
HAL Id: tel-01696130
https://theses.hal.science/tel-01696130

Submitted on 30 Jan 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Verification of Stochastic Timed Automata
Pierre Carlier

To cite this version:
Pierre Carlier. Verification of Stochastic Timed Automata. Modeling and Simulation. Université
Paris Saclay (COmUE); Université de Mons, 2017. English. �NNT : 2017SACLN058�. �tel-01696130�

https://theses.hal.science/tel-01696130
https://hal.archives-ouvertes.fr

Verification of
Stochastic Timed Automata

Thèse de doctorat de l'Université Paris-Saclay
préparée à l'ENS Paris-Saclay

École doctorale n°580
Sciences et Technologies de l'Information et de la Communication

Spécialité de doctorat: Informatique

Thèse présentée et soutenue à Mons (Belgique), le 8 décembre 2017, par

 Pierre Carlier

Composition du Jury :

Véronique Bruyère
Professeur, Université de Mons Présidente
Parosh Aziz Abdulla
Professeur, Uppsala Universitet Rapporteur
Christel Baier
Professeur, Technische Universität Dresden Rapporteuse
Claudine Picaronny
Maître de Conférences, ENS Paris-Saclay Examinatrice
Mickaël Randour
Chercher Qualifié F.R.S – FNRS, Université de Mons Examinateur
Patricia Bouyer
Directrice de recherche, ENS Paris-Saclay Directrice de thèse
Thomas Brihaye
Professeur, Université de Mons Co-Directeur de thèse

Labaratoire Spécification et Vérification
Ecole Normale Supérieure Paris-Saclay, UMR 8643 du CNRS
61 avenue du Président Wilson, 94235 Cachan Cedex, France

NNT: 2017SACLN058

Thèse de Doctorat issue d’une cotutelle entre
l’Université de Paris-Saclay préparée à

l’Ecole Normale Supérieure de Cachan (ENS Paris-Saclay)
et l’Université de Mons

Verification of Stochastic Timed
Automata

présentée par
Pierre Carlier

pour l’obtention du grade de Docteur en Sciences.
Thèse soutenue le 8 décembre 2017.

Jury
M. Parosh Aziz Abdulla (Rapporteur)
Professeur, Uppsala Universitet, Suède

Mme. Christel Baier (Rapporteuse)
Professeur, Technische Universität Dresden, Allemagne

Mme. Patricia Bouyer (Co-Directrice)
Directrice de recherche, ENS Paris-Saclay, France

M. Thomas Brihaye (Co-Directeur)
Professeur, Université de Mons, Belgique

Mme. Véronique Bruyère (Présidente)
Professeur, Université de Mons, Belgique

Mme. Claudine Picaronny (Examinatrice)
Mâıtre de conférences, ENS Paris-Saclay, France

M. Mickaël Randour (Examinateur)
Chercheur Qualifié F.R.S. - FNRS, Université de Mons, Belgique

Acknowledgements

Tout d’abord, je souhaite remercier mes deux co-directeurs de thèse Patricia
Bouyer et Thomas Brihaye. Leurs nombreux conseils et leur aide furent précieux
dans l’élaboration de cette thèse. Je suis reconnaissant envers Thomas pour
m’avoir ouvert au monde de la recherche au travers de mon mémoire et envers
Patricia qui m’a fait confiance en m’acceptant comme doctorant et qui m’a donc
permis de travailler dans un nouvel environnement. Je la remercie également
particulièrement pour son accueil à chacune de mes visites à Cachan. Je leur
suis aussi très redevable pour le temps qu’ils m’ont consacré.

Mes prochains remerciements vont à tous les autres membres de mon jury,
pour avoir accepté d’en faire partie et pour avoir pris le temps de lire ma thèse:
pour commencer, mes rapporteurs Parosh A. Abdulla et Christel Baier pour leurs
retours, mais aussi Véronique Bruyère, Claudine Picaronny et Mickaël Randour.

Je tiens maintenant à remercier mes co-auteurs: Nathalie Bertrand et Quentin
Menet. Travailler avec eux fut très agréable, leur aide et expérience furent très
utiles.

Je veux aussi remercier spécialement Virginie Guenard, pour son aide dans les
formalités administratives à Cachan, et pour sa patience malgré mes nombreux
retards...

Je remercie également le projet ERC EQualIS pour avoir permis mon finance-
ment.

Ensuite, je remercie tous mes professeurs de l’UMONS pour avoir confirmé
mon goût pour les maths et m’avoir donné envie d’aller plus loin. Je remercie
aussi particulièrement Mme Dubrulle pour m’avoir donné le goût des maths en
secondaire.

Mes prochaines pensées vont aux nombreux collègues (ex-)doctorants qui ont
croisé ma route à Mons et à Cachan. A Mons, je commence par remercier Quentin
H., compagnon de route depuis la Bac1, il n’y pas la place pour rappeler tous les

iii

iv

bons moments de ces 8 dernières années. Je remercie également particulièrement
Marion, collègue de bureau de ma dernière année, pour l’ambiance toujours
excellente (et rarement calme) qui régnait au bureau. Je remercie aussi Aline
Goe. qui a contribué à cette ambiance lors de ces 3 derniers mois. Tous les rires
partagés dans ce bureau ont indéniablement grandement servi à l’élaboration de
cette thèse. Et je n’oublie évidemment pas les nombreux autres occupants du
2D11!

Un grand merci à tous les autres (ex-)doctorants des départements de math
et d’info: Céline, Maximilien, Adrien, Aline Gou., David H., Gauvain, Horacio,
Jérémy, Monia, Nathanaël, Pierre H., Quentin B., Quentin L, merci pour les
dicussions (toujours de haut niveau!) sur les temps de midi, pour les pauses
”thé”, les soirées jeux... J’ai également une pensée pour les anciens, notamment
Dany, Fabien (et Lucie), Gwendolyn, Quentin M. pour les nombreuses parties
de belote le midi, mais aussi David S., Mathieu et Noémie. Je n’oublie pas non
plus, mes collègues de Cachan qui m’ont accueilli à chacune de mes visites! Je
pense à Daniel, Jérémy, Marie, Nathan, Patrick, Samy, Simon,... Je remercie
particulièrement Engel, collègue de bureau d’un temps, pour les nombreuses
discussions cinéma/littérature/mangas. Je termine par remercier Mickaël pour
les temps passés en collocation à Cachan lors de mes visites la première année.
Je n’oublie également pas tous les bons moments passés en conférences avec bon
nombre d’entre vous!

Je dis merci aussi à tous mes amis, ils ont tous contribué d’une façon ou d’une
autre à l’aboutissement de ce travail. Merci à Charline S. pour les rires et les
encouragements, merci à Alexandre et à Damien, mes deux autres compagnons
de route de Bac1, pour les bons souvenirs que je garde de mes années d’étude
(et pour les futurs souvenirs!), merci à Johann pour les (trop) nombreux verres
et merci à Chahrazade, Charline C., Julien, Naomi, Pauline, ma soeur Margot
et mon frère Thomas, je vous remercie tous pour tous les excellents moments
passés ensemble!

Je finis par remercier ma famille: ma soeur, mon frère, mes parents et mes
grands-parents, pour leur soutien depuis toujours.

Abstract

Verification is now a well-known branch in computer science. It is crucial when
dealing with computer programs in automatic systems: we want to check if a
given system is correct and satisfies some specifications that should be met. One
way to analyse those systems is to model them mathematically. The question
is then: can we check if the model satisfies the required specifications? This is
called the model-checking problem.

Several models have been studied in the literature. We have an interest for
models that can mix both timing and randomized aspects. In this thesis we thus
study the stochastic timed automaton model (STA). The contributions of this
document are twofold.

First, we study the qualitative and quantitative model-checking problems of
STA. STA are, in particular, general probabilistic systems and with such model,
one is thus interested in questions like “Is a property satisfied, within a given
model, with probability 1?” (qualitative) or “Can we compute an approximation
of the probability that the model satisfies a given property?” (quantitative).

We study those questions for general stochastic systems using, amongst other,
the notion of decisiveness used in infinite Markov chains in order to get strong
qualitative and quantitative results, and that we extend here in or more general
context. We prove several results for the qualitative and quantitative model-
checking problems of those probabilistic systems, some of them being extensions
of previous work on Markov chains, others being new, and we show how it can
be applied to subclasses of STA.

Then we study the compositional verification in STA. In general, a system is
the result of several smaller systems working together. Compositional verification
allows then one to reduce the analysis of a big system to the analyses of the
smaller systems which compose it. It is then crucial to have a good compositional
framework in mathematical models, and this lacks in STA.

v

vi

In this thesis, we define an operator of composition for STA. We first make
the assumption that the STA composed run completely independently from each
other, i.e. they do not communicate between them. We prove that our definition
satisfies indeed this independence assumption. Such an operator of composition
is not very interesting as in general, systems do communicate. But it is a neces-
sary first step. We then introduce the new model of interactive STA (ISTA) that
will allow for interactions between the systems. We define an operator of com-
position in ISTA that will make synchronisations possible between the systems
and that is built on the previous composition in STA.

We end this thesis with the identification of a subclass of ISTA in which all
the qualitative and quantitative results provided in this thesis can be applied,
and which thus comes with the nice compositional framework defined in the
model.

Contents

1 Introduction and Motivations 1

1.1 Model-checking problem . 1

1.1.1 Background models . 2

1.1.2 Stochastic timed automata 4

1.2 Compositional verification . 5

1.3 Contributions . 6

1.3.1 Qualitative and quantitative analysis of STSs 6

1.3.2 Parallel composition in STA 7

1.4 Other related works . 8

1.5 Plan of the thesis . 12

2 Background 15

2.1 Timed automata . 15

2.1.1 Region graph . 24

2.1.2 Time-converging aspects 27

2.1.3 Composition of timed automata 30

2.2 Denumerable Markov chains . 34

2.2.1 Attractors . 38

2.2.2 Decisiveness . 39

2.3 Continuous-time Markov chains 43

2.4 Composition and interactive Markov chains 47

2.4.1 Composition of general transitions systems and application
to DMCs and CTMCs . 47

2.4.2 Interactive Markov chains 49

vii

viii Contents

3 Stochastic Timed Automata 55

3.1 Definition and illustration of the model 55

3.2 Thick region graph and Markov chain 65

3.3 Fairness and classes of STA . 69

I Qualitative and Quantitative Analysis of Stochastic Transi-
tion Systems and Application to Stochastic Timed Automata 73

4 Stochastic Transition Systems 75

4.1 Definition and illustration of the model 76

4.1.1 Formulas for STSs . 84

4.1.2 Labelled STSs and their properties 85

4.1.3 Qualitative and quantitative model-checking problem . . 90

4.2 Properties of STSs . 91

4.2.1 Several decisiveness notions 91

4.2.2 Attractors . 96

4.2.3 Fairness . 98

4.2.4 Relationships between the various properties 99

4.3 Concluding remarks . 103

5 Abstraction Between STSs 105

5.1 Abstraction . 106

5.1.1 Properties of abstractions 107

5.1.2 Soundness and completeness of abstractions 110

5.2 Transfer of properties through abstractions 112

5.2.1 The case of sound abstractions 112

5.2.2 Trickier transfers of properties 114

5.3 Conditions for completeness and soundness 123

6 Qualitative and Quantitative Analysis 127

6.1 Qualitative analysis . 128

6.1.1 Reachability and repeated reachability properties 129

6.1.2 Properties given by a DMA in DMCs 134

6.1.3 Properties given by a DMA in general STSs via denumer-
able abstractions . 139

6.2 Quantitative analysis . 148

6.2.1 Quantitative reachability analysis 149

6.2.2 Quantitative repeated reachability analysis 150

6.2.3 Properties given by a DMA in DMCs 151

ix

6.2.4 Properties given by a DMA in general STSs via denumer-
able abstractions . 152

6.3 Summary of the results on STSs 152

7 Application to STA 157
7.1 From STA to STS . 158

7.1.1 The thick region graph abstraction 159
7.2 Reactive STA . 161
7.3 Single-clock STA . 164

8 Conclusion and Future Work 169

II Composition of Stochastic Timed Automata 173

9 Interleaving Parallel Composotion in STA 175
9.1 Definition of the parallel composition 176
9.2 Properties of the parallel composition 187
9.3 Bisimulation and congruence . 209

9.3.1 Bisimulation . 210
9.3.2 Congruence . 214

10 Interactive Stochastic Timed Automata and Handshaking Com-
position 221
10.1 Syntax of ISTA . 222
10.2 Semantics of ISTA . 226

10.2.1 Parallel composition and hiding operator 226
10.2.2 Semantics through STA 242

10.3 Decidability of ISTA . 243

11 Conclusion and Future Work 255

Bibliography 259

Résumé en français 267

List of Figures

2.1 A timed automaton A . 17

2.2 A timed automaton modelling a railroad crossing, Arailroad 21

2.3 A timed automaton modelling a mouse 23

2.4 Partition on R2
+ induced by ≈A and zoom on [0, 1]2 25

2.5 The run ρ and the regions r0, . . . , r5 26

2.6 A two-clock timed automaton Acvg with a time-convergence phe-
nomena . 29

2.7 The composition of two simple timed automata A1 and A2 . . . 31

2.8 Timed automata Atrain modelling the train (on the left), and
Acontroller modelling the controller (on the right). 33

2.9 A finite Markov chain M1 . 35

2.10 Random walk over N. 36

2.11 A queuing system with a maximum of n tasks. 45

2.12 Two simple IMCs M1 (on the left) and M2 (on the right). . . . 50

2.13 IMC M1 ‖1 M2. 52

3.1 The IPv4 Zeroconf STA for N = 3. 62

3.2 A STA modelling a G/G/1/k-queue. 64

3.3 The first steps of R(A) . 66

4.1 A Muller automaton M and the product T2 nM. 88

4.2 A DMC T3 that is not strongly fair. 99

5.1 Scheme for the proof of Proposition 5.2.6. 116

6.1 Left, T1 a random walk over N and right, its sound finite abstrac-
tion T2. 141

xi

xii List of Figures

9.1 The product of two STA modelling the IPv4 Zeroconf 184
9.2 A1 /∈ CSTA. 186
9.3 A2 is Zeno . 192
9.4 A simple example for bisimulation. 213
9.5 B is bisimilar to A. 215

10.1 An ISTA Acool describing a cooling system 223
10.2 A slight variant of the cooling system; ISTA Acooli 229
10.3 The handshaking composition Acool1 ‖{burn} Acool2 230
10.4 An ISTA Aworker representing a worker in a power plant, fixing

cooling systems. 231
10.5 The handshaking composition (Acool1 ‖{burn} Acool2) ‖Γ′ Aworker . 232
10.6 Bisimulation in ISTA . 237

CHAPTER 1

Introduction and Motivations

1.1. Model-checking problem

It is a known fact that real-life systems are now often controlled by computer
programs. When dealing with planes or nuclear plants (for instance) those sys-
tems can be critical. It is thus important that we can verify if the computer
programs governing these systems are correct: we do not want any bug to occur
in such systems since consequences could be disastrous.

One way to analyse those programs is made through mathematical models.
Those models give us tools allowing us to decide if a system is correct. The real-
life system is described via some mathematical model that we call Mod and the
purpose is then to check that Mod satisfies some desired property (or does not
satisfy some undesired property) ϕ for the real-life system. The question whether
Mod satisfies ϕ (written Mod |= ϕ) is called the model-checking problem. We are
then interested in algorithms solving this problem.

The model-checking problem finds its roots in [CE81] and [QS82], but one
can go to [BK08] for an advanced picture of the question. Several mathe-
matical models for Mod have been proposed like finite automata [RS59], Petri
nets [Pet81], Markov chains [Var85] or the one that will be of interest to us,
timed automata [AD94]. The properties that we want our models to meet or
not, i.e. ϕ, have also to be defined in this mathematical environment. A large
amount of different logics have been proposed, and our interest will go to tem-
poral logics or more precisely, to the logic LTL [Pnu77]. Each model has its own
motivation and its own power of expressiveness, leading to various decidability
results depending on the class of property we want to check. In the sequel, we

1

2 Chapter 1 – Introduction and Motivations

will be interested in probabilistic and timed systems.

1.1.1 Background models

Timed automata. When dealing with real-life systems, it is important to
allow for timing constraints: in computer systems, it is often the case that a
an event has to occur within some time interval. For instance a gate at railroad
crossing has to be lowered fast enough so that the train can safely cross the road.
Another example is a traffic light in which time is obviously important as it is
set to switch light at each fixed time. Roughly speaking, time constraints need
to allow requirements like: a given action can be performed only in a given time
interval

Timed automata (see [AD90] and [AD94]) answer to this purpose. They can
be seen as finite automata enriched with a set of real-valued variables called
clocks and with constraints over the clocks (called guards) on the transitions.
As time elapses and as actions are taken, clock values change. This allows us to
express timing restrictions. The model-checking problem in timed automata can
be expressed as follows: given a timed automaton A and a property ϕ, we would
like to know whether A satisfies ϕ. The timed aspect allows to express richer
properties with bounds (for instance ”does formula ϕ holds true in the interval
[1, 2]?”).

The interest for this model comes from a whole class of decidability results.
It should be noted that the semantics of a timed automaton comes with an in-
finite set of states that is not denumerable, leading to difficulties when tackling
the model-checking problem. However each timed automaton importantly comes
with a finite abstraction, known as the region graph, which is equivalent in some
sense to the timed automaton. This allows for several decidability results. For
instance in [AD94], the authors showed that the model-checking problem for
reachability properties is decidable in timed automata. In [ACD93], the authors
also showed the decidability of the model-checking problem of TCTL properties,
another temporal logic that allows to express time bounded properties. More-
over, tools have been developed, like Uppaal (see [BDL+06] and [Upp]), in order
to verify real-life systems modelled by timed automata and which has numerous
applications.

Probabilistic systems. As a lot of uncertainties can occur in real-life systems,
probabilistic models are often useful as well. We consider the model of Markov
chains (see [Var85]). A finite Markov chain can be seen as a finite automaton
in which each state is equipped with a distribution over the set of outgoing
edges. If the set of states can be infinite and at most denumerable, then we

1.1 – Model-checking problem 3

talk of denumerable Markov chains (DMCs for short). We will have a particular
interest for the work of [ABM07]. In any case, a probabilistic model Mod gives
rise to a probability measure Prob over the set of all possible behaviours. Given
a measurable property ϕ, we are then interested in the value Prob(Mod |= ϕ).
This gives rise to two kinds of problems:

• the qualitative model-checking problem: does it hold true that Prob(Mod |=
ϕ) = 1 or not (or Prob(Mod |= ϕ) = 0 or not)? This is also known as the
almost-sure model-checking problem (or the 0-almost-sure model-checking
problem);

• the quantitative model-checking problem: can we compute or approximate
the value of Prob(Mod |= ϕ)?

If the probabilistic model is a finite Markov chain, considering LTL prop-
erties, those problems are easily solved: the qualitative problem is reduced to
structural properties of the underlying graph (see [Var85]), while the exact value
of Prob(Mod |= ϕ) can be computed for the quantitative problem (see [CY88]).

In [ABM07], the authors are interested in DMCs. They define the notion of
decisiveness. Roughly speaking, a Markov chain is decisive w.r.t. a set of states
B if it reaches B or a state from which B can never be reached with probability 1.
This notion allows one to transfer good properties from finite Markov chains to
denumerable ones. The authors show the qualitative and quantitative problems
for reachability and repeated reachability properties to be decidable for decisive
Markov chains.

Finally still in this setting of probabilistic systems, we briefly mention the
model of continuous-time Markov chains (CTMCs for short). This model is a
first step for a mix between probabilistic and timed systems. It has a finite set
of states like in finite Markov chains, but time progresses continuously along the
behaviour. It is assumed that time delays between events are chosen randomly
according to exponential distributions. Like in timed automata, this allows to
express richer properties with interval bounds. In [BHHK03], the authors proved
CTMCs to be decidable for the temporal logic CSL (which expresses those richer
properties with intervals).

Those models come with several tools, including the well-known model-
checker Prism [Pri]. It allows to construct and model systems and to verify
them for a wide range of temporal logics (including PCTL which adds probabilis-
tic aspects, and CSL for CTMCs) and has numerous applications [KNP11].

4 Chapter 1 – Introduction and Motivations

1.1.2 Stochastic timed automata

As said earlier we are interested in systems which have both probabilistic and
timed features. If CTMCs enter in this setting, they are not entirely satisfying
as they do not allow for timing constraints on transitions between states and
as time between events only delays following exponential distributions. We are
interested here in the recent model of stochastic timed automata (STA for short)
as introduced in [BBB+07]. We give a quick idea of the model. STA are timed
automata equipped with distributions over the delays and the edges and this, in
each state of the automaton. In particular, distributions over the delays are con-
tinuous and can, roughly speaking, be of any form (respecting some reasonable
constraints as we will see later) like for instance exponential distributions (as in
CTMCs) or also uniform distributions for bounded intervals.

As it will be defined in the sequel, the STA model gives rise to a proba-
bility distribution over all possible behaviours and it thus enters the setting of
probabilistic systems. Therefore the qualitative and quantitative model-checking
problems have also a meaning in STA and this will be one of the focus of this
thesis. Given a STA A and a measurable property ϕ can we

• decide if Prob(A |= ϕ) = 1 or Prob(A |= ϕ) = 0?

• approximate the value Prob(A |= ϕ)?

Several decidability results are already known for the almost-sure model-
checking problem. In [BBB+08], the authors showed that the qualitative model-
checking problem is decidable for LTL properties in one-clock STA (under some
technical but easily satisfied conditions) while in [BBJM12] the authors iden-
tified another class of STA, called reactive STA (roughly speaking STA with
only exponential distributions), for the same decidability results again on LTL
properties. This has been published with full proofs in [BBB+14]. As in timed
automata, it relies on the finite abstraction of the region graph that can be
here considered as a finite Markov chains and is equivalent in some sense to the
STA. The identified notion for this equivalence to hold true was fairness (if an
edge with non-null probability is enabled infinitely many times then it is chosen
infinitely often with probability 1) and the authors showed that one-clock and
reactive STA are almost-surely fair (i.e. fair with probability 1). Those proofs
required ad hoc methods. We end this brief discussion on STA by noting that
at this point, the only known quantitative model-checking problem decidability
result for STA comes from [BBBM08] where the authors consider a restricted
class of one-clock STA (basically one-clock STA with only exponential distribu-
tions) and deploy ad hoc methods in order to provide an approximation scheme
for e.g. LTL properties.

1.2 – Compositional verification 5

1.2. Compositional verification

With the expansion of technology, real-life systems become bigger and bigger.
The verification of Mod |= ϕ can thus be very complicated if Mod describes a
big system. This is where compositional verification has its importance: the
objective is to divide Mod into n smaller systems Mod1, . . . ,Modn and analyse
those smaller systems separately in order to deduce properties on the big system
Mod. This comes also from the fact that in general, a real-life system is the
result of several smaller systems. It is then simpler to model separately the
small systems and to define an operator of composition with adapted interactions
between the different models. The product result after parallel composition must
then describe the behaviour of the initial system we wanted to verify.

Given n systems Mod1, . . . ,Modn, we write Mod1 ‖ . . . ‖ Modn for the parallel
composition of the n systems. Then compositional verification can be expressed
as follows: given a property ϕ, can we build properties ϕ1, . . . , ϕn such that
Modi |= ϕi for each i ∈ {1, . . . , n} implies Mod1 ‖ . . . ‖ Modn |= ϕ? The need of
a composition operator is thus crucial.

Compositionality has been first studied in the context of process algebras
(see [HBR84] or more recently [DK05b] in a probabilistic and timed context).
Since we are interested in (probabilistic and timed) transition systems, we will
rather be interested in the approach of [HZ11]. It studies composition in the con-
text of discrete- and continuous-time Markov chains. The authors propose three
kinds of composition: fully synchronised, interleaving and handshaking compo-
sitions. Fully synchronised composition and interleaving composition are used
respectively for discrete-time Markov chains and CTMCs. Fully synchronised
composition only considers that the systems composed always interact between
them while interleaving composition assumes that the systems run completely
independently from each other. Hence the interest for handshaking composition
which mixes both previous types.

The approach leads to interactive Markov chains (IMCs for short) [Her02],
which are convenient for a compositional setting with handshaking. IMCs will
be a source of inspiration for our work. They are studied as process algebras
in [Her02] we will thus rather consider the work of [HK09] where the semantics
is given as a probabilistic and non-determinist transition system. Briefly, an
IMC can be seen as a CTMC in which we add non-determinism through non-
probabilistic transitions. It comes with a very nice compositional framework
for verification: for instance in [HK09], the authors provide techniques in order
to approximate time-bounded reachability properties in this setting with non-
determinism.

6 Chapter 1 – Introduction and Motivations

Bisimulation. For a nice compositional framework, an important notion comes
with bisimulation (see for instance [LS91] and [LY93]). A bisimulation is a rela-
tion between the states of a model that identifies sates with similar behaviours.
It is extended to a relation between systems, identifying thus systems with sim-
ilar behaviours. When dealing with composition, an important property that
must be satisfied is the following: bisimulation is a congruence w.r.t. parallel
composition. This means that you can replace in the product a component by
another component that has a similar behaviour, i.e. by a bisimilar component.
For instance with IMCs, in [Her02] several definitions of bisimulation are given
and are shown to be a congruence w.r.t. parallel composition.

1.3. Contributions

The contributions of this thesis can be divided in two parts: firstly the qualita-
tive and quantitative model-checking problem for general stochastic transition
systems (STSs for short), i.e. with a continuous state-space, with an application
to STA. Secondly, we are interested in parallel composition for STA which, at
this point, lacks in the model and is crucial in order to simplify verification.

1.3.1 Qualitative and quantitative analysis of STSs

Inspired from [ABM07], we extend the notion of decisiveness in discrete-time
Markov chains to more general probabilistic systems: STSs. Those represent
systems with a continuous state-space and a Markov kernel or in other words,
Markov chains with an infinite and non-denumerable set of states and thus with
continuous probability distributions between states. We identify hypotheses that
lead to decidability results and we show that STA can be seen as STSs allowing us
to transfer the decidability results for STSs to STA. More precisely, we establish
the following points.

• We define different notions for STSs (decisiveness, fairness, finite attractor)
and we show the different links between those notions.

• We define a notion of abstraction for STSs (as in: the region graph is an
abstraction of a timed automaton). We have a particular interest when this
abstraction is a DMC. We identify conditions under which the abstraction
is said sound and complete, that will allow to reduce the qualitative and
quantitative analysis of the initial STS to its abstraction.

• We consider the qualitative and quantitative model-checking problems of
LTL properties through the product of STSs with deterministic Muller au-

1.3 – Contributions 7

tomata. Using similar techniques as on lossy probabilistic channel systems
(see [ABRS05] and [Ber06]), we show that when the abstraction is a Markov
chain and is sound and complete, then

. the qualitative model-checking problem of LTL properties in STSs is
reduced to the qualitative model-checking problem of LTL properties
in the abstraction;

. there is an approximation scheme for the quantitative model-checking
problem of reachability properties given by some graph of the abstrac-
tion and that can be used for the quantitative model-checking of all
LTL properties.

• We finally identify classes of STA in which the previous results can be
applied, leading to new approximation schemes for STA!

These contributions were firstly described in [BBBC16] under a different formal-
ism, but are the subject of [BBBC17] which is currently submitted for publica-
tion.

1.3.2 Parallel composition in STA

Now inspired from the approach of [HZ11], we are interested in the definition of
an operator of composition for STA. We first consider the simple case where the
composed automata run completely independently. This yields to an interleaving
semantics. We define such a parallel composition and we identify a class of STA

• in which parallel composition is well-defined and internal, and

• such that parallel composition corresponds to the interleaving semantics
for STA.

We then define a notion of bisimulation in STA and importantly show that
bisimulation is a congruence w.r.t. parallel composition. These contributions
are the subject of [BBCM16].

As explained in [HZ11], parallel composition has more interest when it comes
with synchronisations. Therefore, inspired from the IMC model, we define the
interactive stochastic timed automaton model (ISTA for short). Based on [HK09]
we define a parallel composition with handshaking. We also identify a class of
ISTA in which parallel composition is well-defined and internal, and we define a
notion of bisimulation that is importantly a congruence w.r.t. parallel composi-
tion.

8 Chapter 1 – Introduction and Motivations

We end the thesis with a result that links both parts of the document. We
identify a class of ISTA in which parallel composition is well-defined and internal,
and in which all the previous results on the qualitative and quantitative model-
checking problems can be applied.

These last contributions are new and are not yet published nor submitted.

1.4. Other related works

We would like to briefly mention some models and papers that somehow relate to
our work (whether for a similar model to the STA model, or for interesting similar
results in other settings). We do not have the pretension that the following list
is exhaustive.

Probabilistic timed automata. We briefly mention the probabilistic timed
automaton model [KNSS02] (PTA for short) since it is another probabilistic ex-
tension of timed automata. PTA extend timed automata only with distributions
over the edges (distributions over the delays are not present in this model, to
the contrary of our STA model). It has been widely studied in the literature
with also numerous case studies. A list of related papers can be find on [Pri].
It comes with nice decidability results, e.g. in [KNSS02], the authors showed
the decidability of PCTL properties allowing thus the approximate probabilities
of a rich class of properties. Note also that the model-checker Prism [KNP11]
can verify PTA. Finally, observe that PTA cannot be viewed as STSs due to the
presence of non-determinism via time passage (while STSs are purely stochastic).

A continuous variant of PTA has also been studied in [KNSS00]. Like the
STA model, the delays are randomized with continuous probabilities. Few results
are known on the model, however in [KNSS00] the authors provide a method for
the model-checking of formulas expressed in the logic PTCTL.

Generalised semi Markov processes. Generalised semi-Markov processes
(GSMPs for short) are probabilistic systems with continous state-space [Gly89].
The model very much compares to our STA model. We briefly describe the
model as in [BKKŘ11]. A GSMP is given with a finite set of states, a finite set
of transitions and a finite set of events. Each event is associated with a time
interval corresponding to its firing time and it is equipped with a density function
on this interval. Each state and each transition is equipped with a set of events.
Roughly speaking when entering a state, the events of the state are active and a
random value is chosen for each event accordingly to its density function. Then
time elapses just like in timed automata, and as soon as the values of all events

1.4 – Other related works 9

of a transition are reached, the transition is chosen. Like in STA, the semantics
of GSMP can be given as a STS. In [AB06], the authors provide an algorithm
that can approach the probability that a GSMP satisfies some kind of “Until”-
formulas happening before time T and within k discrete events. In [BA07],
the authors provide another algorithm for a restricted class of GSMPs and this
time for “Until”-formulas. Finally in [BKKŘ11], the authors identify a class
of GSMPs allowing two technical lemmas on a finite abstraction (which is just
like in timed automata, the region graph). In [BBBC17], we showed that these
two technical lemmas imply soundness of the abstraction leading to the whole
decidability and approximation results on STSs for this class of GSMPs.

Stochastic time Petri nets. We now have an interest for the recent pa-
per [PHV16] that considers the model-checking of time-bounded “Until”-formulas
for stochastic time Petri nets (STPNs for short). Petri nets [Pet81] can be seen
as finite automata in which transitions can have several sources and several tar-
gets and in which each node as a marking which is a natural number. A state of
a Petri net is a marking function. A transition t between two markings occurs
as follows: first, it must be the case that the transition is enabled, i.e. for each
source of t, its marking is at least 1, then you remove 1 from each source of t and
finally, you add 1 to each target of t. A time Petri net equips each transition
with an interval firing times. Finally, a STPN equips each transition with a
continuous distribution over its interval firing times. Now a state is a marking
function along with a tuple of positive numbers representing firing times for each
transition that are enabled in the current marking. Here an enabled transition
can occur from a given state only if it has the minimum firing time. Similarly
as in the GSMP model, time elapses and as soon as the minimum firing time is
reached, one enabled transition is chosen. Then accordingly to the new marking,
some enabled transitions inherit their previous firing time while newly enabled
transition get a new firing time according to the corresponding distribution.

In general, the semantics of STPNs are given as GSMPs. As we have seen it
before, few results for the quantitative model-checking are provided for GSMPs
at our knowledge, and those results are limited to restrictive class of GSMPs.
In [PHV16], the authors consider the model-checking of time-bounded “Until”
properties thanks to an abstraction of the system, the transient stochastic tree,
and through the visit of regeneration classes. A regeneration class is a state in
the abstraction in which every previous history is not required to be memorised
i.e. roughly speaking classes of states in which all enabled transitions are either
newly enabled or exponentially distributed. In [HPRV12], the authors provide
conditions for the stochastic transient tree to be finite. In [PHV16], the authors

10 Chapter 1 – Introduction and Motivations

consider STPNs in which regeneration is encountered with probability 1 within
a bounded number of discrete events. Under this condition, the authors provide
algorithms that approximate the probability of time-bounded “Until” formulas
from an initial regeneration point.

Stochastic hybrid systems. We consider the discrete-time version of stochas-
tic hybrid systems (SHSs for short) [AKLP10] and [SA13]. In general, SHSs are
defined with a dynamic over time that evolves accordingly to differential equa-
tions (see [Aba07], [FHH+11] and [HLS00]). Hybrid systems [Hen96] can be
seen, like timed automata, as finite automata enriched of a finite set of real-
valued variables. Whereas those variables are only needed to measure time in
timed automata, in hybrid systems those variables allow to measure a great
amount of things like ambient temperature. They can express dynamics much
more complicated than time whose evolution is linear. In hybrid systems, the
evolution of the variables is described by means of differential equations. This
the main difference with timed automata. Then we still have edges between a
finite set locations and those transitions allow to reset the different variables.
SHSs are thus a stochastic extension of hybrid systems, with probabilities over
the edges and the evolution of variables are defined through stochastic differential
equations.

We are here interested in discrete-time SHSs (DTSHSs for short) that relies
better on our STA model. DTSHSs are defined as STSs in [AKLP10] and [SA13].
In this model, the dynamics of variables through differential equations, are not
present. A DTSHS is given with a finite set of locations, and each location is
equipped with a continuous component (whose dimension can depend on the
location). States are thus couples composed of the location and the current
value of the continuous component. The transition kernel is quite elaborated
as it is defined by the means of three probability distributions. Entering a new
state depends first on a discrete distribution over the set of locations. Then it
distinguishes the cases where the location has changed or not: if the location does
not change, the continuous component evolves according to a first distribution;
if the location changes, the continuous component is reset according to a second
distribution.

In [AKLP10], the authors are interested in the evaluation of the probability
of invariance properties on a finite horizon (the system always stays in a safe set
of states within the N first steps) in DTSHSs. It is based on the generation of
finite abstractions, which are finite Markov chains, that approximate the value
of such probabilities. The construction is quite technical and is based on a de-
composition of the safe set of states into a partition of sets of diameter at most

1.4 – Other related works 11

δ. The invariance property is then studied on those Markov chains for which
algorithms exist, and the authors provide conditions under which the sequence
of probabilities of the invariance property in the Markov chains converges to-
wards the probability of the invariance property in the corresponding DTSHS,
when δ converges towards 0. In [SA13], the authors are interested in similar
constructions but for STSs and apply the results to DTSHSs.

Composition of STSs. We would like now to mention the following recent
paper [GBK16] which defines a parallel composition operator for stochastic tran-
sition systems (as defined in [CSKN05]1). This parallel composition makes no
assumption on the probability distributions of the initial systems which differs
from our contributions! In our work, when dealing with composition in (I)STA,
we will assume that the (I)STA which are composed are stochastically indepen-
dent (even though they could interact on transitions in ISTA), i.e. we assume
that the distributions of a system are independent of the distributions of another
system. In [GBK16], the authors define thus a parallel composition operator in
a more general setting and based on couplings of probability measures.

Another STA model. Finally, we briefly discuss another model that is similar
to our STA model and that is equipped with a compositional framework, but
whose approach is based on process algebras. In [DK05a, DK05b], the authors
are concerned with the stochastic process algebra ♤, whose semantics is given as
♤-stochastic timed automata (we write ♤-STA). Our model very much compares
to the latter as it is a mix between timed automata and GSMPs. We will briefly
describe it. In such a system, when a clock variable is activated, it is sampled
according to a predefined distribution (like events in GSMPs), and then it acts
as a countdown timer: when time elapses, the clock variables decrease down
to 02. Transitions can be fired once all clocks specified on the transition have
reached value 0. First notice that both STA and ♤-STA allow to express timing
constraints to be satisfied by the system (which is not the case of CTMCs or
IMCs). Then ♤-STA comes with a compositional framework and several notions
of bisimulations with nice congruence properties. It is interesting to mention as
well that ♤-STA allow for infinitely many states and clock variables, whereas
STA do not (they have been defined on top of timed automata, with desirable
decidability properties in mind). Then it is worth noting that ♤-STA model is

1This model relates very much to our STS model defined in Chapter 4: our model can be
seen as the model of [CSKN05] in which there is a single label.

2Observe that it is not how we described GSMPs, however the more classical way to define
the semantics of GSMPs is through this decrease of time.

12 Chapter 1 – Introduction and Motivations

at the basis of the modelling language Modest [BDHK06]. The semantics of this
language is in fact given as a very general notion of stochastic timed automata
(we call them Modest-STA) and which encompasses all the models we have
mentioned (STA, ♤-STA, GSMPs, CTMCs,...). STA in general can be viewed
as a fragment of Modest-STA. Modest is a description language and hence does
not come with algorithms. However is has a nice tool suite3 for verification of
several probabilistic and timed models (including ♤-STA but also PTA) [HH14]
and [Mod].

1.5. Plan of the thesis

The thesis is organized as follows. Chapters 2 and 3 are here to identify the
background notions needed. In Chapter 2 we introduce timed automata, denu-
merable Markov chains along with the work of [ABM07], CTMCs and IMCs. In
Chapter 3 we introduce the notion of STA as well as the results of [BBB+14]
that are relevant with this document. Then, the report is divided in two parts
that can be read independently from each other (except for Section 10.3 that
establishes a link between the two parts).

In Part I, we investigate the qualitative and quantitative model-checking
problem of STS and apply the results to classes of STA. In Chapter 4 we introduce
the notion of STS and define several useful notions. In Chapter 5, we define a
notion of abstraction of STS and show how this may help to simplify the analysis
of STS. In Chapter 6, we analyse STSs through their abstractions: we study the
qualitative and quantitative model-checking problem of STS for LTL properties,
and use abstractions in order to get simpler results. Finally in Chapter 7, we
show that STA can be seen as STSs, and we identify two classes of STA for
which the decidability results of Chapter 6 can be applied. This yields new
approximation schemes for STA!

In Part II, we are interested in a notion of composition in STA. In Chapter 9,
we define a parallel composition of STA under the assumption that the STA
composed run completely independently. We show that it corresponds to the
interleaving semantics of STA and importantly define a bismulation that is a
congruence w.r.t. composition. In Chapter 10 we define the new model of
ISTA and define a handshaking composition operator for the model. We again
define a bisimulation that is a congruence w.r.t. composition, and we identify
conditions under which the semantics of an ISTA can be given as a STA. Finally,
we identify a class of ISTA whose corresponding STA enter the framework of

3The language is too expressive for a single tool to analyse all Modest-STA.

1.5 – Plan of the thesis 13

Chapter 6 allowing us to infer all decidability results! Which leads to a class of
ISTA that are decidable and in which there is a compositional framework.

CHAPTER 2

Background

In this chapter, we introduce several models of interest for our work and define
several notions that we will need in the sequel.

In Section 2.1, we define the timed automaton model [AD90] and [AD94].
We then introduce the classical notion of region graph and we give some of the
decidability results it allows to get. We also exhibit some converging aspects
that will be problematic in some cases and we end the section with notions of
interleaving and handshaking parallel composition in timed automata.

In Section 2.2, we define the notion of denumerable Markov chain (DMC
for short). We then present the work of [ABM07] in which the notion of de-
cisiveness is introduced, leading to results for the qualitative and quantitative
model-checking problems of reachability and repeated reachability properties.

We then take some space in Section 2.3, to briefly introduce the model of
continuous-times Markov chains (CTMCs for short), which is a first step for
a system that mixes probability and timed aspects. We end the chapter with
considering a compositional approach in DMCs and CTMCs following [HZ11],
in Section 2.4. This leads to the notion of interactive Markov chain (IMC for
short) [Her02] which is an extension of CTMCs with non-probabilistic transi-
tions and with possibly non-determinism and that is suitable for a compositional
framework.

2.1. Timed automata

In this section, we define and illustrate the notion of timed automaton ([AD90],
[AD94]). We first introduce some notations.

15

16 Chapter 2 – Background

Let X = {x1, . . . , xn} be a finite set of real-valued variables called clocks. A
clock valuation over X is a map ν : X → R+ where R+ is the set of nonnegative
real numbers. We write RX+ for the set of clock valuations over X. If ν ∈ RX+ ,
we write νi for ν(xi) and we then denote ν by (ν1, . . . , νn). We can interpret νi
as the value of clock xi. If t ∈ R+, we write ν + t for the clock valuation defined
by (ν1 + t, . . . , νn+ t). If Y ∈ 2X (the power set of X), [Y ← 0]ν is the valuation
that assigns to each clock x, 0 if x ∈ Y and ν(x) otherwise. A guard over X
is a finite conjunction of expressions of the form xi ∼ c where xi ∈ X, c ∈ N
and ∼ ∈ {<,≤,=,≥, >}. We denote by G(X) the set of guards over X. Given
a clock valuation ν ∈ RX+ and a guard g ∈ G(X), we write ν |= g if ν satisfies g
and we say that ν satisfies a guard of the form xi ∼ c whenever νi ∼ c. We can
now define the notion of timed automaton.

Definition 2.1.1. A timed automaton is a tuple A = (L,X,Act, E, Inv,AP,L)
where

(i) L is a finite set of locations,

(ii) X is a finite set of clocks,

(iii) Act is a finite set of actions,

(iv) E ⊆ L×Act× G(X)× 2X × L is a finite set of edges,

(v) Inv : L→ G(X) is an invariant function,

(vi) AP is a finite set of atomic propositions and L : L → 2AP is a labelling
function.

We will describe later the semantics of a timed automaton. We first give a
simple example in order to illustrate Definition 2.1.1.

Example 2.1.2. We consider the timed automaton depicted in Figure 2.1. In
this example, the set of locations L is {l0, l1}; the set of clocks X is {x1, x2};
the set of actions Act is {a, b}; the set of edges (described by the arrows; the
notation x := 0 means that clock x is reset to zero) is defined as follows: E =
{e1, e2, e3, e4} where

e1 =
Ä
l0, a, 0 < x1 ≤ 1, {x1}, l0

ä
; e2 =

Ä
l0, b, (x1 ≤ 2) ∧ (x2 ≥ 2), {x2}, l1

ä
;

e3 =
Ä
l1, a, x2 ≤ 2, {x2}, l1

ä
; e4 =

Ä
l1, b, x2 = 1, {x1}, l0

ä
;

the invariants are given by Inv(l0) = (x1 ≤ 2) ∧ (x2 ≤ 4) and Inv(l1) = x2 ≤ 2;
and the set of atomic propositions is AP = {p1, p2} and the labelling function is
defined by L(l0) = {p1} and L(l1) = {p2}.

2.1 – Timed automata 17

l0 l1
a, x2 ≤ 2

x2 := 0

0 < x1 ≤ 1

a, x1 := 0

(x1 ≤ 2) ∧ (x2 ≥ 2)

b, x2 := 0

x2 = 1, x1 := 0

b

{p1} {p2}

(x1 ≤ 2) ∧ (x2 ≤ 4) x2 ≤ 2

Figure 2.1: A timed automaton A

Remark 2.1.3. Note that if a guard or an invariant is true (i.e. corresponding to
x ≥ 0 for some clock x), then it won’t be written on the edge or on the location.
Similarly, we will not write the label of a location if it is the empty set.

Note also that the labelling of the edges with the set of actions Act, the
labelling of the locations over AP and the invariant function will not always be
needed. In some cases we will thus omit them (maybe not the three of them at
the same time). In those cases, it should be understood that

• all edges are labelled with the same action,

• all locations are labelled with the same atomic proposition, and

• all locations have the invariant true.

We will always make clear in which case we are.

Given an edge e = (l, a, g, Y, l′) ∈ E, we define source(e) = l for the location
source of e and target(e) = l′ for the location target of e. We will sometimes

write e = l
a,g,Y−−−→ l′. Now, before explaining precisely how we interpret timed

automata, let us define the notion of transition system which will be useful when
defining the semantics of timed automata.

Definition 2.1.4. A transition system T is a tuple (Q,Γ,→) where

(i) Q is a set of states,

(ii) Γ is an alphabet of actions, and

(iii) → ⊆ Q× Γ×Q is a transition relation.

T is called finite if Q and Γ are finite.

18 Chapter 2 – Background

The semantics of a timed automaton A is given as a transition system. We
first define the states of A and the transitions between two states of A with the
aim of defining this transition system. Fix a timed automaton A = (L,X,E, Inv)
(here, actions and atomic propositions are not needed and we omit them in order
to avoid heavy notations).

Definition 2.1.5. A state of A is a pair q = (l, ν) where l ∈ L and ν ∈ RX+ are
such that ν |= Inv(l). We denote by Q ⊆ L× RX+ the set of all states in A.

We then distinguish two types of transitions: time-transitions and switch-
transitions.

Definition 2.1.6. Given q = (l, ν) and q′ = (l′, ν ′) two states of A, there is a
time-transition in A between q and q′ if l = l′ and there exists t ≥ 0 such that

ν ′ = ν + t. We denote this transition by q
t→ q′ and we write q′ = q + t.

Definition 2.1.7. Given q = (l, ν) and q′ = (l′, ν ′) two states of A, there is a
switch-transition in A between q and q′ if there exists g ∈ G(X) and there exists
Y ∈ 2X such that e = (l, g, Y, l′) ∈ E, ν |= g and ν ′ = [Y ← 0]ν. We denote this
switch-transition by q

e→ q′.

Finally in the sequel, we will be interested in a mix of those two types of
transitions.

Definition 2.1.8. Given q = (l, ν) and q′ = (l′, ν ′) two states of A, there is a
mixed-transition in A between q and q′ if there exist t ∈ R+ and e ∈ E such that

q
t→ q + t

e→ q′. We denote this mixed-transition by q
t,e−→ q′.

Remark 2.1.9. A mixed-transition corresponds thus to the succession of two
transitions: a time-transition followed by a switch-transition. Then, given states
q = (l, ν) and q′ = (l′, ν ′), given t ∈ R+ and e ∈ E, we have a mixed-transition

q
t,e−→ q′ whenever source(e) = l, target(e) = l′, ν+t |= g and ν ′ = [Y ← 0](ν+t),

where e = (l, g, Y, l′).

When it is not relevant, we will sometimes omit the labels on the mixed-

transitions, i.e. we will sometimes write q → q′ instead of q
t,e−→ q′. We illustrate

the previous notions on Example 2.1.2.

Example 2.1.10. If we consider the timed automaton A of Figure 2.1, we can
see that

• the set of states

Q = {(l, ν) ∈ L× R2
+ | (l = l0 ∧ (ν1 ≤ 2 ∧ ν2 ≤ 4)) ∨ (l = l1 ∧ ν2 ≤ 2)}

= {l0} × [0, 2]2 ∪ {l1} × (R+ × [0, 2]);

2.1 – Timed automata 19

• (l0, (0, 0))
0.5→ (l0, (0.5, 0.5)) is an instance of a time-transition in A;

• (l0, (0.5, 0.5))
e1→ (l0, (0, 0.5)) is an instance of a switch-transition in A,

where e1 is defined in Example 2.1.2, since (0.5, 0.5) satisfies the guard of
e1, 0 < x1 ≤ 1, and e1 resets the clock x1 to zero;

• (l0, (0, 0))
0.5,e1−−−→ (l0, (0, 0.5)) is an instance of a mixed-transition in A,

corresponding to the succession of the two previous transitions.

We can now define the transition system associated with a timed automaton.

Definition 2.1.11. Let A = (L,X,E, Inv) be a timed automaton. The tran-
sition system associated with A is given by TA = (Q,R+ × E,→) where Q is
the set of states as defined in Definition 2.1.5, and the transition relation →
corresponds to the set of mixed-transitions in A as defined in Definition 2.1.8.

We now define the notion of run in a timed automaton. LetA = (L,X,E, Inv)
denote a timed automaton and TA = (Q,R+×E,→) denote the transition system
associated with A.

Definition 2.1.12. Let k be a positive integer. A finite run (also called a
finite path) of A is a finite sequence of states (qi)i∈{0,...,k} ⊆ Q such that for
all i ∈ {0, . . . , k − 1} there is ti ∈ R+ and there is an edge ei ∈ E such that

qi
ti,ei−−→ qi+1 is a mixed-transition in A. We denote it as follows:

ρ = q0
t0,e0−−→ q1

t1,e1−−→ · · · tk−1,ek−1−−−→ qk.

Definition 2.1.13. An infinite run (or infinite path) of A is an infinite sequence
of states (qi)i∈N such that for all i ∈ N there is a mixed-transition qi → qi+1

between qi and qi+1 in A. We denote it as follows:

ρ = q0
t0,e0−−→ q1

t1,e1−−→ q2
t2,e2−−→ · · ·

where for each i ∈ N, qi
ti,ei−−→ qi+1 denotes a mixed-transition.

We now illustrate these notions on Example 2.1.2.

Example 2.1.14. Let A be the timed automaton of Figure 2.1. Let us consider
the runs ρ1 and ρ2 depicted below.

ρ1 = (l0, (0, 0))
0.5,e1−−−→ (l0, (0, 0.5))

1.6,e2−−−→ (l1, (1.6, 0))
0,e3−−→ (l1, (1.6, 0));

ρ2 = (l0, (0, 0))
0.8,e1−−−→ (l0, (0, 0.8))

2,e2−−→ (l1, (2, 0))
0.5,e3−−−→ (l1, (2.5, 0))

0.5,e3−−−→ (l1, (3, 0))
0.5,e3−−−→ (l1, (3.5, 0))

0.5,e3−−−→ · · · .

It holds that ρ1 is a finite run of A and ρ2 is an infinite run of A.

20 Chapter 2 – Background

Remark 2.1.15. In the sequel, we are only interested with infinite behaviours,
and thus with infinite runs. Infinite runs require that it is always-possible in the
future to perform a mixed-transition, and thus a time- and a switch-transition.
Observe however that it could be possible to reach a state from which there are no
enabled edges in the future and thus from which it is not possible to perform any
mixed-transition. Consider the timed automaton A of Example 2.1.2, but this
time assume that Inv(l0) = (x1 ≤ 3)∧ (x2 ≤ 4). Then from state (l0, (2.5, 3)) for
instance, no edges are enabled in the future (the value of clock x1 has overpassed
the bounds 1 and 2 of edges e1 and e2). Such states are called blocking states.
We thus have to prohibit such states.

We fix a timed automaton A and TA its transition system. We also consider a
state q = (l, ν) ∈ Q and an edge e ∈ E, and we define the following set of delays

I(q, e) = {t ∈ R+ | ν + t |= Inv(l) and ∃q′ ∈ Q s.t. q
t,e−→ q′} corresponding

to the times after which, starting from q, edge e is enabled. Observe that if
source(e) 6= l then I(q, e) = ∅. We then define I(q) =

⋃
e∈E I(q, e), i.e. the set of

delays after which, starting from q, an edge is enabled. We can now define the
notion of blocking state.

Definition 2.1.16. State q is a blocking state whenever I(q) = ∅. The timed
automaton A is non-blocking whenever it has no blocking state, i.e. I(q) 6= ∅ for
each q ∈ Q.

Remark 2.1.17. Accordingly to Remark 2.1.15, we thus make the assumption
that in the sequel, all considered timed automata are non-blocking.

We give a brief example of the previous notions.

Example 2.1.18. We consider again the timed automaton A of Example 2.1.2.
Fix q0 = (l0, (0, 0)). We easily compute that I(q0, e1) =]0, 1] and I(q0, e2) = {2}.
It follows that I(q0) =]0, 1] ∪ {2}. It can also be shown that for each state q,
I(q) 6= ∅, and thus A is non-blocking.

However, if we consider the variant of A described in Remark 2.1.15, where
Inv(l0) = (x1 ≤ 3) ∧ (x2 ≤ 4), it can easily be checked that, for instance,
I((l0, (2.5, 3))) = ∅ and thus (l0, (2.5, 3)) is blocking state.

Given a timed automaton A and a state q we write Runs(A, q) for the set of
infinite runs in A starting from q. Thanks to Remark 2.1.17, it has sense since
we will never end up in a blocking state. We write Runsf (A, q) for the set of
finite runs in A starting from q.

We now give two other examples in order to illustrate the notion of timed au-
tomaton. The first example depicts a railroad crossing. It is inspired from [BK08].

2.1 – Timed automata 21

Example 2.1.19 (A railroad crossing). When a train is approaching a railroad
crossing, a controller has to lower the gate in order to stop the road traffic,
and to raise it once the train has left the railroad crossing. A requirement that
should be met in the model of such a situation is that the gate is always closed
when a train is crossing the road. Timed aspect is thus important in the model:
the controller must have enough time to lower the gate before the train is at
the crossing. An example of a timed automaton modelling such a situation is
depicted on Figure 2.2 and can be described as follows.

l0

{far, up}

l1

{near, up}

l2

{near, down}

l3

{in, down}

l4

{far, down}

x1 := 0, x2 := 0

e1, approach

x2 ≤ 2

e2, lower

2 < x1 ≤ 5
enter

e3

exit, x1 ≤ 5, x2 := 0

e4

x2 ≤ 1
raise

e5

Figure 2.2: A timed automaton modelling a railroad crossing, Arailroad

Two clocks are needed: the first one for the train and the second one for
the controller (i.e. the time required to lower and to raise the gate). The set
of actions is given by Act = {approach, enter, exit, lower, raise} and the set of
atomic propositions is given by AP = {far, near, in, up, down}. We assume that
the invariant function is true in each location. The actions on the edges and
the labels on the locations are quite self-explanatory, however we give a brief
descriptions of the automaton.

At location l0, there is no train near the crossing and the gate is up (given by
L(l0) = {far, up}). When a train is approaching, a signal is sent to the controller
through the edge e1: the action approach depicts this signal, clock x1 and x2

are reset to 0 and we arrive in location l1 where the controller is informed that a
train is approaching: L(l1) = {near, up}. With the aim of simplifying the model
we suppose that, once a train has sent a signal, no other train can approach the
railroad crossing until the first train has crossed the road and the controller has
raised the gate.

Now the two next steps describe: first the lowering of the gate by the con-
troller and then the crossing of the road by the train. Here the timed aspect
is needed in order to make sure that the execution of the different steps is well

22 Chapter 2 – Background

ordered and that the controller and the train are well synchronised. Edge e2 with
action lower ensures that the controller does not take more than 2 time units to
lower the gate, and edge e3 with action enter makes sure that the train takes at
least 2 time units and at most 5 in order to cross the road since it has sent the
signal. This prevents the situation in which the train crosses the road while the
gate is still open. Location l2 is thus the situation in which the gate has been
closed and the train has not yet entered the crossing (L(l2) = {near, down}),
while location l3 represents the state in which the train is crossing the road while
the gate is closed (L(l3) = {in, down}).

Now, the train has to leave the railroad crossing before the controller raises
the gate which is done by edge e4 with action exit: the train leaves the crossing
after at most 5 time units (since the sending of the signal) and location l4 depicts
the situation in which the train has crossed the road but the gate is still closed
(L(l4) = {far, down}). We reset clock x2 in order to control the time needed to
raise the gate in edge e5: at most 1 time unit. We then return to location l0.

As an example,

ρ = (l0, (0, 0))
1,e1−−−→

approach
(l1, (0, 0))

1.3,e2−−−→
lower

(l2, (1.3, 1.3))
1.1,e3−−−→
enter

(l3, (2.4, 2.4))

0.8,e4−−−→
exit

(l0, (0, 3.2))
0.6,e5−−−→
raise

(l0, (0.6, 3.8))

is a finite run which represents the crossing of the road by one train.

Observe that this timed automaton has a blocking state. Indeed for instance,
(l1, (3, 3)) is a state of Arailroad (the invariant is true) and it is blocking as
from state (l1, (3, 3)) edge e2 is no longer enabled. This configuration represents
the situation where, after reaching state (l1, (0, 0)) (i.e. after the train sends a
signal), the controller waits to much time before lowering the gate, i.e. a timed-

transition of 3 time units is performed as follows: (l1, (0, 0))
3→ (l1, (3, 3)). It

represents a flaw in the model. Observe however that since we only consider
mixed-transition (see Definition 2.1.11), this situation cannot happen. Observe
also that the situation could be avoided with invariants that would prevent the
system from reaching such a state.

The second example is a one-clock timed automaton which depicts a mouse
producing a simple or double click. This example can be found in [Bri06] and is
inspired from [KT05], we give here a brief description.

Example 2.1.20. A mouse produces a double click when the button is pressed
twice quickly enough, otherwise it just produces two simple clicks. The timed
aspect is thus clearly essential to model such a system since an action has to

2.1 – Timed automata 23

be executed twice within a short time interval. Let us assume that a mouse
produces a double click when the button is pressed twice within one time unit.
A timed automaton for this system is depicted on Figure 2.3.

l0 l1 l2

{Idle} {Simple} {Double}

x = 1

x < 1

click

x := 0

click

x ≤ 1

Figure 2.3: A timed automaton modelling a mouse

There are three locations and one clock in this timed automaton. The set
of actions is given by Act = {click} and the set of atomic propositions is given
by AP = {Idle, Simple,Double}. In location l0, associated with the label Idle,
the mouse is waiting for the button to be pressed and in location l1 the button
has been pressed once and the mouse produces at least a simple click (which
explains the label Simple). The system switches from l0 to l1 by transition
e1 = (l0, click, true, {x}, l1), clock x is reset to zero. Action click is then per-
formed, i.e. the button has been pressed once. In location l1, if the button
is pressed within one time unit, then the system goes to location l2 (by tran-
sition e2 = (l1, click, x < 1, ∅, l2) where the action click is performed again).
Otherwise the mouse has produced a simple click and returns to l0 (transition
e3 = (l1, ∅, x = 1, ∅, l0), no action is performed). Once in l2, the button has been
pressed twice within one time unit (hence the proposition Double on l2) and the
mouse produces a double click. From l2 we return to l0 as soon as the double-
click is produced (transition e4 = (l2, ∅, x ≤ 1, ∅, l0), no action is performed). As
an example,

ρ = (l0, 0)
1.3,e1−−−→
click

(l1, 0)
0.6,e2−−−→
click

(l2, 0.6)
0.3,e4−−−→ (l0, 0.9)

4.3,e1−−−→
click

(l1, 0)
1,e3−−→ (l0, 1)

is a finite run in which the mouse has first produced a double click and then a
simple click.

24 Chapter 2 – Background

2.1.1 Region graph

In this section, we present a version of the region graph of a timed automaton,
see [AD90] and [AD94]. The region graph of a timed automaton is a finite
abstraction of the initial model which is in some sense equivalent to the timed
automaton. It has helped to prove decidability results on timed automata: e.g.
in [AD94] it has been proved that the model-checking problem of reachability
properties is decidable for timed automata, and in [ACD93] the authors showed
the decidability of the model-checking problem of TCTL properties for timed
automata.

For this section, we fix a timed automaton A = (L,X,E, Inv) and its tran-
sition system TA = (Q,R+ × E,→). We first define an equivalence relation
between clock valuations and we then extend this relation to states of A. We
give some notations. We write MA for the maximal constant appearing in guards
of A. Given t ∈ R+, we write btc for the integer part of t and {t} for its fractional
part.

Definition 2.1.21. Let ν, ν ′ ∈ RX+ . We say that ν and ν ′ are region-equivalent,
and we write ν ≈A ν ′, whenever the following conditions hold:

1. for every x ∈ X, bν(x)c = bν ′(x)c or ν(x), ν ′(x) > MA,

2. for every x ∈ X such that ν(x) ≤MA, {ν(x)} = 0 if and only if {ν ′(x)} = 0,

3. for every x, y ∈ X such that ν(x), ν(y) ≤MA, {ν(x)} ≤ {ν(y)} if and only if
{ν ′(x)} ≤ {ν ′(y)}.

This equivalence relation extends to states of TA with the following condition:
given q = (l, ν) and q′ = (l′, ν ′) ∈ Q, q ≈A q′ if and only if l = l′ and ν ≈A ν ′.

Given ν ∈ RX+ , we write [ν]A for the equivalence class of ν under ≈A. The
equivalence classes of RX+ under ≈A are called regions. We write RA for the
set of regions. Given q = (l, ν) ∈ Q, it then holds that the equivalence class of
q under ≈A, also written [q]A, corresponds to [q]A = {l} × [ν]A. We will note
[q]A = (l, [ν]A). A region r is said memoryless if for each clock x ∈ X, either
ν(x) = 0 for each ν ∈ r, or ν(x) > MA for each ν ∈ r. This special kind of
regions will be of particular interest to us in the sequel. We illustrate the notion
of region on the timed automaton of Example 2.1.2.

Example 2.1.22. Let us consider the timed automaton A of Example 2.1.2
depicted in Figure 2.1. In this example, it holds that the maximal constant
appearing in guards is MA = 2. The regions induced by ≈A are represented on
the left side of Figure 2.4 with a zoom on the partitions of the square [0, 1]2 on

2.1 – Timed automata 25

the right side. Observe that this square is partitioned into 11 regions: 4 points,
5 open segments and 2 open triangles.

0
•

1
•

2
•

1•

2•

• •

• •

x1

x2

0
•

1
•

1• •

Figure 2.4: Partition on R2
+ induced by ≈A and zoom on [0, 1]2

We can now define the region graph of a timed automaton A.

Definition 2.1.23. Let A = (L,X,E, Inv) be a timed automaton. The region
graph RA = (V, F) of A is an oriented graph where:

• V = L×RA is the set of vertices;

• F ⊆ V × V is the set of edges such that (l, r) → (l′, r′), with (l, r) and
(l′, r′) ∈ R, if the following condition is met: there exist ν ∈ r, ν ′ ∈ r′,

t ≥ 0 and e ∈ E such that (l, ν)
t,e−→ (l′, ν ′) is a transition of TA.

Given a run ρ = (qk)k∈K of TA, with K = {0, . . . , n} or K = N, we write
ι(ρ) for the corresponding path of ρ in RA: ι(ρ) = ([qk]A)k∈K . We now give an
example of run in the region graph.

Example 2.1.24. We consider again the timed automaton A of Example 2.1.2.
We have given the regions of this timed automaton in Example 2.1.22 and due to
the high number of regions (already 11 regions on the square [0, 1]2), we do not
give the entire graph region. However we illustrate here a run in RA. Consider
the following run of TA:

ρ = (l0, (0.7, 0.4))
0.8,e1−−−→ (l0, (0, 1.2))

1.1,e2−−−→ (l1, (1.1, 0))

we then have that
ι(ρ) = (l0, r0)→ (l0, r2)→ (l1, r4)

where

26 Chapter 2 – Background

• r0 = {(ν1, ν2) ∈ R2
+ | 0 < ν2 < ν1 < 1},

• r2 = {(ν1, ν2) ∈ R2
+ | (ν1 = 0) ∧ (1 < ν2 < 2)}, and

• r4 = {(ν1, ν2) ∈ R2
+ | (1 < ν1 < 2) ∧ (ν2 = 0)}.

The run ρ and the regions are depicted on Figure 2.5. In order to make it
clearer, we decomposed each mixed-transition into the corresponding time- and
switch-transitions; i.e.:

• (l0, (0.7, 0.4))
0.8−→ (l0, (1.5, 1.2))

e1−→ (l0, (0, 1.2)), and

• (l0, (0, 1.2))
1.1−→ (l0, (1.1, 2.3))

e2−→ (l1, (1.1, 0)).

Region r1 = {(ν1, ν2) ∈ R2
+ | 1 < ν2 < ν1 < 2} and region r3 = {(ν1, ν2) ∈ R2

+ |
(1 < ν1 < 2) ∧ (ν2 > 2)} are the regions reached after the two time-transitions.

•

••

•

•
x1

x2

r0

r1

r3

x1

x2

r2

r4

Figure 2.5: The run ρ and the regions r0, . . . , r5

As said before, the region graph has the particular interest that it is finite
(whereas the semantics of a timed automaton is given as an infinite (and non-
denumerable) transition system) and it abstracts the corresponding automaton
leading to, in some sense, an equivalent system. We now explain what we mean
by “equivalent”. It uses the notion of timed-abstract bisimulation as introduced
in [LY93]. A timed-abstract bisimulation is an equivalence relation over the set
of states of a timed automaton, that identifies states that have, roughly speaking,
the same one-step behaviour for mixed-transitions. This is formalised in the next
definition. Given a relation R ⊆ Q×Q, we write qRq′ instead of (q, q′) ∈ R.

Definition 2.1.25. Given a timed automaton A = (L,X,Act, E, Inv,AP,L) and
TA = (Q,R+ × E,→) its transition system, we say that a symmetric relation
R ⊆ Q×Q is a timed-abstract bisimulation for A if for each qRq′,

2.1 – Timed automata 27

• L(q) = L(q′), and

• if there is t ≥ 0, e ∈ E and q1 ∈ Q such that q
t,e−→ q1, then there are t ≥ 0

and q′1 ∈ Q such that q′
t,e−→ q′1 and q1Rq′1.

Observe that since R is a symmetric relation, the second item holds also in
the other sense. We say that two states q and q′ are bisimilar if there exists a
bisimulation R for A such that qRq′. In [AD94], the authors showed that the
region-equivalence is a timed-abstract bisimulation for timed automata. This
result allows for several decidability results, e.g. the ones already mentioned
earlier: the decidability of reachability properties [AD94] and of TCTL proper-
ties [ACD93].

Bisimulation will also have a key role in the compositonal framework.

2.1.2 Time-converging aspects

In this section, we present two time-converging aspects that one can observe in
TA and that are problematic. Those will be of a peculiar interest in the sequel.

Zenoness. Runs in a given timed automaton can be seen as possible behaviours
of the system that it depicts. However not all of them are realistic. We have
already seen flaws in the model with blocking states as quickly observed in Exam-
ple 2.1.19. In this section, we will see that some infinite runs could also represent
unrealistic behaviours of the system depicted and should be avoided. We aim
here at introducing the particular case of zeno runs. We give here a brief note
on the subject, but it is detailed in [BK08].

Fix a timed automaton A = (L,X,E, Inv,AP,L) and its transition system
TA = (Q,R+ × E,→). We give immediately the definition of this type of runs.

Definition 2.1.26. An infinite run ρ = q0
t0,e0−−→ q1

t1,e1−−→ q2
t2,e2−−→ · · · is said

zeno whenever
∑
i≥0 ti is finite.

A zeno run depicts thus a situation where infinitely many actions are per-
formed (the edges ei) in a finite amount of time (

∑
i≥0 ti <∞). This is obviously

unrealistic. We illustrate this behaviour on Example 2.1.20 in order to make it
plain.

Example 2.1.27. Let us consider the mouse system of Example 2.1.20. We

28 Chapter 2 – Background

define ρ as follows:

ρ = (l0, 0)
1
2
,e1−−−→

click
(l1, 0)

1
4
,e2−−−→

click
(l2, 0.25)

e4→ (l0, 0.25)

1
8
,e1−−−→

click
(l1, 0)

1
16
,e2−−−→

click

(
l2,

1

16

)
e4→
(
l0,

1

16

)
...

1
22n−1 ,e1−−−−−→
click

(l1, 0)
1

22n
,e2

−−−−−→
click

(
l2,

1

22n

)
e4→
(
l0,

1

22n

)
(2.1)

....

Observe that since
∑
i≥1 1/2i = 1 <∞, it holds that ρ is a zeno run. In this run,

infinitely many actions are executed in one time unit: the button of the mouse
is pressed faster and faster so that infinitely many double clicks are produced in
one time unit. This obviously describes an unrealistic behaviour.

Zeno runs can be considered as flaws of the model and should be avoided. A
timed automaton A is said non-zeno if there does not exist a run that is zeno.
One would thus be interested only in non-zeno timed automata

While this seems reasonable, it could in fact be too restrictive. Let A be
a timed automaton. To make sure that there does not exist a zeno run, i.e.
a run where time only elapses finitely while infinitely many switch-transitions
are chosen, we should require that all edges cannot be enabled before a certain
constant time. In other words, one should ask that all switch-transitions (or
all actions) cost a minimal constant time unit or, in a less restrictive way, we
should ask that a sufficient number of the switch-transitions costs a minimal
constant time unit (since some actions could be executed instantaneously). It is
illustrated in [BK08, pp. 694-695] but not described here as it is not convenient
with our work. The authors also provide a sufficient criterion for non-zenoness.

Here, in the probabilistic context of Chapter 3, we will be able to relax the
condition of non-zenoness: it will allow us to measure the set of zeno runs and
to ask that the set of zeno runs has measure null.

Another time-converging aspect. In this short paragraph, we will mention
an example of a timed automaton that will be of a particular interest to us in
the sequel. This timed automaton exhibits a time-converging problem different
of the zenoness. In this example, we will encounter some kind of convergence
on a clock which will lead (as we will see in Chapters 3 and 7) to undesired
behaviours. This example can be found in [BBB+14].

2.1 – Timed automata 29

Example 2.1.28. We consider the two-clock timed automaton Acvg described
in Figure 2.6. Writing q0 = (`0, (0, 0)), we are interested in infinite runs starting
from q0, i.e. Runs(Acvg, q0). We can make the following statement: each time
we come back to `0 through edges e3 or e6, the value of clock y increases but
always stays under the bound of 1. Let us illustrate it with an example of a run:

ρ = (`0, (0,0))
0.7,e1−−−→ (`1, (0.7, 0.7))

0.3,e2−−−→ (`2, (1, 0))
0.2,e3−−−→ (`0, (0,0.2))

1,e4−−→ (`3, (1, 1.2))
0.8,e5−−−→ (`4, (1.8, 0))

0.5,e5−−−→ (`0, (0,0.5)) . . .

It can be shown that the values of clock y in location `0 lead to an increasing

`0

`1

`2

`3

`4

{p1}

{p2}

y < 1

y < 1

e1 , y < 1 e2 , y = 1
y := 0

e3 , x > 1
x := 0

e4, 1
< y <

2 e5, y
= 2

y := 0

e6, x
> 2

x := 0

Figure 2.6: A two-clock timed automaton Acvg with a time-convergence phe-
nomena

sequence (yn)n≥0 ⊆ R+ which is strictly bounded by 1 (i.e. for each n ≥ 0,
yn < 1) and converges towards some y∗ such that 0 < y∗ ≤ 1.

Observe that this behaviour is very different of zeno behaviours and actually,
it prevents them: it can be shown that each time locations `2 or `4 are reached, a
strictly larger amount of time has to be waited before returning in `0 than the last
time locations `2 or `4 were visited. Finally, observing that the first time location
`2 (resp. `4) is reached, clock values are at (1, 0) (resp. (2, 0)), a delay 0 < t < 1
time units is needed before taking edge e3 (resp. e6). Yielding to the fact that for

30 Chapter 2 – Background

each run ρ ∈ Runs(Acvg, q0), time diverges (i.e. if ρ = q0
t0,e0−−→ q1

t1,e1−−→ · · · , then∑
i≥0 t1 = ∞). However, this time-convergent aspect will lead to some unfair

behaviours which will be problematic as we will see in Chapters 3 and 7.

2.1.3 Composition of timed automata

In this section, we briefly explain how composition in timed automata can be
defined. Studying an approach that will be useful when addressing the problem
in stochastic timed automata, we first define an independent operator of com-
position in timed automata (i.e. that corresponds to an interleaving semantics),
and then we will define an operator of composition with synchronisations, also
called handshaking. It is based on [BK08]. We will briefly discuss in Section 2.4.1
three different types of parallel composition and explain why the handshaking
one is the most interesting; the discussion comes from [HZ11]. Finally, we will
briefly mention the essential role of bisimulations in a compositional result and
mention that the timed-abstract bisimulation defined in Section 2.1.1 ([LY93])
is a congruence w.r.t. parallel composition.

We assume that we have two timed automataA1 = (L1, X1, E1, Inv1,AP1,L1)
and A2 = (L2, X2, E2, Inv2,AP2,L2) such that X1 ∩X2 = ∅. For this first defini-
tion, we do not need actions on the edges. We recall the standard (interleaving)
parallel composition operator.

Definition 2.1.29. The parallel composition of A1 and A2 is the timed automa-
ton A1 ‖ A2 = (L,X,E, Inv,AP,L) where

• L = L1 × L2, X = X1 ∪X2, AP = AP1 ∪ AP2,

• for each location l = (l1, l2) ∈ L, we define Inv(l) = Inv1(l1) ∧ Inv2(l2) and
L(l) = L1(l1) ∪ L2(l2), and

• E = E1,• ∪ E•,2 with

. E1,• = {((l1, l2), g, Y, (l′1, l2)) | (l1, g, Y, l′1) ∈ E1, l2 ∈ L2}, and

. E•,2 = {((l1, l2), g, Y, (l1, l
′
2)) | (l2, g, Y, l′2) ∈ E2, l1 ∈ L1}.

We illustrate this notion on a very simple example.

Example 2.1.30. Consider the timed automata Ai = (Li, Xi, Ei, Invi,APi,Li)
for each i ∈ {1, 2}, depicted in Figure 2.7, defined for each i ∈ {1, 2} with the
following components: Li = {li, l′i}, Ei = {(li, gi, Yi, l′i)} for some gi ∈ G(Xi)
and Yi ⊆ Xi, Invi(li) = Invi(l

′
i) = g′i ∈ G(Xi), APi = {pi} and Li(li) =

Li(l′i) = {pi}. Then, A1 ‖ A2 = (L,X1 ∪ X2, E, Inv,AP1 ∪ AP2,L) where

2.1 – Timed automata 31

L =
¶

(l1, l2), (l′1, l2), (l1, l
′
2),

(l′1, l
′
2)
©

, for each l ∈ L, Inv(l) = g′1 ∧ g′2 and L(l) = {p1, p2}, and

E =
¶Ä

(l1, l2), g1, Y1, (l
′
1, l2)

ä
,
Ä
(l1, l2), g2, Y2, (l1, l

′
2)
ä
,Ä

(l′1, l2), g2, Y2, (l
′
1, l
′
2)
ä
,
Ä
(l1, l

′
2), g1, Y1, (l

′
1, l
′
2)
ä©
.

It is depicted in Figure 2.7.

l1

g′1

{p1}

l′1

g′1

{p1}A1

l2

g′2

{p2}

l′2

g′2

{p2}A2

g1, Y1

g2, Y2

(l1, l2)

g′1 ∧ g′2

{p1, p2}

(l′1, l2)

g′1 ∧ g′2

{p1, p2}

(l1, l
′
2)

g′1 ∧ g′2

{p1, p2}

(l′1, l
′
2)

g′1 ∧ g′2

{p1, p2}

A1 ‖ A2

g1,
Y1

g2 , Y
2

g2 , Y
2

g1,
Y1

Figure 2.7: The composition of two simple timed automata A1 and A2

Remark 2.1.31. The set E1,• (resp. E•,2) can be seen as the set of switch-
transitions (edges) in A1 ‖ A2 that only perform a change of location in A1

(resp. A2). Hence, we abusively denote E1,• by E1 and E•,2 by E2. Let us
observe that there are no edges in A1 ‖ A2 that depict switch-transitions in both
timed automata A1 and A2. More precisely, we have that elements of the form
((l1, l2), g1 ∧ g2, Y1 ∪ Y2, (l

′
1, l
′
2)) where (l1, g1, Y1, l

′
1) ∈ E1 and (l2, g2, Y2, l

′
2) ∈ E2

are not considered as edges of A1 ‖ A2. This is due to the fact that it is very
unlikely (or, in a context with probabilities like in stochastic timed automata
in Chapter 3, it has probability null), that both automata perform an action
at the exact same time. However, we will see how this can be enforced using
synchronisations in Definition 2.1.33.

Remark 2.1.32. We can extend Definition 2.1.29 to the composition of n timed
automata A1, . . . ,An with

⋂n
i=1Xi = ∅, where Ai = (Li, Xi, Ei, Invi,APi,Li) for

any i ∈ {1, . . . , n}, as follows. We define

A1 ‖ . . . ‖ An =
(
L1 × . . .× Ln,

n⋃
i=1

Xi, E, Inv,
n⋃
i=1

APi,L
)
,

32 Chapter 2 – Background

where

E =
n⋃
i=1

E•,i,•,

E•,i,• =
{Ä

(l1, . . . , li−1, li, li+1, . . . , ln), g, Y, (l1, . . . , li−1, l
′
i, li+1, . . . , ln)

ä
|

(li, g, Y, l
′
i) ∈ Ei and ∀j 6= i, lj ∈ Lj

}
for any i ∈ {1, . . . , n}, and Inv and L are obviously extended from Defini-
tion 2.1.29. We then abusively write Ei for E•,i,•.

We are now interested in a notion of composition with synchronisations,
also called handshaking parallel composition. This time, we consider two timed
automata with the labelling over the edges A1 = (L1, X1, Act1, E1, Inv1,AP1,L1)
and A2 = (L2, X2, Act2, E2, Inv2,AP2,L2) with X1∩X2 = ∅ and Act1∩Act2 6= ∅.
We fix A ⊆ Act1 ∩Act2.

Definition 2.1.33. The parallel composition of A1 and A2 on A is the timed
automaton A1 ‖A A2 = (L,X,Act, E, Inv,AP,L) where L, X, Inv, AP and L
are defined as in Definition 2.1.29 and: Act = Act1 ∪ Act2 and E is defined as
follows:

• for each a ∈ A, if l1
a,g1,Y1−−−→ l′1 ∈ E1 and if l2

a,g2,Y2−−−→ l′2 ∈ E2, then

(l1, l2)
a,g1∧g2,Y1∪Y2−−−−−−−−→ (l′1, l

′
2) ∈ E,

• for each a /∈ A, if l1
a,g1,Y1−−−→ l′1 ∈ E1 then for each l2 ∈ L2, (l1, l2)

a,g1,Y1−−−→
(l′1, l2) ∈ E, and

• for each a /∈ A, if l2
a,g2,Y2−−−→ l′2 ∈ E2 then for each l1 ∈ L1, (l1, l2)

a,g2,Y2−−−→
(l1, l

′
2) ∈ E.

We immediately illustrate this definition on an example. It is the railroad
crossing of Example 2.1.19 that can be found in details in [BK08].

Example 2.1.34. We consider again the modelisation of a railroad crossing like
in Example 2.1.19 depicted in Figure 2.2. However this time, we assume that
the system is composed of two components: the train that is approaching the
railroad crossing and the controller that has to lower (resp. raise) the gate when
the train is approaching (resp. leaving) the railroad crossing. Those components
are represented on Figure 2.8 as timed automata Atrain and Acontroller. Then
if we synchronise Atrain and Acontroller on A = {approach, exit} the product
Atrain ‖A Acontroller is the timed automaton Arailroad of Example 2.1.19 depicted

2.1 – Timed automata 33

q0

{far}

q1

{near}

q2

{in}

x1 := 0

approach
en
te
r

2
<
x 1
≤

5x
1 ≤

5
exit

s0

{up}

s1

{up}

s2

{down}

s3

{down}

x2 := 0

approach

exit

x2 := 0

lower
x2 ≤ 2

raise
x2 ≤ 1

Figure 2.8: Timed automata Atrain modelling the train (on the left), and
Acontroller modelling the controller (on the right).

on Figure 2.2, where l0 = (q0, s0), l1 = (q1, s1), l2 = (q1, s2), l3 = (q2, s2) and
l4 = (q0, s3).

Observe that there should also be the edge (q1, s1)
enter−−−→ (q1, s2). This

represents the case where the train has entered the railroad crossing while the
gate was still open. This corresponds to a faulty behaviour. However, this
assumes that clock x2 has waited longer than 2 time units in location s1 i.e. the
controller has waited too long before lowering the gate. This leads to a blocking
state as observed in Example 2.1.19. As said previously in Remark 2.1.17, we
do not consider blocking states, and we hence do not consider such behaviours.
We can thus assume that this edge can never happen.

We now come back the notion of bisimulation on timed automata or more
precisely on the timed-abstract bisimulation (see Definition 2.1.25). Roughly
speaking, a bisimulation is an equivalence relation between states that have sim-
ilar behaviours. Definition 2.1.25 introduces bisimulation as a relation between
states, however it can be extended to a relation between timed automata in a
standard way. It can be done by constructing a disjoint union of two timed au-
tomata and by defining a bisimulation on this disjoint union timed automaton.
We will then say that A1 and A2 are bisimilar if there exists such a bisimula-
tion. We write it A1 ∼ A2. We will be more precise on these techniques when
abording the definition in stochastic timed automata in Chapter 9.

Bisimulation is important when dealing with composition: if two systems
have similar behaviours (i.e. are bisimilar), then when you compose them with
another system, you should still have similar systems (i.e. bisimilar systems).
This is formalised with the next result.

34 Chapter 2 – Background

Theorem 2.1.35. Bisimilarity is a congruence w.r.t. composition. More pre-
cisely: we consider three timed automata A1 = (L1, X1, Act1, E1, Inv1,AP1,L1),
A2 = (L2, X2, Act2, E2, Inv2,AP2,L2) and A = (L,X,Act, E, Inv,AP,L) such
that X1 ∩ X = X2 ∩ X = ∅ and Act1 ∩ Act2 ∩ Act 6= ∅, and we consider
A ⊆ Act1 ∩Act2 ∩Act. Then we have that

• A1 ∼ A2 implies A1 ‖A A ∼ A2 ‖A A, and

• A1 ∼ A2 implies A ‖A A1 ∼ A ‖A A2.

It should be noted that timed-abstraction bisimulation is not the unique
existing notion of bisimulation. In particular in [LY93], the authors provide
several other types of bisimulation, including strong timed bisimulation and weak
timed bisimulation. But we only focus here on timed-abstract bisimulation.

2.2. Denumerable Markov chains

In this section, we introduce the denumerable Markov chain model (DMC for
short) [KSK76] and recall some notions of [ABM07]. We will not prove any
results here as we will provide them later in Chapter 6 in a more general context.

Markov chains are probabilistic transition systems, i.e. transition systems
(see Definition 2.1.4) in which each state is equipped with a distribution over the
set of outgoing edges. In the case of DMCs, the set of states can be infinite but
is, at most, denumerable.

Finite Markov chains (i.e. DMCs with a finite set of states) enjoy a lot of
nice decidability results. Amongst others, we cite [Var85] and [CY88]: in the first
paper, it is shown that the almost-sure model-checking problem of LTL properties
is reduced to structural properties of the underlying graph while in the latter, it
has been shown that the exact probability of LTL properties can be computed.

In [ABM07], the authors are interested in DMCs and allow thus for a denu-
merable set of states. They define the notion of decisiveness. Roughly speaking,
a DMC is decisive w.r.t. a set of states B if it reaches B or a state from which
B can never be reached with probability 1. This notion allows one to lift good
properties from finite Markov chains to denumerable ones. The authors show the
qualitative and quantitative problems for reachability and repeated reachability
properties to be decidable for decisive Markov chains.

The aim of this section is thus to define the notions and present the results
of [ABM07]. We first define the model of DMC and introduce some classical
notions. We assume that the reader is familiar with basic notions of probability
theory (see for instance [Fel66] and [Fel69]).

2.2 – Denumerable Markov chains 35

Definition 2.2.1. A denumerable Markov chain (DMC for short) is a couple
M = (S, P) where S is an at most denumerable set of states and P : S×S → [0, 1]
is the probability transition such that for each s ∈ S,

∑
s′∈S P (s, s′) = 1.

A DMC induces a transition system (see Definition 2.1.4) where the set of
states is S, the alphabet Γ is given by {P (s, s′) | s, s′ ∈ S} and there is a
transition s → s′ if P (s, s′) > 0, which is then labelled with P (s, s′). Note that
if P (s, s′) = 1 we may omit the label on the transition. We can then always
represent a DMC by its transition system. We give now two examples. The first
example is a simple finite Markov chain.

Example 2.2.2. Consider the Markov chain M1 = (S1, P1) depicted in Fig-
ure 2.9. In this example S1 = {s0, s1, s2, s3, s4s5} and P1 is trivially defined as
represented on the figure: for instance, P1(s0, s1) = 0.3 and P1(s4, s5) = 1.

s0

s1

s2

s3

s4

s5

0.4

0.3

0.2

0.5

0.2

0.6
0.8

Figure 2.9: A finite Markov chain M1

The second example is the classical random-walk over the natural number.

Example 2.2.3. The second example is the Markov chain depicted in Fig-
ure 2.10. We consider here M2 = (S2, P2) where

• S2 = N,

• for each i ≥ 1, P2(i, i+ 1) = p and P2(i, i− 1) = 1− p with p ∈]0, 1[, and

• P2(0, 1) = 1.

This represents a random walk over the natural numbers.

Like in timed automata, we can define a run in a DMC M = (S, P): a
finite run is a sequence of states ρ = s0 → s1 → · · · → sn for some n ≥ 0
such that for each 0 ≤ i ≤ n − 1, P (si, si+1) > 0. The definition extends to

36 Chapter 2 – Background

0 1 2 · · ·

1

1− p

p

1− p

p

1− p

Figure 2.10: Random walk over N.

infinite runs trivially. We uniformly write a run as (sk)k∈K where either K = N
or K = {0, . . . , n} for some n ≥ 0. Given a DMC M and a state s, we write
Runs(M, s) for the set of infinite runs starting from s.

A probability measure over the set of infinite runs of a DMC M = (S, P) is
naturally defined. More precisely, fix an initial state s0 ∈ S and given a finite run
starting in s0, ρ = (sk)k∈{0,...,n} for some n ≥ 0, we define the cylinder generated
by ρ as

Cyl(ρ) = {ρ′ = (s′k)k∈N ∈ Runs(M, s0) | ∀0 ≤ i ≤ n, s′i = si},

i.e. the set of infinite runs that have ρ as a prefix. We then define the probability
space (Runs(M, s0),ΩMs0 ,Prob

M
s0) where

• ΩMs0 is the σ-algebra generated by the cylinders starting in s0,

• ProbMs0 is defined as follows: for each finite run ρ = (sk)k∈{0,...,n},

ProbMs0 (Cyl(ρ)) =
∏

0≤i<n
P (si, si+1)

and if n = 0, ProbMs0 (Cyl(ρ)) = 1; thanks to Caratheodory’s extension
theorem, it extends to all measurable sets.

Observe that given ρ = s0s1s2 . . . snsn+1 and ρ′ = s1s2 . . . snsn+1, it holds that

ProbMs0 (Cyl(ρ)) = P (s0, s1) · ProbMs1 (Cyl(ρ′)).

Remark 2.2.4. If we write Runs(M) for the set of infinite runs ofM (here without
a fixed initial state) and ΩM for the σ-algebra generated by all cylinders, observe
that ProbMs0 defines also a probability distribution overs (Runs(M),ΩM). Now
if we fix some initial distribution µ over the set of states S instead of an initial
state, we can define a probability distribution ProbMµ over Runs(M) as follows:
given ρ = s0s1 . . . sn,

ProbMµ (Cyl(ρ)) = µ(s0) · ProbMs0 (Cyl(ρ)).

2.2 – Denumerable Markov chains 37

We illustrate those notions on the previous examples.

Example 2.2.5. In Example 2.2.2 an example of a finite run in the DMC M1

is ρ1 = s0s4s5s4 and an example of infinite run is ρ2 = s0s3s3s3 If we fix s0

as the initial state, we can measure the probability of the cylinder generated by
ρ1 as follows:

ProbM1
s0 (Cyl(ρ1)) = P1(s0, s4) · P1(s4, s5) · P1(s5, s4)

= 0.5 · 1 · 0.8 = 0.4.

In DMC M2 of Example 2.2.3, some examples of finite runs are given by ρ′n =
0 → 1 → . . . → n → n + 1 for each n ≥ 0 and an example of infinite run is
ρ′ = 0 → 1 → . . . → n → n + 1 → Again, if we consider 0 as the initial
state, we can compute:

ProbM2
0 (Cyl(ρ′n)) = P2(0, 1) · P2(1, 2) · . . . · P2(n, n+ 1)

= pn.

The σ-algebra generated by the cylinders allows one to express a rich variety
of sets of runs, including sets of runs satisfying a given property expressed in
LTL (see [Var85]). For the purpose of the section, we consider LTL formulas over
the set of states S:

ϕ ::= B | ϕ1 ∧ ϕ2 | ¬ϕ | ϕ1 Uϕ2 ,

where B ⊆ S, ϕ, ϕ1 and ϕ2 are LTL formulas. The satisfaction relation is then
defined as follows. Given an infinite run ρ = s0s1s2 . . . ∈ Runs(M), writing
ρ≥i = sisi+1si+2 . . . ∈ Runs(M) for each i ≥ 0, it holds that

ρ |= B ⇐⇒ s0 ∈ B
ρ |= ϕ1 ∧ ϕ2 ⇐⇒ ρ |= ϕ1 and ρ |= ϕ2

ρ |= ¬ϕ ⇐⇒ ρ 2 ϕ
ρ |= ϕ1 Uϕ2 ⇐⇒ ∃i ≥ 0 s.t. ρ≥i |= ϕ2 and ∀0 ≤ j < i, ρ≥j |= ϕ1.

It holds that those formulas are measurable ([Var85]). Given a formula ϕ and
given an initial state s0, we will simply write ProbMs0 (ϕ) for the probability of
the set of infinite runs starting in s0 and satisfying ϕ. We will also use classical
notations like: > = S; ⊥ = ∅; ϕ1 ∨ ϕ2 = ¬(¬ϕ1 ∧ ¬ϕ2); Fϕ = >Uϕ; Gϕ =
¬F (¬ϕ).

We will also consider CTL-like notations in order to define some set of states.
Given an LTL formula ϕ, we define state formulas ∃ϕ and ∀ϕ. Their semantics
is given as follows:

38 Chapter 2 – Background

s |= ∃ϕ ⇐⇒ ∃ρ ∈ Runs(M, s) s.t. ρ |= ϕ

s |= ∀ϕ ⇐⇒ ∀ρ ∈ Runs(M, s), ρ |= ϕ

With such a probabilistic model, one is then interested with the qualitative
and quantitative model-checking problems. These problems are not only interest-
ing for DMCs. All probabilistic systems on which a distribution over the set of
runs can be defined, is concerned with those. We define it here for DMCs and
LTL formulas, but we will see in Chapters 3 and 4 how this is straightforwardly
extended to other probabilistic models.

Definition 2.2.6. Given a DMC M, an initial state s0 and an LTL formula ϕ,
the qualitative model-checking problem aims at verifying whether ProbMs0 (ϕ) = 1

or not, or ProbMs0 (ϕ) = 0 or not.

This is also called the almost-sure model-checking problem (resp. the 0-
model-checking problem).

Definition 2.2.7. Given a DMC M, an initial state s0 and an LTL formula ϕ,
the quantitative model-checking problem aims at computing an approximation of
ProbMs0 (ϕ).

As said earlier, those problems are shown to be decidable for finite Markov
chains in [Var85] and [CY88]. For DMCs, those problems are analysed for reach-
ability and repeated reachability properties in [ABM07] and are shown to be
decidable under some hypotheses. In order to present these results, we need first
to introduce some notions.

2.2.1 Attractors

In this section, we recall the notion of attractor in DMCs.

Definition 2.2.8. Let M = (S, P) be a DMC. A set A ⊆ S is an attractor if
for each s ∈ S, ProbMs (FA) = 1.

In other words, A is an attractor if it is reachable with probability 1 from
each state of the DMC. Note that all DMCs have an attractor by taking the
trivial one: A = S. We have a first important result on attractors.

Proposition 2.2.9. If A is an attractor of DMC M = (S, P), it holds that for
each s ∈ S, ProbMs (G FA) = 1.

2.2 – Denumerable Markov chains 39

We will have a particular interest for finite attractors, when considering a
DMC with an infinite set of states. An attractor of interest for a finite Markov
chain is the union of all bottom strongly connected components (written BSCC
for short).

Let us give a short reminder on BSCCs. A finite Markov chain can be asso-
ciated with an oriented graph (V,E), in which the set of vertices V is the set of
states and the edges of E are given by the transitions of the induced transition
system. Then we say that B ⊆ S is strongly connected if for each pair of states
s, s′ ∈ B there exists a finite run starting in s and ending in s′ and vice-versa. A
strongly connected component (SCC for short) is a maximal strongly connected
set of vertices. Finally, a bottom strongly connected component is a SCC that
you cannot leave once reached: C is a BSCC if it is a SCC and moreover, for
each s ∈ C and s′ ∈ s, (s, s′) ∈ E implies s′ ∈ C.

Given a finite Markov chain M, we write BSCC(M) for the set of BSCCs of
the oriented graph associated with M. We then have this standard result:

Proposition 2.2.10. Let M = (S, P) be a finite Markov chain. It holds that
the union of all BSCCs of M is an attractor: {s ∈ S | ∃B ∈ BSCC(M), s ∈ B}
is an attractor.

We illustrate the previous notions and results on Examples 2.2.2 and 2.2.3.

Example 2.2.11. Consider the finite Markov chainM1 of Example 2.2.2. This
Markov chain has two BSCCs: {s1, s2} and {s3}; and observe that {s0, s4, s5}
forms a SCC. From Proposition 2.2.10, we thus get that {s1, s2, s3} is an attractor
for M1.

Consider now the random-walk of Example 2.2.3. Here, the set of states is
infinite, we therefore cannot speak of the BSCCs of M2. If p > 1/2, it can be
shown thatM2 has no finite attractor. Indeed, classical results on random-walks
state that for each n ≥ 0, ProbM2

n+1(F {n}) < 1. Now if p ≤ 1/2, it holds that
{0} is an attractor. And we can infer that any bounded subset A ⊆ N is an
attractor.

2.2.2 Decisiveness

We are now able to present the notions and results of [ABM07]. It relies on a
notion of decisiveness. Roughly speaking, a DMC M is decisive w.r.t. a set of
states B if for each state s, the probability to reach B or a state from which
B can never be visited equals 1. This notion of decisiveness allows to lift good
properties of finite Markov chains to DMCs.

Given a set of states B ⊆ S we define ‹B = {s ∈ S | s 2 ∃FB} i.e. ‹B denotes
the set of states from which B can never be reached.

40 Chapter 2 – Background

Definition 2.2.12. Let M = (S, P) be a DMC and B ⊆ S be a set of states.
We say that M is decisive w.r.t. B if ProbMs (FB ∨ F ‹B) = 1 for each state
s ∈ S. Similarly, we say that M is strongly decisive w.r.t. B if for each s ∈ S,
ProbMs (G FB ∨ F ‹B) = 1.

It is proven in [ABM07, Lemma 3.2] that the two notions are equivalent for
DMCs. But both notions give interesting behaviours: the notion of decisive-
ness asks that the set of runs that can always reach B but never reach it is
almost-surely empty (i.e. it has a null probability), while the notion of strong
decisiveness requires that the set of runs that can always reach B but only reach
it finitely many times is almost-surely empty. Observe that it is obvious that
all DMCs are decisive (and thus strongly decisive) w.r.t. to the set of all their
states, but this is often not very interesting.

There is a link between finite attractors and decisiveness ([ABM07, Lemma
3.4]).

Proposition 2.2.13 ([ABM07]). Let M = (S, P) be a DMC and A ⊆ S a set
of states. If A is a finite attractor of M then M is decisive w.r.t. any set of
states B.

This implies that all finite Markov chains are decisive w.r.t. any set of states.
Let us come back to Examples 2.2.2 and 2.2.3.

Example 2.2.14. Observe the DMC M1 of Example 2.2.2. Consider the set
of states B = {s0, s4, s5}. Since B1 = {s1, s2} and B2 = {s3} are BSCCs, it is
trivial to get that ‹B = B1∪B2. Notice also that ›B1 = B2 and ›B2 = B1. Finally,
since M1 is finite, we get that M1 is decisive (and thus strongly decisive) w.r.t.
any set of states.

Now let us study the random-walk M2 of Example 2.2.3. First of all, since
the chain is strongly connected, we get that for each B ⊆ N, ‹B = ∅. Now let us
recall the observations of Example 2.2.11. If p > 1/2,M2 has no finite attractor
and thus we cannot infer anything from Proposition 2.2.13. As mentioned before,
in this case we get that for any bounded set of states B, there exists a state s ∈ S
such that ProbM2

s (FB) < 1. And since ‹B = ∅, we get that M2 is not decisive
w.r.t. B. Now if p ≤ 1/2, M2 has a finite attractor. Proposition 2.2.13 allows
hence to establish that in this case, M2 is decisive w.r.t any set of states.

As said before, decisiveness allows to lift good properties of finite Markov
chains to denumerable ones. In [ABM07], the authors are invested in qualita-
tive and quantitative model-checking problems (Definitions 2.2.6 and 2.2.7) for
reachability and repeated reachability problems. They have the following results:

2.2 – Denumerable Markov chains 41

• under some decisiveness assumptions, the qualitative model-checking prob-
lems for reachability and repeated reachability are reduced to structural
properties on the underlying graph;

• under some decisiveness and effectiveness assumptions, there exist algo-
rithms which are correct and terminate, that approximate the probability
of reachability and repeated reachability properties, i.e. the quantitative
model-checking problems for reachability and repeated reachability prob-
lems are decidable.

We will now list precisely those results. We fix a DMC M = (S, P) and a set of
states B ⊆ S. The first result concerns the qualitative problem of reachability
properties. It corresponds to Lemmas 5.1 and 5.2 of [ABM07].

Proposition 2.2.15 ([ABM07]). For each initial state s0 ∈ S, it holds that:

• ProbMs0 (FB) = 1 implies s0 2 ∃(¬BU ‹B);

• if M is decisive w.r.t. B, then s0 2 ∃(¬BU ‹B) implies ProbMs0 (FB) = 1.

It states that, under a decisiveness assumption, it cannot be the case that a
given set of states B is reached with probability 1 but that ‹B is reached through a
run that never visits B beforehand. This reduces the almost-sure model-checking
problem of reachability properties to the non-satisfaction of an “Until” formula
on the underlying graph. There is also a result in [ABM07] about the 0-model-
checking problem (does a formula have probability 0 or not?) of reachability
properties: it is reduced to the non-satisfaction of a reachability property. It
corresponds to Lemma 5.8.

Proposition 2.2.16 ([ABM07]). For each initial state s0 ∈ S, ProbMs0 (FB) = 0

if and only if s0 2 ∃FB (i.e. s0 ∈ ‹B).

The next result is about the repeated reachability qualitative model-checking

problem. Observe that by definition, it holds that
˜̃
B = {s ∈ S | s 2 ∃F ‹B}, i.e.

it is the set of states from which ‹B can never be reached. The following result
corresponds to Lemmas 6.1 and 6.2 of [ABM07].

Proposition 2.2.17 ([ABM07]). For each initial state s0 ∈ S, it holds that:

• ProbMs0 (G FB) = 1 implies s0 |= ∀G∃FB;

• if moreover M is strongly decisive w.r.t. B, then s0 |= ∀G∃FB implies
ProbMs0 (G FB) = 1.

42 Chapter 2 – Background

It states that, under a strong decisiveness assumption, a set of states B is
visited infinitely often with probability 1 if and only if B can always be reached
or, equivalently, ‹B can never be reached: indeed observe that s0 |= ∀G∃FB is

equivalent to s0 ∈
˜̃
B. This reduces the almost-sure model-checking problem of

repeated reachability properties to the non-satisfaction of a certain reachability
formula (to reach ‹B) on the underlying graph. There is also a result that reduces
the positive model-checking problem (i.e. similar to Definition 2.2.6, except here
the question is: is ProbMs0 (ϕ) > 0 or not?) of repeated reachability properties to
the satisfaction of a reachability property in the underlying graph; it corresponds
to Theorem 6.11 of [ABM07].

Theorem 2.2.18 ([ABM07]). For each initial state s0 ∈ S, it holds that

• if M is decisive w.r.t. B, then s0 |= ∃F
˜̃
B implies ProbMs0 (G FB) > 0;

• if moreover M is decisive w.r.t. B and w.r.t. ‹B, then ProbMs0 (G FB) > 0

implies s0 |= ∃F
˜̃
B.

Remark 2.2.19. Observe that decisiveness w.r.t. a set of states B does not imply
decisiveness w.r.t. ‹B.

All those previous results show thus that qualitative model-checking problems
of reachability and repeated reachability problems can be reduced to structural
properties on the underlying graph. It can thus be decided thanks to algorithms,
but some effectiveness assumptions are required in order to make the computa-
tions possible. We do not give the details here however in [ABM07], the authors
give classes in which the algorithms are solvable.

We consider now the quantitative model-checking problems for reachability
and repeated reachability properties. Given a set of states B and an initial
state s0, the objective is to approximate the exact values of ProbMs0 (FB) and

ProbMs0 (G FB). In [ABM07], the authors provide algorithms that approximate
the probability of reachability and repeated reachability properties, and prove
that those are correct and terminate under some decisiveness assumptions. We
do not recall them here, however we will give the intuition of those algorithms.

For reachability properties, the algorithms takes as input the DMC M, an
initial state s0, a set of states B and a rational ε > 0 and computes a value θ
such that θ ≤ ProbMs0 (FB) < θ + ε. The algorithm runs as follows: the DMC is
unfolded from the initial state and the algorithm check whether in a given state
s: (a) s ∈ B, or (b) s ∈ ‹B, or (c) s /∈ B and s /∈ ‹B. In case (a) the objective is
reached. The probability of the run leading to s from s0 is computed and added
to some variable Y es, the unfolding is stopped there. In case (b) it is known

2.3 – Continuous-time Markov chains 43

that B cannot be reached anymore and so the probability of the run leading to
s from s0 is computed and added to some other variable No, and the unfolding
is stopped. Finally in case (c), the unfolding is continues. Observe that along
the algorithm, it is always the case that Y es ≤ ProbMs0 (FB) ≤ 1 − No. The
algorithm runs until the difference between Y es and 1−No is less than ε and it
returns Y es.

The algorithm for repeated reachability properties is very similar except that

Y es is incremented in the case where s ∈ ˜̃
B: Proposition 2.2.17 states that

under a strong decisiveness assumption, if s ∈ ˜̃B then ProbMs (G FB) = 1. The
condition to increment No does not change. And the condition to stop the
algorithm is the same, the algorithm returns again Y es.

We can then summarize the results of [ABM07] as follows.

Proposition 2.2.20 (Lemmas 7.1 and 7.2 of [ABM07]). Given an initial state
s0 ∈ S and ε > 0 there exists an algorithm that computes θ such that θ ≤
ProbMs0 (FB) ≤ θ + ε. Moreover if M is decisive w.r.t. B, then the algorithm
terminates.

Proposition 2.2.21 (Lemmas 8.1 and 8.2 of [ABM07]). Given an initial state
s0 ∈ S and ε > 0, if M is strongly decisive w.r.t. B, there exists an algorithm
that computes θ such that θ ≤ ProbMs0 (G FB) ≤ θ+ε. Moreover ifM is decisive

w.r.t. ‹B, then the algorithm terminates.

In order to be able to apply those algorithms, it has to be able to check

whether a state is in ‹B or in
˜̃
B. The authors of [ABM07] thus need some effec-

tiveness assumptions. They provide also several classes in which the algorithms
can be applied.

The objectives of Chapters 4, 5 and 6 will be to extend those notions and
results to a richer class of probabilistic transition systems and to richer proper-
ties. And we will then see in Chapter 7 how it can be applied to our model of
interest, that mixes probabilistic and timed aspects.

2.3. Continuous-time Markov chains

In this section, we briefly introduce the continuous-time Markov chain model
(CTMC for short) [Fel69], which can be seen as a first step in a mix between
timed systems and probabilistic behaviours. We will see in Chapter 3 how this
is done for the STA model.

As defined in Section 2.2, a DMC is a probabilistic transition system over a
denumerable set of states. This gives rise to a set of runs defined by the set of

44 Chapter 2 – Background

infinite sequences of states such that there is a non null probability between two
consecutive states. Note that here, we observe the state of the execution only at
discrete time: if ρ = (sn)n∈N is a run of DMCM, sn corresponds to the state of
the system at step n. Hence the time is somehow discrete.

In CTMCs, we assume that time evolves continuously and that the elapse of
time follows exponential distributions. Hence here, we will as well be interested
in the states that are visited along the executions, but also in the time it takes
to move from one state to another one. The model enjoys also nice decidability
results. We cite for instance [BHHK03] in which the authors proved that CTMCs
are decidable for the model-checking problem of CSL properties.

We define here the syntax of the model, we will then briefly explain the
semantics of this continuous model and then we will illustrate it on a simple
example.

Definition 2.3.1. A continuous-time Markov chain (CTMC for short) is a cou-
ple M = (S,R) where S is a finite set of states and R : S × S → R+ is the
rate function transition that satisfies: for each s ∈ S, there is s′ ∈ S such that
R(s, s′) > 0.

We follow here the definition of [BHHK03] where self-loops are possible: for
each state s, we allow R(s, s) > 0 while sometimes, you will find R(s, s) =
−∑s′ 6=sR(s, s′).

Like in DMCs (see Section 2.2), a CTMC induces a transition system (see
Definition 2.1.4) where the set of states is S, the alphabet Γ is given by {R(s, s′) |
s, s′ ∈ S} and there is a transition s → s′ if R(s, s′) > 0, which is then labelled
with R(s, s′). A CTMC can thus also be represented by its transition system.
We give now a simple example that we will use in the rest of the section in order
to describe the semantics of CTMCs.

Example 2.3.2. We consider the CTMCM = (S,R) described on Figure 2.11,
where S = {0, . . . , n} and where the rate function R is defined as follows:

• R(0, 1) = λ, R(n, n− 1) = ν, and

• for each 0 < i < n, R(i, i+ 1) = λ and R(i, i− 1) = ν,

where λ, ν > 0. This represents a queuing system with a single queue, parameters
λ for arrivals and ν for serving times, and a maximum of n tasks in the queue.
We will describe the behaviour of this system in Example 2.3.3.

We now explain the semantics of CTMCs. We fix a CTMC M = (S,R).
For each s ∈ S, we write R(s) =

∑
s′∈S R(s, s′) > 0 from Definition 2.3.1. As

2.3 – Continuous-time Markov chains 45

0 1 2 · · · n

λ

ν

λ

ν

λ

ν

λ

ν

Figure 2.11: A queuing system with a maximum of n tasks.

explained previously, we allow time to evolve continuously. Then starting from
a given state s, we are interested in the amount of time the system stays in s
before performing some transition. Intuitively, R(s, s′) corresponds to the rate at
which transition s→ s′ is taken, and thus R(s) is the rate at which a transition
is taken from s: this will describe how we can measure the time spent in state s.

Given states s and s′ such that R(s, s′) > 0, we assume that the time needed
before performing transition s→ s′ follows an exponential distribution of param-
eter R(s, s′) (written Exp(R(s, s′))1). More precisely, the probability to perform
transition s→ s′ within t time units is given by 1− e−R(s,s′)t.

Then given a state s, if there are several states s′ such that R(s, s′) > 0,
we assume that there is a competition between the outgoing transitions from s.
It is known as the race condition. This is performed as follows: for each state
s′ with R(s, s′) > 0, pick a time ts′ according to the exponential distribution
Exp(R(s, s′)). Then, the time after which we leave state s, i.e. we perform a
transition, is given by the minimum of those times: min({ts′ | R(s, s′) > 0}).
It follows that the time of sojourn in state s follows the distribution defined as
the minimum of all exponential distributions Exp(R(s, s′)) with R(s, s′) > 0.
This corresponds to the distribution2 Exp(R(s)). Finally, the probability that
transition s→ s′ wins the race within t time units, corresponds to the value:

P(s, s′, t) =
R(s, s′)

R(s)
· (1− e−R(s)t).

We will abusively write P(s, s′,∞) for the probability that transition s → s′

wins the race at some point in the future. It is equal to R(s, s′)/R(s). We briefly
illustrate this on Example 2.3.2.

Example 2.3.3. We consider again the CTMCM of Example 2.3.2 represented
on Figure 2.11. As stated before, this corresponds to a queuing system. We start

1Recall that distribution Exp(µ) is given by the density function f(t) = µe−µt, i.e. for each
Borel set A, (Exp(µ))(A) =

∫
A
µe−µt dt.

2The minimum of two exponential distributions of parameters µ1, µ2 > 0 is the exponential
distribution of parameter µ1 + µ2.

46 Chapter 2 – Background

at state 0 with 0 task in the queue. Then, the probability that the first task
arrives in the queue within t time units is given by 1 − e−λt. Once there is one
task in the queue, two actions are possible: either a new task can arrive in the
queue (1 → 2) or the task can be done (and thus be removed of the queue:
1→ 0). In any case, the probability that something happens within t time units
is given by

1− e−(λ+ν)t.

It should be observed that with probability 1, something will eventually happen.
Then the condition race described above allows to establish that the probability
that a new task arrives within t time units, is given by

P(1, 2, t) =
λ

λ+ ν
· (1− e−(λ+ν)t)

and the probability that the task is done within t time units, is given by

P(1, 2, t) =
ν

λ+ ν
· (1− e−(λ+ν)t).

This behaviour is repeated in each state of the CTMC, until state n where it is
only possible to remove a task from the queue.

We terminate this section with a remark on the link between CTMCs and
DMCs.

As already said previously, this model allows to measure the time spent in
each state. However, one can abstract time in order to only consider the jumps
in the system, i.e. the moments at which a transition is performed. This leads to
the construction of a finite Markov chain which is, in some sense, equivalent to a
given CTMC. This will be central in Part I when we will consider more general
stochastic processes (Chapter 4) where it will be easier to check some properties
on simpler models (Chapters 5 and 6) and it is comparable to the region graph
for timed automata (see Section 2.1.1).

Given a CTMCM = (S,R), one can build the DMCM∗ = (S, P) where for
each s, s′ ∈ S,

P (s, s′) =
R(s, s′)

R(s)
.

We say that M and M∗ are equivalent in the sense that for each transition
s→ s′,

P(s, s′,∞) = P (s, s′).

A consequence of this equivalence is that the probability of LTL properties is the
same in M and M∗. Therefore, the results on the qualitative and quantitative

2.4 – Composition and interactive Markov chains 47

model-checking problems of LTL properties for finite Markov chains of [Var85]
and [CY88] can also be applied to CTMCs. Observe thus that LTL properties
cannot express bounds on the time of sojourn in the different states. The logic
CSL however, allows the expression of time-bounded properties. In [BHHK03],
the authors showed CTMCs to be decidable for the qualitative and quantitative
model-checking problem of CSL properties.

2.4. Composition and interactive Markov chains

In this section, we briefly introduce the discussion on composition in [HZ11].
We will see that concurrent systems can be composed with full synchronisations
(DMCs), interleaving (CTMCs) or handshaking. The latter case will reveal to be
the most interesting and will lead to the interactive Markov chains model [Her02].
This will be the subject of Section 2.4.2.

2.4.1 Composition of general transitions systems and applica-
tion to DMCs and CTMCs

In this section, we follow [HZ11] in order to give an overview on composition in
transition systems.

We fix for the section two transitions systems T1 = (Q1,Γ1,→1) and T2 =
(Q1,Γ2,→2). The way we want to compose T1 and T2, depends on how the real
systems they depict, behave. We give here the three types of composition that
are discussed in [HZ11]. Still following [HZ11], we explain which variants suit
better for DMCs and CTMCs.

Firstly, requiring that Γ1 = Γ2 = {a}, composition can be done with full
synchronisation. This gives rise to the product T1 ‖fs T2 = (Q1 × Q2, {a},→)

where→ is defined as follows: for any states q1 ∈ Q1 and q2 ∈ Q2, if q1
a→1 q

′
1 and

q2
a→2 q

′
2, then (q1, q2)

a→ (q′1, q
′
2). Here it is assumed that the two transitions are

executed at the same time. The unique label here, is to make the synchronisation
plain. However, one could assume that Γ1 6= Γ2 and T1 ‖fs T2 = (Q1×Q2,Γ,→)
would be defined as follows: Γ is an alphabet that suits the best for T1 ‖fs T2 and

for any states q1 ∈ Q1 and q2 ∈ Q2, q1
a→ q′1 and q2

b→ q′2 imply (q1, q2)
c→ (q′1, q

′
2)

for some c ∈ Γ.

Secondly, one could assume that T1 and T2 run independently from each
other, hence the product should describe all possible transitions: T1 ‖ T2 =
(Q1 ×Q2,Γ1 ∪ Γ2,→) where → is defined as follows: if q1

a→1 q
′
1 then (q1, q2)

a→
(q′1, q2) and if q2

a→2 q′2 then (q1, q2)
a→ (q1, q

′
2). Here, each transition of the

product corresponds thus to one transition of one of the two systems. We do not

48 Chapter 2 – Background

consider the case where the two systems could, on a coincidence, evolve towards a
new state at the same time. This is the interleaving product. In Section 2.1.3, we
chose this type in order to define a first composition operator in timed automata
(see Definition 2.1.29).

Lastly, we consider the handshaking composition. Both previous cases are
limited as they do not allow a mix between independence and communication:
two systems could be running independently for a while, but exchanging informa-
tion at some points. The handshaking composition treats this case. Here we as-
sume to have a set of labels A ⊆ Γ1∩Γ2 6= ∅, on which the systems will be commu-
nicating. This leads to the parallel composition T1 ‖A T2 = (Q1×Q2,Γ1∪Γ2,→)
where→ is defined as follows: if a ∈ A, the composition is synchronised as in the
first case; if a /∈ A, then the composition is interleaving as in the second case.
Formally, for each a ∈ Γ1 ∪ Γ2, for each q1 ∈ Q1 and q2 ∈ Q2,

• if a ∈ A, q1
a→1 q

′
1 and q2

a→2 q
′
2, then (q1, q2)

a→ (q′1, q
′
2),

• if a /∈ A and q1
a→1 q

′
1, then (q1, q2)

a→ (q′1, q2), and

• if a /∈ A and q2
a→2 q

′
2, then (q1, q2)

a→ (q1, q
′
2).

This handshaking composition encompass all three types: if A = Γ1 = Γ2,
then we get the composition with full synchronisation; if A = ∅, we get the
interleaving composition! We also call the handshaking composition by (parallel)
composition with synchronisations. In timed automata, the composition with
synchronisations of Definition 2.1.33 corresponds to this case.

We now briefly explain which types of composition suit better for DMCs and
CTMCs (see [HZ11]).

DMCs. We fix two DMCs M1 = (S1, P1) and M2 = (S2, P2) and we recall

that each DMC induces a transition system in which s1
p1→1 s′1 if and only if

P1(s1, s
′
1) = p1 > 0 and similarly, s2

p2→2 s
′
2 if and only if P2(s2, s

′
2) = p2 > 0.

It has been shown in [HZ11] that here, composition with fully synchronisation
makes sense: M1 ‖fsM2 = (S1×S2, P) where P ((s1, s2), (s′1, s

′
2)) = P1(s1, s

′
1) ·

P2(s2, s
′
2), i.e. if s1

p→1 s
′
1 and s2

q→ s′2, then (s1, s2)
pq→ (s′1, s

′
2). This can be

explained through the product of two independent stochastic processes.

CTMCs. We now consider two CTMCs M1 = (S1, R1) and M2 = (S2, R2)

and we recall that each CTMC induces again a transition system in which s1
λ1→ s′1

if and only if R(s1, s
′
1) = λ1 > 0, and similarly (s2

λ2→ s′2 if and only if R(s2, s
′
2) =

2.4 – Composition and interactive Markov chains 49

λ2 > 0. It has again been shown in [HZ11] that here, interleaving composi-
tion makes sense: M1 ‖ M2 = (Q1 × Q2, R) where: R1(s1, s

′
1) > 0 implies

R((s1, s2)(s′1, s2)) = R1(s1, s
′
1), and R2(s2, s

′
2) > 0 implies R((s1, s2), (s1, s

′
2)) =

R2(s2, s
′
2). This again can be observed through the product of two independent

stochastic processes and comes from the nice memoryless properties of exponen-
tial distributions.

2.4.2 Interactive Markov chains

In this section, we present the Interactive Markov chain model (IMC for short)
[Her02]. They were first introduce as process algebras. As it is not the purpose
of this thesis, we will introduce the model as defined in [HK09] which presents
the model through transition systems.

IMCs can, roughly speaking, be seen as CTMCs in which we add non-
determinism through some non-probabilistic transitions, that we call interac-
tive transitions. As explained in [HZ11], those interactive transitions will allow
to add some communication between the systems when composing them. In
other words this will allow to extend the interleaving composition of CTMCs
into a handshaking composition which is more interesting (see Section 2.4.1).
The compositional framework for verification that comes with IMCs is very nice:
for instance in [HK09], the authors provide techniques in order to approximate
time-bounded reachability properties in this setting with non-determinism.

Here, we will define the model and define the notion of composition. We will
then explain the semantics of the model. Finally, we will present a notion of
bisimulation that will be a congruence w.r.t. composition, which is important
when dealing with composition (as already discussed in Section 2.1.3).

Definition 2.4.1. An interactive Markov chain is a tuple M = (S,Γτ , R,�)
where

• S is a finite set of states,

• Γ is a set of actions, τ is an internal action and Γτ = Γ ∪ {τ},

• R : S × S → R+ is rate function transition, and

• � ⊆ S × Γτ × S is a set of interactive transitions.

This again induces a transition system (see Definition 2.1.4), where the set
of states is S, the alphabet is given by Γτ ∪ {R(s, s′) | s, s′ ∈ S} and there is a
transition s→ s′ if

• R(s, s′) > 0, in which case the transition is labelled with R(s, s′), or

50 Chapter 2 – Background

• there exists a ∈ Γτ such that (s, a, s′) ∈�, in which case it is labelled with
a.

In the sequel, we will write s
a
� s′ instead of (s, a, s′) ∈�. The transitions gen-

erated by the rate function are called Markovian transition while the transitions
generated by � are calle interactive transitions. The internal action τ is here in
order to have a distinction with the actions of Γ. Internal actions cannot be seen
by other systems, hence one should not be able to synchronise on them. We will
come back to that later. We will call the actions of Γ external.

We illustrate this on two simple examples.

Example 2.4.2. We consider two simple IMCs M1 = (S1,Γ
τ , R1,�1) and

M2 = (S2,Γ
τ , R2,�2) where Γ = {a}, S1 = {s1, s2}, S2 = {s′1, s′2, s′3} and the

rate functions and the interactive transitions are described on Figure 2.12 (λ, µ
and ν are all positive and non null rates).

s1 s2 s′1 s′2 s′3

λ

a

a

ν

λ

τ

µ

Figure 2.12: Two simple IMCs M1 (on the left) and M2 (on the right).

The internal action τ has a special role. Interactive transitions labelled with
τ are not subject to interaction as they depict internal actions which can thus
not be seen by other systems. Following [HK09], we will make an essential as-
sumption: we suppose that in any IMC, internal interactive transitions take
precedence over Markovian transitions. This is called the maximal progress as-
sumption. It in fact assumes that τ -labelled transitions take place immediately.
This assumption will be essential for the rest of this section.

We are not yet ready to give the semantics of an IMC. Indeed, as said before,
interactive transitions with external actions wait for some other system(s) to
synchronise on them. Hence, while the synchronisation cannot be made, the
system should not be able to run (or otherwise should be blocked once it waits
for a synchronisation that will never happen). Hence we need first to define an
operator of composition. Then, once actions do not need to be synchronised
anymore, we will abstract those actions into the internal action τ . This will be
done with a hiding operator. Finally, we will say that a system is complete, when
all external actions have been hidden, i.e. when all synchronisations needed can
be done.

2.4 – Composition and interactive Markov chains 51

Definition 2.4.3. Let M1 = (S1,Γ
τ
1 , R1,�1) and M2 = (S2,Γ

τ
2 , R2,�2) be

two IMCs and fix A ⊆ Γ1 ∩ Γ2. The parallel composition of M1 and M2 on A
is the IMC M1 ‖AM2 = (S,Γτ , R,�) where:

• S = S1 × S2 and Γ = Γ1 ∪ Γ2,

• the rate function R is defined as follows: for each states s = (s1, s2) and
s′ = (s′1, s

′
2) ∈ S,

. R(s, s′) = R1(s1, s
′
1) +R2(s2, s

′
2) if s = s′,

. R(s, s′) = R1(s1, s
′
1) if s 6= s′ and s2 = s′2,

. R(s, s′) = R2(s, s′) if s 6= s′ and s1 = s′1,

. R(s, s′) = 0 otherwise;

• � is defined as follows:

. if a ∈ A, s1
a
�1 s

′
1 and s2

a
�2 s

′
2, then (s1, s2)

a
� (s′1, s

′
2),

. if a /∈ A and s1
a
�1 s

′
1, then for each s2 ∈ S2, (s1, s2)

a
� (s′1, s2),

. if a /∈ A and s2
a
�1 s

′
2, then for each s1 ∈ S1, (s1, s2)

a
� (s1, s

′
2).

On can see from the definition that the parallel composition is interleav-
ing on the rates just like in CTMCs. The definition of the new rate function
R comes from the memoryless property of exponential distributions, again like
in CTMCs. We will be more precise in Chapter 9, when tackling the defini-
tion of a composition operator in stochastic timed automata. Observe that the
first item of the definition of R deals with self-loops: if R1(s1, s1) = µ1 and
R2(s2, s2) = µ2, then we have a single self-loop in M1 ‖A M2 corresponding
to R((s1, s2), (s1, s2)) = µ1 + µ2, instead of two distinct self-loops. Observe
also that it is not allowed to synchronise on τ . We illustrate this definition on
Example 2.4.2.

Example 2.4.4. We consider IMCs M1 and M2 of Example 2.4.2 depicted
on Figure 2.12. Then the parallel composition of M1 and M2 w.r.t. {a}, i.e.
M1 ‖{a}M2, is the IMC described on Figure 2.13.

We now define the hiding operator of a set of external actions on an IMC.

Definition 2.4.5. LetM = (S,Γτ , R,�) be an IMC and fix A ⊆ Γ. The hiding
of M w.r.t. A is the IMC M\ A = (S,Γτ \ A,R,�∗) where �∗ is defined as
follows:

• if a ∈ A and s
a
� s′, then s

τ
�∗ s′, and

52 Chapter 2 – Background

(s1, s
′
1)

(s2, s
′
1)

(s1, s
′
2)

(s2, s
′
2)

(s1, s
′
3)

(s2, s
′
3)

λ a

λ

λ

λ

λ

ν

ν

τ

τ

µ

µ

Figure 2.13: IMC M1 ‖1 M2.

• if a /∈ A and s
a
� s′, then s

a
�∗ s′.

Example 2.4.6. If we consider the IMC M1 ‖{a}M2 of Figure 2.13 in Exam-
ple 2.4.4, the hiding of this IMC w.r.t. {a} is the IMC (M1 ‖{a}M2)\{a} which
is exactly the same as the initial one described in Figure 2.13, except that the

interactive transition (s2, s
′
1)

a
� (s1, s

′
2) becomes (s2, s

′
1)

τ
�∗ (s1, s

′
2).

Before going further on the semantics that we can induce from the previous
notions, we define a notion of bisimulation which will be an inspiration when
defining such a notion in stochastic timed automata. We refer to Section 2.1.3
for a short discussion on bisimulations. Given a relation R ⊆ S × S, we write
sRs′ for (s, s′) ∈ R. Given an IMC M, s ∈ S and C ⊆ S, we write R(s, C) =∑
s′∈C R(s, C).

Definition 2.4.7. Given an IMCM = (S,Γτ , R,�), R is a bisimulation forM
if it is an equivalence relation on S and if for each couple of states sRs′ and for
each equivalence class C ∈ R/S,

• for each a ∈ Γτ , if there is s1 ∈ S such that s
a
� s1, then there is s′1 ∈ S

such that s′
a
� s′1 and s1Rs′1;

• if for all s1 ∈ S, we do not have s
τ
� s1, then R(s, C) = R(s′, C).

Observe that since R is an equivalence relation, the first item holds in both
senses and that there are no interactive edges labelled with τ from s if and only
if there are no such edges from s′. The fact that the equality between the rate
functions holds true only when no internal interactive transitions are enabled,
comes from the maximal progress assumption. We say that two states s and s′

are bisimilar if there exists a bisimulation R for M such that sRs′.

2.4 – Composition and interactive Markov chains 53

As explained in Section 2.1.3, bisimulation can be extended to a relation
between IMCs in a standard way. We say that M1 and M2 are bisimilar if
there exists a bisimulation between M1 and M2. We write it M1 ∼ M2.
Again as said previously, we will be more precise on the subject when defining
composition in stochastic timed automata (see Chapters 9 and 10).

We get then get the next result (see Section 2.1.3 for a short explanation on
why congruence is important in composition) [Her02].

Theorem 2.4.8. Bisimilarity is a congruence w.r.t. composition and hiding.
More precisely: fix M1 = (S1,Γ

τ
1 , R1,�1), M2 = (S2,Γ

τ
2 , R2,�2) and M =

(S,Γτ , R,�) three IMCs, fix A ⊆ Γ1 ∩Γ2 ∩Γ and fix A′ ⊆ Γ1 ∩Γ2, then we have
that

• M1 ∼M2 implies M1 ‖AM∼M2 ‖AM,

• M1 ∼M2 implies M ‖AM1 ∼M ‖AM2, and

• M1 ∼M2 implies M1 \A′ ∼M2 \A′.

An IMCM is said complete whenever all interactive transitions are internal.
In particular, once we have composed multiple IMCs leading to an IMC that
do not require any more interactions, then we can hide all actions leading to
a complete IMC. Concretely, assume that we have Mi = (Si,Γ

τ
i , Ri,�i) for

i ∈ {1, . . . , n} and that the system

M1 ‖A1 M2 ‖A2 . . . ‖An−1 Mn

does not require anymore interactions, where for each i ∈ {1, . . . , n − 1}, Ai ⊆
Γi ∩ Γi+1. We then consider the IMC(

M1 ‖A1 M2 ‖A2 . . . ‖An−1 Mn

)
\A,

where A =
⋃n
i=1 Γi which is thus a complete IMC. We can give a semantics on

complete IMCs. In state s, if there are outgoing interactive transitions (which are
thus internal), one is immediately chosen non-deterministically: it corresponds
to an interaction, and the assumption is made that once an interaction is possi-
ble, it is performed immediately (the maximal progress assumption). Note that
non-determinism can be handled with a scheduler. Otherwise, if no interactive
transition starts from s, then in this state, the behaviour is the same as in a
CTMC (see Section 2.3, the race condition).

The resulting complete IMC can thus be reduced to a simpler system. In
each state s that has outgoing interactive transitions, all Markovian transitions

54 Chapter 2 – Background

can be removed. Moreover in [HK09], the authors are also involved in a notion of
weak bisimulation3 that allows to collapse sequences of τ -transitions into one. In
the case where the complete IMC is determinist, then it corresponds to a CTMC
and all known techniques on the model can be applied (see Section 2.3 for a short
word on the matter). If non-determinism remains, then new techniques have to
be developed. For instance in [HK09], the authors provide techniques in order
to approximate the probability of time-bounded reachability properties.

3Weak bisimulation corresponds to Definition 2.4.7 except that, roughly speaking, it allows
for several successive τ -interactive transitions to occur regardless the exact number of such
transitions.

CHAPTER 3

Stochastic Timed Automata

In this chapter, we introduce the notion of stochastic timed automaton (STA for
short) as defined in [BBB+14] and also describe some results of interest to us.

In Section 3.1, we define and illustrate the STA model as in [BBB+07]
and [BBB+14]. STA are a probabilistic extension of timed automata: we equip
each state of a timed automaton with distributions over the delays and over the
edges. It can also be seen as an extension of the CTMC model: here, it is allowed
to have other kind of distributions than exponential distributions (including dis-
tributions on bounded intervals like uniform distributions), and like in the timed
automaton model, time constraints can be put on the edges.

In Section 3.2, we refine the notion of region graph of Section 2.1.1 into the
thick region graph [BBB+14]. We then explain how to construct a finite Markov
chain from this thick region graph. The objective is to have a finite abstraction
on which the analysis of LTL properties can be done, instead of the STA. However
we exhibit an example with a bad behaviour.

Finally in Section 3.3, we define the notion of fairness which was identified
in [BBB+14] as a condition to ensure the finite Markov chain abstraction to be
in some sense, equivalent to the initial STA. We then present the decidability
results of [BBB+14]: they provide to classes of STA for which the qualitative
model-checking problem of LTL properties is decidable.

3.1. Definition and illustration of the model

In this section, we define the notion of STA [BBB+14] and illustrate it.

Before defining the model, we recall some notations of Section 2.1. The STA

55

56 Chapter 3 – Stochastic Timed Automata

model is a probabilistic extension of timed automata: it equips timed automata
with probability distributions over the edges and the delays and this, in each
state of the timed automaton. In order to do this, we need to define the set of
delays in a given state.

Fix a timed automaton A = (L,X,Act, E, Inv,AP,L) and recall that it has
an associated transition system TA = (Q,R+ × E,→) (Definition 2.1.11 in Sec-
tion 2.1). Given a state q = (l, ν) ∈ Q and an edge e ∈ E, recall that we write

I(q, e) = {t ∈ R+ | ν + t |= Inv(l) and ∃q′ ∈ Q s.t. q
t,e−→ q′} (corresponding to

the set of delays after which, starting from q, edge e is enabled) and that we
write I(q) =

⋃
e∈E I(q, e), i.e. the set of delays after which, starting from q,

an edge is enabled. This is the set of delays needed in order to define the STA
model.

Remark 3.1.1. Observe that it is easily shown that for each state q and for each
edge e, I(q, e) is either the empty set, or a single point, or an interval of real
positive numbers (which could be unbounded from above). This is due to the
form of the guards on the edges and of the invariant function on the locations.
Then, it holds that I(q) is either the empty set or a finite union of single points
or intervals.

We can now define the notion of STA.

Definition 3.1.2. A stochastic timed automaton (STA for short) is a tuple
A = (L,X,Act, E, Inv,AP,L, (µq, pq)q∈L×RX+) where

(i) (L,X,Act, E, Inv,AP,L) is a timed automaton,

(ii) for each q ∈ Q, µq is a probability distribution over R+ such that µq(I(q)) =
1 and µq(I(q)c) = 0, and

(iii) for each q = (l, ν) ∈ Q, pq is a probability distribution over the set of edges
that are enabled in q, i.e. {e = (l′, a, g, Y, l′′) ∈ E | l′ = l and ν |= g}; it
assigns 0 to each edge if there are none enabled in q.

Remark 3.1.3. We recall that from Remark 2.1.17, we assume that all timed
automata are non-blocking, i.e. I(q) 6= ∅ for each state q. This ensures us that
the probability µq and pq are well-defined in each state q.

Let us illustrate the STA model on Example 2.1.2.

Example 3.1.4. Let us consider the timed automaton A of Figure 2.1. We
recall that it is non-blocking (see Example 2.1.18). In order to extend it into a
STA, we need to equip it with probability distributions over delays and edges in
each state of the timed automaton. We do not define µq and pq for each state

3.1 – Definition and illustration of the model 57

q, but we give some examples. If q = (l0, (0, 0)) then observe that no edge is
enabled. Hence pq assigns 0 to each edge. Now recall that: I(q, e1) =]0, 1],
I(q, e2) = {2} and thus I(q) =]0, 1] ∪ {2} (see again Example 2.1.18). Hence
examples of distribution on I(q) are the uniform distribution on the interval]0, 1]
written U(]0, 1]), or a combination between U(]0, 1]) and the Dirac distribution
on {2} written δ2, for instance 1

2U(]0, 1])+ 1
2δ2 meaning that the single point {2}

has probability 1
2 and the interval]0, 1] has probability 1

2 and follows a uniform
distribution. Consider now q′ = (l0, (1.5, 3.5)) then e2 is the only enabled edge.
The probability distribution pq′ should thus assign probability 1 to e2 and 0 to
each other edge. We can then easily show that I(q′) = [0, 0.5], as the invariant
is violated once the elapse of 0.5 time units is exceeded. A classical distribution
on I(q′) is thus µq′ = U([0, 0.5]). A final example is q′′ = (l0, (0.5, 3)) where this
time, both edges e1 and e2 are enabled. An example of distribution is

pq′′(e) =

{
1
2 if e ∈ {e1, e2}
0 otherwise.

One can easily show that I(q′′) = [0, 1] and thus again, µq′′ = U([0, 1]) is an
example of distribution for the delays.

Remark 3.1.5. It should be noted that each CTMCM = (S,R) (see Section 2.3)
can be seen as a single-clock STA where the set of locations is S, each edge is
guarded with true and resets the unique clock to 0, the distribution over the
delays in location s is given by the exponential distribution Exp(R(s)) and the
probability of the edge e = (s, true, X, s′) is given by p(s,ν)+t(e) = R(s, s′)/R(s)
for each ν ∈ R+ and t ∈ R+.

In the rest of this chapter, actions over the edges and the labelling function
on the locations over AP will not be needed, we thus omit them (except for some
general definitions).

Like in Section 2.2, the purpose of such a probabilistic model is to define a
probability distribution over the set of runs. Given a STA A, we will abusively
writeA for its underlying timed automaton. Then observe that all notions seen in
Section 2.1 have also sense for STA. Fix a STAA = (L,X,E, Inv, (µq, pq)q∈L×RX+

).

Recall that as stated in Section 2.1, we are only interested in infinite runs and
that given an initial state q0, we write Runs(A, q0) for the set of infinite runs
starting in q0 and Runsf (A, q0) for the set of finite runs starting in q0 (see Defi-
nitions 2.1.12 and 2.1.13 for the notion of runs). We write Runs(A) for the set
of all infinite runs.

The aim is thus to define a probability measure over the set of infinite
runs Runs(A, q) for every state q. Fix a state q ∈ Q, one should hence equip

58 Chapter 3 – Stochastic Timed Automata

Runs(A, q) with a σ-algebra. In order to define this σ-algebra, we first introduce
the notions of symbolic paths, constrained symbolic paths and cylinder generated
by a (constrained) symbolic path. Note that we consider that R+ is equipped
with the Borel σ-algebra, written B(R+). Similarly for each n ≥ 2, we consider
Rn+ equipped with the Borel σ-algebra, written B(Rn+).

Given q0 a state in Q and (ei)1≤i≤n a finite sequence of edges in E, the
symbolic path starting from q0 and determined by (ei)1≤i≤n is the following set
of finite runs:

π(q0, e1, . . . , en) = {ρ = q0
t1,e1−−→ q1 · · ·

tn,en−−→ qn | t1, . . . , tn ∈ R+}.

If C is a Borel subset of Rn+ (i.e. C ∈ B(Rn+)), one defines the constrained symbolic
path starting from q0, determined by (ei)1≤i≤n and satisfying C as the following
subset of Runsf (A, q):

πC(q0, e1, . . . , en) = {ρ = q0
t1,e1−−→ q1 · · ·

tn,en−−→ qn | (t1, . . . , tn) ∈ C}.

Now if π is a (constrained) symbolic path of A, we define the cylinder generated
by π, denoted by Cyl(π), as the set of infinite runs ρ such that a prefix ρ′ of ρ is
in π. In other words, if π = πC(q0, e1, . . . , en) where q0 ∈ Q, e1, . . . , en ∈ E and
C ⊆ Rn+ then

Cyl(π) ={ρ ∈ Runs(A, q0) | ρ = q0
t1,e1−−→ q1 · · ·

tn,en−−→ qn → · · ·
and (t1, . . . , tn) ∈ C}.

For each state q0 ∈ Q, we can then define (Runs(A, q0),ΩAq0 ,Prob
A
q0) a probability

space where

• ΩAq0 is the σ-algebra generated by the cylinders starting in q0,

• ProbAq0 is defined inductively as follows:

ProbAq0(Cyl(π(q0, e1, . . . , en)))

=

∫
t∈I(q0,e1)

pq0+t(e1)ProbAqt(Cyl(π(qt, e2, . . . , en))) dµq0(t) (3.1)

where e1, . . . , en are in E, qt is such that q0
t,e1−→ qt, and we initialize

with ProbAq (Cyl(π(q))) = 1 for each state q; and thanks to Caratheodory’s
extension theorem, it extends to all measurable sets.

3.1 – Definition and illustration of the model 59

Remark 3.1.6. As said in [BBJM12], one can see that “the formula for ProbAq0
relies on the fact that the probability of taking transition e1 at time t coincides
with the probability of waiting t time units and then choosing e1 among the
enabled transitions, i.e. pq0+t(e1) dµq0(t).”

Now given q ∈ Q and e1, . . . , en ∈ E, the value of ProbAq (Cyl(π)), where
π = π(q0, e1, . . . , en), can be expressed as follows:

ProbAq0(Cyl(π))

=

∫
t1∈I(q,e1)

pq+t1(e1)

∫
t2∈I(qt1 ,e2)

pqt1+t2(e2) . . .∫
tn∈I(qt1...tn−1 ,en)

pqt1...tn−1+tn(en) dµqt1...tn−1
(tn) . . . dµqt1 (t2) dµq(t1)

where for every i ≥ 2, the state qt1...ti is such that qt1...ti−1

ti,ei−−→ qt1...ti and

the state qt1 is such that q
t1,e1−−→ qt1 . Hence one can express the probability of

cylinders generated by constrained symbolic paths as follows: given a state q
and a constraint C ∈ B(Rn+), we get that

ProbAq (Cyl(π))

=

∫
t1∈I(q,e1)

pq+t1(e1)

∫
t2∈I(qt1 ,e2)

pqt1+t2(e2) . . .∫
tn∈I(qt1...tn−1 ,en)

pqt1...tn−1+tn(en)1C(t1, . . . , tn) dµqt1...tn−1
(tn) . . . dµq(t1)

(3.2)

where π = πC(q, e1, . . . , en) and 1C(t1, . . . , tn) is defined as follows:

1C(t1, . . . , tn) =

{
1 if (t1, . . . , tn) ∈ C,
0 otherwise.

Constrained symbolic paths are required to measure rather complex sets like the
set of zeno runs (Section 2.1.2). In fact, we can show that ProbAq (Cyl(π)) can be
defined by induction as follows:

ProbAq (Cyl(πC(q, e1, . . . , en)))

=

∫
t1∈I(q,e1)

pq+t1(e1)ProbAqt1 (Cyl(πCt1 (q, e2, . . . , en))) dµq(t1) (3.3)

where for every t1 ≥ 0, Ct1 = {(t2, . . . , tn) ∈ Rn−1
+ | (t1, t2, . . . , tn) ∈ C}. This is

due to the fact that for every t1 ≥ 0, (t1, t2, . . . , tn) ∈ C if and only if (t2, . . . , tn) ∈
Ct1 .

60 Chapter 3 – Stochastic Timed Automata

Remark 3.1.7. Like for DMC in Section 2.2, Remark 2.2.4, it is possible to extend
this probability distribution to the set of all infinite runs of A, Runs(A). Here,
instead of fixing an initial state q0, we consider some initial distribution µ on the
set of states Q. Then, one can define similarly as in Remark 2.2.4, a probability
distribution ProbAµ over Runs(A). The difference lies in the fact that here, the set
of states Q is non-denumerable and henceforth, the value µ(q0) could be null for
any state q0 leading to the fact that for each symbolic path π, ProbAµ (Cyl(π)) = 0.
Hence in this case, a symbolic path should be defined with a measurable set of
initial states. We do not define it here formally as it will be of no use to us in
this chapter. We will come back to this in Chapter 7.

It requires some work to prove that (Runs(A, q),ΩAq0 ,Prob
A
q) is a probability

space for each state q ∈ Q. It has been proven in [BBB+14] (Proposition 3.2)
and we will not give the details here.

Proposition 3.1.8 ([BBB+14]). For every state q ∈ Q, ProbAq is a probability

measure over (Runs(A, q),ΩAq0).

Example 3.1.9. Consider again the STA A of Example 3.1.4 (depicted in Fig-
ure 2.1), where we make the assumption that in each state, µq is the uniform
distribution over I(q) (which from the invariants, and the uniform distribution
has a sense), or a Dirac distribution if I(q) is a single point. Recall that if A is
a bounded set of R+ such that Λ(A) > 0 (where Λ is the Lebesgue measure),
U(A) is defined by the density function f(t) = 1

Λ(A)1A(t). If µq is a uniform
distribution, we will write fq for its density function. Assume also that pq is the
uniform discrete distribution over the edges enabled in q. Then we can make the
following computations. We consider q0 = (l0, (0, 0)) as the initial state (i.e. we
consider the set of runs Runs(A, q0)). We have observed that I(q0, e1) =]0, 1]
and I(q0, e2) = {2} and thus I(q0) =]0, 1] ∪ {2}. Then, µq0 is given as U([0, 1])
and observe that for each 0 < t ≤ 1, pq0+t(e1) = 1 and pq0+2(e2) = 1. This gives
us:

• ProbAq0(Cyl(π(q0, e1)) =
∫
t∈I(q0,e1) pq0+t(e1) · fq0(t) dt = 1, and

• ProbAq0(Cyl(π(q0, e2)) = 0.

Now for each t ∈ I(q0, e1), we write qt for the state such that q0
t,e1−→ qt, i.e.

qt = (l0, (0, t)). Then it holds that I(qt, e1) = I(q0, e1) and I(qt, e2) = [2 − t, 2].
Observe also that 2− t ≥ 1 since t ≤ 1. We thus get that

I(qt) =

{
]0, 2] if t = 1

]0, 1] ∪ [2− t, 2] otherwise

3.1 – Definition and illustration of the model 61

where in the second case, I(qt) is thus a disjoint union of two intervals and
Λ([2 − t, 2]) > 0 for each 0 < t < 1. Hence µqt is a uniform distribution over
I(qt) for each 0 < t ≤ 1. In any case, Λ(]0, 1] ∪]2− t, 2]) = 1

1+t . Finally observe
that for each t ∈]0, 1], if t′ ∈]0, 1] then e1 is the only edge enabled in qt + t′ and
if t′ ∈ [2 − t, 2], then e2 is the only edge enabled in qt + t′, except if t = 1 and
t′ = 1: then e1 and e2 are enabled. However, it holds that for each t ∈]0, 1],
pqt+t′(e1) = 1 almost-surely for each t′ ∈]0, 1]. We thus finally compute:

ProbAq0(Cyl(π(q0, e1, e1))) =

∫
t1∈I(q0,e1)

pq0+t1(e1)ProbAqt1 (Cyl(π(qt1 , e1))) dµq0(t1)

=

∫ 1

t1=0

∫
t2∈I(qt1 ,e1)

pqt1+t2(e1) dµqt1 (t2) dt1

=

∫ 1

t1=0

1

1 + t1

(∫ 1

t2=0
dt2 +

∫ 2

t2=2−t1
0 dt2

)
dt1

=

∫ 1

t1=0

1

1 + t1
dt1

= ln(2)− ln(1) = ln(2).

We give now a classical example of probabilistic system as a STA, allowing
thus to add timed aspects.

Example 3.1.10. We model the IPv4 Zeroconf protocol [BvdSHV03] using STA
as done in [BBB+14] (see Figure 3.1). The task of this protocol is to configure
IP addresses in a local network of appliances in the following way. When a new
appliance is connected to the network, a unique IP address has to be configured
with this appliance. The protocol selects randomly an IP address and then sends
N messages to the network in order to verify if the IP address is already used. If
one of the messages receives an answer in a bounded time, then the IP address
is already used and a new one is selected. If none of the messages get an answer,
then either the IP address is not used and the appliance is well plugged, or the IP
address is used and there was an error when sending the messages. In [BK08], a
simple model for the IPv4 Zeroconf protocol is given as a DMC, which abstracts
away timing constraints.

In Figure 3.1, we model the protocol for N = 3 as a STA with a single clock
x. We can describe it as follows. In location IP, an IP address has been randomly
selected. Then a first message is broadcast and the system moves to location
Wait1 after resetting clock x to 0. From there, either an answer is received before
T time units and the system goes back to location IP where a new IP address
is randomly chosen, or no answer is given before T time units and then a new
message is sent, clock x is reset to 0 and location Wait2 is reached where we

62 Chapter 3 – Stochastic Timed Automata

IP

Exp(µ)

Wait1

Exp(λ)

Wait2

Exp(λ)

Wait3

Exp(λ)

OK

Error

x := 0 x > T

x := 0

x > T

x := 0

x > T

1− β
x < T

x < T

x < T

x >
T, β

Figure 3.1: The IPv4 Zeroconf STA for N = 3.

observe a similar behaviour. In location Wait3 the third and last message has
been broadcast. Then again, either an answer is received before T time units
and location IP is again visited, or no answer is sent. If there was an error in the
broadcast of the messages and the IP address is already used, the system moves
to location Error, otherwise location OK is reached.

We finally have to equip each state with probability distributions over the
edges and the delays. From state (IP, ν) with ν ∈ R+, I((IP, ν)) = R+ so
that we could equip the state with an exponential distribution of parameter µ,
written Exp(µ), over the delays. And since there is only one edge enabled, the
probability over the edges is trivial. For states of the form (Waiti, ν), the set of
delays is R+ \ {T − ν} so that we can define the probability over the delays in
(Waiti, ν) as Exp(λ). Now, if ν < T , there is only one enabled edge and so the
probability over the edges is trivial. If ν = T , then no edge is enabled. Finally,
if ν > T then there is a unique enabled edge in (Wait1, ν) and (Wait2, ν) so that
the probability is trivial. In state (Wait3, ν), we can either move to OK or to
Error, and we assume that the probability to go to Error is given by 0 < β < 1.

We now illustrate another classical probabilistic example as a STA, a queuing
system.

Example 3.1.11. We consider a queuing system in which jobs arrive and wait
until they are executed, and we assume the capacity of the queue is k. We
assume the interarrival time is given by distribution µit, and that the serving
time of each job is given by distribution µst. We will use f ’s for density functions
and F ’s for cumulative functions, with respective indices. This is what is known
as a G/G/1/k-queue (the two first G’s stand for “Generalized” distributions for
arrival times and process times).

We propose an STA model for this queuing system. To do so we need to
use some of the techniques that will appear later in the thesis when tackling the
definition of parallel composition operator in Chapter 9. However we believe

3.1 – Definition and illustration of the model 63

this can be understood without going into the details. Firstly, we assume the
STA to have two clocks x and y. Clock x will be used for arrivals time and
clock y for process time. The set of locations is given by {0, . . . , k}, and edges
between locations explicitly describe arrival of jobs or processed jobs. Guards on
the edges are chosen respectfully with the supports of µit and µst. Distributions
over the edges and the delays are defined via the following construction. In the
the sequel νx and νy will represent values of respectively clock x and clock y.

• For every νx ≥ 0, we write µit,νx for the distribution obtained from µit by
conditioning over the fact that the job has not arrived within the first νx
time units. It is obtained using techniques of Chapter 9 and is expressed
by the following density function:

fit,νx(t) =
fit(νx + t)

1− Fit(νx)
,

where fit is thus the density function of µit. Note that this is only defined
for νx smaller than the upper bound of the support of
muit.

• Similarly, for every νy ≥ 0, we write
must,νy for the distribution obtained from
must by conditioning over the fact that the job has not arrived within the
first νy time units. The expression is identical to the first item.

• For every νx, νy ≥ 0, we write µmin,(νx,νy) or simply µmin,ν for the distribu-
tion min(µit,νx , µst,νy), representing a race between the two distributions
representing arrival of job, and processing of job. It can again be computed
using the technical developments of Chapter 9 and can be expressed by the
following density function:

fmin,ν(t) = fit,νx(t) · (1− Fst,νy(t)) + fst,νy(t) · (1− Fit,νx(t)).

Distribution µmin,ν corresponds thus to the distribution over the delays in
each state (i, ν) of the STA, with i ∈ {1, . . . , k−1}. The cases of locations 0
and k are special since jobs can respectively only arrive and only be served
in those locations.

• For every νx, νy ≥ 0, we define probabilities px(νx,νy)(t) and py(νx,νy)(t) (or

simply pxν(t) and pyν(t)) for the probabilities of having a job arrival (resp.
processing) at that time, under the assumption that the delay is t since

64 Chapter 3 – Stochastic Timed Automata

one arrived in the location with valuation ν = (νx, νy). Following rules
described in Chapter 9, it can be expressed as follows:

pxν(t) =
fit,νx(t) · (1− Fst,νy(t))

fmin,ν(t)
and pyν(t) =

fst,νy(t) · (1− Fit,νx(t))

fmin,ν(t)
.

Note that it is the case that p?ν(t) = p?ν′(t
′) whenever ν + t = ν ′ + t′.

Value pxν(t) (resp. pyν(t)) corresponds thus to the probability that a job
arrives (resp. is processed) from state q + t with q = (i, ν) for some i ∈
{1, . . . , k − 1}. In location 0, jobs can only arrive, and in location k, jobs
can only be done.

The STA for the G/G/1/k-queue is now depicted in Figure 3.2. It should
be noted that in the case where µit is an exponential distribution of parameter
λ and µst is an exponential distribution of parameter ν, then we get exactly
the CTMC of Example 2.3.2 (due to the memoryless property of exponential
distributions, clocks x and y can be collapsed into a single clock).

0

µit,νx

1

µmin,ν

2

µmin,ν

· · · k

µst,νyx := 0

1

y := 0

pyν(t)

x := 0

pxν(t)

y := 0

pyν(t)

x := 0

pxν(t)

y := 0

pyν(t)

x := 0

pxν(t)

y := 0

1

Figure 3.2: A STA modelling a G/G/1/k-queue.

Measuring zeno runs. As seen in Section 2.1.2, a run ρ = q0
t0,e0−−→ q1

t1,e1−−→
q2

t2,e2−−→ . . . is zeno if
∑
i≥0 ti < ∞. We have observed that such runs are

unrealistic: they describe behaviours that perform infinitely many actions in a
finite amount of time, which made zeno runs as undesirable. We would thus like
to consider STA in which the set of zeno runs is negligible, i.e. it has a null
probability.

The σ-algebra that we consider on the set of infinite runs, allows us to express
the set of zeno runs. Indeed given M ∈ N and n ∈ N0, we write CM,n =
{(t1, . . . , tn) ∈ Rn+ | t1 + . . . + tn ≤ M}. Given an initial state q0 and writing
Zeno(q0) for the set of zeno runs starting in q0, it holds that

Zeno(q0) =
⋃
M∈N

⋂
n∈N0

⋃
(e1,...,en)∈En

Cyl(πCM,n(q0, e1, . . . , en)).

It thus makes sense to compute the probability of zeno runs. Again as argued
before, one would like to avoid such runs as they are problematic. The model

3.2 – Thick region graph and Markov chain 65

allows us hence to consider almost-surely non-zeno STA: we call a STA A almost-
surely non-zeno if for each state q, ProbAq (Zeno(q)) = 0.

An hypothesis on STA. Before going further into this chapter, we will make
the following assumption: we require that all STA A considered, satisfies the
following condition. Writing Λ for the Lebesgue measure, for each state q, if
Λ(I(q)) > 0 then µq is equivalent1 to the restriction2 of Λ on I(q), written ΛI(q).
We write this condition (‡). It should be noted that in [BBB+14], the STA model
is already defined with condition (‡). However, we relaxed the hypothesis in our
definition for convenience.

3.2. Thick region graph and Markov chain

In Section 2.1.1, we have defined a region graph of a given timed automaton.
In this section, we will present a slightly different version of this region graph
and show how, given a STA, we can construct a finite Markov chain for the
region graph. But before that, we will interpret the new region graph as a
timed automaton: the timed region automaton. All those notions are taken
from [BBB+14] and [BBJM12].

We refer to Section 2.1.1 for the notion of region in timed automata. Recall
that given a timed automatonA, RA denotes its set of regions. Given a region r ∈
RA, we write cell(r) for the tightest guard containing r, and we write cell(RA) =
{cell(r) | r ∈ RA}.

Definition 3.2.1. Given a timed automaton A = (L,X,Act, E, Inv,AP,L), the
timed region automaton is the timed automaton R(A) = (L′, X,E′, Inv′,AP,L′)
where:

• L′ = L×RA,

• E′ ⊆ L′×Act×cell(RA)×2X×L′ is such that ((l, r), a, cell(r′′), Y, (l′, r′)) ∈
E′ if and only if there exist ν ∈ r, ν ′ ∈ r′, t ≥ 0 and e = (l, a, g, Y, l′) ∈ E
such that ν + t ∈ r′′ and (l, ν)

t,e−→ (l′, ν ′),

• for each (l, r) ∈ L′, Inv′((l, r)) = Inv(l) and L′((l, r)) = L(l).

1Two measures µ and µ′ are equivalent whenever for each measurable set A, µ(A) = 0 iff
µ′(A) = 0.

2If B is a Borel set, then the restriction of Λ on B is defined as follows: for each Borel set
A, ΛB(A) = Λ(A ∩B).

66 Chapter 3 – Stochastic Timed Automata

We do not give here a detailed example of the region timed automaton as it
has no interest for the purpose of the next chapters. It can be found in [BBB+14].
However, we give the first steps of the region timed automaton of A from Ex-
ample 2.1.2.

Example 3.2.2. Consider the timed automaton A of Example 2.1.2 depicted in
Figure 2.1. We describe the first steps of the timed region automaton R(A) on
Figure 3.3, starting from the location l′0 = (l0, {(0, 0)}).

l0,
x1 = 0,
x2 = 0

l1,
x1 = 0,
0 < x2 < 1

l0,
x1 = 0,
x2 = 1

l1,
x1 = 2,
x2 = 0

{p1}

{p2}

{p1}

{p2}

(x1 ≤ 2) ∧ (x2 ≤ 4)

x2 ≤ 2

(x1 ≤ 2) ∧ (x2 ≤ 4)

(x1 ≤ 2) ∧ (x2 ≤ 4)

f1,
0 <

x1
<

1

a, x
1
:=

0

f2, x1 = 1

a, x1 := 0
f
3 , (x

1 =
2) ∧ (x

2 =
2)

b, x
2 :=

0

Figure 3.3: The first steps of R(A)

Observe that edges f1 and f2 correspond to edge e1 of A where in the first
case we cross the region (0 < x1 < 1), and in the second case we cross region
(x1 = 1); while edge f3 corresponds to edge e2 of A where we cross region
(x1 = 2 ∧ x2 = 2).

Remark 3.2.3. In the sequel, an edge f of the timed region automaton will be
abusively denoted by its corresponding edge e in the initial timed automaton.
The set of states of the timed region automaton is written Q′ ⊆ L′ × RX+ .

3.2 – Thick region graph and Markov chain 67

Observe also that there is an edge between (l, r) and (l′, r′) in R(A) if and
only if there is an edge between (l, r) and (l′, r′) in the region graph RA (see
Definition 2.1.23).

The previous definition can be extended to STA leading to the stochastic
timed region automaton. We first introduce some notations. Given a state
q = (l, ν) ∈ Q, we write ι(q) for its unique image in Q′, i.e. ι(q) = ((l, [ν]A), ν).
Then given a symbolic path π((l, ν), e1, . . . , en)) in A, we can associate a finite
set of symbolic paths π(((l, [ν]A), ν), f1, . . . , fn)) in R(A), each one corresponding
to the regions we chose to visit before taking an edge. Given a run ρ in A, we
write ι(ρ) for its unique image in R(A) and ι(π((l, ν), e1, . . . , en))) is given by the
finite union of its corresponding symbolic paths in R(A). Finally, given a set of
infinite runs S ∈ Runs(A) we write ι(S) ∈ Runs(R(A)) for its image in R(A).

We now extend Definition 3.2.1 to STA.

Definition 3.2.4. Given a STA A = (L,X,Act, E, Inv,AP,L, (µq, pq)q∈L×RX+),

the stochastic timed region automaton is the STA R(A) = (L′, X,Act, E′, Inv′,AP,
L′, (µ′q, p′q)q∈L′×RX+) where

• (L′, X,Act, E′, Inv′,AP,L′) is the timed region automaton of A,

• for each q ∈ Q, µ′ι(q) = µq and for each t ≥ 0, p′ι(q)+t = pq+t.

This leads to this important result of [BBB+14] (Lemme 3.4) linking A and
R(A).

Proposition 3.2.5 ([BBB+14]). Let A be a STA and R(A) be its stochastic
timed region automaton. Then for every state q ∈ Q it holds that S ∈ ΩAq if and

only if ι(S) ∈ Ω
R(A)
ι(q) and in this case, ProbAq (S) = Prob

R(A)
ι(q) (ι(S)).

The main work of [BBB+14] consists in considering the almost-sure model-
checking problem of STA for LTL formulas: similarly as in Definition 2.2.6, given
a STA A, an initial state q0 and an LTL formula ϕ, it aims at checking whether
ProbAq0(ϕ) = 1 or not. The answer is not easily computed in a context where the
set of states is infinite and even non-denumerable. Proposition 3.2.5 shows that
it can be reduced to the almost-sure model-checking problem on the stochastic
timed region automaton, but this automaton still has a non-denumerable set of
states. In [BBB+14], the authors reduce this problem to the almost-sure model-
checking of a corresponding LTL formula in a finite Markov chain built on the
basis of the previous region graph. But before constructing this finite Markov
chain, we need to remove some problematic edges: singular edges.

68 Chapter 3 – Stochastic Timed Automata

Definition 3.2.6. An edge e of R(A) is said singular whenever, writing (l, r) =
source(e), there exists ν ∈ r such that I((l, ν), e) is a single point but there is an
edge e′ of A such that I((l, ν), e′) is not a single point (nor the empty set).

Remark 3.2.7. Observe that as stated in Remark 3.1.1, I((l, ν), e′) is thus an
interval of R+ with Λ(I((l, ν), e′)) > 0. Considering a STA A, if e is a singular
edge with source(e) = (l, r), then for each ν ∈ r, µ(l,ν)(I((l, ν), e)) = 0 (it is here
that we importantly need A to satisfy hypothesis (‡)). This is why we need to
remove singular edges: they are taken with probability 0.

We now define the thick region graph of a given STA A, which is a slightly
different version of the region graph of Definition 2.1.23. We will then be able
to construct a finite Markov chain.

Definition 3.2.8. Let A be a (stochastic) timed automaton. The thick region
graph Rtk

A = (V, F ′) is an oriented graph where:

• V = L×RA is the set of vertices, and

• F ′ ⊆ V × V is the set of edges such that (l, r) → (l′, r′) if and only if
there is a non-singular edge f in R(A) such that source(f) = (l, r) and
target(f) = (l′, r′).

Given a STA A, we then construct a finite Markov chain based on the
thick region graph Rtk

A = (V, F ′) as follows: MC(A) = (S, P) where S = V ,
P ((l, r), (l′, r′)) > 0 if and only (l, r) → (l′, r′) in Rtk

A and for each (l, r), (l′, r′)
and (l′′, r′′) such that P ((l, r), (l′, r′)) > 0 and P ((l, r), (l′′, r′′)) > 0, it holds that
P ((l, r), (l′, r′)) = P ((l, r), (l′′, r′′)).

The question is then, given a STA A, an initial state q0 ∈ Q, an LTL formula
ϕ on A and its lifting ϕ̃ to MC(A), does it hold true that ProbAq0(ϕ) = 1 if and

only if Prob
MC(A)
[q0]A

(ϕ̃) = 1? The answer is not true in general and we exhibit a

counter-example thanks to the timed automaton Acvg of Example 2.1.28.

Remark 3.2.9. We do not formally define the grammar of LTL formula here, nor
the notion of lifting of an LTL formula from a STA to its corresponding Markov
chain as it is not the purpose of this chapter. However it is quite natural and
details can be found in [BBB+14]. We just point out that it is done through some
product between STA and a deterministic Muller automaton that characterises
the formula, and it uses the labelling function on the locations. This will be
defined formally in a more general setting in Chapter 4. We here only intend to
get an overview of some results of this paper.

3.3 – Fairness and classes of STA 69

Example 3.2.10 (Counter-example). Consider the timed automaton Acvg of
Example 2.1.28 depicted in Figure 2.6. We extend it into a STA that satisfies
(‡). Note that in each state q of the automaton, I(q) is either a bounded interval
or a single point. In the first case, we assume that µq is a uniform distribution,
and in the second case that it is a Dirac distribution. We consider q0 = (`0, (0, 0))
as the initial state. We consider the LTL formula F p2. It can be shown that in
the finite Markov chain MC(Acvg), it holds that p2 is reachable from each state

in the underlying graph Rtk
A . It follows that Prob

MC(Acvg)
[q0]A

(F p2) = 1.

However Prob
Acvg
q0 (F p2) < 1. We do not prove it here, all details are given

in [BBB+14]. But we give the intuition. This is due to the time-converging
aspect discussed in Example 2.1.28. It should be noted that each time we come
back to location `0, the value of clock x is null while the value of clock y increases
but is always less than 1. Hence at the n-th visit to `0, we are in state qn =
(`0, (0, tn)) with tn−1 < tn < 1. Now observe that I(qn) = [0, 1 − tn[∪]1 −
tn, 2 − tn[where I(qn, e1) = [0, 1 − tn[and I(qn, e4) =]1 − tn, 2 − tn[. Then
with the distributions on the delays chosen, it can be shown that almost-surely,
the sequence (tn)n≥0 converges to 1. It follows that the probability to take
edge e1 converges towards 0 (since I(qn, e1) becomes negligible compared to
I(qn, e4)), and thus the probability to always take edge e4 is positive. This gives

Prob
Acvg
q0 (F p2) < 1.

3.3. Fairness and classes of STA

In this section, we present the notion of fairness as defined in [BBB+14]. It
is motivated by Counter-example 3.2.10. It deletes undesired behaviours and
allows one to reduce the almost-sure model-checking problem of LTL formulas
from STA to finite Markov chains. Fix a STA A for the section and recall all
previous notations.

Definition 3.3.1. An infinite path (l0, r0)
f1→ (l1, r1)

f2→ (l2, r2) . . . in R(A) is
said fair if for each non-singular edge e, if there are infinitely many i’s such that
source(e) = (li, ri) then there are infinitely many i’s such that fi = e.

We skip the details, but fairness extends in a natural way to symbolic paths
and infinite runs of R(A) as explained in [BBB+14]. A infinite run ρ of A is
then said fair whenever its unique image ι(ρ) in R(A) is fair. Given an initial
state q0 ∈ Q, we write fair(q0) ⊆ Runs(A, q0) for the set of infinite runs of A
starting in q0 that are fair. It should be noted that for each state q, fair(q) is a

70 Chapter 3 – Stochastic Timed Automata

measurable set ([Var85]). We then get the following strong result: for almost-
surely fair STA, the almost-sure model-checking problem of LTL formulas can be
done through the finite Markov chain constructed in Section 3.2. We recall that
is written MC(A). This was done in [BBB+14] (Theorem 6.6).

Theorem 3.3.2 ([BBB+14]). Let A be a STA. For every state q ∈ Q, if
ProbAq (fair(q)) = 1 then for each LTL formula ϕ,

ProbAq (ϕ) = 1 iff Prob
MC(A)
[q]A

(ϕ̃) = 1,

where ϕ̃ is the lifting of ϕ to MC(A).

We can show that the STA Acvg of Example 3.2.10 is not almost-surely fair.

Example 3.3.3 (Counter-example). Consider the STA of Example 3.2.10 de-

picted in Figure 2.6. We showed that from state q0 = (`0, (0, 0)), Prob
Acvg
q0 (F p2) <

1 and thus Prob
Acvg
q0 (G p1) > 0. Now observe that every run starting from q0 and

satisfying G p1 is unfair as e1 is enabled infinitely many times but never taken.
Hence, Prob

Acvg
q0 (fair(q0)) < 1.

This reduces the almost-sure model-checking problem of LTL formulas in STA
to the almost-sure model-checking problem of LTL formulas in finite Markov
chains, for almost-surely fair STA. In [BBB+14], the authors identified several
classes of STA that are almost-surely fair and thus for which, Theorem 3.3.2 can
be applied. We present two of them.

Reactive STA. A STA A is said reactive whenever the following conditions
hold true:

(H1) for every state q, I(q) = R+ and for every l ∈ L, there exists a distribution
µl equivalent to the Lebesgue measure on R+, such that for every ν ∈ RX+ ,
µ(l,ν) = µl;

(H2) for every edge e there exists we ∈ N0 such that for every state q,

pq(e) =


we∑

e′ enabled in q we′
if e is enabled in q,

0 otherwise.

It has been shown in [BBB+14] (Proposition 7.11) that reactive STA are almost-
surely fair from each state.

3.3 – Fairness and classes of STA 71

Single-clock STA. We consider the class of single-clock STA satisfying con-
dition (H2) and the following hypotheses:

(H3) for all l ∈ L, for all [a, b] ⊆ R+, the function ν → µ(l,ν)([a, b]) is continuous;

(H4) if q′ = q + t for some t ≥ 0, and if 0 /∈ I(q + t′, e) for each 0 ≤ t′ ≤ t, then
µq(I(q, e)) ≤ µq′(I(q′, e));

(H5) there is 0 < λ0 < 1 such that for every state q with I(q) unbounded,
µq([0,

1
2]) ≤ λ0.

It has been shown in [BBB+14] (Theorem 7.2) that if A is a single-clock STA
that satisfies hypotheses (H2), (H3), (H4) and (H5), then A is almost-surely fair
from each state q ∈ Q.

Note that in both classes, the proof to show the almost-sure fairness is very
technical and ad hoc. In Part I, we will again be interested in the qualitative
model-checking problem of LTL formulas, but also in the quantitative model-
checking problem for more general probabilistic systems. We will present a
unifying way to show similar results, i.e. the reduction of the almost-sure model-
checking problem to a finite or denumerable abstraction for those general prob-
abilistic systems. In Chapter 7, we will show how STA can be incorporated into
this general setting and thus how the same results can be implied with this new
unifying way to prove it. Finally, we will also get new results for the quantitative
model-checking problem.

Part I

Qualitative and Quantitative
Analysis of Stochastic

Transition Systems and
Application to Stochastic

Timed Automata

73

CHAPTER 4

Stochastic Transition Systems

In this chapter, we define the notion of stochastic transition systems (STSs for
short) as defined in [BBBC17] and introduce several notions that will be needed
in the sequel.

In Section 4.1, we define and illustrate the model of STSs. STSs are gen-
eral stochastic systems with a possible continuous set of states and defined
with a Markov kernels. They correspond to the labelled Markov process model
of [Pan01] with only one label. We define the logic that we will consider and the
qualitative and quantitative model-checking problems for this logic in STSs.

In Section 4.2, we introduce several notions that will be useful when tack-
ling the qualitative and quantitative model-checking problems in STSs. In
particular, we introduce and illustrate several notions of decisiveness inspired
from [ABM07]. We recall that decisive DMCs comes with nice decidability
results and approximation schemes for reachability and repeated reachability
properties [ABM07] (see Section 2.2.2 for some details). The objective is thus to
extend those results to decisive STSs. We also define the notions of attractors
and fairness and end in Section 4.2.4 with the links between those notions. This
will be the object of a brief discussion in Section 4.3.

We already said it earlier but we repeat it: we assume the reader to be
familiar with basic notions of probability theory. One may for instance refer
to [Fel66] and [Fel69]

75

76 Chapter 4 – Stochastic Transition Systems

4.1. Definition and illustration of the model

In this section, we define the general model of STSs, which are somehow Markov
chains with a continuous state-space. This model corresponds to labelled Markov
processes of [Pan01] with a single action (hence removing non-determinism). We
then define several probability measures, on infinite runs (like for DMCs in Sec-
tion 2.2 and STA in Section 3.1), but also on the state-space, which gives different
point-of-views over the behaviours of the systems. We continue by defining the
logic that we will consider leading to measurable events, and by defining deter-
ministic Muller automata and technical material for handling properties specified
by these automata (which include LTL formulas). We end the section with the
definition of the qualitative and quantitative model-checking problems in STSs.

Given (S,Σ) a measurable space (Σ is a σ-algebra over S), we write Dist(S,Σ)
for the set of probability distributions over (S,Σ). In the sequel, when the context
is clear, we will omit the σ-algebra and simply write this set as Dist(S).

Definition 4.1.1. A stochastic transition system (STS) is a tuple T = (S,Σ, κ)
consisting of a measurable analytic space (S,Σ), and a function κ : S × Σ →
[0, 1] satisfying that for every fixed s ∈ S, κ(s, ·) is a probability measure (i.e.
κ(s, ·) ∈ Dist(S)) and for each fixed A ∈ Σ, κ(·, A) is a measurable function.
Function κ is the Markov kernel of T .

Note that it is sufficient to define κ(s, ·) (for every s ∈ S) over a subset which
generates the σ-algebra Σ. The assumption that (S,Σ) should be analytic is for
the STS to have smooth properties [Pan09, Section 7.5].

Observe that if S is a denumerable set and Σ = 2S , then T is a DMC:
it corresponds to M = (S, P) where for each s, s′ ∈ S, P (s, s′) = κ(s, {s′}).
We now give two examples of STS. The first example will be called T2 and the
second T1. This seems odd, but these notations will suit better for the notations
of Chapter 5 and we find it more logical to present our two example in the
presented order.

The first one is the DMC representing the random-walk of Example 2.2.3 but
expressed in this new formalism.

Example 4.1.2 (Denumerable Markov chain). The first example is the DMC
depicted in Figure 2.10 of Example 2.2.3. We consider thus here T2 = (S2,Σ2, κ2)
where

• S2 = N and Σ2 = 2S2 ,

• for each i ≥ 1, κ2(i, {i+ 1}) = p and κ2(i, {i− 1}) = 1− p with p ∈]0, 1[,
and

4.1 – Definition and illustration of the model 77

• κ2(0, {1}) = 1.

This represents a random walk over the natural numbers.

In the sequel, given a DMC T = (S,Σ, κ) and two states s, s′ ∈ S, we will
write κ(s, s′) instead of κ(s, {s′}).
Example 4.1.3 (Continuous-space Markov chain). We now give a continuous
variant of the previous random walk which models a simple queueing system.
Precisely, we consider a queueing system with a single queue, a parameter λ for
arrivals and ν for serving times. Each state i ∈ N is equipped with a non-negative
real number that corresponds to the time that has elapsed since the beginning.
Formally, we consider T1 = (S1,Σ1, κ1) with S1 = N×R+. We equip S1 with the
σ-algebra generated by 2N × B(R+) where B(R+) is the Borel σ-algebra on R+.
Then intuitively, κ1 describes how the length of the queue evolves with time.
Formally, for each s, t ∈ R+, for each i ≥ 1,

κ1((0, t), (1, [0, s+ t])) = κ1((0, t), (1, [t, s+ t])) =

∫ s

0
λe−λxdx

κ1((i, t), (i+ 1, [0, s+ t])) = κ1((i, t), (i+ 1, [t, s+ t])) =

∫ s

0
λe−(λ+ν)xdx and

κ1((i, t), (i− 1, [0, s+ t])) = κ1((i, t), (i− 1, [t, s+ t])) =

∫ s

0
νe−(λ+ν)xdx.

Remark 4.1.4. Observe that Example 4.1.3 does not represent a CTMC (see
Section 2.3) since CTMCs can only have a finite set of locations (while here
the corresponding set of locations would be N). However it is easily seen that
the CTMC of Example 2.3.2 can be encoded as a STS in a similar way as in
Example 4.1.3. In fact, all CTMCs can be interpreted by a STS.

Again, like in DMCs (Section 2.2) or STA (Section 3.1), the objective of such
a model is to define a probability measure on the set of infinite runs. In the
sequel, we fix an STS T = (S,Σ, κ).

We follow the approach of [DP03]. A finite (resp. infinite) run of T is a finite
(resp. infinite) sequence of states ρ = s0 → s1 → . . . → sn with n ∈ N (resp.
ρ = s0 → s1 → s2 → . . .). We will sometimes denote runs by ρ = (sn)n∈{0,...,n} or
ρ = (sn)n∈N. We write Runs(T) for the set of infinite runs of T . In order to get
a probability measure over Runs(T), we need to equip this set with a σ-algebra.
We therefore define for each finite sequence of measurable sets (Ai)0≤i≤n ∈ Σn+1

the following set of infinite runs:

Cyl(A0, A1, . . . , An) = {ρ = s0 → s1 → · · · → sn → · · · | ∀0 ≤ i ≤ n, si ∈ Ai} .

This set is called a cylinder. Now fix an initial distribution µ over Σ, i.e. µ ∈
Dist(S). We then define the probability space (Runs(T),FT ,ProbTµ) where:

78 Chapter 4 – Stochastic Transition Systems

• FT is the σ-algebra generated by cylinders,

• ProbTµ is defined as follows: for every finite sequence of measurable subsets
(Ai)0≤i≤n ∈ Σn+1, we set:

ProbTµ (Cyl(A0, A1, . . . , An)) =

∫
s0∈A0

ProbTκ(s0,·)(Cyl(A1, . . . , An))dµ(s0),

and we initialize with ProbTµ (Cyl(A0)) = µ(A0).

From now on, we will use the classical notation µ(ds0) = dµ(s0). It should
be noted that the value ProbTµ (Cyl(A0, A1, . . . , An)) is the result of n successive
integrals and can be expressed as follows:

ProbTµ (Cyl(A0, A1, . . . , An)) =

∫
s0∈A0

∫
s1∈A1

. . .

. . .

∫
sn−1∈An−1

κ(s0, ds1) · κ(s1,ds2) · · ·κ(sn−2, dsn−1) · κ(sn−1, An) · µ(ds0).

Using the classical Caratheodory’s extension theorem, ProbTµ can be extended in
a unique way to the σ-algebra FT .

Lemma 4.1.5. For each initial distribution µ ∈ Dist(S), ProbTµ defines a prob-
ability measure over (Runs(T),FT).

The proof of this lemma is classical and we omit it here. The interested reader
may e.g. refer to the proof of [BBB+14, Proposition 3.2] (Proposition 3.1.8 here),
which can easily be adapted to this context of STS.

Remark 4.1.6. Observe that if the initial distribution is a Dirac distribution δs
over a single state s ∈ S, then we have that

ProbTδs(Cyl(A0, . . . , An)) =

{
0 if s /∈ A0,

ProbTκ(s,·)(Cyl(A1, . . . , An)) otherwise.

We write this distribution ProbTs recovering the notation of Sections 2.2 and 3.1.
It follows that for every µ ∈ Dist(S), we can write

ProbTµ (Cyl(A0, . . . , An)) =

∫
s0∈A0

ProbTs0(Cyl(A0, . . . , An))µ(ds0)

and thus for every $ ∈ FT ,

ProbTµ ($) =

∫
s0∈S

ProbTs0($)µ(ds0).

4.1 – Definition and illustration of the model 79

If we write Runs(T , s0) for the set of infinite runs starting in s0, it holds that
ProbTs0 is a probability measure over Runs(T , s0).

Finally, one can observe that if T is a DMC, then Cyl(A0, A1, . . . , An) cor-
responds to a disjoint union of cylinders as defined in Section 2.2: given a finite
run ρ = (sk)k∈{0,...,n} of the DMC, Cyl(ρ) as defined in Section 2.2 corresponds
to Cyl({s0}, {s1}, . . . , {sn}) in this new formalism and here, Ai is an at most
denumerable set of states for each i; and ProbTs0 corresponds exactly to the defi-

nition of ProbMs0 of Section 2.2 (and hence, ProbTµ corresponds to the definition

of ProbMµ of Remark 2.2.4).

Recall that given two probability distributions µ and ν over some probability
space (S,Σ), µ and ν are equivalent if for each A ∈ Σ, µ(A) = 0⇐⇒ ν(A) = 0.
We can then prove the following lemma.

Lemma 4.1.7. Let µ and ν be two probability measures over (S,Σ). If µ and
ν are equivalent, then ProbTµ and ProbTν are also equivalent.

Proof. We have to show that for each $ ∈ FT , ProbTµ ($) = 0⇐⇒ ProbTν ($) =
0. Since the complementary of each cylinder is a finite union of cylinders and
since each denumerable union of cylinders can be written as a denumerable dis-
joint union of cylinders, it suffices to show this for each cylinder Cyl(A0, . . . , An)
with A0, . . . , An ∈ Σ. We have to show that for each A0, . . . , An ∈ Σ,

ProbTµ (Cyl(A0, . . . , An)) = 0⇐⇒ ProbTν (Cyl(A0, . . . , An)) = 0.

We prove it by induction over n. It should be observed that, by symmetry, it
suffices to show one of the implications. First, assume n = 0 and fix A0 ∈ Σ.
Then from the definition of ProbTµ and ProbTν and from the hypothesis, we get
that:

ProbTµ (Cyl(A0)) = 0⇐⇒ µ(A0) = 0⇐⇒ ν(A0) = 0⇐⇒ ProbTν (Cyl(A0)) = 0.

Now consider n = 1 and fix A0, A1 ∈ Σ. Suppose that ProbTµ (Cyl(A0, A1)) = 0,
i.e. from the definition: ∫

s0∈A0

κ(s0, A1)µ(ds0) = 0. (4.1)

Write B = {s0 ∈ A0 | κ(s0, A1) > 0}. We can write B = κ(·, A1)−1(]0, 1]) ∩ A0

which is in Σ from the hypotheses over κ (see Definition 4.1.1). From (4.1), we
can easily check that µ(B) = 0, which implies that ν(B) = 0 and thus∫

s0∈A0

κ(s0, A1)ν(ds0) = 0.

80 Chapter 4 – Stochastic Transition Systems

Using again the definition, it follows that ProbTν (Cyl(A0, A1)) = 0. Now, assume
that n ≥ 2, fix A0, . . . , An ∈ Σ and assume that ProbTµ (Cyl(A0, . . . , An)) = 0.
Recall that

ProbTµ (Cyl(A0, . . . , An)) =

∫
s0∈A0

(∫
s1∈A1

. . .

. . .
(∫

sn−1∈An−1

κ(sn−1, An)κ(sn−2,dsn−1)
)
. . . κ(s0, ds1)

)
µ(ds0).

We inductively define:{
Bn−1 = κ(·, An)−1(]0, 1]) ∩An−1

Bi = κ(·, Bi+1)−1(]0, 1]) ∩Ai ∀0 ≤ i ≤ n− 2.

From the hypotheses over κ, it is easily seen that for each 0 ≤ i ≤ n − 1,
Bi ∈ Σ. Let us consider the value

∫
sn−1∈An−1

κ(sn−1, An)κ(sn−2,dsn−1). From
the definition of Bn−1, it holds that∫

sn−1∈An−1

κ(sn−1, An)κ(sn−2,dsn−1) =

∫
sn−1∈Bn−1

κ(sn−1, An)κ(sn−2, dsn−1)

= ProbTκ(sn−2,·)(Cyl(Bn−1, An)).

We thus get that

ProbTµ (Cyl(A0, . . . , An)) =∫
s0∈A0

. . .
(∫

sn−2∈An−2

ProbTκ(sn−2,·)(Cyl(Bn−1, An))κ(sn−3, dsn−2)
)
. . . µ(ds0).

We prove the two following statements: for each 0 ≤ i ≤ n− 2,

(a) {si ∈ S | ProbTκ(si,·)(Cyl(Bi+1, . . . , Bn−1, An)) > 0} ∩Ai = Bi and

(b) ∫
si∈Ai

ProbTκ(si,·)(Cyl(Bi+1, . . . , Bn−1, An))κ(si−1, dsi)

= ProbTκ(si−1,·)(Cyl(Bi, . . . , Bn−1, An)),

where if i = 0, κ(si−1, ·) will stand for the initial distribution µ. Point (a) is here
in order to establish that the sets {si ∈ S | ProbTκ(si,·)(Cyl(Bi+1, . . . , Bn−1, An)) >
0}∩Ai are measurable, and point (b) aims at reducing our integrals to sets whose
images have positive values. It should be observed that the second point is an

4.1 – Definition and illustration of the model 81

immediate consequence of the first point. We thus only need to prove point (a).
We do this by induction over i. First, if i = n− 2, we show that

{sn−2 ∈ S | ProbTκ(sn−2,·)(Cyl(Bn−1, An)) > 0}
= {sn−2 ∈ S | κ(sn−2, Bn−1) > 0}

which will ensure that (a) is satisfied. First assume that sn−2 ∈ S is such that

ProbTκ(sn−2,·)(Cyl(Bn−1, An)) > 0 .

Towards a contradiction, assume that κ(sn−2, Bn−1) = 0. Then it holds that

0 = κ(sn−2, Bn−1) = ProbTκ(sn−2,·)(Cyl(Bn−1))

≥ ProbTκ(sn−2,·)(Cyl(Bn−1, An)) > 0

which is the needed contradiction. Now assume that κ(sn−2, Bn−1) > 0. Then
from the definitions of Bn−1 and of ProbTκ(sn−2,·), and from classical properties
on integrals, it is straightforward to check that the second inclusion holds. Now
suppose that point (a) holds for each i + 1 ≤ j ≤ n − 2 for some i ≥ 0, and let
us show that it is still true for i. As before, it suffices to establish that

{si ∈ S | ProbTκ(si,·)(Cyl(Bi+1, . . . , Bn−1, An)) > 0} = {si ∈ S | κ(si, Bi+1) > 0}.

The first inclusion can be verified just like in the first case. Now assume that
κ(si, Bi+1) > 0. We know that

ProbTκ(si,·)(Cyl(Bi+1, . . . , Bn−1, An)) =∫
si+1∈Bi+1

ProbTκ(si+1,·)(Cyl(Bi+2, . . . , Bn−1, An))κ(si,dsi+1).

Using the induction hypothesis over i+ 1, we get that for each si+1 ∈ Bi+1,

ProbTκ(si+1,·)(Cyl(Bi+2, . . . , Bn−1, An)) > 0 .

And since κ(si, Bi+1) > 0, this induces that

ProbTκ(si,·)(Cyl(Bi+1, . . . , Bn−1, An)) > 0

which concludes that point (a) is satisfied. Hence from points (a) and (b), we
get that

ProbTµ (Cyl(A0, . . . , An)) = ProbTµ (Cyl(B0, . . . , Bn−1, An))

=

∫
s0∈B0

ProbTκ(s0,·)(Cyl(B1, . . . , Bn−1, An))µ(ds0).

82 Chapter 4 – Stochastic Transition Systems

From the fact that B0 = {s0 ∈ A0 | ProbTκ(s0,·)(Cyl(B1, . . . , Bn−1, An)) > 0}
and that ProbTµ (Cyl(A0, . . . , An)) = 0, it follows that µ(B0) = 0. From the
hypothesis, we thus get that ν(B0) = 0. Now observing that we can prove
similarly that ProbTν (Cyl(A0, . . . , An)) = ProbTν (Cyl(B0, . . . , Bn−1, An)), we can
establish that ProbTν (Cyl(A0, . . . , An)) = 0 which concludes the proof.

One can also interpret the dynamics of T as a transformer of probability
measures over (S,Σ). Compared to the previous point-of-view, here one is in-
terested not in states the system can be in, but rather in how the probability
mass evolves along steps. It has been considered for both discrete-time Markov
chains [AAGT12] and continuous-time models, e.g. those induced by stochas-
tic time Petri nets [HPRV12]. This second point-of-view the other side of the
same coin of the previous one. It will be of some use in the sequel, although we
will ultimately only consider the semantics through the measure of infinite runs,
which suits better for the properties we want to check.

For µ a probability measure over Σ, its transformation through T can be
defined as the measure ΩT (µ) defined for every A ∈ Σ by:

ΩT (µ)(A) =

∫
s0∈S

κ(s0, A) · µ(ds0).

It can be shown that ΩT (µ) is also a probability measure over (S,Σ).

This interpretation offers a dual view on the STS T . Indeed, roughly speak-
ing, ΩT (µ)(A) is the probability of being in A after one step, when µ is the initial
distribution on T . Given a distribution µ ∈ Dist(S) and given A ∈ Σ such that
µ(A) > 0, we write µA for the conditional probability of µ given A, that is for

each B ∈ Σ µA(B) = µ(A∩B)
µ(A) . It should be observed that µA ∈ Dist(S). There

is a strong relation between the transformer ΩT (µ) and the probability measure
ProbTµ over runs defined previously, which we formalize in Lemma 4.1.8.

Lemma 4.1.8. Let µ ∈ Dist(S) be an initial distribution and let (Ai)0≤i≤n be
a sequence of measurable sets. Write ν0 = µA0 , the conditional probability of µ
given A0, and for every 1 ≤ j ≤ n− 1, write νj = (ΩT (νj−1))Aj . Then, for every
0 ≤ j ≤ n:

ProbTµ (Cyl(A0, A1, . . . , An)) =

µ(A0) ·
j∏
i=1

(ΩT (νi−1))(Ai) · ProbTΩT (νj)
(Cyl(Aj+1, . . . , An)).

4.1 – Definition and illustration of the model 83

Proof. The proof is by induction on j. Assume that j = 0, we have to show:
ProbTµ (Cyl(A0, A1, . . . , An)) = µ(A0) · ProbTΩT (ν0)(Cyl(A1, . . . , An)). First,

ProbTµ (Cyl(A0, . . . , An))

= ProbTµ (Cyl(A0) ∩ Cyl(S,A1, . . . , An))

= ProbTµ (Cyl(A0)) · ProbTµ (Cyl(S,A1, . . . , An) | Cyl(A0))

= µ(A0) · ProbTµA0
(Cyl(A0, . . . , An)).

Now let us unfold ProbTΩT (ν0)(Cyl(A1, . . . , An)):

ProbTΩT (ν0)(Cyl(A1, . . . , An))

=

∫
s1∈A1

ProbTκ(s1,·)(Cyl(A2, . . . , An))(ΩT (ν0))(ds1)

=

∫
s1∈A1

ProbTκ(s1,·)(Cyl(A2, . . . , An))

∫
s0∈S

κ(s0,ds1)ν0(ds0)

=

∫
s0∈A0

(∫
s1∈A1

ProbTκ(s1,·)(Cyl(A2, . . . , An))κ(s0, ds1)
)
µA0(ds0)

=

∫
s0∈A0

ProbTκ(s0,·)(Cyl(A1, . . . , An))µA0(ds0)

= ProbTµA0
(Cyl(A0, . . . , An)) .

Now fix 0 < j ≤ n and assume that for each for each 0 ≤ i < j the equality
above holds. We will prove that it is still the case for j. First, observe that if
j = n then the induction hypothesis states that

ProbTµ (Cyl(A0, A1, . . . , An))

= µ(A0) ·
n−1∏
i=1

(ΩT (νi−1))(Ai) · ProbTΩT (νn−1)(Cyl(An))

= µ(A0) ·
n−1∏
i=1

(ΩT (νi−1))(Ai) · ΩT (νn−1)(An)

= µ(A0) ·
n∏
i=1

(ΩT (νi−1))(Ai)

which is what we wanted. Otherwise, if j < n, then the hypothesis induction

84 Chapter 4 – Stochastic Transition Systems

states that

ProbTµ (Cyl(A0, A1, . . . , An)) =

µ(A0) ·
j−1∏
i=1

(ΩT (νi−1))(Ai) · ProbTΩT (νj−1)(Cyl(Aj , . . . , An)).

Then using a similar argument as in the first case, we get that

ProbTΩT (νj−1)(Cyl(Aj , . . . , An)) = ΩT (νj−1)(Aj) · ProbTΩT (νj)
(Cyl(Aj+1, . . . , An))

since ΩT (νj) = (ΩT (νj−1))Aj . This concludes the proof.

Remark 4.1.9. From this result, we can express the probability to reach A in n
steps from the initial distribution µ:

(Ω
(n)
T (µ))(A) = ProbTµ (Cyl(

n times︷ ︸︸ ︷
S, . . . , S,A)).

4.1.1 Formulas for STSs

Like for DMCs in Section 2.2, the σ-algebra FT allows to express a rich variety of
properties. To define properties on the STS T , we use again LTL-like notations,
that will be interpreted as measurable subsets of Runs(T). Let LS,Σ be the set
of formulas defined by the following grammar:

ϕ ::= B | ϕ1 U./k ϕ2 | ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2 | ¬ϕ,

where B ∈ Σ, ./ ∈ {≥,≤,=} is a comparison operator and k ∈ N is a natural
number. Observe that this logic can express all LTL formulas (see Section 2.2).
Given a run ρ = (sn)n≥0 ∈ Runs(T), we write ρ≥i = (sn)n≥i ∈ Runs(T) for each
i ≥ 0. Then the satisfaction relation of formulas is given as follows:

ρ |= B ⇐⇒ s0 ∈ B
ρ |= ϕ1 U./k ϕ2 ⇐⇒ ∃i ≥ 0, i ./ k, s.t. ρ≥i |= ϕ2 and ∀0 ≤ j < i, ρ≥j |= ϕ1

ρ |= ϕ1 ∨ ϕ2 ⇐⇒ ρ |= ϕ1 or ρ |= ϕ2

ρ |= ϕ1 ∧ ϕ2 ⇐⇒ ρ |= ϕ1 and ρ |= ϕ2

ρ |= ¬ϕ ⇐⇒ ρ 2 ϕ.

We write EvT (ϕ) for the set of infinite runs ρ in T such that ρ |= ϕ. It is standard
to show that the event EvT (ϕ) is a measurable subset of (Runs(T),FT) (see
e.g. [Var85]). In particular, for each initial probability measure µ, ProbTµ (EvT (ϕ))

4.1 – Definition and illustration of the model 85

is well-defined. In the sequel, for simplicity, we often write ProbTµ (ϕ) instead of

ProbTµ (EvT (ϕ)).
We will also use classical notations like > = S; ⊥ = ∅; ϕ1 Uϕ2 = ϕ1 U≥0 ϕ2;

Fϕ = >Uϕ; F./k ϕ = >U./k ϕ; Gϕ = ¬F (¬ϕ).
As we will often use them, we give the semantics of some formulas in LS,Σ in

terms of events: we get inductively that

EvT (BU./k B
′) =

⋃
i./k

Ä
EvT (F=iB

′) ∩
⋂

0≤j<i
EvT (F=j B)

ä
EvT (G FB) =

⋂
i≥0

⋃
j≥i

EvT (F=j B)

EvT (ϕ1 ∨ ϕ2) = EvT (ϕ1) ∪ EvT (ϕ2)

EvT (ϕ1 ∧ ϕ2) = EvT (ϕ1) ∩ EvT (ϕ2)

EvT (¬ϕ) = Runs(T) \ EvT (ϕ)

where for each n ∈ N and each B ∈ Σ,

EvT (F=nB) = Cyl(

n times︷ ︸︸ ︷
S, . . . , S,B).

4.1.2 Labelled STSs and their properties

To ease the expression of rich properties over STSs, we extend the model with a
labelling with atomic propositions.

Definition 4.1.10. A labelled stochastic transition system (LSTS for short) is a
tuple T = (S,Σ, κ,AP,L), where (S,Σ, κ) is an STS, AP is a finite set of atomic
propositions, and L : S → 2AP is a measurable labelling function.

Measures and other notions are extended in a straightforward way from STSs
to LSTSs. We fix a finite set AP of atomic propositions and an LSTS T =
(S,Σ, κ,AP,L).

A property over AP is a subset P of
Ä
2AP

äω
(the set of infinite sequences

of elements in 2AP). An infinite run ρ = s0s1 . . . of T satisfies the property P
whenever L(s0)L(s1)L(s2) . . . ∈ P , written ρ |= P . Whenever the set of runs
satisfying property P is measurable (i.e. {ρ ∈ Runs(T) | ρ |= P} ∈ FT), for each
µ ∈ Dist(S), we write ProbTµ (P) for the probability of this set of runs.

The notion of ω-regularity is standard in computer science to characterise
simple sets of infinite behaviours, and typical ω-regular properties are Büchi
and Muller properties. In order to express such properties, we introduce a new
notation for the set of atomic propositions that are true infinitely often along a

86 Chapter 4 – Stochastic Transition Systems

sequence of labels: for $ = u0u1u2 . . . ∈
Ä
2AP

äω
, we define Inf($) = {a ∈ AP |

|{j ∈ N | a ∈ uj}| = ∞}. We extend this notation to runs in a natural way: if
ρ = s0s1s2 . . . ∈ Sω, writing $ = L(s0)L(s1)L(s2) . . ., we define (with a slight
abuse of notation) Inf(ρ) = Inf($).

A Büchi property P over AP can be specified by a subset of atomic proposi-
tions F ⊆ AP as P = {$ ∈

Ä
2AP

äω | Inf($) ∩ F 6= ∅}. A Muller property over

AP is a property P such that there exists F ⊆ 2AP with P = {$ ∈
Ä
2AP

äω |
Inf($) ∈ F}.

Given a Muller property P defined by F ⊆ 2AP and given µ ∈ Dist(S), we
will sometimes write ProbTµ (Inf ∈ F) instead of ProbTµ (P).

Remark 4.1.11. It should be noted that the set of infinite runs satisfying Büchi
or Muller properties can be expressed using events as in Section 4.1.1. Indeed,
for F ⊆ AP we write 2APF = {u ∈ 2AP | u∩F 6= ∅} and given a ∈ AP, 2APa = {u ∈
2AP | a ∈ u}. Then,

• the set of runs satisfying the Büchi property with acceptance condition F
is

EvT
(
G F

Ä ∨
u∈2APF

L−1(u)
ä)

;

• the set of runs satisfying the Muller property with acceptance condition F
is

EvT
(∨
F∈F

(∧
a∈F

Ä
G F

∨
u∈2APa

L−1(u)
ä
∧
∧
a/∈F

∧
u∈2APa

F G
Ä
L−1(u)

äc))
.

It is well known that automata equipped with Büchi or Muller acceptance
conditions capture all ω-regular properties, and this also holds for deterministic
Muller automata.

Definition 4.1.12. A deterministic Muller automaton (DMA) over AP is a tuple
M = (Q, q0, E,F) where:

• Q is a finite set of locations, and q0 ∈ Q is the initial location;

• E ⊆ Q× 2AP ×Q is a finite set of edges;

• F is a Muller condition over Q;

and such that

• M is deterministic: for all pair of edges (q, u, q1) and (q, u, q2) in E, q1 = q2;

4.1 – Definition and illustration of the model 87

• M is complete: for every q ∈ Q, for every u ∈ 2AP, there exists (q, u, q′) ∈ E.

A DMA M naturally gives rise to a property PM defined by the language (over
2AP) accepted by M. A run in a DMA M is any infinite sequence of the form
q0u0q1u1 . . . with qi ∈ Q and ui ∈ 2AP for each i ≥ 0 and such that for each i ≥ 0,
(qi, ui, qi+1) ∈ E. A run q0u0q1u1 . . . is accepted by M if Inf((qn)n≥0) ∈ F . An
infinite sequence (un)n≥0 ∈ (2AP)ω is accepted by M if the unique corresponding
run in M (the existence and the uniqueness of this run are due to the fact that M
is deterministic and complete) is accepted by M. The property PM is thus defined
as follows: PM = {$ ∈ (2AP)ω | $ is accepted by M}. The semantics of a DMA
M over infinite runs of T is derived from that property PM: if ρ ∈ Runs(T),
we write ρ |= M whenever ρ |= PM. Expanding Remark 4.1.11, one derives the

standard fact that the set T [M]
def
= {ρ ∈ Runs(T) | ρ |= M} is measurable, and

we write ProbTµ (M) for ProbTµ (T [M]).

Remark 4.1.13. It is well known that for any LTL formula ϕ over AP (the syntax
given in Section 4.1.1, where we replace sets B by inverse images by L of atomic
propositions from AP), there is a DMA Mϕ that characterises ϕ, that is: for
every run ρ, ρ |= ϕ iff ρ |= Mϕ. See [VW94] and [GTW02, Chapter 3].

Remark 4.1.14. Observe that property PM is not a Muller property as defined
above and thus one cannot express PM like in the second item of Remark 4.1.11.
This is due to the fact that in Definition 4.1.12, the winning condition of a DMA
is given by F ⊆ 2Q (and not F ⊆ 2AP). However, each Muller property can be
expressed as a DMA.

Now, in order to measure the probability of properties specified by a DMA
M = (Q, q0, E,F), it is convenient to build a new STS consisting of the product
of T with M. To this aim, we consider the discrete σ-algebra 2Q on the finite set
of locations Q of M. The product S ×Q can then be equipped with the product
σ-algebra Σ×2Q defined as the smallest σ-algebra containing all rectangles, that
is, all sets of the form A1 × A2 with A1 ∈ Σ and A2 ∈ 2Q. Then, the product
σ-algebra Σ× 2Q coincides with Σ′ = {⋃q∈QCq × {q} | ∀q ∈ Q, Cq ∈ Σ}. Note
that in the sequel, we will sometimes write (Cq, q) instead of Cq × {q}.

We now define the product of T with M as follows.

Definition 4.1.15. Given T = (S,Σ, κ,AP,L) an LSTS and M = (Q, q0, E,F)
a DMA over AP, we define the product of T with M as the LSTS T n M =
(S′,Σ′, κ′,AP′,L′) such that:

• S′ = S ×Q;

• Σ′ is the product σ-algebra Σ× 2Q;

88 Chapter 4 – Stochastic Transition Systems

• κ′((s, q), (A, q′)) =

{
κ(s,A) if (q,L(s), q′) ∈ E, and

0 otherwise;

• AP′ = Q;

• L′(s, q) = q.

Note that the above definition of κ′ extends naturally to all elements of
the σ-algebra Σ′: for each pair (q, u) with q ∈ Q and u ∈ 2AP, there is a
unique q′ ∈ Q such that (q, u, q′) ∈ E. Fix (s, q) ∈ S × Q, write q′ for the
unique location such that (q,L(s), q′) ∈ E. Then for each A =

⋃
q∈QCq × {q},

κ′((s, q), A) = κ′((s, q), (Cq′ , q
′)) = κ(s, Cq′).

Example 4.1.16. We consider the random walk over N of Example 4.1.2. We
assume that it is equipped with the simple set of atomic propositions AP = {a}
and we assume that each state of the STS is labelled with a. Let M be the
DMA depicted on the left-hand side of Figure 4.1. The winning condition is
given by F = {{q1, q2}}. The product T2 n M is then depicted on the right-
hand side of Figure 4.1. It should be noted that we assume here that the system
starts at (0, q0) however, there should be similar chains starting in (i, q0) for each
i ≥ 1. Note also that we did not specify the labels on the states: according to
Definition 4.1.15, each state is labelled with its current position in M.

q0 q1 q2
{a}

{a}

{a}

(0, q0)

(0, q2)

(1, q1) (2, q2) (3, q1) · · ·

1

1− p

p

1

1− p

p

1− p

p

1− p

Figure 4.1: A Muller automaton M and the product T2 nM.

The product T nM gives rise to a new LSTS which has a labelling function
L′ over Q. Hence property PM ∈ (2AP)ω cannot directly be derived on T nM.
However, DMA M gives also rise to a property P ′M over Q: P ′M corresponds to
the set of infinite runs q0q1q2 . . . ∈ Qω accepted by M, which is a Muller property
over Q. Then, one can thus use the previous semantics in order to state that
a run ρ satisfies the Muller property P ′M whenever L′(ρ) ∈ PM and one can use
Remark 4.1.11 to show that P ′M is measurable in T nM (i.e. P ′M ∈ FT nM).

We now explain how initial distributions for T are lifted to the product T nM.
The idea is simple: the T -component is inherited from T , and the M-component

4.1 – Definition and illustration of the model 89

is a Dirac measure over q0, the initial state of M. In other words, when an initial
distribution µ ∈ Dist(S) is fixed for T , the initial distribution of T nM will be
µ× δq0 .

Here given µ ∈ Dist(S), we can thus express ProbT nM
µ×δq0

({ρ ∈ Runs(T nM) |
ρ |= F}) = ProbT nM

µ×δq0
(P ′M) and as before, we will write it ProbT nM

µ×δq0
(Inf ∈ F).

We show that this allows to properly compute the probability of a property
described by a DMA, with the following correspondence.

Proposition 4.1.17. Let µ ∈ Dist(S) be an initial distribution for T , and M =
(Q, q0, E,F) be a DMA. Then:

ProbTµ (M) = ProbT nM
µ×δq0

(Inf ∈ F) .

In order to prove this result, we first introduce some notations. Given
A0, A1, . . . , An ∈ Σ′ we write for each i, Ai =

⋃
q∈QAi,q × {q}. Also given

u1, . . . , un ∈ 2AP and q ∈ Q we inductively define{
qu1 = q′ ∈ Q such that (q, u1, q

′) ∈ E
qu1...ui = q′ ∈ Q such that (qu1...ui−1 , ui, q

′) ∈ E, ∀2 ≤ i ≤ n.

Observe that since M is deterministic and complete, those states are uniquely
defined. We then have the following result.

Lemma 4.1.18. For each initial distribution µ ∈ Dist(S) for T , for each state
q ∈ Q of M, for each n ∈ N and for each A0, . . . , An ∈ Σ′, it holds that

ProbT nM
µ×δq (Cyl(A0, A1, . . . , An)) =∑

u1,...,un∈2AP

ProbTµ (Cyl(A0,q ∩ L−1(u1), A1,qu1
∩ L−1(u2), . . . ,

An−1,qu1...un−1
∩ L−1(un), An,qu1...un)).

Proof. We prove it by induction over n. First if n = 0, we have to show that for
every µ ∈ Dist(S), every q ∈ Q and every A0 ∈ Σ′,

ProbT nM
µ×δq (Cyl(A0)) = ProbTµ (A0,q)

which is trivial from the definition of µ × δq. Now fix n ≥ 0. Assume that for
each 0 ≤ i ≤ n, the above property holds true and show that it is still the case

90 Chapter 4 – Stochastic Transition Systems

for i = n+ 1. Let µ ∈ Dist(S), q ∈ Q and A0, . . . , An+1 ∈ Σ′. We have that

ProbT nM
µ×δq (Cyl(A0, . . . , An+1))

=

∫
(s0,q′)∈A0

ProbT nM
κ′((s0,q′),·)(Cyl(A1, . . . , An+1))d(µ× δq)((s0, q

′))

=

∫
s0∈A0,q

ProbT nM
κ′((s0,q),·)(Cyl(A1, . . . , An+1))dµ(s0)

=
∑

u1∈2AP

∫
s0∈A0,q∩L−1(u1)

ProbT nM
κ′((s0,q),·)(Cyl(A1, . . . , An+1))dµ(s0)

=
∑

u1∈2AP

∫
s0∈A0,q∩L−1(u1)

ProbT nM
κ(s0,·)×δqu1

(Cyl(A1, . . . , An+1))dµ(s0) (4.2)

where the last equality comes from the unicity of qu1 . Using the induction
hypothesis, we get that

ProbT nM
κ(s0,·)×δqu1

(Cyl(A1, . . . , An+1)) =∑
u2,...,un+1∈2AP

ProbTκ(s0,·)(Cyl(A1,qu1
∩ L−1(u2), . . .

. . . , An,qu1...un ∩ L
−1(un+1), An+1,qu1...un+1

)).

Combining with (4.2), we thus obtain that

ProbT nM
µ×δq (Cyl(A0, . . . , An+1)) =∑

u1,...,un+1∈2AP

ProbTµ (Cyl(A0,q ∩ L−1(u1), . . .

. . . , An,qu1...un ∩ L
−1(un+1), An+1,qu1...un+1

)).

which concludes the proof.

Proposition 4.1.17 is then an immediate consequence of Lemma 4.1.18.

4.1.3 Qualitative and quantitative model-checking problem

The objective of this part of the thesis, is to define a nice framework on STSs
in order to get strong results on the qualitative and quantitative model-checking
problems in STSs. In this section, we adapt the Definitions 2.2.6 and 2.2.7 of
the qualitative and quantitative problems in DMCs to this richest context.

Definition 4.1.19. Given an STS T , an initial distribution µ and a property
ϕ that can be expressed in the σ-algebra FT , the qualitative model-checking
problem aims at verifying whether ProbTµ (ϕ) = 1 or not.

4.2 – Properties of STSs 91

Definition 4.1.20. Given an STS T , an initial distribution µ and a property
ϕ that can be expressed in the σ-algebra FT , the quantitative model-checking
problem aims at computing an approximation of ProbTµ (ϕ).

In Section 2.2, we have presented the work of [ABM07] that shows that
decisiveness plays a key role in proving the different results over the qualitative
and quantitative model-checking problems in DMCs, while in Section 3.3 we have
presented the work of [BBB+14] that shows that fairness plays this key role for
the qualitative model-checking problem results for STA.

In Chapter 6, we will present a unifying way to tackle those qualitative
and quantitative model-checking problems for STSs, recovering then the results
of [ABM07] on DMCs and the results of [BBB+14] on STA (wich can be seen as
STSs, as we will see in Chapter 7). In this last case, it will moreover be shown
that the ad hoc proofs of [BBB+14] can be simplified in our new formalism and
that we get new results for the quantitative model-checking problem.

In Section 4.2, we thus introduce different notions on STSs: decisiveness
and fairness as they were important for DMCs and STA, but also the notion of
attractor as it will be of a main interest to us.

4.2. Properties of STSs

In this section, we introduce several notions on STSs that will be needed in the
sequel in Chapters 5 and 6 in order to tackle the qualitative and quantitative
model-checking problems in STSs. We then show the relationships between those
notions. We will also make parallels with some notions of Section 2.2 since DMCs
and STSs are related in the sense that a STS can be seen as a DMC with a
continuous set of states (and that all DMCs are STSs).

We fix an STS T = (S,Σ, κ) for all this section.

4.2.1 Several decisiveness notions

We have presented in Section 2.2 the elegant concept of decisive Markov chain
which has been introduced in [ABM07]. As said before, it has been defined as
a desirable property of DMCs, since it implies that they behave essentially like
finite Markov chains. In this section, we show how to extend and refine this
notion of decisiveness to general STSs.

For B ∈ Σ a measurable set of states, we define its avoid-set ‹B = {s ∈ S |
ProbTs (FB) = 0}. It corresponds to the set of states from which the system will
always avoid the set B with probability 1. It should be noted that in the case
where T is a DMC, ‹B corresponds to the definition of Section 2.2.2.

92 Chapter 4 – Stochastic Transition Systems

Remark 4.2.1. Recalling the notations of Section 2.2.2, if T = M is a DMC,
then {s ∈ S | s 2 ∃FB} = {s ∈ S | ProbTs (FB) = 0}. Observe that if
s 2 ∃FB, then Runs(T , s) ∩ EvT (FB) = ∅. The left-to-right inclusion is thus
immediate. Now assume that ProbTs (FB) = 0 and towards a contradiction,
suppose that s |= ∃FB i.e. there is ρ = (sn)n≥0 ∈ Runs(M, s) such that
there is n ≥ 0, sn ∈ B. It follows that Cyl(s, s1, . . . , sn) ⊆ EvT (FB) and thus
ProbTs (FB) ≥ ProbTs (Cyl(s, s1, . . . , sn)) > 0 leading to the desired contradiction.

The set ‹B enjoys the following properties, that obviously hold also in the
context of DMCs, but require proofs in our general context of STSs.

Lemma 4.2.2. Given B ∈ Σ, it holds that:

• ‹B belongs to the σ-algebra Σ;

• for every µ ∈ Dist(‹B), ProbTµ (FB) = 0;

• for every µ ∈ Dist(S), if µ((‹B)c) > 0, then ProbTµ (FB) > 0;

• for every µ ∈ Dist(S), ProbTµ (F ‹B) = ProbTµ (F G ‹B) = ProbTµ (G F ‹B);

• for every µ ∈ Dist(S), ProbTµ (FB ∨ F ‹B) = ProbTµ (FB ∨ (¬BU ‹B)).

Let us comment on the third and fourth properties stated in this lemma. The
third item indicates that if we start from outside ‹B, then we will always have
a positive probability to hit B. The fourth property says that ‹B is some kind
of a sink set of states: once we hit ‹B, we cannot escape it. This comes from
the definition of ‹B. We get that for almost-surely each state s reachable from‹B, it is also the case that ProbTs (FB) = 0 . The other properties are rather
straightforward to understand (even though proving the first property requires
some technical developments).

Proof. We begin with the first point. Recall that given B ∈ Σ, ‹B = {s ∈ S |
ProbTs (FB) = 0}. Observe that we can write:‹B =

⋂
n≥0

{s ∈ S | ProbTs (Cyl(

n times︷ ︸︸ ︷
S, . . . , S,B)) = 0}.

It thus suffices to show that for each n ≥ 0,

{s ∈ S | ProbTs (Cyl(

n times︷ ︸︸ ︷
S, . . . , S,B)) = 0} ∈ Σ.

4.2 – Properties of STSs 93

We will use similar arguments as in the proof of Lemma 4.1.7. Recall that if

n ≥ 1, it holds that ProbTs (Cyl(

n times︷ ︸︸ ︷
S, . . . , S,B)) = ProbTκ(s,·)(Cyl(

n−1 times︷ ︸︸ ︷
S, . . . , S,B)) from

Remark 4.1.6.
First, if n = 0 then this set corresponds to the set {s ∈ S | δs(B) = 0} = Bc

which is in Σ. Now if n = 1 then

{s ∈ S | Probκ(s,·)(Cyl(B)) = 0} = (κ(·, B))−1({0})

which is in Σ from the hypotheses over κ (see Definition 4.1.1). Now assume
that n ≥ 2, it holds that

ProbTκ(s,·)(Cyl(

n−1 times︷ ︸︸ ︷
S, . . . , S,B)) =∫

s1∈S
· · ·
∫
sn−1∈S

κ(sn−1, B)κ(sn−2, dsn−1) · · ·κ(s1,ds2)κ(s, ds1).

We inductively define:{
Bn−1 = κ(·, B)−1(]0, 1])

Bi = κ(·, Bi+1)−1(]0, 1]) ∀0 ≤ i ≤ n− 2.

From the hypotheses over κ, it holds that Bi ∈ Σ for each 0 ≤ i < n. In
the sequel, s0 denotes s. As in the proof of Lemma 4.1.7, we can show that
firstly,

∫
sn−1∈S κ(sn−1, B)κ(sn−2,dsn−1) = ProbTκ(sn−2,·)(Cyl(Bn−1, B)) and that

for each 1 ≤ i ≤ n− 2,

(a) {si ∈ S | ProbTκ(si,·)(Cyl(Bi+1, . . . , Bn−1, B)) > 0} = Bi and

(b) ∫
si∈S

ProbTκ(si,·)(Cyl(Bi+1, . . . , Bn−1, An))κ(si−1,dsi) =

ProbTκ(si−1,·)(Cyl(Bi, . . . , Bn−1, An)).

It follows that

ProbTκ(s,·)(Cyl(

n−1 times︷ ︸︸ ︷
S, . . . , S,B)) = ProbTκ(s,·)(Cyl(B1, . . . , Bn−1, B))

=

∫
s1∈B1

ProbTκ(s1,·)(Cyl(B2, . . . , Bn−1, B))κ(s, ds1)

94 Chapter 4 – Stochastic Transition Systems

Now since for each s1 ∈ B1, ProbTκ(s1,·)(Cyl(B2, . . . , Bn−1, B)) > 0, it holds that

ProbTκ(s,·)(Cyl(

n−1 times︷ ︸︸ ︷
S, . . . , S,B)) = 0

if and only if κ(s,B1) = 0, i.e. if and only if s /∈ B0. And since B0 ∈ Σ, it
follows that Bc

0 ∈ Σ and thus

Bc
0 = {s ∈ S | ProbTs (Cyl(

n times︷ ︸︸ ︷
S, . . . , S,B)) = 0} ∈ Σ.

The second property is a direct consequence of the definition of ‹B.
We now focus on the third property. Towards a contradiction, assume that

there is µ ∈ Dist(S) such that µ((‹B)c) > 0 but ProbTµ (FB) = 0. It follows that

there is s ∈ (‹B)c such that ProbTs (FB) = 0 and thus s ∈ ‹B which is the wanted
contradiction.

Let us show the fourth item. It should be observed that given µ ∈ Dist(S),
ProbTµ (F G ‹B) ≤ ProbTµ (G F ‹B) ≤ ProbTµ (F ‹B). It thus suffices to show that

ProbTµ (F G ‹B) = ProbTµ (F ‹B). Since EvT (F G ‹B) ⊆ EvT (F ‹B), towards a con-

tradiction, we assume that ProbTµ (F ‹B ∧G F (‹B)c) > 0. As

EvT (F ‹B ∧G F (‹B)c) ⊆ EvT (
∨
n≥0

(F=n
‹B ∧ F>n (‹B)c))

=
⋃
n≥0

⋃
m≥0

Cyl(

n times︷ ︸︸ ︷
S, . . . , S, ‹B, m times︷ ︸︸ ︷

S, . . . , S, (‹B)c)

it follows that there is n,m ∈ N such that

ProbTµ (Cyl(

n times︷ ︸︸ ︷
S, . . . , S, ‹B, m times︷ ︸︸ ︷

S, . . . , S, (‹B)c)) > 0.

From Lemma 4.1.8, writing ν = Ω
(n)
T (µ), we get that

ProbTν (Cyl(‹B, m times︷ ︸︸ ︷
S, . . . , S, (‹B)c)) > 0.

And from the third property proven previously, we deduce that

ProbTν
B̃

(FB) > 0

with ν
B̃
∈ Dist(‹B) which contradicts the second property of this lemma.

4.2 – Properties of STSs 95

Finally, we prove the last property. It is straightforward by observing that
the two events measured in this equality are exactly the same:

EvT (FB ∨ F ‹B) = EvT (FB ∨ (¬BU ‹B)).

We are now ready to define different decisiveness concepts. Two of them
comes from [ABM07] (though no initial distribution was fixed) while the third
one comes from [BBBC16] were we identified the notion to be a useful alternative.

Definition 4.2.3. Let µ be an initial probability distribution (µ ∈ Dist(S)).
Then:

• T is decisive w.r.t. B from µ whenever ProbTµ (FB ∨ F ‹B) = 1; we then
write that T is Dec(µ,B).

• T is strongly decisive w.r.t. B from µ whenever ProbTµ (G FB ∨ F ‹B) = 1;
we then write that T is StrDec(µ,B).

• T is persistently decisive w.r.t. B from µ whenever for every k ≥ 0,
ProbTµ (F≥k B ∨ F≥k ‹B) = 1; we then write that T is PersDec(µ,B).

Furthermore: T is (strongly, persistently) decisive w.r.t. B whenever it
is (strongly, persistently) decisive w.r.t. B from every initial distribution µ;
We then write that T is Dec(B) (resp. StrDec(B), PersDec(B)). Also, given
B ⊆ Σ, T is (strongly, persistently) decisive w.r.t. B from µ if it is Dec(µ,B)
(resp. StrDec(µ,B), PersDec(µ,B)) for each B ∈ B. We write T is Dec(µ,B)
(resp. StrDec(µ,B), PersDec(µ,B)). Similarly T is (strongly, persistently) deci-
sive w.r.t. B if it is Dec(B) (resp. StrDec(B), PersDec(B)) for each B ∈ B. We
write T is Dec(B) (resp. StrDec(B), PersDec(B)).

Remark 4.2.4. Observe that in the case where T is a DMC, it is straightforward
to get that T is (strongly) decisive in the sense of Definition 2.2.12 if and only
if T is Dec(2S) (resp. StrDec(2S)).

Intuitively, the (simple) decisiveness property says that, almost-surely, either
B will eventually be visited, or states from which B can no more be reached will
eventually be visited. It denotes a dichotomy between the behaviours of the STS
T : there are those behaviours that visit B, and those that do not visit B, but
then visit ‹B; other behaviours have probability 0 to occur. Strong decisiveness
imposes a similar dichotomy, but between behaviours that visit B infinitely often
and behaviours that visit ‹B. Persistent decisiveness refines simple decisiveness,
except that here we look at an arbitrary horizon. It can also be seen as being

decisive from Ω
(n)
T (µ) for each n ≥ 0.

96 Chapter 4 – Stochastic Transition Systems

Example 4.2.5. Let us consider again the STS T2 of Example 4.1.2, representing
the random walk over N as a DMC. We have already shown in Example 2.2.14
that ‹B = ∅ for any set of states B and that if p > 1/2, T2 is not Dec(2S2)
nor StrDec(2S2). However here, we can prove decisiveness from some initial
distribution µ. We consider µ = δ0, the Dirac distribution over state 0. Then
it can be shown that for each set of states B, ProbT2µ (FB) = 1 and thus, T2

is Dec(µ,B). Now if µ′ = δ1 and B′ = {0} then ProbT2µ′ (F {0}) < 1 as already

observed in Example 2.2.11; but since B̃′ = ∅, we derive that T2 is not Dec(µ′, B′).
We now give an example where strong decisiveness is contradicted from an initial
distribution. For each i ≥ 0, we consider Bi = {i} and we still consider µ =
δ0. Since p > 1/2, classical results on random walks imply that for each i,
ProbT2µ (G FBi) = 0. And since ‹Bi = ∅, we obtain that T2 is not StrDec(µ,Bi).
Finally, one can compute ΩT2(µ) = µ′. Since T2 is not Dec(µ′, B′), we get that
T2 is not PersDec(µ,B′).

Consider now the STS T1 of Example 4.1.3. Assume that λ > ν and that
µ = δ(0,0) and fix some T > 0. We consider B1 = {1} × [0, T]. Then one can

compute ‹B = N×]T,∞[(since the time component can only increase, while all
natural numbers are reachable from each other by discrete jumps). Note that
here, as time almost-surely always progresses, ProbT1µ (F ‹B) = 1 and even for each

k ≥ 0, ProbT1µ (Fk≥0
‹B) = 1. It thus follows that T1 is Dec(µ,B), StrDec(µ,B)

and PersDec(µ,B).

4.2.2 Attractors

The notion of finite attractor has been used in several contexts like probabilistic
lossy channel systems (see e.g. [ABRS05]) but in [ABM07] in the context of
DMCs (see Section 2.2) where finite attractors were proved to imply decisiveness
(see Proposition 2.2.13). A finite attractor is a finite set of states which is
reached almost-surely from every state of the system. We lift this definition to
our context, obviously relaxing the finiteness assumption, since it is very unlikely
that systems with a continuous state-space will have finite attractors. Since the
whole set of states is a trivial attractor, this general definition will appear to be
useful once we are able to define attractors with some finiteness property, which
will be done through abstractions in Chapter 5.

Definition 4.2.6. Let µ ∈ Dist(S) be an initial distribution. We say that B ∈ Σ
is a µ-attractor for T if ProbTµ (FB) = 1. Furthermore, B is an attractor for T
if it is a µ-attractor for every µ ∈ Dist(S).

Observe that if T is a DMC, Definition 2.2.8 is obviously equivalent to Defi-

4.2 – Properties of STSs 97

nition 4.2.6 for the case without a fixed initial distribution.

Example 4.2.7. We illustrate the notion on the random-walk of Example 4.1.2.
Recall that we have already illustrated the notion of attractor on the random-
walk in Example 2.2.11. However, we have here also a notion of µ-attractor.
Assuming that p > 1/2, we have stated that there is no finite attractor. However,
for instance for B = {5}, it can be shown as stated in Example 4.2.5, that B is a
µ-attractor for µ = δ0. However, for any distribution µ′ ∈ Dist(N≥6) over natural
numbers greater than 6, ProbT2µ′ (FB) < 1 and thus B is not a µ′-attractor.

On the other hand as stated in Example 2.2.11, if we assume p ≤ 1/2, it is
a well-known property of random walks that {0} is reached almost-surely from
every state, hence we can infer that any bounded subset A of N is an attractor
(for every initial distribution).

The notion of attractor is very strong in STSs in the sense that it can be
reached with probability 1 form any state. Even in our general context, the
following strong property is then satisfied.

Lemma 4.2.8. If B is an attractor for T then for every initial distribution
µ ∈ Dist(S),

ProbTµ (G FB) = 1.

Proof. Let B be an attractor for T , i.e. for each initial distribution µ ∈ Dist(S),
ProbTµ (FB) = 1. Towards a contradiction, assume that there is µ ∈ Dist(S) such

that ProbTµ (G FB) < 1. Then, ProbTµ (F GBc) > 0. Now recall that from the
definitions, we have that

EvT (F GBc) =
⋃
n≥0

⋂
m≥0

Cyl(

n times︷ ︸︸ ︷
S, . . . , S,

m times︷ ︸︸ ︷
Bc, . . . , Bc).

It follows that there is n ∈ N such that

lim
m→∞

ProbTµ (Cyl(

n times︷ ︸︸ ︷
S, . . . , S,

m times︷ ︸︸ ︷
Bc, . . . , Bc)) > 0.

From Lemma 4.1.8, if we write ν0 = µ and νj = ΩT (νj−1) for each 1 ≤ j ≤ n−1,
we get that for each m ≥ 1,

ProbTµ (Cyl(

n times︷ ︸︸ ︷
S, . . . , S,

m times︷ ︸︸ ︷
Bc, . . . , Bc)) = ProbTΩT (νn−1)(Cyl(

m times︷ ︸︸ ︷
Bc, . . . , Bc))

98 Chapter 4 – Stochastic Transition Systems

since µ(S) = 1 and for each 0 ≤ j ≤ n − 2, (ΩT (νj))(S) = 1. It can be

seen that in this case, for each 0 ≤ j ≤ n − 1, νj = Ω
(j+1)
T (µ). We write

ν = ΩT (νn−1) = Ω
(n)
T (µ) ∈ Dist(S). We thus get that

lim
m→∞

ProbTν (Cyl(

m times︷ ︸︸ ︷
Bc, . . . , Bc)) = ProbTν (GBc) > 0,

which contradicts the fact that B is an attractor, hence a ν-attractor, for T .

4.2.3 Fairness

Fairness is a standard notion in probabilistic systems [Pnu83], saying that some-
thing which is allowed infinitely often should happen infinitely often almost-
surely. This can for instance be instantiated in DMCs as follows: if a state s
is visited infinitely often, and the probability to move from s to s′ is positive
then, almost-surely, the state s′ is visited infinitely often. It is well-known that
not all Markov chains are fair, but finitely-branching Markov chains are fair.
Fairness cannot be lifted directly to continuous state-space STSs (since for two
states s and s′, the probability to move from s to s′ is likely to be 0). A more
careful definition of this notion must be provided for general STSs. It has also
been studied in STA [BBB+14] (see Section 3.3) but the following definition is
a generalization as we will see in Chapter 7.

For B ∈ Σ, we define

PreProbT (B) = {B′ ∈ Σ | ∀µ′ ∈ Dist(B′), ProbTµ′(Cyl(B′, B)) > 0}

as the set of measurable sets of states B′ from which B can be reached with
positive probability. Note that, ideally we would like to define the maximal set
that allows one to reach B, but the union of all such sets may not be measurable
in our general context.

Definition 4.2.9. Let µ ∈ Dist(S) be some initial distribution, and B ∈ Σ.
We say that T is fair w.r.t. B from µ, written T is fair(µ,B), if for every
B′ ∈ PreProbT (B), ProbTµ (G FB′) > 0 implies

ProbTµ (G FB | G FB′) = 1.

Furthermore: if B ⊆ Σ, T is fair w.r.t. B from µ whenever it is fair(µ,B)
for each B ∈ B. We write T is fair(µ,B). We say that T is fair w.r.t. B if it is
fair(µ,B) for each initial distribution µ. We write T is fair(B). Finally, we say
that T is strongly fair whenever it is fair wr.t. B from µ for every B ∈ Σ and
every µ ∈ Dist(S).

4.2 – Properties of STSs 99

Example 4.2.10. Consider again the random walk of Example 4.1.2. We can
show that T2 is strongly fair by observing that there is a positive lower bound on
the non-zero probabilities to reach any set of states. Formally there exists ε > 0
such that for each B ⊆ S2, for each B′ ∈ PreProbT2(B) and for each s ∈ B′,
κ2(s,B) ≥ ε. It suffices to choose ε = min(p, 1− p) > 0.

Example 4.2.11 (Counter-example). Consider now the DMC T3 depicted in
Figure 4.2. The DMC can be described as follows. The set of states is denu-
merable and composed of: state b that is reachable from each state of the DMC
and the states a1, a2, a3, . . . that are connected sequentially: a1 → a2, a2 → a3

and so on. And thus each ai can reach state b in one step. In b, the system
moves to a1 with probability 1. Once in the sequence of ai’s, the probability
to stay within the sequence gets bigger and bigger and converges towards 1, or
said otherwise the probability to reach state b decreases and converges towards
0. More precisely, if we enter state an, the probability to move to b is given by
1

3n while the probability to move to an+1 is given by 1− 1
3n .

Consider B = {b}, µ = δb and B′ = {an | n ∈ N}, B′ ∈ PreProbT3(B). It
holds that ProbT3µ (G FB′) > 0, however, ProbT3µ (G FB | G FB′) < 1 and thus
T3 is not fair(µ,B).

a1 a2 a3 a4

b

2
3

8
9

26
27

1
3

1
9

1
271

Figure 4.2: A DMC T3 that is not strongly fair.

4.2.4 Relationships between the various properties

In this section, we compare all the notions, and give the precise links between
all these notions. We first analyse the general case, and reinforce the results in
the case of DMCs obtaining the results of [ABM07].

We can establish the following links between the notions of decisiveness and
fairness. The first result is straightforward.

100 Chapter 4 – Stochastic Transition Systems

Lemma 4.2.12. For each B ⊆ Σ and for each µ ∈ Dist(S), it holds that
Dec(B) (resp. StrDec(B), PersDec(B)) implies Dec(µ,B) (resp. StrDec(µ,B),
PersDec(µ,B)), and fair(B) implies fair(µ,B).

We also get straightforwardly from the definitions, the following implication.

Lemma 4.2.13. For each B ⊆ Σ and for each µ ∈ Dist(S), it holds that
StrDec(µ,B) implies Dec(µ,B), and PersDec(µ,B) implies Dec(µ,B).

It then turns out that strong decisiveness and persistent decisiveness are two
equivalent notions.

Lemma 4.2.14. For each B ⊆ Σ and for each µ ∈ Dist(S), it holds that
StrDec(µ,B) is equivalent to PersDec(µ,B).

Proof. Fix B ⊆ Σ, µ ∈ Dist(S) and B ∈ B. Assume that T is PersDec(µ,B),
i.e. for each k ≥ 0, ProbTµ (F≥k B ∨ F≥k ‹B) = 1. We want to show that

T is StrDec(µ,B), i.e. that ProbTµ (G FB ∨ F ‹B) = 1, or equivalently that

ProbTµ (F GBc ∧G (‹B)c) = 0. We have that:

ProbTµ (F GBc ∧G (‹B)c) ≤
∑
k≥0

ProbTµ (G≥k (Bc ∩ (‹B)c)

=
∑
k≥0

(1− ProbTµ (F≥k B ∨ F≥k ‹B))

= 0 from the hypothesis.

Hence we get that ProbTµ (G FB ∨ F ‹B) = 1 and thus T is StrDec(µ,B) and
StrDec(µ,B) as it holds true for each B ∈ B.

Now fix again B ∈ B and assume that T is StrDec(µ,B), i.e. ProbTµ (G FB∨
F ‹B) = 1. From Lemma 4.2.2 (fourth item), we get that ProbTµ (G FB∨G F ‹B) =

1 and it is then straightforward to establish that for each k ≥ 0, ProbTµ (F≥k B ∨
F≥k ‹B) = 1. We hence deduce that T is PersDec(µ,B) and thus PersDec(µ,B)
as it holds true for each B ∈ B. This concludes the proof.

Now, we have the following equivalences between the decisiveness notions.

Lemma 4.2.15. For each B ⊆ Σ, it holds that all three notions PersDec(B),
StrDec(B) and Dec(B) are equivalent.

Proof. Fix B ⊆ Σ. From Lemmas 4.2.13 and 4.2.14, it remains to prove that
Dec(B) =⇒ StrDec(B) or Dec(B) =⇒ PersDec(B). We prove the last one. We

4.2 – Properties of STSs 101

pick B ∈ B and assume that T is Dec(B), i.e. for each µ ∈ Dist(S), ProbTµ (FB∨
F ‹B) = 1. Pick µ ∈ Dist(S) and k ≥ 0. We get that

ProbTµ (G≥k B
c ∧G≥k (‹B)c) ≤ ProbTµk(G (Bc ∩ (‹B)c))

≤ 0 since T is Dec(B),

where the first inequality stands from Lemma 4.1.8 with µk = Ω
(k)
T (µ) and from

a similar argument as in the proof of Lemma 4.2.8. Hence for each k ≥ 0,
ProbTµ (F≥k B∨F≥k ‹B) = 1 and since it holds true for each µ ∈ Dist(S) and each
B ∈ B, we get that T is PersDec(B).

Finally, we show the following links between fairness and decisiveness.

Lemma 4.2.16. For each B ⊆ Σ and for each µ ∈ Dist(S), it holds that
StrDec(µ,B) implies fair(µ,B), and StrDec(B) implies fair(B).

Proof. Fix B ⊆ Σ and µ ∈ Dist(S). Assume that T is strongly decisive w.r.t. B
from µ, that is for each B ∈ B, ProbTµ (G FB ∨F ‹B) = 1. We want to prove that

for each B ∈ B, for each B′ ∈ PreProb(B) with ProbTµ (G FB′) > 0, we have that

ProbTµ (G FB | G FB′) = 1.

Fix B ∈ B and B′ ∈ PreProb(B) such that ProbTµ (G FB′) > 0. We can
notice that

ProbTµ (G FB′ ∧ F ‹B) = 0. (4.3)

Indeed, towards a contradiction, assume that ProbTµ (G FB′∧F ‹B) > 0. Observe
that

EvT (G FB′ ∧ F ‹B) =
⋃
n≥0

⋂
m≥0

⋃
l≥m

Cyl(

n times︷ ︸︸ ︷
S, . . . , S, ‹B, l times︷ ︸︸ ︷

S, . . . , S,B′).

Then, there are n,m ∈ N such that

ProbTµ (Cyl(

n times︷ ︸︸ ︷
S, . . . , S, ‹B, m times︷ ︸︸ ︷

S, . . . , S,B′)) > 0.

It follows, from Lemma 4.1.8 like seen previously, that there is ν ∈ Dist(S)

(ν = Ω
(n)
T (µ)), such that

ProbTν (Cyl(‹B, m times︷ ︸︸ ︷
S, . . . , S,B′)) > 0.

102 Chapter 4 – Stochastic Transition Systems

And since B′ ∈ PreProb(B), we get that

ProbTν (Cyl(‹B, m times︷ ︸︸ ︷
S, . . . , S,B′, B)) > 0.

Hence, ν(‹B) > 0 and we can apply Lemma 4.2.2 (second item) to obtain a
contradiction. Hence, equation (4.3) holds. We then write:

1 = ProbTµ (G FB ∨ F ‹B | G FB′) from strong decisiveness

=
ProbTµ ((G FB ∨ F ‹B) ∧G FB′)

ProbTµ (G FB′)

=
ProbTµ ((G FB ∧G FB′) ∨ (F ‹B ∧G FB′))

ProbTµ (G FB′)

=
ProbTµ (G FB ∧G FB′)

ProbTµ (G FB′)
from (4.3)

= ProbTµ (G FB | G FB′)

which proves that StrDec(µ,B) =⇒ fair(µ,B). The implication StrDec(B) =⇒
fair(B) is then immediate since the previous implication holds for any initial
distribution µ ∈ Dist(S).

We can summarize the previous implications as follows:

Proposition 4.2.17. For each B ⊆ Σ and for each µ ∈ Dist(S), it holds that

T is Dec(µ,B) T is StrDec(µ,B) T is PersDec(µ,B) T is fair(µ,B)

T is Dec(B) T is StrDec(B) T is PersDec(B) T is fair(B)

The three missing implications in the above proposition do actually not hold,
as witnessed by the following example. We also illustrate the fact that Dec(µ,B)
and fair(µ,B) are incomparable.

Example 4.2.18 (Counter-example). Consider the random walk T2 of Exam-
ple 4.1.2. We have shown in Example 4.2.10 that T2 is strongly fair. Now let
us assume that p > 1/2 and let us consider the initial distribution µ = δ0, the
Dirac distribution over 0. Then from Example 4.2.5, T2 is decisive from µ w.r.t.
any set of states. Again in this example, we have observed that it is not strongly
decisive w.r.t. any set of the form B = {i} with i ≥ 0 from µ. This shows that

4.3 – Concluding remarks 103

we do not have Dec(µ,B) =⇒ StrDec(µ,B), nor fair(µ,B) =⇒ StrDec(µ,B) and
fair(B) =⇒ StrDec(B). And since T2 is not decisive from δ1 w.r.t. {0}, this also
proves that fair(µ,B) does not imply Dec(µ,B).

In order to illustrate that Dec(µ,B) does not imply fair(µ,B) in general, we
consider the DMC T3 of Example 4.2.11. We consider B = {b} and µ = δb. It is
easily observed that T3 is Dec(µ,B) as we start in b with probability 1, but we
have shown that T3 is not fair(µ,B).

If T is a DMC, i.e. if S is at most denumerable and Σ = 2S , we can
complete the picture using the result of [ABM07] presented in Section 2.2.2
as Proposition 2.2.13 bonding the notion of finite attractor and decisiveness in
DMCs. We can then sum up the implications in DMCs as follows:

T DMC with a
finite attractor

´
T is Dec(2S) T is StrDec(2S) T is PersDec(2S)

T is strongly fair

Note that for the equivalence between decisiveness and strong decisiveness,
we recover Lemma 3.2 of [ABM07].

4.3. Concluding remarks

The objective is now to study the qualitative and quantitative model-checking
problems of STSs (see Definitions 4.1.19 and 4.1.20). Inspired from the work
of [ABM07] on DMC, we would like to get similar results as the ones presented
in Section 2.2.2. First of all, it should be noted we will not be able to obtain as
nice results as Propositions 2.2.15, 2.2.16, 2.2.17 and 2.2.18 where basically, the
almost-sure model-checking problem on DMCs (Definition 2.2.6) of (repeated)
reachability properties was reduced to structural properties of the underlying
graph: in our more general context of STSs, we cannot consider an underlying
graph.

Also we have observed that the notion of decisiveness played a key part in
proving all those results on DMCs. Hence the work here consists of, in a first
time adapting the results to our general context, and then getting new results for
all LTL formulas. Hence we will need to identify classes of decisive STSs on which
we get results for the qualitative and quantitative model-checking problems on
STSs of LTL formulas. This will be done in Chapter 6.

104 Chapter 4 – Stochastic Transition Systems

However proving that a general STS is decisive can be very technical. Hence
the purpose of Chapter 5 will be to deal with this difficulty by defining a notion
of abstraction.

CHAPTER 5

Abstraction Between STSs

As said before, in order to tackle the qualitative and quantitative model-checking
problems for STSs (see Definitions 4.1.19 and 4.1.20), inspired from the work
of [ABM07] (see Section 2.2.2), we will need to identify classes of decisive STSs.

While decisiveness is well-defined for general STSs, proving that a given STS
T is decisive might be technical in general. A standard approach in model-
checking to avoid such difficulties is to abstract the system into a simpler one,
that can be analysed and that provides guarantees on the concrete system. In
this chapter, we thus propose a notion of abstraction, which will help proving
properties of general STSs. Also, through abstractions, we will be able to char-
acterise meaningful attractors.

In Section 5.1 we define the notion of α-abstraction for STSs. Roughly speak-
ing, STS T2 is an α-abstraction of STS T1 if it preserves the qualitative one-step
behaviour of T1. We prove basic results of abstractions and we introduce the no-
tions of sound and complete α-abstractions. Those notions will allow to transfer
richest properties from the abstraction to the STS and vice-versa.

In Section 5.2, have a look at decisiveness properties and show under which
conditions those properties are transferred through abstractions. We will have
a particular interest for denumerable abstractions (i.e. abstractions that are
DMCs) as those are easier to analyse. We will also be invested in attractors and
fairness.

Finally, in Section 5.3, we identify conditions for the soundness and the com-
pleteness of abstractions.

105

106 Chapter 5 – Abstraction Between STSs

5.1. Abstraction

In this section, we introduce the notion of α-abstraction. As said before, an STS
T2 is an α-abstraction of STS T1 if it preserves the positive probabilities of one-
step moves. In Section 9.2, we will show basic properties of α-abstraction. Those
define the properties that are preserved through abstractions. As they are not
rich enough for what we intend to analyse, we define the notions of decisiveness
and completeness in Section 5.1.2.

Let T1 = (S1,Σ1, κ1) and T2 = (S2,Σ2, κ2) be two STSs. Let α : (S1,Σ1) →
(S2,Σ2) be a measurable function. A set B ∈ Σ1 is said α-closed whenever
B = α−1(α(B)): for every s, s′ ∈ S1, if s ∈ B and α(s) = α(s′), then s′ ∈ B.
Following [GBK16], we define the pushforward of α as α# : Dist(S1)→ Dist(S2)
by α#(µ)(M2) = µ(α−1(M2)) for every µ ∈ Dist(S1) and for every M2 ∈ Σ2. The
role of the pushforward α# is to transfer the measures from (S1,Σ1) to (S2,Σ2).

Definition 5.1.1. We say that T2 is an α-abstraction of T1 if

∀µ ∈ Dist(S1), α#(ΩT1(µ)) is equivalent to ΩT2(α#(µ)).

From the definitions of ΩT (see Section 4.1), α# and equivalent measures,
the notion of α-abstraction equivalently requires that for every µ ∈ Dist(S1) and
every A ∈ Σ2,

ProbT1µ (Cyl(S1, α
−1(A))) > 0⇐⇒ ProbT2α#(µ)(Cyl(S2, A)) > 0 .

Intuitively, the two STSs have the same one-step qualitative behaviour.
The notion of α-abstraction naturally extends to LSTSs as follows.

Definition 5.1.2. LSTS T2 = (S2,Σ2, κ2,AP2,L2) is an α-abstraction of LSTS
T1 = (S1,Σ1, κ1,AP1,L1) whenever:

• (S2,Σ2, κ2) is an α-abstraction of (S1,Σ1, κ1);

• AP1 = AP2;

• for every s1, s′1 ∈ S1, α(s1) = α(s′1) =⇒ L1(s1) = L1(s′1);

• for every s ∈ S1, L1(s) = a =⇒ L2(α(s)) = a.

The two last conditions imply that for each a ∈ 2AP, L−1
1 ({a}) is α-closed.

Moreover, for each a ∈ 2AP, α−1(L−1
2 ({a})) = L−1

1 ({a}).
We illustrate the notion of α-abstraction on STSs T1 and T2 of Examples 4.1.2

and 4.1.3.

5.1 – Abstraction 107

Example 5.1.3. Consider again the STS T2 with parameter p ∈]0, 1[and T1

with parameters λ and ν > 0 of Examples 4.1.2 and 4.1.3. Let α : S1 → S2 be the
mapping defined as follows: for every i ∈ N and every t ∈ R+, α((i, t)) = i. It can
be shown that T2 is an α-abstraction of T1. We will illustrate it by considering
any distribution µ ∈ Dist({0} × R+). Then, observe that the pushforward of µ
corresponds to α#(µ) = δ0 ∈ Dist(S2) (note that this will be formally proven

in Lemma 5.1.4). It follows that for any A ⊆ S2, ProbT2α#(µ)(Cyl(S2, A)) > 0 if

and only if 1 ∈ A if and only if {1} × R+ ⊆ α−1(A). From the definition of κ1

(see Example 4.1.3), it is then obvious that this last condition is equivalent to
ProbT1µ (Cyl(S1, α

−1(A))) > 0.

It should be noted that a similar reasoning can be applied to any initial
distribution µi ∈ Dist({i} × R+) with i ∈ N and thus to any initial distribution
µ′ ∈ Dist(S1).

We fix two STSs T1 = (S1,Σ1, κ1) and T2 = (S2,Σ2, κ2) for the rest of this
chapter.

5.1.1 Properties of abstractions

We now establish several technical results, which explicit how STSs are related
through an α-abstraction. The relationship is only qualitative, in the sense that
it only relates positive reachability probabilities, but does not relate almost-sure
or lower-bounded probabilities.

Lemma 5.1.4. Let α : (S1,Σ1)→ (S2,Σ2) be a measurable function. Then for
every s ∈ S2 and every µ ∈ Dist(α−1({s})), α#(µ) = δs.

Proof. Fix s ∈ S2 and µ ∈ Dist(α−1({s})). For each A ∈ Σ2, we have that
(α#(µ))(A) = µ(α−1(A)). If s ∈ A, then trivially α−1({s}) ⊆ α−1(A) and thus
µ(α−1(A)) = 1. Otherwise, if s /∈ A, then α−1({s}) ∩ α−1(A) = ∅ and thus
µ(α−1(A)) = 0. This directly implies that α#(µ) = δs.

Lemma 5.1.5. Assume that T2 is an α-abstraction of T1. Then, for every i ∈ N,

for every µ ∈ Dist(s1), α#(Ω
(i)
T1 (µ)) is equivalent to Ω

(i)
T2 (α#(µ)).

Proof. We show this by induction on i. Case i = 1 is by definition of α-
abstraction (Definition 5.1.1). Fix some i ≥ 1 and assume that the statement

holds true for each 1 ≤ j ≤ i. By induction hypothesis, we have that α#(Ω
(i)
T1 (µ))

is equivalent to Ω
(i)
T2 (α#(µ)). We want to show that α#(Ω

(i+1)
T1 (µ)) is equivalent

to Ω
(i+1)
T2 (α#(µ)).

108 Chapter 5 – Abstraction Between STSs

We first notice that ΩT2(α#(Ω
(i)
T1 (µ))) is equivalent to Ω

(i+1)
T2 (α#(µ)). Indeed

write ν = α#(Ω
(i)
T1 (µ)) and ν ′ = Ω

(i)
T2 (α#(µ)). From the induction hypothesis, we

know that ν and ν ′ are equivalent. Following a similar argument as in the proof
of Lemma 4.1.7 and from the definition of ΩT2 (see Section 4.1, we can deduce
that ΩT2(ν) is equivalent to ΩT2(ν ′). So it remains to show that ΩT2(α#(µ′))

is equivalent to α#(ΩT1(µ′)), where µ′ = Ω
(i)
T1 (µ). This is by definition of an

α-abstraction.

In other words, Lemma 5.1.5 states that for each A ∈ Σ2 and for each i ∈ N,

ProbT1µ (F=i α
−1(A)) > 0⇐⇒ ProbT2α#(µ)(F=iA) > 0,

i.e. α-abstractions preserve the positive qualitative behaviour in any step. This
can even be generalised to cylinders.

Lemma 5.1.6. Assume that T2 is an α-abstraction of T1. Then for every µ ∈
Dist(S1), for every (Ai)0≤i≤n ∈ Σn+1

2 ,

ProbT1µ (Cyl(α−1(A0), . . . , α−1(An))) > 0⇐⇒ ProbT2α#(µ)(Cyl(A0, . . . , An)) > 0.

Proof. We do the proof by induction on n. The case n = 0 is obvious from the
definition of α#. Now fix n ≥ 1 and assume that for each 0 ≤ k ≤ n − 1, for
each µ ∈ Dist(S1) and for each (Ai)0≤i≤k ∈ Σk+1

2 ,

ProbT1µ (Cyl(α−1(A0), . . . α−1(Ak))) > 0⇐⇒ ProbT2α#(µ)(Cyl(A0, . . . , Ak)) > 0.

We show that it is still the case for n. Fix µ ∈ Dist(S1) and (Ai)0≤i≤n+1 ∈ Σn+2
2 .

We let ν0 = µα−1(A0) and ν ′0 = (α#(µ))A0 . Note that we hence assume that
µ(α−1(A0)) > 0. We first realise that ν ′0 = α#(ν0). Indeed for each A ∈ Σ2,

(α#(ν0))(A) = ν0(α−1(A)) =
µ(α−1(A ∩A0))

µ(α−1(A0))
=

(α#(µ))(A ∩A0)

(α#(µ))(A0)
= ν ′0(A).

Then, applying Lemma 4.1.8, we get:

ProbT1µ (Cyl(α−1(A0), α−1(A1), . . . , α−1(An)))

= µ(α−1(A0)) · ProbT1ΩT1 (ν0)(Cyl(α−1(A1), . . . , α−1(An)))

and

ProbT2α#(µ)(Cyl(A0, A1, . . . , An)) = (α#(µ))(A0) · ProbT1ΩT2 (ν′0)(Cyl(A1, . . . , An)).

5.1 – Abstraction 109

By definition of an α-abstraction (Definition 5.1.1), the measures ΩT2(ν ′0) and
α#(ΩT1(ν0)) are equivalent. Hence from Lemma 4.1.7,

ProbT2ΩT2 (ν′0)(Cyl(A1, . . . , An)) > 0⇐⇒ ProbT2α#(ΩT1 (ν0))(Cyl(A1, . . . , An)) > 0.

From the hypothesis of induction, we get that

ProbT2α#(ΩT1 (ν0))(Cyl(A1, . . . , An)) > 0

⇐⇒ ProbT1ΩT1 (ν0)(Cyl(α−1(A1), . . . , α−1(An))) > 0.

Since (α#(µ))(A0) = µ(α−1(A0)), we conclude:

ProbT1µ (Cyl(α−1(A0), α−1(A1), . . . , α−1(An))) > 0

⇐⇒ ProbT2α#(µ)(Cyl(A0, A1, . . . , An)) > 0.

We still have to consider the case where µ(α−1(A0)) = 0. In that case, it holds
that (α#(µ))(A0) = 0 and thus

ProbT1µ (Cyl(α−1(A0), α−1(A1), . . . , α−1(An))) = 0

= ProbT2α#(µ)(Cyl(A0, A1, . . . , An))

which terminates the proof.

Lemma 5.1.6 states thus that α-abstractions preserve the positive qualita-
tive behaviour. As an immediate consequence, the positivity of probabilities
of “Until” formulas (and thus of reachability properties) are preserved through
α-abstractions.

Corollary 5.1.7. Assume that T2 is an α-abstraction of T1. Then for every
µ ∈ Dist(S1), for every A,B ∈ Σ2:

ProbT1µ (EvT1(α−1(A) Uα−1(B))) > 0⇐⇒ ProbT2α#(µ)(EvT2(AUB)) > 0.

Note that this however does not apply to liveness properties, like EvT2(G FA)
with A ∈ Σ2. To ensure that these more involved properties are preserved via
abstractions, we will strengthen the assumptions on the abstraction and on the
STS.

110 Chapter 5 – Abstraction Between STSs

5.1.2 Soundness and completeness of abstractions

In this section, we introduce the notions of sound and complete α-abstraction.
An α-abstraction is sound if it transfers the almost-sure behaviour of reachability
properties to the STS; it is complete if it satisfies the other implication. As
the final objective is to reduce the analyse of STSs to simpler systems through
abstractions, we will have a peculiar interest for sound abstractions.

We assume that T2 is an α-abstraction of T1.

Definition 5.1.8. Let µ ∈ Dist(S1). The α-abstraction T2 is µ-sound whenever
for every B ∈ Σ2:

ProbT2α#(µ)(FB) = 1 =⇒ ProbT1µ (Fα−1(B)) = 1 .

We say that T2 is a sound α-abstraction of T1 if it is µ-sound for every µ ∈
Dist(S1).

Definition 5.1.9. Let µ ∈ Dist(S1). The α-abstraction T2 is µ-complete when-
ever for every B ∈ Σ2,

ProbT1µ (Fα−1(B)) = 1 =⇒ ProbT2α#(µ)(FB) = 1

We say that T2 is a complete α-abstraction of T1 if it is µ-complete for every
µ ∈ Dist(S1).

Sound and complete abstractions will guarantee that, up to α, the same
properties are satisfied almost-surely in T1 and T2 (provided some properties are
satisfied by T1 and T2).

Example 5.1.10. We go back to Example 5.1.3 where we have shown that T2

(see Example 4.1.2) is an α-abstraction of T1 (see Example 4.1.3). It can be
shown moreover that T2 is sound and complete whenever p > 1/2 ⇐⇒ λ > ν.
Indeed it suffices to observe that for any t ≥ 0,

• κ1((0, t), {1} × R+) = 1, and

• for any i ≥ 1, κ1((i, t), {i+1}×R+) = λ
λ+ν and κ1((i, t), {i−1}×R+) = ν

λ+ν .

Hence if we consider only α-closed sets in T1, one can see that its behaviour
is very similar to T2 and it is more than just what can be deduced from an α-
abstraction: we have a constant probability to go up in the queue, and a constant
probability to go down just like in T2. Now observe that λ

λ+ν > 1/2 if and only

if λ > ν. The value λ
λ+ν corresponds to the probability to go up in the queue,

which is the equivalent part of probability p in T2. From classical results on
random-walks, it is then trivial to get that T2 is sound and complete whenever
p > 1/2⇐⇒ λ > ν.

5.1 – Abstraction 111

When T2 is a DMC, then α-abstraction, soundness and completeness have a
simpler characterisation, which will be useful in the proofs.

Lemma 5.1.11. Assume that T2 is a DMC. Then:

• T2 is an α-abstraction of T1 iff for every s, s′ ∈ S2,

κ2(s, s′) > 0⇐⇒ ∀µ ∈ Dist(α−1({s})), ProbT1µ (Cyl(S1, α
−1({s′}))) > 0;

• T2 is sound iff for every s ∈ S2 and every B ∈ Σ2,

ProbT2s (FB) = 1 =⇒ ∀µ ∈ Dist(α−1({s})), ProbT1µ (Fα−1(B)) = 1;

• T2 is complete iff for every s ∈ S2 and every B ∈ Σ2,

∀µ ∈ Dist(α−1({s})), ProbT1µ (Fα−1(B)) = 1 =⇒ ProbT2s (FB) = 1.

Proof. We handle the case of soundness, other cases are similar. Observe that
the implication from left to right is obvious. Now assume that for each s ∈ S2 and
for each B ∈ Σ2, the condition presented in the statement (second item) holds
true. Then fix µ ∈ Dist(S1), B ∈ Σ2 and assume that ProbT2α#(µ)(FB) = 1. We

have to show that ProbT1µ (Fα−1(B)) = 1. Towards a contradiction, assume that

ProbT1µ (Fα−1(B)) < 1. Then, since T2 is a DMC (and thus is S2 is denumerable),
there is s ∈ S2 such that (α#(µ))(s) > 0 and

ProbT1µα−1(s)
(Fα−1(B)) < 1.

From the hypothesis, it follows that ProbT2s (FB) < 1. Observe that since
µ(α−1(s)) > 0, we have that (α#(µ))(s) > 0. Hence we get a contradiction
by noticing:

ProbT2α#(µ)(FB) =
∑
s′∈S2

(α#(µ))(s′) · ProbT2s′ (FB)

<
∑
s′∈S2

(α#(µ))(s′) = (α#(µ))(S2) = 1

where the first equality comes from the fact that S2 is at most denumerable and
the strict inequality holds from the fact that ProbT2s (FB) < 1, (α#(µ))(s) > 0

and ProbT2s′ (FB) ≤ 1 for each s′ ∈ S2.

112 Chapter 5 – Abstraction Between STSs

5.2. Transfer of properties through abstractions

In this section, we explain how and under which conditions one can transfer
interesting decisiveness, attractor and fairness properties of STSs through ab-
stractions.

5.2.1 The case of sound abstractions

We first consider sound abstractions. We will see that the soundness assumption
allows one to transfer decisiveness and attractors properties from the abstraction
to the concrete model.

The first result establishes that decisiveness is preserved through sound ab-
stractions.

Proposition 5.2.1. If T2 is a µ-sound α-abstraction of T1, then for every B ∈
Σ2:

T2 is Dec(α#(µ), B) =⇒ T1 is Dec(µ, α−1(B)).

This result will play a key role in the sequel. Indeed it states that if you
have to prove that a general STS T is decisive, it suffices to have a sound α-
abstractions that is decisive. The idea will then be to find an abstraction on
which it is easy to prove decisiveness (for instance, recall that all finite Markov
chains, or more generally DMCs with a finite attractor, are decisive w.r.t. any
set of states!) in order to imply the decisiveness of T . We will also see why the
notion of decisiveness in STSs is important to us (see Chapter 6).

In order to prove Proposition 5.2.1, we first show the following technical
lemma, which relates avoid-sets in T1 and in T2.

Lemma 5.2.2. Let T2 be an α-abstraction of T1. Then, for every B ∈ Σ2:‚�α−1(B) = α−1(‹B).

Proof. Fix B ∈ Σ2. We have the following series of equivalences:

s ∈‚�α−1(B)⇐⇒ ProbT1s (Fα−1(B)) = 0

⇐⇒ ProbT2α#(δs)
(FB) = 0 (Corollary 5.1.7).

Now from Lemma 5.1.4, one can show that α#(δs) = δα(s) by noticing that

δs ∈ Dist(α−1(α(s))). Hence s ∈‚�α−1(B) iff α(s) ∈ ‹B (i.e. s ∈ α−1(‹B)), which
concludes the proof.

We are now ready to prove Proposition 5.2.1.

5.2 – Transfer of properties through abstractions 113

Proof of Proposition 5.2.1. Fix B ∈ Σ2 and assume that T2 is Dec(α#(µ), B),
i.e.

ProbT2α#(µ)(FB ∨ F ‹B) = 1. (5.1)

In order to show that T1 is Dec(µ, α−1(B)), Lemma 5.2.2 states that it suffices
to prove that

ProbT1µ (Fα−1(B) ∨ Fα−1(‹B)) = 1.

The latter is immediate by (5.1) since T2 is µ-sound.

Thanks to Proposition 4.2.17, this result obviously extends to stronger deci-
siveness notions.

Corollary 5.2.3. If T2 is a sound α-abstraction of T1, then for every B ∈ Σ2:

T2 is Dec(B) (or equiv. StrDec(B), PersDec(B) =⇒
T1 is Dec(α−1(B)) (or equiv. StrDec(α−1(B)), PersDec(α−1(B)).

The definitions of attractor and of sound α-abstraction yield a similar result,
which is straightforward in this case.

Proposition 5.2.4. If T2 is a sound α-abstraction of T1 and if A ∈ Σ2 is an
attractor for T2, then α−1(A) is an attractor for T1.

As a direct consequence of Proposition 2.2.13 and Corollary 5.2.3, we get the
following result for denumerable abstractions, which will be crucial for designing
approximation algorithms taking advantage of abstractions.

Proposition 5.2.5. Let T2 be a DMC with a finite attractor. If T2 is a sound
α-abstraction of T1, then T1 is decisive w.r.t. every α-closed set.

We summarize the interesting results on denumerable abstractions, making
a parallel with Proposition 4.2.17. Assume T2 is an α-abstraction of T1, and
write B = {α−1(B) | B ∈ Σ2}, the set of α-closed sets of Σ1. The following
implications hold true:

T2 sound and DMC
with finite attractor

™
T1 is Dec(B) T1 is StrDec(B) T1 is PersDec(B)

T1 is fair(B)

114 Chapter 5 – Abstraction Between STSs

5.2.2 Trickier transfers of properties

We established that decisiveness properties could be transferred through sound
abstractions. However in the next section, we will also see that soundness of an
abstraction can be proved via decisiveness properties. It is therefore relevant to
explore alternatives to prove decisiveness properties. In this section, we give two
frameworks where this can be done.

First, we assume a denumerable abstraction and lower bounds on probabili-
ties of reachability properties.

Proposition 5.2.6. Let T2 be a DMC such that T2 is an α-abstraction of T1.
Assume that there is a finite set A2 = {s1, . . . , sn} ⊆ S2 such that A2 is an
attractor for T2 and A1 =

⋃n
i=1 α

−1(si) = α−1(A2) is an attractor for T1. Assume
moreover that for every 1 ≤ i ≤ n, for every α-closed set B in Σ1, there exist
p > 0 and k ∈ N such that:

• for every µ ∈ Dist(α−1(si)), Prob
T1
µ (F≤k B) ≥ p, or

• for every µ ∈ Dist(α−1(si)), Prob
T1
µ (FB) = 0.

Then T1 is decisive w.r.t. every α-closed set.

We write (†) for the hypotheses over T1 in this proposition. The idea behind
this result is that, with probability 1, the attractor of T1 will be visited infinitely
often and, if at each visit of the attractor, there is a positive probability to reach
some (α-closed) set B, since that probability is by assumption bounded from
below, then B will indeed be visited infinitely often with probability 1. This
will allow to show the dichotomy between B and ‹B that is required for proving
the decisiveness property: either ‹B will be visited, or ‹B will never be visited
in which case, using the fact that the attractor is visited infinitely often with
probability 1 and the fact that from ‹Bc, B is visited with a positive probability,
and finally from hypothesis (†), we will be able to conclude that B is visited with
probability 1. We give here the full proof. Note that this kind of proof appears
quite often in the literature (see e.g. [ABM07, Lemma 3.4], but we have to do it
carefully here, since the framework is rather general).

Proof. Fix B ⊆ S2 and µ ∈ Dist(S1). We want to show that T1 is µ-decisive w.r.t.
α−1(B). We therefore have to show that ProbT1µ (Fα−1(B) ∨ Fα−1(‹B)) = 1.

Towards a contradiction we assume that ProbT1µ (G (¬α−1(B))∧G (¬α−1(‹B))) >

0, i.e. ProbT1µ (Gα−1(Bc) ∧Gα−1((‹B)c)) > 0.

5.2 – Transfer of properties through abstractions 115

Since A1 = α−1(A2) is an attractor of T1, we deduce from Lemma 4.2.8 that
ProbT1µ (G Fα−1(A2)) = 1, hence:

ProbT1µ (Gα−1(Bc) ∧Gα−1((‹B)c) ∧G Fα−1(A2)) > 0. (5.2)

We let A′2 ⊆ A2 be the subset of states s ∈ A2 such that:

ProbT1µ (Gα−1(Bc) ∧Gα−1((‹B)c) ∧G Fα−1({s})) > 0.

Due to inequality (5.2) and finiteness of A2, A′2 is non-empty and furthermore,
every s ∈ A′2 belongs to Bc and (‹B)c. We now set A′1 = α−1(A′2).

In particular, A′1 ⊆ α−1((‹B)c), hence from Lemma 4.2.2 (third item) we get
that for every ν ∈ Dist(A′1), ProbT1ν (Fα−1(B)) > 0. According to hypothesis
(†), for every s ∈ A′2, we can find ps > 0 and ks ∈ N such that for every
νs ∈ Dist(α−1(s)),

ProbT1νs (F≤ks α
−1(B)) ≥ ps.

Then taking p = min{ps | s ∈ A′2} > 0 and k = max{ks | s ∈ A′2} ∈ N (since A′2
is finite), it holds that for every ν ∈ Dist(A′1),

ProbT1ν (F≤k α
−1(B)) ≥ p hence ProbT1ν (G≤k α

−1(Bc)) ≤ 1− p, (5.3)

where

EvT (G≤k α
−1(Bc)) = Cyl(

k times︷ ︸︸ ︷
α−1(Bc), . . . , α−1(Bc)).

From (5.2), we can deduce that:

0 < ProbT1µ (Gα−1(Bc) ∧Gα−1((‹B)c) ∧G FA′1)

≤ ProbT1µ (Gα−1(Bc) ∧G FA′1) ≤ lim
n→∞

(1− p)n = 0.

It remains to show the last inequality. It is this part of the proof that is quite
classical in the literature (see e.g. [ABM07, Lemma 3.4]), but we have to prove
it carefully in or general setting. We will prove it by induction as follows.

First we introduce some useful notations. Observe that from the definition
of A′1, it holds that A′1 ⊆ α−1(Bc). Then for each j ∈ N, we will write Bc

j

for the finite sequence α−1(Bc), . . . , α−1(Bc) where α−1(Bc) occurs exactly j
times, and similarly we will write (Bc \ A′1)j for the finite sequence α−1(Bc) \
A′1, . . . , α

−1(Bc) \ A′1 where α−1(Bc) \ A′1 occurs exactly j times. Then observe
that

EvT1(G FA′1 ∧Gα−1(Bc)) =⋂
n∈N

⋃
j0∈N

⋃
(j1,...,jn)∈Nn≥k

Cyl(Bc
j0 , A

′
1, B

c
j1 , A

′
1, B

c
j2 , . . . , B

c
jn−1

, A′1, B
c
jn), (5.4)

116 Chapter 5 – Abstraction Between STSs

where N≥k denotes the set of natural numbers greater than k. We scheme the
behaviour of this set and what we can infer on the probabilities on Figure 5.1.
As all behaviours are always in α−1(Bc), the big rectangle represents this set,
while the small one represents A′1 ⊆ α−1(Bc) which we know is reached infinitely
often with probability 1. The behaviours are thus decomposed accordingly to
each visit in A′1 followed by k moves (while staying in A′1. The dashed arrows
represent these k steps. Note that within those k steps, A′1 could be reached
but it has no importance. What matters here is the fact that from A′1, the
probability of the next k steps within α−1(Bc) is upper bounded by 1− p. The
curled arrows hold for the next visit to A′1 which we hence know that it will
happen with probability 1.

1st
v
isit

to
≤

1

2n
d

v
isit

to
≤

1

n
-th

v
isit

to
≤

1

k
st

ep
s

≤
1−
p

k
st

ep
s

≤
1−
p

k
st

ep
s

≤
1−
p

α−1(Bc)

A′1

Figure 5.1: Scheme for the proof of Proposition 5.2.6.

We will prove by induction over n that for each n ≥ 0 and for each ν ∈
Dist(S1),

ProbT1ν

(⋃
j0∈N

⋃
(j1,...,jn)∈Nn≥k

Cyl(Bc
j0 , A

′
1, B

c
j1 , A

′
1, B

c
j2 , . . . , B

c
jn−1

, A′1, B
c
jn)
)

≤ (1− p)n.

Observe that for each n ≥ 0, it holds that

⋃
j0∈N

⋃
(j1,...,jn)∈Nn≥k

Cyl(Bc
j0 , A

′
1, B

c
j1 , A

′
1, B

c
j2 , . . . , B

c
jn−1

, A′1, B
c
jn) ⊆

⋃
j0∈N

⋃
(j1,...,jn−1)∈Nn−1

≥k

Cyl(Bc
j0 , A

′
1, B

c
j1 , A

′
1, B

c
j2 , . . . , B

c
jn−1

, A′1, B
c
k).

5.2 – Transfer of properties through abstractions 117

Somehow, Figure 5.1 represents one of these cylinders. Hence it is enough to
demonstrate that for each n ≥ 0 and for each ν ∈ Dist(S1),

ProbT1ν

(⋃
j0∈N

⋃
(j1,...,jn−1)∈Nn−1

≥k

Cyl(Bc
j0 , A

′
1, B

c
j1 , A

′
1, B

c
j2 , . . . , B

c
jn−1

, A′1, B
c
k)
)

≤ (1− p)n. (5.5)

First fix n = 0 and ν ∈ Dist(S1). It corresponds to the two first arrows on
Figure 5.1. We will show that for each m ≥ 0,

ProbT1ν

(m⋃
j=0

Cyl(Bc
j , A

′
1, B

c
k)
)
≤ 1− p,

that is we decompose Figure 5.1 according to the length of the first curled arrow.
We first prove cases m = 0 and m = 1 in order to illustrate what is happening,
and then we will make the general case. If m = 0, it then holds that

ProbT1ν (Cyl(A′1, B
c
k)) = ν(A′1) · ProbT1νA′

1

(Cyl(A′1, B
c
k))

≤ ProbT1νA′
1

(Cyl(Bc
k+1)) ≤ 1− p (5.6)

where the first inequality holds from the fact that A′1 ⊆ α−1(Bc), and the second
one from (5.3). Note that we assumed here that ν(A′1) > 0, but it has no
importance since if ν(A′1) = 0, then the inequality trivially holds. Now if m = 1,
first observe that

Cyl(A′1, B
c
k) ∪ Cyl(Bc, A′1, B

c
k) = Cyl(A′1, B

c
k) ∪ Cyl(Bc \A′1, A′1, Bc

k)

where in the second member of the equality, the union is disjoint. It follows that,
writting ν ′0 = νBc\A′1 and ν1 = (ΩT1(ν ′0))A′1 :

ProbT1ν
Ä

Cyl(A′1, B
c
k) ∪ Cyl(Bc, A′1, B

c
k)
ä

= ProbT1ν (Cyl(A′1, B
c
k)) + ProbT1ν (Cyl(Bc \A′1, A′1, Bc

k))

≤ ν(A′1) · (1− p) + ν(Bc \A′1) · (ΩT1(ν ′0))(A′1) · ProbT1ν1 (Cyl(A′1, B
c
k))

from Lemma 4.1.8

≤ ν(A′1) · (1− p) + ν(Bc \A′1) · (ΩT1(ν ′0))(A′1) · (1− p) ≤ (1− p).

Note that we again assumed here that ν(Bc \ A′1) > 0 and (ΩT1(ν ′0))(A′1) > 0,
which has again no importance since otherwise, the probability of one of the

118 Chapter 5 – Abstraction Between STSs

cylinders would be equal to 0 and which would thus not interfere on the above
inequality. We now prove the general case for m ≥ 2. Again, we can decompose
the union of the cylinders into a disjoint one as follows:

m⋃
j=0

Cyl(Bc
j , A

′
1, B

c
k) =

m⋃
j=0

Cyl((Bc \A′1)j , A
′
1, B

c
k)).

We use the following notations: ν ′0 = νBc\A′1 , ν0 = νA′1 , and

• for each 1 ≤ i ≤ m− 1, ν ′i = (ΩT1(ν ′i−1))Bc\A′1 and

• for each 1 ≤ i ≤ m, νi = (ΩT1(ν ′i−1))A′1 .

Note that we assume again that the conditional probability are well-defined, but
like in cases m = 0 and m = 1, we can make this supposition w.l.o.g. Then using
Lemma 4.1.8 and the observation (5.3), we get that:

ProbT1ν

(m⋃
j=0

Cyl(Bc
j , A

′
1, B

c
k)
)

=
m∑
j=0

ProbT1ν (Cyl(Bc
j , A

′
1, B

c
k))

= ν(A′1) · ProbT1ν0 (Cyl(A′1, B
c
k))

+
m∑
j=1

Ä
ν(Bc \A′1) ·

j−1∏
i=1

(ΩT1(ν ′i))(B
c \A′1) · (ΩT1(ν ′j−1)(A′1)

· ProbT1νj (Cyl(A′1, B
c
k))︸ ︷︷ ︸

≤1−p

ä
≤ (1− p) ·

(
ν(A′1) +

m∑
j=1

Ä
ν(Bc \A′1) ·

j−1∏
i=1

(ΩT1(ν ′0))(Bc \A′1) · (ΩT1(ν ′j−1)(A′1)
ä)

= (1− p) · ProbT1ν
(m⋃
j=0

Cyl(Bc
j , A

′
1)
)
≤ 1− p

where the last equality comes again from Lemma 4.1.8, but in the other sense
this time. Finally through the limit over m, we obtain that (5.5) is true when
n = 0.

Now fix n ≥ 0 and assume that for 0 ≤ l ≤ n and for each ν ∈ Dist(S1), the
inequality (5.5) holds true. We get in particular that for each ν ∈ Dist(S1),

ProbT1ν

(⋃
j0∈N

⋃
(j1,...,jn−1)∈Nn−1

≥k

Cyl(Bc
j0 , A

′
1, B

c
j1 , A

′
1, B

c
j2 , . . . , B

c
jn−1

, A′1, B
c
k)
)

≤ (1− p)n.

5.2 – Transfer of properties through abstractions 119

We want to show that (5.5) is still satisfied for n+ 1. Like in case n = 0, we will
show that for each m ≥ 0,

ProbT1ν

(m⋃
j=0

⋃
(j1,...,jn)∈Nn≥k

Cyl(Bc
j , A

′
1, B

c
j1 , A

′
1, B

c
j2 , . . . , B

c
jn , A

′
1, B

c
k)
)
≤ (1− p)n+1.

We thus again decompose the scheme of Figure 5.1 accordingly to the length of
the first arrow. In fact the proof is very similar to the case n = 0 as once you hit
for the second time α−1(Bc) in the scheme (i.e. after the first dashed arrow),
the induction hypothesis can be applied. What happens before is the exact same
behaviour as in the case for n = 0. For each m ≥ 0 this finite union of cylinders
can be decomposed into a finite union of disjoint sets as follows:

m⋃
j=0

⋃
(j1,...,jn)∈Nn≥k

Cyl(Bc
j , A

′
1, B

c
j1 , A

′
1, B

c
j2 , . . . , B

c
jn , A

′
1, B

c
k) =

m⋃
j=0

⋃
(j1,...,jn)∈Nn≥k

Cyl((Bc \A′1)j , A
′
1, B

c
j1 , A

′
1, B

c
j2 , . . . , B

c
jn , A

′
1, B

c
k).

Then using Lemma 4.1.8 and this decomposition into a disjoint union, it holds
that

ProbT1ν

(m⋃
j=0

⋃
(j1,...,jn)∈Nn≥k

Cyl(Bc
j , A

′
1, B

c
j1 , A

′
1, B

c
j2 , . . . , B

c
jn , A

′
1, B

c
k)
)

=

m∑
j=0

αj · ProbT1µj
(⋃
j′∈N

⋃
(j2,...,jn)∈Nn−1

≥k

Cyl(Bc
j′ , A

′
1, B

c
j2 , . . . , B

c
jn , A

′
1, B

c
k)
)
,

where for each 0 ≤ j ≤ m, 0 < αj < 1 and µj ∈ Dist(S1) are given by
Lemma 4.1.8, where αj corresponds to:

αj = ProbT1ν (Cyl((Bc \A′1)j , A
′
1, B

c
k)).

Note that this is possible due to the fact that we look at the union of all j1 ≥ k.
Using the induction hypothesis and this last equality, we get that

ProbT1ν

(m⋃
j=0

⋃
(j1,...,jn)∈Nn≥k

Cyl(Bc
j , A

′
1, B

c
j1 , A

′
1, B

c
j2 , . . . , B

c
jn , A

′
1, B

c
k)
)

≤ (1− p)n · ProbT1ν
(m⋃
j=0

Cyl(Bc
j , A

′
1, B

c
k)
)

≤ (1− p)n+1

120 Chapter 5 – Abstraction Between STSs

where the last inequality stands from what we have done in case n = 0. Through
the limit over m, we can thus deduce that (5.5) is still true for n+ 1.

Finally coming back to (5.4), through the limit over n this time, we con-
clude that ProbT1µ (G FA′1 ∧Gα−1(Bc)) ≤ limn→∞(1 − p)n = 0. This yields a
contradiction and concludes the proof.

This result gives us thus an alternative to Proposition 5.2.5: here we assume
again an α-abstraction that is a DMC with a finite attractor, but this time
we assume hypothesis (†) on the attractor instead of the soundness of the α-
abstraction. And it is sufficient to get decisiveness. We will see however in
Section 5.3 how this implies soundness (see Proposition 5.3.4).

Now in the second proposition, we strengthen the hypothesis on the α-
abstraction and assume that it is finite. The condition which applies in this
case is the weakest property that we have seen (see Proposition 4.2.17), namely
fairness!

Proposition 5.2.7. Let T2 be a finite Markov chain such that T2 is an α-
abstraction of T1. Fix µ ∈ Dist(S1), and assume that T1 is µ-fair w.r.t. every
α-closed set. Then T1 is µ-decisive w.r.t. every α-closed set.

A key element of the proof relies on the fact that, since T2 is a finite Markov
Chain, it can be viewed as a graph and we can talk of the bottom strongly con-
nected components (BSCC) of T2, see Section 2.2.1 for some details. Recovering
the notations of Section 2.2.1, we write BSCC(T2) for the set of BSCCs of T2.

The first step of the proof aims at showing that, roughly speaking, the union
of all BSCCs of T2 is a µ-attractor for T1. More precisely, if C = {s ∈ S2 | ∃C ∈
BSCC(T2), s ∈ C}, we prove that ProbT1µ (Fα−1(C)) = 1. This is shown thanks
to the following arguments:

• for each s ∈ S2, ProbT1µ (G Fα−1(s)) > 0 implies that s ∈ C – this uses the
µ-fairness assumption of T1 w.r.t. α-closed sets, and the core property of
BSCCs (we cannot escape from them);

• using Bayes formula, one can decompose the set of paths according to the
states which are visited infinitely often (which corresponds to a decompo-
sition according to the BSCC the path ultimately visit).

Once we have shown that α−1(C) is a µ-attractor for T1, it suffices to observe
that for each B ⊆ S2 and each BSCC C of T2, either B ∩ C 6= ∅, or C ⊆ ‹B.
Transferring those observations to T1 and using Bayes formula to decompose
ProbT1µ (Fα−1(B)∨Fα−1(‹B)) according to which BSCC is reached, it is easy to

check that ProbT1µ (Fα−1(B) ∨ Fα−1(‹B)) = 1.

5.2 – Transfer of properties through abstractions 121

Proof. We define C = {s ∈ S2 | ∃C ∈ BSCC(T2), s ∈ C}. We first prove that
ProbT1µ (Fα−1(C)) = 1. In order to establish this, we show that for each s ∈ S2,

ProbT1µ (G Fα−1(s)) > 0 implies that s ∈ C. Indeed, pick s ∈ S2 such that:

ProbT1µ (G Fα−1({s})) > 0.

We can state that for each k ≥ 1 and for each s0, s1, . . . , sk ∈ S2 with s0 = s and
such that for each 0 ≤ i < k, κ2(si, si+1) > 0, it holds that

ProbT1µ (G Fα−1(sk) | G Fα−1(s)) = 1.

We prove this by induction over k. First fix k = 1 and let s1 ∈ S2 such
that κ2(s, s1) > 0. Then, from Definition 5.1.1, for every ν ∈ Dist(α−1(s)),
ProbT1ν (Cyl(α−1({s}), α−1({s1}))) > 0. Hence α−1(s) ∈ PreProbT ({α−1(s1)}).
And since T1 is fair w.r.t. α-closed sets, we get that

ProbT1µ (G Fα−1({s1}) | G Fα−1({s})) = 1.

Now fix k > 1 and assume that for each 1 ≤ j < k and for each s0, . . . , sj ∈ S2

with s0 = s and such that for each 0 ≤ i < j, κ2(si, si+1) > 0, it holds that

ProbT1µ (G Fα−1(sj) | G Fα−1(s)) = 1.

We want to show that it is still the case for k. Fix s0, s1, . . . , sk ∈ S2 sat-
isfying all the desired hypotheses. Using the induction hypothesis, we know
that ProbT1µ (G Fα−1(sk−1) | G Fα−1(s0)) = 1 and that ProbT1µ (G Fα−1(sk) |
G Fα−1(sk−1)) = 1. We can then compute:

ProbT1µ (G Fα−1(sk) | G Fα−1(s0))

= ProbT1µ (G Fα−1(sk) ∧G Fα−1(sk−1) | G Fα−1(s0))

= ProbT1µ (G Fα−1(sk) | G Fα−1(sk−1) ∧G Fα−1(s0))

· ProbT1µ (G Fα−1(sk−1) | G Fα−1(s0))

= 1

from the induction hypothesis. This shows that for every state s′ which is reach-
able from s in T2,

ProbT1µ (G Fα−1({s′}) | G Fα−1({s})) = 1.

Then fix s′ reachable from s in T2. We can show that s is also reachable from
s′. Towards a contradiction, assume that it is not the case. It follows that

ProbT1µ (G Fα−1({s′}) ∧G Fα−1({s})) = 0

122 Chapter 5 – Abstraction Between STSs

which is a contradiction with ProbT1µ (G Fα−1({s′}) | G Fα−1({s})) = 1 and

ProbT1µ (G Fα−1({s})) > 0. We deduce thus that s belongs to a BSCC of T2: if
C = {s′ ∈ S2 | s′ is reachable from s}, then

• firstly, you cannot leave C - otherwise you would reach a state s′ out of C
which would then be reachable from s and thus should be in C;

• secondly, for each pair of states s′, s′′ ∈ C, we have s′ →∗ s′′ and s′′ →∗ s′,
where→∗ denotes the existence of a finite path between two states - indeed,
it suffices to notice that s→∗ s′ →∗ s→∗ s′′ →∗ s→∗ s′.

We can now prove that ProbT1µ (Fα−1(C)) = 1. Indeed observe first that from
the finiteness of T2, it holds that for every paths ρ = t0t1t2 . . . ∈ Runs(T1), there
is s ∈ S2 such that {i ∈ N | ti ∈ α−1(s)} is infinite. Keeping this in mind, we
write S2 = {s1, . . . , sk, sk+1, . . . , sn} where k ≥ 1 and {s1, . . . , sk} = C. Then we
can write

Runs(T1) =EvT1(G Fα−1(s1)) ∪ EvT1(G Fα−1(s2) ∧ F G¬α−1(s1))

∪ · · · ∪ EvT1(G Fα−1(sn) ∧
n−1∧
i=1

F G¬α−1(si)).

From what we have shown previously, we now get that for each j ≥ k + 1,

0 = ProbT1µ (G Fα−1(sj)) ≥ ProbT1µ (G Fα−1(sj) ∧
j−1∧
i=1

F G¬α−1(si)).

And we conclude that

1 = ProbT1µ (Runs(T1))

=
k∑
j=1

ProbT1µ (G Fα−1(sj) ∧
j−1∧
i=1

F G¬α−1(si))

≤ ProbT1µ (Fα−1(C)).

We are now able to prove that T1 is Dec(µ,B). Fix B ⊆ S2, we want to show
that ProbT1µ (Fα−1(B) ∨ Fα−1(‹B)) = 1. We have that

ProbT1µ (Fα−1(B) ∨ Fα−1(‹B)) =∑
C∈BSCC(T2) s.t.

Prob
T1
µ (Fα−1(C))>0

ProbT1µ (Fα−1(C)) · ProbT1µ (Fα−1(B) ∨ Fα−1(‹B) | Fα−1(C)).

Now we fix some C ∈ BSCC(T2) such that ProbT1µ (Fα−1(C)) > 0. There are two
cases:

5.3 – Conditions for completeness and soundness 123

• first if there is s ∈ C such that s ∈ B, then α−1(s) ⊆ α−1(B) and thus
ProbT1µ (Fα−1(B) ∨ Fα−1(‹B) | Fα−1(C)) = 1;

• or for each s ∈ C, s ∈ ‹B which implies that α−1(C) ⊆ α−1(‹B) and in that
case again, ProbT1µ (Fα−1(B) ∨ Fα−1(‹B) | Fα−1(C)) = 1.

We finally conclude that

ProbT1µ (Fα−1(B) ∨ Fα−1(‹B)) =
∑

C∈BSCC(T2) s.t.

Prob
T1
µ (Fα−1(C))>0

ProbT1µ (Fα−1(C))

= ProbT1µ (Fα−1(C)) = 1.

This result gives us thus again an alternative to Proposition 5.2.5, but when
we restricted the hypothesis to an α-abstraction that is a finite Markov chain:
here, instead of the soundness assumption, we only need fairness, which was
proven to be the weakest notion defined in Chapter 4 (see Proposition 4.2.17),
in order to imply decisiveness!

5.3. Conditions for completeness and soundness

In this section, we give conditions that ensure completeness and soundness of
α-abstractions. The first result shows that a simple condition on the abstraction
implies completeness.

Lemma 5.3.1. If T2 is a finite Markov chain and an α-abstraction of T1, then
T2 is complete.

Proof. Fix s0 ∈ S2 and µ ∈ Dist(α−1({s0})). Recall that from Lemma 5.1.4,
it holds true that α#(µ) = δs0 . Towards a contradiction, we assume that

ProbT1µ (Fα−1(B)) = 1 but ProbT2α#(µ)(FB) < 1.

Since T2 is a finite Markov chain, there are s1, . . . , sn ∈ S2 such that

ProbT2s0 (Cyl(s0, s1, . . . , sn)) > 0

and for each ρ = (si)i≥0 ∈ Cyl(s0, . . . , sn) and for each i ≥ 0, si /∈ B.
For each 0 ≤ i ≤ n, we write Ai = α−1({si}). Then, by Lemma 5.1.6,

we get that ProbT1µ (Cyl(A0, A1, . . . , An)) > 0. However, Cyl(A0, A1, . . . , An) ∩
EvT (Fα−1(B)) = ∅, yielding a contradiction.

124 Chapter 5 – Abstraction Between STSs

Note that the above lemma does not hold for denumerable abstractions. To
illustrate this, any two random walks over N (see Example 4.1.2) are abstractions
of each other (similar to the observations made in Example 5.1.3), and it is well-
known that almost-sure reachability depends on the probability values (as stated
in Example 4.2.7).

In general, completeness can be guaranteed by some decisiveness condition.
Note that, since finite Markov chains are always decisive, the next lemma actually
subsumes the latter one, that we however found interesting to have as such.

Lemma 5.3.2. Let µ ∈ Dist(S1). Assume that T2 is an α-abstraction of T1 and
that T2 is Dec(α#(µ)). Then, T2 is a µ-complete α-abstraction.

Proof. Fix B ∈ Σ2 and towards a contradiction assume that ProbT1µ (Fα−1(B)) =

1 but ProbT2α#(µ)(FB) < 1. Therefore, since T2 is Dec(α#(µ)), we infer from

Lemma 4.2.2 (fifth item) that ProbT2α#(µ)((¬B) U ‹B) > 0, and applying Corol-

lary 5.1.7, we get that ProbT1µ (α−1(¬B) Uα−1(‹B)) > 0. This contradicts the

hypothesis that ProbT1µ (Fα−1(B)) = 1.

Remark 5.3.3. Observe that thanks to Proposition 2.2.13 and Lemma 5.3.2, it
holds that if T2 is a DMC with a finite attractor and if T2 is an α-abstraction of
T1, then it is a complete α-abstraction.

Given the results of Section 5.2, we realise that soundness is often more
critical than completeness, and showing it may require some effort. Below, we
give a condition under which soundness holds.

Proposition 5.3.4. Let T2 be an α-abstraction of T1. Assume that T1 is decisive
w.r.t. every α-closed set. Then T2 is a sound α-abstraction of T1.

Proof. Fix B ∈ Σ2. Towards a contradiction assume that ProbT2α#(µ)(FB) = 1

but ProbT1µ (Fα−1(B)) < 1. Hence, since T1 is decisive w.r.t. α−1(B) from µ, it

holds from Lemma 4.2.2 (fifth item) that ProbT1µ (¬α−1(B) Uα−1(‹B)) > 0. Ap-

plying Corollary 5.1.7, we get that ProbT2α#(µ)((¬BU ‹B)) > 0, which contradicts

the assumption that ProbT2α#(µ)(FB) = 1.

Remark 5.3.5. For T2 an α-abstraction of T1, notice that completeness is ensured
by a decisiveness assumption on T2, whereas soundness requires T1 being decisive
w.r.t. every α-closed set. While these conditions look very similar, the condition
for soundness on T1 is actually harder to check since the abstract STS T2 will be
simpler than the original concrete STS T1.

5.3 – Conditions for completeness and soundness 125

However observe that in the case where T2 is a DMC, combining Proposi-
tions 5.2.6 and 5.3.4, we get another assumption ensuring the soundness: the
existence of a finite attractor in T2 satisfying hypothesis (†) (see page 114).

CHAPTER 6

Qualitative and Quantitative
Analysis

In this chapter we are interested in the qualitative and quantitative model-
checking problem of STSs (Definitions 4.1.19 and 4.1.20). As said before, the
objective is to extend the results of [ABM07] to more general stochastic systems
and to richer properties, i.e. to STSs and to properties recognised by DMA, also
called ω-regular properties. The Chapter is divided as follows.

In Section 6.1, we consider the qualitative model-checking problem. We first
aim at extending the results of [ABM07] to our context and we hence only con-
sider reachability and repeated reachability properties in Section 6.1.1. Using
decisiveness assumptions, we get very similar results as in the case of DMCs,
however the qualitative model-checking problem cannot be reduced to the sat-
isfaction of structural properties on the underlying graph (to the contrary of
decisive DMCs) as in this continuous context, there is no underlying graph. But
those lead to simpler problems. We show moreover that the qualitative analysis
can equivalently be done on an α-abstraction that is sound, under decisiveness
assumptions. This will thus be particularly interesting for abstractions that are
DMCs.

Then, we extend the results to ω-regular properties. We first consider the
simpler case of DMCs in Section 6.1.2, that is we consider the same context
of [ABM07] but we enrich the class of properties we want to check. The almost-
sure satisfaction of properties given as a DMA can be characterised by finitely
many reachability properties [ABRS05] and [Ber06] for DMCs with a finite at-
tractor. We proof the characterisation in our new formalism. It will allow to
use, in part, the results of [ABM07] but it will also require to prove some new

127

128 Chapter 6 – Qualitative and Quantitative Analysis

structural properties on some graph. In Section 6.1.3, we extend those results
to STSs that have a sound α-abstraction that is a DMC and that has a finite
attractor.

In Section 6.2, we consider the quantitative model-checking problem. Sec-
tions 6.2.1 and 6.2.2 present approximation schemes for reachability and repeated
reachability properties for STSs, that generalize the algorithms of [ABM07]. We
show also that under decisiveness assumptions, the procedures are correct and
terminates. In Sections 6.2.3 and 6.2.4, we come back to the case of ω-regular
properties and show how the characterisations of Sections 6.1.2 and 6.1.3 can
be used in order to get approximation schemes of properties given by a DMA
for DMCs with a finite attractor and for STSs that have a sound α-abstraction
that is a DMC and that has a finite attractor. Those procedures amount to
compute reachability probabilities and for which the approximation scheme of
Section 6.2.1 can thus be applied!

We end the chapter with a summary of all the qualitative and quantitative
results in Section 6.3.

6.1. Qualitative analysis

In this section, we are interested in the almost-sure model-checking problem of
STSs (see Definition 4.1.19). We rely on the notions previously introduced and
studied to design generic procedures for the qualitative analysis of properties of
STSs, under some assumptions that will be made precise.

In Section 6.1.1, we are concerned with the extension of the qualitative re-
sults of [ABM07] to STSs and we thus only consider reachability and repeated
reachability properties. We get similar results, however we cannot reduce the
problem to structural properties of the underlying graph as this does not exist in
the continuous setting; but those lead to simpler problems. We show moreover
that under some assumptions, the analysis can be done on an α-abstraction.

In Sections 6.1.2 and 6.1.3 we enrich the class of properties we want to check.
We consider properties specified by a DMA, i.e. ω-regular properties. We first
consider DMCs in Section 6.1.2. We are interested in the approach of [ABRS05]
and [Ber06] which consider DMCs with a finite attractor. The authors provide a
characterisation of the almost-sure satisfaction of such properties through reach-
ability probabilities. It is done through the construction of some graph based
on the attractor. We provide the proofs in our new formalism. In Section 6.1.3,
we extend those results to STSs that have a sound α-abstraction that is a DMC
and that has a finite attractor.

6.1 – Qualitative analysis 129

6.1.1 Reachability and repeated reachability properties

Inspired from [ABM07] (see Section 2.2.2), our objective here is to describe
generic procedures that capture the qualitative (almost-sure, positive) satisfac-
tion of reachability and repeated reachability properties.

We fix a STS T = (S,Σ, κ). Given B ∈ Σ a measurable set, recall that‹B = {s ∈ S | ProbTs (FB) = 0} denotes its avoid-set. We start with two
technical lemmas that will be useful to show various results thereafter.

Lemma 6.1.1. For every µ ∈ Dist(S)

(i) ProbTµ (FB ∧ (¬BU ‹B)) = 0;

(ii) ProbTµ (G FB ∧ F ‹B) = 0.

Proof. We first prove point (i). Since B cannot be reached while we are in ¬B,
it holds that

ProbTµ (FB ∧ (¬BU ‹B)) = ProbTµ (¬BU (‹B ∧ FB)).

Relaxing the constraint on the “Until” formula, we get ProbTµ (¬BU (‹B∧FB)) ≤
ProbTµ (F (‹B ∧ FB)), and the latter is null by definition of ‹B. This proves the
first item.

Point (ii) is straightforward from the definition of ‹B and by observing that
ProbTµ (G FB ∧ F ‹B) ≤ ProbTµ (F (‹B ∧ FB)) = 0.

Lemma 6.1.2. For every µ ∈ Dist(S), if T is PersDec(µ,B), then ProbTµ (F ‹B ∧
F
˜̃
B) = 0.

Proof. Assume that T is PersDec(µ,B), i.e. for each p ≥ 0, ProbTµ (F≥pB ∨

F≥p ‹B) = 1. Towards a contradiction, we suppose that ProbTµ (F ‹B ∧ F
˜̃
B) > 0.

Since

EvT (F ‹B ∧ F
˜̃
B) =

⋃
n≥0

⋃
m≥0

EvT (F=n
‹B) ∩ EvT (F=m

˜̃
B),

we deduce that there are n,m ≥ 0 such that ProbTµ (F=n
‹B ∧ F=m

˜̃
B) > 0. We

write e for the event e = EvT (F=n
‹B∧F=m

˜̃
B). We can show that ProbTµ (F≥nB |

130 Chapter 6 – Qualitative and Quantitative Analysis

e) = 0 and ProbTµ (F≥m ‹B | e) = 0. Indeed we get that:

ProbTµ (F≥nB | e) =
ProbTµ ((F≥nB) ∧ e)

ProbTµ (e)

≤
ProbTµ (F≥nB ∧ F=n

‹B)

ProbTµ (e)

= 0

from the definition of ‹B. The equality ProbTµ (F≥m ‹B | e) = 0 is proved similarly.
Writing q = max(m,n), it follows that

ProbTµ (F≥q B ∨ F≥q ‹B | e) = 0.

And since ProbTµ (e) > 0, this contradicts the fact that T is PersDec(µ,B), which
concludes the proof.

Extending the approach of [ABM07] (see Section 2.2.2), we establish char-
acterisations of the qualitative satisfaction of (repeated) reachability properties
in terms of the positive satisfaction of reachability-like properties. We advocate
that these are simpler to check on STSs: positive reachability amounts to guess a
cylinder leading to the target, and to show that this path has a positive measure.

Proposition 6.1.3 (Almost-sure reachability). For every µ ∈ Dist(S),

• if ProbTµ (FB) = 1, then ProbTµ (¬BU ‹B) = 0;

• if T is Dec(µ,B) and ProbTµ (¬BU ‹B) = 0, then ProbTµ (FB) = 1.

Proof. We start with the first item. Since the event EvT (FB) is almost-sure, we
have

ProbTµ (¬BU ‹B) = ProbTµ ((¬BU ‹B) ∧ FB)

and then it is straightforward from point (i) of Lemma 6.1.1.
In order to prove the other implication, we need the assumption that T is

Dec(µ,B). We have that:

1 = ProbTµ (FB ∨ F ‹B) = ProbTµ (FB ∨ (¬BU ‹B))

= ProbTµ (FB) + ProbTµ (¬BU ‹B),

where the first equality comes from Lemma 4.2.2 (fifth item) and the second
equality from Lemma 6.1.1 (point (i)). Then from ProbTµ (¬BU ‹B) = 0, we

derive that ProbTµ (FB) = 1.

6.1 – Qualitative analysis 131

This reduces the almost-sure model-checking of a reachability property to the
0-model-checking of an “Until” formula, a slight generalization of reachability
properties.

Remark 6.1.4. Note that in the case where T is a DMC, Proposition 6.1.3 re-
covers a result of [ABM07] (corresponding to Proposition 2.2.15 here). Indeed,
given a state s, we have that ProbTs (¬BU ‹B) > 0 if and only if there exists
n ≥ 0, s0, s1, . . . , sn ∈ S such that s0 = s, s0, s1, . . . sn−1 ∈ Bc and sn ∈ ‹B
(since in this case, EvT (¬BU ‹B) is a denumerable union of cylinders of the form
Cyl(s0, s1, . . . , sn) with s0, s1, . . . , sn satisfying the previous hypothesis), if and
only if s |= ∃(¬BU ‹B).

Proposition 6.1.5 (Almost-sure repeated reachability). For every µ ∈ Dist(S),

• if ProbTµ (G FB) = 1, then ProbTµ (F ‹B) = 0;

• if T is StrDec(µ,B) and ProbTµ (F ‹B) = 0, then ProbTµ (G FB) = 1.

Proof. We first show the first item. Since the event EvT (G FB) is almost-sure,
we have

ProbTµ (F ‹B) = ProbTµ (F ‹B ∧G FB)

and then it is straightforward from point (ii) of Lemma 6.1.1.
In order to prove the second item, we assume that T is StrDec(µ,B), i.e.

ProbTµ (G FB ∨ F ‹B) = 1. By assumption, the event EvT (F ‹B) has probability
0, and thus EvT (G FB) is almost-sure.

This reduces the almost-sure model-checking of a repeated reachability prop-
erty to the 0-model-checking of a reachability property.

Remark 6.1.6. Observe again that if T is a DMC, Proposition 6.1.5 is equivalent
to a result of [ABM07], which is given here as Proposition 2.2.17. Indeed in
that case, as similarly noticed in Remark 6.1.4, it holds that for each state s,
ProbTs (F ‹B) > 0 if and only if s |= ∃F ‹B and this is equivalent to s 2 ∀G∃FB.

Proposition 6.1.7 (Positive repeated reachability). For every µ ∈ Dist(S),

• if T is Dec(µ, ‹B) and if ProbTµ (G FB) > 0, then ProbTµ (F
˜̃
B) > 0;

• if T is PersDec(µ,B) and if ProbTµ (F
˜̃
B) > 0, then ProbTµ (G FB) > 0.

Proof. We begin with the first item. As T is Dec(µ, ‹B), it holds that ProbTµ (F ‹B∨
F
˜̃
B) = 1. Since the event EvT (F ‹B∨F

˜̃
B) is almost-sure, we derive the equality:

ProbTµ (G FB) = ProbTµ (G FB ∧ (F ‹B ∨ F
˜̃
B)) .

132 Chapter 6 – Qualitative and Quantitative Analysis

Now from point (ii) of Lemma 6.1.1, we get that ProbTµ (G FB ∧ (F ‹B ∨F
˜̃
B)) =

ProbTµ (G FB ∧F
˜̃
B). Therefore ProbTµ (G FB ∧F

˜̃
B) = ProbTµ (G FB) > 0, and

thus ProbTµ (F
˜̃
B) > 0.

Assume now that T is PersDec(µ,B) and that ProbTµ (F
˜̃
B) > 0. Lemma 6.1.2

implies that ProbTµ (F ‹B) < 1. Since PersDec(µ,B) implies StrDec(µ,B), it fol-

lows that ProbTµ (G FB ∨ F ‹B) = 1 and thus, ProbTµ (G FB) > 0.

This reduces the positive model-checking of a repeated reachability property
to the positive model-checking of a reachability property.

Remark 6.1.8. As previously observed in Remarks 6.1.4 and 6.1.6, Proposi-
tion 6.1.7 recovers partially a result of [ABM07] when T is a DMC, namely here

Theorem 2.2.18. Indeed, it can be established that given a state s, ProbTs (F
˜̃
B) >

0 if and only if s |= ∃F ˜̃B. Observe that the assumptions here are slightly differ-
ent from the ones in Theorem 2.2.18. For the first item, the authors of [ABM07]
needed moreover for the DMC to be decisive w.r.t. B, but they proved a stronger
result that we do not need here. For the second item, the authors required for
the DMC to be decisive w.r.t. B. However, remember that in Definition 2.2.12
a DMC being decisive w.r.t. B is equivalent in our context of Definition 4.2.3
to Dec(δs′ , B) for each state s′. Note that for this result, it is in fact only
needed to be decisive from each state s′ reachable from s which is somehow what
PersDec(µ,B) means as stated on page 95.

Hence, in all cases, under some specific assumptions, the properties one wants
to check are reduced to checking whether a specific reachability (or Until) prop-
erty has positive probability. These are the simplest properties one can hope to
be decidable in a class of models. Effectiveness hence relies here on the computa-
tion of avoid-sets, avoid-sets of avoid-sets, and on the decidability of the positive
reachability (or Until) problem.

Through abstractions, one can get nicer results. Indeed, via abstractions, one
can reduce the qualitative analysis of basic properties (reachability and repeated
reachability) from the concrete model to the abstract model. Indeed, one can
use the previous results, in order to show the following proposition.

Proposition 6.1.9. Assume T2 is an α-abstraction of T1, and fix B ∈ Σ2.

• Let µ ∈ Dist(S1) be an initial distribution for T1. Assume that T2 is µ-
sound and µ-complete. Then:

ProbT1µ (Fα−1(B)) = 1 iff ProbT2α#(µ)(FB) = 1 .

6.1 – Qualitative analysis 133

• Assume that T2 is sound and that T2 is Dec(B). Then for every µ ∈
Dist(S1):

ProbT1µ (Fα−1(B)) = 1 iff ProbT2α#(µ)(FB) = 1 .

• Assume that T2 is sound and that T2 is StrDec(B). Then for every µ ∈
Dist(S1):

ProbT1µ (G Fα−1(B)) = 1 iff ProbT2α#(µ)(G FB) = 1 .

• Assume that T2 is sound and that T2 is PersDec(B) and Dec(‹B). Then for
every µ ∈ Dist(S1):

ProbT1µ (G Fα−1(B)) > 0 iff ProbT2α#(µ)(G FB) > 0 .

Proof. The first item is just a consequence of the definitions of µ-sound and
µ-complete abstractions (Definitions 5.1.8 and 5.1.9).

In order to get the following items, observe first that since T2 is sound, from
Corollary 5.2.3 we can induce the decisiveness hypotheses of T2 on T1. We also
refer the reader to Corollary 5.1.7 and Lemma 5.2.2 for some properties of α-
abstractions that will be useful here.

The first item is then immediate by using Proposition 6.1.3 for T1 and T2,
since they are respectively Dec(α−1(B)) and Dec(B). Indeed, we obtain that

ProbT2α#(µ)(FB) = 1⇐⇒ ProbT2α#(µ)(¬BU ‹B) = 0

⇐⇒ ProbT1µ (¬α−1(B) Uα−1(‹B)) = 0⇐⇒ ProbT1µ (Fα−1(B)) = 1.

We get similarly the third item by using Proposition 6.1.5 since T1 and T2

are respectively StrDec(α−1(B)) and StrDec(B); and the fourth item by using
Proposition 6.1.7 since T1 and T2 are respectively PersDec(α−1(B)), Dec(α−1(‹B))
and PersDec(B), Dec(‹B).

Note that in particular, if T2 is DMC with a finite attractor and a sound α-
abstraction of T1, Proposition 6.1.9 can be applied thanks to Proposition 2.2.13.
Then results of [ABM07] on the qualitative model-checking problem (see Sec-
tion 2.2.2), induce that the qualitative model-checking problem of reachabil-
ity and repeated reachability properties of α-closed sets for T1 is reduced to
check that some structural properties are satisfied on the underlying graph of
the Markov chain T2. We will see that our applications enter in this framework.

134 Chapter 6 – Qualitative and Quantitative Analysis

6.1.2 Properties given by a DMA in DMCs

The objective of this section is to extend the results of [ABM07] to a richer class
of properties. We consider properties given by a DMA, also called ω-regular
properties. Remember that all LTL formulas can be encoded as a DMA. In this
section, we consider thus the framework of DMCs.

In the case of DMCs with a finite attractor, the almost-sure satisfaction of
properties given as a DMA can be characterised by finitely many reachability
properties [ABRS05] and [Ber06]. In many cases, this characterisation yields an
effective algorithm to decide the almost-sure satisfaction of ω-regular properties.
Note that, since DMA are closed under complement, the positive probability of
properties specified by DMA reduces to the (non-)almost-sure model-checking of
the property specified by the complement automaton. We therefore concentrate
on almost-sure model-checking in the sequel.

We aim here at adapting the approach of [ABRS05] and [Ber06] to our new
formalism.

We fix a finite set of atomic propositions AP and we fix a DMA M =
(Q, q0, E,F). Remember that given a LSTS T = (S,Σ, κ,AP,L), the prod-
uct T nM has been defined in Section 4.1.2. We first show a general result for
LSTS, we will then consider labelled DMCs.

Since M has finitely many states, attractors transfer from LSTS T to the
product T nM, as formally stated below.

Lemma 6.1.10. Fix a LSTS T = (S,Σ, κ,AP,L) and assume that A is an
attractor for T . Then A×Q is an attractor for T nM.

In order to show the previous lemma, we first prove the following one:

Lemma 6.1.11. Let T = (S,Σ, κ,AP,L) be a LSTS. Fix µ ∈ Dist(S) and
assume that A ∈ Σ is a µ-attractor for T . Then for each q ∈ Q, A × Q is a
(µ× δq)-attractor for T nM.

Proof. Fix µ ∈ Dist(S) and A ∈ Σ such that ProbTµ (FA) = 1. Fix q ∈ Q. We
know that

EvT nM(FA×Q) = EvT nM(
⋃
n∈N

Cyl(

n times︷ ︸︸ ︷
S′, . . . , S′, A×Q)).

6.1 – Qualitative analysis 135

Then from Lemma 4.1.18, we know that for each n ∈ N

ProbT nM
µ×δq (Cyl(

n times︷ ︸︸ ︷
S′, . . . , S′, A×Q)) =

∑
u1,...,un∈2AP

ProbTµ (Cyl(L−1(u1), . . . ,L−1(un), A)) = ProbTµ (Cyl(

n times︷ ︸︸ ︷
S, . . . , S,A×Q).

As this holds true for each n ≥ 0, we thus get that Probµ×δq(FA × Q) =

ProbTµ (FA) = 1 from the hypothesis. This concludes the proof.

Proof of Lemma 6.1.10. FixA ∈ Σ such that for each µ ∈ Dist(S), ProbTµ (FA) =

1. We want to prove that for each ν ∈ Dist(S ×Q), ProbT nM
ν (FA×Q) = 1. Fix

ν ∈ Dist(S ×Q) and compute:

ProbT nM
ν (FA×Q) =

∑
q∈Q

ν(S × {q}) · ProbT nM
νS×{q}

(FA×Q).

Note that νS×{q} induces a distribution νq ∈ Dist(S) as follows: for each B ∈ Σ,
νq(B) = νS×{q}(B×{q}). Writing µ = νq it then holds that νS×{q} = µ×δq. We

then get, from the hypothesis and Lemma 6.1.11, that ProbT nM
νS×{q}

(FA×Q) = 1

for each q ∈ Q. Hence, ProbT nM
ν (FA × Q) =

∑
q∈Q ν(S × {q}) = 1 which

concludes the proof.

In the rest of the section, we assume T to be a labelled DMC with a finite
attractor. Observe that if A denotes this finite attractor, then Lemma 6.1.10
implies that A×Q is an attractor for T nM. From finiteness of Q, it is further-
more obvious that T n M admits a finite attractor. We write it B. We write
GraphT nM(B) (or simply Graph(B) when T and M are clear from the context)
for the finite graph whose vertices are states of B, and in which there is an edge
from (s1, q1) to (s2, q2) if there exists a finite run from (s1, q1) to (s2, q2) in T nM
(written (s1, q1)→∗ (s2, q2)).

The BSCCs (see Section 2.2.1 for a brief reminder on the subject) of the graph
GraphT nM(B) play a central role in the model-checking problem of ω-regular
properties of T . Let us first discuss the relationships between the BSCCs and
attractors for T nM.

Lemma 6.1.12. The following properties are satisfied.

• The set {(s, q) ∈ C | C BSCC of GraphT nM(B)} is an attractor of T nM.

136 Chapter 6 – Qualitative and Quantitative Analysis

• If C and C ′ are two distinct BSCCs of GraphT nM(B), then for every (s, q) ∈
S ×Q, ProbT nM

(s,q) (FC ∧ FC ′) = 0.

• If C is a BSCC of GraphT nM(B), then for each (s, q) ∈ C, it holds that
ProbT nM

(s,q) (G FC) = 1.

Proof. The first property is obvious thanks to Proposition 2.2.10. The second
property is a consequence of the fact that there is no run between two states
of two different BSCCs: otherwise, from the definition of GraphT nM(B), there
would be a vertex between those two states. This second property implies that for
each BSCC C ′ 6= C of GraphT nM(B) and for each (s, q) ∈ C, ProbT nM

(s,q) (FC ′) = 0.

From the first item and Lemma 4.2.8, we know that for each (s, q) ∈ S ×Q,

ProbT nM
(s,q) (G F

∨
C′∈BSCC(GraphT nM(B))

C ′) = 1.

This holds true in particular for each (s, q) ∈ C and thus, from the previous
observation for such initial distributions, we get that ProbT nM

(s,q) (G FC) = 1 for

each (s, q) ∈ C.

From Lemma 6.1.12, the BSCCs of GraphT nM(B) form an attractor, and once
the system enters a BSCC C, only that BSCC will be visited again, and this will
happen infinitely often. In particular, the satisfaction of the Muller condition
in T nM, inherited from F , can be characterised by the BSCCs satisfying the
Muller condition F (in a sense that we will make precise).

Definition 6.1.13 (Good BSCC). A BSCC C of GraphT nM(B) is good for F ,
written C ∈ GoodBT nM(F), if there exists F ∈ F such that

(a) for every state (s, q) ∈ S×Q, if there exists (r, p) ∈ C with (r, p)→∗ (s, q),
then q ∈ F ; and

(b) for every q ∈ F there exists s ∈ S, there exists a state (r, p) ∈ C such that
(r, p)→∗ (s, q).

Let C be an arbitrary BSCC of GraphT nM(B). We define the set FC = {q ∈
Q | ∃s ∈ S ∃(r, p) ∈ C s.t. (r, p)→∗ (s, q)} as the set of states of the DMA that
can be reached from C. One can get the following obvious characterisation for
a BSCC to be good.

Lemma 6.1.14. A BSCC C of GraphT nM(B) is good for F if and only if FC ∈ F .

6.1 – Qualitative analysis 137

Within a BSCC, all reachable states will actually be visited infinitely often
almost-surely. It is stated more precisely, in Lemma 6.1.15. We first recall some
notations of Section 4.1.2. We write P ′M for the property over Q induced by
a DMA M, which is a Muller property. Given an initial state s ∈ S (resp.
an initial distribution µ ∈ Dist(S)), we then write ProbT nM

(s,q0)(Inf ∈ F) (resp.

ProbT nM
µ×δq0

(Inf ∈ F)) for the probability of the set of runs in T n M satisfying

the property P ′M, i.e. {ρ ∈ Runs(T n M) | Inf(L′(ρ)) ∈ F} (L′ is the labelling
function over T n M such that for each state (s, q), L′((s, q)) = q; and if ρ =
(s0, q0)(s1, q1) . . ., Inf(L′(ρ)) = {q ∈ Q | |{j ∈ N | q = qj}| = ∞}). Similarly,
given F ⊆ Q and s ∈ S (resp. µ ∈ Dist(S)), we will write ProbT nM

(s,q0)(Inf ∼ F)

(resp. ProbT nM
µ×δq0

(Inf ∼ F)) with ∼ ∈ {⊆,⊇,=}, for the set of runs ρ ∈ Runs(T n
M) such that Inf(L′(ρ)) ∼ F .

Lemma 6.1.15. Fix a BSCC C of GraphT nM(B). For every (s, q) ∈ C, it holds
that ProbT nM

(s,q) (Inf = FC) = 1.

Proof. Fix (s, q) ∈ C and a run ρ = (s, q)(s1, q1)(s2, q2) · · · ∈ Runs(T n M)
starting at (s, q). By definition of FC , it holds that for each i ≥ 1, qi ∈ FC .
Hence ProbT nM

(s,q) (Inf ⊆ FC) = 1.
We now argue why all elements of FC are actually almost-surely visited in-

finitely often. Fix p ∈ FC and (r, p) ∈ S ×Q that is reachable from C. Since all
two states of C are reachable one from each other, we get that from every state
of C, (r, p) is reachable through a finite path. Hence, as C is finite, there is some
ι > 0 and k ∈ N such that for every state (s′, q′) ∈ C,

ProbT nM
(s′,q′)(F≤k (r, p)) ≥ ι .

Applying a reasoning similar to the proof of Proposition 5.2.6, we get that
ProbT nM

(s,q) (G F (r, p) | G FC) = 1. Indeed, ProbT nM
(s,q) (F G¬(r, p) ∧ G FC) ≤

limn→∞(1− ι)n = 0. Thanks to the third item of Lemma 6.1.12, we obtain that

ProbT nM
(s,q) (G F (r, p)) = 1 .

As this last equality holds for each (r, p) reachable from (s, q), we conclude that
ProbT nM

(s,q) (Inf ⊇ FC) = 1, which completes the proof.

As a consequence, we get the following result.

Corollary 6.1.16. For every BSCC C of Graph(B) and for every initial dis-
tribution µ ∈ Dist(S) for T , ProbT nM

µ×δq0
(FC) > 0 implies ProbT nM

µ×δq0
(Inf = FC |

FC) = 1.

138 Chapter 6 – Qualitative and Quantitative Analysis

We can now completely characterise the probability of satisfying an ω-regular
property.

Theorem 6.1.17. Let T be a labelled DMC with a finite attractor A, and M =
(Q, q0, E,F) be a DMA. Let B = A×Q be the corresponding finite attractor of
T nM. Then, for every initial distribution µ ∈ Dist(S) for T :

ProbT nM
µ×δq0

(Inf ∈ F) =
∑

C∈GoodBT nM(F)

ProbT nM
µ×δq0

(FC).

Proof. Fix µ ∈ Dist(S). As stated in Lemma 6.1.12, the BSCCs of Graph(B) form
an attractor for T nM, and two BSCCs are probabilistically disjoint. Using Bayes
formula with a disjunction over the BSCCs, we can write:

ProbT nM
µ×δq0

(Inf ∈ F) =
∑

C∈BSCC(Graph(B))

C µ×δq0 -reachable

ProbT nM
µ×δq0

(FC) · ProbT nM
µ×δq0

(Inf ∈ F | FC)

where we say that C is µ × δq0-reachable whenever ProbT nM
µ×δq0

(FC) > 0. Hence

we deduce that:

ProbT nM
µ×δq0

(Inf ∈ F) =
∑

C∈BSCC(Graph(B))

ProbT nM
µ×δq0

(FC) · 1F (FC)

thanks to Corollary 6.1.16, where 1F is the characteristic function of F (that is,
1F (F) = 1 if F ∈ F , and 1F (F) = 0 otherwise). Lemma 6.1.14 allows then us
to conclude the proof of the theorem.

As an immediate corollary of Theorem 6.1.17, we obtain a characterisation
for the almost-sure model-checking problem of properties given as a DMA.

Corollary 6.1.18 (Almost-sure ω-regular property). Let T be a labelled DMC
with a finite attractor, and M = (Q, q0, E,F) be a DMA. Let B be a finite
attractor for T nM. For every initial distribution µ ∈ Dist(S) for T :

ProbT nM
µ×δq0

(Inf ∈ F) = 1 if and only if for every BSCC C of GraphT nM(B)

such that ProbT nM
µ×δq0

(FC) > 0, C is good for F .

Proof. This is immediate from Theorem 6.1.17 and Lemma 6.1.12.

Observe that since T nM is a DMC, the positive reachability model-checking
problem is reduced to the satisfaction of a reachability property on the underlying

6.1 – Qualitative analysis 139

graph [ABM07] (see Proposition 2.2.16 here). Checking whether BSCC C is good
for F is also a structural property on the underlying graph. Hence, the qualitative
model-checking problem of ω-regular properties in DMCs with a finite attractor
is, like in [ABM07], reduced to the satisfaction of some structural properties on
the underlying graph.

In order to turn this characterisation into a decision procedure, we need to be
able to compute the attractor B for T nM, and to build the graph GraphT nM(B);
also one needs to be able to compute for every BSCC C the set FC . Observe also
that we did not need decisiveness in order to get this procedure, however it was
hidden in the fact that T has a finite attractor: this implies decisiveness [ABM07]
(see Proposition 2.2.13).

6.1.3 Properties given by a DMA in general STSs via denumer-
able abstractions

While the approach of Section 6.1.2 is adapted to DMCs, it does not apply
directly to general STSs: indeed, it is unlikely that general STSs have finite
attractors, and finiteness of the attractor is fundamental for the correctness of
the approach. The idea will then be to rely on an abstraction, and to transfer
properties through that abstraction.

Let T1 = (S1,Σ1, κ1,AP,L1) and T2 = (S2,Σ2, κ2,AP,L2) be two labelled
STSs such that T2 is a DMC, which is an α-abstraction of T1. Under certain
conditions, we show how to perform the qualitative model-checking of ω-regular
properties on T1 by transferring the same analysis on T2. We assume the ω-
regular property is given by a DMA M = (Q, q0, E,F). We consider both the
product T1nM and the product T2nM (we refer to Section 4.1.2 for the definitions
and notations).

First we justify why, within a slight abuse of terminology, T2 n M can be
viewed as an α-abstraction of T1 n M. We also exhibit a sufficient condition
under which it is sound.

Lemma 6.1.19. Let αM : S1 × Q → S2 × Q be the unique lifting of α such
that αM(s, q) = (α(s), q). If T2 is an α-abstraction of T1, then T2 nM is an αM-
abstraction of T1 nM. Furthermore, if T1 nM is Dec(B) where B = {α−1

M (B) |
B ∈ Σ′2}, then T2 nM is a sound αM-abstraction of T1 nM.

While the proof of the first part of the lemma is technical, the second part
of the lemma is a direct consequence of Proposition 5.3.4.

Proof. We first show that T2 nM is an αM-abstraction of T1 nM. It suffices to

140 Chapter 6 – Qualitative and Quantitative Analysis

show that for each µ ∈ Dist(S1), for each q, q′ ∈ Q and for each Bq′ ∈ Σ2,

ProbT1nM
µ×δq (Cyl(S1 ×Q,α−1

M (Bq′ × {q′}))) > 0

⇐⇒ ProbT2nM
(αM)#(µ×δq)(Cyl(S2 ×Q,Bq′ × {q′})) > 0. (6.1)

Fix µ ∈ Dist(S1), q, q′ ∈ Q and Bq′ ∈ Σ2. Write u ∈ 2AP for the unique label
such that (q, u, q′) ∈ E. In order to prove (6.1), we will use the fact that T2 is an
α-abstraction of T1. And in order to make the link with the wanted equivalence,
we will use Lemma 4.1.18. We can establish that (αM)#(µ × δq) = α#(µ) × δq.
Indeed given p ∈ Q and Cp ∈ Σ2, it holds that

(αM)#(µ× δq)(Cp × {p}) = (µ× δq)(α−1(Cp)× {p})
= µ(α−1(Cp)) · δq(p)
= α#(µ)(α−1(Cp)) · δq(p) = (α#(µ)× δq)(Cp × {p}).

Hence we get that

ProbT2nM
(αM)#(µ×δq)(Cyl(S2 ×Q,Bq′ × {q′})) > 0

⇐⇒ ProbT2α#(µ)(Cyl(L−1
2 (u), Bq′)) > 0

⇐⇒ ProbT1µ (Cyl(L−1
1 (u), α−1(Bq′))) > 0

⇐⇒ ProbT1nM
µ×δq (Cyl(S1 ×Q,α−1

M (Bq′ × {q′}))) > 0

where the first and third equivalences hold from Lemma 4.1.18, and the second
equivalence holds from the fact that T2 is an α-abstraction of T1 (Definition 5.1.2).

Finally, since T1 n M is decisive w.r.t α−1
M (B) for each B ∈ Σ′2 and since

T2 nM is an αM-abstraction of T1 nM, Proposition 5.3.4 allows us to conclude
that T2 nM is a sound αM-abstraction of T1 nM.

Remark 6.1.20. In the sequel, our applications will be smooth enough to meet the
hypothesis: T1nM is decisive w.r.t. αM-closed sets. However we still have several
open questions. The first one is the following: does soundness between T2 and
T1 imply soundness between T2nM and T1nM? While this seems quite natural,
it is surprisingly tricky. Although we did not manage to find a counter-example
for this general question, we found one for a fixed initial distribution. It is
described in Example 6.1.21 below and highlights some difficulties we encounter
when aiming at transferring analysis from the abstraction to the concrete model.

This justifies the fact that we assumed decisiveness. As we already know, if T2

is a sound α-abstraction of T1 and T2 is decisive w.r.t. any set of states, then T1

6.1 – Qualitative analysis 141

is decisive w.r.t. any α-closed sets. We do not know if the product preserves the
soundness, however a second natural question is the following: does decisiveness
w.r.t. α-closed sets for T1 imply decisiveness w.r.t. αM-closed sets for T1 nM?
Again, we do not have a general counter-example, but we have one for a fixed
initial distribution. This is also described in Example 6.1.21 below.

Recall though that a condition for decisiveness is given in Proposition 5.2.6 for
the case where the abstraction is a DMC with a finite attractor. While we know
from Lemma 6.1.10 that if T2 has finite attractor, then so has T2nM, another still
open question is whether the satisfaction of hypothesis (†) is preserved through
the product with a DMA, i.e. if T1 satisfies (†), does T1 nM satisfy it too? The
tricky part comes from the lower bounded reachability probabilities as it will
also be somehow enlighted in Example 6.1.21.

Proposition 5.2.7 gives another condition for decisiveness in the case of a
finite Markov chain for the abstraction, which is fairness of T1 n M. We will
discuss this particular case later and show that fairness is preserved through the
product with a DMA in Lemma 6.1.27.

Example 6.1.21. We illustrate Remark 6.1.20 by exhibiting an example where
soundness (w.r.t. a fixed distribution) as well as decisiveness properties do not
transfer to the product with a deterministic Muller automaton.

Consider the DMC T1 depicted on the left of Figure 6.1 which corresponds
to the random walk over N from Example 4.1.2, when p = 2/3. Consider also
the finite MC T2 on the right of the same figure. Clearly enough, T2 is an
α-abstraction of T1 for the mapping α : N → {s0, s1, s2} defined as follows:
α(0) = s0, α(1) = s1 and α(i) = s2 for any i ≥ 2.

Define µ = δ0 as the initial distribution in T1. For any B ⊆ N, ProbT1µ (FB) =
1 and it follows that T2 is a µ-sound α-abstraction of T1. It should be noted that
it is however not sound when considering µ′ = δ1 as initial distribution. Indeed,
ProbT1µ′ (F {0}) < 1 although ProbT2s1 (F {s0}) = 1 (and δs1 = α#(µ′)).

0 1 2 · · ·

1

1
3

2
3

1
3

2
3

1
3

s0 s1 s2
2
3

1

1
3

2
3

1
3

Figure 6.1: Left, T1 a random walk over N and right, its sound finite abstraction
T2.

Consider now the Muller automaton of Section 4.1.2 on the left of Figure 4.1.
As stated in Lemma 6.1.19, it holds that T2 nM is an αM-abstraction of T1 nM

142 Chapter 6 – Qualitative and Quantitative Analysis

where for each n ∈ N and each q ∈ Q, αM((n, q)) = (α(n), q). Consider µ× δq0 =
δ(0,q0) and B = {(s0, q2)}. It then holds that (αM)#(µ× δq0) = δ(s0,q0) and that

α−1
M (B) = {(0, q2)}. It is easily observed that starting in state (0, q0) (resp.

(s0, q0)) in T1 n M (resp. T2 n M), if we visit in the future a state (0, q) (resp.
(s0, q)) we will necessarily get that q = q2. Keeping this in mind, one can see
that ProbT2nM

(s0,q0)(FB) = 1 while

ProbT1nM
µ×δq0

(Fα−1
M (B)) = ProbT1nM

(1,q1) (Fα−1
M (B)) = ProbT1µ′ (F {0}) < 1

where the first equality holds from Lemma 4.1.8 and the second equality holds
from Lemma 4.1.18. This proves that T2nM is not (µ×δq0)-sound for T1nM. This
difference in the reachability probabilities somehow shows also the difficulties
encountered when trying to show that hypothesis (†) of Proposition 5.2.6 is
preserved through the product.

Now, observe that T1 is decisive w.r.t. any set of states B ⊆ N from µ as we
have seen that ProbT1µ (FB) = 1 for any set of states B. It should be noted that
T1 is not decisive by considering µ′ as the initial distribution and B = {0}. In

this case, {̃0} = ∅ and thus ProbT1µ′ (F {0}∨F {̃0}) = ProbT1µ′ (F {0}) < 1. Consider

now T1 nM, we have already shown that ProbT1nM
µ×δq0

(F {(0, q2)}) < 1. It can be

established that „�{(0, q2)} = (2N + 1) × {q0, q2} ∪ 2N × {q1} which are states

not reachable from (0, q0). We deduce that ProbT1nM
µ×δq0

(F {(0, q2)}∨F„�{(0, q2)}) =

ProbT1nM
µ×δq0

(F {(0, q2)}) < 1. This shows that T1nM is not decisive w.r.t. {(0, q2)}
from µ× δq0 .

From now on, whenever T1nM is decisive w.r.t. αM-closed sets (or whenever
T2nM is a sound αM-abstraction of T1nM) and thus Lemma 6.1.19 is applicable,
we will abusively write α for αM.

We focus now on the case where T2 has a finite attractor.1 Thanks to
Lemma 6.1.10, T2 n M has also a finite attractor, which we denote B2. We
reuse notations of the previous subsection, in particular the graph of the attrac-
tor GraphT2nM(B2), and the set FC of recurring states when C is a BSCC of that
graph.

The following lemma is a counterpart to Lemma 6.1.12 for T1. Under the
hypothesis that T1 nM is decisive w.r.t. α-closed sets or, since it is what is truly
important for the next result but it is implied by this decisiveness assumption
(Lemma 6.1.19), under the hypothesis that T2nM is a sound α-abstraction of T1n

1As T2 has a finite attractor it is decisive and thus T2 is a complete α-abstraction of T1 by
Lemma 5.3.2.

6.1 – Qualitative analysis 143

M, even though T1nM does not have a finite attractor, it has an attractor with an
interesting structure inherited from T2nM. In the sequel, we write B = {α−1(B) |
B ∈ Σ′2} (Σ′2 is the σ-algebra of S′2 = S2 ×Q defined in Definition 4.1.15).

Lemma 6.1.22. Assume that T2 has a finite attractor, and assume that T2 nM
is a sound α-abstraction of T1 nM. The following properties are satisfied.

• The set α−1({(s, q) ∈ C | C BSCC of GraphT2nM(B2)}) is an attractor of
T1 nM.

• If C and C ′ are two distinct BSCCs of GraphT2nM(B2), for every µ ∈
Dist(S1 ×Q), ProbT1nM

µ (Fα−1(C) ∧ Fα−1(C ′)) = 0.

• If C is a BSCC of GraphT2nM(B2), for every µ ∈ Dist(α−1(C)), it holds

that ProbT1nM
µ (G Fα−1(C)) = 1.

Proof. Since T2nM is a sound α-abstraction of T1nM, the first property derives
from Proposition 5.2.4 and Lemma 6.1.12. The second property is a consequence
of Lemma 6.1.12, and of the fact that T2 n M is an α-abstraction of T1 n M.
Finally, the third property is, as in the proof of Lemma 6.1.12, a consequence of
the second point and of Lemma 4.2.8.

We then prove a counterpart to Lemma 6.1.15 for T1, which shows that a
BSCC C is characterised by the set FC of states that are visited infinitely often
from C.

Lemma 6.1.23. Assume that T2 has a finite attractor, and assume that T2 nM
is a sound α-abstraction of T1 n M. Let C be a BSCC of GraphT2nM(B2), and
µ ∈ Dist(α−1(C)). Then:

ProbT1nM
µ (Inf = FC) = 1.

Proof. As already argued in the proof of Lemma 6.1.15, for every p ∈ FC , for
every state s2 ∈ C, ProbT2nM

s2 (F p) = 1 and thus in particular, ProbT2nM
s2 (F p) = 1

(where we abusively write p for the measurable set S2 × {p}). Since T2 n M
is a sound α-abstraction of T1 n M, we derive for every ν ∈ Dist(α−1(C)) that
ProbT1nM

ν (F p) = 1 (as before we abusively write p for S1×{p} = α−1(S2×{p})).
We can then show that for each ν ∈ Dist(α−1(C)) and for each p ∈ FC ,

ProbT1nM
ν (G F p) = 1.

Indeed, towards a contradiction, we assume that there is a distribution ν ∈
Dist(α−1(C)) such that ProbT1nM

ν (G F p) < 1, i.e. ProbT1nM
ν (F G¬p) > 0. The

144 Chapter 6 – Qualitative and Quantitative Analysis

third point of Lemma 6.1.22 implies that ProbT1nM
ν (G Fα−1(C) ∧ F G¬p) > 0.

Now, observe that

EvT1nM(G Fα−1(C) ∧ F G¬p) ⊆ EvT1nM(
⋃
n∈N

Ä
F=n α

−1(C) ∧G≥n ¬p
ä
).

It follows that there is n ∈ N such that ProbT1nM
ν (F=n α

−1(C) ∧G≥n ¬p) > 0.
From Lemma 4.1.8, we get that there is ν ′ ∈ Dist(S′1) (with S′1 = S1 × Q, see
Definition 4.1.15) such that

ProbT1nM
ν (F=n α

−1(C) ∧G≥n ¬p)

= lim
m→∞

ProbT1nM
ν (Cyl(

n times︷ ︸︸ ︷
S′1, . . . , S

′
1, α
−1(C) ∧ ¬p,

m times︷ ︸︸ ︷
¬p, . . . ,¬p))

≤ limm→∞ ProbT1nM
ν′ (Cyl(α−1(C) ∧ ¬p,

m times︷ ︸︸ ︷
¬p, . . . ,¬p)) from Lemma 4.1.8

= limm→∞ ν
′(α−1(C)) · ProbT1nM

ν′
α−1(C)

(Cyl(¬p,
m times︷ ︸︸ ︷
¬p, . . . ,¬p))

= ν ′(α−1(C)) · ProbT1nM
ν′
α−1(C)

(G¬p).

From the assumption, we thus get that ProbT1nM
ν′
α−1(C)

(G¬p) > 0 where ν ′α−1(C) ∈

Dist(α−1(C)) which is the required contradiction. We conclude that for each
ν ∈ Dist(α−1(C)) and for each p ∈ FC , ProbT1nM

ν (G F p) = 1.
It now suffices to show that, from any ν ∈ Dist(α−1(C)), no other state is

visited almost-surely infinitely often. Fix p′ /∈ FC . Then, by definition of FC , we
have that ProbT2nM

α#(ν)(F p
′) = 0. Since T2 nM is an α-abstraction of T1 nM, we

deduce from Corollary 5.1.7 that ProbT1nM
ν (F p′) = 0.

We conclude that ProbT1nM
ν (Inf = FC) = 1, which is the claim of the lemma.

We get as a consequence, a similar result as Corollary 6.1.16.

Corollary 6.1.24. For each BSCC C of GraphT2nM(B2) and for each initial dis-

tribution µ ∈ Dist(S1) for T1, ProbT1nM
µ×δq0

(Fα−1(C)) > 0 implies ProbT1nM
µ×δq0

(Inf =

FC | Fα−1(C)).

We are now in a position to decompose the probability to satisfy the Muller
condition F in T1 nM into the reachability probability of good BSCCs.

Theorem 6.1.25. Let T1 and T2 be two LSTSs such that T2 is a DMC with a
finite attractor B2, and T2 is an α-abstraction of T1. Let M = (Q, q0, E,F) be a

6.1 – Qualitative analysis 145

DMA. Assume moreover that T2 nM is a sound α-abstraction of T1 nM. Then,
for every initial distribution µ ∈ Dist(S1) for T1:

ProbT1nM
µ×δq0

(Inf ∈ F) =
∑

C∈GoodB2
T2nM(F)

ProbT1nM
µ×δq0

(Fα−1(C)) .

Proof. Fix an initial distribution µ ∈ Dist(S1). We get the result similarly as
in the proof of Theorem 6.1.17. By the two first properties of Lemma 6.1.22,
we can write the following Bayes formula, with a disjunction over the BSCCs of
GraphT2nM(B2):

ProbT1nM
µ×δq0

(Inf ∈ F)

=
∑

C∈BSCC(GraphT2nM(B2))

C µ×δq0 -reachable

ProbT1nM
µ×δq0

(Fα−1(C)) · ProbT1nM
µ×δq0

(Inf ∈ F | Fα−1(C))

=
∑

C∈BSCC(GraphT2nM(B2))

ProbT1nM
µ×δq0

(Fα−1(C)) · 1F (FC)

=
∑

C∈GoodB2
T2nM

(F)

ProbT1nM
µ×δq0

(Fα−1(C)),

where C is said µ× δq0-reachable whenever ProbT1nM
µ×δq0

(Fα−1(C)) > 0, and where

the second equality stands from Corollary 6.1.24 and the third equality stands
from Lemma 6.1.14. This concludes the proof of the theorem.

In particular, regarding the qualitative model-checking problem of ω-regular
properties, we conclude with the following characterisation of the almost-sure
satisfaction of properties specified by a DMA.

Corollary 6.1.26. Let T1 and T2 be two LSTSs such that T2 is a DMC with
a finite attractor, and T2 is an α-abstraction of T1. Let M = (Q, q0, E,F) be a
DMA. Assume moreover that T2 nM is a sound α-abstraction of T1 nM. Then,
for every initial distribution µ for T1 and for every q ∈ Q:

ProbT1nM
µ×δq (Inf ∈ F) = 1 if and only if ProbT2nM

α#(µ×δq)(Inf ∈ F) = 1 .

Proof. We get first a similar characterisation as the one of Corollary 6.1.18:
ProbT1nM

µ×δq (Inf ∈ F) = 1 if and only if for each BSCC C of GraphT2nM(B2) such

that ProbT1nM
µ×δq0

(Fα−1(C)) > 0, C ∈ GoodB2
T2nM(F) (it comes from Lemma 6.1.22

and Theorem 6.1.25). We conclude from Corollary 5.1.7 and Corollary 6.1.18.

146 Chapter 6 – Qualitative and Quantitative Analysis

Hence, this reduces the almost-sure model-checking of a property given by
M in T1 to the almost-sure model-checking of a reachability property (applying
Corollary 6.1.18) in a DMC and this is is reduced to structural properties on
the underlying graph. For the approach to be effective, it is sufficient that the
analysis at the level of T2 nM is effective.

As already quickly mentioned, under the hypotheses of Corollary 6.1.26, the
abstraction T2 nM is complete (since it has a finite attractor). Though it is not
explicitely used, we could not have such an equivalence without some complete-
ness of the abstraction.

The particular of a finite Markov chain abstraction

In this section, we consider the particular case where T2 is a finite Markov chain.
Observe that in particular, T2 is a DMC with a finite attractor, and thus results
of Section 6.1.2 can be applied.

The results of Section 6.1.3 rely very much on the assumption that T2nM is a
sound α-abstraction of T1nM which can be implied, in this case, by the assump-
tion that T1 nM is fair w.r.t. any αM-closed sets thanks to Proposition 5.2.7.

In Remark 6.1.20, we have discussed several open questions for the transfer
of properties from a LSTS to its product with some DMA. Those forced us to
add the hypothesis that T2nM is sound (or more simply T1nM is decisive w.r.t.
α-closed sets, see Lemma 6.1.19). However, we show in this section that fairness
is preserved through the product with a DMA.

Hence, like in Proposition 5.2.7, the only assumption needed in the case where
the α-abstraction T2 is a finite Markov chain in order to get that T2nM is sound,
is for T1 to be fair w.r.t. α-closed sets! This simple assumption allows thus to
apply the results of Section 6.1.3 in this framework.

We immediately show the mentioned result.

Lemma 6.1.27. Let T = (S,Σ, κ,AP,L) be a LSTS and let M = (Q, q0, E,F)
be a DMA. Fix B ⊆ Σ and write BM = {⋃q∈QBq × {q} | Bq ∈ B ∀q ∈ Q}. It
holds that if T is fair(B) then T nM is fair(BM).

Like in the proof of Lemma 6.1.10, this is a consequence of the following
lemma.

Lemma 6.1.28. Let T = (S,Σ, κ,AP,L) be a LSTS and let M = (Q, q0, E,F)
be a DMA. Fix µ ∈ Dist(S), B ⊆ Σ and write BM = {⋃q∈QBq×{q} | Bq ∈ B ∀q ∈
Q}. It holds that if T is fair(µ,B) then for any q ∈ Q, T nM is fair(µ× δq,BM).

6.1 – Qualitative analysis 147

Proof. We have to show that for any B ∈ BM and for any B′ ∈ PreProbT nM(B)
such that ProbT nM

µ×δq (G FB′) > 0,

ProbT nM
µ×δq (G FB | G FB′) = 1.

We first prove this for B = Bq′ × {q′} for some q′ ∈ Q and Bq′ ∈ B and we
will then show how this extends to any B ∈ BM. We write B = (Bq′ , q

′). Fix
B′ = ∪q′′∈Q(B′q′′ , q

′′) ∈ PreProbT nM(B) and w.l.o.g., assume that B′q′′ 6= ∅ for
each q′′ ∈ Q. Then,

∀µ′ ∈ Dist(B′), ProbT nM
µ′ (Cyl(B′, (Bq′ , q

′))) > 0

⇐⇒ ∀q′′ ∈ Q, ∀µ′ ∈ Dist(B′q′′), Prob
T nM
µ′×δq′′

(Cyl((B′q′′ , q
′′), (Bq′ , q

′))) > 0

⇐⇒ ∀q′′ ∈ Q, ∀s, s′ ∈ B′q′′ , L(s) = L(s′), q′′
L(s)→ q′ in M, and (6.2)

∀q′′ ∈ Q, ∀µ′ ∈ Dist(B′q′′), Prob
T
µ′(Cyl(B′q′′ , Bq′)) > 0

where the last equivalence comes from the the definition of T n M (Defini-
tion 4.1.15) and from Lemma 4.1.18. Note that the very last line states that
B′q′′ ∈ PreProbT (B′q′).

Assume now that ProbT nM
µ×δq (G FB′) > 0. Write Q′ ⊆ Q for the set of states

q′′ such that ProbT nM
µ×δq (G F (B′q′′ , q

′′)) > 0 (which is non-empty from finiteness

of Q). Observe that from Proposition 4.1.17, we get that for any q′′ ∈ Q,
ProbTµ (G FB′q′′) > 0. Still applying Proposition 4.1.17 and from (6.2), it holds
that

ProbT nM
µ×δq (G F (Bq′ , q

′) | G F (B′q′′ , q
′′)) = ProbTµ (G FBq′ | G FB′q′′) = 1

where the last equality comes from the fairness assumption on T . We conclude
that

ProbT nM
µ×δq (G FB | G FB′) = 1

by observing that

ProbT nM
µ×δq (G FB | G FB′) = ProbT nM

µ×δq

Ç
G FB | G F

(⋃
q′′∈Q′

(B′q′′ , q
′′)
)å

and using Bayes formula.
We finally fix B =

⋃
q′∈Q(Bq′ , q

′) ∈ BM and B′ ∈ PreProbT nM(B) such that

ProbT nM
µ×δq (G FB′) > 0. We can write B′ as the union B′ =

⋃
q′∈QB

(q′) such that

for any q′ ∈ Q, B(q′) 6= ∅ if and only if B(q′) ∈ PreProbT nM((Bq′ , q
′)). Write

148 Chapter 6 – Qualitative and Quantitative Analysis

Q′ ⊆ Q for the set of states q′ such that ProbT nM
µ×δq (G FB(q′)) > 0 (which is non-

empty from finiteness of Q). We can then conclude by observing that for any
q′ ∈ Q′,

ProbT nM
µ×δq (G F (Bq′ , q

′) | G FB(q′)) = 1

from the the first part of the proof, and by applying the fact that: given a
probability space (Ω, E ,Prob) if for any 1 ≤ k ≤ n, Prob(Ak | Bk) = 1, then
Prob(

⋃n
k=1Ak |

⋃n
k=1Bk) = 1.

This allows thus to define a framework in which the qualitative analysis of ω-
regular properties is reduced to the qualitative analysis in a finite Markov chain.
We only need for the hypotheses of Proposition 5.2.7 to be met: T2 is a finite
Markov chain and an α-abstraction of T1, and T1 is fair w.r.t. α-closed sets. We
thus get that T2nM is also a finite Markov chain and an αM abstraction of T1nM
from Lemma 6.1.19, and T1 nM is fair w.r.t. αM-closed sets from Lemma 6.1.27.
It follows from Proposition 5.2.7 that T1 n M is decisive w.r.t. αM-closed sets
and therefore, T2 nM is a sound α-abstraction of T1 nM from Proposition 5.3.4.
Conditions of Theorem 6.1.25 are thus met since T2 has trivially a finite attractor,
allowing a nice qualitative analysis for properties given by a DMA.

Remark 6.1.29 (Discussion on the approach of [BBB+14]). While the notion of
abstraction was not precisely defined in [BBB+14] for STA, it was implicitly al-
ready there. Also, decidability of the almost-sure satisfaction was ensured thanks
to a fairness condition. Using the terminology of the current paper, the frame-
work was the following: T1 and T2 are two STSs such that T2 is a finite Markov
chain which is an α-abstraction of T1. Then the condition for the abstraction
to yield interesting results was that T1 should be fair w.r.t. every α-closed sets.
Applying the reasoning mentioned above in this section, we immediately get that
the conditions of Theorem 6.1.25 are satisfied, and the approach of [BBB+14]
was then a particular case of that theorem, when applied to specific subclasses
of STA (more details are provided in Chapter 7).

6.2. Quantitative analysis

In this section, we are interested in the quantitative model-checking problem for
STSs (see Definition 4.1.20). Beyond the qualitative analysis performed in the
previous section, we will see that, under reasonable assumptions, one may derive
approximation schemes to compute, within arbitrary precision, the probability
of a given property.

6.2 – Quantitative analysis 149

In Sections 6.2.1 and 6.2.2, we consider first reachability, then repeated reach-
ability properties. We use the algorithms of [ABM07] in order to get approx-
imation schemes in our more general context. We get similar results for the
correctness and the termination of the procedures.

In Sections 6.2.3 and 6.2.4, we study properties given by a DMA first in
DMCs with a finite attractor, and then in general STSs who have a DMC with a
finite attractor as α-abstraction. We show how the procedures of Sections 6.1.2
and 6.1.3 allow us to get approximation schemes for ω-regular properties, that
amount to approach finitely many reachability probabilities, applying thus the
scheme of Section 6.2.1.

For the next two subsections, fix an STS T = (S,Σ, κ), and an initial distri-
bution µ ∈ Dist(S).

6.2.1 Quantitative reachability analysis

In order to approximate the reachability probability of a set B ∈ Σ in T , we
define the two following sequences, similar to the ones given for decisive Markov
chains [ABM07] (see Section 2.2.2 for some details). For every n ∈ N:®

pYesn = ProbTµ (F≤nB);

pNon = ProbTµ (¬BU≤n ‹B).

Since the sequences of events EvT (F≤nB)n∈N and EvT (¬BU≤n ‹B)n∈N are non-

decreasing and converge respectively towards EvT (FB) and EvT (¬BU ‹B), it is
easy to determine the limit of the sequences (pYesn)n and (pNon)n, with no assump-
tion on the model.

Lemma 6.2.1. The sequences (pYesn)n and (pNon)n are non-decreasing and con-
verge respectively to ProbTµ (FB) and ProbTµ (¬BU ‹B).

Assuming now that T is decisive w.r.t. B, the two limits are related.

Corollary 6.2.2. If T is Dec(µ,B), then limn→+∞ p
Yes
n + pNon = 1.

Proof. From Lemma 6.2.1, it holds that

lim
n→+∞

pYesn + pNon = ProbTµ (FB) + ProbTµ (¬BU ‹B)

= ProbTµ (FB ∨ (¬BU ‹B)) from point (i) of Lemma 6.1.1

= ProbTµ (FB ∨ F ‹B) from Lemma 4.2.2 (fifth item)

= 1 .

The last equality comes from the decisiveness assumption.

150 Chapter 6 – Qualitative and Quantitative Analysis

Observe that if T is a DMC, we recover the algorithm of [ABM07] described
here in Section 2.2.2 and Proposition 2.2.20.

Corollary 6.2.2 can be used in order to derive an approximation scheme for
ProbTµ (FB). To obtain an ε-approximation, it suffices to evaluate pYesn and pNon
for larger and larger values of n, until 1−pYesn −pNon < ε, and to return pYesn . This
scheme is effective as soon as one can compute ‹B, and the probability (from µ)
of cylinders of the forms Cyl(S, . . . , S︸ ︷︷ ︸

n times

, B) and Cyl(¬B, . . . ,¬B︸ ︷︷ ︸
n times

, ‹B). In case pYesn

and pNon cannot be computed exactly, but can only be approximated up to any
desired error bound, this scheme can be refined to obtain a 2ε-approximation for
ProbTµ (FB).

6.2.2 Quantitative repeated reachability analysis

We now define two sequences that will yield an approximation scheme for a
repeated reachability probability, under stronger assumptions on the model. For
every n ∈ N: {

qYesn = ProbTµ (F≤n
˜̃
B);

qNon = ProbTµ (F≤n ‹B).

Here again, with no assumption on T :

Lemma 6.2.3. The sequences (qYesn)n and (qNon)n are non-decreasing and con-

verge respectively to ProbTµ (F
˜̃
B) and ProbTµ (F ‹B).

Assuming now that T is persistently decisive w.r.t. B and decisive w.r.t. ‹B,
the two sequences are closely related.

Corollary 6.2.4. If T is PersDec(µ,B) and Dec(µ, ‹B), then the two sequences
(qYesn)n and (1−qNon)n converge towards ProbTµ (G FB) and limn→+∞ q

Yes
n +qNon =

1.

Proof. Since T is Dec(µ, ‹B), it holds that ProbTµ (F ‹B ∨ F
˜̃
B) = 1. Since T is

PersDec(µ,B), on derives from Lemma 6.1.2 that

ProbTµ (F
˜̃
B) = 1− ProbTµ (F ‹B).

We can now show that

1− ProbTµ (F ‹B) = ProbTµ (G FB).

6.2 – Quantitative analysis 151

It comes from the fact that PersDec(µ,B) is equivalent to StrDec(µ,B) and from
point (ii) of Lemma 6.1.1. This proves the first part of the corollary, thanks to
Lemma 6.2.3.

Finally, we can directly establish from Lemmas 6.2.3 and 6.1.2 and from the
hypothesis Dec(µ, ‹B), that limn→+∞ q

Yes
n + qNon = 1.

Observe again that if T is a DMC, this procedure corresponds to the algo-
rithm of [ABM07] described here in Section 2.2.2 and Proposition 2.2.21.

Here also, under the assumptions of Corollary 6.2.4, we obtain an approxi-
mation scheme for the value ProbTµ (G FB). Effectiveness of the scheme relies on

the computability of the avoid sets ‹B and
˜̃
B, and on the effective computation of

the probability of cylinders of the forms Cyl(S, . . . , S︸ ︷︷ ︸
n times

,
˜̃
B) and Cyl(S, . . . , S︸ ︷︷ ︸

n times

, ‹B).

Similarly as before, in case qYesn and qNon cannot be computed exactly, but can
only be approximated up to any desired error bound, this scheme can be refined
to obtain a 2ε-approximation for ProbTµ (G FB).

6.2.3 Properties given by a DMA in DMCs

To go beyond reachability and repeated reachability, we now consider an ω-
regular property given by a DMA M = (Q, q0, E,F). We assume that T =
(S,Σ, κ,AP,L) is a labelled DMC.

In order to approximate the probability that the model satisfies this external
specification, we assume that T has a finite attractor. Following Section 6.1.2,
we consider the finite attractor B of T nM, and we apply Theorem 6.1.17: for
each µ ∈ Dist(S),

ProbT nM
µ×δq0

(Inf ∈ F) =
∑

C∈GoodBT nM(F)

ProbT nM
µ×δq0

(FC) .

Thus, the computation of the probability that a given model satisfies a given
external specification is reduced to the computation of finitely many reachability
probabilities. Now, given that T and hence T nM has a finite attractor, T nM
is Dec(µ× δq0 , B) for any measurable set B (see Proposition 2.2.13), so that we
can apply the approximation scheme of Section 6.2.1 to obtain an approximation
of the desired value (see Corollary 6.2.2).

The effectiveness of the approach relies on the effectiveness of the scheme for
reachability, but also on the computability of an attractor for T , and of the set
of good BSCCs of the graph of the attractor.

152 Chapter 6 – Qualitative and Quantitative Analysis

6.2.4 Properties given by a DMA in general STSs via denumer-
able abstractions

We assume to be in the same framework as in Section 6.1.3, that is T1 =
(S1,Σ1, κ1,AP,L1) and T2 = (S2,Σ2, κ2,AP,L2) are two LSTSs such that:

• T2 is an α-abstraction of T1

• T2 is a DMC with a finite attractor B2.

We consider again a DMA M = (Q, q0, E,F), as well as the products T1 nM and
T2 n M. Writing B = {α−1

M (B) | B ∈ Σ′2}, we assume that T1 n M is Dec(B).
Remember that this implies, from Lemma 6.1.19, that T2 n M is a sound αM-
abstraction of T1 nM.

Fix an initial distribution µ for T1. Thanks to Theorem 6.1.25, we have that:

ProbT1nM
µ×δq0

(Inf ∈ F) =
∑

C∈GoodB2
T2nM(F)

ProbT1nM
µ×δq0

(Fα−1(C)) .

Thus, as previously, the computation of the probability that a given model
satisfies a given external specification is reduced to the computation of finitely
many reachability probabilities. Since we assumed T1 nM to be Dec(B), we can
use the approximation scheme from Section 6.2.1 to approximate the searched
value (see Corollary 6.2.2).

Recall that in Section 6.1.3, we discussed the particular case when T2 is a
finite Markov chain. In that case, from Lemma 6.1.27 and from Proposition 5.2.7,
it suffices for T1 be fair w.r.t. α-closed sets in order to get correctness and
termination of the approximation scheme (see Corollary 6.2.2).

Effectiveness of the approach requires effective numerical computations for
the distributions, as well as the ability of constructing various sets, like the
BSCCs of the graph of the attractor, and avoid-sets of these, etc.

6.3. Summary of the results on STSs

In this section, we provide a summary of the different results presented in the
previous sections and chapters. We do not enter in the details! We give the main
idea of the principle results and point towards the section or the precise lemma,
proposition or theorem.

6.3 – Summary of the results on STSs 153

Qualitative analysis. We begin with the qualitative analysis (Section 6.1).
We first fix some arbitrary (L)STS T . Given a property ϕ, the qualitative
problem amounts to decide whether ProbTµ (ϕ) = 0 or not or ProbTµ (ϕ) = 1 or
not. We have the following results.

• If T satisfies decisiveness properties and if ϕ is a (repeated) reachability
property, then the qualitative problem is reduced to the simple 0-model-
checking problem of some “Until” or reachability property (Section 6.1.1).

• If T is a DMC with a finite attractor and ϕ is given by a DMA M, then
the almost-sure model-checking problem is reduced to a simple 0-model-
checking problem of finitely many reachability properties in T nM and to
check some structural properties on the underlying graph of the attractor
(see developments in Section 6.1.2 and more precisely Corollary 6.1.18).

We now fix a (L)STS T1 and T2, an α-abstraction of T1. The question is the same
as before, except that now we consider T1 instead of T . We have the following
results.

• If T2 is sound and satisfies decisiveness properties and if ϕ is a (repeated)
reachability property, the qualitative problem for T1 is reduced to the same
qualitative problem in T2 (Section 6.1.1, Proposition 6.1.9).

• If T2 is a DMC with a finite attractor, if ϕ is given by a DMA M and if
T2 nM is a sound αM-abstraction of T1 nM, then the almost-sure model-
checking problem in T1 is reduced to the same problem in T2 (Section 6.1.3
and more precisely Corollary 6.1.26).

Quantitative analysis. We are now concerned with the quantitative analysis
(Section 6.2). We fix a (L)STS T . Given a property ϕ, we are interested in a
scheme that approaches ProbTµ (ϕ).

• If T satisfies decisiveness properties and if ϕ is a (repeated) reachability
property, then there is an approximation scheme that is correct and that
terminates (Sections 6.2.1 and 6.2.2).

• If T is a DMC with a finite attractor and if ϕ is given by a DMA M, then
there is an approximation scheme for T n M that requires to approach
finitely many reachability probabilities (using scheme of Section 6.2.1) and
to check some structural properties on the underlying graph of the attractor
of T nM (Section 6.2.3).

154 Chapter 6 – Qualitative and Quantitative Analysis

We now fix a (L)STS T1 and T2 an α-abstraction of T1. We are again interested
in an approximation scheme, but this time for T1.

• If T2 is a DMC with a finite attractor, if ϕ is given by a DMA M and if T2nM
is a sound αM-abstraction of T1nM, then there is an approximation scheme
for T1nM that requires to approach finitely many reachability probabilities
(using scheme of Section 6.2.1) and to check some structural properties on
the underlying graph of the attractor of T2 nM (Section 6.2.4).

Properties of STSs. We are here interested in the basic properties of STSs
described in Section 4.2. We fix a STS T = (S,Σ, κ) and B ⊆ Σ.

• It holds that T is Dec(B)⇐⇒ T is StrDec(B)⇐⇒ T is PersDec(B) =⇒ T
is fair(B) (Proposition 4.2.17).

• If T is a DMC with a finite attractor, then T is Dec(2S) ([ABM07], see
Proposition 2.2.13 here).

Transfer of properties through the product with a DMA. We now look
at the different properties that are preserved through the product with a DMA.
We fix a LSTS T = (S,Σ, κ), a DMA M and B ⊆ Σ

• If T has a finite attractor, then T n M has also a finite attractor (see
Lemma 6.1.10). Moreover if T is a DMC, then so is T nM.

• If T is fair(B), then T nM is fair(BM) (Lemma 6.1.27).

Still open questions are whether decisiveness properties or soundness are pre-
served through the product with a DMA (Remark 6.1.20). More precisely for
soundness, we do not know whether T2 sound α-abstraction of T1 implies T2 nM
sound αM-abstraction of T1 nM.

Transfer of properties through abstractions. We summarize now which
properties are transferred through α-abstractions (Section 5.2). We first consider
two STSs T1 and T2 such that T2 is an α-abstraction of T1. We have the following
results (Section 5.2.2).

• If T2 is a DMC with a finite attractor and if T1 satisfies hypotheses (†) of
page 114, then T1 is decisive w.r.t. α-closed sets (Proposition 5.2.6).

• If T2 is a finite Markov chain and if T1 is fair w.r.t. α-closed sets, then T1

is decisive w.r.t. α-closed sets (Proposition 5.2.7).

6.3 – Summary of the results on STSs 155

If we assume moreover that the α-abstraction T2 is sound, we get the results of
Section 5.2.1.

• If T2 is decisive w.r.t. B, then T1 is decisive w.r.t. α−1(B) (Corollary 5.2.3).

• If A2 is an attractor of T2, then α−1(A2) is an attractor of T1 (Proposi-
tion 5.2.4).

Conditions for soundness and completeness. We end this summary with
the two main results that give conditions for soundness and completeness of
α-abstractions (Section 5.3). We fix two STSs T1 and T2 such that T2 is an
α-abstraction of T1. We have the following results.

• If T2 is decisive, then T2 is complete (Lemma 5.3.2).

• If T1 is decisive w.r.t. α-closed sets, then T2 is sound (Proposition 5.3.4).

CHAPTER 7

Application to STA

In this chapter, we show how the results of Chapter 6 can be applied to the STA
model (see Chapter 3). This was again done in [BBBC17], a first version can be
found [BBBC16] however in this paper, we did not have the results on ω-regular
properties (see Sections 6.1.2, 6.1.3, 6.2.3 and 6.2.4).

As already stated in Chapter 3, several decidability results have been proven
for subclasses of STA, requiring the development of ad-hoc methods [BBB+07,
BBB+08, BBBM08, BBJM12]. In [BBB+14], the authors proposed the first
unifying method capturing all known decidability results for the qualitative
model-checking problem: the thick region graph (see Definition 3.2.8) is a fi-
nite graph based on the standard region automaton construction for timed au-
tomata [AD94], which allows one, through the construction of a finite Markov
chain, to infer good transfer properties from this finite graph to the original
STA when some fairness property is satisfied (see Sections 3.2 and 3.3). The
current work allows us both to unify all decidability and approximation results
that were known, and to get new approximation schemes for the quantitative
model-checking problem (of ω-regular properties).

In Section 7.1, we show how the semantics of a STA can be given as a STS.
We define formally the Markov kernel and the probability distribution on the set
of runs that results from this kernel. We then define the α-abstraction that will
be used for STA, which is the thick region graph defined in Section 3.2.

We then consider two subclasses of STA that were proven to have nice qualita-
tive results in [BBB+14] (see Section 3.3). In Section 7.2, we consider the class of
reactive STA while in Section 7.3, we consider the class of one-clock STA. In both
classes, we present a new way of proving qualitative results of [BBB+14] through
the results of Section 6.1, which is more unifying than the proofs of [BBB+14];

157

158 Chapter 7 – Application to STA

and we show that the approximation schemes of Section 6.2 can be applied,
leading to new quantitative results for STA!

It should be noted that in [BBBC17], we also applied the previous results to
a subclass of the GSMP model, based on technical lemmas of [BKKŘ11]. We do
not describe it here as it is not the subject of the thesis.

7.1. From STA to STS

In this section, we show how the semantics of a STA can be given as a STS. We fix
for the section a STA A = (L,X,E,AP,L, (µq, pq)q∈L×RX+)1 and we assume that

it satisfies the hypothesis (‡) (see page 65): for each state q, µq is equivalent to the
Lebesgue measure restricted on I(q), i.e. µq(A) > 0 if and only if Λ(A∩I(q)) > 0
for each Borel set A, where Λ denotes the Lebesgue measure.

The STA A can be interpreted as a LSTS TA = (SA,ΣA, κA,AP,LA) where
SA = Q = L × RX+ is the set of states of A, ΣA is the σ-algebra product

2L×B(R|X|+)2 where B(R|X|+) is the Borel σ-algebra on R|X|+ , the labelling function
is given as LA((l, ν)) = L((l, ν)) = L(l) for any state (l, ν), and the kernel κA is
defined as follows: for each q = (l, ν) ∈ SA and each B ∈ ΣA,

κA(q,B) =
∑

e=(l,g,Y,l′)∈E

∫
t∈R+

pq+t(e) · 1B(l′, [Y ← 0](ν + t)) dµq(t)

where 1B is the characteristic function of B. It gives the probability to hit set
B ⊆ SA from state q in one step (composed of a delay transition followed by a
discrete transition).

Remark 7.1.1. The probability measure on runs derived from TA in Section 4.1
coincides with the original definition of [BBB+14] (see Section 3.1), under a slight
hypothesis on the STA: we need that there are no edges with the same source
and the same target but with non-disjoint guards, i.e. we need in some sense,
determinism. Observe that the assumption is not too restrictive: if there are two
edges e1 = (l, g1, Y1, l

′) and e2 = (l, g2, Y2, l
′) with g1 ∧ g2 6= false, then one can

separate those edges into several new edges with disjoint guards, notably edge
(l, g1 ∧ g2, Y1 ∪ Y2, l

′).

We now show the correspondence between ProbAq and ProbTAµ . First it holds

1We omit here the invariant to simplify notations, however it has no cost to add it; the
labelling on edges is not needed.

2Recall that 2L × B(R|X|+) = {
⋃
l∈L{l} × Cl | ∀l ∈ L, Cl ∈ B(R|X|)+ }.

7.1 – From STA to STS 159

that for each state q ∈ SA and each B = ∪l∈L{l} ×Bl,

κA(q,B) = ProbAq

(⋃
e∈E

Cyl(πCν,e(q, e))
)

where for each e = (l, g, Y, l′) ∈ E, Cν,e = {t ∈ R+ | [Y ← 0](ν + t) ∈ Bl′} is the
adequate constraint ensuring that we end up in B. This due to the fact that

Cyl({q}, B) =
⋃
e∈E

Cyl(πCν,e(q, e))

and from the definitions of κA and ProbAq . We can decompose similarly each

cylinder of FTA into a disjoint union of constrained cylinders of ΩAq . This holds
also without the new assumption described above.

Secondly, we can also establish a similar link from a cylinder of ΩAq to a
union of cylinders in FTA . But this time the above condition is needed. If this
condition did not hold, it could the case to have two edges with the same source
and same target, but with non-disjoint guards. Then in TA, we would not be
able to distinguish the two edges when at the intersection of the two guards
(because cylinders in FTA are defined through the set of states that are visited,
not through the edges that are taken like in ΩAq). With the assumption that
those edges are prohibited, we get the same probability spaces on the runs in
both semantics.

We fix for the rest of the chapter a STA A = (L,X,E,AP,L, (µq, pq)q∈L×RX+)

and its corresponding LSTS TA = (SA,ΣA, κA,AP,LA). The objective of this
chapter, is to apply the results of Chapter 6 to STA. As explained in Chapters 5
and 6, abstractions can help to apply those results, if they satisfy some nice
properties. We show next that STA have an α-abstraction that is a finite Markov
chain.

7.1.1 The thick region graph abstraction

We refer to Section 2.1.1 for a reminder on regions in timed automata. We recall
that RA denotes the set of regions of STA A, and that given ν ∈ RX+ , we write
[ν]A for the region containing ν. We also send the reader to Section 3.2 for the
thick region graph Rtk

A (see Definition 3.2.8) and the corresponding finite Markov
chain MC(A) = (S, P); we recall that it is defined as follows:

• the set of states S = L×RA,

• P ((l, r), (l′r′)) > 0 if and only if there is an edge (l, r)→ (l′, r′) in Rtk
A , and

160 Chapter 7 – Application to STA

• for each state (l, r) ∈ L×RA, P ((l, r), ·) is the discrete uniform distribution
over {(l′, r′) ∈ L×RA | P ((l, r), (l′, r′)) > 0}.

Observe that from Remark 3.2.7 and Definition 3.2.8 of the thick region graph,
the second item is equivalent to: P ((l, r), (l′r′)) > 0 if and only if there exists
some ν ∈ r such that κA((l, ν), {l′}× r′)) > 0. Recall also that since MC(A) is a
finite Markov chain, e.g. it is a STS. To keep some consistency in the notations,
we will write in the sequel T tg

A instead of MC(A).

We finally define the function α : L × RX+ → L × RA by α((l, ν)) = (l, [ν]A)
for each (l, ν) ∈ L× RX+ . It holds that T tg

A is an α-abstraction of TA.

Lemma 7.1.2. It holds true that T tg
A is a finite α-abstraction of TA.

The proof is immediate by construction of T tg
A . Let us notice that finiteness

of the abstraction implies completeness (Lemma 5.3.1).

As witnessed in [BBB+14, Appendix D.2], see here Chapter 3, this abstrac-
tion may not give much information in general about the probability of linear-
time properties in the original STA: in particular the abstraction is not always
sound, this has been illustrated in Example 3.2.10 with STA Acvg of Figure 2.6.
We come briefly back to this STA in Example 7.1.3. However it has been shown
in [BBB+14] (see Section 3.3 here) that in several cases, it helps to obtain de-
cidability results (see Theorem 3.3.2): fairness was identified as the key notion
to get those results.

Example 7.1.3. We come back to STA Acvg of Examples 2.1.28 and 3.2.10 de-
picted on Figure 2.6. Lemma 7.1.2 ensures that the corresponding finite Markov
chain T tg

Acvg
is an α-abstraction of TAcvg . However, Example 3.2.10 witnesses that

T tg
Acvg

is not sound and Example 3.3.3 shows that TAcvg is not almost-surely fair.

Remark 7.1.4. As said before, a condition for T tg
A to be a useful abstraction

was identified as fairness in [BBB+14]. It should be observed that fairness
in the sense of Definition 3.3.1 in STA corresponds to fairness w.r.t. α-closed
sets of Definition 4.2.9 for TA, the corresponding STS. Recall that fairness is
the weakest notion defined here (see Proposition 4.2.17). Later, in [BBBC16],
we identified the condition as (strong) decisiveness, but this was not sufficient
for decidability and approximability results of ω-regular properties as seen in
Chapter 6, Sections 6.1.3 and 6.2.3. In [BBBC17], we realised that we have a
finite-attractor property (through an abstraction). Observe that in the case of
STA, since the abstraction is finite, we always get a finite attractor (through the
abstraction). From there,

7.2 – Reactive STA 161

• either we can get a finite attractor (through an abstraction) which satisfies
conditions (†) of Proposition 5.2.6,

• or we have a finite abstraction (which is the case here) and we can show
that the STA is fair w.r.t. α-closed sets (which is thus obviously again
the case here for almost-surely fair STA), meeting thus the conditions of
Proposition 5.2.7,

allowing us to infer, in both cases, the whole class of decidability and approxima-
bility results through Proposition 5.3.4. As already mentioned in Remark 6.1.29,
observe thus that in the case of almost-surely fair STA, we immediately get
all those results through Propositions 5.2.7 and 5.3.4, but also through Lem-
mas 6.1.19 and 6.1.27 which state that through the product with a DMA, finite
abstractions and fairness are preserved.

However fairness is in general (i.e. when the abstraction is not finite) not
sufficient to get all the qualitative and quantitative results. We therefore prove
stronger properties for subclasses of STA: in the sequel, we will consider both
classes of STA introduced in Section 3.3 and which were proved to be almost-
surely fair in [BBB+14], and we will show that for both classes, the conditions (†)
of Proposition 5.2.6 are always fulfilled. We believe that it moreover simplifies
the proofs of [BBB+14].

7.2. Reactive STA

In this section, we recall the notion of reactive STA (see Section 3.3) and show
the the results of Chapter 6 can be applied.

Following [BBJM12], the STA A is said reactive whenever it satisfies condi-
tions (H1) and (H2) of Section 3.3, we recall them here:

(H1) for every state q, I(q) = R+ and for every l ∈ L, there exists a distribution
µl equivalent to the Lebesgue measure on R+, such that for every ν ∈ RX+ ,
µ(l,ν) = µl;

(H2) for every edge e there exists we ∈ N0 such that for every state q,

pq(e) =


we∑

e′ enabled in q we′
if e is enabled in q,

0 otherwise.

We take the notations used in Sections 2.1.1, 3.2 but also 7.1.1 for the thick
region graph. We recall that MA denotes the maximal constant appearing in a

162 Chapter 7 – Application to STA

guard of A and that a region r ∈ RA is said memoryless whenever for each clock
x ∈ X, either ν(x) = 0 for each ν ∈ r, or ν(x) > MA for each ν ∈ r. We write
Rmem
A for the set of memoryless regions.

From [BBB+14, Lemma 13], which states that memoryless regions are vis-
ited infinitely often almost-surely from every state q ∈ SA, we thus get a finite
attractor through the abstraction.

Proposition 7.2.1. The set α−1(L×Rmem
A) is an attractor for TA.

We give an idea of the main argument. It can be shown that, in one step, one
can ensure reaching a memoryless region by delaying at least MA+ 1 time units;
since there is one single distribution which is applied at every state of a given
location, the probability to do so is uniformly bounded from below from every
state (the bound is given by minl∈L([MA + 1,∞[) > 0 from hypothesis (H1)).
And you can conclude by similar arguments as in the proof of Proposition 5.2.6.

Using Propositions 5.2.6 and 5.3.4, we also get the following result.

Proposition 7.2.2. It holds that TA is decisive w.r.t. α-closed sets and that
T tg
A is a sound α-abstraction of TA.

Proof. It suffices to prove that the hypotheses (†) of Proposition 5.2.6 are met.
It can easily be shown that L × Rmem

A is a finite attractor of T tg
A . Thanks to

Proposition 7.2.1, α−1(L×Rmem
A) is an attractor for T tg

A . It remains to show the
last condition of the hypotheses (†) of Proposition 5.2.6. We therefore need to
prove that for each (lm, rm) ∈ L × Rmem

A , there are p > 0 and k ∈ N such that
for each region (l, r) ∈ L×RA:

• for each µ ∈ Dist(α−1(lm, rm)), ProbTAµ (F≤k α
−1(l, r)) ≥ p, or

• for each µ ∈ Dist(α−1(lm, rm)), ProbTAµ (Fα−1(l, r)) = 0.

This is a consequence of [BBB+14, Lemma F.4] which says that from a memory-
less region, the future (and its probability) is independent of the precise current
state. This in particular implies that for two states q, q′ ∈ α−1(lm, rm), for every
α-closed set B, for every integer k, ProbTAq (F=k B) = ProbTAq′ (F=k B). By exten-

sion, for every µ ∈ Dist(α−1(lm, rm)), ProbTAµ (F=k B) = ProbTAq (F=k B). This
implies the expected bounds, by taking B = α−1(l, r).

Thus Proposition 5.2.6 implies that TA is decisive w.r.t. α-closed sets and
therefore, Proposition 5.3.4 implies that T tg

A is a sound α-abstraction of TA.

In order to deal with the qualitative and quantitative model-checking prob-
lems for reactive STA of ω-regular properties (see Definitions 4.1.19 and 4.1.20),

7.2 – Reactive STA 163

we will consider the product of the reactive STA A with a DMA M. We refer to
Lemma 6.1.19 for notation αM and the fact that T tg

A nM is an αM-abstraction
of TA nM. As consequences of Chapter 6, we get the following decidability and
approximability results for reactive STA.

Corollary 7.2.3. Let A be a reactive STA, and M a DMA. Then:

1. we can decide whether A satisfies almost-surely M;

2. for every initial distribution µ which is numerically amenable w.r.t. A3,
we can compute arbitrarily close approximations of ProbTAµ (M).

Proof. This is an application of Theorem 6.1.25, Corollary 6.1.26 and of Sec-
tions 6.2.1 and 6.2.4. It should be noted that all the hypotheses are met:

• T tg
A nM has a finite attractor: since T tg

A is a finite MC then so is T tg
A nM

and we get a trivial finite attractor;

• TA nM is decisive w.r.t. any αM-closed sets.

This second point is a little more tricky. First, one should realise that since
TA is reactive, then so is TA n M since the condition to be reactive concerns
only the distributions over the delays on each location of the STA and those
distributions are not modified from the product with M. It should be noted that
T tg
A n M corresponds to the thick region graph abstraction of TA n M since M

does not influence the behaviour of TA. Then from Proposition 7.2.2, we know
that TA nM is decisive w.r.t. αM-closed sets (and thus that T tg

A nM is a sound
α-abstraction of TA nM).

Remark 7.2.4. As already mentioned in Remark 7.1.4, we believe that the pro-
posed approach through abstractions and finite attractors simplifies drastically
the proof of decidability of the almost-sure model-checking problem of reac-
tive STA, and in particular avoids the ad-hoc but long and technical proof
of [BBB+14, Lemma 7.14]. Furthermore, we obtain interesting approximabil-
ity results, some of them being consequences of [BBBC16], but the general case
of ω-regular properties being particular to [BBBC17].

Remark 7.2.5. Corollary 7.2.3 can be extended to properties expressed as deter-
ministic and complete Muller timed automata (DCMTA), which are standard

3We say that a distribution µ is numerically amenable w.r.t. A if, given k ∈ N, given ε > 0
and given a sequence of locations and regions (l0, r0), (l1, r1), . . . , (lk, rk), one can approximate
ProbAµ (Cyl((l0, r0), (l1, r1), . . . , (lk, rk))) up to ε.

164 Chapter 7 – Application to STA

deterministic and complete4 timed automata [AD94] with a Muller accepting
condition. Indeed, the product of a reactive STA with such a DCMTA is reac-
tive. Hence, the whole theory that we have developed applies: the STS of the
product has a finite sound abstraction. This allows to express rich properties
with timing constraints and evaluate their likelihood in the STA.

7.3. Single-clock STA

In this section, we recall the subclass of STA defined in Section 3.3 and we apply
a similar reasoning to this subclass.

We therefore assume that A is now a single-clock STA. As in [BBB+14,
Section 7.1], we assume that A satisfies conditions (H2), (H3), (H4) and (H5) of
Section 3.3. We recall them here:

(H2) for every edge e there exists we ∈ N0 such that for every state q,

pq(e) =


we∑

e′ enabled in q
we′

if e is enabled in q,

0 otherwise.

(H3) for all l ∈ L, for all [a, b] ⊆ R+, the function ν → µ(l,ν)([a, b]) is continuous;

(H4) if q′ = q + t for some t ≥ 0, and if 0 /∈ I(q + t′, e) for each 0 ≤ t′ ≤ t, then
µq(I(q, e)) ≤ µq′(I(q′, e));

(H5) there is 0 < λ0 < 1 such that for every state q with I(q) unbounded,
µq([0,

1
2]) ≤ λ0.

These requirements are technical, but they are rather natural and easily satisfi-
able. For instance, a timed automaton equipped with uniform (resp. exponen-
tial) distributions on bounded (resp. unbounded) intervals satisfy these condi-
tions. If we assume exponential distributions on unbounded intervals, the very
last requirement corresponds to the bounded transition rate condition in [DP03],
required to have reasonable and realistic behaviours, i.e. the authors prove that
the set of Zeno runs has a measure null.

In [BBB+14, Section 7.1], there is no clear attractor property. From the
details of the proofs we can nevertheless define Amax

A = {(l, r0) | l ∈ L}∪{(l, r) ∈
L×RA | ∀(l′, r′) ∈ L×RA, (l, r)→∗ (l′, r′) in T tg

A implies r′ = r} where r0 is the

4In this context, complete means that from every configuration, for every subset of AP, and
every t ∈ R+, there is an edge labelled by that subset which is enabled after t time units. So
this is complete w.r.t time and actions.

7.3 – Single-clock STA 165

region composed of the single null valuation and where (l, r) →∗ (l′, r′) in T tg
A

stands for “there is a finite run in the thick region graph Rtk
A from (l, r) to (l′, r′)”

(see Section 3.2).

Proposition 7.3.1. The set α−1(Amax
A) is an attractor for TA.

Proof. Let C = {0} ∪ {c | c constant appearing in a guard of A} def
= {c0 < c1 <

· · · < ch}. The set of regions forA can be chosen as {{ci} | 0 ≤ i ≤ h}∪{]ci−1; ci[|
1 ≤ i ≤ h} ∪ {]ch,+∞[} (see [LMS04]).

Following the proof of [BBB+14, Theorem 7.2], the set of infinite paths in
A can be divided into (a) the set of paths that take resetting edges infinitely
often, and (b) the set of paths that take resetting edges only finitely often. We
will condition the set of runs with both events, and we will show that in both
cases, we almost-surely reach α−1(Amax

A). We will then conclude by using Bayes
formula.

The first case is easy. If we assume that the probability that (a) happens is
positive, and we reason now on the σ-algebra which is conditioned by (a), then
under condition (a), α−1({(l, r0) | l ∈ L}) is obviously reached almost-surely.
Hence for each µ ∈ Dist(SA) with ProbTAµ ((a)) > 0,

ProbTAµ (Fα−1(Amax
A) | (a)) = 1.

We now assume that the probability that (b) happens is positive, and we
reason in the σ-algebra which is conditioned by (b). Under condition (b), almost-
surely the value of the clock is non-decreasing along the path, and almost-surely
a final region r is reached (since once time ch is reached, the only region is
]ch,+∞[), that is, ultimately the value of the clock along the path belongs to r
forever. We now divide (b) according to the “final region” that is reached. We
fix such a region r, and we condition again with regard to that final region r. We
write Er for the event (b) intersected with “the run ends up in r”. Observe that
the sets Er with r ∈ RA partition event (b). We assume that event Er happens
with non-null probability.

From the assumption on Er and finiteness of L, there exists l ∈ L such that
(l, r) is visited infinitely often with a positive probability. Again if we write
E(l,r) for the event Er intersected with “(l, r) is visited infinitely often”, for each
r ∈ RA, the sets E(l,r) with l ∈ L partition Er. We fix l ∈ L and we assume that
the probability of event E(l,r) is positive.

Let (l′, r′) be a successor of (l, r) in T tg
A . We want to prove that necessary,

r′ = r, and thus (l, r) ∈ Amax
A . We distinguish two cases: the special case where

r = [ch,+∞[and the other cases

166 Chapter 7 – Application to STA

We first assume that r =]ch,+∞[. In this case given ν and ν ′ ∈ r, edge e
is enabled in (l, ν) if and only if e is enabled in (l, ν ′) and the probability to fire
edge e is the same from both states (hypothesis (H2)). Here, we get that r′ is
either the region {0} or still the region r. We are thus only interested in edges e
such that (l, r)

e→ (l′, {0}). We get that e is infinitely often enabled along E(l,r),
and it is bounded from below to fire e from any state (l, ν) with ν ∈ r. From
classical results and e.g. a similar argument as in the proof of Proposition 5.2.6,
it follows that for each µ ∈ Dist(SA) with ProbTAµ (E(l,r)) > 0,

ProbTAµ (G F (l′, {0}) | E(l,r))) = 1

which contradicts condition (b). This implies that (l, r) ∈ Amax
A . Recall that Er

is partitioned by the sets E(l,r) with l ∈ L. Therefore using Bayes formula, we

get that for each µ ∈ Dist(SA) with ProbTAµ (Er) > 0,

ProbTAµ (Fα−1(Amax
A) | Er) = 1.

It remains to show this same equality for any other region r.

We finally consider some region r that is not]ch,+∞[. Then there exists
a non-singular edge e (see Definition 3.2.6) such that (l, r)

e→ (l′, r′). To-
wards a contradiction, assume that r′ is a strict successor of r. Fix some run
ρ = q1 → q2 → · · · in E(l,r) and assume that from qn with n ≥ 1, we are al-
ways in r. Then if n ≤ j1 ≤ j2 are such that we are in location l is qj1 and
qj2 , hypotheses (H2) and (H4) and the definition of Er (and more precisely (b))
ensure us that the probability to fire edge e in qj2 is greater than the proba-
bility to fire edge e in qj1 . It follows that there is β > 0 such that for each

ν ∈ r, ProbTA(l,ν)(Cyl((l, r), (l′, r′))) > β. Hence, using standard techniques like

in the proof of Proposition 5.2.6, we show that for each µ ∈ Dist(SA) with
ProbTAµ (E(l,r)) > 0,

ProbTAµ (G F (l′, r′) | E(l,r)) = 1.

Since E(l,r) ⊆ Er which is the set of runs that ultimately ends in region r it
follows that necessarily, r′ = r. This is the required contradiction. Observe
that it could be the case that e resets the unique clock and thus that r′ = {0}.
This is dealt in the same way as the situation in which r =]ch,+∞[. This
implies that (l, r) ∈ Amax

A . Recall that Er is partitioned by the sets E(l,r) with
l ∈ L. Therefore using Bayes formula, we get that for each µ ∈ Dist(SA) with
ProbTAµ (Er) > 0,

ProbTAµ (Fα−1(Amax
A) | Er) = 1

7.3 – Single-clock STA 167

for each region r that is an open interval. Using Bayes formula on events Er
with r ∈ RA that partition (b), we deduce that for each µ ∈ Dist(SA) with
ProbTAµ ((b)) > 0,

ProbTAµ (Fα−1(Amax
A) | (b)) = 1

and using again Bayes formula on (a) and (b), we get that for each µ ∈ Dist(SA),

ProbTAµ (Fα−1(Amax
A)) = 1

which concludes the proof.

As before in Section 7.2, we get the following result from Propositions 5.2.6
and 5.3.4.

Proposition 7.3.2. It holds that TA is decisive w.r.t. α-closed sets and that
T tg
A is a sound α-abstraction of TA.

Proof. It suffices to prove that the hypotheses (†) of Proposition 5.2.6 are met.
We easily get that Amax

A is a finite attractor for T tg
A , whereas α−1(Amax

A) is an
attractor for TA (Proposition 7.3.1). As for reactive STA, it remains to show
the last property appearing in the hypotheses (†) of Proposition 5.2.6. The
required bounds obviously exist for the region r0 (since only a single valuation
belongs to r0). Furthermore, once we reach α−1({(l, r) ∈ L × RA | ∀(l′, r′) ∈
L × RA, (l, r) →∗ (l′, r′) in T tg

A implies r′ = r}) , ultimately, the runs almost
surely end up in the same region r. Hence ultimately, from hypothesis (H2), the
STA behaves like a finite Markov chain. The required bounds can be inferred.

This allows us to conclude from Proposition 5.2.6 that TA is decisive w.r.t.
α-closed sets, and from Proposition 5.3.4 that T tg

A is a sound α-abstraction of
TA.

And again as a consequence, like in Section 7.2, we get the following decid-
ability and approximability results for single-clock STA.

Corollary 7.3.3. Let A be a one-clock labelled STA, and M a DMA. Then:

1. we can decide whether A satisfies almost-surely M;

2. for every initial distribution µ which is numerically amenable w.r.t. A, we
can compute arbitrarily close approximations of ProbTAµ (M).

Proof. Similarly to the proof of Corollary 7.2.3, this is an application of Theo-
rem 6.1.25, Corollary 6.1.26 and of Sections 6.2.1 and 6.2.4. All the hypotheses
are met:

168 Chapter 7 – Application to STA

• T tg
A nM has a finite attractor, and

• TA nM is decisive w.r.t. any αM-closed sets.

Those can be deduced by similar arguments as in the proof of Corollary 7.2.3.
We only observe that if TA is a single-clock STA, then so is TA n M and that
hypotheses (H2), (H3), (H4) and (H5) are preserved through the product with
M as those only concern distributions over the STA which are not altered from
the product with M.

Remark 7.3.4. The proof of the existence of an attractor is very similar to the
one that was used for proving the fairness property in [BBB+14, Section 7.1].
However, for free, we get all the approximation results! It is worth noting that
these results encompass the results of [BBBM08], where a strong assumption on
cycles of the STA were made (but a closed-form for the probability could be
computed). We remark here that the graph used in [BBBM08] is actually the
graph of the attractor, as done in Section 6.1.2.

CHAPTER 8

Conclusion and Future Work

We now conclude Part I with a summary of our different results on the qualitative
and quantitative verification of general stochastic systems and with a quick word
on some possibilities that are left for future work.

Inspired by [ABM07], in Part I we have been interested in the qualitative and
quantitative verification of general stochastic systems, i.e. probabilistic systems
defined with a Markovian kernel and with a possibly continuous set of states.
The model considered is the STS model, which can be seen as labelled Markov
processes with a single label [Pan09].

In [ABM07], the authors defined a notion of decisiveness for DMCs and
showed that, roughly speaking, it allows to lift good properties from finite Markov
chains to DMCs. They have strong results for the qualitative model-checking of
reachability and repeated reachability properties, but also algorithms for the
approximation of probabilities of the same properties. In Part I, we have been
interested in an extension of those results to more general stochastic systems
(STSs) and to a richer class of properties (properties given by a DMA). The
ultimate objective was then to apply those results to STA.

The main contributions have been divided into four chapters. In Chapter 4,
we have defined the notions of decisiveness, attractor and fairness in STSs and
we have established links between those notions.

The verification of STSs can become very quickly difficult due to the possibly
continuous set of states. It is thus important to be able to reduce the analysis
of such a system to a smaller one. In Chapter 5, we have defined the notion of
α-abstraction which is a STS that preserve the positive one-step behaviour of
the initial STS. The main contributions are the following.

169

170 Chapter 8 – Conclusion and Future Work

• The definition of the notion of α-abstraction. As α-abstractions are not
sufficient to get strong results, we have also defined the notions of sound
and complete α-abstraction, which add the preservation of the almost-sure
behaviour of reachability properties (Section 5.1).

• The identification of properties that can be transferred through sound α-
abstractions, e.g. decisiveness and attractors (Section 5.2.1).

• The identification of stronger hypotheses (than soundness) allowing the the
transfer of decisiveness properties through α-abstractions (Section 5.2.2).
The hypotheses require in particular for the α-abstraction to be a DMC or
a finite Markov chain (which is much more easier to analyse than general
STSs), and are easier to check than soundness.

• The identification of conditions that imply soundness or completeness of
α-abstractions (Section 5.3).

Chapter 6 is then the essential part of our contributions. It provides decid-
ability and approximability results of ω-regular properties directly for general
STSs but also for STSs through denumerable α-abstractions which is the most
interesting part. The main contributions are the following.

• The extension of the results of [ABM07] on the qualitative verification
of (repeated) reachability properties to general STSs and the identifica-
tion of conditions under which it can be reduced to an α-abstraction (Sec-
tion 6.1.1). Mainly, the properties needed for all the results are decisiveness
and soundness of the abstraction.

• The adaptation of techniques of [ABRS05] in order to get a procedure for
the almost-sure verification of properties given by a DMA for DMCs, and
the extension of this procedure to general STSs through a denumerable
abstraction (Sections 6.1.2 and 6.1.3). The condition over the DMCs in
order to get the procedure is to have a finite attractor, while the condition
for general STSs is for the abstraction to be sound.

• The extension of the algorithms of [ABM07] in DMCs for the approxima-
tion of (repeated) reachability properties, into approximation schemes in
general STSs for the approximation of the same properties (Section 6.2.1
and 6.2.2). Decisiveness is required for correctness and termination.

• The use of the procedures of Sections 6.1.2 and 6.1.3 in order to get ap-
proximation schemes for properties given by a DMA in DMCs and general

171

STSs through a denumerable abstraction (Sections 6.2.3 and 6.2.4). Those
schemes require to approach finitely many reachability properties, using
thus the approximation scheme of Section 6.2.1.

Section 6.3 gives a more precise summary of all the results!
Finally in Chapter 7, we have identified classes of STA (that can be seen

as STSs) on which all the previous results can be applied. We have proven
that the thick region graph viewed as a finite Markov chain (see Section 3.2)
is an α-abstraction. We then identified two classes of STA (reactive STA and
a subclass of one-clock STA [BBB+14]) in which the α-abstraction is moreover
sound. This yields to the fact that all the decidability and approximability results
of Chapter 6 can be applied to those classes of STA!

Perspectives for future work. We can list some perspectives for future work,
the list is not exhaustive.

• Open problems: as stated in Remark 6.1.20, we do not know if the
product of a STS with a DMA preserves the decisiveness of the STS or the
soundness of an α-abstraction. If the answer is yes, it could simplify the
hypotheses that need to be checked in order to prove the appliance of all
the results.

• In [BBBC17], we showed also the application of the qualitative and quan-
titative results to a subclass of GSMPs. Perspectives for the future are
obviously to find other classes where the results can be applied, whether
it is in STA or GSMPs, but also in other stochastic models like stochastic
(time) Petri nets or stochastic hybrid systems.

• One could also add prices in the considered models. The question would
then be whether we can adapt the previous schemes in order to approach
an expected reward or other measures of performance.

Part II

Composition of Stochastic
Timed Automata

173

CHAPTER 9

Interleaving Parallel Composotion in
STA

In this chapter, we are concerned with the definition of an operator of parallel
composition in STA as defined in [BBCM16]. Inspired by the approach of [HZ11]
(see Section 2.4.1 for a short discussion on the subject), we here define an op-
erator that corresponds to the interleaving semantics for this model, as we will
prove it. This is the first step towards a handshaking operator of composition.

In Section 9.1, we define the parallel composition that we will consider. It
extends the interleaving operator in timed automata of Section 2.1.3 and it thus
amounts to equip the product of timed automata with probability distributions
over the delays and the edges. It is quite technical to get a definition. We
illustrate the definition and we give several conditions on the probability distri-
butions. Those conditions will allow us, in Section 9.2, to show that the paral-
lel composition is well-defined interleaving. We exhibit problematic behaviours
when those conditions are not satisfied. We then identify a large subclass of
STA which is closed under parallel composition and under which the previous
properties are met.

Finally in Section 9.3, we define a notion of bisimulation in STA and we
prove that it is a congruence w.r.t. the defined parallel composition operator.
As explained in Sections 2.1.3 and 2.4.2, this is an expected property for a proper
compositional design in STA.

All the work of this chapter has been published in [BBCM16].

175

176 Chapter 9 – Interleaving Parallel Composotion in STA

9.1. Definition of the parallel composition

In this section, we define a notion of parallel composition in STA as defined
in [BBCM16], and we illustrate it. But first, we recall some notations and add
some slight restrictions on the STA model.

In this chapter, we consider STA A = (L,X,E, Inv,AP,L, (µq, pq)q∈L×RX+)1

as defined in Definition 3.1.2 with this little modification: we assume that E ⊆
L×G×(X)× 2X ×L and Inv : L→ G×(X) where G×(X) ⊆ G(X) is the subset of
guards over X defined as follows: any finite conjunction of expressions of the form
x ∼ c with x ∈ X, c ∈ N and ∼ ∈ {<,≥, >}. This restriction is made in order
to avoid some technicalities. We recall that there is a transition system TA =
(Q,R+ ×E,→) associated with A and we refer to Chapter 3 for the probability
distribution ProbAq defined over the set of infinite runs (Runs(A, q),ΩAq).

We also need another hypothesis for the probability distributions over the
edges: we need that for each edge e and each state q, the function pq+•(e) :
R+ → [0, 1] that assigns to each t ≥ 0 the value pq+t(e), is measurable. We write
this condition (?). 2 This condition is needed for technical results of Section 9.3.

We finally remind that for each state q ∈ Q, and each edge e ∈ E, I(q, e) =

{t ∈ R+ | ν + t |= Inv(l) and ∃q′ ∈ Q s.t. q
t,e−→ q′} and I(q) =

⋃
e∈E I(q, e). One

can then easily show this technical lemma.

Lemma 9.1.1. Let A be a STA. Then for each state q of A, I(q) is either the
empty set or a finite disjoint union of open intervals or intervals of the form [a, b[
with a, b ∈ R+.

As already briefly argued in Remark 3.1.1, this is proven thanks to the form
of the guards in G×(X). This lemma will prove to be useful in the sequel.

We recall also that it is assumed that the underlying timed automaton is
non-blocking, i.e. I(q) 6= ∅ for any state q. Moreover, we assume here that all
STA considered satisfy hypothesis (‡) of page 65: writing Λ for the Lebesgue
measure, for each state q, if Λ(I(q)) > 0 then µq is equivalent to the restriction
of Λ on I(q).

We are now ready to tackle the definition of the parallel composition in

STA. We consider two STA Ai = (Li, Xi, Ei, Invi,APi,Li, (µ(i)
q , p

(i)
q)

q∈Li×R
Xi
+

) for

i = 1, 2 with X1 ∩X2 = ∅, and we first recall the standard (interleaving) parallel
composition for the underlying timed automaton (see Definition 2.1.29). It is
the timed automaton (L,X,E, Inv,AP,L) where L = L1 × L2, X = X1 ∪ X2,

1The labelling over the edges with actions is not required here.
2It should be noted that if STA A satisfies hypothesis (H2) of page 70, then A satisfies (?).

9.1 – Definition of the parallel composition 177

Inv : L→ G×(X) is such that Inv((l1, l2)) = Inv1(l1)∧Inv2(l2), AP = AP1∪AP2, L :
L→ 2AP is such that L((l1, l2)) = L1(l1)∪L2(l2) and where E = E1,•∪E•,2 with
E1,• = {((l1, l2), g, Y, (l′1, l2)) | (l1, g, Y, l

′
1) ∈ E1, l2 ∈ L2}. Note that with this

timed automaton, the following transition system is associated: (Q,R+ ×E,→)
defined as in Definition 2.1.11, where Q = Q1 × Q2 with Q1 = L1 × RX1

+ is the

set of states of A1 and Q2 = L2 × RX2
+ is the set of states of A2.

Back to the STA, the parallel composition A1 ‖ A2 has as underlying timed
automaton the interleaving product of both underlying timed automata of A1

and A2; it remains to equip each state q = (q1, q2) ∈ Q with probability distri-
butions over both delays and edges, with the following constraints:

• distributions over delays from state (q1, q2) should reflect a race between
the two components A1 and A2 from respectively states q1 and q2 (just like
in CTMCs in Section 2.3);

• distributions over edges should be state-based (or memoryless), that is,
should not depend on how long has been waited before taking that edge,
or which other actions have been done meanwhile by other components;

• globally, the product-automaton should correspond to the interleaving of
A1 and A2, which we express as follows: given a state q = (q1, q2) ∈ Q
given a property ϕ1 that only concerns3 A1 and a property ϕ2 that only
concerns A2,

ProbA1‖A2
q (ϕ1 ∧ ϕ2) = ProbA1

q1 (ϕ1) · ProbA2
q2 (ϕ2).

Before tackling those items, we first introduce a class of STA that will be of
interest to us. In order to do so, we need some new notations.

LetA be a STA and let q = (l, ν) be a state ofA. SinceA is assumed to satisfy
(‡), Radon-Nikodym’s theorem ensures us the existence of a density function of
µq w.r.t. the Lebesgue measure; we write it fq. It thus holds that for each
Borel set A ⊆ R+, µq(A) =

∫
A fq(t) dt. We write Fq for the cumulative function

associated to fq, i.e. Fq : R+ → [0, 1] is such that Fq(t
′) =

∫ t′
0 fq(t) dt = µq([0, t

′])
for each t′ ∈ R+.

Now we consider some random probability space (Z, E ,Prob). For each state
q, we consider a random variable Xq with density function fq in the probability
space (Z, E ,Prob), i.e. for each Borel set A ⊆ R+, Prob(Xq ∈ A) =

∫
t∈A fq(t) dt =

µq(A).
We now define a first class of STA, called CSTA (see [BBCM16]), which is

suitable to define a parallel composition. We say that a STA A is in CSTA if:

3We will make it clearer in the sequel.

178 Chapter 9 – Interleaving Parallel Composotion in STA

(A) for every state q of A, the density function associated with µq, denoted by
fq, is continuous everywhere on R+ except in a finite number of points,
and

(B) the family of probability distributions (µq)q∈Q is weakly-memoryless, i.e.
for every t, t′ ≥ 0, Prob(Xq ≥ t+ t′ | Xq ≥ t) = Prob(Xq+t ≥ t′).

This second condition is a consistency condition between states which belong
to the same ‘time-elapsing fiber’, that is, sets of the form F = {q + t | t ∈
R and q + t ∈ Q}. Indeed, Xq (resp. Xq+t) represents the delay after which
state q (resp. q + t) is left via an edge. Hence if q0 is the minimal (for time-
elapsing) element of F , then for every q = q0 + t ∈ F , the law of Xq has to be
equal to the law of Xq0 conditioned by the fact that t time units have already
passed. An arbitrary distribution can be taken in q0 (satisfying condition (A)),
and distributions for q ∈ F can then be inferred.

Remark 9.1.2. Conditions above are not very restrictive, since they only impose
to fix a law satisfying (A) at each initial element of a fiber, and since condition
(A) is met by a large class of distributions. Let q0 be an initial element of a
fiber, we can check that for instance,

• if I(q0) is a bounded subset of R+ and if µq0 is a uniform distribution over
I(q0), then for every t ∈ R+, (B) imposes that µq0+t is also uniform over
I(q0 + t);

• similarly, if I(q0) = R+, and if µq0 is an exponential distribution with
parameter λ (denoted Exp(λ)), then for every t ∈ R+, (B) imposes that
µq0+t is also an Exp(λ)-distribution. This corresponds to the classical
memoryless property satisfied in CTMCs (see Section 2.3).

We will illustrate this in Example 9.1.5.

Under condition (A), we have a useful characterisation of condition (B).

Lemma 9.1.3. The probability distribution µq is weakly-memoryless iff for every
t, t′ ≥ 0,

fq(t+ t′) = (1− Fq(t))fq+t(t′) (9.1)

except in a finite number of points.

Proof. First, it should be noted that Prob(Xq ≥ t) = 0 iff I(q + t) = ∅. This
comes from Lemma 9.1.1. In that case, it is thus not possible to leave state q
after t+t′ time units for each t′ ≥ 0, so that such t does not have to be considered

9.1 – Definition of the parallel composition 179

since it leads to blocking-states (and we assume that there is no blocking-state).
Now let t ≥ 0 be such that Prob(Xq ≥ t) > 0. Then,

Prob(Xq ≥ t+ t′ | Xq ≥ t) = Prob(Xq+t ≥ t′)

⇐⇒ Prob(Xq ≥ t+ t′,Xq ≥ t)
Prob(Xq ≥ t)

= Prob(Xq+t ≥ t′)

⇐⇒ (1− Fq(t+ t′)) = (1− Fq(t))(1− Fq+t(t′)) (9.2)

⇐⇒ ∂t′(1− Fq(t+ t′)) = ∂t′
Ä
(1− Fq(t))(1− Fq+t(t′))

ä
⇐⇒ fq(t+ t′) = (1− Fq(t))fq+t(t′)

for every t′ ≥ 0 in which fq+t(t
′) and fq(t + t′) are continuous, i.e. everywhere

except in a finite number of points from (A).

Remark 9.1.4. Note that since fq and fq+t are density functions, we can assume
w.l.o.g. that (9.1) holds for every t and t′ ≥ 0.

We now show that uniform and exponential distributions are family of dis-
tributions that satisfy conditions (A) and (B).

Example 9.1.5. We fix some STA A and some state q. Firstly, we assume that
I(q) = [0, a[for some a > 0 and that µq is the uniform distribution U([0, a[); i.e.
its density function is given by

fq(t) =
1

a
1[0,a[(t)

for any t ≥ 0. Obviously, fq satisfies condition (A). We now prove that condition
(B) ensures that for each t ∈ [0, a[, µq+t is the uniform distribution over I(q +
t) = [0, a − t[. We use the characterisation of Lemma 9.1.3. Observe that the
cumulative function Fq is given by

Fq(t) =
t′

a
1[0,a[(t) + 1[a,∞[(t)

for any t ≥ 0. We fix t ∈ [0, a[. Characterisation (9.1) states that for any t′ ≥ 0,

fq+t(t
′) =

fq(t+ t′)

1− Fq(t)
.

Note that 1− Fq(t) 6= 0 since t ∈ [0, a[. We thus get that for any t′ ≥ 0,

fq+t(t
′) =

fq(t+ t′)

1− Fq(t)
=

1
a1[0,a[(t+ t′)

1− t
a

=
1
a1[0,a−t[(t

′)
a−t
a

=
1

a− t
1[0,a−t[(t

′)

180 Chapter 9 – Interleaving Parallel Composotion in STA

which proves that µq+t is the uniform distribution over I(q + t).
We now suppose that I(q) = R+ and that µq is the exponential distribution

of parameter α > 0 Exp(α), i.e. its density function is given by

fq(t) = αe−αt

for any t ≥ 0. Obviously, fq satisfies condition (A). We now prove that condition
(B) ensures that for each t ∈ R+, µq+t is the same exponential distribution.
We again use the characterisation of Lemma 9.1.3. Observe that the cumulative
function Fq is given by

Fq(t) = (1− e−αt)

for any t ≥ 0 and thus
1− Fq(t) = e−αt

for any t ≥ 0. We fix t ∈ R+, we still have I(q+ t) = R+. Characterisation (9.1)
states that for any t′ ≥ 0,

fq+t(t
′) =

fq(t+ t′)

1− Fq(t)
=
αe−α(t+t′)

e−αt
= αe−αt

′

which proves that µq+t is the exponential distribution Exp(α).

Remark 9.1.6. Example 9.1.5 shows thus that any family of distributions that
contains a uniform distribution for state q but some arbitrary other distribution
for some state q+t, does not satisfy condition (B). The same holds true for expo-
nential distributions. For the latter case, we will illustrate it in Example 9.1.13
and we will show that it yields some undesirable properties.

We can now explain how to build the probability distributions associated with
a state q = (q1, q2) of A1 ‖ A2. Firstly, recall that Xq1 (resp. Xq2) represents the
delay after which state q1 (resp. q2) is left via an edge for any states q1 ∈ Q1 and
q2 ∈ Q2. Since we want to define here an interleaving operator, we may assume
that A1 and A2 run independently. Hence for each state q1 ∈ Q1 and each state
q2 ∈ Q2 we may assume that the random variables Xq1 and Xq2 are independent
(the time to leave state q1 does not depend on the time to leave state q2).

Now fix a state q = (q1, q2) ∈ Q = Q1 ×Q2 of A1 ‖ A2. We have to choose a
probability distribution µq over the delays and a probability distribution pq over
the set of enabled edges in q.

Since state (q1, q2) is left as soon as q1 or q2 are left, we naturally define
µq(A) =

∫
A fq(t) dt for each Borel set A, where fq is the density function of the

random-variable min(Xq1 ,Xq2): as Xq1 (resp. Xq2) corresponds to the time after
which state q1 (resp. q2) is left in A1 (resp. A2), min(Xq1 ,Xq2) corresponds to

9.1 – Definition of the parallel composition 181

the time after which state q is left in A1 ‖ A2. Under hypothesis (A) for fq1 and
fq2 , one can show that fq(t) = fq1(t)(1−Fq2(t))+fq2(t)(1−Fq1(t)) almost-surely
for every t ≥ 0 (w.r.t. the Lebesgue measure). This comes from the equality
1− Fq(t) = Prob(min(Xq1 ,Xq2) ≥ t), from the independence of Xq1 and Xq2 and
from a derivative computation.

Lemma 9.1.7. It holds that min(Xq1 ,Xq2) is a random variable of density func-
tion fq defined by fq(t) = fq1(t)(1− Fq2(t)) + fq2(t)(1− Fq1(t)) for almost every
t ≥ 0.

Proof. Let fq be the density function of the random variable min(Xq1 ,Xq2).
Then, it holds that the cumulative function of min(Xq1 ,Xq2) is defined by Fq(t) =
Prob

Ä
min(Xq1 ,Xq2) ≤ t

ä
for every t ≥ 0, and we therefore get that 1 − Fq(t) =

Prob
Ä

min(Xq1 ,Xq2) ≥ t
ä

for every t ≥ 0. Now, since

Prob
Ä

min(Xq1 ,Xq2) ≥ t
ä

= Prob
Ä
{Xq1 ≥ t} ∩ {Xq2 ≥ t}

ä
= Prob(Xq1 ≥ t)Prob(Xq2 ≥ t)

by independence of Xq1 and Xq2
= (1− Fq1(t))(1− Fq2(t)),

we deduce that (1−Fq(t)) = (1−Fq1(t))(1−Fq2(t)) for every t ≥ 0 and thus, when
we compute the derivative of this last equality we get that fq(t) = fq1(t)(1 −
Fq2(t)) + fq2(t)(1− Fq1(t)) for every t ≥ 0 such that fq1 and fq2 are continuous
in t, i.e. for every t ≥ 0 except a finite number of points.

In order to define the probability distribution pq over the enabled edges in q,
one could consider that from state q, both systems A1 and A2 are in a race to
win the next edge, i.e. A1 wins the race if the first edge taken from q is in E1.
Hence, given t ∈ I(q), and an edge e ∈ E1 enabled in q + t, one would like that

pq+t(e) = w1
q(t)p

(1)
q1+t(e) where w1

q(t) is the probability that, starting from q, A1

wins the race knowing that it was won after a delay of t time units. Formally,
we define w1

q(t) = limε→0 Prob
Ä
Xq1 = min(Xq1 ,Xq2) | min(Xq1 ,Xq2) ∈ [t, t + ε]

ä
for every t ≥ 0 and, still under hypothesis (A) for fq1 and fq2 , we can show that

if fq(t) 6= 0, then w1
q(t) =

fq1 (t)(1−Fq2 (t))
fq(t)

almost-surely.

Lemma 9.1.8. It holds that for every t ∈ I(q) except a finite number of points,

w1
q(t) =

fq1 (t)(1−Fq2 (t))

fq(t)
.

182 Chapter 9 – Interleaving Parallel Composotion in STA

Proof. For any t in I(q) we have that

w1
q(t) := lim

ε→0
Prob

Ä
Xq1 = min(Xq1 ,Xq2) | min(Xq1 ,Xq2) ∈ [t, t+ ε]

ä
= lim

ε→0

1
εProb

Ä
Xq1 = min(Xq1 ,Xq2) ∧min(Xq1 ,Xq2) ∈ [t, t+ ε]

ä
1
εProb

Ä
min(Xq1 ,Xq2) ∈ [t, t+ ε]

ä .

Since t ∈ I(q), from Lemma 9.1.1 we get that there is δ > 0 such that for every
ε < δ, [t, t + ε] ⊆ I(q) and thus Prob

Ä
min(Xq1 ,Xq2) ∈ [t, t + ε]

ä
6= 0. We can

thus compute w1
q(t) as follows. We have

Prob
Ä
Xq1 = min(Xq1 ,Xq2) ∧min(Xq1 ,Xq2) ∈ [t, t+ ε]

ä
= Prob

Ä
Xq1 = min(Xq1 ,Xq2) ∧ Xq1 ∈ [t, t+ ε]

ä
=

∫ t+ε

t1=t

∫ +∞

t2=t1

fq2(t2)fq1(t1) dt2 dt1

by classical results of probability theory, as Xq1 and Xq2 are independent

=

∫ t+ε

t1=t
fq1(t1)(1− Fq2(t1)) dt1 by definition of the cumulative function

(9.3)

for every t in I(q). Let us denote g(t1) = fq1(t1)(1 − Fq2(t1)) for every t1 ≥ 0.
Since fq1 and fq2 are continuous everywhere except in a finite nuber of points, it
holds that g is also continuous on R+ except in a finite number of points. Let us
assume that g is continuous in t. Then, it can be supposed that g is continuous
on [t, t+ ε] and since it is a closed interval, we have that g reaches its bounds on
[t, t+ ε]. We have∫ t+ε

t1=t
min

x∈[t,t+ε]
g(x) dt1 ≤

∫ t+ε

t1=t
g(t1) dt1 ≤

∫ t+ε

t1=t
max

x∈[t,t+ε]
g(x) dt1,

and thus,

min
x∈[t,t+ε]

g(x) ≤ 1

ε

∫ t+ε

t1=t
g(t1) dt1 ≤ max

x∈[t,t+ε]
g(x). (9.4)

Now, since g is continuous on [t, t+ ε], we have

min
x∈[t,t+ε]

g(x) −→
ε→0

g(t) and max
x∈[t,t+ε]

g(x) −→
ε→0

g(t).

From (9.3) and (9.4), we thus deduce that

1

ε
Prob

Ä
Xq1 = min(Xq1 ,Xq2) ∧min(Xq1 ,Xq2) ∈ [t, t+ ε]

ä
−→
ε→0

fq1(t)(1− Fq2(t))

(9.5)

9.1 – Definition of the parallel composition 183

almost-surely for every t ∈ I(q) (it holds for every t such that fq1 is continuous
in t). Similarly, we have that

1

ε
Prob

Ä
min(Xq1 ,Xq2) ∈ [t, t+ ε]

ä
=

1

ε

Ä
Prob(Xq1 ∈ [t, t+ ε] ∧ Xq1 ≤ Xq2) + Prob(Xq2 ∈ [t, t+ ε] ∧ Xq2 ≤ Xq1)

ä
−→
ε→0

fq1(t)(1− Fq2(t)) + fq2(t)(1− Fq1(t)) = fq(t), (9.6)

for every t ∈ I(q) such that fq1 and fq2 are continuous in t, i.e. for every t ∈ I(q)
except in a finite number of points. Finally, it should be noted that since fq is
equivalent to the restriction of the Lebesgue measure on I(q), one can assume
w.l.o.g. that fq(t) 6= 0 for each t ∈ I(q). Hence, from (9.5) and (9.6) we deduce
that

w1
q(t) =

fq1(t)(1− Fq2(t))

fq(t)

for every t in I(q) except in a finite number of points.

We now formalize the definition of the parallel composition of two STA
(see [BBCM16]).

Definition 9.1.9. Let Ai = (Li, Xi, Ei, Invi,APi,Li, (µ(i)
q , p

(i)
q)

q∈Li×R
Xi
+

) for i =

1, 2 be two STA. We say that A1 and A2 are composable if A1 and A2 are in
CSTA and X1 ∩X2 = ∅.4 In that case, we define the parallel composition of A1

and A2 as the STA A1 ‖ A2 = (L,X,E, Inv,AP,L, (µq, pq)q∈L×RX+), where for

any state q = (q1, q2) of A1 ‖ A2,

(i) (L,X,E, Inv,AP,L) is the composition of the underlying timed automata
A1 and A2,

(ii) µq is defined as follows:

∀A ∈ B(R+), µq(A) =

∫
A
fq(t) dt,

where fq(t) = fq1(t)(1− Fq2(t)) + fq2(t)(1− Fq1(t)) for every t ≥ 0, and

(iii) for any t ∈ I(q), pq+t is defined as follows:

pq+t(e) = 1E1(e)w1
q(t)p

(1)
q1+t(e) + 1E2(e)w2

q(t)p
(2)
q2+t(e)

4If this is not the case, we can rename the clocks and assume that the two sets of clocks are
disjoint.

184 Chapter 9 – Interleaving Parallel Composotion in STA

for every e ∈ E, where for any t ∈ I(q),

w1
q(t) :=

fq1(t)(1− Fq2(t))

fq(t)
and w2

q(t) :=
fq2(t)(1− Fq1(t))

fq(t)

if fq(t) 6= 0, and w1
q(t) = w2

q(t) = 0 if fq(t) = 0.

We illustrate the definition by composing two independent copies of the STA
modelling the IPv4 Zeroconf protocol (see Example 3.1.10).

Example 9.1.10. In order to illustrate the notion of composition, we composed
two independent copies of the STA modelling the IPv4 Zeroconf protocol (see
Example 3.1.10). Part of the composed STA is depicted in Figure 9.1, in which
we assume to begin from the location (IP1, IP2).

IP1,IP2

Exp(µ1+µ2)

W1,1,IP2

Exp(λ1+µ2)

IP1,W1,2

Exp(µ1+λ2)

...

W2,1,IP2

Exp(λ1+µ2)

...

W1,1,W1,2

Exp(λ1+λ2)

...

x1:=0;
µ1

µ1+µ2

x2:=0;
µ2

µ1+µ2

x1<T ;
λ1

λ1+µ2

x1>T ;
λ1

λ1+µ2

x
2 :=0; µ

2λ
1+µ

2

Figure 9.1: The product of two STA modelling the IPv4 Zeroconf

We consider two STA A1 and A2, modelling each the IPv4 Zeroconf protocol
and that run completely independently. Observe that from the computations of
Example 9.1.5, A1 and A2 are composable. We explain how we compute in A1 ‖
A2, the probability distributions over delays and edges in location (IP1, IP2). We
consider a state of the form q = (q1, q2) with q1 = (IP1, ν1) and q2 = (IP2, ν2).
We thus have that I(q1) = R+ \{T −ν1} and I(q2) = R+ \{T −ν2}. We suppose
that q1 (resp. q2) is equipped with Exp(µ1) (resp. Exp(µ2)) for the probability
over the delays and we refer to Example 9.1.5 for the density and cumulative
functions of such distributions. Then the law of the minimum between these two
probabilities is an exponential distribution of parameter µ1 + µ2, i.e. Exp(µ1 +
µ2). Indeed for any t ≥ 0:

fq(t) = fq1(t)(1− Fq2(t)) + fq2(t)(1− Fq1(t))

= µ1e
−µ1te−µ2t + µ2e

−µ2te−µ1t

= (µ1 + µ2)e−(µ1+µ2)t.

9.1 – Definition of the parallel composition 185

Now one can see that for every t ≥ 0, from q+ t, there are two enabled edges: e1

which is the only edge enabled from q1 + t in A1 and e2 which is the only edge
enabled from q2 + t in A2. Hence, one can easily compute

pq+t(e1) = w1
q(t) =

µ1

µ1 + µ2
and pq+t(e2) = w2

q(t) =
µ2

µ1 + µ2
.

The rest of the automaton can be completed in a similar way.

Remark 9.1.11. Observe that from Example 9.1.5, all STA with only uniform dis-
tributions or exponential distributions satisfying condition (B) can be composed
between them.

Remark 9.1.12. It should be observed that if A is a CTMC, then Definition 9.1.9
corresponds to the interleaving composition defined in Section 2.4.1 on page 48.
Indeed, the minimum of two exponential distributions of parameters λ1 and λ2

gives an exponential distribution of parameter λ1 +λ2 which is what we get from
the definition on 48 and from the semantics of CTMCs described in Section 2.3.

We now give an example of a family of probability measures that do not
satisfy hypothesis (B), which yields undesirable properties in the parallel com-
position.

Example 9.1.13. We consider the single-clock STA A1 depicted in Figure 9.2.

We assume µ
(1)
q1 is an exponential distribution of parameter λ1 (resp. λ2) if

q1 = (l1, ν1) with ν1 < 1 (resp. ν2 ≥ 1), and with λ1 6= λ2. Then for each

ν1 ∈ [0, 1[, µ
(1)
q1 does not satisfy hypothesis (B) (as argued in Example 9.1.5).

We assume that from l1, A1 can move to G1 if x1 < 2 or to B1 if x1 > 2, and
from there, it stays in the same location with probability 1. We then compose
A1 (using Definition 9.1.9) with the single-clock STA A2, where A2 has l2 as its
initial location from which it can move at any time to B2 where it stays with
probability 1. We equip each state of the form q2 = (l2, ν2) with an exponential
distribution of parameter λ2 over the delays. Then, assuming that we begin from
state q1 = (l1, 0) in A1 and from state q2 = (l2, 0) in A2, it can be shown that the
probability to reach B1 in A1 corresponds to the probability to reach (B1, B2) in
A1 ‖ A2 iff ln(λ1)− ln(λ2) = λ1 − λ2 which is not true in general (in particular
with λ1 = 1 and λ2 = 2). Observe that in order to have an interleaving semantic,
we want this equality to hold true in any case.

We refer to Examples 9.1.5 and 9.1.10 for some notions on exponential dis-
tributions. The product A1 ‖ A2 is depicted below. From the initial state
q = (q1, q2) = ((l1, 0), (l2, 0)), it should be noted that both clocks will always

186 Chapter 9 – Interleaving Parallel Composotion in STA

l1

A1

B1

G1

e1;x1>2

e2 ;x1<2

l2

A2

B2

(l1,l2)

(B1,l2)

(G1,l2)

(l1,B2)

(G1,B2) (B1,B2)

A1‖A2

e1;x1>2

e2;x1<2

e3

x1<
2

e1;x1>2

Figure 9.2: A1 /∈ CSTA.

have the same value since we never reset any clock to 0. Then, following Defini-
tion 9.1.9, one can see that

µ((l1,ν),(l2,ν)) =

{
Exp(λ1 + λ2) if ν < 1,

Exp(2 · λ2) otherwise

where Exp(λ) denotes the exponential distribution of parameter λ, and that for
each i ∈ {1, 2} and for every t ≥ 0,

wi((l1,ν),(l2,ν))(t) =

{
λi

λ1+λ2
if ν < 1,

1
2 otherwise.

In states of the form ((B1, ν), (l2, ν)) and ((G1, ν), (l2, ν)) we keep the distribu-
tions of (l2, ν), while in ((l1, ν), (B2, ν)) we keep the distributions of (l1, ν).

Now, one can observe that the set of runs in A1 starting in q1 that reach B1

after 2 time units is given by Cyl(π(q1, e1)), while the set of runs in A1 ‖ A2

starting in q that reach B1 is given by Cyl(π(q, e1)) ∪ Cyl(π(q, e3, e1)). Corre-
spondingly to our interleaving semantics, we would like that

ProbA1‖A2
q

Ä
Cyl(π(q, e1)) ∪ Cyl(π(q, e3, e1))

ä
= ProbA1

q1

Ä
Cyl(π(q1, e1))

ä
. (9.7)

It can easily be established that

PA1
q1

Ä
Cyl(π(q1, e1))

ä
= e−2λ1 . (9.8)

9.2 – Properties of the parallel composition 187

And we can compute

ProbA1‖A2
q

Ä
Cyl(π(q, e1)) ∪ Cyl(π(q, e3, e1))

ä
= ProbA1‖A2

q

Ä
Cyl(π(q, e1))

ä
+ ProbA1‖A2

q

Ä
Cyl(π(q, e3, e1))

ä
=

∫ ∞
2

λ1

λ1 + λ2
· (λ1 + λ2) · e−(λ1+λ2)t dt

+

∫ 1

t1=0

λ2

λ1 + λ2
· (λ1 + λ2) · e−(λ1+λ2)t1

∫ ∞
t2=2−t1

λ1 · e−λ1t2 dt2 dt1

+

∫ 2

t1=1

λ2

λ1 + λ2
· (λ1 + λ2) · e−(λ1+λ2)t1

∫ ∞
t2=2−t1

λ2 · e−λ2t2 dt2 dt1

+

∫ ∞
2

λ2

λ1 + λ2
· (λ1 + λ2) · e−(λ1+λ2)t dt

= e−2(λ1+λ2) + e−2λ1 · (1− e−λ2) +
λ2

λ1
· e−2λ2 · (e−λ1 − e−2λ1). (9.9)

Hence, from (9.8) and (9.9), we have (9.7) iff

e−2(λ1+λ2) + e−2λ1 − e−2λ1−λ2 +
λ2

λ1
· e−2λ2 · (e−λ1 − e−2λ1) = e−2λ1

⇐⇒λ2

λ1
· e−2λ2 · (e−λ1 − e−2λ1) = e−2λ1−λ2 − e−2(λ1+λ2)

⇐⇒λ2

λ1
· e−2λ2 · (e−λ1 − e−2λ1) = e−2λ2 · (e−2λ1+λ2 − e−2λ1)

⇐⇒λ2

λ1
· e−λ1 = e−2λ1+λ2

⇐⇒λ2e
−λ2 = λ1e

−λ1

⇐⇒ ln(λ1)− ln(λ2) = λ1 − λ2.

9.2. Properties of the parallel composition

We are now ready to prove that this parallel composition operator satisfies all
the expected properties, in particular that the operator is interleaving. Again,
all the results of the section can be found in [BBCM16]. In this section, we
assume that A1 and A2 are two composable STA and we assume the notations
of Definition 9.1.9. We first have this important result which states that parallel
composition is well-defined in CSTA and it is internal within the class.

188 Chapter 9 – Interleaving Parallel Composotion in STA

Lemma 9.2.1. The distributions µq and pq are well-defined, and the STA A1 ‖
A2 belongs to the class CSTA. Moreover, A1 ‖ A2 satisfies conditions (‡) and
(?).

We first need a technical result that we do not give the proof here as it has
no interest.

Lemma 9.2.2. Let g1, g2, h : R+ → R+ be measurable functions such that there
is J ⊆ R+ with Λ(J) > 0 and h almost-surely non null on J . If for every
I ∈ B(R+), ∫

t∈I
g1(t)h(t) dt =

∫
t∈I

g2(t)h(t) dt, (9.10)

then g1 = g2 almost-surely on J .

Proof of Lemma 9.2.1. We first make clear what we mean by “well-defined”. Let
A1 and A2 ∈ CSTA, in order to construct A1 ‖ A2, we have defined probability
distributions over both delays and edges from each state q of the product. It can
be easily established that µq and pq are probability distributions over the delays
and edges. For the delays, this is directly ensured from the construction of fq.
For the edges, we have to show that for each t ∈ I(q), pq+t defines a probability
distribution over the set of enabled edges. Given a state q and t ∈ I(q), we have
that5

{((l1, l2), g, Y, (l′1, l
′
2)) ∈ E | (ν1 + t, ν2 + t) |= g}

= {(l1, g, Y, l′1) ∈ E1 | ν1 + t |= g} ∪ {(l2, g, Y, l′2) ∈ E2 | ν2 + t |= g} (9.11)

where q = ((l1, l2), (ν1, ν2)), and for any t ∈ I(q),

w1
q(t) + w2

q(t) =
fq1(t)(1− Fq2(t))

fq(t)
+
fq2(t)(1− Fq1(t))

fq(t)

=
fq1(t)(1− Fq2(t)) + fq2(t)(1− Fq1(t))

fq(t)

= 1 by definition of fq(t). (9.12)

Now if t ∈ I(q1) and t /∈ I(q2), then w2
q(t) = 0 and thus w1

q(t) = 1 from (9.12).
Thus, ∑

e∈E
pq+t(e) =

∑
e∈E1

p
(1)
q1+t(e) = 1,

since p
(1)
q1+t is a probability distribution over the set of (enabled) edges in E1, and

thus pq+t is a probability distribution over E. Similarly we have, if t /∈ I(q1) and

5Recall the abusive correspondence between E1 (resp. E2) and E1,• (resp. E•,2).

9.2 – Properties of the parallel composition 189

t ∈ I(q2), that
∑
e∈E pq+t(e) = 1 and thus pq+t is a probability distribution over

E. Now, if t ∈ I(q1) ∩ I(q2), then from (9.11) and (9.12), we have that∑
e∈E

pq+t(e) =
∑
e∈E1

pq+t(e) +
∑
e∈E2

pq+t(e)

= w1
q(t)

∑
e∈E1

p
(1)
q1+t(e) + w2

q(t)
∑
e∈E2

p
(2)
q2+t(e)

= w1
q(t) + w2

q(t) = 1.

Hence, for any t ∈ I(q), pq+t is a probability distribution over the set of enabled
edges in q + t.

Now, for the delays we have defined µq for each state q separately so that
no problems could be encountered. However for the edges, from each state q we
have defined the probability pq+t for each t ≥ 0. Hence, A1 ‖ A2 is well-defined
only if for each state q and for each t, t′ ≥ 0, pq+(t+t′) = p(q+t)+t′ . This equality
holds if wiq(t + t′) = wiq+t(t

′) for any t, t′ ≥ 0 and for any i ∈ {1, 2}, which is
ensured thanks to hypothesis (B). Indeed, we have

w1
q(t+ t′) = w1

q+t(t
′)

⇐⇒ fq1(t+ t′)(1− Fq2(t+ t′))

fq(t+ t′)
=
fq1+t(t

′)(1− Fq+t(t′))
fq+t(t′)

⇐⇒ fq1(t+ t′)(1− Fq2(t+ t′))fq2+t(t
′)(1− Fq1+t(t

′))

= fq2(t+ t′)(1− Fq1(t+ t′))fq1+t(t
′)(1− Fq+t(t′)).

We show that for each i = 1, 2, and for each t and t′ ≥ 0, fqi(t+t
′)(1−Fqi+t(t′)) =

fqi+t(t
′)(1−Fqi(t+ t′)). Let t, t′ ≥ 0, from the equivalences in (9.2) we have that

fqi(t+ t′) = (1− Fqi(t))fqi+t(t′)
⇐⇒ (1− Fqi(t+ t′)) = (1− Fqi(t))(1− Fqi+t(t′)). (9.2)

First, let us notice that if (1 − Fqi+t(t′)) = 0, then (1 − Fqi(t + t′)) = 0 from
the last equivalence and since Ai ∈ CSTA. Thus fqi(t + t′)(1 − Fqi+t(t

′)) =
fqi+t(t

′)(1−Fqi(t+t′)). Now if (1−Fqi+t(t′)) 6= 0, under hypothesis (B) and (9.2),
we have that

fqi(t+ t′)(1− Fqi+t(t′)) = fqi+t(t
′)(1− Fqi(t+ t′))

⇐⇒ fqi(t+ t′) = fqi+t(t
′)

(1− Fqi(t+ t′))

(1− Fqi+t(t′))
⇐⇒ fqi(t+ t′) = (1− Fqi(t))fqi+t(t′)

190 Chapter 9 – Interleaving Parallel Composotion in STA

which is true. We conclude that w1
q(t + t′) = w1

q+t(t
′) for every t and t′ ≥ 0,

which ensures us that pq is well-defined.

We prove now that A1 ‖ A2 ∈ CSTA: we need to show that for each state q
of the product, fq satisfies hypotheses (A) and (B). Let q be a state of A1 ‖ A2.
Point (A) is easily established since fq1 and fq2 satisfy this point and since Fq1
and Fq2 are continuous. Now let t, t′ ≥ 0, from (9.2), we have that

fq(t+ t′) = (1− Fq(t))fq+t(t′)
⇐⇒ (1− Fq(t+ t′)) = (1− Fq(t))(1− Fq+t(t′)).

Now by recalling that (1 − Fq(t + t′)) = Prob({Xq1 ≥ t + t′} ∩ {Xq2 ≥ t + t′})
with Xq1 and Xq2 independent, we can compute (1− Fq(t+ t′)) as follows:

(1− Fq(t+ t′)) = (1− Fq1(t+ t′))(1− Fq2(t+ t′))

= (1− Fq1(t))(1− Fq1+t(t
′))(1− Fq2(t))(1− Fq+t(t′))

by hypotheses over A1 and A2

=
Ä
(1− Fq1(t))(1− Fq2(t))

äÄ
(1− Fq1+t(t

′))(1− Fq+t(t′))
ä

= (1− Fq(t))(1− Fq+t(t′))

which is what we want.

It remains to show that A1 ‖ A2 satisfies hypotheses (‡) and (?). Condition
(?) is trivial: it requires to check that for each e ∈ E, pq+•(e) is measurable

which is the case since p
(1)
q1+•(e1) (resp. p

(2)
q2+•(e2)) is measurable for each e1 ∈ E1

(resp. e2 ∈ E2) and since w1
q and w2

q are continuous on R+ except in a finite
number of points (and thus measurable).

The satisfaction of condition (‡) is a little more tricky. It comes from the
fact that I((q1, q2)) = (I(q1) ∩ IInv(q2)) ∪ (I(q2) ∩ IInv(q1)) where IInv(qi) = {t ∈
R+ | νi + t |= Inv(li)} with qi = (li, νi) and from the fact that no blocking states
are allowed in the model so that for each t ∈ I(qi), I(qi + t) 6= ∅.

Fix a state q = (q1, q2). First observe that thanks to similar arguments as for
Lemma 9.1.1 and Remark 3.1.1, it holds that there is ci > 0 such that for each
i = 1, 2, IInv(qi) = [0, ci[(0 ∈ IInv(qi) since qi is a state). Secondly, it holds that
for each i, (1−Fqi(t)) > 0 if and only if t ∈ IInv(qi): from Lemma 9.1.1 and from
(‡), (1− Fqi(t)) > 0 if and only if there are t2 > t1 ≥ t such that [t1, t2[⊆ I(qi)
and observe also that I(qi) ⊆ IInv(qi). Since IInv(qi) = [0, ci[, we get there are
t2 > t1 ≥ t such that [t1, t2[⊆ IInv(qi) if and only if t ∈ IInv(qi).

We have to show that for each A ∈ B(R+), µq(A) = 0 if and only if Λ(A ∩
I(q)) = 0. Fix A ∈ B(R+). The fact that Λ(A ∩ I(q)) = 0 implies µq(A) = 0

9.2 – Properties of the parallel composition 191

is trivial from the definition of µq. Now for the other implication, assume that
µq(A) = 0, we want to show that Λ(A ∩ I(q)) = 0. We will show that

Λ(A ∩ I(q1) ∩ IInv(q2)) + Λ(A ∩ I(q2) ∩ IInv(q1)) = 0,

or equivalently that Λ(A ∩ I(q1) ∩ IInv(q2)) = 0 and Λ(A ∩ I(q2) ∩ IInv(q1)) = 0.

W.l.o.g. and towards a contradiction, assume that Λ(A∩I(q1)∩IInv(q2)) > 0.
It holds from the hypothesis that

µq(A) =

∫
t∈A

fq1(t)(1− Fq2(t)) dt+

∫
t∈A

fq2(t)(1− Fq1(t)) dt = 0

and in particular, ∫
t∈A

fq1(t)(1− Fq2(t)) dt = 0.

Observe that∫
t∈A

fq1(t)(1− Fq2(t)) dt =

∫
t∈A∩I(q1)∩IInv(q2)

fq1(t)(1− Fq2(t)) dt

from the previous observations for (1 − Fqi) and from the fact that µ
(1)
q1 is a

distribution over I(q1). Hence from Lemma 9.2.2 with J = A ∩ I(q1) ∩ IInv(q2),
g1 = fq1 , g2 = 0 and h = (1 − Fq2), we get that fq1 = 0 almost-surely on

A∩ I(q1)∩ IInv(q2) and thus µ
(1)
q1 (A∩ IInv(q2)) = 0 which is a contradiction with

Λ((A∩ IInv(q2))∩ I(q1)) > 0 since A1 satisfies (‡). This concludes the proof.

We now make some technical observations that should be pointed out before
going further into the section.

Remark 9.2.3. Allowing equalities or the inequality “≤” in the guards would
lead to major technicalities. Indeed, assume that Xq1 is a uniform distribu-
tion over [0, 2[and Xq2 is a discrete distribution that charges only 1 (that is
Prob(Xq2 = 1) = 1, and Xq2 does not admit a density function), with Xq1 and
Xq2 independent. Then, one can easily compute Prob(min(Xq1 ,Xq2) ≥ t) = 1− t

2
if t ≤ 1, and 0 otherwise, which corresponds to the distribution assigning prob-
ability 1

2 to {1} and 1
2 to [0, 1[. This is a distribution that is neither discrete,

nor continuous and which does not admit a density function and moreover, that
does not satisfy hypothesis (‡). Hence allowing equalities in constraints would
significantly complicate the proofs, this is why we restrict to open guards in this
paper.

192 Chapter 9 – Interleaving Parallel Composotion in STA

Remark 9.2.4. It should be noted that this parallel composition is, in some sense,
commutative. Indeed, if we compare A1 ‖ A2 and A2 ‖ A1, both automata will
generate the same executions except that the states visited are in Q1×Q2 in the
first case and in Q2 ×Q1 in the second case.

Also, Definition 9.1.9 can be extended to the composition of n stochastic
timed automata. Let A1, . . . ,An be n composable stochastic timed automata.
Then, if we keep the same notations as before, we define A1 ‖ . . . ‖ An by letting

fq(t) =
n∑
i=1

fqi(t)
∏
j 6=i

(1− Fqj (t))

and

wiq(t) =
fqi(t)

∏
j 6=i(1− Fqj (t))
fq(t)

if fq(t) 6= 0 and wiq(t) = 0 otherwise, for any q = ((l1, . . . , ln), (ν1, . . . , νn)) with
λ(I(qi)) > 0 for each i ∈ {1, . . . , n}, for any t ≥ 0 and for any i ∈ {1, . . . , n}.

It remains to identify when the parallel composition really coincides with
an interleaving semantics. This is in general not true, as already shown in Ex-
ample 9.1.13 (which does not satisfy Condition (B)), and witnessed further by
Example 9.2.5 below (which satisfies both conditions (A) and (B)).

Example 9.2.5. We consider the STA A1 and A2 of Figure 9.3, equipped resp.
with an Exp(λ)-distribution and a uniform distribution. Let q = (q1, q2) be a
state of A1 ‖ A2, with qi = (li, 0). One can easily check that ProbA1‖A2

q (q →∗ e1−→
) = 06 while ProbA1

q1 (Cyl(π(q1, e1))) = 1 which contradicts the independence
property we expect. One can notice that A2 is Zeno with probability 1 (see
Sections 2.1.2 and Section 3.1 (page 64)).

l1

A1

l2

A2

e1, x1 > 2 e2, x2 < 1

Figure 9.3: A2 is Zeno

Hence we define a subclass CSTA∗ of CSTA; A ∈ CSTA will be in CSTA∗ if:

(C) A is almost-surely non-Zeno.

6q →∗ e1−→ is a notation for the set of runs starting in q that will eventually take edge e1.

9.2 – Properties of the parallel composition 193

Remark 9.2.6. Hypothesis (C) is not too restrictive since Zeno runs can be seen
as faulty behaviours as already argued in Section 2.1.2: they perform infinitely
many actions in a finite amount of time, which is not realistic. We will see that
hypothesis (C) is sufficient (together with (A) and (B)) to show that the parallel
composition really coincides with an interleaving semantics. Note that condition
(C) can be decided in various subclasses of STA [BBB+14], in particular the ones
identified in Sections 7.2 and 7.3. For reactive STA, it is moreover shown that
they are all almost-surely non-Zeno.

We give some more notations. Let A be a STA and let ϕ be a property for
A. Given a state q, we say that ϕ is measurable from q if the set of runs starting
from q satisfying ϕ is in Ωq

A
7; we write this set {q |= ϕ} and recovering similar

notations as in Chapter 4, we write ProbAq (ϕ) for the probability of this set. Now
let A1 and A2 be two composable STA. We write ι1 (resp. ι2) for the natural
projection of Runs(A1 ‖ A2, q) onto Runs(A1, q1) (resp. Runs(A2, q2)) for each

state q = (q1, q2) ∈ Q1 ×Q2: we inductively define ι1(q) = q1, ι1(q
t1,e1−−→ q(1)) =

q1
t1,e1−−→ q

(1)
1 if e1 ∈ E1; ι1(q

t1,e1−−→ q(1) t2,e2−−→ q(2)) = q1
t1+t2,e2−−−−−→ q

(2)
1 if e1 ∈ E2

and e2 ∈ E1, ... For each i = 1, 2, given a measurable property ϕi in Ai from
qi, we write {(q1, q2) |= ϕ̃i} for the set ι−1

i ({qi |= ϕi}). The following theorem
states that the defined parallel composition is indeed interleaving.

Theorem 9.2.7. Let A1,A2 ∈ CSTA∗ be composable. Then A1 ‖ A2 ∈ CSTA∗.
Moreover, for every state q = (q1, q2) of A1 ‖ A2, for every properties ϕ1 mea-
surable in A1 from q1 and ϕ2 measurable in A2 from q2, we have

ProbA1‖A2
q (ϕ̃1 ∧ ϕ̃2) = ProbA1

q1 (ϕ1) · ProbA2
q2 (ϕ2). (9.13)

Proof. Given A1 and A2 ∈ CSTA∗, thanks to Lemma 9.2.1, in order to get that
A1 ‖ A2 ∈ CSTA∗, it suffices to prove that A1 ‖ A2 is almost-surely non-Zeno.
This will be ensured by (9.13). We thus first tackle the proof of (9.13).

Let q = (q1, q2) = ((l1, ν1), (l2, ν2)) be a state of A1 ‖ A2. The important
first step to prove (9.13) consists in showing that, given an edge e1 of A1, the
probability in A1 ‖ A2 that e1 is the first edge performed from q = (q1, q2) in
a given set of delays C corresponds to the probability in A1 that e1 is the first
edge performed from q1 in the same set of delays C, that is for every Borel set C
of R+,

ProbA1‖A2
q (Cyl(πC∗(q,A∗2, e1))) = ProbA1

q1 (Cyl(πC(q1, e1))) (9.14)

7Observe that in particular the grammar defined in Section 4.1.1 and DMA like in Sec-
tion 4.1.2, give rise to measurable properties as quickly discussed in Remark 7.1.1.

194 Chapter 9 – Interleaving Parallel Composotion in STA

where Cyl(πC∗(q,A∗2, e1)) = ι−1
1 (Cyl(πC(q1, e1))). Formally, we have that

Cyl(πC∗(q,A∗2, e1)) =
⋃
n∈N

⋃
(f1,...,fn)∈En2

Cyl(πCn(q, f1, . . . , fn, e1))

where Cn = {(τ1, . . . , τn+1) ∈ Rn+1
+ | τ1 + . . .+ τn+1 ∈ C} for every n ∈ N, which

is a countable union of disjoint cylinders. In order to show (9.14), hypothesis
(B) is crucial. Indeed, if for instance e1 ∈ E1 and e2 ∈ E2, then the projection

of q
τ1,e2−−→ · τ2,e1−−→ q′ in A1 is q1

τ1→ q1 + τ1
τ2,e1−−→ q′1 which is equivalent to

q1
τ1+τ2,e1−−−−−→ q′1: the first movement q

τ1,e2−−→ · is in A2 and has no impact over A1,
except the elapse of τ1 time units. Hypothesis (B) ensures that the probability
in A1 to leave q1 after τ1 + τ2 time units knowing that we leave it after at least
τ1 time units coincides with the probability to leave q1 + τ1 after τ2 time units.
It is formalized in the next proposition (see [BBCM16]).

Proposition 9.2.8. Assuming the above notations, for every e1 ∈ E1 and for
every Borel set C of R+, we have that

ProbA1‖A2
q (Cyl(πC∗(q,A∗2, e1))) = ProbA1

q1 (Cyl(πC(q1, e1))). (9.14)

Proof. We first assume that C = R+. We have to show that for every e1 ∈ E1,∑
n≥0

pn(q) = ProbA1
q1 (Cyl(π(q1, e1))) (9.15)

where pn(q) is the probability of the set of infinite runs in A1 ‖ A2 that start
in q and that first perform n switch-transitions in E2 and then choose e1 as the
first edge of E1, i.e.

pn(q) = ProbA1‖A2
q

(⋃
(f1,...,fn)∈En2

Cyl(π(q, f1, . . . , fn, e1))

)
.

In order to prove (9.15), we first show that for each n ≥ 0,

n−1∑
i=0

pi(q) + p′n(q) = ProbA1
q1 (Cyl(π(q1, e1))),

where p′n(q) is the probability of the set of infinite runs in A1 ‖ A2 that start in q
and that first perform n switch-transitions in E2 and then choose e1 as the first
edge of E1, knowing that the n+ 1th transition is won with probability 1 by A1.
This is proved in Lemma 9.2.11. The key point of this result lies in the fact that
pn(q) corresponds to the probability that A1 chooses first e1, A2 performs its n

9.2 – Properties of the parallel composition 195

first transitions before A1 performs e1 and its n+ 1th transition must be taken
after e1, while p′n(q) corresponds to the probability that A1 chooses first e1 and
A2 performs its n first transitions before A1. It is formalized in Lemma 9.2.9
and 9.2.10. These lemmas will lead to the fact that pn(q) + p′n+1(q) = p′n(q) for
every n ≥ 0. We then show that p′n(q) −→

n→+∞
0 which will conclude the proof of

Proposition 9.2.8.

In the sequel, we keep the same notations as before for the density and cumu-

lative functions of the probability measures µ
(i)
qi , and we refer to Definition 9.1.9

for the probability measures considered in the automaton A1 ‖ A2. Note that
given a state q′ of A1 ‖ A2, we will sometimes write fq′,i instead of fq′i (when
this latter notation will appear to be too heavy). Given a state q of A1 ‖ A2,
given an edge e ∈ E1 and an edge f ∈ E2, we abusively write I(q, e) for I(q1, e)
and I(q, f) for I(q2, f). Let us recall that given edges f1, . . . , fn we write qt1...tn
for the state such that

q
t1,f1−−→ · t2,f2−−→ . . .

tn,fn−−→ qt1...tn

(see Section 3.1). Let us notice that if f1, . . . , fn are all in E2 then the projection
of qt1...tn in A1 is given by q1 + t1 + . . .+ tn.

Lemma 9.2.9. Assuming the above notations, for every n ≥ 0, we have

pn(q) =
∑

(f1,...,fn)∈En2

∫
t∈I(q,e1)

fq1(t)p
(1)
q1+t(e1)

∫ t

t1=0
fq2(t1)p

(2)
q2+t1(f1)1I(q,f1)(t1)

∫ t−t1

t2=0
fqt1 ,2(t2)p

(2)
qt1+t2(f2)1I(qt1 ,f2)(t2) . . .∫ t−t1...−tn−1

tn=0
fqt1...tn−1 ,2

(tn)p
(2)
qt1...tn−1+tn(fn)1I(qt1...tn−1 ,fn)(tn)Ä

1− Fqt1...tn ,2(t− t1 − . . .− tn)
ä

dtn . . . dt2 dt1 dt.

(9.16)

Proof. We prove the lemma by induction over n. If n = 0, then we have from

196 Chapter 9 – Interleaving Parallel Composotion in STA

Definition 9.1.9

p0(q) = ProbA1‖A2
q (Cyl(π(q, e1)))

=

∫
t∈I(q,e1)

fq(t)pq+t(e1) dt

=

∫
t∈I(q,e1)

fq(t)w
1
q(t)p

(1)
q1+t(e1) dt

=

∫
t∈I(q,e1)

fq(t)
fq1(t)(1− Fq2(t))

fq(t)
p

(1)
q1+t(e1) dt

=

∫
t∈I(q,e1)

fq1(t)p
(1)
q1+t(e1)(1− Fq2(t)) dt,

and thus equality (9.16) is satisfied for n = 0 , for every state q of A1 ‖ A2. Now,
let n ≥ 0 and let us assume that (9.16) is verified for every state q of A1 ‖ A2

and for every 0 ≤ k ≤ n. We now show that it is still the case for k = n+ 1. Let
q be a state of A1 ‖ A2, we have

pn+1(q) = ProbA1‖A2
q

(⋃
(f1,...,fn+1)∈En+1

2

Cyl(π(q, f1, . . . , fn+1, e1))

)

and thus, since Cyl(π(q, f1, . . . , fn+1, e1))∩Cyl(π(q, f ′1, . . . , f
′
n+1, e1)) = ∅ when-

ever (f1, . . . , fn+1) 6= (f ′1, . . . , f
′
n+1), we have from Definition 9.1.9 that

pn+1(q)

=
∑

(f1,...,fn+1)∈En+1
2

ProbA1‖A2
q (Cyl(π(q, f1, . . . , fn+1, e1)))

=
∑

(f1,...,fn+1)∈En+1
2

∫
t1∈I(q,f1)

fq2(t1)(1− Fq1(t1))p
(2)
q2+t1(f1)

ProbA1‖A2
q (Cyl(π(qt1 , f2, . . . , fn+1, e1))) dt1.

Now, since the value fq2(t1)(1− Fq1(t1))p
(2)
q2+t1(f1) only depends on f1 and since

E2 is a finite set, we have

pn+1(q) =
∑
f1∈E2

∫
t1∈I(q,f1)

fq2(t1)(1− Fq1(t1))p
(2)
q2+t1(f1)·

(∑
(f2,...,fn+1)∈En2

ProbA1‖A2
q (Cyl(π(qt1 , f2, . . . , fn+1, e1)))

)
dt1

=
∑
f1∈E2

∫
t1∈I(q,f1)

fq2(t1)(1− Fq1(t1))p
(2)
q2+t1(f1)pn(qt1) dt1.

9.2 – Properties of the parallel composition 197

Now from the hypothesis of induction we can compute pn(qt1) with (9.16), and
thus

pn+1(q) =
∑

(f1,...,fn+1)∈En+1
2

∫
t1∈I(q,f1)

fq2(t1)(1− Fq1(t1))p
(2)
q2+t1(f1)

∫
u∈I(q+t1,e1)

fq1+t1(u)p
(1)
q+t1+u(e1)

∫ u

t2=0
fqt1 ,2(t2)p

(2)
qt1+t2(f2)1I(qt1 ,f2)(t2)∫ u−t2

t3=0
fqt1t2 ,2(t3)p

(2)
qt1t2+t3(f3)1I(qt1t2 ,f3)(t3) . . .∫ u−t2...−tn

tn+1=0
fqt1...tn ,2(tn+1)p

(2)
qt1...tn+tn+1

(fn+1)1I(qt1...tn ,fn+1)(tn+1)Ä
1− Fqt1...tn+1 ,2

(u− t2 − . . .− tn+1)
ä

dtn+1 . . . dt3 dt2 dudt1

since the projection of qt1 in A1 is q + t1 (as qt1 is such that q
t1,f1−−→ qt1 and

f1 ∈ E2) and since E2 is a finite set. Under the hypotheses over A1 and A2, we
know that fq1+t1(u)(1 − Fq1(t1)) = fq1(u + t1). Now, if we let t = u + t1, then
u = t− t1 and we have that for every t1 ≥ 0,

u ∈ I(q + t1, e1)⇐⇒ ν1 + t1 + u |= ge1

⇐⇒ ν1 + t |= ge1 and t ≥ t1
⇐⇒ t ∈ I(q, e1) ∩ [t1,+∞[

where ge1 denotes the guard of edge e1. From classical results of integration by
substitution, we obtain that

pn+1(q) =
∑

(f1,...,fn+1)∈En+1
2

∫
t1∈I(q,f1)

fq2(t1)p
(2)
q2+t1(f1)

∫
t∈I(q,e1)

fq1(t)p
(1)
q1+t(e1)1[t1,+∞[(t)

∫ t−t1

t2=0
fqt1 ,2(t2)p

(2)
qt1+t2(f2)1I(qt1 ,f2)(t2)∫ t−t1−t2

t3=0
fqt1t2 ,2(t3)p

(2)
qt1t2+t3(f3)1I(qt1t2 ,f3)(t3) . . .∫ t−t1...−tn

tn+1=0
fqt1...tn ,2(tn+1)p

(2)
qt1...tn+tn+1

(fn+1)1I(qt1...tn ,fn+1)(tn+1)Ä
1− Fqt1...tn+1 ,2

(t− t1 − . . .− tn+1)
ä

dtn+1 . . . dt3 dt2 dtdt1.

Now using the fact that 1[t1,+∞[(t) = 1[0,t](t1) and using Fubini’s theorem, we
deduce that (9.16) is satisfied for n+ 1 which concludes the proof of the lemma.

198 Chapter 9 – Interleaving Parallel Composotion in STA

Lemma 9.2.10. Assuming the above notations, for every n ≥ 0, we have

p′n(q) =
∑

(f1,...,fn)∈En2

∫
t∈I(q,e1)

fq1(t)p
(1)
q1+t(e1)

∫ t

t1=0
fq2(t1)p

(2)
q2+t1(f1)1I(q,f1)(t1)

∫ t−t1

t2=0
fqt1 ,2(t2)p

(2)
qt1+t2(f2)1I(qt1 ,f2)(t2) . . .∫ t−t1...−tn−1

tn=0
fqt1...tn−1 ,2

(tn)p
(2)
qt1...tn−1+tn(fn)1I(qt1...tn−1 ,fn)(tn)

dtn . . . dt2 dt1 dt. (9.17)

Proof. We recall that, from the above notations, for every n ≥ 0, p′n(q) is the
probability of the set of infinite runs in A1 ‖ A2 that start in q and that first
perform n switch-transitions in E2 and then choose e1 in the case where, after
that A2 has performed n transitions, then the n + 1th transition is won with

probability 1 by A1. In other words in the case where, for every run ρ = q
t1,f1−−→

· t2,f2−−→ . . .
tn,fn−−→ qt1...tn with f1, . . . , fn ∈ E2, we have w1

qt1...tn
(t) = 1 for every

t ∈ I(qt1...tn). Now, let s be an arbitrary state of A1 ‖ A2. From Definition 9.1.9,
for every t ∈ I(s), we have

w1
s(t) = 1⇐⇒ fs1(t)(1− Fs2(t))

fs(t)
= 1

⇐⇒ fs1(t)(1− Fs2(t)) = fs1(t)(1− Fs2(t)) + fs2(t)(1− Fs1(t))

⇐⇒ fs2(t)(1− Fs1(t)) = 0.

Thus, if for every t ∈ I(s), w1
s(t) = 1 then for every t ∈ I(s), fs2(t)(1−Fs1(t)) =

0. We can then prove that fs(t) = fs1(t) almost-surely. Let us prove (9.17) when
n = 0. Let q be a state of A1 ‖ A2, we have that w1

q(t) = 1 for every t ∈ I(q).
And thus,

p′0(q) =

∫
t∈I(q,e1)

fq(t)w
1
q(t)p

(1)
q1+t(e1) dt

=

∫
t∈I(q,e1)

fq1(t)p
(1)
q1+t(e1) dt.

Hence, (9.17) holds for every state q when n = 0. We can then prove by induction
over n that if for every 0 ≤ k ≤ n with n ≥ 0, (9.17) is satisfied for every state q,
then it is still satisfied for k = n+ 1, for every state q. It uses similar arguments
as in the proof of Lemma 9.2.9. This concludes the proof.

9.2 – Properties of the parallel composition 199

Lemma 9.2.11. Assuming the above notations, for every n ≥ 0, we have

n−1∑
i=0

pi(q) + p′n(q) = ProbA1
q1 (Cyl(π(q1, e1))).

Proof. If n = 0, we have from Lemma 9.2.10 that p′0(q) = ProbA1
q1 (Cyl(π(q1, e1))).

Now, let us assume that for every 0 ≤ k ≤ n with n ≥ 0, we have

k−1∑
i=0

pi(q) + p′k(q) = ProbA1
q1 (Cyl(π(q1, e1))),

and let us prove that it is still the case when k = n + 1. First, let us compute
p′n+1(q). From Lemma 9.2.10, we have

p′n+1(q) =∑
(f1,...,fn+1)∈En+1

2

∫
t∈I(q,e1)

fq1(t)p
(1)
q1+t(e1)

∫ t

t1=0
fq2(t1)p

(2)
q2+t1(f1)1I(q,f1)(t1)

∫ t−t1

t2=0
fqt1 ,2(t2)p

(2)
qt1+t2(f2)1I(qt1 ,f2)(t2) . . .∫ t−t1...−tn−1

tn=0
fqt1...tn−1 ,2

(tn)p
(2)
qt1...tn−1+tn(fn)1I(qt1...tn−1 ,fn)(tn)∫ t−t1...−tn

tn+1=0
fqt1...tn ,2(tn+1)p

(2)
qt1...tn+tn+1

(fn+1)1I(qt1...tn ,fn+1)(tn+1)

dtn+1 dtn . . . dt2 dt1 dt.

Now, one can observe that only p
(2)
qt1...tn+tn+1

(fn+1)1I(qt1...tn ,fn+1)(tn+1) depends
on fn+1 in the last integral. Thus, since E2 is finite, we have

p′n+1(q) =∑
(f1,...,fn)∈En2

∫
t∈I(q,e1)

fq1(t)p
(1)
q1+t(e1)

∫ t

t1=0
fq2(t1)p

(2)
q2+t1(f1)1I(q,f1)(t1)

∫ t−t1

t2=0
fqt1 ,2(t2)p

(2)
qt1+t2(f2)1I(qt1 ,f2)(t2) . . .∫ t−t1...−tn−1

tn=0
fqt1...tn−1 ,2

(tn)p
(2)
qt1...tn−1+tn(fn)1I(qt1...tn−1 ,fn)(tn)

∑
fn+1∈E2

∫ t−t1...−tn

tn+1=0
fqt1...tn ,2(tn+1)p

(2)
qt1...tn+tn+1

(fn+1)1I(qt1...tn ,fn+1)(tn+1)

dtn+1 dtn . . . dt2 dt1 dt.

200 Chapter 9 – Interleaving Parallel Composotion in STA

Now, we have that

∑
fn+1∈E2

∫ t−t1...−tn

tn+1=0
fqt1...tn ,2(tn+1)p

(2)
qt1...tn+tn+1

(fn+1)1I(qt1...tn ,fn+1)(tn+1)

=

∫ t−t1...−tn

tn+1=0
fqt1...tn ,2(tn+1)∑

fn+1∈E2

Ä
p

(2)
qt1...tn+tn+1

(fn+1)1I(qt1...tn ,fn+1)(tn+1)
ä

dtn+1

=

∫ t−t1...−tn

tn+1=0
fqt1...tn ,2(tn+1)1I(qt1...tn)(tn+1)

= Fqt1...tn ,2(t− t1 − . . .− tn)

since p
(2)
qt1...tn+tn+1

is a probability measure over the enabled edges in qt1...tn +tn+1

when this set is not empty (otherwise, we assume that p
(2)
qt1...tn+tn+1

is a function

that assigns 0 to each edge of E2). We deduce thus that

p′n+1(q) =
∑

(f1,...,fn)∈En2

∫
t∈I(q,e1)

fq1(t)p
(1)
q1+t(e1)

∫ t

t1=0
fq2(t1)p

(2)
q2+t1(f1)1I(q,f1)(t1)

∫ t−t1

t2=0
fqt1 ,2(t2)p

(2)
qt1+t2(f2)1I(qt1 ,f2)(t2) . . .

. . .

∫ t−t1...−tn−1

tn=0
fqt1...tn−1 ,2

(tn)p
(2)
qt1...tn−1+tn(fn)1I(qt1...tn−1 ,fn)(tn)

Fqt1...tn ,2(t− t1 − . . .− tn) dtn . . . dt2 dt1 dt.

From this last equality and Lemmas 9.2.9 and 9.2.10, we can thus easily see that
pn(q)+p′n+1(q) = p′n(q). From this last equality and the hypothesis of induction,
we have

n∑
i=0

pi(q) + p′n+1(q) =
n−1∑
i=0

pi(q) + pn(q) + p′n+1(q)

=
n−1∑
i=0

pi(q) + p′n(q)

= ProbA1
q1 (Cyl(π(q1, e1)))

which concludes the proof.

Lemma 9.2.12. Assuming the above notations, we have that p′n(q) −→
n→+∞

0.

9.2 – Properties of the parallel composition 201

Proof. Since E2 is finite we have that

p′n(q) =

∫
t∈I(q,e1)

fq1(t)p
(1)
q1+t(e1)

∑
(f1,...,fn)∈En2

∫ t

t1=0
fq2(t1)p

(2)
q2+t1(f1)1I(q,f1)(t1)

∫ t−t1

t2=0
fqt1 ,2(t2)p

(2)
qt1+t2(f2)1I(qt1 ,f2)(t2) . . .∫ t−t1...−tn−1

tn=0
fqt1...tn−1 ,2

(tn)p
(2)
qt1...tn−1+tn(fn)1I(qt1...tn−1 ,fn)(tn)

dtn . . . dt2 dt1 dt.

We can then write p′n(q) =
∫
t∈I(q,e1) f(t)gn(t) dt, where f(t) = fq1(t)p

(1)
q1+t(e1)

and

gn(t) =
∑

(f1,...,fn)∈En2

∫ t

t1=0
fq2(t1)p

(2)
q2+t1(f1)1I(q,f1)(t1)

∫ t−t1

t2=0
fqt1 ,2(t2)p

(2)
qt1+t2(f2)1I(qt1 ,f2)(t2) . . .∫ t−t1...−tn−1

tn=0
fqt1...tn−1 ,2

(tn)p
(2)
qt1...tn−1+tn(fn)1I(qt1...tn−1 ,fn)(tn) dtn . . . dt1.

Under the hypotheses over A1 and A2 (e.g. A1,A2 ∈ CSTA∗), we know that A2

is almost-surely non-Zeno. Let t ≥ 0 and let M ∈ N such that t ≤M . From the
discussion over the set of Zeno runs in Section 3.1 on page 64, we have that

gn(t) ≤
∑

(f1,...,fn)∈En2

ProbA2
q2 (πCM,n(q, f1, . . . , fn)) −→

n→+∞
0 (9.18)

and thus, limn gn(t) = 0 for every t ≥ 0, since gn(t) ≥ 0 for every t ≥ 0. Then,
we have that limn f(t)gn(t) = 0 for every t ≥ 0. Now, from inequality (9.18), we
have that gn(t) ≤ 1 for every t ≥ 0 and thus, f(t)gn(t) ≤ f(t) for every t ≥ 0.
And since∫

t∈I(q,e1)
f(t) =

∫
t∈I(q,e1)

fq1(t)p
(1)
q1+t(e1) dt ≤

∫
R+

fq1(t) dt = 1,

we have, by dominated convergence, that

lim
n→+∞

p′n(q) = lim
n→+∞

∫
t∈I(q,e1)

f(t)gn(t) dt =

∫
t∈I(q,e1)

lim
n→+∞

(f(t)gn(t)) dt = 0

which concludes the proof.

202 Chapter 9 – Interleaving Parallel Composotion in STA

We can now prove that (9.14) holds when C = R+. We have

ProbA1‖A2
q (Cyl(π(q,A∗2, e1)))

= ProbA1‖A2
q

(⋃
n≥0

⋃
(f1,...,fn)∈En2

Cyl(π(f1, . . . , fn, e1))

)

=
∑
n≥0

pn(q) (9.19)

from the definition of pn(q). Now, from Lemma 9.2.11, we have that for every
n ≥ 0,

n∑
i=0

pi(q) + p′n+1(q) = ProbA1
q1 (Cyl(π(q1, e1)))

and thus,

lim
n→+∞

(n∑
i=0

pi(q) + p′n+1(q)
)

= ProbA1
q1 (Cyl(π(q1, e1))).

Hence, since limn p
′
n+1(q) = 0 from Lemma 9.2.12, we have

∑
n≥0 pn(q) =

ProbA1
q1 (Cyl(π(q1, e1))) and we deduce from (9.19) that

ProbA1‖A2
q (Cyl(π(q,A∗2, e1))) = ProbA1

q1 (Cyl(π(q1, e1))).

Now, we would like to get (9.14) for every Borel set C of R+. Given a Borel set
C, a reasoning similar to the ones in Lemmas 9.2.9, 9.2.10, 9.2.11 and 9.2.12 can
be applied to pn,C(q) and p′n,C(q) where

pn,C(q) = ProbA1‖A2
q

(⋃
(f1,...,fn)

Cyl(πCn(q, f1, . . . , fn, e1))

)
,

with Cn = {(t1, . . . , tn+1) ∈ Rn+1
+ | t1 + . . .+ tn+1 ∈ C}, is the probability of the

set of infinite runs in A1 ‖ A2 that start in q and that first perform n switch-
transitions in E2, then choose e1 and all these transitions are taken in a delay
that is in C, and p′n(q) is the probability of the same set in the case where, after
that A2 has performed n transitions, then the n + 1th transition is won with
probability 1 by A1. We can then prove, as in Lemmas 9.2.9 and 9.2.10, that for

9.2 – Properties of the parallel composition 203

every state q, for every Borel set C and for every n ≥ 0,

pn,C(q) =
∑

(f1,...,fn)∈En2

∫
t∈I(q,e1)

fq1(t)p
(1)
q1+t(e1)1C(t)

∫ t

t1=0
fq2(t1)p

(2)
q2+t1(f1)1I(q,f1)(t1)∫ t−t1

t2=0
fqt1 ,2(t2)p

(2)
qt1+t2(f2)1I(qt1 ,f2)(t2) . . .

. . .

∫ t−t1...−tn−1

tn=0
fqt1...tn−1 ,2

(tn)p
(2)
qt1...tn−1+tn(fn)1I(qt1...tn−1 ,fn)(tn)Ä

1− Fqt1...tn ,2(t− t1 − . . .− tn)
ä

dtn . . . dt2 dt1 dt

(9.20)

and

p′n,C(q) =
∑

(f1,...,fn)∈En2

∫
t∈I(q,e1)

fq1(t)p
(1)
q1+t(e1)1C(t)

∫ t

t1=0
fq2(t1)p

(2)
q2+t1(f1)1I(q,f1)(t1)∫ t−t1

t2=0
fqt1 ,2(t2)p

(2)
qt1+t2(f2)1I(qt1 ,f2)(t2) . . .∫ t−t1...−tn−1

tn=0
fqt1...tn−1 ,2

(tn)p
(2)
qt1...tn−1+tn(fn)1I(qt1...tn−1 ,fn)(tn)

dtn . . . dt2 dt1 dt. (9.21)

It can be proved by induction over n as in the previous lemmas, by noticing that

pn+1,C(q) =
∑
f1∈E2

∫
t1∈I(q,f1)

fq2(t1)(1− Fq1(t1))p
(2)
q2+t1(f1)pn,Ct1 (qt1) dt1 (9.22)

where Ct1 is a notation for (C − t1)∩R+ and (C − t1) = {t− t1 | t ∈ C}, which is
a Borel set. Indeed, we have that

pn+1,C(q) =
∑

(f1,...,fn+1)∈En+1
2

ProbA1‖A2
q (Cyl(πCn+1(q, f1, . . . , fn+1, e1)))

=
∑

(f1,...,fn+1)∈En+1
2

∫
t1∈I(q,f1)

fq2(t1)(1− Fq1(t1))p
(2)
q2+t1(f1)

ProbA1‖A2
q (Cyl(πCt1,n(qt1 , f2, . . . , fn+1, e1))) dt1

(9.23)

204 Chapter 9 – Interleaving Parallel Composotion in STA

where for every t1 ≥ 0, Ct1,n = {(t2, . . . , tn+2) ∈ Rn+1
+ | t1 + t2 + . . . + tn+2 ∈

C}. Since we have that for every t1 ≥ 0, (t1, . . . , tn+2) ∈ Cn+1 if and only if
(t2, . . . , tn+2) ∈ Ct1,n where Ct1,n = {(t2, . . . , tn+2) ∈ Rn+1

+ | (t1, t2, . . . , tn+2) ∈
C}, we obtain

1Cn((t1, . . . , tn+2)) = 1Ct1,n((t2, . . . , tn+2)).

In our case, we can see that Ct1,n = {(t2, . . . , tn+2) ∈ Rn+1
+ | t2 + . . . + tn+2 ∈

(C − t1)∩R+}. We thus have (9.23) and as in Lemma 9.2.9, we deduce (9.22). If
we assume by induction that for every state q and for every Borel set C, (9.20)
holds, then we have

pn+1,C(q) =
∑
f1∈E2

∫
t1∈I(q,f1)

fq2(t1)(1− Fq1(t1))p
(2)
q2+t1(f1)

∑
(f2,...,fn+1)∈En2

∫
u∈I(q+t1,e1)

fq1+t1(u)p
(1)
q+t1+u(e1)1Ct1 (u)

∫ u

t2=0
fqt1 ,2(t2)p

(2)
qt1+t2(f2)1I(qt1 ,f2)(t2)∫ u−t2

t3=0
fqt1t2 ,2(t3)p

(2)
qt1t2+t3(f3)1I(qt1t2 ,f3)(t3) . . .∫ u−t2...−tn

tn+1=0
fqt1...tn ,2(tn+1)p

(2)
qt1...tn+tn+1

(fn+1)1I(qt1...tn ,fn+1)(tn+1)

(1− Fqt1...tn+1 ,2
(u− t2 − . . .− tn+1)) dtn+1 . . . dt2 dudt1.

Now, since Ct1 = (C − t1) ∩ R+ and since u ≥ 0 for each u ∈ I(q + t1, e1), we
have that 1Ct1 (u) = 1C(t1 + u). Hence, by a substitution as in the proof of
Lemma 9.2.9 and by Fubini’s theorem, we obtain that (9.20) holds for n + 1.
Now, following the same reasoning as in Lemmas 9.2.10, 9.2.11 and 9.2.12, it is
easy to see that (9.21) holds, that for every n ≥ 0,

n−1∑
i=0

pi,C(q) + p′n,C(q) = ProbA1
q1 (Cyl(πC(q1, e1))),

that limn p
′
n,C(q) = 0 and thus that

ProbA1‖A2
q (Cyl(πC∗(q,A∗2, e1))) = ProbA1

q1 (Cyl(πC(q1, e1))),

which concludes the proof of Proposition 9.2.8.

We can extend this result to the case where the n first movements in A1 are
determined. For this, we write

Cyl(πC∗(q,A∗2, e1, . . . ,A∗2, en)) = ι−1
1 (Cyl(πC(q1, e1, . . . , en)))

9.2 – Properties of the parallel composition 205

where C is a Borel set of Rn+.

Proposition 9.2.13. Assuming the previous notations, for every n ≥ 1, for
every e1, . . . , en ∈ E1 and for every Borel set C of Rn+, we have

ProbA1‖A2
q (Cyl(πC∗(q,A∗2, e1, . . . ,A∗2, en))) = ProbA1

q1 (Cyl(πC(q1, e1, . . . , en))).

We do not give the proof here as it is similar as the proof of Proposition 9.2.8.
Now, this result can be extended to the elements of the σ-algebra:

Proposition 9.2.14. Assuming the above notations, for every property ϕ1 mea-
surable in A1 from q1, we have

ProbA1‖A2
q (ϕ̃1) = ProbA1

q1 (ϕ1).

Proof. The proof is immediate from Proposition 9.2.13 by noticing that, given a
stochastic timed automaton A, the complementary of a cylinder is a countable
union of cylinders, that the union of two cylinders Cyl(πC1(q, e1, . . . , en)) and
Cyl(πC2(q, e1, . . . , em)) with n ≤ m can be rewritten as

Cyl(πC1(q, e1, . . . , en)) ∪ Cyl(πC2\C(n)2

(q, e1, . . . , em))

where C(n)
2 = {(t1, . . . , tm) ∈ C2 | (t1, . . . , tn) ∈ C1}, which is the union of two

disjoint cylinders, and by noticing that for every sequence (An)n≥0 ⊆ Ωq
A and

for every A ∈ Ωq
A, we have

ι−1
(⋃
n≥0

An
)

=
⋃
n≥0

ι−1(An) and ι−1(Ac) = ι−1(A)c.

Similar results as Propositions 9.2.8, 9.2.13 and 9.2.14 hold when we alternate
A1 and A2. These propositions will lead to (9.13) but before getting to that, we
need an extra notion.

Definition 9.2.15. Let e1, . . . , en (resp. f1, . . . , fm) be edges of A1 (resp. A2)
and let C1 (resp. C2) be Borel sets of Rn+ (resp. Rm+). We define the shuffle of the
cylinders Cyl(πC1(q1, e1, . . . , en)) and Cyl(πC2(q2, f1, . . . , fm)) as the following set
of runs of A1 ‖ A2:

{ρ ∈ Runs(A1 ‖ A2, (q1, q2)) | ι1(ρ) ∈ Cyl(πC1(q1, e1, . . . , en))

∧ ι2(ρ) ∈ Cyl(πC2(q2, f1, . . . , fm))}.

We denote this set by Cyl(πC1(q1, e1, . . . , en)) ttCyl(πC2(q2, f1, . . . , fm)).

206 Chapter 9 – Interleaving Parallel Composotion in STA

Remark 9.2.16. The shuffle of two cylinders can be rewritten as a union of disjoint
cylinders. As a simple example, assuming the same notations of Definition 9.2.15,
we have that

Cyl(π(q1, e1, e2)) ttCyl(π(q2, f1)) = Cyl(π(q, f1,A∗2, e1,A∗2, e2))

∪ Cyl(π(q, e1, f1,A∗2, e2)) ∪ Cyl(π(q, e1, e2,A∗1, f1)).

Let us also remark that Definition 9.2.15 trivially extends to sets of the σ-algebras
ΩA1
q1 and ΩA2

q2 . Hence we can notice that, given two properties ϕ1 and ϕ2 mea-
surable in A1 and A2,

{q |= ϕ̃1} ∩ {q |= ϕ̃2} = {q1 |= ϕ1} tt{q2 |= ϕ2}.

We are now able to prove (9.13) that is

ProbA1‖A2
q (ϕ̃1 ∧ ϕ̃2) = ProbA1

q1 (ϕ1) · ProbA2
q2 (ϕ2), (9.13)

where ϕ1 (resp. ϕ2) is a property measurable in A1 (resp. A2) from q1 (resp.
q2). As in Proposition 9.2.14, since for every properties ϕ1 measurable in A1

from q1 and ϕ2 measurable in A2 from q2, we have

{q |= ϕ̃1} ∩ {q |= ϕ̃2} = {q1 |= ϕ1} tt{q2 |= ϕ2},

and {qi |= ϕi} ∈ ΩAiqi for i ∈ {1, 2}, it suffices to prove that for every n,m ≥ 0,
for every e1, . . . , en edges of A1, for every f1, . . . , fm edges of A2, for every borel
sets C1 of Rn+ and for every borel sets C2 of Rm+ ,

ProbA1‖A2
q

Ä
Cyl(πC1(q1, e1, . . . , en)) ttCyl(πC2(q2, f1, . . . , fm))

ä
=

ProbA1
q1

Ä
(Cyl(πC1(q1, e1, . . . , en))

ä
· ProbA2

q2

Ä
Cyl(πC2(q2, f1, . . . , fm))

ä
. (9.24)

We prove it by induction over (n,m). We can first notice that if n = 0, then for
every m ≥ 0,

Cyl(π(q1)) ttCyl(πC2(q2, f1, . . . , fm)) = Cyl(πC∗2 (q,A∗1, f1, . . . ,A∗1, fm))

and thus (9.24) holds from Proposition 9.2.13. Hence, equality (9.24) holds for
each (0,m) with m ≥ 0. It can similarly be shown that the property holds for
each (n, 0) with n ≥ 0. Now, we fix n,m ≥ 0 and we assume that (9.24) is
satisfied for every (n′,m′) with 0 ≤ n′ ≤ n and 0 ≤ m′ ≤ m, and we prove that

9.2 – Properties of the parallel composition 207

it is still verified for (n + 1,m + 1). Let e1, . . . , en+1 and f1, . . . , fm+1 be edges
of A1 and A2, and let C1 and C2 be Borel sets of Rn+1

+ and Rm+1
+ . Then

ProbA1‖A2
q

Ä
Cyl(πC1(q1, e1, . . . , en+1)) ttCyl(πC2(q2, f1, . . . , fm+1))

ä
=∫

t1∈I(q,e1)
p

(1)
q1+t1(e1)fq1(t1)(1− Fq2(t1))

ProbA1‖A2
q

Ä
Cyl(πCt11

(qt1 , e2, . . . , en+1)) ttCyl(πCt1,+2
(q2 + t1, f1, . . . , fm+1))

ä
dt1

+

∫
t2∈I(q,f1)

p
(2)
q2+t2(f1)fq2(t2)(1− Fq1(t2))

ProbA1‖A2
q

Ä
Cyl(πCt2,+1

(q1 + t2, e1, . . . , en+1)) ttCyl(πCt22
(qt2 , f2, . . . , fm+1))

ä
dt2,

(9.25)

where Ct11 = {(τ2, . . . , τn+1) | (t1, τ2, . . . , τn+1) ∈ C1} which is a Borel set of Rn+
and Ct2,+1 = {(τ1, . . . , τn+1) | (t2 + τ1, τ2, . . . , τn+1) ∈ C1} which is a Borel set of
Rn+1

+ . This is similar with C2. Now, by induction hypothesis, we obtain that∫
t1∈I(q,e1)

p
(1)
q1+t1(e1)fq1(t1)(1− Fq2(t1))

ProbA1‖A2
q

Ä
Cyl(πCt11

(qt1 , e2, . . . , en+1)) ttCyl(πCt1,+2
(q2 + t1, f1, . . . , fm+1))

ä
dt1

=

∫
t1∈I(q,e1)

p
(1)
q1+t1(e1)fq1(t1)(1− Fq2(t1))ProbA1

q1

Ä
Cyl(πCt11

(qt1 , e2, . . . , en+1))
ä

ProbA2
q2

Ä
Cyl(πCt1,+2

(q2 + t1, f1, . . . , fm+1))
ä

dt1

=

∫
t1∈I(q,e1)

p
(1)
q1+t1(e1)fq1(t1)(1− Fq2(t1))ProbA1

q1

Ä
Cyl(πCt11

(qt1 , e2, . . . , en+1))
ä

∫
u∈I(q2+t1,f1)

p
(2)
q2+t1+u(f1)fq2+t1(u)ProbA2

q2

Ä
Cyl(πCt1+u2

(qt1+u, f2, . . . , fm+1))
ä

dudt1.

Now, using similar substitution arguments as in the proof of Lemma 9.2.9 by
letting t2 = t1 + u, it follows that∫

t1∈I(q,e1)
p

(1)
q1+t1(e1)fq1(t1)(1− Fq2(t1))

ProbA1‖A2
q

Ä
Cyl(πCt11

(qt1 , e2, . . . , en+1)) ttCyl(πCt1,+2
(q2 + t1, f1, . . . , fm+1))

ä
dt1

=

∫
t1∈I(q,e1)

p
(1)
q1+t1(e1)fq1(t1)ProbA1

q1

Ä
Cyl(πCt11

(qt1 , e2, . . . , en+1))
ä

∫
t2∈I(q,f1)

p
(2)
q2+t2(f1)fq2(t2)1[t1,+∞[(t2)

ProbA2
q2

Ä
Cyl(πCt22

(qt2 , f2, . . . , fm+1))
ä

dt2 dt1. (9.26)

208 Chapter 9 – Interleaving Parallel Composotion in STA

Now, still by induction hypothesis and using similar arguments as before, we get
that∫

t2∈I(q,f1)
p

(2)
q2+t2(f1)fq2(t2)(1− Fq1(t2))

ProbA1‖A2
q

Ä
Cyl(πCt2,+1

(q1 + t2, e1, . . . , en+1)) ttCyl(πCt22
(qt2 , f2, . . . , fm+1))

ä
dt2

=

∫
t1∈I(q,e1)

p
(1)
q1+t1(e1)fq1(t1)ProbA1

q1

Ä
Cyl(πCt11

(qt1 , e2, . . . , en+1))
ä

∫
t2∈I(q,f1)

p
(2)
q2+t2(f1)fq2(t2)1[0,t1[(t2)

ProbA2
q2

Ä
Cyl(πCt22

(qt2 , f2, . . . , fm+1))
ä

dt2 dt1. (9.27)

Finally, from (9.25), (9.26) and (9.27), we obtain that

ProbA1‖A2
q

Ä
Cyl(πC1(q1, e1, . . . , en+1)) ttCyl(πC2(q2, f1, . . . , fm+1))

ä
=

=

∫
t1∈I(q,e1)

p
(1)
q1+t1(e1)fq1(t1)ProbA1

q1

Ä
Cyl(πCt11

(qt1 , e2, . . . , en+1))
ä

dt1∫
t2∈I(q,f1)

p
(2)
q2+t2(f1)fq2(t2)ProbA2

q2

Ä
Cyl(πCt22

(qt2 , f2, . . . , fm+1))
ä

dt2

= ProbA1
q1

Ä
(Cyl(πC1(q1, e1, . . . , en+1))

ä
· ProbA2

q2

Ä
Cyl(πC2(q2, f1, . . . , fm+1))

ä
which concludes the proof of (9.13).

Now in order to complete the proof of Theorem 9.2.7, it remains to show
that A1 ‖ A2 is almost-surely non-Zeno, i.e. we have to prove that for each state
q = (q1, q2), ProbA1‖A2

q (Zeno(q)) = 08. Fix a state q = (q1, q2) of A1 ‖ A2. We
recall that from the discussion in Section 3.1 on Zeno runs, Zeno(q), Zeno(q1)
and Zeno(q2) are all measurable in their respective σ-algebra. Assuming previous
notations, we have that

Zeno(q) ⊆ ι−1
1

(
Zeno(q1)

)
∪ ι−1

2

(
Zeno(q2)

)
.

Indeed, let ρ ∈ Runs(A1 ‖ A2, q) be a Zeno run. Then we can write

ρ = q
t1,e1−−→ q1

t2,e2−−→ . . .

where
∑
k≥1 tk < +∞. Since ρ is an infinite run, we have that there is i ∈ {1, 2}

such that {k ≥ 1 | ek ∈ Ei} is an infinite set. It is then obvious that ιi(ρ) is Zeno

8Recall that Zeno(q) corresponds to the set of Zeno runs starting from q (see page 64.

9.3 – Bisimulation and congruence 209

and thus ρ ∈ ι−1
i (Zeno(qi)). The above inclusion thus holds and therefore,

ProbA1‖A2
q (Zeno(q)) ≤ ProbA1‖A2

q

Ä
ι−1
1 (Zeno(q1)) ∪ ι−1

2 (Zeno(q2))
ä

≤ ProbA1‖A2
q

Ä
ι−1
1 (Zeno(q1))

ä
+ ProbA1‖A2

q

Ä
ι−1
2 (Zeno(q2))

ä
= ProbA1

q1 (Zeno(q1)) + ProbA2
q2 (Zeno(q2))

from Proposition 9.2.14

= 0 since A1 and A2 are almost-surely non-Zeno.

Thus ProbA1‖A2
q (Zeno(q)) = 0, and since it holds true for each state q, we get that

A1 ‖ A2 is almost-surely non-Zeno which concludes the proof of Theorem 9.2.7

Remark 9.2.17. Note that given an almost-surely non-Zeno STA A equipped
with uniform or exponential distributions such that it satisfies conditions (A)
and (B) (i.e. as in Remark 9.1.2), it holds that A is in CSTA∗. As said before,
we have large classes of STA that are almost-surely fair. It holds that reactive
STA [BBB+14] (see Section 7.2 here) are almost-surely non-Zeno. Equipping
them with exponential distributions as in Remark 9.1.2) make them also compos-
able. Hence reactive STA form a class in which the qualitative and quantitative
model-checking problems of ω-regular properties are decidable (see Section 7.2),
but that also has a compositional framework with an interleaving semantics.
In [BBB+14], the authors also defined a class of weak-reactive STA that are also
composable if we only equip them with uniform and exponential distributions.

As said in introduction, this interleaving semantics is a first for a composi-
tional framework of STA. As stated in [HZ11], this is not the most interesting
semantics for composition. An interest comes when the systems can interact
between them, which yields to a handshaking operator. This will be the subject
of Chapter 10. Before that, we need to introduce a notion of bisimulation in
STA and to prove that it is a congruence w.r.t. parallel composition, which is
an important property when dealing with composition.

9.3. Bisimulation and congruence

In this section, we define a notion of bisimulation for STA as done in [BBCM16],
which naturally extends that for CTMCs [BHHK03, DP03] (see section 2.4.2).
We importantly show that the defined bisimulation is a congruence w.r.t. parallel
composition: as already briefly explained in Section 2.1.3, this means that, in
a complex system, a component can be replaced by an equivalent one without

210 Chapter 9 – Interleaving Parallel Composotion in STA

affecting the global behaviour of the system. This is crucial for a proper modular
approach to system design.

9.3.1 Bisimulation

To define a bisimulation relation between STA, we are inspired by the approach
of [DP03], in which the authors consider continuous-time Markov processes
(CTMPs) – CTMPs generalize CTMCs (see Section 2.3) with general contin-
uous state-spaces; this definition of bisimulation that is given for CTMPs can
be adapted to our context (note however that STA cannot be seen as particular
CTMPs).

We first define some notions. A subset P ⊆ Rn is a polyhedral set if it is
defined by a (finite) boolean combination of constraints of the form A1x ≤ b1
or A2x < b2, where x = (x1, . . . , xn) is a variable, A1 ∈ Rm1×n, b1 ∈ Rm1 ,
A2 ∈ Rm2×n and b2 ∈ Rm2 .

Let A be a STA, Q be its set of states, and P (Q) = {∪l∈L{l} × Cl | ∀l ∈
L, Cl polyhedral set of Rn+} where n is the number of clocks of A. The set
P (Q) is a proper subset of the Borel σ-algebra over L× Rn+, which is closed by
projection (contrary to the Borel σ-algebra).

We then define the closure of R w.r.t. polyhedral sets, that we write pcl(R),
as the following set: pcl(R) = {A ∈ P (Q) | (a ∈ A ∧ aRb) =⇒ b ∈ A}. One can
notice that pcl(R) corresponds to the set of all polyhedral unions of equivalence
classes. Given two equivalence relations R and R′ over S we say that R′ is
coarser than R or that R is finer than R′ if R ⊆ R′.

We can now define a notion of bisimulation in STA (see [BBCM16]).

Definition 9.3.1. Let A = (L,X,E, Inv,AP,L, (µq, pq)q∈L×RX+) be a STA. An

equivalence relation R over the set of states Q is a bisimulation for A if for all
q, q′ ∈ Q with qRq′:

(i) L(q) = L(q′), and

(ii) for every I ∈ B(R+), for every C ∈ pcl(R),

ProbAq
Ä
q
I,E−→ C

ä
= ProbAq′

Ä
q′

I,E−→ C
ä
,

where {q I,E−→ C} stands for {ρ ∈ Runs(A, q) | ∃τ ∈ I, ∃e ∈ E, ρ = q
τ,e−→

q1 → · · · ∧ q1 ∈ C}.

States q and q′ are bisimilar (written q ∼ q′) if there is a bisimulation that
contains (q, q′).

9.3 – Bisimulation and congruence 211

Given q ∈ Q, I ∈ B(R+) and C ∈ pcl(R) the value ProbAq
Ä
q
I,E−→ C

ä
can be

expressed:

ProbAq
Ä
q
I,E−→ C

ä
=

∫
t∈I

Pq+t(C)fq(t) dt

where the value Pq+t(C) corresponds to the probability to reach instantaneously
C from state q + t. Formally: if C =

⋃
l∈L{l} × Cl,

Pq+t(C) =
∑
l′∈L

∑
e∈El′

pq+t(e)1Cl′ (e,ν)(t)

for each t ≥ 0 and each C ∈ pcl(R), where, given l′ ∈ L, El′ is the set of edges
with target l′, and given e = (l, g, Y, l′), Cl′(e, ν) = {t ∈ R+ | [Y ← 0](ν + t) ∈
Cl′}. It can be shown that for every t ≥ 0, Pq+t is a probability measure over Q.

Remark 9.3.2. In the case where I = R+, one can make a link with the Markov
kernel κA(q, ·) defined in Section 7.1: for each C ∈ pcl(R),

ProbAq (q
R+,E−→ C) = κA(q, C).

Also, given a STA A, one can show that ∼ is the coarsest bisimulation for A.

Proposition 9.3.3. For each STA A, ∼ is the coarsest bisimulation for A.

Definition 9.3.1 enjoys the following very nice characterisation which again
shows a link with the definition of bisimulation over CTMCs [BHHK03].

Proposition 9.3.4. Let A be a STA and let R be a bisimulation for A. Then
for all q, q′ ∈ Q, qRq′ if and only if

(i) L(q) = L(q′),

(ii) µq = µq′, and

(iii) for every C ∈ pcl(R), Pq+t(C) = Pq′+t(C) almost-surely for every t ≥ 0.

Proof. In order to prove this characterisation, we will use Lemma 9.2.2.

The fact that if q and q′ satisfy points (i), (ii) and (iii) then qRq′ comes
immediately from Definition 9.3.1. Indeed point (i) of Definition 9.3.1 is the same
statement as point (i) of this proposition. Point (ii) of the same definition comes

from point (ii) and (iii) of this proposition and from the fact that ProbAq
Ä
q
I,E−→

C
ä

=
∫
t∈I Pq+t(C)fq(t) dt for each Borel sets I ⊆ R+ and each C ∈ cl(R), where

fq is the density function associated with µq. Now let us assume that qRq′. Point

212 Chapter 9 – Interleaving Parallel Composotion in STA

(i) trivially holds from Definition 9.3.1. We also know that for every I ∈ B(R+)
and for every C ∈ cl(R),∫

t∈I
Pq+t(C)fq(t) dt =

∫
t∈I

Pq′+t(C)fq′(t) dt.

In particular, with C = Q ∈ cl(R), we have Pq+t(C) = 1 = Pq′+t(C) for every t
and thus, for every I ∈ B(R+),∫

t∈I
fq(t) dt =

∫
t∈I

fq′(t) dt

which leads to the fact that fq = fq′ almost-surely and thus µq = µq′ . It remains
to show point (iii). If we fix C ∈ cl(R) we can show that the function Pq+•(C),
assigning the value Pq+t(C) to each real positive number t, is measurable. Indeed,
we have that

Pq+t(C) =
∑
l′∈L

∑
e∈El′

pq+t(e)1Cl′ (e,ν)(t).

We already know from hypothesis (?) (see page 176) that for each e, pq+•(e) is
measurable. If we assume that q = (l, ν) with ν ∈ Rn+, then for each e and l′, the

set Cl′(e, ν) corresponds to the set
Ä
[Y ← 0]◦gν

ä−1
(Cl) where gν : R+ → Rn+ is the

function that assigns the value ν + t for each t ∈ R+. Now since [Y ← 0] and gν
are two measurable functions and since Cl is a Borel set, we get that Cl′(e, ν) is a
Borel set. Hence 1Cl′ (e,ν)(t) is a measurable function. We can thus conclude that
Pq+•(C) is also measurable. The same reasoning can be applied to Pq′+•(C).
Finally, from Lemma 9.2.2 applied to g1(t) = Pq+t(C), g2(t) = Pq′+t(C) and
h = fq = fq′ almost-surely, we get that point (iii) is satisfied.

We now illustrate the notion of bisimulation on a simple example.

Example 9.3.5. Let us consider the simple STAA with two clocks on Figure 9.4.
We assume that each state of the form (l1, ν) or (l2, ν

′) with ν, ν ′ ∈ R2
+ is

equipped with the same exponential distribution over delays, say Exp(λ). Now,
from a state of the form q = (l0, (ν1, ν2)) with ν1 < 1 or ν2 < 1, I(q) = [0, 1 −
min(ν1, ν2)[and so we can equip q with a uniform distribution on the interval
I(q) for the delays.

We now compute the equivalence classes for ∼. It can easily be established
that the set of states {l1, l2} × R2

+ is an equivalence class for ∼.

In order to find the equivalence classes associated with l0, we use the char-
acterisation Proposition 9.3.4. It is obvious that the set {l0} × [1,∞[2 forms

9.3 – Bisimulation and congruence 213

l0

{a}

A

l1

{b}

l2

{b}
0 < x1 <

1

0 < x2 < 1

1

1

ν

ν Aν

[1,∞[2

Figure 9.4: A simple example for bisimulation.

an equivalence class for ∼ as there are the only states from which no edges are
enabled. We can then show that for each ν ∈ [0, 1[,

Aν = {l0} ×
Ä
{(ν1, ν) | ν1 ≥ ν} ∪ {(ν, ν2) | ν2 ≥ ν}

ä
is an equivalence class. First let us prove that given q = (l0, (ν1, ν2)) and
q′ = (l0, (ν

′
1, ν
′
2)) ∈ Aν , both states satisfy point (i), (ii) and (iii) of the character-

isation. Point (i) is obvious. In order to get point (ii), it suffices to observe that
min(ν1, ν2) = min(ν ′1, ν

′
2). Finally, for point (iii), from location l0, the only set

C ∈ pcl(∼) that is reachable in one step is C = {l1, l2}×R2
+, and we get that for

each t ≥ 0, Pq+t(C) = 1I(q)(t) and Pq′+t(C) = 1I(q′)(t). But since min(ν1, ν2) =
min(ν ′1, ν

′
2), we have I(q) = I(q′) and thus Pq+t(C) = Pq′+t(C). Finally Aν is an

equivalence class since, if q = (l0, (ν1, ν2)) ∈ Aν and q′ = (l0, (ν
′
1, ν
′
2)) ∈ Aν′ with

ν 6= ν ′, then min(ν1, ν2) 6= min(ν ′1, ν
′
2) and thus point (ii) does not hold.

Construction of a bisimulation between two STA. We have defined a
bisimulation as a relation between states of a STA. We would like now to define
a bisimulation as a relation between STA with the same set of atomic propositions
AP. A classical way to achieve this objective (see [BK08]), is to consider the dis-
joint union of two STA and to define a bisimulation between these to automata as
a bisimulation for the disjoint union of both automata. We thus need to define the

disjoint union of two STA. Let Ai =
Ä
Li, Xi, Ei, Invi,AP,Li, (µ(i)

q , p
(i)
q)

q∈Li×R
Xi
+

ä
for i ∈ {1, 2} be two STA with L1 ∩ L2 = ∅, X1 ∩X2 = ∅ and E1 ∩E2 = ∅. The
disjoint union of A1 and A2 is the stochastic timed automaton A1 ∪A2 defined
by

A1 ∪ A2 = (L,X,E, Inv,AP,L, (µq, pq)q∈L×RX+),

where L = L1 ∪ L2, X = X1 ∪X2, E = E1 ∪ E2, Inv(l) = Inv1(l) if l ∈ L1 and
Inv(l) = Inv2(l) if l ∈ L2, µq and pq are such that if q = (l1, ν1, ν2) with l1 ∈ L1,

214 Chapter 9 – Interleaving Parallel Composotion in STA

ν1 ∈ RX1
+ and ν2 ∈ RX2

+ then µq = µ
(1)
(l1,ν1) and pq = p

(1)
(l1,ν1) and similarly, if

q = (l2, ν1, ν2) with l2 ∈ L2 then µq = µ
(2)
(l2,ν2) and pq = p

(2)
(l2,ν2), and L(l) = L1(l)

if l ∈ L1 and L(l) = L2(l) if l ∈ L2.
We can now define the notion of bisimulation between two STA with the

same set of atomic propositions.

Definition 9.3.6. Let Ai =
Ä
Li, Xi, Ei, Invi,AP,Li, (µ(i)

q , p
(i)
q)

q∈Li×R
Xi
+

ä
for i ∈

{1, 2} be two STA with L1 ∩ L2 = ∅, X1 ∩ X2 = ∅ and E1 ∩ E2 = ∅. An
equivalence relation over Q1 ∪ Q2 is a bisimulation between A1 and A2 if it is
a bisimulation for A1 ∪ A2. We say that A1 and A2 are bisimilar from states
q1 ∈ Q1 and q2 ∈ Q2, and we write A1 ∼ A2, if q1 ∼ q2 in A1 ∪ A2.

Remark 9.3.7. Let us note that given two STA A1 and A2 and given a state
(l1, ν1, ν2) of A1 ∪ A2 with l1 ∈ L1, ν1 ∈ RX1

+ and ν2 ∈ RX2
+ , it holds that

∀ν ′2 ∈ RX2
+ , (l1, ν1, ν

′
2) ∼ (l1, ν1, ν2). This comes from the fact that from state

(l1, ν1, ν2) in the union, with l1 ∈ L1, only edges of A1 are enabled. Hence, the
state (l1, ν1, ν2) will behave in A1 ∪A2 exactly as state (l1, ν1) in A1. Thus, the
value of ν2 has no impact on the behaviour of A1∪A2 from (l1, ν1, ν2). The same
reasoning applies to states (l2, ν1, ν2) with l2 ∈ L2. A state of the form (li, ν1, ν2)
with li ∈ Li will then be abusively identified as the state (li, νi).

We now illustrate this definition on a simple example, which considers again
STA A of Example 9.3.5.

Example 9.3.8. We consider again the STA A depicted in Example 9.3.5 and
on Figure 9.4.

Now, let us consider the single clock STA B of Figure 9.5. Assuming that we
have the same probability distributions as STA A (i.e. uniform distribution for
l′0 and Exp(λ)-distribution for l′1), it can be easily established that A ∼ B from
q0 = (l0, (0, 0)) and q′0 = (l′0, 0). It is obvious that each state of {l1, l2} × R2

+

is bisimilar to each state of {l′1} × R+ and that each state of {l0} × [1,∞[2 is
bisimilar to each state of {l′0} × [1,∞[. Finally, by a similar argument as in
Example 9.3.5, it can be easily established that for each ν ∈ [0, 1[, (l′0, ν) is
bisimilar to each state of Aν .

9.3.2 Congruence

One of the main objectives of defining behavioural equivalences is to aim at
modular design and proof of correctness. This is only possible if bisimulation is
a congruence w.r.t. parallel composition, that is, if A1 ∼ A2 from states q1 ∈ Q1

and q2 ∈ Q2, then for every B, A1 ‖ B ∼ A2 ‖ B from states (q1, q) and (q2, q),

9.3 – Bisimulation and congruence 215

l′0

B

{a}

l′1

{b}
0 < x < 1

Figure 9.5: B is bisimilar to A.

for each state q of B. We first prove the following natural lemma which is a key
point for proving the congruence of the bisimulation w.r.t. parallel composition.
Though very intuitive, the result is surprisingly quite technical to prove.

Lemma 9.3.9. Let A,B ∈ CSTA∗ with sets of states resp. QA and QB. If R is
a bisimulation for A then the equivalence relation R′ over QA ×QB defined by
R′ = {((q1, q), (q2, q)) | q1Rq2 and q ∈ QB}, is a bisimulation for A ‖ B.

This result seems very intuitive, however the proof is quite technical. The
tricky part comes when verifying if for each states q and q′ of A ‖ B with qR′q′,
it holds that for each polyhedral set C ∈ pcl(R′) and for almost every t ≥ 0,
Pq+t(C) = Pq′+t(C). The key part to prove this point, is to decompose and to
project C in such a way that we can use the fact that R is a bisimulation for A.
This is where we need polyhedral sets for C.

Lemma 9.3.10. Let A be a stochastic timed automaton in CSTA∗ and let R be
a bisimulation for A. Let q and q′ be two states of A. If qRq′ then (q+t)R(q′+t)
for every t ≥ 0.

Proof. Let q and q′ be states of A such that qRq′. We have to prove that for
every t ≥ 0, (q+t)R(q′+t). Let t ≥ 0, we have to show that q+t and q′+t satisfy
points (i), (ii) and (iii) of Proposition 9.3.4, i.e. that (i) L(q + t) = L(q′ + t),
that (ii) µq+t = µq′+t and that (iii) for every C ∈ cl(R) and for almost every
t′ ≥ 0, P(q+t)+t′(C) = P(q′+t)+t′(C). Point (i) is trivial as it only depends
on the locations. Point (iii) comes from the fact that for every C ∈ cl(R),
Pq+t′′(C) = Pq′+t′′(C) for almost every t′′ ≥ 0, as qRq′. We thus get that for
every C ∈ cl(R), P(q+t)+t′(C) = P(q′+t)+t′(C) almost-surely for every t′ ≥ 0.
It remains to establish point (ii), i.e. that µq+t = µq′+t or again fq+t = fq+t′

almost-surely. This immediate from condition (B) of CSTA∗: it holds that

fq1+t(t
′) =

fq1(t+ t′)

1− Fq1(t)
and fq2+t(t

′) =
fq2(t+ t′)

1− Fq2(t)

for almost-surely each t′ ≥ 0. Then since q1Rq2, we get that fq1(t+t′) = fq2(t+t′)
for almost-surely each t′ ≥ 0. It follows that fq1+t(t

′) = fq2+t(t
′) for almost-surely

each t′ ≥ 0 which concludes the proof.

216 Chapter 9 – Interleaving Parallel Composotion in STA

We can now prove Lemma 9.3.9. We write A ‖ B =
Ä
LA×LB, XA∪XB, EA∪

EB, Inv,AP,L, (µq, pq)q∈QA×QB
ä
. Given a state (qi, q) of A ‖ B, we write fqi,A for

the density function associated with µAqi , fq,B for the density function associated

with µBq and fqi,min for the density function of µ(qi,q) in the product.

Proof of Lemma 9.3.9. Let q1 = (l1, ν1) and q2 = (l2, ν2) be states of A and let
q = (l, ν) be a state of B such that (q1, q)R′(q2, q), i.e. such that q1Rq2. Then,
from Proposition 9.3.4 it holds that LA(q1) = LA(q2), that fq1,A = fq2,A almost-
surely and that for each C ∈ pcl(R), PAq1+•(C) = PAq2+•(C) almost-surely. From
the definition of the composition we can immediately deduce that L((q1, q)) =
L((q2, q)) and that fq1,min = fq2,min almost-surely. It remains to show that for
each C ∈ pcl(R′), P(q1,q)+•(C) = P(q2,q)+•(C) almost-surely. Let C ∈ pcl(R′),
we can write

C =
⋃

(lA,lB)∈LA×LB

{(lA, lB)} × C(lA,lB)

where for each (lA, lB) ∈ LA × LB, C(lA,lB) is a polyhedral set. Let us first
compute the value P(q1,q)+t(C). We have that

P(q1,q)+t(C) =
fq1,A(t)(1− Fq,B(t))

fq1,min(t)

∑
lA∈LA

∑
eA∈ElA

pAq1+t(eA)1C(lA,l)(eA,ν1,ν)(t)

+
fq,B(t)(1− Fq1,A(t))

fq1,min(t)

∑
lB∈LB

∑
eB∈ElB

pBq+t(eB)1C(l1,lB)(eB ,ν1,ν)(t),

where, if eA = (l1, gA, YA, lA) and eB = (l, gB, YB, lB) then

• C(lA,l)(eA, ν1, ν) =
¶
t ∈ R+ |

Ä
[YA ← 0](ν1 + t), ν + t

ä
∈ C(lA,l)

©
, and

• C(l1,lB)(eB, ν1, ν) =
¶
t ∈ R+ |

Ä
ν1 + t, [YB ← 0](ν + t)

ä
∈ C(l1,lB)

©
.

Computing the value P(q2,q)+t(C) is similar. In order to show that for almost-
surely every t ≥ 0, P(q1,q)+t(C) = P(q2,q)+t(C), it suffices to prove that for almost-
surely every t ≥ 0.

wA(q1,q)(t)
∑

lA∈LA

∑
eA∈ElA

pAq1+t(eA)1C(lA,l)(eA,ν1,ν)(t)

= wA(q2,q)(t)
∑

lA∈LA

∑
eA∈ElA

pAq2+t(eA)1C(lA,l)(eA,ν2,ν)(t) (9.28)

9.3 – Bisimulation and congruence 217

and that

wB(q1,q)(t)
∑

lB∈LB

∑
eB∈ElB

pBq+t(eB)1C(l1,lB)(eB ,ν1,ν)(t)

= wB(q2,q)(t)
∑

lB∈LB

∑
eB∈ElB

pBq+t(eB)1C(l2,lB)(eB ,ν2,ν)(t). (9.29)

First of all, let us observe that we already have that wA(q1,q) = wA(q2,q) almost-

surely and that wB(q1,q) = wB(q2,q) since by hypothesis, fq1,A = fq2,A almost-surely.

Now, we can show that for each lB ∈ LB and for each eB = (l, gB, YB, lB) ∈
ElB , C(l1,lB)(eB, ν1, ν) = C(l2,lB)(eB, ν2, ν) almost-surely. Indeed, for almost every
t ≥ 0, (q1 + t)R(q2 + t) from Lemma 9.3.10. Now if t ∈ C(l1,lB)(eB, ν1, ν) and

t is such that (q1 + t)R(q2 + t), then
Ä
q1 + t, [YB ← 0](q + t)

ä
∈ C. SinceÄ

q1 + t, [YB ← 0](q+ t)
ä
R′
Ä
q2 + t, [YB ← 0](q+ t)

ä
and C ∈ pcl(R′), we get thatÄ

q2+t, [YB ← 0](q+t)
ä
∈ C, i.e. t ∈ C(l2,lB)(eB, ν2, ν). By a similar argument, we

get the almost-sure equality between the two sets. This proves equality (9.29).

In order to show equality (9.28) we first introduce some notation. We write C
(t)
q

for the following set of states in A: {qA ∈ QA | (qA, q + t) ∈ C}. Equality (9.28)
can thus be rewritten as

PAq1+t(C
(t)
q) = PAq2+t(C

(t)
q). (9.30)

We will show that this equality holds almost-surely on each interval I of the form
[a, b] with a, b ∈ R+. Let I = [a, b] be such an interval. For each n ∈ N, we write

I =
2n−1⋃
k=0

I
(n)
k

where for each k, I
(n)
k =

î
a + k(b−a)

2n , a + (k+1)(b−a)
2n

ó
. For each n ∈ N and each

0 ≤ k ≤ 2n − 1 we write

C(k,n)
q = {qA ∈ QA | ∃t ∈ I(n)

k , (qA, q + t) ∈ C}.

We can prove that C
(k,n)
q ∈ pcl(R). Indeed if qA ∈ C(k,n)

q , then there is t ∈ I(n)
k

such that (qA, q+t) ∈ C. Let q′A be such that qARq′A. Then, from definition ofR′,
we have (qA, q+t)R′(q′A, q+t) and thus (q′A, q+t) ∈ C since C ∈ pcl(R′). Hence,

q′A ∈ C
(k,n)
q . It remains to show that for each lA ∈ LA, there is a polyhedral set

ClA such that

C(k,n)
q =

⋃
lA∈LA

{lA} × ClA .

218 Chapter 9 – Interleaving Parallel Composotion in STA

Such sets exist and are defined as follows. For each lA ∈ LA, we define ClA as
follows

ClA = ProjXA

(
C(lA,l) ∩

Ä
RXA+ × {ν + t | t ∈ I(n)

k }
ä)

(where ProjXA denotes the projection of RXA∪XB+ over RXA+) which is a polyhe-

dral set. Indeed, we have that for each n and k, C(lA,l) and RXA+ ×{ν+t | t ∈ I(n)
k }

are two polyhedral sets. Then the intersection is still a polyhedral set. And since
the projection of a polyhedral set is a polyhedral set, we get that ClA is a poly-

hedral set. Which proves that C
(k,n)
q ∈ pcl(R). It follows that for each n ≥ 0,

for each 0 ≤ k ≤ 2n − 1,

PAq1+t(C
(k,n)
q) = PAq2+t(C

(k,n)
q) (9.31)

for almost every t ≥ 0. We will now establish that for almost each t ∈ I,

2n−1∑
k=0

PAq1+t(C
(k,n)
q)1

I
(n)
k

(t) −→
n→∞

PAq1+t

Ä
C(t)
q

ä
. (9.32)

We fix t ∈ I such that t is not in {a+ k(b−a)
2n | n ∈ N∧k ∈ {0, . . . , 2n}}. It can be

shown that Λ({a+ k(b−a)
2n | n ∈ N∧k ∈ {0, . . . , 2n}}) = 0. Then, by construction,

for each n ≥ 0 there is a unique kt,n ∈ {0, . . . , 2n − 1} such that t ∈ I(n)
kt,n

. We
thus have to show that

PAq1+t(C
(kt,n,n)
q) −→

n→∞
PAq1+t

Ä
C(t)
q

ä
. (9.33)

By construction, we have that for each n ≥ 0, I
(n+1)
kt,n+1

⊆ I
(n)
kt,n

and thus also

C
(kt,n+1,n+1)
q ⊆ C(kt,n,n)

q . It follows that

C(kt,n,n)
q ↘

n→∞

⋂
n≥0

C(kt,n,n)
q = C(t)

q .

Since PAq1+t is a probability measure over QA we conclude, from a classical result,
that equality (9.33) holds which proves (9.32). Similarly, we can prove that

2n−1∑
k=0

PAq2+t(C
(k,n)
q)1

I
(n)
k

(t) −→
n→∞

PAq2+t

Ä
C(t)
q

ä
. (9.34)

for almost every t ∈ I. Now, from (9.31) we get that

2n−1∑
k=0

PAq1+t(C
(k,n)
q)1

I
(n)
k

(t) =
2n−1∑
k=0

PAq2+t(C
(k,n)
q)1

I
(n)
k

(t),

9.3 – Bisimulation and congruence 219

for almost every t ∈ I, and thus (9.32) and (9.34) allow us to state that equal-
ity (9.30) holds almost-surely for each t ∈ I. Since it holds for each interval
I ⊆ R+ of the form [a, b], we get that (9.30) holds almost-surely for each t ≥ 0
which terminates the proof of the lemma.

We can now state the main result of this section:

Theorem 9.3.11. Bisimulation is a congruence w.r.t. parallel composition.
That is: if A1, A2 and B are three STA in CSTA∗, for every states q1, q2 and q
of resp. A1, A2 and B, if A1 ∼ A2 from q1 and q2, then A1 ‖ B ∼ A2 ‖ B from
(q1, q) and (q2, q).

Proof. We fix states q1, q2 and q. From the hypothesis, there is a bisimulation
R for A1 ∪ A2 such that q1Rq2. We define

R′ = {((q1, q), (q2, q)) | (q1Rq2) ∧ q ∈ Q}

and we show that it is a bisimulation between A1 ‖ B and A2 ‖ B from states
(q1, q) and (q2, q). It is trivial to get that (q1, q)R′(q2, q) and Lemma 9.3.9 states
that R′ is a bisimulation for (A1 ∪ A2) ‖ B. Then Remark 9.3.7 allows us to
conclude that R′ is a bisimulation for (A1 ‖ B) ∪ (A2 ‖ B).

CHAPTER 10

Interactive Stochastic Timed
Automata and Handshaking

Composition

Following [HZ11] (see Section 2.4.1), handshaking composition is a generalisa-
tion of both interleaving and synchronous composition. Hence the interleaving
semantics introduced in Chapter 9 is not entirely satisfactory. However this was
an important first step towards handshaking: the handshaking semantics obvi-
ously allows for synchronisations, however when no interactions are possible, the
product has to be interleaving. Therefore, having already defined an interleaving
operator for STA gives us a good basis.

As stated in [HZ11], in CTMCs the interleaving composition is the natural
operator for the model. A way to extend handshaking composition to CTMCs, is
to consider the model of IMCs ([Her02] and [HK09]) which adds non-determinism
into the model (see Section 2.4) and allows for communication between the sys-
tems.

The objective of this chapter is thus to adapt the work of [Her02], [HK09]
and [HZ11] to STA, i.e. to extend handshaking composition to STA by adding
interactions in the model. In Section 10.1 we thus introduce the new model of
interactive STA (ISTA for short) and we illustrate it. In Section 10.2, we define a
handshaking parallel composition in ISTA. Similarly as in Chapter 9, we identify
a class of ISTA for which parallel composition is well-defined. We also define a
hiding operator and show how this operator along with parallel composition
allow us to define the semantics of an ISTA as a STA. We also define a notion of
bisimulation, that extends the one on IMCs ([Her02], [HK09]; see Section 2.4.2

221

222 Chapter 10 – Interactive Stochastic Timed Automata and Handshaking Composition

here), and importantly show that it is a congruence w.r.t. parallel composition
and hiding.

We end the chapter with a link with Part I. Roughly speaking, in Sec-
tion 10.3, we identify a class of ISTA in which parallel composition is well-defined
and whose semantics give rise to a class of STA that, we prove, enter the setting
of Chapter 6. In other words, we identify a class of ISTA that are composable
and on which the decidability and appoximability results of Chapter 6 can be
applied.

All the notions and the results of the chapter are neither published nor sub-
mitted work.

10.1. Syntax of ISTA

In this section, we introduce the new model of ISTA and illustrate it on an
example. It is inspired from the IMC model ([Her02], [HK09] and Section 2.4.2)
which extends the CTMC model.

We recall here a notation of Chapter 9. Given some set of clocks X, G×(X)
denotes the set of guards of the following form: any finite conjunction of expres-
sions of the form x ∼ c where x ∈ X, c ∈ N and ∼ ∈ {<,≥, >}. Similarly, we
consider Gint(X) as the set of guards with ∼ ∈ {<,≥}. We now give immediately
the definition of the ISTA model.

Definition 10.1.1. An interactive stochastic timed automaton (ISTA for short)
is a tuple A = (L,X,E, Inv,AP,L, (µq, pq)q∈L×RX+ ,Γ

τ , 99K), where

• L is a finite set of locations partitioned into Lint = {l ∈ L | ∀(l′, g, Y, l′′) ∈
E, l′ 6= l}, called the set of interactive locations, and Lcint representing all
other locations, i.e. the set of non-interactive locations;

• X is a finite set of clocks;

• E ⊆ L× G×(X)× 2X × L is a finite set of edges;

• Γτ = Γ ∪ {τ} where Γ is a finite set of actions and τ is an internal action;

• 99K ⊆ L× Γτ × Gint(X)× 2X × L is a finite set of interactive transitions;

• L : L→ 2AP is a labelling function;

• for each q ∈ Lcint × RX+ (i.e. for each state with non-interactive location),
µq is a probability distribution over I(q), and pq a probability distribution
over E;

10.1 – Syntax of ISTA 223

• Inv : L → G×(X) is an invariant function satisfying that for each l ∈ Lint,
Inv(l) = true.

We immediately illustrate the model on Example 10.1.2. It represents a naive
cooling system inspired from the one depicted in [BBJM12] as a STA.

Example 10.1.2. We illustrate a naive model for a cooling system as an ISTA. It
is depicted in Figure 10.1. For this example, we omit the labels on the location.
ISTA Acool = (L,X,E, Inv, (µq, pq)q∈L×RX+

,Γτ , 99K) is defined with the follow-

ing components: sets L = {Up,Wait,Down,Failure,Burned Plant}, X = {x},
E is described by the plain arrows on the figure just like in the STA model,
Γ = {down, fix, replace, burn}, 99K is also obviously described on Figure 10.1,
all invariants are given by true, and the distributions are defined as follows:
first observe that Wait, Down and Failure are interactive locations and thus, no
distributions are defined in these locations. Then from Up and Burned Plant,
the distributions over the delays could be exponential distributions, let us say
Exp(λ1) and Exp(λ2). Finally we assume that, from Up, the probability over
the edges gives 1/2 to both outgoing edges. In location Burned Plant, only one
edge is enabled. One can check that all conditions of Definition 10.1.1 are met.

Up

Wait Down Failure

Burned Plant

x := 0

down

x < 10

x ≥ 3 fix

τ, x ≥ 10

x := 0

replace

x ≥ 100

burnτ, x ≥ 10

x := 0

Figure 10.1: An ISTA Acool describing a cooling system

We give now some light on the example. In location Up, the cooling system

224 Chapter 10 – Interactive Stochastic Timed Automata and Handshaking Composition

works just fine. It can stay there forever (Up, true, ∅,Up) ∈ E or something
wrong can happen at any time (Up, true, {x},Wait) ∈ E, i.e. a delay is ran-
domly chosen according to Exp(λ1) and then, with probability 1/2 something
wrong occurs and the system moves towards location Wait. In this location,
the system is already down however it needs to wait for someone to fix it. We
make the assumption that the system is better to be fixed within the next 10
time units, that is why clock x was reset to 0 and why guard x < 10 is used:
once someone is available, a signal is sent through the interactive transition Wait
down, x < 10 Down. However if nobody is available to repair the cooling system

within the 10 first time units, then an internal error can occur through the in-

teractive transition Wait τ, x ≥ 10, x := 0 Failure. In location Down, a worker
is fixing the cooling system. It goes to Up as soon as the worker has fixed it.
We assume that the system cannot be fixed in the 3 first time units since it was

down, hence Down fix, x ≥ 3 Up. After the elapse of 10 time units, an internal
error can occur like in location Wait, through the interactive transition Down
τ, x ≥ 10, x := 0 Failure. In location Failure, the system is beyond repair and

has to be replaced but it takes much more time and it has to wait for someone

to replace it: Failure replace, x ≥ 100 Up. But since the cooling system does not
work, the power plant can burn at any time which is depicted through the in-
teractive transition Failure burn Burned Plant. The systems stays then in this
location forever (Burned Plant, true, ∅,Burned Plant) ∈ E.

Observe that this system as depicted here, requires communication with other
systems. For instance one could assume that two cooling systems are working in
the power plant so that when one is down, the other one can still do the job. In
that case, the plant would burn only if the two systems are beyond repair leading
thus to a synchronisation on action burn. On the other hand, one could build
an ISTA representing a worker who fixes the cooling system. Then the worker
and the cooling system would need to communicate through actions down, fix
and replace. We will come back to this in Example 10.2.5 when dealing with the
handshaking composition.

As quickly observed in Example 10.1.2, and like in the IMC model, interactive
transitions will allow for interaction between systems. The internal action τ
has again a special role, and like in IMCs, we will make the maximal progress
assumption: we suppose that in any ISTA, internal interactive transitions take
precedence over the edges (i.e. the probabilistic transitions given by E) or, in
other words, we assume that when a τ -labelled transition is enabled, it is taken
immediately.

We are not yet ready to define a semantics for ISTA. Indeed, interactive

10.1 – Syntax of ISTA 225

transitions (with external actions) can be seen as signals in the model. The
system can then fire a given interactive transition once it has communicated on
the corresponding signal with some required other system(s). In other words,
interactive transitions need synchronisation(s). Therefore, we need to define
an operator of composition with synchronisations. Then, once all interactions
are done and thus the system does not need to synchronise, we can abstract
all external actions into the internal action τ : due to the maximal progress
assumption, we thus suppose that an enabled interaction occurs immediately.
This abstraction is done through a hiding operator. Once all actions are hidden,
we say that the system is closed. The semantics of the resulting ISTA will then
be given through a STA.

Remark 10.1.3. Due to the presence of interactive locations, one cannot speak
immediately of a STA induced by an ISTA. Edges (i.e. the probabilistic transi-
tions given by E) can arrive in interactive locations. But such locations have no
sense in a STA.

Before going further in the chapter, we need to establish some conditions on
the ISTA that we will consider in the sequel. Firstly, like in STA, we assume
that there are no-blocking states in ISTA. The set of states is defined as in
Definition 2.1.5 by Q = {(l, ν) ∈ L× RX+ | ν |= Inv(l)} and a state q is blocking
like in Definition 2.1.16, if I(q) = ∅, where I(q) is defined as in the case of
STA: it is the set of delays after which an edge is enabled. We do not consider
interactive transitions in I(q). For each e ∈ E with source(e) = l, I((l, ν), e) =
{t ∈ R+ | ν + t |= Inv(l) ∧ ν + t |= g} and I((l, ν)) =

⋃
e∈El I((l, ν), e) where

El = {e ∈ E | source(e) = l}. We also assume that once an interactive transition
is enabled, it is always enabled in the future for all states of the ISTA. For the case
of an interactive location l, since Inv(l) = true, this implies that each interactive
transition from l is guarded by a constraint of the form

∧
x∈Y x ≥ cx for some

Y ⊆ X and where for each x ∈ Y , cx ∈ N. We formalize those hypotheses below:

(I1) for each l ∈ Lcint and for each ν ∈ RX+ , ν |= Inv(l) =⇒ I((l, ν)) 6= ∅;

(I2) for each l ∈ L, for each ν ∈ RX+ and for each d = (l, a, g, Y, l′) ∈ 99K, ν |=
g =⇒ (∀t ≥ 0, (ν + t |= Inv(l) =⇒ ν + t |= g));

It should be noted that the ISTA Acool does not satisfy hypothesis (I2) due to

the interactive transition Wait down, x < 10 Down, although Inv(Wait) = true.

Like in Chapter 9, we also make the assumptions that the probability distri-
butions over the delays satisfy hypothesis (‡) of page 65 and that the distributions
over the edges satisfy condition (?) of page 176.

226 Chapter 10 – Interactive Stochastic Timed Automata and Handshaking Composition

10.2. Semantics of ISTA

In this section, we define the semantics of ISTA. In order to do so, we first de-
fine a parallel composition operator that is handshaking, and a hiding operator.
This is done in Section 10.2.1. Like in IMCs ([Her02] and [HK09]), the parallel
composition operator is interleaving for non-interactive transitions, but it syn-
chronises on the interactive transitions. The hiding operator abstracts some set
of actions into the internal action τ . The idea is like in IMCs (see Section 2.4.2
for some details) that once an action does not need interactions anymore, it is
hidden.

Once a system has performed all possible interactions, all actions are hidden.
Then the semantics of the resulting ISTA can be given as a STA. This will be
the subject of Section 10.2.2 and will be plainly explained.

10.2.1 Parallel composition and hiding operator

In this section, we define a handshaking operator of parallel composition and a
hiding operator for ISTA. We then define a notion of bisimulation that extends
the one on IMCs ([Her02] and [HK09]; see Section 2.4.2) and show that it is a
congruence w.r.t. parallel composition and hiding.

We fix an ISTA A for the rest of the section and we assume that it satisfies
conditions (I1) and (I2) of page 233. As already said before the set of states Q
is the set {(l, ν) ∈ L×RX+ | ν |= Inv(l)}. Given a state q, we write IInv(q) = {t ∈
R+ | ν + t |= Inv(l)} recovering a notation used in the proof of Lemma 9.2.1.
As stated in the same proof and similarly to arguments in Remark 3.1.1 or for
Lemma 9.1.1, we can establish the following technical result.

Lemma 10.2.1. Given an ISTA A and a state q = (l, ν), there is t ∈]0,∞] such
that IInv(q) = [0, t[.

Similarly to the class CSTA of Chapter 9 page 177 in STA, we define the
class CISTA as the class of ISTA satisfying conditions (A) and (B) of CSTA. We
recall that condition (A) asks that each distribution over the delays is given by
a density function continuous everywhere, except in a finite number of points;
condition (B) states that those distributions are weakly-memoryless. We now
define when two ISTA are composable. We use the following notation: we write

Γl = {a ∈ Γ | ∃g ∈ Gint(X),∃Y ⊆ X,∃l′ ∈ L, (l, a, g, Y, l′) ∈ 99K}.

Given a location l ∈ L, Γl represents thus the set of actions a that are enabled
in l, i.e. such that there is an interactive transition starting from l and labelled
with a.

10.2 – Semantics of ISTA 227

Definition 10.2.2. Consider for each i ∈ {1, 2}, ISTAAi = (Li, Xi, Ei, Invi, APi,

Li, (µ(i)
q , p

(i)
q)

q∈Li×R
Xi
+

,Γτi , 99Ki) and let A ⊆ Γ1∩Γ2. We say that A1 and A2 are

composable w.r.t. A if A1 and A2 are in CISTA, X1 ∩ X2 = ∅ and if for each
l1 ∈ L1,int and each l2 ∈ L2,int one of the following statements holds true:

• Γl1 * A, or

• Γl2 * A, or

• Γl1 ∩ Γl2 6= ∅.

In this definition, A represents the set of actions on which the two systems
will synchronise. The two first requirements imply that at in l1 or in l2 that
are two interactive locations, at least one of the systems does not have to wait
for the other system to synchronise: Γl1 * A (resp. Γl2 * A) states that there
is an interactive transition from l1 (resp. l2) that is labelled with some action
b that is not in A. The last requirement is here in order to avoid a situation
where only interactive transitions are possible but both systems are waiting for
communications that are not possible and thus blocking the system. This will be
made clearer in Remark 10.2.4 We can now define the handshaking composition
operator.

Definition 10.2.3. Consider for each i ∈ {1, 2}, ISTAAi = (Li, Xi, Ei, Invi, APi,

Li, (µ(i)
q , p

(i)
q)

q∈Li×R
Xi
+

,Γτi , 99Ki) and let A ⊆ Γ1 ∩Γ2 be such that A1 and A2 are

composable w.r.t. A. We define the parallel composition of A1 and A2 with
synchronisations over the set A as the ISTA

A1 ‖A A2 = (L,X,E, Inv,AP,L, (µq, pq)q∈L×RX+ ,Γ
τ , 99K)

where

• L = L1 × L2, X = X1 ∪ X2, E = E1,• ∪ E•,2 (see Definition 2.1.29: E1,•
represents the set of edges where the component of A1 performs an edge
of E1 while the component of A2 does not change), AP = AP1 ∪ AP2;

• for each (l1, l2) ∈ L, L(l1, l2) = L(l1) ∪ L(l2), Inv(l1, l2) = Inv(l1) ∧ Inv(l2);

• Lint = L1,int × L2,int;

• for each state q = ((l1, l2), (ν1, ν2)) ∈ Lcint × RX+ , writing q1 = (l1, ν1) and
q2 = (l2, ν2),

228 Chapter 10 – Interactive Stochastic Timed Automata and Handshaking Composition

. if (l1, l2) ∈ Lc1,int × Lc2,int, µq and pq are defined as in Definition 9.1.9:

µq is the distribution of the minimum between µ
(1)
q1 and µ

(2)
q2 ; pq is

defined by a race between A1 and A2 to win the next edge;

. if (l1, l2) ∈ Lc1,int × L2,int, (µq, pq) = (µ
(1)
q1 , p

(1)
q1),

. if (l1, l2) ∈ L1,int × Lc2,int, (µq, pq) = (µ
(2)
q2 , p

(2)
q2);

• Γ = Γ1 ∪ Γ2;

• 99K is defined as follows:

. for each a ∈ A, it holds that if l1
g1, a, Y1

1 l′1 and if l2
g2, a, Y2

2 l′2,

then (l1, l2) g1 ∧ g2, a, Y1 ∪ Y2 (l′1, l
′
2);

. for each a /∈ A, it holds that if l1
g1, a, Y1

1 l′1, then for each l2 ∈ L2,

(l1, l2) g1, a, Y1 (l′1, l2);

. for each a /∈ A, it holds that if l2
g2, a, Y2

2 l′2, then for each l1 ∈ L1,

(l1, l2) g2, a, Y2 (l1, l
′
2).

Observe thus that like in IMCs with the rates (see Definition 2.4.3), the
parallel composition is interleaving on the edges but also on the interactive tran-
sitions whose labels are not in A. Observe also that we cannot synchronise on
the internal action τ .

Remark 10.2.4. As already said before, A1 and A2 are required to be composable
w.r.t. A in order to avoid blocking-states: if l1 ∈ L1,int and l2 ∈ L2,int are such
that Γl1 ⊆ A and Γl2 ⊆ A and Γl1 ∩ Γl2 = ∅, then (l1, l2) has no outgoing
(interactive) transitions and thus the system cannot evolve anymore.

We now illustrate the operator of composition on the cooling system of Ex-
ample 10.1.2.

Example 10.2.5. We consider again the cooling system in the power plant of
Example 10.1.2 described on Figure 10.1. In order to simplify the example, we
make the assumption in the rest of the chapter that there is no interactive tran-
sition between Failure and Up. Moreover, in order to have the conditions (I1)
and (I2) satisfied, we assume that guard of the interactive transition for Wait to
Down to be true. We will see how we can force the τ -transition towards Failure
once 10 time units have elapsed. This time we assume that there are two cooling
systems in the power plant: Acool1 and Acool2 . For each i ∈ {1, 2}, we thus con-
sider the cooling system Acooli depicted on Figure 10.2. We therefore index each
clock, location and action correspondingly to the ISTA it belongs to, except for

10.2 – Semantics of ISTA 229

the action burn which is the only shared action: Γ1 ∩ Γ2 = {burn}. Here we as-
sume that the power plant is burned only when both cooling systems are beyond
repair. We partially describe the ISTA Acool1 ‖{burn} Acool2 on Figure 10.3.

Upi

Waiti Downi Failurei

Burned Planti

xi := 0

downi

xi ≥ 3 fixi

τ, xi ≥ 10

xi := 0

burnτ, xi ≥ 10

xi := 0

Figure 10.2: A slight variant of the cooling system; ISTA Acooli

As said before, the ISTA described on Figure 10.3 is only a partial represen-
tation of Acool1 ‖{burn} Acool2 . Missing locations are (F1, U2), (U1, F2), (F1,W2)
and (W1, F2). Missing edges are all the self-loops when needed (for instance, two
self-loops on (U1, U2): one for Acool1 and the other one for Acool2). Missing in-

teractive transitions are for instance (D1,W2) fix1, x1 ≥ 3 (U1,W2) or (W1, D2)
fix2, x2 ≥ 3 (W1, U2). Observe that from (F1, D2) and (D1, F2) there should

indeed not have interactive transitions with label burn (which are enabled from
F1 and F2) as the synchronisation is not possible there. The invariant function is
given trivially. The distributions over the delays and edges are not given as they
are computed as in Chapter 9 (for instance Example 9.1.10). Observe however
that, for instance, in location (W1, U2), since W1 is an interactive location, then
(W1, U2) takes the distributions of location U2 in Acool2 , namely Exp(λ1) and
probability one half on the self-loop edge and one half on the edge toward Wait2.

We now briefly describe an ISTA representing a worker that should fix the
cooling systems when they are down. It is given as ISTA Aworker on Figure 10.4.

First observe that there is no interactive location, therefore each location

230 Chapter 10 – Interactive Stochastic Timed Automata and Handshaking Composition

(U1,U2)

(W1,U2) (U1,W2)

(D1,U2) (U1,D2)(W1,W2)

(D1,W2) (W1,D2)

(D1,D2)

(F1,D2) (D1,F2)

(F1,F2)

(B1,B2)

··· ···

···

···

···

···

··· ···

··· ···

··· ···

τ τ

fix1
τ

fix2
τ

fix2 fix1

τ τ

τ τ

fix2, x2≥3 fix1, x1≥3

x1:=0 x2:=0

x2:=0 x1:=0

x2:=0 x1:=0

x1<10

down1

x2<10

down2

fix1, x1≥3 fix2, x2≥3

x1<10

down1

x2<10

down2

x2<10

down2

x1<10

down1

x1≥10

τ, x1:=0

x2≥10

τ, x2:=0

x2≥10

τ, x2:=0

x1≥10

τ, x1:=0

burn

Figure 10.3: The handshaking composition Acool1 ‖{burn} Acool2

should be equipped with adequate distributions. The invariant function should
be given as follows: Inv(Other Tasks) = y < 4 and Inv(l) = true for any other
location. Now Aworker represents a worker such that in location Idle, he is unoc-
cupied. At any time, he can do some tasks in location Other Tasks and we make
the assumption that he cannot spend more than 4 time units on his tasks. Once

10.2 – Semantics of ISTA 231

IdleOther Tasks

Fixing1

Dead

Fixing2

y < 4

down1

y := 0

y := 0

down2

fix1

y ≥ 3

y ≥ 3

fix2

burn

burn

Figure 10.4: An ISTA Aworker representing a worker in a power plant, fixing
cooling systems.

done, he goes back to location Idle where the same process happens. However,
as soon as one of the cooling system is down, he has to go and repair it in Fixing1

or Fixing2 depending on which system is down or if both are down, depending
on which one he chooses to fix first. Observe that if he is busy with fixing one of
the system, he cannot take care of the other system. For each system, we assume
that it takes at least 3 time units to repair it. At any time, if both systems are
getting beyond repair while he is fixing one of them, the burning of the plant
would lead to his death in location Dead.

Then, if we write Γ′ = {down1, down2, fix1, fix2, burn} for the set of actions
of Aworker, we are interested by the product (Acool1 ‖{burn} Acool2) ‖Γ′ Aworker.
Some of the first steps of this ISTA are given in Figure 10.5. Observe that F1

and F2 in the third component correspond to Fixing1 and Fixing2. Furthermore,
T in the third component stands for Other Tasks.

The figure is quite self-explanatory, we just make a few comments. First we
have again omitted the self-loops when it is required, and we will not be giving the
invariant function nor the new distributions. We have also omitted the τ -labelled
transition corresponding to Wait1 or Wait2 in each location. Observe that in
location (W1, U2, T) and (W1,W2, T), there is no interactive transition labelled
with down1 or down2 while those are allowed in W1 and W2. It comes from the

232 Chapter 10 – Interactive Stochastic Timed Automata and Handshaking Composition

(U1,U2,I)

(U1,U2,T)

···

(U1,W2,I)

···

···

···

(W1,U2,I)

(W1,U2,T) (D1,U2,F1)

···

···

(W1,W2,T)

···

fix2, x2≥3

down1

x1<10

τ

down2

y:=0 x2:=0

x1:=0

y<4

y:=0

y<4

x1:=0

x2:=0

x2:=0

y<4

x2:=0

x2:=0 x1:=0
y:=0

Figure 10.5: The handshaking composition (Acool1 ‖{burn} Acool2) ‖Γ′ Aworker

fact that we synchronise the worker and the two cooling systems on down1 and
down2 in particular. In location T , the worker is doing some other task(s) and
cannot receive the signal alerting that one or both cooling systems are down. On

the other hand, as an example, transition (W1, U2, I) down1 (D1, U2, F1) is the
result of a synchronisation on down1 between the product Acool1 ‖{burn} Acool2

and Aworker. Finally, one can also observe that the communication on burn can
only occur in locations (F1, F2, F1) or (F1, F2, F2), i.e. when the two cooling
systems are beyond repair while the worker is trying to fix one of them.

Remark 10.2.6. Like in Chapter 9 with the interleaving composition (see Re-
mark 9.2.4), the handshaking is in some sense commutative. One can also get
associativity as follows. Fix three ISTA A1, A2 and A3 with respectively Γ1, Γ2

and Γ3 for the set of actions. Fix A1 ⊆ Γ1∩Γ2 and A2 ⊆ (Γ1∪Γ2)∩Γ3. Observe
that A2 = (A2 ∩ Γ1) ∪ (A2 ∩ Γ2). We can show thatÄ

A1 ‖A1 A2

ä
‖A2 A3 = A1 ‖(A2∩Γ1)∪A1

Ä
A2 ‖A2∩Γ2 A3

ä
.

10.2 – Semantics of ISTA 233

Similarly as in Chapter 9 with Lemma 9.2.1, we need to prove that paral-
lel composition is well-defined, i.e. that the probability distributions are well-
defined, but also that all the hypotheses made in Definition 10.1.1 are met. We
assume that A1 and A2 are two ISTA, that A ⊆ Γ1 ∩ Γ2 6= ∅ and that A1 and
A2 are composable w.r.t. A.

Lemma 10.2.7. The product A1 ‖A A2 is well-defined and is an ISTA in the
class CISTA. Moreover, A1 ‖A A2 satisfies conditions (I1), (I2), (‡) and (?).

Proof. Given a state q = ((l1, l2), (ν1, ν2)) with (l1, l2) ∈ Lcint, the fact that the
distributions µq and pq are well-defined and that the distributions µq are weakly-

memoryless comes from the definition since either they are given as µ
(1)
q and p

(1)
q

(if l1 ∈ Lc1,int and l2 ∈ L2,int), as µ
(2)
q and p

(2)
q (if l1 ∈ L1,int and l2 ∈ Lc2,int) or as

defined in Definition 9.1.9 (if l1 ∈ Lc1,int and l2 ∈ Lc2,int) and then Lemma 9.2.1
allows us to conclude. We get similarly that the distributions satisfy conditions
(A) and (B) of CISTA and conditions (‡) and (?). It is trivial to get that
A1 ‖A A2 is still an ISTA as defined in Definition 10.1.1. It remains to show
that condition (I1) and (I2) are satisfied, i.e.

(I1) for each l ∈ Lcint and for each ν ∈ RX+ , ν |= Inv(l) =⇒ I((l, ν)) 6= ∅;

(I2) for each l ∈ L, for each ν ∈ RX+ and for each d = (l, a, g, Y, l′) ∈ 99K, ν |=
g =⇒ (∀t ≥ 0, (ν + t |= Inv(l) =⇒ ν + t |= g));

We begin with (I1). We fix l = (l1, l2) ∈ Lcint and ν = (ν1, ν2) ∈ RX+ , and
assume that ν |= Inv(l). We have to prove that I(l, ν) 6= ∅. First it should be
noted from the definition of I(q) that

I(q) = {t ∈ R+ | (t ∈ I(q1) ∧ ν2 + t |= Inv(l2)) ∨ (t ∈ I(q2) ∧ ν1 + t |= Inv(l1)}
=
Ä
I(q1) ∩ IInv(q2)

ä
∪
Ä
I(q2) ∩ IInv(q1)

ä
where q1 = (l1, ν1) and q2 = (l2, ν2). Thus, I(l, ν) 6= ∅ if and only if I(q1) ∩
IInv(q2) 6= ∅ or I(q2)∩IInv(q1) 6= ∅. First observe that if l1 ∈ L1,int, then I(q1) = ∅,
Inv(l1) = true and l2 ∈ Lc2,int. It follows that I(q2) 6= ∅ (as A2 satisfies (I1))
and IInv(q1) = [0,∞[. We thus straightforwardly get that I(q2)∩ IInv(q1) 6= ∅. A
similar argument holds if l2L2,int. We can thus assume l1 ∈ Lc1,int and l2 ∈ Lc2,int.
Towards a contradiction, assume that

I(q1) ∩ IInv(q2) = ∅ and I(q2) ∩ IInv(q1) = ∅. (10.1)

From Lemma 10.2.1, it holds that there are c1 and c2 ∈]0,∞] such that IInv(q1) =
[0, c1[and IInv(q2) = [0, c2[. Since l1 ∈ Lc1,int and l2 ∈ Lc2,int, and since ν |=

234 Chapter 10 – Interactive Stochastic Timed Automata and Handshaking Composition

Inv(l) = Inv(l1) ∧ Inv(l2), we get that I(q1) 6= ∅ and I(q2) 6= ∅ (from hypothesis
(I1) for A1 and A2). W.l.o.g., suppose that c2 ≥ c1. From hypothesis (10.1) we
get that

I(q1) ⊆ [c2,∞[⊆ [c1,∞[= IInv(q1)c

which contradicts the definitions of I(q1) = {t ∈ R+ | ν1 + t |= Inv(l1) ∧ ∃e1 =
(l1, g1, Y1, l

′
1) ∈ E1, ν1 + t |= g} ⊆ IInv(q1). This proves point (I1).

Now in order to get (I2), fix l = (l1, l2) ∈ L, ν = (ν1, ν2) ∈ RX+ and d =
(l, a, g, Y, l′) ∈ 99K such that ν |= g. First if a ∈ A, then d = ((l1, l2), a, g1 ∧
g2, Y1 ∪ Y2, (l

′
1, l
′
2)) where (l1, a, g1, Y1, l

′
1) ∈ 99K1 and (l2, a, g2, Y2, l

′
2) ∈ 99K2. As

ν |= g, we have that ν1 |= g1 and ν2 |= g2. Now fix t ≥ 0 and assume that
ν + t |= Inv(l), i.e. ν1 + t |= Inv(l1) and ν2 + t |= Inv(l2). From condition (I2) for
A1 and A2, we thus get that ν1 + t |= g1 and ν2 + t |= g2 and thus ν + t |= g. If
a /∈ A, then either d = ((l1, l2), a, g1, Y1, (l

′
1, l2)) with (l1, a, g1, Y1, l

′
1) ∈ 99K1, or

d = ((l1, l2), a, g2 Y2, (l1, l
′
2)) with (l2, a, g2, Y2, l

′
2) ∈ 99K2. W.l.o.g., assume that

we are in the first case, it thus holds that ν1 |= g1. Finally fix t ≥ 0 and assume
that ν + t |= Inv(l), i.e. ν1 + t |= Inv(l1) and ν2 + t |= Inv(l2). Again we get that
ν1 + t |= g1 and therefore ν |= g. This concludes the proof.

As already explained in Section 9.3 but also in Sections 2.1.3 and 2.4.2,
bisimulation is an important notion when dealing with parallel composition. We
thus define here a notion of bisimulation for ISTA that extends the one of IMCs
(see [Her02], [HK09] and Section 2.4.2) and show that it is a congruence w.r.t.
parallel composition. We fix an ISTA A.

We first need a new notation. Given a state q = (l, ν), we write Iτ (q) = {t ∈
R+ | ν + t |= Inv(l) and ∃(l, τ, g, Y, l′) ∈ 99K, ν + t |= g}, i.e. it corresponds to
the set of delays after which, starting from q, a τ -action is enabled. We then
have the following result.

Lemma 10.2.8. For each state q, it holds that Iτ (q) is either the empty set or
a finite union of disjoint intervals of the form [t1, t2[with t1, t2 ∈ R+.

The proof uses similar arguments as in Remark 3.1.1 and Lemmas 9.1.1
and 10.2.1. Here it comes from Lemma 10.2.1 and from the fact that guards on
interactive transitions are in Gint(X). With this result, one can establish that
for each state q, if Iτ (q) 6= ∅, then there exists a minimal element in this set, i.e.
min(Iτ (q)) exists. If Iτ (q) = ∅, we will abusively write min(Iτ (q)) =∞. This is
why guards in Gint(X) are needed for interactive transitions.

We can now define a notion of bisimulation for ISTA. We refer to Section 9.3.1
for notations on equivalence relations and in particular on the closure of an

10.2 – Semantics of ISTA 235

equivalence relation w.r.t. polyhedral sets. We recall that for each state q =
(l, ν) with l non-interactive, fq denotes the density function of µq and for an
equivalence relation R and C =

⋃
l′∈L{l′}×Cl′ ∈ pcl(R) (the closure of R w.r.t.

polyhedral sets), we write for each t ≥ 0,

Pq+t(C) =
∑
l′∈L

∑
e∈El′

pq+t(e)1Cl′ (e,ν)(t)

where El′ is the subset of E with target l′ and given e = (l, g, Y, l′), Cl′(e, ν) =
{t ∈ R+ | [Y ← 0](ν + t) ∈ Cl′}.

Definition 10.2.9. Let A = (L,X,E, Inv,AP,L, (µq, pq)q∈L×RX+ ,Γ
τ , 99K) be an

ISTA. An equivalence relation R over the set of states Q is a bisimulation for A
if for each q1, q2 ∈ Q with q1Rq2 with qi = (li, νi) for i = 1, 2,

(1) L(q1) = L(q2);

(2) l1 ∈ Lint ⇐⇒ l2 ∈ Lint;

(3) Iτ (q1) = ∅ ⇐⇒ Iτ (q2) = ∅ and moreover if Iτ (q1) 6= ∅, then min(Iτ (q1)) =
min(Iτ (q2)) = t∗;

(4) if l1, l2 ∈ Lcint, for each C ∈ pcl(R), for almost-surely each t < t∗,

(a) fq1(t) = fq2(t), and

(b) Pq1+t(C) = Pq2+t(C),

(5) (a) for each a ∈ Γ, for each t < t∗,

∃q′1, q1 + t a q′1 =⇒ ∃q′2, q2 + t a q′2 ∧ q′1Rq′2,

and vice versa,

(b) if t∗ <∞,

∃q′1, q1 + t∗ τ q′1 =⇒ ∃q′2, q2 + t∗ τ q′2 ∧ q′1Rq′2,

and vice versa.

States q1 and q2 are bisimilar (written q ∼ q′) if there is a bisimulation that
contains (q, q′).

236 Chapter 10 – Interactive Stochastic Timed Automata and Handshaking Composition

One can establish links with Definitions 2.4.7 and 9.3.1, and with Proposi-
tion 9.3.4. Firstly, observe that point (4) of Definition 10.2.9, is the counter-part
of point (ii) of Definition 9.3.1 thanks to the characterisation of bisimulation
in STA of Proposition 9.3.4. Observe that here, we require equivalence of the
distributions only on [0, t∗[. Like in IMCs, this is due to the maximal progress
assumption: internal actions take precedence over edges. Then, it has no im-
portance how time progresses afterwards. Point (4) somewhat corresponds the
second point of the definition of bisimulation in IMCs (Definitions 2.4.7 here).
In [HK09], the authors require the distributions to be equivalent only when no
internal action is allowed. This is due to the fact that in IMCs all guards would
be true on each edge and interactive transitions. Which is not the case here
in ISTA. Point (5) of Definition 10.2.9 corresponds to the first point of Defini-
tion 2.4.7, also keeping in mind that all guards are true in IMCs. Finally, point
(1) is classical, points (2) and (3) are here to make sure that firstly, if time can
progress in one state, then it must also be able to progress in the other state,
and secondly, the next τ -action happens at the same time in both states.

We illustrate the notion on a simple example.

Example 10.2.10. We consider a simple variant of the STA of Example 9.3.5
(see Figure 9.4). First we add some location l3 labelled by L(l3) = {b} and
we add an interactive transition from l0 to l3 with guard x1 ≥ 1 and labelled
with τ , turning the STA into an ISTA. We assume that l3 has only a self-loop
with guard true and that the distribution over the delays in this location is
always an exponential distribution of parameter µ > 0. We recall that there is
an edge from l0 to l1 and from l0 to l2, but this time we assume that guards
are given by respectively 0 < x1 < 2 and 0 < x2 < 2. From a state of the
form q = (l0, (ν1, ν2)) with ν1 < 2 or ν2 < 2, I(q) = [0, 2 − min(ν1, ν2)[and so
we can again equip q with a uniform distribution on the interval I(q) for the
delays. Finally, we again consider that each state of the form (l1, ν) or (l2, ν)
with ν ∈ R2

+ is equipped with the same exponential distribution over delays, say
Exp(λ). We assume λ 6= µ.

Like in Example 9.3.5, we compute the equivalence classes of ∼. First since
λ 6= µ, it is easily seen that {l1, l2}×R2

+ and {l3}×R2
+ are two different classes.

We are now interested in location l0. It is again very similar to Example 9.3.5
except that here, once x1 ≥ 1, the τ -transition is always immediately enabled. It
follows that {l0}×([1,∞[×R+) is an equivalence class of ∼. Finally, one can show
that for each ν ∈ [0, 1[, the set {l0}×

Ä
{(ν1, ν) | ν1 ≥ ν}∪{(ν, ν2) | ν2 ≥ ν}

ä
. We

thus get almost the same classes as in Example 9.3.5, the only difference comes
from the τ -transition: once such a transition is enabled, we do not care about
the distributions over the delays (due to the maximal progress assumption).

10.2 – Semantics of ISTA 237

l0

{a}

A

l1

{b}

l2

{b}l3

{b}
0 < x1 <

2

0 < x2 < 2

τ ; x1 ≥ 1

Figure 10.6: Bisimulation in ISTA

Like in Chapter 9, we will prove that bisimulation is a congruence w.r.t. par-
allel composition. Recall that in order to do so we need to define a bisimulation
between ISTA. Like in STA (see Section 9.3.1 page 213) one can build a union
ISTA from two ISTA A1 and A2. We will then use similar terminology: ISTA
A1 and A2 are said bisimilar from states q1 and q2, and we write A1 ∼ A2, if
q1 ∼ q2 in A1 ∪ A2. Observe that for an interesting bisimulation, it should be
the case that Γ1 = Γ2.

Before proving that ∼ is a congruence w.r.t. parallel composition, we first
need two technical lemmas. The first one is similar to Lemma 9.3.10.

Lemma 10.2.11. Let A be an ISTA in CISTA and letR be a bisimulation for A.
Let q1 and q2 be two states of A. If q1Rq2 and if t∗ = min(Iτ (q1) = min(Iτ (q2)),
then (q1 + t)R(q2 + t) for each t < t∗. Moreover,

(i) if t∗ =∞ (i.e. Iτ (q1) = Iτ (q2) = ∅), then IInv(q1) = IInv(q2);

(ii) if t∗ <∞, then [0, t∗] ⊆ IInv(q1) ∩ IInv(q2).

Proof. Fix q1 = (l1, ν1) and q2 = (l2, ν2) two states of A such that q1Rq2,
and write t∗ = min(Iτ (q1)) = min(Iτ (q2)) with the convention that t∗ = ∞
if Iτ (q1) = Iτ (q2) = ∅. Let us prove that for each t < t∗, (q1 + t)R(q2 + t).
Points (1) and (2) of Definition 10.2.9 are easily checked as they only depend
on the locations and since q1Rq2. For point (3), notice that if t∗ = ∞, then
Iτ (q1) = Iτ (q2) = ∅ and thus Iτ (q1 + t) = Iτ (q2 + t) = ∅, while if t∗ < ∞,
then Iτ (q1 + t) 6= ∅ and Iτ (q2 + t) 6= ∅ since t < t∗. Thus Iτ (q1 + t) = ∅ if
and only if Iτ (q2 + t) = ∅. Finally for the second case, it is easily seen that
min(Iτ (q1 + t)) = min(Iτ (q2 + t)) = t∗ − t.

Establishing point (4) is very similar to the proof of Lemma 9.3.10 except
that here, we want the equivalence of distributions only on [0, t∗ − t[.

238 Chapter 10 – Interactive Stochastic Timed Automata and Handshaking Composition

Finally, we have to check (5). First fix a ∈ Γ and t′ < t∗− t, and assume that
there is q′1 such that (q1 + t) + t′ a q′1, that is q1 + (t + t′) a q′1. As q1Rq2,
we know that there is q′2 such that q2 + (t + t′) a q′2 and q′1Rq′2. Hence there
is q′2 such that (q2 + t) + t′ a q′2 and q′1Rq′2, which shows point (a). Suppose
now that there is q′1 such that (q1 + t) + (t∗ − t) τ q′1, thus q1 + t∗ τ q′1. By
a similar argument as before, there exists q′2 such that (q2 + t) + (t∗ − t) τ q′2
which thus proves that (q1 + t)R(q2 + t).

It remains to show points (i) and (ii). Assume that t∗ = ∞, i.e. Iτ (q1) =
Iτ (q2) = ∅. Then from the hypothesis, we get that fq1 = fq2 almost-surely on
R+. Thus µq1 = µq2 and it follows that I(q1) = I(q2). Towards a contradiction,
assume that IInv(q1) 6= IInv(q2). Then, w.l.o.g. we can assume that there is t ≥ 0
such ν1 + t |= Inv(l1) and ν2 + t 2 Inv(l2). From Lemma 10.2.1, we thus get
that for each t′ ≥ t, t′ /∈ IInv(q2). And from hypothesis (I1) on A1 (there are no
blocking-states), since ν1 + t |= Inv(l1), we have that I(l1, ν1 + t) 6= ∅. Hence,
there is t′ ≥ t such that t′ ∈ I(q1) = I(q2). From the definition of I(q2), we get
t′ ∈ I(q2) ⊆ IInv(q2) which leads to the contradiction.

Now assume that t∗ <∞. From the definitions of Iτ (q1) and Iτ (q2), it holds
that ν1 + t∗ |= Inv(l1) and ν2 + t∗ |= Inv(l2). Hence t∗ ∈ IInv(q1) ∩ IInv(q2).
Since also 0 ∈ IInv(q1) ∩ IInv(q2) because q1 and q2 are states, it follows from
Lemma 10.2.1 that [0, t∗] ⊆ IInv(q1), IInv(q2). This concludes the proof.

We can now prove the counter-part of Lemma 9.3.9 in ISTA.

Lemma 10.2.12. Let A and B ∈ CISTA with sets of states resp. QA and
QB, and with sets of actions resp. ΓA and ΓB. Assume A and B are composable
w.r.t. any A ⊆ ΓA∩ΓB and let R be a bisimulation for A. Then, the equivalence
relation R′ = {((q1, q), (q2, q)) ∈ QA ×QB | q1Rq2} is a bisimulation for A ‖A B
for each A ⊆ ΓA ∩ ΓB.

We will use similar notations as in the proof of Lemma 9.3.9.

Proof. Fix A ⊆ ΓA ∩ ΓB and let (q1, q)R′(q2, q) with q1 = (l1, ν1) ∈ QA, q2 =
(l2, ν2) ∈ QA and q = (l, ν) ∈ QB. We have to show that (q1, q) and (q2, q)
satisfy the five points of Definition 10.2.9. Point (1) is immediate, because from
Definition 10.2.3, L(q1, q) = LA(q1) ∪ LB(q) and L(q2, q) = LA(q2) ∪ LB(q) and
since q1Rq2, LA(q1) = LA(q2). The second point can be established as follows:

(l1, l) ∈ Lint ⇐⇒ (l1 ∈ LA,int) ∧ (l ∈ LB,int) from Definition 10.2.3

⇐⇒ (l2 ∈ LA,int) ∧ (l ∈ LB,int) since q1Rq2

⇐⇒ (l2, l) ∈ Lint.

10.2 – Semantics of ISTA 239

In order to get point (3), assume that Iτ (q1, q) 6= ∅ and let us show that
Iτ (q2, q) 6= ∅. We consider the first case where Iτ (q1) = ∅ (and thus Iτ (q2) = ∅).
From Lemma 10.2.11, it holds that IInv(q1) = IInv(q2). Observe that for each
i = 1, 2, Iτ ((qi, q)) = (Iτ (qi) ∩ IInv(q)) ∪ (Iτ (q) ∩ IInv(qi)). From the previ-
ous observations, we easily get Iτ ((q1, q)) = Iτ (q) ∩ IInv(q1) 6= ∅ and therefore
Iτ ((q2, q)) = Iτ (q) ∩ IInv(q2) 6= ∅.

Now assume that Iτ (q1) 6= ∅ (and thus Iτ (q2) 6= ∅). Recall that then,
min(Iτ (q1)) = min(Iτ (q2)) = t∗ and from Lemma 10.2.11, [0, t∗] ⊆ IInv(q1) ∩
IInv(q2). Observe that if t∗ ∈ IInv(q), we obviously get that t∗ ∈ Iτ ((q1, q)) ∩
Iτ ((q2, q)). Otherwise if t∗ /∈ IInv(q), then from Lemma 10.2.1, we get that
IInv(q) ⊆ [0, t∗[. It follows that Iτ (q1) ∩ IInv(q) = ∅ and thus if t ∈ Iτ (q1, q), then
t ∈ Iτ (q) ∩ IInv(q1). Since Iτ (q) ⊆ IInv(q) ⊆ [0, t∗[and [0, t∗] ⊆ IInv(q2), it follows
that t ∈ Iτ (q) ∩ IInv(q2). This concludes that Iτ (q2, q) 6= ∅. Similarly, we can
show that if Iτ (q2, q) 6= ∅ then Iτ (q1, q) 6= ∅.

Now, we have to prove that if Iτ (q1, q) 6= ∅ (and thus Iτ (q2, q) 6= ∅) then
min(Iτ (q1, q)) = min(Iτ (q2, q)). We write t∗ = min(Iτ (q1)) = min(Iτ (q2)) as
usual, and we write t′ = min(Iτ (q1, q)). We first show that min(Iτ (q2, q)) ≥ t′.
Towards a contradiction, suppose that min(Iτ (q2, q)) < t′. Then, there is t < t′

such that there is a state (q′2, q
′) such that (q2, q) + t

τ→ (q′2, q
′). There are

two cases: first if t ∈ Iτ (q2) (i.e. q2 + t
τ→ q′2) and ν + t |= Inv(l). In that

case, we get that t∗ < t < t′, i.e. min(Iτ (q1)) < t < min(Iτ (q1, q)). Since
t∗ < t and ν + t |= Inv(l), from Lemma 10.2.1 it holds that ν + t∗ |= Inv(l).
It follows that there is q′1 ∈ QA such that (q1, q) + t∗

τ→ (q′1, q + t∗) which
contradicts that t′ = min(Iτ (q1, q)). Now consider the second case: t ∈ Iτ (q)
(i.e. q + t

τ→ q′) and ν2 + t |= Inv(l2). Since t′ = min(Iτ (q1, q)), we have that
ν1 + t′ |= Inv(l1). Hence from Lemma 10.2.1, as t < t′, ν1 + t |= Inv(l1). It follows
that (q1, q) + t

τ→ (q1 + t, q′) wich contradicts that t′ = min(Iτ (q1, q)). Thus
min(Iτ (q2, q)) ≥ t′. It remains to prove that there is a state (q′2, q

′) such that
(q2, q) + t′

τ→ (q′2, q
′).

In order to establish this, let us remark that as t′ = min(Iτ (q1, q)), there is
a state (q′1, q

′) such that (q1, q) + t′
τ→ (q′1, q

′). First assume that q + t′
τ→ q′

and q′1 = q1 + t′ (i.e. ν1 + t′ |= Inv(l1)). Given that min(Iτ (q2, q)) ≥ t′ we
deduce from Lemma 10.2.1 that [0, t′] ⊆ IInv(l2), hence ν2 + t′ |= Inv(l2). It
follows that (q2, q) + t′

τ→ (q2 + t, q′). Now, if q1 + t′
τ→ q′1 and q′ = q + t′ (i.e.

ν+ t′ |= Inv(l)), then we get that [0, t′] ⊆ IInv(q). Hence, t′ = t∗ (= min(Iτ (q1))).
Indeed otherwise, we would have that t∗ < t′ which then would lead to the
fact that, from Lemma 10.2.1 for Inv(l), ν + t∗ |= Inv(l) and thus t∗ ∈ Iτ (q1, q)
which contradicts that t′ = min(Iτ (q1, q)). We thus have that t′ = min(Iτ (q1)) =
min(Iτ (q2)). Hence there is q′2 ∈ QA such that (q2, q) + t′

τ→ (q′2, q + t′).

240 Chapter 10 – Interactive Stochastic Timed Automata and Handshaking Composition

We now prove points (5.a) and (5.b). In order to get this, first remark
that, given the same notations as before, t′ ≤ t∗. Towards a contradiction,
assume that t′ > t∗. We know that there are q′1 ∈ QA and q′ ∈ QB such
that (q1, q) + t′

τ→ (q′1, q
′). This implies that ν + t′ |= Inv(l) (as either t′ ∈

Iτ (q) ⊆ IInv(q) or q′ = q + t is a state) and from Lemma 10.2.1, it holds that
ν + t∗ |= Inv(l). By Definition 10.2.9, there is q′′1 ∈ QA such that q1 + t∗

τ→ q′′1 .
Then (q1, q) + t∗

τ→ (q′′1 , q + t∗) which contradicts that t′ = min(Iτ (q1, q)).

Fix a ∈ Γ = ΓA ∪ΓB and t < t′, and assume that there is (q′1, q
′) ∈ QA×QB

such that (q1, q) + t
a→ (q′1, q

′). We have to show that there is (q′2, q
′′) ∈ QA×QB

such that (q2, q) + t
a→ (q′2, q

′′) and (q′1, q
′)R′(q′2, q′′). We have to consider several

cases. First, if a ∈ A. Then q1 + t
a→ q′1 and q+ t

a→ q′. As q1Rq2 and t < t′ < t∗,
there is q′2 ∈ QA such that q2 + t

a→ q′2 and q′1Rq′2. Then, (q2, q)+ t
a→ (q′2, q

′) and
(q′1, q

′)R′(q′2, q′) by definition of R′. Secondly, if a /∈ A. If q + t
a→ q′ and q′1 =

q1 + t (and thus ν1 + t |= Inv(l1)), then since ν2 + t |= Inv(l2) (because t < t′ < t∗

and from Lemma 10.2.11), we get that (q2, q) + t
a→ (q2 + t, q′). Finally as t < t∗,

Lemma 10.2.11 implies that (q1 + t)R(q2 + t) and thus (q1 + t, q′)R′(q2 + t, q′).
Otherwise, if q1 + t

a→ q′1 and q′ = q + t (and thus ν + t |= Inv(l)), then since
q1Rq2 and t < t∗, it holds that there is q′2 ∈ QA such that q2 + t

a→ q′2 and q′1Rq′2.
We deduce that (q2, q)+t

a→ (q′2, q+t) and (q′1, q+t)R′(q′2, q+t) which concludes
the proof of point (5.a). We can get point (5.b) in a very similar way as the case
where a /∈ A.

Finally, point (4) can be shown in a similar way as in the proof of Lemma 9.3.9
in Section 9.3.2 by restricting the domain to [0, t′[and by observing that [0, t′[⊆
[0, t∗[.

Like in STA, Theorem 9.3.11, we can now extend this result to bisimulation
between ISTA, leading to the congruence result.

Theorem 10.2.13. Bisimulation is a congruence w.r.t. parallel composition.
That is: if A1, A2 and B are three ISTA in CISTA and if A ⊆ (Γ1∩ΓB)∩(Γ2∩ΓB)
such that A1 and B are composable w.r.t. A, and A2 and B are composable w.r.t.
B, then for every states q1, q2 and q of resp. A1, A2 and B, if A1 ∼ A2 from q1

and q2, then A1 ‖A B ∼ A2 ‖A B.

The proof is similar to Theorem 9.3.11, the only differences come from Lem-
mas 10.2.11 and 10.2.12.

Hiding operator. Now that we have defined a handshaking parallel composi-
tion for ISTA, we can define a hiding operator like in IMCs (see Definition 2.4.5
or [HK09]). Basically given an ISTA A, the hiding operator will transform some

10.2 – Semantics of ISTA 241

of the actions in Γ of A into the τ internal action. It is supposed to be done
when some action a does not need any more synchronisations. The idea is that,
once a system has established communication on all possible interactions, then
all actions will be hidden. The resulting ISTA will then gives rise to a STA.

Definition 10.2.14. Let A = (L,X,E, Inv,AP,L, (µq, pq)q∈L×RX+ ,Γ
τ , 99K) be an

ISTA and let A ⊆ Γ be a set of actions. The hiding of A w.r.t. A is the ISTA
A \ A = (L,X,E, Inv,AP,L, (µq, pq)q∈L×RX+ ,Γ

τ \ A, 99K∗) where 99K∗ is defined

as follows:

• if a ∈ A and l a, g, Y l′ then l
τ, g, Y

∗ l′;

• if a /∈ A and l a, g, Y l′ then l
a, g, Y

∗ l′.

Like in IMCs (Theorem 2.4.8 or [Her02] and [HK09]), it can be shown that
bisimulation is a congruence w.r.t. hiding.

Theorem 10.2.15. Bisimulation is a congruence w.r.t. hiding. That is: if A1

and A2 are two ISTA and if A ⊆ Γ1 ∩ Γ2 6= ∅, then for every states q1 and q2 of
resp. A1 and A2, if A1 ∼ A2 from q1 and q2, then A1 \A ∼ A2 \A.

The result comes from the fact that the same actions are hidden in both
ISTA. Hence if two states of A1 and A2 are bisimilar, then those states will
still be bisimilar after hiding some set of actions A: the key point is to prove
that the first time before a τ -transition is enabled will decrease by the same
amount of time or will remain the same in both states. Then all the points of
Definition 10.2.9 will be satisfied using the fact that they were already satisfied
for A1 and A2.

As said before, an action a will be hidden when, after multiple compositions
between systems, a will not need to synchronise again. We briefly illustrate it
on Example 10.2.5.

Example 10.2.16. Consider the ISTA (Acool1 ‖{burn} Acool2) ‖Γ′ Aworker of
Example 10.2.5 depicted in Figure 10.5. One could assume that the system does
not need any more synchronisation and could thus hide all actions, i.e. consider
the ISTA (

(Acool1 ‖{burn} Acool2) ‖Γ′ Aworker

)
\ Γ′.

On the other hand, one could also presume that when the plant is burning, some
other system needs to intervene in order to minimize the damages. Thus, we
would hide all actions except action burn.

242 Chapter 10 – Interactive Stochastic Timed Automata and Handshaking Composition

10.2.2 Semantics through STA

We have now the main tools in hands, in order to define a semantics on ISTA.
As already said previously, it will be given through a STA.

While some actions of an ISTA A are not yet hidden, it is presumed that the
system still waits to communicate with other systems. What will be of interest
to us are complete ISTA, i.e. ISTA in which all actions are hidden.

Definition 10.2.17. An ISTA A is said complete if all actions are hidden, i.e.
if Γτ = {τ}.

Observe that for any ISTA A, A \ Γ is closed. Like in IMCs, once we have
composed several ISTA leading to a new ISTA that does not require to interact
again with other systems, we can hide all actions leading to a complete ISTA.

We give a semantics on complete ISTA. Keep in mind that, as briefly ex-
plained in Section 10.1, we assume that once a τ -action is enabled, it is im-
mediately performed: this is the maximal progress assumption, and this could
correspond to synchronisation happening between some systems.

Fix a closed ISTA A = (L,X,E, Inv,AP,L, (µq, pq)q∈L×RX+ , E
τ). Note that

since A is closed, we can omit the set of actions Γ. And Eτ represents here the
set of interactive transitions, as they are only labelled with τ . Intuitively, A
will behave as a STA with this difference: as soon as an interactive transition
is enabled, the system will immediately take this interactive transition. Observe
that several interactive transitions could be enabled at the same time. In order
to deal with possible non-determinism, we equip A with a weight function w :
Eτ → N such that for each state q = (l, ν) if there exists d = (l, τ, g, Y, l′) ∈ Eτ
such that ν |= g, then there is d′ = (l, τ, g′, Y ′, l′′) ∈ Eτ such that ν |= g′ and
w(d′) > 0.1 We write this condition (I3). Recall that for any state q = (l, ν), we
write Iτ (q) = {t ≥ 0 | ν + t |= Inv(l) and ∃(l, τ, g, Y, l′) ∈ Eτ , ν + t |= g} and
that whenever Iτ (q) 6= ∅, Iτ (q) has a minimal element. Then each state of A is
equipped with a distribution over the delays and the edges as follows: for each
q = (l, ν) ∈ Q, writing t∗ = min(Iτ (q)),

µ′q =


µq if Iτ (q) = ∅
min(µq, δt∗) if l ∈ Lcint and Iτ (q) 6= ∅
δt∗ otherwise,

1Observe that usually in IMCs, non-determinism is removed through a scheduler which
explicitly chooses one τ -transition. We chose here this representation with a weight function
because our model is defined with distributions over the edges.

10.3 – Decidability of ISTA 243

and for each t ≥ 0, if t < t∗ we define p′q+t = pq+t, otherwise for each e ∈ E,
p′q+t(e) = 0 and for each d ∈ Eτ

p′q+t(d) =
w(d)∑

d′ enabled in q w(d′)
.

Observe that if l is an interactive location, then obviously t∗ < ∞ and thus
δt∗ is well-defined. This induces a STA as defined in Definition 3.1.2. Notice
however that hypothesis (‡) (see page 65) that is needed to get all decidability
and quantitative results of Chapter 7 is not necessarily satisfied.

Definition 10.2.18. Consider A = (L,X,E, Inv,AP,L, (µq, pq)q∈L×RX+ , E
τ) a

closed ISTA and let w : Eτ → N be a weight function satisfying condition (I3).
The induced STA of A w.r.t. w is the tuple

Aw = (L,X,E′, Inv,AP,L, (µ′q, p′q)q∈L×RX+)

where E′ = E ∪ Eτ and for each q ∈ Q, µ′q and p′q are defined as above.

We illustrate this on the ISTA of Example 10.2.16.

Example 10.2.19. One can observe that ISTA
(
(Acool1 ‖{burn} Acool2) ‖Γ′

Aworker

)
\Γ′ of Example 10.2.16, is a complete ISTA. We write it A. Considering

the product before hiding of Example 10.2.5 on Figure 10.5, non-determinism
can only occur when the worker is fixing one of the cooling systems and the
corresponding system or both systems are in location Down. In that case, non-
determinism comes from the τ -actions of Acool1 and Acool2 , and from the synchro-
nisation on fix1 or fix2. In those cases, we put a weight of 1 on each interactive
transitions, leading to STA Aw.

10.3. Decidability of ISTA

In Section 10.2.2, we have defined the semantics of complete ISTA as a STA.
Recall that in Chapter 7, we have shown two classes of STA on which all decid-
ability and approximability results of Chapter 6 can be applied. Thanks to the
semantics as a STA, the question is now: can we find a class of complete ISTA
on which we can apply the decidability results of Chapter 6?

The two classes of STA that were identified in Chapter 7 were the classes of
reactive STA and single-clock STA. The latter case has no interest here: complete

244 Chapter 10 – Interactive Stochastic Timed Automata and Handshaking Composition

ISTA come often from the composition of several systems leading, obviously, to
several clocks. While reactive STA has no longer sense with complete ISTA:
the definition of the probability distribution over the delays µ′q is such that it
is bounded from above by the first time at which an internal action is enabled,
which is in contradiction with the definition of reactive STA where time can
always progress everywhere.

Reactive STA, though, is the class that will influence our work here. The idea
will be to consider ISTA in which all distributions only depend on the location
and that are equivalent to the Lebesgue measure on R+, just like in reactive STA.
As stated above, this will not suffice. We will make also the assumption that
it is not allowed to perform an infinite sequence of interactive transitions. This
will yield to the existence of purely stochastic locations (i.e. without outgoing
interactive transitions) that will be reached with probability 1 and that will allow
to reach memoryless regions with probability 1, just like in reactive STA.

Given a STA A′, we have seen that the thick region graph (see Defini-
tion 3.2.8) seen as a Markov chain, i.e. T tg

A′ , is an α-abstraction2 of TA′ (the
STS induced by A′), see Lemma 7.1.2. This is no longer the case here! This is
due to the fact that given an ISTA A and a weight function w, STA Aw does
not always satisfy hypothesis (‡) of page 65: indeed given a state q, the dis-
tribution µ′q is over I(q) ∩ [0, t∗] with t∗ = min(Iτ (q)) and thus we could get a
subset of I(q), I, such that Λ(I) > 0 but µ′q(I) = 0. Hence singular edges (see
Definition 3.2.6), can no longer be removed in the same way as before.

We fix for the rest of the section an ISTA A, a weight function w and the
induced STA Aw. Singular edges have now to be defined as follows. We refer to
Sections 2.1.1 and 3.2 for words on the timed region automaton R(Aw).

Definition 10.3.1. An edge e of R(Aw) is said singular whenever, writing
(l, r) = source(e):

• for all d ∈ Eτ , source(d) 6= (l, r), and there exists ν ∈ r such that I((l, ν), e)
is a single point but there is an edge e′ of Aw such that I((l, ν), e′) is not
a single point; or

• there is d ∈ Eτ such that source(d) = (l, r), and e /∈ Eτ or e ∈ Eτ and
w(e) = 0.

We still importantly get that all singular edges are performed with probabil-
ity 0. Indeed observe that the first point corresponds to Definition 3.2.6 while
the second point comes from the definition of Aw: whenever τ -transitions are

2Recall that α : L′ × RX+ → L′ ×RA′ is such that α((l, ν)) = (l, [ν]A′) where RA′ is the set
of regions of A′.

10.3 – Decidability of ISTA 245

enabled, edges are taken with probability 0. Then, we can define the thick region
graph just like in Definition 3.2.8, and we can construct a finite Markov chain
from it, that we write T tg

Aw
like in Section 7.1.1. Considering also the mapping

α : L × RX+ → L × RAw such that α((l, ν)) = (l, [ν]Aw
), we still get that T tg

Aw
is

an α-abstraction of Aw.

Lemma 10.3.2. It holds true that T tg
Aw

is a finite α-abstraction of TAw .

The proof is also immediate from the construction of T tg
Aw

and from Defini-
tion 10.3.1.

We now would like to find to class of ISTA on which we could infer the
whole class of decidability and approximability results of Chapter 6. As already
discussed in Remark 7.1.4, since T tg

Aw
is a finite α-abstraction of TAw , we need to

find a class of complete ISTA such that, considering STA Aw:

• either we can get a finite-attractor (through an abstraction) which satisfies
conditions (†) of Proposition 5.2.6,

• or we can show that Aw is fair w.r.t. α-closed sets, meeting thus the
conditions of Proposition 5.2.7.

As we think that the first case is easier to prove, and inspired by how decidability
was proven for reactive STA (see Section 7.2 or [BBB+14]), we define the class
of reactive ISTA.

Definition 10.3.3. Let A = (L,X,E, Inv,AP,L, (µq, pq)q∈L×RX+ ,Γ
τ , 99K) be an

ISTA. We say that A is reactive if for each l ∈ Lcint and for each ν ∈ RX+ ,
I((l, ν)) = R+ and for each l ∈ Lcint, there is a probability distribution µl over
R+, equivalent to the Lebesgue measure on R+, such that for each ν ∈ RX+ ,
µ(l,ν) = µl.

Basically, it is the same class as the class of reactive STA, except that obvi-
ously here interactive transitions and interactive locations are allowed. It follows
that the induced STA from a reactive ISTA and a weight function is not neces-
sarily a reactive STA due to the definitions of the probability distributions over
the delays (see Definition 10.2.18): the support of such distributions will be in
general upper bounded due to interactive transitions.

Remark 10.3.4. Note that if A is a reactive ISTA, then it holds that for each
l ∈ L, Inv(l) = true. In the sequel, we thus omit the component Inv when using
a reactive ISTA.

246 Chapter 10 – Interactive Stochastic Timed Automata and Handshaking Composition

Recall that the objective in Section 7.2 was to prove that reactive STA have
a finite attractor (through the α-abstraction) that satisfies the hypotheses (†) of
Proposition 5.2.6. This attractor was the set of memoryless regions (see Proposi-
tions 7.2.1 and 7.2.2). It enjoyed the nice property that two states of same mem-
oryless region, have the same probabilistic behaviours (from [BBB+14, Lemma
F.4]). Observe that here with reactive ISTA, the set of memoryless regions may
not be reached with probability 1 due to the definition of the distributions µ′q of
Aw and to the presence of interactive transitions. In order to make sure that the
set of memoryless regions forms an attractor of TAw , we need an extra condition:
we cannot have an infinite sequence of interactive transitions within the model.
This is formalised in the next definition.

Definition 10.3.5. Fix A a closed ISTA, w a weight function and Aw the
induced STA. We say that A is τ -cycle-free if there is N ≥ 0 such that for each
q0, . . . , qN+1 ∈ Q if there are t0, . . . , tN ∈ R+ and e0, . . . , eN ∈ E′ such that

q0
t0,e0−−→ q1

t1,e1−−→ . . . qN
tN ,eN−−→ qN+1

in Aw, then there is i ≥ 0 such that ei /∈ Eτ (i.e. ei ∈ E).

We write ISTAr
τ for the class of τ -cycle-free reactive closed ISTA. For tech-

nicalities, we require moreover for conditions (I1) and (I2) of page 233 to be
verified. For the rest of this section we assume that A ∈ ISTAr

τ and we write N
for the constant corresponding to Definition 10.3.5. Moreover, we assume that
for each d ∈ Eτ , w(d) > 0. Like in Section 7.2, we write Rmem

Aw
for the set of

memoryless regions of Aw and we will again somehow prove that α−1(L×Rmem
Aw

)
is an attractor for TAw and that it satisfies hypothesis (†) of Proposition 5.2.6.

Firstly, we can show the following result stating that A possesses a location
that has no outgoing interactive transitions.

Lemma 10.3.6. If A ∈ ISTAr
τ , there is l ∈ L that has no outgoing interactive

transitions.

Proof. Towards a contradiction, assume that for each l ∈ L, there is an outgoing
interactive transition. Then from the hypothesis (I2) and since A is reactive,
it holds that for each state q ∈ L × RX+ there is t∗ ≥ 0 such that for each
t ≥ t∗, there is an interactive transition enabled in q + t (from the last point of
Definition 10.1.1 as here, Inv(l) = true for each l). It then follows that for each
state q0 we can construct an infinite run

q0
t0,e0−−→ q1

t1,e1−−→ q2
t2,e2−−→ · · ·

where for each i, ti = min(Iτ (qi)) and ei ∈ Eτ is an interactive transition enabled
in qi + ti. This contradicts Definition 10.3.5.

10.3 – Decidability of ISTA 247

We write Lr for the set of locations that do not have outgoing interactive
transitions, which is thus non-empty from Lemma 10.3.6. We can now refine the
attractor that we will use for TAw : α−1(Lr × Rmem

Aw
). Before showing that it is

indeed an attractor and that it satisfies conditions (†) of Proposition 5.2.6, we
need some technical lemmas.

The first one shows that in reactive closed ISTA, the probability to take an
interactive transition from any state that can perform some interaction in the
future, is lower bounded by a non-null value!

Lemma 10.3.7. Assume A is reactive. There exist γ > 0 and γ′ > 0 such that
for each q ∈ Q with Iτ (q) 6= ∅, writing t∗q = min(Iτ (q)), µ′q(t

∗
q) ≥ γ and for each

t ∈ Iτ (q) and each d ∈ Eτ enabled in q + t, p′q+t(d) ≥ γ′.

Proof. From the definition of p′q and the weight function w that satisfies condition
(I3) on page 242 (see Definition 10.2.18), it suffices to take

γ′ = min
d∈Eτ

{ w(d)∑
d′∈Eτ w(d′)

}
> 0

from the finiteness of Eτ .3 Now in order to get γ, we have to make the following
observations. Fix q = (l, ν) ∈ Q such that Iτ (q) 6= ∅. First if l ∈ Lint, then
µ′q(t

∗
q) = 1 ≥ γ no matter the choice of γ. Now if l /∈ Lint, we write q0 = (l,0X)

where 0X is the clock valuation that assigns 0 to each clock, and t∗l = min(Iτ (q0)).
As Iτ (q) 6= ∅, then Iτ (q0) 6= ∅ and thus t∗l is well-defined. From the hypothesis
(I2), since here Inv(l) = true, it holds that each guard on interactive transitions
are of the form

∧
x∈Y x ≥ cx for some Y ⊆ X, it follows that t∗l ≥ t∗q .

We can now prove that µ′q(t
∗
q) ≥ µ′q0(t∗l). Indeed from the definition of µ′q

and since A is reactive, we get that

µ′q(t
∗
q) ≥ µ′q0(t∗l)⇐⇒ min(µl, δt∗q)(t

∗
q) ≥ min(µl, δt∗

l
)(t∗l)

⇐⇒ µl([t
∗
q ,∞[) ≥ µl([t∗l ,∞[)

which is true since t∗q ≤ t∗l . It then suffices to take γ = minl∈Lcint µl([t
∗
l ,∞[) > 0

since for each l ∈ Lcint, µl is a distribution on R+ equivalent to the Lebesgue
measure on R+.

Given l ∈ L, we write E′l = {e ∈ E′ | target(e) = l}. We refer to Sec-
tion 4.1.1 for the event EvTAw (F≤N+1 L

r × RX+) that we will abusively write
EvTAw (F≤N+1 L

r). Observe that for any state q,

Prob
TAw
q (F≤N+1 L

r) = ProbAw
q

(⋃
l∈Lr

⋃
e0,...,eN−1∈E′

⋃
eN∈E′l

Cyl(π(q, e0, . . . , eN))
)
.

3Observe that here, we use the assumption that w(d) > 0 for each d ∈ Eτ .

248 Chapter 10 – Interactive Stochastic Timed Automata and Handshaking Composition

The next lemma importantly shows that the probability to reach Lr with N + 1
steps from any state, is lower bounded by a non-null value.

Lemma 10.3.8. If A ∈ ISTAr
τ , there is β > 0 such that for each q ∈ Q,

Prob
TAw
q (F≤N+1 L

r) ≥ β.

Proof. Remark first that if q = (l, ν) with l ∈ Lr then the inequality is obvious
no matter the choice of 0 < β(≤ 1). Now assume that q = (l, ν) with l /∈ Lr.
We will then show the following statement: there exist k ≤ N , e0, . . . , ek ∈ E′
with ProbAw

q (Cyl(π(q, e0, . . . , ek)) > 0 and with for each i < k, target(ei) /∈ Lr,
such that target(ek) ∈ Lr and ei ∈ Eτ for each i. In other words, there exists a
first passage to Lr that is made only through interactive transitions. Towards a
contradiction, assume that it is not the case, that is each first passage to Lr has
to be made through at least one edge of E. Then we can construct the following
path:

q0 = q
t0,e0−−→ q1

t1,e1−−→ q2 . . .
tN ,eN−−→ qN+1

where for each i, qi = (li, νi) with li /∈ Lr, ti = min(Iτ (qi)) and ei ∈ Eτ . Indeed
since q0 = (l, ν) with l /∈ Lr, we know that min(Iτ (q0)) < ∞ from hypothesis

(I2), and thus we can construct q0
t0,e0−−→ q1 where e0 is some enabled interactive

transition in state q0 + t0. It should be observed that from the assumption,
q1 = (l1, ν1) with l1 /∈ Lr: each first passage to Lr has to be made through
at least one edge. And you can repeat the argument. Assume that for some
0 ≤ i < N , for each 0 ≤ j ≤ i we have constructed

q0 = q
t0,e0−−→ q1

t1,e1−−→ q2 . . .
tj ,ej−−→ qj+1

satisfying the previous hypothesis. Let us show that we can extend the path
for j = i + 1. We know that qi+1 = (li+1, νi+1) with li+1 /∈ Lr. It follows that
min(Iτ (qi+1)) < ∞ from hypothesis (I2) and thus there exists ei+1 ∈ Eτ such

that qi+1
ti+1,ei+1−−→ qi+2 with ti+1 = min(Iτ (qi+1)). We therefore have constructed

q0 = q
t0,e0−−→ q1

t1,e1−−→ q2 . . .
ti+1,ei+1−−→ qi+2 = (li+2, νi+2)

where li+2 /∈ Lr since for each 0 ≤ j ≤ i+ 1, lj /∈ Lr and ej ∈ Eτ . We thus have

q0 = q
t0,e0−−→ q1

t1,e1−−→ q2 . . .
tN ,eN−−→ qN+1

with ei ∈ Eτ for each 0 ≤ i ≤ N which is a contradiction with the hy-
pothesis and Definition 10.3.5. Thus there exist k ≤ N , e0, . . . , ek ∈ E′ with

10.3 – Decidability of ISTA 249

ProbAw
q (Cyl(π(q, e0, . . . , ek)) > 0 and with for each i < k, target(ei) /∈ Lr, such

that target(ek) ∈ Lr and ei ∈ Eτ for each i. Observe that

ProbAw
q (q |= F≤N+1 L

r) ≥ ProbAw
q (Cyl(π(q, e0, . . . , ek)).

We can compute:

ProbAw
q (Cyl(π(q, e0, . . . , ek)) = µ′q(t

∗
q) · p′q+t∗q (e0) · µ′qe0 (t∗qe0

)p′qe0+t∗qe0
(e1) · · ·

· · ·µ′qe0...ek−1
(t∗qe0...ek−1

) · p′qe0...ek−1
+t∗qe0...ek−1

(ek)

where

• for each q′ ∈ Q, t∗q′ = min(Iτ (q′)) which is always finite in the cases above,
from hypothesis (I2) and from the hypothesis on the edges;

• for each 0 ≤ i ≤ k − 1, qe0...ei−1

ei→ qe0...ei with qe0...ei−1 = q if i = 0,
qe0...ei−1 = qe0 if i = 1.

From Lemma 10.3.7, we can hence deduce that

ProbAw
q (Cyl(π(q, e0, . . . , ek)) ≥ (γγ′)k+1,

since none of the states visited has a location in Lr (and thus all states visited
can perform an interactive transition in the future). Now as k equals at most
N , we take β = (γγ′)N+1 > 0 since γ > 0 and γ′ > 0. It is now straightforward
to get that

Prob
TAw
q (F≤N+1 L

r) ≥ β

which concludes the proof.

We can now prove that α−1(Lr ×Rmem
Aw

) is an attractor for TAw . The proof
is very much inspired from the proof of [BBB+14, Lemma 14].

Proposition 10.3.9. Fix Aw ∈ ISTAr
τ . For each q ∈ Q, Prob

TAw
q (Fα−1(Lr ×

Rmem)) = 1.

Proof. Write M for the maximal constant appearing in a guard of an edge of E′.
Given q0 ∈ Q and n ∈ N, we write

• D>Mn (q0) = {ρ = q0
t0,e0−−→ q1

t1,e1−−→ . . . | tn > M};

• Drn(q0) = {ρ = q0
t0,e0−−→ q1

t1,e1−−→ . . . | ln ∈ Lr ∧ ∀i < n, li /∈ Lr};

250 Chapter 10 – Interactive Stochastic Timed Automata and Handshaking Composition

• D>M,r
n (q0) = Drn(q0) ∩ D>Mn .

Set D>M,r
n (q0) corresponds thus to the set of runs starting from q0 that visit

Lr for the first time at step n and that delay more than M time units in
this state. Observe that from Lemma 10.3.8, it holds that for each q ∈ Q,
ProbAw

q

Ä⋃N+1
n=0 Drn(q)

ä
≥ β. We now establish that there is δ > 0 such that

for each q ∈ Q, for each n ∈ N, ProbAw
q (D>M,r

n (q)) ≥ δ · ProbAw
q (Drn(q)). We

prove this by induction on n. We write E′r = {e ∈ E′ | target(e) ∈ Lr}. Let
δ = minl∈Lcint µl([M,∞[) > 0 as Lcint is finite. Assume first that n = 0 and fix

q = (l, ν) ∈ Q. We want to show that ProbAw
q (D>M,r

0 (q)) ≥ δ · ProbAw
q (Dr0(q)).

Remark that if l /∈ Lr, then both sides of the inequality equal 0. Otherwise,
l ∈ Lr and thus

ProbAw
q (D>M,r

0 (q)) = µl([M,∞[) ≥ δ = δ · ProbAw
q (Dr0(q))

since ProbAw
q (Dr0(q)) = 1. We also have to show the particular case where n = 1.

Fix q = (l, ν) ∈ Q. If l ∈ Lr both sides of the inequality equal 0. Otherwise, we
compute

ProbAw
q (D>M,r

1 (q)) =
∑
e0∈E′r

∫
t0∈I(q,e0)

p′q+t0(e0) · ProbAw
qe0

(D>M,r
0 (qe0)) dµ′q(t0)

where q
t0,e0−−→ qe0

≥ δ ·
∑
e0∈E′r

∫
t0∈I(q,e0)

p′q+t0(e0) dµ′q(t0) from previous case

= δ · ProbAw
q (Dr1(q)).

Now assume that for each 0 ≤ n ≤ k with k ≥ 1, the inequality holds true and
let us prove that it is still the case for n = k + 1. Fix q = (l, ν) ∈ Q. Since
n = k + 1 > 0, it should be observed that if l ∈ Lr then both sides of the
inequality equal 0. Otherwise, l /∈ Lr and we thus get that

ProbAw
q (D>M,r

k+1 (q)) =
∑

e0∈(E′r)
c

∫
t0∈I(q,e0)

p′q+t0(e0) · ProbAw
qe0

(D>M,r
k (qe0)) dµ′q(t0)

where q
t0,e0−−→ qe0

≥ δ ·
∑

e0∈(E′r)
c

∫
t0∈I(q,e0)

p′q+t0(e0)ProbAw
qe0

(Drk(qe0)) dµ′q(t0)

from induction hypothesis

= δ · ProbAw
q (Drk+1(q)).

10.3 – Decidability of ISTA 251

Observe now that for each state q,
⋃N+1
n=0 D>M,r

n (q) and
⋃N+1
n=0 Drn(q) are disjoint

unions. It thus follows that

ProbAw
q

(N+1⋃
n=0

D>M,r
n (q)

)
≥ δ · ProbAw

q

(N+1⋃
n=0

Drn(q)
)

≥ δ · β > 0 from Lemma 10.3.8.

It is now trivial to see that for each q ∈ Q,

Prob
TAw
q (Fα−1(Lr ×Rmem

Aw
)) ≥ ProbAw

q

(N+1⋃
n=0

D>M,r
n (q)

)
,

we hence deduce that for each state q,

Prob
TAw
q (Fα−1(Lr ×Rmem

Aw
)) ≥ δ · β > 0

and using classical arguments like in the proof of Proposition 5.2.6, we get that
for each state q,

Prob
TAw
q (Fα−1(Lr ×Rmem

Aw
)) = 1.

It remains to prove that the hypotheses (†) of Proposition 5.2.6 are met. It
is very similar to the proof of Proposition 7.2.2 and uses a very similar lemma
as [BBB+14, Lemma F.4] that we formalise below.

Lemma 10.3.10. If A ∈ ISTAr
τ , then for each pair of states q = (l, ν) and

q′ = (l, ν ′) such that for every x ∈ X, ν(x) = ν ′(x) or min(ν(x), ν ′(x)) > M , for
each e1, . . . , en ∈ E,

ProbAw
q (π(q, e1, . . . , en)) = ProbAw

q′ (π(q′, e1, . . . , en)).

Proof. The proof is very similar to the proof of Lemma F.4 in [BBB+14]. The
difference resides in the fact that in Lemma F.4, we can state that µq = µl = µq′ .
Here it is not always the case that µ′q = µl and µ′q′ = µl. However, we can show
that µ′q = µ′q′ which will conclude the proof. We first show that Iτ (q) = Iτ (q′),
or more precisely that for each (l, g, Y, l′) ∈ Eτ and for each t ≥ 0, we have
ν + t |= g iff ν ′ + t |= g. Since for each l ∈ L, Inv(l) = true and from hypothesis
(I2), we can write:

g =
∧
x∈X1

x ≥ ax

with X1 a subset of X and ax ∈ {0, . . . ,M} for each clock x. Notice that it is
sufficient to show only one of the implications. W.l.o.g. assume that ν + t |= g.
Fix x ∈ X, we consider several cases:

252 Chapter 10 – Interactive Stochastic Timed Automata and Handshaking Composition

• if ν(x) = ν ′(x), it is obvious that ν ′(x) + t will satisfy the same constraints
as ν(x) + t;

• if ν(x) > M and ν ′(x) > M , then ν(x) + t > M and ν ′(x) + t > M . Since
M is the maximal constant appearing in guards and ν+t |= g, it is obvious
that if x ∈ X1, we get ν ′(x) + t > M ≥ ax.

This shows that Iτ (q) = Iτ (q′). Finally, write t∗ = min(Iτ (q)) = min(Iτ (q′)), we
then get that µ′q = µ′q′ = min(µl, δt∗). This terminates the proof.

We thus get the following result.

Proposition 10.3.11. If A ∈ ISTAr
τ , it holds that TAw is decisive w.r.t. α-closed

sets and that T tg
Aw

is a sound α-abstraction of TA.

Proof. The proof is in all points similar to the proof of Proposition 7.2.2. We get
that all the hypotheses (†) of Proposition 5.2.6 are satisfied, in particular thanks
to Proposition 10.3.9 and Lemma 10.3.10.

Thus Proposition 5.2.6 implies that TAw is decisive w.r.t. α-closed sets and
therefore, Proposition 5.3.4 implies that T tg

Aw
is a sound α-abstraction of TA.

Finally, we get a similar result as Corollary 7.2.3 for the qualitative and
quantitative model-checking problems for τ -cycle-free reactive closed ISTA of
ω-regular properties (see Definitions 4.1.19 and 4.1.20). We consider again a
product between STA Aw with a DMA M. We refer to Lemma 6.1.19 for notation
αM and the fact that T tg

Aw
nM is an αM-abstraction of TAw nM. As consequences

of Chapter 6, we get the following decidability and approximability results for
reactive STA.

Corollary 10.3.12. Let A be a τ -cycle-free reactive closed ISTA, w be a weight
function with w(d) > 0 for each d ∈ Eτ , Aw be the induced STA and M be a
DMA. Then:

1. we can decide whether Aw satisfies almost-surely M;

2. for every initial distribution µ which is numerically amenable w.r.t. A4,

we can compute arbitrarily close approximations of Prob
TAw
µ (M).

Proof. The proof is in all points similar to the proof of Corollary 7.2.3. This is an
application of Theorem 6.1.25, Corollary 6.1.26 and of Sections 6.2.1 and 6.2.4.
It should be noted that all the hypotheses are met:

4Recall that we say that a distribution µ is numerically amenable w.r.t. A if, given k ∈ N,
given ε > 0 and given a sequence of locations and regions (l0, r0), (l1, r1), . . . , (lk, rk), one can
approximate ProbAµ (Cyl((l0, r0), (l1, r1), . . . , (lk, rk))) up to ε.

10.3 – Decidability of ISTA 253

• T tg
Aw

nM has a finite attractor: since T tg
Aw

is a finite MC then so is T tg
Aw

nM
and we get a trivial finite attractor;

• TAw nM is decisive w.r.t. any αM-closed sets.

This second point is a little more tricky and comes from the fact that TAw nM
can be obtained through a product between ISTA A and DMA M and that this
product is also in ISTAr

τ .

CHAPTER 11

Conclusion and Future Work

We now conclude this thesis with a summary of our results of Part II for com-
positional verification in STA and with a quick word on some possibilities that
are left for future work.

Following [HZ11], in Part II we have been interested in the definition of an
operator of composition in STA. We have divided the work into two chapters:
we have defined an interleaving operator in Chapter 9, we have introduced the
model of ISTA and extended the interleaving operator into a handshaking one
for ISTA in Chapter 10.

The interleaving semantics corresponds to the case where two systems run
completely independently, while the handshaking semantics corresponds to the
case where the two systems can communicate and have to synchronise. While
a handshaking operator is obviously more interesting, we advocate that the in-
terleaving operator of Chapter 9 was an important first step. Indeed, as stated
in [HZ11], a handshaking operator encompasses in particular the interleaving op-
erator. When the composed systems do not have to interact, then the semantics
should be interleaving. To have an interleaving operator is thus a good start.

In Chapter 9, we thus have defined an operator of parallel composition that,
we have proven, corresponds to the interleaving semantics. The main contribu-
tions are the following.

• The definition of a parallel composition operator for STA and the identi-
fication of a subclass of STA in which, we proved, parallel composition is
well-defined and internal (Sections 9.1 and 9.2).

• The identification of another class of STA (a subclass of the previous one)

255

256 Chapter 11 – Conclusion and Future Work

in which we proved that, moreover, the parallel composition corresponds
to the interleaving semantics (Section 9.2).

• The definition of a notion of bisimulation in STA, which extends the one
on CTMCs ([DP03]) and that is importantly a congruence w.r.t. parallel
composition. This is an expected property for a proper compositional
framework (Section 9.3).

Inspired by the IMC model [Her02] and [HK09], we have then introduced the
new model of ISTA in Chapter 10. This extends the STA model with interactive
transitions allowing for synchronisations. We thus have defined a handshaking
operator of parallel composition. The main contributions are the following.

• The definition of the new model of ISTA which is inspired from the IMC
model [HK09] (Section 10.1).

• The definition of a handshaking operator of parallel composition for ISTA
and the identification of a subclass of ISTA in which parallel composition
is well-defined and internal (Section 10.2.1).

• The definition of a notion of bisimulation in ISTA, which extends the one
on IMCs ([HK09]) and that is importantly a congruence w.r.t. parallel
composition (Section 10.2.1).

• The definition of a hiding operator and of a closed ISTA which can then
induce a STA as we define it (Sections 10.2.1 and 10.2.2).

• The identification of a subclass of closed ISTA on which the qualitative and
quantitative results of Chapter 6 can be applied; yielding to a framework
with a compositional framework and strong decidability and approxima-
bility results. (Section 10.3).

Perspectives for future work. We can list several perspectives for future
work, the list is not exhaustive.

• Following the approach of [DP03] on CTMCs, we would like to prove a
logical characterisation of bisimulation in STA and ISTA using CSL prop-
erties (or a subset). Such characterisations are standard when dealing with
bisimulation.

• Another standard technique is to quotient a system thanks to a bisimula-
tion. For instance in timed automata [AD90] and [AD94], the quotient of

257

a timed automaton with the timed-abstract bismulation gives the region
automaton. One would thus like to study the quotient of STA or ISTA
with the bisimulations defined here, in order to build a smaller system
that should be easier to analyse.

• Finally and obviously, with this compositional design, we are interested
in the compositional verification. The qualitative and quantitative results
of Chapter 7 in STA, although very nice, concern only a unique STA de-
scribing a (possibly) big system. Compositional verification should thus
simplify the proposed solutions by designing big systems as the result of
several smaller systems and by reducing the model-checking problems of
the big system to the model-checking problems of the smaller systems.
This is the main reason we have defined this compositional framework and
this is thus an interesting perspective for the verification of (I)STA.

Bibliography

[AAGT12] Manindra Agrawal, S. Akshay, Blaise Genest, and P. S. Thiagara-
jan. Approximate verification of the symbolic dynamics of markov
chains. In Proc. 27th Annual Symposium on Logic in Computer
Science (LICS’12). IEEE Computer Society, 2012.

[AB06] Rajeev Alur and Mikhail Bernadsky. Bounded model checking for
GSMP models of stochastic real-time systems. In Proc. 9th Inter-
national Workshop on Hybrid Systems: Computation and Control
(HSCC’06), volume 3927 of Lecture Notes in Computer Science,
pages 19–33. Springer, 2006.

[Aba07] Alessandro Abate. Probabilistic reachability for stochastic hybrid
systems: theory, computations, and applications. PhD thesis, Uni-
versity of California, Berkeley, USA, 2007.

[ABM07] Parosh Aziz Abdulla, Noomene Ben Henda, and Richard Mayr.
Decisive Markov chains. Logical Methods in Computer Science,
3(4), 2007.

[ABRS05] Parosh Aziz Abdulla, Nathalie Bertrand, Alexander Rabinovich,
and Philippe Schnoebelen. Verification of probabilistic sys-
tems with faulty communication. Information and Computation,
202(2):141–165, 2005.

[ACD93] Rajeev Alur, Costas Courcoubetis, and David L. Dill. Model-
checking in dense real-time. Information and Computation,
104(1):2–34, 1993.

[AD90] Rajeev Alur and David L. Dill. Automata for modeling real-time
systems. In Proc. 17th International Colloquium on Automata,

259

260 Bibliography

Languages and Programming (ICALP’90), volume 443 of Lecture
Notes in Computer Science, pages 322–335. Springer, 1990.

[AD94] Rajeev Alur and David L. Dill. A theory of timed automata. The-
oretical Computer Science, 126(2):183–235, 1994.

[AKLP10] Alessandro Abate, Joost-Pieter Katoen, John Lygeros, and Maria
Prandini. Approximate model checking of stochastic hybrid sys-
tems. European Journal of Control, 16(6):624–641, 2010.

[BA07] Mikhail Bernadsky and Rajeev Alur. Symbolic analysis for GSMP
models with one stateful clock. In Proc. 10th International Work-
shop on Hybrid Systems: Computation and Control (HSCC’07),
volume 4416 of Lecture Notes in Computer Science, pages 90–103.
Springer, 2007.

[BBB+07] Christel Baier, Nathalie Bertrand, Patricia Bouyer, Thomas Bri-
haye, and Marcus Größer. Probabilistic and topological seman-
tics for timed automata. In Proc. 27th Conference on Founda-
tions of Software Technology and Theoretical Computer Science
(FSTTCS’07), volume 4855 of Lecture Notes in Computer Science,
pages 179–191. Springer, 2007.

[BBB+08] Christel Baier, Nathalie Bertrand, Patricia Bouyer, Thomas Bri-
haye, and Marcus Größer. Almost-sure model checking of infinite
paths in one-clock timed automata. In Proc. 23rd Annual Sym-
posium on Logic in Computer Science (LICS’08), pages 217–226.
IEEE Computer Society Press, 2008.

[BBB+14] Nathalie Bertrand, Patricia Bouyer, Thomas Brihaye, Quentin
Menet, Christel Baier, Marcus Größer, and Marcin Jurdziński.
Stochastic timed automata. Logical Methods in Computer Science,
10(4):1–73, 2014.

[BBBC16] Nathalie Bertrand, Patricia Bouyer, Thomas Brihaye, and Pierre
Carlier. Analysing decisive stochastic processes. In Proc. 43rd In-
ternational Colloquium on Automata, Languages and Programming
(ICALP’16), LIPIcs. Leibniz-Zentrum für Informatik, 2016.

[BBBC17] Nathalie Bertrand, Patricia Bouyer, Thomas Brihaye, and Pierre
Carlier. When are stochastic transition systems tameable? Sub-
mitted for publication, 2017.

261

[BBBM08] Nathalie Bertrand, Patricia Bouyer, Thomas Brihaye, and Nicolas
Markey. Quantitative model-checking of one-clock timed automata
under probabilistic semantics. In Proc. 5th International Con-
ference on Quantitative Evaluation of Systems (QEST’08). IEEE
Computer Society Press, 2008.

[BBCM16] Patricia Bouyer, Thomas Brihaye, Pierre Carlier, and Quentin
Menet. Compositional design of stochastic timed automata. In
Proc. 11th International Computer Science Symposium in Rus-
sia (CSR’16), volume 9691 of Lecture Notes in Computer Science.
Springer, 2016.

[BBJM12] Patricia Bouyer, Thomas Brihaye, Marcin Jurdzinski, and Quentin
Menet. Almost-sure model-checking of reactive timed automata.
In Proc. 9th International Conference on Quantitative Evaluation
of Systems (QEST’12), pages 138–147. IEEE Computer Society
Press, 2012.

[BDHK06] H. Bohnenkamp, P D’Argenio, H. Hermanns, and J.-P. Katoen.
MODEST: A compositional modeling formalism for hard and softly
timed systems. IEEE Trans. Software Engineering, 32(10):812–830,
2006.

[BDL+06] Gerd Behrmann, Alexandre David, Kim G. Larsen, John
H̊akansson, Paul Pettersson, Wang Yi, and Martijn Hendriks. Up-
paal 4.0. In Proc. 3rd International Conference on Quantitative
Evaluation of Systems (QEST’06), pages 125–126. IEEE Computer
Society Press, 2006.

[Ber06] Nathalie Bertrand. Modèles stochastiques pour les pertes de mes-
sages dans les protocoles asynchrones et techniques de vérification
automatique. PhD thesis, École Normale Supérieure de Cachan,
Cachan, France, 2006.

[BHHK03] Christel Baier, Boudewijn Haverkort, Holger Hermanns, and Joost-
Pieter Katoen. Model-checking algorithms for continuous-time
Markov chains. IEEE Transactions on Software Engineering,
29(7):524–541, 2003.

[BK08] Christel Baier and Joost-Pieter Katoen. Principles of Model Check-
ing. MIT Press, 2008.

262 Bibliography

[BKKŘ11] Tomáš Brázdil, Jan Krčál, Jan Křet́ınský, and Vojtěch Řehák.
Fixed-delay events in generalized semi-Markov processes revisited.
In Proc. 22nd International Conference on Concurrency Theory
(CONCUR’11), volume 6901 of Lecture Notes in Computer Sci-
ence, pages 140–155. Springer, 2011.

[Bri06] Thomas Brihaye. Verification and Control of O-Minimal Hybrid
Systems and Weighted Timed Automata. PhD thesis, Université
de Mons-Hainaut, Belgium, 2006.

[BvdSHV03] Henrik Bohnenkamp, Peter van der Stok, Holger Hermanns, and
Frits Vaandrager. Cost-optimisation of the ipv4 zeroconf protocol.
In International conference on dependable systems and networks.
IEEE Computer Society Press, 2003.

[CE81] Edmund M. Clarke and E. Allen Emerson. Design and synthe-
sis of synchronous skeletons using branching-time temporal logic.
In Proc. 3rd Workshop on Logics of Programs (LOP’81), volume
131 of Lecture Notes in Computer Science, pages 52–71. Springer-
Verlag, 1981.

[CSKN05] Stefano Cattani, Roberto Segala, Marta Z Kwiatkowska, and
Gethin Norman. Stochastic transition systems for continuous state
spaces and non-determinism. In Proc. 8th International Confer-
ence on Foundations of Software Science and Computation Struc-
tures (FoSSaCS’05), volume 3441 of Lecture Notes in Computer
Science, pages 125–139. Springer, 2005.

[CY88] Costas Courcoubetis and Mihalis Yannakakis. Verifying temporal
properties of finite-state probabilistic programs. In Proc. 29th An-
nual Symposium on Foundations of Computer Science (FOCS’88),
pages 338–345. IEEE Computer Society Press, 1988.

[DK05a] Pedro R. D’Argenio and Joost-Pieter Katoen. A theory of stochas-
tic systems Part I: Stochastic automata. Information and Compu-
tation, 203(1):1–38, 2005.

[DK05b] Pedro R. D’Argenio and Joost-Pieter Katoen. A theory of stochas-
tic systems Part II: Process algebra. Information and Computation,
203(1):39–74, 2005.

263

[DP03] Josée Desharnais and Prakash Panangaden. Continuous stochas-
tic logic characterizes bisimulation of continuous-time Markov pro-
cesses. Journal of Logic and Algebraic Programming, 56:99–115,
2003.

[Fel66] William Feller. An Introduction to Probability Theory and Its Ap-
plications, volume 1. John Wiley & Sons, 1966.

[Fel69] William Feller. An Introduction to Probability Theory and Its Ap-
plications, volume 2. John Wiley & Sons, 1969.

[FHH+11] Martin Fränzle, Ernst Moritz Hahn, Holger Hermanns, Nicolás
Wolovick, and Lijun Zhang. Measurability and safety verifica-
tion for stochastic hybrid systems. In Proc. 14th ACM Interna-
tional Conference on Hybrid Systems: Computation and Control
(HSCC’11), pages 43–52. ACM, 2011.

[GBK16] Daniel Gburek, Christel Baier, and Sascha Klüppelholz. Com-
position of stochastic transition systems. In Proc. 43rd Inter-
national Colloquium on Automata, Languages and Programming
(ICALP’16), LIPIcs. Leibniz-Zentrum für Informatik, 2016.

[Gly89] Peter W. Glynn. A GSMP formalism for discrete event systems.
Proc. of the IEEE, 77(1):14–23, 1989.

[GTW02] Erich Grädel, Wolfgang Thomas, and Thomas Wilke, editors. Au-
tomata, Logics, and Infinite Games: A Guide to Current Research,
volume 2500 of Lecture Notes in Computer Science. Springer, 2002.

[HBR84] Charles A.R. Hoare, Stephen D. Brookes, and Andrew W. Roscoe.
A theory of communicating sequential processes. Journal of the
ACM, 31(3):560–599, 1984.

[Hen96] Thomas A. Henzinger. The theory of hybrid automata. In Proc.
11th Annual Symposim on Logic in Computer Science (LICS’96),
pages 278–292. IEEE Computer Society Press, 1996.

[Her02] Holger Hermanns. Interactive Markov Chains: The Quest for
Quantified Quality, volume 2428 of Lecture Notes in Computer Sci-
ence. Springer, 2002.

[HH14] A. Hartmanns and H. Hermanns. The Modest toolset: An inte-
grated environment for quantitative modelling and verification. In

264 Bibliography

Proc. 20th International Conference on Tools and Algorithms for
the Construction and Analysis of Systems, volume 8413 of Lecture
Notes in Computer Science, pages 593–598. Springer, 2014.

[HK09] Holger Hermanns and Joost-Pieter Katoen. The how and why
of interactive Markov chains. volume 6286 of Lecture Notes in
Computer Science, pages 311–337. Springer, 2009.

[HLS00] Jianghai Hu, John Lygeros, and Shankar Sastry. Towards a theory
of stochastic hybrid systems. In Proc. 3rd International Conference
on Hybrid Systems: Computation and Control (HSCC’00), pages
160–173. Springer, 2000.

[HPRV12] András Horváth, Marco Paolieri, Lorenzo Ridi, and Enrico Vicario.
Transient analysis of non-markovian models using stochastic state
classes. Performance Evaluation, 69(7-8):315–335, 2012.

[HZ11] Holger Hermanns and Lijun Zhang. From concurrency models to
numbers – Performance and dependability. In Software and Sys-
tems Safety – Specification and Verification, volume 30 of NATO
Science for Peace and Security Series - D: Information and Com-
munication Security, pages 182–210. IOS Press, 2011.

[KNP11] Marta Kwiatkowska, Gethin Norman, and David Parker. PRISM
4.0: verification of probabilistic real-time systems. In Proc. 23rd In-
ternational Conference on Computer Aided Verification (CAV’11),
volume 6806 of Lecture Notes in Computer Science, pages 585–591.
Springer, 2011.

[KNSS00] Marta Z. Kwiatkowska, Gethin Norman, Roberto Segala, and
Jeremy Sproston. Verifying quantitative properties of continuous
probabilistic timed automata. In Proc. 11th International Confer-
ence on Concurrency Theory (CONCUR’00), volume 1877 of Lec-
ture Notes in Computer Science, pages 123–137. Springer, 2000.

[KNSS02] Marta Z. Kwiatkowska, Gethin Norman, Roberto Segala, and
Jeremy Sproston. Automatic verification of real-time systems with
discrete probability distributions. Theoretical Computer Science,
282(1):101–150, 2002.

[KSK76] John G. Kemeny, J. Laurie Snell, and Anthony W. Knapp. Denu-
merable Markov Chains, volume 40 of Graduate Texts in Mathe-
matics. Springer, 1976.

265

[KT05] Moez Krichen and Stavros Tripakis. State identification problems
for timed automata. In Proc. 17th IFIP International Confer-
ence on Testing of Communicating Systems (TESTCOM’05), vol-
ume 3502 of Lecture Notes in Computer Science, pages 175–191.
Springer, 2005.

[LMS04] François Laroussinie, Nicolas Markey, and Philippe Schnoebe-
len. Model checking timed automata with one or two clocks.
In Proc. 15th International Conference on Concurrency Theory
(CONCUR’04), volume 3170 of Lecture Notes in Computer Sci-
ence, pages 387–401. Springer, 2004.

[LS91] Kim G. Larsen and Arne Skou. Bisimulation through probabilistic
testing. Information and Computation, 94:1–28, 1991.

[LY93] Kim G. Larsen and Wang Yi. Time abstracted bisimulation: Im-
plicit specifications and decidability. In Proc. 9th Conf. Mathemat-
ical Foundations of Programming Semantics (MFPS IX), volume
802 of Lecture Notes in Computer Science, pages 160–176. Springer,
1993.

[Mod] Webpage of Modest. http://www.modestchecker.net/.

[Pan01] Prakash Panangaden. Measure and probability for concurrency
theorists. Theor. Comput. Sci., 253(2):287–309, 2001.

[Pan09] Prakash Panangaden. Labelled Markov Processes. Imperial College
Press, 2009.

[Pet81] James Lyle Peterson. Petri Net Theory and the Modeling of Sys-
tems. Prentice Hall, 1981.

[PHV16] Marco Paolieri, András Horváth, and Enrico Vicario. Probabilistic
model checking of regenerative concurrent systems. IEEE Trans-
actions on Software Engineering, 42(2):153–169, 2016.

[Pnu77] Amir Pnueli. The temporal logic of programs. In Proc. 18th An-
nual Symposium on Foundations of Computer Science (FOCS’77),
pages 46–57. IEEE Computer Society Press, 1977.

[Pnu83] Amir Pnueli. On the extremely fair treatment of probabilis-
tic algorithms. In Proc. 15th Ann. Symp. Theory of Computing
(STOC’83), pages 278–290. ACM Press, 1983.

266 Bibliography

[Pri] Webpage of PRISM. http://www.prismmodelchecker.org/.

[QS82] Jean-Pierre Queille and Joseph Sifakis. Specification and verifi-
cation of concurrent systems in cesar. In Proc. 5th International
Symposium on Programming, volume 137 of Lecture Notes in Com-
puter Science, pages 337–351. Springer, 1982.

[RS59] Michael O. Rabin and D. Scott. Finite automata and their decision
problems. IBM Journal of Research and Developments, 3:115–125,
1959.

[SA13] Sadegh Esmaeil Zadeh Soudjani and Alessandro Abate. Adaptive
and sequential gridding procedures for the abstraction and ver-
ification of stochastic processes. Journal on Applied Dynamical
Systems, 12(2):921–956, 2013.

[Upp] Webpage of UPPAAL. http://www.uppaal.org/.

[Var85] Moshe Y. Vardi. Automatic verification of probabilistic concurrent
finite-state programs. In Proc. 26th Annual Symposium on Founda-
tions of Computer Science (FOCS’85), pages 327–338. IEEE Com-
puter Society Press, 1985.

[VW94] Moshe Y. Vardi and Pierre Wolper. Reasoning about infinite com-
putations. Information and Computation, 115(1):1–37, 1994.

Résumé en français

Sujet de la thèse. Dans cette thèse, nous nous intéressons à la vérification
d’automates temporisés et stochastiques (écrits STA pour la suite). La vérification
de systèmes informatiques est devenue courante de nos jours : certains de ces
systèmes pouvant être critiques (avions, centrales nucléaires, ...), il est important
de pouvoir vérifier si ces systèmes fonctionnent correctement. Cela se fait par le
biais d’une modélisation mathématique du système. Ces modèles mathématiques
nous fournissent des outils qui permettent de décider si un système est correct.
En particulier, étant donné un modèle (représentant un système informatique) et
une propriété (exprimée sur le modèle mathématique), on veut pouvoir vérifier
si le modèle satisfait la propriété. On appelle cela le model-checking.

Afin de considérer ce problème, de nombreux modèles ont été considérés.
Nous nous intéressons ici à des systèmes informatiques avec des contraintes
de temps (on veut que certaines actions d’un programme soient uniquement
exécutées dans un certain délai). L’un des modèles les plus répandus pour étudier
le model-checking de systèmes informatiques temporisés sont les automates tem-
porisés [AD94]. Nous nous intéressons à une extension probabiliste de ce modèle :
les STA.

Automates temporisés. Un automate temporisé est un automate fini (donné
par un ensemble fini de locations et un ensemble fini de transitions entre les
états) enrichi d’un ensemble de variables à valeurs réelles et positives, appelées
horloges. Les valeurs des horloges changent avec l’écoulement du temps et les
actions faites. Le model-checking sur un automate temporisé s’exprime de cette
façon : étant donné un automate temporisé A et une propriété ϕ, on veut savoir
si A satisfait ϕ.

Le succès du modèle vient du fait que de nombreuses propriétés sont vérifiables
pour les automates temporisés, et que de nombreux outils ont été développés pour

267

268 Bibliography

vérifier ces systèmes (par exemple Uppaal [BDL+06])

Automates temporisés et stochastisques. On considère une extension pro-
babiliste des automates temporisés : une des motivations est que de nombreuses
applications ont besoin de gérer à la fois des contraintes temporelles et des as-
pects probabilistes (des protocoles de communication par exemple [?]). Nous nous
intéressons aux STA, présentés dans [BBB+14]. C’est une extension naturelle des
automates temporisés où les délais et les choix discrets sont probabilisés.

De nombreux résultats sont déjà connus sur les STA. Notamment, on sait
que le model-checking presque sûr (c’est-à-dire vérifier si oui ou non, un STA
satisfait avec probabilité 1 (ou 0) une propriété donnée) pour les formules LTL
est décidable pour une certaine classe de STA (toujours dans [BBB+14]). Ce-
pendant, plusieurs aspects manquent encore pour une étude plus complète de la
vérification de STA, entre autres :

• une approche compositionnelle du modèle, afin d’étudier la vérification
compositionnelle ;

• la vérification quantitative : étant donné un STA A et une propriété ϕ,
fournir un algorithme approchant la probabilité que A vérifie ϕ.

Ce sont les deux aspects auxquels nous nous intéressons dans ma thèse.

Vérification presque sûre des systèmes probabilites. Afin de considérer
la vérification des STA, nous nous intéressons d’abord aux systèmes de tran-
sitions stochastiques (écrits STS). Ces systèmes peuvent être vus comme des
châınes de Markov avec un ensemble d’états qui peut-être non-dénombrable et
munis donc de distributions qui peuvent être continues. Nous nous intéressons à
deux types de problèmes dans ces STS :

• la vérification qualitative déjà citée plus haut ;

• la vérification quantitative : étant donné un STS T et une propriété ϕ nous
voudrions pouvoir fournir un algorithme qui approche la probabilité que T
vérifie ϕ.

Pour cela, nous nous sommes intéressé à ce papier : [ABM07].
Ce papier s’intéresse aux châınes de Markov à temps discret (MC) et introduit

une notion de decisiveness qui permet de faire passer les bonnes propriétés des
MC finies aux MC infinies. Cette notion de decisiveness établit ceci : une MC
M est décisive par rapport à un certain ensemble d’états B si la probabilité
d’atteindre un état dans B ou un état duquel on ne peut pas atteindre B, vaut
1. Il est montré que sous cette notion :

269

• le model-checking presque sûr de propriétés d’atteignabilité et d’atteigna-
bilité répétée, se réduit à la vérification d’une sorte de propriété d’atteigna-
bilité sur le graphe sous-jacent et est décidable sous certaines hypothèses
supplémentaires raisonnables ;

• les algorithmes fournis pour approcher les probabilités d’une propriété d’at-
teignabilité et d’atteignabilité répétée se terminent bien et sont décidables
sous certaines hypothèses supplémentaires raisonnables.

STS et decisiveness. Nous avons voulu alors adapter cette notion de decisi-
veness aux STS. Le problème pour cette extension est que les MC ont plusieurs
hypothèses non-vérifiées par les STS : un ensemble d’états et un branchement
au plus dénombrables. La présence de distributions continues pour les STS fait
que l’on n’entre plus dans ce cadre.

Dans cette thèse, nous définissons une notion de decisiveness pour les STS
quelconques : [BBBC16]. Cette notion de decisiveness permet d’obtenir des résultats
similaires à ceux sur les MC :

• le model-checking presque sûr de propriétés d’atteignabilité et d’atteigna-
bilité répétée, se réduit au 0-model-checking d’une sorte de propriété d’at-
teignanbilité ;

• les mêmes algorithmes pour approcher les probabilités d’une propriété d’at-
teignabilité et d’atteignabilité répétée se terminent bien.

De plus, nous avons utilisé une procédure introduite dans [ABRS05] sur les lossy
channel systems probabilistes (écrits LCSP) qui permet la vérifaction qualitative
des propriétés données par un automate déterministe de Muller (écrit DMA) dans
les MC. La première contribution a été d’adapter cette procédure afin d’obtenir
est schéma d’approximation pour les propriétés données par un DMA. Cette
procédure joue sur l’importe notion d’attracteur fini. Le but est ensuite d’étendre
cette procédure aux STS.

Il reste alors deux grandes difficultés : comment prouver qu’un processus
stochastique complexe (les STS) est décisif ? Et la notion d’attracteur fini n’étant
pas adaptée ni raisonnable pour les STS, comment l’adapter ?

Pour répondre à ces problèmes, nous sommes passés par la notion d’abstrac-
tion. On montre que si un STS T1 possède une bonne abstraction T2 (c’est-à-dire
T2 est une MC qui préserve le model-checking presque sûr de propriétés d’at-
teignabilité), alors T2 est décisif implique que T1 est également décisif. Si T1

possède une bonne abstraction, il suffit alors de montrer que son abstraction est
décisive pour obtenir les résultats précédents. De plus, étant donné que la bonne

270 Bibliography

abstraction préserve l’atteignabilité presque sûre, il s’ensuit qu’un attracteur fini
de T2 donne un attracteur dans T1 que nous pouvons utiliser afin d’obtenir une
procédure similaire à celle dans les MC et qui nous permet de vérifier qualitati-
vement et quantitativement les propriétés données par un DMA dans les STS.

Application aux STA. On peut montrer qu’un STA peut être exprimé par
un STS. On travaille alors sur une abstraction bien connue des STA : le graphe
des régions vu comme une MC ([BBB+14]). Cette MC est finie, [ABM07] nous
permet donc de conclure que l’abstraction est décisive ! Malheureusement cette
abstraction n’est pas toujours bonne au sens dont nous avons besoin... Mais nous
identifions plusieurs classes de STA dans lesquelles cette abstraction est bonne.
Pour ces classes nous obtenons donc tous les résultats qualitatifs (déjà connus
dans [BBB+14] mais l’approche proposée ici est plus uniforme) et surtout de
nouveaux schémas d’approximations !

Vérification compositionnelle. En général, un système informatique est le
résultat de plusieurs plus petits systèmes qui peuvent fonctionner indépendamment
les uns des autres, ou en synchronisation avec les autres. Il est alors souvent plus
simple de modéliser un à un les différents modèles et d’instaurer un opérateur
de composition qui mettra en parallèle les différents systèmes et décrira le com-
portement du système informatique initial. C’est ce qu’on appelle la composition
parallèle. La composition parallèle peut être avec ou sans synchronisation sur un
certain ensemble d’actions.

Etant donné A1, . . . ,An n systèmes modélisés pour un certain modèle, on
écrit A1 ‖ . . . ‖ An pour la composition parallèle des n systèmes, avec ou sans
ensemble de synchronisation. La vérification compositionnelle s’exprime de la
façon suivante : étant donné une propriété ϕ, existe-t-il des propriétés ϕ1, . . . , ϕn
telles que si pour chaque i compris entre 1 et n, Ai vérifie ϕi, alors la composition
des n systèmes (c’est-à-dire A1 ‖ . . . ‖ An) vérifie la propriété ϕ ? L’objectif est
d’étudier cet aspect sur les STA.

STA et composition. La notion de composition n’était pas encore définie sur
les STA. Dans un premier temps, nous définissons un opérateur de composition
parallèle pour les STA. Dans cette thèse, Nous définissons un tel opérateur dans le
cas où l’on suppose que les automates que l’on compose sont indépendants. Nous
donnons une classe de STA dans laquelle l’opérateur est bien défini et interne.
Cette classe n’est définie que par des restrictions sur les lois de distributions,
restrictions qui nous semble raisonnables. Nous montrons qu’avec l’hypothèse
supplémentaire que l’ensemble des exécutions Zeno (c’est-à-dire des exécutions

271

infinies mais bornées en temps) a une probabilité nulle, l’opérateur exprime bien
l’indépendance des automates composés : en restant peu précis, étant donné deux
STA A1 et A2, et deux propriétés ϕ1 et ϕ2, on montre que la probabilité que
A1 ‖ A2 vérifie ϕ1 et ϕ2 correspond à la multiplication des probabilités que d’une
part, A1 vérifie ϕ1 et d’autre part, A2 vérifie ϕ2.

Nous avons alors défini une notion de bisimulation sur les STA. Cette notion
étend naturellement celle sur les châınes de Markov à temps continu (CTMC) [DP03].
Nous montrons que la bisimulation est une congruence par rapport à la compo-
sition parallèle. Une telle propriété est attendue à chaque fois que l’on parle de
composition parallèle dans différents modèles. Elle est requise afin de pouvoir
étudier proprement une approche compositionnelle des modèles.

Afin de considérer la composition avec synchronistion, nous définissons le
modèle des STA interactifs (écrits ISTA). Les ISTA étendent les STA dans la
même façon que les MC interactives ([Her02]) étendent les MC : en plus des tran-
sitions probabilistes, nous avons des transtions interactives étiquetées par une
action. Elles permettent d’établir des interactions entre différents ISTA. Nous
définissons un opérateur de composition avec synchronisation dans les ISTA. Il
se base sur le précédent dans les STA, il ajoute une condition de synchronisation
étant donné un certain ensemble d’action A (pour faire court, les ISTA se sychro-
nisent sur les actions présentes dans A). De manière similaire à précédemment,
nous indentifions une classe de ISTA dans laquelle la composition est bien définie
et interne. Nous définissons également une notion de bisimulation qui est une
congruence par rapport à la composition.

Nous terminons la thèse par un lien entre les deux grandes parties de la
thèse. Nous identifions une classe de ISTA dans laquelle la composition est bien
définie et dans laquelle, les STA sous-jacents ont une bonne abstraction, ce qui
implique que tous les résultats qualitatifs et quantitatifs précédents peuvent être
appliqués.

Conclusion. Nous avons fait quelques progrès dans la vérification des STA,
qui peuvent se résumer de la façon suivante :

• l’apport d’une approche unifiée pour la vérification qualitative des STA et
de nouveaux schémas d’approximation pour des propriétés d’atteignabilité,
d’atteignabilité répétée et de DMA, qui se terminent sous une hypothèse de
decisveness ou d’attracteur ou encore sous l’hypothèse d’avoir une bonne
abstraction ;

• l’apport d’un cadre compositionnel pour les STA que ce soit via l’opérateur
de composition indépendant dans les STA ou bien via les ISTA et leur

272 Bibliography

opérateur de composition avec synchronisations, les premières étapes im-
portantes pour se diriger vers l’étude de la vérification compositionnelle
des STA.

Titre : Vérification des automates temporisés et stochastiques

Mots clés : vérification, automates, temporisé, stochastique

Résumé : Dans cette thèse, nous nous
intéressons à la vérification formelle. On
considère le modèle des automates
temporisés et stochastiques (STA) qui est
une extension probabiliste des automates
temporisés, très connus. Les contributions
de cette thèse se distinguent en deux
parties : on étudie le model-checking
qualitatif et quantitatif des STA, et la
vérification compositionnelle des STA.
Dans la première partie, nous abordons
l'analyse qualitative et quantitative des STA
par les mêmes analyses de systèmes de tran-
sition stochastiques généraux (STS) qui
peuvent être vus comme des chaînes de
Markov (MC) générales avec un ensemble
d'états continu.

Dans la deuxième partie, on définit un opé-
rateur de composition dans les STA.
D'abord, nous étudions le cas où les STA
composés fonctionnent indépendamment,
aboutissant à un opérateur interleaving.
Pour permettre des interactions entre les
systèmes, on définit le modèle des STA inte-
ractifs (ISTA) basé sur le modèle des MC
interactives. Nous définissons alors un opé-
rateur de composition dans les ISTA, qui est
handshaking.
Nous terminons cette thèse par un lien entre
les deux parties. Nous identifions une classe
de ISTA dans laquelle la composition est
bien définie et les résultats qualitatifs et
quantitatifs précédents peuvent être ap-
pliqués.

Title : Verification of Stochastic Timed Automata

Keywords : verification, automaton, timed, stochastic

Abstract : In this thesis, we are interested in
formal verification. We consider the
stochastic timed automaton model (STA)
which is a probabilistic extension of the
well-known timed automaton model. The
contributions of the thesis are twofold : we
study the qualitative and quantitative
model-checking problems of STA, and the
compositional verification of STA.
In the first part, we tackle the qualitative
and quantitative analysis of STA through
the same analyses on general stochastic
transition systems (STS), which can be
seen as general Markov chains (MC) with a
continuous set of states.

In the second part, we define an operator of
composition in STA. We first study the case
where the composed STA run independen-
tly, leading to an interleaving operator. In
order to allow interactions between the sys-
tems, we define the interactive STA model
(ISTA) based on the interactive MC model.
We then define an operator of composition
in ISTA, which is handshaking.
We end up the thesis with a link between
the two parts. We indentify a class of ISTA
in which parallel composition is well-defi-
ned and in which the previous qualitative
and quantitative results can be applied.

Université Paris-Saclay
Espace Technologique / Immeuble Discovery
Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France

