflow follows a periodic spike pattern as shown in Fig. 1.6(b).

The firefly example in Section 1.1.1.2 is also a relaxation oscillator: the internal clock of each

individual runs until a certain threshold that resets it and triggers a short light pulse, which

gives rise to periodic flashes.

Relaxation oscillator models applied to neuroscience are called integrate-and-fire oscillator

models. The auto-oscillator neurons mentioned in Section 1.1.2.2 are examples of integrate-

and-fire neural oscillators: their dynamics alternate between a slow voltage integration time

and, after a threshold is reached, a sudden ( 2ms) action potential that resets the voltage, gen-

erating a periodic spike train in the process.

Relaxation oscillators have been used to model various phenomena such as geysers, ther-
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Figure 1.6: A simple example of a relaxation oscillator. (a) Schematic of the water tank oscilla-
tor. (b) Water outflow as a function of time. Adapted from [8].

mostats [49] or heartbeats [50]. Because their dynamics span multiple time scales and can

display discontinuities, their analysis and modeling can be impractical. Their behavior has

therefore often been approximated by harmonic oscillator models otherwise used to describe

sine-shaped oscillations [51]. The most widely used and generic harmonic oscillator model is

the Kuramoto model.

Kuramoto oscillators and the intuition behind phase dynamics

The Kuramoto model [52] is one of the most widely used and generic harmonic oscillator mod-

els, and is famous for admitting analytical solutions in certain cases (see details in Section 1.2.2.3).

It captures the two main properties of auto-oscillators: the natural frequency and inter-oscillator

coupling. Despite its simplicity, it is able to predict advanced behaviors in complex networks

of oscillators and was successfully used to describe a wide range of oscillators such as chemical

reactions, firefly blinking, or earthquakes [53–57]. In particular, it is an important tool in neu-

roscience where it was used to model multiple neural oscillation phenomena including central

pattern generators and circadian clocks [8, 51, 58, 58–61]. The Kuramoto model is therefore

a valuable approach for modeling networks of oscillators in order to leverage their computa-

tional power.

Constructing the Kuramoto model

The Kuramoto model can be readily constructed from the basic intuition behind coupled auto-

oscillators provided in Section 1.1.1. As a starting example, an auto-oscillator A can be seen as

a clock with a needle continuously rotating anti-clockwise in a smooth fashion. The angle of

the needle θA (in radians) represents the phase of the oscillator. When nothing disturbs it, the
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clock runs at a constant number of turns per unit time: its natural frequency f 0
A (in Hz), which

is an intrinsic property of the oscillator. The evolution of its phase can then be written as:

θ̇A

2π
= f 0

A with θA(t = 0) = θ0
A , (1.1)

where θ̇A is the time derivative of the phase of oscillator A, and therefore its angular frequency.

θ0
A is the initial phase of the oscillator (the angle of its needle at t = 0). This is the Kuramoto

model for one oscillator.

Note : Phase is free

Note that the phase increases linearly with time, eventually going beyond 2π and reaching

arbitrarily large values. Even though θ = π and θ = π+2π correspond to the same state

of the system, resetting the phase at each period would involve a discontinuous jump in

the value of θ, and hamper its smooth description as well as the proper definition of its

time derivative θ̇. This implies that the phase of the oscillator effectively accumulates over

time.

The next step in this construction is to take into account the coupling between two inter-

acting oscillators A and B in order to capture their synchronization capabilities. As presented

in the simple firefly example in Section 1.1.1.2, the clock B is expected to accelerate clock A

when it lags behind B , and to slow it down when it is ahead of B . As the two clocks are peri-

odic, deciding whether clock B lags behind or is ahead of clock A implies evaluating the sinus

of the phase difference sin(θB −θA). Figure 1.7 shows that if the phase difference lies in the half-

period sin(θB −θA) > 0, then A lags behind B and needs to accelerate (positive contribution to

θ̇A), while if it lies in the other half-period sin(θB −θA) < 0, then A is ahead of B and needs to

slow down (negative contribution to θ̇A). These contributions bring sin(θB −θA) closer to 0, in

which case the two clocks show the same time. The same situation applies to the clock B , and

the two oscillators can synchronize.

The equations can then be rewritten to include this coupling term which yields the two-

oscillator Kuramoto model: 
θ̇A
2π = f 0

A +kA,B sin(θB −θA)

θ̇B
2π = f 0

B +kB ,A sin(θA −θB )
. (1.2)

ki , j (in Hz) is the coupling strength from oscillator j to oscillator i which quantifies the ampli-

tude of the frequency boost that oscillator j can cause on oscillator i . The higher kA,B is, the

more clock B influences clock A. f 0
A and f 0

B are the natural frequencies of oscillators A and B

respectively: they are the frequencies at which they oscillate when they don’t interact with each

other (when kA,B = kB ,A = 0).
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Figure 1.7: Phase response of an oscillator A subject to the influence of another oscillator B in
the Kuramoto model. (a) When the phase difference θB −θA lies in the half-period
sin(θB − θA) < 0, it means that oscillator A is ahead of B and slows down. When
the phase difference lies in sin(θB −θA) > 0, A is lagging behind B and therefore it
accelerates.

This approach generalizes to a network of N coupled oscillators, which implies N phase

equations, one per oscillator. The phase equation for oscillator i then reads:

θ̇i

2π
= f 0

i +
N∑
j

ki , j sin(θ j −θi ) . (1.3)

In that case, ki , j is the N × N coupling matrix of the network, which defines the coupling

strength from each oscillator j to each other oscillator i in the network. This model is the

simplest form of the N-oscillator Kuramoto model and successfully describes the dynamics of

many coupled auto-oscillators.

Synchronization of two Kuramoto oscillators

To provide a better understanding of the phase dynamics in Kuramoto networks, I have sim-

ulated the simple case of the two coupled Kuramoto oscillators shown in Figure 1.8, following

equations 1.2, and for different natural frequencies. The couplings are symmetric and defined

as k = kA,B = kB ,A = 10MHz. This two-oscillator case gives important insight into the influence

of natural frequency mismatch and into the principles of synchronization and entrainment.

Figure 1.8(b) shows the instantaneous frequencies of the two oscillators θ̇A(t )
2π and θ̇B (t )

2π as

functions of time in full lines. The dotted lines represent their natural frequencies f 0
A = 200MHz

and f 0
B = 100MHz. In this first example, the instantaneous frequencies of the two oscillators

fluctuate in time around their natural frequencies due to the coupling term in equations (1.2).

However, as in the case of fireflies (Section 1.1.1.2), the two oscillators can’t reach a common

frequency because their natural frequencies differ sensibly ( f 0
A − f 0

B = 100MHz).

In Figure 1.8(c), the natural frequency mismatch is lower: f 0
A − f 0

B = 30MHz. The instanta-

neous frequencies of the two oscillators appear to be more efficiently pulled together, as they
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Figure 1.8: Two coupled kuramoto oscillators at different natural frequencies. (a) Schematic
diagram. (b) Instantaneous frequencies of the oscillators (full line) and natural fre-
quencies (dotted lines) f 0

A = 200MHz and f 0
B = 100MHz. (c) Another simulation for

f 0
A = 130MHz and f 0

B = 100MHz (d) Simulation for f 0
A = 115MHz and f 0

B = 100MHz.

spend more time close to each other. However, phase jumps still occur periodically. This fre-

quency pulling phenomenon is called entrainment.

Figure 1.8(d) shows a case with an even lower natural frequency mismatch f 0
A− f 0

B = 15MHz.

After a transient period (about 50ns), the frequencies of the two oscillators lock to a common

frequency (107.5MHz). This is a typical example of synchronization with frequency locking.

This simple example illustrates that the behavior of the instantaneous frequencies of two

coupled oscillators depends on their natural frequency mismatch: the closer the oscillators

are to synchronization, the more their frequencies are attracted to each other on average. To

properly visualize and quantify this phenomenon, the mean frequencies of the oscillators can

be evaluated as functions of their natural frequency mismatch.

For this purpose, I have simulated the same system by varying the natural frequency of

oscillator A while keeping f 0
B = 100MHz constant, and evaluated the mean instantaneous fre-

quencies of the two oscillators. To achieve high precision, the simulation was run for T = 10s
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and the frequencies were averaged over the last 5 seconds to reject any transient period. Fig-

ure 1.9 shows the mean frequencies of the two oscillators in full lines and their natural frequen-

cies as dotted lines, as functions of f 0
A .

Figure 1.9: Mean frequencies (plain lines) and natural frequencies (dotted lines) of two coupled
Kuramoto oscillators A and B as functions of the natural frequency of oscillator A.

The simulation shows that when the natural frequency mismatch is high (for example f 0
A <

50MHz), the mean frequencies of the oscillators stay almost equal to their natural frequen-

cies. This shows that even though the instantaneous frequencies fluctuate in time due to the

coupling, the average influence of an oscillator on the frequency of the other is low when the

mismatch is high.

As f 0
A gets closer to f 0

B , the mean frequencies get closer to each other (increasing entrain-

ment) until f 0
A = 80MHz where the two oscillators synchronize. The synchronization region is

centered around f 0
B and spans 20MHz. This can be understood through equations 1.2 where

the frequency of oscillator A can be pulled down to f 0
A −kA,B = 190MHz at most and the fre-

quency of oscillator B can go up to f 0
B+B ,A = 110MHz, which can bring their frequencies closer

to each other by kA,B + kB ,A = 20MHz. This corresponds to the maximum natural frequency

mismatch that allows them to reach a common frequency by interacting with each other and

to synchronize.

These observations therefore provide two important intuitions on the dynamics of Ku-

ramoto auto-oscillators that can be leveraged for computational purposes:

• the entrainment between two oscillators increases with their coupling strength but de-

creases with their natural frequency mismatch.

• two oscillators can synchronize when their total coupling strength is higher than their

natural frequency mismatch.
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Analytical predictions in Kuramoto networks

Since its first formulation [52], the Kuramoto model has been an important research subject

in mathematics. The theory of Kuramoto networks is now very elaborate and can provide im-

portant predictive tools to build powerful oscillator systems, but key aspects of even simple

networks remain open questions.

An important observation is that the Kuramoto equations are fully scale invariant [8] and are

only sensitive to frequency or phase differences relatively to coupling strengths. This means

that shifting all natural frequencies or all phases in a Kuramoto system by the same amount

does not affect the dynamics. Moreover, multiplying both the natural frequencies and the cou-

plings by the same factor also leads to a fully equivalent behavior. This scale and shift invari-

ances therefore allow the Kuramoto model to be used consistently to describe different types

of oscillators running at different speeds.

Networks of Kuramoto oscillators have also been shown to exhibit high sensitivity to initial

conditions in certain cases, and even chaos [8, 16]. Theoretical approaches provide ways to

predict complex behaviors in networks of coupled oscillators, but those predictive capabilities

heavily depend on the structure and size of the network.

On one side, the two-oscillator problem presented above is fully solved analytically: closed

form expressions of the phases, average frequencies and synchronization ranges are available

given the natural frequencies and coupling values [8, 62]. Analytical predictions of the equilib-

rium points of the 3 and 4 oscillator Kuramoto models have also been published recently [63].

On the other side, the case of an infinite number of oscillators N →∞ was also successfully

studied. Kuramoto himself [52] provided analytical expressions allowing him to fully solve the

problem of a continuum of uniformly coupled oscillators with suitable distributions of natural

frequencies. The critical coupling value that induces a phase transition into a fully synchro-

nized state of such a network is also known but the stability of steady state solutions is still a

subject of research [11, 53, 56].

An important parameter that describes the synchronization state of a network with an infi-

nite number of oscillators N →∞ is the order parameter r defined by:

r e iψ = 1

N

∑
j

e iθ j , (1.4)

where ψ is the mean phase of the oscillators. The term r corresponds to the absolute value

of the mean of the complex phases of the oscillators and quantifies the phase-coherence of

the system. It converges to a stable value for an infinite number of oscillators and reaches its

maximum r = 1 when the phases of all oscillators add up constructively, or its minimum r = 0

when their phases take balanced values in [0;2π).
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Despite these advances, the case of a finite 4 < N < ∞ number of oscillators, which is the

situation relevant for this thesis, remains elusive. As Strogatz notes, "As of March 2000, there are

no rigorous convergence results about the finite-N behavior of the Kuramoto model" [53]. This

statement remains true today. Approximations have been provided to predict the oscillator

phases in special cases such as full synchronization of all the oscillators in a network [64]. These

approximations remain however impractical for applications.

One of the reasons of this lack of solutions is that the order parameter r behaves in a more

complex way in the finite-N case. Strogratz [53] writes: “Whereas Kuramoto’s approach had

relied on the assumption that r was strictly constant, [. . . ] nothing like that could be strictly

true for any finite N .” This suggests that more complex, and fluctuating synchronization states

are present in the finite-N case, making it the regime with the richest dynamics.

It is also important to note that, as the order parameter arises from the mean activity (mean

field) of a set of oscillators, it may be linked to neural oscillations in the brain, and more specif-

ically to EEG/MEG signals. Cabral et al. [61] note that in their model of neural oscillations “the

synchrony degree of the system (estimated using the Kuramoto order parameter) is strongly

correlated with the envelopes of 10.5-21.5Hz oscillations” corresponding to MEG signals.

As the theory of finite networks of Kuramoto oscillators does not provide enough predictive

power or is impractical for most applications, numerical simulations have proven to be an im-

portant approach for the study of complex oscillator systems.

Simulating Kuramoto networks

A Kuramoto network is described by a set of nonlinear differential equations that can be readily

integrated using standard numerical iterative methods.

Through their inherent flexibility and ease of use, numerical integration approaches have

provided important insight into the rich behavior of arbitrary Kuramoto networks by revealing

both expected and unforeseen complex phenomena. For example, simulation was used to an-

alyze complex partially synchronized states in Kuramoto networks [53]. It has also been used

to study different topologies of oscillator network connectivity and to successfully reproduce

complex behaviors observed in the brain [60] or in networks of nano-oscillators [17].

Figure 1.10 shows the phases of a two-dimensional network of locally coupled Kuramoto

oscillators simulated by Flovik et al. [17], providing a visual example of its complex dynamics

including the presence of vortices (Figure 1.10(c)). Figure 1.10(a) shows how the order param-

eter r increases from 0 without couplings (k = 0) to almost 1 for strong couplings (k ≥ 35MHz).

Snapshots taken at increasing coupling strengths are presented in Figure 1.10(b), and show

phase transitions towards more coherent states as the couplings increase.
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Figure 1.10: Simulation of a two-dimensional lattice of Kuramoto oscillators showing (a) the
evolution of the order parameter r as the coupling strength k increases, (b) maps
of the relative phases of the oscillators with increasing coupling strengths (1 to 4),
and (c) the relative phases of the oscillators in one of the maps, highlighting the
presence of vortices (dashed circles) with their polarities. Figure adapted from [17].

Integration method

In this thesis, simulations are carried out using the popular fourth order Runge Kutta

method as it provides high accuracy at reasonable computing times. The choice of the

integration time step d t has important implications: too high values degrade the accu-

racy of the results while too low values considerably slow down the simulation without

providing notable accuracy gains. In my simulations, I set the value of d t by reducing it

until the simulation results stopped changing, then further divided its value by 10.

In summary, numerical results have shown that the behavior of Kuramoto oscillators is

the most complex, rich and computationally promising in the case of finite-N weakly cou-

pled oscillator networks allowing multiple subsets of synchronized and free-running oscilla-

tors. Such networks exhibit complex behaviors and elude analytical description despite the

simplicity of the underlying model. Furthermore, the Kuramoto model can also be extended

to capture a larger part of the dynamics present in physical oscillators such as noise and extra

non-linearities.
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Noise and stochasticity

Noise is inherent to all physical systems above absolute zero temperatures, and can have im-

portant effects on the dynamics of oscillators by randomly perturbing their phases. It must

therefore be taken into account for the design of oscillator-based systems.

Experimentally, the noise present in an isolated auto-oscillator is typically quantified by the

Full Width at Half Maximum (FWHM, also called linewidth) of its power spectrum as measured

by a spectrum analyzer [65, 66]. Theoretically, noise in a Kuramoto oscillator is usually intro-

duced as a Brownian motion (random walk) of its phase resulting from white noise, and can be

set up to match experimental FWHM values for realism.

Noise has also been shown to reduce the stability of synchronization between oscillators.

High levels of noise can even prevent it altogether. This is mainly due to the fact that Gaussian

noise can agitate the phase of an oscillator to a point where it has to re-synchronize by skip-

ping one period. These noise-induced "phase slips" occur more frequently for higher noise

levels [8].

SDE integration

When noise is present, the Kuramoto model becomes a system of stochastic differential

equations (SDE). In that case, I used the Euler-Maruyama SDE integration method instead

of fourth order Runge Kutta. The iterative update equations of the phases in the noisy

Kuramoto model are then:

θi ← θi +
[

2π× f 0
i +∑

j
2π×ki , j sin(θ j −θi )+

√
2π×FWHM

d t
×N (0,1)

]
×d t ,

where d t is the timestep and N (0,1) a random number generator following a normal

distribution with mean µ= 0 and variance σ2 = 1.

Also note that the noisy two-oscillator Kuramoto model can be fully solved analytically

and the expression of the mean frequencies of the two oscillators as continued fractions

can be found in [8] p.242. I used this expression to verify the stochastic simulations.

Despite its locally negative effect on synchronization, noise can also be an agent of self-

organization. It has been shown that moderate noise helps stabilize global synchronization in

certain Kuramoto network topologies showing multiple stationary states [67], a phenomenon

reminiscent of noise-induced synchronization of neural oscillations (Section 1.1.2.2).

When the noise amplitude is too high, oscillators behave in a purely stochastic way, which

is out of the scope of the Kuramoto model. However, stochastic oscillators show promising

computational capabilities and are the focus of Chapter 5.



1.2 UNDERSTANDING AUTO-OSCILLATOR SYSTEMS 23

Non-linear oscillators: the Landau-Stuart model

The Kuramoto oscillator is qualified as isochronous or linear as the state of the isolated oscil-

lator is fully described by its phase θ and its frequency does not depend on the amplitude of

the oscillations. The state of a Kuramoto oscillator can be seen as evolving along a circle (Fig-

ure 1.11(a)), the radius of which is arbitrary and constant as it does not affect the dynamics.

This system owes its linearity to a proportional response to any applied perturbation.

On the contrary, the frequency of non-linear (or non-isochronous) oscillators depends on

their amplitude. For example, the frequency of the heartbeat in mammals changes with heart-

beat amplitude [68]. Neurons in animal brains, the locomotion of fish and reptiles [69], and

certain nano-oscillators [70] are also well described as non-linear oscillators.

The state of a non-linear oscillator typically converges to a stable oscillation orbit called

the limit cycle along which it oscillates at the natural frequency f 0, when isolated from any

source of perturbations. The stable amplitude ρ0 of the oscillations corresponds to the radius

of this cycle. As shown in Figure 1.11(b), the non-linear oscillator responds to an amplitude

perturbation by relaxing back to its limit cycle, altering the phase in the process.

Figure 1.11: (a) Linear oscillator state evolving along a circle. (b) Non-linear oscillator relaxing
back to its limit cycle (dashed circle) after a perturbation. Figure adapted from [8].

The equation that "describes the simplest nonlinear oscillator" as stated in [52] is the Landau-

Stuart equation [8] which assumes a quadratic influence of the amplitude on the frequency.

Without coupling terms, the amplitude ρ and the phase θ of a Landau-Stuart oscillator follow:{
ρ̇ = γ(ρ02 −ρ2)ρ

θ̇ = 2π f 0 +νγ(ρ2 −ρ02
)

, (1.5)

where γ is the damping coefficient for radius deviation that quantifies how fast the amplitude ρ

is pulled back towards its stable value ρ0 after a perturbation. ν is the dimensionless nonlinear

frequency shift that defines the non-linearity: it quantifies how much the frequency shifts from

the natural frequency f 0 due to a radius deviation. At ν= 0, the amplitude has no effect on the

frequency and the oscillator behaves like a linear Kuramoto oscillator.

The Kuramoto model and its non-linear generalization, the Landau-Stuart model, are fun-
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damental for the work in this thesis as they allow evaluating the behavior of arbitrary systems

composed of linear or non-linear oscillators. In order to design a neuro-inspired oscillator-

based computing architecture, the oscillator model needs to be tailored to the chosen physical

oscillator technology. The diverse zoology of potentially suitable physical oscillators is pre-

sented in the next section.

Available nano-oscillators

In this section, I review and summarize the main types of nanoscale auto-oscillators currently

available and potentially usable in oscillator-based computing architectures.

Relaxation nano-oscillators based on physical or chemical state switch-

ing

This particular type of nano-oscillator typically consists of a pair of electrodes enclosing an

oxide film, amorphous semiconductor or Mott insulator with an electrical resistance that de-

pends on its physical or chemical state. This state is in turn affected by the voltage applied at

the device terminals. Voltages above a high threshold Vth trigger an abrupt transition to a high

conduction state, resulting in a sudden drop of the device resistance. This behavior is called

“threshold switching”. This transition is reversible and the device resets to its higher resistance

state after a short time when the applied voltage goes below a low threshold.

Such a threshold switching device can be connected to a capacitor in order to produce a re-

laxation auto-oscillator. To illustrate this approach, Figure 1.12 shows the results of Sharma et al. [71]

on tantalum oxide nano-oscillators: Figure 1.12(a) presents a circuit including a threshold

switching device in parallel with a capacitor that behaves as an auto-oscillator, and Figure 1.12(b)

shows the time trace of the output voltage Vout and current Iout of the circuit. As the para-

sitic capacitor Cparas. in parallel with the device is connected to the voltage source VS through

a resistor RS , the voltage at the device terminals progressively increases. When the voltage

reaches Vth ≈ 6V, the device suddenly becomes conductive (≈ 300Ω), generating a current

spike through Rch2 and a quick discharge of Cparas.. The device stays conductive until the volt-

age is sufficiently low (≈ 2V) to allow it to reset to a high resistance state (≈ 100kΩ). The cycle

then repeats, producing a self-sustained periodic train of voltage spikes at the terminals of Rch2.

This circuit uses 700× 700nm2 wide CMOS-compatible nano-devices and behaves as an

auto-oscillator with a natural frequency tunable from 30kHz to 300MHz by adjusting the sup-

ply current using a MOSFET transistor. Sharma et al. [71] have also experimentally demon-

strated electrical coupling between two of these nano-oscillators both using direct electrical

connections and capacitive coupling, successfully achieving synchronization. The authors ar-

gue such devices could be scaled down to 3nm and reach gigahertz frequencies.

Unfortunately, data on the total power consumption of such oscillators is scarce (Pick-
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Figure 1.12: Figure adapted from [71] showing a tantalum oxide relaxation auto-oscillator.
(a) Auto-oscillator circuit. (b) Current and voltage as functions of time.

ett et al. [72] show single switching with less than 100 fJ). Efficient coupling circuits involving

more than two oscillators have yet to be designed, and due to their operation based on physical

transitions, limited device lifetimes are expected.

Similarly, architectures implementing spiking units inspired by biological neurons were

built using 100×100nm2 Nb2O5 devices [73] or by lacunar spinel compounds [74].

These relaxation oscillators were modeled using custom compact models depending on the

component but are also compatible with the the more general Van der Pol relaxation oscillator

model [8, 75]. The synchronization dynamics of large populations of such oscillators can also

be studied with the Kuramoto model [56].

With experimentally demonstrated wide frequency tuning, two-device coupling and syn-

chronization capabilities, relaxation nano-oscillators based on intrinsic threshold switching

are promising devices for the implementation of oscillator-based computing architectures [76],

but suffer from lack of efficient multi-device coupling methods and shorter lifetimes.

CMOS ring oscillators

CMOS ring oscillators leverage the finite propagation time of a signal through logic gates made

with transistors in order to implement auto-oscillators. Because they are built with transistors

only, they are a practical source of oscillating signals inside integrated circuits, and are heavily

used for this purpose. CMOS ring oscillators are typically made of an odd number of NOT

logic gates arranged in a ring as shown in Figure 1.13. The odd number of not gates, together

with propagation delays, prevents a stable state from establishing and induces permanent self-

sustained voltage oscillations in the circuit.
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Figure 1.13: Simplified schematic of a typical CMOS ring oscillator.

Using additional control transistors, it is possible to tune the natural frequency of a CMOS

ring oscillator to build a voltage-controlled oscillator that can reach multi-gigahertz frequen-

cies. Natural frequencies are tunable across wide ranges, for example from 13Hz to 407MHz [77]

or from 100MHz to 3.5GHz [78]. The size of a single oscillator heavily depends on the number

of gates, the control circuitry and the choice of CMOS technology. An example implementation

in 0.18µm CMOS requires 49×28µm2 [79]. Power requirements also vary heavily depending to

the circuit and technology. However, low energy designs are available, and consume for exam-

ple 6.75µW at 124MHz [80]. Ring oscillators can be modeled as non-linear oscillators [81], and

multiple ring oscillators can be coupled to achieve synchronization [82].

All these features suggest that ring oscillators could be used for all-CMOS oscillator-based

computing architectures, despite relatively high circuit area requirements.

Mechanical nano-oscillators

Nano-electromechanical systems (NEMS) are nano-scale systems containing moving (vibrat-

ing) mechanical parts. NEMS technology can be used to build nano-scale bridges, cantilevers

or more complex structures that can mechanically oscillate in one or more dimensions. Their

position, angle or deformation can both be measured and actuated through various techniques,

the most common ones being electrostatic interaction and piezoelectric effects. NEMS can be

co-integrated with CMOS and are already present in a wide range of commercial devices in-

cluding inertial measurement units (accelerometers, gyroscopes), micro-mirror arrays for DLP

video projectors or ink jet printer heads [83].

At first order, a typical NEMS cantilever behaves like a spring, and therefore a resonator. In

order to turn it into an auto-oscillator, it is necessary to use support circuitry that performs

a readout of the current position of the cantilever, and actuates the motion of the cantilever

depending on the readout in a feedback loop, as introduced in Section 1.1.1.1. To illustrate this

concept, Figure 1.14 presents the experimental work of Philippe et al. [84]: a NEMS cantilever

with co-integrated CMOS feedback circuitry, effectively implementing an auto-oscillator.
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Figure 1.14: Figure adapted from [84]. (a) SEM micrograph of a NEMS-CMOS auto-oscillator.
(b) Simplified schematic of the oscillator. (c) Output voltage as a function of time.

Figure 1.14(a) shows a micrograph of the system with a zoom on the NEMS cantilever, and

Figure 1.14(b) shows an equivalent schematic of the system. The position of the cantilever

is detected using the changes in capacity between the cantilever and the left electrode (left

black rectangle on the schematic). This signal is amplified by a minimal CMOS amplifier that

then actuates the cantilever in return using electrostatic interaction through the right electrode

(right black rectangle on the schematic). Figure 1.14(c) presents the resulting time trace of

the voltage signal generated by this auto-oscillator and shows sustained oscillations at about

8MHz. The area occupied by the whole circuit on chip using 0.35µm technology is 50×70µm2,

which is still relatively large.

NEMS auto-oscillator frequencies can reach hundreds of MHz [85] and natural frequency

tuning was demonstrated using multiple approaches including dynamically adjusting the feed-

back circuit [86] or the stiffness of the moving part using piezoelectric materials [87]. These os-

cillators also show very low phase noise levels. For example, Fenget al. [85] measured FWHM =
9kHz at f 0 = 428MHz.

Moreover, coupling and synchronization of multiple NEMS oscillators has been demon-

strated experimentally. The most straightforward coupling approach is mechanical coupling [88]

where oscillators interact with each other through vibrations. As the magnitude of the vibra-

tions decreases with distance, this is mostly a local coupling scheme that involves neighboring
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oscillators. Nearest-neighbor coupling can also be achieved through optical coupling [89]. Fi-

nally, electrical coupling can achieve local but also global coupling by actuating the oscillators

using the sum of the signals measured on individual oscillators [90]. NEMS oscillators have

been successfully modeled using the Kuramoto model [91, 92] but also more complex models

describing their dynamics more precisely [90].

With their industry standard fabrication techniques, CMOS integration, low noise and demon-

strated natural frequency control, coupling and synchronization, NEMS oscillators are promis-

ing devices for oscillator-based computing architectures, but tend to require high circuit areas.

Josephson junction nano-oscillators

A Josephson junction consists of two superconductors separated by a thin insulating layer.

When subject to a constant voltage, the current through a Josephson junction oscillates at a

well-defined fundamental frequency, ν = V /Φ0, where Φ0 ≈ 2.07mV/THz and V is the time-

averaged voltage across the junction [93]. Under certain voltage and current conditions, the

output signal of the oscillator is nearly sinusoidal. The natural frequencies of such oscillators

are also voltage-tunable from hundreds of kHz to more than 1THz [94], raising considerable

interest for terahertz applications [95, 96].

Note that a single Josephson junction has a broad power spectrum, but multiple junc-

tions can be coupled together to synchronize and behave as one spectrally pure oscillator.

Benz et al. [97] show that junctions with FWHM ≈ 160MHz can be coupled in a 10 grid to

produce a 88.8GHz signal with FWHM = 13kHz. However, this requires more circuit area per

oscillator. Nevertheless, this limitation is compensated by the extreme scalability of Josephson

junctions, and experimental results presented in [98] suggest that Josephson junctions could

be scaled down to the nanometer.

Electrical coupling and synchronization of multiple Josephson junctions has also been demon-

strated [93, 99–101] and coupled Josephson junction oscillators have been successfully mod-

eled using the Kuramoto model [102].

An important drawback of Josephson junctions is that they can not operate at room tem-

perature but require an important cooling effort. High critical temperature superconductors

allow operation at temperatures up to 90K [103], but still require liquid nitrogen cooling.

As a result, Josephson junctions are a promising device for implementing oscillator-based

computation architectures but come with a high cooling overhead. These devices are there-

fore not adapted to low-area/low-energy applications, but show interesting potential for high

supercomputers.
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Magnetic nano-oscillators

Magnetic nano-oscillators leverage the magnetization dynamics of materials and the spin of

electrons in order to achieve auto-oscillation at the nano scale. Most magnetic nano-oscillators

rely on the CMOS-compatible magnetic tunnel junction (MTJ) technology at the heart of novel

magnetic random access memories [104]. In their most basic form illustrated in Figure 1.15,

MTJs consist of a nano-pillar (≈ 100nm in diameter) containing a thin insulating barrier (called

the tunnel barrier) sandwiched between a pinned ferromagnet with constant magnetization,

and a “free” ferromagnet with a magnetization capable of oscillating.

Figure 1.15: Simplified schematic of a magnetic tunnel junction.

Electrons carry a small quantity of angular momentum called the spin. In a typical elec-

tronic current, half of the electrons have a spin “up”, and half have a spin “down”. When elec-

trons flow through the junction, they get spin-polarized by the pinned ferromagnet, causing

an excess of electrons with either spin to reach the free ferromagnet. Such a spin-polarized

current applies in turn a magnetic torque [105] on the free ferromagnet. This phenomenon is

called the spin-transfer torque effect.

Current-induced spin transfer torque can cause oscillations of the magnetization in the free

ferromagnet. Oscillators using this approach are called spin transfer nano-oscillators (STNOs).

Different magnetization distributions and oscillation regimes exist. The particular case of a

vortex magnetization core precessing along an orbit is studied in Chapter 3. Stochastic oscil-

lations can also be spontaneously induced by noise in unstable magnetic tunnel junctions,

which are studied in Chapter 5.

As the tunnel barrier is thin enough for electrons to cross it by quantum tunneling, MTJs be-

have as electrical resistors. Moreover, the tunnel magneto-resistance effect [106] (TMR) causes

the resistance of magnetic tunnel junctions to depend on the the free layer magnetization.

As illustrated in Figure 1.16, the presence of a net magnetization is linked to an asymmetry

in the densities of spin up (n↑) and spin down (n↓) electronic states. The electronic currents

for the two spin orientations can be seen as two parallel currents (red arrows in the figure).

When the two sides of the tunnel junction are magnetized in the same direction (top half of

the figure), the excess of electrons in the favored spin direction on one side of the tunnel bar-

rier matches the excess of available states for the same spin direction on the other side of the

barrier, allowing a strong spin-polarized electronic current to flow. On the contrary, when the
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magnetizations of the two ferromagnets are in opposite directions (bottom half of the figure),

an excess of states for a given spin on one side of the barrier is matched with a shortage of

states on the other side. This results in low currents for both spins. The resistance of of the

device can therefore be modeled as a pair of resistors in parallel (right side of the figure), each

corresponding to one electronic spin. When the ferromagnet magnetizations are aligned, the

device is equivalent to a low-value resistor and a high-value resistor in parallel. When the mag-

netizations are in opposite directions, the device is equivalent to two high-value resistors in

parallel.

Figure 1.16: Schematic description of the Tunnel Magneto-Resistance effect (TMR), adapted
from [107]. MTJs under a constant voltage bias U are shown on the left in the cases
where the magnetization of the free ferromagnet is aligned with the pinned ferro-
magnet (top), and in the case where they are in opposite directions (bottom). The
central part of the figure shows the corresponding densities of electronic states (n↑

for spin up states, and n↓ for spin down) in the pinned (left) and free ferromagnets
(right). The red arrows are electron tunneling currents and EF are the Fermi levels.
The right part of the figure shows the equivalent resistance model.

As a result, resistance is minimal when the free layer magnetization is aligned with the

pinned layer magnetization, and maximal when they are in opposite directions, with inter-

mediate cases resulting in intermediate resistance values. The resistance of the MTJ therefore

oscillates together with the magnetization of the free layer, allowing signal readout.

Natural frequency control through voltage or current biases allows wide tuning ranges, typ-

ically from 1 to 5GHz [108] or for 100s of MHz in the sub-gigahertz range for vortex oscillators

(see Chapter 3). Moreover, Bonetti et al. [109] experimentally observed 46GHz oscillations in

100nm nano-contact STNOs under strong magnetic fields (1.4T) at an angle of 30◦ with respect
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to the device plane. The authors also theoretically predict that frequencies beyond 65GHz

could be reached using perfectly in-plane magnetic fields.

Magnetic oscillators can be coupled electrically [110] in arbitrary topologies, through dipo-

lar interactions resulting in local couplings [111], or through exchange interaction and spin

waves [112]. Synchronization of multiple magnetic nano-oscillators was also shown both the-

oretically and experimentally [112–116].

Depending on their structure, technology and operation regime, these nano-oscillators

show different levels of phase noise. Experimentally observed values for vortex STNOs (see

Chapter 3) are around FWHM ≈ 1MHz at f 0 ≈ 500MHz [117]. Phase noise can be further

pushed below 1Hz at f 0 = 7.344GHz for STNOs stabilized by external circuitry [118]. Certain

types of magnetic oscillators have been modeled using specialized models [119] but also using

the generic Kuramoto model [17].

All these properties make magnetic nano-oscillators attractive as microwave sources for

telecommunications [108, 120, 121], but also promising candidates for oscillator-based com-

puting architectures.

Other types of oscillators

Other types of small form factor oscillators exist, and could also present attractive features for

oscillator-based computing.

Traditional capacitor-inductor resonators coupled with feedback circuitry are currently used

as auto-oscillators for a wide range of applications, but have limited integration capabilities.

Negative differential resistances (e.g. Gunn diode, Tunnel diode) coupled to resonant circuits

also show promising results for auto-oscillator based Terahertz generation [122] and could be

potential candidates for oscillator-based computing.

Optical oscillators using light-matter interactions show interesting potential for high speed

computation, and have been shown to synchronize [123, 124]. Research on using these oscilla-

tors for computing is however still at a preliminary stage [125].

Chemical oscillators also present significant potential for computation, and populations

of chemical oscillators show synchronization capabilities [126]. However, chemical oscillators

still require research efforts on miniaturization and lifetime.

Biological auto-oscillators including certain types of neurons or groups of neurons such as

the endogenous oscillators presented in Section 1.1.2.2 could be used for computation. Com-

putation using living neuron cultures on silicon chips was achieved, for example DeMarse et al.

presented a “brain in a dish” controlling a flight simulator [127]. However, such approaches re-

quire expensive life support systems, and the shortened lifetime of neurons in such conditions

is a major limitation.

Alternatively, molecular motors such as the ones found in living cells could be used as auto-

oscillators. Research on this approach is however at a very early stage and consists mainly of

theoretical predictions [128].
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Computing with oscillators

Several computing systems leveraging the dynamics of oscillators have been proposed and im-

plemented. This section describes the main oscillator-based computing approaches.

Binary computing with oscillators

Oscillator-based binary computers, called parametrons, were among the first computers

used in Japan in the late 1950s, before being superseded by faster and more scalable semiconductor-

based computers in the 1960s. Parametrons perform classical binary operations using coupled

oscillators based on macro-scale inductors all running at the same natural frequencies and

subject to a global external oscillating signal at the double of this frequency. This approach ex-

ploits the capability of these oscillators to achieve two possible stable states of synchronization

with the external signal. Due to higher order interactions, the oscillators spontaneously lock to

the external signal with two possible relative phases (0 or π), allowing each oscillator to repre-

sent a bit 0 or 1. Different types of couplings between oscillators implement a complete set of

logic functions that manipulate these bits, allowing full-featured computation [129, 130]. With

CMOS reaching its limits, parametrons have recently seen a new surge of interest.

Quantum flux parametrons implemented with superconducting Josephson Junction oscil-

lators (see Section 1.3.4) show no resistive losses and extremely energy-efficient, fast and ther-

modynamically reversible bit state switching. This physical reversibility, together with bijec-

tive logic gates that do not induce dissipation through loss of information, could lead to fully

reversible super-computers with energy requirements below the Landauer limit, which is the

lower bound on the energy consumption of dissipative computers. Fully reversible quantum

flux parametron logic gates have been demonstrated experimentally [131], but full computing

systems have not been demonstrated yet.

Parametrons can also be implemented with a wide range of room temperature auto-oscillator

technologies [132]. For example, they have been built and characterized using oxide-based re-

laxation oscillators (introduced in Section 1.3.1) [71, 133] and nano-electro-mechanical oscil-

lators (introduced in Section 1.3.3) [134].

Parametron computers built with nano-oscillators show promising capabilities for general

purpose computing based on standard binary operations. However, while performing the same

tasks, their current implementations are still slower and less energy-efficient than their CMOS

counterparts.

Image segmentation

Low level image segmentation consists in isolating regions of a picture based on certain criteria

such as brightness or contrast. It is one of first processing steps used by a high number of
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image processing algorithms [135], allowing for example the detection of foreground objects in

a picture.

Spatially local coupling of oscillators can be achieved through dipolar, mechanical, elec-

trical or optical interactions between neighboring oscillators. Moreover, their synchronization

also depends on the differences between their tunable natural frequencies. As a result, the syn-

chronization dynamics of a two-dimensional grid of locally coupled oscillators naturally shows

both space and value dependencies, which can be leveraged to implement brightness-based

image segmentation. Figure 1.17(a) shows an example of oscillator network where the natu-

ral frequency of each oscillator is controlled by the corresponding pixel of a picture, and the

oscillators are bidirectionally coupled to their close neighbors (we assume a uniform coupling

strength k). Figure 1.17(b) shows a map of the average frequencies of the simulated Kuramoto

oscillator network without coupling (k = 0). In that case, the average frequencies of the oscilla-

tors match their natural frequencies, and therefore the brightness of the original image pixels.

When couplings are present (k > 0), neighboring oscillators with similar natural frequencies

synchronize to a common average frequency. On the average frequency map Figure 1.17(c) for

k = 30MHz, contiguous pixel regions of similar brightness are mapped to a single common

brightness value. This result corresponds to an image segmentation according to brightness

and allows simplifying an image as a pre-processing step.

Figure 1.17: Segmentation with locally coupled oscillators. Each oscillator represents a pixel,
its natural frequency is set according to the original image pixel brightness, and
its resulting mean frequency is the segmentation brightness output. (a) Neighbor
coupling scheme. (b) Clustered image output without coupling (k = 0MHz). (c)
Clustered image output with k = 30MHz couplings.

I performed this simulation as a side-project during the 2016 Capo-Caccia neuromorphic

engineering workshop, but this approach was already described in the litterature [136]. Similar

and more advanced oscillator-based image segmentation and contrast detection approaches

have been proposed using different oscillator technologies among which neural oscillators,

chemical oscillators, micro-electro-mechanical oscillators [137] or spin transfer torque nano-

oscillators [138].
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Using the intrinsic dynamics of oscillators to perform image segmentation is therefore an

attractive approach for efficient image pre-processing.

Vertex coloring

Vertex coloring, is a NP-hard problem that consists in attributing a color to each node of a

graph so that two connected nodes do not get the same color, while minimizing the total num-

ber of different colors. Finding an approximate coloring solution plays an important role in

resource allocation and scheduling, including program compilation or frequency attribution

in telecommunication [139].

In 2017, Parihar et al. [140] proposed a reformulation of this problem that can be solved

approximately by capacitively coupled oxide-based relaxation oscillators with individually tun-

able dense couplings, and presented a working experimental implementation for small graphs.

With the chosen coupling scheme, two connected oscillators synchronize out of phase, i.e.

their phases “repel” each other. When a full oscillator network, this “repelling effect” leads to

a stable state of the phases from which an approximate solution can be easily extracted. Note

that using oscillators for graph coloring was previously theorized in 1998 by Wu et al. [141] for

2 colors, and generalized to k colors in 2009 by Lee [142].

Vertex coloring is therefore an interesting example of computing with intrinsic nano-oscillator

dynamics. However, the number of colors the architecture can represent is limited by the phase

noise and variability of the oscillators. Moreover, the number of independently tunable con-

nections between oscillators grows quadratically with the number of nodes in the graph, which

represents a serious scalability limitation.

Degree of matching computation

Computing a distance measure between two vectors can be computationally heavy for tradi-

tional computers. For example, computing the L2
2 = ||A−B ||22 =

∑N
i (ai −bi )2 distance between

N -dimensional vectors A = {ai }i=1..N and B = {bi }i=1..N requires as many multiplications as

there are dimensions, followed by an accumulation operation.

As explained in Section 1.2.2.3, the order parameter of a network of coupled oscillators nat-

urally indicates the level of synchronization in the network, and can be used to obtain an ap-

proximate similarity measure called “degree of matching” (DOM) [143]. Among others, Yo-

gendra et al. [138] proposed and simulated such an architecture with N coupled spin transfer

torque nano-oscillators where the natural frequency of the i -th oscillator is shifted away from

a common value proportionally to ai −bi . A simple circuit then extracts the degree of matching

using the mean field signal of the oscillators. Figure 1.18(a) shows a simplified representation

of this network in the N = 4-dimensional case.
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Figure 1.18: Degree of matching measure using 4 coupled oscillators. (a) Simplified view of the
oscillator network. (b) Degree of matching as a function of a1−b1 and a2−b2 when
a3 = b3 and a4 = b4. Adapted from [138].

Figure 1.18(b) shows the output degree of matching as a function of a1−b1 and a2−b2. The

more vectors A and B are similar (ai ≈ bi ), the closer the natural frequencies are to each other,

inducing a higher level of synchronization in the network, and a higher degree of matching. The

opposite of the parabola-shaped degree of matching, −DOM, can then be rescaled to resemble

the L2
2(A,B ) = ∑N

i (ai − bi )2 function for small distances. As a result, the authors propose to

use this approach to approximate the L2
2 distance between two similar vectors by leveraging

oscillator dynamics.

Note that they also propose the computation of the dot product A·B by using the expansion

A ·B =−1
2

(
L2

2 (A,B )−L2
2 (A,0)−L2

2 (0,B )
)
.

Similar schemes have been proposed in multiple other papers [136, 144, 145], and imple-

mentations with other kinds of oscillators including oxide-based relaxation oscillators [146]

have been imagined. It is therefore possible to naturally implement approximate distance eval-

uation using oscillator dynamics without having to explicitly compute any sum or product.

Auto-associative memories and Hopfield networks

Auto-associative memory corresponds to the capability of fully retrieving a known pattern when

given an incomplete, deformed or noisy version of this pattern. For example, when provided

with the incomplete quote “to be, or not to –”, the brain spontaneously and effortlessly asso-

ciates it to the corresponding known full pattern “to be, or not to be”.

Auto-associative memories are important for a wide range of applications including auto-

completion, de-noising preprocessing or error correction [147]. However, traditional comput-

ers do not perform well on such tasks which typically require massively distributed computa-

tion. As a result, alternative auto-associative memory schemes leveraging device physics have

been proposed. These approaches borrow the ideas of Hopfield networks, which consist in
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tuning the interactions between a set of binary units so that their final states match known

stored patterns, and apply them to dynamical systems by engineering the attractors of a phys-

ical system to match stored patterns. When the state of the system is set according to a noisy

or incomplete input pattern, the dynamics converge to the closest attractor, naturally recon-

structing the full pattern in the process [147].

Multiple oscillator-based Hopfield-like auto-associative memories have been proposed since

the original theoretical formulation of the approach by Hoppensteadt et al. [148]. As an ex-

ample, Maffezzoni et al. [149] present an auto-associative memory for boolean words (binary

vectors x = {±1}) using coupled MEMS oscillators modeled using the Kuramoto model and in-

spired by a work from Hoppensteadt et al. [150]. First, the “correlation” matrix of each bit i with

each other bit j is computed and averaged across all M known examples:

krec
i , j = 1

M

M∑
m=1

x(m)
i x(m)

j . (1.6)

In order to perform auto-association on an unknown binary vector xtest, its correlation matrix

ktest = x(test)
i x(test)

j is applied as the coupling matrix between the oscillators in the network. As

a result of synchronization, the phase of each oscillator converges to ±π with respect to a ref-

erence oscillator, which closely matches the presented vector bits. After a stabilization period,

the coupling matrix is set to krec and the dynamics converge towards the corresponding stored

attractor. After stabilization, the relative phases of the oscillators encode the bits of the recon-

structed vector. Figure 1.19 shows an example reconstruction result of an image containing a

noisy version of one of the stored digits: “2”.

Figure 1.19: MEMS-based auto-associative memory reconstructing a picture of the digit “2”.
Adapted from [149].

This architecture leverages intrinsic oscillator dynamics to implement an auto-associative

memory. However, it still requires a quadratically large number of tunable amplifier-based

couplings, as well as the capability to read individual oscillator phases. The couplings need

to be tuned dynamically during the computation, which could be done by applying arbitrary

waveforms [151], but remains impractical at the nano-scale.

Similar architectures were also proposed for other oscillator technologies including spin

transfer torque nano-oscillators [138], laser oscillators [125].
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With the Hopfield approach, the maximal number of orthogonal patterns that can be stored

in a system of N oscillators while still achieving recognition with low error rates is approxi-

mately 0.138N but is usually lower in practical implementations [152]. Oscillator-based auto-

associative memories therefore offer promising capabilities for fast and efficient operation, but

their scalability is limited.

Hetero-associative memories and pattern classification

Hetero-associative memories involve associating an incomplete or noisy pattern of one type

to a corresponding pattern of another type. As an example, the human brain can associate a

particular smell to visual memories from past experiences involving similar smells [153].

Moreover, this mechanism of the brain is thought to be correlated with certain types of

neural oscillations [154], suggesting that oscillator-based approaches could be particularly well

suited for hetero-associative memory implementation.

Pattern classification

In the particular case in which an input pattern is associated to a “label”, for example when

the picture of a face is associated to the name of the person, hetero-associative memory cor-

responds to pattern classification. Classification consists in automatically recognizing a pre-

sented pattern and tagging it with the right label. For example, it can consist in classifying

presented pictures as “cat” or “dog” if they contain the corresponding animal, or classifying a

tumor as “benign” or “malign” given some of its properties. Classification algorithms are ubiq-

uitous in various contexts including object recognition for self-driving cars [155], biometric

identification [156] or credit scoring [157].

Classification tasks typically require important computational resources, and leveraging

the naturally complex dynamics of coupled nano-oscillators to perform classification efficiently

is therefore highly attractive.

Oscillator-based classification

A straightforward way of performing classification is to use the degree of matching (Section 1.4.4)

to compare an input pattern to stored examples of each class and to output the label of the

best matching one. Evaluating the degree of matching against multiple stored examples can

be done in a parallel way using multiple coupled oscillator circuits. Circuit complexity can be

further reduced by using a hierarchical architecture, and achieves promising results on image

recognition [158].
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Figure 1.20: Classification architecture using the degree of matching to find the index of the
stored pattern that matches the input pattern the best. Adapted from [158].

Figure 1.20 shows a classification architecture by Fang et al. [158] that uses CMOS ring oscil-

lators. Degrees of matching are computed between the input pattern and each stored pattern,

and a “Global Resolution Operator” resolves the label of the best matching stored pattern with

high accuracy. Similar architectures have been proposed for other types of oscillators including

spin transfer torque nano-oscillators [159] or MEMS [150].

This type of oscillator-based classifier only requires tuning natural frequencies and reading

degrees of matching, which is convenient for implementations based on nano-devices. How-

ever, a set of training examples needs to be stored, and the number of coupling and readout

circuits increases rapidly with the number of examples to compare with. This seriously limits

the scalability of such an architecture.

An alternative classification architecture proposed in a theoretical context by Vassilieva et al. [160]

solves this scalability problem by using synchronization readouts of a network of tuned oscil-

lators as the ’‘label” associated to the presented pattern. It only requires tuning natural fre-

quencies, detecting synchronizations, and the number of oscillators does not depend on the

number of examples. In Chapter 2, I detail this architecture, adapt it to the constraints of

nano-oscillators and characterize its performance and robustness.

Feed-forward artificial neural networks

Definition of an artificial neural network

Currently, the most popular and powerful machine learning models for cognitive tasks are arti-

ficial neural networks, which are loosely inspired from biological neural networks. Figure 1.21

shows a artificial neural network in its simplest feed-forward form, that classifies a set of fea-

tures (height, weight, head size) into two classes (cat or dog). It consists of successive layers

(2 in the figure) of non-linear transformations (neurons) on data to perform the task. The vec-

tor of outputs h of the neural network gives the degree of confidence that the presented set



1.4 COMPUTING WITH OSCILLATORS 39

of features corresponds to a given class. In Figure 1.21, the neurons performing non-linear

transformations are represented as blue circles. The input of each layer is a linear combination

of the outputs of the previous layer (or the input data for the first layer) and a constant bias.

These linear combinations (red lines) are encoded as weight matrices, and the ensemble of all

the elements of all those matrices constitutes the parameter vectorΘ of the model.

Figure 1.21: A simple two-layer neural network for classification. Blue circles are non-linear
transfer functions (neurons), and red lines are tunable weight matrices.

The parameters of the model are then optimized using a learning algorithm so that the

network provides the right answer on a set of known examples. After this learning step, the

network is able to generalize and classify new, unknown inputs. Chapter 4 focuses on this

learning procedure.

Artificial neural networks play an important role in natural data processing and cognitive

tasks such as language translation, or image classification. However, these networks are cur-

rently run by traditional computers or graphic cards using an important number of floating

point operations to simulate non-linear transformations.

Implementation with oscillators

As oscillators show intrinsically non-linear responses, they represent an attractive approach for

implementing non-linear neurons in artificial neural networks. Approaches implementing ar-

tificial neural networks using oscillator-based neurons require the theoretical knowledge of the

exact transfer function that the neuron implements. As explained in Section 1.2.2.3, usable an-

alytical predictions are scarce in coupled oscillator models. As a consequence, oscillator-based

neurons need to use extremely basic oscillator dynamics that are well-described by theory.

In the literature, I have found only two types of oscillator-based neuron designs. They both

implement a simple threshold function that yields a high output if the input is above a given

threshold value, and a low output otherwise.

In a work from 2013, Kaluza [161] proposes a simple threshold neuron made of a pair of

synchronized oscillators described by a modified Kuramoto model with doubled frequencies.

The input of the oscillator tunes the coupling strength of the connection between the two os-

cillators, and the output corresponds to the phase difference between them. Similarly to the

parametrons introduces in Section 1.4.1, and due to the special oscillator model being used,
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the oscillators synchronize with a relative phase of π if the coupling strength (and therefore

the input) is beyond a threshold, which corresponds to output “1”, or with a relative phase of 0

(output “0”) otherwise.

The drawbacks of this scheme are that it uses an exotic oscillator model, and relies on tun-

ing the coupling between the oscillators in real time.

In their 2015 paper, Yogendra et al. [162] propose a threshold neuron that uses a pair of bidi-

rectionally coupled spin transfer torque nano-oscillators with similar baseline natural frequen-

cies. The input detunes the natural frequency of one of the oscillators. The two oscillators stay

synchronized for low input values, and unlock when the input crosses a threshold. The read-

out is opposite to the degree of matching (see Section 1.4.4). The output is 0 when the two

oscillators are synchronized, and 1 when a sufficiently high input desynchronizes them.

Contrary to Kaluza’s neuron, this approach does not rely on dynamically tuned couplings,

and functions with realistic oscillator models. Note that the authors also introduce an alter-

native design that replaces the reference oscillator by a radio-frequency current source. This

requires a function generator but a single signal can be shared by multiple neurons.

Artificial neurons implemented with oscillators are therefore a promising element for effi-

cient feed-forward artificial neural networks. However, in order to achieve higher computa-

tional power, neurons with more advanced transfer functions than a simple threshold are re-

quired. In Section 4.5.1, I define and characterize such a neuron.

Reservoir computing

Definition of reservoir computing

Similarly to more conventional artificial neural networks, reservoir computing seeks to apply

non-linear transformations to data in order to perform a cognitive task, but it offloads non-

linearity computation to a “reservoir”.

Figure 1.22: A simple reservoir computing approach for classification. Red lines are tunable
weight matrices.

Figure 1.22 shows a simple example of reservoir computer. The reservoir (in blue) is a highly

non-linear physical system with complex internal dynamics. It is typically made of a set of ran-
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domly connected “neurons”, or a non-linear continuous medium. The inputs are randomly

connected to different “points” of the reservoir, inducing perturbations depending on their

values. The response of the reservoir is measured at random points, and each readout value

corresponds to a different unknown non-linear transformation of the presented input vector.

A simple linear regression between the readout and the expected output for a set of known ex-

amples yields the output weight matrix (in red in Figure 1.22). When the dimensionality of the

readout vector is high (5 in the Figure 1.22), this approach can solve complex cognitive tasks at

low energy cost.

Implementation with nano-oscillators

A time-dependent reservoir computing approach was experimentally implemented by Torre-

jon et al. [163] using a single vortex spin transfer torque nano-oscillator to perform spoken

digit classification with state-of-the art recognition rates. A filtered version of a voice signal is

applied as an input current to the oscillator, and the envelope of its voltage is read at several

points in time. These readout values are then combined by a weight matrix found by linear

regression to provide the outputs.

An alternative approach was proposed and simulated by Coulombe et al. [164] using spring-

coupled micro-electromechanical oscillators as a time-sensitive reservoir, and yields promis-

ing results on spoken digit classification.

The complexity of coupled oscillator dynamics prevents a full analytical description of their

dynamics. However, reservoir computing can leverage this complexity to achieve computation

without requiring a precise description of the network. Reservoir computing with oscillators is

therefore a promising approach for efficient computation.

Summary of the chapter

After an intuitive introduction to oscillations their synchronization dynamics, I presented var-

ious results from neuroscience suggesting that oscillations may play a role in cognitive com-

putational tasks performed efficiently by the human brain. I observed that such biological

oscillatory phenomena could be used as a source of inspiration for efficient oscillator-based

computation.

To understand how coupled oscillators could achieve computation, I explained their phase,

frequency and synchronization dynamics through the generic linear Kuramoto model, show-

ing that their rich behaviors could be leveraged for computation even with a small number of

oscillators. I also extended this study by defining a more advanced model for non-linear oscil-

lators, the Landau-Stuart model.

Implementing compact oscillator-based computing architectures on chip requires using

nano-scale oscillators. In order to provide an overview of the capabilities of existing nano-

oscillators, I presented the main categories of suitable oscillator technologies, showing that
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several could be used in computational architectures.

Finally, I presented various oscillator-based computational architectures that have been

proposed, and listed their advantages and limitations.



Chapter 2

Using coupled oscillators for pattern

classification

Life is a constant oscillation between the sharp

horns of dilemmas.

H. L. MENCKEN

“THE SECOND CHAPTER of this thesis presents an oscillator-based architecture

that performs pattern classification, and evaluates its compatibility with the

constraints of nano-technologies. ”
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THIS CHAPTER introduces an oscillator-based classification architecture, extends it to func-

tion with nano-oscillators and investigates its compatibility with constraints linked to

nano-technology. It covers:∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

1. the presentation of a promising architecture that leverages synchronizations in a network

of oscillators to achieve classification and only requires natural frequency control and

synchronization readout,

2. adapting this architecture to function with existing nano-oscillator technologies, includ-

ing the definition of robust synchronization detection circuits,

3. investigating the compatibility of the resulting oscillator-based classification architec-

ture with the constraints of nano-technologies including phase noise, device and cou-

pling variability, phase shifts, geometrical effects, non-linearities as well as scaling capa-

bilities,

4. proposing an alternative readout method inspired by the EEG signals in the brain that

uses the mean field signal of the oscillator network as an output.

Introduction

As introduced in Section 1.4.6, most of the proposed oscillator-based pattern classification ar-

chitectures rely on dynamically tuning couplings, or directly acting on the phases of oscillators,

which is hard to implement with current technologies. In 2011, Vassilieva et al.[160] proposed

a novel classification scheme that only relies on tuning natural frequencies, and reading the

synchronization state of a network of weakly, uniformly coupled oscillators. As neither cou-

plings nor individual oscillator phases need to be tuned, this approach appears promising in

the context of nano-technologies. However, the seminal work of Vassilieva et al. was done in a

purely mathematical context and does not cover realistic synchronization detection methods

nor the resilience to the imperfections of current nano-oscillator technologies.

In this chapter, I reinterpret and extend the approach of Vassilieva et al. into a full-featured

nano-oscillator based pattern classification architecture. I first show that this architecture can

be implemented by leveraging a general property of nano-oscillators allowing convenient fre-

quency tuning through an external bias (usually current or voltage) and propose robust read-

out circuits that perform pairwise synchronization detection using elementary logic circuits. I

then investigate the robustness of the resulting architecture to the typical constraints of cur-

rent nano-technologies including phase noise, device and coupling variability, phase shifts,

geometrical effects, non-linearities as well as the scaling capabilities of the classifier. I also

introduce a modified version of this architecture, which relies on a different readout method

inspired by the EEG signals from the brain and uses the mean field signal of the oscillator net-

work as an output for classification.
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Defining a nano-oscillator based pattern classifier

The pattern recognition approach at the basis of this study is presented in Figure 2.1(a). It con-

sists of a core network of oscillators that are coupled by fixed bidirectional weak connections.

All-to-all coupling is considered in this study unless stated otherwise. Such all-to-all coupling

can be realized by electrical coupling of resistive elements [110] as will be presented in Chap-

ter 3, or by summing the signals of all oscillators and re-injecting the total signal by the use of

external circuitry [159]. As their natural frequencies are spread, no synchronization between

the oscillators happens spontaneously. A set of input oscillators, with stronger couplings to the

core oscillators, is used to perturb the core network. The input to the network is encoded as the

natural frequency of these input oscillators.

Figure 2.1: (a) Diagram of the oscillator network showing input oscillators A,B and core oscilla-
tors 1,2,3,4. (b) The output synchronization readout map of the ideal reference os-
cillator network. Each color represents a different set of synchronized pairs of core
oscillators. The gray regions represent areas where none of the oscillator pairs is
synchronized. The white regions correspond to situations where the evaluated
synchronization state is sensitive to the initial conditions.

The readout map of Fig. 2.1(b) illustrates the typical response of a system of 4 core and 2

input oscillators. Under the influence of the inputs (or stimuli), synchronizations between os-

cillators of the core network emerge. Each color in the map represents a unique set of resulting

synchronized pairs of core oscillators. The different colored regions correspond to the different

output synchronization patterns triggered by the choice of input natural frequencies f 0
A and f 0

B .

On the sides of the map, only one input oscillator interacts with the core network, as the natural

frequency of the other input oscillator is very different from the natural frequencies of the core

oscillators. This results in the synchronization regions , , involving the synchronization

of a single pair of core oscillators. The central regions , , result from the interaction of

multiple core oscillators with both input oscillators. They correspond to the synchronization

of more than a single pair.

The resulting list of synchronized pairs of core oscillators corresponds to the output syn-

chronization pattern of the system and is strongly dependent on the natural frequencies of the
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input oscillators. It is therefore a signature of the input stimuli, and can be used to achieve

classification/recognition of the presented input.

By performing an associative operation between a set of analog inputs and a limited set of

synchronization patterns, this system behaves as a hetero-associative memory. This scheme

can be used for different kinds of multi-class classification problems, such as image classifi-

cation [160], spoken word classification or decision making. Shaping the response of such

a network so that it outputs the desired class on presented examples from a given data set

requires a learning process that is investigated in Chapter 4. This second Chapter only in-

vestigates the system at the architectural level.

Example : A dummy classification task

To provide a better understanding of the classification process using the presented os-

cillator based classifier, I illustrate it with a dummy task involving the classification of

made-up plants into 8 different species depending on 2 of their features: petal length and

width.

Figure 2.2: Dummy plant species classification task with the oscillator-based classifier.
(a) Oscillator-based classifier architecture. (b) Resulting classification map.

Figure 2.2(a) introduces the architecture where the input features of the presented

plant are converted to frequencies by a linear rescaling operation and applied as the nat-

ural frequencies of the input oscillators.

Figure 2.2(b) shows the resulting classification map: depending on its features, the

presented plant is classified as belonging to a given species. For example a plant with a

petal length of 2cm and a petal width of 1cm is classified as belonging to “Species 7”.

Note again that this is a dummy task for illustration purposes that was designed to

match the existing reference map. On a real task, this response map needs to be tuned

to match the task by adjusting the natural frequencies of the core oscillators through a

learning algorithm. This is the focus of Chapter 4.
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In this work, except when assessing the impact of oscillator non-linearities, I simulate the

oscillator-based architecture by using a generalized version of the Kuramoto model defined by

equation (2.1) describing the evolution of oscillator i ’s phase θi as a function of its intrinsic

frequency f 0
i and the influence of the other oscillators

∑
j ki , j sin(θ j −θi +φi , j ). The coupling

from oscillator j to oscillator i is modeled through the coupling strength ki , j and the coupling

phase shift φi , j . Unless stated otherwise, a phase shift φi , j = 0 is assumed. When specified, a

phase noise term is also included in the simulation:

θ̇i

2π
= f 0

i +∑
j

ki , j sin(θ j −θi +φi , j )+Noise(FWHM, t ) . (2.1)

The noise is quantified by the FWHM quantity defined to be the Full Width at Half Maximum

of the power spectrum density of an isolated oscillator.

Numerical integration

The integration scheme follows:

dθi =
[

2π× f 0
i +∑

j
2π×ki , j sin(θ j −θi +φi , j )+

√
2π×FWHM

d t
×N (0,1)

]
×d t , (2.2)

where N (0,1) is the normal distribution with mean of 0 and a standard deviation of 1.

Simulations not involving noise use fourth order Runge Kutta ODE integration. When

noise is included, the specific Euler-Maruyama SDE integration scheme is used instead.

I consider that the core network is initially in a random unsynchronized state before the

input stimuli are applied. After applying the stimuli and waiting for the stabilization of the

frequencies in the network during a given stabilization time, its state is read by pairwise evalu-

ation of synchronization between core network oscillators. This requires designing a synchro-

nization detection scheme.

A robust synchronization detection scheme

Achieving readout with fast, possibly noisy oscillators in real time is an equally important chal-

lenge as the pattern recognition itself. In this section, two simple, easy to implement schemes

for the evaluation of the degree of synchronization between pairs of oscillators are proposed

and investigated. Then, the quality of the readout of each scheme is evaluated and compared

in the case of a network of noiseless oscillators as well as in a more realistic case of noisy oscil-

lators.
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Schemes for evaluating synchronization patterns

The readout process of such an architecture involves pairwise synchronization detection be-

tween core oscillators, and the output is the resulting list of synchronized pairs. In the litera-

ture, noise was observed to not only prevent synchronization [8] in weak coupling conditions

but also to induce fluctuations in the synchronization pattern readout during evaluation time,

showing transitions in regions where multiple synchronization attractors are available [165].

Synchronization between oscillators in its strictest definition is therefore hardly achieved, as

perfect phase-locking seldom occurs.

Thus, a weaker definition of synchronization is needed and should be based on a measure

of the degree of synchronization between two signals. For instance, statistical methods such as

the variance measure introduced in [160] can be used to define quasi-synchronization between

a pair of oscillators {n,m}:

Varτ(sin(θn −θm)) < εv , (2.3)

where the variance is evaluated during a limited time τ. A threshold εv ∈ [0;0.5] is chosen to

discriminate quasi-synchronized pairs from non-synchronized pairs, εv = 0 corresponding to

a perfect synchronization requirement. This definition was shown to allow the detection of a

rich set of synchronization patterns in weakly coupled networks [160]. However, the hardware

implementation of such a detection scheme would involve a combination of complex circuits,

or an external computing unit: it is not a reasonable readout technique for an efficient physical

implementation.

Here, I propose two other quasi-synchronization detection schemes based on operational

principles compatible with an easy CMOS implementation and compare their performances

with the variance-based method. The oscillator signals are digitized using Schmitt triggers,

intended to increase the noise resilience of the readout, after which a rising edge detection is

performed to obtain a single pulse per period of the signals.

A first synchronization evaluation approach that is further called “direct counter” is pre-

sented in Fig. 2.3(a). This technique aims at evaluating the difference ∆Nτ between the num-

ber of periods of the two signals during a given amount of time τ. The counting is achieved

by incrementing or decrementing a counter at each rising edge of the respective signals. The

result is then compared to a threshold εd , and the two oscillators are considered synchronized

if |∆Nτ| < εd .

A second scheme that is further called “flip-flop counter” is presented in Fig. 2.3(b). This

technique exploits the fact that if two signals are synchronized, their rising edges should alter-

nate. A counter is then incremented each time two consecutive rising edges of the same signal

are not separated by a rising edge of the second. Again, after the evaluation time τ, the two

oscillators are considered synchronized if the final value of the counter is strictly lower than a

given threshold ε f .

Because they use only limited information from the signals, the two counter-based schemes
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Figure 2.3: Illustration of proposed schemes for evaluating the degree of synchronization be-
tween pairs of oscillators: (a) direct counter evaluation technique, (b) flip-flop
counter evaluation technique.

differ conceptually from the variance measure which depends on the full time trace of the

phase difference between the two oscillators. A major difference exists between the two counter-

based schemes: while the direct counter method measures an average frequency difference

during the total evaluation time, the flip-flop counter takes into account and sums up every de-

tected local desynchronization event. Yet, the physical implementation of the flip-flop counter

would require less components, mainly because of the simpler, unsigned counter it uses.

Equivalence of the detection schemes

To compare the synchronization evaluation schemes, we first investigate the simplified case

of a single input oscillator {A} and two core oscillators {1,2}, as illustrated in Fig. 2.4(a). Core

oscillators’ natural frequencies are set to { f (1)
0 , f (2)

0 } = {560,580} MHz and the input oscillator’s

natural frequency f (A)
0 is swept from 470 to 670 MHz.

Fig. 2.4(a) captures the synchronization phenomenon between the three oscillators by show-

ing the evolution of their average frequencies. While the coupling between core oscillators {1,2}

is initially too weak for them to synchronize, they are eventually brought to synchronization

when the input oscillator’s natural frequency lies in a limited range (552 to 588MHz).

For each simulation, the oscillator network dynamics are computed during 1µs. After a

0.5µs cool-down time to reach the convergence of the network dynamics, the three detection

schemes are evaluated during τ= 0.5µs between core oscillators {1,2}. Their outputs are plotted

in Figs. 2.4(b,c,d) before the thresholding operation.

The three curves appear extremely similar. It is surprising to note that, while variance mea-

sure and counter approaches use different basic principles, the obtained curves can actually

almost be superimposed. All exhibit a very distinct dip to a zero-value when the two core oscil-

lators are synchronized, and a high plateau value when the oscillators are desynchronized. In

the intermediate range, where the oscillators are quasi-synchronized, the outputs show a pro-

gressive increase, allowing to define thresholds that will discriminate whether the oscillators

are quasi-synchronized or not.

From these curves, we choose equivalent thresholds for the three detection schemes: εv =
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Figure 2.4: Simulations in a simplified, noiseless situation with two core oscillators with fixed
natural frequencies { f (1)

0 , f (2)
0 } = {560,580} MHz, and one input oscillator whose nat-

ural frequency f (A)
0 is varied. (a) Average frequencies of the three oscillators as a

function of f (A)
0 . The quasi-synchronization of the two core oscillators is evaluated

using the three readout schemes, and their outputs are plotted as a function of f (A)
0

for (b) variance measure, (c) direct counter, and (d) flip-flop counter schemes. Ver-
tical purple dotted lines indicate the range of perfect synchronization between os-
cillators 1 and 2. Horizontal green dotted lines correspond to selected thresholds
under which oscillators are declared quasi-synchronized.

0.28 for the variance measure scheme, εd = 6 for the direct counter scheme, and ε f = 6 for the

flip-flop counter scheme. In the following we use these threshold values if not stated otherwise.

Pattern recognition and comparison of the readout schemes

The three readout schemes can now be evaluated on the full coupled oscillator network of

Fig. 2.3(a), introduced in Section 2.2.

Readout maps in the absence of noise

Figs. 2.5(a,b,c) present the readout maps of the synchronization patterns in the core network,

as a function of the input oscillators’ natural frequencies { f (A)
0 , f (B)

0 } in the case of noiseless

oscillators (η = 0). They are obtained using the variance measure, direct counter and flip-flop

counter detection schemes respectively.

As in the previous simulation, the oscillator network dynamics are simulated for 1µs for
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Figure 2.5: Readout maps showing the distribution of synchronization patterns among core os-
cillators as a function of the two input oscillators’ natural frequencies f (A)

0 , f (B)
0 , as

detected by the three readout protocols. Each color is associated to a single synchro-
nization pattern, as specified on Fig.(a). The (a,b,c) maps are obtained in a situation
with noiseless oscillators, (d,e,f) maps are obtained for oscillators with phase noise
corresponding to FWHM=1 MHz. Readout maps are evaluated respectively using:
(a,d) the variance measure scheme, (b,e) direct counter scheme, and (c,f) flip-flop
counter scheme.

each point in this map. After a 0.5µs cool-down time to wait for the convergence of the net-

work dynamics, the three detection schemes are performed on each of the six pairs of core

oscillators during τ = 0.5µs, and the results are compared to their respective thresholds. For

each simulation, an output list of synchronized pairs is then given by each readout scheme. To

account for the robustness of the readout results to initial conditions, each point on the map

is simulated ten times with random initial phases. If the ten simulations do not result in the

same output synchronization pattern, the point is discarded as “inconsistent” and left blank

on the map. If the ten simulations yield identical results, the point is then colored on the map

according to the output pattern.
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Note : Computing maps is expensive

Producing these 200×200-point maps, to allow precise assessment of the coupled oscil-

lator network behavior, comes at a high computational cost as it requires 200×200×10 =
400,000 independent simulations per map. For optimal efficiency, the simulations were

performed simultaneously on the 2880 cores of a nVidia Tesla K40 GPU, using the Cuda

Thrust C++ library.

In this noiseless example, the three evaluation schemes yield rich output maps, with large

and well-defined regions associated to different synchronization patterns. The boundary re-

gions (blank) where no repeatable readout is obtained are relatively small. These results show

the efficient recognition capability of the oscillator network, as originally presented in Sec-

tion 2.2. Indeed, it spontaneously discriminates inputs through the establishment of synchro-

nization patterns in its core. Additionally, it is remarkable that all of the introduced synchro-

nization detection schemes are operational and lead to highly similar readout maps.

The capabilities of the oscillator network associated with each readout scheme are evalu-

ated through the number of classes of patterns the architecture is able to discriminate, i.e. the

number of regions with different readouts that appear on the map. In this counting, we choose

to ignore isolated points, as well as porous regions where consecutive points do not consis-

tently yield the same output. To do so, a filter is applied on the readout maps, as illustrated on

Fig. 2.6, that only keeps regions which yield identical outputs in an at least 3 MHz radius area.

This ensures that the counted classes are represented by large and continuous regions that are

tolerant to small input variations.

Figure 2.6: Effect of the filter applied to the readout maps for counting discriminated patterns.
This is illustrated in the case of the readout map obtained for a noiseless network
and the flip-flop counter detection scheme (see Fig. 2.5(c)). Saturated regions de-
limited by a black line are considered robust and kept by the filter, pale areas are
ignored. The numbers on the map index the eight unique discriminated patterns.

In the case of both counter-based readouts, eight patterns are discriminated, each one be-
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ing associated to a different synchronization pattern. Meanwhile, a ninth output pattern ap-

pears for the variance-based readout ( in Figure 2.5(a)). This is due to the intrinsic non-

transitivity of quasi-synchronization detection methods: for example synchronizations can be

detected between oscillators 1 and 2, as well as between 2 and 3, without any synchronization

being detected between 1 and 3. Measured non-transitive synchronization patterns are how-

ever rare and generally unstable with the low synchronization detection thresholds being used.

Readout maps in the presence of noise

When considering hardware implementations, especially based on nanotechnology such as

proposed in Section 1.4, the consequences of the phase noise of the oscillators, which can sig-

nificantly perturb the network dynamics, needs to be considered. To account for it, we repro-

duced the simulations of the network dynamics as well as the three readout schemes including

a non zero noise corresponding to oscillators’ FWHM = 1 MHz.

We show in Fig. 2.5(d,e,f) the readout maps obtained for the noisy oscillator network. Again,

for all three detection schemes, the three maps remain very similar. Compared to the noiseless

network, the class regions are sensibly reduced, and the blank (inconsistent) regions are getting

wider, as could be expected. Indeed, as the noise increases, the repeatability of the readouts

becomes an increasing issue. It notably has an impact on the readout map obtained through

the variance-based scheme. As one can see in Fig. 2.5(d), the ninth synchronization pattern is

no longer observed, and the purple region has become particularly porous.

Testing detection schemes against different network parameters

Modifying the coupling strengths between oscillators in the network changes the distribution

of synchronization patterns, and also has an influence on the relative phase dynamics between

coupled oscillators, and subsequently on the synchronization readout. To compare the detec-

tion schemes in the case of other network configurations, we repeated the simulations of noisy

networks with varying input-core coupling strengths ki c and core-core coupling strengths kcc .

Fig. 2.7(a) shows the number of discriminated classes of inputs when kcc = 4 MHz is kept con-

stant and ki c is varied. Fig. 2.7(b) shows the number of discriminated classes of inputs when

ki c = 12 MHz is kept constant and kcc is varied.

The two counter-based readout schemes provide quasi-identical results. Both plots show

that optimal coupling strengths, for which a maximum number of classes can be discriminated,

fall in the same range for the three readout schemes. However, the counter-based schemes lead

to the discrimination of a higher number of classes than the variance-based one in large ranges

of coupling strengths. These observations suggest that the counter-based definitions of quasi-

synchronization might be more robust than the variance-based one. We discuss and interpret

this idea in the next section.
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Figure 2.7: Number of discriminated patterns within the core network as a function of (a) input-
core ki c coupling and (b) core-core kcc coupling as evaluated using the three detec-
tion schemes. Simulations performed with FWHM = 1 MHz.

Sensitivity of the readout schemes to noise and parameters

In this subsection, an in-depth evaluation and comparison of these schemes is performed, and

their applicability for a final hardware system is discussed.

Noise resilience of the readout schemes

To assess the relative influence of phase noise on the three readout schemes, we repeat the sim-

ulations of the noisy network with increasing noise levels and plot the evolution of the number

of classes discriminated by each readout method in Fig. 2.8. The three schemes show different

resiliences to noise.

For low noise levels, the variance-based scheme shows the lowest resilience, as it is the first

detection scheme that stops being able to discriminate eight classes. Indeed, the variance mea-

sure is strongly affected by fluctuations appearing in the phase difference dynamics. Therefore,

when looking at the outputs before thresholding, we observe an increasing spreading of the

results for the ten repeated simulations with increasing phase noise. This induces spurious de-

tections of synchronization or desynchronization producing many inconsistent points, which
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Figure 2.8: Number of discriminated patterns as a function of oscillators’ FWHM, as evaluated
using the three detection schemes.

leads to the disappearance of some classes in the readout map.

The two counter-based schemes keep their ability to discriminate eight patterns for higher

noise levels, even beyond 2 MHz for the direct counter scheme. They evaluate the exact num-

ber of desynchronization events and are not sensitive to their dynamics. However, the flip-

flop counter scheme appears to fail very rapidly when the FWHM of the oscillators goes above

2 MHz, even faster than the variance-based scheme. In the flip-flop counter detection method,

every desynchronization event, i.e. phase slip between the two signals, is detected and counted.

As the noise level increases, many spurious desynchronization events get detected, which even-

tually leads the counter to go above the threshold. Only strong synchronizations are then de-

tected. This observation suggests that the threshold level should be raised to adapt to high

phase noise oscillator networks.

Because it simply evaluates an average frequency difference between the two noisy signals,

the direct counter scheme is the one showing the best resilience to noise. It is still able to dis-

criminate six classes of inputs for oscillators with FWHMs up to 4.5 MHz, when other readout

methods only discriminate one or two classes.

Influence of the threshold

We have seen that in the presence of noise, the three readout methods may suffer difficulties

to detect quasi-synchronization. In these conditions, the initial choice of the thresholds, in

an oversimplified case and for a noiseless network, should be reconsidered. We now analyze

the impact of the choice of the threshold on the number of recognized patterns. Fig. 2.9(a,b)

shows the total number of discriminated classes for the FWHM = 1 MHz (solid lines) and for

the FWHM = 3 MHz (dotted lines) noisy networks as a function of the variance and counter

thresholds.

In the case of low phase noise (FWHM = 1 MHz), all three readout techniques identify the

maximum number of patterns (eight) for a reasonable range of thresholds. When increasing the
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Figure 2.9: Number of discriminated patterns, (a) as a function of the threshold εv when using
the variance measure technique, (b) as a function of the counter threshold when
using the direct counter and flip-flop counter techniques. The FWHM of the oscil-
lators is set to 1 MHz (solid lines) and 3 MHz (dotted lines). Vertical green dotted
lines indicate the thresholds that were chosen in Section 2.3.3.1 and used in the
simulations to obtain readout maps.

thresholds, the variance based detection method rapidly fails when the threshold εv is chosen

above 0.4. On the other hand, the thresholds for counter-based methods can be increased even

above 20 without failing (five patterns are still detected), much above the maximum counts

observed in 2.3.3.1.

As noticed in Section 2.3.4.1, when the FWHM of oscillators reaches 3 MHz, the three read-

out methods detect different numbers of patterns using the thresholds chosen initially: six for

the direct counter scheme, four for the variance-based scheme, and only two for the flip-flop

counter scheme. The presented plots show that these initial choices are not adapted to the

higher noise case, and that other optimal thresholds can be found. The direct counter ap-

proach still shows the best resilience to noise as up to seven synchronization patterns can be

read, while the variance measure approach is limited to detecting up to six patterns. In the

counter-based approaches, the optimal thresholds are close to our initial choices, yet the opti-

mal ranges are substantially reduced. For the flip-flop counter scheme, the optimal threshold

is found around 18, confirming that high noise induces the spurious detection of many desyn-



2.3 A ROBUST SYNCHRONIZATION DETECTION SCHEME 57

chronization events.

Influence of the evaluation time

Figure 2.10: Matching percentage between the readout map obtained for a limited integration
time τ and the readout map obtained for a long 100µs integration time, as a func-
tion of τ and for the three detection protocols. The inset shows the number of
discriminated patterns detected by the three methods as a function of integration
time. Simulations are performed with FWHM = 1 MHz.

The synchronization evaluation time τ is an important trade-off for the readout operation,

between the speed for recognition and the robustness of the results. Simulations of the recogni-

tion networks are performed with varying evaluation time, between 0 and 2µs. The cool-down

time is kept to 0.5µs, and the FWHM of the oscillators is 1 MHz. The results are compared to

the readout obtained in the case of a long evaluation time τ = 100µs for which the readout is

considered stationary and further used as a reference.

In Fig. 2.10, we plot the percentage of matching points between the obtained readout maps

and the reference map, as a function of τ and for each readout scheme. The figure inset also

shows the evolution of the detected number of patterns as a function of τ. For equivalence in

the case of the counter-based detection schemes, the thresholds are adjusted as τ varies so that

bε{d , f }/τc is kept equal to 12µs−1.

We observe a fast convergence of the readout maps for evaluation times up to 0.5µs above

which the convergence starts slowing down. After 2µs, the counter-based readout schemes

reach 90% matching with the reference, while the variance-based scheme lags behind. For the

counter-based methods, the maximum number of patterns (eight) is already detected when

τ > 0.2µs, while τ > 0.4µs is needed for the variance measure scheme. In all case, the choice

of τ = 0.5µs then offers a reasonable trade-off as the maximum number of patterns is already

discriminated.
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Choosing the right detector

In situations with oscillators with no or low phase noise, the readouts of all three techniques

appear very similar. Although variance measure is the most complex, it is not the most ro-

bust to noise, and may actually identify less synchronization patterns in some situations with

intermediate noise levels and very weak coupling between core oscillators. The variance mea-

sure also appears to converge slower than counter-based approaches, hence requiring longer

evaluation time for equivalent precision.

When both counter-based protocols show equivalent results, the flip-flop counter is the

best choice for hardware implementation, as it relies simply on an unsigned counter. However

the flip-flop counter protocol appears to fail at high noise levels, when it detects a lot of spu-

rious desynchronization events. Nonetheless, the direct counter protocol also shows strong

resilience to high noise, again better than the variance measure. The choice between these two

techniques should therefore be based on the amount of noise. For simplicity and consistency

of the results across a wide range of noise levels, the direct counter scheme is used in the rest

of this thesis.

This study involved the measure of the synchronization state of all pairs of core oscillators

to obtain comprehensive results on the behavior of the detectors. However, from the scalability

point of view, using 1
2 N × (N −1) detection circuits to read the synchronization state of every

pair of N oscillators is a major constraint. In practice, this approach is highly redundant as

virtually all stable synchronization states are transitive. Moreover, core oscillators are identical

and only defined by their natural frequencies, they can therefore always be sorted according

to their natural frequencies. These properties allow retrieving the full synchronization maps

by measuring only consecutive pairs of core oscillators: (1,2),(2,3),(3,4) in the case of 4 core

oscillators. In that case, the number of detectors scales as N−1, which represents an important

scalability improvement. This approach is used in the rest of the thesis.

The readout scheme being defined (and published [166]), the robustness and scalability of

the whole architecture can now be evaluated within the constraints of nanotechnologies.

Is this architecture nanodevice-ready ?

This section investigates, through extensive numerical simulations and theoretical analysis, the

resilience of such a pattern recognition scheme to phase noise, variability, and non-linearities

present in nanotechnologies. It then assess the scaling properties of the network by evaluating

the evolution of its pattern discrimination capacity with increasing numbers of oscillators. The

geometrical effects that can appear in nano-device architectures are also studied.
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Behavior under the presence of noise

As observed in the previous section, noise is an important challenge in hardware implemen-

tations of oscillator-based computing. To complete the study of the influence of noise in this

architecture initiated in Section 2.3.4.1, we simulate the reference architecture for increasing

phase noise levels on both input and core oscillators. We then compare the obtained readout

map to the ideal map evaluated in the noiseless case (Fig.2.1).

Figure 2.11: (a) Percentage of matching points to the ideal map with respect to noise FWHM for
the original (N) and the adjusted (4) systems. (b) An example of synchronization
readout map under oscillator noise FWHM = 1MHz in the original system.

The typical effect of noise is visible on the map of Fig. 2.11(b) obtained in the case of

FWHM = 1MHz: it erodes the surface of output synchronization pattern regions. Noise partic-

ularly affects the points where synchronization was weak, situated at the boundaries of the re-

gions identified on reference map of Fig. 2.1(b). Figure 2.11(a) shows the percentage of match-

ing points to the noiseless ideal map of Fig. 2.1(b) at different levels of noise. These results show

that this architecture is resilient to relatively high noise levels, demonstrating 70% matching at

FWHM = 1MHz, corresponding to oscillators with f /FWHM ≥ 500. As a comparison, typical

auto-oscillating magnetic nano-devices have shown f /FWHM ≥ 6000 [65] (FWHM lower than

100kHz at 457MHz, see Section 1.3.5), and mechanical oscillators [87] can achieve f /FWHM ≈
50×103 (see [85] and Section 1.3.3), which makes these technologies good candidates for this

architecture.

In order to fully mitigate the effects of noise, we found that the distance between the natural

frequencies of core oscillators can be increased. Figure 2.11(a) shows results for a case in which

the couplings, distances between natural frequencies, and input frequency sweep ranges have

been multiplied by a factor of 1.5 (4). This system is notably more robust to noise than the

initial system. However, this is a trade-off as it requires accessing a larger range of natural

frequencies for the core oscillators, and ensuring stronger couplings.

As a conclusion, the architecture is robust to phase noise when the minimal interdis-

tance between core oscillator natural frequencies is defined according to the noise level.



60 CHAPTER 2: USING COUPLED OSCILLATORS FOR PATTERN CLASSIFICATION

Numerical integration parameters

The time-step used that ensures convergence of both ODE and SDE integration schemes

is dt = 100ps. The total simulation time was 1µs of which the first 0.5µs are the tran-

sient stabilization time after which synchronization detection counting starts. This wait-

ing time was chosen to ensure the stabilization of the dynamics on 1,000 simulation runs

of the reference system with different random initial conditions. The total simulation time

corresponds to approximately 600 periods of the oscillators and is chosen to be a realis-

tic scale for real-life implementations. Two oscillators are considered synchronized when

the final absolute value of their counter is strictly less than 6, that is less than about 2%

difference in their number of periods.

Effects of natural frequencies variability

As will be studied in Chapter 4, tuning the sizes and positions of the readout synchronization

pattern regions requires the ability to set the natural frequency of every core oscillator. This

is done either at design time by geometrical or material engineering of each oscillator, or by

relying on the knowledge of the natural frequency tuning function f 0(bias) of every oscillator.

Both approaches are prone to device variability, which can lead to random shifts in the natural

frequencies of the oscillators. As the distances between frequencies in the core network are

critical parameters, this variability can induce behavioral changes.

To study the effects of natural frequency variability, the readout map was computed for in-

creasing variability factors and compared to the reference map of Fig. 2.1(b). For increasing∆ f 0

values, 100 possible outcomes are computed with core oscillator natural frequencies uniformly

drawn in the range [ f 0
i −∆ f 0, f 0

i +∆ f 0] where f 0
i is the target natural frequency of oscillator i .

Fig. 2.12(a) shows the degree of matching with the expected readout map as a function of ∆ f 0.

The solid curve represents the average matching for the 100 simulations, while the blue filled

region shows the span between the worst and best matching values reached.

For low variability values, the worst case matching first slowly decreases up to approxi-

mately ±3MHz, before dramatically falling below 50% for higher variability values. This worst

case corresponds to a situation where the natural frequencies of a pair of core oscillators are

brought close enough so that undesired synchronization appears even without input stimuli.

Nevertheless, the worst case matching stays over 70% up to a variability of ±2MHz, which cor-

responds to 10% of the initial difference between two consecutive core network natural fre-

quencies.

A typical example of readout map is shown on Fig. 2.12(b) in a case of 2MHz variability. In

this map, f 0
1 and f 0

2 are slightly further apart than expected, which reduces the region in

which they can synchronize. On the contrary, f 0
2 , f 0

3 , f 0
4 are closer than expected and regions
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Figure 2.12: (a) Average matching with the expected map for 100 draws on different natural
frequency uniform variability ranges, filled between best and worst cases encoun-
tered. (b) An example readout map where f 0

2 was shifted by +2MHz and f 0
4 by

−2MHz: { f 0
1 , f 0

2 , f 0
3 , f 0

4 } = {560,582,600,618}MHz.

where all three are synchronized appear on the sides of the map.

These results show that the system is robust to moderate natural frequency variability,

but that high variability on natural frequencies rapidly induces uncertainty on the system

response. Again, we conclude that knowledge of the variability level of the system defines

the minimal natural frequency difference between consecutive core oscillators.

In the presence of high variations, an effective approach could be to take inspiration from

the reinforcement learning algorithms from the machine-learning expertise, and use the read-

out to implement a feedback of the oscillator biases in order to achieve the correction of the

natural frequency values [160, 167], taking advantage from the tunability of the core oscillators.

Effects of coupling constants variability

Variability on the coupling values can arise from variability in inter-oscillator distances (in case

of proximity coupling effects), variability in electrical connections, variability in the signal am-

plitude they emit or variability in their individual response to stimuli [71, 168].

The consequences of such variability were studied by computing the readout map for in-

creasing variability amplitudes in the coupling strengths. For each value of variability ampli-

tude µ ranging between 0 and 100%, 100 simulations were run after randomly drawing individ-

ual couplings ka,b in the uniform range
[
k0

a,b(1−µ),k0
a,b(1+µ)

]
where k0

a,b is the initial coupling

without variability.

A typical map obtained under a coupling variability µ = 20% is shown in Fig. 2.13(b). It

shows that coupling variability has an influence on the size and shape of the synchronization

regions in the readout map. Notably, it has a significant impact on regions corresponding to

the synchronization of a single pair of oscillators. Indeed, the smaller the coupling between

the two oscillators, the smaller the input frequency range in which they will synchronize is.

The readout map also shows that the core network no longer responds symmetrically to the
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Figure 2.13: (a) Average matching with the expected map for 100 draws with different coupling
uniform variability amplitudesµ, filled between best and worst cases encountered.
(b) An example readout map for µ= 0.2.

two input stimuli, due to variability in input-core couplings.

The average matching with the expected readout as a function of the coupling strength

variability amplitude is shown in Fig. 2.13(a). The filled region represents the span between

the worst and best matching rates encountered. These results show that the network is highly

robust to coupling variability. Indeed, even 100% variability does not fully hamper the function

of the recognition process, as no sudden breakdown is observed. A reasonable 20% variability,

even in the worst case scenario that was simulated, leads to more than 70% matching with

the expected readout map. This robustness can be attributed to the existence of redundant

couplings in the core network, which tends to even out local coupling variations.

These results show that the architecture is robust to coupling variability, and are very

encouraging in the context of nanotechnologies, for which precise engineering of individual

couplings in a network are complex to achieve.

Effects of coupling phase shifts

As introduced in Section 1.3, coupling between oscillators can arise from many different phe-

nomena including magnetic interaction [111], electrical coupling [169, 170], mechanical cou-

pling [171]. Notably, couplings can have both a conservative and a dissipative component [8,

172], and sometimes involve delays. To fully account for the different types of interactions, a

non-zero uniform coupling phase shift termφi , j =φ is added in the solved Kuramoto equation

2.1, and its influence on the system is assessed through the following simulations. The readout

map was simulated for different values of the coupling phase-shift term φ, in the ideal case of

noiseless oscillators and with no variability.

Figure 2.14(a) shows the evolution of the degree of matching of the readout map to the

ideal map of Fig. 2.1(b), as well as of the number of different discriminated synchronization

patterns, as a function of the coupling phase shift value. Results show that the phase-shift has

significant effects on the response of the system, as the matching with the reference map drops
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Figure 2.14: (a) Matching with the ideal map (+) and total number of different discriminated
patterns (+) in the readout map as a function of phase shift φ. (b) An example
readout map for a phase shift φ= 0.12π. (c) Example readout map for φ=π.

with increasingφ. Notably, it drops under 50% for
∣∣φ∣∣>π/6. It then reaches a plateau at 25% of

matching for
∣∣φ∣∣>π/3 where only the areas of the map where no synchronizations are present

are consistent with the ideal readout map.

The number of discriminated synchronization patterns is also strongly affected by the ap-

pearance of a coupling phase-shift. The maximum number, 8, holds for only small phase-shifts,

and then progressively falls as
∣∣φ∣∣ increases toward π

3 , for which all the synchronizations break.

As shown by the map of Fig. 2.14(c), when
∣∣φ∣∣ approaches π, we observe that only synchroniza-

tion of pairs of oscillators arises, in the regions for which the two inputs have close frequencies.

The map obtained for φ= 0.12π is shown in Figure 2.14(b). We can see that for this phase-

shift, the synchronization pattern region shapes are already significantly deformed with re-

gards to Fig. 2.1(b), especially when several pairs of core oscillators are involved. Indeed, while

interaction phase-shifts do not prevent synchronization between two oscillators, frustrations

arise when several oscillators are involved in the synchronization process as seen in other con-

texts in [173, 174]. This phenomenon is critical in the context of the stimuli-induced core oscil-

lator synchronizations, as at least three oscillators (2 core and 1 input) are involved.

As a conclusion, as the engineering of the pattern recognition architecture using a net-

work of oscillators relies strongly on the ability to synchronize more than two oscillators, the

phase relation between synchronized oscillators should be carefully engineered.
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The use of delay lines or reactive components in the network can in particular be integrated

in the design process to solve this issue by bringing the coupling phase shift back to zero for

optimal performance. Technological solutions allowing this can be found in [169, 173, 175,

176].

Effects of oscillator non-linearity

Non-linear behavior, i.e. phase-amplitude coupling, is a common property of nano-oscillators.

As explained in Section 1.2.4, it manifests itself through a frequency dependence on the oscil-

lation amplitude. This non-linearity has a strong influence on the synchronization efficiency

as it amplifies the effects of interactions [177]. This subsection assesses the consequences of

non-linearity on the behavior of the pattern recognition architecture.

I model the oscillators of the system using the Landau-Stuart model with couplings as de-

fined by the following set of coupled equations:
ṙi = γ(1− r 2

i )ri +
∑

j
ki , j r j cos(θ j −θi +φ0)

θ̇i = w0
i +νγ(r 2

i −1)+∑
j

ki , j
r j

ri
sin(θ j −θi +φ0)

, (2.4)

where ri is the amplitude of oscillator i , γ is the damping coefficient for radius deviation, ν is

the dimensionless nonlinear frequency shift that quantifies the non-linearity, andφ0 is the cou-

pling phase that depends on the physical nature of the coupling mechanism. Equation 2.4 is a

conventional way to model nonlinear oscillators, as described in [177]. The phase equation of

this model reduces to the Kuramoto equation 2.1 in the absence of nonlinearity (ν= 0). When

phase-amplitude coupling is involved, it can be shown (demonstration in Section 3.4.3) that a

pair of oscillators interact with an increased effective coupling term: k ′
i j = ki j

r j

ri

p
1+ν2. The

second effect of the nonlinearity implies a contribution to the effective coupling phase-shift,

that then verifies: φ′ =φ0 +arctan(ν)

The choice of a too strong coupling is detrimental for the recognition abilities of the net-

work, this effective increase should be conveniently used to allow the use of weaker physical

couplings at design time, or allow a larger spacing between core oscillator natural frequencies.

As an illustration, we show in Fig. 2.15 the readout map obtained in a case when the coupling

between the oscillators is conservative (φ0 = −π/2) and with a strong non-linearity ν = 5, for

which all coupling strengths were reduced by a factor
p

1+ν2 ≈ 5. This rescaling allows to come

back to effective coupling strengths close to those of Fig. 2.1(b). However, the map appears de-

formed as anticipated due to the non-zero effective phase-shift (φ′ ≈−0.06π for ν= 5).

We conclude that the nonlinearity effects are interestingly beneficial for the design of the

introduced pattern recognition architecture. By artificially increasing the coupling strength,

it allows the use of even more weakly coupled networks, but mostly it will allow to increase

the spacing between core oscillators’ natural frequencies, that has strong interest to mitigate



2.4 IS THIS ARCHITECTURE NANODEVICE-READY ? 65

Figure 2.15: Readout map obtained for an oscillator network with conservative coupling (φ0 =
−π/2), dimensionless non-linear frequency shift ν = 5 and coupling strengths re-
duced by a factor

p
1+ν2 ≈ 5 compared to the linear network.

the effects of phase noise and variability.

In case of a conservative coupling, strong non-linearities can also be beneficial to push

the effective coupling phase towards zero. In general cases, effects of the non-linear behav-

ior on this phase-shift should be carefully considered as a function of the physical origin of

the coupling, and the subsequent φ0 value, aiming for an effective phase-shift as close to 0

as possible.

System scalability

We observed that our reference architecture composed of four core oscillators and two input

oscillators already allows discriminating up to eight different classes of stimuli. We now study

the evolution of the maximum number of synchronization patterns reached by the proposed

architecture as it scales by increasing the number of both core and input oscillators.

During the readout phase, synchronization is evaluated between pairs of core oscillators

with consecutive natural frequencies. For Nc core oscillators, each one of the Nc −1 pairwise

evaluations can return a positive or a negative answer. The theoretical upper bound on the

number of discriminated patterns can then be derived as the number of possible values taken

by a binary word of Nc −1 bits, i.e. 2Nc−1.

Nevertheless, depending on the number of input oscillators, different proportions of these

synchronization outcomes can be reached. To investigate the actual capacity of the system,

we have computed the readout maps of the proposed circuit on GPU for different numbers of

core oscillators and different numbers of input oscillators, and have counted the number of

different unique available synchronization patterns in each of them. To keep the parameters

of the system unchanged, we maintain a constant 20MHz difference between consecutive nat-

ural frequencies in the core network. Note that an increase in the number of core oscillators is

bounded by the availability of a larger range of natural frequencies. The number of dimensions

of the computed maps is equal to the number of inputs. The ideal cases (without noise nor
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Figure 2.16: Number of different discriminated patterns in the readout map as a function of
the number of core oscillators Nc , for Ni = {1,2,3} input oscillators, as evaluated
in an ideal case and in an average case with high noise and variability. The filled
regions represent the span between the best and worst cases encountered during
10 random variability trials. The theoretical upper bound (■) corresponds to 2Nc−1.

variability) in Figure 2.16 show the number of discriminated patterns for the readout maps ob-

tained for different numbers of ideal core and input oscillators, as well as the aforementioned

theoretical upper bound.

These results show that the response of the ideal system is very rich as it displays an impor-

tant number of different synchronization patterns. The number of observed synchronization

patterns substantially increases both with the number of core oscillators, and with the number

of input oscillators. More specifically, the number of patterns versus number of core oscillators

follows the exponential theoretical upper bound curve before its increase starts slowing down.

The maximum number of patterns stays equal to the theoretical upper bound longer when

more inputs are present. This is due to the fact that a higher number of groups of oscillators

can be synchronized independently when more inputs are available, which increases the total

number of patterns reachable by the system.

As we have seen that the presence of noise and variability in such oscillator-based comput-

ing architectures has an influence on the network’s synchronization behavior, it is important

to assess the scalability of the system in a non-ideal case. We reproduced simulations includ-

ing an important level of noise and variability: noise FWHM = 1MHz, ±1MHz variability on

natural frequencies and 10% variability on the couplings, as defined in the previous sections.

The non-ideal cases in Fig. 2.16 show the average number of discriminated synchronization

patterns in the response maps obtained on 10 random trials in these conditions. The filled ar-

eas correspond to the span between the best and worst cases encountered during the random

trials.

We observe that this level of noise and variability does not or barely affect the number of

discriminated patterns in the 1 and 2 input cases, as well as in the 3 inputs case until Nc = 5.

For higher Nc values, in the three-input case, the number of output synchronization patterns is

reduced with regards to the ideal case: in the worst case Nc = 10, the number of stable patterns
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discriminated drops from 169 in the ideal case, to 107 on average. This loss is mainly due to

the noise effects: the tested variability values, although high, have little effect on the number of

synchronization patterns. The patterns suppressed by noise tend to be the smallest, therefore

less-reliable, patterns.

Nevertheless, we see in Figure 2.16 that the presence of noise and variability does not fun-

damentally affect the scaling capability of the system, but requires avoiding using unreliable

patterns of the response map. We should also remark that, in the presence of noise and variabil-

ity, the previously mentioned frequency spacing criteria also limit the scalability of the system

provided that the accessible natural frequency range for core and input oscillators is limited.

Overall, these results show that the maximum number of synchronization patterns of

the proposed system is high and scales well with the number of oscillators, which makes the

system attractive for many-class classification and associative memories.

Map resolution and scaling

To keep the the frequency resolution constant, the maps of the scaling study and 10 core

oscillator maps were computed using 333×333×10 = 1,108,890 simulations on GPU.

Effects of geometrical constraints

Uniform all-to-all coupling is a straightforward hypothesis when considering networks of os-

cillators. Nevertheless, densely packed networks of oscillators also offer the possibility to lever-

age coupling through proximity effects. In such a situation, the distance between oscillators

can affect their coupling strength and/or induce phase shifts in their signals. The geometrical

arrangement of devices then appears as a fundamental consideration. It is then interesting, in

the nano-device context, to assess the robustness of the studied computing scheme in the case

of non-uniform couplings.

Spatially decaying coupling strengths

Proximity couplings usually involve short characteristic interaction distances. Coupling strength

then decreases with the physical distance between two oscillators. This applies for example to

mechanical couplings through acoustic waves(see [171] and Section 1.3.3), to spin wave cou-

pling of spintronic oscillators [112, 178], to optical couplings [125] or to couplings through

dipolar electrical or magnetic fields [111]. See Section 1.3 for more details.

To assess this effect, we simulate our 2-input architecture considering 10 core oscillators

arranged along a line, sorted by increasing natural frequency, and with core-core coupling
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strengths ki , j
∣∣
(i 6= j )∈core decreasing exponentially with distance:

ki , j
∣∣
(i 6= j )∈core = kcc ×exp

(−λ(∣∣i − j
∣∣−1

))
, (2.5)

where λ is the spatial coupling decay factor. For generality, input-core couplings are left un-

changed.

Figure 2.17: (a) Matching with the response map in the uniform all-to-all coupling case (■),
and number of discriminated patterns (N) in the resulting map for Nc = 10 core
oscillators as a function of the spatial coupling exponential decay factor. The os-
cillators are assumed to be arranged along a line, spaced by one distance unit, and
ordered by increasing natural frequency. (b) Example response map obtained for
Nc = 4 core oscillators, Ni = 2 input oscillators and λ= 0.5.

Figure 2.17(a) shows the number of discriminated patterns in the response map, as well as

its matching to the map with all-to-all uniform couplings (λ = 0), as functions of the spatial

coupling decay factor λ. The graph shows that the system behavior changes minimally up

to λ = 0.075, where it shows 90.6% matching to the all-to-all map with all its 53 patterns still

present. The number of discriminated patterns then drops and stabilizes to 46 for λ> 0.4 and

the matching with the all-to-all map drops and stabilizes to 75.4% for λ> 5.8.

In order to illustrate the effects of such a decay, we also compute an example Nc = 4 core

oscillator response map under a high decay factor (λ= 0.5). The corresponding response map

Fig.2.17(b) shows that only the 4-oscillator pattern disappears as the coupling decay in-

creases. On the other hand, patterns involving a single input and 2 core oscillators , and

remain unaffected.

Patterns involving at most single pairs of synchronized oscillators remain unaffected be-

cause they rely on first-neighbor couplings only. On the other hand, patterns involving at least

one group of more than 2 synchronized oscillators are affected because long range interactions

between distant neighbors in the group contribute to their stability.

These results show that in a configuration where couplings are decaying in space, or even

limited to first neighbors, the system only loses a small portion of its capacity, as most of the

synchronization patterns can be stabilized by short-range interactions alone.
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Spatially-increasing coupling phase shifts

When coupling in the network involves propagating waves, the distance between two oscilla-

tors can also induce non-negligible time delays, and therefore distance-dependent coupling

phase shifts. They can also be induced by material non-linearities [179].

To account for distance-dependent coupling phase shifts we simulate the 2-input archi-

tecture with 10 core oscillators arranged spatially along a line, ordered by increasing natural

frequency, and with a distance-dependent coupling phase shift term between core oscillators

φi , j
∣∣
(i 6= j )∈core:

φi , j
∣∣
(i 6= j )∈core =−η× ∣∣i − j

∣∣ , (2.6)

where η represents the phase shift per unit distance.

Figure 2.18: Matching with the ideal map (+) and total number of different discriminated pat-
terns (+) in the readout map as a function of the phase shift per distance unit,
for Nc = 10 core oscillators. Oscillators are assumed to be arranged along a line,
spaced by one distance unit, and ordered by increasing natural frequency.

Fig. 2.18 shows the number of discriminated patterns in the response map, as well as its

matching to the ideal η = 0 map, as functions of the phase shift per unit distance η. Similarly

to the uniform phase shift case, the response map of the system is heavily altered by distance-

related phase shifts. For η= 0.04π, the matching with the ideal map already drops to 63.4%, as

the shape of pattern regions is changing, but only 3 patterns are not observed anymore. Gen-

erally, while the matching to the ideal η = 0 map quickly decreases below 60%, the number of

stable patterns stays high, over 40, for moderate values of η (< 0.4π). A locally optimal situation

is observed around η = 0.22π, which is related to system symmetries. Patterns involving only

2 core oscillators synchronized with a single input are again the most resilient to these phase

shifts, while the apparition of frustrations quickly destabilizes patterns involving multiple syn-

chronized oscillators.

Overall, to keep the maximal capacity of the system, accumulated contributions to the

phase-shifts between each pair of oscillators should be brought as close to zero as possible.

Considering propagation-related effects, a careful distribution of oscillators in space should

be considered to ensure target phase-shift. It is however expected that, in case of decaying
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coupling, the influence of distance-dependent phase-shift should be lower.

Advantages and limitations of the architecture

In this section, I showed that a network of nano-oscillators can be used to achieve recognition

and classification operations robustly by relying on the rich synchronization dynamics of its

oscillators while remaining compatible with their properties. This work was published as [180].

In an ideal situation with noiseless oscillators and in absence of variability issues, this ar-

chitecture allows the classification of stimuli in a large number of classes. Even if its capacity is

diminished as compared to an ideal case, this computing architecture is also fully compatible

with noise levels and device variability corresponding to current achievements in nanotech-

nology. Resilience to noise and device variability is a widespread feature of neural network-

inspired architectures [181], and a strong advocate for their use in conjunction with nanotech-

nologies. In the case of this system, the relaxed nature of synchronization evaluation further

helps the system deal with noisy situations.

A challenge for the design of architectures using emerging nano-technologies such as nano-

oscillators is the difficulty, with the still limited fabrication capabilities, to integrate high num-

bers of devices on chip. In this work, I have shown that this architecture can allow for complex

classification tasks even with a network of a reduced number of oscillators. It is able to dis-

criminate oscillating stimuli into a number of classes that scales rapidly with the number of

core oscillators, even in situations with high phase noise and variability. With this fast increase

of the computational complexity with the number of oscillators, relatively complex cognitive

tasks can already be achieved with a limited number of oscillators, as illustrated in this study in

the case Nc ≤ 10 oscillators.

Concerning scalability, our study has highlighted network design rules, for which the min-

imal natural frequency spacing among core oscillators has to be set in agreement with the ex-

pected noise and variability amplitudes. As a consequence, the accessible natural frequency

range appears as a crucial parameter during the architecture design.

Nanodevice-based oscillators are generally non-linear [177, 182]. I have shown that these

non-linearities – i.e. phase-amplitude coupling – allow the use of weaker couplings in the core

computing network, by increasing the oscillators’ synchronization capabilities. They allow to

increase the spacing between core oscillators frequencies, but also contribute to the phase-

shifts between synchronized pairs of oscillators.

Such phase-shifts, that also arise from the global properties of the coupling, appear to

be the most important practical challenge towards achieving oscillator network computation.

They are responsible for the appearance of frustrations that restrict synchronization of more

than two oscillators, and reduce the global synchronization capabilities of the network. There-

fore, this point should receive special attention for the choice of ideal technology as well as

ideal coupling type and geometry in the design of the network. Coupling phase shifts can also

be adjusted at design time: for instance, in the case of high frequency oscillators, proper trans-
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mission line design can introduce phase delays between oscillators so that phase shifts are

ideally brought back to zero [169, 173, 175, 176].

The computing scheme described through this work was also shown to be compatible with

different oscillator coupling strategies. While all-to-all coupling guarantees the highest classifi-

cation capacity, coupling through proximity effects, prone to appear in nano-device networks,

can also be leveraged with high computing capacity.

Improvements and alternative architectures

Improving the architecture

A proposal to achieve advanced classification could also be to rely on the juxtaposition of sev-

eral small core networks, trained independently to discriminate complementary subsets of pat-

terns. From a nanotechnology point of view, this also avoids the complex fabrication of large

networks of nano-objects and would facilitate the training of the networks.

In the case of magnetic or certain mechanical oscillators, the oscillators also need to be suffi-

ciently spaced apart to prevent interactions through dipolar coupling or local vibrations, which

limits the integration density. Embracing this interaction to combine local and global couplings

between oscillators could allow the implementation of architectures with rich behaviors and

higher density.

An alternative “EEG-like” readout method

This subsection describes a proposal for an alternative readout approach inspired by the EEG

signals in the brain.

As introduced in Section 1.1.2.2 and later in Section 1.2.2.3, the mean field activity of an

ensemble of neurons in the brain can be obtained as an EEG signal. An analogous quantity can

be defined in oscillator networks as the mean of the signals of all the oscillators:

1

N

∑
i

sin(θi ) . (2.7)

This mean field signal is also directly proportional to the real part of the Kuramoto order equa-

tion (equation 1.4) :

Re
(
r e iψ

)
= 1

N

∑
j

sin(θ j ) . (2.8)
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When the order parameter r varies slowly compared to the phases sin(θi ), it can be extracted

by taking the envelope:

S = envelope

(
1

N

∑
j

sin(θ j )

)
, (2.9)

which is called the “EEG-like” signal in the rest of the manuscript, as it resembles its biological

counterpart. Envelope detection itself can be done with simple resistor-capacitor circuits with

a suitable decay time constant τEEG. The “EEG-like” signal is an approximation of the order pa-

rameter that is convenient to probe in typical coupled nano-oscillator networks, and provides a

measure of the global synchronization state of the network. It could therefore be thresholded in

order to perform binary (yes or no) classification using the same type of architecture as studied

throughout this chapter.

Note that S is similar to the degree of matching measures introduced in Section 1.4.4 but is

used here in a classification context that does not involve distance measurements.

In order to evaluate this EEG-like readout possibility for the oscillator-based classification

architecture, I simulate its response map in terms of the mean value of the EEG-like signal S

obtained using different envelope detection time constants τEEG (Figure 2.19(b,c,d)), and com-

pare it to the corresponding pairwise synchronization map shown in Figure 2.19(a).

Figure 2.19: (a) Synchronization response map of the oscillator-based classification architec-
ture. (b, c, d) EEG-like signal maps of the same system with τEEG = {0,0.01,0.1}µs
envelope detection time constants respectively.
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Figure 2.19(b) shows the EEG-like response map for τEEG = 0, which is equivalent to com-

puting the average of the rectified signal max(S,0) after waiting for system stabilization. A com-

parison with the synchronization response map Figure 2.19(a) suggests that the EEG-like signal

is linked to the number of synchronized oscillators in the network. It varies between 0.1 when

no synchronization occurs and 0.26 when all the oscillators are synchronized.

Figure 2.19(c) shows the EEG response map with an envelope detection time constant τEEG =
0.01µs. The map is similar to the case τEEG = 0µs but the contrast has improved: the EEG signal

now varies between 0.34 and 0.74. This higher contrast can make the physical readout easier.

Figure 2.19(d) corresponds to the EEG-like response map for τEEG = 0.1µs. It shows abrupt

transitions of the EEG-like value, as well as a multitude of complex secondary patterns linked

to higher-order dynamics which make this response more complex to understand, predict and

use in real classification contexts.

These results show that the proposed EEG-like readout method could be used in a binary

classification architecture if the envelope detection time constant is chosen properly. Learning

algorithms for this alternative architecture are studied in Section 4.5.

Summary of the chapter

In this chapter, I have proposed an oscillator-based pattern classification architecture inspired

by the seminal work of Vassilieva et al. [160] that consists of a network of coupled “core” oscilla-

tors, themselves coupled to a set of “input” oscillators. The pattern to be classified is applied as

the set of natural frequencies of the input oscillators, which in turn perturb the core network,

and induce synchronizations among core oscillators. The resulting list of synchronized pairs of

core oscillators is read using a simple and robust counter-based synchronization scheme. This

list corresponds to the class the system has attributed to the presented pattern. The response

of the classifier can be tuned to properly solve a given classification problem by adjusting the

natural frequencies of the core oscillators.

I have also investigated the compatibility of this architecture with the constraints linked

to nano-technologies. In this context, I have shown that the architecture is robust to vari-

ous phenomena including noise, oscillator variability, coupling variability and oscillator non-

linearities. However, this oscillator-based classifier appears to be sensitive to phase shifts which

therefore need to be compensated at design time. I have also shown that the maximum number

of classes the system can discriminate scales quickly with the number of oscillators.

In the last section, I have proposed a modified version of this architecture where, instead of

performing synchronization detection for readout, the envelope of the mean field of the oscil-

lators is measured. This readout method is inspired by the EEG signals observed in the brain,

linked to the Kuramoto order parameter, and provides a promising means of binary classifica-

tion.
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Chapter 3

Case of the spintronic vortex

nano-oscillator

Magnetism, as you recall from physics class, is a

powerful force that causes certain items to be

attracted to refrigerators.

Dave BARRY

“THE THIRD CHAPTER of this thesis describes how an oscillator-based classifier

can be implemented with particular devices: vortex spin transfer nano-oscillators.

”
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THIS CHAPTER investigates how the oscillator-based classifier architecture presented in Chap-

ter 2 can be implemented using vortex spin transfer nano-oscillators, an emerging nano-

oscillator technology. The chapter covers:∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

1. A description and SPICE modeling of the vortex spin transfer nano-oscillator

2. The study of an electrical coupling scheme adapted to resistive nano-oscillators that im-

plements the oscillator-based classifier presented in Chapter 2

3. SPICE simulations investigating how well the resulting system matches the expected

generic behavior assumed in Chapter 2.

Introduction

As explained in the introductory Section 1.3.5, spin transfer nano-oscillators have multiple ad-

vantages including compact size, compatibility with the CMOS fabrication process, wide-range

tunable natural frequencies using currents or magnetic fields, and demonstrated synchroniza-

tion capabilities using electrical or dipolar coupling schemes. A specific type of spin-transfer

nano-oscillator involves the rotation of a stable vortex magnetization configuration instead of

a full magnetic domain. This type of device, called the vortex spin-transfer nano-oscillator,

presents multiple attractive features.

Features of the vortex spin-transfer nano-oscillator

The main highlights of vortex spin transfer nano-oscillators are:

• high frequencies typically of the order of 500MHz and up to 2GHz [183],

• high spectral purity, typically FWHM ≈ 100s of kHz at GHz operating frequencies. This

spectral purity exceeds that of other spin-transfer nano-oscillators, and represents the

main advantage of vortex oscillators [111, 117, 184],

• and wide-range current-based natural frequency tuning, over 100s of MHz [117, 163,

185].

• Experimentally demonstrated electrical and dipolar coupling and synchronization capa-

bilities [111, 169, 186].

Due to their frequencies in the microwave range, low bandwidth and intrinsic broad range

current-to-frequency conversion, vortex spin-transfer nano-oscillators are the focus of studies

investigating their usage in the telecommunication domain [185, 187, 188].

As part of the MEMOS project, we are in close collaboration with Julie Grollier’s team at

the CNRS/Thales joint laboratory in Palaiseau. In order to harness the potential of this collab-

oration, we investigate the implementation possibilities of the oscillator-based architectures

introduced in Chapter 2 with the vortex spin-transfer nano-oscillators that our collaborators
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are studying experimentally.

This Chapter defines a realistic model of the device, and validates it against the experimen-

tal results of our collaborators. A suitable coupling circuit implementing the oscillator-based

classifier introduced in Chapter 2 is also defined. Connections to existing oscillator models

providing different levels of realism, simulation speed and analytical prediction capabilities

are also derived, validated and compared. Finally, the full oscillator-based classifier is simu-

lated in order to investigate the compatibility of the vortex spin transfer nano-oscillator with

the classification architecture.

Description of the device

Figure 3.1: (a) Sample description. Arrows illustrate the magnetization distribution in ferro-
magnets. (b) Illustration of the vortex magnetization dynamics. Arrows and color
scale respectively describe the in-plane and out-of-plane magnetization distribu-
tion.

The device under consideration is a 100nm wide nanopillar hybrid spin transfer vortex

based oscillator, as introduced in [189], and presented in Figure 3.1(a). It is composed of a

layered stack, including a metallic spin-valve structure with a perpendicularly magnetized fer-

romagnetic layer, a non-magnetic spacer and a central ferromagnetic layer. The latter is also

part of a magnetic tunnel junction, composed of an insulating barrier and an in-plane magne-

tized ferromagnetic layer. The magnetizations of both perpendicular and in-plane magnetized

ferromagnets are considered pinned (i.e. constant). The dimensions of the pillar and particu-

larly the aspect ratio of the central ferromagnet are chosen so that its remanent magnetic state

is a vortex [190]. Such magnetic state corresponds to the magnetization curling in the layer’s

plane and popping out-of-plane in the center region called the vortex core (see Figure 3.1). The

studied mode of the vortex, called “gyrotropic mode”, corresponds to a circular displacement of

the vortex core around the center of the magnetic dot [119, 190] as illustrated in Figure 3.1(b).

As current flows through the device, the two pinned layers act as spin-current sources gen-

erating a spin-transfer effect on the vortex. As demonstrated in previous works, a source of per-

pendicular spin polarization is mandatory to start and sustain the vortex precession [191, 192].
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On the other hand, the MTJ with in-plane magnetized layer is needed to convert the magneti-

zation oscillations into resistance oscillations [189], and plays a major role in the synchroniza-

tion process by providing an in-plane component to the current spin polarization [193]. Under

sufficient current bias, the device then demonstrates permanent resistance oscillations and a

resulting AC voltage appears across the device.

Vortex spin transfer nano-oscillators therefore behave as oscillating resistors, with a fre-

quency increasing with the applied DC current. This allows coupling multiple oscillators elec-

trically.

Defining a model of the device

We propose an implementation of a physical model describing the self-sustained vortex os-

cillations in a pillar STNO for use in integrated circuit design of hybrid MTJ/CMOS systems.

To correctly describe the oscillator behavior at room temperature, our model implementation

includes non-linearities [194], as well as phase and amplitude noise effects under thermal fluc-

tuations [66, 183]. These factors can be of major importance to accurately describe the syn-

chronization phenomenon.

We present a VerilogA implementation of the model under the Cadence platform and con-

front the obtained simulations to previously obtained experimental results. Finally, we demon-

strate the compatibility of our model with a CMOS design kit for integrated circuit design by

simulating an integrated current source for biasing and synchronization of the STNO.

The vortex spin-transfer oscillator model

Because the vortex gyrotropic mode is isolated from other higher frequency modes, the self-

sustained oscillations under spin-transfer effect can be properly described by a collective-variable

equation, called the Thiele equation [119, 190], where the global dynamics is described through

the evolution of the position of the magnetic vortex core. This equation was recently extended

to include the spin-transfer terms [191, 192, 194]. The device is then modeled according to the

following equations, where X = ρe iχ is the vortex core complex coordinate (see Figure 3.1(b)):

iG Ẋ =−D(ρ)Ẋ −k(ρ)X + iκ⊥I X + (κSL + iκFL) I +F noi se (t ) . (3.1)

The device conductance oscillates in time according to:

R = R0 + R̃ = R0 −RampρIm(X ) , where


R0 = 2Rmin

1+ 1
1+T MR

Ramp = R02
ξ

2Rmin

(
1− 1

1+T MR

) . (3.2)

Equation 3.1 is the modified Thiele equation describing the dynamics of the vortex core, ac-

counting for conservative and dissipative terms. The left hand side gyrotropic term is equal to
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Symbol Expression Description

r 90 nm Pillar radius

t 10 nm Free layer thickness

µ0MS 1.0 T Free layer saturation magnetization

α 0.01 Free layer Gilbert damping

Le 6nm Free layer exchange length

p⊥ 60% Current spin polarization along perpendicular z-axis

p∥ 100% Current spin polarization along in-plane x-axis

Table 3.1: Geometrical and magnetic parameters for the free ferromagnetic layer and spin po-
larized current.

the sum of the effective forces acting on the vortex core: an effective damping force, a spring-

like confinement force, and effective spin-transfer forces induced respectively by the perpen-

dicular and the in-plane spin polarizations of the current. Equation 3.2 relates the value of the

resistance to the position of the vortex core, and depends on the TMR. All the terms appearing

in these equations are derived from geometrical and magnetic parameters. Their expressions

are gathered in table 3.2. Additionally, on the right-hand side, a phenomenological stochas-

tic force Fnoi se (t ) has been added, describing the action of thermal fluctuations according to

fluctuation-dissipation theorem, and derived in the framework of the classical nonlinear oscil-

lators theory [66, 183, 195]. Finally, the amplitude of the oscillations is limited by the existence

of a critical velocity vc for the vortex core that triggers a polarity switching and subsequently

stops the self-sustained oscillations [192].

Field-like torque

Note that because at the time of this work the effects of the field-like-torque κFL was con-

sidered negligible in the description of such oscillators, the preliminary version of our

model considered until Section 3.2.5 uses a field-like-torque factor λ= 0 (see Table 3.2).

Model implementation

The described physical model was implemented in VerilogA analog hardware description lan-

guage. This allows the model to be used as a component in circuits simulated by a broad range

of circuit simulation tools, and in particular the industry-standard Cadence Spectre simulator

we are using. Simulations were conducted for a 2r = 180nm diameter device, with a t = 10nm

thick free Ni Fe layer whose magnetic parameters are gathered in table 3.1. The minimum re-

sistance was chosen to be Rmi n = 130Ω with a TMR ratio TMR% = 70% for the tunnel junction,

in agreement with previously fabricated devices. A p⊥ = 60% perpendicular polarization (from
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Symbol Expression Description Units

G 2πt MS/γ Gyrovector amplitude N .s/m

η 1
2 ln

(
r

4Le

)
− 1

8 1st order damping unitless

η′ 1/12 2nd order damping unitless

D(ρ) αG
(
η+η′ρ2

)
Non-linear damping N .s/m

kms
10
9 µ0MS

2t 2/r 1st order magneto-static confinement N /m

k ′
ms kms/4 2nd order magneto-static confinement N /m

kOe 0.85µ0MS t/(πr ) 1st order Oersted field confinement N .m/A

k ′
Oe −kOe /2 2nd order Oersted field confinement N .m/A

k(ρ) (kms +kOe I ) Non-linear confinement N /m

+
(
k ′

ms +k ′
Oe I

)
ρ2 coefficient

a J gµB /(2teMS) Spin transfer efficiency m2/A/s

ξ 2/3 Average magnetization to vortex displacement ratio unitless

κ0
SL a JG/

(
2πr 2

)
Slonczewski torque amplitude N /m/A

κ⊥ p⊥κ0
SL Orthogonal spin transfer N /m/A

κSL 2Le ln(2)p∥κ0
SL/r In-plane Slonczewski spin transfer N /m/A

κFL λ×κ0
SLξp∥ In-plane Field-like torque N /m/A

vc
1
3 Leγµ0MS Critical vortex velocity m/s

Table 3.2: Parameters for the Thiele equation modeling the vortex gyrotropic motion. γ is the
electron gyromagnetic ratio,µB is the Bohr magneton,µ0 is the vacuum permeability,
g = 2 is the Landé factor and e is the electron charge.



3.2 DEFINING A MODEL OF THE DEVICE 81

the the spin-valve) and an ideal p∥ = 100% in-plane polarization (from the MTJ) were assumed.

These parameters correspond to a critical 220µA current to start the self-sustained oscillations.

The model was tested under constant current bias for transient simulations, in both cases

of noise-free and noisy oscillator. The vortex core position was initiated in a random position in

the vicinity of the ferromagnet center, allowing the observation of a transitory regime where the

oscillations amplitude increases up to its stable value, starting the steady regime of oscillations.

A major criteria for the validation of our model was the stability of the noise-free auto-

oscillations frequency and amplitude in the steady-state regime and their independence to the

simulation time step. Due to different time-scales for the evolution of the phase and the am-

plitude of oscillations, we found that the compact model is largely improved by implementing

equation (3.1) under polar coordinates instead of Cartesian. We then evaluated that to ensure

a steady-state frequency stability, a reasonable criteria was ensuring that the time step for the

simulation verifies ∆t < T (ρ)/50 where T (ρ) = 2π/ω is the instantaneous oscillation period of

the vortex. We enforce this minimum time step thanks to a bound_step VerilogA call within the

compact model.

The thermal fluctuation term was implemented through a random Gaussian draw at each

integration step of the differential equation. Compatibility of this model with fluctuation-

dissipation theory was then verified by evaluating the average fluctuating energy at equilib-

rium. At zero bias, this energy 〈ε〉 = 〈1
2 k(ρ)r 2ρ2〉 was verified to be equal to the thermal energy

kB T .

10µs simulations of a single oscillator on a 3.20GHz CPU were obtained in respectively 9.43s

and 9.81s for the noise-free and room-temperature noisy oscillator. In Figures 3.2(a) and (b),

we present the temporal evolution of the device voltage under a constant 260µA current bias

in both cases. The observed auto-oscillation frequency is 617.8MHz, in good agreement with

the expected frequency for the chosen device dimensions [190]. As it appears on the corre-

sponding spectrum on Figure 3.2(c), fluctuations in the noisy oscillator translate into phase

noise that broadens the spectrum peak, accounting for the non-zero peak linewidth observed

experimentally [189]. A 14.6MHz linewidth is measured, independent on the time step, in good

agreement with the 14.0MHz theoretically predicted linewidth [66].

CMOS-compatible natural frequency tuning

We validated the compatibility of our model with a commercial 28-nm CMOS design kit by

designing a MOSFET-based supply for the STNO (see Figure 3.3). The circuit is a voltage con-

trolled current source. A two-transistor architecture is implemented to prevent voltage oscil-

lations across the STNO from disturbing the current bias. With this circuit, the current is kept

constant despite the resistance oscillations of the device that can shift the operating point of

the transistors. The frequency of the auto-oscillator is then controlled by the gate voltage of the

T 1 transistor, as summarized in Figure 3.3.

The circuit is designed so that a zero command voltage stays below the threshold current
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Figure 3.2: (a) Simulated voltage versus time for a noise-free oscillator under a constant 260µA
bias. (b) Simulated voltage versus time and (c) associated spectrum for a noisy os-
cillator under a constant 260µA bias. Full Width at Half-Maximum is determined by
fitting the spectrum peak with a Gaussian function.

bias. Self-sustained oscillations appear when a Vcde > 10mV voltage is applied, and their am-

plitude keeps increasing as Vcd is swept up to 180mV above which the critical vortex speed is

reached and oscillations are terminated. Because both current bias and resistance oscillations

amplitude are different for each frequency value, it is important to note that the AC voltage am-

plitude is also varying as the command voltage is swept. As it appears on Figure 3.3, the voltage

amplitude varies between 0 and 15mV.

Synchronization to an oscillating signal

Spin transfer nano-oscillators also show the ability to respond to an AC-current excitation by

synchronizing to the input signal for sufficient amplitude and if its frequency is close enough

to the auto-oscillation frequency [196, 197]. To test the ability of the implemented model to

implement this capability, we simulated the response of the STNO when a harmonic AC-voltage

is added to the command voltage as shown on Figure 3.4(a). The simulation was run for Vcde =
120mV, corresponding to a 261µA current bias and a frequency of 619MHz, to which an AC-

signal at a frequency 609MHz was added. The frequency response presented in Figure 3.4(b)

shows that a minimum 100mV AC-input amplitude is necessary for the oscillator to shift its

frequency and synchronize to the AC signal, which corresponds to the AC-current amplitude
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Figure 3.3: (a) MOSFET-based control circuit for the spin transfer oscillator, simulated using a
commercial 28nm-node design kit. (b) Frequency and peak-to-peak amplitude of
the output voltage Vout versus command voltage.

i AC = 27.2µA.

Figure 3.4: (a) MOSFET-based control circuit simulated using a commercial 28nm-node design
kit. Vcde is oscillating at fstimulus = 609MHz to apply an alternating current compo-
nent IAC, and Vbias1 sets the natural frequency at about f0 = 620MHz. (b) STNO
frequency as a function of the amplitude of IAC.

These results show that the model is capable of predicting synchronization to an oscillat-

ing current, however the synchronization range initially didn’t fully match experimental re-

sults [169]. Section 3.2.5 explains the underlying causes of this mismatch and the corrections

we applied.
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Model parameter Analytical operating point CNRS-Thales devices

r 100 nm 100 nm

η 0.588558 1.1372

η′ 0.0833333 0.5265

kms 8.84194×10−4 N/m 3.6201×10−4 N/m

k ′
ms 22.1049×10−5 N/m 1.086×10−5 N/m

kOe 0.0270563 N.m/A 0.8768 N.m/A

k ′
Oe −0.0135282 N.m/A 0 N.m/A

λ 0 5

Table 3.3: Model parameters for the vortex nano-oscillator around the analytical operating
point, and around the operating point of the devices studied in collaboration with
CNRS-Thales.

Limitations of the model and subsequent improvements

Since our publication of this model in 2015 [70], new experimental results, including results

from our collaborators in Thales, have shed light on some of its limitations, after which we

have improved the model.

The field-like torque term κFL was shown to be dominant compared to κSL by Romera et

al. [198] to explain the strong synchronization capabilities of these oscillators. We therefore

adjusted λ to match experimental values. The underestimated non-linearity of the oscillator

also caused noise over-estimation and is corrected by the adjustments.

Adjusting the model to specific devices

The CMOS-compatible Verilog-A model of the vortex-based spin transfer oscillator that we pre-

sented in Section 3.2.1 represents the theoretical behavior of a generic vortex nano-oscillator

around its typical operation regime. It uses analytically predicted parameters from fundamen-

tal physics, and assumes typical material properties. We demonstrated that it successfully ac-

counts for the non-linear behavior of typical vortex nano-oscillators, their current-based natu-

ral frequency tuning, as well as their ability to synchronize to external signals.

As real devices have different properties and non-idealities, their operating point is not the

same as in the ideal case. Instead, parameters can be chosen to match experimental mea-

surements or micromagnetic simulations around the operating point. As shown by Grimaldi

et al [183], this can imply adjustments of multiple orders of magnitude compared to values

deduced from the analytical analysis.

In the framework of our cooperation with CNRS-Thales, I used parameters that describe

the general behavior of the vortex nano-oscillators studied experimentally by the team of Julie

Grollier as given in Table 3.3. Note that the field-like torque is now taken into account with

λ= 5 according to the observations of Lebrun et al. [169].
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Electrically coupling nano-oscillators in a circuit

Physically coupling STNOs all-to-all can be achieved through electrical coupling which consists

in summing the signals of all oscillators and applying the resulting sum signal as an oscillating

current to all oscillators. As a result, each oscillator is coupled to each other. Our collabora-

tors studied different circuit implementations of this approach [110]. Julie Grollier’s team also

implemented one of those coupling schemes [198], proving its operation experimentally. This

section focuses on a theoretical description of this approach.

Coupling oscillators in series

Figure 3.5(a) shows the coupling circuit using two oscillators connected in series and capac-

itively coupled. Two different constant current biases I 0
1 and I 0

2 are applied to oscillators 1

and 2 respectively, in order to define their natural frequencies. As the resistances R1(t ) and

R2(t ) of the two oscillators fluctuate, their combined effect induces current oscillations Irf in

the whole branch. This current influences the oscillators by accelerating them or slowing them

down, which corresponds to non-local, all-to-all coupling. The capacity C must be high enough

(C > 200pF) to avoid second-order oscillations, and the load resistor RL = 50Ω corresponds to

the internal resistance of high frequency measurement devices such as spectrum analyzers.

In order to characterize the efficiency of this coupling, I have carried out a noiseless SPICE

simulation of this circuit including the Thiele model of the oscillators, at constant oscillator

2 natural frequency defined by I 0
2 = 706µA and swept the natural frequency of oscillator 1 by

varying I 0
1 from 680µA to 730µA.

Phase compensation

As explained in Section 2.4.4, the synchronization of oscillators is sensitive to phase shifts.

These simulations include a compensation of the phase shift to maximize the synchro-

nization range. Phase compensation has been demonstrated experimentally by our col-

laborators in the case of vortex spin transfer nano-oscillators using delay lines [169].

Figure 3.5(b) shows the mean frequencies of the two oscillators as functions of I 0
1 . Out-

side of the synchronization range, the mean frequency of Osc. 1 varies quasi-linearly with I 0
1 ,

and shows a natural frequency tuning behavior consistent with experiments [169]. The syn-

chronization range of about 5MHz also matches its experimentally observed order of magni-

tude [169].

This validates the behavior of the oscillator compact model as well as the effectiveness of

this coupling circuit which allows choosing the natural frequencies of the oscillators by apply-

ing bias currents.
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Figure 3.5: SPICE simulation of two coupled vortex nano-oscillators in a circuit. (a) Circuit di-
agram. (b) Mean frequency of the two oscillators, as functions of the current bias of
Osc. 1 I0

1. Frequency locking synchronization is achieved for 700µA < I0
1 < 712µA.

Analytical interpretation of the circuit

This approach can be extended to a higher number of oscillators as shown in Figure 3.6. A

rigorous analytical analysis provides further predictive power and insight into this scheme.

Figure 3.6: Electrical coupling of N vortex spin torque nano-oscillators.

Connecting the current and voltage of capacitor C yields:

Irf =C
d

d t

(∑
j

(I 0
j − Irf)R j − IrfRL

)
. (3.3)

As C is large, the capacitor voltage in its stable state can be assumed constant and equal to∑
l I 0

l R0
l : ∑

j
(I 0

j − Irf)(R0
j + R̃ j )− IrfRL =∑

j
I 0

j R0
j . (3.4)

Rearranging the terms and using R j = R0
j + R̃ j provides the expression of the oscillating current
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Irf:

Irf =
∑

l I 0
l R̃l

RL +∑
l R0

l +
∑

l R̃l
. (3.5)

The sum of resistance deviations
∑

l R̃l is small compared to the sum of the constant resistances

RL+∑
j R0

l not only because of the lower amplitude of its terms, but also because of their mutual

compensations. The denominator term can therefore be approximated:

Irf ≈
∑

l I 0
l R̃l

RL +∑
j R0

l

. (3.6)

The total current through oscillator j is then:

I tot
j = I 0

j − Irf = I 0
j −

∑
m

I 0
m

RL +∑
l R0

l

R̃m , (3.7)

and by using the expression of the STNO resistance (equation (3.2)):

I tot
j = I 0

j +
∑
m

I 0
m

RL +∑
l R0

l

Ramp
m ρm sin(θm) , (3.8)

where θm is the phase of the oscillator m.

Therefore, the total current through oscillator j is:

I tot
j = I 0

j +
∑
m

Amρm sin(θm) , where Am = I 0
m

RL +∑
l R0

l

Ramp
m . (3.9)

This result confirms that the current through an oscillator j of the circuit is composed of its

current bias I 0
j and of the sum of the signals of all the oscillators in the network. Note that the

weight of a single oscillator m in this sum is proportional to its amplitude ρm and to its constant

current bias I 0
m .

Mean field signal The voltage measured at the terminals of RL is :

UL =−RL
∑
m

Amρm sin(θm) . (3.10)

This signal is linked to the mean field generated by the combined activity of all the oscillators

and acting on the whole network
∑

i sin(θi ). EEG-like architectures such as described in Sec-

tion 2.5.2 could be readily implemented simply by taking the envelope of this signal with an

envelope detection circuit.

This circuit is therefore a valid and realistic approach for STNO coupling, and is used as the

reference coupling circuit throughout this chapter. Furthermore, it can also be used for other



88 CHAPTER 3: CASE OF THE SPINTRONIC VORTEX NANO-OSCILLATOR

two-terminal resistive oscillator devices.

Note : Mean frequency readout

The average frequencies of the oscillators can be measured using a spectrum analyzer in

place of RL as done by our collaborators [169], which allows synchronization detection.

However, using a spectrum analyzer is acceptable on a tabletop experiment but not for

integrated circuit realization.

This detection can instead be achieved by amplifying the voltage at the terminals of each

measured oscillator j :

U j = (R0
j + R̃ j )×

(
I 0

j − Irf

)
.

The DC contribution R0
j I 0

j can be filtered out with a series capacitor, which leaves the

oscillating part of the voltage Ũ j . Moreover, simulations show that in this circuit, the am-

plitude of Irf is low compared to I 0
j , which makes R̃ j I 0

j the dominant contribution to Ũ j

by an order of magnitude:

Ũ j ≈ R̃ j I 0
j = Ramp

j ρ j sin(θ j ) ,

which is proportional to the oscillator signal sin(θ j ) and can readily be used with the syn-

chronization detection circuits proposed in Section 2.2, providing a more integrable read-

out approach.

Link with general oscillator models

The Thiele model provides a realistic description of vortex STNOs but can be cumbersome to

simulate or not adapted to other similar oscillator technologies. This section investigates how

well STNOs are described by a generic non-linear (Landau-Stuart) or even a linear (Kuramoto)

model as used in our device-agnostic simulations.

Coupled phase-amplitude equations

The complex Thiele model expresses the evolution of the vortex core position X in the complex

plane:

iG Ẋ =−D Ẋ −k X + iκ⊥I X + (κSL + iκFL)I , (3.11)

where: D =αG
(
η+η′ρ2

)
k = (kms +kOe I )+ (k ′

ms +k ′
Oe I )ρ2

. (3.12)

The expression κSL+ iκFL is a complex number combining the in-plane effects of two orthogo-
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nal torques: the Slonczewski and Field-Like torques. It can be rewritten in polar coordinates:

iG Ẋ =−D Ẋ −k X + iκ⊥I X + Iκ∥e iψ∥ , where

κ∥ =
√
κ2

SL +κ2
FL

ψ∥ = tan−1 (κFL/κSL)
. (3.13)

This form makes the phase shift ψ∥ induced by the in-plane torques explicit. The system pa-

rameters used in this study yield κ∥ ≈ 0.11 and the phase shift ψ∥ ≈ 0.49π matches the value

experimentally obtained by our collaborator R. Lebrun [169]: ψexp
∥ ≈π/2.

By setting X = ρe iθ where ρ is the amplitude and θ the phase of the oscillator, the real and

imaginary parts of the resulting equation can be combined, knowing D > 0 and G > 0, into

coupled amplitude and phase equations. Moreover, we split the noise terms into their real and

imaginary parts and expand the resulting random walk terms for an integration timestep d t :
ρ̇ = Gκ⊥I −Dk

D2 +G2 ρ− κ∥p
D2 +G2

I sin
(
θ−ψ∥−ψ0)+σN (0,1)

θ̇ = Dκ⊥I +Gk

D2 +G2 − κ∥p
D2 +G2

I

ρ
cos

(
θ−ψ∥−ψ0)+ σ

ρ
N (0,1)

,

with ψ0 = tan−1 (D/G) and σ= 1

rG

√
2kB T D

d t
.

(3.14)

This convenient form of the Thiele model readily provides the radius stability condition of an

isolated oscillator Gκ⊥I = Dk. In the case of the second order developments of D(ρ2) and k(ρ2)

used here, this is a second degree polynomial in ρ2 that can be solved analytically to obtain the

stable amplitude ρ0.

Simulation and subsequent spectral analysis show an oscillator linewidth of FWHM = 171.4kHz

which is consistent with experimental observations and solves the noise overestimation prob-

lem mentioned in Section 3.2.5. Moreover, when the condition Gκ⊥I = Dk is injected as is in

the phase equation θ̇ without the coupling term, it yields the natural frequency of the Thiele

oscillator:

f 0
thiele =

1

2π

k

G
. (3.15)

Also note that since D ¿ G , the phase shift component ψ0 is considered low (ψ0 ≈ 0.004π in

my simulations) and ψ∥ dominates.

Upper bound on the integration time step

Knowing the expression of the natural frequency f 0
thiele and requiring 50 integration steps

per period with a high margin against small frequency variations around this natural fre-

quency, the upper bound on the integration step I used is:

dt < 1

50
2π

G

k
.
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From Thiele to Landau-Stuart

As the frequency of a vortex STNO evolves quadratically with its amplitude, this device is an in-

trinsically non-linear oscillator. As shown in Section 2.4.5, this non-linearity can have an effect

on the system. It is therefore important to evaluate if its description fits the generic Landau-

Stuart model widely used in simulation of architectures involving non-linear oscillators. In this

subsection, I analytically connect the Thiele model to the Landau-Stuart model using reason-

able approximations.

Without couplings, the Thiele amplitude-phase equations (3.14) already resemble the Landau-

Stuart model (Section 1.2.4):

Thiele :ρ̇ = Gκ⊥I−Dk
D2+G2 ρ

θ̇ = Dκ⊥I+Gk
D2+G2

Landau−Stuart :ρ̇ = γ(ρ02 −ρ2)ρ

θ̇ = 2π f 0 +νγ(ρ2 −ρ02
)

.

A few approximations are however needed to obtain compatible expressions between the

two models.

Developing terms around the equilibrium state

A major complexity of the Thiele model resides in the current or radius dependencies of pa-

rameters k and D .

However, the oscillating component Irf of the current is small compared to its constant part

I 0 (see Section 3.3). Because of this, the expression of the confinement k can be approximated

by the case I = I 0:

k ≈ (kms +kOe I 0)+ (k ′
ms +k ′

Oe I 0)ρ2 . (3.16)

For the same reason:

κ⊥I ≈ κ⊥I 0 . (3.17)

Likewise, simulations show that after the transient period, the amplitude of an oscillator

deviates by less than 15% from its stable amplitude ρ0. The amplitude of an oscillator can

therefore be expressed as:

ρ = ρ0 +δρ , (3.18)

where δρ is a small deviation.

Using this expression, it is possible to develop the amplitude-dependent terms k and D to

the first order in δρ:

k ≈ k0 +k1ρ2 , (3.19)
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where k0 = (kms +kOe I 0)+ (k ′
ms +k ′

Oe I 0)ρ02
and k1 = (k ′

ms +k ′
Oe I 0)2ρ0.

And for D :

D ≈ D0 +D1δρ , (3.20)

where D0 =αG
(
η+η′ρ02

)
and D1 =αGη′2ρ0.

In the fraction 1
D2+G2 , the constant G2 in the denominator is more than 5000 times larger

than D2. The first order term D1 can therefore be safely omitted:

1

D2 +G2 ≈ 1

D02 +G2
. (3.21)

First order equivalence of the amplitude equations

The Thiele amplitude equation is not directly compatible with the one given by Landau-Stuart,

but the two models have similar behaviors around the stable point of operation. The next step

is therefore to derive and map the first order expressions of these two models.

Re-injecting the approximated factors back into the Thiele amplitude equation without

coupling terms yields, after rearranging the terms:

ρ̇ = 1

D02 +G2

((
Gκ⊥I 0 −D0k0)− (

D0k1 +D1k0)δρ)
ρ . (3.22)

At equilibrium, the stable radius ρ0 verifies δρ = ρ̇ = 0, which implies:

Gκ⊥I 0 = D0k0 . (3.23)

This is a second degree polynomial in ρ02
that can be solved exactly to obtain ρ0 :

Gκ⊥I 0 =αG
(
η+η′ρ02

)(
(kms +kOe I 0)+ (k ′

ms +k ′
Oe I 0)ρ02

)
. (3.24)

Taking this into account allows to reduce the amplitude equation to a simple form:

ρ̇ =
(
−D0k1 +D1k0

D02 +G2
δρ

)
ρ . (3.25)

From this expression, we see that at first order, the Thiele amplitude equation behaves like a

restoring force towards δρ = 0. To identify this equation to its Landau-Stuart counterpart, we

first need to develop the Landau-Stuart equation to the first order with ρ = ρ0 +δρ in the same

way:

δ̇ρ = (−2γρ0δρ)ρ . (3.26)

As the two amplitude equations now have the same first-order form, it is possible to identify
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the damping coefficient for radius deviation γ:

γ= D0k1 +D1k0

2ρ0(D02 +G2)
. (3.27)

As a result, the Landau-Stuart amplitude equation equivalent at first order to the Thiele ampli-

tude equation is:

ρ̇ = γ(ρ02 −ρ2)ρ , with γ= D0k1 +D1k0

2ρ0(D02 +G2)
, (3.28)

where the equivalent stable radiusρ0 is found by solving the polynomial given in equation (3.24).

Equivalence of the phase equations

The Thiele phase equation without couplings directly maps to the Landau-Stuart with only

minor approximations (D and k do not need to be linearized in δρ):

θ̇ = 1

D02 +G2

(
κ⊥I 0D +Gk

)
. (3.29)

Expanding the terms and rearranging yields:

θ̇ = 1

D02 +G2

(
κ⊥I 0αGη+G(kms +kOe I 0)

)+ 1

D02 +G2

(
κ⊥I 0αGη′+G(k ′

ms +k ′
Oe I 0)

)
ρ2 . (3.30)

This expression can be immediately mapped to the Landau-Stuart phase equation:

θ̇ = 2π f 0 +νγ(ρ2 −ρ02
) . (3.31)

Identifying the dimensionless nonlinear frequency shift ν gives:

ν= 1

γ(D02 +G2)

(
κ⊥I 0αGη′+G(k ′

ms +k ′
Oe I 0)

)
. (3.32)

This expression confirms that this dimensionless parameter that quantifies the non-linearity

of the oscillator mainly depends on the second order physical parameters η′, k ′
ms , k ′

Oe : without

them, the oscillator behaves in a linear way. Its value in my simulations is ν ≈ 2.04 which is

close to the value experimentally predicted by our collaborators tan−1(νexperiment) ≈ 2π/5 =⇒
νexperiment ≈ 3. The natural frequency f 0 can be readily found by injecting the amplitude equi-

librium condition (3.23) into the phase equation (3.29):

f 0 = 1

2π

k0

G
. (3.33)

As a result, the Thiele phase equation without couplings is almost perfectly equivalent to the
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Landau-Stuart phase equation as defined by:

θ̇ = 2π f 0 +νγ(ρ2 −ρ02
) , where


f 0 = 1

2π
k0

G

γ= D0k1+D1k0

2ρ0(D02+G2)

ν= 1
γ(D02+G2)

(
κ⊥I 0αGη′+G(k ′

ms +k ′
Oe I 0)

) . (3.34)

Coupling terms in the amplitude equation

Applying an oscillating current to an STNO acts on its amplitude. Injecting the total current

applied to the oscillator j inside the circuit (equation 3.9) into the coupling part of the Thiele

amplitude equation (3.14) yields:

ρ̇ = [. . . ]− κ∥p
D2 +G2

sin(θ−ψ∥−ψ0)

(
I 0 +∑

m
Amρm sin(θm)

)
. (3.35)

After expansion:

ρ̇ = [. . . ]− κ∥p
D2 +G2

I 0 sin(θ−ψ∥−ψ0)−∑
m

κ∥Amp
D2 +G2

ρm sin(θm)sin(θ−ψ∥−ψ0) . (3.36)

The first term sin(θ−ψ∥−ψ0) is parasitic: it makes the radius oscillate with the phase of the

oscillator itself. This term does not provide an explicit contribution to the synchronization

dynamics as it does not involve other oscillators at the first order. We chose to approximate it

out.

Moreover, sin(θm)sin(θ−ψ∥ −ψ0) = 1
2 (cos(θm − θ+ψ∥ +ψ0)− cos(θm + θ−ψ∥ −ψ0)). As

the absolute frequencies are high (hundreds of MHz) and are tuned in a small range, the term

cos(θm+θ−ψ∥−ψ0) oscillates at about twice the frequency of the oscillator. Such high-frequency

terms can perturb the oscillator dynamics, but do not induce synchronizations. As a result, we

decided to neglect it as well.

These two relatively strong approximations, as well as D ≈ D0 in the denominator make the

problem more tractable, and yield the following expression for the amplitude coupling term of

oscillator i :

ρ̇i = [. . . ]+2π
∑

j
ki , jρ j cos(θ j −θi +φ0i ) , where


kLS

i , j =
κ∥i A j

4π
√

D0
i

2+G2
i

φ0i =ψ∥i +ψ0
i −π

. (3.37)

This shows an explicit dependence on the phase differences with other oscillators θ j −θ, which
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is an important factor for entrainment and synchronization.

Note : Self-coupling

Note that the terms ρm cos(θm − θ + (ψ∥ +ψ0 −π)) of the coupling sum also include a

contribution of the oscillator itself, for which the phase difference is zero. This adds a

constant term to the amplitude expression, making the stable amplitude slightly higher,

which increases the natural frequency as well, thus deviating from the point of operation

f 0 expression derived earlier and around which the system was approximated. However,

simulations show that the effects of this self-coupling term are low in practice, that the

point of operation deviates only slightly, and that the approximations still hold.

Amplitude coupling allows indirect synchronization effects, as amplitude oscillations trans-

late into frequency oscillations in non-linear oscillators.

Coupling terms in the phase equation

The Thiele phase equation (3.14) also contains a coupling term. The expression of the oscillat-

ing current in the circuit can therefore be injected into it to obtain:

θ̇ = [. . . ]− κ∥p
D2 +G2

1

ρ
cos(θ−ψ∥−ψ0)

(
I 0 +∑

m
Amρm sin(θm)

)
. (3.38)

Following the same procedure as for the amplitude coupling term, we neglect the parasitic term

in cos(θ−ψ∥−ψ0)I 0. We also expand sin(θm)cos(θ−ψ∥−ψ0) = 1
2 (sin(θm+θ−ψ∥−ψ0)+sin(θm−

θ+ψ∥+ψ0)) and neglect the double frequency term. These approximations, as well as D ≈ D0

in the denominator yield the following phase coupling for oscillator i :

θ̇ ≈ [. . . ]+2π
∑

j
kLS

i , j

ρ j

ρi
sin(θ j −θi +φ0i ) , where


kLS

i , j =
κ∥i A j

4π
√

D0
i

2+G2
i

φ0i =ψ∥i +ψ0
i −π

. (3.39)

Complete Landau-Stuart model with couplings

Taking all these considerations into account, the Landau-Stuart model equivalent at first order

to the Thiele model is defined by:
ρ̇i = γi (ρ0

i
2 −ρ2

i )ρi +2π
∑

j
kLS

i , jρ j cos(θ j −θi +φ0i )

θ̇i = 2π f 0
i +νiγi (ρ2

i −ρ0
i

2
)+2π

∑
j

kLS
i , j

ρ j

ρi
sin(θ j −θi +φ0i )

. (3.40)
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In order to test how well this model matches the Thiele model, I simulate it in the same two-

oscillator noiseless case as in Figure 3.5(b) with the same phase compensation to maximize

synchronization, and compare the results to the Thiele model. Figure 3.7 shows the average

frequencies of the two coupled oscillators as functions of the oscillator 1 bias current I 0
1 , for

the Thiele model (in blue, same values as in Figure 3.5(b)) and for the first order equivalent

Landau-Stuart model (in red).

Figure 3.7: Mean frequencies of two electrically coupled nano-oscillators, as functions of the
Osc. 1 current bias, as obtained through SPICE simulation with the Thiele model,
and using the raw Landau-Stuart model. The raw Landau-Stuart model overesti-
mates the synchronization range.

These results show that this Landau-Stuart model matches the Thiele model in areas far

from synchronization which implies that the current-based natural frequency tuning is prop-

erly taken into account. The two models also match inside the synchronization range of the

Thiele model, thus validating the Landau-Stuart description of this synchronized state. How-

ever, this version of the Landau-Stuart model overestimates the synchronization range by more

than twice the Thiele prediction.

According to our tests, this inaccuracy lies in the neglected parasitic and double-frequency

terms (sections 3.4.2.4 and 3.4.2.5) that can act as noise that reduces the synchronization range,

as well and the slight shift in the point of operation due to self-coupling (remark in section

3.4.2.4). It also partly comes from circuit-related approximations neglecting some parasitic os-

cillations (Section 3.3.2). This results in a large under-estimation of the dynamics perturbing

the system and acting against the stability of the synchronization. The net effect of this devia-

tion is a ≈ 2.5× overestimation of the effective coupling strengths kLS
i , j .

I therefore corrected the model by dividing kLS
i , j by 2.5 and simulated it again. Figure 3.8 as-

sesses the behavior of the corrected model in the same case as previously (Figure 3.7), compar-

ing it to the Thiele model. This coupling-corrected Landau-Stuart model is in very good agree-

ment, in all regions, with the full Thiele model with SPICE simulation. The coupling-corrected
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Landau-Stuart model can therefore successfully approximate the behavior of STNOs:
ρ̇i = γi (ρ0

i
2 −ρ2

i )ρi +2π
∑

j
kLS

i , jρ j cos(θ j −θi +φ0i )

θ̇i = 2π f 0
i +νiγi (ρ2

i −ρ0
i

2
)+2π

∑
j

kLS
i , j

ρ j

ρi
sin(θ j −θi +φ0i )

,

where



γi =
D0

i k1
i +D1

i k0
i

2ρ0
i (D0

i
2 +G2

i )

νi = 1

γi (D02
i +G2

i )

(
k⊥i I 0

i αi Giη
′
i +Gi (k ′

msi +k ′
Oei I 0

i )
)

kLS
i , j =

1

2.5

κ∥i A j

4π
√

D0
i

2 +G2
i

f 0
i = 1

2π

k0
i

Gi

φ0i =ψ∥i +ψ0
i −π

.

(3.41)

Figure 3.8: Mean frequencies of two electrically coupled nano-oscillators, as functions of the
Osc. 1 current bias, as obtained through simulation with the Thiele model, and us-
ing a coupling-corrected Landau-Stuart model. Excellent agreement is achieved.

These results show that the behavior of non-linear STNOs is successfully approximated by

a Landau-Stuart model, which illustrates the usefulness of this model as a generic description

of non-linear oscillators. It also implies that an oscillator-based classification architecture built

with vortex spin-transfer nano-oscillators is subject to the effects of non-linearities shown in

Section 2.4.5.

Noise terms

The expression of the noise can be approximated by usingσ≈σ0 around the equilibrium point:
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ρ̇i = γi (ρ0

i
2 −ρ2

i )ρi +2π
∑

j
kLS

i , jρ j cos(θ j −θi +φ0i )+σ0
i N (0,1)

θ̇i = 2π f 0
i +νiγi (ρ2

i −ρ0
i

2
)+2π

∑
j

kLS
i , j

ρ j

ρi
sin(θ j −θi +φ0i )+ σ0

i

ρ0
i

N (0,1)
,

where σ0
i =

1

ri Gi

√
2kB T D0

i

d t
.

(3.42)

Simulations and subsequent spectral analysis show a linewidth of FWHM = 73.02kHz, which is

lower than the linewidth obtained from the Thiele model (171.4kHz). This difference is mainly

due to the neglected higher order terms that induced linewidth spreading. My simulations

have shown that in this case, a correction factor
p

2 can be applied to the noise terms in the

Landau-Stuart equations to match the Thiele model:

σ0
i

(corrected) =p
2σ0

i . (3.43)

With this correction, I obtain a consistent linewidth of 186.3kHz.

Linear approximation: connection with the Kuramoto model

Most simulations in this thesis use the generic linear Kuramoto model. It is therefore important

to evaluate how well this model captures the behavior of a typical nano-oscillator. This subsec-

tion assesses whether this can be used to describe the complex case of the heavily non-linear

vortex STNOs.

The starting point of this analytical study is the coupling-corrected Landau-Stuart model

(equation 3.41) that successfully describes the vortex STNO:
ρ̇i = γi (ρ0

i
2 −ρ2

i )ρi +2π
∑

j
kLS

i , jρ j cos(θ j −θi +φ0i )

θ̇i = 2π f 0
i +νiγi (ρ2

i −ρ0
i

2
)+2π

∑
j

kLS
i , j

ρ j

ρi
sin(θ j −θi +φ0i )

. (3.44)

As the Kuramoto model assumes a constant amplitude, it demands ρ̇i = 0. This strong approx-

imation transforms the Landau-Stuart amplitude equation into:

γi (ρ2
i −ρ0

i
2

) = 2π
∑

j
kLS

i , j

ρ j

ρi
cos(θ j −θi +φ0i ) . (3.45)

This expression can be readily injected in the phase equation in place of γi (ρ2
i −ρ0

i
2

):

θ̇i = 2π f 0
i +2πνi

∑
j

kLS
i , j

ρ j

ρi
cos(θ j −θi +φ0i )+2π

∑
j

kLS
i , j

ρ j

ρi
sin(θ j −θi +φ0i ) . (3.46)



98 CHAPTER 3: CASE OF THE SPINTRONIC VORTEX NANO-OSCILLATOR

Combining the trigonometric functions sin and cos, approximating the amplitude ratios
ρ j

ρi
≈

ρ0
j

ρ0
i

for each term of the sum and adding the noise term yields the Kuramoto model:

θ̇i = 2π f 0
i +2π

∑
j

ki , j sin(θ j −θi +φi )+
√

2πFWHM

d t
N (0,1) , where


ki , j = kLS

i , j

ρ0
j

ρ0
i

√
1+ν2

i

φi =φ0i + tan−1(νi )

.

(3.47)

In this expression the non-linearity ν increases the effective Kuramoto coupling strength by a

factor
√

1+ν2
i , and induces a phase shift tan−1(νi ). The noise term can be freely adjusted to

match the desired linewidth FWHM = 171.4kHz

In order to evaluate this model, I simulate the same noiseless two coupled oscillator case as

in Figure 3.8 to compare it to the Landau-Stuart model. The same phase compensation is used

as in the previous simulations, and verifies φi = 0. Figure 3.9 shows that this Kuramoto model

closely matches the Landau-Stuart model both inside and far from the synchronization range,

with only minor deviations in the entrainment regions close to synchronization.

Figure 3.9: Mean frequencies of two electrically coupled nano-oscillators, as functions of the
Osc. 1 current bias, as obtained through simulation with the Landau-Stuart model,
and using the linear Kuramoto model. Good agreement is obtained between the two
models.

Note : Non-linearity and Kuramoto

Our tests show that the Kuramoto approximation of the Landau Stuart model holds well

up to reasonable values of the non-linearity (ν < 10), which is the case in this chapter as

well as in Section 2.4.5. Only the effective couplings and phase shifts are notably affected.

However, the approximation breaks for extremely high values of ν.

The analytical Kuramoto equations of two coupled Vortex STNOs and their validation through
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simulation illustrate the capacity of this model to successfully approximate even some non-

linear oscillators.

A circuit implementing the pattern recognition architec-

ture

In the previous section, the Thiele model and its Landau-Stuart and Kuramoto approximations

were tested in a simple case with only two coupled STNOs. In this section, we design a circuit

that implements the full pattern recognition architecture studied in Chapter 2 and simulate it

in the noiseless case using the full Thiele model with circuit simulation. We also validate the

Landau-Stuart and Kuramoto approximations on this larger system.

Figure 3.10(a) shows a schematic of the circuit that naturally couples 6 STNOs all-to-all

with independently tunable natural frequencies, thus implementing the oscillator-based pat-

tern recognition scheme described in Chapter 2. A minor difference is that all the couplings are

identical (the input oscillators A ans B do not have stronger couplings) but this simplification

due to circuit constraints does not influence the quality nor the fundamental behavior of the ar-

chitecture. The current biases of the core oscillators are { f 0
1 , f 0

2 , f 0
3 , f 0

4 } = {703,706,709,712}µA,

the load resistor is RL = 50Ω and the capacitor C = 200pF.

We first run a full circuit simulation using the Thiele STNO model. Figure 3.10(b) shows

the synchronization response map of the core oscillators for different values of the current bi-

ases of the two input oscillators I 0
A and I 0

B . The map is close to the reference map studied in

Chapter 2 (Figure 2.1(b)) which confirms that this circuit effectively implements the expected

pattern recognition behavior.

Some minor differences exist however. One of them is that the synchronization regions

are more noisy, mainly due to second order oscillations acting like noise as explained in Sec-

tion 3.4.2.6, thus making the stable synchronization regions thinner or almost absent such as

the region. The second notable difference is that the regions have slightly different shapes

than in the reference architecture, and their shapes depend on the frequency ranges in which

they appear. For example, , , are increasingly thinner at higher frequencies. This is

mainly due to the dependency of the system parameters on the value of the bias current as

mentionned in Section 3.4.2.1 and to the non-linear dynamics of the oscillators: the stronger

the bias current, the larger the amplitude of the oscillator becomes. However, synchronization

regions globally behave as expected in the reference architecture.

Figure 3.10(c) shows the resulting synchronization map using the equivalent Landau-Stuart

model (equation 3.41). This map is very similar to the Thiele map, and also includes the non-

linearity related deformations such as the aforementioned pattern thinning. It is however

slightly less noisy as the model does not include some second-order fluctuations (see sections

3.4.2.4 and 3.4.2.5), which makes patterns larger than in the Thiele case. Furthermore, the fully



100 CHAPTER 3: CASE OF THE SPINTRONIC VORTEX NANO-OSCILLATOR

Figure 3.10: Simulation of the pattern recognition architecture with different models. (a) Cir-
cuit diagram. (b) Full circuit simulation with the Thiele compact model. (c) Simu-
lation using the Landau-Stuart model. (d) Simulation using the Kuramoto model.

synchronous region is notably bigger than in the reference linear map. This is due to the

high number of oscillators synchronized through both phase and amplitude, which stabilizes

multi-oscillator synchronization states more than in the Kuramoto model. Pattern stabiliza-

tion also makes an small extra unstable pattern appear on the top and right sides of tha

map. Globally, the Landau-Stuart model successfully predicts the behavior of the Thiele model

of the pattern recognition circuit, but tends to slightly overestimate synchronization stability.

The last map presented in Figure 3.10(d) shows the result of the same simulation using the

equivalent Kuramoto model (equation (3.47). The synchronization regions appear less noisy

and more uniform as the Kuramoto model approximates non-linearities away. This response

map closely matches the reference map of Chapter 2 (Figure 2.1(b)), and provides a reasonable

approximation of the behavior of the circuit of Thiele oscillators.

These results confirm that the proposed circuit conveniently implements the pattern recog-

nition scheme at the heart of this thesis, and that the Landau-Stuart and Kuramoto models
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correctly predict its behavior while allowing to generalize our study to many other devices.

Summary of the chapter

In this Chapter, I described the characteristics of vortex spin transfer nano-oscillators that be-

have like a two-terminal resistor with a resistance value that oscillates in time, and the more

current is applied, the faster it oscillates, with the ability to reach GHz frequencies. Using ex-

isting theoretical results, we defined and validated a VerilogA SPICE model of the device. The

model successfully describes vortex precession, current-based natural frequency tuning, and

synchronization to an external oscillating source. However, the underlying theory is derived

from fundamental physics, and corresponds to a second-order development of the dynamics of

a typical, generic oscillator. As such, it is not tailored to accurately represent the behavior of the

particular devices observed by our collaborators from Julie Grollier’s group at the CNRS/Thales

laboratory. In order to get a successful description of these particular devices, I adjusted the

parameters of the model to match experimental results published by our collaborators.

Then, I described a circuit that implements the electrical coupling of multiple resistive

nano-oscillators, and simulated it using our adjusted VerilogA device model. Circuit simula-

tion results were in agreement with the experimental observations of our collaborators and

successfully described the natural frequency control and synchronization dynamics of electri-

cally coupled oscillators. To complete the understanding of this circuit, I derived the analytical

equations of the total current flowing through each oscillator as functions of the oscillator re-

sistance values.

Using the oscillator model equations, the analytical description of the circuit and multiple

approximations, I rewrote the description of the oscillator network as a Landau-Stuart model,

which is the simplest model describing networks of non-linear oscillator. Simulation results

comparing the two models showed that the Landau-Stuart description was accurate but over-

estimated the synchronization range of a pair of coupled oscillators. After adding a single cor-

rective factor to the coupling expression of the Landau-Stuart model, this mismatch, due to ap-

proximations, was successfully compensated. As a result, the corrected Landau-Stuart model

was in perfect agreement with the initial circuit simulation results on a two-oscillator circuit.

By applying further approximations, I rewrote the Landau-Stuart model as a linear Ku-

ramoto model. Simulation results comparing the resulting Kuramoto model with the Landau-

Stuart model on the two-oscillator case showed good agreement between the two models.

Finally, I described a circuit that implements the oscillator-based classifier presented in

Chapter 2 and computed its response map using circuit simulations. I also computed the

equivalent response maps using the Landau-Stuart model, and the Kuramoto model. The three

response maps were in good agreement, which shows that the proposed circuit successfully

implements the oscillator-based classifier, and that the generic linear Kuramoto model used to

study the circuit in Chapter 2 is indeed a good description of the system.
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These theoretical results suggest that vortex spin transfer nano-oscillators are compatible

with the constraints of the proposed architecture. Experiments performed by our collabora-

tors give an oscillator phase noise level FWHM < 1MHz, which allows the successful operation

of the classifier. The oscillator-based classifier can therefore be implemented using vortex spin

transfer nano-oscillators, and the robustness results obtained in Chapter 2 using a generic os-

cillator model fully apply to this case.

Moreover, our collaborators at the CNRS/Thales laboratory have experimentally imple-

mented an architecture similar to the one described in this Chapter. A detailed description

of their approach, as well as the associated learning algorithm are presented in Section 4.7.



Chapter 4

Machine learning with oscillator-based

architectures

Machines take me by surprise with great

frequency.

Alan TURING

“THE FOURTH CHAPTER of this thesis presents how to train the oscillator-based

classifier proposed in Chapter 2 to solve arbitrary classification tasks. ”
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THIS CHAPTER focuses on achieving learning with the oscillator-based classifier proposed

in Chapter 2 in order to solve arbitrary classification tasks while staying within the con-

straints of nano-technologies. The goals of this chapter are the following:∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

1. define learning algorithms allowing to shape the response of the oscillator-based clas-

sifier by adjusting its core natural frequencies, in order to solve arbitrary classification

tasks given a set of known examples,

2. investigate the learning capabilities of the architecture on basic classification tasks, and

deduce architectural improvements allowing to achieve better results,

3. propose and evaluate learning algorithms adapted to the oscillator-based classifier with

“EEG-like” readout as well.

Introduction

In order to solve an arbitrary classification task with the oscillator-based classifier proposed in

Chapter 2, the response of the system first needs to be shaped accordingly. This can be achieved

by supervised learning, which involves presenting known examples to the classifier and adjust-

ing the tunable parameters of the system, here the natural frequencies of the core oscillators, so

that the right output is associated to each presented input example. After successful learning,

the classifier can perform inference, which means that it can operate on new, unlabeled data.

This Chapter focuses on defining an offline learning algorithm for the oscillator-based clas-

sifier. Offline learning implies that the parameters of the network are learned within a simu-

lated computer model of the classifier, and can then be transferred into a physical system for in-

ference. After defining a novel offline learning algorithm dedicated to the oscillator-based clas-

sifier proposed in Chapter 2, I perform offline learning and evaluate the capabilities of the ar-

chitecture on simple classification tasks. In the light of these results, I deduce the limitations of

the architecture, and propose architectural changes to achieve better results while keeping the

classifier compatible with the constraints of nano-technologies. I then evaluate the resulting

extended oscillator-based classifier on typical machine learning tasks. I also propose a different

learning approach for the “EEG-like” variant of the classifier introduced in Section 2.5.2, and

investigate its learning capabilities. Finally, I introduce online learning possibilities through

the experimental work of our collaborators at UMR CNRS/Thales. Contrary to offline learning,

online methods carry out the learning process directly within a physical implementation of the

classifier, but show other limitations.
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An offline learning algorithm for oscillator-based classifi-

cation

Offline learning algorithms use a numerical model of the oscillator network to perform the

learning in simulation, outside of the system. Once the learning is done offline, the obtained

parameters are transferred to the real system which can then perform inference. This approach

therefore relies on the accuracy of the model, and differences between the real circuit and sim-

ulations can cause issues. However, the learning algorithm has access to all the internal state

variables of the model, such as the actual phases of the oscillators, allowing advanced model-

aware algorithms to be used. Inspiration for such algorithms can be drawn from usual machine

learning techniques.

Supervised machine learning principles

The basic principle of supervised machine learning is to present known examples to a tunable

computational model (typically a succession of non-linear transformations with tunable pa-

rameters Θ such as the weights of a neural network as introduced in Section 1.4.7), compute

a scalar error function E that measures the difference between the vector of outputs h of the

model and the vector of expected outputs y , adjust the parametersΘ of the model to minimize

this error, and repeat the process until the model correctly performs the desired task on the

examples. Once successfully trained, the model can be used on real, unknown data.

Finding the right way to adjust the parameters of the model to minimize the error function

E typically involves computing the partial derivatives ∂E
∂Θ of the error with respect to all model

parameters, which define how the error changes when the corresponding parameters are ad-

justed. Positive values indicate that the parameter needs to be reduced and negative values

indicate that it needs to be increased to minimize the error. The magnitude of the derivative of

E with respect to a given parameter measures the sensitivity of the error E to this parameter.

A simple optimization method, steepest descent, is readily deduced from this observation and

follows:

1. For each example m from a batch of M examples:

(a) Present the input example vector x (m) to the model

(b) Compute the output h(m) of the model for example m

(c) Compute the error function E (m)
(
h(m), y (m)

)
for example m

(d) Compute the derivatives ∂E (m)

∂Θ

2. Compute the mean error E = 1
M

∑
m E (m) on the presented examples

3. Compute the mean derivatives ∇ΘE = 1
M

∑
m

∂E (m)

∂Θ

4. Apply the parameter update rule: Θ←Θ−α∇ΘE

where α is the learning rate that defines the size of the parameter update steps.
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5. Repeat the procedure until the mean error E is sufficiently low.

In the case of the oscillator-based classification architecture of Chapter 2, the examples are

presented as sets of input oscillator natural frequencies f 0
in, and the tunable parameters of the

system are the natural frequencies of the core oscillators f 0
core. The output of the system is a

set of synchronization measures between core oscillators which needs to be properly defined

theoretically.

Defining the output of the oscillator-based classifier

The output function for the oscillator-based classifier needs to be differentiable with respect to

its parameters f 0
core, and to provide a measure of the synchronization quality of each output

pair of core oscillators.

A convenient measure of the instability of the synchronization of an oscillator pair (i , j ) is

the ratio between the absolute value of the mean frequency difference between the two oscil-

lators, and a synchronization threshold frequency under which the oscillators are considered

synchronized:

Di , j =
| < fi >−< f j > |

thresh
. (4.1)

The mean frequencies < f > are only computed during the last Tinteg period of the simulation

to ensure convergence. If Di , j < 1, the oscillators are considered synchronized, and if Di , j > 1

they are considered not synchronized. More generally, as this desynchronization measure is

continuous, the lower Di , j is, the more consistent the synchronization of oscillators i and j is

assumed to be.

The threshold frequency thresh needs to be chosen carefully: too low values would force

the learning algorithm to operate inside a region of very stiff synchronization dynamics, while

too high values would make it operate in a regime of very low interaction between the oscilla-

tors where the outputs are linear transformations of the natural frequencies. For a uniformly

coupled network of oscillators, the value of the threshold that provides the richest learning ca-

pabilities was found to be approximately half of the coupling strength k between the oscillators:

thresh = k/2, which is equivalent to the thresholds defined for the synchronization detection

schemes presented in Section 2.3.

The ensemble of Di , j values can therefore be used offline as the set of outputs of the classi-

fier. A suitable error function can then be defined using these values.

Choosing an error function for oscillator-based classification

The error function E (m) for presented example m needs to be differentiable as well, and to take

high values when expected synchronizations are not met, and low values when they match the

expected synchronization pattern for this example.
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The desynchronization measure D (m)
i , j for each output oscillator pair (i , j ) adds a contri-

bution E (m)
i , j to this error depending on the expected synchronization state for this pair. One

possible expression of this contribution that was shown to work effectively in my simulations

is:

if (i, j) synchronization expected :

E (m)
i , j =


1

2

(
D (m)

i , j

)2
if D (m)

i , j ≤ 1

1

1+e
−4

(
D (m)

i , j −1
) if D (m)

i , j > 1
,

if (i, j) synchronization not expected :

E (m)
i , j =


1− 1

2

(
D (m)

i , j

)2
if D (m)

i , j ≤ 1

1− 1

1+e
−4

(
D (m)

i , j −1
) if D (m)

i , j > 1
.

These equations are plotted in Figure 4.1 as functions of the synchronization measure D (m)
i , j .

Figure 4.1: Error contribution of a pair of core oscillators (i , j ) for example m, as a function
of the desynchronization measure D (m)

i , j . (a) When a synchronization of this pair
is expected for example m. (b) When the pair is expected to be desynchronized
for example m. The dashed line represents the limit between synchronization and
desynchronization D (m)

i , j = 1.

I chose these expressions because they are fully continuous, monotonous and differen-

tiable everywhere, and take values within [0,1) with 0 meaning that the synchronization of the

pair is exactly as expected for the presented example, while values close to 1 mean that the pair

has the opposite of its expected synchronization state. The quadratic left side of this function

mainly penalizes expected synchronizations that are about to break (D (m)
i , j close to 1). More-

over, the sigmoid right side of this function saturates because the interaction between pairs

of oscillators with very distant natural frequencies does not vary substantially as the natural

frequencies change.

By combining the contributions of all observed pairs, we get the full expression of the error

for example m:

E (m) = ∑
output pairs (i , j )

E (m)
i , j . (4.2)
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A global view of the architecture including the error functions is presented in Figure 4.2.

Figure 4.2: Block diagram view of the offline learning model for the oscillator-based classifica-
tion architecture.

Differentiation of the error

The learning process involves the computation of the derivative of the error with respect to the

natural frequencies of the core oscillators f 0
core.

∂E (m)

∂ f 0
core

= ∑
output pairs (i , j )

∂E (m)
i , j

∂ f 0
core

. (4.3)

It is therefore necessary to find an expression of
∂E (m)

i , j

∂ f 0
core

. Using the chain rule of differentia-

tion, the following expression is obtained:

∂E (m)
i , j

∂ f 0
core

=
∂E (m)

i , j

∂D (m)
i , j

∂D (m)
i , j

∂ f 0
core

. (4.4)

The derivative
∂E (m)

i , j

∂D (m)
i , j

can be readily computed analytically from the expressions of the dif-

ferentiable output errors given in Section 4.2.3.

The second factor
∂D (m)

i , j

∂ f 0
core

can also be expanded further from the expression of D (m)
i , j given in

equation (4.1):

∂D (m)
i , j

∂ f 0
core

= Sign
(< fi >−< f j >

) 1

thresh

(
∂< fi >
∂ f 0

core

− ∂< f j >
∂ f 0

core

)
. (4.5)

The derivatives ∂< f >
∂ f 0

core
reflect how the mean frequencies in the network behave when the natural

frequencies vary. This corresponds to the Jacobian matrix of the oscillator network transfer

function (orange rectangle on Figure 4.2) taking natural frequencies as inputs, and providing

mean frequencies as outputs. The Jacobian of the oscillator network does not have a simple

expression as it reflects complex relationships resulting from the intricate interaction dynamics

of the coupled oscillators, and alternative techniques are required to compute it.
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Jacobian computation methods

No analytical transfer function has been found for a finite size oscillator network taking natural

frequencies as inputs, and outputting the mean frequencies of the oscillators. This is also true

for the matrix of its partial derivatives: the Jacobian of the oscillator network. To compute

this Jacobian, I have developed two main approaches: numerical gradient computation, and

forward propagation through numerical integration.

Numerical gradient computation

A straightforward way of obtaining an approximation of the Jacobian of the oscillator network

transfer function is to perform a numerical differentiation, which is commonly used to verify

the derivatives used in neural network libraries as it is model-agnostic. It consists in computing

the initial outputs of the system, as well as its outputs after successively shifting each natural

frequency by a small value d f , one at a time. The derivative of the mean frequency of oscillator

i with respect to the natural frequency of oscillator n is then approximately:

∂< fi >
∂ f 0

n
≈

< fi >
∣∣∣

f 0
n +d f

−< fi >
∣∣∣

f 0
n

d f
, (4.6)

where < fi >
∣∣∣

f 0
n

is the mean frequency of oscillator i obtained without any natural frequency

shift, and < fi >
∣∣∣

f 0
n +d f

is obtained after adding a small shift d f to the natural frequency f 0
n of

oscillator n.

For a network of NC core oscillators, this method requires simulating it NC + 1 times to

compute the Jacobian of the mean core oscillator frequencies as functions of the core natural

frequencies. I have performed this computation using an HTML5/Javascript frontend served

by a backend C++ server that dispatches all those independent computations, for all the ex-

amples, on different GPU-enabled computing servers, and aggregates the results to obtain the

Jacobian.

Simulations on the analytically solvable two-oscillator case suggest that this method suc-

cessfully provides a valid approximation of the Jacobian. However, this approximation of the

Jacobian is noisy, and the choice of the d f hyperparameter is critical, with an ideal value de-

pending on the system state. This does not allow choosing a unique value for this hyperparam-

eter, and makes this method unpractical.
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Note : Advanced numerical differentiation approach

Note that an extended approach for numerical differentiation called “simultaneous per-

turbation stochastic approximation” may solve this problem as it uses decaying d f and

learning rate. It also requires only two evaluations per step but may need more steps to

converge [199]. Unfortunately, I didn’t find a scheduling scheme for this algorithm that

improves the results of oscillator-based architectures.

Clamping the derivative

On the verge of synchronizations, oscillator systems follow stiff dynamics (see Figure 1.9),

which gives rise to derivatives exceeding 1010 inside the Jacobian. When such a derivative

appears for one presented example, its value dominates the contributions of all the other

examples, and results in erratic optimization. To limit this effect, I clamped the derivative
∂< fi>
∂ f 0

n
for each presented example within defined bounds. This can be achieved by any

squashing function. I use tanh as it approximates unity for small values, and progressively

clamps more extreme values between -1 and 1.

Forward derivative propagation through numerical integration

An alternative approach I developed computes the Jacobian of the oscillator network as the

system is being simulated, with higher precision. For simplicity, the presented method uses

basic Euler integration but it could be extended to more advanced integration schemes such as

Runge Kutta.

During the numerical integration of the Kuramoto system, the values of all the variables of

the system at time t +dt are given by a differentiable function of their values at the previous

integration step t :

θi (t +dt) = θi (t )+2πdt

(
f 0

i +∑
j

ki j sin
(
θ j (t )−θi (t )

))
. (4.7)

By using the chain rule, it is therefore possible to keep track of the derivatives through the

integration process, allowing the computation of the Jacobian of the oscillator network with

the following algorithm:

1. Apply the natural frequencies f 0 and choose random initial phases θ0.

2. Initialize state variables (the initial state does not depend on the system inputs):
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(a) For each oscillator a with respect to each natural frequency f 0
b ,

initialize the derivatives of the phases: ∂θa

∂ f 0
b
= 0

(b) Initialize the derivatives of the instantaneous frequencies: ∂ fa

∂ f 0
b
= 0

(c) Initialize the mean frequency accumulators: < fa >= 0,

and their derivatives: ∂< fa>
∂ f 0

b
= 0

3. For each time step t until the total simulation time Tsim:

(a) Compute the instantaneous frequencies fa = f 0
a +∑

j ka j sin
(
θ j −θa

)
(b) Compute their derivatives: ∂ fa

∂ f 0
b
= δa,b +

∑
j ka j

(
∂θ j

∂ f 0
b
− ∂θa

∂ f 0
b

)
cos

(
θ j −θa

)
(c) If t ≥ Tsim −Tinteg, where Tinteg is the averaging time, accumulate the means:

i. Accumulate the mean frequencies: < fa >←< fa >+ fa

ii. Accumulate their derivatives: ∂< fa>
∂ f 0

b
← ∂< fa>

∂ f 0
b

+ ∂ fa

∂ f 0
b

(d) Update the phase derivatives: ∂θa

∂ f 0
b
← ∂θa

∂ f 0
b
+2πdt ∂ fa

∂ f 0
b

(e) Update the phases: θa ← θa +2πdt fa

4. Normalize the means: < fa >←< fa > /⌊
Tinteg/dt

⌋
and ∂< fa>

∂ f 0
b

← ∂< fa>
∂ f 0

b

/⌊
Tinteg/dt

⌋
This algorithm provides the output of the oscillator network operator < f > as well as its

Jacobian ∂< fa>
∂ f 0

b
given the input natural frequencies f 0.

As it comes from the analytical differentiation of the numerical update equations, this Jaco-

bian computation approach has excellent precision, which makes it more effective than purely

numerical approaches. However, this algorithm is also computationally heavy for large oscil-

lator systems as the number of equations to integrate grows quadratically with the number of

oscillators. Due to its precision, it remains however attractive for networks containing few os-

cillators such as the ones studied in this thesis, as well as in experiments. From this point and

until Section 4.5, Jacobian computations are performed using this method.

Discussion and potential alternative approaches

Both numerical differentiation and forward-propagation through numerical integration work

with systems containing few oscillators but have a limited scalability and become impractical

for large networks of oscillators. Alternative differentiation approaches can be imagined, such

as training a neural network to represent the transfer function of the oscillator network oper-

ator with high fidelity, and then use its Jacobian instead of computing the real one, for better

computational efficiency.

Alternatively, other learning algorithms that do not require the derivative could also be

used. This includes Genetic Algorithms [200] (discussed in Section 4.5.4) or inferring a learning

policy using Reinforcement Learning [201].
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Implementation in a standard machine learning framework

Using the same inspiration as for the forward derivative propagation through numerical inte-

gration, the numerical solving process of the oscillator network dynamics can be reinterpreted

as a recurrent neural network, and therefore implemented as a standard layer in a machine

learning framework.

Figure 4.3(a) illustrates the reinterpretation of the oscillator network as a recurrent neural

network cell. This elementary cell takes the phases of the oscillators θ(t ) and their natural fre-

quencies f 0 as inputs, and outputs the instantaneous frequencies of the oscillators f (t ) as well

as their new phases for the next time step θ(t +dt). This elementary cell is fully differentiable.

Figure 4.3: (a) Diagram of the elementary recurrent cell equivalent to the Euler integration up-
date rule. (b) A fully differentiable oscillator network operator using a stack of these
elementary cells to represent numerical integration.

In order to represent the full process of numerical integration, these elementary cells are

stacked in time and act as a feed-forward differentiable network. Figure 4.3(b) illustrates an

oscillator network operator that sets random initial phases θ0 and runs the integration pro-

cess for a total time Tsim. After waiting for the stabilization of the oscillator network dynamics,

the instantaneous frequencies are averaged during Tinteg. This full oscillator network operator
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takes the natural frequencies of the oscillators f 0 as inputs, and outputs their mean frequen-

cies < f >. And as it is made of a feed-forward composition of differentiable functions, the

operator is guaranteed to be fully differentiable.

As a result, this operator can be seamlessly used as a neural network layer inside a standard

machine learning framework. To achieve that, I have implemented the oscillator network op-

erator as a custom operator for the Tensorflow machine learning library developed by Google,

and used extensively in the machine learning community. Highly optimized machine learning

tools provided by the library can then be used to evaluate the oscillator-based classification

architecture.

Tensorflow custom operator

A Tensorflow operator is a piece of compiled C++ code imported into the Python front

end of the library, which defines two functions. The first reads the input tensor fed to the

operator and computes the output tensor. The second reads the input and output tensors

and computes the Jacobian.

The custom C++11 operator I wrote implements the forward differentiation algorithm

presented in Section 4.2.5.2 using the Eigen linear algebra library, which provides native

GPU acceleration allowing to efficiently run the operator on multiple examples in parallel.

Unlike conventional operators where the Jacobian is computed as a separate function

of the inputs and outputs of the operator, the oscillator network operator computes its

Jacobian at the same as its outputs. As a result, I define a C++ operator with two out-

puts: the mean frequencies, and the Jacobian. I then use a Python wrapper that has only

one output mapped to the mean frequencies output of the underlying C++ operator, and

a Jacobian computation function that returns the second output of the underlying C++

operator.

Note : Oscillator recurrent cell

The oscillator recurrent cell described here has an important property: the memory line

θ(t ) → θ(t +dt) is only transformed through a linear transformation (one addition) per

time step. This property, which also gives their power to Long Short Term Memory re-

current neural networks [202], allows the gradients to be propagated back in time over

long durations without vanishing due to squashing non-linear functions. This reduces

the vanishing gradient problem and allows the learning to take into account long-term

relationships.
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In summary, using the proposed expression of the error, and the forward propagation through

numerical integration technique for differentiation within a machine learning framework al-

lows training the oscillator-based classification architecture on a large variety of classification

tasks.

Learning binary classification

In this section, I investigate the learning capabilities of the oscillator-based classifier on the

simple case of binary classification. The task consists in classifying two-dimensional inputs

into one of two classes (“class 0” or “class 1”) using the general architecture shown in Figure 4.4.

The output is obtained by evaluating the synchronization state of only one pair of oscillators.

If they are synchronized, the class that the system associates to the presented example is “class

1”. If they are not synchronized, the output class is “class 0”.

Figure 4.4: Diagram of the oscillator-based binary classifier.

The goal of the learning process is to adjust the natural frequencies of the core oscilla-

tors f 0
1 , f 0

2 , f 0
3 , f 0

4 so that the influence of the inputs on measured oscillators 1 and 2, as well

as their indirect influences through other oscillators, results in the correct classification of the

presented examples. Note that the natural frequencies are clamped between f 0
min = 450MHz

and f 0
max = 750MHz to avoid non-realistic values.

To provide an intuition of the learning process, I define a simple classification task for which

the initial state is shown in Figure 4.5(a). It consists in classifying blue (class 0) and red (class

1) example points. The green background area in the map is where the two output oscillators

are synchronized (output class 1), and the target of the learning is to reshape this area so that it

covers the red (class 1) examples, and not the blue (class 0) ones. Note that the initial conditions

for the core natural frequencies are set to be the same as in Chapter 2.

Figure 4.5(b) shows the response map after 10 learning iterations. The spurious side syn-

chronization lines have almost disappeared, and the central blob has moved towards covering

the red (class 1) examples. The classification quality has therefore improved since most red

examples are correctly classified as class 1 and most blue examples are correctly classified as

class 0.
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Figure 4.5(c) shows the map after 20 learning iterations: the classification is now almost

perfect. When a red (class 1) example is presented, the output oscillators synchronize to classify

it as class 1, and when a blue (class 0) example is presented, they don’t synchronize and classify

it correctly as class 0.

The classifier also correctly generalizes to inputs it has not been trained with. For example,

any new point in the same area as the red ones would be classified as class 1.

Figure 4.5: (a) Initial response map. (b) Response map after 10 learning iterations. (c) Response
map after 20 learning iterations. The green area is where the two output oscillators
are synchronized. Synchronization is expected for the class 1 examples (red dots),
and no synchronization is expected for the class 0 examples (blue dots).

Inertia for better optimization

As the value of the error inside the parameter space is a complicated function with mul-

tiple saddle points and local minima, standard steepest gradient descent can get stuck

into one of them, slowing the learning and preventing better solutions from being found.

To reduce the impact of these limitations, I have used the ADAM optimizer [203], which

performs gradient descent with inertia and second moment prediction, allowing conver-

gence towards better solutions.

These results show that the learning process can work as expected. The classification capa-

bilities of the architecture now need to be evaluated.

Classification capabilities

To get an intuition of the learning capabilities of the oscillator-based classifier, I perform binary

classification on two-dimensional inputs.
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Performance on a simple task

The classification task previously performed and illustrated in Figure 4.5 consisted in classi-

fying a simple centered circular region of red examples, and was easily solved. In this part, I

attempt the same task, but for different positions of the expected synchronization region in

order to evaluate the sensitivity of the classifier to translation.

Figure 4.6 shows the response map of the system after 100 learning steps, and for three dif-

ferent positions of the target class 1 region:

• In Figure 4.6(a), the region of expected synchronization is still on the first diagonal of

the map but is not centered. Simulation results show that this task is successfully solved

by the classifier. More generally, the classifier is not sensitive to translation along the

diagonal f 0
A = f 0

B .

• In Figure 4.6(b), the region of expected synchronization is slightly above the center. After

learning, the resulting output synchronization region does not fully cover the red exam-

ples: it stays on the first diagonal. This shows that the architecture is not capable of

classifying this single off-diagonal region properly.

• In Figure 4.6(c), the region of expected synchronization is further away from the diago-

nal. After learning, the resulting output synchronization region stays stuck on the diag-

onal and only reaches a few class 1 examples. This confirms that the architecture can-

not represent single off-diagonal regions. This is due to the fact that the input oscilla-

tors are identical, and only defined by their natural frequencies: when the two inputs

are swapped, the same response map is obtained. This causes the response map of the

system to be necessarily symmetric along the first diagonal, which represents a major

limitation of the architecture.

Figure 4.6: Classifying regions at three different positions. On (a) the region is off-center but on
the first diagonal of the map, and on (b) and (c) it is off-diagonal.

These results show that the architecture, in its basic form, does not have sufficent clas-

sification power due to its intrinsic symmetries. Classifying regions that do not follow these

symmetries would require a form of symmetry-breaking mechanism.
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Freeing the coupling strengths

One possible approach to break the symmetry would be to allow the individual coupling strengths

ki , j to be learned at the same time as the core natural frequencies. For N oscillators, this also

provides N 2 more tuning parameters that could allow a finer tuning of the classification re-

sponse.

Figure 4.7 shows response maps after 100 learning iterations for different regions of expected

synchronization:

• The control run on Figure 4.7(a) confirms that allowing the adjustment of couplings does

not hamper the classification of symmetric regions along the diagonal.

• Figure 4.7(b) shows the successful classification of a highly off-diagonal region. This

shows that tuning the couplings allows the system to represent off-diagonal regions.

• Figure 4.7(c) shows the classification of a more complex, and non-symmetric shape for

which more than 90% of the examples are successfully classified. This validates the ef-

fectiveness of this architecture.

Figure 4.7: Maps after learning by optimizing natural frequencies and couplings for different
target shapes.

These results show that allowing the tuning of the couplings during learning successfully

breaks the symmetry, provides more tuning parameters, and allows the classifier to represent

complex classes. However, this approach is particularly complicated to implement with nan-

otechnologies as coupling tunability is not physically convenient with most nano-oscillators.

An alternative approach therefore needs to be developed to achieve similar symmetry-breaking

and parameter space expansion while only acting on natural frequencies.

Making the learning more flexible

In order to achieve symmetry-breaking and increase the number of tunable parameters, I have

defined a more general version of the oscillator-based classification architecture that is still

compatible with nano-technologies.
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Extended architecture

The proposed extended architecture is presented in Figure 4.8. It consists in applying different

learned linear combinations of the inputs and a constant bias as the natural frequencies of the

oscillator network. This is achieved through a tunable weight matrix W :

f 0 =W

in

1

 . (4.8)

Figure 4.8: Extended version of the binary classification architecture showing the tunable
weight matrix as red lines.

It is important to note that the architecture presented previously is a special case of this

extended architecture where all the weights are zero except that each input is connected to the

corresponding input oscillator W11 = W22 = 1 and the core oscillators are only connected to

the constant bias with weights defining their natural frequencies. A specificity of the extended

architecture is that presenting an example input can change all the natural frequencies of the

network, instead of only acting on the input oscillators.

For Nin-dimensional inputs and N oscillators, the weight matrix provides a high number

of parameters ((Nin +1)N ), and is not constrained by any symmetries which effectively allows

symmetry breaking without changing inter-oscillator couplings. The inter-oscillator couplings

are therefore constant and uniform, all the oscillators are identical, and only their natural fre-

quencies are adjusted. The architecture is therefore still compatible with many nano-oscillator

technologies.

Running inference with this architecture requires computing the matrix-vector multiplica-

tions (equation (4.8)). This can be implemented materially by a pre-processing step using clas-

sical multiplier chips, Tensor Processing Units [204] or synapse matrix techniques developed

for neural network architectures such as SpiNNaker [205] or True North [206]. A more sophisti-

cated approach would be to use a crossbar of resistive memories (or memristive devices) [207]

to achieve this computation naturally through Kirchhoff’s laws.
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This extended oscillator-based pattern classification architecture is therefore a straightfor-

ward addition that inherits all the important properties described in the previous chapters,

and only requires slight adjustments to the learning algorithm.

Learning capabilities

In order to evaluate the learning capabilities of this extended architecture, the same types of

two-dimensional binary classification tasks as in Section 4.2.7 are performed. In this architec-

ture, a coupling constant k = 10MHz is used.

Figure 4.9 shows the response maps of the system for different target synchronization re-

gions. In these maps, the class 1 area of expected synchronization is marked in bright red and

green colors, and class 0 areas where no synchronization is expected is marked in dark green

and red colors: green areas correspond to successful classification, while red areas mark mis-

classification.

The initial weights before learning are set to match the basic classification architecture

behavior presented in the previous chapters, plus uniform random variations in the range

[−10−3;10−3]. Figure 4.9(a) shows the response map of the extended architecture before learn-

ing for a simple task consisting in classifying a centered circular class 1 region. The response

is reminiscent of the one in Figure 4.5(a). After 100 learning steps, Figure 4.9(b) confirms that

this simple case is still successfully solved, as well as the off-centered but diagonal case in Fig-

ure 4.9(c). More interestingly, Figure 4.9(d) shows that the off-diagonal case is also successfully

solved.

These results show that the extended architecture inherits the classification capabilities of

the previous one, but is also capable of classifying off-diagonal regions.

I also test the architecture on more complex classification tasks. In Figure 4.10, I show the re-

sulting response maps of the extended classification architecture after learning to classify non

diagonal-symmetric stretched regions (Figure 4.10(a and b)), disjoint regions (Figure 4.10(c))

and concave regions (Figure 4.10(d)). All regions are successfully classified by the extended

architecture using only 6 oscillators.

This preliminary study of the extended oscillator-based classifier architecture shows promis-

ing classification capabilities even with a small number of oscillators.

Performing a canonical machine learning task

In order to evaluate the behavior of the extended oscillator-based classifier on a real machine

learning task, I use the simple and popular IRIS dataset which consists in classifying flowers

into three different species given four features.
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Figure 4.9: Basic classification task with the extended classification architecture. Bright areas
represent expected synchronization, dark areas represent expected desynchroniza-
tion. Green represents successful classification and red highlights misclassification.
(a) Initial condition before learning on a centered circular pattern. (b) Resulting
map after 100 learning steps. (c) Resulting map for a non-centered diagonal pat-
tern. (d) Resulting map for an off-diagonal pattern.

The Iris dataset

The Iris dataset [208] is a historically significant table consisting of measurements performed

on the flowers of three different species of the Iris plant genus: Iris setosa, Iris versicolor and Iris

virginica. Each row of the table represents one sample flower through four of its features: the

length and width of its petals, and the length and width of its sepals. It contains 150 samples,

with 50 samples per species.

Given a target species, we train the oscillator-based classifier on the following binary clas-

sification task: synchronize the output oscillators if the presented flower is part of the target

species, and to desynchronize them if it is part of any other species.

It is important to note that the species Iris versicolor is especially difficult to identify as it

is not linearly separable from the other species. This means that linear classifiers (like most

single-layer neural networks) can not find a hyper-plan in the feature space that separates it
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Figure 4.10: Response maps of the extended oscillator-based classification architecture after
100 learning steps on different non diagonal-symmetric stretched regions (a) and
(b), disjoint regions (c) and a concave region (d).

from the other species.

In order to evaluate the generalization power of the architecture, I split the dataset into a

training set (30 flowers from each species) and a testing set (the remaining 20 flowers for each

species). The learning is performed only using the training set, and the classification rate is

evaluated on the testing set examples that the network has not encountered during learning.

Classification quality

The performance of the extended oscillator classifier on the Iris dataset is evaluated by training

the network on the binary classification task for different target species.

Figure 4.11 shows the classification rate on the test set as a function of the learning step for

each target species. It shows that the learning process successfully increases the classification

rates which stabilize after about 120 learning steps. At the end of the learning process, the

Iris setosa and Iris virginica species are perfectly classified for all test examples, while the non-

separable class Iris versicolor is successfully identified for 98.3% of the test examples.
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These results show that the proposed architecture successfully solves a reference classi-

fication task. Moreover, the successful identification of the non-linearly separable class Iris

versicolor suggests that due to its non-linearities, the oscillator-based classifier is capable of

performing more advanced tasks than typical single-layer neural networks.

Figure 4.11: Evolution of the test set classification rate of each Iris class by the extended
oscillator-based classification architecture, as functions of the learning iteration.

Influence of the number of oscillators

As the dynamics of the oscillator network get more complex with more oscillators, the clas-

sification capabilities of the oscillator-based classifier are expected to increase with its size. In

order to characterize how these capabilities scale, I perform learning on the classification of the

non linearly separable Iris versicolor class with different numbers of oscillators in the network. I

also compare it to a classical two-layer tanh neural network with different numbers of neurons.

Figure 4.12 shows the test set classification rates of the extended oscillator-based classifier and

the tanh neural network, as functions of the number of units (oscillators or neurons).

With two oscillators, the oscillator classifier appears to perform substantially better with

more than 86.67% test set classification rate versus 73.33% for the two-neuron neural network.

With three units, both architectures perform similarly with 95% classification rate. For higher

numbers of units, the classification rates stabilize at 98.33% for the oscillator classifier and

96.67% for the neural network.

These results show that the single-layer oscillator-based classifier performs similarly to a

two-layer neural network of the same size. These observations confirm that by exploiting its

complex dynamics, a single layer using the proposed architecture can perform advanced clas-

sification tasks.
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Figure 4.12: (N) Test set classification rate of the Iris-Versicolor non linearly separable class af-
ter learning, as a function of the number of oscillators in the network. (H) Clas-
sification rate on the same task using a 2-layer tanh-based neural network, as a
function of the number of neurons.

Impact of phase noise on the classification rate

As the learning is done offline and the weights can then be transferred to a real oscillator sys-

tem, the impact the phase noise present in the physical system needs to be assessed. In order

to characterize the effect of phase noise, I carry out offline learning on the Iris versicolor class

using a noiseless 6-oscillator extended oscillator classifier and then perform inference on the

test set by adding increasing amounts of oscillator phase noise. For each value of oscillator

linewidth, I perform 100 inference tasks with different seeds for the noise and the initial phases

of the oscillators. Figure 4.13 shows the average test set classification rate obtained on 100 trials

as a function of the oscillator linewidth. The blue-filled region represents the span between the

worst and best classification rates encountered during the trials.

The data shows that the classification rates decrease slowly with increasing noise. For noise

levels typical of spin torque nano-oscillators (FWHM = 1MHz), the classification rates stay

around 94.6% on average, with a worst case encountered at 90%. For extremely high noise

(FWHM > 5MHz), the worst cases encountered reach 66.67% which is equivalent to the clas-

sifier outputting 0 for all the examples (which is right 2/3 of the time). The classifier therefore

ceases to be reliable at such noise levels. These results confirm that the extended oscillator-

based classifier with offline learning is robust to phase noise, allowing it to function with clas-

sical STNOs.

The noise sensitivity of the architecture could in principle be further reduced if noise is

included during learning, which forces the learning algorithm to reject solutions giving low

classification rates under the presence of noise. Unfortunately, my tests show that the offline

learning algorithm I proposed does not function properly when noise is present due to extreme
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Figure 4.13: Test set classification rate on the Iris-Versicolor class using the extended oscillator-
based classification architecture after learning, as a function of the oscillator
linewidth (FWHM). The figure shows the average classification rate on 100 trials,
and the filled background represents the span between the minimal and maximal
classification rates encountered during trials. The horizontal red line is the classi-
fication rate obtained if the classifier always outputs 0.

derivative values. Further post-processing techniques for derivative smoothing, or alternative

learning algorithms are therefore needed to achieve offline learning with noise.

Discussion on the extended oscillator-based classifier

Simulation results show that the extended oscillator-based classifier can perform binary clas-

sification efficiently and scale better than classical neural networks as it exploits to the compu-

tational power brought by the complex physics of the oscillator network. However, gradient-

based learning methods only work offline and can not take noise into account during learning,

which increases the noise sensitivity of the trained system.

The presented approaches could naturally be extended to multi-class classification by read-

ing the synchronization state of as many oscillator pairs as there are classes. Moreover, as

the oscillator network operator is fully differentiable, multi-layer architectures composed of

stacked oscillator networks could be trained with this method and interfaced with other dif-

ferentiable operators. For example, in a two-layer architecture, the input natural frequencies

of the second layer network would be a learned linear combination of the output average fre-

quencies of the first layer network. This could allow the system to perform more advanced

tasks requiring more abstraction.

In summary, this promising architecture exploits the powerful dynamics of nano-oscillator

for cognitive tasks, shows good results in simulation, and could be further improved. Possible

future directions include studying multi-class and multi-layer classification, signal, sound and
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video classification in the time domain by using transient behaviors as well, and implementing

the architecture experimentally.

Alternative “EEG-like” readout and adapted learning ap-

proaches

The previous sections of this Chapter have focused on architectures where synchronization

detection between oscillators is used as the readout method for the classifier output.

An alternative readout method for the oscillator-based binary classification architectures

is introduced in Section 2.5.2 and consists in taking the envelope S of the average signal of the

oscillators. In Section 3.3.2, I have shown that this signal can be readily obtained from a typical

STNO electrical coupling circuit. In this section, I investigate methods to achieve learning using

this alternative readout approach.

In the particular case of N = 2 synchronized oscillators, the analytical expression of the

EEG-like signal S can be derived from the Kuramoto model. In the first subsection I study how

a pair of oscillators can be used as a neuron, and how these neurons can be combined to build

a neural network and achieve robust learning through standard gradient descent techniques.

In the second subsection, I apply the EEG-like readout method to the extended oscillator-

based binary classifier. As gradient-based methods are not satisfactory in this case, I focus on

an alternative bio-inspired learning algorithm.

Neural networks based on synchronized pairs of oscillators

The case of N = 2 oscillators is well understood in the Kuramoto framework, and analytical

expressions for the system variables and their average values can be found. As stated in sec-

tion 1.4.7, artificial neurons based on pairs of coupled oscillators leverage this knowledge but

only implement simple threshold neurons.

In this part, I propose an alternative approach with a neuron design using a pair of coupled

oscillators kept in a synchronized state with an analog, differentiable EEG-like signal output.

I derive the analytic expression of its activation function, show that this neuron is capable of

representing generic logic gates, and assess its capacity to learn these gates through gradient

descent. I then simulate the dynamics of artificial neural networks using these neurons on two

standard machine learning tasks, and verify their robustness to the intrinsic noise of nano-

oscillators.

Oscillator-based neuron

An artificial neuron needs to take a weighted sum of values as input, and output its value after

transformation by a non-linear activation function. Such neurons can then be stacked to form
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an artificial neural network as shown in Figure 4.14.

Figure 4.14: A simple feed-forward neural network, where each blue rounded rectangle is an
artificial neuron implementing a non-linear activation function.

The neuron circuit I propose is shown in Figure 4.15(a) and relies on a pair of bidirectionally

coupled oscillators kept in a synchronized state. In my simulations I use k = 8MHz.

Figure 4.15: (a) Simplified schematic of the proposed neuron. Red circles are oscillators. (b)
Neuron activation function for f 0

amp = 2k. The neuron operates in the phase locked
(blue filled) region.

The natural frequency of the second oscillator is kept constant ( f 0
2 = f 0

mid), while the natural

frequency of the first oscillator is tuned by the weighted sum of the neuron inputs z =∑
i wi xi

where xi is the i -th input of the neuron and wi the corresponding weight value. Assuming that

the natural frequency response of the first oscillator is proportional to this command by a factor

f 0
amp, its natural frequency is then f 0

1 = f 0
mid+z f 0

amp. An envelope detector is applied to the sum

of the two oscillator signals sin(θ1)+ sin(θ2). For simplicity, the resulting EEG-like signal S is

rescaled between 0 and 1 which defines the output of the neuron a = (S −p
2)/(2−p

2).

The activation function of the neuron, which corresponds to its output as a function of the

weighted input sum, is shown in Figure 4.15(b) and can be expressed analytically. Envelope

detection on sin(θ1)+ sin(θ2) = 2cos
(
θ1−θ2

2

)
sin

(
θ1+θ2

2

)
yields S =

∣∣∣2cos
(
θ1−θ2

2

)∣∣∣. As the two os-

cillators are synchronized, they run at the same instantaneous frequency θ̇1 = θ̇2. By applying

this constraint to the Kuramoto equations, a more useful expression of S is obtained:

S =

√√√√√2+2

√√√√1−
(

z f 0
amp

2k

)2

; a = S −p
2

2−p
2

. (4.9)



4.5 ALTERNATIVE “EEG-LIKE” READOUT AND ADAPTED LEARNING APPROACHES 127

The paraboloid-shaped activation function (4.9) is fully differentiable in the synchronization

region, which allows error derivative computation. However, it is non-monotonous, unlike the

sigmoid activation functions used conventionally in artificial neural networks.

Capabilities of the oscillator-based neuron

To assess the capabilities of this unconventional neuron, I perform the learning of two-input

logic gates by simulating (4.9) using realistic parameters f 0
mid = 500MHz, f 0

amp = 10MHz, k =
6MHz, typical of spin-torque nano-oscillators, an exponential-decay envelope detector, and

the standard steepest gradient descent learning algorithm. The two input weights, and one

bias value are learned for 1,000,000 different sets of initial weight and bias values to assess the

robustness of the results.

Table 4.1: Proportion of initial states converging to the correct logic function after learning. Re-
sults shown for different logic gates, and for oscillator-based, sigmoid-based, and
threshold-based neurons.

Target gate Oscillator neuron Sigmoid neuron Threshold neuron

XOR 15.8 0 0

XNOR 29.8 0 0

Others 100 100 100

Table 4.1 shows the percentage of initial conditions leading to successful logic gate learn-

ing, and compares it with a traditional sigmoid neuron, and with a threshold neuron. The

results show that the oscillator neuron successfully learns all the gates the threshold or sigmoid

neurons can learn, and with favorable initial conditions it also learns to solve XOR and XNOR,

which is not achievable by a sigmoid nor a threshold. This is allowed by the non-monotonous

activation function of the oscillator pair: each of its lobes (z < 0 or z > 0) can be used as classical

non-linear activation functions while using different lobes for different input examples allows

more advanced operations. The energy landscapes of XOR and XNOR exhibit multiple and dif-

ferent local minima which accounts for their non-perfect and different scores. As the amplitude

of the gradient with oscillator neurons is higher than with sigmoid neurons, the learning rate

parameter of the gradient descent is adjusted to obtain comparable learning iteration numbers.

Application to machine learning tasks

In this section, I simulate more comprehensive neural networks using the oscillator-based neu-

ron. First, a simple single-layer neural network containing three neurons is trained by gradient

descent (or equivalently the perceptron learning rule for the threshold neurons) on the stan-

dard Iris classification dataset.

The evolutions of the test set classification rates of the three classes during learning are
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Figure 4.16: Iris test set classification rate evolutions during learning for the three classes using
(a) oscillator-based neurons, (b) classical sigmoid neurons (c) threshold neurons.

plotted in Fig. 4.16(a), and compared to a sigmoid layer (Fig. 4.16(b)) and to a threshold layer

(Fig. 4.16(c)). The results show that oscillator-based neurons converge to similar recognition

rates for classes Iris setosa (100%), Iris virginica (≥ 95%) and to slightly increased recognition

rates for the non-linearly separable class Iris versicolor (76% using the oscillator neuron, ≥ 65%

using a sigmoid or a threshold neuron). This result confirms that the proposed neuron suc-

cessfully operates in a neural network.

I then train a more complex two-layer (300 hidden, 10 output) neural network to classify the

handwritten digits of the MNIST database, using the back-propagation algorithm. The final test

set classification rate of 95.7% is on par with classical sigmoid networks (95.3% [209],), which

validates the effectiveness of the proposed neuron in multi-layer neural networks.

Finally, Fig. 4.17 assesses the effects of oscillator noise by showing the MNIST test set classi-

fication rate of the fully simulated noisy oscillator system, as a function of the oscillator linewidth.

The classification rate stays over 84% for a linewidth of 100kHz, a noise value typical of higher

quality spin-torque nano-oscillators [65], which suggests that the proposed approach could be

implemented using such nano-devices.

Figure 4.17: MNIST test set classification rate as a function of the oscillator linewidth.
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These results, being published as [210], validate through simulation the use of the oscillator-

based neuron I proposed for machine learning. It appears to be a valid functional alternative

to sigmoid or threshold neurons, and naturally computes its parabola-shaped transfer function

through its intrinsic dynamics.

However, the scheme appears to be more sensitive to noise than the approaches based on

synchronization detection. This is in part due to the noise sensitivity of envelope detection,

but mainly to the gradient-based offline learning method that can not take noise into account

to reject noise-sensitive solutions.

EEG-like signal readout in the extended oscillator-based classifier

In this part, I come back to the extended oscillator-based classification architecture. Instead

of reading whether or not selected oscillators of the extended classifier are synchronized as

done in Section 4.2.6, I study the possibility of using the EEG-like signal S as a readout of the

global synchronization state of the network as presented in Section 2.5.2. This signal can then

be thresholded to perform binary classification.

Definition of the classification architecture with EEG-like readout

Figure 4.18 shows a schematic of the global classification architecture with EEG-like readout.

The underlying architecture is the same as for the extended oscillator-based classifier, with a

tunable weight matrix and a uniformly coupled oscillator network (my simulations use k =
7MHz). Only the readout method differs. It consists in taking the envelope S of the mean

signal of the oscillators (or any signal proportional to it), rescaling it to obtain the analog output

a =αa +βaS, and thresholding it to output a binary value a > 0.5.

Figure 4.18: Schematic of the extended oscillator-based classifier with EEG-like readout.

The rescaling operation is necessary to bring the output between 0 and 1 independently of

the scale of the EEG-like signal S which can change substantially as shown in figures 2.19(b,c,d).

This also adds flexibility by allowing the readout of any affine function of S, and not necessary

the mean signal itself.

For simplicity, the envelope detection time constant was chosen to be τEEG = 0, which is



130 CHAPTER 4: MACHINE LEARNING WITH OSCILLATOR-BASED ARCHITECTURES

equivalent to measuring the mean value of S. This choice was made as the study in Section 2.5.2

shows that τEEG = 0 provides relatively regular response maps without over-representation of

higher order dynamics. Moreover, slightly higher time constants mainly improve the readout

range (Figure 2.19(c)), which is already corrected by the rescaling operation.

Just like the two-oscillator neuron, this approach is convenient to implement in hardware

with nano-oscillators and standard components. It is therefore an attractive alternative to syn-

chronization detection in the case of binary classification.

Bio-inspired learning using genetic algorithms

Such an EEG-like readout requires rethinking the learning process of the architecture. My at-

tempts to compute the gradient of this architecture have failed, in part because the rectification

operation pulls the derivative to zero when the sum signal is negative, and more importantly

because of the the system response itself. As explained in Section 2.5.2, the synchronization

regions show a relatively flat response but still contain local bumps due to higher order phe-

nomena, leading to incorrect numerical derivative estimation.

As a result, I focus on "black box" optimization techniques that do not require any infor-

mation on the model. More specifically, genetic algorithms [200] leverage the evolutionary

principles of mutations, sexual reproduction and selection that led to the current efficiency of

complex lifeforms on earth in order to perform model-free optimization.

Genetic algorithms

The basic principle of genetic algorithms is to repeatedly apply random changes and combina-

tions to the system parameters and select the best performing solutions. More formally, genetic

algorithms seek to minimize the error function of a system defined by a genome, which in the

simplest case corresponds to a vector of its parameters, and only require evaluating its perfor-

mance (fitness) on the target task. If only the outputs of the system are used for evaluation,

no information on the internal variables are required and genetic algorithms could also run

online.

Evolved antenna for space
applications. Credit: NASA

These algorithms are used whenever gradient and rein-

forcement based approaches can not be applied and have

been used with success to solve complex problems such as

defining antenna shapes with special constraints [211], or

school timetabling [212]. Genetic algorithms have also re-

cently become an important research topic in neural net-

work optimization [213].

In the case of the oscillator-based classifier with EEG-

like readout, a genome g corresponds to a given weight ma-

trix, and I define its fitness Fg as an inverse function of its
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mean quadratic error Eg on a classification training set.

The genetic algorithm optimization process I used executes the following steps:

1. Initialization: create a generation of Npop random genomes (weight matrices) {Wg }g∈[1;Npop].

2. Evaluation: run each genome Wg on the classification task to evaluate its fitness Fg .

3. Selection:

(a) Keep Nsurvive good genomes intact for the next generation:

select Nsurvive genomes at random with probabilities proportional to their fitnesses.

(b) Select couples for sexual reproduction:

select Npop−Nsurvive pairs of genomes, with probabilities proportional to individual

fitnesses.

4. Sexual reproduction and mutations: for every selected couple:

(a) Produce a “child” genome by combining the genomes of the parent couple

(b) Apply random mutations to the children genomes

5. Replace the current generation with a new one composed of the Nsurvive genomes that

survived the previous generation, and the Npop−Nsurvive newly produced children genomes.

6. Go back to step 2. to process the new generation.

This process increases the fitness of the population in time through selection, but also ex-

plores new solutions with mutations and sexual reproduction. This general approach is rel-

atively standard in genetic algorithms, but the details of each implementation vary substan-

tially. In this work, I have designed a specific implementation that fits the specificities of the

oscillator-based classifier. The details of the algorithm are provided in Appendix A.

Evolving binary classification on a simple task

The behavior of the EEG-like readout is linked but nonetheless substantially different from syn-

chronization detection, and their associated learning algorithms are fundamentally different. It

is therefore necessary to evaluate the capabilities of this alternative architecture on a standard

classification task.

To achieve this comparison, I start by performing a simple two-dimensional binary classi-

fication task with 6 oscillators: classify points in a centered circular region as 1, and the other

points as 0. Figure 4.19(a) shows the target response map with this region. The training set on

which evolution is performed consists of 1000 randomly chosen points different from the map

pixels, and the test set consists of the 100×100 pixels of the response map.

Figure 4.19(b) plots the test set classification rate of the best genome (the best-performing

genome on the training set), and the mean test set classification rate of the population as func-

tions of the generation number. After about 40 generations, the mean classification rate of the

population reaches 95% and its best genome crosses 99%.

The snapshots in figures 4.19(c,d,e) show the rescaled output a map of the best genome of

generations 1, 17 and 93 respectively. In the desaturated areas a < 0.5 the network classifies the
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Figure 4.19: Evolving the weight matrix of the extended oscillator-based classifier with EEG-like
readout to classify a simple two-dimensional circular region. (a) Target response
map defining the classification task. (b) Test set successful classification rate as a
function of the generation number, showing the score of the best genome of the
population, as well as the average score of the population. (c,d,e) Snapshot maps
of the a output of the best genome in the population at generations 1, 17 and 93
respectively. Desaturated areas are classified as 0, and warm-colored areas are clas-
sified as 1.

example as class 0, while in warm colored areas a > 0.5, the output class is 1. At generation 1,

the response is defined by the random initial conditions. After 17 generations, a central blob

forms, but the classification is still approximative. At generation 93, the target region is clearly

identified with outputs approaching 1.0, while the output is inhibited in class 0 areas and stays

close to 0. The classification is therefore successful.

However, contrary to gradient descent which only explores promising directions in the pa-

rameter space at each iteration, this genetic algorithm is not model-aware. It relies on random

trials, has no memory of previous failures, and therefore mostly explores non-promising direc-

tions in the parameter space. This implies a high computational overhead, and the algorithm is

very demanding: with a population of Npop genomes and a training set of Mtrain examples, one

generation requires Npop ×Mtrain offline simulations or online physical executions per genera-

tion (here 200,000), most of which do not lead to improvements.

These results show that the genetic algorithm achieves learning and successfully solves this
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simple task, at the expense of a high resource overhead.

Parallelization

As they are independent, I run all train and test set simulations for all genomes in parallel

on GPU using a custom C++ code, and gather the results at the end of each generation.

This represents 2,200,000 parallel simulations per generation.

Evolution on a more complex task, and impact of noise

The next step to characterize the capabilities of the oscillator-based classifier with EEG-like

readout is to focus on a more complex task, and evaluate the impact of oscillator phase noise.

Note that contrary to gradient-based algorithms that do not support phase noise during learn-

ing, genetic algorithms are not sensitive to it, and noise can be applied during the learning

process itself.

To perform this analysis, I evolve the classifier for another binary classification task: the

two-dimensional target map shown in Figure 4.20(a). The setup is the same as for the previ-

ous task but contrary to the simple centered circular region, this target region is concave and

not diagonal-symmetric. The learning is performed both without noise, and with an oscillator

linewidth of FWHM = 1MHz.

Figure 4.20: Evolved complex two-dimensional classification using the extended oscillator-
based classifier with EEG-like readout. (a) Target map. (b) Map of the rescaled out-
put a of the best genome after 100 generations, without noise. (c) Response map
of the best genome after evolution during 100 generations with oscillator lined-
widths FWHM = 1MHz.

Figure 4.20(b) shows the map of the rescaled output a of the best genome after 100 genera-

tions of evolution without phase noise. Its classification rate exceeds 96% which confirms that

the classifier quickly solves this task.
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Figure 4.20(c) shows the a output map of the best genome after 100 generations of evolution

in the presence of noise levels consistent with spin torque nano-oscillators. This response map

appears more granular and the limits of the classified areas are more blurry. However, the test

set classification rate still reaches 95%. This result shows the high resilience of this classifier to

realistic phase noise levels. This can be attributed to the presence of noise during the evolution

process which eliminates noise-sensitive solutions and favors robust ones, leading to noise

robustness being deeply imprinted in the genomes.

Results on the Iris dataset

In the previous subsection, I have shown that the extended oscillator-based classifier with EEG-

like readout evolved using a genetic algorithm can solve complex two-dimensional tasks. In

order to compare its classification capabilities to the case with synchronization detection and

gradient descent, I perform training on the Iris dataset with 6 oscillators for 100 generations.

Target class
Iris test set classification rates after evolution

No noise FWHM = 1MHz FWHM = 10MHz

Iris setosa 100% 100% 100%

Iris versicolor 98.3% 98.3% 98.3%

Iris virginica 100% 100% 100%

Table 4.2: Iris test set classification rates using the extended oscillator-based classifier with
EEG-like outputs for the best genome after 100 generations.

Table 4.2 shows the test set classification rates for the identification of each target class

without noise, with FWHM = 1MHz and with FWHM = 10MHz.

Iris setosa and Iris virginica are successfully classified 100% of the time, and the non-separable

Iris versicolor is successfully classified 98.3% of the time. A remarkable observation is that these

classification rates stay constant even for extreme noise levels (FWHM = 10MHz). My tests

show that the classification rates only start to drop for FWHM > 30MHz.

This result shows that the classification capabilities of this approach are very similar to the

case with synchronization detection and gradient descent, but appear more resilient to noise

because of the presence of phase noise during learning, which ensures the compatibility of

the architecture with a broader range of nano-oscillators. The associated genetic algorithm

learning process, however, is substantially slower and computationally demanding.

As a result, the choice between the gradient-optimized classifier and the genetically opti-

mized EEG-like classifier mainly depends on the available learning time and computational

power.

Remarks and improvements on the architecture

The simulation results on the extended oscillator-based classifier with EEG-like readout and

genetic algorithm learning show promising results on classification tasks. The learning pro-
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cess can run both offline and in a hardware implementation but requires a long and resource-

hungry learning process.

Moreover, when the genetic algorithm is used in conjunction with a realistic device model,

or on a physical implementation of the architecture, it is capable of taking into account every

aspect of the system dynamics. As a consequence, variabiliy, noise, non-linearities or higher or-

der dynamics could all be transparently leveraged by the learning algorithm as computational

assets.

However, such an architecture can only perform binary classification. A solution to that

limitation is to train as many networks as there are classes, each of them identifying one of the

classes. If the weight matrix is implemented using a technology that allows rapid rewriting,

each of the matrices trained for each target class can also be applied sequentially to discrimi-

nate the classes one after the other using the same oscillator network.

Summary of the architectures and offline learning meth-

ods

This section summarizes the different architectures and associated offline learning algorithms

proposed in this thesis, highlighting their advantages and shortcomings.
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Oscillator-based classifier

Readout: synchronization detection Learning: gradient descent

Nc all-to-all uniformly coupled core oscillators and Ni input oscillators uniformly coupled to

all core oscillators. A Ni -dimensional input pattern is presented by setting the input oscillator’s

natural frequencies, inducing synchronizations in the core network. Synchronization detection

is performed on an ensemble of “output” pairs of core oscillators and constitutes the output.

The learning process uses iterative gradient-based optimization of all core natural frequencies

on a simulated model of the system so that its response closely matches the expected one on the

presented examples. The learned natural frequencies can then be transferred into a physical

system for inference.

+ Uses a standard machine learning framework

+ Indirect oscillator interactions fully taken into account

– Offline learning only

– Phase noise not taken into account during learning

– Can only learn simple diagonal-symmetric patterns

Extended oscillator-based classifier

Readout: synchronization detection Learning: gradient descent

Architecture similar to the previous one but all oscillators are identical (no more input/core

difference) and uniformly all-to-all coupled. Their natural frequencies are linear combinations

of the components of the presented input and a constant bias. This linear combination is pro-

duced by a weight matrix that is tuned by a gradient-based learning algorithm so that the re-

sponse of the system closely matches the expected one on the presented examples.

+ Uses a standard machine learning framework

+ Indirect oscillator interactions fully taken into account

+ Can discriminate complex arbitrary patterns

– Offline learning only

– Phase noise not taken into account during learning
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Oscillator pair neural network

Readout: EEG-like signal Learning: gradient descent

A neural network where each neuron is a synchronized pair of oscillators, its input shifts the

natural frequency of one of its oscillators, and its output is the EEG-like signal rescaled. The ac-

tivation function of the neuron can be expressed analytically and is differentiable. It is used for

offline learning with classical neural network gradient-based techniques optimizing the weight

matrices connecting the neurons.

+ Straightforward to implement in existing neural network frameworks

+ Can discriminate complex arbitrary patterns

+ Only requires coupling pairs of oscillators, which is convenient for experiments

– Requires a coupling and a readout circuit for each neuron

– Offline learning only

– Phase noise not taken into account during learning

– High sensitivity to noise

Extended oscillator-based classifier

Readout: EEG-like signal Learning: genetic algorithm

Architecture similar to the extended oscillator-based classifier with synchronization detection,

but the readout consists in measuring the EEG-like signal (the envelope of the mean signal of

all the oscillators), then rescaling and thresholding it to perform binary-only classification. As

gradient-based learning algorithms do not perform well on this architecture, I use a genetic

model-free algorithm to optimize the weight matrix.

+ Online learning capabilities

+ Indirect oscillator interactions fully taken into account

+ All system dynamics implicitly taken into account

+ High noise resilience after learning in the presence of noise

+ Can discriminate complex arbitrary patterns

– Binary classification only

– Long and resource-demanding model-free learning process

Towards full online learning
Online learning algorithms operate directly on the oscillator network. Examples are presented

as inputs to the network, its outputs are compared to the expected ones, and its parameters

are adjusted accordingly. In the case of the oscillator-based pattern recognition architecture

described in Chapter 2, this means that the learning algorithm only has access to measurable

quantities such as the synchronization states of the oscillators. Such algorithms would allow

these classifiers to adapt to new or changing data without having to go through offline learning

each time, which makes them compelling for a wider range of applications. However, designing

a fully online learning approach without resorting to time-consuming model-free algorithms

is challenging.
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A simple online learning method was sketched in the seminal work of Vassilieva et. al [160].

It consists in presenting known examples and adjusting core oscillator natural frequencies to

promote expected synchronizations or break unexpected ones and obtain the right output for

the presented example. This method can be summarized by the following algorithm:

1. Present a known input example to the oscillator network

2. Wait for stabilization

3. For all core oscillator pairs (i , j ):

(a) Read the synchronization state of (i , j )

(b) If the pair (i , j ) is synchronized but is not expected to be for this example:

⇒ Adjust the natural frequencies f 0
i and f 0

j slightly further apart

(c) If the pair (i , j ) is not synchronized but is expected to be for this example:

⇒ Adjust the natural frequencies f 0
i and f 0

j slightly closer to each other

4. Repeat the process with another example

Running this algorithm effectively corresponds to regulating the synchronizations so that

they match the expected ones for the training examples. A major advantage of this algorithm

is that it is not heavily sensitive to mismatches between the actual system and its model. This

makes it robust to variability, extra non-linearities or higher order phenomena. The algorithm

operates as long as it can bring natural frequencies closer to induce synchronizations or push

them further apart to break synchronizations.

However, this approach only tunes the oscillators used as outputs. Whenever the dimen-

sionality of the classifier output is lower than the number of pairs of core oscillators, this algo-

rithm does not adjust the natural frequencies of the oscillators that are not part of an output

pair, as it does not fully evaluate indirect interactions between oscillators. As an example, it can

therefore not learn to perform advanced binary classification tasks requiring more than two

core oscillators, contrary to the offline learning methods presented in this Chapter. Moreover,

such a linear regulation of synchronizations is very sensitive to local minima and the learning

process can easily get stuck in suboptimal solutions.

As a result, this algorithm is an important step towards full online learning in oscillator-

based classifiers, and is robust to device non-idealities. However, it is still limited to simple

classification tasks.

Nevertheless, in the context of the MEMOS project, Julie Grollier’s team at CNRS/Thales is

working on an experimental implementation of a classifier using spin transfer torque nano-

oscillators, similar to the one introduced in Chapter 2, and using an online learning algorithm

similar to the one presented in this section, in order to perform spoken vowel classification.

Fruitful discussions between our teams have led to a better understanding of the system and

its capabilities.

Figure 4.21 shows the architecture used for this project. It consists of a core set of four elec-

trically coupled vortex spin transfer torque nano-oscillators perturbed by antenna-fed radio-

frequency signals A and B with respective frequencies f A and fB . A spectrum analyzer is used



4.8 SUMMARY OF THE CHAPTER 139

to measure the average frequencies of the oscillators in the network and spectrograms without

and with input signals are also presented in the figure. They show spikes corresponding to os-

cillators 1,2,3 and 4. After input B is activated, the spectrogram shows that oscillator 4 phase

locks to it. The architecture is therefore similar to the one introduced in Chapter 2 but involves

only unidirectional coupling from the inputs to the core oscillators.

The experiments have already been performed, and the processing of their results is cur-

rently being finalized. They show that the system can be trained to perform a task of spoken

vowel classification. These exciting results constitute an important and promising first step

towards the implementation of online learning algorithms for oscillator-based classifiers.

Figure 4.21: Schematic of the experimental classification architecture with STNOs by Julie Grol-
lier’s team, showing four electrically coupled vortex STNOs with antenna RF inputs
A and B . Mean field signal spectra are shown without input signals, and with input
signals respectively.

Summary of the Chapter

In this Chapter, I proposed an offline learning algorithm allowing the oscillator-based classifier

architecture defined in Chapter 2 to solve arbitrary classification tasks after training on a set

of known examples. This algorithm adjusts the natural frequencies of the core oscillators in

order to minimize the classification error on the known examples using gradient descent. After

reinterpreting the oscillator-based classifier and its associated learning algorithm in a machine

learning context, I was able to perform efficient offline learning of standard classification tasks

using the TensorFlow machine learning library. After preliminary results revealed the limita-

tions of the initial architecture, I proposed an extended version of the oscillator-based classi-

fier that corrects these shortcomings. The resulting extended oscillator-based classifier showed

competitive classification rates on standard classification tasks.

I also proposed an artificial neuron made of synchronized pairs of oscillators, and derived
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its analytical transfer function. This allowed me to assemble these neurons into an artificial

feed-forward neural network, and perform offline machine learning using TensorFlow. De-

pending on the task, the resulting oscillator-based neural networks showed better or similar

performance to classical neural networks of the same size. However, this architecture appears

to be more noise-sensitive than the oscillator-based classifier.

I proposed a genetic algorithm to perform learning with the alternative “EEG-like” archi-

tecture introduced in Section 2.5.2. This model-free, biologically inspired algorithm relies on

random mutations, sexual reproduction and fitness-based selection principles in order to op-

timize the parameters of the classifier and perform successful classification of training ex-

amples. On standard classification tasks, this approach achieves classification rates similar

to the gradient-optimized extended oscillator-based classifier with synchronization readout

while showing higher noise resilience, but requires substantially more computational power.

Finally, I presented leads towards online learning approaches, including a first experimen-

tal realization of a learning system using spin torque oscillators by our collaborators of the

CNRS/Thales laboratory.



Chapter 5

Random number generation and

computing with stochastic oscillators

Everything we care about lies somewhere in the

middle, where pattern and randomness interlace.

James GLEICK

“THE FIFTH AND LAST CHAPTER of this thesis focuses on a fundamentally differ-

ent approach: using the intrinsically random behavior of superparamagnetic

tunnel junctions to achieve efficient random bitstream generation applied to stochas-

tic computing. ”
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THIS CHAPTER presents a different kind of device than the ones envisioned in Chapters 2 to 4:

intrinsically stochastic spintronic nano-oscillators called superparamagnetic tunnel junc-

tions. As their behavior is purely stochastic, such oscillators can not be used to implement the

computing schemes presented in the previous chapters, contrary to harmonic or relaxation

oscillators. However, their random behavior can be useful for efficient random number gener-

ation, especially for emerging alternative computing schemes that require massive numbers of

low energy random numbers [214]. This Chapter studies this approach by focusing on:∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

1. the experimental measurement of superparamagnetic tunnel junctions for long dura-

tions,

2. the design of a whitening scheme that converts the signals obtained from these devices

into an unbiased, uncorrelated bitstreams, as well as the validation of the resulting ran-

dom bitstream quality using a standardized statistical test suite,

3. the design and circuit simulation of a full-featured random number generator using this

whitening approach, and characterization of its energy and area requirements, as well as

the influence of environmental perturbations,

4. validating the random bitstream generator using the experimental bitstreams on an ex-

ample probabilistic classification task consisting in classifying e-mail messages as spam

or not spam.

These results highlight an alternative path where oscillators can allow novel forms of com-

putation.

Introduction

Many emerging alternative computing approaches, such as stochastic computing [215–219]

and some brain-inspired (neuromorphic) schemes [206, 220, 221], require a large quantity of

random numbers. However, the circuit area and the energy required to generate these ran-

dom numbers are major limitations of such computing schemes. For example, in the popular

neuromorphic TrueNorth system [206], one third of the neuron area is dedicated to perform

random number generation. Indeed, one million random bits are required, at each integra-

tion step of the system. More concerning, in stochastic computing architectures, which consist

in representing and manipulating values as probabilistic bitstreams, random number gener-

ation is typically the dominant source of energy consumption, as the logic performed using

the random bits is generally quite simple and efficient by principle. Many practical stochastic

computing schemes therefore try to limit their reliance on expensive independent random bits

using various techniques, including the sharing or reuse of random bits [217, 222, 223]. How-

ever, such tricks limit the capabilities of stochastic computing to small tasks, as they introduce
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correlations between signals.

Most of the aforementioned unconventional computing circuits use pseudo-random num-

ber generators, which generate bitstreams that appear random using fully deterministic iter-

ative bit scrambling operations. But these either lead to low quality random numbers or are

highly energy and area-consuming. A preferable solution would be to rely on “true” random

number generators that generate random bits based on physical phenomena that are intrin-

sically random. However, this is also difficult to realize with minimal energy consumption.

This difficulty is due to the fact that most true random number generators function by trig-

gering events whose outcome is intrinsically random. Triggering these events comes with a

non-negligible energy cost. The most energy-efficient example uses a bistable CMOS circuit

forced into in a meta-stable state which then randomly falls into one of the two stable states,

generating one random bit [224]. It consumes 3pJ/bit and a circuit area of 4000µm2.

In order to reduce this large area footprint, recent proposals suggest to leverage the inher-

ent stochastic programming properties that arise in many of the bi-stable nano-devices devel-

oped for memory applications [225]. This approach was investigated with oxide-based resistive

memory devices [226–229], phase-change memory devices [230, 231], magnetic memory de-

vices [232–234], as well as with straintronic memory devices [235]. However, these approaches

are based on repeated, energy-intensive programming operations, and still require high en-

ergy for random bit generation. For instance, it requires dozens of pJ/bit to induce a stochastic

switch of magnetization in magnetic tunnel junctions with two stable states, as proposed in the

"Spin-Dice" concept [232], due to the high energy barrier between the magnetic states. Opti-

mized schemes have been proposed [236–238], predicting further reduction of the energy cost

per bit, but are still bounded by the need of a costly perturb operation. While proposing high

quality random number with high throughput, such strategies are not fit for emerging neuro-

inspired computing applications like stochastic computing architectures.

A more natural approach would be to extract random numbers directly from thermal noise,

as it provides randomness at no energy cost. Unfortunately, this approach requires large cir-

cuits to amplify thermal noise into a large signal of random bits, and has never been shown to

be more energy efficient than the first approach until now. The lowest energy solution today

is to use jitter as a way to efficiently amplify the noise present in CMOS ring oscillators (de-

scribed in Section 1.3.2). The most energy efficient implementation [239] requires 23p J/bi t

and 375µm2.

In the present work, we propose the use of a stochastic oscillating device that intrinsically

amplifies thermal noise without external energy supply: superparamagnetic tunnel junctions.

These bi-stable magnetic tunnel junctions rely on a magnetic stack similar to the magnetic

nano-oscillators introduced in Section 1.3.5, and are reminiscent of the junctions used for Mag-

netic Random Access Memories (MRAMs) [104]. However, contrarily to MRAM cells, the energy

barrier between the two magnetic states is very low, and thermal fluctuations induce repeated

and stochastic magnetization switching between the two states at room temperature. There-
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fore, no write operations are required and a low-energy readout of the device state naturally

produces random bits. In this Chapter, we show that these devices permit the generation of

high quality random numbers at 20fJ/bit using less than 2µm2, which is orders of magnitude

more efficient in terms of energy and area than current solutions.

We first show experimentally that superparamagnetic tunnel junctions allow the genera-

tion of high-quality random bits with minimal readout circuitry and that their behavior can be

predicted by existing physical models. We then use the model to investigate the influence of

device scaling and environmental factors on random bit quality and speed. Circuit simulation

enables an estimation of the energy efficiency of random bit generation. Finally, we demon-

strate the potential of these devices for unconventional computing through the example task

of email messages classification using random bits extracted from the experimental data, and

show that they are particularly adapted to computing schemes trading off speed for ultra low

energy consumption.

Exploiting superparamagnetic tunnel junctions for random

bitstream generation

The stochastic behavior of superparamagnetic tunnel junctions

Superparamagnetic tunnel junctions are bistable spintronic nanodevices composed of a high

stability pinned nanomagnet and a low-stability “free” nanomagnet, separated by a tunnel ox-

ide layer (Fig. 5.1(a)). Their structure is highly similar to the magnetic tunnel junctions used

as the basic cells of MRAMs. The devices I measured experimentally, as part of our collabora-

tion with Julie Grollier’s group at CNRS/Thales, were fabricated by A. Fukushima, K. Yakushiji,

H. Kubota and S. Yuasa at AIST Japan using sputtering, following a standard magnetic tunnel

junction process, and with the CMOS-compatible stack detailed in Fig. 5.1(b). E-beam lithog-

raphy patterning was then performed to produce 50×150nm2 elliptic pillars.

The free magnet has two stable states, parallel (P) and antiparallel (AP) relatively to the

pinned layer (Fig. 5.1(c)). Through the tunnel magneto-resistance effect [106], the electrical

resistance of the junction in the AP state RAP is higher than the resistance in the P state RP . This

effect is traditionally measured through the TMR coefficient defined by RAP /RP = 1+TMR.

The lateral dimensions of the device are chosen so that the effective energy barrier between

the two stable states is not very high compared to kB T . Unlike the case of MRAMs, for which the

magnetization direction of the free magnet is highly stable and can only be switched by proper

external action, the magnetization direction of the superparamagnetic free magnet sponta-

neously switches between its two stable states, due to low stability relative to thermal fluctu-

ations (Fig. 5.1(c)) [240, 241]. Here, no bias or perturb scheme is required to provoke these

random fluctuations, but only temperature.
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Figure 5.1: Structure and behavior of superparamagnetic tunnel junctions. (a) Basic structure
of the measured superparamagnetic tunnel junctions and readout setup. (b) De-
tailed stack of the junctions. (c) Representation of the two stable magnetic states,
and the associated energy barrier. (d) Experimental resistance trace and threshold-
ing operation.

Resistance versus time measurements were done on junctions by applying a low 10µA con-

stant current through the junction. Such a small current amplitude was chosen to have negli-

gible influence on the magnetic behavior of the device [242] and to maximize its lifetime while

providing a clear signal. Fig. 5.1(d) shows a sample from the time evolution of the electrical re-

sistance of a junction measured at room temperature, as well as a binarized version, obtained

by thresholding. We see that the resistance follows two-state fluctuations analogous to a ran-

dom telegraph signal. The mean frequency of fluctuations is strongly related to the shape and

material properties of the junction [243].
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Experimental setup

The current is applied, and the voltage measured using a NI USB 6351 source and mea-

surement unit connected to a PC running a custom C++ multi-thread high speed data

acquisition, buffering, processing and storage software I wrote for this purpose.

The dies containing the superparamagnetic tunnel junctions were glued an wirebonded

by Miguel Romera, Alice Mizrahi and myself to PLCC 32-pin chip carriers. The carriers are

held by a PLCC socket on a sample holder circuit board I built to provide 4-terminal sens-

ing that minimizes noise and improves measurement precision when the applied currents

are low, as well as over-voltage protection. The junctions are highly sensitive and volt-

ages over about 200 mV can break their tunnel barrier. This has motivated the choice of

MMBD4148SE fast small signal diodes for protection, as well as proper grounding against

electrostatic discharges.

In order to apply magnetic fields, I built a fan-cooled 10mT electromagnet that car-

ries the sample holder board at the center of its coil. The electromagnet is powered by a

computer-controllable current source also driven by the C++ software running on the PC.

The current-to-field calibration was done manually using a teslameter.

Sample holder board inside the electromagnet connected to the NI USB 6351 source and
measurement unit (bottom right). Zoom on the chip with 4 wire-bonded superparamag-
netic tunnel junctions.

Fig. 5.2(a) shows the histograms of the dwell times in the ‘1’ (AP) and ‘0’ (P) states, obtained

through measurement of a superparamagnetic tunnel junction over a 10 second period. We see

that these histograms can be fitted by an exponential law, which is characteristic of a Poisson

process. Fig. 5.2(b) presents the power spectrum density of the same signal, superimposed with

the expected power spectrum density of a random telegraph signal based on a Poisson process.

Excellent agreement between the measured results and the hypothesis of a Poisson process is

seen.

Random bits can be extracted by sampling the voltage across the device at a constant fre-
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Figure 5.2: Statistics of the experimental superparamagnetic tunnel junction signal. (a) Experi-
mental histograms of the dwell times in Anti-parallel (AP, top Figure, high resistance)
and Parallel (P, bottom Figure, low resistance) states, for a superparamagnetic mag-
netic tunnel junction measured during 10s. (b) Experimental power spectrum den-
sity of the resistance signal. (c) Autocorrelation of the experimental resistance signal
as a function of signal sampling period.

quency. The voltage was initially sampled at 100kHz, and bitstreams with slower sampling rates

were obtained by subsampling the initial bitstream. To evaluate the quality of the obtained

random bits, the device was measured for over 2.5 days, producing 21.2 gigabits. No external

magnetic field was applied during the measurement.

Optimizing the quality of random bits

The sampling frequency needs to be chosen carefully relative to the mean switching frequency

of the junction, defined as FMTJ = 1/(τ1+τ0), where τ1 and τ0 are the mean dwell times in state

1 and 0, respectively. FMTJ was measured to be 1.66kHz (τ1 +τ0 ≈ 604µs). Fig. 5.2(c) presents

the correlation of consecutive bits extracted at different sampling rates. This result is superim-

posed with the one theoretically expected from a Poisson process. At high sampling frequency,

subsequent bits are naturally autocorrelated (at Fsampling = 100kHz, correlation reaches 92.8%),

and can therefore not be used for applications. This correlation decreases exponentially with

the sampling period, which can therefore be chosen based on the correlation requirements on

the random numbers.

As observed, in Fig. 5.2(a), the AP and P states possess an asymmetric stability: the device

spends more time on average in the P state than in the AP state, which corresponds to a mean

state (mean of the binarized signal) of 60.5%. This asymmetry can be connected to the stray

field induced by the pinned magnet layer structure, which is present in all magnetic tunnel

junctions [244]. This biasing field offsets the junction mean state from the ideal 50% value

required for most applications, and is subject to device-to-device variations.

In order to eliminate this bias and any residual bit correlation, a “whitening” of the ran-

dom bits is therefore required. To achieve this operation, we make use of a standard technique:

combining several bitstreams into a single one using XOR gates. It can be shown (mathemat-

ical derivation available in Appendix B) that the auto-correlation after XOR whitening is the
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product of the individual auto-correlations of the combined signals. It therefore decreases ex-

ponentially with the number of combined MTJ bitstreams, and is always lower than the auto-

correlation of any of the combined signals. In the same way, the mean state of the whitened

bitstream gets exponentially closer to 50% with the number of XOR-combined bitstreams, and

stays always closer to perfect balance than any of the bitstreams being combined. As a refer-

ence, a more advanced but heavy stateful whitening technique ("Blum" [245]) was also applied

to the raw measurements.

Figure 5.3: Whitened experimental random bitstream quality assessment. (a) Mean state and
consecutive bit autocorrelation as functions of the number of independent super-
paramagnetic tunnel junction signals combined by XOR. NIST STS randomness
quality test results on experimental data whitened by XOR4 (b) and XOR8 (c) at a
Fsampling = 5kHz sampling frequency. When all test results are in the green area, the
bitstream is consistent with cryptographic quality.

As an illustration, we consider bits extracted at a frequency of 5kHz. The bitstream was

then divided into chunks of equal length which were used as independent signals and XOR-

combined bit per bit for the XOR whitening process. We plot in Fig. 5.3(a) the consecutive bit

correlation and the mean state of the whitened bitstream as functions of the number of signals

combined by XOR. The correlation and the mean value bias decrease with the number of XOR-

combined signals. With 4 bitstreams (XOR4), the resulting consecutive bit correlation drops

under 1% and the mean value reaches 49.9%. For 8 bitstreams (XOR8), the auto-correlation is

below 0.06% and the mean state reaches 50% with a standard deviation of 0.5%. These results

suggest that XOR whitening can correct correlation and mean value issues.

However, in order to fully evaluate the quality of a whitened bitstream, signal autocorre-

lation and mean state are not sufficient metrics. We therefore used the standardized National

Institute of Standards and Technology Statistical Test Suite (NIST STS) [246], which evaluates

the quality of the random bitstream against 188 tests. The NIST STS computes the statistics of

bitstreams, such as mean value, auto-correlation, standard deviation, estimated entropy or pat-

tern occurrence frequencies, and checks weather they are consistent with perfect randomness.

It also looks for the presence of repeated structures, linear dependencies, and other behaviors

unexpected in a perfectly random bitstream.

To perform the NIST STS tests, the bitstream to be tested, measured during 2.5 days, is

divided into 1 Mbits sequences. Each chunk is then tested independently, and the pass rate

(percentage of one million bits sequences passing the test) was computed for each of the 188



5.2 RANDOM BITSTREAMS FROM SUPERPARAMAGNETIC TUNNEL JUNCTIONS 149

Fsampling Fsampling/FMTJ Raw XOR2 XOR4 XOR8

100 kHz 60.4 0 10.1 10.1 10.1

20 kHz 12.1 0.5 0.5 10.6 12.2

9.1 kHz 5.5 1.1 10.6 10.6 88.3

5.9 kHz 3.6 1.1 1.1 16.5 100

5 kHz 3.0 1.1 1.1 72.9 100

1.9 kHz 1.1 1.1 14.4 97.9 100

0.9 kHz 0.54 1.1 14.4 98.4 100

0.7 kHz 0.42 1.1 16.0 97.9 100

0.5 kHz 0.30 1.1 16.0 98.4 100

Table 5.1: NIST Statistical Test Suite results for the whitened experimental random bitstream.
Percentage of NIST STS tests satisfying cryptographic quality requirements for differ-
ent numbers of combined bitstreams, and different sampling frequencies.

tests. Fig. 5.3(b) and (c) show the results for XOR4 and XOR8 whitened bitstreams respectively.

For a bitstream to be consistent with cryptographic quality, the pass rates of all tests should

lie in the green region [246], corresponding to the expected minimal pass rate provided by the

NIST STS, dependent on the number of tested chunks. We can see that bits extracted by XOR8

whitening pass this requirement (this was also the case with the reference Blum technique),

while with XOR4 whitening only a fraction of the tests are consistent with cryptographic quality

of the random bits 1.

Table 5.1 presents more comprehensive results: the proportion of tests in the green area

is given for XOR-whitened bitstreams at different sampling frequencies and numbers of XOR-

combined bitstreams. The results confirm that the quality of the whitened bitstream increases

for lower sampling frequencies (less correlation) and higher numbers of XOR-combined bit-

streams (less correlation and lower bias). Higher numbers of XOR-combined bitstreams there-

fore allow further increasing the sampling rate while still passing all the NIST statistical tests,

at the expense of more circuit area and energy consumption. XOR8 at Fsampling/FMTJ = 3.0 ap-

pears to be an optimal choice, with 100% of the tests consistent with cryptographic quality and

the highest sampling frequency.

Consistent results were observed on a second sample, measured during 1.5 days, producing

8.96 gigabits.

1The NIST tests also include a uniformity condition on the distribution of P-Values among tested se-
quences [246]. This condition was passed for all tests for sequences processed by Blum and XOR8.
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Scaling capabilities in terms of speed and energy consumption

Device model and properties

Further studying the potential of superparamagnetic tunnel junctions for random number gen-

eration requires a realistic model of the device. In the literature, at low electric current, mag-

netic tunnel junctions switching is usually described by an Arrhenius-Néel two-states analysis,

modeling a thermally activated magnetic switching [247]. The mean switching rates in each

state are then described by: r0→1 = 1/τ0 = f0 exp
(
−∆E0→1

kB T

)
r1→0 = 1/τ1 = f0 exp

(
−∆E1→0

kB T

) , (5.1)

where f0 = 1GHz is the magnetic attempt frequency, ∆E0→1 and ∆E1→0 are the energy barriers

associated with each transition (see Fig. 5.1(c)). Our experimental results suggesting that su-

perparamagnetic tunnel junction switching is a Poisson process are consistent with this model.

The superparamagnetic tunnel junctions that we characterized experimentally in this study

are slow devices. They can be used to generate random bits at kHz frequencies, sufficient

for real-time brain-inspired systems like [206], but not for high performance applications. In

our 50×150nm superparamagnetic tunnel junctions, we identified that the switching occurs

through nucleation and propagation of a magnetic domain, probably seeded by fluctuations in

a subset of grains within it [240] (by opposition to single domain magnetic reversal). The small

effective switching volume of the free ferromagnet involved in the nucleation of the switching

process explains the low energy barriers observed between the stable states, as compared to

the full volume reversal energy barrier expected for those dimensions (evaluated to be approx-

imately 126kT).

By contrast, recent experiments on perpendicular magnetic anisotropy (PMA) magnetic

tunnel junctions have shown that aggressively scaled devices (diameters smaller than 35nm)

switch at the scale of the whole volume [243]. Therefore, in the context of random number

generators, extreme scaling of the nanodevices appears as providential, as smaller volumes

and areas are directly linked to a lower magnetization stability of the free magnet [248], in-

creasing random bit generation speed exponentially. This is in sharp contrast with MRAMs,

where conservation of stability with extreme scaling is an important challenge [249].

Minimizing auto-correlation

From the study described previously, we observe that a 26% correlation between consecutive

bits can be efficiently whitened out by XOR8 and allow generated random numbers to pass all

the NIST STS tests.

This consideration, together with the model, allows us to evaluate quantitatively the speed

of scaled random bit generators based on superparamagnetic tunnel junctions, by evaluating
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the maximum sampling frequency to keep the correlation ρc
X ,X+1 . 26%.

The auto-correlation function of a telegraphic signal can be derived simply from its escape

rates, allowing to express the average correlation between consecutive samples as :

ρX ,X+1(Tsampling) = e−(r0→1+r1→0)Tsampling , (5.2)

where r0→1 and r1→0 are the escape rates from 0 and 1 states respectively, and Tsampli ng is the

sampling period. In case of a symmetrical system:

r0→1 = r1→0 = f0 exp

(
− ∆E

kB T

)
= 2FMTJ , (5.3)

where∆E is the energy barrier separating the two states. ∆E = Keff(D)πD2

4 t is derived as a func-

tion of the device diameter D, where t = 1.6nm is the free magnet thickness and the effective

anisotropy Ke f f (D) is derived considering interfacial anisotropy and bulk anisotropies, using

experimental values from [243].

The maximal sampling frequency is then obtained knowing the critical correlation ρc
X ,X+1 that

can be mitigated by the whitening operation :

F max
sampling =

4FMTJ

ln(1/ρc
X ,X+1)

= 2 f0

ln(1/ρc
X ,X+1)

exp

(
− ∆E

kB T

)
. (5.4)

For the a critical correlation ρc
X ,X+1 ≈ 26%, the maximum sampling frequency is:

F max
sampling ≈ 3FMTJ = 3

2
f0 exp

(
− ∆E

kB T

)
. (5.5)

Fig. 5.4(a), based on this derivation, shows that random bits could be generated at up to tens of

MHz for energy barriers below 5kB T , corresponding to a diameter of 8nm.

Figure 5.4: (a) Effect of scaling the energy barrier on the ideal sampling frequency, based on
the device model. The inset shows the energy barrier as a function of the junction
diameter for PMA-MTJs. (b) Precharge sense amplifier (PCSA) circuit for reading the
state of a superparamagnetic tunnel junction. (c) PCSA reading energy as a function
of the superparamagnetic tunnel junction P state resistance RP .



152 CHAPTER 5: RNG AND COMPUTING WITH STOCHASTIC OSCILLATORS

Readout circuit

In addition, in a final system, specialized transistor-based electronics needs to be associated to

the superparamagnetic tunnel junctions to read their states without interfering with the ran-

dom bit generation quality. Here, we considered a precharge sense amplifier circuit (PCSA,

Fig. 5.4(b)), a CMOS circuit originally proposed as an MRAM read circuit [250]. We simulated

this circuit using standard integrated circuit design software (Cadence tools) and the transis-

tor models of a 28nm commercial technology. The superparamagnetic tunnel junctions were

modeled using a compact (VerilogA-based) model implementing the Arrhenius-Néel model.

The results of circuit simulation (Fig. 5.4(c)) show that the read energy is relatively indepen-

dent from superparamagnetic tunnel junction resistance, and very low (≈ 2fJ/bit).

We also evaluated the read disturb effect of the PCSA. Reading the state of a junction can

potentially affect random bit generation through the spin torque effect. Based on the spin

torque model of [247], its impact on the mean state is around 10−6 for junctions such as the

one we characterized experimentally. Ultrascaled junctions are expected to be more sensitive

to this effect. The SPICE simulation results presented in Figure 5.5 show the mean state of a

perfectly balanced ultrascaled stochastic magnetic tunnel junction as a function of the read-

ing frequency. These results show that the read disturb effect stays below 0.1% for ultrascaled

junctions functioning at high frequencies. This small effect would therefore be corrected by

whitening.

Figure 5.5: Mean value of a perfectly balanced ultrascaled stochastic MTJ as a function of the
sampling frequency, obtained through SPICE simulation of the PCSA circuit and us-
ing our device model. The dashed red line represents the ideal 50% mean value.

Evaluating the energy consumption of random bit generation requires taking into account

the whitening process. As XOR whitening combines multiple junction states per generated bit,

it requires multiple read operations per generated bit. XOR8 reads 8 junctions to generate a
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bit, and requires 20fJ/bit in average (including the XOR gate operation). In terms of area, in a

28 nm technology, the layout of a full XOR8 random bit generator takes less than 2µm2. XOR4

whitening would require 9.8fJ/bit and a 1µm2 area.

These results show the potential of superparamagnetic tunnel junctions for state of the art

low-energy random number generation.

Sensitivity of the random bitstream generator to perturbations

Figure 5.6: External perturbations and crosstalk effects. (a) Theoretical curve of the maximum
sampling frequency for high quality random bit generation, as a function of temper-
ature, for different junction stabilities (the black curve corresponds to the junction
characterized in Figs. 5.2 and 5.3). (b) Black symbols: experimental mean state of
the junction (up ratio) as a function of the applied magnetic field (red dotted line:
theory). (c) Theoretical minimal distance between superparamagnetic tunnel junc-
tions allowed to prevent crosstalk, as a function of the superparamagnetic tunnel
junction diameter.

Although superparamagnetic tunnel junctions allow random number generation with min-

imal energy, their sensitivity to external perturbations must be carefully evaluated.

Influence of temperature and magnetic fields

First, as the stochastic switching of superparamagnetic tunnel junctions is thermally activated,

temperature directly affects their switching rates. Fig. 5.6(a), based on the model introduced

in the previous section, shows the temperature dependence of the maximum sampling fre-

quency for several values of the effective barrier. Higher temperatures produce better random

numbers: as temperature increases, the superparamagnetic tunnel junction switching rates

increase accordingly, thus allowing faster sampling frequencies. Devices should therefore be

sized based on their lowest operation temperature.

Superparamagnetic tunnel junctions are also sensitive to magnetic fields. Fig. 5.6(b) shows

the experimental mean state of a superparamagnetic junction as the function of external mag-

netic field. Fields of a few Oe shift the mean state to a level that cannot be corrected by XOR8

whitening. Magnetic shielding is therefore necessary for applications. Such technology (based

on mu metals) has already been developed for MRAM.
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Crosstalk effects

Finally, a challenge regarding scalability and integration is that closely packed superparamag-

netic tunnel junctions can interact by dipolar interaction, which could lead to correlations in

random numbers.

To evaluate this effect, we model the free magnetic layers of two identical side by side su-

perparamagnetic tunnel junctions as two dipoles interacting through dipolar coupling (fig-

ure 5.7(a)).

Figure 5.7: (a) Representation of the free magnetic layers of two identical side by side super-
paramagnetic tunnel junctions modeled as two dipoles. Their states are associated
respectively to the variables A and B , each taking two possible values {+1,−1}. (b)
4-states Markov chain showing the possible transitions between all {A,B} system
states, and associated transition rates. (c) Simplified Markov chain.

The two superparamagnetic tunnel junctions constitute a stochastic system described as a 4-

states markov process [251] illustrated in figure 5.7(b). Their states are modeled by two vari-

ables {A,B} that can take two values {−1,+1}. In the absence of interaction, the transition rates

are strictly identical: r = f0 exp
(
− ∆E

kB T

)
. However, dipolar interaction induce an asymmetry so

that two different rates have to be considered [240]:
r+ = f0 exp

(
− ∆E

kB T

(
1+ Hdi p

Hk

)2
)

r− = f0 exp

(
− ∆E

kB T

(
1− Hdi p

Hk

)2
) , (5.6)

where Hk = 2∆E
kB T is the magnetic layer’s coercive field and Hdi p is the amplitude of the dipolar

field radiated by one junction onto the other and is given by Hdi p = MSV
4πd 3

This system can be simplified as the two-state Markov chain shown in figure 5.7(c) and follow-

ing: ∂t P A=B =+r−P A 6=B − r+P A=B

∂t P A 6=B =−r−P A 6=B + r+P A=B

, (5.7)

with stationary solutions : P A=B = r+
r++r−

and P A 6=B = r−
r++r−

.
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The cross-correlation between the two junctions states is then expressed as:

ρ = |〈AB〉|√
〈A2〉〈B 2〉

= |〈AB〉| = P A 6=B −P A=B . (5.8)

Using the expressions from equation 5.6, we obtain :

ρ = tanh

(
2
∆E

kB T

Hdi p

Hk

)
. (5.9)

Replacing the expressions of the dipolar and coercive fields:

ρ = tanh

(
µ0(MSV )2

4πkB T d 3

)
. (5.10)

We evaluate that in the case of perpendicularly magnetized superparamagnetic tunnel junc-

tions, the center-to-center distance between two devices guaranteeing negligible crosstalk,

corresponding to less than ρc = 0.1% cross-correlation, is given by:

dc =
(

µ0(MSV )2

4πkB T tanh−1(ρc )

)1/3

. (5.11)

Fig. 5.6(c) shows the evolution of this critical distance at room temperature as the diameter of

the junctions is scaled down. It falls below 100nm for ultimately scaled 10nm diameter devices,

which constitutes a layout design rule, and which would be naturally respected if the junctions

are associated with PCSA circuits.

Comparison table with other hardware random bitstream generators

In this section, the properties of the proposed superparamagnetic tunnel junction random

number generator are compared to other proposed approaches from the litterature.

Table 5.2 compares the functioning principle, the circuit area usage, the energy per bit,

the bit generation rate and the bitstream quality for 17 different low-energy random number

generation approaches at different stages of development.

Note that some authors present statistical test results on bitstreams generated by simulated

architectures that use pseudo-random number generators to emulate the underlying random

physical phenomena of the system (for example noise or metastability). These results must

be with be taken with caution: with a good underlying pseudo-RNG, perfect statistical test

results on the system output show at best that the simulation doesn’t degrade the quality of the

pseudo-RNG.

This table shows that the XOR8 random bitstream generator we proposed in this chapter

reaches state-of-the-art energy/bit and area efficiencies. Depending on the application, ran-

dom number quality can be slightly reduced by switching to XOR4 in order to divide by two the

energy and area requirements.
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Ref. Description Area
Energy
per bit

Bit
rate

Quality

This
work

Experimenal measurement of
superparamagnetic MTJs.

XOR8 whitening.
n/a n/a 5 kHz

100%
NIST STS

This
work

PCSA sampling of
superparamagnetic MTJs.

XOR8 whitening.
Theory & simulations.

2µm2 20 fJ 10 MHz n/a

[252]
[253]

Ring oscillator jitter.
Xilinx XCV300E-8 FPGA.

15 slices,
1% of FPGA

1.8µJ 29 kHz
100%

NIST STS

[254]
Ring oscillator jitter.

Built in 0.18µm CMOS.
0.0016 mm2 230 pJ 10 MHz

100%
FIPS 140-1 [255]

[256]

Single oxide trap telegraph
noise amplification.

Von Neumann whitener [257].
Built in 0.12µm CMOS.

0.009 mm2 250 pJ 200 kHz No info.

[253]
Metastable latch.

Running estimate filter.
Built in 0.35µm CMOS.

0.031 mm2 1.88 nJ 5 kHz
100%

NIST STS

[239]
Ring oscillator jitter.

Built in 28 nm CMOS.
375µm2 23 pJ 23 MHz

100%
NIST STS

[224]
Meta-stable CMOS circuit.

Built in 45 nm CMOS.
4000µm2 2.9 pJ 2.4 GHz

100%
NIST STS

Spin
dice
[232]

Probabilistic MTJ writing.
XOR3 whitening.

Experimental sampling.
No info. No info. 600 kHz

Most NIST STS
See [232]

[233]
Probabilistic MTJ writing.

Probability tracking.
Experimentally verified.

No info. No info. 57 MHz
100%

NIST STS

[258]
Probabilistic MTJ writing.

Probability tracking.
28 nm FDSOI simulation.

5.88µm2 1.25 pJ 66.6 MHz
12/15

NIST STS
(see [258])

[236]
Probabilistic MTJ writing.

Simulation.
No info. 57.1 fJ No info. No info.

[238]
Probabilistic MTJ writing.

Simulation.
139.96µm2 311 fJ 29.6 GHz n/a

[259]
Single-electron transistor

seeding a LFSR pseudo-RNG.
Simulations.

No info. No info. See [259].
100%

NIST STS

[260]

Differential ReRAM
telegraph noise extractor

feeding a LFSR pseudo-RNG.
Experimental results.

No info. No info. No info.
100%

NIST STS
LSTM-tested

[261]
Non-deterministic

OxRAM reset operation.
Simulations.

No info. No info. 25 kHz See [261].

[235]
Straintronics metastability.
65 nm CMOS simulations.

0.001 mm2 19 fJ 110 MHz
100%

NIST STS

Table 5.2: Comparison of different proposed low power hardware random number generators.
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Using superparamagnetic tunnel junctions for unconven-

tional computing

This section focuses on applying the superparamagnetic tunnel junction random number gen-

erator to perform Bayesian inference with stochastic computing using C-elements on a toy

problem illustrating its effectiveness for low energy stochastic computing.

Introduction to stochastic computing

Stochastic computing is an alternative computational approach for efficiently performing math-

ematical operations on data encoded as probabilistic bitstreams (infinite time sequences of 0s

and 1s with different occurrence probabilities) instead of binary number representations. A

given random bitstream A can encode an analog value an one of its statistical properties, typi-

cally the proportion of 1s, also called the “mean value” or “probability P (A)” of the bitstream.

The principles, advantages and some important constraints of stochastic computing are well

illustrated by the stochastic multiplier circuit.

Figure 5.8(a) shows a standard 4-bit digital multiplier circuit that computes the product of

two numbers in binary representation. It consists of 24 logic gates (134 transistors) and per-

forms computations with a precision specified at design time.

Figure 5.8: (a) 4-bit digital multiplier. (b) Stochastic multiplier computing a bitstream with a
probability P (S) equal to the product of the input bitstream probabilities P (A) ×
P (B).

On the other hand, figure 5.8(b) shows a stochastic multiplier circuit: a single AND logic

gate (4 transistors). It takes as inputs two independent probabilistic bitstreams A and B with

probabilities P (A) and P (B), performs bit-wise AND operations, and outputs a bitstream C with

probability P (C ) = P (A)×P (B), therefore naturally implementing multiplication of probabili-

ties. In practice, the precision of the computation only depends on the averaging time of the

signal C for the measurement of P (C ).

The stochastic multiplier circuit therefore performs a low energy (one logic gate) product

operation, and its precision can be freely chosen through the averaging time.
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However, this approach requires the two input bitstreams to be independent (P (B |A) =
P (B)). If it is not the case, the output becomes P (S) = P (A)P (B |A).

This simple example illustrates the power of stochastic computing which allows it to perform

certain operations on decimal numbers with finite arbitrary precision at low energy and circuit

area, which matches the requirements of Internet of Things devices, for example.

This example also underlines the requirement of the bitstreams to behave in a purely stochas-

tic way (i.e. like independent biased coin flips), which requires high quality random bit gener-

ation compatible with low power and area requirements.

Performing Bayesian inference with stochastic computing using prob-

abilistic bitstream generators

Bayesian inference is a technique that infers the probability of a given event occurring knowing

a set of clues. It is used for example for illness diagnosis given a set of symptoms [262]. In

this subsection, I present the principles of Bayesian inference, and how to implement it in a

stochastic computing context to achieve simple binary classification.

Principles of Bayesian inference

Bayesian inference is an important approach in statistics and stochastic computing for classifi-

cation and decision making [262]. It consists in predicting the “posterior” probability P (X |E1,E2, · · · ,EN )

of an event X occurring for a given observed set of conditions (“evidence”) {E1,E2, · · · ,EN }. For

example, it can represent the probability of a patient having a given illness (X = 1) knowing the

presence or absence of symptoms E1 = 1,0, · · · ,EN = 1,0. This prediction relies on the Bayes’

Theorem:

P (X |E1,E2, · · · ,EN ) = P (E1,E2, · · · ,EN |X )P (X )

P (E1,E2, · · · ,EN )
. (5.12)

In this equation, P (E1,E2, · · · ,EN |X ) represents the “likelihood” gathered from statistics on

known data. For example, it can represent the probability of a given set of symptoms occurring

in ill X = 1 or healthy X = 0 patients.

P (X ) is the “prior” which characterizes knowledge of the global occurrence probabilities of

the outcomes of X . It could represent the known occurrence rates of the illness among patients.

When no prior knowledge is available, this value can be set to 0.5.

P (E1,E2, · · · ,EN ) is the “marginal probability” of the evidence. It characterizes the global

occurrence probability of a given evidence set in the data: for example the probability of a

given set of symptoms being observed on a randomly chosen patient.



5.3 USING SUPERPARAMAGNETIC TUNNEL JUNCTIONS FOR UNCONVENTIONAL
COMPUTING 159

Bayesian inference using C-elements

The Muller C-element, also known as the C-gate, is a simple sequential logic element with two

inputs A and B , and one output S. It outputs the value of its inputs when they are identical, or

keeps its previous output value Sprev when the inputs are different. Its symbol and equivalent

circuit are shown in Figure 5.9(a), and its truth table is given in Figure 5.9(b).

Figure 5.9: (a) C-element symbol and equivalent circuit. (b) C-element truth table.

Given the truth table in Figure 5.9(b), the output S of the C-element is 1 when:

− A = 1 and B = 1

− (
(A = 1 and B = 0) or (A = 0 and B = 1)

)
and Sprev = 1

This translates into the following equivalent probabilistic expression:

P (S) = P
(
(A∩B)∪ (((

A∩ B̄
)∪ (

Ā∩B
))∩Sprev

))
. (5.13)

When bitstreams A and B are independent, not auto-correlated in time, and that the output

probability is stable (P (S) = P (Sprev)), the output probability of the C-element becomes:

P (S) = P (A)P (B)

P (A)P (B)+ (1−P (A)) (1−P (B))
. (5.14)

Bayes’ theorem (equation 5.12) in the case of a single evidence term E1 can also be reformu-

lated into a similar form:

P (X |E1) = P∗(E1)P (X )

P∗(E1)P (X )+ (1−P∗(E1))(1−P (X ))
, where P∗(E1) = P (E1|X )

P (E1|X )+P (E1|X̄ )
.

(5.15)

The left hand equation corresponds to the C-element output probability equation 5.14 with the

following two inputs :

− A probabilistic bitstream with the prior probability P (X )

− A probabilistic bitstream with the normalized evidence probability P∗(E1)

This result shows that a single C-element naturally computes P (X |E1) provided two inde-

pendent and non-autocorrelated bitstreams with probabilities computed from the prior knowl-

edge and known data statistics.
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It can also be shown that multiple C-elements can be stacked in a tree-like structure to take

into account multiple evidence terms [216], given the naive hypothesis that the occurrences

of different words are conditionally independent. This hypothesis is relatively strong but was

shown to provide good results in practice, and is at the basis of naive Bayes classifiers that

have proven effective in various practical applications such as text classification or medical

diagnosis [263].

Figure 5.10(c) shows the general structure of a cascaded C-element Bayesian inference ar-

chitecture with 7 input bitstreams representing the normalized evidence terms with probabil-

ities {P∗(E1), · · · ,P∗(E7)}, and a bitstream with the prior probability P (X ). The architecture has

one output that provides the probability P (X |E1, · · · ,E7). Thresholding this output allows sim-

ple binary classification.

Note : Successive operations and correlation

A common problem in stochastic computing is that many binary operations on bitstreams

introduces correlations. In this example, each layer of C-elements creates larger “do-

mains” of successive 0s and 1s in its outputs. The assumption of non-autocorrelation

of the C-element inputs is therefore less and less satisfied starting from the second layer

C-elements, and the quality of the inference falls when many layers are present. De-

correlation techniques exist but can be expensive in terms of energy or circuit area. This

limitation is discussed in detail in [216].

Figure 5.10: Schematic of a full C-element based Bayesian inference architecture using super-
paramagnetic magnetic junctions for probabilistic bitstream generation. (a) XOR-
whitened stochastic magnetic tunnel junction random bitstream generator. (b)
Probabilistic bitstream generation from whitened bitstreams using a comparator.
(c) C-element Bayesian inference network.

Implementation using stochastic nano-oscillators

This classifier requires one probabilistic bitstream per evidence term, and one for the prior.

These bitstreams can be generated at low energy cost with the proposed superparamagnetic

tunnel junction random bit generator.
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Figure 5.10(a) shows the XOR-whitened generator that produces independent, non-autocorrelated

and unbiased “coin flip” bits. Figure 5.10(b) shows how those unbiased bitstreams are turned

into probabilistic bitstreams. Random integers A are generated with each bit of their K -bit

binary representation coming from an unbiased bitstream. These numbers uniformly span in-

tegers in the range [0 . . 2K −1]. They are then compared, using a digital comparator, to a stored

number B = Round
(
P ×2K

)
with the strict comparison A < B . The output of the comparator is

then a probabilistic bitstream with a probability of approximately P . The precision of this ap-

proximation, due to the integer rounding operation, increases with the number of bits K that

encode the integers. However, higher K bit depths require proportionally higher numbers of

unbiased random bit generators, which defines a trade-off between the precision of probability

encoding, and circuit area and energy consumption.

Using this approach, the full architecture presented in Figure 5.10 can be implemented to

perform low energy Bayesian inference.

Note : Direct probabilistic bitstream generation

As the probability of the non-whitened bitstream generated by a superparamagnetic tun-

nel junctions is tunable using magnetic fields (figure 5.6(b)) or currents [247], it could be

possible to directly use it as a tunable probabilistic bitstream source. This would reduce

the number of junctions to one per probabilistic bitstream and avoid the comparison op-

eration, but would require lower sampling rates to erase auto-correlations previously cor-

rected by the whitening operation.

In this work, I focus on illustrating the effectiveness of the superparamagnetic tunnel

junction random number generator using this architecture because it constitutes a simple

concrete example that requires important quantities of high quality random bits.

Implementing Bayesian inference for message classification

To illustrate the potential of superparamagnetic tunnel junctions for unconventional comput-

ing, we use the experimental whitened random bitstreams as inputs for a C-element based

Bayesian inference scheme to perform message classification. In this pedagogical task, we use

this circuit to classify email messages as spam or not spam (sample messages are presented in

Fig. 5.11(a)), as recently introduced in [216].

The approach uses a dictionary of known words with their associated occurrence rates in

spam and non-spam messages. Each word i of the dictionary constitutes an evidence term

Ei and has an associated probabilistic bitstream generator whose probability P∗(Ei ) of draw-

ing a 1 is set to a different value depending on the presence (or absence) of the word in the

presented sentence. No prior is assumed (P (spam) = 0.5), which allows omitting this term

from the C-element tree. The outputs of the bitstream generators are then combined using C-
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elements to perform an approximate Bayesian inference. The time average of the output gives

the probability of the presented message being spam.

Fig. 5.11(b) gives the spam probability inferred using XOR4-whitened bitstreams and shows

that the more random bit generators are used per word, the more precisely the probabilistic

binary generator can be tuned and the better the prediction is. Also, the longer the output

averaging time, the more accurate the answer of the system is. A trade-off to keep a low energy

consumption is found for 8 random bit generators / word and averaging over 2000 samples.

Because of its reliance on multiple stages of binary bitstream combination, and fine gener-

ator probability tuning, this circuit is sensitive to the quality of the underlying random number

generator. We tested the circuit using raw 5kHz-sampled experimental bitstreams, as well as its

XOR4 and XOR8 whitened versions. When the bits are not whitened, the circuit does not per-

form satisfactorily (Fig. 5.11(c)). Using bits whitened with XOR8, the circuit performs as well as

the reference Blum whitener, successfully classifying all messages. Furthermore, XOR4, which

does not pass all NIST STS tests, also provides perfect classification while requiring less energy.

Figure 5.11: Email classification with stochastic computing using whitened experimental ran-
dom bitstreams. (a) Stochastic email classification circuit, and email messages to
classify. One “RNG” block includes several random bit generators to provide bits
with controllable probability. (b) Resulting spam probability as a function of the
number of random bits per word using XOR4-whitened experimental 5kHz data
over 2000 iterations. (c) Spam classification success rates for different whitening
techniques for 5kHz sampling, using 8bits/word and 2000 iterations.

These results highlight the potential of the approach for low-energy applications. Using

the results of the previous section, circuit simulation with 8 random bit generators / word and

2,000 clock cycles shows that a message can be classified using only nJ energy. The exact energy

depends on the number of words in the dictionary, and is shown in figure 5.12.

This simple study shows that superparamagnetic tunnel junctions can be used to achieve

efficient random number generation for low-power probabilistic computing.
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Figure 5.12: Total energy required to classify e-mail messages, as a function of the number of
words in the dictionary.

Conclusion

In this work published as [264], we have shown that the natural dynamics of superparamag-

netic tunnel junctions produces random telegraph signals that can be read and turned into

high quality random bitstreams with minimal energy and circuit overhead, while staying fully

compatible with standard CMOS fabrication processes.

The whitening process turning these measurements into usable random bitstreams implies

energy and area overhead. But while reference Blum whitening would add important CMOS

overhead, whitening based on XOR gates adds very little. XOR8 and Blum both provide high

random bit quality consistent with cryptographic requirements, but XOR8 fits better to low

energy applications, as it typically requires only 20fJ/bit and 2µm2, orders of magnitudes less

than the demonstrated state of the art. This efficiency comes at the cost of speed. Scaled super-

paramagnetic tunnel junctions could generate random bits at speeds of dozens of MHz, which

is slower than higher energy random bit generators, but sufficient for many unconventional

computing schemes in very low power consumption contexts such as the Internet of Things.

This efficiency also comes at the cost of a certain sensitivity of random bit generation to the

environment, making it prone to attacks. Random bit generation based on superparamagnetic

tunnel junctions is therefore much better suited for unconventional computing than for cryp-

tographic applications.

The evaluation of the probabilistic email classifier circuit also suggests that in many alter-

native computing schemes, lower-quality whitening can be used successfully to achieve ex-

treme energy efficiency without degrading performance. At design time, a balance between

random number quality, generation speed, and energy consumption can be freely chosen to

suit the target application. This is especially important in the context of modern Bayesian in-

ference systems [265, 266], but also for embedded circuits and Internet of Things applications

that are designed to work at low frequencies and low energies.

This study shows, through the example of superparamagnetic tunnel junctions acting as

natural noise amplifiers, that emerging nanodevices, and stochastic nano-oscillators in partic-

ular, can be used as highly efficient true randomness sources for a wide range of applications.
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Conclusions and future work

“L’homme ne peut découvrir de nouveaux océans

tant qu’il n’a pas le courage de perdre de vue la

côte.”

André GIDE

“THIS FINAL PART summarizes the work done in this thesis, highlighting its con-

tributions. In the light of those conclusions, ideas for future research directions

are suggested. ”
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THIS part summarizes the thesis, highlights its main contributions and draws conclusions,

as well as promising ideas for future research on the topic.

Summary

After listing existing nano-oscillator technologies, the first Chapter of this thesis shows that

oxide-based relaxation oscillators, CMOS ring oscillators, MEMS oscillators, Josephson junc-

tions and spintronic nano-oscillators have great potential for applications. The Chapter then

summarizes existing oscillator-based computing approaches, and concludes that they perform

well on specific tasks, but that pattern classifiers, currently in high demand, do not have satis-

fying oscillator-based implementations.

As a starting point to implement such a classifier, I study a promising oscillator-based pat-

tern classification idea formulated in a purely mathematical context by Vassilieva et al. which

uses synchronization readout and natural frequency control in an oscillator network to achieve

classification. After proposing simple and robust synchronization detection schemes, a full-

featured oscillator-based classifier architecture is defined in the second Chapter. Through ex-

tensive simulations, I show that this architecture scales well and is compatible with the con-

straints and non-idealities of nano-technologies provided certain design rules.

The third Chapter focuses on a specific oscillator type, the vortex spin transfer nano-oscillator,

studied experimentally by Julie Grollier’s group. The Chapter defines an accurate VerilogA

model of the device, compatible with industrial circuit simulation tools, which show that the

device matches the requirements of the classifier architecture. The third Chapter then de-

scribes a circuit using these devices to implement the classifier. Thorough mathematical anal-

ysis and simulations show that this circuit behaves as expected. A variant of the architecture

with EEG-like readout is also proposed.

To perform useful classification tasks, a learning method is required. In the fourth Chap-

ter, I propose a novel offline learning algorithm, with extensions to the classifier architecture,

allowing it to perform more advanced tasks. A learning algorithm for the EEG-like version is

also proposed in the Chapter. Both approaches show near-perfect results on standard ma-

chine learning benchmarks, implying that these architectures, with their learning algorithms,

are good oscillator-based classifiers.

The last chapter focuses on a fundamentally different approach using intrinsically stochas-

tic magnetic tunnel junction (MTJ) oscillators for random bitstream generation. I define a

XOR-based whitening scheme producing random bits from MTJ signals, and validate it with

experimental measurements I performed on devices provided by Julie Grollier. The resulting

bitstream passes all NIST tests for randomness quality. Circuit simulations show that this gen-

erator has better energy and circuit area than the state of the art, and represents an important

asset for low power probabilistic computing. This observation was validated by using exper-

imental bitstreams to feed a probabilistic classifier circuit that successfully classified a set of

e-mail massages as spam or not.
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Conclusion and perspectives

As traditional computing technologies reach scaling limits, and appear fundamentally ill-suited

for increasingly ubiquitous cognitive processing, various alternative computing schemes are

being explored. Among them, multiple pattern classification approaches leveraging the com-

plex dynamics of coupled oscillators have been proposed, but suffer from incompatibilities

with current technologies. This thesis introduced realistic oscillator-based pattern classifica-

tion schemes leveraging current nano-oscillator technologies, and showing competitive per-

formance on standard classification tasks. Moreover, stochastic computing architectures using

logic operations on probabilistic bitstreams for efficient computing show great potential for

low-energy applications, but their power consumption is currently dominated by the heavy

cost of random bit generation. This thesis also proposed a solution to this bottleneck by lever-

aging intrinsically stochastic nano-oscillators for energy-efficient, high quality random bit gen-

eration.

This thesis confirmed that nano-oscillators offer attractive properties for implementing ad-

vanced computational architectures. The case of the vortex spin transfer nano-oscillator was

investigated in detail, showing that this type of device provides rich dynamics and high integra-

tion capabilities, which makes it a good candidate for computational architectures. Moreover,

vortex spin transfer nano-oscillators offer a wide variety of coupling approaches, including

both local and global electric and magnetic couplings. A possible development to this the-

sis could be to combine multiple such coupling schemes in a single oscillator network, which

could give rise to extremely rich dynamics, potentially allowing more computational power to

be extracted from a limited number of oscillators. Further experimental work is however re-

quired to increase the number of vortex spin transfer nano-oscillators that can be coupled on

chip, and reduce their power consumption in order to pave the way towards higher scale exper-

imental realizations of oscillator-based computing architectures. Similar studies should also be

carried out with other types of nano-oscillators, including popular relaxation nano-oscillators

or Josephson junctions.

Through the design of machine learning approaches for the oscillator-based classifier, this

thesis also suggests that achieving competitive results with trainable nano-device based archi-

tectures requires rethinking machine learning principles to take device physics into account

at their core. Research efforts should also be invested into online learning in order to provide

more effective and flexible learning capabilities to nanodevice-based architectures. Despite

recent advances, achieving effective online learning with nano-devices remains highly chal-

lenging, probably even more than offline learning.

Moreover, our realization of a high quality, low power true random number generator and

probabilistic message classifier using stochastic nano-oscillators shows that undesirable phe-

nomena, such as the noise that plagues devices when they are scaled down, could also be em-
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braced and leveraged to achieve new types of computation.

In summary, this thesis contributes to a recent vision of nano-electronics, in which nano-

devices act as more than simple switches, and their rich intrinsic physics are fully leveraged

to achieve advanced computational tasks with a minimal number of devices. In this quest,

inspiration can be drawn from biological systems, which have been optimized over billions of

years following similar principles, in order to create a new generation of highly scalable, energy

efficient and cognitive-ready computing systems.
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Appendix A

Genetic algorithm for learning with the

“EEG-like” architecture

“THIS APPENDIX details the implementation of the genetic algorithm summa-

rized in Section 4.5.4.1. ”
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ARCHITECTURE

This Appendix details the implementation of each step of the genetic algorithm summa-

rized in Section 4.5.4.1, and uses the same notations. It details initialization, evaluation, se-

lection, sexual reproduction and mutations, while providing the values chosen for all the con-

stants involved in the algorithm.

Initialization

Initialization consists in generating an initial, random population of genomes. Contrary to

the previously presented architectures that are initialized before learning to a given state with

only slight variations, genetic algorithms require a heavily random and diverse initial popula-

tion [267]. This allows distant solutions in the parameter space to be evaluated, combined and

optimized. High population diversity improves parallel solution search, reduces the sensitivity

to local fitness maxima, and enhances the capabilities of sexual reproduction.

In my simulations, the population size is Npop = 200. I randomly selected the weights

coming from the inputs in the uniform range ±(
f 0

max − f 0
min

)
where f 0

max = 750MHz and f 0
min =

450MHz are the maximal and minimal natural frequencies allowed (values outside this range

are clamped). Biases are selected so that the natural frequencies without inputs are uniformly

randomly distributed in [ f 0
min; f 0

max].

Evaluation

Evaluation involves running the architecture using each genome g on the training set to obtain

the fitnesses Fg . I use the following algorithm:

1. For each genome Wg , and every training set example m:

simulate or physically run the architecture using the corresponding weight matrix to ob-

tain the EEG-like signals S(m)
g .

2. For every genome Wg :

(a) Perform simple linear regression on the rescaling parameters αa
g and βa

g to mini-

mize the quadratic norm between the vector of its rescaled outputs on the training

examples ag and the expected outputs vector y g .

Keep the optimally rescaled outputs ag .

(b) Compute the average quadratic error on the Ntrain training examples:

Eg = 1
Ntrain

∑
m

(
a(m)

g − y (m)
g

)2

(c) Deduce the fitness of the genome: Fg = 1

10−10 +Eg

(10−10 prevents infinite values if Eg = 0)

The fitness Fg rates how well a genome Wg performs and dictates its probability to be selected

for.
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Note : Loss function choice

The quadratic error loss function was chosen instead of the cross-entropy loss usually ap-

plied to classification tasks mainly because cross-entropy doesn’t behave properly with

non-clamped rescaled functions, and would add complexity for regression and online

learning.

Selection

Selection steers the evolution process towards maximizing fitness. It involves choosing the

best genomes and allowing them to survive the generation and/or reproduce sexually. I use the

following selection process:

1. Define a discrete probability distribution Qsel of the genomes in the population where

the probability of drawing a given genome g is weighted by its fitness Fg .

2. Select good genomes to be kept intact for the next generation:

Draw Nsurvive from Qsel. Add them to a “survivors” list. The same genome can be chosen

multiple times.

3. Select Npop−Nsurvive pairs of genomes for sexual reproduction. Each genome is indepen-

dently drawn from Qsel. A genome can be paired with itself.

Allowing individuals with high fitness to survive reduces the probability of losing well per-

forming solutions from the gene pool, and allows the next generation to reuse their parameters.

In my simulations, I allow a survival rate of 20% which corresponds to Nsurvive = 40.

Moreover, the selection process uses probabilistic selection instead of directly ranking and

selecting the best individuals for survival and sexual reproduction. This gives a chance to ev-

ery genome to explore the parameter space before being selected away, which improves the

diversity of the population and the resilience to local fitness maxima.

Sexual reproduction and mutations

Sexual reproduction and mutations drive the exploration of potential new solutions in the pa-

rameter space.

Sexual reproduction consists in combining two parent genomes in order to produce off-

spring that inherit and combine parental characters. It was shown to accelerate the evolution

of both living beings [268], and simulated systems [200]. It is now heavily used in genetic algo-

rithms.
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ARCHITECTURE

Random mutations involve randomly shifting some parameters of a genome to make it

explore nearby solutions in the parameter space. Throughout generations, it brings genomes

towards local fitness maxima by trial and error.

To implement sexual reproduction and mutations, I used the following algorithm:

1. For each selected pair of parent genomes P = {Wa ,Wb}, generate a new child genome Wc

in which each matrix element Wc i j is defined according to the following procedure:

(a) Draw a random number p in the uniform range [0;1).

(b) If p < Pcombine: set Wc i j to a random value between Wa i j and Wb i j .

else: set Wc i j to either Wa i j or Wb i j with 50% chance.

(c) Draw a new random number p in the uniform range [0;1).

(d) If p < Pmutate: add a random value to Wa i j drawn from a 0-centered normal distri-

bution with standard deviation σmutate.

During the sexual reproduction process, each matrix element is either inherited from a ran-

dom parent, or as a combination of the two parent values with a probability Pcombine = 0.1. In-

heriting and combining parental traits provides an efficient way to accelerate the exploration

of the parameter space while keeping previously found beneficial innovations.

The mutation probability in my simulations is Pmutate = 0.1 and the standard deviation is

σmutate = 0.1
(

f 0
max − f 0

min

)
.



Appendix B

Effects of XOR whitening on bitstream

probability and auto-correlation

“IN THIS APPENDIX , we mathematically demonstrate the effects of XOR whitening

on the bitstream mean value and auto-correlation. ”
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Our results show that applying XOR whitening allows to pass all the NIST tests at higher

sampling rates (see tables in article and S2). This is due to XOR combining the randomness

of independent, individually lower quality bitstreams into a high quality one, with lower auto-

correlation, and a mean value closer to 0.5.

Here we demonstrate mathematically that a XOR gate combines two independent bitstreams

A and B into a whitened bitstream S = XOR(A,B) that has lower auto-correlation and a mean

value closer to 0.5 than both A and B . We assume P (A) ∈ (0;1) and P (B) ∈ (0;1).

Auto-correlation

Auto-correlation can arise in consecutive samples of the bitstreams at t1 and t2 = t1 +dt. We

define A1 and A2 as the two samples of A at t1 and t2 respectively. The same goes with B1 and

B2 for bitstream B , and S1,S2 for the output bitstream S. We assume that all the probabilities

are stable in time (for example P (A1) = P (A2) = P (A)). The conditional probability P (A1|A2)

can be reversed using the Bayes theorem, and shows the following symmetry:

P (A1|A2) = P (A1)

P (A2)
P (A2|A1) = P (A2|A1) . (B.1)

This also applies to P (B1|B2) and P (S1|S2).

We also have:

P (A2 ∩ Ā1) = (1−P (A))P (A2|Ā1) = (1−P (A))
P (A)

1−P (A)
P (Ā1|A2)

= P (A)
(
1−P (A2|A1)

)
.

(B.2)

and

P (Ā2 ∩ A1) = P (A)P (Ā2|A1) = P (A)
(
1−P (A2|A1)

)
. (B.3)

This implies the symmetry P (Ā2 ∩ A1) = P (A2 ∩ Ā1).

We define the probability of the two samples A1 and A2 being equal as:

P (A2 = A1) = P
(
(A2 ∩ A1)∪ (

Ā2 ∩ Ā1
))= P (A2 ∩ A1)+P

(
Ā2 ∩ Ā1

)
. (B.4)

Moreover, the sum of the probabilities of all the outcomes on A1 and A2 is one:

P (Ā2 ∩ Ā1)+P (A2 ∩ A1)+P (Ā2 ∩ A1)+P (A2 ∩ Ā1) = 1. (B.5)

By identifying P (A2 = A1) and using the symmetry P (Ā2 ∩ A1) = P (A2 ∩ Ā1) in this equation we

get:

P (Ā2 ∩ A1) = P (A2 ∩ Ā1) = 1−P (A2 = A1)

2
. (B.6)

Note that these results also apply to B and S.
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The output of the XOR gate is equal for the two consecutive samples (S2 = S1) in the following

cases:

• A1 = 0, B1 = 0, A2 = 0, B2 = 0 ; with probability P (Ā2 ∩ Ā1)P (B̄2 ∩ B̄1),

• A1 = 0, B1 = 0, A2 = 1, B2 = 1 ; with probability P (A2 ∩ Ā1)P (B2 ∩ B̄1),

• A1 = 1, B1 = 1, A2 = 0, B2 = 0 ; with probability P (Ā2 ∩ A1)P (B̄2 ∩B1),

• A1 = 1, B1 = 1, A2 = 1, B2 = 1 ; with probability P (A2 ∩ A1)P (B2 ∩B1),

• A1 = 0, B1 = 1, A2 = 0, B2 = 1 ; with probability P (Ā2 ∩ Ā1)P (B2 ∩B1),

• A1 = 0, B1 = 1, A2 = 1, B2 = 0 ; with probability P (A2 ∩ Ā1)P (B̄2 ∩B1),

• A1 = 1, B1 = 0, A2 = 0, B2 = 1 ; with probability P (Ā2 ∩ A1)P (B2 ∩ B̄1),

• A1 = 1, B1 = 0, A2 = 1, B2 = 0 ; with probability P (A2 ∩ A1)P (B̄2 ∩ B̄1).

The probability P (S2 = S1) is obtained by summing those probabilities. After summing, factor-

ing and using the P (Ā2 ∩ A1) = P (A2 ∩ Ā1) symmetry we get:

P (S2 = S1) =4P (A2 ∩ Ā1)P (B2 ∩ B̄1)

+ (
P (A2 ∩ A1)+P (Ā2 ∩ Ā1)

)(
P (B2 ∩B1)+P (B̄2 ∩ B̄1)

)
.

(B.7)

By identifying P (A2 = A1) and P (B2 = B1) we obtain the formula:

P (S2 = S1) = 1−P (A2 = A1)−P (B2 = B1)+2P (A2 = A1)P (B2 = B1) , (B.8)

from which the auto-correlation ρS
t1,t2

of the output bitstream S is deduced using ρS
t1,t2

= P (S2 =
S1)−P (S2 6= S1), and similar expressions for A and B (called ρA

t1,t2
and ρB

t1,t2
):

ρS
t1,t2

= P (S2 = S1)−P (S2 6= S1) = 2P (S2 = S1)−1

= 1−2P (A2 = A1)−2P (B2 = B1)+4P (A2 = A1)P (B2 = B1)

= ρA
t1,t2

×ρB
t1,t2

.

(B.9)

This result shows that the auto-correlation of the XOR output is always lower in magnitude than

the auto-correlation of any of its inputs.

Moreover, the output of a XOR gate can be safely used as an input of another one for fur-

ther whitening. Since the XOR operation is associative, XOR whitening can both be organized

as a tree or a chain. The auto-correlation obtained after whitening N independent MTJ sig-

nals {A1, A2, · · · , AN } is therefore the product of all the individual auto-correlations of the MTJ

signals:

ρS
t1,t2

=
N∏

i=1
ρ

Ai
t1,t2

. (B.10)

As a result, the magnitude of the auto-correlation after XOR whitening decreases exponentially

on average with the number of combined MTJ signals. Highly correlated MTJ signals still con-

tribute to this reduction, but less than the ones with low auto-correlation.
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Mean value

The mean value P (S) after XOR(A,B) is :

P (S) = P
(
(A∩ B̄)∪ (Ā∩B)

)= P (A)
(
1−P (B)

)+ (
1−P (A)

)
P (B)

= P (A)+P (B)−2P (A)P (B) .
(B.11)

The normalized difference between the ideal 0.5 mean value and P (S) is P (S̄)−P (S) = 2
(
0.5−

P (S)
)
. The same is defined for input A with 2

(
0.5−P (A)

)
and input B with 2

(
0.5−P (B)

)
. The

previous expression of P (S) can be rearranged to obtain:

2
(
0.5−P (S)

)= 2
(
0.5−P (A)

)×2
(
0.5−P (B)

)
. (B.12)

When P (A) = 0.5 or P (B) = 0.5, we get P (S) = 0.5. Otherwise, we get the equivalence:

2|0.5−P (S)| < 2|0.5−P (A)|⇔ 2|0.5−P (B)| < 1, (B.13)

which is always true.

These results show that the mean value at the output of a XOR gate is always closer to 0.5 than

the mean value of any of its inputs, or equal to 0.5 if any of the inputs has already a mean

value of exactly 0.5. In the case of N combined signals {A1, A2, · · · , AN }, the mean value of the

whitened signal follows:

2
(
0.5−P (S)

)= N∏
i=1

2
(
0.5−P (Ai )

)
. (B.14)

This shows that the mean value of the whitened signal gets exponentially closer on average to

50% as the number of combined signals increases. Again, better-balanced signals contribute

more to balancing the whitened bitstream than highly unbalanced ones.

As a conclusion, this study shows that XOR whitening reduces auto-correlations exponen-

tially with the number of combined signals and brings the mean value exponentially closer to

50% with the number of combined signals.



Synthèse en français

“ICI nous présentons une synthèse en français des points importants de cette thèse.

A summary in French of the main points of this work is presented here. ”
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Introduction et contexte

De la reconnaissance automatique des visages et de la parole aux suggestions de films, de

la traduction automatique aux véhicules autonomes, de la publicité ciblée à la détection de

fraude, l’“intelligence artificielle” fait l’objet d’une demande sans précédent. Les ordinateurs

personnels ou institutionnels, les appareils portables, et autres objets connectés se doivent

de dépasser leurs fonctions traditionnelles de calcul logique et arithmétique pour effectuer

des tâches “cognitives”. Les progrès récents en apprentissage automatique ont ouvert un large

spectre d’applications jusque là réservées aux êtres humains, et considérées il y a peu comme

inaccessibles aux ordinateurs. Ainsi, les algorithmes de reconnaissance d’images affichent-ils

des taux de reconnaissance supérieurs aux humains, et l’année 2016 a vu un ordinateur battre

un champion humain au très stratégique jeu de Go.

Les architectures des ordinateurs et la technologie sous-jacente des transistors CMOS ont

été optimisées sur des décennies pour effectuer des successions de milliards d’opérations logiques

et arithmétiques par seconde, à haute précision, et sans aucune erreur. Au niveau architectural,

les ordinateurs utilisent des unités séparées pour la mémoire et le calcul, séparation qui induit

un sur-coût de communication appelé goulot d’étranglement de Von Neumann.

Cependant, la plupart des algorithmes cognitifs sont massivement parallélisables, fonc-

tionnent de manière distribuée, et sont tolérants au bruit et aux erreurs. De ce fait, les ordina-

teurs classiques ne représentent pas la plateforme idéale pour ces nouveaux algorithmes. Des

efforts ont été investis pour y adapter les ordinateurs, notamment avec l’utilisation de cartes

graphiques contenant des milliers de processeurs, la réduction de la précision du calcul à vir-

gule flottante, et l’apparition d’accélérateurs matériels (TPU) pour le calcul tensoriel au cœur

de l’apprentissage automatique. Malgré ces efforts, les super-calculateurs consomment tou-

jours des méga-watts pour effectuer des tâches que le cerveau humain traite avec 20 watt et

des neurones bruités et peu fiables mais massivement parallèles qui combinent calcul et mé-

moire.

Les ordinateurs consommant plus de 10% de la puissance électrique mondiale en 2013, la

technologie CMOS atteignant des limites fondamentales, et avec une demande croissante pour

le calcul cognitif à basse énergie dans les systèmes portables et l’internet des objets, ces con-

statations ont ravivé l’intérêt pour le développement de systèmes de calcul alternatifs, souvent

inspirés du cerveau.

Plus particulièrement, certaines approches visent à utiliser la dynamique des réseaux d’oscillateurs

pour le calcul cognitif. Les phénomènes oscillatoires sont très communs dans la nature, et ont

été observés à différentes échelles dans le cerveau humain, où ils semblent jouer un rôle dans le

traitement de données. Des études mathématiques ont également démontré que même de pe-

tits réseaux de seulement quelques oscillateurs couplés suivaient déjà une physique très com-

plexe exhibant chaos, transitions de phase et synchronisations. De plus, des avancées récentes

en nano-technologie ont ouvert la voie à la fabrication de nano-oscillateurs à basse consom-
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mation et massivement intégrables dans les systèmes actuels. Toutes ces découvertes suscitent

un fort engouement pour la recherche et le développement de systèmes de calcul utilisant la

physique très riche des nano-oscillateurs pour effectuer des tâches cognitives efficacement.

Diverses technologies de nano-oscillateurs existent, en particulier les oscillateurs à change-

ment de phase, les nano-oscillateurs mécaniques, les nano-oscillateurs magnétiques, ou en-

core les nano-oscillateurs supraconducteurs. Leur fréquence de fonctionnement dans un cir-

cuit isolé, appelée “fréquence naturelle”, est aisément contrôlable par application de courants

ou de tensions. De plus, de multiples nano-oscillateurs peuvent être couplés les uns aux autres,

et des oscillateurs couplés se synchronisent lorsque leurs fréquences naturelles sont suffisam-

ment proches.

Parmi les tâches cognitives, la classification de motifs est l’une des plus demandées. Elle

consiste à attribuer automatiquement une étiquette à un motif présenté, indiquant la classe du

motif. Par exemple, la classification de visages permet d’identifier une personne à partir d’une

photographie de son visage. De même, la classification de fleurs permet d’identifier l’espèce à

laquelle appartient une fleur à partir de certaines de ses propriétés (taille des pétales, sépales,

etc. . . ). Des architectures de classification à l’aide d’oscillateurs ont été proposées par le passé,

mais présentent des problèmes de passage à l’échelle, ou sont incompatibles avec les nano-

technologies actuelles.

Cette thèse se fonde sur une architecture de classification à l’aide d’oscillateurs initiale-

ment proposée dans un cadre mathématique par Vassilieva et al. et qui requiert uniquement

le contrôle des fréquences naturelles d’un réseau uniforme d’oscillateurs couplés, et la lecture

de son état de synchronisation. Ceci la rend très prometteuse car compatible avec les con-

traintes technologiques actuelles. Cette architecture est composée d’un réseau d’oscillateurs

couplés dits de “cœur”, eux-mêmes couplés à un ensemble d’oscillateurs d’entrée. Un motif

est présenté en ajustant les fréquences naturelles des oscillateurs d’entrée, ce qui induit des

perturbations du réseau de cœur, et y fait apparaître des synchronisations. La liste résultante

des paires synchronisées d’oscillateurs de cœur est lue et représente l’étiquette attribuée par le

réseau au motif présenté. La réponse du système doit être adaptée au problème à résoudre en

ajustant les fréquences naturelles des oscillateurs de cœur.

Durant ma thèse, j’ai étendu cette architecture, l’ai adaptée au contexte des nano-oscillateurs,

évalué sa robustesse, et défini un algorithme d’apprentissage adapté pour effectuer des tâches

classiques d’apprentissage automatique.

Dans le dernier chapitre, j’ai effectué des mesures expérimentales sur une technologie fon-

damentalement différente: les nano-oscillateurs stochastiques, qui oscillent entre deux états

de résistance de manière entièrement stochastique. À l’aide de ces données, j’ai pu définir et

évaluer un circuit de génération de nombres aléatoires, que j’ai ensuite intégré au sein d’une

architecture de classification probabiliste.



184
APPENDIX B: EFFECTS OF XOR WHITENING ON BITSTREAM PROBABILITY AND

AUTO-CORRELATION

Résultats

Afin de pouvoir lire l’état de synchronisation du réseau de cœur, j’ai défini deux circuits de

détection simples. Ces deux circuits évaluent tous deux l’état de synchronisation d’une paire

d’oscillateurs en utilisant une bascule de Schmitt pour numériser les signaux de chaque os-

cillateur. L’un des circuits (le “compteur direct”) compte la différence absolue du nombre de

fronts montants entre les deux oscillateurs, et nécessite un compteur binaire signé pouvant être

incrémenté et décrémenté. Le second circuit utilise une bascule RS pour compter les défauts

d’alternance des fronts montants entre les deux oscillateurs, et ne nécessite qu’un compteur

non signé pouvant être incrémenté. Un seuil peut ensuite être appliqué à ces compteurs, en

dessous duquel la paire d’oscillateurs est considérée synchronisée. Afin de valider l’usage de

ces circuits, j’en ai évalué, par simulation, la robustesse au bruit, la rapidité de convergence du

résultat, la sensibilité au choix du seuil, et le comportement au sein de l’architecture de classifi-

cation. Les deux circuits affichent des performances similaires, fournissent le résultat attendu

sur le classificateur à oscillateurs et sont robustes à des niveaux de bruit réalistes. Pour de très

hauts niveaux de bruit, le compteur direct offre une meilleure robustesse, au prix d’un circuit

légèrement plus lourd. Le choix entre les deux détecteurs doit donc être fait en fonction du

niveau de bruit attendu.

Ayant défini des circuits de détection, j’a ensuite effectué un ensemble de simulations sur

l’architecture de classification complète avec un modèle générique d’oscillateurs (modèle de

Kuramoto) afin d’évaluer la robustesse et la compatibilité de l’architecture avec les nano-technologies

actuelles. J’ai ainsi simulé le classificateur en présence de différents niveaux de bruit, montrant

que l’architecture est en effet robuste aux niveaux de bruit observés dans les principales tech-

nologies actuelles de nano-oscillateurs. Par ailleurs, les imperfections de fabrication induisent

souvent une variabilité sur les composants et leurs connexions. J’ai donc évalué la sensibilité

de l’architecture à la variabilité des fréquences naturelles des oscillateurs, ainsi qu’à celle des

couplages entre oscillateurs, montrant que le classificateur est robuste à ces variabilités. En

outre, en fonction de la méthode de couplage entre oscillateurs, des déphasages peuvent ap-

paraître. Pour en mesurer les conséquences, j’ai simulé le classificateur à plusieurs déphasages

induits par les couplages, montrant que l’architecture est sensible à ce phénomène. Celui-ci

peut cependant être corrigé de différentes manières lors de la conception du système. Certains

nano-oscillateurs peuvent également se comporter de façon non-linéaire. De ce fait, j’ai simulé

l’architecture avec un modèle d’oscillateur non-linéaire, et ce à différents niveaux de non-

linéarité, montrant que celle-ci augmente l’intensité du couplage, et induit des déphasages

pouvant dans certains cas être bénéfiques à l’architecture. Les méthodes physiques de cou-

plage entre oscillateurs peuvent aussi présenter une décroissance spatiale ou des déphasages

liés à la distance entre oscillateurs. En simulant ces conditions, j’ai pu montrer que l’architecture

est robuste à celles-ci à condition de les prendre en compte durant la phase de conception.

Enfin, j’ai évalué le passage à l’échelle du classificateur, montrant que le nombre de classes
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pouvant être discriminées augmente très rapidement avec le nombre d’oscillateurs de cœur et

d’entrée.

Tous ces résultats tendent à confirmer que l’architecture ainsi définie est compatible avec

les technologies actuelles.

J’ai également proposé une version alternative (“EEG-inspirée”) de l’architecture utilisant

le signal moyen des oscillateurs, semblable au signal électroencéphalographique du cerveau,

pour lire l’état de synchronisation du réseau. Mes simulations ont montré que cette approche

permettrait également de classifier des motifs, mais avec deux classes uniquement.

Le troisième chapitre se concentre sur une technologie particulière d’oscillateur: le nano-

oscillateur vortex à transfert de spin. Ces nano-oscillateurs magnétiques présentent de multi-

ples avantages parmi lesquels de faibles niveaux de bruit, des fréquences élevées (jusqu’au gi-

gahertz), des fréquences naturelles ajustables sur une large gamme par application de courants,

et des possibilités de couplage et synchronisation démontrées expérimentalement. De plus,

nos collaborateurs du groupe de Julie Grollier à l’UMR CNRS/Thalès étudient ces dispositifs

expérimentalement.

J’ai ainsi pu définir un modèle VerilogA de cette technologie de nano-oscillateur, compat-

ible avec les outils industriels de simulation de circuits, notamment Cadence Spectre. À l’aide

de simulations de circuits, j’ai pu montrer que ce modèle, une fois ajusté aux données expéri-

mentales disponibles, prédit correctement la dépendance en courant de la fréquence naturelle,

mais aussi la synchronisation à un signal oscillant.

J’ai ensuite défini un circuit de couplage entre ces oscillateurs qui implémente naturelle-

ment l’architecture de classification. Des simulations et un traitement mathématique m’ont

permis de montrer que la réponse de ce système est proche de la réponse idéale du classifica-

teur à oscillateurs génériques étudié précédemment.

Par ailleurs, un développement mathématique modélisant les oscillateurs au sein du circuit

de couplage m’a permis d’approximer leur comportement selon un modèle d’oscillateur non-

linéaire générique. Des simulations ont confirmé la validité de cette ré-écriture. Des approxi-

mations supplémentaires m’ont permis de formuler le comportement de ce circuit d’oscillateurs

selon le modèle linéaire de Kuramoto. Cette formulation linéaire s’est également montrée sem-

blable au modèle d’oscillateur complet dans plusieurs simulations, montrant que la descrip-

tion du système par le modèle de Kuramoto est valide, et suggérant que les résultats de ro-

bustesse obtenus avec le modèle de Kuramoto s’appliquent à cette technologie d’oscillateurs.

J’ai également pu montrer que la variante EEG-inspirée de l’architecture est aisément im-

plémentable avec ce circuit.

Ces résultats et développements m’ont permis de montrer que les architectures proposées

dans cette thèse sont compatibles avec la technologie des oscillateurs vortex à transfert de spin.
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L’application du classificateur proposé dans cette thèse à une tâche particulière nécessite au

préalable une étape d’apprentissage durant laquelle des exemples connus sont présentés, et

les paramètres du système ajustés pour produire l’étiquette attendue.

Dans le quatrième chapitre, j’ai présenté un algorithme d’apprentissage hors ligne spéci-

fique à cette architecture. J’ai tout d’abord défini une fonction d’erreur continue mesurant

l’erreur moyenne commise par le classificateur sur un ensemble d’exemples connus. J’ai en-

suite proposé une nouvelle approche de calcul du Jacobien d’un réseau d’oscillateurs perme-

ttant le calcul des dérivées partielles de la fonction d’erreur par rapport aux fréquences na-

turelles de cœur. Un algorithme d’optimisation par descente de gradient a ensuite permis

d’utiliser cette dérivée pour ajuster les fréquences naturelles de cœur afin de minimiser l’erreur,

ce qui correspond à un apprentissage de la classification souhaitée.

Des simulations d’apprentissage sur des problèmes de classification simples ont cepen-

dant montré que les capacités de classification de l’architecture se limitaient à des motifs par-

ticuliers du fait d’un faible nombre de paramètres et de la présence de symétries. À la lumière

de ces résultats, j’ai proposé une version étendue, mais non moins réaliste, de l’architecture

où la fréquence naturelle de chaque oscillateur est une combinaison linéaire apprise des com-

posantes du motif d’entrée et d’une constante. Mes simulations sur cette nouvelle variante ont

montré qu’elle était capable d’effectuer des tâches de classification de référence avec succès,

et ce même en présence de bruit.

J’ai également étendu de la même façon la variante EEG-inspirée de l’architecture, et j’y ai

joint un algorithme d’apprentissage génétique fondé sur les mutations, la reproduction sexuée

et la sélection naturelle. Cette approche a fourni des résultats compétitifs sur des tâches clas-

siques d’apprentissage automatique, tout en étant très robuste au bruit. Cependant, l’algorithme

génétique s’est avéré beaucoup plus lourd en temps de calcul que l’algorithme de descente de

gradient.

Ce travail m’a ainsi permis de proposer des algorithmes d’apprentissage pour classifica-

teurs à oscillateurs, et de démontrer leur efficacité sur des tâches classiques de classification.

Dans le dernier chapitre de cette thèse, j’ai étudié une technologie fondamentalement dif-

férente: les oscillateurs magnétiques stochastiques. Ces oscillateurs ne suivent pas un com-

portement harmonique, mais oscillent de façon aléatoire, sous l’effet du bruit thermique, en-

tre deux états différents de résistance électrique. À partir d’échantillons fournis par l’équipe de

Julie Grollier, j’ai pu effectuer des mesures expérimentales de résistance sur ces dispositifs sur

des temps longs. Après seuillage, ces mesures ont produit des signaux binaires télégraphiques

de plusieurs gigabits.

Ayant à disposition des oscillateurs stochastiques produisant naturellement des signaux

télégraphiques sans apport énergétique, je me suis concentré sur la réalisation d’un générateur

de nombres aléatoires à basse énergie. Cependant, ces signaux télégraphiques étaient auto-

corrélés du fait de la fréquence d’échantillonnage élevée, et leur état moyen éloigné de 50% du
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fait d’imperfections sur les dispositifs.

J’ai donc évalué la fréquence d’échantillonnage idéale, et combiné 8 signaux télégraphiques

par des portes XOR afin de produire des bits indépendants et non biaisés. La séquence résul-

tante a réussi tous les tests NIST STS, validant ainsi la qualité des bits générés.

À l’aide d’un modèle des oscillateurs stochastiques, des simulations circuit ont montré que

8 oscillateurs miniaturisés au maximum, lus à l’aide d’un circuit PCSA habituellement utilisé

pour les mémoires magnétiques MRAM, et combinés par XOR permettaient de produire des

nombres aléatoires de haute qualité à plusieurs mégahertz, 20 fJ/bit et une surface circuit de

seulement 2µm2. Ces caractéristiques en font l’état de l’art de la génération de nombres aléa-

toires à basse énergie.

J’ai également évalué l’influence de perturbations environnementales sur la qualité des bits

générés en considérant les variations de température, l’interaction dipolaire entre les oscilla-

teurs magnétiques proches voisins, et la présence de champs magnétiques globaux. L’approche

apparaît peu sensible aux variations de température, et l’éloignement entre oscillateurs induit

par la présence des circuits de lecture PCSA rend l’interaction dipolaire négligeable. En re-

vanche, le générateur est très sensible à l’application de champs magnétiques extérieurs, ce

que j’ai pu valider expérimentalement. Par conséquent, un blindage magnétique tel que le Mu

Metal utilisé dans les MRAM est nécessaire.

Enfin, j’ai utilisé les signaux expérimentaux combinés par XOR pour alimenter en nombres

aléatoires un circuit simulé de classification probabiliste utilisant des portes C. Ce circuit a clas-

sifié avec succès des messages électroniques en tant que SPAM et NON SPAM avec des énergies

de l’ordre du nanojoule, validant ainsi l’utilisation de ce générateur de nombres aléatoires dans

le cadre du calcul probabiliste à basse énergie.

En résumé, cette thèse propose donc plusieurs nouvelles approches de calcul à l’aide de

nano-oscillateurs et valide leur fonctionnement dans des cas réalistes.
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Résumé : Avec l'avènement de l'intelligence 

artificielle, les ordinateurs, appareils mobiles et 

objets connectés sont amenés à dépasser les 

calculs arithmétiques et logiques pour lesquels 

ils ont été optimisés durant des décennies, afin 

d'effectuer des tâches “cognitives” telles que la 

traduction automatique ou la reconnaissance 

d'images et de voix, et pour lesquelles ils ne 

sont pas adaptés. Ainsi, un supercalculateur 

peut-il consommer des mégawatts pour 

effectuer des tâches que le cerveau humain 

traite avec 20 watt. Par conséquent, des 

systèmes de calcul alternatifs inspirés du 

cerveau font l'objet de recherches importantes. 

 

En particulier, les oscillations neurales semblant 

être liées à certains traitements de données dans 

le cerveau ont inspiré des approches détournant 

la physique complexe des réseaux d'oscillateurs 

couplés pour effectuer des tâches cognitives 

efficacement. Cette thèse se fonde sur les 

avancées récentes en nano-technologies 

permettant la fabrication de nano-oscillateurs 

hautement intégrables pour proposer et étudier 

de nouvelles architectures neuro-inspirées de 

classification de motifs exploitant la dynamique 

des oscillateurs couplés et pouvant être 

implémentées sur puce. 
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Abstract: With the advent of artificial 

intelligence, computers, mobile devices and 

other connected objects are being pushed 

beyond the realm of arithmetic and logic 

operations, for which they have been optimized 

over decades, in order to process "cognitive" 

tasks such as automatic translation and image 

or voice recognition, for which they are not the 

ideal substrate. As a result, supercomputers 

may require megawatts to process tasks for 

which the human brain only needs 20 watts. 

This has revived interest into the design of 

alternative computing schemes inspired by the 

brain. 

 

In particular, neural oscillations that appear to 

be linked to computational activity in the brain 

have inspired approaches leveraging the 

complex physics of networks of coupled 

oscillators in order to process cognitive tasks 

efficiently. In the light of recent advances in 

nano-technology allowing the fabrication of 

highly integrable nano-oscillators, this thesis 

proposes and studies novel neuro-inspired 

oscillator-based pattern classification 

architectures that could be implemented on 

chip. 
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