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INTRODUCTION

Motivation

The present work deals with study of periodic media. Periodic media play an important
role in applications, such as solid state physics and optics. One talks about a periodic
medium when the geometry and the physical characteristics of the problem are periodic
functions. The periodicity of materials is observed at the atomic scale. Arranging different
materials in repeating patterns can give rise to metamaterials. The properties of such a
material are mainly no more determined by the properties of the materials it is composed
of but by the way they are assembled. As a consequence, a metamaterial can present
properties that do not exist in nature or are difficult to obtain.

Electromagnetic bandgap metamaterials affect light propagation. This is the case of pho-
tonic crystals which are structures composed of periodically alternated dielectric regions
with high and low dielectric constants. The interest of these structures lies in the existence
of intervals of "forbidden" frequences, i.e. frequences for which light cannot propagate in
the medium (such intervals are called band gaps). The intervals of "permitted" frequences
(for which light propagation is possible) are called spectral bands.

From the mathematical point of view, the existence of band gaps is explained by the
spectral properties of the underlying periodic partial differential operators. The spectra
of such operators are known to have a band-gap structure (Floquet-Bloch theory [15],40]).

At the same time, introducing a perturbation to a perfectly periodic medium can lead
to appearance of "permitted" frequences inside spectral gaps (which corresponds to the
appearance of isolated eigenvalues of finite multiplicity for the underlying operator). One
often talks about local perturbations and linear defects (the one considered in the present
work). These eigenvalues inside gaps give rise to the so-called "trapped modes" (in the
case of a local perturbation) and "guided modes" (in the case of a linear defect), which are,
roughly speaking, solutions of the wave equation which are localized in the neighbourhood
of the perturbation (a guided mode can be seen as a wave propagating along the defect and
confined in the transversal direction). Such localized solutions are particularly interesting
for applications such as design of lasers, filters and waveguides (cf. [33],34]). The present
work is devoted to the study of a particular type of waveguides that will be described in
detail below. The aim is to create guided modes by introducing a geometrical perturbation
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of a purely periodic material.

State of the art

Two questions arise naturally when studying periodic media: the existence of gaps and
the existence of eigenvalues inside gaps when a perturbation is introduced. Neither of
them is completely answered. In the one-dimensional case, the gaps always exist except
for constant media (]9]).

Necessary conditions of existence of gaps in higher dimensions are not known (in the one-
dimensional case it is well-known that a periodic operator has no gaps if and only if it is
constant, see [9]). However, some examples of sufficient conditions leading to the presence
of gaps have been found in [20, 2], [52), (54} 3, 28, 29, 39] and references therein. According
to the Bethe-Sommerfeld conjecture, a periodic operator in higher dimensions can only
have a finite number of gaps (this is not true in the one-dimensional case, where, in
general, a periodic operator has infinitely many gaps). The Bethe-Sommerfeld conjecture
has been completely proved for the periodic Schrédinger operator (|55, 56]), but is still
partially open for Maxwell equations ([67]).

For the second question, which is the possibility of creating eigenvalues inside gaps, some
examples have been given in [I8, 19, [, 41, 46]. In these works strong contrasts in the
properties of the medium are required in order to ensure the existence of eigenvalues. In
[48, [49] guided modes are found in periodic lattices.

In the present work we consider open periodic waveguides having the geometry of a
fattened grid described in more detail in Section [0.1] As the thickness of the grid tends
to zero, the domain shrinks to a graph. We use then the classical approach of asymptotic
analysis (used, for instance, in [20] 54]), which consists in approximating the problem in
question by a limit one posed on a graph, for which the spectrum is easier to determine.

The convergence of the spectrum of operators in thin domains to the spectrum of the
corresponding limit operator defined on a graph has been studied in the literature. In
[61), 47] the convergence of the eigenvalues has been established in the case of bounded
domains (which implies due to the Floquet-Bloch theory the convergence of the spec-
trum for periodic domains). In [57] this result has been extended to much more general
domains (not necessarily bounded), for which the convergence of all components of the
spectrum has been proved. In our case this implies the existence of eigenvalues for € small
enough. We propose though another (a less general but more explicit) proof based on the
construction of a quasimode.

A periodic medium being infinite, this presents a difficulty for numerical study of localized
modes. Several methods have been developed in order to overcome this difficulty. The
most classical one is the "supercell" method which consists in truncating the computation
domain far from the perturbation and solving the problem in the truncated domain with
periodic boundary conditions. The localized modes being exponentially decaying, the
solution of the problem in the truncated domain converges exponentially to the solution
of the initial problem when the size of the domain tends to infinity ([10], [64], [62], [13]).
Another method (and this is the one we use in the present work) is based on the Dirichlet-
to-Neumann (DtN) approach developed in [24], [22], [23] (see also [38]). This method
consists in replacing the initial eigenvalue problem in an infinite domain by a nonlinear
eigenvalue problem posed in a neighbourhood of the perturbation (not necessarily big)
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via special DtN operators. The DtN operators depending themselves on the frequency,
the obtained problem is thus nonlinear. It is solved using fix point type methods.

0.1 Description of the problem

In this present work we study the propagation of acoustic waves described by the scalar
wave equation

72— A, (0.1.1)

and homogeneous Neumann boundary conditions in open waveguides having the geometry
shown in figure . The propagation domain (in grey) is supposed homogeneous. It can be
seen as R? minus an infinite set of periodically spaced rectangular obstacles of size 1 x L.
The distance between the obstacles, denoted by ¢, is supposed to be small.

17}
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(a) Periodic domain (b) Perturbed domain

Figure 1: Propagation domain (grey area)

The principle question that we are interested in is the possibility of creating of guided
modes in this type of waveguides. It is known that the existence of guided modes requires
the introduction of a perturbation. The perturbation that we consider is a geometric one:
without changing the properties of the medium (which is still homogeneous) we introduce
a linear defect in its geometry by modifying the thickness of one infinite branch of the
domain from e to pe with some positive coefficient p (cf. figure . It turns out that for
p < 1 (i.e. when the domain shrinks) guided modes do appear. We conjecture that for
p > 1 (i.e. when the domain is enlarged) there are no guided modes (at least for € small
enough).

By creating a guided mode we mean, roughly speaking, searching a solution of the equation
(0.1.1)) with Neumann boundary conditions which propagates along the perturbation and
is confined in the transversal direction. As explained in more detail in Chapter [ this
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implies the following form for the solution:

wwt

u(z,y,t) = e“v(x,y),

where the function v is S-quasiperiodic:
v(a,y+ L) = e Po(z,y).

For the function v one gets then an eigenvalue problem for the Laplacian in a periodicity
band P* of the domain Q¥ (cf. figure with S-quasiperiodic boundary conditions on
the upper and lower parts of the boundary:

Av = —w?v,
Find v € Ly (P*) such that ¢ v|y =e ¥ oy,
0,v = 0 on the boundaries of the obstacles.

Thus, we have to study the discrete spectrum (the so-called trapped modes) of the Lapla-

zl

P,

|

| €

z
(a) The periodicity band P¥ ("ladder")

(b) The limit graph

cian with S-quasiperiodic conditions in the periodicity band P* that we call a "ladder".
It turns out that the spectral properties of the Laplacian with S-quasiperiodic conditions
in the "ladder" are very similar to the ones of the Laplacian with Neumann boundary
conditions. For this reason, we consider the Neumann Laplacian in the ladder as a model
problem and the first three chapters are devoted to the of study this model problem. In
Chapter [4] we study the S-quasiperiodic case using the same scheme as the Neumann case.

General methodology

Both in the case of Neumann Laplacian and in the S-quasiperiodic case the method of
study consists of three main steps:
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1. Identification of the (formal) limit problem. As ¢ — 0, the periodicity band
shown in figure [2a] (the "ladder") tends to a periodic graph (cf. figure 2b). Moreover,
due to Neumann boundary conditions, a trapped mode in the "ladder" can be approxi-
mated by a one-dimensional function defined on the limit graph. This limit function is
an eigenfunction of the limit operator defined as the second-order derivative operator
on each edge of the graph completed by transmission conditions (called Kirchhoff’s
conditions) at the vertices of the graph ([I7, 1], 47]). Let us mention that quantum
graphs have been studied exhaustively in the literature: one can refer, for example, to
the surveys [42, 43| [44] as well as the books [0, [58] and the bibliography therein.

2. Computation of the spectrum of the limit problem. We first investigate the
essential spectrum using the Floquet-Bloch theory. Then, we compute the discrete
spectrum using a reduction to a finite difference scheme (|2, [16]).

3. Asymptotic analysis. The last step is to show that the formal limit problem is
indeed a good approximation of the initial one. In order to prove the existence of
guided modes we need precisely the following assertion: if the limit operator has an
eigenvalue \g inside a gap [ag, by|, then the non-limit operator also has an eigenvalue
Ac inside a gap [ac, b.] such that a., b., \. are close to ag, by, Ao respectively for & small
enough. Notice that the convergence of the spectrum of the non-limit operator to the
spectrum of the limit one cannot be uniform.

Structure of the work

The present work is organized as follows.

In Chapter 1 we study the spectrum of the limit problem for the ladder. We prove that
the limit operator (more precisely, its symmetric part A*) has infinitely many gaps and
one or two simple eigenvalues inside each gap if 4 < 1. For g > 1 the limit operator has
no eigenvalues (Proposition and Theorem . We then deduce by asymptotic
analysis that for € small enough the non-limit operator has arbitrarily many gaps (for any
k € N there exists €, > 0 such that for ¢ < g, the operator AL, has at least k gaps and
at least one or two eigenvalues in each of these gaps), cf. Theorems This last
result concerning the eigenvalues is obtained by considering a "naive" quasimode that
permits to show the convergence of the eigenvalues of the operator AZ to the ones of the
operator A at order /e, which is not optimal (the convergence is actually linear in ).

In Chapter 2 we obtain a full asymptotic expansion of the eigenvalues of the operator
At which proves at the same time the linear convergence of the eigenvalues. This is
done by considering other quasimodes which are constructed using matched asymptotic
expansions of the solution in the ladder. Far from the vertices the solution is modelized
by one-dimensional functions defined on the graph (the so-called far field expansion).
In the neighbourhood of the vertices a rescaling is done (the so-called near field expan-
sion). Finally, both expansions are supposed to be valid in some intermediate areas called

matching areas.

In Chapter 3 the numerical approach to the problem is discussed. We first remind the
Dirichlet-to-Neumann (DtN) operator method developed for numerical study of periodic
media. More precisely, the initial eigenvalue problem on an unbounded domain can be
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reduced to a nonlinear eigenvalue problem posed on a bounded domain. Then, we give
some details of implementation of this method using the P1 finite element discretization.
Finally, we present numerical results for the problem in the ladder obtained using this
method. We compare the results for the eigenvalues obtained via the DtN approach
with the ones obtained by computing numerically the first terms of the full asymptotic
expansion.

In Chapter 4 we come back to the waveguide problem. The computations in this chapter
are very similar to the ones performed in Chapter 1 for the ladder. Analogues of the
results obtained for the operator A%  (existence of gaps and of eigenvalues inside gaps)
are established in the S-quesiperiodic case for the operator A#(3) (Theorems , .
This shows the existence of guided modes in the case p < 1 for € small enough. A slightly
more general geometry is discussed in Section [£.1.4] Varying an additional parameter
permits to influence the size of the gaps. In conclusion, numerical results for the (-
quasiperiodic case are presented. A time-dependent simulation is described that shows
the presence of a guided mode (in the temporal regime).

In Chapter 5 we discuss a 3D generalization of the waveguide studied in Chapter 4. The
limit problem on the corresponding graph is studied and analogues of the most part of
the results obtained in the 2D case (existence of gaps and of eigenvalues inside gaps) are
established, cf. Proposition [5.2.3| and Theorem [5.2.1, The equations describing the 3D
case are very similar to the ones describing the 2D case. The conclusions for the non-limit
operator are given in Theorems [5.3.1] [5.3.2] The principal difference between the 2D and
the 3D case is that in the 3D the equations are less explicit, which makes the analysis
somewhat more technical.



CHAPTER 1

TRAPPED MODES IN A LOCALLY
PERTURBED PERIODIC LADDER:
EXISTENCE RESULTS

1.1 Presentation of the problem

This chapter is devoted to the research of localized modes (also called trapped modes) in a
ladder-like periodic domain (cf. figure . The domain €2, is supposed homogeneous and
consists of an infinite band of height L minus an infinite set of equispaced rectangular
obstacles. The domain is 1-periodic (with respect to x). The distance between two
consecutive obstacles and the distance from the obstacles to the boundary of the band is

denoted by £ and is supposed to be small:

O =Rx]-3.5)\US  Sy=li+5i+1-5x[-5+e5-¢].
JEZ

By a localized mode we mean a solution of the homogeneous scalar wave equation with

y N

Q¢

|

e

Figure 1.1: Propagation domain (in grey)

Neumann boundary conditions, i.e.,

0%u ou

w :Au n Qg, :O, (111)
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which is confined in the z-direction. More precisely, u is supposed to have the following
form:

u(z,y,t) = v(z,y)e™,  ve L), (1.1.2)

where the term e"* shows the harmonic dependence on time whereas the function v (which
does not depend on the time) is in some sense confined (since it belongs to Lo(€2.)).

Plugging ([1.1.2)) into (1.1.1)) leads to the following problem for the function v:

—Av =w?v in €.,

ol _, (1.1.3)

wt

on 20,

Problem ([1.1.3) is an eigenvalue problem posed in the unbounded domain €2.. It is well-

known (cf. Theorem XIII.86 in [60], volume IV) that elliptic periodic operators in 2D

domains have no eigenvalue. In order to create eigenvalues one needs to introduce a

perturbation. We will consider a local perturbation of the geometry of the domain where

the width of one vertical edge is modified from ¢ to pe with some p > 0 (see figure [1.2)):
A= Rx]-3, 3D \{Srusem,

T2 2
st (-0 Y b gas1-4]) xhrad-d.
JEN*

o= (e lu U ot g1 x hrad-a

JEN*

Figure 1.2: Perturbed domain (u < 1)

As we will see, such a perturbation does not change the essential spectrum of the under-
lying operator but it can introduce a non-empty discrete spectrum, which is exactly what
we are interested in (since this discrete spectrum corresponds to trapped modes).

A precise mathematical description of the problem is given in the next section.

1.2 Mathematical formulation of the problem

Let us introduce the operator A# in the space LQ(Qg), associated with the eigenvalue
problem (1.1.3)) in the perturbed domain:
=05.
o0k

ou

Alu=—Au,  D(AY) = {u € HA(Q), o=
mn
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Here
HAQ) = {ue H'(Q), Aue Ly(QF)}.

The operator A¥ is self-adjoint and positive. We have then to study its spectrum and,
more precisely, to find sufficient conditions for existence of eigenvalues.

1.2.1 Determination of the essential spectrum of A#

To determine the essential spectrum of the operator A¥, we start by studying the perfectly
periodic case (1 = 1). In this case, the domain is €. (figure |1.1)) and the corresponding
operator A! will be denoted by A..

According to the Floquet-Bloch theory, periodic elliptic operators do not have discrete
spectrum and their essential spectrum has a band-gap structure [I5], 60, [40]:

0(A:) = 0ess(A) =R\ | J Jan, bal. (1.2.1)

1<n<N

The intervals |a,,, b,[ are called spectral gaps. Their number N is conjectured to be finite
(Bethe-Sommerfeld, 1933, [55, 66, [67]).

The band-gap structure of the spectrum is a consequence of the following result given by
the Floquet-Bloch theory:

G(As) = U o (Aa(e)) ) (1'2‘2)

oe[—m,x]

7|, A.(0) is the Laplace operator defined on the periodicity cell

where for any 0 € [—,
} (cf. ﬁgure ) with #-quasiperiodic boundary conditions on the
0

T
C. =, ﬂ{a:E[ 2,2]

lateral boundaries: for 6 € [—7
A(0) = Ly(C.) — Ly(C.), A () u = —Au, (1.2.3)
D(A0) = {w e HAC), utlyenfeg 11y =0, (1.2.4)
Uy = Ul 1 Opul,y = D u|$__§}. (1.2.5)
A Ce
L
Y
1 > 1
2 X 2

Figure 1.3: Periodicity cell

For each 6 € [—m,m] the operator A.(f) is self-adjoint and positive and its resolvent is
compact due to the compactness of the embedding H'(C.) C Ly(C.). Tts spectrum is then
a sequence of non-negative eigenvalues of finite multiplicity tending to infinity:

0< A\i(g,0) < Xa(g,0) <--- < \u(e,0) <.t lim A,(e,0) = +o0. (1.2.6)

n—oo
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In (1.2.6) the eigenvalues are repeated with their multiplicity. The functions 6 — A, (e, 0)
are called dispersion curves and are known to be continuous and non-constant (cf. Theo-
rem XII1.86 in [60], volume IV). Thus, (1.2.2)) can be rewritten as

U(AE) = U An (57 [_7(’ ﬂ-]) )

neN

which gives (1.2.1)). The conjecture of Bethe-Sommerfeld means that for n large enough
the intervals A, (¢, [—m, 7]) overlap. The fact that the dispersion curves are non-constant
implies that no one of the intervals A\, (¢, [—m, 7]) is reduced to a point and the operator
A. has no eigenvalues. Finally, the dispersion curves are even: indeed, D(A.(—0)) =
D(A.(0)) and the operators A.(#) have real coeflicients. Thus, it is sufficient to consider
0 € [0,7] in (1.2.2]).

1.2.2 The essential spectrum of the operator A%.

It is well-known that local perturbations of the domain do not change the essential spec-
trum of the corresponding operator. This is due to Weyl’s Theorem (see, for example,
Ch.13 Vol. 4 in [60], Ch. 9 in [7], Theorem 1 in [I§]). For the sake of completeness we
prove this result in our case.

Proposition 1.2.1. 0.5(AY) = 0ess(Ae)-
This is a direct consequence of the following assertion.
Lemma 1.2.1. Let x € C*°(€.) be a function such that
1. Oy]oa. =0,
2. AM >0 such that |z| > M = x(z,y) = 1.

If {u;}jen is a singular sequence for the operator A. corresponding to the value X, then
there exists a subsequence of {xu;}jen which is also a singular sequence for the operator
A, corresponding to the value \.

Proof. By definition, the sequence {u;};en has the following properties:
1. uj € D(A), jeN,

2. inf Jugflry@) > 0;

3. u; — 0 in Ly() ({u;} is weakly convergent to 0 in Ly(€2.));
4. AEUj — )\Uj — 0.

Let us show that there exists a subsequence of {xu;};en which has the same properties
as well. The property 1 is verified due to the property 1 of the function y. To obtain a
lower bound for ||xu;||r,q.) we will show that

;]| oy — 0, j — o0, for all compact K C (.. (1.2.7)

Indeed, from
(Acuy — Mg, us) o0 = VUl Loy — Ml Lo
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taking into account the properties 2-4 of the sequence {u;} we conclude that sup ||u;||m1(q.) <

J
C for some C' > 0. We can then extract a subsequence still denoted by {u;} such that

uj — 0,  j — oo, in  H'Y(.). (1.2.8)

Thus, (1.2.7) is verified and, consequently, inf ||xu;||r,.) = nf ||uj] Longjz>ay) > 0.
J J

The property 3 being obvious the only thing to show is the property 4 for the sequence
{xu;}jen. We have:

2 2
14 (xug) = A0 I, ) < IX(Acwy = )l o) + 2VXVU 7,0, + 14 AX N L, 0.

The first and the last terms in the right-hand side tend to zero (due to the property 4 of
{u;} and ((1.2.7))). Let us estimate the second term.

VY20, = / Vi, Vi, [V d0

Qe

= - / u;div (V[ Vx[?) d + /ujc’?nﬂjlvxlzdf-

supp(Vx) Qe

The last term in the right-hand side vanishes due to the property 1 of {u;}. The first
term tends to 0 due to (1.2.7)), (1.2.8) and the properties 2, 4 of {u;}. ]

Proof of Proposition[1.2.1. It is sufficient to take a function y in the previous lemma
which does not depend on y, vanishes in a neighbourhood of the perturbed edge and such
that Vx vanishes in a neighbourhood of all vertical edges. Then, it follows from Lemma
that any singular sequence of the operator A. contains a singular sequence of the
operator A# and vice versa. [l

The essential spectrum of the operator o.ss(A¥) having a band-gap structure, we will be
interested in finding eigenvalues inside gaps (once the existence of gaps is established).

1.2.3 Method of study
Our analysis consists of three main steps.

e First, we find a formal limit of the problem when ¢ — 0. It is clear that geometrically
as € goes to zero, the domains (2. and (2 shrink to a graph. The limit problem is then
associated with a second-order differential operator defined on the graph. Neumann
boundary conditions on the ladder give rise to the so called Kirchhoft’s conditions at
the vertices of the graph. This limit operator is well-known from the works [6I] and
Kuchment-Zheng [47]. We will describe it more rigorously in section [1.3.1]

e The second step is an explicit calculation of the spectrum of the limit operator. The
essential spectrum is determined using the Floquet-Bloch theory (by solving a set of
cell problems) while the discrete spectrum of the perturbed operator is found using
a reduction to a finite difference equation (section . In particular, we will see
that the limit operator has infinitely many gaps. For p < 1 it also has infinitely many
eigenvalues, whereas for > 1 it has no discrete spectrum.
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e Finally, we have to show that the operator on the ladder also has eigenvalues for p < 1
when ¢ is small enough (section[1.4). Despite the fact that this result follows from [57],
we will give another proof based on the construction of a quasi-mode (an approximation
of the eigenfunction). To go further, we will compute the full asymptotic expansion of
the eigenvalues inside the gaps (chapter 2).

To begin with, we will decompose the operator A* into the sum of its symmetric and
antisymmetric parts. As it will become clear later, the "true model problem" for the
p-quasiperiodic case is actually given by the considering only the symmetric (or only
the antisymmetric) part of the operator A¥. Let us introduce the following orthogonal
decomposition of the space Lo(Q2H):

LQ(Qg) = LQ,S(QI;) D L2,as(9’§)7

where Ly ((2#) and Lo ,5(Q2¥) are the subspaces consisting of functions respectively sym-
metric and antisymmetric with respect to the axis y = 0:

Ly s(2) = {u € Lo(Q) [ u(z,y) = ulz, —y)},
Loas($%) = {u € Ly(Q) / u(z,y) = —u(z, —y)} .

Consequently, the operator A* is decomposed into the orthogonal sum

AM == AM S Agas
with
no_— AR b= A
As,s - AE ‘LQ,S(Qg) ! AE as AE ‘L2,as(Qg) '

The spectrum of the operator A* is then given by the union of the spectra of its symmetric
and antisymmetric parts:

o(AL) = o(AL ) Ua(AL,,).

£€,a8

1.3 Spectral problem on the graph

1.3.1 The operator A".

As ¢ — 0, the domain 2. tends to the periodic graph G represented in figure [I.4, Let
us enumerate the vertices of the graph from left to right by an integer index j, the
superscripts "+" and "-" corresponding to the upper and the lower vertices respectively.
The set of all the vertices of the graph is then

V=il v =0%3)

The vertical edge j JOlIllIlg the Vertlces vl and vy 1s denoted by e; and the horizontal edge
joining the vertices U and UJ_H is denoted by et PIEE Thus, the set of all the edges of the
graph is

E={epeiy} o e=Ubx 54l e =lax (£,

The edge corresponding to the perturbation is eg. The set of all the edges of the graph
containing the vertex v is denoted by F,.
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Vioer,. Vim L
2 G
L e] eJ+‘l‘ y
L
V; Sz V; 1 2

Figure 1.4: Limit graph

If u is a function defined on the graph G, we will use the following notation:
+ + +
u; = u(vy), uj = ule,, Ui :u]ejil.

We introduce a local coordinate s at each horizontal edge ei , of the graph that varies 0
2

vE

i1+ In other words,

at Uj: to 1 at

Nl

|, ut L (s)=u(j+s=LL), selo,1]

U](y) :U(],y), RS [_57 j+%

Let w" : E — R" be a weight function which is equal to g on the "perturbed edge" e
and to 1 on the other edges:

w#(GO) = M
wh(e) =1, Vee E, e#ep.

Sometimes, to simplify the expressions, we will use the notation

. . j=0,
w%ﬂ:wyz{ﬁ %er (1.3.1)

)

Let us now introduce the following function spaces:

LY(G) = {u /u € Ly(e), Ve € E; HuH%g(@ = Zw“(e)HuHQLQ(e) < oo} : (1.3.2)

eck

ecE

H1<G>={u/uec<G>; ue H'(e), Ve € E; |ruuzl@=2||uuzl(e)<oo},

H2(G) = {u/u €C(G) we M), Ve e B [ullpe =3 llulf < oo}-
eckE
(1.3.3)

Notice that by definition functions belonging to H*(G) or H?(G) are continuous at the
vertices of the graph.
We define the limit operator A* in L4(G) as follows:

(Afu)|, = — (u].)”,  Ve€E, (1.3.4)

D(A*) = {u € H*(G)/ Z wh(ey) (e, )y (V) =0, Yo € V} : (1.3.5)

ey€EEy
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where (u,,).,,(v) stands for the derivative of the function u at the edge e, taken at the
vertex v in the outgoing direction. The relations in are called Kirchoff’s conditions.
We note that the perturbation is only present in the deﬁnltlon of the operator A* via the
Kirchoff’s condition at the perturbed edge (i.e. for the vertices vy since w*(eg) = ).

The following assertion is proved in [42], section 3.3 (we give its proof reformulated for
our particular case in Appendix).

Proposition 1.3.1 (Kuchment). The operator A" in the space Ly(G) is self-adjoint. The
corresponding closed sesqui-linear form has the following form:

au[fag] = (flmg/)Lg(Gb Vf,gGD[a“], D[a#] :Hl(G)

As for the ladder ¥, we introduce the following decomposition of the space L4 (G) into

the spaces of symmetric and antisymmetric functions:

LS(G> = Lg,s(G> D L2 as<G>

Ly (G) = {u € Ly(G) [ ulz,y) = u(z, —y)},

Ly 45(G) = {u € Ly(G) [ u(w,y) = —ulz, —y)}.

Again, the operator A* can be decomposed into the orthogonal sum

At =A@ AL
with

A= A= A,

2as

2.0 >

which implies
o(A") = o(AL) U o(AL).

Thus, it is sufficient to study the spectra of the operators A% and A%, separately. The
analysis of these two operators being analogous, we will present a detailed study of A*
(section [1.3.2]) and state the results for A*, (section (1.3.3).

1.3.2 The spectrum of the operator A%.

In this section we study the spectrum of the operator A#. Using the notation introduced

in the beginning of this section with u; 1 = u;;l =u_, and u; = u] = uj, it can be
2 2
rewritten as
(A‘!U)LH% =—uj1, (A, =—ui, jEN, (1.3.6)

(1)=0, je N} . (1.3.7)
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1.3.2.1 Essential spectrum of A*

First of all, we reduce the study of the essential spectrum of the operator A% to the study
of the periodic case (@ = 1). The corresponding operator A! will be denoted by A,.
Indeed, similarly to Proposition [I.2.1} by introducing a cut-off function which vanishes
in a neighbourhood of the perturbed edge of the graph, we can prove that the essential
spectrum of A¥ coincides with the spectrum of Aj:

Proposition 1.3.2.
0655<Al;) = Uess(As)' (138)

Computation of the spectrum of the operator A,

As previously explained, the spectrum of the periodic operator A, can determined using
the Floquet-Bloch theory. One has then to study a set of problems posed on the periodicity
cell of G. Since we consider the subspace of symmetric functions with respect to the axis
y = 0, this permits to reduce the problem to the lower half part of the periodicity cell

defined as (see figure [L.5):

N |-
X

Figure 1.5: The half periodicity cell C_

For a function u defined on C_ we use the notation u; = u|ej, 1 < j < 3. Let us introduce
the spaces Ly(C_) and H?*(C_) analogously to (1.3.2)), (1.3.3):
Ly(Co) ={u/ue Ly(ej), 1<i<3},
H*(C.)={u/ueC(C.); ue H(e), 1<i<3}.
We have then
o(4) = |J o(A0)). (1.3.9)

0€[0,r]
where A4(0) is the following operator defined in Ly(C_) with #-quasiperiodic boundary
conditions:

A (O)u; = —ul, 1<i<3,
D(A(6) = {u€ H*(C)/ ui(0) =0,
—uy(0) + uy(0) + iy (—§) = (1.3.10)

0
Us (%) = e Yy, (—%) Ul %) = e Py, (—%)} ) (1.3.11)
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The condition u4(0) = 0 comes from the fact that the symmetric subspace with respect to
the axis y = 0 is considered. The condition ([1.3.10)) is the Kirchhoff’s condition and the
relations are the quasiperiodic conditions. For each 6 € [0, 7] the operator A4(6)
is self-adjoint and positive and its resolvent is compact due to the compactness of the
embedding H'(C_) C Ly(C_). Consequently, its spectrum is a sequence of non-negative
eigenvalues of finite multiplicity tending to infinity:

0< As(0) S Aps(0) <--- < A\s(0) < ooy lim A, s(0) = +oo.

n—o0

In the present case, the eigenvalues can be computed explicitly.

Proposition 1.3.3. For 6 € [0,7], \2 € 0(A,(0)) if and only if \ is a solution of the
equation

2 cos (&) (cos A — cos§) = sin Asin (2£). (1.3.12)
Proof. If \* # 0 is an eigenvalue of the operator A,(#) then the corresponding eigenfunc-
tion u = {uy, ug, uz} is of the form

uy () = 1™ 4 dje” T € [—%, O] , (1.3.13)
Ug () = 2™ 4 dye™™7, T € [O, %} , (1.3.14)
us(y) = ce™ + dge™ ™, y € [—%, O] ) (1.3.15)

Taking into account that u € D(A(f)) we arrive at the following linear system of equa-
tions for the coefficients ¢;, d;, 1 <@ < 3:

iAL

Cl+d1:CQ+d22036_%+d362, (

cs = ds, (1.3.17
(
(

i
2
)

ix _iA _ _iA
262 +doe” 2 = e ¥ (cle 2 +de

i _iA _ _iA i
262 —dge” 2 = e <cle 2 —djez

9

N N N—

iAL (2

-+ d1 + Coy — d2 +cze 2 — d3€ 2 =0. (1320

The relations ((1.3.16)) express the continuity of the eigenfunction at the vertex (0, —%)
The equation (1.3.17) comes from the condition u5(0) = 0. The relations (|1.3.18)), (1.3.19)
correspond to the quasiperiodicity conditions (1.3.11)) and the equation (|1.3.20]) corre-
sponds to the Kirchhoft’s condition (|1.3.10)). Let us introduce the notation

a=e" z = e

We notice that the relations (1.3.18), (1.3.19) imply

C1 = Gz, dy = dyaZ.

We used the fact that z=! = Z because the operator A,(f) has only real eigenvalues. Thus,
the system (|1.3.16))—(1.3.20) can be rewritten as follows (we have eliminated d3, ¢; and
dl)I

co(1—az)+dy (1 —az) =0,

L _L
C2Fdy = <Z2 +22) =0, (1.3.21)
ol —az) —dy (1 —az) +c3 (2% — z%) = 0.
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The existence of an eigenfunction is equivalent to the condition

1—az 1—az 0

DO\ =] 1 I
L

2

l—az —(1—az) -z
One has

D()\) = 2aR (ZL/2 (3z + 7z — 4Ra)) = 4e” (2cos (2£) (cos A — cos§) — sin (2£) sin \) ,

which implies (1.3.12)) for A # 0. For A = 0 the relations (|1.3.13)—(1.3.15|) are replaced by

up(z) = ¢ + dyz, ze[-1,0],
us(z) = ¢ + do, z € [0,3],

)
)

uz(y) = c3 + dsy, y e [—éao]~
)

C1 = C9 = C3, dg = 0, d2 = d1€_i9, dg = cl(e_w — 1), d1 = dg.

Hence, there exists a non-trivial solution if and only if # = 0. The solution is a constant
function u; = ¢1, 1 <17 < 3. At the same time, A = 0 is a solution of ([1.3.12)) if and only
if & = 0 which finishes the proof. m

Remark 1.3.1. We notice that for cos (’\L) # 0 the equation (|1.3.12)) is equivalent to

2
the relation .
cos ) = cos \ — 3 sin A tan (22). (1.3.22)

Remark 1.3.2. One can easily see that if L € Q, the set {\ : \* € 0(A,)} is periodic.
Indeed, this is due to the fact that both the left-hand side and the right-hand side of

(1.3.12) are periodic with the same period.

In the rest of this section we will use the following notation:

S ={m, neN}, ¥, ={2 peN} 2;:{@”;”“,7161\1}.

Some properties of the spectrum of the operator A,

It follows from the decomposition ([1.3.9)) together with Proposition that \? € o(Ay)
if and only if A is a solution of the equation (|1.3.12)) for some # € [0, 7]. This permits to
derive some important properties of the spectrum of the operator Aj,.

Proposition 1.3.4.
1. {\% AeXUuX,} cCo(A).
2. The operator As has infinitely many gaps whose ends tend to infinity.

Proof.
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1. If A € ¥ U X, the equation (1.3.12)) is obviously verified for 6 such that cosf = cos \.

2. We will actually show that for any point A € Y. there exists some neighbourhood
(probably, a punctured neighbourhood) of A\* which is included in the resolvent set of

the operator A,. Consider A, %, n € N. There are two possibilities:

(i) A\, & X: since cos (22L) = 0 and sin ), # 0, the left-hand side of the equation
(1.3.12)) is equal to zero, whereas the right-hand side is different from zero for any
6 € [0, 7]. Consequently, there exists a gap of the operator Ay containing the point
A2,

(i) A, € ¥: in this case it follows from the property 1 that A2 € o(A,). We are going
to show that the point A\? is an isolated point of the spectrum of the operator A,, so
that there exist gaps to the left and to the right of it. Setting A = \,, +¢ in
we get:

—92sin (‘SL) (cosd - C(;(;an) = sin d cos (‘SL).

If 0 is small enough (but different from 0) this equation cannot be verified for any
6. Indeed, for § # 0 it can be rewritten as
cos @ sin ¢
cos A\, ~ 2sin (—)
The limit of the right-hand side as 6 — 0 is positive (it equal to %), whereas the limit

of the left-hand side is non-positive for any 6 (since |cos A,| = 1) with a uniform
bound in # for § small enough:

0
cos —cosd < 1 —cosd, V8 € [0, .
CoS Ay,
Hence, the equation ([1.3.12)) has no solution for ¢ small enough. This proves the
existence of gaps of the form JA\2 — I A2[ ]A\2 A2 + [F[ for some [, [} > 0.

]

Remark 1.3.3. In the proof of Proposition [1.3.4] (2) we showed for any A € X/ the
existence of a punctured neighbourhood of the point A? that does not belong to the
spectrum of the operator A,. This can be seen as a result of the graph decoration described
in [43]. Indeed, considering the the symmetric subspace on the graph G is equivalent to
considering the lower half of G' (denoted by G'_) with homogeneous Neumann conditions

at the vertices (7,0), cf. figure|l.

The graph G_, in turn, can be seen as a decoration of the graph G that consists of the
vertices {v-’} jez and the edges {e 1}geZ, obtained by attaching a copy of a segment

Gy = [—£,0] to each its vertex. Then according to Theorem 5 in [43], for any eigenvalue
A? of the problem

w4+ Nu =0,

u' (0) =0, (1.3.23)

u(=3) =

there exists a punctured neighbourhood that does not belong to the spectrum of the
operator A,. The set of eigenvalues of ((1.6) is exactly the set {\?, \ € ¥/}
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S AN

e,-+1/2 \"/ j+1

- > Vj

1

Go

° ° — o ° °
Vj ej+1/2 Vj+1

Figure 1.6: The graph G_ can be obtained by a decoration of the graph Gj: at each
vertex of Gy we attach a copy of the segment Gj.

Proposition 1.3.5. The operator A, has the following set of eigenvalues of infinite mul-
tiplicity which are isolated points of the spectrum.:

op(As) ={X*, XeXTuUx.}. (1.3.24)

Proof. The point A\? is an eigenvalue of the operator A, of infinity multiplicity if and only if
it is an eigenvalue of the operator A,(9) for any 6 € [0, 7]. According to Proposition[1.3.3
this means that the equation is satisfied for any 6 € [0, 7], which is equivalent
to the condition cos (&) = sin A = 0 (i.e., A € X UX]). The fact that these points are
isolated points of the spectrum is shown in the proof of Proposition , property 2 (case

(ii)). O

Remark 1.3.4. The set (1.3.24) is non-empty if and only if L = % an irreducible
fraction with m € N, k € N*. In this case

om(As) = {((2n + 1)7k)*, n € N}.

Remark 1.3.5. The presence of eigenvalues of infinite multiplicity is not a common fea-
ture for elliptic periodic second-order operators in domains of R"™. The absolute continuity
of the spectrum for such operators is proved under some additional assumptions (cf., for
example, [60} 65 [40] 8, 25 [45]). As explained in [43] (Section 5), the absence of pure point
spectrum is related to the uniqueness of continuation property. This property fails for the
graphs. Indeed, one can easily construct a compactly supported eigenfunction on a graph
provided it has a loop consisting of commensurable edges (cf. figure . This is exactly
what happens under the assumptions of Proposition [I.3.5} the edges of the graph G are
all commensurable. Due to the periodicity of the graph, an infinity of eigenfunctions cor-
responding to the same eigenvalue can be constructed by a translation of one compactly
supported eigenfunction. Moreover, it is shown in [43] that the eigenspace corresponding
to an eigenvalue of infinite multiplicity is generated by compactly supported functions.

As we have already seen in Proposition [1.3.4] the operator A, has infinitely many gaps
which are separated by the points {\?, A\ € X UX,}. We are going now to study in more
detail the location of the gaps via a geometric interpretation of the equation . We
will see that two types of gaps can be distinguished (Proposition which will permit
us to characterize the discrete spectrum of the perturbed operator (according to the type
of the gap it will contain one or two eigenvalues of the perturbed operator, Theorem
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//‘ :
y

/ sin(kmx)

N

L

cos(kr(y-Li2) —cos(kTi(y-L/2))

L —

v ) \\\
sin(kmx)

1

Figure 1.7: A compactly supported eigenfunction corresponding to the eigenvalue \? =
(km)? for L = 1.

1.3.1). We start by an auxiliary statement which is an immediate consequence of the

decomposition ([1.3.9)), Proposition and Proposition [1.3.4] (1).

Proposition 1.3.6. \? € o(A,) if and only if one of the following possibilities holds:
(i) A€ XUX,;

(i) A\ ¢ ¥ U X is a solution of the equation

oL(A) = fo(N), (1.3.25)
for some 6 € [0, 7]. Here
2
PL(A) = m, AgX, (1.3.26)
fa(A)—L A€ {\/ cosA#cosb}.

cos A — cos 6’

Geometrically, the solutions of the equation correspond to the abscissas of the
intersections of the graph of the function ¢, (\) with the one of the function fy(\). Hence,
to obtain the set described in (ii) of Proposition [1.3.6] one has to consider the union of
the graphs of the functions fy(\) for all 6 € [0, 7]. We introduce then the following set:

D= U {(z, fo(x))/ >0, cosxz # cosl}.

0€l0,x]
Lemma 1.3.1.
D =] Dt
neN
where
Dy ={(z,y)/ = €lmn,m(n+1)[, ye [fT(x),+o0[} U (7n,0), (1.3.27)

D, ={(z,y)/ z €lmn,m(n+1)], y € ]|—o0, [ (z)]}, (1.3.28)
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and

fT(x) = tan (“”‘2””) , x € [mn,m(n+ 1),

f~(z) = —cotan (1), x €lmn,w(n 4+ 1)].

One has
DE = D5 + (mn,0), Vn e N.

Proof. Tt is sufficient to notice that

oo, fT (@)U fT(2), 400, ¢,
U] f9<x>_{{o}, zE.

oclo,m
cos xF#cos 0

z’m %,
//’
77
[
|
\ [ ! ! .
(a) The functions fo, fr/3, (b) The domains D;* (¢) The function ¢ for L =
f27r/37 .fﬂ' 571'/12

Figure 1.8

The domains DZ as well as the functions f* are shown in figure [1.8b] It is worth notic-
ing that the functions f* are m-periodic, the function f* being right-continuous and
the function f~ left-continuous. The function f* is strictly increasing in each interval
[tn, m(n+1)[ and f*([rn,7(n+1)[) = RT. Similarly, the function f~ is strictly increasing
in each interval |mn,7(n + 1)] and f~(Jmn,m(n+ 1)]) = R™. As regards the function ¢,
it is a 27/ L-periodic function defined on Rt \ X,. In each interval |27n/L, 27 (n + 1)/L],
n € N, it is continuous and strictly decreasing and takes all the values in R (see an

example in figure .

As it was mentioned above, the set described in (ii) of Proposition is given by the
set of the abscissas of the intersections of D with the graph of the function ¢;. This is
not exactly the image by the function x — /& of the spectrum of the operator A, since
the discrete set ¥ U 3 ((i) of Proposition is missing. This permits us to consider
the intersection of the graph of the function ¢; with the domain D instead of D. Indeed,
the domain D differs from D only by adding the vertical boundaries:

D= UD_g:Du{U{{m}xW}}u{ U {{wn}xR}}.

neN neN neN*
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We have then
D, :={z: (z,00(\) € D} ={z: (z,¢.(\)) € D}UX\ X,, (1.3.29)

which means that A € D, implies A\? € o(A,). In order to get the whole spectrum of the
operator A, it is actually enough to add the set X, which is equivalent to taking the
closure of D,. More precisely, the following assertion holds.

Proposition 1.3.7.
Meo(d,) & NeD,UX, < MXeD,.

Proof. The first equivalence follows immediately from Proposition and . The
inclusion {A\?: A € D,} C o(A,) is also obvious since {\?: A € D,} C o(4;) and the
spectrum is a closed set. It remains then to prove that ¥, C D,. Suppose that A\ € 3.
Then,

dp > 0 s.t. ()\,QﬁL()\)) eD, VA E])\O, Ao + 50[ (1330)

Indeed, for ¢ small enough the function f* is continuous in the interval [\, A9 + 9.

Consequently, for A large enough the band |A\g, \g + 0[x[A, +00[ is contained in D (due

to (1.3.27))). However, R lign OgbL(/\) = 400, which implies [1.3.30l This, in turn, means
— Ao+

that Ao, Ao + 6[C D, for some &, > 0. Hence, \ € D,. O

wL —:nll .
Dn % D;

f f f* f* f

A A
f f f f f
D,
(a) L=m/2 (b) L =2r

Figure 1.9: Examples of intersections of the domain D with the function ¢,

In the rest of this section we prove the following characterization of the gaps of the
operator A,.

Proposition 1.3.8. An interval Ja,b] is a gap of the operator A, if and only if [\/a, V] N
Y, = 0 and one of the following possibilities holds:

I There exists n € N such that n < \/a < Vb < w(n + 1), and ¢1, (v/a) = f+ (\/a),
¢L(\/E) = f_(\/ZS);
IT (i) There exists n € N such that 7o = Ja < Vb < w(n + 1), and ¢, (v/a) < 0,
¢L(\/E) = f_(\/5>7
(ii) There exists n € N such that mn < \/a < Vb= m(n+ 1), and ¢ (/a) = f+ (Va),
¢r(Vb) > 0.
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We start by proving the following characterization of the ends of the gaps.

Lemma 1.3.2. The point A2 is the lower end of a gap of the operator A, if and only if
one of the following possibilities holds:

(1) Mo € R\ (ZUZ,) and (M) = fT(No);
(ZZ) )\0 X \ Zs and QSL()\()) < 0.

Similarly, the point A3 is the upper end of a gap of the operator A, if and only if one of
the following possibilities holds:

(i) Do € Ry \ (SU,) and 1) = /- (Mo);
(iv) Ao € X\ X5 and ¢r,(Ao) = 0.

Proof. Let us study the possible configurations of intersections of the function ¢, with the
domains D in the interval [mn,7(n + 1)]. We will treat separately the "regular" points
(which are neither the end of the interval nor the points of discontinuity of the function

L)
e Case 1. Regular points: Ay ¢ X U X
(a) The point (Mg, #£(Ag)) is an interior point of the domains DZ:
(Mo, 01(Xo)) €int (DF) = 36> 0 st. (A ¢r(N) € DE, VA €]Ag—6, Ag+[. (1.3.31)

This follows immediately from the fact that the function ¢ is continuous at Ao. We
note that due to (1.3.31)) the points such that (X, ¢ (o)) € int (D;) correspond to
interior points of the spectrum (and not to the ends of gaps).

(b) The point A satisfies ¢ (Ag) = fT(No):

Ao €]mn, m(n + 1) (A, (V) € DI, YA €]ho — 6, Ao,

00 =) T PO G 0) ¢ DE e n ol
(c) The point Ag satisfies ¢ (Ng) = f~(Ao):

Mo €lmnrn+ Dl oo (LWen(N) € Dy, YA€ o, do + 4], (13.33)

¢r(Ao) = 7 (Mo) (A 61(N) € Dy, YA €]Ao — 8, Adl.

This follows from the monotonicity of the functions f* defining the boundaries of the
domains DE on the one hand and from the monotonicity of the function ¢ from the
other hand. Indeed, the point (Ao, f1()g)) belongs to the boundary of the domain
D. Hence, the whole band [mn, A\g] X [f*()\g), 00[ belongs to D; and the band
Ao, m(n + 1) x ]—00, fT(Ao)[ does not intersect D;. Taking into account that the
function ¢y, is strictly decreasing and continuous in some neighbourhood of the point
Ao, We obtain which means that \? is the lower end of a gap. An analogous

argument gives ((1.3.33) which means that A2 is the upper end of a gap.
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e Case 2. Points of discontinuity of the function ¢, (the set %)

This case has been considered in the proof of Proposition [I.3.7 We showed that there
exists 47 > 0 such that |\g, A\g + 0T[C D,. Using an analogous argument one easily
checks that there exists 6~ > 0 such that |\ — 0, Ao[C D,. Taking into account that
D,UY,={)\: \? € 0(A,)}, we conclude that the points of 3, correspond to internal
points of the spectrum (and not to the ends of gaps).

e Case 3. Ends of the interval

Ao =7mn ¢ X (Mo, ¢1.(Xo)) € Djf, 1334
6100) =0 T 3550 st (AMop(\) €D, VA€o 33
Ao = & 3, (Mo, ér(Xo)) € Dy (1.3.35)
(M) <0 36 >0 st. (N or(\) & D, YXE|Xg, Ao + . -

These properties follow from the fact that the function ¢ is continuous and strictly
decreasing in some neighbourhood of the point A taking into account that the rays
{mn} x RT and {7n} x R~ are boundaries of the domains D} and D respectively.

The properties (1.3.34)), (1.3.35)) imply that the point A2 = (7n)? is the upper end of a
gap if ¢ (Aog) = 0 and the lower end of a gap if ¢ (N\g) < 0. Note that if ¢ (N\g) = 0,
there is a gap to the left and to the right of this point, and A3 = (7n)? is an eigenvalue
of infinite multiplicity for the operator Ay (which is in accordance with Proposition
1.3.5).

The three cases considered cover all the possible situations, which finishes the proof. []

Examples illustrating Lemma are shown in figure (1.9, We can now prove Proposition
1.o.3l

Proof of Proposition[I.3.8. As it has been shown in the proof of Lemma[I.3.2] case 2, the
points of X, correspond to internal points of the spectrum of the operator A,. This implies
that [\/a, Vb NS, = (). Consequently, ¢, € C([/a,/D]). Since the images of the points
of ¥ by the function z + x? belong to the spectrum of the operator A, (Proposition

1.3.4{(1)), one necessarily has 7n < /a < vb < 7(n + 1) for some n € N.

I Suppose that mn < /a < Vb < w(n+1). It follows from Lemma that ¢ (y/a) =
f*(va) and ¢1(Vb) = [~ (VD).

11

(i) Suppose now that v/a = mn. Then, it follows from Lemma that ¢ (y/a) < 0.
The function ¢; being continuous and strictly decreasing in the interval [/a, \/5],
we conclude that ¢ (vb) < 0. Then, according to Lemma , oL(Vb) = [~ (V).
Consequently, f~(v/b) < 0, which implies that vb < w(n+1) (since f~(m(n+1)) = 0).

(ii) The case v/b = 7(n + 1) can be considered analogously to the previous case.
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o, D}
f* f
A A
f £ !
D, D,
(a) An asymptote of the function ¢, (b) Eigenvalue of infinite mul-
(for L = 1.5) belongs to {nZ} tiplicity for L =1

Figure 1.10: Particular cases

1.3.2.2 Discrete spectrum of the operator AY.

We now pass to the study of the discrete spectrum of the operator A*. Suppose that A\? # 0
is an eigenvalue of the operator A#. Then, an eigenfunction u € D(A*) corresponding to
A2 verifies the equation u” + A\?u = 0 in each edge of the graph G. Hence, it has the form

u;y1(s) = aj1sin(As) 4 by, 1 cos (As), s € [0,1], Vj e Z, (1.3.36)
u;(y) = ¢; cos (Ay), ye[-£ L], VvieZ (1.3.37)

The continuity of the eigenfunction u at the vertices of the graph (which is due to the
fact that u € D(A*)) implies that

b.

n :a._%sin)\—l—bj_%cos/\:cjcos(’\L), Vj e Z. (1.3.38)

J 2

D=

The Kirchhoff’s conditions ((1.3.7) for the function u give

(jy1 = a5 1COSA+D; sin A + wjc; sin (22) =0, Vi € Z. (1.3.39)

1
2

Lemma 1.3.3. If A € SAY., then \? is not an eigenvalue of the operator A* for any
> 0.

Proof.

(a) Suppose that A € ¥/ \ X. Then, as cos (’\TL) = 0, the relations (|1.3.38) imply that

le =0, Vj € Z, and a; 1= 0, Vj € Z, since sin A # 0. Finally, taking into account

that sin (’\2L) # 0, one ﬁnds from the relations (1.3.39) that ¢; = 0, Vj € Z. Thus,
the eigenfunction w is identically zero.

(b) Suppose that A € £\ ), A # 0. Then, since sinA = 0 and cos ( 2) # 0, the
relations 8) imply that b, 1| =b, Vj € Z, and |¢j| = b‘cos()‘L)‘ Vj € Z.
Consequently, if b # 0, then u ¢ LQ( ). If b = O then b;,1 = 0 and ¢; = 0 Vj € Z.
In this case, one finds from the relations ) that |a | a, Vj € Z. Again, if
a # 0, then u ¢ Ly(G), and if a = 0, then the elgenfunctlon u is identically zero.
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(c) Finally, consider the point A = 0. Then, the relations (1.3.36))—(1.3.39) are replaced
by

uj+;(3):aj+%s+bj+%, s € [0,1], uj(y) =c;, ye[-%%], Vj € Z,

2

bj+% :aj_% —|—bj_% = ¢j, aj+% —aj_% =0, Vj € Z.

Thus, we have a1 = a, Vje€Z,and ¢;—cj_1 =a, Vj € Z. If a # 0, then u ¢ Ly(G).
If a =0, then ¢; = ¢;o1 = bjy1 =b;_1 = ¢, Vj € Z. Again, cither u ¢ Lo(G) (if
c¢#0), or u=0.

1
2

O
Remark 1.3.6. Lemma together with Proposition imply that the set ¥ U X/

can be excluded from the consideration while searching the eigenvalues of the operator
At Indeed, the points A € XAY! do not correspond to eigenvalues whereas the set XN
corresponds to the eigenvalues of infinite multiplicity.

For A ¢ ¥ U XY the coefficients {a;,1,b;,1,
2 2
{u;} of the function u at the vertices of the graph:

cj} can be expressed in terms of the values

m (ujJrl — COS /\Llj), ijr% = uy, C; = m, VJ e . (1340)

i+s AL
2

Then, the relations (1.3.36)—(1.3.37) take the form

sin (A(1 —s)) sin (\s) ,
Uj+%(8) = ujSi(T + uj+1m, S € [O, 1], Vj € Z, (1341)
cos (A\y) I ,
i(Y) = uj——F71, e|l—-3, 2, VjeZ. 1.3.42
U’] (y) uj coS (%) y [ 2 2] j ( )

After injecting (|1.3.40)) into the relation (|1.3.39)) one obtains the following finite difference
equation:

U1 + 29()\)11] + U1 = 0, ] c Z*, (1343)
u; + 29“()\)110 +u_; = 0, (1344)
where
1
g(\) = —cos A+ Esin)\tan (2F), (1.3.45)
g"(A\) = —cos A + g sin A tan (22). (1.3.46)

Thus, the initial problem for a differential operator on the graph reduces to a problem
for a finite difference operator acting on sequences {u;};ecz. The characteristic equation
associated to the system (|1.3.43)—(1.3.44]) is

r? +2g(M\)r+1=0. (1.3.47)
We will denote by r(\) the solution of ((1.3.47)) given by the relation

r(A) = —g(A) + sign(g(N))v/g*(\) — 1. (1.3.48)
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Clearly, |r(\)] < 1. Let us first solve the system (1.3.43) for j < 0 and j > 0. If
r(\) # r(A)~! the general solution of ((1.3.43)) is

u; = Ar(\) + Bir(\) 7, j =0, (1.3.49)

u; =A_r(\) +B_r(\)7, Jj<0. (1.3.50)
In the particular case when r(\) = r(\)~! = %1 the general solution is

u; =Cr(\ + Dir(\j, =0, (1.3.51)

u; = C_r(\) + D_r(N)j, Jj<0. (1.3.52)

Since an eigenfunction has to belong to Ly(G), the value A% can be an eigenvalue of the
operator A¥ only if |r(\)| < 1, which is equivalent to |g(A)| > 1. If A? is an eigenvalue of
the operator A# then B, = A_ = 0. Moreover, the equations ((1.3.49))—(1.3.50) for j =0
imply that A, = B_ = A. Thus,

w = Ar(\V j ez (1.3.53)

At this point we can remark that all the eigenvalues of the operator A# (if they exist) are

simple. Finally, after injecting (1.3.53)) into (|1.3.44]) we find
M ea(AY) & r(\)=—g"(\). (1.3.54)

Taking into account (1.3.45)), (|1.3.46]) we arrive at the following relation:

sign(g(A) v g*(A) =1 = (1 = p)(g(A) + cos A).

Since |g(A)| > 1, the above relation can be rewritten as

p=F(\), (1.3.55)
FQ):1-E5§%%§%. (1.3.56)

We arrive then at the following assertion.

Proposition 1.3.9.

M€ ay(AY) < X s a solution of :

We will now study the existence and the position of the eigenvalues of the operator A~.
As it was mentioned before, if A\? is an eigenvalue of the operator A* of finite multiplicity,
then one necessarily has |g(\)| > 1. The following proposition establishes the relation
between the absolute value of g(\) and the nature of the point A%

Proposition 1.3.10. For A ¢ ¥/,
gV <1 & [rN)] =1 & N eoa(A). (1.3.57)

Proof. The first equivalence follows immediately from ([1.3.48]). Next, we remark that
lg(A\)] < 1 if and only if there exists 6 € [0, 7] such that g(A) = —cosf. Due to (1.3.45)
we get

L. AL
cos\ — cosf = Esm)\tan (7)

For A ¢ ¥ U X, UX it is equivalent to ((1.3.25). Finally, for A € (X U %) \ X, we have
lg(A)| =1 and A\? € o(A,) (cf. Proposition (i)). O
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Remark 1.3.7. The relation |r(\)| = 1 can be seen as the condition of existence of a
generalized eigenfunction of the operator A# for the value A\?. By a generalized eigenfunc-
tion we mean a solution of the problem u” + A*u = 0 in each edge of the graph G which
is continuous and verifies the Kirchhoff’s conditions and which has at most polynomial
growth but does not belong to Ly(G). Indeed, for A ¢ ¥ U X/ the relations (1.3.49)-
(1.3.50) or (|1.3.51)—(1.3.52)) completed by give solutions of at most polynomial
growth which do not belong to Ly(G) if and only if |[r(A)] = 1. For A € ¥\ ¥/ one
has 7(A) = —g(A) = 1. The existence of a generalized eigenfunction in this case has
been established in the proof of Lemma [1.3.3] (b). Thus, Proposition implies that
in our case the existence of a generalized eigenfunction for A2, A\ ¢ ¥ is equivalent to
A2 € 0.55(A"). The relation between the existence of a generalized eigenfunction for A and
the fact that A\? belongs to the essential spectrum of the operator is known as a Schnol’s
theorem-type result.

It follows from Proposition that if A\? is an eigenvalue of the operator A* of finite
multiplicity, it is necessarily in a gap of the operator A#. Thus, the operator A% has
no embedded eigenvalues. With the classification of the gaps in two types introduced in
Proposition [I.3.8 we can state the following theorem giving the number of eigenvalues
inside the gaps of the operator A*.

Theorem 1.3.1. The operator A¥ has no embedded eigenvalues for any pu > 0. For
0 < p < 1 there exist two simple eigenvalues of the operator A in each gap of type I and
one simple eigenvalue of this operator in each gap of type I1. For jn > 1 the operator A"
has no eigenvalues.

Proof. The absence of embedded eigenvalues has been discussed above. The eigenvalues
of the operator A are characterized by Proposition . Clearly, for p > 1 has
no solutions. Let us consider the case 0 < u < 1. Let |a,b| be a gap of the operator Aj.
We will study the behaviour of the function F' given by inside this gap. Using
(1.3.45) it can be rewritten as

FQ) =1—=+v/1=¢:(\) (6(A) —v(N), (1.3.58)

where 1(A\) = —2/tan A and the function ¢, is defined in ([1.3.25). The only zeros of
the function F in the interval |\/a, V[ are given by the zeros of ¢, and the zeros of
w = ¢ — . Let us investigate the variations of F' in the two cases given by Proposition

3.8

I The function g being continuous in R\ ¥, it follows from (1.3.57) that |g(v/a)| =
l9(v/b)| = 1, and hence, F(y/a) = F(v/b) = 1. In view of Proposition [1.3.8] the strictly
decaying function ¢ has exactly one zero in ]\/a, Vb since ¢r(v/a) = f(v/a) > 0,
o (Vb) = f~(vb) < 0. We denote this zero by c. Besides, ¢ is strictly decreasing
and one can show that ¢(y/a) > 0 and ¢(v/b) < 0. Indeed, one easily verifies that
F=(N) <9\ < fH(N), VX € [\/a,Vb]. Tt follows that ¢ has a unique zero (denoted
by d) in |\/a, Vb (see figure ﬁ' . As a consequence, the function F'()\) is strictly
decreasing from 1 to 0 in the interval [\/a, min(c, d)], strictly increasing from 0 to 1
in the interval [max(c, d), v/b] and negative in the interval | min(c, d), max(c, d)[. Thus,
there exists precisely two solutions of in the interval |\/a, Vb[ for 0 < p < 1.
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IT Consider, for example, the case (ii), i.e. Vb = m(n + 1) (the case (i) can be considered
analogously). As in the case I, one has F(y/a) = 1. The function ¢ does not change
the sign in ]y/a, Vb[ since ¢(v/a) > 0, ér(vb) > 0. Hence, the point ¢ from the
previous case does not exist. The point d still exists and (see figure . In the
interval [\/a, d] the function F'()\) decreases monotonously from 0 to 1 whereas in the
interval [d, v/ it is negative. Hence, there exists a unique solution of in the
interval Jy/a, v/b[ for 0 < p < 1.

" (p
D, L Y
f+
™ ad NE m(n+1) m(n+1)
D, Dn
(a) Case L: both points ¢ and d exist, (b) Case II: the point d exists
which leads to two eigenvalues in such but the point ¢ does not, which
a gap gives one eigenvalue in this gap

Figure 1.11: Illustration for two types of gaps

1.3.3 Results for the operator A~

We will now briefly describe the modifications of the previous considerations in the case
of the operator A#,. The operator corresponding to the periodic case p = 1 is denoted by
Ags. The analogue of Proposition [1.3.3] is:

Proposition 1.3.11. For 0 € [0,7], \* € 0(A.s(0)) if and only if X is a solution of the

equation
AL

2sin (22) (cos A — cos ) = —sin A cos (2£), A#0. (1.3.59)

2 2

For sin (%) # ( the equation ([1.3.59) is equivalent to

1
cosf = cos \ — asin)\tan (%—i— g)

The analogues of the properties given in Propositions hold.

Proposition 1.3.12.

1. {2, XeXuUX\{0}} Co(Au).
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2. The operator A.s has infinitely many gaps whose ends tend to infinity.

3. The operator A.s has the following set of eigenvalues of infinite multiplicity which are
1solated points of the spectrum.:

Tpp(Aas) = {2, X e X US,\ {0}}.

This set is non-empty if and only if L = 2% an drreducible fraction with m € N¥,

k € N*. In this case, it has the form ’
Opp(Aus) = {(mrk)z, neN}.

Otherwise o,p(Ags) = 0.
4. N2 € o(Ass) if and only if either one of the following possibilities holds:

(i) xe LUX,\ {0};

(ii) X is a solution of the equation

—2tan (2£) = fo(N),
for some 6 € [0, 7).

Next, Proposition still holds for the operator A%, :

Proposition 1.3.13.
O—ess(AZs) = Jess(Aas)'

Passing to finite-difference equations for A ¢ ¥ U ¥, we find again (1.3.43)), (1.3.44]) with
g(A), g"(A) replaced by gas(A), g4, (A):

1
Gas(\) = —cos A + §sin)\tan (% + 3)7
gh(A) = —cos A + %sin)\tan (% + g)’

The characteristic equation ([1.3.47)) as well as the characterisation (|1.3.55))-(|1.3.56|) of the
eigenvalues are still valid with g(\) replaced by g.s(A). The relation |g,s(N)] < 1 <
N € o(A,) for A ¢ X, analogous to Proposition [1.3.10] also holds. Thus, we can state the

analogue of Theorem [1.3.1

Theorem 1.3.2. The operator A%, has no embedded eigenvalues for any p > 0. For
0 < p < 1 there exists either one or two simple eigenvalues of the operator AX, in each
gap of this operator. These eigenvalues are characterised as follows:

ggs ()\) -1

A2 Al =1- :
€oaldi) & |Gas(A) + cos Al

For > 1 the operator A%, has no eigenvalues.

Remark 1.3.8. As for the operator A,, we could give a more precise version of this
theorem by distinguishing two types of gaps of the operator A, analogously to Proposition
1.3.8 For 0 < p < 1 the operator A,s has two eigenvalues in the gaps of one type and
one eigenvalue in the gaps of the other type.
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1.3.4 The spectrum of the operator A.

As we have seen, both of the operators A, and A, have infinitely many gaps. However,
it turns out that the gaps of one operator overlap with spectral bands of the other one,
so that the full operator A has no gap.

Proposition 1.3.14.
o(A) =R".

Proof. Let us suppose that there exists A such that A ¢ o(A) (of course, the same is true
for some open neighbourhood of A). Due to the characterisation of the essential spectrum

(1.3.57)) and its analogue for A, we have

1
—COS A + §sin/\tan (%) > 1,

. sin )\ . (1.3.60)
cos _— :
2tan (%)
Let us denote a = tan (%) Then, the system ({1.3.60)) can be rewritten as
a2
Zsinz)\—asin/\cos)wl—cosQ)\ > 1, (1.3.61)
1 1
—sin® A\ + ~sin Acos A + cos® A > 1. (1.3.62)
4a? a
Multiplying ((1.3.62)) by a? and taking the sum with ((1.3.61]) we obtain
1
Z(l +a®)sin® A + (1 + a?) cos® A > 1 + a?,
which is impossible. [

We see that the eigenvalues of the operators A#, A% are in fact embedded eigenvalues for
the operator A*.

1.4 Existence of eigenvalues for the non-limit operator

1.4.1 Main result

We return now to the case of the ladder. As it was mentioned above, instead of studying
the full operator A¥ we will study separately the operators AL, A¥ - for which the
existence of eigenvalues inside gaps will be established. The convergence of the essential
spectrum of the operator A. s (resp. A..s) to the one of the operator A, (resp. Ags) is

known since the works [61], [47]. More precisely, the following theorem holds.

Theorem 1.4.1 (Essential spectrum). Let {]a,,b,[, n € N*} be the gaps of the operator
As (Ags) on the limit graph G. Then, for each ng € N* there exists g > 0 such that if
£ < &g the operator A. s (Acas) has at least ng gaps {]acn, ben|, 1 <n <ng} such that

Qepp = ap + O(€), bep = b, +O(e), e — 0, 1<n < ng.
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The proof of this fact is based on the Floquet-Bloch theory (which permits to reduce the
study of the spectrum of a periodic operator to the study of a family of operators in a
bounded domain) and the min-max principle (for studying the eigenvalues of an operator
in a bounded domain). Theorem m guarantees the existence of gaps for the operators
A s, Acqs at least for € small enough. We fix then one of these gaps and study the
existence of eigenvalues inside it. Our principal result is the following.

Theorem 1.4.2 (Discrete spectrum). Let |a, b[ be a gap of the operator A (AL, ) on the
limit graph G and A\ €]a,b[ a (simple) eigenvalue of this operator. Then there eists
g0 > 0 such that if ¢ < gy the operator A  (A!,.) has an eigenvalue A. inside a gap
|ac, b[ with the following asymptotic expansion at any order n:

e = Z ARk 1O (em11), e — 0. (1.4.1)
k=0

We prove this theorem in Chapter [2 using Matched Asymptotic Expansions. However,
we will give now a proof of a weak version of this theorem using a simpler argument.

Theorem 1.4.3 (Discrete spectrum — weak version). Let |a,b| be a gap of the operator A*
(A",) on the limit graph G and \©) €]a,b] a (simple) eigenvalue of this operator. Then
there exists eg > 0 such that if ¢ < &g the operator AL (AL, ) has an eigenvalue \. inside
a gap |ac, b.[ such that

)\5:)\(0)—1-0(\/5), e — 0.

Though the rate of convergence guaranteed by this theorem is not optimal, the proof given
below provides an easy way to establish the existence of eigenvalues for the operators A#

£,89

A# . Tt also illustrates the main ideas that will be used in the proof of Theorem @ in

€,as"
a simplified context.

Remark 1.4.1. In [57] O. Post proves the convergence of all the components of the
spectrum of the Neumann Laplacian for a large class of graph-like manifolds (in particular,
they are not necessarily compact). Applied to our case, these results imply the existence of
eigenvalues of the operators AL, AL inside gaps for € small enough. They also guarantee
that these eigenvalues are simple (which is not established in Theorem . The optimal
rate of convergence for the eigenvalues, which is linear in e, has also been proved in [57].
Thus, we provide an alternative proof of existence of eigenvalues of the operators A*

€,8)
AF  which permits to obtain a full asymptotic expansion of the eigenvalues (|1.4.1)).

€,as8

Combining Propositions [1.3.4] (2), [1.3.12] (2) and Theorems [1.4.1} |1.4.2} [1.3.1} [1.3.2] we
can formulate the following result.

Theorem 1.4.4. For any ng € N* there exists ¢g > 0 such that if € < ¢y the operator
A, s (A.as) has at least ng eigenvalues. Moreover, for any A > 0 there exists g > 0 such
that if € < e the operator A. s (Acs) has at least one eigenvalue greater than A.

1.4.2 Method of a pseudo-mode

We will now prove Theorem m We consider only the operator A%, the case of the

operator A . being analogous. Our proof is based on the construction of a so-called

pseudo-mode, i.e. an approximation of the eigenfunction of the operator A%Z,. More
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precisely, we use Lemma that gives an estimate for the distance from the spectrum
once such an approximation is found. In application to the operator A, Lemma
means that if there exists a function u. € H} (Q#) (H} standing for the symmetric subspace
of H') such that

/ (Vu.Vo — A(O)uev) dQ| < CVelluell ey |l o) Yo e HHOQM),  (1.4.2)

m
€

then B
dist(o(AL,), \V) < O/, (1.4.3)

with some constant C' which does not depend on e. According to Theorem for
e small enough there exists a constant C' such that o..(A%,) N[a + Ce, b — C’e] = 0.
Together with (1.4.3) it means that o4(A% )N A — CVE, MO 4O\ /2] # 0 which proves
the existence of an eigenvalue of the operator A%, in a neighbourhood of AO) of order /2
for € small enough.

1.4.3 Construction of a pseudo-mode

Let us introduce some notation for the domain QF (cf. figure [1.12)). We denote by V;Ji
2

its horizontal top and bottom edges,

ijz—}]ﬂL i+ 1— J“[X]%—&ﬂv j €z,
Vo = i+ 1= )]k, kel jez,

by V; its vertical edges,
c .owhe . wie L I .
Vj:}J—T 9+T[X]5_57§+5[7 Jj €L,

and by Kj’i the top and bottom junctions,

w” w”
Kt =i i+ [ <] - 4L j€z,

wt . wh .
K== 5 a5 )5 kel jez

We also introduce a notation for the boundaries separating these subdomains:

rojf = 9V iy NoK;™, 1jf = av ﬂ@ij, IS =0VsNoK;™,  jeL.

We construct the pseudo-mode u, as follows. Let ug be the eigenfunction of the operator
Al corresponding to the eigenvalue A(®. Then, u. is defined on Q¥ by "fattening" wq
(with an appropriate rescaling):
uo,j+%<5§+%($))a (z,y) € Vs’i
e, y) = 4 uo(t°(y)), (z,y) € Ve
o j, (z,y) € K7 o
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u
&+ 0,6+ 1,6+
L K; \ rl;+1£/2 \rj+1£/2 Qg
2 N l)1+1/2
e
i
y vy
.
r,— \\
=
-I_‘ \\ j+1/2 //
2 & 0,&,- -
K™ e T
-1 0 1 j X
Figure 1.12: Construction of a pseudo-mode
Here sj L1 and t° are given by the relations
2
: p
x—7—whe/2 y
s 1 (x) = J , t(y) = —=——. 1.4.4

We note that due to a standard density argument (Meyers-Serrin’s theorem) it is sufficient
to prove (1.4.2) for any v € C>(QF) N HX(QF). Let us estimate the left-hand side of

(1.4.2) for v € C=(QF) N H(QF). Integrating by parts and using the fact that ug is an
eigenfunction on the graph as well as the symmetry of the functions uy and v, we get:

/ (VuVo = AOu0) d0| <2) " AOug, / vdQ| + ANOfuc| Ly [[0]] ooy OCe)

£,—
£ X
J

) l.e,— €, —
1 F 1 Fj

x (14 O(¢)), (1.4.5)

The terms in ([1.4.5) containing O(e) appear because of the change of variables (1.4.4)).
Taking into account ([1.3.53)) and using Holder’s inequality, the first term in the right-hand
side of (1.4.5)) can be estimated as follows:

QZA(O)uOJ /de < Cellv|l gy 0py- (1.4.6)

JET 2
J

Here and in what follows we denote by C' all constants (not necessarily the same) which
do not depend on e. Next, if M is a barycentre of K, then

(z.y)
o) =) < [ Velar

M~
J
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where the integral is taken along the segment joining the points (x,y) and M;". Due
to Kirchhoff’s conditions (1.3.7) verified by the function uy we can replace v(x,y) by
v(z,y) —v(M;") in the integrals over the boundaries in the right-hand side of (1.4.5).
We have

(z.y)
/(v(m,y)—v(M;’_))dfv </ /\Vv|dxdt<C’5HvHHl(K§,). (1.4.7)

= T~ M5~
J i M

Combining ([1.4.5)—(1.4.7) and taking into account (1.3.41)), (1.3.42)), (1.3.53]) we obtain
the following estimate:

/ (Vu-Vo = \Ou) dQ| < Celjv| ey, Yo € CF(QE) NHLQY).  (1.4.8)

Notice that by definition of u. one has

e || 1.y = CVEluol iy, C >0,

which together with (1.4.8]) and the density argument mentioned above finishes the proof
of (L.4.2) and hence, of Theorem [1.4.3|






CHAPTER 2

TRAPPED MODES IN A LOCALLY
PERTURBED PERIODIC LADDER:
ASYMPTOTIC EXPANSIONS OF THE
FIGENVALUES

In this chapter we show how the proof of Theorem [I.4.3|can be modified in order to obtain
the complete asymptotic expansion of the eigenvalue stated in Theorem [1.4.2] It will be
done by constructing another pseudo-mode based on the formal asymptotic expansion
of the eigenfunction of the operator AZ  (here again, we give the proof for the operator
At the proof for the operator A,  being analogous). To do so, we will use the matched
asymptotic expansion method in the spirit of the works [63], [35], [36] (see also [66], [30],
[50], [5]). The method consists in distinguishing different areas where the behaviour of the
solution is different and imposing formal expansions in these areas. Then, the different
expansions have to match in some intermediate zones called matching zones. This leads
to matching conditions which, together with the equations satisfied in each zone, permit

to determine the terms of the expansions.

The notation in this section is different from the rest of the work: the spectral parameter
here is denoted by ), contrarily to all the others chapters, where it is denoted by A\2.

2.1 Formal expansions

Since only symmetric functions are considered when studying the operator A¥ . it is

€,89

sufficient to define them on the lower half of the band Q¥, which is a comb-shape domain
that we denote by C¥ (see figure [2.2a)):

Cl={(v,y) € L'/ y <0}.

37
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M
1

(a) The lower half of the band Q#: the comb-shape domain C¥

NI

< >
<« >

G

NI

< R
< v

1

(b) The lower half of the graph G: the graph G¢

Figure 2.1

Let v and A® be a formal solution of the eigenvalue problem

Au®+Xu=0 in CH,
our| 0 (2.1.1)
onloer

for which the following expansions are assumed.

Far field expansion

It is valid in the regions situated far from the junctions. When ¢ is small, the branches
of the domain are thin. For this reason, it is natural to model the solution by functions
depending on the longitudinal variable only, the dependence on the transversal variable
being neglected:

For (:p,y)EV;_’;ﬂ{xE}j—l—\/g,jﬁLl—\/E[}, JEL:

€ _ € k ) .
o) =@y =) fuli(s) toe™),  s=a—j (212)
keN

For (z,y)eVin{ye]-2+c 0]}, jeZ:

u(z,y) = us(e,y) = e ul (y) + o(e). (2.1.3)
keN
The functions uiljr)l and uﬁ-k) are defined on the edges e, 1 and e; of the limit graph G¢

(which is the 10W€1"2 half of the graph G, cf. figure [2.2b)). They are supposed smooth (this
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will be shown a posteriori):

By ec(o1]), W ec=([-40), («P) =0 VkeN, Vjez

The set of functions {ué?l , ugk)} will sometimes be denoted by u*), which is a function
3 jez

defined on the graph.

Near field expansion

It is valid in the neighbourhood of the junctions. The solution in this region is a function
of two rescaled variables X and Y:

For (z,y)eCin{zelj—2ve j+2Ve[, ye|-% —L+2\e|}, jei:
—j L/2
W) = Ui = Y SUP (X0 boe), x="2 y VR
keN

(2.1.4)
The functions U ;k) are defined in the rescaled neighbourhoods of the junctions J;:

U](k) S Hi,loc (L7J>7 VJ € Z7
where
. \7*7 ]6 Z*a
Ji= { Jo,  j=0, °

Jo={RxJ0, 13 U{]-3.3[ xR}, Jo={Rx]J0, 1} U{]-4,5[ xR}

For j # 0 the domain J; = J, is the unperturbed infinite junction whereas for j = 0 the
domain Jj is the perturbed one (cf. figure [2.2). We will use the following notation:

wh wh wf'L
K=|=% 30l Br=gn{xx>%}  B=gn{r>1}
e R e AL Bl e S RS

The functions U J(k) are supposed to have at most polynomial growth in the infinite branches

Bj-c, B;’ of the junctions J;. The set of functions {U J(k) } will sometimes be denoted
JEL

by U®).

Expansion for the eigenvalue:

A=) AW, (2.1.5)

keN
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1 7
3 -
J;=J. : Jo
0 B
BJ 0
0
5] 2,
B; A I Bj 1 B, A [ 8, 1
5 %
(a) The unperturbed junction J; = Js, j € Z*. (b) The perturbed junction Jp.
Figure 2.2

Far ﬁeld and near field problems: After injecting the relations (2.1.2)), (2.1.3)), (2.1.5)
into we obtain the following problem for u®), k € N:

) k-1
(52) @ + X0y (5) = = 32, sl qez,
m=0
k—1 (2.1.6)
()" () + AV ) = =S AE ), ye[-5,0], Jez,
m=0
\ (u§k)),(0) =0, JjEZL.

Analogously, after injecting (2.1.4), (2.1.5) into we find a set of problems for U®),
ke N:

k—2
AUP(X,Y) = = S A 2UM(XY), (XY €,
m=0
viel " 2.1.7
j U L (2.1.7)
on
87;

Clearly, the problems and are not well-posed. The far field problem need
to be completed by transmission conditions at the vertices of the graph and for the near
field terms the behaviour at infinity has to be specified. The missing relations can be
found by taking into account the matching conditions in the regions where both far field
and near field expansions should hold and match.

Matching conditions: Let us define the intermediate zones (the matching areas), cf.

figure 2.3
Mi =Virn{eeli+ve it2vely, M=V n{reli-2ve - vE[},
Ml =vin{ye]-§+VE -5 +2/E}, jel

As follows from the way we defined the far field and the near field expansions, they should
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0 C:
Y
2Ve| ¢
L Vi Vi
2
-1 j j+1 X
Figure 2.3: Matching areas
both hold in the matching areas M, M9_:
k
:ngugj z— j) =Y UM (X,Y) + o(e®), (z,y) € ML,
keN keN
(2.1.8)
€ k (k o _
us_ %xy Zeug)%x—l—l—j)—ko ZskU N(X,Y) + o(e™), (z,y) € M;_,
keEN keN
=Y P (y) +o(e™) = Y UM (X, V) + o(e), (z,y) € M2_.

keN keN

The regions M+ e correspond to x — j — £0 and X — +oo. Analogously, the regions
MO correspond toy — —L/2 and Y — +oo. This leads us to studying the behaviour
of the far field terms near the vertices of the graph and the behaviour of the near field
terms at infinity.

As we will see in the following section, the far field terms have the following behaviour in
the infinite branches of the junctions J;:

UM(X,Y) =P (X)+EX(XY),  (X,Y)eBf, keN, jeL,
UM (xY) = P]’;)o<>+eo<XY> (X,Y)eB), keN, jez

J

where the terms 8] i 8 . Consider, for example, the region ./\/l . Since in this region
E(i is exponentially decaylng as X — oo and X = O(¢7Y/?), we can rewrite (2.1.8) as

=Y FPY(X) +o(e®),  (.y) € ML (2.1.9)

keN

On the other hand, the functions uyjr)l can be decomposed in Taylor series in a neigh-

2
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bourhood of the point s = 0. Then, we get from ([2.1.8)):
NC b gryth

k(g _ ¢
;+1 (z,) ZZ J+2 € (Z’a j) Z Z d];? %jto(soo).

keN ¢eN s=0 keN = s=0

(2.1.10)
Comparing (2.1.9) with (2.1.10)and identifying the terms with the same powers of ¢, we

obtain the following expressions for the polynomials P]( 0) L
4
kL du ]+2 X t

dst Vil

=0 =0

PY (X) =

5.0.+ keN, jeZ (2.1.11)

2.2 Near field and far field problems

In Section we obtain (without giving a rigorous argument) the problems for the near
field terms posed in a bounded domain. The compatibility conditions for these problems
will permit us to obtain the problem for the far field terms (this is done in Section .
In Sections @ we come back to the near field problems in the domains J; and we show
that the existence of solutions of the problems posed in the bounded domain implies the
existence of near field terms satisfying the problems (|2 with a specified behaviour in
the infinite branches. Finally, in Section [2.2.5 we study the well-posedness of the far field
problem.

2.2.1 Formal derivation of the near field problems

2.2.1.1 Near field problems in the infinite junctions

In the spirit of the works [36], [35], let us introduce the following orthonormal basis
in L([0,1]) which consists of eigenfunctions of the transverse Laplacian with Neumann
boundary conditions:

fo(t) =1, fp(t) = V2 cos (prt), p>1,

Using this basis the functions U;k) in the infinite branches B;L can be represented as
follows:

=N UN (X)f(Y), (X,Y)eBf, keN, jeZ  (221)

peN

After injecting (2.2. 1|) into ([2.1.7) we get the following set of ordinary differential equations

for the functions U it

k—2
k) " k) m k m) .
(Uﬂ(p+> (X) - UJ(P+(X) - § :)‘( )U](pf (X), k,peN, jeZ. (222)
m=0

Making the change of the unknown function in of the form

Ut (X) = P]{’;Q(X)e—w, (2.2.3)
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we obtain the following recurrence relation:

N

2
" /
(PHL) (O=20m (PL) (X) = = DOAWPLE™(X),  keN, peN, jeZ

0

3
]

As usual, when constructing matched asymptotic expansions, for p # 0 we search solutions
of at most polynomial growth, which implies

PY (X) = —/153{’;;2)()( JAX' + ¢ 0 KEN, peN, jeZ,  (224)
X

N k—2 x

P00 = 3N [l (et 229

Hence, by induction in k, the functions P( )

peN je€Z:

.+ are polynomials of degree [%] for k € N,

[3]
X)=SN"e®_ Xt keN, peN, jeZ (2.2.6)

Jp+£
=0

SIS

P

7P+

It follows from (2.2.4)), (2.2.5) that for ¢ # 0 the coeflicients cgil . are given by the

following recurrence relation:

k-2 [ 5] -1 m) -
NOREN. 3 A(.)Z! (E—2-m)
‘77p7+7€ (2p7r)z—€+2 £| 7Py F 5t ’

m=0 i=(—1

1<(<[5], keN, peN, jeZ  (227)

The functions U j(lg) = PKIS) + have been found in (2.1.11)). Let us mention that they satisfy
the recurrence relation (2.2.2)) for p = 0 due to the fact that the far field terms satisfy the

equations (2.1.6). Finally, (2.2.1)) can be rewritten as

k e P
UM(X,Y) = PG (X)+ > P (X)e ™ f(Y),  (X,Y)€ B,

peEN*

ke N, jEZ, (2.2.8)

with the polynomials PJ( p) ., p € N*, defined in ([2.2.6))(2.2.7).

Obviously, a similar argument apphes for the domains B; and BJQ, and analogues of the
relations ([2.2.4)—(2.2.8)), (2.1.11)) can be found:

UM (X,Y) = + 3P (£X)eT (Y, (X.Y)e B,  (2209)
peN*
k k —prY /w*
UPY) = P Y+ 2 P g (- 4). (XY e B,

(2.2.10)
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The functions P( s for p # 0 are polynomials of degree [g] given by the relations

Pj(,]zé(s) = c;?,é,ﬁ'sE? o€ {+a ) 0}7 ke Nv pE N*a ] € Z’7 (2211)
£=0
—2¢ J -1 m k—2¢ [hTm]’l H\i—L€+2 Y\ (m) 5
Z Z )\( C(k:i m) c(k) L= Z (’UJJ) ‘ )\( )Z| C(,k702,7m)
i L 2p7r z (9 i—l+2 g1 g IpEi J,p,0, s <2pﬂ-)z—é+2 g Ip0s
1<(<[%], keN, peN, jeZ  (2212)

The functions P 0 5, 0 € {+,—, 0}, are polynomials of degree k for k odd and k + 1 for k
even. As we have seen above (cf. m they can be expressed in terms of the far field
terms:

v e, (k— f) e gt (k=0
P(k) (X) _ Z du it3 _E P(k) (X) _ d uJ*% ﬁ
PO ds’ o 30,-3) dst o
=0 s=0 =0 s=1
ko e, (k=£)
du; v¢
k .
P]'(,O?O(Y> = Z d]—yg ik ke N, JEZ.  (2.2.13)
=0 y=—=%

Thus, we end up with the following problems for the near field terms:

Find U € H..(J;) satisfying (2.1.7) and (2.2.9) — (2.2.13). (P*)

J

Remark 2.2.1. It is proved in [36] that a solution of (2.1.7)) of at most polynomial growth
admits the modal decomposition (2.2.9)—(2.2.10) with the coefficients of the polynomi-

als P(p s, P # 0, satisfying the recurrence relations (2.2.12)) and the polynomials Pj(ylg?a
satisfying the recurrence relation - with p = 0.

2.2.1.2 Towards a bounded domain

We will now introduce some auxiliary objects that will permit us to reduce the problems
737@ to problems posed on the bounded domains K. For this, we introduce the operators
T (which are in fact DtN operators). Then, we formulate a problem on the domain K; with
boundary conditions containing the operators 1. As we will see, the near field problems
will be reduced to problems having this form. Finally, we consider two particular cases of

the problem in question that we will need in the sequel.

Operators T. Let us define the following linear operators:

=Y e fouafy e € HY2([0,1)), (2.2.14)
p=1
(T3) () =3 rAGICEHIRACES)

Vo € HY/? ([—7‘, 7]) L jez. (2.2.15)
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We will use the notation

. T, de{+ -},
VjeZ, T:s =
J 3,0 {Tj, 5=0

It is shown in [63] that

T e £ (HY([0,1)), H*([0,1))) ,

el ([44]) o (44]). e

and the operators T', T} are positive and symmetric.

A problem in the domain K;. Let us consider the following problem for j € Z:

/

AU(X,Y) =d(X,Y), (X,Y) € K,

vl _y

onlgy (2.2.16)
ou

) - 5 € {+,—,0}.

on 56 + 3,0 U|E§, gs, € {+7 70}

\ J

The well-posedness result for the problems of this type can be found in [63] (Lemma
2.3.2). Adapted to our geometry, it implies that the following assertion holds.

Lemma 2.2.1. For any j € Z, ® € Ly(Kj), g+ € H‘1/2(Ej[), go € HY2(2Y) there
exists a unique modulo an additive constant solution U € H*(K;) of the problem (2.2.22))
if and only if the following compatibility condition is satisfied:

(92 )sg + (9 Dy + Dy = [ @ (22.17)
K;
Here (gs, f)ss denotes the duality brackets for gs € H Y*(X0), f e HY*(X9), 4 €
{+,—,0}.

The functions Wji. For any j € 7Z, we consider the following two problems:

( AVVj_(X,Y):O, (X,Y) € K,
oW .
on | (2.2.18)
ow:~ _
| W, =l se o)

\ Ej’(;

with )
g0, o1 -l ez
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and
( AW;“(X, Y)=0, (X,Y) € Kj,
oW
— O’
on | gx (2.2.19)
oW+
J + _ (W)
8’[’[, +7}76 W] ‘Ejj == gj75 s 5 < {—‘f_, ,O},
\ Ej,g
with
W W W 1 .
gJ(H‘ ) = —1, g§7_ ) =0, gj(.’o ) = m, J € 7.
J

The problems (2.2.18)), (2.2.19) are of type and one easily verifies that the com-
patibility condition is satisfied for these problems. We denote by W~ (resp. W37)
the unique (modulo an additive constant) solution in H'(K;) of the problem
(resp. (2.2.19)). Note that

WH(X,Y) = -W7(-X.Y), jeL (2.2.20)

Remark 2.2.2. Obviously, there are only two different functions W~: Wy and W,
J # 0. Similarly, there are only two different functions W*: W;" and W]-Jr, j # 0. In other
words,

Wi =W,  Vijel". (2.2.21)

2.2.1.3 Near field problems in a bounded domain

We can now reduce the near field problems to problems set in the domains K. Indeed, if

U](k) is a solution of (2.1.7)) satisfying (2.2.8]) then

o

® _ (pk Y () (k) \ (wi T
+ruf| = (20) (%) + X (P0) (3)e = 4

E;‘ J peEN*

ou®
J
0X

Analogous relations can be found on the boundaries 37 and 3J;. This yields a problem of

type ([2:2.16) for UY, j € Z, k € N:

(AUP(X,Y) =0 P(X,Y),  (X,)Y)eK,,
ou
J — O,
on oy (2.2.22)
ok
J & (k-1)
on . + Tj,6 Uj E? - gj,(s ) 0 € {+7 _70}7
\
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where

k=2, ot =0 =0, (2.2.23)

(k) ! wk _ P
Bout DU dst+i it PO () e e Rz (2220)
=0 s=0 pEN*
k—1 myE i I
k-1 (—wf) ' RN
91(7, = _Z Qlljl dslﬂu;'—l ) + Z Pj(,p?f <TJ> e fp7 k=1, (2-2-25)
=0 2 s=1 pEN*
oy L d G )
oo =D gt PR e Vg () k21 (2220)
= Y v=-%  peN* ’
g =9 =g =0 (2.2.27)

As follows from Lemma [2.2.1) the problems (2.2.22)) define the near field terms in the
domains K; modulo additive constants. In order to fix these constants, we impose the
following conditions:

/U](’ﬂ = p), (%) . keN, jeZ (2.2.28)
S

These relations are the average trace continuity conditions for the functions U;k) (cf.

2.2.8))). Taking into account the definition (2.1.11]) of the polynomials P](’S) ., the relations
2.2.28|) can be rewritten as
j+s

(k) _
/ Uj” = 4 240 ds* ’

E;’ s=0

‘ keN,  jelZ (2.2.29)
=0

Remark 2.2.3. We choose to impose the average trace continuity condition on the bound-
ary Ej. Obviously, we could have imposed analogous conditions on the boundaries X7,
E? instead. However, it turns out that all these conditions are equivalent as soon as the
far field terms satisfy the jump conditions that will be obtained in the next section (cf.

Lemma (22.3)).

Finally, we introduce the following problem for the near field terms Kj:

Find Ve H(K;) satistying (2.2.22) and (2.2.29). (P)

2.2.2 Formal derivation of the far field problem

We will now derive the problems for the far field terms. The following assertion is a direct
consequence of Lemma [2.2.1]

Lemma 2.2.2. Let j € Z, k € N. Suppose that d*~V € Ly(K;), ¢t € H-V*(5F),

= H=12(59). Suppose also that the following relation is satisfied:

(u),)'(0) = () (1) + wl () (—) = =, (2:2.30)

J=3

[1]
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where
y4
k) i d”l w-t| (—wé‘) Je+1 (h—0) + “1 pan o
= — 2% dstt Uiy | T 20 st i Saat |
2
+/ c1>§.’“‘”, k>1, (2.2.31)
K;
=0 = .

j
Then, problem 75](k+1) has a unique solution.

The relation ([2.2.30)) gives non- homogeneous Kirchhoft’s conditions for the function
u® provided the functions {u LU } _, are known. We need to complete the problem

for u¥) by jump conditions at the vertices. The trick consists in performing the following
integration by parts:

_ (k)
(k) _ A W= ) _oU;
/(Uj AW — Wi AU )_/(a_nﬂUj — W

K; 0K

In the last equality we used the assumption that the near field terms satisfy the average
trace continuity conditions of type (2.2.29) on the boundaries ¥; , ¥;0. The relation
([2-2.32) yields the following conditions on the jumps of the function u(®:

(k) (k) L\ _ A (k=1) .
wa ()= (=5) =077, JEL (2.2.33)
where
k ¢ (k—0) ¢ gy, =0
Al 250 1 du, () T
e 0 dy 200! ds?
=1 y——L
2 s=1
30 (W), - [ e ke @y
se{+,—,0} o K;
(-1
Aj7

In a similar way, computing / (U J(k)AVVjJr - WSAU J(k)) and assuming that the average
Kj

trace continuity for the near field terms on the boundaries ¥;, ¥, | are satisfied, we get

another set of jump conditions for function u®):

k k k—1 .
u (-5) —u (=AY, ez (2.2.35)
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where
1 gl k l)
k 1) i ( ) du S 1 d'u! k D
QZZ' dsl o dyl
=1 s=0 y:_é
+ > <gj5 W+|25> —/ oVIWE k=1, (2.2.36)
se{+,—,0} K;
(-1) _
NV

Finally, combining (2.1.6)), (2.2.30)), (2.2.33]), (2.2.35)) we get up with the following set of
problems for the far field terms u®), k € N:

( k 0 k—1 .
(uﬁ,j%) (s) + A §+é(s) —A<k>u§+>%<s) - f;% '(s), sel0,1], jez,
" — .
(W) () + AOuP () = AP () — fF ), ye [-L0], jer,
k .
(u)' (0 =0, JeZ, (P
k k k 1 k k .
B - B =AP, P (h 088 ez
(k) \/ (k) \/ (k)\/ L\ _ —=(k-1) .
L uj+%) (O) - (uj—%) (1> + w;(uj ) (_5) - = ’ j €z
where
(=1 1 (0),,(0) (=1) _ _y(0),,(0) .
fj+§ =-A Ujr1s i == J € Z,
k-1 k—1
(k—1) _ (k—m), (m) (k=1) (k—m), (m) .
[ = DA wno f = D ONEmm ez, k=2 (2.2.38)
m=1 m=1

2.2.3 Order 0

Before studying the well-posedness of the near-field and the far field problems at any order
formulated in the previous sections, let us look at the order 0.

Far field problem. Putting £ =0 in {} we get

[ (@) "(5) + A\ (s) =0,  se]0,1], jEeZ,
0 0 L .
(@) () + XOuP(y) =0,  ye[-%0], j€Z,
(u{”)'(0) =0, jez, (2.2.39)
0 .
u?y (1) =" (—§) = u), (0), jez,
)y (0) (0) _ :
\ uj+%) (0)—(uj_%) (1) +wf (u u; ) (-L) =0, j € Z.

This is exactly the eigenvalue problem for the operator A% (cf. (1.3.6)) which has been
studied in Section [1.3.20 From now on A will stand for an eigenvalue of the operator
A# and u® for the corresponding eigenfunction (all the eigenvalues of the operator A
are simple). To fix the eigenfunction in a unique way, we impose the condition uy = 1.
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The expressions for the eigenfunction u(”) have been found in (T.3.41)), (1.3.42)), (1.3.53)),
(T.3.45):

§o sin( )\(0)(1—3)) sin( )\(0)3) ,
- w g — e€[0,1], VjeZ, 2.2.40
() o T sea) ez, (2240
(0) COS( A(O)y) L L .
w0 (y) = u; : e[-L L], vjez 9.2.41
! v) 7 cos (\/WL/Z) Y [ 2 2] J ( )
where
u; = bl i€z, r=r(VAO). (2.2.42)

We remind that in this chapter the spectral parameter is denoted by A, whereas in Chap-
ter |1 it was denoted by A\2. This is the reason of V' A(© appearing in the expressions for
the eigenfunction.

Near field problems. Consider now the near field problems 737@ for K = 0. The
relations (2.2.11f), (2.2.13)) take the form

0 0 " .
Pj(,p),(s(s) = C§,IZ,5,07 0 € {+7 ) 0}7 p €N ) J S Z;

0 0 0 0 0 0 ,
PJ(O)+(X) 2422 (0) P]'(,O)f(X) = U§ )%(1) Pj(,O),O(Y) = U; ) (—%) ) JEZL.
Taking into account that uii) (0) = u.[il(l) )(—é) = u;, we can rewrite the

2 2

problems P§k) for k=0 as

(AUV(X,Y)=0, (X,Y)eJ,
(0)
on ’
Oy (0) n (2:243)
Uj (X7 Y) = uj + Z C' i06$p7rxfp<y)v (X7 Y) € Bj )
0 0 —prY/w
U]( )(Xay):ug) \/_ chp()oepY/]f (lu_%>7 (X,Y)EB;)
\ pEN* J
Consequently, the constants
0 0 .
vOxy)=d", (X,)Y)eJg, Viez, (2.2.44)
are obviously solutions of ([2.2.43|) with
o=0,  d€{+ -0}, peN, jeL (2.2.45)

2.2.4 Well-posedness of the near field problems

In this section we suppose that the far fields up to the order k are constructed i.e., there
exist functions {u(m 0<m< k} satisfying the problems { , 0<m < k} The
near field terms are supposed constructed up to the order k —1, i.e., there exist functions

{U™, j €2, 0<m <k -1} that solve the problems {(PW), JEZO<m <k -1},

J J
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We also suppose that at order k the near field terms are constructed on a bounded domain,
i.e., there exist functions {Vj(k)} . solving the problems {(ﬁ;k))} . We will show that
under these assumptions the neéjﬁ filed terms at order k can be cjoentinued to the whole
infinite junctions, i.e., there exist functions {U ](k)}jez solving the problems {(P](k))}jez.

We start by some auxiliary assertions. The following lemma that establishes the equiva-
lence between the average trace continuity conditions imposed on different boundaries of
the domain K; mentioned in Remark [2.2.3]

Lemma 2.2.3. Suppose that there exist functions {u(m) 0<
lems {(P(m)), 0<m< k:} as well as functions {U( ), jeZ, 0

k} satisfying the prob-
<k-— 1} satisfying
the problems {(P;m)), JEZ, 0<m<k— 1} for some k € N. Suppose also that the

function V' satisfies the problem (2.2.22)) for some 5 € Z. Then, the following three rela-
tions are equivalent:

@ [v=ri.(9): @ [v=rt (-9): @ [G=rho

>t > Z?

//\ //\

Proof. Let us show that the relations (i7) implies (¢iz). All the other implications can be
shown in a similar way. If W, is the function introduced in Section [2.2.1.2} then

/(VAW].‘—W]-_AV):/(aIg/]V W ) / /__ s Wi k)

Kj J 56{"!‘

which implies
(k 1) 1— (k=2) 17—
/ /v— ¥ (o Wilse) [ o,
de{+,— ’ Y

uF
U1 (k—2) 11 —
Z 24@ dsez - 2 <936 Wi |E“> /K(I)j Wi

— J J
l= s=1 §€{+7 70} 7

In the last equality we used the assumption (i7) and the definition ([2.2.13)) of the polyno-
mial Pj(’]é?f. Taking into account the definition (2.2.34)) of Af:l), we get

1d£k€)
[a-xai

Finally, using the fact that u*) satisfies the jump condition ([2.2.33)), we obtain

— Ag-k__l) + u(k_)
; j

(1).

=

L
2

/ zg, =

The same computation can be used to show that (i7i) implies (i7). The equivalence
between (i) and (éii) can be proved using an analogous argument with W™ replaced by

Wi, O

J

k
- P)j(,O?O (1).

—_L
2
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The following assertion concerns the behaviour of the coefficients cg.?&’ , aS p — 00 assuming

the existence of solutions of the near field problems (P](k)).

Lemma 2.2.4. Suppose that for some j € Z there exist functions U;m) HE (TS,
0 < m < n, which are solutions of the problems ( ) for 0 <m < n. Then,

2 2 _2pm
Z p <C§‘Z,):I:,Z) e P < o0, Z P (Cg'iz,)o,z) e i <oo, 0</I< [%] , 0<m<n.

pEN* pEN*

(2.2.46)

Proof. We will give the proof for § = +, the proof for § € {—,0} being analogous. The
proof is done by induction in m. Indeed, for m = 0 the result holds due to .
Suppose that 1 < g < n and the relations are satisfied for 0 < m < ¢ — 1. Let
us show that they are satisfied for m = ¢ as well. First, the recurrence relation for the

coefficients ¢ (2.2.12) implies that (2.2.46]) is satisfied for m =¢q, 1 < £ < [%] Then, due
to (2.2.9) for m = ¢ and the fact that U}q) € H} . (J;) we have

S P () g e )
peN*

Taking into account (2.2.11)) and (2.2.46)) for m =¢q, 1 < £ < [%] we conclude that

pﬂw“

S e e Y (S)),
peEN*
which means that (2.2.46) is also satisfied for m = ¢, ¢ = 0. m

We will now pass to the construction of a continuation of the near field terms from a
bounded domain to the infinite junction.

Proposition 2.2.1. Suppose that there exist functions {u ™0 < k:} satisfying the

m <
problems {(P(m)), 0<m«< k} as well as functions {U]( ,JEZ, 0<m<k— 1} sat-

1sfying the problems {(P](m)), JEZ, 0<m<k— 1} for some k € N*. Suppose also that

the function Vj(k) € Hl(Kj) solves the problem ﬁ(k) for some j € Z. Then, there exists
a function U;k) H} . (J;) solving the problem 'P](k) and such that U;k) = Vj(k).

J

Proof. The proof consists of several steps. First, we define functions in the bands Bj‘-s
that will be shown to be the extensions of V;. These function are constructed in such
a way that the have the form (2.2.8), (2.2.9), (2.2.10). In these relations everything is
defined by the previous orders except from the coefficients c§2 5.0

found from the traces of V; on the boundaries Zg. Then, we show that the constructed
functions in the bands Bf belong to H, }OC(B;-S), that their traces on 2‘5 coincide with those
of V;, that they solve the Laplacian equation (first line of ) in BY and finally
that thelr normal derivatives on 25 are the opposite of those of V and the homogeneous
boundary conditions are satisfied on the other boundaries. This permits to conclude that

the constructed extension solves 73]@ .

. These coefficients are




2.2. NEAR FIELD AND FAR FIELD PROBLEMS 93

Construction of an extension: Let us denote by gpg? the traces of the function Vj(k)
on the boundaries Eg:

k) _ 1)

k
Pis = Vj ; 90§-,5) e HY2 (), § € {+,—,0}. (2.2.47)

)
Zj

These traces can be decomposed in Fourier series:

gﬁ): 290] +Jp 290“;0 (—7 - %) ’ (2.2.48)

peN

and due to (2.2.47]) we have

Sp(el) <o et (2.2.49)

peEN

Note that the average trace condition (2.2.29)) for Vj(k) together with Lemma [2.2.3 which
gives analogous conditions on the other boundaries, imply that

k k w k k )
90§~,o),i = P]'(,O?:I: (i%> ’ 9050)0 = P]'(,O?O (1) JEL. (2.2.50)

We construct the functions U ;’? in the bands B? for § € {+, —,0} as follows:

(k

UR(X,Y)=PRL(x)+ > M (x)Y), (X,Y)eBE (2.2.51)
peN*

rr(k

U (X,Y) = Pl (V) + Y &b (X (X,Y) € B, (2.2.52)
peN*

(ST

) Z
6D .(XY) = [ e +chpﬂ((iX) (7)) XYY, peN,

(2.2.53)
(k) () o3 H (k) ¢ “Pr L (x 1 \
£]p0<X Y) = %poe S” Z Cj,p,O,Z (Y - 1) € J fp (W - 5) ) p € N ?
J =1 J
(2.2.54)

where the polynomials P(’f) s are defined in (2.2.13)) and the coefficients c( ) 5 g are deﬁned

in m We note that all the objects appearing in the definition of P 5 and c ] p 5 ”
i.e., the far field terms up to the order £ and the coefficients ¢ for the prev1ous orders
are already constructed by assumption. We Wlll perform the rest of the analysis for the

function U* f +, the analysis for the functions Uk f 0 , Utk 0 belng analogous.
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The function (7](]2 belongs to H}, (B;): We have:

2

&)
w2l ()

%0 (]
2
< C(k?) 2 (Spgp)-t,- epmu / 2p7erX+ § P ( ]p+é /X% —2p7erX

/=1

wh wh
] Y
2 2

Using the fact that

/X% —2p7erX < C(E) -1 —p7rwj7
we get
k
2

® \? 4 ® ) "
J /=1

(k)
fJ',p,+

N

As follows from Lemmau 4] the inequalities ([2.2.46)) hold for 0 < m < k—1. Taking into
account the definition ([2.2.12)) of the Coef‘ﬁments c(];) 0 as well as the relatlon (2.2.49), we
conclude that

H1(3+) < 00, (2.2.55)

pEN*

and consequently, U(JZ eH,. (Bf), jet

Trace continuity: We can now find the trace of the function (7](12 on the surface Zj.
It follows from the definition of the function U 3(12 ((2.2.51)—(2.2.53))) that

_ ok ([ )
o = LPios <TJ) + D oty
J

peEN*

(*)
UJH—

Comparing it with the trace of the function Vj(k) ((2.2.47), (2.2.48), (2.2.50)), we see that

7
o

. jEL. (2.2.56)

The Laplacian equation for U Using the relation ([2.2.12)) between the coefficients
c of the polynomials P, we find from 2.2.53

k-2
Al == AMPEET(X)e X f(Y),  (X,Y)eBf, peN'. (2257)
m=0
Since N
Zgj ( ) Pj(,](g)?ju N — oo,

L2(B])
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(as follows from ([2.2.51)), (2.2.55)), and

§:A§p+ }:AW/@ﬂka-—gﬁf7m), N = oo,

(as follows from ([2.2.57) and the relatioils (2.2.9) satisfied by the functions U;kﬂ*m),
0 <m < k —2), we can conclude that AUJ{? € Ly (BJT) and

(k) k2m) (k—2—m) k:2m
AUJH-_(]O-I—) ZA ( ~ P ) ZA

The last equality follows from the definition 2.2.13 of the polynomials PJ(O) + as well as
the fact that the far field terms verify the equations (2.1.6)) (as was mentioned above, this

implies that the polynomials P(O) . satisfy the recurrence relatlon ) for p = 0).

Continuity of the normal derivative: We have 0,U ](]2 € H1/? (83;) and

0,U" =0 on 0B \TF,

n
~w N
OhU; ¢ - —_< 30+> Zp”%zﬂrfp ZZ Clpt.b <TJ> e f
j pEN* peEN* (=1
_ (k) (k—1)
—Tg0j7+ 9j+ -

The last equality follows from the definitions of the function g( ) and the operator T (cf.
(2.2.24), (2.2.14))) as well as the definition of the polynomlals (cf. (2.2.13), (2.2.11))).

Finally, taking into account the fact that V] satisfies the problem ([2.2.22]), we get

77(F)

=—9,v¥
+ A

J J

Conclusion: The function U j(k) constructed as

(k)
V2 X, Y)e K,
UfVXZY)Zz{fQM X 1) g (2.2.58)
Uj,(S’ (X,Y)ij’ 5€{+7_7O}7
satisfies the problem 777@ . n

Remark 2.2.4. As follows from (12.2.51))—(2.2.54)), the coefficients c](okj) 5,0 are given by the
following relation:

k pruy u k k) wl (k)
Cg‘,p),i 0= %pie o Z iji ¢ <TJ> ) C§gp),o,o = SD}IZ:OG LT 2G50
=1
jEZ, p € N*. (2.2.59)

To find them, we need to know the coefficients ¢ at the orders up to k£ —1 and the function
V" (cf. @:247)-(2:245)).
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Remark 2.2.5. In view of Remark [2.2.1] the uniqueness of the solution of the near field
problem (P](k)) in K; implies the uniqueness of the solution of the problem (2.2.2)) of at

most polynomial growth satisfying the matching conditions (2.2.13)).

2.2.5 Well-posedness of the far field problem

In this section we prove the following well-posedness result for the problem 1} with
k> 1:

(@) (5) + X0, (5) = 2000, (5) = f450(s), se01], jez,
()" (1) + AP (y) = 2O (y) — 1), ye [-5,0], jez,
(™) (0) = 0, jEZ,
wh (- (-5) =AW (5) - =a ez

| (20 = (@) )+l () (-5) ==, jEL.

Proposition 2.2.2. For k € N*, f=1) ¢ [5(Ge), {A§k£1)} : {E(-k_l)} € ly(Z),
’ JEZ JEZL
the problem 1) is has a solution in Ly(Ge) if and only if

(k) — |[,, 02 =(k=1). (0) _ ( p(k=1) , (0)

AT = Hu HLg(GC) ( Zuj U, (f U )L‘;(Gc)> ; (2.2.60)
VIS

where

~ 0)

k-l _ =(=1) A (k1) (k—1) V/ (k—1) (k1) .

A Vo (Amf — A4 +cos VAO (Aj,+ — A )) ,  JEL

(2.2.61)
The solution is unique in Lo(Ge)/span {u(o) ‘Gc}'

Remark 2.2.6. As we see, the far field terms are not defined in a unique way. We will
explain in the proof of Lemma [2.3.T how we fix them. This choice is completely arbitrary
and could be done in a different way. We could show by an explicit computation that
the choice of the far field terms does not influence the values A*) defined by the relation
(2.2.60)). However, this will be justified a posteriori by proving Theorem m

To prove Proposition [2.2.2] we start with the following assertion for the problem with
zero jump conditions at the vertices.

Proposition 2.2.3. Let A\ be an eigenvalue of the operator A* and u'®) the correspond-
ing eigenfunction. For f € Ly(Ge), {E;};cy € (2(Z) the problem

(W () FAOuy () = fiyy(s), sell,  je
ui(y) + AO;() = fiy), v € [-%.0], jEz,
u;(0) =0, j €Z, (2.2.62)
uyy (1) = 05 (~5) = 1,5, 0) jez,
| @2 (0) =), (1) + wh (—%) = &5, jez,
has a solution in Ly(Ge) if and only if the following compatibility condition is verified:
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(F.1) 0y + S Fu =

jez
The solution is unique in Ly(Ge)/span {u(o) | Gc}'

Proof. The uniqueness of the solution in Ly (Ge)/span {u(0)| Gc} is obvious. The proof

of the existence will be analogous to the proof of Theorem 4.10 from [5I]. Passing to
the variational formulation of the problem and considering it as a problem in the
symmetric subspace L} ,(G) on the whole graph G, we will search a function u € H}(G)
such that

— () ey AW 0) @) = (Fi0) ey 2D 55V Yo € HY(G),  (2.2.63)

JEZ

where v; = v (j, —%) Due to the estimate
‘ (o, ’U) ot A (u,v)Lg(G)’ < max {1, )\(0)} ull gy vl e ey Yu,v € HN(Q),
we can then define a bounded linear self-adjoint operator A : H}(G) — H(G) such that
(Au,v) ey = — (U, U/)Lg(c) + A0 (4, U)Lg(G) , Yu,v € HN(G). (2.2.64)
In the same manner, we have the estimate

1/2
< Hf|’L“(G)+C<Z ?) ol e H(G),

JEZL

‘(fv U)Lg(c) +2 Z =5V

JEZ.

with some constant C' depending only on the geometry of the graph. Hence, there exists
a unique function F' € H}(G) such that

(F0)ue) = (F0) e +2) Zivs, Yo e HY(G). (2.2.65)

JEZ

Thus, combining (2.2.63)), (2.2.64) and ([2.2.65) we end up with the equation

Au=F, (2.2.66)

which is equivalent to the problem . Indeed, considering in functions
v that vanish at the vertices of the graph, we get the first two lines of and
considering functions v that do not vanish at only one vertex of the graph we recover the
last line (Kirchhoff’s conditions). Taking F' = 0 we get then

KerA = span {u(o)} : (2.2.67)

We will now use Lemma[2.2.5 proved below which states that ImA is closed. The operator

A being self-adjoint, Lemma together with (2.2.67)) imply that the problem ([2.2.66)
is solvable if and only if (F, u(o))Hl(G) = 0 (cf. Theorem 5, Chapter 3 in [7]). Together

with (2.2.65)) this finishes the proof (the coefficient 2 disappears when we pass to the
graph Ge). O
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Lemma 2.2.5. The image of the operator A defined in (2.2.64)) is closed:
ImA = ImA.

Proof. Suppose that ImA # ImA. Then, there exists a singular sequence {uy,}, .y C
H}(G) such that

(@) [Junllme) =1,
(b) u, — 0 in HYG),
(c) [[Aun| 1@ — 0.
Let us show that there exists ng € N and § > 0 such that
unll Lo = 6, Vn = ny. (2.2.68)
Indeed,
sy + A2 6y = (At u) ey < Al =0, n— oo.

If there was a subsequence of {un, }, .y Of {un},cy such that HunkHLg(G) — 0, k = oo,

;11« HLE‘(G)

property (a) of the sequence {u,}. Next,

it would mean that Hu — 0, and hence, [Jup, |41 — 0 which contradicts the

(un, (A" — AOT) U)Lg‘(c) = —(Aup, v) (@) Vv € D(A%).

Since A(?) is a simple (isolated) eigenvalue of the self-adjoint operator A” in Ly (G), we

J_ L —
have Im (A# — XOT) = {4} 7%+ and the operator B = (A¥ — AXOJ) ' \{ (0>}LLH “

is a continuous operator from Lj (G) to H;(G). Hence,

Low
(“mw)Lg(G) = —(Auy, Bw)m (g, Yw € {u(o)} 12,509 (2.2.69)
Let us introduce the notation
(1, u®)
Up, U
ur = U, — A G © n € N. (2.2.70)

2
||U(O)HL§(G)

1
Obviously, uy € {u®} 25 Then, applying (2.2.69) to ul we obtain:

2
H“iHLg(G) = (um“i)Lg(G) < Aunllaze1Blig (o) nie) H“iHLg(G)’ n€N.
Taking into account the property (c) of the sequence {u,} we conclude that Huﬂ}iu @

2

0 as n — oo. The property (b) implies that u, — 0 in Ly (G). Consequently,
(tn, u(o))Lg(G) — 0. Thus, it follows from the relation (2.2.70]) that H“nHi;‘(G) — 0 which

contradicts ([2.2.68]). O
We can now deduce Proposition from Proposition [2.2.3
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Proof of Proposition[2.2.3. Let us introduce the following function v*) for k € N:

sin (VAO (1 — s)) NG sin (VA©)s)
sin V' \(0) L Gin VO

k .
W) =0, yel[-Li, jez

ol (5) = —allY st Jen

Then, the function a® = u® —v®) k € N, satisfies the following problem:

( (~(k) \V ~(k 0 k—1 .
(@) () + 2T (5) = APl (5) = £ (), sel0l],  jel,
(@) ) + X7 () = APuP @) - W), ye 5.0, jez,
(") (0) = 0, jez,
~(k) _ ~(k) _ (k) .
~(k) ! ~(k) N/ ~(k)\' (L) _ =(k-1) :
| (@) (0) = (@2,) (1) + wi (57) (—5) =57 JEZ,
(2.2.71)
Applying Proposition to the problem ([2.2.71)) we finish the proof. O

We finish this section with the following lemma that establishes a symmetry property of
a solution of 1) provided the right-hand terms are symmetric.

Lemma 2.2.6. Suppose that for some k € N*, f*=1 ¢ LI(Ge), {A;{:l)} € (Z),

JEL

{Egk_l)} € l5(Z) and the condition ([2.2.60) is satisfied. Suppose also that
€z

k— k— k— k— .
0= =170, sela, 5w =1""w, yel-50,  jei

3
and

(k—1) (k—1) (k—1) (k—1) —(k=1) _ —=(k-1) .
Ajr =450, AT =-ALY, 5T U=EL T, VjEL

If u™® s a solution of 1D then

k k k k .
W 1 —s) =u(s), sel0,1], WP =uPy), yel-Lo, jeZ
J+3

Proof. Let us introduce the function ™ which is obtained from u® by the reflection
with respect to the axis x = 0:

@, (s) = u

e (1=s), sel01), @) =ulj(s), ye[-50], jez

1
2

Then, the function w® which is defined as the difference w® = u® — 2*) solves the

homogeneous problem (2.2.39). Consequently, w® = cu(® for some ¢ € R. On the other
hand, w(()k) = 0, which implies that w® = 0. This finishes the proof.
0
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2.3 Existence of the terms of the asymptotic expansions

In this section we will prove the existence of all the terms of the formal asymptotic expan-
sions considered in Section and, consequently, justify these expansions. We proceed
by induction assuming that both the far field and the near field terms are constructed up
to some order n and showing that they can be constructed at order n + 1. We remind
that the terms of order 0 have been constructed in Section 2.2.3

We start with an auxiliary result which will permit us to conclude that if both the far
field and the near field terms are exponentially decaying up to the order n, then the far
field terms at order n + 1 are also exponentially decaying.

Lemma 2.3.1. Let k € N*. Suppose that f*1 ¢ LY(Ge) and {A (e 1)} € U,(Z),
€z

{Egkil)} € (5(Z), and that the compatibility condition (2.2.60) is satisfied. Sup-
jez

(k—1) b(k—1)7cék—1)7d§k:—1)

pose also that there exists a family of polynomials {az , by } of degree

k—1—¢, 0<{<k—1, and three polynomials qa, , qa_, qx, of degree k — 1, such that

k—1
Fj+%(s):rj se( (=1 cos(\/_s)—f—b(k 2 8111(\/_3)) s€[0,1], je€N,
=0
(2.3.1)
k—1
Fiy)=1"> o (CEk_l)(j)COS( oy) +di (g Sln(\/—y)>, ye[-50], jeN,
=0
2.3.2

ATV =rign (), AV =1iga (), BV =rige(),  jEN, (233

0 k—1 0 k—1 .

Let u®) be a solution of ( m Then, there exist polynomials {aék) b(k) A{k) &(k } of
degree k — ¢, 0 <V <k, such that

:rjiﬁ(& cos(\/—s)—l—b sm(\/_s)> s € [0,1], JeN,

=0
(2.3.4)
=3y (@70) cos (Vo) + A7) sin (Vaay) ), ye [-5.0], jeN.
=0 (2.3.5)

Proof. First of all, we notice that the first two lines of 1) together with the assump-
tions - for the right-hand sides imply the forms - of the solu-

k
tions ué‘?“ u§k) with some coefficients {aék) (7), bék) (7) “(k)( ), &(k (j )} (not necessarily
3 =0

polynomial with respect to j). We will start by establishing a recurrence relations for the
coefficients with ¢ > 0 which will permit us to show that they are polynomials. Then,
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using the transmission conditions we will get a system of e uatlons for the coefficients
with ¢ = 0 which will yield a finite difference equation for a, ao . The study of this finite
difference equation will show that the coefficients with ¢ = 0 are also polynomials.

Recurrence relations for the coefficients with ¢ > 1: In order to determine the
dependence of these coefficients on j we plug the relations (2.3.4), (2.3.1) into the first

line of . We get then:

20+ 1)V (7) + (C+ 1+ 2)a550) = af (), 0<e<h-1,
=20+ DV 0) + (C+ D+ B0 =06, 0<e<k-T,
(k) XN
where, by convention, a,",(j) = b,},(j) = 0. Hence,
N (k1) . pED
bék)( ) = ap_y (j) ~(/<;)( = — 1 () (2.3.6)

ok k 2%/ Ao |

and the following recurrence relations define all the other coefficients except ?iék) (7), gék) (7)
which remain undetermined:

J ) = G @) O VERG) sy _BE6) = U+ DBRG)
f 202 o 202 |
1<l<k—1. (2.3.7)

One can prove by induction with respect to ¢ that the coefficients Egk) (1), ggk)(]) are

polynomials (with respect to j) of degree k—¢ for 1 < ¢ < k. Indeed, taking into account
k—1

the assumptions for the coefficients {aék_l)( 7), bék_l)(j)} we see from ([2.3.6)) that for
=0

¢ = k the coefficients Zi,(f) (7), g,gk) (7) are constants in j. If we suppose that Ziék) (7), gék) (7)
are polynomials (with respect to j) of degree k — ¢ for all £ such that m < ¢ < k for some
1 < m < k then the relations imply that Zigi)_l(j), ’l;gi)_l(]) are polynomials in j
of degree k —m + 1. Thus, it remains only to determine the behaviour of the coefficients
Eék)(j), b(()k)( /) with respect to j for j > 0.

Repeating the same argument applied to the coefficients {A{k)( ), CAZUC)( )}k , 1. e., in-

jecting (2.3.5 into the second line of m we get the analogues of the relations

- - Wlth a(k b (7), b@k 1)(j), ~(k)(]), bﬁk)(') replaced by ¢, _1)(j), dgk 1)(j),

Aék) (7), c%k) (7) respectively. However, this time there is an additional relation coming

from the third line of (P.”)) (Neumann boundary condition):

Hence, in the same manner as before we see that the coefficients E{
<
AN

), & (7) are poly-
nomials with respect to j (for j > 1) of degree k — ¢ for 1 < ¢ an

(J
k d the coefficient
cAlgk) (7) is a polynomial of degree k — 1.
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~(k)

The coefﬁc1ents ag (7)), (k) (), o (7): Let us now establish the dependence of the
)

s
coefficients ao ( i), b (()k (7), Ef)k (j) on j using the transmission conditions (last two lines of
1) We get for j > 1:

i1 cos \/)\050 (j— 1)+ sin )\Db(()k)(j —1) — 17 cos <@)Eﬁk)(]) = tgk)(j), (2.3.9)

 cos (@)E(k)(j> _ ijdék)(j) _ té’“)(j), (2.3.10)
ij(k —I—T] Lgin +/\ aO ]—1 ‘//\Ob (j—l)—f—rﬂsm <\/§L)Ef)k)<J)

=t"(), (2.3.11)

where

k
() = AFY — 1513 (cos \/Agal(j — 1) + sin Aobg“(j—n)

(=1
o g (=5 (cos (32)2°0) - sin (3) 47 ) + \;;_Osm (28)2 ),
ﬂWﬁ—Aﬁ”‘”i}—@(mquﬁ#owﬁmC§ﬁ%Wﬁ)

8 () = rj—lzk: ((6%)\_0 ~sin /A ) a5 — 1)+(€Slr\l/ﬁ_ + cos \/_) (j — 1)

-3 (- (s () - oo (452 )
R (o () + g () 0
:(k)

-1

rio k), . k), .
e = o (@00 — s (F1)AG) )
The expressions above imply that the right-hand terms of the equations (12.3.9)—(2.3.11])
have the form

tHG) =rp® (),  1<i<3, (2.3.12)

3
where {pikl)} are polynomials in j of degree & — 1. The system (2.3.9 - reduces

to the followmg one:

&) = @ ( &0 +p§’?(])) ji>1, (2.3.13)

(k)

by (j) = Sm\/—<mo (G+1)—ay COS\/_+7“( 1)+p§k2)(j+1))), j =0,
(2.3.14)
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r2ay) (j +2) + 2rg (Vo) a0’ (G + 1) +ay” () = p®P(),  j=0, (2.3.15)

where the function g is defined in (|1.3.45]) and

®)(5) = rsin v/ Agpy ( + 1) — 12 (p§ VG +2) +pl (G + 2))
— rsin /g tan <FL> pﬁ’;)(j + 1) + rcos v/ Ao (pgﬁ)(j +1) —|—p§f€2)(j + 1)) )

The function pék) (7) being a polynomial in j of degree k — 1, we introduce a notation for

its coeflicients:

k—1
D) = pmi™ (2.3.16)
m=0

Study of the finite difference equation (2.3.15)): First, recalling that » and r—! are

solutions of the equation ([1.3.47)), we find the general (real) solution of the corresponding
homogeneous equation:

aPGy=Cc+Dr¥  C DeR, j>0.

However, the condition u*) € L(G¢) implies that D = 0. Next, the right-hand side of
the equation ([2.3.15)) being a polynomial of degree k& — 1, we search a particular solution

as a polynomial of degree k:
ay Z "

Together with (2.3.16)) it gives the following system for the coefficients {Vm}]:nzo

k
Z Cmr?a; + 2g <\/ )\(0)) Oy, + Z(—l)i_mC’fnr2ai = Pm, 0<m<k,

where p, = 0. Since r is a solution of (|1.3.47]), the equation for m = k is satisfied
automatically and the other equations take the form

k
Yoo (@ =1) =1 ai=pn,  0<m<hk-1, (2.3.17)

i=m+1

which is a system with an upper-diagonal matrix with non-zero elements (|r| < 1) for the

coeflicients {am}fnzl. The coeflicient oy cannot be determined, which corresponds to the
general solution Zi(()k) (j) = C, j = 0. We can fix it by choosing, for example, oy = 0.
Hence, the coefficient Zi(()k) (j) is a polynomial in j of degree k for j > 0 as well as the
coefficients gék)(j) for j > 0 and E{Ok) (7) for j > 1 (cf. (2.3.13)), (2.3.14))). This finishes the

proof. ]

We are now able to prove the existence of the terms of the asymptotic expansions ([2.1.2))—
(2.1.5]).

Proposition 2.3.1. There exist functions {u(k), U(k)}keN and real numbers {)\(k)
having the following properties:

}keN
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1. For any k € N, u® is a solution of the far field problem |D Moreover,

k 00 k 00 .
u§+)% € C>([0,1]), u§.>ec ([-%.,0]), jEZ, keN, (2.3.18)
and
W (1= =ul(s), sel0l,  uB) =u W), yel-50,
Jj €L, ke N. (2.3.19)
2. ForkeN, jeZ, U HE (T;) is a solution of the problem 777@ . Moreover,
k) k .
Uﬁj (-X,Y)=U"(X)Y), jez, kel (2.3.20)
3. The number \*) satisfies (2.2.60)).
4. For any k € N the relations (2.3.4), - for the far field terms u'® are satisfied.
Moreover, there exist functions Uy~ € H} (J.) such that the near field terms satisfy

the following relation:

Ur =9 Z;qu“f jeN”. (2.3.21)

The last property means that the far field terms u ) and the near field terms U
exponentially decaying as |j| tends to infinity.

Proof. First, it is clear that the the functions u(®), U©® and the number A(¥) found in Sec-
tion satisfy the propnerties 1-4. Suppose that for some n > 1 functions {u(k), U®*) }Zzo
and real numbers {A(k)} 4—o Daving the required properties are constructed. Let us show

n+1

the existence of functions (™1, UM+ and a real number A1) satisfying the properties

1-4 as well.

Construction of the right-hand terms of the problems P and P](nﬂ)

e The function f™ is given by the relations (2.2.37)), (2.2.38)) with k replaced by n + 1.
Since the functions {u(k)}n satisfy the property 1, one has f(™ € Ly(G¢) and

k=1
fec=(.a),  fMec=([-4.0]), jez (2.3.22)
fO =) =f00s), sel0l, =", yel-50, ez
(2.3.23)

Moreover, the functions {u (k) }Z , satisfying the property 4, the function f is also of

the form ([2.3.4 - In other words, there exist polynomials {aﬂ), b; 7 cf I8 d(n }
of degree n— f, 0 < ¢ < n, such that

n

f](i) (5) =17 Zse <a§ffe)(j) oS (\//\_Os) + bﬁ)(j) sin (\/)\_03)> , s€|0,1], jEeN,

=0
(2.3.24)

1726) =7 3o (20 cos (Vay) +d2G)sin (Vag) ),y € [-5.0], jen.
=0

(2.3.25)
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e The coefficients { (7;312, JEZ pe N, de{+,—,0}, 1<l ["—H}} are computed

via the recurrence relation m Since the functions {U } _, verify the property 2,
Lemma [2.2.4) applies which gives the convergence result 1' for the coefficients ¢
up to the order n, but also for the coefficients of order n + 1 for ¢ > 1:

2 2 2%
Sop () el <oo Yop(endl) e T <o 1< 3] (2320
pEN* peEN*

Moreover, the following property can be easily shown by induction in k:

k k k k . i

and there exist real numbers ég’z’&g, 0<k<n 0<qg<k peN§e{+,—,0}
0< /< [g}, such that

H,M—WZJ qu, 0<k<n, jeN, peN, de{+,-,0}, 0/

/A

5]

In the base case k = 0 these properties obviously hold since all the coefficients are equal
to zero (cf. (2.2.45))). The proof of the inductive step relies on the recurrence relation
for ¢ > 1 and the relation for ¢ = 0, taking into account the properties
2 and 4 of the functions {U(k)}zzo.

Again, due to the recurrence relation (2.2.12)), the same is true for the coefficients of
order n + 1 for ¢ > 1:

(n+1) _ (n+1) (n+1) (n+1) . .
it = Gprer Cgpoe= (VG0  JEZ pEN, 1< [P,

(2.3.27)

and there exist real numbers égl;;}, 0<q¢< n+1 pe N, §e {+,—,0}

1< €< [®2], such that

nl n . * 3k n
J;M?_NZ] A, JEN, peNt, de{+ -0}, 1<e< 2],

(2.3.28)

e The functions g(.n) , 0 € {+,—,0}, are defined by the relations ([2.2.24)—(2.2.26]).
7,0
) jen

/
The polynomials Pj(z;l) appearing in this relations are completely defined at this point
as follows since

Pj’;6 chwesf-l, §e{+ —,0}, keN, peN, jeZ

The relations (2.3.26)) permit to conclude that

g e H2(sF), s {+ -0k (2.3.29)
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Moreover, the relations ([2.3.27)) together with the property 1 satisfied by the functions
{“(k)}k:o imply that
g = g% a0 (X)) =g"(-X), jez, (2.3.30)

—3F =30

where we identify the spaces H~'/? (1) and H~/?(X;). The relations (2.3.28) to-

J
gether with the property 4 satisfied by the functions {u(k)}zzo imply that there exist

functions ¢ € H~1/2 (£2), 0< g < n, 6§ €{+,—,0}, such that

q,0
g =1y "5l jeN, e {+,—,0} (23.31)
q=0
e The functions
n—1 n .
oV oW enl (1), jet, (2.3.32)

are defined by the relation (2.2.23). From the properties 2 and 4 (symmetry and
exponential decay) satisfied by the functions {U (k)}zzo it follows that

(k) PG ;
PV(—-X,Y) =07 (X,Y), jEZ, 0<k<n, (2.3.33)

and there exist functions <i>£,’“) € H.,

(J+), 0 < k<n, 0<q<k,such that

k
oM =y 1o YieN,  0<k<n (2.3.34)

e The sequence {Egn)} is defined in (2.2.61)) with k£ replaced by n + 1, and the se-
JEZ

J

quences {A;ni} : {E(n)} are defined in (2.2.30)), (2.2.34)), (2.2.31). The symmetry
) jez JEZ

properties of the functions {u(k)}Z:0 (property 1), ](.j? (2.3.30)), @;"), CI>§-n_1) (12.3.33)
and I/VjjE (2.2.20)) imply that

W __A®

( =(n)
j7+ _j:_’ -

A

(1]

AP — _AM —
i

™., - ez (2.3.35)

_j7

Similarly, the decay properties of the functions {u(k)};::o (property 4), J(ﬁ;) (2.3.31)),

@5@)7 @;"_1) (2.3.34)) and the relations ([2.2.21]) for VleL imply that there exist polynomials

q(zn), qxz of degree n such that

= =g G), AT =rql),  jeN. (2.3.36)

Construction of the number \**!) and the far field terms v
Due to the decay properties of f(™, {E§")} , {Agﬁ} (cf. (2.3.24)), (2.3.25), (2.3.23)),
JEL ) jEL
©336), (2.3.35)), we have f® € Ly(Ge), {zgw} | € h(2), {Ag."j[} _ € ((Z). This
je ’ je
permits to apply Proposition for k = n + 1. The number A"tV is defined by
the relation (2.2.60) and the function u™*" is a corresponding solution of the problem
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( 1(Ln+l)) (n+1)'

. To fix it in a unique way, one can, for example, impose the condition uy

The smoothness ([2.3.18)) of the functions ugzﬂl), ugnﬂ) at each vertex of the graph G is
2

guaranteed by the smoothness of the functions fj(j-)l , f}n) (2.3.22). Due to the symmetry
2

properties of f™, {Egn)} and {Agni)} (cf. (2.3.23)), (2.3.35))), Lemma [2.2.6| applies
JEZ ) JEL

and we get the symmetry property (2.3.19) for the function vV, Finally, to get the
decay property 4 for v"*Y, we apply Lemma Indeed, the hypothesis of the Lemma
are verified due to the relations ([2.3.24)), (2.3.25)), (2.3.36).

At this point, we can remark that the polynomials ([2.2.13]) satisfy the following symmetry
property:

n+1 n+1 n+1 n+1 .
PEx) =P (—X), PRV =PUY),  jel (2.3.37)
. _(n+1) n+1
Moreover, there exists real numbers 1 gy such that
q=0
n+1

Pk () =/ 200 G eN
q=0

Construction of the near field terms U+

e In a bounded domain: for any j € 7Z, we start by constructing the solution Vj(nH)
of the problem (75]("+1)) in a bounded domain. The existence (and uniqueness) of
such a solution is guaranteed by Lemma Indeed, the right-hand sides belong to
the appropriate spaces (cf. (2.3.32)), (2.3.29)). The compatibility condition is
satisfied since the function u(™ solves the problem (7375”)). Notice that the average trace
condition (2.2.29)) requires the knowledge of the function (™", That is why at a given
order the far field problem should be solved first.

Let us show that the functions {Vj(nﬂ)} verify the following symmetry property:
JEZ

VO (X y) =vIiTXY),  jeZ (2.3.38)

Indeed, if VfTrl) satisfies the problem (ﬁ£r3+1))7 then the function VE?H)(—X ,Y') satis-
fies the problem (75;."“)). This follows from the symmetry propetries of the right-hand
sides CDE"_I), gj(.f;) (cf. (2.3.33), (2.3.30)) together with Lemma [2.2.3| and the symmetry
property 1 of the functions {u(k) }::; which ensure the equivalence of the trace average
conditions in the problems (ﬁ}nﬂ)) and the one satisfied by the function V_(?H) (—X,Y).
The solution of the problem (ﬁ;nﬂ)) being unique, we get .

Finally, let us show that there exist functions Vénﬂ) € H(K,), 0 < ¢ <n+1, such

that
n+1

vj"“) — i Z quqmm, j e N*. (2.3.39)
q=0
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To do this, we introduce the following set of problems for 0 < ¢ < n + 1:

Find V € HY(K,) satisfying (2.2.16) with ® = @{" Y,

(n+1)
gs = gérg), d € {+,—,0}, and such that /V V(”’Ll). (P")
sf
Here K, = |—1,1[x]0 = {1} x (which are just K; and X for j € Z%),
and . §
oD = @@1}1) =0, 9552175 =0, Jde{+ -0 (2.3.40)
The compatibility condition (2.2.17)) is satisfied for the problem ﬁénﬂ) for any 0 <
q < n+ 1. Indeed, we have already seen that it is satisfied for & = @; nh) g(; = gj(.fs),
d € {+,—,0} with any j € N* (these are the problems for the functions V ™). Taking
into account the relations (2.3.34), (2.3.31]) completed by (2.3.40), we get
n+1
+(n) > < ) 1> <v<n> 1> _ /Cb(n—l) _0 e N
Z] <gq,+, o TAAE 1)+ A1), { . JEN.

K;

This yields the compatibility condition for the problem 75(5"“ for any 0 < ¢
the unique solution of the problem 73(”+1), 0< g n+1.

Let us denote by VénH)

Then, we get the relations ([2.3.39) for the functions {V-(”H)} .
jEN*

J

e [ixtension to the unbounded domain J;: applying Proposition

<n+1.

. we construct the

near field terms U (n+l) H}.(J;) that solve the problems (P(nH ). We have already

proved the symmetry property (12.3.38} m ) for the functions {V}(nﬂ)}

U(n+l)

try property 2 for the functions { ;

The symme-

} follows immediately from the symmetry
JEZ

property ([2.3.38]) of the functions {V-("H)} . Similarly, the decay property 4 follows
JEZ

J

from ([2.3.39)) by taking ug"“) as the continuation to 7, of the function Vénﬂ)

0<gsn+1.

2.4 Construction of a pseudo-mode at any order

for any

]

In this section we construct an appropriate pseudo-mode that will permit to prove Theo-

rem [1.4.2)
Let us introduce a function y € C*(R) such that
0, z>1,
V<) <1 ek w={ ) T2

We construct the pseudo-mode at order n as follows:

(1) (2) (3) .
Uz, y) = { () F U (y) U (), (z,y) € C*,

Z/{E(x7_y)7 (I’,y) S 95\657

(2.4.1)
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where
k . z—j j+1—x
= (Ze’“uéﬁ;w—ﬁ) ) (), (24
JEZ k=0
2 — ( 5ku§k)(y)> X (223”5—+QL) , (2.4.3)
JEZ \k=0
n
(k) (z—j 2y+L z—j j—x 2y+L
U U (2 )> (1=x () (L =x (=) (L =X (5)) -
JEZ \k=0
(2.4.4)
U,
0N U
el uwo o] w o] uw ] u e Qf
\us/
U4 U, U U,
— — /u3\_
Pec] o el uw el u. ] o uw S
‘\‘\us//’
Figure 2.4: Construction of a pseudo-mode
For £ small enough we have the following estimate:
whe
0
L]0y = Cin Z / / uf), (s y " dsdy + / / O > Ce.
1 L whe _ L
2 _ J 4
(2.4.5)

Here and in what follows we denote by C,, all the constants that do not depend on ¢. In
the rest of the section we prove the following estimate.

Proposition 2.4.1. Forany0 < o < 1 andn € N there exist e(n,a) > 0 and C(n,a) > 0
such that

VUV — A plhev) dQ| < Cln, )™ 2 (|0 gy, Yo € HA(QY), 0<e<e(n,a),
s (e) €

with

Proof. Let us denote

1
Ty (v) = /(VU Vo — A\ nUev) dQ) = 5/(VZ/{EVU — Aenld-v) dS2. (2.4.6)

cH QL
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After injecting (2.4.1)—(2.4.4)) in (2.4.6]) the value Zy;_(v) can be rewritten as
Ty (v) = Iusm (v) + Iu5(2> (v) + Iua(g) (v),

Z o(v) = < ek ui.i);)/ (z —j)> % (”;;a) % (]+1 20 Oo(w, y)dSQ

(
~Aen / ( n ekug’fgx—j))x(z;j)x(jz#) (i, y)d0)

JEL k=0
+e™ Z/ 5k“§~?;(x - ])) (X (52) = X' (F=2)) Opv(z, y)dSQ
jeZcu k=0 2

n

:_Z Z Z gk/)\kp (p x—j)X(—])X(M) v(z,y)d

JEZ k=n+1 p=k—n

_ o u(,k)l /x—'vx, —u® (x— Lo(w, ' (el
e Z/(Z (( W) (@ = i) —ul, (@ =)o y))>x(€ ) d
e / (Z e* ((uﬁ?;)' (= G)o(e,y) = ulf) (= §)Osv(a, y>)> X (H2) oy,

k=0

n

L) == Z > / A=y P () (BLE) v, y)dD

JEZ k=n+1 p=k—n or
=

—e @ Z/ (zn: ek (<u§k)>/ (y)v(z,y) — u§k)(y)8yv(x, y))) Y (Zg;L) ds,

—Z 3 AP (2, 2 (1 (250) (1 () (1= () ot

JE€Z k=n—1 p=0 cr

ST 3 NP (e 2 (1 (250) (1 (52)) (1 (2 )

JEZ k=n+1p=k—n ;.
Ce

e Z/ <Z (U (2, 25 ) vl y) — U (2, 242E) 8mv(x,y)>> X () d2

jezcg k=0
=y | (Z (0.0 (22, 25 w(yy) — U (5, 255E) Dy, y))) X (52) o
JEZ k=0
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= / (Ze (2,03 ( ;%2%?>v<x7y>—v;’”<%ﬂ%>ayv<x7y>))x'<23;L)dﬂ-

JEZ

Summing up these expressions we can regroup the terms in the following way:

Tu.(v) = L. p(v) + Lo N (v) + Zom (v),

where
T r(v) = I (0) + I (v),
YD / NEDUD, (o () x (P2 (),
JEZ k=n+1 p=k—n
-y >y / A () () o, 0)d0,
JEZ k=n+1 p=k—n
IEN(U) =

ST S [ (2 2 (1 (252)) (1 (252)) (1 ()t )

JEZ k=n—1 p=0 cr

ST (2 2 (1 (25)) (1 (52)) (1 () ol )i

J€Z k=n+1p=k—n

ct
Tu@) = Y Ty, Ty) =Ty +I2%5,0), §e{+ -0}
oe{+,—,0}
z50) = e 50 [ () - d) - 0 (2, 52) ) v () ol
JEZ k=0

ct
Tiaw)=—) > & / (u, @+ 1= ) = U (52, 221) ) X () Dyv(w, y)aQ,
JEZ k=0 cr 2
n /
20 = - 3 [ () - 0,010 (52258 ) v () vl i,
JEZ k=0 cr
7293, (v) = 7@ Z Za’“/ <u§-k)(y) - Uj(k) (=2, 23’2?)) X (BEE) 0,v(z, y)do.
JEZ k=0
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The term Z. p(v) corresponds to the regions where the far field expansion holds and the
term Z. y(v) corresponds to the regions where the near field expansion holds. Roughly
speaking, these terms measure the error between the true eigenfunction and the con-
structed quasimode in the corresponding regions. The term Z. p/(v) corresponds to the
regions of matching. It can be seen as a measure of the difference between the two
expansions in these regions.

e Estimation of the term Z. z(v)

Using the Cauchy-Schwarz inequality, we get the following estimate:

()
1 —Lge 1/2 41 —Loe 1/2
2
<C Z Z / / uﬁ%(s)‘ dsdy / / lv(x,y)|*dxdy
k=n+1 p=k— JEL L j _L
2 2

2n n
<O Y YT R (E ”U“LQ(cg) < cgm%HUHHl(Cg).

k=n+1 p=k—n

The term IE(QI);(U) can be estimated in the same way.

e Estimation of the term Z. x(v)

In order to estimate the term Z. y(v) we will use Lemma (cf. Annexe). First,
assuming that o < 1 we can estimate Z. y(v) as follows:

Z.x(0)] < C (ZO(0) + TR (0) + TR (0) + TR (v))

where
Z/wxy (y)]dQ Q= [ —whe,j+we] x [L —L 4 2],
JEL
Q]
jHee —G e
Ie(ljz,(v):Z/ / |52 (2, y)v(z,y)| d2,
jer+E _L
— —%—&-a
Is(zjz,(v):Z/ / |52 (z, y)o( xy|dQ
jeZg—so‘ _L
2
]+£ —f-&-a
Ig(?}z, Z/ / ‘ijy xy|dQ
JEZ L 2+2€

SJ a: y Z ngAk pU(p) mEJ’2y+L Z Z k)\(k p (a:;j72y2JgL)'

k=n—1 p=0 k=n+1p=k—n
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For IE(?K,(U) we have:

() <
n k
- (p) _
(3 o], <3 3 ] ) i
JE€Z \k=n—1 p=0 k=n+1p=k—n 2

< Cen

M:

1/2 1/2
ntl
( 2(K; )) (Z HvHiz(Qg)> < Ce 3 HUHHl(cé‘) . (248)
JEZ

Here we used the estimate (|A.3.2)) for the function v, fact that U ](k) HE (T, Vi € Z,
k € N as well as the exponential decay property (2.3.21]) for the functions {U (7’)};:0

In order to estimate the term Ie(lji,( ) we notice that the behaviour of the functions
{u® }p in the band B (cf. (2.2.9), (2.2.11)), (2.2.13)) implies the following inequal-
ity:

|SJCL’y <Z ng'—f—pa D4 Z Z ghtpla— 1)) < Ch(j)e (n— 1)a

k=n—1 p=0 k=n+1p=k—n

(z,y) €lj +e, j+ex]-5, -5 +el.
Due (A.3.1) and the exponential decay of {U (p)};LZO (2.3.21)) (which implies the expo-

nential decay of constants C,(j) in 7) we get:
1
Is(,lz)v(”) < Cug™ 2 |0l g eny.- (2.4.9)
The terms Ia(%z](v) and IE(?’]{,(U) can be estimated analogously to Is(lz)v(v)

e Estimation of the term Z. 5/ (v)

We will estimate the term Z7,(v), the estimation of the terms Z_,,(v), Z2),(v) being
analogous.

Using the relation (2.2.9)) giving the behaviour of the functions {U (k)}Z:o in the band
B, we get

225 ()]
j+2e® —3 jH2e —F+e
< Che™® / / ‘73] x,y)!dxdy+z / / ‘5 (z,y)v(z,y }dxdy ,
JEN j e L JEN jfea 1
2 2
where

n

n / / )
N(r) = ng (UE?Q (x—J)— Zék’l (ZDJUS)Jr) (=2),
k=0

n
- k _pr(z=j) 2y+L
_2:5090(2: jp+ e 6 ‘ fp( 2e ))
k=0

peEN*
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Taking into account the definition (2.2.13) of the polynomials P¥ 0 . we can rewrite P/
as

!
n n—k—1 dé (u(k) ) N,
- i ORY . 3 (x —j)
o [CHEERED I
~0

ds! 14
£=0
s=0
Hence,
n— k+1u( )
i + a\n— . an . o - @
|P:() ZE TLZ (2e)"F < Culj)e™,  wejte”, j+ 2,

and using (A.3.1)) we get

Jj+2e* —3
1
5 / / P ()0, y)| dedy < Cog® D730 1 er)-
JENJ+EQ 7%

Next, we obviously have the following estimate for the other term due to the decaying
exponentials (a < 1):

j42ee —5+e
> / / &z, y)v(z,y)| dedy < Co(N)eV [0l grery,  YneN.  (2.4.10)
IEN e L
Thus,
‘Z:J\}(U” < C'naanJr%HUHHl(ng*)- (2.4.11)
Finally, for I:AZ(U) we get
|25 ()| <
j2e —ghe j+2ex —5+e
Ce™@ Z / / ‘ﬁj(x)axv(x,yﬂ dxdy + Z / / ‘Rg(x,y)@gv(x,yﬂ dzdy | ,
JEN ; {ea i JEN  fra L

where

- Zek“ﬁ) ngpjlé)-l- (*29).
Ri(w,y) Z Z € Jp—l- )e M(zij)fp (55 -

k=0 peN*

Using the definition ([2.2.13)) of the polynomials P™ . the term 77 can be rewritten as

J,0,+

n -\ ¢
o [ O J+1 (z —J)
- %5 Uj43(= = J) ds’ o)

s=0
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which implies

n dn—k—i—lu(k)l
. i+5 a\n— -\ _an ; a s «a
}73(1:)|<Z€k W (2e*)"F < C@) e, xr €[]+ j+ 2.
k=0

Loo([0,1])

Thus, using Cauchy-Schwartz inequality we get:

j+2e> —F+e
3 / 7 (2)0s0(a, )| dedy < O o] e
5N e

Analogously to (2.4.10) we can estimate the term containing the decaying exponentials
as follows:

j+2ee —5+e
> [ [ Riwteldsy < o0 olmen, VN e
2

Finally,
1
|25 (0)] < Coe™ 2 [ol| 11 ey, (2.4.12)

Summing up the estimates for all the terms (cf. (2.4.7), (2.4.8)), (2.4.9), (2.4.11)), (2.4.12))
we can conclude that for 0 < a < 1 there exists a constant C'(n, «) > 0 such that

T )] < Clna)e™ 2 ollmery, Vo€ HIQL),
for € small enough. This finishes the proof. ]

Proof of Theorem[I1.4.4. Proposition together with the estimate (2.4.5) imply due
to Lemma [A.2.7] that

dist (o (ALY) , Aen) < C(n, a)e™".

for £ small enough. This is not exactly the estimate we need in order to prove Theorem
[1.4.2] However, going up to the order n + 2, we would get

dist (0 (A"), Aemya) < C(n+2,0)e™ 2 < C(n 4 2)e™H,

if v is chosen close enough to 1. On the other hand,
)\E nto — )\z-:n _ )\(n+1)€n+1 + )\(n+2)€n+2.
Hence, due to the triangle inequality, we finally obtain

dist (o (A*) ;Ao ) < C(n)e" .

This finishes the proof of Theorem [1.4.2] O






CHAPTER 3

TRAPPED MODES IN A LOCALLY
PERTURBED PERIODIC LADDER:
NUMERICAL STUDY

3.1 Goals and difficulties

In the previous chapter we dealt with an eigenvalue problem in an unbounded domain €2..
This requires some special methods when trying to find numerical approximations for this
problem. One of the most common methods is the Supercell method (|64, 10} [62]) which
consists in considering a big bounded domain with periodic boundary conditions. The
solution in the truncated domain converges to the exact one exponentially if the defect
mode is exponentially decaying. However, this method appears to be costly, especially
when the mode is not well confined.

We apply here another method developed by S. Fliss ([24]) which is based on the con-
struction of an appropriate Dirichlet-to-Neumann (DtN) operator. In the framework of
this method the initial eigenvalue problem set in an unbounded domain is replaced by a
nonlinear eigenvalue problem set in a bounded domain containing the defect (this time the
domain does not have to be big). This nonlinear eigenvalue problem can be discretized by
finite element method and a Newton type algorithm can be applied to solve the discrete
problem.

In section we explain how to reduce the initial problem to a problem posed in a
bounded domain and in section |3.3| we show how this last problem is discretized by finite
element method.

77
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3.2 DtN operator method

Let us remind the initial problem. It consists in finding values A. such that there exists
a non-trivial function u. € HA(Q¥) solving the problem

—Au. = Nu. in QF,
Ou,
on [

o (3.2.1)

To simplify the notation we will write in this section u., A., keeping in mind that these
values depend on p. The idea of the DtN operator method is to find a problem which
is equivalent to but posed in a neighbourhood of the perturbation (the perturbed
cell). The boundary conditions on the boundaries separating the perturbed cell from the
rest of the domain (two half-bands) will contain the DtN operators which are defined
using the corresponding problems in these half-bands.

3.2.1 Half-band problems
We denote B = QF N{£x > 1}, I'F = {£1} x |-£, L[ (cf. figure[3.1). Let us introduce
7
re e Q¢

| |
B: \ . B:

-1 1 x
Figure 3.1: The half-bands B and B-

the following function spaces:

HY (B) = {ue H'(BE), Aue L,(BI)},

=0,.
OBI\TE }

b () = {uc b (62). 3"

We denote by 7;~ and ;" the trace maps on I'F:

vEe L (H (BE),H(T5):  Vue H'(BY), ~fu=uls,
vE e £(HN(BE), HV2(T)) . Vue HA(BY), ~fu= g_z .
rs

Let us consider the operators AE defined by the relations

Afu=—Au,  D(AY)={u€ Hyy (BS), ulz=0}. (3.22)

£
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Obviously, the two operators are unitarily-equivalent. Let U be the unitary operator from
Ly (BX) to Ly (B.) defined on smooth functions by the relation

(Uu) (2,y) = u(-z,y),  (z,y) € B,
and extended by continuity to Lo (BX). Then,
D(AZ) =UD(A}), A7 =UATU™".

In fact, we do not have to distinguish between the two operators since the difference is
purely geometric. Even if we still keep the symbols 4 in the notation in order to point out
this geometric difference, all the results will be proved for the operator AT, the analogous
results for the operator AZ being obvious. We will use the notation

d*(a) = dist (o?, 0(AY)) .

As before, A, stands for the non-perturbed operator defined in Section with empty

discrete spectrum (cf. (1.2.1))).

Lemma 3.2.1.
o(AF) = o(A,). (3.2.3)

Proof. Let P be the operator of continuation by antisymmetry from Ly (BF) to Lo ()
defined on smooth functions as

u(z,y), (xz,y) € B,
(Pu)(@y) = { a1 - ay), (oy) € 0\ B

and extended by continuity to Lo (BX). Then, the operator P transforms an eigenfunction
of the operator AT into an eigenfunction of the operator A. and any singular sequence of
the operator AT into a singular sequence of the operator A., which proves the inclusion
o(AF) C o(A.). Conversely, the operator P from Ly (€2.) to Ly (Bi) defined on smooth
functions as

(PU)(I’,y) ZU(SL’,y)—U(l—ZL’,y), (Jf,y) 63:7
and extended by continuity to Lo (€2.) transforms an eigenfunction of the operator A, into

an eigenfunction of the operator AT and any singular sequence of the operator A, into a
singular sequence of the operator AT. This proves the inclusion o(A.) C o(AT). O

For any a € R, ¢ € HY?(I'Y) we consider the following half-band problems for u* €

H i,N (Bgc )3

{Aiu;t +*uf =0 in BZ, (3.2.4)
Ue |1"Ei =¥

The following statement establishes the well-posedness of these problems.

Proposition 3.2.1. For anya? ¢ o (A.), p € HY/?(T'E) the problems (3:2.4) have unique
solutions. Moreover, the following estimates for the norms of the solutions hold:

||U?||H1(Bg) < (C’l(a) + de§3> ||90||H1/2(F3z), (3.2.5)

where C1(a), Cy() are continuous functions of o depending only on the domains BE.
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Proof. Let us denote by ¢ a lift function belonging to H' (B) such that Plpr = ¢ and
||SBHH1(BE+) < C—s—HSOHHUQ(pj), (3.2.6)

where the constant C'; depends only on the domain BX. We also introduce the following
function space:
Hp (BY) ={ue H' (Bf), wul+ =0},

which we equip with H'-norm. Multiplying the first line of (3.2.4) by a test function
v € H}, (BF) and changing the unknown function by

u=ul — o, (3.2.7)

we get the following variational problem for u € H}, (BX):

(Vﬂ, VU)LQ(BJ)—QQ (a, U)Lg(Bj) = — (V(,/D\, VU)LQ(B;)—FO; (Q/O\, U)Lg(Bj) , Yv € Hb (BEJF) .

(3.2.8)
The right-hand side of (3.2.8)) is a continuous linear functional in v with respect to the
norm H':

—(Vg, VU)LZ(BJ) +a? (9/5’”)@(3;) < Cp(a) “UHHl(Bg') ) Vv € Hp (B;_) ’

where
Cola) = (1+ az) ”aHHl(Bj) ) (3.2.9)

Hence, there exists a function f € H}, (BX) such that
—(V, VU)L2<BE+> + o2 (3, U)LQ(B;) = (f,v)Hl(B;), Yo e Hp (BY).  (3.2.10)
Besides, | f]| Y (B2) < Cy(a). Consequently, the problem (3.2.8)) can be rewritten as
(ﬂ,v)Hl(Bj) — (1+a?) (ﬂmeQ(B;r) =(f, U)Hl(Bj)v Vv € Hy, (BY) . (3.2.11)

Due to the estimate

[, 0) 50| < Wl () 0l () Vv € H (B,

we can introduce the bounded self-adjoint operator K (o) € L (H}, (BY)) defined by the
relation

(u, v)Hl(B:) — 1+ (a, U)LQ(B;) = (K(a)ﬂ,v)Hl(B:), Yo € H, (BF). (3.2.12)

Finally, the problem (3.2.11]) takes the form
K(a)i = f. (3.2.13)

We remark that this problem is equivalent to the initial problem (3.2.4]). Indeed, we have
just shown that if ul is a solution of (3.2.4]), then the function @ defined in (3.2.7) is a
solution of (3.2.13)) with f defined in (3.2.10]). Conversely, if u is a solution of (3.2.13)) with

f defined in ((3.2.10f), then, repeating the argument in the other sense, we arrive at the
variational formulation (3.2.8)) which is equivalent to (3.2.4) with the change of unknown
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function (3.2.7). Therefore, in order to establish the well-posedness of (3.2.4) it is enough
to prove the well-posedness of (3.2.13]). Let us denote dx («) = dist (0,0 (K («))). We will
use the result proved in Lemma below which states that

d(c)
d(a) +1+a?
Since by assumption o? ¢ o (A.), due to Lemma we have o ¢ o (AT). Hence,

d(ar) > 0 and (3.2.14) implies that dx(«) > 0. This shows that the problem (3.2.13]) is
well-posed. Moreover, the norm of its solution can be estimated as follows:

~ _ Co(a
[llsoty < UK i oy < G- (3215

di(a) > (3.2.14)

Putting together the relations (3.2.7)), (3.2.6)), (3.2.9)), (3.2.14), (3.2.15)) we get:

(1+ a?)?
o oy < (€1 @2+ S

This is exactly the estimate (3.2.5) with C}(a) = C + 1+ a?, Cy(a) = (1 + a?)% O

Remark 3.2.1. The uniqueness of solutions of the problems is obvious since
Lemma implies that the operators AF have no eigenvalues. The goal of the above
proof is to establish the existence. However, the argument used in the proof establishes
the existence and the uniqueness simultaneously (the reason for which we talk about
well-posedness).

Remark 3.2.2. The proof of Proposition [3.2.1] would be more straightforward for ¢ €
H?/? (I'F). In this case it would be unnecessary to pass to the weak formulation and the
well-posedness would be directly guaranteed by the fact that o ¢ o (AF). However, we
need to consider ¢ € H/2(I'F) since the problem will be discretized by P1 finite elements
(cf. section which implies working with H' functions, and, consequently, H'/? on the
boundary.

Lemma 3.2.2. In the notation of the proof of Proposition the estimate (3.2.14])
holds.

Proof. 1If di(c) > 1 the result is obvious. Suppose that dx(a) < 1. Then, since o(K(«))
is a closed subset of R, there exists v € R such that |y| = di(a) and v € o(K(a)) (in
other words, either di(a) or —di(a) belongs to (K («))). The operator K(a) being
self-adjoint, this means that there exists a singular sequence {u, }neny C Hp(BZF) such
that

L uallgngry =1, neN,
2. [[(K () = D) unll g1 gy = 0, n— o0,
where [ is the identity operator in H'(BZX). This implies that for any ¢ > 0 there exists
us € Hp(BY), [|us|l g1 (p+y = 1, such that [|(K(a) — 1) Us|| g (p2y < 6. Hence,
(K () = 1) us, v) gy | < N (@) =y D) usl gy 01l 52
< Ol ol sy Vo € HB(BE). (3:2.16)
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Using the definition (3.2.12)) of the operator K («), we get:

6”u5||H1(Bj)||UHH1(B§r)
1=y

1+a?
(s, V) g1y — ﬁ(u&v)wﬂ)

: Vv € Hp(BY).

~

The sesquilinear form afu,v] = (us,v) g1 gz defined on Dla] = Hp(BZ) is the unique
sesquilinear form corresponding to the operator AT +I. It obviously satisfies the estimate
alu,u] > ||u||iQ(B+), Vu € Dlal], which permits us to apply Lemma |A.2.1] Thus, we can

conclude that . )
+«

dist AT+ 1
18 (a( .+ ), 1

)<05, Yo > 0.

2
Rays o(Ar + I), which is equivalent
f)/

1
Since 0 can be chosen arbitrarily small, one gets 1+

2 1 2 d 1 2
to 11 ¢ o(Ar). This means that d < i + o) < x(a)(1+a ) This yields
11—~ 1—7 1 —dg(a)

B2.14). u
From now on uZ(a, ) will stand for the unique solutions of the problems ([3.2.4) for

£

a? ¢ o(A), o€ HY?(T'F).

3.2.2 The DtN operators A*

We define the DtN operators A* : HY2(I'Y) — H~Y2 (') for a? ¢ o(A.) as follows:

(A*(a)p, ) = /Vu[_:i(a,gp)VuEi(Oz,lp)—a2 / u (o, o)uF(a, ), Vo, € H'? (TE).
B B

(3.2.17)

Here u (o, ¢) is the solution of the problem and (-, -) stands for the duality brackets

3

between H~1/2(I't) and H'/2 (I'}). In other words,

_ OuF (o, )

+
A= () o

,  Vepe HYV2(TE). (3.2.18)

rs

The following assertion which states the norm continuity of the DtN operators with respect
to a will be used in Proposition [3.2.5] in order to show the continuity of the functions to
which a Newton type algorithm will be applied.

Proposition 3.2.2. The operators A* () defined by (3.2.17) are continuous from H'/? (T'F)

to H=Y/2(I'Y) and norm-continuous with respect to a:
A% (o) — Ai(oQ)HHI/Q(F?)HH_I/Q(F?) <Clof —a3. (3.2.19)
Proof. Due to the estimate ([3.2.5)) one finds

2 Ca(e) :
‘<Ai(04)g0,77/)>’ < (]- +a ) (01(04> + di(oz)> ||(P||H1/2(F§t)||77Z)||H1/2(I‘€i)

Consequently,

HAi(O‘)||H1/2(p£i)_>H_1/z<ng) < (1+a?) (C’l(a) + 75 ()
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If ay, 9 ¢ 0(AZL) then one can estimate the norm of the difference A% (o) — A% (ay). Let
us denote uF () = uF(ay, ¢) — uF(az, ). Then for any o, € HY/?(T'F) we have:

((A%(on) = A¥(a2)) p,0) = / (VZ (9)Vuz (e, ¥) + Vi (az, ) Vi (1))

B
—at [ (@it 0) + ud(an T W) + (o - o) [ (s (asv).
BE BE
(3.2.20)
Remark that 4= (p) solves the problem
AFTE () — 02T () = (02 — a2) u (s, ). (3.2.21)
Therefore, its Lo-norm can be estimated as follows:
af — a3l [|uf (e, SO)HLz(Bgt)

Multiplying (3.2.21) by @£ (¢) and integrating by parts yields

1932 ()i, = 03 T ()i, + (0F = 03) (w0, 0, TP -

Thus, taking into account (|3.2.22)), on obtains:

12 o] — a3 luz (02, 9)|l (B)
7 Hm(Bi < (af + 14 d* (o)) e 2(B2)

In other terms the operator (A% —a?)™" is continuous from Ly(BF) to H'(B%). Finally,
using we conclude that
17 ®2 H/2(TE
a7 — a3 1ol s (re)
d*(ar)d*(az)

C’(Oq, 042) \V/QD c H1/2 (Fg:) s

H HHI(Bi

where C(ay,ay) is a continuous function of ay, ap. Notice that it depends on d*(ay),
d*(aw). Coming back to (3.2.20) we get the following estimate for any o, ¢ € HY/?(I'}):

(A= (1) — A= (a2)) @, 0)]
o — a3 HSOHHW(F}) HwHHl/?(r}) 1 1
T (o) d% (o) (1 P ar) di<a2>) |

Here C(ay, ) stands for some continuous function of oy, as (not necessarily the same as
above). The obtained estimate implies that if d* (), d*(as) = ¢o > 0 then the inequality

(13.2.19) holds. m

We will need the following technical result.

< O, az)

Lemma 3.2.3 (Garding’s inequality for the DtN operators).
For a* ¢ o(A.) there exist a constant Cy and a continuous function Cy(«) depending only
on the geometry of the domain such that

()6, 0) 2 Cilleluagrsy = Co@gl ooy, Vo€ Y (T). (32.23)
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Proof. From (3.2.17)) we get:
2 2
(A (@), ) = [Juz (@) | (pzy = 1+ ) [Juz (@, D), 52 -
The trace applications 75: being continuous, this implies that

(A5 (@)e,0) > Crllelia(rey — (1+0?) Huf(a,gp)HiQ(Bai) . (3.2.24)

+

=(a, ) let us consider the following

In order to estimate the Ly-norm of the solutions u
problems with uZ(a, ¢) being source terms:

AFvr — o%o* = uF(a, ). (3.2.25)
Since a? ¢ o (AZF) this problems have unique solutions in D (AE). Multiplying ([3.2.25)

by u£(a, ) and using Green’s formula we get:

,U:t
(e @)l 2y = - <%—n,<p>- (3.2.26)

The domains BF are not convex, which makes it impossible to use the argument of global
regularity of weak solutions. Nevertheless, it is still possible to use the local regularity
near the boundaries that do not contain reentrant angles. More precisely, let K* stand
for the rectangles }1, 1+ %[ X ]—%, %[ and ]—1 -5 -1 [ X }—%, %[ respectively. Then
there exists a continuous function C'(«) depending only on the geometry of the domain
such that

+ +

HU ||H2(Ki) <o) Hus HLQ(BSE) : (3.2.27)
We detail the proof of this fact in Lemma [A.3.3] given in Annexe. Then, the continuity
defined as operators from H?(K¥*) to HY/?(I'F),

rs

v
of the trace applications v — —

on

Here we denote by C(«) any continuous function that depends only on the geometry of
the domain (without changing the notation even if its value changes). Thus, coming back
to (3.2.26)), we get:

implies that
ov*

an

+
HY/2(TF) <Ol Hue HLQ(B?) '

HU?(OZ, 90)HL2(332) < C(CY) H(pHHl/?(FgE) :
Injecting this estimate in (3.2.24)) yields ([3.2.23]). O]

3.2.3 The interior problem

We can now state the following problem in C* (which is a bounded domain corresponding
to the perturbed periodicity cell, cf. figure . It consists in finding values A, such that
there exists a function u? € HJ(C#) solving the problem

)
A — \2,,0 iy Ok
Au. = A\u. in CH,
0
ou,
on
0
ou

on

+ AT\ Ul =0,
" (Ae) vl (3.2.28)

= 0.
act\{rfurz}

\
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-1 1 X

Figure 3.2: The interior domain C¥

Proposition 3.2.3. If \2 ¢ o (A.) then the problem (3.2.28)) is equivalent to the problem
B2.1).

Proof. Suppose first that u. solves the problem ([3.2.1)) for some .. Let us denote u =
Ue | =, ud = Ue|eu. Then, uF are the unique solutions of (3.2.4)) for ¢ replaced by U |p=

ouE o
and o = A.. Therefore, A*(\.) uF| = = 8—5 by definition of the DtN operators (cf.
€ n Fg:
(3.2.18)). On the other hand, since u. € H) (), both its traces and the traces of its
. : uz du L
normal derivative are continuous: uf|p+ = ud|pe, — = — = This implies
€ € on r: on r:

that u? satisfies the second line of ([3.2.28). It also satisfies the first and the last lines (the
equation and Neumann boundary condition) since it is a restriction of u. which solves the
initial problem .
Conversely, suppose that «? is a solution of . Let us denote by uF the unique
solutions of with a replaced by A. and ¢ replaced by ug\rgc. Then, the function
constructed as N N
ue(z,y) = { US (2,9), (z,y) € BZ,
u(z,y), (v,y) € CL,
solves for a = A.. Indeed, its traces on I'T are continuous by definition of uZ.
The continuity of the normal derivative across I'F is guaranteed by definition of the DtN
operators. Hence, u. constructed in such a way appears to be a function in HX (C*). Tt
satisfies the equation in first line of since the same equation is satisfied by u?, u=.
Finally, it satisfies Neumann boundary conditions on 9€2#, which follows from Neumann

boundary conditions for u?, uF on the respective boundaries. O

We see that the initial eigenvalue problem (3.2.1) posed in the (unbounded) domain
(¥ can be replaced by an equivalent problem posed in the (bounded) domain
Ct. However, this problem is a nonlinear one since the DtN operators appearing in the
boundary conditions on I'F depend themselves on the spectral parameter.

Let us now study the nonlinear problem (3.2.28)). For a? ¢ o(A.) we introduce the

operator A%(a) defined as follows:

Aa)u = —Au,
0 1 ou N ou
D(Ac(a)) = que€ HA(CE), o~ +A@)Tulpe=0, =

on r*

=0,.
act\{rfurz}
(3.2.29)
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We will show some important properties of this operator.

Proposition 3.2.4. For a? ¢ o(A.) the operator A%(a) defined in (3.2.29)) is self-adjoint

and bounded from below. Moreover, its resolvent is compact.

Proof. The fact that the operator A%(«) is self-adjoint follows directly from the fact that
the DtN operators are symmetric. Let us show that it is bounded from below. Indeed,
for any u € D (A%(«)) one has:

(AU),1) ey = IV, oy + (A (@) s s wles ) + (A (@) s wl)

2Lg(rs)) ’

where C(a) is the constant from Lemma [3.2.3] The Ly-norms of the traces of u on I'F
can be estimated using Lemma (Annexe) applied to the rectangles }—1, -1+ i[ X

}—%, %[ and }1 -5 1[ X ]—%, 5 | respectively. Then, for § > 0 we get:

2
Lo (FE+

>l ery = Dl ery = o) ([l I )+

(A20)u,0) gy > (1= Col@)d) [l ey — 1+ Col@)CO) Jul, )
Vu € D (A2a)) .

Choosing ¢ < 1/Cy(r) one obtains the boundedness from below for the operator A%(«).
In fact, we got even a stronger inequality than just a lower bound. More precisely, if we
fix § in an appropriate way and put C'(a) =1 — Cy(a)d, m(a) = 1+ Cy(a)C(9), then

(A%(@)u, u)h(@) > C(a) ||u||§p(cg) — m(a) ||u||i2(cg) . YueD(AYx)), (3.2.30)

where C(«), m(a) > 0 are continuous functions of a. It is now easy to see that the
resolvent of the operator A%(c) is compact. Indeed, let f be a function in L, (C¥) and
u= (A%a)+m(a)l)"" f. Then, the estimate (3.2.30) implies that

Cle) ullp ey < (o)1)

This, in turn, implies that the resolvent (A%(a) + m(a)I)~" is a continuous operator from
Ly (C*) to H'(C*). Due to the compactness of the embedding H' (C*) C Ly (C*) we
conclude that the resolvent of the operator AY(«) is a compact operator in Ly (C*). O

It follows from the previous theorem that for a? ¢ o(A.) the spectrum of the operator
A%(«) is discrete and consists of a sequence of eigenvalues of finite multiplicity tending to
infinity:

(o) < ma) < - <sgla) <. #p (@) —— F00.

n—oo

Let us consider the following positively defined operator:
A%a) = A%a) +m(a)l.

Due to (3.2.30]), the boundedness of the DtN operators and the boundedness of the trace
operators from H'(C*) to HY/?(I'F) one has:

C@) uliner) < (Rleyuu) ) <C@ il Yue D (42a),
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with some constant C(«). This implies that the sesquilinear form a°

the operator A%(«) is defined on H*(C*) and the norm defined by this form is equivalent
to the H'-norm:

(cv) corresponding to

Dlaz(a)] = H'(CE),

a(a)[u,v] = (Vu, VU)L2(C5) + Z <A6(0‘) u’rg ] U‘Fg> + m(a)(u, U)L2(C§)>
de{+,—}

C() [[ull s ery < @), 1] < C() [[ullfpeny,  Yu€ H'CY). (3.2.31)

€

This permits to characterize the eigenvalues {¢,(a)}, oy of the operator A%(a) using the
min-max principle as follows:

#,(a) =  inf sup  a’(a)[u, ul. (3.2.32)
MCH'(CE) ueM
dimM=n ||u||L2(C§‘):1

The following assertion states the continuity of these eigenvalues and, as a consequence,
of the eigenvalues s, (), with respect to the parameter a.

Proposition 3.2.5. The functions s,(a) are continuous for o ¢ o(A.), n € N.

Proof. First, we notice that the spectrum of the operator A%(a) can be obtained by a
translation by m(a) of the spectrum of the operator A%(«). Hence, the function m(a) be-
ing continuous, it is enough to prove the continuity of the functions ¢, («). For this we will

use (3.2.32)). Let us consider the difference a®(cv;)[u, u] — a®(aq)[u, u] for a2, a3 ¢ o(A.)

3 )

and u € H'(C¥) such that ||lu||z,cr) = 1. One gets:

(o) u, u] @) [u,u] = Y ((A%(an) = A%(@2)) ¢, )+ (mlar) — m(as)) [fullF,cm,
oe{+,—}

where ¢* = u|p+. Hence, the estimate (3.2.19) implies that if d* (), d*(az) = ¢ > 0
then

a2 () [u, u] — @ (az)[u, u]| < (C'laf —a3| + [m(ar) — m(az)]) [[ullf cny-

The H'-norm of u can be estimated using (3.2.31]) with o = ap, which yields

@2(an)[u, ul(1 = flar, @) < @(on)[u, u] < @(an)[u, u)(1 + flar, as)),
Yu e HY(C"),  (3.2.33)

where f(ay,as) = (Cla? — a2| + |m(ay) — m(az)]) /C(as) and C(aw) is the constant in
the left-hand side of which is strictly positive. This implies that the function f is
continuous and vanishes on the diagonal: f(ay,as) — 0 when oy — an. Taking the upper
bound of all the terms in (3.2.33)) over all unit vectors belonging to some n-dimensional
subspace of H'(C") and then the lower bound over all such subspaces we get:

() (1 — flan, ae)) < 36,() < 36, (an) (1 + f(ag, az)), VYn € N.

This together with the properties of the function f mentioned above proves the continuity
of the functions ¢,(a), n € N. O
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The following theorem is an immediate consequence of Proposition [3.2.3]

Theorem 3.2.1. A number \? is an eigenvalue of the operator A" if and only if . is a

solution of the equation
o? = s,(a), (3.2.34)

for some n € N.

The functions s, being continuous, it’s the equation (3.2.34]) that we solve numerically
using a Newton type algorithm.

3.2.4 Practical construction of the operators A*(a)

Let us now give a procedure of construction of the DtN operators A*(a) that avoids
solving the problems (3.2.4)) posed in unbounded domains and consequently can be used
in numerical computations.

3.2.4.1 The local DtN operators

We introduce a periodicity cell C. such that the band B is a union of translated period-

icity cells (fig. 3.3):
B = U(/’g,n, Cen = C. + (n,0), C.=Bn{l<z<2}.

neN

We also denote the vertical boundaries of the cells C.,, by I'.,, = {n+ 1} x ]—%, % [,
n € N.

u
Cs=ce,o Ce,1 Cso QE
| | s a =
T T T AT
F&o E e 4 E r£,2 E r£,3 E
1 2 X

Figure 3.3: The cells C.,, and the boundaries I, ,,

Function spaces on C.,, and I'.,, for different n will be often identified. Let us consider
the following cell problems for o? ¢ o(A.), 6 € {0,1}:

—Aes — a’e; =0 in C.,
865

on AC\{Te 0Ulc 1}
66|Fs,6 =, €5|F6’176 =0.

=0, (3.2.35)
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Proposition 3.2.6. For any o® ¢ op and ¢ € HY?(T.;5) the problems (3.2.35) have

unique solutions in H) (C.), where op is a countable set.

Proof. We will give the proof for § = 0, the proof for 6 = 1 being analogous. The
argument is very close to the one used in the proof of Proposition [3.2.1] We repeat it
for the sake of completeness. Let us $ be a function in H'(C.) such that @|. = ¢,

Plp., = 0 and [|8]|arc.) < Cllell gz, ), the constant C' depending only on the domain
C.. After multiplication of the first line of (3.2.35)) by a test function v € H}, (C.), where

Hll) (CE) = {u cH' (65)7 U|F50 =0, u|F5 1 0} ’

and changing the unknown function by ey = ey — @, we get the following variational
problem for ey € H}, (C.):

(Veo, VU)LQ(CE) — o’ (&, U)LQ(CE) =—(Vg, VU)LQ(CE) +a* (g, U)LQ(CE) 5

Yo € H,(C.).  (3.2.36)

This problem can be reduced to the form
(I-(1+a*)P)e =T, (3.2.37)

where the bounded self-adjoint operator P € £ (H}, (C.)) is defined by the relation

(U, 0) 1) = (Pu,v) e, Yu,v € Hy, (C.), (3.2.38)

and f € H}, (C.) is defined by the relation

(VB V0) ey + 02 (B 0) ) = (Fodmey, Vo€ HY(C).

The operator P is compact. Indeed, it is bounded as an operator from L, (C.) to H' (C.)
since taking in (3.2.38]) v = Pu one has:

1Pullznc.) = (u, Pu)ryey < IIPullmeolullae),  Yu€ Hp(Ce).

Due to the compactness of the embedding H'(C.) C L, (C.) one concludes that the
operator P € L (H}, (C.)) is compact. Hence, its spectrum o(P) consists of eigenvalues of
finite multiplicity that can only accumulate to 0. The problem is then well-posed
if and only if a® ¢ {1/y—1, v € o(P)}, which is a discrete set accumulating only to
infinity that we denote by op. O

The unique solutions of the problems (3.2.35) for a? ¢ op, ¢ € HY? (T, 5) will be denoted
by es(a, ), 0 € {0,1}. Notice that repeating the same argument as the one used in the
proof of Proposition [3.2.1| one can see that

les(as D)) < Clellgrer. )y, Ve H'Y?(T.5), 6€{0,1},  (3.2.39)

where the function C'(«) is continuous and depends only on the geometry of the domain.
We can now introduce the local DtN operators Ths(a) € £ (HY?(T.,), H *(T.s)),
v,6 € {0, 1}, as follows:

Tpla)p= 2202 5oy, (3.2.40)

on I

where the normal derivative is taken along the outside normal to the domain C..
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Ce Ce

€o(0,¢) €1(0,¢)
- — - —
Too (@)@ Tor @@  Tip@® T, (@)@
\ / \ [
Mo Ten Mo Ten
(a) The operators Tyo(), To1 () (b) The operators Thg(a), T11 ()

Figure 3.4: The local DtN operators

Lemma 3.2.4. The operators T.s(c) are symmetric for any v,0 € {0,1}, o® ¢ op.

Proof. Indeed, we have
0
(Tos(a)e, ) Z/Aemweé(a,w—/ew(a, p)Aes(a, ) + / ey(a, 90)—652(:@

C. C. I.-
= (T5y ()Y, ).

Since in our case of a symmetric cell the operators Ty, and T coincide, this finishes the
proof. O]

3.2.4.2 The propagation operator
Let us introduce the propagation operator P(a) for a? ¢ o(A.) as follows:

P(a) € L(HY?(T.p), H*(Te1)),  Pla)p = ul(a, ¢)|F571 : (3.2.41)

The spectral radius of the propagation operator will play an important role in the sequel.
It will be denoted by p (P(«)).

Lemma 3.2.5. For o ¢ o(A.) the operator P(«a) is compact. Moreover, p(P(a)) < 1.

Proof. Let ¢ be a function in H/2 (T ). We will use Lemma proved below, accord-
ing to which [|P(a)ul (e, @)l g1,y < Cla)|l@ll a2, ) Recalling the definition (3.2.41)
of the operator P(a) and using the compactness of the embedding H* (T.;) C HY?(T.;)
we conclude that the propagation operator is compact. Consequently, its spectrum is a
sequence of isolated eigenvalues of finite multiplicity with the only possible accumulation
point at 0 (in this case 0 € o.(P(«))). If A\; is the eigenvalue of P(«) with the biggest
absolute value then |\;| = p(P(a)). Suppose that |\;| > 1 and ¢; € HY2(I.;) is a
corresponding eigenfunction. Then, uf (a, p1)|p. = P(a)"p1 = Alw1, Vn € N On the
other hand, due to the uniqueness of solutions of 7 and the translation invariance of
the domain B we have

ul (a, 901)‘B€n = Tout (o, No1) = Nt Toul (o, 1), Vn € N, (3.2.42)
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where
B., =B n{X>n+1}, n €N,

and 7, is the translation operator from Lo (BX) to Ly (B.,) defined on smooth functions
by the relation

(Taw) (z,y) =uw(x —n,y),  (z,y) € Bew,
and extended by continuity to Ly (BX). It follows from (3.2.42)) that

However, ul(a,¢1) € Lo (BF) which implies ’

uj(a, 901)

Bem ) = |A7] Hu:(&>901)HL2(B:) > H“:(a7901)||1;2(3j) ’ vn € N.

LQ(Bs,n

ul (1)l , ra(Bn w0 This is

possible only if v («, ¢1) identically zero which contradicts the fact ¢y is an eigenfunction
of the operator P(«). O

The following Lemma used in the proof of Lemma|3.2.5|states in fact the interior regularity
of the solutions u* of . For the sake of completeness we will give the argument in
the case of our geometry that permits to apply the regularity result (Theorems 2.3.7 and
2.4.3 from [27]).

Lemma 3.2.6. For any o® ¢ o(A.) and ¢ € HY*(T.y) one has P(a)ul(a,¢) €
H'(T.1). Moreover, there exists a continuous function C(«) depending only on the ge-
ometry of the domain such that

HP(O&)U:(O&, SD)HHl(Fs,l) < C(a)H(pHHl/Q(Fs,O)? VSO S H1/2 (FE,()) :

Proof. The argument is very close to the one used in the proof of Lemma Let us
introduce a cut-off function y € C*°(R) such that

x(@)=1, ze[2-§2+5],
x(x) =0, xe]—oo,Q—fJU[Q—i-i,oo[,
0< x(z) <1, Vr € R.

Let K. stand for the rectangle }2 -2+ [ X } —%, % [ Then, the function © = yul (a, ¢)
solves the following problem in K.:

—AT = a?ut (a, 9)x — uf (o, @) Ay — 2Vut (o, )Vy in K.,
N R [ Rl

ou _, Ou
Onllagarsix{sy oMl

Then, applying the regularity result ([27]), we conclude that u € H? (K.) and

= 0.
25245 {5

il < € loud (0, 9)x — u? (@, 9)AX — 29! (@, 9) Vx|, ey < Cl@)lllima,

where we took into account (3.2.5). Then, using the continuity of the trace application
from H*(K) to H'(0K) in a Lipschitz domain K = 2,2+ £ x | =%, L[ (cf. [14]) we get

T2 2

|l — @, < Nl ey < C@Nelisae. o

HI(FE,l) Hl(rs,l)
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Remark 3.2.3. The propagation operator P(«) is injective.

Proof. Indeed, suppose that P(a)gy = 0 for some ¢y € H/?(I'.g). Then, ut(a, ©)ls.
solves the problem (3.2.4) in B.; with ¢ = 0, which implies that uf(a,¢)|z , = 0.
From the unique continuation property it follows that ul (a, ) = 0 and, consequently,
¢o = 0. O

3.2.4.3 Another characterization of the propagation operator. Riccati equa-
tion

Due to the translation invariance of the domain B one has

uf (o, 9)|. = (Pa)"y, VYneN, VpeHY"*(.).

Fs,n

Then, the restriction of ul («a, ¢) to the cell C., can be computed as follows:
ul (v, cp){cm = ¢ (v, (P(a))™ ©) + e (a, (P(a)" ), vn e N*, Vo e HY*(T.,).

The continuity of the normal derivative of uf (c, ) across I'.; yields, in view of (3.2.40)),
that
Tlo(Oé) (P(a))2 + (TOQ(OZ) + TH(O{)) P(O[) + T01 (O{) =0. (3243)

This relation can be seen as the stationary Riccati equation for P(«). It turns out that
it can be used to determine the propagation operator P(«) without solving the problems
(3.2.4) once the local DtN operators are constructed.

Proposition 3.2.7. For o? ¢ o(A.) Uop the propagation operator P(«) is the unique
solution of the Riccati equation (3.2.43) in the set of operators in H/? (T'.0) with spectral
radius smaller than 1.

Proof. Suppose that there exists another compact operator P in H'/? (I'.0) with spectral
radius smaller than 1 satisfying (3.2.43). Then, for any ¢ € H'/?(T'.5) one can construct
the following function u € Ly (BZ):

ule,,, = €o <a, 15"*%0) + e (a, ﬁ"go) ,  VneN-. (3.2.44)

By construction, its trace on the boundary I  is ¢ and w is continuous across the bound-
aries I'; <“|ce,"> L= (u cm“) ‘an — Py, Vn € N*. Consequently, u € HL_(BX).
Moreover, its normal derivative is also continuous. Indeed,

9 pn—1 Dn

= (ule,) )| = Tal@)P e+ Tu(a) P,

n ' Ten
0
% (uyca,n-kl)

where we used the fact that the operator P solves the equation (|3.2.43)). Hence,

(g ()], = (G (), o e

e,n

= Too(&)ﬁnQO + Tlo(a)ﬁ”“go = —Tgl(a)ﬁ"_lgp — Tll(a)lgngo,

e,n
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which implies that u € H} ;. (BF). Let us show that in fact « € H) (BF). Since

g . Nn 1/n .
p(P) = n1_1>£1r100 | P ||£/(H1/2(FE’O)) < 1, there exists N € N and 0 < ¢y < 1 such that

||Pn||[’(H1/2(F€70)) < Cg, Vn 2 N

Therefore,

~ ) ~
> (el e, < C@Nlinry > & < oo,
n=N+1 o n=N+1
where we used and (3.2.39)). This proves that w € H) (BX) and —Au —a?u =0
in B since. Finally, it means that u solves in BF, i.e. u = ul(a,¢). Then,
from for n = 1 it follows that ul(a,¢)l; , = Py for any ¢ € HY2(I.y).
Comparing this with the definition of the propagation operator one conclude
that P = P(a). O

Proposition |3.2.7 permits to determine the propagation operator by solving Riccati equa-
tion instead of solving the problems . It is now easy to construct the DtN
operators A*(a). Indeed, comparing the definition of the DtN operators with the
definition of the local DtN operators one finds that

AT (a) = Too() + Tio(a) P(v). (3.2.45)

Thus, we do not need any more to consider unbounded domains in order to solve the

eigenvalue problem ({3.2.1)).

Remark 3.2.4. The spectral radius of the propagation operator can be used to charac-
terize the essential spectrum of the operator A, as well. It turns out that

o ¢o(A) & p(Pla) <1, o’ co(A) & p(Pla)) =1

This property can be used in the numerical computation of the essential spectrum of the
operator A*, but we will mostly use dispersion curves method as discussed below.

3.3 Discretization by a conform finite element method

From a practical point of view, the numerical method used consists in solving the nonlinear
equation
o? = "(a) (3.3.1)

by a Newton type algorithm. The equation (3.3.1]) corresponds to the equation (|3.2.34)
where the eigenvalues s, of the operator A* are replaced by those of its approximation
Arhdiscretized by a standard finite element method. The principal difficulty in the
construction of the operator A*" consists in the discretization of the DtN operators A*(«)
that we detail in Section [3.3.1] In the sequel we explain how to apply a Newton type
algorithm to the equation (3.3.1]). Finally, we briefly describe how to compute numerically
the essential spectrum of the operator A*.
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3.3.1 Discretization of the operator A#

In this section we will describe in detail how we perform the discretization of the prob-
lem ([3.2.28) without giving the numerical analysis which can be found in [22]. The first
step is the construction of the DtN operators using the relation ([3.2.45)). Thus, the local
DtN operators Tpo(a), Tho(cr) as well as the propagation operator P(«) have to be con-
structed. The construction of the operators Too(a), Ti9(cr) requires the resolution of cell
problems that are solved using a standard P; Lagrange finite element method.

3.3.1.1 Cell problems

Let T}, = {Tg}le be a triangular mesh of the domain C.. The set of all the vertices of the
mesh 7, will be denoted by M,: M, = {]\@}j\fz1 Let us introduce the following function
space:

Vi={oneC(C.), wnly islinear, 1< ¢ <L}, (3.3.2)
Clearly, V}, is a subspace of H'(C.) of dimension N. As usual, we consider the basis
B, = {w;, }jvzl in V}, which consists of continuous piecewise linear functions w;, such that

We will use the space Vj, (and its analogue for the domain C*) to construct internal
approximations (also called Galerkin approximations) of all variational problems that we
have to solve in our algorithm. The spaces of the traces of the functions in V}, on the
boundaries I'; o, I'. 1 will be denoted by

S}?:Span{wﬂrsyo, 1<y SN}, Si:Span{wﬂFe,l, 1 <j<N}.

To simplify the practical implementation of the DtN operator, we make the assumption
that the meshes of the boundaries I'. o, I'.; coincide. Moreover, if N; is the number of
vertices in the mesh of I'. y, then we suppose that the vertices situated on the boundary
I, are those with the index 1 < j < N; (going from up to down) and the vertices
situated on the boundary I'.; are those with the index N; + 1 < j < 2N, (going from
up to down as well), cf. figure For the functions w; corresponding to the vertices
situated on the boundaries I'. o, I'c; their traces on these boundaries will be denoted by

0 __ 1 _ ;
Yi = wi‘ra,w Y = wNﬁri‘rE,l ) I <i< Ny

Notice that all the other traces (of the functions w; with 1 < j < Ny on I'.y, of the
functions w; with Ny +1 < j < 2N; on I'. g and of the functions w; with j > 2N; +1 on
both boundaries) are zero. Hence,

S,?:Span{cp?, 1<i<NJ}, SizSpan{@%, 1<i<NJ}.

Let us start by constructing the solutions of the discretized problem (3.2.35) for ¢ €
SY U S}, Recall the variational formulation of the problem (3.2.35) (cf. (3.2.36))):

(Ves(a, o), VU>L2(Cs) —a? (&(a, p), U)L2(c5) = — (Vus(p), VU)Lg(CE) +a? (us(p), U>L2(CE) 5
Yo e HS(C.), (3.34)
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Ce

Ny

N

N2
[e0 [e, 1
N, Nz,

Figure 3.5: The mesh 7,

where €5(a, @) = es(a, p) — us(p) € Hp, (C.) and us(p) is a lift function in H' (C.) such
that

Us(P)lres =9 us(#)|pe1_s = 0. (3.3.5)

Discretizing of ([3.3.4)) consists in considering its restriction to the space V;” = V,NH}, (C.).
Thus, for ¢, € S9, § € {0, 1}, we search € (a, ¢p,) € VP such that

(Ver (o, on), VU)LQ(CE) — o (e, pn), v)LQ(CE)
= — (Vus(en), VU) e + o (us(ipn), V) 1ac.) - Yo e VP, (3.3.6)

Ny Ny
If o, = > ¢;¢?, then by linearity e%(a,pn) = Y cj/e\gyi(a), where ’ég’i(a) = el (a,gpf),
i=1 =1
1 <i< Ny, €{0,1}. Remarking that one can choose us (gpf) = Wj4sn,. Therefore, it
is enough to compute the 2N, functions €} (), 6 € {0,1}, 1 < i < N, solutions to the
following system of linear equations:
~h ~h
(V6§,i(a)7 ij)Lz(CE)_a2 (@5’7;(0[), wj)L2(CE) = — (VU}Z‘_HSNJ, ij)Lg(C5)+a2 (wi+5NJ7 wj)Lg(CE) s

1<j<N, j¢THUd. (337

N ~.
Let us decompose the functions €};(a) in the basis By: €};(a) = > Ej ;(a)w;. Clearly,
j=1

Egj(a) =0forj >2N;+1, 1 <i< Ny, 6 €{0,1}. Then, the problems (3.3.7) take the

form

(KP(a) — a®MP(a)) Ej(a) = Fi(o), (3.3.8)
where
Kij;, t,j22N;+1, M, 1,7 22N;+1,
KP=2% 65, 1<i,j<2N;, MJ=< 6y 1<i,j<2Ny,

0, otherwise, 0, otherwise,
K = (K, ) and M = (M, ;) are the rigidity and the mass matrices respectively defined as
Ki,j = (le, ij)L2(C€) s Mi,j = (wi, wj)LQ(Cg) s 1 < Z,] < N, (339)
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and the right-hand side F§(«) is the (N x 1)-vector defined as

Fi(a)=1 " (Kivsn, j — &*Miysn, ), 7 =2N;+1,
6, - 0, 1 <7 <2Ny.

Finally, the vector E%(a) of the coordinates of the solution es(«, ¢?) in the basis By, is
Ei(o) = Ei(a)+ I, 1<i<N;, 6€0,1,

where I} is the vector with the coordinates Iy, s, = 1 and I3 ; = 0 for j # i+ 0N,.

3.3.1.2 The local DtN operators
Recalling the definition (3.2.40)) and using the fact that e, (a, ¢) solves the problem (3.2.35)
with 0 replaced by v one easily gets

(Tys(a)p, ¥) = (Vey (o, ¢) , Viug (¢))L2(c5) —a® ey () , us (w))[,z(cg) )
Vo HY*(T.,), Vo€ HY*(T.5), (3.3.10)

where u; (1) is a function introduced in (3.3.5). We now define the approximated local
DtN operators T75(a) as (N; x Nj)-matrices the (7, j) matrix elements of which approach
the matrix elements of the operator T.s(c) computed on the functions from Sy, S}:

T35(0) (i g) = (Tys(a)gl ¢5),  1<i.j < Ny,
More precisely, they are obtained if one replaces in (3.3.10) ¢ and ¥ by ¢, and gp? respec-
tively, e, (a, @) by ezyi (o) and us (1) by wy,():
T35(a) (i, 5) = (Ve (@), Vwiian, ) e, — @ (5 (@) winan, ) e,
= ((K(a) — o®M()) EX()) (j + 6N), 1<i,j <Ny, v,6€{0,1}.
The next step is now to construct the approximated propagation operator Ph(oz) using
the discretised analogue of the Riccati equation (3.2.43)).
3.3.1.3 The propagation operator

We search the approximated propagation operator P"(a)) € My, (R), which is the propa-
gation operator corresponding to the discretized problem, as the solution of the equation

Tlo(e) (P"(@))" + (Tgo(@) + Ty () P'(@) + Tii(a) = 0,

completed by the condition
p(P"(a)) < 1. (3.3.11)

As described in [22], this equation is solved using Newton’s method in Banach spaces (in
our case the space My, (R)). Let F' be the following mapping in My, (R):

F: X = Tih(a)X? + (THh(a) + T (@) X + T ().
Then, given the n-th iteration X,, the (n + 1)-st iteration is found from the relation

FI(X,) (X — Xoir) = F(X,), (3.3.12)
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where F'(X,) is the Fréchet derivative of the mapping computed F' at X,,. It is defined
as follows:

F'(X) : h = Tip(a) (Xh+hX)+ (Toy(a) + (i () b, VX, h € My, (R).
Combining this with we finally obtain the equation for A, 3 = X, 11 — X
Tl () (XnAX g1 + A1 Xn) + (Tho(a) + T (@) Apsr = —F(X,,).
This, in turn, can be rewritten as
AN, BT +CA, D' = E,
where

A= (Th(a) + Th(a)) " Tha), B=XT,  C=ABT+1,
D=1, E=- (BT + A (BT + (Th(a) + T (a) " ng(a)) .

This equation is solved using the method described in [26]. The constraint is
taken into account by projecting of the obtained matrix at each iteration on the set of
matrices with the spectral radius smaller than 1. More precisely, if p (X,41) > 1, then it
is replaced by X,11/p (Xn11).

3.3.1.4 The DtN operators and the interior problem

The approximated DtN operators A*"(a) = A="(a) = A"(a) are now obtained using the
discrete analogue of the relation (3.2.45)):

A" (o) = Tgo (@) + Tig (@) P (av).

The discretised version of the interior problem (3.2.28]) is obtained from the weak formu-
lation by replacing the DtN operators A*(a) = A(a) by their discrete analogue A"(«).
We denote by V) the analogue of the space (3.3.2)) for the interior domain C¥:

Vi = {Uh c C(C_é‘), Uh|T; is linear, 1 </ < L“} ,

where L* is the number of triangles 7} in the mesh 7} of C#. The set of the vertices
of this mesh is denoted by M} = {M a }j\zl and the basis B} = {wé‘ }jv:l is constructed
analogously to (3.3.3]). To be able to match this mesh with the mesh 7, from the right we
need the number of vertices in the mesh of the boundary I'T to be equal to the number
of vertices in the mesh of I'y (which is N;). Similarly, the number of vertices in the mesh
I'~ should be the same as the number of vertices in the mesh of I'y (which is also N;).
We suppose for simplicity that the vertices that belong to the boundary I'_ are those
with the index 1 < N; (enumerated from up to down) and the vertices that belong to the
boundary I'T are those with the index N; + 1 < 2N, (enumerated from up to down as
well). Then, we have to solve the following problem:

(Vul®, Vo) + (A" (A2) ul® o) [ + (A (AD) ul? 0)[ - = (A1) (2P, 0), Vo e Vi

e
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If U is the vector of coordinates of u®" in the basis B, then this problem can be
rewritten in a matrix form as

(K" + L (A?)) U = (\")? MrUo”, (3.3.13)

where L («) is the (N# x N*)-matrix such that

. -
A @)oo BIETT
L”(a) - Ah(a) (J_)fl(i)’(J_)fl(]) ) 2’] € \7_7
0, otherwise,

and K*, M*" are the analogues of the matrices for the mesh 7. The problem
(3.3.13)) is a nonlinear generalized eigenvalue problem (the nonlinearity is contained in
the dependence of the matrix L on the spectral parameter). It is solved using the false
position method described below (cf. for, example, [59]).

3.3.1.5 False position method

Let ]ah bh[ be an approximation of a gap of the operator A# obtained as described in

g1 7e

section [3.3.2l In order to solve the problem ({3.3.13) we introduce the functions sz, (),
n € N, for a? € }a?,b?[ that correspond to n-th biggest generalized eigenvalue of the
problem

(K*+ L(a))U = »"(a)M"U. (3.3.14)

Thus, A" is a solution of the nonlinear equation

7 () = s (a), |7k (a) — o?| = r]%il{ll | () — .

Then, the problem is reduced to searching the roots of the function
fa) = (o) — o (3.3.15)

This function is piecewise continuous on the interval |a”,b2[. In order to find its roots
we shall first determine empirically the intervals where it is continuous, monotone and
has a unique root and then apply the false position method on each of this intervals (it
is impossible to apply the standard Newton’s algorithm since we do not have analytical
expressions for the derivative of the function s*(«)). Let [£, 5] be such an interval. Then,

we initialize & by &, 1 by 1 and put at n-th iteration

o fnf (nn) B 77nf (fn)
Ty = Fon) — (&) (3.3.16)
€n+1 = gna Tn+1 = Tn, if f (ﬁn) f(l'n) < 0, (3317)

Cnil = Tny  Npgl = M, if f () f(zn) <O0. (3.3.18)
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The limit of the sequence {z,} is the value A" which gives an approximation of \..

The initial interval [£,7n] can be chosen for example by plotting the function f(a). We
can also note that we expect to find one or two such intervals depending on the type of
the corresponding gap of the operator A* on the graph (cf. Theorem at least for
¢ small enough. The knowledge of the eigenvalues of the operator A" also gives an idea
about the location of the ones of the operator A and can help to choose the intervals in
question.

3.3.2 The essential spectrum

There are two ways of determining the essential spectrum of the operator A#. The first
one is based on the computation of the spectral radius of the propagation operator (cf.
Remark . Discretizing the interval of interest and computing the spectral radius
of the propagation operator at each point of the grid one finds if this point belongs to
the essential spectrum or not. However, this method requires the computation of the
propagation operator, and, consequently, the solution of the Riccati equation, for each
value of a. For this reason we privilege a more standard method which is based on
the Floquet-Bloch decomposition and the determination of dispersion curves. As it was
mentioned in Section [I.2.1] the essential spectrum of the operator A% can be decomposed

as
Oess (AL) = U An(e, [0, 7)),
neN
where A\, (g, 0) is the n-th biggest eigenvalue of the operator A.(6) defined in ((1.2.3). Recall
that for fixed € and n it is a continuous function of . Hence, the above characterisation
of the spectrum can be rewritten as

ess Alt) = I )\n 707 )\n 56 .

oo (42) = | | min 22,01, s 0, (2.0)
neN

Thus, it is sufficient to discretize the interval [0, 7] by the points 0 < 0 < 6y...0x <7

and compute the first Q eigenvalues of the operator A"(6;) (obtained after a discretization

of the operator A.(6;)) for each of this points. This will yield an approximation of the

beginning of the essential spectrum of the operator A%:

okeAn = {min An(e,0;), max An(g,ei)}. (3.3.19)

€ss € 1<K 1<i<K
1<n<@Q

In order to find approximations of the eigenvalues of the operator A.(6) for some 6 € [0, 7]
we use the mesh 7, described in section [3.3.1.1] However, we shall now take into account
the 0-quasiperiodic boundary conditions on the boundaries I'; o, I'. ;. It can be expressed
by the fact that the space V}, should be replaced by its #-quasiperiodic subspace

0 —10
Vh = {Uh € Vh, ,Uhll‘al =e Uh|Fs,o} .

Then, the weak formulation for the eigenvalue problem for the operator A.(6) implies
solving the following discretised problem for A\*(#) and u € V}¥:

(VU, vU)LQ(CS) = )\?(0) (u7 U)LQ(C€)7 Vv € Vhe
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From a practical point of view, the space V! is obtained from V}, by considering the basis
BY = {w;, j € [1,N;]U[2N; + 1, N]} in the space V}!, where

wj, J =2 2N;+1,
w,; = . .
w; + e Ywiy N, 1<y< Ny

Ny N

Decomposing « in this basis as v = ) U;w; + >, U;w,; and denoting by U the
j=1 j=2N;+1

(N — Ny) x 1 vector of coordinates U; (where the coordinates with N;+1 < j < 2N, are

excluded), we end up with the following generalised eigenvalue problem:

KU = \'(6) MU. (3.3.20)

Here K and M are (N — Ny) x (N — N;) with matrix elements defined as follows:

Ki,j = (Vﬁ;“ ij)Lg(Cs) , Mi,j = ({Di’ﬁjj)Lg(CE) , j € [1,NJ] U [2NJ + 1, N]

Once the matrices K, M are known, the matrices K , M can be constructed using the
relations

Ki,j7 7’7.7>2NJ+1
K- Kij+e"Kin,;, 1<e< Ny, JZ22N;+1,
Y Kig+ el Ky, 122Ny, +1, 1<7<Ny,

Kij+e"Kiin,; +e"K;jin, + Kitn, j+N,, 1<1e,j <Ny,

and its analogue for the matrix M. Now the generalized eigenvalue problem (|3.3.20]) can
be solved for each 6;, 1 < i < K which yields an approximation of the beginning of the
essential spectrum of the operator A# due to (3.3.19)). We remark however one drawback
of this method compared to the method based on the computation of the spectral radius
of the propagation operator: we do not know a priori how many spectral bands we have
to compute in order to cover the interval of frequences we are interested in. Here again
the knowledge of the spectrum of the operator A on the graph can give an approximate
idea, at least for & small enough.
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3.3.3 Summary of the algorithm

Let us now resume the algorithm of computation of the eigenvalues of the operator A*
and give some details of implementation in Matlab.

I Essential spectrum

e The function CalculSpectreEssentiel.m computes an approximation of the be-
ginning of the essential spectrum of the operator A# using the first N eigenvalues

An(g,0).

e The function Calc_spec_ess_R.m computes an approximation of the essential
spectrum of the operator A* on the interval [aZ, b2] using the spectral radius of
the propagation operator.

Using one of these methods one finds approximations of gaps of the operator A~.
To be precise, the result provided by these functions refers to the square root of
the spectral parameter. In order to pass to the spectral parameter, we should take
the square of the obtained result. Let us fix one of the approximated gaps, that we
denote by |a?, b*[, and look for eigenvalues inside it.

IT Discrete spectrum

(a) Let us start by plotting the function f(«) defined in on the interval
Ja,b[. This step can be skipped if an interval [, n] described in Section
can be found in another way.

Construction of the matrices K, M and K#, M* < KMA.m
for o« =a:pas: b < dessin_eig.m
compute »*(a) <« compute_eig.m which consists in
e construction of the matrices T/5(c) <« DtN_eig.m
— construction of the matrices A(a) and AP («)
— construction of the matrices Ey(«), E;(«)
— construction of the matrices Tgh (), T («), Th(a), TV ()

e computation of the matrix P"(a) < newtonl.m
(solving the Riccati equation)

e construction of the matrices L*(«)
e solving the eigenvalue problem < Matlab function eigs.m
end
(b) Once an interval [¢,n] is found, the false position method is applied on this
interval.
while (abs(f(x,)) > tol) or (abs(x,-x,-1) > tol) < quasinewton.m
compute x,41 (cf. (3.3.16)) <+ using compute_eig.m
compute &, 19, Mute (cf. (3.3.17)—(3.3.18))

end
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3.4 Numerical results

In this section we present numerical results obtained with a Matlab code which implements
the algorithm described above.

3.4.1 Validation of the computation of the local DtN operators

We take as a test geometry the square with a unit edge shown in figure [3.6]

y 1D 4
1

Fz 1—‘3
0 Fl 1 x

Figure 3.6: Test geometry: a unit square

The first test problem is the following:

Au =0,
ulr, = 1, (3.4.1)
u\FB =0,

anulrlum =0.

Its exact solution is ue,(x,y) = 1 — . We compute the matrix Ey(0) with the help of
the function DtN.m. It follows from the definition of the matrix Ey(0) that the sum of its
columns gives an approximation of u.,. It is shown in figure [3.7] In this case there is no
error due to the finite element approximation since the exact solution is linear.

The second test problem is

—Au = T,
ulp, = cos (%),
ulp, = cos (), (3.4.2)
u]m =0,
\ (9nu|r1 =0

Its exact solution is ue,(z,y) = cos (7). Let U, be the vector of values of wu,, at the
vertices of the grid 7p,:
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Figure 3.7: Solution of the problem (3.4.1) obtained with the function DtN.m using an
unstructured grid with A = 0.1

We compute the matrices Ej (

g), By (%) with the help of the function DtN.m. This yields
the following approximation of U,,:

Ny
U= (5 (5) cos (M0m0)) 1 i (5) cos (W00 )
=1

where E}, F} are the i-th columns of the matrices Ey, F) respectively. The solution U is
represented in figure [3.84] for an unstructured grid with & = 0.1. We study the L, and
H?' errors given by the relations

1/2

err_L2 = ((U—=Ue) MU = Ue)) ', err_H1 = (U — Ue)'K(U - er))l/g'
In figure the dependence of these errors on h is represented in a logarithmic scale.
As we see, when h — 0, the slopes are in agreement with the theoretic ones: 2 for the Lo
error and 1 for the H! error.

Next, we validate the computation of the operators 75, 7,6 € {0, 1} considering the test
problems

—Aug = wuyg, —Au; = wluy,

ug|p, = cos (kmy), uslp, =0, (3.4.3)
U0|r3 =0, U1|r3 = cos (kmy),

anUO|F1Ur4 - 07 8nu1|1“1u1“4 = 07

for k € N. The exact expressions for T.s(w)er, fi(y) = cos (kmy), are

T o8 (kmy), w > km,

T00<w)fk = T11<W)fk = cos (kﬂy)7 W= kjﬂ-?
1+ e2lel

|| cos (kmy), w < km,

e2lal — 1
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——— cos (kmy), w > km,
sin «
Tor(w) fr = Two(w) fr = § — cos (kmy), w =k,
laf
e
—2|a|m cos (kmy), w < km,

where a = +/(km)? — w2,

k] 0.4

0 0.1 0z

(a) Solution U obtained for an unstructured grid with A = 0.1

log e

———
—&— L, error
—&—H' ermor

o . . P SR TR

10 ' 10
log h

(b) Ly and H! error for different values of h

Figure 3.8: Numerical resolution of the test problem (3.4.2) using the function DtN.m



3.4. NUMERICAL RESULTS 105

We compute the Lo error

error_T.s = HT%(W)fk - Tvé(w)fl?“Lg(

Tsi2)

~ ((T%(w)Fk — 5OYE(w)) @ (Tl5(w)Fr — 5(5)3/7’%(@))1/2. (3.4.4)

y

Here T%(w) are the approximated local DtN operators computed with the function DtN.m,
Fy, is the vector of values of the function fj at the vertices M}, le%(w) is the vector of

values of T,s5(w)fx at the vertices M2 and S are the surface mass matrices for the
boundaries ['5 o defined as follows:

YY) = /so?soﬁ, 1<ij< Ny,  §e{0,1}.
Fsi2

In figure we represent the dependence of the error (3.4.4) on A for w =5, k = 2. The
slope in a logarithmic scale is 2.

log e
107

e error_TUD B

—5— error_TD N

-6
10 - — -
107 10" 10°
log h

Figure 3.9: Dependence of the error (3.4.4) on h

In figure we represent the dependence of the error on w for fixed k£ and h. We can see
that it has singularities at the points w that belong to the set {m/ m?2+n? me N, neN }
For these points w? is an eigenvalue of the problem

—Au = w?u,

ulp,, =0, (3.4.5)

anu’rlum = 0.
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Figure 3.10: Dependence of the error (3.4.4) on w: as expected, singularities are observed
at the points corresponding to the eigenvalues of the problem (3.4.5)
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3.4.2 Numerical computation of the essential spectrum

We now compute the essential spectrum of the operator A, ; for L = 2 using the function
CalculSpectreEssentiel.m. In figure[3.11]we represent the essential spectrum computed
for different values of € using the first 5 spectral bands. The intervals in blue correspond
to the values A such that A? belongs to the spectral bands and the intervals in white
separating them correspond to the values A such that the A? belongs to the spectral
gaps. In what follows we mean by representing the spectrum the representation of the
parameter A (and not A? which is the spectral parameter). For ¢ = 0 the spectrum of the
limit operator A, is represented.

0 0.02 0.04 0.06 0.08 0.1

Figure 3.11: Dependence of the essential spectrum of the operator A? on e: the first 4
gaps. For each value of ¢ an unstructured grid has been used with h chosen in such a
way that the error due to the discretization is very small compared to the effect due to e:
h =0.00125 for € = 0.02 and € = 0.04, h = 0.0025 for € = 0.06, ¢ = 0.08, ¢ = 0.1.

One can see that the spectrum of the operator A, ; is very close to the spectrum of the limit
operator for small values of € (more precisely, the convergence is linear as it is predicted
by the theory, cf. figure . However, we can notice a phenomenon that has not been
studied theoretically in Chapter : opening of a gap near the values {7N*}. These are
the points where the dispersion curves for the limit operator Ag touch (cf. figure .
As shown in figure [3.13] the size of these gaps is also linear in h.
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0 002 0.04 0.06 0.o0s 01

Figure 3.12: Dependence of the lower end of the first gap on e: linear convergence to the
lower end of the first gap of the limit operator A;.

BEGE ...................... ...................... ....................... .......................

525
]

i ; i i ;
0.02 0.04 0.06 0.038 0.1

Figure 3.13: Opening of a gap in the neighbourhood of the point 27.
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(a) e =0.1 (b) graph

Figure 3.14: Dispersion curves in the case L = 2 for the graph and the 2D domain with
e = 0.1: the points {\ = 7n, n € N*} where two spectral bands for the graph touch
become gaps for the 2D domain.

Another phenomenon concerns the eigenvalues of infinite multiplicity for the limit opera-
tor. Consider the case L = 0.5. Then, the operator A, has the following set of eigenvalues
of infinite multiplicity: o,, = {\?, A =2(2n+ 1), n € N} (cf. property 4 of Proposition
[1.3.4). An eigenvalue of infinite multiplicity can only become a spectral band in the 2D
case with e small enough. Indeed, as shown in [57], the dimension of the spectral pro-
jector on any interval is preserved for € small enough. On the other hand, a periodic 2D
operator cannot have eigenvalues. Thus, the only possibility is that the operator A, ; has
a small spectral band in a neighbourhood of an eigenvalue of infinite multiplicity. This
situation is shown in figure [3.15]

3.4.3 Numerical computation of the discrete spectrum

We now present the results for the discrete spectrum of the operator AL . In figure
the function f(a) defined in is represented in the first gap of the operator A 'in
the case L = 2, u = 0.25, ¢ = 0.1. We see from this graph that there are exactly 2 roots
of the function f in the gap which correspond to two eigenvalues. The interval [, 7] can
be chosen, for instance, as [1.4, 1.5] for the first eigenvalue and [1.9, 2] for the second one.
The eigenvalues computed for different values of € using the function quasinewton.m are
represented in figure [3.17] In figure 3.18 we show the convergence of the eigenvalues in
the first gap which is linear as predicted by the theory. In figure the eigenfunction
corresponding to the first eigenvalue of the operator A is represented.

In figure we represent the dependence of the eigenvalues on p €]0, 1[. As it is natural
to expect, the smaller y is (so, the stronger the perturbation is), the better the eigenvalues
are separated from the essential spectrum. When p is close to 1, the computation becomes
more costly since the distance between the eigenvalue and the essential spectrum is very
small.
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(a) Essential spectrum for L = 0.5

A
76
Tak ................... ..................................... [T ..
Tobo ................... ........................................................ e
?_ ............................................................................................
Bl B RTRURUUUUTUTUUR O EUUUTRURPURTPUPRY UU U .
BBl TN T UIUITRTRUY FOUUPPPUUORUUUIUIN FUTPURTTPRRRR L
6.4_ ............................................................................................ L.

L J :
57 i i I 1 1

0 0.02 0.04 0.06 0.08 0.1

(b) Zoom at the neighbourhood of the point A = 2.

Figure 3.15: Case L = 0.5: the size of the spectral band that appears in a neighbourhood
of the point A = 27 (which is an eigenvalue of infinite multiplicity of the limit operator
Ay) is linear in e.
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Figure 3.16: Function f(a) = »"*(a) — o? in the first gap of the operator A#_ for L = 2,
uw=0.25¢=0.1.

25 .................................................... e

05 ......................................................................

0 002 0.04 0.06 0.08 01

Figure 3.17: Eigenvalues of the operator A% _for L = 2, u = 0.25 (red asterisks) computed
with the function quasinewton.m. The values for € = 0 correspond to the limit operator
A~
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1 i i I L
o0z 004 0.06 008 01

Figure 3.18: Linear convergence of the eigenvalues of the operator A% in the first gap for
L=2 p=025as¢ec—0.

(a) e = 0.04, \; ~ 1.38

I
\
\
\

05

(b) e = 0.06, A; =~ 1.40

Figure 3.19: Eigenfunction corresponding to the first eigenvalue of the operator AL for
L =2 u=0.25
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Figure 3.20: Dependence of the eigenvalues in the first gap on u for L =2, ¢ = 0.1.

=
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T

Another question for which no theoretical answer has been given for the moment is what
happens for larger values of € when the spectrum of the operator A% is not close to the
spectrum of the limit operator. In particular, a gap that exists for small values of ¢ does
it still exist for any value of € (until the obstacles disappear)? The eigenvalues inside the
gaps that exist for the limit operator do they exist for any value of € or do they immerse
into the essential spectrum before the gap disappears?

In the cases that we tested numerically we saw that the gaps were present for any value
of € for which the obstacles are present, i.e. for e € |0, min{1, L/2}[. In figure we
show the dependence of the first two gaps on ¢ in the case L = 2. Of course, when ¢ is
close to 1 the computation becomes very costly since the size of the gaps is very small.
For any discretization taken we obtain reliable results only up to a certain value of € that
is smaller than 1. However, the existence of the gaps at least up to this value (0.9 in the
particular case represented in figure permits to conjecture that they exist for any
e < 1.

The behaviour of the eigenvalues is even more unclear. In figure we represent the
eigenvalues in the first gap of the operator AL, for L = 2, u = 0.25. It seems that
the eigenvalues immerse into the essential spectrum for some values of ¢ < 1 (the second
eigenvalue seems to disappear between € = 0.55 and £ = 0.6). Again, the analysis becomes
costly when the eigenvalues approach the essential spectrum. For this reason we cannot
distinguish between the case when the eigenvalues do not exist any more and the case
when they exist but are very close to the essential spectrum. For the second eigenvalue
the computation with a mesh of size h = 0.0025 gave the following results: for ¢ = 0.55
the upper edge of the first gap b1 ~ 2.995, the second eigenvalue Ay ~ 2.987, for € = 0.6
b1 =~ 3.1, the second eigenvalue was not found.
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(a) Dependence of the first two gaps of the operator A, s on ¢ for L = 2. The gaps
are present for any £ < 1.
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(b) Eigenvalues of the operator A, s in the first gap for L = 2, ;1 = 0.25 seem to
immerse into the essential spectrum at some € < 1.

Figure 3.21: Behaviour of the spectrum for large values of €.
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Comparison with the eigenvalues found from using asymptotic development

We will now compare the results obtained for the eigenvalues using the DtN operator
method described in this chapter with the results obtained from the asymptotic expansion
of the eigenvalue found in Chapter 2 We remind the algorithm of computation of the
first n terms of the asymptotic expansion.

Algorithm of computation of \™
I Initialization:

e A\ is an eigenvalue of the limit operator A*. It is computed by solving the equation
(1.3.55)) (we remind that according to the notation of Chapter 2] A should be replaced
by VA):

eV -1
g(VN) +cos V|

e 19 is the corresponding eigenfunction on the graph given by the relations ([2.2.40])—

(2.2.42). We represent it in the form 1}{'
(r —cos VA ) jeN,

~(0 . (0 .

a6y =1, bG) = ¢—

0), . 1 0), . . "
COS<T>

o U = ug-o), Vj € Z. We represent it in the form ([2.3.21):

J

U’ =1,  jeN.

IT Computation of the functions VVJ-jE solving the problems (2.2.18)), (2.2.19) : P; finite
elements. There are 4 problems to solve: and ([2.2.19) for j = 0. and for
j # 0. The solutions of these problems are unique modulo a constant. In order to fix
the missing constants, we add the condition

[y
o

IIT Fork=1:n
{)\(6), u® U® }i:ll are known
1) Computation of the right-hand sides of the far field problem for «*) and the near
field problem for U*) (see the proof of Proposition [2.3.1)):

e The function f*~1 in the form (2.3.24)-(2.3.25):
1) b(k 1)

o d(’“*”}, 0<l<k—1;

— Construction of the polynomials {af 7 Cro s dpy

— Construction of f(k b,
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The coefficients {c(k) JEZ, §€{+,—,0},1<l< [E} ,1<p< N} in the form

3,p:0,00 2
2.3.28|) with some N corresponding to the truncation of the infinite series in ([2.2.24]))—
2.2.26)):
. . _(k
— Construction of the coefficients 627;57@ 0<qg< k, 6e{+—,0} 1< < [£],
I<p<N;

— Construction of c(()]fgyu, de{+ -0}, 1<l<[E], 1<p<N.

The functions {g](.]f;_l)} , 0 € {+,—,0}, in the form (2.3.31)):
’ jEz

— Construction of the functions {ggﬁ;”, 0<g¢g<k—-1,0€e{+,—, 0}};

— Construction of {géﬁ;—l)}, 6 € {+,—,0}.

The functions {(Pg-k*l)} , in the form ([2.3.34)):
JEL

— Construction of the functions (ﬁ(]k_l), 0<qg<k—1,;

— Construction of (IDék_l).

The sequences {Eg.k_l)} , {A;kj:l)} in the form (12.3.36)):
JEZ ’ JEZ

— Construction of the polynomials qgg_l), CIX: 1)§

— Construction of E(()kfl), Agf;l).

2) A®) is given by the relation (2.2.60)):

92 ~(k— _
A0 = g, (Z =) - (g 1%u‘°>>Lg<ac>> |

jEL
3) Resolution of the far field problem for u(®):

We search u® in the form (2.34)(2.3.5). As explained in the proof of Lemma

2.3.1} the problem reduces to solving a linear system (2.3.17)) of size k x k. This
permits to find u*) at all edges of the graph G¢ except at the edge ey (since in

j = 1). To determine uék), one can use the transmission conditions at the
vertex v, . Let us note that there are two transmission conditions at the vertex v :
the jump condition (which is the same to the right and to the left of the vertex due
to the symmetry of the problem with respect to the axis y = 0, see Lemma [2.2.6))

and the Kirchhoft’s condition to determine one missing parameter Ef)k) (since %k) is
defined by the relation (2.3.8))). One can use any of these two conditions, and the
other one will be automatically satisfied since the far field problem has a solution
(the other condition is in fact equivalent to the compatibility condition ([2.2.60)).

4) Resolution of the near field problem for U®:
We search U® in the form (2.3.21]). Thus, there are k +2 problems to solve using P,

k
finite elements: k + 1 problems for the functions {L{ék)} (which permits to find
q=0

all the near field terms except Uék)) and the problem for Uék).

In figure we compare the results for the first eigenvalue A, in the first gap obtained
using the DtN operator method and the asymptotic expansion of the eigenvalue.
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(a) Dependence on ¢ of the eigenvalues computed with the DtN method and of the first several terms
of the asymptotic expansion.
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Figure 3.22: Comparison of the numerical approximations of the first eigenvalue in the
first gap of the operator AL  computed with the DtN operator method and with the
asymptotic expansion of the eigenvalue for L = 2, u = 0.25, ¢ € [0,0.6]. The black curve
is obtained using the DtN operator method and the coloured curves correspond to the

first terms of the asymptotic expansion of the eigenvalue, " A® e for 1 < k < 5.
k=0






CHAPTER 4

GUIDED MODES IN OPEN PERIODIC
LINEIC WAVEGUIDES: THE 2D CASE

In this chapter we study the problem creating of guided modes in the domain 2* repre-
sented in figure This domain, supposed homogeneous, can be seen as a perturbation
of the 2D periodic domain . (represented in figure |4.1a)) defined by

Q. =R*\ S.,

S= U Bi-gx[5+55-5+0Gk) >0 L>0
(.k)€z?

e being a small parameter. The domain . is R? minus an infinite set of rectangular

7]

! '
—I
.y ie y te
H €
L L
(a) The periodic domain Q. (b) The perturbed domain Q#

Figure 4.1: The purely periodic domain (2. and the perturbed domain Q.

obstacles (of size (1 —¢) x (L —¢)) placed periodically with the period 1 in the x-direction

119
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and the period L in the y-direction. The distance between two consecutive obstacles is
e. The domain ¥ is obtained from (). by changing the distance between two neighbour
columns of obstacles from ¢ to pe with g > 0 and simultaneously modifying the width of
the obstacles of these two columns from 1 — ¢ to 1 — (1 4 p)e/2 (the total width of the
two columns is then preserved):

Qf =R*\ {SPTuUSH},

sem=J 145 -] x [+ 5.5 - 5] - GikD),
JEN
keZ

where wgb is the weight function defined in (|1.3.1)). Neumann boundary conditions are
imposed on the boundaries of the obstacles.

Our goal is to prove the existence of guided modes. By a guided mode we mean, roughly
speaking, a solution of the scalar wave equation,

2
YU _ny woor, 2 o, (4.0.1)
at2 an a0k

which propagates along the perturbation (in the y-direction) and is confined in the
transversal direction (z-direction). Thus, it should have the form of a plane wave prop-
agating in the y-direction multiplied by some function v(z,y) periodic in the y-direction
with period L:

u(w,y, t) = ez y),  v(e,y) = v,y + L). (4.0.2)
To express the fact that the solution is confined in z-direction we impose the condition
NS LQ (Bg) ,

where B is a periodicity band of the domain Q¥ (cf. figure which can be formally
described by the expression

Remark 4.0.1. Notice that the choice of the periodicity band is obviously not unique.
In particular, we could have taken a periodicity band that has a ladder shape. However,
the periodicity cell of the band B* which has the form of a cross turns out to be more
convenient for numerical simulations.

One can separate in (4.0.2) the harmonic factor in time to get

u(z,y,t) = e“o(z,y),  O(x,y) =e P y(z,y), (4.0.3)
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Figure 4.2: Periodicity band (grey area)

where the function v is S-quasiperiodic:
U(w,y + L) = e 0(z,y).

Then, after plugging (4.0.3)) into the equation (4.0.1]), one gets the following problem for
the function v € Lo (B*):

AD = —w?D,
Uy =e 0y,
on OB\ {ZUS'} .
Here
s=Up-%a+ ] (-5 T=U -5 < (g
jEN jEN

Thus, one ends up with an eigenvalue problem for the Laplacian in the periodicity band B*
with S-quasiperiodic boundary conditions on the upper and lower parts of the boundary
for 8 € [0, 7]. More precisely, one has to study the spectrum of the following operator:

AL(PB) : Lo (BE) = Lo (BE),  Al(B)v = —Aw,

ov
D(Asw)):{veﬂz(zsz), o -0,
OB\ [SUSY}
. ) o,
vl = e Py, 8_;} = _lﬂa—z }
Y s

We will show (cf. Theorems [4.1.2] |4.1.1] and |4.1.3) that for any 8 € [0, 7], for any k € N
there exists €, > 0 such that for ¢ < ¢ the operator A#(5) has at least k gaps and at
least one or two eigenvalues in each of these gaps.

As for the ladder, the study is based on asymptotic analysis: as € — 0, the domain B
shrinks to a graph and the spectrum of the limit operator defined on this graph can be
computed explicitly. The essential spectrum of the limit operator is discussed in Section
and the discrete spectrum in Section This will permit to derive existence
results for the operator A#(f) in Section m In Section we present numerical
results for the operator A%.

4.1 Existence results

When ¢ — 0 the domain B* shrinks to the graph Gz = (| B shown in figure .

e>0
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Figure 4.3: The limit graph G

We will use the following notation. We enumerate the vertices by the index j € Z, 7 =0
corresponding to the perturbed vertex. The value of the function u at the j-th middle
vertex is denoted by u;, its value at the upper vertex by uj and at the lower vertex by u; .
The horizontal edge joining the vertices j and j + 1 is denoted by e; +1 and the function

on it is denoted by u; +%(s), the local variable s taking values in [0, 1]. The vertical edges

above and below the vertex j are denoted by ej and e respectively and the function on
this edges is denoted by u;“(t) and wu; (t) respectively, the local variable ¢ taking values in
[—L L] (t = 0 at the middle vertex). We denote by £, the set of the edges of Gp.

Similarly to the case of the ladder, the appropriate functional spaces are

L5(Gr) = {u: Jullygy <o}, H2(Ge)={ueC(Gr): lulfigy <o},

2 _ 12 —12 2
lullze(cm) = Z (wm“g ||L2(ej) + wj [|u; ||L2(ej—) + ||Uj+§||L2(ej+%)) ;
jez

HUH?*{?(GB) = Z (Hu;erz(e;r) + HU;|’§{2(€;) + HUjJr%”?p(ejJr% )> .
JEZ

The limit operator A*(B) : Ly (Gg) — L% (Gp) is now defined as

(A" (B)u)l, = = (ule)”, Ve € &y,

D(4*(9)) = {u € H (G ; (411)
uy =ePuy, (W) (5) = ey ) (<5), Vi€Z,  (41.2)
W5 (0) = s (1) + wh () (0) = w (u7 ) (0) = 0, ¥j € Z} . (4.1.3)

The relations (4.1.2)) express the quasiperiodicity and the relations (4.1.3) are the Kirch-
hoff’s conditions at the middle vertices. Notice that by definition of H* (Gg) the condition
(4.1.1)) implies the continuity at the middle vertices.

As previously, we start with the explicit computation of the essential spectrum of the
operator A(/3) which turns out to have infinitely many gaps for any 5. The computations
in this section will be very similar to the ones done for the ladder in Section [I.3] We will
still repeat it in detail for the seek of completeness. Then we prove that the perturbed
operator has one or two eigenvalues in each gap.
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4.1.1 The essential spectrum of the limit operator

As usual, due to a compact perturbation argument the study of the essential spectrum of
the operator A*(() is reduced to the study of the spectrum of the non-perturbed operator
AY(B) (corresponding to the case y = 1) that will be denoted by A(3).

Proposition 4.1.1. For any p >0, g € [0, 7]

Oecss (A"(B)) = 0ess (A(B)) -

For this reason, we start by determining the (essential) spectrum of the operator A(f).

4.1.1.1 Computation of the spectrum of the non-perturbed limit operator

According to the Floquet-Bloch theory, in order to determine the spectrum of the operator
A(B) one has to study a set of problems on the periodicity cell Cs that consists of four
edges: Iy = [—3,0] x0, I, = [0,3] x 0, [ =0x [-£,0], I; =0 x [0, £]. A function on
the cell is defined by its four restrictions on the edges of the cell: u = {Uz‘}j;l (cf. figure

7).

Le Ch ®

2
[4 u4

o o ° ° o] °
1 1
S # o 1, 5 U, u;

1, U,

Le ®

2

Figure 4.4: Periodicity cell Cp

The corresponding functional spaces on the cell are defined as

4 4
Ly (Cp) = {u : Z ||ui||%2(1i) < oo} . H?*(Cp) = {u e C(Cp): Z ||u2~||%{2(12,) < oo} :
=1 =1

We have to determine the spectrum of the operator family Ag(6) : Lo (Cs) — Lo (Cg),
6 € [0, 7], defined as

As(O)yu = —u",

2
1 —10 1 /
U2 (5) =€ U (—5) y U
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Proposition 4.1.2. For 0,8 € [0,7], A\* € a(Az(0)) \ {0} if and only if X\ > 0 is a

solution of the equation
sin A (cos f — cos (AL)) = sin (AL) (cos A — cos @) . (4.1.7)
The point \* = 0 belongs to o(Ag(0)) if and only if 6 = 8 = 0.

Proof. Searching the eigenvalues of the operator Az(6) implies solving the ordinary dif-
ferential equation
u” + Nu=0 (4.1.8)

on each edge of the cell Cz. We first consider the case A # 0. We have:

uy(x) = 1™ 4 dye”, ze[-1,0], (4.1.9)
Uy () = o™ 4 dye™ ™, z e [0,3], (4.1.10)
us(y) = cse™ + dse ™™, ye [-£,0], (4.1.11)
ug(y) = cs™Y + dye™™, ye[0,1]. (4.1.12)

The continuity of the eigenfunction at the vertex x = 0, y = 0 implies the relations
C1+d1 :C2—|—d2263+d3:C4+d4. (4113)

The quasi-periodicity conditions (4.1.4)), (4.1.5)) lead to the following relations:

62 e M2 = = (016_“/2 i dlei)\/Q) ’ (
CaeM2 _ e iN2 = b (Cleﬂ'xﬂ _ dlei)\/Z) ’ (
c @M Qe N2 = 7B (cg,e’i’\L/2 + dgei’\L/Z) , (4.1.16
g€ /2 eI — oif (Cge—i)\L/2 B dSGiAL/2) ' (

Finally, we take into account the Kirchhoft’s condition (4.1.6)) which can be rewritten as
Cg—d2—01+d1+C4—d4—03+d3:O. (4118)

Let us denote
o =e" v =e?, z=e".

Then, the relations (4.1.14)), (4.1.15) imply that

c1 = Q20 d; = azd,. (4.1.19)

Analogously, the relations (4.1.16)), (4.1.21)) imply

cs = vzles, ds = vzldy. (4.1.20)
Taking into account (4.1.13]), we get:
c(az—1)=dy(1-az), (4.1.21)

e (v2h = 1) =dy (1 —72") . (4.1.22)
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Combining the relations (4.1.13), (4.1.18]), (4.1.21)), (4.1.22) we arrive at the following
linear system of four equations for the unknowns co, do, ¢4, dy:

o+ dy —cy —dy =0,

co(az —1)+do(az —1) =0,

C4 (sz — 1) +d, (72L — 1) =0,
(l—az)+dy(az—1)+ca (1 —72") +dy (725 = 1) =0.

The criterion of existence of a non-trivial solution is:

1 1 —1 —1
az—1 az—1 0 0

0 0 vzl —1 4zt -1
l—az az—1 1—vzF ~zF -1

D(\) =0, D(\)=

Let us compute the determinant D(\). We have

1 1 1 1 1 1
D) = —(az=1)| 0  ~zF—1 4ZL -1 |+(az—1)| 0 ~zF—-1 4zt -1
az—1 1—~2F ~zl -1 l—az 1—qz AzF -1
=(1—az)(2+2y" +ayz (2" = 7") —v (32" +7"))
+ (az —1) (2 + 292 + ayz (EL — ZL) — (BEL + zL)) ,

D(\
(0 = (1—az) (4Ry + 2iaz]z" — (328 +2"))+(az—1) (4Ry — 2i2S2" — (32" + 27))
v
= 8iaRSZ + 4iSz" + 8iaS2 ! + 4ia?I7",
D(\
4.( ) _ = 2RYQ7 + a7 + 282" + ol = 2 (RS7 + RaQz" + 325
iy

Consequently, the condition D(\) = 0 is equivalent to the relation
RYIZ 4+ RaIz" + I8 =0,

which leads to the relation (4.1.7) for A # 0.
If A =0, instead of the relations (4.1.9)—(4.1.12)) we have

uy(z) = ¢ + dyz, T € [ % }
us(z) = co + do, ze[0,1],
uz(y) = c3 + day, ye[-%,0],
ug(y) = ¢4 + dyy, ye[0,3].

The continuity at the vertex = 0, y = 0 implies that ¢; = ¢, 1 < ¢ < 4. From the
quasiperiodic conditions it follows that

d2 = B_iedl, d4 = G_iﬁdg, d1 =C (1 — Gw) s dgL =cC (1 — eiﬁ) . (4123)
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Finally, Kirchhoff’s condition gives

—dy+dy —ds +dy =0, (4.1.24)

After injecting (4.1.23) in (4.1.24) we get

—1
0(0059—1—1—%):0.

L

Hence, there exists a non-trivial solution if and only if # = § = 0. This finishes the
proof. O]

Remark 4.1.1. One can notice that if L € Q, then the set {\ : A\? € 0(A45(0))} is
periodic. Indeed, this is due to the fact that both the left-hand side and the right-hand
side of (4.1.7)) are periodic with the same period.

We can now find the spectrum of the operator A(/3) due to the decomposition

o(AB)) = |J o(As09). (4.1.25)

0€[0,7]

Thus, the point A? (different from zero) belongs to the spectrum of the operator A(f) if
and only if there exists a value of # such that the relation (4.1.7)) is verified.

In the rest of this section we will use the following notation:
S={m,neN}, £ =5\{0}, Es={£f4+Z2 neN}, T5=235\{0}

Proposition 4.1.3.

1IN, A€ USs) C o(A(B)).

2. For any B € [0,x], the operator A(B) has infinitely many gaps whose ends tend to
mfinity.

Proof.

1. For A # 0, A € ¥* U X3 the equation (4.1.7)) is obviously verified for cos = cos . The
point A = 0 belongs to ¥* U g if and only if 5 = 0. At the same time, according to

Proposition 0 € o(A(p)) if and only if 5 = 0.

2. Let us consider two cases:

a) 5 ¢{0,m}:

Consider A, = 7, n € N*. There are two possibilities:

(i) A, ¢ X*: then, the right-hand side of the equation (4.1.7)) equals to zero, whereas
the left-hand side is different from zero for any 6 € [0, w]. Consequently, there exists
a gap of the operator A(f3) containing the point \2.
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(ii) A\, € X*: in this case it follows from the property 1 that A2 € o(A(B)). We are
going to show that the point A2 is an isolated point of the spectrum of the operator
A(B), so that there exist gaps to the left and to the right of it. Setting A = \,, + 9

in (4.1.7) we get:

cos f3 cos
———— +sin (0L
cos (A, L) +sin )cos n

— sin (5(L + 1)). (4.1.26)

If 0 is small enough (but different from 0) this equation cannot be verified for any
0. Indeed, for  # 0 it can be rewritten as

cos 3 —cos(5L)zsm(5L) <cos5— COSQ>'

cos (A, L) sin 0 cos A,

Since |cos ] < 1 and |cos A\, | = | cos (A, L)| = 1, the limit of the left-hand side as
0 — 0 is negative, whereas the limit of the right-hand side is non-negative for any
0 with a uniform bound in # for § small enough:

sin (0L) cos 6 sin (0L)
_ > _ ’
- <cos§ o )\n) > (cosd —1), Vo € [0, 7]

Hence, the equation (4.1.26)) does not have solutions for § small enough. This proves
the existence of gaps of the form |A\2 — I A2[| |A\2 A2 + [F[ for some [, ;" > 0.

Thus, we see that for any n € N* there exists a gap of the operator A(fS) of the
form A2 — [~ N2+ 0, N2 — 1 N[ or J]A2, N2 + [ with [, 7 > 0. We also know
from the property 1 that there exists an infinite sequence of points tending to infinity
and belonging to the spectrum of the operator A(/3). This proves the existence of an

infinity of gaps of the operator A(p) for g ¢ {0, 7}.

b) g€ {0,7}:
For § = 0 the equation (4.1.7)) takes the form

sin (2£) cos (2£) (cos A — cos ) = sin Asin® (&£), (4.1.27)
and for § = m it takes the form

sin (2£) cos (&) (cos A — cos ) = —sin A cos® (2L). (4.1.28)

It can be shown that the operators A(0) and A(w) have gaps that contain some
neighbourhoods (or deleted neighbourhoods) of the points {A?, cos (%) =0} and
{)\2, sin (%) = O} respectively. Indeed, in the neighbourhoods of these points the

relations (4.1.27) and (4.1.28)) can be rewritten as
cos (2F) (cos A — cos§) = sin Asin (2F), (B =0), (4.1.29)

2 2

sin (2£) (cos A — cos ) = —sin A cos (2£), (B =m). (4.1.30)

Comparing these relations with the relations (1.3.12), (1.3.59)) characterizing the spec-
tra of the operators A, and A, respectively, we see that they coincide up to a factor
2. This factor being unimportant in the proofs of Propositions |1.3.4] (2), [1.3.12] (2),
the same argument (together with the property 1) shows the existence of an infinity
of gaps for the operators A(0), A(m).
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]

We will come back to this similarity of the relations (4.1.29)), (1.3.12)) and (4.1.30)), (1.3.59)
which implies some relation between the symmetric case and the 0-quasiperiodic one, as
well as between the antisymmetric case and the m-quasiperiodic one (see Remark 4.1.6)).

Proposition 4.1.4. The operator A(f) has the following set of eigenvalues of infinite
multiplicity:
opp(A(B)) = Xis(8) U Eema (),

where
(2 aes, sn(L) =0}, Fenl
Yis(B) =< {N?/ A€ X* cos(AL)= -1}, B=0, (4.1.31)
{N2/ Xex* cos(AL) =1}, B =m,
and
0, B €0, x|,
Yemp(B) = {N?/ X #0, cos(AL) =1}, B =0, (4.1.32)

{N/X#0, cos(\L)=—-1}, pB=m.

The eigenvalues of the set X;5(B) are isolated points of the spectrum whereas the eigenval-
ues of the set Yemp(B) are embedded (interior points of the spectrum,).

Proof. The point \? is an eigenvalue of the operator A(3) of infinity multiplicity if and
only if it is an eigenvalue of the operator A(3(6)) for any 6 € [0,7]. It follows from
Proposition that 0 is not an eigenvalue of infinite multiplicity for any g € [0, w]. For

A # 0 it means that the equation (4.1.7) is satisfied for any 6 € [0, 7]. This is possible in
two cases:

(a) sin A =sin (AL) =0 and cos(AL) # cos f3;
(b) cos(AL) =cosS and sin(AL)=0.

In both cases (and only in this cases) the left-hand side and the right-hand side of
equal to zero simultaneously and independently of 6 € [0,7]. The case (a) leads to the
set 3;5(8). We have already shown in the proof of Proposition [4.1.3] (2) that these points
are isolated points of the spectrum. The case (b) leads to the set X.,,,(5). Let us show
that the points of this set are interior points of the spectrum. Consider § € {0,7} and
Ao such that cos (AgL) = cos f = £1. Then, the equation for A = Ao + 0 takes the
form

cos ) = cos A — sin A tan (%L)
It is clear that if [cos A\g| < 1 then this equation admits a solution when 0 is small enough
(since the absolute value of the right-hand side is smaller than 1 for ¢ small enough). If
|cos A\g| = 1, then the last equation can be rewritten as

cos ) = cos Ay (cos§ — sin d tan (%L)) )

and again it admits a solution when ¢ is small enough. This shows that the points of the
set Yemp(B) are interior points of the spectrum. O
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The following assertion is an immediate consequence of the decomposition (4.1.25)), Propo-

sition and property 1 of Proposition [£.1.3]
Proposition 4.1.5. \? € o(A(B)) if and only if one of the following possibilities holds:
(Z) Are X’ UEﬁ;

(11) A € Ry \ (2 UXp) is a solution of the equation

orps(A) = fo(A), (4.1.33)
for some 6 € [0, 7|. Here
B sin (AL)
PrsN) = cos § — cos (AL)’ A g,
fa()\)_ﬁ A€ {\/ cos\ # cosB}.

cos \ — cos@’

As in the case of the ladder (cf. Proposition a simple geometric interpretation
can be given to Proposition [1.1.5] Again, the spectrum is obtained as the image by the
function z + 2?2 of the closure of the projection on the axis of positive abscissas of the
intersection of the the domain D with graph of the function orp:

N eo(AB) & e D,\{0}

where

D,={x: (x,¢.(\) €D}, D=|]JD;,

neN

Dt ={(z,y)/ = €lmn,m(n+1)[, y € [fT(x),+oo[} U (mn,0),
D, ={(z.y)/ z €lmn,a(n+1)[, y € |00, f (z)]},

f*(x) = tan (552 | z € [mn,w(n+1)],
[~ (z) = —cotan (=22), =z €]mn,m(n+1)].

An example illustrating this geometric interpretation is given in figure
Similarly to Proposition [1.3.8 two types of gaps can be distinguished.

Proposition 4.1.6. An interval |a,b[ is a gap of the operator A(B) for 5 € [0, 7] if and
only if [a,b) N X5 = 0 and one of the following possibilities holds:

I There exists n € N such that n < \/a < Vb < w(n + 1), and ¢ 5(v/a) = f+ (\/a),
o1.5(V) = [~(VD);

IT (i) There exists n € N such that 7n = v/a < Vb < w(n + 1), and é3(v/a) < 0,
¢1.5(Vb) = [~ (Vb);

(ii) There exists n € N such that 7n < \/a < Vb= 7(n+1), and ¢r 5 (v/a) = f+ (Va),
¢r,s(vb) = 0.
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Figure 4.5: The images of the spectral bands by the function x + +/x are given by
the closure of the projection on the axis of positive abscissas of the intersections of the
function ¢, 5 with the domains D, , D, .

Remark 4.1.2. If 8 €]0, 7], then 0, = min o (A(f)) > 0. According to Proposition [1.1.6]
the interval ]0,0,[ is considered as a gap of type I/ (it satisfies the condition I1(7)).
Strictly speaking, this is false: o, is the bottom of the essential spectrum. Being aware of
this inaccuracy, we will still call the interval |0, o,[ a gap. This will permit us to study the
number of eigenvalues of the perturbed operator inside this interval without considering

it as a particular case (cf. Theorem {4.1.1)).

The proof of Proposition is based on the following lemma (which is an analogue of
Lemma for the ladder).

Lemma 4.1.1. The point A3 is the lower end of a gap of the operator A(f3) if and only if
one of the following possibilities holds:

(Z) )\0 S R+ \ (Z U Es) and ¢L,,6’<)\0) = f+(>\[)),'
(i) Ao € X\ Xg and ¢r,5(Ao) < 0.

Similarly, the point N2 is the upper end of a gap of the operator A(B) if and only if one
of the following possibilities holds:

(1i1) N € Ry \ (X2 UX5) and ér.5(Mo) = f~(No);
(1v) Ao € X*\ X5 and ¢r 5(No) = 0.

Without giving a detailed proof (which is an obvious modification of the proof of Lemma
1.3.2) we mention that it is based on the properties of the function ¢ g which has in
general the same behaviour as the function ¢;. More precisely, it is a 2f—periodic function

defined on R\ ¥4. In each interval]—% —1-2”7",%4- 2”7”[, }%—l— %T",—%—Fw ,n €L,
1)

it is continuous and strictly decreasing and takes all the values in R (cf. figure

Remark 4.1.3. If § €]0, 7], then according to Lemma [4.1.1} 0 is the lower end of a
gap since it satisfies (it) : 0 € X\Xg and ¢ 3(0) = 0. Similarly, o, = mino(A(f)) is
the upper end of a gap since the cases (i), (iv) characterize all the points A such that

A2 — 6, A% No(A(B)) = {\?} for some § > 0 (cf. Remark [£.1.2)).
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/ \ (DL]ﬁ
/F | \
T \E‘ 21
Pup N
(a) Gap of type I (b) Gap of type I11(7) (¢) Gap of type I1(ii)
(m < Va < Vb < 2n) (m = a < Vb < 2n) (m < a < Vb= 2n)

Figure 4.6: Illustration for Proposition m types of gaps.

4.1.2 The discrete spectrum of the limit operator

We now come back to the perturbed operator A*(3). We are interested in determining its
discrete spectrum. If A\? is an eigenvalue of the operator A#(f3), then the corresponding
eigenfunction u € D (A*(3)) solves the equation u” + A\?u = 0 on each edge of the graph
Gg.

Case A # 0

In this case the eigenfunction u it has the form

uj+%(s) 41 sin (As) + b; L1 c08 (As), s €[0,1], jEZ, (4.1.34)
uj (y) = ¢ sin (Ay) + d cos ()\y), e [0,%], j ez, (4.1.35)
u; (y) = ¢; sin (Ay) + d; cos (Ay), e [-%,0], jer. (4.1.36)
The continuity of an eigenfunction at the vertices (4,0) implies
bi1=a;_1sinA+b;_1cosA=dj =dj, j €. (4.1.37)

Thus, we will denote d; := d = d, j € Z. After plugging (4.1.35)), ([#.1.36) into the
quasiperiodicity conditions (4.1.2)), we get

(c +e e ) sin (2£) + djcos (&) (1 — ) =0, JjEZ, (4.1.38)
(c;r e e )cos (L) —d;sin (&) (14 _’5) =0, jEeZ. (4.1.39)

Finally, from the Kirchhoft’s conditions we get

w! (¢f —¢5) a1 —a;_1cosA+djysinA =0, Jj €Z. (4.1.40)
Let us denote

Y, ={%, neN}.
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We will show that the set 3* U3 can be excluded from the consideration while searching
the eigenvalues of the operator A*(f3). Indeed, due to Proposition we know that
the sets X* N X, for 5 €]0,n[ and ¥, for § € {0, 7} correspond to eigenvalues of infinite
multiplicity. The following Lemma states that the points of >* U, which are not covered
by these cases do not correspond to eigenvalues of the operator A*(f).

Lemma 4.1.2. Suppose that one of the following assumptions holds:
(i) Bel0,m], e X*\X;

(i) B €], [, AeXp\X"

Then, A\? is not an eigenvalue of the operator A*(B) for any p > 0.

Proof.

(i) Since sin (AL) # 0, one can derive from (4.1.38)—(4.1.39) the following relations:

tan (’\L)

ci =a*d;, o= % (tan (25) (1+e77) + 2
2

) . VjEeZ,  (4.1.41)

_ _ 1 ; 1—¢¥ ,
c;, =a dj, « :§<—tan(7’:) (1+€5)+@), Vj € Z. (4.1.42)
We have then
uy (y) = d; (o sin (Ay) + cos (\y)) , ye[0,%], j €L,
uj_(y) =d, (a sin (Ay) + cos ()\y)) , Yy E [—%,O] , j €.

On the other hand, it follows from that ]bj+%| = |d;| =d, Vj € Z. Conse-
quently, one necessarily has d = 0 (otherwise u ¢ Ly(Gg)). Thus, b, 1 1 =dj = c =0,
Vj € Z. Finally, from the relation (4.1.40) we get Gjp1 = a; 1 COS)\ Vj € Z, Wthh
implies |aj+%| =a, Vj € Z. If a # 0 then u ¢ Ly(Gp). Otherwise u = 0.

(i) If sin (&%) = 0, then it follows from that d; = 0, Vj € Z (since 1 —e™" #£0).
Similarly, if cos (’\L ) = 0, then it follows from that d; = 0, Vj € Z (since
1+ e % £ 0). Consequently, the relations imply that bj+% = Q1 = 0,
Vj € Z (since sin A # 0). Next, it follows from that cji =c, VjeZ If
sin (3£) = 0, then implies ¢; (1 — e ) =0, Vj € Z. If cos (3F) = 0, then
(4.1.38) implies ¢; (1 + e_w) =0, Vj € Z. In both cases we get ¢; =0, Vj € Z, and,
consequently, u = 0.

m
For A\ ¢ ¥ UY one can express the coefficients { jy L, bj+ y G s dj} in terms of the values
{u;}:
1 :l: :t .
jp1 :m(ujﬂ—ujcos)\), biyi=dj=u;, c=au, JEZ, (4.1.43)
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where a* are defined in (4.1.41)—(4.1.42). Then, the relations (4.1.34)—(4.1.36) can be

rewritten as

sin A\(1 —s sin (As .
uj+§(5) = uj#x Uj+1 sir(l)\ ), s € [0,1], VieZ, (4.1.44)
sin (A (2 — by .
ut(y) =y, iin((Q’\L) ) j;l;légi ye[0,L], Vi €Z, (4.1.45)
2 2
oy S (G Hy)  sin(Ay) L .
U (y) = u; i ()‘TL) — llj m Yy e [—5,0} , \V/j €. (4146)

After plugging (4.1.43)) into the relation (4.1.40) we end up with the following finite

difference equation:

Wi+ 205w +wy_y =0, VjeZ7, (4.1.47)
w; +2g5(Mup +uy = 0. (4.1.48)
Here
gs(A\) = —cos A + sin A(cossif(;;;)s (/\L)), AEXUXL,
g5(\) = _COS)\+Msin)\(CoSsif(j\£;)s O\L)), Ag XU,
Case A =0

If 0 is an eigenvalue of the operator A#(3), then the corresponding eigenfunction has the
form

ujp1(s) =u;(l—s) +ujps, s €[0,1], Vj € Z, (4.1.49)
2 2u’

uj (y) = vy (1 - fy> + ij, ye[0,L], Vj € Z, (4.1.50)
2 2u;

uj (y) = u; (1 + fy) -5 ye[-%0], VjeZ. (4.1.51)

From the quasiperiodicity conditions (4.1.2)) we find

P _ 1+e®
uj = 2 uj, uj = 2 YR

jez.

Taking into account the Kirchhoff’s conditions (4.1.3)), we get a finite difference equation
again:
wh .
W, — 2 (1 +Y- cosﬁ)) wtu_, =0, jEZ (4.1.52)

Finally, combining the cases A ¢ ¥ U X and A\ = 0, we get the finite difference equation
(4.1.47)—(4.1.48)) with the function gsz defined as

Ccos ) 4 S A(cos 5 — cos (AL))

g8(A) = cosfB—1
— -

: . A ¢YuUY,
sin (AL) 7 ’ (4.1.53)

1, A =0,
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GO = ngsN) + (—1),  A¢TUS,.
Consider the characteristic equation associated with the system (4.1.47)):
r? 4+ 2g5(\)r +1 =0, (4.1.54)

It has a solution such that |rz(\)| < 1:

ra(A) = —gs(A) + sign (gs(A)) 1/ 95(A) — L. (4.1.55)

The following proposition, analogous to Proposition [1.3.10] gives the relation between the
absolute value of gs()\) and the nature of the point A%

Proposition 4.1.7. For A € R, \ ¥,
g5V <1 & [rs(N)=1 & N €a(A(B)). (4.1.56)

Proof. The first equivalence follows immediately from (4.1.55). Next, |gsz(A)] < 1 if and
only if there exists 6 € [0, 7] such that gz(A) = — cos . Taking into account the definition

(4.1.53) of the function gg, we get

sin A(cos f — cos (AL))
sin (AL) ’

The relation (4.1.57)) is equivalent to (4.1.33) for A € Ry \ (BUXgUX.). If A €
{£* U5} \ X, then we have |gg(A)| < 1 and X* € o(A(S)) (cf. Proposition

(). Finally, 0 € 0(A(S)) if and only if 5 = 0. At the same time, |g3(0)| < 1 if and only
i 3 =0 0

cos A — cosf = AgE XU, (4.1.57)

The argument used in Section [I.3.2.2] applies in the present case to show that
Ny (ANB) & N = —gh(),
and the corresponding eigenfunction is
u; = uorlﬁj‘()\), Vj € Z.

With the classification of the gaps in two types introduced in Proposition we can
state the following theorem.

Theorem 4.1.1. The operator A*(B) has no embedded eigenvalues of finite multiplicity
forany >0, €[0,x]. Forany0 < p <1, B €[0,n] there exist two simple eigenvalues
of the operator A" () in each gap of this operator of type I and one simple eigenvalue in
each gap of type II. These eigenvalues are characterised as follows:

N € ay(A*(B)) <& X is a solution of the equation = Fg()\),

where

Fas(A\) =1— .
5(N) lgs(N) + cos Al

For > 1 the operator A*(3) has no eigenvalues.
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The proof is an obvious modification of the one of Theorem ({1.3.1]), the relation (1.3.58])
being replaced by the relation

Fy(\) = 1= /1= 615(0) (61,5()) — 6(V)).

Remark 4.1.4. For g €]0, 7], the interval |0, 0.[, 0. = mino(A(S)), is considered as a
gap of type I1 (cf. Remark [4.1.2)). Thus, the operator A*(/3) has one simple eigenvalue
below the essential spectrum if 5 €]0, 7].

4.1.3 Results for the operator A*(5)

We can now give the analogues of Theorems |1.4.1] for the operator A#(f).

Let A.(/3) be the non-perturbed operator defined as A*(/5) with p = 1, acting in Ly (B.),
where B. = B! is the unperturbed periodicity band.

Theorem 4.1.2 (Essential spectrum). Let {]a,(53),b.(8)], n € N*} be the gaps of the op-
erator A(B) on the limit graph Gg for p € [0,7]. Then, for each ng € N* there exists
eo(B) > 0 such that ife < eo(B) the operator A.(B) has at least ng gaps {]azn(5), ben(B)[}e,
such that

an(B) = an(B) + O(e), ben(B) =bu(B) + Ofe), e — 0, 1 <n < ng.

As in the case of the ladder, the proof of this theorem is based on the reduction to the
periodicity cell due to Floquet-Bloch theory and the min-max principle for the bounded
domain. Next, using a standard compact perturbation argument (an analogue of Propo-
sition [1.2.1] the proof being entirely similar), we know that

Oess(AL(D)) = Oess(A(B))-

Theorem 4.1.3 (Discrete spectrum — weak version). Let |a(3),b(3)[ be a gap of the
operator A*(B) on the limit graph Gy for 8 € [0,7] and AV (B) € Ja(B),b(B)[ a (simple)
eigenvalue of this operator. Then there exists eo(8) > 0 such that if e < o(3) the operator
AR(B) has an eigenvalue A\ () inside a gap la-(B),b-(5)[ such that:

A(B) =AV(B)+0(Ve),  e—0.

This theorem can be proved using the same argument as in the case of the ladder based
on construction of an appropriate pseudo-mode obtained as an extrapolation of the eigen-
function corresponding to the eigenvalue A0 (3).

Remark 4.1.5. An analogue of Theorem should also be possible to derive using
matched asymptotic expansions with obvious minor modifications in the proof. This
would give the optimal order of convergence e for the eigenvalue as well as its complete
asymptotic expansion:

A(B) = i AR (B)R + O (en1), e — 0.
k=0
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4.1.4 A more general geometry

We can also consider a slightly more general geometry, where the thickness of the horizon-
tal edges is different from the thickness of the vertical edges. In other words, the distance
between the obstacles is € in the z-direction and ve in the y-direction for some v > 0 (cf.

figure .

— — —

uE £

Figure 4.7: A more general domain: the thickness of the non-perturbed vertical edges is
¢ whereas the thickness of the horizontal edges is ve.

This does not change the results qualitatively. Indeed, the only modification in the defini-
tion of the limit operator is the appearance of a factor v in Kirchhoft’s conditions. More
precisely, the operator A%(5) is defined in the space

L (Gs) = {us [ullf ey < o0}

2 2 —1|12 2
ol = 32 (167 1y + 05 By + ol g, ).
JEZ
as

(A’,j(ﬁ)uﬂe = _(u‘e)”7 e € &gy,

wf=ePuy, (u) (%)= e_w(uj_)' (-4, Vi € Z,
0) — v, _y (1) + wl(u] ) (0) — wl(u;)(0) =0, Vje Z} .

This results in the same characterization of the spectrum of the operator A, (3) (corre-
sponding to the non-perturbed case u = 1) as the one given in Proposition m (5) with

the equation (4.1.33) replaced by
vo1.5\) = folM). (4.1.58)
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All the other statements of Proposition hold without any change. This means that
the spectrum of the A,(B) for v # 1, does not change qualitatively from the case v = 1.
Nevertheless, the parameter v influences the size of the gaps. Clearly, the size of the image
of a gap by the function x — 1/ can never exceed 7 (since {\?, A € {7N*}} C o (A4,(8)),
cf. Proposition [£.1.3] (2)). However, choosing a bigger value of v leads to decreasing of
this size whereas choosing a smaller value of v leads to increasing of this size. An example
is given in figure Roughly speaking, for v big there is a lot of spectrum with small
gaps inside it and for small v there are big gaps separated by small pieces of spectrum.

L =mi2, w=10 L=m/2, vw=01
l .
- ..,,,,,,,,“”m”“w””””I”””m””H”W::;;;;;”HH
| 1 |||||IIIIIIII|||||||||||||||||||
ik
””I,,“.u L
&l I“I“II“I“I“I
||||||||| Ui
7 h T+ II|||||II||III
o i 6l sy,
||||||IIIII|||||||||||
L
5- 5 ||||||||||||||||II''”'”IIIIIII
||||HIH'"'"
4h ﬂlf-.... iy iy
I
| 3JIIIIII”"'”“”Illnnllllllll||||||||
iy Iy Iy Mg,
My,
| 2 ,..|||||||Ii|
,.||||||II""'
1 | ||||I|III I|||||||||IIH“"' :
L
h n DD” |
| B
(a) v =10 -

Figure 4.8: Influence of the parameter v on the size of the gaps for L = 7: for smaller
values of v the gaps are bigger and the spectral bands are smaller.

Similarly, the results about the discrete spectrum when a perturbation is introduced hold
true for this more general geometry. The equation characterization for the eigenvalues

given in Theorem is be replaced by

p=FgA),  FjA)=1- \/1 —vors(N) (vorsN) — ().

Obviously, the conclusion about the number of eigenvalues inside the gaps does not change:
there are still precisely one or two eigenvalues inside each gap depending on its type.

Remark 4.1.6. We see that the ladder considered in Chapter [1|is a periodicity band for
the domain shown in figure with v = 2. We remember that the equations describing
the spectra of the operators A(0), A(m) respectively, differed from the ones corresponding
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to the operators Ay, Aus by a coefficient 2 (cf. (4.1.29), (4.1.30), (1.3.12)), (1.3.59))). On
the other hand, for v = 2 the spectra of the operators A2(0), Ay(m) are described by the
equation 2¢7 5(\) = fo(\) (cf. (4.1.58)). This leads precisely to the relations (1.3.12)),
(1.3.59). However, the relations (4.1.29)), (4.1.30) are not exactly the ones describing
the spectra of the operators A(0), A(w). Indeed, while obtaining them from the "true"
ones, and , we performed a division by sin (&) and cos (%) respec-
tively. Thus, we excluded from consideration the sets {)\2, sin 6%) = 0} for # =0 and
{N\%, cos (&) = 0} for B = m which belong to the spectra of the operators A(0) and A()
respectively. They also belong to the spectra of the operators A, and A, respectively, as
shown in Propositions |1.3.4] (1), [1.3.12f (1). Thus, we can finally conclude that

0(A2(0)) = 0(As),  o(Ax(7)) = 0(Aas)-

To resume, we see that considering the symmetric (resp. antisymmetric) part of the oper-
ator with Neumann boundary conditions and the 0-quasiperiodic (resp. m-quasiperiodic)
operator leads to the same limit problems on the graph.

4.2 Numerical approach

The numerical method described in Section applies to the [-quasiperiodic case with
minor modifications (the detailed description of the method in the S-quasiperiodic case
can be found in [24]). Since the domain in question is now B (cf. figure [1.2)), the
periodicity cell and the interior domains are the ones shown in figure [£.9) Since (-

I, Ty
FZ Ce 1_‘3 qu C: F:
F1 ]_—‘1”'
(a) Periodic cell (b) Perturbed cell
Figure 4.9

quasiperiodic conditions are imposed on the boundaries 'y, Ty (resp. T}, TY)), in our
numerical method the meshes of these two boundaries have to be the same, and the
corresponding vertices of the two meshes are coupled. This reduces the number of degrees
of freedom in the corresponding functional space.

4.2.1 Numerical results

In this section we give some numerical results for the operator A*(f3). For a fixed § they
are very similar to those shown in Section [3.4 For this reason we will concentrate on the



4.2. NUMERICAL APPROACH 139

dependence on . In figure we show the dependence of the essential spectrum of the
operator A.(3) as well as the limit operator A(f) with respect to  for L = 7, ¢ = 0.1.
For the limit operator it follows from Lemma that any point A € 7N* (in the range
represented in figure there is only the point A = 7) corresponds to the lower end of
a gap for some values of 5 and to the upper end of a gap for the others. At the point [
where the "transition" happens it corresponds to an interior point of the spectrum. This
transition point is the point of discontinuity of the function ¢ g, i.e. the point given by
the relation cos By = cos (AL). It is interesting to notice that according to the numerical
results it seems that the same property holds for the non-limit operator as well. In other
words, there is a point A\ which corresponds to the lower end of a gap for some values of
f and to the upper end of a gap for the others. However, it is no more 7 (in the example
given in figure A ~ 3.24). In figure the dependence on 3 of the eigenvalues

A S Aprn S]]
6|||||||||||||||||||||||||||||||||||||| i
I T \
4t 4t

) T il
T il
| i 2
| \ 1
OO 075 'Il 15 é 275 é OO 075 'Il 175 é 275 é

P P

(a) The limit operator on the graph, A(f) (b) The operator A.(B) for e = 0.1

Figure 4.10: Dependence of the essential spectrum on 3 for L = 7. The first 5 spectral
bands are represented.

in the first gap and below the essential spectrum is shown for L = 7/2, u = 0.25 in
the case of the graph and for the 2D domain with ¢ = 0.1. One can remark that the
eigenvalues below the essential spectrum are very close to it. In the first gap they are
better separated from the essential spectrum if 5 is not close to m. Again, the question of
existence of eigenvalues for any 8 € [0, 71| is not answered since the computations become
costly when the eigenvalue approaches the essential spectrum.
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(a) The limit operator on the graph, A*(3) (b) The operator A#(3) for e = 0.1

Figure 4.11: Dependence of the eigenvalues in the first gap and below the essential
spectrum on 3 for L = 7, = 0.25.

Time-dependent simulations

As it was discussed in the beginning of this chapter, an eigenvalue w? of the operator
AH(B) corresponds to a guided mode propagating the the y direction with the speed %L
We would like then to see such guided modes in a time-dependent simulation. The idea is
to put a time-harmonic source with the frequency w at some point of the perturbed line
which would give rise to the corresponding guided mode.

Two kinds of simulations have been preformed. The first one is based on a "naive" Matlab
finite elements code where a finite difference scheme in time is implemented. The infinite
domain Q¥ is replaced by a finite one, (2#, without putting any special boundary conditions
that would take into account the infinite nature of the domain. For this reason, one obtains
an approximation of the solution as long as the wave does not reach the boundary of the
domain. The problem in question is

( 0%u ~
o Au—l—fwéa:,y,t) in QY
U
-0 = =0
< u’tZO ) at o )
0
ul
\ on aQk
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where
fw (ZE, Y, t) = sin (Wt)é(x(b yO)

For the discretization, we use a finite element method in space and an explicit finite
difference scheme in time.

In the second set of simulations we used a much more sophisticated C++ code by Julien
Coatléven which takes into account the infinite nature of the propagation domain (for
more details see [12]). In figure is represented the solution obtained with this code
for w =2.25 at t = 70.

Figure 4.12: Solution in the time-dependent simulation performed using the C++ code
(Julien Coatléven) for L = 2, p = 0.25, w = 2.25, t = 70. A guided mode propagating
along the linear defect seems to appear.






CHAPTER 5

GUIDED MODES IN OPEN PERIODIC
LINEIC WAVEGUIDES: THE 3D CASE

5.1 Geometry and statement of the problem

Propagation domain

In this chapter we consider a 3D generalization of the plane waveguide considered in the
previous chapters. By a 3D generalization we mean a domain obtained by fattening a 3D
infinite primitive orthorhombic lattice (which is periodic in three orthogonal directions).
In each direction the straight lines of the lattice are replaced by parallel infinite pipes of a
constant cross-section of size of order € which is going to be small. The cross-sections are
not necessarily the same for the three directions. More precisely, let L,, L,, L, be positive
numbers (the periods of the domain in the z, y and z directions respectively). Let w,,
wy, w, be bounded domains of R? containing the origin (the normalized cross sections of
the pipes parallel to the axes x, y and z respectively). Then, the propagation domain €.

is defined as follows:
U { kZU k:ZU j,k,e}7
(k,£)ez?

Pg,k,é = {(?7 ﬁ) € w’y (kLangﬁ)}a (a>577) € {<x7y72>7 (ya va)v (va7y)}'

Some examples of such domains are shown in figure [5.1]

A linear defect is introduced to the structure by changing the thickness of one pipe (for
instance, parallel to the z direction): the characteristic size of its cross section is set to
be /ue instead of €. The perturbed domain 2 is defined by the following relation:

Q”—P%OUPOOUPEOQ U { MU MU sz,k,é}v

(k,£)€Z2\(0,0)

Pio=1{ (Ve o) € v}

The limit problem for ¢ — 0 will be posed on a 3D graph and its spectrum will be easy to
analyse. For € small enough the spectrum of the non-limit operator will be approximated

143
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by the spectrum of the limit operator. In this chapter we will study essentially the limit
operator. In Section 5.3 we mention the results for the non-limit operator that follow from
the works [61], [47], [57] (see also |31, 32} 4] for an example of application for a Maxwell
problem). We do not perform the asymptotic analysis which would permit to obtain a full
asymptotic expansion for the eigenvalues. We mention that the approach used in the 2D
case should be possible to apply in the 3D case as well with appropriate modifications.

%1%l

%1%l

%1 %ll

1T ™ L R 11

R “ARRE: "R

P ™ 1 ™R 111

(a) Rectangular cross section (b) Circular cross section

Figure 5.1: Propagation domain

Guided modes

As in the 2D, case we are interested in guided modes, i.e. solutions of the wave equation

0%u

that propagate along the defect and stay confined in the transversal directions. Neumann
boundary conditions are imposed on the boundaries of the obstacles. More precisely, we
search solutions of the form

u(z,y, z,t) = v(x,y, z)e! @=L, (5.1.2)

where v is a L,-periodic function in z-direction confined in the periodicity band B* =
L. L:J.
Qx| =5 5 :
U(LU,y,Z—l-Lz):U(LU,y,Z), UELQ (Bg)

Clearly, we could choose any other periodicity band, but we will consider the symmetric
one. After injecting ([5.1.2)) in the wave equation (5.1.1)) , taking into account Neumann

boundary conditions on the boundaries of the obstacles,

ou

ov —0,
on o0k

and introducing the function

’5 = U($7 Y, Z)e_i5Z/LZ7
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we end up with the following problem posed in the periodicity band:
(_AU=w?y in B

v e Ly (BY),

v

- =0,

on OB\ (DU}

(v 18 (8 — quasiperiodic (with respect to z).

This is an eigenvalue problem for the operator A¥(3) : Ly (B¥) — Lo (B") defined as

@
on

ou
u|z» .

0z

—if —

5 Ou
=0, ulg=e e’ —
OBI\{ZUS}

.~ 0z

J

In the next section we describe the limit operator and compute its spectrum. The general
strategy is analogous to the one used in the 2D case. We start by studying the non-
perturbed operator using the Floquet-Bloch theory (Section . This leads to the
equation for the eigenvalues of the operator in the periodicity cell which is very
similar to the one found in the 2D case. Here again we show that the limit operator
has infinitely many gaps whose ends tend to infinity (Proposition . Next, we study
the discrete spectrum of the perturbed operator (Section . As in the 2D case, the
problem reduces the to study of a finite difference equation (Lemma . However, this
time the equation is two-dimensional and cannot be solved via the associated characteristic
equation as before. To study this equation we apply the discrete Fourier transform. We
end up with the characterisation of the eigenvalues given in Proposition [5.2.9. This
characterisation is more difficult to analyse than the one obtained in the 2D case. In
Section [5.2.2.4] we prove the existence of at least one or two eigenvalues in each gap
according to its type but contrarily to the 2D case we are not able to find the exact
number of eigenvalues in each gap.

D (AL(P)) = {u € Hy (BY),

5.2 The limit operator

The limit operator is defined on the graph G = Uo Q. N {z € [—%, %] } shown in figure
b.2] Let us introduce some notation for this gragh. The vertices in the plane z = 0 are
enumerated by two indices k, ¢ € Z in such a way that the coordinates of the vertex vy
are (kL,,(L,,0). The vertex vy corresponds to the perturbed line. We denote by v,fx
the vertices with the coordinates (kL,,?¢L,,£L,/2). The edge joining the vertices vy,

and vg41 ¢ is denoted by Chil s the one joining the vertices vy, and v 41 is denoted by
Ch ot and the edges joining the vertex vy, with the vertices v,:ff are denoted by eié. Let
u be a function on G. Then, its value at the vertex vy, is denoted by uj, and its values
at the vertices v,j/,t,z by uié. The restrictions of the function u at the edge e, 1 , is denoted
Upy 1 ¢(s), where the local variable s takes values in [0, L,|. Similarly, its restriction at

the edge ¢, 1 is denoted by wy . 1(t), where the local variable ¢ takes values in [0, L,].

Finally, the restrictions of u at the edges eie are denoted by ufg(z)
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uk,l+1/2
uk,l uk+1/2,l uk+1,l

€172, Vi1

Figure 5.2: Graph G

The following function spaces are introduced analogously to the 2D case:

15(G) = {u: luldye <o}, H2(G) ={ueC(@): llulfue <}

2 2 - 112 2 2
lullZs )= Z(wz‘,@(uuauw + el ) +||uk+;,g||L2<eW>+||uk,e+;||L2(ek7”%)),
k,lcZ

HUH%&(G) - Z (HUZJH?{Q(JJ) - Hul;KHiﬂ(e;;z) T HukJr%’éH?p(em%,e) - Huk:f*éuiﬂ(ehﬁé)) .
klEL

Here w* is the weight defined as

ot = P k=10=0,
kit 1, otherwise.

The limit operator A*(f) : Lo(G) — Lo(G) is then defined as follows:
A*(B)u = —u",

D (A*(B)) = {u c H*(G): Vk,lcZ, u;é = e_iﬂu,;é, (u;’l)’ (%) = e_w(u,;g)’ (—LZ)
1

(
Uy o(0) =y (L) -ty (0) = iy (L) + ol (0, (0) = (1) (0)) =0}
(
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The relations (5.2.2]) are Kirchhoff’s conditions. As in the 2D case, they mean that the
weighted sum of outgoing derivatives is zero at each vertex of the graph G. As usually,
we will start by studying the non-perturbed operator A(f3) that corresponds to the case

w=1.

Proposition 5.2.1.
Uess (Aﬂ(ﬁ)) = O<A(6))

The proof of this proposition is an obvious modification of the one for the 2D case if the
1D characteristic function is replaced by a 2D one (cf. Proposition [1.2.1). The periodic
operator A(f) has only essential spectrum and we compute it in the next section.

5.2.1 Computation of the essential spectrum

According to Floquet-Bloch theory in order to study the spectrum of the operator A(f)
we have to study the operators Ag(k,, k,) defined on the periodicity cell

, Ly Ly
c=cu{y e [-5. 5] < |-5.%]}
shown in figure , with (k, ky)-quasiperiodicity conditions:

Aﬁ(k’x, ky) : L2 (C) — LQ (C) , Aﬁ(
D(Aslhe k) = (€ B0 wo(h) =g (), wh () = e ().
( 2 (%)

Figure 5.3: Periodicity cell C

The function spaces Lo (C), H? (C) are defined in a standard way, i.e.

6 6
=1 =1
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Proposition 5.2.2. For (k. k,) € [0,7]*, \? € o(Ag(ks, ky)) \ {0} if and only if X is a

solution of the equation

sin (ALy) sin (AL,) (cos (AL,) — cos k;) + sin (AL, ) sin (AL,) (cos (AL,) — cos ky)
+sin (AL,) sin (ALy) (cos (AL,) —cos f) = 0. (5.2.4)

The point A = 0 belongs to o(Ag(ky, ky)) if and only if ky, =k, = 5 =0.

Remark 5.2.1. One can notice that the equation (5.2.4)) has a similar structure as the
one found in the 2D case (cf. Proposition |4.1.2]).

Proof. Let us start with the case A # 0. If A\? is an eigenvalue of the operator Ag(k,, k),
then the corresponding eigenfunction u € D(Ag(ky, ky)) solves the equation

'+ Nu=0

on each edge of the periodicity cell C. We have then

uy(z) = c1e™ + dje™ ™, z e [—L,0],
Uy (1) = o€ 4 dye™ z € [0, %],
us(y) = cse™ + dse ™™, y € [—%,O} ,
ug(y) = s 4 dye™, y € [O, %} ,
us(2) = s 4 dse ™, z € [—%,0} ,
ug(2) = cge™ 4 dge ™, z € [0,%]

From the continuity of the eigenfunction at the central vertex we get
ci+di=co+tdy=c3+ds=cs+ds=c5+ds =ce+ ds. (525)

The quasiperiodic conditions imply that

ALy ALy
e e = coe 2 + doe” 2 ,

__iALg iALg
cie” 2 +dje 2

_iALg iALg

d iALg _iALg
cle 2 —dadje 2

e e = che 2 —dye 2,

z)\Ly iALy

iALy iALy
cze” —dze 2 -

=ce 2 —dse T2,

(
(
ALy ALy :
(

oo
<03€ = + dgezAQLy> e =ciez fdem 7,
( )
( )
)

z)\Lz i)\LZ
cs€ 2

ALy AL

e P =cge 2 +dge 2, (5.2.10

AL ALy

e P =cge 2 —dge 2. (5.2.11

<C5€71/\2Lz — d5€i/\2Lz
Finally, Kirchhoff’s condition yields

—C1+d1+02—dg—63+d3+64—d4—05+d5+06—d6:0. (5.2.12)
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From the equations ([5.2.6)—(5.2.11)) one finds:
¢ = ei/\Lz-‘rik‘zCQ, c3 = 6i>\Ly+ikyC4, cs = ei)\Lz-i-iﬁcG’ (5213)
dy = e Matikag, dy = e Putikyg, dy = e PM=FiB . (5.2.14)

Due to the relations (5.2.13)), (5.2.14)) the system ((5.2.5)—(5.2.12)) reduces to the following

one:

Co +dy = ¢4+ dy = c6 + dg, ( )
cy (1 . ei)\Lz-i-z‘kz) +dy (1 . e—i)\Lz—',-ikm) —0, ( )
ey (1 — Moty 4 dy (1 — e Moty =0, (5.2.17)
Co (1 . ez‘)\LZ—i-iB) T dg (1 . e—iALZ+iﬂ) _ ( )
¢ (1 o ei)\Lw—l—ikx) + ¢ (1 o ei)\Ly+iky) T (1 o eiALz—l—iﬁ) 0. ( )

Thus, the system ([5.2.15)—(5.2.19) has a non-trivial solution if and only if

=)

)

D()\) =0, (5.2.20)
where
D)) =
1 1 —1 —1 0 0
1 1 0 0 -1 —1
1 — efMathe) ] _ gilka—ALg) 0 0 0 0
0 0 1— ei(ALy-i-ky) 1 — ei(ky—)\Ly) 0 0
0 0 0 0 1 — e/P=th) ] — ilA=AL:)
1— ei()\Lz—&-km) 0 1— ei()\Ly—i-ky) 0 1 — ei()\Lz—i—b’) 0
(5.2.21)

Computing D()) leads to the condition (5.2.4)) (see Lemma in Annexe for the details
of the computation).
If A =0, then the eigenfunction has to be linear at each edge of the graph:

(z)

Ug(y) :C3+d3y7 y e [_%70} )

ug(y) = ¢4 + dyy, (NS [O, %] ;

us(2) = c5 + ds2, ze [-4,0],

ug(2) = cg + dg2, z € [0, %]
The continuity condition implies that ¢; = ¢y, 1 < ¢ < 6. From the quasiperiodic
conditions it follows that

dy = e *ody,  dy = % (1—e*=), (5.2.22)

dy= e Mudy,  dy =2 (1—¢t), (5.2.23)

Ly
ds = e"Mvds,  ds = Z—O (1—¢?). (5.2.24)
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Finally, Kirchhoff’s condition ((5.2.3)) gives

—dy +dy —ds + dy — ds + dg = 0. (5.2.25)

After injecting ((5.2.22)—(5.2.24)) in (5.2.25)) we get

cosky, —1 cosk,—1 cosf—1
=0.
(T )

Hence, there exists a non-trivial solution if and only if k, = k, = § = 0 (since otherwise
the quantity inside the brackets is strictly negative). This finishes the proof. m

Remark 5.2.2. Similarly to the 2D case, one can notice that if L,, L, and L, are
commensurable, then the set {\ : A\? € o(Ag(ks, ky))} is periodic. Indeed, in this case
the left-hand side of the equation ({5.2.4)) is a periodic function.

The spectrum of the operator A(f) can now be determined due to the decomposition

cAB) = | o(Ashsk,)). (5.2.26)

kz,ky€[0,7]

Thus, the point A\? (different from zero) belongs to the spectrum of the operator A(f) if
and only if there exists a couple (k,, k,) such that the relation ([5.2.4) is satisfied. Let us
introduce some notation that we will use throughout the chapter:

>0: sin(AL,) =0}, ¥r=%,\{0},
2, ={A20:sin(\L,) =0}, ¥ =x,\{0},

>0: sin(AL,) =0}, ¥ =%,\{0},

2=%,U3, U, X =3%\/{0},
B.(8)={A>0: cos(A\L,) =cos B},  ZI(B) =X.(8)\ {0},

5.(8) = Y.,={A>=0:sin(AL,) =0}, B €0, [, (5.2.27)
Y AE(B)={A=0:cos(AL,) = —cosB}, [e{0,n},
5:(8) = £:(8) \ {0}. (5.2.28)

Proposition 5.2.3.
1 {N: XeTiuXrUN.(8)} C o(A(B)).

2. For any B € [0,7], the operator A() has infinitely many gaps whose ends tend to
nfinity.

Proof.

L. For A # 0, A € X} U Xy U, () the equation ((.2.4)) is obviously verified for cosk, =
cos (AL,), cosk, = cos (AL,). The point A = 0 belongs to the set ¥; U ¥y U ¥.(3) if
and only if # = 0. At the same time, according to Proposition [5.2.2] 0 € o(A(f)) if
and only if g = 0.
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2. We will prove the existence of a gap for the operator A(f) in a (deleted) neighbourhood
of each point of the set {AQ, A E i;(ﬁ)} More precisely, we will show that for any
A € %(3) there exist positive numbers I+ and I~ such that |A2 — I, A\2[No(A(3)) = 0
and A2, \2 +1T[Na(A(B)) = 0.

Let Ao € 3(3). Then,
cos f3

cos (AoL)
Let us rewrite the relation (5.2.4]) in a neighbourhood of Ay by putting A = Xy + ¢:

<1. (5.2.29)

sin (0L, ) (sin (AL, + AL,) — cos k sin (AL,) — cos k, sin (AL,))
cos f3
cos (AoL)

(i) Ao ¢ X,UX,: the equation has no solution for § small enough. Indeed, due
to the inequality , its right-hand side tends to a non-zero limit as § — 0,
whereas its left-hand side tends to zero uniformly in (k,, k,) € [0,7]|?. This proves
the existence of a gap of the operator A(3) containing the point A3.

(i) Ao € X5\ Xy or Ao € Xy \ X5: we will consider the case Ay € X} \ X7, the case
Ao € X5\ X can be considered in a similar way. For § # 0 small enough the relation

(5.2.30) can be rewritten as

= sin (AL,)sin (AL,) ( — cos(cSLz)) . (5.2.30)

. cos (AL,) — cosk cos k,
I y y L)— -t
Ol Ly )~ e
sin (6 L) cos 3
= — L . 2.31
sin (0L,) (cos(AoLz) cos (9 Z)) (5231)

Taking into account that |cos (AgL;)| = 1, when ¢ is small enough, the left-hand
side of this relation can be bounded from below uniformly in (k,, k,) € [0,7]* by a
continuous function in ¢ that tends to zero as § — 0:

cos (AL,) — cosk,
sin (AL,)

cos k,,
cos (Ao Ly)
| cos (ALy)| +1

|sin (ALy)| -0

The limit of the right-hand side of (5.2.31)) when § — 0 is
sin (6 L) cos 3 L, cos 3
— cos (8L, , 22 1) <o,
sin (6L,) (cos (ML) cos )> 50 L, (cos (ML) =

which is strictly negative due to the inequality (5.2.29). Hence, the equation ((5.2.31))
has no solution for ¢ # 0 small enough.

(iii) Ao € X3 N Xy: the relation (5.2.30) can be rewritten as

sin (0L,) cos k, sin (0L,) cos ky
2o\ L) — L)) — e
sin (0L,) (COS (OLy) cos (AoLy)> N sin (0L,) cos (OL) cos (AoLy)

sin (0L,) +cos (0L,) —

> cos(6L,) — 1 —sin(0L,) 0, V(k., k,) €10, 7).

cos 8

= cos Owll) cos(0L,). (5.2.32)
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Again, since |cos (AL )| = |cos (AoLy)| = 1, when ¢ is small enough, the left-hand
side of this relation can be bounded from below uniformly in (k,, k,) € [0, 7]* by a
continuous function in § that tends to zero as 6 — 0:

sin (0L,) cos k, sin (0L,) cos ky
2o\ L) — L) — e
sin (0L,) (COS (OLy) cos (AOLy)> N sin (0L,) cos (OL) cos (AoLy)

L
> = (cos (0L,) — 1) + L—Z (cos (0L,) —1) — 0, V(k., k,) € [0, 7).
—

xT

h|h

<

The limit of the right-hand side of (5.2.32)) as § — 0 is cos 3/ cos (AgL,) — 1 < 0.
Consequently, the equation (5.2.32)) has no solution for ¢ small enough.

]

The following assertion gives a description of the set of eigenvalues of infinite multiplicity
of the operator A(S). We give its proof in Appendix.

Proposition 5.2.4. The operator A(B) has the following set of eigenvalues of infinite
multiplicity:
UPP(A<6)) = {)‘2 NS 2i8<5) U Zemb(ﬁ)} )
where B
Si(8) = (25 U5) N S1(8). (5.2.33)
(50 Ep) \Ex(8), 8 €0, 7,
(Enz)\S@))usd),  Befon).

The eigenvalues of the set {\*: X\ € ;(8)} are isolated points of the spectrum whereas
the eigenvalues of the set {\* : X\ € Xe,p(B)} are not isolated points of the spectrum.

Zemb(ﬁ) =

The following proposition gives a criterion for A\* to be a point of the spectrum of the
operator A(f).

Proposition 5.2.5. \? € o0(A(B)) if and only if one of the following possibilities holds:
(i) A€ ¥, uy;
(it) A€ Ry \ (X5 UX) is a solution of the equation

O1..6(A) = froiLy bty (A)- (5.2.34)

for some (ky, k,) € [0,7]*. Here

A A Ae RN\ (XU
SLaiLy ook, (A) = {sz’km( )F k) ERLA (B UE). (5.2.35)
0, (kz, ky, ) = (0,0,0),
~ cosk —cos (AL) ,
fre(A) = 0L sin (AL) # 0, (5.2.36)
cos (AL,) — cos n
b ={ sm(Ly) o NEEAE (5.2.37)

0, A€ X, (P).
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Proof. This is a consequence of the decomposition ([5.2.26[), Proposition and prop-
erty 1 of Proposition . Indeed, the equation ([5.2.34)) is equivalent to the equation
for A ¢ 3. The case A € ¥} U ¥y is treated directly: the corresponding points
belong to the spectrum of the operator A(f) for any g € [0,7]. If A € X, \ (E; U ZZ),
then \? € o(A(B)) if and only if A € X,(8) (and hence, 3 € {0,7}). Notice that this is
also valid for A = 0. As well, if A € 3., then the function ¢, 5 is defined at X if and
only if A € X,(f), and its value is 0. In this case, the equation ([5.2.34)) is satisfied for
cos ky = cos (ALy), cosk, = cos (AL,). O

Remark 5.2.3. Proposition [5.2.5]is an analogue of Proposition [£.1.5] obtained in the 2D
case. However, we use here the inverses of the functions ¢ 3, fo used in the 2D case.
This choice is done in order to have fr, 1, k., given by asum fr_ r. .k, = fLoke + 1,k
and not by a some of inverses of functions. Indeed, this form will be easier to represent
geometrically.

As in the 2D case two types of gaps can be distinguished for the operator A(f):

Proposition 5.2.6. An interval |a,b[ is a gap of the operator A(B) for 5 € [0,7] if and
only if 0 <a<b, [va,VbNE.(8) =0 and one of the following possibilities holds:

I {Va, ﬁ)}ﬂ(Ex Uz, U izw)) =0, ¢1.5(Va) = fr,, (Va), ¢r.s(Vb) = [l (Vb);
IT (i) Vae (S U%) \Z18), dr.p(va) > ff ., (Va),
\/E ¢ Yo Udy U 22(6)7 ¢L27B(\/5) = f[Z,Ly(\/l_));
(i’) Vae (B, US)NE.(8), VbeL,US,US.(8),  ¢r.s(Vb) = fi . (Vb);

(ii) a ¢ ¥ US, US(8),  dr.s(Va) = [, ., (Va),
Vbhe (LU \ BB, 6r.s(V0) < fr 1, (VD)

(i) Va ¢S, U, US.(8), dr.s(Va) = fr, 1, (Va), Vbe (ZUE;)NELB).

Remark 5.2.4. For § €]0, 7], the bottom of the spectrum of the operator o, = min o (A(f))
is strictly positive. As in the 2D case (cf. Remark we will call the interval |0, 0.[ a
gap even if it is not quite correct. As follows from Proposition [5.2.6] it is a gap of type
I1 (it satisfies the condition I7 (i')).

)
)

The rest of this section is devoted to the proof of this Proposition [5.2.6, We start with
a geometric interpretation of Proposition [5.2.5] which is similar to the one given in the
2D case. Now we have to consider the abscissas of the intersections of the graph of the
function ¢, g with the ones of the functions fr, r, k- Let us introduce the union of
the graphs of the functions fr, 1, k.., for (ks ky) € [0, 7]%:

Dr, 1, = U {()\, sz,Ly,kI,ky()\)) / A€ D(sz,Ly,kz,ky)} )

(ke ,ky)€[0,7]?
where D(f) stands for the domain of the function f.

Lemma 5.2.1.

Dr, = {(np)/ AR (S1US), pe [fr 0, (N, fi, W]} UL(0,0)},
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where

Floo,N) =" OLa) + [T L), frp, ()= L)+ (ML),  (5.2.38)

T (A) = tan (352, A€ [mn,m(n+1)[, n e N, (5.2.39)
f~ () = —cotan (252) , A€ ]mn,m(n+1)], n € N. (5.2.40)

Proof. 1If sin (AL) # 0, then the function fr j defined in (5.2.36]) is continuous in k, € [0, 7]

and
U fux)=[f (ML), fF(AL)].

kz€[0,7]

Hence, for A ¢ ¥, U3, one has

U forker ™M= U (Fror®)+ fr,m, V) = [, V), £, V)]

(b ky)€[0,7]2 (K ky)€[0,7]?
Finally, 0 € D(fr, 1, k. .k,) if and only if (., k,) = (0,0). In this case, fr,,1,00(0) =0. O

The set Dy, 1, is shown in figure . Let us mention that the functions fi L, are
continuous in R \ (3, U ¥,) and strictly increasing in each interval of continuity (between
two neighbour points of the set £, UY,). Moreover, the function fzrl L, s right-continuous

and the function f; L, 18 left-continuous and

frop, M)
frr, M)

In order to get a geometric interpretation of the spectrum of the operator A(3), we
need to consider the abscissas of the intersections of the set Dr, r, with the graph of
the function ¢ g (cf. figure p.5). This will correspond to the points described in (i) of
Proposition In order to get all the points A such that A\? € o(A(8)), we have to
include the set X3 U 7. Thus, the spectrum of the operator A(f) can be characterized
as follows:

0, VAeR,, fi, ) >0, YAeR\ (ZU%y), (5.2.41)
0

>
<0, VAeR:, fijy()\) <0, VAeR,\ (Ziux)). (5.2.42)

o(A(B)) ={N/ A>0, ¢r.5(A) € D, 1, } U{N/ AeZ Ui},
This permits to give the following description of the gaps of the operator A(f).

Lemma 5.2.2. The point A2 is the lower end of a gap of the operator A(B) if and only if
one of the following possibilities holds:

(i) do € RI\EE(B) and ¢r. (M) = fr. 1, (Mo)< 0;
(i) Xo € (SLUSI\EL(B) and 1. 5(No) > f1 1 (Mo)> 0;
(iii) X € (B, UX,) NE.(5).

Similarly, the point N2 is the upper end of a gap of the operator A(B) if and only if one
of the following possibilities holds:
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(a) L, =1.44, L, = 0.9

+
Ji,L,

Dy, r,

Jii,

(b) Ly = L, = 1.44

Figure 5.4: The set Dy, 1. The vertical lines correspond to the points of the set ¥, UX,.

(iv) Xo € RI\EL(B) and ¢ (M) = f£, 1, (M)> 0;
(1) Xo € (B3 US)\E:(B) and ¢, 5(N) < fr, 1, (M)< 0;
(vi) Ao € (SLUSE) NZL(B).

Proof. The proof is very similar to the one of Lemme We repeat it with appropriate
modifications for the sake of completeness. Let A_, A\, be two neighbour points of the
set X, UX,. We will study the possible configurations of the intersections of the function
¢r. 3 with the domain Dy, 1 in the interval [A_, \;]. Notice that ¢, 3 is a 27/ L -periodic
function defined on R\ 3,(5). In each interval of continuity it is strictly decreasing and
takes all the values in R. We will consider separately the internal points of the interval
[A_, A\;] and its ends.

e Case 1. Internal points points: A\g €|A_, A4 ]
(a) Ao & 33(8) and the point (Ao, ¢r. 5(Xo)) is an interior point of the domain Dy, 1,

()\0,¢sz5()\0)) € int (DvaLy) = 36 >0 s.t. (/\7¢Lz,ﬁ(>‘)) S DL:“Ly, YA |/\ — )\0| < 0.
(5.2.43)
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Dr, 1,

frr,

Figure 5.5: Example: L, =1.44, L, = 0.9, L, = 1.3, § = 0.7. The images of the spectral
bands of the operator A() by the function x — +/z are given by the projections on the
axis of abscissas of the intersections of the set Dy, r, with the graph of the function ¢, s.

Hence, the points such that (Ao, ¢1. 3(A\o)) € int (Dy, 1,) correspond to the interior

points of the spectrum (and not to the ends of gaps).

Mo & 1(8) and dr.5(M) = f7, 1, (Mo):
(In this case, f; ; (M) > 0 due to (5.2.41))).

Ao €JA, Ay (A ¢r.8(N) € Dr, 1,
¢r..6(Mo) = f1, 1, (Ao) (A ¢r..58(N) € D, 1,5

Xo & £2(B) and ¢, 5(Ao) = fron,(Qo):
(In this case, f7 ; (Xo) <0 due to (5.2.42)).

Ao G])\_, )\+[ 3550 st (/\7 ¢szﬁ(>\)> g_ﬁ DLme
61.5(N) = fr.1. (M) " (N r.s(\) € Dty

VA €]Ao — 6, Aol
VA € [Ao, Ao + 4.
(5.2.44)

VA €]Xo, Ao + 4,
VA € [Ao — 6, Ao].
(5.2.45)

This follows from the fact that the functions fLiz L, defining the boundaries of the
domain Dy, 1, are strictly increasing and the function ¢, 3 is strictly decreasing.
The relation (5.2.44) means that A3 is the lower end of a gap and the relation ([5.2.45))

means that A2 is the upper end of a gap.

Points of discontinuity of the function ¢r,_ g:

Mo € AN AL = 36 >0 st (A dr.s(N) & Drop,, YA 0< A= A| <.

(5.2.46)

This follows from the continuity of the functions f Ji 1, inside the interval JA_, Ay ] and
the behaviour of the function ¢,_ s in a neighbourhood of its points of discontinuity.

cases (b) and (c).

We see that the interior points of the interval [A_, A,| are ends of a gap only in the
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e Case 2. Ends of the interval: Ao € 3 U X}
(In this case, A\g € o(A(f)) according to Proposition [5.2.5)).

ME(SIUSINSB) | g5o ooy M0s) E Diary YA€ Ao 40,
¢r..5(Mo) > f1 1 (Mo) T (N s(N) € Dy, YA €N — 8, Aol
(5.2.47)
M€ (SLUSINEND) _ 5o, MOesO) €D, YA€ =6 M,
01.5(%) < f1,.1,(%0) T (A bLs(N) € Dryr, VA€o Ao+ 3.
(5.2.48)

Mo € (35U ;) \5(B) .
Pr..5(Mo) € [fL_I,Ly()‘O>afZ_I7Ly()\O)] = >0 st (Adr.s(N) € D, 1,
VAL 0< A= Xo| <8 (5.2.49)

M€ (ZUS)NEIB) = 36 >0 st (N or.s(\) ¢ Dr,p,, YA 0< A= Xo| <0
(5.2.50)
Thus, the cases (5.2.47)), (5.2.48)), (5.2.50) correspond to ends of a gap. The case

(5.2.50]) corresponds to an isolated point of the spectrum which is an eigenvalue of
infinite multiplicity (cf. Proposition [5.2.4)).

e Case 3. \p=0

(a) B = 0: in this case 0 € o(A(f5)) and ¢, 0(0) = 0. Consequently, ¢r_o(0) €

[fL_vay(O), fz;,Ly(O)] , and similarly to (5.2.49)) there exists § > 0 such that (X, ¢, s(\)) €
Dr,r,, YVA: 0 < X=Xy < 9. Thus, 0is not an end of a gap. It is not included in any

of the conditions (i)—(vi) (it is not included in (i) since 0 ¢ 3,(0)).
(b) B €]0,7]: in this case 0 ¢ o(A(S)) and we call it the lower end of the gap ]0,0.],
0. =mino(A(f)). For this reason it is included in the case (i) (since 0 € X,(3) for

B €0, 7).
[l
Corollary 5.2.1. If \g € X%(8), then A3 is an internal point of o(A(B)).

Proof. 1t follows from Proposition that A2 € o(A(B)). Let us show that it is not an
end of a gap. Indeed, Ay € 3%(5) implies that ¢ 5(\g) = 0. This is not compatible with
any of the possibilities (i), (i¢), (iv), (v) of Lemma Since L1(8) N X.(B) = 0, it is
not compatible with (4i7) and (vi) neither. O

Proof of Proposition[5.2.0,

(a) Suppose first that |a,b[ is a gap of the operator A(5). Then, one necessarily has
0 < a < b, and it follows from Corollary that [/a, vb] N X5(3) = 0. Moreover,
0 € ¥.(p) if and only if 8 = 0. Consequently, if 3 €]0, 7], then [\/a, v N .(5) = 0.
For f =0, we have a # 0 since 0 is not the lower end of a gap, cf. Lemma So,
we have [y/a, Vb N ¥.(8) = ) again.

In other words,

b5\ #0, VYA e [Va, Vb \ .(8). (5.2.51)
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I Suppose that {y/a,vb} N (Zx ux,u iz(ﬁ)> = (). Then, due to Lemma [5.2.2{ we have

11

01.5(va) = fr, 1, (Va), é1.5(Vb) = fi 1, (V).

(i-i’) Suppose now that v/a € X, U X,. It follows from Lemma that either v/a €

2.(8) (case (i) or va € (S505) \ £4(8) and ¢y 5(v/a) > f} 1 (Va) > 0 (case
(4)). In both cases there exists 6 > 0 such that ¢ 5(\) > 0 for A €]\/a,v/a + 4.
This implies that

Wa, VB NE.(8) =0 and  ¢r.s(0) >0, VAela, V.

Indeed, in the opposite case the function ¢, 5 is not continuous in |/a, \/5] (if
there exists a point \g €]y/a, v/b] such that or.3(Ao) < 0and ¢r, 5 is continuous in
Jv/a, V], then |v/a, VBN, (B) ¢ 0, which, as was shown above, is impossible). Let
N be the closest to y/a point of discontinuity of ¢y 5 in |\/a,vVb]: N €]v/a, Vb N
iz(ﬂ). Taking into account that ,\E}\pfo ¢r.3(A) = —oo, we conclude that there
exists a point \” €]y/a, X'[ such that ¢, 5(\") = 0, which contradicts (5.2.51]). This
shows that vb ¢ $.(8) and ¢r.5(v/b) > 0, which, due to Lemma mplies
that vb ¢ £, U, and ¢r.5(V0) = f, 1, (VD).

(ii-ii’) The case Vb € X% U 3, can be considered analogously to the previous case.

(b) Suppose now that 0 < a < b and [a,b] N 3,(8) = 0. We will show that if one of the

I1

conditions I, I1 holds, then ]a, [ is a gap of the operator A(f).

It follows from Lemmal5.2.2 that a is the lower end of a gap and b is the upper end of a
gap. Suppose that there exists ¢ €]a, b] such that ¢ € o(A(S3)). Then, Proposition|[5.2.5)
implies that ¢7_s(v/c) € [ fron,(VO), fi Ly(\/E)] The functions fi“ 1, being strictly
increasing in [v/a, V], we get ér.3(v/a) < ¢r.5(v/c) < ¢r.5(vb). The function
¢r. s 1s, in turn, strictly decreasing in its intervals of continuity. Hence, there exist
' ely/a, /e and N €]\/e, Vo[ such that N, X’ € $.(3). Since in each interval of
continuity the function ¢, 5 takes all values in R, there exists Ay €]\, \"[ such that
¢1.5(Xo) = 0 which contradicts the assumption [a,b] N X, (3) = 0.

(i-i’) Tt follows from Lemma that b is the upper end of a gap. Let us denote by

a’ its lower end. Since a € o(A(S)) (cf. Proposition [5.2.5)), one necessarily has
a < a'. Suppose that a < a’. Then, it follows from Lemma that va' ¢ ¥.(5)

and gbLzﬁ(\/?) = fL_I7Ly(\/E) < 0. On the other hand, both in the case (i)
and in the case (7') there exists 0 > 0 such that ¢ g(\) > 0 for X €]\/a, /a + 9.
Consequently, there exists \ €]y/a, v/a'[ such that ¢ 5(\') = 0, which contradicts
the assumption [a,b] N 3,(8) = 0.

(11-i1”) This case can be considered analogously to the previous one.

]

Let us mention another possible characterization of the two types of gaps. It will be used
in the next section while discussing the number of eigenvalues of the perturbed operator
in the gaps.
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Lemma 5.2.3. Let |a, b be a gap of the operator A(B). Then, it is a gap of type I if and
only if there exists exactly one point ¢ such that ¢ €]a,b[ such that \/c € ¥,(8). It is a
gap of type IT if and only if |\/a, V[NX,(8) = 0.

Proof. First, let us mention that the intersection ]y/a, vb[NE. () is either reduced to one
point or empty. Indeed, if there exist two distinct points X, N €]\/a, \/l_)[ﬂiz(ﬁ), then
as we have seen in the proof of Proposition [5.2.6] (b) L, there exists Ao €]\, \”[ such that
ér. 3(Ao) = 0, which contradicts the assumption that ]a, b] is a gap of the operator A(f).

I Let Ja,b[ be a gap of the operator A(f) of type I. In this case ¢ 5(v/a) < ¢r. 5(V/b).
Consequently, |v/a, Vb[NE.(8) # 0. As it was mentioned above, this intersection is
necessarily reduced to one point.

IT Let ]a,b[ be a gap of the operator A(S) of type II. Then, there exists § > 0 such that
br. s(N)or. s(N") > 0 for any (N, \") €]v/a, v/a + 6[x]vb—6,v/b[. Suppose that there
exists /¢ €]y/a, VO[NE.(B). Then, at least in one of the intervals |\/a, /[, ]/, VI
there exists \g such that ¢, 3(Ag) = 0, which contradicts the assumption that ]a, 0] is
a gap of the operator A(S).

]

Examples illustrating Proposition [5.2.6, Lemma [5.2.3| and Proposition [5.2.4] are given in
figures [5.7], [5.6}

5.2.2 Computation of the discrete spectrum

5.2.2.1 Reduction to a finite difference equation

Let us now determine the discrete spectrum of the operator A#(3). If A\? is an eigenvalue
of this operator, then the corresponding eigenfunction v € D (A*(f3)) solves the equation
u” + M\u = 0 on each edge of the graph G.

Case A >0

In this case the eigenfunction u it has the form
Ut 1 o(8) = Gyt psin (As) + b1 yc0s (As), s €0, Ly, (k,0) e Z2?, (5.2.52)
U1 (£) = g gy 1 sIn(AL) + by g1 cos (M), t € [0, Ly, (k,0) € 2?, (5.2.53)
uf (2) = cf ysin (Az) + dff , cos (Az), e [0, %], (k,0) € 7%, (5.2.54)
Uy o(2) = ¢ psin (A2) + dy , cos (\z), z e [-%,0], (k,0) € Z*.  (5.2.55)

The continuity of the eigenfunction w at the vertices vy; of the graph G implies that

bk+§,e = bk,é-i—% = Q1 ,sin (ALz) + bk—%,é cos (ALy)
= Q1 8in (AL,) + by o1 COS (ALy) =d, = dp , = dyy, (k,1) € Z*. (5.2.56)

After plugging (5.2.54)), (5.2.55)) into the quasiperiodicity conditions (5.2.1]), we get

(c;l + e‘iﬁc,;l) sin (’\52) + dj,; cos (’\%) (1 — e‘iﬁ) =0, (k1) € 72, (5.2.57)

(czl - e‘iﬁc,;l) cos (2£2) — djsin (2£2) (1 4+ e %) =0, (k1) € Z*. (5.2.58)

2
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\

(a) The interval |a, b[ is a gap (b) The interval |a,b[ is a gap (c) The interval ]a,b[ is a gap
of type I of type I1(i) of type I1(i7)

Figure 5.6: Types of gaps

(a) Gap of type I: 61 5(/a) = fi. 1 (V&) <0, 61.5(VB) = [, (VB) > 0, and there
is one point of discontinuity of the function ¢r_ 5 in |/a, V.

(b) Gap of type I1(i): va €y, ér.s(va) > fi  (Va), ér.s(Vb) = fi , (Vb) >0,
and the function ¢y 4 is continuous in |/, V|-

(c) Gap of type [1(ii): ¢r.p(va) = fr, (VD) <0, VbeX;, dr.s(Vb) < fr, 1, (V)
and the function ¢r_ g is continuous in |\/a, Vb|.

From Kirchhoff’s conditions ([5.2.2)) we find

W (C;z - cl;l) t Lt Gl — Q1 ,CO8 (ALz) — A1 COS (ALy)
+ di_108i0 (ALy) + dj,o—1 sin (AL,) = 0, (k,1) € Z*. (5.2.59)

The following assertion permits to exclude from the consideration the set >* while search-
ing the discrete spectrum of the operator A*(/3). Its proof is given in Appendix.

Proposition 5.2.7. If A\ € X%, then \? is not an eigenvalue of finite multiplicity of the
operator A*(B) for any B € [0, 7], u > 0.

. + .
If A ¢ ¥, then the coefficients {ak%l, bk%j, ey Ls bk“%, Crps dhg} can be expressed in
terms of the values {uy,}:

1 1

) (uk+17g — uk,g COSs ()\Lx)) s ak7£+§ = m (uk+1,g — uk,g COSs ()\Ly)) s

U307 Sin (AL, AL,
(5.2.60)
bpste=bpopr =dpe=ge, g =awy, (K 0) € Z2 (5.2.61)
where
ot = L (m (ALe) (14 ¢) + M—”) o =L (ﬂ ~tan (Ae) (1 + eiﬂ)> |
2 2 tan (%) ’ 2 \ tan (’\2#) 2
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/

(a) A3 is an isolated eigen-
value of infinite multiplicity:
Ao € ¥y N E3(B). The gap to
the left of A2 is a gap of type
I1(i7") and the gap to the right
of A3 is a gap of type I1(i’)

br.s

(b) A3 is an embedded
eigenvalue of infinite multi-
plicity: _

ho € (22 0%;) 1529

!

(c) A3 is an embedded eigen-
value of infinite multiplicity:

B =0and Ao € S%(B)

Figure 5.7: Eigenvalues of infinite multiplicity

Then, the relations (5.2.52)—(5.2.55|) can be rewritten as

sin (A(L, — s
g 1,6(5) = Uie s(in<(/\L ) !
sin (A(L, — 1))
uk’”%(t) = Ukt sin (/\yL )
)

+ sin (A (5 — 2))

uk,ﬁ(z) = Ugy sin (i&)
2

sin (A (5 +2))

Upo(2) = Wy

* 1+e %
uk( — L uy ¢,
3 z ’
2 cos (—2 )

= Wuk,b

After plugging (/5.2.60)—(5.2.61)) into (5.2.59)), we get

Upp1 e+ Ug—1p  Upgyr + Ugp—1

sin (AL;) sin (AL,)

Upi1e +Ug—10  Ugpr1 + Uge1

- 29,8()\)1%,1 =0,

sin (AL) sin (AL,)

where
1

1

950 = tan (AL,) * tan (AL,)

+ ¢Lzﬁ()‘)7

uk+1,g%, s € [0, L], k.t eZ,

uk,lH%, t €10, L], k.t eZ,

;Z%, z€ [0, %], k,l€Z,

—u;g%, ze[— ,O], k.l e Z,
L+e” (k,0) € 72.

(0,0) # (k,0) € 22,

- 295()\)110,0 = Q(M - 1)¢Lz,ﬁ()\)u0,07

Ay,

(5.2.62)

(5.2.63)

(5.2.64)

(5.2.65)

(5.2.66)

(5.2.67)

(5.2.68)

(5.2.69)
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and the function ¢, 3 is defined in (5.2.37). Thus, we replaced the initial continuous
problem for u € Ly(G) by a discrete problem for {uy;}xez2 € €2 (Z?).

Case A\ =0

If 0 is an eigenvalue of the operator A*(f3), then the corresponding eigenfunction has the
form

Ur1,0(5) = Wpp(1 = ) + Uy, s €0, L], (k,0) € 72, (5.2.70)

U1 () = (1 — 1) + gt te o, L], (k,0) € 72, (5.2.71)
9 2u;

ul,(2) = gy <1 — L—Z> L—”z ze[0,&], (k,0) € 72, (5.2.72)
2 2u,

Ui g(2) = Wiy (1 + L—Z) - Lk’éz, z€[-L,0], (k,0) € Z?.  (5.2.73)

The quasiperiodicity conditions ((5.2.1]) imply that

" 1+e _ 1+¢”
U, = B Ug,¢, ., = 5

Uy, (k,0) € Z*. (5.2.74)

After plugging (5.2.70)—(5.2.74]) into the Kirchhoff’s conditions (5.2.2]) we find

u + up_ u + ug 1 1 1 — cos
k+1,0 k—1,4 + k,0+1 kl—1 _9 <_+_+ ﬂ>u1€7[:0, (k’,g) # <070>7

L, L, L, L, L.
(5.2.75)

U100+ Ug—10 | U1 + Ugea 1 I 1—cosp 1 —cosf
: 7 7 Sl R N e T =2 — 1) ——F .
I, + I, ( I + I, + I U =2(u—1) 7. oo
(5.2.76)

We end up with the following assertion.

Lemma 5.2.4. If \? is an eigenvalue of finite multiplicity of the operator A*(B) and
u s an eigenfunction associated with X* then {w }xnezz € lo(Z?) and the sequence
{uri}kpyeze satisfies the finite difference equation (5.2.67) —(5.2.68)) for A # 0 and [5.2.75) -
5.2.70) for X = 0. Conversely, if a sequence {uri}xnezz € b2 (Z?) satisfies (5.2.67)~
5.2.68) (resp. (5.2.75)—(5.2.76) ) then A\? (resp. 0) is an eigenvalue of finite multiplic-
ity of the operator A*(B) and the function u defined by the relations (5.2.62])—(5.2.66)
(resp.(5.2.70)(5.2.74) ) is a corresponding eigenfunction.

5.2.2.2 Absence of embedded eigenvalues

Let us apply to the sequence {uy,} the discrete Fourier transform F : (5(Z*) — L ([0, 27]?)
defined as

F{vii}) =V, V(&) = Z €i(k£+ln)Vk,é, (&mn) €0, 27T]2-
(k,0)ez?

Then, for u we get the following equation:
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For \ # 0,
(froryeaN) = or.s(N) A(E,n) = (1 — 1)¢r. s(MNugo, V(E,n) € [0,2a]?,  (5.2.77)

where the function fr, 1, ¢, is defined in (5.2.35).
For A =0,

cos§—1+cosn—1 1 —cosf
L, L, L,

1—cosf

I u0,07 v<£7 7]) € [07 27T]2'

(5.2.78)

Jaten = -1

We can now prove the absence of embedded eigenvalues for the operator A*(f).

Proposition 5.2.8. If \? is an eigenvalue of finite multiplicity of the operator A*(3) for
some 3 € [0, 7], u > 0, then \* ¢ o(A(B)).

Proof.

(a) A > 0: suppose that \> € o(A(f)) is an eigenvalue of finite multiplicity of the
operator A*(f3). As follows from Proposition , A e R:\ E*. According to
Proposition m, there exist (kg,ky) € [0,7]? such that ¢r_s(N) = fr. L,k k, (A)-
On the other hand, if v is an eigenfunction corresponding to A2, then the equation
(5.2.77)) is satisfied. Its right-hand side does not depend on (&£, 7) and its left-hand
side is zero for (§,7n) = (ks, ky). Thus,

(froLyenN) = or.s(N) 8 n) =0, V(& n) € (0,27

Consequently, u(§,n) = 0for any (£, ) € [0,27]? such that fr, 1, en(X) # fro.L,kek, (A)-
The set {(&§,n) € [0,27)%/ fr..1,ea(N) # froLykok, (A)} being a full-mesure set, we
conclude that U = 0 in Ly ([0,27]?). Hence, u = 0 and A? is not an eigenvalue of the
operator A*(f).

(b) A = 0: suppose that 0 € o(A(f)). Then, one necessarily has § = 0. If u is an
eigenfunction corresponding to 0, then its discrete Fourier transform satisfies the

equation ([5.2.78|) with g = 0:

cosé —1 cosn—1
§ L 008
L, L,

)mam:a v(E.n) € (0,20

Similarly to the case A # 0, we find u(&,n) = 0 for any (£,7) € [0,27] \ (0,0), which
implies that u = 0 and 0 is not an eigenvalue of the operator A(0).

5.2.2.3 Obtaining a characteristic equation for the eigenvalues

From now on we will consider A such that A\* ¢ o(A(f)). Then, it follows from Proposition

(1) and Proposition that

¢LZ7ﬁ()\) 7é 07 fLI,Ly,&??()\) - ¢Lz,,3(>‘) 7£ Oa V(f, 77) € [07 27T]2' (5279)
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Consequently, for A € R, \ 3*, A? & o (A(B)) the relations (5.2.77), (5.2.78)) impliy

. (1= p)uaog
G n) = TS, (e € 0.2,
where
froend), AR (BUS(9),
pp(§m, A) = i (5.2.80)
L, (cos§—1+cos77—1) B0, A=0
1 —cos 3 L, L, ’ Py e

Notice that for 5 €]0, 7| the function ¢g is continuous at 0. Finally, applying the inverse
Fourier transform, we get

/£)o,0 o ilke+0) 2
Uy = 47T2 // T § 7oA d&dn, (k,0) e Z°. (5.2.81)

[0,27]2
We can now give a criterion of existence of an eigenfunction.

Proposition 5.2.9. \? is an eigenvalue of finite multiplicity of the operator A*(8) if and
only if N € Ry \ X%, A\ & 0(A(B)) and the following relation is satisfied:

(1 — p)Zs(N) = 1, (5.2.82)

-2 // 1~ 5 oo dﬁdn, (5.2.83)

[0,7]2
and the function g is defined in (5.2.80)).

Proof. If \? is an eigenvalue of finite multiplicity of the operator A*(3), then it follows
from Propositions and that A € R, \ * and \? ¢ o(A(B)). Let u be an
eigenfunction corresponding to the eigenvalue A\2. Then, the relation is satisfied.
For £k =0, £ =0 it gives

where

l=(1—p o ilke+6m) — (1 — (AN
v [ e dgdn | = (1= )50\

[0,27]2

The last equality is due to the symmetry of pg:

S%(fﬂ?a)\) :905(27T_§>777)‘) :90/5’(572’”_777 )‘>7 V(fﬂ?) €R27 )‘ €R+\(E* U(E(ﬁ))>
5.2.84

Conversely, suppose that A € R, \ 3*, A\* ¢ o(A(S)) and the relation is satis-
fied. Then, A ¢ X(3) and one can define {uy s} ez by the relation (5.2.81]). Since
es(&,m,\) # 1, V(&,n) € [0,7]?, one has {uk,} ez € (2(Z?) and the relations (5.2.62)-
(5.2.66) (or (5.2.70)—(5.2.74) for A = 0) define an eigenfunction of the operator A*(p)
corresponding to the eigenvalue 2. O
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5.2.2.4 Existence of eigenvalues

We will now study the number of eigenvalues in the gaps of the operator A*(3). With the
classification of gaps introduced in Proposition |5.2.6| we can prove the following assertion.

Theorem 5.2.1. For any 0 < pu < 1, 8 € [0, 7] there exist at least two simple eigenvalues
of the operator A*(B) in each gap of type I and at least one simple eigenvalue in each gap
of type I1. These eigenvalues are characterized as follows:

N €oq(A*(B)) < Xis a solution of (5.2.82).

For > 1 the operator A*(5) has no eigenvalues.

Remark 5.2.5. Since in our terminology the interval |0, mino(A(S))[ for 5 €]0,7] is
called a gap of type Il (cf. Remark , Theorem implies that the operator
A*(B) has one simpleeigenvalue below the essential spectrum for g €0, 7], 0 < p < 1.

The rest of the section is devoted to the proof of Theorem [5.2.1} The following auxiliary
assertion shows that for u > 1 the operator A*(/) has no discrete spectrum.

Lemma 5.2.5. For any § € [0,7], if A € Ry \X* and \* ¢ o (A(B)), then os(&,n, \) < 1,
V(& n) € [0,7].

Proof. Tf A* ¢ o(A(f)), then ¢r. 3(A) € R\ [fr, , (V) fi, ; (\)]. Taking into account
that f; ; (A) <0, fELlLy()\) > 0, we get the result for A > 0. Finally, for A = 0, 5 €]0, 7],
it follows from (5.2.80) that ¢g(¢,n,\) <0, V(&,n) € [0, 7). O

Corollary 5.2.2. For any B € [0,7], p > 1, the operator A*(B3) has no eigenvalues of
finite multiplicity.

Proof. As follows from Lemma [5.2.5] if A? € 04(A*(B)), then Ig(A) > 0. The relation
(5.2.82) implies that p < 1. m

Remark 5.2.6. Lemma permits to rewrite the relation (5.2.82)) as
p=1—Fz(N), (5.2.85)

with
Fs(\) = Is(\) 7"

We will now study the behaviour of the function Fj inside the gaps of the operator A*(3)
in order to determine the possible number of eigenvalues of the operator A*(3) in each
gap. As follows from Lemma , the function Fj is continuous inside the gaps except
at the points of discontinuity of the function ¢, 5. In Lemmas and we describe
the behaviour of Fj near the ends of the gap and in Lemma we study its behaviour
near the points of discontinuity of the function ¢g 1, .

Lemma 5.2.6. If A\, € R, \ (quzyuiz(ﬁ)> and ¢r. p(Ay) = fZ;Ly()ur), then

Fy(\) = 0. Similarly, if A\ € R, \ (zx Uz, U iz(ﬁ)> and dr.s(\) = fi 1 (Ay),
— A — Y
then Fg(\) — 0.
A—=A_+0
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Proof. We will prove the statement for A\, only, the proof for A\_ being analogous. Let &,
1o be the values of &, 1) such that fr, 1, ¢.50(A) = f7, 1, (A+) (obviously, & € {0,7} and
no € {0,7}). Then, due to the symmetry of the function ¢s (cf. (5.2.84)), one has

1 1 1
winz s ff ag'dy.
€ §//< 1 - @B(gﬂ% >‘) 42 I 906(504‘5/77704'77/,)\)
—GQOIXRT /€l2+77/2<7r

[n—no|<m

In the last inequality we made a change of variables £ = & + &', n = no +1'. We have

then
Is(\) > 41215T(A) Vr <, AgX, Mo (AB)), (5.2.86)

1
I5,.(\) = dedn,
ar() Z/l—m@wé,mmw sdn

and D, = {(5 1)/ VE+n? < r}. It follows from the assumptions of the lemma that

)\i is the upper end of a gap (it can also be the bottom of the essential spectrum (cf.
Lemma and Remark [5.2.4). Thus, we can find § > 0 such that A\? ¢ o, (A*(3)),
VA €]Ay — 6,2, From now on we suppose that A\? & .. (A*(3)) and we study the
behaviour of the integral I, (A) as A = Ay — 0. Notice that the function ¢z is smooth in
some neighbourhood U of the point (&, 7o, A+). Indeed, by assumption Ay ¢ ¥, UX, U

¥.(B) which guarantees the continuity of the functions fr, 1, ¢, and ¢r, 3. Moreover,
¢r. 3(A+) # 0 since fLw,Ly()"i‘) > 0. Let p and ¢ be positive numbers such that ¢z €

C*°(U,s), where

where

Ups = {(§ = &)>+ (n—m0)* < p*} x]Ap — 6, Ay).

Let us write down the Taylor series of the function ¢z in U, s:

ws(&sm, A) =1+ 0hps(8osm0s A ) (A — Ay) + 3525906(50, Mo, Ay )(§ — 50)2
+02,05(€0, M0, A1) (1 —m0)2 + O (A= X)) + O ((€—&)") + O ((n—mo)*) . (5.2.87)

We took into account the relations

(pﬁ(go + 5777»/\) = @5(50 - 577% )‘)7 906(5,770 + 1, /\) = 905(&770 - n, )‘)7

which lead to the absence of the terms with odd powers of (£ — &), (n —no) in (5.2.87)).
It follows from ([5.2.87) that there exists a constant C, 5 > 0 such that

©s(&,mA) = 1= Cps (IN= A + (€= &)*+ (n—m0)?) V(E,n,A) € Upgs.

Consequently,

2
I dédn = 7C I (1 + — >
5.0 (A //|)\ A+|+§2+n §dn = 5n( P

which shows that Iz ,(\) \ /\—) . +o00. Taking into account ([5.2.86) and the definition of
— A4 —
the function Fz we conclude that Fz(A\) — 0. O
A=A+ —0
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Lemma 5.2.7. If A_ € (S5 USH)\S5(8) and ¢r. s(A-) > fi ;. (A2) or A € (8, UE,)N
5.(8), then i F(N) > 1 Similarly, if Ay € (Z:UE)\ Z:(B) and ¢r. 5(\y) <
frop, (M) or Ay € (SEUSE) NEE(B), then, lim Fs(\) > 1.

Proof. We give the proof for the case of A_ only, the proof for A\, being similar. We will
suppose that A\_ € X, (the case A\_ € ¥, can be considered analogously). It follows from

Lemma that A_ is the lower end of a gap (or A_ = 0 and 0 is not the bottom of the
spectrum of A()). Thus, there exists 6 > 0 such that A\? ¢ o (A(3)), VA €JA_,A\_ +4[.

(i) Consider first the case A_ € (X3 UX?) \ij(ﬁ), or.5(A2) > fer’Ly()\_) > 0. Let us

study the behaviour of I(\) as A — A_ + 0. Since pg(&, 1, \) e T for any
—A_+

¢ € [0, 7] such that cos& # cos (A_L,) and any n € [0, 7], we have

1
—
1 —@(&,m,A) x=a_+0

0%, (&m) €[0,a*\ {(&n) /cos§ = cos (\_Ly)} .

We can then apply the dominated convergence theorem. Indeed, there exists 6 > 0
such that ¢r. g(\) > f (M) for any A € [A-,; A_ + d]. Then,

fin, M) _ fin, (A= +9)
Or.5(N)  or.5(A-+0)

<1, (&,m,A) € [0,7)* x [A_, A_ +4].

(5.2.88)
Here we used the monotonicity and positivity of the functions fL*Z , and ¢r. 5 in
[A_, A_ + 0]. Putting

ws(&m,A) <

S, (A= +9)

O s 1)

<1

Y

we get
1 1

< ,
1—gp(&nA) 1-C

Consequently, the dominated convergence theorem applies and Iz(\) Nicus +07",
—A+

(&m,A) € 10,72 x [A_, A + ).

which implies Fj(\) o, Too
—A+

(ii) Suppose now that \_ € (X, UX,) NX,(F). Then, if \_ € ¥, \ ¥,, we obtain

Lz <COS‘E(;S,£LZ) - 1> 9
ps(&mA)  — ;o (&m) [0, 7]
A=A-+0 T (1 _ __cosp >
£ cos (A_L)

Using the relations |cos (A-L;)| = 1, [cos (A-L;)| = 1 and cos 8 # cos (A-L.) (since
A_ € 3,(0)), we get

cosé cos 3

— —1 <0, - —— > 0.
cos (A_Ly) cos (A_L,)

Consequently, A li/\m+O ©0s(&,m,\) <0 for any (£,n) € [0, 7]2.
—A_
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Similarly, if A\_ € ¥, N'%,, we obtain

L (&_1) L (&_Q
% \ cos(A_Lyg) %z \ cos(A_Lyg)
ps(&m ) — + <0 (&n)elo,7%
) L (- =8)

A—=A-+0 cos
Lz (1 " cos (/\_/BLZ

cos 3
O-L)

The dominated convergence theorem can be applied again since the estimate ((5.2.88))
is still valid. We have lim Iz(\) < 1, which implies lim Fz(\) > 1.
A—=A—+0 A—=A_40

[
Lemma 5.2.8. If Ao € £.(0) \ (5, UY,), then lim F3(\) = 1.
—A0
Proof. This is obvious since ¢g(&,n, A) Ny 0 uniformly for (¢,7) € [0, 7% O
—A0

We can now finish the proof of Theorem [5.2.1 We will use the classification of gaps
given in Lemma according to which the image of each gap of type I by the function
x +— /x contains exactly one point of the set ¥, () (point of discontinuity of the function
¢r. 3), whereas the image of each gap of type I1 does not contain such points.

Proof of Theorem [5.2.1. The result for 1 > 1 is given in Corollary [5.2.2]

(a)

Let ]a, b] be a gap of type I. Then, according to Proposition Va and /b satisfy
the hypothesis of Lemma|5.2.6/and lim+ (1= Fp(A) = lim (1- Fg()\))=1. Next,

A—=va A—=Vb

it follows from Lemma [5.2.3| that there exists ¢ €]a, b such that \/c satisfies the

hypothesis of Lemma [5.2.8] which implies lim\[ (1 — F3(A\)) = 0. Moreover, the point
A—=/c

V¢ being the unique point of discontinuity of the function ¢ g in ]v/a, V[, the
function Fj is continuous in |/a, v/c[ and ]/c, vb[. Consequently, for 0 < u < 1 there
exists at least one solution of the equation ([5.2.85)) in each of the intervals |v/a, v/¢|

and ]y/c, V[, which gives at least two eigenvalues of the operator A*(/3) in the gap
la,b[.

Let ]a, b[ be a gap of type I1. In this case, it follows from Proposition that one
of the points 1/a, Vb satisfies the hypothesis of Lemm whereas the other one
satisfies the hypothesis of Lemma . Suppose that /b satisfies the hypothesis of
Lemma and /a satisfies the hypothesis of Lemma m (the opposite case can be
considered similarly). Then, lim (1 — Fs(\)) =1 and lim (1 — Fs(N\)) < 0. On
A—=vVho A—yat
the other hand, Lemma implies that the function Fj is continuous in ]y/a, v/b].
This proves that for any 0 < p < 1 there exists at least one solution of the equation
in ]\/a, v/b], which gives at least one eigenvalue of the operator A*(f) in the

gap Ja, bl.

Finally, the eigenvalues of the operator A*(/3) are simple since the corresponding eigen-
functions satisfy the relation ([5.2.81f), which defines an eigenfunction corresponding to a
given eigenvalue in a unique way. ]
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Remark 5.2.7. Similarly to the 2D case a characterization of the essential spectrum of
the operator A*(f) can be given in terms of the absolute value of the function gs. Indeed,
comparing the equation ([5.2.34) with the definition (5.2.69) of the function gz we conclude
that

1 1
98] < — + — :
PV Jsin (AL,)|  [sin (AL)]

for A ¢ E, )\2 € Oess (A“(B» g

Notice that if we consider the non-perturbed case u = 1, the equation for the Fourier
transform u takes the form

cos § cosn R B
(sin (AL,) + sin (AL,) - gﬂ(/\)) u(é,n) =0.

Consequently, for A ¢ ¥, there exists a non-zero solution if and only if

cosé cosm
sin (AL,)  sin (ALy)

3(,n) €10,7)* s.t. —g3(\) =0,

i.e., if and only if \> € o (A(B)). This means that for A ¢ ¥ there exists a generalized
eigenfunction of the operator A(S) (a solution of the equation A(8)u = Au of at most
polynomial growth) if and only if A € o (A(3)).

5.3 The operator A¥(3)

As in the 2D case, the results of the works [61], [47], [57] can be applied to get the following
assertions.

Theorem 5.3.1 (Essential spectrum). Let {|a,(5),b.(8)[, n € N*} be the gaps of the op-
erator A() on the limit graph G for 5 € [0,7]. Then, for each ng € N* there exists eo() >
0 such that if ¢ < £o() the operator A.(B) has at least ng gaps {lacn(5), ben(B)[}12, such
that

acn(B) = an(B) + O(e), ben(B) =ba(B)+0(), e—0, 1< n<n.

Theorem 5.3.2 (Discrete spectrum). Let Ja(5),b(5)[ be a gap of the operator A*(B) on
the limit graph G for B € [0,7] and \V(B) € Ja(B),b(B)] a (simple) eigenvalue of this
operator. Then there exists o(8) > 0 such that if € < 9(B) the operator AX(5) has an
eigenvalue A\:(() inside a gap la:(5),b-(8)] such that:

A(8) = 2A9(B)+ 0 (e), e — 0.

We do not construct the full asymptotic expansion of the eigenvalue here, which should be
possible to do using the approach described in Chapter 2] The weak version of Theorem
[5.3.2]with a suboptimal rate of convergence should also be easy to obtain by constructing a
"naive" pseudo-mode and adapting the argument used in Section[I.4.3]to the 3D geometry.






APPENDIX A

A.1 Self-adjointness of the operator A"

Proof of Proposition[1.3.1. Let us show that the operator A* defined in (|1.3.4)—(1.3.5) is
self-adjoint. Let us show first that it is symmetric. Indeed, if f, g € D(A*) then

(4t g =Y / —wt(e) fgdx = 3 / —wh(e)fgdx — () (fg)I"

ecE eelk

Ve2
Vel

vr T w(e)(f7)

= (f, A"9) + ) ( > @' (e)(fe ) (0)g(v) = f(v)w“(ev)(geu)m(v))> = (f,A"g).

veV \ey€E,

To prove that the operator A* we will show that D((A")*) C D(A"). Let f € D((A")").
by definition there exists h¢(= (A*)*f) € L5(G) such that

(f, A%g) = (hy,g), Vg€ D(A"), (A.1.1)
and consequently,
Z/ —w'(e fg"dx—Z/w“ e)hsgdx, Vg€ D(A"). (A.1.2)
ecE eckE

The set D(A*) obviously contains the functions C§°(e) for any e. The relation (A.1.2)
applied to functions g € C3°(e) implies that — f”|. = h¢|.. Thus,

= hy, e LYG). (A.1.3)
Hence,
feH e), YeeE;, Y |flliee <00 (A% f=—f" (A1.4)
ecF

We have to verify the continuity of the function f at the vertices of the graph GG and the
Kirchhoff’s conditions. Suppose that g € D(A*) vanishes outside some neighbourhood of
a given vertex vg. The relation (A.1.2] m yields

Z/ —wh (el f”dx-Z/ —wh (el ) f"gd (A.1.5)

171
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On the other hand, integrating by parts, we get:

3
Z /—u]ﬂ €0 fg”dx_z /—wu €0 f//ng_FZwM €uo fe’ )wt(vo) (UO>

UO

3
= D wh(ely) fei, (00) (G, V(0

which implies

3

<Zw“(ei,0)<f%>;m<vo>> g(vo) = > wh(€l,) fui, (00)(Fer Vewe(v0) = 0. (A.1.6)

=1

Choosing a function g such that it is equal to a non-zero constant in a neighbourhood of
the vertex vy, we get

D (€) (i, Veaa(v0) = 0. (A17)

Let us now choose a function g € D(A*) such that

1 1

g(UU) = 07 (ge )emt(vo) = W? (ge{; )e:ct(vo) _mﬁ (gev )ezt(vo) 07

for some permutation {i, j, k} = {1,2,3}. From the relation (A.1.6) applied to the func-
tion g we obtain

feim(vo) = feg;o (vo).- (A.1.8)
This proves the continuity of the function f at the vertex vy. Thus, we conclude that
D((A")*) € D(A*") and consequently, A" = (A*)*. O

A.2 Quasi-modes method

In this section we shall prove Lemma that provides a result existence of eigenvalues

for the operator A (A% ,.). It relies on a pseudo-mode method. The result may be found

in [53] Lemma 4, but, for the sake of completeness we give a proof.

Let H be a Hilbert space, A a self-adjoint positive definite operator:
Ja>0:  (Au,u) > allul? Vu € D(A).

Let a be the closed positive definite sesqui-linear form which corresponds to the operator
A:
D[a) = D(AY?), alu,u] > allul?, Vu € Dial.

We denote by |- |, the norm in the space D|a] corresponding to the scalar product

(u,v), = alu,v], Vu,v € Dia).
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Lemma A.2.1. Suppose that A > «. If there exists u € Dla] such that
la[u, v] — A(u,v)| < e|ula|v]a, Vv € Dlal, e<(A+1)71 (A.2.1)

then
dist(o(A), \) < Ce, C=\+1.

Proof. Let us define the operator B : D[a] — Dla] as follows:
a[Bf,v] = (f,v), Vv € Dia).
We notice that this implies
Bf € D(A), ABf = f, Vf € Dlal. (A.2.2)

We denote by | - |, the norm associated with the sesqui-linear form a: |f|> = a[f, f].
Let us prove the following assertion.

Proposition A.2.1.

1
Aeo(4) <=> 3 € o(B), VA > 0.

Proof.
Case of eigenvalues:

1. Let A be an eigenvalue of the operator A: Af = Af. On a
(f.0) = \NAf,0) =aAHf,0], Vo€ Dlal.

By definition of the operator B this implies Bf = A\71f.
2. Let A7 be an eigenvalue of the operator B: there exists f € D[a] such that Bf = A71f.
From (A.2.2)) it follows that f € D(A) and Af = AABf = \f.

Case of continuous spectrum:

1. Suppose that A € o.(A). Then, there exist a singular sequence {uy,}nen C D(A)
such that

a) inf ||u,| > 0,

b) u, — 0in H,
c) [[(A—=Nuy,|| — 0.

Let us show that {u,} is also singular sequence for the operator B in the space D|a]
equipped with the norm | - |,. Thus, the property

a) inf |u,|, >0
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is obviously verified. Let us prove the weak convergence of the sequence {u, } in the space
Dial:
aft,, v] = (Atg, v) = ((A = Nug, v) + AMuy, v) — 0, Vv € Dlal.

We used the properties (b), (c) of the sequence {u, }. Consequently,
b) u, — 0 in D[al.
The only thing to show now is that [(B — A~ )u,|, — 0. Indeed,

| Bu,, — A_lun|a =a[(B — XY, (B —A"Yu,) = (AB — X Hu,, (B —XA"Hu,)

= A"y, — Auy, (B — X Hu,) < C||Auy, — Muy|| — 0.

Thus,
c) [(B = A" unla — 0,
and {u,} is a singular sequence for the operator B at the point A~1.
2. Suppose that A\™' € o.(B). Then, there exists a singular sequence {f,}nen C D[]
such that
a) inf [fols >0,

b) f, — 0in D|al,

) [(B=A""fala — 0.

Let us show that there exists a singular sequence for the operator A. We put u,, = Bf, €
D(A). From the properties (a) and (c) of the sequence { f,,} it follows that inf |u,|, > 0.
We have:

Therefore,

inf [|u, || > inf —= >0
n

wo Ll
Thus, the property

a) inf ||u,| >0

is verified. The sequence {u,} being bounded, we can extract a subsequence which con-
verges weakly to some element h € H. We keep the same notation {u,} for the subse-

quence:
(Up, w) — (h,w), Yw € H. (A.2.3)

For w € Dl[a] we have:
(Un, w) = a[B fn,w] — 0, Vw € Dial, (A.2.4)

where we used the property (b) of the sequence {f,}. Thus, the relations (A.2.3) and

(A2.4) imply that
(h,w) =0, Yw € Dla).

Since Dla] is dense in H we conclude that h = 0 and hence
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b) u, — 0in H.
The last thing to verify is the property (c). We have:
(A = Nl = [lfa = ABfull < @V fs = AB fula — 0.
The property
¢) (A= Munl| —0

is verified which proves that {u,} is a singular sequence for the operator A at the point
A O

We can now finish the proof of Lemme Suppose that u € Dla] is such that (A.2.1)
is verified. We have:

‘CL['LL, ’U]—)\(U,U)‘ = |CL[U,U]—>\<AB'U,7 /U)‘ = ’CL[U,U}—)\[BU,’U” = |CL[U o ABU’?U” < €‘U’|CL|U’CL7
and hence,
(B—X"u|, < §|u|a.

The last relation implies that

dist(a(B), A1) < ;

and for the operator A we obtain

AE
1—¢

dist(o(A),\) < < (A1,

where we took into account the relation (1 + \) < 1. O

A.3 Some auxiliary assertions

The following assertion is very similar to Lemma 3.10 in [37].

Lemma A.3.1. For each a > 0 there exists e > 0 and a constants Cy(«), Ca(a) which
does not depend on € such that

1011, go.eoxioep < Ci(a)e*/? 101l 72 go,11x0,2 - Yo e H'(]0,1[x]0,¢[), Ve < &,
(A3.1)
191l Ly gocerxiocn < Ca(@)e 1ol rgorpaoe: Yo € H' (0,1[x]0,e]), Ve <( £0. |
A.3.2

Proof. We will prove the estimate , the proof of the estimate being anal-
ogous. Due to the density of C™([0,1] x [0,¢]) in H'(]0,1[ x]0,¢]) it is sufficient to
show for functions v € C* ([0,1] x [0,¢]). Let us introduce a function ¢, €
C* ([0,1] x [0, ¢]) such that

Yo(z,y) =1, (z,y) €0, x [0,¢], Vo(z,y) =0, z€ [%, 1] x [0, g].
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Then, HUHLl(]O,EO‘[X]OﬁD = ||/UwaHL1GO,6O‘[X}O,ED' We have

(v6a) ( / 0, () (', y)da

Hence,
1
(b))l < [ 19 (o) ()]
0
Consequently,

e* 1

9l < [ //wv%:mmmw iz
0

0

1 1/2

e //W(v%) (@ ) da'dy | < C@)e* ™ [oll oo -
0

]

Lemma A.3.2. Let K be the rectangle |0, a[x]0,b] for some a,b >0 and I' its boundary
{0} x [0,b]. Then, for any 6 > 0 there exists a constant C(8) such that

WLy < 0llvlln g + CONILw), Yo e HY(K). (A.3.3)

Proof. Applying the same density argument as in the previous Lemma, as well as the fact

that the traces of a convergent sequence in H'(K) converge in Lo(T") we only need to
prove (|A.3.3) for functions in C*°(K). Thus, for v € C*(K) we have:

v(0,y) = v(z,y) /011:63/ (z,y) € K,

and

1/2

W@wﬂ<@@wﬂ+/WW@wWﬁ<W@wﬂ+ y/@mawfﬁ ,

where we used Cauchy-Schwarz inequality. Hence,

a

w(0,9)2 < C Mawﬁ+g/wmawfﬁ

0

Integrating the last inequality over |0, d[x]0, b gives:
2 2 0o
O[vlzamy < O | ollzam) + 5 10l )

Dividing by ¢ yields (A.3.3). ]
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Lemma A.3.3. Let v be the solutions of the problems (3.2.25) for o ¢ o(A.), ¢ €
HY2(T%). Then, v* € H*(K*) and the estimate (3.2.27)) holds.

Proof. Let us introduce a cut-off function y € C*° ([%, 00 D such that

x@)=1, zel5i+i],
x(@) =0, we [+ 00,
0< x(z) <1, Vme[%,oo[.

Then, the function ¥ = xv™ solves the following problem in K = |4,2 + [ x |-£ L.

—AT = Pty —vTAxy — 2VuTVyx +ul (a,¢) in
ov

N |px\r

+
KT,

Ulps =0, =0,

where we used the fact that v* € D(AY), cf. (3:2:2). Then, applying the regularity result
([)), we conclude that v € H? (KF) and
Bl ) < € lo?vx = 0¥ Ay = 2V0 Ty + ) ey < C@ el

where C'(«) is a continuous function depending only on the geometry of the domain.
We used the continuity of the operator (AT —a2)™" : Ly (BF) — H (BF) to estimate

H'ﬁHHl(K;r) as well as (3.2.5)). Finally, since 0|, = v|;+, we get (3.2.27). O

A.4 Technical results associated with Chapter 5

Lemma A.4.1. The condition D()\) = 0 with D(X) defined in (5.2.21)) is equivalent to
the relation ((5.2.4)).

Proof. Let us compute the determinant D()). First, we subtract the second column from
the first, the fourth from the third and the sixth from the fifth. Then, we multiply the
third line by e~%=, the fourth one by e~*v and the fifth one by e~%#=. We get:

D)) = etz oty P

0 1 0 -1 0 0
0 1 0 0 0 -1
| ~2isin (AL,) e ks — g=iAle 0 0 0 0
0 0 —2isin (AL,) e v — e~y 0 0
0 0 0 0 —2isin (\L,) e — e7irEs
1— ei(ALz—i-kz) 0 1 — ei()\Ly—i-ky) 0 1 — 6i(/\Lz—i-,B) 0
Developing the determinant with respect to the first line, we get:
D(\) = e el® (D () + Dy(N)) (A.4.1)
where
0 0 0 0 -1
—2isin (A\L,) 0 0 0 0
Di(\) = — 0 —2isin (ALy) ety _ gmiALy 0 0 ,
0 0 0 —2isin (AL,) e — e7irE
1— ei()\Lerkz) 1 — ei()\Ly+ky) 0 1 — 6i(/\Ler,B) 0
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0 1 0 0 —1
—2isin (AL,) e the — g7iAle 0 0 0
Ds()\) = 0 0 —2isin (AL,) 0 0
0 0 0 —2isin (\L,) e % — e7irLs
1 — ei(ALl-—I—k:w) 0 1 — ei(/\Ly—I—ky) 1 — ei(ALz-i-ﬁ) 0

The determinant D;(\) can be computed directly:

Di(\) = —4sin (AL,)sin (AL,) (1 — e"Plvtho)) (e7ihu — o=iM)
= —8sin (A\L,)sin (AL,) (cosk, —cos (AL,)). (A.4.2)

To compute determinant Ds()), we decompose it with respect to the first line. We get:

Dsy(X) = Dy 1(N) 4+ Daa(N),

—2isin (AL,) 0 0 0
B 0 —2isin (ALy) 0 0
D21(A) = — 0 0 —2isin (AL,) e % — e7irks |7
1— ei()\Lerkz) 1 — ei()\Ly+ky) 1 — ei(/\LerB) 0
—2isin (A\L,) e e — iAo 0 0
B 0 0 —2isin (ALy) 0
Daa() = = 0 0 0 —2isin (AL,)
1— ei()\Lz-i—kz) 0 1— ei()\Ly+ky) 1— ei()\Lz—i-B)
We find then

Dy i(N) = —4sin (AL,) sin (AL,) (1 — e'@L=tha)) (o700 — e=iALe)
= —8sin (AL, ) sin (ALy) (cos f —cos (AL,)), (A.4.3)

Dy5(N) = —4sin (L) sin (AL,) (1 — e'@Fethe)) (gmike — gmirEe)
= —8sin (ALy)sin (AL,) (cosk, — cos (AL,)). (A.4.4)

Combining the relations ([5.2.20)), (A.4.1)—(A.4.4)), we find the condition (5.2.4)). O

Proof of Proposition |5.2.4).

The point A? is an eigenvalue of infinite multiplicity of the operator A(f) if and only if
it is an eigenvalue of the operator Ag(k,,k,) for any (k.. k,) € [0,7]%. It follows from
Proposition that \> € 0,,(A(B)) if and only if A > 0 and the equation (5.2.4
is satisfied for any (k.,k,) € [0,7]?. The first term of in the left-hand side of (5.2.4
only depends on k,, the second term depends only on k, and the third term is constant.
Consequently, \? € 0,,(A(3)) if and only if A > 0 and all the three terms are identically
zero. If A > 0, the condition for the first term to be identically zero is A € ¥ U X7, the
condition for the second term to be identically zero is A € X7 U X7 and the condition for
the third term to be identically zero is A € 37 U ¥y U 37(53). Thus,

N eo,(AB) & Mel,

where
M= (Z;USy) n(Srus)n (S, usiusi(s)) .
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Since 33%(8) € 5% (cf. (5:2:27)(5:2:28)), we have ;5(8) C (2% U X:)NE: C I1. Moreover,
we have seen in the proof of Proposition [5.2.3| (2) that for any point A € X;4(/3) there exist
positive numbers [ such that ]A\2 — 17, M2 [N a(A(B)) = 0, N, N2 +1F[No(AB)) = 0.
Consequently, the set ¥;5(8) corresponds to isolated points of the spectrum. Let us
determine IT \ 3;5(5). We distinguish two cases.

(i) B €]0, [ in this case X*(8) = B* and the set IT\ 3;,(8) is

IN\Xis(8) = Sis(B)NI = (X2 N EH)N(S; N SH)N(EE USHN(Sy USHN(S; US) UEi(8))
= ((Z\Z)UEINE)) N ((Z5\Z) U (Z\55)) N (B U s ux: (6))
((E;OE;)\Z’;)U(Z*\(Z*UZ)) (E*U *UZ*B))

— )N (s
= (B =)\ Z2) n (B Uz uEi(e)) u (( \(Zux
AN

)N (B Uz UEiB)
= ((ZnE)AZ) u (N (s )

) = (TN )\ Z1(B).
The last equality is due to the fact that for G]O, 7[, 2:NX:(8) = 0. Let us show that

if \g € IT\ Z;5(8), then A3 is not an isolated point of 0( (8)). The equation (5
with A = A\g + ¢ can be rewritten as

XUy
by

cosk, , cos (AL,) —cosf sin(dL,) cos k
cos (MoLg) c0s (0Lz)+sin (OL) sin (AL,) sin (0L,) cos (9Ly) cos (AoLy) )
(A.4.5)
If Ao ¢ X%(B), then for § small enough
, cos (AL,) —cos 3 cos (A\gL,) — cos 3 9
cos (0Lg) + sin (0L,) sin OL) =14+46L, sn OwL) + O(6%).

The quantity (cos (A\gL,) — cos 3) /sin (Ao L.) being different from zero (so either strictly
positive or strictly negative), there exists ¢ > 0 such that either for 6 €]0,&[ or for
d €] —¢€,0] one has

cos (0L;) + sin (0L, )COS (AL:) = cos 5‘

sin (\LL) (A.4.6)

Choosing, for example, cos k, = cos (6L,) cos (AgLy), one can find a k, such that (k,, k,)

solve the equation ({A.4.5]).
If Ao € X%(B), then cos (AgL.) = cos 3, and then then for ¢ small enough

cos (AL,) — cos
sin (AL,)

Hence, the inequality (A.4.6) holds again for § small enough and a solution (k, k,) of
the equation (A.4.5)) can be found as in the previous case.

2
cos (0L,) + sin (0 L) =1-0° (% + LxLz) + O(8%).

(i) B € {0,7}: in this case ¥I(B) C XI. Consequently, 37(8) C II. Taking into account
that X3(5) N X5(B) = 0, we get X5(8) N X5(8) = 0. Thus,

T\ 55(8) = (IT\ (Zi5(8) U Z(8))) U EZ(B). (A.4.7)
Let us compute IT \ (3;5(5) U X3(5)):
I\ (s (8) UXZ(P)) = Bis(B) NITNEL(B).
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It follows from ([5.2.33)) that

u(®) = (50 S28) U (S50 828) . Tul®) = (50 S28)) 0 (S50 5209))
Then,

IT\ (X:(8) UXL(B))
- (Z; N i;(ﬁ)) N (E; N i;(ﬁ)) N(ZEUEHN(SUE) N (S U S US(8) s ().

If 8 € {0,7}, then X* N T(8) = X*(8). We have then

I\ (5i5(8) UXI(8))
= (zn=@)n (30 2*(5)) N (B usis)) n(Zus8) n (B Us) NTE)
_ ((z*\z ) ( ))m((z*\z )) (i;(ﬁ)\2;))m(z:uz;)mz;(5)
= (= se) o (S0 (S205))) (S UE) NSH)

= (=) \Z8) nT2(8).

Together with the relation (A.4.7) this implies that

M\ 23 (8) = (5202 \ 528)) N T2(8)) U TH(8)
= (= Nz \Su@) \Zi8)) UTiB) = (B0 \ S4(8)) U LB,
It can also be rewritten as
I\ 35(8) = (TN 55) \ 22 U (S0 35 N E28) U (B8)\ (250 3)).

Let us show that the points of this set do not correspond to isolated points of the
spectrum.

(a) Ao € (33N X;) \ X:: this case can be treated in the same way as the case (i).
(b) Ao € X5 N XN XE(SF): in this case, taking into account that cos (AgL,) = cos 3, the
equation (b.2.4)) with A = Ay + J can be rewritten as

cosk,  sin(d0L,) cos ky ) sin (6 L)

Ccos (6LI)_COS ()\OL{Z‘> +sin (5Ly> (COS <5Ly) - CoS (AOLy) sin (§L )

(cos(6L,) — 1) =0.

If 0 # 0 is small enough, then, choosing, for example, cos k, = cos (AgL,) cos (6L,), one
can find a k, such that

cos k, sin (0L)

cos OuLL) =cos (0L,) + sin(0L.) (cos(0L,) —1).

Indeed, the right-hand side of this relation is of absolute value smaller than 1 for
small enough. The couple (k,, k,) is then a solution of ((5.2.4).
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(c) o € Zi(B)\ (Z2NX;): suppose that Ao & X7 (the case Ao ¢ X} can be considered
analogously). Then, taking into account that cos (AgL,) = cos 3, the equation ([5.2.4)
with A = A\g + § can be rewritten as

sin (AL,)

cos(6L,) — 1
sin (ALy)

AL,) — cosk, -
cos (AL,) — cos k, + sin (0L.)

(cos (ALy) — cos k) + sin (ALy) =0.

If § is small enough, then choosing, for example, cos k, = cos (AL,), a k, can be found

such that

oL,)—1
cos k, = cos (AL,) + sin ()\Lm)%
in (6L,

Indeed, if Ay ¢ 3%, then
cos (0L,) — 1
sin (6L,)

and the absolute value of this expression is smaller that 1 for § small enough. If Ay € 3%,
then

cos (AL;) +sin (AL,) = cos (AoL,) + O(0),

cos (0L,) — 1
sin (0L,)

L+ L,L.

cos (ALg) + sin (AL,) 5

= cos (AoLy) (1 — &2 ) +0(8%),

and its absolute value is also smaller that 1 for § small enough. Thus, we proved that

the equation ([5.2.4)) has a solution when ¢ is small enough.
O

Proof of Proposition[5.2.7,

Some of the points of the set X* correspond to eigenvalues on infinite multiplicity of the
operator A(S). In the following lemma we identify the subset of points of ¥* that do not
correspond to eigenvalues on infinite multiplicity.

Lemma A.4.2. For any (5 € [0, 7],

N\ (T (B) U Zenn(8)) = (Z2\ (S5 UTD) U (S5 \ (B U ) U (ZA\ (S5 UT3))
Proof.
(i) B €]0,7]: in this case (8) = ©7. Hence,
S\ (Zis(8) U Zems(8)) = (S5 Uy U T\ (BN ED U (S50 E) U ((S10%5) \ 52))
=(Zrusius)\(EnZ)u((Zns)u(Binxy)),
and the result follows.

(ii) B € {0,7}: in this case ¥7 = £.(8)* U (B) and 2% (8) N T:(B8) = 0. We have:

x* \ (Ezs(ﬁ) U Z]emb(ﬁ))
= (B3 \ (Zis(8) U Zemp (B))U(Z \ (Zis(8) U B (8))) U2\ (Zis(8) U Zernn(8))) -

Taking into account that
Zis(8) U Zems(8) = (2201 208)) U (B0 E208) U ((25055) \ E2(8)) U TL(8),

we find the result.
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We come back to the proof of Proposition [5.2.7]

We have to prove that if A € 3* \ (Xi5(8) U Zemp(8)), then A? is not an eigenvalue of the
operator A*(f). According to Lemma [A.4.2 there are 3 possible cases.

(i) A eXp\ (¥ Ux:): since sin (AL,) # 0, we have sin (222) # 0, cos (25) # 0 and
from the relations (5.2.57)—(5.2.58]) we find

e —1

+ <tan (%) (1 + e’iﬁ) + W) 5 (k, l) S Zz, (A48)

+ o+ _
Cpy =« dpy, o =

N | —

_ _ _ 1 1—eb :
Coy = @ dg, o7 = B (W —tan (22=) (14€* B)) . (k1) ezZ® (A.4.9)

We have then

2

1 (o sin (Az) + cos (\2)), ze [-%,0], (k1) € Z°.

2

u:{l(z) = diy (o sin (A\z) + cos (A\2)) , z € [0,%], (k1) € 72,
dy,

Taking into account that sin (AL,) = 0, we get from the relation (5.2.56]
b 16l = 10r_1 | = Ide| =2 di, v(k,0) € 2.

Thus, one necessarily has d, = 0, V¢ € Z (otherwise u ¢ Lo(G)). Consequently,
briie = bpger = aep1 = ¢y = dye = 0, V(k,() € Z*. Then, from the relation
(5:2.59) we get ;1 = ay_1,cos(ALy), V(k, ) € Z?, which implies that |a;,1 | =
ag, V(k,l) € Z*. 1f a; # for some ¢, then u ¢ Lo(G). Hence, ay = 0, V¢ € Z, and
u = 0. This proves that A is not an eigenvalue of the operator A*(f3).

(i) A € Xy \ (33 UXY): this case is treated analogously to the previous one.
(iii) A e Z:(8) \ (X5 UX;): since sin (AL;) = 0, two cases are possible here.

(a) sin (#4=) = 0: then, cos(AL.) = 1 and f3 sé 0 (since A € 2*(8)). The relations

(5.2.57)—(5.2.58]) imply that dy; = 0, ckl = e ey, (k1) € Z*. Then, from (5.2.56)
we get b1, = b1 =0, V(k1) € 72, and since sin (AL,) # 0, sin (ALy,) # 0, we

also have ay, 1, = a;0,1 =0, V(k, 1) € 22 Finally, we find from the relation ((5.2.59)
that ¢, = ¢, V(k,l) € Z*, which implies that ¢, = ¢, = 0, V(k,1) € Z* since
¢’® # 1. Thus, u = 0 and ) is not an eigenvalue of the operator A(f).

(b) cos (2L=) = 0: then, cos(AL.) = —1 and B # = (since A € 5*(8)). The same

argument as in the previous case applies, with the only change that now we have
o= —¢ e, Yk, 1) € Z? and e # —1

O
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Résumé

Cette thése porte sur la propagation des ondes acoustiques dans des milieux périodiques.
Ces milieux ont des propriétés remarquables car le spectre associée a I'opérateur d’ondes
dans ces milieux a une structure de bandes : il existe des plages de fréquences dans
lesquelles les ondes monochromatiques ne se propagent pas. Plus intéressant encore, en
introduisant des défauts linéiques dans ce type de milieux, on peut créer des modes guidés
a 'intérieur de ces bandes de fréquences interdites. Dans ce manuscrit nous montrons qu’il
est possible de créer de tels modes guidés dans le cas de milieux périodiques particuliers
de type quadrillage : plus précisément, le domaine périodique considéré est constitué du
plan R? privé d’un ensemble infini d’obstacles rectangulaires réguliérement espacés (d’une
distance €) dans deux directions orthogonales du plan, que I'on perturbe localement en
diminuant la distance entre deux colonnes d’obstacles. Les résultats sont ensuite étendus
au cas 3D.

Ce travail comporte un aspect théorique et un aspect numérique. Du point de vue théo-
rique ’analyse repose sur le fait que, comme ¢ est petit, le spectre de 'opérateur associé a
notre probléme est "proche" du spectre d’un probléme posé sur le graphe obtenu comme
la limite géométrique du domaine quand e tend vers 0. Or, pour le graphe limite, il est
possible de calculer explicitement le spectre. Ensuite, en utilisant des méthodes d’analyse
asymptotique on étudie le spectre de I'opérateur non-limite. On illustre les résultats théo-
riques par des résultats numériques obtenus a ’aide d’une méthode numérique spéciale-
ment dédiée aux milieux périodiques : cette derniére est basée sur la réduction du probléme
de valeurs propres initial (linéaire) posé dans un domaine non-borné a un probléme non-
linéaire posé dans un domaine borné (en utilisant I'opérateur de Dirichlet-to-Neumann
exact).

Abstract

The present work deals with propagation of acoustic waves in periodic media. These
media have particularly interesting properties since the spectrum associated with the
underlying wave operator in such media has a band-gap structure: there exist intervals of
frequences for which monochromatic waves do not propagate. Moreover, by introducing
linear defects in this kind of media, one can create guided modes inside the bands of
forbidden frequences. In this work we show that it is possible to create such guided
modes in the case of particular periodic media of grid type: more precisely, the periodic
domain in question is R? minus an infinite set of rectangular obstacles periodically spaced
in two orthogonal directions (the distance between two neighbour obstacles being ¢),
which is locally perturbed by diminishing the distance between two columns of obstacles.
The results are extended to the 3D case.

This work has a theoretical and a numerical aspect. From the theoretical point of view the
analysis is based on the fact that, € being small, the spectrum of the operator associated
with our problem is "close" to the spectrum of a problem posed on a graph which is a
geometric limit of the domain as € tends to 0. However, for the limit graph the spectrum
can be computed explicitly. Then, we study the spectrum of the non-limit operator
using asymptotic analysis. Theoretical results are illustrated by numerical computations
obtained with a numerical method developed for study of periodic media: this method is
based on the reduction of the initial (linear) eigenvalue problem posed in an unbounded
domain to a non-linear problem posed in a bounded domain (using the exact Dirichlet-
to-Neumann operator).
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