Thèse De 
  
Doctorat De L'université 
  
Paris-Saclay Préparée À L' 
  
Thèse 
  
Liliane Mme 
  
Bel 
  
Présidente M Agroparistech 
  
Cristophe 
  
M Paul 
  
M Philippe 
  
P. Fransz C Zimmer 
  
L Bel 
  
Julien, Mohamed,. . . Elise David 
  
NNT: 2016SACLS586

Besides, to J.-C

Synthèse en français

Les noyaux des cellules eucaryotes contiennent différents compartiments définis fonctionnellement ou structurellement et à multiples échelles qui présentent une distribution spatiale très ordonnée. Un défi majeur est alors d'identifier les règles selon lesquelles les compartiments nucléaires sont organisés dans l'espace et de décrire comment ces règles peuvent varier en fonction des conditions physiologiques ou expérimentales. Les statistiques spatiales ont rarement été utilisées à cette fin et se sont généralement limitées à l'évaluation de l'aléatoire complet.

Dans cette Thèse, nous développons une approche de statistiques spatiales qui combine la cytologie, l'analyse d'image et la modélisation spatiale pour mieux comprendre les configurations spatiales à l'intérieur du noyau. Notre première contribution est un cadre méthodologique qui permet de tester des modèles d'organisation spatiale au niveau de la population. Plusieurs modèles spatiaux ont été proposés et mis en oeuvre, en particulier l'aléatoire, l'aléatoire orbitale, la régularité maximale, l'aléatoire territoriale et l'aléatoire territoriale orbitale, pour analyser la distribution d'objets biologiques dans des domaines 3D finis et de formes arbitraires. De nouveaux descripteurs spatiaux, combinés aux descripteurs classiques, sont utilisés pour comparer les motifs observés à des configurations attendues sous les modèles testés. Une version non biaisée d'un test statistique publié précédemment est proposé pour évaluer la qualité de l'ajustement des modèles spatiaux sur les distributions observées. Dans la deuxième partie de cette Thèse, nous étudions les propriétés de l'approche proposée à partir de données réelles et simulées. La robustesse de l'approche proposée aux erreurs de segmentation et la fiabilité des évaluations spatiales sont examinées. En outre, la base d'une méthode pour comparer les distributions spatiales entre différents groupes expérimentaux est proposée. Dans la dernière partie de ce travail, notre approche est appliquée à des images de noyaux cellulaires de la feuille i chez A. thaliana, pour analyser la distribution spatiale de compartiments dynamiques et plastiques d'hétérochromatine, les chromocentres, qui ont un rôle important dans la structure du génome. Des noyaux isolés et des cryo-sections provenant de plantes de type sauvage ont été analysés. Nous montrons que les chromocentres présentent une distribution très régulière, ce qui confirme les résultats publiés précédemment. En utilisant nos nouveaux descripteurs, nous démontrons pour la première fois, objectivement et quantitativement, que les chromocentres présentent une localisation préférentielle périphérique. En employant un nouveau modèle spatial, nous rejetons l'hypothèse selon laquelle l'organisation régulière observée est uniquement expliquée par un positionnement périphérique. Nous démontrons en outre que les chromocentres affichent une régularité spatiale proche de la regularité maximale à l'échelle globale, mais pas à l'échelle locale. Enfin, nous utilisons des simulations pour tester un modèle selon lequel le positionnement des chromocentres est determiné par les territoires chromosomiques et par des interactions avec l'enveloppe nucleaire. Nous avons ensuite verifié s'il la distribution des chromocentres pouvait être modifiée par différentes mutations. Nous avons analysé les données de noyaux des mutants crwn et kaku, qui sont connus pour influencer la morphologie nucléaire.

Les résultats suggèrent que ces mutations impactent en effet la morphologie nucléaire et les caractéristiques de l'hétérochromatine, mais ne modifient pas la régularité de la distribution des chromocentres même si la distance à la frontière du noyau est affectée. La généricité du cadre proposé pour analyser les distributions d'objets dans des domaines 3D finis et la possi- 

General introduction

The main purpose of this Thesis is the establishment of a spatial statistical approach to analyze spatial organizations of objects in arbitrary confined 3D domains at the population level. The framework here developed is highly oriented towards their use in biological systems, specially to analyze the nuclear architecture. The main application of the methodology that is presented is to evaluate the spatial arrangement of chromocenters in A. thaliana leaf cell nuclei.

Numerous studies in plants and animals have demonstrated links between nuclear organization and genome functions [START_REF] Del Prete | Nuclear architecture and chromatin dynamics in interphase nuclei of arabidopsis thaliana[END_REF]]. A key problem is to decipher the spatial rules according to which the nuclear compartments are organized in the nuclear space and to describe how these rules could be modified due to physiological or experimental conditions. Regarding the literature, few approaches and methods are available to analyze the spatial organizations in biological systems. Studies that have been performed on nuclear architecture were predominantly done in yeast, animals and humans [START_REF] Weierich | Three-dimensional arrangements of centromeres and telomeres in nuclei of human and murine lymphocytes[END_REF]; [START_REF] Bolzer | Three-dimensional maps of all chromosomes in human male fibroblast nuclei and prometaphase rosettes[END_REF]; [START_REF] Meister | The spatial dynamics of tissue-specific promoters during c. elegans development[END_REF]]. Image analysis provide measurements on objects present in images. However, measurements alone do not allow to objectively evaluate spatial rules of organization. Spatial analyses typically consist in comparing observed organizations to simulated ones generated under certain rules of organization. The principal, and basically only distribution that is usually tested, is complete spatial randomness (CSR), in order to reject or not the lack of spatial rules.

To evaluate individual spatial organizations, these approaches simplified the objects to simple 1 points, representing the object centroid locations [START_REF] Ripley | Modelling spatial patterns[END_REF]; [START_REF] Noordmans | Randomness of spatial distributions of two proteins in the cell nucleus involved in mrna synthesis and their relationship[END_REF]; [START_REF] Beil | Statistical analysis of the threedimensional structure of centromeric heterochromatin in interphase nuclei[END_REF]; [START_REF] Buser | Quantitative investigation of murine cytomegalovirus nucleocapsid interaction[END_REF]]. Hence, the real sizes and their importance in the object interactions were not taken into account. In biological systems is generally interesting the interaction between the objects and their domain envelope. Since classical approaches analyze samples of larger systems, the interplay between the objects of study and domain boundary cannot be accomplished. Furthermore, there is a need of spatial evaluations at the population level. To date, there is thus a need to develop new methods to decipher principles of spatial organizations at the statistical level.

To address this challenge, we have developed a new spatial statistical approach that analyzes the spatial configuration of objects in arbitrary closed 3D domains. It considers the arbitrary size and morphology of the domain envelope, as well as the original number and size of the 3D objects independently of the scale or nature of the input data. Using observed information, we test spatial rules inside the original 3D domain. We have implemented new models that produce organizations more complex than CSR. In addition, new spatial statistical descriptors of particular relevance in the analysis of biological systems, have been implemented. Besides, we provide an improved version of a previously proposed test to evaluate the goodness-of-fit to evaluate a model at the population level.

As mentioned above, the first application of our methodology is focused on the nuclear architecture in A. thaliana. The nucleus is an ordered and complex organelle that contains several compartments. These nuclear compartments, which present different number, size and morphology, ensure various functional roles in the nucleus. We chose to examine chromocenters -plastic and dynamic nuclear heterochromatin regions-considering their importance in the genome structure. It has been recently suggested that chromocenters present a non-random spatial configuration [START_REF] Andrey | Statistical analysis of 3d images detects regular spatial distributions of centromeres and chromocenters in animal and plant nuclei[END_REF]]. In this Thesis, we have confirmed and further investigated the non-randomness of the chromocenters organization using our spatial statistical framework.

In the objective of identifying determinants of chromocenters spatial organization, we analyze mutations of the crwn and kaku families. These mutations affect nuclear morphology, and could therefore potentially alter the organization of nuclear constitutive heterochromatin.

The manuscript is organized as follows. Chapter 2 will describe in depth the state of the art related to the nuclear architecture in A. thaliana, the spatial statistical methods that are currently being used to analyze spatial configurations and the different approaches that have been taken to evaluate the nuclear architecture in this model plant. Chapter 3 presents in depth the new spatial descriptors and spatial models implemented in the framework. Chapter 4 reports the numerical investigations carried out on the methodology to analyze its properties.

The applications realized on real data to analyze the nuclear architecture in A. thaliana are described in Chapter 5. Finally, Chapter 6 gives the main conclusions and perspectives of this Thesis work.

Chapter 2

State of the art

The role of the nucleus in eukaryotic cells is to provide an environment to allow the expression and maintenance of the genome. Nuclear compartments with different functional roles are present in the nucleus. They present different number, size, shape and scale. More important, they exhibit different spatial distributions, which are generally not random. The nuclear architecture comprises how these nuclear compartments are organized in space. Moreover, the nuclear organization is connected with the nuclear functions.

The 3D spatial analysis of the nuclear architecture is therefore essential for the better understanding of the nuclear function. The two main issues encountered on this research project are 1) the high variability of the nucleus in terms of size and morphology, and 2) the large number of samples needed to extract proper statistical conclusions. Since a correct evaluation requires to deal with this stochasticity at the population level, it is an absolute requirement the use of spatial statistical methods to analyze the nuclear data.

This chapter makes first a review of the nuclear architecture [START_REF] Del Prete | Nuclear architecture and chromatin dynamics in interphase nuclei of arabidopsis thaliana[END_REF]]. Secondly, the methods to analyze spatial configurations using spatial point patterns are introduced. Then, we describe the main computational approaches of plant nuclear architecture evaluation found in the literature, with an special interest on A. thaliana plants. This chapter ends with a summary of the main questions about the nuclear architecture that this Thesis aims to answer.

Nuclear architecture 1

Interphase is the phase of the cell cycle in which the majority of cells spend most of their life. The interphase cell nucleus is extraordinarily complex, ordered and dynamic. In the last decades, a remarkable progress has been made in deciphering the functional organization of the cell nucleus. Besides, intricate relationships between genome functions (transcription, DNA repair or replication) and various nuclear compartments have been revealed. Recently, imaging and computational tools have improved the quality of the quantitative analyses thanks to better images acquired based on advanced microscope techniques. The identification of spatial rules of organization has covered mostly yeast, animal and human cell nuclei.

The linear dimension of eukaryotic genomes can be readily analyzed using various high-throughput techniques. Thus, biologists are now able to decipher the evolution of genome sequences, and an increasing number of studies have reported dynamic epigenomes. This progress has given rise to new challenges, namely to approach the genome in its three-dimensional nuclear framework (3D), in order to examine the interplay between the main functions of the genome and the architecture of the interphase cell nucleus, and to decipher the relationships between nuclear structure and nuclear function.

As a consequence, there is a renewed interest in 3D nuclear architecture and nuclear compartments, some of which were described more than one century ago. The complexity of the interphase cell nucleus, its ordered structure, and the dynamics of this organelle at different scales are thus being investigated in both animal and plant cells. Much has been learnt about the composition and fine structure of the nucleus and the mechanism of formation and dynamics of its various functional compartments. A better understanding of the structural and functional interplay between chromatin and the other nuclear compartments is emerging. In this section we analyze the current knowledge of nuclear compartments of the interphase nucleus in Arabidopsis thaliana with a special emphasis on heterochromatin. Indeed, whereas little is known about euchromatin dynamics at the scale of the nucleus, heterochromatin is highly plastic, exhibits large-scale reorganizations, and participates to genome organization.

Components of plant heterochromatin

In eukaryotic cells, the chromosomes are formed by complexes of DNA and proteins that are called chromatin. In 1928, Emil Heitz classified chromatin into 2 types: heterochromatin and euchromatin. Whereas the first remains highly condensed throughout the cell cycle, the latest decondenses during interphase. This binary classification system, which was originally based on cytological observations in mosses, is still widely used to describe chromatin in all eukaryotes.

However, it has evolved tremendously in the past 15 years, and central dogmas, such as the inertness and transcriptional inactivity of heterochromatin, have been challenged.

The classification system has been expanded to include molecular and biochemical characteristics, such as symmetric or asymmetric DNA methylation, post-translational histone modifications, nucleosome composition and arrangement, and transcriptional status, as determined by specialized polymerases. Chromatin states at the scale of the nucleus are difficult to determine due to limitations in resolution, and only the relatively large-scale heterochromatin compartments of interphase nuclei have been analyzed using cytological approaches.

The main heterochromatic regions of A. thaliana, which are visible by microscopy after DNA counterstaining, occur at the centromeres, pericentromeric regions, telomeres, and nucleolar organizer regions (NORs) (Figures 2.1 and 5.2). These regions are referred to as constitutive heterochromatin, whereas chromatin that occasionally acquires heterochromatin characteristics and is dispersed throughout the genome is known as facultative heterochromatin.

The cytological appearance of plant heterochromatin varies depending on the genome size (ranging from ∼ 63-149,000 Mb) [START_REF] Heslop-Harrison | Organisation of the plant genome in chromosomes[END_REF]] and chromosomal organization (ranging in dicotyledonous species from 2n = 4, such as in Haplopappus gracilis, to 2n = ∼640 in Sedum suaveolens; http://www.tropicos.org/Project/IPCN).

Plant heterochromatin is either located in discrete and well-defined subnuclear regions that exhibit intense labeling with DNA stain, also called chromocenters (CCs) in some species, e.g.

A. thaliana and Oryza sativa (rice), or it is distributed throughout the genome in less defined substructures as, for instance, in Zea mays (maize).

The heterochromatin fraction of A. thaliana is estimated to account for 7.1 % of the total chromosome length at pachytene (∼330 µm) based on a cytological approach [START_REF] Fransz | Cytogenetics for the model system arabidopsis thaliana[END_REF]], for 10-15 % of the genome based on the genome sequence [Arabidopsis Genome Initiative (2000)], and for 16% of the genome (22 Mb out of the ∼135 Mb of the genome) based on DNA accessibility analyzed by DNase I chip [START_REF] Shu | Distinct modes of dna accessibility in plant chromatin[END_REF]].

The relative heterochromatin fraction (RHF), defined as the ratio between the sum of intensities of the chromocenter pixels and the whole nucleus fluorescence intensity in DAPI (4', 6-diamidino-2-phenylindole) counterstaining, is estimated to be ∼15 % [START_REF] Soppe | Dna methylation controls histone h3 lysine 9 methylation and heterochromatin assembly in arabidopsis[END_REF]; [START_REF] Schönrock | Functional genomic analysis of caf-1 mutants in arabidopsis thaliana[END_REF]], with variations depending on cell type and developmental and environmental cues. The confidence of this important measure could be put into question due to the intensity variation between acquisitions.

Heterochromatin is rich in repetitive DNA sequences and transposable elements, has few genes, and exhibits little or no transcriptional activity. Furthermore, it presents distinct molecular and biochemical variations according to localization and function. Centromeres are the primary constrictions along mitotic/meiotic chromosomes. The relative location of the centromere differs for each type of chromosome (Figure 2.1) (detailed in [START_REF] Ma | Plant centromere organization: a dynamic structure with conserved functions[END_REF]). Centromeres of A.

thaliana are composed of arrays of a 178 bp satellite repeat, ranging from 0.4 to 1.4 Mb in different chromosomes [START_REF] Fransz | Cytogenetics for the model system arabidopsis thaliana[END_REF]; [START_REF] Copenhaver | Genetic definition and sequence analysis of arabidopsis centromeres[END_REF]; Heslop-Harrison et al. Besides the centromeric chromatin region shows low levels of DNA methylation and of the H3K9me2 epigenetic mark [Zhang et al. (2008)]. Independent of the DNA sequence, the location of the centromere is epigenetically specified by the presence of a histone H3 variant, CENH3

(also named HTR12 in A. thaliana). In spite of its essential role in mitosis and meiosis, CENH3

is rapidly evolving and participates in the formation of centromeric nucleosomes with unique properties, thereby allowing the centromere to fulfill essential roles in kinetochore formation and genome partitioning [START_REF] Lermontova | Knockdown of cenh3 in arabidopsis reduces mitotic divisions and causes sterility by disturbed meiotic chromosome segregation[END_REF]Tachiwana et al. (2011); Tachiwana and Kurumizaka (2011)].

In the A. thaliana cell nucleus, centromeres can be visualized by fluorescent in situ hybridization (FISH) by using a centromeric satellite repeat probe [START_REF] Fransz | Cytogenetics for the model system arabidopsis thaliana[END_REF]], immunocytochem-istry by using an antibody against HTR12 [START_REF] Talbert | Centromeric localization and adaptive evolution of an arabidopsis histone h3 variant[END_REF]] or MSI12, which colocalizes with HTR12 [START_REF] Sato | Characterization of a mis12 homologue in arabidopsis thaliana[END_REF]], or by live cell imaging using fluorescently tagged HTR12 [START_REF] Fang | Centromere positioning and dynamics in living arabidopsis plants[END_REF]]. These approaches have facilitated studies of the dynamics of the centromeric sub-compartment (Subsection 2.1.4).

Recently, pericentromeric heterochromatin was shown to be the least accessible chromatin to DNase I, and blocks of accessible chromatin are progressively more abundant with increasing distance from the centromere [START_REF] Shu | Distinct modes of dna accessibility in plant chromatin[END_REF]]. Thus, there is not a sharp boundary between pericentromeric heterochromatin and euchromatin but rather a gradual transition to chromatin with an increased protein-coding gene density and a decreased TE density [START_REF] Shu | Distinct modes of dna accessibility in plant chromatin[END_REF]].

Telomeres are protective nucleoprotein structures at the extremities of linear chromosomes that stabilize chromosome termini and prevent chromosome fusion and degradation by exonucleases [START_REF] Lamb | Plant chromosomes from end to end: telomeres, heterochromatin and centromeres[END_REF]; [START_REF] Zellinger | Composition of plant telomeres[END_REF]; [START_REF] Watson | Comparative biology of telomeres: where plants stand[END_REF]]. They consist of relatively short tandem repeat arrays (2-5 kb in A. thaliana) of a conserved short motif (TT-TAGGG in most plant species) and associated telomere proteins. The length of telomeres, which is related to life span, is under genetic control and varies among species.

Although telomeres were originally thought to consist of heterochromatin, a recent molecular analysis of epigenetic marks in A. thaliana telomeres revealed that telomeric chromatin has some unexpected and unique features that are characteristic of intermediate heterochromatin [START_REF] Vrbsky | sirna-mediated methylation of arabidopsis telomeres[END_REF]] or even euchromatin [START_REF] Vaquero-Sedas | Differential association of arabidopsis telomeres and centromeres with histone h3 variants[END_REF]]. Indeed, The nucleolar organizer region (NORs) [START_REF] Mcclintock | The relation of a particular chromosomal element to the development of the nucleoli in zea mays[END_REF]] consists of tandem arrays of 45S rRNA-encoding DNA (rDNA) and is another major functional genomic region with heterochromatic characteristics. A. thaliana contains 2 NORs of similar size (each spanning 3.5-4.0 Mb of tandem repeat arrays), located at the subtelomeric regions of the acrocentric chromosomes 2 and 4 [START_REF] Copenhaver | Two-dimensional rflp analyses reveal megabasesized clusters of rrna gene variants in arabidopsis thaliana, suggesting local spreading of variants as the mode for gene homogenization during concerted evolution[END_REF]] (Figure 2.1). The 5S rDNA loci are also organized in tandem arrays (of ∼ 1,000 copies) which span 0.1-0.3 Mb and are located at pericentromeric regions of chromosomes 3, 4, and 5 in the Col-0 accession [START_REF] Campell | Sequence and organization of 5s ribosomal rna-encoding genes of arabidopsis thaliana[END_REF]; [START_REF] Murata | Physical mapping of the 5s ribosomal rna genes in arabidopsis thaliana by multi-color fluorescence in situ hybridization with cosmid clones[END_REF]]. The presence, location, and size of the 5S rDNA cluster on chromosome 3 are accession specific (Figure 2.1) with some possible intra accession polymorphisms such as in the Cape Verde Islands (Cvi) accession [START_REF] Fransz | Cytogenetics for the model system arabidopsis thaliana[END_REF][START_REF] Sanchez-Moran | Variation in chiasma frequency among eight accessions of arabidopsis thaliana[END_REF][START_REF] López | Looking for natural variation in chiasma frequency in arabidopsis thaliana[END_REF]]. It was shown that in the Col-0 accession, only the 5S rDNA clusters, located on chromosomes 4 and 5, contribute to the 5S RNA pool [START_REF] Cloix | Analysis of the 5s rna pool in arabidopsis thaliana: Rnas are heterogeneous and only two of the genomic 5s loci produce mature 5s rna[END_REF]].

Arabidopsis

Arabidopsis model of chromosome organization centered on heterochromatin

In A. thaliana, chromocenters correspond to the coalescence of centromeric and pericentromeric regions of a chromosome and the NOR (if the chromosome bears a NOR). These heterochromatic structures function as genome organizer centers. Indeed, euchromatic chromosomal regions form loops that are 0.2-2 Mb long and are anchored to CCs [Fransz et al. (2002)]. This organization contributes to the overall structure of chromosome territories as described in the chromocenter-loop model [Fransz et al. (2002)], also named the rosette-like model [START_REF] Van Driel | Nuclear architecture and genome functioning in plants and animals: what can we learn from both?[END_REF]].

Furthermore, it was shown that highly repetitive elements and TEs located on euchromatic chromosomal arms, colocalize with CCs and remain associated with CCs despite extensive demethylation of the genome [START_REF] Soppe | Dna methylation controls histone h3 lysine 9 methylation and heterochromatin assembly in arabidopsis[END_REF]]. This suggests that TEs both anchor the euchromatin loops and organize the pericentromeric regions [START_REF] Soppe | Dna methylation controls histone h3 lysine 9 methylation and heterochromatin assembly in arabidopsis[END_REF]]. Variations in the number, size and shape of centromeric foci and CCs as well as the cell type-specific organization of heterochromatin have been reported in a number of studies. The nuclei of most cells (e.g. parenchyma cells, epidermal guard cells, and root cells) exhibit a 'classical CC' pattern, with 4-12 (mean ∼8-11) conspicuous CCs (Figures 2.2 and 5.2) [Fransz et al. (2002); [START_REF] Andrey | Statistical analysis of 3d images detects regular spatial distributions of centromeres and chromocenters in animal and plant nuclei[END_REF]].

The heterochromatin index (HX), defined as the percentage of nuclei showing the classical CC pattern, was thus calculated in numerous studies to quantify heterochromatin distribution [START_REF] Fransz | Heterochromatin in interphase nuclei of arabidopsis thaliana[END_REF]]. However, nuclei with uniform DAPI fluorescent nucleoplasms have been reported in some cells such as the diploid interphase tapetal cells of premeiotic anthers [START_REF] Weiss | Molecular cytogenetic analysis of polyploidization in the anther tapetum of diploid and autotetraploid arabidopsis thaliana plants[END_REF]; [START_REF] Talbert | Centromeric localization and adaptive evolution of an arabidopsis histone h3 variant[END_REF]]. In the root tip, centromeric foci exist in a variety of shapes, from dots of 0.5 µm in diameter to discontinuous strings (1.0-2.0 µm in length) of smaller bead-like dots, suggesting that centromeres have a range of compaction ratios [START_REF] Talbert | Centromeric localization and adaptive evolution of an arabidopsis histone h3 variant[END_REF]]. Given that the root tip is actively dividing, this range in centromeric foci shape might be, at least partially, cell cycle dependent. Interestingly, nuclei of the triploid endosperm tissue also have a peculiar heterochromatin organization, with small CCs and additional heterochromatic foci interspersed in euchromatin which is likely linked to parental dosage [START_REF] Baroux | The triploid endosperm genome of arabidopsis adopts a peculiar, parental-dosage-dependent chromatin organization[END_REF]]. In plants, endoreduplication cycles occur in differentiated cells, leading to ≥ 4C cell nuclei.

A positive correlation between CC association and ploidy levels was reported for a number of plant species [START_REF] Ceccarelli | Retinoblastoma (rb1) gene product expression in breast carcinoma. correlation with ki-67 growth fraction and biopathological profile[END_REF]]. In A. thaliana, endoreduplicated sister centromere associations have also been reported using live cell imaging [START_REF] Fang | Centromere positioning and dynamics in living arabidopsis plants[END_REF]]. These associations are cell type-dependent, being for instance more frequent in root epidermal cells than in leaf epidermal cells [START_REF] Fang | Centromere positioning and dynamics in living arabidopsis plants[END_REF]]. Similar results were observed in fixed cell nuclei with an alignment of the majority of the sister centromeres up to 16C [START_REF] Schubert | Sister chromatids are often incompletely aligned in meristematic and endopolyploid interphase nuclei of arabidopsis thaliana[END_REF]]. Nevertheless, surprisingly a dispersed pattern was reported in 32C nuclei [START_REF] Schubert | Sister chromatids are often incompletely aligned in meristematic and endopolyploid interphase nuclei of arabidopsis thaliana[END_REF]].

Distribution of heterochromatin in the nuclear domain

In some species, chromosomes exhibit a polarized orientation with all centromeres clustered at one pole of the interphase nucleus and all telomeres at the other. This peculiar interphase nuclear organization, originally observed in salamander cell nuclei, was named the Rabl configuration [START_REF] Rabl | Über zellteilung[END_REF]]. It has been described in Allium cepa (onion), Hordeum vulgare (barley),

Triticum aestivum (wheat), Secale cereale (rye), and Avena sativa (oats) [START_REF] Stack | Chromosome polarization and nuclear rotation in allium cepa roots[END_REF]; [START_REF] Schwarzacher | In situ localization of parental genomes in a wide hybrid[END_REF]; [START_REF] Dong | Non-rabl patterns of centromere and telomere distribution in the interphase nuclei of plant cells[END_REF]; [START_REF] Santos | Interphase chromosomes and the rabl configuration: does genome size matter?[END_REF]; [START_REF] Roberts | Telomere distribution and dynamics in somatic and meiotic nuclei of arabidopsis thaliana[END_REF]]. However this configuration is not present in all species. The Rabl configuration is not displayed in A. thaliana interphase nuclei. Rather, the centromeres are located at CCs which preferentially occupy peripheral positions, and the telomeres are preferentially associated with the nucleolus [START_REF] Armstrong | Nucleolus-associated telomere clustering and pairing precede meiotic chromosome synapsis in arabidopsis thaliana[END_REF]; Fransz et al. (2002); [START_REF] Schubert | Interphase chromatin organisation in arabidopsis nuclei: constraints versus randomness[END_REF]].

Interestingly, it was observed that plants with large genomes, e.g. A. cepa, ∼149,000 Mb, tend to exhibit the Rabl pattern, whereas those with smaller genomes, e.g. A. thaliana, ∼135 Mb, tend to exhibit a non-Rabl pattern. These data suggest a correlation between the Rabl configuration and genome size. However, the non-Rabl configuration was also reported in Sorghum bicolor (sorghum) and maize [START_REF] Dong | Non-rabl patterns of centromere and telomere distribution in the interphase nuclei of plant cells[END_REF]], two species with quite large genomes. Thus, other determinants of the Rabl configuration may exist.

Even more interesting, species of the same plant with a small genome size can exhibit both spatial patterns, Rabl and non-Rabl configurations, as Brachypodium [START_REF] Idziak | Spatial distribution of centromeres and telomeres at interphase varies among brachypodium species[END_REF]].

Moreover the non-Rabl configuration appears to be tissue-specific in diploid rice; whereas the Rabl configuration is present in root xylem vessels, it is absent in other root tissues [START_REF] Prieto | Chromosomes associate premeiotically and in xylem vessel cells via their telomeres and centromeres in diploid rice ( oryza sativa)[END_REF]]. Endoreduplication may occur in the large nuclei of vascular tissues and induce these changes in chromatin distribution, in agreement with the previously described correlation,

or the large nucleolus of xylem cells might interfer with the redistribution of centromeres and telomeres. The preferential locations of telomeres at the nucleolus and the dispersed peripheral distribution of centromeres were also observed during meiotic interphase in A. thaliana [START_REF] Armstrong | Nucleolus-associated telomere clustering and pairing precede meiotic chromosome synapsis in arabidopsis thaliana[END_REF]]. In meiotic prophase of most species (e.g. A. thaliana and maize), the ends of chromosomes cluster together on the inner surface of the nuclear envelope and form a structure called the 'bouquet' [START_REF] Franklin | Nuclear organization and chromosome segregation[END_REF]; [START_REF] Cowan | The polar arrangement of telomeres in interphase and meiosis. rabl organization and the bouquet[END_REF]; [START_REF] Tiang | Chromosome organization and dynamics during interphase, mitosis, and meiosis in plants[END_REF]]. Thus, in maize the Rabl configuration is observed prior to the last premeiotic cell division and is lost during the following interphase [START_REF] Bass | Telomeres cluster de novo before the initiation of synapsis: a three-dimensional spatial analysis of telomere positions before and during meiotic prophase[END_REF]] and a bouquet is formed in meiotic prophase.

These observations demonstrate that the distribution of chromosomes in the nuclear volume is tightly regulated. Many studies using fixed nuclei have reported that A. thaliana centromeres tend to preferentially localize to the nuclear periphery. This centromere distribution was confirmed by measuring the distances between centromeres and the nuclear envelope in 3D images of various diploid living cells from transgenic A. thaliana plants expressing HTR12-GFP [START_REF] Fang | Centromere positioning and dynamics in living arabidopsis plants[END_REF]]. This distance measurement is not sufficient to confirm a specific trend of a spatial organization. Considering the definition of peripheral as the fact to be far from the domain center, in a simple spherical domain an object has more probabilities to be located 'at the periphery' just by the chances derived from this domain zone with larger volume (see Figure 2.10).Besides a statistical analysis would be required to demonstrate this peripheral organization and validate the departure from pure randomness. Live-cell imaging also revealed that centromeres cluster transiently at opposite poles at the end of mitosis in root meristematic cells [START_REF] Fang | Centromere positioning and dynamics in living arabidopsis plants[END_REF]] and in root tip cells [START_REF] Lindhout | Live cell imaging of repetitive dna sequences via gfp-tagged polydactyl zinc finger proteins[END_REF]]. Lastly, in A. thaliana and A. lyrata interphase nuclei, CCs from NOR-bearing chromosomes 2 and 4 are more frequently located in close proximity to the nucleolus [Fransz et al. (2002); [START_REF] Berr | Chromosome arrangement and nuclear architecture but not centromeric sequences are conserved between arabidopsis thaliana and arabidopsis lyrata[END_REF]; [START_REF] Schubert | Interphase chromatin organisation in arabidopsis nuclei: constraints versus randomness[END_REF]].

Using spatial statistics, a recent study showed that the 3D intra-nuclear distribution of CCs in leaf cell nuclei was not completely random and that this distribution was more regular than a completely random one [START_REF] Andrey | Statistical analysis of 3d images detects regular spatial distributions of centromeres and chromocenters in animal and plant nuclei[END_REF]]. This finding was observed in both round and elongated nuclei of plant cells which differ in differentiation stage and ploidy level. This regularity trend was evidenced based on the global analysis of the chromocenters population.

Therefore, it is not incompatible with some frequent associations of specific CCs, such as CC2s and CC4s.

CCs in close proximity (CC clusters) has also been reported by [START_REF] De Nooijer | Non-specific interactions are sufficient to explain the position of heterochromatic chromocenters and nucleoli in interphase nuclei[END_REF]. However, in this study the frequency and the intensity of the phenomenon remain elusive as no quantification was provided.

Thereby CCs could be obeying a global apparent repulsive trend showing some attraction between specific CCs. It remains to be determined whether this regular distribution of CCs can be fully explained by the peripheral positioning or whether additional constraints are present to explain the apparent distancing between CCs. For example, the existence of euchromatin loops anchored at CCs, as proposed by the rosette model of chromosome organization [Fransz et al. (2002)], could prevent CCs from coming into close proximity. Specific proteins may also be involved as recently demonstrated by the clustering of centromeres in CAP-D protein mutants [START_REF] Schubert | The arabidopsis cap-d proteins are required for correct chromatin organisation, growth and fertility[END_REF]].

Dynamics of the heterochromatin compartment during development

The plant life cycle is characterized by major developmental phase transitions and the reiterative production of plant phytomers but also by diverse adaptations to environmental changes. These events require transcriptional reprogramming events that modulate the expression of specific sets of genes. Recent studies showed that these transcriptional reprogramming events are accompanied by reorganization of heterochromatin compartments, illustrating that the nucleus is highly plastic [START_REF] Baroux | Epigenetic regulation and reprogramming during gamete formation in plants[END_REF]; [START_REF] Schubert | Organization and dynamics of plant interphase chromosomes[END_REF]van Zanten et al. (2012a)].

Whether this reorganization participates in or is a consequence of gene regulation remains to be elucidated.

The female spore mother cell (or megaspore mother cell, MMC) differentiates from somatic cells within ovules and ultimately gives rise to female gametes. Large-scale chromatin reprogramming occurs during the specification of the MMC, and this probably contributes to the acquisition of the gametophyte fate [START_REF] Baroux | Epigenetic regulation and reprogramming during gamete formation in plants[END_REF]]. During this nuclear reorganization, the nucleolus and nucleus expand, the RHF and CC undergo a reduction in number, and the heterochromatin decondenses [START_REF] She | Chromatin reprogramming during the somatic-toreproductive cell fate transition in plants[END_REF]]. MMC chromatin reprogramming may be divided into 2 distinct phases: an early and rapid phase during which the composition of the nucleosome changes, followed by a late phase during which histone modifications undergo important changes [START_REF] She | Chromatin reprogramming during the somatic-toreproductive cell fate transition in plants[END_REF]].

In A. thaliana, embryonic development is completed about 10 days after pollination (DAP).

After a phase of seed maturation, which involves the accumulation of sufficient reserves and desiccation (from 10-20 DAP), the seed undergoes a period of dormancy. Seed maturation is accompanied by 2 independent processes, nuclear shrinkage and chromatin compaction, which occur between 8 and 12 DAP and precede the major dehydration event of the maturing seed [START_REF] Mansfield | Cotyledon cell development in arabidopsis thaliana during reserve deposition[END_REF] During floral transition, which corresponds to the short developmental switch from the vegetative to the reproductive phase, a transient reduction in both RHF and HX was observed in 3 accessions [Landsberg erecta (Ler ), Col-0, Cvi] which was accompanied by the decompaction of pericentromeric regions and 5S rDNA chromatin, followed by their subsequent relocation to CCs 3 days after bolting [Tessadori et al. (2007a)].

Dynamics of the heterochromatin compartment in response to environmental cues

Two recent studies reported a correlation between heterochromatin organization and ambient light intensity; specifically, the RHF and HX increase with a rise in light intensity [START_REF] Tessadori | Phytochrome b and histone deacetylase 6 control light-induced chromatin compaction in arabidopsis thaliana[END_REF][START_REF] Van Zanten | Photoreceptors crytochrome2 and phytochrome b control chromatin compaction in arabidopsis[END_REF]van Zanten et al. ( , 2012a))].

In the first study, [START_REF] Tessadori | Phytochrome b and histone deacetylase 6 control light-induced chromatin compaction in arabidopsis thaliana[END_REF] analyzed the HX in 21 A. thaliana accessions originating from different geographical habitats and identified a significant correlation between geographical latitude, which determines the photon flux density (light intensity) of the region, and the HX. Interestingly, the HX was found to plateau (at 100 µmol m 2 s -1 for Col-0 and at 200 µmol m 2 s -1 for Ler, a widely-used Central-European accession). The lowest HX was observed in the sub-tropical Cvi-0 accession which has smaller and fewer CCs than Ler.

Furthermore, the Cvi-0 accession exhibited dispersed 5S rDNA and pericentromeric repeats, and the centromeric and 45S rDNA sequences remained in the reduced CCs. This chromatin arrangement is reminiscent of the one observed during floral transition.

The second study showed that chromatin compaction progressively decreases after a reduction in light intensity from 200 to 15 µmol m 2 s -1 . This heterochromatic event is reversible with return to normal light conditions, and the intensity of the response varies in different accessions (with Col-0 being more sensitive than Ler ) [START_REF] Van Zanten | Photoreceptors crytochrome2 and phytochrome b control chromatin compaction in arabidopsis[END_REF]]. Therefore, chromatin plasticity seems to contribute to the plant's adaptation to environmental light conditions. Alter-natively, the heterochromatin response to low light can be viewed as an abiotic stress response.

Upon exposure to another abiotic stress, namely prolonged heat stress, the transcription of centromeric and pericentromeric repeats is reactivated, and these regions exhibit a dispersed pattern in FISH [START_REF] Pecinka | Epigenetic regulation of repetitive elements is attenuated by prolonged heat stress in arabidopsis[END_REF]]. Interestingly, throughout recovery, transcription of centromeric and pericentromeric repeats was progressively silenced, whereas decondensation persisted for up to 1 week. Thus, this is another example showing that chromatin condensation status and gene expression can be uncoupled. Furthermore, such alterations did not occur in meristematic cells or in cells from leaves produced after a period of heat stress. It was proposed that the specific meristematic chromatin response indicates the existence of a safeguard mechanism that minimizes genome damage in the germline [START_REF] Pecinka | Epigenetic regulation of repetitive elements is attenuated by prolonged heat stress in arabidopsis[END_REF]]. Interestingly, heterochromatin decompaction was not observed after freezing or UV-C treatments [START_REF] Pecinka | Epigenetic regulation of repetitive elements is attenuated by prolonged heat stress in arabidopsis[END_REF]]. Therefore, decondensation of the heterochromatin compartments is either not a general stress response or each type of stress is associated with chromatin reorganization in a specific compartment or with a distinctive timing and amplitude pattern.

It will be interesting to decipher the signaling mechanisms that induce large-scale chromatin reorganization in differentiated cells and prevent such reorganization in rapidly dividing cells.

Reorganization of heterochromatin was also observed in response to biotic stress [START_REF] Pavet | Arabidopsis displays centromeric dna hypomethylation and cytological alterations of heterochromatin upon attack by pseudomonas syringae[END_REF]]. A drastic reduction in RHF and CC number (with most nuclei having only 2 small CCs) and loosening of CCs were observed within 1 day of infection with the bacterial pathogen Pseudomonas syringae. A drastic decondensation involving pericentromeric regions, 5S rDNA, centromeric repeats, and 45S rDNA was described during the isolation of A. thaliana protoplasts [Tessadori et al. (2007b)]. Despite general NOR decondensation, a fraction remains partially condensed, participating in small CCs close to the nucleolus. The protoplast chromatin reorganization is accompanied by the acquisition of totipotency and major transcriptional reprogramming that affects, for example, chromatin-associated genes and genes encoding histone variants [START_REF] Chupeau | Characterization of the early events leading to totipotency in an arabidopsis protoplast liquid culture by temporal transcript profiling[END_REF]]. It remains to be determined whether the reorganization of protoplast chromatin results from a stress response due to enzymatic digestion and osmotic and light changes and/or is necessary for acquisition of totipotency and major transcriptional reprogramming [START_REF] Chupeau | Characterization of the early events leading to totipotency in an arabidopsis protoplast liquid culture by temporal transcript profiling[END_REF]]. are correlated [Tessadori et al. (2007b)]. Thus, the 5S and pericentromeric sequences might participate in one core domain of a CC, which is first mobilized in chromatin decondensation events, and the centromeric repeats and 45S rDNA in another CC core domain, with a more central location and/or different properties. Establishing whether this latter core domain decondenses independently of the other core domain would provide insights into the structure of CCs. The number of anchoring sites might also be proportional to the size of the arrays and may thus contribute to the kinetics and formation of sub-compartments of the CCs.

Also the underlying biochemical properties of heterochromatin, such as DNA methylation, epigenetic marks, or histone composition, are expected to contribute to this sort of 'CC breathing'.

Heterochromatin dynamics have been considered as being either dependent or independent of epigenetic changes, suggesting that several mechanisms with possible self-reinforcing feedbacks exist. For instance, by using molecular approaches, the 5S rDNA arrays were shown to be hypomethylated when they loop out of CCs during seed germination [START_REF] Mathieu | Changes in 5s rdna chromatin organization and transcription during heterochromatin establishment in arabidopsis[END_REF]], and demethylation of the centromeric and pericentromeric repeats was shown to accompany bioticinduced chromatin decondensation [START_REF] Pavet | Arabidopsis displays centromeric dna hypomethylation and cytological alterations of heterochromatin upon attack by pseudomonas syringae[END_REF]]. However, no change in DNA methylation was observed at centromeric repeats during floral transition [Tessadori et al. (2007a)], in protoplasts [Tessadori et al. (2007b)], and in response to heat stress [START_REF] Mittelsten Scheid | Two regulatory levels of transcriptional gene silencing in arabidopsis[END_REF]; [START_REF] Pecinka | Epigenetic regulation of repetitive elements is attenuated by prolonged heat stress in arabidopsis[END_REF]].

Despite the large-scale reorganization, there is no change in H3K9me2 and H3K4me3 contents in protoplasts as determined by immunoblot analysis of total histones. In heat stressed cell nuclei, a reduction in nucleosome occupancy with a small reduction in H3K9me2 was observed [START_REF] Mittelsten Scheid | Two regulatory levels of transcriptional gene silencing in arabidopsis[END_REF]; [START_REF] Pecinka | Epigenetic regulation of repetitive elements is attenuated by prolonged heat stress in arabidopsis[END_REF]]. From these data, it is tempting to speculate that the epigenetic-dependent pathway might contribute to the formation of a putative 5S-pericentromeric core domain and the independent pathway to that of the other putative core domain. However, it is important to note that most studies used methods with low sensitivity at the global nuclear scale to detect epigenetic changes and did not consider all of the chromatin marks and their combinations [START_REF] Baubec | Cooperation of multiple chromatin modifications can generate unanticipated stability of epigenetic states in arabidopsis[END_REF]]. Furthermore, all sub-compartments were not simultaneously analyzed. Therefore, specific epigenetic variations may not have been identified yet. Alternatively, 'CC breathing' may be seen as a continuous process with various amplitude and timing patterns.

Finally, another key missing element is a better understanding of the higher order structures of chromatin. The existence of 30 nm chromatin fibers is still a matter of debate, and an alternative chromatin model that involves interdigitation of nucleosomal arrays, which is more compatible with rapid conformational changes providing access to DNA, is currently proposed [START_REF] Fussner | Changes in chromatin fiber density as a marker for pluripotency[END_REF]; [START_REF] Luger | New insights into nucleosome and chromatin structure: an ordered state or a disordered affair?[END_REF]] and might also impact on 'CC breathing'.

A few mutations that have a marked impact on the formation and/or spatial distribution of conspicuous heterochromatin sub-compartments have been described (Subsection 2.1.6). Three main classes of genetic determinants involved in heterochromatin dynamics can tentatively be distinguished based on their functions (Subsection 2.1.6).

The first class (class I) corresponds to genes involved in the formation of heterochromatin and the maintenance of silencing in A. thaliana (i.e. MET1, CMT3, NRPD2, and NRPE1 ) [START_REF] Mittelsten Scheid | Two regulatory levels of transcriptional gene silencing in arabidopsis[END_REF]; [START_REF] Soppe | Dna methylation controls histone h3 lysine 9 methylation and heterochromatin assembly in arabidopsis[END_REF]; [START_REF] Onodera | Plant nuclear rna polymerase iv mediates sirna and dna methylation-dependent heterochromatin formation[END_REF][START_REF] Vaillant | Hypomethylation and hypermethylation of the tandem repetitive 5s rrna genes in arabidopsis[END_REF]; [START_REF] Douet | Interplay of rna pol iv and ros1 during post-embryonic 5s rdna chromatin remodeling[END_REF]]. It is important to note that mutations that affect silencing do not necessarily alter nuclear heterochromatin organization. For instance, the nuclear shape and CC structure of the morpheus' molecule1 mutant (mom1 ), which is affected in an epigenetic regulator, are normal [START_REF] Probst | Two means of transcriptional reactivation within heterochromatin[END_REF]]. The second class (class II) includes genes encoding chromatin-associated proteins, such as the ATP-dependent SWI2/SNF2-like chromatin remodeling DDM1 factor [START_REF] Soppe | Dna methylation controls histone h3 lysine 9 methylation and heterochromatin assembly in arabidopsis[END_REF]; [START_REF] Probst | Two means of transcriptional reactivation within heterochromatin[END_REF]] which was shown to have specific functions in heterochromatin remodeling [START_REF] Zemach | The arabidopsis nucleosome remodeler ddm1 allows dna methyltransferases to access h1-containing heterochromatin[END_REF]], the histone-modifying enzyme HDA6 [START_REF] Probst | Arabidopsis histone deacetylase hda6 is required for maintenance of transcriptional gene silencing and determines nuclear organization of rdna repeats[END_REF]], and the chromatin assembly subunits FAS1 and FAS2 [Schönrock et al. (2006a)]. The first 2 classes of genetic determinants may participate in the epigenetic-dependent pathway which is involved in heterochromatin dynamics.

The third emerging class (class III) contains genes that encode diverse nuclear structural pro-teins, such as the 2 lamin-like proteins LINC1 and LINC2 (recently renamed to CRWN1 and CRWN2) [START_REF] Dittmer | Little nuclei genes affecting nuclear morphology in arabidopsis thaliana[END_REF]; [START_REF] Sakamoto | Little nuclei 1 and 4 regulate nuclear morphology in arabidopsis thaliana[END_REF]; Wang et al. (2013b); [START_REF] Poulet | Nucleusj: an imagej plugin for quantifying 3d images of interphase nuclei[END_REF]] that might be involved in an epigenetic-independent pathway. Based on the identification of nuclear lamina-associated chromatin domains in Drosophila and humans [START_REF] Pickersgill | Characterization of the drosophila melanogaster genome at the nuclear lamina[END_REF]; [START_REF] Guelen | Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions[END_REF]], we expect that mutations that affect the plant nuclear envelope [START_REF] Graumann | Nuclear envelope proteins and their role in nuclear positioning and replication[END_REF]; [START_REF] Boruc | Dynamics of the plant nuclear envelope and nuclear pore[END_REF]] might have an impact on plant chromatin organization. Furthermore, some subunits of the cohesion and condensin complexes, such as the SYN4 and CAP-D3 proteins, also play important roles in sister chromatid organization and centromere distribution and thus affect the interphase chromatin architecture [START_REF] Schubert | Cohesin gene defects may impair sister chromatid alignment and genome stability in arabidopsis thaliana[END_REF][START_REF] Schubert | The arabidopsis cap-d proteins are required for correct chromatin organisation, growth and fertility[END_REF]].

From a genetic screen of Arabidopsis looking for changes in nuclear morphology, another mutant with smaller and more spherical nuclei was isolated and designated as kaku1, a myosin XI-i subfamily protein [START_REF] Tamura | Myosin xi-i links the nuclear membrane to the cytoskeleton to control nuclear movement and shape in arabidopsis[END_REF]]. KAKU1 is a myosin XI-i subfamily protein that encodes a plant-specific myosin localized at the nuclear periphery and interacting with the SUN-KASH complex.

Different signaling pathways involved in heterochromatin reorganization are expected to exist that might converge on key regulators of heterochromatin reorganization, such as the factors described in Subsection 2.1.6. Indeed, development and environmental processes affect the spatial organization of heterochromatin. These regulatory components might be specific to or shared by different signaling pathways. As described above, light intensity is an important environmental signal that controls chromatin compaction. The light-signaling pathway is mediated by well-described photoreceptors, some of which are localized to the nucleus. Among them, CRYPTOCHROME 2 (CRY2) and PHYTOCHROME B (PHYB) are involved in chromatin reorganization, whereas others, such as phototropins and CRYPTOCHROME1, are not [Tessadori et al. (2007a);[START_REF] Van Zanten | Photoreceptors crytochrome2 and phytochrome b control chromatin compaction in arabidopsis[END_REF]]. These data suggest that CRY2 and PHYB also participate in the spatial organization of heterochromatin. Thus, many elements that affect the timing and molecular events of heterochromatin dynamics remain to be identified, and the impact of heterochromatic reorganization on the 3D organization of the genome remains to be established.

Chromosome territories

In plant and animal cell nuclei, each chromosome occupies a discrete portion of the nuclear space, named the chromosome territory (CT) [START_REF] Boveri | Die blastomerenkerne von ascaris megalocephala und die theorie der chromosomenindividualitä ẗ[END_REF] In plants, the 3C method has only recently been used [START_REF] Hövel | 3c technologies in plants[END_REF]; [START_REF] Baroux | Nonrandom chromosome arrangement in triploid endosperm nuclei[END_REF]],

and no equivalent or alternative model is available for plant CT organization yet. Plant CTs were observed in species both with [START_REF] Abranches | Transcription sites are not correlated with chromosome territories in wheat nuclei[END_REF]] and without [START_REF] Lysak | Chromosome painting in arabidopsis thaliana[END_REF][START_REF] Lysak | Recent progress in chromosome painting of arabidopsis and related species[END_REF]; [START_REF] Pecinka | Chromosome territory arrangement and homologous pairing in nuclei of arabidopsis thaliana are predominantly random except for nor-bearing chromosomes[END_REF]] Rabl configuration by FISH studies. Using a wheat line containing an extra pair of rye chromosomes, it was shown that the rye CTs were roughly parallel and elongated nuclear domains extending between the centromeric and telomeric nuclear poles in a

Rabl configuration [START_REF] Abranches | Transcription sites are not correlated with chromosome territories in wheat nuclei[END_REF]]. More recently, this organization was shown to be present in meristematic but not in differentiated nuclei [START_REF] Schubert | Organization and dynamics of plant interphase chromosomes[END_REF]].

In small genome species with non-Rabl configuration, such as Arabidopsis, CTs have a different spatial distribution. The association frequencies between A. thaliana chromosome pairs were computed based on simultaneous painting of all chromosome pairs [START_REF] Pecinka | Chromosome territory arrangement and homologous pairing in nuclei of arabidopsis thaliana are predominantly random except for nor-bearing chromosomes[END_REF]]. Based on a computer model of CT formation determined by polymer decondensation, it was shown that these frequencies were not significantly different from those expected under randomness, except for NOR-bearing chromosomes which are frequently associated with each other [START_REF] Pecinka | Chromosome territory arrangement and homologous pairing in nuclei of arabidopsis thaliana are predominantly random except for nor-bearing chromosomes[END_REF]]. Likewise, no differences were found between random expectations and observed associations of homologous genomic regions of ∼100 kb [START_REF] Pecinka | Chromosome territory arrangement and homologous pairing in nuclei of arabidopsis thaliana are predominantly random except for nor-bearing chromosomes[END_REF]], Similar results

were found in related species [START_REF] Berr | Chromosome arrangement and nuclear architecture but not centromeric sequences are conserved between arabidopsis thaliana and arabidopsis lyrata[END_REF]] and in differentiated cells [START_REF] Berr | Interphase chromosome arrangement in arabidopsis thaliana is similar in differentiated and meristematic tissues and shows a transient mirror symmetry after nuclear division[END_REF]]. Hence, the current view of CT organization in A. thaliana and related species is globally random and contrasts with results from animal studies [START_REF] Schubert | Interphase chromatin organisation in arabidopsis nuclei: constraints versus randomness[END_REF]]. Nevertheless, a recent study [START_REF] Baroux | Nonrandom chromosome arrangement in triploid endosperm nuclei[END_REF]] has suggested that the CT organization in A. thaliana endosperm cells triploid nuclei does not follow complete randomness, favoring a tissue-specific CTs arrangement. In animals, it has been suggested that CTs obey a size-dependent radial distribution, with smaller chromosomes being located toward the nuclear center [START_REF] Bolzer | Three-dimensional maps of all chromosomes in human male fibroblast nuclei and prometaphase rosettes[END_REF]]. Other studies reported a gene density-dependent spatial distribution, with gene-rich chromosomes being located towards the center [START_REF] Van Driel | Nuclear architecture and genome functioning in plants and animals: what can we learn from both?[END_REF]].

Chromosome painting in A. thaliana revealed that CTs were larger in endosperm nuclei than in nuclei of other cell types, corroborating the notion that less chromatin compaction occurs in this tissue [START_REF] Baroux | The triploid endosperm genome of arabidopsis adopts a peculiar, parental-dosage-dependent chromatin organization[END_REF]]. The tissue-specific spatial distribution of CTs has been reported in mouse, and CT distribution patterns were found to be maintained throughout mitosis [START_REF] Parada | Chromosome positioning in the interphase nucleus[END_REF]].

By contrast, the spatial distribution of CTs is not conserved between mother and daughter cells in Arabidopsis, and only a transient mirror-image distribution has been reported between daughter cells [START_REF] Berr | Interphase chromosome arrangement in arabidopsis thaliana is similar in differentiated and meristematic tissues and shows a transient mirror symmetry after nuclear division[END_REF]]. The absence of maintenance of CT organization during mitosis and within tissues is probably also related to the small genome and chromosome sizes of Arabidopsis. No specific role of CTs in genome expression has been reported in plants until now [START_REF] Tiang | Chromosome organization and dynamics during interphase, mitosis, and meiosis in plants[END_REF]].

Recapitulation

This chapter section has described the main nuclear compartments of A. thaliana and what is known about their functions and organizations, introducing the importance of understanding better the nuclear architecture. Between different nuclear compartments and scales, we have made focus in the nuclear heterochromatin. The formation of chromocenters in A. thaliana that present differentiated spatial patterns through samples, showing different size and number, as well as the dynamics that they have presented under the nucleus development or due to environmental changes, make their spatial evaluation highly interesting. Indeed, this examination is a challenge due to the diversity of number and sizes that CC display and the variability of nuclear morphology, size, and cell type. New spatial analysis methods are required to address this challenges, basing the evaluation on the use of spatial statistics.

Statistical analysis of spatial point patterns

This section introduces the methods that are used in the literature to analyze spatial organizations. Generally, an observed spatial configuration is assimilated as a spatial point pattern.

This is an arrangement of points in a physical space,

Classical spatial statistics

Spatial statistical approaches have historically been developed to analyze spatial configurations in diverse fields as ecology, forestry, and epidemiology. In all them, the studied data was formed by point positions recorded from a large system. Considering that the analysis could not be carried out on such domain, a single sampling window was used. Thus, the spatial point pattern is experimentally defined by a window from virtually infinite point processes [START_REF] Diggle | On parameter estimation and goodness-of-fit testing for spatial point patterns[END_REF][START_REF] Diggle | Statistical analysis of spatial point patterns[END_REF]; [START_REF] Møller | Spatial Statistics and Computational Methods[END_REF]; [START_REF] Baddeley | Spatial Point Patterns: Methodology and Applications with R[END_REF]].

Spatial point processes are stochastic mechanisms that generate point patterns. These points represent the positions of observed objects. Classic spatial statistical approaches transform objects into single points regardless of the data dimensions, recording just the objects position, which generally is the object barycenter [START_REF] Lagache | Statistical analysis of molecule colocalization in bioimaging[END_REF]]. Neither the object volumes nor their sizes interaction are usually considered in spatial analyses. This information is not present in a simple point process. Other more evolved ones, set hardcore distances as sizes to each point.

The pattern points of a sampling window are referred to as events. To evaluate the spatial configuration of the observation, specific rules of organization are reproduced using a similar sampling window and using the observed events number (same intensity). The basic evaluation is the departure from randomness. Thus, to analyze whether the observed events are distributed under complete spatial randomness (CSR) or not, a classical approach implements a simulation of random events in the observed domain to compare its organization to the observed one.

The basis of classical approaches is the comparison between observed point patterns to spatial point patterns reproduced by the tested spatial point processes. Complex spatial point patterns are developed trying to fit the observed data into them. These more elaborated spatial point patterns consequently represent more determined spatial hypotheses as clustering or regularity.

The most utilized are described in the following subsections.

Homogeneous Poisson point process

The most basic spatial point process is the homogeneous Poisson process. It represents the simplest possible stochastic mechanism for the generation of spatial random point patterns [START_REF] Diggle | Statistical analysis of spatial point patterns[END_REF]]. The Poisson process situates the events assuming that those events occur independently on one another within a domain. The points are distributed uniformly in the area. Hence, not presenting any interaction, they show a completely random organization.

The Poisson point process is characterized by an intensity parameter λ (point density). It determines the average number of points within a given region of space.

For a Poisson point process in R 2 , the probability of observing n points in a region B ∈ R 2 (Equation (2.1)).

P {N (B) = n} = (λ|B|) n n! e -λ|B| (2.1)
where |B| denotes the area of B. part of its definition, this point process presents an independence of the occurrence of the different events. Thus knowing where the events are located does not help to predict where other events might be located. The Poisson point process constitutes a basis to the development of more complex spatial processes.

Inhomogeneous Poisson processes

More complex point patterns can be generated when the intensity λ of the Poisson process is not constant and is replaced by a spatially varying intensity function λ(x).These spatial point processes are called inhomogeneous point processes [START_REF] Diggle | A kernel method for smoothing point process data[END_REF]; [START_REF] Stoyan | Non-homogeneous gibbs process models for forestry. a case study[END_REF]; [START_REF] Baddeley | Non-and semi-parametric estimation of interaction in inhomogeneous point patterns[END_REF]; [START_REF] Diggle | Statistical analysis of spatial point patterns[END_REF]; [START_REF] Diggle | Second-order analysis of inhomogeneous spatial point processes using case-control data[END_REF]].

The integral characteristic of the inhomogeneous point process is denoted by Λ(B):

Λ(B) = B λ(x)dx (2.2)
where dx is a (d -dimensional) volume element.

Furthermore, Λ(B) has the interpretation of being the expected number of points of the Poisson process located in the windowed region B, namely:

Λ(B) = E[N (B)] (2.3)
Thereby, taking the Poisson point process probability and replacing the new intensity, the general Poisson point process probability of n random objects to be in the region B ∈ R 2 :

P {N (B) = n} = (Λ(B)) n n! e -Λ(B) (2.4)
To simulate the points into an area, a couple of different methods can be used depending on the nature of the intensity function λ(x). If the intensity function is simple, then, independent and random non-uniform coordinates of the points can be generated. For more complicated intensity functions, an acceptance-rejection method can be used. It consists of using (or 'accepting') only certain random points and not using (or 'rejecting') the other points, based on the ratio:

λ(x i ) Λ(B)) = λ(x i ) B λ(x)dx (2.5)
where x i is the point ith under consideration for acceptance or rejection.

Aggregate point processes

Aggregate organizations can be explained either by pure heterogeneity, when points have different probabilities to be located into a space, or by interaction between points, forcing attraction [START_REF] Stoyan | Stochastic geometry and its applications[END_REF]; [START_REF] Møller | Spatial Statistics and Computational Methods[END_REF]].

The Neyman-Scott processes simulate aggregated spatial point patterns implementing a cluster of points around certain points [START_REF] Neyman | Statistical approach to problems of cosmology[END_REF]; [START_REF] Waagepetersen | An estimating function approach to inference for inhomogeneous neyman-scott processes[END_REF]]. These point processes are Poisson cluster processes based on an initial homogeneous Poisson process with intensity λ whose events are called parent points. It uses the p parent points to produce circa (the final number is not generally fixed) N random children points around according to a given discrete probability distribution function (Figure 2.4). and uniformly distributed in a disk of radius r centered around the parent [START_REF] Matérn | Spatial variation: Stochastic models and their application to some problems in forest surveys and other sampling investigations[END_REF]; [START_REF] Waagepetersen | An estimating function approach to inference for inhomogeneous neyman-scott processes[END_REF]]. Each cluster of a Thomas process consists of a Poisson (λ) number of random points, each of them having an isotropic Gaussian displacement from its parent [START_REF] Thomas | A generalization of poisson's binomial limit for use in ecology[END_REF]; [START_REF] Diggle | Statistical analysis of spatial point patterns by means of distance methods[END_REF]]. The difference between these two spatial models lies therefore in that the Matérn process replaces the isotropic Gaussian distribution with a uniform distribution about a disk of the given radius (Figure 2.5).

Figure 2.5: Matérn cluster process (left) and Thomas point process (right) realizations (carried out using the spatstat package in R). Both cluster processes present an intensity λ of 20 for the Poisson process of cluster centers, a radius r = 0.1 for the clusters and a mean number of points per cluster of 4.

Other implementation of aggregate point patterns is the Cox point process [START_REF] Cox | Some statistical methods connected with a series of events[END_REF]]. The Cox process lets the intensity measure λ to be random and independent. The intensity measure is a realization of a random field. The different resulting point processes take the name of the chosen variable or field, e.g. if the logarithm of the intensity measure is a Gaussian random field (Figure 2.6), the resulting process is therefore known as a log Gaussian Cox process [START_REF] Møller | Log gaussian cox processes[END_REF]].

Gibbs point process

Markov point processes are spatial point processes that capture interactions between objects [START_REF] Ripley | Modelling spatial patterns[END_REF]; Adrian [START_REF] Baddeley | Nearest-neighbour markov point processes and random sets[END_REF]]. This kind of point processes is termed Markov due to a spatial Markov property referring to interactions only with the spatial neighbors. These processes, also called Gibbs processes, set an object after calculating the possible interactions with the objects that are already in the spatial pattern. Thus, in a Markov point process, first a point neighborhood is defined, to then set the neighbors influence on the final point location A commonly used neighborhood is the r-close-neighborhood, which is specified by a disk/ball of radius r. Using it, a new point can be forced to be inside this ball of radius r or outside of it. The Gibbs point process is used therefore to develop clustered point patterns but also repulsive ones (Figure 2.7).

(Figure 2.7).

Summary statistics

Classic spatial statistics approaches use spatial point processes to generate point patterns considering that the points locations and/or their interactions can be explained by theoretical formulas. Non-parametric estimates of various summary statistics are usually used to analyze and validate the spatial models on the observed points data [START_REF] Ripley | Modelling spatial patterns[END_REF]; [START_REF] Stoyan | Stochastic geometry and its applications[END_REF]]. The first order characteristics describe the density of points through space. The second order characteristics refer to the comparative position or interaction among points. These may be randomly scattered in space, show regularity resulting from negative interaction (repulsion) among the points, or exhibit a clustered structure (aggregation) resulting from positive interaction (attraction) among points.

K-Function

One of the most common descriptors is the K-Function (also known as Ripley's K-Function)

introduced in 1977 by [START_REF] Ripley | Modelling spatial patterns[END_REF]. The K-Function is defined as

K(r) = 1 λ E[N 0 (r)] (2.6)
where λ is the mean of the number of points per unit area (intensity) and N 0 (r) is the number of other events within a distance r of an arbitrary point of the process. In an homogeneous

Poisson process it can be directly obtained by

K(r) = πr 2 (2.7)
This is used on homogeneous Poisson processes, but it has been modified to be used in anisotropic [START_REF] Stoyan | Fractals, random shapes, and point fields: methods of geometrical statistics[END_REF]] and inhomogeneous processes [START_REF] Baddeley | Non-and semi-parametric estimation of interaction in inhomogeneous point patterns[END_REF]].

Its use varies from studying landscape patterns changes [START_REF] Gao | Characteristics and changes of landscape pattern in wuhan city based on ripley's k function[END_REF]] to how the temperature affects to maize leaves [Zheng et al. (2013)]. When data are collected within a sampling window, the arbitrary crop that the framed domain applies to the system must be considered in the estimation of K. Different classes of boundary correction [START_REF] Illian | Statistical Analysis and Modelling of Spatial Point Patterns[END_REF]] have been proposed for Equation (2.6) to take into account possible objects that could be located just beyond the frame (Equation (2.8) and Figure 2.8). These are applied to empirical cumulative distribution function (ECDF).

K (r) = 1 λ(W ) i =j 1{||x i -x j || ≤ r}e(x i ; x j ; r) (2.8)
where λ(W) is the average number of points in region W , x i -x j is the distance between the ith and jth points of the pattern and e(x i ; x j ; r) is an edge correction. Without applying this edge correction, Equation (2.8) is equal to Equation (2.17) up to a multiplicative constant factor.

Thus the K function is similar to the H function.

In biology there are also cases in which larger systems than the sampling window are object of study and thus, window corrections are needed [START_REF] Lagache | Analysis of the spatial organization of molecules with robust statistics[END_REF][START_REF] Lagache | Statistical analysis of molecule colocalization in bioimaging[END_REF]]. This descriptor is generally used in framed domains with a large number of objects.

The use of the K-Function can suggest deviations from spatial homogeneity, indicating for example some aggregations or regularity.

Figure 2.8: Ripley's K-Function example (taken from [START_REF] Ripley | Modelling spatial patterns[END_REF], the red circles have been added for an easier interpretation). This spatial descriptor counts the objects reached by a given distance from an arbitrary object. The problems come when the radius crosses the sampling window, thus to solve this issue, a window-correction is required in this function.

Distance distribution functions

A third class of summary statistics is based on distribution functions for inter-point distances.

They use therefore quantification of distances between points within the spatial domain. These distances are made either between the spatial pattern objects or between objects and geometrical domain locations. In the literature, several descriptors of this kind have been proposed

(reviewed by [START_REF] Szmyt | Spatial statistics in ecological analysis: from indices to functions[END_REF] for example). In the sequel, we introduce the most representative ones used to examine spatial configurations.

The empty space function (also called spherical contact distribution function or simply F -Function) is the distribution function of the distance from a domain reference point to the nearest point in X. The empty space distance (or spherical contact distance or void distance)

is defined as

d(u, X) = min||u -x i || : x i ∈ X (2.9)
where d(u, X) is the distance from a fixed arbitrary location u ∈ R 2 to the nearest point of the spatial point process X. The empty space function F is therefore obtained by

F (r) = P{d(u, X) ≤ r} (2.10)
This spatial descriptor is of the first ones used in classic spatial statistics [START_REF] Diggle | On parameter estimation and goodness-of-fit testing for spatial point patterns[END_REF]].

Its gives an idea of how the objects are spread over the domain, pointing to randomness, aggregation or even regularity [START_REF] Diggle | On parameter estimation and goodness-of-fit testing for spatial point patterns[END_REF]; van Lieshout and [START_REF] Van Lieshout | A nonparametric measure of spatial interaction in point patterns[END_REF]; [START_REF] Baddeley | Spatial Point Patterns: Methodology and Applications with R[END_REF]]. This descriptor achieves a local analysis considering that it measures distances between close points, thus at small scale.

In homogeneous Poisson point processes with intensity λ, it is given by

F p (r) = 1 -e -λπr 2 (2.11)
Edge corrections are required in all the distance function's empirical applications. The corrected ECDF of the F -Function is

F (r) = 1 n j e(u j , r) 1{d(u j , X) ≤ r} (2.12)
where n is the number of sample points and e(u j , r) the edge correction.

Another popular descriptor is the nearest-neighbor function, also known as G-Function. It is the distribution function of the distance from a point x in X to its nearest pattern point with distance r > 0. It is defined by

G(r) = P{d(x, X\{x)} ≤ r | x ∈ X} (2.13)
For an homogeneous Poisson point process of intensity λ, the nearest-neighbor distance distribution function is known:

G p (r) = 1 -e -λπr 2 (2.14)
which coincides with the same theoretical formula for F (Equation (2.11)).

The G-Function and the F -Function were developed for homogeneous spatial point processes but could be modified for inhomegeneous ones. These two functions were combined as a new summary statistic called J-Function [van Lieshout and [START_REF] Van Lieshout | A nonparametric measure of spatial interaction in point patterns[END_REF]], defined as

J(r) = (1 -G(r))/(1 -F (r)) for F (r) < 1, (2.15)
which is 1 for homogeneous Poisson processes, whereas values smaller than 1 could suggest a clustering in the spatial point pattern. Thereby this descriptor describes the inter-relation between pattern points at local scale as F and G do.

Another interesting descriptor in spatial summary statistics is the so-called H-Function [START_REF] Collins | Improvement of Inter-event Distance Tests of Randomness in Spatial Point Processes[END_REF]; [START_REF] Diggle | Statistical analysis of spatial point patterns[END_REF]]. It is the distribution function of the distances between each pattern event to all the others in the spatial pattern. The inter-event distances between all distinct pairs of points x i and x j with (i = j) are defined by

t i,j = ||x i -x j || : x i , x j ∈ X (2.16)
The CDF of pairwise distances is

H(r) = P{t ij ≤ r} (2.17)
Analyzing the inter-distances between objects, this summary statistics evaluates all the local and the global scales. This spatial descriptor presents an alternative to the K-Function for spatial patterns with a low intensity. While the K-Function counts the number of points reached by a given distance, the H-Function quantifies the distances between all the points of the spatial pattern. Hence, the H-Function could function similarly to the K-Function in closed domains and with spatial patterns with small number of points, capturing comparable spatial information.

These are the main statistical summaries used to evaluate spatial configurations. The use of one summary statistics gives a partial information of the spatial points arrangement since each function focuses its attention to specific interactions between events. [START_REF] Baddeley | A cautionary example on the use of second-order methods for analyzing point patterns[END_REF] showed how a summary statistics could give the same spatial information for two spatial patterns differently generated (Figure 2.9). They divided a square into independent grids, setting in there a random number of points (N s =0, 1 or 10) following different distributions (p(N s = 0) = 1/10, p(N s = 1) = 8/9, and p(N s = 10) = 1/90) (Figure 2.9-left). They realized that the K-Function was identical for this spatial pattern than for a random point pattern generated by a Poisson point process that used the same intensity (Figure 2.9-right). Thereby the patterns could not be distinguished by this second-order method only.

Figure 2.9: Point patterns on a 20x20 region. On the left is shown the application of the process described in the text, whereas on the right a Poisson point process is displayed [START_REF] Baddeley | A cautionary example on the use of second-order methods for analyzing point patterns[END_REF]]. The K-Function is identical in both organizations.

This result highlights the need to apply as many spatial descriptors as possible to avoid this kind of situations, but more important, to compose a better description of the spatial points configuration.

Testing spatial configurations

To evaluate spatial configurations, the results obtained by the summary statistics on observed data are compared either to the results obtained theoretically by the summary statistics or empirically based on simulations.

Quadrats tests

The homogeneous Poisson process (CSR) is usually taken as the appropriate 'null' model for a point pattern. The basic task in analyzing a point pattern is to find a departure from randomness (H0). A classical test for the null hypothesis of CSR is the χ 2 test based on quadrat counts [START_REF] Diggle | Statistical analysis of spatial point patterns[END_REF]; [START_REF] Baddeley | Spatial Point Patterns: Methodology and Applications with R[END_REF]]. The window is divided into subareas (named quadrats) of equal area. Then, each of these quadrats should present Poisson random variables with the same expected value under the null hypothesis of CSR. To test it, the Pearson χ 2 goodness-of-fit test is used.

χ 2 = i (o i -e i ) 2 e i (2.18)
where o i is the observed and t i the expected values.

Monte Carlo tests

Since it is not possible to use spatial statistics analytically in the most spatial patterns, alternative methods are required. The general strategy is to implement a Monte-Carlo (MC) approach to generate realizations of the model to be tested [START_REF] Baddeley | On tests of spatial pattern based on simulation envelopes[END_REF]]. The Monte Carlo method is a mean of statistical evaluation of mathematical functions using random samples.

There is always some error involved with this scheme, but the larger the number of random samples taken, the more accurate will be the result. This approach is therefore based on a broad class of computational algorithms that rely on repeated random sampling to obtain numerical results.

One of the large subclass of Monte Carlo methods used in spatial statistics is the Markov chain Monte Carlo (MCMC) sampler. It is used when the probability distribution of the variable is parametrized. Inside of this group, the most commons are the Metropolis-Hastings algorithm and the Gibbs sampling. The Metropolis-Hastings algorithm is used to obtain a sequence of random samples from a probability distribution for which direct sampling is difficult. It is utilized for sampling from multi-dimensional distributions, especially when the number of dimensions is high [START_REF] Metropolis | Equation of state calculations by fast computing machines[END_REF]; [START_REF] Hastings | Monte carlo sampling methods using markov chains and their applications[END_REF]]. The Gibbs sampler is a MCMC algorithm for obtaining a sequence of observations which are approximated from a specified multivariate probability distribution, when direct sampling is difficult [START_REF] Geman | Stochastic relaxation, gibbs distributions, and the bayesian restoration of images[END_REF]].

m Mote-Carlo methods can generate simulated random outcomes under the null hypothesis that is wanted to be tested. Hence, these spatial model realizations can be compared to observations, analyzing quantitatively them using summary statistics.

Then, goodness-of-fit tests are used to check whether the model fits the data. Among these tests, which are based on simulations, the most used are the envelope tests [START_REF] Ripley | Modelling spatial patterns[END_REF]; [START_REF] Illian | Statistical Analysis and Modelling of Spatial Point Patterns[END_REF]]. This method is based on some functional summary characteristic S(r) such as F (r) or G(r). The test compares the empirical summary characteristic estimated from an observed spatial point pattern to the summary characteristic for generated model simulations.

The model realizations are simulated, using Monte-Carlo methods, k times and the estimate of S(r), Ŝi (r) for i = 1, 2, . . . , k, is determined for each sample (the value k = 39 or 99 is typically used). Then the extreme values

S min (r) = min i Ŝi (r) and S max (r) = max i Ŝi (r)
are determined. Finally, three curves showing S min (r), Ŝ(r) and S max (r) are calculated. Since S min (r) and S max (r) are envelopes of the Ŝi (r), the name 'envelope method' is often used, which leads to pointwise confidence bands.

If the inequality

S min (r) ≤ Ŝ(r) ≤ S max (r) (2.19)
holds for all r, the model is accepted, otherwise it is rejected. If the model is rejected, the values r for which Equation (2.19) is violated provide some information of the nature and reason for the deviations of the data from the model.

This test is often regarded and interpreted as a significance test. Indeed, if a fixed r = r has been chosen prior to the simulation, the test which rejects the model if the inequality (Equation (2.19)) is not satisfied for r = r is a correct simulation test. Its error probability in one-sided testing is 1 m+1 . Hence m = 99 corresponds to = 0.01. However, since 'all' r are considered simultaneously, the probability of rejecting H 0 is increased and the true error probability is larger than 0.01. On the other hand, it is to be expected that a test based on single r is rather conservative, i.e. the null hypothesis is rather unlikely to be rejected [START_REF] Loosmore | Statistical inference using the g or k point pattern spatial statistics[END_REF]; [START_REF] Baddeley | On tests of spatial pattern based on simulation envelopes[END_REF]]. This is because the model is simulated with parameters that have been estimated from the same data as those that were used for the test.

Spatial analysis approaches on nuclear architecture

This section discusses the main quantitative image applications, generally classical approaches (Subsection 2.2.1), carried out in the literature to analyze and describe the nuclear architecture.

These studies serve as basis as well as a motivation to develop a new strategy to analyze and decipher better and more accurately 3D spatial organizations.

Microscopic imaging

We have introduced how classic spatial statistical approaches use spatial point patterns as observed data. However, these point patterns are not directly found in biology. The data, which generally is a microscope acquisition (2D/3D image), is a visual representation of the real objects found in the biological system. This raw data must be 'simplified' to spatial point patterns. This step is the starting point of this subsection.

Numerous techniques allow the biologist to label specifically the nuclear compartments he/she wants to analyze. Besides, the microscopy technique is chosen considering the proper selection of the labeling probes. The use of a specific microscopy is chosen considering diverse factors as the sample under study, the resulting signal-to-noise ratio of the fluorescence signal, the possible damage on the sample during observation, the scale and size of the sample or the resolution of the microscopy.

The most important microscopy techniques for nuclear biology are optical microscopy, electron microscope and scanning probe microscopy. Focusing in the first technique, a quite used one is the wide-field microscopy, which has a theoretical resolution of 200 nm in the whole cell by illuminating the whole sample with a single light source. But the most commonly used in 3D nuclear architecture is the confocal microscopy. It uses a convergent laser beam focus at different depth levels in the sample, thus a series of images can be reproduced, from which a 3D representation can be made [START_REF] Minsky | Memoir on inventing the confocal scanning microscope[END_REF]]. A pinhole aperture is placed at the detection end to reduce the impact of out-of-focus fluorescence, thus providing an optical sectioning effect. By reducing the size of that pinhole below the size of the central airy disc pattern, the resolution of the confocal microscope can be enhanced by a factor of 1.4 when compared with the widefield microscope resolution [START_REF] Conchello | Optical sectioning microscopy[END_REF]]. The precision of this technique is limited by the diffraction of the laser focal point. Its maximum resolution is around 160 nm.

Extraction of the nucleus and its compartments in a threedimensional image

Before nuclear images can be treated by a quantitative analysis, objects of interest (e.g. the nucleus, CTs, genes) have to be located and extracted from the original images. This process, called image segmentation, is generally achieved by setting an intensity threshold that separates object pixels/voxels from the others. For example, nuclear contours are frequently identified using DAPI counterstaining. The difficulty in achieving this task automatically is generally underestimated. For example, the popular Otsu's thresholding method [START_REF] Otsu | A threshold selection method from gray-level histograms[END_REF]] is sensitive to intensity distribution features [START_REF] Xu | Characteristic analysis of otsu threshold and its applications[END_REF]; [START_REF] Xue | Ridler and calvard's, kittler and illingworth's and otsu's methods for image thresholding[END_REF]]. Setting an accurate threshold is all the more critical because errors are magnified in 3 dimensions. This point can be illustrated by segmenting a 3D image at 2 slightly different thresholds: the 2D section areas displayed in Figure 2.10-A appear to be almost identical, differing by < 2%; by contrast, in 3D, the difference between nuclear volumes is 8 %. When there is uncertainty about the intensity threshold, it is essential to evaluate the potential impact on the quantitative measurements doing, for example, a sensitivity analysis. Also, threshold-insensitive measures could be used or measurements over a range of threshold values could be integrated [START_REF] Eils | Three-dimensional reconstruction of painted human interphase chromosomes: active and inactive x chromosome territories have similar volumes but differ in shape and surface structure[END_REF]]. Alternative methods for intensity thresholding can also use a priori information about the number or size of the expected objects achieving more accurate results. It may be important to include additional image processing steps before or after the segmentation steps, such as deconvolution, noise reduction, or shape regularization, using mathematical morphological operators [START_REF] Ronneberger | Spatial quantitative analysis of fluorescently labeled nuclear structures: problems, methods, pitfalls[END_REF]].

The extraction of the nuclear compartments becomes more complicated. The literature provides with different approaches for this goal. A number of works use global intensities [START_REF] Beil | Spatial distribution patterns of interphase centromeres during retinoic acid-induced differentiation of promyelocytic leukemia cells[END_REF][START_REF] Beil | Statistical analysis of the threedimensional structure of centromeric heterochromatin in interphase nuclei[END_REF] Other proposed the partitioning of the nucleus into regions with similar intensities (Figure 5.1-C) [START_REF] Andrey | Statistical analysis of 3d images detects regular spatial distributions of centromeres and chromocenters in animal and plant nuclei[END_REF]]. More recently, another study applied 3D parametric shape representation models based on spherical harmonics [START_REF] Eck | A 3d intensity model based on spherical harmonics for automatic 3d segmentation of heterochromatin foci[END_REF][START_REF] Eck | A spherical harmonics intensity model for 3d segmentation and 3d shape analysis of heterochromatin foci[END_REF]]. In there, a model fitting process was presented to, applying consecutively spherical harmonics to alter the morphology, be able to analytically describe the shape and intensities of the labeled foci.

Some of these steps may be simplified when better images become available due to technological advances in microscopy. However, the need for accurate segmentations will remain.

Quantitative image analysis of nuclear organizations

Two broad approaches are used to analyze nuclear positioning data which typically consist of sets of points and sometimes also of the associated object sizes (spatial point patterns and possible addition of volume size, Section 2.2 and Chapter 3).

In the first approach, object positions are analyzed individually, thus focusing on the absolute positioning in the nucleus. The prominent paradigm is radial distance analysis in which object location is defined based on its distance from the nuclear envelope or nuclear centroid or on its relative position along the radius passing through it. Interestingly, a long distance from the nuclear centroid may induce to suggest a peripheral positioning, but it cannot demonstrate departure from randomness. For example, the outer shell of a half radius width represents 90 % of a sphere volume, and this proportion remains as high as 50 % when reducing the shell width to one fifth of the sphere radius (Figure 2.10-B). Since nuclei frequently have a spherical topology, peripheral positioning of nuclear compartments is thus likely to occur under a random distribution. Measures applied by classic image analysis are therefore not absolute, they do not fully justify spatial rules of organization. To demonstrate a specific peripheral positioning requires a spatial statistical evaluation to verify that the small distances to the border are not explained by randomness. Hence, the observed distances to the border must be compared to the distances to the border expected under a random configuration inside the same system.

Besides, if a peripheral positioning confirmation is wanted at the population level, a statistical test must validate this organization at the majority of the dataset cases. That conclusion can not be held with mere distances to the border in isolated individual samples.

The radial distance measurement is generally binned into a finite number of classes corresponding to concentric shells. To test for any preferential location towards/away from the envelope, the resulting histogram is compared to the expected distribution under randomness (applying quantitative analysis without the use of spatial statistics). Continuous variants have been proposed [START_REF] Ballester | The nuclear localization of wap and csn genes is modified by lactogenic hormones in hc11 cells[END_REF]] that avoid the loss of statistical power inherent in class binning as the eroded volume fraction (EVF) being this defined as the fraction of nuclear volume lying between a considered point and the nuclear periphery. This technique has been use more recently by [START_REF] Ollion | Proliferation-dependent positioning of individual centromeres in the interphase nucleus of human lymphoblastoid cell lines[END_REF] to present an analysis of the nuclear distances between centromeric and pericentromeric regions, the nucleolus and the nuclear envelope in human lymphoblastoid cells.

In plants, distance analysis was used to demonstrate the preferential localization of A. thaliana centromeres at the nuclear periphery of diploid cells [START_REF] Fang | Centromere positioning and dynamics in living arabidopsis plants[END_REF]]. The popularity of radial distance analysis in nuclear organization studies [START_REF] Shiels | Quantitative analysis of cell nucleus organisation[END_REF]] is probably due to the simple spherical shape of cultured animal cell nuclei. The diversity of plant nuclear shapes (examples in Figure 5.2) [START_REF] Chytilova | Green fluorescent protein targeted to the nucleus, a transgenic phenotype useful for studies in plant biology[END_REF]], however, challenges the general relevance of this approach in plant studies. Additionally, some techniques underrate the irregular nuclear envelope, transforming them into regular shapes, localizing objects within discrete concentric shells. Besides, some analyses sub-estimate one dimension studying individual 2D slices or a projection of the 3D stack into the XY plane. Other studies limited points location in concentric 2D circles [START_REF] Meister | The spatial dynamics of tissue-specific promoters during c. elegans development[END_REF]]. In there, the main issue comes when the objects under study have size and lay between two concentric shells. As they evaluate point positions, each opts for one of the concentric shells but when we consider to locate an object that occupies two, this involves a problem. Hence, this class of point spatial evaluation cannot be used to locate objects but just points in concentric 2D/3D circles/shells. Furthermore, radial distance analysis entails a projection of 3D data onto a single dimension, thus resulting in a significant loss of spatial information (Figure 2.10-C).

The second approach considers all object positions from a single nucleus together, thus evaluating their mutual positioning. In its simplest form, such an analysis relies on object association frequencies, with an association being defined by the inter-object distance below some fixed thresholds. Comparing measured frequencies with expected frequencies under random object distributions reveals either associations or exclusions. This approach revealed a random association between homologous genomic regions of ∼100 kb in A. thaliana, thus demonstrating the absence of somatic homologous pairing in this species [START_REF] Pecinka | Chromosome territory arrangement and homologous pairing in nuclei of arabidopsis thaliana are predominantly random except for nor-bearing chromosomes[END_REF]]. Similar results were later obtained in other species [START_REF] Berr | Chromosome arrangement and nuclear architecture but not centromeric sequences are conserved between arabidopsis thaliana and arabidopsis lyrata[END_REF]; [START_REF] Schubert | Random homologous pairing and incomplete sister chromatid alignment are common in angiosperm interphase nuclei[END_REF]].

Analysis of nuclear organizations using spatial statistics

Spatial statistics offer more elaborate tools for analyzing and describing point patterns based on summary statistics such as cumulative distance functions (Subsection 2.2.2). Standard spatial functions are the distance from any object to its nearest neighbor (known as G-Function)

or the distance between any position and the nearest object (called F -Function). Besides the measurement of distances, there are spatial descriptors which make other types of quantification, as counting objects by a given distance (aka K-Function) [START_REF] Ripley | Modelling spatial patterns[END_REF]]. As described above, the measured distribution functions are compared to the expected functions under the hypotheses of reference models, which are generally based on complete spatial randomness.

The exhaustive sampling window of classical approaches contrasts with nuclear data, which result from position recordings over finite domains with replication over samples of nuclei.

Initial attempts to apply spatial statistical tools to nuclear studies ignored these difficulties by considering nuclear data as classical spatial data sampled from virtually infinite point processes [START_REF] Noordmans | Randomness of spatial distributions of two proteins in the cell nucleus involved in mrna synthesis and their relationship[END_REF]; [START_REF] Beil | Statistical analysis of the threedimensional structure of centromeric heterochromatin in interphase nuclei[END_REF]; [START_REF] Buser | Quantitative investigation of murine cytomegalovirus nucleocapsid interaction[END_REF]]. Because of the general lack of statistical power in per-individual analyses, revealing spatial effects of small amplitude requires integrating data extracted from large populations of nuclei. Early studies incorporated neither size nor shape normalization and relied, for example, on average cumulative distance functions [START_REF] Noordmans | Randomness of spatial distributions of two proteins in the cell nucleus involved in mrna synthesis and their relationship[END_REF]; [START_REF] Beil | Statistical analysis of the threedimensional structure of centromeric heterochromatin in interphase nuclei[END_REF]]. In other studies, inter-nucleus size normalization was achieved by dividing measured distances by nuclear size [START_REF] Fang | Centromere positioning and dynamics in living arabidopsis plants[END_REF]] or the maximal observed distance [START_REF] Mcmanus | The transcriptional regulator cbp has defined spatial associations within interphase nuclei[END_REF]].

Adapting methods rather than data was proposed as an alternative with the introduction of spatial statistical tools specifically designed to analyze nuclear organization data. Comparisons of nuclear patterns to model outcomes conditioned by nuclear morphology were either performed on an individual basis [START_REF] Russell | Segmentation of fluorescence microscopy images for quantitative analysis of cell nuclear architecture[END_REF]] or at the group level [START_REF] Andrey | Statistical analysis of 3d images detects regular spatial distributions of centromeres and chromocenters in animal and plant nuclei[END_REF]].

Results reported on simulated data later demonstrated the superior statistical power of this last method as compared with other strategies for data integration over samples of nuclei [START_REF] Weston | Analysis of spatial point patterns in nuclear biology[END_REF]]. This methodology is particularly promising for nuclear organization studies in plants, as plant nuclei have diverse shapes that deviate significantly from simple spherical ones [START_REF] Chytilova | Green fluorescent protein targeted to the nucleus, a transgenic phenotype useful for studies in plant biology[END_REF]].

Motivation of the present work

This chapter has introduced the key points that stirs up the development of this Thesis. First, the nuclear architecture has been described briefly: the nucleus is a complex organelle that is formed by different and numerous compartments that differ in their number, morphology and size. We have focused on chromocenters, plastic and dynamic nuclear compartments in A.

thaliana and other species that are formed by the nuclear constitutive heterochromatin. They have an important structural role into the genome. In a statistical spatial analysis, chromocenters were observed to follow a non-random spatial organization with a preferential regular distribution [START_REF] Andrey | Statistical analysis of 3d images detects regular spatial distributions of centromeres and chromocenters in animal and plant nuclei[END_REF]]. Moreover, other approaches suggested a more peripheral than central organization based on subjective analysis of the spatial evaluation of centromeres windows of larger domains, hence they did not show the whole organization. Besides, objects generally were considered as simple points that identified the objects, forming a spatial point pattern inside the sampling window. To describe the spatial organization of this pattern, diverse measurements were applied by summary statistics. Then, to test hypothesis of spatial configuration, comparisons were done between the output of the summary statistics on observations and on simulated data. Sometimes in these simulations, theoretic formulas of the summary statistics could be applied but others they had to be empirically utilized. There is a lack of statistical tests that go beyond the individual evaluation of a sampling window.

In this Thesis, a first objective is to set an innovative strategy to address different key points:

• analyze the positioning of objects and not simple point positions.

• examine the spatial organization inside closed domains of arbitrary shape, not using sampling windows of larger systems.

• use of finite point processes inside the original domain boundary instead of classical approaches that utilize them in sampling windows considered as representation of a virtually infinite processes.

• evaluate more complex spatial models than complete randomness.

• achieve an evaluation at the population level, taking into consideration inter-individual variability.

• employ 3D tools and methods to process the original raw 3D data.

• allow the analysis of spatial distributions independently of the scale and nature of the data (genericity).

A second objective of this Thesis is to apply the developed methodology to analyze the spatial organization of chromocenters in A. thaliana nuclei. We first want to confirm their non-random organization. Further, we look for deciphering the spatial rules that explain their arrangement.

To this end, several new spatial models and descriptors were developed. Second, we want to evaluate whether mutations alter the nuclear architecture in A. thaliana. To do that, we choose mutants that are known to produce nuclear morphology modifications and hence, that could produce changes in the spatial organization of chromocenters.

Chapter 3

Methods for analyzing spatial object patterns in confined spaces

The key point on this Thesis work is to set a framework to allow the spatial evaluation of objects with different volumes distributed into arbitrary 3D shapes. The chosen strategy to spatially examine the organization of the objects pattern is by its comparison to expected spatial distributions that follow specific spatial hypothesis. We make use of spatial models, which are computational and mathematical rules that produce and represent specific spatial configurations. The most basic expected organization that a spatial evaluation tests is complete randomness. Information from the observed data, including domain size and shape, and objects number and sizes, is introduced into the model. Spatial models more complex than complete randomness, have been developed using more information from the observed data, i.e. using distances between each object to the domain envelope. The comparison between the observed spatial objects pattern configuration and the expected spatial objects pattern configuration is done using spatial statistical descriptors (summary statistics) and our spatial statistical tool that lets examine spatial hypotheses at the population level.

In this chapter, we introduce first the required format for the input data, and then the diverse spatial statistical descriptors implemented to quantify spatial configurations. After that, the different spatial models developed to test spatial hypotheses of organization are described. The 49 spatial distribution index (SDI) tool, which allows the evaluation of the spatial configuration at the population level, is recalled, since it was already introduced [START_REF] Andrey | Statistical analysis of 3d images detects regular spatial distributions of centromeres and chromocenters in animal and plant nuclei[END_REF]].

Representation of 3D objects and domains

To evaluate a spatial configuration, we require a 3D representation of the domain and its objects. Therefore the input data are representations of the 3D surfaces of the pattern objects and their containing domain.

It is frequent, in nuclear biology, that the input data is a raw 3D multi-channel image that comes from a microscope. We have therefore implemented preliminary steps to extract the main domain and its objects from 3D confocal microscope images, oriented to one-channel- This representation of the observed data using 3D surfaces differs from the pipeline introduced by [START_REF] Andrey | Statistical analysis of 3d images detects regular spatial distributions of centromeres and chromocenters in animal and plant nuclei[END_REF], in which they used the binary masks (discrete space) as input to execute the spatial analyses. The change that we present here, from discrete to the continuous space (triangular meshes envelopes) implies a improvement in the measurement precision. We allow to retrieve real distances and not the limited discrete ones (number of voxels multiplied by the voxel calibration). However, the methodology change involves more complex algorithms and adds some other difficulties as the increase of the required computational cost. For example, to check whether certain point is located inside the domain, in the continuous space we set another point far away from the domain, checking how many times the line between the two points crosses the domain envelope. Odd values mean that the point is inside. This step requires more computational time than to simply check the voxel value at a given position.

stacks

Spatial statistical descriptors

In this Thesis we focus only on the use of the summary statistics that quantify distances within the domain. The most classical and commonly used summary statistics and their purposes have been described in Section 2.2.

All the following spatial statistical descriptors have been implemented to be used in generic confined 3D domains. They evaluate, as in classic statistics, finite point processes, but here the domain boundary makes the difference. Whereas in classic approaches the boundary simply marks the end of the sampling window, in our methodology it can interplay with the objects, hence it can enter into the quantification. The implemented distance functions may be used indifferently of the size, scale and nature of the system.

F -Function

The first spatial statistical descriptor we present in the pipeline is the F -Function, already implemented in the C++ libraries of our group (Equation (2.10)).

The F -Function is the cumulative distribution function (CDF) of the distances from any par-ticular random domain location (reference points) to its closest object in the spatial objects pattern (Figure 3.2). The implementation takes into account the domain dimensions to consequently set enough reference random points to cover the whole space, not letting the existence of zones uncovered by these random locations in order to give an unbiased response. 

G-Function

The nearest-neighbor function, which was already implemented in the C++ libraries of the lab, is added to the pipeline. This called G-Function, is the CDF of the distances from each object to its closest neighbor, hence a local-scale spatial descriptor (Figure 3.3). The both F -and G-Functions can point to aggregate configuration when distances between nearest objects are considerably short (attraction), regularity when all the distances are similar (spatial repulsion), coupling when the measures are similar and reciprocal (meaning that each object is the closest for its nearest neighbor -with G-, also called pairing), and even an idea of a non-specific pattern (randomness).

H -Function

We can analyze the interplay between all the objects of the spatial pattern using the H-Function, already declared as a class in the C++ libraries. This is the CDF obtained quantifying all the distances from each object to all the others within the domain (Figure 3.4). While the G-Function suggests how the different elements are distributed in the confined space by evaluating their interaction at the local scale, the H-Function does it at all scales.

B-Function

In biology, there is a relevant interest in deciphering the interaction between compartments and their domain boundary (i.e. in nuclear architecture). This is related to the evaluation of a possible spatial repulsion or attraction between the boundary and the inner objects. One example is the spatial relationship between silenced genes and their close organization around the nuclear boundary. This involves an interest to analyze statistically the peripheral positioning of objects within closed 3D domains.

The domain itself may be used to evaluate whether it presents a spatial interaction with the objects, which using classic statistics could not be realized. To define an inner-domain reference that can be found and used in every sample we propose to analyze the relationship between each object and the domain envelope. Following this, we define a new spatial statistical descriptor, the B-Function (using 'B' from border), that is the CDF of the distances between each object's centroid and the domain boundary (Figure 3.5). This spatial statistical descriptor can be used to point out to a peripheral organization inside a confined domain or to reject any peripheral preference.

C -Function

In addition to the envelope of the confined space, there are other references that may exist in every domain and can provide with new spatial information. Despite the lack of a strong biological meaning, we choose the barycenter of the confined domain to evaluate how far is an object from the central part of the space. Considering this, it should be cautiously used depending on the morphology and mostly in convex domains. The C-Function (named with 'C' for centroid) is the CDF of the distances from the centroid of each object to the centroid of the domain (Figure 3.6).

It can decipher the objects radial positioning with respect to the domain center. 

Z -Function

We can describe further the interaction between pairs of objects. As our methodology is based on the spatial analysis of confined domains, it is interesting to decipher the interaction between furthest objects. Thereby, we introduce the Z-Function, named with 'Z' because of the last In pink: distances from each object to the one that is located as its furthest.

The response of this descriptor can suggest whether the objects occupy the whole domain, whether they present aggregation or even whether there is a spatial repulsion, at least with one object, when the distances between furthest objects are long.

Other new spatial statistical descriptors

Other additional new spatial statistical descriptors have been added to the framework to achieve a more complete spatial evaluation of a finite spatial pattern. These are described in Section A.1.

Spatial models to decipher spatial configurations

The spatial statistical descriptors discussed above, are the distance functions used to obtain quantitative information from spatial objects patterns. We employ them with the purpose of comparing the response of these descriptors on observed data and on spatial objects patterns that are representations of specific hypothesis of organization. To generate these expected spatial configurations, we use spatial models. Spatial models are sets of computational and mathematical rules that generate determined spatial configurations within observed confined spaces. We have implemented a series of spatial models to represent diverse rules of spatial configurations. The first and most basic one is the development of the completely random point process.

Completely random point process in a 3D domain

This first purpose of a spatial evaluation is the rejection (or acceptance) of the complete randomness of a spatial pattern. To enable that, we implement a spatial model that achieves this spatial configuration, generating point processes that describe complete spatial randomness (CSR). We develop it in a simple way to serve as basis for future more complex spatial models.

Since we utilize observed 3D domain envelopes, we need to set the random point patterns inside of these irregular shapes. We set up a binomial process that is defined by the number of points that we want to locate inside the confined space and an uniform distribution (Algorithm 1).

To set randomly a point/object inside the domain, the methodology places it using the domain bounding box. Hence, it is required to check whether it has been located inside the domain. To do that a point is set outside of the bounding box in order to count how many times the line that connects it with the random point/object crosses the domain envelope (Figure 3.8). In case the number of crosses is odd, the point/object is inside the domain boundary, otherwise, for even numbers, the object is located outside the domain borders. This validation is applied in all the model implementations. The method draws an outsider point in order to count how many times the line that connects it with p i crosses the domain border. Odd number of crosses indicate that p i is located inside the domain.

The CSR model realizations displayed in Figure 3.9 represent the most basic spatial organization, in which there are no rules of preferential positioning. The location of the points follows an uniform distribution. To describe better the 3D configuration (considering we show them in a 2D representation), a histogram of the distances from the points to the border is displayed above each domain. They show how, sometimes, these points are located touching the domain We represent each object as a sphere, reshaping the original object while maintaining its original volume. This is done by giving the simulated object the radius of the sphere which has the volume of the observed object (equivalent spherical radius). The implementation respects the volume assigned to each point, thus two objects cannot overlap (the radius r i attached to each point p i is respected, see Figure 3.10). Besides, a simulated object cannot be closer to the domain envelope than its radius, thus the object stays completely inside the domain envelope (Algorithm 2). Algorithm 2 introduces a scheme of the implementation of this hardcore 3D spatial point process. The implementation of this model requires to check and validate that the non-overlap conditions (between objects and with respect to the domain boundary) are followed. Besides, it could be the case in which the already set objects, due to their positions and/or volumes, do not let another object to be placed into the domain. To solve this, a counter is set to not let the function enter into an infinite loop. Hence, if the counter reaches the maximum number of attempts, the function ends giving an error or exception as return. These two steps are introduced in all the following spatial models.

Algorithm 2: Simulation of the hardcore 3D spatial point process: pseudocode input : D (3D surface of the domain), n (object number), r (list of equivalent object radii) output: p (hardcore 3D random spatial pattern of n objects)

B ← bounding box of D; for i = 1 to n do repeat p i ← random position ∈ B; S i ← sphere (p i , r i ); until (S i ∩ D = S i ) & (S i ∩ S j<i = ∅); return p;
The setting of an object as a sphere simplifies the methodology and saves computational time with respect to using complex shapes. Besides, chromocenters, which are the main nuclear compartment that we spatially evaluate in this Thesis, typically have a spherical-like shape.

Furthermore, approximating objects of interest by spheres should be approriate for a large number of biological applications (CCs in nuclei, endosomes in cells, cells in tissues, etc).

Each spatial objects pattern shown in Figure 3.11 presents 10 spheres of radius = 0.1 µm in spherical and ellipsoidal domains of similar volumes (sphere with radius r 3.5 µm, ellipsoid with a = 2 µm, b = 4 µm and c = 6 µm as semi-principal axes). Considering the implementation of the spatial objects pattern takes into account their sizes, the objects are not closer to the domain envelope than their sizes. 

Orbital spatial point model

One important question when an object distribution significantly deviates from complete spatial randomness is to determine whether this is due to spatial heterogeneity (non homogeneous probability for an object to be located at some position in the domain) or to actual interactions between objects. Here, we are interested in evaluating the contribution of spatial heterogeneity caused by interaction with the domain boundary, but the method can be used with any other reference structure. The realizations of this inhomogeneous model are constructed by randomizing points (i.e. p i ) in inner orbits separated by certain distances (i.e. d i ) to the domain envelope (Figure 3.12). We name this spatial model orbital considering the possible orbits in which the different points can be set. 

for i = 1 to n do repeat q ← random position ∈ D (Algorithm 1); q D ← closest point of q on D; n ← normal to D at q D ; p i ← q D -d i • n; until (p i ∈ D) & (d(p i , D) = d i );

Orbital 3D spatial objects model

The next spatial model that we developed combined the orbital concept with the object size.

This is implemented to analyze peripheral organizations of objects within closed 3D domains.

Using it, we can set an object p i with radius r i in an inner orbit with distance d i to the domain boundary (Figure 3.14).

p i i r d i Figure 3
.14: Characterization of an object in the orbital 3D spatial objects model. Each object is defined inside the domain by its position p i , its radius r i and the distance to the border d i .

The object is randomized in the inner orbit defined by the distance d i from the domain border.

This orbital 3D spatial point process allows us to implement spatial patterns that present objects randomly distributed but constrained by their distances to the domain envelope and their sizes. The basic scheme of its implementation is as follows:

Algorithm 4: Simulation of the orbital 3D spatial objects model: pseudocode input : D (3D surface of the domain), n (object number), r (list of equivalent object radii), d (list of object distances to the border) output: p (orbital 3D spatial pattern of n objects)

for i = 1 to n do repeat q ← random position ∈ D (Algorithm 1); q D ← closest point of q on D; n ← normal to D at q D ; p i ← q D -d i • n; S i ← sphere (p i , r i ); until (S i ∩ D = S i ) & (S i ∩ S j<i = ∅) & (d(p i , D) = d i ); return p;
To illustrate spatial object patterns that represent the implementation of this spatial model (Algorithm 4), we have used equal-sized-objects that present the same distance to the border in the spherical and the ellipsoidal domains (Figure 3.15). 

3D maximum repulsion spatial point process

The previous spatial models have been implemented to reject randomness (in spatial points or objects patterns) and to evaluate possible randomness constrained by a specific interaction with the domain boundary. Going beyond that, we developed a spatial model to examine the interplay between points or objects within the spatial pattern, implementing organizations in which the distances between objects are maximized. This spatial model, which we have named maximum repulsion, serves to set spatial objects patterns under maximum regularity.

The 3D maximum repulsion spatial model sets the objects at positions where they cannot be further to/from the other objects, thereby covering the whole domain space. The difficulty lies on how to define mathematically the maximum high regularity.

The concept of maximum spatial repulsion is used in physics, chemistry, biology and engineering, although most of the practical examples are found in physics [START_REF] Altschuler | Method of constrained global optimization[END_REF]; [START_REF] Morris | Genetic-algorithm energy minimization for point charges on a sphere[END_REF]]. In these studies, for example, simulations were carried out to set points equidistantly in a spherical domain envelope.

Based on classic physics' approaches [START_REF] Wille | Searching potential energy surfaces by simulated annealing[END_REF]; [START_REF] Altschuler | Method of constrained global optimization[END_REF]], we found a solution to establish a high regular spatial pattern based on the energy. We assimilate the objects' spatial configuration to a physical system. The interrelation between the objects can be expressed with a single number, which represents the current energy. Hence, when an object changes its position, this generates a new system energy. Following this, we can force movements in the spatial pattern to compare the energy between two consecutive spatial pattern states, validating the movements when the objects are more regularly distributed. Based on physics' approaches, we use the inverse of the sum of certain distances between objects as potential energy in order to find a reduction of this system energy. The potential energy may drop till it finally converges.

This energy convergence would define the final spatial objects pattern that present a maximum spatial repulsion between objects, hence, a maximized regular spatial organization.

Similar to a Gibbs point process (Subsection 2.2.1.4), by using the Metropolis-Hastings algorithm [START_REF] Metropolis | Equation of state calculations by fast computing machines[END_REF]; [START_REF] Hastings | Monte carlo sampling methods using markov chains and their applications[END_REF]], which is a Markov chain Monte Carlo (MCMC) method, we can obtain a series of organizations that start from a random sampling (Subsection 3.3.2). Measuring the energies during series of system states, we can accept or reject object movements till the energy converges, meaning that the spatial arrangement is stable and objects cannot be more regularly distributed. In this strategy, the energy formula chosen for this purpose is the inverse of the mean of the distances between nearest objects (Equation (3.1)). The formula used to obtain the system energy in a spatial pattern with n objects in a closed domain is

E(p 1 , p 2 , . . . , p n ) = n i min j =i {d(p i , p j )} (3.1)
where p i and p j are the positions of the ith and jth objects.

Using this system energy, the pseudocode used to implement this spatial model is described in Algorithm 5.

Algorithm The spatial patterns obtained using this model are quite particular (Figure 5.15). Since we want to maximize the distance between nearest objects, they try to be located as far as possible, being whenever is possible at the domain envelope. Interestingly, this depends on the domain shape and the number of objects in the pattern. In the maximum repulsive spatial patterns of 10 objects we see how in some of the cases all the objects are touching the domain boundary or how some of them 'are forced' to the inner domain to respect the maximum regularity (i.e. first and fourth spheres Figure 5.15). These examples also display the variability of these spatial patterns despite their high regularity. 

Hardcore 3D territorial spatial model

As it has been mentioned, the strategy here implemented has an expandable and adaptable character. As we will see in Subsection 5.2.7, one of the hypothesis that we manage to describe the spatial arrangement of chromocenters in A. thaliana is that these nuclear compartments are regularly distributed into the nucleus, spatially constrained within and by chromosome territories. Considering that, we have started the development of new spatial models to allow in the close future to evaluate this hypothesis when the proper data will be available. We needed thereby a spatial model to test the positioning of objects inside specific compartments that fill the domain space.

The domain partitioning algorithm serves to divide stochastically the domain space in the number of compartments that we need. The implementation starts from random points matching to the number of territories. These are considered as seeds that grow statistically (making corrections if required) till they fill the whole domain. Finally we obtain the 3D surfaces of all the domain territories envelopes. This unpublished algorithm implemented in the lab library uses binary masks, so it differs from the general methodology described here. Due to the stochasticity of the algorithm of the spatial model realizations, each one presents a different territorial organization (Figure 3.17 In these examples we imposed that the territories had similar volumes. Territories are displayed with certain transparency to let see the others that are behind. This is the preliminary step to build spatial models that constraint objects within domain territories. Hence, the first spatial model we develop is the hardcore 3D territorial one. It sets randomly one object in each territory (Algorithm 6). The spatial model lets the object occupy other compartment's space but the object barycenter is kept in its matching territory. The hardcore distances of each object are used, thus objects cannot overlap other objects and they cannot be closer to the domain boundary than their volumes allow.

The ellipsoidal domains seen in Figure 3.18 present 10 objects randomly distributed in the same 10 territories. The histograms from the spatial patterns show the variability of the distance to Algorithm 6: Simulation of the hardcore 3D territorial spatial objects model: pseudocode input : D (3D surface of the domain), T (list of 3D surfaces of the domain territories), n (object number), r (list of equivalent object radii) output: p (hardcore 3D territorial random spatial pattern of n objects) the border from each object. Considering that in these spatial patterns each sphere presents a radius r = 0.5 µm, some of the objects are by pure chance, touching the domain boundary.

for i = 1 to n do repeat p i ← random position ∈ T i (Algorithm 1); S i ← sphere (p i , r i ); until (p i ∈ T i ) & (S i ∩ D = S i ) & (S i ∩ S j<i = ∅); return p;

Orbital 3D territorial spatial model

To complement the hardcore 3D territorial spatial model, we added the distance from each object to the domain envelope as a constraint. This spatial model is used to evaluate the regularity added by the distribution in territories to the peripheral organization (Figure 3.19).

Algorithm 7: Simulation of the orbital 3D territorial spatial objects model: pseudocode input : D (3D surface of the domain), T (list of 3D surfaces of the domain territories), n (points number), r (list of equivalent object radii), d (list of object distances to the border) output: p (orbital 3D territorial random spatial pattern of n objects)

for i = 1 to n do repeat q ← random position ∈ T i ; q D ← closest point of q on D; n ← normal to D at q D ; p i ← q D -d i • n; S i ← sphere (p i , r i ); until (p i ∈ T i ) & (d(p i , D) = d i ) & (S i ∩ D = S i ) & (S i ∩ S j<i = ∅); return p;
The orbital 3D territorial spatial model constrains each object inside its corresponding compartment and sets the distance of each object to the domain envelope (Algorithm 7). As in the previous model, part of an object volume can be located inside another compartment but its barycenter remains in its matching territory. quantified. An example for the F -Function would be:

∆ = F (x * ) -F 0 (x * ) with x * such that |F (x * ) -F 0 (x * )| = max x∈ + |F (x) -F 0 (x)| (3.2)
where F 0 is the average F -Function under the random spatial objects model realization.

Hence, the SDI-tool computes the difference between the observed or simulated pattern distance function and the model average yielding a total of m MC realizations + 1 differences with respect to the expected model average (Figure 3.21-B-C). The SDI is the proportion of random patterns with a difference equal to or above the observed one (Figure 3.21-D-F). This so-called SDI-value is therefore the probability of observing, under the the tested spatial model, a difference at least as large as the observed one with respect to the average-under this model. Hence, if the tested spatial pattern follows the model, the SDI presents a value uniformly distributed between 0 and 1.

The SDI-value therefore is a normalized value that measures the goodness-of-fit of the model obtained using the information from the proper sample. The SDI-value represents therefore the grade and sign of the departure of the observed spatial organization respect to the tested spatial model. According to this shape-normalized spatial descriptor index, the SDI values obtained for different samples can be evaluated as a population group. When the distribution of the SDI values do not differ from an uniform distribution, it can be suggested that the tested model is not rejected on the observed dataset. To completely propose that the observed patterns follow the tested spatial hypothesis, several distance functions must provide uniform distributions of SDI values.

In [START_REF] Andrey | Statistical analysis of 3d images detects regular spatial distributions of centromeres and chromocenters in animal and plant nuclei[END_REF], distributions of SDIs were evaluated using the Kolmogorov-Smirnov test. Diverse applications of the framework helped us to identify some bias with this KS test.

Considering that, the discrete Kolmogorov-Smirnov test has been found to be more appropriate considering that the generated SDI values are discrete. This will be fully exposed in Section 4.1.

Recapitulation of the chapter

We have developed a pipeline consisting in different steps that analyze the spatial organization of given objects within confined 3D domains of arbitrary morphology. It allows to decipher 3D spatial configurations from objects in generic contexts, independently of the nature of the system or its scale, using comparisons between observed data and simulations.

We have introduced in this chapter the majority of the spatial statistical descriptors added and/or implemented in the pipeline to get a detailed evaluation of the interaction between the spatial pattern objects and their spatial relationship with the domain. Considering that their use is focused on finite point processes located inside of a closed domain and thus, the number of pattern objects is known, there is no need to apply any border correction as in classical approaches (i.e. Equation (2.8)). If we consider some border corrections as the Hanisch one [START_REF] Hanisch | Some remarks on estimators of the distribution function of nearest neighbour distance in stationary spatial point processes[END_REF]] which can remove objects from the spatial pattern that are close to the boundary, first, we reduce the statistical power of the analysis considering that it depends on the number of pattern objects. Secondly, even more important, when we want to evaluate peripheral organizations (i.e. Subsection 5.2.6), the correction could be risky, biasing the analysis. Since we do not need window corrections, we use the empirical cumulative distribution functions (ECDF) of the measures.

The spatial statistical functions provide with partial information of the spatial objects pattern configuration. Besides, knowing that two particular spatial configurations could also be perceived as similar using one summary statistics (Figure 2.9), it is recommendable to use as many spatial statistical descriptors as we can. The information they provided is generally complementary and therefore, summing partial information, allowing to reconstruct a clear spatial description of the spatial objects pattern. One of the major novelties in this work comes with the addition of the B-and the C-Functions that permit to demonstrate peripheral or central spatial organizations. Indeed, the novelty here is their use in the whole framework, allowing to test, i.e., peripheral positioning of objects thanks to our statistical methods. In classic approaches the distance to the border is also measured, but they do not test the pos-sibility that certain point seen as peripheral, is simply randomly located. Here, we allow the analysis of multi-sized objects positioning but besides, using our statistical approach lets to affirm objectively and quantitatively that an observed peripheral organization is such and not pure heterogeneity. New more spatial statistical descriptors are described in Section A.1. Each spatial statistical descriptor analyzes specific distances within the domain, thus each one gives a partial view of the spatial arrangement. Their use therefore depends on the spatial evaluation that we want to realize.

The spatial evaluation is therefore based on the comparison of the ECDF on the observed data and on simulations that follows specific rules of organization using the real data. Starting from the complete random spatial point model, the other more complex models have been developed.

They can be used to test random on observed spatial points patterns (Subsection 3.3.1) or in spatial objects patterns (Subsection 3.3.2). Moreover, we can evaluate the heterogeneity of peripheral organizations using the orbital spatial models (in points patterns, Subsection 3.3.3 and in objects patterns, Subsection 3.3.4). A similar approach to the first orbital alternative was developed by [START_REF] Heride | Distance between homologous chromosomes results from chromosome positioning constraints[END_REF] to evaluate the distance between chromosome territories. They utilized a spatial model to set the gravity centers of chromosome territories under randomness in their corresponding inner orbits, thus, examining the locations of simple points not considering their volumes. The spatial approach served them to propose that for some chromosomes the radial position was enough to justify the inter-homologue distance. We have gone beyond of that approach, using 3D surfaces (continuous space) rather than images (discrete space), but more important, allowing to assign to the pattern points, which number is arbitrary, their corresponding volume, to accomplish a spatial evaluation of the objects' arrangement. Another spatial model has been introduced to test maximized regular organizations in 3D confined domains (Subsection 3.3.5).

Besides of constraining the points with distances, we have implemented spatial models that constrain objects in domain territories, limiting where they can be located inside the domain. These more elaborated spatial models, directly oriented towards the analysis of the nuclear architecture, allow to test random configuration of objects inside domain territories (Subsection 3.3.6 but also constraining the distances from each object to the domain boundary (Subsection 3.3.7).

All the methods of this methodology has been implemented under C++ class hierarchies to expand the tools libraries set up in our lab with the purpose of letting other colleagues their use. At the same time, this helped us to use some pre-existing classes and tools, as for example, the F -Function.

Chapter 4

Results (Part 1): Numerical investigations on methods

In this chapter, the different analyses carried out to evaluate the properties of the implemented methodology are introduced. Here, we evaluate the power of two different tests to check the uniformity of spatial organizations at the population level. We then address the question of how the spatial organizations generated by the orbital 3D and the maximum repulsive spatial models depart from complete randomness. Besides, we examine the reproducibility of the SDI values in different runnings. The robustness of spatial analyses to segmentation errors in the domain envelopes is analyzed. To conclude this chapter, we introduce the basis for methods to compare spatial configurations between different groups.

Unbiased testing of spatial models using replicated data

Previously, in Section 3.4 we have described the SDI-tool, how a SDI-value is got and its purpose: to represent with a single value the departure of a spatial pattern from the tested model measured by a spatial statistical descriptor. One of its strong points is that allows to evaluate the goodness-of-fit of spatial models at the population level. In [START_REF] Andrey | Statistical analysis of 3d images detects regular spatial distributions of centromeres and chromocenters in animal and plant nuclei[END_REF], the Kolmogorov-Smirnov test was therefore used to test the uniformity of a distribution of SDIs.

Observations follow the model spatial rules when there is not statistically significant difference.

Here, we show that using the KS test is not appropriate for evaluating model goodness-of-fit using the SDI. To do that, we employed simulated samples of patterns containing 10 points We reasoned that the effect could result from the discrete nature of the SDI, which takes a finite number of values by steps of 1 m+1 , whereas the KS test is designed for uniform distributions. Hence, the sample size effect on the p-value could be a consequence that the SDI distribution appears more and more discontinuous when the sample size increases. For the same reason, the effect is more pronounced with small values of m, differing more from a continuous (seen in a CDF plot as the steps number, Figure 4.2). Discrete versions of the KS-test have been proposed in the one-sided [START_REF] Conover | A kolmogorov goodness-of-fit test for discontinuous distributions[END_REF]] as well as two-sided cases [START_REF] Gleser | Exact power of goodness-of-fit tests of kolmogorov type for discontinuous distributions[END_REF]]. Here we used use an alternative based on KS for discrete distribution as implemented in the dgof package [START_REF] Arnold | Nonparametric goodness-of-fit tests for discrete null distributions[END_REF]] of the R software (R Core Team, 2013). As expected, this discrete alternative gave around 0.5 average p-value ( Samples of completely random patterns of 10 points each were drawn within the unit square and compared to the completely random model using the SDI method. For each pattern, the SDI was computed for the three cumulative distance functions F , G, and H, using m = 9, 19, or 39 independent completely random patterns. For each sample, the average SDI value (gray) was computed and the uniformity of the SDI distribution in the [0; 1] interval was tested using either the continuous Kolmogorov-Smirnov test (blue) or an alternative test adapted to the discrete case (magenta). (B) The curves show the evolution with sample size of the averages (computed over 30 samples) of test p-values or average SDI values.

used their approach to evaluate intra-nuclear gene distributions [START_REF] Jost | 3d-image analysis platform monitoring relocation of pluripotency genes during reprogramming[END_REF]] or to compare it to alternative strategies [START_REF] Weston | Analysis of spatial point patterns in nuclear biology[END_REF]]. The validity of these previously reported results are questioned by our present results on the incorrect significance level associated to the use of the KS test. Fortunately, the bias manifests itself for very large samples, much above 

Cumulative frequency

Spatial distribution index (SDI) applied to discrete distributions [START_REF] Noether | A note on the kolmogorov-smirnov statistic in the discrete case[END_REF]; [START_REF] Slakter | A comparison of the pearson chi-square and kolmogorov goodness-of-fit tests with respect to validity[END_REF]]. This seems in apparent contradiction with our results in which we obtained actual values larger than the nominal level of the test. The reason for this discrepancy is that the null distribution in our experiment was not the discrete cumulative distribution function over the accessible set of SDI, but instead the continuous distribution over the interval [0,1], as implemented in [START_REF] Andrey | Statistical analysis of 3d images detects regular spatial distributions of centromeres and chromocenters in animal and plant nuclei[END_REF] and as has been used since by other authors [START_REF] Jost | 3d-image analysis platform monitoring relocation of pluripotency genes during reprogramming[END_REF]; [START_REF] Weston | Analysis of spatial point patterns in nuclear biology[END_REF]].

[p < ε] [p < ε] [p < ε] F-SDI G-SDI H-SDI
This evaluation pointed out to the use of the discrete KS test (dgof package of the R software)

to examine the uniformity of SDI values distributions at the population level due to its major accuracy and better performance than the classic KS test. The discrete KS test is therefore used when is required to test uniformity in this Thesis.

Characterization of spatial models

One of the questions that pops up using spatial models is their characterization: how they differ from randomness. To address it, we have carried out simulations to test complete randomness on spatial patterns generated by the orbital 3D and the maximum repulsion spatial models. In this section, we evaluate the distribution of SDI values obtained in that analysis.

We distinguish 2 datasets considering the morphology of the domain, using spherical and ellipsoidal ones. These domains have a r 3.5 µm for the sphere and a = 2 µm, b = 4 µm and c = 6 µm as semi-principal axis lengths for the ellipsoid, presenting a difference in volume < 5 %. We evaluate the datasets independently. Hence, apart from the examination itself, we could distinguish whether there is a shape and size effect in the spatial evaluation.

Each dataset is formed by 100 hundred individual samples. From those, there are 10 samples with the same number of objects, of size r = 0.1 µm, which goes from 4 to 22 objects by steps of 2. We chose this range of objects considering the variability in chromocenters number seen in A. thaliana leaf cell nuclei (Subsection 5.2.2) in order to illustrate spatial patterns that could be presented on real applications.

We first realized a technical validation, testing complete random spatial point patterns and hardcore 3D spatial object patterns versus themselves (Section A.2). This validation of the methodology, allowed us to use the hardcore 3D spatial model to test randomness in the following more evolved spatial models developed in this framework.

Orbital 3D spatial objects patterns

The first developed spatial model to be tested against randomness was the inhomogeneous 3D spatial model. The implementation of this orbital 3D spatial model adds to the volume constraint of the hardcore 3D model, the distance from each object to the domain border. Each object is randomized in an inner orbit separated from the domain envelope by a fixed distance that we imposed.

One of the expected uses of using the orbital 3D spatial model is to analyze peripheral organizations. We therefore, in the first case, we set an unique short distance from each pattern object to the domain boundary in the two datasets (Subsection 4.2.1.1). In the second case, we vary the distances to the border, presenting two different distributions depending on the domain shape (Subsection 4.2.1.2). The distances were manually set to achieve the kind of spatial organizations we were looking for. To test randomness on these spatial objects patterns generated by the orbital 3D spatial model, they were compared to the hardcore 3D spatial model.

Case 1: constant peripheral organization

In this first case, the distances to the border used to set the spatial patterns were the same for all objects, 0.5 µm. To test randomness in the generated orbital 3D spatial patterns we used the F -, G-, H-, B-, C-and Z-Functions (Figure 4.4). The distance between nearest objects (G-SDIs)

were long and similar within the spherical and the ellipsoidal domains, suggesting preferential high distances between closest objects. However, the other SDI values differ interestingly between the two cases. The H-SDIs, despite being high in both datasets, suggesting long inter-distances between objects, were higher in the spherical domains than in the ellipsoidal ones. This difference might be the result of the different domain morphology boosted also by their difference in volume (< 5 µm 3 smaller the spheres).

In the spheres, the Z-SDIs suggested much higher distances between each pattern object and the one located as its furthest in the orbital 3D patterns than under randomness. Nonetheless, in the ellipsoidal cases, the Z-SDIs presented a close-to-uniform distribution to which the discrete KS test did not differ from the model expectations, thus under randomness. This was due to the different domain shape; the complete regularity of the sphere let the objects to present higher distances, whereas the different ellipsoidal axes constrained the distance between furthest objects.

Since the distances to the border were fixed, in both cases the response of the B-Function The most interesting results were provided by the F -SDIs, which presented different behaviors in the two datasets. While for the sphere domains, they were preferentially higher, suggesting longer distances between random sphere locations to the closest pattern object (same to say a preferential organization), for the ellipsoidal domains the F -SDIs showed a small preference for the shorter values (70 % of the spatial patterns < 0.5) indicating a slightly preference for an spatial aggregation. These F -SDIs therefore could be interpreted to suggest opposite spatial organizations depending on the domain shape. In an ellipsoid, setting an object by fixing its distance to the border can be roughly delimited by the smallest semi-principal axis, placing it closely to the ellipsoid barycenter. In an ellipsoid, as B-and C-SDIs show, a peripheral organization can be at the same time central. This lets high chances to find a case in which an object in a hardcore 3D spatial model pattern (generated to test randomness) is placed in the large areas of the long semi-principal axes extremes, thus further from the ellipsoid barycenter than the previous one. When this fact happens in various points of the same spatial pattern, the spatial descriptor can suggest a more clustered organization (low F -SDI) than under randomness. This is precisely what we observed in the ellipsoidal domains here evaluated (Figure 4.4-B).

Here, in this case we have analyzed two datasets of orbital 3D spatial objects pattern in spherical and ellipsoidal domains that presented a preferential peripheral organization. The purpose of evaluating spatial patterns of objects in which the distance from the objects to the border were the same, was to decipher the interaction of the domain morphology with the spatial analysis.

We chose a distance from each object to the border of (0.5 µm) knowing that the object radius was r = 0.1 µm. The two domains have not the same volume (a difference < 5 %). Besides, the ellipsoid present different minimum and maximum distances to the domain barycenter. For the sphere the distance between its boundary and its border is constant, is its radius (∼3.5 µm)

whereas for the ellipsoid is variable, being the minimum, its smallest semi-principal axis (2 µm).

This difference could lead in an ellipsoid to a peripheral and central positioning at the same time, showing smaller distances between objects compared to randomness; but also comparing them to the same model expectations inside a spherical domain.

The different domain shapes (and slightly in volumes) produced that the summary statistics gave different responses (Figure 4.4). As expected, in the spherical cases, all the different descriptors SDI clearly suggested a preferential peripheral spatial organization. However, in the ellipsoidal domain patterns, the results obtained by the F -Function compared to the other descriptors were, under classical interpretations, contradictory. This descriptor alone suggested a slightly preference for clustering whereas the G-SDIs demonstrated long distances between nearest objects and the H-and Z-Functions responses presented small preferential long distances too, which meant spatial regularity. Hence, we suggest to use as many spatial descriptors as possible in the different spatial analysis.

Case 2: multi-orbital spatial organization

In this second case, we chose varying distances to the border in the two datasets to increase the variability. In the spherical domains, we drew a more 'central' positioning than peripheral. With 

F-SDI

Objects number In the ellipsoidal domain cases, despite the variability of distances, the SDIs were preferentially low, showing ∼75 % of patterns in which distances between neighbor objects (G), between furthest (Z), between all (H) or from the objects to the ellipsoid centroid (C) were preferentially smaller than the model average. The B-SDIs showed a stepped answer, with four groups of SDI ending with around 70 % of the patterns in which objects were far from the ellipsoid envelope.

This response of the B-Function was a consequence of adjusting the distances to the border in the spatial model setting. Interestingly, the F -SDIs were preferentially a little smaller than the model expectations (diagonal line) but they presented high heterogeneity different from a random organization.

In this second case we have evaluated two datasets of spatial orbital 3D patterns with different preferential spatial organizations. In the spherical domain patterns, which presented central distributions, the responses of the different spatial statistical descriptors were as expected, pointing out to small distances between objects, hence, to clusters according to the mentioned central positioning (except for F). Interestingly, the F -SDIs exhibited a more variable distribution, which has suggested to be highly related to the objects number but also with the heterogeneity of the distances to the border. Despite of that, this descriptor has suggested a preference for clustering, In the ellipsoidal domains, the results showed a high tendency of small distances between objects, which involved clustering. The spatial statistical descriptors therefore were able to decipher the spatial rules that were present in the orbital spatial patterns.

Maximum repulsion spatial objects patterns

The maximum repulsion spatial model generates spatial arrangements in which objects are regularly distributed into the whole domain separated with the maximum possible distance between them. In here, we show the results obtained from carrying out simulations to test randomness on spatial patterns generated by this spatial model (Figure 4.9).

Interestingly, for the two datasets, all the results obtained from the statistical spatial descriptors except for the B-and the F -Functions were maximum or close to that. This indicated that the distances between nearest objects (G), among all (H), between furthest (Z) and between each object and the domain barycenter (C) were much longer than the expected under random configurations. Besides, the minimum B-SDIs suggested an organization of objects that were highly close to the domains boundary. As expected, all of these pointed out to a regular organization, which is consistent with the arrangement generated by the maximum repulsion spatial model. This regularity was also suggested by the preferential low F -SDIs. However, they interestingly showed a bimodality: high preference of low F -SDIs (displayed in around 90 % of the spherical cases and 75 % of the ellipsoidal ones) and some F -SDIs that were considerably high. This must be evaluated at the individual CDF obtained by the spatial statistical descriptor. In The individual CDF obtained by the F -Function described that the envelope that covers the measured distances in the random model expectations got reduced with the increase of the number of objects. Thus, when the spatial pattern had a low number of objects (i.e. first examples), the possible random configurations were wide, presenting high heterogeneous measured distances. In this cases the observed CDF in a maximum repulsive organization fell more at the right side of the random model average, giving the high F -SDIs seen in Figure 4.9.

However, with the increase of the number of objects of the spatial patterns (i.e. 18, last graph), the distances measured in the random model expectations became more regular (the blue slope tended to be more perpendicular), crossing before the random model average, growing faster and differing more in this upper part, giving smaller F -SDIs. Besides, since the number of objects was high, the distances between a typical domain location and its nearest pattern object got reduced, providing a thinner envelope of expected distances measured under the model.

Here, the shift from big to low F -SDI was observed in the transition from 6 to 8 objects. To confirm all this, the correlation between the F -SDI values and the number of objects is shown (Figure 4.11). Interestingly, the correlation shows a different behavior as we saw in the analysis of the orbital 3D spatial model (Figure 4.8). Here, the number of objects is totally responsible of the F -SDI values, going from high ones when the objects number < 8 to very low after that number.

We have therefore found that increasing the number of objects, the observed measurement of the F -Function shifted from showing longer distances to shorter ones than the random model expectations. Besides, the domain morphology had an impact on this F -Function that has been interpreted evaluating the individual responses.

Reproducibility of SDI values

As it has been described (Section 3.4), the SDI-tool provides a p-value that describes in a single normalized number how an observed pattern differs to the spatial hypothesis that is tested applying certain spatial descriptor. Since the process of getting a SDI is a stochastic process due the multiple model realizations that are required, the final SDI value could vary when we test a specific spatial organization on an observed spatial pattern. Considering this possible variability, we need to be sure that it does not change the spatial evaluation. The SDI should be consistent to provide the same hypothesis of spatial organization independently of the running.

To verify the stability of the SDIs obtained in independent runnings, we applied three times a spatial analysis on the same data. Doing that, we expected to have responses that did not change the final evaluation of the observed spatial pattern.

To accomplish this study, we used a dataset formed by 92 A. thaliana Col-0 leaf cell nuclei spatial patterns, which is fully analyzed in Section 5.2. We utilized the F -, G-, H-and B-

Functions to analyze the differences of the observed data from randomness (Figure 4.12).

The distribution values did not show large visual differences. More important, the discrete KS test was used between couples of runs presenting no statistically significant difference between the three evaluations (Table 4.1).

We applied another three evaluations on the same nuclei using the orbital 3D spatial model to validate the good performing of the SDI-tool independently the spatial model (Figure 4.13).

Here again, the curves presented slight differences that were not statistically significant (Table 4.1).

The approach therefore worked properly, the independent generation of spatial model realizations and the application of the SDI-tool gave similar SDIs that were not statistically different.

This evaluation confirmed the correct performing of the full complete spatial statistical approach, reinforcing the reproducibility of the SDIs, hence reproducing the same evaluation in independent data analyses. 

Robustness of spatial analysis to segmentation errors

The spatial analysis that we perform in this Thesis and for what our methodology has been implemented is based on confined 3D domains. Because of that, a proper segmentation of the domain is absolutely necessary. In this section, we evaluate how a wrong segmentation of the domain envelope can produce an alteration of the responses of the spatial statistical descriptors when we analyze a spatial pattern.

With that purpose we examine the same dataset but changing the size of each domain, making it thinner or thicker. We chose for this, the same population of 92 A. thaliana Col-0 leaf cell nuclei used in the previous section. Taking the original mask of the nuclei obtained by the pipeline, we applied on them the morphological operators dilatation and erosion to generate larger and smaller nuclei. Cubic structuring elements of sides lengths of 1, 2, 3 and 4 voxels are applied with the dilatation, whereas just with sides of 1 and 2 voxels are used in the erosion. In the observed spatial patterns inside of smaller nuclei, some objects started to drop out of the nuclear boundary. That was the reason to apply up to 4 steps of volume increment but just 2 of volume reduction (Figure 4.14,Table 4.2).

The nuclear volume varied between around -37.25 % and +101.42 % of the original size (Table 4.2) as a result of the erosion or the dilation.

We addressed two spatial questions in this section. First, the spatial analysis of random spatial objects patterns, generated for the original domains using the hardcore 3D spatial model, in all the altered domains. Here, we used the observed number of chromocenters and their volumes.

As second point, we evaluated the real observed patterns in all the altered domains.

CSR objects patterns

We started with the evaluation of the CSR objects patterns in the observed and the altered domains. To test randomness in the different cases we use the F -, G-, H-and B-Functions The G-and the H-SDIs showed similar responses. The number of high SDI-values increased with the nuclear size reduction while the low SDIs enlarged with the increment of the nuclear volume. This pointed to longer distances between objects in the observed pattern than in the simulations in the reduced nuclei. The opposite case for the enlarged nuclei, simulated objects could be even more peripherally located than the observed patterns, thus the distances were smaller in the observed patterns than under the random expectations and consequently the SDIs were low.

(
-2 voxels +4 voxels Finally, the B-SDIs increased with the increment of the nuclear volume, and decrease with the nuclear size dropped. When the nuclei increased, the distance to the border of the observed nuclei got increased. Whereas with the fall of nuclear volume, the distances got reduced, and therefore the B-SDIs got lower, suggesting a more peripheral organization.

Globally, these results were following the expected trend. Increasing the domain size, the same organization became more central, whereas when the domain size fell, the spatial organization was perceived more peripheral. The wrong segmentation involved that the spatial analysis produced a generally large shift in the SDI distributions for just ± 1 voxel larger of difference.

However, we must remind that this represented a large % volume of difference, ∼20 % volume.

The extreme sensibility problem we have observed here is not usually found in the applications.

Segmentation errors do not increase or decrease the object size as much as we have done in this analysis. This is usually about ± 1 voxel, thus can be permitted.

Real patterns

Once we saw how a wrong segmentation, a little change in the domain volume, could alter a spatial evaluation of a random organization, we wanted to analyze how this segmentation issue affected in the real organization(Figure 4.17). To do this we analyzed the spatial organization of chromocenters in 92 A. thaliana leaf cell nuclei in the observed nuclear envelope and in the altered ones. The observed data presented high G-SDIs and H-SDIs suggesting longer distances between chromocenters and thus a high regular organization. Besides, the extremely low B-SDIs indicated a highly peripheral spatial distribution. These two facts were supported by the preferential small F -SDIs. This section has not the purpose of analyzing this dataset in depth; that will be done in Section 5.2.

Considering that arrangement, reducing the size of the nuclei made the original organizations to be seen as even more peripheral due to the distance to the border became even smaller (generating even higher B-SDIs). Regarding the G-SDIs and H-SDIs, they increased indicating a more regular organization. Interestingly, the F -SDIs should be smaller, indicating high regularity. However, this was not the case, they increased considerably. The answer to this issue was the same as in the previous case (Subsection 4.4.1 and Figure 4.16). Knowing that chromocenters were located regularly close to the nuclear envelope (Subsection 5.2.4), when the nucleus volume got increased, they got stuck in an inner orbit, producing that the reference points needed by the F -Function required smaller distances to reach the CCs. This gave smaller F -SDIs and the consequent suggestion of spatial regularity. In the opposite case, in smaller nuclear domains, CCs became closer to the nuclear envelope, thus, the distance from the arbitrary reference points to the CCs tended to be longer, providing bigger F -SDIs suggesting the idea of clustering.

Since the increment of nuclear size let the simulated data to present further distances between objects, this produced a reduction of the G-and H-SDIs, implying a drop in the departure from randomness. The G-SDIs got reduced but they were preferentially bigger, still suggesting longer distances than under randomness between nearest objects. The results of the H-Function were clearer; in the largest nuclei that presented an enlargement of 4 voxels, the distribution of H-SDIs were not different from randomness. This spatial descriptor was highly affected by the segmentation issue. The B-SDIs were clearly higher with the increment of nuclear volume, suggesting longer distances to the border. Finally, the F -SDIs were more difficult but interesting to interpret. The impact on chromocenters organization of the magnification of the nuclear volume should be interpreted by the F -Function as clustering considering that they cannot occupy the most external nuclear area. However, the F -SDIs suggested the opposite organization, regularity. The key point is that the actual distribution of chromocenters let them regularly distributed in an inner orbit when the nuclear volume increases (Figure 4.16).

To interpret better the results, we can take back the Figure 4.14. The objects drawn in the figure seemed to follow a peripheral and regular organization in their original nuclear envelope.

Looking to the eroded nuclei this organization become more peripheral, in fact the objects touched literally the nuclear envelope, and more regular. Whereas the increase of size implied that the pattern became more central, but not aggregated at all, they stayed regular in 'their radial distances'. It would probably require applying longer dilation to start seeing aggregation with the F -Function.

Interestingly, with similar nuclear volumes, the responses of the spatial descriptors do not get altered, specially important the G-, H-and B-Functions. This is important because this data is later analyzed in Section 5.2. Hence, the analysis here done defends also the robustness of the following spatial evaluations.

Conclusion

The analysis of the spatial arrangement has been demonstrated to be highly sensitive but less when the pattern is so specific as a peripheral one. Certain spatial pattern can be suggested to be different if the domain envelope is not correct. We have presented how CSR patterns are seen as non-CSR for any dilation/erosion. However, that was not the case for the real patterns.

Despite the high change in nuclear volume (Table 4.2), the main hypotheses of organization were still present in the spatial analysis (Figure 4.17). Besides, the drastic segmentation errors here shown do not generally happen in real applications. Hence there is still some tolerance in the nuclear segmentation.

We have seen that a proper domain segmentation is highly important and required. Howe

Even more important is to apply the same kind of segmentation to the whole dataset that analysis includes, otherwise the spatial evaluation would examine proper and altered data at once. Finally, a visual validation of the segmentation is absolutely required.

Inter-group comparison using the SDI

One question of interest for biologists is the comparison of spatial organizations between different experimental groups. Here, we consider the use of the SDI to analyze also differences between groups. However, the SDI is, by definition, a p-value, therefore sensitive to the number of objects. Consequently, patterns with different objects number that follow the same spatial distribution could present different SDI. Hence, we cannot simply use distributions of SDI values to compare spatial configurations. In this section, we study the variation of the SDI values through the variation of number of objects. To this end, we carried out simulations. Using spatial point patterns that follow known specific rules of spatial organization, we generated distributions with different number of points in order to evaluate the average SDI (per number of points) given by the spatial statistical descriptors.

Marginal spatial point process

The first spatial patterns we used were based on a marginal spatial point process. It sets a central square of side 1 -s inside of a larger square domain. Then, the points are positioned depending on a probability p in the outer area using a Poisson distribution. These points are drawn independently and their distribution is uniformly random within each whole domain,

considering the margin and central square. There is a critical probability p c (Equation (4.1))

by which the points have the same chances to be distributed in the two areas, functioning the whole domain therefore as a Poisson point process. This probability p c is obtained by (D) Spatial pattern that presents a peripheral organization in a thin outer space (s = 0.2, p = 1.00).

p c = 1 -(1 -2s) 2 ( 
To examine the spatial configuration respect to complete randomness, we used the F -, G-, Hand C-Functions.

We first plotted the correlation between the average SDIs and the points number (Figure 4.19).

As expected, we observed that increasing the number of points, the average SDI converged, consistent with the increased power of the statistical test of departure to complete randomness.

The SDIs seemed to got maximized or minimized, which described the total departure from randomness; or they stayed around 0.5, which suggested that the SDIs follow the tested model average, here complete randomness. It is important to remind that the SDI cannot be directly used to compare organizations when the objects number is different. Observing that, we could try to use formulas which fit in the obtained data.

The used Hill function formulas are defined in Figure 4.19.

H 1 (x) = c b x b + c b H 2 (x) = x b x b + c b (4.2)
where b and c are the input parameters, x is the points number and H 1 (x) and H 2 (x) are the average SDIs. H 1 (x) is utilized when the average SDI decreases with the points number, whereas H 2 (x) fits with increasing average SDI values.

Here, we show the results obtained using s = 0.2 (larger inner square area), which set up presents a p c = 0.64 (Figure 4.19). We observed that the Hill functions formulas fitted with high accuracy in the most cases, in the most 'evolutions' of the average SDI with the points number increment.

Considering that the Hill function formulas fit well on the data, we suggest that we could use the parameters b and c to compare different organizations. Thus, using the relation between the parameters b and c we could quantify the departure from the model and therefore evaluate these parameters obtained in different populations or groups. As example, the b and c values corresponding to the Hill function formulas obtained to simulate the H-SDIs with the different probability p (Table 4 With the increase of b the difference between the average SDI and the tested model is more evident. We could therefore use this b value to compare between groups how fast is the departure from the tested model.

We run another simulation setting s = 0.4 (inner small square area), which confirmed the good performance of the Hill function formulas to fit curves to describe average SDI values.

Thomas spatial point pattern

To generalize the results obtained in the previous subsection using the marginal model, we performed the same analysis using another spatial model.For that, we utilized a Thomas point process (Subsection 2.2.1.3). The Thomas process generates clusters. To set them, firstly is needed of a Poisson (λ) distribution to set a number of random parent points. The final pattern points are determined around these parent points according to a Poisson process with a rate µ.

These child points are distributed about each parent by an isotropic Gaussian distribution with variance σ 2 . To analyze whether the equations fit in the data we generated multiple spatial patterns varying the input parameters to get a broad diversity of patterns (Figure 4.21).

We simulated spatial patterns with a large range of points number. Due the characteristics of the spatial model, we could not fit the same number of spatial patterns with the same number of points, hence, the average SDIs were obtained using between 10 and 120 spatial patterns for each number of points. We realized that with the increment of the number of points, the average SDI converged, seeming to have the same behavior as the marginal point patterns.

The SDIs exhibited also the three sorts of evolution with the increment of the points number:

reaching the maximum value (∼1), the minimum value (∼0) or staying stuck at 0.5. The first two situations suggested the clear departure from randomness whereas the third case expressed the not-difference respect to the tested model average.

We used the same Hill function formulas (Equation (4.2)) to fit the data obtaining good results The number of points in the generated Thomas spatial patterns were quite variable, thus the average SDIs fluctuated more as Figure 4.21 shows, hence the fitted lines seemed to be more accurate in some curves than others.

The G-SDIs decreased with the increment of the number of objects (G-SDIs → 0). Thereby, the more points the pattern had, the clearer was the departure from randomness, and therefore more notable was the clustering. In parallel, the F -SDIs got increased towards 1, which indeed pointed out to this specific arrangement. The H-, and C-SDis kept around ∼0.5 or departed slowly diminishing to 0 (Figure 4.21-C). Interestingly, the equations previously introduced (Equation (4.2)) fitted with the data Despite they did with less accuracy due to the variable quantity of data with the same points number, the two formulas fitted well with the F -and G-SDIs. We could therefore, as we explained in the marginal model case, use the b and c parameters of the Hill functions formulas to describe the departure of the population from the tested model, and use it to compare against the parameters obtained in another population.

Conclusion

This section has studied the proposition to find a tool or test to compare spatial configurations in different groups. We have used two different spatial models (the marginal and the Thomas process) to generate multiple spatial configurations with different number of pattern points.

Evaluating the SDIs obtained by the spatial statistical descriptors considering the pattern points number, we have discovered that the evolution of the SDI with the number of objects could be described using equations. The Hill functions formulas (Equation ( 4 This chapter describes the most important studies carried out on plant nuclear architecture during these three years. Since in these evaluations the input data was raw images acquired on a confocal microscope, a first step was required to be implemented in the strategy to extract the nuclei and the nuclear compartments to be analyzed. This step is described here, followed by the quantification and analysis process (Section 5.1).

Then, we expose the different applications starting with the exhaustive analysis we have done on A. thaliana isolated wild-type leaf cell nuclei. In there, three different evaluations: the nuclear size and morphology, the chromocenters (CCs) characterization and of the CCs spatial organization, are realized on an large nuclei dataset and their results are interpreted. These nuclear compartments, described in detail in Subsection 2.1.1, form the nuclear constitutive heterochromatin in A. thaliana (Section 5.2).

After that, we check the reproducibility of spatial arrangements between similar biological data.

This comparison between two A. thaliana populations is described in Section A.3. An already analyzed and published [START_REF] Andrey | Statistical analysis of 3d images detects regular spatial distributions of centromeres and chromocenters in animal and plant nuclei[END_REF]] dataset is evaluated and compared to the dataset analyzed in the first section of this chapter.
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One question we want to address is to evaluate whether mutations alter the spatial configuration of chromocenters. We analyze mutants from two families, crwn and kaku, because their affected genes affect nuclear morphology. Hence, they could modify also heterochromatic features as well as the chromocenters spatial configuration respect to A. thaliana wild-type (Section 5.3).

Image segmentation and quantitative analysis of nuclei and chromocenters

In order to to enable the spatial analysis stage, images have to be processed to extract the nucleus and the chromocenters to be analyzed. The experimental datasets analyzed in this Thesis were composed of DAPI-stained nuclei highlighting in a single channel both the nucleus and its chromocenters. All the datasets used in the following analyses were acquired by Kaori Sakai (from the group of Valérie Gaudin, INRA IJPB, Versailles). The steps implemented in the methodology to extract chromocenters and the nuclei are specifically dedicated for onechannel-images but they could be easily reformatted to support more channels.

The techniques to segment the domain and objects are variations of the former methods used in the lab (Figure 5.1), already introduced in [START_REF] Andrey | Statistical analysis of 3d images detects regular spatial distributions of centromeres and chromocenters in animal and plant nuclei[END_REF]. At this stage, we have focused in the automation of these techniques.

Segmentation of nuclei

Firstly, the contour of each nucleus is localized and extracted (Figure 5.1-B). Since the nucleus usually prevails as the largest object (or contour) on a black background in a 3D stack, an

Otsu's thresholding [START_REF] Otsu | A threshold selection method from gray-level histograms[END_REF]] is used. This algorithm is sensitive to the relative size of the main object within the image. It works with great success in the dataset images.

The implementation takes into account cases in which there are more than one nucleus in the 3D stacks, replicating the images into as many nuclei present in the original. In addition, the algorithm discards nuclei that are not complete, i.e. in cases when they intersect the image boundary. Then, hole filling, opening and closing binary morphological operators are applied to smooth the possible boundary flaws produced by the microscope resolution. This whole process is completely automated and may be applied to large datasets of images at once.

Segmentation of chromocenters

A B C D E F G Figure 5
.1: Segmentation of nuclear domain and chromocenters in A. thaliana leaf cell nuclei (A). First the nuclear envelope is extracted (B) to be used as the domain delimitation. Then, after a Gaussian filter, a watershed method is applied to partition the nucleus in homogeneous regions (C). Afterwards, applying operations on region adjacency graphs (D) a contrast map is generated (E). The next step is the extraction of chromocenters (F), which are obtained applying a thresholding of E. Finally, the domain and its objects are represented with 3D surfaces (G) in order to begin the spatial analysis. The displayed images in A-F represent 2D sections in the 3D stack, however, all processes are implemented and applied in 3D.

Once the nucleus is extracted, it serves to limit the zone in which objects can be located. The algorithm searches for objects analyzing the inner delimited space of the nucleus. To start this process a Gaussian filter is utilized to smooth the high frequency contents of the image. The extraction success rate depends largely on the domain background and the image noise.

Thus, to increase the successful rate, an extra semi-manual segmentation step could sometimes increase the success rate of chromocenters extraction. This step consists of using an image viewer (i.e. Fiji or ImageJ) to find the more appropriate threshold on the contrast map setting it manually in the implemented tools. Doing that, we can increase the number of available samples to be analyzed.

Plugins for Fiji/ImageJ have been implemented to manage home-made image files and to help the user to visually check the different segmentations. Based on Java developments, it utilizes a predetermined structure of folders to show through a list of files, an overlay of each segmented image and its original one, letting the user to speed up the process. Once the validation step is done, the plugin separates the files, moving the discarded segmented files to a folder with the same name. These tools helped us to validate the segmentations of the nuclei and their CCs used in the analyses presented in this chapter.

Surface extraction

The use of these two extraction processes generates individual files with the 3D masks. These 3D masks are transformed into 3D surfaces using the marching cubes method (detailed info in Section 3.1) [START_REF] Lorensen | Marching cubes: A high resolution 3d surface construction algorithm[END_REF]]. These 3D surfaces, stored as three-dimensional triangular meshes, represent the nuclear domain and the chromocenters, which allow to start the spatial evaluation.

Quantification of nuclear and chromocenters features

The measurements that were performed on nuclei and chromocenters are categorized in three main classes. The first class refers to nuclear size and morphology. This includes measuring the volume, the radius of the equivalent sphere or the surface area; as well as 2D parameters such as the area of the Z axis projection. The elongation parameter (the ratio between the longest and the middle axis) and the flatness (the ratio between the middle and the smallest axis) were also calculated to analyze the shape. In addition, we have implemented the measurement of the sphericity, the ratio of the surface area of a sphere (with the same volume as the given object)

and the surface area of the object (Equation (5.1)). Sphericity is a normalized value ranging from 0 to 1 where a perfect sphere returns a value of 1. Also 2D parameters such as circularity have been implemented. (5.1)

The second sort of measurements are related to heterochromatic features. The main parameter calculates the ratio between the sum of the intensities of the chromocenters voxels and the sum of intensities of the whole nucleus (Equation (5.2)). This relative measure is utilized in nuclear biology to quantify and evaluate the heterochromatin, it is called the relative heterochromatin fraction (RHF, Subsection 2.1.1, [START_REF] Soppe | Dna methylation controls histone h3 lysine 9 methylation and heterochromatin assembly in arabidopsis[END_REF]; [START_REF] Schönrock | Functional genomic analysis of caf-1 mutants in arabidopsis thaliana[END_REF]]):

RHF = N i cc i n int (5.2)
where cc i is the intensity of the ith chromocenter, which is the sum of the voxel intensities corresponding to the chromocenter i, and n int is the sum of voxel intensities of the whole nucleus.

Related to heterochromatin fraction, we obtain the volume heterochromatin fraction (VHF), which is the proportion of the nuclear space occupied by chromocenters. Compare to RHF, it does not depend on the image intensities nor the acquisition conditions. Also useful, the CC density describes the number of chromocenters per nucleus.

Given their need for the spatial analysis, we measure the radii of the spheres with equivalent volume to the observed CCs. After this, a PSF (Point Spread Function) correction is applied to these volumes in order to counterweight the lack of precision of the microscope in the Z-axis, where the acquisition resolution decays and objects become larger. The final used CC volume is obtained by

vol 3 √ 3 .
The third and last class of parameters quantify distances, as for example from objects to domain landmarks. This kind of quantification is also used by certain spatial descriptors at the spatial analysis step (Section 3.2) and can also serve to create specific spatial models (Subsection 3.3.4).

Since specific landmarks are rarely observed in nuclear biology, other domain common locations are used as references, i.e. the barycenter and the envelope.

Analysis of A. thaliana wild-type leaf cell nuclei

One of the questions that we wanted to address was the evaluation of the spatial configuration of chromocenters in A. thaliana nuclei. Using a statistical spatial approach, Andrey et al.

(2010) demonstrated that these nuclear compartments did not follow randomness, revealing they presented instead a regular spatial organization. This led to several questions as, do chromocenters suggest a regular organization because they are located at the periphery? Do they display regular distances between them?

Here, we tackle these questions utilizing the full capacities of our strategy to study the spatial configuration of chromocenters. We analyze a dataset of 110 A. thaliana Col-0 isolated leaf nuclei to go beyond in the examination of chromocenters non-randomness (Figure 5.2). Besides of the spatial analysis, we characterize first the nuclear size and morphology, as well as diverse heterochromatin features.

Plants were cultured in green box for 3 weeks and then fixed and taken after bolting. The nuclei were treated with DAPI counter-staining in order to highlight the nuclear heterochromatin, which forms the CCs, as well as to delineate the nuclear space. Nuclei images were captured on a ZEISS 710 confocal microscope equipped with a 405 nm diode, using a PL APO X63 oil immersion objective (NA 1.4, WD 190 µm). The 3D stack images were acquired with a mean voxel resolution of 0.05 µm in the XY plane and of 0.1 µm in the Z-axis.

Analysis of nuclear size and shape

To characterize the nucleus, we start by quantifying its size and shape. The nucleus shows a wide morphological variability (Figure 5.2). Nuclei display high differences in size and shape.

This variability is not just seen on the nuclei but in the nuclear compartments, and in their number too.

The number of nuclear envelopes that were correctly extracted was 98 (step S1 in Table 5.1).

The remaining 12 nuclei were discarded due to segmentation problems, mainly because the nucleolus, which in DAPI-stained nuclei images appears in black, is considered as background due to its peripheral positioning.

The distribution of the nuclear volume denoted a heterogeneous population with an average volume of 135.85 µm 3 (Figure 5. p-value 0 suggested that these nuclear parameters were not uncorrelated. Chromocenter volume had an average of 0.81 µm 3 (Figure 5.5-D). The CC volume distribution presented a high variability, with sizes varying between 0.37 µm 3 to 1.92 µm 3 . Hence, the difference between the largest and the smallest CCs was about 500 %.

The intensity RHF (Section 2.1 and Subsection 5.1.4) displayed a large variability in this dataset (Figure 5.5-E) with an average of 0.109. This heterogeneity lied in the variability of different factors: the nuclear volume (Figure 5.3-C) and the volume occupied by CCs, which also depended on their number and size. This is the first time the intensity RHF was obtained in the 3D space. In the literature, previous studies displayed intensity RHF, HF or substitutes [START_REF] Fransz | Cytogenetics for the model system arabidopsis thaliana[END_REF]; Arabidopsis Genome Initiative ( 2000 Figure 5.6 examines the relationship between the chromocenter number, their size and the nuclear volume. The CCs number increased as the nuclear volume did (r = 0.69). We obtained a Kendall's rank correlation p-value 0 analyzing them, rejecting that these two variables were uncorrelated. Hence, the CC density increased with the nuclear volume, giving an average of 0.084 CCs / µm 3 . Given the correlation between size and shape, a corollary was that round nuclei had, on average, less CC.

A correlation (r = 0.63, Kendall's rank p-value 0) was observed between the nuclear volume and the CCs total volume (sum of CCs individual volume). Thus, the larger the nuclear volume, the larger the volume occupied by chromocenters (Figure 5.6-C). The increase in nuclear size suggested more CCs which consequently produced a larger total volume occupied by CCs.

This subsection has examined the heterochromatin features. We have validated the obtained chromocenter number and the nuclear intensity RHF compared to the literature. Besides, 5.2. Analysis of A. thaliana wild-type leaf cell nuclei 123 we have highlighted a positive correlation between the nuclear volume and the number of chromocenters. Since the average CC volume does not decrease, larger nuclei can present then larger volumes occupied by CCs. Adding the results of the previous subsection, we can summarize these ideas in two populations: small round nuclei that have a preferential lower number of CCs and the large elongated ones, which exhibit more chromocenters.

Testing departure from complete randomness

Andrey et al. ( 2010), applying a first statistical approach to analyze CC organization, showed that CCs in leaf cell isolated nuclei followed a non-random spatial organization. This work suggested that CCs seemed to be regularly distributed. Here, our purpose is to analyze the spatial configuration of chromocenters in the present nuclear dataset using the implemented methodology. We want to understand better their departure from randomness and decipher the regular distribution shown in [START_REF] Andrey | Statistical analysis of 3d images detects regular spatial distributions of centromeres and chromocenters in animal and plant nuclei[END_REF].

In each individual model realization, chromocenters were set as spheres because these nuclear compartments were seen to have a quasi-spherical shape in images. Besides, as it was mentioned (Section 3.3), adjusting this shape to the objects of study saves a considerable computational time.

The first objective of the evaluation was to reproduce the results obtained in [START_REF] Andrey | Statistical analysis of 3d images detects regular spatial distributions of centromeres and chromocenters in animal and plant nuclei[END_REF] in a new dataset. We used the hardcore 3D spatial model (Subsection 3. Once the model realizations were obtained, each nucleus was evaluated individually in order to describe the differences to the random expected organizations inside each nuclear envelope.

This quantitative analysis was carried out applying the basic spatial descriptors (Section 3.2).

The first used spatial measurements were the F -Function (CDF of the distances between random nuclear locations to their closest CC), the G-Function (CDF of the distances between Cumulative frequency Spatial distribution index (SDI) Col-0 isolated nuclei, obtaining preferentially low F -SDIs and high G-SDIs, suggesting that chromocenters followed a non-random organization with regular distances between them. The distribution of SDI that they displayed presented the same spatial trends that we expose here (low variable F -SDIs, high G-SDIs). However, their nuclei exhibited these spatial preferences in less nuclei (Subsection A.3.3). The results obtained in our analysis validated therefore their spatial hypothesis in a new dataset. Chromocenters therefore did not follow a random organization but a regular one, with longer distances between them than the expected under randomness.

[p < ε] [p < ε] [p < ε] F-SDI G-SDI H-SDI

Analyzing the peripheral organization

Previously in the literature, it has been suggested that CCs had a preference to be located at the periphery [START_REF] Armstrong | Nucleolus-associated telomere clustering and pairing precede meiotic chromosome synapsis in arabidopsis thaliana[END_REF]; Fransz et al. (2002); [START_REF] Berr | Interphase chromosome arrangement in arabidopsis thaliana is similar in differentiated and meristematic tissues and shows a transient mirror symmetry after nuclear division[END_REF]].

This hypothesis was suggested based on pure visual judgments or based on the positioning of centromeres [START_REF] Fang | Centromere positioning and dynamics in living arabidopsis plants[END_REF]]. Our first analysis has pointed out to a regular organization showing preferential longer distances between nearest (G-SDI) and between all (H-SDI) objects than expected under randomness. This regularity could be therefore explained by a peripheral organization.

Here, we examine whether CCs have a preference to be at the nuclear periphery using our statistical approach. To address this we used the B-Function.

As before, first the analysis was carried out individually (Figure 5.10 displays the results of the previous nuclei). They presented the same spatial tendency. They showed smaller observed distances from the CCs to the nuclear border than in the random model realizations. The three graphs suggested a peripheral organization of chromocenters. This statistical evaluation objectively and quantitatively demonstrated, for the first time, that chromocenters have a preferential peripheral localization in A. thaliana Col-0 leaf cell nuclei.

Correlation between nuclear features and chromocenters spatial organization

To evaluate whether there was a link between the spatial organization and nuclear or heterochromatin features, we compared the obtained SDIs to the nuclear volume and to morphological parameters, and as well as to the chromocenter number (Figure 5.12). Globally, there was no correlation between the SDIs and the other nuclear parameters. This could be due to the discrete nature of the SDI. Recalling that they present values between 0.01 and 1.00, this may involve a "saturation" effect, hence hiding correlations. Important was also the notable lack of data for certain parameter values, as the high number of chromocenters.

Clearly, the correlation plots show a high variability of the different nuclear features and a very constant spatial organization of chromocenters. Presenting the F -Function the more heterogeneous results, the other functions SDIs pointed out to a clear specific organization: regular, showing preferential longer distances between CCs; and peripheral, displaying departure from the nuclear barycenters and proximity to the nuclear boundaries. Hence, there were no evidence to highlight a special impact of a nuclear feature in any distance function.

Distinguishing spatial heterogeneity vs interactions between chromocenters

The results of the first two analyses have suggested a regular and peripheral organization of chromocenters. The issue is that the regularity can explain the preferential peripheral arrangement, and vice versa. Other alternative could be that pure heterogeneity is sufficient to explain this spatial configuration. To check that we used the orbital 3D spatial model (Figure 5.13 and Subsection 3.3.4). The results here presented have rejected that the spatial organization of CCs was purely peripheral because of the difference between the observed and the expected organization with the orbital 3D model. This difference was still in the same 'direction': measured distances were longer in the observed nuclei, hence there was an apparent spatial repulsion. Regarding the initial question, we can thus conclude that spatial heterogeneity is not sufficient to explain the spatial distribution of CCs and that there are negative (repulsive-like) spatial interactions between them.

Testing the maximum repulsive organization of chromocenters

Previous results have shown negative interactions between chromocenters. To evaluate whether CCs displayed maximum inter-distances between them, we used the maximum repulsive spatial model (Figure 5.15). To clarify the H-SDIs, we analyzed the individual H-Functions (Figure 5.17). Firstly, the graphs displayed a common behavior at the beginning of the observed measures. There, the observed smallest inter-distances were shorter than in the model realizations. In the maximum repulsion model realizations no distance was so small due to the forced regular inter-distances.

We could consider that these first inter-distances generally were the distances between closest CCs, the ones measured by the G-Function, which suggested shorter distances than the ones expected under the tested model. This fact explained the low H-SDIs (Figure 5.16).

Secondly, in several nuclei after these first short inter-distances, the CDFs fell to the other side of the model average, growing at the boundary of the upper envelope limit of the model realizations. In here the inter-distances were the longest expected under a maximum repulsion organization or even longer. This allowed the SDI-tool to capture this difference as the biggest gap between patterns, providing the high H-SDIs seen in 35 % of the nuclei (2 nd , 3 rd and 5 th nuclei of Figure 5.17).

To evaluate whether the long range distances were consistent with a maximum repulsion orga- The smallest observed distances were much smaller than in the model realizations (Figure 5.19).

In some of the nuclei, there was a distance gap, splitting the distances in two groups or scales:

first short distances and all the following ones that exhibited considerably longer length. At This was not an absolute evidence, it did not appear in all nuclei, but allowed the interpretation of a highly regular organization of CCs with few preferentially close CCs within the nucleus.

Hence, two organizations are present, a regular configuration at the global scale, with clusters at the local scale.

To check whether these short distances between neighbors altered the furthest distance between pairs of chromocenters, the Z-Function was used. The purpose was to evaluate the interaction between furthest CCs and whether they occupied a comparable nuclear space as the model expectations. this requires data that we lacked of. We need data from the same nuclei showing the CCs and the nucleoli. This will be explained further in the discussion and perspectives chapter (Section 6.1).

Investigating an orbital territorial spatial configuration of chromocenters

The spatial regularity shown by chromocenters could be a consequence of being distributed inside chromosome territories. It is interesting therefore the analysis of CCs spatially constrained by CTs. This hypothesis may explain the current observed spatial nuclear patterns.

Already mentioned, there was a lack of proper data -labeled CCs and CTs in the same nucleus-to accomplish this analysis. However, we had the methods, we had already implemented the spatial models to test this hypothesis. Considering this need of CT data, we used simulations to test whether using the available spatial models, we could reproduce the organizations with comparable spatial statistical descriptor responses.

We generated a dataset of 100 spatial patterns of virtual chromocenters (with r = 0.50 µm, which represents the average equivalent sphere radius of a CC) inside ellipsoidal domains, that represent an average-sized-nucleus with a regular shape. The 100 patterns were obtained by generating 10 different territories configurations inside the ellipsoid, and for each of them, 10 configurations of the spatial object patterns using the orbital 3D spatial model (Subsection 3.3.7).

We proceeded using the same distance to the border for all the CCs in each population, 0.05 µm, which was the average spacing between the CCs and the nuclear envelope in our dataset.

We evaluated this population testing the maximum repulsion model and checked whether we obtained similar responses to the ones obtained by different distances functions on the observed data (Figures 5.16 and 5.21). To carry out that examination we used the F -, G-, H-, and Z- These orbital territorial spatial organizations displayed smaller distances between nearest objects, between furthest, and among all objects than under a maximized regular organization. This matched with the obtained G-SDIs (Figure 5.9) but neither with the H-SDIs nor the Z-SDIs. In the observed nuclei the H-SDIs were more variable showing the opposite values, 50 % of maximized ones (∼ 1), whereas in these simulations were ∼ 0. Furthermore, the observed Z-SDIs did not depart from a maximum repulsive organization, thus differed considerably to those obtained in these simulations.
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The F -SDIs and the G-SDIs were not very different from the results obtained when we tested the maximum repulsive organization in A. thaliana nuclear architecture (Figure 5.16). However, the H-SDIs and the Z-SDIs differed in a high level. Hence, these orbital territorial spatial patterns did not explain the spatial configuration of chromocenters in A. thaliana but pointed out two different organizations. F -SDIs and G-SDIs suggested that a local scale, the distribution of CCs into CTs could explain partially the observed configurations, whereas the H-SDIs and the Z-SDIs rejected the idea that this distribution supports the organization at the global scale.

We may therefore speculate that the spatial organization of chromocenters is based on in a CTs distribution with some other modulation, as could be the addition of clusters around the nucleolus. This would alter slightly the configuration at the local scale having a greater impact at the global one, approximating to the observed configurations.

The observed nuclei did not present patterns of exactly 10 CCs or an regular ellipsoidal morphology. The variability must be taken into account in the analysis before rejecting the hypothesis of the chromosome territories constraint. Besides, the same spatial organization rules presented in patterns with different number of objects can give different SDI (Section 4.5). Thus, instead of rejecting the CT constraint, we propose, regarding the H-SDIs, that another restriction is present that forces chromocenters to be more spread, more dispersed between them than the CT constraint. Spatial hypotheses that take into consideration the CTs and also the nucleolus are introduced in Section 6.1.

Recapitulation

In this section we have evaluated the nuclear features related to morphology and size besides of the spatial configuration of chromocenters in A. thaliana. A. thaliana nuclei visually exhibited a high heterogeneity in nuclear shape and volume, which was confirmed statistically proposing two categories of nuclei regarding the shape: large elongated and small round nuclei.

The analyzed dataset displayed variable number of CCs, which seemed to be less numerous in the small round nuclei than in the large elongated ones. The intensity RHF measured in the nuclei was validated based on previous quantification done in the literature.

Regarding the spatial organization of chromocenters, we firstly confirmed their non-random configuration. Furthermore, we demonstrated they presented a peripheral and regular spatial arrangement. We demonstrated that this regularity was not due to the peripheral distribution.

We showed that regularity was not maximum. We have finally suggested that the distance between nearest CCs was smaller than under a maximum regular organization, letting other CCs being further than under this specific tested distribution. We develop better this hypothesis in Section 6.1. This detailed spatial configuration have been observed in isolated data, thus not knowing the cell type of each analyzed nucleus. Interestingly, despite this consequent variability, we have found spatial rules at the population level.

Characterization of genotypes: crwn and kaku family mutants

Nuclei of A. thaliana mutations has shown alterations in their size and morphology. One important question is whether these changes are present also in the nuclear architecture, specially in the nuclear constitutive heterochromatin distribution.

To address this question, we present here an analysis of the mutations impact on three distinct types of nuclear parameters: nuclear morphology, heterochromatin features, and spatial orga-nization of chromocenters within the nuclear domain. For this, we have chosen mutations of the CRWN and KAKU genes families. In interphase cells of Arabidopsis, CRWN1 is localized at the nuclear periphery, whereas CRWN2 is localized in the nucleoplasm [START_REF] Sakamoto | Little nuclei 1 and 4 regulate nuclear morphology in arabidopsis thaliana[END_REF]]. This two proteins have an effect on nuclear morphology as it has been confirmed by 2D analyses of nuclei in different cell types. crwn1 and crwn2 mutants show smaller and more spherical nuclei compared to wild-type [START_REF] Dittmer | Little nuclei genes affecting nuclear morphology in arabidopsis thaliana[END_REF]]. Loss-of-function of CRWN proteins also affects heterochromatin features, crwn1 crwn2 nuclei have less chromocenters of increased size [Wang et al. (2013a)]. From a genetic screen of Arabidopsis for changes in nuclear morphology, another mutant with smaller and more spherical nuclei was isolated and designated as kaku1, a myosin XI-i subfamily protein [START_REF] Tamura | Myosin xi-i links the nuclear membrane to the cytoskeleton to control nuclear movement and shape in arabidopsis[END_REF]]. KAKU1 is a myosin XI-i subfamily protein that encodes a plant-specific myosin localized at the nuclear periphery and interacting with the SUN-KASH complex. KAKU1 has been defined as the linker between the nuclear membrane and the cytoskeleton.

To evaluate the influence of nuclear envelope proteins on nuclear and chromatin organization, we acquired three-dimensional (3D) confocal images of DAPI-stained nuclei of parenchymal cells from leaf cryosections in Arabidopsis thaliana single and double mutants of the CRWN1 and CRWN2 and of the KAKU1 and KAKU2 proteins. Besides, to compare this data with the reference Col-0 obtained from the same material, 3D confocal images of DAPI-stained nuclei of Col-0 meshopyl cells from leaf cryosections were acquired. The following is material modified from a manuscript that we have recently concluded.

Plant materials

Arabidopsis thaliana lines used in this study were in the Columbia wild-type background (Col-0). The crwn1-1 and crwn2-1 (formerly known as linc1-1 and linc2-1 ) and kaku1-3 and kaku1-4 mutants were described by [START_REF] Dittmer | Little nuclei genes affecting nuclear morphology in arabidopsis thaliana[END_REF]; [START_REF] Tamura | Myosin xi-i links the nuclear membrane to the cytoskeleton to control nuclear movement and shape in arabidopsis[END_REF], respectively. Plantlets were grown in vitro at 20 • C, 70 % humidity, 36 µmol m-2 s-1 and under a 16 hours light / 8 hours dark period. Rosette leaves of nodes 3 to 5 were harvested on plants at the 5.10 developmental growth stage, with an inflorescence of 1 cm high [START_REF] Boyes | Growth stage-based phenotypic analysis of arabidopsis: a model for high throughput functional genomics in plants[END_REF]]. Leaves were immediately fixed in 4% paraformaldehyde in 1 x PBS buffer (PFA), under vacuum 3 times for 1 min each, and three times for 20 min each, on ice. Samples were then incubated overnight in PFA, at 4 • C, washed in 1 x PBS buffer and stored at 4 • C until use.

5.3.2

The crwn1 and crwn2 mutations have globally similar and additive effects on 3D nuclear size and shape By analyzing nuclear size in 3D, we observed that nuclear volume was significantly reduced in the two single mutants as compared with the wild-type plants (Figure 5.23-A). There was no difference, however, between the two single mutants. In the double mutant, the nuclear volume was significantly smaller compared with the wild-type and with each of the single mutants, suggesting a stronger effect than in the singe mutants on nuclear size (Figure 5.23-A). In the three mutant genotypes, the reduction in nuclear size was also accompanied by a reduced heterogeneity of the distribution. Overall, our 3D size analysis was in agreement with a previous report based on 2D area measurements [START_REF] Dittmer | Little nuclei genes affecting nuclear morphology in arabidopsis thaliana[END_REF]]. However, the same group also reported absence of size alteration in crwn2 nuclei [Wang et al. (2013a)], a result also observed in [START_REF] Sakamoto | Little nuclei 1 and 4 regulate nuclear morphology in arabidopsis thaliana[END_REF]]. The discrepancy between our results with these last two studies may be due to the use of 3D versus 2D approaches.

To evaluate the impact of mutations on nuclear shape, we measured the sphericity parameter, a normalized measure of the similarity between an arbitrary 3D shape and a perfect sphere. All mutants presented an increased nuclear sphericity, but at varying degrees (Figure 5.23-B). The smallest increase was observed in the crwn2 mutant while the largest one was obtained with crwn1 crwn2, suggesting additive effects on nuclear shape of the crwn1 and crwn2 mutations, as observed for nuclear size. Overall, our 3D shape analysis was also in agreement with previous reports based on the 2D circularity shape measure [START_REF] Dittmer | Little nuclei genes affecting nuclear morphology in arabidopsis thaliana[END_REF]; [START_REF] Sakamoto | Little nuclei 1 and 4 regulate nuclear morphology in arabidopsis thaliana[END_REF]; Wang et al. (2013a)].

We then examined whether the observed changes in nuclear shape were accompanied by large scale morphological alterations. We computed for each nucleus the lengths of the three main axes of the equivalent inertia ellipsoid. The three mutants exhibited a marked reduction in the length of the major (i.e., longest) and intermediate (second longest) axes, with an increased homogeneity in the distribution of these two parameters (Figure 5.23-B). There was no difference between the two single mutants but these two axes lengths were smaller in the double as compared with the single mutants, thus supporting even further the hypothesis that the two single mutations had additive effects on nuclear size. Only the crwn1 nuclei presented a significantly altered minor axis length, which was larger compared with the wild-type nuclei.

Overall, the global reduction of the first two axis lengths and the unchanged or increased length of the minor axis suggest that the observed increased sphericity was at least partially due to changes in the global shape of the nuclei in crwn mutants.

The crwn1 and crwn2 mutations have opposite and additive effects on constitutive heterochromatin

To quantify the impact of the crwn mutations on constitutive heterochromatin, we measured the number of chromocenters in wild-type plants and in crwn mutants. There was no significant alteration of the number of chromocenters per nucleus in the crwn1 mutant; by contrast, this number decreased in the crwn2 mutant and dropped even further in the crwn1 crwn2 mutant (Figure 5.24-A). However, the density (average number of chromocenters per unit volume) was actually increased in the three crwn mutants (Figure 5.24-B). This suggested that, proportionally to nuclear volume, there was more chromocenters in the mutants than in the wild-type plants, a counter-intuitive result given the reduction in the raw number of chromocenters (Figure 5.24-A;Wang et al. (2013a)). In addition, we found that density increased to a comparable level in the three mutants (two-sided Wilcoxon test: crwn1 vs. crwn2 : P=0.38; crwn1 vs. crwn1 crwn2 : P=0.16; crwn2 vs. crwn1 crwn2 : P=0.73). This suggested that these mutants shared a common proportionality law between nuclear volume and the absolute number of chromocenters.

We next quantified the nuclear space occupied by constitutive heterochromatin. The two single mutants exhibited pronounced opposite differences compared to the wild-type plants in the volume of individual chromocenters, with an increase in crwn1 and a decrease in crwn2

(Figure 5.24-C). Normalizing chromocenter volume by nuclear volume abolished the difference observed between wild-type and crwn2 plants, suggesting that chromocenter size was strongly correlated to nuclear size in crwn2 (Figure 5.24-D). In the double mutant, the reduction in absolute chromocenter volume was less pronounced than in crwn2, and the increased in relative size was similar to that in crwn1, suggesting an additive effect of the two single mutations on chromocenter size. We then examined the total relative space occupied by constitutive heterochromatin, as quantified with the volumic heterochromatin fraction (VHF; proportion of nuclear space occupied by chromocenters). The VHF was significantly higher in crwn1 compared with wild-type (Figure 5.24-E), in agreement with having similar numbers of chromocenters, but larger, and in smaller nuclei. By contrast, the VHF was smaller in crwn2 compared with 

5.3.4

The crwn mutations impact the relative positioning of chromocenters in the nuclear space

Given the large and diverse changes that we observed in the crwn mutants, we questioned whether the spatial organization of heterochromatin was also affected. We compared the spatial patterns of chromocenters observed in each genotype to expectations under a completely random distribution model. This was achieved by virtually randomizing, for each nucleus, chromocenter positions within the corresponding nuclear shape. Comparisons between observed and randomized patterns were performed using complementary spatial descriptors based on distance measurements. The variations between nuclei in morphology and heterochromatin features were taken into account by computing a Spatial Distribution Index (SDI) for each nucleus and each descriptor. The SDI is a normalized measure that quantifies the agreement between an observed chromocenter pattern and the random model [START_REF] Andrey | Statistical analysis of 3d images detects regular spatial distributions of centromeres and chromocenters in animal and plant nuclei[END_REF]].

We first compared observed chromocenter patterns to a completely random model of chromocenter distribution by measuring empty spaces between chromocenters. To this end, we measured the F -Function, the cumulative distribution function of the distance between arbitrary nuclear position and the nearest chromocenter. In wild-type nuclei, the distribution of the F -based SDI was concentrated towards 0 (Figure 5.25-A), showing that empty spaces between chromocenters tended to be smaller than expected under a completely random distribution.

This showed that chromocenters in mesophyll leaf cells had a more regular spatial distribution as compared with complete randomness, in agreement with our previous results on isolated leaf cell nuclei (Subsection 5.2.3; Andrey et al. ( 2010)). While the same trend was observed in the crwn1 mutant, there was no difference in the observed F -SDI distribution and the distribution expected under a completely random organization in the crwn2 mutant, revealing an altered spatial distribution of chromocenters compared to wild-type nuclei. In the crwn1 crwn2 mutant, the distribution of the F -SDI was slightly shifted towards 1, suggesting a reversed trend in this spatial organization with a tendency towards chromocenter clustering.

Next, we used the G-Function, which is the cumulative distribution function of the distance Both the F -and the G-Functions are descriptors that provide a local scale quantification of spatial organizations. To determine whether there were also alterations at global scale in the spatial distribution of chromocenters, we compared observed patterns to model expectations using the H-Function, the cumulative distribution function of all inter-distances between chromocenters (Figure 5.25-C). In the wild-type plants as in all three mutants, the H-based SDI was condensed towards 1, corresponding to larger inter-distances between chromocenters compared with complete randomness. As opposed to the results obtained with the local descriptors, nuclei in the double mutant showed the same trend than wild-type nuclei, suggesting that alterations in the spatial distribution of chromocenters in the crwn1 crwn2 mutant were at a local scale and did not affect the large scale organization.

Since the SDI is structurally equivalent to a p-value, it may potentially be affected by variations in the number of objects in the analyzed patterns. Therefore, we examined to what extent differences in SDI distributions between wild-type and mutant nuclei could result from observed differences in the numbers of chromocenters. We reran the spatial analyses after removing two randomly selected chromocenters in Col-0 and crwn1 nuclei and one chromocenter in crwn2

nuclei. The number of chromocenters removed corresponded to the observed average differences between each genotype and the double mutant (Figure 5.24-A). The obtained SDI distributions were affected to various extents but their relative positions compared with the random model were not altered (Figure 5.25 and Figure 5.26-D, dotted lines). The distributions in the wildtype plants and in the single mutants were still markedly distinct from the distribution observed in the crwn1 crwn2 mutant. We concluded that the observed SDI distributions in crwn1 crwn2

nuclei were unlikely to result from differences in the number of chromocenters.

The crwn mutations impact the distance between the chromocenters and the nuclear periphery

We examined whether the changes induced by the mutations at the local scale in the distribution of chromocenters could be linked with alterations in their positioning relatively to the nuclear periphery. We observed that the average distance from each chromocenter to nuclear border was significantly reduced at a comparable level in the two single mutants but remained unaltered in the double mutant (Figure 5.26-A). However, normalizing this distance by the equivalent radius of the nucleus abolished the differences in the single mutants . The spacing between chromocenters and nuclear periphery, as measured by the surface to surface distance, was reduced in crwn1, unaltered in crwn2, and increased in crwn1 crwn2 (Figure 5.26-C).

This was consistent with the observed differences in size and in average distance to the border.

Overall, these results suggested that the CRWN1 and CRWN2 proteins have similar effects in mediating a global scaling between nuclear volume and the distance between chromocenter barycenter and nuclear periphery. Since proximity to the periphery can occur by pure chance with a high probability in a 3D domain, we examined the statistical significance of the peripheral positioning of chromocenters. We used the B-Function, the cumulative distribution function of the distance between chromocenter barycenter and the nearest point at the boundary of the nucleus, and computed the B-SDI against the completely random model. The obtained results showed that the crwn1 mutation induced a significantly more peripheral localization of chromocenters as compared with the wild-type. On the contrary, there was no change in the peripheral localization of chromocenters under the crwn2 mutation and chromocenters were significantly more internal in the double mutant .

Similarly to what was obtained above with F -, G-, and H, we observed that the observed shifts in the B-based SDI distributions could not result from observed differences in the numbers of chromocenters (Figure 5.26-D, dotted lines).

kaku mutations predominantly impact nuclear shape in mesophyll leaf cells

It has been suggested recently that nuclear shape is independently determined by CRWN1 and the SUN-WIP-WIT2-Myosin XI-i complex [Zhou et al. (2015)]. To further decipher the determinants of 3D nuclear morphology and spatial organization of constitutive heterochromatin, we analyzed the kaku1-3 and kaku1-4 mutants affected in the Myosin XI-i gene [START_REF] Tamura | Myosin xi-i links the nuclear membrane to the cytoskeleton to control nuclear movement and shape in arabidopsis[END_REF]].

Nuclear size was significantly increased in the kaku1-3 mutant, whereas no difference was observed in the kaku1-4 mutant (Figure 5.27-A-B). None of the two mutations altered the 3D sphericity of the nuclei (Figure 5.27-C). This observation was surprising since an increased 2D circularity had been previously observed in kaku1-1 nuclei [START_REF] Tamura | Myosin xi-i links the nuclear membrane to the cytoskeleton to control nuclear movement and shape in arabidopsis[END_REF]]. However, local surface irregularities and invaginations had also been reported in this mutant [START_REF] Tamura | Myosin xi-i links the nuclear membrane to the cytoskeleton to control nuclear movement and shape in arabidopsis[END_REF]]. It was thus possible that opposite effects at local scale (such as invaginations) and at global scale (reduced elongation) features of object shape could not be revealed by the sphericity measure alone due to compensation. Therefore, we also quantified global shape parameters.

The elongation (length ratio between the largest and the intermediate axis) was significantly decreased in kaku1-3 and kaku1-4 nuclei as compared with wild-type nuclei (Figure 5.27-D), in accordance with the previously reported nearly spherical shape in these mutants [START_REF] Tamura | Myosin xi-i links the nuclear membrane to the cytoskeleton to control nuclear movement and shape in arabidopsis[END_REF]]. Analyzing separately the lengths of the three principal axes revealed that the elongation reduction resulted essentially from an increased intermediate axis length. Overall, our results indicate that mainly shape was altered in the two allelic mutants, suggesting that KAKU1 contributes mainly to determining nuclear shape. 

Constitutive heterochromatin is affected in kaku mutants

Given the shared effects on nuclear morphology between crwn and kaku1 mutations and the influence of CRWN1 on heterochromatin features we described above, we next examined whether the kaku mutants presented altered constitutive heterochromatin features. There was no difference neither in the absolute nor in the relative number (density) of chromocenters in the kaku1-4 mutant (Figure 5.28-A-B). By contrast, the number of chromocenters was increased in kaku1-3. This was likely a scaling effect of the increased nuclear size, since the density was not different compared with wild-type plants (Figure 5.28-B). 

5.3.8

The spatial distribution of chromocenters is not altered in the kaku mutants

We then determined whether changes in nuclear morphology and in number and size of chromocenters was accompanied by a spatial re-organization within the nuclear space. We compared observed chromocenter patterns in kaku mutants to expected organizations under a completely random model, conditioned by the shape and size of each nucleus and by the number and size of its chromocenters. The kaku1-3 nuclei did not show any modification in the spatial organization of chromocenters within the nuclear space, as revealed by the local scale analysis provided by the F -and G-Functions (Figure 5.29-A-B) and the global scale analysis with the H-function (Figure 5.29-C). Similarly, analysis with the B-Function showed that the relative positioning of chromocenters to the nuclear border was not altered (Figure 5.29-D). In the kaku1-4 mutant, the local analysis provided by the F -Function showed no difference to the random model (Figure 5.29-A). However, the three other spatial descriptors (related to local, global, and peripheral positioning, respectively) showed no difference compared with wild-type nuclei (Figure 5.29-B-D). We thus concluded that KAKU1 does not contribute to the globally regular and peripheral positioning of chromocenters within the nuclear space.

Recapitulation

In this section we have characterized different mutations of the crwn and the kaku mutant families. The purpose was to differentiate the alterations in the nuclear morphology and in heterochromatin features, as well as changes in the spatial organization of chromocenters.

The main important results have demonstrated a decrease in nuclear size with an increase of the sphericity in crwn mutations. The number of CCs dropped in crwn2 and in the double The main change in the nuclear morphology in the analyzed kaku mutations was an increase in volume exhibited by kaku1-3. This mutation also presented more and larger chromocenters.

The larger average CC volume observed in kaku1-4 implied an increase in the RHF, which also raised in kaku1-3. The spatial configuration of chromocenters in these mutations did not get altered respect to the wild-type.

Chapter 6

General conclusion and discussion Interestingly, such regular spatial organization has been observed despite the great variability in nuclear morphology and size, and in the different number and volume of CCs. Besides, the isolated data presented nuclei from different cell type, suggesting a preserved spatial configuration. Moreover, a dataset already published of same plant material [START_REF] Andrey | Statistical analysis of 3d images detects regular spatial distributions of centromeres and chromocenters in animal and plant nuclei[END_REF]] has exhibited the same spatial arrangement despite some nuclear shape differences (Section A.3).

The same organization has been confirmed in wild-type leaf cryo-sections (Subsection 5.3.4).

Lastly, crwn and kaku mutations displayed the same spatial rules in spite of their morphological and size alterations (Subsections 5.3.4 and 5.3.8). All this suggest therefore a high robustness in the spacial organization of chromocenters in A. thaliana.

What determines this specific spatial organization? One hypothesis is that chromocenters organization would be constrained by chromosome territories. Indeed, allocations of each CC to a CT would allow arbitrary distances between nearest CC, while at the same time forcing them to be regularly distributed. This 'CT hypothesis' may also be related to the Rosette model [Fransz et al. (2002)]. Euchromatin forms loops around the CCs, forcing them to present certain spatial repulsion, hence CCs could be located anchored in CTs interposing minimum distances between them.

We addressed the 'CT hypothesis' using data simulated from a territorial model, by evaluating whether we could reproduce the SDI distributions obtained when evaluating observed data against maximum regularity (Subsection 5.2.8). We could not completely mimic observed responses with the territorial orbital model. The simulated data were generated in regular constant ellipsoidal shapes that contained in every case 10 CTs and 10 CCs. By contrast, observed nuclei display an arbitrary morphology and size, and present a CC number that vary in each sample. The differences between biological reality and simulated data may therefore explain the different responses in spatial analysis. We lack proper nuclear data with labels of the CTs and CCs in different channels to fully address our hypothesis. It will be worth re-examining this question in the future when the required 3D FISH data become available.

The literature describes that CCs related to CT2 and CT4 could be attached to the nucleolus [START_REF] De Nooijer | Non-specific interactions are sufficient to explain the position of heterochromatic chromocenters and nucleoli in interphase nuclei[END_REF]]. This fact could explain the small clusters found in our spatial analyses.

Thus, the second spatial hypothesis is that besides CTs, the nucleolus is involved in the CCs configuration. Few CCs -corresponding to CT2 and CT4-would be located around the nucleolus, whereas the others would be spread within the other CTs. This would explain the regularity at the global scale and clustering at the local scale in the nucleolus surroundings. To test this, we would ideally need confocal data showing CCs, CTs and nucleolus using different fluorescent labels.

Our methodology also allows to investigate molecular factors involved in determining the organization of chromocenters, We have analyzed crwn and kaku mutations that present certain spatial modifications. The distance to the border was altered: crwn1 presented a more preferential peripheral organization whereas crwn1 crwn2 maintaining similar distances to the border in smaller nuclei, exhibited preferential clustering between CC neighbors. Whereas kaku mutations showed nuclear morphological alterations, they did not show changes in the spatial organization of CCs. Despite that, the golobally regular and peripheral organization was maintained. Hence, further investigations are required to decipher better the determinants that sustains chromocenters spatial arrangement.

6.2

The developed spatial statistical approach

Spatial models

The simulated spatial patterns are generated by the spatial models representing the spatial hypotheses that we want to test. We have implemented spatial models to analyze randomness, orbital randomness and maximum repulsion on points and objects patterns. We have also added others to distribute objects within domain territories, allowing to set them randomly or in inner orbits.

Few alternatives in the literature on nuclear architecture evaluate spatial hypothesis beyond randomness. [START_REF] Heride | Distance between homologous chromosomes results from chromosome positioning constraints[END_REF] is a recent example of analysis of the peripheral positioning of points corresponding to the centers of CT. There, a minimum distance between points was imposed, hence it would be considered similar to our orbital spatial point model. Our model is more general considering that it allows to set an arbitrary number of objects with different individual sizes and orbits.

One perspective of our framework is to support the evaluation of more complex spatial organization, not limited to univariate distributions, i.e. to analyze patterns with more than one type of objects. We need to set up multivariate spatial models [START_REF] Møller | Spatial Statistics and Computational Methods[END_REF]] considering that the information of each point classifies it in its corresponding class. Classical approaches have presented multivariate point processes, using more than one class of point processes in the same space [START_REF] Cox | Multivariate point processes[END_REF]]. One simple example is the characterization of two different classes of points in the same domain. [START_REF] Griffiths | A class of bivariate poisson processes[END_REF] presented a two-class point process based on classes of bivariate Poisson distributions [START_REF] Griffiths | A class of bivariate poisson processes[END_REF]]. They are used to represent a pair of not necessarily independent point processes defined within the same space. Such model could be taken as a reference to start a new spatial model with two classes of objects randomly distributed in the same 3D closed domain. Hence, similar to the implementation that we have made basing all the complex model on a finite Poisson point process, we could apply the same technique, developing first a bivariate Poisson point process, to evolve it coding more complex ones. This model could be used to evaluate the spatial organization of CCs and nucleolus.

One important question in biology is to decipher the relationship between gene positioning and gene activity. Assuming that data showing gene location and their expression level would be available, we could analyze it using our current framework. Simplifying the gene activity to on/off dividing genes into two datasets of patterns, the existing tools could be used to evaluate each spatial organization and to compare them. We could also evaluate this bi-class data using a bivariate spatial model, which would involve the implementation of new spatial descriptors to examine spatial configurations of two kind of objects in a single pattern. We could investigate the relationship between gene positioning and its activity conserving the activity level. To do that, a marked spatial point process [START_REF] Møller | Spatial Statistics and Computational Methods[END_REF]; [START_REF] Baddeley | Spatial Point Patterns: Methodology and Applications with R[END_REF]]. It adds to each pattern point a quantitative or qualitative information or property named 'mark'. Hence, we could use these marks to assign to each of the spatial points that represent the genes position, its corresponding expression level. The use of this spatial point process would involve too the implementation of new spatial statistical descriptors.

Spatial descriptors

To characterize a spatial pattern we use spatial statistical descriptors that provide quantitative information on interactions between objects or with domain landmarks. Several new spatial statistical descriptors have been introduced to the pipeline: B-, C-, Z-, LRD-, SRD-, and N N -Functions.

Each of the descriptors provides complementary information about the spatial interactions in the analyzed patterns. The interpretation of a single distance function alone must be cautious.

When CSR is tested, the F -Function is usually depicted suggesting clustering (longer observed distances), randomness or regularity (smaller observed distances). However, our results show that, in a confined space. Some spatial configurations, i.e. regular organization of objects in similar orbits, lead to opposite behavior of the F -Function (Figure 4.16). Hence, we recommend the use of several summary statistics to evaluate spatial configurations, not assuming directly the information suggested by just one spatial statistical descriptor.

Individual vs population tests of spatial models

To test a model using a sample of patterns we use the SDI-tool [START_REF] Andrey | Statistical analysis of 3d images detects regular spatial distributions of centromeres and chromocenters in animal and plant nuclei[END_REF]] that provides a p-value quantifying the departure of the measures obtained on observed data from the tested model simulations (Section 3.4). We identified a bias in the original proposition of using the Kolmogorov-Smirnov test for this purpose [START_REF] Andrey | Statistical analysis of 3d images detects regular spatial distributions of centromeres and chromocenters in animal and plant nuclei[END_REF]]. We showed that using a permutation-based KS test for discrete data [START_REF] Arnold | Nonparametric goodness-of-fit tests for discrete null distributions[END_REF]] was more appropriate given the fundamentally discrete nature of the SDI.

We have evaluated the impact of segmentation errors in the spatial analysis (Section 4.4). The study has demonstrated that the SDI for random organizations get significantly altered, not reflecting actual distributions. However, specific organizations as chromocenters' peripheral one in A. thaliana were more robust, accommodating for reasonable amount of segmentation errors.

One issue with the SDI-tool is that is based on the measurement of the biggest gap between two CDFs. In some situations, the observed CDF crosses the model average CDF (reference) displaying two gaps that can be similar in distance (i.e. Figure 5.19). However, when applied to an organization that differs from the model in opposite directions at different scales, the SDI can only report the largest difference (i.e. Figure 5.17). In the future, it would be worth considering an alternative method analyzing separately the differences above/below the model average CDF. The SDI is related to the statistics of the KS test (from which it differs in that, it used a signed distance). It may be of interest to explore alternative means of quantifying CDF differences, such as area differences, as used in the Cramér-von Mises test.

Comparison of spatial arrangements between nuclei populations

One question that is relevant in many biological applications is the comparison of spatial organizations between different experimental groups. To address this, we have proposed the basis for a future approach (Section 4.5). The SDI is a normalized measure of fit between a model and an observed pattern. However, it is fundamentally a p-value, hence sensitive to the number of objects. Consequently, we cannot directly use the distribution of SDI values to compare spatial organizations between groups with significantly different number of objects. We observed that Hill functions could be used to describe the evolution of average SDI values as a function of the number of objects. These formulas provide with two parameters related to the position of the passing by 0.5 and to the speed (slope) of convergence towards 0 or 1. We showed that the speed parameter was related to the degree of departure between analyzed patterns and the tested models. As such, it could then be used for comparing organizations in different groups.

We proceeded with simulations to verify this fitting performance on different spatial organizations. The Hill function formulas fitted well on average SDIs obtained on spatial point patterns generated by two spatial models (marginal and Thomas point processes) that showed different distributions as clustering, peripheral organization and randomness.

A question that remains is how to transpose this idea to real data. One issue is whether the Hill functions fit properly on observed data as they did with the simulated spatial point patterns.

One requirement is that a large number of samples with different objects numbers is available.

In the biological datasets analyzed in this Thesis, the small range of different object numbers and, more important, the low number of samples with extreme (very few or very high) number of chromocenters prevented us to fully address the question beyond simulated data. We expect as perspective that a correlation between the two parameters, average SDI and objects number, can be used to evaluate, for example, the spatial organization between different mutants. It could also be applied to objectively compare the spatial distribution of active/inactive genes.

Genericity

In this Thesis, we have established a robust framework to analyze spatial configurations of objects in confined 3D domains of arbitrary shape. The methodology has been implemented

and added to the C++ libraries of the lab, which allows their common shared use. Highly oriented to be used in nuclear biology, it can be used to evaluate other biological closed systems independently of their scale.

To model objects within spatial patterns we have chosen spheres because chromocenters have preferentially shown this regular morphology -as many others in biology: such as endosomes in cells, cells in tissues, etc-, and to save computational time in model simulations. The use of spheres is a point to take care with when objects have a different shape. Our spatial models could evolve taking into account the real shape of each observed object. To accomplish this, we should add a randomization of the object rotation in the three axes when it is positioned inside the domain. Checking whether a whole object is inside the domain envelope and respects other objects' envelopes, requires consequently more computational time than with spherical objects. Currently, using spheres in our approach, we have found a compromise between shape accuracy and processing time. A.1.2 LRD-Function Furthermore, we can analyze the distances distinguishing among long and short ones. By that we evaluate at different scales the interaction between the objects of the spatial pattern.

To evaluate better the spatial configuration we can split the measured distances in two groups.

We use an adaptive threshold that divides the distances in two groups using the longest distance between two neighbor-objects. The implemented LRD-Function takes into account only the This spatial statistical descriptor allows evaluating the spatial configuration of the objects at long range distances, and consequently examining the organization between objects that are axis was smaller in the 2010-dataset (mean of 0.88 µm; 1.02 in the newest dataset), presenting an even tinier W-test p-value ∼ 0.

There was therefore a morphology difference between the two datasets. Despite the second and third axes were less variable than the major one, the 2016-data presented less different between the two minor axes. The intermediate and the minor axes are related to the flatness ratio (Equation (5.1)). Thereby, the results suggested that the 2010-dataset could be more flatten nuclei than the newest one considering that in this last the intermediate and the minor axes were more similar.

To check the difference in size we looked to the morphological parameters: elongation, flatness and sphericity (Figure A.8). The elongation parameter did not show difference between the two populations. However, the flatness and the sphericity displayed significantly statistical difference (Wilcoxon test pvalue = 0). The 2010 nuclei were more flatten and less spherical than the dataset of 2016. The nuclei therefore presented high variability in their morphology but not in the nuclear volume.

We enhanced the analysis evaluating the distance to the border and the spacing between each chromocenter of the dataset and its nuclear envelope. The difference between them is that the first takes into account the size of the CC, is the distance CC centroid to the nuclear boundary, whereas the second one measures the real distance between the CC and the nuclear envelopes The distance to the border was significantly different between the two datasets. While the old dataset presented an average distance to the border of 0.846 µm, the new dataset showed a mean distance to the border of 0.608 µm. The Wilcoxon test provided a p-value of 0, suggesting a significantly statistical difference between the two distribution of distances. Considering that the volume of the CCs was larger in the newest population, the CCs were closer to the periphery in this newest dataset. To confirm that, we evaluated the spacing between the CCs and the nuclear envelopes, which was significantly different (W-test p-value = 0). The old dataset showed a long average spacing to the border (0.314 µm) compared to the average in the newest dataset (0.094 µm). This fact was relevant but must be evaluated statistically using the hardcore 3D spatial model (Subsection A.3.3).

Summing up the two last subsections, the newest dataset showed less flatten and more spherical nuclei and larger CCs that provided a larger volume RHF. Moreover the CCs seemed to be much closer to the nuclear border than in the 2010 dataset. This set out the problem of the stochasticity and the differences in the experiment (temperature, humidity, room) but not the First, it is notable how the response differed in the various spatial functions. The H-, Z-and C-Functions described almost a convergence to 1, which is the maximum SDI-value, independently on the number of chromocenters. At the end of the line that delineated the average SDI per chromocenters number dropped due to the few data with that quantity of CCs. Thus the hypothesis was that the number of objects did not affect to the spatial function result. In the opposite case, the B-SDIs showed a convergence to 0 in the newest dataset, describing that despite the increase of CCs in the nucleus the distance to the border kept extremely small compared to the model realizations (the increment of CCs is positive related with the nuclear volume, Figure 5.6-A). Interestingly, in the 2010 dataset, the B-SDIs moved around the average, around 0.5, which denoted a random distance to the border in the nuclei.

The F -and G-SDIs displayed other behaviors with the increment of the chromocenters number.

The correlation between the F -SDI-values and the number of CCs was more variable: the SDIvalues fell with the increase of the number of objects and after 12 CCs they increased. This seemed to respond to the number of data, in the range with more nuclei, the average F -SDI kept around 0.25 whereas with the drop of nuclei samples, the F -SDIs got increased. The G-SDIs showed high values, around 1 (maximum value) but they fell with the rise of the CCs number, representing again the lack of data. In these two situations the variability and the inconstancy of the SDI-values respect the number of CCs was due to the lack of nuclei with high number of chromocenters. This problem was also observed in the previously cited spatial descriptors, when the convergence was not complete because of the same problem: the few samples that in the dataset had more than 15 CCs.

Focusing on the difference between the response of the two datasets, they presented a slightly different spatial arrangement. In general the spatial organizations were the same: long distances between nearest CCs, between furthest ones and between all of them; besides of a far spatial arrangement from the nucleus barycenter. The biggest difference was displayed in the B-SDIs, which spatial distribution in the 2016-dataset was extremely close to the nuclear envelope, whereas in the 2010-dataset the distribution of the B-SDIs was not significantly different from a random spatial organization, suggesting that the distances from the CCs to the nuclear envelope in those nuclei had not any preference.

A.3.3.2 Analysis of the peripheral randomness of chromocenters

As we did with the 2016 dataset in the previous section, we evaluate the peripheral organization of chromocenters (Subsection 5.2.6). Here with more interest due to the 'random radial' spatial organization observed by the B-Function in the 2010-dataset (Figure A.11). Thus, to test the peripheral randomness followed by chromocenters in the two datasets, we used the orbital 3D Interestingly, the results of the spatial statistical descriptors using this orbital 3D spatial model were more similar in the two populations than using the random spatial model. This meant that, despite the different distance to the border, the spatial repulsive organization was common in the two datasets. Thus, by nature, CCs tended to be dispersed within the nucleus, preserving long distances between them.

Since chromocenters in the 2010-dataset were not located so close at the nuclear boundary as they did in the 2016-dataset, they did not suggest to follow a maximum regular organization.

However, we used the maximum repulsive spatial model on the datasets to observe the difference responses gave by the spatial statistical descriptors. datasets described the most differences between them among the three spatial models. The F -SDIs, despite their departure from the tested model, showed less difference in the 2010-dataset, pointing to higher variability (less F -SDIs = 1) than in the newest population. The G-SDIs were quite similar. They clearly expressed that certain CCs in Col-0 A. thaliana nuclei did show much sorter distances to their nearest CCs than the expected under a maximum repulsive organization.

The H-SDIs displayed different behaviors. While the oldest dataset presented very low H-SDIs suggesting the inter-distances were far of having the length under a maximum regular distribution, the 2016-dataset described more complex situations, already explained in Subsection 5.2.7.

This newest dataset had spatial organizations of CCs that showed small distances between closest neighbors and long distances to the furthest CCs in the nuclei. This fact derived in the Zhang, W., Lee, H.-R., Koo, D.-H., and Jiang, J. (2008). Epigenetic modification of centromeric chromatin: hypomethylation of dna sequences in the cenh3-associated chromatin in arabidopsis thaliana and maize. Plant Cell, 20, 25-34.
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Zhou, X., Groves, N. R., and Meier, I. (2015). Plant nuclear shape is independently determined by the sun-wip-wit2-myosin xi-i complex and crwn1. Nucleus, 6, 144-153. Abstract: eukaryotic cell nuclei contain distinct functionally or structurally defined compartments at multiple scale that present a highly ordered spatial arrangement. Several studies in plants and animals have pointed out to links between nuclear organization and genome functions. A key challenge is to identify rules according to which nuclear compartments are organized in space and to describe how these rules may vary according to physiological or experimental conditions. Spatial statistics have been rarely used for this purpose, and were generally limited to the evaluation of complete spatial randomness. In this Thesis, we develop a spatial statistical approach, which combines cytology, image analysis and spatial modeling to better understand spatial configurations inside the nucleus. Our first contribution is a methodological framework that allows to test models of spatial organization at the population level. Several spatial models have been developed and implemented, including randomness, orbital randomness, maximum regularity, territorial randomness or orbital territorial randomness of biological objects within finite 3D domains of arbitrary shape. New spatial descriptors, in combination with classical ones, are used to compare observed patterns to expected configurations under the tested models. An unbiased version of a previously published statistical test is proposed to evaluate the goodness-of-fit of spatial models over populations of observed patterns. In the second part of this Thesis, we investigate the properties of the proposed approach using simulated and real data. The robustness of the proposed approach to segmentation errors and the reliability of the spatial evaluations are examined. Besides, the basis for a method to compare spatial distributions between different experimental groups is proposed. In the last part of this work, the proposed approach is applied on A. thaliana leaf cell nuclei images to analyze the spatial distribution of chromocenters, which are dynamic and plastic heterochromatic compartments that have an important structural role in the genome. A first application was to analyze isolated and cryo-section nuclei from wild type plants. We show that chromocenters present a highly regular distribution, confirming previously published results. Using new spatial statistical descriptors, we then demonstrate objectively and quantitatively, for the first time, that chromocenters exhibit a preferentially peripheral localization. Employing a new spatial model, we then reject the hypothesis that the regular organization is explained solely by the peripheral positioning. We further demonstrate that chromocenters organization displays a close-to-maximum spatial regularity at the global scale, but not at the local one. Lastly, we use simulations to examine a model according to which chromocenters positioning is constrained by chromosome territories and by interactions with the nuclear boundary. The second application was to elucidate whether chromocenters distribution could be altered under different mutations. We analyze nuclei data from crwn and kaku mutants, which are known to affect nuclear morphology. The results suggest that these mutations impact on nuclear morphology and on heterochromatin features but do not alter the regularity of chromocenters distribution even when the relative distance to the border is affected. The genericity of the proposed framework to analyze object distributions in finite 3D domains and its expandability to add more spatial models and spatial descriptors should be of interest to decipher spatial organizations within biological systems at various scales.
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  These studies have been accompanied by the development of specific 3D approaches and tools on two different directions, one regarding the 3D imaging and modeling strategies, and another one based on methods that capture the chromosome conformation. Numerous reviews have 1 Material coming from Del Prete et al.(2014) been published on diverse aspects of nuclear organization[START_REF] Delgado | Dynamics of functional heterochromatic domains in the plant interphase nucleus[END_REF]; Rajapakse and Groudine (2011); de Wit and de Laat (2012);[START_REF] Taddei | Structure and function in the budding yeast nucleus[END_REF];[START_REF] Dekker | Exploring the three-dimensional organization of genomes: interpreting chromatin interaction data[END_REF];[START_REF] Dion | Chromatin movement in the maintenance of genome stability[END_REF];[START_REF] Towbin | Mechanisms of heterochromatin subnuclear localization[END_REF][START_REF] Del Prete | Nuclear architecture and chromatin dynamics in interphase nuclei of arabidopsis thaliana[END_REF]]. However, much remains unknown about chromatin dynamics in plants.

Figure 2 . 1 :

 21 Figure 2.1: Heterochromatin compartments in A. thaliana. Map of the metacentric (1 and 5), submetacentric (3), and acrocentric (2 and 4) chromosomes. Polymorphic cytological markers (5S rDNA and knob) are indicated by the names of the accessions: Columbia-0 (Col-0), Landsberg erecta (Ler ). TEs = Transposable elements.

  telomeres are enriched in H3K9me2 and H3K27me1 heterochromatic marks but still retain the euchromatic H3K4me3 mark [Vrbsky et al. (2010); Vaquero-Sedas et al. (2012)]. Furthermore, the A. thaliana telomeres are also relatively enriched in the H3.3 histone variant (which is usually associated with transcriptionally active regions) in comparison to centromeres that are enriched in H3.1 in comparison to telomeres [Vaquero-Sedas and Vega-Palas (2013)].

Figure 2

 2 Figure 2.2: Nuclear diversity in A. thaliana. Cell nuclei obtained from different cell types, either using cryosections (A-G) or whole-mount tissues (H-K) after DAPI counterstaining. The diversity in shape and size of the nucleus and in the number and size of chromocenters are presented. Images correspond either to a single confocal section of the nucleus (A, J, K) or to the maximum Z-projection of an image stack (B-I) for optimal 2D visualization. A Nuclei of cotyledon cells of a mature embryo. B Nucleus of a seed coat cell in a mature embryo. C-G Three-week-old seedlings. C Trichome nucleus. D Leaf epidermal cell nucleus. E Stomata nuclei. F Nucleus of a leaf mesophyll cell. G Nuclei of leaf vascular tissues. H-K Young root. H Nucleus of a root hair cell. I Nucleus of a root epidermis cell. J Nuclei of root merstem. K Nuclei of the root cap. Scale bars = 5 µm.

  ; van Zanten et al. (2011); van Zanten et al. (2012b)]. The RHF in embryonic cotyledon nuclei increases sharply during the maturation phase, while the 45S rDNA loci and the centromeric and pericentromeric repeats remain localized to the CCs. Interestingly, the nuclear volume is independent of both the moisture content and dormancy status of the seed but is developmentally controlled. ABSCISIC ACID INSENSITIVE3 (ABI3), a key transcription factor in seed maturation, participates in nuclear shrinkage which is thought to be a general adaptive response to desiccation tolerance [van Zanten et al. (2011)]. During the early events of seed germination (48-72 h after imbibition), the nuclear volume increases again, and this increase requires the activity of LITTLE NUCLEI1 (LINC1) and LINC2, 2 lamin-like analogues -recently renamed to CROWDED NUCLEI (CRWN)-[van Zanten et al. (2011); van Zanten et al. (2012b); Ciska et al. (2013)]. Furthermore, chromatin reorganization accompanies this event. Whereas the 45S rDNA loci remain localized to CCs during germination, the centromeric and pericentromeric repeats are more dispersed at the onset of germination [van Zanten et al. (2012b)]. These CCs are smaller than those present in mature seeds. The classical conspicuous CC pattern reappears later during seedling growth.
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 16 Mechanisms involved in the spatial heterochromatin distribution Two main patterns of heterochromatin distribution emerge from the previous examples: the first pattern involves the partial decondensation of CCs at the 5S and pericentromeric regions, and the second affects all heterochromatic compartments of the CCs. A detailed study of the progressive and sequential reformation of CCs during protoplast culture provided complementary information about the highly ordered structure of CCs [Tessadori et al. (2007b)]. During sequential CC recompaction, the NOR regions (3.5-4 Mb) reorganize first, followed by the centromeric (0.4-1.4 Mb), 5S rDNA (0.1-0.3 Mb), and dispersed pericentromeric repeats, including transposons, suggesting that the recompaction timing and the size of the repeat arrays

Figure 2

 2 Figure 2.3: Spatial Poisson process realizations. Each one presents 100 events.

Figure 2 .

 2 Figure 2.3 displays two realizations of the same Poisson point process showing 100 events. As

Figure 2

 2 Figure 2.4: Spatial Poisson cluster process realizations [Diggle (2003)]. Each pattern presents 25 parent points with an average of 4 offspring per parent. The children are generated following a radially symmetric Gaussian dispersion with parameter δ = 0.025. In the left realization each parent has exactly 4 offspring. In the right one the offspring are randomly allocated among the 25 parents.

Figure 2

 2 Figure 2.6: Cox point process realizations (generated using the spatstat package in R). The left-panel shows a Cox point process based on an exponential intensity whereas the right-panel displays a log Gaussian Cox process. Both point processes use 5 as mean of the random field function.

Figure 2 . 7 :

 27 Figure 2.7: Markov point process realizations[START_REF] Diggle | Statistical analysis of spatial point patterns[END_REF]]. The left-panel displays clustering (attractive pairwise interaction) whereas the right-one shows a regular pattern (inhibitory pairwise interaction point process).

Figure 2

 2 Figure 2.10: Different main issues in quantitative image analysis of nuclear patterns. The nucleus can be extracted using different thresholds based on intensity values that give differed nuclear masks (A). The peripheral shell volume of a sphere presents a 'larger' size than the central part and therefore more chances to be allocated by random points/objects (B) A radial distance analysis into 1D is misleading (C).

;

  [START_REF] Jost | 3d-image analysis platform monitoring relocation of pluripotency genes during reprogramming[END_REF]], thus they use the same intensity threshold independently of the sample. Unfortunately, these studies are biased by the variation of image intensities within the same or different acquisitions. Images from the same microscope acquisition present high variability in the intensities due to different factors, thus is not possible to assign a 'generic' threshold to extract the image objects.

[

  [START_REF] Armstrong | Nucleolus-associated telomere clustering and pairing precede meiotic chromosome synapsis in arabidopsis thaliana[END_REF];Fransz et al. (2002);[START_REF] Fang | Centromere positioning and dynamics in living arabidopsis plants[END_REF];[START_REF] Schubert | Interphase chromatin organisation in arabidopsis nuclei: constraints versus randomness[END_REF]].Furthermore, it has been suggested that chromocenters corresponding to CT2 and CT4, which are spatially related to the nucleolus, could form clusters[START_REF] De Nooijer | Non-specific interactions are sufficient to explain the position of heterochromatic chromocenters and nucleoli in interphase nuclei[END_REF]].The required techniques to analyze spatial configurations (not specifically formulated for biology), spatial statistics, have been introduced. These are methods to analyze spatial organizations beyond the simple measurement of distances. Briefly, classical approaches used sampling

  of DAPI-stained nuclei of A. thaliana (Figure 3.1-I, deeper description in Section 5.1). Images are segmented generating individual files showing separately, masks of the 3D domain and of the objects properly labeled (Figure 3.1-II). 3D surface models of the domain and object envelopes are then generated applying the marching cubes algorithm [Lorensen and Cline (1987)] (Figure 3.1-III). This final 3D spatial representation of the observed space is the input of the spatial analysis (Figure 3.1-IV).

Figure 3

 3 Figure 3.1: Preliminary steps to the spatial analysis. A raw confocal microscope image (I) is processed to extract the nucleus and the chromocenters (objects under study) (II). They are converted to 3D surfaces that represent the objects envelopes (III). These are combined into a representation of the observed data (IV), which is taken as input for the spatial analysis (V).

Figure 3

 3 Figure 3.2: Example of the distances quantified by the F -Function in 4 spatial patterns of 6 objects (represented as gray spheres). In red: distances from random domain locations (black dots) to their closest object.

Figure 3

 3 Figure 3.3: Example of the distances quantified by the G-Function in 4 spatial patterns of 6 objects (represented as gray spheres). In violet: distances from each object to its nearest neighbor.

Figure 3

 3 Figure 3.4: Example of the distances quantified by the H-Function in 4 spatial patterns of 6 objects (represented as gray spheres). In blue: distances from each object to all the others within the domain. The sketches show the measured distances from only one object of the spatial pattern.

Figure 3

 3 Figure 3.5: Example of the distances quantified by the B-Function in 4 spatial patterns of 6 objects (represented as gray spheres). In green: distances from each object to the domain envelope.

Figure 3

 3 Figure 3.6: Example of the distances quantified by the C-Function in 4 spatial patterns of 6 objects (represented as gray spheres). In orange: distances from each object to the domain barycenter.

  (furthest) letter of the alphabet. It is the CDF of the distances between each object and the one located furthest from it (Figure 3.7).

Figure 3

 3 Figure 3.7: Example of the distances quantified by the Z-Function in 4 spatial patterns of 6 objects (represented as gray spheres). In pink: distances from each object to the one that is located as its furthest.

Algorithm 1 :

 1 Simulation of the completely random spatial point process: pseudocode input : D (3D surface of the domain), n (points number) output: p (complete random spatial pattern of n points) B ← bounding box of D; for i = 1 to n do repeat p i ← random position ∈ B; until p i ∈ D; return p;

  Figure 3.8: Verification step of the proper location of a random p i point inside the domain.The method draws an outsider point in order to count how many times the line that connects it with p i crosses the domain border. Odd number of crosses indicate that p i is located inside the domain.

  Figure 3.9: Examples of spatial patterns generated by the CSR point process in spherical and ellipsoidal domains. The sphere has a radius r 3.5 µm whereas the ellipsoid has radii of 2, 4, and 6 µm. Each spatial pattern presents 10 points. Above each domain a histogram displays the distance from each point to the domain envelope.

  3.3.2 3D hardcore random spatial point modelSince the nuclear compartments that we want to spatially analyze inside the nucleus have volumes, the complete random spatial model cannot be used to test randomness on that observed data. That requires the development of a new spatial model that allows us to analyze spatial configurations of objects inside 3D confined domains.

Figure 3

 3 Figure3.10: Hardcore 3D spatial model. Each object is set by its centroid point p i and its corresponding radius r i .

  Figure 3.11: Examples of hardcore 3D spatial objects patterns generated for spherical and ellipsoidal domains (sphere with radius r 3.5 µm, ellipsoid with a = 2 µm, b = 4 µm and c = 6 µm as semi-principal axes). Each spatial pattern presents 10 spherical objects (r = 0.1 µm), whose representation size is arbitrary. Above each domain a histogram displays the distance from each object centroid to the domain envelope. As the objects respect their sizes, they cannot be as close to the domain boundary as before (Figure 3.9).

  Figure3.12: Constraint of the distance between a point and the domain envelope. Each point p i is randomized around the inner orbit separated by its corresponding distance d i from the domain border.

  Figure 3.13: Examples of orbital spatial points patterns generated for spherical and ellipsoidal domains (sphere with radius r 3.5 µm, ellipsoid with a = 2 µm, b = 4 µm and c = 6 µm as semi-principal axes). Each spatial pattern presents 10 points, which respect specific distances to the border that can be observed in the histograms above each domain. For the spherical cases we have displayed spatial patterns in which all the points have the same distance to the border. Whereas the points of the ellipsoidal domains present different distances to the border but these distances are the same in the four examples.

Figure 3

 3 Figure 3.15: Examples of spatial patterns generated by the orbital 3D spatial objects model in spherical and ellipsoidal domains (sphere with radius r 3.5 µm, ellipsoid with a = 2 µm, b = 4 µm and c = 6 µm as semi-principal axes). Each spatial pattern presents 10 spherical objects, whose representation size is arbitrary. Above each domain a histogram displays the distance from each object to the domain envelope (including their sizes, r = 0.1 µm).

Figure 3

 3 Figure 3.16: Examples of spatial patterns generated by the 3D maximum repulsion spatial objects model in spherical and ellipsoidal domains (sphere with radius r 3.5 µm, ellipsoid with a = 2 µm, b = 4 µm and c = 6 µm as semi-principal axes). Each spatial pattern presents 10 spherical objects of r = 0.1 µm. Above each domain a histogram displays the distance from each object to the domain envelope to perceive a better idea of the 3D configuration. The object representation size is arbitrary.

  Figure 3.17: Stochastic domain partitioning. The domain (A) is divided in the number of territories that we want (10 in this example, B). The final output is the 3D surfaces of the territories (B). Each implementation generates diverse spatial configuration of the territorial domain (C shows 4 examples).In these examples we imposed that the territories had similar volumes. Territories are displayed with certain transparency to let see the others that are behind.

  Figure 3.18: Examples of spatial patterns generated by the orbital 3D spatial objects model in ellipsoidal domains (a = 2 µm, b = 4 µm and c = 6 µm as semi-principal axes). Each spatial pattern presents 10 spherical objects, whose representation size is arbitrary. Above each domain a histogram displays the distance from each object to the domain envelope (including their sizes, radius r = 0.5 µm) to perceive a better idea of the 3D configuration.

  Figure 3.19: Object randomization in an orbital 3D territorial spatial model pattern. Each pattern object (p i , r i ) is randomized inside its corresponding domain territory respecting its size and the distance to the global domain border d i .

Figure 3 .

 3 Figure 3.20 displays 3 examples of the orbital 3D territorial spatial model for different distancesto the envelope: 0.60 µm (A), 0.70 µm (B) and 0.80 µm (C) that includes the radii of each sphere (0.50 µm). Since the objects are constrained in the domain territories, they are more spread distributed than under complete randomness. Setting the distance to the border can make them to be closer to the periphery or even they can define a central organization. Hence, increasing the required computational time to obtain the spatial objects pattern.

Figure 3 .

 3 Figure 3.21: Sketch of a SDI-tool procedure. (A) CDF of the observed pattern, model realizations and model average. (B) The first process is the measure of the biggest gap between the model average and each model realization CDFs. (C-E) The actual calculation of the SDI is based on a sorting of the 'maximum gap values' [observed + simulations]. (F) Finally, the area covered under the distribution (area in blue) provides the SDI-value. As the maximal possible area under the curve is 1, the SDI has a normalized value between 0 and 1.

  each, distributed according to complete spatial randomness over the unit square. The point patterns were quantified using three classical spatial statistical descriptors[START_REF] Diggle | Statistical analysis of spatial point patterns[END_REF]: the F -Function, the G-Function, and the H-Function. Average distance functions under the null distribution were estimated using a first round of m Monte-Carlo patterns, and a second set of m MC patterns was used to estimate SDI values. The procedure was repeated 30 times for each sample size, and the p-values of the KS test were averaged. Remarkably, we found that increasing the number of patterns in each sample lead to a progressive decrease of the average p-value, highlighting an increase of type-I error (Figure4.1-A). The amplitude of this effect was independent of the distance function but was all the more pronounced that the number m of Monte-Carlo samples was small. Interestingly, the effect could not be explained by a shift in individual SDI values, as evidenced by the stable average SDI around 0.5 (Figure4.1-B).

  Figure 4.1-B) and the corresponding expected small type-I error independently of the sample size and the number of Monte-Carlo samples (Figure 4.1-A).Using the classical KS test to evaluate SDI uniformity,[START_REF] Andrey | Statistical analysis of 3d images detects regular spatial distributions of centromeres and chromocenters in animal and plant nuclei[END_REF] previously reported a non-random distribution of chromocenters in A. thaliana leaf cell nuclei. Other groups have

Figure 4

 4 Figure 4.1: (A) Type-I error in Monte-Carlo tests of a spatial model using the Spatial Distribution Index (SDI) method. Samples of completely random patterns of 10 points each were drawn within the unit square and compared to the completely random model using the SDI method. For each pattern, the SDI was computed for the three cumulative distance functions F , G, and H, using m = 9, 19, or 39 independent completely random patterns. For each sample, the average SDI value (gray) was computed and the uniformity of the SDI distribution in the [0; 1] interval was tested using either the continuous Kolmogorov-Smirnov test (blue) or an alternative test adapted to the discrete case (magenta). (B) The curves show the evolution with sample size of the averages (computed over 30 samples) of test p-values or average SDI values.

Figure 4

 4 Figure 4.2: Differences between uniform continuous and discrete distributions. The uniform distribution expected by the KS test is represented by the black dashed diagonal line. Three uniform discrete distributions are displayed for different number of Monte-Carlo samples: m = 9 (magenta), m = 19 (blue), and m = 39 (green).

Figure 4 . 3 :

 43 Figure 4.3: Unbiased test of the goodness-of-fit between the completely random model and the observed distribution of chromocenters in Arabidopsis thaliana leaf cell nuclei. The p-values were computed using a discrete-case test of comparison between the uniform distribution (dotted line) and the distribution of the Spatial Distribution Index computed using the F-, G-, and H-functions. All p-values were below the floating-point machine precision ε.

Figure 4

 4 Figure 4.4: SDI distributions obtained applying the F -, G-, H-, B-, C-and Z-Functions to test randomness on the spherical (A) and ellipsoidal (B) domain patterns obtained using the inhomogeneous 3D spatial model. The hardcore 3D spatial model is used to test randomness on the mentioned orbital 3D spatial patterns.

  were similar: extremely low B-SDIs, suggesting a peripheral organization as we expected. The C-Function worked as a sort of supplementary to the B in the spherical domains but not in the ellipsoidal ones. In these domains the C-SDIs presented a heterogeneous distribution with a slight departure from randomness indicating longer distances from the domain barycenter. The difference laid in the ellipsoidal axis lengths, which depending on the object closest semi-axis, could involve a central positioning despite their peripheral location.

(Figure 4 Figure 4

 44 Figure 4.5: Distribution of the distances to the border of the objects set in the orbital 3D spatial patterns with preferential central organization in spherical domains (A) and peripheral arrangement in ellipsoidal domains (B)

Figure 4 .

 4 Figure 4.7 shows examples of high F -SDIs in these orbital 3D spatial patterns in spherical domains, interestingly for patterns with high number of objects, i.e. 16 as in the last figure, the observed CDF departed highly from the model expectations. This presented a F -SDI = 1, that was seen in more than 50 % of the dataset patterns.

Figure 4

 4 Figure 4.7: F -Function measured testing randomness on three orbital 3D spatial patterns of spherical domains with 12, 14 and 16 objects. They provided the F -SDIs = 0.88, 0.92, and 1, respectively.

Figure 4 .

 4 Figure 4.7 shows examples of the individual results obtained by the F -Function partially defend-ing the variable distribution of F -SDIs got at the population level. To evaluate the relationship between the number of objects and these F -SDIs, we display Figure4.8. The correlation exhibits two different effects: heterogeneous organizations for some precise number of objects and more constant spatial configurations (F -SDIs = 1) for 14 or more objects (and for 6). Hence, to interpret the F -Function, the number of objects must be taken into account.

Figure 4 . 8 :

 48 Figure 4.8: Correlation between the obtained F -SDIs and the objects number for the orbital 3D spatial patterns of spherical domains.

Figure 4

 4 Figure 4.9: SDI distributions obtained applying the F -, G-, H-, B-, C-and Z-Functions to test randomness on the spherical (A) and ellipsoidal (B) domain patterns obtained using the maximum 3D spatial model. The hardcore 3D spatial model is used to test randomness on the mentioned maximum repulsive 3D spatial patterns.

Figure 4 .

 4 Figure 4.10 we present the F -Function measured in four maximum repulsive spatial patterns in ellipsoidal domains. Due to the high reproducibility of this kind of organization patterns in regular-shape domains, these four examples are represent also of the response of more cases.

Figure 4 .

 4 Figure 4.10: F -Function measured testing randomness on four maximum repulsive 3D spatial patterns of ellipsoidal domains with 4, 6, 8 and 18 objects. They provided the F -SDIs = 0.91, 0.87, 0.10, and 0.01, respectively.

Figure 4

 4 Figure 4.11: Correlation between the obtained F -SDIs and the objects number for the maximum repulsion spatial patterns of ellipsoidal domains.

Figure 4

 4 Figure 4.12: Study of the SDI reproducibility using the hardcore 3D spatial model. The graphs show the SDI obtained by the analysis of randomness in 92 A. thaliana Col-0 leaf cell nuclei in three different runs. The F -, G-, H-and B-Functions are involved in the spatial evaluation.

Figure 4

 4 Figure 4.13: Study of the SDI reproducibility using the orbital 3D spatial model. The graphs show the SDI obtained by the analysis of orbital randomness in 92 A. thaliana Col-0 leaf cell nuclei in three different runs. The F -, G-, H-and B-Functions are involved in the spatial evaluation.

Figure 4

 4 Figure 4.15: Spatial evaluation of random organizations in varying-volume-domains. Random spatial patterns generated inside the proper nuclear volumes are evaluated in the sized-alterednuclei (Figure 4.14). The spatial analysis is carried out by the spatial descriptors F -, G-, Hand B-Functions.

Figure 4 .

 4 Figure 4.16: Sketch of the measurement of F -Function in wrong segmented domains. The red arrows show the distance from the reference points (in gray) to the pattern objects.

Figure 4

 4 Figure 4.17: Spatial evaluation of the original nuclear observations in the modified nuclear envelopes. The observed nuclear spatial patterns are evaluated inside the original nuclear volumes and in the sized-altered-nuclei (Figure 4.14). The spatial analysis is carried out by the spatial descriptors F -, G-, H-and B-Functions.

  4.1) This marginal spatial model can implement peripheral, central and random organizations. Its basic representations are displayed in Figure 4.18-A. The spatial patterns are set up by giving the precise unit square whole area, the side size s of the outer area and the probability p. Using this probability the objects are more or less likely to be set in the outer area. Three examples of configurations carried out using this spatial model are shown (Figure 4.18-B-D).They exemplify a random configuration (B) using the critical probability p c , a central cluster in a long-side s configuration (C) and a peripheral arrangement in a short-side s case (D).We used two different values for s: 0.2 (inner square 0.36 %) and 0.4 (inner square 0.04 %) inside a squared domain of side 1.For each of the two s length cases, we generated 100 patterns for a specific number of points n and a fixed probability p. We varied this probability p and the number of objects n obtaining a large dataset of spatial point patterns. Varying the probability p (from 0 to 1 by steps of 0.04), the generated spatial configurations were highly heterogeneous: from central clustering to peripheral organization passing through randomness(Figure 4.18).

Figure 4

 4 Figure 4.18: Marginal 2D spatial model patterns. (A) The model has two variables: the side size s of the outer area and the probability p of an object to be in this outer area. Consequently an object has the probability '1p' to be at the inner area. (B) Spatial pattern of a random configuration obtained when the probability of being set in the two areas is the same (s = 0.2, p = 0.64). (C) Spatial pattern that shows clustering in a small inner area (s = 0.4, p = 0.00).(D) Spatial pattern that presents a peripheral organization in a thin outer space (s = 0.2, p = 1.00).

Figure 4 .

 4 Figure 4.19: Average F -, G-, H-, and C-SDIs in relation to domain points number. The figure shows the average F -, G-, H-, and C-SDIs obtained for a domain with a large inner region (s = 0.2, 0.36 % of the whole area). The average SDI obtained by a certain points number are plotted given certain probability p . The figures display the fitted lines obtained by the Hill function formulas (H 1 (x) and H 2 (x)).

Figure 4

 4 Figure 4.20: Thomas process point patterns. The four examples show the result of using different parameters: (A) exhibits 18 points (λ = 1, µ = 0.1 and σ = 0.1), (B) shows 17 points (λ = 2, µ = 0.2 and σ = 0.2), (C) displays ∼150 points (λ = 1, µ = 1 and σ = 0.1) and (D) presents ∼150 points (λ = 1, µ = 2 and σ = 0.1).

Figure 4

 4 Figure 4.21: Average F -, G-, H-, and B-SDI obtained for different Thomas process point patterns. The figures correspond to the patterns that use the following parameters: (A) λ = 1, µ = 0.1 and σ = 0.1 (example of pattern in Figure 4.21-A), (B) λ = 2, µ = 0.2 and σ = 0.2 (example of pattern in Figure 4.21-B), (C) λ = 3, µ = 0.1 and σ = 0.2 and (D) λ = 3, µ = 0.2 and σ = 1. The figures display the fitted lines obtained by the Hill function formulas (H 1 (x) and H 2 (x)).

  .2)) has been used to properly describe the average SDI values(Figures 4.19 and 4.21). Considering that, we can use the b parameter, obtained by the formulas, to quantify the departure from the data population from the tested model. For these cases, Subsection 4.5.1 has pointed out to an increase of the parameter b independently of the Hill function formula. Hence, in the comparison of SDI values between groups, we could use b to quantify which population departs faster from the tested model (obviously when they present the same sign). Otherwise, when two groups present opposite departures from the model, there is no need to compare them. This opens a perspective for the population comparison, letting us doing it independently of the number of objects or the number of group samples.

  Afterwards, regions of homogeneous intensities are obtained using the watershed transform method (Figure 5.1-C). Then, mathematical operators are applied on region adjacency graphs (Figure 5.1-D) to generate a contrast map (Figure 5.1-E). This map highlights the bright regions and darkens the background ones, improving the contrast, thus the accuracy, to extract the chromocenters. Finally, the objects are extracted by application of an Otsu's threshold based on the histogram of the contrast map values (Figure 5.1-F). This step generates an image in which the different chromocenters are labeled with different values. These steps are carried out without any manual intervention.

Figure 5

 5 Figure 5.2: Maximum intensity Z-projections of 3D confocal microscope images of A. thaliana Col-0 leaf isolated cell nuclei. All the images are at the same magnification.

Figure 5

 5 Figure 5.4: Correlations between nuclear size and morphology. The figures show the evaluations of the nuclear volume and the elongation (A), the nuclear volume and the flatness (B) and the elongation and the flatness (C). The figures present the regression line and the correlation coefficient r.

Figure 5

 5 Figure 5.5: Analysis of heterochromatin features. The nuclear envelope and the CCs masks (A) of the previous nucleus (Figure 5.3-A) are converted into 3D surfaces (B). Distribution of the CCs number per nucleus (C), CCs volume (D) and nucleus volume RHF (E).

Figure 5 . 6 :

 56 Figure 5.6: Correlations between parameters related to the heterochromatin. Evaluations between nuclear volume and number of chromocenters (A), between the CCs number per nucleus and the average CCs volume for each nucleus (B) and between the nuclear volume and the total sum of CCs volume per nucleus (C) are plotted. The figures include regression lines and correlation coefficients.

  3.2 and Figure 5.7) to generate random spatial configurations inside the observed nuclear domains. We used m = 99 model realizations to generate the model average and another m = 99 model realizations to obtain the final SDI of each used spatial statistical descriptor (Section 3.4)

Figure 5 . 7 :

 57 Figure 5.7: Examples of random spatial configurations of chromocenters generated for the nucleus shown in Figure 5.5

Figure 5 .Figure 5

 55 Figure 5.8 shows sample G-Functions on three nuclei. Observed distances were greater than the model expectations in the first and second examples. The distances of the last nucleus were inside the range of the ones expected in the random model realizations.

Figure 5 . 9 :

 59 Figure 5.9: Distribution of SDIs obtained from the F -, G-and H-Functions computed using the completely random spatial model. The discrete Kolmogorov-Smirnov test was used to compare observed distributions to the expected uniform distribution (diagonal line) under the model.

Figure 5 Figure 5

 55 Figure 5.10: B-Function measured on three A. thaliana nuclei using the completely random spatial model. The nuclei are sorted based on the acquisition date; B-SDIs: 0.01, 0.01, 0.02

Figure 5

 5 Figure 5.12: Correlation graphs between the SDIs and nuclear parameters. The SDIs obtained by the F -, G-, H-, B-and C-Functions are evaluated respect to: nuclear volume (A), the elongation parameter (B), the flatness parameter (C) and the number of chromocenters (D).

Figure 5 .Figure 5

 55 Figure 5.13: Examples of orbital spatial configurations of chromocenters generated for the nucleus shown in Figure 5.7. The different model realizations presented the same observed distances from CCs to the nuclear boundary.

Figure 5 .Figure 5

 55 Figure 5.15: Examples of maximum repulsive spatial configurations of chromocenters generated for the nucleus shown in Figure 5.7. The different model realizations presented the same observed distances from CCs to the nuclear boundary.

Figure 5 Figure 5

 55 Figure5.17: H-Function measured on six A. thaliana nuclei using the maximum repulsion spatial model. H-SDIs: 0.11, 1.00, 0.85, 0.01, 0.99, 0.09

  Figure 5.16), the SRD-Function confirmed these short distances not only between nearest CCs but taking into account small inter-distances between other CCs.

Figure 5

 5 Figure 5.21: Distribution of SDIs obtained from the LRD-, SRD-and Z-Functions computed using the maximum repulsion spatial model. The discrete Kolmogorov-Smirnov test was used to compare observed distributions to the expected uniform distribution (diagonal line) under the model.

Functions

  

Figure 5 .

 5 Figure 5.22: Distribution of SDIs obtained from the F -, G-, H-and Z-Functions computed using the maximum repulsion spatial model on the ellipsoidal domains. The generated simulations used the orbital hardcore 3D territorial spatial model taking a distance of 0.05 µm distance from each CC to the ellipsoid boundary. The discrete Kolmogorov-Smirnov test was used to compare observed distributions to the expected uniform distribution (diagonal line) under the model.

Figure 5

 5 Figure 5.23: Morphology of mesophyll cell nuclei in crwn1 and crwn2 single and double mutants. (A) DAPI-stained nuclei in wild-type plants and crwn1, crwn2, and crwn1 crwn2 mutants. The images show maximum intensity projections of 3D confocal image stacks. Scale bar = 5 µm. (B) Distributions of nuclear size and shape parameters in the four genotypes. Significance levels of comparison with wild-type control (Wilcoxon test): ns (P > 0.05), p < 0.05 ( ), p < 0.01 ( ), p < 0.001 ( ).

Figure 5

 5 Figure 5.24: Heterochromatin features of mesophyll cell nuclei in crwn1 and crwn2 single and double mutants. (A) Number of chromocenters. (B) Density of chromocenters (number per unit volume). (C) Average volume of chromocenters. (D) Average normalized volume of chromocenters. (E) Intensity relative heterochromatin fraction.

Figure 5

 5 Figure 5.25: Effects of crwn1 and crwn2 mutations on the 3D spatial organization of chromocenters: statistical comparison of observed patterns with a completely random organization. The graphs plot the cumulative distribution of the Spatial Distribution Index (SDI) computed from the cumulative distribution function of (A) the radius of empty spaces; (B) the distance to the nearest chromocenter; (C) the distance to any other chromocenter. The dashed diagonal line corresponds to the expected SDI distribution under a completely random organization of the chromocenters.

  Figure 5.26: Spatial interactions between chromocenters and nuclear periphery in wild-type Col-0 and crwn mutants. (A) Average distance between chromocenter centroid and nuclear boundary. (B) Same as (A) following normalization by nucleus equivalent radius. (C) Average spacing between chromocenter and nuclear boundaries. (D) Statistical comparison of observed patterns with a completely random organization: cumulative distributions of the SDI computed from the cumulative distribution function of the distance between chromocenter centroid and nuclear boundary.

  Figure 5.27: Nuclear morphology in the kaku1-3 and kaku1-4 mutants. (A) DAPIstained nuclei of mesophyll leaf cells in kaku mutants. The images show maximum intensity projections of 3D confocal image stacks. Scale bar = 5 µm. (B) Size and shape nuclear measurements. Statistical tests are applied comparing genotypes to the same Col-0. p-values < 0.05 ( ), < 0.01 ( ), < 0.001 ( ), < 0.0001 ( ).

Figure 5

 5 Figure 5.28: Effects of kaku1-3 and kaku1-4 mutations on heterochromatin features in mesophyll cell nuclei. (A) Number of chromocenters. (B) Density of chromocenters (number per unit volume). (C) Average volume of chromocenters. (D) Average normalized volume of chromocenters. (E) Intensity relative heterochromatin fraction.

Figure 5

 5 Figure 5.29: The global spatial distribution of chromocenters was not altered in the kaku mutants. The graphs plot the cumulative distribution of the Spatial Distribution Index (SDI) obtained by comparing observed chromocenter patterns to completely random patterns. The SDI is computed from the cumulative distribution function of (A) the radius of empty spaces; (B) the distance to the nearest chromocenter; (C) the distance to any other chromocenter; (D) the distance to the border of the nucleus. The dashed diagonal line corresponds to the expected SDI distribution under a completely random organization of the chromocenters.

6. 1

 1 A. thaliana nuclear architecture: chromocenters organizationThe main application of the developed framework was to decipher the spatial rules that chromocenters follow in A. thaliana Col-0 isolated leaf cell nuclei (Section 5.2).[START_REF] Andrey | Statistical analysis of 3d images detects regular spatial distributions of centromeres and chromocenters in animal and plant nuclei[END_REF] demonstrated statistically their departure from randomness. Here, we have confirmed CCs nonrandomness and their high regular spatial organization (Subsection 5.2.3). Others suggested by visual methods or pure measurements[START_REF] Armstrong | Nucleolus-associated telomere clustering and pairing precede meiotic chromosome synapsis in arabidopsis thaliana[END_REF];[START_REF] Fransz | Chromatin dynamics in plants[END_REF];[START_REF] Schubert | Interphase chromatin organisation in arabidopsis nuclei: constraints versus randomness[END_REF]], or based on a centromeres analysis[START_REF] Fang | Centromere positioning and dynamics in living arabidopsis plants[END_REF]] a peripheral organization of CCs. We have demonstrated objectively and quantitatively, for the first time, the peripheral organization of these nuclear compartments employing the B-Function analyzing the interaction between CCs and nuclear border (Subsection 5.2.4). The hypothesis that CCs regularity is explained solely by their peripheral organization has been rejected (Subsection 5.2.6). A maximum regularity has been dismissed using the maximum repulsion spatial model (Subsection 5.2.7). Analyzing the interaction between objects, CCs have exhibited a globally regular organization with small clusters. Altogether, these results suggest that CCs present a complex multi-scale spatial distribution, showing regularity at the global scale and 157 an aggregation trend at the local one.

Figure A. 1 :

 1 Figure A.1: Example of the distances quantified by the N N -Function in 4 spatial patterns of 6 objects (represented as gray spheres). Distances from each object to all the others except to its nearest one are calculated. The sketches show the distances measured from one spatial pattern object.

  distances above this limit, thus serving to analyze the interaction between objects at long range distance (LRD) (Figure A.2). The implementation itself makes that the number of distances quantified by this spatial statistical descriptor depend highly on each spatial objects pattern.

Figure A. 2 :

 2 Figure A.2: Example of the distances quantified by the LRD-Function in 4 spatial patterns of 6 objects (represented as gray spheres). Distances from each object to others separated by a distance longer than the maximum distance between nearest neighbors (displayed in black) are calculated. The sketches show the distances measured from one spatial pattern object.

Figure A. 8 :

 8 Figure A.8: Comparison of nuclear morphological parameters using boxplots. The elongation, the flatness and the sphericity parameters are evaluated in the two Col-0 datasets (2010 and 2016).

(

  Figure A.10: Comparison of A. thaliana chromocenters distances to the nuclear border using boxplots. The distance to the border (CC centroid -nuclear envelope) and the spacing (CC envelope -nuclear envelope) between each CC and the nuclear border are evaluated in the two Col-0 datasets (2010 and 2016).

Figure

  Figure A.12: Correlation-graphs of the SDI given by the different spatial functions and the number of CCs in each nucleus using the hardcore 3D spatial model. The F -, G-, H-, Z-, B-, and C-Functions are used in this spatial evaluation. The results of the 2010 are shown in black, whereas the 2016 ones are displayed in red.

  Figure A.13: CDF of SDI-values obtained by the application of F -, G-, H-, Z-, and C-Functions using the orbital 3D spatial model. The graphs show the results of the spatial analysis done on the 2010-dataset (black) and on the 2016-dataset (red). The 2010-dataset was formed by 112 A. thaliana leaf cell nuclei while the 2016-dataset contained 92 nuclei.

Figure

  Figure A.14 displays the SDIs obtained by the F -, G-, H-, Z-, and C-Functions using the maximum repulsion model on the 2010-and 2016-datasets. Using this spatial model the two

Titre:

  Analyse statistique et modélisation de l'architecture nucléaire chez Arabidopsis thaliana Mots clés: statistiques spatiales, processus ponctuels, imagerie biologique 3D, architecture nucléaire, hétérochromatine constitutive, A. thaliana Résumé: les noyaux des cellules eucaryotes contiennent différents compartiments définis fonctionnellement ou structurellement et à multiples échelles qui présentent une distribution spatiale très ordonnée. Un défi majeur est alors d'identifier les règles selon lesquelles les compartiments nucléaires sont organisés dans l'espace et de décrire comment ces règles peuvent varier en fonction des conditions physiologiques ou expérimentales. Les statistiques spatiales ont rarement été utilisées à cette fin et se sont généralement limitées à l'évaluation de l'aléatoire complet. Dans cette Thèse, nous développons une approche de statistiques spatiales qui combine la cytologie, l'analyse d'image et la modélisation spatiale pour mieux comprendre les configurations spatiales à l'intérieur du noyau. Notre première contribution est un cadre méthodologique qui permet de tester des modèles d'organisation spatiale au niveau de la population. Plusieurs modèles spatiaux ont été proposés et mis en oeuvre, en particulier l'aléatoire, l'aléatoire orbitale, la régularité maximale, l'aléatoire territoriale et l'aléatoire territoriale orbitale, pour analyser la distribution d'objets biologiques dans des domaines 3D finis et de formes arbitraires. De nouveaux descripteurs spatiaux, combinés aux descripteurs classiques, sont utilisés pour comparer les motifs observés à des configurations attendues sous les modèles testés. Une version non biaisée d'un test statistique publié précédemment est proposé pour évaluer la qualité de l'ajustement des modèles spatiaux sur les distributions observées. Dans la deuxième partie de cette Thèse, nous étudions les propriétés de l'approche proposée à partir de données réelles et simulées. La robustesse de l'approche proposée aux erreurs de segmentation et la fiabilité des évaluations spatiales sont examinées. En outre, la base d'une méthode pour comparer les distributions spatiales entre différents groupes expérimentaux est proposée. Dans la dernière partie de ce travail, notre approche est appliquée à des images de noyaux cellulaires de la feuille chez A. thaliana, pour analyser la distribution spatiale de compartiments dynamiques et plastiques d'hétérochromatine, les chromocentres, qui ont un rôle important dans la structure du génome. Des noyaux isolés et des cryo-sections provenant de plantes de type sauvage ont été analysés. Nous montrons que les chromocentres présentent une distribution très régulière, ce qui confirme les résultats publiés précédemment. En utilisant nos nouveaux descripteurs, nous démontrons pour la première fois, objectivement et quantitativement, que les chromocentres présentent une localisation préférentielle périphérique. En employant un nouveau modèle spatial, nous rejetons l'hypothèse selon laquelle l'organisation régulière observée est uniquement expliquée par un positionnement périphérique. Nous démontrons en outre que les chromocentres affichent une régularité spatiale proche de la regularité maximale à l'échelle globale, mais pas à l'échelle locale. Enfin, nous utilisons des simulations pour tester un modèle selon lequel le positionnement des chromocentres est determiné par les territoires chromosomiques et par des interactions avec l'enveloppe nucleaire. Nous avons ensuite verifié s'il la distribution des chromocentres pouvait être modifiée par différentes mutations. Nous avons analysé les données de noyaux des mutants crwn et kaku, qui sont connus pour influencer la morphologie nucléaire. Les résultats suggèrent que ces mutations impactent en effet la morphologie nucléaire et les caractéristiques de l'hétérochromatine, mais ne modifient pas la régularité de la distribution des chromocentres même si la distance à la frontière du noyau est affectée. La généricité du cadre proposé pour analyser les distributions d'objets dans des domaines 3D finis et la possibilité d'ajouter de nouveaux modèles et descripteurs spatiaux devrait permettre d'analyser des organisations spatiales au sein de différents systèmes biologiques et à différentes échelles.Title: Statistical analysis and modeling of nuclear architecture in Arabidopsis thaliana Keywords: statistical spatial analysis, point processes, 3D biological imaging, nuclear architecture, constitutive heterochromatin, A. thaliana
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Table 2 .1: Mutations affecting the spatial organization of heterochromatic compartments in A. thaliana

 2 

  5: Simulation of the maximum repulsion 3D spatial object model: pseudocode. The implementation uses the energy formula (E(p)) shown in Equation (3.1).

input : D (3D surface of the domain), n (object number), r (list of equivalent object radii) output: positions (maximum repulsive 3D spatial pattern of n objects) p ← random objects pattern generated by Algorithm 2;

repeat i ← random object number ∈ [1, n]; ∆p i ← random, small displacement; q i ← p i + ∆p i ; p ← p 1 , . . . , p i-1 , q i ,

p i+1 , . . . , p n ; if E(p ) < E(p) then p ← p ; else ∆E ← E(p ) -E(p); p ← p with probability e -β∆E ; until convergence; return p;

Table 4

 4 Tested spatial model Spatial descriptor 1 st vs 2 nd run 1 st vs 3 rd run 2 nd vs 3 rd run

	Hardcore 3D	F -Function	0.6617	0.9069	0.9680
	Hardcore 3D	G-Function	0.9920	0.7658	0.9930
	Hardcore 3D	H-Function	0.7658	0.9149	0.9950
	Hardcore 3D	B-Function	0.8769	0.9550	0.9990
	Orbital 3D	F -Function	0.9189	0.8148	0.9940
	Orbital 3D	G-Function	0.5065	0.7788	0.9960
	Orbital 3D	H-Function	0.9309	0.8619	0.9479

.1: Test of the SDI-tool reproducibility. KS test (Matching package of R, KS test applied to two discrete values distributions) p-values obtained comparing SDIs distributions from the different spatial descriptors in independent runs.

Table 4
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	-2 voxels
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	original
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	+4 voxels

.2: Difference of the nuclear volumes after the application of the morphological operators. The table shows the mean increase or decrease (in %) and the standard deviation (in %) of the nuclear volume change compared to the correct segmentation.

Table 4

 4 .3).

	p	Hill function formula	b	c
	0.08	H 1 (x)	1.643 1.220
	0.20	H 1 (x)	1.279 1.387
	0.32	H 1 (x)	0.983 1.512
	0.44	H 1 (x)	0.615 1.692
	0.56	H 1 (x)	0.299 2.646
	0.64	H 1 (x)	0.002	0
	0.68	H 2 (x)	0.147 1.586
	0.80	H 2 (x)	0.556 1.684
	0.92	H 2 (x)	1.045 1.955

.3: Table of b and c parameters obtained using the Hill function formulas on marginal point patterns testing CSR utilizing the H-Function.
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Similar dependence but less correlated is shown in the evaluation between the flatness parameter and the nuclear volume. The distribution of the shape parameter values were not so variable, thus the values were displayed more clustered in low flatness values. The slightly positive correlation (r = 0.38, Kendall's rank p-value 0) suggested that the larger the nuclei, preferentially bigger is the flatness.

The positive correlations induced to examine the dependency between the elongation and the flatness parameters. The regression coefficient was 0.21 (Kendall's rank p-value = 0.017). In spite of the lack of enough nuclei with high elongation, we could not reject the hypothesis that these two morphological parameters were not uncorrelated.

The analyses of the nuclear size and morphology has pointed out to two different sub-populations of nuclei: an homogeneous population of round small nuclei and another more heterogeneous population of large elongated nuclei.

Analysis of heterochromatin features

Several questions related to the nuclear constitutive heterochromatin came out after the analysis of the nuclei. Do chromocenters present a high variability in number? Do they show a large heterogeneity in volume as happened with the nuclear size?

The analysis of A. thaliana nuclear chromocenters started with their extraction from the original images. To accomplish this process the nuclear envelopes were used to delimit where the CCs can be located. The pipeline used the methods described in Subsection 5.1.2 to segment automatically the CCs . After this step the number of available nuclei for a unbiased evaluation dropped to 77 (Table 5.1). In order to increase this number a manual segmentation was done, raising the final number to a total of 92 nuclei. These 92 Arabidopsis nuclei represented a final success rate of 83.64% of the provided data.

The number of chromocenters per nucleus varied from 4 to 18 (Figure 5.5-C). The average number of CCs per nucleus was 9.73 in this A. thaliana Col-0 leaf cell nuclei dataset. In the literature the average CCs per nucleus is between 8 and 11 [Fransz et al. (2002); Andrey et al. The Z-SDI results were consistent with a multi-scale organization of the chromocenters. At the global scale, CC distribution was consistent with a maximally regular distribution. At the local scale, they do not presented such apparent repulsion. On the contrary, their distribution was consistent with positive spatial interactions, CCs presented associations between them.

In the literature, different studies have suggested the presence of short distances between NORbearing chromocenters (NOR-bearing chromosomes 2 and 4 have been located closely to the nucleolus [Fransz et al. (2002); [START_REF] Pecinka | Chromosome territory arrangement and homologous pairing in nuclei of arabidopsis thaliana are predominantly random except for nor-bearing chromosomes[END_REF]; [START_REF] Berr | Chromosome arrangement and nuclear architecture but not centromeric sequences are conserved between arabidopsis thaliana and arabidopsis lyrata[END_REF]; [START_REF] Schubert | Interphase chromatin organisation in arabidopsis nuclei: constraints versus randomness[END_REF]]) and a global regular spatial arrangement [START_REF] Andrey | Statistical analysis of 3d images detects regular spatial distributions of centromeres and chromocenters in animal and plant nuclei[END_REF]]. The presence of short distances between CC2 and CC4 was suggested without any quantitative validation [START_REF] De Nooijer | Non-specific interactions are sufficient to explain the position of heterochromatic chromocenters and nucleoli in interphase nuclei[END_REF]]. Our results could be interpreted in light of these associations between CC2 and CC4 and the nucleolus: short distance between a couple or few chromocenters (the ones located close to the nucleolus) whereas the others would be spread within the nucleus, involving long interdistances between them. These results could therefore be interpreted confirming the previous suggestions.

This hypothesis of spatial organization has to be tested using a new spatial model. However, Setting the complete spatial point model and the hardcore 3D one as robust bases, we enabled the addition of computational rules to test more complex spatial organizations as the orbital or the maximum repulsive one, letting open the possibility to include new others in the framework in the future. The addition of other new summary statistics is also straightforward thanks to the expandable character of our framework. These should be oriented to analyze finite domains.

Overall, the expandability of the pipeline lets the future addition of new methods in every step to improve its potential to decipher spatial organizations of objects in arbitrary confined 3D domains at the population level.

Appendix A Appendix

A.1 Other new spatial statistical descriptors

Here more new spatial statistical descriptors are introduced.

A.1.1 NN -Function

Following the analysis of the interaction between objects, we realized we can group or discard certain distances to explain better this interaction. We implement a new spatial statistical descriptor named N N -Function (Not-Neighbors). This is the CDF of the distances from each object to all the others except to its nearest one (Figure A.1) When we omit each nearest object, we are avoiding to count the interaction analyzed by the G-Function but in a global context. Thereby, if there is a clear clustering between two nearest objects, we can avoid this effect and examine the spatial interaction between all the other objects. This function therefore serves to evaluate the global organization avoiding the effect of nearest neighbors, thus it is a complement to the H-Function.

far. Thereby, we proceed first with a examination of how objects are spread into the domain.

But besides, we can compare the response of the LRD-Function to the one obtained by the H-Function that takes into account all the objects. Looking to the difference we can complete the spatial evaluation of the domain. For example, the comparison can discriminate situations in which very few objects are far away from the majority of them.

A.1.3 SRD-Function

Once the LRD-Function has been implemented, another descriptor can be computed simply using the distances below the threshold that we use to classify the distances. Considering that we take into consideration the distances that are not counted in the previous spatial statistical This spatial statistical descriptor serves to examine the number and the interaction of objects apart from the nearest neighbor (considered in the G-Function) that are located at close distances.

A.2 Technical validation of the complete random models at the population level

A.2.1 Complete random spatial point patterns

We start by examining the spatial patterns that are used to evaluate the complete randomness on the other models. For that purpose we generate 100 CSR point patterns. We test the CSR patterns on more patterns like them to evaluate the good performance of the strategy in this stochastic generation.

To evaluate each spatial pattern we use the main spatial descriptors: F -, G-, H-, B-, C-and Z-Functions. Proceeding first with the observations of the individual CDFs obtained by the spatial functions on the spherical domain spatial patterns. We chose the G-, the H-, and the Z-Functions and the B-Function to evaluate the interaction between the pattern points and between them and the domain envelope.

All these spatial statistical descriptors exhibited in their results measured distances in the observed spatial patterns that did not differ under the expected CSR model. This was obvious considering the 'observed' CSR patterns were obtained using the same spatial model that we were using to test randomness. Thus we needed to evaluate the 100 individual patterns as a group, at the population level, to decipher whether the whole dataset described completely random organizations or whether there was a bias, and some departure from randomness was preferential.

We therefore applied the SDI-tool to evaluate the dataset spatial organization at once (Fig- The ellipsoidal cases exhibited also a high variability. The SDIs displayed uniform distributions, supporting therefore the tested spatial hypothesis, complete randomness.

A.2.2 Hardcore 3D random spatial objects patterns

We tested the hardcore 3D spatial model, which represents spatial randomness of sized-objects within closed domains. In the model realizations the radius of each object was respected not letting the objects to overpass the domain envelope or to intersect with other objects.

Similar to the previous evaluation, in here we obtained a dataset of 100 hardcore 3D spatial patterns in spherical domains and another dataset of 100 in ellipsoidal spaces. Each of those dataset presented groups of 10 patterns with the same number of objects (from 4 to 22 by steps of 2). The objects presented a radius size of 0.1 µm.

As we did with the completely random spatial point patterns, we applied the same evaluation with the hardcore 3D spatial patterns. Thus, we tested the two dataset to the same kind of spatial patterns considering that they represented random object patterns. With this evaluation we checked the proper performance of the hardcore 3D spatial model at the population level.

As before (Figure A.5), the 100 patterns dataset should proportionate uniform distributions of SDI-values considering the stochasticity of the method.

We addressed the problem evaluating the SDIs given by the six main spatial statistical descrip- 

A.3 Comparison of A. thaliana isolated nuclei populations

As it has been mentioned, the main application of the strategy is the analysis of the spatial architecture in A. thaliana Col-0 leaf cell nuclei. Here, we introduce a comparison between the dataset analyzed in Section 5.2 and another dataset of the same plant material used in an already published analysis [START_REF] Andrey | Statistical analysis of 3d images detects regular spatial distributions of centromeres and chromocenters in animal and plant nuclei[END_REF]]. This examination is divided in three parts, we analyze the size and morphology, then we characterize the chromocenters to finally evaluate the spatial configuration of chromocenters in these plant nuclei. The number of nuclei studied in each population was of 112 in the 2010 dataset and 92 in the new one (only the completed segmented nuclei has been chosen for the analysis).

The plants were three-week-old plantlets cultured in vitro in petri dishes. The material was fixed and chopped, to finally get the isolated nuclei from the whole plantlets. (2010 and 2016). The difference in size is evaluated using the nuclear volume. Beside, the shape and the size are analyzed plotting the length of the three axes.

The volume of the nuclei was not different between the two datasets (Wilcoxon-test p-value 0.8655), thus they did not present difference in size. The old population gave an average size of 133.47 µm 3 . They used first a visual shape classification after which they classified the nuclei in round, which mean volume was 83.4 µm 3 , and elongated nuclei, which average size was of 182.7 µm 3 (suggesting that the round nuclei were smaller in mean than the elongated ones).

Whereas the new dataset gave an average of 139.45 µm 3 .

To evaluate the morphology of the nuclei, the three axes were compared. Since the volume was not different, in case there was a length change in any axis, this involved a change in the nuclear morphology. The major axis, which had means of 2.48 and 2.37 respectively, showed Besides, the spatial statistical descriptors proposed a regular spatial organization (F -Function), with longer distances between nearest CC (G-Function), between furthest ones (Z-Function)

and among all of them (H-Function). The result of this was a more peripheral and more repulsive organization than the one expected under a random spatial organization. In spite of these general facts, the newest dataset showed more repulsive distribution and more peripheral than the 2010 one.

Another appealing way of evaluating the spatial analysis is the correlation of the SDI-values and the number of chromocenters. Regarding the Z-SDIs, while the 2016-dataset did not present a departure respect a maximum repulsive organization considering the distances between furthest CCs, the oldest dataset showed a clear preference for shorter distances at this CCs interaction scale.

The C-SDIs described different organizations in the two datasets. The 2010 population presented shorter distances between the nuclear barycenter and the CCs in the majority of the nuclei than under the tested model. However, the 2016-dataset showed half of the population that show variable distances between the nucleus centroid and the CCs but other which preferred the longer distances than under a maximum regular organization. This was explained by the distance to the border. CCs under a maximum repulsive organization were spread in the whole nucleus, covering same-length-distances they were at the boundary but also at the central nucleus part, while in the 2016 dataset they had a strong preference to be close to the nuclear boundary. In opposition, CCs in the oldest population did not show such peripheral preference, thus, they were far from being under a maximum repulsive organization.

This current spatial evaluation of chromocenters in A. thaliana Col-0 leaf cell nuclei has demonstrated two important facts. Firstly, the peripheral organization of CCs in this model plant was observed in the two datasets, but with different grades of proximity to the nuclear boundary. The newest population had a closer to the boundary arrangement, which could be due to the different nuclear morphology since the nuclear volumes and the chromocenters number were similar. Secondly, despite the average distance to the border was different in the two datasets, the regular distribution of chromocenters through the whole nucleus was present in the most nuclei. Chromocenters therefore followed a peripheral organization (under different level) with a high regularity between them. Thereby, there was something that make CCs to be so dispersed. To explain that, here comes the spatial hypothesis introduced at the end of Subsection 5.2.7.