Il n'y a qu'un héroïsme au monde: c'est de voir le monde tel qu'il est, et de l'aimer.

Romain Rolland

Après plusieurs tentatives de rédiger cette partie avant la soutenance, je pensais pouvoir être plus posée une fois devenue Dr.Na. Mais non, les sentiments de gratitude et de reconnaissance continuent de me mettre dans un état suffisamment effervescent que mon sens de l'objectivité physicienne est mis à l'épreuve. S'il y a une hiérarchie à laquelle est soumise une vie matérielle, le plus haut placé sera peut-être le temps. Ainsi retraçons quelques souvenirs par ordre chronologique.

"Le langage est source de malentendus"

Tout a commencé par la prise de contact avec Michel Poirier, rendue possible grâce à la plateforme du Master de Fusion.

Une fois admise aux concours d'EDOM -dont la préparation a été assistée par Michel et Frédéric Thais, je me joins au groupe MHDE/LIDYL/IRAMIS/DSM/CEA qui comptait Maylis Dozières en 2ème année, Clément Caizergues et Madeny Belkhiri en fin de thèse, Michel, Frédéric et Thomas Blenski comme permanents. Les documents administratifs étaient transférés à Jacqueline Bandura et signés par Philippe Martin. Le prêt et le retour des livres sont assurés par la Bibliothèque de Saclay. Je prenais la succession de Madeny, qui m'a notamment initiée au fonctionnement du code FAC. Je partageais le même bureau avec Maylis pendant deux ans. Le temps du déjeuner fut l'occasion d'échanges au sein du groupe MHDE, rejoint de temps en temps par Robin Piron et agrandi avec l'arrivée de Dominique Gilles. Les sujets de discussion étaient la plupart du temps d'ordre socio-géo-politique.

Concernant les missions doctorales, Philippe Caillou m'a contactée pour un monitorat à l'IUT de Sceaux, encadrée par Isabelle Bournaud. J'ai sous ma responsabilité deux groupes, chacun composé d'une vingtaine d'étudiants.

Thomas m'a suggéré de participer au 7ème Forum Lasers et Plasmas où j'ai rencontré Franck Gilleron et Jean-Christophe Pain. Franck m'a montré un exemple de calcul de variance en utilisant les opérateurs de la 2nd quantification et l'algèbre de Racah. Jean-Christophe m'a donné l'idée d'implémenter les pseudo-UTAs, m'a envoyé les cours ainsi que le livre des Bauche à sa publication.

Après un an de trajets quotidiens, fatigants comme m'en avait avertie Michel, j'ai déménagé de Paris à Palaiseau dont la proximité m'a permis de m'impliquer davantage dans la vie culturelle et sportive du centre. Frédéric m'a présentée à Sylvie Jubera et Pascal Salières. Sylvie m'a accueillie dans son groupe de jogging qui court les mardis et jeudis midis. Au retour, je retrouvais iii Acknowledgment souvent Stéphane Guizard et Allan Bildé au déjeuner. Pascal m'a mise en contact avec Bernard Crabol, qui m'a inscrite au cours de la classe de piano de l'AACCEA avec Julie Safarova. Suite au forum annuel de l'AACCEA, Modeste Donati a partagé l'annonce de Brigitte Schalber grâce à qui j'ai eu le premier piano acoustique à moi, emménagé à l'aide des amis. Éric Vincent m'a autorisée à faire partie de la classe jusqu'à la fin de ma thèse. Julie m'a mise en relation avec Frédérique Napoléone pour le concert à 4 mains.

Au cours de ma thèse, Michel et Thomas m'ont donné les opportunités de participer aux divers formations et échanges internationaux. Avec Michel, nous avons publié 2 articles. Je prends conscience de mon évolution progressive au niveau de l'autonomie et de la communication.

En rassemblant mes notes en LaTeX, j'entamais la rédaction de la thèse. À chaque version du manuscrit, Michel m'envoyait une version de commentaires. Michel, Philippe M. et Jacques Robert ont signé les documents relatifs à la soutenance. Le manuscrit fut rapporté par Annette Calisti et Gérard Massacrier qui ont contribué à son amélioration et qui m'ont autorisée à passer la soutenance. Lydia Tchang-Brillet, Djamel Benredjem et Jean-Marcel Rax ont accepté d'être membres du jury. Thomas, Dominique et Michel ont assisté aux répétitions et m'ont donné des conseils.

"Le sentier qui finit où le chemin commence"

Avec Frédérique et Julie, nous compléterons sans doute le travail sur la Fantaisie de Schubert avec au moins le 2ème mouvement. Avec Françoise Thais et Frédéric, nous organiserons sans doute d'autres échanges culinaires et musicaux. Avec Dominique, nous ne manquerons sans doute pas d'occasion de nous balader dans la nature comme en ville.

Un jour, Michel partagera peut-être son expertise montagnarde avec ses doctorants, anciens et nouveaux. Un jour, X. Na apparaîtra peut-être dans des articles à côté de A. Calisti, G. Massacrier, F. Gilleron, J-C. Pain, M. Poirier, et al. Un jour, madame encadrera peut-être ses doctorants qui lui feront confesser le temps jadis auprès de son directeur de thèse.

Quoi qu'il advienne, ce qui se décante de ce sentier de 38 mois continue certainement à m'inspirer sur de nouveaux chemins: à savoir le dévouement au travail, la force de la culture et de la connaissance, l'importance de confronter les différences culturelles -entre "ne pas déranger" et "prendre l'initiative" par exemple -et de s'y adapter, la persévérance et l'envie constante de se dépasser dans une course, la profondeur et la finesse procurées par les émotions musicales, l'égalité des chances, l'intelligence de comprendre les besoins d'autrui et la bonté d'essayer de les satisfaire.

Enfin, je voudrais remercier toutes les personnes impliquées, et en dépassant le cadre de la thèse, rendre hommage à l'amour et à l'amitié que me témoignent familles et amis. Quoi que je devienne, je sais qu'à vos yeux, je suis toujours la même.

3.1 Detailed and UTA zero-dimensional emission spectra accounting for electric dipole E 1 transitions 3d 2 4p ≠ 3d 2 4s in two plasmas of different atomic numbers Z: Krypton X (Z=36) and Zirconium XIV (Z=40), on subfigures 3.1a and 3.1c respectively. The horizontal lines on subfigures 3.1b and 3.1d stand for the configurational energies E 0 ,E 1 ,...E 8 listed in Table 3.1, from the bottom to the top, whose differences are vertically scaled. FAC output is post-processed assuming an electron temperature of 5000 eV and density of 10 23 cm ≠3 . The grey lines result from the detailed computation including Doppler line shapes. The red curves are derived from the detailed computation after convolution by a 3.5 eV-FWHM response function in the case of Krypton X and a 0.9 eV-FWHM response function in the case of Zirconium XIV. The purple curves are the spectra obtained using the UTA formulas as provided by FAC and Gaussian profile. . . . . . . . . . . . 4.1 Gram-Charlier distribution for the spin-orbit energy of the 3d 6 -configuration in Au 55+ with an Ar-like core. The various curves correspond to the expansions truncated at various indexes p. For comparison purpose one has plotted the data from Cowan's code where each energy level is arbitrarily represented by a Lorentzian of 2 eV FWHM not accounted for in the moment computation. The Gram-Charlier curves are normalized to the degeneracy g = 210. The ordinates for Cowan's data have been divided by a suitable factor in order to allow comparison. are shown in the detailed and UTA cases, assuming an effective temperature of 180 eV and a density of 10 14 e/cm 3 . The detailed curves are convolved with a 10-eV FWHM response profile. The UTA profiles are not convolved. In the detailed case the convolution is performed using FFT (resp. analytical) method for the Voigt (resp. Gaussian) profiles. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4.5

Opacity in tungsten: electric-dipole and magnetic dipole contributions . . . . . .

4.6

Zero-dimensional emission spectra accounting for M 1 transitions within the 3 ú n complex in W 50+ ,W 51+ ,W 54+ , and W 58+ , on subfigures 4.6a, 4.6b, 4.6c, and 4.6d respectively. FAC output is post-processed assuming an electron temperature of 200 eV and density of 10 14 cm ≠3 . The grey line is the detailed computation including Doppler line shapes. The red curves are derived from the detailed computation after convolution by a 10-eV-FWHM response function. The black curves are the spectra obtained using the UTA formulas as provided by FAC. The blue curves are obtained from the detailed computation by collecting lines into pseudo-UTA, see Sec. 3.2.2 for details. . . . . . . . . . . . . . . . . . . . . . . . . 4.7 Contribution of the various types of transitions to the emission spectra in W ions. The crosses (blue lines) correspond to transitions within a same relativistic configuration. The triangles (green lines) correspond to inter-configuration transitions present in the list of UTA computed by FAC. The circles (red lines) correspond to inter-configuration transitions not present in this list. The thick black line includes all contributions. Subfigures 4.7a, 4.7b, 4.7c, and 4.7d refer to ions W 50+ ,W 51+ ,W 54+ , and W 58+ respectively. All these spectra have been convolved by a 10-eV-FWHM Gaussian profile. . . . . . . . . . . . . . . . . . . . 80 2.4 Chemical pictures of microscopic processes (not exclusive) in detailed balance.

According to plasma (n e ,T e ) ranges, electron-atom collisional frequencies and radiative transition probability rates may be in competition with each other, resulting in various ionization as well as recombination processes [B40]. The balance between rates at which these processes take place may be studied by solving rate equations, required when plasmas are out of thermodynamic equilibrium. The symbol * stands for excited state lying above the ionization limit. . . . . . . . .

3.1

Configuration and array structures from UTA computation of the FAC code. For d-subshells, -stands for j =3/2, + for j =5/2; for p-subshells, -stands for j =1/2, + for j =3/2. The 9 relativistic configurations are indexed through 0 to 8 and sorted in the order of increasing energy, i.e. E 0 <E 1 <...<E 8 . The 6 relativistic transition arrays computed are listed in the upper part of the Table . . . . . . . . 4.1 Absolute and scaled centered moments of energy distribution for the 3d 6 configuration in Au 55+ with an Ar-like core. The results from Cowan's code are computed both with the complete interaction (V ee ,V so ) and with only spin-orbit terms (V so ). The notation 1.195(8) stands for 1.195 ◊ 10 8 . Analytical values of moments including the whole interaction are not available at any order, however values for n =2 and 3 are given in the main text. . . . . . . . . . . . . . . . . . 4.2 Centered moments and cumulants for the levels of 3p 2 3d 6 configuration in Au 59+ with a Mg-like core. The columns 2 and 3 contain the centered moments µ n obtained with Cowan's code, with electron interaction respectively included or not. Column 4 gives the list of cumulants κ n (3.13) derived from Cowan's data with only spin-orbit included. The three rightmost columns are computations using the spin-orbit parameter provided by the Cowan's code and the present analytical formulas. The tabulated cumulants refer to the 3p 2 sub-shell, the 3d 6 sub-shell, and the whole configuration for columns 5-7 respectively. All data relative to order n are in units of eV n . The notation 9.26(4) stands for 9.26 ◊ 10 4 . 4.3 Number of levels, relativistic configurations (RCs) and M 1 transitions within the complex 3ún in W 50+ , W 53+ , W 54+ , and W 58+ ions. Results are from FAC in detailed and UTA mode, that provide the numbers of transitions listed in columns 4 and 5 respectively. The method proposed in this work constructs pseudo-UTAs, counted in column 6, which include much more transitions than the standard UTA computation provided by FAC. . 

Part I

Synthèse en français

Étude spectroscopique des plasmas hautement ionisés : approches détaillée et statistique

Les spectres d'absorption et d'émission dans des plasmas chauds, comme ceux rencontrés en astrophysique et en sciences de la fusion nucléaire, présentent souvent des structures complexes. Afin de les interpréter, il existe des méthodes dites statistiques qui décrivent les ensembles non résolus de raies par des structures dites faisceaux de transition. Par rapport aux méthodes détaillées qui tentent de calculer les spectres raie par raie en nécessitant la diagonalisation de l'hamiltonien du système considéré, les méthodes statistiques sont basées sur la détermination des moments de distribution, qui met en jeu le calcul des moyennes en configuration. L'objet de cette thèse consiste à comparer les deux approches -détaillée et statistique, en utilisant notamment le code de structure atomique FAC (Flexible Atomic Code).

Dans cette synthèse, le sujet de la thèse est présenté dans un premier temps à travers ses mots clés. Puis, quelques éléments sont extraits des deux travaux publiés au cours de la thèse, dont l'un numérique sur la modélisation des spectres des transitions dipolaires magnétiques dans des plasmas de tungstène, et l'autre analytique sur le calcul des moyennes des énergies spin-orbite dans une configuration multi-électronique. Enfin, la synthèse se termine par une conclusion composée d'un résumé de travaux effectués et de plusieurs perspectives proposées.

Présentation du sujet

Plasma

Généralement considéré comme le 4ème état de matière, un plasma est constitué d'un ensemble de particules chargées s'interagissant par des forces électromagnétiques. Les plasmas de grandes variations de températures T et de densités n, cf. Fig. 1.1 et Table 1, sont caractérisés par leur capacité de maintenir l'état de quasi-neutralité, traduit par l'égalité des charges positives et négatives

n e = Z ◊ n i (1)
où n e,i =densités électronique, ionique, Z =degré d'ionization moyen, et s'explique par les paramètres fondamentaux tels que la longueur de Debye

λ D Ã Ò T e /n e .
(2)

Haute

Basse T e & 10 7 K . 2 ◊ 10 4 K n i & 10 23 m ≠3 . 10 25 m ≠3 Table 1: Classification -grosso modo -des domaines d'étude des plasmas en fonction de leurs températures et densités.

Spectroscopie atomique

La physique des plasmas chauds représente un champ d'études multi-disciplinaires, parmi lesquelles l'étude des spectres radiatifs atomiques, qui sont principalement de deux types : en émission et en absorption, l'intensité I(λ) et l'opacité κ(λ) respectivement sont représentées en fonction des longueurs d'onde (ou de façon équivalente des énergies I(E),κ(E)) des photons mis en jeu. La spectroscopie atomique joue un rôle essentiel dans le diagnostic des propriétés radiatives des plasmas sur le plan expérimental, qui permet de contribuer en contrepartie au développement théorique de la physique atomique dans leur sein. Une illustration d'étude expérimentale de la spectroscopie des plasmas de cuivre du laboratoire est montrée dans la Fig. 1.

Quant à la plupart des calculs atomiques, le point de départ consiste à déterminer la structure électronique des éléments atomiques du plasma étudié, comme les énergies de niveaux et de configurations.

• Un niveau est caractérisé par des nombres quantiques tels que n, l, m l ,m s ;

• Une configuration désigne un ensemble de sous-couches électroniques partageant les m valeurs de -(n i ,l i ) dans le cas non relativiste:

C nr =(n 1 l 1 ) ‹ 1 (n 2 l 2 ) ‹ 2 ...(n p l p ) ‹p (3) 
-(n i ,l i ,j i ) dans le cas relativiste:

C r =(n 1 l 1 j 1 ) Ê 1 (n 2 l 2 j 2 ) Ê 2 ...(n q l q j q ) Êq (4) où ν i ,ω i sont les nombres d'occupation de i,t e l sq u e

ν max i = 2(2l i + 1),ω max i =2j i +1. ( 5 
)
Les dégénérescences des configurations g C s'obtiennent en fonction de celles des sous-couches g i :

g Cnr = p Ÿ i=1 g i,nr ,g Cr = q Ÿ i=1 g i,r (6) 
où

g i,nr = A ν max i ν i B ,g i,r = A ω max i ω i B (7) 
Par exemple, g(3s3p 4 )= Généralement, deux classes de modèles de la physique atomique dans des plasmas sont utilisées :

• détaillée, qui consiste à construire les spectres en sommant raie par raie;

• statistique, qui regroupe des approches différentes telles que la description d'atome moyen statistique (1s 0,95 2s 0,89 ... à (n, T ) donné) et les méthodes de moyenne, par exemple pour moyenner les niveaux en configuration (1s 2 2s 2p), voire en supraconfiguration ((1s) 2 (2s2p) 2 ).

Dans cette thèse, nous nous focalisons sur les méthodes qui moyennent les niveaux en configuration et nous allons considérer les faisceaux de transition. Alors qu'une raie spectrale traduit une transition électronique entre 2 niveaux, un faisceau désigne l'ensemble des transitions entre les niveaux de 2 configurations.

Modèle UTA (Unresolved Transition Array) -Faisceau de transition non-résolue

Dans les spectres des plasmas hautement ionisés, deux caractéristiques sont souvent présentes. D'une part, le nombre de raies les constituant peut être très important, lié par exemple aux transitions parmi un nombre élevé de sous-couches électronique ouvertes. De l'autre part, les raies d'énergies voisines sont susceptibles de se recouvrir en formant des structures non-résolues. Un exemple pertinent se trouve dans la Figure 2.2 du livre des Bauche et de Peyrusse (2015). Ainsi est-il adéquat d'appliquer le modèle UTA dans l'interprétation de tels spectres.

Le modèle UTA est basé sur le calcul des moments µ n [X] ainsi qu'au choix des fonctions F de distribution. Les moments de distribution d'ordre n s'écrivent :

µ n [X]= q N i=1 (X i ) n ω i q N i=1 ω i
,ω i = poids statistiques de X i (8)

En spectroscopie statistique, il est d'usage d'étudier par exemple

• la distribution des énergies de raies X i = E ab pondérées par leurs forces ω i = f ab ;

• la distribution des énergies X i = E a des niveaux par leurs dégénérescences ω i = g a ;e t c .

En générale, les 4 premiers ordres, qui représentent respectivement

• µ 1 = la moyenne,

• µ 2 = la variance,

• µ 3 = la dissymétrie,

• µ 4 = l'aplatissement d'une distribution, permettent d'en caractériser globalement son profil. Et les fonctions de distribution usuelles F (µ n [X]) sont de type Gaussien, Gram-Charlier, Gaussien généralisé, etc. Comme illustration, en utilisant le code FAC, les transitions 3d 2 4p ≠ 3d 2 4s dans les plasmas de KrX et ZrXIV sont calculées en modes détaillé et UTA, dont les spectres sont montrés dans la Fig. 3.1.

Modélisation des spectres

Problématique étudiée

Afin d'explorer l'une des caractéristiques des plasmas hautement ionisés, qui est l'importance croissante des transitions dipolaires magnétiques M 1 par rapport au type dipolaire électrique E 1 , nous nous intéressons à la contribution lié-lié des transitions M 1 dans le cas du complex 3 ú 14 (14 électrons dans les sous-couches de n =3) dans les plasmas de tungstène (W, Z = 74)de charges aux alentours de 50+, en régime de température-densité équivalent du tokamak d'ITER.

Nous allons comparer les spectres d'émission détaillés et UTA avec le code FAC, qui est un code atomique relativiste, bien adapté aux cas des éléments lourds fortement chargés. Son mode UTA calcule des faisceaux de transitions entre les configurations relativistes C r .

Cette étude est motivée par deux aspects notamment: d'un côté, l'élément tungstène W étant choisi comme composant du divertor du tokamak d'ITER, le calcul de sa perte radiative suscite d'intérêt dans la communauté de la fusion nucléaire; de l'autre côté, vis-à-vis de la spectroscopie statistique des raies interdites, il s'agit de tester l'implémentation dans le code FAC des formules analytiques des moments µ n pour les transitions du type M 1 , obtenues récemment. Le code atomique FAC nous fournit les quantités E, A, g, f soit par diagonalisation de l'Hamiltonien dans l'option détaillée, soit avec les formules analytiques des moments (ex. σ i.e. µ 2 ) préalablement implémentées dans l'option UTA. Nous avons écrit un post-processeur afin de calculer les quantités p, S de l'Eq.( 9). Plus précisément, nous avons fait les choix suivants : • soit au manque de raies prises en compte dans les formules UTA du code.

Construction des spectres liés-liés

• S = profil Gaussien S(E)= 1 Ô 2πσ e ≠ (E≠µ 1 ) 2 2σ 2 (10) avec σ 2 Détail = σ 2 Doppler et σ 2 UTA = µ c 2 + σ 2 Doppler ; • p = loi
Pour les vérifier, nous avons implémenté une procédure numérique de pseudo-UTA qui consiste à post-traiter les données de sortie détaillées -en regroupant des niveaux en configurations et des raies en UTAs, permettant ainsi de fabriquer numériquement des moments d'ordre quelconque

µ (k) --= e (E ≠ E --) k f = q aoe- boe- g a f ab (E ab ≠ E --) k q aoe- boe- g a f ab . ( 11 
)
Comme montre la Fig. 3, l'excellent accord a été constaté entre les spectres détaillé et pseudo-UTA Gaussien, i.e. construit à partir de 2 moments seulement. Ainsi pouvons-nous éliminer l'hypothèse liée à l'absence des moments d'ordre élevé. En effet, dans le cas de W 50+ , les 18513 raies calculées par FAC correspondent aux 91 UTAs selon l'option UTA du code, alors qu'elles se regroupent en 649 pseudo-UTA selon notre postprocesseur. En comparant avec les données de sortie UTA de FAC, nous avons constaté que seule une partie de raies résultant des transitions entre 2 configurations C r différentes, notées par InterL, a été prise en compte par l'option UTA de FAC. Parmi les données de sortie détaillées de FAC, il s'avère que 2 catégories de raies sont négligées par les formules UTA implémentées : • InterNL = une partie de transitions inter-configurationnelles; il s'agit essentiellement des transitions multi-électroniques, par ex. 3d 2 3/2 ae 3d 2 5/2 , rendues possible par l'effet des interactions de configuration.

• Intra = toutes les transitions intra-configurationnelles, i.e. ayant lieu au sein d'une même configuration, permises par les règles de sélection des transitions M 1 (contrairement à celles des E 1 ). L'ensemble des 3 catégories de raies ainsi que leurs contributions respectives en termes de nombre et d'émissivité sont représentées dans la Fig. 4 et la Table 2, en prenant toujours le cas des transitions M 1 du complex 3 ú 14 dans W 50+ . Malgré le nombre relativement faible des raies InterL, leur contribution spectrale reste majoritaire parmi les 3 catégories, ce qui est rassurant.

Calcul des moyennes

Problématique étudiée

Dans cette section, nous explorons une autre caractéristique des plasmas hautement ionisés, qui est l'importance croissante de l'effet spin-orbite V so par rapport à l'effet Coulombien V ee . Figure 4: Spectres d'émission détaillés des transitions M 1 du complex 3 ú 14 dans W 50+ :3 catégories de raies ainsi que leurs contributions respectives à l'émissivité totale.

Rappelons que l'Hamiltonien perturbatif dans l'approximation semi-relativiste s'écrit

H = ÿ i=1,N A p 2 i 2 ≠ Z r i B + V ee + V so , ( 12 
)
en nous plaçant dans la situation où le numéro Z du plasma considéré est élevé, l'effet spin-orbite V so l'emporte sur l'effet Coulombien V ee . L'étude des moments µ n (V so ) des énergies spin-orbite dans une configuration multi-électronique nous amène au calcul des moyennes de type

e C | V k so | C f © e V k so f N où la configuration peut être relativiste ou non, i.e. C © C nr =(nl) N ou C © C r =(nlj ≠ ) ‹ (nlj + ) N ≠‹ .
L'opérateur V so peut s'écrire préférentiellement de deux façons, selon la base utilisée:

• soit en termes d'opérateurs l ± ,l z dans la base non couplée |lm l sσÍ

V so = ÿ p ξ(r p ) 5 1 2 (l p+ s p≠ + l p≠ s p+ )+l pz s pz 6 , (13) 
• soit en fonction des j, l, s dans la base couplée |lsjmÍ

V so = ÿ p ξ(r p ) j 2 p ≠ l 2 p ≠ s 2 p 2 . ( 14 
)
Or, dans la base |lsjmÍ, la matrice de V so est diagonale, en considérant C © C r par exemple, l'expression analytique de

e V k so f N s'écrit e V k so f N =2 ≠k ÈξÍ k A 4l +2 N B ≠1 ÿ ‹ A 2l ν BA 2l +2 N ≠ ν B (Nl≠ (2l + 1)ν) k . ( 15 
)
De manière générale, bien qu'il existe une base dans laquelle la matrice d'un opérateur hermitien est diagonale, il n'est pas forcément aisé de déterminer cette base que ce soit analytiquement (ex. dans le cas de couplage intermédiaire) ou numériquement (ex. la taille de la base élevée), la méthode des moyennes s'avère nécessaire. Nous allons l'illustrer par un exemple qui peut être traité de manière complètement analytique, qu'est le calcul du moment de l'opérateur spin-orbite à l'ordre 3, soit

e V k so f N ,k =3.

Méthode du calcul des moyennes

La moyenne ÈOÍ d'un opérateur O est reliée à sa trace Tr(O) et au facteur de dégénérescence g selon la relation

ÈOÍ = Tr(O) g , ( 16 
)
où, sur une configuration à N électrons équivalents,

Tr(O)= 1 N ! ÿ q 1 •••q N ÿ • oeS N ε • e q 1 •••q N |O| q • (1) •••q • (N ) f (17) avec 
• q i = nombres quantiques de l'électron i ;

• τ = permutation, ε • = signature de permutation.

La double-somme

q q 1 •••q N q
• oeS N dans Eq. ( 17) peut contenir un nombre important de termes, ce qui présente une difficulté non négligeable pour mener à bien le calcul en pratique. L'une des astuces consiste à appliquer le théorème d'Uylings 1 ,q u is t i p u l eq u es iO © O k est un opérateur à k-électron, alors sa moyenne

ÈO k Í N sur C =(nl) N est reliée à sa moyenne ÈO k Í k sur C =(nl) k par ÈO k Í N = A N k B ÈO k Í k . ( 18 
)
De ce fait, la double-somme se simplifie en

q q 1 •••q k q • oeS k , souvent k π N . Concrètement, si O est une somme d'opérateurs à 1-, 2-et 3-électron, i.e. O = O 1 + O 2 + O 3 , alors sa moyenne sur une configuration à N -électron se décompose comme ÈOÍ N = A N 1 B ÈO 1 Í 1 + A N 2 B ÈO 2 Í 2 + A N 3 B ÈO 3 Í 3 . ( 19 
)
Illustrons la méthode des moyennes dans le cas du calcul de

e V k so f N ,k =3.
1. Dans un premier temps, l'opérateur V 3 so s'écrit comme une décomposition de trois types d'opérateurs

V 3 SO = Q a N ÿ q=1 l q s q R b 3 = V 1 +3V 2 +6V 3 (20) 
respectivement à 1-, 2-et 3-électron, avec

• V 1 = q N i (l i s i ) 3 • V 2 = q i<j (l i s i ) 2 (l j s j ) • V 3 = q i<j<p (l i s i )(l j s j )(l p s p ).
2. Puis, prenons l'exemple du calcul de moyenne ÈV 3 Í de l'opérateur à 3 électrons. En notant f =(l 1 s 1 )(l 2 s 2 )(l 3 s 3 ) et en tenant compte des permutations des 3 électrons en 2 catégories

• permutations circulaires ((≠1) P = +1) : (i, j, p); (j, p, i); (p, i, j)

• permutations d'échange ((≠1) P = ≠1) : (j, i, p); (i, p, j); (p, j, i) nous obtenons la moyenne de V 3 sur une configuration à 3 électrons ÈV 3 Í 3

ÈV 3 Í 3 = 1 6g 3 ÿ i,j,p (ÈÂ|f |ijpÍ+ÈÂ|f |jpiÍ+ÈÂ|f |pijÍ≠ÈÂ|f |jipÍ≠ÈÂ|f |ipjÍ≠ÈÂ|f |pjiÍ)=≠ È›Í 3 16 l +1 4l +1 , ( 21 
)
1 Démontrable en 2nd quantification.

où ÈÂ|©Èijp| .

En outre, avec le théorème d'Uylings et

g 3 = A 4l +2 3 B , ÈV 3 Í N = ≠ È›Í 3 16 l +1 4l +1 N (N ≠ 1)(N ≠ 2) 6 . ( 22 
)
3. Enfin, ensemble avec ÈV 1 Í et ÈV 2 Í calculables de la même façon, nous avons

e V 3 SO f N = ≠È›Í 3 (1 + l)(1 + 2l ≠ N )(2 + 4l ≠ N )N 16(1 + 4l) . ( 23 
)

Comparaison des expressions analytiques avec le code Cowan

Les expressions analytiques des moyennes µ n (V so ) a sont comparées aux résultats numériques du code Cowan, fournis par J.-C. Pain et F. Gilleron. Le code Cowan est un code semi-relativiste, doté d'une option d'annuler le terme Coulombien de l'Hamiltonien perturbatif pour étudier l'effet spin-orbite de façon séparée.

Pour exemples, nous prenons 2 configurations de l'ion d'or (Au,Z = 79):

• 3d 6 de l'ion Au 55+ , soit une sous-couche composée de 6 électrons équivalents;

• 3p 2 3d 6 de l'ion Au 59+ , deux sous-couches électroniques distinctes.

Dans le cas de la configuration 3d 6 , d'après Cowan, l'intégral spin-orbite È›Í 3d (Au 55+ )= 39, 865 eV, et les résultats analytique et numérique des moments d'énergies perturbativesµ n (V so ) et µ n (V ee ,V so ) pour n =2, 3, 4 -sont récapitulés dans la Table 3. Focalisons sur cette table, nous notons • en comparant les 2 premières lignes µ n (V so ) a ¡ µ n (V so ) C , qu'il y a un bon accord entre les résultats à l'issue des expressions analytiques et les valeurs numériques de Cowan;

• à la 3ème ligne sur µ n (V ee ,V so ) a : µ 2 (V ee ,V so ) a est basée sur la formule de variance publiée dans la Table 3.2 du livre des Bauche et de Peyrusse (2015), µ 3 (V ee ,V so ) a provient d'une formule publiée par Kucĉas et [START_REF] Kučas | Global characteristics of atomic spectra and their use for the analysis of spectra. I. Energy level spectra[END_REF] que nous avons vérifié en utilisant les techniques de seconde quantification et d'algèbre angulaire, et qu'il n'y a pas de formules analytiques disponibles lorsque n>3;

• à la colonne n =3, en comparant µ 3 (V so ) ¡ µ 3 (V ee ,V so ), nous en déduisons que l'effet V ee contribue plus à la dissymétrie de la structure d'énergie que l'effet V so . 

n2 3 4 µ n (V so ) a 6356,87 3,168(4) 1,110(8) µ n (V so ) C 6357 3,168(4) 1,11(8) µ n (V ee ,V so ) a 6691.6 8111 X µ n (V ee ,V so ) C 6692 8111 1,195(8)
Ÿ n = µ n ≠ n≠1 ÿ m=1 A n ≠ 1 m ≠ 1 B Ÿ m µ n≠m . ( 24 

Conclusion

Résumé

Dans le cadre de la spectroscopie statistique, deux études ont été menées durant cette thèse.

• Modélisation des spectres M 1 des plasmas de tungstène, en utilisant les codes comme FAC et FLYCHK et par implémentation d'un post-processeur. Bien que l'option UTA du code FAC reproduise la majorité d'émissivité des structures spectrales, les formules analytiques du modèle UTA restent à compléter dans le cas des transitions M 1 .

• Calcul analytique des moments d'énergies spin-orbite en utilisant les méthodes de calcul de moyennes, une formule de la littérature a été corrigée.

Cette synthèse a pour but d'être résolument pédagogique, les lecteurs intéressés sont invités à lire nos 2 articles dans lesquels plus de cas d'études sont présentés pour la partie de la modélisation des spectres M 1 des plasmas de tungstène, et le problème de convergence de distribution Gram-Charlier est discutée pour la partie des moments d'ordre élevé d'énergies spin-orbite.

Perspectives

Concernant les perspectives, on pourra envisager sur le plan théorique

• étudier les transitions M 1 intra-et inter-configurationnelles manquantes,

• approfondir l'étude des UTA, par exemple, examiner les propriétés des faisceaux, l'effet des différentes fonctions de distribution;

et sur le plan numérique

• mener à brève échéance un calcul de spectre UTA dans le tungstène hors ETL (sans utiliser de théorie de température effective);

• implémenter d'autres modèles statistiques dans le code, par exemple les modèles STA et mixtes;

• paralléliser le code FAC, par exemple par ion ou par configuration.

Part II

English version

Chapter 1

Introduction

The journey of a thousand miles begins with a single step.

Lao Tzu

Plasma state

Besides the states of solid, liquid and gas, plasma is often referred to as the 4th state of matter, in which probably up to 99% of the matter exists naturally in the universe1 At first sight, plasma is similar to an ionized gaseous mixture of charged and neutral particles whose dynamics are dominated by electromagnetic forces. Hence the term plasma was first used to describe the ionized regions in gas discharges by I. Langmuir in the 1920's. While stars and interstellar space provide examples of plasmas, the Earth and its lower atmosphere form an exception of the 1% plasma-free oasis. On the Earth, aurora borealis and lightning storms are natural phenomena generating plasmas on one hand. On the other hand, the laboratory plasmas constitute a large-scale research subject involving various domains of applications, such as in the investigation of beta cepheid pulsation and convection limit in star interiors, for resolving the problem of plasma heating and confinement in controlled thermonuclear fusion devices, etc. Examples of plasmas belonging to different temperature and density regimes are gathered and shown on Fig. 1.1, see also [W2] [B1]. Densities vary roughly over 30 orders of magnitude from 10 5 to 10 35 electrons per m 3 , and temperatures over 7 orders from 10 2 to 10 9 K. Despite the extremely wide range of temperatures and densities covered by the plasma state, one notable feature concerning the nature of the plasma is its ability to maintain a state of quasi-neutrality

n e = Z ◊ n i (1.1)
where Z is the mean ionization charge of the plasma, n e stands for electronic density and n i ionic density. In response to a potential charge imbalance, say resulting from introduction of an electric field or from local concentrations of positive and negative charges generated by charge motions, a phenomenon called Debye shielding sets up providing that the external influence is restricted within a finite range. Beyond the Debye length [B1],

⁄ D = Û ' 0 k B T e n e e 2 ,⁄ D (m)=7.43 ◊ 10 3 Û T e (eV) n e (m ≠3 ) (1.2)
where 1eV ¥ 11604K, the plasma remains effectively neutral. Actually, in the presence of strong electrostatic fields, elements of plasma are related even at large distances by the longranged Coulomb force and can exhibit collective behaviour such as plasma oscillations when re-establishing neutrality, with electrons and ions oscillating respectively at the frequencies

Ê pe =  k B T e /m e ⁄ D =
Û n e e 2 m e ' 0 ,Ê pe (s ≠1 ) = 56.4

Ô n e (1.3a)

Ê pi = Û n i (Ze) 2 m i ' 0 ,Ê pi (s ≠1 )=1.32 ◊ Z Ú n i A (1.3b)
where Z denotes the charge state of the plasma and A the atomic number of the ion considered. [B1] For example, a plasma is not transparent to electromagnetic radiation of frequency Ê<Ê pe , since the more rapid electron response will neutralize the field and stop its propagation into the plasma.

More quantitatively speaking, to be qualified plasma, an ionized gas must satisfy the following three criteria [B3].

• The Debye length ⁄ D should be negligible versus the dimension of the system L

⁄ D π L (1.4)
to ensure the quasi-neutrality.

• The number N D of particles in a "Debye sphere"

N D = 4fi 3 n e ⁄ 3 D ,N D =1.38 ◊ Ò T 3 (K)/n e ∫ 1 (1.5)
should be large enough that the collective interactions rule over resultant force on any given particle due to binary collisions.

• The frequency of plasma oscillations Ê pe should be higher than the collision rate with neutral atoms. With • standing for the mean time between collisions, it reads Ê pe •>1.

(1.6) As a counter-example, if the charged particles collide so frequently with neutral atoms that their motion is dictated by hydrodynamic forces (rather than by electromagnetic ones), it turns out that such gas is too weakly ionized to behave like a plasma.

Depending on density and temperature parameters, the plasma physics can be roughly divided into different regimes :

• In terms of density, low density plasmas correspond to ionic densities n i < 10 17 cm ≠3 [B4] which include plasmas in astrophysics and magnetic confinement devices. Whereas high density regions n i > 10 19 cm ≠3 can be found in inertial confinement plasmas and in star cores.

• In terms of temperature, hot plasmas [O5] may refer to those being nearly fully ionized.

Since the degree of ionizationin a plasma, defined as 

-= n i n i + n a , (
T i ∼ 300K, T i π T e . 10 5 K, -= 10 ≠6 ≠ 10 ≠4 .
Other parameters have been defined to describe plasma features, such as optically thin or thick, degenerate or non-degenerate, weakly or strongly coupled, etc. When needed, they will be recalled in their respective contexts throughout the manuscript.

Optical atomic spectroscopy

Spectroscopy represents an essential tool to probe the radiative properties of plasmas. Among the various subjects where atomic physics is relevant for plasmas, one may mention three general topics [B4]: the influence of the plasma environment on ionic potential (thus on bound electrons wave functions and energy levels), the study of collisional and radiative processes among electrons and ions inside plasmas and the investigation of emission and absorption spectra of plasmas. This thesis belongs to the 3rd topic and deals with statistical methods applied in the interpretation of emission and absorption spectra with respect to detailed approach.

Concerning the study of emission and absorption in plasmas, a wide literature is available

[A8][A9][A10][A11][A12]
, covering large ranges of atomic elements as well as of plasma (n e ,T e ) regimes. For examples,

• measurement of iron Fe opacity in the Sun for stellar interior energy transport calculations [A13], production of spectroscopic data for the calculation of radiative accelerations in stellar envelopes

[A14][A15][A16][A17];
• spectroscopic investigations of tungsten W as tokamak divertor [B18], X opacity measurements in mid Z -like copper Cu, aluminium Al -dense plasmas in order to enhance plasma diagnostics and target design in inertial confinement fusion development [P19].

Detailed and statistical approaches

When the experimental spectra are composed by well-separated lines, the detailed approach represents an appropriate tool of interpretation, which is based on line-by-line accounting. Nevertheless, in complex spectra arising from highly ionized plasmas, where atoms are often present in multiple ionization stages with several open subshells, there may be millions of emission or absorption individual lines which, besides, often gather in coalescent structures.2 Statistical methods are required to identify and analyze essential spectral features in a more efficient way, whose main idea consists in considering transition arrays between configurations (cf. Fig. 1.2).

Since the first observation of unresolved transition arrays (UTA) in atomic spectroscopy tracing back to the 1940s [A21] and the pioneering analysis by Moszkowski in the 1960s [A22], a special attention has been paid to averaging procedures devoted to the analysis of complex spectra, avoiding the very costly procedure of computing spectra involving thousands of levels and millions of lines in a detailed way. Within the framework of the theory of transition arrays, different statistical models are available. When considering highly charged ions, spin-orbit effect may become dominant and the observed transition arrays connecting pairs of relativistic configurations are named Spin-Orbit-Split Arrays (SOSA) [A23]. The averaging procedure has been even more generalized by gathering configurations into super-configurations which leads one to consider super-transition arrays (STA) [A24].

Such statistical description is nowadays included in atomic physics packages such as SCO-RCG [A25][ A26][P27], HULLAC [A28][W29], FAC [A30][O31] which are widely used in atomic spectroscopy. Freely distributed and endowed with a flexible Python interface, the Flexible Atomic Code (FAC) has been used for numerical work in this thesis.

Scope of the manuscript

This manuscript is composed of three chapters and organized as follows.

In chapter 2, general concepts of atomic physics in hot plasmas are introduced. While energy levels and radiative transitions in an isolated atom can be described by quantum mechanics, the computation of emission and absorption spectra requires one to consider the thermodynamic conditions in plasmas.

The chapter 3 is devoted to statistical description of unresolved spectra. The model of UTA is firstly presented, highlighting the use of distribution moments and the choice of distribution function. Then, using the FAC code, numerical construction of transition arrays is made explicit and illustrated by some empirical analysis.

The chapter 4 focuses on moments computations, performed in two cases. On one hand, compact formulas for high-order moments of spin-orbit energies are derived in analytical way, which deal with distribution of degeneracy-weighted level energies. On the other hand, magnetic dipole transitions in tungsten plasmas are investigated numerically through distribution moments of transition energies weighted by line oscillator force. The two cases respectively echo back to the two articles [A32][ A33]p u b l i s h e dd u r i n gt h et h e s i s .

Chapter 2

Atomic physics in hot plasmas

N-fermion structure

Regarding quantum behaviour exhibited experimentally on atomic scale, a suitable description of N-electron systems requires mathematical formulations of quantum mechanics, according to which a physical observable (eg. energy, position, angular momentum, etc.) can be represented by an operator A and a particle (eg. electron, ion, atom, etc.) by a wave function Ψ.O n e aspect of the complexity in the many-body problem consists of the indistinguishability of identical particles, which involves the symmetry1 concept. For instance, any exchange of identical particles should not modify the wave function modulus.

Since the introduction of the central field scheme by Slater [A35], a large amount of effort has been made to keep track of the symmetry of the states of N-electron systems in simple and elegant ways. Namely, Condon and Shortley establish matrix building method in N-electron atom study [B36], which consists in evaluating matrix elements of the form

+ Ψ | A | Ψ Õ , = ⁄⁄⁄ Ψ ú (r)AΨ Õ (r)d 3N r
(2.1)

Later, using the tensor-operator techniques [A37][ A38], Racah's algebra enables to reduce the difficulties in matrix element calculation by writing down formulae for the direct evaluation of matrix elements for coupled basis functions, which bypasses explicit use of Slater determinantal functions. After extending the tensor-operator techniques applicable to all types of operators and configurations in 1962, Judd developed the second quantization method [B39]-fi r s t l y introduced and applied on boson-nature photons in the 30s -for fermion-nature electrons in atomic spectroscopy. Comparing to the 1st quantization calculation which requires notably cumbersome anti-symmetrization of wave functions, the 2nd quantization method corresponds to a different labelling of the state basis together with introduction of creation a + , annihilation a operators and the vacuum state |0Í.

Except where explicitly noted, Hartree atomic units (cf. Appendix A) are used throughout this section.

N-electron Hamiltonian H

In the atomic structure study, the general operator A in Eq.(2.1) mostly refers to the hermitian Hamiltonian H of the N-fermion system considered.

H as sum of one-and two-electron Hamiltonians :

H = N ÿ i=1 H(i)+ 1 2 N ÿ i,j=1 i" =j 1 r ij , (2.2)
where H denotes either the Schrödinger Hamiltonian, known as nonrelativistic model, or the relativistic Dirac Hamiltonian. The difference between Schrödinger and Dirac approaches departs from the one-electron Hamiltonians H(i). Omitting quantum electrodynamic effects,

H(i)= Y _ _ ] _ _ [ H S (i)=H elec-nucl (i)+H kinet (i)+H spin-orb (i)=≠ Z r i ≠ 1 2 Ò 2 i + ›(r i )l i s i H D (i)=≠ Z r i + c-(i) • p i + -(i)mc 2 (2.3)
with Z denoting the nuclear charge, r i the radial coordinates, › i the spin-orbit parameter, cf. Eq. (2.34c), c the light velocity, -(i),-(i) the 4x4 Dirac matrices for the ith-electron and p i its 3-momentum. The Schrödinger Hamiltonian for the ith-electron is constituted by 3 components [B40], whereas the kinetic and spin-orbit effects are not considered separately in the Dirac Hamiltonian [B41]. Accordingly, in the 2nd quantization formalism, H can be expressed as sum of one-and two-electron operators F,G [B20], which correspond respectively to the one-electron Hamiltonians H(i) and the Coulomb interaction 1 r ij between pairs of electrons of the Eq.(2.2),

F = N ÿ i=1 f i © ÿ '," È' | f | "Í a + ' a " , (2.4a) G = N ÿ i<j=1 g ij © 1 2 ÿ --'÷ È--| g 12 | '÷Í a + -a + -a ÷ a ' . (2.4b)
More details about the formalism will be given later, see for example Eq.(2.21).

Because of the mutual electrostatic repulsion 1/r ij on the r.h.s in Eq.(2.2), only the N =1 cases -i.e. for hydrogen atom and H-like ions -can be fully solved in analytical way, with the symmetry of the central Coulomb potential 1/r enabling the separation of radial and angular solutions. In order to circumvent the inter-dependence problems in the calculations of N-electron structures, the starting point for most resolution methods in nonrelativistic quantum mechanics as well as in relativistic atomic model is to define an averaged effective potential U (r) following the H-like independent particle central field scheme. In such a way, the state of each electron in a N-electron system is governed by a mean potential U (r) on one hand, and the residual electronic correlations of the other (N-1) electrons on the other hand. In other words, the N-electron system Hamiltonian defined in Eq.(2.2) is partitioned in a new way.

H involving separable mean field U (r) :

H = H 0 + H Õ .
(2.5)

The central term H 0 is invariant with respect to rotation of the frame of reference

H 0 = N ÿ i=1 (t i + U (r i )) (2.6)
with

t i = Y ] [ ≠ 1 2 Ò 2 i in the non-relativistic scheme, c-(i) • p i + -(i)mc 2
in the relativistic scheme.

(2.7)

and U (r) fulfilling the following boundary conditions [B41]

U (r)= Y _ _ ] _ _ [ ≠ Z r + const. r ae 0 ≠ (Z ≠ N + 1) r ,r aeOE (2.8)
The residual term

H Õ H Õ = N ÿ i=1 3 ≠ Z r i ≠ U (r i ) 4 + H 1 + H 2 + ... (2.9)
may regroup various correlation effects H 1 ,H 2 , etc. See eg. Eq.(2.39). In the central-field model, operators H 0 and H Õ are defined according to the 2nd quantization formalism by [B42]:

H 0 = ÿ i E i a + i a i = ÿ i Èi|H(i)|iÍ a + i a i (2.10) H Õ = 1 2 ÿ i,j,k,l g ijkl a + i a + j a l a k ≠ ÿ ik U ik a + i a k (2.11)
where E i is the eigenvalue of the one-electron Hamiltonian (See Eq. (2.12))-Schrödinger or Dirac one -in the potential U (r i ) ,g ijkl is a 2-electron matrix of the Coulomb potential 1/r 12 evaluated with Schrödinger or Dirac orbitals, U ik is the one-electron integral of the central potential U such as

U ik = s d 3 r + i (r)U (r) k (r).
Up to now, the introduction of the central field U (r) only leads to a different partition of the system Hamiltonian. However, when neglecting H Õ in Eq.(2.5), an approximation is made for the resolution of the N-electron problem.

Central field approximation

By analogy with the hydrogen case, the central field approximation may consist of two following points :

• since H ¥ H 0 , particle inter-dependence problem of N-electron systems is solved ;

• the central potential U (r) used in H 0 is assumed to be spherically symmetric, so that radial and spin-angular variables of a N-electron wave function are separable.

Finding the most accurate form of U (r) is an uneasy issue and out of the scope of this thesis. Only a succinct summary of approximation methods will be given in Sec.2.1.2.

One-electron central field orbitals

Assuming a suitably defined U (r), a complete set of central field orbitals  i can be generated as eigenfunctions of one-electron (N=1) stationary equation

H 0  i (')=E i  i ('),
(2.12)

where the subscript i stands for a quantum state characterized by an ordered but non uniquely defined set of quantum numbers, ' an electron identified by its spherical coordinates and spin variable (r, ◊, ", ‡), and H 0 is whether Schrödinger or Dirac Hamiltonian (cf.Eqs.(2.6)(2.7)) for one electron, i.e. H 0 = t + U (r) .

In the nonrelativistic model, a one-electron central field orbital  i (')= nlm l ms (r, ◊, ", ‡) is named spin-orbital and has the form [B40]

 nlm l ms (r, ◊, ", ‡)= 1 r P nl (r) • Y (l) m l (◊,") • ‰ (s) ms ( ‡). (2.13) where R nl (r)=P nl (r)/r, Y (l) m l (◊,") and ‰ (s)
ms ( ‡) are its respectively radial, angular, spin parts.

In the relativistic model, a spinor  i (')= nŸm (r, ◊, ", ‡) is characterized by the quantum number set (nŸm © m j ) or equivalently (nljm j ) and reads [B41] 

 nŸm (r, ◊, ", ‡)= 1 r C P nŸ(r) ‰ Ÿm (◊,") iQ nŸ(r) ‰ ≠Ÿm (◊,") D (2.14)
where P nŸ(r) ,Q nŸ(r) are purely radial amplitudes, and Ÿ is related to l,j as

Ÿ = I ≠ l ≠ 1 if j = l +1/2, l if j = l ≠ 1/2.
(2.15)

The angular dependent spin-orbit function ‰ Ÿm (◊,") is given by

‰ Ÿm (◊,")= ÿ ‡=û1/2 Y (l) m≠ ‡ (◊,") • µ ‡ • = l 1 2 m ≠ ‡ ‡|l 1 2 jm > (2.16)
where µ ‡ is a spin eigenvector, Y 

|iÍ = a + i |0Í, (2.17a)
whose adjoint is defined through the annihilation operator a k such as

Èi| = È0|a i . (2.17b)
Furthermore, as a rule,

È0|a + k =0,a k |0Í =0, Èi|a + k = " ik È0|,a k |iÍ = " ik |0Í.
(2.17c)

N-electron wave functions

Based on fundamental postulate of quantum mechanics, a N-electron (N>1) wave function Ψ should exhibit anti-symmetric characteristics upon interchange of any two electrons, the Pauli exclusion principle states that two electrons can not occupy the same spin-orbital. More precisely, it means that :

1. for an arbitrary N-electron product state Ψ(' 1 ,...,' N )=

q i C(k 1 ,...,k N )•Â k 1 (' 1 )... k N (' N ), the coefficients C(k 1 ,...,k N ) must be anti-symmetric under the exchange k i ¡ k j as Ψ(' 1 ,...,' N ) is anti-symmetric under an arbitrary exchange i ¡ j; 2. Ψ © 0 if any two spin-orbitals (or spinors) are identical, for instance (n i l i m l i m s i )=(n j l j m l j m s j ),
or two electrons have the same coordinates ' i = ' j .

In the central field model, a typical wave function describing a N-electron system is made up of appropriate linear combinations of one-electron orbitals products

Ψ= 1 Ô N ! ÿ ‡(P ) (≠1) '(P )  ‡(1) (' 1 )... ‡(N ) (' N ), (2.18)
where anti-symmetrization of the wave function is carried out by the sum running over all possible electron permutations ‡(P ), with the permutation signature, labelled '(P ),representing the parity of the permutation2 ,

'(P )= I 1, if even permutation, ≠ 1, if odd permutation. (2.19)
The anti-symmetric properties together with Pauli's exclusion principle are more easily taken into account by building N-electron wave functions with Slater determinant. A N-electron determinantal function writes as

Ψ(' 1 ,...,' N )= 1 Ô N ! - - - - - - - - - Â 1 (' 1 ) Â 1 (' 2 ) ... Â 1 (' N ) Â 2 (' 1 ) Â 2 (' 2 ) ... Â 2 (' N ) ... Â N (' 1 ) Â N (' 2 ) ... Â N (' N ) - - - - - - - - - (2.20)
where  i (' i ) can be either spin-orbital or spinor,  i (' j )=È' j |iÍ. One can notice that the determinant vanishes if two rows are identical (i.e. two spin-orbitals are identical) or two columns are identical (i.e. two electrons have the same coordinates). The anti-symmetrization is automatically ensured, since the summation over permutations is implicitly accounted for through interchanges of rows and columns.

In the 2nd quantization formalism, a normalized N-electron determinantal state |--...‹Í,i s regarded as a sequence of operators a + -,a + -... acting on a vacuum state |0Í

|--...‹Í©a + -a + -...a + ‹ |0Í (2.21)
where each Greek symbol stands for a quantum-number set, eg. (nlm l m s ). |--...‹Í is antisymmetric under permutation of one-electron quantum numbers, whose ordering is indicated by the sign of the wave function. Furthermore, Pauli exclusion principle stems automatically from the anti-commutation relations 3 between operators [B34]:

{a -,a + -}©a -a + -+ a + -a -= " --, (2.23a) {a + -,a + -}©a + -a + -+ a + -a + -=0, (2.23b) {a -,a -}©a -a -+ a -a -=0. (2.23c)
Indeed, the fundamental idea of the second quantization method is to transfer to operatorsa + , a, etc. the tensorial proprieties characteristic of wave functions.

As example, an anti-symmetrized two-electron state |Ψ(1, 2)Í can be built out of two oneparticle states  such as

|Ψ(1, 2)Í = 1 Ô 2 - - - - - Â 1 (' 1 ) Â 1 (' 2 ) Â 2 (' 1 ) Â 2 (' 2 ) - - - - - = 1 Ô 2 (Â 1 (' 1 )Â 2 (' 2 ) ≠ Â 1 (' 2 )Â 2 (' 1 )) = a + 1 a + 2 |0Í.
(2.24)

Electron configuration

As a consequence of the central field approximation, a configuration is defined by means of a list of occupied orbitals in an anti-symmetric N-electron wave function [B41]. The energy of an atom in the central field approximation is independent of the z-projection (magnetic) quantum numbers4 it means that the energy level is characterized by the quantum numbers (n, l)i n nonrelativistic cases,

C nr =(n 1 l 1 ) ‹ 1 (n 2 l 2 ) ‹ 2 ...(n p l p ) ‹p (2.25a)
and by (n, Ÿ) or equivalently (n, l, j) in relativistic cases,

C r =(n 1 l 1 j 1 ) Ê 1 (n 2 l 2 j 2 ) Ê 2 ...(n q l q j q ) Êq (2.25b)
where the orbitals sharing the same values of (n, l) or (n, l, j) are identical and form respectively a nonrelativistic (nr) or a relativistic (r) subshell.T h e‹ i or Ê i -called the occupation numbers -electrons are said to be equivalent,w i t h

p ÿ i=1 ‹ p = q ÿ i=1 Ê q = N. (2.25c)
Given the equivalence, nr-as well as r-configurations are usually specified by the occupation numbers ‹ i or Ê i of each subshell i, which give rise to spectroscopic labels.

3 By the way, the orthonormality of one-electron states

ÈÂ nlm l ms |Â n Õ l Õ m Õ l m Õ s Í = " nn Õ " ll Õ " m l m Õ l " msm Õ s , written in the 2nd quantization formalism, È-|-Í = È0|aαa + β |0Í = ⁄ -ú -d• = " αβ (2.22)
can be proved by the relation (2.23a), and the anti-commutation relations in Eqs. (2.23b)(2.23c) ensure the anti-symmetry of the state |--Í and its adjoint È--| respectively [B42].

n-value shell l-value nr-subshell j-value r-subshell full shell composition

1K0 s 0 s (1s) 2L1 p 1 2 , 3 2 p ≠ ,p + (2s +2p) 3M2 d 3 2 , 5 2 d ≠ ,d + (3s +3p +3d) 4N3 f 5 2 , 7 2 f ≠ ,f + (4s +4p +4d +4f ) 5O4 g 7 2 , 9 2 g ≠ ,g + (5s +5p +5d +5f +5g) 6P5 h 9 2 , 11 2 h ≠ ,h + (6s +6p +6d +6f +6g +6h)
Table 2.1: Spectroscopic labels illustrated for the first 6 shells. Non-relativistic and relativistic subshells are respectively denoted by nr-subshell and r-subshell. For a given l-value (except l =0), a nr-subshell corresponds to two r-subshells, characterized by

j ≠ = |l ≠ 1/2|,j + = |l +1/2|
and denoted respectively by the subscripts ≠, +. For example, a full L-shell includes subshells of types (2s +2p) or (2s +2p ≠ +2p + ) depending on whether non-relativistic or relativistic model is considered.

Due to the Pauli exclusion principle, the occupation numbers ‹ i ,Ê i of each subshell i is limited to a maximum, defined by

I ‹ max i = 2(2l i + 1) for a nr-subshell Ê max i =2j i +1 for a r-subshell, (2.26) with ‹ max i AE 2n 2 and Ê max i AE 2n 2 ,where2n 2
is the maximum number of electrons occupying the same n-shell. A fully occupied subshell is qualified closed whereas a open subshell is a partially filled one. Closed subshells in a configuration are of practical interest, since the state of a closed subshell must be invariant under axis rotation, only one Slater determinant exists corresponding to a total angular momentum J =0 and degeneracy g =1,c f . E q . ( 2.28). Therefore, a closed subshell is often omitted in the spectroscopic label of a configuration, eg. 1s 2 2s 2 2p 6 3s3p 4 is usually denoted by 3s3p 4 .

For an arbitrary subshell (n i l i ) ‹ i or (n i l i j i ) Ê i ,t h edegeneracy5 or statistical weight g i is equal to

g i,nr = A ‹ max i ‹ i B ,g i,r = A Ê max i Ê i B .
(2.28)

The configurational degeneracies of (2.25a)(2.25b) can be deduced from subshell ones by product,

g = p Ÿ i=1 g i,nr = q Ÿ i=1 g i,r .
(2.29)

Taking the example of 3s3p 4 ,t w os u b s h e l l ss(l = 0),p(l = 1) with respectively one and 4 electrons. Applying Eqs. (2.28)(2.29), the configurational degeneracy is derived as 3p 6 3d,2 D) (eV) 2.66996 (5/2) 18.41 (5/2) 2.67025 (3/2) 0 (3/2) Table 2.2: Illustration of energy ordering in neutral atom and highly charged ion. Levels energies are output values from NIST atomic database. Two alkali elements of the Mendeleev's table -potassium K (Z=19) and caesium Cs (Z=55) are considered, with the first neutral and the second highly ionized, so that both configurations are composed by 19 electrons. Crossover between 3d and 4s orbitals occurs in Cs 36+ ions.

g nr (3s3p 4 )= A 2 1 BA 6 4 B =2◊ 15 = 30 (2.30) K (Z=19), K I Cs 36+ (Z=55), Cs XXXVII E(3p 6 4s, 2 S) (eV) 0 980.68 E(

Single configuration basis

A more rigorous treatment of energy level structures was provided by the Slater-Condon theory, namely through matrix method as briefly mentioned in Eq.(2.1). For instance, the energy of spherically averaged atom reads [B40]

E = q Ψ ÈΨ|H|ΨÍ number of basis functions . (2.32)
The basic procedure of the matrix method consists in expanding the unknown wave function |ΨÍ in terms of judiciously truncated basis functions. Setting up an appropriate set of basis functions is crucial in matrix elements evaluation and represents an important difficulty of the method. It has been found out that [B40] one configuration constitutes generally a suitable grouping of nearly-spaced energy levels which set of functions, for instance q Ψ oeC in Eq.(2.32), can be used as configurational basis functions to evaluate the matrix elements.

In the single configuration approximation, the energies of the various states of a field-free atom are given by the eigenvalues of matrices, one matrix for each possible J value [A45]. The matrix elements connecting two states b, b

Õ are in the form

H bb Õ = " bb Õ E av + ÿ ijk Ë f k F k (l i ,l j )+g k G k (l i ,l j ) È + ÿ i d i › i .
(2.33)

• The configurational average E av is given by the diagonal matrix elements H bb .

• The parameters F k ,G k ,› i are the Slater integrals arising from the calculation of the radial part of wave functions. Actually, the integrals R k (ij, pq) appear when evaluating the matrix element Èij|2/r 12 |pqÍ,thedirectF k (ij) and exchange G k (ij) Slater integrals are particular cases of the integrals

R k (ij, pq) such as F k (ij) © R k (ij, ij),G k (ij) © R k (ij, ji).
Together with the spin-orbit integral ›(i) [A46], they are related to the radial wave functions P nl (r) as

F k (ij)= ⁄ OE 0 ⁄ OE 0 2r k < r k+1 > |P i (r 1 )| 2 |P j (r 2 )| 2 dr 1 dr 2 , (2.34a) G k (ij)= ⁄ OE 0 ⁄ OE 0 2r k < r k+1
> P i (r 1 )P j (r 1 )P i (r 2 )P j (r 2 )dr 1 dr 2 , (2.34b)

›(i)= -2 2 ⁄ OE 0 1 r dU dr |P i (r)| 2 dr.
(2.34c)

• The parameters (f k ,g k ,d i ) are angular coefficients that depend only on the angular quantum numbers of the basis states b, b Õ in the chosen coupling scheme, say LS-or jj-couplings, they are independent of the atom or ion which exhibits the configuration. Analytical expressions of (f k ,g k ,d i ) can readily be derived using Racah's algebra of irreducible tensor operators 6 in terms of three types of reduced matrix elements 7 , e l||C (k) 

||l Õ f (2.37a) e l n -LS||U (k) ||l n - Õ L Õ S Õ f (2.37b) e l n -LS||V (k1) ||l n - Õ L Õ S Õ f (2.37c)
for details, see Eqs. (20)(21)( 22) in [A45].

Approximation methods of resolution

The evaluation of matrix elements H bb Õ requires one to determine P nl (r) of one-electron wavefunction  i (r),c f . E q . ( 2.13) and set up a potential U (r i ) in the system Hamiltonian, cf. Eq.(2.6). Two approximation approaches are of great interest, namely the perturbational procedure and self-consistent field method.

Perturbational procedure The basic idea of the perturbational procedure is to start with the central part H 0 of the system Hamiltonian, cf. Eq.(2.5), and add the perturbative part H Õ as corrections to H 0 assuming H Õ π H 0 ,c f . E q s . ( 2.6)(2.9). The perturbed quantity is approximated by a n-th order power expansion in parameter ⁄,

H = E with Y _ _ ] _ _ [ H = H 0 + ⁄H Õ Â =  (0) + ⁄ (1) + ⁄ 2  (2) + ... E = E (0) + ⁄E (1) + ⁄ 2 E (2) + ... (2.38)
6 When dealing with evaluating angular portion of matrix calculation, Racah's algebra of irreducible tensor operators turn out to be efficient. An irreducible tensor T (k) q of k-rank has 2k +1 components q = ≠k,...,k, whose commutation relations with the angular momentum operators read

Ë j ± ,T (k) q È =  (k û q)(k ± q +1)T (k) q±1 , (2.35a) Ë jz,T (k) q È = qT (k) q .
(2.35b) For example, a set of spherical functions C

(l) m (m = ≠l,≠l +1,...0,...l≠ 1,l) composes an irreducible tensor; the position vector r may be considered as r (1) = rC (1) .

7 It is worth mentioning the Wigner-Eckart theorem

e -jm | T (k) q | -Õ j Õ m Õ f = C(jm; j Õ km Õ q)(-j||T (k) ||-Õ j Õ ) (2.36)
which enables the separation between geometrical properties and physical nature of the operator. The geometrical properties are linked to k,q and contained in the 3j symbol (related to the coupling of angular momenta). The physical nature (in the sense of interaction) is found in the reduced matrix element, independent of the quantum numbers appearing in the 3j symbol.

where the 1st-order energy shift is given by E

(1) = e  (0) |H Õ | (0)
f for instance. When applying on atomic structure, for example with the perturbative terms as

H 1 = 1 2 N ÿ i,j=1 i" =j 1 r ij (2.39a) H 2 = ›(r i )l i s i (2.39b)
in the nonrelativistic scheme, [O47] • the 0th order Hamiltonian H 0 determines the energy level structure specified by n, l or n, l, j (eg. in a Grotrian diagram) ;

• the Coulomb term H 1 splits the energy levels into different terms;

• the spin-orbit term H 2 splits the terms, leading to fine structure of the energy levels;

• other effects (eg. nuclear effect, external field) H 3 may lead to hyperfine structures of the levels, etc.

Variational principle Among the most commonly used methods, the Hartree-Fock (HF) numerical resolution scheme represents a self-consistent method which optimizes potential U (i) (r) and wave functions P (i) nl (r) through iterative process with i.

For example, in a nonrelativistic single-configuration basis C nr , the Hartree-type wave functions are solutions of a set of p differential equations [B40] 

Y _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ] _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ [ A ≠ d 2 dr 2 + l 1 (l 1 + 1) r 2 + U (r) B P 1 (r)=E 1 P 1 (r) ... A ≠ d 2 dr 2 + l i (l i + 1) r 2 + U (r) B P i (r)=E i P i (r) ... A ≠ d 2 dr 2 + l p (l p + 1) r 2 + U (r) B P p (r)=E p P p (r) (2.40)
where each equation to one of the subshells (n i l i ) ‹ i composing C nr . At the initial stage, a set of suitably defined "test" wave functions (P

(1) 1 (r),...,P

i (r),...P

(1) p (r)) is used to derive the potential U (1) (r).T h e n ,w i t hU (1) (r),( P (2) 1 (r),...,P

(2) i (r),...P

(2) p (r)) can be performed which give in turn the potential U (2) (r), etc. At each iteration j, the optimized P (j) (r) should satisfy two criteria : minimize the calculated energy of the atom, cf. Eq. (2.32) and ensure orthonormalization relation, cf. Eq.(2.22). The procedure repeats until

U (n) (r)=U (n≠1) (r).
Notice that the presentation of approximation methods above is very simplified, focusing more on general procedures rather than resolution details. A rigorous discussion on the choice and derivation of different potentials in use in various atomic codes would require more advanced knowledge on purely atomic structure. Here, we are content with showing the form of the potential in FAC [A30], the code based on which the numerical work was done in this thesis.

Potential U (r) in FAC

The atomic structure calculation in FAC [A30] is based on the relativistic configuration interaction, see next paragraph, with independent particle basis wave-functions. These basis wave-functions are derived from a local central potential V (r), which is self-consistently determined to represent electronic screening of the nuclear potential. [O31] The local central potential V (r) includes contributions from the nuclear charge V N (r) and the electron-electron interaction V ee (r).

• The nuclear contribution part is defined regarding to the statistical model radius R N of the nucleus such as R N =2.2677 ◊ 10 ≠5 A 1/3 with A the atomic mass,

V N (r)= Y _ _ ] _ _ [ Z 2R N C 3 ≠ 3 r R N 4 2 D , if r AE R N ,
Z/r, elsewhere.

(2.41)

• And the expression of V ee (r) is given by

V ee (r)= 1 r q a Ê a fl a (r) ◊ ÿ ab Ê a (Ê b ≠ " ab )Y 0 bb (r)fl a (r)+ ÿ a Ê a (Ê a ≠ 1) ÿ k>0 f k (a, a)Y k aa (r)fl a (r)+ ÿ a" =b ÿ k Ê a Ê b g k (a, b)Y k ab (r)fl ab (r) (2.42)
where a, b denote two sub-shells nŸ, n Õ Ÿ Õ ,w i t hÊ a ,Ê b their occupation numbers ;

-fl ab = P a (r)P b (r)+Q a (r)Q b (r),c f . E q . ( 2.14); -Y k ab (r)=r s r k < r k+1 > fl ab (r Õ )dr Õ ,w i t hr < =min(r, r Õ ) and r > =max(r, r Õ );
f k and g k are respectively the direct and exchange coefficients, defined as a function of the Wigner 3j coefficient

A j 1 j 2 j 3 m 1 m 2 m 3 B , cf. Appendix B, f k (a, b)=≠ 3 1+ 1 2j a 4 A j a kj b ≠ 1 2 0 1 2 B 2
(2.43a)

g k (a, b)=≠ A j a kj b ≠ 1 2 0 1 2 B (2.43b)
Based on the Dirac-Fock-Slater method [A48], which is the relativistic version of the Hartree-Fock-Slater method, the effective potential used in code FAC is defined as

U (r)=V (r) ≠ -2 2 {[V (r) ≠ ' a ] 2 ≠ W (r)}, (2.44)
where W (r) is a function of V (r),d e fi n e di n [ A30].

Configuration mixing

When accurate calculations are no longer made within the single-configuration approximation, especially in the case of highly excited configurations overlapping each other in energy, it would be necessary to include functions from two or more configurations in the basis set. When each computed wave function |ΨÍ results in a mixture of basis functions from several configurations, there is configuration mixing.

For example, considering a tractable case of 3d 2 of a W 54+ ion, using the code FAC, mixing among the relativistic configurations {3d 2 ≠ , 3d ≠ 3d + , 3d 2 + } is illustrated in Table 2.3. As shown in the last column, three relativistic configuration mixing groups-(0, 3, 7) J=2 , (1, 8) J=0 , (4, 6) J=4 and two configurations without mixing-2, 5 are identified. Because of J-value conservation, configuration mixing occurs only within configurations with the same J.

Moreover, in the basis (0,3,7,1,8,4,6,2,5), the "block-diagonal" matrix M = m ij reads (2.45)

M = Q c c c c c c c c c c c c c
where the non-zero off-diagonal coefficients are mixing coefficients, and inside each configuration mixing group, the matrix is diagonal. The diagonal matrix elements in Eq.(2.45) are near 1, it means the mixing effect is relatively small, a matrix without configuration mixing would be diagonal with matrix elements m ij = " ij .

Emission and absorption spectra

Although it is a very good approximation to assume that the atom interacts weakly with the electromagnetic radiation [B40], an atom in an excited level 2 of energy E 2 can be found in a lower-energy level 1 (E 1 <E 2 ) through a spontaneous emission of a photon of energy

h‹ 12 = E 2 ≠ E 1 , (2.46)
which results in a spectrum line at the frequency ‹ 12 . Together with the spontaneous emission, the formation of an atomic spectrum occurring in plasmas may arise from other emission or absorption processes, between bound-bound levels as well as between bound-free or free-free ones, cf. Table 2.4. All lines together form a radiative spectrum, whose properties depend on the collective behaviours of the atoms in a plasma. Thermodynamics -for instance, through the electron density n e and temperature T e -are involved in order to account for the distribution of atoms among the various ionization stages and populations of different states on one hand, and line shapes as a result of broadening effects on the other hand. Unless otherwise noted, temperature T stands for energy T © k B T and is in units of eV.

LS-level jj-level

Index Mixing 3 F 2 (3d 2 ≠ ) J=2 0 +3, +7 3 P 0 (3d 2 ≠ ) J=0 1+ 8 3 F 3 (3d ≠ 3d + ) J=3 2 Non 3 P 2 (3d ≠ 3d + ) J=2 3 +0, +7 3 F 4 (3d ≠ 3d + ) J=4 4+ 6 3 P 1 (3d ≠ 3d + ) J=1 5 Non 1 G 4 (3d 2 + ) J=4 6+ 4 1 D 2 (3d 2 + ) J=2 7 +3, +0 1 S 0 (3d 2 + ) J=0 8+ 1
Table 2.3: Configuration structure in the case of 3d 2 of a W 54+ ion. -stands for j =3/2,+ for j =5/2. The 9 levels from FAC computation, which can be regrouped into 3 relativistic configurations {3d 2 ≠ , 3d ≠ 3d + , 3d 2 + }, are indexed through 0 to 8 and sorted in the order of increasing energy, i.e. E 0 <E 1 <...<E 8 . One can identify three relativistic configuration mixing groups-(0, 3, 7) J=2 , (1, 8) J=0 , (4, 6) J=4 and two configurations without mixing-2, 5.B yt h ew a y , comparing energy levels arising from jj-and LS-couplings, one can notice that the Hund's rules are no longer fully respected because of the high atomic number Z of tungsten which leads to strong relativistic effect.

Free-free pro cesses bremsstrahlung

e Ωae e + h‹ inverse brems Bound-free processes collisional ionization (Z,N)+e Ωae (Z,N ≠ 1) + 2e 3-body recombination photoionization (Z,N)+h‹ Ωae (Z,N ≠ 1) + e radiative recombination auto-ionization (Z,N) ú Ωae (Z,N ≠ 1) + e dielectronic recombination Bound-bound processes spontaneous (+induced) emission (Z,N) ú Ωae (Z,N)+h‹ photoabsorption Table 2.4: Chemical pictures of microscopic processes (not exclusive) in detailed balance. According to plasma (n e ,T e ) ranges, electron-atom collisional frequencies and radiative transition probability rates may be in competition with each other, resulting in various ionization as well as recombination processes [B40]. The balance between rates at which these processes take place may be studied by solving rate equations, required when plasmas are out of thermodynamic equilibrium. The symbol * stands for excited state lying above the ionization limit.

Thermodynamic equilibrium

When the rates of various ionization and recombination processes in a plasma are equal, the plasma is said to be in steady state, which is a necessary but not sufficient condition to define thermodynamic equilibrium. Under the assumption of thermodynamic equilibrium, the relative ions abundances and the distribution of populations over states can be determined by purely statistical considerations. Indeed, the thermodynamic equilibrium of a plasma may roughly cover 3 types of equilibria -the complete Thermodynamic Equilibrium (TE), the Local Thermodynamic Equilibrium (LTE) and the Partial Local Thermodynamic Equilibrium (PLTE).

Complete thermodynamic equilibrium

In a TE plasma, all 3 types of particles -ions, electrons and photons are in equilibrium, as a result of which the following conditions are satisfied.

• The detailed balance is fulfilled, meaning that the rate of each process equals exactly the rate of its inverse [B4].

• The radiation is assimilated to a black-body radiation, i.e. photon energy distribution obeys the Planck's law,

B ‹ (‹, T )= 2h‹ 3 c 2 1 exp 1 h‹ T 2 ≠ 1 (2.47)
which shows the spectral radiance B ‹ for the frequency ‹ at the temperature T .

• Electron and ion velocity and energy distributions follow Maxwell-Boltzmann functions,

f v (v)dv = n e 3 m e 2fiT e 4 3/2 4fiv 2 exp A ≠ m e v 2 2T e B dv (2.48a) f Á (Á)dÁ = 2 Ô fi n e 3 Á T e 4 1/2 exp 3 ≠ Á T e 4 dÁ T e (2.48b)
where f v (v)dv (resp. f Á (Á)dÁ) is the density of free electrons whose velocity (resp. kinetic energy) is between v and v + dv (resp. between Á and Á + dÁ). The normalization is done so that the integrals of such distributions are equal to n e . 8

• Within one charge state Z, distribution of populations over two levels (i, j) oe J Z is given by Boltzmann law,

n i n j = g i g j exp 3 ≠ E i ≠ E j T 4 (2.49)
When an arbitrary number of charge states are present in the plasma, the relative ions abundances of two successive charge states n Z+1 ,n Z follow Saha-Boltzmann law,

n Z+1 n Z = 2 n e ⁄ 3 th exp A ≠ E 0 Z+1 ≠ E 0 Z kT B S U ÿ poeJ Z+1 g p exp A ≠ E p ≠ E 0 Z+1 kT B / ÿ qoeJ Z g q exp A ≠ E q ≠ E 0 Z kT B T V
(2.50)

8 Whether in equilibrium or not, fv(v)dv = fε(Á)dÁ.

where E 0 Z stands for the energy of the ion with net charge Z at its ground state, and ⁄ th © ⁄ dB is the De Broglie thermal wave length,

⁄ th = h Ô 2m e T
(2.51)

These equations assume that the free electrons are non-degenerate and treated as ideal gas. 9

Local thermodynamic equilibrium

Compared to a TE plasma, which represents almost an ideal system, radiation may escape from real plasmas so that the detailed balance can be disturbed. In other words, photons in LTE plasmas are not necessarily in equilibrium with electrons and ions whose distributions of velocities, energies and excited states remain the same as for the TE conditions 10 . Actually, 9 Two parameters [W49] are worth mentioning here which, by the way, give more insight into plasma regimes.

-The ideal gas limit corresponds to a null value Γ=0 for the Coulomb coupling parameter, which is defined as the ratio of the potential energy to the kinetic energy of plasma particles Γ=<E pot >/<E kine > and measures the degree to which many-body interactions affect the dynamics of particles. Γ π 1 corresponds to a weakly coupled system, whereas Γ ∫ 1 reveals strong interparticle interactions. Moreover, for a system of ions of charge Ze at density n and temperature T , . Quantitatively, the quantum degeneracy parameter is defined as the ratio of thermal energy to Fermi energy

Γ= (Ze) 2
T F = h2 2me (3fi 2 ne) 2/3 , ◊ = Te T F ≥ 3 ⁄ th n ≠1/3 e 4 2 .
(2.53)

If ◊ π 1, the plasma is said to be degenerated, Fermi-Dirac statistics should be used to describe the dynamics of electrons and account for their fermionic nature,

n FD (Á)= 1 1+exp ! ≠ µ≠ε Te " (2.54)
with µ is the chemical potential, Á = p 2 /(2me) the electron energy. If ◊ ∫ 1, quantum effects can be neglected, so that electrons in the non-degenerated plasma can be described by classical point particles.

The Boltzmann statistics of one-particle states assess

n B (Á)=exp 1 µ ≠ Á Te 2 .
(2.55)

The classical/quantum limit is set by ◊ =1, where µ Te ≠ae ≠ OE and n FD ≠ae n B . The quantum degeneracy ought to occur at high ne where electrons get close to each other and at low Te so that ⁄ th increases and wave packets increasingly overlap. It doesn't concern the plasma regime (Te ∫ T F ) studied in this thesis.

10 Remind that the charge state distribution in LTE plasmas can be derived by minimizing the Helmholtz free energy F , defined in terms of the temperature and the partition function Z(T ) of the system

F = ≠T log(Z(T ))
(2.56)

"local" can be interpreted as bounded by the mean free path (mfp) of photons emitted from the plasma ⁄ mf p and the collision length of electrons and ions. The crucial condition underlying the validity domain of LTE is that the rate of the energy-conserving collisional processes in the plasma is much higher than the rate of energy-dissipating radiative processes, predicting that the LTE condition is ensured at rather high electron densities. Rather high electron densities are therefore required by TE and LTE, but TE also implies reabsorption of emitted photons by the plasma when ⁄ mf p is large, i.e. the optically thick plasma. A rough criterium for the validity of the LTE between two levels i, j is estimated [B50]t ob e

n e Ø 1.8 ◊ 10 14  T e E 3 ji (2.57)
with n e is in units of cm ≠3 , T e and E ji in eV.

Partial local thermodynamic equilibrium

Up to now, no specification has been provided to the temperature T -whether it's about electronic temperature T e or ionic temperature T i . The reason is that in TE and LTE plasmas, it is assumed that T e = T i . Nevertheless, in a PLTE plasma, T i " = T e , so that it can no longer be described by a single temperature. The energy difference between the ground state and the first excited state is normally large, whereas the energy difference between the excited states is small [W51]. If n e is high enough, the excited states can be in equilibrium among each other, excluding ground states, thus the "partial" LTE.

Non-LTE description and effective temperature

In non-equilibrium plasmas, statistical distributions are no longer applicable, various elementary processes cross sections should be taken into account to determine the population distribution of different levels according to a given model, such as the collisional-radiative model. Nevertheless, rather than accounting for kinetic effects, simpler approaches like the theory of effective temperature T eff [A52][A53] can be used when suitable for spectral analysis, which is implicitly given by [A53] 

exp 3 ≠ ∆E T eff 4 =exp(≠-)/ C 1+ 2.75 ◊ 10 12 0.15 + 0.28‰(-) A ∆E 3 T 1/2 e n e BD (2.58a) with -=∆E/T e (2.58b) ‰(-)=ln 3 1+ 0.562 + 1.4- -+1.4-2 4 , (2.58c)
n e in units of cm ≠3 and ∆E in eV. For example, in tokamaks, tungsten impurities are present in different regions for which the temperatures and density vary significantly. As reported in the literature [A54] in ITER core plasma, the electronic temperature will reach 10-25 keV with charge states in the W 57+ -W 65+ range, while towards the edge of the main plasma column the expected temperature is much lower, the charge states being about W 44+ -W 50+ . The average electron density ≥ 10 14 cm ≠3 is too low to ensure LTE. An analysis of ion and level populations as obtained from NLTE databases [A55][A56] and a calculation shown on Fig. 2.2 using the online version of the FLYCHK code [A57] indicates that the "average" conditions of 8.8 keV and 10 14 cm ≠3 may be modelled by an effective temperature in the 150-250 eV range, keeping the same electron density. tungsten plasma as obtained by FLYCHK. The T eff is the temperature which, assuming Saha-Boltzmann law, would give the same average charge as the non-LTE calculation from FLYCHK.

Spectral emissivity and opacity

Since the work of this thesis, both analytical and numerical parts (cf. chapter 4), involves only bound-bound transitions in LTE plasmas, neither the bound-free and free-free processes nor their contributions to the computation of emission and absorption spectra are discussed here.

The Einstein coefficients

The bound-bound processes, as shown in the Table 2.4, can be characterized by their respective Einstein coefficients, namely the spontaneous emission coefficient A 21 , the induced (or stimulated) emission coefficient B 21 and the photon absorption coefficient B 12 . A schematic illustration is given in the Fig. 2.3 based on a 2-level system, denoted accordingly by 1 and 2.

• The Einstein spontaneous emission coefficient A 21 (in units of s ≠1 ) provides the rate of change of n 2 (t) atoms in 2 due to spontaneous transition to 1 such as

dn 2 (t) dt = ≠n 2 (t)A 21 (2.59)
and defines the natural lifetime of the atom in 2

∆t 2 = 1 A 21 (2.60)
where the steady state is ensured under the assumption of plasmas in LTE condition. Using the mutual relationships of the Einstein coefficients in Eq. ( 2.62), one may solve one of Eq. (2.63) leading to the density ratio of level 1 to level 2 as

n 1 n 2 = g 1 g 2 F (‹)+fl(‹) fl(‹) .
(2.64)

Based on the Einstein coefficients, customary spectroscopic parameters such as

• emission oscillator strength f 21 and its related absorption one f 12 ,where|g

1 f 12 | = |g 2 f 21 | = |gf|
• the absorption cross section ‡ 0 ;

• the transition dipole moment µ 21 ;

• the line strength S 21 of a transition, etc. can be defined. For instance,

f 12 A 21 = g 2 g 1 2fi' 0 mc 3 Ê 2 21 e 2 , S 21 B 12 =6g 1 ' 0 h2 , etc.
(2.65)

The relationships between these parameters are well tabulated in [A58].

With the induced emission B 21 being seen as the negative absorption, Einstein coefficients can be used to characterize emission and absorption of one atomic line radiation through coefficients such as

Y _ _ ] _ _ [ ' = h‹ 4fi n 2 A 21 for emission Ÿ Õ = h‹ 4fi (n 1 B 12 ≠ n 2 B 21 ) for absorption (2.66)
Concerning the interpretation of spectra in practice, emission intensity and (absorption) opacity are key quantities to study, which can be derived by radiative transfer equation given by the Kirchhoff law of thermal radiation in the framework of LTE condition. 12

Zero-dimensional emission E 0d

The spectral emission arising from a point-like source, which involves only bound-bound transitions and assumes that the reabsorption can be neglected 13 , is given by

E 0d (E)=n i ÿ ab p b A ba E ba S ab (E) (2.69)
12 The Kirchhoff law of thermal radiation reads

Iν = Bν • (1 ≠ exp(≠KL)) (2.67)
where Bν follows Planck's law, K denotes the absorption coefficient and L the thickness of the system. The spectral intensity Bν is related to the spectral energy density flν by Bν = c 4π flν . 13 Otherwise, the bound-free spectral emission for a dimensionless source under the LTE assumption reads

E 0d b-f (E)= 4fi c 2 N ions NeE 3 ÿ ab p b ga g b ‡ ab (E) exp ! ≠(E ≠ E ba ) 2 /T " (2fimT ) 3/2 (2.68)
where Ne is the free-electron density, ‡ ab (E) the photo-ionization cross-section from a to b, and T the thermal energy.

where n i denotes the ionic density, p a the normalized a-level population ( q a p a =1) and S ab (E) the normalized line shape (

s dE S ab (E)=1).

Opacity Ÿ

The spectral opacity at energy E is defined as

Ÿ(E)= K fl m © ‡(E)N Av M , (2.70)
where fl m denotes the mass density of ions, N Av the Avogadro number, ‡(E) the absorption cross-section, and M the molar mass of the considered atom. K and fl m are related to n i such as

K = n i ‡(E) and fl m = n i M N Av , (2.71)
whereas the opacity Ÿ(E) does not depend on n i . The total bound-bound contribution to the absorption cross-section involves a sum over transitions

a ae b ‡(E)= h 3 c 2 8fi ÿ ab p a g b A ba g a E 2 ba S ab (E)=2fi 2 -e 2 a 0 ÿ ab p a f ab S ab (E).
(2.72)

Line shape S ab

For non-hydrogenic highly ionized plasmas, a suitable approximation for S ab (E) turns out to be Gaussian shape [B4], which reads

D ab (E)= 1 (2fi) 1/2 ‡ exp A ≠ (E ≠ E ba ) 2 2 ‡ 2 B (2.73a)
with variance ‡ 2 and half-width at half-maximum hwhm given by

‡ 2 = E 2 ba T Mc 2 ,h w h m = ‡ Ô 2ln2 Ã Ô T.
(2.73b)

The effect of ions' motion in the plasma is the broadening of the emission line into such Doppler profile. One may notice that the width of the Doppler broadening depends on the plasma temperature only-the higher the temperature, the larger is the line width. The relative Doppler line width, however, is very small. Related to the natural lifetime ∆t of a level, as defined in Eq. (2.60), the Heisenberg uncertainties state that the natural energy width of a level is of the order of h/∆t. Therefore, the natural fwhm (full-width at half-maximum) of a line ab is

fwhm = h 3 1 ∆t a + 1 ∆t b 4 .
(2.74)

The natural broadening of a line ab is usually assumed to be described by a Lorentzian profile L ab (Ê)

L ab (Ê)= Γ ab 2fi 1 (Ê ≠ Ê 0 ) 2 +(Γ ab /2) 2
(2.75) with its fwhm denoted by Γ ab [B4].

In cases that the natural width is much less than the Doppler width, Gaussian profiles are preferred. However, if both widths must be accounted for, the resulting convolved profile is the Voigt function

V ab (E)= 1 (2fi) 1/2 ‡ D V 3 E ≠ E ba 2 1/2 ‡ D , Γ ab 2 1/2 ‡ D 4 (2.76a) where V (A, B)= B fi ⁄ +OE ≠OE dt exp(≠t 2 ) (t ≠ A) 2 + B 2 (2.76b) = 1 2 1 exp ! (≠iA + B) 2 " erfc(≠iA + B) + exp ! (iA + B) 2 " erfc(iA + B) 2 (2.76c)
where erfc stands for the complementary error function [B59]. Voigt function can be obtained numerically using fast and reasonably accurate methods [A60].

Line width is an important issue, especially for absorption spectra when Rosseland or the Planck mean is calculated. It may result from various broadening effects in plasmas, collisional as well as radiative. However, when individual lines gather into coalescent features, their line shapes are mostly hidden under the UTA width.

Chapter 3

Statistical description of unresolved transition arrays

In highly ionized plasmas, except some individual lines observed in the case of ions whose ground configuration only contains one electron out of a closed shell [B20], the numerous radiative lines generally gather into broad features, which may be studied as Unresolved Transition Arrays (UTA) according to the UTA model. It is well suited to describe transitions between configurations which contain large number of levels, for example configurations with open d or f shells. In fact, contrary to the detailed computation which requires the Hamiltonian diagonalization to obtain the N-electron quantum states, the statistical method consists in averaging the perturbative Hamiltonian (cf. Eq.(4.2)) using the invariance of its trace so that the average values can be expressed as compact analytical formulas [P61]. For instance, Bauche et al have thoroughly investigated the UTA model in a series of papers and derived formulas for the variance and shift of the distribution of array energies [A62][A63].

According to Condon and Shortley [B36], a transition array is defined as the totality of lines resulting from transitions between two configurations C ≠ C Õ , characterized by its successive orders of distribution moments µ n . For example, denoting E the energy of an array and I(E) its emission intensity, cf. eg. Eq.(2.69), the distribution moments µ n [I] such as

µ n [I]= s +OE ≠OE I(E)E n dE s +OE ≠OE I(E)dE (3.1)
are of great interest. Within the framework of statistical spectroscopy, one may be led to evaluate distribution moments of various quantities, such as M J values, level energies and radiative lines.

The UTA model is an approximation which consists in assuming a specific analytical shape P (E), such as Gaussian or skewed Gaussian functions, assumed to be the same for all the transitions of the array, I(E) is actually a convolution product

I(E)=P (E) ú A(E) where A(E)= ÿ ab n a A ab "(E ab ≠ E).
(3.2)

In terms of distribution moments,

µ n [I]=µ n [P ]+µ n [A], (3.3a) 
the approximation on P (E) yields

µ n [I] ƒ µ n [A].
(3.3b)

Elements of distribution theory

Moments

Definitions

As a mathematical concept, distribution moments represent a quantitative measure of the shape of a statistical distribution, whether continuous or discrete. The nth-order moment µ n of a N-value quantity X = {X i ,i =1..N } is defined by

µ n [X]= q N i=1 (X i ) n Ê i q N i=1 Ê i ,n Ø 0, (3.4)
where Ê i stands for the weight of the X i value, q N i=1 Ê i the total weight of the quantity. The moments are said to be unweighted, in case 'i, Ê i =1.

The 0th-order moment µ 0 represents the total probability density (normalized to 1). The 1st-order moment µ 1 is the mean of the distribution, about which the centered moment µ c n can be defined

µ c n [X]= q N i=1 (X i ≠ µ 1 ) n Ê i q N i=1 Ê i n Ø 1. (3.5)
With respect to the raw moments µ n -defined about the value 0, the centered moments µ c n focus more on the shape of the distribution independently of its localisation. The centered moments µ c n may also be expressed in terms of µ n , for instance

µ c 2 = µ 2 ≠ (µ 1 ) 2 (3.6a) µ c 3 = µ 3 ≠ 3µ 2 µ 1 + 2(µ 1 ) 3 (3.6b) µ c 4 = µ 4 ≠ 4µ 3 µ 1 +6µ 2 (µ 1 ) 2 ≠ 3(µ 1 ) 4 (3.6c)
For example, a N-mass mechanical system in rotation around a given axis {(m i ,R i ),i=1..N } can be studied through the m i -weighted distribution moments of R. According to the Eq. (3.4),

µ n [R]= q N i=1 (R i ) n m i M t , with M t = N ÿ i=1 m i (3.7)
where M t is the total mass of the system and R i denotes the radius at which m i rotates from the rotation axis. The 0th-order moment µ 0 ,r e p r e s e n t i n gM t , is normalized to 1. The 1st-order moment µ

1 =(R 1 m 1 + R 2 m 2 + ... + R N m N )/M t yields the center of mass. And the 2nd-order moment µ 2 =(R 2 1 m 1 + R 2 2 m 2 + ... + R 2 N m N )
/M t provides the rotational inertia. Moments up to the 4th-order of the probability distribution are often denoted by their traditional names

• µ 1 = the mean or the average.

• µ c

2 =t h evariance v © ‡2 , whose positive square root is the standard deviation ‡. Based on the variance, it is possible to construct normalized nth-order centered momentn as nth-order centered moment divided by ‡ n

-n = µ c n /( ‡ n ) n Ø 2. (3.8)
These dimensionless quantities have advantages to represent the distribution independently of any linear change of scale.

• -3 =the skewness, which represents a measure of the asymmetry of the distribution (with respect to a Gaussian shape). A symmetric (Gaussian) distribution corresponds to -3 =0, whereas a skewed distribution can be specified whether by -3 < 0 (skewed to the left) or -3 > 0 (skewed to the right).

• -4 =the kurtosis, it provides a measure of the flattening of the distribution, compared to the normal distribution (-4 =3) of the same variance1 . So that a distribution having heavy tails (-4 > 3) corresponds to high kurtosis (leptokurtic) and a distribution having light tails (-4 < 3) corresponds to low kurtosis (platykurtic).

Usually, moments beyond the 4th-order are qualified high-order moments. High-order statistics, involving non-linear combination of data, can be used for description or estimation of further shape parameters 2 [W64].

Moments of level energies and transition lines

When considering energy distribution of levels in a configuration or radiative line distribution in a transition array, the computation of their correspondant moments turn out to be essential. The importance of the calculation of such quantities in spectroscopic analysis has been stressed decades ago by Moszkowski [A22]. For example, application of averaging techniques to the computation of opacity of a high-temperature and high-density gold plasma has been proposed by Nardi and Zinamon [A65].

Distribution moments of quantum states in one configuration C reads

µ n (C)= ÿ moeC (E m ) n g C , ( 3.9) 
where E m = Èm | H | mÍ,w i t hH the atomic Hamiltonian, | m>©| -JM > its eigenstates, and the sum runs over all states | m> of configuration C; g C =the total number of states, defined for example by a list of magnetic quantum numbers (m l ,m s ) of each electron. The knowledge of energy moments is essential when considering plasmas at LTE, being involved for instance in quantities like partition functions, or in the Saha-Boltzmann equation. [A32] Beyond the average energy of a configuration [B40] given by the moment µ 1 , expressions have been published for the variance (n =2) [A63][B20]. Concerning higher-order moments, formal methods have been proposed [A66], and explicit expressions given for the thirdorder moment [A67]. However, for n Ø 4 the available literature is rather scarce.

Distribution moments of radiative transitions between 2 configurations C and C Õ writes

µ n (C ≠ C Õ )= ÿ mm Õ (E m Õ ≠ E m ) n w mm Õ W (3.10) with E m Õ = Èm Õ | H | m Õ Í, E m = Èm | H | mÍ, the sum runs over all states | mÍ, | m Õ Í of configurations C,C Õ respectively; w mm Õ =the strength of the m ≠ m Õ transition such as w mm Õ = Èm | A | m Õ Í 2
where A can be electric-dipole, magnetic-dipole operators, etc. cf. Eq.(4.42), W = q mm Õ w mm Õ . The sums over states in the above equations can be limited to relativistic configurations in j ≠ j coupling, or to a single Russell-Saunders term. They can also be extended to more than two configurations in case of configuration mixing. These moments -shown in Eqs.(3.9)(3.10) -can be evaluated by means of the second quantization3 and the tensor-operator formalisms, according to the procedure indicated in [B20]:

1. applying the second quantization methods, sums of products of matrix elements to calculate can be transformed into a small number of N-electron operators ;

2. then, the matrix elements of these operators are computed using Racah's tensor-operator techniques [A37][A38] as sums of product of Wigner n ≠ j coefficients.

Cumulants Ÿ r

As a set of descriptive constants of a distribution, cumulants can be more useful than moments from the theoretical standpoint to measure the properties of the distribution or to specify it [B68][B69] [B70]. The interest of these quantities versus the ordinary moments is that the cumulants are additive if two phenomena are statistically independent. For example, for complex configurations with several open subshells (n 1 l 1 ) p 1 (n 2 l 2 ) p 2 •••, the total configurational cumulant of spin-orbit energies can be obtained by summing up cumulants of each subshells.

Unlike moments µ n where n Ø 0, cumulants Ÿ r are defined from r =1. The formal definition of the cumulant of order r(r>0) is given by [B68] exp

A OE ÿ r=1 Ÿ r t r r! B = OE ÿ r=0 µ r t r r! . (3.11)
In practice, it follows that the cumulants are related to the moments by the recursion formula [W71]

Ÿ n = µ n ≠ n≠1 ÿ m=1 A n ≠ 1 m ≠ 1 B Ÿ m µ n≠m . (3.12)
For instance, cumulants of up to the 10-th order are applied in the study of high order moments of spin-orbit energies in Chapter 4 whose expressions as a function of centered moments µ n © µ c n are as follows,

Ÿ 2 = µ 2 (3.13a) Ÿ 3 = µ 3 (3.13b) Ÿ 4 = µ 4 ≠ 3µ 2 2 (3.13c) Ÿ 5 = µ 5 ≠ 10µ 3 µ 2 (3.13d) Ÿ 6 = µ 6 ≠ 15µ 4 µ 2 ≠ 10µ 2 3 + 30µ 3 2 (3.13e) Ÿ 7 = µ 7 ≠ 21µ 5 µ 2 ≠ 35µ 4 µ 3 + 210µ 3 µ 2 2 (3.13f) Ÿ 8 = µ 8 ≠ 28µ 6 µ 2 ≠ 56µ 5 µ 3 ≠ 35µ 2 4 + 420µ 4 µ 2 2 + 560µ 2 3 µ 2 ≠ 630µ 4 2 (3.13g) Ÿ 9 = µ 9 ≠ 36µ 7 µ 2 ≠ 84µ 6 µ 3 ≠ 126µ 5 µ 4 + 756µ 5 µ 2 2 + 2520µ 4 µ 3 µ 2 + 560µ 3 3 ≠ 7560µ 3 µ 3 2 (3.13h) Ÿ 10 = µ 10 ≠ 45µ 8 µ 2 ≠ 120µ 7 µ 3 ≠ 210µ 6 µ 4 + 1260µ 6 µ 2 2 ≠ 126µ 2 5 + 5040µ 5 µ 3 µ 2 + 3150µ 2 4 µ 2 + 4200µ 4 µ 2 3 ≠ 18900µ 4 µ 3 2 ≠ 37800µ 2 3 µ 2 2 + 22680µ 5 2 .
(3.13i)

Examples of distribution function

Whereas distribution moments of various orders are exact quantities, the choice of a particular distribution function is to some extent arbitrary, resulting mostly from computation tests [B20]. Independently of arbitrary choices, all distribution functions ought to converge to the same behaviour when moments of high enough orders are used.

Beyond the Gaussian assumption, i.e. in cases of moments other than average and variance are not insignificant the modelling of UTA different from "bell curved" shapes requires one to consider distributions including moments of orders higher than 2. For instance, the effect of the 3rd and the 4th reduced centered moments -representing respectively the skewness and the kurtosis of a distribution -on the statistical modelling of transition lines in complex atomic spectra has been investigated through the use of Gram-Charlier (GC), Generalized Gaussian (GG) and Normal Inverse Gaussian (NIG) distributions [A72].

Gram-Charlier function

Quite popular among statisticians, the Gram-Charlier (GC) type A distribution [B69] of variable X truncated at index p reads

GC(X)= Ω (2fi) 1/2 ‡ exp A ≠ (X ≠ µ 1 ) 2 2 ‡ 2 BC 1+ p ÿ n=3 c n He n 3 X ≠ µ 1 ‡ 4 D , (3.14)
• The above distribution is normalized to the total area of the distribution Ω. For instance, if one analyzes the energy distribution of levels inside a configuration, Ω will be the configuration degeneracy Ω=g C , and X = E, µ 1 = E av .

• The Gram-Charlier coefficients c n are related to the scaled centered moments

-n = µ n / ‡ n with ‡ 2 := µ 2 (or -2 := 1) (3.15a) by c n = ÿ j (≠1) j -n≠2j 2 j j!(n ≠ 2j)! . (3.15b)
• He n is the Hermite polynomial defined as [B59] He n (X)=n!

ÿ m (≠1) m X n≠2m 2 m m!(n ≠ 2m)! (3.16)
with the summation being restricted to m values for which the inverse factorials do not cancel. 4

It is noteworthy that GC expansion represents probably the most intuitif choice of distribution when going beyond Gaussian assumption. Actually, as shown in Eq.(3.14), GC function is defined as a product of a normal distribution with a polynomial accounting for corrections departing from Gaussian form (corresponding to -3 =0 and -4 =3). Whereas GC expansion involves in a simple way moments of any order, it may exhibit negative features in certain circumstances which is quite bothersome.

Generalized Gaussian function

GG(X)= Ωp ‡ exp 3 ≠| (X ≠ µ 1 ) ‡⁄ | p 45 2⁄Γ 3 1 p 46 ≠1 ,⁄ = Û Γ 3 1 p 4 /Γ 3 3 p 4 (3.18)
where • Γ(X) is the ordinary gamma function ;

• p is a positive real parameter, which can be approximated by the following fitting function when constraining the kurtosis -4 such as -4 = Γ( Unlike GC expansions, GG functions do not have negative values. Furthermore, GG functions are symmetric (increasing for X≠µ 1 ‡ < 0 and decreasing for X≠µ 1 ‡ > 0), with the odd-order moments null.

4 By the way, the Hermite polynomial of order n obeys the recursion relation He n+1 (X)=XHen(X) ≠ nHe n≠1 (X), (3.17a)

where for examples, polynomials of up to the 4th-order have the following explicit expressions He 0 (X)=1, (3.17b)

He 1 (X)=X, (3.17c) He 2 (X)=X 2 ≠ 1, (3.17d) He 3 (X)=X 3 ≠ 3X, (3.17e) He 4 (X)=X 4 ≠ 6X 2 +3. (3.17f)

Normalized Inverse Gaussian function

Another example of distribution function without negative values, but accounts for both symmetric and asymmetric effects is the NIG distribution :

NIG(X)= Ω 1 ca Ô a 2 ≠ b 2 exp(c)+b(X ≠ d) 2 fi  c 2 +(X ≠ d) 2 K 1 3 a Ò c 2 +(X ≠ d) 2 4 (3.20)
with K 1 is a modified Bessel function of the 3rd kind, and (a, b, c, d) are parameters of the distribution expressed as functions of moments of the first orders, cf. Table 1 in [A72].

In this thesis, only the GC expansions have been used, serving mainly for the convergence test of the distribution related to the analytical calculation of high-order moments of spin-orbit energies (cf. Sec.4.1.2.2), however, more details about the three distributions as well as their comparisons can be found in the referent paper [A72].

Computation of transition arrays by FAC

In order to illustrate the UTA concept, emission intensities arising from point-like plasmas are computed in both detailed and UTA approaches for comparison using the FAC code. As shown in Sec.3.2.1 below, spectra computed using UTA formulas are consistent with detailed ones in the case of electric dipole (E 1 ) transitions. In contrast, the numerical tests on magnetic dipole (M 1 ) transitions exhibit significant discrepancies, cf. Sec.4.2, leading us to develop a pseudo-UTA computation method explained in Sec.3.2.2.

Numerical example

3d 2 4p ≠ 3d 2 4s transitions in KrX and ZrXIV plasmas An empirical analysis is performed in the case of 3d 2 4p ≠ 3d 2 4s transitions in KrX and ZrXIV plasmas, cf. Fig. 3.1,u s i n gt h eF A Cc o d e .

In addition to the ability to calculate various radiative and collisional processes, as shown in Table 2.4, the atomic calculations in FAC [A30] can be carried out either in the configuration average approximation or using the detailed term accounting method, easily by calling the function SetUTA. In fact, the numerical subroutines implemented in FAC are exported through several Python modules. The computation task can therefore be completed in a flexible way by programming in the scripting language Python. [O31]. For instance, the radiative transition rates A --outputs from UTA computation provide the transition energy E --including the UTA shift, the Gaussian standard deviation, and the correction to the line strengths due to the configuration interaction within the same non-relativisitic configurations.

For the transition 3d 2 4p ≠ 3d 2 4s, 61 levels and 359 lines are computed in the detailed approach, whereas 9 relativistic configurations and 6 arrays result from the UTA option. The UTA output is regrouped in Table 3.1.

The atomic data from FAC are then post-processed under the assumption of plasmas at LTE, with the populations n a obtained from Saha-Boltzmann law shown in Eq.(2.50). Moreover, line shape is assumed to be normalized Doppler profile, cf. Eq.( 2 used for UTA profile.

P UTA = 1 Ô 2fi ‡ T e ≠ (E≠µ 1 ) 2 2σ 2 T where ‡ 2 T = ‡ 2 D + µ c 2 (3.21)
As shown on Fig. 3.1,

• the constructed spectrum of Kr 9+ (Z=36) consists of one Unresolved Transition Array (UTA), in agreement with the convolved spectrum. The array is characterized by an average of µ 1 = 21.03eV and a width FWHM ƒ 2.35  µ c 2 ƒ 3.5eV . Percent error of UTA is estimated as " ƒ 0.20%.

• The constructed spectrum of Zr 13+ (Z=40) consists of two Spin-Orbit-Split Arrays (SOSA) as in the convolved spectrum. When Z increases, the spin-orbit integral begins to dominate over the inter-electronic ones. As a consequence, spin-orbit split gives rise to 2 relativistic sub-arrays, 3d 2 4p 1/2 ≠ae 3d 2 4s and 3d 2 4p 3/2 ≠ae 3d 2 4s whose average transition energies are 26.9 eV and 30.2 eV resp ectively.

High-order UTA construction

In order to test high-order moments in a spectral distribution, or to analyze the detailed spectra as provided numerically by the FAC code, a "constructed" or pseudo-UTA computation method was developed and designed in the following way. [A33] The various detailed transitions are sorted, so that all lines connecting a pair of given relativistic configurations (-, -) are collected in this pseudo-UTA structure. Since the oscillator strengths are known from the detailed transition list, we may compute the average energies and centered moments for each pair of relativistic configurations -, -using the relations

E --= ÿ aoe- boe- g a f ab E ab M ÿ aoe- boe- g a f ab (3.22a) µ (k) --= e (E ≠ E --) k f = ÿ aoe- boe- g a f ab (E ab ≠ E --) k M ÿ aoe- boe- g a f ab (3.22b)
where the sums run over detailed levels pairs ab, g a being the degeneracy of level a, f ab the absorption oscillator strength for the a ae b transition, and E ab is the level energy difference.

Of course the pseudo-UTA --exists provided that the detailed computation involves at least one level-level transition ab associated to it. Using these transition-array moments, we may construct new "pseudo-UTA" spectra through the averaged formulas

E 0d pU b-b (E)= ÿ -- U --S --(E) (3.23a)
where the source term in this collecting scheme is given by

U --= ÿ aoe- boe- p b A ba E ab . (3.23b)
As in Eq. ( 2.73) the lineshape can be assumed to be Gaussian

S --(E)= 1 (2fi) 1/2 ‡ -- exp A ≠ (E ≠ E --) 2 2 ‡ 2 -- B (3.23c) with ‡ 2 --= E 2 --k B T/(Mc 2 )+µ (2) -- (3.23d)
the variance (3.23d) including Doppler effect and the energy dispersion as given by Eq. (3.22b).

As seen by comparing these relations with Eq. (2.69) the pseudo-UTA (3.23)i sd e fi n e ds o that the integral of the spectrum is conserved, notably

⁄ dE E 0d b-b (E)= ⁄ dE E 0d pU b-b (E)= ÿ ab p b A ba E ba . (3.24)
Such numerical techniques will be illustrated in the case of tungsten plasmas in Sec.4.2.

Chapter 4

Computation of distribution moments

In this chapter, the theoretical methods and numerical procedure (cf. Sec.3.2.2) exposed previously will be applied to two cases : one consists of high-order moments computation of spin-orbit energies inside a multi-electron configuration, and the other deals with transition arrays of magnetic-dipole type in tungsten plasmas. The present writing uses material from two papers [A32][ A33]p u b l i s h e dd u r i n gt h et h e s i s .

High-order moments of spin-orbit energies

The non-central Hamiltonian H

Õ ,c f . E q . ( 2.5), in a semi-relativistic approximation [B40]i s composed by an electron-electron V ee part 1 , and a spin-orbit V so one 2

H Õ = ÿ p<q 1 r pq + ÿ k ›(r k )l k s k = V ee + V so . (4.2)
1 Contrary to the one-electron spin-orbit operator Vso, the inter-electronic Coulomb energy operator Vee involves two electrons, where 1, 2 represent electrons 1 and 2 indistinguishably. Through multiple expansion of 1/r 12 [B40]:

1

r 12 = 1  r 2 1 + r 2 2 ≠ 2r 1 r 2 cos Ê = ÿ k=0 r k < r k+1 > P k (cos Ê) (4.1a)
where r< = min(r 1 ,r 2 ),r > = max(r 1 ,r 2 ) and P k (cos Ê) is the Legendre polynomial, defined as

P l (cos Ê)= 4fi 2l +1 l ÿ m=≠l (≠1) m Y l,≠m (◊ 1 ," 1 )Y l,m (◊ 2 ," 2 ), (4.1b)
the Coulomb operator Vee can be expressed as a composition of a radial part and an angular part

1 r 12 = ÿ k=0 r k < r k+1 > k ÿ q=≠k (≠1) q C (k) ≠q (◊ 1 ," 1 )C (k) q (◊ 2 ," 2 ),C (k) q = Ú 4fi 2k +1 Y kq (4.1c)
where the angular part is given by a function of spherical harmonics. Quantities C (k) q , usually called "special" spherical harmonics in theoretical atomic spectroscopy, are used when a spherical function plays the role of an operator.

2 Notice that [›(r k ),l k s k ]=0.

The purpose of this section is to consider high-order moments of energy distribution, cf. Eq.(3.9), related to the spin-orbit interaction -the interaction between the orbital momentum and the spin of an electron -considering mostly highly-charged ions for which this interaction rules the electron-electron interaction V so >V ee . More precisely, moments e V k so f for a series of k values are obtained in both coupled and uncoupled schemes.

The operator V so can be preferably expressed in terms of raising and lowering operators l ± , cf. Eq.(B.7),

V so = ÿ p ›(r p ) 5 1 2 (l p+ s p≠ + l p≠ s p+ )+l pz s pz 6 . (4.3a)
or in terms of j, l, s

V so = ÿ p ›(r p ) j 2 p ≠ l 2 p ≠ s 2 p 2 , (4.3b)
according to whether an uncoupled basis |lm l s ‡Í or a coupled one |lsjmÍ is used.

Averaging method

The calculation of the average of the k-th power of the atomic Hamiltonian on a N -electron configuration relies on the use of the Uylings theorem [A73] (see also Appendix in [A63]), which states that the average of a k-particle operator O (k) on a N -electron configuration may be derived from the average computed on the k-electron configuration through a binomial factor

! N k " e O (k) f N = A N k B e O (k) f k . (4.4)
When dealing with average matrix element determination of a sub-shell (nl) N occupied by N electrons, it means that the number of electrons to be taken into account in a configuration -depending on operator's "nature"-can be minimized to k (usually less than 3 in atomic spectroscopy). Thus, an arbitrary sub-shell (nl) N can be studied with a reduced configuration |CÍ =(nl) k ,k π N . Then, the average values in Eq.( 4.4) are obtained by summing the expression È" k |O k | " k Í over all antisymmetric states " k in the configuration (nl) k and divided by the degeneracy g k of the configuration, whether relativistic or not. The numerator is the trace of the operator [A74] and therefore may be computed in any basis.

If the quantum numbers of the j-th electron are denoted by q j ,t h eg k elements involved in the trace are defined by the set (q 1 ,q 2 •••q k ) where all q j are different and ordered. Accounting for anti-symmetrization of wave functions, the trace is

TrO k = A 4l +2 k B e O (k) f k = ÿ q 1 <•••<q k f (q 1 •••q k ), (4.5a) with f (q 1 •••q k )= ÿ • oeS k Á • e q 1 •••q k |O k | q • (1) •••q • (k) f (4.5b)
where S k is a permutation group3 . among k elements and Á • the signature of the permutation • .

It is noteworthy that

• the sum index q 1 < ••• <q k in Eq.(4.5a) means that each set is counted only once ;

• the trace computation is significantly simplified by noting that the summed quantity f is fully symmetric in the exchange of any pair of indexes f (q 1 ,q 2 •••)=f (q 2 ,q 1 •••) ;

• because of the sum

q • oeS k Á • , f vanishes if two indexes are equal f (q 1 ,q 1 •••)=0.
As a result,

TrO k = 1 k! ÿ q 1 •••q k f (q 1 •••q k ), (4.6)
the sum over non-repeated indexes may be replaced by the sum where q 1 •••q k vary freely, which is much more convenient to perform. 4

Analytical formulas for spin-orbit moments

Average values over one-electron configuration

As will be shown later, moments 

k f = 1 2(2l + 1) ÿ µ ‡ e µ ‡ - - -(l l l. . .s s s) k - - -µ ‡ f = 1 2(2l + 1) ÿ jm e jm - - -(l l l. . .s s s) k - - -jm f .
(4.8b)

The most straightforward method lies in using the coupled basis jm, where the spin-orbit term is diagonal. Generally, when the basis used makes an Hamiltonian term diagonal, the average determination can be largely simplified. For j = l ± 1/2, the level degeneracies are 2l and 2l +2 and the spin-orbit energies ≠(l + 1)/2 and l/2 respectively, so that e (l l l. . .s s s)

k f = 1 2(2l + 1) ÿ j ! j(j + 1) ≠ l(l + 1) ≠ 3/4 " k O 2 k (4.9a) = l(l + 1) 2 k (2l + 1) Ë (≠1) k (l + 1) k≠1 + l k≠1 È .
(4.9b)

This provides the average values for the first k values, with X = l(l + 1),

Èl l l. . .s s sÍ =0 (4.10a) e (l l l. . .s s s) 2 f = X 4 (4.10b) e (l l l. . .s s s) 3 f = ≠ X 8 (4.10c) e (l l l. . .s s s) 4 f = X 16 (X + 1) (4.10d) e (l l l. . .s s s) 5 f = ≠ X 32 (2X + 1) (4.10e) e (l l l. . .s s s) 6 f = X 64 (X 2 +3X + 1) (4.10f) e (l l l. . .s s s) 7 f = ≠ X 128 (X + 1)(3X + 1) (4.10g) e (l l l. . .s s s) 8 f = X 256 (X 3 +6X 2 +5X + 1) (4.10h) e (l l l. . .s s s) 9 f = ≠ X 512 (2X + 1)(2X 2 +4X + 1) (4.10i) e (l l l. . .s s s) 10 f = X 1024 (X + 1)(X 3 +9X 2 +6X + 1) (4.10j)
A direct inspection of these equations shows that these average values follow the relation e (l l l. . .s s s)

k f = 3 ≠ 1 2 4 k X int(k/2)≠1 ÿ j=0 A k ≠ j ≠ 2 j B X j (4.11)
where int(k/2) is the integer part of k/2.

Spin-orbit moments in uncoupled scheme

Concerning the first 2 moments, the moment k =1 is clearly null, and the variance ∆V 2 so is well known (see, e.g. [B20])

Ÿ 2 (so) = e V 2 so f = l(l + 1) 4(4l + 1) N (4l +2≠ N ) È›Í 2 .
(4.12)

A simple expression can be provided for the moment k =3 called "skewness".

Skewness

The cube of the spin-orbit interaction involves three terms

V 3 so = S 1 + S 2 + S 3 (4.13a) S 1 = ÿ i (› i l l l i i i . . .s s s i i i ) 3 (4.13b) S 2 =3 ÿ i<j Ë (› i l l l i i i . . .s s s i i i ) 2 › j (l l l j j j . . .s s s j j j )+i ¡ j È (4.13c) S 3 =6 ÿ i<j<k (› i l l l i i i . . .s s s i i i › j l l l j j j . . .s s s j j j › k l l l k k k . . .s s s k k k ) . (4.13d)
The radial part for the considered sub-shell È› i Í 3 = Ènl |›(r)| nlÍ 3 is a common factor in all these formulas and will be dropped unless mentioned. One may obtain the average values or traces of each of these operators using Uylings' theorem, cf. Eq. (4.4). For instance, the S 1 average value will be calculated for N =1. One first computes the trace, then divides it by 2(2l + 1) to get ÈS 1 Í 1 .I f N =1 the uncoupled basis states are nlµ 1 ‡ 1 where the magnetic quantum numbers verify ≠l AE µ 1 AE l, ≠1/2 AE ‡ 1 AE +1/2. From the average value in Eq. (4.10c), one gets immediately

Tr(S 1 )= ÿ µ 1 ‡ 1 e µ 1 ‡ 1 - - -(l l l 1 1 1 . . .s s s 1 1 1 ) 3 - - -µ 1 ‡ 1 f = ≠2(2l + 1) l(l + 1) 8 . (4.14)
The trace of 2-particle operator is calculated accordingly. For symmetry reasons both terms inside the brackets give the same contribution. The 1/k! factor in Eq.(4.6) compensates this factor 2, so that, writing explicitly the permutations • and dropping unneeded single-electron indexes,

Tr(S 2 ) = 3(d 2 ≠ e 2 ) (4.15a)

d 2 = ÿ µ 1 ‡ 1 µ 2 ‡ 2 e µ 1 ‡ 1 - - -(l l l. . .s s s) 2 - - -µ 1 ‡ 1 f ȵ 2 ‡ 2 |l l l. . .s s s| µ 2 ‡ 2 Í (4.15b) e 2 = ÿ µ 1 ‡ 1 µ 2 ‡ 2 e µ 1 ‡ 1 - - -(l l l. . .s s s) 2 - - -µ 2 ‡ 2 f ȵ 2 ‡ 2 |l l l. . .s s s| µ 1 ‡ 1 Í . (4.15c)
The direct term d 2 is, up to a constant, the product of average values + (l l l. . .s s s) 2 , Èl l l. . .s s sÍ the second of which vanishes. The exchange term e 2 is easily derived from the closure relation

ÿ µ ‡ |µ ‡ ÍÈ µ ‡| =1 (4.15d)
and, using again the average value in Eq. ( 4.10c), one gets the trace

Tr(S 2 )=≠3e 2 = ≠3 ÿ µ 1 ‡ 1 e µ 1 ‡ 1 - - -(l l l. . .s s s) 3 - - -µ 1 ‡ 1 f = 3 4 (2l + 1)l(l + 1). (4.15e)
In the computation of the trace of the operator S 3 , one has to perform the sum over the 3! permutations of S 3 . If any permutation lets one index invariant, e.g. • (3) = 3, its contribution to the trace cancels since it involves the sum ȵ 3 ‡ 3 |l l l. . .s s s| µ 3 ‡ 3 Í. Therefore, only the two thirdorder cycles contribute to Tr(S 3 ), and for symmetry reasons their contributions are equal. One readily gets

Tr(S 3 )=2 ÿ µ 1 µ 2 µ 3 ‡ 1 ‡ 2 ‡ 3 ȵ 1 ‡ 1 |l l l. . .s s s| µ 2 ‡ 2 Íȵ 2 ‡ 2 |l l l. . .s s s| µ 3 ‡ 3 Íȵ 3 ‡ 3 |l l l. . .s s s| µ 1 ‡ 1 Í (4.16a) =2 ÿ µ 1 ‡ 1 e µ 1 ‡ 1 - - -(l l l. . .s s s) 3 - - -µ 1 ‡ 1 f (4.16b) = 4(2l + 1) e (l l l. . .s s s) 3 f = ≠ 1 2 l(l + 1)(2l + 1) (4.16c)
which show that all elements of

+ V 3 so ,
are reducible to the single-electron average.

According to Uylings theorem

e V 3 so f = 3 ÿ j=1 A N j B Tr(S j ) O A 4l +2 j B (4.17)
and from 3 previous expressions of trace, one gets the contribution of spin-orbit interaction to the configuration skewness

e V 3 so f N = È›Í 3 (l + 1) 16(4l + 1) N (4l +2≠ N )(N ≠ 2l ≠ 1). (4.18)
This expression agrees with the result from Kučas and Karazija [A67]. The skewness vanishes for an empty or closed subshell as well as for a half-filled one. It depends on M = N ≠ 2l ≠ 1 as M (M 2 ≠ (2l + 1) 2 ). More generally one may easily check that V 2k+1 so (resp. V 2k so ) is an odd (resp. even) function of M .

Kurtosis

Expanding the fourth power of the spin-orbit interaction one gets

V 4 so = K 1 + K 2 + K Õ 2 + K 3 + K 4 (4.19a) K 1 = ÿ i (› i l l l i i i . . .s s s i i i ) 4 (4.19b) K 2 =4 ÿ i<j Ë (› i l l l i i i . . .s s s i i i ) 3 › j (l l l j j j . . .s s s j j j )+i ¡ j È (4.19c) K Õ 2 =6 ÿ i<j (› i l l l i i i . . .s s s i i i ) 2 (› j l l l j j j . . .s s s j j j ) 2 (4.19d) K 3 = 12 ÿ i<j<k Ë (› i l l l i i i . . .s s s i i i ) 2 › j l l l j j j . . .s s s j j j › k l l l k k k . . .s s s k k k +(ijk)+(ikj) È (4.19e) K 4 = 24 ÿ i<j<k<m › i l l l i i i . . .s s s i i i › j l l l j j j . . .s s s j j j › k l l l k k k . . .s s s k k k › m l l l m m m . . .s s s m m m (4.19f)
where in (4.19e) (ijk), (ikj) stands for the cyclic permutations of indexes. Using the same techniques as above, one gets, after computing the sum over the permutations in S k ,

Tr(K 1 )/ A 4l +2 1 B = ÈK 1 Í 1 = m 4 (4.20a) Tr(K 2 )/ A 4l +2 2 B = ÈK 2 Í 2 = ≠ 8m 4 4l +1 (4.20b) Tr(K Õ 2 )/ A 4l +2 2 B = + K Õ 2 , 2 = 6 4l +1 1 2(2l + 1)m 2 2 ≠ m 4 2 (4.20c) Tr(K 3 )/ A 4l +2 3 B = ÈK 3 Í 3 = 18 l(4l + 1) 1 ≠(2l + 1)m 2 2 + m 4 2 (4.20d) Tr(K 4 )/ A 4l +2 4 B = ÈK 4 Í 4 = 36 l(4l ≠ 1)(4l + 1) 1 (2l + 1)m 2 2 ≠ m 4 2 (4.20e)
where the one-electron average values

m n = È(l l l. . .s s s) n Í (4.21)
are detailed previously. After some algebra, the expression of the fourth moment reads

e V 4 so f N = È›Í 4 (l + 1)N (4l +2≠ N ) 32(4l ≠ 1)(4l + 1) f 4 (4.22a) with f 4 =2l(2l + 1) 2 (3l 2 + l ≠ 1) ≠ 3(2l 3 +2l 2 ≠ 1)(N ≠ 2l ≠ 1) 2 (4.22b) =2l(4l ≠ 1)(l 2 + l + 1) + 3(2l 3 +2l 2 ≠ 1)(N ≠ 1)(4l +1≠ N ). (4.22c)
The 4th-order cumulant, sometimes called "excess" measuring the sharpness of the distribution, is defined as

Ÿ 4 (so) = e V 4 so f ≠ 3 e V 2 so f 2 . (4.23)
Using the known value of the variance, one gets

Ÿ 4 (so) = ≠ (l + 1)N (4l +2≠ N ) 32(4l ≠ 1)(4l + 1) 2 k 4 (4.24a) with k 4 = Ë 2l(2l + 1) 2 (2l 2 + 1) + c 4 (N ≠ 2l ≠ 1) 2 È (4.24b) c 4 = 3(4l 3 +4l 2 ≠ 4l ≠ 1) (4.24c)
and since 4l 3 +4l 2 ≠ 4l ≠ 1 > 0 for l>0, the factor k 4 is also positive. This proves that the excess of the spin-orbit distribution is negative, which means it is flatter than a Gaussian profile.

Higher-order moments

Using the same techniques, calculations for the next average values can be performed. For instance, the result for k =5 is

e V 5 so f N = ≠È›Í 5 (l + 1)(2l +1≠ N )N (4l +2≠ N ) 64(4l ≠ 1)(4l + 1) f 5 (4.25a) with f 5 =(2l + 1) 2 (10l 2 +6l ≠ 1) ≠ 2(5l 3 +7l ≠ 3)(N ≠ 2l ≠ 1) 2 . (4.25b) And for k =6, e V 6 so f N = È›Í 6 (l + 1)N (4l +2≠ N ) 128(4l ≠ 3)(4l ≠ 1)(4l + 1) f 6 (4.26a) with f 6 =2l(2l + 1) 4 (15l 4 ≠ 14l 2 ≠ l + 3) ≠ 5(2l + 1) 2 (12l 5 + 12l 4 ≠ 6l 3 ≠ 19l 2 ≠ 5l + 3)(N ≠ 2l ≠ 1) 2 + 5(6l 5 + 12l 4 +6l 3 ≠ 13l 2 ≠ 17l ≠ 6)(N ≠ 2l ≠ 1) 4 . (4.26b)
However this method becomes cumbersome when dealing with high-order moments because it is necessary to account for k-particle interaction and for the whole set of permutations S k .

Spin-orbit moments in coupled scheme

General formulas

Using the eigenvectors of the operators j 2 i and j iz noted as {j i m i } (i =1...N),aN -electron state obeying Pauli principle is defined by the occupation number ‹ for the total angular mo-

mentum j = l ≠ 1/2, by the set of ‹ distinct values m ≠ 1 , •••m ≠ ‹ and by the set of N ≠ ‹ distinct values m + 1 , •••m + N ≠‹ for j = l +1/2.
The number of allowed states is given by the possible choice of ‹ magnetic quantum numbers among 2l and N ≠ ‹ magnetic quantum numbers among 2l +2, i.e.,

g(N,‹,l)= A 2l ‹ BA 2l +2 N ≠ ‹ B .
(4.27)

Since the spin-orbit Hamiltonian is diagonal in this basis, the energy of a relativistic configuration of populations ‹, N ≠ ‹ is straightforwardly obtained as 

E so = È›Í 2 (Nl≠ (2l + 1)‹) . ( 4 
= (l + 1)N (4l +2≠ N )(N ≠ 2l ≠ 1) 512(4l ≠ 3)(4l ≠ 1)(4l + 1) [A 7 (l)+B 7 (l)M 2 + C 7 (l)M 4 ] (4.36a) with A 7 (l) = 2(2l + 1) 4 (105l 4 + 56l 3 ≠ 55l 2 ≠ 28l + 3) (4.36b) B 7 (l)=≠5(2l + 1) 2 (84l 4 + 140l 3 + 64l 2 ≠ 21l ≠ 18) (4.36c) C 7 (l) = 3(70l 4 + 196l 3 + 234l 2 + 133l + 30), (4.36d) e V 8 so f = (l + 1)N (4l +2≠ N ) 1024(4l ≠ 5)(4l ≠ 3)(4l ≠ 1)(4l + 1) [A 8 (l)+B 8 (l)M 2 + C 8 (l)M 4 + D 8 (l)M 6 ], (4.37a) A 8 (l)=4l(2l + 1) 6 (105l 6 ≠ 105l 5 ≠ 147l 4 + 85l 3 + 87l 2 ≠ 13l ≠ 15) (4.37b) B 8 (l)=≠14(2l + 1) 4 (90l 7 + 30l 6 ≠ 162l 5 ≠ 248l 4 + 38l 3 + 182l 2 + 40l ≠ 15) (4.37c) C 8 (l) = 35(2l + 1) 2 (36l 7 + 60l 6 ≠ 12l 5 ≠ 196l 4 ≠ 208l 3 ≠ 20l 2 + 73l + 30) (4.37d) D 8 (l)=≠7(60l 7 + 180l 6 + 180l 5 ≠ 280l 4 ≠ 888l 3 ≠ 932l 2 ≠ 459l ≠ 90), (4.37e) e V 9 so f = (l + 1)N (4l +2≠ N )(N ≠ 2l ≠ 1) 1024(4l ≠ 5)(4l ≠ 3)(4l ≠ 1)(4l + 1) [A 9 (l)+B 9 (l)M 2 + C 9 (l)M 4 + D 9 (l)M 6 ] (4.38a) with A 9 (l)=(2l + 1) 6 (1260l 6 ≠ 252l 5 ≠ 1770l 4 ≠ 332l 3 + 564l 2 + 182l ≠ 15) (4.38b) B 9 (l)=≠7(2l + 1) 4 (540l 6 + 684l 5 ≠ 204l 4 ≠ 886l 3 ≠ 468l 2 + 43l + 60) (4.38c) C 9 (l) = 7(2l + 1) 2 (540l 6 + 1476l 5 + 1530l 4 + 244l 3 ≠ 786l 2 ≠ 625l ≠ 150) (4.38d) D 9 (l)=≠2(630l 6 + 2646l 5 + 5184l 4 + 5773l 3 + 3777l 2 + 1361l + 210), (4.38e) e V 10 so f = (l + 1)N (4l +2≠ N ) 4096(4l ≠ 7)(4l ≠ 5)(4l ≠ 3)(4l ≠ 1)(4l + 1) [A 10 (l)+B 10 (l)M 2 + C 10 (l)M 4 + D 10 (l)M 6 + E 10 (l)M 8 ] (4.39a) with A 10 (l)=4l(2l + 1) 8 1 945l 8 ≠ 2520l 7 + 3090l 5 + 226l 4 ≠ 1594l 3 ≠484l 2 + 241l + 105 2 (4.39b) B 10 (l)=≠6(2l + 1) 6 1 2520l 9 ≠ 2520l 8 ≠ 7140l 7 ≠ 4450l 6 + 13410l 5 +13126l 4 ≠ 4286l 3 ≠ 6819l 2 ≠ 1051l + 315 2 (4.39c) C 10 (l) = 21(2l + 1) 4 1 1080l 9 + 720l 8 ≠ 3000l 7 ≠ 9300l 6 ≠ 3560l 5 +10564l 4 + 12051l 3 + 2459l 2 ≠ 2074l ≠ 840 2 (4.39d) D 10 (l)=≠42(2l + 1) 2 1 360l 9 + 840l 8 + 60l 7 ≠ 4410l 6 ≠ 8450l 5 ≠ 4918l 4 +3083l 3 + 6007l 2 + 3243l + 630 2 (4.39e) E 10 (l)=9 1 420l 9 + 1680l 8 + 2520l 7 ≠ 3220l 6 ≠ 18760l 5 ≠ 33476l 4 ≠32829l 3 ≠ 18951l 2 ≠ 6074l ≠ 840 2 . (4.39f)
Following the computation of the analytical formulas above, a special emphasis can be put on the choice of an adequate basis beforehand when performing averaging techniques. In the case of high-order moments of spin-orbit energies, since the spin-orbit Hamiltonian is diagonal in the coupled basis, the averages computation in coupled scheme is more favourable than in uncoupled one.

Comparison of analytical expressions to numerical computations

The spin-orbit energy moments computed with the present analytical formulas are compared to the numerical results from Cowan's code [B40]. An option in Cowan's code allows one to cancel the electron-electron interaction, leading to an energy structure depending on spin-orbit interaction only. All the data from Cowan's code is kindly provided by J.C. Pain and F. Gilleron.

Analysis of moments for single and multiple open sub-shell

Two configurations are considered, one is composed by one sub-shell -3d 6 configuration in Au 55+ , and the other of two open sub-shells -3p 2 3d 6 configuration in Au 59+ .

Moments for a single open sub-shell

As a first example, the moments up to n = 10 for the 3d 6 configuration in Au 55+ with an Ar-like core are presented in Table 4.1. The Cowan's code provides the spin-orbit integral È›Í 3d = 39.865 eV. The variance derived from the analytical form in Eq. (4.12) is 6356.9 eV 2 , which fairly agrees with the numerical determination from Cowan's code of 6357 eV 2 .T h e various higher-order moments are listed as absolute values µ n and as scaled valuesn ,i . e . , divided by ‡ n ,w h e r e ‡ 2 is the variance. The last two columns are obtained with the analytical expressions given above.

In Table 4.1, it appears that the spin-orbit moments computed with Cowan's code fairly agree with the present determination at any order, as absolute as well as scaled values. We note on columns 2-3 that including the electronic interaction mostly affect the low-and oddorder moments. We do not have a definite explanation for this feature, but we may empirically state that electron-electron interaction contributes more significantly than spin-orbit to the asymmetry of energy structure.

By the way, one may evaluate analytically the moments for n up to 3 in the case where electronic interaction is also accounted for. A relatively tractable example is shown in Appendix C, which consists of analytical calculations of

+ V ee V 2 so , .
And the analysis of third-order moment including electron-electron interaction is presented in Appendix B of [A32], where a sign error in a previously published asymmetry formula has been corrected and the agreement is reached when comparing the corrected expression µ

(3) ee to Cowan's numerical data. Limited to variance calculations, the Cowan's code provides for the Slater integrals the following values: F (2) (3d, 3d) = 75.677 eV and F (4) (3d, 3d) = 48.937 eV, inserting these values in the variance formulas available in the literature (Table 3.2 in Ref. [B20]), we get + (V ee ≠ÈV ee Í) 2 , = 334.7 eV 2 and + V 2 so , = 6356.9 eV 2 , the total variance being 6691.6 eV 2 , which fairly agrees with the one in Table 4.1. Nevertheless, the derivation of moments including both V ee and V so is outside the scope of our consideration and would be a tremendous task with probably page-long formulas if n>3.

Table 4.1: Absolute and scaled centered moments of energy distribution for the 3d 6 configuration in Au 55+ with an Ar-like core. The results from Cowan's code are computed both with the complete interaction (V ee ,V so ) and with only spin-orbit terms (V so ). The notation 1.195(8) stands for 1.195 ◊ 10 8 . Analytical values of moments including the whole interaction are not available at any order, however values for n =2 and 3 are given in the main text.

Cowan's code

This work Centered moment Scaled moment Centered moment Scaled moment nµ n (V ee ,V so ) 

µ n (V so ) -n (V so ) µ n (V so ) -n (V

Ion with two open sub-shells

As mentioned in the section 3.1, more complex configurations with multiple opened sub-shells (n 1 l 1 ) p 1 (n 2 l 2 ) p 2 ••• can be dealt with using cumulants, cf. Eq. (3.12). The cumulants computed for each sub-shell add up for the spin-orbit part, provided that the spin-orbit interaction does not couple different sub-shells. 5 In order to illustrate the case of two open sub-shells, we present in Table 4.2 the moments up to n =6for the 3p 2 3d 6 configuration in Au 59+ with a Mg-like core. In addition to the centered moments, the cumulants defined in Eq. (3.13) have been extracted from Cowan's data. The spin-orbit parameters È›Í are 326.842 eV and 42.261 eV for 3p and 3d sub-shells respectively. With the present analytical formulas for ÈV n so Í, we have computed the cumulants for each sub-shell separately as well as their sums. In Table 4.2, we verify that the sum of the contributions of each sub-shell is in fair agreement with the cumulant derived from Cowan's data. However, when the order n increases, since each cumulant is proportional to È›Í n ,t h e3p sub-shell has a much larger contribution than the 3d sub-shell, and the additivity property loses its significance. That is why we restrict the analysis to n AE 6.

Contrary to what was observed in the previous case of 3d 6 , the moments involving V ee and V so (column 2 of Table 4.2) do not differ much from the moments involving V so only (column 3) whatever the order. This is because we consider here a configuration 3p 2 3d 6 while the previous case involved only d electrons. As a rule, the spin-orbit integral decreases more rapidly with the angular momentum l than the Slater integrals. Table 4.2: Centered moments and cumulants for the levels of 3p 2 3d 6 configuration in Au 59+ with a Mg-like core. The columns 2 and 3 contain the centered moments µ n obtained with Cowan's code, with electron interaction respectively included or not. Column 4 gives the list of cumulants Ÿ n (3.13) derived from Cowan's data with only spin-orbit included. The three rightmost columns are computations using the spin-orbit parameter provided by the Cowan's code and the present analytical formulas. The tabulated cumulants refer to the 3p 2 sub-shell, the 3d 6 sub-shell, and the whole configuration for columns 5-7 respectively. All data relative to order n are in units of eV n . The notation 9.26(4) stands for 9.26 ◊ 10 4 .

Data from Cowan's code

Cumulants from analytical formulas nµ n (V ee ,V so ) 

µ n (V so ) Ÿ n (V so ) Ÿ n (3p 2 ) Ÿ n (3d

Analysis of Gram-Charlier expansion

The evolution of the Gram-Charlier expansion (cf. Eq. (3.14)) built with the spin-orbit moments for the 3d 6 configuration of Au 55+ is shown on Fig. 4.1 for various truncation indexes p. The spectrum built with energies and degeneracies from Cowan's code where V ee is unaccounted for is plotted too, with an arbitrary Lorentzian lineshape (cf. Eq.(2.75)) of 2-eV FWHM. This lineshape is included only to facilitate the visual comparison between distributions, but it is not included in the moment computations.

When varying the truncation index p we observed that the case p =3 in the Gram-Charlier expansion is hardly distinguishable from the pure Gaussian case p =2 -t h ed i ff e r e n c eb e i n g below 2% -and for the sake of clarity the p =3 case was not plotted on Fig. 4.1. The same observation can be made for the next values p . 10. For p = 12 some asymmetry appears and increases gradually. The Gram-Charlier expansion is then changing significantly even when p increases by one unit. Two separate components appear in the distribution for p>15. For p = 22 the expansion is clearly negative for energies around ±230 eV. The position of the peaks in the Gram-Charlier distribution gets in better agreement with Cowan's data when p increases.

Nevertheless we may check that for indexes p up to 42 no convergence is reached since the expansion still varies significantly. 

Convolution procedure

This absence of convergence can be explained and amended as follows. The "theoretical" energy distribution we try to represent by a Gram-Charlier expansion is indeed a "Dirac comb" since no broadening is accounted for on individual components. From a general point of view, the Gram-Charlier expansion is relevant for statistical phenomena such as coalescent transition arrays and not when individual lines show up. In order to verify this point we have performed the convolution of the energy distribution by a Gaussian profile exp(≠E 2 /2• 2 )/(2fi) (1/2) • .T h i s can be considered as a mathematical artifact to monitor convergence. More significantly from a physical point of view it may also account for various broadening processes such as Stark broadening or Zeeman effect with a inhomogeneous magnetic field. In favour of this analysis we mention that the convolution of a Gram-Charlier expansion characterized by variance ‡ 2 and coefficients c n with a Gaussian profile of variance • 2 is again a Gram-Charlier expansion with defining their parameters as a function of the moments. This is why we restricted the present analysis to such an expansion.

While most of the theoretical effort has been devoted to electric dipole (E 1 ) transitions, the study of magnetic dipole (M 1 ) transitions in statistical spectroscopy is rather new. In the following section, M 1 -type transitions in tungsten plasmas are investigated in statistical approach using the Flexible Atomic Code (FAC).

Magnetic dipole transitions in tungsten plasmas

Beyond the electric-dipole (E 1 ) transitions, Bar-Shalom et al [A77] provided formulas for the array widths involving the electric (E n ) and magnetic (M n ) multipole moments at any order, and Pain et al [A75] provided expressions for E 2 arrays. Recently it was pointed out by Krief and Feigel [A78] that formulas from Ref. [A77] needed to be corrected. Furthermore, these newly derived expressions have been implemented by the same authors in the FAC code [A30]. Widely used by the community of atomic physics in plasmas, this fully relativistic code is well adapted to the analysis of highly-charged ions of heavy elements, for instance tungsten (W, Z = 74), element chosen as plasma facing material in magnetic fusion devices [A54]. Large radiative losses in tungsten could drastically impact the tokamak operation, therefore their accurate calculation, including M 1 effects, is essential [P79]. Radtke et al have studied the complex N-shell band structure in W using an electron-beam ion trap [A80]. Several M 1 line ratios involving highly-charged tungsten ion with an open 3d subshell provide reliable diagnostics for determining temperature and density in hot fusion devices [A81].

Owing to the availability of M 1 -transition array formulas in FAC, we have studied absorption and emission spectra of W ions with a net charge of about 50, comparing detailed and statistical approaches.

Magnetic and electric dipole transition rates

The influence of lineshapes has been analyzed by comparing detailed or UTA spectra assuming lineshapes given first by Voigt profiles as shown in Eq.(2.76) and then by Gaussian, i.e., canceling the natural width in formulas. The former option leads to profiles behaving as 1/(E ≠ E ab ) 2 in the wings, which is much slower than the Gaussian form.

Examples on 0d-emission spectra are given in Figs. 4.4a and 4.4b for E 1 and M 1 transitions respectively.

Considering the E 1 case, in the 0-100 eV region, the Voigt profile differs from the Gaussian profile in both detailed and UTA schemes because there are no transitions. In the region above 740 eV, the UTA Voigt profile significantly differs from the UTA Gauss profile because there are no UTA in this region, while detailed spectra are identical whatever the line profile. As a rule, when the density of lines is sufficient, lineshapes do not affect the spectra.

Accordingly, in the M 1 case illustrated by Fig. 4.4b, the lineshape effect is negligible, because the density of M 1 lines is more homogeneous than the density of E 1 lines. The UTA profiles are not convolved. In the detailed case the convolution is performed using FFT (resp. analytical) method for the Voigt (resp. Gaussian) profiles.

The interest of magnetic dipole transitions 6 can be emphasized considering transition rates. For E 1 lines the transition rate from level b to level a is [B40]

A ba (E 1 )= 4-a 2 0 E 3 ab 3h 3 c 2 g b (aJ a ÎDÎ bJ b ) 2 (4.43a)
whereis the fine-structure constant, a 0 is the Bohr radius, E ab the transition energy, h the quantum of angular momentum, c the speed of light, g b the statistical weight of the upper level and (aJ a ÎDÎ bJ b ) the dimensionless reduced matrix element of the electric dipole vector in atomic units, such as

(aJ a ||D||bJ b ) 2 = ÿ MaM b Q - - - e aJ a M a - - -D (1) Q - - -bJ b M b f- - - 2 , (4.43b) D (1) Q (Q =0, ±1
) being the standard tensorial components of the electric dipole. Accordingly, the magnetic-dipole rate is [A82]

A ba (M 1 )= -3 a 2 0 E 3 ab 3h 3 c 2 g b (aJ a ÎM Î bJ b ) 2 (4.44)
where (aJ a ||M ||bJ b ) is the reduced matrix element of the vector M = L +2S, L (resp. S)be i n g the total orbital (resp. spin) angular momentum. In a H-like picture the squared element (4.43b) scales as Z ≠2 if Z is the nucleus charge, while the magnetic moment is Z-independent. This shows that M 1 /E 1 rates scale as Z 2 -2 , assuming analogous transition energies and "ordinary" matrix elements. For non-hydrogenic ions with an effective charge Z c acting on outer electrons, this ratio is expected to be ≥ Z 2 c -2 . Therefore, the higher the average charge is, the more important M 1 transitions are.

In order to illustrate the above considerations,we present in Fig. 4.5a and Fig. 4.5b sample computations of the opacity of a tungsten plasma with an effective temperature of 180 eV, which intends to simulate the non-LTE charge distribution of a tokamak plasma. This work being devoted to spectral analysis and averaging procedures rather than to kinetic effects, rather than running NLTE codes, one may use the effective-temperature theory as indicated previously in Eq. 2.58a. Though the effective-temperature dispersion in the Fig. 2.2 looks rather large, we could check that the physical results shown in this work do not change significantly within such a range. Since this work is devoted to spectral analysis and averaging procedures rather than to kinetics effect, the crude approximation on the populations is acceptable with respect to our goal.

The inner K and L shells are filled, as in all other examples in this section. Detailed and UTA computations are plotted on the same graphs. Line shapes are assumed to be given by Voigt profiles, the natural broadening effect arising from bound-bound emission. The very narrow structures observed on the UTA opacity correspond to transition arrays consisting of only one line, with therefore no UTA broadening. To make the detailed-UTA comparison easier, the detailed spectra have been convolved with a Gaussian response function of 10-eV FWHM 6 The Hamiltonians of electric E1 and magnetic M 1 dipole transitions are given by

H E1 = e ≠ ae r ≠ ae E ; H M 1 = eh 2m ( ≠ ae l + ≠ ae 2s) ≠ ae B (4.42)
The E1 and M 1 selection rules : ∆J = ≠1, 0, 1 (except 0 ae 0); ∆M J = ≠1, 0, 1; Parity change: yes for E1-type, non for M 1-type. 

Inconsistency between detailed and averaged spectra

Accordingly we show 0-d emission spectra arising from M 1 transitions in tungsten plasma in Fig. 4.6. Four different charge states are plotted to show that the detailed-UTA discrepancy occurs independently of the ion considered.

Inter-and inner-configuration M1 transitions

In order to check the hypothesis that moments of order above 2 may play a role, the transition-array construction method shown in Sec. 3.2.2 has been applied to the cases analyzed in the previous section, namely the M 1 transitions within 3ún complex in W 50+ , W 51+ , W 54+ and W 58+ plasmas. Computing pseudo-UTA moments as explained by Eq. (3.22)u p to order k =2, we have been able to build the pseudo-statistical 0d-emission spectra shown as blue lines in Fig. 4.6. It turns out that these averaged spectra exhibit excellent agreement with the detailed spectra. This indicates that the higher-order moments, e.g, asymmetry (k =3) or kurtosis (k =4) [ A84, A76], have no significant effect in all these cases. Using the construction method proposed in Sec. 3.2.2, the pseudo-UTAs are counted and compared their number to the number of UTAs from the standard FAC computation. The result is in the last two columns of Table 4.3 for the W ions considered above, where large differences show up. For example, the number of UTAs computed by FAC in the case of W 50+ is 91, while the corresponding 18513 detailed lines gather in 649 pseudo-arrays. This difference leads us to examine the completeness of the UTA description currently implemented in FAC. A careful analysis has been carried out on M 1 transitions arising from each pair of configurations in the four tungsten ions considered above. It appears that the detailed lines may be distributed into three categories, according to the corresponding transition occurring between a pair of configurations. These two configurations may be Figure 4.6: Zero-dimensional emission spectra accounting for M 1 transitions within the 3 ú n complex in W 50+ ,W 51+ ,W 54+ , and W 58+ , on subfigures 4.6a, 4.6b, 4.6c, and 4.6d respectively. FAC output is post-processed assuming an electron temperature of 200 eV and density of 10 14 cm ≠3 . The grey line is the detailed computation including Doppler line shapes. The red curves are derived from the detailed computation after convolution by a 10-eV-FWHM response function. The black curves are the spectra obtained using the UTA formulas as provided by FAC. The blue curves are obtained from the detailed computation by collecting lines into pseudo-UTA, see Sec. 3.2.2 for details.

Ion

• distinct and not accounted for in FAC computation in UTA mode (Inter NL)

• identical and not accounted for in FAC computation in UTA mode (Inner).

Thus the missing UTAs are related to the Inter NL and Inner lines. Concerning the Inner transitions, it is worth mentioning that, while inner-configuration processes are not forbidden by M 1 selection rules -with respect to E 1 transition -, the corresponding transitions are absent in the UTA list generated by FAC. Concerning Inter NL lines, a deeper insight shows that the UTA computation of FAC does not take into account inter-configurational transitions involving multiple-electron jumps such as the 2-electron jumps 3d 2 3/2 ae 3d 2 5/2 , 3p 1/2 3d 5/2 ae 3p 3/2 3d 3/2 , or even the 3-electron jump 3s 1/2 3d 2 3/2 ae 3p 2 3/2 3d 5/2 . The atomic part of the magnetic-dipole interaction, q i (l i +2s i ) where i runs over all electrons, involves only one-electron operators. However such processes are possible through configuration interaction (CI) effect, which is a complex subject on its own occurring in both cases of E 1 -and M 1 -type transitions.

Relative contribution of the three categories lines

The contributions of these three categories of lines are represented in Fig. 4.7.T h en u m b e r of lines of each type and their respective contribution to the integrated absorption or emission spectra are listed in Averaging over the four W ions investigated, Inter L transitions represent only 25% of the total number of transitions, whereas the Inter NL and Inner items represent 70% and 5% respectively. This could lead us to estimate that the UTA formalism from FAC fails in the case of M 1 transitions. However, a more significant comparison concerns the absorption or emission integrated over energy. More precisely, we display in Tables 4.4b and 4.4c the integrated absorption and emission per ion. Namely, Table 4.4b presents the sum of V --= q aoe-boe-p a f ab , and Table 4.4c the corresponding sums for U --= q aoe-boe-p b A ba E ab . The sums run on the pairs of configurations --sorted as mentioned above.

It appears that the Inter NL lines which represent 70% of the total transition lines as mentioned above account for ≥ 7% of the absorption and emission. Likewise, the Inner lines account for less than 3% of the integrated absorption and emission. Their weak contribution to the emission is due to the fact that the energy difference between levels inside a same configuration is usually small and that emission rates scale as E 4 ab . As mentioned above, the Inter NL lines correspond in most cases to transitions with multiple electron jumps which are allowed only through CI. Though such lines are numerous since many configurationg mixing schemes are possible, their overall contribution to absorption or emission remain limited in the present case.

In term of spectral dependency, each of these three transition categories appears in specific regions as shown on 

Chapter 5 Conclusion

Nothing in life is to be feared, it is only to be understood. Now is the time to understand more [...] Marie Sklodowska-Curie

Summary

Within the framework of statistical spectroscopy, two features of highly ionized plasmas are considered, namely the increasing importance of spin-orbit effect with respect to Coulomb interaction, and of M 1 -type transitions with respect to E 1 . This thesis relies on mathematical methods developed by the Bauche et al, as well as numerical analysis based on recent developments around the Flexible Atomic Code, with a special focus on the calculation of distribution moments.

• The 1st and 2nd quantization techniques, together with angular momentum algebra have been applied to derive analytical expressions of configuration averages. High-order moments for the spin-orbit energy in a N-electron system are determined and put to computation tests with success : excellent agreement is found between the computed averages and numerical data from Cowan's code, and convergence of the Gram-Charlier expansion built with moments of spin-orbit energy is observed when a suitable convolution procedure is performed.

• Absorption and emission spectra arising from magnetic dipole transitions in hot tungsten plasmas have been investigated using the FAC code. A pseudo-UTA method has been constructed and applied in the post-processing procedure. It is demonstrated that the recent UTA formulas for M 1 transition arrays is limited. 2 categories of lines are missing : from inner-configurational transitions -specific to magnetic type, as well as from interconfigurational transitions due to configuration mixing effect.

Of course, it would be better if the above results could have been compared to experimental data.1 Possible collaboration projects may be pursued later on, when opportunities arise.

While positioning in the overall areas of the statistical properties of complex atomic spectra, the author is aware that the present thesis more likely touched upon this large topic. For instance, the corrections at low temperatures for line modelling in a transition array have not been considered, neither some general properties such as propensity rule nor generalized J-file sum rule [A85][P61].

Perspectives

In what follows, for the purposes of contributing to forbidden-line spectroscopy, one may develop UTA formulas for inner-configurational transitions -possibly using the analytical techniques applied in the derivation of spin-orbit averages. Furthermore, a deeper insight can be given into configuration interaction involved in inter-configurational transitions, as well as the issue of plasma temperature in moments derivation.

In terms of numerical work, the FAC code is mostly considered in this thesis as a support for our theoretical understanding, rather than a subject of study on its own. However, even without exploring the large number of functions available for various radiative and collisional processes computations, useful when plasmas are considered in NLTE conditions, the FAC code retains a strong growth potential, for instance, parallelized calculations (eg. per ion or per configuration) may represent an interesting development path to follow. Together with the ongoing implementation tests of detailed-statistical hybrid models [A86][A87], more statistical options -STA, PRTA (Partially Resolved Transition Array) [A88], etc. -may be considered, which would provide FAC a wider range of applicability. may not appear in formulas.

Hartree atomic units

In this thesis, the preference is given to the Hartree atomic units (a.u.), where [B41] • the unit of mass is that of the electron : m e ¥ 9.109 ◊ 10 ≠31 kg , (A.6)

• the unit of charge is that of the proton :

e ¥ 1.602 ◊ 10 ≠19 C , (A.7)
• the unit of length is the Bohr radius :

a 0 = 4fi' 0 h2 
m e e2 ¥ 5.292 ◊ 10 ≠11 m , (A.8)

• the unit of energy is the Hartree energy :

E h = e 2 4fi' 0 a 0 = -2 m e c 2 ¥ 4.360 ◊ 10 ≠18 J ¥ 27.211 eV , (A.9)
where the fine structure constant

-= e 2 4fi' 0 hc ¥ 1 137.036 (A.10)
• the unit of time : .12) quantities like elementary charge e, etc. are set up as of dimension one and are expressed simply as numbers, and the speed of light in vacuum is linked toas c = -≠1 .

• = h E h ¥ 2.419 ◊ 10 ≠17 s . (A.11) Notably, 2 . e =1, h =1,m e =1 (A

B.1.2 Characteristics of angular momentum operators

The fact that an electron is commonly characterized by the sets of quantum numbers 2 {nlm l m s } (resp. {nljm}) is not insignificant. Actually, one-electron wave functions as defined in Eqs. (2.13)(2.14) are eigenfunctions of the one-electron angular and spin momentum operators

) L 2 ,L z ,S 2 ,S z * (resp. ) L 2 ,L z ,J,J z * ) which constitute a complete set of commuting observables (CSCO). A CSCO is a set of compatible observables {O 1 ,O 2 ,...} among which each pair commutes [O a ,O b ]=O a O b ≠ O b O a =0, (B.3)
and the number of operators involved or of quantum numbers related to the eigenvalues of these operators is such that each physical state is fully characterized by them.The commutation relation in Eq. (B.3) means that the order of measurement has no effect on the final eigenvalue result, so that different observables may be measured simultaneously. Moreover, a common set of basis states exits of which any state of the system can be expressed as a linear combination. Angular momentum operators are self-adjoint operators j x ,j y ,j z that satisfy the following commutation relation 2 Recall that quantum numbers are discrete sets of integers and half-integers used to describe quantized observable quantities.

• the principal quantum number : n =1, 2,...

• the orbital (or azimuthal) quantum number : l =0, 1,...,n≠ 1

• the orbital projection (or magnetic) quantum number : m l = ≠l,≠l +1,...,l≠ 1,l

• the spin quantum number : s = 1 2 • the spin projection quantum number : ms = ≠ 1 2 , 1 2

• the total angular momentum quantum number : j = |l ± s| = |l ± 1 2 | • the total angular momentum projection quantum number : m j © m = ≠j, ≠j +1,...,j≠ 1,j For instance, denoting |jmÍ the eigenstates of {j 2 ,j z } where j may stand for L, S, J, the following eigenvalue equations are of great use in the matrix calculation : 

B.2 Clebsch-Gordan coefficients and 3j symbols

As expansion coefficients in basis changes, the Clebsch-Gordan coefficients or their closely related Wigner 3j symbols arise from angular momentum coupling.

Clebsch-Gordan coefficients

When using a two-electron product function |j 1 m 1 Í|j 2 m 2 Í©|j 1 j 2 m 1 m 2 Í to form its coupled function |j 1 j 2 jmÍ -eigenfunction of {J 2 1 ,J 2 2 ,J 2 © (J 1 + J 2 ) 2 ,J z © J 1z + J 2z }, it turns out that |j 1 j 2 jmÍ = General expressions of C(j 1 j 2 m 1 m 2 ; jm) and the 3j symbols can be found in [B42][B40]. Nevertheless, they are too cumbersome to be applied. In practice, built-in routines in Mathematica as well as in Fortran can be used to evaluate the Clebsch-Gordan coefficients and the 3j symbols.

Properties

Despite their cumbersome expressions, high symmetry properties of the 3j symbols are of great use for explicit analytical calculation in angular momentum coupling.

• Symmetry under interchange of columns :

symmetric under even (circular) permutation of the indices (123) : which is equivalent to the previous equation. order to shorten the formulas derived, let's take two notations as following x(j 1 ,j 2 ,l)= 3 j 2 1 + j 1 + j 2 2 + j 2 ≠ 2(l 2 + l + 3 4 ) . .

A j 1 j 2 j 3 m 1 m 2 m 3 B = A j 2 j 3 j 1 m 2 m 3 m 1 B = A j 3 j 1 j 2 m 3 m 1 m 2 B (B.
. l 2 2 and of the F (k) (ll)

Slater integral [B40].

C.2.1 Average of a 2-electron operator : ÈW 2 Í

In a two-particle coupled basis |12Í jm , 2! permutation states are involved in the matrix element calculation ÈW 2 Í 2 . The average of configuration (nl) 2 is given by: where (È1|ls|1Í + È2|ls|2Í) 2 = 1 4 x(j 1 ,j 2 ,l).

ÈW 2 Í 2 = 1 g 2 ÿ P (≠1) • È12|W 2 |• (1)• (2)Í = 1 g 2 (È12|W 2 |12Í≠È12|W 2 |21Í) (C.

C.2 Evaluation of matrix elements

+ V ee V 2 so ,
The average formula of ÈW 2 Í 2 is given by

ÈW 2 Í 2 = 1 8g 2 Q a ÿ j 1 ,j 2 F 0 (ll)[j 1 ,j 2 ]x(j 1 ,j 2 ,l) ≠ ÿ j 1 ,j 2 ,k
X k [j 1 ,j 2 ]x(j 1 ,j 2 ,l)

I j 1 kj 2 lsl J 2 R b = 1 8g 2 (D ≠ E) (C.19)
where in terms of the j 1 ,j 2 ,k summations,

D = l+1/2 ÿ j 1 =l≠1/2 l+1/2 ÿ j 2
F 0 (ll)[j 1 ,j 2 ]x(j 1 ,j 2 ,l) (C.20)

E = ÿ k ÿ j 1 ÿ j 2
X k [j 1 ,j 2 ]x(j 1 ,j 2 ,l)

I j 1 kj 2 lsl J 2 (C.21)
Using Mathematica for example, the double summation in the D term can be easily determined, D =8F 0 (ll)l(l + 1)(2l + 1) 2 (C.22) whereas due to the sums over 6j-symbols q j 1 q j 2 ...

I j 1 kj 2 lsl J 2
,t h eE term requires more development,

E = ÿ k X k [l + 1 2 ,l+ 1 2 ] I l + 1 2 kl + 1 2 l 1 2 l J 2
x(j 1 = l + 1 2 ,j 2 = l + 1 2 ,l)

+ ÿ k X k [l ≠ 1 2 ,l≠ 1 2 ] I l ≠ 1 2 kl ≠ 1 2 l 1 2 l J 2 x(j 1 = l ≠ 1 2 ,j 2 = l ≠ 1 2 ,l) +2 ÿ k X k [l + 1 2 ,l≠ 1 2 ] I l ≠ 1 2 kl + 1 2 l 1 2 l J 2 x(j 1 = l + 1 2 ,j 2 = l ≠ 1 2 ,l) (C.23a)
decomposing further with

E 1 =[l,l,l + 1 2 ,l+ 1 2 ] I l + 1 2 kl + 1 2 l 1 2 l J 2 =(1+2l ≠ k)(2 + 2l + k) E 2 =[l,l,l ≠ 1 2 ,l≠ 1 2 ] I l ≠ 1 2 kl ≠ 1 2 l 1 2 l J 2 =(2l ≠ k)(1 + 2l + k) E 3 =[l,l,l + 1 2 ,l≠ 1 2 ] I l ≠ 1 2 kl + 1 2 l 1 2 l J 2 = k(1 + k) x(++) = x(j 1 = l + 1 2 ,j 2 = l + 1 2 ,l)=4l 2
x(≠≠)=x(j 1 = l ≠ 1 2 ,j 2 = l ≠ 1 2 ,l) = 4(l + 1) 2

x(+≠)=x(j

1 = l + 1 2 ,j 2 = l ≠ 1 2 ,l)=1 1 r ij (l i s i )(l p s p )+ 1 r ij (l j s j )(l p s p ) L . (C.29)
The squared term of the average over 6 permutation states : ÈSÍ

The trace over 6 permutation states is given by 

ÈC k Í = = ij| 1 r |ji > ◊ (Èi|ls|iÍ + Èj|ls|jÍ) 2 = ≠ 1 2 ÿ k k(k + 1)X k +2l(l + 1) ÿ k X k (C.35d)
Finally, in order to obtain ÈW 3 Í, it's sufficient to sum up the direct part ÈS 0 Í + ÈC 0 Í and the exchange part ÈS k Í + ÈC k Í, which gives where the average values of k-particle operators W k (k =2, 3, 4) are derived previously whose results are shown in the boxed equations above.

ÈW 3 Í 3 = 1 g 3 A A(l)[l,l]F 0 (ll)+B(l) ÿ k X k ≠ 1 2 ÿ k C(k)X k B (C.
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 2 Gram-Charlier distribution for the spin-orbit energy of the 3d 6 -configuration in Au 55+ with an Ar-like core convolved by a Gaussian profile with standard deviation τ = 20 eV. The Gram-Charlier curves and Cowan's data are normalized to the degeneracy g = 210.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.3 Absolute value of the Gram-Charlier term series c n He n (X/σ) and c Õ n He n (X/υ) as a function of n for the d 6 configuration in Au +55 . The standard deviation on energy before convolution is σ =2ξ = 79.7 eV. The original distribution has been convolved with a Gaussian profile with standard deviation τ = 20 eV. See main text for more details. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.4 Lineshape effects on the W zero-dimensional emission: Voigt and Gaussian profiles
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  = g(s) • [g(p 4 + )+g(p ≠ p 3 + )+g(p 2 ≠ p 2 + )] = 30.

Figure 2 :

 2 Figure 2: Spectres d'émission détaillés et UTA : transitions M 1 du complex 3ú14 dans W 50+ ,àla densité n e = 10 14 cm ≠3 , la température effective T eff ¥ 200eV. Distribution Gaussienne construite avec ses 2 premiers moments statistiques.

Figure 3 :

 3 Figure 3: Spectres d'émission détaillés, pseudo-UTA, UTA : transitions M 1 du complex 3 ú 14 dans W 50+ . Excellent accord entre spectres détaillé et pseudo-UTA Gaussien, i.e. construit avec seulement 2 moments.

  InterL : transitions détaillées Inter-configurationnelles Listées parmi les données de sortie UTA de FAC. Intra : transitions détaillées Intra-configurationnelles manquantes (spécificité des transitions M 1 par rapport à celles de E 1 )

  coefficient. Clebsch-Gordan coefficients as well as relations between different quantum numbers are presented in Appendix B. One-electron state |iÍ in the second quantization is represented by the creation operator a + i operating on the vacuum state |0Í

-

  Whether describing the energy distribution of electrons in a plasma by classical or quantum statistics depends on ⁄ th with respect to the interparticle distance ≥ n ≠1/3 e

Figure 2 . 2 :

 22 Figure2.2: Effective temperature as a function of electron temperature for a 10 14 e.cm ≠3 tungsten plasma as obtained by FLYCHK. The T eff is the temperature which, assuming Saha-Boltzmann law, would give the same average charge as the non-LTE calculation from FLYCHK.

  the constant radial factor ›(r), e (l l l. . .s s s)

  M = N ≠ 2l ≠ 1, one obtain easily analytical expressions for k>6. Moments from the 7th to the 10th-order are listed below.
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 41 Figure 4.1: Gram-Charlier distribution for the spin-orbit energy of the 3d 6 -configuration in Au 55+ with an Ar-like core. The various curves correspond to the expansions truncated at various indexes p. For comparison purpose one has plotted the data from Cowan's code where each energy level is arbitrarily represented by a Lorentzian of 2 eV FWHM not accounted for in the moment computation. The Gram-Charlier curves are normalized to the degeneracy g = 210. The ordinates for Cowan's data have been divided by a suitable factor in order to allow comparison.
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 443 Figure 4.2: Gram-Charlier distribution for the spin-orbit energy of the 3d 6 -configuration in Au 55+ with an Ar-like core convolved by a Gaussian profile with standard deviation • = 20 eV. The Gram-Charlier curves and Cowan's data are normalized to the degeneracy g = 210.
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Figure 4 . 4 :

 44 Figure4.4: Lineshape effects on the W zero-dimensional emission: Voigt and Gaussian profiles are shown in the detailed and UTA cases, assuming an effective temperature of 180 eV and a density of 10 14 e/cm 3 . The detailed curves are convolved with a 10-eV FWHM response profile. The UTA profiles are not convolved. In the detailed case the convolution is performed using FFT (resp. analytical) method for the Voigt (resp. Gaussian) profiles.
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 45 Figure 4.5: Opacity in tungsten: electric-dipole and magnetic dipole contributions

Figure 4 . 7 :

 47 Figure 4.7: Contribution of the various types of transitions to the emission spectra in W ions. The crosses (blue lines) correspond to transitions within a same relativistic configuration. The triangles (green lines) correspond to inter-configuration transitions present in the list of UTA computed by FAC. The circles (red lines) correspond to inter-configuration transitions not present in this list. The thick black line includes all contributions. Subfigures 4.7a, 4.7b, 4.7c, and 4.7d refer to ions W 50+ ,W 51+ ,W 54+ , and W 58+ respectively. All these spectra have been convolved by a 10-eV-FWHM Gaussian profile.

  Fig. 4.7. The low-energy range (below 100 eV) is occupied by Inner transitions, as expected. The Inter L transitions are dominant in the 70 eV and 350 eV regions -and to a lesser extent 900 eV -which correspond to the maximum emission probability. Finally the Inter NL are present in regions (150-200 eV, 450-800 eV) where the most important discrepancy was observed between detailed and UTA computation by FAC in Fig. 4.6.

  in terms of thermodynamic temperature T (K) by the equation t = T ≠ T 0 , (A.4) where T 0 = 273.15 K by definition. It is customary to express plasmas temperatures through their equivalent thermal energies, therefore, the Boltzmann constant k B [W91] k B =8.6173303(50) ◊ 10 ≠5 eV/K, (A.5)

  [j a ,j b ]=j a j b ≠ j b j a = ' abc ihj c , (B.4)where (a, b, c)={x, y, z} and ' abc denoting a permutation symbol with ' abc = I 1, in the case of circular permutation of (a, b, c) 0, otherwise. (B.5) Furthermore, operators defined as j ± = j x ± ij y (B.6a)j 2 = j 2 x + j 2 y + j 2 z = j + j ≠ + j 2 z ≠ j z = j ≠ j + + j 2 z + j z (

•.

  j j j 2 2 2 | jmÍ = h2 j(j + 1) | jmÍ,j = {0, z z z | jmÍ = hm | jmÍ,m = {≠j, ≠j +1,...,j≠ 1,j};(B.7b)j j j ± | jmÍ = hc ± (j, m) | j(m ± 1)Í c ± (j, m)= Ò j(j + 1) ≠ m(m ± 1) (B.7c) As examples of angular momentum operators, • In the case of j = L, the simultaneous eigenfunctions of {L 2 ,L z } are called spherical harmonics Y (l) m l (◊,"). They are linked to their adjoints by the relation such as Y (l) ≠m l (◊,")=(≠1) m Y ú(l) m l (◊,"). (B.8a) Explicit values can be derived, for examples Y If j = S, the simultaneous eigenstates of {S 2 ,S z } are called spinors ‰ ‹ , (‹ = ±1/2) which are 2-component vectors ‰ 1/2 = In the space spanned by ‰ ‹ ,s p i n operators can be represented as 2x2 matrices such as : to represent S operator as a function of Pauli matrices ‡ defined by : ‡ x =

  2C(j 1 j 2 m 1 m 2 ; jm)|j 1 j 2 m 1 m 2 Í(B.11) where C(j 1 j 2 m 1 m 2 ; jm)=Èj 1 j 2 m 1 m 2 | jmÍ are Clebsch-Gordan coefficients.Similarly, coupled basis | nljmÍ and uncoupled basis | nlm l m s Í are linked by Clebsch-Gordan coefficients C(lsm l m s ; jm)=Èlsm l m s | jmÍ as| nljmÍ = ÿ m l ms C(lsm l m s ; jm) | nlm l m s Í (B.12)Wigner 3j symbolsSymmetry properties of the Clebsch-Gordan coefficients are made more straigntforward by introducing the Wigner 3j symbols[B42], which are algebraic functions with 6 arguments[B40] j 1 ≠j 2 +m 3 Ô 2j 3 +1 C(j 1 j 2 m 1 m 2 ; j 3 m 3 ) (B.13) nonvanishing only if m 1 + m 2 ≠ m 3 =0.For example, the Clebsch-Gordan coefficients in Eq. (B.12) can be expressed in terms of the 3j symbols as C(lsm l m s ; jm)=(2j + 1) 1/2 (≠1)

  sign of m 1 ,m 2 ,m 3 : A j 1 j 2 j 3 ≠m 1 ≠m 2 ≠m 3 B =(≠1) j 1 +j 2 +j 3 A j 1 j 2 j 3 m 1 m 2 m 3 B (B.

  17

  )

r

  14)where P,• stand for permutations, and the degeneracy g 2 such as Eq.(C.7a), the matrix element ÈW 2 Í can be decomposed by squared terms likee 1 r ij (l k s k ) ij (l i s i )(l j s j ) s i )(l j s j ) k Õ ) oe{i, j} and k " = k Õ . Furthermore, with

ÈS

  further separated into 2 parts ÈSÍ = ÈS 0 Í + ÈS k Í,w i t h for matrix computation, one getsÈS 0 Í =2l 2 (l + 1)(1 + 2l) 2 F 0 (ll), ÈS k Í = ≠l 2 (l + 1)(1 + 2l) k Õ ) oe{i, j} and k " = k Õ , K 1 r ij (l i s i )(l p s p )+ 1r ij (l j s j )(l p s p ) Èp|ls|pÍ as factor vanish, so thatK 1 r ij (l i s i )(l p s p )+ 1 r ij (l j s j )(l p s p ) L = ÈC 0 Í + ÈC k Í (+ Èj|ls|jÍ) 2 = ≠2l(l + 1)(1 + 2l) 2 F 0 (ll) (C.35c)

=

  36a) with A(l)=2l(l ≠ 1)(l + 1),B (l)=l(l + 1)(2 ≠ l),C (k)=k(k + 1).(C.36b) permutations -even (≠1) • =1and odd (≠1) • = ≠1 ones -of four particles contains 4!=24 terms : (≠1) • =1 |ijpqÍ| ipqjÍ| iqjpÍ| jiqpÍ| jpiqÍ| jqpiÍ| pijqÍ| pjqiÍ| pqijÍ| qi (≠1) • = ≠1 |ijqpÍ| ipjqÍ| iqpjÍ| jipqÍ| jpqiÍ| jqipÍ| piqjÍ| pjiqÍ| pqjiÍ| qi which can be regrouped into 10 categories, listed in Table C.1. Since due to the symmetry properties of the operator 1 r 12 (l 3 s 3 )(l 4 s 4 ), several matrix elements contribute to the average value ÈW 4 Í 4 in the same way . The last 5 terms give null contribution to the average calculation, Table C.1: Regroupment by symmetry: reduction of the 24 terms into 10 contribution terms. Only the first five terms contribute to the average calculation. |pjqiÍ, (143) = |qjipÍ, (234) = |ipqjÍ, (243) = |iqjpÍ 4 (1234) = |jpqiÍ, (1342) = |piqjÍ, (1243) = |jqipÍ, (1432) = |qijpÍ 5 = |pjiqÍ, (14) = |qjpiÍ, (23) = |ipjqÍ, (24) = |iqpjÍ 9 (13)(24) = |pqijÍ, (14)(23) = |qpjiÍ 10 (123) = |jpiqÍ, (124) = |jqpiÍ, (132) = |pijqÍ, (142) = |qipjÍand the first 5 terms represent 5 types of matrix elements to be calculated applying the closure relations12 (l 3 s 3 )(l 4 s 4 )|jiqpf + l)(1 + 2l) 2 = l(1 + l)(1 + 2l) E 1 x(+) + E 2 x(≠)+E 3 (x(+) + x(≠)) = lzero part of ÈW 4 Í 4 = 1 2 (≠(34) + (12)(34) + 4 • (243) ≠ 4 • (1432) ≠ 2 • (1423)). l)(1 ≠ 2l)[l,l]F 0 (ll)+l(l + 1)(l ≠ 1) the Uylings theorem, cf. Eq.(4.4), the average calculations of product V ee V

  Les spectres liés-liés résultent des transitions spontanées et stimulées qui sont caractérisées par les coefficients d'Einstein -A 21 ,B 21 ,B 12 , à partir desquels se définissent les paramètres spectroscopiques tels que la force des raies f , etc. Dans le cas des spectres d'émission, l'intensité

d'émission s'écrit I(E ab )=n i ÿ ab p a A ab E ab S ab (9) avec n i =densité ionique, p a =population a, A ab =taux de transition a ae b et S ab =profil ab, où selon l'option choisie, a, b peuvent désigner deux niveaux ou configurations et ab une raie ou un faisceau.

Table 2 :

 2 Nombre de raies et leurs contributions intégrées aux spectres des transitions M 1 du complex 3 ú 14 dans W

50+ 

.É m i s s i v i t é = q ab p b E ab A ba . La notation 2,74(9) signifie 2, 74 ◊ 10 9 .

Table 3 :

 3 Dans le cas de 3p 2 3d 6 , nous pouvons étudier les cumulants Ÿ n , qui sont adéquats pour des phénomènes statistiquement indépendants en raison de leur propriété d'additivité. Un cumulant est relié au moment par relation de récurrence

Comparaison des résultats analytique et numérique des moments d'énergies perturbatives dans la configuration 3d 6 de l'ion Au 55+ . Les indexes a =analytique, C =Cowan.

Table 4 :

 4 ) D'après Cowan, È›Í 3p (Au 59+ ) = 326, 842 eV, È›Í 3d (Au 59+ ) = 42, 261 eV. En constatant la Table4, outre que le bon accord confirmé entre résultats analytique et numérique Ÿ n (V so ) a ¡ Ÿ n (V so ) C , les 3 premières lignes permettent de vérifier l'additivité des cumulants des deux sous-couches indépendantes en terme d'énergie spin-orbite Ÿ n (3p 2 )+Ÿ n (3d 6 )=Ÿ n (V so ). Remarquons que l'additivité ne sera plus vérifiée si nous considérons l'effet Coulombien qui implique les paires de sous-couches distinctes. Comparaison des résultats analytique et numérique des cumulants d'énergies spin-orbite dans la configuration 3p 2 3d 6 de l'ion Au 59+ .

	n2	3	4
	Ÿ n (3p 2 ) a Ÿ n (3d 6 ) a	8,546(4) -6,983(6) 7,144(3) 3,774(4)	-4,793(9) -1,287(7)
	Ÿ n (V so ) a	9,260(4) -6,945(6)	-4,806(9)
	Ÿ n (V so ) C	9,26(4) -6,945(6)	-4.804(9)
	En plus d'intérêt méthodologique et fondamental, les méthodes des moyennes pourraient
	servir aux futures études des UTAs de transitions M 1 intra-configurationnelles évoquées dans la
	section précédente.		

Table 3 .

 3 .73) and Gaussian distribution is 1: Configuration and array structures from UTA computation of the FAC code. For d-subshells, -stands for j =3/2, + for j =5/2; for p-subshells, -stands for j =1/2, + for j =3/2. The 9 relativistic configurations are indexed through 0 to 8 and sorted in the order of increasing energy, i.e. E 0 <E 1 <...<E 8 . The 6 relativistic transition arrays computed are listed in the upper part of the Table.

	Configuration Relativistic configuration Index Transition
	3d 2 4p 3d 2 4s	3d 2 + 4p + 3d ≠ 3d + 4p + 3d 2 + 4p ≠ 3d 2 ≠ 4p + 3d ≠ 3d + 4p ≠ 3d 2 ≠ 4p ≠ 3d 2 + 4s 3d ≠ 3d + 4s 3d 2 ≠ 4s	8 7 6 5 4 3 2 1 0	ae 2 ae 1 ae 2 ae 0 ae 1 ae 0

Table 4 .

 4 3: Number of levels, relativistic configurations (RCs) and M 1 transitions within the complex 3ún in W 50+ , W 53+ , W 54+ , and W 58+ ions. Results are from FAC in detailed and UTA mode, that provide the numbers of transitions listed in columns 4 and 5 respectively. The method proposed in this work constructs pseudo-UTAs, counted in column 6, which include much more transitions than the standard UTA computation provided by FAC.

		Levels RCs	Lines	UTAs in FAC Pseudo UTAs
	W 50+	518	60	18513	91	649
	W 51+	1313	94	93979	157	1520
	W 54+	6164	187	1200580	352	6675
	W 58+	2762	131	322827	232	3257

  • distinct and accounted for in FAC computation in UTA mode; such pairs are denoted by

		10 22				
					Detailed, no average
	)	20 10			Detailed, 10-eV average UTA from FAC Pseudo-UTA, no average
	-1					
	.s					
	Emission (cm -3	10 16 10 18				
		10 14				
		0 12 10	200	400	600	800	1000
				E(eV)		
		Inter L				

  Table 4.4.

		Ion		Inter L Inter NL Inner	Total
	W 50+ (3*14)	5124	12462	927	18513
	W 51+ (3*13)	23912	66239	3828	93979
	W 54+ (3*10)	257672	915807 27101	1200580
	W 58+ (3*6)	73592	242280	6955	322827
		(a) Number of lines of each type and total
	Ion	Inter L	Inter NL	Inner	Total
	W 50+ W 51+ W 54+ W 58+	2.52 ◊ 10 ≠5 5.42 ◊ 10 ≠7 7.00 ◊ 10 ≠7 3.05 ◊ 10 ≠5 1.18 ◊ 10 ≠6 1.00 ◊ 10 ≠6 4.76 ◊ 10 ≠5 4.24 ◊ 10 ≠6 1.14 ◊ 10 ≠6 7.93 ◊ 10 ≠5 6.62 ◊ 10 ≠6 6.32 ◊ 10 ≠7	2.65 ◊ 10 ≠5 3.27 ◊ 10 ≠5 5.30 ◊ 10 ≠5 8.66 ◊ 10 ≠5
	(b) Contribution of each type of lines to the dimensionless integrated absorption. The
	tabulated quantities are	q ab paf ab for each type of transitions.
	Ion	Inter L	Inter NL	Inner	Total
	W 50+ W 51+ W 54+ W 58+	2.74 ◊ 10 9 1.32 ◊ 10 8 5.65 ◊ 10 5 3.90 ◊ 10 9 2.94 ◊ 10 8 1.49 ◊ 10 6 9.64 ◊ 10 9 1.10 ◊ 10 9 3.20 ◊ 10 6 2.30 ◊ 10 10 1.75 ◊ 10 9 1.29 ◊ 10 6	2.87 ◊ 10 9 4.20 ◊ 10 9 1.07 ◊ 10 10 2.47 ◊ 10 10

(c) Contribution of each type of lines to the integrated emission. The tabulated quantities are q ab p b E ab A ba , in eV/s, for each type of transitions.

Table 4

 4 

.4: Number of lines of each type and their integrated contribution to the absorption and emission spectra. See text for details.

According to Empedocles, fire was the plasma-representative element which together with earth, water and air made up the elements of Greek cosmology[B1].

A relevant example can be found on Figure2.2 of the book[B20], which shows the coalescent structures observed in an experimental Lanthanum (Z=57) spectrum of laser-produced plasma. The spectral lines arising from transitions

3d N ≠1 4f ae 3d N overlap for the consecutive values of N , for instance, in the case of the Cr-like (N=6) ions, the transition array 3d 5 4f ae 3d 6 contains 5470 lines.

For example, the invariance of translation in time (resp. in space) gives rise to conservation law of energy (resp. linear momentum), and the rotational symmetry of a closed system gives rise to the angular momentum conservation law[B34].

For example, in the case of

electrons (i, j, p), the circular permutations {(i, j, p); (j, p, i); (p, i, j)} correspond to '(P )=+1, and the exchange permutations {(j, i, p); (i, p, j); (p, j, i)} are odd.

For a pure Coulomb field, there exists additional (hydrogenic) degeneracy: the energy of such atom does not depend on the orbital quantum number l.

The degeneracy of a subshell g i corresponds to the number of micro-states it covers such as{(ms ‡s)}oeCnr with 1 AE s AE ‹ i , 1 AE -AE g i,nr {(lsjsms)}oeCr with 1 AE s AE Ê i , 1 AE -AE g i,r .(2.27)

Some references define the kurtosis coefficient as -4 ≠ 3.

As an example, in the same way that the kurtosis can be interpreted as the relative importance of tails versus shoulders in causing dispersion, the 5th-order moment provides the relative importance of tails versus center (mode, shoulders) in causing skew. For a given skew, high 5th-order moment corresponds to heavy tails and little movement of mode, whereas low 5th-order moment reveals more change in shoulders.

In general, the second quantization formalism is convenient for the distribution moments of the eigenvalues of any operator commuting with the Hamiltonian.

Regarding the class structure of the symmetric group Sn[B69], the number of classes of Sn is the number of ways in which the integer n can be partitioned into a sum of positive integers. For examples, if n =3, the number of classes of S 3 =3:

This result does not apply to the electronic interaction Vee. For instance, the variance accounting for this interaction is a function of Slater integrals involving distinct sub-shells[B20].

We have attempted to establish research collaborations on tungsten spectroscopy project with the team of M.G.O'Mullane from the University of Strathclyde -member of ADAS (Atomic Data and Analysis Structure) organisation, unfortunately in vain by lack of a common timetable.

1 a.u. of permittivity is 4fi' 0 =1.113 ◊ 10 ≠10 C 2 • J ≠1 • m ≠1 . 1 a.u. of action is h =1.0546 ◊ 10 ≠34 J • s. In the SI, the value of the velocity of light in vacuum is c =2 9 97 9 24 5 8m / se x a c t l y[ O90].

Noether's theorem proves that angular momentum is conserved whenever physical laws are rotationally invariant.

Acknowledgment

• 3=3: cyclic permutations (123)

• 3=2+1: transpositions (12)(13)(23)

• 3=1+1+1: identity where canonical notations (ijp) are adopted, and which mean that the i-th position value is replaced by j-th position value, the j-th position value is replaced by the p-th one, and p-th one is replaced by the i-th. If n =4, the number of classes of S 4 =5:

• 4=4: no object remains in its own place, nor do any 2 objects undergo a single transposition (6x)

• 4=3+1: cyclic permutations on 3 objects leaving the 4th unchanged (8x)

• 4=2+2: 2 interchanges in pairs (3x)

• 4=2+1+1: 1 transposition leaving the remaining 2 objects unchanged (6x)

• 4=1+1+1+1: identity (1x) where there are au total 4!=24 permutations to consider. Besides, the number of k-particle permutations is k!, whose list can be found with Mathematica (command line: "Permutations[list, {k}]").

4 For example, in the case of trace calculation over inter-dependent double q i<j and triple sums

The radial term È›Í identical for all states in a configuration will be omitted in the following formulas. The average k-th power of spin-orbit energy is therefore

Such average values are computed using the identity

derived from the Taylor expansion of M (M ≠1) ...(M ≠p+1)(1+X) M +N ≠p . In order to use this formula one has to express the term [Nl≠ (2l + 1)‹] k in (4.29) as a function of the polynomials

Writing any k-th degree polynomial as

for X =0, 1 •••k successively, one gets a set of k +1 linear equations which can be readily solved for the c

(4.33)

Identifying P k (X) with [Nl≠ (2l + 1)X] k , one can then write the moment (4.29)u s i n gi t sd e finition and (4.33)

This expression is apparently more complex than (4.29) since it involves a double sum. In fact, since 0 AE i AE j AE k, for the lowest k values very few terms have to be computed, and this number of terms -at maximum k +1 values for j and (k + 1)(k + 2)/2 values for i -i si n d e p e n d e n t of the number of electrons N in the sub-shell. Besides this formula is easy to implement in a formal algebra software such as Mathematica. By the way, on the expression (4.29), one readily verifies that changing ‹ in 2l ≠ ‹ and N ≠ ‹ in 2l +2≠ (N ≠ ‹) and therefore N in 4l +2≠ N , the contribution of this sub-shell to the moment is multiplied by (≠1) k . This shows that

and coefficients c Õ n =( ‡/') n c n , the convolved function being

The scaled moments of the convolved energy distribution

) n/2 are related to the transformed coefficients c Õ n through an equation formally similar to (3.15b). One gets

a relation that was previously established by Pain and Gilleron (Eq. (40) in [A75]). The effect of this convolution is illustrated by Fig. 4.2 with the same Cowan's data as on Fig. 4.1 and including a convolution by a profile with standard deviation • = 20 eV which ensure the coalescence of lines. In this case a good agreement is observed between convolved Cowan's data and Gram-Charlier expansion at order n ƒ 42. One also notes that for high enough n, the negative part of the energy distribution has almost disappeared. Because of the factor ( ‡/') n in Eq. (4.40b), increasing the Gaussian width • improves the convergence speed.

Convergence analysis

In order to ensure that we did reach convergence in the latter case considered and not in the former, we have plotted on Fig. 4.3 the absolute value of the coefficients in the Gram-Charlier expansion t

for the distribution before (resp. after) convolution. The case considered here is again the d 6 configuration with a non-convolved standard deviation ‡ = 79.7 eV and a convolution parameter • = 20 eV. Computations have been performed at an arbitrary energy X =1 eV but the results would exhibit the same behaviour for any value of X. One notes that without convolution, the Gram-Charlier series hardly converges since the term t( 900) is about 0.02 in absolute value. The strong oscillations visible on this plot correspond to changes in sign and amplitude of both c n and He n (X/ ‡) factors. Using the asymptotic form of Hermite polynomials [B59] one can verify that this second factor is indeed an oscillating function of n with increasing amplitude, while the present numerical analysis shows that c n is an oscillating function with decreasing amplitude. Using two independent numerical methods -quadruple precision Fortran and Mathematica in arbitrary precisionwe could verify that oscillations on Fig. 4.3 are not a computational artifact. It appears that the Gram-Charlier expansion converges toward the convolved energy distribution, though slowly if the ratio ‡/' is close to unity. This slow convergence of the Gram-Charlier distribution is reminiscent of the behaviour observed on the 3d 6 -3d 5 4p transition array in bromine by Gilleron and Pain [A76] -though no convolution is then required since the array exhibits coalescence. The Gram-Charlier expansion, though slowly or poorly convergent in some cases, is the simplest form available to check the influence of moments at any order. Other distributions have been proposed but they either involve a reduced set of parameters or give rise to tedious formulas for

Appendices

Appendix A

Systems of units

Although the International System of Units (SI) was approved as the official system of measurement in the 1960s, the use of variants of the metric system can be mainstream and more convenient in a given area of study. For instance, the CGS system is commonly adopted in theoretical physics, which is based on measuring lengths in centimetres (cm), mass in grams (g), and time in seconds (s). While the MKS system, standing for meter-kilogram-second system of units, is widely used in engineering and physics instruction [W89].

In order to guarantee the correctness in computer programming, it is important to ensure the consistency of units used for various quantities in the implemented formulas. Otherwise, the gap among numerical values can be of large orders of magnitude.

By way of illustration, let's give some examples of units frequently associated to energy and temperature.

• Energy (J, erg, eV)

In the CGS system, energy values are expressed in erg, where 1 erg = 10 ≠7 J . Actually, such units are constructed from experimental values 1 with the standard uncertainty in the last digits given in parenthesis. Namely, 1 Ry corresponds to the ionization energy of the hydrogen atom, 1 eV is the kinetic energy acquired by an electron in passing through a potential difference of 1 V in vacuum [O90].

• Temperature (K, ¶ C, eV)

The SI unit of temperature is Kelvin, denoted by K. Celsius temperature t ( ¶ C) is defined 1 Other noteworthy examples can be found in the reference booklet [O90]. For instance, the astronomical unit (ua) is approximately equal to the mean Earth-Sun distance, 1 ua = 1.49597870691(6) ◊ 10 11 m; the unified atomic mass unit (u) is equal to 1/12 times the mass of a free carbon 12 atom, at rest and in its ground state, 1 u=1.660538782(83) ◊ 10 ≠27 kg.

Appendix B

Angular momentum in atomic system

As a conservative quantity of system 1 , angular momentum is fundamental in theoretical studies of atomic structure and transitions. For instance, selection rules for radiative transitions between levels are governed by angular momentum addition rules [B42]. Compared to angular momenta in classic mechanics for rotating systems, angular momentum operators applied to atomic structure exhibit notable quantization and spin-related features.

B.1 Angular momentum B.1.1 Classical and quantum angular momenta

• Similarly to quantized atomic level energies in the Bohr model of the atom, angular momenta in quantum physics do not vary continuously, but only have allowed discrete values involving Planck constant h (h =4• 10 ≠15 eV•s).

• Accounting for the intrinsic spin 1/2 (in units of h) of each electron, spin angular momentum represented by spin operator S constitutes an additional angular momentum with respect to a classical particle. Therefore, the conservation of angular momentum in quantum mechanics applies to the total angular momentum J = L + S, but not to L (or S). For example, the spinorbit interaction as shown in Eq. ( 2.3) allows transfers of angular momentum between L and S while their sum remains constant.

• Orthogonality relations :

Average calculations of product V ee V 2 so operators

Context

Within the framework of statistical spectroscopy, one may analyze the interaction energy in Eq.( 4.2) at the 3rd order, whose Hamiltonian reads

In terms of average values, the matrix elements can be decomposed into four parts 1 :

1. For symmetry reason,

2. The derivation of

, is a lengthy process. The result of the centered moment µ c 3 (V ee ) was firstly published by Kučas and Karazija [A67]. Some partial checks of Kučas and Karazija's formula for + V 3 ee , have been performed, a sign error was found out and the correct formula was published, cf. Eq.( B3) in [A32]. 1 Actually, the combination of Vso at the 2nd order and Vee at the 1st order in H 3 int is equal to VeeV 2 so + VsoVeeVso + V 2 so Vee. However, due to properties of a matrix trace,

The spin-orbit effects at any order

C.1 Product operator V ee V 2 so By definitions of V ee and V so operators, their product operator V ee V 2 so can be developed as

where depending on various possible (p, q) values related to (i, j), the sum can be split as

(C.5)

The various terms in the sums above can be regrouped into 3 categories W k , characterized by the number of particles k involved in each operator. One gets

W 2 =2-particle operator:

W 3 =3-particle operator, can be divided into 2 parts, depending on whether (l i s i ), (l j s j ) product is squared S or crossed C, so that ÈW 3 Í = ÈSÍ + ÈCÍ:
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C.2 Evaluation of matrix elements

• as,

because of the indistinguishability of electrons, p = q,t h u s

C.2 Evaluation of matrix elements e V ee V 2 so f Following the Eq. C.6 and remind that according to the Uylings' theorem (cf.Eq.(4.4)), the number of electrons to take into account in the basis states of a W k operator can be restricted to k, this section shows calculations of matrix elements ÈW k Í (k =2, 3, 4) for a (nl) k configuration in their respective k≠particle coupled basis. The radial part for the considered subshell È› i Í k = Ènl |›(r)| nlÍ k is a common factor in all these formulas and will be dropped unless mentioned. In Average calculations of product V ee V 2 so operators the Eq.(C.23a) can be simplified as