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INTRODUCTION

Motivation

The present work deals with study of periodic media. Periodic media play an important
role in applications, such as solid state physics and optics. One talks about a periodic
medium when the geometry and the physical characteristics of the problem are periodic
functions. The periodicity of materials is observed at the atomic scale. Arranging different
materials in repeating patterns can give rise to metamaterials. The properties of such a
material are mainly no more determined by the properties of the materials it is composed
of but by the way they are assembled. As a consequence, a metamaterial can present
properties that do not exist in nature or are difficult to obtain.
Electromagnetic bandgap metamaterials affect light propagation. This is the case of pho-
tonic crystals which are structures composed of periodically alternated dielectric regions
with high and low dielectric constants. The interest of these structures lies in the existence
of intervals of "forbidden" frequences, i.e. frequences for which light cannot propagate in
the medium (such intervals are called band gaps). The intervals of "permitted" frequences
(for which light propagation is possible) are called spectral bands.
From the mathematical point of view, the existence of band gaps is explained by the
spectral properties of the underlying periodic partial differential operators. The spectra
of such operators are known to have a band-gap structure (Floquet-Bloch theory [15, 40]).

At the same time, introducing a perturbation to a perfectly periodic medium can lead
to appearance of "permitted" frequences inside spectral gaps (which corresponds to the
appearance of isolated eigenvalues of finite multiplicity for the underlying operator). One
often talks about local perturbations and linear defects (the one considered in the present
work). These eigenvalues inside gaps give rise to the so-called "trapped modes" (in the
case of a local perturbation) and "guided modes" (in the case of a linear defect), which are,
roughly speaking, solutions of the wave equation which are localized in the neighbourhood
of the perturbation (a guided mode can be seen as a wave propagating along the defect and
confined in the transversal direction). Such localized solutions are particularly interesting
for applications such as design of lasers, filters and waveguides (cf. [33, 34]). The present
work is devoted to the study of a particular type of waveguides that will be described in
detail below. The aim is to create guided modes by introducing a geometrical perturbation
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2 INTRODUCTION

of a purely periodic material.

State of the art

Two questions arise naturally when studying periodic media: the existence of gaps and
the existence of eigenvalues inside gaps when a perturbation is introduced. Neither of
them is completely answered. In the one-dimensional case, the gaps always exist except
for constant media ([9]).
Necessary conditions of existence of gaps in higher dimensions are not known (in the one-
dimensional case it is well-known that a periodic operator has no gaps if and only if it is
constant, see [9]). However, some examples of sufficient conditions leading to the presence
of gaps have been found in [20, 21, 52, 54, 3, 28, 29, 39] and references therein. According
to the Bethe-Sommerfeld conjecture, a periodic operator in higher dimensions can only
have a finite number of gaps (this is not true in the one-dimensional case, where, in
general, a periodic operator has infinitely many gaps). The Bethe-Sommerfeld conjecture
has been completely proved for the periodic Schrödinger operator ([55, 56]), but is still
partially open for Maxwell equations ([67]).
For the second question, which is the possibility of creating eigenvalues inside gaps, some
examples have been given in [18, 19, 1, 41, 46]. In these works strong contrasts in the
properties of the medium are required in order to ensure the existence of eigenvalues. In
[48, 49] guided modes are found in periodic lattices.
In the present work we consider open periodic waveguides having the geometry of a
fattened grid described in more detail in Section 0.1. As the thickness of the grid tends
to zero, the domain shrinks to a graph. We use then the classical approach of asymptotic
analysis (used, for instance, in [20, 54]), which consists in approximating the problem in
question by a limit one posed on a graph, for which the spectrum is easier to determine.
The convergence of the spectrum of operators in thin domains to the spectrum of the
corresponding limit operator defined on a graph has been studied in the literature. In
[61, 47] the convergence of the eigenvalues has been established in the case of bounded
domains (which implies due to the Floquet-Bloch theory the convergence of the spec-
trum for periodic domains). In [57] this result has been extended to much more general
domains (not necessarily bounded), for which the convergence of all components of the
spectrum has been proved. In our case this implies the existence of eigenvalues for ε small
enough. We propose though another (a less general but more explicit) proof based on the
construction of a quasimode.
A periodic medium being infinite, this presents a difficulty for numerical study of localized
modes. Several methods have been developed in order to overcome this difficulty. The
most classical one is the "supercell" method which consists in truncating the computation
domain far from the perturbation and solving the problem in the truncated domain with
periodic boundary conditions. The localized modes being exponentially decaying, the
solution of the problem in the truncated domain converges exponentially to the solution
of the initial problem when the size of the domain tends to infinity ([10], [64], [62], [13]).
Another method (and this is the one we use in the present work) is based on the Dirichlet-
to-Neumann (DtN) approach developed in [24], [22], [23] (see also [38]). This method
consists in replacing the initial eigenvalue problem in an infinite domain by a nonlinear
eigenvalue problem posed in a neighbourhood of the perturbation (not necessarily big)
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via special DtN operators. The DtN operators depending themselves on the frequency,
the obtained problem is thus nonlinear. It is solved using fix point type methods.

0.1 Description of the problem

In this present work we study the propagation of acoustic waves described by the scalar
wave equation

∂2u

∂t2
= ∆u, (0.1.1)

and homogeneous Neumann boundary conditions in open waveguides having the geometry
shown in figure 1. The propagation domain (in grey) is supposed homogeneous. It can be
seen as R2 minus an infinite set of periodically spaced rectangular obstacles of size 1×L.
The distance between the obstacles, denoted by ε, is supposed to be small.

(a) Periodic domain (b) Perturbed domain

Figure 1: Propagation domain (grey area)

The principle question that we are interested in is the possibility of creating of guided
modes in this type of waveguides. It is known that the existence of guided modes requires
the introduction of a perturbation. The perturbation that we consider is a geometric one:
without changing the properties of the medium (which is still homogeneous) we introduce
a linear defect in its geometry by modifying the thickness of one infinite branch of the
domain from ε to µε with some positive coefficient µ (cf. figure 1b). It turns out that for
µ < 1 (i.e. when the domain shrinks) guided modes do appear. We conjecture that for
µ > 1 (i.e. when the domain is enlarged) there are no guided modes (at least for ε small
enough).

By creating a guided mode we mean, roughly speaking, searching a solution of the equation
(0.1.1) with Neumann boundary conditions which propagates along the perturbation and
is confined in the transversal direction. As explained in more detail in Chapter 4, this
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implies the following form for the solution:

u(x, y, t) = eiωtv(x, y),

where the function v is β-quasiperiodic:

v(x, y + L) = e−iβv(x, y).

For the function v one gets then an eigenvalue problem for the Laplacian in a periodicity
band Pµε of the domain Ωµ

ε (cf. figure 2a) with β-quasiperiodic boundary conditions on
the upper and lower parts of the boundary:

Find v ∈ L2 (Pµε ) such that


∆v = −ω2v,

v|Σ′ = e−iβ v|Σ ,
∂nv = 0 on the boundaries of the obstacles.

Thus, we have to study the discrete spectrum (the so-called trapped modes) of the Lapla-

(a) The periodicity band Pµε ("ladder")

(b) The limit graph

cian with β-quasiperiodic conditions in the periodicity band Pµε that we call a "ladder".
It turns out that the spectral properties of the Laplacian with β-quasiperiodic conditions
in the "ladder" are very similar to the ones of the Laplacian with Neumann boundary
conditions. For this reason, we consider the Neumann Laplacian in the ladder as a model
problem and the first three chapters are devoted to the of study this model problem. In
Chapter 4 we study the β-quasiperiodic case using the same scheme as the Neumann case.

General methodology

Both in the case of Neumann Laplacian and in the β-quasiperiodic case the method of
study consists of three main steps:
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1. Identification of the (formal) limit problem. As ε → 0, the periodicity band
shown in figure 2a (the "ladder") tends to a periodic graph (cf. figure 2b). Moreover,
due to Neumann boundary conditions, a trapped mode in the "ladder" can be approxi-
mated by a one-dimensional function defined on the limit graph. This limit function is
an eigenfunction of the limit operator defined as the second-order derivative operator
on each edge of the graph completed by transmission conditions (called Kirchhoff’s
conditions) at the vertices of the graph ([17, 11, 47]). Let us mention that quantum
graphs have been studied exhaustively in the literature: one can refer, for example, to
the surveys [42, 43, 44] as well as the books [6, 58] and the bibliography therein.

2. Computation of the spectrum of the limit problem. We first investigate the
essential spectrum using the Floquet-Bloch theory. Then, we compute the discrete
spectrum using a reduction to a finite difference scheme ([2, 16]).

3. Asymptotic analysis. The last step is to show that the formal limit problem is
indeed a good approximation of the initial one. In order to prove the existence of
guided modes we need precisely the following assertion: if the limit operator has an
eigenvalue λ0 inside a gap [a0, b0], then the non-limit operator also has an eigenvalue
λε inside a gap [aε, bε] such that aε, bε, λε are close to a0, b0, λ0 respectively for ε small
enough. Notice that the convergence of the spectrum of the non-limit operator to the
spectrum of the limit one cannot be uniform.

Structure of the work

The present work is organized as follows.

In Chapter 1 we study the spectrum of the limit problem for the ladder. We prove that
the limit operator (more precisely, its symmetric part Aµs ) has infinitely many gaps and
one or two simple eigenvalues inside each gap if µ < 1. For µ > 1 the limit operator has
no eigenvalues (Proposition 1.3.4 and Theorem 1.3.1). We then deduce by asymptotic
analysis that for ε small enough the non-limit operator has arbitrarily many gaps (for any
k ∈ N there exists εk > 0 such that for ε < εk the operator Aµε,s has at least k gaps and
at least one or two eigenvalues in each of these gaps), cf. Theorems 1.4.1, 1.4.3. This last
result concerning the eigenvalues is obtained by considering a "naive" quasimode that
permits to show the convergence of the eigenvalues of the operator Aµε,s to the ones of the
operator Aµs at order

√
ε, which is not optimal (the convergence is actually linear in ε).

In Chapter 2 we obtain a full asymptotic expansion of the eigenvalues of the operator
Aµε,s which proves at the same time the linear convergence of the eigenvalues. This is
done by considering other quasimodes which are constructed using matched asymptotic
expansions of the solution in the ladder. Far from the vertices the solution is modelized
by one-dimensional functions defined on the graph (the so-called far field expansion).
In the neighbourhood of the vertices a rescaling is done (the so-called near field expan-
sion). Finally, both expansions are supposed to be valid in some intermediate areas called
matching areas.

In Chapter 3 the numerical approach to the problem is discussed. We first remind the
Dirichlet-to-Neumann (DtN) operator method developed for numerical study of periodic
media. More precisely, the initial eigenvalue problem on an unbounded domain can be
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reduced to a nonlinear eigenvalue problem posed on a bounded domain. Then, we give
some details of implementation of this method using the P1 finite element discretization.
Finally, we present numerical results for the problem in the ladder obtained using this
method. We compare the results for the eigenvalues obtained via the DtN approach
with the ones obtained by computing numerically the first terms of the full asymptotic
expansion.

In Chapter 4 we come back to the waveguide problem. The computations in this chapter
are very similar to the ones performed in Chapter 1 for the ladder. Analogues of the
results obtained for the operator Aµε,s (existence of gaps and of eigenvalues inside gaps)
are established in the β-quesiperiodic case for the operator Aµε (β) (Theorems 4.1.2, 4.1.3).
This shows the existence of guided modes in the case µ < 1 for ε small enough. A slightly
more general geometry is discussed in Section 4.1.4. Varying an additional parameter
permits to influence the size of the gaps. In conclusion, numerical results for the β-
quasiperiodic case are presented. A time-dependent simulation is described that shows
the presence of a guided mode (in the temporal regime).

In Chapter 5 we discuss a 3D generalization of the waveguide studied in Chapter 4. The
limit problem on the corresponding graph is studied and analogues of the most part of
the results obtained in the 2D case (existence of gaps and of eigenvalues inside gaps) are
established, cf. Proposition 5.2.3 and Theorem 5.2.1. The equations describing the 3D
case are very similar to the ones describing the 2D case. The conclusions for the non-limit
operator are given in Theorems 5.3.1, 5.3.2. The principal difference between the 2D and
the 3D case is that in the 3D the equations are less explicit, which makes the analysis
somewhat more technical.



CHAPTER 1

TRAPPED MODES IN A LOCALLY
PERTURBED PERIODIC LADDER:

EXISTENCE RESULTS

1.1 Presentation of the problem

This chapter is devoted to the research of localized modes (also called trapped modes) in a
ladder-like periodic domain (cf. figure 1.1). The domain Ωε is supposed homogeneous and
consists of an infinite band of height L minus an infinite set of equispaced rectangular
obstacles. The domain is 1-periodic (with respect to x). The distance between two
consecutive obstacles and the distance from the obstacles to the boundary of the band is
denoted by ε and is supposed to be small:

Ωε =
(
R×

]
−L

2
, L

2

[)
\
⋃
j∈Z

Sε,j, Sε,j =
[
j + ε

2
, j + 1− ε

2

]
×
[
−L

2
+ ε, L

2
− ε
]
.

By a localized mode we mean a solution of the homogeneous scalar wave equation with

Figure 1.1: Propagation domain (in grey)

Neumann boundary conditions, i.e.,

∂2u

∂t2
= ∆u in Ωε,

∂u

∂n

∣∣∣∣
∂Ωε

= 0, (1.1.1)

7



8 CHAPTER 1. LADDER: EXISTENCE RESULTS

which is confined in the x-direction. More precisely, u is supposed to have the following
form:

u(x, y, t) = v(x, y)eiωt, v ∈ L2(Ωε), (1.1.2)

where the term eiωt shows the harmonic dependence on time whereas the function v (which
does not depend on the time) is in some sense confined (since it belongs to L2(Ωε)).
Plugging (1.1.2) into (1.1.1) leads to the following problem for the function v:

−∆v = ω2v in Ωε,
∂v

∂n

∣∣∣∣
∂Ωε

= 0.
(1.1.3)

Problem (1.1.3) is an eigenvalue problem posed in the unbounded domain Ωε. It is well-
known (cf. Theorem XIII.86 in [60], volume IV) that elliptic periodic operators in 2D
domains have no eigenvalue. In order to create eigenvalues one needs to introduce a
perturbation. We will consider a local perturbation of the geometry of the domain where
the width of one vertical edge is modified from ε to µε with some µ > 0 (see figure 1.2):

Ωµ
ε =

(
R×

]
−L

2
, L

2

[)
\
{
Sµ,+ε ∪ Sµ,−ε

}
,

Sµ,+ε =

([
µε
2
, 1− ε

2

]
∪
⋃
j∈N∗

[
j + ε

2
, j + 1− ε

2

])
×
[
−L

2
+ ε, L

2
− ε
]
,

Sµ,−ε =

([
−1 + ε

2
,−µε

2
,
]
∪
⋃
j∈N∗

[
−j − 1 + ε

2
,−j − ε

2

])
×
[
−L

2
+ ε, L

2
− ε
]
,

Figure 1.2: Perturbed domain (µ < 1)

As we will see, such a perturbation does not change the essential spectrum of the under-
lying operator but it can introduce a non-empty discrete spectrum, which is exactly what
we are interested in (since this discrete spectrum corresponds to trapped modes).
A precise mathematical description of the problem is given in the next section.

1.2 Mathematical formulation of the problem

Let us introduce the operator Aµε in the space L2(Ωµ
ε ), associated with the eigenvalue

problem (1.1.3) in the perturbed domain:

Aµεu = −∆u, D(Aµε ) =

{
u ∈ H1

∆(Ωµ
ε ),

∂u

∂n

∣∣∣∣
∂Ωµε

= 0

}
.
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Here
H1

∆(Ωµ
ε ) =

{
u ∈ H1(Ωµ

ε ), ∆u ∈ L2(Ωµ
ε )
}
.

The operator Aµε is self-adjoint and positive. We have then to study its spectrum and,
more precisely, to find sufficient conditions for existence of eigenvalues.

1.2.1 Determination of the essential spectrum of Aµ
ε

To determine the essential spectrum of the operator Aµε , we start by studying the perfectly
periodic case (µ = 1). In this case, the domain is Ωε (figure 1.1) and the corresponding
operator A1

ε will be denoted by Aε.
According to the Floquet-Bloch theory, periodic elliptic operators do not have discrete
spectrum and their essential spectrum has a band-gap structure [15, 60, 40]:

σ(Aε) = σess(Aε) = R \
⋃

16n6N

]an, bn[. (1.2.1)

The intervals ]an, bn[ are called spectral gaps. Their number N is conjectured to be finite
(Bethe-Sommerfeld, 1933, [55, 56, 67]).
The band-gap structure of the spectrum is a consequence of the following result given by
the Floquet-Bloch theory:

σ(Aε) =
⋃

θ∈[−π,π]

σ (Aε(θ)) , (1.2.2)

where for any θ ∈ [−π, π], Aε(θ) is the Laplace operator defined on the periodicity cell
Cε = Ωε ∩ {x ∈

[
−1

2
, 1

2

]
} (cf. figure 1.3) with θ-quasiperiodic boundary conditions on the

lateral boundaries: for θ ∈ [−π, π],

Aε(θ) : L2(Cε) −→ L2(Cε), Aε(θ)u = −∆u, (1.2.3)

D(Aε(θ)) =
{
u ∈ H1

∆(Cε), ∂nu|∂Cε∩{x∈]− 1
2
, 1
2 [} = 0, (1.2.4)

u|x= 1
2

= e−iθu|x=− 1
2
, ∂xu|x= 1

2
= e−iθ∂xu|x=− 1

2

}
. (1.2.5)

Figure 1.3: Periodicity cell

For each θ ∈ [−π, π] the operator Aε(θ) is self-adjoint and positive and its resolvent is
compact due to the compactness of the embedding H1(Cε) ⊂ L2(Cε). Its spectrum is then
a sequence of non-negative eigenvalues of finite multiplicity tending to infinity:

0 6 λ1(ε, θ) 6 λ2(ε, θ) 6 · · · 6 λn(ε, θ) 6 . . . , lim
n→∞

λn(ε, θ) = +∞. (1.2.6)
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In (1.2.6) the eigenvalues are repeated with their multiplicity. The functions θ 7→ λn(ε, θ)
are called dispersion curves and are known to be continuous and non-constant (cf. Theo-
rem XIII.86 in [60], volume IV). Thus, (1.2.2) can be rewritten as

σ(Aε) =
⋃
n∈N

λn (ε, [−π, π]) ,

which gives (1.2.1). The conjecture of Bethe-Sommerfeld means that for n large enough
the intervals λn (ε, [−π, π]) overlap. The fact that the dispersion curves are non-constant
implies that no one of the intervals λn (ε, [−π, π]) is reduced to a point and the operator
Aε has no eigenvalues. Finally, the dispersion curves are even: indeed, D(Aε(−θ)) =
D(Aε(θ)) and the operators Aε(θ) have real coefficients. Thus, it is sufficient to consider
θ ∈ [0, π] in (1.2.2).

1.2.2 The essential spectrum of the operator Aµ
ε .

It is well-known that local perturbations of the domain do not change the essential spec-
trum of the corresponding operator. This is due to Weyl’s Theorem (see, for example,
Ch.13 Vol. 4 in [60], Ch. 9 in [7], Theorem 1 in [18]). For the sake of completeness we
prove this result in our case.

Proposition 1.2.1. σess(Aµε ) = σess(Aε).

This is a direct consequence of the following assertion.

Lemma 1.2.1. Let χ ∈ C∞(Ωε) be a function such that

1. ∂χ|∂Ωε = 0,

2. ∃M > 0 such that |x| > M ⇒ χ(x, y) = 1.

If {uj}j∈N is a singular sequence for the operator Aε corresponding to the value λ, then
there exists a subsequence of {χuj}j∈N which is also a singular sequence for the operator
Aε corresponding to the value λ.

Proof. By definition, the sequence {uj}j∈N has the following properties:

1. uj ∈ D(Aε), j ∈ N;

2. inf
j
‖uj‖L2(Ωε) > 0;

3. uj
w−→ 0 in L2(Ωε) ({uj} is weakly convergent to 0 in L2(Ωε));

4. Aεuj − λuj −→ 0.

Let us show that there exists a subsequence of {χuj}j∈N which has the same properties
as well. The property 1 is verified due to the property 1 of the function χ. To obtain a
lower bound for ‖χuj‖L2(Ωε) we will show that

‖uj‖L2(K) −→ 0, j −→∞, for all compact K ⊂ Ωε. (1.2.7)

Indeed, from
(Aεuj − λuj, uj)L2(Ωε) = ‖∇uj‖L2(Ωε) − λ‖uj‖L2(Ωε),
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taking into account the properties 2–4 of the sequence {uj} we conclude that sup
j
‖uj‖H1(Ωε) <

C for some C > 0. We can then extract a subsequence still denoted by {uj} such that

uj
w−→ 0, j −→∞, in H1(Ωε). (1.2.8)

Thus, (1.2.7) is verified and, consequently, inf
j
‖χuj‖L2(Ωε) > inf

j
‖uj‖L2(Ωε∩{|x|>M}) > 0.

The property 3 being obvious the only thing to show is the property 4 for the sequence
{χuj}j∈N. We have:

‖Aε(χuj)− λ(χuj)‖2
L2(Ωε)

6 ‖χ(Aεuj − λuj)‖2
L2(Ωε)

+ 2‖∇χ∇uj‖2
L2(Ωε) + ‖uj∆χ‖2

L2(Ωε).

The first and the last terms in the right-hand side tend to zero (due to the property 4 of
{uj} and (1.2.7)). Let us estimate the second term.

‖∇χ∇uj‖2
L2(Ωε) =

∫
Ωε

∇uj∇uj|∇χ|2dΩ

= −
∫

supp(∇χ)

ujdiv
(
∇uj|∇χ|2

)
dΩ +

∫
∂Ωε

uj∂nuj|∇χ|2dΓ.

The last term in the right-hand side vanishes due to the property 1 of {uj}. The first
term tends to 0 due to (1.2.7), (1.2.8) and the properties 2, 4 of {uj}.

Proof of Proposition 1.2.1. It is sufficient to take a function χ in the previous lemma
which does not depend on y, vanishes in a neighbourhood of the perturbed edge and such
that ∇χ vanishes in a neighbourhood of all vertical edges. Then, it follows from Lemma
1.2.1 that any singular sequence of the operator Aε contains a singular sequence of the
operator Aµε and vice versa.

The essential spectrum of the operator σess(Aµε ) having a band-gap structure, we will be
interested in finding eigenvalues inside gaps (once the existence of gaps is established).

1.2.3 Method of study

Our analysis consists of three main steps.

• First, we find a formal limit of the problem when ε→ 0. It is clear that geometrically
as ε goes to zero, the domains Ωε and Ωµ

ε shrink to a graph. The limit problem is then
associated with a second-order differential operator defined on the graph. Neumann
boundary conditions on the ladder give rise to the so called Kirchhoff’s conditions at
the vertices of the graph. This limit operator is well-known from the works [61] and
Kuchment-Zheng [47]. We will describe it more rigorously in section 1.3.1.

• The second step is an explicit calculation of the spectrum of the limit operator. The
essential spectrum is determined using the Floquet-Bloch theory (by solving a set of
cell problems) while the discrete spectrum of the perturbed operator is found using
a reduction to a finite difference equation (section 1.3.2.2). In particular, we will see
that the limit operator has infinitely many gaps. For µ < 1 it also has infinitely many
eigenvalues, whereas for µ > 1 it has no discrete spectrum.
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• Finally, we have to show that the operator on the ladder also has eigenvalues for µ < 1
when ε is small enough (section 1.4). Despite the fact that this result follows from [57],
we will give another proof based on the construction of a quasi-mode (an approximation
of the eigenfunction). To go further, we will compute the full asymptotic expansion of
the eigenvalues inside the gaps (chapter 2).

To begin with, we will decompose the operator Aµε into the sum of its symmetric and
antisymmetric parts. As it will become clear later, the "true model problem" for the
β-quasiperiodic case is actually given by the considering only the symmetric (or only
the antisymmetric) part of the operator Aµε . Let us introduce the following orthogonal
decomposition of the space L2(Ωµ

ε ):

L2(Ωµ
ε ) = L2,s(Ω

µ
ε )⊕ L2,as(Ω

µ
ε ),

where L2,s(Ω
µ
ε ) and L2,as(Ω

µ
ε ) are the subspaces consisting of functions respectively sym-

metric and antisymmetric with respect to the axis y = 0:

L2,s(Ω
µ
ε ) = {u ∈ L2(Ωµ

ε ) / u(x, y) = u(x,−y)} ,

L2,as(Ω
µ
ε ) = {u ∈ L2(Ωµ

ε ) / u(x, y) = −u(x,−y)} .
Consequently, the operator Aµε is decomposed into the orthogonal sum

Aµε = Aµε,s ⊕ Aµε,as

with
Aµε,s = Aµε

∣∣
L2,s(Ω

µ
ε )
, Aµε,as = Aµε

∣∣
L2,as(Ω

µ
ε )
.

The spectrum of the operator Aµε is then given by the union of the spectra of its symmetric
and antisymmetric parts:

σ(Aµε ) = σ(Aµε,s) ∪ σ(Aµε,as).

1.3 Spectral problem on the graph

1.3.1 The operator Aµ.

As ε → 0, the domain Ωε tends to the periodic graph G represented in figure 1.4. Let
us enumerate the vertices of the graph from left to right by an integer index j, the
superscripts "+" and "-" corresponding to the upper and the lower vertices respectively.
The set of all the vertices of the graph is then

V =
{
v±j
}
j∈Z , v±j =

(
j,±L

2

)
.

The vertical edge joining the vertices v+
j and v−j is denoted by ej and the horizontal edge

joining the vertices v±j and v±j+1 is denoted by e±
j+ 1

2

. Thus, the set of all the edges of the
graph is

E =
{
ej, e

±
j+ 1

2

}
j∈Z

, ej = {j} ×
[
−L

2
, L

2

]
, ej+ 1

2
= [j, j + 1]×

{
±L

2

}
.

The edge corresponding to the perturbation is e0. The set of all the edges of the graph
containing the vertex v is denoted by Ev.
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Figure 1.4: Limit graph

If u is a function defined on the graph G, we will use the following notation:

u±j = u(v±j ), uj = u|ej , u±
j+ 1

2

= u|e±
j+1

2

.

We introduce a local coordinate s at each horizontal edge e±
j+ 1

2

of the graph that varies 0

at v±j to 1 at v±j+1. In other words,

uj(y) = u(j, y), y ∈
[
−L

2
, L

2

]
, u±

j+ 1
2

(s) = u
(
j + s,±L

2

)
, s ∈ [0, 1].

Let wµ : E → R+ be a weight function which is equal to µ on the "perturbed edge" e0

and to 1 on the other edges:{
wµ(e0) = µ,
wµ(e) = 1, ∀e ∈ E, e 6= e0.

Sometimes, to simplify the expressions, we will use the notation

wµ(j) = wµj =

{
µ, j = 0,
1, ∀j ∈ Z∗. (1.3.1)

Let us now introduce the following function spaces:

Lµ2(G) =

{
u / u ∈ L2(e), ∀e ∈ E; ‖u‖2

Lµ2 (G) =
∑
e∈E

wµ(e)‖u‖2
L2(e) <∞

}
, (1.3.2)

H1(G) =

{
u / u ∈ C(G); u ∈ H1(e), ∀e ∈ E; ‖u‖2

H1(G) =
∑
e∈E

‖u‖2
H1(e) <∞

}
,

H2(G) =

{
u / u ∈ C(G); u ∈ H2(e), ∀e ∈ E; ‖u‖2

H2(G) =
∑
e∈E

‖u‖2
H2(e) <∞

}
.

(1.3.3)
Notice that by definition functions belonging to H1(G) or H2(G) are continuous at the
vertices of the graph.
We define the limit operator Aµ in Lµ2(G) as follows:

(Aµu)|e = − (u|e)′′ , ∀e ∈ E, (1.3.4)

D(Aµ) =

{
u ∈ H2(G) /

∑
ev∈Ev

wµ(ev)(uev)
′
ext(v) = 0, ∀v ∈ V

}
, (1.3.5)
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where (uve)
′
ext(v) stands for the derivative of the function u at the edge ev taken at the

vertex v in the outgoing direction. The relations in (1.3.5) are called Kirchoff’s conditions.
We note that the perturbation is only present in the definition of the operator Aµ via the
Kirchoff’s condition at the perturbed edge (i.e. for the vertices v±0 since wµ(e0) = µ).

The following assertion is proved in [42], section 3.3 (we give its proof reformulated for
our particular case in Appendix).

Proposition 1.3.1 (Kuchment). The operator Aµ in the space Lµ2(G) is self-adjoint. The
corresponding closed sesqui-linear form has the following form:

aµ[f, g] = (f ′, g′)Lµ2 (G), ∀f, g ∈ D[aµ], D[aµ] = H1(G).

As for the ladder Ωµ
ε , we introduce the following decomposition of the space Lµ2(G) into

the spaces of symmetric and antisymmetric functions:

Lµ2(G) = Lµ2,s(G)⊕ Lµ2,as(G),

Lµ2,s(G) = {u ∈ L2(G) / u(x, y) = u(x,−y)} ,

Lµ2,as(G) = {u ∈ L2(G) / u(x, y) = −u(x,−y)} .

Again, the operator Aµ can be decomposed into the orthogonal sum

Aµ = Aµs ⊕ Aµas,

with
Aµs = Aµ

∣∣
Lµ2,s(G)

, Aµas = Aµ
∣∣
Lµ2,as(G)

,

which implies
σ(Aµ) = σ(Aµs ) ∪ σ(Aµas).

Thus, it is sufficient to study the spectra of the operators Aµs and Aµas separately. The
analysis of these two operators being analogous, we will present a detailed study of Aµs
(section 1.3.2) and state the results for Aµas (section 1.3.3).

1.3.2 The spectrum of the operator Aµ
s .

In this section we study the spectrum of the operator Aµs . Using the notation introduced
in the beginning of this section with uj+ 1

2
= u+

j+ 1
2

= u−
j+ 1

2

and uj = u+
j = u−j , it can be

rewritten as

(Aµsu)|e
j+1

2

= −u′′
j+ 1

2
, (Aµsu)|ej = −u′′j , j ∈ N, (1.3.6)

D(Aµs ) =
{
u ∈ H2(G) / u′j(0) = 0, j ∈ N,

u′
j+ 1

2
(0) + wµj u

′
j

(−L
2

)
− u′

j− 1
2
(1) = 0, j ∈ N

}
. (1.3.7)
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1.3.2.1 Essential spectrum of Aµs

First of all, we reduce the study of the essential spectrum of the operator Aµs to the study
of the periodic case (µ = 1). The corresponding operator A1

s will be denoted by As.
Indeed, similarly to Proposition 1.2.1, by introducing a cut-off function which vanishes
in a neighbourhood of the perturbed edge of the graph, we can prove that the essential
spectrum of Aµs coincides with the spectrum of As:

Proposition 1.3.2.
σess(A

µ
s ) = σess(As). (1.3.8)

Computation of the spectrum of the operator As

As previously explained, the spectrum of the periodic operator As can determined using
the Floquet-Bloch theory. One has then to study a set of problems posed on the periodicity
cell of G. Since we consider the subspace of symmetric functions with respect to the axis
y = 0, this permits to reduce the problem to the lower half part of the periodicity cell
defined as (see figure 1.5):

C− = G ∩
{[
−1

2
, 1

2

]
×
[
−L

2
, 0
]}

=
⋃

16j63

ej,

e1 =
[
−1

2
, 0
]
× {−L

2
}, e2 =

[
0, 1

2

]
× {−L

2
}, e3 = {0} ×

[
−L

2
, 0
]
.

Figure 1.5: The half periodicity cell C−

For a function u defined on C− we use the notation uj = u|ej , 1 6 j 6 3. Let us introduce
the spaces L2(C−) and H2(C−) analogously to (1.3.2), (1.3.3):

L2(C−) = {u / u ∈ L2(ej), 1 6 i 6 3} ,

H2(C−) =
{
u / u ∈ C(C−); u ∈ H2(ej), 1 6 i 6 3

}
.

We have then
σ(As) =

⋃
θ∈[0,π]

σ (As(θ)) , (1.3.9)

where As(θ) is the following operator defined in L2(C−) with θ-quasiperiodic boundary
conditions:

As(θ)ui = −u′′i , 1 6 i 6 3,

D(As(θ)) =
{
u ∈ H2(C−) / u′3(0) = 0,

− u′1(0) + u′2(0) + u′3
(
−L

2

)
= 0, (1.3.10)

u2

(
1
2

)
= e−iθu1

(
−1

2

)
, u′2

(
1
2

)
= e−iθu1

(
−1

2

)}
. (1.3.11)
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The condition u′3(0) = 0 comes from the fact that the symmetric subspace with respect to
the axis y = 0 is considered. The condition (1.3.10) is the Kirchhoff’s condition and the
relations (1.3.11) are the quasiperiodic conditions. For each θ ∈ [0, π] the operator As(θ)
is self-adjoint and positive and its resolvent is compact due to the compactness of the
embedding H1(C−) ⊂ L2(C−). Consequently, its spectrum is a sequence of non-negative
eigenvalues of finite multiplicity tending to infinity:

0 6 λ1,s(θ) 6 λ2,s(θ) 6 · · · 6 λn,s(θ) 6 . . . , lim
n→∞

λn,s(θ) = +∞.

In the present case, the eigenvalues can be computed explicitly.

Proposition 1.3.3. For θ ∈ [0, π], λ2 ∈ σ(As(θ)) if and only if λ is a solution of the
equation

2 cos
(
λL
2

)
(cosλ− cos θ) = sinλ sin

(
λL
2

)
. (1.3.12)

Proof. If λ2 6= 0 is an eigenvalue of the operator As(θ) then the corresponding eigenfunc-
tion u = {u1, u2, u3} is of the form

u1(x) = c1e
iλx + d1e

−iλx, x ∈
[
−1

2
, 0
]
, (1.3.13)

u2(x) = c2e
iλx + d2e

−iλx, x ∈
[
0, 1

2

]
, (1.3.14)

u3(y) = c3e
iλy + d3e

−iλy, y ∈
[
−L

2
, 0
]
. (1.3.15)

Taking into account that u ∈ D(As(θ)) we arrive at the following linear system of equa-
tions for the coefficients ci, di, 1 6 i 6 3:

c1 + d1 = c2 + d2 = c3e
− iλL

2 + d3e
iλL
2 , (1.3.16)

c3 = d3, (1.3.17)

c2e
iλ
2 + d2e

− iλ
2 = e−iθ

(
c1e
− iλ

2 + d1e
iλ
2

)
, (1.3.18)

c2e
iλ
2 − d2e

− iλ
2 = e−iθ

(
c1e
− iλ

2 − d1e
iλ
2

)
, (1.3.19)

− c1 + d1 + c2 − d2 + c3e
− iλL

2 − d3e
iλL
2 = 0. (1.3.20)

The relations (1.3.16) express the continuity of the eigenfunction at the vertex
(
0,−L

2

)
.

The equation (1.3.17) comes from the condition u′3(0) = 0. The relations (1.3.18), (1.3.19)
correspond to the quasiperiodicity conditions (1.3.11) and the equation (1.3.20) corre-
sponds to the Kirchhoff’s condition (1.3.10). Let us introduce the notation

α = eiθ, z = eiλ.

We notice that the relations (1.3.18), (1.3.19) imply

c1 = c2αz, d1 = d2αz.

We used the fact that z−1 = z because the operator As(θ) has only real eigenvalues. Thus,
the system (1.3.16)–(1.3.20) can be rewritten as follows (we have eliminated d3, c1 and
d1): 

c2 (1− αz) + d2 (1− αz) = 0,

c2 + d2 − c3

(
z
L
2 + z

L
2

)
= 0,

c2(1− αz)− d2 (1− αz) + c3

(
z
L
2 − z L2

)
= 0.

(1.3.21)
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The existence of an eigenfunction is equivalent to the condition

D(λ) :=

∣∣∣∣∣∣∣
1− αz 1− αz 0

1 1 −
(
z
L
2 + z

L
2

)
1− αz − (1− αz) −z L2 + z

L
2

∣∣∣∣∣∣∣ = 0.

One has

D(λ) = 2α<
(
zL/2 (3z + z − 4<α)

)
= 4eiθ

(
2 cos

(
λL
2

)
(cosλ− cos θ)− sin

(
λL
2

)
sinλ

)
,

which implies (1.3.12) for λ 6= 0. For λ = 0 the relations (1.3.13)–(1.3.15) are replaced by

u1(x) = c1 + d1x, x ∈
[
−1

2
, 0
]
,

u2(x) = c2 + d2x, x ∈
[
0, 1

2

]
,

u3(y) = c3 + d3y, y ∈
[
−L

2
, 0
]
.

Using the fact that u ∈ D(As(θ)) we have:

c1 = c2 = c3, d3 = 0, d2 = d1e
−iθ, d2 = c1(e−iθ − 1), d1 = d2.

Hence, there exists a non-trivial solution if and only if θ = 0. The solution is a constant
function ui = c1, 1 6 i 6 3. At the same time, λ = 0 is a solution of (1.3.12) if and only
if θ = 0 which finishes the proof.

Remark 1.3.1. We notice that for cos
(
λL
2

)
6= 0 the equation (1.3.12) is equivalent to

the relation
cos θ = cosλ− 1

2
sinλ tan

(
λL
2

)
. (1.3.22)

Remark 1.3.2. One can easily see that if L ∈ Q, the set {λ : λ2 ∈ σ(As)} is periodic.
Indeed, this is due to the fact that both the left-hand side and the right-hand side of
(1.3.12) are periodic with the same period.

In the rest of this section we will use the following notation:

Σ = {πn, n ∈ N} , Σs =
{

2nπ
L
, n ∈ N

}
Σ′s =

{
(2n+1)π

L
, n ∈ N

}
.

Some properties of the spectrum of the operator As

It follows from the decomposition (1.3.9) together with Proposition 1.3.3 that λ2 ∈ σ(As)
if and only if λ is a solution of the equation (1.3.12) for some θ ∈ [0, π]. This permits to
derive some important properties of the spectrum of the operator As.

Proposition 1.3.4.

1. {λ2, λ ∈ Σ ∪ Σs} ⊂ σ(As).

2. The operator As has infinitely many gaps whose ends tend to infinity.

Proof.
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1. If λ ∈ Σ ∪ Σs, the equation (1.3.12) is obviously verified for θ such that cos θ = cosλ.

2. We will actually show that for any point λ ∈ Σ′s there exists some neighbourhood
(probably, a punctured neighbourhood) of λ2 which is included in the resolvent set of
the operator As. Consider λn = (2n+1)π

L
, n ∈ N. There are two possibilities:

(i) λn /∈ Σ: since cos
(
λnL

2

)
= 0 and sinλn 6= 0, the left-hand side of the equation

(1.3.12) is equal to zero, whereas the right-hand side is different from zero for any
θ ∈ [0, π]. Consequently, there exists a gap of the operator As containing the point
λ2
n.

(ii) λn ∈ Σ: in this case it follows from the property 1 that λ2
n ∈ σ(As). We are going

to show that the point λ2
n is an isolated point of the spectrum of the operator As, so

that there exist gaps to the left and to the right of it. Setting λ = λn + δ in (1.3.12)
we get:

−2 sin
(
δL
2

)(
cos δ − cos θ

cosλn

)
= sin δ cos

(
δL
2

)
.

If δ is small enough (but different from 0) this equation cannot be verified for any
θ. Indeed, for δ 6= 0 it can be rewritten as

cos θ

cosλn
− cos δ =

sin δ

2 sin
(
δL
2

) cos
(
δL
2

)
.

The limit of the right-hand side as δ → 0 is positive (it equal to 1
L
), whereas the limit

of the left-hand side is non-positive for any θ (since |cosλn| = 1) with a uniform
bound in θ for δ small enough:

cos θ

cosλn
− cos δ 6 1− cos δ, ∀θ ∈ [0, π].

Hence, the equation (1.3.12) has no solution for δ small enough. This proves the
existence of gaps of the form ]λ2

n − l−n , λ2
n[, ]λ2

n, λ
2
n + l+n [ for some l−n , l+n > 0.

Remark 1.3.3. In the proof of Proposition 1.3.4 (2) we showed for any λ ∈ Σ′s the
existence of a punctured neighbourhood of the point λ2 that does not belong to the
spectrum of the operator As. This can be seen as a result of the graph decoration described
in [43]. Indeed, considering the the symmetric subspace on the graph G is equivalent to
considering the lower half of G (denoted by G−) with homogeneous Neumann conditions
at the vertices (j, 0), cf. figure 1.6.

The graph G−, in turn, can be seen as a decoration of the graph G0 that consists of the
vertices

{
v−j
}
j∈Z and the edges {e−

j+ 1
2

}j∈Z, obtained by attaching a copy of a segment

G1 = [−L
2
, 0] to each its vertex. Then, according to Theorem 5 in [43], for any eigenvalue

λ2 of the problem 
u′′ + λ2u = 0,

u′ (0) = 0,

u
(
−L

2

)
= 0,

(1.3.23)

there exists a punctured neighbourhood that does not belong to the spectrum of the
operator As. The set of eigenvalues of (1.6) is exactly the set {λ2, λ ∈ Σ′s}.
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Figure 1.6: The graph G− can be obtained by a decoration of the graph G0: at each
vertex of G0 we attach a copy of the segment G1.

Proposition 1.3.5. The operator As has the following set of eigenvalues of infinite mul-
tiplicity which are isolated points of the spectrum:

σpp(As) =
{
λ2, λ ∈ Σ ∪ Σ′s

}
. (1.3.24)

Proof. The point λ2 is an eigenvalue of the operator As of infinity multiplicity if and only if
it is an eigenvalue of the operator As(θ) for any θ ∈ [0, π]. According to Proposition 1.3.3,
this means that the equation (1.3.12) is satisfied for any θ ∈ [0, π], which is equivalent
to the condition cos

(
λL
2

)
= sinλ = 0 (i.e., λ ∈ Σ ∪ Σ′s). The fact that these points are

isolated points of the spectrum is shown in the proof of Proposition 1.3.4, property 2 (case
(ii)).

Remark 1.3.4. The set (1.3.24) is non-empty if and only if L = 2m+1
k

an irreducible
fraction with m ∈ N, k ∈ N∗. In this case

σpp(As) =
{

((2n+ 1)πk)2 , n ∈ N
}
.

Remark 1.3.5. The presence of eigenvalues of infinite multiplicity is not a common fea-
ture for elliptic periodic second-order operators in domains of Rn. The absolute continuity
of the spectrum for such operators is proved under some additional assumptions (cf., for
example, [60, 65, 40, 8, 25, 45]). As explained in [43] (Section 5), the absence of pure point
spectrum is related to the uniqueness of continuation property. This property fails for the
graphs. Indeed, one can easily construct a compactly supported eigenfunction on a graph
provided it has a loop consisting of commensurable edges (cf. figure 1.7). This is exactly
what happens under the assumptions of Proposition 1.3.5: the edges of the graph G are
all commensurable. Due to the periodicity of the graph, an infinity of eigenfunctions cor-
responding to the same eigenvalue can be constructed by a translation of one compactly
supported eigenfunction. Moreover, it is shown in [43] that the eigenspace corresponding
to an eigenvalue of infinite multiplicity is generated by compactly supported functions.

As we have already seen in Proposition 1.3.4, the operator As has infinitely many gaps
which are separated by the points {λ2, λ ∈ Σ ∪ Σs}. We are going now to study in more
detail the location of the gaps via a geometric interpretation of the equation (1.3.12). We
will see that two types of gaps can be distinguished (Proposition 1.3.8) which will permit
us to characterize the discrete spectrum of the perturbed operator (according to the type
of the gap it will contain one or two eigenvalues of the perturbed operator, Theorem
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Figure 1.7: A compactly supported eigenfunction corresponding to the eigenvalue λ2 =
(kπ)2 for L = 1.

1.3.1). We start by an auxiliary statement which is an immediate consequence of the
decomposition (1.3.9), Proposition 1.3.3 and Proposition 1.3.4 (1).

Proposition 1.3.6. λ2 ∈ σ(As) if and only if one of the following possibilities holds:

(i) λ ∈ Σ ∪ Σs;

(ii) λ /∈ Σ ∪ Σs is a solution of the equation

φL(λ) = fθ(λ), (1.3.25)

for some θ ∈ [0, π]. Here

φL(λ) =
2

tan
(
λL
2

) , λ /∈ Σs, (1.3.26)

fθ(λ) =
sinλ

cosλ− cos θ
, λ ∈ {λ / cosλ 6= cos θ} .

Geometrically, the solutions of the equation (1.3.25) correspond to the abscissas of the
intersections of the graph of the function φL(λ) with the one of the function fθ(λ). Hence,
to obtain the set described in (ii) of Proposition 1.3.6, one has to consider the union of
the graphs of the functions fθ(λ) for all θ ∈ [0, π]. We introduce then the following set:

D =
⋃

θ∈[0,π]

{(x, fθ(x)) / x > 0, cosx 6= cos θ} .

Lemma 1.3.1.
D =

⋃
n∈N

D±n ,

where

D+
n =

{
(x, y)/ x ∈]πn, π(n+ 1)[, y ∈

[
f+(x),+∞

[}
∪ (πn, 0), (1.3.27)

D−n =
{

(x, y)/ x ∈]πn, π(n+ 1)[, y ∈
]
−∞, f−(x)

]}
, (1.3.28)
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and

f+(x) = tan
(
x−πn

2

)
, x ∈ [πn, π(n+ 1)[,

f−(x) = −cotan
(
x−πn

2

)
, x ∈]πn, π(n+ 1)].

One has
D±n = D±0 + (πn, 0), ∀n ∈ N.

Proof. It is sufficient to notice that

⋃
θ∈[0,π]

cosx 6=cos θ

fθ(x) =

{
]−∞, f−(x)] ∪ [f+(x),+∞[ , x /∈ Σ,

{0}, x ∈ Σ.

(a) The functions f0, fπ/3,
f2π/3, fπ

(b) The domains D±n (c) The function φL for L =
5π/12

Figure 1.8

The domains D±n as well as the functions f± are shown in figure 1.8b. It is worth notic-
ing that the functions f± are π-periodic, the function f+ being right-continuous and
the function f− left-continuous. The function f+ is strictly increasing in each interval
[πn, π(n+1)[ and f+([πn, π(n+1)[) = R+. Similarly, the function f− is strictly increasing
in each interval ]πn, π(n + 1)] and f−(]πn, π(n + 1)]) = R−. As regards the function φL,
it is a 2π/L-periodic function defined on R+ \Σs. In each interval ]2πn/L, 2π(n+ 1)/L[,
n ∈ N, it is continuous and strictly decreasing and takes all the values in R (see an
example in figure 1.8c).
As it was mentioned above, the set described in (ii) of Proposition 1.3.6 is given by the
set of the abscissas of the intersections of D with the graph of the function φL. This is
not exactly the image by the function x 7→

√
x of the spectrum of the operator As since

the discrete set Σ ∪ Σs ((i) of Proposition 1.3.6) is missing. This permits us to consider
the intersection of the graph of the function φL with the domain D instead of D. Indeed,
the domain D differs from D only by adding the vertical boundaries:

D =
⋃
n∈N

D±n = D ∪

{⋃
n∈N

{
{πn} × R+

}}
∪

{ ⋃
n∈N∗

{
{πn} × R−

}}
.
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We have then

Dx :=
{
x : (x, φL(λ)) ∈ D

}
= {x : (x, φL(λ)) ∈ D} ∪ Σ \ Σs, (1.3.29)

which means that λ ∈ Dx implies λ2 ∈ σ(As). In order to get the whole spectrum of the
operator As, it is actually enough to add the set Σs, which is equivalent to taking the
closure of Dx. More precisely, the following assertion holds.

Proposition 1.3.7.

λ2 ∈ σ(As) ⇔ λ ∈ Dx ∪ Σs ⇔ λ ∈ Dx.

Proof. The first equivalence follows immediately from Proposition 1.3.6 and (1.3.29). The
inclusion

{
λ2 : λ ∈ Dx

}
⊂ σ(As) is also obvious since {λ2 : λ ∈ Dx} ⊂ σ(As) and the

spectrum is a closed set. It remains then to prove that Σs ⊂ Dx. Suppose that λ0 ∈ Σs.
Then,

∃δ0 > 0 s.t. (λ, φL(λ)) ∈ D, ∀λ ∈]λ0, λ0 + δ0[. (1.3.30)

Indeed, for δ small enough the function f+ is continuous in the interval [λ0, λ0 + δ].
Consequently, for A large enough the band ]λ0, λ0 + δ[×[A,+∞[ is contained in D (due
to (1.3.27)). However, lim

λ→λ0+0
φL(λ) = +∞, which implies 1.3.30. This, in turn, means

that ]λ0, λ0 + δ0[⊂ Dx for some δ0 > 0. Hence, λ0 ∈ Dx.

(a) L = π/2 (b) L = 2π

Figure 1.9: Examples of intersections of the domain D with the function φL

In the rest of this section we prove the following characterization of the gaps of the
operator As.

Proposition 1.3.8. An interval ]a, b[ is a gap of the operator As if and only if [
√
a,
√
b]∩

Σs = ∅ and one of the following possibilities holds:

I There exists n ∈ N such that πn <
√
a <
√
b < π(n + 1), and φL (

√
a) = f+ (

√
a),

φL(
√
b) = f−(

√
b);

II (i) There exists n ∈ N such that πn =
√
a <

√
b < π(n + 1), and φL (

√
a) 6 0,

φL(
√
b) = f−(

√
b);

(ii) There exists n ∈ N such that πn <
√
a <
√
b = π(n+ 1), and φL (

√
a) = f+ (

√
a),

φL(
√
b) > 0.
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We start by proving the following characterization of the ends of the gaps.

Lemma 1.3.2. The point λ2
0 is the lower end of a gap of the operator As if and only if

one of the following possibilities holds:

(i) λ0 ∈ R+ \ (Σ ∪ Σs) and φL(λ0) = f+(λ0);

(ii) λ0 ∈ Σ \ Σs and φL(λ0) 6 0.

Similarly, the point λ2
0 is the upper end of a gap of the operator As if and only if one of

the following possibilities holds:

(iii) λ0 ∈ R+ \ (Σ ∪ Σs) and φL(λ0) = f−(λ0);

(iv) λ0 ∈ Σ \ Σs and φL(λ0) > 0.

Proof. Let us study the possible configurations of intersections of the function φL with the
domains D±n in the interval [πn, π(n + 1)]. We will treat separately the "regular" points
(which are neither the end of the interval nor the points of discontinuity of the function
φL).

• Case 1. Regular points: λ0 /∈ Σ ∪ Σs

(a) The point (λ0, φL(λ0)) is an interior point of the domains D±n :

(λ0, φL(λ0)) ∈ int
(
D±n
)
⇒ ∃δ > 0 s.t. (λ, φL(λ)) ∈ D±n , ∀λ ∈]λ0−δ, λ0+δ[. (1.3.31)

This follows immediately from the fact that the function φL is continuous at λ0. We
note that due to (1.3.31) the points such that (λ0, φL(λ0)) ∈ int

(
D±n
)
correspond to

interior points of the spectrum (and not to the ends of gaps).

(b) The point λ0 satisfies φL(λ0) = f+(λ0):

λ0 ∈]πn, π(n+ 1)[

φL(λ0) = f+(λ0)
⇒ ∃δ > 0 s.t.

(λ, φL(λ)) ∈ D+
n , ∀λ ∈]λ0 − δ, λ0],

(λ, φL(λ)) /∈ D+
n , ∀λ ∈]λ0, λ0 + δ[.

(1.3.32)

(c) The point λ0 satisfies φL(λ0) = f−(λ0):

λ0 ∈]πn, π(n+ 1)[

φL(λ0) = f−(λ0)
⇒ ∃δ > 0 s.t. (λ, φL(λ)) ∈ D−n , ∀λ ∈ [λ0, λ0 + δ[,

(λ, φL(λ)) /∈ D−n , ∀λ ∈]λ0 − δ, λ0[.
(1.3.33)

This follows from the monotonicity of the functions f± defining the boundaries of the
domains D±n on the one hand and from the monotonicity of the function φL from the
other hand. Indeed, the point (λ0, f

+(λ0)) belongs to the boundary of the domain
D+
n . Hence, the whole band [πn, λ0] × [f+(λ0),∞[ belongs to D+

n and the band
]λ0, π(n+ 1)[ × ]−∞, f+(λ0)[ does not intersect D+

n . Taking into account that the
function φL is strictly decreasing and continuous in some neighbourhood of the point
λ0, we obtain (1.3.32) which means that λ2

0 is the lower end of a gap. An analogous
argument gives (1.3.33) which means that λ2

0 is the upper end of a gap.
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• Case 2. Points of discontinuity of the function φL (the set Σs)

This case has been considered in the proof of Proposition 1.3.7. We showed that there
exists δ+ > 0 such that ]λ0, λ0 + δ+[⊂ Dx. Using an analogous argument one easily
checks that there exists δ− > 0 such that ]λ0 − δ−, λ0[⊂ Dx. Taking into account that
Dx ∪Σs = {λ : λ2 ∈ σ(As)}, we conclude that the points of Σs correspond to internal
points of the spectrum (and not to the ends of gaps).

• Case 3. Ends of the interval

λ0 = πn /∈ Σs

φL(λ0) > 0
⇒

(λ0, φL(λ0)) ∈ D+
n ,

∃δ > 0 s.t. (λ, φL(λ)) /∈ D+
n , ∀λ ∈]λ0 − δ, λ0[.

(1.3.34)

λ0 = πn /∈ Σs

φL(λ0) 6 0
⇒ (λ0, φL(λ0)) ∈ D−n ,

∃δ > 0 s.t. (λ, φL(λ)) /∈ D−n , ∀λ ∈]λ0, λ0 + δ[.
(1.3.35)

These properties follow from the fact that the function φL is continuous and strictly
decreasing in some neighbourhood of the point λ0 taking into account that the rays
{πn} × R+ and {πn} × R− are boundaries of the domains D+

n and D−n respectively.

The properties (1.3.34), (1.3.35) imply that the point λ2
0 = (πn)2 is the upper end of a

gap if φL(λ0) > 0 and the lower end of a gap if φL(λ0) 6 0. Note that if φL(λ0) = 0,
there is a gap to the left and to the right of this point, and λ2

0 = (πn)2 is an eigenvalue
of infinite multiplicity for the operator As (which is in accordance with Proposition
1.3.5).

The three cases considered cover all the possible situations, which finishes the proof.

Examples illustrating Lemma 1.3.2 are shown in figure 1.9. We can now prove Proposition
1.3.8.

Proof of Proposition 1.3.8. As it has been shown in the proof of Lemma 1.3.2, case 2, the
points of Σs correspond to internal points of the spectrum of the operator As. This implies
that [

√
a,
√
b] ∩ Σs = ∅. Consequently, φL ∈ C([

√
a,
√
b]). Since the images of the points

of Σ by the function x 7→ x2 belong to the spectrum of the operator As (Proposition
1.3.4(1)), one necessarily has πn 6

√
a <
√
b 6 π(n+ 1) for some n ∈ N.

I Suppose that πn <
√
a <
√
b < π(n+ 1). It follows from Lemma 1.3.2 that φL(

√
a) =

f+(
√
a) and φL(

√
b) = f−(

√
b).

II

(i) Suppose now that
√
a = πn. Then, it follows from Lemma 1.3.2 that φL(

√
a) 6 0.

The function φL being continuous and strictly decreasing in the interval [
√
a,
√
b],

we conclude that φL(
√
b) < 0. Then, according to Lemma 1.3.2, φL(

√
b) = f−(

√
b).

Consequently, f−(
√
b) < 0, which implies that

√
b < π(n+1) (since f−(π(n+1)) = 0).

(ii) The case
√
b = π(n+ 1) can be considered analogously to the previous case.
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(a) An asymptote of the function φL
(for L = 1.5) belongs to {πZ}

(b) Eigenvalue of infinite mul-
tiplicity for L = 1

Figure 1.10: Particular cases

1.3.2.2 Discrete spectrum of the operator Aµs .

We now pass to the study of the discrete spectrum of the operator Aµs . Suppose that λ2 6= 0
is an eigenvalue of the operator Aµs . Then, an eigenfunction u ∈ D(Aµs ) corresponding to
λ2 verifies the equation u′′+ λ2u = 0 in each edge of the graph G. Hence, it has the form

uj+ 1
2
(s) = aj+ 1

2
sin (λs) + bj+ 1

2
cos (λs), s ∈ [0, 1], ∀j ∈ Z, (1.3.36)

uj(y) = cj cos (λy), y ∈
[
−L

2
, L

2

]
, ∀j ∈ Z. (1.3.37)

The continuity of the eigenfunction u at the vertices of the graph (which is due to the
fact that u ∈ D(Aµs )) implies that

bj+ 1
2

= aj− 1
2

sinλ+ bj− 1
2

cosλ = cj cos
(
λL
2

)
, ∀j ∈ Z. (1.3.38)

The Kirchhoff’s conditions (1.3.7) for the function u give

aj+ 1
2
− aj− 1

2
cosλ+ bj− 1

2
sinλ+ wµj cj sin

(
λL
2

)
= 0, ∀j ∈ Z. (1.3.39)

Lemma 1.3.3. If λ ∈ Σ∆Σ′s, then λ2 is not an eigenvalue of the operator Aµs for any
µ > 0.

Proof.

(a) Suppose that λ ∈ Σ′s \ Σ. Then, as cos
(
λL
2

)
= 0, the relations (1.3.38) imply that

bj+ 1
2

= 0, ∀j ∈ Z, and aj− 1
2

= 0, ∀j ∈ Z, since sinλ 6= 0. Finally, taking into account
that sin

(
λL
2

)
6= 0, one finds from the relations (1.3.39) that cj = 0, ∀j ∈ Z. Thus,

the eigenfunction u is identically zero.

(b) Suppose that λ ∈ Σ \ Σ′s, λ 6= 0. Then, since sinλ = 0 and cos
(
λL
2

)
6= 0, the

relations (1.3.38) imply that |bj+ 1
2
| = b, ∀j ∈ Z, and |cj| = b

∣∣cos
(
λL
2

)∣∣−1, ∀j ∈ Z.
Consequently, if b 6= 0, then u /∈ L2(G). If b = 0, then bj+ 1

2
= 0 and cj = 0, ∀j ∈ Z.

In this case, one finds from the relations (1.3.39) that |aj+ 1
2
| = a, ∀j ∈ Z. Again, if

a 6= 0, then u /∈ L2(G), and if a = 0, then the eigenfunction u is identically zero.
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(c) Finally, consider the point λ = 0. Then, the relations (1.3.36)–(1.3.39) are replaced
by

uj+ 1
2
(s) = aj+ 1

2
s+ bj+ 1

2
, s ∈ [0, 1], uj(y) = cj, y ∈

[
−L

2
, L

2

]
, ∀j ∈ Z,

bj+ 1
2

= aj− 1
2

+ bj− 1
2

= cj, aj+ 1
2
− aj− 1

2
= 0, ∀j ∈ Z.

Thus, we have aj+ 1
2

= a, ∀j ∈ Z, and cj−cj−1 = a, ∀j ∈ Z. If a 6= 0, then u /∈ L2(G).
If a = 0, then cj = cj−1 = bj+ 1

2
= bj− 1

2
= c, ∀j ∈ Z. Again, either u /∈ L2(G) (if

c 6= 0), or u = 0.

Remark 1.3.6. Lemma 1.3.3 together with Proposition 1.3.5 imply that the set Σ ∪ Σ′s
can be excluded from the consideration while searching the eigenvalues of the operator
Aµs . Indeed, the points λ ∈ Σ∆Σ′s do not correspond to eigenvalues whereas the set Σ∩Σ′s
corresponds to the eigenvalues of infinite multiplicity.

For λ /∈ Σ ∪ Σ′s the coefficients {aj+ 1
2
, bj+ 1

2
, cj} can be expressed in terms of the values

{uj} of the function u at the vertices of the graph:

aj+ 1
2

=
1

sinλ
(uj+1 − cosλuj) , bj+ 1

2
= uj, cj =

uj
cos
(
λL
2

) , ∀j ∈ Z. (1.3.40)

Then, the relations (1.3.36)–(1.3.37) take the form

uj+ 1
2
(s) = uj

sin (λ(1− s))
sinλ

+ uj+1
sin (λs)

sinλ
, s ∈ [0, 1], ∀j ∈ Z, (1.3.41)

uj(y) = uj
cos (λy)

cos
(
λL
2

) , y ∈
[
−L

2
, L

2

]
, ∀j ∈ Z. (1.3.42)

After injecting (1.3.40) into the relation (1.3.39) one obtains the following finite difference
equation:

uj+1 + 2g(λ)uj + uj−1 = 0, j ∈ Z∗, (1.3.43)
u1 + 2gµ(λ)u0 + u−1 = 0, (1.3.44)

where

g(λ) = − cosλ+
1

2
sinλ tan

(
λL
2

)
, (1.3.45)

gµ(λ) = − cosλ+
µ

2
sinλ tan

(
λL
2

)
. (1.3.46)

Thus, the initial problem for a differential operator on the graph reduces to a problem
for a finite difference operator acting on sequences {uj}j∈Z. The characteristic equation
associated to the system (1.3.43)–(1.3.44) is

r2 + 2g(λ)r + 1 = 0. (1.3.47)

We will denote by r(λ) the solution of (1.3.47) given by the relation

r(λ) = −g(λ) + sign(g(λ))
√
g2(λ)− 1. (1.3.48)



1.3. SPECTRAL PROBLEM ON THE GRAPH 27

Clearly, |r(λ)| 6 1. Let us first solve the system (1.3.43) for j < 0 and j > 0. If
r(λ) 6= r(λ)−1 the general solution of (1.3.43) is

uj = A+r(λ)j +B+r(λ)−j, j > 0, (1.3.49)
uj = A−r(λ)j +B−r(λ)−j, j 6 0. (1.3.50)

In the particular case when r(λ) = r(λ)−1 = ±1 the general solution is

uj = C+r(λ)j +D+r(λ)jj, j > 0, (1.3.51)
uj = C−r(λ)j +D−r(λ)jj, j 6 0. (1.3.52)

Since an eigenfunction has to belong to L2(G), the value λ2 can be an eigenvalue of the
operator Aµs only if |r(λ)| < 1, which is equivalent to |g(λ)| > 1. If λ2 is an eigenvalue of
the operator Aµs then B+ = A− = 0. Moreover, the equations (1.3.49)–(1.3.50) for j = 0
imply that A+ = B− = A. Thus,

uj = Ar(λ)|j|, j ∈ Z. (1.3.53)

At this point we can remark that all the eigenvalues of the operator Aµs (if they exist) are
simple. Finally, after injecting (1.3.53) into (1.3.44) we find

λ2 ∈ σd(Aµs ) ⇔ r(λ) = −gµ(λ). (1.3.54)

Taking into account (1.3.45), (1.3.46) we arrive at the following relation:

sign(g(λ))
√
g2(λ)− 1 = (1− µ)(g(λ) + cosλ).

Since |g(λ)| > 1, the above relation can be rewritten as

µ = F (λ), (1.3.55)

F (λ) = 1−
√
g2(λ)− 1

|g(λ) + cosλ|
. (1.3.56)

We arrive then at the following assertion.

Proposition 1.3.9.

λ2 ∈ σd(Aµs ) ⇔ λ is a solution of (1.3.55).

We will now study the existence and the position of the eigenvalues of the operator Aµs .
As it was mentioned before, if λ2 is an eigenvalue of the operator Aµs of finite multiplicity,
then one necessarily has |g(λ)| > 1. The following proposition establishes the relation
between the absolute value of g(λ) and the nature of the point λ2.

Proposition 1.3.10. For λ /∈ Σ′s,

|g(λ)| 6 1 ⇔ |r(λ)| = 1 ⇔ λ2 ∈ σ(As). (1.3.57)

Proof. The first equivalence follows immediately from (1.3.48). Next, we remark that
|g(λ)| 6 1 if and only if there exists θ ∈ [0, π] such that g(λ) = − cos θ. Due to (1.3.45)
we get

cosλ− cos θ =
1

2
sinλ tan

(
λL
2

)
.

For λ /∈ Σ ∪ Σs ∪ Σ′s it is equivalent to (1.3.25). Finally, for λ ∈ (Σ ∪ Σs) \ Σ′s we have
|g(λ)| = 1 and λ2 ∈ σ(As) (cf. Proposition 1.3.6 (i)).
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Remark 1.3.7. The relation |r(λ)| = 1 can be seen as the condition of existence of a
generalized eigenfunction of the operator Aµs for the value λ2. By a generalized eigenfunc-
tion we mean a solution of the problem u′′ + λ2u = 0 in each edge of the graph G which
is continuous and verifies the Kirchhoff’s conditions and which has at most polynomial
growth but does not belong to L2(G). Indeed, for λ /∈ Σ ∪ Σ′s the relations (1.3.49)–
(1.3.50) or (1.3.51)–(1.3.52) completed by (1.3.44) give solutions of at most polynomial
growth which do not belong to L2(G) if and only if |r(λ)| = 1. For λ ∈ Σ \ Σ′s one
has r(λ) = −g(λ) = ±1. The existence of a generalized eigenfunction in this case has
been established in the proof of Lemma 1.3.3 (b). Thus, Proposition 1.3.10 implies that
in our case the existence of a generalized eigenfunction for λ2, λ /∈ Σ′s, is equivalent to
λ2 ∈ σess(Aµs ). The relation between the existence of a generalized eigenfunction for λ and
the fact that λ2 belongs to the essential spectrum of the operator is known as a Schnol’s
theorem-type result.

It follows from Proposition 1.3.10 that if λ2 is an eigenvalue of the operator Aµs of finite
multiplicity, it is necessarily in a gap of the operator Aµs . Thus, the operator Aµs has
no embedded eigenvalues. With the classification of the gaps in two types introduced in
Proposition 1.3.8 we can state the following theorem giving the number of eigenvalues
inside the gaps of the operator Aµs .

Theorem 1.3.1. The operator Aµs has no embedded eigenvalues for any µ > 0. For
0 < µ < 1 there exist two simple eigenvalues of the operator Aµs in each gap of type I and
one simple eigenvalue of this operator in each gap of type II. For µ > 1 the operator Aµs
has no eigenvalues.

Proof. The absence of embedded eigenvalues has been discussed above. The eigenvalues
of the operator Aµs are characterized by Proposition 1.3.9. Clearly, for µ > 1 (1.3.55) has
no solutions. Let us consider the case 0 < µ < 1. Let ]a, b[ be a gap of the operator As.
We will study the behaviour of the function F given by (1.3.56) inside this gap. Using
(1.3.45) it can be rewritten as

F (λ) = 1−
√

1− φL(λ) (φL(λ)− ψ(λ)), (1.3.58)

where ψ(λ) = −2/ tanλ and the function φL is defined in (1.3.25). The only zeros of
the function F in the interval ]

√
a,
√
b[ are given by the zeros of φL and the zeros of

ϕ = φL − ψ. Let us investigate the variations of F in the two cases given by Proposition
1.3.8:

I The function g being continuous in R \ Σ′s, it follows from (1.3.57) that |g(
√
a)| =

|g(
√
b)| = 1, and hence, F (

√
a) = F (

√
b) = 1. In view of Proposition 1.3.8, the strictly

decaying function φL has exactly one zero in ]
√
a,
√
b[ since φL(

√
a) = f+(

√
a) > 0,

φL(
√
b) = f−(

√
b) < 0. We denote this zero by c. Besides, ϕ is strictly decreasing

and one can show that ϕ(
√
a) > 0 and ϕ(

√
b) < 0. Indeed, one easily verifies that

f−(λ) < ψ(λ) < f+(λ), ∀λ ∈ [
√
a,
√
b]. It follows that ϕ has a unique zero (denoted

by d) in ]
√
a,
√
b[ (see figure 1.11a). As a consequence, the function F (λ) is strictly

decreasing from 1 to 0 in the interval [
√
a,min(c, d)], strictly increasing from 0 to 1

in the interval [max(c, d),
√
b] and negative in the interval ] min(c, d),max(c, d)[. Thus,

there exists precisely two solutions of (1.3.55) in the interval ]
√
a,
√
b[ for 0 < µ < 1.
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II Consider, for example, the case (ii), i.e.
√
b = π(n+ 1) (the case (i) can be considered

analogously). As in the case I, one has F (
√
a) = 1. The function φL does not change

the sign in ]
√
a,
√
b[ since φL(

√
a) > 0, φL(

√
b) > 0. Hence, the point c from the

previous case does not exist. The point d still exists and (see figure 1.11b). In the
interval [

√
a, d] the function F (λ) decreases monotonously from 0 to 1 whereas in the

interval [d,
√
b[ it is negative. Hence, there exists a unique solution of (1.3.55) in the

interval ]
√
a,
√
b[ for 0 < µ < 1.

(a) Case I: both points c and d exist,
which leads to two eigenvalues in such
a gap

(b) Case II: the point d exists
but the point c does not, which
gives one eigenvalue in this gap

Figure 1.11: Illustration for two types of gaps

1.3.3 Results for the operator Aµ
as

We will now briefly describe the modifications of the previous considerations in the case
of the operator Aµas. The operator corresponding to the periodic case µ = 1 is denoted by
Aas. The analogue of Proposition 1.3.3 is:

Proposition 1.3.11. For θ ∈ [0, π], λ2 ∈ σ(Aas(θ)) if and only if λ is a solution of the
equation

2 sin
(
λL
2

)
(cosλ− cos θ) = − sinλ cos

(
λL
2

)
, λ 6= 0. (1.3.59)

For sin
(
λL
2

)
6= 0 the equation (1.3.59) is equivalent to

cos θ = cosλ− 1

2
sinλ tan

(
λL
2

+ π
2

)
.

The analogues of the properties given in Propositions 1.3.4–1.3.6 hold.

Proposition 1.3.12.

1. {λ2, λ ∈ Σ ∪ Σ′s \ {0}} ⊂ σ(Aas).
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2. The operator Aas has infinitely many gaps whose ends tend to infinity.

3. The operator Aas has the following set of eigenvalues of infinite multiplicity which are
isolated points of the spectrum:

σpp(Aas) =
{
λ2, λ ∈ Σ ∪ Σs \ {0}

}
.

This set is non-empty if and only if L = 2m
k

an irreducible fraction with m ∈ N∗,
k ∈ N∗. In this case, it has the form

σpp(Aas) =
{

(nπk)2 , n ∈ N∗
}
.

Otherwise σpp(Aas) = ∅.

4. λ2 ∈ σ(Aas) if and only if either one of the following possibilities holds:

(i) λ ∈ Σ ∪ Σ′s \ {0};
(ii) λ is a solution of the equation

−2 tan
(
λL
2

)
= fθ(λ),

for some θ ∈ [0, π].

Next, Proposition 1.3.2 still holds for the operator Aµas:

Proposition 1.3.13.
σess(A

µ
as) = σess(Aas).

Passing to finite-difference equations for λ /∈ Σ ∪ Σs we find again (1.3.43), (1.3.44) with
g(λ), gµ(λ) replaced by gas(λ), gµas(λ):

gas(λ) = − cosλ+
1

2
sinλ tan

(
λL
2

+ π
2

)
,

gµas(λ) = − cosλ+
µ

2
sinλ tan

(
λL
2

+ π
2

)
,

The characteristic equation (1.3.47) as well as the characterisation (1.3.55)-(1.3.56) of the
eigenvalues are still valid with g(λ) replaced by gas(λ). The relation |gas(λ)| 6 1 ⇔
λ2 ∈ σ(As) for λ /∈ Σs analogous to Proposition 1.3.10 also holds. Thus, we can state the
analogue of Theorem 1.3.1.

Theorem 1.3.2. The operator Aµas has no embedded eigenvalues for any µ > 0. For
0 < µ < 1 there exists either one or two simple eigenvalues of the operator Aµas in each
gap of this operator. These eigenvalues are characterised as follows:

λ2 ∈ σd(Aµas) ⇔ µ = 1−
√
g2
as(λ)− 1

|gas(λ) + cosλ|
.

For µ > 1 the operator Aµas has no eigenvalues.

Remark 1.3.8. As for the operator As, we could give a more precise version of this
theorem by distinguishing two types of gaps of the operator Aas analogously to Proposition
1.3.8. For 0 < µ < 1 the operator Aas has two eigenvalues in the gaps of one type and
one eigenvalue in the gaps of the other type.
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1.3.4 The spectrum of the operator A.

As we have seen, both of the operators As and Aas have infinitely many gaps. However,
it turns out that the gaps of one operator overlap with spectral bands of the other one,
so that the full operator A has no gap.

Proposition 1.3.14.
σ(A) = R+.

Proof. Let us suppose that there exists λ such that λ2 /∈ σ(A) (of course, the same is true
for some open neighbourhood of λ). Due to the characterisation of the essential spectrum
(1.3.57) and its analogue for Aas we have

∣∣∣∣− cosλ+
1

2
sinλ tan

(
λL
2

)∣∣∣∣ > 1,∣∣∣∣∣cosλ+
sinλ

2 tan
(
λL
2

)∣∣∣∣∣ > 1.
(1.3.60)

Let us denote a = tan
(
λL
2

)
. Then, the system (1.3.60) can be rewritten as
a2

4
sin2 λ− a sinλ cosλ+ cos2 λ > 1, (1.3.61)

1

4a2
sin2 λ+

1

a
sinλ cosλ+ cos2 λ > 1. (1.3.62)

Multiplying (1.3.62) by a2 and taking the sum with (1.3.61) we obtain

1

4
(1 + a2) sin2 λ+ (1 + a2) cos2 λ > 1 + a2,

which is impossible.

We see that the eigenvalues of the operators Aµs , Aµas are in fact embedded eigenvalues for
the operator Aµ.

1.4 Existence of eigenvalues for the non-limit operator

1.4.1 Main result

We return now to the case of the ladder. As it was mentioned above, instead of studying
the full operator Aµε we will study separately the operators Aµε,s, Aµε,as for which the
existence of eigenvalues inside gaps will be established. The convergence of the essential
spectrum of the operator Aε,s (resp. Aε,as) to the one of the operator As (resp. Aas) is
known since the works [61], [47]. More precisely, the following theorem holds.

Theorem 1.4.1 (Essential spectrum). Let {]an, bn[, n ∈ N∗} be the gaps of the operator
As (Aas) on the limit graph G. Then, for each n0 ∈ N∗ there exists ε0 > 0 such that if
ε < ε0 the operator Aε,s (Aε,as) has at least n0 gaps {]aε,n, bε,n[, 1 6 n 6 n0} such that

aε,n = an +O(ε), bε,n = bn +O(ε), ε→ 0, 1 6 n 6 n0.
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The proof of this fact is based on the Floquet-Bloch theory (which permits to reduce the
study of the spectrum of a periodic operator to the study of a family of operators in a
bounded domain) and the min-max principle (for studying the eigenvalues of an operator
in a bounded domain). Theorem 1.4.1 guarantees the existence of gaps for the operators
Aε,s, Aε,as at least for ε small enough. We fix then one of these gaps and study the
existence of eigenvalues inside it. Our principal result is the following.

Theorem 1.4.2 (Discrete spectrum). Let ]a, b[ be a gap of the operator Aµs (Aµas) on the
limit graph G and λ(0) ∈]a, b[ a (simple) eigenvalue of this operator. Then there exists
ε0 > 0 such that if ε < ε0 the operator Aµε,s (Aµε,as) has an eigenvalue λε inside a gap
]aε, bε[ with the following asymptotic expansion at any order n:

λε =
n∑
k=0

λ(k)εk +O
(
εn+1

)
, ε→ 0. (1.4.1)

We prove this theorem in Chapter 2 using Matched Asymptotic Expansions. However,
we will give now a proof of a weak version of this theorem using a simpler argument.

Theorem 1.4.3 (Discrete spectrum – weak version). Let ]a, b[ be a gap of the operator Aµs
(Aµas) on the limit graph G and λ(0) ∈]a, b[ a (simple) eigenvalue of this operator. Then
there exists ε0 > 0 such that if ε < ε0 the operator Aµε,s (Aµε,as) has an eigenvalue λε inside
a gap ]aε, bε[ such that

λε = λ(0) +O
(√

ε
)
, ε→ 0.

Though the rate of convergence guaranteed by this theorem is not optimal, the proof given
below provides an easy way to establish the existence of eigenvalues for the operators Aµε,s,
Aµε,as. It also illustrates the main ideas that will be used in the proof of Theorem 1.4.2 in
a simplified context.

Remark 1.4.1. In [57] O. Post proves the convergence of all the components of the
spectrum of the Neumann Laplacian for a large class of graph-like manifolds (in particular,
they are not necessarily compact). Applied to our case, these results imply the existence of
eigenvalues of the operators Aµε,s, Aµε,as inside gaps for ε small enough. They also guarantee
that these eigenvalues are simple (which is not established in Theorem 1.4.2). The optimal
rate of convergence for the eigenvalues, which is linear in ε, has also been proved in [57].
Thus, we provide an alternative proof of existence of eigenvalues of the operators Aµε,s,
Aµε,as which permits to obtain a full asymptotic expansion of the eigenvalues (1.4.1).

Combining Propositions 1.3.4 (2), 1.3.12 (2) and Theorems 1.4.1, 1.4.2, 1.3.1, 1.3.2 we
can formulate the following result.

Theorem 1.4.4. For any n0 ∈ N∗ there exists ε0 > 0 such that if ε < ε0 the operator
Aε,s (Aε,as) has at least n0 eigenvalues. Moreover, for any A > 0 there exists ε0 > 0 such
that if ε < ε0 the operator Aε,s (Aε,as) has at least one eigenvalue greater than A.

1.4.2 Method of a pseudo-mode

We will now prove Theorem 1.4.3. We consider only the operator Aµε,s, the case of the
operator Aµε,as being analogous. Our proof is based on the construction of a so-called
pseudo-mode, i.e. an approximation of the eigenfunction of the operator Aµε,s. More
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precisely, we use Lemma A.2.1 that gives an estimate for the distance from the spectrum
once such an approximation is found. In application to the operator Aµε,s Lemma A.2.1
means that if there exists a function uε ∈ H1

s (Ωµ
ε ) (H1

s standing for the symmetric subspace
of H1) such that∣∣∣∣∣∣∣

∫
Ωµε

(
∇uε∇v − λ(0)uεv

)
dΩ

∣∣∣∣∣∣∣ 6 C
√
ε‖uε‖H1(Ωµε )‖v‖H1(Ωµε ), ∀v ∈ H1

s (Ωµ
ε ), (1.4.2)

then
dist(σ(Aµε,s), λ

(0)) 6 C̃
√
ε, (1.4.3)

with some constant C̃ which does not depend on ε. According to Theorem 1.4.1, for
ε small enough there exists a constant C such that σess(Aµε,s) ∩ [a + Cε, b − Cε] = ∅.
Together with (1.4.3) it means that σd(Aµε,s)∩ [λ(0)− C̃

√
ε, λ(0) + C̃

√
ε] 6= ∅ which proves

the existence of an eigenvalue of the operator Aµε,s in a neighbourhood of λ(0) of order
√
ε

for ε small enough.

1.4.3 Construction of a pseudo-mode

Let us introduce some notation for the domain Ωµ
ε (cf. figure 1.12). We denote by Vε,±

j+ 1
2

its horizontal top and bottom edges,

Vε,+
j+ 1

2

=
]
j +

wµj ε

2
, j + 1− wµj+1ε

2

[
×
]
L
2
− ε, L

2

[
, j ∈ Z,

Vε,−
j+ 1

2

=
]
j +

wµj ε

2
, j + 1− wµj+1ε

2

[
×
]
−L

2
, −L

2
+ ε
[
, j ∈ Z,

by Vεj its vertical edges,

Vεj =
]
j − wµj ε

2
, j +

wµj ε

2

[
×
]
L
2
− ε, L

2
+ ε
[
, j ∈ Z,

and by Kε,±
j the top and bottom junctions,

Kε,+
j =

]
j − wµj ε

2
, j +

wµj ε

2

[
×
]
L
2
− ε, L

2

[
, j ∈ Z,

Kε,−
j =

]
j − wµj ε

2
, j +

wµj ε

2

[
×
]
−L

2
, −L

2
+ ε
[
, j ∈ Z.

We also introduce a notation for the boundaries separating these subdomains:

Γ0,ε,±
j+ 1

2

= ∂Vε,±
j+ 1

2

∩ ∂Kε,±
j , Γ1,ε,±

j+ 1
2

= ∂Vε,±
j+ 1

2

∩ ∂Kε,±
j+1, Γε,±j = ∂Vεj ∩ ∂K

ε,±
j , j ∈ Z.

We construct the pseudo-mode uε as follows. Let u0 be the eigenfunction of the operator
Aµs corresponding to the eigenvalue λ(0). Then, uε is defined on Ωµ

ε by "fattening" u0

(with an appropriate rescaling):

uε(x, y) =


u0,j+ 1

2
(sε
j+ 1

2

(x)), (x, y) ∈ Vε,±
j+ 1

2

,

u0,j(t
ε(y)), (x, y) ∈ Vεj ,

u0,j, (x, y) ∈ Kε,±
j .
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Figure 1.12: Construction of a pseudo-mode

Here sε
j+ 1

2

and tε are given by the relations

sε
j+ 1

2
(x) =

x− j − wµj ε/2
1−

(
wµj + wµj+1

)
ε/2

, tε(y) =
y

1− 2ε/L
. (1.4.4)

We note that due to a standard density argument (Meyers-Serrin’s theorem) it is sufficient
to prove (1.4.2) for any v ∈ C∞(Ωµ

ε ) ∩ H1
s (Ωµ

ε ). Let us estimate the left-hand side of
(1.4.2) for v ∈ C∞(Ωµ

ε ) ∩ H1
s (Ωµ

ε ). Integrating by parts and using the fact that u0 is an
eigenfunction on the graph as well as the symmetry of the functions u0 and v, we get:∣∣∣∣∣∣∣
∫
Ωµε

(
∇uε∇v − λ(0)uεv

)
dΩ

∣∣∣∣∣∣∣ 6 2
∑
j∈Z

λ(0)u0,j

∣∣∣∣∣∣∣∣
∫

Kε,−
j

vdΩ

∣∣∣∣∣∣∣∣+ λ(0)‖uε‖L2(Ωµε )‖v‖L2(Ωµε )O(ε)

+ 2
∑
j∈Z

−u′0,j+ 1
2
(0)

∫
Γ0,ε,−
j+1

2

v(x, y)dy + u′
0,j− 1

2
(1)

∫
Γ1,ε,−
j− 1

2

v(x, y)dy − u′0,j
(
−L

2

) ∫
Γε,−j

v(x, y)dx


× (1 +O(ε)), (1.4.5)

The terms in (1.4.5) containing O(ε) appear because of the change of variables (1.4.4).
Taking into account (1.3.53) and using Hölder’s inequality, the first term in the right-hand
side of (1.4.5) can be estimated as follows:

2
∑
j∈Z

λ(0)u0,j

∣∣∣∣∣∣∣∣
∫

Kε,−
j

vdΩ

∣∣∣∣∣∣∣∣ 6 Cε‖v‖L2(Ωµε ). (1.4.6)

Here and in what follows we denote by C all constants (not necessarily the same) which
do not depend on ε. Next, if M ε,−

j is a barycentre of Kε,−
j , then

∣∣v(x, y)− v(M ε,−
j )

∣∣ 6 (x,y)∫
Mε,−
j

|∇v|dt,
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where the integral is taken along the segment joining the points (x, y) and M ε,−
j . Due

to Kirchhoff’s conditions (1.3.7) verified by the function u0 we can replace v(x, y) by
v(x, y) − v(M ε,−

j ) in the integrals over the boundaries in the right-hand side of (1.4.5).
We have∣∣∣∣∣∣∣∣

∫
Γε,−j

(
v(x, y)− v(M ε,−

j )
)
dx

∣∣∣∣∣∣∣∣ 6
∫

Γε,−j

(x,y)∫
Mε,−
j

|∇v|dxdt 6 Cε‖v‖H1(Kε,−
j ). (1.4.7)

Combining (1.4.5)–(1.4.7) and taking into account (1.3.41), (1.3.42), (1.3.53) we obtain
the following estimate:∣∣∣∣∣∣∣

∫
Ωµε

(
∇uε∇v − λ(0)uεv

)
dΩ

∣∣∣∣∣∣∣ 6 Cε‖v‖H1(Ωµε ), ∀v ∈ C∞(Ωµ
ε ) ∩H1

s (Ωµ
ε ). (1.4.8)

Notice that by definition of uε one has

‖uε‖H1(Ωµε ) > C
√
ε‖u0‖H1(G), C > 0,

which together with (1.4.8) and the density argument mentioned above finishes the proof
of (1.4.2) and hence, of Theorem 1.4.3.





CHAPTER 2

TRAPPED MODES IN A LOCALLY
PERTURBED PERIODIC LADDER:

ASYMPTOTIC EXPANSIONS OF THE
EIGENVALUES

In this chapter we show how the proof of Theorem 1.4.3 can be modified in order to obtain
the complete asymptotic expansion of the eigenvalue stated in Theorem 1.4.2. It will be
done by constructing another pseudo-mode based on the formal asymptotic expansion
of the eigenfunction of the operator Aµε,s (here again, we give the proof for the operator
Aµε,s, the proof for the operator Aµε,as being analogous). To do so, we will use the matched
asymptotic expansion method in the spirit of the works [63], [35], [36] (see also [66], [30],
[50], [5]). The method consists in distinguishing different areas where the behaviour of the
solution is different and imposing formal expansions in these areas. Then, the different
expansions have to match in some intermediate zones called matching zones. This leads
to matching conditions which, together with the equations satisfied in each zone, permit
to determine the terms of the expansions.

The notation in this section is different from the rest of the work: the spectral parameter
here is denoted by λ, contrarily to all the others chapters, where it is denoted by λ2.

2.1 Formal expansions

Since only symmetric functions are considered when studying the operator Aµε,s, it is
sufficient to define them on the lower half of the band Ωµ

ε , which is a comb-shape domain
that we denote by Cµε (see figure 2.2a):

Cµε = {(x, y) ∈ Ωµ
ε / y < 0} .

37
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(a) The lower half of the band Ωµε : the comb-shape domain Cµε

(b) The lower half of the graph G: the graph GC

Figure 2.1

Let uε and λε be a formal solution of the eigenvalue problem
∆uε + λεuε = 0 in Cµε ,
∂uε

∂n

∣∣∣∣
∂Cµε

= 0,
(2.1.1)

for which the following expansions are assumed.

Far field expansion
It is valid in the regions situated far from the junctions. When ε is small, the branches
of the domain are thin. For this reason, it is natural to model the solution by functions
depending on the longitudinal variable only, the dependence on the transversal variable
being neglected:

For (x, y) ∈ Vε,−
j+ 1

2

∩
{
x ∈

]
j +
√
ε, j + 1−

√
ε
[}
, j ∈ Z :

uε(x, y) ≡ uε
j+ 1

2
(x, y) =

∑
k∈N

εku
(k)

j+ 1
2

(s) + o(ε∞), s = x− j, (2.1.2)

For (x, y) ∈ Vεj ∩
{
y ∈

]
−L

2
+
√
ε, 0

]}
, j ∈ Z :

uε(x, y) ≡ uεj(x, y) =
∑
k∈N

εku
(k)
j (y) + o(ε∞). (2.1.3)

The functions u(k)

j+ 1
2

and u(k)
j are defined on the edges ej+ 1

2
and ej of the limit graph GC

(which is the lower half of the graph G, cf. figure 2.2b). They are supposed smooth (this



2.1. FORMAL EXPANSIONS 39

will be shown a posteriori):

u
(k)

j+ 1
2

∈ C∞([0, 1]), u
(k)
j ∈ C∞

([
−L

2
, 0
])
,
(
u

(k)
j

)′
(0) = 0, ∀k ∈ N, ∀j ∈ Z.

The set of functions
{
u

(k)

j+ 1
2

, u
(k)
j

}
j∈Z

will sometimes be denoted by u(k), which is a function

defined on the graph.

Near field expansion

It is valid in the neighbourhood of the junctions. The solution in this region is a function
of two rescaled variables X and Y :

For (x, y) ∈ Cµε ∩
{
x ∈

]
j − 2

√
ε, j + 2

√
ε
[
, y ∈

]
−L

2
, −L

2
+ 2
√
ε
]}
, j ∈ Z :

uε(x, y) ≡ U ε
j (x, y) =

∑
k∈N

εkU
(k)
j (X, Y ) + o(ε∞), X =

x− j
ε

, Y =
y + L/2

ε
.

(2.1.4)

The functions U (k)
j are defined in the rescaled neighbourhoods of the junctions Jj:

U
(k)
j ∈ H1

∆,loc (Jj) , ∀j ∈ Z,

where

Jj =

{
J∗, j ∈ Z∗,
J0, j = 0,

,

J∗ = {R×]0, 1[} ∪
{]
−1

2
, 1

2

[
× R

}
, J0 = {R×]0, 1[} ∪

{]
−µ

2
, µ

2

[
× R

}
.

For j 6= 0 the domain Jj = J∗ is the unperturbed infinite junction whereas for j = 0 the
domain J0 is the perturbed one (cf. figure 2.2). We will use the following notation:

Kj =
]
−wµj

2
,
wµj
2

[
×]0, 1[, B±j = Jj ∩

{
±X >

wµj
2

}
, B0

j = Jj ∩ {Y > 1},

ΣN
j =

[
−wµj

2
,
wµj
2

]
× {0}, Σ±j =

{
±wµj

2

}
× [0, 1], Σ0

j =
[
−wµj

2
,
wµj
2

]
× {1}.

The functions U (k)
j are supposed to have at most polynomial growth in the infinite branches

B±j , B0
j of the junctions Jj. The set of functions

{
U

(k)
j

}
j∈Z

will sometimes be denoted

by U (k).

Expansion for the eigenvalue:

λε =
∑
k∈N

εkλ(k). (2.1.5)
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(a) The unperturbed junction Jj = J∗, j ∈ Z∗. (b) The perturbed junction J0.

Figure 2.2

Far field and near field problems: After injecting the relations (2.1.2), (2.1.3), (2.1.5)
into (2.1.1) we obtain the following problem for u(k), k ∈ N:

(
u

(k)

j+ 1
2

)′′
(s) + λ(0)u

(k)

j+ 1
2

(s) = −
k−1∑
m=0

λ(k−m)u
(m)

j+ 1
2

(s), s ∈ [0, 1], j ∈ Z,

(
u

(k)
j

)′′
(y) + λ(0)u

(k)
j (y) = −

k−1∑
m=0

λ(k−m)u
(m)
j (y), y ∈

[
−L

2
, 0
]
, j ∈ Z,(

u
(k)
j

)′
(0) = 0, j ∈ Z.

(2.1.6)

Analogously, after injecting (2.1.4), (2.1.5) into (2.1.1) we find a set of problems for U (k),
k ∈ N:

∀j ∈ Z,


∆U

(k)
j (X, Y ) = −

k−2∑
m=0

λ(k−m−2)U
(m)
j (X, Y ), (X, Y ) ∈ Jj,

∂U
(k)
j

∂n

∣∣∣∣∣
∂Jj

= 0.
(2.1.7)

Clearly, the problems (2.1.6) and (2.1.7) are not well-posed. The far field problem need
to be completed by transmission conditions at the vertices of the graph and for the near
field terms the behaviour at infinity has to be specified. The missing relations can be
found by taking into account the matching conditions in the regions where both far field
and near field expansions should hold and match.

Matching conditions: Let us define the intermediate zones (the matching areas), cf.
figure 2.3:

M+
j,ε = Vε,−

j+ 1
2

∩
{
x ∈

]
j +
√
ε, j + 2

√
ε
[}
, M−

j,ε = Vε,−
j− 1

2

∩
{
x ∈

]
j − 2

√
ε, j −

√
ε
[}
,

M0
j,ε = Vεj ∩

{
y ∈

]
−L

2
+
√
ε,−L

2
+ 2
√
ε
]}
, j ∈ Z.

As follows from the way we defined the far field and the near field expansions, they should
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Figure 2.3: Matching areas

both hold in the matching areasM±
j,ε,M0

j,ε:

uε
j+ 1

2
(x, y) =

∑
k∈N

εku
(k)

j+ 1
2

(x− j) + o(ε∞) =
∑
k∈N

εkU
(k)
j (X, Y ) + o(ε∞), (x, y) ∈M+

j,ε,

(2.1.8)

uε
j− 1

2
(x, y) =

∑
k∈N

εku
(k)

j− 1
2

(x+ 1− j) + o(ε∞) =
∑
k∈N

εkU
(k)
j (X, Y ) + o(ε∞), (x, y) ∈M−

j,ε,

uεj(x, y) =
∑
k∈N

εku
(k)
j (y) + o(ε∞) =

∑
k∈N

εkU
(k)
j (X, Y ) + o(ε∞), (x, y) ∈M0

j,ε.

The regions M±
j,ε correspond to x − j → ±0 and X → ±∞. Analogously, the regions

M0
j,ε correspond to y → −L/2 and Y → +∞. This leads us to studying the behaviour

of the far field terms near the vertices of the graph and the behaviour of the near field
terms at infinity.
As we will see in the following section, the far field terms have the following behaviour in
the infinite branches of the junctions Jj:

U
(k)
j (X, Y ) = P

(k)
j,0,±(X) + E (k)

j,±(X, Y ), (X, Y ) ∈ B±j , k ∈ N, j ∈ Z,

U
(k)
j (X, Y ) = P

(k)
j,0,0(Y ) + E (k)

j,0 (X, Y ), (X, Y ) ∈ B0
j , k ∈ N, j ∈ Z,

where the terms E (k)
j,±, E

(k)
j,0 . Consider, for example, the region M+

j,ε. Since in this region
E (k)
j,± is exponentially decaying as X →∞ and X = O(ε−1/2), we can rewrite (2.1.8) as

uε
j+ 1

2
(x, y) =

∑
k∈N

εkP
(k)
j,0,±(X) + o(ε∞), (x, y) ∈M+

j,ε. (2.1.9)

On the other hand, the functions u(k)

j+ 1
2

can be decomposed in Taylor series in a neigh-
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bourhood of the point s = 0. Then, we get from (2.1.8):

uε
j+ 1

2
(x, y) =

∑
k∈N

∑
`∈N

d`u
(k)

j+ 1
2

ds`

∣∣∣∣∣∣
s=0

εk(x− j)`

`!
+ o(ε∞) =

∑
k∈N

εk
k∑
`=0

d`u
(k−`)
j+ 1

2

ds`

∣∣∣∣∣∣
s=0

X`

`!
+ o(ε∞).

(2.1.10)
Comparing (2.1.9) with (2.1.10)and identifying the terms with the same powers of ε, we
obtain the following expressions for the polynomials P (k)

j,0,+:

P
(k)
j,0,+(X) =

k∑
`=0

d`u
(k−`)
j+ 1

2

ds`

∣∣∣∣∣∣
s=0

X`

`!
, k ∈ N, j ∈ Z. (2.1.11)

2.2 Near field and far field problems

In Section 2.2.1 we obtain (without giving a rigorous argument) the problems for the near
field terms posed in a bounded domain. The compatibility conditions for these problems
will permit us to obtain the problem for the far field terms (this is done in Section 2.2.2).
In Sections 2.2.4 we come back to the near field problems in the domains Jj and we show
that the existence of solutions of the problems posed in the bounded domain implies the
existence of near field terms satisfying the problems (2.1.7) with a specified behaviour in
the infinite branches. Finally, in Section 2.2.5 we study the well-posedness of the far field
problem.

2.2.1 Formal derivation of the near field problems

2.2.1.1 Near field problems in the infinite junctions

In the spirit of the works [36], [35], let us introduce the following orthonormal basis
in L2([0, 1]) which consists of eigenfunctions of the transverse Laplacian with Neumann
boundary conditions:

f0(t) = 1, fp(t) =
√

2 cos (pπt), p > 1,

Using this basis the functions U (k)
j in the infinite branches B+

j can be represented as
follows:

U
(k)
j (X, Y ) =

∑
p∈N

U
(k)
j,p,+(X)fp(Y ), (X, Y ) ∈ B+

j , k ∈ N, j ∈ Z. (2.2.1)

After injecting (2.2.1) into (2.1.7) we get the following set of ordinary differential equations
for the functions U (k)

j,p,+:(
U

(k)
j,p,+

)′′
(X)− π2p2U

(k)
j,p,+(X) = −

k−2∑
m=0

λ(m)U
(k−2−m)
j,p,+ (X), k, p ∈ N, j ∈ Z. (2.2.2)

Making the change of the unknown function in (2.2.2) of the form

U
(k)
j,p,+(X) = P

(k)
j,p,+(X)e−pπX , (2.2.3)
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we obtain the following recurrence relation:

(
P

(k)
j,p,+

)′′
(X)−2pπ

(
P

(k)
j,p,+

)′
(X) = −

k−2∑
m=0

λ(m)P
(k−2−m)
j,p,+ (X), k ∈ N, p ∈ N∗, j ∈ Z.

As usual, when constructing matched asymptotic expansions, for p 6= 0 we search solutions
of at most polynomial growth, which implies

P
(k)
j,p,+(X) = −

∞∫
X

P̃
(k−2)
j,p,+ (X ′)dX ′ + c

(k)
j,p,+,0, k ∈ N, p ∈ N∗, j ∈ Z, (2.2.4)

P̃
(k−2)
j,p,+ (X) =

k−2∑
m=0

λ(m)

∞∫
X

P
(k−2−m)
j,p,+ (X ′)e2pπ(X−X′)dX ′. (2.2.5)

Hence, by induction in k, the functions P (k)
j,p,+ are polynomials of degree

[
k
2

]
for k ∈ N,

p ∈ N∗, j ∈ Z :

P
(k)
j,p,+(X) =

[ k2 ]∑
`=0

c
(k)
j,p,+,`X

`, k ∈ N, p ∈ N∗, j ∈ Z. (2.2.6)

It follows from (2.2.4), (2.2.5) that for ` 6= 0 the coefficients c(k)
j,p,+,` are given by the

following recurrence relation:

c
(k)
j,p,+,` =

k−2∑̀
m=0

[ k−m2 ]−1∑
i=`−1

λ(m)i!

(2pπ)i−`+2 `!
c

(k−2−m)
j,p,+,i ,

1 6 ` 6
[
k
2

]
, k ∈ N, p ∈ N∗, j ∈ Z. (2.2.7)

The functions U (k)
j,0,+ = P

(k)
j,0,+ have been found in (2.1.11). Let us mention that they satisfy

the recurrence relation (2.2.2) for p = 0 due to the fact that the far field terms satisfy the
equations (2.1.6). Finally, (2.2.1) can be rewritten as

U
(k)
j (X, Y ) = P

(k)
j,0,+(X) +

∑
p∈N∗

P
(k)
j,p,+(X)e−pπXfp(Y ), (X, Y ) ∈ B+

j ,

k ∈ N, j ∈ Z, (2.2.8)

with the polynomials P (k)
j,p,+, p ∈ N∗, defined in (2.2.6)–(2.2.7).

Obviously, a similar argument applies for the domains B−j and B0
j , and analogues of the

relations (2.2.4)–(2.2.8), (2.1.11) can be found:

U
(k)
j (X, Y ) = P

(k)
j,0,±(X) +

∑
p∈N∗

P
(k)
j,p,±(±X)e∓pπXfp(Y ), (X, Y ) ∈ B±j , (2.2.9)

U
(k)
j (X, Y ) = P

(k)
j,0,0(Y ) + 1√

wµj

∑
p∈N∗

P
(k)
j,p,0(Y )e−pπY/w

µ
j fp

(
X
wµj
− 1

2

)
, (X, Y ) ∈ B0

j .

(2.2.10)
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The functions P (k)
j,p,δ for p 6= 0 are polynomials of degree

[
k
2

]
given by the relations

P
(k)
j,p,δ(s) =

[ k2 ]∑
`=0

c
(k)
j,p,δ,`s

`, δ ∈ {+,−, 0}, k ∈ N, p ∈ N∗, j ∈ Z, (2.2.11)

c
(k)
j,p,±,` =

k−2∑̀
m=0

[ k−m2 ]−1∑
i=`−1

λ(m)i!

(2pπ)i−`+2 `!
c

(k−2−m)
j,p,±,i , c

(k)
j,p,0,` =

k−2∑̀
m=0

[ k−m2 ]−1∑
i=`−1

(wµj )i−`+2λ(m)i!

(2pπ)i−`+2 `!
c

(k−2−m)
j,p,0,i ,

1 6 ` 6
[
k
2

]
, k ∈ N, p ∈ N∗, j ∈ Z. (2.2.12)

The functions P (k)
j,0,δ, δ ∈ {+,−, 0}, are polynomials of degree k for k odd and k + 1 for k

even. As we have seen above (cf. (2.1.11)), they can be expressed in terms of the far field
terms:

P
(k)
j,0,+(X) =

k∑
`=0

d`u
(k−`)
j+ 1

2

ds`

∣∣∣∣∣∣
s=0

X`

`!
, P

(k)
j,0,−(X) =

k∑
`=0

d`u
(k−`)
j− 1

2

ds`

∣∣∣∣∣∣
s=1

X`

`!
,

P
(k)
j,0,0(Y ) =

k∑
`=0

d`u
(k−`)
j

dy`

∣∣∣∣∣
y=−L

2

Y `

`!
, k ∈ N, j ∈ Z. (2.2.13)

Thus, we end up with the following problems for the near field terms:

Find U ∈ H1
loc(Jj) satisfying (2.1.7) and (2.2.9)− (2.2.13). (P(k)

j )

Remark 2.2.1. It is proved in [36] that a solution of (2.1.7) of at most polynomial growth
admits the modal decomposition (2.2.9)–(2.2.10) with the coefficients of the polynomi-
als P (k)

j,p,δ, p 6= 0, satisfying the recurrence relations (2.2.12) and the polynomials P (k)
j,0,δ

satisfying the recurrence relation (2.2.2) with p = 0.

2.2.1.2 Towards a bounded domain

We will now introduce some auxiliary objects that will permit us to reduce the problems
(P(k)

j ) to problems posed on the bounded domainsKj. For this, we introduce the operators
T (which are in fact DtN operators). Then, we formulate a problem on the domainKj with
boundary conditions containing the operators T . As we will see, the near field problems
will be reduced to problems having this form. Finally, we consider two particular cases of
the problem in question that we will need in the sequel.

Operators T . Let us define the following linear operators:

Tϕ =
∑
p>1

pπ(ϕ, fp)L2fp, ∀ϕ ∈ H1/2 ([0, 1]) , (2.2.14)

(Tjϕ) (X) =
∑
p>1

pπ

wµj

(
ϕ, fp

(
•
wµj
− 1

2

))
L2

fp

(
•
wµj
− 1

2

)
,

∀ϕ ∈ H1/2
([
−wµj

2
,
wµj
2

])
, j ∈ Z. (2.2.15)
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We will use the notation

∀j ∈ Z, Tj,δ =

{
T, δ ∈ {+,−},
Tj, δ = 0.

It is shown in [63] that

T ∈ L
(
H1/2([0, 1]), H−1/2([0, 1])

)
,

Tj ∈ L
(
H1/2

([
−wµj

2
,
wµj
2

])
, H−1/2

([
−wµj

2
,
wµj
2

]))
, j ∈ Z,

and the operators T , Tj are positive and symmetric.

A problem in the domain Kj. Let us consider the following problem for j ∈ Z:

∆U(X, Y ) = Φ(X, Y ), (X, Y ) ∈ Kj,

∂U

∂n

∣∣∣∣
ΣNj

= 0,

∂U

∂n

∣∣∣∣
Σδj

+ Tj,δ U |Σδj = gδ, δ ∈ {+,−, 0}.

(2.2.16)

The well-posedness result for the problems of this type can be found in [63] (Lemma
2.3.2). Adapted to our geometry, it implies that the following assertion holds.

Lemma 2.2.1. For any j ∈ Z, Φ ∈ L2(Kj), g± ∈ H−1/2(Σ±j ), g0 ∈ H−1/2(Σ0
j) there

exists a unique modulo an additive constant solution U ∈ H1(Kj) of the problem (2.2.22)
if and only if the following compatibility condition is satisfied:

〈g+, 1〉Σ+
j

+ 〈g−, 1〉Σ−j + 〈g0, 1〉Σ0
j

=

∫
Kj

Φ. (2.2.17)

Here 〈gδ, f〉Σδj denotes the duality brackets for gδ ∈ H−1/2(Σδ
j), f ∈ H1/2(Σδ

j), δ ∈
{+,−, 0}.

The functions W±
j . For any j ∈ Z, we consider the following two problems:

∆W−
j (X, Y ) = 0, (X, Y ) ∈ Kj,

∂W−
j

∂n

∣∣∣∣∣
ΣNj

= 0,

∂W−
j

∂n

∣∣∣∣∣
Σj,δ

+ Tj,δ W
−
j

∣∣
Σj,δ

= g
(W−)
j,δ , δ ∈ {+,−, 0},

(2.2.18)

with
g

(W−)
j,+ = 0, g

(W−)
j,− = 1, g

(W−)
j,0 = − 1

wµj
, j ∈ Z,
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and 

∆W+
j (X, Y ) = 0, (X, Y ) ∈ Kj,

∂W+
j

∂n

∣∣∣∣∣
ΣNj

= 0,

∂W+
j

∂n

∣∣∣∣∣
Σj,δ

+ Tj,δ W
+
j

∣∣
Σj,δ

= g
(W+)
j,δ , δ ∈ {+,−, 0},

(2.2.19)

with

g
(W+)
j,+ = −1, g

(W+)
j,− = 0, g

(W+)
j,0 =

1

wµj
, j ∈ Z.

The problems (2.2.18), (2.2.19) are of type (2.2.16) and one easily verifies that the com-
patibility condition (2.2.17) is satisfied for these problems. We denote by W−

j (resp. W+
j )

the unique (modulo an additive constant) solution in H1(Kj) of the problem (2.2.18)
(resp. (2.2.19)). Note that

W+
j (X, Y ) = −W−

j (−X, Y ), j ∈ Z. (2.2.20)

Remark 2.2.2. Obviously, there are only two different functions W−: W−
0 and W−

j ,
j 6= 0. Similarly, there are only two different functions W+: W+

0 and W+
j , j 6= 0. In other

words,

W±
i = W±

j , ∀i, j ∈ Z∗. (2.2.21)

2.2.1.3 Near field problems in a bounded domain

We can now reduce the near field problems to problems set in the domains Kj. Indeed, if
U

(k)
j is a solution of (2.1.7) satisfying (2.2.8) then

∂U
(k)
j

∂X

∣∣∣∣∣
Σ+
j

+ T U
(k)
j

∣∣∣
Σ+
j

=
(
P

(k)
j,0,+

)′ (wµj
2

)
+
∑
p∈N∗

(
P

(k)
j,p,+

)′ (wµj
2

)
e−

pπw
µ
j

2 fp.

Analogous relations can be found on the boundaries Σ−j and Σj. This yields a problem of
type (2.2.16) for U (k)

j , j ∈ Z, k ∈ N:



∆U
(k)
j (X, Y ) = Φ

(k−2)
j (X, Y ), (X, Y ) ∈ Kj,

∂U
(k)
j

∂n

∣∣∣∣∣
ΣNj

= 0,

∂U
(k)
j

∂n

∣∣∣∣∣
Σδj

+ Tj,δ U
(k)
j

∣∣∣
Σδj

= g
(k−1)
j,δ , δ ∈ {+,−, 0},

(2.2.22)
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where

Φ
(k−2)
j = −

k−2∑
m=0

λ(k−m−2)U
(m)
j , k > 2, Φ

(−2)
j = Φ

(−1)
j = 0, (2.2.23)

g
(k−1)
j,+ =

k−1∑
l=0

(
wµj
)l

2ll!

dl+1

dsl+1
u

(k−l−1)

j+ 1
2

∣∣∣∣
s=0

+
∑
p∈N∗

P
(k)
j,p,+

′ (wµj
2

)
e−

pπw
µ
j

2 fp, k > 1, (2.2.24)

g
(k−1)
j,− = −

k−1∑
l=0

(
−wµj

)l
2ll!

dl+1

dsl+1
u

(k−l−1)

j− 1
2

∣∣∣∣
s=1

+
∑
p∈N∗

P
(k)
j,p,−

′ (wµj
2

)
e−

pπw
µ
j

2 fp, k > 1, (2.2.25)

g
(k−1)
j,0 =

k−1∑
l=0

1

l!

dl+1

dyl+1
u

(k−l−1)
j

∣∣∣∣
y=−L

2

+
∑
p∈N∗

P
(k)
j,p,0

′
(1)e

− pπ

w
µ
j fp

(
•
wµj
− 1

2

)
k > 1, (2.2.26)

g
(−1)
j,+ = g

(−1)
j,− = g

(−1)
j,0 = 0. (2.2.27)

As follows from Lemma 2.2.1, the problems (2.2.22) define the near field terms in the
domains Kj modulo additive constants. In order to fix these constants, we impose the
following conditions: ∫

Σ+
j

U
(k)
j = P

(k)
j,0,+

(
wµj
2

)
, k ∈ N, j ∈ Z. (2.2.28)

These relations are the average trace continuity conditions for the functions U (k)
j (cf.

(2.2.8)). Taking into account the definition (2.1.11) of the polynomials P (k)
j,0,+, the relations

(2.2.28) can be rewritten as∫
Σ+
j

U
(k)
j =

k∑
`=0

(
wµj
)`

2``!

d`u
(k−`)
j+ 1

2

ds`

∣∣∣∣∣∣
s=0

, k ∈ N, j ∈ Z. (2.2.29)

Remark 2.2.3. We choose to impose the average trace continuity condition on the bound-
ary Σ+

j . Obviously, we could have imposed analogous conditions on the boundaries Σ−j ,
Σ0
j instead. However, it turns out that all these conditions are equivalent as soon as the

far field terms satisfy the jump conditions that will be obtained in the next section (cf.
Lemma (2.2.3)).

Finally, we introduce the following problem for the near field terms Kj:

Find V ∈ H1(Kj) satisfying (2.2.22) and (2.2.29). (P̃(k)
j )

2.2.2 Formal derivation of the far field problem

We will now derive the problems for the far field terms. The following assertion is a direct
consequence of Lemma 2.2.1.

Lemma 2.2.2. Let j ∈ Z, k ∈ N. Suppose that Φ(k−1) ∈ L2(Kj), g
(k)
± ∈ H−1/2(Σ±j ),

g
(k)
0 ∈ H−1/2(Σ0

j). Suppose also that the following relation is satisfied:(
u

(k)

j+ 1
2

)′
(0)−

(
u

(k)

j− 1
2

)′
(1) + wµj

(
u

(k)
j

)′ (−L
2

)
= Ξ

(k−1)
j , (2.2.30)
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where

Ξ
(k−1)
j =−

k∑
`=1

((
wµj
)`

2``!

d`+1

ds`+1
u

(k−`)
j+ 1

2

∣∣∣∣
s=0

−
(
−wµj

)`
2``!

d`+1

ds`+1
u

(k−`)
j− 1

2

∣∣∣∣
s=1

+ wµj
1

`!

d`+1

dy`+1
u

(k−`)
j

∣∣∣∣
y=−L

2

)

+

∫
Kj

Φ
(k−1)
j , k > 1, (2.2.31)

Ξ
(−1)
j = 0.

Then, problem P̃(k+1)
j has a unique solution.

The relation (2.2.30) gives non-homogeneous Kirchhoff’s conditions for the function
u(k) provided the functions

{
u(m), U (m)

}k−1

m=0
are known. We need to complete the problem

for u(k) by jump conditions at the vertices. The trick consists in performing the following
integration by parts:∫
Kj

(
U

(k)
j ∆W−

j −W−
j ∆U

(k)
j

)
=

∫
∂Kj

(
∂W−

j

∂n
U

(k)
j −W−

j

∂U
(k)
j

∂n

)

=

∫
Σ−j

U
(k)
j −

∫
Σ0
j

U
(k)
j

wµj
−

∑
δ∈{+,−,0}

〈
g

(k−1)
j,δ ,W−

j |Σδj
〉

Σδj

=
k∑
`=0

(
−wµj

)`
2``!

d`u
(k−`)
j− 1

2

ds`

∣∣∣∣∣∣
s=1

−
k∑
`=0

1

`!

d`u
(k−`)
j

dy`

∣∣∣∣∣
y=−L

2

−
∑

δ∈{+,−,0}

〈
g

(k−1)
j,δ ,W−

j |Σδj
〉

Σδj

.

(2.2.32)

In the last equality we used the assumption that the near field terms satisfy the average
trace continuity conditions of type (2.2.29) on the boundaries Σj,+, Σj,0. The relation
(2.2.32) yields the following conditions on the jumps of the function u(k):

u
(k)

j− 1
2

(1)− u(k)
j

(
−L

2

)
= ∆

(k−1)
j,− , j ∈ Z, (2.2.33)

where

∆
(k−1)
j,− =

k∑
`=1

 1

`!

d`u
(k−`)
j

dy`

∣∣∣∣∣
y=−L

2

−
(
−wµj

)`
2``!

d`u
(k−`)
j− 1

2

ds`

∣∣∣∣∣∣
s=1


+

∑
δ∈{+,−,0}

〈
g

(k−1)
j,δ ,W−

j |Σδj
〉

Σδj

−
∫
Kj

Φ
(k−2)
j W−

j , k > 1, (2.2.34)

∆
(−1)
j,− = 0.

In a similar way, computing
∫
Kj

(
U

(k)
j ∆W+

j −W+
j ∆U

(k)
j

)
and assuming that the average

trace continuity for the near field terms on the boundaries Σj,0, Σj,+ are satisfied, we get
another set of jump conditions for function u(k):

u
(k)
j

(
−L

2

)
− u(k)

j+ 1
2

(0) = ∆
(k−1)
j,+ , j ∈ Z, (2.2.35)
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where

∆
(k−1)
j,+ =

k∑
l=1

(wµj )l
2ll!

dlu
(k−l)
j+ 1

2

dsl

∣∣∣∣∣∣
s=0

− 1

l!

dlu
(k−l)
j

dyl

∣∣∣∣∣
y=−L

2


+

∑
δ∈{+,−,0}

〈
g

(k−1)
j,δ ,W+

j |Σδj
〉

Σδj

−
∫
Kj

Φ
(k−2)
j W+

j , k > 1, (2.2.36)

∆
(−1)
j,+ = 0.

Finally, combining (2.1.6), (2.2.30), (2.2.33), (2.2.35) we get up with the following set of
problems for the far field terms u(k), k ∈ N:

(
u

(k)

j+ 1
2

)′′
(s) + λ(0)u

(k)

j+ 1
2

(s) = −λ(k)u
(0)

j+ 1
2

(s)− f (k−1)

j+ 1
2

(s), s ∈ [0, 1], j ∈ Z,(
u

(k)
j

)′′
(y) + λ(0)u

(k)
j (y) = −λ(k)u

(0)
j (y)− f (k−1)

j (y), y ∈
[
−L

2
, 0
]
, j ∈ Z,(

u
(k)
j

)′
(0) = 0, j ∈ Z,

u
(k)

j− 1
2

(1)− u(k)
j

(
−L

2

)
= ∆

(k)
j,−, u

(1)
j

(
−L

2

)
− u(k)

j+ 1
2

(0) = ∆
(k)
j,+, j ∈ Z,(

u
(k)

j+ 1
2

)′
(0)−

(
u

(k)

j− 1
2

)′
(1) + wµj

(
u

(k)
j

)′ (−L
2

)
= Ξ

(k−1)
j , j ∈ Z.

(P(k)
u )

where

f
(−1)

j+ 1
2

= −λ(0)u
(0)

j+ 1
2

, f
(−1)
j = −λ(0)u

(0)
j , j ∈ Z,

f
(0)

j+ 1
2

= 0, f
(0)
j = 0, j ∈ Z, (2.2.37)

f
(k−1)

j+ 1
2

=
k−1∑
m=1

λ(k−m)u
(m)

j+ 1
2

, f
(k−1)
j =

k−1∑
m=1

λ(k−m)u
(m)
j , j ∈ Z, k > 2. (2.2.38)

2.2.3 Order 0

Before studying the well-posedness of the near-field and the far field problems at any order
formulated in the previous sections, let us look at the order 0.

Far field problem. Putting k = 0 in (P(k)
u ), we get

(
u

(0)

j+ 1
2

)′′
(s) + λ(0)u

(0)

j+ 1
2

(s) = 0, s ∈ [0, 1], j ∈ Z,(
u

(0)
j

)′′
(y) + λ(0)u

(0)
j (y) = 0, y ∈

[
−L

2
, 0
]
, j ∈ Z,(

u
(0)
j

)′
(0) = 0, j ∈ Z,

u
(0)

j− 1
2

(1) = u
(0)
j

(
−L

2

)
= u

(0)

j+ 1
2

(0), j ∈ Z,(
u

(0)

j+ 1
2

)′
(0)−

(
u

(0)

j− 1
2

)′
(1) + wµj

(
u

(0)
j

)′ (−L
2

)
= 0, j ∈ Z.

(2.2.39)

This is exactly the eigenvalue problem for the operator Aµs (cf. (1.3.6)) which has been
studied in Section 1.3.2. From now on λ(0) will stand for an eigenvalue of the operator
Aµs and u(0) for the corresponding eigenfunction (all the eigenvalues of the operator Aµs
are simple). To fix the eigenfunction in a unique way, we impose the condition u0 = 1.
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The expressions for the eigenfunction u(0) have been found in (1.3.41), (1.3.42), (1.3.53),
(1.3.48):

u
(0)

j+ 1
2

(s) = uj
sin
(√

λ(0)(1− s)
)

sin
√
λ(0)

+ uj+1

sin
(√

λ(0)s
)

sin
√
λ(0)

, s ∈ [0, 1], ∀j ∈ Z, (2.2.40)

u
(0)
j (y) = uj

cos
(√

λ(0)y
)

cos
(√

λ(0)L/2
) , y ∈

[
−L

2
, L

2

]
, ∀j ∈ Z, (2.2.41)

where
uj = r|j|, j ∈ Z, r = r(

√
λ(0)). (2.2.42)

We remind that in this chapter the spectral parameter is denoted by λ, whereas in Chap-
ter 1 it was denoted by λ2. This is the reason of

√
λ(0) appearing in the expressions for

the eigenfunction.

Near field problems. Consider now the near field problems (P(k)
j ) for k = 0. The

relations (2.2.11), (2.2.13) take the form

P
(0)
j,p,δ(s) = c

(0)
j,p,δ,0, δ ∈ {+,−, 0}, p ∈ N∗, j ∈ Z,

P
(0)
j,0,+(X) = u

(0)

j+ 1
2

(0), P
(0)
j,0,−(X) = u

(0)

j− 1
2

(1), P
(0)
j,0,0(Y ) = u

(0)
j

(
−L

2

)
, j ∈ Z.

Taking into account that u(0)

j+ 1
2

(0) = u
(0)

j− 1
2

(1) = u
(0)
j

(
−L

2

)
= uj, we can rewrite the

problems (P(k)
j ) for k = 0 as

∆U
(0)
j (X, Y ) = 0, (X, Y ) ∈ Jj,

∂U
(0)
j

∂n

∣∣∣∣∣
∂Jj

= 0,

U
(0)
j (X, Y ) = u(0)

j +
∑
p∈N∗

c
(0)
j,p,±,0e

∓pπXfp(Y ), (X, Y ) ∈ B±j ,

U
(0)
j (X, Y ) = u(0)

j + 1√
wµj

∑
p∈N∗

c
(0)
j,p,0,0e

−pπY/wµj fp

(
X
wµj
− 1

2

)
, (X, Y ) ∈ B0

j .

(2.2.43)

Consequently, the constants

U
(0)
j (X, Y ) = u(0)

j , (X, Y ) ∈ Jj, ∀j ∈ Z, (2.2.44)

are obviously solutions of (2.2.43) with

c
(0)
j,p,δ,0 = 0, δ ∈ {+,−, 0}, p ∈ N∗, j ∈ Z. (2.2.45)

2.2.4 Well-posedness of the near field problems

In this section we suppose that the far fields up to the order k are constructed, i.e., there
exist functions

{
u(m), 0 6 m 6 k

}
satisfying the problems

{
(P(m)), 0 6 m 6 k

}
. The

near field terms are supposed constructed up to the order k− 1, i.e., there exist functions{
U

(m)
j , j ∈ Z, 0 6 m 6 k − 1

}
that solve the problems

{
(P(m)

j ), j ∈ Z, 0 6 m 6 k − 1
}
.
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We also suppose that at order k the near field terms are constructed on a bounded domain,
i.e., there exist functions

{
V

(k)
j

}
j∈Z

solving the problems
{

(P̃(k)
j )
}
j∈Z

. We will show that

under these assumptions the near filed terms at order k can be continued to the whole
infinite junctions, i.e., there exist functions

{
U

(k)
j

}
j∈Z

solving the problems
{

(P(k)
j )
}
j∈Z

.

We start by some auxiliary assertions. The following lemma that establishes the equiva-
lence between the average trace continuity conditions imposed on different boundaries of
the domain Kj mentioned in Remark 2.2.3.

Lemma 2.2.3. Suppose that there exist functions
{
u(m), 0 6 m 6 k

}
satisfying the prob-

lems
{

(P(m)), 0 6 m 6 k
}
as well as functions

{
U

(m)
j , j ∈ Z, 0 6 m 6 k − 1

}
satisfying

the problems
{

(P(m)
j ), j ∈ Z, 0 6 m 6 k − 1

}
for some k ∈ N. Suppose also that the

function V satisfies the problem (2.2.22) for some j ∈ Z. Then, the following three rela-
tions are equivalent:

(i)

∫
Σ+
j

V = P
(k)
j,0,+

(
wµj
2

)
; (ii)

∫
Σ−j

V = P
(k)
j,0,−

(
−wµj

2

)
; (iii)

∫
Σ0
j

V

wµj
= P

(k)
j,0,0 (1) .

Proof. Let us show that the relations (ii) implies (iii). All the other implications can be
shown in a similar way. If W−

j is the function introduced in Section 2.2.1.2, then∫
Kj

(
V∆W−

j −W−
j ∆V

)
=

∫
∂Kj

(
∂W−

j

∂n
V −W−

j
∂V

∂n

)
=

∫
Σ−j

V−
∫
Σ0
j

V

wµj
−
∑

δ∈{+,−,0}

〈
g

(k−1)
j,δ ,W−

j |Σδj
〉

Σδj

,

which implies∫
Σ0
j

V

wµj
=

∫
Σ−j

V −
∑

δ∈{+,−,0}

〈
g

(k−1)
j,δ ,W−

j |Σδj
〉

Σδj

+

∫
Kj

Φ
(k−2)
j W−

j

=
k∑
`=0

(
−wµj

)`
2``!

d`u
(k−`)
j− 1

2

ds`

∣∣∣∣∣∣
s=1

−
∑

δ∈{+,−,0}

〈
g

(k−1)
j,δ ,W−

j |Σδj
〉

Σδj

+

∫
Kj

Φ
(k−2)
j W−

j .

In the last equality we used the assumption (ii) and the definition (2.2.13) of the polyno-
mial P (k)

j,0,−. Taking into account the definition (2.2.34) of ∆
(k−1)
j,− , we get∫

Σ0
j

V

wµj
=

k∑
`=1

1

`!

d`u
(k−`)
j

dy`

∣∣∣∣∣
y=−L

2

−∆
(k−1)
j,− + u

(k)

j− 1
2

(1).

Finally, using the fact that u(k) satisfies the jump condition (2.2.33), we obtain∫
Σ0
j

V

wµj
=

k∑
`=0

1

`!

d`u
(k−`)
j

dy`

∣∣∣∣∣
y=−L

2

= P
(k)
j,0,0 (1) .

The same computation can be used to show that (iii) implies (ii). The equivalence
between (i) and (iii) can be proved using an analogous argument with W−

j replaced by
W+
j .
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The following assertion concerns the behaviour of the coefficients c(k)
j,pδ,l as p→∞ assuming

the existence of solutions of the near field problems (P(k)
j ).

Lemma 2.2.4. Suppose that for some j ∈ Z there exist functions U (m)
j ∈ H1

loc(Jj),
0 6 m 6 n, which are solutions of the problems (P(m)

j ) for 0 6 m 6 n. Then,

∑
p∈N∗

p
(
c

(m)
j,p,±,`

)2

e−pπw
µ
j <∞,

∑
p∈N∗

p
(
c

(m)
j,p,0,`

)2

e
− 2pπ

w
µ
j <∞, 0 6 ` 6

[
m
2

]
, 0 6 m 6 n.

(2.2.46)

Proof. We will give the proof for δ = +, the proof for δ ∈ {−, 0} being analogous. The
proof is done by induction in m. Indeed, for m = 0 the result holds due to (2.2.45).
Suppose that 1 6 q 6 n and the relations (2.2.46) are satisfied for 0 6 m 6 q − 1. Let
us show that they are satisfied for m = q as well. First, the recurrence relation for the
coefficients c (2.2.12) implies that (2.2.46) is satisfied for m = q, 1 6 ` 6

[
q
2

]
. Then, due

to (2.2.9) for m = q and the fact that U (q)
j ∈ H1

loc (Jj) we have

∑
p∈N∗

P
(q)
j,p,+

(
wµj
2

)
e−

pπw
µ
j

2 fp ∈ H1/2
(
Σ+
j

)
.

Taking into account (2.2.11) and (2.2.46) for m = q, 1 6 ` 6
[
q
2

]
we conclude that

∑
p∈N∗

c
(q)
j,p,+,0e

−
pπw

µ
j

2 fp ∈ H1/2
(
Σ+
j

)
,

which means that (2.2.46) is also satisfied for m = q, ` = 0.

We will now pass to the construction of a continuation of the near field terms from a
bounded domain to the infinite junction.

Proposition 2.2.1. Suppose that there exist functions
{
u(m), 0 6 m 6 k

}
satisfying the

problems
{

(P(m)), 0 6 m 6 k
}
as well as functions

{
U

(m)
j , j ∈ Z, 0 6 m 6 k − 1

}
sat-

isfying the problems
{

(P(m)
j ), j ∈ Z, 0 6 m 6 k − 1

}
for some k ∈ N∗. Suppose also that

the function V (k)
j ∈ H1(Kj) solves the problem (P̃(k)

j ) for some j ∈ Z. Then, there exists

a function U (k)
j ∈ H1

loc (Jj) solving the problem (P(k)
j ) and such that U (k)

j

∣∣∣
Kj

= V
(k)
j .

Proof. The proof consists of several steps. First, we define functions in the bands Bδ
j

that will be shown to be the extensions of Vj. These function are constructed in such
a way that the have the form (2.2.8), (2.2.9), (2.2.10). In these relations everything is
defined by the previous orders except from the coefficients c(k)

j,p,δ,0. These coefficients are
found from the traces of Vj on the boundaries Σδ

j . Then, we show that the constructed
functions in the bands Bδ

j belong to H1
loc(B

δ
j ), that their traces on Σδ

j coincide with those
of Vj, that they solve the Laplacian equation (first line of (2.1.7)) in Bδ

j and finally
that their normal derivatives on Σδ

j are the opposite of those of Vj and the homogeneous
boundary conditions are satisfied on the other boundaries. This permits to conclude that
the constructed extension solves (P(k)

j ).
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Construction of an extension: Let us denote by ϕ(k)
j,δ the traces of the function V (k)

j

on the boundaries Σδ
j :

ϕ
(k)
j,δ = V

(k)
j

∣∣∣
Σδj

, ϕ
(k)
j,δ ∈ H

1/2
(
Σδ
j

)
, δ ∈ {+,−, 0}. (2.2.47)

These traces can be decomposed in Fourier series:

ϕ
(k)
j,± =

∑
p∈N

ϕ
(k)
j,p,±fp, ϕ

(k)
j,0 =

∑
p∈N

ϕ
(k)
j,p,0fp

(
•
wµj
− 1

2

)
, (2.2.48)

and due to (2.2.47) we have

∑
p∈N

p
(
ϕ

(k)
j,p,δ

)2

<∞, δ ∈ {+,−, 0}. (2.2.49)

Note that the average trace condition (2.2.29) for V (k)
j together with Lemma 2.2.3 which

gives analogous conditions on the other boundaries, imply that

ϕ
(k)
j,0,± = P

(k)
j,0,±

(
±wµj

2

)
, ϕ

(k)
j,0,0 = P

(k)
j,0,0 (1) j ∈ Z. (2.2.50)

We construct the functions Ũ (k)
j,δ in the bands Bδ

j for δ ∈ {+,−, 0} as follows:

Ũ
(k)
j,±(X, Y ) = P

(k)
j,0,±(X) +

∑
p∈N∗

ξ
(k)
j,p,±(X, Y ), (X, Y ) ∈ B±j , (2.2.51)

Ũ
(k)
j,0 (X, Y ) = P

(k)
j,0,0(Y ) +

∑
p∈N∗

ξ
(k)
j,p,0(X, Y ), (X, Y ) ∈ B0

j , (2.2.52)

ξ
(k)
j,p,±(X, Y ) =

ϕ(k)
j,p,±e

pπw
µ
j

2 +

[ k2 ]∑
`=1

c
(k)
j,p,±,`

(
(±X)` −

(
wµj
2

)`) e∓pπXfp(Y ), p ∈ N∗,

(2.2.53)

ξ
(k)
j,p,0(X, Y ) =

ϕ(k)
j,p,0e

pπ

w
µ
j + 1√

wµj

[ k2 ]∑̀
=1

c
(k)
j,p,0,`

(
Y ` − 1

) e
− pπY
w
µ
j fp

(
X
wµj
− 1

2

)
, p ∈ N∗,

(2.2.54)

where the polynomials P (k)
j,0,δ are defined in (2.2.13) and the coefficients c(k)

j,p,δ,` are defined
in (2.2.12). We note that all the objects appearing in the definition of P (k)

j,0,δ and c(k)
j,p,δ,`,

i.e., the far field terms up to the order k and the coefficients c for the previous orders,
are already constructed by assumption. We will perform the rest of the analysis for the
function Ũ (k)

j,+, the analysis for the functions Ũ (k)
j,0 , Ũ

(k)
j,0 being analogous.
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The function Ũ
(k)
j,+ belongs to H1

loc

(
B+
j

)
: We have:∥∥∥ξ(k)

j,p,+

∥∥∥2

H1(B+
j )

6 C(k)

p2
(
ϕ

(k)
j,p,+

)2

epπw
µ
j

∞∫
w
µ
j
2

e−2pπXdX +

[ k2 ]∑
`=1

p2
(
c

(k)
j,p,+,`

)2
∞∫

w
µ
j
2

X2`e−2pπXdX

 .

Using the fact that
∞∫

w
µ
j
2

X2`e−2pπXdX 6 C(`)p−1e−pπw
µ
j ,

we get ∥∥∥ξ(k)
j,p,+

∥∥∥2

H1(B+
j )

6 C(k)

p(ϕ(k)
j,p,+

)2

+

[ k2 ]∑
`=1

p
(
c

(k)
j,p,+,`

)2

e−pπw
µ
j

 .

As follows from Lemma 2.2.4, the inequalities (2.2.46) hold for 0 6 m 6 k−1. Taking into
account the definition (2.2.12) of the coefficients c(k)

j,p,+,` as well as the relation (2.2.49), we
conclude that ∑

p∈N∗

∥∥∥ξ(k)
j,p

∥∥∥2

H1(B+
j )
<∞, (2.2.55)

and consequently, Ũ (k)
j,+ ∈ H1

loc

(
B+
j

)
, j ∈ Z.

Trace continuity: We can now find the trace of the function Ũ (k)
j,+ on the surface Σ+

j .
It follows from the definition of the function Ũ (k)

j,+ ((2.2.51)–(2.2.53)) that

Ũ
(k)
j,+

∣∣∣
Σ+
j

= P
(k)
j,0,+

(
wµj
2

)
+
∑
p∈N∗

ϕ
(k)
j,p,+fp.

Comparing it with the trace of the function V (k)
j ((2.2.47), (2.2.48), (2.2.50)), we see that

Ũ
(k)
j,+

∣∣∣
Σ+
j

= V
(k)
j

∣∣∣
Σ+
j

, j ∈ Z. (2.2.56)

The Laplacian equation for Ũ (k)
j,+: Using the relation (2.2.12) between the coefficients

c of the polynomials P , we find from (2.2.53)

∆ξ
(k)
j,p,+ = −

k−2∑
m=0

λ(m)P
(k−2−m)
j,p,+ (X)e−pπXfp(Y ), (X, Y ) ∈ B+

j , p ∈ N+. (2.2.57)

Since
N∑
p=1

ξ
(k)
j,p −−−−→

L2(B+
j )

Ũ
(k)
j,+ − P

(k)
j,0,+, N →∞,
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(as follows from (2.2.51), (2.2.55)), and
N∑
p=1

∆ξ
(k)
j,p,+ −−−−→

L2(B+
j )
−

k−2∑
m=0

λ(m)
(
U

(k−2−m)
j − P (k−2−m)

j,0,+

)
, N →∞,

(as follows from (2.2.57) and the relations (2.2.9) satisfied by the functions U (k−2−m)
j ,

0 6 m 6 k − 2), we can conclude that ∆Ũ
(k)
j,+ ∈ L2

(
B+
j

)
and

∆Ũ
(k)
j,+ =

(
P

(k)
j,0,+

)′′
−

k−2∑
m=0

λ(m)
(
U

(k−2−m)
j − P (k−2−m)

j,0,+

)
= −

k−2∑
m=0

λ(m)U
(k−2−m)
j .

The last equality follows from the definition (2.2.13) of the polynomials P (k)
j,0,+ as well as

the fact that the far field terms verify the equations (2.1.6) (as was mentioned above, this
implies that the polynomials P (k)

j,0,+ satisfy the recurrence relation (2.2.2) for p = 0).

Continuity of the normal derivative: We have ∂nŨ
(k)
j,+ ∈ H−1/2

(
∂B+

j

)
and

∂nŨ
(k)
j,+ = 0 on ∂B+

j \ Σ+
j ,

∂nŨ
(k)
j,+

∣∣∣
Σ+
j

= −
(
P

(k)
j,0,+

)′
+
∑
p∈N∗

pπϕ
(k)
j,p,+fp −

∑
p∈N∗

[ k2 ]∑
`=1

c
(k)
j,p,+,``

(
wµj
2

)`−1

e−
pπw

µ
j

2 fp

= Tϕ
(k)
j,+ − g

(k−1)
j,+ .

The last equality follows from the definitions of the function g(k−1)
j,+ and the operator T (cf.

(2.2.24), (2.2.14)) as well as the definition of the polynomials P (cf. (2.2.13), (2.2.11)).
Finally, taking into account the fact that V (k)

j satisfies the problem (2.2.22), we get

∂nŨ
(k)
j,+

∣∣∣
Σ+
j

= − ∂nV (k)
j

∣∣∣
Σ+
j

.

Conclusion: The function U (k)
j constructed as

U
(k)
j (X, Y ) =

{
V

(k)
j , (X, Y ) ∈ Kj,

Ũ
(k)
j,δ , (X, Y ) ∈ Bδ

j , δ ∈ {+,−, 0},
(2.2.58)

satisfies the problem (P(k)
j ).

Remark 2.2.4. As follows from (2.2.51)–(2.2.54), the coefficients c(k)
p,j,δ,0 are given by the

following relation:

c
(k)
j,p,±,0 = ϕ

(k)
j,p,±e

pπw
µ
j

2 −
[ k2 ]∑
`=1

c
(k)
j,p,±,`

(
wµj
2

)`
, c

(k)
j,p,0,0 = ϕ

(k)
j,p,0e

pπ

w
µ
j −

[ k2 ]∑
`=1

c
(k)
j,p,0,`,

j ∈ Z, p ∈ N∗. (2.2.59)

To find them, we need to know the coefficients c at the orders up to k−1 and the function
V

(k)
j (cf. (2.2.47)–(2.2.48)).
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Remark 2.2.5. In view of Remark 2.2.1, the uniqueness of the solution of the near field
problem (P̃(k)

j ) in Kj implies the uniqueness of the solution of the problem (2.2.2) of at
most polynomial growth satisfying the matching conditions (2.2.13).

2.2.5 Well-posedness of the far field problem

In this section we prove the following well-posedness result for the problem (P(k)
u ) with

k > 1:

(
u

(k)

j+ 1
2

)′′
(s) + λ(0)u

(k)

j+ 1
2

(s) = −λ(k)u
(0)

j+ 1
2

(s)− f (k−1)

j+ 1
2

(s), s ∈ [0, 1], j ∈ Z,(
u

(k)
j

)′′
(y) + λ(0)u

(k)
j (y) = −λ(k)u

(0)
j (y)− f (k−1)

j (y), y ∈
[
−L

2
, 0
]
, j ∈ Z,(

u
(k)
j

)′
(0) = 0, j ∈ Z,

u
(k)

j− 1
2

(1)− u(k)
j

(
−L

2

)
= ∆

(k)
j,−, u

(1)
j

(
−L

2

)
− u(k)

j+ 1
2

(0) = ∆
(k)
j,+, j ∈ Z,(

u
(k)

j+ 1
2

)′
(0)−

(
u

(k)

j− 1
2

)′
(1) + wµj

(
u

(k)
j

)′ (−L
2

)
= Ξ

(k−1)
j , j ∈ Z.

Proposition 2.2.2. For k ∈ N∗, f (k−1) ∈ Lµ2(GC),
{

∆
(k−1)
j,±

}
j∈Z

,
{

Ξ
(k−1)
j

}
j∈Z
∈ `2(Z),

the problem (P(k)
u ) is has a solution in L2(GC) if and only if

λ(k) =
∥∥u(0)

∥∥−2

Lµ2 (GC)

(∑
j∈Z

Ξ̃
(k−1)
j u

(0)
j −

(
f (k−1), u(0)

)
Lµ2 (GC)

)
, (2.2.60)

where

Ξ̃
(k−1)
j = Ξ

(k−1)
j −

√
λ(0)

sin
√
λ(0)

(
∆

(k−1)
j+1,− −∆

(k−1)
j−1,+ + cos

√
λ(0)

(
∆

(k−1)
j,+ −∆

(k−1)
j,−

))
, j ∈ Z.

(2.2.61)
The solution is unique in L2(GC)/span

{
u(0)
∣∣
GC

}
.

Remark 2.2.6. As we see, the far field terms are not defined in a unique way. We will
explain in the proof of Lemma 2.3.1 how we fix them. This choice is completely arbitrary
and could be done in a different way. We could show by an explicit computation that
the choice of the far field terms does not influence the values λ(k) defined by the relation
(2.2.60). However, this will be justified a posteriori by proving Theorem 1.4.2.

To prove Proposition 2.2.2, we start with the following assertion for the problem with
zero jump conditions at the vertices.

Proposition 2.2.3. Let λ(0) be an eigenvalue of the operator Aµs and u(0) the correspond-
ing eigenfunction. For f ∈ Lµ2(GC), {Ξj}j∈Z ∈ `2(Z) the problem

u′′
j+ 1

2

(s) + λ(0)uj+ 1
2
(s) = fj+ 1

2
(s), s ∈ [0, 1], j ∈ Z,

u′′j (y) + λ(0)uj(y) = fj(y), y ∈
[
−L

2
, 0
]
, j ∈ Z,

u′j(0) = 0, j ∈ Z,

uj− 1
2
(1) = uj

(
−L

2

)
= uj+ 1

2
(0), j ∈ Z,

u′
j+ 1

2

(0)− u′
j− 1

2

(1) + wµj u
′
j

(
−L

2

)
= Ξj, j ∈ Z,

(2.2.62)

has a solution in L2(GC) if and only if the following compatibility condition is verified:
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(
f, u(0)

)
Lµ2 (GC)

+
∑
j∈Z

Ξju
(0)
j = 0.

The solution is unique in L2(GC)/span
{
u(0)
∣∣
GC

}
.

Proof. The uniqueness of the solution in L2(GC)/span
{
u(0)
∣∣
GC

}
is obvious. The proof

of the existence will be analogous to the proof of Theorem 4.10 from [51]. Passing to
the variational formulation of the problem (2.2.62) and considering it as a problem in the
symmetric subspace Lµ2,s(G) on the whole graph G, we will search a function u ∈ H1

s (G)
such that

− (u′, v′)Lµ2 (G) + λ(0)(u, v)Lµ2 (G) = (f, v)Lµ2 (G) + 2
∑
j∈Z

Ξjvj, ∀v ∈ H1
s (G), (2.2.63)

where vj = v
(
j,−L

2

)
. Due to the estimate∣∣∣− (u′, v′)Lµ2 (G) + λ(0) (u, v)Lµ2 (G)

∣∣∣ 6 max
{

1, λ(0)
}
‖u‖H1(G)‖v‖H1(G), ∀u, v ∈ H1

s (G),

we can then define a bounded linear self-adjoint operator A : H1
s (G)→ H1

s (G) such that

(Au, v)H1(G) = − (u′, v′)Lµ2 (G) + λ(0) (u, v)Lµ2 (G) , ∀u, v ∈ H1
s (G). (2.2.64)

In the same manner, we have the estimate∣∣∣∣∣(f, v)Lµ2 (G) + 2
∑
j∈Z

Ξjvj

∣∣∣∣∣ 6
‖f‖Lµ2 (G) + C

(∑
j∈Z

Ξ2
j

)1/2
 ‖v‖H1(G), ∀v ∈ H1

s (G),

with some constant C depending only on the geometry of the graph. Hence, there exists
a unique function F ∈ H1

s (G) such that

(F, v)H1(G) = (f, v)Lµ2 (G) + 2
∑
j∈Z

Ξjvj, ∀v ∈ H1
s (G). (2.2.65)

Thus, combining (2.2.63), (2.2.64) and (2.2.65) we end up with the equation

Au = F, (2.2.66)

which is equivalent to the problem (2.2.62). Indeed, considering in (2.2.63) functions
v that vanish at the vertices of the graph, we get the first two lines of (2.2.62) and
considering functions v that do not vanish at only one vertex of the graph we recover the
last line (Kirchhoff’s conditions). Taking F = 0 we get then

KerA = span
{
u(0)
}
. (2.2.67)

We will now use Lemma 2.2.5 proved below which states that ImA is closed. The operator
A being self-adjoint, Lemma 2.2.5 together with (2.2.67) imply that the problem (2.2.66)
is solvable if and only if

(
F, u(0)

)
H1(G)

= 0 (cf. Theorem 5, Chapter 3 in [7]). Together
with (2.2.65) this finishes the proof (the coefficient 2 disappears when we pass to the
graph GC).
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Lemma 2.2.5. The image of the operator A defined in (2.2.64) is closed:

ImA = ImA.

Proof. Suppose that ImA 6= ImA. Then, there exists a singular sequence {un}n∈N ⊂
H1
s (G) such that

(a) ‖un‖H1(G) = 1,

(b) un
w−→ 0 in H1

s (G),

(c) ‖Aun‖H1
s (G) −→ 0.

Let us show that there exists n0 ∈ N and δ > 0 such that

‖un‖Lµ2 (G) > δ, ∀n > n0. (2.2.68)

Indeed,

−‖u′n‖2
Lµ2 (G) + λ(0)‖un‖2

Lµ2 (G) = (Aun, un)H1(G) 6 ‖Aun‖H1
s (G) → 0, n→∞.

If there was a subsequence of {unk}k∈N of {un}n∈N such that ‖unk‖Lµ2 (G) → 0, k → ∞,
it would mean that

∥∥u′nk∥∥Lµ2 (G)
→ 0, and hence, ‖unk‖H1(G) → 0 which contradicts the

property (a) of the sequence {un}. Next,(
un,
(
Aµs − λ(0)I

)
v
)
Lµ2 (G)

= −(Aun, v)H1(G) ∀v ∈ D(Aµs ).

Since λ(0) is a simple (isolated) eigenvalue of the self-adjoint operator Aµs in Lµ2,s(G), we

have Im
(
Aµs − λ(0)I

)
=
{
u(0)
}⊥

L
µ
2,s(G) and the operator B =

(
Aµs − λ(0)I

)−1 |
{u(0)}

⊥
L
µ
2,s(G)

is a continuous operator from Lµ2,s(G) to H1
s (G). Hence,

(un, w)Lµ2 (G) = −(Aun, Bw)H1(G), ∀w ∈
{
u(0)
}⊥

L
µ
2,s(G) . (2.2.69)

Let us introduce the notation

u⊥n = un −

(
un, u

(0)
)
Lµ2 (G)

‖u(0)‖2
Lµ2 (G)

u(0), n ∈ N. (2.2.70)

Obviously, u⊥n ∈
{
u(0)
}⊥

L
µ
2,s(G) . Then, applying (2.2.69) to u⊥n we obtain:∥∥u⊥n∥∥2

Lµ2 (G)
=
(
un, u

⊥
n

)
Lµ2 (G)

6 ‖Aun‖H1
s (G)‖B‖Lµ2,s(G)→H1

s (G)

∥∥u⊥n∥∥Lµ2 (G)
, n ∈ N.

Taking into account the property (c) of the sequence {un} we conclude that
∥∥u⊥n∥∥2

Lµ2 (G)
→

0 as n → ∞. The property (b) implies that un
w−→ 0 in Lµ2,s(G). Consequently,(

un, u
(0)
)
Lµ2 (G)

→ 0. Thus, it follows from the relation (2.2.70) that ‖un‖2
Lµ2 (G) → 0 which

contradicts (2.2.68).

We can now deduce Proposition 2.2.2 from Proposition 2.2.3.
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Proof of Proposition 2.2.2. Let us introduce the following function v(k) for k ∈ N:

v
(k)

j+ 1
2

(s) = −∆
(k−1)
j,+

sin
(√

λ(0)(1− s)
)

sin
√
λ(0)

+ ∆
(k−1)
j+1,−

sin
(√

λ(0)s
)

sin
√
λ(0)

, s ∈ [0, 1], j ∈ Z,

v
(k)
j (y) = 0, y ∈

[
−L

2
, L

2

]
, j ∈ Z.

Then, the function ũ(k) = u(k) − v(k), k ∈ N, satisfies the following problem:

(
ũ

(k)

j+ 1
2

)′′
(s) + λ(0)ũ

(k)

j+ 1
2

(s) = −λ(k)u
(0)

j+ 1
2

(s)− f (k−1)

j+ 1
2

(s), s ∈ [0, 1], j ∈ Z,(
ũ

(k)
j

)′′
(y) + λ(0)ũ

(k)
j (y) = −λ(k)u

(0)
j (y)− f (k−1)

j (y), y ∈
[
−L

2
, 0
]
, j ∈ Z,(

ũ
(k)
j

)′
(0) = 0, j ∈ Z,

ũ
(k)

j− 1
2

(1) = ũ
(k)
j

(
−L

2

)
= ũ

(k)

j+ 1
2

(0), j ∈ Z,(
ũ

(k)

j+ 1
2

)′
(0)−

(
ũ

(k)

j− 1
2

)′
(1) + wµj

(
ũ

(k)
j

)′ (−L
2

)
= Ξ̃

(k−1)
j , j ∈ Z,

(2.2.71)
Applying Proposition 2.2.3 to the problem (2.2.71) we finish the proof.

We finish this section with the following lemma that establishes a symmetry property of
a solution of (P(k)

u ) provided the right-hand terms are symmetric.

Lemma 2.2.6. Suppose that for some k ∈ N∗, f (k−1) ∈ Lµ2(GC),
{

∆
(k−1)
j,±

}
j∈Z
∈ `2(Z),{

Ξ
(k−1)
j

}
j∈Z
∈ `2(Z) and the condition (2.2.60) is satisfied. Suppose also that

f
(k−1)

−j− 1
2

(1− s) = f
(k−1)

j+ 1
2

(s), s ∈ [0, 1], f
(k−1)
−j (y) = f

(k−1)
j (y), y ∈ [−L

2
, 0], j ∈ Z,

and

∆
(k−1)
j,+ = −∆

(k−1)
−j,− , ∆

(k−1)
j,− = −∆

(k−1)
−j,+ , Ξ

(k−1)
j = Ξ

(k−1)
−j , ∀j ∈ Z.

If u(k) is a solution of (P(k)
u ), then

u
(k)

−j− 1
2

(1− s) = u
(k)

j+ 1
2

(s), s ∈ [0, 1], u
(k)
−j (y) = u

(k)
j (y), y ∈ [−L

2
, 0], j ∈ Z.

Proof. Let us introduce the function û(k) which is obtained from u(k) by the reflection
with respect to the axis x = 0:

û
(k)

j+ 1
2

(s) = u
(k)

−j− 1
2

(1− s), s ∈ [0, 1], û
(k)
j (s) = u

(k)
−j (s), y ∈

[
−L

2
, 0
]
, j ∈ Z.

Then, the function w(k) which is defined as the difference w(k) = u(k) − û(k), solves the
homogeneous problem (2.2.39). Consequently, w(k) = cu(0) for some c ∈ R. On the other
hand, w(k)

0 = 0, which implies that w(k) = 0. This finishes the proof.
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2.3 Existence of the terms of the asymptotic expansions

In this section we will prove the existence of all the terms of the formal asymptotic expan-
sions considered in Section 2.1 and, consequently, justify these expansions. We proceed
by induction assuming that both the far field and the near field terms are constructed up
to some order n and showing that they can be constructed at order n + 1. We remind
that the terms of order 0 have been constructed in Section 2.2.3.
We start with an auxiliary result which will permit us to conclude that if both the far
field and the near field terms are exponentially decaying up to the order n, then the far
field terms at order n+ 1 are also exponentially decaying.

Lemma 2.3.1. Let k ∈ N∗. Suppose that f (k−1) ∈ Lµ2(GC) and
{

∆
(k−1)
j,±

}
j∈Z
∈ `2(Z),{

Ξ
(k−1)
j

}
j∈Z
∈ `2(Z), and that the compatibility condition (2.2.60) is satisfied. Sup-

pose also that there exists a family of polynomials
{
a

(k−1)
` , b

(k−1)
` , c

(k−1)
` , d

(k−1)
`

}
of degree

k − 1− `, 0 6 ` 6 k − 1, and three polynomials q∆+, q∆−, qΣ of degree k − 1, such that

Fj+ 1
2
(s) = rj

k−1∑
`=0

s`
(
a

(k−1)
` (j) cos

(√
λ0s
)

+ b
(k−1)
` (j) sin

(√
λ0s
))
, s ∈ [0, 1], j ∈ N,

(2.3.1)

Fj(y) = rj
k−1∑
`=0

y`
(
c

(k−1)
` (j) cos

(√
λ0y
)

+ d
(k−1)
` (j) sin

(√
λ0y
))
, y ∈

[
−L

2
, 0
]
, j ∈ N∗,

(2.3.2)

∆
(k−1)
j,+ = rj q∆+(j), ∆

(k−1)
j,− = rj q∆−(j), Ξ

(k−1)
j = rj qΣ(j), j ∈ N∗, (2.3.3)

where
Fj+ 1

2
= −λ(k)u

(0)

j+ 1
2

− f (k−1)

j+ 1
2

, Fj = −λ(k)u
(0)
j − f

(k−1)
j , j ∈ N.

Let u(k) be a solution of (P(k)
u ). Then, there exist polynomials

{
ã

(k)
` , b̃

(k)
` , c̃

(k)
` , d̃

(k)
`

}
of

degree k − `, 0 6 ` 6 k, such that

u
(k)

j+ 1
2

(s) = rj
k∑
`=0

s`
(
ã

(k)
` (j) cos

(√
λ0s
)

+ b̃
(k)
` (j) sin

(√
λ0s
))
, s ∈ [0, 1], j ∈ N,

(2.3.4)

u
(k)
j (y) = rj

k∑
`=0

y`
(
c̃

(k)
` (j) cos

(√
λ0y
)

+ d̃
(k)
` (j) sin

(√
λ0y
))
, y ∈

[
−L

2
, 0
]
, j ∈ N∗.

(2.3.5)

Proof. First of all, we notice that the first two lines of (P(k)
u ) together with the assump-

tions (2.3.1), (2.3.2) for the right-hand sides imply the forms (2.3.4), (2.3.5) of the solu-

tions u(k)

j+ 1
2

, u(k)
j with some coefficients

{
ã

(k)
` (j), b̃

(k)
` (j) c̃

(k)
` (j), d̃

(k)
` (j)

}k
`=0

(not necessarily
polynomial with respect to j). We will start by establishing a recurrence relations for the
coefficients with ` > 0 which will permit us to show that they are polynomials. Then,
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using the transmission conditions we will get a system of equations for the coefficients
with ` = 0 which will yield a finite difference equation for ã(k)

0 . The study of this finite
difference equation will show that the coefficients with ` = 0 are also polynomials.

Recurrence relations for the coefficients with ` > 1: In order to determine the
dependence of these coefficients on j we plug the relations (2.3.4), (2.3.1) into the first
line of (P(k)

u ). We get then:

2(`+ 1)
√
λ0b̃

(k)
`+1(j) + (`+ 1)(`+ 2)ã

(k)
`+2(j) = a

(k−1)
` (j), 0 6 ` 6 k − 1,

−2(`+ 1)
√
λ0ã

(k)
`+1(j) + (`+ 1)(`+ 2)̃b

(k)
`+2(j) = b

(k−1)
` (j), 0 6 ` 6 k − 1,

where, by convention, ã(k)
k+1(j) = b̃

(k)
k+1(j) = 0. Hence,

b̃
(k)
k (j) =

a
(k−1)
k−1 (j)

2k
√
λ0

, ã
(k)
k (j) = −

b
(k−1)
k−1 (j)

2k
√
λ0

, (2.3.6)

and the following recurrence relations define all the other coefficients except ã(k)
0 (j), b̃(k)

0 (j)
which remain undetermined:

b̃
(k)
` (j) =

a
(k−1)
`−1 (j)− `(`+ 1)ã

(k)
`+1(j)

2`
√
λ0

, ã
(k)
` (j) = −

b
(k−1)
`−1 (j)− `(`+ 1)̃b

(k)
`+1(j)

2`
√
λ0

,

1 6 ` 6 k − 1. (2.3.7)

One can prove by induction with respect to ` that the coefficients ã(k)
` (j), b̃(k)

` (j) are
polynomials (with respect to j) of degree k−` for 1 6 ` 6 k. Indeed, taking into account

the assumptions for the coefficients
{
a

(k−1)
` (j), b

(k−1)
` (j)

}k−1

`=0
we see from (2.3.6) that for

` = k the coefficients ã(k)
k (j), b̃(k)

k (j) are constants in j. If we suppose that ã(k)
` (j), b̃(k)

` (j)
are polynomials (with respect to j) of degree k− ` for all ` such that m 6 ` 6 k for some
1 < m 6 k then the relations (2.3.7) imply that ã(k)

m−1(j), b̃(k)
m−1(j) are polynomials in j

of degree k −m+ 1. Thus, it remains only to determine the behaviour of the coefficients
ã

(k)
0 (j), b̃(k)

0 (j) with respect to j for j > 0.

Repeating the same argument applied to the coefficients
{
c̃

(k)
` (j), d̃

(k)
` (j)

}k
`=0

, i. e., in-

jecting (2.3.5), (2.3.2) into the second line of (P(k)
u ) we get the analogues of the relations

(2.3.6), (2.3.7) with a
(k−1)
` (j), b(k−1)

` (j), ã(k)
` (j), b̃(k)

` (j) replaced by c(k−1)
` (j), d(k−1)

` (j),
c̃

(k)
` (j), d̃(k)

` (j) respectively. However, this time there is an additional relation coming
from the third line of (P(k)

u ) (Neumann boundary condition):

c̃
(k)
1 (j) +

√
λ0d̃

(k)
0 (j) = 0. (2.3.8)

Hence, in the same manner as before we see that the coefficients c̃(k)
` (j), d̃(k)

` (j) are poly-
nomials with respect to j (for j > 1) of degree k − ` for 1 6 ` 6 k and the coefficient
d̃

(k)
0 (j) is a polynomial of degree k − 1.
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The coefficients ã(k)
0 (j), b̃(k)

0 (j), c̃(k)
0 (j): Let us now establish the dependence of the

coefficients ã(k)
0 (j), b̃(k)

0 (j), c̃(k)
0 (j) on j using the transmission conditions (last two lines of

(P(k)
u )). We get for j > 1:

rj−1 cos
√
λ0ã

(k)
0 (j − 1) + rj−1 sin

√
λ0b̃

(k)
0 (j − 1)− rj cos

(√
λ0L
2

)
c̃

(k)
0 (j) = t

(k)
1 (j), (2.3.9)

rj cos
(√

λ0L
2

)
c̃

(k)
0 (j)− rj ã(k)

0 (j) = t
(k)
2 (j), (2.3.10)

rj b̃
(k)
0 (j) + rj−1 sin

√
λ0ã

(k)
0 (j − 1)− rj−1 cos

√
λ0b̃

(k)
0 (j − 1) + rj sin

(√
λ0L
2

)
c̃

(k)
0 (j)

= t
(k)
3 (j), (2.3.11)

where

t
(k)
1 (j) = ∆

(k−1)
j,− − rj−1

k∑
`=1

(
cos
√
λ0ã

(k)
` (j − 1) + sin

√
λ0b̃

(k)
` (j − 1)

)
+ rj

k∑
`=1

(
−L

2

)` (
cos
(√

λ0L
2

)
c̃

(k)
` (j)− sin

(√
λ0L
2

)
d̃

(k)
` (j)

)
+

rj√
λ0

sin
(√

λ0L
2

)
c̃

(k)
1 (j),

t
(k)
2 (j) = ∆

(k−1)
j,+ − rj

k∑
`=1

(
−L

2

)` (
cos
(√

λ0L
2

)
c̃

(k)
` (j)− sin

(√
λ0L
2

)
d̃

(k)
` (j)

)
− rj√

λ0

sin
(√

λ0L
2

)
c̃

(k)
1 (j),

t
(k)
3 (j) = rj−1

k∑
`=1

((
`
cos
√
λ0√

λ0

− sin
√
λ0

)
ã

(k)
` (j − 1)+

(
`
sin
√
λ0√

λ0

+ cos
√
λ0

)
b̃

(k)
` (j − 1)

)

− rj
k∑
`=1

(
−L

2

)`(
sin
(√

λ0L
2

)
− 2`

L
√
λ0

cos
(√

λ0L
2

))
c̃

(k)
` (j)

− rj
k∑
`=1

(
−L

2

)`(
cos
(√

λ0L
2

)
+

2`

L
√
λ0

sin
(√

λ0L
2

))
d̃

(k)
` (j)

+
Ξ

(k−1)
j√
λ0

− rj√
λ0

(
ã

(k)
1 (j)− cos

(√
λ0L
2

)
c̃

(k)
1 (j)

)
.

The expressions above imply that the right-hand terms of the equations (2.3.9)–(2.3.11)
have the form

t
(k)
i (j) = rjp

(k)
t,i (j), 1 6 i 6 3, (2.3.12)

where
{
p

(k)
t,i

}3

i=1
are polynomials in j of degree k−1. The system (2.3.9)–(2.3.11) reduces

to the following one:

c̃
(k)
0 (j) =

1

cos
(√

λ0L
2

) (ã(k)
0 (j) + p

(k)
t,2 (j)

)
, j > 1, (2.3.13)

b̃
(k)
0 (j) =

1

sin
√
λ0

(
rã

(k)
0 (j + 1)− ã(k)

0 (j) cos
√
λ0 + r

(
p

(k)
t,1 (j + 1) + p

(k)
t,2 (j + 1)

))
, j > 0,

(2.3.14)
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r2ã
(k)
0 (j + 2) + 2rg

(√
λ0

)
ã

(k)
0 (j + 1) + ã

(k)
0 (j) = p(k)

a (j), j > 0, (2.3.15)

where the function g is defined in (1.3.45) and

p(k)
a (j) = r sin

√
λ0p

(k)
t,3 (j + 1)− r2

(
p

(k)
t,1 (j + 2) + p

(k)
t,2 (j + 2)

)
− r sin

√
λ0 tan

(√
λ0L
2

)
p

(k)
t,2 (j + 1) + r cos

√
λ0

(
p

(k)
t,1 (j + 1) + p

(k)
t,2 (j + 1)

)
.

The function p(k)
a (j) being a polynomial in j of degree k − 1, we introduce a notation for

its coefficients:

p(k)
a (j) =

k−1∑
m=0

ρmj
m. (2.3.16)

Study of the finite difference equation (2.3.15): First, recalling that r and r−1 are
solutions of the equation (1.3.47), we find the general (real) solution of the corresponding
homogeneous equation:

ã
(k)
0 (j) = C +Dr−2j, C, D ∈ R, j > 0.

However, the condition u(k) ∈ Lµ2(GC) implies that D = 0. Next, the right-hand side of
the equation (2.3.15) being a polynomial of degree k − 1, we search a particular solution
as a polynomial of degree k:

ã
(k)
0 (j) =

k∑
m=0

αmj
m.

Together with (2.3.16) it gives the following system for the coefficients {γm}km=0:

k∑
i=m

Cm
i r

2αi + 2g
(√

λ(0)
)
rαm +

k∑
i=m

(−1)i−mCm
i r

2αi = ρm, 0 6 m 6 k,

where ρk = 0. Since r is a solution of (1.3.47), the equation for m = k is satisfied
automatically and the other equations take the form

k∑
i=m+1

Cm
i

((
2i−m − 1

)
r2 − 1

)
αi = ρm, 0 6 m 6 k − 1, (2.3.17)

which is a system with an upper-diagonal matrix with non-zero elements (|r| < 1) for the
coefficients {αm}km=1. The coefficient α0 cannot be determined, which corresponds to the
general solution ã

(k)
0 (j) = C, j > 0. We can fix it by choosing, for example, α0 = 0.

Hence, the coefficient ã(k)
0 (j) is a polynomial in j of degree k for j > 0 as well as the

coefficients b̃(k)
0 (j) for j > 0 and c̃(k)

0 (j) for j > 1 (cf. (2.3.13), (2.3.14)). This finishes the
proof.

We are now able to prove the existence of the terms of the asymptotic expansions (2.1.2)–
(2.1.5).

Proposition 2.3.1. There exist functions
{
u(k), U (k)

}
k∈N and real numbers

{
λ(k)
}
k∈N

having the following properties:
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1. For any k ∈ N, u(k) is a solution of the far field problem (P(k)
u ). Moreover,

u
(k)

j+ 1
2

∈ C∞([0, 1]), u
(k)
j ∈ C∞

([
−L

2
, 0
])
, j ∈ Z, k ∈ N, (2.3.18)

and

u
(k)

−j− 1
2

(1− s) = u
(k)

j+ 1
2

(s), s ∈ [0, 1], u
(k)
−j (y) = u

(k)
j (y), y ∈ [−L

2
, 0],

j ∈ Z, k ∈ N. (2.3.19)

2. For k ∈ N, j ∈ Z, U (k)
j ∈ H1

loc(Jj) is a solution of the problem (P(k)
j ). Moreover,

U
(k)
−j (−X, Y ) = U

(k)
j (X, Y ), j ∈ Z, k ∈ N. (2.3.20)

3. The number λ(k) satisfies (2.2.60).

4. For any k ∈ N the relations (2.3.4), (2.3.5) for the far field terms u(k) are satisfied.
Moreover, there exist functions U (k)

q ∈ H1
loc(J∗) such that the near field terms satisfy

the following relation:

U
(k)
j = rj

k∑
q=0

jqU (k)
q , j ∈ N∗. (2.3.21)

The last property means that the far field terms u(k)
j and the near field terms U (k)

j are
exponentially decaying as |j| tends to infinity.

Proof. First, it is clear that the the functions u(0), U (0) and the number λ(0) found in Sec-
tion 2.2.3 satisfy the properties 1–4. Suppose that for some n > 1 functions

{
u(k), U (k)

}n
k=0

and real numbers
{
λ(k)
}n
k=0

having the required properties are constructed. Let us show
the existence of functions u(n+1), U (n+1) and a real number λ(n+1) satisfying the properties
1–4 as well.

Construction of the right-hand terms of the problems P(n+1)
u and P(n+1)

j

• The function f (n) is given by the relations (2.2.37), (2.2.38) with k replaced by n + 1.
Since the functions

{
u(k)
}n
k=1

satisfy the property 1, one has f (n) ∈ L2(GC) and

f
(n)

j+ 1
2

∈ C∞([0, 1]), f
(n)
j ∈ C∞

([
−L

2
, 0
])
, j ∈ Z, (2.3.22)

f
(n)

−j− 1
2

(1− s) = f
(n)

j+ 1
2

(s), s ∈ [0, 1], f
(n)
−j (y) = f

(n)
j (y), y ∈ [−L

2
, 0], j ∈ Z.

(2.3.23)
Moreover, the functions

{
u(k)
}n
k=1

satisfying the property 4, the function f (n) is also of

the form (2.3.4), (2.3.5). In other words, there exist polynomials
{
a

(n)
f,` , b

(n)
f,` , c

(n)
f,` , d

(n)
f,`

}
of degree n− `, 0 6 ` 6 n, such that

f
(n)

j+ 1
2

(s) = rj
n∑
`=0

s`
(
a

(n)
f,` (j) cos

(√
λ0s
)

+ b
(n)
f,` (j) sin

(√
λ0s
))
, s ∈ [0, 1], j ∈ N,

(2.3.24)

f
(n)
j (y) = rj

n∑
`=0

y`
(
c

(n)
f,` (j) cos

(√
λ0y
)

+ d
(n)
f,` (j) sin

(√
λ0y
))
, y ∈

[
−L

2
, 0
]
, j ∈ N∗.

(2.3.25)



2.3. EXISTENCE OF THE TERMS OF THE ASYMPTOTIC EXPANSIONS 65

• The coefficients
{
c

(n+1)
j,p,δ,` , j ∈ Z, p ∈ N∗, δ ∈ {+,−, 0} , 1 6 ` 6

[
n+1

2

]}
are computed

via the recurrence relation (2.2.12). Since the functions
{
U (k)

}n
k=0

verify the property 2,
Lemma 2.2.4 applies which gives the convergence result (2.2.46) for the coefficients c
up to the order n, but also for the coefficients of order n+ 1 for ` > 1:

∑
p∈N∗

p
(
c

(n+1)
j,p,±,`

)2

e−pπw
µ
j <∞,

∑
p∈N∗

p
(
c

(n+1)
j,p,0,`

)2

e
− 2pπ

w
µ
j <∞, 1 6 ` 6

[
n+1

2

]
. (2.3.26)

Moreover, the following property can be easily shown by induction in k:

c
(k)
−j,p,±,` = c

(k)
j,p,∓,`, c

(k)
−j,p,0,` = c

(k)
j,p,0,`, 0 6 k 6 n, j ∈ Z, p ∈ N∗, 0 6 ` 6

[
k
2

]
,

and there exist real numbers č(k)
q,p,δ,`, 0 6 k 6 n, 0 6 q 6 k, p ∈ N∗, δ ∈ {+,−, 0},

0 6 ` 6
[
k
2

]
, such that

c
(k)
j,p,δ,` = rj

k∑
q=0

jq č
(k)
q,p,δ,`, 0 6 k 6 n, j ∈ N∗, p ∈ N∗, δ ∈ {+,−, 0}, 0 6 ` 6

[
k
2

]
.

In the base case k = 0 these properties obviously hold since all the coefficients are equal
to zero (cf. (2.2.45)). The proof of the inductive step relies on the recurrence relation
(2.2.12) for ` > 1 and the relation (2.2.59) for ` = 0, taking into account the properties
2 and 4 of the functions

{
U (k)

}n
k=0

.

Again, due to the recurrence relation (2.2.12), the same is true for the coefficients of
order n+ 1 for ` > 1:

c
(n+1)
−j,p,±,` = c

(n+1)
j,p,∓,`, c

(n+1)
−j,p,0,` = (−1)pc

(n+1)
j,p,0,`, j ∈ Z, p ∈ N∗, 1 6 ` 6

[
n+1

2

]
,

(2.3.27)
and there exist real numbers č

(n+1)
q,p,δ,`, 0 6 q 6 n + 1, p ∈ N∗, δ ∈ {+,−, 0},

1 6 ` 6
[
n+1

2

]
, such that

c
(n+1)
j,p,δ,` = rj

n∑
q=0

jq č
(n+1)
q,p,δ,`, j ∈ N∗, p ∈ N∗, δ ∈ {+,−, 0}, 1 6 ` 6

[
n+1

2

]
.

(2.3.28)

• The functions
{
g

(n)
j,δ

}
j∈Z

, δ ∈ {+,−, 0}, are defined by the relations (2.2.24)–(2.2.26).

The polynomials P (n+1)
j,p,δ

′
appearing in this relations are completely defined at this point

as follows since

P
(k)
j,p,δ

′
=

[ k2 ]∑
`=1

c
(k)
j,p,δ,``s

`−1, δ ∈ {+,−, 0}, k ∈ N, p ∈ N∗, j ∈ Z.

The relations (2.3.26) permit to conclude that

g
(n)
j,δ ∈ H

−1/2
(
Σ±j
)
, δ ∈ {+,−, 0}. (2.3.29)
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Moreover, the relations (2.3.27) together with the property 1 satisfied by the functions{
u(k)
}n
k=0

imply that

g
(n)
j,± = g

(n)
−j,∓, g

(n)
j,0 (X) = g

(n)
−j,0(−X), j ∈ Z, (2.3.30)

where we identify the spaces H−1/2
(
Σ+
j

)
and H−1/2

(
Σ−j
)
. The relations (2.3.28) to-

gether with the property 4 satisfied by the functions
{
u(k)
}n
k=0

imply that there exist
functions ǧ(n)

q,δ ∈ H−1/2
(
Σδ
j

)
, 0 6 q 6 n, δ ∈ {+,−, 0}, such that

g
(n)
j,δ = rj

n∑
q=0

jqǧ
(n)
q,δ , j ∈ N∗, δ ∈ {+,−, 0}. (2.3.31)

• The functions
Φ

(n−1)
j , Φ

(n)
j ∈ H1

loc(Jj), j ∈ Z, (2.3.32)

are defined by the relation (2.2.23). From the properties 2 and 4 (symmetry and
exponential decay) satisfied by the functions

{
U (k)

}n
k=0

it follows that

Φ
(k)
−j (−X, Y ) = Φ

(k)
j (X, Y ), j ∈ Z, 0 6 k 6 n, (2.3.33)

and there exist functions Φ̌
(k)
q ∈ H1

loc(J∗), 0 6 k 6 n, 0 6 q 6 k, such that

Φ
(k)
j = rj

k∑
q=0

jqΦ̌(k)
q , ∀j ∈ N∗, 0 6 k 6 n. (2.3.34)

• The sequence
{

Ξ̃
(n)
j

}
j∈Z

is defined in (2.2.61) with k replaced by n + 1, and the se-

quences
{

∆
(n)
j,±

}
j∈Z

,
{

Ξ
(n)
j

}
j∈Z

are defined in (2.2.36), (2.2.34), (2.2.31). The symmetry

properties of the functions
{
u(k)
}n
k=0

(property 1), g(n)
j,δ (2.3.30), Φ

(n)
j , Φ

(n−1)
j (2.3.33)

and W±
j (2.2.20) imply that

∆
(n)
j,+ = −∆

(n)
−j,−, ∆

(n)
j,− = −∆

(n)
−j,+, Ξ

(n)
j = Ξ

(n)
−j , j ∈ Z. (2.3.35)

Similarly, the decay properties of the functions
{
u(k)
}n
k=0

(property 4), g(n)
j,δ (2.3.31),

Φ
(n)
j , Φ

(n−1)
j (2.3.34) and the relations (2.2.21) forW±

j imply that there exist polynomials
q

(n)
Σ , q(n)

∆±
of degree n such that

Ξ
(n)
j = rj q

(n)
Σ (j), ∆

(n)
j,± = rj q

(n)
∆±

(j), j ∈ N∗. (2.3.36)

Construction of the number λ(n+1) and the far field terms u(n+1)

Due to the decay properties of f (n),
{

Ξ
(n)
j

}
j∈Z

,
{

∆
(n)
j,±

}
j∈Z

(cf. (2.3.24), (2.3.25), (2.3.23),

(2.3.36), (2.3.35)), we have f (n) ∈ L2(GC),
{

Ξ
(n)
j

}
j∈Z
∈ `2(Z),

{
∆

(n)
j,±

}
j∈Z
∈ `2(Z). This

permits to apply Proposition 2.2.2 for k = n + 1. The number λ(n+1) is defined by
the relation (2.2.60) and the function u(n+1) is a corresponding solution of the problem
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(P(n+1)
u ). To fix it in a unique way, one can, for example, impose the condition u(n+1)

0 .
The smoothness (2.3.18) of the functions u(n+1)

j+ 1
2

, u(n+1)
j at each vertex of the graph GC is

guaranteed by the smoothness of the functions f (n)

j+ 1
2

, f (n)
j (2.3.22). Due to the symmetry

properties of f (n),
{

Ξ
(n)
j

}
j∈Z

and
{

∆
(n)
j,±

}
j∈Z

(cf. (2.3.23), (2.3.35)), Lemma 2.2.6 applies

and we get the symmetry property (2.3.19) for the function u(n+1). Finally, to get the
decay property 4 for u(n+1), we apply Lemma 2.3.1. Indeed, the hypothesis of the Lemma
are verified due to the relations (2.3.24), (2.3.25), (2.3.36).
At this point, we can remark that the polynomials (2.2.13) satisfy the following symmetry
property:

P
(n+1)
j,0,± (X) = P

(n+1)
−j,0,∓(−X), P

(n+1)
j,0,0 (Y ) = P

(n+1)
−j,0,0 (Y ), j ∈ Z. (2.3.37)

Moreover, there exists real numbers
{
p̌

(n+1)
q

}n+1

q=0
such that

P
(n+1)
j,0,+

(
1
2

)
= rj

n+1∑
q=0

p̌(n+1)
q jq, j ∈ N∗.

Construction of the near field terms U (n+1)

• In a bounded domain: for any j ∈ Z, we start by constructing the solution V
(n+1)
j

of the problem (P̃(n+1)
j ) in a bounded domain. The existence (and uniqueness) of

such a solution is guaranteed by Lemma 2.2.2. Indeed, the right-hand sides belong to
the appropriate spaces (cf. (2.3.32), (2.3.29)). The compatibility condition (2.2.30) is
satisfied since the function u(n) solves the problem (P(n)

u ). Notice that the average trace
condition (2.2.29) requires the knowledge of the function u(n+1). That is why at a given
order the far field problem should be solved first.

Let us show that the functions
{
V

(n+1)
j

}
j∈Z

verify the following symmetry property:

V
(n+1)
−j (−X, Y ) = V

(n+1)
j (X, Y ), j ∈ Z. (2.3.38)

Indeed, if V (n+1)
−j satisfies the problem (P̃(n+1)

−j ), then the function V (n+1)
−j (−X, Y ) satis-

fies the problem (P̃(n+1)
j ). This follows from the symmetry propetries of the right-hand

sides Φ
(n−1)
j , g(n)

j,δ (cf. (2.3.33), (2.3.30)) together with Lemma 2.2.3 and the symmetry
property 1 of the functions

{
u(k)
}n+1

k=0
which ensure the equivalence of the trace average

conditions in the problems (P̃(n+1)
j ) and the one satisfied by the function V (n+1)

−j (−X, Y ).
The solution of the problem (P̃(n+1)

j ) being unique, we get (2.3.38).

Finally, let us show that there exist functions V(n+1)
q ∈ H1(K∗), 0 6 q 6 n + 1, such

that

V
(n+1)
j = rj

n+1∑
q=0

jqV(n+1)
q , j ∈ N∗. (2.3.39)
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To do this, we introduce the following set of problems for 0 6 q 6 n+ 1:

Find V ∈ H1(K∗) satisfying (2.2.16) with Φ = Φ̌
(n−1)
q ,

gδ = ǧ
(n)
q,δ , δ ∈ {+,−, 0}, and such that

∫
Σ+
∗

V = p̌(n+1)
q . (P̌(n+1)

q )

Here K∗ =
]
−1

2
, 1

2

[
×]0, 1[, Σ+

∗ =
{

1
2

}
× [0, 1] (which are just Kj and Σ+

j for j ∈ Z∗),
and

Φ̌(n−1)
n = Φ̌

(n−1)
n+1 = 0, ǧ

(n)
n+1,δ = 0, δ ∈ {+,−, 0}. (2.3.40)

The compatibility condition (2.2.17) is satisfied for the problem P̌(n+1)
q for any 0 6

q 6 n + 1. Indeed, we have already seen that it is satisfied for Φ = Φ
(n−1)
j , gδ = g

(n)
j,δ ,

δ ∈ {+,−, 0} with any j ∈ N∗ (these are the problems for the functions V (n+1)
j ). Taking

into account the relations (2.3.34), (2.3.31) completed by (2.3.40), we get

n+1∑
q=0

jq

〈ǧ(n)
q,+, 1

〉
Σ+
j

+
〈
ǧ

(n)
q,−, 1

〉
Σ−j

+
〈
ǧ

(n)
q,0 , 1

〉
Σ0
j

−
∫
Kj

Φ̌(n−1)
q

 = 0, j ∈ N∗.

This yields the compatibility condition for the problem P̌(n+1)
q for any 0 6 q 6 n + 1.

Let us denote by V(n+1)
q the unique solution of the problem P̌(n+1)

q , 0 6 q 6 n + 1.
Then, we get the relations (2.3.39) for the functions

{
V

(n+1)
j

}
j∈N∗

.

• Extension to the unbounded domain Jj: applying Proposition 2.2.1, we construct the
near field terms U (n+1)

j ∈ H1
loc(Jj) that solve the problems (P(n+1)

j ). We have already

proved the symmetry property (2.3.38) for the functions
{
V

(n+1)
j

}
j∈Z

. The symme-

try property 2 for the functions
{
U

(n+1)
j

}
j∈Z

follows immediately from the symmetry

property (2.3.38) of the functions
{
V

(n+1)
j

}
j∈Z

. Similarly, the decay property 4 follows

from (2.3.39) by taking U (n+1)
q as the continuation to J∗ of the function V(n+1)

q for any
0 6 q 6 n+ 1.

2.4 Construction of a pseudo-mode at any order

In this section we construct an appropriate pseudo-mode that will permit to prove Theo-
rem 1.4.2.
Let us introduce a function χ ∈ C∞(R) such that

0 6 χ0(x) 6 1, ∀x ∈ R, χ0(x) =

{
0, x > 1,
1, x 6 2.

We construct the pseudo-mode at order n as follows:

Uε(x, y) =

{
U (1)
ε (x) + U (2)

ε (y) + U (3)
ε (x, y), (x, y) ∈ Cµε ,

Uε(x,−y), (x, y) ∈ Ωµ
ε \ Cµε ,

(2.4.1)
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where

U (1)
ε (x) =

∑
j∈Z

(
n∑
k=0

εku
(k)

j+ 1
2

(x− j)

)
χ
(
x−j
εα

)
χ
(
j+1−x
εα

)
, (2.4.2)

U (2)
ε (y) =

∑
j∈Z

(
n∑
k=0

εku
(k)
j (y)

)
χ
(

2y+L
2εα

)
, (2.4.3)

U (3)
ε (x, y) =

∑
j∈Z

(
n∑
k=0

εkU
(k)
j

(
x−j
ε
, 2y+L

2ε

)) (
1− χ

(
x−j
εα

)) (
1− χ

(
j−x
εα

)) (
1− χ

(
2y+L
2εα

))
.

(2.4.4)

Figure 2.4: Construction of a pseudo-mode

For ε small enough we have the following estimate:

‖Uε‖2
L2(Ωµε ) > Cn

∑
j∈Z


3
4∫

1
4

−L
2

+ε∫
−L

2

∣∣∣u(0)

j+ 1
2

(s, y)
∣∣∣2 dsdy +

w
µ
j
ε

2∫
−
w
µ
j
ε

2

0∫
−L

4

∣∣∣u(0)
j (x, y)

∣∣∣2 dxdy
 > Cnε.

(2.4.5)
Here and in what follows we denote by Cn all the constants that do not depend on ε. In
the rest of the section we prove the following estimate.

Proposition 2.4.1. For any 0 < α < 1 and n ∈ N there exist ε(n, α) > 0 and C(n, α) > 0
such that∣∣∣∣∣∣∣
∫
Ωµε

(∇Uε∇v − λε,nUεv) dΩ

∣∣∣∣∣∣∣ 6 C(n, α)εαn+ 1
2‖v‖H1(Ωµε ), ∀v ∈ H1

s (Ωµ
ε ), 0 < ε < ε(n, α),

with

λε,n =
n∑
k=0

εkλ(k).

Proof. Let us denote

IUε(v) =

∫
Cµε

(∇Uε∇v − λε,nUεv) dΩ =
1

2

∫
Ωµε

(∇Uε∇v − λε,nUεv) dΩ. (2.4.6)
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After injecting (2.4.1)–(2.4.4) in (2.4.6) the value IUε(v) can be rewritten as

IUε(v) = IU(1)
ε

(v) + IU(2)
ε

(v) + IU(3)
ε

(v),

with

IU(1)
ε

(v) =
∑
j∈Z

∫
Cµε

(
n∑
k=0

εk
(
u

(k)

j+ 1
2

)′
(x− j)

)
χ
(
x−j
εα

)
χ
(
j+1−x
εα

)
∂xv(x, y)dΩ

− λε,n
∑
j∈Z

∫
Cµε

(
n∑
k=0

εku
(k)

j+ 1
2

(x− j)

)
χ
(
x−j
εα

)
χ
(
j+1−x
εα

)
v(x, y)dΩ

+ ε−α
∑
j∈Z

∫
Cµε

(
n∑
k=0

εku
(k)

j+ 1
2

(x− j)

)(
χ′
(
x−j
εα

)
− χ′

(
j+1−x
εα

))
∂xv(x, y)dΩ

= −
∑
j∈Z

2n∑
k=n+1

n∑
p=k−n

εk
∫
Cµε

λ(k−p)u
(p)

j+ 1
2

(x− j)χ
(
x−j
εα

)
χ
(
j+1−x
εα

)
v(x, y)dΩ

− ε−α
∑
j∈Z

∫
Cµε

(
n∑
k=0

εk
((

u
(k)

j+ 1
2

)′
(x− j)v(x, y)− u(k)

j+ 1
2

(x− j)∂xv(x, y)

))
χ′
(
x−j
εα

)
dΩ

ε−α
∑
j∈Z

∫
Cµε

(
n∑
k=0

εk
((

u
(k)

j+ 1
2

)′
(x− j)v(x, y)− u(k)

j+ 1
2

(x− j)∂xv(x, y)

))
χ′
(
j+1−x
εα

)
dΩ,

IU(2)
ε

(v) = −
∑
j∈Z

2n∑
k=n+1

n∑
p=k−n

εk
∫
Cµε

λ(k−p)u
(p)
j (y)χ

(
2y+L
2εα

)
v(x, y)dΩ

− ε−α
∑
j∈Z

∫
Cµε

(
n∑
k=0

εk
((

u
(k)
j

)′
(y)v(x, y)− u(k)

j (y)∂yv(x, y)

))
χ′
(

2y+L
2εα

)
dΩ,

IU(3)
ε

(v) =

−
∑
j∈Z

n∑
k=n−1

k∑
p=0

εk
∫
Cµε

λ(k−p)U
(p)
j

(
x−j
ε
, 2y+L

2ε

)(
1−χ

(
x−j
εα

))(
1−χ

(
j−x
εα

))(
1−χ

(
2y+L
2εα

))
v(x, y)dΩ

−
∑
j∈Z

2n∑
k=n+1

n∑
p=k−n

εk
∫
Cµε

λ(k−p)U
(p)
j

(
x−j
ε
, 2y+L

2ε

)(
1−χ

(
x−j
εα

))(
1−χ

(
j−x
εα

))(
1−χ

(
2y+L
2εα

))
v(x, y)dΩ

+ε−α
∑
j∈Z

∫
Cµε

(
n∑
k=0

εk
(
∂xU

(k)
j

(
x−j
ε
, 2y+L

2ε

)
v(x, y)− U (k)

j

(
x−j
ε
, 2y+L

2ε

)
∂xv(x, y)

))
χ′
(
x−j
εα

)
dΩ

−ε−α
∑
j∈Z

∫
Cµε

(
n∑
k=0

εk
(
∂xU

(k)
j

(
x−j
ε
, 2y+L

2ε

)
v(x, y)− U (k)

j

(
x−j
ε
, 2y+L

2ε

)
∂xv(x, y)

))
χ′
(
j−x
εα

)
dΩ
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+ε−α
∑
j∈Z

∫
Cµε

(
n∑
k=0

εk
(
∂yU

(k)
j

(
x−j
ε
, 2y+L

2ε

)
v(x, y)− U (k)

j

(
x−j
ε
, 2y+L

2ε

)
∂yv(x, y)

))
χ′
(

2y+L
2εα

)
dΩ.

Summing up these expressions we can regroup the terms in the following way:

IUε(v) = Iε,F (v) + Iε,N(v) + Iε,M(v),

where
Iε,F (v) = I(1)

ε,F (v) + I(2)
ε,F (v),

I(1)
ε,F (v) = −

∑
j∈Z

2n∑
k=n+1

n∑
p=k−n

εk
∫
Cµε

λ(k−p)u
(p)

j+ 1
2

(x− j)χ
(
x−j
εα

)
χ
(
j+1−x
εα

)
v(x, y)dΩ,

I(2)
ε,F (v) = −

∑
j∈Z

2n∑
k=n+1

n∑
p=k−n

εk
∫
Cµε

λ(k−p)u
(p)
j (y)χ

(
2y+L
2εα

)
v(x, y)dΩ,

Iε,N(v) =

−
∑
j∈Z

n∑
k=n−1

k∑
p=0

εk
∫
Cµε

λ(k−p)U
(p)
j

(
x−j
ε
, 2y+L

2ε

)(
1−χ

(
x−j
εα

))(
1−χ

(
j−x
εα

))(
1−χ

(
2y+L
2εα

))
v(x, y)dΩ

−
∑
j∈Z

2n∑
k=n+1

n∑
p=k−n

εk
∫
Cµε

λ(k−p)U
(p)
j

(
x−j
ε
, 2y+L

2ε

)(
1−χ

(
x−j
εα

))(
1−χ

(
j−x
εα

))(
1−χ

(
2y+L
2εα

))
v(x, y)dΩ,

Iε,M(v) =
∑

δ∈{+,−,0}

Iδε,M(v), Iδε,M(v) = Iδ,1ε,M(v) + Iδ,2ε,M(v), δ ∈ {+,−, 0},

I+,1
ε,M(v) = −ε−α

∑
j∈Z

n∑
k=0

εk
∫
Cµε

((
u

(k)

j+ 1
2

)′
(x− j)− ∂xU (k)

j

(
x−j
ε
, 2y+L

2ε

))
χ′
(
x−j
εα

)
v(x, y)dΩ,

I+,2
ε,M(v) = ε−α

∑
j∈Z

n∑
k=0

εk
∫
Cµε

(
u

(k)

j+ 1
2

(x− j)− U (k)
j

(
x−j
ε
, 2y+L

2ε

))
χ′
(
x−j
εα

)
∂xv(x, y)dΩ,

I−,1ε,M(v) = ε−α
∑
j∈Z

n∑
k=0

εk
∫
Cµε

((
u

(k)

j− 1
2

)′
(x+ 1− j)− ∂xU (k)

j

(
x−j
ε
, 2y+L

2ε

))
χ′
(
j−x
εα

)
v(x, y)dΩ,

I−,2ε,M(v) = −ε−α
∑
j∈Z

n∑
k=0

εk
∫
Cµε

(
u

(k)

j− 1
2

(x+ 1− j)− U (k)
j

(
x−j
ε
, 2y+L

2ε

))
χ′
(
j−x
εα

)
∂xv(x, y)dΩ,

I0,1
ε,M(v) = −ε−α

∑
j∈Z

n∑
k=0

εk
∫
Cµε

((
u

(k)
j

)′
(y)− ∂yU (k)

j

(
x−j
ε
, 2y+L

2ε

))
χ′
(

2y+L
2εα

)
v(x, y)dΩ,

I0,2
ε,M(v) = ε−α

∑
j∈Z

n∑
k=0

εk
∫
Cµε

(
u

(k)
j (y)− U (k)

j

(
x−j
ε
, 2y+L

2ε

))
χ′
(

2y+L
2εα

)
∂yv(x, y)dΩ.
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The term Iε,F (v) corresponds to the regions where the far field expansion holds and the
term Iε,N(v) corresponds to the regions where the near field expansion holds. Roughly
speaking, these terms measure the error between the true eigenfunction and the con-
structed quasimode in the corresponding regions. The term Iε,M(v) corresponds to the
regions of matching. It can be seen as a measure of the difference between the two
expansions in these regions.

• Estimation of the term Iε,F (v)

Using the Cauchy-Schwarz inequality, we get the following estimate:∣∣∣I(1)
ε,F (v)

∣∣∣
6 C

2n∑
k=n+1

n∑
p=k−n

εkλ(k−p)
∑
j∈Z

 1∫
0

−L
2

+ε∫
−L

2

∣∣∣u(p)

j+ 1
2

(s)
∣∣∣2 dsdy


1/2 j+1∫

j

−L
2

+ε∫
−L

2

|v(x, y)|2dxdy


1/2

6 C

2n∑
k=n+1

n∑
p=k−n

εk+ 1
2λ(k−p) ∥∥u(p)

∥∥
L2(GC)

‖v‖
L2

(
Cµε
) 6 Cεn+ 3

2‖v‖
H1
(
Cµε
).

(2.4.7)

The term I(2)
ε,F (v) can be estimated in the same way.

• Estimation of the term Iε,N(v)

In order to estimate the term Iε,N(v) we will use Lemma A.3.1 (cf. Annexe). First,
assuming that α < 1 we can estimate Iε,N(v) as follows:

|Iε,N(v)| 6 C
(
I(0)
ε,N(v) + I(1)

ε,N(v) + I(2)
ε,N(v) + I(3)

ε,N(v)
)
,

where

I(0)
ε,N(v) =

∑
j∈Z

∫
Qjε

∣∣Sjε(x, y)v(x, y)
∣∣ dΩ, Qj

ε =
[
j − wµj ε, j + wµj ε

]
×
[
−L

2
,−L

2
+ 2ε

]
,

I(1)
ε,N(v) =

∑
j∈Z

j+εα∫
j+ε

−L
2

+ε∫
−L

2

∣∣Sjε(x, y)v(x, y)
∣∣ dΩ,

I(2)
ε,N(v) =

∑
j∈Z

j−ε∫
j−εα

−L
2

+ε∫
−L

2

∣∣Sjε(x, y)v(x, y)
∣∣ dΩ,

I(3)
ε,N(v) =

∑
j∈Z

j+
w
µ
j
ε

2∫
j−

w
µ
j
ε

2

−L
2

+εα∫
−L

2
+2ε

∣∣Sjε(x, y)v(x, y)
∣∣ dΩ,

Sjε(x, y) =
n∑

k=n−1

k∑
p=0

εkλ(k−p)U
(p)
j

(
x−j
ε
, 2y+L

2ε

)
+

2n∑
k=n+1

n∑
p=k−n

εkλ(k−p)U
(p)
j

(
x−j
ε
, 2y+L

2ε

)
.
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For I(0)
ε,N(v) we have:

I(0)
ε,N(v) 6∑
j∈Z

(
n∑

k=n−1

k∑
p=0

εk+1
∣∣λ(k−p)∣∣ ∥∥∥U (p)

j

∥∥∥
L2(Kj)

+
2n∑

k=n+1

n∑
p=k−n

εk+1
∣∣λ(k−p)∣∣ ∥∥∥U (p)

j

∥∥∥
L2(Kj)

)
‖v‖L2(Qjε)

6 Cεn
n∑
p=0

(∑
j∈Z

∥∥∥U (p)
j

∥∥∥2

L2(Kj)

)1/2(∑
j∈Z

‖v‖2
L2(Qjε)

)1/2

6 Cεn+ 1
2 ‖v‖H1(Cµε ) . (2.4.8)

Here we used the estimate (A.3.2) for the function v, fact that U (k)
j ∈ H1

loc(Jj), ∀j ∈ Z,
k ∈ N as well as the exponential decay property (2.3.21) for the functions

{
U (p)

}n
p=0

.

In order to estimate the term I(1)
ε,N(v) we notice that the behaviour of the functions{

U (p)
}n
p=0

in the band B+
j (cf. (2.2.9), (2.2.11), (2.2.13)) implies the following inequal-

ity:

∣∣Sjε(x, y)
∣∣ 6 Cn(j)

(
n∑

k=n−1

k∑
p=0

εk+p(α−1) +
2n∑

k=n+1

n∑
p=k−n

εk+p(α−1)

)
6 Cn(j)ε(n−1)α,

(x, y) ∈]j + ε, j + εα[×
]
−L

2
,−L

2
+ ε
[
.

Due (A.3.1) and the exponential decay of
{
U (p)

}n
p=0

(2.3.21) (which implies the expo-
nential decay of constants Cn(j) in j) we get:

I(1)
ε,N(v) 6 Cnε

nα+ 1
2‖v‖H1(Cµε ). (2.4.9)

The terms I(2)
ε,N(v) and I(3)

ε,N(v) can be estimated analogously to I(1)
ε,N(v).

• Estimation of the term Iε,M(v)

We will estimate the term I+
ε,M(v), the estimation of the terms I−ε,M(v), I0

ε,M(v) being
analogous.

Using the relation (2.2.9) giving the behaviour of the functions
{
U (k)

}n
k=0

in the band
B+
j , we get∣∣I+,1
ε,M(v)

∣∣
6 Cnε

−α

∑
j∈N

j+2εα∫
j+εα

−L
2

+ε∫
−L

2

∣∣Pjε (x)v(x, y)
∣∣ dxdy +

∑
j∈N

j+2εα∫
j+εα

−L
2

+ε∫
−L

2

∣∣E jε (x, y)v(x, y)
∣∣ dxdy

,
where

Pjε (x) =
n∑
k=0

εk
(
u

(k)

j+ 1
2

)′
(x− j)−

n∑
k=0

εk−1
(
P

(k)
j,0,+

)′ (
x−j
ε

)
,

E jε (x, y) =
n∑
k=0

εk∂x

(∑
p∈N∗

P
(k)
j,p,+

(
x−j
ε

)
e−

pπ(x−j)
ε fp

(
2y+L

2ε

))
.
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Taking into account the definition (2.2.13) of the polynomials P (k)
j,0,+ we can rewrite Pjε

as

Pjε (x) =
n∑
k=0

εk

(u(k)

j+ 1
2

)′
(x− j)−

n−k−1∑
`=0

d`
(
u

(k)

j+ 1
2

)′
dsl

∣∣∣∣∣∣∣
s=0

(x− j)`

`!

 .

Hence,

∣∣Pjε (x)
∣∣ 6 n∑

k=0

εk

∥∥∥∥∥∥
dn−k+1u

(k)

j+ 1
2

dsn−k+1

∥∥∥∥∥∥
L∞([0,1])

(2εα)n−k 6 Cn(j) εαn, x ∈ [j + εα, j + 2εα] ,

and using (A.3.1) we get

∑
j∈N

j+2εα∫
j+εα

−L
2

+ε∫
−L

2

∣∣Pjε (x)v(x, y)
∣∣ dxdy 6 Cnε

α(n+1)+ 1
2‖v‖H1(Cµε ).

Next, we obviously have the following estimate for the other term due to the decaying
exponentials (α < 1):

∑
j∈N

j+2εα∫
j+εα

−L
2

+ε∫
−L

2

∣∣E jε (x, y)v(x, y)
∣∣ dxdy 6 Cn(N)εN‖v‖H1(Cµε ), ∀n ∈ N. (2.4.10)

Thus, ∣∣I+,1
ε,M(v)

∣∣ 6 Cnε
αn+ 1

2‖v‖H1(Ωµ,−ε ). (2.4.11)

Finally, for I+,2
ε,M(v) we get∣∣I+,2

ε,M(v)
∣∣ 6

Cε−α

∑
j∈N

j+2εα∫
j+εα

−L
2

+ε∫
−L

2

∣∣T jε (x)∂xv(x, y)
∣∣ dxdy +

∑
j∈N

j+2εα∫
j+εα

−L
2

+ε∫
−L

2

∣∣Rj
ε(x, y)∂xv(x, y)

∣∣ dxdy
 ,

where

T jε (x) =
n∑
k=0

εku
(k)

j+ 1
2

(x− j)−
n∑
k=0

εkP
(k)
j,0,+

(
x−j
ε

)
,

Rj
ε(x, y) =

n∑
k=0

∑
p∈N∗

εkP
(k)
j,p,+

(
x−j
ε

)
e−

pπ(x−j)
ε fp

(
2y+L

2ε

)
.

Using the definition (2.2.13) of the polynomials P (k)
j,0,+, the term T jε can be rewritten as

T jε (x) =
n∑
k=0

εk

u(k)

j+ 1
2

(x− j)−
n−k∑
`=0

d`u
(k)

j+ 1
2

ds`

∣∣∣∣∣∣
s=0

(x− j)`

`!

 ,
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which implies

∣∣T jε (x)
∣∣ 6 n∑

k=0

εk

∥∥∥∥∥∥
dn−k+1u

(k)

j+ 1
2

dsn−k+1

∥∥∥∥∥∥
L∞([0,1])

(2εα)n−k 6 C(j) εαn, x ∈ [j + εα, j + 2εα] .

Thus, using Cauchy-Schwartz inequality we get:

∑
j∈N

j+2εα∫
j+εα

−L
2

+ε∫
−L

2

∣∣T jε (x)∂xv(x, y)
∣∣ dxdy 6 Cεα(n+1)+ 1

2‖v‖H1(Cµε ).

Analogously to (2.4.10) we can estimate the term containing the decaying exponentials
as follows:

∑
j∈N

j+2εα∫
j+εα

−L
2

+ε∫
−L

2

∣∣Rj
ε(x, y)v(x, y)

∣∣ dxdy 6 Cn(N)εN‖v‖H1(Cµε ), ∀N ∈ N.

Finally, ∣∣I+,2
ε,M(v)

∣∣ 6 Cnε
αn+ 1

2‖v‖H1(Cµε ). (2.4.12)

Summing up the estimates for all the terms (cf. (2.4.7), (2.4.8), (2.4.9), (2.4.11), (2.4.12))
we can conclude that for 0 < α < 1 there exists a constant C(n, α) > 0 such that

|IUε(v)| 6 C(n, α)εαn+ 1
2‖v‖H1(Cµε ), ∀v ∈ H1

s (Ωµ
ε ),

for ε small enough. This finishes the proof.

Proof of Theorem 1.4.2. Proposition 2.4.1 together with the estimate (2.4.5) imply due
to Lemma A.2.1 that

dist (σ (Aµε ) , λε,n) 6 C(n, α)εαn.

for ε small enough. This is not exactly the estimate we need in order to prove Theorem
1.4.2. However, going up to the order n+ 2, we would get

dist (σ (Aµε ) , λε,n+2) 6 C(n+ 2, α)εα(n+2) 6 C(n+ 2)εn+1,

if α is chosen close enough to 1. On the other hand,

λε,n+2 − λε,n = λ(n+1)εn+1 + λ(n+2)εn+2.

Hence, due to the triangle inequality, we finally obtain

dist (σ (Aµε ) , λε,n) 6 C(n)εn+1.

This finishes the proof of Theorem 1.4.2.





CHAPTER 3

TRAPPED MODES IN A LOCALLY
PERTURBED PERIODIC LADDER:

NUMERICAL STUDY

3.1 Goals and difficulties

In the previous chapter we dealt with an eigenvalue problem in an unbounded domain Ωε.
This requires some special methods when trying to find numerical approximations for this
problem. One of the most common methods is the Supercell method ([64, 10, 62]) which
consists in considering a big bounded domain with periodic boundary conditions. The
solution in the truncated domain converges to the exact one exponentially if the defect
mode is exponentially decaying. However, this method appears to be costly, especially
when the mode is not well confined.

We apply here another method developed by S. Fliss ([24]) which is based on the con-
struction of an appropriate Dirichlet-to-Neumann (DtN) operator. In the framework of
this method the initial eigenvalue problem set in an unbounded domain is replaced by a
nonlinear eigenvalue problem set in a bounded domain containing the defect (this time the
domain does not have to be big). This nonlinear eigenvalue problem can be discretized by
finite element method and a Newton type algorithm can be applied to solve the discrete
problem.

In section 3.2 we explain how to reduce the initial problem to a problem posed in a
bounded domain and in section 3.3 we show how this last problem is discretized by finite
element method.
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3.2 DtN operator method

Let us remind the initial problem. It consists in finding values λε such that there exists
a non-trivial function uε ∈ H1

∆(Ωµ
ε ) solving the problem
−∆uε = λ2

εuε in Ωµ
ε ,

∂uε
∂n

∣∣∣∣
∂Ωµε

= 0.
(3.2.1)

To simplify the notation we will write in this section uε, λε, keeping in mind that these
values depend on µ. The idea of the DtN operator method is to find a problem which
is equivalent to (3.2.1) but posed in a neighbourhood of the perturbation (the perturbed
cell). The boundary conditions on the boundaries separating the perturbed cell from the
rest of the domain (two half-bands) will contain the DtN operators which are defined
using the corresponding problems in these half-bands.

3.2.1 Half-band problems

We denote B±ε = Ωµ
ε ∩ {±x > 1}, Γ±ε = {±1}×

]
−L

2
, L

2

[
(cf. figure 3.1). Let us introduce

Figure 3.1: The half-bands B+
ε and B−ε

the following function spaces:

H1
∆

(
B±ε
)

=
{
u ∈ H1

(
B±ε
)
, ∆u ∈ L2

(
B±ε
)}
,

H1
∆,N

(
B±ε
)

=

{
u ∈ H1

∆

(
B±ε
)
,

∂u

∂n

∣∣∣∣
∂B±ε \Γ±ε

= 0

}
.

We denote by γ±0 and γ±1 the trace maps on Γ±ε :

γ±0 ∈ L
(
H1
(
B±ε
)
, H1/2

(
Γ±ε
))

: ∀u ∈ H1
(
B±ε
)
, γ±0 u = u|Γ±ε ,

γ±1 ∈ L
(
H1

∆

(
B±ε
)
, H−1/2

(
Γ±ε
))

: ∀u ∈ H1
∆

(
B±ε
)
, γ±1 u = ∓ ∂u

∂x

∣∣∣∣
Γ±ε

.

Let us consider the operators A±ε defined by the relations

A±ε u = −∆u, D(A±ε ) =
{
u ∈ H1

∆,N

(
B±ε
)
, u|Γ±ε = 0

}
. (3.2.2)
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Obviously, the two operators are unitarily-equivalent. Let U be the unitary operator from
L2 (B+

ε ) to L2 (B−ε ) defined on smooth functions by the relation

(Uu) (x, y) = u(−x, y), (x, y) ∈ B−ε ,

and extended by continuity to L2 (B+
ε ). Then,

D(A−ε ) = UD(A+
ε ), A−ε = UA+

ε U−1.

In fact, we do not have to distinguish between the two operators since the difference is
purely geometric. Even if we still keep the symbols ± in the notation in order to point out
this geometric difference, all the results will be proved for the operator A+

ε , the analogous
results for the operator A−ε being obvious. We will use the notation

d±(α) = dist
(
α2, σ(A±ε )

)
.

As before, Aε stands for the non-perturbed operator defined in Section 1.2.1 with empty
discrete spectrum (cf. (1.2.1)).

Lemma 3.2.1.
σ(A±ε ) = σ(Aε). (3.2.3)

Proof. Let P be the operator of continuation by antisymmetry from L2 (B+
ε ) to L2 (Ωε)

defined on smooth functions as

(Pu) (x, y) =

{
u(x, y), (x, y) ∈ B+

ε ,
−u(1− x, y), (x, y) ∈ Ωε \B+

ε ,

and extended by continuity to L2 (B+
ε ). Then, the operator P transforms an eigenfunction

of the operator A+
ε into an eigenfunction of the operator Aε and any singular sequence of

the operator A+
ε into a singular sequence of the operator Aε, which proves the inclusion

σ(A+
ε ) ⊂ σ(Aε). Conversely, the operator P̃ from L2 (Ωε) to L2 (B+

ε ) defined on smooth
functions as

(P̃u)(x, y) = u(x, y)− u(1− x, y), (x, y) ∈ B+
ε ,

and extended by continuity to L2 (Ωε) transforms an eigenfunction of the operator Aε into
an eigenfunction of the operator A+

ε and any singular sequence of the operator Aε into a
singular sequence of the operator A+

ε . This proves the inclusion σ(Aε) ⊂ σ(A+
ε ).

For any α ∈ R, ϕ ∈ H1/2 (Γ±ε ) we consider the following half-band problems for u±ε ∈
H1

∆,N (B±ε ): {
∆u±ε + α2u±ε = 0 in B±ε ,

u±ε |Γ±ε = ϕ.
(3.2.4)

The following statement establishes the well-posedness of these problems.

Proposition 3.2.1. For any α2 /∈ σ (Aε), ϕ ∈ H1/2 (Γ±ε ) the problems (3.2.4) have unique
solutions. Moreover, the following estimates for the norms of the solutions hold:

‖u±ε ‖H1(B±ε ) 6

(
C1(α) +

C2(α)

d±(α)

)
‖ϕ‖H1/2(Γ±ε ), (3.2.5)

where C1(α), C2(α) are continuous functions of α depending only on the domains B±ε .
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Proof. Let us denote by ϕ̂ a lift function belonging to H1 (B+
ε ) such that ϕ̂|Γ+

ε
= ϕ and

‖ϕ̂‖H1(B+
ε ) 6 C+‖ϕ‖H1/2(Γ+

ε ), (3.2.6)

where the constant C+ depends only on the domain B+
ε . We also introduce the following

function space:
H1
D

(
B+
ε

)
=
{
u ∈ H1

(
B+
ε

)
, u|Γ+

ε
= 0
}
,

which we equip with H1-norm. Multiplying the first line of (3.2.4) by a test function
v ∈ H1

D (B+
ε ) and changing the unknown function by

û = u+
ε − ϕ̂, (3.2.7)

we get the following variational problem for û ∈ H1
D (B+

ε ):

(∇û,∇v)L2(B+
ε )−α

2 (û, v)L2(B+
ε ) = − (∇ϕ̂,∇v)L2(B+

ε )+α2 (ϕ̂, v)L2(B+
ε ) , ∀v ∈ H1

D

(
B+
ε

)
.

(3.2.8)
The right-hand side of (3.2.8) is a continuous linear functional in v with respect to the
norm H1:∣∣∣− (∇ϕ̂,∇v)L2(B+

ε ) + α2 (ϕ̂, v)L2(B+
ε )

∣∣∣ 6 Cϕ(α) ‖v‖H1(B+
ε ) , ∀v ∈ H1

D

(
B+
ε

)
,

where
Cϕ(α) = (1 + α2) ‖ϕ̂‖H1(B+

ε ) . (3.2.9)

Hence, there exists a function f ∈ H1
D (B+

ε ) such that

− (∇ϕ̂,∇v)L2(B+
ε ) + α2 (ϕ̂, v)L2(B+

ε ) = (f, v)H1(B+
ε ), ∀v ∈ H1

D

(
B+
ε

)
. (3.2.10)

Besides, ‖f‖H1(B+
ε ) 6 Cϕ(α). Consequently, the problem (3.2.8) can be rewritten as

(û, v)H1(B+
ε ) − (1 + α2) (û, v)L2(B+

ε ) = (f, v)H1(B+
ε ), ∀v ∈ H1

D

(
B+
ε

)
. (3.2.11)

Due to the estimate∣∣∣(u, v)L2(B+
ε )

∣∣∣ 6 ‖u‖H1(B+
ε ) ‖v‖H1(B+

ε ), ∀u, v ∈ H1
D

(
B+
ε

)
,

we can introduce the bounded self-adjoint operator K(α) ∈ L (H1
D (B+

ε )) defined by the
relation

(û, v)H1(B+
ε ) − (1 + α2) (û, v)L2(B+

ε ) = (K(α)û, v)H1(B+
ε ), ∀v ∈ H1

D

(
B+
ε

)
. (3.2.12)

Finally, the problem (3.2.11) takes the form

K(α)û = f. (3.2.13)

We remark that this problem is equivalent to the initial problem (3.2.4). Indeed, we have
just shown that if u+

ε is a solution of (3.2.4), then the function û defined in (3.2.7) is a
solution of (3.2.13) with f defined in (3.2.10). Conversely, if û is a solution of (3.2.13) with
f defined in (3.2.10), then, repeating the argument in the other sense, we arrive at the
variational formulation (3.2.8) which is equivalent to (3.2.4) with the change of unknown
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function (3.2.7). Therefore, in order to establish the well-posedness of (3.2.4) it is enough
to prove the well-posedness of (3.2.13). Let us denote dK(α) = dist (0, σ (K(α))). We will
use the result proved in Lemma 3.2.2 below which states that

dK(α) >
d(α)

d(α) + 1 + α2
. (3.2.14)

Since by assumption α2 /∈ σ (Aε), due to Lemma 3.2.1 we have α2 /∈ σ (A+
ε ). Hence,

d(α) > 0 and (3.2.14) implies that dK(α) > 0. This shows that the problem (3.2.13) is
well-posed. Moreover, the norm of its solution can be estimated as follows:

‖û‖H1(B+
ε ) 6 ‖K

−1‖H1(B+
ε )→H1(B+

ε )‖f‖H1(B+
ε ) 6

Cϕ(α)

dK(α)
. (3.2.15)

Putting together the relations (3.2.7), (3.2.6), (3.2.9), (3.2.14), (3.2.15) we get:

‖u+
ε ‖H1(B+

ε ) 6

(
C+ + 1 + α2 +

(1 + α2)2

d(α)

)
‖ϕ‖H1/2(Γ+

ε ).

This is exactly the estimate (3.2.5) with C1(α) = C+ + 1 + α2, C2(α) = (1 + α2)2.

Remark 3.2.1. The uniqueness of solutions of the problems (3.2.4) is obvious since
Lemma 3.2.1 implies that the operators A±ε have no eigenvalues. The goal of the above
proof is to establish the existence. However, the argument used in the proof establishes
the existence and the uniqueness simultaneously (the reason for which we talk about
well-posedness).

Remark 3.2.2. The proof of Proposition 3.2.1 would be more straightforward for ϕ ∈
H3/2 (Γ±ε ). In this case it would be unnecessary to pass to the weak formulation and the
well-posedness would be directly guaranteed by the fact that α2 /∈ σ (A±ε ). However, we
need to consider ϕ ∈ H1/2 (Γ±ε ) since the problem will be discretized by P1 finite elements
(cf. section 3.3) which implies working with H1 functions, and, consequently, H1/2 on the
boundary.

Lemma 3.2.2. In the notation of the proof of Proposition 3.2.1 the estimate (3.2.14)
holds.

Proof. If dK(α) > 1 the result is obvious. Suppose that dK(α) < 1. Then, since σ(K(α))
is a closed subset of R, there exists γ ∈ R such that |γ| = dk(α) and γ ∈ σ(K(α)) (in
other words, either dK(α) or −dk(α) belongs to σ(K(α))). The operator K(α) being
self-adjoint, this means that there exists a singular sequence {un}n∈N ⊂ H1

D(B+
ε ) such

that

1. ‖un‖H1(B+
ε ) = 1, n ∈ N,

2. ‖(K(α)− γI)un‖H1(B+
ε ) → 0, n→∞,

where I is the identity operator in H1(B+
ε ). This implies that for any δ > 0 there exists

uδ ∈ H1
D(B+

ε ), ‖uδ‖H1(B+
ε ) = 1, such that ‖(K(α)− γI)uδ‖H1(B+

ε ) 6 δ. Hence,∣∣∣((K(α)− γI)uδ, v)H1(B+
ε )

∣∣∣ 6 ‖(K(α)− γI)uδ‖H1(B+
ε ) ‖v‖H1(B+

ε )

6 δ‖uδ‖H1(B+
ε )‖v‖H1(B+

ε ), ∀v ∈ H1
D(B+

ε ). (3.2.16)



82 CHAPTER 3. LADDER: NUMERICAL STUDY

Using the definition (3.2.12) of the operator K(α), we get:∣∣∣∣(uδ, v)H1(B+
ε ) −

1 + α2

1− γ
(uδ, v)L2(B+

ε )

∣∣∣∣ 6 δ‖uδ‖H1(B+
ε )‖v‖H1(B+

ε )

1− γ
, ∀v ∈ H1

D(B+
ε ).

The sesquilinear form a[u, v] = (uδ, v)H1(B+
ε ) defined on D[a] = H1

D(B+
ε ) is the unique

sesquilinear form corresponding to the operator A+
ε +I. It obviously satisfies the estimate

a[u, u] > ‖u‖2
L2(B+

ε )
, ∀u ∈ D[a], which permits us to apply Lemma A.2.1. Thus, we can

conclude that
dist

(
σ
(
A+
ε + I

)
,
1 + α2

1− γ

)
< Cδ, ∀δ > 0.

Since δ can be chosen arbitrarily small, one gets
1 + α2

1− γ
∈ σ(A+

ε + I), which is equivalent

to
γ + α2

1− γ
∈ σ(A+

ε ). This means that d 6
|γ|(1 + α2)

1− γ
6

dK(α)(1 + α2)

1− dK(α)
. This yields

(3.2.14).

From now on u±ε (α, ϕ) will stand for the unique solutions of the problems (3.2.4) for
α2 /∈ σ(Aε), ϕ ∈ H1/2 (Γ±ε ).

3.2.2 The DtN operators Λ±

We define the DtN operators Λ± : H1/2 (Γ±ε )→ H−1/2 (Γ±ε ) for α2 /∈ σ(Aε) as follows:〈
Λ±(α)ϕ, ψ

〉
=

∫
B±ε

∇u±ε (α, ϕ)∇u±ε (α, ψ)−α2

∫
B±ε

u±ε (α, ϕ)u±ε (α, ψ), ∀ϕ, ψ ∈ H1/2
(
Γ±ε
)
.

(3.2.17)
Here u±ε (α, ϕ) is the solution of the problem (3.2.4) and 〈·, ·〉 stands for the duality brackets
between H−1/2 (Γ±ε ) and H1/2 (Γ±ε ). In other words,

Λ±(α)ϕ =
∂u±ε (α, ϕ)

∂n

∣∣∣∣
Γ±ε

, ∀ϕ ∈ H1/2
(
Γ±ε
)
. (3.2.18)

The following assertion which states the norm continuity of the DtN operators with respect
to α will be used in Proposition 3.2.5 in order to show the continuity of the functions to
which a Newton type algorithm will be applied.

Proposition 3.2.2. The operators Λ±(α) defined by (3.2.17) are continuous from H1/2 (Γ±ε )
to H−1/2 (Γ±ε ) and norm-continuous with respect to α:∥∥Λ±(α1)− Λ±(α2)

∥∥
H1/2(Γ±ε )→H−1/2(Γ±ε ) 6 C

∣∣α2
1 − α2

2

∣∣ . (3.2.19)

Proof. Due to the estimate (3.2.5) one finds∣∣〈Λ±(α)ϕ, ψ
〉∣∣ 6 (1 + α2)

(
C1(α) +

C2(α)

d±(α)

)2

‖ϕ‖H1/2(Γ±ε )‖ψ‖H1/2(Γ±ε ).

Consequently, ∥∥Λ±(α)
∥∥
H1/2(Γ±ε )→H−1/2(Γ±ε ) 6 (1 + α2)

(
C1(α) +

C2(α)

d±(α)

)2

.
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If α1, α2 /∈ σ(A±ε ) then one can estimate the norm of the difference Λ±(α1)−Λ±(α2). Let
us denote ũ±ε (ϕ) = u±ε (α1, ϕ)− u±ε (α2, ϕ). Then for any ϕ, ψ ∈ H1/2 (Γ±ε ) we have:〈(

Λ±(α1)− Λ±(α2)
)
ϕ, ψ

〉
=

∫
B±ε

(
∇ũ±ε (ϕ)∇u±ε (α1, ψ) +∇u±ε (α2, ϕ)∇ũ±ε (ψ)

)
− α2

1

∫
B±ε

(
ũ±ε (ϕ)u±ε (α1, ψ) + u±ε (α2, ϕ)ũ±ε (ψ)

)
+
(
α2

2 − α2
1

) ∫
B±ε

u±ε (α2, ϕ)u±ε (α2, ψ).

(3.2.20)

Remark that ũ±ε (ϕ) solves the problem

A±ε ũ
±
ε (ϕ)− α2

1ũ
±
ε (ϕ) =

(
α2

1 − α2
2

)
u±ε (α2, ϕ). (3.2.21)

Therefore, its L2-norm can be estimated as follows:∥∥ũ±ε (ϕ)
∥∥
L2(B±ε )

6
|α2

1 − α2
2| ‖u±ε (α2, ϕ)‖L2(B±ε )

d±(α1)
. (3.2.22)

Multiplying (3.2.21) by ũ±ε (ϕ) and integrating by parts yields∥∥∇ũ±ε (ϕ)
∥∥2

L2(B±ε )
= α2

1

∥∥ũ±ε (ϕ)
∥∥2

L2(B±ε )
+
(
α2

1 − α2
2

) (
u±ε (α2, ϕ), ũ±ε (ϕ)

)
L2(B±ε )

.

Thus, taking into account (3.2.22), on obtains:∥∥ũ±ε (ϕ)
∥∥
H1(B±ε )

6
(
α2

1 + 1 + d±(α1)
)1/2 |α2

1 − α2
2| ‖u±ε (α2, ϕ)‖L2(B±ε )

d±(α1)
.

In other terms, the operator (A±ε − α2
1)
−1 is continuous from L2(B±ε ) to H1(B±ε ). Finally,

using (3.2.5) we conclude that

∥∥ũ±ε (ϕ)
∥∥
H1(B±ε )

6 C(α1, α2)
|α2

1 − α2
2| ‖ϕ‖H1/2(Γ±ε )

d±(α1)d±(α2)
, ∀ϕ ∈ H1/2

(
Γ±ε
)
,

where C(α1, α2) is a continuous function of α1, α2. Notice that it depends on d±(α1),
d±(α2). Coming back to (3.2.20) we get the following estimate for any ϕ, ψ ∈ H1/2(Γ±ε ):∣∣〈(Λ±(α1)− Λ±(α2)

)
ϕ, ψ

〉∣∣
6 C(α1, α2)

|α2
1 − α2

2| ‖ϕ‖H1/2(Γ±ε ) ‖ψ‖H1/2(Γ±ε )

d±(α1)d±(α2)

(
1 +

1

d±(α1)
+

1

d±(α2)

)
.

Here C(α1, α2) stands for some continuous function of α1, α2 (not necessarily the same as
above). The obtained estimate implies that if d±(α1), d±(α2) > c0 > 0 then the inequality
(3.2.19) holds.

We will need the following technical result.

Lemma 3.2.3 (Gårding’s inequality for the DtN operators).
For α2 /∈ σ(Aε) there exist a constant C1 and a continuous function C2(α) depending only
on the geometry of the domain such that

〈Λ±(α)ϕ, ϕ〉 > C1‖ϕ‖2
H1/2(Γ±ε ) − C2(α)‖ϕ‖2

L2(Γ±ε ), ∀ϕ ∈ H1/2
(
Γ±ε
)
. (3.2.23)
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Proof. From (3.2.17) we get:

〈Λ±(α)ϕ, ϕ〉 =
∥∥u±ε (α, ϕ)

∥∥2

H1(B±ε ) − (1 + α2)
∥∥u±ε (α, ϕ)

∥∥2

L2(B±ε ) .

The trace applications γ±0 being continuous, this implies that

〈Λ±(α)ϕ, ϕ〉 > C1 ‖ϕ‖2
H1/2(Γ±ε ) − (1 + α2)

∥∥u±ε (α, ϕ)
∥∥2

L2(B±ε ) . (3.2.24)

In order to estimate the L2-norm of the solutions u±ε (α, ϕ) let us consider the following
problems with u±ε (α, ϕ) being source terms:

A±ε v
± − α2v± = u±ε (α, ϕ). (3.2.25)

Since α2 /∈ σ (A±ε ) this problems have unique solutions in D (A±ε ). Multiplying (3.2.25)
by u±ε (α, ϕ) and using Green’s formula we get:∥∥u±ε (α, ϕ)

∥∥2

L2(B±ε ) = −
〈
∂v±

∂n
, ϕ

〉
. (3.2.26)

The domains B±ε are not convex, which makes it impossible to use the argument of global
regularity of weak solutions. Nevertheless, it is still possible to use the local regularity
near the boundaries that do not contain reentrant angles. More precisely, let K± stand
for the rectangles

]
1, 1 + ε

8

[
×
]
−L

2
, L

2

[
and

]
−1− ε

8
,−1,

[
×
]
−L

2
, L

2

[
respectively. Then

there exists a continuous function C(α) depending only on the geometry of the domain
such that ∥∥v±∥∥

H2(K±)
6 C(α)

∥∥u±ε ∥∥L2(B±ε ) . (3.2.27)

We detail the proof of this fact in Lemma A.3.3 given in Annexe. Then, the continuity

of the trace applications v → ∂v

∂n

∣∣∣∣
Γ±ε

defined as operators from H2 (K±) to H1/2 (Γ±ε ),

implies that ∥∥∥∥∂v±∂n
∥∥∥∥
H1/2(Γ±ε )

6 C(α)
∥∥u±ε ∥∥L2(B±ε ) .

Here we denote by C(α) any continuous function that depends only on the geometry of
the domain (without changing the notation even if its value changes). Thus, coming back
to (3.2.26), we get: ∥∥u±ε (α, ϕ)

∥∥
L2(B±ε ) 6 C(α) ‖ϕ‖H1/2(Γ±ε ) .

Injecting this estimate in (3.2.24) yields (3.2.23).

3.2.3 The interior problem

We can now state the following problem in Cµε (which is a bounded domain corresponding
to the perturbed periodicity cell, cf. figure 3.2). It consists in finding values λε such that
there exists a function u0

ε ∈ H1
∆(Cµε ) solving the problem

−∆u0
ε = λ2

εu
0
ε in Cµε ,

∂u0
ε

∂n

∣∣∣∣
Γ±ε

+ Λ±(λε) u
0
ε|Γ±ε = 0,

∂u0
ε

∂n

∣∣∣∣
∂Cµε \{Γ+

ε ∪Γ−ε }
= 0.

(3.2.28)
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Figure 3.2: The interior domain Cµε

Proposition 3.2.3. If λ2
ε /∈ σ (Aε) then the problem (3.2.28) is equivalent to the problem

(3.2.1).

Proof. Suppose first that uε solves the problem (3.2.1) for some λε. Let us denote u±ε =
uε|B±ε , u

0
ε = uε|Cµε . Then, u±ε are the unique solutions of (3.2.4) for ϕ replaced by uε|Γ±ε

and α = λε. Therefore, Λ±(λε) u
±
ε |Γ±ε =

∂u±ε
∂n

∣∣∣∣
Γ±ε

by definition of the DtN operators (cf.

(3.2.18)). On the other hand, since uε ∈ H1
∆ (Ωµ

ε ), both its traces and the traces of its

normal derivative are continuous: u±ε |Γ±ε = u0
ε|Γ±ε ,

∂u±ε
∂n

∣∣∣∣
Γ±ε

= − ∂u0
ε

∂n

∣∣∣∣
Γ±ε

. This implies

that u0
ε satisfies the second line of (3.2.28). It also satisfies the first and the last lines (the

equation and Neumann boundary condition) since it is a restriction of uε which solves the
initial problem (3.2.1).
Conversely, suppose that u0

ε is a solution of (3.2.28). Let us denote by u±ε the unique
solutions of (3.2.4) with α replaced by λε and ϕ replaced by u0

ε|Γ±ε . Then, the function
constructed as

uε(x, y) =

{
u±ε (x, y), (x, y) ∈ B±ε ,
u0
ε(x, y), (x, y) ∈ Cµε ,

solves (3.2.1) for α = λε. Indeed, its traces on Γ±ε are continuous by definition of u±ε .
The continuity of the normal derivative across Γ±ε is guaranteed by definition of the DtN
operators. Hence, uε constructed in such a way appears to be a function in H1

∆ (Cµε ). It
satisfies the equation in first line of (3.2.1) since the same equation is satisfied by u0

ε, u±ε .
Finally, it satisfies Neumann boundary conditions on ∂Ωµ

ε , which follows from Neumann
boundary conditions for u0

ε, u±ε on the respective boundaries.

We see that the initial eigenvalue problem (3.2.1) posed in the (unbounded) domain
Ωµ
ε can be replaced by an equivalent problem (3.2.28) posed in the (bounded) domain
Cµε . However, this problem is a nonlinear one since the DtN operators appearing in the
boundary conditions on Γ±ε depend themselves on the spectral parameter.
Let us now study the nonlinear problem (3.2.28). For α2 /∈ σ(Aε) we introduce the
operator A0

ε(α) defined as follows:

A0
ε(α)u = −∆u,

D (A0
ε(α)) =

{
u ∈ H1

∆ (Cµε ) ,
∂u

∂n

∣∣∣∣
Γ±ε

+ Λ(α)± u|Γ±ε = 0,
∂u

∂n

∣∣∣∣
∂Cµε \{Γ+

ε ∪Γ−ε }
= 0

}
.

(3.2.29)
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We will show some important properties of this operator.

Proposition 3.2.4. For α2 /∈ σ(Aε) the operator A0
ε(α) defined in (3.2.29) is self-adjoint

and bounded from below. Moreover, its resolvent is compact.

Proof. The fact that the operator A0
ε(α) is self-adjoint follows directly from the fact that

the DtN operators are symmetric. Let us show that it is bounded from below. Indeed,
for any u ∈ D (A0

ε(α)) one has:(
A0
ε(α)u, u

)
L2(Cµε ) = ‖∇u‖2

L2(Cµε ) +
〈
Λ+(α) u|Γ+

ε
, u|Γ+

ε

〉
+
〈
Λ−(α) u|Γ−ε , u|Γ−ε

〉
> ‖u‖2

H1(Cµε ) − ‖u‖
2
L2(Cµε ) − C2(α)

(∥∥u|Γ+
ε

∥∥2

L2(Γ+
ε )

+
∥∥u|Γ−ε ∥∥2

L2(Γ−ε )

)
,

where C2(α) is the constant from Lemma 3.2.3. The L2-norms of the traces of u on Γ±ε
can be estimated using Lemma A.3.2 (Annexe) applied to the rectangles

]
−1,−1 + ε

4

[
×]

−L
2
, L

2

[
and

]
1− ε

4
, 1
[
×
]
−L

2
, L

2

[
respectively. Then, for δ > 0 we get:(

A0
ε(α)u, u

)
L2(Cµε ) > (1− C2(α)δ) ‖u‖2

H1(Cµε ) − (1 + C2(α)C(δ)) ‖u‖2
L2(Cµε ) ,

∀u ∈ D
(
A0
ε(α)

)
.

Choosing δ < 1/C2(α) one obtains the boundedness from below for the operator A0
ε(α).

In fact, we got even a stronger inequality than just a lower bound. More precisely, if we
fix δ in an appropriate way and put C(α) = 1− C2(α)δ, m(α) = 1 + C2(α)C(δ), then(

A0
ε(α)u, u

)
L2(Cµε ) > C(α) ‖u‖2

H1(Cµε ) −m(α) ‖u‖2
L2(Cµε ) , ∀u ∈ D

(
A0
ε(α)

)
, (3.2.30)

where C(α), m(α) > 0 are continuous functions of α. It is now easy to see that the
resolvent of the operator A0

ε(α) is compact. Indeed, let f be a function in L2 (Cµε ) and
u = (A0

ε(α) +m(α)I)
−1
f . Then, the estimate (3.2.30) implies that

C(α) ‖u‖2
H1(Cµε ) 6 (f, u)L2(Cµε ).

This, in turn, implies that the resolvent (A0
ε(α) +m(α)I)

−1 is a continuous operator from
L2 (Cµε ) to H1 (Cµε ). Due to the compactness of the embedding H1 (Cµε ) ⊂ L2 (Cµε ) we
conclude that the resolvent of the operator A0

ε(α) is a compact operator in L2 (Cµε ).

It follows from the previous theorem that for α2 /∈ σ(Aε) the spectrum of the operator
A0
ε(α) is discrete and consists of a sequence of eigenvalues of finite multiplicity tending to

infinity:
κ1(α) 6 κ2(α) 6 · · · 6 κn(α) 6 . . . , κn(α) −−−→

n→∞
+∞.

Let us consider the following positively defined operator:

Ã0
ε(α) = A0

ε(α) +m(α)I.

Due to (3.2.30), the boundedness of the DtN operators and the boundedness of the trace
operators from H1(Cµε ) to H1/2(Γ±ε ) one has:

C(α) ‖u‖2
H1(Cµε ) 6

(
Ã0
ε(α)u, u

)
L2(Cµε )

6 C̃(α) ‖u‖2
H1(Cµε ) , ∀u ∈ D

(
A0
ε(α)

)
,
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with some constant C̃(α). This implies that the sesquilinear form ã0
ε(α) corresponding to

the operator Ã0
ε(α) is defined on H1(Cµε ) and the norm defined by this form is equivalent

to the H1-norm:

D[ã0
ε(α)] = H1(Cµε ),

ã0
ε(α)[u, v] = (∇u,∇v)L2(Cµε ) +

∑
δ∈{+,−}

〈
Λδ(α) u|Γδε , v|Γδε

〉
+m(α)(u, v)L2(Cµε ),

C(α) ‖u‖2
H1(Cµε ) 6 ã0

ε(α)[u, u] 6 C̃(α) ‖u‖2
H1(Cµε ) , ∀u ∈ H1(Cµε ). (3.2.31)

This permits to characterize the eigenvalues {κ̃n(α)}n∈N of the operator Ã0
ε(α) using the

min-max principle as follows:

κ̃n(α) = inf
M⊂H1(Cµε )
dimM=n

sup
u∈M

‖u‖
L2(C

µ
ε )

=1

ã0
ε(α)[u, u]. (3.2.32)

The following assertion states the continuity of these eigenvalues and, as a consequence,
of the eigenvalues κn(α), with respect to the parameter α.

Proposition 3.2.5. The functions κn(α) are continuous for α2 /∈ σ(Aε), n ∈ N.

Proof. First, we notice that the spectrum of the operator A0
ε(α) can be obtained by a

translation by m(α) of the spectrum of the operator Ã0
ε(α). Hence, the function m(α) be-

ing continuous, it is enough to prove the continuity of the functions κ̃n(α). For this we will
use (3.2.32). Let us consider the difference ã0

ε(α1)[u, u] − ã0
ε(α2)[u, u] for α2

1, α
2
2 /∈ σ(Aε)

and u ∈ H1(Cµε ) such that ‖u‖L2(Cµε ) = 1. One gets:

ã0
ε(α1)[u, u]−ã0

ε(α2)[u, u] =
∑

δ∈{+,−}

〈(
Λδ(α1)− Λδ(α2)

)
ϕδ, ϕδ

〉
+(m(α1)−m(α2)) ‖u‖2

L2(Cµε ),

where ϕ± = u|Γ±ε . Hence, the estimate (3.2.19) implies that if d±(α1), d±(α2) > c0 > 0
then ∣∣ã0

ε(α1)[u, u]− ã0
ε(α2)[u, u]

∣∣ 6 (C ∣∣α2
1 − α2

2

∣∣+ |m(α1)−m(α2)|
)
‖u‖2

H1(Cµε ).

The H1-norm of u can be estimated using (3.2.31) with α = α2, which yields

ã0
ε(α2)[u, u](1− f(α1, α2)) 6 ã0

ε(α1)[u, u] 6 ã0
ε(α2)[u, u](1 + f(α1, α2)),

∀u ∈ H1(Cµε ), (3.2.33)

where f(α1, α2) = (C |α2
1 − α2

2|+ |m(α1)−m(α2)|) /C(α2) and C(α2) is the constant in
the left-hand side of (3.2.31) which is strictly positive. This implies that the function f is
continuous and vanishes on the diagonal: f(α1, α2)→ 0 when α1 → α2. Taking the upper
bound of all the terms in (3.2.33) over all unit vectors belonging to some n-dimensional
subspace of H1(Cµε ) and then the lower bound over all such subspaces we get:

κ̃n(α2)(1− f(α1, α2)) 6 κ̃n(α1) 6 κ̃n(α2)(1 + f(α1, α2)), ∀n ∈ N.

This together with the properties of the function f mentioned above proves the continuity
of the functions κ̃n(α), n ∈ N.
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The following theorem is an immediate consequence of Proposition 3.2.3.

Theorem 3.2.1. A number λ2
ε is an eigenvalue of the operator Aµε if and only if λε is a

solution of the equation
α2 = κn(α), (3.2.34)

for some n ∈ N.

The functions κn being continuous, it’s the equation (3.2.34) that we solve numerically
using a Newton type algorithm.

3.2.4 Practical construction of the operators Λ±(α)

Let us now give a procedure of construction of the DtN operators Λ±(α) that avoids
solving the problems (3.2.4) posed in unbounded domains and consequently can be used
in numerical computations.

3.2.4.1 The local DtN operators

We introduce a periodicity cell Cε such that the band B+
ε is a union of translated period-

icity cells (fig. 3.3):

B+
ε =

⋃
n∈N

Cε,n, Cε,n = Cε + (n, 0), Cε = B+
ε ∩ {1 < x < 2} .

We also denote the vertical boundaries of the cells Cε,n by Γε,n = {n+ 1} ×
]
−L

2
, L

2

[
,

n ∈ N.

Figure 3.3: The cells Cε,n and the boundaries Γε,n

Function spaces on Cε,n and Γε,n for different n will be often identified. Let us consider
the following cell problems for α2 /∈ σ(Aε), δ ∈ {0, 1}:

−∆eδ − α2eδ = 0 in Cε,
∂eδ
∂n

∣∣∣∣
∂Cε\{Γε,0∪Γε,1}

= 0,

eδ|Γε,δ = ϕ, eδ|Γε,1−δ = 0.

(3.2.35)
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Proposition 3.2.6. For any α2 /∈ σD and ϕ ∈ H1/2 (Γε,δ) the problems (3.2.35) have
unique solutions in H1

∆ (Cε), where σD is a countable set.

Proof. We will give the proof for δ = 0, the proof for δ = 1 being analogous. The
argument is very close to the one used in the proof of Proposition 3.2.1. We repeat it
for the sake of completeness. Let us ϕ̂ be a function in H1 (Cε) such that ϕ̂|Γε,0 = ϕ,
ϕ̂|Γε,1 = 0 and ‖ϕ̂‖H1(Cε) 6 C‖ϕ‖H1/2(Γε,0), the constant C depending only on the domain
Cε. After multiplication of the first line of (3.2.35) by a test function v ∈ H1

D (Cε), where

H1
D (Cε) =

{
u ∈ H1 (Cε) , u|Γε,0 = 0, u|Γε,1 = 0

}
,

and changing the unknown function by ê0 = e0 − ϕ̂, we get the following variational
problem for ê0 ∈ H1

D (Cε):

(∇ê0,∇v)L2(Cε) − α
2 (ê0, v)L2(Cε) = − (∇ϕ̂,∇v)L2(Cε) + α2 (ϕ̂, v)L2(Cε) ,

∀v ∈ H1
D (Cε) . (3.2.36)

This problem can be reduced to the form(
I − (1 + α2)P

)
ê0 = f, (3.2.37)

where the bounded self-adjoint operator P ∈ L (H1
D (Cε)) is defined by the relation

(u, v)L2(Cε) = (Pu, v)H1(Cε), ∀u, v ∈ H1
D (Cε) , (3.2.38)

and f ∈ H1
D (Cε) is defined by the relation

− (∇ϕ̂,∇v)L2(Cε) + α2 (ϕ̂, v)L2(Cε) = (f, v)H1(Cε), ∀v ∈ H1
D (Cε) .

The operator P is compact. Indeed, it is bounded as an operator from L2 (Cε) to H1 (Cε)
since taking in (3.2.38) v = Pu one has:

‖Pu‖2
H1(Cε) = (u, Pu)L2(Cε) 6 ‖Pu‖H1(Cε)‖u‖L2(Cε), ∀u ∈ H1

D (Cε) .

Due to the compactness of the embedding H1 (Cε) ⊂ L2 (Cε) one concludes that the
operator P ∈ L (H1

D (Cε)) is compact. Hence, its spectrum σ(P ) consists of eigenvalues of
finite multiplicity that can only accumulate to 0. The problem (3.2.37) is then well-posed
if and only if α2 /∈ {1/γ − 1, γ ∈ σ(P )}, which is a discrete set accumulating only to
infinity that we denote by σD.

The unique solutions of the problems (3.2.35) for α2 /∈ σD, ϕ ∈ H1/2 (Γε,δ) will be denoted
by eδ(α, ϕ), δ ∈ {0, 1}. Notice that repeating the same argument as the one used in the
proof of Proposition 3.2.1 one can see that

‖eδ(α, ϕ)‖H1(Cε) 6 C(α)‖ϕ‖H1/2(Γε,δ), ∀ϕ ∈ H1/2 (Γε,δ) , δ ∈ {0, 1}, (3.2.39)

where the function C(α) is continuous and depends only on the geometry of the domain.
We can now introduce the local DtN operators Tγδ(α) ∈ L

(
H1/2 (Γε,γ) , H

−1/2 (Γε,δ)
)
,

γ, δ ∈ {0, 1}, as follows:

Tγδ(α)ϕ =
∂eγ(α, ϕ)

∂n

∣∣∣∣
Γε,δ

, γ, δ ∈ {0, 1}, (3.2.40)

where the normal derivative is taken along the outside normal to the domain Cε.
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(a) The operators T00(α), T01(α) (b) The operators T10(α), T11(α)

Figure 3.4: The local DtN operators

Lemma 3.2.4. The operators Tγδ(α) are symmetric for any γ, δ ∈ {0, 1}, α2 /∈ σD.

Proof. Indeed, we have

〈Tγδ(α)ϕ, ψ〉 =

∫
Cε

∆eγ(α, ϕ)eδ(α, ψ)−
∫
Cε

eγ(α, ϕ)∆eδ(α, ψ) +

∫
Γε,γ

eγ(α, ϕ)
∂eδ(α, ψ)

∂n

= 〈Tδγ(α)ψ, ϕ〉 .

Since in our case of a symmetric cell the operators T01 and T10 coincide, this finishes the
proof.

3.2.4.2 The propagation operator

Let us introduce the propagation operator P (α) for α2 /∈ σ(Aε) as follows:

P (α) ∈ L
(
H1/2 (Γε,0) , H1/2 (Γε,1)

)
, P (α)ϕ = u+

ε (α, ϕ)
∣∣
Γε,1

. (3.2.41)

The spectral radius of the propagation operator will play an important role in the sequel.
It will be denoted by ρ (P (α)).

Lemma 3.2.5. For α2 /∈ σ(Aε) the operator P (α) is compact. Moreover, ρ (P (α)) < 1.

Proof. Let ϕ be a function in H1/2 (Γε,0). We will use Lemma 3.2.6 proved below, accord-
ing to which ‖P (α)u+

ε (α, ϕ)‖H1(Γε,1) 6 C(α)‖ϕ‖H1/2(Γε,0). Recalling the definition (3.2.41)
of the operator P (α) and using the compactness of the embedding H1 (Γε,1) ⊂ H1/2 (Γε,1)
we conclude that the propagation operator is compact. Consequently, its spectrum is a
sequence of isolated eigenvalues of finite multiplicity with the only possible accumulation
point at 0 (in this case 0 ∈ σc(P (α))). If λ1 is the eigenvalue of P (α) with the biggest
absolute value then |λ1| = ρ (P (α)). Suppose that |λ1| > 1 and ϕ1 ∈ H1/2 (Γε,1) is a
corresponding eigenfunction. Then, u+

ε (α, ϕ1)|Γε,n = P (α)nϕ1 = λn1ϕ1, ∀n ∈ N. On the
other hand, due to the uniqueness of solutions of (3.2.4) and the translation invariance of
the domain B+

ε we have

u+
ε (α, ϕ1)

∣∣
Bε,n

= Tnu+
ε (α, λn1ϕ1) = λn1Tnu+

ε (α, ϕ1), ∀n ∈ N, (3.2.42)
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where
Bε,n = B+

ε ∩ {X > n+ 1} , n ∈ N,
and Tn is the translation operator from L2 (B+

ε ) to L2 (Bε,n) defined on smooth functions
by the relation

(Tnu) (x, y) = u(x− n, y), (x, y) ∈ Bε,n,

and extended by continuity to L2 (B+
ε ). It follows from (3.2.42) that∥∥∥u+

ε (α, ϕ1)
∣∣
Bε,n

∥∥∥
L2(Bε,n)

= |λn1 |
∥∥u+

ε (α, ϕ1)
∥∥
L2(B+

ε ) >
∥∥u+

ε (α, ϕ1)
∥∥
L2(B+

ε ) , ∀n ∈ N.

However, u+
ε (α, ϕ1) ∈ L2 (B+

ε ) which implies
∥∥∥u+

ε (α, ϕ1)|Bε,n
∥∥∥
L2(Bε,n)

−−−→
n→∞

0. This is

possible only if u+
ε (α, ϕ1) identically zero which contradicts the fact ϕ1 is an eigenfunction

of the operator P (α).

The following Lemma used in the proof of Lemma 3.2.5 states in fact the interior regularity
of the solutions u±ε of (3.2.4). For the sake of completeness we will give the argument in
the case of our geometry that permits to apply the regularity result (Theorems 2.3.7 and
2.4.3 from [27]).

Lemma 3.2.6. For any α2 /∈ σ(Aε) and ϕ ∈ H1/2 (Γε,0) one has P (α)u+
ε (α, ϕ) ∈

H1 (Γε,1). Moreover, there exists a continuous function C(α) depending only on the ge-
ometry of the domain such that∥∥P (α)u+

ε (α, ϕ)
∥∥
H1(Γε,1)

6 C(α)‖ϕ‖H1/2(Γε,0), ∀ϕ ∈ H1/2 (Γε,0) .

Proof. The argument is very close to the one used in the proof of Lemma A.3.3. Let us
introduce a cut-off function χ ∈ C∞(R) such that

χ(x) = 1, x ∈
[
2− ε

8
, 2 + ε

8

]
,

χ(x) = 0, x ∈
]
−∞, 2− ε

4

]
∪
[
2 + ε

4
, ∞

[
,

0 6 χ(x) 6 1, ∀x ∈ R.

Let Kε stand for the rectangle
]
2− ε

4
, 2 + ε

4

[
×
]
−L

2
, L

2

[
. Then, the function ũ = χu+

ε (α, ϕ)
solves the following problem in Kε:

−∆ũ = α2u+
ε (α, ϕ)χ− u+

ε (α, ϕ)∆χ− 2∇u+
ε (α, ϕ)∇χ in Kε,

ũ|{2− ε
4}×]−L2 ,

L
2 [ = 0, ũ|{2+ ε

4}×]−L2 ,
L
2 [ = 0,

∂ũ

∂n

∣∣∣∣
]2− ε4 ,2+ ε

4 [×{L2 }
= 0,

∂ũ

∂n

∣∣∣∣
]2− ε4 ,2+ ε

4 [×{−L2 }
= 0.

Then, applying the regularity result ([27]), we conclude that ũ ∈ H2 (Kε) and

‖ũ‖H2(Kε) 6 C
∥∥α2u+

ε (α, ϕ)χ− u+
ε (α, ϕ)∆χ− 2∇u+

ε (α, ϕ)∇χ
∥∥
L2(Kε)

6 C(α)‖ϕ‖H1/2(Γε,0),

where we took into account (3.2.5). Then, using the continuity of the trace application
from H2(K) to H1(∂K) in a Lipschitz domain K =

]
2, 2 + ε

4

[
×
]
−L

2
, L

2

[
(cf. [14]) we get∥∥∥u|Γε,1∥∥∥H1(Γε,1)

=
∥∥∥ ũ|Γε,1∥∥∥H1(Γε,1)

6 ‖ũ‖H2(K) 6 C(α)‖ϕ‖H1/2(Γε,0).



92 CHAPTER 3. LADDER: NUMERICAL STUDY

Remark 3.2.3. The propagation operator P (α) is injective.

Proof. Indeed, suppose that P (α)ϕ0 = 0 for some ϕ0 ∈ H1/2 (Γε,0). Then, u+
ε (α, ϕ)|Bε,1

solves the problem (3.2.4) in Bε,1 with ϕ = 0, which implies that u+
ε (α, ϕ)|Bε,1 = 0.

From the unique continuation property it follows that u+
ε (α, ϕ) = 0 and, consequently,

ϕ0 = 0.

3.2.4.3 Another characterization of the propagation operator. Riccati equa-
tion

Due to the translation invariance of the domain B+
ε one has

u+
ε (α, ϕ)

∣∣
Γε,n

= (P (α))n ϕ, ∀n ∈ N, ∀ϕ ∈ H1/2 (Γε,0) .

Then, the restriction of u+
ε (α, ϕ) to the cell Cε,n can be computed as follows:

u+
ε (α, ϕ)

∣∣
Cε,n

= e0

(
α, (P (α))n−1 ϕ

)
+ e1 (α, (P (α))n ϕ) , ∀n ∈ N∗, ∀ϕ ∈ H1/2 (Γε,0) .

The continuity of the normal derivative of u+
ε (α, ϕ) across Γε,1 yields, in view of (3.2.40),

that
T10(α) (P (α))2 + (T00(α) + T11(α))P (α) + T01(α) = 0. (3.2.43)

This relation can be seen as the stationary Riccati equation for P (α). It turns out that
it can be used to determine the propagation operator P (α) without solving the problems
(3.2.4) once the local DtN operators are constructed.

Proposition 3.2.7. For α2 /∈ σ(Aε) ∪ σD the propagation operator P (α) is the unique
solution of the Riccati equation (3.2.43) in the set of operators in H1/2 (Γε,0) with spectral
radius smaller than 1.

Proof. Suppose that there exists another compact operator P̃ in H1/2 (Γε,0) with spectral
radius smaller than 1 satisfying (3.2.43). Then, for any ϕ ∈ H1/2 (Γε,0) one can construct
the following function u ∈ L2 (B+

ε ):

u|Cε,n = e0

(
α, P̃ n−1ϕ

)
+ e1

(
α, P̃ nϕ

)
, ∀n ∈ N∗. (3.2.44)

By construction, its trace on the boundary Γε,0 is ϕ and u is continuous across the bound-
aries Γε,n:

(
u|Cε,n

)∣∣∣
Γε,n

=
(
u|Cε,n+1

)∣∣∣
Γε,n

= P̃ nϕ, ∀n ∈ N∗. Consequently, u ∈ H1
loc (B+

ε ).

Moreover, its normal derivative is also continuous. Indeed,(
∂

∂n

(
u|Cε,n

))∣∣∣∣
Γε,n

= T01(α)P̃ n−1ϕ+ T11(α)P̃ nϕ,(
∂

∂n

(
u|Cε,n+1

))∣∣∣∣
Γε,n

= T00(α)P̃ nϕ+ T10(α)P̃ n+1ϕ = −T01(α)P̃ n−1ϕ− T11(α)P̃ nϕ,

where we used the fact that the operator P̃ solves the equation (3.2.43). Hence,(
∂

∂n

(
u|Cε,n

))∣∣∣∣
Γε,n

= −
(
∂

∂n

(
u|Cε,n+1

))∣∣∣∣
Γε,n

, ∀n ∈ N∗,



3.3. DISCRETIZATION BY A CONFORM FINITE ELEMENT METHOD 93

which implies that u ∈ H1
∆, loc (B+

ε ). Let us show that in fact u ∈ H1
∆ (B+

ε ). Since
ρ(P̃ ) = lim

n→+∞
‖P̃ n‖1/n

L(H1/2(Γε,0))
< 1, there exists N ∈ N and 0 < c0 < 1 such that

‖P̃ n‖L(H1/2(Γε,0)) < cn0 , ∀n > N.

Therefore,
∞∑

n=N+1

∥∥∥u|Cε,n∥∥∥2

H1(Cε,n)
6 C(α)‖ϕ‖H1/2(Γε,0)

∞∑
n=N+1

c2n
0 <∞,

where we used (3.2.44) and (3.2.39). This proves that u ∈ H1
∆ (B+

ε ) and −∆u−α2u = 0
in B+

ε since. Finally, it means that u solves (3.2.4) in B+
ε , i.e. u = u+

ε (α, ϕ). Then,
from (3.2.44) for n = 1 it follows that u+

ε (α, ϕ)|Γε,1 = P̃ϕ for any ϕ ∈ H1/2 (Γε,0).
Comparing this with the definition of the propagation operator (3.2.41) one conclude
that P̃ = P (α).

Proposition 3.2.7 permits to determine the propagation operator by solving Riccati equa-
tion (3.2.43) instead of solving the problems (3.2.4). It is now easy to construct the DtN
operators Λ±(α). Indeed, comparing the definition of the DtN operators (3.2.18) with the
definition of the local DtN operators (3.2.40) one finds that

Λ+(α) = T00(α) + T10(α)P (α). (3.2.45)

Thus, we do not need any more to consider unbounded domains in order to solve the
eigenvalue problem (3.2.1).

Remark 3.2.4. The spectral radius of the propagation operator can be used to charac-
terize the essential spectrum of the operator Aε as well. It turns out that

α2 /∈ σ(Aε) ⇔ ρ (P (α)) < 1, α2 ∈ σ(Aε) ⇔ ρ (P (α)) = 1.

This property can be used in the numerical computation of the essential spectrum of the
operator Aµε , but we will mostly use dispersion curves method as discussed below.

3.3 Discretization by a conform finite element method

From a practical point of view, the numerical method used consists in solving the nonlinear
equation

α2 = κh
n(α) (3.3.1)

by a Newton type algorithm. The equation (3.3.1) corresponds to the equation (3.2.34)
where the eigenvalues κn of the operator Aµε are replaced by those of its approximation
Aµ,hε discretized by a standard finite element method. The principal difficulty in the
construction of the operator Aµ,hε consists in the discretization of the DtN operators Λ±(α)
that we detail in Section 3.3.1. In the sequel we explain how to apply a Newton type
algorithm to the equation (3.3.1). Finally, we briefly describe how to compute numerically
the essential spectrum of the operator Aµε .
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3.3.1 Discretization of the operator Aµ
ε

In this section we will describe in detail how we perform the discretization of the prob-
lem (3.2.28) without giving the numerical analysis which can be found in [22]. The first
step is the construction of the DtN operators using the relation (3.2.45). Thus, the local
DtN operators T00(α), T10(α) as well as the propagation operator P (α) have to be con-
structed. The construction of the operators T00(α), T10(α) requires the resolution of cell
problems that are solved using a standard P1 Lagrange finite element method.

3.3.1.1 Cell problems

Let Th = {T`}L`=1 be a triangular mesh of the domain Cε. The set of all the vertices of the
mesh Th will be denoted byMh: Mh = {Mj}Nj=1. Let us introduce the following function
space:

Vh =
{
vh ∈ C

(
Cε
)
, vh|T` is linear, 1 6 ` 6 L

}
. (3.3.2)

Clearly, Vh is a subspace of H1 (Cε) of dimension N . As usual, we consider the basis
Bh = {wj}Nj=1 in Vh, which consists of continuous piecewise linear functions wj, such that

wj(Mi) = δij, 1 6 i, j 6 N. (3.3.3)

We will use the space Vh (and its analogue for the domain Cµε ) to construct internal
approximations (also called Galerkin approximations) of all variational problems that we
have to solve in our algorithm. The spaces of the traces of the functions in Vh on the
boundaries Γε,0, Γε,1 will be denoted by

S0
h = Span

{
wj|Γε,0 , 1 6 j 6 N

}
, S1

h = Span
{
wj|Γε,1 , 1 6 j 6 N

}
.

To simplify the practical implementation of the DtN operator, we make the assumption
that the meshes of the boundaries Γε,0, Γε,1 coincide. Moreover, if NJ is the number of
vertices in the mesh of Γε,0, then we suppose that the vertices situated on the boundary
Γε,0 are those with the index 1 6 j 6 NJ (going from up to down) and the vertices
situated on the boundary Γε,1 are those with the index NJ + 1 6 j 6 2NJ (going from
up to down as well), cf. figure 3.5. For the functions wj corresponding to the vertices
situated on the boundaries Γε,0, Γε,1 their traces on these boundaries will be denoted by

ϕ0
i = wi|Γε,0 , ϕ1

i = wNJ+i|Γε,1 , 1 6 i 6 NJ .

Notice that all the other traces (of the functions wj with 1 6 j 6 NJ on Γε,1, of the
functions wj with NJ + 1 6 j 6 2NJ on Γε,0 and of the functions wj with j > 2NJ + 1 on
both boundaries) are zero. Hence,

S0
h = Span

{
ϕ0
i , 1 6 i 6 NJ

}
, S1

h = Span
{
ϕ1
i , 1 6 i 6 NJ

}
.

Let us start by constructing the solutions of the discretized problem (3.2.35) for ϕ ∈
S0
h ∪ S1

h. Recall the variational formulation of the problem (3.2.35) (cf. (3.2.36)):

(∇êδ(α, ϕ),∇v)L2(Cε)−α
2 (êδ(α, ϕ), v)L2(Cε) = − (∇uδ(ϕ),∇v)L2(Cε) +α2 (uδ(ϕ), v)L2(Cε) ,

∀v ∈ H1
D (Cε) , (3.3.4)
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Figure 3.5: The mesh Th

where êδ(α, ϕ) = eδ(α, ϕ) − uδ(ϕ) ∈ H1
D (Cε) and uδ(ϕ) is a lift function in H1 (Cε) such

that
uδ(ϕ)|Γε,δ = ϕ, uδ(ϕ)|Γε,1−δ = 0. (3.3.5)

Discretizing of (3.3.4) consists in considering its restriction to the space V D
h = Vh∩H1

D (Cε).
Thus, for ϕh ∈ Sδh, δ ∈ {0, 1}, we search êhδ (α, ϕh) ∈ V D

h such that(
∇êhδ (α, ϕh),∇v

)
L2(Cε)

− α2
(
êhδ (α, ϕh), v

)
L2(Cε)

= − (∇uδ(ϕh),∇v)L2(Cε) + α2 (uδ(ϕh), v)L2(Cε) , ∀v ∈ V D
h . (3.3.6)

If ϕh =
NJ∑
i=1

cjϕ
δ
i , then by linearity êhδ (α, ϕh) =

NJ∑
i=1

cj ê
h
δ,i(α), where êhδ,i(α) = êhδ

(
α, ϕδi

)
,

1 6 i 6 NJ , δ ∈ {0, 1}. Remarking that one can choose uδ
(
ϕδi
)

= wi+δNJ . Therefore, it
is enough to compute the 2NJ functions êhδ,i(α), δ ∈ {0, 1}, 1 6 i 6 NJ solutions to the
following system of linear equations:(
∇êhδ,i(α),∇wj

)
L2(Cε)

−α2
(
êhδ,i(α), wj

)
L2(Cε)

= − (∇wi+δNJ ,∇wj)L2(Cε)+α
2 (wi+δNJ , wj)L2(Cε) ,

1 6 j 6 N, j /∈ J0 ∪ J1. (3.3.7)

Let us decompose the functions êhδ,i(α) in the basis Bh: êhδ,i(α) =
N∑
j=1

Êi
δ,j(α)wj. Clearly,

Êi
δ,j(α) = 0 for j > 2NJ + 1, 1 6 i 6 NJ , δ ∈ {0, 1}. Then, the problems (3.3.7) take the

form (
KD(α)− α2MD(α)

)
Êi
δ(α) = F i

δ(α), (3.3.8)

where

KD
i,j =


Ki,j, i, j > 2NJ + 1,
δi,j, 1 6 i, j 6 2NJ ,
0, otherwise,

MD
i,j =


Mi,j, i, j > 2NJ + 1,
δi,j, 1 6 i, j 6 2NJ ,
0, otherwise,

K = (Ki,j) and M = (Mi,j) are the rigidity and the mass matrices respectively defined as

Ki,j = (∇wi,∇wj)L2(Cε) , Mi,j = (wi, wj)L2(Cε) , 1 6 i, j 6 N, (3.3.9)
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and the right-hand side F i
δ(α) is the (N × 1)-vector defined as

F i
δ,j(α) =

{
− (Ki+δNJ ,j − α2Mi+δNJ ,j) , j > 2NJ + 1,
0, 1 6 j 6 2NJ .

Finally, the vector Ei
δ(α) of the coordinates of the solution eδ(α, ϕδi ) in the basis Bh is

Ei
δ(α) = Êi

δ(α) + I iδ, 1 6 i 6 NJ , δ ∈ 0, 1,

where I iδ is the vector with the coordinates I iδ,i+δNJ = 1 and I iδ,j = 0 for j 6= i+ δNJ .

3.3.1.2 The local DtN operators

Recalling the definition (3.2.40) and using the fact that eγ(α, ϕ) solves the problem (3.2.35)
with δ replaced by γ one easily gets

〈Tγδ(α)ϕ, ψ〉 = (∇eγ (α, ϕ) ,∇uδ (ψ))L2(Cε) − α
2 (eγ (α, ϕ) , uδ (ψ))L2(Cε) ,

∀ϕ ∈ H1/2 (Γε,γ) , ∀ψ ∈ H1/2 (Γε,δ) , (3.3.10)

where uδ (ψ) is a function introduced in (3.3.5). We now define the approximated local
DtN operators T hγδ(α) as (NJ ×NJ)-matrices the (i, j) matrix elements of which approach
the matrix elements of the operator Tγδ(α) computed on the functions from S0

h, S1
h:

T hγδ(α)(i, j) ' 〈Tγδ(α)ϕγi , ϕ
δ
j〉, 1 6 i, j 6 NJ .

More precisely, they are obtained if one replaces in (3.3.10) ϕ and ψ by ϕγi and ϕδj respec-
tively, eγ (α, ϕ) by ehγ,i (α) and uδ (ψ) by wJδ(j):

T hγδ(α)(i, j) =
(
∇ehγ,i (α) ,∇wj+δNJ

)
L2(Cε)

− α2
(
ehγ,i (α) , wj+δNJ

)
L2(Cε)

=
((
K(α)− α2M(α)

)
Ei
γ(α)

)
(j + δNJ), 1 6 i, j 6 NJ , γ, δ ∈ {0, 1}.

The next step is now to construct the approximated propagation operator P h(α) using
the discretised analogue of the Riccati equation (3.2.43).

3.3.1.3 The propagation operator

We search the approximated propagation operator P h(α) ∈MNJ (R), which is the propa-
gation operator corresponding to the discretized problem, as the solution of the equation

T h10(α)
(
P h(α)

)2
+
(
T h00(α) + T h11(α)

)
P h(α) + T h01(α) = 0,

completed by the condition
ρ
(
P h(α)

)
< 1. (3.3.11)

As described in [22], this equation is solved using Newton’s method in Banach spaces (in
our case the space MNJ (R)). Let F be the following mapping in MNJ (R):

F : X 7→ T h10(α)X2 +
(
T h00(α) + T h11(α)

)
X + T h01(α).

Then, given the n-th iteration Xn the (n+ 1)-st iteration is found from the relation

F ′(Xn) (Xn −Xn+1) = F (Xn), (3.3.12)



3.3. DISCRETIZATION BY A CONFORM FINITE ELEMENT METHOD 97

where F ′(Xn) is the Fréchet derivative of the mapping computed F at Xn. It is defined
as follows:

F ′(X) : h 7→ T h10(α) (Xh+ hX) +
(
T h00(α) + T h11(α)

)
h, ∀X, h ∈MNJ (R).

Combining this with (3.3.12) we finally obtain the equation for ∆n+1 = Xn+1 −Xn:

T h10(α) (Xn∆Xn+1 + ∆n+1Xn) +
(
T h00(α) + T h11(α)

)
∆n+1 = −F (Xn).

This, in turn, can be rewritten as

A∆n+1B
T + C∆n+1D

T = E,

where

A =
(
T h00(α) + T h11(α)

)−1
T h10(α), B = XT

n , C = ABT + I,

D = I, E = −
(
BT + A

(
BT
)2

+
(
T h00(α) + T h11(α)

)−1
T h01(α)

)
.

This equation is solved using the method described in [26]. The constraint (3.3.11) is
taken into account by projecting of the obtained matrix at each iteration on the set of
matrices with the spectral radius smaller than 1. More precisely, if ρ (Xn+1) > 1, then it
is replaced by Xn+1/ρ (Xn+1).

3.3.1.4 The DtN operators and the interior problem

The approximated DtN operators Λ+,h(α) = Λ−,h(α) = Λh(α) are now obtained using the
discrete analogue of the relation (3.2.45):

Λh(α) = T h00(α) + T h10(α)P h(α).

The discretised version of the interior problem (3.2.28) is obtained from the weak formu-
lation by replacing the DtN operators Λ±(α) = Λ(α) by their discrete analogue Λh(α).
We denote by V µ

h the analogue of the space (3.3.2) for the interior domain Cµε :

V µ
h =

{
vh ∈ C(Cµε ), vh|Tµ` is linear, 1 6 ` 6 Lµ

}
,

where Lµ is the number of triangles T µ` in the mesh T µh of Cµε . The set of the vertices
of this mesh is denoted by Mµ

h =
{
Mµ

j

}Nµ

j=1
and the basis Bµh =

{
wµj
}Nµ

j=1
is constructed

analogously to (3.3.3). To be able to match this mesh with the mesh Th from the right we
need the number of vertices in the mesh of the boundary Γ+

ε to be equal to the number
of vertices in the mesh of Γ0 (which is NJ). Similarly, the number of vertices in the mesh
Γ−ε should be the same as the number of vertices in the mesh of Γ1 (which is also NJ).
We suppose for simplicity that the vertices that belong to the boundary Γ−ε are those
with the index 1 6 NJ (enumerated from up to down) and the vertices that belong to the
boundary Γ+

ε are those with the index NJ + 1 6 2NJ (enumerated from up to down as
well). Then, we have to solve the following problem:(
∇u0,h

ε ,∇v
)

+
〈
Λh
(
λhε
)
u0,h
ε , v

〉∣∣
Γ+
ε

+
〈
Λh
(
λhε
)
u0,h
ε , v

〉∣∣
Γ−ε

=
(
λhε
)2 (

u0,h
ε , v

)
, ∀v ∈ V µ

h .
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If U0,h
ε is the vector of coordinates of u0,h

ε in the basis Bµh , then this problem can be
rewritten in a matrix form as(

Kµ + L
(
λhε
))
U0,h
ε =

(
λhε
)2
MµU0,h

ε , (3.3.13)

where L (α) is the (Nµ ×Nµ)-matrix such that

Li,j(α) =


(
Λh(α)

)
(J+)−1(i),(J+)−1(j)

, i, j ∈ J +,(
Λh(α)

)
(J−)−1(i),(J−)−1(j)

, i, j ∈ J −,
0, otherwise,

and Kµ, Mµ are the analogues of the matrices (3.3.9) for the mesh T µh . The problem
(3.3.13) is a nonlinear generalized eigenvalue problem (the nonlinearity is contained in
the dependence of the matrix L on the spectral parameter). It is solved using the false
position method described below (cf. for, example, [59]).

3.3.1.5 False position method

Let
]
ahε , b

h
ε

[
be an approximation of a gap of the operator Aµε obtained as described in

section 3.3.2. In order to solve the problem (3.3.13) we introduce the functions κn(α),
n ∈ N, for α2 ∈

]
ahε , b

h
ε

[
that correspond to n-th biggest generalized eigenvalue of the

problem
(Kµ + L (α))U = κh(α)MµU. (3.3.14)

Thus, λhε is a solution of the nonlinear equation

κh
n(α) = α2

for some n ∈ N. Let κ∗(α) be the nearest to α2 eigenvalue:

κh,∗(α) = κh
n(α),

∣∣κh
n(α)− α2

∣∣ = min
j∈N

∣∣κh
j (α)− α2

∣∣ .
Then, the problem is reduced to searching the roots of the function

f(α) = κh,∗(α)− α2. (3.3.15)

This function is piecewise continuous on the interval
]
ahε , b

h
ε

[
. In order to find its roots

we shall first determine empirically the intervals where it is continuous, monotone and
has a unique root and then apply the false position method on each of this intervals (it
is impossible to apply the standard Newton’s algorithm since we do not have analytical
expressions for the derivative of the function κh,∗(α)). Let [ξ, η] be such an interval. Then,
we initialize ξ1 by ξ, η1 by η and put at n-th iteration

xn =
ξnf (ηn)− ηnf (ξn)

f (ηn)− f (ξn)
, (3.3.16)

ξn+1 = ξn, ηn+1 = xn, if f (ξn) f(xn) < 0, (3.3.17)
ξn+1 = xn, ηn+1 = ηn, if f (ηn) f(xn) < 0. (3.3.18)
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The limit of the sequence {xn} is the value λhε which gives an approximation of λε.
The initial interval [ξ, η] can be chosen for example by plotting the function f(α). We
can also note that we expect to find one or two such intervals depending on the type of
the corresponding gap of the operator Aµ on the graph (cf. Theorem 1.3.1) at least for
ε small enough. The knowledge of the eigenvalues of the operator Aµ also gives an idea
about the location of the ones of the operator Aµε and can help to choose the intervals in
question.

3.3.2 The essential spectrum

There are two ways of determining the essential spectrum of the operator Aµε . The first
one is based on the computation of the spectral radius of the propagation operator (cf.
Remark 3.2.4). Discretizing the interval of interest and computing the spectral radius
of the propagation operator at each point of the grid one finds if this point belongs to
the essential spectrum or not. However, this method requires the computation of the
propagation operator, and, consequently, the solution of the Riccati equation, for each
value of α. For this reason we privilege a more standard method which is based on
the Floquet-Bloch decomposition and the determination of dispersion curves. As it was
mentioned in Section 1.2.1, the essential spectrum of the operator Aµε can be decomposed
as

σess (Aµε ) =
⋃
n∈N

λn(ε, [0, π]),

where λn(ε, θ) is the n-th biggest eigenvalue of the operator Aε(θ) defined in (1.2.3). Recall
that for fixed ε and n it is a continuous function of θ. Hence, the above characterisation
of the spectrum can be rewritten as

σess (Aµε ) =
⋃
n∈N

[
min
θ∈[0,π]

λn(ε, θ), max
θ∈[0,π]

λn(ε, θ)

]
.

Thus, it is sufficient to discretize the interval [0, π] by the points 0 < θ1 < θ2 . . . θK < π
and compute the first Q eigenvalues of the operator Ahε (θi) (obtained after a discretization
of the operator Aε(θi)) for each of this points. This will yield an approximation of the
beginning of the essential spectrum of the operator Aµε :

σK,Qess (Aµε ) =
⋃

16n6Q

[
min

16i6K
λn(ε, θi), max

16i6K
λn(ε, θi)

]
. (3.3.19)

In order to find approximations of the eigenvalues of the operator Aε(θ) for some θ ∈ [0, π]
we use the mesh Th described in section 3.3.1.1. However, we shall now take into account
the θ-quasiperiodic boundary conditions on the boundaries Γε,0, Γε,1. It can be expressed
by the fact that the space Vh should be replaced by its θ-quasiperiodic subspace

V θ
h =

{
vh ∈ Vh, vh|Γε,1 = e−iθ vh|Γε,0

}
.

Then, the weak formulation for the eigenvalue problem for the operator Aε(θ) implies
solving the following discretised problem for λhε (θ) and u ∈ V θ

h :

(∇u,∇v)L2(Cε) = λhε (θ)(u, v)L2(Cε), ∀v ∈ V θ
h .
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From a practical point of view, the space V θ
h is obtained from Vh by considering the basis

Bθh = {w̃j, j ∈ [1, NJ ] ∪ [2NJ + 1, N ]} in the space V θ
h , where

w̃j =

{
wj, j > 2NJ + 1,

wj + e−iθwj+NJ , 1 6 j 6 NJ .

Decomposing u in this basis as u =
NJ∑
j=1

Ujw̃j +
N∑

j=2NJ+1

Ujw̃j and denoting by U the

(N −NJ)× 1 vector of coordinates Uj (where the coordinates with NJ + 1 6 j 6 2NJ are
excluded), we end up with the following generalised eigenvalue problem:

K̃U = λhε (θ)M̃U. (3.3.20)

Here K̃ and M̃ are (N −NJ)× (N −NJ) with matrix elements defined as follows:

K̃i,j = (∇w̃i,∇w̃j)L2(Cε) , M̃i,j = (w̃i, w̃j)L2(Cε) , j ∈ [1, NJ ] ∪ [2NJ + 1, N ].

Once the matrices K, M are known, the matrices K̃, M̃ can be constructed using the
relations

K̃i,j =


Ki,j, i, j > 2NJ + 1
Ki,j + e−iθKi+NJ ,j, 1 6 i 6 NJ , j > 2NJ + 1,
Ki,j + eiθKi,j+NJ , i > 2NJ + 1, 1 6 j 6 NJ ,
Ki,j + e−iθKi+NJ ,j + eiθKi,j+NJ +Ki+NJ ,j+NJ , 1 6 i, j 6 NJ ,

and its analogue for the matrix M̃ . Now the generalized eigenvalue problem (3.3.20) can
be solved for each θi, 1 6 i 6 K which yields an approximation of the beginning of the
essential spectrum of the operator Aµε due to (3.3.19). We remark however one drawback
of this method compared to the method based on the computation of the spectral radius
of the propagation operator: we do not know a priori how many spectral bands we have
to compute in order to cover the interval of frequences we are interested in. Here again
the knowledge of the spectrum of the operator A on the graph can give an approximate
idea, at least for ε small enough.
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3.3.3 Summary of the algorithm

Let us now resume the algorithm of computation of the eigenvalues of the operator Aµε
and give some details of implementation in Matlab.

I Essential spectrum

• The function CalculSpectreEssentiel.m computes an approximation of the be-
ginning of the essential spectrum of the operator Aµε using the first N eigenvalues
λn(ε, θ).

• The function Calc_spec_ess_R.m computes an approximation of the essential
spectrum of the operator Aµε on the interval [a2

0, b
2
0] using the spectral radius of

the propagation operator.

Using one of these methods one finds approximations of gaps of the operator Aµε .
To be precise, the result provided by these functions refers to the square root of
the spectral parameter. In order to pass to the spectral parameter, we should take
the square of the obtained result. Let us fix one of the approximated gaps, that we
denote by ]a2, b2[, and look for eigenvalues inside it.

II Discrete spectrum

(a) Let us start by plotting the function f(α) defined in (3.3.15) on the interval
]a, b[. This step can be skipped if an interval [ξ, η] described in Section 3.3.1.5
can be found in another way.

Construction of the matrices K, M and Kµ, Mµ ← KMA.m
for α = a : pas : b ← dessin_eig.m

compute κ∗(α) ← compute_eig.m which consists in
• construction of the matrices T hγδ(α) ← DtN_eig.m

– construction of the matrices A(α) and AD(α)

– construction of the matrices E0(α), E1(α)

– construction of the matrices T h00(α), T h01(α), T h10(α), T h11(α)

• computation of the matrix P h(α) ← newton1.m
(solving the Riccati equation)
• construction of the matrices L±(α)

• solving the eigenvalue problem (3.3.14) ← Matlab function eigs.m

end

(b) Once an interval [ξ, η] is found, the false position method is applied on this
interval.

while (abs(f(xn)) > tol) or (abs(xn-xn−1) > tol) ← quasinewton.m

compute xn+1 (cf. (3.3.16)) ← using compute_eig.m
compute ξn+2, ηn+2 (cf. (3.3.17)–(3.3.18))

end
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3.4 Numerical results

In this section we present numerical results obtained with a Matlab code which implements
the algorithm described above.

3.4.1 Validation of the computation of the local DtN operators

We take as a test geometry the square with a unit edge shown in figure 3.6.

Figure 3.6: Test geometry: a unit square

The first test problem is the following:
∆u = 0,

u|Γ2
= 1,

u|Γ3
= 0,

∂nu|Γ1∪Γ4
= 0.

(3.4.1)

Its exact solution is uex(x, y) = 1 − x. We compute the matrix E0(0) with the help of
the function DtN.m. It follows from the definition of the matrix E0(0) that the sum of its
columns gives an approximation of uex. It is shown in figure 3.7. In this case there is no
error due to the finite element approximation since the exact solution is linear.

The second test problem is 

−∆u = π2

4
u,

u|Γ2
= cos (πy

2
),

u|Γ3
= cos (πy

2
),

u|Γ4
= 0,

∂nu|Γ1
= 0.

(3.4.2)

Its exact solution is uex(x, y) = cos (πy
2

). Let Uex be the vector of values of uex at the
vertices of the grid Th:

Uex(j) = cos
(
πy(Mj)

2

)
, 1 6 j 6 N.
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Figure 3.7: Solution of the problem (3.4.1) obtained with the function DtN.m using an
unstructured grid with h = 0.1

We compute the matrices E0

(
π
2

)
, E1

(
π
2

)
with the help of the function DtN.m. This yields

the following approximation of Uex:

U =

Ny∑
i=1

(
Ei

0

(
π
2

)
cos
(
πy(MJ0(i)

)

2

)
+ Ei

1

(
π
2

)
cos
(
πy(MJ1(i)

)

2

))
,

where Ei
0, Ei

1 are the i-th columns of the matrices E0, E1 respectively. The solution U is
represented in figure 3.8a for an unstructured grid with h = 0.1. We study the L2 and
H1 errors given by the relations

err_L2 =
(
(U − Uex)tM(U − Uex)

)1/2
, err_H1 =

(
(U − Uex)tK(U − Uex)

)1/2
.

In figure 3.8b the dependence of these errors on h is represented in a logarithmic scale.
As we see, when h→ 0, the slopes are in agreement with the theoretic ones: 2 for the L2

error and 1 for the H1 error.
Next, we validate the computation of the operators Tγδ, γ, δ ∈ {0, 1} considering the test
problems 

−∆u0 = ω2u0,

u0|Γ2
= cos (kπy),

u0|Γ3
= 0,

∂nu0|Γ1∪Γ4
= 0,


−∆u1 = ω2u1,

u1|Γ2
= 0,

u1|Γ3
= cos (kπy),

∂nu1|Γ1∪Γ4
= 0,

(3.4.3)

for k ∈ N. The exact expressions for Tγδ(ω)ϕk, fk(y) = cos (kπy), are

T00(ω)fk = T11(ω)fk =



α

tanα
cos (kπy), ω > kπ,

cos (kπy), ω = kπ,

|α|1 + e2|α|

e2|α| − 1
cos (kπy), ω < kπ,
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T01(ω)fk = T10(ω)fk =


− α

sinα
cos (kπy), ω > kπ,

− cos (kπy), ω = kπ,

−2|α| e|α|

e2|α| − 1
cos (kπy), ω < kπ,

where α =
√

(kπ)2 − ω2.

(a) Solution U obtained for an unstructured grid with h = 0.1

(b) L2 and H1 error for different values of h

Figure 3.8: Numerical resolution of the test problem (3.4.2) using the function DtN.m
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We compute the L2 error

error_Tγδ =
∥∥T hγδ(ω)fk − Tγδ(ω)fhk

∥∥
L2(Γδ+2)

'
((
T hγδ(ω)Fk − S(δ)Y k

γδ(ω)
)t
S(δ)

(
T hγδ(ω)Fk − S(δ)Y k

γδ(ω)
))1/2

. (3.4.4)

Here T hγδ(ω) are the approximated local DtN operators computed with the function DtN.m,
Fk is the vector of values of the function fk at the vertices Mγ

h, Y
k
γδ(ω) is the vector of

values of Tγδ(ω)fk at the vertices Mδ
h and S(δ) are the surface mass matrices for the

boundaries Γδ+2 defined as follows:

S
(δ)
i,j =

∫
Γδ+2

ϕδiϕ
δ
j , 1 6 i, j 6 NJ , δ ∈ {0, 1}.

In figure 3.9 we represent the dependence of the error (3.4.4) on h for ω = 5, k = 2. The
slope in a logarithmic scale is 2.

Figure 3.9: Dependence of the error (3.4.4) on h

In figure 3.10 we represent the dependence of the error on ω for fixed k and h. We can see
that it has singularities at the points ω that belong to the set

{
π
√
m2 + n2, m ∈ N, n ∈ N∗

}
.

For these points ω2 is an eigenvalue of the problem
−∆u = ω2u,

u|Γ2,3
= 0,

∂nu|Γ1∪Γ4
= 0.

(3.4.5)
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(a) error_T01 for k = 0, h = 0.1 (b) error_T00 for k = 1, h = 0.1

(c) error_T11 for k = 2, h = 0.05 (d) error_T10 for k = 3, h = 0.05

Figure 3.10: Dependence of the error (3.4.4) on ω: as expected, singularities are observed
at the points corresponding to the eigenvalues of the problem (3.4.5)
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3.4.2 Numerical computation of the essential spectrum

We now compute the essential spectrum of the operator Aε,s for L = 2 using the function
CalculSpectreEssentiel.m. In figure 3.11 we represent the essential spectrum computed
for different values of ε using the first 5 spectral bands. The intervals in blue correspond
to the values λ such that λ2 belongs to the spectral bands and the intervals in white
separating them correspond to the values λ such that the λ2 belongs to the spectral
gaps. In what follows we mean by representing the spectrum the representation of the
parameter λ (and not λ2 which is the spectral parameter). For ε = 0 the spectrum of the
limit operator As is represented.

Figure 3.11: Dependence of the essential spectrum of the operator Asε on ε: the first 4
gaps. For each value of ε an unstructured grid has been used with h chosen in such a
way that the error due to the discretization is very small compared to the effect due to ε:
h = 0.00125 for ε = 0.02 and ε = 0.04, h = 0.0025 for ε = 0.06, ε = 0.08, ε = 0.1.

One can see that the spectrum of the operator Aε,s is very close to the spectrum of the limit
operator for small values of ε (more precisely, the convergence is linear as it is predicted
by the theory, cf. figure 3.12). However, we can notice a phenomenon that has not been
studied theoretically in Chapter 1: opening of a gap near the values {πN∗}. These are
the points where the dispersion curves for the limit operator As touch (cf. figure 3.14).
As shown in figure 3.13, the size of these gaps is also linear in h.
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Figure 3.12: Dependence of the lower end of the first gap on ε: linear convergence to the
lower end of the first gap of the limit operator As.

Figure 3.13: Opening of a gap in the neighbourhood of the point 2π.
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(a) ε = 0.1 (b) graph

Figure 3.14: Dispersion curves in the case L = 2 for the graph and the 2D domain with
ε = 0.1: the points {λ = πn, n ∈ N∗} where two spectral bands for the graph touch
become gaps for the 2D domain.

Another phenomenon concerns the eigenvalues of infinite multiplicity for the limit opera-
tor. Consider the case L = 0.5. Then, the operator As has the following set of eigenvalues
of infinite multiplicity: σpp = {λ2, λ = 2(2n+ 1)π, n ∈ N} (cf. property 4 of Proposition
1.3.4). An eigenvalue of infinite multiplicity can only become a spectral band in the 2D
case with ε small enough. Indeed, as shown in [57], the dimension of the spectral pro-
jector on any interval is preserved for ε small enough. On the other hand, a periodic 2D
operator cannot have eigenvalues. Thus, the only possibility is that the operator Aε,s has
a small spectral band in a neighbourhood of an eigenvalue of infinite multiplicity. This
situation is shown in figure 3.15.

3.4.3 Numerical computation of the discrete spectrum

We now present the results for the discrete spectrum of the operator Aµε,s. In figure 3.16
the function f(α) defined in (3.3.15) is represented in the first gap of the operator Aµε,s in
the case L = 2, µ = 0.25, ε = 0.1. We see from this graph that there are exactly 2 roots
of the function f in the gap which correspond to two eigenvalues. The interval [ξ, η] can
be chosen, for instance, as [1.4, 1.5] for the first eigenvalue and [1.9, 2] for the second one.
The eigenvalues computed for different values of ε using the function quasinewton.m are
represented in figure 3.17. In figure 3.18 we show the convergence of the eigenvalues in
the first gap which is linear as predicted by the theory. In figure 3.19 the eigenfunction
corresponding to the first eigenvalue of the operator Aµε,s is represented.
In figure 3.20 we represent the dependence of the eigenvalues on µ ∈]0, 1[. As it is natural
to expect, the smaller µ is (so, the stronger the perturbation is), the better the eigenvalues
are separated from the essential spectrum. When µ is close to 1, the computation becomes
more costly since the distance between the eigenvalue and the essential spectrum is very
small.
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(a) Essential spectrum for L = 0.5

(b) Zoom at the neighbourhood of the point λ = 2π.

Figure 3.15: Case L = 0.5: the size of the spectral band that appears in a neighbourhood
of the point λ = 2π (which is an eigenvalue of infinite multiplicity of the limit operator
As) is linear in ε.
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Figure 3.16: Function f(α) = κh,∗(α)−α2 in the first gap of the operator Aµε,s for L = 2,
µ = 0.25, ε = 0.1.

Figure 3.17: Eigenvalues of the operator Aµε,s for L = 2, µ = 0.25 (red asterisks) computed
with the function quasinewton.m. The values for ε = 0 correspond to the limit operator
Aµs .
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Figure 3.18: Linear convergence of the eigenvalues of the operator Aµε,s in the first gap for
L = 2, µ = 0.25 as ε→ 0.

(a) ε = 0.04, λ1 ≈ 1.38

(b) ε = 0.06, λ1 ≈ 1.40

Figure 3.19: Eigenfunction corresponding to the first eigenvalue of the operator Aµε,s for
L = 2, µ = 0.25.
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Figure 3.20: Dependence of the eigenvalues in the first gap on µ for L = 2, ε = 0.1.

Another question for which no theoretical answer has been given for the moment is what
happens for larger values of ε when the spectrum of the operator Aµε,s is not close to the
spectrum of the limit operator. In particular, a gap that exists for small values of ε does
it still exist for any value of ε (until the obstacles disappear)? The eigenvalues inside the
gaps that exist for the limit operator do they exist for any value of ε or do they immerse
into the essential spectrum before the gap disappears?
In the cases that we tested numerically we saw that the gaps were present for any value
of ε for which the obstacles are present, i.e. for ε ∈ ]0,min{1, L/2}[. In figure 3.21a we
show the dependence of the first two gaps on ε in the case L = 2. Of course, when ε is
close to 1 the computation becomes very costly since the size of the gaps is very small.
For any discretization taken we obtain reliable results only up to a certain value of ε that
is smaller than 1. However, the existence of the gaps at least up to this value (0.9 in the
particular case represented in figure 3.21a) permits to conjecture that they exist for any
ε < 1.
The behaviour of the eigenvalues is even more unclear. In figure 3.21b we represent the
eigenvalues in the first gap of the operator Aµε,s for L = 2, µ = 0.25. It seems that
the eigenvalues immerse into the essential spectrum for some values of ε < 1 (the second
eigenvalue seems to disappear between ε = 0.55 and ε = 0.6). Again, the analysis becomes
costly when the eigenvalues approach the essential spectrum. For this reason we cannot
distinguish between the case when the eigenvalues do not exist any more and the case
when they exist but are very close to the essential spectrum. For the second eigenvalue
the computation with a mesh of size h = 0.0025 gave the following results: for ε = 0.55
the upper edge of the first gap b1 ≈ 2.995, the second eigenvalue λ2 ≈ 2.987, for ε = 0.6
b1 ≈ 3.1, the second eigenvalue was not found.
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(a) Dependence of the first two gaps of the operator Aε,s on ε for L = 2. The gaps
are present for any ε < 1.

(b) Eigenvalues of the operator Aε,s in the first gap for L = 2, µ = 0.25 seem to
immerse into the essential spectrum at some ε < 1.

Figure 3.21: Behaviour of the spectrum for large values of ε.
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Comparison with the eigenvalues found from using asymptotic development

We will now compare the results obtained for the eigenvalues using the DtN operator
method described in this chapter with the results obtained from the asymptotic expansion
of the eigenvalue found in Chapter 2. We remind the algorithm of computation of the
first n terms of the asymptotic expansion.

Algorithm of computation of λ(n)

I Initialization:

• λ(0) is an eigenvalue of the limit operator Aµs . It is computed by solving the equation
(1.3.55) (we remind that according to the notation of Chapter 2 λ should be replaced
by
√
λ):

1−

√
g2(
√
λ)− 1

|g(
√
λ) + cos

√
λ|

= µ.

• u(0) is the corresponding eigenfunction on the graph given by the relations (2.2.40)–
(2.2.42). We represent it in the form (2.3.4)–(2.3.5):

ã
(0)
0 (j) = 1, b̃

(0)
0 (j) =

1

sin
√
λ(0)

(
r − cos

√
λ(0)
)
, j ∈ N,

c̃
(0)
0 (j) =

1

cos
(√

λ(0)L
2

) , d̃
(0)
0 (j) = 0, j ∈ N∗.

• U (0)
j = u(0)

j , ∀j ∈ Z. We represent it in the form (2.3.21):

U (0)
0 = 1, j ∈ N∗.

II Computation of the functions W±
j solving the problems (2.2.18), (2.2.19) : P1 finite

elements. There are 4 problems to solve: (2.2.18) and (2.2.19) for j = 0. and for
j 6= 0. The solutions of these problems are unique modulo a constant. In order to fix
the missing constants, we add the condition∫

Σ+
j

W± = 0.

III For k = 1 : n{
λ(`), u(`), U (`)

}k−1

`=1
are known

1) Computation of the right-hand sides of the far field problem for u(k) and the near
field problem for U (k) (see the proof of Proposition 2.3.1):

• The function f (k−1) in the form (2.3.24)–(2.3.25):

– Construction of the polynomials
{
a

(k−1)
f,` , b

(k−1)
f,` , c

(k−1)
f,` , d

(k−1)
f,`

}
, 0 6 ` 6 k − 1 ;

– Construction of f (k−1)
0 .
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• The coefficients
{
c

(k)
j,p,δ,`, j ∈ Z, δ ∈ {+,−, 0} , 1 6 ` 6

[
k
2

]
, 1 6 p 6 N

}
in the form

(2.3.28) with someN corresponding to the truncation of the infinite series in (2.2.24)–
(2.2.26):
– Construction of the coefficients č(k)

q,p,δ,`, 0 6 q 6 k, δ ∈ {+,−, 0}, 1 6 ` 6
[
k
2

]
,

1 6 p 6 N ;
– Construction of c(k)

0,p,δ,`, δ ∈ {+,−, 0} , 1 6 ` 6
[
k
2

]
, 1 6 p 6 N .

• The functions
{
g

(k−1)
j,δ

}
j∈Z

, δ ∈ {+,−, 0}, in the form (2.3.31):

– Construction of the functions
{
ǧ

(k−1)
q,δ , 0 6 q 6 k − 1, δ ∈ {+,−, 0}

}
;

– Construction of
{
g

(k−1)
0,δ

}
, δ ∈ {+,−, 0}.

• The functions
{

Φ
(k−1)
j

}
j∈Z

, in the form (2.3.34):

– Construction of the functions Φ̌
(k−1)
q , 0 6 q 6 k − 1;

– Construction of Φ
(k−1)
0 .

• The sequences
{

Ξ
(k−1)
j

}
j∈Z

,
{

∆
(k−1)
j,±

}
j∈Z

in the form (2.3.36):

– Construction of the polynomials q(k−1)
Σ , q(k−1)

∆±
;

– Construction of Ξ
(k−1)
0 , ∆

(k−1)
0,± .

2) λ(k) is given by the relation (2.2.60):

λ(k) =
∥∥u(0)

∥∥−2

Lµ2 (GC)

(∑
j∈Z

Ξ̃
(k−1)
j u

(0)
j −

(
f (k−1), u(0)

)
Lµ2 (GC)

)
.

3) Resolution of the far field problem for u(k):
We search u(k) in the form (2.3.4)–(2.3.5). As explained in the proof of Lemma
2.3.1, the problem reduces to solving a linear system (2.3.17) of size k × k. This
permits to find u(k) at all edges of the graph GC except at the edge e0 (since in
(2.3.5) j > 1). To determine u(k)

0 , one can use the transmission conditions at the
vertex v−0 . Let us note that there are two transmission conditions at the vertex v−0 :
the jump condition (which is the same to the right and to the left of the vertex due
to the symmetry of the problem with respect to the axis y = 0, see Lemma 2.2.6)
and the Kirchhoff’s condition to determine one missing parameter c̃(k)

0 (since d̃(k)
0 is

defined by the relation (2.3.8)). One can use any of these two conditions, and the
other one will be automatically satisfied since the far field problem has a solution
(the other condition is in fact equivalent to the compatibility condition (2.2.60)).

4) Resolution of the near field problem for U (k):
We search U (k) in the form (2.3.21). Thus, there are k+2 problems to solve using P1

finite elements: k + 1 problems for the functions
{
U (k)
q

}k
q=0

(which permits to find

all the near field terms except U (k)
0 ) and the problem for U (k)

0 .

In figure 3.22a we compare the results for the first eigenvalue λε in the first gap obtained
using the DtN operator method and the asymptotic expansion of the eigenvalue.
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(a) Dependence on ε of the eigenvalues computed with the DtN method and of the first several terms
of the asymptotic expansion.

(b) Zoom on the interval [0.45, 0.6]

Figure 3.22: Comparison of the numerical approximations of the first eigenvalue in the
first gap of the operator Aµε,s computed with the DtN operator method and with the
asymptotic expansion of the eigenvalue for L = 2, µ = 0.25, ε ∈ [0, 0.6]. The black curve
is obtained using the DtN operator method and the coloured curves correspond to the

first terms of the asymptotic expansion of the eigenvalue,
n∑
k=0

λ(k)εk, for 1 6 k 6 5.





CHAPTER 4

GUIDED MODES IN OPEN PERIODIC
LINEIC WAVEGUIDES: THE 2D CASE

In this chapter we study the problem creating of guided modes in the domain Ωµ
ε repre-

sented in figure 4.1b. This domain, supposed homogeneous, can be seen as a perturbation
of the 2D periodic domain Ωε (represented in figure 4.1a) defined by

Ωε = R2 \ Sε,

Sε =
⋃

(j,k)∈Z2

[
ε
2
, 1− ε

2

]
×
[
−L

2
+ ε

2
, L

2
− ε

2

]
+ (j, kL), ε > 0, L > 0,

ε being a small parameter. The domain Ωε is R2 minus an infinite set of rectangular

(a) The periodic domain Ωε (b) The perturbed domain Ωµε

Figure 4.1: The purely periodic domain Ωε and the perturbed domain Ωµ
ε .

obstacles (of size (1−ε)× (L−ε)) placed periodically with the period 1 in the x-direction

119
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and the period L in the y-direction. The distance between two consecutive obstacles is
ε. The domain Ωµ

ε is obtained from Ωε by changing the distance between two neighbour
columns of obstacles from ε to µε with µ > 0 and simultaneously modifying the width of
the obstacles of these two columns from 1 − ε to 1 − (1 + µ)ε/2 (the total width of the
two columns is then preserved):

Ωµ
ε = R2 \

{
Sµ,+ε ∪ Sµ,−ε

}
,

Sµ,+ε =
⋃
j∈N
k∈Z

[
wµj ε

2
, 1− ε

2

]
×
[
−L

2
+ ε

2
, L

2
− ε

2

]
+ (j, kL),

Sµ,−ε =
⋃
j∈N
k∈Z

[
−1 + ε

2
,−wµj ε

2

]
×
[
−L

2
+ ε

2
, L

2
− ε

2

]
− (j, kL),

where wµj is the weight function defined in (1.3.1). Neumann boundary conditions are
imposed on the boundaries of the obstacles.

Our goal is to prove the existence of guided modes. By a guided mode we mean, roughly
speaking, a solution of the scalar wave equation,

∂2u

∂t2
= ∆u in Ωµ

ε ,
∂u

∂n

∣∣∣∣
∂Ωµε

= 0, (4.0.1)

which propagates along the perturbation (in the y-direction) and is confined in the
transversal direction (x-direction). Thus, it should have the form of a plane wave prop-
agating in the y-direction multiplied by some function v(x, y) periodic in the y-direction
with period L:

u(x, y, t) = ei(ωt−βy/L)v(x, y), v(x, y) = v(x, y + L). (4.0.2)

To express the fact that the solution is confined in x-direction we impose the condition

v ∈ L2 (Bµε ) ,

where Bµε is a periodicity band of the domain Ωµ
ε (cf. figure 4.2) which can be formally

described by the expression

Bµε =
{
R×

]
− ε

2
, ε

2

[}
∪

{⋃
j∈N

]
j − wµj ε

2
, j +

wµj ε

2

[
×
]
−L

2
, L

2

[}
.

Remark 4.0.1. Notice that the choice of the periodicity band is obviously not unique.
In particular, we could have taken a periodicity band that has a ladder shape. However,
the periodicity cell of the band Bµε which has the form of a cross turns out to be more
convenient for numerical simulations.

One can separate in (4.0.2) the harmonic factor in time to get

u(x, y, t) = eiωtṽ(x, y), ṽ(x, y) = e−iβy/Lv(x, y), (4.0.3)
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Figure 4.2: Periodicity band (grey area)

where the function ṽ is β-quasiperiodic:

ṽ(x, y + L) = e−iβ ṽ(x, y).

Then, after plugging (4.0.3) into the equation (4.0.1), one gets the following problem for
the function ṽ ∈ L2 (Bµε ): 

∆ṽ = −ω2ṽ,

ṽ|Σ′ = e−iβ ṽ|Σ ,
∂ṽ

∂n

∣∣∣∣
∂Bµε \{Σ∪Σ′}

= 0.

Here

Σ =
⋃
j∈N

[
j − wµj ε

2
, j +

wµj ε

2

]
×
{
−L

2

}
, Σ′ =

⋃
j∈N

[
j − wµj ε

2
, j +

wµj ε

2

]
×
{
L
2

}
.

Thus, one ends up with an eigenvalue problem for the Laplacian in the periodicity band Bµε
with β-quasiperiodic boundary conditions on the upper and lower parts of the boundary
for β ∈ [0, π]. More precisely, one has to study the spectrum of the following operator:

Aµε (β) : L2 (Bµε )→ L2 (Bµε ) , Aµε (β)v = −∆v,

D(Aµε (β)) =

{
v ∈ H1

∆(Bµε ),
∂v

∂n

∣∣∣∣
∂Bµε \{Σ∪Σ′}

= 0,

v|Σ′ = e−iβv|Σ,
∂v

∂y

∣∣∣∣
Σ′

= e−iβ
∂v

∂y

∣∣∣∣
Σ

}
.

We will show (cf. Theorems 4.1.2, 4.1.1 and 4.1.3) that for any β ∈ [0, π], for any k ∈ N
there exists εk > 0 such that for ε < εk the operator Aµε (β) has at least k gaps and at
least one or two eigenvalues in each of these gaps.

As for the ladder, the study is based on asymptotic analysis: as ε → 0, the domain Bµε
shrinks to a graph and the spectrum of the limit operator defined on this graph can be
computed explicitly. The essential spectrum of the limit operator is discussed in Section
4.1.1 and the discrete spectrum in Section 4.1.2. This will permit to derive existence
results for the operator Aµε (β) in Section 4.1.3. In Section 4.2 we present numerical
results for the operator Aµε .

4.1 Existence results

When ε→ 0 the domain Bµε shrinks to the graph GB =
⋂
ε>0

Bµε shown in figure 4.3.
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Figure 4.3: The limit graph GB

We will use the following notation. We enumerate the vertices by the index j ∈ Z, j = 0
corresponding to the perturbed vertex. The value of the function u at the j-th middle
vertex is denoted by uj, its value at the upper vertex by u+

j and at the lower vertex by u−j .
The horizontal edge joining the vertices j and j + 1 is denoted by ej+ 1

2
and the function

on it is denoted by uj+ 1
2
(s), the local variable s taking values in [0, 1]. The vertical edges

above and below the vertex j are denoted by e+
j and e−j respectively and the function on

this edges is denoted by u+
j (t) and u−j (t) respectively, the local variable t taking values in[

−L
2
, L

2

]
(t = 0 at the middle vertex). We denote by EGB the set of the edges of GB.

Similarly to the case of the ladder, the appropriate functional spaces are

Lµ2 (GB) =
{
u : ‖u‖2

Lµ2 (GB) <∞
}
, H2 (GB) =

{
u ∈ C (GB) : ‖u‖2

H2(GB) <∞
}
,

‖u‖2
Lµ2 (GB) =

∑
j∈Z

(
wµj ‖u+

j ‖2
L2(e+j )

+ wµj ‖u−j ‖2
L2(e−j )

+ ‖uj+ 1
2
‖2
L2( ej+1

2
)

)
,

‖u‖2
H2(GB) =

∑
j∈Z

(
‖u+

j ‖2
H2(e+j )

+ ‖u−j ‖2
H2(e+j )

+ ‖uj+ 1
2
‖2
H2( ej+1

2
)

)
.

The limit operator Aµ(β) : Lµ2 (GB)→ Lµ2 (GB) is now defined as

(Aµ(β)u)|e = − (u|e)′′ , ∀e ∈ EGB ,

D (Aµ(β)) =
{
u ∈ H2 (GB) : (4.1.1)

u+
j = e−iβu−j , (u+

j )′
(
L
2

)
= e−iβ(u−j )′

(
−L

2

)
, ∀j ∈ Z, (4.1.2)

u′
j+ 1

2
(0)− u′

j− 1
2
(1) + wµj (u+

j )′(0)− wµj (u−j )′(0) = 0, ∀j ∈ Z
}
. (4.1.3)

The relations (4.1.2) express the quasiperiodicity and the relations (4.1.3) are the Kirch-
hoff’s conditions at the middle vertices. Notice that by definition of H2 (GB) the condition
(4.1.1) implies the continuity at the middle vertices.

As previously, we start with the explicit computation of the essential spectrum of the
operator A(β) which turns out to have infinitely many gaps for any β. The computations
in this section will be very similar to the ones done for the ladder in Section 1.3. We will
still repeat it in detail for the seek of completeness. Then we prove that the perturbed
operator has one or two eigenvalues in each gap.
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4.1.1 The essential spectrum of the limit operator

As usual, due to a compact perturbation argument the study of the essential spectrum of
the operator Aµ(β) is reduced to the study of the spectrum of the non-perturbed operator
A1(β) (corresponding to the case µ = 1) that will be denoted by A(β).

Proposition 4.1.1. For any µ > 0, β ∈ [0, π]

σess (Aµ(β)) = σess (A(β)) .

For this reason, we start by determining the (essential) spectrum of the operator A(β).

4.1.1.1 Computation of the spectrum of the non-perturbed limit operator

According to the Floquet-Bloch theory, in order to determine the spectrum of the operator
A(β) one has to study a set of problems on the periodicity cell CB that consists of four
edges: I1 =

[
−1

2
, 0
]
× 0, I2 =

[
0, 1

2

]
× 0, I3 = 0×

[
−L

2
, 0
]
, I3 = 0×

[
0, L

2

]
. A function on

the cell is defined by its four restrictions on the edges of the cell: u = {ui}4
i=1 (cf. figure

4.4).

Figure 4.4: Periodicity cell CB

The corresponding functional spaces on the cell are defined as

L2 (CB) =

{
u :

4∑
i=1

‖ui‖2
L2(Ii)

<∞

}
, H2 (CB) =

{
u ∈ C (CB) :

4∑
i=1

‖ui‖2
H2(Ii)

<∞

}
.

We have to determine the spectrum of the operator family Aβ(θ) : L2 (CB) → L2 (CB),
θ ∈ [0, π], defined as

Aβ(θ)u = −u′′,

D (Aβ(θ)) =
{
u ∈ H2 (CB) : u4

(
L
2

)
= e−iβu3

(
−L

2

)
, u′4

(
L
2

)
= e−iβu′3

(
−L

2

)
, (4.1.4)

u2

(
1
2

)
= e−iθu1

(
−1

2

)
, u′2

(
1
2

)
= e−iθu′1

(
−1

2

)
, (4.1.5)

u′2(0)− u′1(0) + u′4(0)− u′3(0) = 0
}
. (4.1.6)
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Proposition 4.1.2. For θ, β ∈ [0, π], λ2 ∈ σ (Aβ(θ)) \ {0} if and only if λ > 0 is a
solution of the equation

sinλ (cos β − cos (λL)) = sin (λL) (cosλ− cos θ) . (4.1.7)

The point λ2 = 0 belongs to σ(Aβ(θ)) if and only if θ = β = 0.

Proof. Searching the eigenvalues of the operator Aβ(θ) implies solving the ordinary dif-
ferential equation

u′′ + λ2u = 0 (4.1.8)

on each edge of the cell CB. We first consider the case λ 6= 0. We have:

u1(x) = c1e
iλx + d1e

−iλx, x ∈
[
−1

2
, 0
]
, (4.1.9)

u2(x) = c2e
iλx + d2e

−iλx, x ∈
[
0, 1

2

]
, (4.1.10)

u3(y) = c3e
iλy + d3e

−iλy, y ∈
[
−L

2
, 0
]
, (4.1.11)

u4(y) = c4e
iλy + d4e

−iλy, y ∈
[
0, 1

2

]
. (4.1.12)

The continuity of the eigenfunction at the vertex x = 0, y = 0 implies the relations

c1 + d1 = c2 + d2 = c3 + d3 = c4 + d4. (4.1.13)

The quasi-periodicity conditions (4.1.4), (4.1.5) lead to the following relations:

c2e
iλ/2 + d2e

−iλ/2 = e−iθ
(
c1e
−iλ/2 + d1e

iλ/2
)
, (4.1.14)

c2e
iλ/2 − d2e

−iλ/2 = e−iθ
(
c1e
−iλ/2 − d1e

iλ/2
)
, (4.1.15)

c4e
iλL/2 + d4e

−iλL/2 = e−iβ
(
c3e
−iλL/2 + d3e

iλL/2
)
, (4.1.16)

c4e
iλL/2 − d4e

−iλL/2 = e−iβ
(
c3e
−iλL/2 − d3e

iλL/2
)
. (4.1.17)

Finally, we take into account the Kirchhoff’s condition (4.1.6) which can be rewritten as

c2 − d2 − c1 + d1 + c4 − d4 − c3 + d3 = 0. (4.1.18)

Let us denote
α = eiθ, γ = eiβ, z = eiλ.

Then, the relations (4.1.14), (4.1.15) imply that

c1 = αzc2, d1 = αzd2. (4.1.19)

Analogously, the relations (4.1.16), (4.1.21) imply

c3 = γzLc4, d3 = γzLd4. (4.1.20)

Taking into account (4.1.13), we get:

c2 (αz − 1) = d2 (1− αz) , (4.1.21)
c4

(
γzL − 1

)
= d4

(
1− γzL

)
. (4.1.22)
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Combining the relations (4.1.13), (4.1.18), (4.1.21), (4.1.22) we arrive at the following
linear system of four equations for the unknowns c2, d2, c4, d4:

c2 + d2 − c4 − d4 = 0,

c2(αz − 1) + d2(αz − 1) = 0,

c4

(
γzL − 1

)
+ d4

(
γzL − 1

)
= 0,

c2 (1− αz) + d2 (αz − 1) + c4

(
1− γzL

)
+ d4

(
γzL − 1

)
= 0.

The criterion of existence of a non-trivial solution is:

D(λ) = 0, D(λ) =

∣∣∣∣∣∣∣∣
1 1 −1 −1

αz − 1 αz − 1 0 0
0 0 γzL − 1 γzL − 1

1− αz αz − 1 1− γzL γzL − 1

∣∣∣∣∣∣∣∣ .
Let us compute the determinant D(λ). We have

D(λ) = −(αz−1)

∣∣∣∣∣∣
1 −1 −1
0 γzL − 1 γzL − 1

αz − 1 1− γzL γzL − 1

∣∣∣∣∣∣+(αz−1)

∣∣∣∣∣∣
1 −1 −1
0 γzL − 1 γzL − 1

1− αz 1− γzL γzL − 1

∣∣∣∣∣∣
= (1− αz)

(
2 + 2γ2 + αγz

(
zL − zL

)
− γ

(
3zL + zL

))
+ (αz − 1)

(
2 + 2γ2 + αγz

(
zL − zL

)
− γ

(
3zL + zL

))
,

D(λ)

γ
= (1−αz)

(
4<γ + 2iαz=zL −

(
3zL + zL

))
+(αz−1)

(
4<γ − 2iαz=zL −

(
3zL + zL

))
= 8iα<γ=z + 4i=zL + 8iα=zL+1 + 4iα2=zL,

D(λ)

4iαγ
= 2<γ=z + α=zL + 2=zL+1 + α=zL = 2

(
<γ=z + <α=zL + =zL+1

)
.

Consequently, the condition D(λ) = 0 is equivalent to the relation

<γ=z + <α=zL + =zL+1 = 0,

which leads to the relation (4.1.7) for λ 6= 0.
If λ = 0, instead of the relations (4.1.9)–(4.1.12) we have

u1(x) = c1 + d1x, x ∈
[
−1

2
, 0
]
,

u2(x) = c2 + d2x, x ∈
[
0, 1

2

]
,

u3(y) = c3 + d3y, y ∈
[
−L

2
, 0
]
,

u4(y) = c4 + d4y, y ∈
[
0, 1

2

]
.

The continuity at the vertex x = 0, y = 0 implies that ci = c, 1 6 i 6 4. From the
quasiperiodic conditions it follows that

d2 = e−iθd1, d4 = e−iβd3, d1 = c
(
1− eiθ

)
, d3L = c

(
1− eiβ

)
. (4.1.23)
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Finally, Kirchhoff’s condition gives

− d1 + d2 − d3 + d4 = 0. (4.1.24)

After injecting (4.1.23) in (4.1.24) we get

c

(
cos θ − 1 +

cos β − 1

L

)
= 0.

Hence, there exists a non-trivial solution if and only if θ = β = 0. This finishes the
proof.

Remark 4.1.1. One can notice that if L ∈ Q, then the set {λ : λ2 ∈ σ(Aβ(θ))} is
periodic. Indeed, this is due to the fact that both the left-hand side and the right-hand
side of (4.1.7) are periodic with the same period.

We can now find the spectrum of the operator A(β) due to the decomposition

σ(A(β)) =
⋃

θ∈[0,π]

σ (Aβ(θ)) . (4.1.25)

Thus, the point λ2 (different from zero) belongs to the spectrum of the operator A(β) if
and only if there exists a value of θ such that the relation (4.1.7) is verified.
In the rest of this section we will use the following notation:

Σ = {πn, n ∈ N} , Σ∗ = Σ \ {0}, Σβ =
{
± β
L

+ 2πn
L
, n ∈ N

}
, Σ∗β = Σβ \ {0}.

Proposition 4.1.3.

1. {λ2, λ ∈ Σ∗ ∪ Σβ} ⊂ σ(A(β)).

2. For any β ∈ [0, π], the operator A(β) has infinitely many gaps whose ends tend to
infinity.

Proof.

1. For λ 6= 0, λ ∈ Σ∗ ∪Σβ the equation (4.1.7) is obviously verified for cos θ = cosλ. The
point λ = 0 belongs to Σ∗ ∪ Σβ if and only if β = 0. At the same time, according to
Proposition 4.1.2, 0 ∈ σ(A(β)) if and only if β = 0.

2. Let us consider two cases:

a) β /∈ {0, π}:
Consider λn = πn

L
, n ∈ N∗. There are two possibilities:

(i) λn /∈ Σ∗: then, the right-hand side of the equation (4.1.7) equals to zero, whereas
the left-hand side is different from zero for any θ ∈ [0, π]. Consequently, there exists
a gap of the operator A(β) containing the point λ2

n.
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(ii) λn ∈ Σ∗: in this case it follows from the property 1 that λ2
n ∈ σ(A(β)). We are

going to show that the point λ2
n is an isolated point of the spectrum of the operator

A(β), so that there exist gaps to the left and to the right of it. Setting λ = λn + δ
in (4.1.7) we get:

sin δ
cos β

cos (λnL)
+ sin (δL)

cos θ

cosλn
= sin (δ(L+ 1)). (4.1.26)

If δ is small enough (but different from 0) this equation cannot be verified for any
θ. Indeed, for δ 6= 0 it can be rewritten as

cos β

cos (λnL)
− cos (δL) =

sin (δL)

sin δ

(
cos δ − cos θ

cosλn

)
.

Since | cos β| < 1 and |cosλn| = | cos (λnL)| = 1, the limit of the left-hand side as
δ → 0 is negative, whereas the limit of the right-hand side is non-negative for any
θ with a uniform bound in θ for δ small enough:

sin (δL)

sin δ

(
cos δ − cos θ

cosλn

)
>

sin (δL)

sin δ
(cos δ − 1) , ∀θ ∈ [0, π].

Hence, the equation (4.1.26) does not have solutions for δ small enough. This proves
the existence of gaps of the form ]λ2

n − l−n , λ2
n[, ]λ2

n, λ
2
n + l+n [ for some l−n , l+n > 0.

Thus, we see that for any n ∈ N∗ there exists a gap of the operator A(β) of the
form ]λ2

n − l−n , λ2
n + l+n [, ]λ2

n − l−n , λ2
n[ or ]λ2

n, λ
2
n + l+n [ with l−n , l+n > 0. We also know

from the property 1 that there exists an infinite sequence of points tending to infinity
and belonging to the spectrum of the operator A(β). This proves the existence of an
infinity of gaps of the operator A(β) for β /∈ {0, π}.

b) β ∈ {0, π}:
For β = 0 the equation (4.1.7) takes the form

sin
(
λL
2

)
cos
(
λL
2

)
(cosλ− cos θ) = sinλ sin2

(
λL
2

)
, (4.1.27)

and for β = π it takes the form

sin
(
λL
2

)
cos
(
λL
2

)
(cosλ− cos θ) = − sinλ cos2

(
λL
2

)
. (4.1.28)

It can be shown that the operators A(0) and A(π) have gaps that contain some
neighbourhoods (or deleted neighbourhoods) of the points

{
λ2, cos

(
λL
2

)
= 0
}

and{
λ2, sin

(
λL
2

)
= 0
}

respectively. Indeed, in the neighbourhoods of these points the
relations (4.1.27) and (4.1.28) can be rewritten as

cos
(
λL
2

)
(cosλ− cos θ) = sinλ sin

(
λL
2

)
, (β = 0), (4.1.29)

sin
(
λL
2

)
(cosλ− cos θ) = − sinλ cos

(
λL
2

)
, (β = π). (4.1.30)

Comparing these relations with the relations (1.3.12), (1.3.59) characterizing the spec-
tra of the operators As and Aas respectively, we see that they coincide up to a factor
2. This factor being unimportant in the proofs of Propositions 1.3.4 (2), 1.3.12 (2),
the same argument (together with the property 1) shows the existence of an infinity
of gaps for the operators A(0), A(π).
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We will come back to this similarity of the relations (4.1.29), (1.3.12) and (4.1.30), (1.3.59)
which implies some relation between the symmetric case and the 0-quasiperiodic one, as
well as between the antisymmetric case and the π-quasiperiodic one (see Remark 4.1.6).

Proposition 4.1.4. The operator A(β) has the following set of eigenvalues of infinite
multiplicity:

σpp(A(β)) = Σis(β) ∪ Σemb(β),

where

Σis(β) =


{λ2/ λ ∈ Σ∗, sin (λL) = 0} , β ∈]0, π[,

{λ2/ λ ∈ Σ∗, cos (λL) = −1} , β = 0,

{λ2/ λ ∈ Σ∗, cos (λL) = 1} , β = π,

(4.1.31)

and

Σemb(β) =


∅, β ∈]0, π[,

{λ2/ λ 6= 0, cos (λL) = 1} , β = 0,

{λ2/ λ 6= 0, cos (λL) = −1} , β = π.

(4.1.32)

The eigenvalues of the set Σis(β) are isolated points of the spectrum whereas the eigenval-
ues of the set Σemb(β) are embedded (interior points of the spectrum).

Proof. The point λ2 is an eigenvalue of the operator A(β) of infinity multiplicity if and
only if it is an eigenvalue of the operator A(β(θ)) for any θ ∈ [0, π]. It follows from
Proposition 4.1.2 that 0 is not an eigenvalue of infinite multiplicity for any β ∈ [0, π]. For
λ 6= 0 it means that the equation (4.1.7) is satisfied for any θ ∈ [0, π]. This is possible in
two cases:

(a) sinλ = sin (λL) = 0 and cos (λL) 6= cos β;

(b) cos (λL) = cos β and sin (λL) = 0.

In both cases (and only in this cases) the left-hand side and the right-hand side of (4.1.7)
equal to zero simultaneously and independently of θ ∈ [0, π]. The case (a) leads to the
set Σis(β). We have already shown in the proof of Proposition 4.1.3 (2) that these points
are isolated points of the spectrum. The case (b) leads to the set Σemb(β). Let us show
that the points of this set are interior points of the spectrum. Consider β ∈ {0, π} and
λ0 such that cos (λ0L) = cos β = ±1. Then, the equation (4.1.7) for λ = λ0 + δ takes the
form

cos θ = cosλ− sinλ tan
(
δL
2

)
.

It is clear that if |cosλ0| < 1 then this equation admits a solution when δ is small enough
(since the absolute value of the right-hand side is smaller than 1 for δ small enough). If
|cosλ0| = 1, then the last equation can be rewritten as

cos θ = cosλ0

(
cos δ − sin δ tan

(
δL
2

))
,

and again it admits a solution when δ is small enough. This shows that the points of the
set Σemb(β) are interior points of the spectrum.
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The following assertion is an immediate consequence of the decomposition (4.1.25), Propo-
sition 4.1.2 and property 1 of Proposition 4.1.3.

Proposition 4.1.5. λ2 ∈ σ(A(β)) if and only if one of the following possibilities holds:

(i) λ ∈ Σ∗ ∪ Σβ;

(ii) λ ∈ R+ \ (Σ ∪ Σβ) is a solution of the equation

φL,β(λ) = fθ(λ), (4.1.33)

for some θ ∈ [0, π]. Here

φL,β(λ) =
sin (λL)

cos β − cos (λL)
, λ /∈ Σβ,

fθ(λ) =
sinλ

cosλ− cos θ
, λ ∈ {λ / cosλ 6= cos θ} .

As in the case of the ladder (cf. Proposition 1.3.6) a simple geometric interpretation
can be given to Proposition 4.1.5. Again, the spectrum is obtained as the image by the
function x 7→ x2 of the closure of the projection on the axis of positive abscissas of the
intersection of the the domain D with graph of the function φL,β:

λ2 ∈ σ(A(β)) ⇔ λ ∈ Dx \ {0},

where
Dx =

{
x : (x, φL(λ)) ∈ D

}
, D =

⋃
n∈N

D±n ,

D+
n =

{
(x, y)/ x ∈]πn, π(n+ 1)[, y ∈

[
f+(x),+∞

[}
∪ (πn, 0),

D−n =
{

(x, y)/ x ∈]πn, π(n+ 1)[, y ∈
]
−∞, f−(x)

]}
,

f+(x) = tan
(
x−πn

2

)
, x ∈ [πn, π(n+ 1)[,

f−(x) = −cotan
(
x−πn

2

)
, x ∈]πn, π(n+ 1)].

An example illustrating this geometric interpretation is given in figure 4.5.
Similarly to Proposition 1.3.8, two types of gaps can be distinguished.

Proposition 4.1.6. An interval ]a, b[ is a gap of the operator A(β) for β ∈ [0, π] if and
only if [a, b] ∩ Σβ = ∅ and one of the following possibilities holds:

I There exists n ∈ N such that πn <
√
a <
√
b < π(n + 1), and φL,β (

√
a) = f+ (

√
a),

φL,β(
√
b) = f−(

√
b);

II (i) There exists n ∈ N such that πn =
√
a <

√
b < π(n + 1), and φL,β (

√
a) 6 0,

φL,β(
√
b) = f−(

√
b);

(ii) There exists n ∈ N such that πn <
√
a <
√
b = π(n+1), and φL,β (

√
a) = f+ (

√
a),

φL,β(
√
b) > 0.
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Figure 4.5: The images of the spectral bands by the function x 7→
√
x are given by

the closure of the projection on the axis of positive abscissas of the intersections of the
function φL,β with the domains D+

n , D
−
n .

Remark 4.1.2. If β ∈]0, π], then σ∗ = minσ(A(β)) > 0. According to Proposition 4.1.6,
the interval ]0, σ∗[ is considered as a gap of type II (it satisfies the condition II(i)).
Strictly speaking, this is false: σ∗ is the bottom of the essential spectrum. Being aware of
this inaccuracy, we will still call the interval ]0, σ∗[ a gap. This will permit us to study the
number of eigenvalues of the perturbed operator inside this interval without considering
it as a particular case (cf. Theorem 4.1.1).

The proof of Proposition 4.1.6 is based on the following lemma (which is an analogue of
Lemma 1.3.2 for the ladder).

Lemma 4.1.1. The point λ2
0 is the lower end of a gap of the operator A(β) if and only if

one of the following possibilities holds:

(i) λ0 ∈ R+ \ (Σ ∪ Σs) and φL,β(λ0) = f+(λ0);

(ii) λ0 ∈ Σ \ Σβ and φL,β(λ0) 6 0.

Similarly, the point λ2
0 is the upper end of a gap of the operator A(β) if and only if one

of the following possibilities holds:

(iii) λ0 ∈ R+ \ (Σ ∪ Σs) and φL,β(λ0) = f−(λ0);

(iv) λ0 ∈ Σ∗ \ Σβ and φL,β(λ0) > 0.

Without giving a detailed proof (which is an obvious modification of the proof of Lemma
1.3.2) we mention that it is based on the properties of the function φL,β which has in
general the same behaviour as the function φL. More precisely, it is a 2π

L
-periodic function

defined on R \Σβ. In each interval
]
− β
L

+ 2πn
L
, β
L

+ 2πn
L

[
,
]
β
L

+ 2πn
L
,− β

L
+ 2π(n+1)

L

[
, n ∈ Z,

it is continuous and strictly decreasing and takes all the values in R (cf. figure 4.5).

Remark 4.1.3. If β ∈]0, π], then according to Lemma 4.1.1, 0 is the lower end of a
gap since it satisfies (ii) : 0 ∈ Σ\Σβ and φL,β(0) = 0. Similarly, σ∗ = minσ(A(β)) is
the upper end of a gap since the cases (iii), (iv) characterize all the points λ such that
]λ2 − δ, λ2] ∩ σ(A(β)) = {λ2} for some δ > 0 (cf. Remark 4.1.2).
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(a) Gap of type I
(π <

√
a <
√
b < 2π)

(b) Gap of type II(i)
(π =

√
a <
√
b < 2π)

(c) Gap of type II(ii)
(π <

√
a <
√
b = 2π)

Figure 4.6: Illustration for Proposition 4.1.6: types of gaps.

4.1.2 The discrete spectrum of the limit operator

We now come back to the perturbed operator Aµ(β). We are interested in determining its
discrete spectrum. If λ2 is an eigenvalue of the operator Aµ(β), then the corresponding
eigenfunction u ∈ D (Aµ(β)) solves the equation u′′ + λ2u = 0 on each edge of the graph
GB.

Case λ 6= 0

In this case the eigenfunction u it has the form

uj+ 1
2
(s) = aj+ 1

2
sin (λs) + bj+ 1

2
cos (λs), s ∈ [0, 1], j ∈ Z, (4.1.34)

u+
j (y) = c+

j sin (λy) + d+
j cos (λy), y ∈

[
0, L

2

]
, j ∈ Z, (4.1.35)

u−j (y) = c−j sin (λy) + d−j cos (λy), y ∈
[
−L

2
, 0
]
, j ∈ Z. (4.1.36)

The continuity of an eigenfunction at the vertices (j, 0) implies

bj+ 1
2

= aj− 1
2

sinλ+ bj− 1
2

cosλ = d+
j = d−j , j ∈ Z. (4.1.37)

Thus, we will denote dj := d+
j = d−j , j ∈ Z. After plugging (4.1.35), (4.1.36) into the

quasiperiodicity conditions (4.1.2), we get(
c+
j + e−iβc−j

)
sin
(
λL
2

)
+ dj cos

(
λL
2

) (
1− e−iβ

)
= 0, j ∈ Z, (4.1.38)(

c+
j − e−iβc−j

)
cos
(
λL
2

)
− dj sin

(
λL
2

) (
1 + e−iβ

)
= 0, j ∈ Z. (4.1.39)

Finally, from the Kirchhoff’s conditions (4.1.3) we get

wµj
(
c+
j − c−j

)
+ aj+ 1

2
− aj− 1

2
cosλ+ dj−1 sinλ = 0, j ∈ Z. (4.1.40)

Let us denote
ΣL =

{
πn
L
, n ∈ N∗

}
.
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We will show that the set Σ∗∪ΣL can be excluded from the consideration while searching
the eigenvalues of the operator Aµ(β). Indeed, due to Proposition 4.1.4 we know that
the sets Σ∗ ∩ ΣL for β ∈]0, π[ and ΣL for β ∈ {0, π} correspond to eigenvalues of infinite
multiplicity. The following Lemma states that the points of Σ∗∪ΣL which are not covered
by these cases do not correspond to eigenvalues of the operator Aµ(β).

Lemma 4.1.2. Suppose that one of the following assumptions holds:

(i) β ∈ [0, π], λ ∈ Σ∗ \ ΣL;

(ii) β ∈]0, π[, λ ∈ ΣL \ Σ∗.

Then, λ2 is not an eigenvalue of the operator Aµ(β) for any µ > 0.

Proof.

(i) Since sin (λL) 6= 0, one can derive from (4.1.38)–(4.1.39) the following relations:

c+
j = α+dj, α+ =

1

2

(
tan
(
λL
2

) (
1 + e−iβ

)
+
e−iβ − 1

tan
(
λL
2

)) , ∀j ∈ Z, (4.1.41)

c−j = α−dj, α− =
1

2

(
− tan

(
λL
2

) (
1 + eiβ

)
+

1− eiβ

tan
(
λL
2

)) , ∀j ∈ Z. (4.1.42)

We have then

u+
j (y) = dj

(
α+ sin (λy) + cos (λy)

)
, y ∈

[
0, L

2

]
, j ∈ Z,

u−j (y) = dj
(
α− sin (λy) + cos (λy)

)
, y ∈

[
−L

2
, 0
]
, j ∈ Z.

On the other hand, it follows from (4.1.37) that |bj+ 1
2
| = |dj| = d, ∀j ∈ Z. Conse-

quently, one necessarily has d = 0 (otherwise u /∈ L2(GB)). Thus, bj+ 1
2

= dj = c±j = 0,
∀j ∈ Z. Finally, from the relation (4.1.40) we get aj+ 1

2
= aj− 1

2
cosλ, ∀j ∈ Z, which

implies |aj+ 1
2
| = a, ∀j ∈ Z. If a 6= 0 then u /∈ L2(GB). Otherwise u = 0.

(ii) If sin
(
λL
2

)
= 0, then it follows from (4.1.38) that dj = 0, ∀j ∈ Z (since 1− e−iβ 6= 0).

Similarly, if cos
(
λL
2

)
= 0, then it follows from (4.1.39) that dj = 0, ∀j ∈ Z (since

1 + e−iβ 6= 0). Consequently, the relations (4.1.37) imply that bj+ 1
2

= aj+ 1
2

= 0,
∀j ∈ Z (since sinλ 6= 0). Next, it follows from (4.1.40) that c±j = cj, ∀j ∈ Z. If
sin
(
λL
2

)
= 0, then (4.1.39) implies cj

(
1− e−iβ

)
= 0, ∀j ∈ Z. If cos

(
λL
2

)
= 0, then

(4.1.38) implies cj
(
1 + e−iβ

)
= 0, ∀j ∈ Z. In both cases we get cj = 0, ∀j ∈ Z, and,

consequently, u = 0.

For λ /∈ Σ∪ΣL one can express the coefficients
{
aj+ 1

2
, bj+ 1

2
, c±j , dj

}
in terms of the values

{uj}:

aj+ 1
2

=
1

sinλ
(uj+1 − uj cosλ) , bj+ 1

2
= dj = uj, c±j = α±uj, j ∈ Z, (4.1.43)
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where α± are defined in (4.1.41)–(4.1.42). Then, the relations (4.1.34)–(4.1.36) can be
rewritten as

uj+ 1
2
(s) = uj

sinλ(1− s)
sinλ

x+ uj+1
sin (λs)

sinλ
, s ∈ [0, 1], ∀j ∈ Z, (4.1.44)

u+
j (y) = uj

sin
(
λ
(
L
2
− y
))

sin
(
λL
2

) + u+
j

sin (λy)

sin
(
λL
2

) , y ∈
[
0, L

2

]
, ∀j ∈ Z, (4.1.45)

u−j (y) = uj
sin
(
λ
(
L
2

+ y
))

sin
(
λL
2

) − u−j
sin (λy)

sin
(
λL
2

) , y ∈
[
−L

2
, 0
]
, ∀j ∈ Z. (4.1.46)

After plugging (4.1.43) into the relation (4.1.40) we end up with the following finite
difference equation:

uj+1 + 2gβ(λ)uj + uj−1 = 0, ∀j ∈ Z∗, (4.1.47)
u1 + 2gµβ(λ)u0 + u−1 = 0. (4.1.48)

Here
gβ(λ) = − cosλ+

sinλ(cos β − cos (λL))

sin (λL)
, λ /∈ Σ ∪ ΣL,

gµβ(λ) = − cosλ+ µ
sinλ(cos β − cos (λL))

sin (λL)
, λ /∈ Σ ∪ ΣL.

Case λ = 0

If 0 is an eigenvalue of the operator Aµ(β), then the corresponding eigenfunction has the
form

uj+ 1
2
(s) = uj(1− s) + uj+1s, s ∈ [0, 1], ∀j ∈ Z, (4.1.49)

u+
j (y) = uj

(
1− 2y

L

)
+

2u+
j

L
y, y ∈

[
0, L

2

]
, ∀j ∈ Z, (4.1.50)

u−j (y) = uj

(
1 +

2y

L

)
−

2u−j
L

y, y ∈
[
−L

2
, 0
]
, ∀j ∈ Z. (4.1.51)

From the quasiperiodicity conditions (4.1.2) we find

u+
j =

1 + e−iβ

2
uj, u−j =

1 + eiβ

2
uj, j ∈ Z.

Taking into account the Kirchhoff’s conditions (4.1.3), we get a finite difference equation
again:

uj+1 − 2
(

1 +
wµj
L

(1− cos β)
)
uj + uj−1 = 0, j ∈ Z. (4.1.52)

Finally, combining the cases λ /∈ Σ ∪ ΣL and λ = 0, we get the finite difference equation
(4.1.47)–(4.1.48) with the function gβ defined as

gβ(λ) =


− cosλ+

sinλ(cos β − cos (λL))

sin (λL)
, λ /∈ Σ ∪ ΣL,

cos β − 1

L
− 1, λ = 0,

(4.1.53)
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gµβ(λ) = µgβ(λ) + (µ− 1), λ /∈ Σ∗ ∪ ΣL.

Consider the characteristic equation associated with the system (4.1.47):

r2 + 2gβ(λ)r + 1 = 0, (4.1.54)

It has a solution such that |rβ(λ)| 6 1:

rβ(λ) = −gβ(λ) + sign (gβ(λ))
√
g2
β(λ)− 1. (4.1.55)

The following proposition, analogous to Proposition 1.3.10, gives the relation between the
absolute value of gβ(λ) and the nature of the point λ2.

Proposition 4.1.7. For λ ∈ R+ \ ΣL,

|gβ(λ)| 6 1 ⇔ |rβ(λ)| = 1 ⇔ λ2 ∈ σ(A(β)). (4.1.56)

Proof. The first equivalence follows immediately from (4.1.55). Next, |gβ(λ)| 6 1 if and
only if there exists θ ∈ [0, π] such that gβ(λ) = − cos θ. Taking into account the definition
(4.1.53) of the function gβ, we get

cosλ− cos θ =
sinλ(cos β − cos (λL))

sin (λL)
, λ /∈ Σ ∪ ΣL. (4.1.57)

The relation (4.1.57) is equivalent to (4.1.33) for λ ∈ R+ \ (Σ ∪ Σβ ∪ ΣL). If λ ∈{
Σ∗ ∪ Σ∗β

}
\ ΣL, then we have |gβ(λ)| 6 1 and λ2 ∈ σ(A(β)) (cf. Proposition 4.1.5

(i)). Finally, 0 ∈ σ(A(β)) if and only if β = 0. At the same time, |gβ(0)| 6 1 if and only
if β = 0.

The argument used in Section 1.3.2.2 applies in the present case to show that

λ2 ∈ σd (Aµ(β)) ⇔ rβ(λ) = −gµβ(λ),

and the corresponding eigenfunction is

uj = u0r
|j|
β (λ), ∀j ∈ Z.

With the classification of the gaps in two types introduced in Proposition 4.1.6 we can
state the following theorem.

Theorem 4.1.1. The operator Aµ(β) has no embedded eigenvalues of finite multiplicity
for any µ > 0, β ∈ [0, π]. For any 0 < µ < 1, β ∈ [0, π] there exist two simple eigenvalues
of the operator Aµ(β) in each gap of this operator of type I and one simple eigenvalue in
each gap of type II. These eigenvalues are characterised as follows:

λ2 ∈ σd (Aµ(β)) ⇔ λ is a solution of the equation µ = Fβ(λ),

where

Fβ(λ) = 1−

√
g2
β(λ)− 1

|gβ(λ) + cosλ|
.

For µ > 1 the operator Aµ(β) has no eigenvalues.
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The proof is an obvious modification of the one of Theorem (1.3.1), the relation (1.3.58)
being replaced by the relation

Fβ(λ) = 1−
√

1− φL,β(λ) (φL,β(λ)− ψ(λ)).

Remark 4.1.4. For β ∈]0, π], the interval ]0, σ∗[, σ∗ = minσ(A(β)), is considered as a
gap of type II (cf. Remark 4.1.2). Thus, the operator Aµ(β) has one simple eigenvalue
below the essential spectrum if β ∈]0, π].

4.1.3 Results for the operator Aµ
ε (β)

We can now give the analogues of Theorems 1.4.1, 1.4.3 for the operator Aµε (β).
Let Aε(β) be the non-perturbed operator defined as Aµε (β) with µ = 1, acting in L2 (Bε),
where Bε = B1

ε is the unperturbed periodicity band.

Theorem 4.1.2 (Essential spectrum). Let {]an(β), bn(β)[, n ∈ N∗} be the gaps of the op-
erator A(β) on the limit graph GB for β ∈ [0, π]. Then, for each n0 ∈ N∗ there exists
ε0(β) > 0 such that if ε < ε0(β) the operator Aε(β) has at least n0 gaps {]aε,n(β), bε,n(β)[}n0

n=1

such that

aε,n(β) = an(β) +O(ε), bε,n(β) = bn(β) +O(ε), ε→ 0, 1 6 n 6 n0.

As in the case of the ladder, the proof of this theorem is based on the reduction to the
periodicity cell due to Floquet-Bloch theory and the min-max principle for the bounded
domain. Next, using a standard compact perturbation argument (an analogue of Propo-
sition 1.2.1, the proof being entirely similar), we know that

σess(A
µ
ε (β)) = σess(Aε(β)).

Theorem 4.1.3 (Discrete spectrum – weak version). Let ]a(β), b(β)[ be a gap of the
operator Aµ(β) on the limit graph GB for β ∈ [0, π] and λ(0)(β) ∈ ]a(β), b(β)[ a (simple)
eigenvalue of this operator. Then there exists ε0(β) > 0 such that if ε < ε0(β) the operator
Aµε (β) has an eigenvalue λε(β) inside a gap ]aε(β), bε(β)[ such that:

λε(β) = λ(0)(β) +O
(√

ε
)
, ε→ 0.

This theorem can be proved using the same argument as in the case of the ladder based
on construction of an appropriate pseudo-mode obtained as an extrapolation of the eigen-
function corresponding to the eigenvalue λ(0)(β).

Remark 4.1.5. An analogue of Theorem 1.4.2 should also be possible to derive using
matched asymptotic expansions with obvious minor modifications in the proof. This
would give the optimal order of convergence ε for the eigenvalue as well as its complete
asymptotic expansion:

λε(β) =
n∑
k=0

λ(k)(β)εk +O
(
εn+1

)
, ε→ 0.
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4.1.4 A more general geometry

We can also consider a slightly more general geometry, where the thickness of the horizon-
tal edges is different from the thickness of the vertical edges. In other words, the distance
between the obstacles is ε in the x-direction and νε in the y-direction for some ν > 0 (cf.
figure 4.7).

Figure 4.7: A more general domain: the thickness of the non-perturbed vertical edges is
ε whereas the thickness of the horizontal edges is νε.

This does not change the results qualitatively. Indeed, the only modification in the defini-
tion of the limit operator is the appearance of a factor ν in Kirchhoff’s conditions. More
precisely, the operator Aµν (β) is defined in the space

Lµ2 (GB) =
{
u : ‖u‖2

Lµ2 (GB) <∞
}
,

‖u‖2
Lµ2 (GB) =

∑
j∈Z

(
wµj ‖u+

j ‖2
L2(e+j )

+ wµj ‖u−j ‖2
L2(e−j )

+ ν‖uj+ 1
2
‖2
L2( ej+1

2
)

)
,

as
(Aµν (β)u)|e = −(u|e)′′, e ∈ EGB ,

D (Aµν (β)) =
{
u ∈ H2 (GB) :

u+
j = e−iβu−j , (u+

j )′
(
L
2

)
= e−iβ(u−j )′

(
−L

2

)
, ∀j ∈ Z,

νu′
j+ 1

2
(0)− νu′

j− 1
2
(1) + wµj (u+

j )′(0)− wµj (u−j )′(0) = 0, ∀j ∈ Z
}
.

This results in the same characterization of the spectrum of the operator Aν(β) (corre-
sponding to the non-perturbed case µ = 1) as the one given in Proposition 4.1.3 (5) with
the equation (4.1.33) replaced by

νφL,β(λ) = fθ(λ). (4.1.58)
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All the other statements of Proposition 4.1.3 hold without any change. This means that
the spectrum of the Aν(β) for ν 6= 1, does not change qualitatively from the case ν = 1.
Nevertheless, the parameter ν influences the size of the gaps. Clearly, the size of the image
of a gap by the function x 7→

√
x can never exceed π (since {λ2, λ ∈ {πN∗}} ⊂ σ (Aν(β)),

cf. Proposition 4.1.3 (2)). However, choosing a bigger value of ν leads to decreasing of
this size whereas choosing a smaller value of ν leads to increasing of this size. An example
is given in figure 4.8. Roughly speaking, for ν big there is a lot of spectrum with small
gaps inside it and for small ν there are big gaps separated by small pieces of spectrum.

(a) ν = 10 (b) ν = 0.1

Figure 4.8: Influence of the parameter ν on the size of the gaps for L = π
2
: for smaller

values of ν the gaps are bigger and the spectral bands are smaller.

Similarly, the results about the discrete spectrum when a perturbation is introduced hold
true for this more general geometry. The equation characterization for the eigenvalues
given in Theorem 4.1.1 is be replaced by

µ = F ν
β (λ), F ν

β (λ) = 1−
√

1− νφL,β(λ)
(
νφL,β(λ)− ψ(λ)

)
.

Obviously, the conclusion about the number of eigenvalues inside the gaps does not change:
there are still precisely one or two eigenvalues inside each gap depending on its type.

Remark 4.1.6. We see that the ladder considered in Chapter 1 is a periodicity band for
the domain shown in figure 4.7 with ν = 2. We remember that the equations describing
the spectra of the operators A(0), A(π) respectively, differed from the ones corresponding
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to the operators As, Aas by a coefficient 2 (cf. (4.1.29), (4.1.30), (1.3.12), (1.3.59)). On
the other hand, for ν = 2 the spectra of the operators A2(0), A2(π) are described by the
equation 2φL,β(λ) = fθ(λ) (cf. (4.1.58)). This leads precisely to the relations (1.3.12),
(1.3.59). However, the relations (4.1.29), (4.1.30) are not exactly the ones describing
the spectra of the operators A(0), A(π). Indeed, while obtaining them from the "true"
ones, (4.1.27) and (4.1.28), we performed a division by sin

(
λL
2

)
and cos

(
λL
2

)
respec-

tively. Thus, we excluded from consideration the sets
{
λ2, sin

(
λL
2

)
= 0
}
for β = 0 and{

λ2, cos
(
λL
2

)
= 0
}
for β = π which belong to the spectra of the operators A(0) and A(π)

respectively. They also belong to the spectra of the operators As and Aas respectively, as
shown in Propositions 1.3.4 (1), 1.3.12 (1). Thus, we can finally conclude that

σ(A2(0)) = σ(As), σ(A2(π)) = σ(Aas).

To resume, we see that considering the symmetric (resp. antisymmetric) part of the oper-
ator with Neumann boundary conditions and the 0-quasiperiodic (resp. π-quasiperiodic)
operator leads to the same limit problems on the graph.

4.2 Numerical approach

The numerical method described in Section 3.2 applies to the β-quasiperiodic case with
minor modifications (the detailed description of the method in the β-quasiperiodic case
can be found in [24]). Since the domain in question is now Bµε (cf. figure 4.2), the
periodicity cell and the interior domains are the ones shown in figure 4.9. Since β-

(a) Periodic cell (b) Perturbed cell

Figure 4.9

quasiperiodic conditions are imposed on the boundaries Γ1, Γ4 (resp. Γµ1 , Γµ4), in our
numerical method the meshes of these two boundaries have to be the same, and the
corresponding vertices of the two meshes are coupled. This reduces the number of degrees
of freedom in the corresponding functional space.

4.2.1 Numerical results

In this section we give some numerical results for the operator Aµε (β). For a fixed β they
are very similar to those shown in Section 3.4. For this reason we will concentrate on the
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dependence on β. In figure 4.10 we show the dependence of the essential spectrum of the
operator Aε(β) as well as the limit operator A(β) with respect to β for L = π

2
, ε = 0.1.

For the limit operator it follows from Lemma 4.1.1 that any point λ ∈ πN∗ (in the range
represented in figure 4.10 there is only the point λ = π) corresponds to the lower end of
a gap for some values of β and to the upper end of a gap for the others. At the point β0

where the "transition" happens it corresponds to an interior point of the spectrum. This
transition point is the point of discontinuity of the function φL,β, i.e. the point given by
the relation cos β0 = cos (λL). It is interesting to notice that according to the numerical
results it seems that the same property holds for the non-limit operator as well. In other
words, there is a point λ which corresponds to the lower end of a gap for some values of
β and to the upper end of a gap for the others. However, it is no more π (in the example
given in figure 4.10 λ ≈ 3.24). In figure 4.11 the dependence on β of the eigenvalues

(a) The limit operator on the graph, A(β) (b) The operator Aε(β) for ε = 0.1

Figure 4.10: Dependence of the essential spectrum on β for L = π
2
. The first 5 spectral

bands are represented.

in the first gap and below the essential spectrum is shown for L = π/2, µ = 0.25 in
the case of the graph and for the 2D domain with ε = 0.1. One can remark that the
eigenvalues below the essential spectrum are very close to it. In the first gap they are
better separated from the essential spectrum if β is not close to π. Again, the question of
existence of eigenvalues for any β ∈ [0, π] is not answered since the computations become
costly when the eigenvalue approaches the essential spectrum.
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(a) The limit operator on the graph, Aµ(β) (b) The operator Aµε (β) for ε = 0.1

Figure 4.11: Dependence of the eigenvalues in the first gap and below the essential
spectrum on β for L = π

2
, µ = 0.25.

Time-dependent simulations

As it was discussed in the beginning of this chapter, an eigenvalue ω2 of the operator
Aµε (β) corresponds to a guided mode propagating the the y direction with the speed ωL

β
.

We would like then to see such guided modes in a time-dependent simulation. The idea is
to put a time-harmonic source with the frequency ω at some point of the perturbed line
which would give rise to the corresponding guided mode.

Two kinds of simulations have been preformed. The first one is based on a "naive" Matlab
finite elements code where a finite difference scheme in time is implemented. The infinite
domain Ωµ

ε is replaced by a finite one, Ω̃µ
ε , without putting any special boundary conditions

that would take into account the infinite nature of the domain. For this reason, one obtains
an approximation of the solution as long as the wave does not reach the boundary of the
domain. The problem in question is

∂2u

∂t2
= ∆u+ fω(x, y, t) in Ω̃µ

ε ,

u|t=0 = 0,
∂u

∂t

∣∣∣∣
t=0

= 0,

∂u

∂n

∣∣∣∣
∂Ω̃µε

= 0,
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where
fω(x, y, t) = sin (ωt)δ(x0, y0).

For the discretization, we use a finite element method in space and an explicit finite
difference scheme in time.

In the second set of simulations we used a much more sophisticated C++ code by Julien
Coatléven which takes into account the infinite nature of the propagation domain (for
more details see [12]). In figure 4.12 is represented the solution obtained with this code
for ω = 2.25 at t = 70.

Figure 4.12: Solution in the time-dependent simulation performed using the C++ code
(Julien Coatléven) for L = 2, µ = 0.25, ω = 2.25, t = 70. A guided mode propagating
along the linear defect seems to appear.





CHAPTER 5

GUIDED MODES IN OPEN PERIODIC
LINEIC WAVEGUIDES: THE 3D CASE

5.1 Geometry and statement of the problem

Propagation domain

In this chapter we consider a 3D generalization of the plane waveguide considered in the
previous chapters. By a 3D generalization we mean a domain obtained by fattening a 3D
infinite primitive orthorhombic lattice (which is periodic in three orthogonal directions).
In each direction the straight lines of the lattice are replaced by parallel infinite pipes of a
constant cross-section of size of order ε which is going to be small. The cross-sections are
not necessarily the same for the three directions. More precisely, let Lx, Ly, Lz be positive
numbers (the periods of the domain in the x, y and z directions respectively). Let ωx,
ωy, ωz be bounded domains of R2 containing the origin (the normalized cross sections of
the pipes parallel to the axes x, y and z respectively). Then, the propagation domain Ωε

is defined as follows:
Ωε =

⋃
(k,`)∈Z2

{
Pxε,k,` ∪ P

y
ε,k,` ∪ P

z
ε,k,`

}
,

Pγε,k,` =
{(

α
ε
, β
ε

)
∈ ωγ + (kLα, `Lβ)

}
, (α, β, γ) ∈ {(x, y, z), (y, z, x), (z, x, y)} .

Some examples of such domains are shown in figure 5.1.
A linear defect is introduced to the structure by changing the thickness of one pipe (for
instance, parallel to the z direction): the characteristic size of its cross section is set to
be √µε instead of ε. The perturbed domain Ωµ

ε is defined by the following relation:

Ωµ
ε = Pxε,0,0 ∪ P

y
ε,0,0 ∪ P

z,µ
ε,0,0 ∪

⋃
(k,`)∈Z2\(0,0)

{
Pxε,k,` ∪ P

y
ε,k,` ∪ P

z
ε,k,`

}
,

Pz,µε,0,0 =
{(

x√
µε
, y√

µε

)
∈ ωz

}
.

The limit problem for ε→ 0 will be posed on a 3D graph and its spectrum will be easy to
analyse. For ε small enough the spectrum of the non-limit operator will be approximated

143
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by the spectrum of the limit operator. In this chapter we will study essentially the limit
operator. In Section 5.3 we mention the results for the non-limit operator that follow from
the works [61], [47], [57] (see also [31, 32, 4] for an example of application for a Maxwell
problem). We do not perform the asymptotic analysis which would permit to obtain a full
asymptotic expansion for the eigenvalues. We mention that the approach used in the 2D
case should be possible to apply in the 3D case as well with appropriate modifications.

(a) Rectangular cross section (b) Circular cross section

Figure 5.1: Propagation domain

Guided modes

As in the 2D, case we are interested in guided modes, i.e. solutions of the wave equation

∂2u

∂t2
= ∆u in Ωµ

ε , (5.1.1)

that propagate along the defect and stay confined in the transversal directions. Neumann
boundary conditions are imposed on the boundaries of the obstacles. More precisely, we
search solutions of the form

u(x, y, z, t) = v(x, y, z)ei(ωt−βz/Lz), (5.1.2)

where v is a Lz-periodic function in z-direction confined in the periodicity band Bµ
ε =

Ωµ
ε ×

]
−Lz

2
, Lz

2

[
:

v(x, y, z + Lz) = v(x, y, z), v ∈ L2 (Bµ
ε ) .

Clearly, we could choose any other periodicity band, but we will consider the symmetric
one. After injecting (5.1.2) in the wave equation (5.1.1) , taking into account Neumann
boundary conditions on the boundaries of the obstacles,

∂u

∂n

∣∣∣∣
∂Ωµε

= 0,

and introducing the function
ṽ = v(x, y, z)e−iβz/Lz ,
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we end up with the following problem posed in the periodicity band:

−∆ṽ = ω2ṽ in Bµ
ε ,

ṽ ∈ L2 (Bµ
ε ) ,

∂ṽ

∂n

∣∣∣∣
∂Bµε \{Σ∪Σ′}

= 0,

ṽ is β − quasiperiodic (with respect to z).

This is an eigenvalue problem for the operator Aµε (β) : L2 (Bµ
ε )→ L2 (Bµ

ε ) defined as

Aµε (β) = −∆u,

D (Aµε (β)) =

{
u ∈ H1

∆ (Bµ
ε ) ,

∂u

∂n

∣∣∣∣
∂Bµε \{Σ∪Σ′}

= 0, u|Σ′ = e−iβ u|Σ ,
∂u

∂z

∣∣∣∣
Σ′

= e−iβ
∂u

∂z

∣∣∣∣
Σ

}
.

In the next section we describe the limit operator and compute its spectrum. The general
strategy is analogous to the one used in the 2D case. We start by studying the non-
perturbed operator using the Floquet-Bloch theory (Section 5.2.1). This leads to the
equation (5.2.4) for the eigenvalues of the operator in the periodicity cell which is very
similar to the one found in the 2D case. Here again we show that the limit operator
has infinitely many gaps whose ends tend to infinity (Proposition 5.2.3). Next, we study
the discrete spectrum of the perturbed operator (Section 5.2.2). As in the 2D case, the
problem reduces the to study of a finite difference equation (Lemma 5.2.4). However, this
time the equation is two-dimensional and cannot be solved via the associated characteristic
equation as before. To study this equation we apply the discrete Fourier transform. We
end up with the characterisation of the eigenvalues given in Proposition 5.2.9. This
characterisation is more difficult to analyse than the one obtained in the 2D case. In
Section 5.2.2.4 we prove the existence of at least one or two eigenvalues in each gap
according to its type but contrarily to the 2D case we are not able to find the exact
number of eigenvalues in each gap.

5.2 The limit operator

The limit operator is defined on the graph G =
⋃
ε>0

Ωε ∩
{
z ∈

[
−Lz

2
, Lz

2

]}
shown in figure

5.2. Let us introduce some notation for this graph. The vertices in the plane z = 0 are
enumerated by two indices k, ` ∈ Z in such a way that the coordinates of the vertex vk,`
are (kLx, `Ly, 0). The vertex v0,0 corresponds to the perturbed line. We denote by v±k,`
the vertices with the coordinates (kLx, `Ly,±Lz/2). The edge joining the vertices vk,`
and vk+1,` is denoted by ek+ 1

2
,`, the one joining the vertices vk,` and vk,`+1 is denoted by

ek,`+ 1
2
and the edges joining the vertex vk,` with the vertices v±k,` are denoted by e±k,`. Let

u be a function on G. Then, its value at the vertex vk,` is denoted by uk,` and its values
at the vertices v±k,` by u

±
k,`. The restrictions of the function u at the edge ek+ 1

2
,` is denoted

uk+ 1
2
,`(s), where the local variable s takes values in [0, Lx]. Similarly, its restriction at

the edge ek,`+ 1
2
is denoted by uk,`+ 1

2
(t), where the local variable t takes values in [0, Ly].

Finally, the restrictions of u at the edges e±k,` are denoted by u±k,`(z).
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Figure 5.2: Graph G

The following function spaces are introduced analogously to the 2D case:

Lµ2 (G) =
{
u : ‖u‖2

Lµ2 (G) <∞
}
, H2 (G) =

{
u ∈ C (G) : ‖u‖2

H2(G) <∞
}
,

‖u‖2
Lµ2 (G) =

∑
k,`∈Z

(
wµk,`

(
‖u+

k,`‖
2
L2(e+k,`)

+ ‖u−k,`‖
2
L2(e−k,`)

)
+‖uk+ 1

2
,`‖2

L2(e
k+1

2 ,`
)+‖uk,`+ 1

2
‖2
L2(e

k,`+1
2

)

)
,

‖u‖2
H2(G) =

∑
k,`∈Z

(
‖u+

k,`‖
2
H2(e+k,`)

+ ‖u−k,`‖
2
H2(e−k,`)

+ ‖uk+ 1
2
,`‖2

H2(e
k+1

2 ,`
) + ‖uk,`+ 1

2
‖2
H2(e

k,`+1
2

)

)
.

Here wµ is the weight defined as

wµk,` =

{
µ, k = ` = 0,

1, otherwise.

The limit operator Aµ(β) : L2(G)→ L2(G) is then defined as follows:

Aµ(β)u = −u′′,

D (Aµ(β)) =
{
u ∈ H2 (G) : ∀k, ` ∈ Z, u+

k,` = e−iβu−k,`, (u+
k,`)
′ (Lz

2

)
= e−iβ(u−k,`)

′ (−Lz
2

)
,

(5.2.1)

u′
k+ 1

2
,`
(0)− u′

k− 1
2
,`
(Lx) + u′

k,`+ 1
2
(0)− u′

k,`− 1
2
(Ly) + wµk,`

(
(u+

k,`)
′(0)− (u−k,`)

′(0)
)

= 0
}
.

(5.2.2)
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The relations (5.2.2) are Kirchhoff’s conditions. As in the 2D case, they mean that the
weighted sum of outgoing derivatives is zero at each vertex of the graph G. As usually,
we will start by studying the non-perturbed operator A(β) that corresponds to the case
µ = 1.

Proposition 5.2.1.
σess (Aµ(β)) = σ(A(β)).

The proof of this proposition is an obvious modification of the one for the 2D case if the
1D characteristic function is replaced by a 2D one (cf. Proposition 1.2.1). The periodic
operator A(β) has only essential spectrum and we compute it in the next section.

5.2.1 Computation of the essential spectrum

According to Floquet-Bloch theory in order to study the spectrum of the operator A(β)
we have to study the operators Aβ(kx, ky) defined on the periodicity cell

C = G ∪
{

(x, y) ∈
[
−Lx

2
, Lx

2

]
×
[
−Ly

2
, Ly

2

]}
,

shown in figure 5.3, with (kx, ky)-quasiperiodicity conditions:

Aβ(kx, ky) : L2 (C)→ L2 (C) , Aβ(kx, ky)u = −u′′,

D (Aβ(kx, ky)) =
{
u ∈ H2 (C) : u6

(
Lz
2

)
= e−iβu6

(
−Lz

2

)
, u′6

(
Lz
2

)
= e−iβu′5

(
−Lz

2

)
,

u2

(
Lx
2

)
= e−ikxu1

(
−Lx

2

)
, u′2

(
Lx
2

)
= e−ikxu′1

(
−Lx

2

)
,

u4

(
Ly
2

)
= e−ikyu3

(
−Ly

2

)
, u′4

(
Ly
2

)
= e−ikyu′3

(
−Ly

2

)
,

u′2(0)− u′1(0) + u′4(0)− u′3(0) + u′6(0)− u′5(0) = 0} . (5.2.3)

Figure 5.3: Periodicity cell C

The function spaces L2 (C), H2 (C) are defined in a standard way, i.e.

L2 (C) =

{
u :

6∑
i=1

‖ui‖2
L2(Ii)

<∞

}
, H2 (C) =

{
u ∈ C(C) :

6∑
i=1

‖ui‖2
H2(Ii)

<∞

}
.
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Proposition 5.2.2. For (kx, ky) ∈ [0, π]2, λ2 ∈ σ(Aβ(kx, ky)) \ {0} if and only if λ is a
solution of the equation

sin (λLy) sin (λLz) (cos (λLx)− cos kx) + sin (λLz) sin (λLx) (cos (λLy)− cos ky)

+ sin (λLx) sin (λLy) (cos (λLz)− cos β) = 0. (5.2.4)

The point λ = 0 belongs to σ(Aβ(kx, ky)) if and only if kx = ky = β = 0.

Remark 5.2.1. One can notice that the equation (5.2.4) has a similar structure as the
one found in the 2D case (cf. Proposition 4.1.2).

Proof. Let us start with the case λ 6= 0. If λ2 is an eigenvalue of the operator Aβ(kx, ky),
then the corresponding eigenfunction u ∈ D(Aβ(kx, ky)) solves the equation

u′′ + λ2u = 0

on each edge of the periodicity cell C. We have then

u1(x) = c1e
iλx + d1e

−iλx, x ∈
[
−Lx

2
, 0
]
,

u2(x) = c2e
iλx + d2e

−iλx, x ∈
[
0, Lx

2

]
,

u3(y) = c3e
iλy + d3e

−iλy, y ∈
[
−Ly

2
, 0
]
,

u4(y) = c4e
iλy + d4e

−iλy, y ∈
[
0, Ly

2

]
,

u5(z) = c5e
iλz + d5e

−iλz, z ∈
[
−Lz

2
, 0
]
,

u6(z) = c6e
iλz + d6e

−iλz, z ∈
[
0, Lz

2

]
.

From the continuity of the eigenfunction at the central vertex we get

c1 + d1 = c2 + d2 = c3 + d3 = c4 + d4 = c5 + d5 = c6 + d6. (5.2.5)

The quasiperiodic conditions imply that(
c1e
− iλLx

2 + d1e
iλLx

2

)
e−ikx = c2e

iλLx
2 + d2e

− iλLx
2 , (5.2.6)(

c1e
− iλLx

2 − d1e
iλLx

2

)
e−ikx = c2e

iλLx
2 − d2e

− iλLx
2 , (5.2.7)(

c3e
− iλLy

2 + d3e
iλLy

2

)
e−iky = c4e

iλLy
2 + d4e

− iλLy
2 , (5.2.8)(

c3e
− iλLy

2 − d3e
iλLy

2

)
e−iky = c4e

iλLy
2 − d4e

− iλLy
2 , (5.2.9)(

c5e
− iλLz

2 + d5e
iλLz

2

)
e−iβ = c6e

iλLz
2 + d6e

− iλLz
2 , (5.2.10)(

c5e
− iλLz

2 − d5e
iλLz

2

)
e−iβ = c6e

iλLz
2 − d6e

− iλLz
2 . (5.2.11)

Finally, Kirchhoff’s condition yields

− c1 + d1 + c2 − d2 − c3 + d3 + c4 − d4 − c5 + d5 + c6 − d6 = 0. (5.2.12)
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From the equations (5.2.6)–(5.2.11) one finds:

c1 = eiλLx+ikxc2, c3 = eiλLy+ikyc4, c5 = eiλLz+iβc6, (5.2.13)
d1 = e−iλLx+ikxd2, d3 = e−iλLy+ikyd4, d5 = e−iλLz+iβd6. (5.2.14)

Due to the relations (5.2.13), (5.2.14) the system (5.2.5)–(5.2.12) reduces to the following
one:

c2 + d2 = c4 + d4 = c6 + d6, (5.2.15)
c2

(
1− eiλLx+ikx

)
+ d2

(
1− e−iλLx+ikx

)
= 0, (5.2.16)

c4

(
1− eiλLy+iky

)
+ d4

(
1− e−iλLy+iky

)
= 0, (5.2.17)

c6

(
1− eiλLz+iβ

)
+ d6

(
1− e−iλLz+iβ

)
= 0, (5.2.18)

c2

(
1− eiλLx+ikx

)
+ c4

(
1− eiλLy+iky

)
+ c6

(
1− eiλLz+iβ

)
= 0. (5.2.19)

Thus, the system (5.2.15)–(5.2.19) has a non-trivial solution if and only if

D(λ) = 0, (5.2.20)

where

D(λ) =∣∣∣∣∣∣∣∣∣∣∣∣

1 1 −1 −1 0 0
1 1 0 0 −1 −1

1− ei(λLx+kx) 1− ei(kx−λLx) 0 0 0 0
0 0 1− ei(λLy+ky) 1− ei(ky−λLy) 0 0
0 0 0 0 1− ei(λLz+β) 1− ei(β−λLz)

1− ei(λLx+kx) 0 1− ei(λLy+ky) 0 1− ei(λLz+β) 0

∣∣∣∣∣∣∣∣∣∣∣∣
.

(5.2.21)

Computing D(λ) leads to the condition (5.2.4) (see Lemma A.4.1 in Annexe for the details
of the computation).
If λ = 0, then the eigenfunction has to be linear at each edge of the graph:

u1(x) = c1 + d1x, x ∈
[
−Lx

2
, 0
]
,

u2(x) = c2 + d2x, x ∈
[
0, Lx

2

]
,

u3(y) = c3 + d3y, y ∈
[
−Ly

2
, 0
]
,

u4(y) = c4 + d4y, y ∈
[
0, Ly

2

]
,

u5(z) = c5 + d5z, z ∈
[
−Lz

2
, 0
]
,

u6(z) = c6 + d6z, z ∈
[
0, Lz

2

]
.

The continuity condition implies that ci = c0, 1 6 i 6 6. From the quasiperiodic
conditions it follows that

d2 = e−ikxd1, d1 =
c0

Lx

(
1− eikx

)
, (5.2.22)

d4 = e−ikyd3, d3 =
c0

Ly

(
1− eiky

)
, (5.2.23)

d6 = e−ikyd5, d5 =
c0

Lz

(
1− eiβ

)
. (5.2.24)
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Finally, Kirchhoff’s condition (5.2.3) gives

− d1 + d2 − d3 + d4 − d5 + d6 = 0. (5.2.25)

After injecting (5.2.22)–(5.2.24) in (5.2.25) we get

c0

(
cos kx − 1

Lx
+

cos ky − 1

Ly
+

cos β − 1

Lz

)
= 0.

Hence, there exists a non-trivial solution if and only if kx = ky = β = 0 (since otherwise
the quantity inside the brackets is strictly negative). This finishes the proof.

Remark 5.2.2. Similarly to the 2D case, one can notice that if Lx, Ly and Lz are
commensurable, then the set {λ : λ2 ∈ σ(Aβ(kx, ky))} is periodic. Indeed, in this case
the left-hand side of the equation (5.2.4) is a periodic function.

The spectrum of the operator A(β) can now be determined due to the decomposition

σ(A(β)) =
⋃

kx,ky∈[0,π]

σ(Aβ(kx, ky)). (5.2.26)

Thus, the point λ2 (different from zero) belongs to the spectrum of the operator A(β) if
and only if there exists a couple (kx, ky) such that the relation (5.2.4) is satisfied. Let us
introduce some notation that we will use throughout the chapter:

Σx = {λ > 0 : sin (λLx) = 0} , Σ∗x = Σx \ {0},
Σy = {λ > 0 : sin (λLy) = 0} , Σ∗y = Σy \ {0},
Σz = {λ > 0 : sin (λLz) = 0} , Σ∗z = Σz \ {0},

Σ = Σx ∪ Σy ∪ Σz, Σ∗ = Σ \ {0},

Σz(β) = {λ > 0 : cos (λLz) = cos β} , Σ∗z(β) = Σz(β) \ {0},

Σ̃z(β) =

{
Σz = {λ > 0 : sin (λLz) = 0} , β ∈]0, π[,

Σz \ Σz(β) = {λ > 0 : cos (λLz) = − cos β} , β ∈ {0, π},
(5.2.27)

Σ̃∗z(β) = Σ̃z(β) \ {0}. (5.2.28)

Proposition 5.2.3.

1.
{
λ2 : λ ∈ Σ∗x ∪ Σ∗y ∪ Σz(β)

}
⊂ σ(A(β)).

2. For any β ∈ [0, π], the operator A(β) has infinitely many gaps whose ends tend to
infinity.

Proof.

1. For λ 6= 0, λ ∈ Σ∗x ∪ Σ∗y ∪ Σz(β) the equation (5.2.4) is obviously verified for cos kx =
cos (λLx), cos ky = cos (λLy). The point λ = 0 belongs to the set Σ∗x ∪ Σ∗y ∪ Σz(β) if
and only if β = 0. At the same time, according to Proposition 5.2.2, 0 ∈ σ(A(β)) if
and only if β = 0.
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2. We will prove the existence of a gap for the operator A(β) in a (deleted) neighbourhood
of each point of the set

{
λ2, λ ∈ Σ̃∗z(β)

}
. More precisely, we will show that for any

λ ∈ Σ̃∗z(β) there exist positive numbers l+ and l− such that ]λ2 − l−, λ2[∩σ(A(β)) = ∅
and ]λ2, λ2 + l+[ ∩ σ(A(β)) = ∅.
Let λ0 ∈ Σ̃∗z(β). Then,

cos β

cos (λ0Lz)
< 1. (5.2.29)

Let us rewrite the relation (5.2.4) in a neighbourhood of λ0 by putting λ = λ0 + δ:

sin (δLz) (sin (λLx + λLy)− cos kx sin (λLy)− cos ky sin (λLx))

= sin (λLx) sin (λLy)

(
cos β

cos (λ0Lz)
− cos(δLz)

)
. (5.2.30)

(i) λ0 /∈ Σx ∪Σy: the equation (5.2.30) has no solution for δ small enough. Indeed, due
to the inequality (5.2.29), its right-hand side tends to a non-zero limit as δ → 0,
whereas its left-hand side tends to zero uniformly in (kx, ky) ∈ [0, π]2. This proves
the existence of a gap of the operator A(β) containing the point λ2

0.
(ii) λ0 ∈ Σ∗x \ Σ∗y or λ0 ∈ Σ∗y \ Σ∗x: we will consider the case λ0 ∈ Σ∗x \ Σ∗y, the case

λ0 ∈ Σ∗y \Σ∗x can be considered in a similar way. For δ 6= 0 small enough the relation
(5.2.30) can be rewritten as

sin (δLx)
cos (λLy)− cos ky

sin (λLy)
+ cos (δLx)−

cos kx
cos (λ0Lx)

=
sin (δLx)

sin (δLz)

(
cos β

cos (λ0Lz)
− cos (δLz)

)
. (5.2.31)

Taking into account that |cos (λ0Lx)| = 1, when δ is small enough, the left-hand
side of this relation can be bounded from below uniformly in (kx, ky) ∈ [0, π]2 by a
continuous function in δ that tends to zero as δ → 0:

sin (δLx)
cos (λLy)− cos ky

sin (λLy)
+ cos (δLx)−

cos kx
cos (λ0Lx)

> cos (δLx)− 1− sin (δLx)
| cos (λLy)|+ 1

| sin (λLy)|
−−→
δ→0

0, ∀(kx, ky) ∈ [0, π]2.

The limit of the right-hand side of (5.2.31) when δ → 0 is

sin (δLx)

sin (δLz)

(
cos β

cos (λ0Lz)
− cos (δLz)

)
−−→
δ→0

Lx
Lz

(
cos β

cos (λ0Lz)
− 1

)
< 0,

which is strictly negative due to the inequality (5.2.29). Hence, the equation (5.2.31)
has no solution for δ 6= 0 small enough.

(iii) λ0 ∈ Σ∗x ∩ Σ∗y: the relation (5.2.30) can be rewritten as

sin (δLz)

sin (δLy)

(
cos (δLy)−

cos ky
cos (λ0Ly)

)
+

sin (δLz)

sin (δLx)

(
cos (δLx)−

cos kx
cos (λ0Lx)

)
=

cos β

cos (λ0Lz)
− cos (δLz). (5.2.32)
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Again, since |cos (λ0Lx)| = |cos (λ0Ly)| = 1, when δ is small enough, the left-hand
side of this relation can be bounded from below uniformly in (kx, ky) ∈ [0, π]2 by a
continuous function in δ that tends to zero as δ → 0:

sin (δLz)

sin (δLy)

(
cos (δLy)−

cos ky
cos (λ0Ly)

)
+

sin (δLz)

sin (δLx)

(
cos (δLx)−

cos kx
cos (λ0Lx)

)
>
Lz
Ly

(cos (δLy)− 1) +
Lz
Lx

(cos (δLx)− 1) −−→
δ→0

0, ∀(kx, ky) ∈ [0, π]2.

The limit of the right-hand side of (5.2.32) as δ → 0 is cos β/ cos (λ0Lz) − 1 < 0.
Consequently, the equation (5.2.32) has no solution for δ small enough.

The following assertion gives a description of the set of eigenvalues of infinite multiplicity
of the operator A(β). We give its proof in Appendix.

Proposition 5.2.4. The operator A(β) has the following set of eigenvalues of infinite
multiplicity:

σpp(A(β)) =
{
λ2 : λ ∈ Σis(β) ∪ Σemb(β)

}
,

where
Σis(β) =

(
Σ∗x ∪ Σ∗y

)
∩ Σ̃∗z(β), (5.2.33)

Σemb(β) =


(
Σ∗x ∩ Σ∗y

)
\ Σ̃∗z(β), β ∈]0, π[,((

Σ∗x ∩ Σ∗y
)
\ Σ̃∗z(β)

)
∪ Σ∗z(β), β ∈ {0, π}.

The eigenvalues of the set {λ2 : λ ∈ Σis(β)} are isolated points of the spectrum whereas
the eigenvalues of the set {λ2 : λ ∈ Σemb(β)} are not isolated points of the spectrum.

The following proposition gives a criterion for λ2 to be a point of the spectrum of the
operator A(β).

Proposition 5.2.5. λ2 ∈ σ(A(β)) if and only if one of the following possibilities holds:

(i) λ ∈ Σ∗x ∪ Σ∗y;

(ii) λ ∈ R+ \
(
Σ∗x ∪ Σ∗y

)
is a solution of the equation

φLz ,β(λ) = fLx,Ly ,kx,ky(λ). (5.2.34)

for some (kx, ky) ∈ [0, π]2. Here

fLx,Ly ,kx,ky(λ) =

{
fLx,kx(λ) + fLy ,ky(λ), λ ∈ R∗+ \

(
Σ∗x ∪ Σ∗y

)
,

0, (kx, ky, λ) = (0, 0, 0),
(5.2.35)

fL,k(λ) =
cos k − cos (λL)

sin (λL)
, sin (λL) 6= 0, (5.2.36)

φLz ,β(λ) =


cos (λLz)− cos β

sin (λLz)
, λ ∈ R+ \ Σz,

0, λ ∈ Σz(β).
(5.2.37)
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Proof. This is a consequence of the decomposition (5.2.26), Proposition 5.2.2 and prop-
erty 1 of Proposition 5.2.3. Indeed, the equation (5.2.34) is equivalent to the equation
(5.2.4) for λ /∈ Σ. The case λ ∈ Σ∗x ∪ Σ∗y is treated directly: the corresponding points
belong to the spectrum of the operator A(β) for any β ∈ [0, π]. If λ ∈ Σz \

(
Σ∗x ∪ Σ∗y

)
,

then λ2 ∈ σ(A(β)) if and only if λ ∈ Σz(β) (and hence, β ∈ {0, π}). Notice that this is
also valid for λ = 0. As well, if λ ∈ Σz, then the function φLz ,β is defined at λ if and
only if λ ∈ Σz(β), and its value is 0. In this case, the equation (5.2.34) is satisfied for
cos kx = cos (λLx), cos ky = cos (λLy).

Remark 5.2.3. Proposition 5.2.5 is an analogue of Proposition 4.1.5 obtained in the 2D
case. However, we use here the inverses of the functions φL,β, fθ used in the 2D case.
This choice is done in order to have fLx,Ly ,kx,ky given by a sum fLx,Ly ,kx,ky = fLx,kx +fLy ,ky
and not by a some of inverses of functions. Indeed, this form will be easier to represent
geometrically.

As in the 2D case two types of gaps can be distinguished for the operator A(β):

Proposition 5.2.6. An interval ]a, b[ is a gap of the operator A(β) for β ∈ [0, π] if and
only if 0 6 a < b, [

√
a,
√
b] ∩ Σz(β) = ∅ and one of the following possibilities holds:

I {
√
a,
√
b}∩
(

Σx ∪ Σy ∪ Σ̃z(β)
)

= ∅, φLz ,β (
√
a) = f−Lx,Ly (

√
a), φLz ,β(

√
b) = f+

Lx,Ly
(
√
b);

II (i)
√
a ∈

(
Σ∗x ∪ Σ∗y

)
\ Σ̃∗z(β), φLz ,β(

√
a) > f+

Lx,Ly
(
√
a),√

b /∈ Σx ∪ Σy ∪ Σ̃z(β), φLz ,β(
√
b) = f+

Lx,Ly
(
√
b);

(i’)
√
a ∈ (Σx ∪ Σy) ∩ Σ̃z(β) ,

√
b /∈ Σx ∪ Σy ∪ Σ̃z(β), φLz ,β(

√
b) = f+

Lx,Ly
(
√
b);

(ii)
√
a /∈ Σx ∪ Σy ∪ Σ̃z(β), φLz ,β (

√
a) = f−Lx,Ly (

√
a),√

b ∈
(
Σ∗x ∪ Σ∗y

)
\ Σ̃∗z(β), φLz ,β(

√
b) < f−Lx,Ly(

√
b);

(ii’)
√
a /∈ Σx ∪ Σy ∪ Σ̃z(β), φLz ,β (

√
a) = f−Lx,Ly (

√
a),

√
b ∈

(
Σ∗x ∪ Σ∗y

)
∩ Σ̃∗z(β).

Remark 5.2.4. For β ∈]0, π], the bottom of the spectrum of the operator σ∗ = minσ(A(β))
is strictly positive. As in the 2D case (cf. Remark 4.1.3) we will call the interval ]0, σ∗[ a
gap even if it is not quite correct. As follows from Proposition 5.2.6, it is a gap of type
II (it satisfies the condition II (i′)).

The rest of this section is devoted to the proof of this Proposition 5.2.6. We start with
a geometric interpretation of Proposition 5.2.5 which is similar to the one given in the
2D case. Now we have to consider the abscissas of the intersections of the graph of the
function φLz ,β with the ones of the functions fLx,Ly ,kx,ky . Let us introduce the union of
the graphs of the functions fLx,Ly ,kx,ky for (kx, ky) ∈ [0, π]2:

DLx,Ly =
⋃

(kx,ky)∈[0,π]2

{(
λ, fLx,Ly ,kx,ky(λ)

)
/ λ ∈ D(fLx,Ly ,kx,ky)

}
,

where D(f) stands for the domain of the function f .

Lemma 5.2.1.

DLx,Ly =
{

(λ, p) / λ ∈ R∗+ \
(
Σ∗x ∪ Σ∗y

)
, p ∈

[
f−Lx,Ly(λ), f+

Lx,Ly
(λ)
]}
∪ {(0, 0)} ,
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where

f+
Lx,Ly

(λ) = f+ (λLx) + f+ (λLy) , f−Lx,Ly(λ) = f− (λLx) + f− (λLy) , (5.2.38)

,

f+ (λ) = tan
(
λ−πn

2

)
, λ ∈ [πn, π(n+ 1)[ , n ∈ N, (5.2.39)

f− (λ) = −cotan
(
λ−πn

2

)
, λ ∈ ]πn, π(n+ 1)] , n ∈ N. (5.2.40)

Proof. If sin (λL) 6= 0, then the function fL,k defined in (5.2.36) is continuous in kx ∈ [0, π]
and ⋃

kx∈[0,π]

fL,k(λ) =
[
f− (λL) , f+ (λL)

]
.

Hence, for λ /∈ Σx ∪ Σy one has⋃
(kx,ky)∈[0,π]2

fLx,Ly ,kx,ky(λ) =
⋃

(kx,ky)∈[0,π]2

(
fLx,kx(λ) + fLy ,ky(λ)

)
=
[
f−Lx,Ly(λ), f+

Lx,Ly
(λ)
]
.

Finally, 0 ∈ D(fLx,Ly ,kx,ky) if and only if (kx, ky) = (0, 0). In this case, fLx,Ly ,0,0(0) = 0.

The set DLx,Ly is shown in figure 5.4. Let us mention that the functions f±Lx,Ly are
continuous in R∗+\(Σx ∪ Σy) and strictly increasing in each interval of continuity (between
two neighbour points of the set Σx∪Σy). Moreover, the function f+

Lx,Ly
is right-continuous

and the function f−Lx,Ly is left-continuous and

f−Lx,Ly(λ) > 0, ∀λ ∈ R+, f+
Lx,Ly

(λ) > 0, ∀λ ∈ R∗+ \
(
Σ∗x ∪ Σ∗y

)
, (5.2.41)

f−Lx,Ly(λ) 6 0, ∀λ ∈ R∗+, f+
Lx,Ly

(λ) < 0, ∀λ ∈ R∗+ \
(
Σ∗x ∪ Σ∗y

)
. (5.2.42)

In order to get a geometric interpretation of the spectrum of the operator A(β), we
need to consider the abscissas of the intersections of the set DLx,Ly with the graph of
the function φLz ,β (cf. figure 5.5). This will correspond to the points described in (ii) of
Proposition 5.2.5. In order to get all the points λ such that λ2 ∈ σ(A(β)), we have to
include the set Σ∗x ∪ Σ∗y. Thus, the spectrum of the operator A(β) can be characterized
as follows:

σ(A(β)) =
{
λ2/ λ > 0, φLz ,β(λ) ∈ DLx,Ly

}
∪
{
λ2/ λ ∈ Σ∗x ∪ Σ∗y

}
.

This permits to give the following description of the gaps of the operator A(β).

Lemma 5.2.2. The point λ2
0 is the lower end of a gap of the operator A(β) if and only if

one of the following possibilities holds:

(i) λ0 ∈ R∗+\Σ̃∗z(β) and φLz ,β(λ0) = f−Lx,Ly(λ0)< 0;

(ii) λ0 ∈
(
Σ∗x ∪ Σ∗y

)
\Σ̃∗z(β) and φLz ,β(λ0) > f+

Lx,Ly
(λ0)> 0;

(iii) λ0 ∈ (Σx ∪ Σy) ∩ Σ̃z(β).

Similarly, the point λ2
0 is the upper end of a gap of the operator A(β) if and only if one

of the following possibilities holds:
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(a) Lx = 1.44, Ly = 0.9

(b) Lx = Ly = 1.44

Figure 5.4: The set DLx,Ly . The vertical lines correspond to the points of the set Σx∪Σy.

(iv) λ0 ∈ R∗+\Σ̃∗z(β) and φLz ,β(λ0) = f+
Lx,Ly

(λ0)> 0;

(v) λ0 ∈
(
Σ∗x ∪ Σ∗y

)
\Σ̃∗z(β) and φLz ,β(λ0) < f−Lx,Ly(λ0)6 0;

(vi) λ0 ∈
(
Σ∗x ∪ Σ∗y

)
∩ Σ̃∗z(β).

Proof. The proof is very similar to the one of Lemme 1.3.2. We repeat it with appropriate
modifications for the sake of completeness. Let λ−, λ+ be two neighbour points of the
set Σx ∪Σy. We will study the possible configurations of the intersections of the function
φLz ,β with the domainDLx,Ly in the interval [λ−, λ+]. Notice that φLz ,β is a 2π/Lz-periodic
function defined on R+ \ Σ̃z(β). In each interval of continuity it is strictly decreasing and
takes all the values in R. We will consider separately the internal points of the interval
[λ−, λ+] and its ends.

• Case 1. Internal points points: λ0 ∈]λ−, λ+[

(a) λ0 /∈ Σ̃∗z(β) and the point (λ0, φLz ,β(λ0)) is an interior point of the domain DLx,Ly :

(λ0, φLz ,β(λ0)) ∈ int
(
DLx,Ly

)
⇒ ∃δ > 0 s.t. (λ, φLz ,β(λ)) ∈ DLx,Ly , ∀λ : |λ− λ0| < δ.

(5.2.43)
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Figure 5.5: Example: Lx = 1.44, Ly = 0.9, Lz = 1.3, β = 0.7. The images of the spectral
bands of the operator A(β) by the function x 7→

√
x are given by the projections on the

axis of abscissas of the intersections of the set DLx,Ly with the graph of the function φLz ,β.

Hence, the points such that (λ0, φLz ,β(λ0)) ∈ int
(
DLx,Ly

)
correspond to the interior

points of the spectrum (and not to the ends of gaps).

(b) λ0 /∈ Σ̃∗z(β) and φLz ,β(λ0) = f+
Lx,Ly

(λ0):

(In this case, f+
Lx,Ly

(λ0) > 0 due to (5.2.41)).

λ0 ∈]λ−, λ+[

φLz ,β(λ0) = f+
Lx,Ly

(λ0)
⇒ ∃δ > 0 s.t.

(λ, φLz ,β(λ)) /∈ DLx,Ly , ∀λ ∈]λ0 − δ, λ0[,

(λ, φLz ,β(λ)) ∈ DLx,Ly , ∀λ ∈ [λ0, λ0 + δ[.

(5.2.44)

(c) λ0 /∈ Σ̃∗z(β) and φLz ,β(λ0) = f−Lx,Ly(λ0):

(In this case, f−Lx,Ly(λ0) < 0 due to (5.2.42)).

λ0 ∈]λ−, λ+[

φLz ,β(λ0) = f−Lx,Ly(λ0)
⇒ ∃δ > 0 s.t.

(λ, φLz ,β(λ)) /∈ DLx,Ly , ∀λ ∈]λ0, λ0 + δ[,

(λ, φLz ,β(λ)) ∈ DLx,Ly , ∀λ ∈ [λ0 − δ, λ0[.

(5.2.45)
This follows from the fact that the functions f±Lx,Ly defining the boundaries of the
domain DLx,Ly are strictly increasing and the function φLz ,β is strictly decreasing.
The relation (5.2.44) means that λ2

0 is the lower end of a gap and the relation (5.2.45)
means that λ2

0 is the upper end of a gap.

(d) Points of discontinuity of the function φLz ,β:

λ0 ∈ Σ̃∗z(β)∩]λ−, λ+[ ⇒ ∃δ > 0 s.t. (λ, φLz ,β(λ)) /∈ DLx,Ly , ∀λ : 0 < |λ− λ0| < δ.
(5.2.46)

This follows from the continuity of the functions f±Lx,Ly inside the interval ]λ−, λ+[ and
the behaviour of the function φLz ,β in a neighbourhood of its points of discontinuity.

We see that the interior points of the interval [λ−, λ+] are ends of a gap only in the
cases (b) and (c).
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• Case 2. Ends of the interval: λ0 ∈ Σ∗x ∪ Σ∗y

(In this case, λ0 ∈ σ(A(β)) according to Proposition 5.2.5).

λ0 ∈
(
Σ∗x ∪ Σ∗y

)
\Σ̃∗z(β)

φLz ,β(λ0) > f+
Lx,Ly

(λ0)
⇒ ∃δ > 0 s.t.

(λ, φLz ,β(λ)) /∈ DLx,Ly , ∀λ ∈]λ0, λ0 + δ[,

(λ, φLz ,β(λ)) ∈ DLx,Ly , ∀λ ∈]λ0 − δ, λ0[.

(5.2.47)

λ0 ∈
(
Σ∗x ∪ Σ∗y

)
\Σ̃∗z(β)

φLz ,β(λ0) < f−Lx,Ly(λ0)
⇒ ∃δ > 0 s.t.

(λ, φLz ,β(λ)) /∈ DLx,Ly , ∀λ ∈]λ0 − δ, λ0[,

(λ, φLz ,β(λ)) ∈ DLx,Ly , ∀λ ∈]λ0, λ0 + δ[.

(5.2.48)
λ0 ∈

(
Σ∗x ∪ Σ∗y

)
\Σ̃∗z(β)

φLz ,β(λ0) ∈
[
f−Lx,Ly(λ0), f+

Lx,Ly
(λ0)

] ⇒ ∃δ > 0 s.t. (λ, φLz ,β(λ)) ∈ DLx,Ly ,

∀λ : 0 < |λ− λ0| < δ. (5.2.49)

λ0 ∈
(
Σ∗x ∪ Σ∗y

)
∩ Σ̃∗z(β) ⇒ ∃δ > 0 s.t. (λ, φLz ,β(λ)) /∈ DLx,Ly , ∀λ : 0 < |λ− λ0| < δ.

(5.2.50)

Thus, the cases (5.2.47), (5.2.48), (5.2.50) correspond to ends of a gap. The case
(5.2.50) corresponds to an isolated point of the spectrum which is an eigenvalue of
infinite multiplicity (cf. Proposition 5.2.4).

• Case 3. λ0 = 0

(a) β = 0: in this case 0 ∈ σ(A(β)) and φLz ,0(0) = 0. Consequently, φLz ,0(0) ∈[
f−Lx,Ly(0), f+

Lx,Ly
(0)
]
, and similarly to (5.2.49) there exists δ > 0 such that (λ, φLz ,β(λ)) ∈

DLx,Ly , ∀λ : 0 < λ− λ0 < δ. Thus, 0 is not an end of a gap. It is not included in any
of the conditions (i)–(vi) (it is not included in (iii) since 0 /∈ Σ̃z(0)).

(b) β ∈]0, π]: in this case 0 /∈ σ(A(β)) and we call it the lower end of the gap ]0, σ∗[,
σ∗ = minσ(A(β)). For this reason it is included in the case (iii) (since 0 ∈ Σ̃z(β) for
β ∈]0, π]).

Corollary 5.2.1. If λ0 ∈ Σ∗z(β), then λ2
0 is an internal point of σ(A(β)).

Proof. It follows from Proposition 5.2.3 that λ2
0 ∈ σ(A(β)). Let us show that it is not an

end of a gap. Indeed, λ0 ∈ Σ∗z(β) implies that φLz ,β(λ0) = 0. This is not compatible with
any of the possibilities (i), (ii), (iv), (v) of Lemma 5.2.2. Since Σ∗z(β) ∩ Σ̃z(β) = ∅, it is
not compatible with (iii) and (vi) neither.

Proof of Proposition 5.2.6.

(a) Suppose first that ]a, b[ is a gap of the operator A(β). Then, one necessarily has
0 6 a < b, and it follows from Corollary 5.2.1 that [

√
a,
√
b] ∩ Σ∗z(β) = ∅. Moreover,

0 ∈ Σz(β) if and only if β = 0. Consequently, if β ∈]0, π], then [
√
a,
√
b] ∩ Σz(β) = ∅.

For β = 0, we have a 6= 0 since 0 is not the lower end of a gap, cf. Lemma 5.2.2. So,
we have [

√
a,
√
b] ∩ Σz(β) = ∅ again.

In other words,
φLz ,β(λ) 6= 0, ∀λ ∈ [

√
a,
√
b] \ Σ̃z(β). (5.2.51)
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I Suppose that {
√
a,
√
b}∩

(
Σx ∪ Σy ∪ Σ̃z(β)

)
= ∅. Then, due to Lemma 5.2.2 we have

φLz ,β(
√
a) = f−Lx,Ly(

√
a), φLz ,β(

√
b) = f+

Lx,Ly
(
√
b).

II

(i-i’) Suppose now that
√
a ∈ Σx ∪ Σy. It follows from Lemma 5.2.2 that either

√
a ∈

Σ̃z(β) (case (i′)) or
√
a ∈

(
Σ∗x ∪ Σ∗y

)
\ Σ̃∗z(β) and φLz ,β(

√
a) > f+

Lx,Ly
(
√
a) > 0 (case

(i)). In both cases there exists δ > 0 such that φLz ,β(λ) > 0 for λ ∈]
√
a,
√
a + δ[.

This implies that

]
√
a,
√
b] ∩ Σ̃z(β) = ∅ and φLz ,β(λ) > 0, ∀λ ∈]

√
a,
√
b].

Indeed, in the opposite case the function φLz ,β is not continuous in ]
√
a,
√
b] (if

there exists a point λ0 ∈]
√
a,
√
b] such that φLz ,β(λ0) < 0 and φLz ,β is continuous in

]
√
a,
√
b], then ]

√
a,
√
b]∩Σz(β) /∈ ∅, which, as was shown above, is impossible). Let

λ′ be the closest to
√
a point of discontinuity of φLz ,β in ]

√
a,
√
b]: λ′ ∈]

√
a,
√
b] ∩

Σ̃z(β). Taking into account that lim
λ→λ′−0

φLz ,β(λ) = −∞, we conclude that there

exists a point λ′′ ∈]
√
a, λ′[ such that φLz ,β(λ′′) = 0, which contradicts (5.2.51). This

shows that
√
b /∈ Σ̃z(β) and φLz ,β(

√
b) > 0, which, due to Lemma 5.2.2, implies

that
√
b /∈ Σx ∪ Σy and φLz ,β(

√
b) = f+

Lx,Ly
(
√
b).

(ii-ii’) The case
√
b ∈ Σ∗x ∪ Σ∗y can be considered analogously to the previous case.

(b) Suppose now that 0 6 a < b and [a, b] ∩ Σz(β) = ∅. We will show that if one of the
conditions I, II holds, then ]a, b[ is a gap of the operator A(β).

I It follows from Lemma 5.2.2 that a is the lower end of a gap and b is the upper end of a
gap. Suppose that there exists c ∈]a, b[ such that c ∈ σ(A(β)). Then, Proposition 5.2.5
implies that φLz ,β(

√
c) ∈

[
f−Lx,Ly(

√
c), f+

Lx,Ly
(
√
c)
]
. The functions f±Lx,Ly being strictly

increasing in [
√
a,
√
b], we get φLz ,β(

√
a) < φLz ,β(

√
c) < φLz ,β(

√
b). The function

φLz ,β is, in turn, strictly decreasing in its intervals of continuity. Hence, there exist
λ′ ∈]

√
a,
√
c[ and λ′′ ∈]

√
c,
√
b[ such that λ′, λ′′ ∈ Σ̃z(β). Since in each interval of

continuity the function φLz ,β takes all values in R, there exists λ0 ∈]λ′, λ′′[ such that
φLz ,β(λ0) = 0 which contradicts the assumption [a, b] ∩ Σz(β) = ∅.

II

(i-i’) It follows from Lemma 5.2.2 that b is the upper end of a gap. Let us denote by
a′ its lower end. Since a ∈ σ(A(β)) (cf. Proposition 5.2.5), one necessarily has
a 6 a′. Suppose that a < a′. Then, it follows from Lemma 5.2.2 that

√
a′ /∈ Σ̃z(β)

and φLz ,β(
√
a′) = f−Lx,Ly(

√
a′) < 0. On the other hand, both in the case (i)

and in the case (i′) there exists δ > 0 such that φLz ,β(λ) > 0 for λ ∈]
√
a,
√
a+ δ[.

Consequently, there exists λ′ ∈]
√
a,
√
a′[ such that φLz ,β(λ′) = 0, which contradicts

the assumption [a, b] ∩ Σz(β) = ∅.
(ii-ii’) This case can be considered analogously to the previous one.

Let us mention another possible characterization of the two types of gaps. It will be used
in the next section while discussing the number of eigenvalues of the perturbed operator
in the gaps.
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Lemma 5.2.3. Let ]a, b[ be a gap of the operator A(β). Then, it is a gap of type I if and
only if there exists exactly one point c such that c ∈]a, b[ such that

√
c ∈ Σ̃z(β). It is a

gap of type II if and only if ]
√
a,
√
b[∩Σ̃z(β) = ∅.

Proof. First, let us mention that the intersection ]
√
a,
√
b[∩Σ̃z(β) is either reduced to one

point or empty. Indeed, if there exist two distinct points λ′, λ′′ ∈]
√
a,
√
b[∩Σ̃z(β), then

as we have seen in the proof of Proposition 5.2.6 (b) I, there exists λ0 ∈]λ′, λ′′[ such that
φLz ,β(λ0) = 0, which contradicts the assumption that ]a, b[ is a gap of the operator A(β).

I Let ]a, b[ be a gap of the operator A(β) of type I. In this case φLz ,β(
√
a) < φLz ,β(

√
b).

Consequently, ]
√
a,
√
b[∩Σ̃z(β) 6= ∅. As it was mentioned above, this intersection is

necessarily reduced to one point.

II Let ]a, b[ be a gap of the operator A(β) of type II. Then, there exists δ > 0 such that
φLz ,β(λ′)φLz ,β(λ′′) > 0 for any (λ′, λ′′) ∈]

√
a,
√
a+ δ[×]

√
b− δ,

√
b[. Suppose that there

exists
√
c ∈]
√
a,
√
b[∩Σ̃z(β). Then, at least in one of the intervals ]

√
a,
√
c[, ]
√
c,
√
b[

there exists λ0 such that φLz ,β(λ0) = 0, which contradicts the assumption that ]a, b[ is
a gap of the operator A(β).

Examples illustrating Proposition 5.2.6, Lemma 5.2.3 and Proposition 5.2.4 are given in
figures 5.7, 5.6.

5.2.2 Computation of the discrete spectrum

5.2.2.1 Reduction to a finite difference equation

Let us now determine the discrete spectrum of the operator Aµ(β). If λ2 is an eigenvalue
of this operator, then the corresponding eigenfunction u ∈ D (Aµ(β)) solves the equation
u′′ + λ2u = 0 on each edge of the graph G.

Case λ > 0

In this case the eigenfunction u it has the form

uk+ 1
2
,`(s) = ak+ 1

2
,` sin (λs) + bk+ 1

2
,` cos (λs), s ∈ [0, Lx], (k, `) ∈ Z2, (5.2.52)

uk,`+ 1
2
(t) = ak,`+ 1

2
sin (λt) + bk,`+ 1

2
cos (λt), t ∈ [0, Ly], (k, `) ∈ Z2, (5.2.53)

u+
k,`(z) = c+

k,` sin (λz) + d+
k,` cos (λz), z ∈

[
0, Lz

2

]
, (k, `) ∈ Z2, (5.2.54)

u−k,`(z) = c−k,` sin (λz) + d−k,` cos (λz), z ∈
[
−Lz

2
, 0
]
, (k, `) ∈ Z2. (5.2.55)

The continuity of the eigenfunction u at the vertices vk,l of the graph G implies that

bk+ 1
2
,` = bk,`+ 1

2
= ak− 1

2
,` sin (λLx) + bk− 1

2
,` cos (λLx)

= ak,`− 1
2

sin (λLy) + bk,`− 1
2

cos (λLy) = d+
k,` = d−k,` =: dk,`, (k, l) ∈ Z2. (5.2.56)

After plugging (5.2.54), (5.2.55) into the quasiperiodicity conditions (5.2.1), we get(
c+
k,l + e−iβc−k,l

)
sin
(
λLz

2

)
+ dk,l cos

(
λLz

2

) (
1− e−iβ

)
= 0, (k, l) ∈ Z2, (5.2.57)(

c+
k,l − e

−iβc−k,l
)

cos
(
λLz

2

)
− dk,l sin

(
λLz

2

) (
1 + e−iβ

)
= 0, (k, l) ∈ Z2. (5.2.58)
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(a) The interval ]a, b[ is a gap
of type I

(b) The interval ]a, b[ is a gap
of type II(i)

(c) The interval ]a, b[ is a gap
of type II(ii)

Figure 5.6: Types of gaps

(a) Gap of type I: φLz ,β(
√
a) = f−Lx,Ly(

√
a) < 0, φLz ,β(

√
b) = f+

Lx,Ly
(
√
b) > 0, and there

is one point of discontinuity of the function φLz ,β in ]
√
a,
√
b[.

(b) Gap of type II(i):
√
a ∈ Σ∗y, φLz ,β(

√
a) > f+

Lx,Ly
(
√
a), φLz ,β(

√
b) = f+

Lx,Ly
(
√
b) > 0,

and the function φLz ,β is continuous in ]
√
a,
√
b[.

(c) Gap of type II(ii): φLz ,β(
√
a) = f−Lx,Ly(

√
b) < 0,

√
b ∈ Σ∗x, φLz ,β(

√
b) < f−Lx,Ly(

√
b),

and the function φLz ,β is continuous in ]
√
a,
√
b[.

From Kirchhoff’s conditions (5.2.2) we find

wµk,l
(
c+
k,l − c

−
k,l

)
+ ak+ 1

2
,` + ak,`+ 1

2
− ak− 1

2
,` cos (λLx)− ak,`− 1

2
cos (λLy)

+ dk−1,` sin (λLx) + dk,`−1 sin (λLy) = 0, (k, l) ∈ Z2. (5.2.59)

The following assertion permits to exclude from the consideration the set Σ∗ while search-
ing the discrete spectrum of the operator Aµ(β). Its proof is given in Appendix.

Proposition 5.2.7. If λ ∈ Σ∗, then λ2 is not an eigenvalue of finite multiplicity of the
operator Aµ(β) for any β ∈ [0, π], µ > 0.

If λ /∈ Σ, then the coefficients
{
ak+ 1

2
,`, bk+ 1

2
,`, ak,`+ 1

2
, bk,`+ 1

2
, c±k,`, dk,`

}
can be expressed in

terms of the values {uk,l}:

ak+ 1
2
,` =

1

sin (λLx)
(uk+1,` − uk,` cos (λLx)) , ak,`+ 1

2
=

1

sin (λLy)
(uk+1,` − uk,` cos (λLy)) ,

(5.2.60)
bk+ 1

2
,` = bk,`+ 1

2
= dk,` = uk,`, c±k,l = α±uk,`, (k, `) ∈ Z2. (5.2.61)

where

α+ =
1

2

(
tan
(
λLz

2

) (
1 + e−iβ

)
+

e−iβ − 1

tan
(
λLz

2

)) , α− =
1

2

(
1− eiβ

tan
(
λLz

2

) − tan
(
λLz

2

) (
1 + eiβ

))
.
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(a) λ20 is an isolated eigen-
value of infinite multiplicity:
λ0 ∈ Σ∗y ∩ Σ̃∗z(β). The gap to
the left of λ20 is a gap of type
II(ii′) and the gap to the right
of λ20 is a gap of type II(i′)

(b) λ20 is an embedded
eigenvalue of infinite multi-
plicity:
λ0 ∈

(
Σ∗x ∩ Σ∗y

)
∩ Σ̃∗z(β)

(c) λ20 is an embedded eigen-
value of infinite multiplicity:
β = 0 and λ0 ∈ Σ∗z(β)

Figure 5.7: Eigenvalues of infinite multiplicity

Then, the relations (5.2.52)–(5.2.55) can be rewritten as

uk+ 1
2
,`(s) = uk,`

sin (λ(Lx − s))
sin (λLx)

+ uk+1,`
sin (λs)

sin (λLx)
, s ∈ [0, Lx], k, ` ∈ Z, (5.2.62)

uk,`+ 1
2
(t) = uk,`

sin (λ(Ly − t))
sin (λLy)

+ uk,l+1
sin (λt)

sin (λLy)
, t ∈ [0, Ly], k, ` ∈ Z, (5.2.63)

u+
k,`(z) = uk,`

sin
(
λ
(
Lz
2
− z
))

sin
(
λLz

2

) + u+
k,`

sin (λz)

sin
(
λLz

2

) , z ∈
[
0, Lz

2

]
, k, ` ∈ Z, (5.2.64)

u−k,`(z) = uk,`
sin
(
λ
(
Lz
2

+ z
))

sin
(
λLz

2

) − u−k,`
sin (λz)

sin
(
λLz

2

) , z ∈
[
−Lz

2
, 0
]
, k, ` ∈ Z, (5.2.65)

u+
k,` =

1 + e−iβ

2 cos
(
λLz

2

)uk,`, u−k,` =
1 + eiβ

2 cos
(
λLz

2

)uk,`, (k, `) ∈ Z2. (5.2.66)

After plugging (5.2.60)–(5.2.61) into (5.2.59), we get

uk+1,` + uk−1,`

sin (λLx)
+
uk,`+1 + uk,`−1

sin (λLy)
− 2gβ(λ)uk,l = 0, (0, 0) 6= (k, `) ∈ Z2, (5.2.67)

uk+1,` + uk−1,`

sin (λLx)
+
uk,`+1 + uk,`−1

sin (λLy)
− 2gβ(λ)u0,0 = 2(µ− 1)φLz ,β(λ)u0,0, (5.2.68)

where
gβ(λ) =

1

tan (λLx)
+

1

tan (λLy)
+ φLz ,β(λ), λ /∈ Σ, (5.2.69)
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and the function φLz ,β is defined in (5.2.37). Thus, we replaced the initial continuous
problem for u ∈ L2(G) by a discrete problem for {uk,l}(k,l)∈Z2 ∈ `2 (Z2).

Case λ = 0

If 0 is an eigenvalue of the operator Aµ(β), then the corresponding eigenfunction has the
form

uk+ 1
2
,`(s) = uk,`(1− s) + uk+1,`s, s ∈ [0, Lx], (k, `) ∈ Z2, (5.2.70)

uk,`+ 1
2
(t) = uk,`(1− t) + uk,`+1t, t ∈ [0, Ly], (k, `) ∈ Z2, (5.2.71)

u+
k,`(z) = uk,`

(
1− 2z

Lz

)
+

2u+
k,`

Lz
z, z ∈

[
0, Lz

2

]
, (k, `) ∈ Z2, (5.2.72)

u−k,`(z) = uk,`

(
1 +

2z

Lz

)
−

2u−k,`
Lz

z, z ∈
[
−Lz

2
, 0
]
, (k, `) ∈ Z2. (5.2.73)

The quasiperiodicity conditions (5.2.1) imply that

u+
k,` =

1 + e−iβ

2
uk,`, u−k,` =

1 + eiβ

2
uk,`, (k, `) ∈ Z2. (5.2.74)

After plugging (5.2.70)–(5.2.74) into the Kirchhoff’s conditions (5.2.2) we find

uk+1,` + uk−1,`

Lx
+
uk,`+1 + uk,`−1

Ly
− 2

(
1

Lx
+

1

Ly
+

1− cos β

Lz

)
uk,` = 0, (k, `) 6= (0, 0),

(5.2.75)
uk+1,` + uk−1,`

Lx
+
uk,`+1 + uk,`−1

Ly
− 2

(
1

Lx
+

1

Ly
+

1− cos β

Lz

)
uk,` = 2(µ− 1)

1− cos β

Lz
u0,0.

(5.2.76)

We end up with the following assertion.

Lemma 5.2.4. If λ2 is an eigenvalue of finite multiplicity of the operator Aµ(β) and
u is an eigenfunction associated with λ2 then {uk,l}(k,l)∈Z2 ∈ `2 (Z2) and the sequence
{uk,l}(k,l)∈Z2 satisfies the finite difference equation (5.2.67)–(5.2.68) for λ 6= 0 and (5.2.75)–
(5.2.76) for λ = 0. Conversely, if a sequence {uk,l}(k,l)∈Z2 ∈ `2 (Z2) satisfies (5.2.67)–
(5.2.68) (resp. (5.2.75)–(5.2.76)) then λ2 (resp. 0) is an eigenvalue of finite multiplic-
ity of the operator Aµ(β) and the function u defined by the relations (5.2.62)–(5.2.66)
(resp.(5.2.70)–(5.2.74)) is a corresponding eigenfunction.

5.2.2.2 Absence of embedded eigenvalues

Let us apply to the sequence {uk,l} the discrete Fourier transform F : `2(Z2)→ L2 ([0, 2π]2)
defined as

F({vk,l}) = v̂, v̂(ξ, η) =
∑

(k,`)∈Z2

ei(kξ+lη)vk,`, (ξ, η) ∈ [0, 2π]2.

Then, for û we get the following equation:
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For λ 6= 0,(
fLx,Ly ,ξ,η(λ)− φLz ,β(λ)

)
û(ξ, η) = (µ− 1)φLz ,β(λ)u0,0, ∀(ξ, η) ∈ [0, 2π]2, (5.2.77)

where the function fLx,Ly ,ξ,η is defined in (5.2.35).
For λ = 0,(

cos ξ − 1

Lx
+

cos η − 1

Ly
− 1− cos β

Lz

)
û(ξ, η) = (µ− 1)

1− cos β

Lz
u0,0, ∀(ξ, η) ∈ [0, 2π]2.

(5.2.78)
We can now prove the absence of embedded eigenvalues for the operator Aµ(β).

Proposition 5.2.8. If λ2 is an eigenvalue of finite multiplicity of the operator Aµ(β) for
some β ∈ [0, π], µ > 0, then λ2 /∈ σ(A(β)).

Proof.

(a) λ > 0: suppose that λ2 ∈ σ(A(β)) is an eigenvalue of finite multiplicity of the
operator Aµ(β). As follows from Proposition 5.2.7, λ ∈ R∗+ \ Σ∗. According to
Proposition 5.2.5, there exist (kx, ky) ∈ [0, π]2 such that φLz ,β(λ) = fLx,Ly ,kx,ky(λ).
On the other hand, if u is an eigenfunction corresponding to λ2, then the equation
(5.2.77) is satisfied. Its right-hand side does not depend on (ξ, η) and its left-hand
side is zero for (ξ, η) = (kx, ky). Thus,(

fLx,Ly ,ξ,η(λ)− φLz ,β(λ)
)
û(ξ, η) = 0, ∀(ξ, η) ∈ [0, 2π]2.

Consequently, û(ξ, η) = 0 for any (ξ, η) ∈ [0, 2π]2 such that fLx,Ly ,ξ,η(λ) 6= fLx,Ly ,kx,ky(λ).
The set {(ξ, η) ∈ [0, 2π]2/ fLx,Ly ,ξ,η(λ) 6= fLx,Ly ,kx,ky(λ)} being a full-mesure set, we
conclude that û = 0 in L2 ([0, 2π]2). Hence, u = 0 and λ2 is not an eigenvalue of the
operator Aµ(β).

(b) λ = 0: suppose that 0 ∈ σ(A(β)). Then, one necessarily has β = 0. If u is an
eigenfunction corresponding to 0, then its discrete Fourier transform satisfies the
equation (5.2.78) with β = 0:(

cos ξ − 1

Lx
+

cos η − 1

Ly

)
û(ξ, η) = 0, ∀(ξ, η) ∈ [0, 2π]2.

Similarly to the case λ 6= 0, we find û(ξ, η) = 0 for any (ξ, η) ∈ [0, 2π] \ (0, 0), which
implies that u = 0 and 0 is not an eigenvalue of the operator A(0).

5.2.2.3 Obtaining a characteristic equation for the eigenvalues

From now on we will consider λ such that λ2 /∈ σ(A(β)). Then, it follows from Proposition
5.2.3 (1) and Proposition 5.2.5 that

φLz ,β(λ) 6= 0, fLx,Ly ,ξ,η(λ)− φLz ,β(λ) 6= 0, ∀(ξ, η) ∈ [0, 2π]2. (5.2.79)
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Consequently, for λ ∈ R+ \ Σ∗, λ2 /∈ σ (A(β)) the relations (5.2.77), (5.2.78) impliy

û(ξ, η) =
(1− µ)u0,0

1− ϕβ(ξ, η, λ)
, ∀(ξ, η) ∈ [0, 2π]2,

where

ϕβ(ξ, η, λ) =


fLx,Ly ,ξ,η(λ)

φc,β(λ)
, λ ∈ R+ \ (Σ ∪ Σz(β)) ,

Lz
1− cos β

(
cos ξ − 1

Lx
+

cos η − 1

Ly

)
, β ∈]0, π], λ = 0.

(5.2.80)

Notice that for β ∈]0, π] the function ϕβ is continuous at 0. Finally, applying the inverse
Fourier transform, we get

uk,` =
(1− µ)u0,0

4π2

∫∫
[0,2π]2

1

1− ϕβ(ξ, η, λ)
e−i(kξ+`η)dξdη, (k, `) ∈ Z2. (5.2.81)

We can now give a criterion of existence of an eigenfunction.

Proposition 5.2.9. λ2 is an eigenvalue of finite multiplicity of the operator Aµ(β) if and
only if λ ∈ R+ \ Σ∗, λ2 /∈ σ(A(β)) and the following relation is satisfied:

(1− µ)Iβ(λ) = 1, (5.2.82)

where
Iβ(λ) =

1

π2

∫∫
[0,π]2

1

1− ϕβ(ξ, η, λ)
dξdη, (5.2.83)

and the function ϕβ is defined in (5.2.80).

Proof. If λ2 is an eigenvalue of finite multiplicity of the operator Aµ(β), then it follows
from Propositions 5.2.7 and 5.2.8 that λ ∈ R+ \ Σ∗ and λ2 /∈ σ(A(β)). Let u be an
eigenfunction corresponding to the eigenvalue λ2. Then, the relation (5.2.81) is satisfied.
For k = 0, ` = 0 it gives

1 = (1− µ)

 1

4π2

∫∫
[0,2π]2

1

1− ϕβ(ξ, η, λ)
e−i(kξ+`η)dξdη

 = (1− µ)Iβ(λ).

The last equality is due to the symmetry of ϕβ:

ϕβ(ξ, η, λ) = ϕβ(2π−ξ, η, λ) = ϕβ(ξ, 2π−η, λ), ∀(ξ, η) ∈ R2, λ ∈ R+\(Σ∗ ∪ Σ(β)) .
(5.2.84)

Conversely, suppose that λ ∈ R+ \ Σ∗, λ2 /∈ σ(A(β)) and the relation (5.2.82) is satis-
fied. Then, λ /∈ Σ(β) and one can define {uk,`}(k,`)∈Z2 by the relation (5.2.81). Since
ϕβ(ξ, η, λ) 6= 1, ∀(ξ, η) ∈ [0, π]2, one has {uk,`}(k,`)∈Z2 ∈ `2(Z2) and the relations (5.2.62)–
(5.2.66) (or (5.2.70)–(5.2.74) for λ = 0) define an eigenfunction of the operator Aµ(β)
corresponding to the eigenvalue λ2.
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5.2.2.4 Existence of eigenvalues

We will now study the number of eigenvalues in the gaps of the operator Aµ(β). With the
classification of gaps introduced in Proposition 5.2.6 we can prove the following assertion.

Theorem 5.2.1. For any 0 < µ < 1, β ∈ [0, π] there exist at least two simple eigenvalues
of the operator Aµ(β) in each gap of type I and at least one simple eigenvalue in each gap
of type II. These eigenvalues are characterized as follows:

λ2 ∈ σd (Aµ(β)) ⇔ λ is a solution of (5.2.82).

For µ > 1 the operator Aµ(β) has no eigenvalues.

Remark 5.2.5. Since in our terminology the interval ]0,minσ(A(β))[ for β ∈]0, π] is
called a gap of type II (cf. Remark 5.2.4), Theorem 5.2.1 implies that the operator
Aµ(β) has one simpleeigenvalue below the essential spectrum for β ∈]0, π], 0 < µ < 1.

The rest of the section is devoted to the proof of Theorem 5.2.1. The following auxiliary
assertion shows that for µ > 1 the operator Aµ(β) has no discrete spectrum.

Lemma 5.2.5. For any β ∈ [0, π], if λ ∈ R+\Σ∗ and λ2 /∈ σ (A(β)), then ϕβ(ξ, η, λ) < 1,
∀(ξ, η) ∈ [0, π]2.

Proof. If λ2 /∈ σ(A(β)), then φLz ,β(λ) ∈ R \
[
f−Lx,Ly(λ), f+

Lx,Ly
(λ)
]
. Taking into account

that f−Lx,Ly(λ) < 0, f+
Lx,Ly

(λ) > 0, we get the result for λ > 0. Finally, for λ = 0, β ∈]0, π],
it follows from (5.2.80) that ϕβ(ξ, η, λ) 6 0, ∀(ξ, η) ∈ [0, π]2.

Corollary 5.2.2. For any β ∈ [0, π], µ > 1, the operator Aµ(β) has no eigenvalues of
finite multiplicity.

Proof. As follows from Lemma 5.2.5, if λ2 ∈ σd(A
µ(β)), then Iβ(λ) > 0. The relation

(5.2.82) implies that µ < 1.

Remark 5.2.6. Lemma 5.2.5 permits to rewrite the relation (5.2.82) as

µ = 1− Fβ(λ), (5.2.85)

with
Fβ(λ) = Iβ(λ)−1.

We will now study the behaviour of the function Fβ inside the gaps of the operator Aµ(β)
in order to determine the possible number of eigenvalues of the operator Aµ(β) in each
gap. As follows from Lemma 5.2.5, the function Fβ is continuous inside the gaps except
at the points of discontinuity of the function φLz ,β. In Lemmas 5.2.6 and 5.2.7 we describe
the behaviour of Fβ near the ends of the gap and in Lemma 5.2.8 we study its behaviour
near the points of discontinuity of the function φβ,Lz .

Lemma 5.2.6. If λ+ ∈ R+ \
(

Σx ∪ Σy ∪ Σ̃z(β)
)

and φLz ,β(λ+) = f+
Lx,Ly

(λ+), then

Fβ(λ) −→
λ→λ+−0

0. Similarly, if λ− ∈ R+ \
(

Σx ∪ Σy ∪ Σ̃z(β)
)
and φLz ,β(λ−) = f−Lx,Ly(λ+),

then Fβ(λ) −→
λ→λ−+0

0.
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Proof. We will prove the statement for λ+ only, the proof for λ− being analogous. Let ξ0,
η0 be the values of ξ, η such that fLx,Ly ,ξ0,η0(λ+) = f+

Lx,Ly
(λ+) (obviously, ξ0 ∈ {0, π} and

η0 ∈ {0, π}). Then, due to the symmetry of the function ϕβ (cf. (5.2.84)), one has

Iβ(λ) =
1

4π2

∫∫
|ξ−ξ0|6π
|η−η0|6π

1

1− ϕβ(ξ, η, λ)
dξdη >

1

4π2

∫∫
√
ξ′2+η′26π

1

1− ϕβ(ξ0 + ξ′, η0 + η′, λ)
dξ′dη′.

In the last inequality we made a change of variables ξ = ξ0 + ξ′, η = η0 + η′. We have
then

Iβ(λ) >
1

4π2
Iβ,r(λ), ∀r < π, λ /∈ Σ, λ2 /∈ σ (A(β)) , (5.2.86)

where
Iβ,r(λ) =

∫∫
Dr

1

1− ϕβ(ξ0 + ξ, η0 + η, λ)
dξdη,

and Dr =
{

(ξ, η) /
√
ξ2 + η2 6 r

}
. It follows from the assumptions of the lemma that

λ2
+ is the upper end of a gap (it can also be the bottom of the essential spectrum (cf.

Lemma 5.2.2 and Remark 5.2.4). Thus, we can find δ > 0 such that λ2 /∈ σess (Aµ(β)),
∀λ ∈]λ+ − δ, λ+[. From now on we suppose that λ2 /∈ σess (Aµ(β)) and we study the
behaviour of the integral Iβ,r(λ) as λ→ λ+− 0. Notice that the function ϕβ is smooth in
some neighbourhood U of the point (ξ0, η0, λ+). Indeed, by assumption λ+ /∈ Σx ∪ Σy ∪
Σ̃z(β) which guarantees the continuity of the functions fLx,Ly ,ξ,η and φLz ,β. Moreover,
φLz ,β(λ+) 6= 0 since f+

Lx,Ly
(λ+) > 0. Let ρ and δ be positive numbers such that ϕβ ∈

C∞(Uρ,δ), where

Uρ,δ =
{

(ξ − ξ0)2 + (η − η0)2 < ρ2
}
×]λ+ − δ, λ+].

Let us write down the Taylor series of the function ϕβ in Uρ,δ:

ϕβ(ξ, η, λ) = 1 + ∂λϕβ(ξ0, η0, λ+)(λ− λ+) + ∂2
ξξϕβ(ξ0, η0, λ+)(ξ − ξ0)2

+ ∂2
ηηϕβ(ξ0, η0, λ+)(η − η0)2 +O

(
(λ− λ+)2

)
+O

(
(ξ − ξ0)4

)
+O

(
(η − η0)4

)
. (5.2.87)

We took into account the relations

ϕβ(ξ0 + ξ, η, λ) = ϕβ(ξ0 − ξ, η, λ), ϕβ(ξ, η0 + η, λ) = ϕβ(ξ, η0 − η, λ),

which lead to the absence of the terms with odd powers of (ξ − ξ0), (η − η0) in (5.2.87).
It follows from (5.2.87) that there exists a constant Cρ,δ > 0 such that

ϕβ(ξ, η, λ) > 1− Cρ,δ
(
|λ− λ+|+ (ξ − ξ0)2 + (η − η0)2

)
, ∀(ξ, η, λ) ∈ Uρ,δ.

Consequently,

Iβ,ρ(λ) >
∫∫
Dρ

C−1
ρ,δ

|λ− λ+|+ ξ2 + η2
dξdη = πC−1

ρ,δ ln

(
1 +

ρ2

|λ− λ+|

)
,

which shows that Iβ,ρ(λ) −→
λ→λ+−0

+∞. Taking into account (5.2.86) and the definition of

the function Fβ we conclude that Fβ(λ) −→
λ→λ+−0

0.
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Lemma 5.2.7. If λ− ∈
(
Σ∗x ∪ Σ∗y

)
\Σ̃∗z(β) and φLz ,β(λ−) > f+

Lx,Ly
(λ−) or λ− ∈ (Σx ∪ Σy)∩

Σ̃z(β), then lim
λ→λ−+0

Fβ(λ) > 1. Similarly, if λ+ ∈
(
Σ∗x ∪ Σ∗y

)
\ Σ̃∗z(β) and φLz ,β(λ+) <

f−Lx,Ly(λ+) or λ+ ∈
(
Σ∗x ∪ Σ∗y

)
∩ Σ̃∗z(β), then lim

λ→λ+−0
Fβ(λ) > 1.

Proof. We give the proof for the case of λ− only, the proof for λ+ being similar. We will
suppose that λ− ∈ Σx (the case λ− ∈ Σy can be considered analogously). It follows from
Lemma 5.2.2 that λ− is the lower end of a gap (or λ− = 0 and 0 is not the bottom of the
spectrum of A(β)). Thus, there exists δ > 0 such that λ2 /∈ σ (A(β)), ∀λ ∈]λ−, λ− + δ[.

(i) Consider first the case λ− ∈
(
Σ∗x ∪ Σ∗y

)
\ Σ̃∗z(β), φLz ,β(λ−) > f+

Lx,Ly
(λ−) > 0. Let us

study the behaviour of I(λ) as λ → λ− + 0. Since ϕβ(ξ, η, λ) −→
λ→λ−+0

−∞ for any

ξ ∈ [0, π] such that cos ξ 6= cos (λ−Lx) and any η ∈ [0, π], we have

1

1− ϕβ(ξ, η, λ)
−→

λ→λ−+0
0+, (ξ, η) ∈ [0, π]2 \ {(ξ, η) / cos ξ = cos (λ−Lx)} .

We can then apply the dominated convergence theorem. Indeed, there exists δ > 0
such that φLz ,β(λ) > f+

Lx,Ly
(λ) for any λ ∈ [λ−, λ− + δ]. Then,

ϕβ(ξ, η, λ) <
f+
Lx,Ly

(λ)

φLz ,β(λ)
6
f+
Lx,Ly

(λ− + δ)

φLz ,β(λ− + δ)
< 1, (ξ, η, λ) ∈ [0, π]2 × [λ−, λ− + δ].

(5.2.88)
Here we used the monotonicity and positivity of the functions f+

Lx,Ly
and φLz ,β in

[λ−, λ− + δ]. Putting

C =
f+
Lx,Ly

(λ− + δ)

φLz ,β(λ− + δ)
< 1,

we get
1

1− ϕβ(ξ, η, λ)
6

1

1− C
, (ξ, η, λ) ∈ [0, π]2 × [λ−, λ− + δ].

Consequently, the dominated convergence theorem applies and Iβ(λ) −→
λ→λ−+0

+0+,

which implies Fβ(λ) −→
λ→λ−+0

+∞.

(ii) Suppose now that λ− ∈ (Σx ∪ Σy) ∩ Σ̃z(β). Then, if λ− ∈ Σx \ Σy, we obtain

ϕβ(ξ, η, λ) −→
λ→λ−+0

Lz

(
cos ξ

cos (λ−Lx)
− 1
)

Lx

(
1− cosβ

cos (λ−Lz)

) , (ξ, η) ∈ [0, π]2.

Using the relations | cos (λ−Lx)| = 1, | cos (λ−Lz)| = 1 and cos β 6= cos (λ−Lz) (since
λ− ∈ Σ̃z(β)), we get

cos ξ

cos (λ−Lx)
− 1 6 0, 1− cos β

cos (λ−Lz)
> 0.

Consequently, lim
λ→λ−+0

ϕβ(ξ, η, λ) 6 0 for any (ξ, η) ∈ [0, π]2.
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Similarly, if λ− ∈ Σx ∩ Σy, we obtain

ϕβ(ξ, η, λ) −→
λ→λ−+0

Lz

(
cos ξ

cos (λ−Lx)
− 1
)

Lx

(
1− cosβ

cos (λ−Lz)

) +
Lz

(
cos η

cos (λ−Lx)
− 1
)

Ly

(
1− cosβ

cos (λ−Lz)

) 6 0 (ξ, η) ∈ [0, π]2.

The dominated convergence theorem can be applied again since the estimate (5.2.88)
is still valid. We have lim

λ→λ−+0
Iβ(λ) 6 1, which implies lim

λ→λ−+0
Fβ(λ) > 1.

Lemma 5.2.8. If λ0 ∈ Σ̃z(β) \ (Σx ∪ Σy), then lim
λ→λ0

Fβ(λ) = 1.

Proof. This is obvious since ϕβ(ξ, η, λ) −→
λ→λ0

0 uniformly for (ξ, η) ∈ [0, π]2.

We can now finish the proof of Theorem 5.2.1. We will use the classification of gaps
given in Lemma 5.2.3, according to which the image of each gap of type I by the function
x 7→

√
x contains exactly one point of the set Σ̃z(β) (point of discontinuity of the function

φLz ,β), whereas the image of each gap of type II does not contain such points.

Proof of Theorem 5.2.1. The result for µ > 1 is given in Corollary 5.2.2.

(a) Let ]a, b[ be a gap of type I. Then, according to Proposition 5.2.6,
√
a and

√
b satisfy

the hypothesis of Lemma 5.2.6 and lim
λ→
√
a
+

(1− Fβ(λ)) = lim
λ→
√
b
−

(1− Fβ(λ)) = 1. Next,

it follows from Lemma 5.2.3 that there exists c ∈]a, b[ such that
√
c satisfies the

hypothesis of Lemma 5.2.8, which implies lim
λ→
√
c
(1− Fβ(λ)) = 0. Moreover, the point

√
c being the unique point of discontinuity of the function φLz ,β in ]

√
a,
√
b[, the

function Fβ is continuous in ]
√
a,
√
c[ and ]

√
c,
√
b[. Consequently, for 0 < µ < 1 there

exists at least one solution of the equation (5.2.85) in each of the intervals ]
√
a,
√
c[

and ]
√
c,
√
b[, which gives at least two eigenvalues of the operator Aµ(β) in the gap

]a, b[.

(b) Let ]a, b[ be a gap of type II. In this case, it follows from Proposition 5.2.6 that one
of the points

√
a,
√
b satisfies the hypothesis of Lemma 5.2.6 whereas the other one

satisfies the hypothesis of Lemma 5.2.7. Suppose that
√
b satisfies the hypothesis of

Lemma 5.2.6 and
√
a satisfies the hypothesis of Lemma 5.2.7 (the opposite case can be

considered similarly). Then, lim
λ→
√
b
−

(1− Fβ(λ)) = 1 and lim
λ→
√
a
+

(1− Fβ(λ)) 6 0. On

the other hand, Lemma 5.2.3 implies that the function Fβ is continuous in ]
√
a,
√
b[.

This proves that for any 0 < µ < 1 there exists at least one solution of the equation
(5.2.85) in ]

√
a,
√
b[, which gives at least one eigenvalue of the operator Aµ(β) in the

gap ]a, b[.

Finally, the eigenvalues of the operator Aµ(β) are simple since the corresponding eigen-
functions satisfy the relation (5.2.81), which defines an eigenfunction corresponding to a
given eigenvalue in a unique way.
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Remark 5.2.7. Similarly to the 2D case a characterization of the essential spectrum of
the operator Aµ(β) can be given in terms of the absolute value of the function gβ. Indeed,
comparing the equation (5.2.34) with the definition (5.2.69) of the function gβ we conclude
that

for λ /∈ Σ, λ2 ∈ σess (Aµ(β)) ⇔ |gβ| 6
1

|sin (λLx)|
+

1

|sin (λLy)|
.

Notice that if we consider the non-perturbed case µ = 1, the equation for the Fourier
transform û takes the form(

cos ξ

sin (λLx)
+

cos η

sin (λLy)
− gβ(λ)

)
û(ξ, η) = 0.

Consequently, for λ /∈ Σ, there exists a non-zero solution if and only if

∃(ξ, η) ∈ [0, π]2 s.t.
cos ξ

sin (λLx)
+

cos η

sin (λLy)
− gβ(λ) = 0,

i.e., if and only if λ2 ∈ σ (A(β)). This means that for λ /∈ Σ there exists a generalized
eigenfunction of the operator A(β) (a solution of the equation A(β)u = λ2u of at most
polynomial growth) if and only if λ2 ∈ σ (A(β)).

5.3 The operator Aµ
ε (β)

As in the 2D case, the results of the works [61], [47], [57] can be applied to get the following
assertions.

Theorem 5.3.1 (Essential spectrum). Let {]an(β), bn(β)[, n ∈ N∗} be the gaps of the op-
erator A(β) on the limit graph G for β ∈ [0, π]. Then, for each n0 ∈ N∗ there exists ε0(β) >
0 such that if ε < ε0(β) the operator Aε(β) has at least n0 gaps {]aε,n(β), bε,n(β)[}n0

n=1 such
that

aε,n(β) = an(β) +O(ε), bε,n(β) = bn(β) +O(ε), ε→ 0, 1 6 n 6 n0.

Theorem 5.3.2 (Discrete spectrum). Let ]a(β), b(β)[ be a gap of the operator Aµ(β) on
the limit graph G for β ∈ [0, π] and λ(0)(β) ∈ ]a(β), b(β)[ a (simple) eigenvalue of this
operator. Then there exists ε0(β) > 0 such that if ε < ε0(β) the operator Aµε (β) has an
eigenvalue λε(β) inside a gap ]aε(β), bε(β)[ such that:

λε(β) = λ(0)(β) +O (ε) , ε→ 0.

We do not construct the full asymptotic expansion of the eigenvalue here, which should be
possible to do using the approach described in Chapter 2. The weak version of Theorem
5.3.2 with a suboptimal rate of convergence should also be easy to obtain by constructing a
"naive" pseudo-mode and adapting the argument used in Section 1.4.3 to the 3D geometry.





APPENDIX A

A.1 Self-adjointness of the operator Aµ

Proof of Proposition 1.3.1. Let us show that the operator Aµ defined in (1.3.4)–(1.3.5) is
self-adjoint. Let us show first that it is symmetric. Indeed, if f, g ∈ D(Aµ) then

(Aµf, g) =
∑
e∈E

∫
e

−wµ(e)f ′′ḡdx =
∑
e∈E

∫
e

−wµ(e)fḡ′′dx− wµ(e)(f ′ḡ)|ve2ve1
+ wµ(e)(fḡ′)|ve2ve1


= (f, Aµg) +

∑
v∈V

(∑
ev∈Ev

(wµ(ev)(fev)
′
ext(v)ḡ(v)− f(v)wµ(ev)(gev)

′
ext(v))

)
= (f, Aµg).

To prove that the operator Aµ we will show that D
(
(Aµ)∗

)
⊂ D(Aµ). Let f ∈ D

(
(Aµ)∗

)
.

by definition there exists hf (= (Aµ)∗f) ∈ Lµ2(G) such that

(f, Aµg) = (hf , g), ∀g ∈ D(Aµ), (A.1.1)

and consequently,∑
e∈E

∫
e

−wµ(e)fg′′dx =
∑
e∈E

∫
e

wµ(e)hfgdx, ∀g ∈ D(Aµ). (A.1.2)

The set D(Aµ) obviously contains the functions C∞0 (e) for any e. The relation (A.1.2)
applied to functions g ∈ C∞0 (e) implies that −f ′′|e = hf |e. Thus,

− f ′′ = hf , f ′′ ∈ Lµ2(G). (A.1.3)

Hence,

f ∈ H2(e), ∀e ∈ E;
∑
e∈E

‖f‖2
H2(e) <∞;

(
Aµ
)∗
f = −f ′′. (A.1.4)

We have to verify the continuity of the function f at the vertices of the graph G and the
Kirchhoff’s conditions. Suppose that g ∈ D(Aµ) vanishes outside some neighbourhood of
a given vertex v0. The relation (A.1.2) yields

3∑
i=1

∫
eiv0

−wµ
(
eiv0
)
fg′′dx =

3∑
i=1

∫
eiv0

−wµ
(
eiv0
)
f ′′gdx. (A.1.5)
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On the other hand, integrating by parts, we get:

3∑
i=1

∫
eiv0

−wµ
(
eiv0
)
fg′′dx =

3∑
i=1

∫
eiv0

−wµ
(
eiv0
)
f ′′gdx +

3∑
i=1

wµ
(
eiv0
)
(feiv0 )′ext(v0)ḡ(v0)

−
3∑
i=1

wµ
(
eiv0
)
feiv0 (v0)(geiv0 )′ext(v0),

which implies(
3∑
i=1

wµ
(
eiv0
)
(feiv0 )′ext(v0)

)
ḡ(v0)−

3∑
i=1

wµ
(
eiv0
)
feiv0 (v0)(geiv0 )′ext(v0) = 0. (A.1.6)

Choosing a function g such that it is equal to a non-zero constant in a neighbourhood of
the vertex v0, we get

3∑
i=1

wµ
(
eiv0
)
(feiv0 )′ext(v0) = 0. (A.1.7)

Let us now choose a function g ∈ D(Aµ) such that

g(v0) = 0, (geiv0 )′ext(v0) =
1

wµ
(
eiv0
) , (gejv0

)′ext(v0) = − 1

wµ
(
ejv0
) , (gekv0

)′ext(v0) = 0,

for some permutation {i, j, k} = {1, 2, 3}. From the relation (A.1.6) applied to the func-
tion g we obtain

feiv0 (v0) = fejv0
(v0). (A.1.8)

This proves the continuity of the function f at the vertex v0. Thus, we conclude that
D
(
(Aµ)∗

)
⊂ D(Aµ) and consequently, Aµ = (Aµ)∗.

A.2 Quasi-modes method

In this section we shall prove Lemma A.2.1 that provides a result existence of eigenvalues
for the operator Aµε,s (Aµε,as). It relies on a pseudo-mode method. The result may be found
in [53] Lemma 4, but, for the sake of completeness we give a proof.

Let H be a Hilbert space, A a self-adjoint positive definite operator:

∃α > 0 : (Au, u) > α‖u‖2, ∀u ∈ D(A).

Let a be the closed positive definite sesqui-linear form which corresponds to the operator
A:

D[a] = D(A1/2), a[u, u] > α‖u‖2, ∀u ∈ D[a].

We denote by | · |a the norm in the space D[a] corresponding to the scalar product

〈u, v〉a = a[u, v], ∀u, v ∈ D[a].
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Lemma A.2.1. Suppose that λ > α. If there exists u ∈ D[a] such that

|a[u, v]− λ(u, v)| 6 ε|u|a|v|a, ∀v ∈ D[a], ε < (λ+ 1)−1, (A.2.1)

then
dist(σ(A), λ) 6 Cε, C = λ+ 1.

Proof. Let us define the operator B : D[a]→ D[a] as follows:

a[Bf, v] = (f, v), ∀v ∈ D[a].

We notice that this implies

Bf ∈ D(A), ABf = f, ∀f ∈ D[a]. (A.2.2)

We denote by | · |a the norm associated with the sesqui-linear form a: |f |2a = a[f, f ].
Let us prove the following assertion.

Proposition A.2.1.

λ ∈ σ(A) <=>
1

λ
∈ σ(B), ∀λ > 0.

Proof.

Case of eigenvalues:

1. Let λ be an eigenvalue of the operator A: Af = λf . On a

(f, v) = λ−1(Af, v) = a[λ−1f, v], ∀v ∈ D[a].

By definition of the operator B this implies Bf = λ−1f .
2. Let λ−1 be an eigenvalue of the operator B: there exists f ∈ D[a] such that Bf = λ−1f .
From (A.2.2) it follows that f ∈ D(A) and Af = λABf = λf .

Case of continuous spectrum:

1. Suppose that λ ∈ σc(A). Then, there exist a singular sequence {un}n∈N ⊂ D(A)
such that

a) inf
n
‖un‖ > 0,

b) un
w−→ 0 in H,

c) ‖(A− λ)un‖ −→ 0.

Let us show that {un} is also singular sequence for the operator B in the space D[a]
equipped with the norm | · |a. Thus, the property

a) inf
n
|un|a > 0
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is obviously verified. Let us prove the weak convergence of the sequence {un} in the space
D[a]:

a[un, v] = (Aun, v) = ((A− λ)un, v) + λ(un, v) −→ 0, ∀v ∈ D[a].

We used the properties (b), (c) of the sequence {un}. Consequently,

b) un
w−→ 0 in D[a].

The only thing to show now is that |(B − λ−1)un|a −→ 0. Indeed,∣∣Bun − λ−1un
∣∣
a

= a[(B − λ−1)un, (B − λ−1)un] = (A(B − λ−1)un, (B − λ−1)un)

= λ−1(λun − Aun, (B − λ−1)un) 6 C‖Aun − λun‖ −→ 0.

Thus,

c) |(B − λ−1)un|a −→ 0,

and {un} is a singular sequence for the operator B at the point λ−1.

2. Suppose that λ−1 ∈ σc(B). Then, there exists a singular sequence {fn}n∈N ⊂ D[a]
such that

a) inf
n
|fn|a > 0,

b) fn
w−→ 0 in D[a],

c) |(B − λ−1)fn|a −→ 0.

Let us show that there exists a singular sequence for the operator A. We put un = Bfn ∈
D(A). From the properties (a) and (c) of the sequence {fn} it follows that inf

n
|un|a > 0.

We have:
|un|2a = (A1/2Bfn, A

1/2un) = (ABfn, un) = (fn, un).

Therefore,

inf
n
‖un‖ > inf

n

|un|2a
‖fn‖

> 0.

Thus, the property

a) inf
n
‖un‖ > 0

is verified. The sequence {un} being bounded, we can extract a subsequence which con-
verges weakly to some element h ∈ H. We keep the same notation {un} for the subse-
quence:

(un, w) −→ (h,w), ∀w ∈ H. (A.2.3)

For w ∈ D[a] we have:

(un, w) = a[Bfn, w] −→ 0, ∀w ∈ D[a], (A.2.4)

where we used the property (b) of the sequence {fn}. Thus, the relations (A.2.3) and
(A.2.4) imply that

(h,w) = 0, ∀w ∈ D[a].

Since D[a] is dense in H we conclude that h = 0 and hence
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b) un
w−→ 0 in H.

The last thing to verify is the property (c). We have:

‖(A− λ)un‖ = ‖fn − λBfn‖ 6 α−1/2|fn − λBfn|a −→ 0.

The property

c) ‖(A− λ)un‖ −→ 0

is verified which proves that {un} is a singular sequence for the operator A at the point
λ.

We can now finish the proof of Lemme A.2.1. Suppose that u ∈ D[a] is such that (A.2.1)
is verified. We have:

|a[u, v]−λ(u, v)| = |a[u, v]−λ(ABu, v)| = |a[u, v]−λ[Bu, v]| = |a[u− λBu, v]| 6 ε|u|a|v|a,

and hence, ∣∣(B − λ−1)u
∣∣
a
6
ε

λ
|u|a.

The last relation implies that

dist(σ(B), λ−1) 6
ε

λ
,

and for the operator A we obtain

dist(σ(A), λ) 6
λε

1− ε
< (λ+ 1)ε,

where we took into account the relation ε(1 + λ) < 1.

A.3 Some auxiliary assertions

The following assertion is very similar to Lemma 3.10 in [37].

Lemma A.3.1. For each α > 0 there exists ε0 > 0 and a constants C1(α), C2(α) which
does not depend on ε such that

‖v‖L1(]0,εα[×]0,ε[) 6 C1(α)εα+1/2 ‖v‖H1(]0,1[×]0,ε[) , ∀v ∈ H1 (]0, 1[×]0, ε[) , ∀ε < ε0,
(A.3.1)

‖v‖L2(]0,εα[×]0,ε[) 6 C2(α)εα/2 ‖v‖H1(]0,1[×]0,ε[) , ∀v ∈ H1 (]0, 1[×]0, ε[) , ∀ε < ε0.
(A.3.2)

Proof. We will prove the estimate (A.3.1), the proof of the estimate (A.3.2) being anal-
ogous. Due to the density of C∞ ([0, 1]× [0, ε]) in H1 (]0, 1[×]0, ε[) it is sufficient to
show (A.3.1) for functions v ∈ C∞ ([0, 1]× [0, ε]). Let us introduce a function ψα ∈
C∞ ([0, 1]× [0, ε]) such that

ψα(x, y) = 1, (x, y) ∈ [0, εα]× [0, ε], ψα(x, y) = 0, x ∈
[

1
2
, 1
]
× [0, ε].
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Then, ‖v‖L1(]0,εα[×]0,ε[) = ‖vψα‖L1(]0,εα[×]0,ε[). We have

(vψα) (x, y) = −
∫ 1

x

∂x (vψα) (x′, y)dx′.

Hence,

|(vψα) (x, y)| 6
∫ 1

0

|∇ (vψα) (x′, y)| dx′.

Consequently,

‖v‖L1(]0,εα[×]0,ε[) 6

εα∫
0

 1∫
0

ε∫
0

|∇ (vψα) (x′, y)| dx′dy

 dx

6 εα+1/2

 1∫
0

ε∫
0

|∇ (vψα) (x′, y)|2 dx′dy

1/2

6 C(α)εα+1/2 ‖v‖H1(]0,1[×]0,ε[) .

Lemma A.3.2. Let K be the rectangle ]0, a[×]0, b[ for some a, b > 0 and Γ its boundary
{0} × [0, b]. Then, for any δ > 0 there exists a constant C(δ) such that

‖v‖2
L2(Γ) 6 δ‖v‖2

H1(K) + C(δ)‖v‖2
L2(K), ∀v ∈ H1(K). (A.3.3)

Proof. Applying the same density argument as in the previous Lemma, as well as the fact
that the traces of a convergent sequence in H1(K) converge in L2(Γ) we only need to
prove (A.3.3) for functions in C∞(K). Thus, for v ∈ C∞(K) we have:

v(0, y) = v(x, y)−
x∫

0

∂xv(x̃, y)dx̃, (x, y) ∈ K,

and

|v(0, y)| 6 |v(x, y)|+
x∫

0

|∂xv(x̃, y)| dx̃ 6 |v(x, y)|+

x x∫
0

|∂xv(x̃, y)|2 dx̃

1/2

,

where we used Cauchy-Schwarz inequality. Hence,

|v(0, y)|2 6 C

|v(x, y)|2 + x

a∫
0

|∇v(x̃, y)|2 dx̃


Integrating the last inequality over ]0, δ[×]0, b[ gives:

δ‖v‖2
L2(Γ) 6 C

(
‖v‖2

L2(K) +
δ2

2
‖v‖2

H1(K)

)
Dividing by δ yields (A.3.3).
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Lemma A.3.3. Let v± be the solutions of the problems (3.2.25) for α2 /∈ σ(Aε), ϕ ∈
H1/2 (Γ±ε ). Then, v± ∈ H2(K±) and the estimate (3.2.27) holds.

Proof. Let us introduce a cut-off function χ ∈ C∞
([

1
2
,∞
[)

such that
χ(x) = 1, x ∈

[
1
2
, 1

2
+ ε

8

]
,

χ(x) = 0, x ∈
[

1
2

+ ε
4
, ∞

[
,

0 6 χ(x) 6 1, ∀x ∈
[

1
2
,∞
[
.

Then, the function ṽ = χv+ solves the following problem in K+
ε =

]
1
2
, 1

2
+ ε

4

[
×
]
−L

2
, L

2

[
:

−∆ṽ = α2v+χ− v+∆χ− 2∇v+∇χ+ u+
ε (α, ϕ) in K+

ε ,

ṽ|Γ+
ε

= 0,
∂ṽ

∂n

∣∣∣∣
∂K+

ε \Γ+
ε

= 0,

where we used the fact that v+ ∈ D(A+
ε ), cf. (3.2.2). Then, applying the regularity result

([]), we conclude that ṽ ∈ H2 (K+
ε ) and

‖ṽ‖H2(K+
ε ) 6 C

∥∥α2v+χ− v+∆χ− 2∇v+∇χ+ u+
ε (α, ϕ)

∥∥
L2(K+

ε ) 6 C(α)‖ϕ‖H1/2(Γε,0),

where C(α) is a continuous function depending only on the geometry of the domain.
We used the continuity of the operator (A+

ε − α2)
−1

: L2 (B+
ε ) → H1 (B+

ε ) to estimate
‖ṽ‖H1(K+

ε ) as well as (3.2.5). Finally, since ṽ|K+ = v|K+ , we get (3.2.27).

A.4 Technical results associated with Chapter 5

Lemma A.4.1. The condition D(λ) = 0 with D(λ) defined in (5.2.21) is equivalent to
the relation (5.2.4).

Proof. Let us compute the determinant D(λ). First, we subtract the second column from
the first, the fourth from the third and the sixth from the fifth. Then, we multiply the
third line by e−ikx , the fourth one by e−iky and the fifth one by e−ikz . We get:

D(λ) = eikxeikyeiβ

×

∣∣∣∣∣∣∣∣∣∣∣∣

0 1 0 −1 0 0
0 1 0 0 0 −1

−2i sin (λLx) e−ikx − e−iλLx 0 0 0 0
0 0 −2i sin (λLy) e−iky − e−iλLy 0 0
0 0 0 0 −2i sin (λLz) e−iβ − e−iλLz

1− ei(λLx+kx) 0 1− ei(λLy+ky) 0 1− ei(λLz+β) 0

∣∣∣∣∣∣∣∣∣∣∣∣
.

Developing the determinant with respect to the first line, we get:

D(λ) = eikxeikyeiβ (D1(λ) +D2(λ)) , (A.4.1)

where

D1(λ) = −

∣∣∣∣∣∣∣∣∣∣
0 0 0 0 −1

−2i sin (λLx) 0 0 0 0
0 −2i sin (λLy) e−iky − e−iλLy 0 0
0 0 0 −2i sin (λLz) e−iβ − e−iλLz

1− ei(λLx+kx) 1− ei(λLy+ky) 0 1− ei(λLz+β) 0

∣∣∣∣∣∣∣∣∣∣
,
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D2(λ) =

∣∣∣∣∣∣∣∣∣∣
0 1 0 0 −1

−2i sin (λLx) e−ikx − e−iλLx 0 0 0
0 0 −2i sin (λLy) 0 0
0 0 0 −2i sin (λLz) e−iβ − e−iλLz

1− ei(λLx+kx) 0 1− ei(λLy+ky) 1− ei(λLz+β) 0

∣∣∣∣∣∣∣∣∣∣
.

The determinant D1(λ) can be computed directly:

D1(λ) = −4 sin (λLx) sin (λLz)
(
1− ei(λLy+ky)

) (
e−iky − e−iλLy

)
= −8 sin (λLx) sin (λLz) (cos ky − cos (λLy)) . (A.4.2)

To compute determinant D2(λ), we decompose it with respect to the first line. We get:

D2(λ) = D2,1(λ) +D2,2(λ),

D2,1(λ) = −

∣∣∣∣∣∣∣∣
−2i sin (λLx) 0 0 0

0 −2i sin (λLy) 0 0
0 0 −2i sin (λLz) e−iβ − e−iλLz

1− ei(λLx+kx) 1− ei(λLy+ky) 1− ei(λLz+β) 0

∣∣∣∣∣∣∣∣ ,

D2,2(λ) = −

∣∣∣∣∣∣∣∣
−2i sin (λLx) e−ikx − e−iλLx 0 0

0 0 −2i sin (λLy) 0
0 0 0 −2i sin (λLz)

1− ei(λLx+kx) 0 1− ei(λLy+ky) 1− ei(λLz+β)

∣∣∣∣∣∣∣∣ .
We find then

D2,1(λ) = −4 sin (λLx) sin (λLy)
(
1− ei(λLz+kz)

) (
e−iβ − e−iλLz

)
= −8 sin (λLx) sin (λLy) (cos β − cos (λLz)) , (A.4.3)

D2,2(λ) = −4 sin (λLy) sin (λLy)
(
1− ei(λLx+kx)

) (
e−ikx − e−iλLx

)
= −8 sin (λLy) sin (λLy) (cos kx − cos (λLx)) . (A.4.4)

Combining the relations (5.2.20), (A.4.1)–(A.4.4), we find the condition (5.2.4).

Proof of Proposition 5.2.4.
The point λ2 is an eigenvalue of infinite multiplicity of the operator A(β) if and only if
it is an eigenvalue of the operator Aβ(kx, ky) for any (kx, ky) ∈ [0, π]2. It follows from
Proposition 5.2.2 that λ2 ∈ σpp(A(β)) if and only if λ > 0 and the equation (5.2.4)
is satisfied for any (kx, ky) ∈ [0, π]2. The first term of in the left-hand side of (5.2.4)
only depends on kx, the second term depends only on ky and the third term is constant.
Consequently, λ2 ∈ σpp(A(β)) if and only if λ > 0 and all the three terms are identically
zero. If λ > 0, the condition for the first term to be identically zero is λ ∈ Σ∗y ∪ Σ∗z, the
condition for the second term to be identically zero is λ ∈ Σ∗x ∪ Σ∗z and the condition for
the third term to be identically zero is λ ∈ Σ∗x ∪ Σ∗y ∪ Σ∗z(β). Thus,

λ2 ∈ σpp(A(β)) ⇔ λ ∈ Π,

where
Π =

(
Σ∗y ∪ Σ∗z

)
∩ (Σ∗x ∪ Σ∗z) ∩

(
Σ∗x ∪ Σ∗y ∪ Σ∗z(β)

)
.
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Since Σ̃∗z(β) ⊂ Σ∗z (cf. (5.2.27)–(5.2.28)), we have Σis(β) ⊂
(
Σ∗x ∪ Σ∗y

)
∩Σ∗z ⊂ Π. Moreover,

we have seen in the proof of Proposition 5.2.3 (2) that for any point λ ∈ Σis(β) there exist
positive numbers l± such that ]λ2 − l−, λ2[ ∩ σ(A(β)) = ∅, ]λ2, λ2 + l+[ ∩ σ(A(β)) = ∅.
Consequently, the set Σis(β) corresponds to isolated points of the spectrum. Let us
determine Π \ Σis(β). We distinguish two cases.

(i) β ∈]0, π[: in this case Σ̃∗z(β) = Σ∗z and the set Π \ Σis(β) is

Π\Σis(β) = Σis(β)∩Π = (Σ∗x ∩ Σ∗z)∩
(
Σ∗y ∩ Σ∗z

)
∩(Σ∗x ∪ Σ∗z)∩

(
Σ∗y ∪ Σ∗z

)
∩
(
Σ∗x ∪ Σ∗y ∪ Σ∗z(β)

)
= ((Σ∗x \ Σ∗z) ∪ (Σ∗z \ Σ∗x)) ∩

((
Σ∗y \ Σ∗z

)
∪
(
Σ∗z \ Σ∗y

))
∩
(
Σ∗x ∪ Σ∗y ∪ Σ∗z(β)

)
=
(((

Σ∗x ∩ Σ∗y
)
\ Σ∗z

)
∪
(
Σ∗z \

(
Σ∗x ∪ Σ∗y

)))
∩
(
Σ∗x ∪ Σ∗y ∪ Σ∗z(β)

)
=
(((

Σ∗x ∩ Σ∗y
)
\ Σ∗z

)
∩
(
Σ∗x ∪ Σ∗y ∪ Σ∗z(β)

))
∪
((

Σ∗z \
(
Σ∗x ∪ Σ∗y

))
∩
(
Σ∗x ∪ Σ∗y ∪ Σ∗z(β)

))
=
((

Σ∗x ∩ Σ∗y
)
\ Σ∗z

)
∪
(
(Σ∗z ∩ Σ∗z(β)) \

(
Σ∗x ∪ Σ∗y

))
=
(
Σ∗x ∩ Σ∗y

)
\ Σ̃∗z(β).

The last equality is due to the fact that for β ∈]0, π[, Σ∗z ∩Σ∗z(β) = ∅. Let us show that
if λ0 ∈ Π \ Σis(β), then λ2

0 is not an isolated point of σ(A(β)). The equation (5.2.4)
with λ = λ0 + δ can be rewritten as

cos kx
cos (λ0Lx)

= cos (δLx)+sin (δLx)
cos (λLz)− cos β

sin (λLz)
+

sin (δLx)

sin (δLy)

(
cos (δLy)−

cos ky
cos (λ0Ly)

)
.

(A.4.5)
If λ0 /∈ Σ∗z(β), then for δ small enough

cos (δLx) + sin (δLx)
cos (λLz)− cos β

sin (λLz)
= 1 + δLx

cos (λ0Lz)− cos β

sin (λ0Lz)
+O(δ2).

The quantity (cos (λ0Lz)− cos β) / sin (λ0Lz) being different from zero (so either strictly
positive or strictly negative), there exists ε > 0 such that either for δ ∈]0, ε[ or for
δ ∈]− ε, 0[ one has ∣∣∣∣cos (δLx) + sin (δLx)

cos (λLz)− cos β

sin (λLz)

∣∣∣∣ < 1. (A.4.6)

Choosing, for example, cos ky = cos (δLy) cos (λ0Ly), one can find a kx such that (kx, ky)
solve the equation (A.4.5).

If λ0 ∈ Σ∗z(β), then cos (λ0Lz) = cos β, and then then for δ small enough

cos (δLx) + sin (δLx)
cos (λLz)− cos β

sin (λLz)
= 1− δ2

(
L2
x

2
+ LxLz

)
+O(δ3).

Hence, the inequality (A.4.6) holds again for δ small enough and a solution (kx, ky) of
the equation (A.4.5) can be found as in the previous case.

(ii) β ∈ {0, π}: in this case Σ∗z(β) ⊂ Σ∗z. Consequently, Σ∗z(β) ⊂ Π. Taking into account
that Σ∗z(β) ∩ Σ̃∗z(β) = ∅, we get Σ∗z(β) ∩ Σis(β) = ∅. Thus,

Π \ Σis(β) = (Π \ (Σis(β) ∪ Σ∗z(β))) ∪ Σ∗z(β). (A.4.7)

Let us compute Π \ (Σis(β) ∪ Σ∗z(β)):

Π \ (Σis(β) ∪ Σ∗z(β)) = Σis(β) ∩ Π ∩ Σ∗z(β).
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It follows from (5.2.33) that

Σis(β) =
(

Σ∗x ∩ Σ̃∗z(β)
)
∪
(

Σ∗y ∩ Σ̃∗z(β)
)
, Σis(β) =

(
Σ∗x ∩ Σ̃∗z(β)

)
∩
(

Σ∗y ∩ Σ̃∗z(β)
)
.

Then,

Π \ (Σis(β) ∪ Σ∗z(β))

=
(

Σ∗x ∩ Σ̃∗z(β)
)
∩
(

Σ∗y ∩ Σ̃∗z(β)
)
∩(Σ∗x ∪ Σ∗z)∩

(
Σ∗y ∪ Σ∗z

)
∩
(
Σ∗x ∪ Σ∗y ∪ Σ∗z(β)

)
∩Σ∗z(β).

If β ∈ {0, π}, then Σ∗z ∩ Σ∗z(β) = Σ̃∗z(β). We have then

Π \ (Σis(β) ∪ Σ∗z(β))

=
(

Σ∗x ∩ Σ̃∗z(β)
)
∩
(

Σ∗y ∩ Σ̃∗z(β)
)
∩
(

Σ∗x ∪ Σ̃∗z(β)
)
∩
(

Σ∗y ∪ Σ̃∗z(β)
)
∩
(
Σ∗x ∪ Σ∗y

)
∩ Σ∗z(β)

=
((

Σ∗x \ Σ̃∗z(β)
)
∪
(

Σ̃∗z(β) \ Σ∗x

))
∩
((

Σ∗y \ Σ̃∗z(β)
)
∪
(

Σ̃∗z(β) \ Σ∗y

))
∩
(
Σ∗x ∪ Σ∗y

)
∩Σ∗z(β)

=
(((

Σ∗x ∩ Σ∗y
)
\ Σ̃∗z(β)

)
∪
(

Σ̃∗z(β) \
(
Σ∗x ∪ Σ∗y

)))
∩
(
Σ∗x ∪ Σ∗y

)
∩ Σ∗z(β)

=
((

Σ∗x ∩ Σ∗y
)
\ Σ̃∗z(β)

)
∩ Σ∗z(β).

Together with the relation (A.4.7) this implies that

Π \ Σis(β) =
(((

Σ∗x ∩ Σ∗y
)
\ Σ̃∗z(β)

)
∩ Σ∗z(β)

)
∪ Σ∗z(β)

=
(((

Σ∗x ∩ Σ∗y
)
\ Σ̃∗z(β)

)
\ Σ∗z(β)

)
∪ Σ∗z(β) =

((
Σ∗x ∩ Σ∗y

)
\ Σ̃∗z(β)

)
∪ Σ∗z(β).

It can also be rewritten as

Π \ Σis(β) =
((

Σ∗x ∩ Σ∗y
)
\ Σ∗z

)
∪
(
Σ∗x ∩ Σ∗y ∩ Σ∗z(β)

)
∪
(
Σ∗z(β) \

(
Σ∗x ∩ Σ∗y

))
.

Let us show that the points of this set do not correspond to isolated points of the
spectrum.

(a) λ0 ∈
(
Σ∗x ∩ Σ∗y

)
\ Σ∗z: this case can be treated in the same way as the case (i).

(b) λ0 ∈ Σ∗x ∩ Σ∗y ∩ Σ∗z(β): in this case, taking into account that cos (λ0Lz) = cos β, the
equation (5.2.4) with λ = λ0 + δ can be rewritten as

cos (δLx)−
cos kx

cos (λ0Lx)
+

sin (δLx)

sin (δLy)

(
cos (δLy)−

cos ky
cos (λ0Ly)

)
+

sin (δLx)

sin (δLz)
(cos (δLz)− 1) = 0.

If δ 6= 0 is small enough, then, choosing, for example, cos ky = cos (λ0Ly) cos (δLy), one
can find a kx such that

cos kx
cos (λ0Lx)

= cos (δLx) +
sin (δLx)

sin (δLz)
(cos (δLz)− 1) .

Indeed, the right-hand side of this relation is of absolute value smaller than 1 for δ
small enough. The couple (kx, ky) is then a solution of (5.2.4).
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(c) λ0 ∈ Σ∗z(β) \
(
Σ∗x ∩ Σ∗y

)
: suppose that λ0 /∈ Σ∗y (the case λ0 /∈ Σ∗x can be considered

analogously). Then, taking into account that cos (λ0Lz) = cos β, the equation (5.2.4)
with λ = λ0 + δ can be rewritten as

cos (λLx)− cos kx +
sin (λLx)

sin (λLy)
(cos (λLy)− cos ky) + sin (λLx)

cos (δLz)− 1

sin (δLz)
= 0.

If δ is small enough, then choosing, for example, cos ky = cos (λLy), a kx can be found
such that

cos kx = cos (λLx) + sin (λLx)
cos (δLz)− 1

sin (δLz)

Indeed, if λ0 /∈ Σ∗x, then

cos (λLx) + sin (λLx)
cos (δLz)− 1

sin (δLz)
= cos (λ0Lx) +O(δ),

and the absolute value of this expression is smaller that 1 for δ small enough. If λ0 ∈ Σ∗x,
then

cos (λLx) + sin (λLx)
cos (δLz)− 1

sin (δLz)
= cos (λ0Lx)

(
1− δ2L

2
x + LxLz

2

)
+O(δ3),

and its absolute value is also smaller that 1 for δ small enough. Thus, we proved that
the equation (5.2.4) has a solution when δ is small enough.

Proof of Proposition 5.2.7.
Some of the points of the set Σ∗ correspond to eigenvalues on infinite multiplicity of the
operator A(β). In the following lemma we identify the subset of points of Σ∗ that do not
correspond to eigenvalues on infinite multiplicity.

Lemma A.4.2. For any β ∈ [0, π],

Σ∗ \ (Σis(β) ∪ Σemb(β)) =
(
Σ∗x \

(
Σ∗y ∪ Σ∗z

))
∪
(
Σ∗y \ (Σ∗x ∪ Σ∗z)

)
∪
(

Σ̃∗z(β) \
(
Σ∗x ∪ Σ∗y

))
.

Proof.

(i) β ∈]0, π[: in this case Σ̃∗z(β) = Σ∗z. Hence,

Σ∗ \ (Σis(β) ∪ Σemb(β)) =
(
Σ∗x ∪ Σ∗y ∪ Σ∗z

)
\
(
(Σ∗x ∩ Σ∗z) ∪

(
Σ∗y ∩ Σ∗z

)
∪
((

Σ∗x ∩ Σ∗y
)
\ Σ∗z

))
=
(
Σ∗x ∪ Σ∗y ∪ Σ∗z

)
\
(
(Σ∗x ∩ Σ∗z) ∪

(
Σ∗y ∩ Σ∗z

)
∪
(
Σ∗x ∩ Σ∗y

))
,

and the result follows.

(ii) β ∈ {0, π}: in this case Σ∗z = Σz(β)∗ ∪ Σ̃∗z(β) and Σ∗z(β) ∩ Σ̃∗z(β) = ∅. We have:

Σ∗ \ (Σis(β) ∪ Σemb(β))

= (Σ∗x \ (Σis(β) ∪ Σemb(β)))∪
(
Σ∗y \ (Σis(β) ∪ Σemb(β))

)
∪(Σ∗z \ (Σis(β) ∪ Σemb(β))) .

Taking into account that

Σis(β) ∪ Σemb(β) =
(

Σ∗x ∩ Σ̃∗z(β)
)
∪
(

Σ∗y ∩ Σ̃∗z(β)
)
∪
((

Σ∗x ∩ Σ∗y
)
\ Σ̃∗z(β)

)
∪ Σ∗z(β),

we find the result.
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We come back to the proof of Proposition 5.2.7.
We have to prove that if λ ∈ Σ∗ \ (Σis(β) ∪ Σemb(β)), then λ2 is not an eigenvalue of the
operator Aµ(β). According to Lemma A.4.2, there are 3 possible cases.

(i) λ ∈ Σ∗x \
(
Σ∗y ∪ Σ∗z

)
: since sin (λLz) 6= 0, we have sin

(
λLz

2

)
6= 0, cos

(
λLz

2

)
6= 0 and

from the relations (5.2.57)–(5.2.58) we find

c+
k,l = α+dk,l, α+ =

1

2

(
tan
(
λLz

2

) (
1 + e−iβ

)
+

e−iβ − 1

tan
(
λLz

2

)) , (k, l) ∈ Z2, (A.4.8)

c−k,l = α−dk,l, α− =
1

2

(
1− eiβ

tan
(
λLz

2

) − tan
(
λLz

2

) (
1 + e+iβ

))
, (k, l) ∈ Z2. (A.4.9)

We have then

u+
k,l(z) = dk,l

(
α+ sin (λz) + cos (λz)

)
, z ∈

[
0, Lz

2

]
, (k, l) ∈ Z2,

u−k,l(z) = dk,l
(
α− sin (λz) + cos (λz)

)
, z ∈

[
−Lz

2
, 0
]
, (k, l) ∈ Z2.

Taking into account that sin (λLx) = 0, we get from the relation (5.2.56)

|bk+ 1
2
,`| = |bk− 1

2
,`| = |dk,`| =: dl, ∀(k, `) ∈ Z2.

Thus, one necessarily has d` = 0, ∀` ∈ Z (otherwise u /∈ L2(G)). Consequently,
bk+ 1

2
,` = bk,`+ 1

2
= ak,`+ 1

2
= c±k,` = dk,` = 0, ∀(k, `) ∈ Z2. Then, from the relation

(5.2.59) we get ak+ 1
2
,` = ak− 1

2
,` cos (λLy), ∀(k, `) ∈ Z2, which implies that |ak+ 1

2
,`| =

a`, ∀(k, `) ∈ Z2. If a` 6= for some `, then u /∈ L2(G). Hence, a` = 0, ∀` ∈ Z, and
u = 0. This proves that λ is not an eigenvalue of the operator Aµ(β).

(ii) λ ∈ Σ∗y \ (Σ∗x ∪ Σ∗z): this case is treated analogously to the previous one.

(iii) λ ∈ Σ̃∗z(β) \
(
Σ∗x ∪ Σ∗y

)
: since sin (λLz) = 0, two cases are possible here.

(a) sin
(
λLz

2

)
= 0: then, cos (λLz) = 1 and β 6= 0 (since λ ∈ Σ̃∗z(β)). The relations

(5.2.57)–(5.2.58) imply that dk,l = 0, c+
k,l = e−iβc−k,l, ∀(k, l) ∈ Z2. Then, from (5.2.56)

we get bk+ 1
2
,` = bk,`+ 1

2
= 0, ∀(k, l) ∈ Z2, and since sin (λLx) 6= 0, sin (λLy) 6= 0, we

also have ak+ 1
2
,` = ak,`+ 1

2
= 0, ∀(k, l) ∈ Z2. Finally, we find from the relation (5.2.59)

that c+
k,l = c−k,l, ∀(k, l) ∈ Z2, which implies that c+

k,l = c−k,l = 0, ∀(k, l) ∈ Z2 since
eiβ 6= 1. Thus, u = 0 and λ is not an eigenvalue of the operator A(β).

(b) cos
(
λLz

2

)
= 0: then, cos (λLz) = −1 and β 6= π (since λ ∈ Σ̃∗z(β)). The same

argument as in the previous case applies, with the only change that now we have
c+
k,l = −e−iβc−k,l, ∀(k, l) ∈ Z2 and e−iβ 6= −1.
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Résumé

Cette thèse porte sur la propagation des ondes acoustiques dans des milieux périodiques.
Ces milieux ont des propriétés remarquables car le spectre associée à l’opérateur d’ondes
dans ces milieux a une structure de bandes : il existe des plages de fréquences dans
lesquelles les ondes monochromatiques ne se propagent pas. Plus intéressant encore, en
introduisant des défauts linéiques dans ce type de milieux, on peut créer des modes guidés
à l’intérieur de ces bandes de fréquences interdites. Dans ce manuscrit nous montrons qu’il
est possible de créer de tels modes guidés dans le cas de milieux périodiques particuliers
de type quadrillage : plus précisément, le domaine périodique considéré est constitué du
plan R2 privé d’un ensemble infini d’obstacles rectangulaires régulièrement espacés (d’une
distance ε) dans deux directions orthogonales du plan, que l’on perturbe localement en
diminuant la distance entre deux colonnes d’obstacles. Les résultats sont ensuite étendus
au cas 3D.
Ce travail comporte un aspect théorique et un aspect numérique. Du point de vue théo-
rique l’analyse repose sur le fait que, comme ε est petit, le spectre de l’opérateur associé à
notre problème est "proche" du spectre d’un problème posé sur le graphe obtenu comme
la limite géométrique du domaine quand ε tend vers 0. Or, pour le graphe limite, il est
possible de calculer explicitement le spectre. Ensuite, en utilisant des méthodes d’analyse
asymptotique on étudie le spectre de l’opérateur non-limite. On illustre les résultats théo-
riques par des résultats numériques obtenus à l’aide d’une méthode numérique spéciale-
ment dédiée aux milieux périodiques : cette dernière est basée sur la réduction du problème
de valeurs propres initial (linéaire) posé dans un domaine non-borné à un problème non-
linéaire posé dans un domaine borné (en utilisant l’opérateur de Dirichlet-to-Neumann
exact).

Abstract

The present work deals with propagation of acoustic waves in periodic media. These
media have particularly interesting properties since the spectrum associated with the
underlying wave operator in such media has a band-gap structure: there exist intervals of
frequences for which monochromatic waves do not propagate. Moreover, by introducing
linear defects in this kind of media, one can create guided modes inside the bands of
forbidden frequences. In this work we show that it is possible to create such guided
modes in the case of particular periodic media of grid type: more precisely, the periodic
domain in question is R2 minus an infinite set of rectangular obstacles periodically spaced
in two orthogonal directions (the distance between two neighbour obstacles being ε),
which is locally perturbed by diminishing the distance between two columns of obstacles.
The results are extended to the 3D case.
This work has a theoretical and a numerical aspect. From the theoretical point of view the
analysis is based on the fact that, ε being small, the spectrum of the operator associated
with our problem is "close" to the spectrum of a problem posed on a graph which is a
geometric limit of the domain as ε tends to 0. However, for the limit graph the spectrum
can be computed explicitly. Then, we study the spectrum of the non-limit operator
using asymptotic analysis. Theoretical results are illustrated by numerical computations
obtained with a numerical method developed for study of periodic media: this method is
based on the reduction of the initial (linear) eigenvalue problem posed in an unbounded
domain to a non-linear problem posed in a bounded domain (using the exact Dirichlet-
to-Neumann operator).
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