
HAL Id: tel-01697889
https://theses.hal.science/tel-01697889

Submitted on 31 Jan 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Practical structure-sequence alignment of pseudoknotted
RNAs

Wei Wang

To cite this version:
Wei Wang. Practical structure-sequence alignment of pseudoknotted RNAs. Bioinformatics [q-
bio.QM]. Université Paris Saclay (COmUE), 2017. English. �NNT : 2017SACLS563�. �tel-01697889�

https://theses.hal.science/tel-01697889
https://hal.archives-ouvertes.fr

NNT : 2017SACLS563

1

Thèse de doctorat
de l’Université Paris-Saclay

préparée à L’Université Paris-Sud

Ecole doctorale n◦580 (STIC)
Sciences et Technologies de l’Information et de la Communication

Spécialité de doctorat : Informatique

par

M. Wei WANG
Alignement pratique de structure-séquence d’ARN avec

pseudonœuds

Thèse présentée et soutenue à Orsay, le 18 Décembre 2017.

Composition du Jury :

Mme Hélène TOUZET Directrice de Recherche (Présidente)
CNRS, Université Lille 1

M. Guillaume FERTIN Professeur (Rapporteur)
Université de Nantes

M. Jan GORODKIN Professeur (Rapporteur)
University of Copenhagen

Mme Johanne COHEN Directrice de Recherche (Examinatrice)
CNRS, Université Paris-Sud

M. Laurent BULTEAU Chargé de Recherche (Examinateur)
CNRS, Université Paris-Est

M. Alain DENISE Professeur (Directeur de thèse)
Université Paris-Sud

M. Yann PONTY Chargé de Recherche (Co-encadrant)
CNRS, École Polytechnique

Résumé

L’alignment de macromolécules telles que les protéines, les ADN et les

ARN afin de révéler ou d’exploiter à l’inverse leur homologie fonction-

nelle est un défi classique en bioinformatique, avec des applications de

grande envergure dans la modélisation de la structure et l’annotations du

génome. Dans le contexte spécifique des ARN complexes, présentant des

pseudoknots, des interactions multiples et des paires de bases non canon-

iques, de multiples solutions et outils algorithmiques ont été proposés

pour le problème d’alignement de séquence de structure. Cependant, de

tels outils sont rarement utilisés dans la pratique, en partie à cause de

leurs exigences de calcul extrêmes, et de leur incapacité à supporter des

types généraux de structures.

Au chapitre 2, nous illustrons d’abord les opérations d’édition pour cal-

culer le coût d’un alignement et la définition du problème d’alignement

structure-séquence. Ensuite, nous expliquons plusieurs algorithmes d’état

de l’art pour le problème. Ces algorithmes comprennent l’algorithme de

Han [39] avec le programme PAL, l’algorithme de Matsui [60] avec le pro-

gramme PSTAG, l’algorithme de Song [91] et l’algorithme de Rinaudo [78].

Tous ces algorithmes sont principalement conçus pour prédire l’alignement

de la structure-séquence pseudo-notée. Cependant, comparé aux autres

algorithmes, Rinaudo et al. a donné une méthode entièrement générale

pour la comparaison séquence-structure, qui est capable de prendre en

entrée n’importe quel type de structures pseudo-notées. Mon travail est

basé sur l’algorithme de Rinaudo.

Au chapitre 3, je décris d’abord quelques détails sur la mise en œuvre

de notre nouveau programme LiCoRNA (aLignment of Complet RNAs) in-

cluant le schme de scoring et la programmation dynamique par bandes

qui permettent d’accélérer la programmation dynamique sans perdre trop

de précision. Ensuite, trois algorithmes seront introduits pour obtenir

les alignements sous-optimaux de la structure-séquence, l’un est un al-

gorithme stochastique de backtracking basé sur la fonction de partition,

l’un est l’algorithme d’alignement �-sous-optimal et l’un est l’algorithme

d’alignement suboptimal K-best. Notre raisonnement pour explorer l’espace

des alignements sous-optimaux, ou quasi-optimaux, est triple: Premièrement,

un alignement optimal est ambigu, ce qui signifie que plusieurs aligne-

ments ayant le même score peuvent coexister. Deuxièmement, un aligne-

ment optimal n’est qu’une approximation de celui qui est biologique-

ment pertinent. Troisièmement, un alignement optimal peut être sen-

sible aux perturbations des paramètres d’évaluation, en particulier les

pénalités d’écart. Sur la base de la fonction de partition et de l’algorithme

intérieur-extérieur, on peut également calculer la probabilité de concor-

dance de Boltzmann. En outre, nous introduisons la notation Maximum

Expected structure-sequence Alignment (MEA) pour calculer un aligne-

ment avec une précision maximale prévue sur un ensemble d’alignements.

L’alignement MEA peut être intuitivement comparé au centre de masse

de l’espace d’alignement. Notre raisonnement est que, si l’alignement est

bien défini, alors l’alignement MEA devrait être proche de l’alignement

optimal. Inversement, un alignement optimal mal défini, admettant de

nombreux alignements sous-optimaux, devrait être soit éloigné’ du MEA,

soit avoir une faible précision associée.

Le chapitre 4 illustre les résultats des tests de LiCoRNA qui sont princi-

palement divisés en deux parties. La première partie consiste à évaluer

la performance de LiCoRNA sur la base des séquences de graines dans

les familles pseudoknotted dans RFAM par la comparaison avec d’autres

programmes à la fine pointe PAL, PSTAG et Profile-csHMMs [120]. Les

paramètres d’évaluation sont la sensibilité, valeur prédictive positive et

l’AFI. Le résultat principal est que LiCoRNA peut prédire les aligne-

ments par paires pour toutes les familles et génère généralement des

résultats équivalents ou meilleurs que ses concurrents pour presque toutes

les familles. La deuxième partie est que nous traitons les alignements pseu-

doknotted complets RFAM en utilisant LiCoRNA. Le résultat montre que

LiCoRNA prend en charge pseudoknots sans perte d’identité de séquence en

calculant le pourcentage de paire de bases pour chaque position de paire

dans la structure de référence.

2

Le dernier chapitre présente les perspectives. Tout d’abord, le séchma

de score pour LiCoRNA est indépendant de la position qui signifie que les

scores pour les substitutions et les lacunes sont les mêmes dans di↵érentes

positions de l’ARN. Nous pouvons étendre au schéma de score basé sur

le profil et au modèle évolutionnaire probabiliste pour améliorer encore

la précision. Deuxièmement, la programmation dynamique basée sur la

décomposition arborescente peut également être utilisée pour identifier des

motifs 3D d’ARN qui sont définis par leur propre modèle d’appariement

de base non-canonique.

3

Acknowledgements

First of all, I owe my deepest gratitude to my advisors, Alain Denise, Yann

Ponty for their patience, encouragement and immense knowledge. With-

out their guidance, I would not have finished my PhD study smoothly.

Beside my advisors, I would like to thank the rest of my thesis committee

for their time and extreme patience. Thanks to Guillaume Fertin and Jan

Gorodkin for their insightful comments and hard questions which incented

me to widen my research. I would also like to the other members Hélène

Touzet, Johanne Cohen, Laurent Bulteau for their time and insightful

questions.

My thanks also go to all the colleagues in the bioinformatics group in LRI

and LIX for their discussions and for solving everyday trouble during my

PhD.

Thanks to the China Scholarship Council, who provided financial support

during my graduate studies.

I am forever indebted to my parents for their unconditional supports. I

also thank JiaYin XUE for her accompany. Last but not least, I’d like to

thank all my friends in France for their help and encouragement.

Contents

1 Introduction 1

1.1 Types of RNA . 2

1.2 RNA structure . 2

1.3 RNA secondary structure prediction 6

1.3.1 Secondary Structure . 6

1.3.2 Pseudoknotted Structures . 9

2 Structure-sequence alignment 12

2.1 Sequence-sequence alignment . 15

2.2 NESTED structure-sequence alignment 17

2.3 CROSSING structure-sequence alignment 19

2.3.1 Han’s algorithm . 20

2.3.2 Matsui’s algorithm . 23

2.3.3 Song’s algorithm . 28

2.3.4 Rinaudo’s algorithm . 30

2.3.5 Other formula . 33

3 Methods 38

3.1 Model and definitions . 39

i

3.1.1 Tree decomposition and its practical computation 39

3.1.1.1 Definitions . 39

3.1.1.2 Practical computation of the tree decomposition . . . 40

3.1.2 Scoring scheme . 41

3.1.2.1 RIBOSUM . 41

3.1.2.2 Cost function for structure-sequence alignment . . . 42

3.1.2.3 Scoring a tree decomposition 45

3.1.2.4 LCost function . 45

3.1.3 Banded dynamic programming 48

3.2 Probabilistic structure-sequence alignment 49

3.2.1 Derivation and derivation tree 50

3.2.2 Completeness and unambiguity of Rinaudo’s DP scheme . . . 51

3.2.3 Computing the partition function 54

3.2.4 Stochastic backtrack algorithm 57

3.2.5 Inside-outside algorithm . 60

3.2.6 Maximum expected accuracy alignment 63

3.3 Enumerating suboptimal alignments 65

3.3.1 � near-optimal alignment . 66

3.3.2 K-best suboptimal alignment 68

3.3.2.1 Recurrence equation 72

3.3.2.2 Algorithm . 73

4 Results 76

4.1 Using LiCoRNA . 77

ii

4.2 The tree-width of pseudoknotted RNAs is typically small 79

4.2.1 Datasets . 80

4.2.2 Results . 81

4.3 Predictive accuracy of LiCoRNA . 84

4.3.1 Dataset . 84

4.3.2 Competitors . 85

4.3.3 Evaluation metrics . 85

4.3.4 Results . 86

4.4 Analyzing near optimal solutions . 91

4.4.1 Dataset . 91

4.4.2 Reference alignments have quasi optimal scores 91

4.4.3 Reference alignment are not far down the list of suboptimal

alignments . 94

4.5 Stochastic sampling enables the detection of ambiguously-aligned re-

gions . 96

4.5.1 Evaluation metrics . 96

4.5.2 An example . 98

4.6 Structure-based realignment of RFAM families improves support for

pseudoknotted base-pairs . 99

4.6.1 Dataset . 99

4.6.2 Evaluation metrics . 99

4.6.3 Results . 100

4.7 Advantages and disadvantages of LiCoRNA 105

5 Conclusion and Perspectives 107

iii

5.1 Conclusion . 107

5.2 Perspectives . 109

5.2.1 Score scheme of LiCoRNA . 109

5.2.2 Searching conserved structures in genomes 110

5.2.3 Identification of RNA 3D motifs 111

A 115

Bibliography 118

iv

List of Figures

1.1 Typical elements found in RNA secondary structures (from [92]) . . 3

1.2 A) H-type pseudoknot. B) Kissing hairpin. 4

1.3 (Left) Identification of edges in the RNA bases. The upper part shows

the edges of Purine and the down part shows the edges of Pyrimidine

(Right) cis versus trans orientation of glycosidic bonds. (from [55]). . 5

1.4 Current three approaches to analyze homologous RNA sequences and

structures. (from [31]) . 8

2.1 A representation of structure-sequence alignment between an arc-annotated

sequence and a plain sequence. 13

2.2 A sequence-structure alignment and the allowed edit operation. . . . 14

2.3 Example of binarizing an RNA NESTED structure and a binary tree

is built at the same time. 18

2.4 A) A simple pseudoknot. B) Subpseudoknot structure ends with fron-

tier (i, j, k). 20

2.5 An example for chaining algorithm to decompose simple pseudoknot.

A) A simple pseudoknot. B) Another representation of the simple

pseudoknot. C) The output of the chaining algorithm. 21

2.6 An adjoining operation in TAGs. � is tree with �(p) = X and � an

adjunct tree with �(1) = X. �0 is a derived tree from � by adjoining

� into � at position p. 24

v

2.7 Inital trees and adjunct trees for TAG GRNA. S⇤ is the active nodes

and the other nodes are inactive. x and x forms base pairs. 25

2.8 (A) A TAG tree for ’(a(bB)A)(d[eD)E]’. (B) A state transition diagram

of PSTAG for a�ne-gap alignment on tree structures. ⌧X is the initial

probability. �XY denotes the transition probability from state X to

state Y . PX
O (↵, �) denotes the emission probability of adjunct trees ↵,

� at state X 2 {M, I, D}. 25

2.9 illustration of equation 2.10. � is a tree with �(0) = Y and � 2 A is

an adjunct tree. �0 is a derived tree by adjoining � into �. 27

2.10 illustration of equation 2.11 if vc[q] = T5Ld. 27

2.11 [91]. A) A consensus secondary structure for an RNA family. It has

two parallel stems (i, j), (k, l). B) Conformation graph H of the RNA

structure in A). C) target sequence with two images for each stem,

represented by two pairs of the rectangles (one pair is filled with grey

and one pair is with dotted border). The two images for the stem (i, j)

are (i1, j1), (i2, j2) and the two images for the stem (k, l) are (k1, l1)

and (k2, l2). D) image graph G for the target sequence. 29

2.12 A) Arc-annotated sequence of a simple pseudoknot. B) A correspond-

ing tree decomposition and the width of this tree decomposition is 3.

. 31

2.13 A) Illustration of the transition indices X " and proper indices X # of

a bag. Suppose the current bag X = {4, 6, 7, 9}, X "= {6, 7, 9} and

X #= {4}. B) Representation of structure-sequence alignment. Ev-

ery position in Q has a corresponding alignment triple. Operation �

distinguishes match positions and unmatched position in Q. We aggre-

gate consecutive unmatched positions in Q to their nearest rightward

matched position and a virtual position is added at the end of W . The

alignment triple for positions 8, 10, 11 in Q are (8, 12, 0), (10, 12, 1) and

(11, 13, 0). 32

2.14 Markov network example. 35

2.15 The step to eliminate variable B with factor operations: factor sum-

mation and factor maximization. 36

vi

2.16 The step to eliminate variable C. 36

2.17 An alignment example. 37

3.1 Arc-annotated sequence of simple pseudoknot and a corresponding tree

decomposition. The width of this tree decomposition is 3. We treat

the arc-annotated sequence as a RNA graph. Each vertex in the RNA

graph exists in at least one bag. For example, vertex 3 exists in the

bag {2, 3, 4}. For an edge (u, v) in the RNA graph, there is a bag

containing (u, v). For example, bag (1, 2, 7) contains the edge (1, 7).

Given three bags X, X 0, X 00, if X 00 lies on the path from X and X 0 on

T , then X \X 0 ⇢ X 00. For example, X = {2, 4, 6, 7}, X 0 = {7, 9} and

X 00 = {6, 7, 9}, X \X 0 = {7} ⇢ X 00. 41

3.2 RIBOSUM85-60 matrix. (A) The 16⇥ 16 matrix is used to get scores

for aligning base pairs. This matrix is a candidate to the base pair

substitution matrix S 0 (B) The 4 ⇥ 4 matrix is used to get scores for

aligning single-stranded regions. This matrix is a candidate to the base

substitution matrix S. 42

3.3 (A) tree decomposition example. (B) For X = {2, 4, 6, 7} and X #=
{2} where (2, 6) 2 P , function ⌧ is considered. (C) For X = {6, 7, 9}
and X #= {6}, neither function ⌧ nor function � will be considered.

(D) For X = {2, 3, 4} and X #= {3}, function � will be considered. . 47

3.4 (A) An example alignment. (B) Illustration of N constraint alignment.

The black squares shows the alignment position in (A) and the final

alignment (A) lie inside the constraint scanned region (shows in gray). 48

3.5 Illustration of the concept of derivation, starting from a state (X, AX").

(A) Part of the tree decomposition in Figure 3.1. Here we consider the

bag with indices {2, 4, 6, 7}. (B) In this case, X #= {2}, X "= {4, 6, 7}
and we assume AX" = {(4, 4, 1), (6, 7, 1), (7, 9, 1)}. To make a valid

bag alignment, position 2 can map to position {1, 2, 3} with matched

or unmatched case and map to position 4 with only unmatched case.

(C) derivation representations for di↵erent AX#. 51

vii

3.6 Illustration of the inside-outside algorithm (A) An arc annotated-

sequence sequence Q. (B) A plain sequence W . (C) Illustration of

Z(X, AX") and Ẑ(X, AX") for partial alignment where X = {2, 4, 6, 7}.

Z(X, AX") shows the partition function for the partial alignment be-

tween the positions appearing in the descendants (shown in grey re-

gion) of X and W . ˆZ(X, AX") represents the partition function for

partial alignment between the positions in the other bags (outside the

grey regions) and W . (D) Illustration of the equation for calculating

Ẑ(X, AX") . 61

3.7 Illustration of the bags needed to calculate match/mismatch probabil-

ity. The bag with grey background is to calculate base pair match/mis-

match probability for example, the bag {4, 5, 6, 9} is to calculate P((5, 9) ⇠
(p, q)). The bags within dotted rectangle is to calculate base match/mis-

match probability. For example, the bag {2, 3, 4} is to calculate P(3, p).

. 62

3.8 (A) Illustration of a hypergraph. t is a target vertex and o, p, q are the

source vertices. (B) Treating a derivation tree as a hyperpath in the

ordered hypergraph. (C) The contents in the circles and rectangles in

(B). 70

3.9 Alignments and the corresponding derivation trees (A) 1-best align-

ment; (B) 2-best alignment; (C) derivation tree producing alignment

in (A); (D) derivation tree producing alignment in (B). The only dif-

ference between 1-best and 2-best alignment is the alignment triple for

the position 3 in Q. 72

4.1 The workflow of LiCoRNA. The program RNAML2dgf transfers the

input file for Q to dgf format. Program TreeDecomposer which is

written in JAVA gives the tree decomposition of Q. Then users can

use any program alignerMEA, alignerSB and alignerDP according to

their needs. W is the input plain sequence. 79

4.2 Tree-width comparison for algorithms GreedyDegree, GreedyFillin, Lex-

BFS, MCS in PseudoBase. 80

viii

4.3 With GreedyFillin, Tree-width for PKB71 is 5 and tree-width for PKB75

is 5. With GreedyDegree, tree-width for PKB71 is 6 and tree-width

for PKB75 is 5. 81

4.4 Tree-width comparison for algorithms GreedyDegree, GreedyFillin, Lex-

BFS, MCS on the PDB dataset, including all non-canonical interac-

tions. 82

4.5 In this ribonuclease P RNA from Bacillus stearothermophilus (PDB ID:

2A64), the tree decomposition returned by the GreedyFillin heuristics

on the secondary structure, including all non-canonical interactions,

has width 9! . 84

4.6 The secondary structure of the consensus structure of the six families

with tree-width 4.A) RF00041; B) RF00094; C) RF00140; D) RF01689;

E) RF01786; F) RF01831. 86

4.7 The AFI of LiCoRNA, PAL, PSTAG, profile-csHMMs for the 21 pseudo-

knotted families. 88

4.8 The sensitivity of LiCoRNA, PAL, PSTAG, profile-csHMMs for the 21

pseudoknotted families. 89

4.9 The PPV of LiCoRNA, PAL, PSTAG, profile-csHMMs for the 21 pseu-

doknotted families. 89

4.10 Score
ref

�Score
opt

MinLength
for each family where Scoreref represents the score of

the reference alignment and Scoreopt represents the score for the opti-

mal alignment. The parameter can be negative and in order to make

the figure neat, we do not draw 4 extreme negative values in family

RF00041. The 4 negative values are -0.237, -0.406, -1.113, -1.290. . . 92

4.11 Pairwise sequence alignments from RFAM database and predicted by

LiCoRNA in family RF00041. In this case, Score
ref

�Score
opt

MinLength
is negative

with value �1.290. 93

4.12 Pairwise sequence alignments from RFAM database and predicted by

LiCoRNA in family RF01735. The RFAM pairwise alignment have mul-

tiple gap openings. 94

ix

4.13 Pairwise sequence alignments from RFAM database and predicted by

LiCoRNA in family RF01735. The pairwise alignment predicted by

LiCoRNA has less gaps in the structural region. 95

4.14 Average percentage of the presence of reference alignment in 1000 sub-

optimal pairwise alignments in each family. 95

4.15 Dot plot of the alignment between query structure ACNG01000079.1/

252537-252424 and target sequence AAJM01000088.1/ 3912-4034 in

RF01735 when t = 1.5. The horizontal axis of the dot plot is the

query structure. The darker the square, the higher match probability

between the corresponding positions. 97

4.16 Positional entropy for each position in query structure ACNG01000079.1/

252537-252424 in family RF01735. The target sequence is AAJM01000088.1/

3912-4034. 98

4.17 AvgBPCI of base pairs in the reference structure and sequence iden-

tity for families that at least one of the columns S%, P% and T% is

di↵erent in Table ?? in appendix material. AvgBPCI: The average

of base pair conservation increment of all base pair for each family.

AvgSII: the average of sequence identity increment with equation

AvgSII = SI
LiCoRNA

�SI
RFAM

v
where SI represents sequence identity and

v is the number of sequence for one family. BPs: base pairs. Blue

columns mean that LiCoRNA is better and red columns mean that

RFAM is better. 101

4.18 RF01089 has 27 base pairs. s1-s19 are secondary base pairs and p1-p8

are pseudoknot base pairs. This figure shows the positional percentage

of base pairs through the 56 selected sequences in the family. BPC i:

base pair conservation for base pair with index i. A) is the structure

of the reference sequence. The first/second row of B) shows the BCP i

for alignment by LiCoRNA with/without pseudoknotted base pairs. The

third row of B) shows the BCP i for those of RFAM. 104

x

5.1 (A) 2D diagram for base-pairing patterns for Kink-turn motif. (the

detail of the notation in [56]) (B) arc representation of Kink-turn motif.

Dash line means that left strand and right strand are separated in 3D

structure. (C) 2D diagram for base-pairing patterns for C-loop motif.

(D) arc representation of C-loop motif. 112

5.2 IDI matrix for the cis-WC/WC family, as featured in [93]. Cells are

colored in this matrix. (1) red: isosteric base pair (IDI  2.0); (2)

yellow: near isosteric base pairs (2.0 < IDI  3.3); (3) cyan: non-

isosteric base pairs (3.3 < IDI  5.0); (4) blue: very di↵erent base

pairs (5.0 < IDI). 113

xi

Chapter 1

Introduction

Our knowledge of the role of RNA has changed since nucleic acids were discovered

in 1868 by Friedrich Miescher [20]. In 1952, James Watson sketched the ”central

dogma” [50]. As DNA was located in the cell nucleus, proteins were synthesized in the

cytoplasm and RNAs were detected in both cytoplasm and nucleus, he speculated that

there must be a coding RNA that carries genetic information from DNA to protein.

Then the RNA which is called mRNA was proved to carry the genetic information

from DNA to the ribosomes [13]. Later, ribosomal ribonucleic acid (rRNA) as a

component of ribosome was found [37]. rRNA is important in evolution, and genes

that encode rRNA are used to identify an organism’s taxonomic group [90]. Based on

Francis Crick’s ”adaptor” hypothesis [19], transfer RNA (tRNA) was observed [42]

and proved [76] to be the adaptor that serves as the physical link between the mRNA

and the amino acid sequence of proteins.

Several abundant, small non-mRNAs, other than rRNA and tRNA named small nu-

clear RNAs (snRNAs) like U1, U2, U4, U5 and U6 were discovered since 1993. They

participate in the splicing of mRNAs [121] by forming ribonucleo-protein (RNP) com-

plexes. The discovery of Ribonuclease P [38] was another landmark in RNA biology.

Since then RNA is known to play an important role in cellular processes, not just car-

rying genetic information. The discovery of catalytic RNA leads to the RNA World

Hypothesis which means that RNA may play a key role in prebiotic evolution before

the evolution of DNA and protein which have more specialized functions. The con-

cept of the RNA world was first proposed in 1962 [69] and coined in 1986 [33]. Since

then, the number of new functional RNAs has greatly expanded [104, 71].

After briefly illustrating the history of RNA, we now focus on the details of RNA.

1

1.1 Types of RNA

RNA molecules are single stranded nucleic acids consisting of nucleotides adenine (A),

guanine (G), cytosine (C) and uracil (U). Each nucleotide contains three components:

a nitrogenous base, a five-carbon sugar (ribose) and a phosphate group.

RNAs are basically classified into two classes: coding RNA and non-coding RNA.

Coding RNA refers to the RNA that encodes protein. mRNA is the only known

example. Non-coding RNAs (ncRNAs) are functional RNA molecules that do not

encode proteins. Similar to proteins, ncRNAs usually form a specific tertiary structure

to perform functions. Proteins with similar structures usually have similar sequences.

However, ncRNAs often have a conserved secondary structure which may be better

preserved than the RNA sequence.

Non-coding RNAs include two classes of notable interest: small ncRNAs and long

ncRNAs (lncRNAs) [84]. Small ncRNAs which are the subjects of intensive trans-

lational research contain microRNAs (miRNAs), small interfering RNAs (siRNAs),

piwi nucleolar RNAs (piRNAs), transcription initiation RNAs (tiRNAs) and so on.

lncRNAs (> 200 nucleotides) are mainly involved in cellular processes including alter-

native splicing and nuclear import [74]. lncRNAs contain long intergenic non-coding

RNAs (lincRNAs), Telomere-associated ncRNAs (TERRAs), Transcribed- ultracon-

served regions (T-UCRs) and so on.

1.2 RNA structure

Understanding the functions of ncRNAs is clearly not possible without knowing the

structures. This section describes the basic ideas about RNA structure. RNA struc-

ture is usually divided into three levels: primary, secondary and tertiary structure

which is analogous to the classification of protein structure. RNA primary structure

refers to the sequence bases in the nucleic acid chain formed by the phosphodiester

bonds. To completely determine the primary structure, one has to purify RNA from

the source and characterize it by using sequencing methods [54] at the same time to

get rid of the e↵ect of post-transcriptional modifications.

RNA secondary structure is a two-dimensional representation of Watson-Crick

base pairs (C-G and A-U), the slightly weaker wobble base pairs (G-U) and the

2

Figure 1.1: Typical elements found in RNA secondary structures (from [92])

”unpaired” regions. Figure 1.1 gives an example of standard elements found in RNA

secondary structure, called bulge loop, multiple loop, internal loop, stacking region

and hairpin loop [92]. There are two main computational ways to get the secondary

structure of ncRNA from primary structure: (1) using secondary structure prediction

programs to fold primary sequence directly; (2) comparative sequence analysis which

is a relatively more reliable mean [116]. To verify the correctness of the computation

result, one needs to use the biochemical techniques to probe the solution structure of

a particular ncRNA [4].

Based on secondary structure, pseudoknotted structure is formed by pairing be-

tween a loop and a region located outside (upstream or downstream) of the stem

flanking the loop [96]. Since the first RNA pseudoknot was discovered [73], more

and more pseudoknots were found. Now more researches have shown that pseudo-

knots are essential elements of topology of many structural RNAs, like rRNAs [15],

tmRNAs [126]. Some pseudoknots are catalytically active, for example, group I self-

splicing intron in which the pseudoknot established the catalytic core [1]. Besides the

catalytic activities, pseudoknots also play a key role in altering gene expression by

inducing ribosomal frameshifting [29]. Nowadays, there is no accepted nomenclature

all kinds of pseudoknots. Therefore, I only introduce several common pseudoknots:

• The H-type pseudoknot. An H-type pseudoknot is formed by the interaction

between nucleotides in a hairpin loop in the secondary structure and the single-

3

A) B)

C) D)

Figure 1.2: A) H-type pseudoknot. B) Kissing hairpin.

stranded region as shown in Figure 1.2 A)

• The kissing hairpin pseudoknot. A Kissing hairpin forms when unpaired nu-

cleotides in a hairpin region interact with unpaired nucleotides in another hair-

pin region as shown in Figure 1.2 B).

• The recursive pseudoknot. A pseudoknot can further have secondary structure

elements (including pseudoknots) in the loops as shown in Figure 1.2 C).

• The complex pseudoknot. The complex pseudoknot contains more complex

than the former three types. One example is shown in Figure 1.2 D).

The tertiary structure is the three-dimensional arrangement of the secondary struc-

ture elements which are associated through numerous van der Waals contacts, spe-

cific hydrogen bonds via the formation of a small number of additional Watson-Crick

pairs and/or unusual pairs involving hairpin loops or internal bulges [111]. Usually,

the tertiary structure is determined by the experiment using X-ray crystallography

and NMR spectroscopy. In fact, RNA nucleotides can interact with other nucleotides

through many di↵erent ways: (1) base with base, (2) base with ribose sugar, (3) base

with phosphate, (4) ribose with ribose, (5) ribose with phosphate, and (6) phosphate

with phosphate. Among them, Base-base interaction is the most sequence specific

and is the most useful when predicting RNA structure [86]. Actually, as shown in

Figure 1.3, each RNA base (purines and pyrimidines) interacts edge-to-edge using

4

Figure 1.3: (Left) Identification of edges in the RNA bases. The upper part shows the
edges of Purine and the down part shows the edges of Pyrimidine (Right) cis versus
trans orientation of glycosidic bonds. (from [55]).

one of three edges with other bases. Considering the orientation of glycosidic bonds

relative to the hydrogen bonds (cis or trans), there are 12 families of edge-to-edge

base pairs [55] as shown in Table 1.1. The often mentioned Watson-Crick base pair

in the secondary structure is a cis Watson-Crick/Watson-Crick base pair.

At the tertiary level, many studies have illustrated that the RNA tertiary structure

is modular and is composed of recurrent conserved motifs that are embedded in

the hairpin loops (HL), internal loops (IL) and multi-helix junction loops (MHJ) in

RNA secondary structures [4, 111, 94, 97]. There are several properties for RNA 3D

motifs as summarized by Petrov [72]: (1) Modular. They appear as discrete units (2)

Autonomous. It means that they can fold into characteristic geometrical structure

without being a↵ected by the molecular contexts (3) Recurrent. It means that the 3D

motifs can occur over and over in one molecule or in di↵erent RNA tertiary molecules

(4) Mutipurpose. One motif can bind with a protein in one structural context and

can be involved in the interactions with other RNAs in another context.

One last thing to mention is that RNA folds in a hierarchical and sequential man-

ner, which means that the secondary structure forms first, followed by the tertiary

5

No. Glycosidic bonds orientation Interaction Edge

1 Cis Watson-Crick/Watson-Crick

2 Trans Watson-Crick/Watson-Crick

3 Cis Watson-Crick/Hoogsteen

4 Trans Watson-Crick/Hoogsteen

5 Cis Watson-Crick/Sugar Edge

6 Trans Watson-Crick/Sugar Edge

7 Cis Hoogsteen/Hoogsteen

8 Trans Hoogsteen/Hoogsteen

9 Cis Hoogsteen/Sugar Edge

10 Trans Hoogsteen/Sugar Edge

11 Cis Sugar Edge/Sugar Edge

12 Trans Sugar Edge/Sugar Edge

Table 1.1: The 12 families of edge-to-edge base pairs formed by nucleic acid bases

structure [99]. In other words, RNA secondary structure often determines tertiary

structure. Therefore, an RNA sequence may form multiple secondary structures and

consequently multiple tertiary structures. This implies that correct prediction of

RNA secondary structure is a key step for predicting RNA tertiary structure from

sequence.

1.3 RNA secondary structure prediction

1.3.1 Secondary Structure

An RNA structure is represented as an arc-annotated sequence (S, P) where S is a

string of characters over ⌃ = {A, C, G, U} and P is a set of arcs which is a set of

pairs of positions in S connecting two distinct characters. There are four levels of

arc-annotated sequences as mentioned by Blin et al. [8] and originally proposed by

Evans [30]:

• UNLIMITED - no restriction.

• CROSSING - any position has at most one incident arc.

• NESTED - any position has at most one incident arc and no arcs are crossing.

6

• PLAIN - no arc.

The common secondary structures involving A-U, C-G and G-U belong to the NESTED

structure. Pseudoknotted structure which belongs to the CROSSING structure fol-

lows the same base pairing rules, but allows crossing arcs [24]. If we ignore the spatial

coordinates of the tertiary structure and just draw it planarly, it will normally belong

to UNLIMITED structures involving non-Watson-Crick base pairs. In this thesis, we

focus on RNA secondary structures including pseudoknots.

Finding the structure of a ncRNA is often the first step to explain its function. There

are two general computational methods to predict the secondary structure of an RNA:

De novo folding approach when we only have one single sequence and comparative

approach when we have additional homologous sequences at hand.

I will first describe De novo folding approach. Historically, the Nussinov algo-

rithm [70] is the first attempt to solve the RNA folding problem (predicting RNA

secondary structure from single-stranded RNA). The idea is to maximize the number

of base pairs in the structure. It is a simple and e�cient dynamic programming algo-

rithm which starts by calculating the maximum number of base pairs for the smallest

subsequences and extends to larger and larger subsequences. However, this algorithm

does not give accurate results. There are several reasons. For example, a↵ected by the

stacking interaction, the stability of a base pair varies according to the neighboring

base pairs. Besides, the algorithm does not distinguish loop size. The energy mini-

mization algorithm proposed by Zuker and Stiegler [125] gave an improvement of the

Nussinov algorithm. The free energy of an RNA structure is approximated as the sum

of the free energies of all the loops and base pair stacks. Zuker dynamic programming

algorithm tries to find the minimum free energy (MFE) among all the foldings of a

single-stranded sequence. However, there are still limitations for the MFE method.

First is the topological limitations which means that this algorithm does not allow

pseudoknots. Second, a single-stranded RNA sequence might have multiple confor-

mations. To solve the problem, Wuchty et al. designed an algorithm to generate all

suboptimal secondary structures within a range � from the optimal structure [118]

and Ding et al. [26] proposed a statistically sampling algorithm to generate the RNA

secondary structures according to the Boltzmann equilibrium probability distribution.

Recently, bioinformatician scientists tried to incorporate structure probing data into

folding algorithms to increase the accuracy of RNA folding. This method is the combi-

nation of structural probing experiment and computational method. One of the most

7

Homologous RNA
sequences

Aligned Sequences
Simultaneous fold and

Alignment
Homologous RNA

Secondary Structures

Aligned structures

Plan A Plan B
Plan C

Sequence alignment Fold sequences

Fold alignment Structural alignment

Sequence alignment and foldT-coffee
ClustalW

PETfold
RNAalifold

LocARNA
Foldalign
Dynalign

Crystallography/NMR
ViennaRNA

Rnaforester
R-Coffee

Figure 1.4: Current three approaches to analyze homologous RNA sequences and
structures. (from [31])

widely used probing experiments is to detect the paired and unpaired bases. There

are two kinds of reagents, one kind is chemical reagents and the other kind is enzyme

reagents. Chemical reagents can form stable adducts with nucleotides in the loop

regions while in the stacked regions it can not. This kind of reagent includes kethoxal

(KT) [14], dimethyl sulfate (DMS) [98], selective 2-hydroxyl acylation analyzed by

primer extension (SHAPE) [112]. The enzyme reagents are RNases which catalyze

the degradation of the single- or double-stranded regions into smaller segments [124].

Deigan et al. [23] have used this method to predict the secondary structure of Es-

cherichia coli 16S rRNA (> 1,300 nt) by combining the SHAPE pseudo-free energies

and nearest neighbor parameters with high accuracy.

For the comparative approach, the input is a list of sequences with assumed structural

similarities and the output is the common structural elements and an alignment

between sequences. For this approach, Gardner and Giegerich [31] listed three ways

as shown in Figure 1.4:

• Plan A: Align the sequences and look for common structural elements in the

alignment.

• Plan B: Simultaneous folding and aligning

• Plan C: Fold each sequence and align the structures

8

Plan A goes in the way: first align and then fold. To align the homologous sequences,

the researcher can use the standard multiple sequence alignment tools, like ClustalW,

t-co↵ee. Then the consensus structure can be derived by analyzing the structure

neutral mutations meaning that changing the sequence in RNA will not change the

structure. Current tools includes PETfold [88], RNAalifold [6].

Plan B follows the way: simultaneously align and fold. The Sanko↵ Algorithm [85]

is the classical algorithm to simultaneously align and infer a consensus structure.

However, this algorithm needs extreme amounts of time and memory. Current im-

plementation of this algorithm are LocARNA [113], Foldalign [34], Dynalign [40].

Plan C is to first fold and then align. Plan C will be used in the case where reliable

structures for the sequences are known. First all the structure for the homologous

sequences will be folded using ViennaRNA(MFE method) or be found through ex-

periment method, like crystallography or NMR. Then, we need to consider how to

compare two RNA secondary structures. If we do not consider pseudoknots, RNA

secondary structures can be represented as trees and tree edition and tree align-

ment algorithms have been proposed [122, 49]. The current implementations include

Rnaforester [43] and R-Co↵ee [114].

1.3.2 Pseudoknotted Structures

First, I will introduce De novo approaches to predict the pseudoknotted structure.

The prediction of RNA secondary structures containing pseudoknots of arbitrary

types from a single-strand sequence is NP-hard when an energy model is used [59].

Therefore, quite a lot of algorithms consider only a certain type of pseudoknots into

their dynamic programming equations. Based on dynamic programming algorithms

proposed by Uemura et al. [100], Akutsu [2] (A&U), Rivas and Eddy [79](R&E),

Lyngsø and Pedersen [58] (L&P) and Dirks and Pierce [27](D&P), Condon et al. [18]

devised a hierarchy of the pseudoknot complexity. Each polynomial time algorithm

corresponds to a class of pseudoknot that the algorithm can handle. Then the hier-

archy could be shown as

PKF ⇢ L&P ⇢ D&P ⇢ A&U ⇢ R&E

Here, PKF represents pseudoknot free secondary structure. Saule et al. [87] ex-

tended the hierarchy by adding two other algorithms with new classes: Reeder and

9

Giegerich [77] (R&G) and Cao and Chen [16] (C&C) algorithms. Then in the hier-

archy, R&G ⇢ D&P, L&P \ R&G = ; and R&G 6⇢ L&P and C&C ⇢ D&P, L&P \
C&C 6= 0, C&C 6⇢ L&P and C&C ⇢ R&G.

Besides De novo approaches, comparative approaches could also be used for pre-

dicting pseudoknotted structures. Next chapter will go into more details about this

approaches.

In detail, the dissertation is organized as follows. In Chapter 2, we first illustrate

edit operations to calculate the cost of an alignment and the definition of structure-

sequence alignment problem. Then we explain several state-of-the-arts algorithms

for the problem. These algorithms include Han’s algorithm [39] with program PAL,

Matsui’s algorithm [60] with program PSTAG, Song’s algorithm [91] and Rinaudo’s al-

gorithm [78]. Compared with other algorithms, Rinaudo’s algorithm is a fully general

method for sequence-structure comparison, which is able to take as input any type of

pseudoknotted structures. My work is based on Rinaudo’s algorithm.

In Chapter 3, I first describe some implementation details about our new program

LiCoRNA (aLignment of Complex RNAs). Then three algorithms will be introduced

to get the suboptimal structure-sequence alignments, one is stochastic backtrack-

ing algorithm based on partition function, one is �-suboptimal alignment algorithm

and one is K-best suboptimal alignment algorithm. Based on the partition function

and inside-outside algorithm, one can also compute the Boltzmann match probabil-

ity. Furthermore, we introduce the notation Maximum Expected structure-sequence

Alignment (MEA) to compute an alignment with maximum expected accuracy over

a set of alignments.

Chapter 4 illustrates the test results of LiCoRNA which are mainly divided into two

parts. The first part is to evaluate the performance of LiCoRNA based on the seed

alignment in the pseudoknotted RFAM families by the comparison with three other

state-of-the-art programs PAL, PSTAG and profile-csHMMs [120]. The evaluation pa-

rameters are sensitivity/Positive Predictive Value (PPV) and AFI. This experiment

mainly answers the following question: How does the predictive capacity of the accu-

racy of LiCoRNA compare with that of other state-of-the-art programs? The second

experiment mainly answers the following questions: Covariance models do not con-

sider pseudoknots when aligning, which may lead to misalign when building the full

alignment. Does LiCoRNA’s support of pseudoknots of arbitrary complexity translate

10

into better performances? Conversely, is the lack of support for complex pseudoknots

detrimental to the quality of the alignments?

The last chapter summarizes the dissertation by the concluding remarks of the pre-

vious chapters, and proposes the perspectives of the future work.

11

Chapter 2

Structure-sequence alignment

This chapter introduces the basic ideas of structure-sequence alignment. We first

illustrate edit operations to calculate the cost of an alignment and the definition

of structure sequence alignment problem. Then we explain several state-of-the-

arts algorithms for the problem for when the arc-annotated structure is PLAIN,

NESTED or CROSSING structure, especially Rinaudo’s algorithm [78] which is a

fixed-parameterized tractable algorithm to handle arbitrary pseudoknots. Finally, the

dynamic programming based on tree decomposition can also be formulated as two

basic operations factor maximization and factor summation in variable elim-

ination algorithm which is widely used to solve the maximum a posteriori (MAP)

problem in Bayesian networks or Markov networks.

Let us first present some notations. For an RNA structure, an arc-annotated se-

quence is defined as a pair (S, P), where S = s1, . . . , sn represents a sequence over

a finite set ⌃ = {A, U, G, C} and P = {(i, j) | 1  i < j  n} is a set of paired

base positions. A (canonical) base pair is either a Watson-Crick pair (A-U, G-C) or

a Wobble pair (G-U). Then the definition of structure-sequence alignment be-

tween an arc-annotated sequence Q = (SQ, PQ) = (SQ, P) (for short) of length m and

a plain sequence W = (SW , ;) of length n is given as follows.

Definition 1 (structure-sequence alignment). A structure-sequence alignment

between a arc-annotated sequence Q of length m and a sequence W of length n is a set

A 2 Am,n, where Am,n = {1 . . . m}⇥{1 . . . n} represents the potential matches, such

that A respects the following properties. Let ✓ and � be two operations (projection)

such that, for every a 2 Am,n, if a = (i, j), ✓(a) = i and �(a) = j. Then

12

1 2 3 4 5 6 7 8 9 10 11

1 2 3 4 5 6 7 8 9 10 11 12

Figure 2.1: A representation of structure-sequence alignment between an arc-
annotated sequence and a plain sequence.

• for every i 2 {1 . . . m}, there exists at most one a 2 A such that ✓(a) = i;

• for every j 2 {1 . . . n}, there exists at most one a 2 A such that �(a) = j;

• for every a, b 2 A, ✓(a) < ✓(b)) �(a) < �(b)

Figure 2.1 illustrates an example of a structure-sequence alignment. Given an align-

ment A, if i 2 SQ is not in a match, we denote it by (i,?). Likewise, (?, j) represents

that j 2 {1 . . . n} is not in a match in A. A gap is the position with (i,?) or (?, j)

in A. Then we extend Am,n to A 0
m,n = Am,n [{1 . . . m}⇥ {?} [{1 . . . n}⇥ {?}.

To calculate the cost for a structure-sequence alignment, we use a subset of edit

operations defined by Jiang et al. [48] and the subset of edition operations is shown

in Figure 2.2 and is defined as follows. Suppose that i, i0 are indices of SQ and j, j0

are indices of SW .

1. base operations

(a) Base match. (i, j) 2 A and SQ[i] = SW [j].

(b) Base mismatch. (i, j) 2 A and SQ[i] 6= SW [j].

(c) Base deletion. (i,?) 2 A.

(d) Base insertion. (?, j) 2 A.

13

A G G A U A A C A � U G G A C C A A G A

A A G A U � A U A G U G A A C � A U � �

arc mismatch arc match arc removing
arc altering

base match base mismatch
base deletion

base insertion

Figure 2.2: A sequence-structure alignment and the allowed edit operation.

2. arc operations

(a) Arc match. Given (i, j) 2 A, (i0, j0) 2 A and (i, i0) 2 PQ, SQ[i] = SW [j]

and SQ[i0] = SW [j0].

(b) Arc mismatch. Compared with arc match, at least one the equality SQ[i] =

SW [j] and SQ[i0] = SW [j0] is not satisfied.

(c) Arc altering. Given (i, i0) 2 PQ, one of (i,?) 2 A and (i0,?) 2 A satisfies.

(d) Arc removing. Given (i, i0) 2 PQ, (i,?) 2 A and (i0,?) 2 A.

Here, We denote the gaps in Q with G(Q) := {(i, `) | Q has a gap of length ` at

position i}. Likewise, we have the set G(W). Therefore, the cost of an alignment

A 2 A 0
m,n is defined as follows.

cost(A) =
X

a2A
s.t.✓(a),�(a) 6=?

�(a) +
X

a,b2A s.t.(✓(a),✓(b))2P
Q

⌧(a, b)

+
X

(i,`)2G(Q)

�Q(i, `) +
X

(i,`)2G(W)

�W (i, `) (2.1)

where � : ⌃2 ! R is the cost function of the base match and the base mismatch oper-

ations (base substitution operations), ⌧ : ⌃4 ! R is the cost function of the arc match

and the arc mismatch operations (arc substitution operations), the arc removing op-

eration and the arc altering operation. In section 3.1.2.2, we add certain restrictions

on the scoring of arc altering and arc removing for the further computation. The

most widely used gap penalty function is the a�ne gap penalty. By using a�ne

gap penalty, �Q(i, `) can be represented as �Q(i, `) = ↵Q + (` � 1)�Q where ↵Q and

�Q are the gap open and gap extension penalties for the arc-annotated sequence

14

A⇥ B ! C Complexity

PLAIN ⇥ PLAIN ! PLAIN mn

PLAIN ⇥ NESTED ! NESTED mn3

PLAIN ⇥ CROSSING ! CROSSING Max SNP-hard

PLAIN ⇥ UNLIMITED ! UNLIMITED Max SNP-hard

Table 2.1: Complexities of the structure-sequence alignment. A, B, C are the types
of the arc-annotated sequence

and �W (i, `) can be represented as �W (i, `) = ↵W + (`� 1)�W where ↵W and �W are

the gap open and gap extension penalties in the plain sequence.

Definition 2 (structure-sequence alignment problem). Given an arc-annotated

sequence Q = (SQ, P) and a plain sequence W = (SW , ;). The structure-sequence

alignment problem is to find the the alignment between Q and W with minimum

cost.

The type of P in an arc-annotated sequence Q can be classified as PLAIN, NESTED,

CROSSING, UNLIMITED as mentioned before. According to the alignment hierar-

chy defined in [8, 9], they have di↵erent complexities as shown in table 2.1. A, B and

C are the types of the arc-annotated sequence and the type C determines the search

space in the alignment. In our program LiCoRNA, we do not support UNLIMITED

structures which involve non-Watson-Crick base pairs. In the following section, we

will introduce the state-of-the-art algorithms to solve the structure-sequence align-

ment problem for PLAIN, NESTED, CROSSING structures.

2.1 Sequence-sequence alignment

If the arc-annotated sequence Q is PLAIN, Q can be represented as (SQ, ;). The

alignment between Q = (SQ, ;) and W = (SW , ;) can be solved by the Needleman-

Wunsch algorithm [68] and the alignment with the a�ne gap penalty function can be

solved by the Gotoh’s algorithm [35].

For the Needleman-Wunsch algorithm, we create a matrix with size m⇥n. Each cell

in the matrix stores a value F (i, j) where i and j are indices of the matrix. Here

F (i, j) is the cost of the optimal alignment between SQ(1 . . . i) and SW (1 . . . j). The

15

dynamic programming (DP) equation to calculate F (i, j) is shown below:

F (i, j) = min

8

>

>

<

>

>

:

F (i� 1, j � 1) + �((i, j))

F (i� 1, j) + d

F (i, j � 1) + d

(2.2)

Here, a = (i, j) is a match in the alignment and �((i, j)) is the cost function of base

substitution operation. The constant d stands for the gap penalty. The algorithm

takes O(mn) time and O(mn) memory. Actually, you can rewrite the DP equation

into equation 2.3. This kind of formula F = max{MATCH,DELETE,INSERT}
gives a general idea for structure-sequence alignment.

F (i, j) = min{MATCH, DELETE, INSERT}
MATCH = F (i� 1, j � 1) + �((i, j))

DELETE = F (i� 1, j) + d

INSERT = F (i, j � 1) + d (2.3)

A�ne gap penalty function is more reasonable to model the phenomenon that if

a particular position is gapped, the probability of the next position being gapped

is higher. Gotoh’s algorithm [35] allows the a�ne gap penalty function without

increasing the time complexity. The a�ne gap penalty function takes the form d +

(L� 1)e where d represents the gap opening penalty, e is the gap extension penalty

and L is the length of the gap. Now instead of using one matrix F , we use three

matrices FM , Fx, Fy for each combination (i, j). Each combination (i, j) can be in

three states in the alignment: FM state that SQ(i) is aligned to SW (j). Fx state that

SQ(i) is aligned to a gap and Fy state that SW (j) is aligned to a gap. If �d� e is less

than the lowest mismatch score, we do not need to consider the case where a deletion

is followed directly by an insertion. This gives:

FM(i, j) = min

8

>

>

<

>

>

:

FM(i� 1, j � 1) + �((i, j))

Fx(i� 1, j � 1) + �((i, j))

Fy(i� 1, j � 1) + �((i, j))

(2.4)

Fx(i, j) = min

(

FM(i� 1, j) + ↵W

Fx(i� 1, j) + �W

Fy(i, j) = min

(

FM(i, j � 1) + ↵Q

Fy(i, j � 1) + �Q

16

Here, ↵Q and �Q are the gap open and gap extension penalties for the arc-

annotated sequence. The gap open and gap extension penalties in the plain

sequence are denoted as ↵W and �W . The cost function of base substitution op-

eration is represented as �((i, j)) where a = (i, j) is a match in the alignment. The

time complexity of Gotoh’s algorithm is still O(mn).

2.2 NESTED structure-sequence alignment

If the arc-annotated sequence Q is NESTED, the alignment between Q = (SQ, P)

and W = (SW , ;) becomes more complicated. Jiang et al. [48] solved the problem

using dynamic programming algorithm with time complexity O(mn3).

They use the edit distance which is the cost of series of edit operations to transform

one arc-annotated sequence into the other to measure the similarity between the two

arc-annotated sequences. The Edit problem is to compute the optimal series of

edit operations with minimum cost. The Edit problem between a NESTED structure

and a PLAIN sequence is equivalent to the alignment problem [9, 8]. Therefore,

the edit distance can be defined via the alignment. In the dynamic programming

algorithm, instead of using F (i, j) to represent the optimal subsequence-subsequence

alignment, we use F (i, i0; j, j0) to consider the alignment for two bases in SQ because

of the existing of the base pairs. Here F (i, i0; j, j0) represents the edit distance between

partial sequences (SQ[i, i0], P [i, i0]) and (SW [j, j0], ;) with 1  j  j0  n, and P [i, i0]

denotes a subset of base pairs {(k, k0)|i  k < k0  i0, (k, k0) 2 P}.

However, not all combinations (i, i0) of SQ in F (i, i0; j, j0) will be considered. The

binarizing algorithm by Bafna et al. [3] can directly generate the set of valid combi-

nations (i, i0) and build a binary tree at the same time. One example is illustrated

in Figure 2.3. The left part of the figure is a NESTED structure, the solid edges

correspond to a set of combinations (i, i0) where (i, i0) 2 P and the dashed edges

correspond to a set of added combinations (i, i0) generated by the algorithm and we

denote this set as P 0. The total combinations P [P 0 are shown in the right part of

Figure 2.3. The dynamic programming is designed to compute the optimal alignment

between Q and W . As described by Jiang [48], the DP calculates F (i, i0; j, j0) in the

ascending order of i0 � i which exactly is the same as the order that you traverse the

binary tree from bottom to top.

17

a

1 2 3 4 5 6 7 8 9 10 11 12

b
c

d

he
f

g

i j k

1,12

2,11

2,10

2,7 8,10

9,92,4 5,7

2,2 3,4 6,6

Figure 2.3: Example of binarizing an RNA NESTED structure and a binary tree is
built at the same time.

To compute F (i, i0; j, j0), if (i, i0) 2 P , DP equation 2.5 is used and if (i, i0) 2 P 0, DP

equations 2.6 and 2.7 are used. Now let us consider the combinations (i, i0) 2 P and

there are six cases to be considered. We follow the general formula scheme as shown

in the sequence-sequence alignment.

F (i, i0; j, j0) = min{MATCH, DELETE, INSERT}
MATCH = F (i + 1, i0 � 1; j + 1, j0 � 1) + ⌧((i, j), (i0, j0))

DELETE = min

8

>

>

<

>

>

:

F (i + 1, i0 � 1; j, j0 � 1) + ⌧((i,?), (i0, j0))

F (i + 1, i0 � 1; j + 1, j0) + ⌧((i, j), (i0,?))

F (i + 1, i0 � 1; j, j0) + ⌧((i,?), (i0,?))

INSERT = min

(

F (i, i0; j, j0 � 1) + d

F (i, i0; j + 1, j0) + d
(2.5)

Here, ⌧ is the cost function for arc substitution operations (arc match and arc

mismatch operations), arc removing operation and arc altering operation. The

constant d stands for the gap penalty.

Now let us consider the combinations (i, i0) 2 P 0 where SQ[i] and SQ[i0] do not form

base pairs in the secondary structure. There are two di↵erent subcases depending

on whether SQ[i0] forms a base pair with another base except SQ[i] or not. The two

di↵erent subcases are shown in the binary tree in Figure 2.3. For subcase 1, like the

node (2, 11) and base 11 does not form base pair with other base in the secondary

structure. For subcase 2, like node (2, 10), base 10 forms base pair with base 8 in the

secondary structure. For subcase one, we only need to consider the alignment of base

18

i0 and the DP equation is

F (i, i0; j, j0) = min{MATCH, DELETE, INSERT}
MATCH = F (i, i0 � 1; j, j0 � 1) + �((i0, j0))

DELETE = F (i, i0 � 1; j, j0) + d

INSERT = F (i, i0; j, j0 � 1) + d (2.6)

where �((i, j)) is the cost function of base substitution operations. The constant

d stands for the gap penalty.

In subcase two, we use u(i) to denote the base pair in PQ incident on position i and

u(i)l, u(i)r are the left and right endpoint of the base pair. Therefore, we have

F (i, i0, ; j, j0) = min
jj00j0

F (i, u(i0)l � 1; j, j00 � 1) + F (u(i0)l, i
0; j00, j0) (2.7)

where i0 = u(i0)r. Finally, the entry F (1, m; 1, n) corresponds to the edit distance

between Q and W and the standard backtracking technique is used to get the optimal

alignment. The time complexity for the algorithm is O(mn3).

2.3 CROSSING structure-sequence alignment

Now we consider the structure-sequence alignment when the arc-annotated sequence

Q is CROSSING. Thus the structure of Q contains pseudoknots. It has been stated

that H-type and kissing-hairpin pseudoknots account for 80% of the pseudoknots

in the known structures [78]. Han’s algorithm [39] can deal with standard pseu-

doknots(contains H-type pseudoknot and kissing-hairpin). Later, Wong et al. [117]

design an algorithm to deal with non-standard pseudoknots and recursive pseudo-

knots. Unlike previous algorithms, Matsui et al. [60] use tree adjoining grammars

(TAGs) to model pseudoknots and based on that, they develop a dynamic program-

ming algorithm to obtain the optimal structural alignment. Recently, Rinaudo et

al. give a general setting for structure-sequence comparison for a large class of RNA

structures that unifies all the pseudoknotted structures [78]. In this section, I briefly

introduce Han’s algorithm, Matsui’s algorithm and Rinaudo’s algorithm. The rea-

son that I only introduce those algorithm in this section is that the corresponding

softwares are available on the Internet.

19

A) B)

Figure 2.4: A) A simple pseudoknot. B) Subpseudoknot structure ends with frontier
(i, j, k).

2.3.1 Han’s algorithm

Han’s algorithm is based on the algorithm of NESTED structure-sequence alignment

between Q = (SQ, P) and W = (SW , ;) and they develop a program named PAL which

handles simple pseudoknots. Here I first show the definition of simple pseudoknot

and later I will explain the chaining algorithm which is used to decompose the simple

pseudoknot. Pi0,k0 = {(i, k) 2 P |i0  i  k  k0} contains the positions of base pairs

where the two ends of the base pair are within the range [i0, k0]. An RNA secondary

structure Pi0,k0 is regular if and only if Pi0,k0 = ; or Pi0,k0 is a NESTED structure.

Definition 3 (simple-pseudoknot [39]). Pi0,k0 is a simple pseudoknot if and only

if Pi0,k0 is regular or 9j0, j00 with i0  j0  j00  k0 such that the resulting partition,

D1 = [i0, j0 � 1], D2 = [j0, j00 � 1], D3 = [j00, k0], satisfies the following:

• Pi0,k0 = (SL [SR), where SL = {(i, j) 2 Pi0,j0 |i 2 D1, j 2 D2} and SR =

{(i, j) 2 Pi0,j0 |i 2 D2, j 2 D3}.

• SL and SR are regular.

Figure 2.4 A) illustrates an example of a simple pseudoknot. The subpseudoknot

Q(i, j, k) is defined as the union of two partitions [i0, i] [[j, k]. The frontier of the

subpseudoknot Q(i, j, k) is a triple (i, j, k) as shown in Figure 2.4 B). Unlike the

previous algorithms, Han’s algorithm aims to align the frontier (i, j, k) to (i0, j0, k0) of

W which means that it considers the alignment of three bases at the same time.

20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

2

6

14

165

13

5,6,16

5,7,15

5,8,14

5,9,13

4,9,13

4,10,13

3,11,13

2,12,13

1,13,13

1,14,13

A)

B)

C)

Figure 2.5: An example for chaining algorithm to decompose simple pseudoknot. A)
A simple pseudoknot. B) Another representation of the simple pseudoknot. C) The
output of the chaining algorithm.

The chaining algorithm is used to decompose the simple pseudoknot and the pro-

cess is shown in Figure 2.5. The input for the chaining algorithm is Pi0=2,k0=16.

According to the definition of simple pseudoknot, the structure Pi0=2,k0=16 can be

divided into three partitions: D1 = [2, 5], D2 = [6, 13] and D3 = [14, 16] where j0 = 6

and j00 = 14. Figure 2.5 B) is another representation of the simple pseudoknot. The

chaining algorithm begins with the root frontier (j0 � 1, j0, k0) which is (5, 6, 16) in

Figure 2.4. Actually, the subpseudoknot Q(j0 � 1, j0, k0) = [i0, j0 � 1] [[j0, k0] is the

entire simple pseudoknot. The output of the chaining algorithm is a directed path of

nodes as shown in Figure 2.5 C). The node represents a subpseudoknot with frontier

(i, j, k).

The nodes are classified into 3 kinds: MR, ML, MS. ML(MR) is a kind of node

representing the subpseudoknot Q(i, j, k) where (i, j) 2 SL((j, k) 2 SR) while MS is

another kind of node representing the subpseudoknot Q(i, j, k) where (i, j) /2 SL and

(j, k) /2 SR. (1, 0, 0) means that the chaining algorithm moves from the current node

with frontier (i, j, k) to the child node with frontier (i0, j0, k0) by subtracting 1 from i

to get i0 which means that i0 = i� 1, j0 = j and k0 = k. For di↵erent kinds of nodes,

there are di↵erent DP recursions. The recursions for MR and ML are almost the same

and the recursions for MS(1, 0, 0), MS(0, 1, 0) and MS(0, 0, 1) are almost the same, so

21

I only show the recursions for ML and MS(1, 0, 0). We also follow the general formula

and the di↵erence is that we need to consider the alignment of three bases at the

same time. For the node which belongs to ML which means that (i, j) 2 P where

P is a set of positions of base pairs. The cost of the alignment for (i, j) 2 P should

be considered at the same time and the edit operations are the same with NESTED

structure-sequence alignment.

F (i, j, k; i0, j0, k0) = min{MATCH, DELETE, INSERT}
MATCH = F (i� 1, j + 1, k; i0 � 1, j0 + 1, k0) + ⌧((i, i0), (j, j0))

DELETE = min

8

>

>

<

>

>

:

F (i� 1, j + 1, k; i0, j0 + 1, k0) + ⌧((i,?), (j, j0))

F (i� 1, j + 1, k; i0 � 1, j0, k0) + ⌧((i, i0), (j,?))

F (i� 1, j + 1, k; i0, j0, k0) + ⌧((i,?), (j,?))

INSERT = min

8

>

>

<

>

>

:

F (i, j, k; i0 � 1, j0, k0) + d

F (i, j, k; i0, j0 + 1, k0) + d

F (i, j, k; i0, j0, k0 � 1) + d

(2.8)

Here, ⌧ is the cost function for base pair substitution operations (arc match and

arc-mismatch operations), arc-removing operation and arc-altering operation.

The constant d stands for the gap penalty.

For the node MS(1, 0, 0) we consider the alignment of i in the frontier (i, j, k). The

DP equation in this case is shown below.

F (i, j, k; i0, j0, k0) = min{MATCH, DELETE, INSERT}
MATCH = F (i� 1, j, k; i0 � 1, j0, k0) + �((i, i0))

DELETE = F (i� 1, j, k; i0, j0, k0) + d

INSERT = min

8

>

>

<

>

>

:

F (i, j, k; i0 � 1, j0, k0) + d

F (i, j, k; i0, j0 + 1, k0) + d

F (i, j, k; i0, j0, k0 � 1) + d

(2.9)

where �((i, j)) is the cost function of base substitution operation. The constant

d stands for the gap penalty.

Recursions 2.8 and 2.9 take totally O(n3) time, separately. Each time, we generate

a new node using chaining algorithm, the frontier (i, j, k) decreases by at least 1.

Therefore, the number of nodes in the chain is O(m). Thus, the time complexity for

the algorithm is O(mn3).

22

2.3.2 Matsui’s algorithm

Matsui et al. [60] used tree adjoining grammars (TAGs) to represent pseudoknots

and developed a DP algorithm to calculate the optimal structural alignment. This

work is based on the pair hidden Markov models on tree structures (PHMMTSs)

proposed by Sakakibara [83]. However, PHMMTSs can only handle structural align-

ment for NESTED structures. By incorporating the TAGs into PHMMTSs, Matsui

et al. proposed pair stochastic TAGs (PSTAGs) for pseudoknot structural alignment.

Although TAGs can still not model all kinds of pseudoknots, it gives another view

for structure-sequence alignment by using grammars. Another widely used grammar

for structure-sequence alignment is context-free grammar which is used to represent

secondary structures and the main corresponding available software is INFERNAL [67].

In the following, we begin with the definition of TAGs, along with two subclasses,

simple linear TAGs (SL-TAGs) and extended simple linear TAGs (ESL-TAGs) and

then we introduce the particular ESL-TAGs for pseudoknots. The basic operation

for TAGs is the adjoining operation which is based on the active node. Finally,

based on the PSTAG, we introduce the DP algorithm.

A TAG is a 5-tuple grammar G = (VN , VT , S, I, A). VN is a set of non-terminal

symbols. VT is a set of terminal symbols and S 2 VT is the initial symbol. I is a

finite set of initial trees and A is a finite set of adjunct trees. For ↵ 2 A and � 2 I,

the following must be satisfied:

• ↵(1) = S and Y(↵) 2 V ⇤
T .

• �(1) = X 2 VN and Y(�) 2 V ⇤
T XV ⇤

T .

Here V ⇤
T is the set of finite sequences over VT . For a tree �, �(p) = A means that the

label of the node p is A 2 VN [VT . Furthermore, the root node in � is numbered 1

and the other nodes are numbered in preorder. The yield of �, denoted as Y(�), is

the string of the labels of the leaf nodes of �. For � 2 A, the foot node of � is the

node that is labeled with X in Y(�) and backbone of � is the path from root node

to foot node.

The nodes in the tree � can be active or inactive. The active nodes are indicated

by ⇤ and to understand the idea of active nodes, one must understand the adjoining

operation first. Figure 2.6 illustrates the adjoining operation: � is a tree with

23

Adjunct trees

derived

Figure 2.6: An adjoining operation in TAGs. � is tree with �(p) = X and � an
adjunct tree with �(1) = X. �0 is a derived tree from � by adjoining � into � at
position p.

�(p) = X and � is an adjunct tree with �(1) = X. �0 is a derived tree from � by

adjoining � into � at position p. Therefore, a node at p in � with label X 2 VN is

active if there is an adjoining tree � 2 A that can adjoin � at position p.

A TAG G is an SL-TAG if 8↵ 2 I, ↵ is simple linear which means that there is only

one active node in ↵ and 8� 2 A, � is simple linear which means that there is only

one active node on the backbone of �. A TAG G is an ESL-TAG if 8↵ 2 I, ↵ is

simple linear and 8� 2 A, � is semi-simple linear meaning that there are two active

nodes in �, one is on the backbone and the other is elsewhere.

Uemura et al. [100] used special ESL-TAGs to represent RNAs with pseudoknots.

GRNA = (VN , VT , S, I, A). VT = {A, C, G, U} and VN = S. The bar notation is used

to represent the Watson-Crick base pairings, such as A = U and C = G. I and A
are shown in Figure 2.7. TYPE 2 and TYPE 3 are to emit base pairs. TYPE 4 is

to emit single base. TYPE 5 is used to generate branching structures. Furthermore,

TYPE 2, TYPE 3 and TYPE 4 are simple linear and TYPE 5 is semi-simple linear.

In a previous paper [83], Sakakibara et al. proposed PHMMTSs to emit a pairwise

alignment of trees and here they extended the idea to PSTAGs to emit the align-

ment of TAGs trees. The TAG tree represents the derivation process of an RNA

pseudoknotted structure as shown in Figure 2.8 A). The PSTAG has three states,

matched state M, insertion state I and deletion state D which is suitable for a�ne

penalty alignment as shown in Figure 2.8 B). ⌧X is the initial probability. �XY denotes

the transition probability from state X to state Y . PX
O (↵, �) denotes the emission

probability of adjunct trees ↵, � at state X 2 {M, I, D}.

24

Initial Trees
TYPE 1

Adjunct Trees
TYPE 2 TYPE 3

TYPE 4

T2u T2d T3L T3R

T4Ld T4Lu T4Rd T4Ru

TYPE 5

T5Ld T5Lu T5Rd T5Ru

Figure 2.7: Inital trees and adjunct trees for TAG GRNA. S⇤ is the active nodes and
the other nodes are inactive. x and x forms base pairs.

begin

A) B)

Figure 2.8: (A) A TAG tree for ’(a(bB)A)(d[eD)E]’. (B) A state transition diagram
of PSTAG for a�ne-gap alignment on tree structures. ⌧X is the initial probability.
�XY denotes the transition probability from state X to state Y . PX

O (↵, �) denotes
the emission probability of adjunct trees ↵, � at state X 2 {M, I, D}.

25

Therefore, given an arc-annotated sequence Q = (SQ, P) of length m and a plain

sequence W = (SW , ;) of length n with SW 2 V ⇤
T , a TAG tree T is obtained by parsing

Q using the GRNA. Let w[i, j, k, l] be the pair of subsequences SW [i+1] . . . SW [j] and

SW [k + 1] . . . SW [l]. The size of T is denoted as L with l1 TYPE 5 nodes and totally

l2 TYPE 2 to 4 nodes (L = l1 + l2). Let T [p] with 1  p  L be the subtree of T

rooted at p and v[p] be the label (an adjunct tree) for the position p. If p is of arity

2, the children of p are p1 and p2 and if p is of arity 1, the child of p is denoted as p1.

Here I do not show the DP equation in detail, but I will show some ideas about it.

Now we will consider the general recursion PZ(w[i, j, k, l], T [p]) which means the prob-

ability of aligning w[i, j, k, l] to subtree T [p] with state Z. For simplicity’s sake, we

only consider the case for matched state and the probability is PM(w[i, j, k, l], T [p]).

Theoretically, for fixed i, j, k, l where (0  i  j  k  l  n), W [i, j, k, l] can form

all the types of the adjunct trees in GRNA and the type is denoted as vc[q]. Further-

more, the corresponding constructed subtree is denoted as Tc[q]. So we are trying

to compute P (Tc[q], T [p]), 8p 2 {1 . . . L}. However, not all the pair of the adjunct

trees can be matched in aligning two TAG trees as stated in [60]. The general idea is

that the nodes of arity 1(or 2) for Tc[q] can only match the nodes of arity 1(or 2) for

T [p]. Therefore, if the type vc[q] is of arity 1, we only consider the v[p], 8p 2 {1 . . . L}
where v[p] belongs to the TYPE 2� 4. The equation for PM(w[i, j, k, l], T [p]) is

PM
1 (w[i, j, k, l], T [p]) = max

X2{M,I,D}
�2T

PM
O (�, v(p)) · �XM

· PX(i + |LU(�)|, j � |LD(�)|, k + |RD(�)|, l � |RU(�)|, T [p1])
(2.10)

Here, T is a set containing all the TYPE 2 � 4 adjunct trees. Let � be a simple

linear adjunct tree and the active node of � is labeled with Y ⇤. The yield of �

can be decomposed into four subsequences |LU(�)|, |LD(�)|, |RD(�)| and |RU(�)|.
Figure 2.9 explains the process of the recursion equation 2.10. The time complexity

is O(l1n4) and space complexity is O(Ln4). If the type vc[q] is of arity 2, vc[q] can

be T5Ld, T5Lu, T5Rd and T5Ru. Here we only illustrate the recursion for T5Ld.

PM
2 (w[i, j, k, l], T [p]) = max

X,Y 2{M,I,D}
i<rj
isr

PM
O (T5Ld, v(p))

· �XM · PX(w[r, j, k, l], T [q1])

· �YM · PX(w[i, s, s, r], T [q2]) (2.11)

26

Adjunction

Figure 2.9: illustration of equation 2.10. � is a tree with �(0) = Y and � 2 A is an
adjunct tree. �0 is a derived tree by adjoining � into �.

Figure 2.10: illustration of equation 2.11 if vc[q] = T5Ld.

27

The recursion 2.11 can be easily understood from Figure 2.10. The time complexity

is O(l2n6) from the first view of the recursion 2.10. However, the complexity can be

reduced to O(l2n5) by pre-computing the term PX(w[i, s, s, r], T [q2]) [100].

2.3.3 Song’s algorithm

Song et al. [91] illustrated an e�cient parameterized algorithm for RNA pseudo-

knotted structure-sequence alignment and also for searching of RNA structures in

genomes. I will explain the method to calculate an optimal structure-sequence align-

ment from three steps:

• Construct the conformation graph H for consensus structure of an RNA family

and image graph G for the target sequence.

• Formulate RNA structure-sequence alignment between the structure profile and

the target sequence as a generalized subgraph isomorphism problem.

• Solve the problem using a tree decomposition based parameterized algorithm.

The basic structural units in the consensus secondary structure for an RNA family are

the stems and the loops. Then a conformation graph H is introduced to describe

the relationship among the stems and the loops. H is a mixed graph containing both

undirected and directed edges between the vertices. Each vertex represents a stretch

of nucleotides which forms one half of a stem. Two vertices are connected by an

undirected edge if the corresponding stretches of nucleotides form a stem (50 to 30)

in the structure. Two vertices are connected by a directed edge if the corresponding

stretches of nucleotides are the two ends of a loop in the structure. Figure 2.11 A)

shows a simple consensus secondary structure with two parallel stems. Figure 2.11

B) illustrates the conformation graph H for the secondary structure. Technically, two

additional vertices s (source) and t (sink) are added to the graph.

For the target sequence, an image graph G is built. The key step is to use the profile

of each stem to scan the target sequence based on the covariance models. Then the

alignments with the significant score between the profile stem and the base pairing

regions in the target sequence are found. Finally, several base pairing regions are

abstracted for one stem and each base pairing region is called an image of the stem.

Song et al. defined a parameter k to be the maximum number of the base pairing

28

A) B)

C) D)

Figure 2.11: [91]. A) A consensus secondary structure for an RNA family. It has two
parallel stems (i, j), (k, l). B) Conformation graph H of the RNA structure in A).
C) target sequence with two images for each stem, represented by two pairs of the
rectangles (one pair is filled with grey and one pair is with dotted border). The two
images for the stem (i, j) are (i1, j1), (i2, j2) and the two images for the stem (k, l)
are (k1, l1) and (k2, l2). D) image graph G for the target sequence.

regions for each stem. Each one of the base pairing regions is defined as a vertex in the

image graph G. The image graph is also a mixed graph. Two vertices are connected

by an undirected edge if the corresponding bases regions are pairing. Two vertices are

connected by a directed edge if the corresponding bases regions are non-overlapping

and are not images of the same stem. Figure 2.11 C) shows a target sequence. Each

stem in the structure profile has two images. For the stem (i, j), the two images are

(i1, j1), (i2, j2). For the stem (k, l), the two images are (k1, l1) and (k2, l2).

Given the conformation graph H for the structure profile and image graph G for the

target sequence, the structure-sequence alignment can be formulated as a general-

ized subgraph isomorphism problem [91] which is to find a one-to-one mapping

f from vertices in H to their images in a subgraph S of G such that

• (u, v) is an edge in H if and only if (f(u), f(v)) is an edge in S

• For any set of vertices in G representing overlapping regions on the target

sequence, at most one of them can be selected to the subgraph S

• The total score achieves the maximum when calculating the sum of the align-

ment score of the stems and loops according to the mapping f .

29

To solve the problem, Song et al. developed a tree decomposition based DP algorithm

to compute the optimal alignment between H and the subgraph of G. As the Song’s

algorithm and the Rinaudo’s algorithm are similar, the detail of the algorithm will

be shown in the section of the Rinaudo’s algorithm. The complexity of the Song’s

algorithm is O(ktn) where k is the maximum number of the base pairing regions for

each stem, t is the tree-width of the tree decomposition of the conformation graph

H and n is the number of nodes(bags) in the tree decomposition. However, this

algorithm needs a heuristics preprocessing step to detect the potential k candidates

for each stem which may cause inaccuracy of the alignment.

2.3.4 Rinaudo’s algorithm

Recently, Rinaudo et al. [78] developed a fully general method for structure-sequence

comparison, which is able to take as input any type of pseudoknotted structure. The

inputs for the algorithm are an arc-annotated sequence Q = (SQ, P) of length m

and a plain sequence W = (SW , ;) of length n. The arc-annotated sequence can be

referred to as the RNA graph. The algorithm also relies on the tree decomposition

of the RNA graph and further dynamic programming algorithm is used to calculate

an optimal alignment. Di↵erent from Song’s algorithm, in Rinaudo’s algorithm, each

nucleotide in the query structure and target sequence is treated as a vertex in the

RNA graph. The tree decomposition can be defined as follows:

Definition 4 (Tree Decomposition of an arc-annotated sequence). A tree

decomposition of an arc-annotated sequence Q = (SQ, P) is a rooted tree T whose

nodes, called bags, are sets of positions in Q. Additionally, the set X of bags must

satisfy:

• (Node coverage) 8s 2 S, 9X 2 X such that s 2 X;

• (Edge coverage) 8(i, j) 2 P, 9X 2 X such that {i, j} ⇢ X. Moreover, 81  i <

m, 9X 2 X such that {i, i + 1} ⇢ X;

• (Coherence) 8X, X 0, X 00 ⇢ X , if X 00 lies on the path from X and X 0 on T , then

X \X 0 ⇢ X 00.

Figure 2.12 illustrates a possible tree decomposition for a simple pseudoknot. The

width of a tree decomposition T is defined as maxX2X |X|� 1. The tree-width tw

30

7,9

6,7,9 7,8,9

4,6,7,9

4,5,6,9 2,4,6,7 4,9,10

10,11

2,3,4 1,2,7

A) B)

1 2 3 4 5 6 7 8 9 10 11

Figure 2.12: A) Arc-annotated sequence of a simple pseudoknot. B) A corresponding
tree decomposition and the width of this tree decomposition is 3.

of an arc-annotated sequence Q is the minimum width over all possible tree decompo-

sitions of Q. Suppose the current bag is X, we use p(X) to represent the father bag

and child(X) as its children bags. The root bag is denoted as X0. Furthermore, we

split a bag X into two parts transition indices X " and proper indices X #.

X " := {i 2 X | i 2 p(X)}.

X # := {i 2 X | i 62 p(X)}.

As shown in Figure 2.13 A), if the current bag X contains positions 4, 6, 7, 9, X "=
{6, 7, 9} and X #= {4}. Furthermore, P (X) is the set of proper base pairs of a bag

involving at least one proper index. Similarly, N(X) represents the set of proper

backbone interactions, i.e. consecutive positions involving proper indices.

P (X) := {(i, j) | i, j 2 X and i or j 2 X #}
N(X) := {(i, i + 1) | i, i + 1 2 X and i or i + 1 2 X #}

The notion of smooth bag is further defined by Rinaudo et al. for assigning consecutive

positions.

Definition 5 (Smooth Bag of a Tree Decomposition [78]). Let X 2 X be a

bag in a tree decomposition for an arc-annotated sequence Q = (SQ, P). If X 6= X0,

p(X) is the father bag. X is smooth i↵ there exist two consecutive positions i and j

31

6,7,9

4,6,7,9

A)

1 2 3 4 5 6 7 8 9 10 11

1 2 3 4 5 6 7 8 9 10 11 12 13

B)

Figure 2.13: A) Illustration of the transition indices X " and proper indices X # of a
bag. Suppose the current bag X = {4, 6, 7, 9}, X "= {6, 7, 9} and X #= {4}. B) Rep-
resentation of structure-sequence alignment. Every position in Q has a corresponding
alignment triple. Operation � distinguishes match positions and unmatched position
in Q. We aggregate consecutive unmatched positions in Q to their nearest rightward
matched position and a virtual position is added at the end of W . The alignment
triple for positions 8, 10, 11 in Q are (8, 12, 0), (10, 12, 1) and (11, 13, 0).

such that position i is in the proper indices and position j is in the transition indices

and j is not in one the children bags of X. Besides there is no i0 in the proper indices

such that (i0, j) 2 P or i0 (except i) consecutive to j. The root X0 is smooth i↵ (1)

there exist two consecutive positions i, j 2 X0 such that j is not in any child of X0

and (i, j) 2 P , or (2) i↵ the size of the root is strictly smaller than the size of one of

its children.

A tree decomposition for an arc-annotated sequence Q = (SQ, P) is smooth if every

bag X 2 X is smooth. In this way, the Gotoh’s algorithm can be used to calculate

the optimal score for assignments of consecutive positions in O(n) instead of O(n2)

when the assignments of the other indices in the bag are fixed.

Based on Definition 1 for structure-sequence alignment, to preserve the sequential

order and make sure every position in Q has a mapping position in W , we extend the

set A 0
m,n to Âm,n := {1 . . . m}⇥ {1 . . . n + 1}⇥ {0, 1} after adding a virtual position

at the end of W . Additionally to ✓ and �, a new operation � is defined to get the

third element of Âm,n and � distinguishes matched positions and unmatched positions.

For a particular alignment triple 8a = (i, j, k) 2 Âm,n, �(a) = 0 means that position i

aligns to j and position i is an unmatched position. Additionally, unmatched positions

32

are forced to aggregate to their right nearest positions. Moreover, �(a) = 1 means

that sequence position i aligns to position j and the position i is a match position [78].

The details are shown in Figure 2.13 B).

For a particular bag X, let AX" be all possible alignments for X " and let AX# be all

possible alignments for X #.

AX" :=
[

i2X"

⇣

{i}⇥ {1 . . . n + 1}⇥ {0, 1}
⌘

AX# :=
[

i2X#

⇣

{i}⇥ {1 . . . n + 1}⇥ {0, 1}
⌘

Therefore, for AX" 2 AX" and AX# 2 AX#, the local bag alignment is AX =

AX"
S

AX#. Let us further denote by C(X, AX") the cost for the partial optimal

alignment ending with a particular AX" 2 AX". Therefore, Rinaudo’s algorithm [78]

can be reformulated as:

C(X, AX") = min
A

X#2AX#
{LCost(AX", AX#) +

X

X02child(X)

C(X 0, project(X 0, AX))}

(2.12)

M(X, AX") = arg min
A

X#2AX#

{LCost(AX", AX#) +
X

X02child(X)

C(X 0, project(X 0, AX))}

(2.13)

Here LCost function is to calculate the cost of bag alignment and section 3.1.2.4 will

give more details about the function. The project(X 0, AX) operation restricts a set

AX to the elements in a bag X 0. The dynamic programming traverses the tree T from

the leaf bags to the root and for each bag X 2 T computes partial alignments. At the

root bag of T , the whole alignment instances between Q and W are taken into account.

The time complexity for the algorithm is O(|X | · ntw+1) where tw is the tree-width

of Q. As shown by Rinaudo et al. [78], by finding a smooth tree decomposition of Q,

the time complexity of the structure-sequence alignment algorithm can be reduced in

O(|X | · ntw).

2.3.5 Other formula

There is an easy way to understand the tree decomposition based parameterized

algorithm if you are familiar with the variable elimination algorithm which is

used to solve the maximum a posteriori (MAP) problem in Bayesian networks or

33

Markov networks [53, 22]. Here I give a quite easy example using Markov networks

which are based on the undirected graphs. Suppose we have four random variables

A, B, C, D with relationship shown in Figure 2.14. Each variable has two values, for

example the variable A has values a0 and a1. To parameterize the graph, a function

called factor is defined which is used to capture the a�nities between related variables

(which has edges between them). Let D be a set of random variables, a factor � is

defined as a function from V al(D) to R where V al(D) represents all possible values

for D. As shown in Figure 2.14, each table corresponds a factor. In the leftmost table

in Figure 2.14, D = {A, B} and one possible value in V al(D) is (a0, b0).

As our example does not have evidence variables, our task is that given variables X,

compute MAP (x) = arg maxx P�(X = x) and P�(x) /
Q

k �k(Dk) where � is defined

as a set of factors � in the Markov network. In Figure 2.14, � = {�1, �2, �3}. There-

fore, MAP (x) = arg maxx

Q

k �k(Dk). To solve the problem, the exact inference

method variable elimination algorithm is used here. However, one usually trans-

fer production to summation and the equation arg max
Q

k �k(Dk) are transfered to

arg max
P

k ✓k(Dk). Therefore, in our example as shown in Figure 2.14, we need to

calculate arg max
P3

k=1 ✓k(Dk) where ✓ = log2�. The variable elimination algorithm

can be described mathematically in the following way:

max
C

max
B

max
A

(✓1(A, B) + ✓2(B, C) + ✓3(C, D)) (2.14)

As none of ✓2(B, C) and ✓3(C, D) are related to maxA, the formula can be reformulated

as

max
C

max
B

(✓2(B, C) + ✓3(C, D) + max
A

✓1(A, B)) (2.15)

max
C

max
B

(✓2(B, C) + ✓3(C, D) + �1(B)) (2.16)

Notice that in this step, we can eliminate the variable A by replacing maxA ✓1(A, B) by

�1(B). �1(B) is a function of variable B and for di↵erent values of B, we have di↵erent

values. The first step involves an operation which is called factor maximization

which is defined as follows:

Definition 6 (Factor maximization [53]). Let X be a set of variables, and Y 62 X a

variable. Let �(X, Y) be a factor. We define the factor maximization of Y in � to be

a factor � over X such that:

�(X) = max
Y

�(X, Y).

34

A B
7
2
3
3

B C
7
4.5
1.2
3

C D
1
9
2
3.5

Figure 2.14: Markov network example.

The process of the factor maximization operation is shown in Figure 2.15 A). The

next step is to eliminate variable B. This step involves two factor operations, one is

factor summation and the other one is factor maximization as shown in Figure

2.15 B) with equation:

max
C

(✓3(C, D) + max
B

(�1(B) + ✓2(B, C))) (2.17)

The last step is to eliminate C as shown 2.18

max
C

(✓3(C, D) + �2(C)) (2.18)

The corresponding process is shown in Figure 2.16. We will eliminate variable C

in this step and get a function �3(D). Therefore, the maximum value is 23 when

D = d1. Now we execute the backtrack process to get the optimal value x⇤. To

make �3(d1) = 23, we need C = c0 and D = d1 with �2(c0) = 14 in Figure 2.16. To

make �2(c0) = 14, we need B = b0 and C = c0 with �1(b0) = 7 in Figure 2.15 B).

To make �1(b0) = 7, we need A = a0 and B = b0 as shown in Figure 2.15 A). The

optimal value is 23 with A = a0, B = b0, C = c0 and D = d1.

Now let us reconsider Rinaudo’s algorithm. Suppose we have an arc-annotated se-

quence Q = (SQ, ;) with AUUA and the other arc-annotated sequence W = (SW , ;)
with AA. We want to get an optimal alignment between Q and W . Q has four nu-

cleotides, each nucleotide corresponds to a variable A, B, C, D. Each variable has

six values which are 1, 2, 3, 4, 5, 6. 1, 2, 3 means that the position i of Q is aligned

to the position 1, 2, 3 of W with matched case and 4, 5, 6 means that the position i

of Q is aligned to the position 1, 2, 3 with unmatched case. Therefore, an alignment

35

A B
7
2
3
3

B
7
3

B
7
3

B C
7

4.5
1.2
3

C
14

11.5

B C
14

11.5
4.2
6

A) Factor Maximization

B) Factor Summation

Figure 2.15: The step to eliminate variable B with factor operations: factor summa-
tion and factor maximization.

C D
1
9
2
3.5

C
14
11.5

C D
15
23
13.5
15

D
15
23

Figure 2.16: The step to eliminate variable C.

36

1 2 3 4

1 2 3

1 2 3 4

1 2 3

A) B)

A(A) B(U)
1 2
1 3
1 4

......
5 6
6 6

D)

B(U) C(U)
1 2
1 3
1 4

......
5 6
6 6

C(U) D(A)
1 2
1 3
1 4

......
5 6
6 6

C)
3,4

2,3

1,2

Figure 2.17: An alignment example.

with values A = 1, B = 5, C = 5, D = 2 can be transferred to the alignment triples

(1, 1, 1), (2, 2, 0), (3, 2, 0) and (4, 2, 1) and the alignment is shown in Figure 2.17 B).

The LCost function in the previous DP equation is to calculate the tables which

determine the factor ✓ in the Markov network shown in Figure 2.17 D). Then oper-

ations factor summation and factor maximization are used to calculate the optimal

alignment.

The function of the tree decomposition is to find the elimination ordering. Figure

2.17 C) is the tree decomposition of Q with AUUA. As previously mentioned, I split

a bag X into X " and X # and the set X # is the eliminating variable in the bag. For

the bag (1, 2), X # is 1, for the bag (2, 3), X # is 2 and for the bag (3, 4), X # is 3. So

the eliminating order is 1, 2, 3. I will show more details about the tree decomposition

and the DP recursion in the next chapter.

37

Chapter 3

Methods

This chapter describes the algorithmic foundations of our new program LiCoRNA

(aLignment of Complex RNAs).

A first set of algorithmic methods are dedicated to the, stochastic or deterministic,

generation of suboptimal alignments. Our rationale for exploring the space of

suboptimal, or near-optimal, alignments is three-fold:

• Firstly, one optimal alignment is ambiguous, meaning that several alignments

that have the same score may co-exist [32]. Such co-optimal alignments may

additionally feature very di↵erent correspondences, so that the choice of an

arbitrary alignment within the set of feasible alignments is likely to impact

greatly the quality of our conclusions;

• Secondly, one optimal alignment is only an approximation of the biologically-

relevant one, ideally revealing functional homology through correspondences.

Producing a set of alignments whose score is close to the optimal one therefore

increases the probability to capture true alignments, despite neglecting some

aspects of the probabilistic model [64].

• Thirdly, one optimal alignment may be sensitive to perturbations of the scoring

parameters, especially gap penalties [103]. Considering a set of near-optimal

solutions provides a good way to empirically assess such an instability of the

prediction and, using stochastic sampling, to estimate a notion of support for

individual correspondences.

38

Accordingly, we contribute three sets of novel algorithms: a) stochastic backtrack

algorithm (Section 3.2.4), based on the computation of a pseudo-partition function

(Section 3.2.3); b) �-suboptimal generation algorithm (Section 3.3.2); and c) K-best

algorithm (Section 3.3.1).

Finally, we explore a systematic approach to assess the robustness of an optimal align-

ment, through its comparison with the Maximum Expected Accuracy (MEA)

structure-sequence alignment. The MEA alignment can intuitively be compared to

the center of mass of the alignment space, and is a natural generalization of the

eponymous notion introduced by Do et al. [28] in the context of pairwise/multiple

sequence alignment. Our rationale is that, if the alignment is well-defined, then the

MEA alignment should be close to the optimal one. Conversely, an ill-defined optimal

alignment, admitting many suboptimal alignments, is expected to be either distant

from the MEA, or have poor associated accuracy.

The computation of the MEA requires the preliminary computation of the posterior

probabilities for all possible correspondences of bases and base pairs. In this work,

we either empirically estimate these probabilities using stochastic sampling, or com-

pute those exactly through a custom parameterized instance of the inside-outside

algorithm (Section 3.2.5). Finally, in Section 3.2.6, we adapt Rinaudo’s algorithm

to compute the MEA alignment based on the correspondence probabilities of bases

and base pairs.

3.1 Model and definitions

3.1.1 Tree decomposition and its practical computation

3.1.1.1 Definitions

Let us recall the definition of tree decomposition and some notations used.

Definition 7 (Tree Decomposition of an arc-annotated sequence). A tree

decomposition of an arc-annotated sequence Q = (SQ, P) is a rooted tree T whose

nodes, called bags, are sets of positions in Q. Additionally, the set X of bags must

satisfy:

• (Node coverage) 8s 2 S, 9X 2 X such that s 2 X;

39

• (Edge coverage) 8(i, j) 2 P, 9X 2 X such that {i, j} ⇢ X. Moreover, 81  i <

m, 9X 2 X such that {i, i + 1} ⇢ X;

• (Coherence) 8X, X 0, X 00 ⇢ X , if X 00 lies on the path from X and X 0 on T , then

X \X 0 ⇢ X 00.

The width of a tree decomposition T is defined as maxX2X |X| � 1. The tree-

width tw of an arc-annotated sequence Q is the minimum width over all possible

tree decompositions of Q. In the following sections, we will use a simple pseudoknot,

shown in Figure 3.1, as a running example.

We split the indices found in a bag X into two parts: the transition indices X " and

the proper indices X #, respectively such that

X ":= {i 2 X | i 2 p(X)} and X #:= {i 2 X | i 62 p(X)}.

We denote by p(X) the father bag of X in the tree decomposition, and by P (X) :=

{(i, j) | i, j 2 X and i or j 2 X #} the set of proper base pairs of a bag, involving

at least one proper indices. Similarly,

N(X) := {(i, i + 1) | i, i + 1 2 X and i or i + 1 2 X #}

represents the set of proper backbone interactions, consecutive positions involving

the proper indices.

3.1.1.2 Practical computation of the tree decomposition

As we treat the arc-annotated sequence Q as an RNA graph, we can use the tree

decomposition of a general graph to decompose RNA graphs. However, finding the

optimal tree-width and tree decomposition for a general graph is an NP-hard prob-

lem [10] and computing the exact tree-width is very computationally expensive. For-

tunately, e�cient heuristic algorithms have been proposed for computing upper/lower

bounds on the tree-width in a constructive fashion [11, 12].

Here we use LiBTW, a JAVA library implementing various tree decomposition algo-

rithms (http://www.treewidth.com/treewidth/). In particular, we recommend to use

the GREEDYDEGREE and GREEDYFILLIN heuristics [102] because of their good

empirical behavior, as shown in Section 4.2.

40

7,9

6,7,9 7,8,9

4,6,7,9

4,5,6,9 2,4,6,7 4,9,10

10,11

2,3,4 1,2,7

A) B)

1 2 3 4 5 6 7 8 9 10 11

Figure 3.1: Arc-annotated sequence of simple pseudoknot and a corresponding tree
decomposition. The width of this tree decomposition is 3. We treat the arc-annotated
sequence as a RNA graph. Each vertex in the RNA graph exists in at least one bag.
For example, vertex 3 exists in the bag {2, 3, 4}. For an edge (u, v) in the RNA
graph, there is a bag containing (u, v). For example, bag (1, 2, 7) contains the edge
(1, 7). Given three bags X, X 0, X 00, if X 00 lies on the path from X and X 0 on T ,
then X \ X 0 ⇢ X 00. For example, X = {2, 4, 6, 7}, X 0 = {7, 9} and X 00 = {6, 7, 9},
X \X 0 = {7} ⇢ X 00.

3.1.2 Scoring scheme

3.1.2.1 RIBOSUM

Let us first describe RIBOSUM (RIBOsomal RNA SUbstitution Matrix) scoring ma-

trices [52] which are used as parameters in our cost function.

Based on BLOSUM (BLOcks SUbstitution Matrix) matrices for protein alignment

by Heniko↵ & Heniko↵ [41], Klein & Eddy proposed the RIBOSUM matrices in [52].

The data they used to generate the matrices is from high-quality alignments in Euro-

pean Ribosomal RNA Database [21]. The substitution matrix in RIBOSUM matrices

gives the log-odds ratio for a given substitution relative to background nucleotide fre-

quencies. For single base substitution matrix S, individual scores are calculated

as

sij = log2

fij
fi · fj

.

where given time interval, fij is the observed frequency that nucleotide type i will

change to nucleotide type j in an evolutionary process. The background frequency fi

41

AA 2.49
AC 7.04 2.11
AG 8.24 8.89 0.80
AU 4.31 2.04 5.13 -4.49
CA 8.84 9.37 10.41 5.56 5.13

CC 14.37 9.08 14.50 6.71 10.45 3.59
CG 4.68 5.86 4.57 -1.67 3.57 5.70 -5.36
CU 12.64 10.45 10.14 5.17 8.49 5.77 4.96 2.28
GA 6.86 9.73 8.61 5.33 7.98 12.43 6.00 7.71 1.05

GC 5.03 3.81 5.77 -2.70 5.95 3.70 -2.11 5.84 4.88 -5.62
GG 8.39 11.05 5.38 5.61 11.36 12.58 4.66 13.69 8.67 4.13 1.98
GU 5.84 4.72 6.60 -0.59 7.93 7.87 0.27 5.61 6.09 -1.21 5.77 -3.47
UA 4.01 5.32 5.43 -1.60 2.42 6.88 -2.75 4.72 5.85 -1.60 5.75 0.57 -4.97
UC 11.32 8.67 8.87 4.81 7.08 7.40 4.91 3.83 6.63 4.49 12.01 5.30 2.98 3.21
UG 6.16 6.93 5.94 0.51 5.63 8.41 -1.32 7.35 7.55 0.08 4.27 2.09 -1.14 4.76 -3.36
UU 9.04 7.83 11.07 2.98 8.39 5.41 3.67 5.21 11.54 3.90 10.79 4.44 3.39 5.98 4.28 0.01

AA AC AG AU CA CC CG CU GA GC GG GU UA UC UG UU

A C G U

A -2.22

C 1.86 -1.16

G 1.46 2.48 -1.03

U 1.39 1.05 1.74 -1.65

A) B)

Figure 3.2: RIBOSUM85-60 matrix. (A) The 16⇥ 16 matrix is used to get scores for
aligning base pairs. This matrix is a candidate to the base pair substitution matrix
S 0 (B) The 4⇥4 matrix is used to get scores for aligning single-stranded regions. This
matrix is a candidate to the base substitution matrix S.

for a nucleotide type i is probability of i in a randomly shu✏ed sequence.

For base pair substitutions matrix S 0, the individual score is computed by

s0i,j,k,l = log2

f 0
i,j,k,l

fi · fj · fk · fl

In this case, nucleotide type i forms a base pair with j and k is paired to l. f 0(i, j, k, l)

is the observed frequency that base pair i ⇠ j change to base pair k ⇠ l in the

evolution process within a given time interval. fi, fj, fk and fl have the same meaning

as before. As suggested by Klein & Eddy [52], we use RIBOSUM85-60 as shown in

Figure 3.2 as the default matrix.

3.1.2.2 Cost function for structure-sequence alignment

A sequence-structure alignment can be represented as a sequence of alignment

triples, each one an element of Âm,n := {1 . . . m} ⇥ {1 . . . n + 1} ⇥ {0, 1}. A triplet

(i, j, 1) 2 Âm,n means that the sequence position i aligns to position j, whereas a

triplet (i, j, 0) 2 Âm,n does not match i to j, but constrains subsequent sequence po-

sitions to be aligned after j. To ease the writing of certain equations and algorithms,

42

we introduce three functions ✓, �, and �, each accessing a specific element of a triplet,

namely: 8a = (i, j, k) 2 Âm,n, ✓(a)! i, �(a)! j and �(a)! k.

To score a sequence-structure alignment A, we make a slight change of equation 2.1

by adding certain restrictions on the scoring of arc-altering and arc-removing.

Definition 8 (Cost of a structure-sequence alignment). Given an arc-annotated

sequence Q = (SQ, P) and a plain sequence W = (SW , ;), the cost of a structure-

sequence alignment A between Q and W with minimum cost is defined as:

cost(A) =
X

a2A
s.t.�(a) 6=0

�(a) +
X

a,b2A s.t.(✓(a),✓(b))2P
�(a) 6=0,�(b) 6=0

⌧(a, b)

+
X

a,b2A
s.t. ✓(a)=i,✓(b)=i+1

↵Q + (�(b)� �(a)) · �Q

X

a2A
s.t. �(a)=0

�W +
X

a,b2A
s.t. ✓(a)=i,✓(b)=i+1

�(a)=0,�(b)=1

↵W (3.1)

where �, ⌧ are the cost function of base substitution and base pair substitution,

separately. ↵Q and �Q are the gap open and gap extension penalties for the arc-

annotated sequence and ↵W and �W are the gap open and gap extension penalties

for the plain sequence.

The cost function is defined from the set of edit operations in [48]. Next, we will

consider how to emulate the edit operations in our model. For free bases, the operation

includes base match, base mismatch and base deletion. We used the 4⇥ 4 matrix of

RIBOSUM85-60 [78] in Figure 3.2 to score base match and base mismatch. To

score base deletion and insertion, we use an a�ne penalty function as shown in

Table 3.1. Basic arc operations, such as arc-match and arc-mismatch, are also

scored using the 16⇥ 16 matrix of RIBOSUM85-60, as shown in Figure 3.2.

Scoring some arc operations requires more complex strategies. Similarly to the work

by Jiang et al. [48] and Siebert et al. [89], we add certain restrictions on the scoring

of arc-altering and arc-removing. For the current bag X with (i, j) 2 P (X) and

a, b 2 AX s.t. �(a) 6= 0 and �(b) = 0, the score of arc-altering Saa can be expressed,

using the existing notations, as

Saa(a) = �(a) + �W . (3.2)

43

Parameter Value

�(a) base substitution. Negative RIBOSUM85-60 4⇥ 4 matrix

⌧(a, b) base pair substitution. Negative RIBOSUM85-60 16⇥ 16 matrix

�1
Q 5 + 2(`� 1) for single-stranded regions in Q

�2
Q 10 + 5(`� 1) for stack regions in Q

�1
W 5 + 2(`� 1) for single-stranded regions in W

�2
W 10 + 5(`� 1) for stack regions in W

Table 3.1: Scoring parameters in minimum cost alignment. ` is the length of gap.
�Q = ↵Q + (`� 1) · �Q. �W = ↵W + (`� 1) · �W .

Finally, the score of arc-removing Sar can be expressed as

Sar = �W + �W . (3.3)

The e↵ect of this restriction is that one can evaluate both arc ends in an alignment

independently for the edit operation arc-altering and arc-removing.

Since stacked regions are generally more conserved than single-stranded regions, an

optimal alignment is less likely to feature gaps in stacked regions [52]. Therefore, we

give two di↵erent score values for the gaps in Q with parameters ↵1
Q, �1

Q, ↵2
Q and �2

Q.

The cost of an `-sized gap in a single-stranded region within the structure Q is

then given by

�1
Q := ↵1

Q + �1
Q · (`� 1),

whereas the gap cost within stems is given by

�2
Q := ↵2

Q + �2
Q · (`� 1).

We adopt the same strategy for �1
W and �2

W the gap costs for the sequence W .

By default, the suggested parameters set is listed in Table 3.1, but each can be

overridden by the user. As expected, the use of a�ne cost functions can circumvent

scattered alignments, having numerous short gaps. However, setting the gap opening

and extension scores to too large values also results in scattered alignments, since the

structure then becomes the main contributor to the score, leading to a maximization

of the number of conserved base-pairs.

44

3.1.2.3 Scoring a tree decomposition

Let us further denote by C(X, AX") the cost of a partial optimal alignment ending

with a particular AX" 2 AX" for a particular bag X and the DP equation [78] is

C(X, AX") = min
A

X#2AX#
{LCost(AX", AX#) +

X

X02child(X)

C(X 0, project(X 0, AX))} (3.4)

where AX" represents all possible alignments for X ". The project(X 0, AX) operation

restricts a set AX to the elements in a bag X 0. LCost function is to calculate the cost

of bag alignment. The dynamic programming traverses the tree T from the leaf bags

to the root and at the root bag of T , the whole alignment instances between Q and

W are taken into account.

Intuitively, we treat the arc-annotated sequence Q as an RNA graph and the function

of tree decomposition is to generate the eliminating order for the vertex in the RNA

graph (in section 2.3.5). According to the definition of tree decomposition, each

vertex and each edge in the RNA graph appear in the bags in the tree decomposition.

Therefore, the subsequent DP can traverse all the vertices and edges at least once.

Each time we eliminate an RNA vertex, the cost function � or �W will be considered.

Each time we eliminate the associated edges and if the edge is an interaction edge,

the cost function ⌧ , � and �W will be considered. If the edge is a consecutive edge,

↵Q, �Q and ↵W will be considered. The LCost function is used to add the local cost

to the cost of the partial alignment and at the same time avoid accounting for the

cost items more than once for each vertex and edge.

3.1.2.4 LCost function

Let us focus on LCost function for one bag. Two consecutive alignment triples

a, b 2 Âm,n with ✓(b) � ✓(a) = 1 and (✓(a), ✓(b)) 2 N(X) are said to be in conflict

which gives +1 score, if the following cases satisfy, :

• �(a) > �(b)

• �(a) = �(b), �(a) = 1

• �(a) < �(b), �(a) = 0

45

Two alignment triples a, b 2 Âm,n with ✓(a) < ✓(b) and (✓(a), ✓(b)) 2 P (X) are said

be to in conflict, if the following cases satisfy:

• �(a) > �(b)

• If ✓(b)� ✓(a) > 1, �(a) = �(b), �(a) = 1

• If ✓(b)� ✓(a) = 1, the cases are the same as consecutive alignment triples.

Therefore, we give a definition of valid bag alignment AX between a bag X and

W which is not +1.

Definition 9 (valid bag alignment). Given the current bag X and a plain sequence

W , a bag alignment AX is valid if the following cases satisfy:

• 8i, j 2 X, a, b 2 AX , s.t. ✓(a) = i and ✓(b) = j, i < j, (1) �(a) < �(b). (2)

�(a) = �(b), �(a) = 0.

• For (i, j) 2 P (X), a, b 2 AX , s.t. ✓(a) = i and ✓(b) = j, a and b is not in

conflict.

• For (i, i + 1) 2 N(X), a, b 2 AX , s.t. ✓(a) = i and ✓(b) = i + 1, a and b is not

in conflict.

• For i 2 t, a 2 AX , s.t. ✓(a) = i and �(a) = n + 1, �(a) = 0.

The LCost function gives +1 for bag alignment that is not valid and calculates

the local contribution of valid bag alignment AX to get the partial alignment score

C(X, AX"). The LCost function is defined as follows:

LCost(AX", AX#) =
X

a2A
X#

s.t. �(a) 6=0

�(a) +
X

(i,j)2P (X),a,b2A
X

s.t. �(a),�(b) 6=0
and ✓(a)=i,✓(b)=j

⌧(a, b)

X

(i,i+1)2N(X),a,b2A
X

s.t. ✓(a)=i,✓(b)=i+1

↵Q + (�(b)� �(a)) · �Q

X

a2A
X#

s.t. �(a)=0

�W +
X

(i,i+1)2N(X),a,b2A
X#

s.t. ✓(a)=i,✓(b)=i+1
�(a)=0,�(b)=1

↵W (3.5)

46

7,9

6,7,9 7,8,9

4,6,7,9

4,5,6,9 2,4,6,7 4,9,10

10,11

2,3,4 1,2,7

2,3,4

6,7,9

2,4,6,7

A) B)

D)

C)

Figure 3.3: (A) tree decomposition example. (B) For X = {2, 4, 6, 7} and X #= {2}
where (2, 6) 2 P , function ⌧ is considered. (C) For X = {6, 7, 9} and X #= {6},
neither function ⌧ nor function � will be considered. (D) For X = {2, 3, 4} and
X #= {3}, function � will be considered.

�, ⌧ are the cost function of base substitution and base pair substitution, separately.

↵Q and �Q are the gap open and gap extension penalty for arc-annotated sequence

and ↵W and �W are the gap open and gap extension penalty for the plain sequence.

Though given LCost function, the calculation of base substitution � function and

base pair substitution ⌧ function for the current bag alignment AX are still tricky.

For a 2 AX#, there are three cases to consider for � function and ⌧ function and the

cases are shown in Figure 3.3.

• ✓(a) (get the first element of a) does not form base pair in the arc-annotated

sequence, we only consider the function �.

• ✓(a) forms base pair with j in Q and j 2 X, we only consider the function ⌧ .

• ✓(a) forms base pair with j in Q, but j /2 X. Neither function � nor function

function ⌧ will be considered.

47

1 2 3 4 5 6 7 8 9 10 11

1 2 3 4 5 6 7 8 9 10 11

A G A A C U C U G G C
A
G
A
C
U
C
U
C
G
G
C

A) B)

Alignment constraint
Sequence alignment

Figure 3.4: (A) An example alignment. (B) Illustration of N constraint alignment.
The black squares shows the alignment position in (A) and the final alignment (A)
lie inside the constraint scanned region (shows in gray).

3.1.3 Banded dynamic programming

To accelerate the dynamic programming algorithm without losing too much accuracy,

we implemented a banded dynamic programming heuristics, as described by Harmanci

et al. [40]. Banded DP is a heuristics method which is achieved by trading optimality

for speed. In banded DP, to solve the alignment problem, one uses some fast methods

to identify the band (the scanned region in the target sequence) for each position in

the query sequence, and calculate the optimal alignment within that band for each

position. The optimal alignment is more likely missing when the evolutionary distance

between query and target sequence increases.

In our case, for position i in Q which is supposed to align to position j in W , the

following constraint must be satisfied:
�

�

�

�

n⇥ i

m
� j

�

�

�

�

 N (3.6)

where N is a constraint set by the user, which implicitly restricts to which sequence

positions each structure position can be matched, m is the length of the arc-annotated

sequence Q, and n is the length of the plain sequence W .

48

By default, N is set to the di↵erence between the two sequence lengths. The pa-

rameter N restricts the length of insertions within homologous sequences which is

reasonable for comparing close homologs. However, it may hurt the quality of our

results in cases where long domains are inserted throughout evolution, so N can also

be set interactively by the user to detect and/or work around such issues. As shown

in equation 3.6, the parameter N reduces the computational cost by restricting the

scanned region for position i in Q which is illustrated in Figure 3.4. More specifically,

using the banded DP reduces the time complexity to O(|X | · N tw).

3.2 Probabilistic structure-sequence alignment

In [61], McCaskill proposed a cubic time algorithm to compute the partition function

which assumes the energy of each secondary structure of a given RNA sequence is

weighted by the corresponding Boltzmann probability. The partition function was

subsequently used to calculate the base pairing probability for every base pair in the

RNA sequence. In 1995, Miyazawa computed the partition function and probabil-

ities of residue-residue correspondence for alignment problem [62]. Later, in 2002,

Mückstein et al. [63] presented the stochastic backtracking algorithm to generate

pairwise sequence alignments from the Boltzmann conditional probability distribu-

tion based on the partition function. Here, we adopt a similar approach to explore

the solution space of structure-sequence alignment.

To that purpose, we generalize the stochastic backtracking algorithm to generate an

ensemble of suboptimal structure-sequence alignments. This algorithm includes two

basic steps: (1) the forward step computes the partition function for the partial

alignments M(X, AX"); (2) a stochastic backtrack step generates a statistically

representative sample of the alignments. However, in order to directly derive from

the main steps in Rinaudo’s algorithm, we need to ascertain that its underlying

DP decomposition respects some notions of completeness and unambiguity [75].

Here, we first need to introduce the concept of derivation to define completeness

and unambiguity for DP recursions.

49

3.2.1 Derivation and derivation tree

To describe the derivation process associated with a tree decomposition, we define a

state space

Q = {(X, AX") | X 2 X , AX" 2 AX"}.

A state derivation is then of the form:

q
A

X#��!
s

q01, q
0
2, . . . , q

0
c (3.7)

where q, q01, q
0
2, . . . , q

0
c are states belong to Q, X is a bag in the tree decomposition,

AX" is a particular alignment set for transition indices X " and AX# is a particular

alignment set for proper indices X # and s is the score of the transition. Intuitively,

derivations correspond to the assignment of the proper indices for a bag, leading to

a local contribution s to the overall score, followed by a transition towards a set of

children states.

In the context of Rinaudo’s algorithm, a state derivation for a particular state (X, AX")

is of the form:

(X, AX")
A

X#��!
s

(X 0
1, B1), . . . (X

0
c, Bc), if child(X) 6= ;

or (X, AX")
A

X#��!
s
;, if child(X) = ; (3.8)

where AX# 2 AX#, c = |child(X)|, X 0
1, . . ., X 0

c 2 child(X) are the children bags of X

in the tree decomposition, and Bi = project(X 0
i, AX) is the alignment set for X 0

i \X.

s = LCost(AX", AX#) is the local score. Theoretically, there are (2·(n+1))|X#| distinct

derivations from state (X, AX") where |SW | = n.

A state derivation is valid if AX = AX" [AX# is a valid bag alignment (defined in

Section 3.1.2.4). The set of admissible values AX# within a context AX" is denoted

as AX#(X, AX") ✓ AX#. Here, a state (X0, ;) represents the start state, reminding

that X0 is the root bag in the tree decomposition, and the father of X0 is p(X0) = ;.
Figure 3.5 shows an example of such a derivation.

A derivation tree from a state (X, AX") is an ordered, rooted tree where each node

in the tree corresponds to a state and each edge corresponds to a AX# 2 AX#(X, AX")

with score s. In order to represent a tree, we extend the notations introduced to depict

50

Figure 3.5: Illustration of the concept of derivation, starting from a state (X, AX").
(A) Part of the tree decomposition in Figure 3.1. Here we consider the bag with
indices {2, 4, 6, 7}. (B) In this case, X #= {2}, X "= {4, 6, 7} and we assume AX" =
{(4, 4, 1), (6, 7, 1), (7, 9, 1)}. To make a valid bag alignment, position 2 can map to
position {1, 2, 3} with matched or unmatched case and map to position 4 with only
unmatched case. (C) derivation representations for di↵erent AX#.

state derivations, and denote recursively a derivation tree as

(X, AX")
A

X#��!
s

t1, · · · , tc, if child(X) 6= ;

or (X, AX")
A

X#��!
s
;, if child(X) = ;

where, for each i 2 [1, c], ti is a derivation tree rooted in (X 0
i, Bi), and the ; notation

is now abused to represent the empty tree.

D(X, AX") is the set of derivation trees starting from state (X, AX") and D(X, AX")

can be recursively described as

D(X, AX") =
n

(X, AX")
A

X#��!
s
;, if child(X) = ;

o

(3.9)

[

A
X#2AX#(X,A

X")

n

(X, AX")
A

X#��!
s

t1, · · · , tc if child(X) 6= ;
o

where (t1, · · · , tc) 2 D(X 0
1, B1)⇥ · · ·⇥D(X 0

c, Bc).

3.2.2 Completeness and unambiguity of Rinaudo’s DP scheme

Now let us move our focus on completeness and unambiguity of Rinaudo’s algorithm.

Given Q and W , the search space contains all the alignments satisfying Definition 1.

51

The search space is denoted as S and derivation space from the DP recursion is D. A

DP recursion is unambiguous if and only if any pair of distinct derivations in D(X0, ;)
originating from state (X, ;) give rise to di↵erent alignments in the search space S.

It is complete if and only if every alignment in the search space S corresponds to

at least one derivation in D(X0, ;). Following the idea in [17], we define a function

� : DI ! SI to represent the correspondence between an instance I in derivation

space S and an instance I in search space S. Therefore, if the DP recursion is

unambiguous and completeness, the function � is injective and surjective. S(X, AX")

is used to represent all valid alignments between the subset of positions appearing in

the descendants of X in the tree and W within the context AX".

Proposition 1. The DP recursion of Rinaudo’s algorithm is unambiguous: for any

derivation trees D1 and D2 starting from state (X, ;), D1 6= D2 =) �(D1) 6= �(D2).

Proof. We will prove it by induction. In other words, we want to prove that for a

given bag X, any possible alignment set AX" 2 AX" for set X " and any derivation

trees D1 2 D(X, AX") and D2 2 D(X, AX") starting from the state (X, AX"), D1 6=
D2 =) �(D1) 6= �(D2).

Base case. We consider the case where the bag X is a leaf bag in the tree decom-

position. The statement is obviously satisfied. The leaf bag does not have children.

For di↵erent derivation trees D1 and D2, they have di↵erent alignment sets AX# and

A0
X#. Obviously di↵erent sets AX# and A0

X# correspond to di↵erent alignments for the

indices in X #. �(D1) and �(D2) contains the alignment triple for the indices in X.

So �(D1) = AX" [AX#, �(D2) = AX" [A0
X# corresponds two di↵erent alignments in

set S(X, AX").

Induction hypothesis. Given each child bag X, for any possible alignment set AX" and

any derivation trees D1 and D2 from state (X, AX"), D1 6= D2 =) �(D1) 6= �(D2).

Induction argument. Given father bag X, for any possible alignment set AX", we

have state (X, AX"). Reminding that the set of derivation trees starting from state

(X, AX") can be represented as D(X, AX") =
S

A
X#2AX#(X,A

X")

{(X, AX")
A

X#��!
s

t1, · · · , tc}

where (t1, · · · , tc) 2 D(X 0
1, B1)⇥ · · ·⇥D(X 0

c, Bc), di↵erent derivation trees D1 and D2

from state (X, AX") can di↵er in two cases. The first is AX# and A0
X# are di↵erent.

The alignment for positions X # will be considered for �(D1) and �(D2) in S(X, AX").

So �(D1) and �(D2) are di↵erent. The second case is that the derivation trees for

one or more children X 0 originating from state (X 0, B) where B = project(X 0, AX)

52

are di↵erent. Suppose the derivation trees for ith child are di↵erent in D1 and D2.

Then the derivation of D1 can be represented as (X, AX")
A

X#��!
s

t1, · · · , ti, · · · , tc and

the derivation of D2 can be represented as (X, AX")
A

X#��!
s

t1, · · · , t0i, · · · , tc. Accord-

ing to the induction hypothesis, ti 6= t0i =) �(ti) 6= �(t0i) and �(ti) ✓ �(D1),

�(t0i) ✓ �(D1). Therefore, �(D1) 6= �(D2) This completes the proof of unambiguity

of Rinaudo’s algorithm.

Next we prove the completeness of Rinaudo’s algorithm.

Proposition 2. The DP recursion of Rinaudo’s alogrithm is complete: for any align-

ment A in the search space S between Q and W , there exists a derivation tree D

starting from state (X, ;) so that A = �(D).

Proof. Recalling that given a bag X, we denote the search space from state (X, AX")

by S(X, AX") between the subset of positions appearing in the descendants of X in the

tree decomposition and W ending with AX". We want to prove that for any alignment

A 2 S(X, AX"), there exists a derivation tree D starting from state (X, AX") so that

A = �(D).

Base case. We consider the case where X is a leaf bag in the tree decomposition.

The statement holds obviously. Given any AX", we want to prove for any alignment

A 2 S(X, AX"), there exists a derivation tree D starting from the state (X, AX") so

that A = �(D). A valid alignment for the leaf bag with the state (X, AX") can be

represented as A = AX = AX" [AX#, AX# 2 AX#(X, AX"). Now we consider the set

of derivation trees starting from state (X, AX"), D(X, AX") =
S

A
X#2AX#(X,A

X")

A
X#��!
s
;.

So |S(X, AX")| = |D(X, AX")|.

Induction hypothesis. Given each child bag X and a particular AX" 2 AX", for any

alignment A 2 S(X, AX"), there exists a derivation tree D starting from the state

(X, AX") so that A = �(D).

Induction argument. Given father bag X and a particular AX" 2 AX", for any

alignment A 2 S(X, AX") can be decomposed into several parts A = AX" [AX#

[S(X 0
1, B1) [. . . [S(X 0

c, Bc). The set of derivation trees from state (X, AX")

can be represented as D(X, AX") =
S

A
X#2AX#(X,A

X")

{(X, AX")
A

X#��!
s

t1, · · · , tc} where

(t1, · · · , tc) 2 D(X 0
1, B1)⇥ · · ·⇥D(X 0

c, Bc). Similar to the base case, we will consider

all AX# 2 AX#(X, AX") in our derivation. According to induction hypothesis, for

53

any alignment A0 2 S(X 0
i, Bi) of the child bag, there exists a derivation tree D0

starting from the state (X 0
i, Bi) in derivation space D(X 0

i, Bi) so that A0 = �(D0).

This completes the proof of completeness of Rinaudo’s algorithm based on the fact

of one-to-one correspondence.

3.2.3 Computing the partition function

As explained earlier [62], in a thermodynamic interpretation of the alignment problem,

the alignment score can be treated as negative energy and the partition function for

the alignment A s.t. 8a 2 A, a 2 Âm,n between Q and W can be defined as

Z =
X

A
s.t. 8a2A,a2Â

m,n

e
�C(A)

Rt =
X

A
s.t. 8a2A,a2Â

m,n

e��C(A) (3.10)

where � = 1
Rt

. Here, t is analogous to the temperature in Kelvin. The constant

R, the correspondence of Boltzmann constant, is set according to the substitution

matrix. As mentioned in the previous section, the substitution matrix we used is a

RIBOSUM matrix which is defined as a log-odds matrix and the individual score in

single base substitution matrix S and base pair substitution matrix S 0 is calculated

by

sij = log2

fij
fi · fj

s0i,j,k,l = log2

f 0
i,j,k,l

fi · fj · fk · fl

Therefore, the substitution score equals to a constant factor times log-odds ratio of

the substitution. In the case of RIBOSUM matrix, R is calculated by

R =
1

loge 2
⇡ 1.44279

The probability for a particular alignment A s.t. 8a 2 A, a 2 Âm,n satisfies:

P(A) =
1

Z e��C(A)

The sum over the probabilities of all possible alignments between Q and W is 1,
X

A
s.t. 8a2A,a2Â

m,n

P(A) = 1

54

The Boltzmann probability distribution gives a probability for every alignment, and

therefore statistically characterizes the ensemble. Usually, parameter t in � is used to

govern the Boltzmann distribution. When t! 0, for the alignments with score bigger

than the optimal alignment, the probability P approaches 0 and the probability of

the optimal alignment approaches 1/u where u is the number of distinct alignments

with the minimum score. If t = 1, we get the ”true” probability which means that

the distribution is only a↵ected by the score of a particular alignment. If t!1, all

the valid alignments satisfying Definition 1 have the same probability which means

that Boltzmann probability distribution is uniform.

The partition function can be easily computed using Rinaudo’s algorithm by changing

summation operation to multiplication operation and the minimum operation into

summation operation as shown

Z(X, AX") =
X

A
X#2AX#

e��LCost(A
X",AX#) ·

Y

X02child(X)

Z(X 0, project(X 0, AX)) (3.11)

There are still two cases to be considered. (1) If the current bag X is the leaf bag in the

tree decomposition, the set child(X) = ;. Then all the terms Z(X 0, project(X 0, AX))

are set to be 1 in equation 3.11. (2) If the bag alignment AX is not a valid alignment,

then the term e��·LCost(A
X",AX#) is set to be 0. If the bag alignment is not valid, the

alignment between Q and W derived from the invalid bag alignment does not satisfy

Definition 1. This kind of alignment does not contribute weight to the partition

function.

Next we prove the correctness of equation 3.11 for partition function.

Proposition 3. The equation 3.11 correctly computes the partition function associ-

ated with each state in Q.

Proof. We will prove it by induction. Recalling that S(X, AX") is the search space

for partial alignments between the subset of positions appearing in the descendants

of X in the tree decomposition and W ending with AX". We want to prove that for

a given state (X, AX"), Z(X, AX") =
P

A2S(X,A
X")

e��C(A).

Base case. X is the leaf bag. The sole weight contributes to an alignment A in

S(X, AX") is the term e��LCost(A
X",AX#). As we have already restricted AX" in an

55

alignment A, to find a di↵erent alignment A0, we have to consider di↵erent alignment

triples for positions in proper indices X #. Therefore, one has

Z(X, AX") =
X

A2S(X,A
X")

e��C(A) =
X

A
X#2AX#(X,A

X")

e��LCost(A
X",AX#)

where 8AX# 2 AX#(X, AX"), AX = AX" [AX# is a valid alignment.

Induction hypothesis. Suppose X is not a leaf bag and the claim holds for all bags

with fewer descendants.

Induction argument. Recall that X 0
i with i  c := |child(X)| is one child of X in

the tree decomposition. Any alignment A 2 S(X, AX") can be decomposed into

several parts A = AX" [AX# [A0
1 [. . . [A0

c where A0
i 2 S(X 0

i, Bi). Therefore, the

alignments in the search space S(X, AX") can be first decomposed according to the

alignment triple AX#.

56

Z(X, AX") =
X

A2S(X,A
X")

e��C(A)

=
X

A=A
X"[AX#[A0

1[...[A0
c

A0
i

2S(X0
i

,B
i

)
A

X#2AX#(X,A
X")

e��(LCost(A
X",AX#)+

P
c

i=1 C(A0
i

))

=
X

A
X#

s.t. A
X#2AX#(X,A

X")

X

A0
1

s.t. A0
12S(X0

1,B1)

. . .
X

A0
c

s.t.A0
c

2S(X0
c

,B1)
X

A=A
X"[AX#[A0

1...A
0
c

e��(LCost(A
X",AX#)+

P
c

i=1(A
0
i

))

=
X

A
X#2AX#(X,A

X")

e��LCost(A
X",AX#) ·

X

A0
12S(X0

1,B1)

e��C(A0
1)

· . . . ·
X

A0
c

2S(X0
c

,B
c

)

e��C(A0
c

)

=
X

A
X#2AX#(X,A

X")

e��LCost(A
X",AX#) ·

X

A0
12S(X0

1,B1)

e��C(A0
1)

· . . . ·
X

A0
c�12S(X0

c�1,Bc�1)

e��C(A0
c�1) · Z(X 0

c, Bc)

=
X

A
X#2AX#(X,A

X")

e��LCost(A
X",AX#) ·

X

A0
12S(X0

1,B1)

e��C(A0
1)

· . . . · Z(X 0
c, Bc) ·

X

A0
c�12S(X0

c�1,Bc�1)

e��C(A0
c�1)

=
X

A
X#2AX#(X,A

X")

e��LCost(A
X",AX#) ·

c
Y

i=1

Z(X 0
i, Bc)

(3.12)

The complexity of computing the partition function is O(|X | · ntw) where |X | is the

number of bags in the tree decomposition, tw is the tree-width of tree decomposition

and n = |W |.

3.2.4 Stochastic backtrack algorithm

One application of partition function is to generate the optimal and suboptimal align-

ments using the stochastic backtracking algorithm. Due to the fact that Rinaudo’s

57

algorithm is unambiguous and complete, we can use the stochastic backtracking al-

gorithm to randomly generate structure-sequence alignment under the Boltzmann

conditional probability distribution. The algorithm starts at state (X0, ;) and fol-

lowing the inverting ordering of DP equation. That is to say, starting from start

state (X0, ;), choosing one of the alignment set AX# under the context AX" according

to the probability which is proportional to the weight contribution of Z(X, AX").

After such a step, we know alignment set AX# and we move to the children states

(X 0
1, project(X

0
1, AX)),. . ., (X 0

c, project(X
0
c, AX)). The backtracking procedure is fin-

ished when all the bags are visited once according to the inverting ordering of DP

equation. The process of stochastic backtracking algorithm is shown here,

Procedure Stochastic-Backtracking

Let X0, . . . , Xn�1 be a inverting topological ordering of the bags, X0 is the root bag;

A=; ;

for i 0 . . . n� 1 do

AXi" project(Xi, A) ;

sample alignment set AXi# in the context AXi" based on Z(Xi, AXi") ;

A AXi#;

end

return A

As shown in the algorithm, the partition function Z(X, AX") for partial alignment

has already been calculated and we already know the alignment set AX". Each

AX# 2 AX#(X, AX") with the valid derivation (X, AX")
A

X#��!
s

(X 0
1, B1), . . . (X 0

c, Bc)

is a potential choice. For each derivation, the corresponding conditional probability

based on the partition function Z(X, AX") is calculated by:

pi =
e��LCost(A

X",A
i

X#) ·
Q

X02child(X) Z(X 0, project(X 0, AX))

Z(X, AX")
(3.13)

Proposition 4. The stochastic backtracking algorithm samples an alignment A in

the search space S under the Boltzmann distribution.

Proof. We will prove it by induction. Recalling that S(X, AX") is the search space

for partial alignments between the subset of positions appearing in the descendants

of X in the tree decomposition and W ending with AX". We want to prove that for

58

a given state (X, AX"), the probability for an alignment A in search space S(X, AX")

is P(A) = e��C(A)

Z(X,A
X")

.

Base case. X is a leaf bag in tree decomposition. For any state (X, AX"), an alignment

A 2 S(X, AX") and A = AX = AX" [AX#, the generating probability is

e��LCost(A
X",AX#)

Z(X, AX")
=

e��C(A)

Z(X, AX")

where AX# ✓ A.

Induction hypothesis. Given each child bag X and any particular AX" 2 AX", any

alignment A 2 S(X, AX"), the probability of the alignment is P(A) = e��C(A)

Z(X,A
X")

.

Induction argument. Recall that X 0
i with i  c := |child(X)| is one child of X in

the tree decomposition. Any alignment A 2 S(X, AX") can be decomposed into

several parts A = AX" [AX# [A0
1 [. . . [A0

c where A0
i 2 S(X 0

i, Bi). The induction

hypothesis ensures that our algorithm generates partial alignment A0
i for child bag

X 0
i with Boltzmann probability. Moreover, we have

e��LCost(A
X",AX#) ·

Qc=|child(X)|
i=i Z(X 0

i, Bi)

Z(X, AX")

· e��C(A0
1)

Z(X 0
1, B1)

· . . . · e��C(A0
c

)

Z(X 0
c, Bc)

=
e��C(A)

Z(X, AX")
(3.14)

This completes the proof.

The complexity of the forward step is the same as Rinaudo’s algorithm which is

O(|X | ·ntw) where |X | is the number of bags in the tree decomposition, tw is the tree-

width of tree decomposition and n = |W |. In the backward step, the algorithm visits

each bag once and each time considers all the AX# with the fact that the corresponding

derivation (X, AX")
A

X#��!
s

(X 0
1, B1), . . . (X 0

c, Bc) is a valid derivation. Besides, we can

always get the tree decomposition with |AX#| = 1 for all the bags. Furthermore, for

the ease of comparing the complexity of K-best alignment algorithm in the further

section, we generate K-stochastic alignment. Therefore, the complexity for stochastic

backtracking algorithm is O(|X | · ntw + K · |X | · n).

59

3.2.5 Inside-outside algorithm

Using the partition function, one can also compute the match probability between Q

and W . P(SQ[i] ⇠ SW [p]) (P(i ⇠ p) for short) represents the Boltzmann match

probability that SQ[i] aligns to SW [p] with matched case given that i is in the

single-stranded region. Suppose the set S(i, p) = {A|a = (i, p, 1) 2 A and a 2 Âm,n}
represents all the possible alignments where SQ[i] aligns to SW [p] with matched case

in the search space S. Then the probability P(i ⇠ p) is calculated by

P(i ⇠ p) =

P

A2S(i,p)
e��C(A)

Z (3.15)

Similarly, Prob((i, j) ⇠ (p, q)) represents the base pair Boltzmann match probability

that SQ[i] aligns to SW [p] with matched case, SQ[j] aligns to SW [q] with matched case

given that nucleotides SQ[i], SQ[j] form base pair. S((i, j) ⇠ (p, q)) represents all the

corresponding possible alignments. Then

P((i, j) ⇠ (p, q)) =

P

A2S((i,j)⇠(p,q))

e��C(A)

Z (3.16)

Here one can use the inside-outside algorithm to calculate the match probability

following the idea in [75]. In [75], Ponty et al. pointed out the notion of derivations can

be formalized as hyperpaths in a directed hypergraph and calculated the probability

of each hyper-edge using the inside-outside algorithm. To simplify the expression of

the algorithm, we also assume that for each bag X 2 X , |AX#| = 1 without loss of

generality. The inside algorithm follows DP recursion 3.11 to compute the partition

function where Z(X, AX") represents the partition function for the partial alignment

from the leaf bags ending with AX". Unlike inside algorithm traversing the tree

decomposition from the leaf bags to the root bag, outside algorithm calculates from

the root bag to the leaf bags. We use Ẑ(X, AX") to represent the partition function

for the partial alignment from the root bag ending with AX". The di↵erence is shown

in Figure 3.6 C).

Now we need to consider how to calculate Ẑ(X, AX"). We first see an example as

shown in Figure 3.6 D). The current bag is X = {2, 4, 6, 7} and we consider a particu-

lar state (X, AX") where AX" = {(4, 6, 1), (6, 8, 1), (7, 9, 1)}. The father bag is p(X) =

{4, 6, 7, 9} and alignment for the father bag is Ap(X) = {(4, 6, 1),(6, 8, 1),(7, 9, 1),

(9, ?, ?)}. The alignment triple for position 9 can be (9, 10, 1), (9, 12, 1), etc. if

60

7,9

6,7,9 7,8,9

4,6,7,9

4,5,6,9 2,4,6,7 4,9,10

10,11

2,3,4 1,2,7

7

{(4,6,1),(6,8,1),
(7,9,1)}

{(6,8,1),(7,9,1),
(9,?,?)}

1 2 3 4 5 6 7 8 9 10 11
1 2 3 4 5 6 7 8 9 10 11 12

{(4,6,1)}

{(4,6,1),(6,8,1),
(9,?,?)}

{(4,6,1),
(9,?,?)}

A) B)

C) D)

Figure 3.6: Illustration of the inside-outside algorithm (A) An arc annotated-
sequence sequence Q. (B) A plain sequence W . (C) Illustration of Z(X, AX")
and Ẑ(X, AX") for partial alignment where X = {2, 4, 6, 7}. Z(X, AX") shows the
partition function for the partial alignment between the positions appearing in the
descendants (shown in grey region) of X and W . ˆZ(X, AX") represents the partition
function for partial alignment between the positions in the other bags (outside the
grey regions) and W . (D) Illustration of the equation for calculating Ẑ(X, AX")

Ap(X) is a valid bag alignment. Therefore we need to consider all possible valid bag

alignments Ap(X) for father bag. Then, for the particular state (X, AX"), we have

Ẑ(X, AX") =
X

A
p(X)

s.t. A
X"=project(X,A

p(X))

Ẑ(p(X), Ap(X)")

· e��LCost(A
p(X)",Ap(X)#)

·
Y

X02child(p(X))
s.t.X0 6=X

Z(X 0, project(X 0, Ap(X))) (3.17)

Again, we need to consider the boundary cases. (1) If the current bag X is the root

bag in the tree decomposition, then p(X) = ;, then the term Ẑ(p(X), Ap(X)") is

set to 1 in equation 3.17. (2) If the father bag alignment is not a valid alignment,

then the term e��LCost(A
p(X)",Ap(X)#) is set to 0. Following the idea in [75], we can

calculate the probability for each hyperedge in the derivation hyperpath. However,

our aim is to calculate the base match/mismatch probability P(i ⇠ p) and base pair

match/mismatch probability P((i, j) ⇠ (p, q)). To calculate P((i, j) ⇠ (p, q)), we need

to focus on the bag X where (i, j) 2 P (X) and to calculate P(i ⇠ p), we need to

focus on the bag X where i 2 X #. In this example, we labeled the bags that used to

61

7,9

6,7,9 7,8,9

4,6,7,9

4,5,6,9 2,4,6,7 4,9,10

10,11

2,3,4 1,2,7

7

(5,9)

3

Figure 3.7: Illustration of the bags needed to calculate match/mismatch probability.
The bag with grey background is to calculate base pair match/mismatch probability
for example, the bag {4, 5, 6, 9} is to calculate P((5, 9) ⇠ (p, q)). The bags within
dotted rectangle is to calculate base match/mismatch probability. For example, the
bag {2, 3, 4} is to calculate P(3, p).

calculate the match/mismatch probability as shown in Figure 3.7. For example, the

bag {4, 5, 6, 9} is used to calculate P((5, 9) ⇠ (p, q)).

To calculate P((i, j) ⇠ (p, q)), the first step is to locate the bag X where (i, j) 2 P (X)

in the tree decomposition. AX is denoted as the alignment of the bag X, then

P((i, j) ⇠ (p, q)) =
X

A
X

s.t.(i,p,1)2A
X

(j,q,1)2A
X

e��LCost(project(X",A
X

),project(X#,A
X

))

·
Ẑ(X, project(X ", AX))

Q

X02child(X) Z(X 0, project(X 0, AX))

Z
(3.18)

To calculate P(i ⇠ p), The first step is also to locate the X where i 2 X #. Then we

use a similar equation 3.18 to calculate the base match/mismatch probability.

P(i ⇠ p) =
X

A
X

s.t.(i,p,1)2A
X

e��LCost(project(X",A
X

),project(X#,A
X

))

·
Ẑ(X, project(X ", AX))

Q

X02child(X) Z(X 0, project(X 0, AX))

Z (3.19)

Equations 3.11 and 3.17 have the same complexity as Rinaudo’s algorithm which

is O(|X | · ntw) where |X | is the number of bags in the tree decomposition, tw is

62

the tree-width of the tree decomposition and n = |W |. To calculate P(i ⇠ p) or

P((i, j) ⇠ (p, q)), one first needs to focus on the particular bags X and consider all

valid bag alignments that satisfy certain constraints. The time complexity of this

step is O(ntw+1). Therefore, the overall complexity is O(max(|X |, n) · ntw).

3.2.6 Maximum expected accuracy alignment

The former cost function gives an optimal alignment, or in other words, highest

probability alignment. An alternative approach is to compute maximum expected

accuracy alignment (MEA) [28, 45]. To compute the pairwise MEA alignment, we

need two steps: (1) Compute the posterior probability for bases and base pairs. (2)

Run Rinaudo’s algorithm using these posterior probabilities as substitution score and

no gap penalties to get the pairwise MEA alignment.

The first step is to compute the posterior probabilities. Though the inside-outside

algorithm can calculate the exact base match probability and base pair match prob-

ability, they cost too much time. Another choice is to use stochastic backtracking

procedure to gather 1000 alignment samplings, and based on the samplings, one can

calculate the posterior probabilities of the match matrices between the two sequences

Q : (SQ, P) and W (SW , ;). In general, for a base index i in the single-stranded region

of Q, one match matrix P(i, p) will be calculated and three matrices P((i, j) ⇠ (p, q)),

P((i, j) ⇠ (�, q)) and P((i, j) ⇠ (p,�)) should be calculated for a base pair (i, j) 2 P .

The second step is to execute Rinaudo’s algorithm and before that we need the

objective function to calculate MEA alignment. Consider A⇤ to be the true alignment

between Q and W . Then the accuracy of an alignment A with A⇤ is the number of

same aligned pairs of nucleotides, divided by the length of the shorter sequence.

acc(A, A⇤) =
1

min(m, n)
(A \ A⇤)

=
1

min(m, n)

X

i⇠p2A

1{i ⇠ p 2 A⇤}

where m = |Q| and n = |W |. There are four cases for SQ[i]. One is SQ[i] is free and

SQ[i] aligns to SW [p]. One is SQ[i] forms base pair with SW [j] and SQ[i], SQ[j] aligns

to SW [p], SW [q], respectively. One is SQ[i] forms base pair with SW [j] and only SQ[i]

aligns to SW [p]. The last one is One is SQ[i] forms base pair with SW [j] and only

63

SQ[j] aligns to SW [q]. Then

acc(A, A⇤) =
1

min(m, n)
(

X

(i⇠p)2A
i unpaired

1{i ⇠ p 2 A⇤} +
X

(i,j)⇠(p,q)2A
(i,j)2P

2{(i, j) ⇠ (p, q) 2 A⇤}

X

(i,j)⇠(p,�)2A
(i,j)2P

1{(i, j) ⇠ (p,�) 2 A⇤} +
X

(i,j)⇠(�,q)2A
(i,j)2P

1{(i, j) ⇠ (�, q) 2 A⇤})

(3.20)

Since A⇤ is not known, it is not possible to compute the accuracy in a predictive

context. However, we can calculate the expected accuracy by considering all possible

alignments between Q and W as shown in [28]. By using partition function, we

can calculate the probability for every possible alignment in search space S and the

probability for a particular alignment Ã is denoted by P(Ã|Q, W). Therefore, the

expected accuracy of alignment A is

E(acc(A, A⇤)) =
1

min(m, n)

X

Ã2S

P(Ã|Q, W) · (
X

i⇠p2A
i unpaired

1{i ⇠ p 2 Ã}

+
X

(i,j)⇠(p,q)2A
(i,j)2P

2{(i, j) ⇠ (p, q) 2 Ã} +
X

(i,j)⇠(p,�)2A
(i,j)2P

1{(i, j) ⇠ (p,�) 2 Ã}

+
X

(i,j)⇠(�,q)2A
(i,j)2P

1{(i, j) ⇠ (�, q) 2 Ã}) (3.21)

Then the objective function of MEA for a particular alignment A 2 Âm,n is

E(acc(A)) =
1

min(m, n)
(2� ·

X

(i,j)⇠(p,q)2A

P((i, j) ⇠ (p, q))

+
X

(i,j)⇠(�,q)2A

P((i, j) ⇠ (�, q))

+
X

(i,j)⇠(p,�)2A

P((i, j) ⇠ (p,�))

+
X

i⇠p2A
i unpaired

P(i ⇠ p)) (3.22)

where � > 0 is a parameter with default value 1.

64

3.3 Enumerating suboptimal alignments

The concept of near optimal or suboptimal alignment comes into play for one single

reason, the best alignment or the set of optimal alignments may not reflect biological

processes. Comparing with stochastic backtracking procedure which can generate

duplicate alignments as mentioned before, the algorithms that we will introduce is

used to enumerate distinct near-optimal alignments. One algorithm to enumerate �

near-optimal alignments and the other algorithm is to enumerate K-best near-optimal

alignments.

The idea of generating � near-optimal alignment algorithm is from the work of Wa-

terman and Byers in [106]. They first designed the algorithm to find suboptimal

paths for shortest path problem and they extended the algorithm to find suboptimal

sequence alignments within a set range from optimal alignment. The idea is to treat

the derivation trees or alignments in DP matrix as (s, t)� paths in a directed acyclic

graph (DAG) with weights on its edges because of the linearity of the recursion func-

tion. In [118], Wuchty et al. extended this algorithm to enumerate suboptimal RNA

folding within a range � from the minimum free energy folding.

While conceptually very close, the generation of K-best near-optimal alignments re-

quires considerably more involved strategies in order to achieve a reasonable complex-

ity, as shown in Huang et al. [46]. In [46], Huang et al. formalized Viterbi algorithm

(dynamic programming) under the directed hypergraph framework and gave an ef-

ficient algorithm for computing K best parsing. Moreover, Becker et al. [5] have

implemented this algorithm to generate sub-optimal HMM (Hidden Markov Model)

alignments. In [75], Ponty et al. pointed out the derivation from DP matrix can be

formalized as hyperpaths in a directed hypergraph for RNA folding problem.

Before showing the � near-optimal alignment algorithm and K-best near-optimal

alignment algorithm, it is necessary to first explain the backtracking procedure which

is a key step to understand these two near-optimal alignment algorithms. As we have

defined previously, M(X, AX") is the optimal partial alignment between the positions

appearing in the descendants of X and W ending with AX" and the corresponding

optimal score is C(X, AX"). For understanding the further algorithms, two new no-

tations are introduced. One is ⇠ which is a stack of state (X, AX"). The other one is

A which is a set of triplets and in other words, it stores the information about partial

alignment. The normal backtracking procedure is sketched in Algorithm 1.

65

Algorithm 1: Backtracking Procedure(C(X, AX"))

⇠ = {(X0, AX0")} and A = ;;
while ⇠ 6= ; do

(X, AX") pop(⇠) ;

if (child(X) = ; and AX# with C(X, AX") = LCost(AX", AX#)) then

A AX#;

end

if

0

@

child(X) 6= ; and AX#with

C(X, AX") = LCost(AX", AX#) +
P

X02child(X) C(X 0
, B))

1

A

then

/* B = project(X 0
, AX" [AX#) */

A AX# ;

foreach X

0 2 child(X) do

push((X 0
, B))! ⇠ ;

end

end

end

return A

The backtracking procedure starts with the start state (X0, ;) which is stored in a

stack ⇠ and an empty set A. Pop the state from stack ⇠ and assign the first element

of the state to X and the second element to AX". Following equation 2.12, find the

alignment set for X # that is consistent with C(X, AX"). If X is a leaf bag, then

we only need to push the alignment set AX# into A. If X is not a leaf bag, we also

need to push the child state (X 0, B) where B = project(X 0, AX" [AX#) into stack ⇠.

The procedure continues until the stack ⇠ is empty and a complete optimal alignment

between Q and W is constructed in A.

3.3.1 � near-optimal alignment

As mentioned before, the idea behind the algorithm for solving � near-optimal align-

ment is from the work of Waterman and Byers in [107] and Wuchty et al. [118].

Given the parameter � defined by the user, our aim is to find all the near-optimal

alignments with the costs less than Cmin + � where Cmin = C(X0, ;) is the minimum

score. In other words, the � near-optimal algorithm will generate every near-optimal

alignment in the � neighborhood.

In � near-optimal alignment algorithm, besides the stack ⇠ containing the information

66

about states (X, AX") in backtracking procedure, a new stack ⌘ is defined. Each

element of ⌘ contains three items of information (⇠, A, �): (1) the state stack ⇠; (2)

the alignment set A; (3) the current distance � with Cmin derived from the start state

(X0, ;). The � near-optimal alignment is shown in Algorithm 2.

As the backtracking procedure, the algorithm also begins with the start state (X0, ;).
Then pop one element (⇠, A, �) from ⌘. Assign the first element of ⇠ to X and the

second element of ⇠ to AX". Instead of only finding the optimal AX# that satisfies

the equation shown below,

C(X, AX") = LCost(AX", AX#) +
X

X02child(X)

C(X 0, B)

where B = project(X 0, AX" [AX#), we need to find all the AX# that satisfies

�0 = LCost(AX", AX#) +
X

X02child(X)

C(X 0, B) + � � C(X, AX")  � (3.23)

It means that if �0 with AX# is greater than �, A with AX# inserted will not be

considered any more and if �0 with AX# is less than �, after some operations to ⇠ and

A, (⇠, A, �0) will be pushed into the stack ⌘ for further calculation. When the stack ⌘

is empty, it means that we have found all the � near-optimal alignments.

Proposition 5. The score of the selected alignment A satisfying equation 3.23 is less

than Cmin + �.

Proof. I will give a brief proof based on the popping element (⇠, A, �). The state

(X, AX") is the popping state from ⇠. We define the score of the popping alignment

A from start state (X0, ;) to the state (X, AX") as C̄(X, AX"). Then we have the

equation

C̄(X, AX") + C(X, AX") +
X

(X0,A
X

0")2⇠

C(X 0, AX0")� Cmin = � (3.24)

Then we put equation 3.24 into equation 3.23, for AX# satisfying equation 3.23, we

will have

67

C̄(X, AX") +
X

(X0,A
X

0")2⇠

C(X 0, AX0") + LCost(AX", AX#)

+
X

X02child(X
i

)

C(X 0, B)� Cmin  �. (3.25)

This completes the proof.

The complexity of Rinaudo’s algorithm is O(|X | · ntw) where |X | is the number of

bags in the tree decomposition, tw is the tree-width of the tree decomposition and

n = |W | is the length of the PLAIN sequence. For a generated alignment, Algorithm 2

visits each bag once and each time consider all the AX# 2 AX#(X, AX"). Besides

we always get the tree decomposition with |AX#| = 1 for all bags without loss of

generality. Furthermore, we assume that the number of alignments within range �

from the optimal alignments is exactly K. Therefore, the complexity for Algorithm 2

is O(|X | · ntw + K · |X | · n).

When � = 0, the � near-optimal algorithm will produce all the optimal alignments.

If � is set big enough, the algorithm will generate all the alignments in the search

space. However, this is not recommended, because it will take quite a long time.

3.3.2 K-best suboptimal alignment

The idea behind this algorithm for solving K-best near-optimal is introduced in the

work of Huang et al. [46] and the K-best alignment problem can be formulated as:

Definition 10 (K best Structure-Sequence Alignment Problem). Given an

arc-annotated sequence Q, a plain sequence W and a positive integer K, the K best

structure-sequence alignment problem is to find K best alignments between Q and

W ordered by cost.

Now we have changed our strategy. Instead of requiring � as input, we ask the user

to input the parameter K. To understand the algorithm, we need to explicitly model

derivation trees of Rinaudo’s algorithm to hyperpaths in an ordered hypergraph.

68

Algorithm 2: �-suboptimal alignment(C(X, AX"))

push ({(X0, AX0")}, ;, 0) into stack ⌘ ;

while ⌘ 6= ; do
(⇠, A, �) pop(⌘);

if ⇠ = ; then
Output suboptimal alignment and continue ;

end

(X, AX") pop(⇠) ;

if child(X) = ; then
foreach AX# within context AX" do

�

0 = LCost(AX", AX#)� C(X,AX") + � ;

if �

0  � then

A AX# ;

push((⇠, A, �

0))! ⌘ ;

end

end

end

if child(X) 6= ; then
foreach AX# within context AX" do

�

0 = LCost(AX", AX#) +
P

X02child(X) C(X 0
, B)� C(X, AX") + � ;

/* B = project(X 0
, AX" [AX#) */

if �

0  � then

A AX# ;

foreach X

0 2 child(X) do

push((X 0
, B))! ⇠ ;

end

push((⇠, A, �

0))! ⌘ ;

end

end

end

end

69

t

v w

u

o p q

1

2 3

4

5 6 7

108 9

a

b

c

d e

1 2 3 4 5 6 7 8 9 10
{�, �} {(7,9,1),

(9,10,1)}
{(7,9,1),
(9,10,1)}

{(6,81),
(7,9,1),

(9,10,1)}

{(4,6,1),
(6,81),

(9,10,1)}

{(4,6,1),
(6,81),
(7,9,1)}

{(4,6,1),
(9,10,1)}

{(2,2,1),
(4,6,1)}

{(2,2,1),
(7,9,1)}

{(10,11,1)}

a b c d e
{(7,9,1),(9,10,1)} {(6,8,1)} {(4,6,1)} {(2,2,1)} {(10,11,1)}

A) B)

C)

Figure 3.8: (A) Illustration of a hypergraph. t is a target vertex and o, p, q are
the source vertices. (B) Treating a derivation tree as a hyperpath in the ordered
hypergraph. (C) The contents in the circles and rectangles in (B).

Definition 11 (Ordered hypergraph [46]). An ordered hypergraph H is a tuple

< V, E, t, ⇡ >. Let V be a finite set of vertices and E a finite set of hyperarcs. ⇡ is a set

of weights. Each hyperedge e 2 E is defined as a triple e =< t(e), h(e), f(e) > where

h(e) 2 V is its head and t(e) ✓ V is an ordered list of vertices. t is a distinguished

vertex called target vertex. For e 2 E, if |t(e)| = 0, then h(e) is called a source vertex.

f : R|t(e)| ! R is a weight function.

Figure 3.8 A) shows an example hypergraph. B) illustrates that a derivation tree

can be treated as a hyperpath in the hypergraph. A vertex in H corresponds to

a state (X, AX"). Theoretically, there are (2 · (n + 1))|X#| hyperarcs coming into

it from the children states (X 0, project(X 0, AX)). The weight for each hyperarc is

LCost(AX", AX#). The source vertex corresponds to the state (X, AX") where X is

a leaf bag and AX" is alignment set for transition indices of X. The target vertex

corresponds to state (X0, ;) where X0 is the root bag. As we have proved that

Rinaudo’s algorithm is unambiguous and complete, there is a one-one correspondence

between an instance I in the derivation space D and an instance I in the search space

S. Therefore, suboptimal structure-sequence alignments are in fact the suboptimal

hyperpaths in the hypergraph.

70

To make the algorithm work, we need the hypergraph to be monotonic. Actually, the

monotonicity is relevant to the optimal substructure property in dynamic program-

ming. Otherwise, if the hypergraph is not monotonic, we can not get one optimal

solution.

Definition 12 (monotonicity of hypergraph [46]). A hypergraph is monotonic if

there is total ordering � on R such that every weight function f : R|t(e)| ! R in H is

monotonic for each of its arguments.

Therefore, for a particular e 2 E, if xi � x0
i where 0  i  |t(e)|, f(x1, . . . , xi, . . . , x|t(e)|)

� f(x1, . . . , x
0
i, . . . , x|t(e)|). As defined before, the equation to calculate the correspond-

ing score is:

LCost(AX", AX#) +
X

X02child(X)

C(X 0, project(X 0, AX))}

Therefore, for a particular AX# which corresponds to a particular hyperarc, the cost

function f is of the form a + x1 + x2 + . . . + xc and the function is strictly monotonic

in all arguments xi. That is to say, Rinaudo’s algorithm satisfies the monotonicity of

the hypergraph.

Another requirement for the hypergraph is acyclic. The hypergraph is acyclic if and

only if any vertex v 2 V is shown once in any derivation tree with target vertex t.

The reason is that if the hypergraph is acyclic, we can use the topological ordering

to traverse the hypergraph. The topological order is obvious in Rinaudo’s algorithm.

That is to say, we can calculate the score for the partial alignment for the current bag

X after calculating the alignments for the child bags X 0 2 child(X). After knowing

all these, we adopt Huang’s algorithm [46].

To further present the K-best algorithm, we denote C1(X, AX") and D1(X, AX")

as the optimal score and the corresponding optimal derivation tree from the state

(X, AX"). The derivation tree D1(X, AX") can be represented as

{hAX#, D
1(X 0

1, B1) . . . D1(X 0
c, Bc)i} if child(X) 6= ;

or {hAX#, ;i}, if child(X) = ;

Furthermore, Cr(X, AX") and Dr(X, AX") are illustrated to represent the r-th best

score and the corresponding r-th best derivation tree. Therefore, our aim is to find the

D1(X0, ;), . . ., DK(X0, ;) with score C1(X0, ;), . . ., CK(X0, ;). Figure 3.9 illustrates

71

Figure 3.9: Alignments and the corresponding derivation trees (A) 1-best alignment;
(B) 2-best alignment; (C) derivation tree producing alignment in (A); (D) deriva-
tion tree producing alignment in (B). The only di↵erence between 1-best and 2-best
alignment is the alignment triple for the position 3 in Q.

the derivation trees for the 1-best alignment and 2-best alignment for the example

sequences Q and W . The only di↵erence between 1-best and 2-best alignment is the

alignment triple for the position 3 in Q.

3.3.2.1 Recurrence equation

Let us consider which derivation tree should be considered as the candidate to Dr(X, AX").

Di↵erent from D1(X, AX"), . . ., Dr�1(X, AX"), the best candidate to Dr(X, AX") can

be chosen in the set

{hAX#, D
j1(X 0

1, B1) . . . Dj
c(X 0

c, Bc)i | AX# 2 AX#(X, AX"), 1  j1  r, . . . , 1  jc  r}
(3.26)

where Dj1(X 0
1, B1) represents the j1-best derivation tree from the state (X 0

1, B1) and

X 0
1 is one child bag and B1 = project(X 0

1, AX). Obviously, to compute Dr(X, AX")

we do not need to consider the derivation trees for the children states with indices

j1 > r, . . ., jc > r, because we can always find the r-best derivation tree with j1 
r, . . . , jc  r. From the fact that the relationship of the bags in the tree decomposition

are fixed, once AX# is selected, the states for the children bags (X 0
1, B1), . . ., (X 0

c, Bc)

are all fixed. The only thing we care about is indices j1, . . . , jc. Therefore, to simply

the notation, we set j= (j1, . . . , jc)2 {1, 2, . . . , K}c and the set of derivation trees

72

in 3.26 can be reformulated as

{hAX#, ji | AX# 2 AX#(X, AX"), 1  j1  r, . . . , 1  jc  r} (3.27)

Therefore, we can use hAX#,1i instead of hAX#, D1(X 0
1, B1) . . . D1(X 0

c, Bc)i to repre-

sent the optimal derivation tree. The optimal derivation tree hAX#,1i has the optimal

score C1(X, AX").

Furthermore, we define a new set Mr(X, AX") where Dr(X, AX") is the best deriva-

tion tree among them. Actually, M(X, AX") will be implemented as a priority queue.

Dr�1(X, AX") is the best derivation tree in the set Mr�1(X, AX"). Mr(X, AX") is

derived from Mr�1(X, AX") by some operations as shown below. We assume that

Dr�1(X, AX") corresponds to the derivation tree hAX#, ji=hAX#, j1, . . . , jci. A vector

ei is defined whose elements are all 0 except eii = 1. We define the neighbors of

Dr�1(X, AX") to be a set {hAX#, j + eii, 8i  c}. According to the monotonicity of

the hypergraph, we have the partial order.

C(hAX#, ji)  C(hAX#, j + eii), 8i  c (3.28)

This partial order shows the potential search directions and Mr(X, AX") can be

constructed by deleting Dr�1(X, AX") and inserting its neighbors:

Mr(X, AX") = (Mr�1(X, AX")�Dr�1(X, AX"))
[

{hAX#, j + eii | 8i  c} (3.29)

After that, the derivation tree in set Mr(X, AX") with minimum score would be the

r-best derivation tree Dr(X, AX").

3.3.2.2 Algorithm

The general idea is that LazyKthBest assumes an initial DP has been implemented

and a DP table has been filled. In this way, we can find the 1-best derivation tree

for each cell (state) in the DP table. LazyKthBest starts from the root bag with

state (X0, ;) to the leaf bag. For a particular state (X, AX") in the state space

Q, LazyKthBest is recursively called only as necessary. Therefore, for that state

(X, AX") we suppose LazyKthBest is called r times and in other words, we have

found the r-best derivation tree for the particular state (X, AX"). As shown be-

fore, Dr(X, AX") is the best derivation tree in the set Mr(X, AX"). We also define

73

E(X, AX") = {D1(X, AX"),D2(X, AX"), . . ., Dr�1(X, AX")} to store the extracted

r � 1 derivations and E(X, AX") is implemented as vector. The following algorithm

can find D2(X0, ;), . . ., DK(X0, ;) one after another.

Now we go into details. In procedure LazyKthBest, M(X, AX") is not defined

for every cell (state) in the DP matrix (memory saving) and when it is necessary

(LazyKthBest visits), it is initialized with K first derivations < AX#,1 > with dif-

ferent AX# satisfying AX# 2 AX#(X, AX") ordered by the score as shown in procedure

GetCandidates. While the number of elements in E(X, AX") is less than r which is

required by LazyKthBest, the last element from E(X, AX") which we suppose as

hAX#, ji is obtained and the procedure LazyNext is called to insert the neighbors of

hAX#, ji which is {hAX#, j + ei| 1  i  c} into M(X, AX"). In detail, procedure

LazyNext ask every child state its j0i-best derivation tree by calling the procedure

LazyKthBest. Then this recursive process ends when the current bag is the leaf bag

and returns the j0i-best derivation of the children states upwards. Then we extract

the optimal element if it exists in M(X, AX") to E(X, AX") (Extrac-Min). However,

if M(X, AX") is empty, break the procedure. It means that there is no more other

derivation tree coming into state (X, AX"). In other words, all possible derivations

tree coming into state (X, AX") are now in vector E(X, AX").

Algorithm 3: Recursive enumeration of the K-best alignments
Compute D

1(X, AX") for all bags X, for all possible bag alignment sets AX using Rinaudo’s
algorithm ;

for n

:= 2 to K do

LazyKthBest((X0, ;), K, n) ;
end

return {D

1(X0, ;), D2(X0, ;), . . . DK(X0, ;)};

The DP algorithm of Rinaudo et al. runs in time O(|X | · ntw). Here tw is the

tree-width of the tree decomposition T , and W is the plain sequence with length

n = |SW |. The computation of the K best alignment tree requires K · |X | calls to

LazyKthBest. Each call also needs the operations on M(X, AX") which is supported

by priority queue, like insertion of new elements and selection/deletion of the best

element. Each operation is performed in logarithmic time relative to the number

of elements in the priority queue. So the time required by the whole algorithm is

O(|X | · ntw + K · |X | · log K).

74

Procedure LazyKthBest((X, AX"), K, n)

if M(X, AX") is not defined then

GetCandidates((X, AX"), K)

end

while |E(X, AX")| < n do

if |E(X, AX")| > 0 then

hAX#, ji E|E(X,AX")|(X, AX") ;
LazyNext(M(X,AX"), AX#, j, K) ;

end

if |M(X, AX")| > 0 then

append Extrac-Min(M(X, AX")) to E(X, AX") ;
end

else

break

end

end

Procedure GetCandidates((X, AX"), K)

temp {hAX#,1i | 8AX# 2 AX#(X, AX") } ;
M(X,AX") top K derivations starting from state (X, AX") in temp ;
HEAPIFY(M(X, AX"));

Procedure LazyNext(M(X, AX"), AX#, j, K)

for i 1 . . . c ; // c = |child(t)|
do

j

0 j + e

i ;
LazyKthBest((X 0

i, B), K, j

0
i) ;

/* B = project(X 0
i, AX" [AX#) */

if j

0
i  |E(X 0

i, B)| and hAX#, j
0i is not in M(X, AX") and E(X, AX") then

Insert (M(X, AX"), hAX#, j
0i) ;

end

end

75

Chapter 4

Results

The first experiment mainly answers the following questions: What is the typical tree-

width of a pseudoknotted structure, especially in the presence of pseudoknots? Can

accurate tree-decomposition be computed in a reasonable time in for RNA graphs?

To answer the question, we test the tree decomposition algorithms on PseudoBase

and PDB database and the details are shown in section 4.2.

The second experiment mainly answers the following question: How does the predic-

tive capacity of the accuracy of LiCoRNA compare with that of other state-of-the-art

programs? We test LiCoRNA on RFAM pseudoknotted families and compare the

performance of LiCoRNA with three other state-of-the-art software PAL, PSTAG and

profile-csHMMs. The details are shown in section 4.3.

The third experiment mainly answers the following questions: What is the di↵erence

between the predicted optimal alignment and the reference alignment in the bench-

mark? How far down the list of suboptimal alignments can the reference alignment

be found? How trustworthy is a structure-sequence alignment prediction? To answer

these questions, we generate 1000-best suboptimal alignments using K-best subop-

timal alignments and sample an ensemble of alignments using stochastic sampling

algorithm when t = 1.5. The details are shown in section 4.4 and 4.5.

The fourth experiment mainly answers the following questions: Covariance models do

not consider pseudoknots when aligning, which may lead to misalign when building

the full alignment. Does LiCoRNA’s support of pseudoknots of arbitrary complexity

translate into better performances? Conversely, is the lack of support for complex

pseudoknots detrimental to the quality of the alignments? We test LiCoRNA on the

76

full alignments for the RFAM pseudoknotted families and we hope that a system-

atic realignment will allow to reveal or refute an evolutionary pressure towards the

preservation of a functional pseudoknot. The details are shown in section 4.6.

Unless specified, runtimes reported in the following correspond to tests that were

performed on a PC with CPU Intel(R) Core (TM) i7-4770 and 16 GB RAM, under

a Linux Ubuntu 16.04.1 LTS (64bit) operating system.

4.1 Using LiCoRNA

LiCoRNA is a software for pairwise structure-sequence alignment in RNA featuring

pseudoknots of arbitrary complexity. The software consists of 9612 lines of C++,

and is freely accessible at:

https://licorna.lri.fr

LiCoRNA currently contains three di↵erent programs:

• alignerDP (Maximum/Suboptimal Parsimony Alignment): implementation of

Rinaudo’s DP algorithm to compute the optimal structure-sequence alignment.

Besides, it can also generate the K-best suboptimal alignments where K is set

by users.

$ alignerDP

OPTION

-i input path of the file with RNA folded sequence.

-d input path of the file with tree decomposition.

-s input path of the file with target sequence.

-c maximum insertion length.

-n number of suboptimal alignments , the default value is 5

(If the user does not use -n option , n is set to be 5).

• alignerSB (Stochastic Backtracking): generates a representative sample of

alignments according to the Boltzmann conditional probability distribution.

$ alignerSB

OPTION

-i input path of the file with RNA folded sequence.

-d input path of the file with tree decomposition.

-s input path of the file with target sequence.

-c maximum insertion length.

-n number of sampling alignments , the default value is 100.

-t temperature.

77

• alignerMEA (Maximum Expected Accuracy sequence-structure alignment): com-

putes an alignment with maximum expected accuracy over all alignments that

are sampled by the stochastic backtracking procedure.

$ alignerMEA

OPTION

-i input path of the file with RNA folded sequence.

-d input path of the file with tree decomposition.

-s input path of the file with target sequence.

-c maximum insertion length.

-t temperature.

In program alignerSB, the sampling process for each bag can be done quite simply

as follows: We generate a probability p0 uniformly from the interval [0, 1]. Then the

interval is partitioned into n sub-intervals: [0, p1), [p1, p1 + p2), . . ., and each sub-

interval corresponds a sample A1
X#, A2

X#, If p0 is in the ith interval, then the

sampled alignment is Ai
X#. The uniform distribution generator is mt19937 in library

C++11.

Here is an example of an input file for the arc-annotated sequence Q:

AGACUCUCGGC

<<.((>>.)).

and an example of an input file for plain sequence W :

ACAACCGGUCGA

There are several points which should be considered about the input file:

• Accepted symbols for sequence are: A, C, G and U;

• Accepted symbols for structure are: ., [and], (and), < and >, { and }. If the

four paired symbols are still not enough for you, then the paired symbols with

A and a, B and b, C and c, . . ., Z and z are also available. Generally, the base

pairs with di↵erent symbols are crossing;

• All programs support any kind of pseudoknots;

• All programs support Watson-Crick base pairs and G-U base pairs. Non-

canonical base-pairs are currently unsupported.

78

alignerMEA alignerSB

alignerDP

TreeDecomposer

RNAML2dgf

An arc-annotated
sequence

Dgf format

Tree decomposition An ensemble of
stochastical alignments

MEA
alignment

Optimal alignment
-best alignment

Figure 4.1: The workflow of LiCoRNA. The program RNAML2dgf transfers the input
file for Q to dgf format. Program TreeDecomposer which is written in JAVA gives
the tree decomposition of Q. Then users can use any program alignerMEA, alignerSB
and alignerDP according to their needs. W is the input plain sequence.

The workflow for program LiCoRNA is shown in Figure 4.1. One more thing to say is

that users can also use other tree decomposition algorithms, as long as they format

the tree decomposition as the output of TreeDecomposer program.

4.2 The tree-width of pseudoknotted RNAs is typ-
ically small

The tree-width of a tree decomposition directly a↵ects the complexity of Rinaudo’s

algorithm as shown on page 33. However, finding the tree decomposition with the

minimal tree-width is an NP-hard problem [11, 12]. The current algorithms for com-

puting the exact tree-width are very expensive and only work for specific classes of

graphs. Fortunately, many heuristic methods are available, whose performance de-

pends on the type of input data. In order to compare their performance on graphs

associated with RNA structures, we benchmarked four tree decomposition algorithms

available in our program TreeDecomposer based on the LibTW library [102]:

• GreedyDegree [7];

• GreedyFillin [51];

79

0 50 100 150 200 250 300 350 400
Index of pseudoknots

5

10

15

20

25

30

35

40

45

T
re

e
W

id
th

GreedyDegree

GreedyFillIn

Lex-BFS

MCS

Figure 4.2: Tree-width comparison for algorithms GreedyDegree, GreedyFillin, Lex-
BFS, MCS in PseudoBase.

• Lex-BFS (Lexicographic Breadth First Search) [81];

• MCS (Maximum Cardinality Search) [95].

4.2.1 Datasets

A PseudoBase dataset consists of non-redundant 398 pseudoknots, and was re-

trieved from the PseudoBase [101] on June 12th, 2017. These structural models were

obtained from experimental methods, crystallography, NMR or through high qual-

ity sequence comparisons. Some pseudoknots are stored over several segments, and

structure and sequence information within the missing regions. To make full use of

those pseudoknots, we merged those segments into a complete sequence, based on the

rationale that the tree-width of the graph is not a↵ected by the merge.

A second PDB dataset includes all the canonical and non-canonical interactions,

categorized into 12 families within the Leontis/Westhof classification [56]. The 1338

non-redundant tertiary structures containing RNA strands were downloaded from the

80

(A) PKB71 (B) PKB75

Figure 4.3: With GreedyFillin, Tree-width for PKB71 is 5 and tree-width for PKB75
is 5. With GreedyDegree, tree-width for PKB71 is 6 and tree-width for PKB75 is 5.

PDB database [82] on June 12th, 2017. First, we used RNAVIEW [119] to generate

2-dimensional displays of RNA/DNA secondary structures with tertiary interactions.

The interactions that RNAVIEW can detect are the 12 families edge-to-edge base

pairs as shown in Section 1.2. The output for RNAVIEW was stored in XML format.

Therefore, we had 1014 XML files by using RNAVIEW because no base-pairs were

found in the other 324 PDB structures and we ignored them.

The PseudoBase dataset and PDB dataset are only used in this experiment,

because the corresponding database PseudoBase and PDB only provide separate se-

quences and the corresponding structures and they do not provide alignment informa-

tion. In the next few experiments, we will construct dataset from RFAM database.

In each RFAM family, we have the alignment information and also the consensus

structure.

4.2.2 Results

We tested the four tree decomposition algorithms on the PseudoBase dataset, and

compared the performances by showing the tree-width. The computation time

for the four algorithms is typically less than 1 second for one RNA structure and

the time di↵erence between the four algorithms can be ignored. The comparisons

of the tree-width are shown in Figure 4.2. In detail, the x-axis is labeled with the

index of pseudoknots ordered by the length and y-axis is tree-width calculated by

the four algorithms. Overall, GreedyDegree and GreedyFillin clearly outperform the

other two algorithms, but yield almost identical results. Furthermore, almost all the

RNA graphs in PseudoBase dataset have tree-width 4. Figure 4.3 illustrates two

examples whose tree-widths are more than 4.

81

0 200 400 600 800 1000
Index

0

10

20

30

40

50

60

70

T
re

e
W

id
th

GreedyDegree

GreedyFillIn

Lex-BFS

MCS

Figure 4.4: Tree-width comparison for algorithms GreedyDegree, GreedyFillin, Lex-
BFS, MCS on the PDB dataset, including all non-canonical interactions.

Finally, we tested the four tree decomposition algorithms on the PDB dataset,

and the result is shown in Figure 4.4. The result is consistent with the analysis in

2014 [25]. Also, the index of the PDB file is ordered by their sequence length. We

restrict the upper value of the y-axis to be 70, because the widths calculated by MCS

are much bigger than widths of former RNA structures which will make the di↵erence

for the four tree decomposition undistinguishable for the former RNA structures. It is

clear that the tree decompositions calculated by GreedyDegree and GreedyFillin have

relatively smaller tree-widths. The tree-width for GreedyDegree and GreedyFillin are

usually less than 10. Figure 4.5 shows an example whose tree-width is 9 by using

GreedyFillin.

82

RFAM Len seed/total RFAM Len seed/total RFAM Len seed/total

RF00009 189� 440 116/1103 RF00010 281� 520 458/6660 RF00011 291� 417 114/1352

RF00023 230� 437 477/6350 RF00024 382� 559 37/198 RF00028 206� 488 12/71430

RF00030 183� 562 66/862 RF00041 119� 131 60/168 RF00094 87� 100 33/598

RF00140 88� 119 39/1017 RF00165 62� 64 14/538 RF00176 89� 92 18/82

RF00216 300� 304 23/163 RF00233 77� 86 28/130 RF00259 166� 169 5/116

RF00261 215� 229 11/48 RF00373 233� 475 70/371 RF00381 56� 59 13/328

RF00390 23 6/26 RF00458 187� 202 7/23 RF00499 102� 115 5/32

RF00505 64� 66 5/405 RF00507 79� 87 23/555 RF00622 74� 78 12/101

RF01050 1158� 1220 13/84 RF01072 29� 33 25/281 RF01073 61� 62 7/7454

RF01074 40 4/27 RF01075 96 2/26 RF01076 72 2/213

RF01077 66� 67 4/51 RF01078 56� 59 3/5 RF01079 39 2/18

RF01080 32 4/19 RF01081 26 3/14 RF01082 25 2/16

RF01083 21 4/84 RF01084 120� 141 8/361 RF01085 116� 118 2/8

RF01087 148� 151 6/131 RF01088 67� 68 3/20 RF01089 121� 128 7/71

RF01090 66� 69 7/74 RF01091 61 2/11 RF01092 61 2/13

RF01093 60 12/145 RF01094 118 2/2 RF01095 56 2/4

RF01096 55� 56 2/56 RF01097 52 4/2021 RF01098 49� 50 2/27

RF01099 48 32/17550 RF01100 40 2/4 RF01101 40 3/41

RF01102 36� 37 2/7 RF01103 29 2/12 RF01104 29 3/12

RF01105 27 2/5 RF01106 25 2/5 RF01107 27 2/12

RF01108 26 2/6 RF01109 21 2/12 RF01111 21 4/10

RF01113 23 2/13 RF01114 22 2/40 RF01577 615� 626 2/14

RF01689 114� 150 144/266 RF01704 52� 93 627/859 RF01715 204� 213 6/6

RF01725 87� 139 437/773 RF01726 57� 81 126/321 RF01735 112� 125 30/151

RF01745 169� 218 189/351 RF01761 71� 106 118/134 RF01768 62 7/768

RF01775 144� 155 7/129 RF01785 27 2/11 RF01786 83� 103 54/299

RF01788 188� 195 5/714 RF01807 196� 219 12/35 RF01831 86� 143 97/610

RF01833 55 4/28 RF01834 35 5/29 RF01840 54 14/103

RF01849 293� 592 111/2078 RF01850 232� 360 7/51

Table 4.1: 86 Pseudoknotted RFAM families. Len: the length range. seed: number
of seed sequences. total: number of full sequences. Family names with underline
are used to evaluate the performance of LiCoRNA. Family names in bold are used for
testing the correctness of INFERNAL.

83

Figure 4.5: In this ribonuclease P RNA from Bacillus stearothermophilus (PDB ID:
2A64), the tree decomposition returned by the GreedyFillin heuristics on the sec-
ondary structure, including all non-canonical interactions, has width 9!

4.3 Predictive accuracy of LiCoRNA

This section first describes a benchmark which contains 86 pseudoknotted families

from the RFAM database [65]. Next, we illustrate the performance of our software,

called LiCoRNA (aLignment of Complex RNAs), based on Rinaudo’s algorithm [78]

which performs a structure-sequence alignment for pseudoknots of arbitrary com-

plexity by comparison with other state-of-the-art softwares.

4.3.1 Dataset

The dataset we used for testing and analysis is the set of pseudoknotted families in

RFAM database [65]. It is necessary to explain some notations about RFAM database.

Each family in RFAM has two multiple sequence alignments. The seed alignment is

a hand-curated alignment of known members of the family. Then INFERNAL is used

to build a covariance model from the seed alignment. Finally, the full alignment is

generated by searching the rfamseq sequence dataset based on the covariance model.

Here we used RFAM 11.0, because since RFAM 12.0, they no longer provide full

84

alignment for each family. There are 86 pseudoknotted families which are annotated

as pseudoknots in RFAM database as shown in Table 4.1 and the corresponding RNA

names are list in Table A.1 in appendix A. Among the 86 families, 21 families with

the number of seed sequence more than 10 and maximum sequence length less than

200 were selected. Furthermore, the seed alignments in these families were treated as

the benchmark, because the seed alignment in each RFAM family is a hand-curated

alignment which contains representative sequences in the family and the consensus

structure. For families with the number of seed sequences more than 15, we use the

tool rnazSelectSeqs.pl to select 15 maximally-divergent sequences [105] to reduce the

computation time. These families are underlined in Table 4.1.

4.3.2 Competitors

State-of-the-art softwares for the pseudoknotted structure-sequence alignment

problem include the PAL [39] and PSTAG [60] algorithms, which are described in Sec-

tion 2.3. Additionally, our competitors also include profile-csHMMs (profile context-

sensitive Hidden Markov Models), described by Yoon and Vaidyanathan [120]. It uses

context sensitive grammars to represent pseudoknotted RNA structures. Based on

that, a DP scheme, named sequential component adjoining algorithm, calculates the

optimal structure-sequence alignment.

We used LiCoRNA, PAL, PSTAG, profile-csHMMs to predict the pairwise alignments

on the 21 families. In other words, for each family in our benchmark, we chose in turn

each of its members, along with its pseudoknotted consensus, as the query structure

to predict the secondary structure of the other members.

4.3.3 Evaluation metrics

The evaluation metrics we use to indicate the accuracy of an alignment are Average

Fractional Identity (AFI) which only considers the alignment character, and sensitiv-

ity/Positive Predictive Value(PPV) analysis which considers the structure character

of the target sequence predicted by the alignment.

The Fractional Identity represents the alignment identity between the predicted and

reference alignments, which is the number of identities divided by the length of the

alignment. This parameter is calculated by the tool CompalignP that is distributed

85

A) B)

C) D)

E) F)

Figure 4.6: The secondary structure of the consensus structure of the six families
with tree-width 4.A) RF00041; B) RF00094; C) RF00140; D) RF01689; E) RF01786;
F) RF01831.

with BRAliBase 2.1 [115]. Good alignment performance is demonstrated by being

close to 1. Besides, according to the alignment between query and target sequence,

the structure of target sequence is predicted. The predicted structure is evaluated by

PPV and sensitivity:

PPV =
TP

TP + FP
(4.1)

sensitivity =
TP

TP + FN
(4.2)

where TP(true positive) represents the number of correctly predicted base pairs,

FP(false positive) represents the number of predicted base pairs which are not in

the reference structure, and FN (false negative) represents the number of base pairs

in the reference structure that are not predicted. The fact that the parameter PPV

and sensitivity are close to 1 indicates good performance.

4.3.4 Results

Table 4.2 lists the test results for the 21 pseudoknotted families. Besides, Figure 4.7

shows the alignment performances for LiCoRNA, PAL, PSTAG, profile-csHMMs. Fig-

ure 4.8 and Figure 4.9 show the sensitivity and the PPV analysis for the four soft-

wares.The sequence identity which is calculated by esl-alipid program included in

86

R
FA

M
L
en

A
vg

Id
tw

L
i
C
o
R
N
A

P
A
L

P
S
T
A
G

p
r
o
f
i
l
e
-
c
s
H
M
M
s

S
N

P
P

V
A

F
I

S
N

P
P

V
A

F
I

S
N

P
P

V
A

F
I

S
N

P
P

V
A

F
I

R
F
00

04
1

12
0

-
13

0
83

.4
0%

4
0
.8
9
5

0
.9
4
0

0
.9
3
4

-
-

-
-

-
-

-
-

-

R
F
00

09
4

87
-

93
86

.1
1%

4
0
.9
1
1

0
.9
3
1

0.
88

1
-

-
-

0.
89

9
0.

91
3

0.
88

7
0.

90
8

0.
92

1
0
.8
9
6

R
F
00

14
0

99
-

11
5

77
.6

6%
4

0
.9
0
3

0
.9
4
1

0
.8
2
6

-
-

-
-

-
-

-
-

-

R
F
00

16
5

62
-

64
68

.4
2%

3
0
.9
6
3

0
.9
7
6

0
.9
1
6

0.
88

8
0.

92
0

0.
82

7
0.

94
5

0.
95

2
0.

87
2

0.
95

8
0.

96
6

0.
88

4

R
F
00

17
6

89
-

92
93

.2
8%

3
0.

95
6

0.
96

0
0
.9
7
3

-
-

-
0
.9
7
3

0
.9
7
8

0.
97

0
0.

95
9

0.
96

3
0.

96
5

R
F
00

23
3

78
-

86
73

.7
2%

3
0
.9
1
4

0
.9
3
5

0
.9
5
4

0.
85

6
0.

88
0

0.
88

7
0.

90
9

0.
90

1
0.

92
4

0.
89

8
0.

91
5

0.
93

2

R
F
00

38
1

56
-

59
84

.1
9%

3
0.

95
0

0.
99

1
0
.9
6
6

0
.9
5
6

1
.0
0
0

0.
96

3
0.

93
5

0.
96

7
0.

92
8

0.
94

5
0.

98
2

0.
93

0

R
F
00

50
7

79
-

87
73

.9
7%

3
0
.9
3
1

0.
98

2
0.

95
2

0.
92

7
0
.9
9
4

0
.9
6
7

0.
91

5
0.

92
6

0.
85

8
0.

91
6

0.
94

7
0.

86
8

R
F
00

62
2

74
-

78
84

.5
0%

3
0
.9
2
7

0
.9
7
0

0
.9
8
0

-
-

-
0.

90
8

0.
94

9
0.

94
5

0.
91

2
0.

95
1

0.
94

6

R
F
01

07
2

29
-

33
80

.8
9%

3
0.

97
3

0.
99

9
0.

97
4

0
.9
7
5

1
.0
0
0

0
.9
8
0

0.
96

6
0.

99
1

0.
92

8
0.

96
1

0.
98

7
0.

92
3

R
F
01

09
3

60
76

.4
1%

3
0.

90
6

0.
95

5
0.

98
3

0
.9
4
5

1
.0
0
0

0
.9
9
8

0.
89

1
0.

91
4

0.
78

7
0.

88
3

0.
92

1
0.

84
8

R
F
01

09
9

48
86

.1
5%

3
0
.9
3
6

1
.0
0
0

1
.0
0
0

0.
89

2
0.

97
6

0.
97

1
0.

93
4

0.
99

1
0.

99
3

0.
93

5
0.

99
8

0.
99

7

R
F
01

68
9

12
5

-
13

4
83

.2
6%

4
0
.9
5
7

0
.9
8
6

0
.9
6
6

-
-

-
-

-
-

-
-

-

R
F
01

70
4

56
-

64
75

.5
0%

3
0.

98
1

0.
99

9
0
.9
3
3

0
.9
8
2

1
.0
0
0

0.
92

1
0.

97
0

0.
98

6
0.

91
1

0.
97

5
0.

99
2

0.
91

8

R
F
01

72
5

90
-

12
8

84
.0

2%
3

0
.9
7
4

0
.9
9
8

0
.9
3
8

-
-

-
-

-
-

-
-

-

R
F
01

72
6

59
-

61
79

.0
2%

3
0
.9
6
6

0
.9
9
9

0
.9
5
0

-
-

-
0.

95
7

0.
97

4
0.

89
2

0.
95

9
0.

98
2

0.
91

7

R
F
01

73
5

11
2

-
12

5
77

.2
3%

3
0
.9
4
7

0
.9
6
3

0
.9
0
6

0.
90

0
0.

95
5

0.
90

2
-

-
-

-
-

-

R
F
01

76
1

93
-

10
0

80
.1

5%
3

0.
97

0
0
.9
8
0

0
.9
3
3

0.
96

3
0.

97
5

0.
92

6
-

-
-

0
.9
7
2

0.
97

5
0.

93
1

R
F
01

78
6

83
-

86
64

.8
5%

4
0.

90
6

0.
96

4
0.

94
2

0.
88

8
0
.9
7
5

0
.9
5
1

0
.9
0
7

0.
92

4
0.

88
0

0.
89

7
0.

94
3

0.
90

7

R
F
01

83
1

96
-

10
3

74
.7

1%
4

0
.9
6
1

0
.9
9
3

0
.9
6
0

-
-

-
-

-
-

0.
96

0
0.

98
9

0.
95

0

R
F
01

84
0

54
88

.1
4%

3
0
.9
4
5

0.
99

1
0.

99
5

-
-

-
0.

94
4

0.
98

8
0.

98
8

0
.9
4
5

0
.9
9
7

0
.9
9
6

T
ab

le
4.

2:
P
ai

rw
is

e
te

st
s:

S
ta

ti
st

ic
s

fo
r

S
en

si
ti

vi
ty

,
P

P
V

an
d

A
F
I
b
as

ed
on

21
P

se
u
d
ok

n
ot

te
d

R
FA

M
fa

m
il
ie

s
fo

r
L
i
C
o
R
N
A
,
P
A
L
,

P
S
T
A
G

an
d
P
r
o
f
i
l
e
-
c
s
H
M
M
s
.

S
N

re
p
re

se
nt

s
S
en

si
ti

vi
ty

,
P

P
V

fo
r

P
os

it
iv

e
P

re
d
ic

ti
ve

V
al

u
e,

A
F
I
fo

r
A

ve
ra

ge
F
ra

ct
io

n
al

Id
en

ti
ty

,
L
en

fo
r

th
e

le
n
gt

h
ra

n
ge

.T
h
e

h
ig

h
es

t
va

lu
es

of
p
ar

am
et

er
s

S
N

,
S
P
,
A

F
I

fo
r

ea
ch

fa
m

il
y

ar
e

la
b
el

ed
in

b
ol

d
.

87

Figure 4.7: The AFI of LiCoRNA, PAL, PSTAG, profile-csHMMs for the 21 pseudo-
knotted families.

INFERNAL ranges from 64.85% (RF01786) to 93.28% (RF00176). The tree decom-

position method we used is GreedyFillIn. There are six families with tree-width 4 and

the consensus structures are shown in 4.6. ‘�0 symbols in Table 4.2 mean that this

family can not be predicted by a particular program. PSTAG can not be executed for

families RF00041, RF00140, RF01689, RF01725, RF01735, RF01761 and RF01831.

Part or all the pairwise sequence alignments for families RF00041, RF00140, RF01689,

RF01725 and RF01735 can not be predicted by profile-csHMMs. PAL can be used to

deal with simple pseudoknots only. Then we get two conclusions: (1) It is obvious that

only LiCoRNA can deal with all the families.(2) Some pseudoknots with tree-width 4

can also be predicted by other three programs, especially the family RF01786.

Besides, from Table 4.2, LiCoRNA shows generally equivalent or better results than

its competitors for almost all the families, especially for the parameter AFI. For one

family, it is possible that the best performance programs according to di↵erent pa-

rameters sensitivity, PPV and AFI are di↵erent. For example, in family RF00094,

LiCoRNA performs best for parameter sensitivity and PPV . However, for AFI, pro-

gram profile-csHMMs performs best. This indicates that in the alignment region for

stems, LiCoRNA performs best, while when considering the whole alignment includ-

88

Figure 4.8: The sensitivity of LiCoRNA, PAL, PSTAG, profile-csHMMs for the 21 pseu-
doknotted families.

Figure 4.9: The PPV of LiCoRNA, PAL, PSTAG, profile-csHMMs for the 21 pseudo-
knotted families.

89

RFAM tw Time (s)

LiCoRNA PAL PSTAG profile-csHMMs

RF00041 4 575.77 - - -

RF00094 4 372.54 - 53.65 1.51

RF00140 4 8348.09 - - -

RF00165 3 72.75 1.87 7.89 0.33

RF00176 3 52.23 - 57.56 0.53

RF00233 3 23.24 0.20 34.04 1.89

RF00381 3 71.64 1.32 3.62 0.45

RF00507 3 87.08 4.54 34.27 3.23

RF00622 3 59.37 - 20.81 0.63

RF01072 3 21.07 0.08 0.14 0.06

RF01093 3 56.62 1.36 4.58 0.22

RF01099 3 31.21 0.58 1.34 0.07

RF01689 4 731.88 - - -

RF01704 3 46.59 1.60 6.07 0.71

RF01725 3 2841.8 - - -

RF01726 3 27.24 - 5.80 0.21

RF01735 3 106.36 0.34 - -

RF01761 3 35.89 0.77 - 2.03

RF01786 4 1805.76 5.99 42.54 0.81

RF01831 4 2883.84 - - 2.26

RF01840 3 45.16 - 2.86 0.09

Table 4.3: Time comparison for pairwise test for LiCoRNA, PAL, PSTAG and
profile-csHMMs.

ing the loop regions, profile-csHMMs performs better. It must be noted that some

structures predicted by PAL were corrected by deleting some base pairs. Since the

input query structure for PAL is always the same as consensus structure even though

for some base pairs in the query structure are neither WatsonCrick nor Wobble base

pairs. Deleting such base pairs in the query structure and the resulting base pairs

in the predicted structure for target sequence makes the results comparable with the

results of other three programs.

Table 4.3 depicts the average computation time for an alignment within each RFAM

family for the four tools. Comparing with PAL, PSTAG, profile-csHMMs, LiCoRNA

uses more time. There are two main factors that a↵ect the running time of LiCoRNA.

90

One is tree-width (tw). The complexity of Rinaudo’s algorithm can be reduced to

O(|X | · ntw) if we can find a smooth tree decomposition [78]. However, the current

generated tree decompositions are not smooth. This is the main reason that LiCoRNA

uses more time. The second factor is the length di↵erence between Q and W because

of the use of banded DP strategy with complexity O(|X | · N tw) where N is the

length di↵erence between query structure and target sequence. This can explain why

family RF01725 cost so much time even though the tree-width is 3 for the consensus

structure.

4.4 Analyzing near optimal solutions

Aside from the former accuracy parameters sensitivity/PPV and AFI, K-best algo-

rithm can also be used to check the accuracy of LiCoRNA. If the reference alignment is

always in the K best suboptimal alignments, or the score distance between reference

and optimal alignment is small, we can also prove the accuracy of LiCoRNA.

4.4.1 Dataset

The dataset we used is the 21 RFAM pseudoknotted families which is the same as

the dataset for testing the accuracy of LiCoRNA.

4.4.2 Reference alignments have quasi optimal scores

We first directly compare the optimal alignment with the reference alignment by

calculating
Scoreref � Scoreopt

MinLength

for each pairwise alignment in each family where Scoreref represents the score of the

reference alignment and Scoreopt represents the score of the optimal alignment. This

parameter describes the cost distance between reference and optimal alignment per

position. Scoreref and Scoreopt are both calculated by our tool calAligncost in

LiCoRNA. Figure 4.10 illustrates Score
ref

�Score
opt

MinLength
for each family.

These are the three reasons that make pairwise alignments predicted by LiCoRNA

di↵erent from those in RFAM pseudoknotted families. One is the use of banded DP

91

R
F
00
04
1

R
F
00
09
4

R
F
00
14
0

R
F
00
16
5

R
F
00
17
6

R
F
00
23
3

R
F
00
38
1

R
F
00
50
7

R
F
00
62
2

R
F
01
07
2

R
F
01
09
3

R
F
01
09
9

R
F
01
68
9

R
F
01
70
4

R
F
01
72
5

R
F
01
72
6

R
F
01
73
5

R
F
01
76
1

R
F
01
78
6

R
F
01
83
1

R
F
01
84
0

0.0

0.2

0.4

0.6

0.8

1.0

S
c
o
r
e
r
e
f

�
S
c
o
r
e
o
p
t

M
in

L
e
n
g
th

Figure 4.10: Score
ref

�Score
opt

MinLength
for each family where Scoreref represents the score of the

reference alignment and Scoreopt represents the score for the optimal alignment. The
parameter can be negative and in order to make the figure neat, we do not draw 4
extreme negative values in family RF00041. The 4 negative values are -0.237, -0.406,
-1.113, -1.290.

92

. < . < < < . . < < < < < < . < > . > > > > > > . > > > . > < < < <
A A G U G G C U A G A C U C U U U U U A G A U U A G A G U A C A A U U A U A U A A U U U U A A U U U U A A U U G G C U U A A C C C U
A A A U G G U U G G A C U C U U U U U A G A U U A G A G - A C A A U U U G A A U A A U U U A A A U U G G C U U A A C C C U A C U G C
. < . < . < . . . < < . < < . < > . > > . > > . . > . > . > . < < <

< < < < < < < < . ((((((. > > > > > > > > > > . > > < < < < .)))))) > > > >
A C C A C A C U U A C C G A A C U A G A C A A C G G U G U G G U A G - G G G U A A A U U C U C C G C A U U C G G U G C G G - - - - -
A U U A A C C G A A C U A G A C A A C A - A U G C A G U A G G G G U A A A U U U U C C G C G U U C G G U G C G G A A A A A A A A A A
. < < . < < . < . . ((. . (. > . > > . > > . > > . > < < . . .) . .)) . . . > >

. < . < < < . . < < < < < < . < > . > > > > > > . > > > . > < < < < < <
A A G U G G C U A G A C U C U U U U U A G A U - U A G A G U A C A A U U A U A U A A U U U U A A U U U U A A U U G G C U U A A C C C U A C
A A A U G G U U G G A C U C U U U U U A G A - U U A G A G - A C A A U U U G A A - - - - - U A A U U U A A A U U G G C U U A A C C C U A C
. < . < < < . . < < < < < < . < > . > > > > > > . > > > . > < < < < < <

< < < < < < . ((((((. > > > > > > > > > > > > < < < < .)))))) > > > >
C A C A C U U A C C G A A C U A G A C A A C G G U G U G G U A G G G G U A A A U U C U C C G C A U U C G G U G C G G - - - - - - - - - -
U G C A U U A A C C G A A C U A G A C A A C A A U G C A G U A G G G G U A A A U U U U C C G C G U U C G G U G C G G A A A A A A A A A A
< < < < < < . ((((((. > > > > > > > > > > > > < < < < .)))))) > > > >

> Rfam

> LiCoRNA

Figure 4.11: Pairwise sequence alignments from RFAM database and predicted by
LiCoRNA in family RF00041. In this case, Score

ref

�Score
opt

MinLength
is negative with value

�1.290.

as discussed in Section 3.1.3. Therefore, our method is heuristic and not guaranteed

to return the absolute best alignment. In this case, the reference alignment may no

longer be part of the search space, and its score may be smaller than the cost of the

returned optimal alignment. An example is showed in Figure 4.11

The second reason is that there are many open gaps in RFAM pairwise alignment.

One example which is from family RF01735 is illustrated in Figure 4.12. Family

RF01735 is a conserved RNA motif named eps-Associated RNA element (EAR) which

is associated with exopolysaccharide (eps) or capsule biosynthesis genes. The EAR

RNA consists of five helical segments (P1-P5) and a pseudoknot and EAR presents

a variable length stem-loop region near P3 [47]. The benchmark shows a scattered

alignment in this region, with multiple gap openings. As our scoring function uses an

a�ne gap penalty model, such an alignment is heavily penalized and therefore largely

suboptimal.

The third reason is that there are more gaps in the structural regions, but the op-

timal alignment mode of LiCoRNA produces alternative alignments with fewer gaps

in the structural region. One example which is from family RF01735 is shown in

Figure 4.13. Those two pairwise alignments have almost the same number of gaps

93

((((. . < < < < < < < . .)))) > > > > > > > < < < < < < < < < < < < . . < < < . < < . . . < . <
C G G U G A U G U C U C C U U A C C G U U A U C A A U G G A G G C A C U C G G C C A U G C C G U G G G U G G - - - G - G A C G A U G A
C G G U G A U G U C U C C U U A C C G U U A U C A A C G G A G G C A C U C G G C C A U G C C G U G G G - U G G G G A C - - - G A U G A

. . . . > . > > > . > > > . . < < < < > > > > . . . > > > > > > > > . > > > > . . < < < < < > > > > >
C G G U C - C U G - - - C C A C C U U A G A C G C U A G U C G U C G A G G G U G U G G U G U G A G G G C G G G U U A G A U G C C C G
C G - - - G U C C C G G C A - C C U U A G A C G C C C G U C G U C G A G G G U G U G G C G U G A G G G C G G G U U A G A U G C C C G

< < < < . . (((((((. . > > > >))))))) < < < < < < < < < < < < . . < < < . < < < <
C G G U G A U G U C U C C U U A C C G U U A U C A A U G G A G G C A C U C G G C C A U G C C G U G G G U G G G G A C G A U G A
C G G U G A U G U C U C C U U A C C G U U A U C A A C G G A G G C A C U C G G C C A U G C C G U G G G U G G G G A C G A U G A

. . . . > > . . > > . > > > . . < < < < > > > > . . . > > > > > > > > . > > > > . . < < < < < > > > > >
C G G U C C U G C C A C C U U A G A C G C U A G U C G U C G A G G G U G U G G U G U G A G G G C G G G U U A G A U G C C C G
C G G U C C C G G C A C C U U A G A C G C C C G U C G U C G A G G G U G U G G C G U G A G G G C G G G U U A G A U G C C C G

> Rfam

> LiCoRNA

Figure 4.12: Pairwise sequence alignments from RFAM database and predicted by
LiCoRNA in family RF01735. The RFAM pairwise alignment have multiple gap open-
ings.

and the alignment predicted by LiCoRNA has less gaps in the structural regions and

more gaps in the loop region.

Based on the second and third reason, we hypothesize that the seed alignment of the

RFAM family RF01735 may be wrong in this region and could probably be refined, a

task that we cannot currently address automatically, but belongs to the perspectives

of our work. However, for the first reason, we can solve it by setting K properly and

we will talk about it in the next section.

4.4.3 Reference alignment are not far down the list of sub-
optimal alignments

As we have shown that the optimal alignment sometimes is not the reference alignment

and the score of the reference alignment is close to optimal, it is possible to find the

reference alignment near the optimal alignment. Then how to set the parameter K

properly so that the user can find the reference alignment? To give an intuition about

the value of K, we set K = 1000 subjectively and check the presence of the reference

alignment in the near 1000 alignments.

Therefore, we generated 1000 suboptimal alignments for each pairwise comparison in

21 RFAM families. Furthermore, we also calculated the percentage of the presence

of reference alignment in K suboptimal alignments for each family. Suppose the

94

. . < < < < < < < . . ((((. (((. . < < < . ((. > > > > > > > > > >)) < < < < < < < < . . < < < . <
G U G G C C G G C A U G G U C - C C A - - G C C U C C C C G C U G G C G C C G G C U G G G C A A C A U U C C G A - - G G G G A
U C G G G U C G G C A U G G G A U C U C C A C C U C C U C G C - G G U C C G A C C U G G G - - - C A U - C C G U A A G G A G A
. . . > . . . > > > . > > > > . > > > >))))))) . .
C C G U - - - C C C - U C G G U A A U G G C G A A - - - U G G G A C C C A
G C G U A G C U C C C U C G G - - A U G G C A A A G G G A G A U C C A C C

. . < < < < < < < (((((((< < < . ((. > > > > > > > > > >)) < < < < < < . < < < < < . . .

G U G G C C G G C - A U - - G G U C C C A G C C U C C C C G C U G G C G C C G G C U G G G C A A C A U U C C - G A G G G G - -
U C G G G U C G G C A U G G G A U C U C C A C C U C C U C G C - G G U C C G A C C U G G G - - - C A U C C G U A A G G A G A G
. < . . . > > > > > > > > . > > > >)))))))
- A C C G U C C C U C G G U A A U G G C G A A - U G G G A C C C A - -
C G U A G C U C C C U C G - G A U G G C A A A G G G A G A U C C A C C

> Rfam

> LiCoRNA

Figure 4.13: Pairwise sequence alignments from RFAM database and predicted by
LiCoRNA in family RF01735. The pairwise alignment predicted by LiCoRNA has less
gaps in the structural region.

R
F0

00
41

R
F0

00
94

R
F0

01
40

R
F0

01
65

R
F0

01
76

R
F0

02
33

R
F0

03
81

R
F0

05
07

R
F0

06
22

R
F0

10
72

R
F0

10
93

R
F0

10
99

R
F0

16
89

R
F0

17
04

R
F0

17
25

R
F0

17
26

R
F0

17
35

R
F0

17
61

R
F0

17
86

R
F0

18
31

R
F0

18
40

0

10

20

30

40

50

60

70

80

90

100

P
er

ce
nt

ag
e

(%
)

Figure 4.14: Average percentage of the presence of reference alignment in 1000 sub-
optimal pairwise alignments in each family.

95

alignment in RFAM family is the biological alignment, we ask the question that if we

can find it near the optimal alignment. Figure 4.14 lists the percentage of presence of

reference alignments for the 21 RFAM families. As expected, we can find the reference

alignment in the 1000 suboptimal alignments.

However, family RF01735, RF00140, RF00041 show a relative low percentage (< 50%)

because of the same reason discussed in Section 4.4.2. Besides that, setting K = 1000

is enough to get the reference alignment.

4.5 Stochastic sampling enables the detection of
ambiguously-aligned regions

Compared with the K-best algorithm, the Stochastic backtracking algorithm can

generate the suboptimal alignments with repetition. However, this algorithm can

generate di↵erent alignments by setting di↵erent pseudo-temperatures (parameter t)

and these sampling alignments are the representations of the alignment ensemble at a

particular t. Partition function and stochastic pairwise alignment algorithm are useful

in many di↵erent contexts, such as test whether the alignment is well-defined and the

reliability of the aligned nucleotides as shown in [63]. We will show an example to

explain how to use stochastic sampling to detect the ambiguously-aligned regions.

4.5.1 Evaluation metrics

Reliability can be numerically quantified for each position in query structure Q by

the positional entropy metric. For any given position i in Q, the entropy H(i)

associated with a position i is computed as

H(i) = �
n

X

k=1

pik · log2(pik)� qi · log2(qi)

where n is the length of the target sequence, pik is the probability that the position

i of Q aligns with the position k of W , and qi is the probability that the position i

aligns with a gap. A positional entropy of 0 for a position i means that the position

i always aligns to the same position in W .

96

Figure 4.15: Dot plot of the alignment between query structure ACNG01000079.1/
252537-252424 and target sequence AAJM01000088.1/ 3912-4034 in RF01735 when
t = 1.5. The horizontal axis of the dot plot is the query structure. The darker the
square, the higher match probability between the corresponding positions.

97

0 20 40 60 80 100

Index

0.0

0.5

1.0

1.5

2.0

2.5

3.0

P
o
s
i
t
i
o
n
a
l
E

n
t
r
o
p
y

Figure 4.16: Positional entropy for each position in query structure
ACNG01000079.1/ 252537-252424 in family RF01735. The target sequence is
AAJM01000088.1/ 3912-4034.

4.5.2 An example

As shown in Figure 4.14, the percentage of the presence of reference alignment in 1000

suboptimal alignments for family RF01735 is low. To find the ambiguously-aligned

regions, we generate 1000 stochastic pairwise alignments between query structure

ACNG01000079.1/ 252537-252424 and target sequence AAJM01000088.1/ 3912-4034

in RF01735 when t = 1.5. We first calculated the Boltzmann match probabilities.

Figure 4.15 illustrates match probabilities for the aligned nucleotides. The horizontal

axis of the dot plot is the query structure. The darker the square, the higher match

probability between the corresponding position. The region with lower match proba-

bilities shows several di↵erent possibilities to align the two subsequences. This means

that the alignment in this region is less reliable than that in other regions.

To be more precise, we calculate the positional entropy for every position of ACNG01

000079.1/ 252537-252424, as shown in Figure 4.16. The higher the positional entropy,

the more ambiguous the position is. So the positions near 60 ambiguously aligns to

positions in target sequence which can also be seen in Figure 4.15.

98

4.6 Structure-based realignment of RFAM fami-
lies improves support for pseudoknotted base-
pairs

As LiCoRNA shows a good performance and due to the fact that INFERNAL does not

support pseudoknots, we used LiCoRNA to curate RFAM full pseudoknotted align-

ments. We hope that a systematic realignment will allow to reveal or refute an

evolutionary pressure towards the preservation of a functional pseudoknot. However,

since our scoring scheme is not purely based on an evolutionary model, we simply

inquire whether the compatibility with pseudoknots, which are the object of an ad hoc

manual annotation in RFAM alignments, can be increased by explicitly considering

them during the alignment phase.

4.6.1 Dataset

To avoid misalignment in RFAM families due to the limitation of covariance models,

we considered all the 86 pseudoknotted families. Then we did the preprocessing

procedures to reduce the data. Finally, 60 families in bold were selected in Table 4.1.

We did not run all the families mainly because the pairwise alignment costs too much

time for some families. The preprocessing procedure includes:

• Exclude the families that the maximum sequence length more than 200.

• In one family, use rnazSelectSeqs.pl to select sequences where each pairwise

sequence identity is less than 99%.

• Exclude the families where the running time for the pairwise alignment is more

than 700 s (RF00140, RF01689, RF01831, RF01725, RF01786).

• Exclude the families that contain more than 500 sequences (RF01073, RF01788,

RF01097).

4.6.2 Evaluation metrics

The parameters we use is to compute the base pair conservation and sequence

identity. In one family, we choose one sequence with the same number of base pairs

99

as the consensus structure and treat the structure of it as the reference structure.

Furthermore, we use LiCoRNA to align the reference sequence with other members in

the family. The base pair conservation for base pair with index i in the reference

structure is represented as BPC i. Therefore, BPC i
RFAM

and BPC i
LiCoRNA

are the ith

base-pair percentage for alignments in RFAM and predicted by LiCoRNA. To represent

the base pair conservation for all base pairs, we average the BPC i with equation
P

v

i=1 BPCi

v
where v is the number of base pairs in the reference structure and we

denote the average value of BPC i with avgBPC.

The base pair conservation increment for base pair with index i is defined as

BPCI i = BPC i
LiCoRNA

� BPC i
RFAM . Similarly, AvgBPCI =

P
v

i=1 BPCIi

v
is the aver-

age value of the base pair conservation increment for all base pairs in the reference

structure. The sequence identity is calculated by esl-alipid program in INFERNAL.

The assumption behind this test is that an alignment is considered better when its

predicted structure has more base pairs, and its sequence identity is comparable to

that of the RFAM alignment.

4.6.3 Results

Table 4.4 lists AvgBPC of all base pairs for the RFAM alignments and those predicted

by LiCoRNA for RFAM dataset 60. Three di↵erent columns S%, P% and T% are

the AvgBPC values of base pairs when the base pairs are in the secondary structure

region, pseudoknotted region and both of the regions. Figure 4.17 illustrates the

families that at least one of the columns S%, P% and T% is di↵erent in Table 4.4.

The AvgBPCI values of all base pairs for each family is showed in Figure 4.17 and

the result shows that the structures abstracted from the alignments using LiCoRNA

have relatively more base pairs than the structures abstracted from RFAM alignments

without losing sequence identity except one family RF00499. The reason is that the

consensus structure for RF00499 has 38 base pairs in the secondary structure region

and 5 base pairs in the pseudoknot region and one fewer base pairs in the pseudoknot

region can reduce the percentage significantly.

Let us first see an example to show the comparison in detail. RF01089 has 27 base

pairs in the consensus secondary structure, including 19 secondary base pairs and 8

pseudoknot base pairs and there are 56 selected sequences in this family. We calculate

the BCP i value of a base pair with index i for the alignments predicted by LiCoRNA

with/without pseudoknot base pairs in the reference structure and those of RFAM.

100

Figure 4.17: AvgBPCI of base pairs in the reference structure and sequence identity
for families that at least one of the columns S%, P% and T% is di↵erent in Table ??
in appendix material. AvgBPCI: The average of base pair conservation increment
of all base pair for each family. AvgSII: the average of sequence identity increment
with equation AvgSII = SI

LiCoRNA

�SI
RFAM

v
where SI represents sequence identity and

v is the number of sequence for one family. BPs: base pairs. Blue columns mean that
LiCoRNA is better and red columns mean that RFAM is better.

101

R
FA

M
L
en

tw
#

B
P

R
FA

M
/L
i
C
o
R
N
A

#
S

#
P

#
T

S
%

P
%

T
%

A
vg

Id
%

A
vg

#
op

en
ga

p
s

A
vg

#
ga

p
s

R
F
00

04
1

64
�

13
0

4
29

6
35

0.
90

8/
0
.9
1
6

0.
90

5/
0
.9
3
6

0.
90

7/
0
.9
2
0

84
.7

/8
4.

5
1.

65
/1

.6
9

5.
24

/4
.5

6

R
F
00

09
4

84
�

10
0

4
22

9
31

0
.9
6
2
/0

.9
30

0.
97

5/
0
.9
9
3

0
.9
6
5
/0

.9
48

70
.8

/7
2.

5
7.

22
/6

.6
9

12
.6

/9
.8

2

R
F
00

16
5

57
�

64
3

10
8

18
0.

98
1/
0
.9
8
6

0.
89

5/
0
.9
7
1

0.
94

2/
0
.9
8
0

55
.7

/5
6.

7
2.

60
/2

.2
5

2.
68

/2
.3

3

R
F
00

17
6

34
�

95
3

22
3

25
0.

89
6/
0
.8
9
8

0.
73

9/
0
.7
4
8

0.
87

7/
0
.8
8
0

92
.4

/9
2.

4
1.

03
/1

.0
5

11
.9

/1
1.

9

R
F
00

23
3

46
�

87
3

20
3

23
0.

89
9/
0
.9
1
0

0.
68

4/
0
.9
0
6

0.
87

1/
0
.9
0
9

67
.8

/6
8.

5
2.

96
/3

.0
5

8.
77

/7
.7

7

R
F
00

38
1

35
�

65
3

12
6

18
0.

90
4/
0
.9
0
7

0.
92

6/
0
.9
3
5

0.
91

1/
0
.9
1
6

81
.8

/8
2.

8
1.

06
/1

.1
5

2.
78

/2
.4

6

R
F
00

39
0

22
�

23
3

4
3

7
0.

87
5/

0.
87

5
0.

88
9/

0.
88

9
0.

88
1/

0.
88

1
92

.0
/9

2.
0

0.
16

7/
0.

16
7

0.
16

7/
0.

16
7

R
F
00

49
9

31
�

11
7

3
38

5
43

0.
54

6/
0
.5
8
6

0
.8
8
9
/0

.5
00

0.
57

2/
0
.5
8
0

80
.3

/7
3.

5
3.

43
/4

.7
7

47
.5

/4
2.

3

R
F
00

50
5

62
�

66
3

7
9

16
0.

98
0/
0
.9
8
6

0.
98

9/
0
.9
9
5

0.
98

5/
0
.9
9
1

88
.6

/8
8.

9
0.

66
7/

0.
71

4
0.

71
4/

0.
71

4

R
F
00

50
7

50
�

87
3

11
8

19
0.

95
0/
0
.9
7
4

0.
79

3/
0
.8
1
4

0.
88

0/
0
.9
0
3

68
.5

/6
8.

4
0.

78
1/

1.
03

2.
52

/2
.7

7

R
F
00

62
2

62
�

79
3

15
8

23
0.

89
2/
0
.8
9
8

0.
95

5/
0
.9
7
1

0.
91

4/
0
.9
2
3

80
.5

/8
1.

4
1.

06
/1

.2
1

3.
32

/2
.9

0

R
F
01

07
2

22
�

33
3

4
6

10
0.

95
4/

0.
95

4
0.

64
3/
0
.6
9
8

0.
76

7/
0
.8
0
0

85
.3

/8
4.

8
0.

51
4/

0.
58

6
2.

14
/2

.2
9

R
F
01

07
4

40
3

5
3

8
0.

95
7/
0
.9
7
1

1.
00

0/
1.

00
0

0.
97

3/
0
.9
8
2

85
.0

/8
6.

1
0.

44
4/

0.
44

4
0.

44
4/

0.
44

4

R
F
01

07
5

95
�

96
3

26
5

31
1.

00
0/

1.
00

0
1.

00
0/

1.
00

0
1.

00
0/

1.
00

0
90

.8
/9

0.
8

1.
5/

1.
5

1.
5/

1.
5

R
F
01

07
6

63
�

72
3

12
7

19
0.

99
1/

0.
99

1
1.

00
0/

1.
00

0
0.

99
5/

0.
99

5
91

.8
/9

1.
8

0.
02

04
/0

.0
20

4
0.

18
4/

0.
18

4

R
F
01

07
7

66
�

67
3

18
4

22
0.

98
0/

0.
98

0
0.

92
6/

0.
92

6
0.

97
1/

0.
97

1
93

.1
/9

3.
1

0.
11

8/
0.

11
8

0.
11

8/
0.

11
8

R
F
01

07
8

56
�

59
3

10
5

15
0.

98
0/

0.
98

0
0.

88
0/

0.
88

0
0.

94
7/

0.
94

7
91

.6
/9

2.
3

1.
2/

1.
4

1.
8/

2

R
F
01

07
9

19
�

39
3

4
4

8
1.

00
0/

1.
00

0
0.

71
9/
0
.8
1
3

0.
85

9/
0
.9
0
6

98
.1

/9
8.

1
0.

5/
0.

75
4.

88
/4

.8
8

R
F
01

08
0

32
3

7
4

11
0.

94
3/

0.
94

3
1.

00
0/

1.
00

0
0.

96
4/

0.
96

4
88

.1
/8

8.
1

0.
0/

0.
0

0.
0/

0.
0

R
F
01

08
1

26
3

5
4

9
0.

95
0/

0.
95

0
0.

93
8/

0.
93

8
0.

94
4/

0.
94

4
86

.5
/8

6.
5

0.
0/

0.
0

0.
0/

0.
0

R
F
01

08
2

25
3

6
4

10
0.

96
7/

0.
96

7
1.

00
0/

1.
00

0
0.

98
0/

0.
98

0
86

.4
/8

6.
4

0.
0/

0.
0

0.
0/

0.
0

R
F
01

08
3

21
3

5
3

8
1.

00
0/

1.
00

0
0.

66
7/

0.
66

7
0.

87
5/

0.
87

5
95

.2
/9

5.
2

0.
0/

0.
0

0.
0/

0.
0

R
F
01

08
4

84
�

14
4

3
37

6
43

0.
90

7/
0
.9
2
8

0.
78

2/
0
.8
3
4

0.
89

0/
0
.9
1
5

54
.2

/5
6.

7
6.

92
/6

.0
6

16
.7

/1
5.

4

R
F
01

08
5

11
5
�

11
8

3
32

6
38

0.
99

2/
0.

99
2

0.
95

8/
0.

95
8

0.
98

7/
0.

98
7

96
.5

/9
5.

7
0.

75
/0

.7
5

1.
0/

1.
0

R
F
01

08
7

41
�

15
3

3
18

10
28

0.
77

6/
0
.8
6
2

0.
61

2/
0
.7
7
2

0.
71

7/
0
.8
3
0

88
.2

/8
5.

5
2.

28
/3

.7
2

22
.8

/2
2.

8

R
F
01

08
8

65
�

68
3

18
5

23
0.

98
1/

0.
98

1
0.

80
0/
0
.9
5
6

0.
94

2/
0
.9
7
6

90
.9

/9
2.

7
0.

33
3/

1.
44

0.
44

4/
1.

56

R
F
01

08
9

41
�

13
0

3
19

8
27

0.
79

6/
0
.8
3
4

0.
61

6/
0
.7
6
6

0.
74

3/
0
.8
1
3

58
.7

/6
1.

9
4.

70
/5

.3
6

15
.1

/1
5.

8

R
F
01

09
0

51
�

69
3

10
8

18
0.

96
5/

0.
96

5
0.

88
0/
0
.8
9
7

0.
92

8/
0
.9
3
5

90
.4

/9
0.

5
0.

17
3/

0.
26

1
0.

91
3/

0.
91

3

R
F
01

09
1

61
3

12
5

17
1.

00
0/

1.
00

0
1.

00
0/

1.
00

0
1.

00
0/

1.
00

0
95

.9
/9

5.
9

0.
0/

0.
0

0.
0/

0.
0

R
F
01

09
2

61
3

7
7

14
1.

00
0/

1.
00

0
0.

95
2/
1
.0
0
0

0.
97

6/
1
.0
0
0

92
.9

/9
2.

3
0/

0.
33

3
0/

0.
33

3

102

R
FA

M
L
en

tw
#

B
P

R
FA

M
/L
i
C
o
R
N
A

#
S

#
P

#
T

S
%

P
%

T
%

A
vg

Id
%

A
vg

#
op

en
ga

p
s

A
vg

#
ga

p
s

R
F
01

09
3

59
�

63
3

11
5

16
0.

83
1/
0
.8
7
1

0.
98

6/
0.

98
6

0.
87

9/
0
.9
0
7

76
.1

/7
7.

0
0.

14
0/

0.
95

3
0.

25
6/

1.
19

R
F
01

09
4

11
8

3
11

5
16

1.
00

0/
1.

00
0

1.
00

0/
1.

00
0

1.
00

0/
1.

00
0

93
.6

/9
3.

6
0.

0/
0.

0
0.

0/
0.

0

R
F
01

09
5

56
3

12
3

15
1.

00
0/

1.
00

0
1.

00
0/

1.
00

0
1.

00
0/

1.
00

0
99

.1
/9

9.
1

0.
0/

0.
0

0.
0/

0.
0

R
F
01

09
6

28
�

57
3

10
7

17
0.

93
5/
0
.9
3
8

0.
82

4/
0
.8
4
6

0.
88

9/
0
.9
0
0

92
.6

/9
2.

8
0.

92
3/

0.
84

6
3.

50
/3

.2
7

R
F
01

09
8

42
�

50
3

5
7

12
1.

00
0/

1.
00

0
0.

83
3/
0
.9
4
0

0.
90

3/
0
.9
6
5

89
.1

/9
0.

3
0.

33
3/

0.
83

3
0.

83
33

/1
.3

3

R
F
01

09
9

38
�

50
3

5
6

11
0.

92
2/

0.
92

3
0.

96
0/

0.
96

0
0.

94
3/

0.
94

3
90

.4
/9

0.
5

0.
01

76
/0

.0
27

6
0.

06
03

/0
.0

70
4

R
F
01

10
0

40
3

7
4

11
1.

00
0/

1.
00

0
0.

87
5/
1
.0
0
0

0.
95

5/
1
.0
0
0

97
.5

/9
8.

8
0.

0/
1.

0
0.

0/
1.

0

R
F
01

10
1

37
�

40
3

3
5

8
1.

00
0/

1.
00

0
1.

00
0/

1.
00

0
1.

00
0/

1.
00

0
93

.3
/9

3.
3

0.
1/

0.
1

0.
3/

0.
3

R
F
01

10
2

36
�

37
3

6
5

11
0.

87
5/

0.
87

5
0.

62
5/

0.
62

5
0.

76
1/

0.
76

1
82

.7
/8

2.
7

0.
62

5/
0.

62
5

0.
62

5/
0.

62
5

R
F
01

10
3

29
3

5
6

11
1.

00
0/

1.
00

0
1.

00
0/

1.
00

0
1.

00
0/

1.
00

0
96

.6
/9

6.
6

0.
0/

0.
0

0.
0/

0.
0

R
F
01

10
4

29
3

3
7

10
1.

00
0/

1.
00

0
0.

97
6/

0.
97

6
0.

98
3/

0.
98

3
91

.4
/9

1.
4

0.
0/

0.
0

0.
0/

0.
0

R
F
01

10
5

27
3

4
5

9
1.

00
0/

1.
00

0
1.

00
0/

1.
00

0
1.

00
0/

1.
00

0
98

.2
/9

8.
2

0.
0/

0.
0

0.
0/

0.
0

R
F
01

10
6

25
3

3
7

10
1.

00
0/

1.
00

0
1.

00
0/

1.
00

0
1.

00
0/

1.
00

0
96

.0
/9

6.
0

0.
0/

0.
0

0.
0/

0.
0

R
F
01

10
7

27
3

4
4

8
1.

00
0/

1.
00

0
1.

00
0/

1.
00

0
1.

00
0/

1.
00

0
97

.5
/9

7.
5

0.
0/

0.
0

0.
0/

0.
0

R
F
01

10
8

26
3

5
5

10
0.

96
0/

0.
96

0
0.

68
0/

0.
68

0
0.

82
0/

0.
82

0
88

.5
/8

8.
5

0.
0/

0.
0

0.
0/

0.
0

R
F
01

10
9

21
3

3
5

8
1.

00
0/

1.
00

0
0.

80
0/

0.
80

0
0.

87
5/

0.
87

5
95

.2
/9

5.
2

0.
0/

0.
0

0.
0/

0.
0

R
F
01

11
1

21
3

3
5

8
1.

00
0/

1.
00

0
1.

00
0/

1.
00

0
1.

00
0/

1.
00

0
97

.6
/9

5.
2

0.
0/

0.
0

0.
0/

0.
0

R
F
01

11
3

23
3

3
4

7
1.

00
0/

1.
00

0
0.

91
7/

0.
91

7
0.

95
2/

0.
95

2
94

.2
/9

4.
2

0.
0/

0.
0

0.
0/

0.
0

R
F
01

11
4

22
3

3
4

7
1.

00
0/

1.
00

0
0.

83
3/

0.
83

3
0.

90
5/

0.
90

5
95

.5
/9

5.
5

0.
0/

0.
0

0.
0/

0.
0

R
F
01

70
4

28
�

89
3

13
5

18
0.

87
8/
0
.9
0
2

0.
93

8/
0
.9
6
5

0.
89

4/
0
.9
1
9

54
.0

/5
8.

1
2.

99
/2

.4
6

6.
71

/5
.2

8

R
F
01

72
6

49
�

93
3

8
4

12
0.

91
5/
0
.9
2
3

0.
93

9/
0
.9
5
8

0.
92

3/
0
.9
3
4

72
.8

/7
4.

2
1.

16
/1

.2
3

3.
33

/3
.1

9

R
F
01

73
5

60
�

12
8

3
36

4
40

0.
94

9/
0
.9
6
1

0.
95

8/
0
.9
6
4

0.
95

0/
0
.9
6
2

81
.4

/8
2.

4
2.

38
/1

.9
6

7.
73

/7
.0

9

R
F
01

76
1

47
�

11
9

3
18

4
22

0.
86

4/
0
.9
2
6

0.
87

5/
0
.9
2
3

0.
86

6/
0
.9
2
6

69
.4

/7
1.

3
4.

38
/3

.4
0

11
.0

/7
.6

8

R
F
01

76
8

62
3

11
7

18
0.

98
6/

0.
98

6
0.

92
9/

0.
92

9
0.

96
4/

0.
96

4
92

.8
/9

2.
8

0.
0/

0.
0

0.
0/

0.
0

R
F
01

77
5

14
3
�

15
5

3
29

7
36

0.
96

0/
0
.9
8
3

1.
00

0/
1.

00
0

0.
96

8/
0
.9
8
6

90
.5

/9
1.

1
3.

08
/3

.4
2

6.
33

/5
.8

3

R
F
01

78
5

26
�

27
3

6
3

9
1.

00
0/

1.
00

0
0.

71
4/
0
.7
6
2

0.
90

5/
0
.9
2
1

94
.2

/9
2.

5
0.

14
3/

0.
14

3
0.

14
3/

0.
14

3

R
F
01

83
3

37
�

55
3

7
5

12
0
.9
6
4
/0

.9
57

0.
85

0/
0
.9
0
0

0.
91

7/
0
.9
3
3

94
.1

/9
3.

6
0.

05
/0

.1
5

0.
9/

0.
9

R
F
01

83
4

23
�

35
3

5
6

11
0.

98
2/

0.
98

2
0.

90
9/
0
.9
5
5

0.
94

2/
0
.9
6
7

93
.5

/9
3.

5
0.

09
09

/0
.2

73
1.

09
/1

.0
9

R
F
01

84
0

42
�

54
3

10
7

17
0.

75
8/
0
.7
9
7

0.
94

2/
0
.9
7
0

0.
83

4/
0
.8
6
8

87
.3

/8
6.

9
0.

09
68

/0
.5

16
0.

58
1/

1.
03

T
ab

le
4.

4:
R

ea
li
gn

in
g

60
p
se

u
d
ok

n
ot

te
d

R
FA

M
fa

m
il
ie

s.
B

P
:
b
as

e
p
ai

r.
S
:
n
or

m
al

b
as

e
p
ai

rs
.

P
:
p
se

u
d
ok

n
ot

b
as

e
p
ai

rs
.

T
:

to
ta

l
b
as

e
p
ai

rs
.

103

a-s A-H

A

B

Figure 4.18: RF01089 has 27 base pairs. s1-s19 are secondary base pairs and p1-p8
are pseudoknot base pairs. This figure shows the positional percentage of base pairs
through the 56 selected sequences in the family. BPC i: base pair conservation for
base pair with index i. A) is the structure of the reference sequence. The first/second
row of B) shows the BCP i for alignment by LiCoRNA with/without pseudoknotted
base pairs. The third row of B) shows the BCP i for those of RFAM.

104

Figure 4.18 A) shows the reference structure and Figure 4.18 B) shows the BCP i

value of the base pair with index i. Comparing the BCP i values of base pairs with

indices A � H which are shown in the first and third row of Figure 4.18 B), the

alignments of LiCoRNA support pseudoknot base pairs better than RFAM. However,

Comparing the BCP i values of the base pairs with indices A�H which are shown in

the second and third row of Figure 4.18 B), the alignments in LiCoRNA have relatively

higher BPC i values of the 19 base pairs in secondary structure region and do not

show a good result in the pseudoknot region. Therefore, we reach our conclusion,

if we consider the pseudoknot base pairs to realign using LiCoRNA and actually this

family has pseudoknot, we get more base pairs in the pseudoknot regions without

changing the base pair conservation of the 19 base pairs and the sequence identity.

To verify this idea, we further calculated the BPCI i
r =

BPCi

LiCoRNA

�BPCi

RFAM

BPCi

RFAM

for the

predicted alignment by LiCoRNA compared with the alignment by INFERNAL. Finally,

for each family, we have AvgBPCIr =
P

v

i=1 BPCIi
r

v
where v is the number of base pairs

in the reference structure. We align the reference sequence with other members in

one family with/without pseudoknotted base pairs using LiCoRNA. From Table 4.5,

we reach several conclusions: 1) The base pair conservation in pseudoknotted regions

is higher when we align with the pseudoknotted structure. The reason is obvious:

when we align with the pseudoknotted region, we consider not only the sequence

similarity, but also the conservation of the structure. 2) The increasing number of

base pairs in the pseudoknotted region sometimes decreases the number of base pairs

in the secondary structure.

4.7 Advantages and disadvantages of LiCoRNA

The advantages of LiCoRNA can be summaries as: (1) LiCoRNA supports any kind of

pseudoknotted structures. (2) LiCoRNA performs equivalent performance compared

with the state-of-the-art algorithms for all the RFMA pseudoknotted families in the

benchmark. However, the main disadvantage is that LiCoRNA is slower compared

with the other state-of-the-art algorithms. Therefore, more heuristic methods can be

used. Besides, to further improve the accuracy of LiCoRNA, more score scheme can

be applied and I will talk about in the next chapter.

105

fa
m

il
ie

s
S
(%

)
P

(%
)

T
(%

)
fa

m
il
ie

s
S
(%

)
P

(%
)

T
(%

)

w
it

h
w

it
h
ou

t
w

it
h

w
it

h
ou

t
w

it
h

w
it

h
ou

t
w

it
h

w
it

h
ou

t
w

it
h

w
it

h
ou

t
w

it
h

w
it

h
ou

t

R
F
00

04
1

1.
09

1.
31

3.
40

�
0.

28
1.

50
1.

03
R

F
00

09
4

2.
50

2.
17

1.
86

�
5.

94
2.

31
�

0.
19

R
F
00

16
5

0.
54

0.
54

35
.6

4
�

4.
68

16
.1

4
1.

78
R

F
00

17
6

0.
31

0.
32

1.
23

�
3.

62
0.

42
�

0.
15

R
F
00

23
3

1.
52

2.
35

32
.6

7
9.

41
5.

58
3.

27
R

F
00

38
1

0.
52

0.
52

0.
96

0.
77

0.
67

0.
60

R
F
00

49
9

20
.0

6
26

.3
7

�
43

.7
3
�

60
.0

2
15

.4
0

20
.0

5
R

F
00

50
5

0.
75

0.
75

0.
56

0.
0

0.
64

0.
33

R
F
00

50
7

3.
07

2.
36

2.
82

�
0.

99
2.

96
0.

87
R

F
00

62
2

1.
05

1.
12

1.
70

0.
24

1.
28

0.
81

R
F
01

07
2

0.
0

0.
0

13
.0

6
5.

62
7.

83
3.

37
R

F
01

07
4

1.
82

1.
82

0.
0

0.
0

1.
14

1.
14

R
F
01

07
9

0.
0

0.
0

14
.1

7
0.

0
7.

08
0.

0
R

F
01

08
4

9.
99

10
.0

10
.3

8
�

7.
57

10
.0

5
7.

55

R
F
01

08
7

10
.8

2
11

.9
2

28
.4

9
4.

03
17

.1
3

9.
10

R
F
01

08
8

0.
0

0.
0

42
.8

6
9.

52
9.

32
2.

07

R
F
01

08
9

7.
83

9.
08

25
.1

9
�

9.
70

22
.0

5
11

.0
R

F
01

09
0

0.
0

0.
0

2.
15

0.
63

0.
96

0.
28

R
F
01

09
2

0.
0

0.
0

5.
71

0.
0

2.
86

0.
0

R
F
01

09
3

15
.9

9
15

.9
9

0.
0

0.
0

10
.9

9
10

.9
9

R
F
01

09
6

0.
66

1.
01

2.
86

0.
90

1.
57

0.
97

R
F
01

09
8

0.
0

0.
0

15
.6

6
8.

16
9.

13
4.

76

R
F
01

10
0

0.
0

0.
0

0.
25

0.
0

9.
09

0.
0

R
F
01

70
4

3.
56

4.
59

2.
89

�
2.

98
3.

37
2.

48

R
F
01

72
6

1.
28

1.
28

2.
10

1.
25

1.
55

1.
27

R
F
01

73
5

1.
81

1.
91

0.
60

�
0.

88
1.

69
1.

63

R
F
01

76
1

7.
76

8.
61

5.
54

�
10

.9
5

7.
36

5.
05

R
F
01

77
5

2.
76

2.
76

0.
0

0.
0

2.
23

2.
23

R
F
01

78
5

0.
0

0.
0

11
.1

1
0.

0
3.

70
0.

0
R

F
01

83
3
�

0.
71

0.
0

6.
03

0.
0

2.
10

0.
0

R
F
01

83
4

0.
0

0.
0

5.
0

0.
0

2.
73

0.
0

R
F
01

84
0

25
.8

0
28

.8
3

2.
92

0.
0

16
.4

1
16

.9
7

T
ab

le
4.

5:
A

v
g
B

P
C

I
i r

va
lu

es
fo

r
ea

ch
fa

m
il
y.

W
e

al
ig

n
th

e
re

fe
re

n
ce

st
ru

ct
u
re

w
it

h
ot

h
er

m
em

b
er

s
in

th
e

fa
m

il
y

tw
ic

e:
w

it
h

p
se

u
d
ok

n
ot

b
as

e
p
ai

rs
an

d
w

it
h
ou

t
p
se

u
d
ok

n
ot

b
as

e
p
ai

rs
u
si

n
g
L
i
C
o
R
N
A
.
S
:
n
or

m
al

b
as

e
p
ai

rs
.

P
:
p
se

u
d
ok

n
ot

b
as

e
p
ai

rs
.

T
:

to
ta

l
b
as

e
p
ai

rs
.

106

Chapter 5

Conclusion and Perspectives

5.1 Conclusion

Basically, RNAs are classified into two classes: coding RNAs and non-coding RNAs

(ncRNAs). ncRNAs play an important role in cellular processes by forming a specific

tertiary structure. Finding the structure of ncRNA is often the first step to explain

its function. Besides, as mentioned before, RNA folds in a hierarchical and sequential

manner which means that RNA secondary structure often determines the tertiary

structure. Therefore, it is necessary to have a correct secondary structure given the

sequence.

Generally, there are two types of computational methods to predict the secondary

structure of ncRNA: De novo folding approach when we have one single sequence and

comparative approach when we have additional homologous sequences at hand. Here

we focus on the comparative approach. The step structure-sequence alignment directly

determinates the accuracy of the comparative approach. We used arc-annotated se-

quence to represent RNA structures and the structure-sequence alignment problem is

Max SNP-hard if the structure is CROSSING or UNLIMITED. To solve the problem,

Rinaudo et al. [78] developed a fully general method for sequence-structure compari-

son, which is able to take as input any type of pseudoknotted structures.

My work is based on Rinaudo’s algorithm. I first introduced some implementation

details about LiCoRNA which is a new program for structure-sequence alignment con-

sidering arbitrary pseudoknots. LiCoRNA uses a 4 ⇥ 4 matrix in RIBOSUM85-60 to

score the base match/mismatch operation, a 16 ⇥ 16 matrix in RIBOSUM85-60 to

score the arc-match and arc-mismatch operations. For arc-altering and arc-deletion

107

operation, we evaluated both arc ends in the alignment independently. For the imple-

mentation of the tree decomposition, we used a package named LiBTW as mentioned

in 4.2. To accelerate the DP without losing accuracy, we implemented the banded DP

with constraint N and the banded DP reduces the time complexity to O(|X | · N tw)

compared with Rinaudo’s algorithm O(|X | · ntw). The number of bags in the tree

decomposition is denoted as |X |, tw represents the tree-width and n is the length of

target sequence W .

Additionally, we designed three algorithms to generate suboptimal alignments: (1)

stochastic backtracking algorithm based on the partition function, (2) K best subop-

timal alignment algorithm and (3) �-suboptimal alignment algorithm.

Di↵erent from calculating one optimal alignment by Rinaudo’s algorithm, we o↵ered

a method to calculate the Maximum Expected Accuracy (MEA) alignment. The

computation of the MEA alignment requires the computation of the posterior prob-

abilities for all possible correspondences of bases and base pairs. In this work, we

either empirically estimate these probabilities using stochastic sampling, or compute

those exactly through the inside-outside algorithm.

The results of our experiments are mainly divided into two parts. The first part is

to evaluate the performance of LiCoRNA based on the seed alignments in the pseu-

doknotted RFAM families by comparison with three other state-of-the-art programs

PAL, PSTAG and profile-csHMMs. The evaluation parameters are sensitivity/PPV

and average fractional identity(AFI). The main point in the result is that LiCoRNA

can predict the pairwise alignments for all the families and generally shows equiv-

alent or better results than its competitors for almost all the families. The second

part is that we curate RFAM full pseudoknotted alignments using LiCoRNA. RFAM

full alignments are constructed by INFERNAL which is based on the covariance model.

However, covariance model does not model RNA CROSSING structure. Therefore,

we hope that a systematic realignment will allow to reveal or refute an evolutionary

pressure towards the preservation of a functional pseudoknot.The metrics are base

pair conservation for each base pairs in the reference structure and the sequence iden-

tity. The hypothesis is that an alignment is considered better when its predicted

structure has more base pairs, and its sequence identity is comparable to that of the

RFAM alignment. The result illustrates that LiCoRNA supports pseudoknots without

losing the sequence identity.

108

5.2 Perspectives

5.2.1 Score scheme of LiCoRNA

There are two other score schemes that can be applied to LiCoRNA. The first is profile-

based score scheme. The score scheme for LiCoRNA is position-independent which

means that the scores for substitutions and gaps are the same in di↵erent positions

of RNA. Even though we give di↵erent gap open penalties and extension penalties

for single stranded region and stack region, the gap penalties for the positions of

either region are still the same. In other words, from a probabilistic point of view,

it assumes that each evolutionary change occurs with the same probability for all

the positions. Obviously, the assumption is not right. However, it seems hard to find

another way to score pairwise alignment given one query sequence. However, once the

homologous sequences of the query sequence are at hand, we can use a profile-based

score scheme where position dependent log-odds scores can be calculated from the

homologous sequences. Therefore, it is possible to check some positions are conserved

which means that mutations and indels occur with less probability and some positions

are less important for the structure or function of the ncRNA which means that

mutations can happen with higher probability. This idea has been implemented in

many programs such as HMMER which is based on hidden Markov Models and INFERNAL

which is based on Covariance Models.

The idea of the profile is first introduced by Gribskov [36]. The profile analysis in [36]

includes two steps: (1) construct the profile from the multiple alignment of homologs.

Gribskov used an N ⇥ 21 matrix (for proteins) to store the position-specific scores

for substitutions and indels. The length of the multiple aligned query sequences is

denoted as N . The first 20 columns store the score for finding each of the 20 amino

acid residues and the 21st column are used to store the score of insertion and deletion.

(2) Compare the profile with a single sequence which takes the same amount of time as

pairwise alignment using DP. In our case, for arc-altering operation and arc-removing

operation, we considered both arc ends in an alignment independently. Therefore, the

position-specific score scheme for structure-sequence alignment for RNA can follow

the similar strategy as Gribskov. For di↵erent unpaired positions, the 4 ⇥ 4 base

substitution RIBOSUM matrix is multiplied by di↵erent weights and for di↵erent base

pairing positions, the 16⇥ 16 base pair substitution RIBOSUM matrix is multiplied

109

by di↵erent weights. Finally, For di↵erent positions, indels penalty is multiplied by

di↵erent weights.

The major advantage of profile is the detection of distantly related homology as

proved by Gribskov [36]. However, profile approach also has disadvantage which

requires computing more scoring parameters compared with pairwise alignment.

Secondly, even though profile approaches can improve the accuracy, it also assumes

that the training sequences are statistically independent, however in fact they have

phylogenetic relationship [66]. Therefore, it is more reasonable to use the probabilistic

evolutional model to parameterize Rinaudo’s algorithm. This is an active research

area [80, 44] where important challenges still exist, especially how to model indels in

the evolutional process.

5.2.2 Searching conserved structures in genomes

One of the purposes of structure-sequence alignment is to search for ncRNAs in

genomes [24]. That is to say, one program takes any RNA sequence with structure (or

any multiple aligned RNA sequences with consensus structure) as the query, and uses

a position-independent score scheme (profile-based score scheme) to search a sequence

database and get the alignments with high score. LiCoRNA is a powerful tool that

can search any type of pseudoknots in the sequence database. The computational

complexity is the major challenge for LiCoRNA when the query structure has complex

pseudoknotted structure. Applying Rinaudo’s algorithm needs O(|X |·ntw+1) (O(|X |·
ntw) for smooth tree decomposition) time where |X | is the number of bags in the tree

decomposition, tw is the tree-width and n is the length of target sequence.

The same problem also appears for INFERNAL. Nawrocki and Eddy [66] developed an

acceleration method called Query-Dependent Banding (QDB) which reduced the com-

plexity of the alignment based on the covariance models from O(LN2.4) to O(LN1.3)

where N and L represent the length of query and target RNA. Besides, Wein-

berg et al. also developed several filters for the searches based on covariance mod-

els [108, 109, 110]. These filters include profile HMM based filters and covariance

model based filters which has proved to accelerate the dynamic programming for

covariance models without loss of accuracy.

Inspired by [110] and [63], we can have other methods to determine the bands for

banded DP as mentioned in Chapter 3. The method consists of four steps:

110

• Ignore the structure of query structure and calculate the posterior probability

of each match (i, j) between two sequences using the partition function where

i, j are the indices of two sequences, separately [63].

• Determine the band for each nucleotide in the query sequence according to the

threshold for the negligible match probability.

• Reconsider the structure of the query structure and set the band for each nu-

cleotide in the query structure according to the band for each nucleotide set by

sequence-sequence alignment.

• Align the target sequence to query structure using Rinaudo’s algorithm.

Another method that I have to mention is Song’s algorithm [91] in Chapter 2. The

complexity for Song’s algorithm is O(|X | · ktw) where k(usually 7) is the maximum

number of base pairing regions for each stem, tw is the tree width of the tree decom-

position and |X | is the number of bags in the tree decomposition. Compared with

Song’s algorithm, the complexity of Rinaudo’s algorithm is O(|X |·ntw+1) (O(|X |·ntw)

for smooth tree decomposition) where n is the length of the target sequence which

is usually more than 100. Song’s algorithm seems to reduce the computation time.

However, Song’s algorithm is a heuristic method and one may miss the optimal align-

ments. By taking other methods to improve the accuracy, a reimplementation of

Song’s algorithm in LiCoRNA for searching conserved structure may be a good choice.

5.2.3 Identification of RNA 3D motifs

Many studies have shown that RNA tertiary structure is modular and composed

of recurrent conserved motifs that correspond to the hairpin loops (HL), internal

loops (IL) and multi-helix junction loops (MHJ) one sees in RNA secondary struc-

ture [4, 111, 94, 97]. The 3D motifs are stabilized by base-pairing, base-stacking and

base-backbone interactions. Among the interactions, base-pairing is the most spe-

cific [94]. As defined in [56], there are 12 main families of base pairs, because each

base (purine and pyrimidine) has three interactions edges, Watson-Crick edge(WC),

Sugar edge(SE), and Hoogsteen edge(H) and the interaction can be in either cis or

trans orientations. Figure 5.1 illustrates two common structural motifs, Kink-turn

motif and C-loop motif. Kink-turn motif appears in the internal loop in secondary

111

C
G

A
G
G
G

G
C

G
A
A
C

G
A

A

G
C

U
G

C
A

C

C
G

A
C

C

A)

C)

G G G A G C G C G A A G A A C

B)

G U C A C C G C G C A C

D)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

6

5

4

3

2

1

9

7

8

12

13

14

15

10

11

Figure 5.1: (A) 2D diagram for base-pairing patterns for Kink-turn motif. (the detail
of the notation in [56]) (B) arc representation of Kink-turn motif. Dash line means
that left strand and right strand are separated in 3D structure. (C) 2D diagram for
base-pairing patterns for C-loop motif. (D) arc representation of C-loop motif.

structure and produces a sharp bend in tertiary structure. C-loop motif also appears

in the internal loop and is involved in tertiary interaction in the stem-loop structure.

Theoretically, tree decomposition-based DP works in identification of RNA 3D motifs

for several reasons. The first is that some motifs are defined by their own non-

canonical base-pairing pattern. Let us take Kink-turn motif as an example shown

in Figure 5.1 (A). There are five base pairs characterizing the motif [57]. (1) base

pair between positions 5 and 8 is usually canonical cis�WC/WC base pair. (2) base

pair between positions 4 and 12, base pair between positions 3 and 13 are tandem

trans�H/SE. (3) base pair between positions 5 and 13 is trans�SE/SE. (4) base

pair between positions 4 and 9 is also trans�SE/SE. Therefore, modeling motifs by

their base-pairing pattern is a good idea as shown in Figure 5.1 (B) and (D) which

are the arc representations [123] of the 3D motifs . The arc representation is similar

to the arc-annotated representation for RNA secondary structure. However, we need

to distinguish di↵erent kinds of base pairs in the 12 geometric families.

The second reason is that tree decomposition-based DP can model the relationship of

base pairs very well, especially multi-pairing and crossing base pairs. Multi-pairing

means that one nucleotide is involved in more than one base pair, like the positions

112

Figure 5.2: IDI matrix for the cis-WC/WC family, as featured in [93]. Cells are
colored in this matrix. (1) red: isosteric base pair (IDI  2.0); (2) yellow: near
isosteric base pairs (2.0 < IDI  3.3); (3) cyan: non-isosteric base pairs (3.3 < IDI
 5.0); (4) blue: very di↵erent base pairs (5.0 < IDI).

4 and 5 in Figure 5.1 (B).

The third reason is that the definition of isostericity [56] and the IsoDiscrepancy

Index (IDI) [93] provides the information to determine which base pair substitution

may occur for a given 3D motif. In the evolutional process, the 3D structure of RNA

homologous sequences changes more slowly than the sequence. When one base pair is

replaced by another kind of base pair without drastically disturbing the geometry of

the backbone, we denote such base pairs as ’isosteric’. Isostericity can be quantified

using IDI with the fact that two base pairs with su�ciently low IDI can be considered

isosteric. The dataset they used to calculate the IDI values is from RNA 3D structures

in the Protein Data Bank (PDB). Figure 5.2 illustrates IDI matrix for cis-WC/WC

base pair. The Watson-Crick base pairs are in red cells which represent that they are

isosteric base pairs and the wobble base pairs are in yellow cells which represent that

they are near isosteric base pairs.

The fourth reason is that tree decomposition-based DP algorithm is e�cient in this

case. Though the complexity of the algorithm does not change, the length of the

query structure and target sequence are small.

After showing the reasons, the general idea to identify the 3D motifs is shown as

follows:

113

• For the query structural motif, we transfer it into the arc representation as

shown in Figure 5.1.

• Given a PDB structure, we use RNAVIEW [119] to generate a 2-dimensional

display of RNA/DNA structure with tertiary interactions. Then we cut the

targets structure into many local structural segments [123]. We treat them as

target structural segments.

• We transfer the arc representation of the query structural motif as RNA query

graph which can be decomposed by tree decomposition.

• A tree decomposition based dynamic programming method can be used to

search for the target structural motifs in the target structural segments

with high scores.

• The corresponding target structural motifs can be treated as the same kind of

motif as the query structural motif.

114

Appendix A

Table A.1: 86 Pseudoknotted RFAM families and their corresponding RNA names.

RFAM RNA name

RF00009 Nuclear RNase P

RF00010 Ribonuclease P class A

RF00011 Ribonuclease P class B

RF00023 Transfer-messenger RNA

RF00024 Telomerase RNA component

RF00028 Group I catalytic intron

RF00030 RNase MRP

RF00041 Enteroviral 3’ UTR element

RF00094 HDV ribozyme

RF00140 Alpha operon ribosome binding site

RF00165 Coronavirus 3’ UTR pseudoknot

RF00176 Tombusvirus 3’ UTR region IV

RF00216 c-myc internal ribosome entry site (IRES)

RF00233 tymoviruses/pomovirusesfamily tRNA-like 3’ UTR element

RF00259 Interferon gamma 5’ UTR regulatory element

RF00261 L-myc internal ribosome entry site (IRES)

RF00373 Archaeal RNase P

RF00381 Antizyme RNA frameshifting stimulation element

RF00390 UPSK RNA

RF00458 Cripavirus internal ribosome entry site (IRES)

RF00499 Human parechovirus 1 (HPeV1) cis regulatory element (CRE)

RF00505 RydC RNA

RF00507 Coronavirus frameshifting stimulation element

RF00622 Mammalian CPEB3 ribozyme

RF01050 Saccharomyces telomerase

Continued on next page

115

Table A.1 – continued from previous page

RFAM RNA name

RF01072 Pseudoknot of upstream pseudoknot domain (UPD) of the 3’UTR

RF01073 Gag/pol translational readthrough site

RF01074 Putative RNA-dependent RNA polymerase ribosomal frameshift site

RF01075 Pseudoknot of tRNA-like structure

RF01076 Polymerase ribosomal frameshift site

RF01077 Pseudoknot of tRNA-like structure

RF01078 3’-terminal pseudoknot in PYVV

RF01079 Putative RNA-dependent RNA polymerase ribosomal frameshift site

RF01080 Pseudoknot of upstream pseudoknot domain (UPD) of the 3’UTR

RF01081 Pseudoknot of upstream pseudoknot domain (UPD) of the 3’UTR

RF01082 Pseudoknot of upstream pseudoknot domain (UPD) of the 3’UTR

RF01083 Pseudoknot of upstream pseudoknot domain (UPD) of the 3’UTR

RF01084 Pseudoknot of tRNA-like structure

RF01085 Pseudoknot of tRNA-like structure

RF01087 Pseudoknot of the regulatory region of the repZ gene

RF01088 Pseudoknot of tRNA-like structure

RF01089 Pseudoknot of the regulatory region of the repBA gene

RF01090 Edr gene ribosomal frameshift signal

RF01091 3’-terminal pseudoknot in SPCSV

RF01092 Gag/pol translational readthrough site

RF01093 Ma3 gene ribosomal frameshift signal

RF01094 Polymerase ribosomal frameshift site

RF01095 3’-terminal pseudoknot of CuYV/BPYV

RF01096 HepA virus 3’-terminal pseudoknot

RF01097 Gag/pro ribosomal frameshift site

RF01098 Gag/pro ribosomal frameshift site

RF01099 Pseudoknot of influenza A virus gene

RF01100 3’-terminal pseudoknot in BYV

RF01101 Pseudoknot of tRNA-like structure

RF01102 5’-leader pseudoknot of TEV/CVMV

RF01103 Pseudoknot of upstream pseudoknot domain (UPD) of the 3’UTR

RF01104 Pseudoknot of upstream pseudoknot domain (UPD) of the 3’UTR

RF01105 UPSK RNA

RF01106 Pseudoknot of upstream pseudoknot domain (UPD) of the 3’UTR

RF01107 Pseudoknot of upstream pseudoknot domain (UPD) of the 3’UTR

RF01108 UPSK RNA

Continued on next page

116

Table A.1 – continued from previous page

RFAM RNA name

RF01109 Pseudoknot of upstream pseudoknot domain (UPD) of the 3’UTR

RF01111 Pseudoknot of upstream pseudoknot domain (UPD) of the 3’UTR

RF01113 UPSK RNA

RF01114 Pseudoknot of upstream pseudoknot domain (UPD) of the 3’UTR

RF01577 Plasmodium RNase P

RF01689 AdoCbl variant RNA

RF01704 Downstream peptide RNA

RF01715 Pedo-repair RNA

RF01725 SAM-I/IV variant riboswitch

RF01726 SAM-II long loop

RF01735 epsC RNA

RF01745 manA RNA

RF01761 wcaG RNA

RF01768 ribosomal frameshift site

RF01775 RNA S.aureus Orsay G

RF01785 ribosomal frameshift site

RF01786 Cyclic di-GMP-II riboswitch

RF01788 drz-agam-2-2 ribozyme

RF01807 GIR1 branching ribozyme

RF01831 THF riboswitch

RF01833 ribosomal frameshift site

RF01834 ribosomal frameshift site

RF01840 ribosomal frameshift element

RF01849 Alphaproteobacteria transfer-messenger RNA

RF01850 Betaproteobacteria transfer-messenger RNA

117

Bibliography

[1] Peter L Adams, Mary R Stahley, Michelle L Gill, Anne B Kosek, Jimin Wang,

and Scott A Strobel. Crystal structure of a group I intron splicing intermediate.

RNA, 10(12):1867–1887, 2004.

[2] Tatsuya Akutsu. Dynamic programming algorithms for RNA secondary struc-

ture prediction with pseudoknots. Discrete Applied Mathematics, 104(1):45–62,

2000.

[3] Vineet Bafna, S Muthukrishnan, and R Ravi. Computing similarity between

RNA strings. In Combinatorial Pattern Matching, pages 1–16. Springer, 1995.

[4] Robert T Batey, Robert P Rambo, Jennifer A Doudna, et al. Tertiary mo-

tifs in RNA structure and folding. Angewandte Chemie International Edition,

38(16):2326–2343, 1999.

[5] Emmanuelle Becker, Aurélie Cotillard, Vincent Meyer, Hocine Madaoui, and

Raphaël Guérois. HMM-Kalign: a tool for generating sub-optimal HMM align-

ments. Bioinformatics, 23(22):3095–3097, 2007.

[6] Stephan H Bernhart, Ivo L Hofacker, Sebastian Will, Andreas R Gruber, and

Peter F Stadler. RNAalifold: improved consensus structure prediction for RNA

alignments. BMC Bioinformatics, 9(1):474, 2008.

[7] Anne Berry, Pinar Heggernes, and Genevieve Simonet. The minimum degree

heuristic and the minimal triangulation process. In International Workshop on

Graph-Theoretic Concepts in Computer Science, pages 58–70. Springer, 2003.

[8] Guillaume Blin, Alain Denise, Serge Dulucq, Claire Herrbach, and Heleene

Touzet. Alignments of RNA structures. IEEE/ACM Transactions on Compu-

tational Biology and Bioinformatics (TCBB), 7(2):309–322, 2010.

118

[9] Guillaume Blin and Hélene Touzet. How to compare arc-annotated sequences:

The alignment hierarchy. In International Symposium on String Processing and

Information Retrieval, pages 291–303. Springer, 2006.

[10] Hans L. Bodlaender. Classes of graphs with bounded tree-width, volume 86.

Department of Information and Computing Sciences, Utrecht University, 1986.

[11] Hans L Bodlaender and Arie MCA Koster. Treewidth computations I. Upper

bounds. Information and Computation, 208(3):259–275, 2010.

[12] Hans L Bodlaender and Arie MCA Koster. Treewidth computations II. Lower

bounds. Information and Computation, 209(7):1103–1119, 2011.

[13] Sydney Brenner, François Jacob, and Matthew Meselson. An unstable inter-

mediate carrying information from genes to ribosomes for protein synthesis.

Nature, 190(4776):576–581, 1961.

[14] David A Brow and Harry F Noller. Protection of ribosomal RNA from kethoxal

in polyribosomes: Implication of specific sites in ribosome function. Journal of

Molecular Biology, 163(1):27–46, 1983.

[15] Jamie J Cannone, Sankar Subramanian, Murray N Schnare, James R Col-

lett, Lisa M D’Souza, Yushi Du, Brian Feng, Nan Lin, Lakshmi V Madabusi,

Kirsten M Müller, et al. The comparative RNA web (CRW) site: an online

database of comparative sequence and structure information for ribosomal, in-

tron, and other RNAs. BMC Bioinformatics, 3(1):2, 2002.

[16] Song Cao and Shijie Chen. Predicting structures and stabilities for H-type

pseudoknots with interhelix loops. RNA, 15(4):696–706, 2009.

[17] Cedric Chauve, Julien Courtiel, and Yann Ponty. An unambiguous and com-

plete dynamic programming algorithm for tree alignment. arXiv preprint

arXiv:1505.05983, 2015.

[18] Anne Condon, Beth Davy, Baharak Rastegari, Shelly Zhao, and Finbarr Tar-

rant. Classifying rna pseudoknotted structures. Theoretical Computer Science,

320(1):35–50, 2004.

[19] Francis HC Crick. On protein synthesis. In Symposia of the Society for Exper-

imental Biology, volume 12, page 8, 1958.

119

[20] Ralf Dahm. Friedrich miescher and the discovery of DNA. Developmental

Biology, 278(2):274–288, 2005.

[21] Yves Van de Peer, Ilse Van den Broeck, Peter De Rijk, and Rupert De Wachter.

Database on the structure of small ribosomal subunit RNA. Nucleic Acids

Research, 22(17):3488–3494, 1994.

[22] Rina Dechter and Judea Pearl. Tree-clustering schemes for constraint-

processing. In Proceedings of the Seventh AAAI National Conference on Arti-

ficial Intelligence, pages 150–154. AAAI Press, 1988.

[23] Katherine E Deigan, Tian W Li, David H Mathews, and Kevin M Weeks. Accu-

rate shape-directed RNA structure determination. Proceedings of the National

Academy of Sciences, 106(1):97–102, 2009.

[24] Alain Denise and Philippe Rinaudo. Optimisation problems for pairwise RNA

sequence and structure comparison: a brief survey. Transactions on Computa-

tional Collective Intelligence, 13:70–82, 2014.

[25] Liang Ding, Xingran Xue, Sal LaMarca, Mohammad Mohebbi, Abdul Samad,

Russell L Malmberg, and Liming Cai. Ab initio prediction of RNA nucleotide

interactions with backbone k-tree model. arXiv preprint arXiv:1407.7080, 2014.

[26] Ye Ding and Charles E Lawrence. A statistical sampling algorithm for RNA sec-

ondary structure prediction. Nucleic Acids Research, 31(24):7280–7301, 2003.

[27] Robert M Dirks and Niles A Pierce. A partition function algorithm for nu-

cleic acid secondary structure including pseudoknots. Journal of Computational

Chemistry, 24(13):1664–1677, 2003.

[28] Chuong B Do, Mahathi SP Mahabhashyam, Michael Brudno, and Serafim Bat-

zoglou. Probcons: probabilistic consistency-based multiple sequence alignment.

Genome Research, 15(2):330–340, 2005.

[29] Martin Egli, George Minasov, Li Su, and Alexander Rich. Metal ions and

flexibility in a viral RNA pseudoknot at atomic resolution. Proceedings of the

National Academy of Sciences, 99(7):4302–4307, 2002.

[30] Patricia Anne Evans. Algorithms and complexity for annotated sequence anal-

ysis. PhD thesis, University of Victoria, 1999.

120

[31] Paul P Gardner and Robert Giegerich. A comprehensive comparison of com-

parative RNA structure prediction approaches. BMC Bioinformatics, 5(1):140,

2004.

[32] Robert Giegerich. Explaining and controlling ambiguity in dynamic program-

ming. In CPM, volume 1848, pages 46–59. Springer, 2000.

[33] Walter Gilbert. Origin of life: The RNA world. Nature, 319(6055), 1986.

[34] Jan Gorodkin, Laurie J Heyer, and Gary D Stormo. Finding the most significant

common sequence and structure motifs in a set of RNA sequences. Nucleic Acids

Research, 25(18):3724–3732, 1997.

[35] Osamu Gotoh. An improved algorithm for matching biological sequences. Jour-

nal of Molecular Biology, 162(3):705–708, 1982.

[36] Michael Gribskov, Andrew D McLachlan, and David Eisenberg. Profile analysis:

detection of distantly related proteins. Proceedings of the National Academy of

Sciences, 84(13):4355–4358, 1987.

[37] Francois Gros, Howard Hiatt, Walter Gilbert, Chuck G Kurland, RW Rise-

brough, and James D Watson. Unstable ribonucleic acid revealed by pulse

labelling of Escherichia coli. Nature, 190(4776):581–585, 1961.

[38] Cecilia Guerrier-Takada, Katheleen Gardiner, Terry Marsh, Norman Pace, and

Sidney Altman. The RNA moiety of ribonuclease P is the catalytic subunit of

the enzyme. Cell, 35(3):849–857, 1983.

[39] Buhm Han, Banu Dost, Vineet Bafna, and Shaojie Zhang. Structural alignment

of pseudoknotted RNA. Journal of Computational Biology, 15(5):489–504, 2008.

[40] Arif Ozgun Harmanci, Gaurav Sharma, and David H Mathews. E�cient pair-

wise RNA structure prediction using probabilistic alignment constraints in Dy-

nalign. BMC Bioinformatics, 8(1):130, 2007.

[41] Steven Heniko↵ and Jorja G Heniko↵. Amino acid substitution matrices from

protein blocks. Proceedings of the National Academy of Sciences, 89(22):10915–

10919, 1992.

[42] Mahlon B Hoagland, Mary Louise Stephenson, Jesse F Scott, Liselotte I Hecht,

and Paul C Zamecnik. A soluble ribonucleic acid intermediate in protein syn-

thesis. Journal of Biological Chemistry, 231(1):241–257, 1958.

121

[43] Matthias Hochsmann, Thomas Toller, Robert Giegerich, and Stefan Kurtz. Lo-

cal similarity in RNA secondary structures. In Bioinformatics Conference, 2003.

CSB 2003. Proceedings of the 2003 IEEE, pages 159–168. IEEE, 2003.

[44] Ian Holmes. A probabilistic model for the evolution of RNA structure. BMC

Bioinformatics, 5(1):166, 2004.

[45] Ian Holmes and Richard Durbin. Dynamic programming alignment accuracy.

Journal of Computational Biology, 5(3):493–504, 1998.

[46] Liang Huang and David Chiang. Better k-best parsing. In Proceedings of the

Ninth International Workshop on Parsing Technology, pages 53–64. Association

for Computational Linguistics, 2005.

[47] Irnov Irnov and Wade C Winkler. A regulatory RNA required for antitermi-

nation of biofilm and capsular polysaccharide operons in bacillales. Molecular

Microbiology, 76(3):559–575, 2010.

[48] Tao Jiang, Guohui Lin, Bin Ma, and Kaizhong Zhang. A general edit dis-

tance between RNA structures. Journal of Computational Biology, 9(2):371–

388, 2002.

[49] Tao Jiang, Lusheng Wang, and Kaizhong Zhang. Alignment of trees—an alter-

native to tree edit. Theoretical Computer Science, 143(1):137–148, 1995.

[50] Horace Freeland Judson and Walter Gratzer. The eighth day of creation. Cold

Spring Harbor Laboratory Press,U.S., 1996.

[51] U↵e Kjærul↵. Triangulation of graphs–algorithms giving small total state space.

Technical Report, 1990.

[52] Robert J Klein and Sean R Eddy. RSEARCH: finding homologs of single struc-

tured RNA sequences. BMC Bioinformatics, 4(1):44, 2003.

[53] D. Koller and N. Friedman. Probabilistic Graphical Models: Principles and

Techniques. MIT Press, 2009.

[54] David J Lane, Bernadette Pace, Gary J Olsen, David A Stahl, Mitchell L Sogin,

and Norman R Pace. Rapid determination of 16s ribosomal RNA sequences

for phylogenetic analyses. Proceedings of the National Academy of Sciences,

82(20):6955–6959, 1985.

122

[55] Neocles B Leontis, Jesse Stombaugh, and Eric Westhof. The non-Watson-Crick

base pairs and their associated isostericity matrices. Nucleic Acids Research,

30(16):3497–3531, 2002.

[56] Neocles B Leontis and Eric Westhof. Geometric nomenclature and classification

of RNA base pairs. Nucleic Acids Research, 7(4):499–512, 2001.

[57] Aurelie Lescoute, Neocles B Leontis, Christian Massire, and Eric Westhof. Re-

current structural RNA motifs, isostericity matrices and sequence alignments.

Nucleic Acids Research, 33(8):2395–2409, 2005.

[58] Rune B Lyngsø and Christian NS Pedersen. Pseudoknots in RNA secondary

structures. In Proceedings of the fourth annual international conference on

Computational molecular biology, pages 201–209. ACM, 2000.

[59] Rune B Lyngsø and Christian NS Pedersen. RNA pseudoknot prediction in

energy-based models. Journal of Computational Biology, 7(3-4):409–427, 2000.

[60] Hiroshi Matsui, Kengo Sato, and Yasubumi Sakakibara. Pair stochastic tree

adjoining grammars for aligning and predicting pseudoknot RNA structures.

Bioinformatics, 21(11):2611–2617, 2005.

[61] John S McCaskill. The equilibrium partition function and base pair binding

probabilities for RNA secondary structure. Biopolymers, 29(6-7):1105–1119,

1990.

[62] Sanzo Miyazawa. A reliable sequence alignment method based on probabil-

ities of residue correspondences. Protein Engineering, Design and Selection,

8(10):999–1009, 1995.

[63] Ulrike Mückstein, Ivo L Hofacker, and Peter F Stadler. Stochastic pairwise

alignments. Bioinformatics, 18(suppl 2):S153–S160, 2002.

[64] Dalit Naor and Douglas Brutlag. On suboptimal alignments of biological se-

quences. In Combinatorial Pattern Matching, pages 179–196. Springer, 1993.

[65] Eric P Nawrocki, Sarah W Burge, Alex Bateman, Jennifer Daub, Ruth Y Eber-

hardt, Sean R Eddy, Evan W Floden, Paul P Gardner, Thomas A Jones, John

Tate, et al. Rfam 12.0: updates to the RNA families database. Nucleic Acids

Research, page gku1063, 2014.

123

[66] Eric P Nawrocki and Sean R Eddy. Query-dependent banding (QDB) for faster

RNA similarity searches. PLoS Computational Biology, 3(3):e56, 2007.

[67] Eric P Nawrocki and Sean R Eddy. Infernal 1.1: 100-fold faster RNA homology

searches. Bioinformatics, 29(22):2933–2935, 2013.

[68] Saul B Needleman and Christian D Wunsch. A general method applicable to

the search for similarities in the amino acid sequence of two proteins. Journal

of Molecular Biology, 48(3):443–453, 1970.

[69] Marc Neveu, Hyo-Joong Kim, and Steven A Benner. The strong RNA world

hypothesis: fifty years old. Astrobiology, 13(4):391–403, 2013.

[70] Ruth Nussinov and Ann B Jacobson. Fast algorithm for predicting the sec-

ondary structure of single-stranded RNA. Proceedings of the National Academy

of Sciences, 77(11):6309–6313, 1980.

[71] Mathilde Paris, Tommy Kaplan, Xiao Yong Li, Jacqueline E Villalta, Susan E

Lott, and Michael B Eisen. Extensive divergence of transcription factor binding

in Drosophila embryos with highly conserved gene expression. PLoS Genet,

9(9):e1003748, 2013.

[72] Anton I Petrov. RNA 3D motifs: identification, clustering, and analysis. PhD

thesis, Bowling Green State University, 2012.

[73] Comelis WA Pleij, Krijn Rietveld, and Leendert Bosch. A new principle of

RNA folding based on pseudoknotting. Nucleic Acids Research, 13(5):1717–

1731, 1985.

[74] Chris P Ponting, Peter L Oliver, and Wolf Reik. Evolution and functions of

long noncoding RNAs. Cell, 136(4):629–641, 2009.

[75] Yann Ponty and Cédric Saule. A combinatorial framework for designing (pseu-

doknotted) RNA algorithms. In WABI, volume 6833, pages 250–269. Springer,

2011.

[76] Uttam L RajBhandary and Dieter Söll. tRNA: Structure, biosynthesis, and

function. American Society for Microbiology, 1994.

[77] Jens Reeder and Robert Giegerich. Design, implementation and evaluation

of a practical pseudoknot folding algorithm based on thermodynamics. BMC

Bioinformatics, 5(1):104, 2004.

124

[78] Philippe Rinaudo, Yann Ponty, Dominique Barth, and Alain Denise. Tree de-

composition and parameterized algorithms for RNA structure-sequence align-

ment including tertiary interactions and pseudoknots. In WABI, pages 149–164.

Springer, 2012.

[79] Elena Rivas and Sean R Eddy. A dynamic programming algorithm for RNA

structure prediction including pseudoknots. Journal of Molecular Biology,

285(5):2053–2068, 1999.

[80] Elena Rivas and Sean R Eddy. Parameterizing sequence alignment with an

explicit evolutionary model. BMC Bioinformatics, 16(1):406, 2015.

[81] Donald J Rose, R Endre Tarjan, and George S Lueker. Algorithmic aspects

of vertex elimination on graphs. SIAM Journal on Computing, 5(2):266–283,

1976.

[82] Peter W Rose, Andreas Prlić, Ali Altunkaya, Chunxiao Bi, Anthony R Bradley,

Cole H Christie, Luigi Di Costanzo, Jose M Duarte, Shuchismita Dutta, Zukang

Feng, et al. The RCSB protein data bank: integrative view of protein, gene

and 3D structural information. Nucleic Acids Research, page gkw1000, 2016.

[83] Yasubumi Sakakibara. Pair Hidden Markov models on tree structures. Bioin-

formatics, 19(suppl 1):i232–i240, 2003.

[84] Jiri Sana, Petra Faltejskova, Marek Svoboda, and Ondrej Slaby. Novel classes

of non-coding RNAs and cancer. Journal of Translational Medicine, 10(1):103,

2012.

[85] David Sanko↵. Simultaneous solution of the RNA folding, alignment and pro-

tosequence problems. SIAM Journal on Applied Mathematics, 45(5):810–825,

1985.

[86] Michael Sarver, Craig L Zirbel, Jesse Stombaugh, Ali Mokdad, and Neocles B

Leontis. FR3D: finding local and composite recurrent structural motifs in RNA

3D structures. Journal of Mathematical Biology, 56(1):215–252, 2008.

[87] Cédric Saule, Mireille Régnier, Jean-Marc Steyaert, and Alain Denise. Count-

ing RNA pseudoknotted structures. Journal of Computational Biology,

18(10):1339–1351, 2011.

125

[88] Stefan E Seemann, Peter Menzel, Rolf Backofen, and Jan Gorodkin. The PET-

fold and PETcofold web servers for intra-and intermolecular structures of mul-

tiple RNA sequences. Nucleic Acids Research, 39(suppl 2):W107–W111, 2011.

[89] Sven Siebert and Rolf Backofen. MARNA: multiple alignment and consensus

structure prediction of RNAs based on sequence structure comparisons. Bioin-

formatics, 21(16):3352–3359, 2005.

[90] Sandra Smit, Jeremy Widmann, and Rob Knight. Evolutionary rates vary

among rRNA structural elements. Nucleic Acids Research, 35(10):3339–3354,

2007.

[91] Yinglei Song, Chunmei Liu, Russell Malmberg, Fangfang Pan, and Liming Cai.

Tree decomposition based fast search of RNA structures including pseudoknots

in genomes. In Computational Systems Bioinformatics Conference, 2005. Pro-

ceedings. 2005 IEEE, pages 223–234. IEEE, 2005.

[92] Peter Ste↵en and Robert Giegerich. Versatile and declarative dynamic pro-

gramming using pair algebras. BMC Bioinformatics, 6(1):224, 2005.

[93] Jesse Stombaugh, Craig L Zirbel, Eric Westhof, and Neocles B Leontis. Fre-

quency and isostericity of RNA base pairs. Nucleic Acids Research, 37(7):2294–

2312, 2009.

[94] Blake A Sweeney, Poorna Roy, and Neocles B Leontis. An introduction to re-

current nucleotide interactions in RNA. Wiley Interdisciplinary Reviews: RNA,

6(1):17–45, 2015.

[95] Robert E Tarjan and Mihalis Yannakakis. Simple linear-time algorithms to

test chordality of graphs, test acyclicity of hypergraphs, and selectively reduce

acyclic hypergraphs. SIAM Journal on Computing, 13(3):566–579, 1984.

[96] Michela Taufer, Abel Licon, Roberto Araiza, David Mireles, FHD Van Baten-

burg, Alexander P Gultyaev, and Ming-Ying Leung. Pseudobase++: an exten-

sion of PseudoBase for easy searching, formatting and visualization of pseudo-

knots. Nucleic Acids Research, 37(suppl 1):D127–D135, 2008.

[97] Corinna Theis, Craig L Zirbel, Christian Höner Zu Siederdissen, Christian An-

thon, Ivo L Hofacker, Henrik Nielsen, and Jan Gorodkin. RNA 3D modules

in genome-wide predictions of RNA 2D structure. PloS One, 10(10):e0139900,

2015.

126

[98] Pilar Tijerina, Sabine Mohr, and Rick Russell. DMS footprinting of structured

RNAs and RNA–protein complexes. Nature Protocols, 2(10):2608–2623, 2007.

[99] Ignacio Tinoco and Carlos Bustamante. How RNA folds. Journal of Molecular

Biology, 293(2):271–281, 1999.

[100] Yasuo Uemura, Aki Hasegawa, Satoshi Kobayashi, and Takashi Yokomori. Tree

adjoining grammars for RNA structure prediction. Theoretical Computer Sci-

ence, 210(2):277–303, 1999.

[101] FHD Van Batenburg, Alexander P Gultyaev, CWA Pleij, J Ng, and J Oliehoek.

PseudoBase: a database with RNA pseudoknots. Nucleic Acids Research,

28(1):201–204, 2000.

[102] Thomas van Dijk, Jan-Pieter van den Heuvel, and Wouter Slob. Computing

treewidth with libTW. Citeseer. http://citeseerx. ist. psu. edu/viewdoc/down-

load, 2006.

[103] Martin Vingron. Near-optimal sequence alignment. Current Opinion in Struc-

tural Biology, 6(3):346–352, 1996.

[104] Kevin C Wang and Howard Y Chang. Molecular mechanisms of long noncoding

RNAs. Molecular Cell, 43(6):904–914, 2011.

[105] Stefan Washietl, Ivo L Hofacker, and Peter F Stadler. Fast and reliable predic-

tion of noncoding RNAs. Proceedings of the National Academy of Sciences of

the United States of America, 102(7):2454–2459, 2005.

[106] Michael S Waterman. Sequence alignments in the neighborhood of the optimum

with general application to dynamic programming. Proceedings of the National

Academy of Sciences, 80(10):3123–3124, 1983.

[107] Michael S Waterman and Thomas H Byers. A dynamic programming algo-

rithm to find all solutions in a neighborhood of the optimum. Mathematical

Biosciences, 77(1-2):179–188, 1985.

[108] Zasha Weinberg and Walter L Ruzzo. Exploiting conserved structure for faster

annotation of non-coding RNAs without loss of accuracy. Bioinformatics,

20(suppl 1):i334–i341, 2004.

127

[109] Zasha Weinberg and Walter L Ruzzo. Faster genome annotation of non-coding

RNA families without loss of accuracy. In Proceedings of the eighth annual

international conference on Resaerch in computational molecular biology, pages

243–251. ACM, 2004.

[110] Zasha Weinberg and Walter L Ruzzo. Sequence-based heuristics for faster an-

notation of non-coding RNA families. Bioinformatics, 22(1):35–39, 2005.

[111] Eric Westhof and Pascal Au�nger. RNA tertiary structure. Encyclopedia of

Nnalytical Chemistry, 2000.

[112] Kevin A Wilkinson, Edward J Merino, and Kevin M Weeks. Selective 2-hydroxyl

acylation analyzed by primer extension (SHAPE): quantitative RNA structure

analysis at single nucleotide resolution. Nature Protocols, 1(3):1610–1616, 2006.

[113] Sebastian Will, Tejal Joshi, Ivo L Hofacker, Peter F Stadler, and Rolf Back-

ofen. LocARNA-P: accurate boundary prediction and improved detection of

structural RNAs. Nucleic Acids Research, 18(5):900–914, 2012.

[114] Andreas Wilm, Desmond G Higgins, and Cédric Notredame. R-co↵ee: a method

for multiple alignment of non-coding RNA. Nucleic Acids Research, 36(9):e52–

e52, 2008.

[115] Andreas Wilm, Indra Mainz, and Gerhard Steger. An enhanced RNA alignment

benchmark for sequence alignment programs. Algorithms for Molecular Biology,

1(1):19, 2006.

[116] Carl R Woese and Norman R Pace. Probing RNA structure, function, and

history by comparative analysis. Cold Spring Harbor Monograph Series, 24:91–

91, 1993.

[117] Thomas KF Wong, Tak Wah Lam, Wing-Kin Sung, Brenda WY Cheung, and

Siu-Ming Yiu. Structural alignment of RNA with complex pseudoknot struc-

ture. Journal of Computational Biology, 18(1):97–108, 2011.

[118] Stefan Wuchty, Walter Fontana, Ivo L Hofacker, Peter Schuster, et al. Complete

suboptimal folding of RNA and the stability of secondary structures. Biopoly-

mers, 49(2):145–165, 1999.

128

[119] Huanwang Yang, Fabrice Jossinet, Neocles Leontis, Li Chen, John Westbrook,

Helen Berman, and Eric Westhof. Tools for the automatic identification and

classification of RNA base pairs. Nucleic Acids Research, 31(13):3450–3460,

2003.

[120] Byung-Jun Yoon and Palghat P Vaidyanathan. Structural alignment of

RNAs using profile-csHMMs and its application to RNA homology search:

overview and new results. IEEE Transactions on Automatic Control, 53(Special

Issue):10–25, 2008.

[121] Yi-Tao Yu, Elizabeth C Scharl, Christine M Smith, and Joan A Steitz. The

growing world of small nuclear ribonucleoproteins. Cold Spring Harbor Mono-

graph Series, 37:487–524, 1999.

[122] Kaizhong Zhang and Dennis Shasha. Simple fast algorithms for the editing

distance between trees and related problems. SIAM Journal on Computing,

18(6):1245–1262, 1989.

[123] Cuncong Zhong, Haixu Tang, and Shaojie Zhang. RNAMotifScan: automatic

identification of RNA structural motifs using secondary structural alignment.

Nucleic Acids Research, 38(18):e176–e176, 2010.

[124] William A Ziehler and David R Engelke. Probing RNA structure with chemical

reagents and enzymes. Current Protocols in Nucleic Acid Chemistry, pages 6–1,

2001.

[125] Michael Zuker and Patrick Stiegler. Optimal computer folding of large RNA

sequences using thermodynamics and auxiliary information. Nucleic Acids Re-

search, 9(1):133–148, 1981.

[126] Christian Zwieb, Iwona Wower, and Jacek Wower. Comparative sequence anal-

ysis of tmRNA. Nucleic Acids Research, 27(10):2063–2071, 1999.

129

Université Paris-Saclay
Espace Technologique / Immeuble Discovery
Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France

Titre : Alignement pratique de structure-séquence d'ARN avec pseudonœuds

Mots clés : ARN non-codant, pseudonœuds, alignement sous-optimal, alignement avec la précision
maximale attendue

Résumé: Aligner des macromolécules telles que
des protéines, des ADN et des ARN afin de
révéler ou exploiter leur homologie fonctionnelle
est un défi classique en bioinformatique, qui
offre de nombreuses applications.
Récemment, Rinaudo et al. ont donné un
algorithme paramétré général pour la
comparaison structure-séquence d'ARN. Nous
avons développé plusieurs variantes et
extensions de cet algorithme. Afin de l'accélérer
sans perte sensible de précision, nous avons
introduit une approche de programmation
dynamique par bande. De plus, trois algorithmes
ont été développés pour obtenir des alignements
sous-optimaux. En outre, nous introduisons dans
ce contexte la notion de MEA (Maximum-
expected Structure-Alignment) pour calculer un
alignement avec la précision maximale attendue
sur un ensemble

d'alignements. Tous ces algorithmes ont été
implémentés dans un logiciel nommé LiCoRNA.
Les performances de LiCoRNA ont été évaluées
d'abord sur l'alignement des graines des familles
de la base de données RFAM qui comportent des
pseudo-noeuds. Comparé aux autres algorithmes
de l'état de l'art, LiCoRNA obtient généralement
des résultats équivalents ou meilleurs que ses
concurrents. Grâce à la grande précision
démontrée par LiCoRNA, nous montrons que cet
outil peut être utilisé pour améliorer les
alignements de certaines familles de RFAM qui
comportent des pseudo-noeuds. Nos analyses des
alignements complets des familles RFAM avec
pseudonoeuds confirment cet écart de qualité,
qui se trouve résorbé par un réalignement tenant
compte des pseudonoeuds. Elles suggèrent donc
l'utilisation systématique de méthodes prenant en
charge les pseudonoeuds lors des futures
itérations de RFAM.

Title : Practical structure-sequence alignment of pseudoknotted RNAs

Keywords : non-coding RNA, pseudoknots, suboptimal structure-sequence alignment, maximum
expected accuracy alignment.

Abstract : Aligning macromolecules such as
proteins, DNAs and RNAs in order to reveal
their functional homology is a classic challenge
in bioinformatics.
Recently, Rinaudo et al. gave a fully general
parameterized algorithm for structure sequence
comparison. The parameterized algorithm is a
tree decomposition based dynamic
programming (DP) algorithm. To accelerate the
alignment process, we introduced a banded DP.
Then three algorithms are introduced to explore
either in a deterministic or in a stochastic way,
the space of suboptimal or near-optimal
alignments. Furthermore, we introduce
maximum expected structure sequence
alignment to compute the representative of a set
of alignments. The

algorithms are implemented in a software
named LiCoRNA which is able to take as input
any type of pseudoknotted structures. We first
evaluate the performance of LiCoRNA on the
seed alignments in the pseudoknotted RFAM
families. Compared to the state-of-the-art
algorithms, LiCoRNA shows generally
equivalent or better results than its competitors.
With the high accuracy showed by LiCoRNA,
we further curate RFAM full pseudoknotted
alignments. Our analyses of full alignments
confirm this expected discrepancy, and its
disappearance upon realignment with
LiCoRNA, suggesting the use of pseudoknot-
aware methods for further analysis of RFAM
families.

