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Titre : Modélisation inverse des flux de CO2 en Amazonie
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Résumé : Une meilleure connaissance des variations saisonnières et interannuelles du cycle du car-
bone en Amazonie est essentielle afin de comprendre le rôle de cet écosystème dans le changement
climatique. La modélisation atmosphérique inverse est un outil puissant pour estimer ces variations, en
exploitant l’information sur la distribution spatiale et temporelle des flux de CO2 en surface contenue
dans des observations de CO2 atmosphériques. Néanmoins, la confiance en les estimations des flux en
Amazonie obtenues à partir des systèmes d’inversion mondiale est faible du fait du manque d’observations
dans cette région.

Dans ce contexte, j’ai d’abord analysé en détail les estimations de l’échange net de CO2 entre la
biosphère et l’atmosphère (NEE) générées par deux inversions mondiales pour la période 2002 – 2010.
Ces deux inversions ont assimilé des données provenant du réseau mondial d’observation du CO2 atmo-
sphérique hors de l’Amérique du Sud, et une d’elles a assimilé des observations de quatre stations de
surface en Amazonie, qui n’ont jamais été exploitées dans les études d’inversion précédentes. J’ai montré
que dans une inversion mondiale les observations de stations loin d’Amazonie et les observations locales
contrôlaient la NEE. Pourtant, les résultats ont révélé des structures à très grande échelle peu réalistes.
L’analyse a confirmé le manque de stations en Amazonie pour fournir des estimations fiables, et les limites
des systèmes d’inversion mondiale avec des modèles à très basse résolution.

J’ai donc ensuite évalué l’apport de l’utilisation du modèle atmosphérique régional BRAMS, par rap-
port à celle du système mondial de prévision météorologique ECMWF, pour le forçage météorologique
du modèle de transport atmosphérique CHIMERE simulant le CO2 en Amérique du Sud à haute résolu-
tion (∼35 km). J’ai simulé le CO2 avec les deux modèles de transport—CHIMERE-BRAMS et CHIMERE-
ECMWF. J’ai évalué ces simulations avec des profils verticaux de mesures aéroportées, en analysant les
mesures individuelles et les gradients horizontaux de CO2 calculés entre paires de stations dans le sens
du vent, à différentes altitudes ou intégrés sur la verticale. Les deux modèles de transport ont simulé les
observations de CO2 avec une performance similaire, mais j’ai trouvé une importante incertitude sur les
modèles de transport. Les mesures individuelles et les gradients horizontaux ont été surtout sensibles à
la NEE, mais aussi, pendant la saison sèche, aux émissions des feux de biomasse (EFIRE). J’ai trouvé que
l’assimilation des gradients horizontaux était plus approprié pour les inversions que celle des mesures
individuelles, étant donné que les premiers ont été moins sensibles au signal associé aux flux hors de
l’Amérique du Sud et à l’incertitude sur le modèle de transport en altitude.

Finalement, j’ai développé deux systèmes d’inversion régionale pour l’Amérique du Sud tropicale avec
les deux modèles de transport, et j’ai lancé des inversions avec quatre types de vecteurs d’observation: de
mesures individuelles et gradients horizontaux sur cinq niveaux verticaux, à la surface, ou de gradients

Université Paris-Saclay

Espace Technologique / Immeuble Discovery

Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France



horizontaux intégrés sur la verticale. J’ai trouvé une forte dépendance des estimations des bilans ré-
gionaux et sub-régionaux de NEE et EFIRE au modèle de transport, ainsi qu’au vecteur d’observation. Les
inversions assimilant des gradients horizontaux ont séparé mieux les signaux de NEE et EFIRE. Cependant,
les grandes incertitudes sur les flux inversés ont réduit la confiance en ces estimations. Par conséquent,
si mon étude n’a pas amélioré la connaissance des variations saisonnières et interannuelles de la NEE en
Amazonie, elle a montré les besoins d’amélioration de la modélisation du transport dans la région et de
la stratégie de modélisation inverse, du moins à travers une définition du vecteur d’observation appro-
priée qui prenne en compte les caractéristiques des données disponibles, et les limitations des modèles
de transport actuels.
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Title : Inverse modeling of CO2 fluxes in Amazonia

Keywords : Amazonia, net ecosystem exchange, atmospheric inversion, regional scale

Abstract : A better knowledge of the seasonal and inter-annual variations of the Amazon carbon
cycle is critical to understand the influence of this terrestrial ecosystem on climate change. Atmospheric
inverse modeling is a powerful tool to estimate these variations by extracting the information on the
spatio-temporal patterns of surface CO2 fluxes contained in observations of atmospheric CO2. However,
the confidence in the Amazon flux estimates obtained from global inversion frameworks is low, given the
scarcity of observations in this region.

In this context, I started by analyzing in detail the Amazon net ecosystem exchange (NEE) inferred
with two global inversions over the period 2002 – 2010. Both inversions assimilated data from the global
observation network outside Amazonia, and one of them also assimilated data from four stations in
Amazonia that had not been used in previous inversion efforts. I demonstrated that in a global inversion
the observations from sites distant from Amazonia, as well as local observations, controlled the NEE
inferred through the inversion. The inferred fluxes revealed large-scale structures likely not consistent
with the actual NEE in Amazonia. This analysis confirmed the lack of observation sites in Amazonia to
provide reliable flux estimates, and exposed the limitations of global frameworks, using low-resolution
models to quantify regional fluxes. This limitations justified developing a regional approach.

Then I evaluated the benefit of the regional atmospheric model BRAMS, relative to the global forecast
system ECMWF, when both models provided the meteorological fields to drive the atmospheric transport
model CHIMERE to simulate CO2 transport in tropical South America at high resolution (∼35 km). I
simulated the CO2 distribution with both transport models—CHIMERE-BRAMS and CHIMERE-ECMWF. I
evaluated the model simulations with aircraft measurements in vertical profiles, analyzing the concentra-
tions associated to the individual measurements, but also with horizontal gradients along wind direction
between pairs of sites at different altitudes, or vertically integrated. Both transport models simulated the
CO2 observations with similar performance, but I found a strong impact of the uncertainty in the transport
models. Both individual measurements and horizontal gradients were most sensitive to NEE, but also to
biomass burning CO2 emissions (EFIRE) in the dry season. I found that horizontal gradients were more
suitable for inversions than individual measurements, since the former were less sensitive fluxes outside
South America and further decreased the impact of the transport model uncertainty in altitude.

Finally, I developed two analytical regional inversion systems for tropical South America, driven with
CHIMERE-BRAMS and CHIMERE-ECMWF, and made inversions with four observation vectors: individ-
ual concentration measurements and horizontal gradients at five vertical levels, close to the surface, or
horizontal gradients vertically integrated. I found a strong dependency of the inverted regional and
sub-regional NEE and EFIRE emissions budgets on both the transport model and the observation vector.
Inversions with gradients yielded a better separation of NEE and EFIRE signals. However, the large uncer-
tainties in the inverted fluxes, did not yield high confidence in the estimates. Therefore, even though
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my study did not improve the knowledge of seasonal and year-to-year variations of the NEE in Amazonia,
it demonstrated need the of further efforts to improve transport modeling in the region and the inverse
modeling strategy, at least through an appropriate definition of the observation vector that accounts for
the characteristics of the available data, and the limitations of the current transport models.
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CHAPTER

1
CO2 exchanges by land
ecosystem in Amazonia inferred
from atmospheric inversion

Atmospheric carbon dioxide (CO2), along with methane (CH4) and nitrous oxide (N2O),
exerts strong influence on the radiative properties of the atmosphere, which influences
the global energy budget, and in turn, the Earth’s climatic system. The abundance of
CO2 in the atmosphere has in the Industrial Era (since 1750; IPCC, 2013), mainly due to
fossil fuel burning (coal, gas, oil and gas flaring), cement production, and land use change
(mainly deforestation). Between 1750 and 2011, these human activities have released ∼
555±85 PgC of anthropogenic carbon. According to the Fifth Assessment Report of the
Intergovernmental Panel on Climate Change, it is virtually certain that this anthropogenic
forcing has warmed the global climate system.

Less than half of the anthropogenic carbon emitted since 1750 has remained in the
atmosphere; the rest has been absorbed by the ocean and terrestrial ecosystems (the carbon
sinks). In the terrestrial land sink, Amazon forests are of particular interest because of the
vast extension of this ecosystem and the large amount of carbon stored mainly in biomass.
Rising CO2 concentration fosters photosynthetic activity through the fertilization effect
(Amthor, 1995; Cao and Woodward, 1998) and modifies other physiological properties of
canopy, with effects on the terrestrial water cycle (e.g. Fatichi et al., 2016). In combination
with the high productivity rates and long carbon residence times in biomass in Amazon
forests, this ecosystem could contribute to moderate CO2 in the atmosphere, and mitigate
global warming. On the other hand, if the carbon stored in Amazon forests and soils is
released, for instance, as a consequence of biome shifts, due to hotter and drier climate (as
projected by some climate change scenarios) future warming could be exacerbated.

The land carbon cycle is very sensitive to climate changes, e.g. precipitation, tempera-
ture. Thus, many research try to better estimate and understand the temporal and spatial
variations of the Amazon land balance, in order to project the future of this ecosystem,
and consequently of the global climate system. Such efforts range from local-scale ground-
based studies, e.g. eddy-covariance measurements (Restrepo-Coupe et al., 2013; Saleska
et al., 2003) and forest inventories (Phillips et al., 2009), to larger scale e.g. through
satellite observations. (Gloor et al., 2012) provided a review of some of these methods
and their results. Remote-sensing observations of canopy greenness (Huete et al., 2006;
Saleska et al., 2007; Samanta et al., 2010), canopy structure (Saatchi et al., 2012), fluo-
rescence (Lee et al., 2013; Parazoo et al., 2013), land use change (Song et al., 2015) fire
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activity (Giglio et al., 2013; Kaiser et al., 2012; Wiedinmyer et al., 2011) have been used to
constrain the seasonal and interannual variations of the Amazon land sink, and its response
to both natural and anthropogenic disturbance. Nevertheless, this region encompasses a
variety of climatic sub-regions and high spatial heterogeneity in species composition and
physiognomy (Tuomisto et al., 1995; Xu et al., 2015), strong small-scale geomorphologic
and edaphic differences. This complicates the integration of different observations across
scales to provide a basin-scale view of the Amazon carbon balance, and makes carbon cycle
modeling challenging in this region.

Another constraint of the Amazon carbon balance at very large spatial scales is given by
observations of the spatial and temporal patterns of atmospheric CO2 distribution, which
reflects the spatio-temporal distribution of CO2 sources and sinks integrated by atmo-
spheric transport (Enting, 2002).This concept underlies the principle of atmospheric in-
verse modeling techniques, which are used to deduce CO2sources and sinks from concen-
tration measurements. Inverse modeling has been used since the 1980s to deduce surface
CO2 fluxes latitudinal to continental scales (Bousquet et al., 2000; Fan et al., 1998), sub-
continental scales (Peters et al., 2005; Rödenbeck et al., 2003; Rödenbeck et al., 2003),
and more recently at regional scale inversion activities have emerged during the last 5 – 8
years (Broquet et al., 2011; Lauvaux et al., 2008; Rödenbeck et al., 2009).

My PhD thesis, presented in this dissertation, has been dedicated to the study of the
Amazon CO2 balance using atmospheric inverse modeling. This chapter introduces the ra-
tionale and specificities of this thesis. It gives the principles of the atmospheric inversion
method, and the ingredients of an inversion system to solve for CO2 sources and sinks (Sec-
tion 1.1.1) and the formalism to express the inverse problem (Section 1.1.2), followed by
an overview of the information that state-of-the-art inverse modeling systems yield about
the Amazon carbon balance (Sections 1.2 and 1.3). Finally, it presents the objectives of my
research and guides the reader through the rest of the thesis works developed over nearly
four years, and synthesized in the subsequent chapters (Section 1.4).

1.1 Principles of the inverse problem

An inverse problem consists in finding the best estimates of parameters of a system based
on observations of a measurable manifestation of that system. This is the principle of the
estimation of CO2 sources and sinks using measurements of atmospheric CO2 concentra-
tion.

Let us consider a perfect atmospheric transport model h(x) that takes the true surface
CO2 flux xt as parameter and predicts the true atmospheric CO2 concentration yt at a given
point. One can write this as:

yt = h(xt) (1.1)

h(x) is a forward function (Rodgers, 2000) that encapsulates the relationship between
fluxes and concentrations. However, the physics behind atmospheric transport is so com-
plex so that one has to approximate the real processes by some forward model H(x), which
is a numerical model of atmospheric transport.

In general, true fluxes and concentrations are unknown. We may have, however, a
prior estimate of the flux xb bearing an uncertainty εb. With an imperfect model (i.e., a
model with errors) one could only simulate a concentration yb with an uncertainty ξb due
to the errors both in xb the initial parameter and the model. If one measures the true
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concentration, this is an observation yo, which bears an εo error due instrumental errors.
The true values should be within the uncertainty of the estimate yo. This is illustrated in
Figure 1.1a.

Uncertainty in
the model

Uncertainty in
the observation

Uncertainty in
the fluxes

Unknown true
value

"Permissible space"

Flux space Observation space

xb yb

y
obs

xt
y

t

H(x)

xb
yb

yobs

ya

H(x)

xa

Null space

b) Inverse model

a)  Forward model

Figure 1.1: Inversion principle. Adapted from Ciais et al. (2010)

Adjusting the parameter x from the prior value xb, so as to minimize the distance be-
tween the simulated and observed concentrations within their errors is an inversion, as
illustrated in Figure 1.1b. xa is the updated, optimized, or posterior flux and the corre-
sponding simulated concentration is ya. An important aspect of the inversion is that it
brings an uncertainty reduction on both the updated fluxes and the updated concentra-
tion in comparison to their prior values, as a result of the information contained in the
observations.

In the real world, fluxes are continuous and rather complex functions of space and time.
This means that we are dealing with infinite very large number of unknown variables. To
simplify the problem, a representation of the surface fluxes in terms of a finite and numer-
ically tractable number of parameters. For instance, spatially, fluxes can be aggregated at
small scales into a discrete number of regions, or represented as a gridded surface. Tempo-
rally, fluxes can also be aggregated over fixed time periods. But even after aggregation we
usually end up with insufficient information because the number of available in-situ CO2
measurements is usually smaller than the number of unknown fluxes to determine.

Estimating CO2 sources and sinks using observations is thus an under-constrained prob-
lem. Mathematically, this implies that there is an infinite number of estimates of the pa-
rameters allowing to match the observations, as shown in Figure 1.1. When observations
are scarce, not sensitive enough to the sought fluxes, or uncertain, the null space becomes
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very large. In this case, optimizing the fluxes x to match the observations means to choose
the parameters from a large null space that are consistent with the preexisting information
xb, considering uncertainties in the observations and xb. From Figure 1.1 it follows that
proper treatment of the uncertainties involved is essential to solve for the inverse problem.
Therefore, a formalism is required to express the uncertainty in the input information and
in the optimized parameters, and make sure that the latter has been reduced as much as
possible. This formalism is generally provided by the Bayes’ theorem, discussed in Section
1.1.2.

1.1.1 Components of the inversion

Figure 1.1 introduced the typical components of an inversion that estimates the optimal
spatio-temporal distribution of the net surface CO2 fluxes that best fits a set of observa-
tions of atmospheric CO2 (taking into account the uncertainties in the prior fluxes and in
the observations) using an atmospheric transport model. In the following, I discuss the
components of an inversion system aimed at inferring land natural fluxes at large scales
(i.e. continental to regional scale).

Prior estimate of CO2 fluxes

The net CO2 exchange, and consequently the atmospheric CO2 content, is the result of
both natural and anthropogenic processes that release and take up CO2. The contribution
of these processes must be included in the prior fluxes to provide for the best possible
initial estimate of net CO2 exchange.

CO2 released through combustion of carbon stored in the solid Earth by human activ-
ities represents a major perturbation of the carbon cycle (IPCC, 2013), and need to been
included as prior information. Inventories of fossil fuel CO2 emissions are based on data of
fuel production or fuel consumption. Although global total anthropogenic CO2 emissions
from fuel combustion and cement production are known within 10% (Andres et al., 2012),
uncertainty on the total emission at individual country level can reach more than 50%
(Andres et al., 2012). Global maps of fossil fuel CO2 emissions (e.g. EDGAR, Olivier et al.,
2005); CDIAC (Andres et al., 1996); PK-CO2 (Wang et al., 2013) are based on national in-
ventories, usually reported as tabulated data. These tables are usually translated into maps
using either a proxy variable (e.g. population density, Andres et al., 1996) or variables
(e.g. road density, energy consumption data by sector, urban-rural population density;
Olivier et al., 2005), with better resolution than that of the original inventories, or using
a process-based approach in which process data play an equivalent role than the proxy
variable. Figure 1.2 shows an example of the global distribution of anthropogenic CO2
emissions (Emissions Database for Global Atmospheric Research version 4.2; EU-JRC/PBL,
2013).

Biomass burning emissions are also an important source of CO2, as well as aerosols and
many other chemical species. The usual approach to calculate these emissions is to estimate
initially the amount of biomass actually burned, using information on the aboveground
biomass density, the fraction of fuel load consumed by combustion (combustion factor),
and the surface area burned. Then emission factors (ratio of the mass of the chemical
species emitted to the total dry mass of fuel burned) are applied to estimate the emission
of a compound. For CO2, the emission factor is close to one. It must be noticed that
to the important exception of deforestation and peat fires, biomass burning emissions of
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grasslands are thought to be compensated by ecosystem recovery, or regrowth, on time
scales of a few years.

Figure 1.2: Annual fossil fuel CO2 emissions for 2010 estimated from statistics on energy
consumption. Emissions are estimated for each country, and then spatially distributed us-
ing information on location of energy and manufacturing facilities, road networks, shipping
routes, human and animal population density and agricultural land use. Source: EDGAR
version 4.2 FastTrack database, http://edgar.jrc.ec.europa.eu.

Figure 1.3: Distribution of mean biomass burning CO2 emissions averaged over 1997
– 2014, based on a biogeochemical model and satellite-derived estimates of area
burned, fire activity, and plant productivity (after Giglio et al., 2013). Source:
http://www.globalfiredata.org/figures.html.
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An example of the global distribution of CO2 emissions from biomass burning is shown
in Figure 1.3 (Global Fire Emission Database version 4s; Giglio et al., 2013).

CO2 exchanges between the ocean and the atmosphere depend on the difference in
the partial pressure of CO2 (p∆CO2) between the air and the water and on gas exchange
transfer velocities. Millions of measurements of surface water pCO2 were collected across
the oceans, and compiled in databases (e.g. Bakker et al., 2014)(Takahashi et al., 2016).
These data sets, together with empirical formulations of air-sea gas transfer velocities, have
been used to upscale spatio-temporal patterns of the air-sea CO2 exchanges through a of
interpolation methods (Landschützer et al., 2015; Rödenbeck et al., 2015). In data-scarce
regions like the southern oceans (see Figure 1B in Takahashi et al., 2009), interpolated
fields are the only information available about spatio-temporal distribution of ocean fluxes,
and different products show significant differences. Figure 1.4 depicts a map of CO2 air-sea
exchange from Takahashi et al. (2009).

Figure 1.4: Climatological mean annual ocean CO2 flux for the reference year 2000, for
non-ENSO conditions (after Takahashi et al., 2009).

The net CO2 exchange between the terrestrial biosphere and the atmosphere results
from the CO2 uptake by photosynthesis, and CO2 release through the respiration of plants,
heterotrophic organisms and fires. Furthermore, in some ecosystems also photo-oxidation
releases CO2 (Rutledge et al., 2010). In my PhD thesis, I have considered that carbon
is exchanged as CO2 with the atmosphere from photosynthesis, fires and plant and soil
respiration, ignoring CO2 exchanged between the land and the atmosphere from lateral
fluxes generated from harvested wood and crop products, and from river transport (Ciais
et al., 2008). Depending on the spatial scale involved, natural disturbances, such as fires,
squall events, and pests can damage an ecosystem, releasing CO2 immediately and with
some delay. Anthropogenic disturbances such as forest clearing for agriculture also release
important amounts of CO2 to the atmosphere (van der Werf et al., 2009). Figure 1.5
shows an example of prior information on the net CO2 flux between the land and the
atmosphere from the dynamic global vegetation model (DGVM) ORCHIDEE (Krinner et al.,
2005). DGVMs are process models that represent dynamically the energy, water and carbon
exchanges between the terrestrial ecosystem and the atmosphere, and which are capable of
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1.1. Principles of the inverse problem

simulating vegetation changes in response to climatic changes, by simulating. Such DGVM
estimates bear large uncertainties reflecting the incomplete knowledge of the underlying
mechanisms that determine the net CO2 exchange. Uncertainties stem from the extreme
heterogeneity of the land surface (Ciais et al., 2010), and the complications to extrapolate
the knowledge of ecosystem functioning, acquired from laboratory experiments or ground-
based, local-scale observations of these fluxes to large-scale models (Bonan, 2008; Medlyn
et al., 2015).

January 2010a)

July 2010b)

Figure 1.5: Monthly net ecosystem exchange for January (a) and July (b) 2010 simulated
with the model ORCHIDEE. Fluxes are reported from the atmospheric perspective, such
that positive values indicate emission to the atmosphere and negative values indicate up-
take by the ecosystem.

Atmospheric CO2 observations

Measurements of atmospheric CO2 date back to the first two stations in the South Pole
and Mauna Loa, Hawaii in 1957 and 1958, respectively (Bolin and Keeling, 1963; Keeling,

7



1. CO2 EXCHANGES BY LAND ECOSYSTEM IN AMAZONIA INFERRED FROM ATMOSPHERIC

INVERSION

-50

0

50

-150 -100 -50 0 50 100 150
Longitude

La
tit
ud
e

Surface (continuous) Tower (continuous) Surface (discrete) Aircraft (discrete)

Figure 1.6: Sampling locations for measurement records used to derive GLOBALVIEW-CO2.
Source: http://www.esrl.noaa.gov/gmd/ccgg/globalview/co2/co2_observations.
html.

1960). Currently, atmospheric in-situ CO2 observations are carried out at about 100 sites
around the globe contributed by different laboratories (Ciais et al., 2010). Continuous
measurements are made at some 30 sites, at surface stations and tall towers. Discrete
flask air samples taken at surface stations or using airborne platforms add approximately
100 sites to the global network. Figure 1.6 illustrates the cooperative effort of multiple
institutions to the observation of atmospheric CO2 (GLOBALVIEW-CO2, 2013).

Figure 1.6 shows that large geographic land and ocean areas are under-sampled by the
current in-situ network. The figure illustrates that most observation sites are located over
the ocean because CO2 concentrations in these areas are subject to less variability from
smoother ocean fluxes given atmospheric transport within the boundary layer less variable
than overland. This makes marine stations suitable to capture the signature of large-scale
fluxes, but they cannot provide detailed constraints on land CO2 surface fluxes. On land,
North America and Europe have the most dense observation networks, but large areas of
Asia, Africa, and South America remain mostly unconstrained in atmospheric inversions.

Satellite-based measurements of CO2 offer a means to overcome the limited spatial cov-
erage of the current observing. CO2 retrievals have been obtained from radiances measured
with instruments not originally designed for this purpose, e.g. the Television Infrared Ob-
servation Satellite Operational Vertical Sounder (TOVS), the Tropospheric Emission Spec-
trometer (TES) (Kulawik et al., 2010), Interferometric Atmospheric Sounding Instrument
(IASI) (Crevoisier et al., 2009), and the Scanning Imaging Absorption Spectrometer for
Atmospheric Chartography (SCIAMACHY) (Buchwitz et al., 2007). The first CO2- and
CH4-dedicated platform, the Greenhouse Gases Observing Satellite (GOSAT) (Kuze et al.,
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2009) was launched in 2009, followed by the Orbiting Carbon Observatory 2 (OCO-2)
(Crisp et al., 2004) in 2014. CO2-dedicated missions in development are: the Chinese Car-
bon Dioxide Observing Satellite, TanSat; the continuation of the GOSAT mission, GOSAT-2;
the French Space agency’s MicroCarb mission. The Active Sensing of CO2 Emissions over
Nights, Days, and Seasons (ASCENDS) mission will use lidar methods to perform night
measurements as well (CEOS, 2014).

Inversion studies have exploited CO2 retrievals to infer surface fluxes (Chevallier, 2015;
Chevallier et al., 2005, 2009; Deng et al., 2014; Feng et al., 2017; Nassar et al., 2011;
Reuter et al., 2014; Takagi et al., 2014) and the potential of these data to improve flux
estimates through atmospheric inversion has been acknowledged. Nevertheless, current
CO2 retrievals are not accurate enough (Chevallier et al., 2014; Takagi et al., 2014) to
obtain realistic, consistent flux estimates, so that inversion flux estimates still rely on in
situ data.

Transport model

Back to Figure 1.1, the function H that projects the fluxes into to observation space is rep-
resented by a numerical model of atmospheric transport–in this case, a set of equations
that describe the actual atmospheric transport. The model solves for the large-scale pro-
cesses of advection and horizontal diffusion that transport the tracers from zones where
they are produced. Other transport processes, like turbulence and moist convection, take
place at sub-grid scale and cannot be represented directly. Their mean effect on the tracer
concentration at grid-scale is thus included through simplified representations called pa-
rameterizations. In principle, the transport of CO2 is linear. But the discretization of the
equations describing the transport introduces non-linearities in the function H. These non-
linearities must be taken into account when solving for the inverse problem.

In some numerical models, the transport fields–meteorological fields of vertical and
horizontal winds, moisture, temperature, pressure, etc–required to simulate tracer trans-
port are calculated on-line, i.e. in step, with the transport calculations. On the other
hand, in so-called off-line models the transport calculations are separated from the
computationally-demanding dynamical calculations that generate the meteorology. There-
fore off-line models run faster; they are fed with meteorological fields previously generated
with an atmospheric meteorological model. Yet there are two limitations in the off-line
approach. Meteorological data for transport processes at sub-grid scale that are generated
in the on-line models are often unavailable for off-line models; instead the latter may use
average values. Also off-line models use meteorological fields that are updated at intervals
larger than in the atmospheric model, therefore at coarser temporal resolution, and also
likely spatial, resolution.

There is a considerable spread in the concentrations estimated from the different trans-
port models available (Geels et al., 2007; Law et al., 2008). The spread stems from models’
biases in the representation of transport. Spatial resolution is also crucial to transport sim-
ulations. State-of-the-art global transport models achieve horizontal resolutions of up to
1 – 2◦ (Law et al., 2008) and up to 60 vertical levels (Law et al., 2008). Some global
models have zooming capabilities that allow refining the resolution on a specific zone,
from continental to regional scales. Regional transport models further refine the spatial
resolution down to a few kilometers (Menut et al., 2013; Moreira et al., 2013), but in
this case they need a field of CO2 as lateral boundary conditions, which originates from a
coarser-resolution model.
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Figure 1.7: Illustration of the Bayes’ theorem for the two-dimensional case. Adapted from
Rodgers (2000).

1.1.2 Bayesian approach to the inverse problem

The Bayes’ theorem provides the formalism usually adopted to solve for the inverse prob-
lem. Its application will be illustrated first in the case of scalars, and then generalized to the
vector case. In Figure 1.1 a point in flux space xb bearing an uncertainty σb is equivalent to
formulate that there is a probability density function (PDF) with mean xb and standard de-
viation σb. The same statement applies to an observation with errors. This way, the model
projects the prior flux PDF into the observation space. After inversion, the optimized flux
can be also described by a PDF with mean xa and uncertainty σa. Its projection into the
observation space would lie in the intersection of the PDFs of the prior and the observa-
tion. The interest lies in describing the intersection of those PDFs. Figure 1.7 illustrates
a two-dimensional space defined by scalars x and y. P(x) represents the probability of x
being in (x+dx). Similarly, P(y) represents the probability that y lies in (y+dy). Contours
represent P(x,y), the joint probability of x being in (x+dx) and y being in (y+dy). If one
had some prior estimate of x then one could define P(y|x) as the probability of y being in
(y+dy) for a given value x.

From Figure 1.7 we can see that P(x) can be obtained by integrating P(x,y) along all
the values of y

P(x) =
∫

∞

−∞

P(x,y)dy (1.2)

P(y) an be calculated by integrating P(x,y) along all the values of x. P(y|x) is propor-
tional to P(x,y) as a function of y. Since

∫
P(y|x) = 1, then it follows

P(x|y) = P(x,y)∫
P(x,y)dy

(1.3)

Substituting in the previous equation, we can formulate P(x) as

P(x) =
P(x,y)
P(y|x) (1.4)

Similarly, it can be shown that
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P(y) =
P(x,y)
P(x|y) (1.5)

Combining both equations, we obtain

P(x|y) = P(y|x)P(x)
P(y)

(1.6)

Equation (1.6) is the Bayes’ theorem. The left-hand term is the posterior PDF of x,
which denotes the updated prior estimate of x based on the information contained in the
observation. P(y) is independent of x and is usually taken as a normalizing factor.

Assuming Gaussian, unbiased distributions of the errors in x and y (Tarantola, 2005),
one can write:

P(x) =
1

σb
√

2π
exp[−(x− xb)

2

2σ2
b

] (1.7)

where xb is the prior estimate of x with an error σb. In the case of the observation,
recalling the link between the fluxes and the observations, provided by the model H, we
have

P(y|x) = 1
σo
√

2π
exp[−(y−H(x))2

2σ2
o

] (1.8)

where σo is the observation error. Substituting these two equations in the Bayes’ theo-
rem and ignoring the normalizing factor one obtains:

P(x|y)∼ exp[−(x− xb)
2

2σ2
b
− (y−H(x))2

2σ2
o

] (1.9)

In the Bayesian framework, the optimal solution for x is the one that maximizes the
posterior PDF. The optimal value xa can be obtained by finding the minimum of the cost
function

J(x) =
(x− xb)

2

σ2
b

+
(y−H(x))2

σ2
o

(1.10)

Generalizing this to the vector case, we obtain

J(x) =
1
2
(x−xb)

T B−1(x−xb)+
1
2
(yo−H(x))T R−1(yo−H(x)) (1.11)

where xb is the control vector gathering the parameters (i.e. fluxes) controlled by the
inversion and yo represents the set of observations, respectively. The errors in xb and yo are
organized in matrices, and since they may be correlated, B and R are called the variance-
covariance matrices of the errors in the prior and in the observations, respectively.

Assuming the transport model is linear (see next Section), i.e., it can be represented as
a matrix, Equation 1.11 can be written as

J(x) =
1
2
(x−xb)

T B−1(x−xb)+
1
2
(yo−Hx)T R−1(yo−Hx) (1.12)

The set of optimal fluxes xa is the one for which the gradient of J(x) equals zero, and is
given by
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xa = xb +BHT (HBHT +R)−1(yo−Hxb) (1.13)

This equation can be written as

xa = xb +K(yo−Hxb) (1.14)

where K is called the gain, or weight, matrix

K = BHT (HBHT +R)−1 (1.15)

or alternative as (Bouttier and Courtier, 2002)

K = (B−1 +HT R−1H)−1HT R−1 (1.16)

As explained in the next section, how the gain matrix is formulated has an important
implication on the numerical solution of the inverse problem.

Note that (1.13) gives the statistically optimal fluxes we look for. But the complete
solution to the inverse problem is a PDF, also Gaussian and unbiased, with expected value
xa and covariance matrix A given by

A = (I−KH)B (1.17)

Or alternatively,

A = (B−1 +HT R−1H)−1 (1.18)

As with the gain matrix, the choice between (1.17) or (1.18) will depend on the di-
mensions of the inversion problem (see next section).

1.1.3 Solution of the inverse problem

Analytical method

In the analytical method, the control vector does not involve directly the fluxes. Instead
the elements of x are scaling factors that are applied to the fluxes. Thus each scaling factor
corresponds to the flux budget for a given geographic area, period and flux type. The flux
budgets are contained in the matrix H.

H an be seen as the combination of three operators (Wu et al., 2016):

H = HsampleHtranHdist (1.19)

The first operator, Hdist, maps each scaling factor in x to CO2 fluxes on the grid of the
transport model. These fluxes are known as a basis function. The second operator, Htran,
is an atmospheric transport model that maps the base functions to concentrations of CO2.
Finally, Hsample generates the elements of H by sampling the output the transport model
at the location and time of the observations in yo. The elements of H are referred to as
response functions. Note that there might be parameters not controlled by the inversion.
Their response function is included in a vector yfix, and (1.14) can be written as

xa = xb +K(yo−Hxb−yfix) (1.20)
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The analytical method allows obtaining the explicit values of xa and its uncertainties.
The feasibility of the method depends on the size of the problem. Calculating the matrix
H implies a transport simulation for each base function. In (1.15) and (1.16), calculating
the gain matrix implies the multiplication of matrices with dimensions of the control and
observation vectors. Therefore, the approach is impractical when both the number of
control parameters and the number of observations is very large.

Solving for xa depends on the formulation of K according to (1.15) or (1.16). The
choice depends on the number n of parameters in the control vector and the number of
observations m. If (1.15) is chosen, the operation implies calculating a matrix of m × m
elements. This is feasible if the number of observations is small. On the other hand, with
(1.16), calculating K, a matrix of size n × n, is viable if the number of control parameters
is small. For very large problems, the variational approach is more convenient.

Variational method

Instead of calculating the gain matrix explicitly, the variational approach solves for the
optimization problem by searching for an approximate optimal solution in an iterative
manner (Bouttier and Courtier, 2002). The method approaches the minimum of the cost
function J(x) using a descent algorithm, evaluating iteratively the cost function and its
gradient

∇J(x) = B−1(x−xb)+HT R−1(yo−H(x)) (1.21)

This assumes the forward model H is linear. However, the discretization of the transport
equations introduces some non-linearities. The approach is to linearize H about a point
x0 so that H(x)−H(x0) ≈ H(x− x0). H is called the tangent linear of H about x0. The
minimization process stops either when a limiting number of iterations has been achieved,
or when the norm of the gradient reaches a predefined threshold.

1.2 Estimates of CO2 fluxes in Amazonia from atmospheric
inversion

Data paucity is limitation of global inversion systems to infer surface fluxes. Most sampling
sites across the globe have been chosen to detect large-scale signals and avoid the influ-
ence of local fluxes; remote locations on land and ocean have been usually preferred for
this purpose, leaving continental areas, like Amazonia, mostly undersampled. The most
recent inversion intercomparison study from (Peylin et al., 2013) gathered results from 11
global inversion systems assessed in the frame of the RECCAP initiative (Reginal Carbon
Cycle Assessment and Process; Canadell et al., 2011). With different monitoring network
configurations among them, none of the systems assimilated observations within tropical
South America, much less in Amazonia, as shown in Figure 1.8.

Typically, global inversion results vary widely across Amazonia. Differences in trans-
port models, prior fluxes, spatial and temporal discretization of the control parameters,
observation network configuration and the inversion algorithm, to name a few key system
attributes, contribute to the spread among their results, basically because there are no data
within the Amazon basin.

Figure 1.9 shows the spatial distribution of mean annual land CO2 fluxes (i.e., excluding
fossil fuel emissions) for year 2000 from 8 global inversion models gathered by Peylin
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Figure 1.8: Map of site locations used by any of the inversions assessed by Peylin et al.
(2013). Colors represent the number of inversion systems that use that site. Adapted from
Peylin et al. (2013).

et al. (2013). The posterior flux patterns illustrate that in some inversions Amazon fluxes
were optimized using a few scaling factors (e.g. Figure 1.9a), or even a single adjustment
factor (e.g. Figure 1.9h). Other inversions used regular horizontal grid-cells (e.g. Figure
1.9e), with several cells within the Amazon basin, which provides more information about
the potential heterogeneity of Amazon fluxes than inversions where Amazon fluxes were
controlled using one single scaling factor.

Differences in inversion fluxes are reflected in the inter-annual variations as well. Fig-
ure 1.10 illustrates the time series of annual natural flux (excluding fire emissions) in
tropical South America, a region containing mainly the Amazon basin, using Transcom’s
region definition, from the 11 inversion compared in Peylin et al. (2013). In Figure 1.10
there exists a large spread among the inversion estimates, and inversions disagree on the
magnitude of the flux anomalies during specific extreme climatic events that have affected
Amazonia, such as the droughts of 2005 and 2010.

There exists a large spread in the mean seasonal cycle of NEE over the tropical South
America region as well. Figure 1.11 shows the mean monthly NEE averaged over the period
2000 – 2008 for 7 inversions gathered by Peylin et al. (2013). In general, inversions
indicate that vegetation have a peak of CO2 uptake after the onset of the dry season in
most of the Amazon basin, between April and May, associated with the end of the South
American Monsoon System (SAMS). CO2 uptake decreases during the transition between
dry and wet seasons, between September and October, and the region turns into a source
of CO2 during the wet season during November – March.

The lack of observations in the tropical South America region is at the origin of the
seasonal and inter-annual differences of the NEE in (mainly) the Amazon region, as given
by global inversions. To illustrate this, it is interesting to look at the results from the
study of Stephens et al. (2007). They evaluated the fit of 12 inversions systems—used in
the Transcom 3 Level 2 inter-comparison experiment—to the mean annual daytime CO2
vertical gradient between 1 and 4 km, averaged over 12 locations. Each inversion system
is represented with a different letter in the Figure 1.12.

The models’ mean annual land carbon flux over the period 1992 – 1996 is plotted as
a function of their predicted CO2 vertical gradient. Stephens et al. (2007) found that
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Figure 1.9: Annual mean natural CO2 flux for tropical South America, as defined in the
Transcom project, for 2000 for 8 inversion models submitted to RECCAP. Source: http:
//transcom.lsce.ipsl.fr.

the models that were consistent with the observed CO2 vertical gradient also estimated
a weaker Northern latitude sink, and a smaller tropical source. Since seasonal inter-
actions between atmospheric mixing and NEE in the Northern Hemisphere create inter-
hemispheric annual CO2 gradients, and because the global mass balance of atmospheric
carbon must be maintained, the inversion models introduce compensating variations in the
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Figure 1.10: Annual natural CO2 flux (excluding fire emissions) for tropical South America
(Transcom definition) from 1990 to 2012 for the 7 inversion models submitted to RECCAP.
Source: http://www.globalcarbonatlas.org.

Figure 1.11: Mean monthly natural CO2 flux for tropical South America (Transcom def-
inition) from 2000 to 2008 for 7 inversion models submitted to RECCAP. Adapted from
http://www.globalcarbonatlas.org.
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Figure 1.12: Mean annual Northern and tropical land carbon flux averaged over 1992 –
1996, estimated by the 12 inversion systems evaluated in 12 TRANSCOM3 Level 2 exper-
iment, as a function of models’ estimated mean vertical CO2 gradient beetween 1 and 4
km. Vertical axis: estimated flux for northern (red) and tropical (blue) land regions. Hor-
izontal axis: predicted 1 km - 4 km CO2 gradient. Numbers (1 – 9) and letters (A – C)
represent the models’ estimates. Grey bar: represents the observed gradient (center) and
its uncertainty (width). Adapted from Stephens et al. (2007).

tropical land fluxes. Thus, Figure 1.12 illustrates that systematic errors in the covariance
between seasonal transport and NEE in the Northern Hemisphere induce an overestimation
of the northern land sink, compensated by a stronger tropical land source. This means that
in a region like Amazonia, with scarce observations of the atmosphere inside and around
the region, local fluxes estimated through inversion are subject to misfits in remote sites
distant from Amazonia.

In the mid-latitudes, the available potential energy associated with zonal temperature
gradients is the main source of energy for synoptic variations. Latent heat and radiative
heating play a secondary role in the energetics in these latitudes. In the tropics, however,
latitudinal temperature gradients are small and latent heat release, mostly associated with
convective cloud systems, appears to be the dominant energy source driving synoptic scale
variations (p. 370 – 371; Holton, 2004). Thus, while synoptic variations outside the tropics
are dominated by horizontal transport, vertical convective mixing prevails in the tropics.
Accurate representation of these mechanisms in transport models is crucial in inverse mod-
eling systems (Gurney et al., 2003; Parazoo et al., 2008). Errors in the representation of
vertical mixing induce biases in their flux estimates (Stephens et al., 2007).

1.3 Toward robust inverse modeling estimates of CO2 fluxes in
Amazonia

A few studies have used directly atmospheric CO2 observations to estimate the Amazon
CO2 balance. Short-term aircraft campaigns with CO2 measurements have used mass bal-
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ance calculations of the atmospheric column to estimate regional CO2 fluxes (Chou et al.,
2002; Lloyd et al., 2007; Wofsy et al., 1988) that are representative of non-characterized
area of central Amazonia. More regular aircraft profiles in the interior of the Amazon,
completed by data from coastal sites, have allowed obtaining first estimates of seasonal
CO2 budgets for eastern Amazonia (Gatti et al., 2010).With a more complete data set of
biweekly aircraft profiles, Gatti et al. (2014) (GA2014 henceforth) made an unprecedented
effort to sample the atmosphere within the Amazon basin in such a way that their obser-
vations were sensitive to fluxes over most of the Amazon basin, covering not only a large
fraction of Amazon forest areas but capturing the signal of savanna and agricultural lands.

GA2014 collected aircraft CO2 data over two years with contrasting climatic conditions
in Amazonia. In 2010 the region was anomalously dry for two reasons. During January
– March, El Niño caused low precipitation in the northern and central Amazon basin.
Then, in the second half of the year a positive anomaly in the North Atlantic sea surface
temperature caused the inter-tropical convergence zone (ITCZ) to remain more northerly
than usual. This prolonged and intensified the dry conditions in southern parts of the basin.
2011, on the other hand, was an anomalously wet year. With their observations and using a
mass balance approach GA2014 calculated basin-wide fluxes over those two years. GA2014
found that during 2010 the Amazon emitted 0.48 ± 0.18 PgC, but was carbon neutral
during 2011 (0.06 ± 0.1 PgC yr−1). After removing CO2 losses due to fire emissions, they
found the Amazon basin was nearly neutral (−0.03 ± 0.22 PgC yr−1) during 2010, and
that during the wet year the vegetation was a net sink of 0.25 ± 0.14 PgC yr−1, consistent
with a long-term estimate of 0.39 ± 0.10 PgC yr−1 from forest censuses. Thus, their results
highlighted the importance of moisture conditions on the Amazon carbon balance. It was
the first that such measurements were used to derive a basin-wide estimate of CO2 fluxes
in Amazonia.

van der Laan-Luijkx et al. (2015) were the first to assimilate the vertical profiles of
GA2014 into a dedicated version of the CarbonTracker global inversion system (Peters
et al., 2007). van der Laan-Luijkx et al. (2015) predicted that during 2010, year of the
drought, the Amazon was net source of 0.07 ± 0.42 to 0.31 ± 0.42 PgC yr−1, the range
being from a set of inversions using different biomass burning estimates. In contrast, dur-
ing 2011 the ecosystem turned to net carbon sink of −0.15 ± 0.42 to −0.33 ± 0.46
PgC yr−1. These results were consistent with the mass balance approach of GA2014 but
they gave a slightly smaller difference between 2010 and 2011 than GA2014. Alden et al.
(2016) published results of the assimilation of airborne observations made over the longer
period 2010 – 2012 into a regional inversion system, using two transport models. They
predicted the Amazon basin to be a source of 0.5 ± 0.3 PgC yr−1 during 2010, in agree-
ment with GA2014, but also estimated a net source of 0.2 ± 0.3 PgC yr−1 in 2011 (see
Figure 3a in Alden et al. (2016)). With a longer observation record by one year, their
results showed that during 2012 the vegetation continued to recover from the effects of
drought and turned into a large net sink, with a a net uptake larger by 0.68 ± 0.45 PgC
yr−1 in 2010 with respect to 2010.

In line with the efforts of van der Laan-Luijkx et al. (2015) and Alden et al. (2016), the
present work in this thesis aim at improving the knowledge of the carbon balance in Ama-
zonia using an inverse modeling approach. By the time the present thesis works started
in 2012, available data was much more limited with a few ground stations mainly near
the coast. Some measurement sites had gaps of several years, and few sites were inter-
rupted. With this limited data set, in the chapter On the ability of a global atmospheric
inversion to constrain variations of CO2 fluxes over Amazonia (Chapter 2), I analyzed the
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seasonal and interannual variations of NEE in Amazonia with two global inversions, as-
similating the data from 4 stations around the Amazon in one of them. The study looked
at the global inversion results with more detail than previous intercomparison studies and
showed the impact of these scarce data on the optimized fluxes. Though, the study re-
marked the need for more data, and suggested that assumptions on the prior errors and
aspects of representation of the transport in Amazonia should be revisited. In the chap-
ter Regional atmospheric modeling of CO2 transport in Amazonia (Chapter 3), I evaluated
the potential improvement brought by a regional atmospheric model, relative to a global
one (which assimilates weather data from satellite and stations), when both models were
used to force an off-line CTM to simulate CO2 fields in Amazonia. I investigated the sen-
sitivity of the transport of CO2 to different transport components, as a function of four
different observation vectors—based on the vertical profiles of GA2014—to bring insight
on the best strategy to assimilate aircraft measurements. Finally, in the chapter Regional
atmospheric inversion of CO2 in Amazonia (Chapter 4), I present the regional inversion sys-
tem I developed, which take advantage of both transport configurations, to optimize NEE
using the four observation vectors separately. The chapter brings further information on
the consistency and robustness of Amazon NEE from assimilation of different observation
types.

1.4 Structure of this work

This dissertation starts with an analysis of the seasonal and interannual variations of the
net ecosystem exchange (NEE) in Amazonia over the period 2002 – 2010 (Chapter 2). It
describes the setup of two global inversion configurations to investigate CO2 fluxes over
the Amazon region, one of which included few ground-based station data that were avail-
able before the study of GA2014 and that had not been exploited in previous global inverse
modeling studies. As a first indicator of the confidence on the impact of assimilating these
new data, the impact on the posterior concentration time series at the new sites (Section
2.2.1) was characterized, followed by the analysis of the impact on the fluxes (Section
2.2.2). The spatial distribution of flux increments by both inversions was analyzed as a
measure of the confidence on the improvement of the simulated seasonal cycle and in-
terannual variability (Section 2.2.2) of NEE in Amazonia, both at basin and sub-regional
scale.

The data collected by GA2014 have filled a major information gap in inverse modeling
studies over Amazonia. The combination of new data and modeling tools, motivated the
second part of my research (Chapter 3), which aimed at evaluating whether CO2 transport
in Amazonia could be improved with the meteorology generated with the regional atmo-
spheric model BRAMS, developed for simulating meteorology and chemistry over tropical
South America, with respect the global forecast system ECMWF. Thus, two transport con-
figurations were setup (Section 3.1.1). The meteorology of both models was evaluated
against ground-based, remote-sensing and satellite observations (Section 3.2.1). The qual-
ity of the simulated CO2 fields by both models is assessed (Section 3.2.2). With the data
of GA2014, not only vertical profiles were evaluated. These data allowed evaluated the
quality of the horizontal transport. This chapter gives an estimate of the uncertainty of
CO2 related to differences between the two transport models, which are prescribed with
the same surface fluxes.

Chapter 4 describes the third part of this research. It describes the setup of two in-
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1. CO2 EXCHANGES BY LAND ECOSYSTEM IN AMAZONIA INFERRED FROM ATMOSPHERIC

INVERSION

version systems (Section 4.1) based on the forward transport configurations evaluated in
Chapter 3. Individual inversions were performed with different observation vectors, in-
cluding vertical profiles and different types of horizontal gradients, with both inversion
systems. The study evaluated the fit to the observations (Section 4.2), and the impact on
the optimized fluxes (Section 4.3). Finally, Chapter 5 presents a summary of the main
results this thesis, as well as suggestions on the orientation of future research.
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CHAPTER

2
On the ability of a global
atmospheric inversion to
constrain variations of CO2

fluxes over Amazonia

When starting the thesis in 2012, there existed few sampling sites in South America with
CO2 measurements with sufficient precision to be used in atmospheric inversion studies.
However, these data had not been assimilated in most global inversion systems (Peylin
et al., 2013). Motivated by this, I assimilated CO2 data from some of the few ground-based
stations were available at the time into a global inversion system, aiming at improving the
knowledge on the seasonal and interannual variations of the net ecosystem exchange in
Amazonia, and assess the impact of local observation sites in the global system. The results
of this chapter lead to the publication "On the ability of a global atmospheric inversion to
constrain variations of CO2 fluxes over Amazonia" in the journal Atmospheric Chemistry
and Physics (Molina et al., 2015). The study is presented in Section 2.1, the main results
and their implications are detailed in Section 2.2, and the concluding remars in Section
2.3. The whole publication is given in the Appendix A.

2.1 Objective of the study

The study aimed at improving our knowledge of the seasonality and interannual variations
of NEE in Amazonia over the period 2002 – 2010. This period is long enough to assess the
impact of extreme climatic events such as the severe droughts of 2005 and 2010, and the
extreme humid conditions registered in 2009. For this purpose, I designed an inversion,
referred to as INVSAm henceforth, by building on the Monitoring of Atmospheric Climate
and Compositon (MACC) global inversion system version 10.1 (MACCv10.1 hereafter),
described in detail by (Chevallier et al., 2010). Both INVSAm and MACCv10.1 optimized
a prior NEE estimate simulated with the ecosystem model ORCHIDEE by Maignan et al.
(2011). Ocean fluxes were also optimized, but the study focused on the corrections to the
NEE.

MACCv10.1 assimilated data from about 100 sampling sites around the globe, but none
were located in Amazonia. To improve the NEE estimate, INVSAm added four local sites.
Two sampling sites were located at Arembepe and Maxaranguape, on the eastern coast
of Brazil, basically under marine influence, measured the background CO2. The other
two sites at Santarém in northeastern Brazil, and in French Guiana, were surrounded by
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CO2 FLUXES OVER AMAZONIA

tropical forests and captured the signal of terrestrial ecosystems. This way, the impact of
local data on the optimized fluxes was assessed against MACCv10.1. In addition, the study
went deeper than previous inversion intercomparison studies such as TRANSCOM and
RECCAP (Canadell et al., 2011), since it evaluated the inversion results over and within
Amazonia in an attempt to identify robust patterns.

2.2 Main results and implications

2.2.1 Simulated vs. observed concentrations

Overall, both INVSAm and MACCv10.1 significantly reduced the misfit to the observations
with respect to the prior. However, misfits were further decreased with the assimilation of
data in South America. Examination of simulated CO2 time series at the local sites, showed
that assimilating local data significantly rescaled the seasonal variations (e.g. at the site in
French Guiana), and even changed the seasonality (e.g. at Santarém and Maxaranguape)
in agreement with the observations, with respect to the reference inversion. Correlation be-
tween time series of optimized and observed daily concentrations were rather low in both
inversions at the four local sites. However, correlations at monthly scale were higher with
both inversion estimates, and again, INVSAm showed better correlation than MACCv10.1.
This suggested a potential improvement of seasonal variations of NEE in Amazonia.

2.2.2 Impact on surface biogenic CO2 fluxes

Spatial distribution of flux corrections

In terms of the spatial distribution of flux corrections, both INVSAm and MACCv10.1 pre-
dicted large continuous, nearly zonal patterns that extended over both land and ocean,
likely due to the dominant atmospheric circulation. On the continent, both inversions pre-
dicted flux corrections of opposite sign between north and south of tropical South America,
between austral summer and winter and at the annual scale. This result is typical of inver-
sion systems over undersampled regions. The assimilation of the local stations, however,
did increase the amplitude of the dipole. Flux corrections by INVSAm often exceeded 150%
of the prior fluxes (in absolute value), indicative of significant flux corrections. In addi-
tion, with local data the inversion changed the latitudinal position of the dipole over the
continent. This provides evidence of the large-extent impact of the information from local
stations, despite the relatively small correlation scale length in prior uncertainties, and the
limited area of the station footprints with high sensitivity to land fluxes.

Seasonality

At the scale of tropical South America, the seasonal cycle of optimized NEE in both IN-
VSAm and MACCv10.1 seemed strongly driven by the prior NEE. Nevertheless, while flux
corrections introduced by local data likely came from the signal of tropical broad-leaved
(TBE) forests, the seasonal cycle could have remained driven by the NEE from other plant
functional types (PFTs) represented in ORCHIDEE. Over TBE forests, however, prior and
inversion estimates did not indicate clear correlation of NEE with rainfall or solar radia-
tion. The results disagreed with the estimate of Jung et al. (2011). Prior and inverted NEE
indicated local extremes, possible due to the overlapping of significantly different seasonal
cycles from other subregions within Amazonia.
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2.2. Main results and implications

To examine if the inversions captured the potential spatial heterogeneity of NEE sea-
sonality, two sub-regions were analyzed. Nevertheless, neither the prior nor the inversions
indicated a clear seasonal cycle. Jung et al. (2011), on the other hand, continued to ex-
hibit a smooth seasonal cycle, of nearly the same amplitude in both sub-regions and across
all TBE forests. This reduced the confidence in Jung et al. (2011) to capture the spatial
heterogeneity seasonal NEE variations. Within the two sub-regions, results suggested sig-
nificant corrections to the seasonal cycle of NEE, especially over regions well constrained,
in space and time, by the observation sites. However, large corrections were also applied
over areas over which the local stations exhibited low sensitivity, particularly in central
western Amazonia. This can be partly explained by the control exerted on the optimized
fluxes by the local stations, as well as stations distant from Amazonia, suggested by the
analysis of the spatial distribution of flux corrections. This is a direct consequence of the
limited overlapping between measurement records at the local sites.

Inter-annual variations

The analysis of the inversions’ ability to capture the interannual variability of NEE within
Amazonia focused on the drought periods recorded in 2005 and 2010, and the extreme hu-
mid conditions of 2009. The analysis was based on NEE anomalies with respect the mean
NEE during 2002 – 2010 predicted by the different estimates. Thus, from the atmospheric
perspective, negative anomalies were interpreted as an enhancement of the CO2 sink, and
positive anomalies as a reduction. I made an additional inversion using a "flat prior" (called
FLAT), i.e., prior NEE without interannual variability with respect to the mean NEE 2002
– 2010 across tropical South America (see the publication in Appendix A for details). The
goal was to assess the inversion system’s ability to reproduce interannual variations from
the observations alone, a potential indicator of the robustness of the inversion estimates.

Literature reports on the intensity and extension of the drought events of 2005 and
2010, and their negative effects on Amazonian forests. Nevertheless, across tropical South
America prior NEE and both INVSAm and MACCv10.1 estimates indicated only small pos-
itive anomalies in those years, while FLAT predicted positive and negative anomalies in
2005 and 2010, respectively. In 2009, on the other hand, prior and inversion estimates
all agreed on a large negative anomaly, which provided confidence on this pattern. Over
TBE forests, prior and both INVSAm and MACCv10.1 predicted a positive anomaly in 2005
and negative in 2010. The latter contrasts not only with the anomalies inferred for the
whole tropical South America, but also with the findings of Gatti et al. (2014). Their re-
sults, obtained using a mass balance approach and airborne CO2 and CO observations,
indicated CO2 uptake reduction due to water stress during 2010 across Amazon forests.
My results, therefore, are to be interpreted cautiously, as the small anomalies, compared
to those considering all PFTs, suggest low NEE sensitivity in TBE forests to interannual
climatic variations.

Interannual variations within the subregions examined in the analysis of seasonal vari-
ability revealed contrasting responses to drought events within and between the regions.
While in eastern Amazonia the prior and both INVSAm and MACCv10.1 predicted posi-
tive and negative anomalies in 2005 and 2010, respectively, in central western Amazonia
anomalies were negative in both years. Anomalies in J2011 were at least one order of
magnitude smaller than the prior and both inversion estimates. Consequently, J2011 did
not provide enough information on the heterogeneity of NEE interannual variations and
help interpret my results.
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2.3 Conclusions

In an effort to improve the knowledge on the seasonal and interannual variations of NEE
in Amazonia I analyzed the results two global inversions, and assimilated data from four
ground-level sites in tropical South America in one of the inversions. The results showed
that information from both local and distant sampling sites controlled NEE in tropical
South America. This control manifested as alternate zonal areas of positive and negative
flux corrections over land and over large portion of the ocean in the Southern Hemisphere
in a "dipole" pattern. The main effect of the local ground-based station data was to increase
the amplitude of the dipole and change its position, and create some local patterns around
the local sites.

In spite of the overall improvement of seasonal variations of the simulated CO2 concen-
trations at the local sites, the seasonal cycle of NEE over tropical South America remained
mostly unchanged in the inversion estimates. Particularly over rain forests, prior and in-
version estimates disagreed with the assumption of higher CO2 uptake during periods of
higher solar radiation. The smooth patterns of NEE in Jung et al. (2011) disagreed with
my results. The low reliability on the seasonal patterns of NEE from the inversions seems
to confirm that the spatial distribution of flux corrections over the entire Amazon basin is
an artifact from the inversion, reflecting the low density of the local monitoring network,
and the limited measurement records.

Such considerations also reduce the confidence on the patterns of NEE interannual
variability from the inversion INVSAm. Yet, some patterns were present across prior and
inversion estimates, suggesting they are robust, such as the vegetation being a net source
of CO2 (∼ 0.21 PgC) during 2005—year of the drought—and a strong sink (∼ −1.1 PgC)
during 2009, likely due to extreme rainfall conditions in 2009.

24



CHAPTER

3
Regional atmospheric modeling
of CO2 transport in Amazonia

The analysis in Chapter 2 reveals the limitations of the global-scale atmospheric inversion
approach to estimate the CO2 net ecosystem exchange (NEE) over the Amazon basin, even
when assimilating regional CO2 observations. In particular, it highlights the difficulties
to simulate the concentrations at the measurement sites, especially near the coast, with
a coarse resolution global-scale transport model like LMDZ. The representativeness and
transport modeling errors of this global model are assumed to be two of the main expla-
nations for the lack of ability to control the regional NEE in the inversion experiments
presented in Chapter 2. In order to overcome such issues, I have developed regional and
mesoscale atmospheric transport model configurations for the Amazon basin. This chapter
presents these configurations and the evaluation of their skill for modeling the regional
CO2 transport while Chapter 4 will analyze the regional atmospheric inversions that I have
conducted with these transport configurations.

When using regional transport model instead of global models, the simulations of the
CO2 transport can be improved both by increasing the spatial resolution and by using
the meteorological forcing from regional meteorological models that are adapted to the
specific conditions in the area of interest. The Brazilian developments on the Regional
Atmospheric Modeling System (BRAMS; Freitas et al., 2009; Moreira et al., 2013) has
been specifically developed to better represent meteorology and atmospheric chemistry-
transport over South America. In Amazonia, vertical transport due to moist convection is a
dominant process over advection, and largely explains synoptic variations of atmospheric
CO2 (Parazoo et al., 2008). BRAMS includes new physical schemes to better represent
deep and shallow convection in the Amazon (Freitas et al., 2009). Another important
source of uncertainty in model simulations is the strong dependency on the representation
of surface processes. In this regard, BRAMS has been coupled "on-line" with the JULES land
surface scheme, which has improved the representation of several meteorological variables
(Moreira et al., 2013).

I prepared two regional transport configurations to simulate CO2 transport over tropi-
cal South America at a high resolution of ∼ 35 km for the year 2010. I used the mesoscale
and regional tracer-transport model (CTM) CHIMERE (Menut et al., 2013), driven with
different meteorological fields provided by two atmospheric models: the integrated fore-
cast system of the European Centre for Medium-Range Weather Forecasts (ECMWF), and
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simulations with a configuration of the regional atmospheric model BRAMS that I devel-
oped for this study. I prepared the regional configuration and started the development of
the interface between BRAMS and CHIMERE during a 4-month visit to the Brazilian Center
for Weather Forecasts and Climate Studies (CPTEC) in March – June 2014, with the sup-
port of the Grupo de Modelagem da Atmosfera e Interfaces (GMAI). During that period, I
launched the first BRAMS simulations and tests for output validation.

The evaluation of these two transport configurations focuses first on the meteorological
forcing and on the potential improvement obtained by using the regional meteorological
model BRAMS for the simulation of meteorological variables. I compared BRAMS and
ECMWF to data from an extensive meteorological observation network in South America.
Next, in order to check whether improvements of the regional meteorological forcing led
to an improvement of the simulations of CO2 transport in the region, I compared the simu-
lated CO2 fields using CHIMERE driven with both meteorological forcings, but prescribing
the same set of surface CO2 fluxes to CO2 measurements in the Amazon basin.

As to transport, airborne CO2 measurements provide essential information about the
vertical and horizontal CO2 distribution to validate and improve transport models (Gloor
et al., 2000). Several aircraft campaigns collected CO2 measurements across Amazonia:
the Amazon Boundary Layer Experiment ABLE-A (Wofsy et al., 1988), ABLE-2B (Chou
et al., 2002), the LBA Airborne Regional Experiment (LBA-CLAIRE) (Lloyd et al., 2007),
the Balanço Atmosférico Regional de Carbono na Amazônia (BARCA) project (Andreae
et al., 2012), and regular biweekly observations established by Gatti et al. (2010) and Gatti
et al. (2014) (GA2014 henceforth). Some of these studies have served as data sources for
regional transport model validation for CO2 (Moreira et al., 2013), aerosols (Rosário et al.,
2013), and other chemical species (Andreae et al., 2012; Bela et al., 2015). The airborne
dataset of GA2014 are thus used to validate the regional CO2 transport simulation in this
study. Furthermore, the airborne dataset of GA2014 can also be considered as the most ex-
tensive regional CO2 dataset for the atmospheric inversions in the Amazon basin. The NEE
inversions of studies of van der Laan-Luijkx et al. (2015) and Alden et al. (2016) (Chap-
ter 1) used these airborne measurements. Therefore, the regional atmospheric inversion
framework I developed in this PhD thesis aimed at assimilating these data (see Chapter
4) and the main objective of the evaluation of the transport model in this chapter was to
provide a basis for the set-up of the assimilation of these airborne data.

In particular, both van der Laan-Luijkx et al. (2015) and Alden et al. (2016) assimilated
individual measurements of each vertical profile from GA2014. But this is not necessarily
the best strategy to exploit aircraft data to constrain NEE. In particular, the assimilation
of CO2 spatial gradients from such data (Bréon et al., 2015) may increase the robustness
of the constraint on the net ecosystem exchange (NEE) while reducing the sensitivity of
the inversion to uncertainties in the signal of other regional and remote flux components.
Therefore, this chapter investigates the ability to filter information on the NEE, and to
separate it from that from other types of fluxes (from biomass burning, fossil fuel combus-
tion, ocean exchanges and remote natural and anthropogenic activities)from the aircraft
measurements or from spatial gradients between these measurements. This investigation
is based on the analysis of the individual impacts from the different types of fluxes on the
aircraft profiles and on sensitivity experiments with both transport configurations, where
the estimates for different type of fluxes are compared to reference experiments. I inves-
tigated the wet-to-dry (April – May) and the dry-to-wet (October – November) transitions
seasons in 2010—two periods with different meteorological regimes and highly uncertain
in terms of NEE (Chapter 2).
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3.1. Materials and methods

In the following, Section 3.1.1 presents the transport configuration, the methods for
validating the simulated meteorological fields and for assessing the CO2 distribution. Sec-
tion 3.2 details the comparison of model simulations and meteorological observations, as
well as the comparison of modeled CO2 and aircraft observations and spatial gradients.
The results are discussed in Section 3.3 and the conclusions are presented in Section 3.4.

3.1 Materials and methods

3.1.1 Transport configuration

In this chapter, tropical South America was defined as the geographic area between 85.1◦W
– 19.7◦W and 16.3◦N – 23.1◦ S (Figure 3.1). Transport was simulated with the tracer
transport model CHIMERE (Menut et al., 2013). CHIMERE also includes a package for
chemistry, which was de-activated for the transport of CO2, an inert gas. Using meteorolog-
ical fields, estimates of emissions, and initial and boundary conditions of CO2 at the lateral
and top boundaries of the simulation domain, CHIMERE predicts the concentration fields
of CO2 at mesoscale. In this study, CHIMERE was configured with a horizontal resolution
of ∼ 35 km, and 29 vertical levels from the surface up to an altitude of approximately 10
km (∼ 300 hPa). Table 3.1 summarizes the components of the transport simulations. The
table gives the reference of different estimates of NEE fluxes, atmospheric CO2 boundary
conditions and meteorology that were used in this chapter. Among the multiple model op-
tions, transport by deep convection was activated or switched off for additional sensitivity
tests of the CO2 concentrations to convective transport.

100 80 60 40 20 0
Longitude

40

30

20

10

0

10

20

La
ti

tu
d
e

Transport simulation domain

Amazon Basin

Figure 3.1: Geographic domain for CO2 transport simulations with the offline transport
model CHIMERE.

Meteorological forcing fields from ECMWF

A first transport configuration, CH-ECMWF, was set up by forcing CHIMERE with the 3D
meteorological fields of the ECMWF operational forecast. The relevant meteorological
fields to simulate CO2 transport in CHIMERE, listed in Table 3.2, were obtained at ∼15 km
horizontal resolution, with a 3-hour time step. CHIMERE’s interface to ECMWF was used
as is to interpolate the input meteorology to CHIMERE’s horizontal resolution with hourly
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frequency. Vertical interpolation to the transport model’s vertical grid was performed by
CHIMERE’s meteorological preprocessor.

Table 3.1: Components of the transport simulations.

Component Description
Atmospheric forcing

BRAMS Atmospheric fields at ∼35 km
ECMWF Atmospheric fields at ∼15 km

Biosphere fluxes
ORCHIDEE Net ecosystem exchange (NEE) from ORCHIDEE sim-

ulation for 2010 at 2◦resolution and 3-hour time step,
forced with CRUNCEP reanalysis data.

MACC Optimized NEE from the Monitoring Atmospheric Cli-
mate and Composition v12.3 product (assimilation of
global network), covering 35 years (1979–2013), at 3-
hour time step and 3.75◦× 1.88◦resolution.

MACC+ Optimized NEE from an inversion using the setup of
MACC, assimilating the global network plus the obser-
vations of Gatti et al. (2014). Only observations within
the first 6 levels of the transport model are assimilated
(approximately 1500 m from the surface. The optimiza-
tion is only for the period 2010–2011. Horizontal reso-
lution 3.75◦× 1.88◦and 3-hour time step.

Biomass burning CO2 emissions
GFED3.1 Monthly mean emissions from GFED version 3.1 at 0.5◦

resolution.

Fossil fuel CO2 emissions
EDGAR4.2 Annual emissions from EDGAR 4.2 FT database at 0.1◦

resolution.

Air-sea CO2 exchange
TAKA09 Annual mean flux from Takahashi et al. (2009) at

3◦×2◦ resolution.

CO2 boundary conditions
BC_MACC+ Optimized concentration fields from MACC+.
BC_CTracker Optimized concentration fields from CarbonTracker-

TM5 (Krol et al., 2005; Peters et al., 2007).

Land use CO2 emissions Not included.
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Table 3.2: List of meteorological fields to force the chemistry-transport model CHIMERE
for simulation of CO2 transport.

Variable
Zonal wind
Meridional wind
Air temperature
Specific humidity
Atmospheric pressure
Air temperature at 2 m
Planet boundary layer height
Surface sensible heat flux
Surface latent heat flux
Wind speed at 10 m
Topography
Friction velocity
Convective fluxes (entrainment and detrainmentin updraft and downdraft)

Meteorological forcing fields from BRAMS

In the second transport configuration, CH-BRAMS, CHIMERE was driven with meteorolog-
ical fields (see Table 3.2) generated by a specific simulation of BRAMS with a frequency of
3 hours at the same spatial resolution than CHIMERE (i.e. ∼35 km); thus, no spatial in-
terpolation was required even though the development of specific pre-processing tools was
needed to convert BRAMS output into the relevant input variables for CHIMERE. BRAMS
is described here in more detail since I constructed a dedicated configuration of BRAMS
for tropical South America to calculate the meteorological fields for setting my transport
simulations.

BRAMS is the atmospheric physical component of a coupled system which includes a
chemistry-transport component and a land-surface scheme. Chemistry and transport rou-
tines are grouped in the Chemistry Coupled Aerosol and Tracer Transport model (CCATT)
(Freitas et al., 2009; Longo et al., 2013). The exchanges of heat, moisture, surface mo-
mentum, radiation and trace gases between the surface and the atmosphere are calculated
with the JULES land surface scheme (Clark et al., 2011; Best et al., 2011). The three mod-
els have been coupled on-line in the JULES-CCATT-BRAMS system (Moreira et al., 2013).
BRAMS requires topography and meteorological initial and boundary conditions. Follow-
ing (Moreira et al., 2013), the topography was prescribed with the 1-km resolution data
set described by (Gesch et al., 1999). Atmospheric initial and boundary conditions were
obtained from ECMWF reanalysis ERA-Interim (Berrisford et al., 2009) with a horizontal
resolution of 0.25◦ and 26 vertical pressure levels at 6-hour intervals, interpolated on the
transport model grid.

JULES requires grid-based data of vegetation cover and soil type, the normalized dif-
ference vegetation index (NDVI), sea surface temperature, soil carbon, air moisture and
temperature. Following (Moreira et al., 2013), vegetation cover was prescribed using data
from the PROVEG project (Sestini et al., 2003) within the Amazon Basin, and the vegeta-
tion map of Olson (1999). Soil texture was taken from the RADAMBRASIL project (Rossato
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et al., 1998) for Brazil and from the FAO outside the country (Zobler, 1999). JULES uses
NDVI to initialize the values of leaf area index and surface albedo. NDVI is obtained
from 16-day composites derived from the Moderate Resolution Imaging Spectroradiome-
ter (MODIS) data from the period 2001-2002. Weekly mean sea surface temperature was
obtained from the National Centers for Environmental Prediction (NCEP) (Reynolds et al.,
2002). Soil carbon and moisture reach equilibrium over long timescales. A technique
called spin-up (Yang et al., 1995) is normally used to bring soil carbon and moisture to
equilibrium, but it is a computationally expensive process because it requires long simula-
tions with the model. Therefore, initial soil carbon content was provided through values
observed during the Large Scale Biosphere-Atmosphere Experiment in Amazonia (LBA)
project (Batjes, 1996). The operational product developed by (Gevaerd and Freitas, 2006)
was used to initialize the soil moisture content. Initial soil temperature was provided by
the first level of BRAMS. CO2 does not intervene in atmospheric dynamics. However, in the
coupled system, JULES requires mean CO2 concentration to simulate photosynthesis cou-
pled with heat, water and momentum fluxes that influence atmospheric dynamics. There-
fore, CO2 initial and boundary conditions for photosynthesis simulation in JULES were
obtained from 3-hour mean mole fractions from the CarbonTracker-TM5 (CarbonTracker,
henceforth) system (Peters et al., 2007; Krol et al., 2005) with 3◦×2◦ horizontal resolution
and 32 vertical levels, interpolated to my regional model grid. Note that although CCATT
transports CO2 based on the input from JULES and BRAMS, I used only the output of the
atmospheric component of this coupled system to force CHIMERE. Thus, I controlled the
input fluxes to my regional simulation for the analyses and for the inversion in Chapter 4.

CO2 initial and lateral boundary conditions

In this study, for both transport configurations, CO2 initial and boundary conditions were
provided through post-inversion CO2 fields from a global atmospheric inversion, based on
the version 12.3 of the Monitoring Atmospheric Climate and Composition system (MACC)
initially described by Chevallier et al. (2010). This inversion, designated MACC+, covered
the period 2010 – 2011 and assimilated the observations from aircraft data of GA2014 (see
Section 3.1.3 for details about these data) in addition to the global observation network
data assimilated in MACCv12.3. In MACC+, only aircraft observations within the first 6
vertical levels of LMDZ, the transport model used in MACC, were assimilated. The opti-
mized CO2 fields, initially provided every 3 hours at 3.75◦×1.88◦ horizontal resolution
and 39 vertical levels, were interpolated to CHIMERE’s horizontal resolution to define the
initial and boundary conditions called BC-MACC+.

In the sensitivity tests described in Section 3.2.2, CO2 transport was simulated also us-
ing another CO2 field for CO2 initial and boundary conditions, namely from CarbonTracker,
for CO2 initial and boundary conditions defined BC-CTracker.

Surface CO2 fluxes

Estimates of NEE, CO2 release from biomass and fossil fuel burning, and air-sea CO2
exchanges provided to CHIMERE are given in Table 3.1. In the reference experiments,
NEE, was obtained from a simulation of the Organizing Carbon and Hydrology in Dy-
namic Ecosystems (ORCHIDEE) model (Krinner et al., 2005) at 3-hour and 2◦ resolution,
forced with meteorological fields from CRUNCEP reanalysis (Sitch et al., 2015). These
fluxes are referred to as ORCHIDEE henceforth. CO2 fluxes from this simulation were
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annually balanced and did not account for land-use change emissions or fires, but they
resolved the diurnal cycle of NEE. In addition, 3-hourly NEE, optimized every 8 days from
the MACCv12.3 and MACC+ global inversions (Table 3.1) were also used in sensitivity
experiments (Section 3.2.2).

Biomass burning CO2 emissions were taken from the Global Fire Emissions Database,
version 3.1 (Randerson et al., 2013), which provided monthly emissions at 0.50◦ resolu-
tion. Fossil fuel CO2 emissions were provided at 1-year temporal resolution by EDGAR4.2
FastTrack 2010 database (EU-JRC/PBL, 2013), scaled with annual global totals from the
Global Carbon Project 2013 (Boden et al., 2013). Ocean fluxes were taken from the
monthly climatology of CO2 air-sea exchange from Takahashi et al. (2009). Land-use
change (LUC) CO2 emissions are prominent in the Amazon basin (∼0.2 PgC yr−1 between
2000 and 2010; Song et al., 2015), but LUC was not simulated by ORCHIDEE. Neverthe-
less, LUC CO2 emissions were implicit in the optimized NEE from MACCv12.3 and MACC+
(ORCHIDEE-MACC and ORCHIDEE-MACC+, henceforth). Note that GFED3.1 included
emissions associated to deforestation fires, which are a fraction of the total LUC CO2 emis-
sions.

Figure 3.2 shows the mean seasonal distribution of total CO2 fluxes, combining NEE,
fire and fossil fuel CO2 emissions. Fluxes were averaged during the dry (July – Octo-
ber) and wet (November – June) periods of 2010. During the dry period, the three NEE
estimates predict CO2 emissions in areas dominated by savanna vegetation and in forest-
savanna transition areas (Figure 3.5), along the southeastern and southern borders of
the Amazon basin. Over these areas, ORCHIDEE predicted the highest emissions, while
ORCHIDEE-MACC showed that assimilation of CO2 data from the global network reduced
the emissions. Assimilating local aircraft profiles in ORCHIDEE-MACC+ reduced emis-
sion further (Figure 3 .14c). In Amazon forests ORCHIDEE simulated low CO2 uptake
over northern Amazon, and low CO2 release in the area in the middle of the profile sites.
ORCHIDEE-MACC and ORCHIDEE-MACC+, however, reverted that pattern and forests
across northern Amazon were a source of CO2—similar to MACCv10.1 and INVSAm in
Chapter 2, while the areas in middle and around the profile sites turned into a CO2 sink.
The assimilation of the local sites produced a slightly stronger uptake around the local
sites—unlike INVSAm in Chapter 2, which produced stronger release—and shifted the up-
take area to the east.

During the wet period, NEE from ORCHIDEE in the savanna areas was a strong CO2
sink, more intense than in forest areas within the basin (Figure 3.2d). In ORCHIDEE-
MACC and ORCHIDEE-MACC+ the uptake was weaker than ORCHIDEE over savanna ar-
eas. Note also that ORCHIDEE predicted CO2 uptake across most of tropical South Amer-
ica. But ORCHIDEE-MACC predicted the land north of 10◦ S was a source of CO2, pro-
ducing a dipole pattern (Figure 3.2e; see also Chapter 2). With the assimilation of local
sites, ORCHIDEE-MACC+ predicted CO2 uptake across northern and northeastern Amazon
forests, and an area of CO2 release east of ALF and SAN.

3.1.2 Evaluation of simulated meteorological fields

The quality of the simulated meteorology should be a first indicator of a model’s ability
to simulate CO2 transport. The simulated meteorological fields were confronted to verti-
cal profiles from radiosonde observations at 11 sites distributed across the Amazon Basin
(Figure 3.3), obtained from the National Oceanic and Atmospheric Administration – Earth
System Research Laboratory (NOAA/ESRL) Radiosonde Database. These sites are usu-
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Figure 3.2: Mean seasonal distribution of total CO2 fluxes over tropical South America land
surface for 2010. Total flux is the sum of NEE and biomass burning and anthropogenic CO2
emissions. Three estimates were built by combining NEE from ORCHIDEE (a, d), MACC
(b, e) and MACC+ (c, f) with biomass burning emissions from GFED3.1 and fossil fuel
emissions from EDGAR 4.2 FT database. Fluxes were averaged during the dry (July –
October) (left column) and wet periods (November – June) (right column). Black dots:
observation sites of GA2014.
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Figure 3.3: Location of sites with radiosonde data for model validation during 2010.
Source: http://esrl.noaa.gov/raobs

Figure 3.4: Location of surface meteorological stations used for model evaluation during
2010. Red: meteorological stations administered by the Brazilian National Institute of
Meteorology (INMET). Green: meteorological stations installed at airports (METAR).

ally located at airports and discrete observations are made typically at 00:00 and 12:00
UTC. Following Bela et al. (2015), BRAMS and ECMWF were evaluated during two differ-
ent meteorological regimes: the wet-to-dry (April – May) and the dry-to-wet (October –
November) transitions seasons in 2010. At each site the root mean square error (RMSE)
between observed and simulated time series was calculated for vertical profiles of potential
temperature, dew point temperature, wind speed and wind direction at 7 vertical pressure
levels between the surface and 300 hPa.

BRAMS and ECMWF were also evaluated against surface, regional meteorological sta-
tion data from 152 meteorological stations installed at airports (METAR network) and 311
stations administered by the National Institute of Meteorology (INMET) of Brazil (Figure
3.4). Simulated fields of air temperature and air dew point temperature at 2 m, wind speed
at 10 m and precipitation were interpolated to the station locations and the corresponding
time series were compared to the measurements. Statistics of the misfits between simula-
tions and observations were calculated following Moreira et al. (2013).

Simulated precipitation was compared to satellite data from the Tropical Rainfall Mea-
suring Mission (TRMM) product 3b43v7, namely monthly mean precipitation rates (in
mm hr−1) at 0.25◦ resolution. This product merges information from the three rainfall
measuring instruments onboard the TRMM platform, the Precipitation Radar (PR), TRMM
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Microwave Image (TMI), and Visible and Infrared Scanner (VIRS), with monthly totals
from the Global Precipitation Climatology Centre (GPCC) rain gauge analysis. The more
complete spatial and temporal coverage of this TRMM product allows to evaluate modeled
spatio-temporal rainfall patterns better than with discrete surface stations.

3.1.3 Spatial and temporal CO2 distribution and comparison to the regular
vertical profiles from GA2014

In order to assess whether the transport models simulated the CO2 distribution realistically,
I evaluated the CO2 transported with BRAMS and ECMWF with data from the aircraft
profiles of GA2014. These data consisted of bi-weekly vertical profiles of CO2 at four sites
within the Amazon Basin (Figure 3.5): Alta Floresta (ALF), Rio Branco (RBA), Santarém
(SAN) and Tabatinga (TAB).

Figure 3.5: Aircraft sampling sites reported by Gatti et al. (2014) (black circles) and land
cover type in tropical South America (Friedl et al., 2010).

The CO2 measurements consisted of flask air samples taken in a descending spiral from
∼4.4 km to approximately 300 m above sea level (a.s.l.) (close to the forest canopy),
typically between 12:00 and 13:00 local time (LT). The simulated fields were sampled
by selecting the model grid-cells corresponding to the horizontal and vertical positions of
the observations, at the time when the measurements were taken. I compared simulated
and observed mean vertical profiles for two contrasting periods, in terms of precipitation,
defined after GA2014: the dry (July – October) and wet (November – June) seasons of
2010. In Amazonia, vertical tracer transport is fairly influenced by deep convection. To
evaluate the sensitivity of the CO2 vertical profiles to deep convection parameterization,
transport was simulated using both meteorological models with the same set of fluxes and
initial and boundary conditions, but suppressing deep convection in CHIMERE.

In addition to CO2 at individual profile sites, I also compared model and observed CO2
horizontal gradients between pairs of vertical profile sites along the dominant wind di-
rection. CO2 gradients between sites should be less sensitive to external fluxes and more
influenced by the NEE in the areas between the two sites (Bréon et al., 2015; Boon et al.,
2016; Staufer et al., 2016), and in view to increase the robustness of the inversions, I as-
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similated these gradients instead of individual data at each profile in the following chapter.
Horizontal gradients were estimated along the three transects: TAB – SAN, RBA – ALF and
RBA – SAN (Figure 3.6). The transects were chosen based on the dominant flow direction
in the low- to mid-troposphere across the Amazon, with air entering from the equatorial
Atlantic Ocean and flowing over the basin. Due to differences in the times and altitudes
where observations were collected, data from each site were grouped into five altitude lay-
ers (or bins) every 1000 m, from the surface up to 5 km. Then, mean seasonal gradients
were calculated as the mean CO2 difference between two sites for each bin during the dry
and wet seasons.

Figure 3.6: Horizontal transects established to evaluate horizontal CO2 gradients.

I also analyzed two additional types of CO2 gradients simulated with both BRAMS and
ECMWF transport fields, with different NEE products: the horizontal gradient from 0 to
1 km a.s.l. (assuming that 1 km is the typical height of the planetary boundary layer (PBL)
in the Amazon; (Fisch et al., 2004)), and the integral of the horizontal gradients from 0
to 5 km. These other types of horizontal gradients should be less sensitive to the vertical
transport modeling errors than individual data, and than the horizontal gradients for dif-
ferent vertical layer. Inversions assimilating these types of gradients were also conducted
in the following chapter.
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3.2 Results

3.2.1 Simulated vs. observed meteorology

Simulated meteorology vs. vertical profiles from radiosondes

I calculated the RMSE of the misfits between the observed and simulated time series of
potential and dew point temperature, wind speed and wind direction, at 7 levels between
the surface and 300 hPa, for the 11 radiosonde observation sites shown in Figure 3.3, for
both BRAMS and ECMWF. I summarized the results of the 11 sites with a box-and-whiskers
plot for the wet-to-dry (April – May) (Figure 3.7) and dry-to-wet (October – November)
(Figure 3.8) transition seasons of 2010. The plots characterize the distribution of the
RMSE across the sites through the first and third quartiles (horizontal bars), the median
value (thick vertical lines within the horizontal bars), the minimum and maximum values
(whiskers) and outliers (black dots).

During April – May, the wet-to-dry transition, median RMSE in potential temperature
simulated with both atmospheric models (Figure 3.7a) was largest at the surface (∼1.6 K),
and decreased to ∼1 K in the upper levels. For wind direction, RMSE was very large near
the surface (up to 100◦ deviation), and decreased to ∼50 – 100◦ in altitude with both
models (Figure 3.7d). Errors in dew point temperature and wind speed near the surface
(∼1.6 – 2 K and 1 – 1.8 m s−1, respectively) were lower than in upper levels (∼9 – 12
K and 2.5 – 4 m s−1, respectively). During October – November (dry-to-wet transition)
RMSE decreased with altitude for potential temperature (Figure 3.8a) and wind direction
(Figure 3.8d), but increased for wind speed and dew point temperature. Overall, misfits
between observations and ECMWF simulations showed higher median RMSE, and exhib-
ited more variability (spread between 25th and 75th percentiles) in the upper levels of the
atmosphere than for BRAMS, except for wind direction. Misfits between observations and
model simulations with BRAMS showed more variability (spread between 25th and 75th
percentiles) at the surface, except for dew point temperature in both transition seasons,
and in wind direction in the dry-to-wet transition.

Simulated meteorology vs. ground-based data

Table 3.3 summarizes the RMSE and standard deviation of the misfits (STDMISFIT) between
modeled and observations of temperature at 2 m (T), dew point temperature at 2 m (Td),
precipitation at the surface and wind speed at 10 m (w10m). The difference between mean
RMSE, STDMISFIT and bias for each variable indicates that a large contribution to RMSE
stemmed from the models’ deficiency to reproduce the variability in the observations. In
addition, near the surface BRAMS was drier (the bias in Td was negative) during the wet-
to-dry transition, and more humid in the dry-to-wet (the bias in Td was positive), than
ECMWF. Surface was warmer (bias of T > 0) in BRAMS than ECMWF during both periods.
Both models overestimated the observed precipitation (bias > 0), with ECMWF predicting
higher precipitation than BRAMS. At the surface, the RMSE and STDMISFIT of wind speed—
a critical variable for the transport of CO2—were similar (∼1.6 and 1.0 m s−1 respectively)
for both models, independent of the transition period. BRAMS underestimated wind speed
(bias < 0) and ECMWF overestimated it. Overall the different statistics in Table 3.3 show
similar performance in reproducing the observed meteorology. In the discussion we will
see that the models’ performance is similar to that achieved in other studies of validation
of meteorological models.
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Figure 3.7: Distribution of the root-mean-square error (RMSE) between observations and
simulations of (a) air temperature, (b) wind speed, (c) dew point temperature and (d)
wind direction at 11 radisonde observation sites (Figure 3.3) during April – May 2010
(wet-to-dry transition season). The observations correspond to discrete measurements at
00:00 or 12:00 UTC. The horizontal bars represent the distribution of the RMSE between
the first and third quartiles. Thick black lines within the boxes represent the median RMSE.
The whiskers indicate the minimum and maximum RMSE. Black dots represent the outliers.
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Figure 3.8: Distribution of the root-mean-square error (RMSE) between observations and
simulations of (a) air temperature, (b) wind speed, (c) dew point temperature and (d)
wind direction at 11 radisonde observation sites (Figure 3.3) during October – November
2010 (dry-to-wet transition season). The observations correspond to discrete measure-
ments at 00:00 or 12:00 UTC. The horizontal bars represent the distribution of the RMSE
between the first and third quartiles. Thick black lines within the boxes represent the me-
dian RMSE. The whiskers indicate the minimum and maximum RMSE. Black dots represent
the outliers.
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Table 3.3: Statistics of the misfits between observed and simulated surface air temperature (T),
dew point air temperature (Td), wind speed and precipitation. Model simulations were compared
to data from ground stations of the meteorological network in South America. Mean root-mean-
square error (RMSE) and bias, and standard deviation of the model-observation misfits (STDMISFIT)
wer calculated for the periods April – May and October – November 2010.

BRAMS ECMWF
Apr-May Oct-Nov Apr-May Oct-Nov

Td (K) RMSE 1.80 1.88 1.47 1.69
STDMISFIT 1.19 1.21 1.07 1.17
BIAS −0.18 0.66 −0.13 0.52

T (K) RMSE 2.05 2.03 1.79 1.72
STDMISFIT 1.23 1.21 1.18 1.19
BIAS 0.81 0.70 −0.52 −0.26

Precipitation (mm) RMSE 1.96 - 1.93 -
STDMISFIT 1.56 - 1.54 -
BIAS 0.24 - 0.61 -

w10m (m/s) RMSE 1.53 1.58 1.58 1.60
STDMISFIT 0.97 0.95 1.06 1.04
BIAS −0.18 −0.43 0.75 0.77

Simulated precipitation vs. remote sensing data

Figure 3.9 compares monthly mean precipitation from TRMM and from both models dur-
ing January and July 2010. Two patterns can be identified in TRMM. There is a NW-SE
precipitation band over most of South America during January. This pattern corresponds to
the South American Convergence Zone (SACZ), causing a belt of precipitation particularly
intense during the austral summer (January – March) usually associated with strong con-
vection in central South America, and intense precipitation across the southern part of the
continent (Garreaud et al., 2009). During the austral winter (July – September) there is
an E-W precipitation band extending over the tropical Atlantic Ocean and northern South
America. Over the Equatorial oceans this pattern corresponds to the Intertropical Conver-
gence Zone (ITCZ), associated with the wet season in northeastern Brazil (Garreaud et al.,
2009). Figure 3.9 shows that both atmospheric models reproduce these patterns fairly
well. This gives some confidence in the ability of both models to correctly locate convection
areas that influence the vertical transport of CO2. I calculated the monthly mean precip-
itation rate for three zones in tropical South America (see Figure 3.9): northern Amazon
(region 1), equatorial Atlantic Ocean (region 2), and southern Amazon (region 3). The
results, summarized in Table 3.4 shows that in January southern Amazon (zone 3) was the
most humid region, according to TRMM, followed by northern Amazon (region 1) and the
Equatorial Atlantic (region 3). ECMWF reproduced this pattern, but not BRAMS, which
showed lower precipitation in zone 3. Compared to TRMM, precipitation over the simula-
tion domain was ∼18 – 23% lower with ECMWF, and ∼25 – 59% lower with BRAMS. In
July, precipitation in TRMM was high over northern Amazon and the Atlantic, whereas the
southern Amazon showed low precipitations typical of the dry season in this region. Both
models reproduced this pattern, but compared to TRMM, precipitation was ∼23 – 31%
lower in ECMWF and ∼49 – 65% lower in BRAMS. Overall, both models reproduced well
the seasonal precipitation distribution, except for BRAMS in January. On the other hand,
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both models underestimated rainfall, with BRAMS showing lower precipitation.

Figure 3.9: Monthly mean precipitation rate (in mm hr−1) during (a – c) January and (d –
f) July. Precipitation rate has been calculated for three regions depicted in red boxes: (1)
northern Amazon, (2) equatorial Atlantic Ocean and (3) southern Amazon. See Table 3.4.
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Table 3.4: Monthly mean precipitation (mm hr−1) rate for TRMM, BRAMS and ECMWF for the
three regions depicted in Figure 3.9: (1) northern Amazon, (2) equatorial Atlantic Ocean, (3)
southern Amazon.

January 2010 July 2010
TRMM BRAMS ECMWF TRMM BRAMS ECMWF

Northern Amazon 0.146 0.11 0.119 0.315 0.16 0.241
Equatorial Atlantic 0.108 0.076 0.083 0.245 0.119 0.169
Southern Amazon 0.227 0.092 0.184 0.031 0.011 0.02

3.2.2 Spatial and temporal CO2 distribution

Distribution of CO2 along vertical cross-Amazon transects

Figure 3.10 shows the mean seasonal averaged CO2 column (XCO2), obtained from after-
noon values (12:00 – 18:00 LT), for the dry (July – October) and wet (November – June)
seasons of 2010. Transport was simulated with both CH-BRAMS and CH-ECMWF, using
the ORCHIDEE NEE, fire CO2 emissions GFED3.1, fossil fuel CO2 emissions EDGAR4.2,
ocean fluxes TAKA09 and BC_MACC+ boundary conditions. 12:00 – 18:00 LT is the time
window used for the selection of the CO2 data to be assimilated in the next chapter. I
made this selection because modeling high nighttime concentrations close to the surface is
problematic (see Chapter 2). The accumulation of CO2 in the nocturnal shallow boundary
layer strongly depends on the local fluxes and stability of the PBL and mesoscale models,
as well as global transport models, have difficulties to resolve these local effects (Karstens
et al., 2006).

During the dry period, a positive N-S CO2 gradient was modeled over the Amazon with
both CH-BRAMS and CH-ECMWF. High concentrations were simulated along the south-
eastern basin in the areas covered by savanna vegetation and savanna-forest transition
areas (Figure 3.5). These areas exhibit intense fire emissions included in GFED3.1. These
areas are typically subject to intense fire activity due to land cover conversion and to other
agricultural practices (Pivello, 2011). During the wet period, both models predicted a
negative NW-SE gradient, with low concentrations over the southern Amazon basin, es-
pecially over the areas covered with savanna vegetation, where the NEE from ORCHIDEE
showed intense CO2 uptake (Figure 3.2). Note that, in general, during both the dry and
wet periods, CH-BRAMS predicts lower CO2 across the continental land than CH-ECMWF.
Given the overall good agreement between mean horizontal wind fields for both models
during both dry and wet periods (Figure 3.11) the differences between XCO2 fields pre-
dicted with CH-BRAMS and CH-ECMWF reflect differences in the strength of the vertical
transport coupled with differences in advection (strength and/or direction) between the
models.

Figures Figure 3.12 and Figure 3.13 show vertical CO2 cross-sections along two tran-
sects drawn on Figure 3.10, for both dry and wet periods, respectively. Transect 1 runs
NW-SE from 7◦ N, 80◦ W to 20◦ S, 40◦ W. Transect 2 runs along 7◦ S from 80◦ W to 40◦ W.
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Figure 3.10: Mean seasonal CO2 column during the (a, b) dry (July – October) and (c, d) wet
(November – June) periods of 2010, simulated with CH-BRAMS and CH-ECMWF. CO2 was simu-
lated using ORCHIDEE NEE, EDGAR4.2 anthropogenic emissions, GFED3.1 biomass burning emis-
sions, TAKA09 ocean fluxes, and BC_MACC+ boundary conditions.
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Figure 3.11: Mean seasonal wind fields during the (a, b) dry (July – October) and (c, d) wet
(November – June) periods of 2010, simulated with BRAMS and ECMWF. Wind fields averaged
between the surface and the top of the transport model (∼10 km).
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Figure 3.12: Vertical cross-sections of the mean simulated CO2 (in ppm) for July – October 2010
(dry period) for CH-BRAMS and CH-ECMWF along (a, b) the transect from 7◦ N, 80◦ W to 20◦ S,
40◦ W, and along (c, d) 7◦ S. CO2 was simulated using ORCHIDEE NEE, EDGAR4.2 anthropogenic
emissions, GFED3.1 biomass burning emissions, TAKA09 ocean fluxes, and BC_MACC+ boundary
conditions.
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Figure 3.13: Vertical cross-sections of the mean simulated CO2 (in ppm) for November–June 2010
(wet period) for CH-BRAMS and CH-ECMWF along (a, b) the transect from 7◦ N, 80◦ W to 20◦ S,
40◦ W, and along (c, d) along 7◦ S. CO2 was simulated using ORCHIDEE NEE, EDGAR4.2 anthro-
pogenic emissions, GFED3.1 biomass burning emissions, TAKA09 ocean fluxes, and BC_MACC+
boundary conditions.
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During the dry period along Transect 1 (Figure 3.12), in particular between ∼3◦ N and
3◦ S, air with lower CO2 reached higher altitudes in CH-BRAMS than CH-ECMWF. Given
that this part of the transect was located over a moderate CO2 sink, this structure likely
reflects a more intense vertical transport of CO2-depleted air in CH-BRAMS than in CH-
ECMWF. Likewise, along 5◦ S – 5◦ S, over an area of intense CO2 emission (Figure 3.2a),
air rich in CO2 was also transported higher in CH-BRAMS than in CH-ECMWF. During
the wet period (Figure 3.13), the lowest concentrations were located over areas of strong
uptake in ORCHIDEE (Figure 3.2b), and CO2-depleted air was also transported to higher
altitude in CH-BRAMS than in CH-ECMWF.

During both dry and wet seasons, above 1 km CO2 was distributed horizontally with
more structure in CH-BRAMS than CH-ECMWF. The prescribed topography, which is dif-
ferent in both models, seemed to play a role in this structure. Along Transect 1, terrain
relief at about 3◦ N is ∼1 km in CH-BRAMS, but ∼3 km high in CH-ECMWF. Higher ter-
rain relief in CH-ECMWF might have acted as a barrier to CO2 advection. This was also
observed along Transect 2 at ∼87◦ W. Thus, the difference in model topography likely
adds to the differences in the strength of the vertical transport between both models, cou-
pled to differences in advection between the models, thereby generating differences in the
horizontal distribution between CH-BRAMS and CH-ECMWF.

Comparisons to vertical profiles of CO2 measurements

Dry season

Figure 3.14 compares observed mean, seasonal vertical CO2 profiles and model simulations
using CH-BRAMS and CH-ECMWF at the four aircraft sampling sites of GA2014 (see Fig-
ure 3.5), using ORCHIDEE NEE, fossil fuel CO2 emissions from EDGAR4.2, biomass burn-
ing CO2 emissions from GFED3.1, air-sea CO2 exchanges from TAKA09 and BC_MACC+
boundary conditions. The models were sampled at the time of the observation, at the
grid-cell of CHIMERE where the observations were located. Observations and model sim-
ulations were averaged over July – October (dry season) and June – November (wet sea-
son), after GA2014. Overall, both models exhibited similar performance in reproducing
the shape of the observed mean vertical profiles. RMSE values varied between ∼1 – 2 ppm
for both models. Modeled mean profiles overestimated the variability of the observations
during both seasons, especially during the dry season. Figure 3.14 illustrates that concen-
trations simulated with CH-ECMWF were closer to the observations near the surface, e.g.
at TAB and ALF, but in some instances CH-BRAMS was better between 1 and 2 km, e.g. at
TAB and ALF.

Wet season

Models also had a similar performance to reproduce the mean observed profiles during
the wet season; RMSE varied between ∼1.4 – 3.6 and 1.2 —-2.8 ppm for CH-BRAMS
and CH-ECMWF, respectively. Both models systematically predicted lower-than-observed
CO2 along the profiles at all sites, but CH-BRAMS predicted lower concentrations than
CH-ECMWF by ∼0.8 – 4.8 ppm. A misfit of ∼2 ppm at altitudes around 4 km a.s.l was
seen in both model simulations. This misfit in altitude suggests a bias from the boundary
conditions rather than NEE. This is explored in the following. CH-BRAMS exhibited lower
misfits to the observations, e.g. at TAB, RBA and ALF, but the misfits increased relative to
CH-ECMWF in altitude. In some instances, like at SAN, both models failed to reproduce
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Figure 3.14: Observed (Black lines) and simulated mean CO2 vertical profiles at the four sampling
sites reported by Gatti et al. (2014) for 2010 during the dry (July – October) and wet (November
– June) periods. CO2 was simulated with CH-BRAMS (red lines) and CH-ECMWF (blue lines).
Horizontal bars: spread of the observations (1-σ). Shaded areas: spread of model simulation (1-
σ). Models were sampled at the time of the observation, and at the model grid cell where the
observations were located. CO2 was simulated using ORCHIDEE NEE, EDGAR4.2 anthropogenic
emissions, GFED3.1 biomass burning emissions, TAKA09 ocean fluxes, and BC_MACC+ boundary
conditions.

the observed CO2 reduction toward the surface and predicted CO2 buildup (Figure 3.14h).
This behavior, though, could also be caused by errors in the simulation of surface fluxes by
ORCHIDEE.

Although mean vertical profiles during both seasons showed an overall agreement to
the observations with ORCHIDEE NEE, the models’ ability to reproduce individual observed
profiles was much lower—the models explained around 10% (R2) of the vertical and tem-
poral variability of the observations at a given measurement site during a given season
(Figure 3.15).
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Figure 3.15: Model performance in reproducing the individual observations at each sam-
pling site. No differentiation is made between dry and wet seasons because there are few
points during the dry season. Number of observations available at each site: TAB = 221,
RBA = 222, ALF = 222, SAN = 240. CO2 was simulated using ORCHIDEE NEE, EDGAR4.2
anthropogenic emissions, GFED3.1 biomass burning emissions, TAKA09 ocean fluxes, and
BC_MACC+ boundary conditions.

BRAMS and ECMWF differences in vertical structure of CO2 for transects
between aircraft sites

Figures 3.12 and 3.13 show that differences in the strength of vertical transport between
the models—coupled with differences in horizontal advection—caused CH-BRAMS to pre-
dict lower CO2 along the vertical than CH-ECMWF during both dry and wet seasons. Verti-
cal cross-sections between pairs of aircraft sites, namely TAB-SAN (TRANTAB,SAN) (Figure
3.16) and RBA-ALF (TRANRBA,ALF) (Figure 3.17), illustrate the influence of those mecha-
nisms on CO2 at the sampling sites.

During the dry period, along TRANTAB,SAN, approximately between 75◦ W and 60◦ W,
CO2-enriched air was transported higher in altitude in CH-BRAMS, and advected westward
with respect to CH-ECMWF. Lower relief in CH-BRAMS, e.g. toward 80◦ W, suggests that
CO2 was more easily advected from the Amazon lowland across the Andes towards the
Pacific ocean in comparison with CH-ECMWF, contributing to lower CO2 in the profiles.
Along TRANRBA,ALF the vertical structure was similar between the two models east of ∼57◦

W. To the west of ∼57◦ W, however, CH-BRAMS transported CO2 out of the continent more
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Figure 3.16: Vertical cross-section of the mean simulated CO2 (in ppm) for July – October (dry
period) and November – June (wet period) 2010 for CH-BRAMS and CH-ECMWF, along a transect
through stations TAB and SAN (5.95◦ S, 70.1◦ W to 2.84◦ S, 54.9◦ W). Dashed vertical lines indicate
longitudinal position of the stations. CO2 was simulated using ORCHIDEE NEE, EDGAR4.2 anthro-
pogenic emissions, GFED3.1 biomass burning emissions, TAKA09 ocean fluxes, and BC_MACC+
boundary conditions.
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Figure 3.17: Vertical cross-section of the mean simulated CO2 (in ppm) for July – October (dry
period) and November – June (wet period) 2010 for CH-BRAMS and CH-ECMWF, along a transect
through stations RBA and ALF (9.36◦ S, 67.2◦ W to 8.92◦ S, 56.8◦ W). Dashed vertical lines indicate
longitudinal position of the stations. CO2 was simulated using ORCHIDEE NEE, EDGAR4.2 anthro-
pogenic emissions, GFED3.1 biomass burning emissions, TAKA09 ocean fluxes, and BC_MACC+
boundary conditions.
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3. REGIONAL ATMOSPHERIC MODELING OF CO2 TRANSPORT IN AMAZONIA

easily than ECMWF, likely due to lower terrain. Localized structures are observed about
60◦ W – 50◦ W along TRANTAB,SAN, where air with lower CO2 reached up to 1 km a.s.l.
Those structures are related to stronger NEE uptake around SAN predicted by ORCHIDEE
(Figure 3.2a) and illustrate the influence of local fluxes. Likewise, vertical transport of
CO2 was more intense in CH-BRAMS during the wet period. As a result, there was less CO2
within the PBL than in CH-ECMWF. Lower terrain to the west of the transects in CH-BRAMS
made it easier for large-scale advection to transport CO2 out of the Amazon lowlands.

Vertical CO2 gradients between boundary layer and the free troposphere

Dry season

The vertical CO2 gradient between the boundary layer and the free troposphere (BL−FT)
is an important indicator of vertical transport. I estimated the mean BL−FT difference
from the simulated CO2 difference between 300 m and 4 km a.s.l. for both observed
and simulated profiles at each site (Table 3.5). Positive BL−FT differences were observed
during the dry season, which reflects CO2 accumulation in the BL and the surface being a
source of CO2 to the atmosphere. During the dry season, CH-BRAMS—using ORCHIDEE
NEE—underestimated the observed positive BL−FT differences at all sites. CH-BRAMS
predicted a positive difference at TAB and RBA, but a negative difference at ALF and SAN
opposite to the observations. On the other hand, CH-ECMWF captured positive BL−FT
differences in the dry season, but overestimated the magnitude of the gradients at all sites
except RBA.

Wet season

During the wet season, the observed differences were negative, indicative of CO2 uptake.
CH-BRAMS predicted negative BL−FT differences, in qualitative agreement with the ob-
servations, except at SAN, where the model predicted a positive BL−FT difference. Con-
versely, CH-ECMWF predicted a positive BL−FT difference, opposite to the observation,
except at RBA during the wet season. Altogether, both models reproduced approximately
the seasonality of the BL−FT gradient, except during the wet season for CH-ECMWF. Ob-
served and modeled gradients, however, differed by 0.2 – 7 ppm. This result shows that
even when prescribed with the same NEE, two different transport models can produce
BL−FT differences of different sign, indicating large differences in BL mixing and exchange
with the FT. At this stage, it is difficult to connect the unrealistic BL−FT differences during
the wet season when using CH-ECMWF to this model only, since they can also be associ-
ated with errors in the NEE from ORCHIDEE. But since CH-BRAMS reproduced better both
the magnitude and the direction of the observed BL−FT differences in the wet season,
CH-ECMWF might be partly responsible for the misfits to the observations.

Sensitivity of simulated CO2 to convective transport

I studied CO2 transport by deep convection by deactivating this process in the mass flux
of CHIMERE. Figure 3.18 shows that without deep convection the simulated profiles can
vary by ∼1.6 ppm relative to the simulations with deep convection, with higher differences
close to the surface during both seasons. Despite these differences, models did not predict
substantial changes in the vertical CO2 structure in comparison to observations in Figure
3.18, at least within the low- to mid-troposphere.
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Table 3.5: Seasonal mean CO2 difference between boundary layer (BL) and free tropo-
sphere (FT) at the four sampling sites in Amazonia.

Dry season Wet season
Site Obs. CH-BRAMS CH-ECMWF Obs. CH-BRAMS CHECMWF
TAB 3.31 1.07 3.88 −1.96 −3.08 1.87
RBA 1.97 1.07 0.66 −4.32 −1.90 −0.75
ALF 2.13 −2.80 3.12 −3.17 −2.95 0.45
SAN 1.23 −1.24 3.97 −1.90 2.59 5.46
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Figure 3.18: Sensitivity of simulated seasonal mean vertical CO2 profiles to deep convection pa-
rameterization for July – October (dry season) and November – June (wet season). CO2 was sim-
ulated with CH-BRAMS (red) and CH-ECMWF (blue), with the deep convection parameterization
activated (solid lines) or suppressed (dashed lines). CO2 was simulated using ORCHIDEE NEE,
EDGAR4.2 anthropogenic emissions, GFED3.1 biomass burning emissions, TAKA09 ocean fluxes,
and BC_MACC+ boundary conditions.
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Components of simulated CO2 per type of fluxes in the simulation area, and
their sensitivity to different lateral CO2 boundary conditions and NEE fluxes
inside the domain

This section analyzes the individual impact of the different type of fluxes on the concen-
trations modeled at the aircraft measurement sites: that of NEE, CO2 boundary conditions,
biomass burning CO2 emissions, ocean CO2 fluxes and fossil fuel CO2 emissions. Further,
for NEE and CO2 boundary conditions this impact was simulated using different products
to model these fluxes or boundary conditions, in order to provide a typical characterization
of the impact of uncertainties in the flux along with that of the impact of the fluxes. The
sensitivity of the mean vertical CO2 profiles at each site to different NEE and CO2 boundary
conditions is shown in Figures 3.19 to 3.22.

During both the dry or wet seasons, changes to NEE brought major impact on the
vertical profiles, independent of the meteorological forcing used to simulate CO2 transport.
With the three sets of NEE products the largest signal from NEE took place within 0 –
2 km and reached up to 5 ppm. Above 2 km a.s.l, the signature of NEE did not exceed
1 ppm, except at ALF with CH-BRAMS during the wet season (Figure 3.20c), where the
signature reached up to ∼3ppm. The difference between the signatures of any two sets
of NEE (∆NEE)—a proxy for the uncertainty in the concentrations due to the uncertainty
in the NEE—was larger below 2 km during both dry and wet periods. In the dry period,
∆NEE reached up to ∼5 ppm below 2 km, and ≤2 ppm above 2 km. There was the same
behavior in the wet period, but ∆NEE reached up to 9 ppm below 2 km with CH-BRAMS
(Figure 3.20c). Differences between the signals of ORCHIDEE-MACC and ORCHIDEE-
MACC+ reached up to 9 ppm, even though both sets of NEE were optimized in a global
inversion. This illustrates the strong impact that the assimilation of the data of GA2014
had on NEE in the Amazon region. The second strongest influence on the concentrations
was exerted by biomass burning emissions during the dry season (panels i – l in Figures
3.19 and Figure 3.21). The signal was strongest, in general, close to the surface, and
values reached ∼4 ppm. The exception is ALF, where concentrations were larger at ∼2 km
a.s.l. (Figures 3.19k and Figure 3.21k). Note that biomass burning emissions influenced
the concentrations even in altitude. With both boundary conditions datasets, background
concentrations were about 388 ppm across the sites, with little variation along the vertical,
especially in the dry season (panels e – h in Figures 3.19 and 3.21). During the wet season,
however, the signature of boundary conditions at sites like ALF and SAN showed more
structure (panels g and h in Figures 3.20 and 3.22), and the signature varied by as much
as 1 ppm between 4 km a.s.l. and the surface. The difference between the two sets of
boundary conditions (∆BC) was lower than for NEE; it reached up to 1 ppm in the dry
period and up to 0.5 ppm in the wet period. During both dry and periods, the signals of
ocean fluxes and fossil fuel emission were almost zero.
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Figure 3.19: Sensitivity of seasonal mean vertical CO2 profiles simulated with CH-BRAMS to (a –
d) NEE, (e – h) boundary conditions and (e – h) fire and fossil fuel emissions and ocean fluxes for
July – October (dry season) of 2010.
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Figure 3.20: Sensitivity of seasonal mean vertical CO2 profiles simulated with CH-BRAMS to (a –
d) NEE, (e – h) boundary conditions and (e – h) fire and fossil fuel emissions and ocean fluxes for
November – June (wet season) of 2010.
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Figure 3.21: Sensitivity of seasonal mean vertical CO2 profiles simulated with CH-ECMWF to (a –
d) NEE, (e – h) boundary conditions and (e – h) fire and fossil fuel emissions and ocean fluxes for
July – October (dry season) of 2010.
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Figure 3.22: Sensitivity of seasonal mean vertical CO2 profiles simulated with CH-ECMWF to (a –
d) NEE, (e – h) boundary conditions and (e – h) fire and fossil fuel emissions and ocean fluxes for
November – June (wet season) of 2010.

54



3.2. Results

Analysis of the gradient of CO2 between the measurement sites

The horizontal gradients along the transects TAB–SAN, RBA–SAN and RBA–ALF (Figure
3.6) are shown in Figure 3.23. RMSE of the model-observation misfits varied up to 2 ppm
across sites and seasons, and the correlation between observed and simulated gradients
varied depending on the site, the season and the model. For instance, along TAB–SAN
in the dry season, CH-BRAMS and CH-ECMWF exhibited correlations of 0.7 and −0.6,
respectively, but along RBA–SAN in the wet season, both models showed correlations>0.9.
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Figure 3.23: Observed and simulated mean seasonal CO2 gradient between downwind and up-
wind sites. Gradients are calculated for vertical bins every 1000 m from the surface to 5 km for (a –
c) July – October (dry season) and (d – f) November – June (wet season) of 2010. Horizontal gra-
dients were simulated with CH-BRAMS (red) and CH-ECMWF (blue). Horizontal bars: standard
deviation of the observations. Shaded areas: standard deviation of the model simulations. CO2 was
simulated using ORCHIDEE NEE, EDGAR4.2 anthropogenic emissions, GFED3.1 biomass burning
emissions, TAKA09 ocean fluxes, and BC_MACC+ boundary conditions.

During the wet season, simulated gradients reproduced better the sign of the observed
gradients within the first kilometer from the surface than during the dry season, except
along TAB–SAN, where both models predicted a gradient of ∼−4 ppm in the first layer,
whereas the observations indicated an almost null gradient. Along RBA–ALF, CH-BRAMS
showed much larger model-observation differences than CH-ECMWF. The former overes-
timated the gradient by as much as 4 ppm, up to four times than the latter. Likewise, CH-
ECMWF underestimated the gradient RBA–ALF by ∼3 ppm during the dry season. During
the dry season, results showed model-observation misfits of ∼2 ppm within the first 2 km,
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larger than those during the wet season (except along RBA–ALF). Figure 3.23 shows that
models’ variability was slightly larger than that of the observations in the dry season, but
it was rather well represented by the models in the wet season. Despite of the model-
observation misfits, the observed gradients were small and models were able to capture
their overall magnitude.

The difference between the two models (∆MODELS)—transporting the same set of
fluxes—was, in general, higher within 0 – 2 km (up to 4 ppm) than above 2 km (typically
≤1 ppm). ∆MODELS was higher during the dry season. Even with the same input fluxes,
models predicted gradients of the same sign during the wet season, except along TAB–SAN
(Figure 3.23d), but not in the dry season, which indicates important differences in the
simulated transport.

Figures 3.24 to 3.27 show the gradients simulated with CH-BRAMS and CH-ECMWF,
with different sets of NEE (panels a – c), and the contribution of the different fluxes and
boundary conditions to the gradients (panels d – l) Along RBA–ALF during the wet season,
for instance, the difference between ORCHIDEE-MACC+ and ORCHIDEE reached values
>5 ppm within 0 – 2 km (Figures 3.25b and 3.27b). In addition, depending on the NEE, the
sign of the gradients changed e.g. for CH-BRAMS along RBA–SAN during the dry season
(Figure 3.24c), and for the three transects during the wet season (Figure 3.25(a – c)). Re-
sults also show that the assimilation of GA2014 in ORCHIDEE-MACC+ did not necessarily
improve the fit to the observed gradients with respect to ORCHIDEE; misfits to observa-
tions were lower with ORCHIDEE-MACC, for instance, along the three transects during
the wet season with CH-BRAMS (Figure 3.25(a – c)). Similarly, model-observation misfits
with CH-ECMWF were lower with ORCHIDEE-MACC than with ORCHIDEE-MACC+ along
TAB–SAN (Figure 3.26a) during the dry season and along all transects between pairs of
aircraft sites in the wet season (Figure 3.25(a – c)). Note that for both models, the verti-
cal structure of the simulated gradients and their average value were strongly influenced
by the choice of NEE. The different NEE products tested here are very different and thus
yielded very different concentrations gradients. The high uncertainty in NEE and the strong
sensitivity of the gradients to these fluxes can thus explain the misfits between observed
and simulated gradients (panels a – c in Figures 3.24 to 3.27), along with transport model
errors.

The individual contribution of flux components shows that for either model and for
both dry and wet seasons, there was always a small signature of ocean fluxes and fossil fuel
emissions on the gradients, on the order of 1/100 of a ppm. The contribution of boundary
conditions was one order of magnitude larger (typically ≤0.7 ppm). In contrast, I recall
that NEE generated gradients of up to ∼8 ppm close to the surface. Note also the important
influence of biomass burning emissions on the gradients during the dry season (panels a
– c in Figures 3.24 and 3.26), was comparable to that of the NEE, with gradients of up
to 3 – 4 ppm within 1 km, and up to ∼2 ppm above 2 km. The three transects exhibited
an important impact from fire emissions, at least in the year 2010, as found by GA2014
based on gradients between the oceanic and the same profile sites. During the wet season,
the contribution of biomass burning emissions was almost suppressed, limited to a few
hundredths of a ppm. The signals of fossil fuel emissions and ocean fluxes on the gradients
were nearly zero from 0 to 5 km, for both models during dry and wet periods.
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Figure 3.24: Observed and simulated mean seasonal CO2 gradient between pairs of profile sites,
and individual contribution from flux components and boundary conditions. Model simulations
with CH-BRAMS for July – October (dry season). Gradients are calculated for vertical bins every
1000 m from the surface to 5 km.
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Figure 3.25: Observed and simulated mean seasonal CO2 gradient between pairs of profile sites,
and individual contribution from flux components and boundary conditions. Model simulations
with CH-BRAMS for November – June (wet season). Gradients are calculated for vertical bins
every 1000 m from the surface to 5 km.
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Figure 3.26: Observed and simulated mean seasonal CO2 gradient between pairs of profile sites,
and individual contribution from flux components and boundary conditions. Model simulations
with CH-ECMWF for July – October (dry season). Gradients are calculated for vertical bins every
1000 m from the surface to 5 km.
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Figure 3.27: Observed and simulated mean seasonal CO2 gradient between pairs of profile sites,
and individual contribution from flux components and boundary conditions. Model simulations
with CH-ECMWF for November – June (wet season). Gradients are calculated for vertical bins
every 1000 m from the surface to 5 km.
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3.2. Results

Figures 3.28 and 3.29 show the observed and simulated vertical integral of the mean
horizontal gradient along the three transects (dry and wet season, respectively), and the
model simulations of the contribution of the flux components and boundary conditions to
the vertical integral.

During the dry season, observed total CO2 gradients, in absolute value, varied between
∼0.4 and 1.0 ppm along the three transects, and reached about 0.2 ppm during the wet
season. During both the dry and wet seasons, both transport models, in general, over-
estimated or underestimated the observed gradients, depending on the set of NEE used.
Model-observation misfits reached up to ∼3 ppm in the dry season, and up to ∼2 ppm in
the wet season. Further, only in one case (RBA–ALF, dry season, Figure 3.28b) the gradi-
ents simulated with the three NEE estimates agreed on the sign of the observed gradient.

Interestingly, during the dry season, models predicted positive and negative mean gra-
dients due to biomass burning emissions along the transects (Figure 3.28(a – c)). Figure
3.30 depicts the location of the sampling sites in Amazonia relative to the mean biomass
burning CO2 emissions distribution from GFED3 during the dry period.
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Figure 3.28: (Top) Observed and simulated integral of CO2 horizontal gradients for 1000-m bins
from the surface to 5 km asl, and (bottom) the individual contribution of NEE, biomass burning
and anthropogenic emissions, ocean fluxes and boundary conditions to the simulated gradients.
Gradients simulated with (red) CH-BRAMS and (blue) CH-ECMWF, for July – October (dry season).
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Figure 3.29: (Top) Observed and simulated integral of CO2 horizontal gradients for 1000-m bins
from the surface to 5 km asl, and (bottom) the individual contribution of NEE, biomass burning
and anthropogenic emissions, ocean fluxes and boundary conditions to the simulated gradients.
Gradients simulated with (red) CH-BRAMS and (blue) CH-ECMWF, for November – June (wet
season).

In an independent experiment, using CH-BRAMS for illustrative purposes, biomass
burning emissions were allowed to release CO2 during 7 days, after which the emission
stopped and the transport was allowed to continue for another 10 days. Figure 3.31 shows
the signature of biomass burning emissions on the mean total CO2 column in response to
the 7-day emission event. Figure 3.31 shows that air circulation transported CO2 northwest
from fire emission zones around RBA and ALF (Figure 3.30). Along transects TAB–SAN
and RBA–SAN CO2 accumulated about the sites downwind of SAN, where fire emissions
are close to zero, producing a positive downwind-upwind gradient (Figure 3.28). Figure
3.30 shows that ALF and RBA are close to emissions zones. Stronger emissions around
ALF than around RBA might have created a negative gradient even though we could have
expected that, on the first order, an accumulation of CO2 from biomass burning emissions
transported from ALF to RBA would have created a positive gradient along RBA–ALF.
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Figure 3.30: Mean biomass burning CO2 emissions during July – October 2010 (dry period) from
GFED3.1. Green dots indicate the location of local stations.
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Figure 3.31: Mean total CO2 column for August 11 – 29 2010, in response to an 7-day event
of biomass burning emission during August 11 – 18, simulated with CH-BRAMS. Biomass burning
emission were obtained from GFED3.1. Black dots indicate the location of local stations.

3.3 Discussion

In my comparison of the meteorology generated with the regional atmospheric model
BRAMS and the global high resolution model ECMWF with radiosonde data, both models
had similar statistical performance. The deviations from observed values are comparable
to those found in previous studies. In their evaluation of a former version of BRAMS, based
also on radiosonde data, Freitas et al. (2009) reported STDMISFIT values for potential tem-
perature at the surface of ∼2 K, and ∼1 K at higher altitudes. Results in Figures 3.8 and
3.7 give STDMISFIT values of 1.1 – 1.8 K at the surface and 0.7 – 1.1 K for higher levels.
For wind speed, Moreira et al. (2013) obtained mean RMSE values of ∼1.5 – 3.5 m s−1

using the information of 11 radiosonde stations distributed across tropical South Amer-
ica, and their results are comparable to the results obtained in Section 3.2.1. Bela et al.
(2015) carried out simulations with the models BRAMS and WRF-Chem and evaluated
them at Manaus against radiosonde data, and found mean model-observation misfits of
up to ∼10 K for dew point temperature and >100◦ for wind direction. My simulations at
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Manaus indicated mean differences of approximately 4 – 100◦ and 5 – 91◦ for wind speed,
for ECMWF and BRAMS, respectively, comparable to the study of Bela et al. (2015). For
dew point temperature, differences to the observations also reached up to ∼10 K for both
models, comparable to Bela et al. (2015), as well.

Comparison to weather station data suggests that both models reproduced surface at-
mospheric conditions as well as in previous studies focusing on atmospheric dynamics in
the Amazon. RMSE values of 1.7 – 2 K for potential temperature,1.5 – 1.9 K for dew point
temperature and ∼1.5 m s−1 for wind speed are comparable to the results of Bela et al.
(2015), who obtained RMSEs of 1.7 – 2.8 K, 1.7 – 2.7 K and 1 – 1.4 m s−1 for the same
variables, respectively. Although RMSE values for BRAMS were 10 – 18% higher than for
ECMWF, values over the two transition periods had the same order of magnitude for all the
aforementioned variables. RMSE for precipitation for both models was similar (∼1.9 mm),
and the bias indicates that both models overestimated precipitation by <1 mm. Larger
RMSE and bias were found by Moreira et al. (2013). Note that ECMWF is an operational
forecast system that assimilates data from multiple data sets, whereas my simulations with
BRAMS did not use an assimilation package.

Comparison to TRMM precipitation data suggests that the large-scale distribution of
precipitation across tropical South America during austral summer and winter (July –
September and January – March, respectively) was well represented by both models.
Both models captured the large-scale patterns of the ITCZ and SACZ. Yet mean precipi-
tation rates during sampled periods (January and July 2010) were underestimated by both
models, which may have repercussions on the intensity and distribution of the convective
transport—critical for CO2 transport. Overall, confrontation of simulated meteorology with
in-situ and remote sensing observations indicates reasonable performance of both models
for meteorology; it would be expected that both atmospheric models simulate the wind
fields and convection in a realistic manner.

My comparison of observed and simulated mean CO2 vertical profiles, however, re-
vealed important differences with the observations from both transport models. These
differences cannot be attributed to transport errors only, since the prescribed fluxes can
also be erroneous. However, the strong differences between the CO2 simulated with CH-
BRAMS and CH-ECMWF (∆MODELS) revealed a strong impact from transport modeling
uncertainties—fundamentally meteorological modeling errors—on the simulation of the
CO2 vertical profiles. Model-observation differences in CO2 of ∼0.1 – 6.7 ppm were identi-
fied within the PBL. Observed BL−FT differences at the sampling sites (Table 3.5) were >0
during the dry season. CH-BRAMS, however, underestimated the magnitude of the gradi-
ents, and even simulated negative gradients, opposite to the observations, even though fire
emissions were included in the surface fluxes. Conversely, CH-ECMWF simulated the right
sign of the gradients, but overestimated the magnitude (except at RBA). During the wet
season, observed BL−FT gradients were <0 at all sampling sites. It was CH-ECMWF that
simulated positive gradient at all sites but one (RBA). CH-BRAMS, on the other hand, failed
to reproduce the right sign of the gradient only at SAN, but underestimated the magnitude
at sites. Surprisingly, transport simulations with both CH-BRAMS and CH-ECMWF did
not show a significant sensitivity to the deep convection parameterization that explained
the model-observation misfits. Using a former version of CH-BRAMS, Herrmann and Fre-
itas (2011) evaluated the model sensitivity to deep convection. Their results showed the
strongest effect of deep convection at altitudes as high as 14 km, where maximum detrain-
ment by deep convection occurs. Unfortunately, no observations were available at that
altitude to test the effect of this transport mechanism.
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The analysis of the contribution of the different types of flux in the region illustrated the
impact of the uncertainties in these different fluxes on the whole CO2 vertical profiles. The
signature of NEE on CO2 was dominant in the four observation sites evaluated. In general,
the signal was strongest close to the surface (i.e. 0 – 2 km). The second strongest flux
influencing CO2 was biomass burning emissions during the dry season, which had a signal
comparable to that of NEE (depending on the NEE used) both close to the surface and in
altitude. The third important component influencing CO2 was the boundary conditions.
The sensitivity of both individual measurements in profiles and horizontal gradients to
boundary conditions is smaller than those of NEE or fire emissions at all altitudes. Further,
in the gradients the signal of boundary conditions was close to zero. As to ocean fluxes and
fossil fuel emissions, their impact on both vertical profiles and gradients virtually zeros.

All the indicators related to model-observation CO2 misfits (vertical profiles and hori-
zontal gradients between pairs of aircraft sites) showed a dominant sensitivity to the choice
of NEE. In some instances, simulated profiles or horizontal gradients were closer to the
observations with ORCHIDEE-MACC fluxes than with ORCHIDEE-MACC+, even though
ORCHIDEE-MACC+ assimilated the GA2014 profiles in a global inversion. This indicates
an inconsistency between NEE from this global inversion and the CO2 vertical profiles
when using high-resolution transport. In a sense, this result proves that regional transport
models produce a very different CO2 concentration field than a global model, so that when
an inversion will be applied with regional models, it will produce a different NEE when
assimilating the GA2014 profiles.

The ratio of the uncertainty in NEE to that in other fluxes, boundary conditions or
transport error, as a function of the observation type (individual measurements or hori-
zontal gradients), provided an indicator of the potential influence of uncertainties (in NEE
or other components) in CO2 inversions. Differences between NEE estimates (∆NEE) pro-
vided a measure of uncertainty on NEE. Likewise, differences between BC_MACC+ and
BC_CTracker (∆BC) served as a proxy of the uncertainty in boundary conditions. Hori-
zontal gradients at different altitudes, close to the surface or the vertical integral showed
higher ∆NEE:∆BC ratios than individual measurements in vertical profiles.

For biomass burning emissions, I did not evaluated a second product to assess the typi-
cal uncertainty in these emissions. I assumed that a strong signature of fire emissions was
likely associated to large uncertainty and conversely. Thus, I used the ratio of the signature
of NEE to that of fire emissions as a proxy of the ∆NEE:∆FIRE ratio. When analyzing indi-
vidual measurements or gradients between pairs of measurement sites,∆NEE:∆FIRE ratios
were similar, close to the surface or in altitude. Therefore, it is unclear that gradient-based
observations reduce the uncertainty in fire emissions with respect to the uncertainty in NEE
more than individual observations in profiles. Among the gradient-based observations,
however, the horizontal gradients close to the surface showed the highest ∆NEE:∆FIRE
values.

Misfits between the models (∆MODELS) were lower in gradients between pairs of sites
than in individual measurements, but depending on the transect and the NEE product used,
∆MODELS can be as large as ∆NEE either close to the surface or in altitude. Thus, trans-
port error is still important even in the horizontal gradients. Further, ∆NEE:∆MODELS
ratios were similar in both individual measurements and gradient-based observations, so
that it is not clear whether profiles or gradients reduce the most the transport error vs.
the uncertainty in NEE. Horizontal gradients close to the surface showed model misfits
larger than the difference between NEE estimates. Transport error and NEE differences in
the gradients decreased with altitude, but ∆NEE:∆MODELS ratios were higher in altitude
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than close to the surface, so that in altitude transport error does not mask the uncertainty
in NEE as it does close to the surface.

The high sensitivity of the different observation types to NEE relative to other flux
components or boundary conditions, i.e. the fact that observed gradients are sensitive
dominantly to NEE first, then to biomass burning emissions during the dry season and
transport error in second, and lastly to boundary conditions and other fluxes, is a positive
sign regarding the potential of the NEE inversion. However, separating the signals of NEE
from that of biomass burning emissions during the dry season, and from that of transport
modeling errors in an inversion system seems challenging.

3.4 Conclusions

Accurate representation of atmospheric transport is critical to CO2 inversion studies. Trans-
port modeling errors associated with the coarse resolution of global transport models influ-
ence (to a poorly known extent) the Amazon CO2 fluxes inferred using global inversions.
Regional atmospheric models can potentially improve inversion results over the region
thanks to a higher resolution, allowing the models to capture some regional and mesoscale
processes, and to use higher resolution topography, coastline and flux input maps. Air-
borne measurements of atmospheric CO2 are a useful tool for evaluation of CO2 transport
and should, in principle, provide valuable information about the carbon mass balance in
Amazonia, and thus provide a strong constraint in NEE inversions.

However, the modeling of quasi instantaneous CO2 vertical profiles approximately ev-
ery two-weeks within the Amazon basin, where vertical transport is complex, and with a
high influence from biomass burning CO2 emissions appears to be challenging as shown
by the results from this chapter. Here, I aimed at evaluating the benefit of the regional me-
teorological model BRAMS—which has the advantage of being calibrated from previous
studies for atmospheric studies in Amazonia, a higher resolution, and being coupled to a
more advanced land surface scheme—relative to the global system ECMWF—which has the
advantage of assimilating weather satellite, radiosonde and surface stations data at rela-
tively high resolution—when both models provide meteorological fields for tracer transport
with the offline tracer transport model CHIMERE. Both BRAMS and ECMWF simulated the
meteorology in tropical South America with similar performance in terms of the statistics
of the model-observation misfits, but the simulations were very different between them.
Yet results from both models were comparable to previous atmospheric model evaluations
in this region.

CO2 transport simulations with both model configurations also showed similar perfor-
mance, with large misfits to observations, both for individual measurements and when
considering overall shape of the observed vertical profiles. Rather than demonstrating the
superiority of the purely regional, transport-meteorological configuration CH-BRAMS, the
comparisons between CH-BRAMS and CH-ECMWF highlights and characterizes the high
impact of transport modeling uncertainty, even when using state-of-the-art model config-
urations for modeling such quasi instantaneous vertical profiles of CO2. Therefore, both
meteorological forcings will be used in Chapter 4 for the regional inversions, empirically
propagating the transport model errors on the estimates of NEE from these inversions.

In a general way, the tests of sensitivity to meteorological forcing or fluxes did not re-
ally reveal a “best configuration” for simulating such profiles. The comparison between the
sensitivity to the meteorological forcing and the sensitivity to the different types of CO2
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fluxes was rather used to provide insight about the ability for a regional inverse modeling
system to filter the uncertainty in the NEE from the other error sources when simulating
CO2. I made sensitivity analyses of the CO2 signal across four types of observation vectors:
the individual measurements, the horizontal gradients between pairs of measurement pro-
files for five vertical layers, the horizontal gradients in the surface layer between pairs
of profiles sites, or horizontal gradients between the vertically integrated profiles. In all
cases, the observations were mostly sensitive to NEE, and then to fire emissions during the
dry season and to the transport models. The sensitivity to boundary conditions was much
smaller, while the sensitivity to fossil fuel emissions and ocean fluxes was nearly negligi-
ble. This general result suggests that there could be a high potential for adjusting the NEE
based on the CO2 data from the aircraft profiles without much impact from uncertainties
in the other types of fluxes or in the transport. However, the analysis also revealed that it
is very difficult to attribute specific patterns of the model-observation misfits to transport
modeling errors, or to NEE or biomass burning emissions during the dry season, which may
limit the skill of the regional atmospheric inversion to invert NEE based on the assimilation
of the CO2 vertical profiles.

At least, the analysis of different types of observations that could be assimilated in
the inversion (individual measurements or gradients between the vertical profiles) demon-
strates that in all cases the inversion should not be influenced by uncertainties in the fossil
fuel emissions or in the ocean fluxes, and that the use of horizontal gradients should nearly
cancel the impact from boundary conditions, which is significant when analyzing individ-
ual concentration measurements. Gradients of CO2 between pairs of sites also showed
lower misfits between CH-BRAMS and CH-ECMWF than the individual CO2 profiles, either
close to the surface or in altitude.

In horizontal gradients close to the surface, differences between CH-BRAMS and CH-
ECMWF were larger than the differences between NEE estimates. Transport error and
NEE differences in the gradients decreased with altitude, and transport error became less
important with respect to the uncertainty in NEE in altitude than close to the surface, so
that in altitude the transport error should not mask the uncertainty in NEE as much as it
does close to the surface. Therefore, there could be a gain from assimilating the gradients
at higher altitudes in comparison to assimilating gradients close to the surface only, or to
assimilating vertically integrated horizontal gradients. As to fire emissions, the uncertainty
in these emissions seems to have a similar weight with respect to that in NEE across the
four observation types. Yet horizontal gradients close to the surface showed the lowest
influence of biomass burning emissions with respect to NEE.

Therefore, in a regional inversion for South America, the assimilation of CO2 gradi-
ents, especially considering gradients for different vertical layers from the surface to high
altitude, seems to offer some stronger potential, relative to the assimilation of individual
measurements in vertical CO2 profiles, to filter the signal of NEE from that of boundary
conditions, and to a lesser extent, from transport modeling errors. However, regarding
the influence of biomass burning emissions, and for a large part, of transport modeling er-
rors, there is no clear indication that assimilating horizontal gradients instead of individual
measurements in vertical profiles should strengthen the potential of the inversions. Given
that defining gradients between pairs of profile sites strongly decreases the number of data
that can be assimilated, the approach may not be more robust than using individual data.
Inversion experiments in the next chapter, using each observation type separately, should
provide further information on the consistency and robustness of the results derived when
using these different types of observation vectors.
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CHAPTER

4
Regional atmospheric inversion
of CO2 in Amazonia

This chapter is devoted to the development and application of a dedicated regional atmo-
spheric inversion modeling framework to estimate the net ecosystem exchange (NEE) in
the Amazonia. This inversion framework uses the two transport models presented in Chap-
ter 3 to optimize the NEE in the Amazon using CO2 measurements from aircraft profiles
collected by Gatti et al. (2014) (GA2014, henceforth).

The previous chapter showed the need for analyzing the sensitivity of such an inver-
sion to the atmospheric transport model configurations developed and/or evaluated in this
thesis, or, to be more precise, to the meteorological product used to force the regional
tracer transport model CHIMERE. The analyses of Chapter 3 also indicated that observa-
tions consisting of horizontal CO2 gradients between pairs of aircraft sampling sites along
the main wind direction, instead of individual CO2 measurements at each vertical profile,
increased the ability to distinguish the atmospheric signature of the uncertainty in the NEE
by reducing that of the uncertainty in the CO2 boundary conditions. The improved ability
to isolate the atmospheric signature of the uncertainty in the NEE should strengthen the
precision of the NEE inversion. However, such an improvement may be limited by the
fact that the sensitivity to transport errors and to the signature of biomass burning CO2
(EFIRE) emissions in the dry season did not decrease in the horizontal gradients along the
dominant wind direction compared to individual CO2 measurements. A cautious selection
of wind conditions for the selection of CO2 gradients between the aircraft profiles imposes
a stringent reduction of the number of data to be assimilated (Bréon et al., 2015; Staufer
et al., 2016). These conclusions from the previous chapter support to carry out inversions
with different strategies for the definition of the observation vector. Therefore, in this
chapter I have tested the assimilation of individual CO2 measurements in vertical profiles
at the different measurement sites and horizontal CO2 gradients along the wind direction
between these profile sites—close to the ground, for different vertical bins or considering
the total CO2 columns—using the CH-BRAMS and CH-ECMWF transport models. The prior
NEE was obtained from a vegetation model simulation and it has been improved to include
an estimate of land use change (LUC) CO2 emissions. As shown in Chapters 2 and 3, the
statistical structure of the uncertainty in such a prior estimate in Amazonia is particularly
difficult to assess.

In such an exploratory context, and given all uncertainties regarding the right config-
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uration of the regional inversions, I developed an analytical inverse modeling framework
with few control parameters rather than a system which could solve for the fluxes at rel-
atively high resolution (Chapter 2). Analytical inverse modeling frameworks with a small
number of control variables allow enable us to carry out a large number of tests with dif-
ferent inversion parameters or observational datasets at low computational cost. Further-
more, a large number of statistical diagnostics, which are very useful for understanding
the inversion problem, limitations, opportunities and possible adaptations can be easily
derived from such analytical systems.

Thus, I developed a regional analytical inversion system for tropical South America
(Section 4.1). The set of observations from GA2014 now covers the period 2010 – 2012
(see Alden et al., 2016), but in order to evaluate the system without multiplying the com-
putations, and given the results and conclusions I obtained in that period (Chapter 3), I
only tested the inversion for two trimesters in 2010 during the dry and the wet seasons.
As in the previous chapter, these two contrasting periods, with the enhanced and pro-
longed dry conditions during the dry season in 2010 and the more humid conditions of the
wet season—despite the wet season of 2010 also affected by el El Niño (Marengo et al.,
2011)—should allow for the detection of the impact of extreme climate conditions on NEE.
In principle, the impact of such conditions on the NEE are hardly caught by the prior NEE
estimates available for this thesis (see Chapters 2 and 3) and therefore, these time periods
offer an interested test of the ability of the inversion to detect and quantify this impact,
and more generally to improve the seasonal and inter-annual variability of the NEE in the
Amazon basin.

4.1 Inverse modeling setup

I built an analytical inversion system with the two transport models presented in Chapter 3.
Using two different transport models allows for a coarse estimate of the effect of transport
uncertainties on optimized fluxes. The inversions covered the periods of January to March
(JFM) in the wet season, and July to September (JAS) in the extreme dry season of 2010.
The simulation domain is the one defined in Chapter 3 and that extends between 16.3◦ N
– 23.1◦ S and 85.1◦ W – 19.7◦ W (Figure 4.1).
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Figure 4.1: Geographic domain for the inversion experiments.
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4.1. Inverse modeling setup

4.1.1 Control vector

In the analytical approach chosen here, building the observation operator matrix requires
to perform a transport simulation for each control parameter, which is computationally
demanding when a large number of control parameters are sought, e.g. solving for fluxes
on a large number of grid-cells (Section 1.1.3). Therefore, fluxes were spatially and tem-
porally aggregated so that each control parameter corresponded to the budget of a type
of flux for a major geographic subdivision of the modeling domain. The time aggregation
is one week to one month (depending on the type of flux), i.e. weekly to monthly mean
budgets of the fluxes are optimized, distinguishing between day- and nighttime fluxes in
the case of NEE. NEE and EFIRE emissions were optimized independently based on different
geographical subdivisions of tropical South America. While this discretization reduces the
number of control parameters, it may introduce aggregation errors (i.e. misfits between
the model and the CO2 measurements due to uncertainties in the flux patterns within a
control region and temporal window) that influence the precision of the estimated fluxes
(Kaminski et al., 2001). For a given flux type, the subdivision of South America for the
definition of the corresponding control parameters was chosen so that each type of flux
was relatively homogeneous within a given region, or, at least, so that the variations of
this type of flux within the region did not influence the concentrations at the measurement
locations. This should limit the impact of uncertainties in the distribution of the fluxes
within the control regions—which is not modified by the inversion—on the concentrations
at the measurement locations, and thus limit the aggregation errors and their projection
into the inverted fluxes.

I solved for weekly or monthly flux budgets for a set of 2 to 8 regions (see the next
section for how they were chosen following the general strategy defined above), depending
on the flux type, for two January – March (JFM) and July – September (JAS) in 2010. I
estimated separately (a) the NEE (separating day- and nighttime fluxes) defined here as
the net CO2 exchange between the terrestrial surface and the atmosphere, excluding EFIRE,
(b) EFIRE emissions, and (c) the monthly budget of ocean CO2 fluxes.

4.1.2 Flux products used in the inverse modeling framework and definition
of the control regions

Different sources of information were used to provide prior estimates of the flux budgets
for the different weeks/months and regions corresponding to the control vector (Table
4.1). These datasets provided the flux distribution within the control sub-regions and time
windows (as part of the observation operator; see Section 4.1.4), and the fluxes that were
not controlled by the inversion (Table 4.1) (also a component of the observation operator).
Both controlled and prescribed fluxes are discussed below. The spatial distribution of the
mean seasonal surface fluxes from these products for NEE (including LUC emissions; see
Land use change CO2 emissions below), EFIRE emissions and ocean fluxes is illustrated
in Figure 4.2. Most of them corresponded, or very similar, to the flux estimates used in
Chapter 3. Note that neither the spatial nor the temporal distributions given by these fluxes
maps within the control sub-regions or time windows were controlled by the inversion.

Annually balanced net ecosystem exchange

I used an estimate of the NEE calculated as the difference between ecosystem respiration
(ER) and gross primary productivity (GPP) provided by a simulation of the ORCHIDEE
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Table 4.1: Datasets used to derive the prior flux budgets and prescribe the spatial
and temporal flux distribution (not controlled by the inversion) within the control sub-
regions/weeks (as part of the observation operator).

Flux Data source
Number of

regions
Optimization

Net ecosystem
exchange

Difference between the ecosystem res-
piration and gross primary productiv-
ity (ER−GPP) simulated with the OR-
CHIDEE model at 2◦ resolution every
3 hours. Corrected to account for land
use change CO2 emissions.

8 Yes (regional, weekly)

Biomass burning
emissions

Monthly total CO2 emissions from the
Global Fire Emissions Database ver-
sion 4 (GFED4, Giglio et al., 2013) at
0.25◦horizontal resolution

2 Yes (regional, weekly)

Air-sea CO2
exchange

Annual mean CO2 flux from the clima-
tology of Takahashi et al. (2009).

2 Yes (regional, monthly)

Fossil fuel
emissions

Annual emissions from EDGAR 4.2 FT
database at 0.1◦ resolution.

1 No

model (Krinner et al., 2005). ORCHIDEE simulated ER and GPP at 2◦ spatial resolution
and with a 3-hour time step, driven with meteorological fields from CRUNCEP reanaly-
sis, following the TRENDY protocol (see Sitch et al., 2015). This source NEE field—the
same as used in Chapter 3—was interpolated to the transport model grid (∼35 km). OR-
CHIDEE uses a single plant functional type for evergreen tropical forests, with the same
model parameters, which ignores the diversity of forest phenology, structure, biomass and
productivity of the Amazon biome, and thus provides spatially smoothed NEE fields, de-
pending only upon regional climate differences. In this simulation, the NEE was annually
balanced and did not account for disturbance due to land use change or wildfires. To ac-
count for LUC emissions, a correction was applied (see CO2 Emissions from Deforestation)
to this NEE dataset to provide the prior estimate of the NEE sub-regional budgets and of
the NEE spatio-temporal distribution in the observation operator for the inversions.

For the NEE control areas I assumed that above-ground woody biomass productivity
(NPP) was a proxy of the spatial heterogeneity of NEE. In Amazonia, NPP seems to be
strongly influenced by soil fertility (Aragão et al., 2009; Malhi et al., 2004; Quesada et al.,
2012) and correlated to forest biomass turnover. Fiktau (1969) proposed four fertility
regions were proposed for Amazonia, based on geological and geomorphological soil char-
acteristics. I used these regions, adapted from Feldpausch et al. (2012), as a basis for the
definition of the NEE control areas. Each region was further divided into two sub-regions,
for a total of eight NEE control sub-regions (Figure 4.3a), to decrease the influence of
aggregation errors.
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4.1. Inverse modeling setup

Figure 4.2: Maps of the mean seasonal (a, b) NEE (including LUC CO2 emissions), (c, d)
biomass burning CO2 emissions and (e, f) air-sea CO2 exchange used to derive the prior
flux budgets and their spatio-temporal distribution within the observation operator for July
– September (dry period) and January – March (wet period)

Land use change CO2 emissions

LUC CO2 (ELUC) emissions, mainly due to deforestation, are an important component of
the carbon balance of tropical South America. For instance, during the period 2005 – 2009
carbon emissions due to deforestation have been estimated at ∼0.31 – 0.48 PgC (Gloor
et al., 2012). Therefore, I accounted for an estimate of ELUC calculated as

ELUC = NEE∗without LUC +NEE∗without LUC (4.1)

Where NEE∗without LUC and NEE∗without LUC are monthly estimates of NEE with and without
LUC, respectively. Both estimates were obtained from two simulations with the ORCHIDEE
model at 0.5◦, generated following the TRENDY protocol (see Sitch et al., 2015). Accord-
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Figure 4.3: Regions for the optimization of (a) net ecosystem exchange (regions 1–8), (b) biomass
burning emission (regions E and W) and (c) ocean fluxes (regions I and II).

ing to this protocol, model simulations covered the period 1861 – 2010. To generate the
model is forced by annually variable vegetation maps and when deforestation occurs, a
fraction of the forest biomass is lost to the atmosphere immediately as CO2 and a frac-
tion is assumed to be harvested and transferred to three pools wood products of different
lifetimes. The establishment of a secondary ecosystem, generally cropland or pasture,
produces disequilibrium between NPP driving the input of carbon to the soil pools and
heterotrophic respiration, which generates delayed soil CO2 emissions during several years
following deforestation. In the version of ORCHIDEE used to estimate ELUC, soil carbon
stocks of forests being cut in a grid cell a given year are diluted with soil carbon of existing
croplands and pastures, so that ELUC can only be estimated as the simulated NEE difference
between a simulation with LUC and one without LUC. This method to estimate ELUC, used
in most global dynamic vegetation models, accounts for a “missed sink capacity” and thus
likely overestimates ELUC as shown by Gasser and Ciais (2013) and Pongratz et al. (2009).
Monthly ELUC at 0.5◦ resolution from (4.1) was distributed uniformly each week of the
same month, and then interpolated to the transport model grid.

ELUC from (4.1) is the sum of deforestation associated to fires and deforestation due to
other practices since ORCHIDEE does not distinguish between the two processes. Typically,
natural fires within moist Amazonian forests are rare. When they occur, burning areas are
limited in size and fire intensity is low due to high humidity of vegetation and litter. Most
fires within the Amazon Basin are caused by human activities (Pivello, 2011) associated
to LUC, and they occur during the dry season in the southern part of the Amazon basin,
mainly. On the other hand, in the cerrado grasslands fire occurrence is linked to both
natural processes and human activities. Natural fires in Brazil are caused by lightning,
and lightning-associated fires in the cerrado are frequent (Ramos-Neto and Pivello, 2000),
whereas anthropogenic fires are part of practices to remove natural vegetation, shifting
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Figure 4.4: Fluxes accounted for in the prior estimates of net ecosystem exchange and fire CO2
emissions in (a) areas subject to land use change (LUC) and in (b) areas not subject to LUC.

cultivation, and crop management. In the cerrado, vegetation lost to wildfires is usually
assumed to recover quickly, so that carbon released is compensated by vegetation regrowth
within a short period of few years. Figure 4.4 depicts the fluxes that are accounted for in
the prior flux estimates of NEE and fire emissions.

Thus, Figure 4.4a illustrates that in areas subject to LUC, the final NEE product used
for the prior estimate and observation operator of the inversion is estimated as

NEE = NEEER−GPP +ELUC without f ire (4.2)

where NEEER−GPP corresponds to the initial NEE estimate (calculated as ER−GPP) from
ORCHIDEE. ELUC without fire represents deforestation emissions due to human practices other
than fires.

Emissions due to deforestation fires (ELUC fire) and emissions caused by natural fires
(FIREno LUC) in a given grid-cell were not accounted for in the NEE, but in the fire emissions
(Figure 4.4a). On the other hand, in non-LUC affected areas (Figure 4.4b) where wildfires
take place, typically in cerrado areas, the NEE is estimated as

NEE = NEEER−GPP +NEE f ire regrowth (4.3)

where NEE f ire regrowth represents the ecosystem recovery from natural fire events.
NEE f ire regrowth is a flux that is assumed to compensate locally for annual emissions from
natural fires, with the regrowth uptake being uniformly distributed throughout the year, as
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in Chevallier et al. (2010), and set to balance annually fire emissions. The two components
of ELUC, ELUC fire and ELUC without fire were separated using the data layers of deforestation
and non-deforestation fires in the Global Fire Emissions Database version 4 (GFED4 Giglio
et al., 2013). In one grid-cell:

ELUC without f ire =

{
0 if ELUC ≤ ELUC ,

ELUC−ELUC f ire if ELUC ≥ ELUC f ire
(4.4)

The excess of fire emissions ELUC fire−ELUC is attributed to FIREno LUC. ELUC fire and
FIREno LUC are part of EFIRE emissions, which are adjusted separately in the inversion. Fig-
ure 4.5 shows the distribution of CO2 emissions from ELUC, ELUC without fire and FIREno LUC.

Figure 4.5: Spatial distribution of Amazon CO2 emissions from (a, b) deforestation fires (ELUC fire),
(c, d) deforestation not due to fire (ELUC without fire), and (e, f) non-deforestation fires (FIREno LUC).
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Fire CO2 Emissions (EFIRE)

EFIRE emissions were taken from the monthly totals of the GFED4 database, originally at
0.25◦ horizontal resolution. The distribution of CO2 emissions from deforestation and non-
deforestation fires (with deforestation fires being considered a fraction of ELUC) within the
simulation domain for 2010, are shown in Figure 4.6. Higher EFIRE emissions are located in
the south and southeastern borders of the Amazon basin. Two emission epicenters can be
identified approximately east and west of 55◦ W in the figure. To consider the possibility of
different fire emissions, e.g. due to different fuel types and fire regimes around these two
areas, I split the region in two sub-regions (Figure 4.3b) for the inversion. In the inversion,
EFIRE emissions were adjusted every week.

Figure 4.6: Annual biomass burning CO2 emission from (a) non-deforestation and (b) deforesta-
tion fires for 2010, obtained from GFED4, at the native resolution of 0.25◦.

Air-sea fluxes

Despite the results from sensitivity tests in Chapter 3 indicating a very small signature
of ocean fluxes on CO2 concentrations data or gradients within Amazonia, ocean fluxes
were optimized in the inversion. As in Chapters 2 and 3, ocean fluxes are taken from
the climatology of air-sea CO2 exchange from Takahashi et al. (2009). Ocean fluxes from
the Atlantic and Pacific oceans, within the simulation domain, were optimized separately
(Figure 4.3c). In the inversion, ocean fluxes are adjusted every month.

Fossil fuel CO2 emissions

To provide a full simulation of the CO2 concentration in the Amazon basin, an estimate of
the CO2 anthropogenic emissions must be provided to the atmospheric transport model
within the observation operator (term yfix in equation (4.5); see Section 4.1.4), even
though they are not optimized. These anthropogenic CO2 emissions were prescribed with
the monthly totals of the Emission Database for Global Atmospheric Research 2010 Fast-
Track version 4.2 (EU-JRC/PBL, 2013), scaled with annual global totals from the Global
Carbon Project 2013 (Boden et al., 2013).
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4.1.3 Prior uncertainty covariance structure

The prior uncertainty in the control parameters, in this case the scaling factors for sub-
regional weekly/monthly fluxes, and their spatial and temporal correlation are represented
in the prior error covariance matrix B. Prior uncertainties of NEE and ocean fluxes were
adjusted to match the monthly uncertainty (1-σ) of the respective fluxes within the simula-
tion domain, based on the setup of prior uncertainties for the global atmospheric inversion
of Chapter 2, and on the description of error correlations detailed below. Prior uncertain-
ties of each NEE sub-region/week were in the range of ∼0.2 – 8 gC m−2 day−1, and ∼0.02
– 0.06 gC m−2 day−1 for each sub-region/month for ocean fluxes. For EFIRE emissions, I cal-
culated the prior uncertainty as the standard deviation of the monthly CO2 emission in the
simulation domain based on three datasets: GFED4, the Global Fire Assimilation System
(GFASv2.1) (Kaiser et al., 2012), the Fire Inventory of the National Center for Atmospheric
Research (FINN) (Wiedinmyer et al., 2011). All three datasets are based on satellite obser-
vations, but differ in the input data. Both GFED4 and FINN calculate emissions based on
burned area. But while GFED4 combines satellites observation of burned area and active
fire data (i.e. fire counts), FINN uses only active fires. Emissions from GFASv2.1, on the
other hand, are based on fire radiative power. Prior uncertainty for EFIRE emissions for
each region/week were in the range of ∼0.14 – 0.92 gC m−2 day−1.

The spatial correlation of the uncertainties between the fluxes in two sub-regions, was
estimated with the relationship r = e−d/L, where r is the error correlation, d is a distance
(in kilometers) separating the geometrical centers (centroids) of the regions, and L is a
scale length. For NEE and ocean fluxes, LNEE and Locean were set to 500 km and 1000 km,
respectively. These correlations length scales are similar to the values used in Chapter
2, even though the spatial resolution of the control vector is different, which may imply
different correlation length scales when considering uncertainties at sub-regional scale.
For EFIRE emissions, the chosen error correlation length scale (L f ire) is more arbitrary, and
I used 500 km. In the future, comparing the structure of the three fire emission datasets
could allow a better formulation for. Spatial error correlation lengths of between 500 km
(e.g. Yin et al., 2016) and 1000 km (e.g. Hooghiemstra et al., 2011) have been used in
previous CO inversion studies, yet for different control vector resolutions. For all emission
types, temporal error correlations were modeled following an exponential decay function
with a time scale of one month, as in Chapter 2, in which the temporal resolution of the
control vector was similar. The a priori uncertainties between different emission types are
assumed to be uncorrelated.

4.1.4 Observation operator

Fluxes are projected into the concentration space through the linear observation operator:

H : x 7→ y = Hx+yfix (4.5)

Section 1.1.3 introduced the fact that H can be seen as the combination of three op-
erators: H = HsampleHtran Hdist. Hdist takes the grid-based fields of NEE, EFIRE emissions
and ocean fluxes to predefine spatial and temporal flux patterns within control sub-regions
and temporal windows. The operator applies each scaling factor corresponding to the
control vector to rescale the spatial and temporal distribution of fluxes on the grid of the
transport model in each sub-region, for each week or month. The operator Htran is the
transport model. I simulated CO2 transport with the CHIMERE model at a resolution of
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∼35 km, driven with the fields from BRAMS and ECMWF (Chapter 3). Finally, Hsample
samples and process the simulated CO2 fields to derive a vector of simulated observations
corresponding to the selected observation vector (Section 4.1.5). The simulated 3D fields
were sampled by selecting the transport model’s grid-cell whose center was closest to the
position (horizontal and vertical) of each individual measurement from GA2014, and then,
depending on the observation vector chosen (see below), the resulting simulated data set
was potentially processed (filtered and combined) into horizontal gradients along the wind
direction close to the surface, for different vertical bins, or for the total columns along the
measurement profiles.

yfix contains the signatures of anthropogenic CO2 emissions and of the model CO2
boundary conditions on the atmospheric CO2 concentration. Those signatures are “fixed”
in the sense that they are not optimized by the inversion, but must be accounted for when
comparing simulations and CO2 measurements. This signature of anthropogenic CO2 emis-
sions and CO2 boundary conditions was simulated with the same transport model configu-
ration as that used to build H for a given inversion configuration, based on the estimate of
the anthropogenic CO2 emissions described in Section 4.1.2, and on boundary conditions
from the post-inversion CO2 fields from the dedicated inversion MACC+ used in Chapter
3 (section 3.1.1).

4.1.5 Observation vector and error covariance structure

CO2 fluxes were optimized by assimilating four different observation vectors whose general
principle was described in Chapter 3. In this chapter I used a refined definition of these
observation vectors, in particular regarding the selection of the horizontal gradients as a
function of the wind direction, rather than considering fixed gradient configurations based
on the mean atmospheric circulation in the Amazon basin. I assimilated the individual
measurements in vertical profiles and three types of horizontal gradients between profile
sites along the dominant wind direction: gradients within 1 km vertical bins between 0
and 5 km a.s.l., gradients between 0 and 1 km a.s.l., and the integral of the horizontal
gradients from 0 to 5 km a.s.l. The four observation vectors build on the measurements
of GA2014. The observation vector and the number of observations assimilated in each
period are summarized in Table 4.2. The following provides more details on the definition
of the observations vectors, on the resulting datasets, and on the estimate of observation
errors for each observation vector. A general assumption is that the observation error
is dominated by transport model errors, and that there is no correlation, either spatial
or temporal, of the observation error between two different observations, so that R is
systematically set up diagonal. The 2-week frequency of the measured profiles at a given
site supports not accounting for temporal correlations, while the distance between the
measurement sites (500 to 1700 km) supports not accounting for horizontal correlations.

However, the assumption of negligible vertical correlations of the transport errors be-
tween individual measurements or horizontal gradients may be strong, given the verti-
cal patterns of differences between CH-BRAMS and CH-ECMWF in Chapter 3. While the
weight of the transport errors might thus be underestimated in the setup of R, carrying out
inversions with both transport models provides a robust indication about the impact of the
transport error on the inverted fluxes.
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Table 4.2: Observation vectors assimilated.

Identifier Description Number of observations
July–September January–March

PROFILE
Individual CO2 measurements at each
site

257 280

HGRAD
CO2 gradient at different altitudes
(1000 m bins)

10 20

HSURF
CO2 gradient close to the surface (0 to
1000 m)

10 20

HINTEG
Vertical average of CO2 gradient (0 to
4000 m)

10 20

Assimilation of individual CO2 measurements at each sampling site

In the inversion experiments called PROFILE, each individual CO2 measurement of the pro-
files from GA2014 was assimilated, i.e. 257 observations during JAS, and 280 during JFM
were assimilated from four aircraft sampling sites. The observation error was derived for
each site (i.e. different error estimates for different sites) as the standard deviation of the
difference between two the transport simulations CH-BRAMS and CH-ECMWF forced with
the following components (Chapter 3): the NEE from ORCHIDEE (not including land use
change or fire CO2 emissions), EFIRE emissions from GFED3 database, ocean fluxes from
Takahashi et al. (2009), fossil fuel CO2 emissions from EDGAR4.2FT and post-inversion
CO2 fields from MACC+ as boundary conditions. Chapter 3 showed that modeled CO2 dif-
ferences from the two transport fields were larger within 1 – 2 km than at higher altitudes.
Therefore I derived two typical estimates of the transport error, one within and one above
the planetary boundary layer (PBL), based on statistics of the differences between the two
models at the measurements’ time and locations in these 2 zones of the atmosphere. I
chose a typical PBL height of 1000 m based on the estimate of Fisch et al. (2004) at a
forest site in southwestern Amazonia during dry or wet seasons. The observation error
ranged between ∼2 and 5 ppm.

Assimilation of CO2 horizontal gradients at different altitudes between sites

In this experiment called HGRAD, CO2 gradients between profile sites along the dominant
wind direction (i.e., downwind minus upwind) were assimilated. Due to differences in time
and altitude where observations were collected, observations were averaged in vertical bins
every 1000 m for each profile. Ideally, in order to maximize the potential for decreasing
the signature of fluxes upwind the “upwind profile” and enhance the signature of the NEE
between the two vertical profiles, the time interval between two profile sites should be the
air-mass travel time between them (Staufer et al., 2016). But the measured profiles do
not fully satisfy this condition. Therefore, to retain more data, gradients were calculated
considering that profiles at the downwind site could be up to 5 days later than the upwind
site. To account for those situations when the average wind deviated from the direction
between sites and retain more data, I considered a broader range of wind directions (Boon
et al., 2016; Bréon et al., 2015). Wind direction was based on the meteorology simulated
with BRAMS or ECMWF. I considered that horizontal gradients were suitable for enhancing
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the signal of NEE—and reducing the influence of uncertainties in other types of fluxes—
if the angle between the direction from the upwind to the downwind site and the wind
direction at the downwind site was±45◦. The values of ranged between∼0.7 and 1.6 ppm.

Assimilation of CO2 horizontal gradients whithin the PBL between sites

This experiment is called HSURF and assimilated only the horizontal gradient of CO2 in the
PBL, i.e. from 0 to 1000 m.a.s.l. Vertical profiles and horizontal CO2 gradients in Chapter
3 showed a strong sensitivity to NEE and EFIRE emissions in the first kilometer from the
surface. Thus, horizontal gradients closest to the surface could yield more information
about the NEE, even though they are also strongly influenced by EFIRE emissions. The
values of were about 1.5 ppm.

Assimilation of the vertically integrated horizontal gradients of CO2 between sites

In this experiment called HINTEG, I assimilated the integral of the horizontal gradients,
vertically averaged between 0 and 5 km a.s.l. Chapter 3 showed that this type of observa-
tion reduced the weight of the uncertainty of boundary conditions relative to that of NEE
more than in the other two types of gradient. GA2014 and Gatti et al. (2010) used this
type of observation in their mass balance approach. However, GA2014 and Gatti et al.
(2010) calculated gradients between aircraft sampling sites in the Amazon basin and sur-
face observations at ocean sites, which defined boundary condition CO2 concentration for
air entering the Amazon basin. I chose not to assume that surface CO2 observations at
the ocean sites could be extrapolated as a homogeneous vertical profile. Instead, I used
the gradients between different aircraft sites in the basin, which should leave the fluxes in
areas east of the easternmost site not well constrained by the observations. The values of
were ∼1 ppm.

4.2 Results: Fit to observed CO2 data

In this section, I present of the fit of the assimilation to the observed CO2 concentrations, for
the different observation vectors (Section 4.1.5). The terms INV-BRAMS and INV-ECMWF
refer to inversions using the two different transport fields presented in Chapter 3.

PROFILE experiment

The prior and optimized CO2 profiles are shown in Figures 4.7 and 4.8 for the dry period,
and Figures 4.9 and 4.10 for the wet period. In general, after the flux optimization, the
distance to observations was effectively reduced compared to the prior. Posterior profiles
reproduced reasonably well the shape of the biweekly profiles at each site. In most of
cases, the model-observation misfits were within the observation error prescribed in the
inversion (1.4 to 4.5 ppm; Section 4.1.5), except when the observed profiles exhibited more
vertical structure than the posterior profiles, e.g., around the points of sharp concentration
changes. Large CO2 adjustments resulted from the flux optimization both in INV-BRAMS
and INV-ECMWF. At TAB (Figure 4.8h), corrections close to the surface were as large as
15 ppm in INV-BRAMS and 7 ppm for INV-ECMWF during the dry period, and up to∼7 ppm
for INV-BRAMS (Figure 4.10f) and ∼13 ppm for INV-ECMWF (Figure 4.10e) in the wet
period. The largest corrections were found in the first kilometer from the surface, i.e. in
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the PBL, where CO2 is most influenced by surface fluxes. Still, in both transport models
corrections of up to ∼6 ppm were found above 2 km both in the dry and wet periods. In the
PBL, a better fit to the observations would be expected than in altitude. However, during
both dry and wet periods, a better fit to observations was found in altitude rather than in
the PBL (e.g. Figures 4.7a, Figure 4.9l, Figure 4.10(a – d)).
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Figure 4.7: Observed (black) and simulated prior and posterior CO2 vertical profiles for the dry
period of 2010 (July – September). Vertical profiles were simulated with INV-BRAMS (red) and
INV-ECMWF (blue). Shaded areas on the posterior profiles depict the posterior uncertainty for
both model estimates. Error bars represent observation error, estimated as the standard deviation
of the between-model misfit.
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Figure 4.8: Observed (black) and simulated prior and posterior CO2 vertical profiles for the dry
period of 2010 (July – September). Vertical profiles were simulated with INV-BRAMS (red) and
INV-ECMWF (blue). Shaded areas on the posterior profiles depict the posterior uncertainty for
both model estimates. Error bars represent observation error, estimated as the standard deviation
of the between-model misfit.
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Figure 4.9: Observed (black) and simulated prior and posterior CO2 vertical profiles for the wet
period of 2010 (January – March). Vertical profiles were simulated with INV-BRAMS (red) and
INV-ECMWF (blue). Shaded areas on the posterior profiles depict the posterior uncertainty for
both model estimates. Error bars represent observation error, estimated as the standard deviation
of the between-model misfit.
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Figure 4.10: Observed (black) and simulated prior and posterior CO2 vertical profiles for the wet
period of 2010 (January – March). Vertical profiles were simulated with INV-BRAMS (red) and
INV-ECMWF (blue). Shaded areas on the posterior profiles depict the posterior uncertainty for
both model estimates. Error bars represent observation error, estimated as the standard deviation
of the between-model misfit.

The results of Chapter 3 showed that CO2 in altitude was also sensitive to the choice
of different NEE, given the coupling between vertical and horizontal transport in the Ama-
zon, so that important corrections to the profiles in altitude caused by NEE optimization
remain plausible. The residual misfits in the PBL not corrected after the inversion could
reflect errors in the transport models for PBL mixing, given that ECMWF has a simple land
surface scheme, and that BRAMS with JULES may also have biases in the simulation of sur-
face energy budget, which impacts the timing of PBL mixing and the mixed layer height.
Another plausible explanation is the fact that my source NEE field from ORCHIDEE was at
coarse resolution (2◦) and only optimized over the large sub-regions of Figure 4.3a., i.e.
potential impact of aggregation errors, even though the choice of the control sub-region
was made to minimize them.

Despite lower scores in the PBL in some profiles, optimized CO2 showed a good statis-
tical fit to the observations when considering all profiles and all altitudes together. Prior
root-mean-square error (RMSE) across all sites and altitudes decreased from ∼3 ppm to
∼1 ppm in posterior concentrations for both INV-BRAMS and INV-ECMWF during both
periods. Desroziers et al. (2005) proposed a consistency diagnostic of the analysis-error
statistics in the observation space in order to evaluate, and potentially refine, the con-
figuration of the prior uncertainties and observation errors in the inversion setup. Such
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diagnostics were applied to NEE atmospheric inversions by Chevallier and O’Dell (2013).
Desroziers et al. (2005) formulated that the variance of observed-minus-a prior (O−B) CO2
concentration differences do

b = yo−H(xb) should be equal to:

E
[
do

b(d
o
b)

T ]= R+HBHT (4.6)

And the variance of observed-minus-analyzed (O−A) CO2 concentration difference do
a =

yo−H(xa) should be equal to:

E
[
do

a(d
o
a)

T ]= R+HAHT (4.7)

The equalities in (4.6) and (4.7) are satisfied only if the covariance of prior and observa-
tional errors, B and R respectively, reflects the statistics of the actual prior and observation
errors. Desroziers et al. (2005) proposed to compute:(

σ̃b
)2

= (do
b)

T (do
b)/n =

n

∑
j=1

(yb
j − yo

j)
2/n (4.8)

(
σ̃a
)2

= (do
a)

T (do
a)/n =

n

∑
j=1

(ya
j − yo

j)
2/n (4.9)

(4.8) and (4.9) correspond to the mean square (MS) values of the O−B and O−A
departures, respectively, to be confronted to the mean of the diagonal elements of the
right-hand side of equations (4.6) and (4.7). In Figure 4.11, MS values of the O−A and
O−B departures are represented with black dots, and the components of the right-hand
side of equations (4.6) and (4.7) as stacked bars. For both INV-BRAMS and INV-ECMWF,
the variance equality (4.6) was not satisfied in the case of the prior. Before inversion, the
prior error dominated the modeled error balance in both models, and it was larger by itself
than the MS of the O−B departures, suggesting that prior errors were overestimated.

After the inversion, it was the observation error that dominated the posterior error
budget. R values were larger by themselves than the MS of O−A departures, which could
suggest that observation error was also overestimated. But such a result could also arise
from an over-fit of the data due to a very strong overestimation of B. From this diagnostic
alone, therefore, it is difficult to say whether errors in both R and B were overestimated or
if only B was overestimated, and even in the former case, it is difficult to conclude which
type of error was more overestimated (and thus whether data were over-fitted).
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Figure 4.11: Components of Equations 4.6 and 4.7 expressed asd mean square (MS) values for
the PROFILE inversion. Left-hand terms represented as black dots and right-hand terms as stacked
bars.

HGRAD experiment

Model-observation misfits after the inversion were within the observation error (0.7 –
1.6 ppm; Section 4.1.4) during both dry and wet periods. The vertical structure of the
gradients during both periods was adequately fitted by the inversion for both transport
models. Corrections were largest in the first layer near the surface (by up to ∼12 ppm from
prior CO2, e.g. Figure 4.13c), but they were also significant in altitude. During the dry
period, prior CO2 gradients in both models increased (became more positive) or decrease
(became more negative) towards the surface, which was opposite to the observations Fig-
ure 4.12(a – c). This is also seen in the wet period (Figure 4.13(a, c and e)). The inversion
rectified those misfits. In general, during both periods, posterior gradients simulated with
both models showed a good fit to the observed gradients from the surface up to 5 km.

Figure 4.14 shows the components of equations (4.6) and (4.7). During both dry and
wet periods for both models, before the inversion the prior uncertainty dominated the
simulated error budget and, again, the diagnostics indicated that prior uncertainties were
likely overestimated since they were larger by themselves than the MS of the O−B misfits.
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INV-ECMWF was closer to satisfying (4.6) and (4.7) than INV-BRAMS, which indicates
a strong effect of the atmospheric transport on the projection of the prior uncertainties in
the observation space and questions the assumption that B was overestimated. But when
analyzing the results for INV-BRAMS the diagnostics of Desroziers et al. (2005) strongly
supports that B was overestimated. Therefore, these findings question the robustness of
such diagnostics, which strongly rely on the assumptions of the inversion theory and on the
assumptions I made for the structure of the correlations in B and R. After the inversion,
observation error dominated the modeled error budget. While this result supports the over-
estimation of R, it could also be a consequence of the overestimation of B. Therefore, from
these diagnostics alone it is difficult conclude whether B or R, or both, were overestimated,
and in the latter case, in which one the overestimation was more problematic.
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Figure 4.12: Observed (black) and simulated prior and posterior CO2 horizontal gradient for
the dry period of 2010 (July – September). Gradients depict the differecen of the mean CO2 for
1000-m layers from 0 to 5 km between downwind and upwind sites. Gradients were simulated
with INV-BRAMS (red) and INV-ECMWF (blue). Shaded areas on the posterior curves depict the
posterior uncertainty for both model estimates. Error bars represent observation error, estimated
as the standard deviation of the between-model misfit.
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Figure 4.13: Observed (black) and simulated prior and posterior CO2 horizontal gradients for
the wet period of 2010 (January–March). Gradients depict the differecen of the mean CO2 for
1000-m layers from 0 to 5 km between downwind and upwind sites. Gradients were simulated
with INV-BRAMS (red) and INV-ECMWF (blue). Shaded areas on the posterior curves depict the
posterior uncertainty for both model estimates. Error bars represent observation error, estimated
as the standard deviation of the between-model misfit.
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Figure 4.14: Components of Equations 4.6 and 4.7 expressed asd mean square (MS) values for
the HGRAD inversion. Left-hand terms represented as black dots and right-hand terms as stacked
bars.

HSURF experiment

For both models during the dry or wet periods, large prior misfits ranging from 1.2 to
12 ppm were reduced to 0 – 0.4 ppm (Figure 4.15). The diagnostics of Desroziers et al.
(2005) indicated that during both dry and wet periods the uncertainty budget before the
inversion was dominated by the prior uncertainty (Figure 4.16), and that prior uncertain-
ties were overestimated (the right-hand side of (4.6) of is larger than the MS of the O−B
misfits). After the inversion, the prior and observation errors had a similar weight in the
posterior error budget (Figure 4.16), so that with this diagnostic alone it is not possible to
conclude in which one,or, the overestimation was more problematic.
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Figure 4.15: Observed (black) and simulated prior and posterior surface (0 to 1000 m above sea
level) CO2 horizontal gradient for (a) dry (July – September) and (b) wet (January – March) peri-
ods, between downwind and upwind sites. Gradients were simulated with INV-BRAMS (red) and
INV-ECMWF (blue). Numbers in the y-axis correspond to the observations listed in the respective
tables below the plots. Shaded areas on the posterior curves depict the posterior uncertainty for
both model estimates. Error bars represent the observation error.
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Figure 4.16: Components of Equations 4.6 and 4.7 expressed as mean square (MS) values for the
HSURF inversion. Left-hand terms represented as black dots and right-hand terms as stacked bars.

HINTEG experiment

The horizontal gradients integrated along the vertical were well reproduced in the pos-
terior gradients (Figure 4.17). Considering both inversion models and both dry and wet
periods altogether, prior departures of ∼0.2 to 4.9 ppm were reduced to ∼0.2 – 0.5 ppm.
During the dry period, the prior root mean square error (RMSE) of 2.7 and 1.7 ppm in
INV-BRAMS and INV-ECMWF, respectively, was reduced to 0.1 and 0.2 ppm after the in-
version. Similar performance was achieved during the wet period, where prior RMSE of
∼3 and 2 ppm in INV-BRAMS and INV-ECMWF, respectively were reduced to ∼0.2 ppm in
both cases.

The consistency diagnostics proposed by Desroziers et al. (2005), showed that prior
uncertainties prescribed in B dominated the error balance before the inversion, and suggest
that B was overestimated. After the inversion, like in the HSURF experiments, the posterior
uncertainty was as important in the posterior error budget as the observation errors (Figure
4.18). With this diagnostic alone, though, it is not possible to conclude in which one, R or
B, the overestimation was more problematic.
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Figure 4.17: Observed (black) and simulated prior and posterior CO2 horizontal gradient, inte-
grated from 0 to 5000 m above sea level, for (a) dry (July – September) and (b) wet (January –
March) periods, between downwind and upwind sites. Gradients were simulated with INV-BRAMS
(red) and INV-ECMWF (blue). Numbers in the y-axis correspond to the observations listed in the
respective tables below the plots. Shaded areas on the posterior curves depict the posterior uncer-
tainty for both model estimates. Error bars represent the observation error.
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Figure 4.18: Components of Equations 4.6 and 4.7 expressed asd mean square (MS) values for
the HINTEG inversion. Left-hand terms represented as black dots and right-hand terms as stacked
bars.

4.3 Results: optimized fluxes

In this section, I present the posterior fluxes for each inversion experiment. At this stage,
the previous section showed that different inversions with different observation vectors
all had a satisfactory fit to the observations. Here I assess the impact on the fluxes. In
this analysis, fluxes are reported such that positive values represent CO2 emission to the
atmosphere (i.e., the surface is a source), and negative values represent removal (i.e.,
the surface is a sink). In the following subsections, I describe sequentially the results for
the four types of inversion experiments detailed in Section 4.1. The results are discussed
in Section 4.4. Figures 4.19 and 4.20 report prior and posterior fluxes aggregated over
the simulation domain for dry and wet periods, respectively. Figures 4.21 and 4.22 show
how the mean NEE was distributed among its component sub-regions. The posterior error
correlations are shown in Figure 4.23, where correlations above and below the diagonal
correspond to the dry (JAS) and wet (JFM) periods, respectively.
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PROFILE experiment

Dry season fluxes

Before the inversion, the simulation domain was a net CO2 source of 0.63 ± 1.0 PgC. After
the inversion, the net flux to the atmosphere remained close to the prior in INV-BRAMS
(0.66 ± 0.29 PgC) and increased to 0.950.30 ± PgC in INV-ECMWF. In both inversions,
ocean fluxes remained close to their prior values (Figure 4.19a). This is coherent with the
very small sensitivity of concentrations to ocean fluxes (Chapter 3). The significant changes
with respect to the prior fluxes can be seen in EFIRE and NEE. Prior EFIRE of 0.54 ± 0.31 PgC
decreased to 0.24 ± 0.06 PgC in INV-BRAMS and to 0.36 ± 0.12 PgC in INV-ECMWF (∼33
– 55% reduction) (Figure 4.19a). Meanwhile, the NEE increased considerably from a near-
neutral prior (0.06 ± 0.98 PgC) to a net source of 0.39 ± 0.29 PgC with INV-BRAMS, and
to 0.56 ± 0.31 PgC with INV-ECMWF. Figure 4.22a shows that at sub-regional level NEE
shifted towards a larger source or a smaller sink in all sub-regions, except for regions 2
and 3 in INV-BRAMS, and regions 6 and 7 in INV-ECMWF. All NEE sub-regions showed
a large uncertainty reduction of ∼50 – 90% with both models, except for regions 3 and
4, but despite such an uncertainty reduction, the posterior uncertainties remained large
(>100% except for sub-region 8), compared to the posterior estimates of the NEE. EFIRE
sub-regions also showed substantial uncertainty decreased of ∼60 – 86% with the models.
Low posterior correlations (<0.1) between EFIRE regions E and W (Figure 4.23(a, b)) and
moderate posterior uncertainties (∼30 – 50%) suggest those two regions were likely well
separated. This is possibly due to the location of the sampling sites, where TAB and RBA
were likely sensitive to both EFIRE regions E and W, while ALF is mostly sensitive to region
E. Inversion might have used this information to separate both biomass burning regions. In
general, anti-correlations between the posterior uncertainties in different flux sub-regional
budgets remained low (≤0.2), especially between NEE sub-regions. Yet some cases of
moderate posterior anti-correlation (∼−0.4 – −0.5) appeared between EFIRE and NEE sub-
regions with both inversion models (Figure 4.23(a, e)). Therefore, despite the relatively
high posterior uncertainties in NEE sub-regions, there were no major flux separation prob-
lems between them. The only likely moderate separation problem may be between EFIRE
sub-region W and NEE sub-region 2.

Wet season fluxes

Before the inversion, the simulation domain was a net sink of −0.47 ± 1.24 PgC that
turned into a source of 0.29 ± 0.31 PgC with INV-BRAMS and 0.17 ± 0.32 PgC with INV-
ECMWF. Similar to the dry period, ocean emissions had a negligible contribution to the
budget and were not significantly modified by the inversion (Figure 4.20a). Biomass
burning emissions before the inversion were estimated at 0.20 ± 0.11 PgC and remained
nearly unchanged after the inversion with both models (0.14 ± 0.09 PgC for INV-BRAMS;
0.17 ± 0.10 PgC for INV-ECMWF). This is an expected result given the small influence
of biomass burning emissions on the concentrations in this period (due to reduced fire
activity). The largest changes occurred in the NEE. Before the inversion, the terrestrial
biosphere was a strong CO2 sink of ∼−0.70 ± 1.2 PgC. After the inversion, however, both
models predicted the vegetation was close to neutral (∼0.10 ± 0.3 PgC for INV-BRAMS,
−0.03 ± 0.3 PgC for INV-ECMWF). In both inversion models the largest changes in NEE
at sub-regional scale appeared in regions 2 and 8. CO2 uptake in region 2 increased from
∼−0.1 ± 0.31 PgC to −0.19 ± 0.12 PgC and −0.39 ± 0.15 PgC in INV-BRAMS and INV-
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ECMWF, respectively. In region 8, meanwhile, a strong prior sink of −0.38 ± 0.60 PgC
turned into a significant source of 0.47 ± 0.18 PgC and 0.56 ± 0.23 PgC, in INV-BRAMS
and INV-ECMWF, respectively. The uncertainty in EFIRE sub-regions was not considerably
reduced, but this was expected given the reduced fire emissions during the wet period.
The uncertainty across the NEE sub-regions decreased by 61 – 92% with INV-BRAMS, and
by 51 – 84% with INV-ECMWF, but the posterior uncertainties remained large (>100%) in
some sub-regions. Yet, the low (≤0.2) posterior anti-correlations suggest that there were
no strong separation problems. The only likely moderate separation problem may be in
INV-ECMWF, where a moderate posterior anti-correlation (∼−0.5) can be seen between
NEE sub-regions 4 and 5 (Figure 4.23 e), both of which exhibited large (>100%) posterior
uncertainties.

HGRAD experiment

Dry season fluxes

Prior to the inversion, the simulation domain was a net CO2 source of∼0.63 ± 1.0 PgC that
increased to 0.87 ± 0.59 PgC in INV-BRAMS and to 0.85 ± 0.59 PgC in INV-ECMWF. Thus,
posterior fluxes showed a more consistent increase across models than in the PROFILE
experiment. Figure 4.20 shows that fire emissions after the inversion remained close to the
prior in both models (∼0.5 ± 0.3 PgC). On the other hand, while NEE was close to neutral
before the inversion (0.06 ± 0.98 PgC) it became a CO2 source of 0.28 ± 0.58 PgC in INV-
BRAMS and 0.36 ± 0.60 PgC in INV-ECMWF. There was a fair agreement between the two
transport models regarding the direction and magnitude of flux increments across the NEE
sub-regions (except for sub-regions 7 and 8, which are both in the south of the domain,
less constrained by observations; Figure 4.22). Compared to the PROFILE experiment,
the uncertainty reduction in EFIRE and NEE sub-regions was smaller when assimilating
gradients in both transport models. For EFIRE sub-regions the uncertainty reduction was
∼30 – 40% and the posterior uncertainties were moderate to large (∼45 – 70%). In NEE
sub-regions, the uncertainty reduction varied by ∼6 – 53% in INV-BRAMS, and by ∼3 –
48% in INV-ECMWF, and posterior uncertainties were very large (>100%) in most sub-
regions. In both inversions low (≤0.2) posterior error anti-correlations appeared between
EFIRE sub-region W and several NEE sub-regions (1, 2, 5 and 7), and between sub-regions
E and 8 (Figure 4.23(b, f)). Therefore even though posterior uncertainty in W remained
large (∼70%) and posterior uncertainties in NEE sub-regions were also very large, the low
anti-correlations suggest the sub-regional budgets of both emission types were rather well
separated. An indication of dependence on the transport model is the moderate posterior
anti-correlation between sub-regions E and 7 (r ∼−0.4) in INV-ECMWF, not seen in INV-
BRAMS (Figure 4.23(b, f)). With a moderate posterior uncertainty in sub-region E (45 –
55%) and the large posterior uncertainty in sub-region 7, this may be the only separation
problem between these two emission types. The low posterior anti-correlations (≤0.2)
between NEE sub-regions suggest, despite the large posterior uncertainties, an acceptable
separation of their respective flux signals.
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Figure 4.19: Total prior (gray) and posterior biomass burning CO2 emission, NEE and ocean flux
from (red) INV-BRAMS and (blue) INV-ECMWF within the simulation domain for the dry period
(July – September). Results from the experiments (a) PROFILE, (b) HGRAD, (c) HSURF and (d)
HINTEG. Error bars represent the prior or posterior uncertainty on the fluxes.
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Figure 4.20: Total prior (gray) and posterior biomass burning CO2 emission, NEE and ocean flux
from (red) INV-BRAMS and (blue) INV-ECMWF within the simulation domain for the wet period
(January – March). Results from the experiments (a) PROFILE, (b) HGRAD, (c) HSURF and (d)
HINTEG. Error bars represent the prior or posterior uncertainty on the fluxes.
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Figure 4.21: Total prior (gray) and posterior sub-regional budget of NEE (1 – 8) and fire emissions (W and E)
from INV-BRAMS (red) and INV-ECMWF (blue) for July – September (dry period) 2010. Results for experiments
(a) PROFILE, (b) HGRADS, (c) HSURF and (d) HINTEG. Error bars represent prior or posterior uncertainty on the
fluxes.

W E 1 2 3 4 5 6 7 8
Region

0.4

0.2

0.0

0.2

0.4

0.6

Pg
C

Experiment: PROFILE

W E 1 2 3 4 5 6 7 8
Region

0.4

0.2

0.0

0.2

0.4

0.6

Pg
C

Experiment: HGRAD

W E 1 2 3 4 5 6 7 8
Region

0.4

0.2

0.0

0.2

0.4

0.6

Pg
C

Experiment: HSURF

W E 1 2 3 4 5 6 7 8
Region

0.4

0.2

0.0

0.2

0.4

0.6

Pg
C

Experiment: HINTEG

a) b)

c) d)

Prior Post. INV_BRAMS Post. INV_ECMWF

Figure 4.22: Total prior (gray) and posterior sub-regional budget of NEE (1 – 8) and fire emissions (W and E)
from INV-BRAMS (red) and INV-ECMWF (blue) for January – March (wet period) 2010. Results for experiments
(a) PROFILE, (b) HGRADS, (c) HSURF and (d) HINTEG. Error bars represent prior or posterior uncertainty on the
fluxes.
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Figure 4.23: Posterior error correlation between NEE regions 1 – 8, biomass burning emission re-
gions W and E, and ocean regions I and II from PROFILE, HGRAD, HSURF and HINTEG inversions,
with INV-BRAMS and INV-ECMWF. Values above the diagonal represent correlations for July –
September (dry period) and below the diagonal represent correlations for January – March (wet
period).
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Wet season fluxes

Inversions with both transport models diverged considerably regarding the CO2 budget in
the simulation domain. INV-BRAMS turned the strong prior sink of −0.47 ± 1.24 PgC
into a net source of 0.80 ± 0.31 PgC. In INV-ECMWF the domain was almost neutral
(−0.08 ± 0.42 PgC). Posterior EFIRE emissions remained very close to the prior value but
they were small in this period and should not impact the CO2 budget. Thus, changes to
the domain’s budget were caused by a strong uptake reduction by the vegetation (Figure
4.20). Before the inversion, the vegetation was a sink of −0.69 PgC that was reduced
to −0.26 ± 0.41 PgC in INV-ECMWF, and turned into a net source of 0.62 ± 0.30 PgC in
INV-BRAMS. This contrasts with the PROFILE experiment, where both models predicted
a nearly neutral NEE (0.11 ± 0.3 PgC in INV-BRAMS, −0.03 ± 0.31 PgC in INV-ECMWF).
Figure 4.22b shows that except in region 5 INV-BRAMS increased the biogenic flux to the
atmosphere across all sub-regions, and notably in region 8, in contrast to INV-ECMWF,
which increased the uptake in other sub-regions (e.g. regions 3, 5, 6). Both inver-
sion models had a similar performance concerning uncertainty reduction (∼23 – 86% in
INV-BRAMS; ∼30 – 87% in INV-ECMWF), and uncertainty reduction was higher than in
the dry period. Low posterior error anti-correlations (≤0.1) appeared between NEE and
EFIRE sub-regions (Figure 4.23 b, f)); thus, even though posterior uncertainties remained
large in both EFIRE (∼70%) and NEE (>100%) sub-regions, the low anti-correlations sug-
gest a good separation of NEE and EFIRE sub-regional budgets. Low posterior error anti-
correlations (r ≤0.2) between NEE sub-regions also appeared, but even though the poste-
rior uncertainties remained large (even after an overall large uncertainty reduction), the
anti-correlations were low, such that the flux separation is also acceptable.

HSURF experiment

Dry season fluxes

The prior estimate indicated that 0.63 PgC were emitted during the dry period in the simu-
lation domain. After the inversion, emissions increased to 0.79 ± 0.87 PgC in INV-BRAMS
(∼26% increase), but only to 0.64 ± 0.96 PgC in INV-ECMWF (∼2% increase). EFIRE emis-
sions increased less than 10% in both models (Figure 4.19c). The largest change was
in the NEE with INV-BRAMS, which increased from 0.06 PgC to 0.18 ± 0.79 PgC, while
it remained almost neutral in INV-ECMWF (0.03 ± 0.87 PgC). Figure 4.21c indicates that
except for NEE sub-region 7 both models applied similar flux corrections across NEE sub-
regions. However, in general the increments were small, coherent with small uncertainty
reduction across the NEE regions with both models. Uncertainty decreased by ∼2 – 15%
with both inversion models, except in regions 1 and 2, where it was slightly higher (∼18
– 28%), and it was more moderate than in the PROFILE experiment. As a result, the in-
versions yielded large posterior uncertainties in both EFIRE (∼80%) and NEE sub-regions
(>100%). But as in the HGRAD experiment, despite the large posterior uncertainties, the
low posterior error anti-correlations (r ≤0.2) between EFIRE and NEE sub-regions (Figure
4.23(c, f)) suggest a fair separation of the EFIRE and NEE sub-regional budgets. Similarly,
even though posterior uncertainties in NEE sub-regions were very large (>100%), the low
posterior anti-correlations (r ≤0.2) (Figure 4.23(b, c)) between them do not suggest a
major separation problem.
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Wet season fluxes

The prior fluxes indicated a strong CO2 sink of −0.47 ± 1.24 PgC in the simulated domain.
After the inversion the domain was nearly neutral in INV-BRAMS (−0.01 ± 0.83 PgC),
whereas it was a net CO2 source of 0.35 ± 0.89 PgC in INV-ECMWF. In both models, the
uptake reduction is due to changes in the NEE (Figure 4 .63). INV-BRAMS reduced vege-
tation uptake from −0.69 ± 1.24 PgC to −0.20 ± 0.82 PgC and INV-ECMWF indicates the
terrestrial ecosystem was a net source of 0.14 ± 0.88 PgC. Both models reduced the ter-
restrial sink in all sub-regions (Figure 4.22c), except in NEE sub-regions 4 and 6, where
the sink increased slightly. Uncertainty reduction was, in general, higher than in the dry
period across the NEE sub-regions and varied from 2 – 3% (region 3) up to 53 – 55%
(region 7), but the posterior uncertainties remained large (∼80%) in EFIRE sub-regions,
and even larger (>100%) in NEE sub-regions. In spite of these large posterior uncertain-
ties, the nearly null posterior anti-correlations between EFIRE and NEE sub-regions, and
the low (≤0.2) anti-correlations between NEE sub-regions themselves (Figure 4.23(c, f)),
both suggest that there were no separation problems.

HINTEG experiment

Dry season fluxes

The total CO2 flux to the atmosphere within the simulation domain increased by ∼10% in
INV-BRAMS (0.69 ± 0.84 PgC), and by ∼26% in INV-ECMWF (0.79 ± 0.92 PgC), relative
to the prior value. In INV-BRAMS the changes are attributed to a 4% reduction in EFIRE
emissions, and to an increase in CO2 release by the ecosystem (0.14 ± 0.79 PgC). On the
other hand, in INV-ECMWF the changes were due to a 10% increase in EFIRE, relative
to the prior value, and to an increase in CO2 release by the ecosystem, which increased
about twofold relative to the prior value (0.16 ± 0.82 PgC) (Figure 4.19d). Figure 4.21d
shows that while EFIRE and NEE budgets remained about their prior values, significant
increments were applied to sub-regional NEE budgets (e.g. sub-regions 1, 2 and 5). The
overall low uncertainty reduction (1 – 26%) in the sub-regional budgets resulted in large
posterior uncertainties for EFIRE (∼80%) and NEE (>100%) sub-regions. Despite such
large posterior uncertainties, the low (< 0.20) posterior anti-correlations that appeared
between EFIRE and NEE sub-regions, and between NEE sub-regions (Figure 4.23(d, h)),
suggest an acceptable separation of their signals.

Wet season fluxes

The domain was a CO2 sink of ∼−0.5 PgC before the inversion, and became a net source
of 0.13 ± 0.72 PgC in INV-BRAMS and 0.1 ± 0.79 PgC in INV-ECMWF. Coherent with the
other three inversion experiments, the change is attributed to the terrestrial ecosystem.
Before the inversion the vegetation was a sink of −0.69 ± 1.24 PgC that was reduced to
−0.09 ± 0.71 PgC in INV-BRAMS and to −0.21 ± 0.78 PgC in INV-ECMWF (Figure 4.20d).
The most significant changes to the terrestrial CO2 sink with respect to the prior were
distributed over regions NEE sub-regions 7 and 8 (Figure 4.22d). However, while both
models reduced the sink in sub-region 7 such that the it is either neutral (INV-ECMWF)
or a net source (INV-BRAMS), in region 8 the models disagreed; INV-BRAMS reduced
the sink in ∼45% (from −0.38 ± 0.60 PgC to −0.21 ± 0.42 PgC), but slightly increased
with INV-ECMWF (∼4%) (Figure 4 .64d). Both inversion models yielded a low to mod-
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erate (∼3 – 48%) uncertainty reduction across NEE sub-regions, which resulted in large
(>100%) posterior uncertainties. Posterior uncertainties in EFIRE sub-regions were also
large (∼80%). Yet, the nearly null posterior anti-correlations between EFIRE and NEE sub-
regions (Figure 4.23(e, g)) suggest a good separation of their signals. Likewise, despite the
very large posterior uncertainties in NEE sub-regional budgets, the low (≤0.2) posterior
error anti-correlations between them do not suggest major separation problems. The only
moderate separation problem appeared due to the moderate (0.4 – 0.5) posterior error
anti-correlation between NEE sub-regions 7 and 8, where the uncertainties exceed 100

4.4 Discussion

I have presented inversion systems using two atmospheric models that assimilated differ-
ent types of observation to constrain NEE, EFIRE, and ocean CO2 fluxes over tropical South
America, during dry and wet seasons. Overall, inversions based on both transport models
showed good performance in reproducing the observations under both dry and wet condi-
tions. However, this contrasts with the analysis of Chapter 3, which highlighted potential
limitations of the transport models to reproduce the measurements’ spatial and temporal
variability. Therefore, rather than contradicting the assumptions implied by the diagnos-
tics of Chapter 3, the performance of the inversions may imply that the measurements
have been over-fitted, given the transport modeling skills, such that a large portion of the
transport model errors influenced the inverted NEE. Diagnostics of the O−B and O−A dif-
ferences in the observation space indicated that the prior uncertainties, and possibly the
observation errors, were overestimated in the set-up of the inversion. If only the prior
uncertainties had been overestimated, or if they had been “more” overestimated than the
observation errors, this still could have led to data over-fitting. Even though such diagnos-
tics are not fully reliable, since they depend on the theoretical background of the inversion
and on the assumptions I made regarding the structure of correlations in B and R, the
overestimation of B is highly plausible. In this study, prior fluxes were assigned 100% un-
certainty in all flux components (i.e. EFIRE, biosphere and ocean fluxes), larger than those
in van der Laan-Luijkx et al. (2015), who assigned 80% uncertainty to land fluxes, and 40%
to ocean fluxes. As to the observation errors, for the aircraft data Alden et al. (2016) and
van der Laan-Luijkx et al. (2015) assigned values of ∼1 – 7 ppm and 2 ppm, respectively,
whereas in this study R was built with standard deviations of up to ∼1 – 5 ppm. In this
study R was directly derived from the comparison between CH-BRAMS and CH-ECMWF
using the same input fluxes, ignoring error correlations, which, in principle, should more
easily lead to underestimate rather than overestimate the transport error. An overestima-
tion may come from the high amplitude of the fluxes used as input to the transport models
for this comparison. In a general, the consistency diagnostics of Desroziers et al. (2005)
suggest the need of tuning the setup of prior and observation errors, but similar to van der
Laan-Luijkx et al. (2015), no optimization was performed to assign prior and observation
errors. A critical impact of the potential overestimation of B and R would be a strong over-
estimation of the posterior uncertainties. Indeed, posterior uncertainties in the inverted
fluxes were very large. The large amplitude can be related to the lack of data, even in the
PROFILE experiments, where the time lag between profiles of assimilated data at each of
the four measurement sites is no less than ∼2 weeks. But the interpretation of the absolute
values of posterior uncertainties requires caution. Thus, in the following I will rather focus
on the relative difference between the posterior uncertainties when assimilating horizontal
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gradients vs. those in the PROFILE experiments. Such difference was strongly driven by
the reduction in the number of data when selecting gradients as a function of the wind
direction, rather than assimilating all the individual CO2 measurements.

For both inversion models, different observation vectors resulted into different CO2
budgets for the simulation domain (referred to as ‘the region’, henceforth). Likewise, the
CO2 components, i.e. EFIRE, NEE and ocean fluxes, were constrained differently depending
on the type of observation assimilated. During the dry period, fire emissions remained
close to the prior in all experiments assimilating CO2 gradients, but not in the PROFILE
experiment. During the wet period, posterior EFIRE emissions were more similar between
the different observation vectors, but these emissions were also small and had low impact
on the observations. The sub-regional NEE budgets varied considerably between the inver-
sions for both the dry and wet periods. In order to analyze to which extent the differences
in NEE and EFIRE emissions between the PROFILE and the gradient-based inversions could
be attributed to the simple removal of data through the selection of gradients (depending
on the wind direction), rather than to a different filtering of the NEE or EFIRE signals from
the data by the inversion when assimilating gradients, flux corrections to EFIRE across all
sub-regions and weeks during the dry season were compared for PROFILE and HGRAD
experiments for INV-BRAMS (Figure 4.24).
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Figure 4.24: Impact of the observations assimilated in the (a, b) PROFILE and (c, d) HGRAD
experiments on the posterior weekly, sub-regional biomass burning CO2 emissions, for the July –
September (dry period) for INV-BRAMS. Gray bars are the flux correction to the weekly budget.
Red dots indicate when observation were available.
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For EFIRE on sub-region W, flux increments in PROFILE (Figure 4.24a) and HGRAD (Figure
4.24c) had different magnitude, although they had the same direction, whenever obser-
vations were available for the same week. But for sub-region E, when observations were
available in the same week, flux increments had opposed direction over most weeks. Such
differences can also be seen across NEE sub-regions, for instance, in regions 1 – 3, 7 and
8 (Figures 4.25 and Figure 4.26). These findings were also valid for INV-ECMWF (Fig-
ures B.1 to B.3 in Appendix B), despite some differences indicative of transport model
dependency. These results support that inversions exploited the information of individual
measurements and horizontal gradients differently.
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Figure 4.25: Impact of the observations assimilated in the PROFILE experiment on the posterior
weekly, sub-regional NEE, for the July – September (dry period) for INV-BRAMS. Gray bars are the
flux correction to the weekly budget. Red dots indicate when observation were available.
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Figure 4.26: Impact of the observations assimilated in the HGRAD experiment on the posterior
weekly, sub-regional NEE, for the July – September (dry period) for INV-BRAMS. Gray bars are the
flux correction to the weekly budget. Red dots indicate when observation were available.

Furthermore, during the dry period there was some agreement, both in magnitude and
direction, in the posterior sub-regional NEE budgets from gradient-based inversions, but
not during the wet period. Differences between gradient-based inversions during the wet
period are indicative of the impact of the choice of the observation vector. These analyses
demonstrate the need for selecting the most adapted observation vector for the inversion.
A poor selection could lead to strong uncertainties in the inverted fluxes that are not well
diagnosed by the inversion system. The rather simple models used to build the matri-
ces B and R in traditional inversion systems hamper the ability to filter the content of
the model-observation misfits related to errors in the NEE estimates (which is ignored by
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the diagnostic of posterior uncertainties in the inversion system). Selecting an adapted
observation vector helps the inversion system filter out other error sources errors and bet-
ter filter the signature associated with the control vector in the model-observation misfits.
However, in my inversions there was a trade-off between the need for increasing the rel-
ative signal of the NEE in the observation vector and retaining sufficient data to strongly
decrease the posterior uncertainty in the flux estimates—the amount of data being dramat-
ically reduced by the selection of gradients along the wind direction. PROFILE exhibited
the largest uncertainty reduction of all inversion experiments during both dry and wet pe-
riods, likely because PROFILE had more observations than the gradient-based inversions.
The much larger posterior uncertainties obtained when assimilating gradients than in the
PROFILE experiment do not give more confidence in the optimized fluxes from the HGRAD,
HSURF or HINTEG experiments than in those from the PROFILE inversions. Yet PROFILE
is strongly subject to the uncertainties in fluxes outside South America. Gradient-based
inversions, on the other hand, are less dependent on the flux budget of regions upwind
of the observation sites in South America, not constrained by the data of GA2014. Chap-
ter 3 showed that the signature of CO2 boundary conditions was virtually suppressed in
gradient-based observations. However, horizontal gradients should be calculated between
the Amazon sites and ocean sites (like GA2014) in order to constrain fluxes over land
comprised between sites ALF and SAN and the coast.

Inversions showed multiple error anti-correlations between NEE sub-regions, or be-
tween these and EFIRE sub-regions. However, the low anti-correlation values, for instance,
in PROFILE experiments, were an indicator of good separation of sub-regional flux budgets.
In gradient-based inversions, overall, even though posterior uncertainties were larger than
PROFILE, the low error anti-correlations still suggest the sub-regional flux budgets were
fairly separated. Only a few cases of potential separation problems appeared between
NEE sub-regions, or between these and EFIRE sub-regions, due to moderate posterior error
anti-correlations and large posterior uncertainties, especially in NEE sub-regions.

Inversions with BRAMS and ECMWF illustrate the uncertainty in the flux estimates,
both at regional or sub-regional scale, stemming from the underlying atmospheric model.
As suggested in previous inversion studies (Peters et al., 2007; Peylin et al., 2002), the use
of multiple inversion estimates provides an additional measure of the uncertainty in the
estimated fluxes, just as important as the formal uncertainties derived from the Bayesian
approach employed here. The differences between INV-BRAMS and INV-ECMWF support
the assumption that the data were over-fitted by the inversion due to the overestimation of
the prior uncertainties, and that a large portion of the transport errors were projected into
the inverted fluxes.

I could not strictly confront my estimates of the Amazon carbon balance to that of
GA2014. My choice of assimilating horizontal gradients between inland sites allowed the
inversion system to constrain mainly the fluxes over areas between pairs of measurement
sites, leaving the areas between the coast and the sites closest to the coast mostly uncon-
strained. GA2014, on the other hand, established gradients between ocean stations and
the inland sites, which allowed them to strongly constrain fluxes across most of Amazonia.
The experiment PROFILE was likely to constrain a large portion of the Amazon basin. Yet
GA2014 estimated their carbon balance based on an area calculated from mean annual
footprints of the individual measurements at each site, an area which likely differs from
my definition of the Amazon basin (Figure 4.1). But in spite of those methodological dif-
ferences between my study and that of GA2014, I used their results to bring insight on the
realism of my flux estimates. I included the results of van der Laan-Luijkx et al. (2015) and
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Alden et al. (2016) in the comparison since they also used an inverse modeling approach
with the data of GA2014.

I compared my inversion estimates of the NEE within the Amazon basin (as defined
in Figure 4.1) and the estimates of the Amazon net biome exchange (i.e. the surface-
atmosphere carbon flux excluding fire emissions) from GA2014, van der Laan-Luijkx et al.
(2015) and Alden et al. (2016) for January – March and July – September 2010. For
the comparison, I averaged the budgets of my gradient-based inversions. In the dry pe-
riod, my inversions predicted the basin was a net source of CO2 between 0.13 ± 0.49 and
0.36 ± 0.25 PgC, opposite to the three published studies, which predicted a sink of −0.02
to −0.27 PgC. Despite the spread in my gradient-based inversions, on average they all cor-
rected the prior sink in the same direction. My inversions lay outside the range of the three
published estimates, but were consistent in turning the prior CO2 sink into a net source
(Figure 4.27a).
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Figure 4.27: NEE budget for the Amazon basin for (a) dry and (b) wet periods. Grey bar is the
prior NEE budget. Red and Red bars are the NEE budget from PROFILE inversions with INV-BRAMS
and INV-ECMWF, respectively. Light red and light blue are the average of the three gradient-
based inversions for INV-BRAMS and INV-ECMWF, respectively, and horizontal lines denote the
NEE balance for the individual gradient-based inversions. Yellow bar is the estimate of GA2014;
light green and dark green are the estimates of van der Laan-Luijkx et al. (2015) and Alden et al.
(2016), respectively

During the wet period (Figure 4.27b), all my inversions were coherent with the re-
duction of the strong prior CO2 sink. PROFILE inversions predicted the basin was still a
sink of −0.12 ± 0.21 to −0.26 ± 0.20 PgC, whereas the average of gradient-based inver-
sions predicted a net source 0.03 ± 0.50 to 0.13 ± 0.40 PgC. With both INV-BRAMS and
INV-ECMWF, two out of the three gradient-based inversions were consistent with the PRO-
FILE inversions in predicting the vegetation was either neutral or a net sink of CO2, like
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GA2014 (∼−0.30 PgC) and Alden et al. (2016) (−0.03 PgC) (Figure 4.27b). It is difficult
to conclude about the realism of my flux estimates because, compared to van der Laan-
Luijkx et al. (2015) and Alden et al. (2016), my results produced a wide range of NEE
estimates, both as a function of the observation vector and of the atmospheric model cho-
sen. Nevertheless, the spread of my results reflects the wide range of results from other
studies and my inversions produced a general pattern during the dry season 2010, i.e. the
Amazon basin was a strong CO2 source, which adds to the existing range of estimates from
inversions studies in Amazonia.

4.5 Conclusions

The application of regional atmospheric inversion in this chapter hardly strengthened the
knowledge on the seasonal or inter-annual variability of the NEE in the Amazon basin,
even though this should be the long-term goal of such activity. Like in Chapter 3, this
chapter rather highlighted the strong need for studies and development to improve the
skill of the regional inversion in Amazonia before reaching a level of confidence that is
sufficient for the in-depth analysis of the temporal variations of NEE in this region. This
study has participated in such a long term effort, and it still contributed to enrich the set
of estimates of the impact of the extreme dry season in 2010 on the NEE.

My results were strongly dependent on the atmospheric transport models, and there-
fore on the transport model errors, even though I used regional mesoscale transport con-
figurations and a dedicated regional meteorological model, or a relatively high-resolution
operational forecast assimilating large amounts of data in the area. Chapters 3 and 4
demonstrate the critical need for refining the regional transport modeling to achieve ro-
bust regional inversions. This may be one of the main explanations for the large differences
in the estimates obtained by previous studies (GA2014; van der Laan-Luijkx et al., 2015;
Alden et al., 2016) who based their inversion computations on different transport models
or proxies.

The dependency of my results of the inverted fluxes on the choice of the observation
vector reveals the associated uncertainty, and could also explain the large differences in
the estimates obtained by previous inversion studies in Amazonia (GA2014; van der Laan-
Luijkx et al., 2015; Alden et al., 2016) based on different types of observation vectors.
Especially during the wet period, there was little agreement in the regional NEE budget
among the inversions with different observation vectors. In addition, during the dry pe-
riod, gradients and individual measurements in profiles constrained the regional budget of
EFIRE emissions differently. While EFIRE emissions remained close to the prior value when
assimilating gradients, important corrections were applied when assimilating the individ-
ual measurements. Further, even though the number of individual measurements in the
profiles was 10 – 20 times higher than the number of gradients available for the inversion,
the distribution of flux corrections to NEE and EFIRE emissions across sub-regions/weeks in
inversions using gradients suggested that the few gradients assimilated were sensitive to
most sub-regions/weeks, and that flux corrections were spread to other sub-regions/weeks
through correlations in the prior covariance matrix. Therefore, there is some confidence
that differences between the flux budgets, when using different observation vectors, could
be attributed to the inversions exploiting the observations in different ways, and that it
was not an artifact generated by a reduced number of observations.

During the dry season, two elements support that inversions with gradients separated
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better the signal of EFIRE emissions from that of NEE. First, at least with INV-BRAMS, in-
versions using gradients exhibited a smaller number of posterior anti-correlations between
sub-regions, for both NEE and EFIRE emissions, than when using individual measurements.
Second, flux corrections and uncertainty reduction in posterior EFIRE emissions were lower
with gradients than with individual measurements. Therefore, flux corrections to NEE
were likely less affected by the uncertainty in EFIRE emissions when assimilating gradients.
This adds to the advantage brought by horizontal gradients over individual measurements;
in Chapter 3 the former showed less sensitivity to the uncertainty in boundary conditions
than individual measurements did.

It is difficult to judge the realism of posterior NEE inferred using gradients, given the
large posterior uncertainty, even assuming that it could have been overestimated. There-
fore, I compared my results with the estimate of GA2014, and with the inverse modeling
studies of van der Laan-Luijkx et al. (2015) and Alden et al. (2016). Using GA2014 as
a reference, my inversions with both profiles and gradients predicted the vegetation was
too high a source of CO2 during the dry period. During the wet period, inversions with
individual measurements agreed the vegetation was a sink of CO2, and were closest to
the estimate of GA2014. Similar differences can be seen between GA2014 and estimates
of van der Laan-Luijkx et al. (2015) and Alden et al. (2016), both of which missed the
strong sink that GA2014 estimated during the wet period. Further, Alden et al. (2016)
agreed with the near-neutral vegetation found by GA2014, while van der Laan-Luijkx et al.
(2015) found a large CO2 sink. Therefore, the differences between my inversions and
GA2014 are in the range of differences with respect to the recent regional inversion stud-
ies in Amazonia. The critical element illustrated through my inversions is the large range
of NEE estimates that arises from the choice of the transport model and from the selection
of the observation vector.
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CHAPTER

5
Conclusions and perspectives of
future research

The goal of my thesis consisted in improving the knowledge of the seasonal and inter-
annual variations of NEE in Amazonia using a regional inversion modeling approach. When
I started my thesis, the estimates the CO2 balance in Amazonia from atmospheric inversion
models relied on global systems. The lack of data from local stations in Amazonia to
constrain the flux estimates in the region and global transport modeling shortcomings gave
a low confidence on such estimates.

In the first phase of my thesis I looked deeper into the flux estimates from such global
inversions than usually done in inter-comparison studies of global inversions. To this pur-
pose, I carried out two global inversion that assimilated data from the global observation
network, and new data from four local ground stations were assimilated in one of them;
some of those local data had not been used in global inversions. I examined the robustness
of seasonal and inter-annual variations of the net ecosystem exchange (NEE; excluding
fire emissions) in Amazonia inferred from those two inversions (Chapter 2). The global
inversions exposed limitations of the local observation network that existed by the time
I started my thesis, as well as the limitations of the global approach. This supported the
objective of developing a regional modeling approach. I developed two CO2 regional trans-
port model configurations which were evaluated with the new airborne CO2 observations
from Gatti et al. (2014). Further, I used the two transport configurations to explore how to
exploit airborne measurements, combined into different types of observation vectors of in-
dividual measurements or of gradients between bins of these data in the wind direction, to
obtain robust estimates of NEE in Amazonia (Chapter 3). There were difficulties to demon-
strate that the relative benefit of the observation vectors based on along-wind gradients to
separate the uncertainty in NEE from other sources (e.g. biomass burning CO2 emissions
(EFIRE), transport model error) was worth decreasing the number of data to be assimilated,
through the definition and selection of these gradients. It justified carrying out inversions
with both transport model configurations and with the different types of observation vec-
tors, to assess the robustness and consistency of the seasonal and year-to-year variations
of NEE inferred from the inversion (Chapter 4).

In this context, I present the main conclusions of my thesis works (Section 5.1), and
perspectives of where my research could be extended (Section 5.2).
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5.1 Conclusions

The ability of a coarse resolution inversion to estimate seasonal and inter-annual
variations of NEE in Amazonia

The first phase of this thesis showed that in a coarse resolution global inversion the infor-
mation from local ground-based stations, as well as that from stations distant from Ama-
zonia, controlled the NEE in tropical South America at a scale not adapted for solving the
seasonal and inter-annual variations of NEE in Amazonia. This control was characterized
by alternate (dipole) areas of positive and negative flux corrections, both over land and
over the Southern Hemisphere Ocean. The local stations data mainly modified the ampli-
tude of the dipole over land and shifted its position but did not reduce it, even though they
generated some corrections in the vicinity of the stations.

Even though the inversions using the new ground-based sites improved the seasonal
variations of the simulated CO2 concentrations at these sites, the resulting seasonality of
NEE in tropical South America was not substantially different from that of the inversions
ignoring these sites. Furthermore, over rain forests, which cover most of tropical South
America, the seasonality of inverted NEE was not in agreement with the assumption of
stronger CO2 uptake during periods of higher insolation suggested from observation prod-
ucts derived from flux towers. Despite some more robust results like the indication of
a net source (∼0.21 PgC) during 2005, year that was marked by a severe drought, and
the strong sink in 2009 (∼1.1 PgC), when abnormal humid conditions prevailed, these
elements reduced the reliability on the seasonal and inter-annual variability of NEE in-
ferred through the inversions, and supported that the patterns of flux corrections across
the Amazon basin mostly reflected larger scale corrections from the global inversion across
the southern hemisphere, with artificial impacts regionally. This was a consequence of the
sparsity of the local network and the limited measurement records at the local sites, but
also as a consequence of the coarse resolution of the inverse modeling framework, which
was inherent to its global configuration.

Regional atmospheric modeling of CO2 transport in Amazonia

I devoted the second phase of my thesis to assessing the potential benefit of the regional
atmospheric model BRAMS for CO2 transport simulations in Amazonia, relative to using
the global system ECMWF, when both models were used to force the tracer-transport
model CHIMERE. To this purpose, I developed a new offline interface between BRAMS
and CHIMERE, which provided a new regional meteorological-transport configuration for
Amazonia. BRAMS has been tailored to improve key transport processes in Amazonia, it
can generate meteorology at high spatial resolution, and it can be calibrated for specific
studies in the region. ECMWF is, on the other hand, an operational model that assim-
ilates meteorological data from diverse data streams. As a first indicator of the quality
of the simulated transport fields, the validation of the meteorology generated with both
models showed a similar performance in terms of the statistics of the model-observation
misfits, and the performance of both models was similar to that seen in previous studies of
validation of meteorological models in the region.

CO2 transport simulations with both model configurations were compared to verti-
cal profiles of CO2 observations at four sites in Amazonia. Both meteorology-transport
configurations showed, again, similar performance. Instead of demonstrating the superi-
ority of the regional, transport-meteorological configuration CHIMERE-BRAMS, the com-
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parisons between CHIMERE-BRAMS and CHIMERE-ECMWF highlighted and characterized
the high impact of transport modeling uncertainties, even when using these two relatively
high-resolution model configurations for modeling vertical profiles of CO2. These elements
justified using both configurations for regional inversions in the last phase of my thesis.

The sensitivity of the simulated vertical profiles to the meteorological forcing and to
the different flux components did not indicate evidently a “best” transport configuration.
Yet, the sensitivity tests proved useful to explore the ability of an inversion system based on
these two transport configurations to separate the signature of the uncertainty in NEE from
that in the other transport components when assimilating four different types of observa-
tion: the individual measurements, the horizontal along-wind gradients between pairs of
measurement profiles for five vertical layers, the horizontal along-wind gradients in the
surface layer between pairs of profiles sites, or horizontal along-wind gradients between
the vertically integrated profiles. The four types of observation were highly sensitive to
NEE and uncertainties in this flux, but also to EFIRE emissions in the dry season and to
transport uncertainties. They were much less sensitive to boundary conditions, while the
influence of the fossil fuel emissions and ocean fluxes was almost negligible. Thus, inver-
sions using aircraft data can potentially improve our knowledge of the NEE, without strong
influence from the uncertainty in the other flux components, with the notable exception of
biomass burning emissions during the dry season, and with a strong requirement of having
accurate regional transport modeling.

The analysis of horizontal along-wind gradients of CO2 between profiles to evaluate the
two transport configurations exhibited two advantages compared to the evaluation against
individual profile measurements in view to infer the NEE through inversion. Using the gra-
dients to evaluate the models nearly suppressed the influence of the boundary conditions,
and showed lower transport model differences either close to the surface or in altitude.
Moreover, in horizontal along-wind gradients, while the impact of uncertainties in both
transport model and NEE decreased with altitude, the uncertainty in the transport model
became less significant than that in NEE in altitude, suggesting that the transport error
does not mask the uncertainty in NEE in altitude as much as it does close to the surface.
Therefore, assimilating horizontal along-wind gradients, particularly considering different
vertical layers, seemed to offer a stronger potential than individual measurements to con-
strain the NEE with a limited influence of the uncertainties in boundary conditions, and, to
a lesser extent, from the transport model uncertainty. The uncertainty in EFIRE emissions,
though, had a similar weight, relative to that in NEE, in the four observation vectors. On
that ground, it was unclear that horizontal along-wind gradients would make inversion es-
timates more robust than individual measurements, while their definition implies a strong
selection and binning of the data to be assimilated, and thus, potentially, a loss of useful
information to constraint NEE in the inversion.

Regional inversion of CO2 fluxes in Amazonia

In the third phase of my thesis, I developed two analytical, regional inversion sys-
tems for tropical South America to infer the regional and sub-regional flux budgets
of NEE, EFIRE emissions and ocean fluxes. The two inversion systems were based on
the two meteorology-transport model configurations—CHIMERE-BRAMS and CHIMERE-
ECMWF—set up and evaluated in Chapter 3. With the two systems and with the same
set of aircraft CO2 measurements as in Chapter 3, I made inversions with the four types
of observation vectors introduced in Chapter 3, i.e. the individual measurements at each
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profile site and horizontal along-wind gradients between pairs of sampling sites at different
altitudes, close to surface or the vertical integral.

The inverted regional and sub-regional flux budgets of NEE or EFIRE emissions were
strongly dependent on the choice of the transport model, illustrating the importance of the
transport modeling errors. Transport model uncertainty is likely one of the main reasons
for the large differences between the published regional inversion estimates of the Ama-
zon carbon balance, which have relied on different models or approaches to simulate the
transport in the region. My study highlights that improving transport models is essential
to yield robust estimates.

Both regional and sub-regional budgets of NEE and EFIRE emissions were also strongly
dependent on the selection of the observation vector. This was evident particularly for
NEE during the wet period and for EFIRE emissions in the dry period. During the wet pe-
riod, there was less agreement on the regional budget of NEE from the inversions with the
four observation vectors than during the dry period. In the dry period, while inversions
with gradients did not modify substantially the budget of EFIRE emissions, the inversion as-
similating individual measurements introduced significant corrections. The distribution of
flux corrections across sub-regions/weeks illustrated that when individual measurements
and gradients were available for the same week, the inversion introduced different flux
corrections. These elements supported that the differences between the flux budgets in-
ferred with individual measurements or horizontal gradients were not a consequence of
the number of observations available in the observation vector, but a result of the way the
inversions exploited the different types of observation.

Chapter 3 illustrated that gradient-based observations were less sensitive to uncertain
fluxes outside the simulation domain than inversions with individual measurements. On
top of that, in Chapter 4 gradient-based inversions showed a better separation of the flux
budgets of NEE and EFIRE emissions in the dry period than inversions with individual mea-
surements. The former yielded fewer anti-correlations between the posterior uncertainties
in NEE and EFIRE sub-regions, and lower flux corrections and posterior uncertainty reduc-
tion in the regional budget of EFIRE emissions than the latter. As a result, flux corrections
to NEE were likely less influenced by the uncertainty in EFIRE emissions in gradient-based
inversions.

The different inversions diagnosed a large posterior uncertainty in NEE, and thus a low
confidence for tropical South America in their optimal estimate of the NEE. However, I
compared this posterior NEE from my inversions to the CO2 flux estimate (excluding fire
emissions) for the Amazon basin from Gatti et al. (2014). My inversions based on gradients
or individual profile measurements predicted a higher source of CO2 during the July –
September (dry period) than Gatti et al. (2014). During January – March (wet period), the
inversions with individual measurements were closest to the strong sink estimated by Gatti
et al. (2014). In spite of these discrepancies, my results were in the range of differences
between Gatti et al. (2014) and the recent inverse modeling studies of van der Laan-Luijkx
et al. (2015) and Alden et al. (2016). In view of this comparison, as well as their own
diagnostics of uncertainties in the inverted NEE, my regional inversion estimates hardly
bring new information on the seasonal and year-to-year variations of NEE in Amazonia.
Yet, my study contributes to the long-term effort to improve our knowledge of the Amazon
carbon balance. The study highlights the need for improving not only transport modeling
and the observation network in the region, but also the inverse modeling strategy, through,
at least, a better definition of the observation vector to account for the specificities of the
available measurements and the weaknesses of current transport models in Amazonia.
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5.2 Perspectives

This thesis, and the regional inversions that were developed in parallel by other research
groups, illustrate that large uncertainties remain in the estimates of seasonal and year-to-
year variations of the carbon balance in Amazonia. It is necessary to continue to improve
the regional CO2 transport modeling skills. In particular, the simulation of the regional
meteorology, either with BRAMS or with other regional atmospheric models should be
improved with the aim of achieving better performances than with global systems like
ECMWF. Likewise, despite the recent efforts to sample the atmosphere within and around
Amazonia, the definition of the observation vector, and the underlying selection of the data
to be assimilated, have a strong influence on the inferred fluxes. Thus, this research should
be oriented to strengthen the strategy for assimilating data, and in particular aircraft data,
which still represent the most important data source in Amazonia.

The recurrent limitation of atmospheric inversions is the amount of data to constrain
the fluxes, and airborne observations every two weeks (e.g. Gatti et al., 2014) may not
be enough to reduce de uncertainty in the inferred fluxes. While traditional atmospheric
inversions usually avoid assimilating aircraft profiles, the current network configuration in
Amazonia makes it necessary. Moreover, these data, in principle, should present a strong
advantage compared to ground-based in situ measurements since aircraft profiles provide
an essential view of the vertical structure of the CO2 distribution in a region where the deep
convection plays a critical role in the CO2 variability. Chapters 3 and 4 have shown that
these profiles bear patterns, even at heights higher than 2 km above ground level, whose
temporal representativeness is likely very short, which can hardly be fitted and interpreted
with the atmospheric transport models I used and thus strongly influence the inversion
fluxes. In continuous ground-based measurements, such patterns can be characterized and
filtered, or at least their impact can be limited, by giving more weight to the information
at large temporal scales in the inversion frameworks. This is far more difficult when ana-
lyzing vertical profiles every two weeks. Increasing the frequency of aircraft data, though,
may be limited by economic reasons. More studies will be needed to refine the strategy
for assimilating aircraft profiles to take better advantage of their vertical information, and
account for the limitation of their relatively low frequency. Improving the modeling of the
vertical transport will be required for this; which mainly means analyses will have to be
oriented in the direction of what has been investigated in Chapters 3 and 4. Furthermore,
it would also be important assimilate complementary data. In situ ground measurements
have been scarce in the region, but efforts have been made to install new equipment.
Continuous analyzers to measure CO2 near the surface are currently installed at Santarém
(Brazil) and French Guyana, but these measurements are just above the forest canopy and
may not be correctly represented by inversions. Also observations of the column-averaged
dry air mole fraction of CO2 from the Total Carbon Column Network (TCCON) may be
available at Manaus, with other potential sites (e.g. Paramaribo, Suriname; Belikov et al.,
2017) that could be installed in years to come, could also be exploited. These different
types of data should not be analyzed as independent data streams but rather combined in
an optimal way that accounts for their respective advantages. It would also be interesting,
on larger perspective, to extend my regional system to assimilate satellite data. Current
satellite observations of the total atmospheric column of CO2 (XCO2) from the GOSAT and
OCO-2 satellites are limited by the dense cloud cover in Amazonia, which reduces the
amount of available cloud-free soundings. But improvements to planned observing space-
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borne instruments like GOSAT-21—with updated optics and detectors—and OCO-3 should
increase density of the measurements. The National Aeronautics and Space Administra-
tion (NASA) works on the concept of measuring CO2 using laser technology in their Active
Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS2) instrument. The
instrument should provide weekly, day- and nighttime measurements of XCO2, improving
the picture about CO2 fluxes. In December 2016 NASA announced an innovative space
mission, the Geostationary Carbon Cycle Observatory (GeoCARB3), which should provide
daily measurements of XCO2 at ground resolutions of 5 – 10 km.

1http://www.gosat-2.nies.go.jp/about/mission
2https://decadal.gsfc.nasa.gov/ascends.html
3https://www.nasa.gov/press-release/nasa-announces-first-geostationary-vegetation-atmospheric-carbon-mission
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Abstract. The exchanges of carbon, water and energy be-

tween the atmosphere and the Amazon basin have global im-

plications for the current and future climate. Here, the global

atmospheric inversion system of the Monitoring of Atmo-

spheric Composition and Climate (MACC) service is used

to study the seasonal and interannual variations of biogenic

CO2 fluxes in Amazonia during the period 2002–2010. The

system assimilated surface measurements of atmospheric

CO2 mole fractions made at more than 100 sites over the

globe into an atmospheric transport model. The present study

adds measurements from four surface stations located in

tropical South America, a region poorly covered by CO2 ob-

servations. The estimates of net ecosystem exchange (NEE)

optimized by the inversion are compared to an independent

estimate of NEE upscaled from eddy-covariance flux mea-

surements in Amazonia. They are also qualitatively evaluated

against reports on the seasonal and interannual variations of

the land sink in South America from the scientific literature.

We attempt at assessing the impact on NEE of the strong

droughts in 2005 and 2010 (due to severe and longer-than-

usual dry seasons) and the extreme rainfall conditions regis-

tered in 2009. The spatial variations of the seasonal and in-

terannual variability of optimized NEE are also investigated.

While the inversion supports the assumption of strong spatial

heterogeneity of these variations, the results reveal critical

limitations of the coarse-resolution transport model, the sur-

face observation network in South America during the recent

years and the present knowledge of modelling uncertainties

in South America that prevent our inversion from capturing

the seasonal patterns of fluxes across Amazonia. However,

some patterns from the inversion seem consistent with the

anomaly of moisture conditions in 2009.

1 Introduction

The forests of Amazonia cover 6.77 millionkm2 (INPE,

2011). It is the world’s largest continuous area of tropical

forest and reservoir of aboveground organic carbon (Malhi

et al., 2008). Changes in the carbon dynamics of this ecosys-

tem thus have global significance (Wang et al., 2013). How-

ever, the natural variability of CO2 exchange in Amazonia,

as well as its short- and long-term response to natural and

anthropogenic disturbance across scales, is still poorly un-

derstood and a topic of active research.

Published by Copernicus Publications on behalf of the European Geosciences Union.
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There is intense debate about the timing and magnitude of

the seasonal cycle of CO2 fluxes across Amazonia. Studies

employing remote sensing data as a proxy for canopy photo-

synthetic activity have suggested a widespread enhancement

of gross primary productivity of the Amazonian rainforest

during the dry season (Huete et al., 2006). Yet direct and con-

tinuous measurements of net ecosystem exchange (NEE) be-

tween the atmosphere and forest canopy at a local scale (from

1 ha to 1 km2 scale) based on eddy-covariance (EC) systems

do not support such large-scale behaviour. Several EC ob-

servations in central eastern Amazonia (Saleska et al., 2003)

and north-eastern Amazonia (Bonal et al., 2008) also indicate

that tropical forest areas take up CO2 during the dry season,

but similar EC studies in central Amazonia have suggested

an opposite seasonality (Grace et al., 1996; Araújo et al.,

2002). Finally, remote sensing measurements of the verti-

cally integrated columns of CO2 (XCO2) retrieved from the

GOSAT satellite suggest stronger CO2 uptake during the wet

season in southern Amazonian forest than during the dry sea-

son (Parazoo et al., 2013). These measurements thus reveal

a large heterogeneity in space of the phase of the seasonal cy-

cle of NEE within Amazonia. However, most dynamic global

vegetation model (DGVM) simulations predict stronger up-

take during the wet season throughout Amazonia (Verbeeck

et al., 2011; Saleska et al., 2003; Baker et al., 2008; Poul-

ter et al., 2009), although limitations related to mortality or

land use restrict the ability of these generic global models to

simulate CO2 fluxes and carbon stocks of Amazonian forest

(Gloor et al., 2012).

Uncertainty associated with potential spatial heterogene-

ity is also apparent in the estimates of the interannual vari-

ability (IAV) of CO2 fluxes in Amazonia in particular dur-

ing years with extreme climatic conditions. Remote sensing

observations during the severe Amazonian drought of 2005

suggested a widespread enhancement of photosynthetic ac-

tivity, or greening, across Amazonia (Saleska et al., 2007).

The resilience of forests to water stress suggested by the

“drier-yet-greener” papers was originally attributed to a com-

bination of deep rooting, hydraulic redistribution and more

available solar radiation (Saleska et al., 2007). However, the

validity of enhanced vegetation index satellite data has been

recently challenged by Morton et al. (2014) and by losses

in canopy functioning detected in radar-based measurements

(Saatchi et al., 2012). The observations from optical satel-

lite sensors remain controversial because other studies did

not find such an impact of droughts on Amazonian forest

(Xu et al., 2011; Samanta et al., 2010, 2012). Moreover,

observations of microwave backscatter from QuickSCAT

have suggested large-scale persistent negative effects of the

drought of 2005 on forest canopy structure (Saatchi et al.,

2012). Biometry measurements, consisting of periodic mea-

surements of the allocation of photosynthetic products to

wood growth, provide another perspective on the effects of

drought on Amazonian forest trees. In a large-scale, long-

term biometric study, Phillips et al. (2009) found a rever-

sal of the carbon sink due to the effect of the drought of

2005 on tree mortality. This is consistent with a synthesis

of yearly estimates of natural fluxes (NEE plus biomass-

burning emissions) from an ensemble of DGVMs compiled

at http://www.globalcarbonatlas.org.

The scientific community has used atmospheric inversions

for more than 2 decades in an effort to improve the knowl-

edge of CO2 fluxes at a large scale. Whereas EC or bio-

metric studies give flux estimates that are valid at the lo-

cal scale (Ometto et al., 2005), atmospheric inversion of-

fers the possibility to derive measurement-based estimates

for the whole of Amazonia, with spatial resolutions larger

than 500 km, provided that atmospheric observations can

adequately sample the Amazonian flux signal. Inversions

use available measurements of atmospheric CO2 to provide

corrections to prior surface flux estimates using an atmo-

spheric transport model and statistical inversion methods.

The method estimates statistically optimal fluxes within the

boundaries of uncertainties in the measurements, the trans-

port model and prior flux estimates (Enting et al., 1995; Ciais

et al., 2010). The flux corrections spread beyond the vicin-

ity of the measurement footprint, as defined by the transport

model, through hypotheses on the spatial and temporal corre-

lation of the uncertainties in the prior fluxes. We define, here-

after, the tropical South America (TSA) region as the con-

tinental land encompassed between 16.25◦ N–31.25◦ S and

84.38–28.18◦W, which covers the whole Amazonian forest.

Peylin et al. (2013) show that the different inverted seasonal

cycles and IAVs of natural CO2 fluxes from several state-

of-the-art global atmospheric inversions are characterized by

a large scatter over a very similar tropical area of South

America. This is explained by the variety of prior estimates

used by the different global inversion systems and by the

large-scale corrections that are applied in regions poorly cov-

ered by observation networks, such as TSA, in order to bal-

ance the global CO2 budget rather than to match local mea-

surements. For these reasons, atmospheric inversions have

not been included in the review of the carbon cycle in South

America made by Gloor et al. (2012). Lloyd et al. (2007)

and Gatti et al. (2010) applied the principle of atmospheric

inversion to exploit vertical CO2 profile data from airborne

measurements in Amazonia. Their studies, based on mea-

surements near Manaus in central Amazonia (Lloyd et al.,

2007) and Santarém in eastern Amazonia (Gatti et al., 2010),

constitute important efforts to constrain surface CO2 fluxes

at regional scale, measuring and exploiting some of the few

atmospheric data sets available for South America. Their re-

sults suggested CO2 efflux from the ecosystem during the

wet season in eastern Amazonia. By analysing vertical CO2

profiles collected approximately every 2 weeks over the pe-

riod 2010–2011, the recent study of Gatti et al. (2014) pro-

vided a basin-scale picture that not only confirms this re-

gional signal but also suggests an opposite pattern in south-

ern and western Amazonia. Their study reported on the first

data-driven estimate of CO2 fluxes for the whole Amazon

Atmos. Chem. Phys., 15, 8423–8438, 2015 www.atmos-chem-phys.net/15/8423/2015/
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Figure 1. Location of the surface stations used in this study. Blue

indicates surface stations used in MACCv10.1; red shows the sur-

face stations in South America added to the previous setup of

MACCv10.1. Filled circles are stations with continuous measure-

ments; open circles are sites with discrete air sampling.

basin and it provides insight into the sensitivity of this impor-

tant ecosystem to moisture stress. It suggests the importance

of conducting such estimates over longer time periods.

Our goal here is to study the seasonal cycle and IAV of

NEE over Amazonia during 2002–2010. This period offers

the opportunity to investigate significant anomalies in the

interannual variability of carbon fluxes, particularly those

associated with the severe droughts of 2005 and 2010 and

the extreme rainfall registered across the Amazon basin in

2009 (Marengo et al., 2010). The study is based on the

global Monitoring of Atmospheric Composition and Climate

(MACC) inversion system initially described by Chevallier

et al. (2010) (hereafter CH2010). We used version 10.1 of

the MACC CO2 inversion product released in August 2011.

We also use a similar inversion in which we add four ground-

based atmospheric measurement sites surrounding the north-

east of Amazonia to the assimilated data (Fig. 1). Despite the

limitations of the state-of-the-art global inversion approach

in South America, highlighted above and by Gloor et al.

(2012), our analysis of these MACC inversions can help char-

acterise the temporal variations in the NEE over Amazonia

for several reasons. First, it relies on a detailed evaluation

of the inversion results over and within this region, hoping

that some reliable inversion patterns can be isolated. Such

a detailed evaluation has not been conducted in the above-

mentioned intercomparisons of the global atmospheric inver-

sions in TSA. It makes sense to conduct it here on the MACC

inversions since the MACC system uses a variational inver-

sion which solves for the fluxes at∼ 3◦ and 8-day spatial and

temporal resolution. Second, the use of the stations located

in the region can strengthen the robustness of the inversion

results through a significantly increased sampling of the at-

mospheric signature of the fluxes in Amazonia. In particular,

we are the first to use continuous measurements from French

Guyana. The assessment of the impact of these stations on

the inverted NEE (based on the comparison between our dif-

ferent MACC inversions with and without these stations) can

help identify the reliable patterns of the inversion.

The rest of this paper is structured as follows. We present

each component of the standard MACCv10.1 inversion setup

and the use of the additional sites around Amazonia in

Sect. 2. The results of the inversions, with a focus on the

impact of these additional sites, and their comparison to an

independent flux estimate are presented in Sect. 3. In Sect. 4,

we discuss the results and conclude the study.

2 The inversion method

This study builds on MACC, the global atmospheric inver-

sion framework (whose first version is described in detail

in CH2010), to correct a prior estimate of NEE from the

model ORCHIDEE (Organizing Carbon and Hydrology in

Dynamic Ecosystems, Krinner et al., 2005) and of ocean

fluxes, based on the assimilation of in situ measurements of

atmospheric CO2 mole fractions into a global atmospheric

transport model. The approach relies on a Bayesian frame-

work to estimate the conditional probability of the “true”

NEE and ocean fluxes given the statistical information from

the prior fluxes and the set of in situ measurements of at-

mospheric CO2 (hereafter observations). Assumption of un-

biased Gaussian distribution of the uncertainties in the prior

fluxes and of those underlying the simulation of the obser-

vations using the transport model allows us to derive an up-

dated estimate of NEE and ocean fluxes (hereafter the poste-

rior fluxes) that also has an unbiased Gaussian distribution.

The statistically optimal fluxes (i.e. the mean of the poste-

rior distribution of the fluxes) are found by calculating the

minimum of the cost function (Tarantola, 2005):

J (x)= (x− xb)TB−1(x− xb)+

(yo
−H(x))TR−1(yo

−H(x)), (1)

where x is the control vector and mainly denotes the NEE

(defined as the difference between the gross CO2 uptake

through photosynthesis and output through total ecosystem

respiration) and air–ocean exchanges that are optimized at

a chosen spatial and temporal resolution. xb represents the

prior NEE and ocean fluxes, and yo is the vector of obser-

vations. H is the operator projecting x into the observation

space and is based on an atmospheric transport model and

fossil fuel and biomass-burning CO2 emission estimates.

B and R are the covariance matrices of the normal distri-

bution of the uncertainty in xb (the “prior uncertainty”) and

of the sum in the observation space of the other uncertainties

when comparing H(xb) to yo respectively (the “observation

errors”). The latter includes the measurement, model trans-

port and model representation errors. A complete solution to

the inversion problem requires the estimation of the uncer-

tainty in the optimized fluxes (the “posterior uncertainty”),

which is a function of the prior and of the observation errors.
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As explained below in Sect. 2.1, this estimation was not per-

formed in this study. The following sections present a brief

description of each component of the inversion configuration

used in this study with a focus on parameters that are spe-

cific to this study, while CH2010 provides more details on

the parameters which apply to all the MACC inversion con-

figurations.

2.1 Inversion modelling setup

The link between CO2 fluxes and observations in the MACC

inversion is simulated by the global circulation model of the

Laboratoire de Météorologie Dynamique (LMDZ) (version

4, Hourdin et al., 2006), which is the atmospheric compo-

nent of the coupled climate model of the Institut Pierre Si-

mon Laplace (IPSL-CM4). Tracer transport is simulated by

LMDZ at a horizontal resolution of 3.75◦× 2.75◦ (longi-

tude× latitude) and with a vertical resolution of 19 levels

between the surface and the top of the atmosphere. LMDZ

is nudged to winds modelled by the European Centre for

Medium-Range Weather Forecasts (ECMWF). Prior NEE in

MACCv10.1 was estimated at 3.75◦× 2.75◦ and 3 h resolu-

tion from a global simulation of the ORCHIDEE model at

0.7◦ resolution by Maignan et al. (2011). ORCHIDEE was

forced with the atmospheric conditions of ECMWF reanaly-

sis ERA-Interim (Berrisford et al., 2009). The ORCHIDEE

NEE did not take into account disturbance from land use or

wildfires. Prior ocean–atmosphere CO2 exchanges were ob-

tained from the climatology of air–ocean CO2 partial pres-

sure difference by Takahashi et al. (2009).

To complement these fluxes that were controlled by the in-

version, the H operator also included fixed estimates of the

fossil fuel and biomass-burning CO2 emissions. Fossil fuel

emissions were obtained from the EDGAR-3.2 Fast Track

2000 database (Olivier and Berdowski, 2001), scaled annu-

ally with the global totals of the Carbon Dioxide Informa-

tion Analysis Center. CO2 emissions from biomass burning

were taken from the Global Fires Emission Database version

2 (GFEDv2, Randerson et al., 2007). Assuming that the veg-

etation recovers rapidly from fire events, the CO2 emissions

from fires that affected the vegetation in a given year were

offset by an equivalent compensatory regrowth CO2 uptake

evenly distributed throughout the year.

The inversion controlled 8-day mean daytime and night-

time NEE and 8-day mean ocean fluxes at the spatial resolu-

tion of the transport model. The analysis in this study focuses

on NEE and thus the impact of the inversion on ocean fluxes

is not detailed here, but Sect. 3.2 still uses an illustration of

this impact to raise insights into the corrections from the in-

version over land. At the grid scale, uncertainties in the prior

NEE are estimated to be proportional to the heterotrophic

respiration fluxes from ORCHIDEE. Spatial correlations of

the uncertainties in B decay exponentially as a function of

the distance between corresponding pixel-based estimates of

the fluxes with a length scale of 500 km for NEE (1000 km

for ocean fluxes). Temporal correlations of the uncertainties

decay exponentially as a function of the lag time between the

corresponding 8-day mean daytime or nighttime estimate of

the fluxes with a timescale of 1 month but without correlation

between daytime and nighttime uncertainties. The resulting

correlations in B are estimated as the product between the

temporal and the spatial correlations. This setup of the cor-

relations for B is based on the estimates by Chevallier et al.

(2006) and Chevallier et al. (2012) of differences between the

NEE simulated by ORCHIDEE and EC flux measurements

(mostly located in the Northern Hemisphere).

In the inversion framework, the misfits between simulated

CO2 mole fractions and the measurements that are not due

to uncertainty in the prior NEE or ocean fluxes must be ac-

counted for in the covariance matrix R. Uncertainties in fire

and anthropogenic CO2 emissions are assumed to have negli-

gible impact at the measurement locations used here. There-

fore, they are ignored in the setup of R. Following CH2010,

the measurement errors are assumed to be negligible in com-

parison to the uncertainties in the transport model. Model

transport and representation errors are modelled as half the

variance of the high-frequency variability of the deseason-

alised and detrended CO2 time series of the measurements

that are assimilated at a given station. The resulting values of

these model errors for the stations in South America will be

discussed in Sect. 3.1.

There is a moderate confidence in the adequacy of these

error statistics assigned in the global inversion system for

the specific TSA area studied here, both because B was de-

signed mostly with statistics gathered in the Northern Hemi-

sphere and because R may not well account for the uncer-

tainty in the atmospheric convection model, while this could

be high in Amazonia (Parazoo et al., 2008). We also investi-

gate here variations of the fluxes within TSA at spatial scales

that are not much larger than the e-folding correlation length

in B, and these variations in the inversion results may be af-

fected by our simple hypothesis of isotropic correlations in

the prior uncertainty. This lack of confidence in the input er-

ror statistics weakens our confidence in the posterior error

statistics that can be derived based on the inversion system,

even though they may be realistic at zonal scale for the trop-

ics (Chevallier and O’Dell, 2013). In this context, and given

the relatively high computational burden of the posterior un-

certainty computations for grid-point inversion systems (us-

ing Monte Carlo approaches with ensembles of inversions,

Chevallier et al., 2007), we do not derive these posterior un-

certainties for our domain and its sub-domains.

However, we will see at the beginning of Sect. 3 that the

inverted fluxes are more consistent with the CO2 atmospheric

observations in TSA than the prior fluxes and that their dif-

ference to the prior fluxes over TSA (i.e. the flux increments

generated by the inversion in order to better fit with the obser-

vations) are significant. This indicates that the inverted fluxes

are strongly driven by the atmospheric data and as such are
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Santarém (SAN)

E. Dlugokencky
ESRL, NOAA, Boulder, Colorado, USA

D. Bonal, INRA, Nancy, France and
B. Burban, INRA, Kourou, French Guiana
B. Munger
Harvard University, Cambridge, Massachusetts, USA
S. Wofsy
Harvard University, Cambridge, Massachusetts, USA

1

Figure 2. List of surface stations over South America added to the previous setup in MACCv10.1.

worth analysing. This also suggests that the inversions yield

a large uncertainty reduction for TSA.

2.2 Assimilated data

MACCv10.1 assimilated measurements of atmospheric CO2,

expressed as dry air mole fractions in µmolmol−1 (abbre-

viated ppm) from 128 surface sites: 35 continuous mea-

surement stations and 93 sites with measurements of CO2

from discrete air samples collected approximately weekly.

Twenty-nine sites are located in the tropics, but only two had

continuous measurements over the analysis period and none

of them were in TSA. In a similar inversion conducted specif-

ically for this study, called INVSAm hereafter, we added new

data from four surface sites located in the TSA region. Fig-

ure 1 shows the measurement sites used by MACCv10.1 and

the four stations added in INVSAm. In the following of this

section, we focus on the description of these four stations

and on the selection and representation of their data. Details

on the data selection and representation at the sites used by

MACCv10.1 are provided in CH2010.

Arembepe (ABP) (12.77◦ S, 38.17◦W; 1 m a.s.l.) and

Maxaranguape (MAX) (5.51◦ S, 35.26◦W; 15 m a.s.l.) are

coastal stations. The ABP site is located at the edge of the

beach, where vegetation consists mostly of grass and beach

plants. Data were collected at approximately 3 m above the

ground and consisted of weekly measurements of atmo-

spheric CO2 with discrete air samples, specifically under

on-shore wind conditions when wind speed > 2 ms−1. Air

samples were collected preferentially during the afternoon to

avoid the influence of recycled air transported from land to

the ocean by land breeze during the night and early morning

and transported back to land by sea breeze during the morn-

ing. The MAX site is located on a cliff right next to the coast

and is surrounded by grass and beach plants. At MAX, CO2

was measured with a continuous analyzer at approximately

3 m above the ground, and data were reported as 30 min av-

erages. This site is strongly under marine influence: winds

are in general > 10 m s−1, and wind direction varies prefer-

entially between 100◦ and 140◦ (Kirchhoff et al., 2003) at

its location, so that the measurements were taken mostly un-

der on-shore wind conditions. Wind and CO2 measurements

at MAX indicate high CO2 variations when the wind comes

from land. These variations may be strongly influenced by

the emissions from the nearby city of Maxaranguape (Kirch-

hoff et al., 2003). However, as in ABP, this does not occur

during the afternoon, when the wind conditions are domi-

nated by sea breeze (Law et al., 2010).

The Guyaflux site (GUY) (5.28◦ N, 52.91◦W; 40 m a.s.l.)

is located at approximately 11 km from the coast and is sur-

rounded by undisturbed tropical forest. At GUY, measure-

ments were taken at approximately 55 m above the ground

(Bonal et al., 2008). They were made with a continuous anal-

yser, and data were reported as hourly averages. The San-

tarém site (SAN) (2.85◦ S, 54.95◦W; 78 m a.s.l.) is located

in the tropical Tapajós National Forest, near km 67 of the

Santarém–Cuiabá highway, at approximately 750 km from

the coast. Measurements were made at eight vertical levels

ranging from ∼1 to ∼ 62 m above the ground with continu-

ous analyzers, but only data from the highest level were used

in INVSAm. Data were reported as hourly averages.

Figure 2 illustrates the temporal coverage of the observa-

tions available in TSA during the simulated period (2002–

2010). There is little overlap among the site records due to

calibration problems, interruption of the measurements (e.g.

at MAX) and the fact that some stations have been installed

only recently (e.g. at GUY). The longest records were from

ABP (3 years: 2007–2009) and SAN (4 years: 2002–2005).

Data from the four new sites in TSA have been calibrated on

the WMO-X2007 CO2 scale managed by the ESRL/NOAA.

Prevailing winds in the lower troposphere across TSA con-

vey air masses entering from the Atlantic Ocean near the

Equator, across the continent and back into the southern At-

lantic Ocean generally south of 20◦ S. There are no critical

seasonal variations of the mean winds in the area so that this

typical behaviour applies throughout the year. The climatol-

ogy of wind fields from the NCEP/NCAR reanalysis (over

the period 1981–2010) for February, July and annual mean,

shown in Fig. 3, illustrates this typical circulation pattern.

This confirms that the variations of CO2 at coastal stations

(ABP, MAX) are mainly influenced by air–ocean exchanges

and fluxes in distant lands. These stations should thus provide

more information on the atmospheric CO2 content upwind

of TSA than on the fluxes within Amazonia. Figure 3 also

shows that GUY and SAN receive a signal from the ecosys-
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e)d)

c)b)a)

Top: Climatological wind speed and direction for (a) February, (b) July, and (c) annual mean for
the period 1981–2010 (from NCEP/NCAR Reanalysis), averaged between the surface and 600 hPa.
Bottom: Sensitivity of surface atmospheric CO2 mole fractions measured on 20 February 2009 at
10:00 UTC, at Guyaflux (d) and Santarém (e), to a constant increment of surface fluxes during the
two days prior to the measurement. Sensitivity values are expressed in log-scale. Circles indicate
location of surface stations in South America. Open circles: sites with discrete air samplings. Filled
circles: measurements taken with continuous analyzers.

Figure 3. Top: location of assimilated surface stations in South America and climatological wind speed/direction for February (a), July

(b) and annual mean (c), averaged over 1981–2010 between the surface and a level of 600 hPa (source: NCEP/NCAR reanalysis). Sensi-

tivity of surface atmospheric CO2 mole fractions measured on 20 February 2009 at 10:00 UTC, at Guyaflux (07:00 LT) (d) and Santarém

(06:00 LT) (e), to a constant increment of surface fluxes during the 2 days prior to the measurement. Sensitivity values are expressed in log

scale. Open circles: sites with discrete air samplings. Filled circles are measurements taken with continuous analysers.

tems of the north-eastern Amazon basin. Despite GUY being

not far from the coast considering the Amazon-wide scale,

this site is still located inland, in an area covered by undis-

turbed tropical wet forest. SAN is located considerably fur-

ther inland than GUY. Typical influence functions of fluxes

for observations at GUY and SAN (the observation “foot-

prints” in Fig. 3b and c respectively) illustrate that the sensi-

tivity of instantaneous mole fractions to the fluxes rapidly de-

creases with the distance mainly due to the typically moder-

ate horizontal wind speeds, so that they should bear a strong

signature of local fluxes, i.e. of the NEE in north-eastern

Amazonia. This and the fact that the geographical distance

between the sites in the TSA region ranges from 1000 to

2600 km, i.e. up to 5 times the correlation length scale in the

matrix B, could suggest that the area well constrained by the

sites in the TSA region through inversion is limited. How-

ever, as illustrated in Fig. 3, the station footprints also have

modest values over very extensive areas, which may also re-

sult in significant large-scale constraint from the inversion

on the land flux estimates. This will be analysed below in

Sect. 3.2.

We assimilated observations from the South American

sites between 12:00 and 15:00 local time, when the boundary

layer is well developed and likely to be well represented by

the transport model (Butler et al., 2010; Gatti et al., 2010).

Such a selection of the afternoon data results in ignoring the

measurements under off-shore flow at MAX and thus the po-

tential for capturing a clear signature of the regional NEE

at this site such as at ABP. However, this potential is rather

low since under off-shore flow conditions the signal at MAX

is also connected to the local anthropogenic emissions, and

the inversion cannot reliably exploit such a signature of the

regional NEE when the dynamics of the planetary bound-

ary layer are poorly represented by the atmospheric transport

model. Observations were also screened for low wind speed

(> 2 ms−1), thus removing the effect of local emissions (and

sinks) that may not be well captured by the transport model

at resolution 3.75◦× 2.5◦. Under such on-shore flow condi-

tions, the model correctly simulates CO2 in the grid cells cor-

responding to the horizontal location of the coastal sites, even

though these grid cells bear a significant NEE due to the over-

lapping of both land and ocean. This reduces the need for ad

hoc changes of the model grid cells to better represent CO2

at the coastal sites (e.g. Law et al., 2010). In a general way,

we choose to represent the four measurements sites using the

model horizontal grid cell in which they are located since,

for each site, it yields better statistical fit between the prior

simulations and the selected measurements than when using

neighbour grid cells.

2.3 Analysis of an alternative estimate of the NEE for

the evaluation of the inversions

Our analysis of the inversion results is compared to the in-

dependently derived NEE estimated by Jung et al. (2011)

(hereafter J2011). J2011 used model tree ensembles (MTE),

a machine-learning technique, to upscale FLUXNET eddy-

covariance observations, based on remote sensing, climate

and land-use data as drivers, thereby producing gridded es-

timates of NEE and other surface fluxes at the global scale
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at 0.5◦ resolution. As discussed in J2011, large uncertainties

affect their annual mean NEE estimates and associated sea-

sonal and interannual variations. This is likely particularly

true in TSA region, where few FLUXNET measurements are

available. Yet its comparison to the NEE from the inversion

could give useful insights for the analysis of the latter.

3 Results

In this section we first analyse the statistical misfits between

observations and simulated mole fractions from prior and

posterior fluxes at the sites in the TSA area, as a measure

of the efficiency of the inversion in reducing the misfits to

the measurements. This is a first indicator of the significance

of the corrections applied to the fluxes. We then examine

the amplitude and spatial distribution of the increments from

both inversions to give a further indicator of this significance

and to characterise the impact of assimilating the measure-

ments from the sites in South America. Finally we focus on

the impact of the inversions on the seasonal patterns and IAV

of NEE which are the aim of this study. This analysis is sup-

ported by the comparison to the product of J2011.

3.1 Comparison to observed CO2 mole fractions

The time series of assimilated observations and the cor-

responding simulated CO2 mole fractions using the prior

fluxes, the inverted fluxes from MACCv10.1 and that from

INVSAm at the four sites in the TSA region are plotted in

Fig. 4. The statistics of the misfits between these measured

and simulated CO2 mole fractions are summarised in Fig. 5.

At each site in the TSA region, the smallest quadratic mean

and standard deviation of the misfits between the simulations

and the observations were obtained with INVSAm, which

is a logical consequence of the assimilation of these obser-

vations. However, the misfits are also strongly decreased at

all sites when comparing MACCv10.1 to the prior simula-

tion. While, compared to the prior simulation, MACCv10.1

strongly decreases the standard deviation of the misfits at

MAX and ABP, it does not significantly reduce it at GUY and

SAN. The decrease of the misfits at all sites in MACCv10.1

is thus explained by the strong decrease of the bias in these

misfits. Indeed, both inversions critically reduce a large-scale

bias over TSA, since the presence of a few marine stations

on the globe is enough to introduce this effect by correcting

the global growth rate of CO2 (CH2010). However, the in-

formation from the local network significantly impacted the

seasonality of the simulated CO2 in the TSA region.

The resulting optimized mole fractions from INVSAm

generally shifted from a minimum to a maximum around

June every year at SAN or from a maximum to a minimum

around October (both in 2004 and 2006) at MAX with re-

spect to the prior simulation and MACCv10.1 (Fig. 4c) and

in agreement with the observations. While yielding a phase
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Figure 4. Comparison of assimilated CO2 observations (blue)

and corresponding simulated mole fractions using prior fluxes

(red), INVSAm (green) and MACCv10.1 (purple). Measurements

were collected at Arembepe (a), Guyaflux (b), Santarém (c) and

Maxaranguape (d). Data shown here correspond to daily aver-

age mole fractions between 12:00 and 15:00 LT, when wind speed

> 2 ms−1. Note that the timescale differs between plots.

of seasonality at GUY comparable to that of the prior sim-

ulation and MACCv10.1 and comparable to that of the data,

INVSAm exhibits a significant rescaling of the seasonal vari-

ations in the period from May to September at this site

(Fig. 4b) compared to these two other simulations, in agree-

ment with the observations. At SAN, during the austral fall–

winter, while the misfits are negative with MACCv10 they

become positive with INVSAm. The positive increments

from the assimilation of data at SAN (no other data are as-

similated in TSA in 2002 and 2003) are thus too high.

Subsequently, when compared to MACCv10.1, INVSAm

improves the amplitude of the seasonal variations of the sim-

ulated mole fractions with respect to the prior simulation at

GUY and MAX and does not impact it at SAN. At ABP,

the seasonality is less visible in both the measurements and

the inversion posterior simulations and it is difficult to assess

whether INVSAm improves it compared to MACCv10.1, but

both inversions dramatically decrease the large amplitude of

the prior seasonal variations, consistent with the data. The

best correlations with the observations are obtained with IN-
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Figure 5. Taylor diagram of the statistics of misfits between ob-

servations and simulated CO2 mole fractions between 12:00 and

15:00 LT at Guyaflux (square), Santarém (circle), Arembepe (dia-

mond) and Maxaranguape (triangle), when wind speed > 2 ms−1,

using prior fluxes (red), INVSAm (green) and MACCv10.1 (pur-

ple). Radial distance from the origin: ratio of SD of simulated mole

fractions and SD of the observations. Angle measured from the

y axis: coefficient of correlation. Numbers next to the symbols: bias

(in ppm). Grey circles: SD of the misfits (in ppm).

VSAm at all sites (Fig. 5). The values of these correlations

remained generally low, ranging from 0.23 at GUY to 0.81

at ABP. These correlations are based on comparison of daily

CO2 mole fractions while the inversions control 8-day mean

fluxes, which strongly limits the ability to impact the mole

fractions at higher temporal resolution and can thus explain

the low correlation values. Correlations between time series

of observed and simulated monthly mean mole fractions are

higher than those for daily values, ranging from 0.76 at GUY

to 0.92 at ABP for INVSAm, with which, again, these corre-

lations are the highest.

The significance of the reduction of the misfits between the

mole fractions observed and simulated from the inversion is

seen from the comparison between the standard deviations

of these misfits and the estimate of the standard deviation

of the observation errors (i.e. of the transport model errors)

for hourly values in the configuration of the R matrix (Ta-

ble A1 in the Supplement). According to this comparison,

the prior misfits are much larger than the observation errors

at ABP, MAX and GUY but are slightly smaller than these at

SAN. Misfits between MACCv10.1 and the observations are

similar to the prior misfits at SAN and GUY and are much

smaller than the prior misfits (and smaller than the 95 % con-

fidence interval of the observations) at the coastal ABP and

MAX sites. Misfits are further decreased when assimilating

the data from the South American sites: they are about the

standard deviation of the observation errors at all sites but

GUY (where they are twice as large).

These results suggest that the assimilation of data in the

TSA region helped improve the phasing of the seasonal vari-
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Figure 6. Spatial distribution of 2002–2010 mean flux corrections

at the transport model resolution (3.75◦× 2.50◦) to ORCHIDEE

from INVSAm (left) and MACCv10.1 (right) over an area larger

than TSA region: mean for February (a, d), July (b, e) and the full

period 2002–2010 (c, f). Flux increments over land and ocean are

represented with two distinct colour scales and units: green–yellow

for land, in gCm−2 h−1; blue–red for ocean, in mgCm−2 h−1. Red

symbols are surface stations in South America added to the previ-

ous setup of MACCv10.1, where filled circles indicate locations of

sites with continuous measurements; open circles indicate locations

of sites with discrete air sampling. Black symbols are the surface

stations used in MACCv10.1.

ations, whereas MACCv10.1 did not impact it. MACCv10.1

mainly improved the amplitude of the seasonal variations

at the coastal sites and decreased the biases. INVSAm im-

proved the amplitude of the seasonal variations at GUY.

More generally, unlike MACCv10.1, INVSAm led to an im-

provement of the variability of the simulated CO2 at the in-

land sites, which are more sensitive to the NEE in Amazonia.

3.2 Characterisation of the monthly to annual mean

inversion increments to the prior fluxes

Figure 6 shows the spatial distribution of the mean correc-

tions applied during the period 2002–2010 by INVSAm and

MACCv10.1 over land and ocean, across an area that cov-

ers the TSA area and neighbour regions. Complementary to
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this, Fig. S1 shows the spatial distribution of the corrections

over land in the TSA region for the full 2002–2010 period

and for the 2002–2005 and 2006–2010 sub-periods. Both

give results for the full years and for the months of February

and July. As such, these figures are indicative of the ampli-

tude and spatial extent of the corrections from the inversions

and of the impact of the assimilation of the measurements

in South America. Figure S1 even dissociates the impact of

assimilating data at SAN and MAX and that of assimilating

data at MAX, ABP and GUY by splitting the results between

the time periods when these two different sets of data are

available. The analysis of the annual mean corrections and of

mean corrections for February and July should also give first

insights on the significance of the corrections applied to the

seasonal cycle and IAV of the NEE in the TSA region.

Figure 6 depicts the increments from both inversions,

showing large patterns which are nearly zonal (or along the

prevailing winds) and overlap continuously over land and

ocean. Since there is no correlation between the uncertainty

in ocean and land fluxes in the B matrix, and given the typ-

ical length scale of the correlations in this matrix, this can

be directly connected to the signature of atmospheric trans-

port. The contiguous zonal patterns have alternate negative

and positive flux increments. There is thus an opposition be-

tween corrections in the north and in the south of the TSA

region. These corrections are rather negative in the north and

positive in the south (positive in the north and negative in

the south) during the austral summer (winter). As these cor-

rections are stronger during the austral winter, it results in

positive (negative) corrections in the north (south) at the an-

nual scale. Such dipoles are a typical behaviour of inverse

modelling systems in data-poor regions (Peylin et al., 2002).

However, changes in the amplitude and latitudinal position

of this zonal dipole appear to be the main impact from the

assimilation of data in the TSA region. This dipole structure

may thus yield sensible corrections to the NEE in the TSA

area. The dipole has a high amplitude for MACCv10.1 and

even higher for INVSAm. The increments from INVSAm to

the annual fluxes often exceed 150 % of the prior estimate

in terms of absolute values. The highest increments are ob-

tained during austral winter and when the SAN data are avail-

able (during the period 2002–2005, see Fig. S1), which is in

line with the fact that this site is located more inland than

the others. Such high control of the data in the TSA region

(even when checking the SAN and MAX or the MAX, ABP

and GUY data sets only) over the zonal patterns of flux cor-

rections also highlights the very large-extent impact of these

data, and of the data in the Southern Hemisphere in general,

despite the relatively small spatial correlation length scales

in the B matrix and the limited area in which the station foot-

prints are very high. The inversion also generates patterns of

corrections of smaller spatial scale close to the measurement

sites in the TSA region when these sites are used by the inver-

sion. This raises hope that the NEE over the whole TSA re-

gion is strongly constrained by the observations but can also
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Figure 7. Monthly mean NEE anomaly integrated over (a) the TSA

region and (b) over pixels dominated by TBE forests in ORCHIDEE

for 2002–2010. The shaded areas denote dry seasons, defined as

months with precipitation< 100 mm, based on monthly totals from

TRMM data over 2002–2010. Estimates from prior fluxes (red), IN-

VSAm (green), CH2010 (purple) and J2011 (dashed blue). (c–d)

Monthly mean NEE integrated over the zones 1 (c) and 2 (d) that

are defined in Fig. 8.

raise questions regarding the spatial variations of the correc-

tions applied by the inversion to the NEE within the TSA

region, at least when considering areas at more than 500 km

from the measurement sites. However, various pieces of evi-

dence (Figs. 5 and 6, the analysis of the decrease in misfits to

the observations from the inversion in Sect. 3.1 and the pre-

vious analysis of the high increments to the monthly mean

and annual mean NEE over the entire TSA region) indicate

that the corrections from the inversion are significant.

3.3 Diagnostics of the biogenic CO2 fluxes

3.3.1 Seasonality

Figure 7a illustrates the mean seasonal cycle of NEE from the

prior fluxes, J2011, MACCv10.1 and INVSAm over TSA.

The mean for the full period 2002–2010 was removed be-

cause uncertainties in the long-term mean can be large for the

inversions as well as for the J2011 product and because this

long-term mean can differ significantly between the different

estimates. Removing the mean allows us to focus on the sea-

sonal variations. Hereafter, positive values of NEE indicate

anomalous CO2 release to the atmosphere; negative values

indicate anomalous uptake by the ecosystems. The shaded

area indicates the dry season, defined as months with precipi-

tation< 100 mm according to data from the Tropical Rainfall

Measuring Mission (TRMM 3B43 (v6) product), averaged

over January 2002 to June 2010. The results of Fig. 7a are

calculated considering all the plant functional types (PFTs)

represented in ORCHIDEE over the TSA region. The vegeta-
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Figure 8. Dominant PFTs for each transport model grid cell (i.e.

3.75◦× 2.50◦) according to the ORCHIDEE vegetation map over

the study region. Open circles show location of sites with discrete

air sampling; filled circles show location of sites with continuous

measurements. Zones 1 and 2 indicate areas for which the NEE is

presented in Fig. 7c and d respectively.

tion map of ORCHIDEE, originally at a spatial resolution of

0.72◦, was aggregated according to the transport model grid,

and Fig. 8 illustrates the dominant PFTs in terms of area for

each transport model grid cell.

Both the prior simulation and the inversions predict a max-

imum of NEE (i.e. likely a maximum of CO2 release) in the

dry season and a minimum of NEE (i.e. likely a maximum

of CO2 uptake) in the wet season (Fig. 7a). This behaviour

is also seen in J2011. However, J2011 place the maximum

of NEE during the transition between the wet and dry sea-

son while the prior simulation and the inversions place it

at the end of the dry season. Even though the inversions

seem to delay or lengthen this maximum, such a modifica-

tion is not significant and their seasonal phasing is likely

strongly constrained by the patterns of the prior fluxes. In

particular, according to the comparison between INVSAm

and MACCv10.1, the assimilation of data from the four sta-

tions in the TSA region does not seem to impact this phasing.

The inland data are prone to bear a stronger signature from

fluxes in tropical broadleaf evergreen and raingreen (TBE)

forests (Fig. 8), while the mean seasonal behaviour over the

whole TSA region could be mainly related to other PFTs.

Therefore, we isolate the results for the area of TBE forests,

this area being defined by the selection the model grid cells

dominated by this vegetation type. The configuration of the

prior uncertainties in the inversion does not account for PFTs,

so that the spread of the flux corrections in the inversions

is not forced a priori to depend on vegetation type. We still

expect that the variations in the measurements, when their

footprint covers different distributions of PFTs, reflect differ-

ences in NEE of the PFTs. Consequently, the spatial patterns

of the increments from the inversion may be consistent with

the spatial patterns of NEE induced by the distribution of the

different vegetation types. The mean seasonal cycle of NEE

for the area of TBE forests within the TSA region is given in

Fig. 7b. The restriction of the analysis to the TBE forest does

not show any clear correlation between NEE extremes and

the phasing of wet and dry seasons neither when considering

the NEE from the prior nor when considering the NEE from

both inversion estimates. This is different from J2011, who

indicate a maximum of the NEE a few months before the be-

ginning of the dry season and a minimum of the NEE at the

beginning of the wet season. The prior and the inversions in-

dicate several local extremes of NEE throughout the year that

may reflect the overlapping of significantly different seasonal

cycles for different sub-regions within TBE forests.

The strong spatial heterogeneity of the time variations

of the NEE in TBE forests has been discussed in the in-

troduction. Figure S2 illustrates it this with results of local

NEE mean seasonal cycle estimated from EC measurements

across TSA. This figure also shows the mean seasonal cy-

cle of the precipitation at these sites to illustrate the spatial

heterogeneity of the drivers of NEE within TSA.

To examine whether the inversion captures this spatial

variability of the fluxes, we analyse the seasonal variations

of the NEE estimates for the two zones depicted in Fig. 8.

Zone 1 was located in north-eastern Amazonia, close to the

measurement stations SAN and GUY. Zone 2 was located

in central eastern Amazonia. Both zones are mainly covered

by TBE forests, according to the vegetation classification of

ORCHIDEE. According to Malhi et al. (2009), eastern Ama-

zonia is drier and shows a stronger seasonality than western

Amazonia. However, we do not identify a clear pattern of

NEE seasonal variations that could be driven by the rainfall

seasonality in any of the two sub-regions, except for J2011

in Zone 1 (Fig. 7c), since the other estimates again exhib-

ited maxima and minima of NEE during both dry and wet

seasons. Actually, in Zone 2 (Fig. 7d) the dry season cannot

be clearly identified. In this zone, the prior flux and the in-

versions indicated several maxima and minima of NEE, but

J2011 exhibit, again, a clear seasonal cycle with a maximum

in June and a minimum October as in Zone 1. While J2011

showed nearly the same amplitude and phasing of monthly

mean NEE variations in both zones and over TBE forests

(Fig. 7b), prior and inversions estimates of the seasonal vari-

ations differed both in phasing and amplitude among zones

1, 2 and the whole TBE forest area.

Divergent patterns are found in INVSAm with respect to

MACCv10.1, which remains closer to the prior fluxes, even

though the departure of MACCv10.1 from the prior NEE is

significant in Zone 2 and for the whole TBE area (Fig. 7b

and d). The comparison of these inversion results shows that

significant flux corrections due to the assimilation of data in

South America are applied in Zone 1 (Fig. 7c), i.e. in north-

eastern Amazonia, where stations SAN and GUY are located.

The influence of SAN over this zone is clearer when split-

ting the analysis period of the mean seasonal cycles between

2002–2005 and 2006–2010 (not shown). The differences be-

tween INVSAm and MACCv10.1 are more accentuated dur-

ing the period 2002–2005 when SAN is active. However,
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there are still significant changes between these two esti-

mates during 2006–2010. The changes between MACCv10.1

and INVSAm in Zone 2 (Fig. 7d) are also significant, even

though Zone 2 seems hardly observed by the TSA obser-

vation network. As analysed in Sect. 3.2, the control of the

long-range dipole (of its amplitude and latitudinal position)

by the measurements in region TSA explains such an im-

pact of these measurements on the results in Zone 2, as well

as that of measurements outside South America, which ex-

plains the departure of MACCv10.1 from the prior NEE in

Zone 2. Zone 2 is actually located close to the frontier be-

tween the northern and southern patterns of the dipole in the

TSA region. A latitudinal shift of the frontier through the as-

similation of data in north-eastern Amazonia can thus easily

imply that positive (negative) increments from the inversion

are reverted into negative (positive) increments.

In an attempt at getting clearer seasonal patterns in some

of the other sub-regions of Amazonia, two additional zones

have been analysed, located in south-western and south-

eastern Amazonia, where the dry season is potentially earlier

and more extreme (Fig. S2a, d). Both sub-regions encompass

areas where the impact of the droughts of 2005 and 2010

was the highest according to Lewis et al. (2011). The results,

however, do not provide any further information than Fig. 7c

and d and are not shown. J2011 still exhibit the same ampli-

tude of the seasonal cycle and the same location of maximum

and minimum NEE as in zones 1 and 2 despite the extent of

the dry season. Prior fluxes and inversions still showed max-

ima and minima during the dry season in some cases, and the

inversions introduce only slight modifications to the ampli-

tude and phasing of the NEE relative to the prior simulation.

This is an expected result due to insufficient data in the south-

ern part of TSA to constrain fluxes in that region.

3.3.2 Interannual variability

Figure 9a depicts the annual NEE anomalies of the prior

simulation, MACCv10.1, INVSAm and an additional inver-

sion called FLAT, compared to their mean NEE over 2002–

2010, aggregated over the whole TSA region (considering all

PFTs). FLAT corresponds to a new inversion using, as a prior

estimate, a “flat prior” whose annual anomalies are null over

the TSA region. Using the standard prior NEE as a basis,

the flat prior is built by offsetting the annual budgets of NEE

over the TSA region so that they equal the mean annual NEE

over TSA and over the 2002–2010 period from the standard

prior NEE. The spatial variability and the temporal variabil-

ity at scales smaller than 1 year are conserved between the

standard NEE and the flat prior, since the offsets are applied

homogeneously in space and time within TSA and within 1

year. FLAT assimilates the data from the four surface sites

in TSA in addition to those used by both MACCv10.1 and

INVSAm. Of note is that even if increments on the NEE an-

nual budget of a given year from an inversion are weak, the

changes in the corresponding annual anomaly from the in-
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Figure 9. (a) Annual NEE anomaly compared to the mean of

2002–2010; estimates for the whole study region. (b) Annual NEE

anomaly compared to the mean of 2002–2010; estimates for the area

dominated by TBE forests.

version can be high because the inversion modifies the 2002–

2010 average against which the anomaly is computed. Prior

fluxes, MACCv10.1 and INVSAm display only small posi-

tive anomalies during the drought years (2005, 2010) com-

pared to other years. FLAT displays a negative anomaly (i.e.

a strong uptake) in 2010, but it indicates a larger positive

anomaly in 2005 than that of other estimates. However, the

strong NEE negative anomaly of 2009 in the prior fluxes,

MACCv10.1 and INVSAm is also in FLAT, which suggests

that this pattern is strongly driven by the atmospheric mea-

surements and raises confidence in it.

As in Sect. 3.3.1, we isolated the results for the TBE

forests area (Fig. 9b). In this case, prior fluxes and both

MACCv10.1 and INVSAm estimates show diverging an-

nual mean responses of forests to drought, with a positive

anomaly in 2005 and a negative anomaly in 2010. For 2009,

when climatic conditions were abnormally humid across

South America, the inversion estimates consistently show

a small positive anomaly, opposite to the response for the

whole TSA region. The small anomalies in all inversions sug-

gest a weak sensitivity of the NEE of TBE forests to interan-

nual variations and that most of the IAV over the study area

is not related to TBE forests.

Finally, we analyse the results in the two sub-regions

shown in Fig. 8 in an attempt to identify potential differ-

ences in the regional responses. NEE estimates from the

prior, INVSAm and MACCv10.1 show various responses

of forests to drought in these zones. In Zone 1 (Fig. 10a)

all these estimates present a positive anomaly in 2005 and

a negative anomaly in 2010, while in Zone 2 (Fig. 10b) they

yielded negative anomalies during both years. J2011 exhibit

abnormal anomalies much smaller than these NEE estimates

(Fig. 10c and d). This prevents us from gaining insights into

the IAV from the comparison of J2011 to the other estimates.
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Figure 10. Annual NEE anomaly compared to the 2002–2010 mean

for Zone 1 (a, c) and Zone 2 (b, d) as defined in Fig. 8. Estimates

from prior fluxes (red), INVSAm (green), MACCv10.1 (purple) and

J2011 (grey).

However, the product of J2011 must be used cautiously, es-

pecially when evaluating IAV of NEE. J2011 relied on a lim-

ited number of EC stations across the Amazon basin, with

short time series, to estimate MTE based on spatial gradients

among the sites and then extrapolated to temporal gradients.

This is valid assuming that spatial and temporal NEE patterns

have the same sensitivity to climate, which may be incorrect

(Piao et al., 2013). The example of the divergences of the

results between MACCv10.1 and INVSAm in 2003 in Zone

2 illustrates, again, some weak ability to precisely constrain

the fluxes in such a small area, which is quite distant from the

measurement sites in TSA. Indeed, the analysis of the maps

of increments from MACCv10.1 and INVSAm for the annual

mean NEE in 2003 (not shown) demonstrates that the assim-

ilation of data at SAN during this year shifts the northern

border of the pattern of negative corrections in MACCv10.1

from north of Zone 2 to south of Zone 2. Since, on average

over 2002–2010, both inversions apply positive increments

in this zone (see Fig. 6), this leads to a clear negative annual

anomaly in Zone 2 and for the year 2003 for INVSAm.

4 Discussion and concluding remarks

Amazonian forests play a key role in the global carbon

balance, but there are large uncertainties on the evolution

of this terrestrial sink. Uncertainties stem from incomplete

knowledge of the processes behind land–atmosphere CO2

exchange in this region. Improving our understanding of the

seasonal and interannual variations of Amazonian forests is

thus a priority. In an attempt to gain insight into how these

temporal variations of CO2 fluxes vary across Amazonia, we

analysed global inversions and incorporated new measure-

ments of atmospheric CO2 mole fractions in TSA into one of

these inversions. The analysis of the global inversions at such

spatial scales, which are generally ignored in global inversion

studies, is justified by the use of a variational inversion sys-

tem solving for the fluxes at ∼ 3◦ and 8-day resolution. We

showed that the two inversions applied large corrections to

the estimates of NEE from a vegetation model that they used

as prior information. The inverted NEE was strongly con-

trolled by the assimilation of CO2 measurements both out-

side and within the TSA region, and this control was char-

acterized by zonal patterns of alternate positive and negative

corrections, which we call “zonal dipole”, in addition to more

local patterns in the vicinity of the sites that were assimilated.

Despite an overall improvement by the inversion of the

seasonal variations of the simulated CO2 mole fractions

when compared to the measurements in TSA, several issues

arose when analysing the seasonal cycles of NEE from the

inversion. The seasonality of the mean NEE over the whole

TSA region remained basically unchanged between the in-

version estimates (Fig. 7a). The prior and inversion estimates

of this mean seasonal cycle of NEE at the TSA scale are

not in line with J2011 and disagree with the intuitive as-

sumption that the seasonal cycle should be correlated with

rainfall and solar radiation, especially in the tropical forest

area. Furthermore, they do not exhibit a clear seasonal pat-

tern over TBE forests at basin scale or within the analysed

sub-regions. J2011 display a clear homogeneous seasonal cy-

cle all the TSA region, which does not give confidence in its

ability to distinguish regional heterogeneity. The proximity

of Zone 1 to the stations in north-eastern Amazonia (SAN

and GUY) (Fig. 8) suggests better confidence in the flux cor-

rections applied by INVSAm to the prior fluxes in that zone

than elsewhere in TSA region.

The reliability in the seasonal patterns of the inverted

fluxes is thus not high, which seems to confirm that the zonal

dipoles of increments from the inversion are artificial patterns

that balance the overall correction in the Southern Hemi-

sphere and are not necessarily consistent with the actual NEE

in the TSA region. This is directly connected to the lack of

CO2 measurements in the TSA region both in space and time.

The limited overlap among the TSA observations is a critical

issue since measurements are often only available at a sin-

gle site at once and, consequently, temporary model errors

at this site can get far more weight in the inversion than if it

had been balanced by information from other sites. Further-

more, the lack of confidence in the INVSAm results in Zone

1, which is relatively close to the GUY and SAN, suggests a

low reliability in the statistics of the uncertainty in the prior

NEE (in the inversion configuration), on which the extrapo-

lation of the information from the vicinity of these sites to

the whole north-east of the TSA region relies. This further

supports the choice of avoiding computing posterior uncer-

tainties in the inverted NEE as discussed in Sect. 2.1.
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Such considerations also weaken the analysis of the IAV

based on the inversion while J2011 do not provide a reli-

able IAV of the NEE in TSA, which could have supported

such an analysis. However, some patterns of the IAV in the

NEE seem consistent among the different inversion estimates

when the atmospheric measurements have a strong control

on it: across the TSA region the estimates from the prior

fluxes, MACCv10.1, INVSAm and FLAT indicate small pos-

itive flux annual anomalies (CO2 release) during the drought

in 2005 and a strong negative (CO2 sink) anomaly in 2009,

presumably related to lower temperatures and more humid

conditions in 2009. However, in 2010 there is a divergence

of the results between the FLAT estimate and the others.

In the TBE forests, the highest source anomaly in 2005

seen in the prior fluxes, MACCv10.1 and INVSAm may

be related to reduced photosynthesis during the drought, as

found by Gatti et al. (2014), and/or tree mortality caused

by the squall event of January 2005 (Negrón-Juárez et al.,

2010). However, in 2010 these results indicate a small sink

anomaly. This anomaly seems inconsistent with the hypothe-

sis of a higher negative impact of the drought in 2010, which

was more intense in terms of water stress and more geo-

graphically extensive (Lewis et al., 2011). However, it seems

consistent with the recent results of Gatti et al. (2014), who

found that the Amazon basin was carbon neutral during that

year.

Even though some seasonal or interannual patterns from

the inversion look realistic, our study mainly reveals some

critical issues that hamper the ability to derive an accurate

estimation of the temporal variability of NEE and of its spa-

tial heterogeneity across Amazonian forests. A denser moni-

toring network across the basin with continuous time series,

as initiated by Gatti et al. (2014), is needed to well constrain

the fluxes in the region. In addition, the simulation of atmo-

spheric transport may need to be handled with models that

are better adapted to the local meteorological conditions. Re-

gional transport models with higher spatial and temporal res-

olution and improved parameterisations of key atmospheric

processes for the region (e.g. deep convection, Parazoo et al.,

2008) have been developed (Moreira et al., 2013). The com-

bination of a denser observation network and state-of-the-art

regional modelling tools would overcome some of the criti-

cal limitations encountered here for the study of the temporal

variability of biosphere CO2 fluxes in Amazonia. Such re-

gional inversion will require reliable regional configurations

of the input error statistics, which could rely on extensions of

the flux eddy-covariance measurement networks in Amazo-

nia. Finally, adaptive strategies for the representation of the

observations in the model simulations as a function of the

sites and of the meteorological conditions (Law et al., 2010)

could help loosen the selection of the data for the assimila-

tion.

The Supplement related to this article is available online

at doi:10.5194/acp-15-8423-2015-supplement.
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Figure B.1: Impact of the observations assimilated in the (a, b) PROFILE and (c, d) HGRAD
experiments on the a posteriori weekly, sub-regional biomass burning CO2 emissions, for the July
– September (dry period) for INV-ECMWF. Gray bars are the flux correction to the weekly budget.
Red dots indicate when observations were available.
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Figure B.2: Impact of the observations assimilated in the PROFILE experiment on the a posteriori
weekly, sub-regional NEE, for the July – September (dry period) for INV-ECMWF. Gray bars are the
flux correction to the weekly budget. Red dots indicate when observations were available.
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Figure B.3: Impact of the observations assimilated in the HGRAD experiment on the a posteriori
weekly, sub-regional NEE, for the July – September (dry period) for INV-ECMWF. Gray bars are the
flux correction to the weekly budget. Red dots indicate when observations were available.
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