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Variability modeling and numerical biomarkers design in
cardiac electrophysiology

Abstract:
This PhD thesis is dedicated to the study of the variability observed in cardiac

electrophysiology (i.e. the electrical activity of biological tissues) measurements
and to the design of numerical biomarkers extracted from these measurements. The
potential applications are numerous, ranging from a better understanding of exist-
ing electrophysiology models to the assessment of adverse effects of drugs or the
diagnosis of cardiac pathologies. The cardiac electrophysiology models considered
in the present work are either ODEs or PDEs depending on whether we focus on
the cell scale or the tissue scale. In both cases, these models are highly non-linear
and computationally intensive. We proceed as follows: first we develop numerical
tools that address general issues and that are applicable beyond the scope of cardiac
electrophysiology. Then, we apply those tools to synthetic electrophysiology mea-
surements in various realistic scenarios and, when available, to real experimental
data.

In the first part of this thesis, we present a general method for estimating the
probability density function (PDF) of uncertain parameters of models based on or-
dinary differential equations (ODEs) or partial differential equations (PDEs). The
method is non-instrusive and relies on offline evaluations of the forward model, mak-
ing it computationally cheap in practice compared to more sophisticated approaches.
The method is illustrated with generic PDE and ODE models. It is then applied to
synthetic and experimental electrophysiology measurements.

In the second part of this thesis, we present a method to extract and select
biomarkers from models outputs in view of performing classication tasks or solving
parameter identification problems. The method relies on the resolution of a sparse
optimization problem. The method is illustrated with simple models and then ap-
plied to synthetic measurements, including electrocardiogram recordings, and to
experimental data obtained from micro-electrode array measurements.

Keywords: cardiac electrophysiology, statistical inverse problems, moment
matching, maximum entropy, bidomain equations, micro-electrode array, classifica-
tion, feature selection





Modélisation de la variabilité et conception de biomarqueurs
numériques en électrophysiologie cardiaque

Résumé:
Cette thèse de doctorat est consacrée à l’étude de la variabilité observée dans

les mesures d’électrophysiologie (i.e. l’activité électrique des tissus biologiques) car-
diaque et à la conception de biomarqueurs numériques extraits de ces mesures. Les
applications potentielles sont nombreuses, pouvant aller d’une meilleure compréhen-
sion des modèles électrophysiologiques existants à l’évaluations des effets nocifs de
médicaments en passant par le diagnostic de pathologies cardiaques. Les modèles
d’électrophysiologie cardiaque présentés dans ce travail sont, soit des équations dif-
férentielles ordinaires (EDOs), soit des équations aux dérivées partielles (EDPs),
selon qu’ils concernent l’échelle cellulaire ou l’échelle du tissu. Dans les deux cas,
ces modèles sont hautement non linéaires et nécessitent d’intenses ressources com-
putationnelles. Nous adoptons l’approche suivante : de prime abord, nous dévelop-
pons des outils numériques afin de répondre à des problèmes généraux, au-delà de
l’électrophysiologie. Puis, nous appliquons ces outils à des mesures synthétiques
d’électrophysiologie dans différents scénarios réalistes et, lorsque cela est possible, à
des mesures expérimentales.

Dans la première partie de cette thèse, nous présentons une méthode générale
pour estimer la densité de probabilité de paramètres incertains de modèles basés sur
des EDOs ou des EDPs. La méthode est non intrusive et repose sur des évaluations
“hors-ligne” du modèle direct, ce qui la rend en pratique computationellement moins
dispendieuse que d’autres approches plus sophistiquées. La méthode est illustrée
avec des mesures synthétiques et expérimentales d’électrophysiologie.

Dans la seconde partie de cette thèse, nous présentons une méthode de sélection
de biomarqueurs à partir des sorties de modèles en vue d’effectuer des tâches de
classification ou de résoudre des problèmes d’estimation de paramètres. La méth-
ode repose sur la résolution d’un problème d’optimisation creux. La méthode est
illustrée avec des modèles simples et ensuite appliquée à des mesures synthétiques,
incluant des enregistrements d’électrocardiogramme, et à des données expérimen-
tales obtenues à partir de mesures de matrices de microélectrodes.

Mots-clés : électrophysiologie cardiaque, problèmes inverses statistiques,
matching des moments, maximum d’entropie, équations bidomaine, matrice de
microélectrode, classification, sélection des caractéristiques
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1.1 Scientific and industrial context

Akin to many other industries (aeronautics, car manufacturing, finance, ...)
which saw their practices disrupted by the use of mathematical modeling and numer-
ical simulations, the pharmaceutical industry is following suit by incorporating in
silico models in the development process of new drugs. Safety pharmacology (SP) is
a relatively new discipline whose aim is to assess undesirable effects of drugs in their
early development phase. The present work focuses on cardiac safety pharmacology
(CSP), a branch of SP focusing on the effects of drugs onto the cardiomyocytes (heart
muscle cells). More precisely, we concentrate on cardiac electrophysiology: the study
of heart cells electrical properties. The use of numerical simulations in CSP has re-
cently triggered much interest from both the academic and industrial communities.
From an industrial perspective, the potential gains are immense. Indeed, replac-
ing part of the real experimentations on animals with computer simulations would
be very beneficial both financially and ethically. From an academic perspective, it
raises important challenges both in terms of modeling and numerical methods. In
order to reliably assess the effects of new drugs, the mathematical models of car-
diomyocytes electrophysiology must be able to replicate both healthy and abnormal
known behaviors but also to predict previously unknown responses. Furthermore,
efficient numerical methods need to be developed to produce reliable simulations
at reasonable computational costs, ideally in real-time. Apart from these technical
aspects, a “cultural” change needs to be initiated in the pharmaceutical industry.
Since computer simulations are generally seen as less reliable than experimentation,
it is crucial to build trustworthy numerical frameworks and ultimately to demon-
strate that the proposed approaches are scientifically valid and robust. Convincing
experimentalists of the complementarity of numerical simulations and regulatory
agencies (FDA1, EMA1, ...) of the necessity to modify their guidelines is not an
easy task.

Parallel to this new appetite for in silico assistance, some hardware innova-
tions may also induce radical changes in CSP practices. The Micro-Electrode Ar-
ray (MEA, see Figure 1.1) enables high-throughput electrophysiology measurements
that are less labour-intensive than the state-of-the-art patch-clamp technique2. On
the biological side, the use of human-induced pluripotent stem cells (hiPSC) is thriv-
ing [MBGF04] and their recent large-scale production makes them a viable human
model replacement [CGB+16]. This thesis was initiated within the scope of the
CardioXcomp project whose aim is to simulate electrophysiology measurements in
an environment combining these two technologies: MEA and hiPSC. More precisely,
the purpose of the present work is to model the variability observed in the experi-
mental measurements in electrophysiology. Investigating this variability has several
motivations. It can be used to predict the response of cardiomyocytes to certain

1FDA: US Food and Drug Administration. EMA: European Medicines Agency.
2 The patch clamp technique is used to measure electrical currents in a single cell by perfo-

rating its membrane. It is a long and delicate procedure which requires much expertise from the
experimentalist. To learn more about it, see [HMN+81].
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drugs. It can also provide insight into cell modifications at the origin of common
heart diseases such as atrial fibrillation for instance. Like in most biological systems,
the observed variability is the consequence of many different sources of randomness.
We choose to restrict our analysis to ionic channel maximal current densities and
we formulate the goal to estimate the probability density function (PDF) of these
parameters given a certain set of measurements. To that end, specific numerical
methods have been developed and tested on both synthetic and experimental mea-
surements.

(a) 6-well MEA. Approximative size:
5cm x 5cm.

(b) Zoom on one well. Each of the 9 dots
corresponds to an electrode. The lateral
and bottom (not visible) sides are electri-
cal grounds. The area in white is covered
with a tissue of hiPSC cells.

Figure 1.1: Schematic of a Multichannel Systems Micro-Electrode Array (MEA).
Reproduced from [Sys ].

1.2 Scientific contributions

A general method for estimating the PDF of the uncertain parameters of a
given model (ODE or PDE models for instance) is developed. Numerous strategies
developed to address such a problem may be found in the literature, such as a
stochastic approximation of the expectation maximization method [KL05, GLV14]
or a least squares minimization of the moments discrepancy [ZG08]. The key features
of our method are its non-parametric and non-intrusive nature and the fact that it
only uses offline computations of the forward model. In that regard, it is in practice
computationally less expensive than other methods that require multiple forward
evaluations at each iteration of the procedure. The proposed method infers the PDF
of the parameters from the matching of the statistical moments of observable degrees
of freedom (DOFs, also referred to as physical DOFs in the following) of the model. It
builds on the Maximum Entropy principle [Jay57, MP84] which has previously been
applied successfully in many different contexts [SZ06, VdSB08, MLKDC10, GS13].
In our case, the PDF is sought so that it maximizes the Shannon entropy [Sha48]
while satisfying the aforementioned moments constraints. This is translated into an
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optimization problem for which we propose algorithms to find the solution. This
method is called observable moment matching in the following.

This inverse procedure is improved by incorporating an algorithm that selects a
subset of the model DOFs that both reduces its computational cost and increases
its robustness. The selection relies on the approximation of a sensitivity Gram
matrix [Rus10, CDW14] and on a clustering of the DOFs. The DOFs are selected so
that the maximum information on the sensitivities is conserved. This algorithm uses
the pre-computed model outputs to build an approximation of the local sensitivities
and therefore does not require additional evaluations of the forward model.

After having illustrated the approach with generic PDE and ODE models, it
is applied to electrophysiology measurements. This is part of a global and recent
effort towards the modeling and understanding of the variability in electrophysiology
measurements [BBOVA+13, SBOW+14, GBRQ14, JCB+15, PDB+16]. First, we
focus on measurements at the cell scale which are modeled by non-linear coupled sets
of ODEs. Different models are presented which vary in terms of complexity (from 3
to 29 ODEs) and in terms of modeled cell types (canine, human, ventricular, atrial,
etc.). The MEAmeasurements are modeled using the bidomain model [Tun78] which
is a set of non-linear reaction diffusion PDEs where the reaction term corresponds
to the single cell models described above.

Our next contribution is related to inverse problems and classification problems.
Regardless of the method used to solve these problems, one key aspect is the choice
of quantities of interest: quantities to be fitted for the inverse problem or features in
a classification context. In electrophysiology, such quantities are called biomarkers.
Biomarkers are usually proposed by the community, based on physical intuition and
experimental observations. They are often relevant in qualitatively describing the
hidden quantities. However, in most practical applications, although the biomarkers
exhibit a good correlation with respect to the hidden quantity they are designed to
monitor, they have a non-negligible correlation with respect to others, making them
less robust or of difficult interpretation. We propose an algorithm that automati-
cally selects optimal biomarkers, referred to as numerical biomarkers, in the sense
that they are maximally correlated with their associated parameter and minimally
correlated with all the others.

Finally, the previous tools are applied to the classification of drug from MEA
measurements. The measurements are either experimental or synthetic. Synthetic
measurements are generated using the forward PDE model (bidomain equations)
adapted to the MEA. The classification of drugs is carried out using state-of-the-
art Machine Learning tools. We also present an application to electrocardiogram
measurements using a 3-D full-body electrophysiology model [BCF+10].

1.3 Contents and manuscript organization

The manuscript is organized as follows.
In Chapter 2, the statistical inverse problem framework is presented. The observ-
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able moment matching method is presented along with the physical DOF selection
algorithm. Some analysis of the PDF estimation error is provided and the hyper-
parameters of the method are studied on an ODE test case. The approach is then
illustrated with PDE and ODE models.

In Chapter 3, the observable moment matching is specifically applied to elec-
trophysiology problems. The biological context is explained and the approach is
illustrated with synthetic measurements. Then, the approach is applied to experi-
mental measurements from which the PDF of some key parameters are estimated.

In Chapter 4, the feature selection algorithm is presented. The corresponding
optimization problem is described. The approach is applied to simple test cases and
then to electrophysiology and hemodynamics models.

In Chapter 5, a drug classification problem is proposed. Experimental measure-
ments of MEA-hiPSC potentials are available with different drugs. The classification
is carried out using Machine Learning algorithms. The classification is improved by
incorporating synthetic MEA measurements generated using the bidomain equa-
tions.

In Chapter 6, the variability of human electrocardiograms (ECGs) is studied. A
full-body, 3-D electrophysiology model is described and synthetic ECGs are gener-
ated using the FeLiScE finite element library. Some parameters of the model are
varied to generate a synthetic population of ECGs in healthy and in pathologi-
cal conditions. Numerical biomarkers are computed in order to monitor some key
parameters of the heart and, eventually, solve parameter estimation problems.

1.4 Scientific dissemination

1.4.1 Publications

The presentation of the statistical inverse problem framework, the description of the
observable moment matching method and its application to ODE and PDE models
led to the following paper and its extended version on HAL:

• Jean-Frédéric Gerbeau, Damiano Lombardi, Eliott Tixier
A moment-matching method to study the variability of phenomena described
by partial differential equations.
In Review.

• Extended version: https://hal.archives-ouvertes.fr/hal-01391254

The application of the observable moment matching method to electrophysiology
data and in particular to experimental measurements led to the following paper:

• Eliott Tixier, Damiano Lombardi, Blanca Rodriguez, Jean-Frédéric Gerbeau
Modeling variability in cardiac electrophysiology: a moment matching ap-
proach.
Journal of the Royal Society Interface, 14(133), 2017.

https://hal.archives-ouvertes.fr/hal-01391254
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• Also on HAL: https://hal.archives-ouvertes.fr/hal-01570828

The feature selection algorithm and its application to realistic biological scenarios
led to the following paper:

• Jean-Frédéric Gerbeau, Damiano Lombardi, Eliott Tixier
How to choose biomarkers in view of parameter estimation.
Submitted.

The automatic classification of drugs from MEA measurements led to the following
paper:

• Eliott Tixier, Fabien Raphel, Damiano Lombardi, Jean-Frédéric Gerbeau
Optimal biomarkers design for drug safety evaluation using microelectrode ar-
ray measurements.
Submitted.

• Also on HAL: https://hal.archives-ouvertes.fr/hal-01570819

1.4.2 Conferences

• QUIET 2017 Workshop - Quantification of Uncertainty: Improving Efficiency
and Technology, July 18-21, 2017, Trieste, Italy. Poster presentation

• SIAM Conference on Uncertainty Quantification, Apr 5-8, 2016, Lausanne,
Switzerland. Minisymposium talk

• 4th International Conference on Computational & Mathematical Biomedical
Engineering (CMBE 2015), June 29 - July 1, 2015, Cachan, France. Minisym-
posium talk

• 1st International Conference on Uncertainty Quantification in Computational
Sciences (UNCECOMP 2015), May 25-27, 2015, Hersonissos, Greece. Min-
isymposium talk

• Lions-Magenes Days Scientific Meeting, April 13-14, 2015, Pavia, Italy. Invited
speaker

1.4.3 Implementation

The algorithms described in this work were implemented in cardioXcomp, an
in-house C++ project dedicated to the simulation of cardiac electrophysiology mea-
surements and their analysis. I also contributed to the development of the C++
Finite Element library FeLiScE by implementing a Robin-Robin coupling between
heart and torso for electrophysiology simulations.
To better spread our work and allow other people to use the tools we developed,
three GitHub projects were set up.

https://hal.archives-ouvertes.fr/hal-01570828
https://hal.archives-ouvertes.fr/hal-01570819
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• https://github.com/eltix/omm_jrsi: Implementations of the observable
moment matching algorithm and the physical DOF selection algorithm. This
project also contains the data required to replicate the results of Chapter 3.

• https://github.com/eltix/numbio: Implementation of the feature (numer-
ical biomarker) selection algorithm and toy model data to demonstrate the
method presented in Chapter 4.

• https://github.com/eltix/seqomm: Implementation of the coupling of the
observable moment matching algorithm and the physical DOF selection as
described in Chapter 2

https://github.com/eltix/omm_jrsi
https://github.com/eltix/numbio
https://github.com/eltix/seqomm


Chapter 2

A Moment-Matching Method to Study
the Variability of Phenomena Described

by Partial Differential Equations

This chapter is based on [GLT16]

Many phenomena are modeled by deterministic differential equations, whereas the ob-
servation of these phenomena, in particular in life sciences, exhibits an important variability.
This chapter addresses the following question: how can the model be adapted to reflect the
observed variability?

Given an adequate model, it is possible to account for this variability by allowing some
parameters to adopt a stochastic behavior. Finding the parameters probability density
function that explains the observed variability is a difficult stochastic inverse problem,
especially when the computational cost of the forward problem is high. In this paper, a
non-parametric and non-intrusive procedure based on offline computations of the forward
model is proposed. It infers the probability density function of the uncertain parameters
from the matching of the statistical moments of observable degrees of freedom (DOFs) of
the model. This inverse procedure is improved by incorporating an algorithm that selects
a subset of the model DOFs that both reduces its computational cost and increases its
robustness. This algorithm uses the pre-computed model outputs to build an approximation
of the local sensitivities. The DOFs are selected so that the maximum information on the
sensitivities is conserved. The method is studied and validated with a nonlinear ODE and
the strategy is compared with two existing ones. Then, the proposed approach is illustrated
with elliptic and parabolic PDEs.
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2.1 Introduction

The context of this work is the following: a collection of experimental measure-
ments is available, which exhibit variability, caused for instance by an heterogeneity
in the physical settings [CDE06, SZ06]. We assume that the observable quantities
correspond to the degrees of freedom (DOFs) of a model that depends on fixed
and uncertain parameters. The model is typically a system of ordinary differential
equations (ODE) or partial differential equations (PDE).

The aim of this paper is twofold. First, we propose a non-parametric and non-
intrusive method to estimate the uncertain parameters probability density function
(PDF) by exploiting the observable variability. Second, we propose a method to
make this estimation “parsimonious”, i.e. requiring as few model evaluations as pos-
sible and as few observables (or DOFs) as possible.
To tackle the first problem, two different strategies may be envisioned. First, one
could estimate the model parameters associated with each experimental sample
using classical inverse problem tools such as Bayesian approaches [WZ04, Kou09]
or genetic algorithms [HNGK09]. These strategies would yield a collection of pa-
rameters values from which the PDF would be computed by using histograms or
more sophisticated PDF estimation techniques [AA13]. As straightforward as this
approach is, it becomes computationally intensive as the number of experimental
samples grows larger. Second, one may see the experimental data set as a whole,
which has the advantage of being both computationally cheaper and more robust
to noise and low-quality measurements. In this paper, we focus on the second strat-
egy and present an adaptation of the well-known problem of moments [ST43]. The
problem of moments consists in finding the PDF of the parameters such that its
statistical moments have a prescribed set of values. It has been used as an inverse
problem tool with success in various contexts [GNSG11, SZ06, PS09]. A popular
regularization of the problem of moments is the maximum entropy principle, which
is rooted in information theory and is justified by practical mathematical considera-
tions [Jay57, MP84]. In most cases however, parameters of a model are not directly
observable. Therefore, one needs a technique that takes into account the observable
variability. In this context, we introduce an “observable moment matching” method
which consists in maximizing the PDF entropy under the constraints of matching
the moments of the observable itself (not of the parameters). This is a two-step
method. First, the model is evaluated for a fixed number of parameters samples
and the corresponding outputs, i.e. the simulated observables, are stored. Second,
the PDF is found by an iterative process that maximizes its entropy under the con-
straints of matching the moments of the experimental and simulated observables.
To address the second problem, we propose an algorithm that selects the DOFs in
the physical domain where the moments are to be matched in order to alleviate the
cost of the inverse problem – which is crucial for complex models such as PDEs
– and to improve its conditioning. This algorithm exploits the sensitivity informa-
tion provided by the pre-computed model evaluations. The sensitivity Gram matrix,
computed for every DOF, reveals active subspaces [Con15, CELI15] of the parameter
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space. The DOFs are selected by clustering the active subspaces and choosing their
best representatives. This strategy allows for a reduction of the number of DOFs
by several orders of magnitude and therefore proves to drastically reduce the com-
putational cost of the inverse problem without requiring any additional evaluation
of the model.

This paper is organized as follows. The whole methodology is detailed in Sec-
tion 2.2. First, we introduce the observable moment matching algorithm and we for-
mulate the associated inverse problem in terms of an optimization problem. Then,
the clustered sensitivities algorithm is introduced and the reduction of the number
of DOFs is explained. In Section 2.3, our approach is illustrated with a set of ODEs
modeling the transient action potential of a heart cell. We compare its performance
with two existing statistical inverse problem techniques: one proposed by N. Zabaras
and B. Ganapathysubramanian [ZG08], the other one proposed by E. Kuhn and M.
Lavielle [KL05]. In Section 2.4, our algorithm is applied to the Darcy equations.
The PDF of five coefficients that parametrize an inner field is recovered using mea-
surements on the domain boundaries. Then, we consider a nonlinear parabolic PDE
model, namely the FKPP equation. Under certain conditions, this model exhibits
a wave propagation whose shape depends on the location of the source term and on
certain parameters. The PDFs of the source term and the reaction parameters are
recovered using measurements at different times and locations.

Finally, we present some concluding remarks in Section 2.6.

2.2 Methodology

2.2.1 Notation

Let us consider a data set that exhibits variability and a physical model assumed
to accurately depict the observations. Let D ⊆ Rd be an open subset, the physical
domain (space, time or space-time), in which the governing equations are written.
Let (Θ,A,P) be a complete probability space, Θ being the set of outcomes, A a
σ–algebra and P a probability measure. The model can be written in a compact
notation as:

L(u(x,θ)) = 0, (2.1)

where L denotes a generic nonlinear differential operator.
The vector θ =

(
θ1, . . . , θnp

)
∈ Θ denotes the uncertain parameters of the model and

Θ is a bounded subset of Rnp , sometimes referred to as the stochastic domain [ZG08].
A set of measurements {y1, . . . ,yN} is available. Each measurement yi is assumed
to take the following form:

y = g (u(x,θ)) + ε, (2.2)

where g is a function describing the measurement process and ε is the noise, as-
sumed to be additive and independent. For practical reasons, g is normalized to
take values in [0, 1]. Let E be the expectation operator. We make the hypothe-
sis that the random fields associated with the observables are p-integrable, that is:
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∫
D |E(yp)| dx < M , where the exponent p is the highest available moment. The
variability in the observations is due to two main contributions: the variability in
the parameters and the noise in the measurement process. In a classical forward
Uncertainty Quantification (UQ) context, given the probability density function
(PDF) of the parameters ρ, the moments of the observables are computed. In the
present work, an inverse problem is solved which consists in finding the PDF of the
parameters that generates the observed variability in a set of available data. Let us
introduce the mth order empirical moment of the measurements:

µm(x) =
1

N

N∑
i=1

yi(x)m ≈ E((g + ε)m), (2.3)

and the mth order moment of the simulations:

µρm(x) =

∫
θ∈Θ

(ysim(θ))m ρ(θ)dθ = E(ymsim), (2.4)

where ysim are the observations of the simulated system.

2.2.2 Handling the noise

Under the assumption that the noise is additive, independent and with a known
structure, it is straightforward to account for its influence on the measurements
moments. Using the linearity of the expectation operator and the independence of
the noise, it follows from definition (2.2) that:

E [ym] =
m∑
k=0

(
m

k

)
E [gm]E

[
εm−k

]
.

As an example, consider the case where the noise follows a zero-mean normal dis-
tribution with a known variance τ2: ε ∼ N (0, τ2). Then, the following corrections
may be applied to the first three empirical moments defined in Eq. (2.3):

µ̃1(x) = µ1(x),

µ̃2(x) = µ2(x)− τ2,

µ̃3(x) = µ3(x)− 3τ2µ1(x).

In the numerical experiments, the noise is assumed to be gaussian and its level is
defined as the ratio 4τ/A where A is the signal amplitude. In Section 2.3, the effect
of τ2 on the PDF estimation is investigated.

Only Gaussian noises are considered here. However, the same procedure may
be applied to any noise whose power moments are known. If the noise structure is
completely unknown, a strategy can be set up to estimate it but it is not investigated
in the present work.
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2.2.3 Overview of the strategy

The overall algorithm aims at estimating the PDF ρ of the uncertain param-
eters θ, given the empirical moments of the observables. The Jaynes principle of
maximum entropy is applied (see [Jay57]): the PDF is sought so that it has the
maximum entropy under the constraints that the experimental and simulated mo-
ments be equal. Two additional constraints correspond to the positivity and the
PDF normalization. This leads to the following optimization problem:

Minimize:
∫

Θ ρ log(ρ)

Subject to: µ̃m(x)− µρm(x) = 0, ∀x ∈ D, 1 ≤ m ≤ Nm,

ρ(θ) ≥ 0, ∀θ ∈ Θ,∫
Θ ρ = 1.

(2.5)

In what follows, this is referred to as the Observable Moment Matching (OMM)
problem. In Section 2.2.4 the optimality conditions for the OMM problem are
derived and a dual formulation is introduced. The latter leads to a nonlinear problem
which is, in general, ill-conditioned. Moreover, its computational cost is prohibitive
when models described by PDEs are at hand. To overcome these difficulties a
reduction approach is introduced, based on a sensitivity analysis. As a consequence,
the OMM procedure is only applied to a subset S of the DOFs of the model variables
discretized in the physical domain D. More precisely, the eigendecomposition of an
approximation of the following matrix is computed:

C(x) =

∫
Θ

[∇θg(x,θ)] [∇θg(x,θ)]T ρ(θ)dθ, (2.6)

referred to as the exact sensitivity Gram matrix (SGM).The study of the SGM
eigenvalues allows us to identify active subspaces [Con15] in the parameter space
associated with each DOF. The subspaces are clustered based on a similarity func-
tion and the “best” DOFs are then picked based on a criterion defined in Section 2.2.5
to form the selected subset S. This selection method will be later referred to as the
Clustered Sensitivities (CS) procedure.

2.2.4 Inverse problem: observable moment matching (OMM)

The classical problem of moments consists in finding a PDF ρ of the parameters
θk from the knowledge of a finite number Nm of its power moments µm,k, m =

1, . . . , Nm, k = 1, . . . , np:

Eρ [θmk ] = µm,k, m = 1, . . . , Nm, k = 1, . . . , np,

where Eρ(·) denotes the expectation operator given a density function ρ. This prob-
lem has been extensively discussed in the literature and has been addressed by
adopting a wide range of strategies. When only a finite number of moments are
known, which is often the case in practice, the problem becomes under-determined.
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Indeed, there exists an infinite number of densities that have the same Nm mo-
ments. Therefore, one needs to introduce a regularization in order to obtain a
unique distribution function among all the feasible solutions. Several approaches
exist, such as minimizing the mean squared error ε(ρ) =

∑
m,k (Eρ [θmk ]− µm,k)2

with the constraint that ρ be a finite expansion of polynomials [HLM14] or Padé
approximants [WG69].

This problem has been successfully used in situations where the moments of the
model parameters are directly measurable, for instance in the context of microstruc-
ture reconstruction [GNSG11, SZ06, PS09]. In general however, the moments of the
model parameters are not observable. Therefore, we propose to apply the moment
matching constraints not on the parameters but on the observable itself.

To regularize the problem, the maximum entropy principle is used: find the
PDF that maximizes the entropy under the constraint of matching the first Nm

moments, where the Shannon definition [Sha48] of the PDF entropy reads: S(ρ) =

−
∫

Θ ρ log(ρ). There are three main reasons why this choice of regularization is
well suited to the present case. First, from an information theory point of view,
the maximum entropy PDF is considered the best choice when a limited amount of
information is available (here, only a finite number of moments are known). This
principle was first introduced by Jaynes [Jay57] and was successfully applied to
numerous practical cases [MP84, SZ06, MLKDC10, VdSB08]. Second, −S(ρ) is a
convex cost function which enables the use of efficient optimization tools. Last, ρ
can be written as an exponential term (see below), which dispenses the addition of
an inequality constraint ensuring its positivity.
A set of constraint functions is introduced, expressing the mismatch between the
moments of the measured observable and the moment of the simulated observable.
They read:

cm(x) = µρm(x)− µ̃m(x) =

∫
Θ
gm(x,θ)ρ(θ) dθ − µ̃m(x), m = 1, . . . , Nm. (2.7)

Introducing the Lagrange multipliers λ(x) = (λm(x))m=1...Nm , λ0 and ν(θ), the
initial optimization problem (2.5) is recast in the following saddle-point problem:

inf
ρ

sup
λ,λ0,ν≥0

L (ρ, λ, λ0, ν) , (2.8a)

with

L (ρ, λ, ν) =

∫
Θ
ρ log(ρ)−

Nm∑
m=1

∫
D
λm(x)cm(x) dx− λ0

(∫
Θ
ρ− 1

)
−
∫

Θ
ρν. (2.8b)

The Euler-Lagrange equations are derived from the calculus of variations (see Ap-
pendix 2.7.1). The necessary conditions for optimality are derived by cancelling out
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∂L/∂ρ in (2.52) and ∂L/∂λ in (2.54):

ρ = exp(ν + λ0 − 1) exp
(∑Nm

m=1

∫
D g

mλm dx
)
, (2.9)∫

Θ g
m exp(λ0 − 1) exp

(∑Nm
h=1

∫
D g

hλh dx
)

dθ − µ̃m = 0, m = 1, . . . , Nm.(2.10)

In the present case, by virtue of the entropy regularization, the primal variable
ρ can be expressed in an analytic form as a function of the dual variable and the
positivity constraint is automatically satisfied (Eq.(2.9)). Hence, the solution of the
system can be reduced to the solution of a nonlinear problem for the dual variable
(Eq.(2.10)).

In the following, we suppose the problem is well-posed in the sense that the
solution exists and is unique. It is shown in Appendix B of [GS13] that it is the case
when the constraints are algebraically independent. The algebraic independence of
the constraints, as formulated in [GS13], is equivalent to saying that there exists
a non-zero measure subset Θ̃ of Θ such that, for any nonzero vector v(m), m =

1, . . . , Nm in L2(D), one has:

AΘ̃ :=

∫
Θ̃

(
Nm∑
m=1

〈
v(m), gm

〉
L2(D)

)2

dθ > 0. (2.11)

The error in the density can be evaluated by means of the Kullback-Leibler
divergence. In the following Lemma, it is shown that it is bounded by the error
in the dual variable. Let the distribution that maximizes the entropy under the
moment constraints be denoted by ρ∗ and let its actual approximation be ρ. The
true dual variable being λ∗ and its approximation being λ, the error in the dual
variable is defined as: δλ := λ∗ − λ. The following result holds.

Lemma 2.1
The Kullback-Leibler (KL) divergence between ρ∗ and ρ, denoted by φ(ρ∗|ρ), is
bounded by the error in the dual variable as follows:

|φ(ρ∗|ρ)| ≤ |δλ0|+ meas(D)1/2
Nm∑
m=1

‖δλm‖x,2. (2.12)

Proof. The KL divergence reads:

φ(ρ∗|ρ) :=

∫
Θ

log

(
ρ∗

ρ

)
ρ∗dθ. (2.13)

We deduce from the optimality conditions:

ρ∗

ρ
= exp(δλ0) exp

(
Nm∑
m=1

〈gm, δλm〉x
)
, (2.14)
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so that the expression of the KL divergence can be rewritten as:

φ(ρ∗|ρ) = δλ0 +

Nm∑
m=1

∫
Θ
〈gm, δλm〉x ρ∗dθ. (2.15)

The Cauchy-Schwarz inequality is applied to the scalar product in the physical space:

|φ(ρ∗|ρ)| ≤ |δλ0|+
Nm∑
m=1

‖δλm‖x,2
∫

Θ
‖gm‖x,2(θ) ρ∗dθ. (2.16)

Hence the result since the observable is bounded by 1.

2.2.4.1 Discretization of the inverse problem

The discretization of the nonlinear system Eq.(2.10) is addressed in this sec-
tion. The observable, as well as the Lagrange multipliers λm, are discretized in
space (or space-time) by means of standard methods and the total number of DOFs
is denoted by Nx. The integrals in the stochastic space are approximated by a
quasi-Monte Carlo method. The stochastic domain Θ is discretized using the Sobol
sequence [Sob76]. These quasi-random samples have a low-discrepancy, and are com-
petitive compared to random uniform samples [Lem09]. When integrating functions
featuring a certain regularity, sparse grid methods, which are often used in uncer-
tainty propagation (see [GZ07]), can outperform quasi-Monte Carlo ones [BG04]. In
the present context, however, a reason to prefer a quasi-Monte Carlo discretization
of the stochastic domain is that the probability density distribution is the unknown
of the problem, and it is not known in advance. Roughly speaking, since sparse grids
have strong preferential directions, the risk of “missing” the area of interest in the
stochastic domain is non-negligible, making evenly distributed points a more suitable
discretization. Figure 2.1 shows how a two-dimensional domain is discretized using
each of the three options described above. It illustrates how the Sobol sequence
both performs a more even coverage of the domain than uniform pseudo-random
samples and does not favor specific directions such as in sparse grids. Let us denote
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Figure 2.1: Different discretizations of the parameter space: random uniform (left),
Sobol sequence (center), sparse grid (right).
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by Nc the number of sample points in Θ and |Θ| the stochastic domain volume.

To compute the integrals approximations in (2.10), the model is evaluated for
each sample θi. The corresponding set {ysim(θi,xj), i = 1, . . . , Nc, j = 1, . . . , Nx} ∈
RNc×Nx will later be referred to as the simulation set. Assuming a subset S of D has
been selected, the number of DOFs in S is denoted by Nk. For the sake of clarity,
the following notation is now used:

ρi = ρ(θi), gi,j = ysim(θi,xj), λj,m = λm(xj), µj,m = µm(xj), β =
|Θ|
Nc

for i = 1, . . . , Nc, j = 1, . . . , Nk, m = 1, . . . , Nm.

The discretization of Eq.(2.9) reads:

ρi = exp (λ0 − 1) exp

 Nk∑
j=1

Nm∑
m=1

ωjλj,mg
m
i,j

 , i = 1, . . . , Nc, (2.17)

where the ωj are quadrature weights for the physical domain discretization.

Before discretizing Eq.(2.10), a vector form is introduced. Let ω =[
ω1 . . . ωNk

]
, λ =

[
λ1,1 . . . λNk,Nm λ0 − 1

]T ,
µ =

[
µ̃1,1 . . . µ̃Nk,Nm 1

]T and G =
[
G(1) . . . G(Nm) 1

]T with G
(k)
i,j = gki,j ,

k = 1, . . . , Nm, i = 1, . . . , Nc, j = 1, . . . , Nk. Note that G ∈ RNG×Nc where
NG = NkNm + 1. It has an extra column of ones to take into account the normal-
ization constraint. Finally, let ∆ = diag(ω,ω, . . . ,ω︸ ︷︷ ︸

Nm times

, 1).

The density can be written as: ρ = exp
(
GT∆λ

)
. The discretization of Eq.(2.10)

reads:
βGρ− µ = βGexp

(
GT∆λ

)
− µ = 0. (2.18)

A Newton method is used to solve this step. However, since the Hessian is ill-
conditioned in practical cases, a regularization is proposed. Let U,S,V be the SVD
decomposition of G, done with respect to the scalar product induced by ∆, i.e.
UT∆U = I. The residual now reads:

r = βUSVT exp
[
VSUT∆λ

]
− µ. (2.19)

Instead of making r vanish, we propose to solve for r̂ = ÛT∆r = 0. This is
equivalent to taking a low-rank approximation Ĝ of G by replacing the matrix of
singular values S with its truncation Ŝ. Ŝ is defined so that it shares the first nσ
singular values with S and the following are set to zero. The low-rank approximation
Û (resp. V̂) of U (resp. V) is obtained by setting its last nG−nσ columns to zero.
Replacing G by Ĝ = ÛŜV̂T in (2.19) and left-multiplying by ÛT∆, one obtains:

r̂ = βŜV̂T exp
[
V̂ŜÛT∆λ

]
− ÛT∆µ. (2.20)
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Proceeding to the change of variables λ = Ûφ, the residual now reads:

r̂ = βŜV̂Tρ− ÛT∆µ, (2.21a)

where ρ = exp
[
V̂Ŝφ

]
. (2.21b)

Note that the residual is no longer a function of the vector of experimental moments
µ but rather its projection ÛT∆µ. Therefore, the number of non-truncated singular
values nσ is chosen so that the representation error ‖

(
I− ÛÛT∆

)
µ‖ is smaller

than a user-defined tolerance parameter α. The Hessian matrix of the problem now
reads:

H =
∂r̂

∂φ
= βŜV̂diag(ρ)V̂T Ŝ, (2.22)

which is symmetric, positive semi-definite of rank nσ. Its Moore-Penrose pseudo-
inverse P is computed and the Newton actualization step reads:

φ(n+1) = φ(n) −Pr̂. (2.23)

The components of φ are initialized to zero, which is equivalent to taking a uniform
PDF as the initial guess for ρ or, more precisely, a uniform mass on the discrete ρi.
The overall OMM inverse procedure in summarized in Algorithm 1.
Remark that the problem of computing the PDF value at each collocation point
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Figure 2.2: Solution of the moment-matching method: joint PDF of two parameters.

ρi, i = 1, . . . , Nc has been transformed into a problem of computing the unknown
Lagrange multipliers λ0, λ1,1, . . . , λNk,Nm . In other words, the size of the problem is
now that of the physical domain subset (S) times the number of moments instead
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Algorithm 1: Observable moment matching algorithm.
Input:
• S = {x1, . . . ,xNk

} subset of D selected using CS algorithm.

• µ̃j,m, j = 1, . . . , Nk, m = 1, . . . , Nm: corrected experimental moments.

• gi,j , i = 1, . . . , Nc, j = 1, . . . , Nk: simulation subset.

• A tolerance α > 0.

• A stopping criterion for the Newton iterations εNewton > 0.

Initialization:

• Assemble G =
[
((gi,j)) . . . ((gi,j))

Nm 1
]
and µ =

[
((µ̃j,k)) 1

]
.

• Compute SVD decomposition of G: U,S,V

• Number of singular values nσ = Card
{
σ | ‖

(
I− ÛÛT

)
µ‖ ≤ α

}
.

• φ(0) = 0 (i.e. ρ(0) uniform over Θ).

n = 1 ;
while ‖r̂(n−1)‖ > εNewton do

Compute ρ(n) using (2.21b);
Compute residual r̂(n) = using (2.21a);
Assemble Hessian matrix H(n) using (2.22);
Update Lagrange multipliers using (2.23);
n← n+ 1 ;

end

Output: ρi, i = 1, . . . , Nc: the PDF estimate.
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of that of the stochastic domain. This is therefore computationally cheaper as long
as the physical subset size remains sufficiently small, an issue that is addressed in
the next section.

2.2.4.2 Analysis of the regularization error

In this section, we propose to justify some aspects of the proposed strategy. The
true measure on the stochastic domain is Pe, absolutely continuous with respect
to Lebesgue measure. The associated probability density is ρe. The density which
maximizes the entropy under the moment constraints is denoted by ρ∗ and the
actual approximation is ρ. There are two main contributions to the error: the
first one is related to the entropic regularization, and the second one is due to the
approximation of the constrained optimization problem. The latter is controlled by
the norm of the error in the dual variable approximation, as shown in Lemma 2.1.
In what follows, the regularization error is studied.

The hypotheses under which this analysis is performed are the following: the
observable is g(x,θ) ∈ H1(D×Θ)∩L∞(D×Θ). We remind that we assume that g
takes values in [0, 1]. The standard L2(D ×Θ) scalar product is denoted by 〈u, v〉,
and the norms are defined accordingly. The scalar product in the physical and in
the stochastic space will be denoted by 〈u, v〉x and 〈u, v〉θ respectively.

The regularization error is studied in the case where an infinite number of mo-
ments exists. A first Lemma is presented to prove under which condition the total
residual on the moments is L2 summable, and then an identifiability condition for
the inverse problem is derived.

Lemma 2.2
Let ‖v‖Lp(D×Θ),ρe =

(∫
D
∫

Θ v
pdxρedθ

)1/p be the Lp norm. If there exist C, δ > 0

such that ‖g‖Lp(D×Θ),ρe ≤
(

C
p1+δ

)1/p
, then

∑∞
m=1 ‖µ

ρe
m‖2L2(D) < +∞.

Proof. The Jensen inequality gives:

‖µρem‖2L2(D) =

∫
D

(∫
Θ
gmρe dθ

)2

dx ≤ ‖gm‖2L2(D×Θ),ρe
. (2.24)

The norm can be rewritten as follows:

‖gm‖2L2(D×Θ),ρe
=

∫
D

∫
Θ
g2m dx ρedθ = ‖g‖2mL2m(D×Θ),ρe

≤ C

(2m)1+δ
, (2.25)

and thus:
∞∑
m=1

‖µρem‖2L2(D) ≤
∞∑
m=1

C

(2m)1+δ
< +∞. (2.26)
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The hypotheses of Lemma 2.2 are difficult to verify in practice with complex
PDE models such as those studied in the present work. It is however possible to
show that they are verified in some simpler cases as described in Section 1 of the
Supplementary Material.
Let us assume that both the exact density ρe and the entropic regularization ρ∗

satisfy the hypotheses of Lemma 2.2. Upper and lower bounds for the L2 error
ε := ρe − ρ∗ can be found. Consider that, by linearity:

∫
D g

mε = µρem − µρ
∗
m = δµm.

The result is summarized in the following proposition.

Proposition 1
Let ρe, ρ∗ satisfy the hypotheses of Lemma 2.2.

Let γ = inf‖v‖L2(D×Θ)=1

[∑∞
m=1〈gm, v〉2

]
; let β =

∑∞
m=1 ‖gm‖2L2(D×Θ). Then,

assuming β, γ > 0:∑∞
m=1 ‖δµm‖2L2(D)

β
≤ ‖ε‖2L2(Θ) ≤

∑∞
m=1 ‖δµm‖2L2(D)

γ
. (2.27)

Proof. The Cauchy-Schwarz inequality implies:

∞∑
m=1

‖δµm‖2L2(D) =
∞∑
m=1

∫
D

(∫
Θ
gmε dθ

)2

dx ≤
∞∑
m=1

∫
D

∫
Θ
‖gm‖2L2(Θ)‖ε‖2L2(Θ)dx,

(2.28)
The error norm does not depend on the physical space coordinates and thus:

∞∑
m=1

∫
D

∫
Θ
‖gm‖2L2(Θ)‖ε‖2L2(Θ)dx ≤

( ∞∑
m=1

‖gm‖2L2(D×Θ)

)
‖ε‖2L2(Θ) = β‖ε‖2L2(Θ).

(2.29)
Then, the upper bound for the error is proved:

∞∑
m=1

‖δµm‖2L2(D) =

∞∑
m=1

∫
D

(∫
Θ
gmεdθ

)2

dx, (2.30)

≥
∞∑
m=1

inf
‖v‖L2(D×Θ)=1

[
〈gm, v〉2

]
‖ε‖2L2(θ), (2.31)

that can be deduced by considering that gm can be expressed on a dense
tensorized complete orthonormal basis of L2(D) ⊗ L2(Θ). Indeed, let
{r1(x)s1(θ), r2(x)s2(θ), . . .} be such as basis. One has in particular 〈rj , rk〉L2(D) =

δj,k and 〈sj , sk〉L2(Θ) = δj,k. For a given m, by considering the decomposition of gm
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onto this basis, gm =
∑∞

j=1 〈gm, rjsj〉 rjsj and defining bmj := 〈gm, rjsj〉, one has:

∫
D

(∫
Θ
gmεdθ

)2

dx =

∫
D

∫
Θ

∞∑
j=1

bmj rjsjε

2

dx, (2.32)

=

∫
D

 ∞∑
j=1

bmj ε̂jrj

2

dx, where ε̂j := 〈ε, sj〉L2(Θ) (2.33)

=

∞∑
j=1

〈gm, rjsj〉2 ε̂2
j , (2.34)

≥ inf
‖v‖L2(D×Θ)=1

〈gm, v〉2 ‖ε‖2L2(Θ) (2.35)

The condition for the error to be bounded, namely γ > 0, can be seen also as an
identifiability condition for the problem and it is verified when the set of function
gm is a complete basis of the space. The result of the following Lemma shows a
meaningful case in which the density is not identifiable and the error is unbounded.

Lemma 2.3
Let the stochastic domain be the box Θ = Θ1× . . .Θd. Let D1 ⊆ D an open subset
of the physical domain where the observable does not depend on θi, i.e. for which
∂θig = 0. Then γ = 0.

Proof. The proof is done in a constructive way, by building a function v which
is of unitary norm, making the scalar product with all the gm vanish. Let v =

f1(θi)f2(θj 6=i)f3(x) such that
∫

Θ f1dθ = 0 and f3(x) = 0 on D/D1. For all h,∫
D

∫
Θ
gmv dθ dx =

∫
D1

∫
Θ
gmf1f2dθf3(x) dx, (2.36)

since f3 vanishes outside D1. Then, since the observable g does not depend on θi,∫
D1

∫
Θ
gmf1f2dθf3(x)dx =

∫
D1

(∫
Θi

f1dθi

)(∫
Θ/Θi

gmf2(θj 6=i)dθj

)
f3(x)dx = 0.

(2.37)

The result of this Lemma sheds some light onto the identifiability of the inverse
problem. In particular, the problem is ill-posed whenever there are regions in the
physical space in which the observable does not depend on one or more parameters.
A way to overcome this is to reduce the physical domain by excluding the regions
(i.e. the DOFs) where the observable is not sensitive to the parameters.
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2.2.5 Physical DOFs reduction: clustered sensitivities (CS) algo-
rithm

As explained before, the dual variable formulation of the optimization problem
transfers the resolution effort onto the solution of a system whose size is the
number of DOFs in the physical domain times the number of moments. However,
in many practical applications, as for instance when models are described by
PDEs, the number of DOFs used to discretize the solution in the physical domain
is large, making the Hessian matrix inversion computationally intensive. Aside
from the sheer computational cost of linear algebra operations, dealing with many
large simulations – say thousands of simulations counting millions of DOFs –
poses undeniable issues in terms of storage capacity and Input/Output computer
operations. The main idea to reduce the computational cost is to retain only the
subsets of the physical domain in which the observable conveys more information
about the variability of the parameters. Consider for instance a region in which
the observable does not vary, or its variation amplitude is lower than the noise
level: then, matching the moments in this region will certainly not convey any
meaningful information about the parameters. Even worse, it may increase the
Hessian condition number and degrade the overall accuracy of the method. It
may also happen that part of the data is redundant, meaning that the observable
exhibits the same variations with respect to the parameters in two different DOFs.
In this section, we propose an algorithm that selects a subset S of the full set
of DOFs D. This subset is then used in the OMM inverse procedure described
before. Notice that we are not interested in building a low-dimensional surrogate
model with fewer outputs. On the contrary, we aim at developing a non-intrusive
approach where we only choose to discard some outputs of the high fidelity model.
To do that, we propose the following gradient-based algorithm which is rooted in
the global sensitivity analysis of the model.

2.2.5.1 The SGM matrix

For each xj , we consider an approximation of the exact SGM matrix (defined
in (2.6)) as follows:

Cj ' β
Nc∑
i=1

[∇θg(xj ,θi)] [∇θg(xj ,θi)]
T ρi,

where ∇θg(xj ,θi) is a vector of size np whose components are the derivatives of
g with respect to each parameter at a given xj and a given parameter sample θi.
Cj is a np-by-np matrix containing the sensitivity information of the observable
with respect to the input parameters at xj . It may also be seen as the uncentered
covariance matrix of the gradient of the observable with respect to the uncertain
parameters.
In this work, the gradient ∇θg is approximated by using local polynomial approx-
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imations. Other well-known methods exist, such as adjoint equations [CLPS03] or
automatic differentiation [GW08], but they will not be discussed here. For each sam-
ple θi in the stochastic space, its K nearest neighbors are found and their indices
are denoted by ik, k = 1, . . . ,K. An implementation of the k-NN algorithm (using
k-d trees) from the Scikit-learn library [PVG+11] was used for an efficient search
of the nearest neighbors. The method consists in fitting a polynomial model to the
K values of the observable gik,j , k = 1, . . . ,K. Given a set of linearly independent
polynomials {Pl(θ)}l=1,...,nl

, the collocation matrix Φi reads:

Φi =

P1(θi1) · · · Pnl(θi1)
...

. . .
...

P1(θiK ) · · · Pnl(θiK )

 .

The local polynomial model is obtained by solving the following linear system:

Φiq = yi,j ,

where yi,j =
(
gi1,j · · · giK ,j

)T and q is the vector of unknowns of size nl. For
stability reasons, K must be greater than nl and so the system is solved in the least-
squares sense. In practice, we used a basis of local multivariate quadratic monomials
so that nl =

n2
p+3np+2

2 . The number of nearest neighbors is set to K = nl + 2. Once
q is computed, one obtains the following approximation of the gradient:

∇θg(xj ,θi) '
nl∑
l=1

ql∇θPl(θi). (2.38)

In what follows, this approximation of ∇θg(xj ,θi) is denoted by di,j . We now have
an easily computable approximation Ĉj of the SGM:

Ĉj = β

Nc∑
i=1

di,jd
T
i,jρi, (2.39)

which is symmetric and positive semidefinite so its eigenvalues are real and non-
negative. Note that the approximation in (2.39) is computed using the Sobol se-
quence quadrature rule and the same simulation set {gi,j} as previously computed.
This means that no additional model evaluation is required.

2.2.5.2 Parameter space dominant directions

The eigenvalues of the SGM play an important role in the classification of the
DOFs.

For a given xj the eigenvalues are denoted by λj1, . . . , λ
j
np , in descending order.

The corresponding eigenvectors, denoted by ej1, . . . , e
j
np , form an orthonormal basis

of the parameter space. The vector ej1 corresponds to the direction (in the parame-
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ter space) of maximum variation, on average, of g at xj . Its associated eigenvalue ηj1
corresponds to the mean-squared directional derivative of the observable along the
direction ej1 [Con15, Lemma 3.1]. For instance, if there are two input parameters
θ1 and θ2, then ej1 = (1, 0) means that the observable variation of g at xj is mostly
due, on average, to variations of θ1. Each xj is therefore associated with a domi-
nant direction in the parameter space ej1 and its corresponding eigenvalue ηj1. We
are now able to address the initial problem: on the one hand, the DOFs where the
variation of the observable is not significant are characterized by a low first eigen-
value. A threshold on ηj1 may be applied to remove the DOFs where the observable
variation amplitude is lower than the noise level. On the other hand, the DOFs
that are redundant from the observable point of view are characterized by “similar”
dominant directions. This notion of similarity will be introduced hereafter. Know-
ing this, we propose to divide the set of Nx dominant directions into Nk clusters
using an agglomerative hierarchical clustering algorithm. This algorithm consists
in clustering vectors according to a given similarity function. First, each vector is
associated with its own cluster and pairs of similar clusters are iteratively merged.
We refer to [LW67] for an overview of such algorithms. In the present work, we used
the Scikit-learn library [PVG+11] which provides a Python implementation of an
agglomerative hierarchical algorithm that accepts user-defined similarity functions.
The similarity function between two (unit-norm) vectors is defined as follows:

s(u,v) = |u · v| ,

i.e. the absolute value of the cosine of the angle between u and v. Once the Nx

DOFs of the full physical set are divided into Nk clusters, the ones with maximum
trace of Ĉj are chosen as their cluster representatives. The subset S is then formed
by the Nk representatives.

Remark 1
The agglomerative clustering guarantees that the sequence of selected subsets is
nested. This means that if S(n) and S(n+1) respectively count n and n+ 1 elements,
then they have n elements in common. From a practical viewpoint, the full sequence
of clusters can be computed once so that there is no additional cost linked to the
clustering when Nk increases. Furthermore, in our simulations, we noticed that
the residual had a smoother behavior as Nk increases compared to other clustering
techniques.

The output of the CS algorithm is a nested sequence of subsets S(1) ⊂ . . . ⊂ S(Nx)

and we denote by Nk the cardinality of a given subset S.

Remark 2
In the works by Constantine [CDW14] and Russi [Rus10], where the term “active
subspace” was introduced, the matrix C is used to reduce the parameter space
dimension. It is particularly efficient when dealing with complex models counting a
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very large number of parameters while only a few directions in the parameter space
are responsible for the observed variability [CELI15]. In our case it is used to reduce
the number of DOFs in the discretized physical domain. However, the interpretation
of the SGM eigenvalues and eigenvectors in terms of the sensitivity of the model is
the same. In the papers by Streif et al. [SFB06] and Himpe & Ohlberger [HO14],
a similar Gramian matrix is used to assess the observability and controllability of
linear and nonlinear systems. Though quite different from the CS analysis, their
approach is another illustration of the interpretation of Gramian matrices in terms
of sensitivity analysis.

Algorithm 2: Clustered Sensitivities algorithm.
Input:
• gi,j , i = 1, . . . , Nc, j = 1, . . . , Nx: simulation subset.

• ρ: PDF estimate.

for j = 1 to Nx do
for i = 1 to Nc do

Compute dij using (2.38)
end
Compute Ĉ(j) using (2.39);
Compute first eigenvector ej1 and eigenvalues trace t(xj) =

∑
k η

j
k;

end

Compute sequence of clusters for j = 1, . . . , Nx using similarity function s;
for Nk = 1 to Nx do
S(Nk) = {};
for k = 1 to Nk do

Select representative xk of cluster Ck as: arg max
x∈Ck

{t(x)};
Append xk to S(Nk);

end
end
Output: Subset sequence: S(1) ⊂ . . . ⊂ S(Nx).

2.2.6 Visualization and interpretation of the results

The output of the proposed algorithm is the estimated PDF values at the col-
location points: ρ(θi), i = 1, . . . , Nc. Although a direct visualization of the PDF is
possible (see Fig. 2.2), it becomes irrelevant if the number of parameters is greater
than two. Therefore it may be convenient to consider the marginal density of the
kth parameter, defined as follows:

zk(x) =

∫
· · ·
∫

θl,l 6=k

ρ(θ1, . . . , x, . . . , θnp)
∏
l 6=k

dθl. (2.40)
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An approximation of Eq.(2.40) may be computed using the discrete PDF values and
the corresponding quadrature rule.
In the numerical tests we illustrate the proposed algorithm with synthetic data,
meaning the true PDF ρ∗ of the parameters is known. There are several ways
to compare the estimated and true PDFs such as the 2–norm of their difference.
However, for density functions, it is more natural to consider the Kullback-Leibler
(KL) divergence, introduced in Lemma 2.1. Here we use a discrete approximation
of the symmetric KL divergence, defined as follows:

KL(ρ|ρ∗) =
1

2
(ϕ(ρ, ρ∗) + ϕ(ρ∗, ρ)) ,

where ϕ(u, v) = β

Nc∑
i=1

ui log(ui/vi).

It is also possible to compute the parameters moments with the estimated PDF and
compare them with their true values.

2.2.7 Main algorithm

The proposed inverse procedure consists in combining the OMM and CS algo-
rithms (see Alg. (3)). To assess the convergence of the procedure, we use the global
moment residual R ∈ RNx×Nm defined as follows:

Rj,m = β

Nc∑
i=1

gmi,jρi − µ̃j,m, j = 1, . . . , Nx, m = 1, . . . , Nm.

Note that while the OMM algorithm is designed to cancel out the residual r defined
on a subset S of D, R is defined on the full DOFs set D.
One iteration of the main algorithm consists in progressively adding DOFs to the
subset S using the CS algorithm and applying the OMM algorithm for each S until
stagnation of the ‖R‖2. Then, the SGM is updated with the new PDF estimate
and another iteration is done. The main algorithm stops when no improvement of
‖R‖2 is observed. The total number of iterations is later referred to as niter.
Figure 2.5 shows an example of the dependence between the global residual norm
‖R‖2 and the cardinality of the subset S.
Table 2.1 presents an overview of the computational cost of the whole procedure.
In practice, this cost is strongly dominated by the construction of the simulation
set (step one), each model evaluation having a high cost Cforward. However, this
step is embarrassingly parallelizable with respect to Nc. Step two is embarrassingly
parallelizable both with respect to Nc and Nx. In our implementation, the SGM
computations are only parallelized with respect to Nx. Step three is dominated by
the cost of the Hessian pseudo-inverse computation. As it scales with (NmNk)

3,
the need to reduce the number of DOFs in the physical space becomes obvious.
The pseudo-inverse computation could also be parallelized but this was not done in
our implementation. The cost of the pseudo-inverse is multiplied by nNewton, the
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Algorithm 3: Main algorithm.
Input:
• Corrected experimental moments: µ̃j,m, j = 1, . . . , Nx, m = 1, . . . , Nm;

• Number of stochastic samples: Nc;

• Tolerance parameters : α, εNewton;

Step 1:

• Build the simulation set {gi,j};

Initial guess ρ(0,0): uniform distribution over Θ ;
j = 1, Nk = 0 ;
while ‖R(j−1,Nk)‖2 not converged do

Apply CS procedure with ρ(j−1,0) (Step 2);
→ nested subsets sequence S(j,1) ⊂ . . . ⊂ S(j,Nx);

n = 1 ;
while ‖R(j−1,n)‖2 not converged do

Apply OMM procedure with S(j,n) (Step 3);
→ ρ(j,n+1);

n← n+ 1 ;
end
j ← j + 1 ;
Nk ← n ;

end
niter = j.
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number of Newton iterations.

Table 2.1: Complexity of the inverse procedure. Cforward denotes the cost of one
model evaluation.

Step Complexity Parallelizable
1. Simulation Set O (Nc × Cforward) massively w.r.t. Nc

2. Clustured Sensitivities O
(
Nx ×Nc × n3

p

)
massively w.r.t. Nc and Nx

3. Observable Moment Matching O
(
nNewton × (Nk ×Nm)3

)
possible

2.3 Comparison with existing techniques for an ODE
model

In this section, a nonlinear ODE model is introduced. It serves as a simple
reference test case to both illustrate the method and compare its accuracy and cost
with different existing techniques.

2.3.1 The MV model

The proposed numerical method is applied to an ODE model counting four state
variables g, u, v, w which satisfy

∂tg = −J1(g, u)− J2(g, θ1, θ2)− J3(g, v, w)

∂tu = f1(g, u)

∂tv = f2(g, v)

∂tw = f3(g, w)

(2.41a)

along with the initial conditions

g(0) = 0, u(0) = 0, v(0) = 1, w(0) = 1. (2.41b)

The Ji and fi are nonlinear functions of the variables and of the input parameters.
The proposed model was designed to replicate the electrical activity of a heart muscle
cell. It is known as the Minimum Ventricular model and will be referred to as the
MV model in what follows. For the sake of simplicity, it is not fully transcribed here
but we refer the reader to the original paper by Bueno-Orovio et al. [BOCF08] for
the detailed equations. Out of the numerous input parameters of the MV model, θ1

and θ2 were picked for the illustration of the method. In the original paper, these
two parameters are respectively denoted by kso and τso1. All remaining parameters
are fixed to reference values found in [BOCF08]. Our observable is the state variable
g(t) which corresponds to the cell membrane potential. Note that the relationship
between the observable and the input parameters is nonlinear.



2.3. Comparison with existing techniques for an ODE model31

0.0 0.2 0.4 0.6 0.8 1.0 1.2
t

0.0

0.2

0.4

0.6

0.8

1.0

g

θ1 = 1, θ2 = 1

selected DOFs
θ1 = 0.6, θ2 = 0.6

θ1 = 1.8, θ2 = 1.8

0.0 0.2 0.4 0.6 0.8 1.0 1.2
t

0.0

0.2

0.4

0.6

0.8

1.0

g

synthetic observable sample

Figure 2.3: Solution of the ODE model for different values of the input parameters
(left) and synthetic measurements (right). 5 time steps selected by the CS algorithm
are indicated as red circles.

2.3.2 Reference test case

Numerical settings The ODE is solved using a BDF3 scheme with adaptive
time steps. The number of DOFs Nx = 334 corresponds in this case to the number
of steps used in the time integration. The synthetic data set is generated by
evaluating the model in (2.41) for N = 103 samples of θ = (θ1, θ2). The samples
are drawn from an uncorrelated bivariate normal distribution of mean µ = [1.1, 1.1]

and covariance matrix Σ = 0.12 × I2.
First, the noise level is set to 5% for the comparison study but its influence is
investigated later in this section. The first Nm order moments are computed using
(2.3) and stored for the inverse problem. Our strategy is applied to the joint
PDF estimation of the synthetic population θ1 and θ2. The stochastic domain
Θ = [0.6, 1.8]2 is discretized using Nc = 1024 quadrature points from the Sobol
sequence. It should be noted that the width of the stochastic domain is equal to
12σ and is not centered on µ. Taking a domain which is wide enough with respect
to the exact PDF support, and not centered on the exact mean, is important if one
wants to assess the accuracy of the method without any “favorable bias” induced
by the choice of the stochastic domain bounds. Indeed, in practical cases, one does
not have a precise knowledge on the exact means and standard deviations of the
parameters distributions.

To investigate the effect of several hyper-parameters of the procedure, the num-
ber of global iterations in temporarily set to niter = 1. The CS procedure is applied
with the initial guess ρ(0,0) being a uniform distribution over Θ. Figure 2.4 shows
the SGM eigenvectors ej = (e1, e2)j , j = 1, . . . , Nx. The size of the markers is pro-
portional to the logarithm of the associated eigenvalues ηj . Since the eigenvectors
are normalized, the points are scattered over the unitary circle. Each cluster is fea-
tured with a different color (here Nk = 5 so the points are divided into 5 clusters).
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Figure 2.4: Scatter plot of the SGM first eigenvector for each DOF xj . Nk = 5.

Influence of Nk Here we investigate the effect of Nk. The other hyper-parameters
are fixed: Nm = 3 and Nc = 512. The CS procedure is applied for Nk varying from
2 (np) to 334 (Nx). Figure 2.5 shows the evolution of the KL divergence KL(ρ|ρ∗)
and the residual norm ‖R‖2 with respect to the number of selected DOFs Nk. The
KL divergence and the global residual norm ‖R‖2 are not monotonic with respect
to Nk but they both follow the same decreasing trend. From Nk = 50, there is no
significant change in the KL divergence. Both observations confirm the relevance
of the CS procedure and of the a priori error analysis. Table 2.2 summarizes the
parameters estimated statistics (mean and standard deviation) with respect to Nk.
It is clear that a certain convergence is reached as Nk increases, both in the KL
divergence and in the parameters statistics themselves.
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Figure 2.5: Convergence of the KL error and residual norm as the number of selected
DOFs Nk increases.

Influence of Nc The effect of the number of stochastic collocation points Nc is
investigated with Nm = 3 and Nk = 50. Nc varies from 2 to 210 and Nm = 3 and
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Table 2.2: Observable Moment Matching results for different values of Nk (Nc = 512
and Nm = 3).

Statistics KL(ρ|ρ∗) mean std

Number of DOFs θ1 θ2 θ1 θ2

Nk = 2 3.84 1.2124 1.1458 0.343 0.231

Nk = 5 6.45 ×10−1 1.1080 1.1071 0.150 0.127

Nk = 10 4.18 ×10−1 1.1078 1.1118 0.140 0.135

Nk = 20 1.65 ×10−1 1.1006 1.1068 0.119 0.121

Nk = 50 4.10 ×10−2 1.0978 1.1037 0.108 0.103

Nk = 100 2.49 ×10−2 1.0974 1.1037 0.106 0.103

Nk = 200 2.94 ×10−2 1.0971 1.0383 0.105 0.103

Nk = 334 3.01 ×10−2 1.0970 1.1039 0.105 0.103

Empirical 0 1.0972 1.1042 0.104 0.102

Nk = 50 are fixed. Table 2.2 shows the means and standard deviations of θ1 and θ2

estimated by the Observable Moment Matching algorithm as well as their empirical
values. The empirical moments correspond to the moments computed directly from
the synthetic parameter samples using the following formula:

µm,k =
1

N

N∑
i=1

θmi,k, m = 1, . . . , Nm, k = 1, . . . , np. (2.42)

As expected, the estimation is more accurate when Nc increases. Note that the
computational cost of increasing Nc is limited owing to the deterministic and nested
nature of the Sobol sequence. If one already has evaluated the model for Nc1 sample
points and wants Nc2 model evaluations, one only has to perform Nc2−Nc1 forward
runs to complete the simulation set.

Influence of the noise level The synthetic measurements are corrupted by
adding some noise to the numerical results. Table 2.4 shows the estimated means
and standard deviations of θ1 and θ2 for different noise levels. As expected, the
accuracy of the method decreases as the noise increases.

Non-normal distributions In order to assess the robustness of the method, a
similar but more complex heart cell model [DMH+11] is used. It consists of a set of
29 nonlinear coupled ODEs and we aim at estimating the PDF of two parameters of
this model. The synthetic dataset is generated by sampling the parameters of inter-
est from two known distributions: a bivariate log-normal distribution Log−N (0, σ2

1)

and a bivariate Gaussian mixture N (1, σ2
2) +N (2, σ2

2) with σ1 = 0.7 and σ2 = 0.2.
In both cases, the synthetic dataset is corrupted by a zero-mean Gaussian noise of
amplitude 5%.
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Table 2.3: Observable Moment Matching results for different values of Nc (Nk = 50
and Nm = 3).

Statistics KL(ρ|ρ∗) mean std

Number of stochastic points θ1 θ2 θ1 θ2

Nc = 4 1.62 1.1328 1.1378 0.187 0.189

Nc = 8 1.89 1.1000 1.1241 0.116 0.151

Nc = 16 8.48 ×10−1 1.1006 1.1002 0.123 0.105

Nc = 32 2.69 ×10−1 1.0995 1.1109 0.119 0.134

Nc = 64 1.02 ×10−1 1.0968 1.1049 0.107 0.110

Nc = 128 5.04 ×10−2 1.0965 1.1038 0.106 0.104

Nc = 256 4.99 ×10−2 1.0979 1.1039 0.109 0.105

Nc = 512 4.10 ×10−2 1.0978 1.1037 0.108 0.103

Nc = 1024 4.20 ×10−2 1.0978 1.1037 0.108 0.104

Empirical 0 1.0972 1.1042 0.104 0.102

Table 2.4: Observable Moment Matching results for different noise levels (Nc = 512,
Nk = 50 and Nm = 3).

Statistics KL(ρ|ρ∗) mean std

Noise level θ1 θ2 θ1 θ2

80% 1.55 1.1027 1.1543 0.120 0.251

20% 1.23 ×10−1 1.0967 1.1019 0.105 0.094

10% 6.97 ×10−1 1.0994 1.1161 0.117 0.162

5% 4.10 ×10−2 1.0978 1.1037 0.108 0.103

2% 3.92 ×10−2 1.0978 1.1051 0.107 0.108

1% 3.79 ×10−2 1.0977 1.1050 0.107 0.108

0% 3.70 ×10−2 1.0977 1.1048 0.107 0.107

Empirical 0 1.0972 1.1042 0.104 0.102
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The inverse procedure is applied to the log-normal case with the following numerical
settings: Nc = 2048, Nm = 3 and convergence is reached at niter = 1 and Nk = 21.
The PDF values are shown in Figure 2.6 and the marginal densities in Figure 2.7.
Note that the strong skewness of the true distribution is well captured by the pro-
posed inverse procedure.
The inverse procedure is then applied to the Gaussian mixture case with the follow-
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Figure 2.6: PDF estimation of a bivariate log-normal distribution: direct visualiza-
tion.
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Figure 2.7: PDF estimation of a bivariate log-normal distribution: marginal densi-
ties.

ing numerical settings: Nc = 2048, Nm = 3 and convergence is reached at niter = 1

and Nk = 31. The PDF values are shown in Figure 2.8 and the marginal densities
in Figure 2.9. Note that strong correlation between θ1 and θ2 is fully captured.

2.3.3 Comparison with existing techniques

In this section, the proposed approach is compared to existing techniques on the
reference test case described in 2.3.2. We show that all three approaches achieve
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Figure 2.8: PDF estimation of a bivariate Gaussian mixture: direct visualization.

0 1 2 3 4 5
θ1

0.0

0.2

0.4

0.6

0.8

1.0

m
ar

gi
n
al

d
en

si
ty

OMM

exact

0 1 2 3 4 5
θ2

0.0

0.2

0.4

0.6

0.8

1.0

m
ar

gi
n
al

d
en

si
ty

OMM

exact

Figure 2.9: PDF estimation of a bivariate Gaussian mixture: marginal densities.
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the same precision on the parameters estimations but with a different number of
function evaluations.

Least-squares moment-matching An alternative to the present approach is to
directly minimize the moment difference using a least-squares method. In [ZG08],
the quantity of interest is represented as a finite polynomial expansion of d uncor-
related random variables ξ = {ξ1, . . . , ξd}. The methodology was applied to inverse
heat conduction problems and to microstructure reconstruction. This approach was
applied to our test case. Here, the quantities of interest are the two parameters
θ1 and θ2 and the observable is the variable u. Using the methodology presented
in [ZG08], the parameter θj is expanded on a sparse grid as follows:

θj(ξ) =

nk∑
k=1

θj(ξk)Lk(ξ) =

nk∑
k=1

qj,kLk(ξ),

where qj,k = θj(ξk), the ξk are the sparse grid collocation points and Lk the members
of the polynomial basis. Then, one can approximate the moments of the observable
using the sparse grid quadrature rule:

µ∗m(xj) =

nk∑
k=1

wkg(xj , ξk)
m,

where the wk are the sparse grid weights. The cost function J is defined as the
squared difference between the approximated and experimental moments:

J =
1

2

Nm∑
m=1

Nx∑
j=1

αm (µ∗m(xj)− µm(xj))
2 ,

where the αm are user-defined weights. The problem now consists in minimizing J
with respect to the coefficients qj,k. In [ZG08], this is done by a gradient descent
method which involves solving the sensitivity equations associated with the model.
For the sake of simplicity, to avoid the tedious derivation of the sensitivity equations
of the MV model, we used the Covariance Matrix Adaptation Evolution Strategy
(CMA-ES) evolutionary algorithm [Han06] to minimize J . Since the minimization
strategy differs from that of [ZG08], the number of model evaluations needed to
reach convergence may differ. This is to be taken into account when comparing the
three methods in Table 2.5.

Population approach (SAEM) Here we tackle the inverse problem from a rad-
ically different perspective, belonging to the so-called population approaches. It
consists in seeking a Maximum Likelihood (ML) estimate of the unknown param-
eters. The MV test case can be seen as a mixed effects model where the observed
data are the yi,j , i = 1, . . . , N , j = 1, . . . , Nx and the parameters θ1, θ2 are the non-
observed data. We assume that the observed data are outputs of the MV model
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with an additive noise εi,j assumed to be normally distributed: ε ∼ N
(
0, τ2

)
.

yi,j = g(θi,xj) + εi,j .

Assuming each θj is normally distributed, θj ∼ N
(
µj , σ

2
j

)
, the likelihood L reads:

L(y, θ; τ, µk, σk) =
(
2πσ2

1σ
2
2

)−N/2 (
2πτ2

)−NNx/2
exp

− 1

2τ2

∑
i,j

(yi,j − g(θi,xj))
2

− 1

2σ2
1

∑
i

(θ1,i − µ1)2 − 1

2σ2
2

∑
i

(θ2,i − µ2)2

]
.

Note that this approach differs from the other two on two major aspects. First,
it is a parametric approach, meaning we are not seeking a pointwise estimate of
the PDF but a parameterization of it (here a Gaussian parameterization). Sec-
ond, the method provides, by construction, an estimation of the noise level of the
measurements. In the other two approaches, the noise structure and amplitude is
assumed to be known. The parameters τ, µk, σk are found by maximizing the log-
likelihood log(L), which is challenging due to the nonlinear relationship between
g and θ1, θ2. This is called the Maximum Likelihood Estimation (MLE) method.
In the case of linear models, the maximum likelihood is usually found using the
Expectation Maximization (EM) algorithm [DLR77]. The paper by E. Kuhn and
M. Lavielle [KL05] introduces a modified version of the EM algorithm to tackle cases
where the models are nonlinear. The authors developed a Stochastic Approximation
of the Expectation Maximization algorithm (SAEM) to solve the MLE problem. For
the comparison study, we used Monolix R© [Lix14], the Matlab R© implementation of
the SAEM algorithm. This software was initially designed to perform the parameter
estimation of pharmacokinetics-pharmacodynamics (PK-PD) models. Compared to
PDEs, those models are usually computationally cheap so that the software does
not look for a solution with minimum model evaluations. However, one may reduce
the computational cost by constructing a pre-computed grid of solutions and then
interpolate in that grid instead of evaluating the full model. The Monolix software
was successfully used in [GLV14] to estimate the parameters of a 1–D PDE model.
Such a strategy was not adopted in this paper and the software was used as is.

Comparison We applied the Clustered Sensitivities / Observable Moment
Matching algorithms and both the previously described methods to the reference
test case described in 2.3.2. The numerical settings for our method are: Nc = 512,
Nm = 3 and Nk = 50. For the least-squares method, we used a two-dimensional
sparse grid using the Smolyak rule [HW08] to discretize the parameter space with
Nc = 9 and the first Nm = 3 moments were matched. As explained before, the
SAEM algorithm was applied using the Monolix software with default settings.
Table 2.5 shows the estimations of the parameters moments and the number of
model evaluations needed for the three methods. For all three approaches, the
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errors on the means are less than 1% and the errors on the standard deviations
are less than 10%. Even though the SAEM appears to be more precise than the
other two, the main difference lies in the number of model evaluations needed. Our
approach requires much less model evaluations and those evaluations are made
offline, once and for all. Again, our implementation of the least squares method
presented in [ZG08] may require more model evaluations due to the minimization
strategy adopted.

Table 2.5: Comparison with existing techniques

Exact SAEM least-squares OMM

moment order θ1 θ2 θ1 θ2 θ1 θ2 θ1 θ2

1 1.0972 1.1042 1.0975 1.1051 1.0972 1.1019 1.0963 1.1015

2 1.2147 1.2297 - - 1.2133 1.2215 1.2125 1.2224

3 1.3566 1.3810 - - 1.3522 1.3616 1.3520 1.3663

std 0.104 0.102 0.104 0.102 0.098 0.086 0.103 0.095

model evaluations - 2.98× 106 1.67× 105 512

2.4 Numerical illustrations

We now apply our strategy to the PDF estimation of parameters for two PDEs.

2.4.1 Application to an elliptic PDE: the Darcy equations

In this section, we focus on the following two-dimensional PDE posed in the
bounded domain D = [0, 1]× [0, 1]:

−∇ · (K∇p) = 0, x ∈ D,
p = f, x ∈ ΓD,

K∇p · n = 0, x ∈ ΓN ,

where p is the fluid pressure, f a deterministic function defined on the boundary ΓD
and {ΓD,ΓN} is a partition of ∂D. In what follows, f will be set to 1 at the inlet
and to 0 at the outlet (see Fig. 2.10). The Darcy model states that the fluid velocity
is linked to the pressure as follows by u = −K∇p. We assume that the source of
variability comes from the heterogeneous permeability field K(x). Using a similar
example found in [ZG08], we assume that the spatial variation in the permeability
field follows an exponential correlation: c(xi,xj) = exp

(
− |xi−xj |b

)
, where b is the

correlation length, set to b = 0.2 in our case. From a physical viewpoint, this means
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Figure 2.10: Schematic of the problem geometry and location of 25 sensors auto-
matically selected by the CS procedure (out of 400 available sensors).

that the porous medium is relatively smooth. Then, we choose to represent the ran-
dom field K as a linear combination of the first 5 eigenmodes K̂k of the correlation
kernel K(x) = 1 +

∑5
k=1 θkK̂k(x), where the θk are the random parameters. Fig-

ure 2.11 shows the eigenmodes of the correlation kernel and Figure 2.12 shows one
realization of the random permeability field, along with the outputs of the model,
namely the pressure field p and the horizontal velocity ux.
The objective is to apply the proposed approach to recover the PDF of the perme-
ability field expansion coefficients θk from observations of ux and p on the bound-
aries. Retrieving the permeability in the domain by exploiting only boundary mea-
surements is a particular case of the Calderón problem, which is a difficult and
generally ill-posed inverse problem.

Numerical settings The observable is defined as follows: 200 sensors for ux
(resp. p) are uniformly distributed over the boundary ΓD (resp. ΓN ) so that
Nx = 400. The synthetic data set is generated by evaluating the model for
N = 104 samples of θ = (θ1, . . . , θ5). The samples are drawn from an uncorrelated
multivariate normal distribution of mean µ = 2.5 × 10−2 × [1, 1, 1, 1, 1] and
covariance matrix Σ = 3.3 × 10−2 × I5. Nc = 214 collocation points are generated
using the Sobol sequence over the domain Θ = [−0.2, 0.2]5, the number of moments
to be matched is set to Nm = 3 and the tolerance parameter is set to α = 1× 10−3.
The PDE model is solved using the FreeFem++ [Hec12] finite element software. A
different discretization is used for both sets. For the synthetic dataset, the model
is solved on a fine grid of 23550 triangles. For the simulation set, the model is
solved on a coarse mesh of 944 triangles. In addition, a Gaussian zero-mean noise
of amplitude 5% is added to the sensors measurements.
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Results The proposed inverse procedure is applied and convergence is reached
at niter = 2 and Nk = 25. Figure 2.10 shows the position of final selected DOFs.
Note that points were automatically selected on each boundary even though this
was not imposed in the CS procedure. Figure 2.13 shows the estimated marginals of
the five parameters along with their exact distributions. Table 2.6 summarizes the
estimated parameters statistics to be compared to their exact values. The means
are in good agreement, with an error of the order of 1%. The standard deviations
feature a higher error, especially for the fifth mode parameter. The sources of error
are diverse. The mesh used to generate the simulation dataset is coarser than the one
used for the synthetic dataset. This induces a higher numerical diffusion. Moreover,
the added noise may also contribute to the error, especially for the higher order
modes coefficients.
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Figure 2.11: Contours of the first 5 eigenmodes of the correlation kernel.
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Figure 2.12: Contours of one realization of the Darcy model. Left: permeability,
center:horizontal velocity, right: pressure. Black squares indicate where the velocity
and pressure fields are observed.
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Figure 2.13: Marginal densities of five parameters estimated using the OMM
method.

Table 2.6: Darcy model

Statistics mean std.

Parameter exact OMM rel. err.(%) exact OMM rel. err.(%)

θ1 2.48e-02 2.49e-02 0.5 3.33e-02 3.08e-02 7.4

θ2 2.46e-02 2.49e-02 1.2 3.35e-02 3.39e-02 1.3

θ3 2.56e-02 2.53e-02 0.9 3.36e-02 2.82e-02 16

θ4 2.55e-02 2.58e-02 1.1 3.33e-02 2.90e-02 13

θ5 2.49e-02 2.52e-02 1.4 3.31e-02 5.00e-02 51
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2.4.2 Application to a parabolic PDE: the FKPP equation

In this section, we illustrate our strategy with the FKPP equation, originally in-
troduced by Fisher [Fis30], later revisited by Kolmogorov, Petrovskii and Piskunov.
It is a nonlinear reaction-diffusion equation defined by:

∂u

∂t
− ν∆u = Ru(1− u) + f(x, t), x ∈ [0, 1]2, t ∈ [0, T ],

∇u · n = 0, x ∈ ∂[0, 1]2, t ∈ [0, T ],

u(x, t = 0) = 0, x ∈ [0, 1]2,

where u is a time and space dependent variable, R is the reaction parameter and ν
the diffusion field, here considered uniform and constant equal to 10−3. Provided
that R/ν � 1 and given an ad hoc source term f , the FKPP equation admits
travelling waves solutions. In practice, u exhibits a propagation front across which
u switches from 0 to 1. It is often considered as the simplest PDE model presenting
this feature. This has motivated the use of FKPP for a large variety of applications
(examples include population dynamics, tumor growth and fire propagation). Here
f , later referred to as the stimulation, was designed so that such a propagation would
be observable: if (x− x0)2 + (y − x0)2 ≤ r2

0, t ∈ [t0, t0 + δ0] then f(x, t) = I0,
otherwise f(x, t) = 0, where (x0, y0) are the coordinates of the stimulation, I0 = 1.0

its amplitude, r0 = 3× 10−2 its radius and δ0 = 5 its duration. The total duration
of the simulation is set to T = 20. Figure 2.14 shows an instance of the FKPP
model output. The contour plots of u exhibit the propagating front (left and right)
while the time dependence of u at a given location exhibits a logistic shape. The
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Figure 2.14: Solution of the FKPP model at different times (left, center) and time-
dependent solution at a given point (right).

source of variability is assumed to come from the reaction parameter R and from
the stimulation coordinates x0 and y0: R = R̄θ1, x0 = θ2, y0 = θ3, where R̄ = 10.

Numerical settings The observations are the values of u at Nt = 200 time
steps times Nh = 81 sensors locations, uniformly distributed over [0, T ] × [0, 1]2 so
that Nx = 16200. The synthetic dataset is generated by evaluating the model for
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N = 103 samples of θ = (θ1, θ2, θ3). The samples are drawn from a multivariate
normal distribution of mean µ = [0.55, 0.55, 0.50] and covariance matrix Σ = σ2×I3,
where σ = 0.1. Nc = 2048 collocation points are generated using the Sobol sequence
over the domain Θ = [0.1, 1.0]3, the number of moments to be matched is set to
Nm = 3 and the tolerance parameter is set to α = 5 × 10−3. The PDE model is
solved using an in-house software implementing the finite element method. Time
integration is performed using the Strang [Str68] splitting scheme with fixed time
step. Its application to a similar reaction diffusion model is detailed in [SLT05].
Again, a different discretization is used for both simulation sets. The simulations
used to generate the synthetic data are run on a mesh counting 40328 elements
whereas the simulations used to solve the inverse problem are run on a coarse mesh
counting 11478 elements. In addition, a Gaussian zero-mean noise of amplitude 5%

is added to the sensors measurements.

Physical domain reduction This test case where the observable depends on
time and space is a good illustration of the crucial need for a DOF selection pro-
cedure. Indeed, in this setting, Nx ' 104 which makes the inverse problem both
ill-conditioned and computationally intensive. In this example, it is particularly
interesting to interpret the results of the CS procedure. Figure 2.15 shows the
contours of the components of the SGM first eigenvector ej1 (dominant direction)
multiplied by its associated eigenvalue ηj1 over the physical domain D. Each col-
umn corresponds to one component of ej , i.e. to one parameter, and each row to
a different time. The space-time areas of interest now appear clearly. For small
times, the parameters are the most identifiable in the vicinity of the domain center.
As the front propagates outwards, the important areas are located near the domain
boundaries.

Results The proposed inverse procedure is applied and convergence is reached
at niter = 3 and Nk = 48 DOFs are selected. Figure 2.16 shows the location and
time of the selected sensors. Again, note that they are concentrated around the
center of the domain for small times (the stimulation occurs, in average, near the
center of the domain) and that they gradually spread outwards as time increases.
Figure 2.17 shows the estimated marginals of the three parameters of interest and
Table 2.7 summarizes the parameters estimated statistics. Again, the method yields
reasonably accurate results considering the low number of model evaluations and the
difficulty of the inverse problem. As explained in the previous test case, the errors
in the standard deviations estimates stem from the noise and the mesh differences.
Note however that there is also a positive bias in the estimation of the reaction
parameter R. This is due to the fact that the Sobol simulations mesh is coarser than
the synthetic simulations one, inducing a higher numerical diffusion. The higher
value obtained for R is therefore the result of a compensation. This explanation
was confirmed by using identical meshes for both Sobol and synthetic simulations.
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Figure 2.15: Measure of the sensitivity (ηj |ej,k|) over the spatial domain at different
times and for each parameter θk.
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Figure 2.16: Representation of the 48 selected sensors locations and times.

Table 2.7: Results for the FKPP equation.

Statistics mean std.

Parameter exact OMM rel. err.(%) exact OMM rel. err.(%)

θ1 0.55 0.59 5.8 0.098 0.16 66

θ2 0.55 0.55 0.4 0.105 0.12 9.3

θ3 0.50 0.50 0.5 0.103 0.11 8.0
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Figure 2.17: Marginal densities of three parameters of the FKPP model estimated
using our strategy.

2.5 Limitations and Discussion

The authors would like to insist on the fact that the proposed method provides
an estimation that is an approximation of the real underlying PDF of the parame-
ters on the basis of the partial information we have. One of the main interests of our
approach is to offer a relatively inexpensive way to estimate parameter variability.
We chose to illustrate it with PDEs (including a nonlinear time-dependent diffusion
reaction equation) to emphasize this aspect. For problems whose forward solution
is less expensive, alternative methods, like Bayesian inference, should probably be
preferred.
The proposed approach aims at providing a point-wise approximation of the PDF
with no assumption of independence between the parameters. It is in fact possible
to recover PDFs that exhibit a correlation between parameters as shown in Sections
2 and 3 of the Supplementary Material. This supposes however that such a depen-
dence is observable, meaning it is present in the observable quantities. For example,
if the model is the identity (i.e. one observes directly the parameters), then a pos-
sible correlation between the parameters cannot be directly recovered. In that case
however, one can add to the observations the pairwise products of the parameters
for instance. For any given model, it is possible to detect which DOFs are well suited
for the observation of such correlations using the SGM matrix. Indeed, dominant
directions in the parameter space that are not aligned with the axes reveal corre-
lations between the parameters. Automatically selecting DOFs targetted to reveal
correlations is not discussed here but will be the subject of future work.
The authors would also like to point out that the present approach has been applied
in an electrophysiology context in [TLRG17] with both synthetic and experimental
data. The data and codes related to that study are available on an online GitHub
repository 1. Another important point to be discussed is the case where some pa-
rameters of the model are unidentifiable. There exist many methods to assess the
identifiability of parameters (such as in [PL15]) which are not the point of the
present work and which are therefore not discussed here. Nevertheless, it is interest-
ing to study how the proposed method behaves when confronted to unidentifiable
parameters. In practice, an unidentifiable parameter is often characterized by a flat

1https://github.com/eltix/omm_jrsi

https://github.com/eltix/omm_jrsi
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estimated PDF. To assess whether this means that the underlying parameter actu-
ally has a uniform PDF or if this means it is unidentifiable, we suggest the following
numerical procedure. First, note that the estimated PDF satisfies, by construction,
the constraints. We propose to add a small perturbation term to the PDF in the di-
rection of the presumably unidentifiable parameter (so that the perturbed function
is a PDF). If the constraints are still verified, this usually means the parameter in
question is unidentifiable. If they are not, its distribution is probably uniform.
In the present work, the PDF is discretized using a quasi-random Sobol sequence.
This choice was motivated in part by practical reasons as it is non intrusive and
features a simple quadrature rule. Other discretizations could be investigated such
as stochastic Galerkin-type discretization [BNT07] of the model or a polynomial
expansion of the PDF [HLM14].

2.6 Concluding remarks

We have developed a procedure to estimate the PDF of uncertain parameters
from the knowledge of experimental moments of an observable. This iterative pro-
cedure is based on two combined algorithms. The first one, the Observable Moment
Matching (OMM) algorithm, computes an estimate of the parameters PDF using
a given subset of the available model DOFs. It maximizes the PDF entropy under
the constraints of matching the moments of the observable in the subset DOFs.
The second one, the Clustered Sensitivities (CS) algorithm, selects a subset of the
available model DOFs. The DOFs are clustered using a similarity measure and a
representative for each cluster is chosen to maximize the sensitivity with respect to
the parameters. Selecting a subset of Nk DOFs among the Nx available ones ensures
a better-conditioned and less computationally expensive inverse problem solved in
the OMM algorithm.
This approach has been compared to existing techniques on an ODE test case. While
requiring much less model evaluations, our method has a similar accuracy. Then, it
has been tested on more sophisticated cases involving an elliptic (resp. parabolic)
PDE model with 5 (resp. 3) uncertain parameters. To conclude, we comment on
details that have not been thoroughly investigated in this paper but still are worth
mentioning. First, the choice of parameter box (or stochastic domain) is very im-
portant and conditions the overall success of the procedure. In our tests, we used
a large box with respect to the exact PDF support and not centered on the exact
mean to avoid any favorable bias. In the case of real experimental data, a reasonable
strategy would be to first try a very large box and use the PDF estimate to recenter
and rescale the box for a second run. Another strategy would be to locally refine
the stochastic grid to capture the regions of interest. Applying different weights
in the moment-matching constraints depending on the moment order has also not
been investigated but could impact the precision of the method. One could use
higher weights for the higher moment components or for certain DOFs. Finally, one
possible use of the proposed approach could be to produce a cheap PDF estimation
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used as a prior for more expensive methods such as Bayesian inference.
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2.7 Appendix

2.7.1 Calculus of variations

Let us derive the Gâteaux derivative of L with respect to ρ. Let v ∈ L1(Θ) and
ε > 0, one reads:

L (ρ+ εv, λ, ν) =

∫
Θ

(ρ+ εv) log(ρ+ εv) (2.43)

−
Nm∑
m=1

∫
D
λm(x)

(∫
Θ
gm(x,θ)(ρ+ εv)− µ̃m(x)

)
dx− λ0

(∫
Θ

(ρ+ εv)− 1

)
(2.44)

−
∫

Θ
(ρ+ εv)ν, (2.45)

(2.46)

Let −S(ρ+ εv) =
∫

Θ(ρ+ εv) log(ρ+ εv), then:

−S(ρ+ εv) =

∫
Θ

(ρ+ εv)(log(ρ) + εv
1

ρ
+O(ε2)), (2.47)

=

∫
Θ
ρ log(ρ) + εv(1 + log ρ) +O(ε2). (2.48)

Therefore, one has:

L (ρ+ εv, λ, ν)− L (ρ, λ, ν) = ε

∫
Θ

[
1 + log(ρ)−

Nm∑
m=1

∫
D
λm(x)gm(x,θ)dx− λ0 − ν

]
v +O(ε2)

(2.49)

and finally the derivative in the direction of v reads:〈
∂L
∂ρ
, v

〉
Θ

:= lim
ε→0

L (ρ+ εv, λ, ν)− L (ρ, λ, ν)

ε
, (2.50)

=

∫
Θ

[
1 + log(ρ)−

Nm∑
m=1

∫
D
λm(x)gm(x,θ)dx− λ0 − ν,

]
v (2.51)

so that

∂

∂ρ
L (ρ, λ, ν) = 1 + log(ρ)−

Nm∑
m=1

∫
D
λm(x)gm(x,θ)dx− λ0 − ν. (2.52)
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The first variations of L with respect to λ0 and λ are, by construction of the La-
grangian, the constraints:

∂
∂λ0
L (ρ, λ, ν) =

∫
Θ ρ(θ) dθ − 1, (2.53)

∂
∂λm
L (ρ, λ, ν) =

∫
Θ g

m(x,θ)ρ(θ) dθ − µ̃m(x), m = 1, . . . , Nm (2.54)

2.7.2 Illustration of the analysis hypotheses

In this section, we provide examples of models and PDFs which satisfy the
hypotheses of Lemma 2.2 of the main document: there exist C, δ > 0 such that, for
all p ∈ N∗,

‖g‖Lp(D×Θ),ρe :=

(∫
D

∫
Θ
g(x,θ)pdxρedθ

)1/p

≤
(

C

p1+δ

)1/p

. (2.55)

Example 1 Let us consider the following ODE model:{
u̇(t) = −u(t), t ∈ [0, T ].

u(0) = θ.
(2.56)

The solution simply is u(t, θ) = θe−t. The observable g is defined as g := u. The
parameter space is Θ = [0, 1] and the physical space D = [0, T ]. Let us now evaluate
the quantities in Equation 2.55:∫

D

∫
Θ
g(x,θ)pdxρedθ =

∫ T

0

∫ 1

0
g(t, θ)pρe(θ)dtdθ,

=

(∫ T

0
e−ptdt

)(∫ 1

0
θpρe(θ)dθ

)
,

=
1

p

(
1− e−pT

)(∫ 1

0
θpρe(θ)dθ

)
,

≤ 1

p

(∫ 1

0
θpρe(θ)dθ

)
.

Therefore, a sufficient condition to satisfy the hypothesis in (2.55) with C = 1 and
δ = 1/2 is that, for all p ∈ N∗, ∫ 1

0
θpρe(θ)dθ ≤

1√
p
. (2.57)

Examples of densities ρe that verify (2.57) are for instance U ([0, 1]), N (1/2, τ) for
any τ > 0.
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Example 2 Let us consider the following ODE model:{
u̇(t) = −θu(t), t ∈ [0,+∞[.

u(0) = 1.
(2.58)

The solution reads u(t, θ) = e−θt. The observable g is defined as g := u|t≥t0 , with
t0 > 0. The parameter space is Θ = [0, 1] and the physical space D = [t0,+∞[. Let
us now evaluate the quantities in Equation 2.55:∫

D

∫
Θ
g(x,θ)pdxρedθ =

∫ ∞
t0

∫ 1

0
g(t, θ)pρe(θ)dtdθ,

=

∫ 1

0

1

θp
e−θpt0ρe(θ)dθ,

=
1

p

(∫ 1

0

1

θ
e−θpt0ρe(θ)dθ

)
.

For example, we consider the probability distribution ρe(θ) = 2θ:∫
D

∫
Θ
g(x,θ)pdxρedθ =

1

p2

1− e−pt0
t0

,

≤ 1/t0
p2

.

Therefore (2.57) is verified by choosing δ = 1 and C = 1/t0.

2.7.3 Illustration with an unidentifiable model

Consider the following simple model:{
u(θ1, θ2) = θ1 − θ2, (θ1, θ2) ∈ Θ

g := u
(2.59)

Let us now assume that the observations are generated by sampling (θ1, θ2) from an
unknown distribution such that θ1 and θ2 are perfectly correlated. This means that,
for each sample, θ1 = θ2. Then, the model output and therefore all its moments are
identically 0. It is interesting to study how the OMM algorithm behaves in such a
degenerated case and if it is able to capture the dependence between the parameters.
The analytical solution to the observable moment matching problem is as follows:

ρ(θ1, θ2) = exp(λ0 − 1) exp(
m∑
k=1

λk(θ1 − θ2)k), (2.60)

x

(θ1,θ2)∈Θ

(θ1 − θ2)p exp

(
m∑
k=1

λk(θ1 − θ2)k

)
dθ1dθ2 = 0, 1 ≤ p ≤ m (2.61)



52

where m is the number of observed moments. In what follows, we choose
Θ = [−1, 1]2.

m = 1 In that case, the Lagrange multiplier λ1 is the root of:

8 sinh(λ1)

λ3
1

[λ1 cosh(λ1)− sinh(λ1)] , (2.62)

whose only root is λ1 = 0 (the previous expression is undefined for λ1 = 0 but a
Taylor expansion shows that its limit is 0 when λ1 → 0). The resulting PDF is
therefore a uniform distribution over [−1, 1]2. The numerical experiments confirm
this analytical result.

m = 2 If m = 2, λ2 → −∞ analytically. We can however study the case where
the second order moment is not 0 but ε > 0 and then make ε tend to 0. This would
correspond to the case where there is a Gaussian noise added to the measurements
and whose amplitude would tend to 0. The resulting PDFs are shown in Figure 2.18
with different values of ε. For a given value of ε > 0, the PDF is a univariate
normal distribution of standard deviation (−2λ2)−1/2 in the direction θ1 = θ2. This
is equivalent to a bivariate normal distribution in the degenerate case where θ1 and
θ2 are perfectly correlated (and therefore the covariance matrix is not invertible).

Analytically, when ε→ 0+, λ2 → −∞ and the PDF tends to a Dirac distribution
in the direction θ1 = θ2. Numerically, λ2 takes finite values when ε = 0. However,
we observe in Figure 2.19 that λ2 → −∞ when the number of quadrature points
Nc → +∞. The estimated PDF (lower right corner of Figure 2.18) corresponds to
a discretized approximation of the Dirac distribution.
As a conclusion, the dependence between the two parameters, and in particular
their perfect correlation, is captured by the OMM method as soon as two or more
moments are observed. However, the true distribution cannot be recovered due to
the non-identifiability of the model.
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Figure 2.18: Model (2.59). Point-wise visualization of the estimated PDF for differ-
ent values of ε.
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Chapter 3

Modeling Variability in Cardiac
Electrophysiology: A Moment Matching

Approach

This chapter is based on [TLRG17]

The variability observed in action potential (AP) cardiomyocyte measurements is the
consequence of many different sources of randomness. Often ignored, this variability may
be studied to gain insight into the cell ionic properties. In this chapter, we focus on
the study of ionic channel conductances and we describe a methodology to estimate their
probability density function (PDF) from action potential recordings. The method relies
on the matching of observable statistical moments and on the maximum entropy principle.
We present four case studies using synthetic and experimental AP measurements sets from
human and canine cardiomyocytes. In each case, the proposed methodology is applied to
infer the PDF of key conductances from the exhibited variability. The estimated PDFs
are discussed and, when possible, compared to the true distributions. We conclude that
it is possible to extract relevant information from the variability in AP measurements and
discuss the limitations and possible implications of the proposed approach.
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3.1 Introduction

The variability observed in action potential (AP) measurements is, like in most
biological systems, the consequence of many different sources of randomness. In
this paper we focus on parameter randomness which, in the context of AP model-
ing, corresponds to the natural variability of the cardiomyocyte electrical proper-
ties such as its capacitance, ionic channel conductances and gate time constants.
Due to the large number of free parameters in AP models, these parameters are
in practice unidentifiable [SS10, DL04]. In fact, different combinations of these pa-
rameters can lead to the same AP. Therefore, we choose to restrict our analysis
to ionic channel maximal current densities which for convenience are referred to
as conductances in the following. Among these conductances, a subset is selected
to account for the observed variability depending on the available data set. AP
measurements may result from heterogeneity within a population of cells (inter-
subject variability) [SBOW+14] or from dynamic variations within a single cell
(intra-subject variability) [JCB+15, PDB+16]. In this paper, we propose a novel
way to study the variability of AP models parameters in both contexts. From a
modeling point of view, it is convenient to ignore the variability of electrophysiology
measurements (and therefore of the underlying parameters) since a set of fixed pa-
rameters is sought. However, investigating the variability of AP models parameters
has several motivations. It can be used to predict the response of cardiomyocytes to
certain drugs [BBOVA+13]. It can also provide insight into cell modifications at the
origin of common heart diseases such as atrial fibrillation [WHC+04, SBOW+14] or
ventricular arrythmia [GBRQ14].

There are two main strategies to estimate the parameters variability given a
set of AP measurements. First, one could fit the AP model to each measurement
individually and therefore obtain a set of parameters from which useful statistics
may be computed. The problem of fitting an individual AP has been addressed
many times and using a large variety of methods [HDL07, DL04, SVNL05, CCY+12,
KNV14, LFNR16]. However, the computational cost of such a strategy scales with
the number of available experimental samples and may therefore be prohibitive. As
a consequence, only a low number of cells can be analyzed this way. The second
strategy belongs to the so-called population of models approach. The experimental
set is considered as a whole and the parameters statistics are estimated by solv-
ing a statistical inverse problem. Several techniques were developed to solve such
problems [Kou09, GLV14] and their application to electrophysiology has recently
generated much interest [RPFR09, MT11, BBOVA+13, SBOW+14, DCP+16]. The
present approach belongs to the second strategy. The AP model parameters are de-
scribed as random variables associated with an unknown probability density function
(PDF). The proposed method aims at estimating the parameters PDF, thus general-
izing the commonly used mean ± standard deviation intervals. The PDF is sought
so that it “explains” the observed variability featured by a given set of AP mea-
surements. More precisely, the estimated PDF is the solution of a constrained opti-
mization problem which is an adaptation of the maximum entropy principle [Jay57].
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The method, later referred to as Observable Moment Matching (OMM), is detailed
in [GLT16]. Contrary to other approaches such as Monte-Carlo Markov Chains
(MCMC) [Ros95] or Approximate Bayesian Computation [BVW+15], the present
method does not guarantee to converge to the true parameters distribution. In-
stead, it proposes a way to obtain an approximation of the underlying PDF at the
fraction of the cost of other finer methods. In this paper, the OMM method is
applied to the estimation of the PDF of key conductances from AP measurements.
These measurements may be the AP time series (sometimes referred to as wave-
forms or traces) or be in the form of biomarkers, i.e. features extracted from the
time series. Four different case studies are presented to illustrate the use of the
OMM method in different scenarios. Test cases 1 and 2 feature synthetic data sets
with AP biomarkers and time series. Test case 3 features an experimental data set
with intra-subject variability and Test case 4 features an experimental data set with
inter-subject variability.

3.2 Methods

3.2.1 Electrophysiology Measurements

3.2.1.1 Synthetic datasets

For validation purposes, the proposed method to solve our statistical inverse
problem is first applied to synthetic measurements, i.e. APs generated by a compu-
tational model and corrupted by some noise. An example of such synthetic measure-
ments is shown in Figure 3.2. Here, the noise is an independent zero-mean normally
distributed random variable. The signal-to-noise ratio (SNR) is written in dB and
defined as:

SNR = 10 log10

(
A2

2τ2

)
, (3.1)

where τ is the noise standard deviation and A the AP amplitude.
In Test Cases 1 and 2, the synthetic data sets are generated by evaluating the
AP computational model for different values of the parameters, i.e. conductances,
of interest. The parameters are sampled from a known distribution so that the
estimated PDF may be compared to the true one.

3.2.1.2 Experimental datasets

In what follows, we are using published AP recordings that are readily available
online. In Test Case 3, the experimental data set consists of several APs recorded on
a single canine ventricular cell [JCB+15] 1. This allows us to investigate beat-to-beat
variability which is a type of intra-subject variability. About 570 cycles are available,
200 in control conditions and the remaining after the addition of a drug and the
modification of the bath ionic centrations. In Test Case 4, the experimental data

1Data are available here http://www.cs.ox.ac.uk/chaste/download.html

http://www.cs.ox.ac.uk/chaste/download.html
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set consists of human atrial cardiomyocytes measurements coming from different
subjects [SBOW+14] 2. Interestingly, the data set is divided into two groups: one
counting 254 Sinus Rythm (SR) patients and another one counting 215 chronic
Atrial Fibrillation (AF) patients.

3.2.2 Electrophysiology Cell Models

3.2.2.1 Cell models

Throughout the four test cases presented in this paper, three different AP com-
putational models are used. Using different models serves two purposes. First, it
illustrates the fact that the OMM method can successfully be applied to different
scenarios. Different cardiac cellular models were used to illustrate that our meth-
ods are not model specific. Second, it is more natural to use models that were
designed from experimental setups that are close to those of the available data sets.
In Test Cases 2 and 4, the human atrial model by Courtemanche et al. [CRN98] was
used. It is one of the first human heart cell models. Mostly based on the Luo and
Rudy [LR94] membrane currents formulations, it was developed using experimental
recordings from human atrial cells. In Test Case 1 (resp. 3), the canine ventricular
model by Decker et al. [DHS+09] (resp. Davies et al. [DMH+11]) was used. Both
models are improvements of the Hund and Rudy model [HR04] with updated current
formulations to fit canine epicardium (for the Decker model) and mid-myocardial
(for the Davies model) cells. All three models belong to the so-called second gen-
eration [Kog09] for they provide detailed descriptions of the main ionic channels,
pumps and exchangers as well as the internal calcium dynamics. For the sake of
convenience, these models will be referred to by their first author’s name. We will
focus on the PDF estimation of six key conductances corresponding to the following
currents: the fast sodium current INa, the inward rectifier potassium current IK1,
the transient outward potassium current Ito (Ito1 in the canine models), the rapid
(resp. slow) delayed rectifier potassium current IKr (resp. IKs) and the L-type
calcium current ICaL. For the sake of clarity, gNa, gK1, gto, gKr, gKs, gCaL will refer
to a multiplicative coefficient for the corresponding values found in the literature.
For instance, gNa = 1 means that gNa is set to the same value as that of the original
paper. When necessary, a table will summarize the conductances that have been
modified from their reference values.

3.2.2.2 Numerical Methods

The previously mentioned models consist of a set of coupled ordinary differ-
ential equations (ODEs) whose formulae are detailed e.g. on the CellML project
website [CLN+03]. The Courtemanche and Davies models were implemented in
an in-house C++ code and the simulation outputs were compared with those of
the Matlab implementations found on the CellML website. The time integration

2Data are available here http://journals.plos.org/plosone/article?id=10.1371/journal.
pone.0105897

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0105897
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0105897
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of the ODEs is carried out using the CVODE library [CH96] which implements
the Backward Differentiation Formulae. This state-of-the-art time integrator
is well suited to stiff problems as those encountered in electrophysiology. It is
adaptive, in time step and order, which can significantly save computational time.
For all the test cases, the absolute and relative tolerances of the CVODE solver
were set to 10−6. For the Decker model, the time integration was carried out
using variable but non-adaptive time steps. The stimulation protocol consists in
stimulating at a frequency of 1 Hz (or 2 Hz for Test Case 2) over a few cycles
so that the recorded AP lies in a permanent regime. In practice, the number
of these transition cycles was set to 5 (10 for APs stimulated at 2Hz) and the
relative difference norm between two consecutives APs is less than 0.1%. Unless
stated otherwise, the stimulation duration is set to 2 ms and its amplitude to 20 µA.

3.2.2.3 AP time series

In Test Case 1, the AP time series are used as the observable. This means
that the inverse procedure possibly uses the AP value at every available time step.
This has the advantage of capturing all of the available information but also the
disadvantage of increasing the computational cost of the inverse procedure since
the number of time steps may be large. To tackle this issue, a time step selection
algorithm was developed and is described in [GLT16]. It uses the pre-computed
simulation database to approximate the sensitivities with respect to each parameter
and for each time step. Using these sensitivities, the time steps are clustered using
an agglomerative clustering algorithm and a representative is chosen for each cluster.
Only the representatives are retained for the inverse procedure. In practice their
number is much lower than the total number of time steps, thus alleviating the
computational cost of the inverse procedure. Indeed, as described in [GLT16], the
OMM procedure cost is dominated by the inversion of a dense matrix of size (Nm×
Nt)

2. Furthermore, reducing the number of time steps is motivated by numerical
considerations since the conditionning of this matrix deteriorates as the number of
time steps increases. This time step selection comes at no cost since it uses the
already computed simulation database.

Since the ODEs are solved using an adaptive time-stepping, each AP simulation
is discretized on a different time grid and later interpolated on a common grid. This
interpolation procedure introduces a numerical error which may be considered as
a numerical noise, alongside the noise in the measurements (whether synthetic or
experimental).

3.2.2.4 AP biomarkers

In Test Cases 2, 3 and 4, the inverse procedure is applied to so-called biomarkers,
which are quantities computed from the AP time series. They describe the main
features of the AP such as its shape or its duration. We will focus on the following
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biomarkers (see Figure 3.1): the AP duration APD90 (resp. APD50, APD30, etc.)
at 90% repolarization (resp. 50%, 30%, etc.), the resting membrane potential RMP,
the maximum upstroke velocity dV/dtmax, the AP value at 20% repolarization V20
(which roughly corresponds to the AP plateau value), the AP value 30 ms after
depolarization Vnotch and the Area Under the Curve (AUC), i.e. the AP time
integral over one cycle.

Even though these quantities seem to well capture the main features of a given
AP, they generally don’t convey enough information about the underlying parame-
ters for the inverse procedure. Therefore, the pairwise products (APD90×APD50,
APD90×APD20 and so on) of the above biomarkers are added to the moments
constraints. Note that the AP triangulation is a commonly used biomarker and
may be interpreted as the pairwise product between APD90 and 1/APD30. For the
synthetic measurements, the noise is added to the AP time series before computing
the biomarkers.
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Figure 3.1: Biomarkers computed from an AP.

3.2.2.5 Parameter calibration

We restrain our parameter estimation study to three to six conductances. This
assumption is critical and is discussed in the Discussion section. This means that
the parameters of interest are allowed to vary while all the other parameters of the
model remain fixed. While it seems reasonable to choose the values found in the
literature for these parameters, it often proves to be a bad choice when dealing with
real data. Therefore, one needs to calibrate these parameters before performing the
inverse procedure using the most representative experimental sample of the available
sata set. In Test Case 3, the most representative sample is the one whose biomarkers
are the closest to the median values (there is one representative for each group). In
Test Case 4, the most representative sample is the AP whose APD90 is the closest
to the median value. Once these representative samples are identified, a parameter
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calibration procedure is performed for all ionic conductances. Courtemanche model:
experimental parameter calibration. shows the values obtained from the literature
for these parameters as well as their estimated counterparts for both Courtemanche
and Davies models. The Table also shows some external ions concentrations. These
were directly set using the bath descriptions available in the publications associated
with the experimental data sets. The parameter calibration is actually a constrained
minimization problem where the cost function J to be minimized reads:

J(g) =

Nt∑
i=1

((u(ti,g)− y(ti))
2 +K

np∑
j=1

(gj − ĝj)2 , (3.2)

where y is the experimental quantity of interest, u the corresponding simulation
output and Nt the number of values to be fitted (number of biomarkers or number
of time steps depending on the test case). The second part of the cost function is
a regularization term where np is the number of conductances to fit, gj the esti-
mated value of the jth conductance, ĝj its nominal value and K is a user-defined
regularization parameter. This term ensures that the conductances remain within
a reasonable range around the nominal values. In practice, this parameter is cho-
sen to be small compared to the first term in (3.2) so that the conductances are
weakly constrained around relevant values without too much impact on the fitting
quality. When possible, this parameter K may even be set to zero. In The “L-
curve” is obtained for the first two parameters of the test case presented in Section
4.4.1. The `1-norm of β(h) is plotted against the training error for different values
of λh. Here, λh varies between 10−6 and 2 × 101., a brief study of the effect of K
is performed. The models considered in this work are not well suited to classical
gradient optimization techniques as they consist of many and strongly nonlinear
ODEs, making the gradient computations challenging and the cost function highly
irregular. For the sake of simplicity, we therefore used gradient-free optimization
techniques such as genetic algorithms [SVNL05]. We chose the Covariance Matrix
Adaptation Evolution Strategy (CMA-ES) evolutionary algorithm [Han06] for it is
currently one of the most performant genetic algorithm and was used successfully
in a variety of applications. Furthermore, a Python (as well as other languages)
implementation of the CMA-ES algorithm is available online 3 and behaves like a
black-box optimization tool. The CMA-ES algorithm was recently used in a similar
context in [JCB+15], where conductances of several models (including the Davies
model) were estimated from both synthetic and experimental measurements. Note
that all parameters values are not allowed to take negative values but they are not
limited by any upper bound. An exception is made for the fast sodium conductance
gNa (which is limited to five times its nominal value) for numerical reasons. Indeed,
a high value of gNa may lead to a failure of the time integration around the upstroke.

3https://www.lri.fr/~hansen/cmaes_inmatlab.html#python

https://www.lri.fr/~hansen/cmaes_inmatlab.html#python
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3.2.3 Observable Moment Matching Method

We now give an overview of the OMM method. This method aims at obtaining
an approximation of the parameters PDF at a low computational cost. This approx-
imation is however not meant to reach the precision of finer methods such as MCMC.
The interested reader is referred to [GLT16] where more details are provided.

3.2.3.1 Construction of the simulation database

The OMM method relies on the pre-computation of a simulation database of
many APs (or AP biomarkers) by varying the parameters of interest. We intro-
duce the parameter space Θ, which is a subset of Rnp where np is the number of
parameters (the conductances in our case). A point in Θ, or parameters sample, is
denoted by θ =

(
θ1, . . . , θnp

)
. The parameter space is discretized using the Sobol

sequence [Sob76]. This sampling method is well-suited to the present framework: it
uniformly spans the parameter space in a low-discrepancy manner while featuring a
simple Monte-Carlo quadrature rule; it requires little knowledge of the true parame-
ters distribution; furthermore, as the latin hypercube method used in [BBOVA+13],
it only requires a lower and upper bound for each parameter and the total number
of samples. Points in the discretized space will be called collocation points and the
total number of these points will be denoted by Nc. The discretization of the pa-
rameter space is therefore given by the set {θ1, . . . ,θNc}. For each collocation point,
one AP is simulated using the numerical protocol described above and stored. Note
that once this simulation database is built, no additional AP simulation is required
during the inverse procedure.

3.2.3.2 Optimization problem

Given a PDF ρ, the moment of order m of the simulations at a given point t
(time step or biomarker index) is defined by:

µρm(t) =

∫
θ∈Θ

u(θ, t)mρ(θ)dθ,

where u(θ, t) is the simulation output, already computed and stored in the database.
The empirical moments of order m of the measurements at a given point t is defined
by:

µ̂m(t) =
1

N

N∑
i=1

yi(t)
m,

where yi(t) is the observable value at point t of the ith experimental sample and N
is the total number of experimental samples. The goal of the OMM method is to
find the PDF ρ such that the moments, up to a certain order Nm, of the simulations
and of the experiments match at every point t. This moment matching condition
will later be referred to as the moment matching constraints. As explained above,
in the case where many observable quantities are available, a procedure has been set
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up to select a subset for which the moment matching constraints hold. In general
however, the stated moment problem is under-determined, meaning there exists an
infinity of different ρ that satisfy the moment constraints. We propose to regularize
the problem using the maximum entropy principle where the entropy of a given PDF
ρ is given by:

S(ρ) = −
∫
θ∈Θ

ρ(θ) log [ρ(θ)] dθ

This type of regularization roots in information theory [Jay57], it is considered
the most natural choice when limited information about a PDF is available. It
is also well-suited to our optimization problem for practical mathematical reasons.
In Section 2.4.2. of [GLT16], we propose an analysis of the error on the PDF
estimation made by adopting the maximum entropy regularization. In Prop. 1. of
the same paper, it is shown that under certain conditions on the regularity of the
observable and identifiability of the parameters, the error on the PDF is bounded.
The conditions on the regularity of the observable may not be easy to check formally
because of the nonlinearities of the state equations. Nevertheless, for the practical
problems considered in this work, they do not seem critical. The condition on
the identifiability may also be difficult to assess in general. In our algorithm, the
identifiability issues are circumvented by regularizing the Hessian in the optimization
problem and by selecting the points where the moments are matched (see Discussion
section).Finally, the estimated PDF is the solution of the following constrained
optimization problem:

max
ρ

S(ρ)

s.t.
{
µρm(t) = µ̂(t) (moment constraints)∫
θ ρ(θ)dθ = 1 (normalization)

. (3.3)

The optimization problem is recast using Lagrange multipliers for the constraints
and the corresponding Euler-Lagrange multipliers are solved using a quasi-Newton
method. Denoting by |Θ| the volume of Θ, the integrals over the parameter space
of a given quantity f are approximated using the Monte-Carlo quadrature rule:∫

θ∈Θ
f(θ)dθ ' |Θ|

Nc

Nc∑
1

f(θi). (3.4)

In Appendix A of the Supplementary Material, an illustration of the OMM method
on a simple test case using the Davies model is provided.

3.2.3.3 Post-processing

The PDF is a real-valued multivariate function of np variables. The output of
the OMM method is the estimated PDF values at each collocation point in the
parameter space. We insist on the fact that the estimated PDF does not take any
parametric form (such as a multivariate Gaussian for instance) but is defined point-
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wise. However, beyond two dimensions, its visualization becomes complex and may
not provide much information. Therefore, as it is the case in the remainder of the
article, the PDF is post-processed so that the marginal densities of the parameters
may be visualized. The marginal density zp(x) of parameter p at point x reads:

zp(x) =

∫
(θ1,...,θp−1,x,θp+1,...,θnp)∈Θ

ρ(θ)dθ1 . . . dθp−1dθp+1 . . . dθnp .

This step actually needs a finer grid in the parameter space than that provided by
the Sobol sequence. The estimated PDF is interpolated on the finer grid using kernel
smoothing. This step is discussed in detail in [GLT16]. In addition to the marginal
densities, the estimated parameter moments µm(θp) may also be computed directly
from the PDF:

µm(θp) =

∫
θ∈Θ

ρ(θ)θmp dθ.

Then, one can compare µ1(θp), the mean of parameter p and its standard devia-
tion

√
µ2(θp)− µ1(θp)2 to their true values when known. In practice, the integral

quantities are all approximated using (3.4).

3.2.3.4 Implementation details

An online repository in open access 4 has been created to make available data
and codes used in this paper.
In each test case, the computational time of the inverse procedure is strongly dom-
inated by the simulation database construction. All other steps of the method,
including the OMM method itself have a negligible computational time. The ap-
proximative CPU times given for each test case are meant for one processor. This
means the real time may be reduced by simulating the APs in parallel, which is done
in practice. Simulations were performed on a Linux machine counting 12 Intel(R)
Xeon(R) CPU E5-2640 @ 2.50GHz processors.
External libraries are used in our code: Eigen 3 and GSL-BLAS for the ma-
trix/vector manipulations and algebra and the Python library Scikit-learn [PVG+11]
for the time-step selection algorithm.

3.2.3.5 Comparison with existing methods

As discussed earlier, it is possible to infer the PDF of conductances of interest by
performing an individual inverse problem (or fitting) for each sample of the exper-
imental measurements. However, if there are N experimental samples, the cost of
such an approach would be N times the cost of a single fitting. On the contrary, the
proposed approach performs the PDF estimation by taking into account only the
statistical moments of the measurements set. Its main advantage is that it does not
scale with the number of measurements samples. In that regard it is, in most sce-
narios, computationally cheaper than individually estimating the parameters from

4https://github.com/eltix/omm_jrsi

https://github.com/eltix/omm_jrsi


66

each sample. Furthermore, all model evaluations are performed offline and once and
for all so that the main cost of the inverse procedure can be decided in advance.
Another popular method performing estimations of PDFs is the Bayesian infer-
ence. It guarantees to converge to the true PDF, which the present approach does
not claim to do, at the expense of many forward model evaluations. The present
approach may therefore be seen as a less precise but computationally cheaper alter-
native to Bayesian inference.

In [GLT16], we provide a comparison of our method to two other approaches.

3.3 Results

The observable moment matching method is now applied to four test cases, using
both experimental and synthetic AP measurements.

3.3.1 Test Case 1: Decker Model with Synthetic Data

In this test case, the OMM method is applied to a synthetic data set using the
Decker model with different scenarios: one in control conditions and one with a
blocked channel (which models for example the effect of a drug). We show that
combining data from both scenarios increases the precision of the PDF estimation
of the conductances of interest.

3.3.1.1 Control Conditions

For the synthetic data set, N = 104 APs were generated using the Decker model
with six uncertain parameters: gNa, gK1, gto, gKr, gKs, gCaL. The N samples were
drawn from an uncorrelated multivariate normal distribution of mean 1.1 and stan-
dard deviation 0.15. The SNR is equal to 41 dB. The simulation database was built
by sampling the same six parameters over the domain Θ = [0.5, 2.0]6. Nc = 215

samples were drawn and the corresponding APs are shown in Figure 3.2. The con-
struction of the simulation database required a CPU time of approximately 1000
minutes for one processor. For both the synthetic data set and simulation database,
all remaining parameters are fixed and set to their reference values. In this test case,
the observable quantities used in the OMM method are the whole AP time series.
The observable quantities are therefore the AP values at each of the 449 time steps
sampled from the time integration grid. The number of moments to be matched is
set to Nm = 3. As mentioned earlier, a procedure has been set up to select only a
subset of the available time steps to perform the inverse problem.
The OMM method is applied and the resulting estimated marginal densities are
shown in Figure 3.3. This allows us to make a clear comparison between the param-
eters true densities and their estimated ones. Statistics summary of the estimated
parameters from the Decker model in control conditions (no drug block). shows a
more thorough comparison between the estimated parameters statistics and their
true ones. Except for gKs, their mean values are accurately estimated (the error is
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always below 1%) and the errors on the standard deviations range from 3 to 21%.
Five out of six conductances are correctly estimated while the estimation of gKs is
poor. This is actually a conductance which is known to be difficult to estimate when
others vary, mainly due to the fact that its effect is hidden by other conductances
(mainly gKr). Therefore, a strategy was devised to reduce the uncertainty on the
parameter gKs.

3.3.1.2 Block Conditions

To unveil the effects of gKs onto the AP waveform, a drug block scenario is
devised to “mask” the effects of the other conductances that compete with gKs.
Here, we simulate the effect of a hypothetical drug by blocking 90% of the Ito,
IKr, ICaL channels, i.e. by setting the corresponding conductances to 10% of their
reference values. The same protocol as in the control conditions is followed to
generate the synthetic data set and the simulation database, this time varying only
the three remaining conductances (gNa, gK1 and gKs) with N = 104 samples for
the synthetic data set and Nc = 212 collocation points for the simulation database.
The construction of the simulation database required a CPU time of approximately
125 minutes for one processor.
The OMM method is applied and the results are shown in Statistics summary of the
estimated parameters from the Decker model in drug block conditions (90% block
for Ito,IKr and ICaL). and Figure 3.3. The density of gKs is now recovered with a
good precision as the conductances previously responsible for its non-identifiability
remain fixed.

3.3.1.3 Combining Control and Drug Block Conditions

The drug block and control conditions are now combined to simultaneously esti-
mate the PDF of the six conductances of interest. This is done by slightly modifying
the inverse procedure. In addition to enforcing the moment constraints of the AP
values in the control conditions, the moments of the parameters themselves (gNa,
gK1 and gKs) are also constrained to match those estimated in the drug block con-
ditions. In practice, this is easily done by adding these new constraints to the initial
set of constraints (see Eq. (3.3)). This is therefore analogous to solving the inverse
problem in the control conditions with the additional knowledge of the parameters
statistics obtained in the drug block conditions.
The final results are shown in Statistics summary of the estimated parameters from
the Decker model in control conditions with moments constraints from drug block
estimation. and in Figure 3.3. This procedure achieves a much better estimation
of the density of gKs. The errors on the mean and standard deviation of gKs are
significantly reduced while the accuracy of the estimation of the other conductances
is similar to that of the control conditions.
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�

Figure 3.2: (A) AP data sets generated using the Decker model: synthetic data
used for the observations (left) and simulation database (right). (B) AP data sets
generated using the Courtemanche model: synthetic data used for the observations
(left) and simulation database (right).
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Figure 3.3: Test Case 1 using the Decker model and synthetic data. Conductances
estimated marginal densities (A) in control conditions (no drug block), (B) in drug
block conditions (90% block of Ito, IKr and ICaL) and (C) using combined data
from control and drug block conditions.
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3.3.2 Test Case 2: Synthetic Data at Different Pacing Frequencies

In this test case, the OMM method is applied to a synthetic data set using the
Courtemanche model. Different scenarios are investigated by varying the frequency
of the stimulations that trigger the APs.

3.3.2.1 Control Conditions with 1Hz Pacing

For the synthetic data set, N = 104 APs were generated using the Decker model
with six uncertain parameters: gNa, gK1, gto, gKr, gKs, gCaL. The N samples
were drawn from an uncorrelated multivariate normal distribution of mean 1.1 and
standard deviation 0.15. The SNR is equal to 43 dB. The simulation database
was built by sampling the same six parameters over the domain Θ = [0.5, 2.0]6.
Nc = 215 samples were drawn and the corresponding APs are shown in Figure 3.2.
The construction of the simulation database required a CPU time of approximately
1100 minutes for one processor. In this test case, the observable quantities are the
following 9 AP biomarkers: APD90, APD50, APD30, APA, RMP, V20, dVdtmax,
Vnotch and AUC and the maximum moment order is set to Nm = 2. Adding the
biomarkers pairwise products, the number of moments constraints add up to 54.
The OMM method was applied to this test case and the estimated parameters
statistics are presented in Statistics summary of the estimated parameters from
the Courtemanche model in control conditions.. The estimated marginal densities
for each of the six parameters are shown in Figure 3.4. While four out of six
conductances are estimated with a reasonable precision, gKr, and to bigger extent
gKs, are not well estimated.

3.3.2.2 2Hz Pacing

The same simulation protocol is followed, this time by stimulating the APs at
a 2Hz frequency. The accelerated simulation pace induces modifications to the AP
morphology (such as a reduced APD) which should reveal new information about
the parameters compared to a 1Hz stimulation. The OMM method was applied to
this modified test case. While the exhibited variability differs from the 1Hz case,
no significant improvement over the parameters estimation may be noticed. Results
are shown in Figure 3.4 and Statistics summary of the estimated parameters from
the Courtemanche model at 2Hz pacing frequency..

3.3.2.3 Combining 1Hz and 2Hz data

A way to take advantage of the information available in the previous two sce-
narios consists in combining data obtained at 1Hz and 2Hz pacing frequency both
for the synthetic data set and the simulation set. The same inverse procedure as
before is applied with the following extended set of biomarkers:
{APD901Hz, APD501Hz, APD301Hz, RMP1Hz, dV/dtmax,1Hz, V201Hz, Vnotch,1Hz,
AUC1Hz, APD902Hz, APD502Hz, V202Hz, Vnotch,2Hz, AUC2Hz}.
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These biomarkers are enriched by their pairwise products which amounts to a total
of 119 quantities to be matched. Results are shown in Figure 3.4 and Statistics
summary of the estimated parameters from the Courtemanche model (combined
1Hz+2Hz data).. While gKs is still not correctly estimated, this strategy succeeds
in reducing the uncertainty for parameters gKr and gCaL.

3.3.3 Test Case 3: Experimental Data from Canine Ventricular
Cells

This experimental data set (used in [JCB+15] and available online 5) features
beat-to-beat variability of APs recorded from a single canine ventricular cardiomy-
ocyte. Here, only a subset (traces #100 to #199) of the available data set is used.

3.3.3.1 Calibration of the Davies model

The Davies model was chosen to study this data set since it is one of the
most recent canine ventricular cell models. In addition, this model was also used
in [JCB+15] to study the same data set. The parameter calibration procedure
was carried out using the most representative AP of the experimental set and a
regularization parameter K = 0 (i.e. no regularization). Figure 3.5 shows the rep-
resentative AP as well as its fitted counterpart using the Davies model. In Figure 3.5
is plotted the history of six conductances values for each iteration of the CMA-ES
algorithm. The conductances are normalized with respect to the values found in
the reference paper. Note that the values obtained after the calibration are far from
the reference values (equal to one by definition), confirming the necessity of such a
procedure. This is also true for the other fitted parameters which are not shown in
the figure for the sake of clarity but whose values are given in Davies model: ex-
perimental parameter calibration and observable moment matching results.. Note
that gKs seems to reach an extremely high value. It is however consistent with the
values found in [JCB+15] and may be explained by a difference in the experimental
settings.

3.3.3.2 Inverse procedure

The OMM procedure is applied with the following biomarkers as observable
quantities: APD90, APD50 and Vnotch. Here, Vnotch is the notch potential corre-
sponding to the AP value 8 ms after the depolarization peak. The reason Vnotch
was preferred over previously introduced V20 is that the latter was not suited to
the AP shape and its value was almost constant over the experimental set. We
made the assumption that the observed variability was due to variations of gKr,
gKs (commonly associated with APD variations) and gto1 (commonly associated
with variations of Vnotch). These conductances are among the most responsible for
beat-to-beat variability [PDB+16]. The simulation database was built by sampling

5http://www.cs.ox.ac.uk/chaste/download.html

http://www.cs.ox.ac.uk/chaste/download.html
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Figure 3.4: Test Case 2 using the Courtemanche model and synthetic data. Con-
ductances estimated marginal densities in (A) control conditions (1Hz stimulation
frequency), (B) fast pacing conditions (2Hz stimulation frequency) and (C) with
combined data from 1Hz and 2Hz pacing.
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these three conductances over the domain Θ = [0.4, 1.8]3 and Nc = 213 samples
were drawn. The construction of the simulation database required a CPU time of
approximately 175 minutes for one processor. The marginal distributions of the
three parameters of interest are shown in Figure 3.6 and the estimated statistics are
summarized in Davies model: experimental parameter calibration and observable
moment matching results..

3.3.3.3 Comparison with individually fitted APs

Since the exact distributions of the parameters of interest are unknown, a com-
parison study is carried out using two other PDF estimation techniques. The experi-
mental APs are individually fitted to the Davies model using the CMA-ES algorithm.
The same fitting procedure is used as in the calibration step using the AP values
at different times (see Figure 3.5). In the first case, only the three conductances of
interest are allowed to vary while the others remain fixed. In the second case, all
conductances (those concerned by the calibration step) are allowed to vary. In both
cases, the fitting procedure yields a collection of N = 100 values for the three con-
ductances of interest. The distributions are then approximated using histograms,
shown in Figure 3.6. Even though biomarkers were used for the OMM procedure
and time series were used for both individual fitting procedures, the parameters
distributions show a striking similarity, especially for the case where only the three
conductances of interest are allowed to vary. This suggests that the set of biomark-
ers retained is enough to account for the observed variability. This also shows the
overall satisfactory performances of the observable moment matching method which
achieves comparable results to individual CMA-ES fits at a fraction of the compu-
tational cost. Indeed, the 100 individual CMA-ES fits required around 105 model
evalutions while the OMM method only required 8192.

3.3.4 Test Case 4: Experimental Data from Human Atrial Cells

This experimental dataset (used in [RKÖW+15, SBOW+14] and available on-
line 6) features AP biomarkers recorded from two populations of human atrial cells.
The OMM procedure is independently applied to both groups and the distributions
of the conductances of interest between the two groups are compared.

3.3.4.1 Human biomarkers dataset

The data set consists of 469 experimentally recorded sets of 7 human AP
biomarkers divided in two groups: sinus rythm (SR) with 254 samples and chronic
atrial fibrillation (AF) with 215 samples. Both groups exhibit a strong inter-subject
variability in addition to the inter-group variability. The available biomarkers are:
APD90, APD50, APD20, APA, RMP, dV/dtmax, V20.

6http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0105897

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0105897
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Figure 3.5: (A) Canine ventricular AP experimental set [JCB+15]. (B) Davies
model calibration step: experimental representative AP (solid red), corresponding
CMA-ES fit (solid blue) and reference parameters (dashed). (C) CMA-ES itera-
tions: (top) main conductances values are plotted against the number of model
evaluations carried out by the CMA-ES algorithm, (bottom) corresponding fitness
function values.
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Figure 3.6: Test Case 3 using the Davies model and 100 AP recordings from a
canine ventricular cardiomyocyte. Conductances marginal densities estimated using
the OMM method (solid lines) and individual CMA-ES fits (blue and green bins).
Conductances are normalized by the calibrated values.

3.3.4.2 Courtemanche model calibration

The Courtemanche model was chosen to study this data set. Prior to the inverse
procedure, a model calibration step is independently carried out for both groups.
The regularization parameter is set to K = 5 × 10−3. The CMA-ES algorithm
is applied to fit the Courtemanche model parameters to the most representative
sample within each group. The representative sample is the one which minimizes its
euclidean distance to the median biomarkers values of its group. Human biomarkers
dataset statistics. shows the most representative samples from each group as well as
some global statistics of the biomarkers set. In Courtemanche model: experimental
parameter calibration. are displayed 11 conductances of the Courtemanche model
that were estimated during the calibration step. First, for both groups, the estimated
parameters values differ from those found in the literature. Second, there is a
significant increase in gK1 and a significant decrease in gto, gCaL and gKur from
the SR to the AF group. These modifications are commonly considered as a good
AF remodeling strategy [DR03, CWV+08, WHM+13]. For each set of estimated
conductances, an AP is simulated using the Courtemanche model. One obtains a
typical or most representative AP for each group. Figure 3.7 shows such APs along
with the AP obtained with the reference parameters found in the literature. The
AF AP features a shorter APD and a more triangular shape than the SR one, which
is typical of atrial fibrillation [VWPL+99, LHS+16]. This figure also highlights the
fact that choosing the literature values as baseline may not be a good choice for
the SR group, and to a greater extent for the AF group. In the same figure is
added an AP that was obtained by applying the suggested AF remodeling found
in [WHM+13] to the SR model (65% decrease of gCaL and gto, 49% decrease of gKur
and 110% increase of gK1). Both AF APs are very different and this suggests that
AF remodeling should be designed specifically for a given experimental set.
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3.3.4.3 Inverse procedure

The OMMmethod is applied with four biomarkers of interest as observable quan-
tities: APD90, RMP, dV/dtmax and V 20. For each group, a simulation database
is built by sampling the following four conductances: gNa, gK1 and gto and gKr.
Nc = 214 samples are drawn using the Sobol sequence and the number of moments
to be matched is set to Nm = 2. The construction of the simulation database re-
quired, for each group, a CPU time of approximately 550 minutes for one processor.
The results of the inverse procedure are presented in Statistics summary of the esti-
mated parameters from the Courtemanche model with experimental data (SR and
AF group), normalized by the reference values. and Figure 3.7. Since no exact so-
lution is known, one may only qualitatively interpret the result. While gNa follows
a common distribution in both groups, the other three conductances show striking
differences. One way to validate the results is to compare the estimated PDF of the
obervable quantities (the four biomarkers of interest) with the experimental one.
By construction, they must have the same mean and standard deviation since 2
moments are matched for each biomarkers. However, this does not guarantee that
the distributions are identical since an infinite number of distributions satisfy the
moment constraints. In Figure 3.7 are plotted the histograms of the experimen-
tal biomarkers along with the estimated biomarkers PDF obtained with the OMM
method. In Normalized histograms of the experimental biomarkers pairwise prod-
ucts for both SR (blue) and AF (red) groups. The black solid lines correspond to
the PDF of each pairwise product estimated by the observable moment matching
method. Biomarkers computed from an AP. This figure is an extension of Fig.7(C)
in the main article., we replicated the same plot for the pairwise products of the
biomarkers. The distributions are very similar for each biomarkers which suggests
that chossing Nm = 2 is sufficient in this particular case. Note also that, even
though the biomarkers distributions are close to Gaussian ones, this is definitely not
true for the conductances distributions.

3.4 Discussion

In this study, we have presented the OMM method which serves the general
purpose of estimating the PDF of uncertain model parameters from a set of mea-
surements. It has been applied to electrophysiology measurements and illustrated
with four different test cases.
Test Cases 1 and 2 illustrate the proposed method with synthetic data sets, which
has two advantages. First, one may try a large variety of parameters configurations
which may be difficult or impossible to obtain in experimental conditions. Second,
knowing the true distributions of the parameters allows for a thorough evaluation
of the estimated parameters PDF. In Test Case 1, the proposed method is applied
to synthetic measurements generated from the Decker canine model. The OMM
method was applied to estimate the PDF of six uncertain conductances. It showed
that the OMM method is able to simultaneously estimate the PDF of several
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Figure 3.7: (A) CMA-ES parameter calibration of the Courtemanche model prior to
the inverse procedure. APs obtained for the most representative samples of the SR
(blue) and AF (red) groups, with the reference parameters (dashed) and after AF
remodeling (dotted). (B) Courtemanche conductances estimated marginal densities
for the SR group (blue) and AF group (red). Conductances are normalized by the
literature values. (C) Normalized histograms of the four experimental biomarkers of
interest for both SR (blue) and AF (red) groups. The black solid lines correspond to
the PDF of each biomarker estimated by the observable moment matching method.



78

conductances.
The authors would like to stress out that the proposed method provides an estima-
tion that is an approximation of the real underlying PDF of the parameters. This
approximation is less precise than what would be achievable with finer methods
such as Bayesian inference but has the advantage of being computationally less
demanding in general. In [GLT16], the authors suggest that the present approach
could serve as a prior generator for Bayesian inference.
The quality of the estimation obtained depends on the identifiability of the
parameters given the available data. However, if a parameter is poorly identifiable
(which is the case of gKs in this particular scenario) or even unidentifiable, the
method does not fail owing to the approximation of the Hessian associated with
the problem in (3.3) and the regularization induced by the choice of a subset of
time steps where the moments are matched. In that case, such a parameter is
characterized by a flat estimated distribution. In the context of experimental data,
a strategy may be set up to assess which parameters of the model are actually
identifiable, prior to applying the inverse procedure. Such strategies exist (see
e.g. [PL15]) but were not investigated in the present work. Nevertheless, when faced
with an estimated flat distribution for one parameter, it is possible to perform the
following numerical experiment to assess whether this parameter is unidentifiable
or its PDF is in fact uniform. Small perturbations (that conserve the norm and
positivity of the PDF) may be added to the estimated PDF along the direction of
the seemingly unidentifiable parameter. If the moment constraints are still verified,
then it probably means that the parameter is in fact unidentifiable. To improve
the estimation of the hidden gKs parameter, an artifical drug block remodeling was
applied to the Decker model. This drug was designed to block the currents that were
responsible for the unidentifiability of gKs. This remodeling consisted in practice
in reducing the corresponding parameters values to 10% of their nominal values.
This strategy proved to significantly improve the estimation of gKs and showed
that the OMM has potential applications in two contexts. First, it may be used
to infer the effect (or toxicity) of a drug using actual experimental data. Second,
it may help gain insight into experimental protocols that can be set up to estimate
quantities that are otherwise hidden. These findings must however be mitigated
by the fact that, in real cells, it is improbable that a given drug only affects a
set of targeted ionic currents. It most probably affects the whole cell kinetics and
dynamics, including quantities that were supposed to remain unchanged in our
artificial scenario. It is also important to note that some stimulation protocols
or drug block experiments are not easily achievable in real experiments. In most
cases, especially when using human tissue, it is simply not possible to conduct
additional experiments because the tissue is critical to answer more novel research
questions. It is an important practicality that makes recordings using animals
different to those possible using human tissue. Nevertheless, it may prove useful to
inform novel experiments that can be conducted to reduce the uncertainty in the
estimation of conductances profiles based on successful numerical scenarios.
The OMM method is related to the populations of models (POM) approach but dif-



3.4. Discussion 79

fers from it on certain aspects. Whereas the focus of our method is to approximate
parameters distributions, POM studies intend to investigate the implications of
potential parameters ranges. It would indeed not be possible to confidently estimate
conductances from ranges of action potential biomarkers and additional constrains
would be required, as shown in our study. Other studies such as [BBOVA+13], and
those reviewed by Muszkiewicz et al. [MBG+16] have triggered important discus-
sions and increased interest in an important area of research that requires diversity
of techniques and approaches, as shown here. In this context, our study suggests a
new method for PDF estimation that may indeed be very useful for new applications.

In Test Case 2, the OMMmethod is applied to synthetic measurements generated
from the Courtemanche human atrial model. The distribution of six conductances
were estimated from AP biomarkers obtained in control conditions. Interestingly,
the variability observed in the biomarkers set is less informative than that of the AP
traces themselves. This is highlighted by the fact that two conductances distribu-
tions are poorly estimated compared to the first test case. Indeed, the biomarkers
are features computed from the AP traces themselves and are therefore doomed
to carry as much or less information about the underlying parameters. However,
studying biomarkers instead of AP traces is justified by the fact that, in practice,
certain experimental sets only contain biomarkers values. To tackle this, a strategy
was set up to extract more information from the AP biomarkers. This was done
by changing the stimulation frequency which unveiled new dynamics and therefore
new information about the parameters. Interestingly, such a strategy may easily
be transposed to an actual experimental protocol. It is in fact commonly practiced
in cardiomyocyte experimental studies [ZBOO+16]. Combining the data obtained
using two different frequencies improved the estimation of gKr and gCaL. gKs was
however still poorly estimated, mainly due to the fact that its effect is very similar
to that of gKr, with a lower amplitude. The investigation of richer stimulation pro-
tocols, such as in [DL04], in order to improve the estimation of poorly identifiable
parameters could be the focus of future investigations. It is, in certain cases, possi-
ble to successfully estimate gKs by conducting an adequate numerical experiment.
In [JCB+15] for instance, the authors use the combined recordings of an AP in
normal conditions and with gKs set to zero.
In Test Case 3, the OMM method is applied to a set of experimental canine APs
recorded from a single canine ventricular cardiomyocyte. This experimental set is
an illustration of beat-to-beat variability which is mostly characterized by variations
of the APD. It is therefore natural to make the hypothesis that these variations are
in fact due to fluctuations of the delayed-rectifier potassium currents magnitudes
(gKr and gKs) which are the most responsible for APD variations. The APs also
exhibit variations around the notch region which motivated the addition of gto as
the third uncertain parameter. These conductances are known to be the most con-
tributing to beat-to-beat variability [PDB+16]. All the other parameters were set
to a fixed value using a calibration procedure. Many conductances values deviate a
lot from their reference values which suggests that this step is necessary prior to any
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variability study. The estimated PDF shows that the large variability observed in
the APD is in fact caused by small variations of the underlying parameters. These
findings were confirmed by carrying out two other independent parameter estima-
tions which yielded similar distributions for the conductances of interest. For gKs,
the distribution differs when all the conductances are allowed to vary. This may be
explained by the fact that this parameter is less identifiable compared to gKr, so
that its effect may be compensated or may interfere with other conductances. Some
limitations pertaining to the experimental set must be considered. Indeed, the iso-
lation of cardiomyocytes is known to affect the membrane ionic channels [YFLN96]
and therefore the distributions obtained for the conductances of interest may not
reflect the in vivo ones. Furthermore, the experimental traces considered are just
a snapshot of the cell at a certain state. Therefore, extrinsic factors operating at a
long time scale and contributing to variations of the AP features are neglected. For
instance, monitoring the APD over the full experimental set reveals that there are
long time scale increasing and decreasing trends in the APD (see the Supplementary
Materials in [JCB+15]).
In Test Case 4, the OMM method is applied to an experimental set containg AP
biomarkers obtained from two different populations: sinus rythm (SR) and atrial
fibrillation (AF). To each group is associated a most representative individual whose
biomarkers values are the closest to the median ones of its group. The calibration
step is very informative as it allows for a first comparison between the two groups,
or more precisely between the two representatives of each group. The calibration
leads to high differences for gK1 (+220%), gto (-100%), gCaL (-63%) and gKur (-60%)
which are qualitatively similar to those reported in [SBOW+14]. These differences
between the two groups are also in agreement with the AF remodeling mechanisms
documented in [DR03, CWV+08, WHM+13, KSMT14]. The role of IKur seems
to be prominent in the onset of AF [WHC+04] along with perturbations of the
intracellular Ca2+ dynamics [VWPL+99] which is coupled to the L-type calcium
current ICaL. Beyond these inter-group variations captured in the calibration step,
the inter-group variability is revealed by the study of the estimated PDFs. The
results highlight the distribution differences of gto and gKr between the two groups.
In the SR group, these two conductances feature a normal-like distribution that
does not deviate much from the mean value whereas in the AF group those dis-
tributions are skewed and much more spread. The distribution of gNa are similar
between the two groups which suggests that it does not play an important role in
the AF mechanisms. gK1 also features a much higher mean value and higher vari-
ance in the AF group. A posteriori distributions of the biomarkers of interest may
be computed from the estimated PDF. When compared to the actual distributions
(approximated by histograms of the experimental biomarkers), it shows that the
OMM method succeeded in matching the variability in the measurements. In the
future, studying other biomarkers or other types of measurements may lead to a
better understanding of the AF mechanisms and of the sources of variability within
each group.
We now discuss limitations concerning inverse problems in electrophysiology in gen-
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eral and the OMM method in particular. Akin to many inverse problem studies
in electrophysiology, we make the assumption that all variability observed in the
experimental data set can be explained by the variation of only a few conduc-
tances. Not only are there a large number of different conductances but there are
also other parameters such as the parameters governing the dynamics of the chan-
nel gates. However, such a simplification is supported by two main considerations.
First, the proposed approach is limited by its computational cost. Considering a
large number of free parameters means that more samples are required to span the
high-dimensional parameter space, which may be intractable in practice. Second,
the information available in the AP traces is not enough to constrain all the model
parameters. Adding other sources of information such as intracellular calcium con-
centrations revealed by fluorescence [SHM+15] or cell impedence [AXL+12] may
allow the estimation of more than 6 parameters. Considering that, choosing the
right set of varying conductances is still paramount.

The rationale for choosing the six conductances investigated in this work was
based on their known importance in determining the cardiac action potential, and
key properties including upstroke velocity, plateau duration, resting potential, and
action potential duration. Amongst them, we included gKs knowing that due to the
redundancy of currents during repolarization it would be expected to be poorly iden-
tifiable. Our method can however be extended to include variability in additional
parameters if needed.

Another limitation comes from the experimental sets themselves. Cells coming
from different regions of the heart exhibit different variability patterns in their APs.
In the context of assessing the effect of a drug or investigating the causes of a heart
disease, this approach should be repeated with a wider variety of cell locations.
Furthermore, the electrical behavior of an isolated cell differs from one that is em-
bedded in a tissue. Therefore, using measurements at the tissue scale [CBC+11] (for
example using MEA measurements [CT14]) may yield results that are closer to the
in vivo conditions.

Another point to be discussed is the use of biomarkers versus time traces. This
is often imposed by the type of experimental data available. Ranges of biomarkers
using standard protocols are easily accessed by experimentalists, and raw action po-
tential data are not always available. It is therefore important to evaluate the use of
both biomarker ranges and action potential traces. The set of available biomarkers
is often dictated by experimental constraints. It is however possible, when there
are many available biomarkers, to conduct a preliminary study to determine which
biomarkers should be taken into account in order to recover certain parameters of
interest. Such a study would consist in applying the proposed method several times
with different underlying parameters variations. Then, for a given set of experimen-
tal constraints, it would be possible to assess whether the proposed method would
be able to recover the underlying parameters distributions. Finally, the choice of
numerical settings pertaining to the OMM method is discussed. The OMM method
relies on the matching of the statistical moments of some observable quantities. The
number of moments Nm to be matched is therefore important. In most applications,
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choosing Nm = 2 or 3 is sufficient to capture the parameters distribution. A com-
mon heuristics is to increase Nm until no siginificant change in the estimated PDF
is observed. Note that using high Nm often leads to numerical instability, all the
more so if the noise level in the measurements is high.
In summary, we have presented a new method for estimating the PDF of action
potential models parameters from various sets of AP measurements. The AP mea-
surements may come in the form of waveforms (time series) or biomarkers. The
method has been illustrated with both synthetic and experimental sets which ex-
hibit both inter-subject and intra-subject variability. The approach we describe has
potentially important implications in drug safety pharmacology and more generally
in the understanding of variability in cardiomyocytes ionic properties. It intends to
be in line with recent works suggesting that computational models are a powerful
tool to evaluate drug toxicity [DWM+16]. More generally, the proposed approach
may be a new way to investigate the sources of variability observed in electrophysi-
ology that are experimentally difficult to assess.
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3.5 Supplementary Material

Table 3.1: Statistics summary of the estimated parameters from the Decker model
in control conditions (no drug block).

Parameter µ µex rel. err. σ σex rel. err.

gNa 1.104 1.100 0.4% 0.155 0.150 3.1%

gK1 1.099 1.100 0.1% 0.164 0.150 9.2%

gto 1.103 1.100 0.3% 0.182 0.150 21.2%

gKr 1.091 1.100 0.9% 0.172 0.150 14.4%

gKs 1.264 1.100 14.9% 0.426 0.150 184.0%

gCaL 1.102 1.100 0.2% 0.177 0.150 17.8%

Table 3.2: Statistics summary of the estimated parameters from the Decker model
in drug block conditions (90% block for Ito,IKr and ICaL).

Parameter µ µex rel. err. σ σex rel. err.

gNa 1.104 1.100 0.4% 0.158 0.150 5.5%

gK1 1.102 1.100 0.1% 0.154 0.150 2.6%

gKs 1.100 1.100 0.0% 0.158 0.150 5.1%
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Table 3.3: Statistics summary of the estimated parameters from the Decker model
in control conditions with moments constraints from drug block estimation.

Parameter µ µex rel. err. σ σex rel. err.

gNa 1.104 1.100 0.4% 0.158 0.150 5.5%

gK1 1.102 1.100 0.1% 0.154 0.150 2.6%

gto 1.104 1.100 0.4% 0.182 0.150 21.3%

gKr 1.101 1.100 0.1% 0.173 0.150 15.6%

gKs 1.100 1.100 0.0% 0.158 0.150 5.1%

gCaL 1.102 1.100 0.2% 0.176 0.150 17.1%

Table 3.4: Statistics summary of the estimated parameters from the Courtemanche
model in control conditions.

Parameter µ µex rel. err. σ σex rel. err.

gNa 1.098 1.100 0.2% 0.149 0.150 0.7%

gK1 1.102 1.100 0.2% 0.163 0.150 9.1%

gto 1.109 1.100 0.8% 0.180 0.150 20.1%

gKr 1.087 1.100 1.0% 0.302 0.150 102%

gKs 1.201 1.100 9.2% 0.426 0.150 184%

gCaL 1.104 1.100 0.4% 0.178 0.150 18.3%

Table 3.5: Statistics summary of the estimated parameters from the Courtemanche
model at 2Hz pacing frequency.

Parameter µ µex rel. err. σ σex rel. err.

gNa 1.099 1.100 0.1% 0.151 0.150 1.0%

gK1 1.110 1.100 0.9% 0.167 0.150 11.6%

gto 1.109 1.100 0.8% 0.185 0.150 23.3%

gKr 1.064 1.100 3.2% 0.366 0.150 144%

gKs 1.263 1.100 14.9% 0.424 0.150 183%

gCaL 1.132 1.100 2.9% 0.208 0.150 38.4%
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Table 3.6: Statistics summary of the estimated parameters from the Courtemanche
model (combined 1Hz+2Hz data).

Parameter µ µex rel. err. σ σex rel. err.

gNa 1.098 1.100 0.2% 0.149 0.150 0.4%

gK1 1.103 1.100 0.2% 0.166 0.150 11.0%

gto 1.106 1.100 0.6% 0.165 0.150 9.7%

gKr 1.096 1.100 0.4% 0.266 0.150 77.2%

gKs 1.150 1.100 4.6% 0.424 0.150 183%

gCaL 1.102 1.100 0.2% 0.161 0.150 7.4%

Table 3.7: Davies model: experimental parameter calibration and observable moment matching
results.

Conductance
OMM results Reference values
µ σ exp. calibration literature unit

gNa - - 27.4 8.25 nS/pF
gNaL - - 7.26 ×10−2 1.1 ×10−2 nS/pF
gKr 0.96 0.03 4.82 ×10−2 1.39 ×10−2 nS/pF
gKs 1.06 0.12 1.38 ×10−1 7.47 ×10−3 nS/pF
gK1 - - 2.91 ×10−1 5.0 ×10−1 nS/pF
gKp - - 7.93 ×10−3 2.76 ×10−3 nS/pF
gto1 1.03 0.11 0.38 0.18 nS/pF
gCaL - - 2.0 ×10−4 9.7 ×10−4 nS/pF
gbCa - - 5.88 ×10−6 7.98 ×10−7 nS/pF
gpCa - - 9.84 ×10−4 5.75 ×10−2 pA/pF
gClb - - 9.45 ×10−6 2.25 ×10−4 nS/pF
gto2 - - 4.54 ×10−9 4 ×10−7 L/F.ms
gNaCa - - 6.95 ×10−2 5.85 pA/pF
gNaK - - 6.6 ×10−3 6.19 ×10−1 pA/pF
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Table 3.8: Human biomarkers dataset statistics.

group APD90 APD50 APD20 APA RMP dV/dtmax V20

SR

representative (#163) 324 142 5 93 -74 214 -19
median 319 151 5 95 -74 213 -16
mean 317.7 138.7 7.1 94.8 -73.8 219.7 -16.1
std 42.7 44.1 8.2 7.1 3.9 67.9 6.4

AF

representative (#131) 213 105 38 98 -76 237 0
median 213 101 27 102 -77 229 -4
mean 216.4 101.5 30.2 101.6 -76.8 232.0 -4.4
std 34.4 27.7 17.9 7.6 3.6 70.3 10.9

Table 3.9: Courtemanche model: experimental parameter calibration.

Conductance
Experimentally calibrated (normalized) reference

unit
SR group AF group AF/SR rel. change value

gNa 1.17 1.11 -5% 7.8 nS/pF
gK1 0.45 1.45 +220% 9.0 ×10−2 nS/pF
gto 1.12 2.83× 10−3 -100% 1.65 ×10−1 nS/pF
gKr 1.15 1.41 +23% 2.94 ×10−2 nS/pF
gKs 1.10 1.21 +10% 1.29 ×10−1 nS/pF
gCaL 0.87 0.32 -63% 1.24 ×10−1 nS/pF
gbNa 1.26 1.31 +4% 6.74 ×10−4 nS/pF
gbCa 1.14 1.85 +63% 1.13 ×10−3 nS/pF
gNaK 0.78 0.80 +3% 0.6 pA/pF
gNaCa 4.65× 10−2 2.01 ×43 1.6 ×103 pA/pF
gKur 0.54 0.21 -60% 1.0 dimensionless

Table 3.10: Statistics summary of the estimated parameters from the Courtemanche
model with experimental data (SR and AF group), normalized by the reference
values.

Group SR AF

Parameter µ σ µ σ

gNa 1.464 0.652 1.310 0.533

gK1 0.431 0.125 1.744 0.656

gto 1.090 0.219 0.310 0.392

gKr 0.934 0.375 1.997 1.314
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Figure 3.8: L-curve: calibration fitness plotted against the distance to reference
conductances.

Influence of K in the calibration step We replicated the calibration procedure
in Test Case 4 with the SR group representative several times by varying the reg-
ularization parameter K. In Figure 3.8, the fitness is plotted against the distance
to the reference conductances values for different values of K. g denotes the con-
ductance values estimated by the CMA-ES algorithm, ĝ are the reference values for
these conductances, u(g) are the simulated biomarkers and û are the experimental
biomarkers to be fitted. We obtain a so-called “L-curve” which is typical of such
hyper-parameter studies. We see that K=5e-3 is a reasonable choice as it is close the
curve’s elbow and therefore a good trade-off between goodness of fit and distance
to the reference values.
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Figure 3.9: Normalized histograms of the experimental biomarkers pairwise products
for both SR (blue) and AF (red) groups. The black solid lines correspond to the PDF
of each pairwise product estimated by the observable moment matching method.
Biomarkers computed from an AP. This figure is an extension of Fig.7(C) in the
main article.
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Appendix A: Illustration of the OMM method using the
Davies model

We propose to illustrate the OMM approach using a simple test case that high-
lights its non-parametric nature. Indeed, the PDF is estimated point-wise in the
parameter space and therefore potentially any distribution may be recovered. We
propose to study a test case where one of the parameters has a uniform distribution
and two of them are correlated.

For the synthetic data set, N = 104 APs were generated using the Davies model
with three uncertainparameters: gNa, gKr, gCaL. gKr and gCaL were drawn from a
bivariate normal distribution of mean vector µ = (1, 1) and of covariance matrix:

A = 10−2 ×
(

2.25 2.03

2.03 2.25

)
which means gKr and gCaL have a standard deviation of 0.15 and a Pearson corre-
lation coefficient of 90%. gNa is sampled from an uncorrelated uniform distribution
over [0.5, 2.]. The simulation database was built by sampling the same three pa-
rameters over the domain Θ = [0.3, 2.0]3. Nc = 212 samples were drawn and the
number of moments to be matched was set to Nm = 3. The estimated marginals are
shown in Fig. 3.10. We also plotted the estimated correlation matrix of the three
conductances in Fig. 3.11. The correlation between gKr and gCaL is captured by
the method even though it is under-estimated at 60% instead of the 90% of the true
distribution.

The discrepancy observed between the true and estimated correlation would be
not be observed when using Bayesian inference techniques. This is a limitation
of the proposed method. In this particular case, the observable quantities could
be enriched with auto-correlation quantities to be able to correctly estimate the
parameters correlation.
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Figure 3.10: Conductances estimated marginal densities.
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Chapter 4

How to Choose Biomarkers in View of
Parameter Estimation

This chapter is based on [GLT17]

In numerous applications in biophysics, physiology and medicine, the system of interest
is studied by monitoring quantities, called biomarkers, extracted from measurements. These
biomarkers convey some information about relevant hidden quantities, which can be seen as
parameters of an underlying model. In this chapter we propose a strategy to automatically
design biomarkers to estimate a given parameter. Such biomarkers are chosen as the solu-
tion of a sparse optimization problem. The method is in particular illustrated with three
realistic applications, two in electrophysiology and one in hemodynamics. In both cases, our
algorithm provides numerical biomarkers which improve the parameter estimation problem.
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4.1 Introduction

In numerous applications in biophysics, physiology and medicine, the system of
interest is studied by monitoring a number of quantities, called biomarkers. For
example in electrophysiology, an action potential can be viewed through simple
quantities like the action potential duration, the amplitude, the rate of depolariza-
tion, etc. In hemodynamics, the systolic and diastolic pressures, or the pulse wave
velocity, are typical biomarkers extracted from pressure measurements.

The biomarkers are obtained by applying a nonlinear map to the signal mea-
sured during experiments or clinical observations. They convey some information on
hidden quantities, that are not directly measured. For example in hemodynamics,
the pulse wave velocity can be linked to the arterial stiffness. When performing
parameter estimation for a biophysical model, it is often much more convenient to
work with biomarkers than with the whole signals. A natural question is therefore:
which biomarker should be chosen to estimate a given parameter?

Biomarkers are usually proposed by the community, based on physical intuition
and experimental observations. They are often relevant in qualitatively describ-
ing the hidden quantities. However, in most practical applications, although the
biomarkers exhibit a good correlation with respect to the hidden quantity they are
designed to monitor, they have a non-negligible correlation with respect to others,
making them less robust or of difficult interpretation.

In the present work, we propose a strategy to automatically design biomarkers.
The basic ideas of our approach are: (1) to design numerical biomarkers that are
maximally correlated with the hidden quantities they have to reveal, and minimally
correlated with respect to all the others; (2) to provide a set of quantities making
the parameter estimation better conditioned.

The biomarker design problem may be interpreted as a feature selection problem.
Most of the literature considers the problem of selecting features in the input space in
order to predict a given output (that may be the output of a computational model).
Even though the aim of this work is reverse we will momentarily consider, for the
sake of comparison, the biomarkers to be inputs and the parameters of interests to
be the outputs. A common strategy to select a subset of the available features is
by ranking or eliminating them according to a given criterion or score. This score
may be based on a sensitivity analysis (e.g. first-order sensitivity indices [GB15]),
based on information theory (e.g. Fisher information matrix [CABCL09] or mutual
information [KFWV06]) or on the input covariance matrix [OMO14]. For other
feature selection techniques and an overview of the field, the interested reader is
referred to [GE03]. Other methods consist in selecting directions in the parameter
space. In other words, instead of selecting a subset of features, linear combinations
of the features are sought. In Principle Component Analysis directions of maximum
variance in the parameter space are sought [AM87]. The same principle holds for
functional-PCA [GLMG06], its counterpart applied to the case where the input space
is a function space. Neither of these approaches take into account the relationship
between inputs and outputs. In Active Subspaces [Con15], directions in the input
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space are sought so that the gradient of the output with respect to these directions
is maximum. In Partial Least Squares [WRWD84], directions are sought in the
parameter space so that their covariance with the output is maximum. In this
regard, this approach bears some similarities with the present work. Indeed, we
look for biomarkers that are maximally correlated with their respective parameters.
The main difference is that we also add the constraint that they are minimally
correlated with all remaining parameters. Another way to reduce the input space is
to perform a sparse linear regression using the Lasso algorithm [YGPD13]. The use
of the `1 norm penalization makes this approach similar to the present work even
though the cost function to be minimized is different.

Another aspect which makes the present approach different from previous works
is that the feature, or biomarker, selection is performed in order to simplify future
inverse problems. This issue has been addressed in [DDM17] but is rarely the focus of
feature selection studies. For a comprehensive review of inverse problem techniques,
the reader is referred to [KS06].

Our method is based on a semi-empirical approach. A mathematical model of
the system of interest is considered and a database of simulations is built, by taking
meaningful scenarios into account. Then, a dictionary of linear and nonlinear forms
of the observable is considered. The numerical biomarker is defined as a linear
combination of the elements of the dictionary. The linear combination is sought
such that the resulting biomarker is maximally correlated to the hidden quantity it
refers to, and minimally correlated with respect to all the others.

From a practical point of view, at the expense of one single offline database
computation (done once for all), the expansion coefficients of the biomarkers on
a dictionary of observable forms are computed, for a given experimental setup or
physical system. Then this result can be exploited for an unlimited number of
experiments. As a by-product, when doing inverse problems, the 2-distance in the
space of the biomarkers defines a metric which is, up to a controlled perturbation,
the 2-distance in the space of the hidden quantities. This makes the inverse problem
less ill-conditioned and, in general, easier to solve.

The structure of the work is as follows. In section 4.2 the numerical method
is described and its matrix formulation detailed. Then, a numerical analysis is
presented. In section 4.3, two numerical experiments are shown. In the first one,
a synthetic case is considered to illustrate the approach and highlight its features
and performances. In the second one, we illustrate the approach further with a non-
linear PDE model. In Section 4.4, three realistic synthetic examples are considered,
one with a 0-D electrophysiology model, one with a realistic PDE model of a human
body hemodynamics and the last one with synthetic MEA measurements. In all
three cases, our algorithm provides numerical biomarkers which lead to more efficient
inverse problems.
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4.2 Numerical Method

Let a generic model be written as F(u;θ) = 0, where F denotes a generic
possibly nonlinear algebraic or differential operator, u is the unknown describing
the state of the system, θ ∈ Rp a vector of p parameters and let (Θ,A,P) be a
complete probability space, Θ being the set of outcomes, A a σ–algebra and P a
probability measure. Let v be the observable, i.e. the measurable model outputs.
Let v be a vector function of the solution, v : U → V, where U ,V are suitable
functional spaces. The observable is assumed to be given by v(u) perturbed by an
additive noise:

v = v(u) + η.

Let Y denote a set of functions from the space of the observables V to R. A numerical
biomarker associated with the parameter θh is an element of Y denoted by yh. The
numerical biomarker design problem can be stated as follows:

∀h ∈ {1, . . . , p} ,


max
yh∈Y

cov (yh(v), θh)

min
yh∈Y

|cov (yh(v), θk)| ,∀k 6= h

s.t. var (yh(v)) = 1

(4.1a)

(4.1b)

(4.1c)

where var(·) and cov(·, ·) are respectively the variance and covariance operators. The
parameters θ1, . . . , θp are supposed to be zero-mean unit-variance random variables.
Under the condition that var (yh(v)) = 1, the Pearson correlation coefficient between
yh(v) and θh and their covariance coincide and they range, in absolute value, from 0
to 1. For the sake of simplicity and efficiency, we propose to relax the multi-objective
constrained optimization problem (4.1) as follows. We solve:

y∗h = arg min
yh∈Y

Lh(yh),

Lh(yh) =
1

2

[
p∑

k=1

[E [(yh − E(yh))θk]− δkh]2 + ξ
[
E
[
(yh − E(yh))2

]
− 1
]2]

,
(4.2)

where yh = yh(v), E [·] is the expectation operator, δkh is the Kronecker delta and ξ
a penalization parameter which results from the relaxation of the constraint (4.1c).
The necessary conditions for the optimality read:

p∑
k=1

(E [(yh − E(yh))θk]− δkh) θk + 2ξ
(
E
[
(yh − E(yh))2

]
− 1
)

(yh − E(yh)) = 0.

(4.3)
In order to discretize Eq.(4.3), a set of linear and nonlinear forms on V is introduced:
G = {g1, . . . , gNg} where gj ∈ Y for j = 1, . . . , Ng. This set will later be referred to as
the biomarkers dictionary. The biomarker yh is represented as a linear combination
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of the dictionary elements:

yh =

Ng∑
j=1

β
(h)
j gj , (4.4)

The equations for β(h)
j are obtained by a Galerkin projection of (4.3) on gl:

p∑
k=1

 Ng∑
j=1

Ckjβ
(h)
j − δkh

Ckl + 2ξ (νh − 1)

Ng∑
j=1

Gjlβ
(h)
j = 0,

with νh :=

Ng∑
i,j=1

Gijβ
(h)
i β

(h)
j , Gij := E(g̃ig̃j), Ckj := E(θkg̃j)

and g̃j := gj(v)− E(gj(v)),

(4.5)

which is a nonlinear system of equations to be solved for β(h) ∈ RNg . This equation
can also be obtained as the solution of the following minimization problem:

β
(h)
∗ = arg min

β(h)∈RNg
J (β(h)),

J (β(h)) =
1

2
‖Cβ(h) − e(h)‖2 +

ξ

2

(
νh(β(h))− 1

)2
,

(4.6)

where e(h)
i = δhi.

4.2.1 `1 regularization

To regularize the problem, an `1 penalty term is added which tends to promote
sparsity since it is an approximation of an `0 penalty [Tib96]. The motivation behind
the sparsity promotion is twofold. First, the obtained biomarkers, if most values of
β

(h)
j are zero, can be easily interpreted as a correction of possibly existing biomarkers

for a given parameter. Second, `1–penalyzed models tend to be more predictive and
less prone to overfitting than `2–penalyzed ones.
The equation for the coefficients β(h) is recast by adding to the functional J in
Eq.(4.6) an `1 penalization:

β
(h)
∗ = arg min

β(h)∈RNg
J +

λh
Ng
‖β(h)‖1, (4.7)

where λh is a penalization parameter. In what follows, Jλ denotes the penalized
functional.

A drawback of the modified functional is that the new term is not differentiable.
A standard way to deal with this difficulty is to introduce the change of variables
β(h) = β+ − β−, where β+ (resp. β−) is the positive (resp. negative) part of
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β(h) [BJM+11]. The minimization problem can then be recast as follows:
min

β+,β−
J (β+ − β−) + λh

Ng
(1 · β+ + 1 · β−)

s.t.
β+ ≥ 0

β− ≥ 0

. (4.8)

Note that while the non-differentiability issue of the `1–norm is avoided, the number
of unknowns is doubled and 2Ng (easy) inequality constraints are added.

4.2.2 Problem discretization

We choose to approximate the expectation operator by a Monte-Carlo method.
In the offline phase, N samples θ(i) ∈ Rp, i = 1 . . . N , are drawn and stored in the
matrix Θ ∈ RN×p. For each sample the model F(u(i);θ(i)) = 0 is evaluated and a
noise η is added to the model output v(u(i)). We define v(θ(i)) = v(u(i)) + η. The
intensity of the noise is chosen such that it is representative of a realistic scenario
under investigation. This contributes to the robustness of the biomarkers.

In what follows, y(h) ∈ RN denotes the vector of components yh(v(θ(i))), i =

1, . . . , N . The biomarkers dictionary entries are computed from the noisy model
outputs and stored in the matrix G = [gj(v(θ(i))) − E(gj(v))] ∈ RN×Ng . The set
{Θ,G} will later be referred to as the training set.

Many algorithms can be used to solve the constrained optimization problem
in (4.8). In the present work, we choose the Nesterov accelerated gradient descent
method [Nes83, OC15] in which, at each step, the unknowns are projected onto
the constraint set if they do not satisfy the inequality constraints. Given the type
of constraints, this projection is straightforward. The gradient to be used in the
Nesterov gradient descent iterations reads:

∂β+Jλ =
1

N
GTΘ(Cβ(h) − e(h)) +

2ξ(νh − 1)

N
GTGβ(h) +

λh
Ng

1,

∂β−Jλ = − 1

N
GTΘ(Cβ(h) − e(h))− 2ξ(νh − 1)

N
GTGβ(h) +

λh
Ng

1,

(4.9)

where the first two terms in the gradient correspond to the discretization of Eq.(4.5),
and the last term accounts for the `1 penalization.

4.2.3 Regularization parameters setting

Two methods are proposed to set the regularization parameters λ1, . . . , λp. In
this section, the penalization parameter ξ is set to 1.

“L-curve” criterion A common way to set the regularization parameters involves
computing the so-called “L-curve” which represents the balance between the sparsity
of the solution and the corresponding training error. Here, the sparsity of the
solution is measured by ‖βh‖1. The training error corresponding to the biomarker
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yh is defined as ‖ 1
NΘTy(h) − e(h)‖2 and quantifies how well the discrete biomarker

y(h) fulfills the objectives for a given training set {Θ,G}. The problem in (4.8)
is solved for different values of λh and therefore one L-curve is obtained for each
biomarker yh (i.e. for each parameter θh) for h = 1, . . . , p. In Figure 4.1 an example
of L-curves is provided, when considering the first two parameters of the model
presented in Section 4.4.1. A natural way to determine λh from the L-curve is to

0.0 0.1 0.2 0.3 0.4 0.5

‖ 1
NΘTyh − e(h)‖2

0.0

0.1

0.2
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‖β
(h

) ‖
1

h = 1

h = 2

Figure 4.1: The “L-curve” is obtained for the first two parameters of the test case
presented in Section 4.4.1. The `1-norm of β(h) is plotted against the training error
for different values of λh. Here, λh varies between 10−6 and 2× 101.

choose the λh that maximizes its curvature. It is, in practice, a good compromise
between an over-fitted (λh is too small) and an over-regularized (λh is too large)
solution [JG00]. It also has the advantage of not requiring other hyperparameters.

Training error threshold Another way to set the regularization parameters is
to choose the largest λh so that a user-defined training error is respected. While
easy to implement, this requires an additional tuning parameter.

4.2.4 Numerical Analysis

The analysis proposed hereafter is carried out in the non-regularized case, i.e.
when λh = 0. To assess the relevance of the biomarkers dictionary G in defining the
biomarker, it is interesting to study the map yh as a function of the parameters,
rather than of the observables. From a parameter identification perspective, an ideal
configuration would be to have yh proportional to θh. So we propose here to assess
how far we are from this configuration.

The numerical biomarker, after the coefficients β(h) have been found, can be
seen as a map from the space of the parameters into real numbers yh : Θ→ R. We
assume that the θh are zero-mean unit-variance and mutually uncorrelated random
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variables, i.e E(θh) = 0, E(θhθk) = δhk, ∀h, k. The expression of the biomarker yh
can be decomposed as follows:

yh = (α(h))Tθ + q(h)(θ), (4.10)

where q(h) is a function such that E(q(h)θk) = 0, ∀θk.

Proposition 1
Decomposing the biomarker yh as in (4.10), we have:

‖q(h)‖2 ≤ CL1/4
h ,

where C is a constant, Lh = Lh(yh) is defined in (4.2), and ‖v‖22 = E(v2).

Proof For convenience, the vector α(h) is decomposed in e(h) +γ(h), where e(h)
i =

δhi. Let ∆h = (γ(h))Tθ. The expression of yh is injected into Eq.(4.2) leading to:

Lh =
1

2
‖∆h‖22 +

ξ

2

[
‖q(h)‖22 + ‖∆h‖22 + 2E(∆h, θh)

]2
, (4.11)

First, we notice that ‖∆h‖2 ≤
√

2L1/2
h . Then, applying the Cauchy-Schwarz in-

equality and observing that ‖θh‖2 = 1, ∀h, we have:

‖q(h)‖22 ≤ 1√
ξ

(
2Lh − ‖∆h‖22

)1/2 − ‖∆h‖22 − 2E(∆h, θh)

≤
√

2

ξ
L1/2
h − ‖∆h‖22 + 2‖∆h‖2 ≤

√
2

ξ
L1/2
h + 2‖∆h‖2 ≤ C2L1/2

h

with C2 =
√

2/ξ + 2
√

2. ♦

The result of the proposition shows that the 2-norm of q(h), which is the nonlinear
term of the biomarker map yh is controlled by the value of the functional Lh, which
is minimized. If the value of the functional is close to zero, then, the norm of q is
close to zero. Thus, the biomarker, which is a nonlinear map of the observable, is
close to a linear map of the parameters.

In addition, this linear map is a perturbation of the identity. The amplitude
of this perturbation is measured by the quantity ‖∆h‖2 introduced in the proof of
Proposition 1, and it was noticed that ‖∆h‖2 ≤

√
2L1/2

h . This shows that if the
value of Lh is small, then the 2-distance of the biomarkers is close to the 2-distance of
the parameters. This property is particularly appealing when considering parameter
identification problems, as will be shown below.

In conclusion, it is desirable that the value of Lh(yh) be as small as possible.
Thus, the value reached by Lh(yh) once the minimization has been performed can
be seen as an a posteriori indicator of the quality of the dictionary.
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4.2.5 Application to inverse problems

One of the outcomes of the presented method is to make the parameter esti-
mation easier. It is assumed here that the parameter estimation is formulated as
an optimization problem, in which the 2–norm of the discrepancy between mea-
surements and the simulated observables is minimized. The cost function has the
following form:

J1(θ) =
1

2
‖v(θ)− v∗‖22 , (4.12)

where v∗ denotes the measured observable from which the parameters true value θ∗

are to be estimated. When considering the numerical biomarkers, the cost function
reads:

J2(θ) =
1

2

2∑
h=1

[yh(v(θ))− yh(v∗)]2 . (4.13)

To minimize J2 we propose to use a convenient algorithm which is a simplification of
Powell’s BOBYQA algorithm [Pow09] and relies on successive quadratic approxima-
tions of the cost function. Starting from an initial guess, the cost function is locally
evaluated and approximated by a quadratic function from which the minimum is
easily computed. This iterative process does not require any gradient evaluation
and converges, in practice, faster than the classical gradient descent. The algo-
rithm, later referred to as gradient-free minimization, is presented in Algorithm 4.
Algorithm 4: Cost function minimization using alternate directions descent
quadratic approximations.
Input:

• Cost function: J(θ) (see Eqs. (4.12),(4.13))

• Initial guess: θ(0)

• Bracket size: γ

• Stopping criterions: absTol and relTol

i← 0;
r(0) := J(θ(0));
while r(i) < absTol or

∣∣r(i) − r(i−1)
∣∣ < relTol× r(i) do

for h = 1 to p do
Fit quadratic model Q(ξ) to f(ξ) = J(. . . , θ

(i)
h−1, ξ, θ

(i)
h+1, . . .) for

ξ ∈ I(i)
h = [θ

(i)
h − γ, θ

(i)
h + γ];

Update: θ(i+1)
h := arg min

ξ∈I(i)
h

Q(ξ);

end
Update residual: r(i+1) := J(θ(i+1));
i← i+ 1 ;

end
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4.3 Numerical Experiments

In the following examples, the penalization parameter ξ is set to 1. It is a rea-
sonable compromise between efficiency and precision for all the test cases presented
in this work. Indeed, with ξ = 1, the constraint in (4.1c) is satisfied with an error
of at most 10−2 while the number of iterations needed in the accelerated gradient
descent (∼ 104) is deemed low enough for practical use.

4.3.1 A synthetic model

To start with, we illustrate our algorithm with a simple algebraic model defined
as follows:

u(θ1, θ2, x) = x2 exp

(
−(θ2

1 + θ2
2 −R2)2

2σ2
0

)
+ θ1 exp

(
−(x− (x1 + αθ1))2

2σ2
1

)
+ θ2 exp

(
−(x− (x2 + αθ2))2

2σ2
2

)
, x ∈ [−1, 1]

(4.14)

with the following fixed parameters: R = 0.75, x1 = −0.5, x2 = 0.5, α = 0.1, σ0 =

0.2 and σ1 = σ2 = 0.1. Here, x is the state variable and the uncertain parameters are
θ1 and θ2. The segment [−1, 1] is discretized into a uniform grid of Ng = 201 nodes.
The observable is v = u+η, where η ∼ N (0, τ2) with τ = 2.10−2. This corresponds
to a signal-to-noise ratio (SNR) of 31 dB. The biomarkers dictionary entries are the
values of the model at each node of the discretized domain u(x1), . . . , u(xNg). The
training set is generated with N = 103 samples of (θ1, θ2) drawn from the normal
distribution N (µ,Σ), where µ = (0, 0) and Σ = 2.5.10−1 × I2.
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Figure 4.2: Model outputs for different values of θ1, θ2.

4.3.1.1 Biomarkers computation

The procedure described in Section 4.2 is applied to the present test case and the
thresholding method is used to choose the regularization parameters λ1 and λ2. The
threshold on the training error is set to 10−2 which yields λ1 = 0.11 and λ2 = 0.09.
The obtained biomarkers weights β1 and β2 are represented in Fig. 4.3 as well as the
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biomarkers themselves with respect to the parameters. Note that most coefficients
are zero, as expected with the sparsity promoting `1 penalty.
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Figure 4.3: Analytical model: biomarkers weights (top) and corresponding biomark-
ers (bottom).

4.3.1.2 Parameter estimation

Here, we highlight how using the previously obtained biomarkers leads to easier
inverse problems. In the context of a parameter estimation problem, one seeks the
true values of the uncertain parameters θ∗ from a measurement v∗(x). We assume
that such a measurement is a noisy output of the model in (4.14):

v∗(x) = u(θ∗, x) + η (4.15)

We propose to perform a parameter estimation with the true solution θ∗ = (0.3, 0.3)

using J1 and J2 and with both minimization methods: gradient descent and
gradient-free minimization. The cost functionals J1 and J2 as function of θ1, θ2

are plotted in Fig. 4.4. While J1 features local minima and is non convex, the func-
tional J2 has only one global minimum, corresponding to the true solution. The
results of the parameter estimations are summarized in Table 4.1. As expected,
the parameter estimation fails when using J1 in the sense that the distance to the
true solution at the end of the minimization procedure is large. The minimization
method falls, for J1, into a local minimum as seen in Fig. 4.4. On the contrary,
the minimization succeeds in finding the true solution when using J2 (using the
numerical biomarkers).
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Figure 4.4: Contours of the inverse problem cost function with true solution θ∗ =
(0.3, 0.3) represented by a red dot. J1 using the raw model outputs (left) and J2

using the numerical biomarkers (right).

Powell’s method

‖θ(niter) − θ∗‖2 niter

J1 6.3× 10−1 33

J2 6.8× 10−3 13

Table 4.1: Parameter estimation.
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4.3.1.3 Influence of hyperparameters

Using the analytical model, we now investigate the influence of the regularization
parameters λ1, λ2 and the training set parameters samples Θ. For the sake of
simplicity and because θ1 and θ2 have essentially symmetrical effects, we will restrict
to the cases where λ1 = λ2. In Figure 4.5 is represented J2(θ1, θ2), the cost function
associated to the inverse problem in (4.13) as the regularization parameters increase
from 10−5 to 101. For high values of λh, the cost function loses its convexity since
the penalty term in (4.7) becomes predominant.
In Figure 4.5 is represented J2(θ1, θ2) for different training set parameters samples
Θ. Using the same number of samples (N = 103) and same standard deviation, the
samples are drawn from a normal distribution with different means. The method is
robust with respect to the choice of training set in the sense that the cost function
remains convex even when the training set center is far from the true solution, except
in the last case (µ = (−2,−2)).
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Figure 4.5: Cost function J2(θ1, θ2) with different regularization parameters λ =
λ1 = λ2 and parameters samples centered on µ = (0, 0). The red dot materializes
the position of the true solution θ∗.

4.3.2 A reaction diffusion model

We now illustrate the numerical biomarkers method with a one dimensional PDE
model, namely the Fisher, Kolmogorov, Petrovskii and Piskunov. It is a nonlinear
reaction-diffusion equation which exhibits, under certain conditions, a propagation
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Figure 4.6: Cost function J2(θ1, θ2) with different training sets and λ1 = λ2 = 10−3.
The red dot materializes the position of the true solution θ∗.

front. The model reads:

∂u

∂t
−∆u = αu(1− u), x ∈ [0, 1], t ∈ [0, T ],

∂u

∂x
= 0, x = 0, x = 1, t ∈ [0, T ],

u(x, t = 0) = exp

[
−(x− x0)2

2σ2

]
, x ∈ [0, 1].

Note that it is a 1–D version of the model presented in Chapter 2 but this stime the
“stimulation” comes from the initial solution and not an additional term in the right
hand side. The initial condition considered here is a non-normalized Gaussian func-
tion of varying center and width (standard deviation). The parameters of interest
are the reaction coefficient α and two parameters related to the initial condition: x0

the center of the Gaussian and σ its standard deviation. The uncertain parameters
are defined as follows:

θ1 := α/ᾱ, θ2 := x0, θ3 := σ/σ̄,

where R̄ = 500 and σ̄ = 5.10−2.
The segment [0, 1] is discretized using a uniform grid of Ng = 101 nodes and the
time is discretized on the segment [0, T ] where T = 4.10−2 with a time step of
∆t = 10−4. The observable is the state variable at each node in space and once
every 10 time steps, which amounts to a total of 400 DOFs. In this example, the
entries of the dictionary of features are the observable values at each of the 400
DOFs with the addition of a noise η, where η ∼ N (0, τ = 10−2). The training set
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is generated with N = 103 samples of (θ1, θ2, θ3) drawn from a uniform distribution
over [1, 2] × [0.1, 0.9] × [0.5, 2]. A sample noisy solution of the model is shown in
Figure 4.7 and in the top left corner of Figure 4.8.
The procedure described in Section 4.2 is applied. The obtained numerical biomark-
ers weights are represented in Figure 4.8 as functions of time and space. This repre-
sentation allows for a qualitative discussion of the obtained non-zero weights. For the
x0 parameter (which indicates the center of the Gaussian), the numerical biomarker
is asymmetrical and is “active” right after the initial condition. It multiplies the
right part of the solution by +1 and the left part of the solution by -1. For the σ
parameter, the numerical biomarker seems to compute the integral of the solution
right after the initial condition. Since the initial condition is not normalized, the
higher the σ the higher its integral in space is. Finally, it is not easy to interpret
the numerical biomarker associated with the reaction parameter α. Note that it
substracts the initial condition to the solution at the boundary of the domain later
in time. This could be a way of measuring the front propagation velocity which we
know is linked to the reaction coefficient (and to the diffusion coefficient which is
identically 1 in our case).
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Figure 4.7: Sample solution of the 1–D FKPP model at two different times (here,
time is multiplied by a factor 103).

4.4 Application to electrophysiology and hemodynamics

4.4.1 A model in electrophysiology

In this section, the proposed methodology is applied to a cardiomyocyte (heart
muscle cell) electrophysiology model. Cardiomyocytes are contractible cells that
react to an electrical activation. Detailed electrophysiology models have been de-
veloped to reproduce the cardiomyocytes complex electrical activity. Such models
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top left: visualization of a sample solution in time and space, top right: weights of
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consist in general in a set of nonlinear coupled ODEs of the following form:
dV

dt
=

m∑
i=1

Ji(V, t),

Ji(V, t) = κifi(V,wi) for 1 ≤ i ≤ m,
dwi

dt
= ζi(V,wi) for 1 ≤ i ≤ m.

(4.16)

Despite a wide variety of models, most of them share this common structure. m

corresponds to the number of different kinds of ionic currents and ranges from 1 to
more than 30 depending on the model’s precision level. In this paper, the model
by Davies et al. [DMH+11] was chosen. It counts m = 17 ionic currents, 29 ODEs
and is designed to model cardiomyocytes belonging to the ventricular region of the
canine heart. The observable quantity is the action potential (AP), denoted by V
in (4.16). It corresponds to the electrical potential difference between the inside and
the outside of the cell. It drives the heart contraction and its alteration is at the
origin of many cardiac diseases. In Figure 4.10 is plotted a typical AP along with
some biomarkers that are commonly extracted from it. In our case, the parameters
of interest are the conductances, κi in (4.16). They are the parameters commonly
calibrated to fit different kind of cells or to model diseases and drug-induced AP
alterations. We chose to retain 5 of these conductances as the parameters of interest,
namely DKr, DK1, Cto1, DCa,L and DNaCa. Each parameter θh is a multiplicative
factor of the corresponding parameter reference value. Estimating this kind of pa-
rameters has many applications in electrophysiology, ranging from fitting models
to experiments [SVNL05, SS10, KNV14] to obtaining insights into disease-induced
cell modifications [SBOW+14]. Most often, this inverse problem is solved by using
biomarkers.

Figure 4.11 shows how correlated these 5 parameters of interest are with their
classically associated biomarkers. The latter are, respectively, APD90, RMP, Vnotch,
APD50/APD90, APD50 (see Figure 4.10). This choice of biomarkers reflects the
common associations made in the literature [DMH+11, CRN98, KSMT14]. With-
out surprise, this result shows that the classically adopted biomarkers are indeed
correlated with the parameters of interest. Nevertheless, it also shows that each
feature is not maximally correlated with its corresponding parameter and that it is
also correlated with the other parameters. There is therefore room for improvement,
and we propose to test if our strategy to define numerical biomarkers can lead to a
better parameter estimation.

We apply our method to a dictionary of 104 quantities computed from V (t) + η,
where η ∼ N (0, τ) with τ = 0.5. This corresponds to a SNR of 43 dB. The dictionary
entries are the AP values at different times, the products of AP values at different
times, the time derivatives, the integral over time, the PCA coefficients and the
“classical” biomarkers (see Figure 4.10). The training set is generated with N =

5 × 104 samples drawn from a uniform distribution over the hypercube [0.5, 3]5.
This means the conductances κi are allowed to vary from half to three times their
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reference values. The regularization parameters are set using the L-curve criterion.

As an example, Figure 4.9 shows the resulting biomarker for parameter θ3. Inter-
estingly, the algorithm finds that the numerical biomarker is a correction of Vnotch,
which is indeed the biomarkers classically associated with parameter θ3.
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Figure 4.9: Biomarker weights β(3) associated with θ3. The numerical biomarker is
actually a correction of the classically associated one Vnotch.

The obtained numerical biomarkers are now used to solve parameter estimation
problems. Figure 4.12 shows an example of such an inverse problem. Given a certain
true value θ∗ and initial guess θ(0), both in [0.5, 3]5, the parameter estimation is
carried out by minimizing J1(θ) and J2(θ) with the gradient-free algorithm. In this
specific example, minimizing J1 fails to reach the true solution because it falls into
a local minimum, whereas minimizing J2 leads to the true solution.

We now propose to illustrate the advantage of using numerical biomarkers in-
stead of the time series to identify parameters. Since the efficiency and the accuracy
of the parameter estimation strongly depends on the initial guess and the sought val-
ues, we carry out a statistical survey: 25 samples are randomly drawn from [0.5, 3]5

and an inverse problem is executed for each two-point combination. This amounts
to 625 inverse problems. Each inverse problem is carried out twice by minimizing J1

and J2 and the estimation error is stored. Here, the estimation error is simply de-
fined as the 2–norm between the true solution and the solution of the minimization
problem. Figure 4.13 shows the histogram of estimation errors in both cases. When
using the numerical biomarkers instead of the whole time series, the estimation error
is in average smaller and is less spread (lower standard deviation). In the first case,
the estimation error has mean 0.12 and standard deviation 0.16. In the second case,
the estimation error has mean 0.44 and standard deviation 0.43.
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Figure 4.10: Action potential (V (t)) computed using the Courtemanche model.
Common features associated to the parameters of interest used in the literature are
also represented.
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Figure 4.12: Example of a parameter estimation from a synthetic AP using the
gradient-free minimization algorithm. v∗ is the synthetic measurement, θ(0) the
initial guess and θ(J1) (resp. θ(J2)) the solution of the minimization of J1(θ) (resp.
J2(θ)).

Figure 4.13: Histograms of the parameter estimation error for the 625 inverse prob-
lems carried out with both J1 and J2 as the inverse problem cost function.
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4.4.2 A model of systemic blood flow circulation

We now present an application concerning the hemodynamics in a networks of
arteries. The motivation is for example the monitoring of hypertensive patients,
for which it is important to assess arteries stiffening from non-invasive measure-
ments. The biomarker which is typically used in practice is the Pulse Wave Velocity
(PWV), which is the average speed of the pressure waves travelling from carotid to
femoral arteries. But arterial stiffness is not the only property affecting the PWV.
Daily fluctuations of PWV can be explained as the interplay of different phenom-
ena occurring in the cardiovascular system, such as the different metabolic need of
the peripheral organs or the fluctuation in the heart rate due to physical activity.
In what follows, the possibility of correcting PWV is studied, in order to have a
biomarker which is more intrinsically related to arteries stiffness.

The main 55 arteries of the human body (see Figure 4.14) are considered, and the
fluid-solid interaction occurring in blood vessels is described by means of a simplified
1-D model (see e.g. [FQV10, RMP+09, MAP+07]). The resulting system is a set
of coupled hyperbolic partial differential equations in the unknowns (Ai, ui), where
Ai(x, t) is the cross-sectional area of the i-th vessel and ui(x, t) is the sectional
averaged blood velocity, x ∈ [0, `i] being the axial coordinate of the i-th vessel,
t ∈ R+ being the time. The system takes the following form:

∂tAi + ∂x (Aiui) = 0, (4.17)

∂tui + ∂x

(
u2
i

2
+
pi
%

)
= −κ ui

Ai
, (4.18)

where % is the blood density, κ a friction coefficient, pi(x, t) is the pressure in the
vessels which is related to the cross-sectional area through the following algebraic
relation: pi = p0 +β

(
A

1/2
i −A(0)1/2

i

)
, where β is the elastic coefficient [FQV10] and

A
(0)
i is the cross sectional area of the i-th vessel, at rest. The boundary conditions

for the model are: imposed flow in the ascending aorta (A1(0, t)u1(0, t) = q(t),
that mimics the heart activity), standard three-element Windkessel models at the
outlets (to account for organs and micro-circulation [MAP+07]), mass conservation
and continuity of total pressure at the bifurcations. The model has been discretized
and solved following [ABB+16]. The model having more than 100 free parameters,
it suffers from a severe identifiability issue when using realistic data. Hence, the
model has been reparametrised by introducing 8 hyper-parameters, accounting for
the main source of variability in the observed data. In particular, the main goal is
to be able to represent (in a simple way) the daily fluctuations of the blood flow in
the network as well as the variability in the material properties of the arteries. The
stiffness of the different segments has been parametrized as follows:

βi = θ0 + θ1β
(ref)
i , (4.19)

where β(ref)
i is a reference elastic coefficient for the i-th vessel, available in the
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Figure 4.14: Human body hemdoynamics modeled as a network of 55 arteries.

literature [RMP+09]. The three-element Windkessel model parameters have been
grouped into three sets: the first one gathers the terminal models of the upper part
of the body, the second one gathers those of the central part and the last one the
lumped models of the lower body. For each, the distal resistance is rescaled, and the
capacitance is set in such a way that the characteristic time of the circuit remains
unchanged:

Ru,j = θ2R
(ref)
u,j , Cu,j =

C
(ref)
u,j

θ2
, (4.20)

Rc,j = θ3R
(ref)
c,j , Cc,j =

C
(ref)
c,j

θ3
, (4.21)

Rl,j = θ4R
(ref)
l,j , Cl,j =

C
(ref)
l,j

θ4
. (4.22)

Three additional parameters account for variations in the cardiac output and cardiac
rhythm:

q(t) =

θ5 sin
(

π
θ6Ts

t
)

0 ≤ t ≤ θ6Ts

0 θ6 < t ≤ θ7T
, (4.23)

where Ts = 0.25s is the systolic period and T = 0.8s is a reference cardiac period.

The training set is generated by drawing N = 1024 samples of θ from the normal
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distribution N (µ,Σ), where µ = (0, 1, 1, 1, 1, 1, 1, 1) and Σ = 0.052 × I8. The flow
and pressure signals are computed by integrating the model for these samples. With
the variability considered, the fluctuations in terms of pressure and flow are about
20%, which is enough to cover meaningful scenarios of daily fluctuations.

The dictionary is built as follows. In three distinct locations – the carotid, the
subclavian artery and the femoral artery – average in time, maximum and minimum
value of pressure, flow, and mechanical power w = pQ are taken. The last three
elements of the dictionary are PWV taken from carotid to femoral, from carotid to
subclavian and from subclavian to femoral. The dictionary is ordered as follows:

g = (Q0, . . . , Q8, p0, . . . , p8, w0, . . . , w8, PWV0, PWV1, PWV2).

The method is used with λh = 10−3, ∀h.
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Figure 4.15: Correlation (cor(y1, θi)) of the biomarker related to θ1 and all the
parameters, when considering PWV, and the numerically corrected biomarker.

In Fig.4.15, the red squares (resp. the black dots) show the correlation coeffi-
cients between the biomarker y1 provided by our algorithm (resp. the PWV) and
each of the 9 parameters. The PWV is significantly correlated to θ1, which is not
a surprise since the arterial stiffness is known to be linked to the PWV. But the
PWV also has a significant correlation (of about 0.3 − 0.4) with the peripheral re-
sistances of the central body and with the cardiac output. This provides a possible
explanation for the observed daily fluctuations of the PWV. On the contrary, the
biomarker y1 provided by our method has a higher correlation with respect to θ1

and a negligible correlation with respect to all the other parameters.
Interestingly, the decomposition of the biomarker onto the dictionary sheds some

light onto the physical interpretation of the correction. In Fig.4.16 the expression
of β(1) is shown. We can observe that it is sparse. As expected, the PWV from
carotid to subclavian is selected. Then, the correction is provided by a combination
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Figure 4.16: Biomarker expression on the dictionary, for y1

of the mechanical power. It is remarkable that the relevant quantity proves to be the
product of the flow and the pressure, but not the flow and the pressure separately.

In conclusion, if we are interested in estimating the arterial stiffness, the algo-
rithm suggests that it could be more relevant to consider a combination of PWV and
mechanical power rather than just the PWV. This result is preliminary and would
require a deeper investigation. Nevertheless, it shows an example of possible ap-
plications of the proposed method to correct the expression of standard biomarkers
used in hemodynamics.

4.4.3 Application to synthetic MEA measurements

Finally, we slightly anticipate the next chapter and present an application of the
method to micro-electrode array (MEA) measurements. The objective of this test
case is to show that using numerical biomarkers may improve the PDF estimation
of some parameters of the MEA model when using the observable moment matching
method (OMM, see Chapter 2). To simulate the MEA measurements, we use the
same procedure as described in 5.2 and the uncertain parameters considered here
are (θ1, θ2, θ3) := (gfi, gso, gsi).
The observable is defined as the field potential measured at the first electrode of
the MEA at 1200 time steps (Nx=1200). The synthetic data set is generated by
evaluating the model for N = 2048 samples of (θ1, θ2, θ3).
(θ2, θ3) are mutually dependent and drawn from the bivariate Gaussian mixture
N (µ1, σ

2I2) +N (µ2, σ
2I2), where

µ1 = (1, 1), µ2 = (0.7, 1.2), σ = 0.05.

θ1 is indenpendent of θ2 and θ3 and is drawn from a normal distribution N (1, σ2).
The simulation set is generated by evaluating the model for Nc = 4096 collocation
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points using the Sobol sequence for the parameter domain Θ = [0.4, 1.2]× [0.5, 1.5]2.

4.4.3.1 Observable moment matching with the whole signal

Following the same procedure as the one presented in Chapter 2, we try to
estimate the PDF of (θ1, θ2, θ3) given the set of synthetic measurements. The inverse
procedure described in Chapter 2. The number of moments to be matched is set
to Nm = 4 and the tolerance parameter to α = 10−3. Convergence is reached at
niter = 3 and Nk = 44.

4.4.3.2 Observable moment matching with the numerical biomarkers

The numerical biomarker procedure is applied to our test case using the simula-
tion set (of the OMM method) as the training set. Using λ1 = λ2 = λ3 = 0.1 as the
`1 penalization parameters, we obtain three numerical biomarkers which are used as
the observable quantities in the OMM method. We denote by y1 (resp. y2, y3) the
numerical biomarker associated with θ1 (resp. θ2, θ3). By construction, the numer-
ical biomarkers are minimally correlated with all the parameters except for the one
it is associated with. For instance, y1 contains almost no information about θ2. To
capture the dependence structure between the parameters, we use pairwise products
of the biomarkers in the same spirit as what is done in 3.2.2.4. More precisely, we
use the following 15 quantities whose expectations are to be matched:

y1, y2, y3, y
2
1, y

2
2, y

2
3, y1y2, y1y3, y2y3, y

3
2, y

3
3, y

2
2y3, y

2
3y2, y

4
2, y

4
3 (4.24)

4.4.3.3 Results

We now compare the two strategies by analyzing the results. In Table 4.2 are
shown the estimated moments of the parameters. In Figure 4.17, we show the
estimated PDF in both cases, to be compared with the actual parameters samples
used to generate the synthetic measurements. Because we are in dimension 3, it is
not possible to directly visualize the PDF. Since the interesting point in this example
is the dependence structure between θ2 and θ3, we choose to observe the PDF in a
cuboid of the parameter space defined by 0.9 ≤ θ1 ≤ 1.1. With the whole signal,
the OMM method does capture the dependence but fails to approximate properly
the PDF. This is also visible with the large errors made on the parameters moments
approximations in Table 4.2. Using the numerical biomarkers however, the PDF is
remarkably well approximated with the two modes of the Gaussian mixture clearly
visible and properly located. This is consistent with the relatively low errors made
on the parameters moments approximations in Table 4.2.

4.5 Conclusions and Perspectives

In this work a method is proposed to define numerical biomarkers. A semi-
empirical approach is used, that consists in building a database of simulations and
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Figure 4.17: Point-wise visualization of the estimated PDF using the observable
moment matching method. The visualization is made in a cuboid of the parameter
space defined by 0.9 ≤ θ1 ≤ 1.1 to observe the (θ2,θ3) dependence.
(a): parameters samples used to generate the synthetic measurements. (b): es-
timated PDF using the whole signal. (c): estimated PDF using the numerical
biomarkers.

Observable whole signal numerical biomarkers true parameters

Parameter µ1 µ2 µ3 µ1 µ2 µ3 µ1 µ2 µ3

gfi 1.00 1.00 1.01 1.03 1.06 1.10 1.00 1.00 1.01

gso 0.90 0.87 0.91 0.86 0.76 0.70 0.85 0.75 0.68

gsi 1.14 1.36 1.68 1.11 1.24 1.40 1.10 1.22 1.38

Table 4.2: OMM results: statistics summary of the estimated parameters of the
MEA model using the whole signal as the observable and using the numerical
biomarkers.
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exploiting the results in order to define biomarkers which are maximally correlated
to the parameters they are meant to monitor and minimally correlated with respect
to all the others. Such an objective is translated into an optimization problem and
the biomarkers are sought as the solution of its discretized version. The biomarkers
are, by construction, linear combinations of dictionary entries that comprise rele-
vant features found in the literature and additional quantities computed from the
observable signal. Furthermore, a sparsity-promoting penalization ensures that the
obtained biomarker representation on the dictionary entries are sparse and, often,
easily interpretable. As a by-product, a metric in the space of the observable is
obtained which is equivalent, up to a small perturbation, to the 2−distance in the
space of parameters. The method can be exploited in order to enhance the robust-
ness of the biomarkers which are used in biology and medicine by using numerical
simulations. Furthermore, it can be used to regularize inverse problems and make
them less ill-conditioned.
We propose three realistic scenarios in biology: two in electrophysiology and one in
hemodynamics. In the first example, we show that using the numerical biomarkers
makes the inverse problems associated with parameter estimation easier to solve.
In the second example, we propose a numerical biomarker associated to monitor
arterial stiffness that is independent other quantities that naturally fluctuate. In
the last example, we propose numerical biomarkers associated with MEA measure-
ments that improve the PDF estimation carried out using the OMM method (see
Chapter 2).



Chapter 5

Optimal Biomarkers Design for Drug
Safety Evaluation Using Microelectrode

Array Measurements

This chapter is based on [TRLG17]

The Micro-Electrode Array device enables high-throughput electrophysiology measure-
ments that are less labour-intensive than patch-clamp based techniques. Combined with
human-induced pluripotent stem cells (hiPSC), it represents a new and promising paradigm
for automated and accurate in-vitro drug safety evaluation. In this chapter, the following
question is addressed: which features of the MEA signals should be measured to better
classify the effects of drugs? A framework for the classification of drugs using MEA mea-
surements is proposed. It relies on an in silico electrophysiology model of the MEA, a
feature selection algorithm and automatic classification tools. An in silico model of the
MEA is developed and is used to generate synthetic measurements. An algorithm that
extracts MEA measurements features designed to perform well in a classification context
is described. These features are called numerical biomarkers. A state-of-the-art machine
learning program is used to carry out the classification of drugs using MEA measurements.
We show that the numerical biomarkers outperform the classical ones in different classifica-
tion scenarios. We show that using both synthetic and experimental MEA measurements
improves the robustness of the numerical biomarkers and that the classification scores are
increased.
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5.1 Introduction

One of the main goals of safety pharmacology studies is to anticipate the effect
of drugs on cardiomyocytes. Among other adverse effects, it focuses on predict-
ing arrhythmic behaviors which may lead to torsades de pointes (TdP). The most
common risk factors under consideration are QT prolongation and hERG block.
However these risk factors are now considered insufficient and the guidelines need to
be improved. Several advances in technology and computational modeling may fa-
vor the emergence of new methods for more efficient drug safety evaluation. On the
hardware side, the Micro-Electrode Array (MEA) technology [Sys , MBGF04] en-
ables high-throughput electrophysiology measurements that are less labour-intensive
than patch-clamp based techniques. On the biological side, the use of human-
induced pluripotent stem cells (hiPSC) has developed [SPD13] and their recent
large-scale production makes it a viable human model replacement. The combined
use of the MEA technology and hiPSC represents a new and promising paradigm
for automated and accurate in-vitro drug safety evaluation [CT14, CGB+16]. In
parallel of these technological breakthroughs, several efforts have been recently
made towards promoting the use of computational tools in drug safety evalua-
tion [DWM+16, LS16]. In this context, a framework for drug safety evaluation using
in silico models and experimental measurements using a MEA device is hereby pre-
sented.
The framework aims at predicting the effect of a drug onto the cardiomyocytes ionic
channels activities from the knowledge of MEA experimental recordings. More pre-
cisely, the goal is to determine which ionic channels are affected by a given drug.
The approach is based on an in silico model of the MEA and the cardiomyocytes
tissue, a feature selection algorithm and a classification model. The in silico model
is based on a simple ionic model [BOCF08] for the cardiomyocytes electrical activity
and on the bidomain equations [Tun78] for the spatial propagation of the electrical
potentials. The ionic model counts three different currents (fast inward, slow inward,
slow outward), each being associated with an ionic species (respectively sodium, cal-
cium, potassium). The activity of each current is controlled by a scaling parameter
that is referred to as conductance in the following. In the present work, the drugs
considered are assumed to affect one of these currents. Thus, the inactivation of
a current caused by a drug is modeled by a diminution of the corresponding con-
ductance in the ionic model. The conductances and some other parameters of the
model can be varied in order to replicate the variability observed in the experimental
measurements. The in silico model is used to generate what is later referred to as
synthetic MEA measurements. The experimental data set itself consists of MEA
electrode recordings which come in the form of time series. Each recording is done
in control conditions (no drug) and with different drug concentrations levels. The
experimental data is also labelled, meaning the affected ionic channels are known
for each drug.
As explained above, the MEA measurements, whether synthetic or experimental,
come in the form of time series. For classification purposes, it is more efficient to
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extract features from these time series. Some features, also called biomarkers, are
already widely used in the community such as the field potential duration which may
be associated with the QT segment in ECGs. These common features are referred
to as classical biomarkers. We propose a way to automatically extract features from
the MEA measurements that are designed to perform well in a classification context.
These new features, referred to as numerical biomarkers in the following, are defined
as linear combinations of dictionary entries whose weights are solution of a sparse
optimization problem. The weights are computed using MEA features coming from
experimental measurements, synthetic ones or a composite set of both. To predict
the effect of drugs, the idea developed in this work is to train a classification model,
or classifier, to associate MEA measurements with a type of affected ionic channel,
or label. Then, the classifier is tested with new MEA measurements for which it
predicts labels. Provided that the true labels are known, it is possible to measure
the precision of the classification and therefore evaluate a given classifier. In the
present work, a state-of-the-art machine learning classification tool, Support Vector
Classification (SVC), is used.
The paper is organized as follows. First, the methods are described. The in silico
model is presented and the generation of synthetic data is explained. The algorithm
that computes the numerical biomarkers is described and the classification tools
are presented. Second, the performance of the numerical biomarkers and of the
classification tools are studied in different drug classification scenarios. The numer-
ical biomarkers are compared to the classical ones using two different classification
strategies. Finally, numerical biomarkers computed with experimental data only
and with a composite set of experimental and synthetic data are compared.

5.2 Methods

5.2.1 Equations

5.2.1.1 Bidomain equations and ionic model

Let Ω be the domain representing a MEA’s well. The thickness of the layer of
cells being small compared to the size of the well, the problem is assumed to be
two-dimensional. The activation is assumed to be triggered by a current Iapp that is
applied in an arbitrary region of the well. We denote by Am, Cm, zthick the surface
area of membrane per unit volume of tissue, the membrane capacitance, and the
thickness of the cell layer, respectively. The intra and extra-cellular conductivity
tensors σi and σe are assumed to be scalar. The propagation of the transmembrane
potential Vm and the extracellular potential φe are modeled in Ω with the bidomain
model [Tun78]:

AmCm
∂Vm

∂t
+AmIion(Vm, w)−∇ · (σi∇Vm)−∇ · (σi∇φe) = AmIapp,

−∇ · ((σi + σe)∇φe)−∇ · (σi∇Vm) = 1
zthick

∑
ek

Ikel
|ek|

χek .
(5.1)
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In the second equation, Ikel is the electric current which goes through the electrode
located at ek, |ek| is the electrode surface and χek is the characteristic function of ek
(which takes the value 1 on the electrode and 0 elsewhere). An imperfect model for
the electrode is used to compute Ikel and described in the Supplementary Material.
Let n be the outward normal to the boundary of the domain Ω. Equations (5.1)
are completed with the following boundary conditions: σi∇φi · n = 0 (where φi =

Vm +φe), and either φe = 0 on the region connected to the ground or σe∇φe ·n = 0

elsewhere.
The transmembrane ionic current Iion is described with the Minimal Ventricular

(MV) model [BOCF08] which includes three currents: fast inward (fi), slow inward
(si) and outward (so) currents. The reader is referred to the original publications
for more details. Schematically, Iion depends on Vm and on gating variables w =

(wj)1≤j≤3, solution of a system of three nonlinear ordinary differential equations. A
conductance coefficient gs, with s = fi, so or si, controls the activity of the idealized
channels associated with each of three currents of the model.

The partial differential equations are discretized in space by means of P1 finite
elements, and in time by using backward differentiation formula (BDF) schemes
with adaptive time steps and order provided by the Sundials library [HBG+05]. The
quantity of interest is the extra-cellular potentiel, also referred to as field potential
(FP). It is a function of time and recorded at the electrodes locations.

Synthetic measurements In the present work, the computational model is used
to generate synthetic MEA measurements. For a given set of conductances, the
model is evaluated and the electrodes FPs are recorded. The conductances are cho-
sen as to represent meaningful scenarios, as explained later in the Results section.
To mimic experimental measurements, a zero-mean Gaussian noise of standard de-
viation 10 µV is added to the FPs (see Figure 5.3). A heterogeneity model of
some ionic parameters is also considered to replicate the variability exhibited by the
experimental measurements. This model is described later in this section.

Steady-state regime Because the initial conditions of the ionic model do not cor-
respond to those of a steady-state regime, several beats may need to be simulated
before reaching a regime where there is negligible beat-to-beat variations. A numeri-
cal experiment was carried out to determine when this regime is reached. Figure 5.2
shows super-imposed consecutive simulated FPs and the normalized beat-to-beat
variations in the FP. When considering noisy synthetic measurements as described
above, the steady-state is assumed to be reached when the beat-to-beat variations
is comparable to variations induced by noise only. The beat-to-beat variability
observed after this beat may be imputed to the coarseness of the mesh, the time
discretization errors and the fluctuations of the ionic model itself. In the present
work, the steady-state is assumed to be reached at the second beat. Therefore, the
simulations are run for two cardiac cycles and the second beat is recorded to be used
as a synthetic measurement.
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5.2.1.2 Drug modeling

We chose to model the action of drugs on the ion channels by the conductance-
block formulation of the pore block model [MCS+11, ZBS+13, BPS+06]. This simple
approach, which relies on a small number of parameters, was shown in [ABC+17]
to be able to reproduce the expected effects of several drugs on MEA signals. The
conductance of a given channel s is given by:

gs = gcontrol,s

[
1 +

(
[D]

IC50

)n ]−1

, (5.2)

where gcontrol,s is the drug-free maximal conductance, [D] is the drug concentration,
IC50 is the value of the drug concentration at which the peak current is reduced of
50%, n is the Hill coefficient. In this work, n will be assumed to be equal to 1.

5.2.1.3 Heterogeneity modeling

A typical experimental MEA FP measurement exhibits both a depolarization
spike and a repolarization wave (see Figure 5.3). Using the computational model
described above, the repolarization wave is usually too small compared to what
is observed in experiments. As noted in [ABC+17], the repolarization wave pro-
vided by this model is larger when the domain includes cells with different APDs.
In [ABC+17], the cell heterogeneity was defined on a checkerboard arbitrarily chosen
in the MEA’s well. We propose here a different approach, based on a probabilistic
description of the heterogeneity. The tissue is supposed to be a continuous mixture
characterized by a space dependent coefficient:

θw(x, y) = (1− c(x, y))θ(A)
w + c(x, y)θ(B)

w , (5.3)

where c is a random process with values in [0, 1], θ(A)
w and θ

(B)
w are coefficients of

the MV model characterizing two kinds of cells, called “type A” and “type B”. In
our simulations, we took θ(A)

w = 0.1, θ(B)
w = 0.8. The AP corresponding to different

homogeneous realizations of c is shown in Figure 5.4. We make the hypothesis that
the spatial variations of c are structured by a normal correlation function fc:

fc

[(
x

y

)
,

(
x′

y′

)]
= exp

[
−(x− x′)2 + (y − y′)2

2l2c

]
, (5.4)

where lc is the correlation length, set to lc = 0.25 mm in the present work. To
discretize the random process c, we compute the correlation matrix on the finite
element mesh used for the discretization of the bidomain equations. The correlation
matrix C = [Ci,j ] ∈ RNmesh×Nmesh reads:

Ci,j = fc

[(
x̂i
ŷi

)
,

(
x̂j
ŷj

)]
, (5.5)
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where Nmesh is the total number of mesh nodes and (x̂i, ŷi) are the coordinates of
the ith node. The eigenpairs of C are denoted by (λi,Φi), and ordered by decreasing
order of the eigenvalues λi. By a convenient abuse of notation, we denote by (x̂, ŷ)→
Φi(x̂, ŷ) the function of the finite element space associated with the eigenmode
Φi. Finally, the discretized heterogeneity field is approximated by the following
truncated expansion:

c(x̂, ŷ, ξ) =

nc∑
i=1

ξiΦi(x̂, ŷ) (5.6)

where ξ = (ξi)i=1...nc is a random vector and nc a truncation index chosen so that
the truncation explains at least 99% of the variance. In other words, nc is the
smallest index n such that the following criterion is verified:∑n

i=1 λi∑Nmesh
i=1 λi

> 0.99 . (5.7)

Heterogeneity fields can now be generated simply by sampling the random variable
ξ. In the present work, Nh = 128 heterogeneity fields were generated by sam-
pling ξ from an uncorrelated uniform distribution over [−1, 1]nc , and each sample is
rescaled to range between 0 and 1. An example of heterogeneity field is presented
in Figure 5.5.

5.2.2 Biomarkers

Biomarkers may be defined as quantities extracted from a signal that convey
information about hidden quantities of interest. In our case, the biomarkers are
features extracted from the MEA FP which would ideally provide information about
the conductances of interest: gfi, gso, gsi. In this section, we present different choices
of biomarkers to be used in a classification context.

5.2.2.1 “Classical” biomarkers

The MEA FP can be split into two regions of interest: the depolarization and
the repolarization. The depolarization observed at one electrode corresponds to the
local depolarization of the cardiomyocytes. The depolarization amplitude (DA) may
be qualitatively linked to the AP upstroke velocity. This biomarker is commonly
associated with the activity of the fast sodium channel (gfi for the MV model). The
repolarization amplitude (RA) may be qualitatively linked to some extent to the AP
repolarization slope and to a bigger extent to spatial heterogeneities in AP durations.
Once the depolarization and repolarization have been detected, it is possible to
measure the FP duration (FPD), simply as the difference between the repolarization
and depolarization times. Both biomarkers RA and FPD are associated with the
activity of the potassium and calcium currents (gso and gsi in the MV model). In
Figure 5.3, a sample of FP with the corresponding classical biomarkers is shown.
As explained above, each (real or numerical) experiment is performed both in a
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drug-block condition and in control condition. Because of the significant variability
of measurements in MEA, it is important to consider the variations observed in the
FP in drug block conditions with respect to the control conditions to isolate the
effect of the drug from other sources of variability: tissue variability, stimulation
protocol, etc. Therefore, as proposed in [RBZ+17], the features of interest are the
biomarkers in drug block condition divided by the biomarkers in control conditions.
For instance, the depolarization amplitude is actually the following ratio:

DAratio =
DAdrug

DAcontrol
(5.8)

For the sake of clarity in the notation, the subscript “ratio” is omitted in the fol-
lowing and any biomarker actually refers to a ratio with the control value. For
each MEA measurement, the FP is recorded at each of the nine electrodes. Again,
the important variability in the measurements motivates the use of robust features.
Since the behavior of the FP may greatly vary from one electrode to another, the
median of the biomarkers over all electrodes is in practice a good choice of features.
In the following, the set of biomarkers {D̃A, R̃A, ˜FPD} is referred to as the classical
biomarkers, where the ˜ operator denotes the median over all nine electrodes.

5.2.2.2 Numerical biomarkers

The rationale behind the choice of biomarkers described above is only qualitative
and oftentimes does not represent the best set of features in a classification context.
Here, we adopt a more automatic strategy to select the best set of biomarkers for a
given experimental scenario, as described in Chapter 4. First, the set of features to
be extracted from a given FP is enriched to build a dictionary of features. It is indeed
possible to extract additional quantities from the FP other than DA, RA and FPD.
We propose to compute also, for each electrode of the MEA, the following features:
the area under curve of the repolarization wave (AUCr), the repolarization center
(RC), the repolarization width (RW) and the FP notch (FPN). The details on how to
compute these additional biomarkers are described in the Supplementary Material.
Ratios of these quantities are also added to the dictionary of features: RA/DA,
DA/RA, RA/FPD, FPD/RA, DA/FPD, FPD/DA, RA/RW, RW/RA. Each feature
is actually a ratio with its control counterpart as described in (5.8). To include the
information of all nine electrodes, the median (denoted by the ˜ operator), mean
(denoted by the <> operator) and maximum values (denoted by a max subscript)
over the electrodes are retained in the dictionary. This amounts to a total of Nb = 38

dictionary entries.
The purpose of the method described below is to associate each conductance

with a numerical biomarker obtained by weighting the entries of the dictionary of
features. The weights of such a combination are solution of an optimization problem.
First, let us introduce some notation.

We denote by y1 (resp. y2, y3) the numerical biomarker (to be determined)
associated with gfi (resp. gso, gsi). From now on, the conductances (gfi, gso, gsi)
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are denoted by θ = (θ1, θ2, θ3). Each dictionary entry is considered as a function of
θ. The numerical biomarkers are sought as a linear combination of the dictionary
entries:

yh(θ) =

Nb∑
j=1

w
(h)
j bj(θ), 1 ≤ h ≤ 3, (5.9)

where the weights w(h) = (w
(h)
j ) ∈ RNb are the unknowns of the problem. These

weights are sought so that yh(θ) is maximally correlated with θh and minimally
correlated with θk, ∀k 6= h. This may be stated as follows:

∀h ∈ {1, . . . , 3} ,


max
yh

cov (yh(θ), θh)

min
yh

|cov (yh(θ), θk)| , ∀k 6= h

s.t. var (yh(θ)) = 1

(5.10a)

(5.10b)

(5.10c)

where cov(·, ·) and var(·) are respectively the covariance and variance operators. In
the following, we assume that each component of θ is a zero-mean unit-variance ran-
dom variable. This is achieved in practice by a simple rescaling of the conductances
samples. We also adopt the following notation:

b̃j(θ) = bj(θ)− E [bj(θ)] , (5.11)

where E [·] is the expectation operator. The problem may now be recast into an
optimization problem where the cost function to be minimized reads:

J (w(h)) = JC(w(h)) + JN (w(h)) + JP (w(h)), (5.12)

where

JC(w(h)) =
1

2
‖Cw(h) − e(h)‖2 where Ckj := E(θk b̃j), e

(h)
k := δkh, (5.13a)

JN (w(h)) =
ξ

2

(
w(h)TGw(h) − 1

)2
where Gij := E(b̃ib̃j), (5.13b)

JP (w(h)) =
λh
Ng
‖w(h)‖1. (5.13c)

Let us now explain each term of (5.13). JC(w(h)) corresponds to (5.10a) and
(5.10b). It measures the discrepancy to the situation where cov (yh(θ), θh) = 1

and cov (yh(θ), θk) = 0, ∀k 6= h.
JN (w(h)) is a relaxation of the constraint in (5.10c). ξ is a regularization parameter
that is set to 1 in practice.
JP (w(h)) is a regularization term by penalization of the 1–norm of w(h). `1 penal-
ized cost functions tend to promote sparse solutions [Tib96]. Sparse solutions for
w(h) are interesting in that they offer a more interpretable decomposition onto the
dictionary entries (since most weights are zero) than what an `2 penalization would
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yield.
We now discretize the problem by considering N samples of the parameters θ

drawn over a parameter space Θ ⊂ R3. The expectation operator is approximated
using a quasi-Monte-Carlo quadrature rule and the cost function in (5.12) is min-
imized using a Nesterov accelerated gradient descent [OC15]. The Monte-Carlo
samples may come from synthetic or experimental measurements. For synthetic
measurements, the conductances are known, but this is not the case for experimen-
tal measurements. In that case, an approximation of these conductances is computed
using Equation (5.2). Note that the solution weights depend strongly on the choice
of samples used for the Monte-Carlo approximations.

An example of the obtained weights is shown in Figure 5.7. Interestingly, the
classical biomarkers are still among the most weighted features. The correlation
between the conductances of interest and the numerical biomarkers is compared to
the correlation with the classical biomarkers in Figure 5.8. The correlation between
two quantities u and v is defined as follows:

cor(u, v) =
cov(u, v)√

var(u)var(v)
. (5.14)

As expected, each numerical biomarker is well correlated with its associated con-
ductance whereas uncorrelated with the others. This is not the case for the classical
biomarkers. The results in the next section show that such a choice of features
improves the classification performance.

5.2.3 Experimental data set

The MEA considered in the present work is a 6-well MEA with nine electrodes
per well. Its geometry as well as the corresponding finite element mesh is shown
in Figure 5.1. The MEA measurements come in the form of FP recordings cor-
responding to the different electrodes of the different wells of the MEA.The MEA
used is a 6-well MEA with nine electrodes per well. These recordings come in
the form of time series where several cardiac cycles, or beats, are recorded. We
extracted several beats on each electrode from each well of the MEA. Data were
provided by Janssen Pharmaceutica NV using MC_Rack (Multi Channel Systems
GmbH) and post-processed by NOTOCORD Systems (NOTOCORD-FPS 3.0 soft-
ware). Cells cultures were developped by the CDI company (iCell Cardiomyocytes).
As explained earlier the recordings were made in control conditions (no drug) and
with different drugs at different concentrations levels. The drugs used for the present
study are summarized in Table 5.2. Note that the diltiazem was recorded in two dif-
ferent wells (A and B) to compensate the scarcity of calcium-antagonist drugs. The
experimental process consists in adding five times a compound at increasing con-
centrations in a given well. Thus, including the control condition record, we finally
obtain field potentials for six contexts in each well. Equation (5.2) was used to ob-
tain an approximation of the conductances values associated with the experimental
measurements which are needed for the numerical biomarkers calculations. The Hill
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coefficients and IC50 values are given in the Supplementary Material of [KOPM+13]
and in [MCS+11]. Concerning the dictionary of features, a few adjustments need to
be made in some cases. Indeed, it appears that at some high concentration levels
of mexiletine, there is simply no action potential (because the sodium channels are
too blocked) and therefore the field potential is a flat line. To take this into ac-
count, the values of dictionary entries are set to the ones at the last concentration
where an action potential was observed. In addition, all features where DA is in the
numerator position in a ratio are set to zero for this concentration.

5.2.4 Classification

5.2.4.1 Support Vector Classification

Support vector classification [BGV92] (SVC) is an adaptation of the support
vector machine (SVM) method in a classification setting. Classification generally
consists in attributing labels to inputs. The available data set, comprising both
inputs and labels, is generally split into a training set used to build the classifier
and a validation set to test the classifier. The inputs are often multi-dimensional
and in our case correspond to the biomarkers, whether classical or numerical. The
labels are integers that represent the classes to which the inputs are assigned. These
classes are mutually exclusive, meaning one sample can only belong to a single class.
SVC belongs to the so-called supervised methods since the labels are known, at least
for the training set. The main idea behind SVC is to maximize the margin between
the inputs and the decision boundary [BGV92]. In the linear case, the decision
boundary is a hyperplane of the input space. In general however, this is not suffi-
cient to properly separate the samples according to their classes. A common way to
obtain more complex boundary decisions is to use a so-called “kernel trick” [SS02]
which is based on a mapping from the input space to a higher-dimensional space
where the existence of a separating hyperplane is more likely. In the present case,
the labels are “sodium antagonist”, “calcium antagonist” and “potassium antagonist”,
respectively associated with labels 0, 1 and 2. Among various possible choices of
kernels, a Gaussian kernel is employed in this work.
We used a Python implementation of SVC through the Scikit-learn [PVG+11] ma-
chine learning library which itself uses the LIBSVM library [CL11]. For a given
training set, a so-called classifier is built. The classifier is then called to predict
the labels of the validation set samples. The predictions are finally compared to
the true labels. There exist several metrics to quantify the prediction quality. Two
different metrics are considered here: the Cohen’s kappa and the receiver operating
characteristic area under curve (AUC). The Cohen’s kappa is a single scalar de-
signed to measure the performance of multi-class classifiers. Its value ranges from
-1 (worst possible classifier) to 1 (perfect classifier), 0 corresponding to a coin-flip
classifier. The AUC is defined for each class and measures how a classifier performs
with respect to a given class. Its value ranges from 0 (worst) to 1 (best), 0.5 being a
coin-flip. Because the classification is repeated several times with different data set
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splittings, the classification metrics are summarized using their means and standard
deviations (see Table 5.3 for instance). The “averaged AUC” corresponds to the
average of all AUCs (one AUC per class).

Both metrics are described in detail in the Supplementary Material. We now
present two different strategies to employ SVC in the context of drug classification.

3-versus-3 classification Since there are three distinct classes in the experimen-
tal set, those three classes need to be included in the training set, preferably in
equal proportions. The strategy of 3-versus-3 (3v3) classification consists in divid-
ing the experimental set into a training set and validation set that both include
samples from the three classes. Each class is divided into two sub-classes. This
is naturally done for the sodium and potassium antagonist classes since they are
each comprised of data from two different drugs. For the calcium antagonist class,
the diltiazem data is artificially split into two drugs “diltiazem A” and “diltiazem
B” (see Table 5.2). Each sub-class is associated with an identification number (ID)
from 0 to 5. Therefore, there are 8 possible choices for the training and validation
set combinations as summarized in Table 5.1.

One-versus-All classification The One-versus-All (OvA) classification strategy
consists in training one classifier for each class. For each class j, the training set
labels are modified to take the value 1 for samples in class j and 0 otherwise and
a classifier is trained on this relabeled training set. In other words, the classifier
for class j is only trained to recognize whether or not a sample belongs to class j.
For the validation step, the classifiers do not predict a class label but a probability
for a given sample to be in their respective class. Each sample of the validation
step goes through each of the three classifiers and the predicted class corresponds to
the classifier returning the highest probability. The splitting between training and
validation sets is done in the same way as in the 3-vs-3 classification strategy.

5.3 Results

5.3.1 Comparison between classical and numerical biomarkers

Here the performance of the numerical biomarkers in a classification context is
compared to that of the classical biomarkers for two different classification strategies.
The data set is composed of 880 experiments, each counting one control measure-
ment and 5 measurements at different drug concentration levels. For each experi-
ment, the conductances values and FP features are computed as explained in the
Methods section and the labels are defined according to Table 5.2.

5.3.1.1 3v3 classification

The performance of the numerical biomarkers compared to the classical ones is
evaluated using the 3v3 classification strategy. The classification procedure is carried
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out for each different splitting of the data set as summarized in Table 5.1. First,
the classification inputs are the 3 classical biomarkers for each drug concentration
level: {

D̃Ac1, R̃Ac1, ˜FPDc1, . . . , D̃Ac5, R̃Ac5, ˜FPDc5

}
, (5.15)

where ck is the k-th concentration level. The inputs are therefore of dimension 15.
Then, the classification inputs are the numerical biomarkers for each concentration,
computed as explained in the Methods section using the classification training set
as samples for the Monte-Carlo approximations. The inputs now read:

{y1,c1, y2,c1, y3,c1 , . . . , y1,c5, y2,c5, y3,c5} . (5.16)

Note that for each splitting of the data set, new weights for the numerical biomarkers
are computed. The classification procedure is carried out in both cases and the
results are summarized in Table 5.3. Regardless of the chosen classification score,
the results are better using the numerical biomarkers as inputs.

5.3.1.2 OvA classification

The same procedure as in the 3v3 case is applied to the OvA strategy. The clas-
sification procedure is carried out with both classical and numerical biomarkers as
inputs and the results are summarized in Table 5.4. Again, the classification results
are better using the numerical biomarkers as input, regardless of the classification
score considered. Furthermore, the results are overall better when using the OvA
approach rather than the 3v3 one.

5.3.2 Using combined experimental and synthetic measurements
for the numerical biomarkers computation

Having established that numerical biomarkers outperform classical ones in two
different classification scenarios, we now investigate the addition of synthetic mea-
surements for the computation of the numerical biomarkers weights. To enrich the
set of experimental samples used to compute the numerical biomarkers, a set of syn-
thetic measurements is built. First, conductances samples are chosen to mimic the
effect of drugs as shown in Figure 5.6. Depending on the most affected conductance,
these samples are associated to a synthetic sodium (resp. calcium and potassium)
antagonist drug called “synth A” (resp. B and C). 775 samples per drug are chosen
which amounts to 155 experiments per drug. and their repartition is summarized in
Table 5.2. This approximately corresponds to a 50%/50% split between experimen-
tal and synthetic measurements. For each conductances sample, the computational
model described in the Methods section is evaluated and the dictionary features are
computed from the simulated FPs. For each experiment, the computational model
is also evaluated in the control conditions, i.e. with gfi = gsi = gso = 1 in order to
compute the ratios as defined in (5.8). The features are incorporated in the experi-
mental set to create a composite set. This composite set is then used to compute the
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numerical biomarkers weights. The same data set splitting procedure as described
before is carried out. Note that the synthetic measurements are only used for the
numerical biomarkers computation and are not included neither in the training set
nor in the validation set. Again, two classification strategies are explored.

5.3.2.1 Classification results

The classification is carried out using both 3v3 and OvA approaches. The results
are summarized in Tables 5.5 and 5.6. The addition of synthetic measurements to
compute the numerical biomarkers improves the classifier predictions in both cases.
In the 3v3 case, the improvement is more important than in the OvA case.

5.4 Discussion

In this study, a framework for an automatic classification of drugs from MEA
measurements has been presented. The framework relies on an in silico model of a
MEA device, on a feature selection algorithm and on state-of-the-art machine learn-
ing tools. The in silico model is a PDE model (the bidomain equations) coupled with
a ionic model that describes the transmembrane current of the cardiomyocytes. The
ionic model is a phenomenological model consisting of a set of coupled non-linear
ODEs. The feature selection algorithm proposes a way to compute a so-called nu-
merical biomarker for each conductance of interest, designed to perform better in a
classification context than classical biomarkers. The numerical biomarkers are linear
combinations of the entries of a dictionary of features which is given. The calcu-
lation of the weights involves Monte-Carlo approximations which use experimental
or synthetic (or both) conductances and FP samples. It has been applied to drug
classification problems using experimental MEA recordings. The classification was
carried out using the Scikit-Learn Python library [PVG+11] which includes several
classification tools. In the present work a Support Vector Classification was used.
The data used for the classification consist in FP features extracted from experi-
mental measurements and their associated labels corresponding to the type of drug
that is considered.
The purpose of the present work is twofold. First, it intends to establish that the
classically used biomarkers may be improved, at least in a classification context,
by using numerical biomarkers instead. Second, it intends to show that the clas-
sification performance may benefit from the addition of synthetic measurements in
the calculation of the numerical biomarkers. More generally, the authors intend to
show that numerical simulations are useful to cardiac electrophysiology in general,
beyond the sole scope of drug classification.
First, a comparison between classical and numerical biomarkers was carried out.
The comparison consists in classifying drugs from experimental measurements us-
ing two different strategies: 3v3 and OvA. For each strategy, the classification is
performed using classical or numerical biomarkers as inputs. As expected, the clas-
sification results in both cases are improved when using the numerical biomarkers.
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The latter were indeed designed to be maximally correlated to their associated con-
ductance and minimally correlated to the others. As a consequence, they are more
revealing of the underlying conductances than the classical biomarkers. In the 3v3
case, the mean AUCs are increased when using the numerical biomarkers as inputs
and the standard deviations remain similar. The mean Cohen’s kappa also signif-
icantly increases. However, its standard deviation is also higher but not enough
to compromise the improvement of its mean. The same observations can be made
for the OvA case except for the gfi AUC which is reduced when using numerical
biomarkers.
Second, the use of combined experimental synthetic measurements to compute nu-
merical biomarkers is investigated. The numerical biomarkers are computed using
Monte-Carlo approximations that require conductances and FP features samples.
In the previous case, these samples are experimental. The idea is to improve the
robustness of the numerical biomarkers by incorporating synthetic measurements
that span better the parameters (i.e. conductances) space. This approach is meant
to compensate the scarcity of experimental data and more generally the fact that
experiments do not cover every possible drug block scenario. Conductances samples
were drawn and the computational model was evaluated to generate noisy FPs. From
these FPs, the entries of the dictionary of features were computed. The numerical
biomarkers weights are then computed using a composite set of experimental and
synthetic samples. These numerical biomarkers are compared to the ones computed
using only experimental data. The same two classification strategies as before are
used to compare both approaches. In the 3v3 case, the improvement is not signifi-
cant, both for the AUCs and the Cohen’s kappa. This relatively low improvement
needs to be mitigated by the fact that the classification scores were already high
when using experimentally derived numerical biomarkers, especially for the AUCs.
The improvements for the OvA case are however important. These results sug-
gest that, for the classification scenarios envisioned here, the addition of synthetic
measurements is always beneficial. Note also that the OvA strategy clearly outper-
forms 3v3 when using composite numerical biomarkers whereas it is not clear which
strategy is the best when using numerical biomarkers computed from experimental
measurements only.
The use of FP features in a classification context is now discussed. In classifica-
tion problems, and in machine learning in general, a large number of inputs tend
to provoke an over-fitting of the model. This means that the classifier tends to
have satisfactory training scores but generalizes poorly on a validation test. This
is in part solved by the regularization used but the number of inputs still remains
important. When dealing with experimentally recorded FPs, the different signals
are often not perfectly synchronized, making timestep-wise comparisons meaning-
less. Furthermore, an important variability of the signal amplitudes is observed in
practice, making even perfectly synchronized signals difficult to compare. Using
features extracted from the FP that are do not depend on time shifts and amplitude
variations are therefore more robust in a classification context.
The limitations of the proposed approach are now discussed. First, the conduc-
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tances values associated with the experimental measurements are not knwown and
are therefore approximated using Equation (5.2). This approximation is however
subject to several sources of uncertainty such as the IC50 whose value for a given
drug may vary according to the source considered [KOPM+13, MCS+11]. The un-
certainties also come from the Hill’s equation which is an imperfect model. Knowing
the exact values for the conductances is however not critical since those values are
only needed to derive the numerical biomarkers and are not directly used dusing the
classification procedure. Another limitation comes from the computational model
used in the present work. The sources of error are multiple: ionic model error,
space and time dicretizations, conductivities errors, etc. These errors are not crit-
ical either since the computational model is only used to compute the numerical
biomarkers weights. This study shows that, despite the modeling errors, adding
synthetic measurements simulated by the computational model leads to better clas-
sification results. Other limitations come from the classification strategies. Both
classification strategies are non-exhaustive in that they do not explore every pos-
sible way of splitting the data set. Furthermore, the classification metrics used to
compare the different approaches are not flawless. In some cases comparing AUCs
for instance is not the best way to compare classifiers [AH00]. Other metrics exist,
such as the mean squared error, but were not investigated in this work. Finally, the
numerical biomarkers derived in the present work are not optimal in the sense that
their correlation with their associated conductances is not one, as seen in Figure 5.8.
We now discuss some perspectives that could lead to interesting future works. Other
classification methods than SVC exist, such as neural networks or random forests
for instance. It would be interesting to assess whether the findings of this work
are still valid when considering other classification tools. It would also be inter-
esting to evaluate which classification tool generally performs best in the present
drug classification context. Other perspectives concern the numerical biomarkers
computed using a composite set of synthetic and experimental measurements. In
the present work, the composite set is roughly composed of half synthetic and half
experimental measurements. However, other proportions could be investigated and
an optimal proportion with respect to the classification score could be found. In the
present work, only sodium, potassium and calcium antagonists drugs are considered
but other types of drugs exist. Drugs that affect other ionic channels or even si-
multaneously several of them could be investigated. In parallel, more sophisticated
ionic models including more current types would need to be used to model these
new drugs. This would of course come at the expense or more computationally
intensive simulations. Finally, training classifiers with only synthetic measurements
instead of experimental ones could be considered. This would be very useful when
experimental data are insufficient or even not available. The classifiers could also
be trained with a composite set of synthetic and experimental data just like it is
done in this work for the computation of numerical biomarkers.
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5.5 Tables and Figures

Splitting 0 1 2 3 4 5 6 7index
training {0,2,4} {0,2,5} {0,3,4} {0,3,5} {1,2,4} {1,2,5} {1,3,4} {1,3,5}set IDs
validation {1,3,5} {1,3,4} {1,2,5} {1,2,4} {0,3,5} {0,3,4} {0,2,5} {0,2,4}set IDs

Table 5.1: Different possible splittings of the experimental data set.
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Drug name
Blocked ionic Associated

ID SVC class #experiments
channel conductance label

Mexiletine sodium gfi 0 0 160

Flecainide sodium gfi 1 0 120

Diltiazem A calcium gsi 2 1 160

Diltiazem B calcium gsi 3 1 160

Moxifloxacin potassium gso 4 2 120

Dofetilide potassium gso 5 2 160

synth. A sodium gfi 6 0 155

synth. B calcium gsi 7 1 155

synth. C potassium gso 8 2 155

Table 5.2: Repartition of the available (experimental and synthetic) data set.

classical biomarkers numerical biomarkers

Score mean std. mean std.

Cohen’s kappa 0.18 0.15 0.51 0.27

gfi AUC 0.65 0.10 0.86 0.11

gsi AUC 0.92 0.09 1.00 0.00

gso AUC 0.36 0.11 0.82 0.10

averaged AUC 0.65 - 0.89 -

Table 5.3: Comparison between classical and numerical biomarkers with the 3v3
classification strategy.

classical biomarkers numerical biomarkers

Score mean std. mean std.

Cohen’s kappa 0.18 0.14 0.53 0.25

gfi AUC 0.66 0.11 0.59 0.41

gsi AUC 0.92 0.11 0.96 0.06

gso AUC 0.43 0.11 0.85 0.13

averaged AUC 0.67 - 0.80 -

Table 5.4: Comparison between classical and numerical biomarkers. Classification
scores in the one-vs-all scenario.
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experiments only experiments + synthetic

Score mean std. mean std.

Cohen’s kappa 0.51 0.27 0.54 0.06

gfi AUC 0.86 0.11 0.87 0.13

gsi AUC 1.00 0.00 1.00 0.00

gso AUC 0.82 0.10 0.84 0.08

averaged AUC 0.89 - 0.91 -

Table 5.5: Comparison between numerical biomarkers computed from experiments
only and combined experiments and synthetic measurements. 3v3 classification
strategy.

experiments only experiments + synthetic

Score mean std. mean std.

Cohen’s kappa 0.53 0.25 0.69 0.28

gfi AUC 0.59 0.41 0.87 0.32

gsi AUC 0.96 0.06 1.00 0.01

gso AUC 0.85 0.13 0.89 0.15

averaged AUC 0.80 - 0.92 -

Table 5.6: Comparison between numerical biomarkers computed from experiments
only and combined experiments and synthetic measurements. OvA classification
strategy
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Figure 5.1: MEA geometry and its corresponding finite element mesh. The circles
represent the locations of the nine electrodes.
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Figure 5.2: Steady-state analysis: the Bidomain equations are solved for 100 con-
secutive beats. Qualitatively, a satisfactory steady state is reached at the second
beat (left). The beat-to-beat relative difference of the FP is monitored (right) and
is to be compared to the relative difference between two identical solutions, each
polluted by an independent noise (right).
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Figure 5.3: Synthetic MEA field potential and some associated biomarkers.
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Figure 5.5: One sample of cell heterogeneity field generated using the correlation
matrix method.
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Cel Ri Rel
1µF 2MΩ 10MΩ

Table 5.7: table
Parameters used for the imperfect electrode model.

5.6 Supplementary Material

5.6.1 Imperfect electrode model

The bidomain model describes the evolution of the transmembrane potential Vm
and the extracellular potential φe in a domain Ω. We denote by Ri, Rel and Cel,
the internal resistance of the measurement device, the electrode resistance and the
electrode capacitance respectively. The field potential φkf measured on an electrode
ek is given by φkf = RiI

k
el, where I

k
el is linked to the averaged extracellular potential

φke,mean at the electrode ek by the equation:

dIkel
dt

+
Ikel
τ

=
Cel
τ

dφke,mean
dt

, (5.17)

where τ = (Ri +Rel)Cel.
For the present study the parameters values are summarized in Table 5.7.

5.6.2 Biomarker computation

In this section, we provide details on how to compute the biomarkers from FP
time series. For a given signal, we denote by t the time vector and y the FP. Each sig-
nal is divided in two parts: the depolarization region (t1, y1) and the repolarization
region (t2, y2) as shown in Figure 5.9.

Depolarization amplitude (DA) The DA is simply defined as the difference
between the maximum and minimum values of the potential during the depolariza-
tion:

DA = max(y1)−min(y1). (5.18)

Repolarization amplitude (RA) The RA is defined as the maximum (in abso-
lute value) of the repolarization.

RA = max(|y2|). (5.19)

Field potential duration (FPD) The FPD is defined as the time difference
between the maximum (in absolute value) of the depolarization and the maximum

(in absolute value) of the repolarization. Let td = t

[
argmax

t
(|y2(t)|)

]
and tr =
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t

[
argmax

t
(|y1(t)|)

]
. Then,

FPD = tr − td. (5.20)

Area under the curve of the repolarization wave (AUC) The AUC is de-
fined as the area under the curve of y2 truncated around ±∆t of tr. We used ∆t =

100ms. The integral is approximated using the trapezoidal rule.

AUC =

∣∣∣∣∫ tr+∆t

tr−∆t
y2(t)dt

∣∣∣∣ (5.21)

Repolarization center (RC) The RC is defined as the offset of the barycenter
(with respect to time) of the repolarization wave.

RC =
1

AUC

∫ tr+∆t

tr−∆t
ty2(t)dt− tr (5.22)

Repolarization width (RW) The RW is defined as the normalized standard
deviation of the repolarization wave.

RW =
1

AUC

[∫ tr+∆t

tr−∆t
t2y2(t)dt−

(∫ tr+∆t

tr−∆t
ty2(t)dt

)2
]1/2

. (5.23)

Field potential notch (FPN) The FPN is defined as the potential value 4ms
after td. The FPN value is smoothed out by multiplying the signal with a test
function and then integrat the product. This proves to be less sensitive to noise
than just a point-wise evaluation. Let φ(t1) = exp

[
− (t1−(td+4))2

.04

]
. Then,

FPN =

∫
t1

y1(t1)φ(t1)dt1. (5.24)

5.6.3 Classification metrics

We now present the two different classification metrics used in this work.

Cohen’s kappa Cohen’s kappa, denoted by κ, is particularly suited for multi-
class and/or imbalanced classification problems. The main idea is that it measures
the labeling dicrepancy between two annotators (or classifiers). It is simply adapted
to our case by considering one of the annotators as the ground truth (true labels).
Its formula reads:

κ =
po − pe
1− pe

, (5.25)
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Figure 5.9: FP depolarization and repolarization regions.

where po is the observed agreement between the two annotators and pe is the prob-
ability of an agreement between two random annotators. For further details, the
reader is referred to Scikit-learn’s implementation 1 of Cohen’s kappa.

ROC The receiver operating characteristic area under curve (ROC AUC, later
referred to as AUC for the sake of clarity) is basically associated with binary classi-
fication problems. In our case, one can define a AUC for each class k by considering
all the other classes as only one class. With SVC it is possible to evaluate, in
addition to the predicted class, the probability of belonging to each class. Given
a threshold parameter (that varies between 0 and 1), it is possible to decide if a
sample belongs to a given class when the SVC probability returned for this class is
greater than the threshold parameter. The predicted class therefore depends on this
parameter. When all samples of the validation set have been tested, the following
quantities are computed, for each class k and for a given threshold parameter:

• true positives (TP ): number of samples affected to class k which are actually
in class k.

• false positives (FP ): number of samples affected to class k which are actually
not in class k.

• true negatives (TN): number of samples affected to another class than k which
are actually in class k.

• false negatives (FN): number of samples affected to another class than k

which are actually not in class k.

• true positive rate (TPR): TP
TP+FN .

• false positive rate (FPR): FP
FP+TN .

1https://github.com/scikit-learn/scikit-learn/blob/ab93d65/sklearn/metrics/classification.py#L278
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The ROC is the curve of TPR against FPR as the threshold parameter varies
between 0 and 1. The AUC is simply the area under this curve.





Chapter 6

Computing Numerical Biomarkers for
Electrocardiograms
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6.1 Introduction

This chapter builds on previous works, extensively described in the PhD theses of
Elisa Schenone [Sch14] and Annabelle Collin [Col14]. This chapter is a preliminary
work where we try to derive numerical biomarkers (see Chapter 4) for electrocar-
diogram (ECG) signals. This is a first step towards the identification of optimal
features in order to solve, in a reliable and computationally inexpensive way, inverse
electrocardiography problems [NCL07] (i.e. restituting the electrical activity of the
heart from the knowledge of ECG recordings).

The ECG [GGb81] is the recording, by means of electrodes located on the skin
surface, of the heart electrical activity. Its wide use in cardiology, and in medicine
in general, can be explained by the fact that it is non invasive, easy to interpret by
a trained physician and relatively inexpensive. In the present work, we focus on the
12-lead ECG which is the most commonly used kind. For a detailed history and
description of this essential medical tool, the interested reader is referred to the very
informative introduction of [Sch14]. Numerous attempts at numerically modelling
ECG recordings may be found in the literature [TDP+04, KSW+07, BCF+10]. On
the contrary, to the authors knowledge, models based on a full and realistic geometry
of the heart and body are scarce [SCG16]. The present work uses the same models
and numerical methods as in [SCG16]. The applications of numerical biomarkers
associated with cardiac quantities of interest are numerous, ranging from the calibra-
tion of in silico patient-specific models to the monitoring or diagnosis of pathological
conditions.

The chapter is organised as follows. First, the computational model of the ECG
is described. The bidomain equations are used to model the heart electrical activity
and the rest of the body is simply modeled as a passive conductor. The resulting
PDEs are solved using the FELiScE1 finite element library. The parameters of in-
terest are presented and their physiological roles explained. Second, the dictionary
of features used to compute the numerical biomarkers is presented. Then, the nu-
merical biomarkers procedure is applied to synthetic test cases in different healthy
scenarios to validate the method in the context of ECG studies. The approach is
then illustrated with synthetic pathological cases for which a qualitative analysis of
the results is provided. Finally, conclusions are drawn and future research objectives
are presented.

6.2 Methods

6.2.1 ECG computational model

6.2.1.1 Geometry

To simulate realistic ECGs, a full body geometry is used. Both the geometries
of the heart and the body are the same as in [SCG16]. The heart is modeled by

1https://gforge.inria.fr/projects/felisce

https://gforge.inria.fr/projects/felisce
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(a) Complete heart: ventricles and atria (b) Horizontal cut of the heart: left ventricle
in red and right ventricle in green.

Figure 6.1: Geometry of the Zygote (http://www.3dscience.com) human heart.

a 3-D mesh following a realistic geometry (see Figure 6.1). It is comprised of the
ventricles (left and right) and the atria (left and right). The heart is immersed in
a 3-D mesh of a human body (see Fig. 6.3). A more thorough description of the
problem geometry is available in [SCG16, Sch14].
In the following, we denote by ΩH the heart domain, ΩT the rest of the body domain
and Σ the interface between the heart and the rest of the body.

6.2.1.2 Electrophysiology of the heart: the bidomain equations

The electrical activity in the heart is modeled by the so-called bidomain equa-
tions [Tun78]. Except for the electrodes model and the dimension (3-D instead of
2-D), it is identical to the bidomain model of the MEA presented in Chapter 5. The
bidomain equations read: AmCm

∂Vm

∂t
+AmIion(Vm,x)−∇ · (σi∇Vm)−∇ · (σi∇uH) = AmIapp, in ΩH

−∇ · ((σi + σe)∇uH)−∇ · (σi∇Vm) = 0, in ΩH ,

(6.1)
where Vm is the transmembrane potential, uH the extracellular potential, σi and σe
the conductivity sensors, Am the cells surface area per unit volume and Cm the cells
electrical capacitance. Iapp is a function of time and space and corresponds to the ex-
ternal electrical stimulation of the atria and ventricles as explained in [Col14, Sch14].
The term Iion(Vm,x) corresponds to the electrical activity at the cell scale and is
explained later. For the atria, the model in (6.1) has been transformed into a 2-D
model to take into account the small thickness of this region. The surface model
is presented in [CCG13]. The variational formulation and the finite element dis-
cretization associated with this problem may be found in [BCF+10, Col14, Sch14].
The conductivity in the ventricular tissues is actually heterogeneous and is associ-
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ated with an architecture of fibers in the cardiac muscle. The conductivity tensors
are defined as follows:

σi = σtiI + (σli − σti)τ ⊗ τ, (6.2)

σe = σteI + (σle − σte)τ ⊗ τ, (6.3)

where I is the identity tensor and τ is a local unit-norm vector that is parallel to the
fibers direction. The quantities σti , σ

l
i, σ

t
e and σle are uniform across the ventricles

and belong to the set of parameters that are studied in the present work. For more
information about how the fibers directions are determined, the interested reader is
referred to [BCF+10] and to Figure 1.15 of [Sch14].

6.2.1.3 Full cardiac cycle

The electrical activity in the heart takes place in two regions: the atria and the
ventricles (see Figure 6.2). In the present work, we will only focus on the electrical
activity of the ventricles. The initial electrical stimulation starts from the sinus node
in the atria. The depolarization front propagates through the atria until it reaches
the atrioventricular node where it triggers the depolarization of the ventricles. The
stimulus first travels through a fast conduction network called the Hiss bundle (see
Figure 6.2) where it goes much faster than through other cardiac tissues. This
stimulus corresponds to the term Iapp in (6.1). This enables the formation of a
uniform depolarization front in the inside of the ventricles (endocardium) which can
then travel outwards through the thickness of the ventricles. In healthy conditions,
both ventricles are stimulated at the same time. We introduce the delay parameter
δLV

stim which controls the delay of the stimulation between the left and right ventricles.
When this delay is important, it is called a left or right bundle branch block whether
the left or right ventricle is late with respect to the other.

6.2.1.4 Ionic models

The ionic models are used to approximate the term Iion(Vm,w) in the model
in (6.1). At the cell scale it corresponds to the Iion term in the governing equations
of the action potential AP (see Chapters 2 and 3). Due to profound differences
between atrial and ventricular cells, two different models are used for these regions.

Ventricular ionic models In the ventricles, we use the so-called “minimal ven-
tricular model” [BOCF08] (referred to as MV model in the following). It belongs to
the category of phenomenological models (as opposed to the physiological ones) in
the sense that each term in the ODE does not correspond to an actual membrane
ionic channel. It is however computationally less demanding than physiological mod-
els while being able to reproduce a wide variety of realistic signals, which justifies
its use in our context. The ionic current Iion in the MV model consists in the sum
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Figure 6.2: Schematic of the heart conduction system. The electrical stimulation of
the ventricles starts from the atrioventricular node and follows the bundle branches.

of three currents:

Iion(Vm,x) = gfiJfi(Vm,x) + gsoJso(Vm,x) + Jsi(Vm,x), (6.4)

where Jfi is the fast inward current and controls the depolarization phase of the AP,
Jso is the slow outward current and controls the duration of the AP plateau and Jsi
is the slow inward current and controls the height of the AP plateau. We added two
parameters (referred to as conductances in the following): gfi and gso which mod-
ulate the activity of Jfi and Jso, respectively. Even though it is a simplified model,
these currents may be qualitatively associated with the activity of, respectively and
in the same order, the sodium, potassium and calcium ionic currents. The currents
are defined as follows:

Jfi(Vm,x) = −H(u− θv)(u− θv)(uu − u) vτfi ,

Jso(Vm,x) = (1−H(u− θw))u−uoτo
+ H(u−θw)

τso
,

Jsi(Vm,x) = −H(u− θw)wsτsi ,

(6.5)

where u = aVm + b is the non-dimensional transmembrane potential, rescaled to
take values between 0 and 1. H(x) is the Heaviside function and x = (s, v, w)

is a vector of state variables which are solution of coupled non-linear ODEs. The
detailed ODEs, as well as the other parameters in (6.5), are available in [BOCF08].
In the present work, we focus on the following set of ionic parameters: {gfi, gso, τso}.
The cardiomyocytes properties are actually not uniform across the ventricles. The
latter may be divided into four zones: right ventricle (RV), endocardium (endo),
midmyocardium (MCell) and epicardium (epi) as shown in Figure 6.4. For each
of these zones, a different set of parameters is chosen so that the simulated AP
resembles the typical AP in the zone. These parameters values may be found in Table
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1 of [BOCF08]. One may therefore consider that there are four different models in
the ventricles and the ionic parameters of interest are now: gRV

fi , g
MCell
fi , gendo

fi , gepi
fi ,

gRV
so , . . . , τ

epi
so which amounts to a total of 12 ionic parameters of interest. With the

addition of the conductivity tensors and the stimulation delay, this represents 17
parameters of interest.

Atrial ionic model Even though the electrical activity in the atria is not studied
in this work, some information about this region is given for the sake of complete-
ness. As explained earlier, the bidomain equations in the atria are actually modified
so as to become a 2-D model. Furthermore, the ionic model in this region is dif-
ferent from that of the ventricles. The atrial cardiomyocytes are modeled with the
Courtemanche model [CRN98]. Note that it is the same model as the one studied
in Chapter 3. The interested reader is referred to [CCG13] for more information
about the atrial region.

6.2.1.5 Coupling with the body

The rest of the body is considered as a passive conductor and therefore a simple
diffusion problem is solved for the electrical potential uT in this region:

− div(σT∇uT ) = 0 in ΩT (6.6)

where σT takes different values in the lungs, the ribs and the rest of the body to
take into account the conductivity differences in these three regions.

To reduce the computational cost of the model, the isolated heart assump-
tion [CNLH04] is used. It consists in assuming there is continuity of the electrical
potential at the interface between the heart and the torso but that there is no electri-
cal current flowing through it. Using this assumption, it is possible to decouple the
problem in the heart and in the rest of the body and therefore to obtain two smaller
problems. This assumption does not induce major modifications in the resulting
ECG as shown in [BCF+10]. The full problem now reads:

(6.1) in ΩH

−div(σT∇uT ) = 0, in ΩT

uT = uH , on Σ

σT∇uT · nT = 0, on ∂ΩT \Σ

(6.7)

Furthermore, it is shown in [BCF+10] that, due to the linearity of the operator that
maps the solution on the heart surface to the ECG, the latter is simply a product
between the heart surface solution and a pre-computed transfer matrix. Solving the
electrical problem in the rest of the body can now be seen as a post-processing step.
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Figure 6.3: Position of the nine electrodes of the ECG at the surface of the body.
Reproduced from Elisa Schenone’s PhD thesis [Sch14]
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Figure 6.4: Longitudinal clip of the ventricles showing the regions associated with
the four different cell types considered: right ventricle (RV), endocardium (endo),
midmyocardium (MCell) and epicardium (Epi). Reproduced from Elisa Schenone’s
PhD thesis [Sch14].
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6.2.2 The ECG

The ECG is the observation at the surface of the body of the electrical activity
in the heart. The observation is made by recording the electrical potential on the
patient’s skin with nine electrodes denoted by V1, V2, V3, V4, V5, V6, R, L and F .
Their locations is shown in Figure 6.3. Using these nine electrodes, 12 leads are
computed. With a slight abuse of notations, these leads are denoted by: I, II, III,
aV R, aV L, aV F , V1, V2, V3, V4, V5, V6. The formulas needed to derive these leads
are found in the Appendix.
Each lead is a time series of an electrical potential and provides insight into the
different phases of the cardiac cycle. A typical lead may be divided into 5 segments
(or waves) denoted by P, Q, R, S and T (see Figure 6.5). The P wave corresponds to
the depolarization of the atria. The Q, R and S waves, also referred to as the QRS
segment, correspond to the depolarization of the ventricles. The Q and S waves
(not always both visible on every lead) are by definition negative deflections of the
potential while the R wave (not visible on every lead) is by definition positive. In a
healthy ECG, at least one of these three waves should be visible in each lead. Finally,
the T wave corresponds to the repolarization of the ventricles. Note that we did not
mention the repolarization of the atria as it is usually buried in the QRS complex
and therefore invisible (in the ECG). The T wave can be either positive or negative
and can sometimes be bipolar. As explained earlier, the present work focuses on the
ventricles electrical activity and therefore the ECGs presented hereafter start from
the Q wave.

Atrial depolarization Septum depolarization Ventricular depolarization Ventricular repolarization

P

Q

R

S

T

R

Figure 6.5: Top: Simulation of a cardiac cycle: positive extracellular potential in
red and negative in blue.
Bottom: P,Q,R,S,T waves of a standard ECG lead. Each wave corresponds to the
depolarization or repolarization of a region of the heart. Reproduced from Elisa
Schenone’s PhD thesis [Sch14].
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6.2.3 ECG biomarkers

Analogously to what has been done for MEA field potentials (see Chapter 5) or
cardiomyocytes action potentials (see Chapter 4), a set of features (referred to as
biomarkers) is computed for each of the 12 ECG leads. For each lead, we extract 13
biomarkers which capture important features of the Q,R,S and T waves. The first
four biomarkers are related to the QRS complex, the next three to the ST segment
(or plateau) and the last six to the T wave. To compute numerical biomarkers, one
needs a dictionary of features as explained in Chapter 4. In our case, the entries of
the dictionaries are the 13 biomarkers of each of the 12 leads, which amounts to a
total of 156 entries. The entries are sorted biomarker by biomarker, as follows:

blead 1
1 , blead 2

1 , . . . , blead 11
13 , blead 12

13

This allows for a better visualization of the weights since they can be divided in
three segments whether they correspond to the QRS complex, the ST segment or
the T wave (see Figure 6.6).

Figure 6.6: The biomarker dictionary entries are sorted so that they are visually
divided into three regions: QRS complex (left), ST segment (middle) and T wave
(right).

6.3 Results

The numerical biomarker procedure as described in Chapter 4 is now applied to
synthetic ECGs generated by solving the model in (6.1) and (6.6) with the FELiScE
finite element library.

6.3.1 Numerical biomarkers in healthy conditions

To illustrate the use of numerical biomarkers in ECG measurements, we propose
three different scenarios of healthy conditions. We study the variations of some
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parameters associated with sodium and potassium dynamics around their reference
(i.e. healthy) values. Unless stated otherwise, the following procedure is adopted
when deriving the numerical biomarkers. The dictionary of features is the same as
described in 6.2.3 and is comprised of 156 entries. To avoid any inverse crime, the
synthetic ECG signals are polluted with a zero-mean Gaussian noise of standard
deviation 5 µV . This corresponds to a signal-to-noise ratio of around 40-50 dB de-
pending on the test case considered. The `1 penalization parameters are calibrated
using the threshold method with a threshold value of 10−1. In the figure repre-
senting the obtained numerical biomarkers weights, the three highest weights are
materialized by a red dot and their names are displayed for a better visualization of
the results.

6.3.1.1 Healthy test case 1

In this test case, 7 parameters of interest are retained: τRV
so , τ endo

so , τMcell
so , τ epi

so ,
gRV
fi , g

endo
fi , gepi

fi . The τso parameters control the duration of the AP plateau while
the gfi parameters control the fast sodium channel associated with the upstroke
velocity during the depolarization phase.

Numerical settings The training set is generated with N = 568 samples drawn
from a uniform distribution over the hypercube [0.5, 1.5]7. The `1 regularization
parameters values λ1, . . . , λ7 are summarized in Table 6.1.

Results The numerical biomarkers weights are shown in Figure 6.8. The numer-
ical biomarkers associated with the τso parameters (with the exception of τMcell

so )
all include the QT biomarker which measures the duration of the QT segment of
the ECG and is linked to the plateau duration in the cardiomyocyte AP. The fact
that most weights are non-zero for τMcell

so is due to the fact that its associated `1

penalization parameter needed to obtain the presribed cost function threshold is
relatively low compared to the others. This is usually a sign that the parameter
is in fact poorly identifiable and the numerical biomarker is probably over-fitting
the training set. More generally, these numerical biomarkers mostly include, as ex-
pected, biomarkers related to the ST segment and T wave (see Figure 6.6).
The numerical biomarkers associated with the gfi parameters have non-zero weights
mostly for biomarkers related to the QRS complex. Interestingly, the numerical
biomarkers associated with the endocardium gfi include mostly biomarkers corre-
sponding to the positive peak of the QRS complex while the ones associated with
the epicardium gfi include mostly biomarkers corresponding to the negative peak.

6.3.1.2 Healthy test case 2

In this test case, 8 parameters of interest are retained: δLVstim, σ
t
i , σ

t
e, σli, σ

l
e,

gRV
so , gendo

so , gepi
so . As explained earlier, the δLVstim parameter represents the delay

after which the left ventricle receives the stimulus compared to the right ventricle.
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The σ parameters model how the electrical potential diffuse inside the myocardium
tissues. The gso parameters control the opening of the slow outward current in the
cardiomyocytes and therefore have mostly an effect onto the T wave.

Numerical settings The training set is generated with N = 576 samples drawn
from a uniform distribution over Θ, where

Θ = [−5, 5]×[10−4, 2.10−4]×[4.10−3, 8.10−3]×[10−3, 2.10−3]×[10−3, 2.10−3]×[.5, 1.5]3

The `1 regularization parameters values λ1, . . . , λ8 are summarized in Table 6.2.

Results The numerical biomarkers weights are shown in Figure 6.9. Akin the the
τso parameters of the previous test case, the numerical biomarkers associated with
the gso parameters all include one QT biomarker in their non-zero weights.
The conductivity parameters biomarkers are overall more difficult to interpret since
there are more non-zero weights for the prescribed cost function threshold than for
the other parameters. It is however possible to note that the non-zero weights are
mostly localized in the QRS complex biomarkers, suggesting that these parameters
are more identifiable during this phase of the ECG. The conductivity parameters
potentially have an effect onto the whole ECG duration since there are not involved
in the cardiomyocytes ionic dynamics but rather in the passive diffusion of the whole
tissue. However, the signal amplitude is higher during the QRS complex which may
explain why their effect is more visible during this phase.
Finally, the numerical biomarker associated with the delay parameter δLVstim is char-
acterized by non-zero weights in the QRS complex and the ST segment. Note that
this parameter is allowed to vary inside a small range (+/- 5ms) which one could
consider healthy. Beyond this range, it corresponds to a pathology called bundle
branch block which is investigated later in the present work.

6.3.1.3 Healthy test case 3

In this test case, a new strategy is adopted to model the ECG variability. In
addition to varying six parameters of interest, other parameters, which we are not
trying to identify, are allowed to vary. Here, the six parameters of interest are:
gRV
fi , g

endo
fi , gepi

fi , g
RV
so , gendo

so and gepi
so . The other varying parameters are the four

conductivity parameters σti , σ
t
e, σli, σ

l
e and stimulation delay δRVstim. Small variations

of these parameters induce small perturbations of the resulting ECGs which may be
seen as an additional noise and increase the robustness of the numerical biomarkers
associated with the parameters of interest.

Numerical settings The training set is generated with N = 1024 samples drawn
from a uniform distribution over the hypercube [0.7, 1.3]6 for the six parameters of
interest. For the other parameters, the samples are drawn from a uniform distribu-
tion over the hypercube [1.96 · 10−4, 2.04 · 10−4] × [5.88 · 10−3, 6.12 · 10−3] × [1.96 ·
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10−3, 2.04 ·10−3]× [1.96 ·10−3, 2.04 ·10−3]× [−2, 2]. The `1 regularization parameters
values λ1, . . . , λ6 are summarized in Table 6.3.

Results The numerical biomarkers weights are shown in Figure 6.10. As in the
previous two test cases, the same observations can be made about the localization
of the non-zero weights. Note however that, for each parameter, the weights found
in this test case are different than those found in previous test cases. This highlights
the fact that the numerical biomarkers strongly depend on the chosen set of varying
parameters as well as on the bounding box of the parameters samples.

6.3.2 Numerical biomarkers in pathological conditions

We now focus on pathological conditions and aim at determining numerical
biomarkers that are associated with these conditions.

6.3.2.1 Pathological test case 1: left or right ventricle infarction

The first pathological cases considered in this work are left and right ventricle
infarction. A myocardial infarction is a zone where the cardiac tissue is not electri-
cally active because of a lack of vascularization for instance. We choose to model
this phenomenon in the infarcted zone by replacing in (6.1) the ionic current term
Iion by the following:

I ′ion(Vm,x) = GinfarctIion(Vm,x), (6.8)

where Ginfarct is a parameter controlling the degree of infarction, 1 being the healthy
condition and 0 being a complete infarction. The infarcted zones considered in our
case are spherical of radius 2cm and are located in the left ventricle in the first case
and in the right ventricle in the second case as shown in Figure 6.7. In both cases,
5 parameters of interest are retained: gRV

fi , g
endo
fi , gMCell

fi , gepi
fi and Ginfarct. The idea

is to build a numerical biomarker that is able to capture a left (or right) ventricle
infarction regardless of natural variations of the activity of the sodium channels in
the different regions of the heart.

Numerical settings The training set is generated with N = 512 samples drawn
from a uniform distribution over Θ, where

Θ = [0.8, 1.1]4 × [0, 1].

Note that the parameters samples are the same in both cases, the only difference in
the simulated ECGs being the localization of the infarction.

Left ventricle Infarction For the left ventricle infarction, the `1 regularization
parameters values λ1, . . . , λ5 are summarized in Table 6.4. The weights are shown
in Figure 6.11. The numerical biomarker associated with the Ginfarct parameter has
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(a) Left ventricle infarction (b) Right ventricle infarction

Figure 6.7: Visualization of infarcted regions: healthy region in blue, infarcted region
in red.

only three non-zero weights. These weights are associated with, in descending order
of magnitude, the Q/S peak value of the aVL lead (QSPeakaVL), the ST segment
(plateau) height of the II and aVF leads (Qp200II and Qp200aVF). Interestingly,
the elevation of the ST segment is clinically associated with an infarction [OKA+13,
Dub84]. Furthermore, an infarction is also clinically revealed by modifications of
the Q waves in the ECG [Dub84], which is also captured in the obtained numerical
biomarkers. In practice, the leads where the abnormal Q waves are observed give
an indication about the localization of the infarction. According to [Dub84], an
abnormal Q wave in the aVL lead corresponds to a lateral infarction, which is the
case in our synthetic model.

Right ventricle infarction For the right ventricle infarction, the `1 regulariza-
tion parameters values λ1, . . . , λ5 are summarized in Table 6.5. The weights are
shown in Figure 6.12. Similarly to the left case, the non-zero weights are associated
with the Q/S peak and the ST elevation. Another non-zero weight is present for the
T wave (signed) amplitude of the third derivation. An inversion of the T wave (i.e.
a change of its sign) or exaggerated amplitudes of the T wave may be the sign of an
infarction in general, but not a sign of right ventricle infarction in particular. Note
that right ventricular infarction happen less often than left ones [Dub84] which is
why the position of the electrodes in the standard 12-lead ECG may not be suited
to the detection of right ventricular infarction [GD01]. To obtain a more accurate
diagnosis for the right ventricle infarction, practitioners use additional leads called
right precordial leads [ZKK+93]. These extra leads require the use of more elec-
trodes positioned at different locations on the torso, there are not discussed in the
present work.
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6.3.2.2 Pathological test case 2: left or right bundle branch block

The last pathological cases considered in this work are left and right bundle
branch blocks (BBB). As explained in 6.2.1.3, this pathology corresponds to a delay
of the electrical stimulation in either one of the ventricles. The pathology is modeled
by increasing the delay parameter δLVstim. The left (resp. right) BBB is modeled by a
positive (resp. negative) value of δLVstim. In both cases, 5 parameters of interest are
retained: gRV

fi , g
endo
fi , gMCell

fi , gepi
fi and δLVstim. Analogously to the infarction cases, the

idea is to build a numerical biomarker that is able to capture a BBB regardless of
natural variations of the activity of the sodium channels.

Numerical settings The training set is generated with N = 512 samples drawn
from a uniform distribution over Θl for the left BBB and Θr for the right BBB,
where

Θl = [0.8, 1.1]4 × [0, 40]

Θr = [0.8, 1.1]4 × [−40, 0].

Note that the parameter δLVstim is a time, measured in ms.

Left bundle branch block For the left BBB, the `1 regularization parameters
values λ1, . . . , λ5 are summarized in Table 6.6. The weights are shown in Figure 6.13.
The numerical biomarker associated with the left ventricle delay parameter has
non-zero weights for the peak values of the QRS complex of lead II (RPeakII and
absPeakII) and for the ST segment elevation (Qp100V1). The QRS complex is af-
fected by a left BBB since the left ventricle (being bigger and thicker than the right
one) represents the highest electrical contribution to the ventricles depolarization.
The left BBB is clinically associated with an elongation (in time) of the QRS com-
plex [Dub84] which is not captured in this numerical experiment. One explanation
would be that the non-zero weighted biomarkers are sufficient to reveal the BBB
phenomenon in a synthetic case but that the QRS elongation biomarker is preferred
in practice. A change of amplitude might be harder to visualize by a physician than
a change of duration of the QRS complex. Note finally that the Qp100V1 biomarker
measures the plateau height but can also capture a QRS elongation. Indeed, what
is interpreted as a plateau might be in fact the end of the QRS complex in case the
latter is pathologically elongated. This has to do with the way the biomarkers are
extracted from the ECG signals and some modifications my be needed so that the
QRS elongation appears in the numerical biomarker non-zero weights.

Right bundle branch block For the right BBB, the `1 regularization parameters
values λ1, . . . , λ5 are summarized in Table 6.7. The weights are shown in Figure 6.14.
Contrary to the left BBB, this time the δLVstim numerical biomarker does not include
weight related to the QRS complex. This can be explained by the fact that, as
explained earlier, the left ventricle is the major contributor to the QRS complex.
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Delaying the right ventricle may not affect much the QRS amplitude. However,
the same observation as before can be made about the biomarker Qp200V3 which
has a non-zero weight in the numerical biomarker associated with δLVstim. Though
it measures an elevation of the ST segment, it might in fact be associated with an
elongation of the QRS segment.

6.4 Conclusions and perspectives

In this work, we have presented a way to define numerical biomarkers for ECG
signals. The computational model has been described. It consists of PDEs that
model the electrical propagation at the tissue level and ODEs that describe the
electrical dynamics at the cell scale. The ECG medical tool is presented and its
in silico approximation is described. It consists of the bidomain equations for the
heart, the passive conductor model for the rest of the body and the isolated heart
assumption for the coupling between both regions. The parameters of interest in the
context of the study are highlighted and the entries of the dictionary of features are
described. Synthetic ECGs are generated by evaluating the computational model
many times with different parameters values, with the addition of noise to the sim-
ulation outputs.
The method is first illustrated in healthy conditions. For each test case, a set of
meaningful uncertain parameters is chosen. The obtained numerical biomarkers
associated with these parameters of interest are described and their relevance dis-
cussed.
Finally, the method is applied to pathological conditions. We describe a model of
the cardiac muscle infarction, which corresponds to a region where the tissue is so
damaged that it is no longer electrically active. We consider two different locations
for the infarction and compute the numerical biomarkers associated with the degree
of infarction as well as other parameters that are susceptible to vary independently
of the infarction. Interestingly, the non-zero weights obtained for the numerical
biomarkers correspond to quantities that are actually used in a clinical context to
diagnose infarctions. Second, we model bundle branch blocks in the left and right
ventricles. The results are less clear than for the infarction cases in that the quan-
tities clinically associated with bundle branch blocks are not visible in the non-zero
weights. This is explained by the fact that the biomarkers extracted from the ECGs
are well suited to the study of healthy signals but that they are more difficult to
interpret in certain pathological cases.

As explained in the Introduction section, this work is a preliminary step towards
the development of an inverse electrocardiography framework. The next step is to
use the obtained numerical biomarkers to perform inverse problems (more specif-
ically parameters estimations) with synthetic ECGs. As shown in Chapter 4, the
use of such features (as opposed to the whole time series for instance) generally
helps making the inverse problems less ill-posed and easier to solve in practice. The
ultimate goal is to perform such inverse problems with real clinical data. Many chal-
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lenges remain, such as how to deal with the modeling errors (and the inescapable
gaps between real data and simulation outputs) and with natural variability not
taken into account in our models. The use of biomarkers (instead of the raw time
series) may help circumvent some of these issues. Furthermore, additional features
may be defined to better reveal the effects of some parameters which remain difficult
to observe.

Besides these forecasted additions to the inverse electrocardiography framework,
other possible improvements to the overall model are presented in the following.
First, the isolated heart assumption, despite not having much influence in certain
scenarios, might prove to be insufficient in some cases where the electrical coupling
between the heart and torso becomes essential (e.g. in the modeling of epicarditis
and defibrillation). A domain decomposition approach using a Robin-Robin coupling
between the heart and the body has been implemented in the FELiScE library but
was not discussed in the present work. Second, the way the cardiac muscle is
stimulated (both in the atria and ventricles) appears to be much influential in the
ECG shape in practice. Beyond the possible delay in the ventricles stimulation (as
seen in the bundle branch block examples), accurate modeling of the time and space
evolution of the electrical stimulus is paramount.

6.5 Appendix

6.5.1 Figures and tables

N λ1 λ2 λ3 λ4 λ5 λ6 λ7

568 6.1 4.6 0.037 8.8 3.3 2.8 0.34

Table 6.1: Healthy test case 1: numerical biomarkers hyper-parameters.
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Figure 6.8: Healthy test case 1. Numerical biomarkers associated with: τRV
so , τ endo

so ,
τMcell
so , τ epi

so , gRV
fi , g

endo
fi and gepi

fi .

N λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8

576 2.2 0.17 0.34 0.41 0.076 4.56 4.5 10

Table 6.2: Healthy test case 2: numerical biomarkers hyper-parameters.

N λ1 λ2 λ3 λ4 λ5 λ6

1024 0.78 0.29 0.12 7.6 5.6 10

Table 6.3: Healthy test case 3: numerical biomarkers hyper-parameters.
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Figure 6.9: Healthy test case 2. Numerical biomarkers associated with: δRVstim, σti ,
σte, σli, σ

l
e, gRV

so , gendo
so , gepi

so

N λ1 λ2 λ3 λ4 λ5

512 8.1 8.2 0.0027 17 13

Table 6.4: Pathological case 1a: left ventricle infarction. Numerical biomarkers
hyper-parameters.

N λ1 λ2 λ3 λ4 λ5

512 11 0.73 0.0045 12 7.5

Table 6.5: Pathological case 1b: right ventricle infarction. Numerical biomarkers
hyper-parameters.
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Figure 6.10: Healthy test case 3: Numerical biomarkers associated with: gRV
fi , g

endo
fi ,

gepi
fi , g

RV
so , gendo

so , gepi
so .

N λ1 λ2 λ3 λ4 λ5

512 0.94 0.091 0.001 1.7 12

Table 6.6: Pathological case 2a: left bundle branch block. Numerical biomarkers
hyper-parameters.

N λ1 λ2 λ3 λ4 λ5

512 0.73 0.44 0.0016 18 24

Table 6.7: Pathological case 2b: right bundle branch block. Numerical biomarkers
hyper-parameters.
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Figure 6.11: Pathological case 1a: left ventricle infarction. Numerical biomarkers
associated with gRV
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Figure 6.13: Pathological case 2a: left bundle branch block. Numerical biomarkers
associated with gRV
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6.5.2 ECG leads definition

The 12 ECG leads are defined as follows:

I = uT (L)− uT (R) aV R = 1.5(uT (R)− uw)

II = uT (F )− uT (R) aV L = 1.5(uT (L)− uw)

III = uT (F )− uT (L) aV F = 1.5(uT (F )− uw)

V 1 = uT (V1)− uw V 4 = uT (V4)− uw
V 2 = uT (V2)− uw V 5 = uT (V5)− uw
V 3 = uT (V3)− uw V 6 = uT (V6)− uw

(6.9)

where uw = 1
3(uT (L) + uT (R) + uT (F )) is the Wilson potential.

6.5.3 Definition of the biomarkers dictionary entries

Biomarkers abbreviations (subscript is added in the plots for corresponding lead):

• QSPeak: negative extremum of QRS complex (either Q or S wave depending
on who’s the highest in magnitude).

• RPeak: positive extremum of QRS.

• absPeak: max of QSPeak and RPeak.

• QRS: duration of the QRS complex.

• STPot: average lead potential between end of QRS complex and beginning of
T wave.

• Qp100: lead potential 100ms after Q wave.

• Qp200: lead potential 200ms after Q wave.

• peakT: extremum value of T wave.

• absT: absolute value of peakT.

• QT: duration between beginning of Q wave and maximum of T wave.

• AUC: area under curve of T wave.

• RM: barycenter of T wave.

• RW: width of T wave.





Conclusions and Perspectives

This work was dedicated to the study of the variability in cardiac electrophysi-
ology measurements and to the design of numerical biomarkers. We have presented
original contributions to the development of numerical tools in order to solve the
following questions that go beyond the scope of electrophysiology: Given a set of
measurements and an associated computational model, what is the PDF of the
model uncertain parameters that replicate the observed variability in the measure-
ments? What are the best features to extract in order to perform specific tasks such
as classification or solving parameter estimation problems? The numerical tools de-
veloped to address these issues have been validated with simple models, tested with
realistic synthetic data and finally applied to real experimental measurements, both
in healthy and pathological conditions.

In Chapter 2, we proposed a procedure to estimate the PDF of uncertain param-
eters from the knowledge of experimental moments of an observable. The procedure
relies on two different algorithms. The first one finds the uncertain parameters PDF
using the maximum entropy principle and the matching of observable moments on
a set of model DOFs. The second one selects the subset of DOFs for which the mo-
ments constraints are to be matched to alleviate the first algorithm’s computational
cost. This approach has been compared to existing techniques on an ODE test case
and illustrated with PDE models.
In Chapter 3, the proposed method is applied to electrophysiology data, and more
precisely measurements at the cell scale. We have presented four different test cases
where a variety of models and uncertain parameters are studied. For two of these
test cases, the approach is successfully applied to experimental data coming from
canine and human action potential measurements.
In Chapter 4, we proposed a method to compute numerical biomarkers. Given a
dictionary of biomarkers, the numerical biomarkers are sought as linear combina-
tions of their entries. Finding the numerical biomarkers boils down to finding the
weights for each dictionary entry. The weights are found by solving a sparse opti-
mization problem. We apply the method to simple models and to more complex
biological systems, including synthetic MEA measurements. In Chapter 5, we ad-
dress a practical drug safety pharmacology problem: classifying drugs with respect
to their effect onto cardiomyocytes. The classification is made from experimental
MEA measurements. We show that using the numerical biomarkers presented in
the previous chapter, as opposed to classically used features, actually improves the
classification results. In Chapter 6, we apply the numerical biomarkers method to
ECG measurements. In different scenarios using synthetic measurements, we derive
numerical biomarkers associated with key parameters of the heart electrical activity.
We also apply the method to four pathological cases for which we obtain meaningful
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numerical biomarkers.
Some promising extensions to the present work are now presented. Concern-

ing the MEA (micro-electrode array) study, it has recently been proposed to add
other types of measurements to increase the amount of information available in field
potential measurements. The impedance [ZGZ+16] (the global resistance of the
tissue) may for instance be measured as a function of time as well as the calcium
ionic concentration which may be extracted using fluorescence recordings [GGS11].
Using ad hoc models of these different types of measurements, it would be possible
to develop a multi-physics framework which could be applied, for instance, to drug
safety pharmacology.
As for the ECG computational model, several additions could be made. First, a bet-
ter understanding and modeling of the electrical stimulation in the atria and in the
ventricles is necessary since it has much effect onto the simulated ECGs. Second, a
first step towards the strong coupling between the heart and torso has been made by
using a domain decomposition approach. However, the numerical method related to
the Robin-Robin coupling should be improved in order to reduce its computational
cost which should ideally be lower than solving the heart and torso monolithically.
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