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RESUMEN 
 En esta tesis se reportan los procesos para analizar las señales sEMG multicanal a través del uso 
de las transformaciones Wavelet y Hilbert-Huang, así como de otros métodos de análisis de señales, tales 
como filtros Kalman y Göertzel, como técnicas para detectar, medir, filtrar y descomponer esas señales 
sEMG para identificar los patrones en tiempo, frecuencia, espacio o su combinación, para movimientos de 
flexión y extensión de los dedos de la mano usando los músculos superficiales del antebrazo asociados a 
ellos para la predicción de sus movimientos y reducir el tiempo de cómputo de las características. El 
objetivo de la investigación es mejorar el tiempo de cálculo de las señales electromiográficas para el 
control de dispositivos protésicos usando sólo sensores superficiales. La hipótesis tiene como base que 
todos los movimientos de la mano son respuesta de la actividad mioeléctrica de músculos en específico del 
brazo y antebrazo, esta actividad eléctrica puede ser medida como una señal electromiográfica 
relacionada a una secuencia de movimientos de los elementos de la mano, los dedos. Cada dedo realiza 
una trayectoria desde la posición relajada hasta la última posición deseada, esta trayectoria no es un trazo 
instantáneo, por lo que, la señal mioeléctrica no es instantánea. La actividad eléctrica del músculo está 
presente en las señales registradas, entonces esta puede ser definida como un grupo de frecuencias o un 
trazo de energía. Esta actividad eléctrica puede ser reconocida por un algoritmo dentro de una base de 
datos de sus patrones, comparar la actividad eléctrica de los músculos en tiempo real contra estos datos 
para crear una tendencia del comportamiento de la mano y, posiblemente, predecirla para reducir el 
tiempo de cómputo para encontrar el moviemiento específico antes o al mismo tiempo de su ejecución. 

El objetivo general es la propuesta de un método y sus algoritmos para predecir y corregir los movimientos 
de la mano por medio de la identificación de los patrones y características de la señal mioeléctrica en 
músculos del antebrazo en un tiempo de procesamiento menor a los 100 ms. Los objetivos específicos se 
dividen en tres etapas : Adquisición, Análisis Estacionario de la Señal (SSA) y Análisis No-Estacionario 
de la Señal (NSA). La etapa de adquisición es común para las etapas SSA y NSA. Para la etapa de 
adquisición, las señales son adquiridas colocando electrodos superficiales Ag/AgCl sobre cinco músculos 
del antebrazo ligados a los dedos. Usando un arreglo configurado de 4 canales, las señales fueron 
muestreadas y registradas. Enseguida, las señales fueron normalizadas y recortadas dentro de una ventana 
cuadrada antes de ser analizada. Una base de datos de los seis movimientos de los dedos fue obtenida. El 
análisis estacionario consta de los métodos y procesos propuestos para analizar los datos registrados 
usando las transformadas Wavelet y Hilbert-Huang. Del uso de éstas, características particulares y 
específicas, así como patrones, fueron encontrados. Los escalogramas y las características estadísticas  
son reportadas. Los patrones de tiempo y frecuencia son descritos como modelos matemáticos. Una 
característica intrínseca de la actividad muscular que está asociada a la intensidad muscular de la señal 
mioeléctrica, también se muestra. Los resultados son de utilidad para la propuesta de procesos de filtrado 
e identificación de características en tiempo real. Por otro lado, en el análisis no estacionario de las 
señales, se proponen las condiciones, métodos, técnicas y procesos para realizar en un corto tiempo, un 
periodo de menos de 100 ms, la identificación de las características y patrones de las señales mioeléctricas. 
El filtro Kalman mejora la eliminación de ruido y la reconstrucción de la señal para predecir la señal de 
entrada, la señal mioeléctrica. La señal de salida del filtro Kalman entra al filtro Goertzel, que detecta 
señales específicas usando la transformada de Fourier discreta con base en los patrones y características 
modelados. Los resultantes de estos filtros pueden ser aplicados directamente a un sistema protésico como 
señal de control o introducidos a un sistema de clasificación, dependiendo de la complejidad del sistema 
de adquisición, los canales o movimientos. 

El sistema de predicción propuesto se adapta a aplicaciones de tiempo real usando sólo las señales 
mioeléctricas como entrada. La naturaleza dinámica del filtro Kalman  provee para la variación de tiempo 
una fusión óptima de la información mioeléctrica, intensidad muscular y estadística de los movimientos. 
Usando el filtro Kalman es posible reducir el ruido y reconstruir rápidamente la forma de onda deseada. 
El filtro Goertzel reconoce de forma simple las frecuencias deseadas en un periodo cercano a 5 ms. El 
patrón de tiempo establece una señal de activación de 24.5 ms, un periodo de 30 ms de reconstitución y 
otro de 24.5 ms de desactivación. Éstos periodos sugieren que la ventana óptima de análisis es de 30 ms 
para aplicar cualquier método utilizado en este trabajo. Con una ventana de 30 ms, en 15 ms se podría 
realizar la predicción y 5 ms para detectar el tono ; por tanto el tiempo para la identiciación, detección, 
predicción y corrección de la señal mioeléctrica puede ser realizada en un tiempo menor a 100 ms.  
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RÉSUMÉ 
Cette thèse rapporte les processus pour analyser l’signal sEMG multicanal à l’aide de la 

transformée en ondelettes, transformation de Hilbert-Huang et d’autres méthodes d’analyse des signaux, 
tels que les filtres de Kalman et Goertzel, comme techniques pour détecter, mesurer, filtrent et décomposent 
ceux les signaux sEMG pour identifier des tendances dans le temps, fréquence, espace ou combinaison des 
mouvements de flexion-extension des doigts de la main à l’aide de muscles superficiels lien-doigts afin de 
prédire le mouvement de la main et de minimiser le temps de calcul. Le but de notre recherche est 
d’améliorer le temps de calcul pour les caractéristiques des signaux myoélectrique pour contrôler des 
prothèses à l’aide de capteurs superficiels. L’hypothèse est fondée par l’idée que tous les mouvements de 
la main sont une réponse active à l’activité myoélectrique des muscles spécifiques, que l’activité électrique 
peut être mesure comme un signal associé à une séquence de mouvement des éléments de la main, 
doigts. Chaque doigt peut effectuer une trajectoire de la position de repos à la position finale, cette 
trajectoire n’est pas un chemin d’accès instantané, le signal myoélectrique n’est donc pas une activité 
instantanée. L’activité électrique du muscle est présente sur les signaux enregistrés, alors cela pourrait 
être définie comme un groupe de fréquences. Cette activité électrique pourrait être reconnu pour un 
algorithme à partir d’une base de données de ses modèles, comparer l’activité électrique des muscles en 
temps réel par rapport à ces données pour créer une tendance du comportement de la main et prévoir pour 
réduire les temps de calcul pour trouver le mouvement spécifique avant ou en même temps. 

L’objectif général est de proposer une méthode et ses algorithmes pour prévoir et corriger les 
mouvements de la main par l’identification des caractéristiques des signaux myoélectriques et patterns 
dans les muscles de l’avant-bras en moins de 100 ms temps de traitement. Les objectifs spécifiques se 
compose de trois étapes : analyse de signal stationnaire (SSA), Acquisition et analyse de Signal stationnaire 
(NSA). La phase d’acquisition est commune pour SSA et NSA. Pour l’étape de l’acquisition, les signaux 
sont acquis en plaçant des électrodes de surface, Ag/AgCl, sur cinq muscles lien-doigt avant-bras des 
sujets. Utilisez une configuration de matrice 4 canaux électrode, ces signaux ont été échantillonnés et 
enregistré. Ensuite, les signaux ont été normalisés et fenêtré avant les étapes de l’analyses. Base de 
données pour six mouvements des doigts ont été obtenus. L’analyse stationnaire consiste dans les méthodes 
et procédés proposés pour analyser les données enregistrées en utilisant les ondelettes et transforme de 
Hilbert-Huang. Les caractéristiques et les modèles ont été trouvés à l’aide de ces 
techniques. Scalogrammes et caractéristiques statistiques sont rapportés. Les patrons temporels et 
fréquentiels sont décrits comme des modèles mathématiques. Une caractéristique intrinsèque de l’activité 
musculaire liée à l’intensité du signal sEMG est également montrée. Les résultats sont utiles à proposer un 
processus de filtrage en temps réel. L’analyse de signaux non stationnaires, est une proposition pour les 
conditions, les méthodes, les techniques et les procédés d’accomplir en temps réel ou courte durée, moins 
de 100 ms de fente de traitement, à l’aide de filtres de Kalman et Goertzel pour identifier les fonctions, les 
caractéristiques ou les patrons des signaux myoélectriques. Filtre Kalman améliore le débruitage et à la 
reconstruction pour prédire le signal d’entrée, le signal myoélectrique. Le signal de sortie du filtre de 
Kalman va au filtre Goertzel, qui détecte les signaux spécifiques à l’aide de la transformée de Fourier 
discrète basée sur les modèles modélisés. Les résultats de ces filtres peuvent être appliquées directement 
sur le système de prothèse comme un signal de commande ou être appliquées à un système de classification. 

La méthode de prédiction proposé est adaptée aux applications en temps réel en utilisant uniquement 
les signaux myoélectrique comme entrée. La nature dynamique du filtre Kalman prévoit la fusion optimale 
de l’information de variable dans le temps et permet d’appréhender l’activité myoélectrique, 
caractéristiques de l’intensité musculaire et statistiques des mouvements. À l’aide de filtre Kalman est 
également possible réduire le bruit et fournir une reconstruction rapide de la forme de la forme désirée des 
modèles signalés. Le filtre Goertzel fournit une méthode simple d’identification des fréquences motif dans 
une période de presque 5 ms ou plus, juste pour repérer les fréquences souhaitées. Le patron de temps 
établit une période de 24,5 ms pour signal d’activation, une période de 30 ms de réversibilité et 24,5 ms du 
délai accordé pour signal de désactivation. Ces temps suggèrent que le fenêtrage durée minimale est de 30 
ms pour appliquer la l’analyse utilisée pour ce travail. Avec une fenêtre de 30 ms, presque 15 ms à exécute 
prédiction et 5 ms pour effectuer la détection de tonalité ; puis le temps consommation pour l’identification, 
prédiction, la détection et la correction du signal myoélectrique pouvaient être pratiquées à moins de 100 
ms. 
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ABSTRACT 
This thesis reports the processes to analyze multichannel sEMG signals using Wavelet transform, 

Hilbert-Huang Transform, and other analysis methods, such like Kalman filter and Goertzel filter, as 
techniques to detect, measure, filter and decompose those sEMG signals to identify patterns in time, 
frequency, space or combination for flexion-extension movements of the fingers of the hand using link-
fingers superficial muscles in order to predict the movement of the hand and minimize the time computing. 
The aim of our research is to improve time computing for EMG signals characteristics to control prosthetic 
devices using superficial sensors and not indwelling, last one has inherent limitations. The hypothesis is 
based by the idea that all hand movements are an active response to the myoelectric activity of specific 
muscles present in the arm and forearm, that electric activity can be measure as an EMG signal related to a 
sequence of movement of the elements of the hand, fingers. Each finger can perform a trajectory from doss 
position to last position, this trajectory is not an instantaneous path, therefore, the myoelectric signal is not 
an instantaneous activity. The electric activity of the muscle is present on the recorded signals, so then this 
could be defined as a group of frequencies or path of energy. This electric activity could be recognized for 
an algorithm from a database of its patterns, compare the electric activity of the muscles in real time versus 
this data to create a trend of the behavior of the hand and, possibly, predicting to reduce time computing to 
find the specific movement before or at the same time. 

The general goal is to propose a method and its algorithms to predict and correct the movements of 
the hand by the identification of the myoelectric signal characteristics and patterns in the forearm muscles 
in under 100 ms time of processing. The Specific goals is composed by three stages: Acquisition, Stationary 
Signal Analysis (SSA) and Nonstationary Signal Analysis (NSA). The Acquisition stage is common for 
SSA and NSA. For the acquisition stage, the signals are acquired by placing Ag/AgCl surface electrodes 
over five forearm link-finger muscles of the subjects. Using a 4-channel electrode array configuration, these 
signals were sampled and recorded. Then, signals were normalized and windowed previous to the analyzing 
steps. Database for six movements of the fingers were obtained. The stationary analysis consists in the 
methods and processes proposed to analyze the recorded data using Wavelet and Hilbert-Huang 
Transforms. Features, characteristics and patterns were found using these techniques. Scalograms and 
Statistical features are reported. Time and frequency patterns are described as mathematical models. A 
intrinsic characteristic of the muscular activity related with the intensity of the sEMG signal is also showed. 
Results are useful to propose a real-time filtering processes. The nonstationary signal analysis, is a proposal 
for the conditions, methods, techniques and processes to perform in short-time, or real-time under 100 ms 
of processing slot, using Kalman and Goertzel filters to identify the features, characteristics or patterns of 
the myoelectric signals. Kalman filter improves the denoising and reconstruction to predict the input signal, 
myoelectric signal. The output signal from Kalman Filter goes to the Goertzel filter, that detects specific 
signals using the Discrete Fourier Transform based on the modeled patterns. Results from these filters could 
be applied directly to the prosthetic system as a control signal or be applied to a classifier system, depending 
on the complexity of the acquisition system, channels or movements. 

Proposed prediction method is suitable for real-time applications using only the EMG signals as 
input. The dynamical nature of the Kalman filter provides for the time varying optimal fusion of the 
information and allows to consider myoelectric activity, muscular intensity features and statistical of the 
finger movements. Using Kalman filter is also possible to reduce the noise and provide a quick 
reconstruction of the desired shape form of the patterns reported. Goertzel filter provides a simple 
identification method of the pattern frequencies in a time of almost 5 ms or above, just to locate the desired 
frequencies.  The time pattern establishes a period of 24.5 ms for activation signal, a period of 30 ms for 
reversibility and 24.5 ms of period for deactivation signal. This time slot suggest that the minimum time 
windowing is 30 ms to apply any of the analyzing method used for this work. With a window of 30 ms, 
almost 15 ms to performs prediction and 5 ms to perform tone detection; then time consumption for the 
identification, detection, prediction and correction of the myoelectric signal could be performed in under 
100 ms. 
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GENERAL INTRODUCTION 
 

The main function of the hand is grasp. The elements that are responsible of grasping are the fingers, 
which coordinated can do more than 27 combinations. By the way, the main function of a prosthetic hand 
is to grasp an object (Altamirano-Altamirano, et al., 2013). Primary functions of the prosthetic hand are 
based on electromechanical devices that are activated by instructions, those came from a control system. 
Control system is operated and monitored by a program constructed over an algorithm that guide and 
execute tasks to perform each movement of the hand.  

Human movement control system is in the central nervous system and downwards over the peripheral 
nervous system, a complex communication web with its own language. Each action of the body is ruled by 
the central nervous instructions (Basmajian & De Luca, 1985). Also, human body signals of activation, 
control and monitoring have special codification that are very different from the programming languages 
such as C++, assembly language and others. The interpretation of the instructions that muscles receive from 
nervous system to perform movements are useful for the development of artificial elements like prostheses 
or orthoses. 

Prosthetic hands are tools for user assistance, must be quick and precise in response. These devices 
should fit to daily life. Time computing improvement of the calculations of the signals and their 
characteristics could decrease the requirements of the prosthetic system in electronic, mechanic and energy 
devices. 

Superficial myoelectric signals provide enough data about muscular activity in a non-invasive way, 
this information came in patterns that can be used as a very effective source of control (Boostani & Moradi, 
2003) (Chu, et al., 2005) (Castellini & van der Smagt, 2009) (Rafiee, et al., 2010).  

sEMG signals are motor unit action potentials (MUAPs) combination of muscle fibers that surround a 
superficial electrode placed over skin surface, then position of the electrode is very important to obtain 
MUAPs from one, two or more muscle at the same time. The shapes and firing rates of MUAPs are an 
important source of information (Adam, et al., 1998)(Adam & De Luca, 2003). sEMG signals are capable 
to provide enough information about muscular activity in a non-invasive way becoming an effective source 
for prosthetic control (Boostani & Moradi, 2003) (Chu, et al., 2005) (Castellini & van der Smagt, 
2009)(Rafiee, et al., 2010). 

sEMG signals are very noisy (Loren & Wilkins, 2011) (Naït-Ali, 2009), this noise could be produced 
by the electronic system, be inherent to the body or be interfered by EM sources (Pallás-Areny & Webster, 
1999). Common noise is provided by tissues that surround muscles or the muscles themselves, as MUAPs 
by movements of the users, artifacts, and electric EMG interference (Chowdhury, et al., 2013) such as line 
power sources or wireless devices such as Bluetooth, Wi-Fi, IR, etcetera. It’s important to clean the sEMG 
signals to take out the MUAP signal without noise and then analyze it to obtain information available into 
the sEMG signal as timing, firing rates, synchronization, intervals, and morphology of the MUAPs to 
known health and anatomy of muscle fibers (De Luca, et al., 2006).  

Several algorithms have been proposed to clean, denoise or filter the sEMG signals , however, the 
latest methods in recent years, worked under the decomposition basis to extract all possible sinusoids and 
non-sinusoids components into a MUAP, these methods perform decomposition in order to detect 
differences in shapes, tack changes and, even, solve superposition (Lesser, et al., 1995) (Fang, et al., 1997) 
(Yamada, et al., 2003) (Zennaro, et al., 2003) (De Luca, et al., 2006) 

For sEMG or iEMG signals it is not enough to identify the presence of a certain frequency in the 
signal, it is necessary to localize this frequency in time-space, thus to provide more information about 
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muscle’s behavior related to specific movements, pattern contraction and pathological disorders (Pinzon-
Morales, et al., 2011). 

In recent years, methods like Wavelets and Hilbert-Huang transform have been proposed to 
denoise, filter, decompose, detect, analyze and predict non-stationary and non-linear signals to achieve their 
characteristics and patterns in time, frequency, energy and intensity (Flanders, 2002) (Meeson, 2005) 
(Tsolis & Xenos, 2011) (Chung & Dong-ling, 2004)  (Phinyomark, et al., 2011) (Zhang & Zhou, 2014) 
(Yan & Lu, 2014). Works developed by Carlo De Luca and Hamid Nawab, are focused on sEMG and 
iEMG decomposition and improving methods to solve accuracy and consistency of the MUAPs achieved 
by using knowledge-based Artificial Intelligence framework (De Luca, et al., 2006) (Nawab, et al., 2002).  

Raw sEMG signal is a source of information with many noise. This information could be useful if 
is well analyzed, quantified, classified (Basmajian & De Luca, 1985). Recent research support the 
hypothesis that EMG signals could be used to anticipate movements of the muscles (Hoffman & Herr, 
2002) (Hou, et al., 2004) and then to take decisions in advance to control orthotic or prosthetic devices 
(Park, et al., 2012)(Hoozemans & van Dieën, 2005)(Altamirano-Altamirano, et al., 2014) (Altamirano-
Altamirano, et al., 2013).  

One of the primary goals of our research is to improve time computing for EMG signals 
characteristics to control prosthetic devices using superficial sensors and not indwelling, last one has 
inherent limitations (Munoz, et al., 1997) (De Luca, et al., 2006). A prosthetic user needs to use easy-built 
systems for day-life in good or worst conditions such as no skin preparation, fixed sensors, quick response 
systems, and etcetera. 

This works reports the processes to analyze multichannel sEMG signals using Wavelet transform, 
Hilbert-Huang Transform, and other analysis methods as techniques to detect, measure, filter and 
decompose those sEMG signals to identify patterns in time, frequency, space or combination for flexion-
extension movements of the fingers of the hand using link-fingers superficial muscles. 

The EMG signals are biomedical signals that measures electrical activities in the muscles during a 
contraction or relaxation process, this represents the neuromuscular activity. EMG signal is a complex 
signal, this is a signal control from the neural system to the muscles, and this also depends of the anatomical 
and physiological properties of muscles. 

The main reason for the interest in EMG signal analysis is in clinical diagnosis, biomedical 
applications and rehabilitation area. The shapes and firing rates of Motor Unit Action Potentials (MUAPs) 
in EMG signals provide an important source of information for the diagnosis of neuromuscular disorders. 
Once appropriate algorithms and methods for EMG signal analysis are readily available, the nature and 
characteristics of the signal can be understood and hardware implementations can be made for various EMG 
signal related applications. 

There are limitations in detections and characterization of existing non-linearity in the surface 
electromyography (sEMG) signal, estimation of the phase, acquiring exact information due to derivation 
from normality (Sahid, 2004). Recent advances in technologies in signal processing and mathematical 
models have made in practical to develop advanced EMG detection and analysis techniques. Various 
mathematical techniques and Artificial Intelligence (AI) have received extensive attraction. Mathematical 
models include Wavelet Transform (WT), time-frequency approaches, Fourier Transform (FT), Wigner-
Ville Distribution (WVD), statistical measures, higher order statistics and Hilbert-Huang Transform 
(HHT). Artificial Intelligence approaches toward signal recognition include Artificial Neural Networks 
(ANN), Dynamic Recurrent Neural Networks (DRNN), and Fuzzy Logic System (FLS). Genetic Algorithm 
(GA) has also been applied in evolvable chip for the mapping of EMG inputs to desired hand actions. In 
the other hand, methods like Mean Frequency (MNF), Median Frequency (MDF), Mean Peak Frequency 
(PKF), Mean Power (MNP), Spectral Moments or Central Frequency Variance are not good to classify 
EMG signals (Phinyomark, et al., 2011). 

Wavelet transform is well suited to non-linear signals like EMG. Time-frequency approach using 
WVD in hardware could allow for some real-time instruments that biofeedback situations. Higher-order 
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statistical (HOS) methods may be used for analyzing the EMG signal due to the unique properties of HOS 
applied to random time series. 

Hilbert-Huang transform was developed by Huang in 1999 for time-frequency analysis that 
simultaneously offers a good resolution. This analysis consists in two main processes: Empirical Mode 
Decomposition (EMD) and Hilbert transform (HT) (Huang, et al., 1998) (Huang, 2005). EMD is a method 
to decompose nonlinear signals into fundamental signals called Intrinsic Mode Functions (IMFs). Result of 
these processes are symmetric signals described in time and frequency also in energy.  

Myoelectric signals are set of several signals from the muscle fibers in addition with intrinsic noise 
components. These signals have specific time slots and frequencies, patterns. Mathematical models could 
be proposed to describe myoelectric activity. These models can be used to identify the behavior of the 
muscle for specific movements, i.e. for finger flexion and extension.   

Recent investigations (Hoffman & Herr, 2002) support the hypothesis that EMG peripheral neural 
signals can be used to anticipate human movements approximately 100 ms in advance. These results suggest 
that EMG sensory data could be used to foresee the future biomechanics of a human, thereby making it 
possible to anticipate the movement intent of the Orthosis & Prosthesis (O&P) user. 

Predictive and filtering algorithms were applied as methods to improve the myoelectric signal 
analysis to obtain their patterns and characteristics. Kalman filter provides trajectory correction of an input 
signal to avoid noise and artifact interference, also an approximation of the desired signal. Then, a Goertzel 
filter, related to Discrete Fourier transform filter, is applied to the output of Kalman filter to identify the 
desired signal and result into a false or true unique signal. 

Systems based on myoelectric signal control require specific features inputs according to the process. 
For prosthetic systems, it is necessary to define the kind of prosthesis and its capability just to select the 
activation mode, the controlling parameters and variables to consider. It seems, then, that the problem of 
control by the patient is going to be a major issue in the next years. As the prosthetic hand becomes more 
flexible; how is the patient supposed to precisely command the prosthesis what to do? Operating hand 
requires a fine and quick control, possibly down to the level of the single fingers:  

 

1. Presented with a certain task such as turning a door handle or grabbing a car key, the patient must 
be able to enforce the correct grasping type; this involves the activation of some join 

2. Each person is different from each other. The EMG signals are not the same for all persons. We 
need a common signal, pattern or behavior for all. 

3. Electronic devices always perform tasks in time. When you process an EMG signal there will be a 
delay in time to get the answer or the solution. 

4. Acquisition systems always will have noise, inherent or induced, there is not ideal signals. We 
should improve denoising, mostly, from the first stage of acquisition: electrodes. 

The characteristics of ideal upper limb myoelectric control system should satisfy following criteria: 

1. The control should be intuitive for user, as natural movements. 
2. The system should be robust to doffing and donning. 
3. It should be able to adapt to physiological changes, such as sweating, fatigue or neurological 

disorders. 
4. Easy and short training/calibration. 
5. Quick response systems as possible embedded, not have big devices. 
6. Quick response algorithms, under 300 ms. 
7. Analysis and time computing versus complexity to perform real-time applications (Chu, et al., 

2005) (Huang & Chen, 1999).  

The hypothesis is because all hand movements are an active response to the myoelectric activity of 
specific muscles present in the arm and forearm, that electric activity can be measure as an EMG signal 
related to a sequence of movement of the elements of the hand, fingers. Each finger can perform a trajectory 
from doss position to last position, this trajectory is not an instantaneous path, therefore, the myoelectric 
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signal is not an instantaneous activity, such as Dirac function, it has a trajectory too. The trajectory of the 
electric activity of the muscle is present on the EMG signal(s) recorded, so then this trajectory could be 
defined as a group of frequencies, a path of energy or have another shape. So, this trajectory could be 
recognized for an algorithm and, first, create a database of this patterns, and then, compare the electric 
activity of the muscles in real time versus this data to create a trend of the behavior of the hand and, possibly, 
take decisions in advance to reduce time computing to find the specific movement before or at the same 
time of performing by the muscle. This is to control a prosthetic hand prosthesis with five fingers. 
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STATE OF THE ART 
In 2004, Hou, Zurada and Karwowski (Hou, et al., 2004) proposed a novel structure of feed-forward 

neural network to obtain better accuracy of prediction. The task was to predict the magnitude of ten trunk 
muscles during manual lifting tasks. In this basic model, they predict EMG signals point by point. Each 
input vector consists of 12 kinematics variables of one sampling point of one subject, as well as the 
corresponding 15 subject variables. The timing variables the sampling point of the current input. The 
kinematics variables are time series, while the subject variables of each subject are constants. All sampling 
points of all subjects in a same motion were used to train the network one by one. By adding regional 
connections between the input and the output, this architecture of the neural network van has both global 
features and regional features extracted from the input. the global connections put more emphasis on the 
whole picture and determine the global trend of the predicted curve, while the regional connections 
concentrate on each point and modify the prediction locally. Back-propagation Algorithm is used in the 
modelling. A basic structure of neural network designed for this problem was discussed. Then overcome 
its dear backs, they propose a new structure. 

In 2005, Hoozemans and Van Dieën (Hoozemans & van Dieën, 2005) presented a study to predict 
handgrip forces, their work consists on determine the validity of linear regression models using the surface 
electromyography (sEMG) of up to 6 forearm muscles. In the report, they used ideal conditions for 
isometric gripping tasks and normalized EMG to grip force calibrations. In the results, the predicted grip 
forces were close compared with the observed; they report that the EMG-hand force model appeared to be 
minimal affected by grip with, they also report that only 3 of 6 muscles should be assessed to arrive at 
sufficient level of validity. 

In 2009, Castellini and van der Smagt (Castellini & van der Smagt, 2009) dealt with advanced robotic 
hand control via surface electromyography. They show that machine learning, together with a simple down-
sampling algorithm, can be effectively used to control on-line, in real time, finger position as well as finger 
force a highly dexterous robotic hand. The system determines the type of grasp a human subject is willing 
to use, and the required amount of force involved, with a high degree of accuracy. This represents a 
remarkable improvement with respect to the state-of-the-art of feed-forward control of dexterous 
mechanical hands, and opens a scenario in which amputees will be able to control hand prostheses in a 
much finer way. 

In 2010, Rafiee and his team (Rafiee, et al., 2010) worked on a system based on CWC, they report 
that in classification, feature vector is defined as a compressed, meaningful vector/matrix possessing the 
significant information of different classes. In this research, CWC was used for the calculation of feature 
vectors for EMG signals. The CWC of the signal, itself, is not appropriate as a feature vector because it is 
computationally expensive.  

In 2011, Pinzon-Morales and his team (Pinzon-Morales, et al., 2011) proposed a method for hand 
movement pattern recognition from electrography (EMG) biological signals. The signals were recorded by 
a three-channel data acquisition system using surface electrodes placed over the forearm, and then 
processed to recognize five hand movements: opening, closing, supination, flexion and extension. Their 
proposal is based the combination of Hilbert-Huang Analysis with a fuzzy clustering classifier. A set of 
metrics, calculated from the time contour of the Hilbert Spectrum, was used to compute a discriminating 
three-dimensional feature space. Empirical analysis of the proposed method reveals an average accuracy 
rate of 96% in the recognition of surface EMG signals. This method introduces: 1) assumptions about 
linearity or stationary were not needed; 2) previous knowledge about the data in the feature extraction was 
not required to analyze the signal; and 3) high classification accuracy was achieved. 



 
 

xxiv 
 

In 2013, Wang, Chen and Zhang (Wang, et al., 2013), presented a work of the prehensile hand 
gestures role in daily living for seizing of holding subjects stably. In order to realize the accurate recognition 
of eight prehensile hand gestures with a minimal number of electrodes, an off-line myoelectric control 
system with only two electrodes was developed. They used the mean absolute value, variance, the fourth-
order autoregressive coefficient, zero crossings, mean frequency and middle frequency as original EMG 
feature set. The extent of dimension reduction was investigated and on the premise of it, the average 
accuracy can achieve 97.46% in the recognition of six hand gestures. An average method was proposed to 
improve the accuracy further, resulting in the average accuracy in eight gestures being 98.12% and the best 
individual accuracy of some hand gestures being 100%. 

In 2014, Amsüss, Farina and their team (Amsuss, et al., 2014)proposed a self-correcting pattern 
recognition system of surface EMG signals for upper limb prosthesis control. This proposal is a 
postprocessing algorithm, aiming to detect and remove misclassifications of a pattern recognition 
system of forearm and hand motions. Various nonstationarities were included in the experimental 
protocol to account for challenges posed in real-life settings, such as different contraction levels, 
static and dynamic motion phases, and effects induced by day-to-day transfers, such as electrode 
shifts, impedance changes, and psychometric user variability. The system significantly reduced 
misclassifications to wrong active classes, this is a promising approach for improving the 
robustness of hand prosthesis controllability. 

In 2014, Xing et al (Xing, et al., 2014), reported a real-time classifier system to recognize patterns 
to control a virtual myoelectric hand using a four-channel acquisition system with high-level classifiers to 
detect seven movements of the wrist. 

In 2012, Park and his team (Park, et al., 2012), developed a model to describe a real-time thumb-tip 
force prediction using sEMG signals. The Hill-based muscle model was used to predict the thumb-tip force 
under four different angle configurations. They used a mapping model from the literature to estimate the 
thumb-tip force from the muscle forces without considering complex thumb biomechanics. They compare 
the prediction performance using the linear regression and ANN methods. This method is feasible for the 
thumb-tip force prediction. The possible applications of this research include the control of finger-tip forces 
from noninvasive neuro-signals in robotic hand parts. 

PREVIOUS RELATED WORKS 
In 2016, J. Antonio Barraza Madrigal, PhD. presented the doctoral thesis named “Design and development 
of an ambulatory system for movement analysis: monitoring, reproduction and tracking of the shoulder 
movement.” CINVESTAV-IPN, Mexico. 

In 2015, J. Antonio Ruvalcaba Granados, MSc. Presented the master thesis named “Design and 
development on an embedded electrode for superficial EMG signals acquisition.” CINVESTAV-IPN. 

In 2012, Alvaro Altamirano Altamirano, MSc. Presented the master thesis named “Proposal of a 
anthropomorphic hand prototype to use as prosthesis.” CINVESTAV-IPN, Mexico. 

In 2012, Moisés León Ponce, PhD. presented the doctoral thesis named “Classification of myoelectric 
patterns for the operation of anthropomorphic device.” CINVESTAV-IPN, Mexico
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WORK & AUTHORS CHARACTERISTICS RESULTS 

Self-correcting Pattern Recognition System of 
sEMG Signals for Upper Limb Prosthesis 
Control. Amsüs, Farina, et al. 2014 

Self-correcting EMG 
pattern  

Real-time movements of 
the hand. 

Contraction levels, 
misclassification, 

motion phases 

Algorithm that corrects the external 
parameters that affects the prediction 
conditions of the system 

Prediction of EMG signals of trunks muscles in 
manual lifting using a Neural Network Model. 
Hou, et al., 2004 

Cinematic variables Artificial Neural 
Networks 

Real-Time Analysis Algorithm that predicts cinematic curves of 
the movements. 

Prediction of handgrip forces using Surface EMG  
of forearm muscles. Hoozemans, et al. 2005 

6 forearm channels with 
force feedback 

Fuzzy Logic Systems Stationary and 
Nonstationary 

analysis 

Prediction of isometric grasping 

Decomposition of Surface EMG Signals. De Luca, 
et al., 2006 

4 channels over ocular 
muscles 

Artificial Intelligence 
Decomposition 

30 ms segmentation Neuromotor signals and their firing rates 

Mean frecquency derived via Hilbert-Huang 
transform with application to fatigue EMG signal 
analysis. Xie & Wang, 2006 

1 channel in  arm 
muscle 

Hilbert-Huang and 
Wavelet decomposition 

500 ms segmentation Hilbert-Huang analysis is optimal for short 
period analysis 

Surface EMG in advanced hand prosthetics. 
Castellini, et al., 2009 

6 channels EMG characteristics Real-Time analysis 
using Neuronal 

Networks 

Direct EMG control in real-time 

Pattern Recognition of Surface EMG Biological 
Signals by Means of Hilbert Spectrum and Fuzzy 
Clustering. Pinzon-Morales, et al., 2011 

3 forearm channels Empirical Mode 
Decomposition 

Stationary signal 
analysis algorithms 

EMG pattern classification for five 
movements of the hand 

Real-time thumb-tip force predictions from 
noninvasive biosignals and biomechanical models. 
Park, et al., 2012 

Prediction Biomechanic feedback Stationary analysis Thumb force prediction 

Emg Pattern Prediction For Upper Limb 
Movements Based On Wavelet And Hilbert-
Huang Transform.  
 
Alvaro ALTAMIRANO ALTAMIRANO 
MSc. PhD Candidate 

4, 8, 16 – 
Multichannel 

Hilbert-Huang and 
Wavelet decomposition 

30 ms segmentation 
Under 100 ms 

analysis 

EMG characteristics for individual 
Time and Frequency patterns. 

Noise reduction 
Predictive basis of EMG model 
Real-time pattern identification 

Real-time prosthetic control 
EMG pattern 

prediction 
Real-time filtering using 
mathematical models of 

comparison 

Hand prosthetic 
prototype 

reconfigurable 
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GOALS 

GENERAL GOAL 
 

Propose a method and its algorithms to predict and correct the movements of the hand by the 
identification of the myoelectric signal characteristics and patterns in the forearm muscles in under 100 ms time 
of processing.  

SPECIFIC GOALS 
The method is composed by three stages: Acquisition, Stationary Signal Analysis (Non-linear & 

Stationary Signals) and Nonstationary Signal Analysis (Non-linear and nonstationary Processes).  The 
acquisition stage is common for SSA and NSA. 

Acquisition stage 
 Propose an acquisition protocol to obtain the myoelectric signals related to six movements of the 

fingers using the forearm muscles using superficial electrodes over the forearm muscles using a four 
channels acquisition system. 

 Set a standard normalization and windowing settings to adapt input signals to the Stationary and 
Nonstationary analyses.  

Stationary Signal Analysis 
 Filter and decompose the acquired signals into Intrinsic Mode Functions (IMFs) of the signal using the 

Empirical Mode Decomposition (EMD) method. 
 Obtain the spectrum data and the instantaneous frequencies of the IMFs using Hilbert transform. 
 Obtain and model the characteristics and patterns of the myoelectric signals using mathematical 

methods.  
 Analyze the myoelectric signal records using Wavelets and compare method with Hilbert-Huang 

Transform results. 

Nonstationary Signal Analysis 
 Propose the mathematical models of the patterns and the intrinsic characteristics as a basis. 
 Propose a method using Kalman filter to predict and correct the input myoelectric signal using the 

mathematical model of the pattern.   
 Propose a method using Goertzel filter to identify the predicted and corrected pattern as single tones. 
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GENERAL BLOCK DIAGRAM ABOUT PREDICTION SYSTEM 
 

 

 
Figure 1. EMG prediction system block diagram. 
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CHAPTER 1  
 

MUSCLES AND BIOPOTENTIALS 
 

The aim of this chapter is to provide some basic and general information related to the physiology of the 
muscles and the biosignals, the EMG signals. This chapter is divided in three main sections. First, is about the 
anatomy and physiology of the muscles. In the second section, the basis of biopotential recording, i.e. 
electrodes, artifacts and safety. In the third section, some general properties of EMG signals.  

1.1 MUSCLE ANATOMY AND PHYSIOLOGY 
In electrodiagnostic, to understand the events that occur at molecular level it is important to understand 

the basic anatomy and physiology. Knowledge of gross nerve and muscle anatomy is required to know the 
locations of each of these. 

1.1.1 Anatomy 
The strict definition of the peripheral nervous system includes that part of the nervous system in which 

the Schwann cell is the major supporting cell, as opposed to the central nervous system in which glial cells are 
the major support cells. The peripheral nervous system is a group of nerve roots, peripheral nerves, primary 
sensory neurons, neuromuscular junctions (NMJs), and muscles (Figure 2).  

1.1.2 Physiology 
The primary role of nerve is to transmit information reliably from the anterior horn cells to muscles for 

the motor system and from the sensory receptors to the spinal cord for the sensory system. Although 
functionally nerves may seem like electrical wires, there are vast differences between the two. At the molecular 
level, a complex set chemical and electrical events allows nerve to propagate an electrical signal. 

The axonal membrane of every nerve is electrically active. This property results from a combination 
of a specialized membrane and the sodium/potassium (Na+/K+) pump (Figure 3). 

The specialized axonal membrane is semipermeable to electrically charged molecules (anions and 
cations). The membrane is always impermeable to large negatively charged anions, and it is relatively 
impermeable to sodium in the resting state. This semipermeable membrane, is conjunction with an active 
Na+/K+ pump that moves sodium outside in exchange for potassium, leads to concentration gradients across the 
membrane. The concentration of sodium is larger outside the membrane, whereas the concentration of 
potassium and larger anions is greater inside. The combination results in forces that create a resting equilibrium 
potential. At the nerve cell soma, this resting membrane potential is approximately 70 mV negative inside 
compared with the outside; distally in the axon it is approximately 90 mV negative. 
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Figure 2. Elements of the peripheral nervous system. The peripheral nervous system includes the peripheral motor and 
sensory nerves their primary neurons, the anterior horn cells, and dorsal root ganglia; the neuromuscular junctions (NMJs); 

and muscle. The dorsal root ganglion, a bipolar cell located distal to the sensory root, is anatomically different from the 
anterior horn cell. Consequently, lesions of the nerve roots result in abnormalities of motor nerve conduction studies but do 

not affect sensory conduction studies, as the dorsal root ganglion and its peripheral nerve remain intact (Preston, 2013).  

 

Figure 3. Resting membrane potential. At rest, the axonal membrane is negatively polarized, inside compared to outside. This 
resting potential results from the combination of a membrane that is semipermeable to charged particles and an active Na+/K+ 

pump. At rest, the concentration of Na+ and large anions A- greater inside the axon (Preston, 2013). 

 

Figure 4. Voltage-gated sodium channel. The axonal membrane is lined with voltage-gated sodium channels. These channels 
are molecular pores with gates that open and close; when open, gates are selective for sodium A (Preston, 2013). 
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The membrane of the axon is lined with voltage-gated sodium channels, as shown in Figure 4. These 
structures are essentially molecular pores with gates that open and close. For many ion channels, gates open in 
response to molecules that bind to the channel. In the case of the voltage-gated sodium channel, the gate is 
controlled by a voltage sensor that responds to the level of the membrane potential. If current is injected into 
the axon, depolarization occurs, i.e. the axon becomes more positive internally. Voltage sensors within the 
sodium channel respond to the depolarization by opening the gate to the channel and allowing sodium to rush 
into the axon, driven, both by concentration and by electrical gradients.  

Every time, a depolarization of 10 mV to 30 mV occurs above the resting membrane potential, 
threshold, it creates an action potential and a cycle of positive feedback; further depolarization occurs and more 
sodium channels open. 

Action potentials are always all-or-none responses, which then propagate away from the initial site of 
depolarization. The axon does not remain depolarized for ling, however, because the opening of the sodium 
channels is time limited.  

Sodium channels have a second gate, known as the inactivation gate. The inactivation of the sodium 
channel occurs within 1 ms to 2 ms. During this time, the membrane is not excitable and cannot be opened, i.e. 
refractory period. The refractory period limits the frequency that nerves can conduct impulses. It also ensures 
that the action potential continues to propagate in the same direction. The area of nerve behind the 
depolarization is refractory when the area ahead is not, so that the impulse will continue forward and will not 
return backwards. 

In addition to sodium channel inactivation, depolarization also results in the opening of potassium 
channels, which also then drives the membrane voltage more negative. These factors, along with the Na+/K+ 
pump, then reestablish the resting membrane potential. 

The conduction velocity of the action potential depends on the diameter of the axon: the larger the 
axon, the less resistance and the faster the conduction velocity. For axons, typically the conduction velocity is 
in the range of 0.2 m/s to 1.5 m/s, also conduction velocity could be increased in addition of myelin. Myelin 
insulation is present on all fast-conducting fibers and is derived from Schwann cells. 

Myelinated human peripheral nerve fibers typically conduct in the range of 35 m/s to 75 m/s, far faster 
than could ever be achieved by increasing the diameter of unmyelinated fibers. Not all human peripheral nerve 
fibers are myelinated. For unmyelinated fibers, typically, conduction is between 0.2 m/s to 1.5 m/s. When an 
individual axon is depolarized, an action potential propagates down the nerve. Distally, the axon divides into 
many embranchments, each of which goes to an individual muscle fiber.  

An axon, along with its anterior horn cell and all muscle fibers with which is connected, is known as a 
motor unit, which is shown in Figure 5. Depolarization of all muscle fibers in a motor unit creates an electrical 
potential known as the Motor Unit Action Potential (MUAP).  
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Figure 5. Motor unit is defined as one axon, its anterior horn cell, and all connected muscle fibers and neuromuscular 
junctions. A nerve fiber action potential normally always results in depolarization of all the muscle fibers of the motor unit 

creating an electrical potential known as the motor unit action potential (MUAP) (Preston, 2013). 

 

When an action potential is generated, all muscle fibers in the motor unit are normally activated, again 
an all-or-none response. Before a muscle fiber can be activated, the nerve action potential must be carried 
across the NMJ.  

 

Figure 6. Neuromuscular junction. The neuromuscular junction is a specialized junction between the terminal axon and 
muscle fiber (Preston, 2013).  
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1.2 BIOPOTENTIAL RECORDING 
Near-fields potentials can be recorded only close to their source, and the characteristics of the potential 

depend on the distance between the recording electrodes and the electrical source. With near-field potentials, a 
response generally is not seen until the source is close to the recording electrodes. The closer the recording 
electrodes are to the current source, the higher the amplitude. Compound muscle action potentials, sensory 
nerve action potentials, and motor unit action potentials recorded during routine motor conduction, sensory 
conduction, and surface myoelectric analyses, respectively, are essentially all volume-conducted near-field 
potentials. Volume-conducted, near-field potentials produce a characteristic triphasic waveform as an 
advancing action potential approaches and then passes beneath and away from a recording electrode.  

 

Figure 7. Volume conduction and waveform morphology. In upper image, an advancing action potential recorded by volume 
conduction will result in a triphasic potential that initially is positive, the is negative, and finally is positive again. In lower 

image, the depolarization occurs directly beneath the recording electrode, the initial positive phase is absent, and a biphasic, 
initially negative potential is seen. By convention, negative is up and positive is down in all nerve conduction and 

electromyographic traces (Preston, 2013). 

 

The electrical correlate of an action potential traveling toward, under, and then away from the recording 
electrode is an initial positive phase, followed by a negative phase and then a trailing positive phase, 
respectively. In Figure 7 upper shows that the first positive peak represents the time that the action potential is 
beneath the active electrode; this is the point at which the onset latency should be measured for nerve action 
potentials. The initial positive peak may be very small or absent with some sensory responses. In this case, the 
initial negative deflection best marks the true onset of the potential. 

If a volume-conducted, near-field action potential begins directly under the recording electrode, the 
initial deflection is negative as seen in Figure 7 (lower).   
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1.2.1 The Ag/AgCl Electrode 
To measure potential in solution, the Ag/AgCl electrode has become the standard system. The principle 

of this electrode is illustrated in Figure 8.  

The charge carriers in wire are electrons e-, in solution the chloride ion Cl-. The electrode reaction is: 

𝐴𝑔𝐶𝑙 + 𝑒 ⇄ 𝐴𝑔 + 𝐶𝑙 + 𝑒 ⇄ 𝐴𝑔 + 𝐶𝑙  
 

Eq. 1 

Due to the low solubility product 𝐾  of AgCl 𝑎 ∙ 𝑎 = 1.7 × 10 , the KCl solution will be 
saturated but will have a very low activity of 𝐴𝑔 (𝑎 ). The Ag/AgCl electrode will show a potential 
difference of: 

𝐸 = 𝐸 +
𝑅𝑇

𝐹
ln 𝑎 = 𝐸 +

𝑅𝑇

𝐹
(ln 𝐾 − ln 𝑎 ) = 𝐸∗ −

𝑅𝑇

𝐹
ln 𝑐  

 

Eq. 2 

with 𝐸∗ = 0.2222 𝑉 under standard conditions (25°C). The last equation shows that the Ag/AgCl electrode 
acts like a 𝐶𝑙 selective electrode. This is an important characteristic, which has severe consequences if the 
surrounding 𝐶𝑙 concentration is altered. 

 

 

Figure 8. Arrangement of a Ag/AgCl microelectrode (Rettinger, et al., 2016) 

1.3  SEMG SIGNALS 
The myoelectric signal analysis requires advanced methods for detection, decomposition, processing, 

and classification, even when these signals will be used into basic or simple systems. To measure myoelectric 
signals, it is common to use detectors. These detectors are usually put over the skin, if this is the case; different 
signals from other motor units are collected at a time which may generate interaction between them. This is 
called superficial electromyographic signal (sEMG) 

Electromyography is the study of muscle electrical signals. EMG is sometimes referred to as myoelectric 
activity. Muscle tissue conducts electrical currents like the way nerves do and the name given to these electrical 
signals in the muscle action potentials. For recording and detecting, there are two main issues of concern that 
influence the fidelity of the signal: Signal-to-noise ratio and distortion of the signal. The first one is the ratio of 
the energy in the EMG signals to the energy in the noise signal1. The other issue is the distortion of the signal, 
meaning that the relative contribution of any frequency component in the EMG signal should not be altered. 

For EMG muscle signals acquisition, two types of electrodes have been used: invasive electrode and 
non-invasive electrode. The combination of the muscle fiber action potentials from all the muscle fibers of a 
single motor unit is the motor action potential (MUAP) which can be detected by a skin surface electrode (non-
invasive) located near this field, or by a needle electrode (invasive) inserted in the muscle (Basmajian & De 
Luca, 1985). When EMG is acquired from electrodes mounted directly on the skin, the signal is a composite of 
                                                      
1 Noise signal: Is defined as electrical signals that are no part of the desired EMG signal, for this case. 
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all the muscle fiber action potentials occurring in the muscles underlying the skin. These action potentials occur 
at random intervals. So, at any moment, the EMG signal may be either positive or negative voltage. Individual 
muscle fiber action potentials are sometimes acquired using wire or needle electrodes placed directly in the 
muscle. Equation 3 shows a simple model of the EMG signal: 

 𝑥(𝑛) = ℎ(𝑟)𝑒(𝑛 − 𝑟) + 𝑤(𝑛)   

 

Eq. 3 

 

where x(n), modelled EMG signal, e(n)m point processed, represents the firing impulse, h(r), represents the 
MUAP, w(n), zero mean addictive white Gaussian noise and N is the number of motor unit firings. 

The signal is picked up at the electrode and amplified. Typically, a differential amplifier is used as a 
first stage amplifier. Additional amplification stages may follow. Before being displayed or stored, the signal 
can be processed to eliminate low-frequency or high-frequency noise, or other possible artefacts. Consequently, 
the signal is frequently rectified and averaged in some format to indicate EMG amplitude. 

A schematic representation of a general acquisition system is shown in Figure 9. Several physical 
magnitudes are usually measured from biologic systems. They include electromagnetic quantities (currents, 
potential differences, fields strengths etc.), as well as mechanical, chemical, or generally nonelectrical variables 
(pressure, temperature, movements, etc.). (Mainardi, et al., 2000) 

 

 

Figure 9. General block diagram of the acquisition procedure of a digital signal 

. 

An EMG signal is the train of Motor Unit Action Potential (MUAP) showing the muscle response to 
neutral stimulation. The EMG signal appears random in nature and is generally modelled as a filtered impulse 
process where the MUAP is the filter and the impulse process stands for the neuron pulses, often modelled as 
a Poisson process (Basmajian & De Luca, 1985). Figure 10 shows the process of acquiring EMG signal and 
the decomposition to achieve the MUAPs. 
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Figure 10. EMG signal and decomposition of MUAPs. (De Luca, et al., 2006) 

1.3.1 EMG Features 
To improve the performance of the classifier, researchers have been using different types of EMG 

features as an input to the classifier. To achieve optimal classification performance, the properties of EMG 
feature space, such as computational complexity, should be taken into consideration. There are three types of 
EMG features: time domain, frequency domain and time-frequency domain features. A carefully selected set 
of input features provides a higher classification rate than the raw EMG signal (Reddy, et al., 2009). 

Time-frequency domain features are effective feature sets especially for transient myoelectric signal 
pattern classification.  

1.3.2 On MUAP shape and its properties 
The shape of the observed action potential will depend on the orientation of the recording electrode 

position with respect to the active muscle fibers. Electrodes must be placed in parallel to the muscular fibers, 
so then a biphasic shape and the sign of the phases will depend on the depolarization direction. From the right 
side, a depolarization is reflected as a negative phase and vice versa. 

The amplitude of the MUAP depends on the diameter of the muscle fiber, distance of the electrodes and 
the electrode properties.  

There can be even more than four phases on a MUAP, but one, two or three phases are considered normal 
into a healthy muscle, four phases appears in abnormal muscle tissue. 

As a part of the MUAP, its electrical manifestation comes together with a shudder of the muscle fibers, 
this resulting sequence of MUAP’s is known as Motor Unit Action Potential Train (MUAPT). There is a delay 
of few milliseconds between them, usually time duration of MUAP’s is ranging from 1 ms to 24 ms. 

1.3.3 EMG description over voltage dimension 
We describe the EMG statistics regularity over voltage dimension by means of Frequency distribution 

on voltage. These are obtained by counting the number of signal samples, belonging to a long interval 
recording, occurring on each class in which arbitrarily we divided the range of the signal voltages. 

Different segments of the same EMG have randomly shapes, histograms built from them are very 
similar, it means, statistical trend is maintained, regardless of the random fluctuation of the instantaneous 
values. This stationary effect is present only in short ranges, just until the muscle fatigue. 
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Figure 11 Histograms built from two different EMG signals (A, C) showing that statistical trend is maintained, 

 regardless of the random fluctuation (B, D) 

To describe distribution of the frequencies from voltage values were measure three parameters: 

 Average: Indicate certain values tend to occur frequently. 
 Variance: To indicate the instantaneous data variation from the average. 
 Kurtosis: Indicating the degree of symmetry around the average. 

For EMG signals the distribution is symmetric, null kurtosis, and average is zero (it is an AC signal). 
Also, the variance equation is: 

 𝑆 =
∑(𝑣 − �̅�)

𝑁
 

 

Eq. 4 

 
if the average (�̅�) is zero, equation 4 is reduced to a simple arithmetic average of the signal instantaneous 
values, squared. 

In turn, Standard deviation (𝑆), that is the Variance's root square and it serves to express the dispersion in the 
same dimension of the random variable, it is equally simplified, for this case is indicated as the Root Medium 
Square (RMS): 

 𝑅𝑀𝑆 =
∑(𝑣 )

𝑁
 

 

Eq. 5 

 

Increased electrical activity of muscle is expressed by a higher standard deviation (R.M.S.); but the Average 
doesn't change, it remains at zero value. 
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Figure 12 Increased electrical activity of muscle is expressed by a higher standard deviation, average didn't change.  

A & C Images showed are the same EMG signal, but with different amplification. 
A) EMG signal amplified 330 times, B) Histogram of EMG signal A. 

C) EMG signal amplified 1000 times, D) Histogram of EMG signal C. 

To refine statistical description of the random signal is necessary to fit the calculated histogram, 
computed from experimental data, with a mathematical model of frequency distribution. Gauss model, normal 
distribution, consists on a wrapped histogram bell shaped, with the symmetry axis over Average value and 
inflexion points separated by a distance equal to Standard Deviation (R.M.S. value). 

 

Figure 13 Normal Distribution or Gauss Model. Symmetry axis over Average value and inflexion points separated by a 
distance equal to RMS value. 

The Normal model is defined by the following equation that predicts Relative Density Frequency 
(𝐷𝐹(𝑉)) with which signal samples of a given value (V) must occur: 

 𝐷𝐹(𝑉) =
1

𝑆√2𝜋
exp

1

2

𝑉

𝑆
 

Eq. 6 

 

In the last equation, Standard Deviation (S) is the only parameter, so that, having calculated this on a long EMG 
segment, fitting Normal model to experimental frequency distribution is too easy. This is a mathematical 
description for the behavior of a huge number of instantaneous values from EMG signal, it is not the value of 
a certain moment, and it is unpredictable because it is random. 
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1.3.4 EMG description on time dimension 
There are two ways to characterize the statistical sequence regularity from voltage samples with the same 

value and sign: autocorrelation and spectrum. 

1.3.4.1 Frequency Spectrum 
Its visualization is not direct by the calculation mode, but physiological meaning is clearest. Both EMG 

representations have a relationship between each other through the Fourier direct and reverse transform. 

The main mathematical concept of the spectral analysis is that all periodic signal could be constructed 
by the algebraic sum of sinusoidal functions series, each one with multiple frequencies (harmonic series), the 
first one is equal to the lower value present in the signal. Then, we assume that an EMG signal could be 
represented by harmonic series. This is considering that the complexity is of a higher level, so its spectrum too. 

In the next figure, we could see the spectrum of an EMG signal captured over the skin surface. 

 

Figure 14 EMG spectrum contains significate frequency components, from 10 Hz to 450 Hz 

The highest spectral peak occurs in the lower frequencies gamma, surrounding the 40 Hz to 120 Hz; 
these corresponding to moto-neurons discharge frequency that controls the muscle activation. 

1.3.5 Electrical noise and factors affecting EMG signal 
The amplitude range of EMG signal is 0 mV - 10 mV (±5 mV) prior to amplification. EMG signals 

acquire noise while travelling through different tissue. It is important to understand the characteristics of the 
electrical noise. Electrical noise, which will affect EMG signals, can be categorized into the following types 
(Reaz, et al., 2006) - Verbatim et literatim: 

1. “Inherent noise in electronics equipment: All electronics equipment generate noise. This noise cannot 
be eliminated; using high quality electronic components can only reduce it. 

2. Ambient noise: Electromagnetic radiation is the source of this kind of noise. The surfaces of our bodies 
are constantly inundated with electric-magnetic radiation and it is virtually impossible to avoid 
exposure to it on the surface of earth. The ambient noise may have amplitude that is one to three orders 
of magnitude greater than the EMG signal. 
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3. Motion artefact: Motion artefact cause irregularities in the data. There are two main sources for motion 
artefact: 1) electrode interface and 2) electrode cable. Motion artefact can be reduced by proper design 
of the electronic circuitry and set-up. 

4. Inherent instability of signal: The amplitude of EMG is random in nature. EMG signal is affected by 
the firing rate of the motor units, which, in most conditions, fire in the frequency region of 30 Hz to 60 
Hz. This kind of noise is considered as unwanted and the removal of the noise is important.” 

The factors that mainly affect the EMG signal can also be classified. This kind of classification is set 
so that EMG signal analysis algorithms can be optimized, and equipment can be designed in a consistent 
manner. Factors affecting EMG signal falls into three basic categories (Reaz, et al., 2006) verbatim et literatim: 

1. “Causative Factors: This is the direct affect in signals.  
Causative factors can be divided into two classes: 

i. Extrinsic: This is due to electrode structure and placement. Factors like area of the detection 
surface, shape of electrode, distance between electrode detection surface, location of electrode 
with respect to the motor points in the muscle, location of the muscle electrode on the muscle 
surface with respect to the lateral edge of the muscle, orientation of the detection surfaces with 
respect to the muscle fibers mainly influence EMG signal. 

ii. Intrinsic: Physiological, anatomical, biochemical factors take place due to number of active 
motor units, fiber type composition, blood flow, fiber diameter, depth and location of active 
fibers and amount of tissue between surface of the muscle and the electrode. 

2. Intermediate Factors: Intermediate factors are physical and physiological phenomena influenced by 
one or more causative factors. Reasons behind this can be the band-pass filtering aspects of the 
electrode alone with its detection volume, superposition of action potentials in the detected EMG 
signal, conduction velocity of the action potential that propagate along the muscle fiber membrane. 
Even cross talk from nearby muscle can cause Intermediate Factors. 

3. Deterministic Factors: These are influenced by Intermediate Factor, the number of active motor units, 
motor firing rate, and mechanical interaction between the muscle fibers have direct bearing on the 
information in the EMG signal and the recorded force. Amplitude, duration, and shape of the motor 
unit action potential can also be responsible.” 

There are different ways to get the maximum quality of EMG signals, two of this are showed: 

1. Signal-to-noise ratio should contain the highest amount of information from EMG signal and the 
minimum amount of contamination. 

2. EMG distortion must be minimal without filtering.2 

To analyze EMG signal, only the positive values are analyzed. The absolute value of each data point is 
used during full-wave rectification, this one is the most recommended to perform. (Reaz, et al., 2006). 

1.4 SEMG SIGNAL DETECTION AND ACQUISITION 
To detect the signal, a surface sensor array is put in over the skin above the muscle of interest3. The 

electrode must be placed with sufficient pressure to provide good electrical contact as evidence by the best 
signal-to-noise ratio of the detected signals (De Luca, et al., 2006). An important issue in EMG signal 
classification is the optimal sensor selection (Rafiee, et al., 2010).  

1.4.1 sEMG Normalization 
The voltage potential of the sEMG signal detected by the electrodes strongly depends on several 

factors, varying between individuals and over time within an individual. 

                                                      
2 Notch Filters are not recommended (Reaz, et al., 2006) 
3 No skin preparation or conductive gel is needed. 
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Thus, the amplitude of the sEMG itself is not useful in group comparisons, or to follow events over a 
long period of time (Mathiassen, 1997). The fact that the recorded EMG amplitude is never absolute is mainly 
because the impedance varies between the active muscle fibers and electrodes. 

Therefore, when comparing amplitude variables measurements, normalization of some kind is required, 
i.e. the sEMG converted to a scale that is common to all measurements occasions.  

1.4.2 EMG Filtering 
Noise is the main issue into EMG signal, without it, characteristic quantification of the signal is more 

standard. There are many kinds of noises intrinsic to EMG signals caused by other muscles, interferences or 
artifacts. 

The main challenges in analyzing the EMG signals are the inherent noise in the electrode, movement 
artifact, electromagnetic noise, cross talk, internal noise related to physiological and biochemical actions, 
inherent instability of the signal and electrocardiographic (ECG) artifacts (Chowdhury, et al., 2013).  

1.4.3 EMG De-noising using Wavelets 
The time-frequency plane is one of the most fundamental concepts in signal analysis. The Wavelet 

transform can essentially be divided into discrete and continuous forms. It transforms the signal in both time- 
and frequency domains. The Discrete Wavelet transform method has been successful in analyzing non-
stationary signals, such as surface EMG (sEMG) signals. 

Hussain and Mamun in 2012, proved that the wavelet Db45 shows the best contrast when they analyzed 
the sEMG signal using both power spectrum and bi spectrum compared to the other four wavelets (Haar, Db2, 
sym4 and sym5) within the range 50 Hz to 70 Hz over rectus femoris muscle during high speed walking 
(Hussain & Mamun, 2012). 

Wavelet transform is traditionally used on de-noising process. Based on multi-resolution and multi-
scale features of wavelet transform, we can use different energy distribution and the signal spectrum to 
eliminate the illusive components which corresponding to the noise in specific wavelet scale. The wavelet 
transform is used to reconstruct EMG pattern. The whole process could eliminate the noise of the signal (Jing-
tian, et al., 2007).  

Wavelet transform is widely used as a traditional method to eliminate noise of ECG. But wavelet 
transform is based on Fourier transform theory. And Fourier transform is applied to the time-domain signal 
which is stationary or periodic. Therefore, using wavelet transform to do non-linear and non-stationary signal 
analysis is limited. Local parameter and basic local function are required to analyze non-stationary signal. 
Instantaneous frequency is the basic concept. The application of this algorithm needs the selection of five 
processing parameters (Phinyomark, et al., 2009):  

1. Type of wavelet function 
2. The scale 
3. The threshold selection rule 
4. The threshold rescaling method 
5. The thresholding functions 

Selection the right wavelet function is crucial of wavelet denoising, depends of a few factors, such as 
application and signal characteristics. 
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1.4.4 EMG De-noising using Hilbert-Huang Transform  
The HHT method learn many advantages of wavelet transform like multi-resolution and overcome the 

difficulties like what wavelet transform need choose basic function (Jing-tian, et al., 2007).  

Empirical Mode Decomposition has into its advantages that with a low level of SNR of the processed 
signal, method provided the best surface EMG de-noising performance compared to other methods  

By studying the sEMG signals analysis using EMD technique, this offers the most successful results 
for attenuation of specific noises of sEMG signals, especially in cases of power-line noises, white Gaussian 
noise, baseline wandering and artifacts. 

The noise filtering and the de-noising can be solved with HHT (Huang, et al., 1998), especially for the 
real-time analysis (Meeson, 2005). We will apply this method to the EMG de-noising in this thesis. 

Signal de-noising in one dimension can be divided into three steps. That is decomposition, threshold and 
signal reconstruction. Here, HHT is adapted to EMG de-noising. Three steps are similar with traditional 
method. The clincher of this process is the EMD. The time-space filtering is constructed by using multi-
revolution analysis and multi-scale filtering of EMD (Chung & Dong-ling, 2004). The advantage of the time-
scale filtering is that can retain inherent characteristics of the non-linear and non-stationary. We will use EMD 
method to break down EMG signal into different time scale; it shows different information of signal and noise. 

1.4.5 EMG signal decomposition 
EMG signals are the superposition of activities of multiple motor units. It is necessary to decompose 

the EMG signal to reveal the mechanisms pertaining to muscle and nerve control. Decomposition of EMG 
signals has been done by wavelet spectrum matching and principle component analysis of wavelet coefficients.  

According to Jianjung Fang (Fang, et al., 1997), more than one single motor unit (SMU) potential will 
be registered at same time overlapping with each other, especially during a strong muscle contraction.  In 1997, 
they develop a technique using wavelet transform to classify SMU potentials and to decompose EMG signals 
into their constituent SMU potentials. The distinction of this technique is that it measures waveform similarity 
of SMU potentials from wavelet domain, which is very advantageous. This technique was based on spectrum 
matching in wavelet domain. Spectrum matching technique is sometimes considered to be more effective than 
waveform matching techniques, especially when the interference is induced by low frequency baseline drift or 
by high frequency noise. The technique, developed for multi-unit EMG signal decomposition, consists of four 
separate procedures: signal de-noising procedure, spike detection procedure, spike classification procedure and 
spike separation procedure. 

According to Daniel Zennaro (Zennaro, et al., 2003), wavelet coefficients of lower frequency bands 
are more important in the differentiation of motor unit action potential (MUAP) characterization than higher 
bands.  

On the other hand, Rie Yamada (Yamada, et al., 2003), showed that high frequency information, which 
were not considered, are also important for MUAP's classification. Their experiments were made proposing 
another method using principle components analysis (PAC) for wavelet coefficients. The decomposition 
algorithm consists of four processing stages: segmentation, wavelet transform, PCA, and clustering. The 
advantage of this method is that it does not require manual selection of coefficients, and takes all frequency 
information in account. 

According to De Luca (De Luca, et al., 2006) - verbatim et literatim, a technique named Precision 
Decomposition I (PDI) was designed to enable physiological experiments and it was described by De Luca. 
“The technique has been useful for decomposing indwelling EMG (iEMG) signals detected by needle sensors 
during isometric contractions and has been used in various physiological studies (Adam & De Luca, 2003) 
(Adam, et al., 1998) (Masuda & De Luca, 1991). This technique consists of identifying action potentials in the 
iEMG signal and assigning them to specific motor units by classifying the shapes and amplitudes of the action 
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potentials. The assignments of the action potentials are based on template matching and the probability of firing 
of the individual motor units being tracked.  Superposition of action potentials are resolved. 

The decomposition accuracy for the ith decomposable motor unit train is defined as 

 𝐴(𝑖) =
𝑁 (𝑖) − 𝑁 (𝑖) − 𝑁 (𝑖)

𝑁 (𝑖)
 ×  100 

 

Eq. 7 

 

where 𝑁 (𝑖) is the number of the firings of the MU and 𝑁 (𝑖) and 𝑁 (𝑖) are respectively the number of 
false positives produced by the decomposition algorithm for that motor unit (MU). The term “true firings” 
refers to the firings that we obtained by an expert operator using a manual or automatic decomposed data. 

The overall decomposition accuracy for a signal with N decomposable MU trains is then obtained as 

 𝐴 =
1

𝑁
𝐴(𝑖) Eq. 8 

The rationale behind this unweighted average is that the accurate decomposition of any MU train is of 
the same significance as that of any order MU train regardless of its duration, number of firings, and so forth.” 

1.4.5.1 Challenges of sEMG decomposition  
(De Luca, et al., 2006) Verbatim et literatim 

Any approach for decomposing EMG signals must be able to deal with four major complexities that occur 
within the signal. These complexities are shown in Figure 15:  

1) Superposition of action potentials from different MU’s, 
2) Large dynamic range of the amplitudes among the action potentials of different MUs of interest, 
3) Shape changes across the different action potentials of each MU (arising from slight movement 

between the sensor and muscle fibers and/or intracellular process), and 
4) Similarity of shape at various times among the action potentials of different MUs. These phenomena 

may also act in concert with each other to make the decomposition task more difficult. 

 

 

Figure 15. Stylized examples of the various challenges presented by the realistic behavior of EMG signals detected with 
indwelling sensors with small detection volume and susceptible to movement (De Luca, et al., 2006). 
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CHAPTER 2 
 

MATHEMATICAL FRAMEWORK 

 

2.1 SIGNALS 
The term signal refers to a physical quantity that carries certain type of information and serves as a means 

for communication. 

2.1.1 Classification of signals 
In general, any signal can be broadly classified as being either deterministic or nondeterministic. 

Deterministic signals are those that can be defined explicitly by mathematical functions. Nondeterministic 
signals are random in nature and are described in statistical terms. A signal that can be generated repeatedly 
with identical results is deterministic, otherwise it is nondeterministic. 

2.1.1.1 Deterministic Signal 
There are two types of deterministic signals: periodic and transient. Periodic signal is defined as a 

function that repeats itself exactly after a certain period, or cycle. Transient signal is defined as a function that 
lasts a short period of time. 

2.1.1.2 Nondeterministic Signal 
Nondeterministic signals, also called random signals, do not follow explicit mathematical expressions. 

They are divided in two categories: stationary and nonstationary. Stationary signal is considered when none of 
its statistical properties change with time. Generally, wide-sense stationary is used to characterize the signal. 
This requires that it satisfies the following conditions on its mean function: 

 𝐸{𝑥(𝑡 )} = 𝑚 (𝑡 ) = 𝑚 (𝑡 + 𝜏)   𝜏 ∈ ℤ 
Eq. 9 

 
and the correlation function 

 
𝐸{𝑥(𝑡 ), 𝑥(𝑡 + 𝜏)} = ℛ (𝑡 , 𝑡 + 𝜏) = ℛ (0, 𝜏)      𝜏 ∈ ℝ 

 
Eq. 10 

 
Symbol 𝜏 is the real number, ℛ  is the autocorrelation function of the signal 𝑥(𝑡). The mean function 

and autocorrelation function of a signal can be obtained by time-averaging over a short time interval 𝑇 as 
follows: 

 
𝐸{𝑥(𝑡 )} =

1

𝑇
𝑥(𝑡)𝑑𝑡 

 

Eq. 11 

 

and  

 𝐸{𝑥(𝑡 )} =
1

𝑇
𝑥(𝑡)𝑑𝑡 

Eq. 12 
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A signal whose statistical properties change with time is called a nonstationary signal.  Also, does not 
satisfy the conditions specified above. 

2.2 WAVELET AND HILBERT-HUANG TRANSFORMS 
All transforms of the signal 𝑓(𝑡) described in this section share a common computation principle: The 

signal is multiplied with a certain “analysis function” and integrated about the domain. In a symbolic notation, 
the description for performing a transform is: 

 𝑓(𝑡) ⎯⎯⎯⎯⎯⎯⎯ 𝑓(𝑢)𝑔(𝑢) 𝑑𝑢 

 

Eq. 13 

 

The analysis function g(u) characterizes the chosen transform. In general, it may be a complex function, 
the overline denotes the complex conjugate entity. 𝑔(𝑢) in a certain way depends on the parameters, i.e. 
frequencies or detail sizes, to be measured. Thus, by the computation principle given above the transformed 
entity will depend on these parameters. In other words: the transformed entity again will be a function. These 
functions we shall denote with transformed signal. 

2.2.1 Wavelet Transform 
The wavelet transform has such a zooming property. In contrast to the Fourier transform, the wavelet 

transform does not look for circular frequencies but rather for detail sizes S at a certain time 𝜏 (Stark, 2005).  

High frequencies correspond to small details and vice versa, thus, when comparing wavelet with 
Fourier transforms there is an inverse proportion between frequencies and detail sizes, so then, there is a 
constant 𝛽 such that: 

 𝑆 =
𝛽

𝜔
 

 

Eq. 14 

 
We shall now briefly indicate, how the wavelet transform is computed. 

Consider a, real or complex, analysis function 𝜓, oscillating around the t-axis 

 𝜓(𝑡)𝑑𝑡 = 0 

 

Eq. 15 

 

and decreasing rapidly for 𝑡 → ±∞. Such a function is called a Wavelet. Whereas relating scale factors with 
frequencies, the constant 𝛽 depends on 𝜓. 

Wavelet transform is generally divided into either a discrete and or continuous form. The continuous 
wavelet transform (CWT) of a signal 𝑠(𝑡) and the daughter wavelets, which are the time translation and scale 
expansion/compression versions of a mother wavelet function 𝜓(𝑡). Equivalent to a scalar production, this 
calculation generates continuous wavelet coefficients CWC (a, b), which determine the similarity between the 
signal and the daughter wavelets located at position b (time shifting factor) and positive scale a: 

 
𝐶𝑊𝐶(𝑎, 𝑏) = 𝑠(𝑡) 

1

√𝑎
𝜓∗

𝑡 − 𝑏

𝑎
𝑑𝑡 

 

Eq. 16 

 

 

where * stands for complex conjugation and 𝜓 ∈ 𝐿 . 



 
 

23 
 

 

Figure 16. Representation of Wavelet transform (Gao & Yan, 2011) 

2.2.1.1 Meyer Wavelet 
The Meyer wavelet is orthogonal and symmetric. However, it does not have a finite support. The Meyer 

wavelet has explicit expression and is defined in the frequency domain as follows: 

 
Ψ (𝑓) =

⎩
⎪
⎨

⎪
⎧√2𝜋 𝑒 sin

𝜋

2
𝑣(3|𝑓| − 1)        

1

3
≤ |𝑓| ≤

2

3

√2𝜋 𝑒 cos
𝜋

2
𝑣

3

2
|𝑓| − 1     

2

3
≤ |𝑓| ≤

4

3

0                                                          |𝑓| ∉ 〈
1

3
,
4

3
〉 

 

 

      Eq. 17 

 

where 𝑣(∙) is an auxiliary function, expressed as: 

 
𝑣(𝛼) = 𝛼 (35 − 84𝛼 + 70𝛼 − 20𝛼 ),            𝛼 ∈ 〈0,1〉 

 
      Eq. 18 

 
The Meyer wavelet with its magnitude spectrum is shown below in Figure 17. Typical applications of 

Meyer wavelet are signal denoising and MUAPs detection (Chowdhury, et al., 2013). 

 

Figure 17. Wavelet Meyer (left) and its magnitude spectrum (right) 
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2.2.1.2 Daubechies Wavelet 
The family of the Daubechies wavelets is orthogonal, however, asymmetric, which introduces a large 

phase distortion. This means that it cannot be used in applications where a signal’s phase information needs to 
be kept. It is also a compactly supported base wavelet with a given support width of 2N-1, in which N is the 
order of the base wavelet. In theory, N can be up to infinity.  

The Daubechies wavelets do not have explicit expression except for the one with N=1, which is the 
Haar wavelet. With an increase of the support width, i.e., an increase of the base wavelet order, the Daubechies 
wavelet becomes increasingly smoother, leading to better frequency localization. Therefore, the magnitude 
spectra for each of the Daubechies wavelets decay quickly, as shown in Figure 18, where the Daubechies 2 
base wavelet and Daubechies 4 base wavelet are used as examples. 

 

Figure 18. Daubechies wavelet (left) and its magnitude spectrum (right). a) Daubechies 2 base wavelet and b) Daubechies 4 
base wavelet. 

2.2.2 Hilbert-Huang Transform 
In 1996 Norden E. Huang proposed the Hilbert Huang Transform (HHT), HHT can be used for 

processing non-stationary and non-linear signals, such as noise filtering and de-noising (Huang, et al., 1998). 
Is an empirically based data-analysis method. Its basis of expansion is adaptive, so that it can produce physically 
meaningful representations of the data from non-linear and non-stationary processes. 

Empirical mode decomposition (EMD) and Hilbert spectral analysis (HSA) represent a desperate 
attempt to break the suffocating hold on data analysis by the twin assumptions of linearity and stationary. The 
EMD-HSA is truly an adaptive time-frequency analysis. It does not require an a priori functional basis.  

This method is potentially viable for time-frequency-energy representations. It has been tasted and 
validated exhaustively, but not empirically (Huang, 2005). In all the cases studied, the HHT gave results sharper 
than other methods; HHT revealed true physical meanings in many of the data examined. 
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Decomposition for non-stationary signal is necessary when the analysis is based on instantaneous 
frequency. Instantaneous frequency is defined as the time derivative of phase of the analytic signal and would 
be meaningful only to narrow-band signal4. The general process is the following:  

2.2.2.1 Empirical Mode Decomposition (The sifting process)  
The empirical mode decomposition (EMD) (Huang, et al., 1998) is a technique to decompose a given 

signal into a set of elemental signals called “intrinsic mode functions” (IMF´s). The EMD is the base of the so-
called “Hilbert-Huang Transform” that comprises the EMD and the Hilbert spectral analysis that performs a 
spectral analysis using the Hilbert transform (HT) followed by an instantaneous frequency computation. 

The algorithm is simple and gives good results in situations where other methods fail. However, it has 
some drawbacks, tied with some of the assumptions needed to implement the algorithm, leading to unexpected 
results (Rato, et al., 2008). 

The first step decomposes the signal to a set of intrinsic mode functions (IMF). The second step is to get 
the instantaneous frequency and spectrum. IMF is a single signal which should scarify the following conditions: 

1) The number of zero and extreme crossing must be equal or up to one in the whole data set. 
2) The mean value of two envelope curves which are defined by local maximum and minimum would be 

zero at the random time. The envelope is symmetry with time axis. 

The decomposition that any data consists of different simple intrinsic modes of oscillations. Each 
intrinsic mode, linear or nonlinear, represents a simple oscillation.  

 An IMF represents a simply oscillatory mode as a counterpart to the simple function, but it is more 
general: instead of constant amplitude and frequency, as in a simple harmonic component, the IMF can 
have a variable amplitude and frequency as functions of time. 

To decompose any function, we follow the next procedure: take the test data 𝑥(𝑡) as given in Figure 19; 
identify all the local extrema, then connect all the local maxima by cubic spline, do the same with the local 
minima. 

Cubic spline fitting is used to gain the up and down signal envelopes, this calculates the mean value in all 
envelops points as shown in Figure 20. The average value makes a new curve that is named 𝑚  (Figure 
21). Then we must determine if ℎ  satisfy the two conditions mentioned above. 

Ideally, ℎ  should satisfy the definition of an IMF. The sifting process serves two purposes: 1) to 
eliminate riding waves, and 2) to make the wave profiles more symmetric (Huang, 2005). The first is achieved 
with the Hilbert transform to give instantaneous frequency, and the second purpose is achieved in case the 
neighboring wave amplitudes have too large a disparity. Toward these ends, the sifting process must be repeated 
as many times as is required to reduce the extract signal to an IMF.  

                                                      
4 Narrow-band signal: a signal who have a small bandwidth. 
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Figure 19. Test data x(t) (Huang, 2005) 

 𝑥(𝑡) − 𝑚 = ℎ  
Eq. 19 

 

 

Figure 20. The data (blue), upper and lower envelops (green) defined by the local maxima and minima, respectively, and the 
mean value of the upper and lower envelopes given in red. (Huang, 2005) 
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Figure 21. The data (pink) and h1 (blue). (Huang, 2005) 

But, if ℎ  does not satisfy the conditions, in the subsequent sifting processes, ℎ  can be treated only as 
a proto-IMF. In the next step, ℎ  is treated as the data, then we continue doing the sifting process.  

 ℎ − 𝑚 = ℎ  Eq. 20 
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Figure 22. (A, top) Repeated sifting steps with h1 and m2.  

(B, bottom) Repeated sifting steps with h2 and m3. (Huang, 2005) 

This process must be repeated 𝑘 times, until we find a ℎ  function that satisfy the IMF conditions. The 
general equation for this process is: 

 ℎ( ) − 𝑚 = ℎ  Eq. 21 

Take ℎ  as 𝑐 , where 𝑐  is the first IMF of the signal, i.e. as shown in Figure 23 

 𝑐 = ℎ  Eq. 22 

 

Figure 23. The first IMF component c1 after 12 steps. (Huang, 2005) 
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take 𝑐  component out of the original data, the residue is: 

 𝑥(𝑡) − 𝑐 = 𝑟  Eq. 23 

 

Figure 24. The original data (blue) and the residue r1 (red). (Huang, 2005) 

As the residue also includes the long-cycle information, we should take it as a “other” new signal and 
we must apply the filtering process as above. The residue of each sifting process is named 𝑟 , 

 𝑟 − 𝑐 = 𝑟  , … , 𝑟 − 𝑐 = 𝑟   

 

Eq. 24 

 
When 𝑟  becomes a single function (or merely, we cannot extract single component as IMFs from it), 

the whole sifting process is over. Then 𝑥(𝑡) can be expressed as: 

 𝑥(𝑡) = 𝑐 + 𝑟  Eq. 25 

The EMD is considered as a scale-filtering process, each IMF shows the characteristic of each scale, 
and in other words it shows the intrinsic mode characteristic of non-linear and non-stationary signal. 

The IMF eliminates the non-stationary components of the original data. Because each sifting process 
is based on the residue of the previous process, then the main function of the process is variable and the 
decomposition is adaptive. 

“Sifting” is the central signal separation process of the HHT algorithm. The traditional way of filtering, with 
appropriate real-time adjustments to parameters, could be substituted for Huang’s sifting process, but this 
suggestion is not supported yet (Meeson, 2005).  
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2.2.2.2 Hilbert Transform 
The second part of the HHT process is the Hilbert transform.  Having obtained the intrinsic mode 

function components, one will have no difficulty in applying the Hilbert transform to each IMF component, 
and in computing the instantaneous frequency as follows (equations 26-30). 

For an arbitrary time series, 𝑥(𝑡) is given; 𝑦(𝑡) is equal to Hilbert transform of 𝑥(𝑡): 

 𝑦(𝑡) =
1

𝜋
𝑃

∫ 𝑥(𝑡 )

𝑡 − 𝑡′
𝑑𝑡′ 

 

Eq. 26 

 

where P indicates the Cauchy principal value. This transform exists for all functions of class 𝐿 . 5  

Now with this definition, if we consider the signal 𝑧(𝑡)as an analytic signal, where 𝑥(𝑡)is the real part and 
𝑦(𝑡)is the imaginary component. 

 𝑧(𝑡) = 𝑥(𝑡) + 𝑖𝑦(𝑡) = 𝑎(𝑡)𝑒  Eq. 27 

So, applying the operations to get the amplitude and phase of 𝑧(𝑡), we have: 

Amplitude 𝑎(𝑡) = 𝑥 (𝑡) + 𝑦 (𝑡) 

 

Eq. 28 

 

Phase 𝜃(𝑡) = 𝑎𝑟𝑐𝑡𝑔
𝑦(𝑡)

𝑥(𝑡)
 

 

Eq. 29 

 
Whit this 𝜃(𝑡) function, we can obtain the instantaneous frequency, we just only apply the derivation 

to it: 

Instantaneous 
frequency 𝜔 =

𝑑𝜃

𝑑𝑡
 

 

Eq. 30 

 
After performing the Hilbert transform on each IMF component, the original data can be expressed as 

the real part Re in the following form: 

 𝑥(𝑡) = Re 𝑎 (𝑡)𝑒 ∫  
 

Eq. 31 

 
Equation 31 shows that HHT (Hilbert-Huang Transform) is an extended form of Fourier Transform. 

 𝑥(𝑡) = Re 𝑎 (𝑡)𝑒 ( )  
 

Eq. 32 

 

                                                      
5  In mathematics, the Lp spaces are function spaces defined using a natural generalization of the p-norm for finite-
dimensional vector spaces. They are sometimes called Lebesgue spaces. (Maddox, 1988). 
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 The contrast between equations 31 and 32 is clear: the IMF represents a generalized Fourier expansion. 
The variable amplitude and the instantaneous frequency have not only greatly improved the efficiency of the 
expansion, but also enabled the expansion to accommodate nonlinear and nonstationary data. 

Table 1. Comparison between Fourier, Wavelet and HHT analysis. 

 Fourier Wavelet HHT 
Basis a priori a priori a posteriori, Adaptive 
Frequency Convolution: global, 

Uncertainty 
Convolution: regional, 

Uncertainty 
Differentiation over local domain, 

Certainty 
Presentation Energy-frequency Energy-time-frequency Energy-time-frequency 
Nonlinearity No No Yes 
Nonstationarity No Yes Yes 
Feature Extraction No Discrete: Yes 

Continuous: Yes 
Yes 

Theoretical base Theory complete Theory complete Empirical 

 

2.3 THE GOERTZEL ALGORITHM 
The most common application of this process is to detect the presence of a single continuous wave 

sinusoidal tones produced by the buttons pushed on a telephone keypad. 

2.3.1 Summary 
Verbatim et literatim (Engelberg, 2008) 

We know that Fast Fourier Transform allows one to calculate the Direct Fourier Transform (DFT) of 
an N-term sequence in 𝑂(𝑁 ln(𝑁)) steps. As calculating a single element of the DFT requires 𝑂(𝑁) steps, is 
clear that when one does not need too many elements of the DFT, one is the best off calculating individual 
elements, and not the entire sequence. The Goertzel algorithm calculate individual elements of the DFT. 

Consider the definition of the DFT 

 𝑌 = 𝐷𝐹𝑇({𝑦 })(𝑚) ≡ 𝑒 𝑦  

 

Eq. 33 

 

The calculation of any given coefficient, 𝑌 , takes 𝑂(𝑁) steps. Thus, if one only needs a few coefficients 
(fewer than 𝑂(ln (𝑁))  coefficients), the it is best to calculate the coefficients and not bother with more 
coefficients of FFT algorithm, which calculates all the Fourier coefficients). The Goertzel algorithm is a simple 
way of calculating an individual Fourier coefficient. It turns calculating a Fourier coefficient into implementing 
a second-order filter and using that filter for a fixed number of steps. The Goertzel algorithm is somewhat more 
efficient than an exhaustive implementation of the DFT.   

2.3.2 First-order Filters 
Consider the solution of the equation 

 𝑟 = 𝛼𝑟 + 𝑥  Eq. 34 

This corresponds to calculating the response of the filter whose transfer function is 

 
𝑅(𝑧)

𝑋(𝑧)
=

𝑧

z − 𝛼
 

 
Eq. 35 

Making use of the variation of parameters idea, we guess that the solution of 𝑟  is of the form 



 
 

32 
 

 
𝑟 = 𝛼 𝑧  

 
Eq. 36 

We find that we must produce a 𝑧  for which 

 

𝑟 = 𝛼 𝑧  
     = 𝛼𝑟 + 𝑥  
     = 𝛼(𝛼 𝑧 ) + 𝑥  

     = 𝛼(𝛼 𝑧 + (𝑧 − 𝑧 ) + 𝑥  

     = 𝛼 𝑧 + 𝛼 (𝑧 − 𝑧 ) + 𝑥  
 

Eq. 37 

For equality to hold, we find that 

 𝑧 = 𝑧 + 𝛼 𝑥  
 

Eq. 38 

Assuming that 𝑟 = 𝑥 = 0 for 𝑛 < 0, implies that 

 
𝑧 = 𝛼 𝑥  

 

Eq. 39 

Finally, we find that 

 
𝑟 = 𝛼 𝑧 = 𝛼 𝑥  

 

Eq. 40  

2.3.3 Comparing FFT vs Goertzel algorithm 
If one performs a brute force calculation of 𝑌 , one must multiply 𝑒 /  by 𝑦  for 𝑁 values of 𝑘. 

As the complex exponential is essentially a pair of real numbers, this requires 2𝑁  real multiplications. 
Additionally, the sum requires that 2(𝑁 − 1) real sums be calculated. When using the Goertzel algorithm, the 
recurrence relation requires two real additions and one real multiplication at each step. The FIR filter that is 
used in the final stage requires two real multiplications and one addition. In sum, the Goertzel algorithm 
requires 𝑁 + 2 real multiplications and 2𝑁 + 1 real additions. We find that the Goertzel algorithm is somewhat 
more efficient than the exhaustive calculation. 

2.4 KALMAN FILTER 
Kalman filter is an optimal state estimation process applied to a dynamic system that involves random 

perturbations. Kalman filter gives a linear, unbiased, and minimum error variance recursive algorithm to 
optimally estimate the unknown state of a dynamic system from noisy data taken at discrete real-time. It is used 
in a wide range of engineering and econometric applications and is an important topic in control theory and 
control systems engineering. 

The Kalman filters are based on linear dynamical systems discretized in the time domain. They are 
modelled on a Markov chain built on linear operators perturbed by errors that may include Gaussian noise. The 
state of the system is represented as a vector of real numbers. At each discrete time increment, a linear operator 
is applied to the state to generate the new state, with some noise mixed in, and optionally some information 
from the controls on the system are known. Then, another linear operator mixed with more noise generates the 
observed outputs from the hidden state. The Kalman filter may be regarded as analogous to the hidden Markov 
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model, with the difference that the hidden state variables take values in a continuous space (as proposed to a 
discrete state space as in the hidden Markov model).  

In order to use the Kalman filter to estimate the internal state of a process given only by a sequence of 
noise observations, the process should model in accordance with the framework of the Kalman filter. The 
following matrices must be specified: 𝐴 , the state-transition model; 𝐶 , the observation model; 𝑄 , the 
covariance of the process noise; 𝑅 , the covariance of the observation noise; and 𝐵 , the control input model, 
for each step 𝑘. 

2.4.1 The Model 
Verbatim et literatim (Chi & Chen, 2009) 

Consider a linear system with state-space description 

 

𝑥 = 𝐴 𝑥 + 𝐵 𝑢 + Γ 𝜉

𝑤 = 𝐶 𝑥 + 𝐷 𝑢 + 𝜂
 

 

Eq. 41  

Where 𝐴 , 𝐵 , Γ , 𝐶 , 𝐷  are 𝑛 ×  𝑛 , 𝑛 ×  𝑚 , 𝑛 ×  𝑝 , 𝑞 ×  𝑛 , 𝑞 × 𝑚  (known) constant matrices, 
respectively, with 1 ≤ 𝑚, 𝑝, 𝑞 ≤ 𝑛 , {𝑢 }  a known sequence of 𝑚 -vectors, called a deterministic input 
sequence, and { 𝜉 } and { 𝜂 } are, respectively, (unknown) system and observation noise sequences, with 

known statistical information such as mean, variance, and covariance. Since both the deterministic input { 𝑢 } 
and noise sequences { 𝜉 } and { 𝜂 } are present, the system is usually called a linear deterministic/stochastic 

system. This system can be decomposed into the sum of a linear deterministic system: 

 
𝑧 = 𝐴 𝑧 + 𝐵 𝑢

𝑠 = 𝐶 𝑧 + 𝐷 𝑢
 

 
Eq. 42  

and a linear stochastic system: 

 

𝑥 = 𝐴 𝑥 + Γ 𝜉

𝑣 = 𝐶 𝑥 + 𝜂
 

 

Eq. 43 

With 𝑤 = 𝑠 + 𝑣  and 𝑦 = 𝑧 + 𝑥 . The advantage of the decomposition is that the solution of 𝑧  
in the linear deterministic system is well known and is given by the so-called transition equation 

 𝑧 = (𝐴 … 𝐴 )𝑧 + (𝐴 … 𝐴 )𝐵 𝑢  

 

Eq. 44 

Hence, it is sufficient to derive the optimal estimate 𝑥  of 𝑥  in the stochastic state-space description, 
so that 

 
𝑥 = 𝑧 + 𝑥  

 
Eq. 45 

becomes the optimal estimate of the state vector 𝑦  in the original linear system. Of course, the estimate has to 
depend on the statistical information of the noise sequences. In this work, we will only consider zero-mean 
Gaussian white noise processes. 
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Figure 25. Kalman filter predicts, measure, corrects cycle iteratively and estimates the state at each time step. 
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CHAPTER 3 
 

 METHODOLOGY 
This chapter is divided in tree main sections: Acquisition, Stationary Analysis and Nonstationary Analysis. 

In section 3, Acquisition stage, are reported the methods and techniques to acquire sEMG signals, placing 
electrodes, signal recording, normalization and windowing the signals. In section 3.2, Stationary Analysis, 
describes the methods and processes used to analyze the recorded data using Wavelet and Hilbert-Huang 
Transforms, also features, characteristics and patterns found using these techniques are described. In section 
3.3, Nonstationary Analysis, propose the conditions, methods, techniques and processes to perform a quick 
filtering, under 100 ms, using Kalman and Göertzel Filters to identify the features, characteristics or patterns 
identified in Stationary Analysis. Acquisition system is basic in both stationary and nonstationary analysis, but 
equal. Figure 26 and Figure 27 show two similar processes resulted of this work.  

 

Figure 26. Block diagram of the Stationary Analysis. For Stationary Analysis is necessary the acquisition stage that comprises 
the electrode placing, 4-channels array acquisition system, recording data base, normalization and windowing of the signals. 

After acquisition, the analysis stage is based on Wavelet and Hilbert-Huang transforms used to identify the features, 
characteristics and patterns into the myoelectric signals. Result of these processes are databases and mathematical models 

that describes myoelectric signals in time and frequency. 

 

 

Figure 27. Block diagram of the Nonstationary Analysis. For Nonstationary Analysis is necessary the acquisition stage, that 
comprises the electrode placing, 4-channels array acquisition system, sampling, normalization and windowing to buffer the 
signals in a small-time slot. After acquisition, the filtering stage is a Kalman and Goertzel filters algorithms matching the 

input signals to predict, correct and identify the feature, characteristic or pattern of the de the myoelectric signals, these filters 
use the databases and mathematical models obtained in the Stationary Analysis. 
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3.1 ACQUISITION 
In this section, the signals are acquired by placing Ag/AgCl surface electrodes over five forearm link-

finger muscles of the subjects. Using a 4-channel electrode array configuration, these signals were sampled and 
recorded. Then, signals were normalized and windowed before the analyzing steps. Database for six movements 
of the fingers were obtained. 

 

Figure 28. Block Diagram of Acquisition Stage. Acquisition of the signals consists in placing the electrodes over five forearm 
muscles of each subject using the 4-channels electrode array, signals from the muscles were sampled and recorded, and finally 

recorded signals were normalized and windowed before analyzing. 

Using the BIOPAC MP35 acquisition system with 4-Channels were recorded the superficial myoelectric 
signals from five volunteers aged between 21 years-old and 30 years-old, without physiological or neurological 
problems. 

The signals for the data base were recorded by BLS PRO 3.7 software under the following conditions: 2 
kHz sampling frequency and a gain of 1000. The system is restricted to maximum 4 analog channels. BIOPAC 
system has a default IIR Chebyshev 2 bandwidth 6th order filter, it was set to 10 Hz to 500 Hz. Each channel 
has differential-mode configuration based on instrumentation amplifier with an external reference. 

Obtained signals were relative to six movements of the fingers only. Considering that if finger 1, can 
reach the tip of the other four fingers, then is possible to perform 27 combinations between them (Altamirano-
Altamirano, et al., 2013). Simplifying all finger movements in just 6: 1) Index Flexion (finger II), 2) Middle 
finger flexion (finger III), 3) Ring and Little fingers flexion (fingers IV-V), 4) Thumb finger flexion (Finger I), 
5) All fingers flexion (Closing) and 6) All fingers extension (Opening). 

 

Figure 29. Finger movements. 1) Finger II flexion, 2) Finger III flexion, 3) Fingers IV-V flexion, 4) Finger I flexion, 5) All 
fingers flexion, and 6) All fingers extension. 

After reviewing the anatomical muscle distribution (Tortora & Derrikson, 2014), were determine the 
associated superficial muscles to the six movements. The muscles were 1) Pollicis brevis & Pollicis Longus, 
2) Flexor digitorium superficialis, 3) Extensor digitorium and 4) Flexor Carpi Ulnaris. Having determined 
these muscles were linked to one channel, respectively. 
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A special name codification was used to save each record. To automate the processing in the 
programmed algorithms, wavelet and Hilbert-Huang algorithms, a sequence of letters and numbers was applied 
with the following order: 𝐶𝐵𝐴4_𝑋𝑌𝑍 

Table 2. CBA4_XYZ code meaning for records names. 

C CINVESTAV   
B BIOELECTRONICS X Subject number: 1 to 5 
A Researcher: ALTAMIRANO Y Movement number: 1 to 6 
4 Number of channels Z Record number: 0 to 9 

 

3.1.1 Electrodes array 
Figure 30 shows the electrode array as a focal-vertex point distribution per channel, related to the parts 

of an ellipse. Two differential electrodes are in the focal points, one per point, and the reference electrode could 
be placed in one of the minor axis vertex (up or down). Reference electrode position depends of other channel 
position, this is to use the lowest references positions against highest number of channels, without disrupting 
the focal-vertex basis. 

 

Figure 30. Electrode configuration diagram with Vertex-focal distribution. Differential electrodes (V+ & V-) and Reference 
electrode placed between the muscles to reduce to 1-reference. Other reference electrode position could be in the other 

extrema between the differential electrodes. These are distributed over larger surface of the muscle. 

This array configuration allows to place each differential electrode throughout of each selected muscle, 
striving to place them on the larger surface of the muscle (Masuda & De Luca, 1991), placing 4 electrodes over 
5 forearm muscles, respectively, as shown in Figure 31. Pediatric Ag/AgCl electrodes were used.  

3.1.2 Recording protocol 
The protocol for record the signals consisted to perform six mentioned movements, starting in relaxed 

position, this was, resting forearm into a table without any contraction, then  

1. From a doss position of the hand, the person was seated and placing the right forearm over a table with 
the palm of the hand up.  

2. Each record has a duration of eight seconds from the start to the end of the test. By movement. 
3. In second four, the subject performs a movement of flexion and extension, without hold the contraction, 

to return immediately to doss position until the second eight, end the record. 
4. For next movement, a new record starts, repeat step 3 nine times to obtain ten records per movement. 
5. Repeat steps 3 and 4 all movements. 
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From this protocol were obtained 60 records per user (6 mov * 10 rec = 60 rec/u); from five users were got 
300 records. Each record is made up of signals from four channels with 4 x 16,000 elements each. These 
elements were used to perform wavelet analysis. To perform Hilbert-Huang analysis, these records were cut in 
one second length segment between 3.5 s and 4.5 s, so then 4 x 2,000 elements matrix is obtained. This segment 
corresponds to the voluntary muscular contraction and relaxation of the subjects. 

The use of a data base with different size for Hilbert-Huang analysis than data base of for wavelets has 
foundation on two parameters: characteristics of the developed Hilbert-Huang code and the location of the 
information. Hilbert-Huang code was programmed for one second length segment, but also it can be adapted 
to other lengths. Relevant data location is in muscular activation not in the doss zones.  

 

Figure 31. Channel electrode array with focal-vertex basis configuration. 

 

3.1.3 Normalization 
Normalization is fundamental in every signal processing method. For this work two normalization 

processes were used. 

The first normalization is done by obtaining the factor α, that is reciprocal to the maximum absolute 
value of the myoelectric signal in each channel, in a 1000 ms sample. 

 𝑉 = 𝑚𝑎𝑥[𝑉 (𝑡)];   𝑖 = 1, … ,4 Eq. 46 

 
𝛼 =

1

𝑉
;    𝑖 = 1, … ,4 

 
Eq. 47 

where i is channel number. 

Subsequently, each channel is amplified by its corresponding 𝛼  factor, obtaining an amplitude 
normalization with an absolute maximum value of 1 V in all channels. With this process, the inherent noise 
into the channels is also amplified, intentionally, to identify its characteristics. 
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The second normalization is different, first the segment of the signal is windowed with a square window 
of 150 ms and within it were identify the absolute maximum element of each signal, simultaneously, for the 
four channels, 

 
𝑉 = 𝑚𝑎𝑥

⎣
⎢
⎢
⎡
𝑉 (𝑡)

𝑉 (𝑡)

𝑉 (𝑡)

𝑉 (𝑡)⎦
⎥
⎥
⎤

    ∀   (𝑡, 𝑡 + 150 𝑚𝑠) 

 

Eq. 48 

followed by the 𝛽 factor, that is 

 
𝛽 =

1 𝑉

𝑉 á
 

 
Eq. 49 

Each channel was amplified 𝛽 times, keeping original signal ratio with a maximum absolute value of 
1 V. 

 

Figure 32. Normalization processes. A) and C) are original signals of four channels system. B) are the amplified signals by the 
𝜶𝒊 factors. D) shows the four channels in a 150 ms square window, as shown in figure C, amplified 𝜷 times. 
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Figure 33. Record normalized -1V to 1V, filtered between 20 Hz -500 Hz and windowed between 3.5 s to 4.5 s concerning to its 
8 s record number 3 of the user 1 for closing hand (CBA4_153) 
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3.2 STATIONARY ANALYSIS 
Stationary analysis consists in the methods and processes proposed to analyze the recorded data using 

Wavelet and Hilbert-Huang Transforms. Features6 , characteristics7  and patterns8  were found using these 
techniques. Scalograms and Statistical features are reported. Time and frequency patterns are described as 
mathematical models. An intrinsic characteristic of the muscular activity related with the intensity of the sEMG 
signal is also showed. Results are useful to propose a real-time filtering processes. 

 

Figure 34. Block Diagram of the Stationary Analysis Stage. Stationary Analysis consist in the methods and processes used to 
analyze the recorded data using Wavelet and Hilbert-Huang Transforms. Features, characteristics and patterns were found, 

using these techniques are described, resulting in databases and mathematical models in time and frequency. 

3.2.1 Wavelet Analysis 
Both the time and frequency domain approaches have been attempted with diverse methods. The Wavelet 

Transform (WT) is an efficient math tool for nonstationary signals.  

If the wavelet analysis is chosen to match the shape of the MUAP, the resulting wavelet transform yields 
a very good possible energy localization in the time-scale plane (Guglielminotti & Meletti, 1992). There are 
several factors that should be considered when choosing the wavelet function (Phinyomark, et al., 2009).  

Time-frequency analysis of the acquired myoelectric signals was done with the Continuous Wavelet 
Transform. For this analysis, two wavelet basis were used: Daubechies 44 (db44, Figure 35) and Meyer (Figure 
36), both reported for sEMG analysis (Rafiee, et al., 2011) (Reaz, et al., 2006) (Chowdhury, et al., 2013). 
Daubechies and Meyer wavelets are orthogonal, but Daubechies 44 is not symmetric. 

                                                      
6 Feature: An interesting or important part or quality of something. 
7 Characteristic: A special quality that makes something different from others. 
8 Pattern: Is something repetitive or regular way in which something happens or is done. 
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Figure 35. Wavelet Daubechies. High order wavelets. Db44 (highlighted) was used in this work. (Rafiee, et al., 2011) 

 

 

Figure 36. Wavelet Meyer 
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Daubechies wavelets are a set of orthogonal and nonsymmetrical functions, however, Daubechies 44 
is almost symmetric. This characteristic allows it to be used in biomedical signal processing like in ECG, EMG, 
EEG and etcetera (Rafiee, et al., 2011). 

The Continuous Wavelet Transform was applied using the “cwt” function in Matlab with a logarithmic 
scale vector to create the spectrograms. Figure 37 shows the logarithmic scale associated to frequency 
distribution. 

 

Figure 37. Wavelet logarithmic scale vs frequency for spectrogram description 

CWT function computes the continuous wavelet transform coefficients of the real-valued signal 𝑥 at 
real, positive scales. The analyzing wavelet can be real or complex. Resulting of this function is a coefficients 
wavelet matrix 𝑙  × 𝑙 , where 𝑙  is the length of the scales and 𝑙  is the length of the input 𝑥. After obtaining 
the CWT coefficients, scalograms where plotted as shown in Figure 38. There were obtained 1200 scalograms, 
300 by channel. The best match for each mother wavelet basis were identified in the scalogram, related directly 
with the original signal, highlighted in red color. Algorithm for this process is in Appendix.  
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Figure 38. sEMG signal from channel 3 in 1 second timeslot (upper) with the logarithmic scalogram for Meyer wavelet 
coefficients (lower). 

Using these locations for each signal and for all channels, some frequencies were identified. Frequency 
vectors were obtained to be analyzed by statistics methods, histograms and variance analysis (ANOVA). 

 

3.2.1.1 Histograms 
For each channel, groups of frequencies were obtained, and their histograms were plotted as shown in  

Figure 39.  

As a complement to these histograms, a box plot for each were obtained. The means were calculated.
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Figure 39. Histogram of frequencies channel 4, obtained from the scalogram 
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Figure 40. Box plot of the frequencies for channel versus movement 
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3.2.2 Statistics: ANOVA, Levene & post hoc tests. 
The groups of frequencies were analyzed via variance of the means using ANOVA statistics. If 

significant difference exists between the frequencies, then data obtained could be useful to classify movements 
only with the means.  

Homogeneity trial was applied to data. Levene’s test is an inferential statistic used to assess the equality 
of variances for a variable calculated for two or more groups. Some statistical procedures assume that variances 
of the populations from which different samples are drawn are equal, Levene’s test assesses this assumption. 
If the resulting a-value of Levene’s test is less than 0.05, the obtained differences in sample variances are 
unlikely to have occurred based on random sampling from a population with equal variances. Thus, the null 
hypothesis of equal variances is rejected, and it is concluded that there is a difference between the variances in 
the population. If data were homogeneous then a Ratio F is used, otherwise Brown-Forsythe test were used 
(Levene, 1960).  

A final test, post-hoc, for data was performed to distinguish if there are statistical enough information 
between movements, likewise in which are not. Post-hoc analyses are usually concerned with finding patterns 
and/or relationships between subgroups of sampled populations that would otherwise remain undetected and 
undiscovered. A significant ANOVA test only reveals that not all the means compared in the test are equal. 
Bonferroni and Games Howell tests were used. Bonferroni test is used when performs many independent or 
dependent statistical tests at the same time. If data did not meet the homogeneity of variances assumption then 
Games Howell post hoc test were applied (Hochberg, 1988) (Ruxton & Beauchamp, 2008). All statistical 
analysis was calculated with IBM SPSS software9. 

 

 

  

                                                      
9 https://www.ibm.com/analytics/us/en/technology/spss/ Last access: May 29th, 2015. 
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3.2.3 Hilbert-Huang Analysis 
Time-frequency analysis is the process of determining what frequencies are present in a signal, their 

intensity and their time changing. Understanding this behavior of the frequencies respecting with time can 
explain much about the physical processes that generate or influence the sEMG signal.  

The Hilbert-Huang Transform offers higher frequency resolution and more accurate timing of transient 
and non-stationary signal events than conventional integral transform techniques. This separates the complex 
signals into simpler component signals, each of which has a single, well-defined, time-varying frequency. Real-
time HHT algorithms enable this enhanced signal analysis capability to be used in process monitoring and 
control applications (Huang & Shen, 2005). 

Raw EMG offers us valuable information into a very “noisy” form. This information is useful if is 
quantified. To achieve this, we applied on a raw sEMG the Hilbert-Huang method. 

The sEMG recognition system can be summarized as shown below, it is composed by five stages: 

1. Collected signals will be segmented and normalized in time with 150 ms width window.  
2. Decompose the segment into IMFs using Empirical Mode Decomposition (EMD) for each channel. 
3. Apply Hilbert Spectral Analysis followed by an instantaneous frequency computation for each IMF. 
4. Discrimination features will be calculated to build feature space. 
5. A classifier used to recognize the movement. 

The success of a pattern recognition system depends almost entirely on the choice of features representing 
data sequence (Huang & Chen, 1999). Although normal resting muscles show almost no change in their sEMG 
signals, when a sEMG from a contracting muscle is acquired it shows significant changes in their potentials.  

3.2.3.1 Empirical Mode Decomposition 
Empirical Mode Decomposition is a technique to decompose a given signal into a set of elemental 

signals called “intrinsic mode functions” (IMFs). The EMD is the base of the so-called “Hilbert Huang 
Transform (HHT)”. The algorithm is simple and gives good results in situations where other methods fail 
(Wavelets, Fourier and etcetera) (Huang, et al., 1998) . The EMD as proposed by Norden Huang is a signal 
decomposition algorithm on a successive removal of elemental signals: the IMFs.  

3.2.3.1.1 Algorithm to calculate IMFs, proposed by Huang. 
Given any signal, 𝑥(𝑡), the IMFs are found by an iterative procedure called sifting algorithm (Figure 

41), which is described on the following steps:  

a) Find the local maxima, 𝑀 , 𝑖 = 1,2, …, and minima, 𝑚 , 𝑘 = 1,2, …, in 𝑥(𝑡). 
b) Compute the corresponding interpolating signals ; (𝑡) = 𝑓 (𝑀 , 𝑡) , and 𝑚(𝑡) = 𝑓 (𝑚 , 𝑡) . These 

signals are the upper and lower envelopes of the signal. 

c) Let 𝑒(𝑡) =
( ) ( )

. 

d) Subtract 𝑒(𝑡) from the signal: 𝑥(𝑡) = 𝑥(𝑡) − 𝑒(𝑡). 
e) Return to step (a) – stop when 𝑥(𝑡) remains nearly unchanged. 
f) Once we obtain an IMF, 𝜑(𝑡), remove it from the signal 𝑥(𝑡) = 𝑥(𝑡) − 𝜑(𝑡) and return to (a) if 𝑥(𝑡) 

has more than one extremum (neither a constant nor a trend). 
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Figure 41. Flow chart for the sifting algorithm, basis of EMD method. 

When de IMF component is a monotonic function, the process is finalized, and the original signal is 
reconstructed by adding all the IMF components along with the mean of final residue, 𝑚 . The 
reconstructed signal can be represented as: 

 
𝑆(𝑡) = 𝐼𝑀𝐹 + 𝑚  

 

Eq. 50 

where n is the number of IMFs.  

The Matlab algorithm for EMD Decomposition is in Appendix: Empirical Mode Decomposition basis. 

To show this step, for each channel were calculated their IMFs with the EMD algorithm to extract the 
symmetric components of the signal. 
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For channel 1, the figure shown below contains the IMFs corresponding to it: 9 IMFs. 

 

Figure 42. Intrinsic Mode Functions (IMFs) extracted from channel 1 for transitory stage of supination movement. 

 

For channel 2, the figure shown below contains the IMFs corresponding to it: 8 IMFs. 

 

Figure 43. Intrinsic Mode Functions (IMFs) extracted from channel 2 for transitory stage of supination movement. 
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For channel 3, the corresponding IMFs are shown in the figure below: 10 IMFs. 

 

Figure 44. Intrinsic Mode Functions (IMFs) extracted from channel 3 for transitory stage of supination movement. 

 

Finally, for channel 4, the corresponding IMFs are shown in the figure below: 8 IMFs. 

 

Figure 45. Intrinsic Mode Functions (IMFs) extracted from channel 4 for transitory stage of supination movement. 

After decomposition, we analyze each IMF according to the original data. Baseline drift is reflected in 
higher-standards scales, like in IMFs 6-10. High-frequency noise is in the lower scales, like in IMF 1 and IMF 
2. 



 
 

52 
 

By construction, the number of extrema should decrease when going from one IMF to the next, and the 
whole decomposition is expected to be completed with a finite number of IMFs. Conceptually, the algorithm: 
is simple; appears naturally, does not assume anything about the signal, mainly stationary and can be applied 
to a wide class of signals. For each channel, we calculated their IMFs to extract the main components of the 
signal. Figures 42 – 45 shown the AM/FM components from channels 1-4, respectively; those IMFs satisfy the 
following conditions: 

 Resolution: 45dB between Signal and Bias energy 10 log
 

 , normally they are in 40dB - 

60dB. 

 Residual energy: 45dB between Signal/Residual 10 log , normally they are in 40dB-60dB. 

 With these resolution, each channel has between 8 IMFs to 10 IMFs. 
 Reconstruction of the signal with the obtained IMFs is the same as the original one.  
 Every IMF could be filtrated or treated with hard thresholds to eliminate undesirable frequencies in 

lower and higher orders. 
 

Most important steps into the algorithm is (Rato, et al., 2008): extrema locations, extrema interpolation, 
end effects, sifting stopping criterion and IMF removal. 

Some suggestions for the development of the algorithm: remove the mean and normalize the signals to 
a unit power. This last procedure is important when dealing signals with very low amplitudes as in the case of 
biomedical signals. There is interdependence between the number of IMFs and resolution. The algorithm is 
simple, does not assume anything about the signal, can be applied to a wide class of signals. 

This step was applied to all the segmented and normalized signals.  

3.2.3.2 Hilbert Spectral Analysis 
Spectral estimation is the second step of the HHT. This consists in computing the instantaneous 

frequency for each IMF using the Hilbert Transform (HT) and the analytic signal concept.  

This is another drawback of the HHT, because the HT uses the whole signal (theoretically (from −∞ to 
+∞ ). As we have finite segment of a signal, the window effect, rectangular window in this case, will distort 
its spectrum and consequently its HT. As we will show later, this may give poor frequency estimation. On the 
other hand, using HT it is not necessary to compute the instantaneous amplitude because we already have it. 

3.2.3.2.1 Demodulating the IMF  
 
Let 𝜑(𝑡) be an IMF 𝑦(𝑡) the corresponding analytic signal.  

 𝜑(𝑡) = 𝑅𝑒 |𝑦(𝑡)|𝑒 ( ) = |𝑦(𝑡) cos 𝜃(𝑡)| 

 

Eq. 51 

 
where 𝜃(𝑡) = arg[𝑦(𝑡)]. So, we obtained the instantaneous amplitude and an oscillating function that is a 
constant AM/FM signal (not necessarily a sinusoid). If |𝑦(𝑡)| is known, we can perform an amplitude 
demodulation and obtain 
 

𝑠(𝑡) = cos[𝜃(𝑡)] Eq. 52 

such that 
 

|𝑠(𝑡)| ≤ 1 
 

Eq. 53 
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𝑠(𝑡) can be considered as an FM signal. Its demodulation leads us to the instantaneous frequency. 

3.2.3.2.2 Demodulated signal is an AM signal 
 
At the end of the sifting procedure leading to the referred IMF, 𝜑(𝑡), we also have its envelopes, 𝑀(𝑡)and 
𝑚(𝑡). If these were true envelopes, they would be symmetric, and its difference would be the estimate of the 
amplitude modulating signal 
 

𝜑(𝑡) = 𝐴(𝑡) ∙ 𝑠(𝑡) Eq. 53 

and 
𝐴(𝑡) = |𝑦(𝑡)| = 𝑀(𝑡) − 𝑚(𝑡) 

 
Eq. 54 

As 𝑀(𝑡) and 𝑚(𝑡) are not truly symmetric, we must look for a more reliable estimate of 𝐴(𝑡). This can be 
achieved by the following procedure: 

a) Make 𝑔(𝑡) = |𝜑(𝑡)| 
b) Compute the maxima of 𝑔(𝑡) and extrapolate them as described in  
c) Interpolate those maxima to obtain an estimate of 𝐴(𝑡). 

 
Now, it is enough to divide 𝜑(𝑡) by 𝐴(𝑡) to obtain an FM signal, 𝑠 ( ). 

3.2.3.3 Instantaneous Frequency Estimation 
Assume that the instantaneous frequency of 𝑠 ( ) is a slowly time varying signal, so that we may 

consider it to be constant over small intervals. Moreover, sample it to get a discrete-time signal that we can 
express as: 

𝑠 ( ) ≈ cos[2𝜋𝑓(𝑛 )𝑛] 
 

Eq. 55 

this for 𝑛 − 𝑁 ≤ 𝑛 ≤ 𝑛 + 𝑁.  

Then, we assume that the frequency is constant in a window with length 2𝑁 + 1, where 𝑁 is a positive 
integer. In this situation, instantaneous frequency could be obtained from 

cos[2𝜋𝑓(𝑛 )] =
∑ 𝑠 (𝑛)[𝑠 (𝑛 − 1) + 𝑠 (𝑛 + 1)]

2 ∑ 𝑠 (𝑛)
 

 

Eq. 56 

where 𝐿 is the number of available samples. For a pure sinusoid, this formula gives the correct value, provided 
we have at least three samples. So, for a FM signal we substitute 𝐿 = 2𝑁 + 1, as referred above.  

Each IMF appears as an AM/FM signal. In Huang et al. papers a Hilbert spectral estimation is used to 
estimate the instantaneous frequency. 

Estimating the instantaneous frequencies corresponding to, almost, six hand movements, we will create a 
data base in matrix form to save corresponding numbers associated to the patterns. This will be a numerical 
model that we can use to compare the input patterns versus the saved patterns. 

To show this step, we will use the IMF’s extracted from the last procedure (EMD) for channel 1 to 4, 
corresponding to transient segment during all-fingers closing movement. 
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3.3 NONSTATIONARY ANALYSIS 
In this section, Nonstationary analysis, is a proposal for the conditions, methods, techniques and 

processes to perform in short-time, or real-time under 100 ms of processing slot, using Kalman and Goertzel 
filters to identify the features, characteristics or patterns of the myoelectric signals. Kalman filter improves the 
denoising and reconstruction to predict the input signal, myoelectric signal. The output signal from Kalman 
Filter goes to the Goertzel filter, that detects specific signals using the Discrete Fourier Transform based on the 
modeled patterns. Results from these filters could be applied directly to the prosthetic system as a control signal 
or be applied to a classifier system, depending on the complexity of the acquisition system, channels or 
movements.  

 

 

Figure 46. Block Diagram of the Nonstationary Analysis Stage. Nonstationary Analysis, propose the conditions, methods, 
techniques and processes to perform in short-time, under 100 ms, using Kalman Filter and Goertzel filter to identify the 

features, characteristics or patterns of myoelectric signals. Resulting data could be applied to a classifier system. 

3.3.1 Dynamical Reconstruction using Hybrid Kalman filter 
To improve reconstruction accuracy, Kalman filter were proposed, which allows to fuse two 

information sources, i.e. the finger movement intensity mapping and the activity of the finger linked muscles, 
registered by the sEMG. Applying the Kalman filter, can convert four channels of myoelectric activity recorded 
from the forearm muscles into defined reconstructions of MUAP shapes. The filter operates in a causal manner 
and acts as a predictor using the sEMG signals from the past only, which makes the approach suitable for real-
time operations. 

Kalman filter is an algorithm that fuses two or more noisy signals to produce an estimate of the dynamical 
system state vector, which is optimal in the minimum squared error sense.  

The algorithm works in two steps, prediction and correction. In the prediction step produces estimates of the 
current state variables, along with their uncertainties. Once the outcome of the next measurement, typically 
with random noise, is observed, these estimates are updated using a weighted average. The algorithm is 
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recursive, it can run in real time using only the present input measurements and the previously calculated state 
and its uncertainty matrix, no additional information is required. 

Most physical systems are represented as continuous-time models while discrete-time measurements 
are frequently taken for state estimation via digital processor. Therefore, the system model and measurement 
model are given by 

 �̇�(𝑡) = 𝐴(𝑡)𝑥(𝑡) + 𝐵(𝑡)𝑢(𝑡) + 𝑤(𝑡) 
 

Eq. 57 

 
 
𝑧 = 𝐶 𝑥 + 𝑣  

 
Eq. 58 

where 𝑥 = 𝑥(𝑡 ) 

Initialize 

𝑥 | = 𝐸[𝑥(𝑡 )],    𝑃 | = 𝑉𝑎𝑟[𝑥(𝑡 )] 
 

             Eq. 59 

3.3.1.1 Prediction equations 
The prediction equations are derived from those of continuous time Kalman filter without update from 

measurements, i.e. 𝐾(𝑡) = 0. The predicted state and covariance are calculated respectively by solving a set of 
differential equations with the initial value equal to the estimate at the previous step. 

�̇�(𝑡) = 𝐴(𝑡)𝑥(𝑡) + 𝐵(𝑡)𝑢(𝑡),    
 

             Eq. 60 

with    

 
𝑥(𝑡𝑘−1) = 𝑥𝑘−1|𝑘−1 

𝑥 | = 𝑥(𝑡 ) 
 

Eq. 61 

 �̇�(𝑡) = 𝐴(𝑡)𝑃(𝑡) + 𝑃(𝑡)𝐹(𝑡)𝑇 + 𝑄(𝑡) 
 

Eq. 62 

with  

 
𝑃(𝑡 ) = 𝑃 |  

𝑃 | = 𝑃(𝑡 ) 
 

Eq. 63 

3.3.1.2 Update equations 
The update equations are identical to those of the discrete-time Kalman filter. 

 

 

𝐻 = 𝑃 | 𝐻 𝐻 𝑃 | 𝐻 + 𝑅  

𝑥 | = 𝑥 | + 𝐾 𝑧 − 𝐻 𝑥 |  

𝑃 | = (𝐼 − 𝐾 𝐻 )𝑃 |  
 

Eq. 64 
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3.3.2 Single tone detection with Goertzel algorithm 
The Goertzel algorithm analyses one selectable frequency component from a discrete signal. Unlike 

direct DFT calculations, this algorithm applies a single real-valued coefficient at each iteration, using real-
valued arithmetic for real-valued input sequences. For covering a full spectrum, the Goertzel algorithm has a 
higher order of complexity than fast Fourier transform algorithms, but for a computing a small number of 
selected frequency components, it is more efficient numerically. The simple structure of the Goertzel algorithm 
makes it well suitable for embedded systems.  

The main calculation in the Goertzel algorithm has the form of digital filter, and for this reason the 
algorithm is often called a Goertzel filter. The filter operates on an input sequence 𝑥[𝑛] in a cascade of two 
stages with a parameter 𝜔 , giving the frequency to be analysed, normalized to radians per sample. 

The first stage calculates and intermediate sequence, 𝑠[𝑛]: 

 
𝑠[𝑛] = 𝑥[𝑛] + 2 cos(𝜔 ) 𝑠[𝑛 − 1] − 𝑠[𝑛 − 2] 

 
Eq. 65 

The second stage applies the following filter to 𝑠[𝑛], producing output sequence 𝑦[𝑛] 

 𝑦[𝑛] = 𝑠[𝑛] − 𝑒 𝑠[𝑛 − 1] 
 

Eq. 66 

 The first filter stage can be observed to be a second-order IIR filter with a direct-form structure. This 
structure has the property that its internal state variables equal the past output values from that stage. Input 
values 𝑥[𝑛] for 𝑛 < 0 are presumed all equal to 0. To establish the initial filter state so that evaluation can 
begin at sample 𝑥[0], the filter states are assigned initial values 𝑠[−2] = 𝑠[−1] = 0. To avoid aliasing hazards, 
frequency 𝜔  is often restricted to the range 0 to 𝜋; using a value outside this range is not meaningless, but is 
equivalent to using an aliased frequency inside this range, since the exponential function is periodic with a 
period of 2𝜋 in 𝜔 . The Z transform for this stage is: 

 
𝑆(𝑧)

𝑋(𝑧)
=

1

1 − 2 cos(𝜔 ) 𝑧 + 𝑧
=

1

(1 − 𝑒 𝑧 )(1 − 𝑒 𝑧 )
 

 
Eq. 67 

The second stage filter can be observed to be a FIR filter, since its calculations do not use any of its 
past outputs. Z transform methods can be applied to study the properties of the filter cascade. The z-transform 
for this stage is: 

 
𝑌(𝑧)

𝑆(𝑧)
= 1 − 𝑒 𝑧   

 
Eq. 68 

The combined Z transform transfer function of the cascade of the two filter stages is then 

 
𝑆(𝑧)

𝑋(𝑧)

𝑌(𝑧)

𝑆(𝑧)
 =

𝑌(𝑧)

𝑋(𝑧)
=

(1 − 𝑒 𝑧 )

(1 − 𝑒 𝑧 )(1 − 𝑒 𝑧 )
=

1

1 − 𝑒 𝑧
 

 

Eq. 69 

The algorithm in Matlab for Goertzel filter is in Appendix. 
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CHAPTER 4  
 

RESULTS & DISCUSSION 
This thesis reports the processes, techniques, analysis methods and results to develop prosthetic systems 

based on the use of myoelectric signals and results for the development of prosthetic devices based on 
myoelectric signals patterns and features. 

4.1 MUSCULAR ACTIVITY BY MOVEMENT 
An intrinsic result was obtained from the muscular intensity mapping in the four channels array per user. 

The level of the intensity was recorded and compared against the six movements. Three intensity levels were 
set: High Intensity (𝐼𝑛 ), 0.7 V to 1 V; Mean Intensity (𝐼𝑛 ), 0.35 V to 0.65 V; and Null Intensity (𝐼 ), 0 
V to 0.3 V. Figure 47 shows the intensity map for user 1. There is a hint that this is a characteristic, but a 
pattern. 

 

Figure 47. Muscular contraction intensity of subject 1 for four channels versus six movements of the fingers. The map shows 
the intensity present in the four channels when a movement was performed: star represents 0.7 V to 1 V level, dot represents 

0.35 V to 0.65 V level, and circle represents 0 V to 0.3 V. Each icon represents one of nine repetitions. 
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4.2 WAVELET TRANSFORM ANALYSIS 
For EMG signal processing, the wavelet transform is an alternative to other time frequency 

representations. Wavelet transform has the advantage of being linear and yielding for multiresolution analysis. 
While discrete wavelet transform provides flexible time-frequency resolution, it suffers from a relative low 
resolution in the high-frequency region. Its difficulty in differentiating transient components. 

A comparison in the scalograms obtained with Meyer wavelet versus the scalograms obtained with 
Daubechies 44 wavelet, shows that the Meyer wavelet had better definition in time and frequency than 
Daubechies 44. Daubechies shape form does not fit the MUAP shape as well than Meyer, resolution is better. 

 

Figure 48. Scalogram of CBA4_234 obtained with Daubechies 44 wavelet 

 

Figure 49. Scalogram of CBA4_234 obtained with Meyer Wavelet 
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The mean frequencies that resulted are shown in Table 3. 

Table 3. Mean x ̅ and median x  ̃frequencies from 4 channels relative to 6 movements obtained by wavelet Meyer base 
scalogram. 

M CH1 CH2 CH3 CH4 
�̅�  [𝐻𝑧] 𝑥 [𝐻𝑧] �̅�  [𝐻𝑧] 𝑥 [𝐻𝑧] �̅�  [𝐻𝑧] 𝑥 [𝐻𝑧] �̅�  [𝐻𝑧] 𝑥 [𝐻𝑧] 

1 56.63 53 60.53 57 61.43 57 65.95 64.5 
2 53.03 49 39.56 42 53.83 53 44.79 445 
3 48.63 45 49.41 45 50.48 49 50.40 51 
4 67.60 67 64.33 62 64.60 64.5 73.75 79 
5 52.68 49 51.40 59.5 59.20 62 46.49 45 
6 63.70 59.5 60.23 59.5 68.08 67 69.40 67 

 

 

Figure 50. Scalograms for signal from channel 2 (Flexor digitorium superficialis). Meyer base (upper) and Daubechies base 
(bottom)
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Figure 51. 4-Channel Histogram of mean frequencies obtained from Wavelet Analysis. 
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Figure 52. 4-Channel Boxplot for ANOVA results of mean frequencies obtained from Wavelet analysis. 
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4.3 HILBERT-HUANG ANALYSIS 
EMD aims to decompose a multi-component signal, i.e. myoelectric signals, into a few mono-

components called IMFs. The EMD signal processing technique is suitable for filtering EMG signals. The 
major drawback of the EMD method is that is more sensitive to the presence of noise. 

 

Figure 53. sEMG signals and their IMFs of channel 3 related to the flexion and extension of all fingers. 6 decomposition levels 
are shown. IMF 2 shows two MUAPs in 50 ms and 100 ms approximately. 

 

Figure 54. Instantaneous frequency (upper) of the Intrinsic Mode Function 2 (lower) for signal of channel 3. Drastic frequency 
changes are present in the Instantaneous frequency related with the start and end of the contraction. 
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For EMD, using the first normalization, section 3.1.3, the number of IMF obtained were between 8 
IMFs and 19 IMFs per channel; Alike, for the second normalization were obtained between 5 IMFs and 11 
IMFs. 

After decomposition, The Hilbert Transform and the Instantaneous Frequency computation was applied 
to each IMF from each channel. The resulting data are shown from Figure 56 to Figure 63. Red lines, upper 
and lower envelopes, are the Instantaneous envelops; they are useful to compute the instantaneous frequencies 
for each IMF in a short interval. The values of these frequencies were from 105 Hz to 310 Hz, and their plots 
showed changes in specific regions of the signals, particularly in the beginning and ending of a voluntary 
contraction, form doss to active and vice versa. Instantaneous frequency was useful to locate the significative 
changes in the energy signal, i.e. voluntary contraction and relaxation. The obtained IMF could reconstruct 
almost 98% of the original signal. Adding the three first IMFs could reconstruct up to 92% of the original 
signal.  

Main frequencies of the IMFs are in order of 200 Hz +/- 20 Hz, detected into the first IMFs. Low 
frequencies detected in the last IMFs were 12 Hz, 8 Hz and 6 Hz.  High energy detected frequencies are groups 
of AM/FM signals with average frequencies of 83.3 Hz (73.57 Hz – 85.9 Hz), 96.7 Hz (94.35 Hz – 99.82 Hz), 
59 Hz (58.5 Hz – 61.3 Hz) and 113.3 Hz (111 Hz – 117.04 Hz). These frequencies were approximated using 
Fourier series, 1 term to 8 terms, with 𝑅  of 0.98 and 0.99. 

 

Figure 55. Time patterns associated to MUAP. Period of 24.5 ms average of MUAP.   

In the 87% of the IMFs, three patterns were founded: Two MUAPs with the same period and, time slot 
between the these MUAPs and size ratio. First, two oscillations with frequencies of 83.3 Hz, 96.7 Hz or 113.3 
Hz into a period of 24.5 ms in average. Second pattern is a 30 ms average period in the middle of these two 
oscillations. Finally, the size ratio 2:1 between first MUAP and second MUAP. 

 

 

 

 

 

30 ms 

27 ms 24 ms 
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For IMFs extracted from Channel 1,  

 

Figure 56. Hilbert transform (red lines envelops) of IMFs for Channel 1 during supination movement in transient segment. 

 

Figure 57. Instantaneous frequencies for Channel 1 during supination movement in transient segment. 
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Finally, analyzing the resulting instantaneous frequencies, it is possible to identify changes in the first 
four IMFs, those are related to the activation flexion movement.  

For IMFs extracted from Channel 2,  

 

Figure 58. Hilbert transform of IMFs for Channel 2 during supination movement in transient segment. 

 

 

Figure 59. Instantaneous frequencies for Channel 1 during supination movement in transient segment. 
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For IMFs extracted from Channel 3,  

 

Figure 60. Hilbert transform of IMFs for Channel 3 during supination movement in transient segment. 

 

 

Figure 61. Instantaneous frequencies for Channel 3 during supination movement in transient segment. 
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For IMFs extracted from Channel 4,  

 

Figure 62. Hilbert transform of IMFs for Channel 3 during supination movement in transient segment. 

 

 

Figure 63. Instantaneous frequencies for Channel 4 during supination movement in transient segment. 
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Figure 64. sEMG signal of Extensor Digitorium muscle (Channel 3) for All fingers extension (5th Movement). Upper figure 
shows 2 seconds of record with a 300 ms window between 450 ms -750 ms section. 3-Column section shows in the first column 
the IMFs, from 1st to 6th; second column shows the Instantaneous Frequencies (IFs) of the previous IMF; third column shows 

the spectrogram of the previous IF.  



 
 

69 
 

4.4 RECONSTRUCTION 
The Intrinsic Mode Functions represent something inside the original signal, a priori is impossible to 

determine in the major cases, but sometimes is easy to do it, especially if the IMFs shown some known shapes 
like those reported by Luca et al. 2006. To reconstruct most of the original sEMG signal is able with the 1st and 
2nd IMFs. To get the MUAP shape is possible with the 2nd and 3rd IMF, average. 

From Empirical Mode Decomposition, the IMFs resulted, i.e. CBA4_153_3, showed in Figure 65, were 
used to reconstruct the original signal. 

 

Figure 65. Original signal from the record CBA_153_3 windowed between 250 ms and 450 ms. 

 Each IMF was sum in combination with the others to reconstruct signals until to get the original signal 
and the MUAP shape. The equation for this is: 

 𝑥(𝑡) = 𝑐 + 𝑟 = 𝑐  

 

Eq. 70 

For signal CBA4_153_3, all the obtained functions, 6 IMFs, were used to reconstruct a signal, shown 
in Figure 66, as follows: 

 𝑥(𝑡) = 𝑐  

 

Eq. 71 
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Figure 66. Signal reconstruction using IMFs 1 to 6. 

Similarly, for IMFs from 1 to 5, was obtained: 

 𝑥(𝑡) = 𝑐  

 

Eq. 72 

 

Figure 67. Signal reconstruction using IMFs 1 to 5. 
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Using IMF 1 to IMF 4, the resulting signal is shown in Figure 68: 

 𝑥(𝑡) = 𝑐  

 

Eq. 73 

 

Figure 68. Signal reconstruction using IMFs 1 to 4. 

For IMF 1 to IMF 3, result is shown in Figure 69: 

 𝑥(𝑡) = 𝑐  

 

Eq. 74 

 

Figure 69. Signal reconstruction using IMFs 1 to 3. 
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IMFs signal reconstruction shows that the decomposition is almost well done, using IMFs 1 to 6, 1 to 
5 and 1 to 4, and all the Intrinsic Mode Functions are part of the original signal.  

There is a decrement in the intensity of the reconstructed signals, in order of the decrement of the 
components of these.   

Using the IMF 2 and IMF 3, is possible to construct specific shapes, these forms are shown in Figure 
70 and in Figure 71, respectively. 

 𝑥(𝑡) = 𝑐  Eq. 75 

 

Figure 70. IMF 2 from signal CBA4_153 channel 3 between 275ms to 425 ms. 

For signal with IMF 2 & 3, equation is: 

 
𝑥(𝑡) = 𝑐 + 𝑐  

 
Eq. 76 

 

Figure 71. Signal reconstruction using IMFs 2 and 3. 
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Figure 72. Original signal vs reconstruction in different levels, from up to down: 1. Original signal, reconstruction 2. using 
IMFs 1 to 6, 3. IMFs 1 to 5, 4. IMFs 1 to 4, 5. IMFs 1 to 3, 6. IMFs 1 and 3, 7. IMFs 2 and 3, and IMF 2. The sequence shows a 
decrement in intensity directly dependent of the number of IMFs. IMF 2 is the most defined shape into all signals, the IMF 3 

represents only a small significance in addition with IMF 2. 



 
 

74 
 

4.5 CURVE FITTING  
Every time that a data is obtained, you can plot it into 2D or 3D graph, also you can compute many 

parameters of that result, but sometimes, these results are not useful by their selves, because the data that they 
represent is a curve that you ignore completely, it means that you don’t know what is the equation for that.  

It is useful to have an equation that describes the phenomena, then a mathematical model is stablished. 
To approximate the obtained curves in the decomposition process Fourier coefficients were used. 

The curve, i.e. IMF 2 from signal CBA4_153, there are two MUAPs. The Fourier approximation of these 
curves are a sum of sines described with the following equation: 

 𝑥(𝑡) = 𝑎 sin(𝑏 𝑡 + 𝑐 ) 

 

Eq. 77 

Using Matlab reconstruction tools, the terms for every founded pattern were approximated. For CBA4_153, 
the IMF 2 in the interval between 45 ms to 75 ms, a sum of sines between 1 term and 8 terms were computed 
to find the  𝑏  terms. Also, 𝑎  weights were obtained for each sine term. In the other hand, 𝑐  phase was not 
considered10. 

Using 8 sine components, we obtained: 

Table 4. Frequencies and Intensities relatives to IMF 2 reconstruction using 8 sinusoidal terms. 

Sine Component Angular Frequency 

𝒃𝒊 
𝒓𝒂𝒅

𝒔  

Intensity 
𝒂𝒊 

Frequency 
𝒇𝒊 [𝑯𝒛] 

1 599.1 0.09192 95.34 
2 415.4 0.07531 66.11 
3 472.4 0.07148 75.18 
4 745.7 0.04358 118.68 
5 309.9 0.04675 49.32 
6 534.6 0.08743 85.08 
7 367.6 0.05595 58.5 
8 693.3 0.05878 110.34 

 

Using 6 sine components: 

Table 5. Frequencies and Intensities relatives to IMF 2 reconstruction using 6 sinusoidal terms 

Sine Component Angular Frequency 

𝒃𝒊 
𝒓𝒂𝒅

𝒔  

Intensity 
𝒂𝒊 

Frequency 
𝒇𝒊 [𝑯𝒛] 

1 603.4 0.1013 96.03 
2 422.6 0.065 67.25 
3 479.5 0.05196 76.31 
4 697.6 0.055 111.02 
5 320.2 0.034 50.96 
6 539.6 0.0803 85.88 

 

 

 

                                                      
10 In future work it is possible to consider this phase changing or phase shifting. 
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Using 3 terms: 

Table 6. Frequencies and Intensities relatives to IMF 2 reconstruction using 3 sinusoidal terms 

Sine Component Angular Frequency 

𝒃𝒊 𝒓𝒂𝒅
𝒔  

Intensity 
𝒂𝒊 

Frequency 
𝒇 [𝑯𝒛] 

1 530.3 4.398 84.35 
2 535.1 4.525 85.16 
3 800 0.079 127.32 

Using 2 terms: 

Table 7. Frequencies and Intensities relatives to IMF 2 reconstruction using 2 sinusoidal terms. 

Sine Component Angular Frequency 

𝒃𝒊 𝒓𝒂𝒅
𝒔  

Intensity 
𝒂𝒊 

Frequency 
𝒇𝒊 [𝑯𝒛] 

1 496.2 0.1694 78.97 
2 649.7 0.2765 103.4 

Using 1 term: 

Table 8. Frequencies and Intensities relatives to IMF 2 reconstruction using 1 sinusoidal term. 

Sine Component Angular Frequency 

𝒃𝒊 𝒓𝒂𝒅
𝒔  

Intensity 
𝒂𝒊 

Frequency 
𝒇𝒊 [𝑯𝒛] 

1 610.1 (593-627) 0.3447 97 (94.37-99.82) 
 

 

In Table 4 and Table 5 there are frequencies in the range of 50 Hz y 119 Hz, some of them are apparently 
harmonic frequencies, i.e. 58.5 Hz and its harmonic 110.34 Hz, also 66.11 Hz & 118.68 Hz.  

The frequency pattern is described as a sum of sinusoidal components of the Fourier series. The pattern 
is described as follows: 

 𝑥(𝑡) = 𝑎 sin(𝑏 𝑡) = 𝑎 sin(2𝜋𝑓 𝑡) 

 

Eq. 78 

where 𝑖 = 3 

𝑓 = 83.3 𝐻𝑧        𝑎 = 0.8 
𝑓 = 96.7 𝐻𝑧        𝑎 = 0.9 
𝑓 = 113.3 𝐻𝑧      𝑎 = 0.4 

 

Then, the frequency pattern for all studied subjects for this work is expressed as: 

 

𝑥 (𝑡) = 𝑎 ∗ sin(2𝜋𝑓 𝑡) + 𝑎 ∗ sin(2𝜋𝑓 𝑡) + 𝑎 ∗ sin(2𝜋𝑓 𝑡) 

 
                      = 0.8 ∗ sin(523.389𝑡) + 0.9 ∗ sin(607.584𝑡) + 0.4 ∗ sin(711.885𝑡) 

 

Eq. 79 
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Figure 73 shows the plot of the 𝑥  signal in a time slot of 512 ms.  

 

Figure 73. Frequency pattern plot with 83.3 Hz, 96.7 Hz and 113.3 Hz components. 

4.6 KALMAN FILTER, ESTIMATION AND PREDICTION 
After the acquisition stage of the myoelectric signals, for real-time applications, it is necessary to 

decodify the information present in the sEMG signal. Filtering the signals is the proposed way to do it. Specific 
filtering algorithms are required to take out the noise and the unwanted information. Also, to decrease the 
computational costs of the identification process is necessary to involve a prediction state system into these 
filtering process to take decisions in advance about the muscular activity behavior.   

The application of the Kalman filter assisted to approach myoelectric signal reconstruction and 
prediction. Is possible to obtain an accurate reconstruction of the MUAP shape form present in the raw sEMG 
acquired. Although the accuracy of reconstruction does not go above 90%, in terms of the coefficient of 
determination. 

4.6.1 State-Space Representation of Nonlinear Model 
For the use of Kalman Filter, a model representation in state space form is required. This model consists 

of a process equation and measurement equation. Generally, for a model (𝑙, 𝑚, 𝑛), its state-space model can be 
written as: process equation and measurement equation. 

 

Process 
equation 

𝑥 = 𝑓(𝑥 , 𝑢 ) = 𝐴𝑥 + 𝐵 (𝑢 )  

 

Eq. 80 

Measurement 
equation 

𝑦 = 𝐶𝑥  Eq. 81 
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In the process equation, 𝑢 is the model input, 𝑥 = 𝑥 , 𝑥 , … , 𝑥 is the state vector, 𝑞 = max{𝑙, 𝑚}. 
The 𝑞 × 𝑞 matrix 𝐴 relates the state at previous time step 𝑥 , to the state at the current step 𝑥 . The 𝑞 × 1 
matrix 𝐵  relates the model input at the previous time step (𝑢 ) , 𝑖 = 1, 2, … , 𝑛, to the state at the current 
step 𝑥 . They are represented as 

 
𝐴 =

⎣
⎢
⎢
⎢
⎡

𝑎 1 0
𝑎 0 1

⋯
0 0
0 0

⋮       ⋮       ⋮ ⋱ ⋮
𝑎 0 0

𝑎 0 0
⋯

0 1
0 0⎦

⎥
⎥
⎥
⎤

,     𝐵 =

⎣
⎢
⎢
⎢
⎡

𝜇 ,

𝜇 ,

⋮
𝜇 ,

𝜇 ⎦
⎥
⎥
⎥
⎤

  

 

Eq. 82 

In the system, the matrices 𝐴 and 𝐵  change with each time step due to the time-varying property of 
muscle activation. 

The 𝑦, in measurement equation, is the measurement of the electric intensity of the muscle. The 1 × 𝑞 
matrix 𝐶 relates the state at the current step 𝑥 , to the measurement at the current step 𝑦  with the following 
expression: 

 𝐶 = [1 0 ⋯ 0 0] 
 

Eq. 83 

For online estimation and prediction, Kalman Filter is used for the recursive estimation of the model 
parameters. The Kalman Filter estimates the internal states and parameters of a discrete-time system from a 
series of noisy measurements. Parameter estimation with Kalman Filter is performed considering the unknown 
parameters. That is, the meta-state vector 𝑤 has the expression 

 𝑤 = [𝑥  𝑔 ] . 
 

Eq. 84 

The parameters in 𝑔 are assumed time-invariant comparing to the process, that is: 

 
𝑔 = 𝑔  

 
Eq. 85 

The augmented system is then: 

 
𝑤 = 𝐹(𝑤 , 𝑢 ) =

𝑓(𝑥 , 𝑢 )
𝑔

 

 
Eq. 86 

 
𝑦 = 𝐻𝑤 = 𝐶   0 ×( ∗ ) 𝑤  

 
Eq. 87 

   

The recursive estimation of the state-space model using Kalman Filter consists in two stages: prediction 
and correction. The main equations are given by: 

 

Prediction Stage 
𝑤 = 𝐹(𝑤 , 𝑢 ) 
𝑃 = 𝐷 𝑃 𝐷 + 𝑄  

 
Eq. 88 

Correction Stage 

𝐾 = 𝑃 𝐻 𝐻 𝑃 𝐻 + 𝑅  

𝑤 = 𝑤 + 𝐾 (𝑦 − 𝐻𝑤 )  
𝑃 = (𝐼 − 𝐾 𝐻 )𝑃  

 

Eq. 89 
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Equations of the prediction stage project the state and error covariance estimate forward from time step 
𝑘 − 1 to step 𝑘. 𝑤  and 𝑃  are initial estimates for the state and measurement variance, respectively. 𝑅  
is the measurement noise covariance, while 𝑄  is the process of noise covariance. 𝐷  is the Jacobian matrix of 
the plant transfer functions with respect to the involved variables at step 𝑘, with each element 𝐷[ , ] computed. 

In correction stage, the equations adjust the projected estimates by an actual measurement at step 𝑘. 𝐾  
is the Kalman gain. 

In Figure 74 is shown how the sEMG signal could be estimated using the Kalman filter to adjust the 
shape of the MUAP shape to the mathematical model of the pattern, 𝑥 , this allows to create a predictable 
trajectory of the input signal. The output result from the Kalman filter will go directly to the Goertzel algorithm. 

 

 

Figure 74. Kalman filter responses in simulated and real sEMG signals. a) Simulated sEMG signal (red line) is fitted with the 
math sEMG model stablished in the filtering parameters. b) Real sEMG signal (black line) is fitted with the math sEMG 

model settled in the parameters. 
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4.7 GOERTZEL FILTER, FREQUENCY DETECTION 
 If the specific frequencies of the pattern signal are known, then Goertzel filter can recognize these 

frequencies instantly. Alike, a quick identification of the myoelectric instruction is possible to detect for a 
specific and desired movement. 

Goertzel filters uses the known frequency values of the pattern signal to identify inside of a time window 
the frequencies present on an input signal. If known frequencies matched with one or more of these, then filter 
responds. Using 𝑓 , 𝑓  y 𝑓 , of 𝑥 , the Goertzel filter was applied to a 𝑥[𝑛] input.  

To show the behavior of this filter, 𝑥[𝑛] = 𝑥 [𝑛] in two conditions: with noise (white and power 
line) and without noise.    

 

Figure 75. Periodogram of the PSD estimated with FFT for 𝒙𝒑𝒂𝒕𝒕𝒆𝒓𝒏 signal without noise 

 

In Figure 75 is shown the periodogram of the 𝑥 [𝑛] input signal without noise for the Power 
Spectral Density (PSD) present into the signal, this periodogram was calculated using the Fast Fourier 
Transform (FFT). The three frequency components, 83.3 Hz, 96.7 Hz and 113.3 Hz are easily detected.  

In Figure 76 is shown the periodogram of the 𝑥 [𝑛] input signal with white and power line noises 
for the PSD present into the signal. This periodogram was also calculated with the FFT. Three frequency 
components are in 83.3 Hz, 96.7 Hz and 113.3 Hz, but also 59 Hz signal refered to power line is present, just 
with less density. Other signals are resulting of the white noise. 
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Figure 76. Periodogram of the PSD estimated with FFT for 𝒙𝒑𝒂𝒕𝒕𝒆𝒓𝒏 signal with white noise and power line noise. 

If the 𝑥  signal is filtered with the Goertzel filter, then the PSD will be calculated into a 
determined time window identifying only the settled frequencies: 83.3 Hz, 96.7 Hz and 113.3 Hz.  

Figure 77 shows the Discrete Fourier Transform (DFT) of the 𝑥  signal without any noise. 
Density of each frequency component is different, related to the weight of the sinusoidal component.  

In Figure 78, is shown the DFT of the 𝑥  signal with white and power line noises. Density of 
each frequency component is different, associated to the weight of the sinusoidal component. Also, the 59 Hz 
DFT is different than previous, those to the fact that power line component was set in the Goertzel filter to 
prove the algorithm.  

 

Figure 77. Discrete Fourier Transform of the 𝒙𝒑𝒂𝒕𝒕𝒆𝒓𝒏 signal without noise obtained by Goertzel Algorithm. 
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Figure 78. Discrete Fourier Transform of the 𝒙𝒑𝒂𝒕𝒕𝒆𝒓𝒏 signal with white and power line noises obtained by Goertzel Algorithm. 
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4.8 CONTRIBUTIONS 
In this work is reported the methods, techniques, algorithms and conditions under which it is possible to 

perform the identification, prediction and correction of the characteristics and patterns of the myoelectric 
signals linked to groups of the movements in the fingers of the hand. Until the conclusion of this work, there 
was no similar contributions to characterize, modeling, prediction or classification of the characteristics and 
patterns of the myoelectric signals of the forearm muscles related with the movements of the fingers.  

A method to reduce time computing in the analysis of the myoelectric signal to use as control source for 
prosthetic devices is proposed. This method consists in two stages of analysis: stationary and nonstationary. 
The stationary analysis aims in stablish the conditions for acquisitions of the myoelectric signals for groups of 
four channels systems, or more, throughout simple normalization, likewise the techniques and necessary 
parameters for the decomposition, identification, modeling and mapping of the characteristics and patters that 
the signal have in the performing of specific finger movements. The nonstationary analysis, or dynamic 
analysis, consists in use the characteristics and patterns as basis of comparison models via dynamic filters, that 
fit the signals and take out the undesired data and apply these to the input of a prosthetic control. 

4.8.1 Scientific contributions 
The contributions solve and simplify several challenges in myoelectric signal analysis.  

Electrode array to reduce noise from acquisition. An electrode array is proposed with an ellipsoidal 
configuration that reduce electrodes in a multichannel system, reference electrodes mainly, that improves the 
quality of the signal respect to other arrangements, also reduce artifacts. Likewise, a simple, suitable and 
sufficient pre-processing method for myoelectric signals analysis required to the application of any analyzing 
technique to reduce time computing of the basis features and patterns that compound these signals is described. 
In section 6.1 the details for these processes are described and works robustly, in stationary and dynamic 
process, for a four-channel system, also for 8, 16 or more channels.  

Hilbert-Huang Transform. The Hilbert-Huang transformation was introduced as a technique for the 
decomposition of signals, the identification of instantaneous frequencies and the calculations of the energy 
present within a myoelectric signal, in forearm muscles, associated to specific movements of the fingers. This 
method is not suitable for use in dynamic applications due to the computation time that it requires, only for 
identification in stationary processes. Compared with Wavelets, this provides an improvement in the 
identification of the actual waveforms of the signal.  

Time and Frequency patterns. The patterns of the myoelectric signals vary according to the type of movement 
performed, the type of the muscle used and the function that the muscle performs. For muscles of the forearm 
linked to the finger movements showed two patterns, in time and frequency. A period of MUAP manifestation 
of 24.5 ms and a period of 30 ms of reversibility of the contraction signal is the time pattern. A group of three 
frequencies 83.3 Hz, 96.7 Hz and 113.3 Hz compose the MUAP signal for the voluntary contraction and 
relaxation. The algorithms proposed in sections 6.2 and 6.3 are suitable for any signal and the obtained results 
will have to be analyzed in detail to establish the patterns of different muscle groups and different movements. 
It was shown that the forearm muscles associated with finger movement have similar, statistically tested, time 
and frequency patterns that are useful in dynamic identification. 

Dynamic filtering to identify, predict and correct signal in less than 100 ms. Traditional methods developed by 
many authors reported that they perform real-time processes to analyze myoelectric using complex methods 
that consume a lot of time of computing, up than 100 ms, i.e. applying traditional techniques or non-specific 
filters. Identifying the patterns of the myoelectric signal can determine the mathematical models that improves 
the filtering of the myoelectric signals using effective algorithms that identify, predict or correct the desired 
and known patterns of the signals. i.e. Kalman filter predicts and corrects the input signal with the mathematical 
model of the MUAP, this signal is applied to the Goertzel filter to make sure that the prediction is under the 
specific terms of the desired and known control signal.  
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4.8.2 Perspectives 
The proposed techniques contribute in many ways to the state-of-the-art for identification, modeling, 

decomposition and prediction of the myoelectric signal analysis for stationary and nonstationary processes.  

The criterion that was least considered in the developing of the analyzing algorithms was computation 
time. It is mandatory to analyze the myoelectric signal in a stationary way to describe their characteristics and 
patterns, then nonstationary signal analysis could be performed to reduce time computing. Also, one solution 
way to decrease computation time is to use parallel processors for multichannel arrays, instead of one processor 
per channel. This proposed method can easily have modified to adapt other muscles, analyzing techniques, 
algorithms and prosthetic devices, such as commercial.  

High level classifiers could be used to increase the patterns classification to the input signals increases to 
make a robust system of motion control of a prosthetic device. 
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CONCLUSIONS 
 

The algorithms and methodologies used to detect, process and quantify myoelectric signal features and 
some patterns were discussed in their advantages and disadvantages. This comparison helped to propose a 
method for analyze sEMG signals for prosthetic applications, but other biomedical and physiological 
applications could be considered. 

Filtering is essential in signal processing, but mandatory. If the correct and necessary filters are applied to 
the signals, then time computing, mathematical framework and electronic resources, and others, should 
decrease drastically.  

A method for treating biological signals is described on this work. Several ways to analyze myoelectric 
signals were applied to reveal the features contained in a raw EMG; those to filter, de-noise, decompose, time-
changing, frequency behavior and intensity.  

Most of the noise into myoelectric raw signals came from other muscles and surrounding tissues of the 
studied muscle. Undesired signals sources can be attenuated by using a better electrode configuration, as 
proposed in section 3.1, however this technique is not enough for the annihilation of the noise problem. Proper 
techniques and filters can improve myoelectric signal quality. Using the proposed ellipse-array electrodes 
configuration, section 3.1.1, is possible to obtain a noise reduction in almost 43.5% in the input data compare 
with traditional differential configurations. These results were compared with previous records made with the 
same acquisition system for the same users and conditions and placing the reference electrode over the closest 
bone terminal. 

Normalization process is basic for all signal processing techniques, but generalized procedure. Each 
technique needs to adapt the best algorithms to obtain the desired results. It is an important signal processing 
step for any applied technique, good pre-treating data is useful to obtain better results.  

The wavelet transform is particularly useful for MUAP detection in the presence of additive white noise. 
In this situation, the noise is located over the entire segment of the signal, independently of the wavelet used. 
The disadvantage of the wavelet proposal was that the Meyer and Daubechies 44, even others, wavelets are not 
perfectly matched to the MUAP shape. Accordingly, the obtained results are likely to be a subject to further 
improvement is a perfect matching is reached.  

The Hilbert-Huang transform method can remain more valuable detail of the signal, because it can make 
prevention of energy leak and the energy is centralized in the spectrum. Likewise, could help us to find intrinsic 
features of the EMG signals for real-time applications, but slower. To avoid all the traditional calculations, only 
identifying the main frequencies components and their features that are involved in the hand movements.  

In Hilbert-Huang algorithm it is possible to identify more frequency components of the analyzed signal if 
the normalization sets the maximum value to 1 V and the minimum value to -1 V. To reduce time computing 
of the Intrinsic Mode Functions it is not necessary to set the values to 1 V and -1 V, but it is recommendable to 
reduce the samples in a time slot of almost 50 ms. HHT algorithm is adaptive and do not requires special 
modifications to adapt the new window of samples.  
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The Empirical Mode Decomposition is very effective for noise reduction in nonstationary data because is 
a nonlinear method. This process makes no assumptions about the input data as wavelets. Also, this method 
provides better results for noise attenuation in EMG when compared with different wavelet prototypes as Meyer 
or Daubechies. This method is very effective in processes to extract symmetric components which overlap in 
time and frequency. Empirical Mode Decomposition filters cases of power-line noise, white noise and body 
artifacts. Is not recommendable to apply a decomposition method in real-time applications due to the number 
of iterations that are needed to calculate each component, maybe in parallel processors it could be work. 

sEMG signal could be filtered or denoise just taking away one or more of the IMFs. With just 2 IMFs is 
possible to detect the MUAPs. 1st, 2nd and 3rd IMFs presented the most characteristic frequency changes for the 
signals. Computing the Intrinsic Mode Functions takes a lot of time when compared with wavelets. IMF 
computing is recommended only to decompose signals to obtain inherent characteristics than the wavelets 
cannot find by their construction. HHT method could help us to find intrinsic features of the EMG signals for 
real-time analysis. These to avoid all the traditional calculations, only identifying the main frequencies involved 
the hand movements.  

Using Fourier series, a pattern of three frequencies was obtained: 83.3 Hz, 96.7 Hz and 113.3 Hz associated 
to voluntary muscular activation and deactivation, these are muscular control signals with an average period of 
24.5 ms. Also, these signals have an interval of 30 ms one respect to other. A minimum sample window for 
myoelectric signals is about 30 ms at least. This time slot could be smaller if and only if a prediction system is 
used. 

Frequency and time patterns were identified in almost 86% of the signals, in the other 14% was not 
possible to find any pattern or characteristic. Main problems in detection were by the low intensity of the signals 
or that the algorithm couldn’t decompose. A 59 Hz frequency, detected in almost 81% of the signals, is certainly 
commercial power line noise. 

For myoelectric signals, nonstationary and nonlinear, it is important to use adaptive algorithms, i.e. using 
wavelets, the scale and translation is essential to fit the wave form to the shape of the signals, with Hilbert-
Huang the result depends of the input signal. AM-FM features, frequencies and firing rates can be reliable in 
real-time control of a robotic hand, but classification methods are required. If the number of acquisition 
channels and features increases, the number of control commands increases too. There are many and different 
significant types of information into myoelectric signals that could be used as input to classifiers. For increase 
the classification accuracy, a combinations of processing methods and techniques are strongly recommended. 

Proposed prediction method is suitable for real-time applications using only the EMG signals as input. 
The dynamical nature of the Kalman filter provides for the time varying optimal fusion of the information and 
allows to consider myoelectric activity, muscular intensity features and statistical of the finger movements. 
Using Kalman filter is also possible to reduce the noise and provide a quick reconstruction of the desired shape 
form of the patterns reported. Goertzel filter provides a simple identification method of the pattern frequencies 
in a time of almost 5 ms or above, just to locate the desired frequencies.  The time pattern stablishes a period 
of 24.5 ms for activation signal, a period of 30 ms for reversibility and 24.5 ms of period for deactivation signal. 
This time slot suggest that the minimum time windowing is 30 ms to apply any of the analyzing method used 
for this work. With a window of 30 ms, almost 15 ms to performs prediction (Kalman filtering) and 5 ms to 
perform Goertzel filtering; then time consumption for the identification, detection, prediction and correction of 
the myoelectric signal could be performed in under 100 ms.  
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APPENDIX: MATLAB CODES OF THE ALGORITHMS 

HILBERT-HUANG TRANSFORM 

Empirical Mode Decomposition basis 
%*CENTRO DE INVESTIGACIÓN Y DE ESTUDIOS AVANZADO DEL IPN * 
%*INGENIERÍA ELÉCTRICA - SECCIÓN DE BIOELECTRÓNICA       * 
%*LAREMUS                                                * 
%*M. EN C. ALVARO ALTAMIRANO ALTAMIRANO                  * 
%*-------------------------------------------------------* 
% Based on the algorithm developed by Rato et al, 2008 
%“On the HHT, its problems, and some solutions”  
%Mechanical Systems and Signal Processing,vol.22,no.6,pp.1374-1394, %August 
2008. 
%------------------------------------------------------------------------ 
% 
%rParabEmd__L: Emd parabolic decomposition with extrapolated extrema 
%                                                                   
% 
%Usage: rParabEmd= rParabEmd__L(x,qResol, qResid, qAlfa); 
%       x - input signal - must be a real vector 
%       qResol - Resolution (in DBs: 10*log(WSignal/Bias energy))-                    
%                normally between 40 and 60 dB  
%       qResid - Residual energy (in DBs: 10*log(WSignal/WqResidual))-  
%                normally between 40 and 60 dB 
%       qAlfa  - Gradient step size (normally is set to 1) 
%------------------------------------------------------------------------            
 
function rParabEmd = rParabEmd__L (x, qResol, qResid, qAlfa) 
  
dbstop if warning 
if(nargin~=4), error('rParabEmd__L: Use with 4 inputs.'), end 
if(nargout>1), error('rParabEmd__L: Use with just one output.'), end 
ArgCheck_s(x, qResol, qResid, qAlfa) 
  
% Actual computation ------------------------------------- 
kc = x(:);                  % ket copy of the input signal 
Wx= kc'*kc;                 % Original signal energy 
quntN = length(kc);         % Signal length 
% loop to decompose the input signal into successive IMFs 
rParabEmd= [];    % Matrix which will contain the successive IMFs, and the 
residue 
rParabEmdCnt= 0; 
qDbResid= 0;                 %Equal energies at start 
quntOscCnt= quntNOsc_s(kc); 
while ((qDbResid<qResid) && (quntOscCnt>2) )   % c has some energy and oscilates 
    kImf = kc; % at the beginning of the sifting process, kImf is the signal 
    rPMOri= rGetPMaxs_s(kImf);     % rPM= [xM(M), yM(M)]; 
    rPmOri= rGetPMins_s(kImf);     % rPm= [xm(m), ym(m)]; 
    rPM= rPMaxExtrapol_s(rPMOri, rPmOri, quntN); 
    rPm= rPMinExtrapol_s(rPMOri, rPmOri, quntN); 
    quntLM= length(rPM);   quntLm= length(rPm); 
%    if (abs(quntLM-quntLm)>2), disp('Debug: Max-Min count 
mismatch.'),keyboard,end; 
    if (abs(quntLM-quntLm)>2), disp('Debug: Max-Min count mismatch.'),end; 
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    if(sum(abs(diff(sign(rPM(1:min(quntLM,quntLm),1)- 
rPm(1:min(quntLM,quntLm),1)))))>0) 
%        disp('Debug: Max-Min sequence mismatch.'),keyboard; 
        disp('Debug: Max-Min sequence mismatch.'); 
    end 
    if(sum(abs(diff(sign(rPm(1:min(quntLM,quntLm),1)- 
rPM(1:min(quntLM,quntLm),1)))))>0) 
%        disp('Debug: Max-Min reverse sequence mismatch.'),keyboard; 
        disp('Debug: Max-Min reverse sequence mismatch.'); 
    end 
    bTenv= spline(rPM(:,1), rPM(:,2), 1:quntN);          %  Top envelop: 
bTenv[n]; 
    bDenv= spline(rPm(:,1), rPm(:,2), 1:quntN);          % Down envelop: 
bDenv[n]; 
    bBias= (bTenv+bDenv)/2;               %  first bias estimate 
    while true(1)             % inner loop to find each IMF 
        WImf= kImf'*kImf;                %current IMF  energy 
        WBias= bBias*bBias';                  %bias energy 
        if WBias*WImf<0 , warning('rParabEmd__L: Ooops, negative energy 
detected.'), end 
        if WBias> 0, DbqResol= 10*log10(WImf/WBias); else DbqResol= Inf; end 
        if (DbqResol>qResol),  break, end %Resolution reached 
        %Resolution not reached. More work is needed 
        kImf = kImf- qAlfa*bBias';                % subtract qAlfa bias from 
kImf 
        rPMOri= rGetPMaxs_s(kImf);     % rPM= [xM(M), yM(M)]; 
        rPmOri= rGetPMins_s(kImf);     % rPm= [xm(m), ym(m)]; 
        rPM= rPMaxExtrapol_s(rPMOri, rPmOri, quntN); 
        rPm= rPMinExtrapol_s(rPMOri, rPmOri, quntN); 
        bTenv= spline(rPM(:,1), rPM(:,2), 1:quntN);          % Top envelop: 
bTenv[n]; 
        bDenv= spline(rPm(:,1), rPm(:,2), 1:quntN);          % Down envelop: 
bDenv[n]; 
        bBias= (bTenv+bDenv)/2;               %  new bias estimate 
    end % Wend true 
    % 
    rParabEmd = [rParabEmd; kImf'];          % store the extracted rParabEmd in 
the matrix rParabEmd 
    kc = kc - kImf;             % subtract the extracted rParabEmd from the 
signal 
    quntOscCnt= quntNOsc_s(kc); 
  
    rParabEmdCnt=rParabEmdCnt+1; 
    if (kc'*kc)>0 
        qDbResid= 10*log10(Wx/(kc'*kc)); 
    else 
        qDbResid = Inf 
    end 
    % 
end % Wend ((DbR... )) 
if ((kc'*kc)/Wx)>(10^-12) 
    rParabEmd=[rParabEmd; kc'];        %The residual is the last IMF 
    rParabEmdCnt=rParabEmdCnt+1; 
    NumOscqResiduais= quntNOsc_s(kc); 
end 
 rParabEmd= rParabEmd'; 
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end %main function 
  
%SubFunctions ----------------------------------------------------------- 
  
function ArgCheck_s(x, qResol, qResid, qAlfa) 
  
[qL, qC] = size(x); 
if ((qL*qC)~= max(qL,qC)), error('rParabEmd__L: Input signal must be a one dim 
vector.'), end 
if ((qL*qC)<= 1), error('rParabEmd__L: Input signal must be a vector.'), end 
  
[qL,qC] = size(qResol); 
if ( ~((qL==1)&(qC==1)) ), error('rParabEmd__L: Input resolution must be a 
scalar.'), end 
if ( qResol<=0 ), error('rParabEmd__L: Input resolution must strictly 
positive.'), end 
  
[qL,qC] = size(qResid); 
if ( ~((qL==1)&(qC==1)) ),  error('rParabEmd__L: Input residual must be a 
scalar.'),  end 
if ( qResid<=0 ), error('rParabEmd__L: Input residual must strictly positive.'), 
end 
  
[qL,qC] = size(qAlfa); 
if ( ~((qL==1)&(qC==1)) ), error('rParabEmd__L: qAlfa step must be a scalar.'), 
end 
if ( qAlfa<=0 ), error('rParabEmd__L: qAlfa step  must be strictly positive.'),  
end 
end 
  
%----------------------------------------------------------------------- 
% Returns the oscilation count, no steps 
function quntNOsc = quntNOsc_s (x) 
y=0;    qisTop= false; qisDown= false; 
for i=2:(length(x)-1) 
    if( ((x(i-1)) < (x(i))) && ((x(i+1))< (x(i))) )  %Max /-\ 
        y=y+1; 
    end 
    if( ((x(i-1)) > (x(i))) && ((x(i+1))> (x(i))) )  %min \_/ 
        y=y+1; 
    end 
%Top      
    if( ((x(i-1)) < (x(i))) && ((x(i+1))== (x(i))) ) %StepL /- 
         qisTop= true; qisDown= false; 
    end 
    if( ((x(i-1)) == (x(i))) && ((x(i+1))< (x(i))) ) %stepR -\ 
        if qisTop;     y=y+1; end; 
        qisTop= false; 
    end 
%Downs    
    if( ((x(i-1)) > (x(i))) && ((x(i+1))== (x(i))) ) %stepL \_ 
        qisTop= false; qisDown= true; 
    end 
    if( ((x(i-1)) == (x(i))) && ((x(i+1))> (x(i))) ) %StepR _/ 
        if qisDown; y=y+1; end 
        qisDown=false; 
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    end 
end % for i=2:(length(x)-1) 
quntNOsc= y; 
end % function y = quntNOsc_s (x) 
function rPMaxExtrapol= rPMaxExtrapol_s(rPM, rPm, quntL)  
rPM= sortrows(rPM); %assumes nothing on rPM sort order 
rPm= sortrows(rPm); %assumes nothing on rPm sort order 
kTopTim1= rPM(:,1); kTopVal= rPM(:,2); 
kDwnTim1= rPm(:,1); kDwnVal= rPm(:,2); 
%Start extrapolation --------------------- 
if ( (kTopTim1(1)== 1) && (kDwnTim1(1)== 1) )    
    disp ('rPMaxExtrapol_s: Poliextrema at signal''s start'); 
elseif ( (kTopTim1(1)<1) || (kDwnTim1(1)< 1) )    
    disp ('rPMaxExtrapol_s: Invalid extrema at signal''s start'); 
else 
    kTopTim1=[2-kDwnTim1(1); kTopTim1];     % New first Top at the (one based) 
specular Min 
    kTopVal=[kTopVal(1); kTopVal];          % Same Val as old first Top 
end 
% End extrapolation ----------------------- 
if ( (kTopTim1(end)== quntL) && (kDwnTim1(end)== quntL) )    
    disp ('rPMaxExtrapol_s: Poliextrema at signal''s end'); 
elseif ( (kTopTim1(end)> quntL) || (kDwnTim1(end)> quntL) )    
    disp ('rPMaxExtrapol_s: Invalid extrema at signal''s end'); 
else 
    kTopTim1=[kTopTim1; (2*quntL - kDwnTim1(end))];     % New last Top at the 
specular Min 
    kTopVal=[ kTopVal; kTopVal(end)];          % Same Val as old last Top  
end 
% return value ------------------------ 
rPMaxExtrapol= sortrows([kTopTim1, kTopVal]);  
end 
 
function rPMinExtrapol= rPMinExtrapol_s(rPM, rPm, quntL) 
%Init ------------------------------------ 
rPM= sortrows(rPM); %assumes nothing on rPM sort order 
rPm= sortrows(rPm); %assumes nothing on rPm sort order 
kTopTim1= rPM(:,1); kTopVal= rPM(:,2); 
kDwnTim1= rPm(:,1); kDwnVal= rPm(:,2); 
%Start extrapolation --------------------- 
if ( (kTopTim1(1)== 1) && (kDwnTim1(1)== 1) ) 
    disp ('rPMinExtrapol_s: Poliextrema at signal''s start'); 
elseif ( (kTopTim1(1)<1) || (kDwnTim1(1)< 1) ) 
    disp ('rPMinExtrapol_s: Invalid extrema at signal''s start'); 
else 
    kDwnTim1=[2-kTopTim1(1); kDwnTim1];% New first Dwn at the (one based) 
specular Max 
    kDwnVal=[kDwnVal(1); kDwnVal]; % Same Val as old first Dwn 
end 
% End extrapolation ----------------------- 
if ( (kTopTim1(end)== quntL) && (kDwnTim1(end)== quntL) ) 
    disp ('rPMinExtrapol_s: Poliextrema at signal''s end'); 
elseif ( (kTopTim1(end)> quntL) || (kDwnTim1(end)> quntL) ) 
    disp ('rPMinExtrapol_s: Invalid extrema at signal''s end'); 
else 
    kDwnTim1=[kDwnTim1; (2*quntL - kTopTim1(end))];     % New last Dwn at the 
specular Max 
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    kDwnVal=[ kDwnVal; kDwnVal(end)];          % Same Val as old last Dwn 
end 
% return value ------------------------ 
rPMinExtrapol= sortrows([kDwnTim1, kDwnVal]); 
  
end 
function rPMax= rGetPMaxs_s(aS)         %Get Parabolic Maxs, plateaus out 
kS= aS(:); 
quntLenS=length(kS);  
quntMaxCnt=0; 
kSMNdx1= []; kSMVal=[];         %signal S Maxima indices and values 
kSPMTim1= []; kSPMVal=[];       %signal S Parabolic Maxima times and values 
  
if (quntLenS>2)     %if signal has enough length 
    for Cnt=2:(quntLenS-1)  %search the Maxs 
        if ( ((kS(Cnt) > kS(Cnt+1))) && ((kS(Cnt) >= kS(Cnt-1))) || ((kS(Cnt) >= 
kS(Cnt+1))) && ((kS(Cnt) > kS(Cnt-1))) ) 
            quntMaxCnt=quntMaxCnt+1; 
            kSMNdx1= [kSMNdx1; Cnt];  kSMVal=[kSMVal; kS(Cnt)]; 
        end 
    end 
end 
  
% Now we have the Maxs, lets get the Parabolic Maxs 
oldxv= -Inf; oldyv= -Inf; 
intGapMax= max(kS)-min(kS); 
for jj=1:quntMaxCnt     %for all Maxs 
    %xa= -1; xb= 0; xc= 1; 
    ya= kS(kSMNdx1(jj)-1);  % Sample point before 
    yb= kS(kSMNdx1(jj));    % Sample point, == kSMVal(jj) 
    yc= kS(kSMNdx1(jj)+1);  % Sample point after 
    D= (-4*yb+2*ya+2*yc); 
    if (D==0), xv= kSMNdx1(jj); 
    else xv= kSMNdx1(jj)+(ya-yc)/D; end; % Vertix abscissa 
    D= (-16*yb+ 8*ya+ 8*yc); 
    if (D==0), yv= yb; 
    else yv= yb+ (2*yc*ya- ya*ya- yc*yc)/D; end; 
    % Lets check for double maxima 
    if ( (xv==oldxv)||(abs(yv-oldyv)/abs(xv-oldxv))> (2*intGapMax) )        
        xv= (xv+ oldxv)/2; yv= max(yv,oldyv);   %Double found 
        kSPMTim1(length(kSPMTim1))= xv; kSPMVal(length(kSPMVal))= yv; 
    else 
        kSPMTim1= [kSPMTim1; xv];  kSPMVal=[kSPMVal; yv]; 
    end  
    oldxv= xv; oldyv= yv; 
end % for jj=1:quntMaxCnt 
  
if quntMaxCnt>0 
    if ( kS(1) >= kSPMVal(1) ) 
        kSPMTim1= [1; kSPMTim1];  kSPMVal=[kS(1); kSPMVal ];    %Start must be 
included as a Max 
    end 
    if ( kS(end) >= kSPMVal(end)) 
        kSPMTim1= [kSPMTim1; quntLenS];  kSPMVal=[kSPMVal; kS(end)];   %End must 
be included as a Max 
    end 
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end 
  
if quntMaxCnt==0 
    if ( kS(1) > kS(2) ) 
        kSPMTim1= [1; kSPMTim1];  kSPMVal=[kS(1); kSPMVal ];    %Start must be 
included as a Max 
    end 
    if ( kS(end) > kS(end-1)) 
        kSPMTim1= [kSPMTim1; quntLenS];  kSPMVal=[kSPMVal; kS(end)];   %End must 
be included as a Max 
    end 
end 
if quntMaxCnt<0 
    error('rGetPMaxs_s: Invalid MaxCnt value'); 
end 
  
rPMax= sortrows([kSPMTim1, kSPMVal]); 
end 
%---------- make at 17-Jul-07 10:16:59.44  
function rPMin= rGetPMins_s(aS)         %Get Parabolic Mins, plateaus out 
%                                       build 20070612001 
kS= aS(:); 
quntLenS=length(kS);  
quntMinCnt=0; 
kSMNdx1= []; kSMVal=[];         %signal S Minima indices and values 
kSPMTim1= []; kSPMVal=[];       %signal S Parabolic Minima times and values 
  
if (quntLenS>2)     %if signal has enough length 
    for Cnt=2:(quntLenS-1)  %search the Mins 
        if ( ((kS(Cnt) < kS(Cnt+1))) && ((kS(Cnt) <= kS(Cnt-1))) || ((kS(Cnt) <= 
kS(Cnt+1))) && ((kS(Cnt) < kS(Cnt-1))) ) 
            quntMinCnt=quntMinCnt+1; 
            kSMNdx1= [kSMNdx1; Cnt];  kSMVal=[kSMVal; kS(Cnt)]; 
        end 
    end 
end 
  
% Now we have the Mins, lets get the Parabolic Mins 
oldxv= -Inf; oldyv= -Inf; 
intGapMax= max(kS)-min(kS); 
for jj=1:quntMinCnt     %for all Mins 
    %xa= -1; xb= 0; xc= 1; 
    ya= kS(kSMNdx1(jj)-1);  % Sample point before 
    yb= kS(kSMNdx1(jj));    % Sample point, == kSMVal(jj) 
    yc= kS(kSMNdx1(jj)+1);  % Sample point after 
    D= (-4*yb+2*ya+2*yc); 
    if (D==0), xv= kSMNdx1(jj); 
    else xv= kSMNdx1(jj)+(ya-yc)/D; end; % Vertix abscissa 
    D= (-16*yb+ 8*ya+ 8*yc); 
    if (D==0), yv= yb; 
    else yv= yb+ (2*yc*ya- ya*ya- yc*yc)/D; end; 
    % Lets check for double minima 
    if ( (xv==oldxv)||(abs(yv-oldyv)/abs(xv-oldxv))> (2*intGapMax) )      
        xv= (xv+ oldxv)/2; yv= min(yv,oldyv);   %Double found 
        kSPMTim1(length(kSPMTim1))= xv; kSPMVal(length(kSPMVal))= yv; 
    else 
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        kSPMTim1= [kSPMTim1; xv];  kSPMVal=[kSPMVal; yv]; 
    end  
    oldxv= xv; oldyv= yv; 
end % for jj=1:quntMinCnt 
  
if quntMinCnt>0 
    if ( kS(1) <= kSPMVal(1) ) 
        kSPMTim1= [1; kSPMTim1];  kSPMVal=[kS(1); kSPMVal ];    %Start must be 
included as a Min 
    end 
    if ( kS(end) <= kSPMVal(end)) 
        kSPMTim1= [kSPMTim1; quntLenS];  kSPMVal=[kSPMVal; kS(end)];   %End must 
be included as a Min 
    end 
end 
  
if quntMinCnt==0 
    if ( kS(1) < kS(2) ) 
        kSPMTim1= [1; kSPMTim1];  kSPMVal=[kS(1); kSPMVal];    %Start must be 
included as a Min 
    end 
    if ( kS(end) < kS(end-1)) 
        kSPMTim1= [kSPMTim1; quntLenS];  kSPMVal=[kSPMVal; kS(end)];   %End must 
be included as a Min 
    end 
end 
if quntMinCnt<0 
    error('rGetPMins_s: Invalid MinCnt value'); 
end 
  
  
rPMin= sortrows([kSPMTim1, kSPMVal]); 
end 
 

Empirical Mode Decomposition for 4 Channels 
%*CENTRO DE INVESTIGACIÓN Y DE ESTUDIOS AVANZADO DEL IPN * 
%*INGENIERÍA ELÉCTRICA - SECCIÓN DE BIOELECTRÓNICA       * 
%*LAREMUS                                                * 
%*M. EN C. ALVARO ALTAMIRANO ALTAMIRANO                  * 
%*-------------------------------------------------------* 
clc; clear all; close all; 
%Select the Recorded data, these are matrix array of 20480 x 4 & 
%20480x 8 
[FileName,PathName]=uigetfile('*.*','Select the Matrix to 
import','D:\Documents\PhD\MATLAB Codes\EMG_DATA'); 
if isequal(FileName,0) 
    disp('User selected Cancel') 
else 
    disp(['User selected ', fullfile(PathName,FileName)]) 
end 
filefullpath=[PathName, FileName];  %Full path address 
recfileoriginal=load(filefullpath);  %load the file that contains the matrix 
array 
%------------------------------------------------------------------------ 
%             Plot four Channels from the Input Matrix 
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for a=1:4 
    figure(1); 
    subplot(4,1,a) 
    plot(recfileoriginal(:,a),'LineWidth',1.5); 
    %ylim([-5 5]);  
    xlim([0 2000]);  
    ylabel(['EMG Channel ' num2str(a)],'FontSize', 13); xlabel('Time 
(ms)','FontSize', 13); 
end 
%----------------------------------------------------------------------- 
amp=input('Please, enter the scale factor: '); 
recfile=amp*recfileoriginal; 
% Ask for the interval to analyze 
%longinicial=; 
%longfin=1200; 
 interval=input('Select the window 1:450-750  2:550-850   3:750-1050   4:850-
1150  5:1100-1400 : '); 
 switch interval 
     case 1 
         longinicial=450; 
         longfin=750; 
         disp('450'); 
     case 2 
         longinicial=550; 
         longfin=850; 
         disp('550'); 
     case 3 
         longinicial=750; 
         longfin=1050; 
         disp('750'); 
     case 4 
         longinicial=850; 
         longfin=1150; 
         disp('850'); 
     case 5 
         longinicial=1100; 
         longfin=1400; 
         disp('1100'); 
     otherwise 
         disp('That window is incorrect, please select another one') 
 end 
%----------------------------------------------------------------------- 
%             Plot selected window 
for b=1:4 
    figure(2); 
    subplot(4,1,b) 
    plot(recfile(:,b),'LineWidth',1.5); 
    ylim([-1 1]); xlim([longinicial longfin]); ylabel(['EMG Channel ' 
num2str(b)],'FontSize', 13); xlabel('Time (ms)','FontSize', 13); 
end 
%----------------------------------------------------------------------- 
pause; 
 
qResol=45; 
qResid=45; 
qAlfa=1; 
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     x1=recfile(longinicial:longfin,1); 
     x2=recfile(longinicial:longfin,2); 
     x3=recfile(longinicial:longfin,3); 
     x4=recfile(longinicial:longfin,4); 
      
     rParabEmd1= rParabEmd__L(x1,qResol, qResid, qAlfa); 
     rParabEmd2= rParabEmd__L(x2,qResol, qResid, qAlfa); 
     rParabEmd3= rParabEmd__L(x3,qResol, qResid, qAlfa); 
     rParabEmd4= rParabEmd__L(x4,qResol, qResid, qAlfa); 
  
 [c1,d1]=size(rParabEmd1); 
 [c2,d2]=size(rParabEmd2); 
 [c3,d3]=size(rParabEmd3); 
 [c4,d4]=size(rParabEmd4); 
  
 e1=round(d1/2);   
 e2=round(d2/2); 
 e3=round(d3/2); 
 e4=round(d4/2); 
  
for i=1:d1 
    figure(3); 
    subplot(e1,2,i) 
    plot(rParabEmd1(1:c1,i),'LineWidth',1.7); 
    xlim([0 300]); ylabel(['IMF ' num2str(i)],'FontSize', 14); xlabel('Time 
(ms)','FontSize', 12); 
end 
for i=1:d2 
    figure(4); 
    subplot(e2,2,i) 
    plot(rParabEmd2(1:c2,i),'LineWidth',1.7); 
    xlim([0 300]); ylabel(['IMF ' num2str(i)],'FontSize', 14); xlabel('Time 
(ms)','FontSize', 12); 
end 
for i=1:d3 
    figure(5); 
    subplot(e3,2,i) 
    plot(rParabEmd3(1:c3,i),'LineWidth',1.7); 
    xlim([0 300]); ylabel(['IMF ' num2str(i)],'FontSize', 14); xlabel('Time 
(ms)','FontSize', 12); 
end 
for i=1:d4 
    figure(6); 
    subplot(e4,2,i) 
    plot(rParabEmd4(1:c4,i),'LineWidth',1.7); 
    xlim([0 300]); ylabel(['IMF ' num2str(i)],'FontSize', 14); xlabel('Time 
(ms)','FontSize', 12); 
end 
%---------------------%HILBERT TRANSFORM--------------------------- 
t=linspace(0,300/Fs,301)'; %separation between points. 
channeltocalculate=input('Enter a channel´s number, between 1-4, to calculate HT 
& IF: '); 
switch channeltocalculate 
    case 1 
        x=rParabEmd1; 
        disp('Channel 1'); 
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    case 2 
        x=rParabEmd2; 
        disp('Channel 2'); 
    case 3 
        x=rParabEmd3; 
        disp('Channel 3'); 
    case 4 
        x=rParabEmd4; 
        disp('Channel 4'); 
    otherwise 
        disp('That channel doesn´t exist, please select one or type ´0´ to 
exit') 
end 
 
Fs=2000; %sampling frequency 
[vectors, columns]=size(x); 
for i=1:columns 
    [env(:,i),freq(:,i)]=hilbert2(x(:,i),Fs); 
end 
p=round(columns/2); 
for j=1:columns 
    figure(7); 
    subplot(p,2,j) 
    plot(t,x(1:vectors,j),'LineWidth',1.5);hold on; 
    plot(t,[env(:,j) -env(:,j)],'LineWidth',1.5,'Color',[1 0 0]); 
    xlim([0 301]); ylabel('Signal amplitude','FontSize', 10); 
    title(['IMF ' num2str(j),  ' with instantaneous envelope'],'FontSize',10); 
end 
for k=1:columns 
    figure(8) 
    subplot(p,2,k) 
    plot(t,freq(1:vectors,k),'k','LineWidth',1.5); 
    xlabel('Time (s)','FontSize',10); ylabel('Frequency (Hz)','FontSize',10); 
    ylim([-100 300]); 
    title(['Instantaneous frequency of IMF ' num2str(k)],'FontSize',10); 
end 
  
for l=1:columns 
    figure(9) 
    subplot(p,2,l) 
    xcenters=0:300; 
    %hist(freq(1:vectors,l),xcenters); 
    hist(freq(1:vectors,l)); 
    [vecfreq(l,:), vecpos(l,:)]=hist(freq(1:vectors,l),300); 
    xlim([0 300]); 
    xlabel('Frequency (Hz)');ylabel('Elements'); 
    title('Histogram of frequecies'); 
end 
for m=1:columns 
    fmaxima(m)=max(vecfreq(m,20:280)); 
    for n=1:300 
        if vecpos(m,n) == fmaxima(m) 
            freqfundamental(m)=vecfreq(m,n);  
        else 
        end 
    end 
end 
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Hilbert Transform and Instantaneous frequency 
%*CENTRO DE INVESTIGACIÓN Y DE ESTUDIOS AVANZADO DEL IPN * 
%*INGENIERÍA ELÉCTRICA - SECCIÓN DE BIOELECTRÓNICA       * 
%*LAREMUS                                                * 
%*M. EN C. ALVARO ALTAMIRANO ALTAMIRANO                  * 
%*-------------------------------------------------------* 
clc; clear all; close all; 
%Get the file to compute 
[FileName,PathName]=uigetfile('*.*','Select the data to import','C:\Users\Dr. 
ALTAMIRANO\OneDrive\PhD\MATLAB Codes\HHT Matlab\Registros EMG\USER 1'); 
if isequal(FileName,0) 
    disp('User selected Cancel') 
else 
    disp(['User selected', fullfile(PathName,FileName)]) 
end 
filefullpath=[PathName, FileName]; 
%Define the numbers to save the images, record is more easy to define, even 
%to prevent errors. 
user=1; movement=5;record=input('Number of record:');channel=1; 
%--------------------------------------------------- 
%-----Import the file----Convert .mat to vars------- 
recfileoriginalmat=load('-mat',filefullpath); 
%create new variables in the base workspace from those fields. 
vars=fieldnames(recfileoriginalmat); 
for i=1:length(vars) 
    assignin('base', vars{i}, recfileoriginalmat.(vars{i})); 
end 
%--------------------------------------------------- 
recfileoriginal=100*rParabEmd1; 
[elementos, imf]=size(recfileoriginal); 
z=zeros(elementos,imf); 
instfreq=zeros(elementos-1,imf); 
Fs=2000; % Sample frequency determited by the BIOPAC system 
t = 0:1/Fs:0.15; % Time of  the signal into the segment of 1 second. 
%--------------------------------------------------- 
%SPECTROGRAM 
for s=1:imf 
    figure(1); 
    subplot(round(imf/2),2,s) 
    spectrogram(recfileoriginal(:,s),32,16,4096,Fs,'yaxis');  
    % spectrogram=(x, window, noverlap,nfft,fs,'yaxis') 
    % To avoit the issues to how code attempts to analyze and visualize the 
signal using the spectrogram function is 
    % Fs=2000 samples per second, while the number of samples in each FFT 
    % is 4096 samples, as a result, the frequency resolution of the 
    % spectrogram is nearly 0.5 Hertz, 
    % dF= Fs/NFFT = 2000/4096 = 0.4882 
    view(-40,60) 
    title(['Spectrogram of IMF ', num2str(s)],'FontWeight','bold') 
    hold on; 
end 
print('-f1',['CBA4_',num2str(user), 
num2str(movement),num2str(record),'_',num2str(channel),'_',num2str(imf),'_Spectr
e'],'-djpeg') 
%---Plot the original signal------------------------ 
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for a=1:imf 
    figure(2); 
    subplot(round(imf/2),2,a) 
    plot(t,recfileoriginal(:,a),'LineWidth',1.5,'color','blue'); 
    hold on; 
    xlim ([0 0.15]); 
    ylabel(['IMFs ' num2str(a)],'FontSize', 14); xlabel('Time (ms)','FontSize', 
14); 
    hold on; 
    title('IMFs','FontWeight','bold') 
end 
print('-
f2',['CBA4_',num2str(user),num2str(movement),num2str(record),'_',num2str(channel
),'_',num2str(imf),'_IMF'],'-djpeg') 
%------------------------------------------------------------------------ 
%.... INSTANTANEOUS FREQUENCY.... 
for b=1:imf 
    z(:,b) = hilbert(recfileoriginal(:,b)); 
    instfreq(:,b)= Fs/(2*pi)*diff(unwrap(angle(z(:,b)))); 
    figure(3); 
    subplot(round(imf/2),2,b) 
    plot(t(2:end),instfreq(:,b)); 
    xlim([0 0.15]); 
    xlabel('Time') 
    ylabel('Hz') 
    grid on 
    title('Instantaneous Frequency') 
end 
print('-
f3',['CBA4_',num2str(user),num2str(movement),num2str(record),'_',num2str(channel
),'_',num2str(imf),'_IF'],'-djpeg') 

WAVELET TRANSFORM ALGORITHM 
%*CENTRO DE INVESTIGACIÓN Y DE ESTUDIOS AVANZADO DEL IPN * 
%*INGENIERÍA ELÉCTRICA - SECCIÓN DE BIOELECTRÓNICA       * 
%*LAREMUS                                                * 
%*M. EN C. ALVARO ALTAMIRANO ALTAMIRANO                  * 
%*ING. ALAN BELTRAN 
%*-------------------------------------------------------* 
function [ ] = escalograma( archivo,canal ) 
 
close all; 
%% EMG signal parameters  
fs  = 2000;              % Sample frequency 
Ts  = 1/fs;              % Period 
t   = 0:Ts:1-Ts;         % time slot 
tm  = t*1000;            % time (ms) 
%Channel selection 
m = load(archivo); 
ch1 = m(:,1)';   
ch2 = m(:,2)'; 
ch3 = m(:,3)'; 
ch4 = m(:,4)'; 
% Normalization 
max1 = max([abs(max(ch1)) abs(min(ch1))]); 
max2 = max([abs(max(ch2)) abs(min(ch2))]); 



 
 

104 
 

max3 = max([abs(max(ch3)) abs(min(ch3))]); 
max4 = max([abs(max(ch4)) abs(min(ch4))]); 
  
ch1 = ch1/max1; 
ch2 = ch2/max2; 
ch3 = ch3/max3; 
ch4 = ch4/max4; 
  
figure('OuterPosition',[10,500,1100,580]);  
subplot(4,1,1); 
plot(tm,ch1); 
title('Canal #1 - Extensor breve del pulgar'); 
subplot(4,1,2); 
plot(tm,ch2); 
title('Canal #2 - Flexor superficial de los dedos'); 
subplot(4,1,3); 
plot(tm,ch3); 
title('Canal #3 - Extensor de los dedos'); 
subplot(4,1,4); 
plot(tm,ch4); 
title('Canal #4 -Flexor cubital del carpo'); 
  
switch canal 
    case 1 
        ch = 'Canal #1 - Extensor breve del pulgar'; 
        disp(ch) 
        y = ch1; 
    case 2 
        ch = 'Canal #2 - Flexor superficial de los dedos'; 
        disp(ch) 
        y = ch2; 
    case 3 
        ch = 'Canal #3 - Extensor de los dedos'; 
        disp(ch) 
        y = ch3; 
    case 4 
        ch = 'Canal #4 -Flexor cubital del carpo'; 
        disp(ch) 
        y = ch4; 
end 
%% Scalogram 
% Bandwith  
freqrange = [5 300]; 
% Scale-frequency ratio 
fc         = centfrq('meyr'); 
scalerange = fc./(freqrange*Ts); 
 
% Logarithmic scale vector 
scalerange = log10(scalerange); 
scales     = logspace(scalerange(end),scalerange(1),30); 
  
% Frequency vector 
freqs = scal2frq(scales,'meyr',Ts); 
  
% CWT function 
coefs = cwt(y,scales,'meyr'); 
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% Scalogram 
S = abs(coefs.*coefs);  
SC = 100*S./sum(S(:)); 
  
% Umbral 
V  = SC'; V = V(:)'; 
V = V/max(V); 
for i = 1:length(V) 
    if V(i) <= 0.3 
        V(i) = 0; 
    end 
end 
c  = size(SC,2); 
SC = vec2mat(V,c); 
SC = mat2gray(SC); 
  
%% Scalogram Plot 
 positionVector1 = [0.09, 0.85, 0.835, 0.1]; 
 positionVector2 = [0.09, 0.08, 0.9, 0.65]; 
  
figure('OuterPosition',[10,50,1100,900]);  
  
% Analyzed signal 
subplot('Position',positionVector1); 
plot(tm,y); 
xlabel('Tiempo [mseg]','fontweight','bold');  
ylabel('Amplitud','fontweight','bold');  
title(ch,'fontweight','bold'); 
subplot('Position',positionVector2); 
[C,h] = contour(tm,scales,SC); 
set(gca, 'YScale','log'); 
colorbar; 
grid on; 
title({'Escalograma';'Porcentaje de energía de cada coeficiente'},... 
    'fontweight','bold'); 
xlabel('Tiempo[mseg]','fontweight','bold');  
ylabel('Escalas','fontweight','bold'); 
  
%% Scale vs frequency plot 
figure('OuterPosition',[1150,50,570,510]); 
semilogy(freqs,scales); 
axis([freqs(end) freqs(1) scales(1) scales(end)]) 
title('Escalas Vs Frecuencias','fontweight','bold');  
xlabel('Frecuencias','fontweight','bold');  
ylabel('Escalas','fontweight','bold'); 
end 
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KALMAN FILTER ALGORITHM 
function [k,s] = kfilter(A,C,V1,V2,V12) 
 %*CENTRO DE INVESTIGACIÓN Y DE ESTUDIOS AVANZADO DEL IPN * 
%*INGENIERÍA ELÉCTRICA - SECCIÓN DE BIOELECTRÓNICA       * 
%*LAREMUS                                                * 
%*M. EN C. ALVARO ALTAMIRANO ALTAMIRANO                  * 
%Kalman Filter can have arguments: (A,C,V1,V2)  
%     KFILTER calculates the kalman gain, k, and the stationary 
%     covariance matrix, s, using the Kalman filter for: 
%   
%       x[t+1] = Ax[t] + Bu[t] + w1[t+1] 
%               y[t] = Cx[t] + Du[t] + w2[t] 
% 
%               E [w1(t+1)] [w1(t+1)]' =  [V1   V12; 
%                 [ w2(t) ] [ w2(t) ]      V12' V2 ] 
% 
%  where x is the mx1 vector of states, u is the nx1 vector of controls, y is 
%  the px1 vector of observables, A is mxm, B is mxn, C is pxm, V1 is mxm, 
%  V2 is pxp, V12 is mxp. 
% 
%*-------------------------------------------------------* 
  
m=max(size(A)); 
[rc,cc]=size(C); 
if nargin==4; V12=zeros(m,rc); end; 
if (rank(V2)==rc); 
  A=A-(V12/V2)*C; 
  V1=V1-V12*(V2\V12'); 
  [k,s]=doubleo(A,C,V1,V2); 
  k=k+(V12/V2); 
else; 
  s0=.01*myo(m); 
  
  dd=1; 
  it=1; 
  maxit=1000; 
  
  while (dd>1e-8 & it<=maxit); 
    k0= (A*s0*C'+V12)/(V2+C*s0*C'); 
    s1= A*s0*A' + V1 -(A*s0*C'+V12)*k0'; 
    k1= (A*s1*C'+V12)/(V2+C*s1*C'); 
    dd=max(max(abs(k1-k0))); 
    it=it+1; 
    s0=s1; 
  end; 
  
  k=k1;s=s0; 
  if it>=maxit;  
    disp('WARNING: Limit iteration');  
  end; 
end; 
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GOERTZEL ALGORITHM 
%*CENTRO DE INVESTIGACIÓN Y DE ESTUDIOS AVANZADO DEL IPN * 
%*INGENIERÍA ELÉCTRICA - SECCIÓN DE BIOELECTRÓNICA       * 
%*LAREMUS                                                * 
%*M. EN C. ALVARO ALTAMIRANO ALTAMIRANO                  * 
%*-------------------------------------------------------* 
Fs = 1024; %Sampling Frequency 
Ts = 1/Fs; %Period 
f1 = 83.3;  % 1st Pattern 
f2 = 96.7;  % 2nd Pattern 
f3 = 113.3; % 3th Pattern 
f4 = 59;    % Line signal 
f5 = 125;   % Extra signal 
f = [59 83.3 96.7 113.3 125]; % Patterns and Signals 
N = 512;  
t = Ts*(0:N-1)'; 
x = 
0.8*sin(2*pi*f1*t)+0.9*sin(2*pi*f2*t)+0.4*sin(2*pi*f3*t)+0.2*sin(2*pi*f4*t)+0.1*
wgn(N,1,-10); %Signal 
figure(1); 
plot(t,x); 
%title(''); 
xlabel('Time (ms)'); 
ylabel('Intensity (mV)'); 
figure(2); 
periodogram(x,[],[],Fs);          % PSD with FFT 
                                  % (computed with all N points of signal) 
X = goertzel(x,round(f/Fs*N+1));  % PSD with Goertzel Algorithm only in the 
region of interest 
figure(3);                         
stem(f,abs(X)); 
ax=gca; 
ax.XTick=f; 
title('DFT Magnitude') 
xlabel('Frequency (Hz)'); 
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RÉSUMÉ 

PRÉDICTION DE MOUVEMENTS DES MEMBRES SUPÉRIEURS PAR ANALYSE DES SIGNAUX EMG À 

L’AIDE DES TRANSFORMÉES EN ONDELETTES ET DE HILBERT-HUANG 
 

Cette thèse porte sur l’analyse des signaux sEMG multicanaux à l’aide de la transformée en ondelettes, 
de la transformation de Hilbert-Huang et d’autres méthodes d’analyse ou de traitement des signaux, telles que 
le filtrage de Kalman et de Goertzel, pour détecter, mesurer, filtrer et décomposer les signaux sEMG afin 
d’identifier des tendances dans le temps et en fréquence des mouvements de flexion-extension des doigts de la 
main en observant les signaux myoélectriques des muscles superficiels. Le but est de prédire le mouvement des 
doigts de la main et de minimiser le temps de calcul pour permettre de contrôler des prothèses à l’aide de 
capteurs superficiels. L’hypothèse est fondée sur l’idée que tous les mouvements de la main sont une réponse 
active de l’activité myoélectrique des muscles spécifiques et que l’activité électrique peut être mesurée comme 
un signal associé à une séquence de mouvement des éléments de la main (doigts). Chaque doigt peut effectuer 
une trajectoire de la position de repos à la position finale, cette trajectoire qui n’est évidemment pas 
instantanée, engendre un signal  myoélectrique lui-même non instantanée. L’activité électrique du muscle est 
présente sur les signaux enregistrés. Cette activité électrique peut être reconnue par un algorithme à partir 
d’une base de données de modèles de mouvement. Comparer l’activité électrique des muscles en temps réel 
par rapport à ces données peut permettre de détecter une tendance du comportement de la main et donc de 
prévoir le mouvement spécifique avant ou en même temps. Cette prédiction doit autoriser une baisse du temps 
de réponse de la prothèse. 

 

EMG PATTERN PREDICTION OF UPPER LIMB MOVEMENTS BASED ON WAVELETS AND 

HILBERT-HUANG TRANSFORM 
 

This thesis deals with the analysis of multichannel sEMG signals using wavelet transform, Hilbert-
Huang transformation and other signal analysis or processing methods such as Kalman and Goertzel filtering, 
for detecting, measuring, filtering and decomposing sEMG signals to identify patterns in the time and frequency 
of flexion-extension movements of the fingers of the hand by analyzing the myoelectric signals of the 
superficial muscles. The aim is to predict the movement of the fingers of the hand and to minimize the 
computation time to allow the control of prostheses by means of superficial sensors. The hypothesis is based 
on the idea that all hand movements are an active response of the myoelectric activity of specific muscles and 
that electrical activity can be measured as a signal associated with a sequence of motion of the elements of the 
hand (fingers). Each finger can make a trajectory from the rest position to the final position, this trajectory 
which is obviously not instantaneous, generates a non-instantaneous myoelectric signal itself. The electrical 
activity of the muscle is present on the recorded signals. This electrical activity can be recognized by an 
algorithm from a database of the motion models. Comparing the electrical activity of the muscles in real time 
with respect to these data can make it possible to detect a tendency in the behavior of the hand and therefore to 
predict the specific movement before or at the same time. This prediction must allow a reduction in the response 
time of the prosthesis. 
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