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CHAPTER 1. INTRODUCTION

1.1 The context: High Energy Density Laboratory Astrophysics
(HEDLA)

This thesis represents one contribution to the growing field of "laboratory astrophysics"
and more particularly to the area of high energy density laboratory astrophysics. First, the
origin of the term laboratory astrophysics comes from the possibility to investigate astro-
physical processes using human-made tools "on terra firma". This, of course, encom-
passes a very large panel of different disciplines ranging from atomic/molecular physics
[1; 2] and condensed matter [3] to nuclear [4] and particle physics [5] For example, the
fundamental question of the origins of life has been addressed in the laboratory in order
to assess the possibility of a life being "seeded" by organic chemicals and water brought
by cometary impacts [6]. Indeed, experiments have simulated the composition of comets
and interstellar ice grains and shown that upon sufficient radiation heating and vapor-
ization of these materials, it is possible to produce the building blocks of life [7]. Plasma
physics is another major area relevant for astrophysical studies. Indeed, it is now well
established that the vast majority of the visible matter in the universe (so excluding the
hypothetical dark matter) is in the state called "plasma". Often qualified as the fourth
state of matter, it is observed when the energy present in a given system is sufficiently
high to ionize the atoms. This state has been "officially" first reported as "radiant mat-
ter" in 1879 by Sir William Crookes and since then, the field has undergone an impres-
sive number of discoveries and breakthroughs. These works have been driven notably by
the "quest" aiming to mastering nuclear fusion reactions, in a controlled way, in order to
produce energy. In parallel, plasma physics has been very early recognized as the good
framework to study a very large number of astrophysical processes. However, it is only
until recently that the human technology has reached a point where it is possible to pro-
duce, in the laboratory, matters in states or regimes relevant to astrophysical phenomena
occurring at high energy densities. This field is often called "High Energy Density Lab-
oratory Astrophysics" (HEDLA). The lasers have a special place in this field since their
invention in the 1960’s. They are indeed an amazing tool to focus (electromagnetic) en-
ergy on small spatial scales and short periods allowing the generation of hot and dense
materials. The foundations of HEDLA lies in the famous and relatively intuitive "nerdy"
proverb: "same equations → same solutions". The mathematical translation of this sen-
tence is called the "scaling" and consists simply to say that if two systems, for example
one in the vacuum chamber of a Parisian laboratory and the other localized around the
shock wave propagating in the interstellar medium as the result of the death of a star, obey
the exact same set of equations, then their evolution will be strictly equivalent under the
condition that the initial and boundary conditions are the same. Of course, the passage
from one scale to another is done using certain scaling parameters and one should not
be surprised to see somewhere some sentences such that "1 nanosecond of evolution
of this system represents one year of this system" or "1 millimeter of this system repre-
sents one solar radius of this one". This, of course, has to be understood as being a pure
mathematical assertion but which can be useful from a physical point of view. One of
the first topic being studied in the laboratory using lasers has been the propagation of
bow shocks (in magnetopsheres, interstellar mediums, supernovae...) in the early 1990s.
In this case the scaling was hydrodynamical and possible because the physical regimes
(quantified by dimensionless parameters such the Reynolds number, Peclet number...)
were similar. In mathematical language it is equivalent to say that both systems obey to
the Euler equations (Navier-Stokes equations without viscosity and thermal conduction).
Later, near the beginning of the new century, Ryutov introduced the same reasoning but
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CHAPTER 1. INTRODUCTION

in the case where a magnetic field is present. In this case, he demonstrated the possibility
to perform a strict mathematical scaling in the framework of the "ideal magnetohydro-
dynamic" (MHD), even in the presence of shocks. The MHD is the model describing the
behavior of neutral fluids within which electrical currents can flow (because the fluid is
ionized) and thus couple to the magnetic fields. Ideal MHD is somehow, for MHD, the
equivalent of the Euler equations for the Naviers-Stockes equations. The idea behind the
restriction of the scaling to these "simplified" set of equations lies in the fact that dissipa-
tive processes tend to break the scaling. It should however be noted that more recently a
consequent work has been done to include in the scaling the possibility for the systems
to be non adiabatic through the loss of energy by radiations [8]. The work published by
Ryutov [9], beginning to be called the "Ryotov scaling", has been the starting point of a
whole new generation of magnetized experiments aiming to study the behavior of flow
when the fields are sufficiently strong to influence the plasma dynamics. One of the most
studied topic in this area concerns the study of magnetized flows observed around young
stars at times during which they are still accreting material from the environing medium,
notably their accretion disk. Indeed, it has been discovered in the 1980s that these stars
(called "T Tauri Stars" or TTS) often exhibit large outflows which can be, in some cases,
highly collimated [10]. It was rapidly supposed that magnetic fields observed on these
systems could be involved in the formation of these jets/winds [? ] and now it is consid-
ered to be true with a high degree of certainty. Very early in the 2000’s, the plasma physics
group of Imperial College pioneered the production of magnetized laboratory jets using
the high pulsed power facility MAGPIE [12; 13]. They used a setup producing a toroidal
magnetic field pushing and collimating hypersonic radiative jets. This configuration was
astrophysically-relevant in the sense that it was similar to the topology of the "magnetic
tower" model of astrophysical jets [14]. In these experiments the plasma is generated by
the sublimation of solid wires through mega-ampere currents delivered by capacitors in
very short times (∼ µs). The magnetic field generated by these currents exerts a pres-
sure such that the flow is accelerated and highly collimated. Roughly at the same time,
Bellan and his team developed a platform at Caltech to study MHD jet launching using
a planar magnetized coaxial plasma gun [15; 16]. Their work showed strong instabilities
(especially "kinks") of the jets in this configuration. In these previous works, the magnetic
field was always self-produced by the currents flowing inside the plasma. In 2013, the col-
laboration within which this thesis was realized demonstrated for the first time the pro-
duction of astrophysically-relevant magnetized jets using external magnetic fields as well
as lasers [17; 18]. The difficulty to experimentally produce homogeneous and stationary
(on the hydrodynamic scale) strong magnetic fields (> 10T) had for a long time prevented
the use of laser-produced plasmas at high intensities (necessary to obtain the "good" as-
trophysical regimes) to produce magnetized jets. The work demonstrated the possibility
to collimate a diverging plasma flow into a highly collimated stable jets using a poloidal
field. As we are going to see in the next sections, these laser-produced jets are somehow
the "row material" of the work performed in this thesis where novels configurations using
the same setup as in 2013 ([19]) are presented both numerically and experimentally.

1.2 The thesis environment

The work presented in this manuscript has been carried out during my three PhD years
within the team "Plasmas stellaires et astrophysique de laboratoire" inside the LERMA
(UMR8112) laboratory. A small team of a dozen of people, we cover an interesting panel
of subjects related to the laboratory astrophysics field presented above. For example, the
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CHAPTER 1. INTRODUCTION

use of laser pulses as "pistons" to drive shocks inside gas tubes, in a regime called "ra-
diative shocks", is a topic which has been studied for several years by the team (Chantal
Stehlé, Raj Laxmi Singh, Uddhab Chaulagain). The experiences are mainly conducted on
the PALS laser facility [20]. Still about the "shock" topic, during a PhD work and within
a collaboration with the "Osservatorio Astronomico di Palermo", Lionel de Sa has stud-
ied the effect of radiative transfer on the physics of the still not-fully-understood accre-
tion shocks occurring on the surface of T Tauri stars (one of the subjects addressed in
this manuscript). Another very important and well developed field for laboratory astro-
physics concerns the generation of opacity datas, especially in the context of star internal
structures since there radiative transfer plays a dominant role. On this subject, Franck
Delahaye is member of the international Opacity Project (OP) and actively participate
to its development. Opacities are also the "raw materials" for radiative transfer codes
which can be coupled with (magneto-)hydrodynamic codes, either "in line" or as a post-
treatment of the generated datas. Three codes are actively developed in our team. One
of them is the IRIS3D code, led by Laurent Ibgui, which is dedicated to the generation
of synthetic spectra by performing radiative transfer using as an input, thermodynamic
quantities (density, temperature...) from other hydrodynamic codes, both for astrophysi-
cal and laboratory situations. Very recently, the project PHARE was initiated in collabora-
tion with the Laboratoire de Physique des Plasmas (LPP, UMR-7648). This 3D parallelized
hybrid code (ions are treated like particles whereas electrons serve as a neutralizing fluid)
is partially developed by two members of the team (Mathieu Drouin, Andrea Ciardi) and
is aiming at simulating laboratory experiments in which the hydrodynamic description is
not enough/valid. One of the first objective of this code is to model recent or imminent
experiments studying the process of magnetic reconnection using laser-produced plas-
mas (for example at the Laser MegaJoule facility). Another topic studied using an hybrid
code (HECKLE) is the streaming instability, potentially suspected to be involved in the
star formation process. Loïc Nicolas has been working on this instability during its PhD
conducted in parallel with mine. He was particularly interested about the effect of colli-
sions between particles on the evolution of the instability. Finally, for my part, I have been
working on GORGON, the third code developed in our team. GORGON is described in 2.4
of this manuscript. This parallelized 3D resistive magnetohydrodynamic code has been
initially developed (and is still developed) at Imperial London College within the Blackett
Laboratory, especially by my thesis supervisor, Andrea Ciardi. This code was developed
first for modelling z-pinches experiments on the MAGPIE facility in London [21]. As an
important feature necessary to correctly reproduce these experiments, the handling of
"vacuum" regions in this code makes it very adapted for laboratory astrophysics simu-
lations. As mentioned in the previous context introduction, this code has been used to
study the astrophysically-relevant production of magnetized jets in z-pinches configura-
tions (magnetic towers...). For a few years now, thanks in particular to a strong collabora-
tion with the team of Julien Fuchs at the LULI laboratory, we have refocused the GORGON
code toward the modeling of laser experiments. My work falls within this framework, as
it will be detailed just below. In the following years, this work will be expanded, especially
toward the capability to inject "particles" in GORGON. Indeed, Julien Guyot, presently a
first year PhD student, aims to implement in GORGON a module allowing the treatment of
small populations of macro-particles (as in Particle-In-Cell codes) "feedbacking", through
electromagnetic fields, the bulk "MHD fluid".
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Figure 1.1: Schematic representation of the main addressed topics in this manuscript.

1.3 What you will see in this manuscript

The work I present in this manuscript is represented schematically in fig.1.1. Omitted in
this schema are the first part of chapter II where the bi-temperature magnetohydrody-
namic (MHD) model is derived (2) and the GORGON code is presented (2.4). Also omit-
ted is chapter III (3) which can be considered as a (very) small review of the physics of
laser-solid-plasma interaction at, what could called "hydrodynamic" intensities. These
intensities correspond to regimes such that the distribution functions (a notion defined
in chapter II) are not departing "too far" from the maxwellian distribution under the laser
action. In the last part of this chapter, emphasis is placed on the dynamic of the plasma
plume generated by the laser and expanding away from the solid target. A review of the
well-known one-dimensional, self-similar adiabatic and isothermal expansions is given,
as well as an original (but preliminary) treatment of the hypersonic regions of the plume
by using a solution of the inviscid Burger’s equation (i.e the "pressureless" Euler equa-
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tion). In chapter IV (4) we introduce the topic of supersonic/hypersonic jets by studying
both theoretically and numerically some fundamental properties of these objects. To do
so, we use an idealized numerical setup where the jet enters, using boundary conditions,
one side of the simulation domain which is filled with a background composed of plasma
or/and magnetic field. We address especially the aspect of the stability of these jets by
looking at the potentially disruptive effect of the Kelvin-Helmholtz instability and the sta-
bilizing effect of the magnetic field. The chapter ends with the case of a supersonic jet
propagating in a magnetized vacuum. We show that this configuration is extremely sta-
ble and represents the perfect introduction for the fifth chapter. Indeed, in chapter V (5)
we present an in-depth study of the production, in the laboratory, of magnetically colli-
mated jets. The "source" of the jet in this setup the laser-produced plasma expanding in
front of a solid target. In the following chapter VI (6) we address, both experimentally et
numerically, the potential possibility to introduce variability in the source of the jets by
adding a second pulse to the previous setup. In particular we vary the delay between the
two pulses and observe the resulting changes in the internal structures of the collimated
flow. In chapter VII (7) we investigate the case where the magnetic field is rotated by 90°
such that it is parallel to the target surface. We show, strongly supported by experimental
results, that the magnetic field action on the plasma dynamic results in the formation of
what can be identified as magnetic slabs or "magnetic pancakes". It is also shown that
these pancakes are largely structured by MHD instabilities. We suggest the potential in-
terest of this configuration in the context of magnetic structuring of stellar atmospheres.
Finally, in chapter VIII (8) and IX (9) we treat the topic that should be considered as been
the "raison d’être" of this thesis, that is the three-dimensional study of magnetized ac-
cretion dynamic in the laboratory. The setup makes use of the previously studied jets
in order to use them as "accretion columns" impacting on solid obstacles. First are pre-
sented briefly some very recent experimental results obtained at the LULI laboratory and
then we expand the study using our 3D simulations to infer several fundamental features
present in this type of experiment. In particular, we look at the asymmetric aspects of the
developed structures as well as the importance correctly modeling the column-obstacle
interaction. We highlight an important characteristic of the laboratory accretion shocks:
the shock/postshock region itself is in a non equilibrium state with ions much hotter than
electrons. This last point is a fundamental difference with the astrophysical case where
the postshock equilibration times are sufficiently small to consider equals temperatures
for electrons and ions. In addition to these chapters forming the core of this manuscript,
we give in appendix a certain number of theoretical derivations of propagating modes
and instabilities in several configurations. We notably derive the dispersion relations for
modes propagating in magnetic interfaces or magnetic slabs. These derivations are not
essential for the understanding of the core chapters.

1.4 Bibliography

[1] T.R. Kallman and P. Palmeri. Atomic data for x-ray astrophysics. Reviews of Modern
Physics, 79:79–133, January 2007. 2

[2] E. Herbst and E.F. van Dishoeck. Complex Organic Interstellar Molecules. araa,
47:427–480, September 2009. 2

[3] B.T. Draine. Interstellar Dust Grains. araa, 41:241–289, 2003. 2

6



CHAPTER 1. INTRODUCTION

[4] Adelberger et al. Solar fusion cross sections. II. The pp chain and CNO cycles. Reviews
of Modern Physics, 83:195–246, January 2011. 2

[5] Elena Aprile and Stefano Profumo. Focus on dark matter and particle physics. New
Journal of Physics, 11(10):105002, 2009. 2

[6] C. N. Matthews and R. D. Minard. Hydrogen cyanide polymers, comets and the origin
of life. Faraday Discussions, 133:393, 2006. 2

[7] Michel Nuevo, Stefanie N Milam, Scott A Sandford, Jamie E Elsila, and Jason P
Dworkin. Formation of uracil from the ultraviolet photo-irradiation of pyrimidine
in pure h2o ices. Astrobiology, 9(7):683–695, 2009. 2

[8] Emeric Falize, Serge Bouquet, and Claire Michaut. Radiation hydrodynamics scal-
ing laws in high energy density physics and laboratory astrophysics. In Journal of
Physics: Conference Series, volume 112, page 042016. IOP Publishing, 2008. 3

[9] DD Ryutov, RP Drake, and BA Remington. Criteria for scaled laboratory simula-
tions of astrophysical mhd phenomena. The Astrophysical Journal Supplement Se-
ries, 127(2):465, 2000. 3

[10] A. Frank, T. P. Ray, S. Cabrit, P. Hartigan, H. G. Arce, F. Bacciotti, J. Bally, M. Benisty,
J. Eislöffel, M. Güdel, S. Lebedev, B. Nisini, and A. Raga. Jets and Outflows from Star
to Cloud: Observations Confront Theory. Protostars and Planets VI, pages 451–474,
2014. 3

[11] J. Kwan and E. Tademaru. Jets from T Tauri stars - Spectroscopic evidence and colli-
mation mechanism. ApJL, 332:L41–L44, September 1988.

[12] S. V. Lebedev, A. Ciardi, D. J. Ampleford, S. N. Bland, S. C. Bott, J. P. Chittenden, G. N.
Hall, J. Rapley, C. A. Jennings, A. Frank, E. G. Blackman, and T. Lery. Magnetic tower
outflows from a radial wire array Z-pinch. mnras, 361:97–108, July 2005. 3

[13] A. Ciardi, S. V. Lebedev, A. Frank, E. G. Blackman, D. J. Ampleford, C. A. Jennings, J. P.
Chittenden, T. Lery, S. N. Bland, S. C. Bott, G. N. Hall, J. Rapley, F. A. S. Vidal, and
A. Marocchino. 3D MHD Simulations of Laboratory Plasma Jets. apss, 307:17–22,
January 2007. 3

[14] D. Lynden-Bell. Magnetic collimation by accretion discs of quasars and stars. mnras,
279:389–401, March 1996. 3

[15] P. M. Bellan, S. You, and S. C. Hsu. Simulating Astrophysical Jets in Laboratory Ex-
periments. apss, 298:203–209, July 2005. 3

[16] S. C. Hsu and P. M. Bellan. On the jets, kinks, and spheromaks formed by a planar
magnetized coaxial gun. Physics of Plasmas, 12(3):032103, March 2005. 3

[17] B. Albertazzi, A. Ciardi, M. Nakatsutsumi, T. Vinci, J. Béard, R. Bonito, J. Billette,
M. Borghesi, Z. Burkley, S. N. Chen, T. E. Cowan, T. Herrmannsdörfer, D. P. Higginson,
F. Kroll, S. A. Pikuz, K. Naughton, L. Romagnani, C. Riconda, G. Revet, R. Riquier, H.-P.
Schlenvoigt, I. Yu. Skobelev, A.Ya. Faenov, A. Soloviev, M. Huarte-Espinosa, A. Frank,
O. Portugall, H. Pépin, and J. Fuchs. Laboratory formation of a scaled protostellar jet
by coaligned poloidal magnetic field. Science, 346(6207):325–328, 2014. 3

7



CHAPTER 1. INTRODUCTION

[18] A. Ciardi, T. Vinci, J. Fuchs, B. Albertazzi, C. Riconda, H. Pépin, and O. Portugall. Phys.
Rev. Lett., 110:025002, 2013. 3

[19] B Albertazzi, J Béard, A Ciardi, T Vinci, J Albrecht, J Billette, T Burris-Mog, SN Chen,
D Da Silva, S Dittrich, et al. Production of large volume, strongly magnetized laser-
produced plasmas by use of pulsed external magnetic fields. Review of Scientific
Instruments, 84(4):043505, 2013. 3

[20] B Rus, K Rohlena, J Skála, B Králiková, K Jungwirth, J Ullschmied, KJ Witte, and
H Baumhacker. New high-power laser facility pals—prospects for laser–plasma re-
search. Laser and Particle Beams, 17(2):179–194, 1999. 4

[21] SV Lebedev, DJ Ampleford, SN Bland, SC Bott, JP Chittenden, J Goyer, C Jennings,
MG Haines, GN Hall, DA Hammer, et al. Physics of wire array z-pinch implosions:
experiments at imperial college. Plasma physics and controlled fusion, 47(5A):A91,
2005. 4

8



Chapter 2

MagnetoHydroDynamic

Sommaire
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Fluid equations from the kinetic theory . . . . . . . . . . . . . . . . . . . 12

2.2.1 Zero-order moment: the mass conservation equation . . . . . . . . 12

2.2.2 First-order moment: the momentum conservation equation . . . . 13

2.2.3 Second-order moment: the energy conservation equation . . . . . . 16

2.3 MagnetoHydroDynamic (MHD) reduction . . . . . . . . . . . . . . . . . . 16

2.3.1 Summary of the multi-species fluid equations . . . . . . . . . . . . 16

2.3.2 Expression of the collisional heating term . . . . . . . . . . . . . . . 18

2.3.3 The conservation energy for multi-species fluid equations . . . . . 19

2.3.4 The bi-temperature MHD model . . . . . . . . . . . . . . . . . . . . . 20

2.3.5 MHD mass conservation equation . . . . . . . . . . . . . . . . . . . . 21

2.3.6 MHD momentum conservation equation . . . . . . . . . . . . . . . 21

2.3.7 MHD internal energy conservation equation . . . . . . . . . . . . . . 24

2.3.8 The generalized Ohm’s law . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3.9 The displacement current in the Maxwell-Ampere equation . . . . 30

2.3.10 Relative importance of the various electric field terms in the gener-
alized Ohm’s law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.3.11 The induction equation . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.3.12 The quasi-neutrality assumption . . . . . . . . . . . . . . . . . . . . 36

2.3.13 Conservation of the total energy in the MHD model . . . . . . . . . 36

2.4 The GORGON 3D resistive, bi-temperature MHD code . . . . . . . . . . . 39

2.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.4.2 Implemented equations . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.4.3 Localization of the physical quantities in the GORGON grid . . . . . 40

2.5 Implementation of a laser module in the GORGON code . . . . . . . . . 41

2.5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.5.2 Electromagnetic Wave propagation equation in a (unmagnetized)
plasma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

9



CHAPTER 2. MAGNETOHYDRODYNAMIC

2.5.3 Effect of electron-ion collisions on the propagation of light waves
in homogeneous plasmas . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.5.4 Geometric optic approximation and the eikonal equation . . . . . . 46

2.5.5 Implementing the laser deposition module in the three-dimensional,
resistive MHD code GORGON . . . . . . . . . . . . . . . . . . . . . . 47

2.5.6 Validation test for the laser module . . . . . . . . . . . . . . . . . . . 50

2.6 Implementation of the Biermann battery effect in the GORGON code . . 52

2.6.1 General description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.6.2 Details of the numerical implementation . . . . . . . . . . . . . . . . 53

2.6.3 Simulation tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.7 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

10



CHAPTER 2. MAGNETOHYDRODYNAMIC

2.1 Introduction

In this chapter we present in details the MHD model and code that are the foundation of
the work presented in the manuscript. The MHD model equations are derived from first
principle, and although the model is well established and the derivation can be found in
many excellent books, we have taken particular care to highlight and critically discuss the
many assumption that are often made and somewhat overlooked.

In section 2.2 we derive the general fluid equations from the kinetic description. The
central mathematical object in the kinetic theory of gas/plasmas is the distribution func-
tion, noted f (r,v, t ). This function corresponds to the (most probable) number of parti-
cles located, at a time t , in a infinitesimal volume dr3dv3 (dr3 = d xd yd z and dv3 = vx vy vz

in Cartesian coordinates) of the phase space around the point (r,v). We will use the defi-
nition for the number density of particle n(r, t ):

n(r, t ) =
Ñ

v

f (r,v, t )dv3 (2.1)

Depending on whether collisions are taken into account or not, the equation describ-
ing the evolution of the distribution function is the Vlasov equation (no collisions) or the
Boltzmann equation (with collisions). The Boltzmann equation is written as:

∂ f

∂t
+ (v ·∇) f + (a ·∇v) f = ḟc (2.2)

where a is the acceleration, ∇v is nabla operator applied in the velocity space and ḟc

is the term representing the effect of collisions, both intra-species and inter-species. The
formulation of this term is generally the trickiest part of the Boltzmann equation and sev-
eral models exist, one of the most widely used is the Fokker-Planck (FP) equation. The
collisionless Vlasov equation is obtained by setting ḟc = 0 in 2.2 (see [1] for a complete
derivation and discussion about this equation). The fluid equations, namely the equa-
tions describing the conservation of mass, of momentum and of energy are obtained
from the Boltzmann equation 2.2 by expressing the first three moments of the distribu-
tion function (relative to the variable v). The process by which we obtain these equations
is called a "reduction" because of the fact that the system is simplified and described in
somewhat less details. Indeed, when integrating on the velocities v we loose for exam-
ple all the details about the individual particles speeds which are replaced instead by the
mean fluid velocity u:

n(r, t )u(r, t ) =
Ñ

v

v f (r,v, t )dv3 (2.3)

The relation 2.3 is the 1th-order moment of the distribution function whereas 2.1 is its
0th-order moment. Once the mean velocity (i.e. the fluid velocity) defined, it is useful to
introduce the velocity of the particle w in the frame of the fluid velocity u:

w = v−u (2.4)

In the vast majority of fluid models, a last third moment is also used and it is obtained
by multiplying the Boltzmann equation 2.2 by mvv and then by integrating over all veloci-
ties. As we shall see (see 2.20), this new equation introduces, when using 2.4, the pressure
tensor ¯̄P defined by:
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¯̄P =
Ñ

v

mαww f (r,v, t )dv3 (2.5)

where we introduced the mass mα of a particle of the specie α (electrons, ions...). It
is important to note that, in general, the pressure is not a scalar but indeed a tensor de-
scribed by the dyadic product ww in 2.5. As we shall see, each equation describing the
evolution of a moment involves the knowledge of the next moment of higher order. Thus,
ideally, a fourth moment equation (describing the evolution of the heat flux) of the Boltz-
mann equation would be necessary to express the evolution of the pressure tensor and
then a fifth moment equation would be necessary to express the evolution of this fourth
moment and so on... Even if some models have been developed to include such higher
orders moments equations ([2]), the vast majority of fluid descriptions use only the first
three conservation equations and replace the lacking equations by what is called a clo-
sure relation. There are two different types of fluid closure schemes. The truncation
schemes, where higher order moments are assumed negligible or simply prescribed in
terms of lower moments (see [3]), and the asymptotic schemes where assumptions on
certain dimensionless parameters allows to infer, from the kinetic theory, expressions for
the higher moments involved. For example, the Chapman-Enskog theory of a neutral
gas dominated by collisions allows to find simplified expressions for the transport coeffi-
cients, see [4]). The description of a complete physical system by the fluid equations will
be increasingly precise as the distribution function tends toward a function well described
by a decreasing number of moments. The general idea behind is that, to keep the exact
same degree of informations between the kinetic description and the fluid description,
one would need to compute the evolution of an infinite number of moments. It turns out
that in many cases of interest, the distribution function is "simple enough" to be relatively
well characterized by a small number of moments. The best example is of course the one
temperature Maxwell–Boltzmann distribution:

f (r,v, t ) = n(r, t )

(
mα

2πkBT

)3/2

exp

(
−mα(v−u)2

2kBT

)
(2.6)

This distribution function is, as one can see, completely described by the first three
moments, namely the density, the mean velocity and the temperature. The Maxwell–Boltzmann
distribution is thus the "perfect" function in the framework of the three-moments fluid
model. As is well known, it can be shown [4–6] that, in the limit of a collision dominated
system (large term ḟc ), the Boltzmann equation 2.2 drives the distribution function to-
wards a Maxwell–Boltzmann distribution 2.6. This "relaxation" process is a direct result
of the H-theorem of Boltzmann [7]. Therefore, a fluid model will always be more adapted
for collisional plasmas (such that the mean free path of a particle is much smaller than
the typical size of the system) than for weakly or non-collisional plasmas where the Vlasov
equation is required.

In section 2.3 we present an additional simplification to the system of fluid equations
obtained in section 2.2. Indeed, the system of equations derived from the moments of the
Boltzmann equation (see section 2.2) have to be applied to each species α of the plasma.
For each species, the fluid model requires the solution of five equations (one for the mass
conservation, three for the momentum conservation and one for the energy conserva-
tion). So if Nα is the number of different species composing the plasma, the total number
of fluid equations is 5Nα, plus the coupled eight maxwell equations. This is a mathemati-
cally very demanding system and we highlight the fact that Nα can be very large. Since the
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electromagnetic forces depend on the charge state, each ionization state of a given specie
needs to be treated separately. The so-called "MHD reduction" that will be described,
basically replaces all the different "fluids" by one neutral fluid. One central assumption,
among others, is that the time scales of interests are sufficiently large compared to the
time scale where charge separation occurs. In such case the net charge density in the
plasma can then be set to zero. We will first reduce all ion charge states to a single "heavy"
fluid with a mean degree of ionization Z∗

i and then the reduction will be applied the elec-
tron (light) and ion (heavy) fluid mass and momentum conservation equations, thus re-
ducing the system to 2+Nα equations.

The remainder of the chapter (section 2.4) will be dedicated to a detailed description
of the model used in the code GORGON, which is somewhat a further reduction of the
MHD model given in section 2.3, and the implementation of several new physics modules
(laser depostion, Biermann battery ,...).

2.2 Fluid equations from the kinetic theory

2.2.1 Zero-order moment: the mass conservation equation

As explained in the introductory section 2.1, the starting point to derive the fluid equa-
tions is the Boltzmann equation 2.2. The zero-order moment is obtained by directly inte-
grating this equation over the velocities:

∂

∂t

Ñ
v

f dv3

+
Ñ

v

(v ·∇) f dv3 +
Ñ

v

(a ·∇v) f dv3 =
δn

δt

∣∣∣∣
c

(2.7)

where the right-hand side (RHS),

δn

δt

∣∣∣∣
c

=
Ñ

v

ḟc dv3 (2.8)

corresponds to a source term describing, for example, an external injection of matter or
nuclear reactions (through collisions). The first term on the left-hand side (LHS) is simply,
using 2.1, equal to the partial time derivative of the number density:

∂

∂t

Ñ
v

f dv3

 =
∂n

∂t
(2.9)

The second term in LHS can be easily rewritten by noticing that the gradient applies
only to the variable r: (v ·∇) f = ∇· (v f ), and that the integration is only over the velocities,
the gradient can then be removed from the integrals to give:

Ñ
v

(v ·∇) f dv3 = ∇·
Ñ

v

v f dv3

 = ∇· (nu) (2.10)

where we used relation 2.3. This terms corresponds to the divergence of the mass flux.
For the last term of the LHS, we need to explicit the expression of the acceleration a. We
consider the general case of the Lorentz force Florentz = FE+FB = qE+qv×B where E is the
local electric field, B the local magnetic field and q the electric charge of the particle. The
electric force does not depend on the velocity and the magnetic force has the particularity
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that its component FBi (i=x,y,z) does not depend on the velocity vi . The acceleration is
related to the force by the Newton’s second law: a = Florentz/m. Using the index notation
(summation over all indices i ), we can thus write:

Ñ
v

(a ·∇v) f dv3 =
Ï

v j 6=i

ai

∫
vi

∂vi f d vi

dv2 =
Ï

v j 6=i

ai
[

f
]vi =+∞

vi =−∞ dv2 = 0 (2.11)

where we used the justifiable assumption that the distribution function vanish for vi =
±∞ and thus

[
f
]vi =+∞

vi =−∞ = 0. Injecting expressions 2.9, 2.10 and 2.11 into 2.7 we get the first
fluid equation:

∂n

∂t
+∇· (nu) =

δn

δt

∣∣∣∣
c

(2.12)

This equation describes the conservation of the quantity of matter or, equivalently by
multiplying it by the particle mass m, the conservation of mass.

2.2.2 First-order moment: the momentum conservation equation

The second fluid equation is obtained first multiplying the Boltzmann equation 2.2 by the
particle momentum mv and then by integrating over the velocities:

∂

∂t

Ñ
v

mv f dv3

+
Ñ

v

mv(v ·∇) f dv3 +
Ñ

v

mv(a ·∇v) f dv3 = A (2.13)

where:

A =
Ñ

v

mv ḟc dv3 (2.14)

The first term in the LHS of equation 2.13 is, using 2.3, simply equal to:

∂

∂t

Ñ
v

mv f dv3

 =
∂(ρu)

∂t
(2.15)

where ρ = mn is the mass density. The i component of the second term of the LHS
can be rewritten using the same argument as for the zero-order moment (i.e. the gradient
applies only on r):

Ñ
v

mv(v ·∇) f dv3

∣∣∣∣∣∣
i

= ∂ j

Ñ
v

mvi v j f dv3

 (2.16)

We can go further by using the previously defined (see 2.4) centered velocity w, for
which we recall the expression:

w = v−u (2.17)

with, by definition: Ñ
v

w f dv3 =
Ñ

v

(v−u) f dv3 = nu−nu = 0 (2.18)
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Inserting the central moment 2.17 in 2.16 we get:

Ñ
v

mv(v ·∇) f dv3

∣∣∣∣∣∣
i

= ∂ j

Ñ
v

m(wi w j +u j wi +ui w j +ui u j ) f dv3

 (2.19)

the first integral in the RHS of 2.19 defines the kinetic pressure tensor ¯̄P:

¯̄Pi j =
Ñ

w

mwi w j f dw3 (2.20)

where we used the fact that dv3 = dw3 and the integration bounds are still ±∞ for each
component of the central moment w. The second and third integral of the RHS in 2.19 are
zero because of the definition of the central moment 2.18:

Ñ
v

mu j wi f dv3 = mu j

Ï
wk6=i

∫
wi

wi f d wi

dw2 = 0 (2.21)

and

Ñ
v

mu j wi f dv3 = mui

Ï
wk6=j

∫
wj

w j f d w j

dw2 = 0 (2.22)

Finally the third term on the RHS of 2.19 is simply given by:

∂ j

Ñ
v

mui u j f dv3

 = ∂ j (ρui u j ) = ρ(u j∂ j )ui +ui∂ j (ρu j ) (2.23)

then, by inserting all terms 2.20, 2.21,2.22 and 2.23 in 2.19 we get:Ñ
v

mv(v ·∇) f dv3 = ∇· ¯̄P+ρ(u ·∇)u+u(∇· (ρu)) (2.24)

and by summing the first (2.15) and second term (2.24) of the first-order moment
equation 2.13 we find:

∂

∂t

Ñ
v

mv f dv3

+
Ñ

v

mv(v ·∇) f dv3 = ρ
du

d t
+∇· ¯̄P+mu

δn

δt

∣∣∣∣
c

(2.25)

where du/d t = ∂u/∂t + (u · ∇)u is the Lagrangian (or total) derivative and where we
used the first fluid equation 2.12.

Now we derive the expression of the third term of the LHS of 2.13. We use again the
fact that a component ai of the particle acceleration does not depend on the component
vi of the particle velocity. We can thus write:

Ñ
v

mv(a ·∇v) f dv3

∣∣∣∣∣∣
i

=
Ñ

v

mvi∂v j (a j f )dv3 (2.26)

We consider two possibilities: first, if j = i , we can write:
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Ñ
v

mvi∂vi (ai f )dv3 =
Ï

v j 6=vi

mai

∫
vi

vi∂vi f

dv2 (2.27)

and with:

∫
vi

vi∂vi f = [vi f ]vi =+∞
vi =−∞−

∫
vi

f d vi = −
∫
vi

f d vi (2.28)

we have

Ñ
v

mvi∂vi (ai f )dv3 = −
Ï

v j 6=vi

mai

∫
vi

f d vi

dv2 (2.29)

using the index notation, we can write the particle acceleration as:

ai =
q

m
Ei + q

m
εi j k v j Bk (2.30)

and inserting 2.30 in 2.29 we get:

−
Ï

v j 6=vi

mai

∫
vi

f d vi

dv2 = −qEi

Ñ
v

f dv3 −qεi j k Bk

Ñ
v

v j f dv3 (2.31)

An finally, using 2.1 and 2.3, we obtain:

Ñ
v

mvi∂vi (ai f )dv3 = −qnEi −qnui Bi (2.32)

If we now suppose that in relation 2.26 we have j 6= i the result in simply:

Ñ
v

mvi∂v j (a j f )dv3 =
Ï

vk 6=v j

ma j vi

∫
v j

∂v j f d v j

dv2 = 0 (2.33)

because the distribution function is zero for v = ±∞. We can finally express the third
term in the LHS of equation 2.13 as

Ñ
v

mv(a ·∇v) f dv3 = −qnE−qnu×B (2.34)

and assembling all the term of the first-order moment equation (2.25 and 2.34 we find
the second fluid equation:

ρ
du

d t
= −∇· ¯̄P+qnE+qnu×B+A−mu

δn

δt

∣∣∣∣
c

(2.35)
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2.2.3 Second-order moment: the energy conservation equation

By multiplying the Boltzmann equation 2.2 by vv (the dyadic product) one would obtain
the equation describing the evolution of the pressure tensor ¯̄P and involving the heat flux
tensor ¯̄QT (tensor of order 3) defined by:

¯̄QT =
Ñ

w

mwww f dw3 (2.36)

This equation is quite complicated and not very useful since almost never used in this
form. The process to obtain it is however very similar to the one used for the two previous
moments. Here we present a simplified form obtained under the assumption that the
heat flux can be expressed as a vector defined by:

q =
1

2

Ñ
w

mw 2w f dw3 (2.37)

and valid if the velocity anisotropies are small. If furthermore the non-diagonal terms
of the pressure tensor are also neglected (also true for small anisotropies) then the pres-
sure can be simplified as:

p =
1

3

Ñ
w

mw 2 f dw3 =
1

3
Tr ( ¯̄P) (2.38)

where Tr ( ¯̄P) is the trace of the pressure tensor. In this case, equation obtained from
the second-order moment can be written:

∂

∂t

(
3

2
p + 1

2
ρu2

)
+∇·

[
q+

(
5

2
p + 1

2
ρu2

)
u
]

= qnu ·E+K−u ·A+ 1

2
mu2 δn

δt

∣∣∣∣
c

(2.39)

where:

K =
Ñ

v

mv2

2
ḟc dv3 (2.40)

With the internal energy density defined as ε = p/(γ−1) we clearly see that equation
2.39 corresponds to the energy fluid equation for a population with an adiabatic index
γ = 5/3.

2.3 MagnetoHydroDynamic (MHD) reduction

2.3.1 Summary of the multi-species fluid equations

We now derive the complete MHD model with, as starting point the multi fluid equations
derived in the previous section. In the following, the index α is used to identify a given
population (electrons, ions).

I) The conservation of matter, obtained by multiplying equation 2.12 by mα:

∂ρα
∂t

+∇· (ραu) = Sα (2.41)

where S is a source term (nuclear reactions, external source...). We can write this equation
using the the lagrangian derivative d/d t = ∂/∂t +uα ·∇:
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dρα
d t

= −ρα∇·uα (2.42)

II) The conservation of momentum (from 2.35):

ρα

(
∂uα
∂t

+ (uα ·∇)uα

)
= −∇pα+qαnαE+qαnαuα×B+Rα−mαuαS (2.43)

where Rα is the friction force applying on the population α and we considered the re-
duction of the pressure tensor as a scalar (valid if the time between two collisions is much
smaller than the time needed by a particle to make a complete magnetized gyration).

III) The conservation of internal energy:

∂εα
∂t

+∇· (εαuα) = −pα∇·uα−∇·qα+Qc
α+Hα (2.44)

where Qc
α is the heat transfer because of collisions and Hα is a energy source term

(laser heating...). We also have the important relation:∑
α

Qc
α+

∑
α

uα ·Rα = 0 (2.45)

This last equality, contrary to what one might think, does not mean that Qc
α = −uα ·Rα.

This is because the frictional heating is only one component of the total heating Qc
α due

to the collisions (see 2.3.2 for more details).
IV) Maxwell’s equations also need to be included in the system to describe the time

evolution of the electromagnetic fields:

∇·E =
ρq

ε0
(2.46)

∇·B = 0 (2.47)

∂B

∂t
= −∇×E (2.48)

∇×B =µ0j+ 1

c2

∂E

∂t
(2.49)

with ρq the net charge density and:

ρq =
∑
α

qαnα (2.50)

j the electrical current obtained from sum of the currents of each population:

j =
∑
α

qαnαuα (2.51)

and ε0 is the vacuum permittivity whereas µ0 is the vacuum permeability.
In writing all the equations 2.41-2.51 we get a very complex system of equations where

the only assumption having been made concerns basically the fact that the distribution
function for each species, fα, can be relatively well described by the first three moments.
Which is generally valid when the mean free path of the particles is much smaller than
the characteristic size of the system because in this case the distribution function tends
towards a Maxwellian.
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2.3.2 Expression of the collisional heating term

Frictional heating

In equation 2.44 we have introduced the term Qc
α where several different terms are "hid-

den". First, the work of the frictional forces Rα acting on each population α is the source
of heat production (conversion of ordered kinetic energy into thermal energy). A simple
way to describe how this heating is distributed among each component of the plasma has
been given by Woods [8]. Let us suppose that the population α is heated, because of a fric-
tional force with the population β, at rate φα←β, and similarly for the population β. Then
we have:

QFr i c =φα←β+φβ←α = −uα ·Rα−uβ ·Rβ (2.52)

where QFr i c is the total frictional heating in the plasma. By virtue of the Newton’s third
law (action-reaction law), the frictional momentum transfer from α to β must be equal to
the opposite of the momentum transfer from β to α, that is: Rα = −Rβ. With this relation
we can write the total frictional heating 2.52 as:

QFr i c = Rα · (uβ−uα) = Rβ · (uα−uβ) (2.53)

It is now necessary to determine how this total frictional heating is distributed among
the populations. The simplest way, is to consider the case of isotropic elastic collisions
where the energy after a collision α/β is distributed inversely to the particle masses:

φα←β

φβ←α
=

mβ

mα
(2.54)

Inserting 2.54 in 2.52 we find:

φα←β =
mβ

mα+mβ
QFr i c (2.55)

For example, for ions with mass mi and electrons with mass me << mi , it is easy to see
that the frictional heating will go mainly into the lightest population, that is, the electrons.
This is the reason why, in many two-temperature (MHD) models, the frictional heating is
neglected for the ions.

Thermal equilibration

Another important term included in the heating Qc
α is related to the fact that if two dif-

ferent populations, say electrons and ions, have different temperatures (Te 6= Ti ) then,
because of collisions, they will tend to "correct" this deviation on a time scale of the order
of the time between two collisions (or equivalently on a spatial scale of the order of the
mean free path). The expression for this thermal equilibration process (first derived by
Landau in 1937 [9]) is given by:

Qei = −3
me

mi
neνei kB(Te −Ti ) (2.56)

where νei is the electron-ion collision frequency [10]. We shall refer to Qei as the rate
of heat exchange from electrons toward ions and note that the relation Qei = −Qi e holds.

In summary, using eq.2.53, 2.55, 2.56, and the fact that Ri = −Re, the collisional heating
term Qc

α can be written for the electrons and ions as:
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Qc
e =

mi

me +mi
Re · (ui −ue)−3

me

mi
neνei kB(Te −Ti ) (2.57)

Qc
i =

me

me +mi
Re · (ui −ue)+3

me

mi
neνei kB(Te −Ti ) (2.58)

2.3.3 The conservation energy for multi-species fluid equations

The system of fluid equations summarized in 2.3.1 is completely self-consistent in terms
of energy conservation. It can be seen by, first, identifying all forms of energy:

1. Kinetic energy: εki n = 1/2ρu2

2. Internal energy: ε

3. Electromagnetic energy: εEM = ε0E2/2+B2/2µ0

For each form of energy, there is a corresponding conservation equation. The internal
energy conservation equation has already been derived (see eq. 2.44), the conservation of
kinetic energy is obtained by multiplying the momentum equation 2.43 by uα, and finally,
the conservation of electromagnetic energy (Poynting’s theorem) is obtained by multiply-
ing eq. 2.48 by B and then using eq. 2.49. The system of equations is then given by:

Energy Conservation equation

Kinetic
∂εki n

α

∂t
+∇· (εki n

α uα) = −uα ·∇ ·pα+qαnαuα ·E+uα ·Rα

Internal
∂εα
∂t

+∇· (εαuα) = −pα∇·uα−∇·qα+Qc
α+Hα

Electromagnetic
∂εEM

∂t
+∇·

(
E×B

µ0

)
= −E · j

The RHS of the kinetic equation is composed of three terms: the work of pressure
forces, the work of the electric field (no work from the magnetic field) and the work of the
frictional force. The RHS of the internal equation is composed of the compressional term,
the heat transfer term, the frictional heating term as well as all possible external source
terms (laser, radiative emission...). Concerning the electromagnetic energy, the "trans-
port" term ΠEM = E×B/µ0 is the Poynting vector and represents the directional energy
flux density (W.m−2) of the electromagnetic field. The RHS of this equation represents
the electromagnetic energy losses/gains realized through the work the electric field is do-
ing on the fluid particles. The conservation of the total energy is given by the sum of the
three conservation equations, for all the species α composing the plasma:

∂εtot

∂t
+∇·

(
ΠEM +∑

α

[(
εki n
α +εα+pα

)
uα+qα

])
=

∑
α

Hα (2.59)

where we have used relation 2.45as well as relation 2.51 to write
∑
α

qαnαuα ·E = j ·E and

εtot is the total energy density:

εtot = εEM +∑
α

(
εki n
α +εα

)
(2.60)
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Equation 2.60 describes the strict conservation of the total energy. It can be seen that
in the absence of external heating (

∑
α

Hα = 0) the total energy is only transported with the

flux:

Ftot =ΠEM +∑
α

[(
εki n
α +εα+pα

)
uα+qα

]
(2.61)

This flux can also be written in terms of the enthalpy density hα of each species α:

hα = εα+pα (2.62)

giving:

Ftot =ΠEM +∑
α

[(
εki n
α +hα

)
uα+qα

]
(2.63)

The reason for discussing in some details the conservation of total energy is because
it will be, when deriving the MHD model in the next section, particularly important when
interpreting the meaning of what we shall call the "MHD energy".

2.3.4 The bi-temperature MHD model

The first step to derive the full system of equation is to consider the plasma to be com-
posed of electrons (α = e) of mass me and charge qe = −e and only one species of ion
(α = i ) of mass mi and charge qi = eZ∗, where Z∗ is the average degree of ionization. Both
of these species obey equations 2.41-2.43-2.44 and are coupled with the Maxwell’s equa-
tions 2.46-2.47-2.48-2.49.
We first define the total mass density of the plasma:

ρ = me ne +mi ni = ρe +ρi (2.64)

then the velocity u of the center of mass of the plasma:

ρu = ρe ue +ρi ui (2.65)

and the total electrical current density:

j = eZ∗ni ui −ene ue (2.66)

From 2.65 and 2.66 we can write ue and ui as functions of u and j:

ui =
ρ

ρ∗
u+ me

eρ∗
j (2.67)

ue =
Z∗ni

ne

ρ

ρ∗
u− ni

ne

mi

eρ∗
j (2.68)

where:

ρ∗ = ρi + Z∗ni

ne
ρe (2.69)

We see that up to this point, we have made no extra assumptions compared to the
multi-species system described previously; we are just adding or averaging the previous
quantities. We shall make further assumptions on spatial or temporal scales, as late as
possible in our MHD derivation.
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2.3.5 MHD mass conservation equation

As in the case of the multi-species fluid system, the first MHD equation describes the
conservation of the "MHD mass density". It is obtained by directly summing the mass
conservation equation for both species 2.41:

∂(ρe +ρi )

∂t
+∇· (ρe ue +ρi ui) = 0 (2.70)

and, using, 2.64 2.65:

∂ρ

∂t
+∇· (ρu) = 0 (2.71)

Equation 2.71 is the conservation equation for the mass density of the reduced MHD
single-fluid.

2.3.6 MHD momentum conservation equation

An equation for the single-fluid momentum can be obtained from:

d(ρu)

d t
= ρ

du

d t
+u

dρ

d t
=

d(ρe ue)

d t
+ d(ρi ui)

d t
= ρe

due

d t
+ρi

dui

d t
+ue

dρe

d t
+ui

dρi

d t
(2.72)

and thus:

ρ
du

d t
= ρe

due

d t
+ρi

dui

d t
+ dρe

d t
(ue −u)+ dρi

d t
(ui −u) (2.73)

From now, one has to be very cautious by the meaning of the total derivative d/d t used
in the previous equations. Indeed, when writing these equations we have considered the
problem in the frame of the velocity u of the center of mass defined by 2.65. Thus we have
the important relation:

d

d t
=
∂

∂t
+ (u ·∇) (2.74)

This precision is important because we can’t just insert directly the electron and ion
momentum equations (given by 2.43) in 2.73 since with our notation:

dui

d t
6= ∂ui

∂t
+ (ui ·∇)ui (2.75)

and same for electrons. As we will see, the problem will be easily solved using the ex-
pressions for the electron and ion velocities 2.68 and 2.67 provided the plasma is assumed
to be neutral (see below).

Before to treat this problem, let’s look at the last two terms of the RHS of equation 2.73
which can be rewritten using the expressions for the electron and ion velocity in terms of
single-fluid velocity and electrical current density (eq. 2.67 and 2.68):

dρe

d t
(ue −u) =

[
Z∗niρ−neρ

∗

neρ∗
u− ni

ne

mi

eρ∗
j
]

dρe

d t
(2.76)

dρi

d t
(ui −u) =

[
ρ−ρ∗
ρ∗

u+ me

eρ∗
j
]

dρi

d t
(2.77)
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From here, we clearly see that it is impossible to remove all the dependencies in ne and
ni without additional assumption. The terms in eq. 2.76 and 2.77 are corrective terms that
take into account the fact that the single-fluid velocity is not equal to the velocity of both
electrons and ions.

To proceed further, we make one of the main assumptions of the MHD model, namely
that the single-fluid is considered as globally neutral. This is the quasi-neutrality of the
plasma and it corresponds to the equality:

ne = Z∗ni (2.78)

The assumption quasi-neutrality of the plasma is strong, in the sense that it corre-
sponds to the suppression of all physical processes related to charge separation. We will
discuss in details the domain of validity of the MHD model, but let’s say for now that
equation 2.78 acts as a sort of low-pass filter, by filtering all the dynamic occurring on the
electron time scale (ω−1

pe ). With the assumption of quasi-neutrality (eq. 2.78), we see from
eq. 2.69 that ρ∗ = ρe +ρi = ρ and thus the sum of equations 2.76 and 2.77 leads to:

dρe

d t
(ue −u)+ dρi

d t
(ui −u) =

me mi

eρ
j
[

dni

d t
− 1

Z∗
dne

d t

]
= − me

eZ∗
ρi

ρ

dZ∗

d t
j (2.79)

Furthermore, with our quasi-neutrality assumption, we can rewrite the electron (α = e,
2.68) and ion velocities (α = i , 2.67) as:

uα = u+γαj (2.80)

where, from 2.96 and 2.97, the factors γα are given by:

γe = − mi

eZ∗ρ
(2.81)

γi =
me

eρ
(2.82)

With these notations, the first two terms of the RHS of 2.73 writes:

ρα
duα
d t

= ρα

(
∂uα
∂t

+ (uα ·∇)uα

)
−γαρα(j ·∇)uα (2.83)

In this expression we recognize in the first and second term of the RHS the "correct"
(i.e. in the correct frame) lagrangian derivative given by equation 2.43. Injecting these
expressions and using the fact that γeρe = −γiρi and γe −γi = −1/ene (from 2.81 and 2.82),
the sum of eq.2.83 of electrons and ions can be written as (with the term source S = 0):

ρe
due

d t
+ρi

dui

d t
= −∇(pe +pi )+ j×B− me

e

ρi

ρ
(j ·∇)

(
j

ene

)
(2.84)

In writing equation 2.84 we have used the definition of the total electrical current den-
sity (eq. 2.66), as well as the fact that Re = −Ri by virtue of the Newton’s third law (action-
reaction law). This last point is specific to the MHD model: indeed, for the center of mass,
the friction forces vanish. It is important to note that this is not related at all to the fact
that the plasma has to be inviscid or infinitely conducting; as we shall see later, its just a
consequence of the mathematical construction of the MHD reduction. Also, we see that
the electric field has completely vanished as a consequence of the plasma neutrality (2.78)
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Finally, by summing eq. 2.84 and 2.79, we can finally write the complete MHD mo-
mentum equation (eq. 2.73) as:

ρ
du

d t
= −∇(pe +pi )+ j×B− me

e

ρi

ρ

[
1

Z∗
dZ∗

d t
j+ (j ·∇)

(
j

ene

)]
(2.85)

Equation 2.85 is the most general MHD momentum equation of a bi-temperature
plasma with non constant ionization. The last two terms in the RHS in this equation are
often neglected in MHD models because they are proportional to me , the electron mass
and thus they are in some way a "reminiscence" of the fact that the MHD models includes
the electron fluid equations. Let’s call the first of these term Fio:

Fio = −me

e

ρi

ρ

1

Z∗
dZ∗

d t
j (2.86)

In order to quantify the importance of this force we can first remark that this force is
always directed perpendicular to the j×B force so these two component will not compete
against each other. Therefore, to evaluate its importance we must instead make the com-
parison with the pressure forces. Supposing that the characteristic time scale of ionization
is given by electron-ion collisions, we can write dZ∗/d t ∼ Z∗νei (νei is the electron-ion
collision frequency) and then using the estimation j ∼ B/µ0L (L is the characteristic scale
of the macroscopic gradients, see 2.129 for details), we find:

|∇(p)|
|Fio|

∼
me
e Lνei j

p
∼ νei

eB/me

B2/µ0

p
≈ νei

ωce
β−1 (2.87)

where β is the ratio of the magnetic pressure B2/2µ0 to the thermal pressure p (here
p = pe +pi is the total pressure). ωce = eB/me is the electron cyclotron frequency. Thus,
the "ionization" force will be negligible if:

νei

ωce
¿ β (2.88)

One can see that if the plasma beta is close to unity then condition 2.88 is equivalent
to say that the "ionization" force will be negligible if electrons are strongly magnetized.
There is another case where this force is also negligible: if the energy density in the plasma
is such that atoms are and remain fully ionized (as it is often the case in "HEDLA" plas-
mas), then we simply have dZ∗/d t → 0 and therefore Fio → 0. The second reminiscent
term that we will call the inertial force FIner:

FIner = −me

e

ρi

ρ
(j ·∇)

(
j

ene

)
(2.89)

This force, also almost always neglected, has been studied by other authors who have
observed that it was needed in order to conserve the total energy in the MHD system (a
question treated in this chapter, see 2.3.13). They notably studied its effect on the Grad-
Shafranov equation used to describes equilibrium state in a torus (see [11; 12]). This force
reflects the fact that electrons have actually a finite inertia. As we will see in the section
concerning the derivation of the generalized Ohm’s law (2.3.8), this inertial force is associ-
ated to an inertial electric field (as it is the case for "ionization" force). In order to facilitate
this future link, we can note that the sum of the two non-trivial terms can be expressed
(after "some" calculations):

FIo +FIner = −∇·
(

me

e

ρi

ρ

jj

ene

)
(2.90)
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because:

FIo = − j

ene
(j ·∇)

(
me

e

ρi

ρ

)
(2.91)

and

FIner = −me

e

ρi

ρ
∇·

(
jj

ene

)
(2.92)

where jj refers to the dyadic product. In the very usual case where the these non-
trivial terms are negligible we find the well-known "classic" (or "non-extended") MHD
momentum equation:

ρ
du

d t
= −∇(pe +pi )+ j×B (2.93)

At this point, we stress that the first MHD equation that we derived, the mass conser-
vation equation 2.71, is exact (no approximations), whereas the second MHD equations
(eq.2.85 and2.93) have been obtained assuming that the plasma is quasi-neutral on the
concerned time scale. However, in eq.2.85, no hypothesis on the relative importance of
the electron and ion masses has been made.

2.3.7 MHD internal energy conservation equation

As in the previous cases of mass and momentum conservation, we could sum the multi-
species energy equations 2.44 to obtain a reduced equation for the single-fluid and thus
reduce even more the complexity of the system. However, the system of equation would
not be applicable to a very large number of physical situations where a separate descrip-
tion of the energy conservation for electrons and ions is needed. For example, in the
presence of shocks, it is the massive particles that are preferentially heated (heating pro-
portional to mα). In such cases, being able to model ion and electron populations with
different temperature can be important, particularly if the time needed for the equilibra-
tion is comparable or even greater than the typical time scale of the general dynamic.
Another case that will interest us, concerns the implementation of a laser energy source
term in the system. Indeed, we will see that it is the electrons that are preferentially heated
by a laser pulse (2.5). In the case of high-intensity lasers (I & 1013 W.cm−2), the temper-
atures reached are greater than 100eV, which lead to electron-ion collision frequencies
sufficiently low to allow the plasma to stay in a non-equilibrium state for times generally
longer than the laser duration. A correct description of the laser-plasma interaction is
thus possible only if we keep the energy equations separate, but allow them to be coupled
through a term depending on the collision rate. In any case, we highlight the fact that
considering the plasma as being quasi-neutral (eq. 2.78), and thus removing all charge
separation effects, does not imply that all the physics associated with the electrons is re-
moved.

In the MHD model described here, we shall therefore keep separate the internal en-
ergy conservation equations for electrons and ions (eq. 2.44). The internal energy equa-
tion for this "bi-temperature" MHD model are:

∂εe

∂t
+∇(εe ue)+pe∇·ue +∇·qe = Qc

e +He (2.94)
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∂εi

∂t
+∇(εi ui)+pi∇·ui +∇·qi = Qc

i +Hi (2.95)

These equations contain both the electron and the ion velocities. In order to have a
fully self-consistent MHD model, which only involves the total mass density ρ and the
single-fluid velocity u, we replace these velocities by the expressions given in eq. 2.67 and
2.68. For the case of a quasi-neutral plasma (eq. 2.78 and with ρ∗ = ρ), the ion and electron
velocities can be written respectively as:

ui = u+ me

eρ
j (2.96)

ue = u− mi

eZ∗ρ
j (2.97)

Replacing those expressions in eq. 2.94 and 2.95, we arrive at:

∂εe

∂t
+∇(εe u)+pe∇·u+∇·qe =

mi

eZ∗ρ
(j ·∇)εe + (εe +pe )∇·

(
mi

eZ∗ρ
j
)
+Qc

e +He (2.98)

∂εi

∂t
+∇(εi u)+pi∇·u+∇·qi = −me

eρ
(j ·∇)εi − (εi +pi )∇·

(
me

eρ
j
)
+Qc

i +Hi (2.99)

2.3.8 The generalized Ohm’s law

In the MHD model described in the previous three sections, it can be clearly seen that
the electric field E has been somehow "removed" from the system of equations. This is
a consequence of the simplifying assumption that the plasma is quasi-neutral. However,
the electric field is still needed to compute the magnetic field (which has now become
the "main" electromagnetic variable) through Maxwell-Faraday equation, eq. 2.48. The
Maxwell-Gauss equation (eq. 2.46) is, because of the quasi-neutrality assumption, not
useful and may thus be ignored. Furthermore, because in the MHD model we are not
resolving both the electron velocity and the ion velocity, the electrical current density (eq.
2.51) is now an unknown variable and needs an equation for itself. The solution is to
retrieve it from Maxwell-Ampere equation 2.49:

j =
∇×B

µ0
− 1

c2

∂E

∂t
(2.100)

The divergence-free equation for the magnetic field (eq. 2.47) can be considered ac-
tually as an initial condition equation, and it is not relevant in the MHD model to find
an unknown quantity. We now see that if an equation for the electric field can be found,
the global MHD system will then be closed because it will be possible to complete both
equations 2.48 and 2.100 (even if for the latter, in many cases, the displacement current
1/c2∂E/∂t is actually neglected, see 2.3.9). Because in the previous sections we have only
made one assumption (the plasma neutrality), the derived model up to now is almost
exact and one can thus expect a very good equivalence with the multi-species model pro-
vided, of course, that the physical processes described are within the validity domain of
the model (see 2.3.12). The procedure by which the electric field is obtained is perhaps
the biggest "weakness" of the MHD model. It is there, where the strongest assumptions
are generally being made.
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When deriving the single-fluid momentum equation 2.93, we have essentially trans-
formed six partial differential equations (electron and ion momentum equations) into
only three equations. It seems therefore logical that more information should be extracted
from these equations. Let us begin from the general multi-fluid model for an arbitrary
number of species α. We will then later consider only the electrons and ions of our MHD
model. Multiplying equation 2.43 by qα/mα and rewriting the non-linear term by using
the mass equation 2.41, we can rewrite the momentum equation, using the index nota-
tion, as:

∂(qαnαuα,l )

∂t
+∂ j (qαnαuα, j uα,l ) = − qα

mα
∂l pα+

q2
αnα
mα

(
El + uα×B|l

)+ qα
mα

Rα,l (2.101)

Summing over all the species composing the plasma, we find:

∂

∂t

(∑
α

qαnαuα,l

)
+∂ j

(∑
α

qαnαuα, j uα,l

)
= −∂l

(∑
α

qα
mα

pα

)
+

∑
α

(
q2
αnα
mα

El

)
+∑

α

(
q2
αnα
mα

uα×B|l
)
+∑

α

(
qα
mα

Rα,l

) (2.102)

From the definition of the electrical current density, eq. 2.51, we see that the first term
represent the time derivative of the electrical current:

∂

∂t

(∑
α

qαnαuα,l

)
=
∂ jl

∂t
(2.103)

Going back to our MHD fluid composed of electrons and only one species of ions with
charge state Z∗, and always assuming a quasi-neutral plasma, we can write eq. 2.103 as:

∂ jl

∂t
= −∂ j

[
ene (ui , j ui ,l −ue, j ue,l )

]+ e

me
∂l

[
pe −Z∗ me

mi
pi

]
+

e2ne

me
El

[
1+Z∗ me

mi

]
+ e2ne

me

[
ue + me

mi
ui

]
×B

∣∣∣∣
l
− e

me
Re,l

[
1+Z∗ me

mi

] (2.104)

where we have used the fact that the transfer of momentum from electrons to ions is
equal to the transfer of momentum from ions to electrons: Re,l = −Ri ,l . Using the expres-
sions for the ion and electron velocities as function of the single-fluid velocity u, and the
electrical current density j (eq.2.96 and 2.97), we can rewrite the expression of the velocity
difference in the derivative present in the first term of the RHS of equation 2.104 as:

ui , j ui ,l −ue, j ue,l =
mi

eZ∗ρ

[
1+Z∗ me

mi

]
(u j jl − j j ul )− m2

i

e2Z∗2ρ2

[
1−Z∗2 m2

e

m2
i

]
j j jl (2.105)

Equation 2.104 is the most general form of the generalized Ohm’s law [13], and to de-
rive it, we have again only assumed quasi-neutrality. However, in such form this equation
is basically never used. First and foremost because of its complexity, but in practice be-
cause many of the terms are proportional to the the very small ratio me /mi . Indeed, in
the following we shall assume that these terms are negligible. In particular, we will assume
that:

27



CHAPTER 2. MAGNETOHYDRODYNAMIC

Z∗ me

mi
<< 1 (2.106)

ρ = ρi

(
1+Z∗ me

mi

)
≈ ρi = mi ni = mi

ne

Z∗ (2.107)

We can then rewrite eq. 2.105 as:

ui , j ui ,l −ue, j ue,l =
1

ene
(u j jl − j j ul )− 1

e2n2
e

j j jl (2.108)

With this simplification, and neglecting the terms proportional to me
mi

in eq. 2.104, we
can write Ohm’s law (back in vectorial and dyadic notations) as:

E = −ue ×B+ Re

ene
− ∇pe

ene
+ me

e2ne

[
∂j

∂t
+∇·

(
uj+ ju− jj

ene

)]
(2.109)

We recall the divergence of a dyadic product:

∇· (uj)
∣∣
l = ∂ j (u j jl ) (2.110)

Equation 2.109 can be simplified even further by replacing the electron velocity ue by
eq. 2.97 and using eq. 2.106, to give an expression for the electron velocity:

ue = u− j

ene
(2.111)

Using this in eq. 2.109 we finally get the most usual form of the Ohm’s law:

E = −u×B+ j×B

ene
+ Re

ene
− ∇pe

ene
+ me

e2ne

[
∂j

∂t
+∇·

(
uj+ ju− jj

ene

)]
(2.112)

We note that the last manipulation has allowed us to introduce the Hall term j×B/ene .
We have shown here the complete derivation of the generalized Ohm’s law by starting
from both the electron and the ion momentum equations. Many of the derivations found
in the literature arrive at eq. 2.112 directly from the electron momentum equation by
taking the limit of me → 0. The problem with such derivations is that it is not clear to
which other quantity the inertia of the electrons is compared to. By keeping the terms
involving the ion dynamics, we see clearly and rigorously from eq.2.104 that the usual
Ohm’s law is valid in the limit me /mi << 1.

We now describe in more details Ohm’s law. We begin by writing the RHS of eq. 2.112
as the sum of five electric fields, namely

E = EInd +EHall +EFric +EBiermann +EIner (2.113)

1. The first term is the inductive electric field:

EInd = −u×B (2.114)

It represents the electric field created by the charge separation induced by the qαvα×B
force being exerted in opposite directions for ions and electrons. It can be easily seen that
the field Eind is the one needed for the microscopic particles to drift across the magnetic
field with the fluid velocity u. Indeed, a microscopic particle moving in the electromag-
netic field (Eind,B) will have the drift velocity:

Vdrift =
Eind ×B

B2
= u− (u ·B)

B

B
= u‖b+u⊥−u‖b = u⊥ (2.115)
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where b is the unitary vector pointing in the direction of B and ‖ (resp. ⊥) designates
the B-parallel (resp. the B-perpendicular) component of a vector field (here the veloci-
ties). So we see clearly that Eind exists only to "justify" the existence of a perpendicular
component of the single-fluid velocity. In the case where the MHD fluid is flowing purely
along the magnetic field lines (u‖B) the inductive field is null because no charge separa-
tion is induced at the microscopic scale.

2. The second term describes the velocity shear between electrons and ions:

EHall =
j×B

ene
(2.116)

It is a corrective term which indicates that the electrons are not flowing with the same
speed as ions (see eq. 2.97). Here again, it is associated to the electric field caused by the
tendency of charges to separate under the action of the magnetic field force, but in this
case it corresponds to a "surplus" of force on the electrons which is not compensated on
the ions which are flowing with a different velocity. This "surplus" is important because it
is actually the source of a force on the center of mass of the plasma. Indeed, by multiplying
the Hall electric field by the charge density of electrons (or ions) we get:

ene EHall = j×B (2.117)

We see that this corresponds exactly to the force present in the MHD momentum
equation 2.93 (the equation describing the momentum conservation of the center of mass
of the plasma). In a non-intuitive way, we will see that even if the Hall field is basically re-
sponsible for the "mechanic" action of the field on the plasma, it can be often neglected
in Ohm’s law.

3. The third term is the field arising because of the collisions between electrons and
ions.

EFric =
Re

ene
(2.118)

Re is the rate of momentum transfer from ions to electrons. We have seen that by
the Newton’s third law, ions are experiencing the same amount of momentum transfer
from the electrons, but in the opposite direction thus. We understand that these frictional
forces tend to separate the two population and because of the strong tendency of the
plasma to stay neutral, this produces an electric field EFric. Because the electrons have
much less inertia, the separation is caused mainly by their dynamics and this is why we
have neglected the ion contribution in this field. In the general case, the frictional force
Re can be decomposed as [10]:

Re = Rj +RT (2.119)

where Rj is the friction on the electrons due to the existence of a velocity shear with the
ions, i.e an electrical current j ∝ ue −ui. This term is responsible for the diffusive effects
of the magnetic field and can be written using the plasma resistivity η:

Rj ≈ eneηj (2.120)

The electric field associated to this term is the so-called ohmic electric field:
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EOhm = ηj (2.121)

RT is a thermal frictional force due to the existence of gradients in the electron tem-
perature [10].

4. The fourth term is:

EBiermann = −∇pe

ene
(2.122)

Several names for this term are found in the literature. The terminology Biermann
battery term, refers to the fact that contrary to all other terms in the generalized Ohm’s
law (with the exception of RT), it is independent of the existence of an initial magnetic
field. As will shall see in the next section, when injected in the Faraday’s law 2.48, it can
be, under certain conditions, the source of magnetic field. This terms arises because the
electron pressure gradients tend to set in motion the electrons on a much shorter time
scale than the ions are being moved by their own temperature gradients (because, again,
of their different inertia). This tends to produce a charge separation which is assumed in
the MHD model to be compensated by an electric field. It is interesting to remark that
the Biermann electric field, EBiermann, is also sort of "hidden" in the MHD momentum
equation (as in the Hall term case). Indeed, if we multiply this field by the electron charge
density, we get:

ene EBiermann = −∇pe (2.123)

which is exactly the force present in the MHD momentum equation 2.93. This force
can thus be understood as the effect of a polarizing electric field pulling the ions in or-
der for them to stay "stuck" with the electrons which are being pushed by their pressure
gradients. This view gives an answer to the possible conflict which can appear in the
MHD momentum equation 2.93 in cases where the electron-ion collisions are very low
(but ion-ion and electron-electron are sufficiently strong to validate in each population
the fluid description). Indeed, the pressure forces have a meaning only if, on the char-
acteristic studied scale, the microscopic particles can transfer part of their momentum
through collisions [8] (i.e. particle mean free path smaller than the pressure characteristic
gradients scale) thus, if electrons are very weakly collisional with the ions, one could ask
how the electron pressure force present in the MHD momentum equation 2.93 could act
in order to induce a momentum in the bulk population (ions) described by this single-
fluid equation. With the previous discussion about the nature of the Biermann electric
field, we understand that this "mechanical" action is realized through the existence of
this electric field. In the description of the code GORGON, we shall give more details of
this term and the work done within this thesis to implement it in the code.

5. The fifth and last term is:

EIner =
me

e2ne

[
∂j

∂t
+∇·

(
uj+ ju− jj

ene

)]
(2.124)

This term is proportional to the electron mass and this is why we call it the inertial
electric field. As we shall see, this term can be neglected in the vast majority of situations
of interest. However, now we come back to an important point we have mentioned when
deriving the (exact) MHD momentum equation 2.85. It was found that two non-trivial
forces were present in addition to the classic −∇p and j×B forces. In the present section,
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in order to obtain the inertial electric field 2.124, we considered two different things: first,
to derive 2.101, we assumed the electric charge of the particles α to be constant and thus
it is evident that the electric field due to potential ionization effect will not be taken into
account here (otherwise we will obtain an electric field associated to the "ionization" force
Fio). Additionally, we also neglected the electron mass with respect to the ion mass with
one of the consequence being ρ ≈ ρi . In this case, it can be seen that the inertial force
(2.92) can be written as:

FIner = −me

e
∇·

(
jj

ene

)
(2.125)

which is exactly the force one would obtained by multiplying the third term of the
inertial electric field EIner (2.124) by ene .

2.3.9 The displacement current in the Maxwell-Ampere equation

Before discussing the relative importance of all electric fields in the generalized Ohm’s
law, we provide an estimate of the electrical current density j magnitude, which is actu-
ally involved in three of the five electric fields components of this law, namely EFric, EHall

and EOhm. To do so, we shall use Maxwell-Ampere equation (2.100) but let’s first evaluate
the characteristic ratio of the electric field over the magnetic field, E/B. From Maxwell-
Faraday law 2.48 we have:

∂B

∂t
= −∇×E ⇒ B

T
∼ E

L
⇒ E

B
∼ L

T
(2.126)

where L and T are the characteristic length and time of the problem. Next, to sim-
plify Maxwell-Ampere equation, we estimate the ratio of the displacement current to the
inductive current: ∣∣∣ 1

c2
∂E
∂t

∣∣∣
|∇×B| ∼

1
c2

E
T

B
L

=
1

c2

L

T

E

B
∼ V2

c2
(2.127)

where we used 2.126 and V = L/T is the characteristic speed of the problem. We see
that in the non-relativistic limit V << c the displacement current can be safely neglected
in the Maxwell-Ampere equation. We note that it is always possible to keep the displace-
ment current and in fact, when dealing with vacuum regions in simulations as in the case
in our code GORGON, this term become essential. We highlight the fact that neglecting
the displacement current does not mean that the electric field is constant (and it is not).

For the estimated we will conduct in the next section, we will simply use Maxwell-
Ampere equation without the displacement current, namely:

j =
∇×B

µ0
(2.128)

and the associated current density magnitude:

j ∼ B

µ0L
(2.129)
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2.3.10 Relative importance of the various electric field terms in the gen-
eralized Ohm’s law

For the plasmas we are interested in, the dominant term in the Ohm’s law 2.112 is gen-
erally the inductive term EInd. For this reason we will compare all the other terms with
respect to this one.

The Hall term

The first and simplest condition that must be met in order to neglect the Hall term in the
Ohm’s law can be derived using the fact that |j| ≈ ene |ue −ui |. Then the ration:

|EHall|
|EInd|

∼
j B

ene

VB
∼ |ue −ui |

V
(2.130)

gives the condition that to neglect the Hall term the drift velocity between electrons
and ions has to be small compared to the characteristic bulk velocity V of the plasma.

The Hall term is thus a "reminiscence" of the fact that the MHD fluid is composed of
several species and can be understood as a corrective term on the inductive term EInd.
Physically, it also embodies the fact that in ideal MHD (see below), the magnetic field is
effectively "frozen" in the electron population. This can be clearly seen by looking at an
earlier version of the Ohm’s law. Indeed, before introducing the Hall term in eq. 2.112, we
obtained the relation 2.109 where only the electron velocity was involved in the inductive
term. It was a translation of the fact that because it is electrons which have the lowest
inertia, they respond faster to the electromagnetic fields and are thus mainly responsible
for the plasma coupling to the magnetic field dynamics.

Alternatively, we have from equations 2.116, 2.114 and 2.129:

|EHall|
|EInd|

∼
j B

ene

VB
∼ 1

ene

B

µ0LV
∼ V

ωci

1

L

B2/µ0

ρV2
(2.131)

where we used:

ene = eZ∗ni =
eZ∗ρ
mi

=
ρ

B

eZ∗B

mi
=
ρ

B
ωci (2.132)

where ωci = eZ∗B/mi is the ion cyclotron frequency. The characteristic velocity V
can be estimated from simple consideration about the relative importance of the ther-
mal pressure Pth and magnetic pressure PB, that is the value of the plasma beta:

β =
Pth

PB
≈ ρc2

s
B2

2µ0

(2.133)

1. A fluid particle will be mainly accelerated by the pressure forces if β& 1 and in this
case the characteristic pressure forces Fth can be estimated by:

Fth ∼ ρc2
s

L
(2.134)

and the fluid particle of mass density ρ will undergone a typical acceleration during
the "sonic" time T = τs and the spatial length L close to:
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ρ
L

τ2
s
∼ Fth ∼ ρc2

s

L
(2.135)

leading to a characteristic velocity V:

V =

√
L2

τ2
s
∼ cs (2.136)

that is, the typical velocity V in the case where the beta is much greater than unity has
to be taken as the sound speed of the flow cs . Now the sound speed of a bi-temperature
plasma is actually the speed of ion acoustic wave [14] and thus include a contribution of
both the electron and the ion temperatures:

c2
s ≈

γpe

ρ
+ γpi

ρ
(2.137)

Being interested by order of magnitude, if we consider the electrons to have the same
or a much lower temperature than ions (however, we should note that for Te ¿ Ti Landau
damping tends to kill ion acoustic waves [15]), then the sound speed cs can be approxi-
mately taken to be equal to the ion thermal velocity [ref] V ∼ cs ≈ vTi then, by definition
of the ion larmor radius rLi , we have:

V

ωci
∼ vTi

ωci
= rLi (2.138)

Inserting 2.133 and 2.138 in 2.131 we get:

|EHall|
|EInd|

∼ rLi

L

1

β
(2.139)

The Hall term can thus be ignored if:

rLi

L
<< β (2.140)

For β not far from unity it means that the ion larmor radius has to be much smaller
than the characteristic length L on which quantities varies. However, we see that for high
betas this condition is much less constraining. It should also be noted that upon the as-
sumption that electrons are not much hotter than ions, condition 2.140 implies also that
rLe /L << β since in this case rLe < rLi (larmor radius are proportional to

p
mT and because

me /mi << 1, the electron larmor radius is often much smaller than the ion one).
2. In the case where β<< 1, the main responsible for the fluid particle acceleration is

the magnetic forces FB that can be estimated by:

FB ∼ B2

µ0L
(2.141)

and thus the fluid particle of mass density ρwill undergone a typical acceleration dur-
ing the "Alfven" time T = τA and the spatial length L of the order of:

ρ
L

τ2
A

∼ FB ∼ B2

µ0L
(2.142)

leading to a characteristic velocity V:
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V =

√
L2

τ2
A

∼ B

µ0ρ
= vA (2.143)

As we could expect, we recognize the Alfven speed vA = B/µ0ρ. Then relation 2.131 can
be rewritten:

|EHall|
|EInd|

∼∼ vA

vTi

vTi

ωci

1

L

1

β
(2.144)

and with vA/vTi ∼ 1/
√
β, the Hall term will be negligible if:

rLi

L
<< β3/2 << 1 (2.145)

because we are looking at the low beta case. Condition 2.145 is more restrictive by
telling us that as soon as the magnetic energy is larger than the thermal energy, the Hall
term could be neglected only if the problem is solved at much higher scale than the ion
larmor radius (and consequently the electron larmor radius).

The ohmic term

The ratio of the ohmic electric field to the inductive electric field is given by:

|EOhm|
|EInd|

∼ η j

VB
∼ η

VLµ0
=

Dm

VL
=

1

Rm
(2.146)

where we have introduced the magnetic diffusivity Dm = η/µ0 as well as the important
dimensionless parameter, the magnetic Reynolds number:

Rm =
VL

Dm
(2.147)

This parameter is equivalent to the classical Reynolds number in the sense that it quantify
the relative importance between diffusive and convective processes. The difference be-
tween the two numbers is that the magnetic Reynolds number quantify these processes
for the magnetic fields whereas the Reynolds number concerns the momentum. Two re-
markable possibilities can be seen:

Rm >> 1 (2.148)

and thus in this case the MHD model is called ideal because dissipative processes for the
magnetic field are negligible. At the opposite:

Rm << 1 (2.149)

and we are in this case dealing with "resistive MHD". In the majority of astrophysical
plasmas the ideal MHD is a relatively good approximation (because mainly of the very
large scales L, [16]) whereas in the laboratory resistive effects are often present and can
not be neglected.
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The Biermann term

The ratio of this term to the inductive field is approximately:

|EBiermann|
|EInd|

∼ pe

ene LVB
∼ kBTe

eLVB
(2.150)

where we have used, for sake of simplicity, the perfect gas law pe = ne kBTe . With the elec-
tron thermal velocity defined by vTe =

√
kBTe /me and the electron cyclotron frequency

ωce = eB/me = vTe /rLe , eq. 2.150 can be written:

|EBiermann|
|EInd|

∼ rLe

L

vTe

V
(2.151)

Let’s consider first the case where the plasma beta is close or greater than unity β& 1.
In this case V ∼ vTe (supposing that the total pressure is of the same order of magnitude
than the electron pressure):

|EBiermann|
|EInd|

∼ rLe

L
∼

√
me

mi

rLi

L
(2.152)

and thus the Biermann field will be negligible with respect to the inductive field if:
rLe << L or (if ions and electrons have similar temperatures) rLi << L

p
mi /me .

In the case where the plasma beta is much smaller than unity, we have V ∼ vA and,
using vTe /vA ≈√

β, the Biermann field will be negligible if:

rLe

L
<< 1√

β
(2.153)

and thus, because the thermal energy is small in front of the magnetic energy, the con-
dition on the electron larmor radius is less binding. It can also be interesting to compare
the Biermann field with the Hall field:

|EBiermann|
|EHall|

∼
pe

ene L

B2

eneµ0L

∼ β (2.154)

Thus we see that for high beta plasmas the Hall term will be negligible in front of the
Biermann field whereas for low beta plasmas it is the Hall term which will dominate.

The inertial term

The ratio of the first term in the inertial field (2.124) to the inductive field is given by:∣∣∣ me
e2ne

∂j

∂t

∣∣∣
|EInd|

∼ me

e2ne

j

VBT
∼ meε0

e2ne

c2

LTV
∼ ω2

ω2
pe

c2

V2
(2.155)

where ωpe =
√

e2ne /meε0 is the plasma electronic pulsation and we used the relation
µ0ε0c2. The pulsation ω = 1/T is the characteristic pulsation studied in the problem. In
order to neglect this first inertial term, one can see that we must have:

ω2

ω2
pe

<< V2

c2
<< 1 (2.156)
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the last inequality (V2/c2 << 1) is in fact a condition that has to be met in order to assure
the validity of the quasi-neutrality 2.78 as we will see later (see 2.3.12). It is possible to
demonstrate also that the other terms of EIner would give the same condition. Thus, in
order to safely neglect the inertial field, we must only consider low frequency (relative to
the plasma frequency) processes.

2.3.11 The induction equation

The goal of deriving the generalized Ohm’s law has been, as explained before, to obtain
an expression for the electric field in order to "close" the system by obtaining an equation
for the magnetic field evolution. This law is obtained obviously from the Maxwell-Faraday
equation (2.48). In the previous section we have explicitly given the scaling of each fields
of the Ohm’s law by comparing them with the inductive field. Here we write the induction
equation for the magnetic field keeping all the individual fields composing the Ohm’s law.
Later we shall consider some particular cases. Inserting eq, 2.112 in 2.48 we get:

∂B

∂t
= ∇× (u×B)−∇×

(
j×B

ene

)
−∇×

(
Re

ene

)
+∇×

(∇pe

ene

)
−∇×EIner (2.157)

Following the discussion about the importance of the different terms in the Ohm’s law
(sec. 2.3.10) we can simplify equation 2.157 as:

1. If rLi ,rLe << L, Rm >> 1, ω<<ωpe we can write:

∂B

∂t
= ∇× (u×B) (2.158)

this relation corresponds to the Ideal MHD induction equation. It corresponds to the
case where E ≈−u×B. Interestingly, we can note that in this case, the electric field is null
in the frame moving with the plasma velocity u. Indeed, in this frame, the field is (in the
non-relativistic limit) E

′
= E+u×B = 0.

2. If rLi ,rLe << L (Hall and Biermann terms negligible), ω<<ωpe (Inertial term negli-
gible) but the magnetic Reynolds number has a finite value, we can write:

∂B

∂t
= ∇× (u×B)−∇×

(
Re

ene

)
≈∇× (u×B)−∇× (ηj) (2.159)

where we have neglected the thermal friction RT and only considered the ohmic field
EOhm = ηj. Equation 2.159 is the induction equation for the resistive MHD. It corresponds
to an electric field E ≈ −u×B+ηj. We can also note that it is equivalent to say that the
"classical" Ohm’s law is valid in the frame of a fluid particle moving with the velocity u.
Indeed, we have in this frame ηj = E

′
= E+u×B. So with resistive effects, the electric field

in the particle frame is different from zero and is equal to the resistive field.

3. If Rm >> 1 (resistive field negligible), ω << ωpe (inertial field negligible), β << 1
(Biermann field negligible) and the ion larmor radius is not small compared to the char-
acteristic length L, we can write:

∂B

∂t
= ∇× (u×B)− j×B

ene
= ∇× (ue ×B) (2.160)

where we used relation 2.97. Relation 2.160 is the induction equation for the Hall
MHD. It corresponds to the an electric field E ≈−u×B+ j×B/ene = −ue ×B. In this case,
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it means that the electric field is null in the frame moving with the electron velocity since
in in this frame the field is: E

′
= E+ue ×B = 0.

2.3.12 The quasi-neutrality assumption

We now investigate the domain of validity of the quasi-neutrality assumption (2.78). We
have up to now assumed that the plasma could be considered as neutral and found that
this greatly simplifies the system. In order to quantify the order of magnitude of the net
charge density Qnet we use the Maxwell-Gauss equation 2.46 which says that Qnet = ε0|∇ ·
E|. Thus, the ratio of this net charge density on the electron charge density is:

Qnet

ene
≈ ε0|∇ ·EInd|

ene
∼ ε0VB

ene L
∼ V j

ene c2
∼ V(Ve −Vi )

c2
<< 1 (2.161)

where we have assumed that the major contribution of the electric field comes from
in inductive field and we have used 2.129 and µ0ε0c2 = 1. Ve and Vi are the characteristic
electron and ion velocities. Assuming that electron-ion drift is small compared to the
speed of light, we see that the quasi-neutrality is equivalent to say that we are looking
only at non-relativistic plasma flows. We note that condition 2.161 does not mean that
the electron-ion drift has to be small compared to the single-fluid characteristic velocity
V and thus the validity of the quasi-neutrality assumption is still valid if the Hall term
become important or even grater than the inductive term.

2.3.13 Conservation of the total energy in the MHD model

We now address the important topic of the conservation of total energy in the MHD
model. We have already given the conservation equation for the internal energy (eq. 2.98
and 2.99), however we have later introduced a new velocity, namely the velocity of the
center of mass of the plasma u. We ask now the question of what is the new expression
and conservation equation for the kinetic energy in this MHD model. As it is almost al-
ways done, one could just consider that 1/2ρu2 is the kinetic energy density of the plasma.
By multiplying the MHD momentum equation 2.93 (or more precisely 2.85) by u, one may
then obtain an equation identical to the one derived for one specie in section 2.3.3. Then
by adding this equation to the unchanged electromagnetic energy equation (also given in
section 2.3.3) and the internal energy equations (2.98 and 2.99) we could obtain a relation
describing total energy of the plasma. In reality, it can be easily see that by writing such
a relation, it is not possible to derive it in a conservative form and thus there is reason to
believe that the total energy in the MHD system is not conserved. Of course, because to
derive the MHD model we have started from the multi-species system where total energy
is conserved, if the derivation is realized correctly we should be able to write an energy
relation for the MHD system in a conservative form. The solution to this apparent prob-
lem lies in the fact that the plasma kinetic energy is not 1/2ρu2. Indeed, the kinetic energy
density is obviously still given by the sum of the ion kinetic energy and the electron kinetic
energy:

εki n
tot = εki n

e +εki n
i =

1

2
ρe u2

e +
1

2
ρi u2

i (2.162)

next, assuming the quasi-neutrality of the plasma (2.78), we can use relations 2.96 and
2.97 to find:
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u2
i = u2 + m2

e

e2ρ2
j 2 + 2me

eρ
u · j (2.163)

u2
e = u2 + m2

i

e2Z∗2ρ2
j 2 − 2mi

eZ∗ρ
u · j (2.164)

and still because of the quasi-neutrality, we can write the ion and electron densities
as:

ρi =
ρ

1+ Z∗me
mi

(2.165)

ρe =
ρ

1+ mi
Z∗me

(2.166)

then, inserting 2.163, 2.164, 2.165 and 2.166 in 2.162 we get, after some simplifications:

εki n
tot =

1

2
ρu2 + mi me

2e2Z∗ρ
j 2 (2.167)

This last relation has been obtained with the only assumption of quasi-neutrality (no
simplifications were introduced because of the smallness of the electron-ion mass ratio).
It is clear from eq. 2.167 that the plasma kinetic energy density is indeed composed of
the expected term 1/2ρu2 but an other corrective term is present, which depends on the
electron-ion drift velocity. If no currents are present in the plasma, then the kinetic energy
density is indeed given simply (but exactly) by the term involving the single-fluid velocity.
In the general case where currents are present, we can evaluate the importance of the
term in j 2 by:

mi me
2e2Z∗ρ j 2

1
2ρu2

∼ Z∗ me

mi

(Ve −Vi )2

V2
(2.168)

where we have used the relation j 2 = e2Z∗2ρ2
i (ue −ui)2/m2

i , the fact that ρi ≈ ρ and
Ve/i is the characteristic electron/ion velocity whereas V is the characteristic velocity of
the center of mass (and in fact V ≈ Vi ). Thus, the term in j 2 may be neglected when
evaluating th plasma kinetic energy when:

(Ve −Vi )2

V2
<< mi

Z∗me
(2.169)

which is a condition often respected and is relatively similar to the condition allow-
ing to neglect the Hall term (2.130). However, in this section we are interested in the strict
derivation of the total energy equation conservation and thus we must consider this term.
So the question is now: what is the equation describing the conservation of the "real" ki-
netic energy of the plasma but only in terms of the "MHD variables", namely u and j.

To obtain this equation we are first going to rewrite the kinetic energy equation for one
species α (ions (α = i ) or electrons (α = e)) in terms of the MHD variables and then we will
sum these equations. But first let’s recall the following notations (already defined when
deriving the MHD momentum equation 2.3.6):

uα = u+γαj (2.170)

where, from 2.96 and 2.97, the factors γ are given by:
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γe = − mi

eZ∗ρ
(2.171)

γi =
me

eρ
(2.172)

with these notations, the kinetic energy equation for a given species α can be written
as (from section 2.3.3):

∂εki n
α

∂t
+∇· (εki n

α u+γαεki n
α j) = −u ·∇pα−γαj ·∇pα+qαnαu ·E+γαqαnαj ·E+uα ·Rα (2.173)

and by summing over all species:

∂

∂t

(∑
α

εki n
α

)
+∇·

(∑
α

εki n
α u+∑

α

γαε
ki n
α j

)
= −u ·∇

(∑
α

pα

)
−∑

α

γαj ·∇pα+
∑
α

qαnαu ·E+∑
α

γαqαnαj ·E+∑
α

uα ·Rα

(2.174)

We have the following relations for our neutral electron/ion plasma:

∑
α

εki n
α = εki n

tot al =
1

2
ρu2 + mi me

2e2Z∗ρ
j 2 (2.175)

from 2.167. From quasi-neutrality we have:∑
α

qαnα = 0 (2.176)

and (using again the quasi-neutrality ne = Z∗ni ):∑
α

γαqαnα = eZ∗ni
me

eρ
+ene

mi

eZ∗ρ
=

me ne +mi ni

ρ
=
ρ

ρ
= 1 (2.177)

Finally, remarking that, using 2.165, 2.166, 2.171 and 2.172, that we have γiρi = −γeρe =
me /(e(1+Z∗me /mi )), we can write:

χ =
∑
α

γαε
ki n
α = −1

2

me mi

e2Z∗ρ

1− Z∗me
mi

1+ Z∗me
mi

[
mi

eZ∗ρ

(
1+ Z∗me

mi

)
j 2 +2u · j

]
(2.178)

With these relations we can write the conservation of kinetic energy as:

∂

∂t

(
εki n

tot

)
+∇·

(
εki n

tot u+χj
)

= −u ·∇(
pe +pi

)
−γe j ·∇pe −γi j ·∇pi + j ·E+ue ·Re +ui ·Ri

(2.179)

Relation 2.179 is the exact equation describing the conservation of the total kinetic
energy of the plasma. To verify the conservation of the total energy, we use the internal
energy equations given (exactly) in 2.98 and 2.99 which, when summed and written using
the gamma parameters (2.171 and 2.172), gives:

∂ (εe +εi )

∂t
+∇· ((εe +εi )u+ (γeεe +γi εi )j+qe +qi

]
= −(pe +pi )∇·u

−pe∇· (γe j)−−pi∇· (γi j)+Qc
e +Qc

i +He +Hi

(2.180)
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and with the electromagnetic energy conservation which is unchanged (from 2.3.3):

∂εEM

∂t
+∇· (ΠEM) = −E · j (2.181)

with ΠEM = E×B/µ0 the Pointying vector. Finally, by summing relations 2.179, 2.180
and 2.181, we can write the equation for the total plasma energy as:

∂εtot

∂t
+∇· [qe +qi +ΠEM + (εki n

tot +εe +εi +pe +pi )u

+(χ+γeεe +γi εi +γe pe +γi pi )j] = He +Hc

(2.182)

where we have used the fact that Qc
e +Qc

i = −Reue −Riui and:

εtot = εEM +εki n
tot +εe +εi (2.183)

where εEM = ε0E2/2+B2/2µ0 is the electromagnetic energy density.

We now have with 2.182 a conservative form of the total energy described only in terms
of MHD quantities. We see that if external heating sources are absent then the energy is
transported only with the MHD energy flux:

Ftot
MHD = qe +qi +ΠEM + (εki n

tot +εe +εi +pe +pi )u

+(χ+γeεe +γi εi +γe pe +γi pi )j
(2.184)

In the vast majority of MHD models effectively used, for example, for numerical sim-
ulations, this exact form is not retained because of the fact that the energy flux due to the
electrical current is often neglected assuming the electron-ion drift is small compared to
the velocity u (same argument used for neglecting the Hall electric field 2.130). It can be
easily seen that if the terms proportional to the current j are neglected both in the kinetic
energy equation 2.179 and in the internal energy equation 2.180 then it is still possible to
write a total energy equation in a conservative form but in this case the equation is not
describing the "real" conservation of the total energy but instead a approximated value of
it. As we shall see, this is what is done in the GORGON code.

As a last point, we want to highlight the fact that when deriving relation 2.182 we didn’t
consider a specific form of Ohm’s law. Thus, the choice of which terms must be kept in
this law is not going to "break" the total conservation of energy.

2.4 The GORGON 3D resistive, bi-temperature MHD code

2.4.1 Introduction

In this section we will rapidly describe the GORGON code. Further informations about
this code can be found in [17; 18]. The code, originally developed to model Z-pinches,
has been widely used to model laboratory astrophysics laser experiments [19] and astro-
physical plasmas [20] . The code uses a finite volume scheme on a 3D uniform Carte-
sian grid. The parallelization is realized using the standardized Message Passing Interface
(MPI) communication protocol [21].
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From the previous section where the full MHD model was derived we will see that
the main approximation done in our code is that the previously mentioned terms pro-
portional to j in the internal energy equations (see 2.98 and 2.99) are neglected. Also, the
retained Ohm’s law in GORGON is initially that of the resistive MHD (no Hall term, no
Biermann term, no inertial term as well as no thermal frictional force, see 2.3.10).

2.4.2 Implemented equations

The single-fluid, two-temperature resistive magneto-hydrodynamic equations implemented
in the code are:

∂ρ

∂t
+∇.(ρu) = 0 (2.185)

∂(ρu)

∂t
+∇.(ρuu) = −∇(pi +pe )+ (j×B)+Fvisc (2.186)

∂εe

∂t
+∇.(εe u) = −pe∇.u−∇.qe +η j 2 −Qei −Qr ad +Ql aser (2.187)

∂εi

∂t
+∇.(εi u) = −pi∇.u−∇.qi +Qvi sc +Qei (2.188)

∂B

∂t
= ∇× (u×B)−∇× (ηj) (2.189)

where ρ is the mass density, u is the plasma bulk velocity, pe/i = ne/i kBTe/i is the elec-
tronic/ionic pressure (ne/i is the electron-ion density, Te/i is the electron-ion temperature
and kB is the Boltzmann constant), j is the current density obtained from Ampere’s law.
The evolution of the electromagnetic fields is followed using a vector potential formalism,
with the magnetic induction given by B = ∇×A. Regions with densities below 10−7 g .cm−3

(this threshold can be changed but all the simulations presented in this manuscript use
this value) are treated numerically as a vacuum, where momentum, mass, energy and cur-
rent densities are zero. In the vacuum regions, the vacuum form of Maxwell’s equations is
solved and the displacement current in Ampere’s law is retained. Shocks are captured us-
ing a Von Neumann artificial viscosity [22], with Fvisc and Qvi sc the volumetric force and
heating term respectively. The electron/ion internal energy εe/i are given by εi = pi /(γ−1)
for the ions, and by εe = pe /(γ−1)+Q(Z) for the electrons, where γ = 5/3 is adiabatic index
and Q(Z) the ionization potential energy density which depends on the average ioniza-
tion charge Z of the plasma. The latter is obtained from an analytical approximation to a
LTE Thomas-Fermi model [23]. The thermal fluxes are given by qe/i = −κe/i∇Te/i , where
the isotropic thermal conduction coefficients κe/i are taken from [24] with the addition
of a standard flux limiter [25]. The plasma resistivity η is given by Braginskii [10]. The
volumetric energy transfer rate, Qe/i , between ions and electrons is given by 2.56. The
code assume an optically thin plasma with Qr ad being the volumetric energy loss rate due
to radiation escaping the plasma. This rate is computed assuming recombination (free-
bound) and Bremsstrahlung radiation ([23]) with an upper limiter given by the black body
radiation rate (Stefan–Boltzmann’s law).

2.4.3 Localization of the physical quantities in the GORGON grid

For information, the GORGON quantities used for the numerical resolution of the system
presented previously are pictured in fig.2.1 for a given cell.
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Figure 2.1: Spatial localization of the GORGON variables used to perform the numerical scheme

2.5 Implementation of a laser module in the GORGON code

2.5.1 Introduction

One of the first projects completed during this thesis has been the development of a
laser module for the code GORGON described above (see 2.4). Because of an ongoing
and strengthening collaboration with experimental teams using lasers in order to pro-
duce astrophysically-relevant plasmas, the implementation in our code GORGON of a
laser module was necessary to perform simulations on new experiments that have been
performed in 2014 (see 6). A large number of hydrodynamic/plasma codes (e.g. DUED
[26], PARAX [27], FCI2 [28], CRASH [29], HYADES [30], ALE-AMR [31]...) have already a
laser module implemented using different algorithms in different geometries (1D, 2D and
3D) and descriptions (eulerian, lagrangian, geomotrical optics...). Here, because finding
a new method for this problem was not the goal, we choose to implement a well-known
and tested algorithm of the laser propagation and energy deposition, namely the "Kaiser"
algorithm [32]. In order to numerically model a laser we use what is called the "ray trac-
ing" method because the pulse is decomposed in multiples individual rays which obey
each to a set of equations describing both their propagation and their absorption.

The implementation presented in this section is similar to the one used in the FLASH
code [33]. We do not present here the parallelization aspect which is specific to our mod-
ule and in common with a test-particle module also developed during this thesis. In this
section, we first present the physical equations describing the propagation and absorp-
tion processes occurring when a laser pulse propagates in a plasma. We clearly present
the validity domain where the geometrical optics approximation used to model the prop-
agation of the rays is valid. We also present the absorption process by which energy trans-
fers from the laser to the plasma. Here we only consider the collisional absorption, also
called inverse-Bremsstrahlung absorption, and neglect others possible absorption mech-
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anisms that are known to occur in laser-plasma interaction (e.g. resonant absorption at
the critical density [34]). Under this assumption, we consider that the laser energy goes
into the thermal energy of electrons by increasing the width of the maxwellian (i.e. ∼
the temperature) and that non-equilibrium phenomena are absent (e.g. production of
supra-thermal electrons [35]...). Finally, we present some benchmark performed using
our implement laser module.

2.5.2 Electromagnetic Wave propagation equation in a (unmagnetized)
plasma

In order to derive the equations governing the propagation of a laser, the starting point
consists to write the full system of Maxwell’s equations, including the source terms:

∇·E =
ρq

ε0
(2.190)

∇·B = 0 (2.191)

∂B

∂t
= −∇×E (2.192)

∇×B =µ0j+ 1

c2

∂E

∂t
(2.193)

Taking the curl of 2.192 and inserting 2.193 we find the equation for the electric field:

∆E−∇(∇·E)− 1

c2

∂2E

∂t 2
=µ0

∂j

∂t
(2.194)

where we have used the vector identity ∇× (∇×A) = ∇(∇ ·A)−∆A and where ε0 and µ0

respectively the permittivity and the permeability of free space. j is the total electrical
current of the medium. Similarly, the wave equation for the magnetic field can be ob-
tained by taking the curl of 2.192 and the temporal derivative of 2.193 and, using the fact
that no magnetic monopole has yet been found:

∆B− 1

c2

∂2B

∂t 2
= −µ0∇× j (2.195)

Now, the electrical current induced by the oscillating laser field can be expressed through
the conductivity σ of the plasma. We assume here that ions dot not contribute to the total
current j ≈ jpol where jpol is the current coming from the oscillating movement of the elec-
trons in the laser field. The ions are considered to be immobile over the laser pulsation
time scale (ω−1

pi >>ω−1). Thus we can write Ohm’s law as:

jpol =σE (2.196)

Furthermore, as long as the electron density spatial variations are smooth, i.e.

λ<< Lc = (|∇ne |/ne )−1 (2.197)

holds with Lc the characteristic length of electron density gradients and λ the local laser
wavelength, ∇·E = 0 can be set and eq.2.194 transforms into:
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∆E− 1

c2

∂2E

∂t 2
=µ0

∂(σE)

∂t
(2.198)

This last equation can be simplified further if we assume that over the laser time scale
(ω−1), the only significant contributions to the time derivatives are given by the depen-
dence of the quantities with e−iωt . In this case we have ∂/∂t = −iω and equation 2.198
transforms into:

∆E(r)+
(ω

c

)2
n2E(r) = 0 (2.199)

with:

n2 = 1+ i
σ

ε0ω
(2.200)

n is called the complex refractive index and contains both the parameters for the laser
propagation (real part) as well as the wave damping by interaction with the medium
(imaginary part). In writing equation 2.199 we have transformed the general vectorial
wave equation 2.194 into a stationary equation on the scalar wave field E(r) by separating
the time and space variables. Equation 2.199 is called the Helmholtz equation and is the
starting point to analyze the laser propagation (and energy deposition) in the frame of
geometrical optics. The same previous development can be applied to the magnetic field
from equation 2.195.

Before deriving the equations needed for our ray tracing module, an expression for the
plasma conductivity can be derived quite simply using the fluid equation for the conser-
vation of electron momentum (neglecting pressure forces):

ρe
∂ue

∂t
= −ene E−me neνei ue (2.201)

with ρe the electron mass density and νei the electron-ion collision frequency. We also ne-
glected the magnetic component of the Lorentz force in this expression because of the rel-
ative magnitudes of E and uB that can be estimated from 2.192: E/uB ∼ λω/u ∼ c/u >> 1.
We of course reject, in this case, relativistic laser-plasma interaction at high laser intensi-
ties (> 1018 W.cm−2).

Under the laser action, the field quantities are assumed to possess the time depen-
dence associated to the pulse pulsation: e−iωt thus ∂ue/∂t = −iωue. We can then retrieve
the polarization current jpol = −ene ue from 2.201:

jpol = iε0

ω2
pe

ω

1

1+ i νei
ω

E (2.202)

so we see that in this case the electrical conductivity is given by:

σ = iε0

ω2
pe

ω

1

1+ i νei
ω

(2.203)

With this expression for the conductivity, the refractive index introduced in 2.200 can
be rewritten, assuming we have ω>> νei :

n2 = 1−
ω2

pe

ω2
+ i

νeiω
2
pe

ω3
+O

(
ν2

ei

ω2

)
(2.204)
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In this model, the real part of n2 is associated to the wave propagation whereas the
complex part describes the collisional absorption/damping (inverse Bremsstrahlung) of
the wave. We also note that the relative permittivity ε of the plasma is connected to the
refractive index through ε = n2 and thus:

Re(ε) = 1−
ω2

pe

ω2
= 1− ne

nc
(2.205)

Im(ε) =
νeiω

2
pe

ω3
(2.206)

where nc is defined below (see 2.209).

From equation 2.199, we can obtain the dispersion relation for the propagation of
plane waves in a homogeneous, non-collisional (νei = 0), unmagnetized plasma. Indeed,
for plane waves, the electric field (and the magnetic field) can be written as:

E(r) = E0exp(i k · r) (2.207)

where k is the wavenumber. We have ∆E(r) = −k2 so equation 2.199 in the Fourier
space gives the dispersion relation for the propagation of light waves:

ω2 = k2c2 +ω2
pe (2.208)

One can see that no propagation is allowed if ω < ωpe and in this case the wave is
reflected at the plasma interface [36]. The equality ω = ωpe , which defines the frontier
where reflection starts, can also be expressed in terms of the electron density:

ne = nc =
ε0meω

2

e2
=

4π2me

µ0e2λ2
(2.209)

where we have used the relation between the wave pulsation and the wave wavelength:
ω = 2π/λ and the relation µ0ε0c2 = 1. nc is called the critical density and corresponds
to the electron density above which an electromagnetic waves can not propagate. For a
given monochromatic wave, the plasma will be called super-critical if ne > nc and sub-
critical if ne < nc . For the waves allowed to propagate in the plasma, we can define two
different speeds: the phase velocity vφ and the group velocity vG. The first one is the
speed at which the phase (k · r−ωt ) is "propagating" and is given here by:

vφ =
ω

k
=

c√
1− ω2

pe

ω2

=
cp

Re(ε)
(2.210)

The group velocity is obtained by taking the differential of the dispersion relation
2.208: ωdω = c2kdk and then by deducing the ratio dω/dk:

vG =
dω

dk
= c

√
1− ω2

pe

ω2
= c

√
Re(ε) (2.211)

whereas the phase velocity, as it can be seen from eq. 2.210, can be greater than the
speed of light, the group velocity is always smaller than c. This last velocity represents
actually the speed at which energy is transported and can be interpreted as the speed
of the envelope of a packet of monochromatic waves whose frequencies are close and
centered around ω. Interestingly, we can easily notice from 2.210 and 2.211 that:
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vφvG = c2 (2.212)

2.5.3 Effect of electron-ion collisions on the propagation of light waves
in homogeneous plasmas

When deriving the dispersion relation 2.208 we have neglected the collisions by assuming
νei = 0. If we take into account the electron-ion collisions but still with νei /ω << 1, we
derive a corrected dispersion relation for the case of plane waves (2.207). We use 2.199,
2.200 to find:

k2 =
(ω

c

)2
(

1−
ω2

pe

ω2

)
+ i

νeiω
2
pe

c2ω
(2.213)

In the presence of collisions, the wavenumber vector can be decomposed in a real part
Re(k) as well as an imaginary part Im(k). If we suppose that the wave is propagating in the
z-direction, the spatial dependence of the wave electric field (same for the magnetic field)
can be written as E0exp[(i Re(k)− Im(k))z]. Thus, if Im(k) > 0 the electromagnetic wave
will be damped as it propagates in the plasma and will deposit its energy via electron-ion
collisions (inverse-Bremsstrahlung process). We have k2 = Re(k)2−Im(k)2+i 2Re(k)Im(k)
so we can equalize both real parts and imaginary parts in equation 2.213 to get:

Re(k)2 − Im(k)2 =
(ω

c

)2
(

1−
ω2

pe

ω2

)
(2.214)

2Re(k)Im(k) =
νeiω

2
pe

c2ω
(2.215)

As long as νei /ω<< 1 holds, this system leads to the following simple expressions for
the real and imaginary parts of the wavenumber vector:

Re(k) ≈
(ω

c

)2
(

1−
ω2

pe

ω2

)
(2.216)

Im(k) ≈
νeiω

2
pe

2ω2c

(
1−

ω2
pe

ω2

)−1

(2.217)

It can be easily shown that the damping (inverse Bremsstrahlung) rate νIB of a electro-
magnetic wave is given by [37]:

νIB = 2Im(k)vG (2.218)

Thus, using expressions 2.217 and 2.211 we get:

νIB =
ω2

pe

ω2
νei =

ne

nc
νei (2.219)

This last expression is the one we will use in our laser module but, as specified in this
section, is valid only if νei <<ω.
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2.5.4 Geometric optic approximation and the eikonal equation

In the previous section, we have seen several properties of a light wave propagating in
a homogeneous plasma. In order to derive the solution needed to implement our laser
module in GORGON, we need to investigate the solutions of the (Helmholtz) wave equa-
tion 2.194 when the plasma is inhomogeneous. Previously we have considered the solu-
tions to this equation as plane waves so, building on this idea, we consider here waves
with small deviations from this previous solution:

E(r) = A(r)exp(iκS(r)) (2.220)

in writing this equation, we assume that the characteristic length of electron density
gradients Lc = (|∇ne |/ne )−1 is large compared to the laser wavelength λL. This condition
can be formally expressed using the parameter κ = Lc k0 = Lcω/c:

κ>> 1 (2.221)

Equations 2.220 and 2.221 define what is called the Slowly Varying Envelope Approxi-
mation (SVEA). If criterion 2.221 is fulfilled, the standard procedure to derive the ray de-
scription is to expand the wave amplitude A(r) as an asymptotic series with respect to
integer powers of (iκ)−1 (Debye expansion, [38]):

A(r) =
∞∑

n=0

An(r)

(iκ)n
(2.222)

we need then to express the Laplacian of E(r):

∆E(r) =
[
∆A+ iκA∆S −κ2A(∇S)2 +2iκ(∇A) · (∇S)

]
exp(iκS) (2.223)

Then, substituting 2.220 and 2.223 into the Helmholtz equation 2.199 we get: (with
n2 = Re(ε)+ i Im(ε), ε being the relative permittivity and (ω/c)2 = (κ2/L2

c )

A

(
(∇S)2 − Re(ε)

L2
c

)
+ 1

iκ

[
2(∇A) · (∇S)+A∆S + κ

L2
c

Im(ε)A

]
+ 1

(iκ)2
∆A = 0 (2.224)

where we assume that Im(ε) << Re(ε) because we use the SVEA. Equation 2.224 can
be reduced into one equation if we keep only the dominant term in powers of (iκ)0 and
consider only the dominant term A0 in the Debye expansion of A(r) (see 2.220):

(∇S)2 − Re(ε)

L2
c

= 0 (2.225)

defining a new function ψ such that ψ = Lc S, we can write 2.225 as:

(∇ψ)2 −Re(ε) = 0 (2.226)

this last equation is called the eikonal equation and it describes the so-called eikonal
function ψ(r). It is the basis of the geometrical optic model and, for example, one can
relatively easily retrieve the well known Snell–Descartes law from this equation.

Equation 2.226 is a partial differential equation of the Hamilton-Jacobi type and as
such can be reduced to the Hamiltonian set of ordinal equations:

dr

d t
=
∂H

∂p
(2.227)
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dp

d t
= −∂H

∂r
(2.228)

where the Hamiltonian is given by:

H =
1

2

(
p2 − c2Re(ε)

)
(2.229)

and the ray impulsion is identified to p = c∇ψ. The two equations 2.227 and 2.228 can
thus be written as

dr

d t
= p (2.230)

dp

d t
=

c2

2
∇(Re(ε)) (2.231)

If we use expression 2.205 for the real part of the relative permittivity, we can express
the system (eq. 2.230-2.231) using the electron density and the critical density:

d 2r

d t 2
= − c2

2nc
∇(ne ) (2.232)

As one can see from this last equation, the problem of solving the trajectory of a laser
"ray" in a inhomogeneous plasma is similar to solving the motion equation for a particle

of mass equal to 1kg in a potential field equal to c2

2
ne (r)

nc
. Equation 2.232 is the exact form

of the eikonal equation we will use in our module for the GORGON code.

2.5.5 Implementing the laser deposition module in the three-dimensional,
resistive MHD code GORGON

We implemented the previous model in our 3D MHD code GORGON whose complete
description is given in 2.4. We summarize here the results obtained in the previous section
concerning the light wave propagation and absorption:

d 2r

d t 2
= − c2

2nc
∇(ne ) (2.233)

dPr ay

d t
= −νIBPr ay = −ne

nc
νei Pr ay (2.234)

where we have defined the power of one ray Pr ay . The real laser power Pl aser at a given
instant is related to the ray individual power by Pl aser =

∑
Pr ay . It should be noticed that

in the geometrical optic approximation the notion of intensity has no meaning for a ray,
since it is represented only as an object without volume. As we shall see, the total inten-
sity of the laser can be reconstructed from the sum and spatial distribution of the rays.
From equations 2.233 and 2.234 we see that only three MHD variables are needed for the
laser deposition module, namely the electronic density ne , the electronic temperature Te

and the mean degree of ionization Z̄ (the latter being "hidden" in the coulomb logarithm
present in the electron-ion collision frequency). The inverse-Bremsstrahlung process, as
described in 2.5.3, describes the conversion of the electron kinetic energy coming from
their laser-driven ordered oscillatory motion into disorderly thermal energy through col-
lisions with ions. Due to the large mass ratio mi /me >> 1, we can reasonably suppose
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Figure 2.2

that all the laser energy is initially deposited only in the electron population. If further-
more the laser radiation pressure is neglected (see below), the coupling of the laser with
the GORGON code is realized only by adding a source term Ql aser in the electron energy
conservation equation:

∂εe

∂t
+∇.(εe v) = −pe∇.v−∇.qe +η j 2 −Qei −Qr ad +Ql aser (2.235)

Ql aser is the laser energy deposition rate per unit of time and volume. The condition
necessary to neglect the radiation pressure term can be written Re(ε)I/c << pe +pi . Since
this radiation pressure is effective where the laser is absorbed, i.e not too far from critical
density, we have generally there Re(ε) << 1 (see 2.205) and thus the condition is usually
fulfilled.

We numerically model a laser pulse by decomposing it in multiple rays and solving for
each equations 2.234 and 2.233. The implemented ray tracing numerical schema is the
Kaiser algorithm [32] where at each time step we transport the rays on a cell-by-cell basis.
A useful schematic for this algorithm is given in fig.2.2. For each ray entering in a cell we
know its initial position rin, its initial velocity vin and its initial power Pi n and we want
to determine its exit position rout, its exit velocity vout and its exit power Pout . The exit
power will determine the deposited energy in the crossed cell and can be deduced solving
equation 2.234:

Pout = Pi n ×exp(−
∫ tout

ti n

νIB(t ′)dt ′) (2.236)

where tout is the time needed by the ray to exit the cell. Knowing Pout we the deposited
energy in the cell is given by:

δEr ay = (Pi n −Pout )× tout (2.237)

The expression for the exit power 2.236 requires to determine the complete trajectory
of the ray inside the cell, since the absorption rate νIB has to be estimated for each time
t
′ ∈ [ti n , tout ] at exactly the ray position. Therefore, we first solve equation 2.233 for a small

t (we consider, for simplicity, ti n = 0).

vr ay (t ) = vi n − c2

2
∇i n(

ne

nc
)t (2.238)
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rr ay (t ) = ri n +vi n t − c2

4
∇i n(

ne

nc
)t 2 (2.239)

where gradients are computed at the ray initial entrance position ri n . The next step is
to find the time tout . In the case of a regular orthogonal grid (as in GORGON), we can find
tout by solving the equations, for each cell face k, of the intersection of the ray trajectory
2.239 with the plane containing the face k:

− c2nk ·∇i n(ne )

4nc
t 2

k +nk ·vi n tk +nk · ri n = d (2.240)

and d = nk ·rcel l ,k where rcel l ,k is the position of the k cell center and nk the unit vector nor-
mal to the face k. The final solution tout is the smallest positive one between the twelve so-
lutions tk corresponding to the six faces. We use this value to compute vout = vr ay (t = tout )
and rout = rr ay (t = tout ) from equations 2.238 and 2.239. These values will serve as the new
rin and vin for the next cell crossing.

Now to compute the integral in equation 2.236 we have to find the inverse-Bremsstrahlung
absorption rate along the ray trajectory inside the cell

νIB(rr ay ) =
2.91.10−12

nc

Λ(rr ay )Z̄(rray)n2
e (rr ay )

T
3
2
e (rr ay )

(2.241)

Then we expand ne (r) and Te(r) at the first order and insert the ray trajectory solution
2.239:

ne (r(t )) = ne (rin)+∇i n · (r(t )− rin) = ne (rin)
[
1+at +bt 2] (2.242)

Te (r(t )) = Te (rin)+∇i n · (r(t )− rin) = Te (rin)
[
1+ ct +d t 2] (2.243)

with

a = ∇i n (ne ).vi n
ne (ri n )

b = − c2(∇i n (ne ))2

4nc ne (ri n )

c = ∇i n (Te ).vi n
Te (ri n )

d = − c2∇i n (ne ).∇i n (Te )
4nc Te (ri n )

(2.244)

considering Λ and Z̄ constant within the cell, we find the desired expression for the
inverse-Bremsstrahlung absorption rate along the ray trajectory for t ∈ [ti n = 0, tout ]:

νBr em(t ) = νBr em(ri n)
[1+at +bt 2]2

[1+ ct +d t 2]3/2
(2.245)

With this formula we can get the integral present in 2.236 using a second order Gaus-
sian quadrature: ∫ tout

ti n

νIB(t ′)dt ′ = νBr em(ri n)
tout

2

2∑
i =1

[1+ati +bt 2
i ]2

[1+ cti +d t 2
i ]3/2

(2.246)

where t1 = (1+1/
p

3)tout /2 and t2 = (1−1/
p

3)tout /2.

50



CHAPTER 2. MAGNETOHYDRODYNAMIC

With expression 2.246 we have everything needed for the laser module: rout, vout, Pout

and the deposited energy δEr ay .

2.5.6 Validation test for the laser module

Here we present a very simple safety check performed in our GORGON code with the
implemented module.

Laser propagating in a linearly increasing density

We look at the case where the laser pulse is injected in the box at z = 0 and t = 0. The
density profile depends only on the variable z and is described by:

ne (z) = (1−α)
nc

Lz
z +αnc (2.247)

where α = ne (0)/nc defines the density at the point where the laser enters the domain.
nc is the critical density and Lz is the total length of the domain in the z direction. We also
see that with this profile, the density at the end of the domain is ne (Lz) = nc , that is the
density here is always equal to the critical density.

The position of a ray (among all the rays composing the laser pulse) on the z-axis is
zr (t ) and obeys the geometrical optics equation 2.233:

d 2zr (t )

d t 2
= − c2

2nc

dne

d z
= −(1−α)

c2

2Lz
(2.248)

by integrating 2.248 we find the ray velocity vz,r (t ) and the ray position:

vz,r (t ) =
d zr (t )

d t
= −(1−α)

c2

2Lz
t + vz,r (0) (2.249)

where vz,r (0) is the velocity of the ray when entering in the domain (at z = 0). For the
ray position:

zr (t ) = −(1−α)
c2

4Lz
t 2 + vz,r (0)t (2.250)

From these equations, it is easy to see that the density gradient tends to "decelerate"
the ray and push it towards the regions of lower densities. The reflection point can be
expressed by finding the solution to vz,r (t ) = 0. Using eq.2.249 we find the time tr e f at
which the ray is reflected:

tr e f =
2Lz vz,r (0)

(1−α)c2
(2.251)

and inserting this time in the solution for the ray position 2.250, we find:

zr e f =
Lz v2

z,r (0)

(1−α)c2
(2.252)

Now it is easy to see that if vz,r (0) = c
p

1−α then, from 2.252, we have zr e f = Lz . It
means that if we effectively have this expression for the initial velocity, the ray is reflected
at the end of the domain where the density is equal to the critical density. We have seen
that the group velocity, which is the speed at which energy is transported, is given by
(2.211): vG = c

p
1−ne /nc . Thus, if we inject the expression for the coefficient α in the
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Figure 2.3: Left: Z position of the ray as a function of time. The full black line corresponds to the
solution 2.250 whereas the dotted red line corresponds the ray trajectory obtained in GORGON
using the model described in the previous section. Right: same as previously but here the plotted
quantity is the ray energy as a function of time.

initial velocity, we find: vz,r (0) = c
p

1−ne (0)/nc which is exactly the group velocity of the
wave at the domain entrance. In other words, a ray which enters the domain with the
group velocity corresponding to density at this position, will be deflected at the critical
density. In fig.2.3 we plot, in the left figure, the position zr (t ) of the ray both from the
theoretical relation 2.250 (full black line) and from the implemented module in GORGON
(red dotted line) where we initialized the density profile with expression 2.247. We see the
good agreement between the two curves. Of course, the trajectory plotted in this graph
corresponds to that of one ray among all the other composing the total laser pulse (but
since the propagation equation 2.233 does not depend on other thing that the electron
density profile and that it is uniform in the plane of the laser beam, all rays have exactly
the same trajectory in this case, independently of their energy). Also, the represented ray
trajectory is selected during the first "ejection" of rays (the rays are injected in the domain
at each MHD time step during the total laser time width).

Now the other important quantity that we must check is the energy/power of one ray
as it travels in the simulation domain. Here the equation describing the (collisional) ab-
sorption process is given by 2.234. We can rewrite this equation in terms Er of the ray
energy as:

dEr

Er
= −νIBd t (2.253)

In almost every case, it is not possible to find an analytical solution to this equation
because νIB depends on both Te , ne in a non-trivial way (see 2.241). However, if we con-
sider the case of a uniform temperature and if we neglect the variation of the coulom-
bian logarithm and consider it as constant (a relatively valid assumption) we can write
the inverse-Bremsstrahlung coefficient as (using the density profile 2.247):

νIB = K0n2
e = K0

(
(1−α)2 n2

c

L2
z

z2 +2αnc (1−α)
nc

Lz
z +α2n2

c

)
(2.254)

where K0 is constant and defined by:
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K0 =
2.91.10−12

nc

ΛZ̄

T
3
2
e

(2.255)

here Z̄ is also considered as constant (in the simulation it is imposed). Of course the
absorption coefficient has to be evaluated at the ray position, where its energy is absorbed
thus the z present in 2.254 is actually equals to zr (t ). So, inserting the expression for the
ray position (2.250) in 2.254 we can write the absorption coefficient as:

νIB = K0
(
C4t 4 +C3t 3 +C2t 2 +C1t +C0

)
(2.256)

where:

C0 = α2n2
c (2.257)

C1 = 2α(1−α)vz,r (0)
n2

c

Lz
(2.258)

C2 = (1−α)2v2
z,r (0)

n2
c

L2
z
−α(1−α)2 n2

c c2

2L2
z

(2.259)

C3 = −vz,r (0)(1−α)3 n2
c c2

2L3
z

(2.260)

C4 = (1−α)4 n2
c c4

16L4
z

(2.261)

with expression 2.256 for absorption coefficient, we can now integrate relation 2.253
to find the ray energy as a function of time when it is propagating in the plasma:

Er (t ) = E0 exp

[
−K0

(
C4

5
t 5 + C3

4
t 4 + C2

3
t 3 + C1

2
t 2 +C0t

)]
(2.262)

This solution is represented, for a 1000 eV plasma, in the right image of fig.2.3 (full
black line). The corresponding numerical solution obtained in our laser module in GOR-
GON is plotted in the red dotted line and shows the very good agreement.

2.6 Implementation of the Biermann battery effect in the
GORGON code

2.6.1 General description

As we have seen in the section describing the GORGOn code (2.4), Ohm’s law imple-
mented in the code is the that of resistive MHD (eq. 2.159). Here we discuss the work
done to add the Biermann field EBiermann in our Ohm’s law which will become E = EInd +
EOhm +EBiermann. See 2.122 for details about the meaning of this term.

This field, because we use ideal gas law for electrons (pe = ne kBTe ) in GORGON, can
be written as:

EBiermann = −∇pe

ene
= −∇(

kBTe

e
)− kBTe

e
∇(ln(ne )) (2.263)

53



CHAPTER 2. MAGNETOHYDRODYNAMIC

Of course, in the MHD model, the electric field itself is no explicitly used but instead
is used to compute in the Maxwell-Faraday equation (2.48) to compute the magnetic field
(i.e. the Maxwell-Ampere equation, see 2.157). Thus if we now express the magnetic field
generated by the presence of the Biermann field we have:

∂B

∂t

∣∣∣∣
B

= −∇×EBiermann = ∇×
(

kBTe

e
∇(ln(ne ))

)
= ∇

(
kBTe

e

)
×∇ln(ne ) (2.264)

where we have used the relation∇×(∇(φ)) = 0 (whereφ is any scalar function). The last
equality makes it possible to highlight an important characteristic of the self-generation
of magnetic field in plasmas: the gradients of kBTe /e and ln(ne ) needs to have a non
parallel component in order to generate a non-null magnetic field. This characteristic is
assimilated to the notion of baroclinicity which in fluids mechanics is a measure of how
misaligned the gradient of pressure is from the gradient of density. In this case we say
that a baroclinic fluid is the source of the generation of vorticity [39]. It can be easily un-
derstood that the Biermann battery process can be important when a laser impact a solid
target. This configuration gives raises to crossed gradients and it has been observed that
magnetic field of tens or even hundreds of Teslas can be generated during approximately
the pulse duration [40]. The Biermann battery effect is also important in the domain of as-
trophysics since it is supposed to be involved in the generation of the primordial magnetic
field as it was first proposed by Ludwig Biermann in 1950 [41]. Indeed, magnetic fields are
widely observed in almost all galaxies, and in galaxy clusters, and the origin of these fields
is one of the most fundamental and challenging problems in astrophysics [42; 43]. With-
out the Biermann field included in the generalized Ohm’s law, one can easily see that if the
initial magnetic field in zero, then it will remain so as long as the MHD equations are valid.

In GORGON we compute the magnetic field using the potential vector A related to the
magnetic field by: B = ∇×A (a consequence of the fact that ∇·B = 0). Thus, the potential
vector induced by the Biermann effect will be given by:

∂A

∂t

∣∣∣∣
B

=
kBTe

e
∇ln(ne ) (2.265)

In terms of energy, the self-generated magnetic field through the Biermann battery
mechanism induces two contributions: first the electric field acts on the particles and
"pump" their energy through the power density:

j ·EBiermann = −∇pe

ene
· j = ue ·∇pe −ui ·∇pi (2.266)

and then the Biermann contribution of the MHD Poynting energy flux is given by:

ΠBiermann =
EBiermann ×B

µ0
= − 1

ene

∇pe ×B

µ0
(2.267)

2.6.2 Details of the numerical implementation

Quantities noted as fc represents values at the cell center; ∆ is the spatial resolution of
the simulation domain; (i,j,k) corresponds to the indices of the cell.

We compute the temperatures at the three points where Ax , Ay and Az are defined:

Ti j k
e,Ax

=
Ti j k

e,c +Ti j (k−1)
e,c +Ti ( j−1)k

e,c +Ti ( j−1)(k−1)
e,c

4
(2.268)
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Ti j k
e,Ay

=
Ti j k

e,c +T(i−1) j k
e,c +Ti j (k−1)

e,c +T(i−1) j (k−1)
e,c

4
(2.269)

Ti j k
e,Az

=
Ti j k

e,c +T(i−1) j k
e,c +Ti ( j−1)k

e,c +T(i−1)( j−1)k
e,c

4
(2.270)

and the derivatives of ln(pe ) at these three points:

∂l n(pe )i j k

∂x

∣∣∣∣
Ax

=
1

8∆
[ln(pe,c )(i+1) j k + l n(pe,c )(i+1) j (k−1) + ln(pe,c )(i+1)( j−1)k+

l n(pe,c )(i+1)( j−1)(k−1) − ln(pe,c )(i−1) j k − ln(pe,c )(i−1) j (k−1)−
ln(pe,c )(i−1)( j−1)k − ln(pe,c )(i−1)( j−1)(k−1)]

(2.271)

∂ln(pe )i j k

∂y

∣∣∣∣
Ay

=
1

8∆
[ln(pe,c )i ( j+1)k + l n(pe,c )(i−1)( j+1)k + ln(pe,c )i ( j+1)(k−1)+

l n(pe,c )(i−1)( j+1)(k−1) − ln(pe,c )i ( j−1)k − ln(pe,c )(i−1)( j−1)k−
ln(pe,c )i ( j−1)(k−1) − ln(pe,c )(i−1)( j−1)(k−1)]

(2.272)

∂ln(pe )i j k

∂z

∣∣∣∣
Az

=
1

8∆
[ln(pe,c )i j (k+1) + ln(pe,c )(i−1) j (k+1) + ln(pe,c )i ( j−1)(k+1)+

ln(pe,c )(i−1)( j−1)(k+1) − ln(pe,c )i j (k−1) − l n(pe,c )(i−1) j (k−1)−
l n(pe,c )i ( j−1)(k−1) − ln(pe,c )(i−1)( j−1)(k−1)]

(2.273)

and now we just have to compute:

∂Ai j k
x

∂t

∣∣∣∣∣
Bi er mann

=
kbTi j k

e,Ax

e

∂ln(pe )i j k

∂x

∣∣∣∣
Ax

(2.274)

∂Ai j k
y

∂t

∣∣∣∣∣∣
Bi er mann

=
kbTi j k

e,Ay

e

∂ln(pe )i j k

∂y

∣∣∣∣
Ay

(2.275)

∂Ai j k
z

∂t

∣∣∣∣∣
Bi er mann

=
kbTi j k

e,Az

e

∂ln(pe )i j k

∂z

∣∣∣∣
Az

(2.276)

2.6.3 Simulation tests

In order to test our implementation of the Biermann battery effect, we performed the
following simulations:

1. A plane expansion triggered in a background plasma at rest and of constant den-
sity and temperature. The initial temperature profile was perturbed by modifying
the temperature (both ionic and electronic) as: Te = Ti = Tmax ∗ exp(−z/Lz) where
Tmax was varied from 2 to 100 times the background temperature and Lz is a char-
acteristic length taken to be a small fraction (typically 1/10) of the total length of
the domain in the z direction. The self-generated magnetic field should be zero
(because of aligned electron pressure and density gradients, see 2.264 and indeed it
is what we observed in all our simulations.
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Figure 2.4: Mass flux (in SI units) of a hemispherical blast expansion created by a plasma "ball" of
100 eV with center in (x=0,y=0,z=0). Field lines represents the velocity. Without electronic thermal
conduction.

2. Hemispherical expansion of a blast wave triggered by a small hot "ball" of plasma
with ion/electron temperature ≈ 103 times greater than the background tempera-
ture. The configuration after 1 ns of expansion is shown in fig.2.4 by visualization
of the mass flux. The self-generated magnetic field should also be zero in this case
(because again of the aligned electron pressure and density gradients). Here it is
not entirely the case because the hemispherical expansion is realized in a cartesian
grid.

In fig.2.5 we have represented the maximum total magnetic energy generated in
the simulation domain. These maximum occur at the very beginning of the blast
expansion (≈ 0.01ns), when the (electronic) pressure gradients have not yet had
time to relax. It can be observed on this figure the "healthy" global behavior of our
implementation: as the resolution is increased (decreasing d x) the magnetic energy
generated decreases. For a given resolution (here d x = 0.46µm), it can also be seen
in fig.2.6 that the value of the temperature initialized to generate the blast has an
influence on the maximum generated magnetic energy. This is of course because of
the fact that the Biermann generation is proportional to the temperature gradient
(see 2.264).

We must note that we do not observe, in these preliminary results, the "Biermann
catastrophe" process that has been described in recent paper from the FLASH team
[44]. They have shown that in the presence of strong shocks, the convergence, for
"null cases" like the hemispherical blast wave, of the Biermann battery effect is bro-
ken and actually worsens when increasing the resolution.
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Figure 2.5: Convergence with the spatial resolution of maximal value of the self-generated mag-
netic field in the case of a hemispherical expansion of a 100 eV plasma blast. Without electronic
thermal conduction

Figure 2.6: For a fixed resolution dx=0.46 um, evolution, as a function of the plasma "ball" tem-
perature, of the maximal value of the self-generated magnetic field in the case of a hemispherical
expansion. Without electronic thermal conduction
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CHAPTER 3. THE PHYSICS OF LASER-SOLID TARGET INTERACTION

3.1 Introduction

The chapter we are presenting now aims to give a small overview of the basic aspects
of the physics of laser-solid-plasma interaction. This chapter is largely not essential for
understanding of the rest of this manuscript. It describes, at least in the first section,
physical processes occurring in the region very close to the target while in the following
chapters we will be mostly interested in the dynamics far from this region. However, the
second section dealing with the description of the plasma expansion is of major inter-
est because it represents our "fundamental tool" with which we will work to perform our
astrophysically-relevant simulations.

Since the first laser realized in 1960 by Maiman [1], the uninterrupted progress of op-
tics, electronics, material science have allowed the lasers to reach initially unexpected
performances. The most important parameter used to define the class of a laser is the
intensity IL, that is, its energy per unit of time and unit of surface ([I] = J.cm2.s−1). The
intensity can be estimated from the laser energy EL, the pulse duration τL as well as the
surface of the focal spot φL: IL ≈ EL/τLφL. Two main trends have been developed since
the first millisecond laser of Maiman: on one side, the quest to reach ever more energetic
lasers and on the other side the quest to reach the shortest pulse duration possible.

In fig.3.1 the time evolution of focused laser intensity is shown (from [2]) from 1960
to the 2010’s. Few years after the first laser, two major breakthrough (Q-switching [3] and
mode-locking [4]) have allowed to dramatically increase the peak intensities by compress-
ing the temporal width of the pulse. From there, it was understood early on that above a
certain intensity threshold (∼ 108 W.cm−2, see 3.2.1) it was possible to ablate and then
ionize solid material by focusing the laser pulses onto solid targets. The interest of pro-
ducing high energy density material states has been at the origin of a strong involvement
of military-oriented researchers and a large part of the scientific literature in the sixties
and seventies has been carried out in this context [5; 6]. Schematically, for intensities
. 1015 W.cm−2, the pulse durations are generally long enough to induces regimes rela-
tively well described by (radiative) hydrodynamic models. This is mainly because elec-
trons, thanks to their low inertia, have enough time to thermalize the absorbed energy and
form a quasi maxwellian distribution function. When the intensity increases, we reach
regimes in which electrons receive energy faster than they can "process" through colli-
sions. In these cases, the laser energy goes into non-thermal processes by the generation
of instabilities and non-linear mechanisms, such as suprathermal electron accelerations
[7], or the effect of the ponderomotive force [8] to name a few. At even higher intensities,
the regime become strongly relativistic. Here in this chapter, we will focus on the regime
where the intensity is sufficiently low to allow a hydrodynamic description of the plasma.
We will first see the general aspects of the ablation process, when a laser impacts a solid
planar target. Then we will talk a little bit about the question of the temperatures gen-
erated in laser-produced plasmas and finally, because this is an important point for our
work, we will discuss the dynamic of the plasma plume expanding in front of the solid
target as a result of its heating.
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Figure 3.1: Graph showing the history of maximum laser pulse intensity throughout the past 40
years. From [2].

3.2 The ablation process

3.2.1 Material removal by laser energy

When a laser pulse starts to heat the surface of a solid target, the material is very quickly
vaporized due to the generally low energy required to vaporize the solid (e.g. sum of spe-
cific latent heat of fusion L f , specific latent heat of vaporization Lv and Cv (Tv −T0), where
Cv is the specific heat capacity, Tv the vaporization temperature and T0 the initial temper-
ature of the target). This conversion of solid material into gas is called the ablation pro-
cess. Laser photons are absorbed by free electrons in the solid target through the inverse
bremsstrahlung mechanism [9] and, considering good conducting materials, the charac-
teristic time between collisions for the electrons is of the order of 10−13 −10−14 s. Thus,
electrons will thermalize between themselves and with the lattice phonons on a time scale
much shorter than the pulse width. This leads to a regime where the laser energy is es-
sentially turned instantaneously into heat in the absorption volume φ/α, where φ is the
cross section of the laser at the focal point and α is the laser absorption coefficient in the
solid phase of the materia(for example, α ≈ 0.1nm−1 for copper and for a wavelength of
1µm [10]). The time tvap needed to start the vaporization of the target material can be
estimated by assuming that the laser energy deposited at tvap on the mass φα−1ρsol i d is
equal to the sum of specific latent heat of fusion and specific latent heat of vaporization.
The deposited energy at tvap is given by:

Edep (tvap ) =
∫ tvap

0
Pl aser (t )d t (3.1)
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In the simplest case of a flat profile, we have Edep (tvap ) = Pl aser tvap and thus from
Edep (tvap )/(φα−1ρsol i d ) = L f +Lv +Cv (Tv −T0) we can express the vaporization time:

tvap =
α−1ρsol i d (L f +Lv +Cv (Tv −T0))

Il aser
(3.2)

where Il aser = Pl aser /φ is the laser intensity. For example, for carbon (graphite, ρsol i d ≈
2,267 g .cm−3), L f ≈ 9.7kJ.g−1, Lv ≈ 59kJ.g−1, Cv ≈ 0.709J.g−1.K−1 and Tv ≈ 4098K and if
we suppose that the solid target is initially at room temperature T0 = 300K, a laser with
an intensity Il aser = 1 ·1012 W.cm−2 will vaporize the material at approximately tvap [s] ≈
1.6 ·10−7 ×α−1[cm]. Even considering a very large value of α−1 = 10µm = 10−4 cm ("real"
values are much less than 1µm), we get an vaporization time of tvap ≈ 1.6 ·10−11 s which
is generally much smaller than the typical nanosecond lasers that are used for example,
for laboratory astrophysics experiments. The conclusion is that we can comfortably con-
sider the generation of gas in front of the solid target to occur instantly after the laser start.

3.2.2 The mediating effect of the ablated material

The principal effect resulting from the presence of the ablated gas is to introduce a in-
termediate absorbent medium between the laser and the solid target. This expanding
gas is responsible mediating the transfer of momentum from the laser towards the target.
The second process occurring just after the vaporization is the ionization of the gas. In-
deed, after a characteristic very short breakdown time (< 1 ps) [11], the ionization of the
vaporized gas under the action of the strong laser field generates an increasing electron
density which in turn increases the absorption of the laser photons, mainly through in-
verse Bremsstrahlung (see 2.5.3). The sudden increase of the electron number density ne ,
the so-called "gas breakdown", can be a consequence of "direct" or "indirect" effects (see
the pioneering work from Raizer [11]). First, the direct knock-out of the electrons from
the atoms by the laser beam is possible mainly through two channels: the tunnel effect
and the multiquantum photoeffect (see [12; 13]). The first one can occur if the bounded
electrons see a static electric field during their time of flight through the potential barrier
of ionization in their atoms. We thus understand that this effect will occur preferably for
"low" frequency lasers. The multi-quantum photo-effect is the simultaneous absorption
of multiple laser photons by atomic electron, leading to their release in the continuum.
It can be shown that the probability for the simultaneous absorption of m photons by
an atom is proportional to Im

l aser so this ionization mechanism will occur mainly for high
intensities lasers [14]. The gas breakdown can also be triggered by indirect processes,
i.e. mechanisms by which the laser photons transfer their energy (and momentum) to an
intermediary before the atoms are being ionized. The simplest process is the "electron
cascade" which is very similar to the electrical breakdown occurring in some technolog-
ical devices (glow discharge in neon lights, fluorescent lamps, and plasma-screen televi-
sions...) described by the famous Paschen’s law [15], which gives the necessary "break-
down voltage". The general idea consists to suppose that there exist initially few free elec-
trons in the gas and that under the action of the laser electric field they will gain enough
kinetic energies to collisionally ionize even more atoms. Depending on the gas type and
pressure, the "threshold" laser intensity is generally above ∼ 108 W.cm−2 (depending on
the focal spot size and pulse duration) [16]. Once the electron density reaches values close
to the critical density (see 2.5.2), a strong laser collisional absorption take place and the
laser energy is mainly used to heat the electrons (which can ionize the remaining ions to
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higher charge states) whereas the solid target itself is almost shielded from the laser pulse
field.

The heating of the electron population triggers a departure of the plasma from thermal
equilibrium with ions on a time scale given by the equipartition time:

teq [s] = 3.15 ·108 Ai T3/2
e [eV]

Z2Λne [cm−3]
(3.3)

whereΛ is the coulomb logarithm, typically of the order of 10. Expression 3.3 is an ap-
proximation of equation (5.31) of Spitzer )[17]) under the condition that Ti /Ai << Te /Ae

where Ai is ion the atomic weight and Ae ≈ 1/1837 the electron atomic weight. For rel-
atively high intensities (I ∼ 1013 W.cm−2), we expect temperatures > 100 eV in regions of
densities ∼ 1019 cm−3 thus, using these values for a carbon plasma (completely ionized),
we get teq ∼ 1ns which is of the order of typical laser temporal widths we will study in this
manuscript. The hypothesis that electrons and ions are at the same temperature can thus
be questionable, and indeed our computational models take into account the decoupling
of temperatures.

Following this very fast heating, the plasma experiences a rapid free expansion where
it converts its thermal energy into bulk kinetic energy. In vacuum, this expansion can
be described as a rarefaction wave, which is found to propagates at velocities of the or-
der of the sound speed of the initial ionized and heated gas. The simple case of a one-
dimensional free expansion is treated in detail in a dedicated subsection (3.3.2). For a
laser generated carbon plasma with an initial temperature of 100eV (see 3.2.4), we thus
expect expansion velocities of the order of 100km.s−1.

As a consequence of this rapid expansion, the absorbing plasma medium "spreads" on
distances that can be of the order or even greater than the size of the laser focal spot. As it
expands, the density decreases as well as the collisional absorption (the absorption rate is
proportional to n2

e , see 2.5.3). Thus the plasma becomes partially transparent to the laser
field resulting in a energy deposition profile much more delocalized, and leading globally
to lower temperatures. It is interesting to note that this last point has been at the origin of
a "quest" to find the optimal laser/material parameters necessary to maximize the tem-
perature of the ablated plasma with the aim to reach fusion-relevant conditions [18; 19]
. One of the first solutions envisaged was to use shorter laser pulses to deposit all of the
laser energy before any significant expansion. However it was rapidly found that using
too short laser pulses (< ps) leads to plasma heating which is not "thermal", in the sense
that only a small fraction of the electrons (called "suprathermal") are heated, whereas the
bulk plasma stays basically "cold" [7].

3.2.3 General picture of a solid target illuminated by a laser pulse

Having described the ablation and the ionization of the material from a solid target irra-
diated by a laser, we can now draw a general picture of the resulting structure of the whole
target+plasma system under the action of a laser.

In fig.3.2, we have represented a schematic view of what is admittedly this structure
[20]. We can distinguish four main regions: the unperturbed solid (zone 1), a region of
the solid undergoing a shock (zone 2, see below), a (thermal) conductive region (zone 3)
and finally the expansion region (zone 4). We now describes all these regions, but not
necessarily in this order.
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Figure 3.2: Schematic picture of the different regions established during the interaction of a laser
pulse with a solid target. Region 1: Unperturbed solid target. Region 2: Part of the solid target
been shocked. Region 3: conductive zone, delimited on the left by the ablation front and on the
right by the critical surface. The laser energy can not be deposited directly in this region but in-
stead is transported through thermal conduction up to the ablation front. Region 4: Expanding
plasma, represented in this schema as been isothermal but, as explained in the main text, in some
condition and far form the critical surface, the expansion can be closer to an adiabatic regime.

The conductive zone (zone 3)

As explained in the previous section (3.2.1), as soon as the ablated material breaks down,
the collisional absorption rapidly increases. Laser heating then causes the plasma as well
as the the critical surface to expand outward and the latter to become "detached" from
the solid target. The critical surface is where the electron density is equal to the critical
density nc (2.5.2), see fig.3.2).

Because of "detachment", the region to the left of the critical surface cannot be reached
by the laser energy and thus the only way for the energy to be transported towards the
target is by thermal conduction, mainly by electrons because of their high mobility [20].
That is the reason this zone (number 3 in fig.3.2) is called the "conductive zone". Inside
this region the heat flux Q can be estimated by the harmonic mean [21]:

1

Q
=

1

Qth
+ 1

f Ql i m
(3.4)

where Qth = −κ0T5/2
e

dTe
d x is a semi-empirical thermal flux proportional to the electronic

temperature gradient. In these regimes, the coefficient κ0 is often taken from SITZER-
HARM (where the semi-empirical nature appears, [22]). We point out that because of the
steep, positive electron temperature profile in the conductive zone (3), the thermal flux
is negative. In general, it is almost always necessary to add a limiter on the thermal flux
Ql i m , this is because of the perturbation derivation used to derive κ0 fails at high thermal
fluxes [23].

The simplest limited flux corresponds to the flux that one would observe if all elec-
trons are flowing freely with their thermal velocity [21]. The factor f in 3.4 is introduced
to take into account all the other mechanisms that can occur during the laser-plasma
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interaction (resonant absorption [24], Raman/Brillouin diffusion [25], suprathermal elec-
trons [7]...) and are generally considered as limiting even more the thermal flux. Typical
values of f = 0.03−0.1 have been determined experimentally [26], but large uncertainties
exist.

In term of spatial dimension, the scale length L of the conductive zone can be esti-
mated considering that it corresponds to the length over which the transport of energy by
conduction is comparable with the transport by convection (with the velocity u). This cal-
culation is carried out in [27] and leads to a length proportional to

p
A/Z(1+Ti /ZTe )−3/2λe

where λe is the electron mean free path, A the mass number and Z the effective charge
state. A more detailed, but similar, estimate of the characteristic length can be found in
[28]. The demonstration carried out in this paper assumes the conductive zone to be in
a steady state. This hypothesis is valid only if the laser pulse duration τL is greater than
the time needed to establish the conductive zone. This condition has been derived in [29]
and it is given by:

τL[ns]. 25I14λ
4
L[µm](A/2Z)3/2 (3.5)

where I14 is expressed in units of 1014 W.cm−2 and λL is the laser wavelength. As
we shall see later (5.3), the characteristic laser parameters we will use in this work are
I14 = 7.710−2 and λL = 1.057µm giving, for a carbon target, a value for the right term in 3.5
of ≈ 2.4ns. The typical pulse duration we will use is . 1ns and thus in this case we should
be in a non-stationary regime. In fact, with a (1.057µm, 1ns) laser, the intensity threshold
above which the conductive zone can not be considered as stationary is ≈ 31011 W.cm−2.
Because for intensities close or lower than this threshold the plasma would reach rel-
atively "low temperatures" (. 10eV) and thus be in a low magnetic Reynolds number
regime (2.3.10), this kind of intensities are generally not used for laboratory astrophysics
experiments where large magnetic Reynolds number are usually needed [30]. For exam-
ple, in the case of a 0.35µm laser with the same parameters, the intensity threshold is
basically two order of magnitude higher and the ablation process could be considered as
stationary during the pulse duration.

The unperturbed/shocked solid target (zones 1-2)

Because of the presence of the conductive zone (zone 3), a thermal wave can propagates
towards the solid regions (zones 1-2). If the speed of this wave vth is greater than the
sound speed of the solid, a forward shock wave propagates inside the unperturbed target
forming the region (3) in fig.3.2. This regime is called the deflagration model [27; 31; 32]. It
has been shown that this process occurs almost in all cases, provided the pulse duration is
sufficiently short (. 10ns) [33]. Typically, for a laser intensity of intensity of 1014 W.cm−2,
the shock carry ∼ 3% of the laser energy at a wavelength λ = 1.06µm and up to ∼ 10% for
a wavelength λ = 0.35µm [34]. The limit between the unperturbed target and the shocked
material corresponds to the shock front whereas the limit between shocked material and
the conductive zone is called the ablation front (see fig.3.2) .

We have seen in the previous section that the presence of the ablated material in front
of the target mediates the direct coupling between the laser and the target. However, this
does not mean that the solid material can no longer be ablated since the thermal wave
brings a portion of the deposited energy up to the ablation front.

The pressure at the ablation front is called the "ablation pressure" Pa and is one of the
variables frequently retrieved from laser experiments. It can be linked to the areal ablative
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Figure 3.3: Crater produced in copper by a focused Nd laser beam of an energy of 10 J and a dura-
tion of 10 ns. From [36]

rate ṁa through the introduction of the ablation velocity va :

Pa = ṁa va (3.6)

The areal ablative rate is also related to the velocity of the thermal wave front which
"digs" into the solid surface with a velocity:

vth =
Pa

vaρsol i d
(3.7)

If we consider that during the laser pulse the areal ablative rate is constant, a very
simple way to estimate it, is to measure the crater depth eabl generated after the laser
action:

eabl =
τL

ρsol i d
ṁa (3.8)

where τL is the laser pulse duration. Equivalently, the total ablated mass is simply
equal to Mabl = ρ0φeabl . A typical crater obtained on a copper target with a 10 J laser
pulse of 10 ns is shown in fig.3.3 and the crater depth can be measured, for example, using
a white-light interferometric microscope [35].

The other quantity that is often measured in laser experiments is ablation velocity va ,
mentioned earlier. Contrary to what the name might suggest, this is not the velocity at
which the target surface is ablated (this velocity is the thermal wave velocity vth). The
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ablation velocity is derived from an analogy between the acceleration of laser targets by
lasers and the accelerations of rocket by traditional chemical thrusters. The idea is to con-
sider that the ablation of the target surface is equivalent to say that a flow is ejected from
the surface with a rate ṁa and a kind of mean velocity, namely the ablation velocity va .
This analogy, called the "rocket effect", has been realized for the first time by researchers
from the Naval Research Laboratory (NRL) aiming to accelerate planar targets with lasers
[37]. Experimentally the ablation velocity is measured using charge collectors to infer the
ion velocity spectrum in the emitted plume [38–42]. As an example, for a laser impacting
an aluminium target with an intensity of ∼ 1014 W.cm−2 and a wavelength 0.35µm, the
measured crater depth is eabl ≈ 2.7µm, the areal ablation rate ṁa ≈ 7.28105 g .s−1.cm−2,
the ablation pressure Pa ≈ 27Mbar and the thermal front velocity vth ≈ 2.7105 cm.s−1

[34]. Also in this same experiment, the conductive zone length (which was in the steady
state regime) was estimated to be ≈ 24µm.

The expansion region (zone 4)

We come to the last zone, namely the expansion region (zone 4 in fig.3.2). In fact this is
the most interesting part in the context of this thesis, since we want to use the expanding
plasma to study its dynamic in an externally applied magnetic field of different configu-
rations, and it’s interaction with other solid targets.

If we focus (as we have done so far) on times during which the laser pulse is active,
two main models exist depending on the absorption regime:

1. At high laser intensities, the temperature of the expanding plasma is such that col-
lisional absorption is negligible and the plasma is almost transparent to the laser
pulse. In this case, the laser absorption is almost entirely done at the critical density
thanks to non-linear mechanisms (resonant absorption...). The absorbed energy
near the critical surface is used to drives both the shock wave described previously
and the expansion fan. This is the deflagration model [31; 32]. Depending mainly
on the importance of thermal conduction and radiative losses in this region, the
expansion can be approximates as isothermal or adiabatic (see 3.3.2). The profile
of temperature in zone 4 represented in fig.3.2 shows the case of an isothermal fan
at the critical temperature Tc . In fact this profile is not exactly correct. Indeed, if
we suppose that the expanding plasma is isothermal, it must exist a heat flux at the
critical surface that "feeds" the expansion. This point represents a paradoxical as-
pect of this model since it would contradicts the isothermal assumption. Several
solutions have been proposed to solve this problem [43; 44] and they have shown
that there must exist a time-increasing temperature gradient just after the critical
surface; however as we look far from this surface, the flow is effectively isothermal.

2. At lower laser intensities, the temperature of the expansion fan is low enough to be
in a regime where the underdense expanding region absorbs a large portion of the
laser energy through the inverse-Bremsstrahlung mechanism. If the total absorp-
tion in the plume reaches values close to 100% then the energy reaching the critical
density can be negligible. Since the temperature in the expanding plasma adjusts
itself such that the optical depth of the fan for the laser is approximately unity, this
regime is called the "self-regulating model" [45–47]. Here again, the expansion can
be considered as isothermal or adiabatic (see 3.3.2).
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Figure 3.4: Electron temperature of a lucite plasma (C5,O2,H8) as a function of the laser intensity.
Temperatures were deduced from soft x-ray continuum. From [51]

3.2.4 Temperatures reached in laser-produced plasmas

The question of the values of temperatures reached during the interaction of the laser
pulse with the solid target is a crucial problem when one is seeking to retrieve impor-
tant plasma dimensioned or dimensionless parameters as the plasma resistivity, thermal
conductivity, viscosity, (magnetic) Reynolds number, Peclet number and so one... For
high power lasers, the plasma pressure can reach several hundreds of MPa whereas the
temperature can reach several tens of millions of Kelvins. Under these conditions, mea-
surements realized in-situ are almost always impossible and we rather rely on emission
or absorption diagnostics. A large range of methods are available (see for example [48]),
which depend on the materials used, the time and spatial scales of the plasma; but also on
more "down to earth" considerations like the available space in the experimental cham-
ber or even the money available to perform the experiments. One of the oldest method
used to measure the temperature of a plasma comes from Jahoda, in 1960 [49] where he
used, assuming bremsstrahlung dominant radiations, the ratio of X-ray luminosity passed
through two different absorbents. This method was relatively inaccurate since it is known
that bremsstrahlung radiations are generally dominant for very hot plasmas (> keV) when
Jahoda was measuring plasmas with temperatures of the order of 250eV. Now, with the
availability of very detailed atomic physics codes and very accurate diagnostic tools we
are able to measure plasma temperatures much more accurately. A good review on the
topic of laser-produced plasmas temperatures can be found in [50] but here we briefly
give some typical values reached in "astrophysically" relevant regimes.

One interesting way to characterize the plasma as a function of the laser parameters
is to study the temperature as a function of the laser intensity. In figure 3.4, we present
results from [51] where the electron temperature of a lucite plasma (C5,O2,H8) is plotted
for laser intensities ranging from I = 1011 W.cm−2 to I = 1014 W.cm−2. The experimental re-
sults are indicated by crosses whereas the full black line indicates the theoretical relation-
ship calculated from a stationary hydrodynamic flow model, which corresponds to a tem-
perature proportional to I4/9 (assuming the case of the "self-regulating" regime, see next
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Deflagration model Self-regulating model
Tmax λ4/3

L I2/3
L λ4/3

L I4/9
L

Pa λ−2/3
L I2/3

L λ−2/3
L I7/9

L
ṁa λ−4/3

L I1/3
L λ−4/3

L I5/9
L

Table 3.1: Scaling laws for the maximum temperature Tmax , the ablation pressure Pa and the ab-
lation rate ṁa assuming both the deflagration model and the self-regulating model

section 3.2.5). The temperatures measured should corresponds to the maximum tem-
peratures reached during the laser shot. In the case of the deflagration regime this tem-
perature is the temperature at the critical density Tc . In the case of the "self-regulating"
regime (assumed when drawing the full line in fig.3.4), the laser absorption has occurred
on a large portion of the expansion fan and the maximum temperature should be lo-
cated where the absorption is maximum. As one may expect, the electron temperature
increases with the intensity with values between ∼ 80eV and ∼ 100eV for the lowest in-
tensities (∼ 1011 W.cm−2) and > 300eV for intensities above 1013 W.cm−2. The important
point to note here is that the dependence between the temperature and intensity is not
very strong, variation of the intensity on three orders of magnitude results in tempera-
tures values over only one order of magnitude. As explained before, this weak depen-
dence is the result of the mediating effect of the ablated material present in front of the
target. Nevertheless, with laboratory astrophysics in mind, this figure shows that in order
to obtain sufficiently hot plasmas for the conductivity to be high, laser intensities above
I = 1011 W.cm−2 are well adapted.

3.2.5 Scaling laws for laser-produced plasmas parameters

We have reviewed in the previous sections all the parameters that are useful to character-
ize the laser-target interaction (see 3.2.3). We have also identified two limit regimes: the
deflagration model and the self-regulating model. It is always useful to quantify how the
plasma parameters will depends on the laser intensity and the laser wavelength. In table
3.1 we give these dependencies for the maximum temperature Tmax , the ablation pres-
sure Pa and the ablation rate ṁa for both models. These laws are taken from [31; 32] for
the deflagration model and from [52] for the self-regulating model.

It is interesting to remarks the difference in the dependence of the temperature with
the laser intensity. The dependence is stronger in the case of the deflagration model be-
cause in this case the expanding fan is basically transparent and the laser energy is de-
posited in very localized volume close to the critical density.

3.3 Dynamics of laser-produced expanding plasmas

3.3.1 Introduction

In the previous sections, we have seen that one of the resulting features of laser-solid-
plasma interaction is the generation of an expanding plasma away from the target (see
schema 3.2). This plasma is the fundamental "tool" we will use to study astrophysically-
relevant configurations in the following chapters. It is thus logical to pay a special at-
tention to the problem of the characterization of hydrodynamical and thermodynami-
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PLASMAVACUUM

, Te/i0, Z0 
*

0piston
t=0

0
x

Figure 3.5: Schematic picture of initial configuration studied for the plasma expansion. The region
located on the left of piston (x < 0) is considered to be vacuum whereas on the right (x > 0) we
consider a infinite reservoir filled of plasma with mass density ρ0, electron/ion temperature Te/i 0

and ionization Z∗
0 . At t = 0, the piston is pulled back with the constant velocity Upi ston and an

rarefaction wave begins to propagate inside the reservoir.

cal quantities in such freely expanding plasmas. We will extensively use the results pre-
sented here and so we find useful, for convenience, to present the complete mathematical
derivation of the two limit cases previously mentioned, namely the adiabatic expansion
3.3.2 and the isothermal expansion. In the last subsection of this chapter we will briefly
describe our own preliminary attempt to use the hypersonic regime version of the fluid
equations (i.e. Burger’s equation for the momentum conservation) in order to describe
the plasma expansion far from the target, where Mach number are high >∼ 3.

3.3.2 Adiabatic self-similar 1D plasma expansion

We address here the basic underlying physics of the free expansion of a heated, laser pro-
duced plasma produced in front of the target. This expansion proceeds at high veloci-
ties compared to the initial plasma sound speed and over large distances compared to
the laser focal spot diameter. We approximate the expansion as being one-dimensional,
which is well justified when the laser generated plume is subject to the collimating effect
of a strong, externally applied magnetic field. For more details on this aspect, we refer
reader to section 5.4. The demonstration presented in this section can be found in the
classical physics textbook by [53; 54]. We will, however, present the deviations from the
adiabatic solutions when the effect of ionization is taken into account.

The initial state of the gas/plasma is presented schematically in fig.3.5. It consists of a
semi-infinite gas/plasma contained by a piston for x > 0 whereas on the left side (x < 0),
we suppose the existence of a strict vacuum (ρ = 0). The initial plasma reservoir is at
rest. The ion and electron temperatures are allowed to evolve independently, with Ti 0 the
initial ion temperature and Te0 electron temperature. The initial mass density is ρ0. From
these initial parameters, knowledge of a mean degree of ionization Z∗

0 allows one to define
the initial total pressure

p0 =
ρi 0

mi
kB(Ti 0 +Z∗

0Te0) (3.9)

where ρi 0 is ion mass density which, because of the smallness of the electron-proton mass
ratio, can be considered to be approximately equal to the total mass density, ρi 0 ≈ ρ0. The
other symbols are the ion mass mi = Ai mp , the nucleon number Ai and the proton mass
mp . From the pressure p0 and the density ρ0 we can then retrieve the initial sound speed:

c0 =

√
γp0

ρ0
(3.10)
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where γ is the adiabatic index (i.e. the ratio of the heat capacity at constant pressure
to heat capacity at constant volume.

At t = 0, the piston moves to the left with the constant velocity Upi ston . Here we as-
sume that the piston acquires its speed instantly at t = 0. The starting point is to write the
MHD equations which, in the absence of magnetic field, reduce to the compressible and
adiabatic hydrodynamic equations:

∂ρ

∂t
+∇· (ρu) = 0 (3.11)

ρ
∂u

∂t
+ρ(u ·∇)u = −∇p (3.12)

dSspe

d t
=
∂Sspe

∂t
+ (u ·∇)Sspe = 0 (3.13)

where ρ is the mass density, u the fluid velocity, p = pe + pi the total pressure (elec-
tronic + ionic) and Sspe = Sspe,e +Sspe,i the total (electronic + ionic) specific entropy. We
should point out that, when taken separately, each species of the plasma can undergo
non-adiabatic processes through heat exchanges with the other species, but for the whole
plasma all processes are adiabatic, the model does not include effects such as radia-
tive cooling or thermal conduction for example. In the following, we will consider the
one-dimensional form of this system of equations. Without loss of generality we take x-
direction and we note ux(x, t ) = u(x, t ).

Now, from the initial conditions represented in fig.3.5, and from the set of equations,
one can clearly see that there exist no characteristic times or distances in this problem.
However it exists instead a characteristic speed, the initial sound speed velocity, which
suggests that the general solution can only depend on a combination of the time t and
space x variables. Such combination, ξ = x/t , is called the self-similar variable, and we
refer to [53; 54] for a detailed discussion about this point. With this definition, and with
the aid of the relations:

∂

∂x
=

1

t

d

dξ
(3.14)

∂

∂t
= −ξ

t

d

dξ
(3.15)

the system of equations refmassConservFreeExp, 3.12, 3.13) can be expressed entirely
in terms of the variable ξ. The hydrodynamic system then takes the form:

(u(ξ)−ξ)
dρ(ξ)

dξ
+ρ(ξ)

du(ξ)

dξ
= 0 (3.16)

(u(ξ)−ξ)
du(ξ)

dξ
+ 1

ρ(ξ)

d p(ξ)

dξ
= 0 (3.17)

(u(ξ)−ξ)
dSspe (ξ)

dξ
= 0 (3.18)

First of all, from equation 3.18 we see that on possible solution of the system could be
u = ξ. However from equation 3.16, this would imply that du/dξ=0 (since ρ 6= 0) and that
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u(ξ) = cste 6= ξ, which is inconsistent with the initial assumed solution. Therefore, for the
specific entropy the correct solution is:

dSspe

dξ
= 0 (3.19)

which is just the consequence of the adiabatic condition expressed in terms of the
self-similar variable ξ.
To proceed further, we can rewrite the momentum equation 3.17 using the fact that a
change of pressure inside a fluid element is related, through the sound speed c, to a
change of density by

d p = c2dρ (3.20)

Then

d p

dξ
= c2 dρ

dξ
(3.21)

and inserting this expression in 3.17, we get:

(u −ξ)
du

dξ
+ c2

ρ

dρ

dξ
= 0 (3.22)

Combining 3.16 and 3.22 we retrieve the important relation:

c2 = (u −ξ)2 (3.23)

where two solutions are possible, namely ξ = u ± c. Here we choose:

ξ = u + c (3.24)

and we will justify later the reasons for this choice. Inserting eq. 3.24 in the mass
conservation equation 3.16 allows to make ξ disappear explicitly and to get a equation
expressed only in terms of the hydrodynamic/thermodynamic quantities u, ρ and c:

cdρ = ρdu (3.25)

where we used the fact that all the quantities depend only on the variable ξ. We can
now integrate 3.25 with respect to the density (or the pressure using 3.20:

u =
∫

c

ρ
dρ =

∫
1

ρc
d p (3.26)

This last expression, when solved, gives the complete solution for the free expansion,
the steps being: (i) from thermodynamics express c(ρ); (ii) find the velocity u as a func-
tion of ρ or c with 3.26; (iii) using 3.24 reintroduce the spatial and temporal dependence
(through ξ); (iv) the pressure, the temperature, etc. can then all be expressed as functions
of (x,t)

We now derive some basic properties of the solution. The spatial partial derivative
can be expressed a density derivative: ∂/∂x = (∂ρ/∂x)d/dρ and thus, deriving 3.24 with
respect to x, we get:

t
∂ρ

∂x

d(u + c)

dρ
= 1 (3.27)
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Using 3.25 and remembering that dc/dρ > 0 in a adiabatic plasma, we arrive at the in-
equality :

d(u + c)

dρ
=

c

ρ
+ dc

dρ
> 0 (3.28)

Then, for t > 0, we have necessarily that the density gradient is positive :

∂ρ

∂x
> 0 (3.29)

A similar constraint on the solution can be found for the velocity u by using the well
known relation between pressure and density for an adiabatic plasma:

p = Kργ (3.30)

where K is a constant, we have that

∂p/∂t = c2∂ρ/∂t (3.31)

Coupled with d p/d t = c2dρ/d t (lagrangian derivatives), we find:

∂p

∂x
= c2 ∂ρ

∂x
> 0 (3.32)

and finally, it can be shown that:

∂u

∂x
=

c

ρ

∂ρ

∂x
> 0 (3.33)

Next, to see the nature of the solution, we can rewrite the fluid equations for mass and
momentum conservation 3.11, 3.12 in the Lagrangian form (and 1D):

dρ

d t
= −ρ∂u

∂x
(3.34)

du

d t
= −1

ρ

∂p

∂x
(3.35)

thus, with 3.32 and 3.33, we see directly that we must have dρ/d t < 0 and du/d t < 0.
The first inequality means that as time progresses, the fluid particles experience a de-
crease of their density, that is a rarefaction process. The second inequality concerning
the velocity has to be interpreted carefully, since if u is negative the absolute fluid particle
speed actually increases, as one would expect for an expansion in "vacuum".

Now let’s develop the entire solution for the case of a perfect adiabatic gas. As men-
tioned earlier, the first step is to solve 3.26. For such a gas, using 3.30 and c2 = γp/ρ, we
can write the mass density as a function of the sound speed c and the initial mass density
ρ0 and sound speed c0:

ρ = ρ0

(
c

c0

)2/γ−1

(3.36)

by differentiating this relation, we can retrieve the expression for the mass density
variation as a function of the sound speed variation:

dρ =
2

γ−1

ρ

c
dc (3.37)
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inserting this last expression in 3.26, we get:

u(c) =
2

γ−1

∫
dc =

2

γ−1
(c − c0) (3.38)

Using the fact that u < 0 (because, as previously seen, du/d t < 0 and initially u(x, t =
0) = 0), we can thus express the sound speed of the gas as a function of the absolute veloc-
ity |u|:

c = c0 − γ−1

2
|u| (3.39)

since the sound speed of a gas has to be positive, this last relation can be used to
retrieve the maximum velocity reached by the expanding gas. Indeed, by setting c = 0, the
maximum speed |umax | is found to be:

|umax | =
2

γ−1
c0 (3.40)

and if γ = 5/3, we have |umax | = 3c0, a well-known result which we will frequently use
when describing our laser-produced plasmas expanding in vacuum. Now, from 3.36 we
can express the density as a function of |u|:

ρ = ρ0

(
1− γ−1

2

|u|
c0

)2/γ−1

(3.41)

The plasma total pressure 3.30 can be equivalently expressed as p = p0( ρρ0
)γ and thus,

inserting 3.41:

p = p0

(
1− γ−1

2

|u|
c0

)2γ/γ−1

(3.42)

For a perfect gas, the pressure can be expressed as:

p = ρ
kB

mi
(Ti +Z∗Te ) (3.43)

so the modified temperature Ti +Z∗Te is given by:

Ti +Z∗Te = (Ti 0 +Z∗
0Te0)

(
1− γ−1

2

|u|
c0

)2

(3.44)

The final step to obtain the complete solution in the (x, t ) space can be obtained using
the fundamental relation 3.24. Indeed, inserting 3.39 in this relation, we get the value of
the absolute velocity as a function of x and t:

|u| =
2

γ+1

(
c0 − x

t

)
(3.45)

As one can see, with relation 3.45, all the hydrodynamic variables can be expressed as
functions of x and t as well as initial parameters ρ0, Ti 0, Te0, Z∗

0 , p0 and c0.

As we have seen in equation 3.40, the maximum expansion velocity is a factor of order
unity larger than the initial sound speed. To understand the origin of this limitation, we
can insert 3.40 in the density solution 3.41 and we get ρ(|u| = |umax |) = 0. It means that be-
cause the gas experiences a rarefaction, the fluid particles, when reaching the maximum
velocity |umax |, become sufficiently "diluted" to be similar to vacuum in terms of their
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(a) (b)

(c) (d)

X0
X0

X0

Figure 3.6: Graphs of the mass density at a given time (t = 20ns) computed using eq.3.41 with four
different piston velocity: (a) in this case the piston goes sufficiently slowly such that the charac-
teristic point X0 (from where the fluid velocity equals the piston velocity) is "pushed" on the right,
inside the reservoir. (b) Here the piston has exactly the velocity (2c0/(γ+ 1)) at which the point
X0 is stationary and stay at the initial position of the piston (i.e. x = 0). (c) Here the piston goes
slightly faster than in the previous case and thus the point X0 is also pulled back. (c) In the ex-
treme case where the piston has an velocity greater of equal to the maximum adiabatic velocity
|umax | = 2c0/(γ−1) then the plasma behaves exactly as if the the piston was absent: this situation
is equivalent to a vacuum expansion.
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thermodynamic properties.

We now show an example of the solution derived for the adiabatic expansion. In
fig.3.6 we plot the density profile for four different piston velocities, 20ns after the pis-
ton was set into motion. The initial reservoir of plasma has the following parameters:
ρ0 = 10−2 kg .m−3 and Te0 = Ti 0 = 100eV (values corresponding to typical laser-produced
plasmas). In our derivation of the different quantities for the adiabatic expansion, we did
not have to consider the role of the piston but it is obvious that its presence will impose
boundary conditions to the flow. Indeed, if the piston goes slower than the maximum
theoretical speed |umax | (3.40) then it will "force" the fluid to acquire, at most, its own
velocity Upi ston (< 0). This velocity is associated to a unique density determined by in-
jecting Upi ston in 3.41. It means that once a fluid particle reaches this velocity, it keeps
a constant value of density (and temperature) and just propagates following the piston.
The result is the formation of a uniform slab of plasma behind the piston, clearly seen in
the three first images in fig.3.6. Thus, the solution derived previously is valid in a region
x ∈ [X0,+∞] whereas for x ∈ [Upi ston t ,X0] the density, the velocity and the temperature
are constant (it can be seen that such constant quantities are solution of the system of
equations 3.16, 3.17 and 3.18). The position X0 is the point where the absolute velocity of
the fluid is equal to the absolute velocity of the piston. Using relation 3.45 to express this
equality, we find:

X0 =

(
c0 − γ+1

2
|Upi ston |

)
t (3.46)

one can see that if |Upi ston | = 2c0/(γ+ 1), we find X0 = 0, that is, the transition point
does not move and stay at the initial piston position (x = 0). This case is represented in
fig.3.6(b). If |Upi ston | < 2c0/(γ+1) then the transition point move on the right, toward the
reservoir (fig.3.6(a)) whereas if |Upi ston | > 2c0/(γ+1) the transition point move on the left,
going away from the reservoir (fig.3.6(c)). Now if the the piston is going so fast that the
plasma can’t "follow" and adapt itself to its motion, then it is exactly as if the piston was
completely removed at t = 0. The threshold velocity from which the piston have no effect
on the rarefaction wave is obviously the maximum speed |umax |defined above (3.40). This
case (shown in fig.3.6(d)) corresponds thus to a free vacuum expansion.

GORGON simulations of plasma vacuum expansions, comparison with the theory

We present here comparisons between the adiabatic self-similar expansion theory pre-
sented in the previous section and simulations performed using our GORGON code (dis-
abling all dissipative processes). The results for the density, velocity, temperature and
pressure profiles are shown in fig.3.7 with the GORGON results represented with full lines
and theoretical predictions with dashed lines. The initial plasma is initialized as follow:
ρ0 = 10−2 kg .m−3 and Te0 = Ti 0 = 100eV for the red and green lines and ρ0 = 10−2 kg .m−3,
Ti 0 = 100eV and Te0 = 0eV for the blue line. In this case we remove completely the piston
from our study and thus we look at the case of vacuum expansions. The difference be-
tween the green and the red full lines is that energy going into ionization is neglected for
the later. It can be seen that for all three cases the numerical results correspond very well
to the model, up to the "head" of the expansion. First we see that, even without having
ionization energy taken into account (red and blue lines), a "bump" of density, tempera-
ture and pressure appears in this region. The velocity profile is flattened near the head.
These are effects resulting from the interaction of our expanding plasma with the "nu-
merical vacuum". Indeed, at the interface, jump relations are not well respected and the
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Figure 3.7: Profiles of mass density, velocity, "temperature" and pressure for: (blue) a Ti = 100eV
plasma with cold electrons (Te = 0eV and no electron-ion energy exchange), (red) a Ti = Te = 100eV
plasma with electrons treated as being a perfect gas (no energy going in ionization) and (green) a
Ti = Te = 100eV plasma with the ionization energy taken into account in the electron energy.
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result is the generation of a strong numerical heating which can be clearly seen in the
profiles of temperature. In fact, these peaks are due to the velocity of the plasma/vacuum
interface being slightly smaller than the plasma velocity. This gradient generates a com-
pression that is "picked up" by the artificial viscosity, and which then leads to the prefer-
ential heating up the ions.

If we now look at the case where the ionization energy is taken into consideration
(green line), we see that these features are even more amplified. The most remarkable
change concerns the profile of temperature where it can be clearly seen that the green
curve is detaching itself from the red ones. In fact this comes from a physical process that
is not included in the self-similar adiabatic theory described in the previous section: as
the gas expands it cools down but at the same time, the initial energy stocked in the ion-
ization is released in the electronic population increasing thus substantially the plasma
temperature. As a consequence, the expansion is "feeded" by this surplus of energy and
can reach higher velocities.

3.3.3 Isothermal self-similar 1D plasma expansion

In the previous section we have derived the solution for the adiabatic expansion and ex-
plained several features of this limiting case, which is valid when dissipative processes are
negligible, such as radiation losses and thermal conduction. On the the other extreme,
when thermal conduction is sufficiently strong in the plasma plume, one may consider
that it will result in a isothermal expansion fan. In fact, the isothermal assumption is of-
ten used in models, at least during the laser pulse duration [27; 29]. This is the case for
example, for the deflagration model, where the laser energy is supposed to be deposited
almost entirely at the critical density (see 3.2.3). The "engine" of the isothermal expan-
sion in this case is given by the fact that a portion of the laser energy "feeds" the heat flux
that must enter in the expansion region at the critical surface (see 3.2) in order to sustain
it. It can be shown that this heat flux must be equal to ρc c2

0 where ρc is the critical mass
density and c0 the sound speed of the isothermal expansion fan [29]. At times greater than
the pulse duration, one expects the heat source to become vanishingly small and thus the
expansion be much closer to adiabatic conditions.

The solution for the isothermal expansion is actually simpler than the one derived in
the previous section. We search again for self-similar solutions for the self-similar variable
ξ = x/t . The mass and momentum equations are unchanged (3.16 and 3.12) but now the
flow is not isentropic. Heat is exchanged during the expansion and equation 3.13 is not
valid any longer. As for the adiabatic case we arrive at the equivalent of the momentum
equation 3.22:

(u −ξ)
du

dξ
+ c2

0

ρ

dρ

dξ
= 0 (3.47)

however we have now used the relation for the isothermal case:

d p = c2
0dρ (3.48)

The only difference with 3.22 is that in the present case the sound speed is constant.
By combining the mass and momentum equations, we retrieve the relation which link the
velocity to the self-similar variable ξ:
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ξ = u + c0 (3.49)

knowing that u < 0. Then, inserting 3.47 in the mass conservation equation 3.16 we
find:

du = c0
dρ

ρ
(3.50)

The relation 3.50 is actually much simpler than the one for the adiabatic flow (3.25)
because here the sound speed is a constant. We just have to integrate this expression to
retrieve the velocity:

u = c0

∫
dρ

ρ
= c0ln(ρ)− c0ln(ρ0) (3.51)

where we have used, to find the integration constant, the fact that the velocity is null
when the mass density is equal to the initial mass density ρ0. The reason is being that in
this case the rarefaction wave has not yet passed. From 3.51 the solution for the density is
simply:

ρ = ρ0exp

(
u

c0

)
(3.52)

and by inserting the expression for the velocity as function of ξ = x/t (from 3.49):

u(x, t ) = c0

(
x − c0t

c0t

)
(3.53)

we get:

ρ(x, t ) = ρ0exp

(
x − c0t

c0t

)
(3.54)

It can be seen from these solutions that the front of the rarefaction wave (the point
where u = 0) is propagating at the reservoir sound speed c0 (as in the case of the adiabatic
expansion) and that the density profile decreases exponentially in the isothermal situa-
tion. The sonic point (where u = −c0) is always located at x = 0 (as in the adiabatic case).
However, an important difference with the adiabatic case is that it is not longer possible
to derive a maximum velocity of expansion in the isothermal case. This is a consequence
of constant sound speed velocity. In the adiabatic case the limit speed was obtained by
saying that the local sound speed must be greater than zero. Here, since the isothermal
sound speed never goes to zero in the expansion, such argument cannot be made.

3.3.4 A new potential 1D description of laser-produced plasmas expand-
ing at supersonic/hypersonic speeds

We present in this section some preliminary work trying to provide an analytical descrip-
tion of the region of laser-produced plasmas expanding at high Mach number. We warn
the reader that this work is very much on-going and it is not yet clear if it is at all relevant
to laser produced plasmas. We first present the motivation and the inspiration for the
work and finally the model.
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Motivation

In section 3.3.2 we presented the "free-reservoir" 1D expansion model. Even if we ex-
plained that it should corresponds relatively well to the expansion of laser-produced plas-
mas, the direct comparison given in 5.4 shows that some deviations with the numerical
solution are still present. Among them the modification "by hand" of the initial temper-
ature (i.e. sound speed c0) is the most worrisome. Such modification was necessary to
obtain an agreement of the maximum expansion velocity |umax | (see 3.40) with the nu-
merical simulations. A fact also seen experimentally [55].
As explained, the initial pressure gradients due to the laser deposition are not taken into
account in the free-reservoir model and could thus represent a supplementary accelera-
tion leading to velocities greater than the free-reservoir maximum speed. The generation
of gradients in the initial plasma reservoir introduces a characteristic length in the prob-
lem and thus the self-similar description realized in 3.3.2 is not possible and not analytical
expressions for the hydrodynamic variables are available. A large number of experimental
papers have reported values of maximum velocities usually between 2−3 [55] times the
free-reservoir adiabatic value |umax | and similarly a large number of theoretical papers
have tried to explain this deviation, for example using ionization effects (see our discus-
sion in the previous section). In the model we present here, we are not going to solve this
specific problem but instead we want to propose an alternative description for the plasma
density and velocity profiles "far" from the target location. We specify "far" because our
model will be valid only for flows with high Mach numbers and thus it corresponds gen-
erally to plasma regions few millimeters away from the target. The maximum velocity in
this model will be considered as an input parameter.

Inspiration

The idea came during a lecture from Alex Raga about the propagation of supersonic jets
and more specifically about the time-dependent evolution of highly supersonic jets where
the source of these jets is also time-dependent. The work from A.Raga on this topic can
be found in [56]. The idea was to explain the presence of more or less regularly spaced
bright "knots" observed inside extragalactic and stellar jets. As we explain in (see 4.3),
one possibility to explain these knots is the well known structure in shock diamonds ob-
served in supersonic jets propagating in an external gas. The other possibility, introduced
first by Rees [57], is that the knots are the results of a time-variability in the outflow source
which induces the formation of shock waves traveling along the jets. These shock waves
would produce the bright knots through heating and compression of the gas in positions
determined by the shape of the curve describing the outflow ejection rate. Kofman and
Raga, in an unpublished work, first studied in 1991 the case where the density flow is
constant at the source but the velocity is not. Shortly after, in the previously mentioned
paper [56], extended their analytical formalism to the case of a variable density flow. The
idea of applying this model to the magnetically collimated expansion of laser-produced
plasmas is quite straightforward since strong analogies are present. First, as we shall see
in the dedicated chapter (5), the addition of a sufficiently strong magnetic field in laser-
produced plasmas experiment results in the formation of highly collimated jets along the
magnetic field. Thus, in this configuration, the expansion is along the magnetic field di-
rection and sufficiently far from the target surface to be considered 1D, as required by the
Raga model. We note that the model allows to take into account the effect of a finite jet
radius. Secondly, the laboratory jets are highly supersonic with Mach numbers which can
reach potentially values larger than 1000 in the case of an adiabatic jet (in fact, the Mach
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number tends toward infinity at the jet head since there the sound speed tends toward
zero). This point concerning the presence of high Mach numbers regions in the laser-
produced expanding plasma is fundamental in order to apply the Raga model. Finally,
the source producing the plasma jet in our experiments is the laser pulse which is of fi-
nite duration and thus represents a variable density and velocity flow, as supposed in the
astrophysical case of the Raga paper.

The model

The 1D model developed in the Raga papers describes a solution, called the "free-streaming
solution", valid only in highly supersonic regimes, i.e. such that M = u/c >> 1 (u is the
fluid velocity and c the local sound speed). In this case, the momentum equation 3.12
ρdu/d t = −∂x p can be simplified. Indeed, the ratio of the convective term in the La-
grangian derivatives (ρu∂xu) on the pressure force can be estimated by:

|ρu∂xu|
|∂x p| ∼ ρu2

p
∼ ρu2

ρc2
= M2 (3.55)

Thus we see that for high Mach numbers, generally hypersonic (M & 5), the pressure
term in the momentum can be neglected. Interestingly, the ratio being proportional to
the square of M, one can expect the model to hold reasonably well even for flows that are
"only" in the supersonic regimes. So, for M À 1, we can write:

du

d t
=
∂u

∂t
+u

∂u

∂x
= 0 (3.56)

Equation 3.56 is sometimes called the pressureless Euler equation or, in applied math-
ematics, the inviscid Burgers’ equation [58]. This equation means that a fluid particle
ejected from a "source" S at a time τ with a velocity u0(τ) will preserve this velocity as it
moves away from the source. We can say in a way that the fluid particles are following a La-
grangian ballistic trajectory. The solution of 3.56 for the velocity field is the free-streaming
solution and is given by the equation:

u(x, t ,τ) = u0(τ) =
x −xs

t −τ (3.57)

where xs is the position of the source S, where the fluid particles are injected with the
velocity u0(τ) at t = τ, We have assumed that x > xs and t > τ. Interestingly, as we will
see in the chapter dedicated to the propagation of the laboratory supersonic jets (5.4.1),
a very good approximation for the velocity profile was found to be x/t . From equation
3.57, we see that it corresponds to the "free-streaming" solution for t >> τ and x >> xs .
In other words, it corresponds to the free-streaming solution when we are looking at late
times, compared to laser pulse duration τl aser , and at large distances compared to the
accelerating region, which is of the order of τl aser c0, where c0 is the initial characteristic
sound speed.

Then, concerning the continuity equation 3.11, if we assume for simplicity that the jet
has a cross section along its main axis x given by:

σ(x) =σ0

(
x0

x +x0

)p

(3.58)

where σ0 is the jet cross section at the source point, p the power that describes the open-
ing angle of the jet and x0 a constant. Raga showed that the general solution for the density
is then determined by:
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Figure 3.8: Schematic (and very simplified) representation of a laser-produced plasma expanding
in front of a solid target (black). We consider two main regions: an accelerating region (in red)
where the pressure forces are still important and fluid particles are being accelerated (subsonic
flow or weakly supersonic). The second region can be called the "propagation region" (in blue)
and is composed of plasma in hypersonic regimes (M & 4) where the fluid particles behave as
ballistic particles. The two regions are delimited by the important point called xs which, as shown
in the main text, does not correspond to the sonic point (where M = 1)

ρ(x, t ,τ) = ρ0(τ)

(
x0

x +x0

)p [
1− (t −τ)

d l n(u0)

dτ

]−1

(3.59)

This equation introduces a new "input" function, ρ0(τ), which corresponds to the
mass density of the fluid particle injected at x = xs and t = τ with the velocity u0(τ).

As one can see, when using the model described here, we need an initial knowledge
(as "inputs") of three functions: ρ0(τ), u0(τ) and σ(x). Each function involves several pa-
rameters which characterize the physical process "propelling" the supersonic jet at the
source S. For an astrophysical system, the density or velocity injected can be, for example,
a sinusoidal function involving a star rotation period. For a laser, these functions involve
quantities such as the pulse duration τl aser , the pulse intensity Il aser or any other param-
eter related to the laser-solid-plasma interaction. Here lies the real difficulty of applying
this model to the laser-produced plasma expansion (and the difficulty is actually the same
for astrophysical jets).

Before attempting to derive a solution, we must detail the configuration we consider
for our laser-produced plasma. As explained in section 3.2, once the vaporized gas in
front of the solid target begin to absorb significantly the laser energy (the "breakdown"),
the heated gas starts to expand converting its thermal energy into bulk kinetic energy:
here we will suppose that this conversion occurs in what we call the "accelerating region"
with a length xs (from x = 0, the target surface position, to x = xs). This region is repre-
sented in red in fig.3.8. Just after the accelerating region comes what could be called the
"propagating region" or the "inertial region". This region is represented in blue in fig.3.8.
In this region, the acceleration of fluid particles is basically negligible because the Mach
numbers are sufficiently large (M & 3). It is in this region that equation 3.56 is valid and
thus that solutions 3.57 for the velocity and 3.59 for the density are applicable.
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We now derive a possible solution for the problem pictured in fig.3.8. The general
method is to first "guess" the injected velocity function u0(τ) in order solve equation 3.57
by finding the expression of τ(x, t ). One has to be very careful when realizing this step
since, depending on the form of u0(τ), the function τ(x, t ) can be multi-valued. Indeed,
finding this function means that we want to known, for a given point x at a given time t,
the time τ at which the fluid particle present a this point has been ejected. For example,
suppose that at τ = 0, a fluid particle, named "1" has been ejected from x = xs with a ve-
locity V0. At a time t this particle will then be at the position x1 = V0t + xs . If an other
fluid particle "2" with a velocity 2V0 is injected at a time τ = t/2, it will be, at t , at the
same position x2 = V0t + xs , i.e. x1 = x2. In this case, as we can see, it is no possible to
properly define the function τ(x, t ). It is nevertheless interesting that the possibility of
generating multi-valued τ functions is at the basis of the Raga model for the explanation
of the knots in astrophysical jets. Indeed, in fluid theory, the "accumulation" of several
fluid particle at the same position (x,t) is the source of shocks and thus brightly emitting
regions. More formally, it corresponds to the intersection of "characteristics" of the fluid
equations, see [53]. In our case we are looking at a case where there is no reason for the
laser-produced plasma to accelerate fluid particles at higher speeds when τ increases. As
mentioned at the beginning of this section, the present work is very "embryonic" and
not much work has been carried out related to the "input" functions u0(τ) and ρ0(τ) that
would be adapted for the case of laser-produced plasmas. However, as a "proof of con-
cept", we propose here to "join" the adiabatic solution developed in 3.3.2 and the Burger’s
inviscid solution taken from the Raga model. We can do that because a large portion of
the flow in the adiabatic solution is hypersonic. Indeed, since in this model the expanding
plasma has a sound speed which tends towards zero at the front propagation (see 3.39),
there exist a whole part of the plume which has extremely high Mach numbers (> 100).
The idea is then to inject this hypersonic portion of the adiabatic flow as an input in our
equations 3.59 and 3.57. From the adiabatic model, we understand that the injection po-
sition xs , from where the flow is basically propagating with negligible effect of pressure
acceleration, is a crucial parameter. For example, in the adiabatic theory, the initial po-
sition of the interface between the reservoir and the vacuum (x = 0) is always the sonic
point (M = 1) so it is clear that if we choose this point for our xs , the free-streaming so-
lutions (3.59 and 3.57) will certainly give a very good agreement since there the pressure
forces are still non negligible. So let’s keep xs as a free parameter and we will see later how
its choice influence the results. Here we consider the adiabatic solution given in section
3.3.2 for the case where the reservoir is located initially in x ∈ [−∞,0] and the vacuum in
x ∈ [0,+∞]. The piston is supposed to be completely removed at t = 0. Thus, the input
velocity for our free-streaming solution is given by (from 3.45 and 3.41):

u0(τ) =
2

γ+1

(
c0 + xs

τ

)
(3.60)

and the input density is:

ρ0(τ) = ρ0

(
1− γ−1

γ+1

(
1+ xs

c0τ

))2/(γ−1)

(3.61)

where these input quantities have a meaning only once the adiabatic expanding front
propagating at the velocity |umax | = 2c0/(γ− 1) is crossing the injecting point x = xs . In
other words, we must have τ ≥ xs/|umax | and the free-streaming solution will be "avail-
able" from t = xs/|umax |. Then we must find the expression of τ(x, t ) by solving the equa-
tion 3.57:
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x −xs

t −τ(x, t )
=

2

γ+1

(
c0 + xs

τ

)
(3.62)

which can be rewritten as:

τ2 + (γ−1)(x −xs)+2xs −2c0t

2c0
τ− xs t

c0
= 0 (3.63)

this equation is a simple second order equation which can be solved by first finding
the delta:

∆ =
[(γ−1)(x −xs)+2xs −2c0t ]2 +16xsc0t

4c2
0

(3.64)

One can see that we have∆> 0 so two solutions are possible:

τ± =
1

2

[
2xs +2c0t − (γ−1)(x −xs)

2c0
±
p
∆

]
(3.65)

the solution is identified simply by saying that at x = xs and t = xs/|umax | we must have
τ = xs/|umax |. We find that the correct solution is the "+" solution:

τ(x, t ) =
1

2

[
2xs +2c0t − (γ−1)(x −xs)

2c0
+
p
∆

]
(3.66)

and finally to obtain all needed terms for the density profile 3.59 we have:

d l n(u0(τ))

dτ
= − xs

c0τ2 +xsτ
(3.67)

We have now everything to write the density profile (and the velocity profile) as a func-
tion of x and t (by inserting the expression for τ 3.66 wherever it is needed).

In fig.3.9 we plot the results for an initial plasma reservoir at ρ0 = 10−2 kg .m−3, Te0 =
Ti 0 = 300eV. The corresponding sound speed is c0 ≈ 166km.s−1 and the speed of the
expanding front is |umax | = 2c0/(γ− 1) ≈ 497km.s−1. We plot the solution at t = 50ns
for four different injection position (where the adiabatic solution is injected in the free-
streaming solution): xs = 1,4,8,18mm. One can clearly see that as the injection position
is moved to the right, away from the sonic point (x = 0), the free-streaming solution effec-
tively tends towards the adiabatic solution. This is because as we shift the injection point
on the right, the flow which crosses this position has higher local Mach numbers and
thus we are effectively in a regime such that the "complete" momentum equation 3.12
(i.e. with the pressure forces included) can be relatively well approximated by the inviscid
Burger’s equation 3.56. After this simple example which validates the original idea, one
could argue that the free-streaming solution found is actually more complicated than the
adiabatic solution but the point is that since this model needs just the two "input" density
and velocity functions we don’t have to make any assumptions on the equation of states,
the acceleration processes, etc. The only condition being that the flow has to have high
Mach numbers (in practice M&> 4). The density profiles obtained from experiments are
often non exactly isothermal or adiabatic and thus an interesting empirical idea would be
to look for the input functions "needed" to obtain the experimental profiles in regions far
from the target. This is a work that remains to be done.
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Figure 3.9: Mass density profiles (at t = 50ns) for both the adiabatic expansion (red full lines)
and the free-streaming expansion proposed here (black dotted lines). The adiabatic expansion is
supposed to come from the expansion of a plasma reservoir at an ion and electron temperature
of 300 eV and a density of 10−2 kg .m−3. The join between the adiabatic and the free-streaming
solutions is realized at the point xs which is varied in each of the graphs presented here (xs =
1,4,8,12mm). We see that as this point is shifted away from the origin (where the adiabatic flow
is sonic, i.e M = 1), the two solution converges because the fluid particles crossing this point have
effectively higher Mach numbers and are so well described by the Burger’s equation.
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CHAPTER 4. PHYSICS OF SUPERSONIC JETS AND SHOCKS

4.1 Introduction

We now turn to a chapter which will serve as an opening discussion about one of the
main topic treated in this manuscript: the generation, the propagation and the structure
of supersonic jets. In our case we will present, in the next chapter, an in-depth study
of laboratory jets produced through the interaction of a laser-produced plasma with an
external strong magnetic field. This work we will present find its foundations in more
than a century of research on both laboratory and astrophysical supersonic jets. There-
fore, in the present chapter, we will first present a small historical introduction (4.2) and
then we will present general considerations on the structure 4.3 and stability (4.4) of su-
personic jets propagating in mediums. Finally we present idealized numerical studies of
supersonic jets using our GORGON code (4.5) to, step by step, introduces the effect of a
magnetic field on the propagation of such jets. The general discussion presented in this
chapter provide a physical physical basis so that results presented in the next chapter can
be better understood.

4.2 A little bit of history about supersonic jets and shocks

The physics of supersonic jets is a topic closely related to the concept of shock waves.
Back in the 1880s, physicist like Riemann, Rankine, Rayleigh and Hugoniot were still de-
bating on the theoretical properties of these nonlinear compression waves [1]. One of
the main question that was discussed concerned the quantities that must be conserved
across the surface of a discontinuity created by a shock front. The question was mainly
about whether it is the energy or the entropy that is conserved across a shock. In 1864, Rie-
mann was the first to analyze wave-steepening within the context of ideal gas dynamics
but he mistakenly assumed that entropy must be conserved [2]. Later, Rankine, Rayleigh
and Hugoniot showed that an adiabatic shock front would violate conservation of energy
and therefore demonstrated that shock fronts must be non-adiabatic and irreversible [1].
Now we all know the famous Rankine-Hugoniot relations describing the change of den-
sity, velocity and energy across the surface of a discontinuity [3].
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(a) (b)

Figure 4.1: (a) Self-steepening of a finite amplitude sound wave. The situation a t = t3 is not phys-
ical because of the multi-valued function that the pressure would become. Instead, dissipative
processes create the situation represented at t = t4, where the front shock separating the regions
1 and 2 is established on a distance of few mean free path. (b) Cartoon representing the process
by which a shock is formed, in this case a receding reverse/accretion) shock. The skiers which are
going faster than the speed at which they can receive informations from skiers downstream, just
hit the stack in front of them before being able to slow down. From "Supersonic flow and Shock
waves", R.Courant and K. O. Friedrichs, 1948 [4].

Shocks are produced when perturbations of pressure δP become of the order of the
equilibrium pressure P0. When the perturbation is small, the medium allows it to prop-
agate at a characteristic speed, the so-called speed of sound. In the case of a magneto-
plasma, sound waves are replaced by waves that couple the magnetic field and the com-
pression waves: the fast and slow magnetoacoustic waves (SEE A.3). When the perturba-
tion is too large in amplitude (δP ∼ P0), the local sound speed can vary strongly spatially,
with regions where the pressure is high having high sound speed and regions of lower
pressure having lower sound speed. This result in the self-steepening process shown in
fig.8.1(a) (taken from [4]).

In the context of supersonic jets and shock physics, the "bow shock" holds a special
place. First for historical reasons, because it has been for a long time at the origin of a
strange phenomenon observed by gunners during the France-Prussian war: indeed, us-
ing the new French army’s high-speed bullets, they reported the presence of two "bang"
when the projectile was fired at high speed whereas there was only one "boom" at low
speeds [2]. The Belgian ballistician Melsens proposed as an explanation that the the first
"bang" was, as in the case of a low speed projectile, the sound from the gases escaping
from the muzzle of the canon whereas the second bang was due to strongly compressed
mass of air in front of the bullet, traveling at high speed (in fact supersonic speed) [5].
Melsens was, in fact, proposing the existence of the "bow shock", that precedes a su-
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(a) (b)

Figure 4.2: (a) Photograpic image of the bow shock in front of a projectile embedded in a su-
personic flow. From Ernst Mach, "Uber Erscheinungen an fliegenden Projectilen". 1898. (b)
Schematic, from Mach himself, of what he observed in his experiment. In front of the projectile is
represented the bow shock whereas at the back turbulence is represented

personic projectile. In 1886, Mach and his colleague Peter Salcher reported for the first
time [6], the photographic observations (see fig.8.2(a)) of a bow shock through refraction
anomalies caused by abrupt change in density across the shock front. Ernst Mach was
also the first to understand the total equivalence between propelling an object in a fluid
or propelling air past this object. The supersonic air stream in his experiments was pro-
duced by allowing highly compressed air to escape from a reservoir through a collimating
De Laval nozzle [7]. This technique is still used nowadays to produce supersonic gas jets
in the laboratory or at on larger scales, for example to study the blast produced by strong
(nuclear) explosions.

In fact, after his studies centered on the behavior of a flow around a supersonic projec-
tile, Mach realized that the supersonic flow itself was of great interest with many complex
internal structures. This work was mainly carried out by Ludwig Mach, his son, as well
as Emden [8] and Prandtl [9]. From their research, they uncovered the presence of in-
cident/reflected oblique shocks inside the supersonic jet envelope. These steady-state
shocks are schematically represented in fig.4.3. The de Laval nozzle (on the right) allows
a high-pressure gas to expand in an ambient gas and the result is the formation of the jet
itself through the formation of a modulated boundary with the external medium as well
as a network of internal shocks forming a succession of "cold" and "hot" regions. As one
can see, the internal shock pattern is not in phase with the pattern corresponding to the
interface between the jet and the external medium (the jet boundary). This ambient gas
acts somehow as a piston oscillating around a equilibrium position whereas the jet itself
undergoes a succession of compression and rarefaction regions [10]. After the pioneer-
ing work of Mach, Emden and Prandtl, the topic became more or less obsolete for several
decades.
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Figure 4.3: From [2]. Idealized supersonic slightly underexpanded jet (P j et > Pbackg r ound ). Conical
shocks are formed at regular steps as a consequence of the action of the background on the jet
material.

The revival of interest came only at the beginning of World War II, when the military
became very intrigued in a phenomenon known as "gun flash" [11]. Artillery fire in fact
revealed a network of strong internal shocks in the exhaust gas, which occurred when the
ratio of the emerging exhaust gas pressure to the background pressure at the nozzle was
far from unity. They were particularly worried by the occurrence of very strong planar
shocks (the so-called "Mach disks", [11]). These stronger shocks emit much more light
than oblique shocks and they could potentially reveal the position of a gun to the enemy.
As a solution it was found that with a correctly redesigned muzzle, the strong flashes as-
sociated with the presence of a Mach disk could be eliminated. Indeed, extending the
muzzle wall outward allows the emerging gas to reduce its pressure before reaching the
atmosphere and thus the pressure ratio can be reduced to a value close to unity [2].

4.3 The propagation of unmagnetized supersonic jets in an
external background

Now we give important general results concerning the propagation of supersonic jets
in an external medium. Contrary to the jet pictured in fig.4.3, we investigate here the
more complicated case of non-steady jets. Fundamental work on non-steady jets has
been done starting from the early 70’s because of the observation of astrophysical jets
and their very distinct features [13], which are not explained by the theory of steady-state
jets (briefly discussed in the previous section). An example of an astrophysical jets is pre-
sented in fig.4.4. The jet is fed by material from an accretion disk, which orbits a super-
massive black hole at the center of the quasar’s host galaxy. The very bright regions at the
end of the bipolar jet was investigated by Blandford and Rees in 1974 ([14]) who predicted
the existence of a "cocoon" of gas, surrounding the central jet after being "reflected" at
the head of the jet (or more precisely at the "working surface").

A schematic of the flow structure near the head of the jet is given in fig.4.5 (from [2]). As
the head propagates, the external medium material is compresses through a bow shock.
This shocked material is in contact with the jet material at the so-called working surface,
which is a contact discontinuity. Behind the working surface we find the "cocoon" which
is composed of jet material shocked through the "terminal shock" of the jet, which has the
characteristics of a Mach disk whose reflected shocks have been swept back in the cocoon.
Thus, the external medium is not directly in contact with the core material of the jet. This
model explains the bright region seen in astrophysical jets, like the one seen in fig.4.4.
Indeed, what we see is in fact the radiation emitted by the hot material composing the
cocoon and the shocked material of the medium after its passage through the bow shock.
The scale of the cocoon depends on several parameters including the rate at which the
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Figure 4.4: Quasar 3C 175 pictured in radio wavelengths. The jet extend far into intergalactic space
and its most visible part consists of the head, where there exist the strongest conversion of kinetic
energy into thermal energy, re-radiated subsequently. From Brotherton, Nature, (2014) [12]

Figure 4.5: Schematic of the head of a supersonic jet expanding in a external medium. From [2]
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beam fills up the cocoon and the power of the beam at the terminal shock. To look into
the details of theses parameters, we must evaluate first what is the speed of the working
surface. This surface is considered in equilibrium with a constant velocity W thus, in its
frame, we must have equal ram pressures on both sides of the surface:

ρ j et (v j et −W)2 = ρbW2 (4.1)

where ρb is the background density. Solving this expression for the velocity W, we get:

W =

p
η

1+p
η

v j et (4.2)

with the definition

η =
ρ j et

ρb
(4.3)

We see that if the jet density is much higher than the background pressure (η >> 1)
then the working surface velocity is almost the same as the jet velocity (W ≈ v j et ); whereas
if the density of the jet is much lower than that of the background (η<< 1) then the speed
of the working surface is much lower than the speed of the jet (W << v j et ) and jet material
can efficiently accumulate in the cocoon. Now we can use eq.4.2 to infer some properties
of the cocoon, such as its dependency on the density ratio η. The rate at which the core
jet material fills the cocoon is proportional to v j et −W thus we see that for η >> 1, we
have v j et −W ≈ 0 and so almost no cocoon can develop around the jet core. Now, in the
opposite case where η<< 1, we have v j et −W ≈ v j et and thus large cocoons can develop.
An other important parameter relating to the scale of the cocoon is the heating of the
jet material at the terminal shock. Strong heating means strong pressure and thus the
resulting lateral extension of the cocoon after the terminal shock will be much larger. This
heating is related to the square of the Mach number of the jet flow in the frame of the
working surface: MW = (v j et −W)/cs, j et . Using equation 4.2, we get:

MW =
M

1+p
η

(4.4)

One can see from this relation that the smaller is the density ratio η, the more intense
will be the heating at the terminal shock. Thus, both the cocoon filling and the plasma
heating are enhanced when η decreases.

Another important feature of the supersonic jets propagating in external mediums
concerns the network of internal shocks that develop in the jet and which are represented
schematically in fig.4.3. This feature has been one of the first theory invoked to explain the
observations of bright knots in a large number of extragalactic radio/stellar jets, such for
example those shown in fig.4.6. However, it is now known that these internal bright spots
are more likely the result of time-variability at the source of these astrophysical supersonic
jets [15].

It has been pointed out by M.L. Norman et al.([10]) that the observed knots in as-
trophysical non-steady jets are in fact different from the knots that can be observed in
steady-state supersonic jets on earth, for example in the plume of some rocket engines
[16]. Indeed, whereas the internal network of incident and reflected shocks in steady-
state jets do not propagate inside the jet core, in the case of non-steady state jets, the
pattern flows actually downstream at velocities non-negligible compare to the jet speed.
They showed that in this case, the internal shock pattern is actually the manifestation
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Figure 4.6: Images of the supergiant elliptical galaxy Messier 87 (M87), also known as "the Smoking
Gun". Images – X-ray: H. Marshall (MIT), et al., CXC, NASA Radio: F. Zhou, F. Owen (NRAO), J.
Biretta (STScI) Optical: E. Perlman (UMBC), et al., STScI, NASA

of the "Kelvin-Helmholtz pinch instability" and more precisely reflections modes of this
instability. In the next section we investigate the stability of supersonic jets.

4.4 Stability of unmagnetized supersonic jets

The stability of supersonic jets is a topic of great importance if one wants to understand
the observed extraordinary stability of many jets both in laboratory and space. Several
instabilities are susceptible to arise in such objects. The main are the Kelvin-Helmholtz
instability (A.5), the Reileygh-Taylor instability (A.4) or the Richtmyer–Meshkov instability
([17]) and the firehose/gardenhose instability, with the magnetic field acting like a colli-
mating pipe ([18]). Without performing the complete first order typical mode analysis, we
can investigate the stability of jets using simple considerations as it has been done in [2].
To do that, we need to use two relations, in particular the compressible Bernoulli relation
that we now briefly derive. The Bernoulli equation states that, along each streamlines,
and in a stationary regime, a given quantity is conserved. The simplest way to derive this
expression is to write the equations of conservation in the Lagrangian form since it de-
scribes the evolution of a quantity associated to a given fluid particle along their stream-
lines. Since the fluid particles can be (de-)compressed and thus their volume can change,
the correct variables to consider for the Bernoulli equation are the specific energies. In
a compressible fluid, we must consider the kinetic specific energy 1/2v2 and the spe-
cific enthalpy hspe = εspe +p/ρ, where εspe is the internal specific energy. The Lagrangian
derivatives of the specific kinetic energy is:

D

Dt

(
v2

2

)
= −1

ρ
(v ·∇)p (4.5)

that of the internal specific energy is given by:

Dεspe

Dt
= −p

ρ
∇·v (4.6)

and finally the Lagrangian derivative of p/ρ is:

D

Dt

(
p

ρ

)
= −(γ−1)

p

ρ
∇·v (4.7)
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vjet vjet-vpinch

-vpinch

pjet

pext

pext(a) (b)

Figure 4.7: Schema showing the configuration at a constriction along the jet, both in the external
frame (left) and the frame of the constriction (right). From [2].

By summing all these terms, we get:

D

Dt

(
v2

2
+hspe

)
= −(v ·∇)p −γp∇·v =

1

ρ

∂p

∂t
(4.8)

Since we can relate the internal energy to the gas pressure by ε = p/(1−γ), the specific
enthalpy can be rewritten:

hspe =
γ

γ−1

p

ρ
(4.9)

we can then rewrite eq. 4.8 as:

D

Dt

(
v2

2
+ γ

γ−1

p

ρ

)
=

1

ρ

∂p

∂t
(4.10)

Here, we recall that the Lagrangian derivative is given by D/Dt = ∂/∂t +(v·∇). The sec-
ond term on the right side represents the derivative of the quantity along the streamline
thus, if the configuration is stationary (∂/∂t = 0), eq. 4.10 transforms to

(v ·∇)

(
v2

2
+ γ

γ−1

p

ρ

)
= 0 (4.11)

This last equation is the Bernoulli equation for a stationary compressible gas/plasma
and it just says that the sum of the specific kinetic energy and the specific enthalpy is
constant along a streamline. To analyze the stability of jets, we need an other equation
which describes how the velocity of the fluid in a cylinder (a pipe) varies when the section
A of the cylinder changes. The equation describing this relation is given by ([2]):

d v

v
=

(
v2

c2
s
−1

)−1
d A

A
(4.12)

This last equation is valid for slowly varying cross section. As one can see, two regimes
are possible: (i) if the flow is subsonic (M = v/cs < 1), we retrieve the well known behavior
of flow acceleration (d v > 0) when the section decreases (d A < 0); (ii) whereas in the case
of a supersonic regime (M = v/cs > 1) the fluid is decelerated (d v < 0) when the section
increases (d A > 0). Now we have the tools to understand what happens in term of stability,
for both case, subsonic and supersonic regimes.

First, in a subsonic flow and in the incompressible limit, a fluid particle keeps the same
mass density ρ along its trajectory on a streamline thus the Bernoulli equation 4.11 just
states that if the velocity increases because of decreasing area then the pressure of the jet
must decrease. The configuration of an incompressible subsonic jets is given in fig.4.7
(from [2]). If the external medium has a fixed pressure Pext then a initial small perturba-
tion (small pinch) will be amplified since as the section the decreases, the pressure gra-
dient at the interface will also increase. Since the material of the jet advects the growing
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perturbation with it, very quickly the interface will develop eddy structures characteristic
of the Kelvin-Helmholtz instability. Thus, a subsonic jet in a external medium will always
be unstable and therefore its expansion on very large distances is unlikely.

When the flow is supersonic, eq. 4.12 shows that the pressure actually increases in the
constriction because from the continuity equation dρ∝−d v , the mass density also in-
creases. This increase of pressure inside the constricted jet acts to stabilized the perturbed
interface, contrary to the subsonic case. One could thus conclude that if the jet flow is su-
personic then it would be stable to the pinch instability. However, as noted by Norman
et al. (1982) [10], one has to be very cautious of the fact that the pinch perturbation is
not motionless and that it is instead a convected perturbation. Therefore, in the frame of
this perturbation, the flow can be subsonic. To analyze this situation we must consider
two fluxes in the frame of the pinch. Suppose that the pinch is flowing with a velocity
vpi nch then the velocity of the jet material in this frame is v j et −vpi nch and the velocity of
the external medium material is −vpi nch . To obtain an unstable configuration, we must
have the following configuration: the pressure of jet material must decrease as the con-
striction increases whereas the pressure of the external medium must increase. When the
constriction increases, the section of the jet decreases while that of the external medium
increases (fig.4.7). From eq4.12 written in the pinch frame, we understand that, if the ex-
ternal medium flow is subsonic (vpi nch/cs,ext < 1) then, since d A > 0, we have d vext < 0.
The result is that the pressure of the external medium would increase. For the jet itself, we
have d A < 0 so if in the frame of the pinch the jet flow is subsonic v j et − vpi nch/cs, j et < 1
then it would accelerate (d v j et > 0) and thus, from the Bernoulli equation, the pressure
inside the jet would decrease. From this discussion, the conclusion is that, in order to
observe pinch-unstable supersonic jets, we must have the two following conditions:

{
vpi nch < vs,ext

v j et − vpi nch < cs, j et

(4.13)

(4.14)

Combining the two previous relations, we get the important condition:

v j et < cs, j et + cs,ext (4.15)

Thus, in order to see the pinch instability to develops in a supersonic jets, its speed
must be less than the sum of the internal and external sound speeds. If we consider the
particular case of a pressure-matched jet, ρ j et c2

s, j et = ρext c2
s,ext , we can express the ex-

ternal sound speed as a function of the jet sound speed and the important parameter
η = ρ j et /ρext , as

cs,ext = cs, j et
p
η (4.16)

Then the relation 4.15 can be written as:

M j et =
v j et

c j et
< 1+p

η (4.17)

This last relation shows that, for a fixed Mach number and for a pressure-matched
supersonic jet, the denser the jet compared to the external medium the larger the unstable
domain. We stress to maintain the pressure matching, while increasing the density ratio,
implies increasing the external sound speed (see eq. 4.16

As a particular case, some astrophysical jets are actually less dense than the external
medium in which they are propagating [19] (not the case for jets from young stars) so in
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these cases η will be small before unity and thus not unstable to the fundamental pinch
instability (M j et > 1+p

η).
To return to the previous discussion about the fact that the very long extent of astro-

physical jets would mean that they are necessarily supersonic because if not, they would
be unstable to the fundamental pinch instability. We can now refine this affirmation by
saying that, being supersonic is not a sufficient conditions to be stable, but the jet needs
to have a Mach number higher than 1+p

η.

Now, as the reader may have noted, we have used the term "fundamental" to name the
pinch instability because it turns out actually that the process by which the jet is pinched
is just one possible mode of the pinch instability. Indeed, there exist, as previously men-
tioned, other "reflection modes", termed the first, second, etc. The transition boundary
separating the fundamental mode to the others is precisely given by the curve 1+pη in the
(M,η) space. These reflexion modes have been studied in the early 80’s by A.Ferrari et al.
([20]). Contrary to the fundamental mode which is purely longitudinal, the higher order
modes also have a transverse component. They derive their name from the property that
a sound wave can have when it reflects on a supersonic shear surface (the jet boundary).
Indeed, it can be proved ([20]) that, for certain angles of incidence, such a wave can be
amplified repeatedly by back and forth reflections between the jet boundary. The reflec-
tion modes are in fact at the origin of the network of oblique shock seen in the non-steady
jets, however we remind that in steady-state jets the shock pattern is stationary.

4.5 GORGON simulations of supersonic jets

4.5.1 General description of a pressure-matched supersonic jet

We now present 3D numerical simulations of supersonic jets performed with GORGON.
Whenever the contrary is not indicated, the simulations of our idealized supersonic jets
are performed without including magnetic fields, thermal conduction and radiation losses.

The computational domain is shown in fig.4.8. Before presenting the numerical re-
sults, we define several dimensionless parameters of interest (some have been already
mentioned, like the density ratio η). In the absence of dissipative processes (viscosity,
resistivity, radiation, etc), one can perform a strict scaling between two physical systems
described by the Eulerian hydrodynamic equations ([21]). Thus, once the correct dimen-
sionless numbers are properly defined, the dynamic observed in a given simulation will
be applicable to every other system with the same dimensionless parameters and where
those scaling relations apply.

A given simulation is defined by the three dimensionless parameters:

η =
ρ j et

ρb

K =
P j et

Pb

M j et =
v j et

cs, j et

θ

(4.18)

(4.19)

(4.20)

(4.21)

K is the ratio of the jet pressure to the background pressure, M j et is internal jet mach
number, θ is th opening angle of the jet (see fig.4.8). We notice that we these definitions,
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Figure 4.8: Schema of the simulation domain used in the GORGON code to simulate idealized
supersonic jets. In all simulations presented in this chapter we will use θ = 0° meaning that the jet
enters in the domain with a null opening angle.

the "external" jet Mach number Mext
j et = v j et /cs,b can also be expressed as a function of the

other parameters:

Mext
j et =

√
K

η
M j et (4.22)

This number is interesting because it determines the development of a bow shock in
the simulation. The jet has to be supersonic relative to the sound speed of the background
(Mext

j et > 1) to generate a bow shock. This condition can also be written as a condition on
the internal Mach number as:

M j et >
√
η

K
(4.23)

We begin by presenting simulations of a supersonic jet which is under-dense and pres-
sure matched. The flow is inject parallel to z-axis. The relevant parameters are:


η = 0.1

K = 1

M j et = 3

θ = 0

(4.24)

(4.25)

(4.26)

(4.27)

For completeness and to make contact with the realistic simulations presented in later
sections, we also give the physical quantities associated with these parameters, which
were chosen to correspond to "typical" values of densities and temperatures found in
laser-produced plasma jets:



ρ j et = 0.01kg .m−3

ρb = 0.1kg .m−3

T j et = 100eV

Tb = 10eV

R j et = 1mm

(4.28)

(4.29)

(4.30)

(4.31)

(4.32)
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bow shock

cocoon jet core

Figure 4.9: 2D maps of the decimal logarithm of the mass density at t=0.15, 0.35, 0.45, 0.5, 1 and 2
µs. The jet is injected at z = 0 with a zero opening angle. The internal Mach number of the jet is 3,
the density ration η is 0.1 and the jet is pressure-matched with the background. The corresponding
ion temperature maps are shown in fig.4.10 and the pressure maps in fig.4.11
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Two-dimensional slices of mass density, ion temperature and the total pressure (pe +
pi , are shown respectively in fig.4.9, fig.4.10 and in fig.4.11. The jet is injected constantly
on the lef-hand boundary between x=-1 mm and x=1 mm and has a circular cross section.
The evolution is followed over 2µs. If we apply the Ryutov scaling [21] to this problem,
the length scale can defined by the jet diameter (2mm) and the characteristic velocity by
the jet sound speed (≈ 140km.s−1) and thus in this case the unit time scale is given by:
210−3/140103 ≈ 14ns. Therefore, following our jet dynamic on 2µs is equivalent to say
that it is studied on ≈ 143 times the unit time scale. In term of spatial unit, we observe
the jet in our simulation over a distance of 76mm and so it represents 38 times the length
scale (the jet diameter).

Here we show six times 0.15, 0.35, 0.45, 0.5, 1 and 2 µs. At early times (0.15 and 0.35
µs), the jet already shows some of features discussed earlier and depicted in fig.4.5. These
include the bow shock (dense red region, the cocoon (clearly seen in dark blue above and
below the jet head) as well as the jet core itself (in sky blue). The terminal shock is present
at the head of jet and can be clearly seen in the ion temperature maps in fig.4.10 as the
hotter region. A network of internal shocks can be also observed, most notably trough the
2D slices of the total pressure shown in fig.4.11. Just before its terminal shock, the jet de-
velops a region of low pressure gas which allows the jet core to expand and become under-
expanded, thus resulting in the formation of the terminal Mach disk. This self-consistent
"termination" mechanism that a supersonic establishes at its propagation front was first
studied and discussed in [10]. The low pressure plasma just before the terminal shock can
be seen in fig.4.11 at 0.15 and 0.35 µs as the white regions near the jet head. In fact this
low pressure region is composed of two distinct parts: the first one, located in the cocoon
and seen as lobes sitting above the jet core, is responsible for the existence of the second
one, located in the jet just before the terminal shock. Indeed, the low pressure centers of
the cocoon sets off the lateral expansion inside the jet head, resulting in a region called
the "rarefaction valley". The supersonic jet is thus somehow self-generating an "effective
orifice" to allows its propagation.

We now discuss in more details the bow and terminal shocks. As previously seen, in
the frame of the working surface (and the bow and terminal shock), we have approxi-
mately the equality of ram pressures: ρ j et (v j et −W)2 = ρbW2 and, because we are inter-
ested in pressure-matched jets, we also have that ρ j et c2

s, j et = ρbc2
s,b . Thus we can write:(

v j et −W

cs, j et

)2

=

(
W

cs,b

)2

(4.33)

This last relation expresses the equality of the Mach numbers in the frame of the work-
ing surface (and of the shocks). For a plasma with γ = 5/3, the pressure jump across a
shock is given by P

′
/P = 1/4(5M2 − 1) where P

′
/P is the ratio of the post-shock pressure

to the pre-shock pressure. Thus, because the pressure jump across a shock is only de-
pendent on the Mach number of the flow in the frame of this shock, we can understand
from relation 4.33 that the flow crossing the bow shock and the flow crossing the terminal
shock have the same Mach number and one would thus expect the pressure jump to be
the same for both cases. In fact, this is not the case because of the "rarefaction valley"
described earlier. Indeed, since the flow in this region (see label in fig.4.11) experiences a
decrease of its pressure and an increase in its local velocity, the local Mach number turns
out to be much more important just before the terminal shock than before the bow shock.
Thus the jump in pressure across the Mach disk exceeds the jump of pressure across the
bow shock by the amount of pressure drop along the rarefaction valley.

We now discuss the next stage of plasma jet evolution, at times when the stability of
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terminal shock

Figure 4.10: 2D maps of the decimal logarithm of the ion temperature at t=0.15, 0.35, 0.45, 0.5,
1 and 2 µs. The jet is injected at z = 0 with a zero opening angle. The internal Mach number of
the jet is 3, the density ration η is 0.1 and the jet is pressure-matched with the background. The
corresponding densities map are shown in fig.4.9 and the pressure maps in fig.4.11
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"rarefaction valley"

Figure 4.11: 2D maps of the decimal logarithm of the total pressure (ionic + electronic) at t=0.15,
0.35, 0.45, 0.5, 1 and 2 µs. The jet is injected at z = 0 with a zero opening angle. The internal
Mach number of the jet is 3, the density ration η is 0.1 and the jet is pressure-matched with the
background. The corresponding densities map are shown in fig.4.9 and the corresponding ion
temperature maps in fig.4.10
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the jet is greatly perturbed. We point out that small amplitude perturbation are already
present at earlier times too. In fig.4.9, we show the jet at 0.45 and 0.5 µs. In the first one,
one can see the pinching of the jet core with a main perturbation at z ∼ 16mm as well as
Kelvin-Helmholtz-like perturbation on the working surface. Regarding the previous dis-
cussion, the pinch instability should be seen if M < 1+p

η. For the parameters used in
the simulations, M=3 and η = 0.1, the inequality is not respected and one would expect
the jet to be stable to the pinch instability. However, in the case where a cocoon is estab-
lished, the external medium is composed of low dense shocked plasma. Thus, relation
4.15 should instead be considered in this configuration. Since the cocoon is flowing with
a non negligible velocity (in the laboratory frame, this velocity is in the same direction
that of the jet), the relation now becomes:

vcocoon − v j et < cs,cocoon − cs, j et (4.34)

where vcocoon is the value of the cocoon velocity in the laboratory frame and cs,cocoon

its sound speed. As observed in our simulation, the cocoon velocity is always smaller than
the jet velocity and the cocoon temperature is also much higher than the jet temperature
(because the cocoon is composed of shocked material). Therefore, inequality 4.34 is satis-
fied. In fact, it highlights the fact that the cocoon is almost always a source of instability for
the jet. At t= 0.5 µs, we see the jet core been almost completely broken by the instability
on its last ∼ 10 millimeters. We also see the advected perturbations on the working sur-
face starting to roll up, dragging with them the external medium. This time corresponds
roughly to the time when, thanks to the Kelvin-Helmholtz instability, the jet effectively
starts to mix with the ambient material. In the corresponding images of ion temperature
in fig.4.10 and total pressure in fig.4.11 we see the now turbulent behavior been fed by the
instabilities. As one can see, specifically in the pressures maps (fig.4.11), the surface of the
bow shock itself stays, on the contrary, very stable. However, as we shall see just below, the
"disassembling" of the jet by the Kelvin-Helmholtz instability signals, in some way, the fu-
ture "death" of the strong unique bow shock propagating at early times in front of the jet
head. Much later in time, at 1 µs, the mixing becomes very efficient with a "mushroom"
configuration at the jet head where the material is pouring out in this largely turbulent
region. The cocoon previously located at the jet base has almost completely disappeared
and thus the jet can propagates stably in this region; whereas the terminal shock is now
absent and the conversion of kinetic energy of the jet into thermal energy at the head is
done on a much more large volume and in a much more complex way. As can be seen in
fig.4.10, the resulting ion temperatures are lower.

From fig.4.11 at 1 µs, the bow shock is now weaker and followed by a succession of
"small" shock waves launched almost randomly by the turbulent "mushroom". Interest-
ingly, on this pressure maps, we see at the jet entrance the start of a setting up of a network
of conical shocks. In fact, if we look later at 2 µs, still on the pressure map in fig.4.11, the
jet has now stabilized itself with a nice shock diamonds pattern, which is characteristic of
stationary supersonic jets, like in the exhaust of some rocket engines. The "mushroom"
is still present with even larger dimensions and much lower temperatures.

4.5.2 Effects of the Mach number on jet propagation

We discuss now the influence of the Mach number on the dynamic of supersonic jets. In
fig.4.12 we show 2D slices of the evolution mass density for three different cases: M=0.5,
M=1, M=6 and M=9. In fig.4.13 we show the corresponding ion temperatures.
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M=0.5 M=1

M=6 M=9

Figure 4.12: 2D maps of the decimal logarithm of the mass density for pressure-matched jets.
Are shown four different Mach number jets: M=0.5, M=1, M=6 and M=9. The jets are injected at
z = 0 with a zero opening angle. The density ratio η is 0.1 for all cases. The corresponding ion
temperature maps are shown in fig.4.13.
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The first remarks concerns the fact that for low Mach numbers, no cocoon is gener-
ated, as predicted in our discussion about the general features of supersonic jets (as a
reminder, the cocoon been pressure-driven, a low Mach number is synonymous with no
or weak terminal shock and thus a low pressure at the jet head. Furthermore, for subsonic
flows, the Kelvin-Helmholtz is so destructive that any "leakage" of material on the jet sides
is very rapidly destructured). In the case of high Mach number flows (M=6 and M=9), the
cocoon is basically all around the jet core, and over its entire length. Very interestingly, if
we look at the temperature maps of theses jets (see fig.4.13 at t=0.75 and 0.35 µs), we see
that the cocoon cools down as it travel backward. This cooling is caused by the adiabatic
expansion after the terminal shock because. We remind that no thermal conduction or
radiative cooling is included in the simulations. The consequence of this spatial inhomo-
geneity of the ion temperature is crucial, in that the jet core is always much more sensible
to the Kelvin-Helmholtz pinch instability near its head, where the cocoon sound speed is
higher and thus the unstable condition 4.34 more easily verified. However, we highlight
the fact that even if we clearly see the head of jet being quite disturbed (see the density
maps of M=6 and M=9 jets at 0.75 and 0.35 µs), the very high Mach number of these flows
allows them to stay relatively collimated and to not break over the simulated time-scale.

Noteworthy, the internal shock patterns developing at these same late times seems to
clearly increase in scale with the Mach number (see, for example, the difference in the
shock spacing between the mass density map at t = 2µs for the M = 3 case in fig.4.9 and
the density map at t = 1.5µs for the M = 9 case in fig.4.12). From our previous discussion
about the reflexion transverse modes in supersonic jets (see section 4.4), these patterns
comes from the reflected sound waves amplified on the supersonic velocity shear at the
jet core boundaries. Thus, when the Mach number increase, the successive reflexions
needed to obtain large amplitude takes place over larger distances. The other important
observation also coherent with our previous discussion, is that for low subsonic or low
Mach number jets, the pinch instability become very disruptive. For example, for the
subsonic jet (M=0.5), the jet is Kelvin-Helmholtz unstable even at small z (< 10mm, see
at t=1.65 µs). These low Mach numbers jets only propagate over a distance typically ≈ 10
times their diameter and are afterward dislocated and mixed with the external medium.

4.5.3 Influence of an axial magnetic field on the dynamic of a super-
sonic jet

In this subsection we look at the effect of adding a magnetic field to the background, in the
same direction as the jet main axis (z-direction). The presence of a magnetic field associ-
ated with astrophysical jets is invoked in many cases, for example in the bipolar jets often
observed in Young Star Objects (even if in these cases the field is is usually toroidal [22]).
As explained in the chapter (5.2) about the state-of-the-art of laboratory astrophysics jets,
our collaboration has already demonstrated experimentally the possibility to collimate a
laser-produced entirely with a magnetic field (vacuum background). As explained, one of
the key parameter necessary to obtain the collimation process is the magnetic Reynolds
number because the ideal MHD regime is absolutely required for this collimation. Here
we study the "idealized" case used in the previous subsections (see fig.4.8) but we in-
troduce a magnetic field which account for a certain percentage of the total background
pressure (thermal + magnetic). We still look at pressure-matched jets thus to stay in this
situation, we keep the same parameter described for M=3 jet (see 1.27-1.31) but we de-
crease the background temperature (and so the background thermal pressure) and com-
pensate the difference with the magnetic field in order to always have: P j et = Pb+PB where
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M=0.5 M=1

M=6 M=9

Figure 4.13: 2D maps of the decimal logarithm of the ion temperature for pressure-matched jets.
Are shown four different Mach number jets: M=0.5, M=1, M=6 and M=9. The jets are injected at
z = 0 with a zero opening angle. The density ratio η is 0.1 for all cases. The corresponding mass
density maps are shown in fig.
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Figure 4.14: 2D maps of the decimal logarithm of the mass density for a pressure-matched jet. The
background pressure is the sum of the thermal background pressure and the magnetic pressure.
In the left panel, the field (Bz = 6.97T) accounts for ≈ 35% of the total pressure whereas in the right
panel the field (Bz = 10.23T) accounts for ≈ 75% of the total pressure. The jets are injected in both
cases at z = 0 with a zero opening angle. The density ratio η is 0.1 in both cases.
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PB = B2/2µ0 is the magnetic pressure.

The results are presented in fig.4.14. In the left column we show three times (0.35,
1 and 2 µs) of a simulation with Bz = 6.97T, which represents ≈ 35% of the total exter-
nal pressure. In this the case the plasma background is initialized at the temperature
Te = Ti = 10eV with a density of 10−1 kg .m−3, keeping the same ration density studied be-
fore (η = 0.1). In the right panel, the magnetic field is Bz = 10.23T and thus the magnetic
pressure represents in this case ≈ 75% of the total external pressure. The temperature is
here of 5 eV and we still have η = 0.1. The images shown in fig.4.14 should be compared
to the ones previously presented in fig.4.9, for the same parameters but with an external
pressure entirely supplied by the thermal pressure of the plasma background. One can see
a remarkable difference at early times (< 0.35µs) concerning the absence of the low dense
lobes when the magnetic field is present. In fact in this case the magnetic field tension
prevents the lateral expansion of the plasma having passed through the terminal shock.
As we already saw, this terminal shock is similar to a Mach disk and thus this region is
normally propitious to the generation of vorticity thanks to the slip discontinuity present
there. The discontinuity arises because of the differential velocity between plasma having
passed through directly the Mach disk and the plasma having passed trough the incident
and reflect shock. The presence of a magnetic field interfere with the generation of the
previously observed "vortex". At later times (1− 2µs), the difference between the mag-
netized cases and the unmagnetized becomes even more obvious. First the magnetized
jets propagate farther and this effect is enhanced when the B-field is increased. For exam-
ple, at 1µs, the "Bz = 6.97T" jet is ∼ 35% farther than the unmagnetized jet. This result is a
consequence of the fact that the Kelvin-Helmholtz instability is greatly attenuated or even
suppress in the strong B-field case (at the interface between the external medium and co-
coon). However, we can see that near the jet head, the jet core is still relatively unstable,
as in the unmagnetized case. The assumption that the magnetic tension stabilizes the
Kelvin-Helmholtz instability should thus suggest that in the region of the jet core head,
weak field should be observed whereas when looking close to the jet core tail, stronger
fields should be present. In fig.4.15 we show a slice of the magnetic field magnitude for
the strong field (Bz = 10.23T) case. As one can see, the strongest fields are in fact located
at the bow shock with increase of ,∼ 32% compared to the initial field. As predicted, the
head of the jet is basically free of magnetic energy with magnitudes . 1.5T. Thus inside
this diamagnetic cavity, the plasma can develop an turbulent behavior with strong per-
turbations of the central beam. Closer to the tail, we see that the core is more and more
surrounded by a significant magnetic field and thus in this region the jet develops a much
more stable behavior. A very important point concerns the boundary conditions for the
B-field. Indeed, in these simulations the field lines foots are "fixed" on the +/- z bound-
aries. The consequence is that the plasma cannot bring the lines too far from their original
position since it will implies very strong magnetic tension forces. For the late time t = 2µs,
especially for the strong field case, the configuration presents an almost "perfect" picture
of the idealized stationary supersonic jet propagating in an ambient medium. Indeed, the
shock diamonds pattern is well established on ∼ half the size of the box and the jet core
is embedded in a hot cocoon. An other important aspect is the effect of the finite dimen-
sions of the box. When the jet head exits the domain, the feeding source of the cocoon,
the jet head, is not present anymore thus for these late times, the stable configuration is
actually vowed to stay.
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Figure 4.15: 2D maps of the magnetic field magnitude at t = 1µs for the case where the initial field
is of 10.23T (≈ 35% of the total background pressure). The corresponding mass density maps is
the middle one in the right panel of fig.4.14.

4.5.4 Supersonic jets propagating in a magnetized vacuum

For the last point of this study about our idealized supersonic jets, we want to address
the case where the background is a vacuum. We still look at the case where the jet is
pressure-matched so, in the case of our M = 3, T j et = 100eV and ρ j et = 0.01kg .m−3 jet,
the necessary magnetic field is Bz = 11.77T. It is not the purpose of this section to give a
detailed description of this specific configuration since we will present an in-depth study
of the more "realistic" laboratory jets (propagating similarly in vacuum) in the next chap-
ter. Nevertheless, the idealized case presented here can serve as a perfect introduction
for several features we will see later. We have represented in fig.4.16 2D maps of the mass
density at t=0.05, 0.15, 0.25 and 2 µs. The first observation is that, even without any ma-
terial in the background, the collimation of the jet is still possible as a consequence of the
lorentz forces applied on the jet material. As we will see in the next chapter, in order to be
effective, the magnetic Reynolds of the flow needs to be much larger than unity. This is
because if diffusion of the magnetic field is large compared to its advection, the generated
lorentz forces are not strong enough in order to collimate the flow. The second important
observation from fig.4.16 concerns the extreme stability of the jet as well as the absence of
a cocoon. Indeed, there are no disruptive instabilities, most notably the complete absence
of the Kelvin-Helmholtz instability makes the propagation of the jet almost "perfect". The
cocoon can not develops here because the pressure in front of the jets is basically null
(because the magnetic force applies always perpendicularly to the magnetic field direc-
tion which is the same as the jet propagation in our case). Interestingly, we still observe
an internal shock pattern inside the jet itself. This pattern proves itself to be very stable
and steady-state. This is the indication that when the collimation is realized in vacuum
through the action of a magnetic field, the previously observed compression and rarefac-
tion regions are still part of the process but, because in this case the jet boundary is very
stable, the shock pattern is correspondingly also very stable. Of course, we must high-
light from now on that this stationary state can be established only because the source of
the jet, that is the flow coming through the left "hole" in our simulation domain, is itself
constant. As we shall see in the case of laboratory jets produced using laser pulses, this
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B=11.77 T

Figure 4.16: 2D maps of the mass density at t=0.05, 0.15, 0.25 and 2 µs for "magnetically" pressure-
matched supersonic jets (M = 3, T j et = 100eV and ρ j et = 0.01kg .m−3). Here the jet is propagating
in vacuum.

steady-state character will not be observed because of the strong time-dependent nature
of this configuration.
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5.1 Introduction

In the previous chapter 4 we have studied some of the general features of idealized su-
personic jets propagating in a magnetized or unmagnetized medium. We characterized
the structures that develop in the jet, such as internal shocks, cocoon, working surface,
etc (4.3), as a function of the main jet parameters, namely, the internal Mach number
of the jet M j et , its density ratio relative to external medium η and the pressure ratio K
between the jet internal thermal pressure and the background thermal pressure. In par-
ticular, at the end of this previous chapter, we showed that stable supersonic jets can be
generated by removing completely the external material and imposing instead a magnetic
field aligned with the direction of the jet propagation. In this case, the external magnetic
pressure was initialized to match exactly the thermal pressure of the jet. The improved
stability of this configuration was found to come from the complete suppression of the
Kelvin-Helmholtz instability. In all these idealized simulations we choose to use plasma
parameters (see 4.5) close to those expected from a plasma produced by "high intensity"
lasers (& 1012 W.cm−2). In fact, the "deactivation" of all dissipative processes when per-
forming these simulations implied that the results obtained are general and should apply
for any scale of supersonic jets that is both for laboratory jets and astrophysical jets.

In the present chapter we are going to investigate the case where the supersonic jet
is produced through the interaction of a laser-produced plasma with a strong stationary
and homogeneous magnetic field. Of course, contrary to the previous chapter, we will use
here the complete set of physics modules implemented in our GORGON code (described
in 2.4).

As explained in the introductory chapter (1), a laser generated plume can be effec-
tively collimated by a magnetic field under certain conditions. This was shown by our
collaboration, numerically in 2013 and experimentally in 2014 [1; 2]. Further experimen-
tal work has been performed since then [3; 4], and the present thesis largely expands on
our previous numerical work [1]. The present chapter is dedicated to a in-depth study of
these laser generated plasma jets.

First, as a general presentation of our laboratory jets, we recall very briefly the exper-
imental setup as well as some general results obtained on the EFLIE installation at the
LULI laboratory [5]. Then we use our numerical simulations to describe in details the
general dynamics which leads to the generation of the jets paying a particular attention
on the density and velocity profiles for such magnetically collimated flows (5.4). In the
following sections we go through the details of the main features observed among which
the presence of collimation shocks is analyzed carefully (5.5). We also characterize the jet
structure as well as its stability 5.7. Finally, we investigate the effects of varying the direc-
tion of the applied magnetic field (5.8) as well as of adding a gas background in addition
to the field (5.9).

5.2 Experimental production of magnetically collimated jets

The results presented here are taken from our paper [3] where the read can find much
more informations on the experimental results. Here we briefly present the experimental
setup as well as some general results that will be more deeply detailed in our numeri-
cal work in the following sections. The experiment has been performed using a platform
[6; 7] developed in collaboration between the LNCMI [8] and LULI laboratories (France)
and on which, as mentioned in the introduction, our collaboration has already demon-
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Figure 5.1: a) Top view schematic of the Helmholtz coil system. The “laser bore” (left-right axis) of
the coil would allow a maximum of 27° full-angle beam for a laser beam at normal incidence. The
“diagnostic bore” (up-down axis) is of constant 11 mm diameter. b) Photograph of the Helmholtz
coil in the chamber looking into the “laser-bore”. Motorized stages are not shown. c) Magnetic
field profiles along the coil central axes. The target is recessed along the longitudinal (laser bore)
axis which is parallel to the field lines. Dotted and dashed lines show the extent of the coil bore
and the maximum distance over which the target was recessed.

strated the possibility to produce astrophysically relevant magnetically collimated flows
[2]. The experiment was performed at the ELFIE laser facility[45] at the Laboratoire pour
l’Utilisation des Lasers Intenses (LULI) in France [9]. The setup for this experiment is
shown schematically if fig.5.1(a).

The 40 J, 0.6 ns Ti:Sa laser pulse is used to ablate a 2 mm diameter CF2 (Teflon) tar-
get with an on-target intensity of 21013 W.cm−2 (and a 700µm diameter focal spot). The
solid target is embedded in a relatively homogeneous magnetic field of 20 T. The spa-
tial profile of the magnetic field magnitude is represented in fig.5.1(c). The field can be
considered uniform at ±10% in a volume of ≈ 1cm3. The rise time of the coil is 190µs,
meaning that the field can be considered also as constant in time on the experiment time
scale (∼ 100ns). Interferometry is accomplished via the Mach-Zehnder technique with a
frequency doubled probe laser with a pulse length of 5 ps and ∼100 mJ of energy. The in-
terferograms recorded on CCD cameras are analyzed using the Neutrino code [10]. Then a
wavelet model enables to fit the fringes arrangement, from which a phase map is then un-
wrapped. Using an Abel transform [11], the plasma electron density ne is retrieved from
the phase map assuming an axisymmetric distribution of the plasma.
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Figure 5.2: Pseudo-color images of electron density taken via interferometry showing jet propaga-
tion from 6 to 70 ns as indicated in the plots. The jet was created by a 21013 W.cm−2 laser irradiat-
ing a CF2 target in a 20 T ambient magnetic field. The dotted vertical lines indicate the edges of the
individual images. The gray background indicates a region where no data was taken or the fringes
were not of sufficient quality to be unwrapped properly. The central ±5 pixels (±55µm) have been
removed due to the uncertainty of the Abel inversion on axis. Note that many of the fine structured
features are due to noise in the fringes of the interferometer and thus are non-physical. From [3].
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In fig.5.2 we show the electron density maps obtained during this experiment. They
highlight the critical effect of adding a strong magnetic field on a laser-produced expand-
ing plasma. Indeed, in the left panel are shown maps observed in the case where the
magnetic field is absent. In this case, we clearly see that the plasma expands with a wide
semi-angle of ≈ 30°. This non perfectly hemispherical expansion is due to the fact that the
pressure gradients generated by the laser deposition are much stronger in the Z-direction
than in in the X-Y directions. Even if some previous work have referred to this type of free
expanding flows as "jets" due to this anisotropy, it is admitted now that their aspect ratios
(length/diameter) are much to small to be qualified as jets [12–14]. In the right panel of
fig.5.2 we see the dramatic increase of the aspect ratio with values which can reach at least
11 in the fifth maps of the right panel, taken 60ns after the laser pulse. This last point is
also a very important parameter of our setup since it allows the production of jets, with
relatively uniform densities (ne ≈ 1018 cm−3), on a time scale that is ∼ 200 times the laser
pulse duration. As we shall see in a next chapter, this almost "steady-state" feature is the
starting point of our work on laboratory magnetized accretion (9). In the right panel of
fig.5.2 are also labeled some important features involved in the magnetic collimation of
the laser-produced plasma (e.g. "cavity", "conical shocks"). The detailed description of
all the collimation process is essentially the subject of this chapter and thus the reader is
invited to see the details of these features in the following sections but keeping in mind
that shocks are basically the indirect mechanism by which the magnetic field acts on the
expanding plasma in order to collimate it.

5.3 Initial numerical setup and laser parameters

The standard configuration studied, shown schematically in Fig. 5.3, consists of a solid
planar target immersed in an externally applied, homogeneous magnetic field B0 parallel
to the z-axis and perpendicular to the target.

In this chapter we focus on a single laser pulse impacting a carbon target (the effects
of changing the target material are discussed in 5.8) and the resulting plasma plume evo-
lution. In chapter 6 we will study the impact of adding a pre-pulse to this configuration.
The computational domain in GORGON is defined by a uniform Cartesian grid of dimen-
sion 6mm ×6mm ×14.4mm and a number of cells equals to 300×300×720 = 6.48107.
The spatial resolution is homogeneous and its value is d x = d y = d z = 20µm. The laser
parameters are:

• Energy: 17J

• Pulse duration (FWHM): 0.5ns

• Focal spot diameter: 750µm

• Intensity: 7.7×1012 W cm−2

• wavelength: 1.057µm

The initial laser interaction with the solid target is performed in the present case using
the DUED code [15]. This two-dimensional Lagrangian fluid code solves the single fluid,
3-Temperature equations in 2D cylindrical geometry in Lagrangian form. The code uses
the material properties of a two-temperature equation of state model (EOS) including
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Figure 5.3: Simulated configuration with the GORGON code. The solid target is composed of car-
bon, the laser pulse impacts this target with an intensity of ≈ 7.71012 W.cm−2 (the laser-solid-
plasma interaction is performed using the DUED code [15]). The magnetic field is initialized as
been perpendicular to the surface target (it corresponds to the z-direction) and its magnitude is
20T. The left image shows, at t = 8ns, an isovolume rendering of the mass density of the jet re-
sulting from the dynamic described in the main text. The right image shows the same jet but seen
from above.

solid state effects, and a multi-group flux-limited radiation transport module with tab-
ulated opacities. The laser-plasma interaction is performed in the geometric optics ap-
proximation including inverse-bremsstrahlung absorption. At the end of the laser pulse
(1 ns), the plasma profiles of density, momentum and temperature (electronic and ionic)
from the DUED simulations are remapped onto the 3D Cartesian grid of GORGON with a
superimposed uniform magnetic field of 20 T (in the z-direction) and used as initial con-
ditions. To remove the symmetry imposed by the initial conditions and to account for the
effect of inhomogeneities in the laser intensity over the focal spot, we introduce uniformly
distributed random perturbation on the plasma velocity components, with a maximum
amplitude of ±5% the initial value. The choice to use the DUED code for the initial plasma
formation is guided by the fact that this code captures more finely the laser-solid interac-
tion physics than the model implemented in GORGON (thanks mainly to better adapted
EOS’s). Furthermore, results obtained with DUED data as inputs have already been pub-
lished in peer-reviewed papers [15]. We remind that the physics included in the GORGON
code is described in 2.4.

5.4 General plasma dynamics

In Fig.5.4 we plot 2D slices in the xz-plane, of the electronic density at three different
times (2, 10 and 30 ns) after the laser pulse arrival. The overall dynamic consists of ba-
sically three phases: the initial almost free expansion of the the highly conductive laser-
produced plasma (Fig.5.4(a)), the collimation of the plasma flow by the magnetic field
which results in the formation of a diamagnetic cavity with a conical shock at its tip
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Figure 5.4: 2D slices of the decimal logaristm of the electron density at t=2,10 and 30 ns. The
carbon target is located on the left of each images (between x = ±1mm) and the laser pulse is
coming from the left. The magnetic field lines are represented in green.
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Figure 5.5: 1D profiles from GORGON simulations of the velocity (vz ) on the z-axis at t=2,10 and
15 ns. Dotted lines represent the solution of Eq.5.2, vz = z/t .

(Fig.5.4(b)). And finally, the formation of a super-Alfvenic jet (Fig.5.4(c)). The entire
plasma flow structure is sustained for over 100 ns, until the plasma flux coming from the
ablated target becomes negligible.

Before delving into the details of these different phases, it is interesting to review the
general features (velocity profile, density profile, etc.) of the expanding plasma plume in
the presence of a magnetic field.

5.4.1 Velocity profiles

In Fig.5.5 we plot the simulated profiles of the axial velocity (vz) as a function of distance
from the target (z), for three different times. The profile is taken on the axis of the flow,
and it is shown together with the analytical profiles given by:

vz =
z

t
(5.1)

where z = 0 corresponds to the position of the initial target surface and t = 0 corresponds
to the arrival time of the laser pulse. The analytical profiles given by 5.1 are actually equiv-
alent to the self-similar velocity solution developed in the chapter dealing about laser-
produced plasma expansions (3.3). In addition, we will show later that the density profiles
given by this model match relatively well the simulation profiles.

An other way to see the origin of this solution, is to realize that along the magnetic
field (z-direction), the plasma flow is roughly governed by the simplified 1D momentum
equation (see 2.3.1), which is valid for supersonic/hypersonic Mach numbers flows:

Dvz(z, t )

Dt
=
∂vz(z, t )

∂t
+ vz(z, t )∂z vz(z, t ) = 0 (5.2)

Indeed, it can be verified that vz(z, t ) = z/t is solution of this equation (also called the
inviscid Burgers’ equation). Physically, equation 5.2 describes the ballistic trajectory for
Lagrangian fluid particles or in other words, fluid particles propagate at a roughly con-
stant velocity. This reflects the fact that very quickly the local Mach number of the flow
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becomes sufficiently large, so that the pressure gradient term in the momentum equation
becomes negligible with respect to the advection term. In the section dedicated to the
derivation of the adiabatic expansion (3.3.2), we did not suppose that the pressure term
vanish. However it can be easily shown that a large part of the expanding plasma in this
model is actually in a regime such that equation 5.2 is valid, and that both descriptions
are equivalent in these regions. Indeed, in the adiabatic expansion model, the local Mach
number is given by (from 3.3.2):

M =
|u|
c

=
|u|

c0 − γ−1
2 |u|

(5.3)

The point from where the pressure forces (−∇p) will start to loose significantly their
importance compared to the advective term (ρ(u∇)u) is basically the sonic point, that is
where the fluid velocity is equal to the local sound speed (M = 1, see 3.3.4 for details).
Solving 5.3 for this case, we find that the fluid particles having a sonic velocity |u| = |us | = c
must have a fluid velocity |us | = 2c0/(γ+1). In the free-reservoir adiabatic model, the only
point where the fluid has this velocity is the point z = 0 ! (It can be seen solving 3.45 with
|u| = |us |). Thus, in this model, basically all the expanding plasma is supersonic and thus
equation 5.2 become almost instantly valid. The validity of the free-reservoir adiabatic
expansion can be "naively" justified by saying that the initial plasma ablated from the
solid target can be considered as a reservoir of ionized gas at density ρ0, pressure p0 and
temperature T (with the corresponding sound speed c0 =

√
γp0/ρ0 (variables defined in

3.3.2).
In the case where the expansion is isothermal (see 3.3.3), the sonic point is also gener-

ally close to the target surface (see 3.2) and thus this solution tends also toward the Burger’
equation. The relative good agreement seen in fig.5.5 is also the starting point of the small
model we tentatively developed in section 3.3.4. We note also the fact that the Burgers
equation become rapidly valid partially because of the M2 dependence of the ratio of the
ram pressure on the thermal pressure (see 3.55). The simple relation 5.1 presents a great
interest for laboratory experiments similar to ours (almost 1D expansion), as a means to
obtain a fairly accurate estimate of the bulk velocity of the plasma, which is in general a
very difficult quantity to measure experimentally.

5.4.2 Density profiles

The next step is naturally to look at obtaining analytical expressions for the density pro-
files also along the magnetic field (z-axis), where j×B = 0. The problem here is to find
the solution to the mass conservation equation 2.3.5 associated to the momentum equa-
tion 5.2 (valid for the supersonic expansion). If we use the adapted Raga model 3.3.4 to
solve this problem we have seen that a major problem concerning the nature of this so-
lution is that it depends strongly on the initial conditions. Several models for three di-
mensional laser-produced unmagnetized plasma expansions exist [16] and recent exper-
iments with laser-produced carbon plasmas have shown it to be in good agreements with
these models [17]. In our case, the strong collimation by the magnetic field allows us to
use as a first approximation a one dimensional description of the flow in the z direction
(see Fig.5.4(c)). As seen in the previous section, a very simple but useful solution should
be obtained within the free-reservoir adiabatic model 3.3.2. In this case, the expanding
plasma has a density profile given by 3.41:
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ρ(z) = ρ0

(
1− (γ−1)vz(z)

2c0

)2/(γ−1)

(5.4)

In Fig.5.6, we plot mass density profiles (full lines) at three different times (t=8, 15 and
25 ns) for a carbon plasma produced by a laser pulse with the same parameters intro-
duced above except for the laser energy, which is here of 6J. We choose this lower laser
energy only because the density profiles are closer to a 1D expansion in this case and re-
sults are more directly comparable with the theory. We will justify this point and explain
the deviation when increasing the laser energy in the section detailing the jet structure.
However, it should be noted that the velocity profiles, being taken on the z-axis, are less
sensitive to the initial conditions.

Profiles computed from 5.4 are represented in dashed lines. These curves are ob-
tained for an adiabatic index γ = 5/3 (as in the GORGON code) and an initial tempera-
ture T0 = 375eV. This value is clearly too high for the laser energy used and and in fact,
it is not coherent with our simulations which gives T0 ∼ 60eV. In fact, it has been exper-
imentally observed that for laser-produced plasmas [18], the maximum speed reached
by the expanding flow is generally 2-3 times greater than the theoretical maximum speed
given by the free-reservoir model (3c0). So in our case, if we take the temperature from the
simulation (∼ 60eV) as the initial temperature T0), we would need to multiply our sound
speed by a factor 2.5, which would be coherent with the estimates found experimentally.
We note that several explanations have been put forward to resolve this discrepancy, such
as a different adiabatic index, see [18]). However an obvious possibility is that for laser-
produced plasmas the pressure of the "reservoir" is not homogeneous. Strong pressure
gradients generated by the laser pulse, can then increase the conversion of thermal en-
ergy into kinetic energy. We have also seen in the section detailing free-expansions, that
the energy associated with ionization can increase the maximum velocity reached by the
plume 3.3.2. We must also point out that in Fig.5.6, the simulated profiles are averaged
around the z-axis over a radius of 700µm, which is approximately the laser beam radius.
Their relatively good agreement with 1-D theoretical profiles further support the assump-
tion of a magnetically-collimated nearly 1-D expansion.
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Figure 5.6: Full lines: simulation profiles of mass density (as a function of z) averaged around the
z-axis over a radius of 700µm. Dotted lines: solution computed from the adiabatic expression 5.4

5.5 Cavity formation and evolution

We focus now on the main dynamics of the laser produced plasma and its collimation by
the magnetic field.

The plasma expansion will differ from the free 3D expansion case only if there is a
force strong enough compared to the ram pressure ρv2 where ρ is plasma density and v
the fluid velocity. The initial plasma expansion is largely dominated by the ram pressure of
the flow, ρv2 ∼ 25GPa, which is approximately 150 times greater than the magnetic pres-
sure of ≈ 160MPa. However, this three-dimensional, free expansion is halted very quickly
by the distortion of the magnetic field lines and the rapid increase of the magnetic field.
Perpendicular to the target, the flow velocity and the field lines are almost parallel (there
is no Lorentz force on the plasma) and the plasma propagates essentially unimpeded.
However, parallel to the target surface, the flow velocity and the field lines are perpen-
dicular. Shear then distorts the magnetic field lines generating a magnetic tension that
decelerates the flow. Initially this deceleration is small, but it is rapidly amplified by the
accumulation of magnetic field on the edge of the oval cavity, as shown in Fig.5.4(b). This
magnetic compression is possible because the laser-produced plasma has speeds (rela-
tive to the decelerated plasma near the interface) greater than the fast magneto-acoustic
speed and thus shocks are produced. The shock envelope can be clearly seen in Fig.5.7(a),
on the top of the image where we plotted the thermal beta. One can see two different kind
of high beta regions: inside the cavity, where the plasma is relatively cold ∼ 50eV but the
magnetic field is low (< 5T) and on the cavity walls, where the ion temperatures are large
∼ 500eV and the field is relatively strong > 20T. In these regions with significant mag-
netic fields gradients there is generation of strong electrical currents (j = (∇×B)/µ0) and
strong magnetic forces (j×B). The resulting structure is often called in the literature a
diamagnetic cavity.

The magnetic confinement of the plasma just described largely depends on the rela-
tive importance the advection of magnetic field by the flow with respect to resistive dif-
fusion. If the latter dominates, the field cannot be easily distorted or compressed. For
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Figure 5.7: (a): 2D maps of the plasma betas: the thermal beta (thermal pressure over magnetic
pressure) is shown with the red colormap while the dynamic beta (ram pressure over magnetic
pressure) is represented using the blue colormap. (b):2D map of the decimal logarithm of the
electrical current density taken in a x/y slice at z = 3mm (see the vertical line in (b)). Both images
are taken at t = 8ns.

the regime investigated here, the initial electron temperature is high and because the

plasma resistivity η ∝ T
− 3

2
e , we have that the plasma conductivity is high. This "ideal

MHD" regime, where the flux is "frozen" in the plasma, corresponds to a relatively high
magnetic Reynolds number Rm = UL/Dm ∼ 100 where U ∼ 105 m.s−1, L ∼ 10−3 m and
Dm = η/µ0 ∼ 1m2.s−1 are the characteristic velocity, length-scale and magnetic diffusivity
respectively (and µ0 is the vacuum permeability).

We can estimate the intensity of current density on the cavity walls by comparing
the magnetic force with the force associated to the ram pressure (ρ(v.∇)v). Shocks oc-
cur when the ratio of the two forces approaches unity, giving an estimated current den-
sity intensity j ≈ ρv2

⊥/Beshock = 1011 A.m−2, where eshock = 100µm is the shock thickness,
ρ = 0.02kg .m−3 is the characteristic plasma flow density, B = 20T is the characteristic
magnetic field magnitude and v⊥ = 100km.s−1 is the plasma velocity perpendicular to
the magnetic field lines. The structure of electrical currents is shown in Fig.5.7(b). In the
cavity region, the induced magnetic forces are directed inward, acting against the plasma
expansion. These magnetic forces can be separated into two parts (Eq.5.5): a force result-
ing from a gradient of magnetic pressure (the first term in the right side of the equation)
and an other one associated to the curvature of the magnetic field lines, the magnetic
tension.

Fmagnetic = −n(n.∇)
B2

2µ0
+ B2

µ0

n

Rc
(5.5)

where n is the unit vector perpendicular to the magnetic field vector pointing towards
the center of the osculating circle of radius of curvature Rc . We can estimate the relative
importance of these two components in evaluating their ratio:

r =
Pr essur e

Tensi on
≈ Rc

eshock
> 10
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where eshock is the shock thickness and we evaluated the gradient near the shock: (n.∇) ≈
1/eshock . We took typical values Rc = 1mm and eshock = 100µm. Whereas the shocks
thickness doesn’t change very much along the cavity walls, the curvature radius can be
very large in some regions leading to a ratio r usually much greater than unity. The mag-
netic pressure is therefore the dominant component acting against the plasma flow. We
highlight here the fact that magnetic forces appears because of a modification of the
topology of the field (eq. gradients) but we notice that magnetic pressure values reached
because of compression by the plasma flow are not very large. Indeed it appears that the
magnetic pressure is at most ∼ 1.56 greater than the nominal one (Pmag ,0 ≈ 160MPa and
Pmag ,max ≈ 250MPa). It corresponds to a increase of the magnetic field magnitude of only
∼ 25% (Bmax ≈ 25T ). Here we don’t take account of potential self-generated magnetic
fields by the existence of regions with non-null electronic baroclinicity (∇pe ×∇ne 6= 0).
For instance, because of the laser spatial energy profile, during the initial plasma expan-
sion (t < 1ns) misaligned pressure and density electronic gradients can potentially gen-
erate significant magnetic fields (> 1T). We will discuss this mechanism in a dedicated
section.

When the plasma crosses the shocks on the cavity edges, it is only the velocity compo-
nent perpendicular to the shock front ? (v⊥) that is reduced, while the parallel component
is continuous across the shock front. The flow is then refracted at the shock and it is con-
strained to follow the cavity walls up to its tip where a conical shock occurs (Fig.5.4(b)).
Then, if the pressure of the shocked plasma emerging from the conical shock is suffi-
ciently high (βth >> 1) another cavity is formed and the same process occurs again. This
dynamics can be clearly seen in Fig.5.4(c) with three conical shocks resulting from the
successive re-collimation events. The number of observable cavities is actually a function
of the initial thermal beta (just after the laser pulse). Indeed, the greater the plasma beta
the more cavities will be necessary to perfectly collimate the flow. This process is equiv-
alent to the shock diamonds seen in supersonic exhaust plumes of aerospace propulsion
systems but in our case this is the magnetic pressure which plays the role of the atmo-
spheric pressure. We shall see in more details this process in the section describing the jet
structure.

Now we address the heating processes that is responsible for the high temperatures
seen in the shocks. This comes from two sources: ohmic heating which heats the elec-
trons and is given by η j 2, and of course, the conversion of kinetic energy into ion thermal
energy in the shock. Inside the shock envelope, the characteristic plasma electrical resis-
tivity is of the order of ∼ 10−6Ω.m. We can also define an approximate volume of shocked
plasma as Scav eshock , where the shock thickness is of the order of eshock ∼ 100µm and
Scav is the surface of the cavity wall. We can then estimate the total energy transfered by
the electromagnetic field to the electrons through ohmic heating, over the cavity lifetime
δt , as:

Eohm = η j 2eshock Scavδt (5.6)

Concerning the heating by the shock itself, the increase δεi in ion internal energy is
related to the conversion of incoming kinetic energy, as [19]:

δεi ≈ 12

16(γ−1)
ρv2

⊥ (5.7)

Given the relatively high Mach number, we can assume a strong shock and estimate the
total energy transfered to ions during the cavity lifetime, as:
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Figure 5.8: Plasma flow kinetic energy at z=0.6 mm and cavity radius time behavior

Eshock = δεi v⊥Scavδt (5.8)

Using these results, we can quantify the relative importances of these two sources of
heating in the shock envelope: Eshock /Eohm = v⊥δεi /η j 2eshock . Using the expression al-
ready found for the estimation of the current and the relation 5.7 for εi ; we get:

Eshock

Eohm
≈ 12

16(γ−1)

eshock B2

ρv⊥η
(5.9)

Using typical values for the parameters present in this expression, and γ = 5/3, we
estimate a ratio of Eshock

Eohm
∼ 50, indicating that the heating is dominated by the conversion

of kinetic energy in the shocks. This is consistent with the idea that magnetic Reynolds
number is high, and magnetic field diffusion is relatively unimportant. It has to be noted
that if we evaluate the resistivity with the Spitzer expression [20], as the temperature of
electrons in the shock envelope increases through equilibration with the hot ions, the
ohmic heating becomes an even less important process.

Another interesting feature of the cavity dynamic is related to the fact that it is not
stationary. Indeed, one can see that between Fig.5.4(b) and Fig.5.4(c) the (first) cavity has
collapsed. This behavior is closely related to the time-dependent plasma outflow kinetic
energy coming from the target.

In Fig.5.8 we plot the integrated kinetic energy (
Î

pl ane 1/2ρv2
z dS) of the plasma cross-

ing the intersecting plane at z=0.6 mm, very close to the initial target position, as a func-
tion of time. On this same figure, we also plot in red the radius of the cavity as a function
of time. It can be seen that the radius of the cavity reaches its maximum value at ≈ 5ns.
The rise of the kinetic energy after 15 ns is due to the very dense, but slowly expanding
plasma from target reaching the surface over which the integral is calculated. It is not due
to an increase of the plasma velocity. Therefore, the shape of the kinetic energy in fig.5.8
described a pulsed ejection (in term of kinetic energy) from the target and implies that
the cavity can not be sustained indefinitely. This is why the cavity collapses after reaching
its maximum at t ≈ 5ns.

In terms of characterization of the plasma inside the cavity, we have summarized
some relevant plasma parameters at three different times in table 5.1. We note that be-
cause the magnetic field has been pushed out of the cavity, the plasma beta (β = Pth/Pmag )
and the dynamic beta (βd yn = Pr am/Pmag ) are both greater than unity (the latter reaches
values 1000). The magnetic Reynolds number Rm shows that the plasma is in a ideal
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Table 5.1: Plasma parameters in the cavity at three different times. Values taken near the center of
the cavity (z=1 mm at t=2 ns, z= 3 mm at t=10 ns and z=1.5 mm at t=15 ns).

Cavity 2 ns 10 ns 15 ns
β 13 11 2.8

βd yn 490 1107 61
Rm 76 8 2.5
M 4.54 7.3 3
δe 1.9.10−2 1.10−2 2.4.10−2

δi 5.10−2 0.3 8.6.10−2

ωceτe 0.24 0.11 0.08
ωciτi 4.10−4 1.6.10−4 1.7.10−4

τeq (ns) 0.24 1.5 0.32
Te (eV) 73.9 18.1 12.6
Ti (eV) 72.8 14.9 12

ρ (kg .m−3) 0.15 0.005 0.025
v (km.s−1) 385 287 107

regime (Rm >> 1) for several nanoseconds after the laser energy deposition but that pro-
gressively, as time increases, magnetic diffusion can become an non negligible mecha-
nism in the field transport (Rm → 1 for t>15 ns). The fast magneto-acoustic Mach num-

ber, defined as Mma = v/cma where cma =
√

c2
s + c2

a is the fast magneto-acoustic speed (ca

is the Alfven speed ca = B/
p
µ0ρ and cs =

√
ZkbTe/mi is the ion acoustic speed) corre-

sponds to supersonic and superalfvenic regimes (Mma ∼ 1−5). Values of δe/i = rg yr o,e/i /L
(rg yr o,e/i is the gyroradius of electrons/ions and L is the characteristic size of the cavity
L ∼ 1mm) are also shown in the table, and confirm the validity of the fluid description
used here. Not shown in table.5.1, we note also that the mean free paths are ∼ 1µm for
electrons and ∼ 10nm for ions justifying also the fluid description. Equilibration times
are of the order of the plasma time scale dynamics (∼ 1ns) but in the cavity this is not re-
ally relevant since ion and electron temperatures are essentially the same. Finally, we see
that ωciτi ∼ 10−4, indicating that ions are not magnetized inside the cavity. The electrons
have also a parameter ωceτe below unity and can be considered as relatively unmagne-
tized. Interestingly, we shall see later that in the jet formation we could have regions with
strongly magnetized electrons. From this characterization, we can say somehow that the
interior of the cavity is an "hydrodynamic" structure.

5.6 Jet structure and dynamics

We define the plasma jet as the relatively well collimated flow emerging from the tip of the
cavity and propagating along the longitudinal direction (z-axis). For its description an in-
teresting analogy can be made with the already studied supersonic jets propagating in ex-
ternal gas mediums (4.3). Two major families of these jets exist: one where the jet internal
thermal pressure is approximately equal to the thermal pressure of the ambient medium,
and one where the respective thermal pressures a very different. A useful dimensionless

parameter to characterize supersonic jets is the ratio of pressures K = p j et
th /pamb

th where

pamb
th is the ambient thermal pressure (see the chapter on idealized supersonic jets 4.3).

In the case studied here, where the ambient gas medium is replaced by a background
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magnetic field, the parameter K is replaced by the thermal plasma beta βth = p j et
th /pext

B
where pext

B = B2/2µ0 is the external magnetic pressure. Based on the nomenclature used
for hydrodynamic supersonic jets [21], we can classify our magnetically-collimated jets as:
(a) , magnetically overexpanded jets, if βth << 1; (b) magnetically pressure matched jets,
if βth = 1 and (c) magnetically underexpanded jets, if βth >> 1. The parameters K and βth

give an indication on the internal structure inside the jets. Indeed, it is known that when
the mismatch of jet and background pressure is strong (K,βth >> 1 or K,βth << 1), the
flow develops the famous Mach diamonds (disks) pattern inside the jet [22]. In contrast,
when K ≈ 1, an internal network of conical shocks is observed. We observe the same be-
havior in our laser-produced magnetic jets. For example, in fig.5.4(b), the shock observed
at cavity tip is in fact a small Mach disk. It appears in our regime because we have typically
βth ∼ 300. A Mach disk is very effective (much more so than conical shocks) in converting
bulk kinetic energy into thermal energy. Thus, in the case of magnetically over/under-
expanded jets, we expect the laser-produced plasma flow to be strongly decelerated in
the longitudinal direction and to become subsonic in the Mach disks post-shock regions.
This is not necessarily the case in a conical shock. The location of the Mach disk corre-
sponds in fig.5.5 to the large drop of velocity at z ≈ 6.2mm for the profile at t=10 ns. We
can now further explore the validity of the solution vz = z/t for the velocity profile dis-
cussed earlier. This solution should be well verified for pressure-matched jets, but should
break down when the pressure mismatch increases since in these cases, the flow velocity
profile is strongly "parasitized" by the presence of decelerating Mach disks (as in fig.5.5
with the profile at t = 10ns).

An interesting aspect of the dependency of the internal shock pattern with the param-
eter βth concerns the possibility to control a large number of plasma parameters of the
jet, mainly through the temperature. Indeed, the decelerating effect of the Mach disks is
of course associated with a strong heating of ions after the shock. Through equilibration
with electrons, the temperature of both species is thus increased each time they cross the
shock surface. One of the main repercussion of this effect is that, while one would expect
the resistivity to increase as the plasma expands (because of the rarefaction and radia-
tion losses), the jet in fact, keeps itself in a low resistivity regimes and thus large magnetic
diffusivity times (and large magnetic Reynolds numbers). Now, as previously explained,
the plasma containment/collimation by the magnetic field is possible because the field
cannot diffuse inside the plasma. Thus, the internal shock structure of the jet appears as
a self-regulated process which allows the flow to stay collimated over very large distances.

5.7 Jet 3D instabilities

First, the jet structure is a configuration potentially sensitive to the firehose/gardenhose
instability, which may disrupt the flow through long (axial) wavelength, helical-like dis-
tortions (see [23]). The firehose instability, in our context, is due to the self-amplification
of currents driven by transverse perturbations. This instability arises if the condition
P||−P⊥ < B2/2µ0 is met in the jet (pressures are the sum of thermal and ram pressure).
In the jet P||−P⊥ ∼ ρv2

|| because v||/cs >> 1 and v⊥ ∼ 0. We have typically ρv2
|| ∼ 1330MPa

and the magnetic pressure is ∼ 160MPa so the condition is not met. Thus it appears that
the jet is expected to be relatively insensitive to the firehose instability generation but as
we shall see hereinafter, the jet structure can still be affected by other instabilities.

We now focus on the plasma dynamics and the instabilities that develop in the flow in
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the plane perpendicular to the initial magnetic field. In Fig. 5.9(b,c) we show the electron
density in the x − y-plane, at the axial position z=4 mm and z=9 mm. The jet structure in
the x-z plane is also shown at the same time (20 ns).

The observed structuring of the flow along the plasma/vacuum interface with the pro-
truding "fingers" is characteristic of the Rayleigh-Taylor instability (RTI). The underlying
physics of the RTI is given in A.4. This result shows that the structure of magnetically-
collimated supersonic laboratory jets is intrinsically three dimensional. Indeed, the RTI is
triggered if, in the frame of the interface, the effective acceleration ge f f has the opposite
direction to the density gradient. Here, in our case, we have two phases that are favorable
to the growth of the RTI. The first phase, . 10ns, corresponds to the deceleration of the
laser-produced plasma by the action of the magnetic field on diamagnetic currents gen-
erated on the plasma/vacuum interface. In this situation, in the frame of the interface,
the effective deceleration is pointing toward the vacuum (A.4) and thus this decelerat-
ing phase is Rayleigh-Taylor unstable. In our simulation, the maximum deceleration is
∼ 51013 m.s−2 and corresponds to the end of the cavity expansion, a few nanoseconds be-
fore cavity stagnation.

We can interpret and formulate the deceleration process using simple energy con-
siderations (see [24]). The initial kinetic energy of the laser-produced plasma plume is, as
time increases, used to expel the magnetic energy from the diamagnetic cavity. As the cav-
ity radius r (t ) increases up to its maximum value rmax , the magnetic pressure, B2

0/2µ0, is
applied over an increasing area, which is proportional to r 2. The resulting force, and thus
the magnetic deceleration ge f f , is itself proportional to the radius squared and it is given
by

ge f f ,dec,1(t ) =
πB2

0

µ0 f Mabl
r 2(t ) (5.10)

where f is the fraction of the laser-ablated mass Mabl (typically we have, depending
on the laser intensity, ablated mass of the order of ∼ 1µg [25]) effectively expelling the

field. As the RTI growth rate is γ =
√

kge f f for flutelike modes, it is maximum near the

diamagnetic cavity stagnation, where r = rmax ≈ 1.5mm. The factor f is a rather ill-defined
quantity but we estimate it from our simulations to be of the order of ∼ 10−4. Such a value
gives a deceleration (using relation 5.10) of 2.251013 m.s−2. This is consistent with the
observed deceleration value mentioned above.

We will describe a simple way to obtain experimentally the factor f in the section
concerning the jet variability with different parameters. Another way to estimate the de-
celeration is by using the expression we previously deduced for the diamagnetic currents,
namely j = ρv⊥/Beshock . The deceleration, which is due to the Lorentz force j×B, thus
corresponds to a deceleration ge f f ,dec,2 ≈ j B/ρ = v2

⊥/eshock . Taking characteristic values
eshock = 100µm and v⊥ = 100km.s−1 we find: ge f f ,dec,2 = 1014 m.s−2. This expression is
actually more useful since both the shock thickness and the lateral flow velocity can be
inferred experimentally, for example from laser probing interferometry measurements.
In addition to the initial deceleration undergone by plasma, a supplementary accelera-
tion that may trigger the RTI occurs as plasma flowing along the cavity walls experiences
a centrifugal force directed toward the exterior of the cavity.

This acceleration can be written as ge f f ,c = v2
∥/Rc where v∥ is the velocity parallel to

the field lines and Rc the curvature radius of this field. The relative importance of the two
different possible accelerations is given by the ratio:
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ge f f ,dec,2/ge f f ,c =
R

eshock

(
vcdot

v∥

)2

(5.11)

As a first approximation we can take the curvature radius to be equal to the cavity ra-
dius, R

eshock
∼ 6, and from the simulation, the velocity ratio to be vcdot

v∥ ∼ 3. Then the ratio

of the accelerations ge f f ,dec,2/ge f f ,c turns out to be close to unity, indicating that both ef-
fects can play a role in the growth of the RTI. However in our case we see the flutes growing
before the redirection of the flow, that is, before the centrifugal acceleration becomes im-
portant. Indeed the redirection of the flow along a well-formed, stationary cavity occurs
only for a relatively short time and thus the centrifugal acceleration is negligible for the
conditions investigated here. It is interesting to note that if one can establish a long-lived
cavity, for example using repetitive laser pulses, the effect of centrifugal acceleration on
the RTI growth should be much more important. This situation is indeed closer to astro-
physical case, where one expects the lifetime of a cavity to be longer than the growth time
of the instability [Ciardi et al, in preparation].

Taking into account the effect of a finite resistivity, which can damp the RTI through
diffusion of magnetic field across the cavity walls, as well as the effect of ion viscosity
which, through sheared velocities at fine scales, can mitigate the instability growth on
these scales, the classical MHD RTI growth γ rate can be estimated by:

γ =
√

kθge f f −k2
θ(ν+DM) (5.12)

where kθ = m/Rc is the azimuthal wave number, m a positive integer and Rc the cav-
ity radius. DM is the magnetic diffusivity and ν is the ion kinematic viscosity (see [26]).
Writing equation 5.12 we have only considered flutelike (k ·B = 0) modes because of the
strong damping of the instability by magnetic tension (for non aligned modes, i.e. such
that k ·B 6= 0, a third damping term should be added in eq.5.12:−√

2(k ·B)2/(µ0ρ)).
Also the "quantification" introduced by the integer m in the wave number kθ expresses

the fact that the strongly unstable modes in the cavity of radius Rc are only those who are
constructive, that is, such that mλ = 2πRc where λ is the wavelength.

To study more quantitatively the observed instabilities, we performed a spatial Fourier
analysis of the cavity/jet radius.

In a z-slice at a given z, we find the radius r (θn) as the distance between the central
axis (r=0 mm) and the farthest point on the line defined by θn = cste with ρ> ρvac (where
in our simulations we fixed the vacuum for densities below ρvac = 10−4 kg .m−3). We take
N samples of the radius with θn = n 2π/N and we compute the Discrete Fourier transform
(DFT) using the fast Fourier transform (FFT) algorithm:

Am =
N−1∑
n=0

r (θn)exp(−2πi nm/N) (5.13)

A k-mode of complex amplitude Am corresponds to a frequency 2π/m (r ad) in the an-
gle space and to a wavelength λm(t ) = 2πr̄ (t )/m, where r̄ (t ) = A0(t )/N is the mean radius
obtained via the k = 0 mode amplitude. In the following discussion, we refer to a given
mode as the "mode m", knowing that the number m corresponds to the number of ob-
served spikes around the cavity at a given z. To take advantage of our 3D data, we used
this method to obtain the cavity radius plotted in Fig. 5.8.

In fig.5.9(d,e) we plot the Fourier spectrum, |Am |, of the perturbations at the same ax-
ial position as the slices of fig.5.9(b,c). The first observation is that the modes that are
excited depend strongly on the position along the jet’s main axis (z). This aspect can
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Figure 5.9: (a) 2D x/z maps of the decimal logarithm of electronic density at t=20 ns. (b/c) 2D
x/y slices of (a) at z=4mm and z=9 mm showing the Rayleigh-Taylor filaments developing around
the jet. (d/e) Mode amplitudes of the azimuthal perturbations (at z=4mm (d) and z=9 mm (e))
obtained from discrete Fourier transform (f) Full line:Amplitude of the most developed mode as a
function of z. Dotted line: m value of the maximum mode. (5.13)
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be clearly seen in fig.5.9(f) where, at a given time (18 ns), we plot the amplitude of the
dominant mode as a function of z (full line) and the corresponding m number (dashed
line). One can see that generally, high amplitude modes correspond to high number of
spikes. It is consistent with the dependency of the RTI growth rate with

p
m. The maxi-

mum number of spike at this time is m=16 for z between 2 and 6 mm and it corresponds
to the regions where the cavity had previously developed and collapsed (see fig.5.4). The
maximum amplitude is observed at z ∼ 4mm and it reveals flutes of dimensions ∼ 1mm,
which is of the same order of the cavity radius. Thus in the case of a vacuum expansion,
the scale of the developed instabilities cannot be considered as a marginal aspect of the
plasma dynamics and backs the fact that such jets are 3D by nature. Farther, in the jet
itself, we observe both strong m = 4 and m = 8 modes. As can be seen in the electron den-
sity slice in fig.5.9(c) the structure seems to be less "physical" with, for m = 4, very long
flutes aligned on the computational Cartesian grid. This last point must be discussed be-
cause it is inherent to (magneto-)hydrodynamic 3D-simulations and should be taken into
account when analyzing the occurrence of instabilities. Indeed, looking at both spectrum
in fig.5.9(d,e), one can see the preferential excitation of modes such that m = 4×k where
k is a natural integer. Even more importantly, this preferential feeding is the larger when
m is small. This effect can be somehow associated to a numerical damping (in addition
to the resistive damping present in our simulation) and a frequency filter which selects
the modes m which are multiples of 4. The reason of this behavior comes from the fact
that the mass fluxes are computed at the center of each face of the cells and thus, it is
always easier to fill adjacent face-to-face cells. Of course, the spatial resolution used in
the simulations has also a strong effect but does not change this effect. For a discussion
about the influence of the spatial resolution see the dedicated section 5.11. The presence
of RTI flutes all around the cavity and jet present some interesting implications related to
the applications of such magnetically-collimated jets. We already mentioned the possible
study of magnetized accretion dynamics, but there could be also interests in the field of
laser deposition, material ablation [27].

As a last point, supersonic jets are often associated with the Kelvin-Helmholtz instabil-
ity (KHI) [22]. Of course, in a vacuum expansion, not such behavior is observed because
of the absence of strong sheared flows. As we shall see later, when adding a gas back-
ground in our setup, the growth of the KHI is also absent because of the stabilizing effect
of the magnetic field. In definitive, the described setup in this paper allows one to gener-
ate strongly stable jets in the longitudinal (z) direction but very unstable in the azimuthal
direction (x-y). Contrary to the very disruptive current-driven instabilities, the Rayleigh-
Taylor instability does not cause the rupture of the plasma jet. Once the feeding source
of the RTI, namely the effective acceleration, is attenuated, the existing flutes are simply
advected with the flow. The strongest accelerations occurs in the cavity, a few millimeters
from the target surface, and at relatively early times (. 20ns).

5.8 Jet structure dependence with different parameters

It is interesting to evaluate the dependence of the cavity radius with laser energy and mag-
netic field magnitude. If we consider that the laser energy εL is absorbed in a hemispheri-
cal volume V = 2/3πR3 the plasma ram pressure can be estimated by pr am = f εL/V where
f represents the fraction of laser energy converted into plasma kinetic energy. A rough
estimate of the maximum cavity radius is obtained by equating the plasma ram pressure
to the magnetic pressure: :
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Figure 5.10: Left: Cavity maximum radius as a function of the laser energy (for 0.5ns pulses) for
three different magnetic fields (5, 10 and 20 T). Dots are taken from simulations whereas full lines
are computed from 5.14. Right: Maximum cavity radius as a function of the target material atomic
number for a 3 J pulse and a 5 T field.

139



CHAPTER 5. GENERATION OF ASTROPHYSICALLY-RELEVANT JETS IN THE
LABORATORY

R(εL,B) ∼ (
3µ0 f

′
εL

πB2
)1/3 (5.14)

In Fig.5.10(a) we plot both the dependence of the cavity radius with εL and the mag-
netic field B. We find good agreement with f

′
= 3−7%. The new factor f

′
is actually closely

related to the factor f introduced before in formula 5.10. Indeed, the ratio of laser energy
used to expel the magnetic field from the cavity can be written as the kinetic energy of
the ablated mass times the factor f , so that 1/2 f Mabl v2 = f

′
ε. Thus, for experimental

purposes, supposing that we know the energy laser and the magnetic field magnitude, we
need to measure experimentally the maximum cavity radius, the (lateral) plasma veloc-
ity and the ablated mass in order to retrieve the value of both factors f and f

′
. The first

two quantities can be quite easily estimated using interferometry images, for example,
whereas the ablated mass, as discussed in the first section, may be measured after the
experiment, with much less constraints on the diagnostic tools.

An other interesting discussion concerns the behavior of the plasma dynamics when
changing the target material. From Fig.5.10(b), one can see the decrease of maximum
reached radius with the atomic number Z.

Finally, we want to look at the influence of the initial magnetic field orientation on the
plasma dynamic. In early studies of Classical T Tauri stars, it has been stated that the fact
that bright and well collimated outflows (jets) from these systems are observed is strongly
associated to large scale aligned magnetic fields [28]. More recently, with improved imag-
ing techniques, weaker and/or shorter jets have been discovered and it appears that these
jets are more often oriented far away form the direction of the magnetic field [29]. Thus,
studying in the laboratory the impact of misaligned flows and fields present a strong in-
terest to understand the mechanisms at work.

In the top three images of fig.5.11 we show 3D rendering of the mass density at the
same time (15 ns) for three different angles (10, 30 and 45 degrees). The initial laser en-
ergy is exactly the same in all cases. Thanks to the ideal regime and the efficient mag-
netic collimation of the laser-produced plasmas, one can expect the flow to always tend
to align itself with the magnetic field lines direction and this is indeed what we see for
the three cases. However it must be noted that as the angle increases, the shape of the jet
changes significantly. Whereas for relatively small angles (θ <∼ 30°) the jet can be con-
sidered as almost axisymmetric, around the direction of the field, for larger angles the
flow become much more spread. In order to quantify the efficiency of the collimation,
we plot, in fig.5.11, the total plasma momentum parallel to the magnetic field orientation
as a function of the angle of inclination. These results led us to define an approximate
critical angle for which the interaction of the flow with the magnetic field leads to weakly
collimated jet. From our simulation, this angle lies between 20 and 30°. This value is
consistent with very recent experimental results in the same configuration studied here
[Revet.G, Khiar.B et al., in prep.].

140



CHAPTER 5. GENERATION OF ASTROPHYSICALLY-RELEVANT JETS IN THE
LABORATORY

Figure 5.11: Above: 3D iso-volumes of mass density when changing the orientation of the mag-
netic field at θ = 10°, 30° and 45°. The three pictures correspond to a time t=14 ns. Curve: Mean
total impulsion in the direction of the magnetic field as a function of tilt angle. The initial laser
energy is the same in all cases: 17 J (for a 0.5ns pulse).
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5.9 Influence of a gas background and mitigation of the Rayleigh-
Taylor instability

In this part we briefly explore a set up with a low pressure gas background in addition to
the external magnetic field. The initial setup is exactly the same as in the previous discus-
sion but the domain is filled with a carbon gas at the room temperature (290 K) at a density
of ρb = 5·10−4. It corresponds to a thermal pressure ∼ 1kPa, a value completely negligible
regarding the magnetic pressure of ∼ 160MPa. We are thus staying in a regime where the
collimation process will be realized by the magnetic field and not the external medium,
as it well known in the study of many radio astrophysical supersonic jets [30]. Although
a carbon gas in not realistic, the set up serves nevertheless to explore the jet dynamics in
the presence of an external medium. However, the anisotropy of the magnetic pressure
implies that along the jet axis (z), the background pressure will play the dominant role. In
fig.5.12(a) we show a 2D mass density slice of this configuration. As one can see, in the
presence of a background the plasma jet presents several features not seen before in the
"vacuum" expansion. First, a layer of background material denser than that of the un-
perturbed medium develops around the jet. The head of this layer is the front of the bow
shock set off because the jet speed is highly supersonic relative to the sound speed of the
background (corresponding to mach numbers > 1000). All the material inside this layer
comes from the shocked background gas and is typically at ion temperatures ∼ 4keV. Su-
personic jets propagating in external medium are known to often develop what is called
a "cocoon" which is a layer, between the jet core and the background gas, composed of
jet material flowing backward after passing through the terminal shock at the jet head
[31]. Here, we are in a situation where the cocoon cannot be observed because of the rela-
tively large density ratio ρ j et /ρb > 2 as well as the radiative losses (see [22]). Interestingly,
there is no mixing of material from the jet with material from the background because the
high supersonic regime as well as the presence of the strong axial magnetic field annihi-
late completely the Kelvin-Helmholtz instability typically arising from the velocity shear
at the jet interface. Of course, another important aspect of adding a background gas to
the initial setup concerns the influence on the Rayleigh-Taylor instability. Indeed, when
studying previously the RTI in the vacuum expansion, we implicitly considered an Atwood
number A equals to one, which is the "worst" case in terms of instability growth, but in the
present case we have A . 0.3 and thus in terms of growth rate we should expect a reduc-
tion of a factor

p
0.3 ∼ 0.5. To verify this prediction, we plot in fig.5.12(b) the amplitude

of the maximum mode as a function of z, averaged on the first 30 ns. We compare the
case of the vacuum expansion with the case where a background has been added (with
both densities ρb = 5 · 10−4 and ρb = 1 · 10−3. As one can see, we observe a reduction of
the mean amplitude of the unstable mode of at least a factor ∼ 0.5 when the background
gas is present. We also see, in agreement with the definition of the Atwood number, that
if the gas background is more dense, the instability is reduced even further. A slice of the
mass density at z=9 mm is shown in fig.5.12(c), to be compared with the one already dis-
cussed in fig.5.9(c), and we clearly see the smaller Rayleigh-Taylor fingers constrained by
the shell of background material. Another non-previously seen feature in this case is the
development of the RTI at the jet head. The jet is decelerated by the material in front of it
and thus we find ourselves again in a favorable situation for the development of the RTI.
The conclusion on the influence of a non-vacuum medium in our setup goes quite in the
opposite direction to the one given in the previous section on the instabilities. Indeed,
when a background gas is added, the stability of the jet in the longitudinal direction (z)
is weaker (only at the jet head actually) whereas in the azimuthal direction (x-y), it is en-
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Figure 5.12: (a)2D maps of the decimal logarithm of the mass density for the case where a gas
background, in addition to the magnetic field of 20 T, fills the simulation domain. It corresponds
to t = 20ns(b) Time-averaged (on the first 30 ns) of the maximum mode amplitude as a function
of z. (c) 2D x/y slice of the decimal logarithm of the mass density at z=9 mm.
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hanced. This modified setup could thus be interesting for applications where one wants
to obtain quasi two-dimensional magnetically-collimated plasma jets.

5.10 Frequency resolved radiations imaging

Here we investigate plasma self-emission in different frequency ranges. The radiation
losses model in GORGON does not allow us to distinguish the interesting frequency do-
mains where we could identify characteristics structures like shocks. Indeed, the optically
thin model considers only free-bound, frequency integrated radiation. Therefore we con-
duct post-treatment of the 3D MHD simulation data via an in-house code which solves
the population balance equations of different excited states and for each degree of ion-
ization. We use here the Screened Hydrogenic Model (SHM) [32]. We seek to compute the
integrated plasma emissivity ε on a limited frequency range [ν1,ν2]

ε = κP

∫ ν2

ν1

Bνdν (5.15)

where κP is the average Planck opacity between ν1 and ν2 and it is computed by the
code. Bν is the spectral radiance given by the Planck’s law. The emissivity is thus given by

ε =
2κP(kBTe )4

c2h3

+∞∑
n=1

[
e−nx(

x3

n
+ 3x2

n2
+ 6x

n3
+ 6

n4
)

]x1

x2

(5.16)

where x1/2 = hν1/2/kBTe . Practically, convergence is obtained with n=500. 2D maps of
emissivity integrated along the line of sight are shown in Fig. 5.13 for two energy ranges.
One can see that for energies between 1 eV and 100 eV (including the visible range), the
largest source of emission comes from the relatively cold dense plasma expanding slowly
at the sound speed just in front of the target. At higher energies, radiations come mainly
from the shocked plasma in the cavity walls and the dense plasma at the foot of the cavity
is weakly emitting. More interestingly, in this energy range we can clearly see the effect of
the RT type filaments on the emission maps. The three darkest fringes inside the cavity
should be correlated with the electron density x/y maps in fig.5.9(b,c). Observing these
instabilities experimentally through electron map density is not straightforward because
the probing direction of the laser has to be in the same direction than the jet propagation.
It results in an integrated laser path that is far too large to have a detectable signal. We
show here that it could be possible to get clues about the presence of these instabilities
via self-emission of the plasma, provided that a good choice of energy range is done. Fur-
thermore, one has to take account that a time-integrated diagnostic would likely wash out
the striation features associated with the instabilities.
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Figure 5.13: 2D maps of the decimal logarithm of the emissivity integrated along the line of sight
at t=10 ns.

5.11 Influence of the spatial resolution on the jet 3D struc-
ture

As mentioned before, the spatial resolution has an important effect on the modeled struc-
ture of the jet. In fig.5.14(a,b,c,d) we show x/y slices of the decimal logarithm of the
electron density at t = 20ns for four different resolutions: d x = 10,30,40,50µm and at
z = 4mm (comparable to the slice for the d x = 20µm case shown in fig.5.9(b)). It can be
clearly seen that as the resolution decrease, the finest structures disappear and the un-
stable modes that subsist are mainly the m = 4 and m = 8 modes. In fig.5.14(e) we show
the time-averaged (on the first 30 ns) amplitude of the maximum mode as a function of
z. As one can see, a lower resolution (i.e a greater dx) triggers an important growth of
the numerical-enhanced m=4 mode all along the jet whereas near the cavity (z . 4mm),
where lateral deceleration is important, the resolution does not change that much the re-
sults since in these regions the growth of RT filaments is really "fed" by the same physical
process.
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Figure 5.14: (a,b,c,d) X/Y slices of the decimal logarithm of the electron density at t = 20ns for
four different resolutions: d x = 10µm (a), d x = 30µm (2),d x = 40µm (c),d x = 50µm (d). (e) Time-
averaged (on the first 30 ns) amplitude of the maximum mode as a function of z.
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CHAPTER 6. TOWARD CONTROLLING THE TEMPORAL PROPERTIES OF
LASER-PRODUCED PLASMA JETS

6.1 Introduction

In the chapter where we described the general laboratory supersonic jets (5), we men-
tioned the possibility of adding a laser precursor to study unsteady jets. This is the topic
of this chapter, where we present the investigation, both experimental and numerical, of
two laser pulses (delayed in time) interacting with a solid target in a magnetic field. This
work has been submitted to Physical Review Letters and was done in collaboration with
the experimental group lead by Julien Fuchs at LULI. So far, little attention has been paid
on how variations at the base of the ejected plasma can play a role in the long-term dy-
namics of the system [1]. While few experimental studies, temporal variations of mass
ejection are important in astrophysical jets are responsible for the internal shocks seen in
the jet body, and provide a proxy to understand mass accretion. Typical temporal vari-
ations in YSOs jets are of the order of a few years to several decades (see [2] for a recent
review on YSOs jets).

Experimentally, unsteady mass ejection is realized by irradiating a solid-target placed
in a 20 T magnetic field with, first, a co-linear precursor laser pulse (1012 W/cm2) and,
then, a main pulse (1013 W/cm2) arriving 9 to 19 ns later. Varying the time-delay between
the two pulses is found to control the divergence of the expanding plasma cavity, which is
shown to increase the strength and heating in the conical shock that is responsible for jet
collimation. In this staged pulse configuration, measurements show that electron tem-
peratures are a factor 2-4 higher than when using only the main pulse alone; also, plasma
density is increased in the shock. Overall, the results show that plasma collimation due
to shocks against a strong magnetic field can lead to stable, astrophysically-relevant jets,
even in the case of strong variability at the source.

6.2 Experimental and numerical setup

The experiment was performed using the chirped Nd:glass laser (τL = 0.6 ns,λL = 1057 nm)
of the ELFIE facility at the Laboratoire pour l’Utilisation des Lasers Intenses (LULI). The
laser beam was split temporally into two beams, separated by either 9 or 19 ns, and sub-
sequently recombined co-linearly using non-polarizing beam splitters and focused on
target (diameter, φL = 0.7mm) using the same lens and random phase plate [3]. In the
temporally-staged configuration, the first beam, called the precursor, had an on-target
energy (intensity) of 3 J (1× 1012 W/cm2) and the second pulse, called the main pulse,
had 17 J (7× 1012 W/cm2). Additionally, we also present for comparison results with a
main pulse only setup (i.e. identical but without the precursor). As shown in Fig.6.1, both
beams irradiated a CF2 (i.e. Teflon) target immersed in a 1-µs pulsed, 20 T external mag-
netic field aligned along the plasma expansion axis[4; 5]. The plasma electron density
evolution was investigated via a Mach-Zehnder interferometer using a 5 ps (λL = 528 nm)
probe beam. Optical emission along the same line-of-sight was studied through a one-
dimensional slice taken along the jet propagation axis and streaked in time using a Hama-
matsu C7700 streak camera with S20 photocathode. To diagnose the electron tempera-
ture, Te , a time integrated X-ray focusing spectrometer with spatial resolution (FSSR) was
used along the jet axis. The relative intensities of He-like Fluorine lines were analyzed to
obtain the time-integrated Te and electron density, ne [6; 7].

Simulations are performed with the code GORGON, with the precursor laser pulse in-
teraction modeled with the code DUED [8], as described in section 5.3. The main laser
pulse is modeled using our own laser transport module implemented in GORGON (see
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Figure 6.1: Schematic of the experimental setup and 3D MHD simulations of the overall plasma
dynamics. The volume rendering shows the simulated mass density at 22 ns, for the case of a
single 17 J pulse, with a 1/4 of the volume removed to show the internal structure of the flow. Two
co-linear laser pulses (3/17 J), that are temporally-offset by either 9 or 19 ns, irradiate a CF2 target
embedded in a 20 T magnetic field. The diagnostic observation axis is also shown.

2.5.5). The pulses parameters in the simulation are identical to the experimental ones.
The computational domains in GORGON is defined by a uniform Cartesian grid of dimen-
sion 6mm ×6mm ×14.4mm and a number of cells equals to 300×300×720 = 6.48107.
The spatial resolution is homogeneous and its value is d x = d y = d z = 20µm.

6.3 Results

The top row of Fig. 6.2 shows the plasma electron density at three times for the case of the
main pulse alone. The plasma dynamics consist of three distinct phases (for an extensive
discussion see section 5.5 and [4; 11]): (i) the creation of a low density cavity surrounded
by a shock envelope (Fig. 6.2a); (ii) the formation of a conical shock (Fig. 6.2d) at the tip
of the cavity, which then (iii) re-collimates the plasma plume into a jet (Fig. 6.2g). These
phases are also captured in the MHD simulations shown in Fig. 6.5. The next two rows in
Fig. 6.2 show electron density maps in the temporally-staged cases with either 9 or 19 ns
delay between the precursor and main laser pulses.

Let’s focus first on the formation of the cavity and the shock envelope bounding it
(Fig. 6.2a-c, also Fig. 6.5b,c). Initially, the ram pressure of the plasma plume, Pd y = ρv2,
is much larger than the magnetic pressure, Pm = B2/2µ0, and the plasma expansion pro-
ceeds unimpeded (ρ is the mass density, v is the flow velocity, B is the magnetic field
strength). Our simulations indicate that 2 ns after the main pulse arrival, the dynamic
plasma-β, (βd y = Pd y /Pm), is ∼ 103. The expanding plasma plume has a relatively high
magnetic Reynolds number (Rem = vL/η∼ 100), and the magnetic field is “frozen" in the
plasma as predicted by ideal MHD (i.e. low electrical resistivity). For Rem we have used:
v = 100 km/s, L = 1 mm and η = 104 cm2/s, as the characteristic velocity, length-scale and
magnetic diffusivity, respectively. From X-ray spectrometry measurements (Fig. 6.3) in
the cavity at z = 1 mm, we infer Te ∼ 40− 60 eV. The advection of the magnetic field by
the plasma flow leads to a large increase of the magnetic pressure on the edges of the ex-
panding plasma. The radial expansion of the plasma is halted when ram and magnetic
pressures become comparable (βd y ∼ 1). The flow has typical expansion velocities of 100–
500 km/s, and an internal magnetosonic Mach-number, Mma = v/cma , of around 4, where
cma is the fast magneto-acoustic speed. Therefore the slowing down of the plasma flow by
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Figure 6.2: Plasma electron density measured via interferometry, and analyzed using Abel
inversion[9; 10], in pseudo-color with identical colorscales as shown on the right. The central
pixels are removed due to the uncertainty of the Abel inversion on-axis. Notice that the images ap-
pear very symmetric. The three columns show different times, measured from the beginning of the
main pulse irradiation. The times highlight: cavity formation (10 ns), conical shock development
(42 ns) and shocks and jet persistence over long times (70 ns).
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Figure 6.3: X-ray spectrometry measurements of Te from the FSSR. Lines with circles (and X’s)
represent the main pulse alone with (and without) an applied 20 T B-field. Lines with diamonds
and squares show cases with a precursor of 9 and 19 ns delay, respectively.
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Figure 6.4: Streaked optical emission profiles along the center of the plasma expansion axis
(smoothed with a 5-pixel Gaussian) plotted with the same linear color scale for (a) the main pulse
alone and (b)/(c) the precursor and main pulses with a 9/19 ns delay between them. Time is mea-
sured from the beginning of the main pulse. Notice the small signal from the precursor interaction
in (b), at -9 ns, and in (c), at -19 ns. The profiles in (a) and (b) were taken over successive shots and
with the exact same detector settings. Profile (c) was taken at a later time and thus was slightly
scaled and shifted for comparison with the previous profiles. Note that the thin streak in (c) at
t = −15 ns, z = −2.25 mm is from the probe used for interferometry.

the magnetic field leads to the formation of a reverse shock, observed as a jump in density
around the edges of the cavity (see Fig. 6.2), and to plasma heating (see Fig. 6.3).

While the general flow structure is similar with and without precursor irradiation, it
is clear that adding a precursor laser pulse crucially modifies the dynamics and physical
characteristics of the plasma in the cavity. Electron density maps taken 10 ns after the
arrival of the main pulse (Fig. 6.2a-c) show the cavity becoming more spherical when the
precursor laser pulse is used. The relatively small, 14%, increase in the the radial extent
of the cavity is accompanied by a considerable reduction in its longitudinal extent: from
4 mm with main pulse only to around 2.5 mm with the addition of the precursor offset by
19 ns. We notice that in the temporally-staged configurations higher electron densities are
measured (2×1019 cm−3) along the shocks bounding the cavity (see in particular Fig.6.2d-
f), a clear sign that shocks are stronger. This agrees with the Te measurements shown
in Fig. 6.3, which are larger with temporally-staging. Additionally, as shown in Fig. 6.4,
optical emission inside the cavity (z < 2 mm) is clearly enhanced, both in intensity and
duration, when using the precursor. Non-LTE calculations of photon absorption in the
visible range (400 – 550 nm) corresponding to the S20 cathode response, for a CF2 plasma
show that above Te = 10 eV and below ne = 1019 cm−3 the photon mean free path is greater
than 30 mm, indicating an optically thin regime in this range. Given the higher electron
temperatures and given that optical emission decreases with temperature in this regime,
the brighter areas seen in Fig. 6.4 indicate the presence of denser plasma, consistent with
the interferometric data.

Differences in the plasma properties and flow dynamics when introducing the precur-
sor pulse can be understood by considering the location in the precursor plasma where
the energy of the main laser pulse is absorbed. Fig. 6.5a shows the simulated density
produced by the precursor pulse at the time of the arrival of the main pulse (consider-
ing a 19 ns separation). Due to the fast expansion of the plasma in the z-direction at
speeds of 100–500 km/s the longitudinal density profiles change rapidly. These are shown
in Fig. 6.5d at three different times for both the magnetized (solid lines) and an unmagne-
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Figure 6.5: 3D MHD simulations results. (a,b,c) Pseudo-color maps of electron density in the
temporally-staged configuration with a 19 ns delay. Times shown are measured from the main-
pulse arrival. Arrows represent fluid velocity (not scaled in magnitude) and magnetic field lines
are shown. Panel (a) shows the plasma created by the low energy precursor at a time just before
the arrival of the main pulse. The white dashed line corresponds to the iso-contour at 0.1nc . (d)
Profiles of ne , averaged over the laser focal spot, for a case of precursor-only irradiation at 9, 19,
and 39 ns after precursor irradiation. Cases with (solid) and without (dashed) magnetic field are
shown. (e) Ratio of longitudinal (Kz = 0.5ρv2

z ) to radial (Kx y = 0.5ρ(v2
x + v2

y )) kinetic energy in-
tegrated over the entire plasma volume, for the main pulse only (M), and the temporally-staged
cases (P+M).
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tized (dashed lines) case of precursor irradiation. On the figure, regions where the elec-
tron densities are in the range from 0.1–1.0 nc , where nc = 1021 cm−3 is the critical density
of the laser, are highlighted with thicker lines; in this region over 90% of the laser energy
from the main pulse is absorbed. From this plot it is clear that the ne profiles for the
unmagnetized and magnetized cases are essentially the same for times up to 50 ns with
substantial differences arising only in the low density regions where laser absorption is
insignificant. The applied 20 T magnetic field is thus unable to alter the absorption of
the main laser pulse and only plays a role on the dynamics of the plasma that follows
the laser absorption. Nevertheless, because of the expansion of the precursor plasma,
the region over which most of the main laser is absorbed moves away from the initial
target surface and increases in longitudinal extent, labs , as well as volume ∼ labs ×φ2

L.
That is, the absorbing plasma becomes more cylindrical and has lower thermal pressure,
∼ EL/(labsφ

2
L), when using two pulses, or for longer time-delays. The longitudinal stretch-

ing of labs causes more plasma to be accelerated radially and the overall expansion to be
more divergent. This is indeed observed in the experiments, which show a more spherical
expansion for the double pulse cases and for longer time-delays (Fig.6.2b,c). Further cor-
roboration comes from Fig. 6.5e, which shows a reduction of the ratio of the longitudinal
to radial kinetic energy when passing from a main pulse only (M) to the temporally-staged
(P+M) configuration and when increasing the delay between pulses.

Collimation of the plasma plume into a jet takes place through a conical shock, which
forms 2–4 mm from the initial target (Fig. 6.2d-f, Fig. 6.2g-i). The conical shock is the re-
sult of oblique shocks redirecting the plasma flow along the cavity walls and towards its
tip [11]. In particular, we find that the opening angle of the conical shock and jet depends
on the laser irradiation conditions, increasing from around 10◦ with only the main pulse
to 50◦ in the temporally-staged configuration with 19 ns delay (see Fig. 6.2d-f). This vari-
ation is consistent with the cavity shape becoming more spherical: the flow converges at
the tip of the cavity almost head-on. The more planar-like collision leads to an increased
thermalization of the flow kinetic energy, leading to higher temperatures and thus more
diverging flows. Remarkably, the experiments show that the re-collimating conical shock
is quasi-steady-state and independent of the presence of an ambient plasma or of the
laser irradiation delay, and that the collimation is very effective even for more isotropically
expanding ejections. These results strengthen the claim [4; 11] that magnetic fields may
be responsible for generating re-collimation shocks which are the source of the stationary
x-ray emission observed in young stellar objects[12]. Past the conical shock, the jet prop-
erties are also modified. In addition to an increase in temperature, the simulations show
that the second pulse produces a temporal increase in the jet’s mass flux (ρvz) and kinetic
energy flux (ρv2vz/2) of almost a factor of 10, as well as velocity variations, ∆vz ∼ 100
km/s (Mach 2-3), which drive shocks within the jet itself. Indeed, observations of astro-
physical jets indicate that it is the unsteadiness of mass ejection drives shocks (so called
“knots”) inside the jet body (see [2] for a review). The experiments presented here, and
further modifications of the experimental setup, thus help to assess how time-variability
affects the formation and stability of the re-collimation shock and the jet itself.

In summary, we have presented a study of the interaction of two, temporally-staged,
high-power laser pulses with a solid target in the presence of a 20 T magnetic field aligned
along the main axis of the plasma expansion. The first low-energy (precursor) laser pulse
generates a plasma that is collimated by the magnetic field into a jet. The ensuing plasma
dynamics can then be controlled by delaying the arrival of the second (main) pulse, so that
its absorption occurs further away from the initial target and over larger volumes. How-
ever, even at this relatively high field strength, we see no impact of the magnetic field on
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the laser absorption itself; a finding that may be of particular interest to the (magnetized)
ICF community. The time delay between the two laser pulses has clear effects on the
plasma: a more divergent cavity expansion, higher electron temperatures and stronger
shocks; yet, long-lived, stable jets are still formed. This demonstration of control over the
flow dynamics and variability opens the door to a range of new laboratory studies related
to accretion and ejection phenomena in astrophysics.
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CHAPTER 7. GENERATION OF UNSTABLE SUPERSONIC PLASMA
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7.1 Introduction

In the chapter dedicated to the generation of supersonic jets in the laboratory we investi-
gated plasma dynamics with a "longitudinal" magnetic field, that is, perpendicular to the
laser target surface. In this chapter we investigate the case where the magnetic field is par-
allel to the target surface. To our knowledge this represent the first complete three dimen-
sional description of the dynamics of a hot and dense laser-produced plasma embedded
in a strong transverse magnetic field. We show that using a nanosecond, Joule-class laser
and 20 T magnetic field, it should be possible to generate astrophysically-relevant slen-
der slabs that are structured by instabilities. We identify the magnetized Rayleigh-Taylor
instability to be main responsible for the first of these instabilities. We also understand
that in the past, laser experiments with an externally imposed magnetic field were such
that the ion Larmor radius was too large to observe the MHD Rayleigh-Taylor instability.
Instead the lower hybrid drift instability or other non-fluid instabilities were responsible
for the striations and flutes observed in the experiments. The numerical results presented
here have been experimentally verified with a remarkably good agreement by our experi-
mental collaborator and we will present some of the results at the end of this chapter.

In 1989, Mostovych et al. [1] demonstrated the collimating effect of a transverse 1 T
magnetic field on a barium laser-produced plasma. Notably they reported observation of
flutelike striations using their resonant absorption diagnostic redwhat’s that diagnostic?
May be put a footnote to briefly explain. They attributed these instabilities to the lower
hybrid drift instability (LHDI) because of the large ion larmor radius (> 2cm) and the rela-
tively low collisionality associated with the low plasma densities produced (< 1014 cm−3).
More recently (in 2013) Plechaty et al. [2] presented similar results in a regime of laser pa-
rameters very close to what we study here. However their experiment was performed with
a strongly non-homogeneous magnetic field, varying from 7 T to 13 T on a distance of ∼
10 mm, which is of the order of the plasma size. Their experimental results show the same
general plasma dynamics than what we will present here, however they did not observe
any instabilities. In addition, their 2D numerical simulations were done, contrary to our
study, within the ideal MHD framework and they pointed out the necessity to perform
resistive MHD simulations. Indeed from their work it remains unclear what the full three
dimensional plasma dynamics is, and we propose to present in this chapter such analysis.

7.2 Initial setup and lasers parameters

The initial setup used for these simulations is very similar to the one described in section
5.3 with laser parameters given by:

• Energy: 17J

• Pulse duration (FWHM): 0.5ns

• Focal spot diameter: 750µm

• Intensity: 7.71012 W.cm−2

and a carbon target. The initial laser-solid interaction is done using the DUED code
[3]. The computational domains in GORGON is defined by a uniform Cartesian grid of di-
mension 8mm×6mm×20mm and a number of cells equals to 400×300×1000 = 1.2108.

162



CHAPTER 7. GENERATION OF UNSTABLE SUPERSONIC PLASMA
PANCAKES IN STRONG TRANSVERSE MAGNETIC FIELDS

The spatial resolution is homogeneous and its value is d x = d y = d z = 20µm. The mag-
netic field is initialized in the x-direction with a magnitude B0 = 20T

7.3 General 3D dynamic

In Fig.7.1(a,b,c) we show 3D rendering of the mass density at 8, 20 and 48 ns after the
laser pulse. The next three images (d,e,f) show the corresponding integrated electron den-
sity along the y direction (perpendicular to the B-field). These images should be directly
comparable with experimental results obtained using interferometry probes [4; 5]. The
very initial plasma expansion following the laser deposition (up to ∼ 2−3ns) is relatively
similar to a free-expansion since the dynamic plasma beta (βd yn=ram pressure/magnetic
pressure) at this time is much larger than unity (∼ 104). We point out that because of that,
this initial expansion phase is very similar to the case where the field is longitudinal (i.e.
along the z-axis). The large electron temperatures (∼ 100eV) resulting from the laser heat-
ing result in magnetic diffusivity η low enough for the magnetic Reynolds number to be
large (Rm = Lc Vc /η∼ 100, where Lc ∼ 1mm and Vc ∼ 1000km.s−1 are characteristic length
and velocity in our experiment), at least during the initial expansion. Thus the resulting
ideal MHD regime allows an effective and rapid advection of magnetic field lines by the
flow. Furthermore, the fact that the plasma is expanding at speeds si m greater than the

fast magnetoacoustic speed cma =
√

c2
s + v2

A (where cs is the sound speed and vA the Alfven
speed) results in the generation of a shock and the compression of the magnetic field. The
initial deceleration of the plasma/vacuum interface by the magnetic tension arising from
magnetic lines bending gives rise to a finite diamagnetic cavity seen in Fig.7.1(a,d). In-
deed, as the initial magnetic flux is compressed in a narrow shell of ∼ 100µm around the
cavity, the resulting Lorentz forces j×B are responsible for stopping the lateral plasma
expansion. In Fig.7.2(a) we show a detailed zoom of the white dashed frame seen in
Fig.7.1(a). The diamagnetic nature of the cavity can be observed through the presence of
the strong electrical currents (green lines) in the shell. At stagnation, the current present
in the cavity shell can be estimated by equalizing this force with the force associated to the
ram pressure (ρ(v.∇)v) leading to: j ≈ ρv2

⊥/Beshock = 1011 A.m−2 where eshock = 100µm is
the shock thickness, ρ = 0.02kg .m−3 is the characteristic plasma flow density, B = 20T is
the magnetic field magnitude and v⊥ = 100km.s−1 is the plasma velocity perpendicular
to the magnetic field lines. Inside this cavity the magnetic field is relatively low < 5T. The
image shown in fig.7.1(a) represents the final stage of this initial expansion phase (near
stagnation) and one can clearly observe the already remarkable asymmetry between the
x-direction (that of the magnetic field) and the y direction. The ratio of expansion length
in both direction r = rexp,x/rexp,y ∼ 1.5 highlight the fact that, along the x-direction of the
external magnetic field the plasma expansion is almost free. As in the case of a longitudi-
nal magnetic field [6], the plasma flow in the y direction is redirected by a curved shock
towards the z-axis, where it forms a conical shock at the tip of the cavity. Also, we want to
emphasize the appearance, near the stagnation time, of flute-like (k ·B ≈ 0) perturbations
on the cavity walls. An extensive discussion about the instabilities present in this configu-
ration is given after the general description of the plasma dynamics. In fig.7.1(b), showing
the plasma structure 20 ns after the laser pulse, one can see that the plasma flow results
in a thin ∼ 800mm plasma layer in the y-direction whereas in the x-direction the flow is
basically spreading unconstrained. The resulting general shape is that of a "slender" slab.
The cavity seen previously in 7.1(a) has collapsed very quickly due to the pulsed nature of
the plasma energy source (the laser), but the conical shock can still be seen much closer
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Figure 7.1: (a-b-c) 3D isovolumes of the decimal logarithm mass density at t=8, 0 and 48 ns after
the laser pulse. The external magnetic field of 20 T is oriented along the x-axis. (d-e-f) Decimal
logarithm of the integrated electron density along the y-direction (perpendicular to the external
magnetic field) at the same times.
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to the target (∼ 2mm). If one would experimentally measure the integrated electron den-
sity of the plasma in the xz-plane (see fig.7.1(e)), one would see a very elongated (> 6mm)
plasma “pancake” with no evidence of a collimating effect of the magnetic field. This re-
sult is in agreement with previous experimental work [1; 2; 7].
Alongside these general features, it is obvious that large structures coming from instabil-
ities are present in this configuration. In the yz-plane (see fig.7.1(b)), we see the gener-
ation of large filaments with dimensions (∼ 1mm) comparable with the thickness of the
plasma layer. Clues of the presence of these filaments can be seen at earlier times, near
the stagnation time (see fig.7.1(a)). The striations seen in the xz-plane in fig.7.1(e) also
indicate the presence of these filaments and thus experimental interferometry diagnos-
tics should observe this effect. The filaments are also elongated along the plasma slab,
aligned with magnetic field lines. Actually, these kind of striations have already been seen
experimentally in laser-produced plasmas by Mostovych et al.[1] but we will show later
that the instability producing the filaments is not the same. Finally, at later times, here
shown in fig.7.1(c) at 48 ns after the laser pulse, one can see the fully-developed plasma
slab with longitudinal extent (in the z-direction) greater than 20mm. The correspond-
ing integrated electron density is shown in fig.7.1(f). The slab is, at these late times, even
thiner (∼ 400µm) than earlier, at 20 ns. A kind of striations can also be seen on the inte-
grated electron density (fig.7.1(f)) but here, contrary to the situation at 20 ns, they are not
generated by filaments growing at the plasma/vacuum interface but are instead produced
by "kinks" of the elongated slab. These behavior comes from the destabilization of mag-
netoacoustic modes allowed to propagate in a magnetic slab (see [8–10]). In this regard,
as an example of application of the setup studied in this paper, we suggest the possibility
to study in the laboratory (adding a gas background for example), the physics of the prop-
agation of waves in strongly magnetically-structured inhomogeneous mediums, such as
those encountered in the solar atmosphere. For example, it has been stated that magne-
toacoustic surface waves arising because of the magnetic structuring of the plasma could
play a role in the heating of the solar corona (see [11; 12]). We notice here the important
fact that the ideal MHD regime of the plasma is the basic requirement in order to apply a
possible scaling from the laboratory to the space plasmas ([13]).

7.4 Three-dimensional stability of the produced plasma pan-
cake

We focus not on a detailed discussion on the strong plasma structuring driven by unstable
filaments, as seen fully developed in fig.7.1(b) and at an earlier stage in fig.7.1(a). From
our 3D MHD simulations, we see these flutelike (k ·B = 0) filaments starting to grow ∼ 2ns
before the maximum cavity expansion. During this period the deceleration of the inter-
face is close to ∼ 5.5 ·1013 m.s−2. At the stagnation point (see fig.7.2(a)), when the cavity
has reached its maximum radius of ∼ 1.2mm, we can see on each edge of the cavity three
main spikes spaced of ∼ 0.6mm apart. After the stagnation, the cavity collapse because of
the changing pressure equilibrium at the interface and thus the plasma/vacuum interface
is this time accelerated toward the central axis (z). We also observe during this phase the
growth of the spikes. Then the plasma flow undergoes a succession of lateral expansion
and contractions, during which further flutes are generated. The resulting structure cor-
responds the one seen in fig.7.1(b). To make contact with potential experimental results,
in addition to the integrated electron density maps (fig.7.1(a,b,c)), we show here that the
presence of these unstable flutes can also be revealed through a synthetic Faraday rota-
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Figure 7.2: (a) Zoom of the plasma/vacuum interface at t=8 ns. The colormap corresponds to
the decimal logarithm of the electron density. (b) Faraday rotation numerical diagnostic when
looking in the y-direction (c) Temperature dependence of the wavelength (in millimeters) and the
corresponding growth time (in nanoseconds) of the fastest growing mode for the MHD Rayleigh-
Taylor instability in presence of resistivity and viscosity. At low temperatures the resistive damping
dominates whereas at high temperatures the viscous dissipation predominant.
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tion diagnostic. The probing laser is in this case supposed to propagate along the y di-
rection, perpendicular to the magnetic field lines. Since this diagnostic measure roughly
the quantity

∫
ne By d y , the computed rotation angle is an indication of the asymmetry

of the plasma slab and the primary responsible for this asymmetry should be the flutes.
Interestingly, a strong Hall effect, not taken into account in our code, would increase even
more the rotation angle predicted here since the two side interfaces of the slab have elec-
trical currents j flowing in opposite directions and thus opposite Hall fields j×B/ene (the
B-field has the same direction on both sides). Of course, the instabilities seen in our simu-
lations are necessarily of fluid type because of our model but we want to give here a more
general discussion, for experimental purpose, of the possible instabilities that one may
expect in this setup.

We consider here three candidates: the classical magnetized Rayleigh-Taylor instabil-
ity (RTI) [14], the lower hybrid drift instability (LHDI) [15] through one of its “versions”
(the unmagnetized ion Rayleigh-Taylor instability) and a Kelvin-Helmhotz like instability.
First, the LHDI has been thought to be responsible for a large number of striations and
flutes observed both in laboratory and space plasma experiments. This instability arises
in configurations where electrons are magnetized and ions are not (Larmor radius large
compared to the density scale length). Typically, the free energy feeding the growth of
the LHDI comes from the electron-ion drift caused by the density gradient at the plasma-
vacuum interface [15]. Nevertheless, it has been shown [16] that this instability can also
be triggered by a decelerating interface, where the escaping out of unmagnetized ions is
partially hindered by the polarizing electric field Ep generated because of the magnetized
electrons. The electrical currents generated on the interface by the resulting Ep×B drift is
the feeding source of the instability. This variant of the original LHDI has been called the
unmagnetized ion Rayleigh-Taylor instability because of the importance of the effective
(de-)acceleration and its linear dispersion equation has been deduced from a modified set
of MHD equations ([17–19]), incorporing large Larmor radius effects. It has been invoked
to explain striations and flutes observed on the surface of the Active Magnetospheric Par-
ticle Tracer Explorers (AMPTE) barium cloud [20], in θ-pinches experiments [21] and even
in laser-produced plasmas that are magnetically constrained [22] but at much lower field
strength (< 1T) than in our case. The flutelike behavior of the LHDI comes from the fact
that in parallel propagation modes are mitigated by electron Landau damping. To assess
the relevance of the LHDI in our setup we first evaluate the ion Larmor radius (the ther-
mal Larmor radius rLT = vTi /ωci ) and the directed Larmor radius, given by rLD = Vc /ωci ,
where vTi is the ion thermal velocity. Assuming almost completely ionized ions (Z=6),
an ion temperature of 50 eV (temperature before shocks), a velocity of 500 km.s−1 and a
magnetic field of 20 T, we obtain rLT ∼ 20µm and rLD ∼ 450µm. Considering the density
scale length near the interface to be of few hundreds of microns it thus seems unlikely
that the LHDI could play a major role here, even if the plasma would be non collisional,
which is not the case. Actually it turns out that in all our simulation domain, correspond-
ing to fig.7.2(a), we have the Hall parameter (ratio of the ion gyro frequency to the ion
collision frequency) always less than ∼ 0.1, meaning that collisions dominate and prevent
the growth of the LHDI (see [23]).

Another candidate for the observed spikes is the Kelvin-Helmholtz instability (KHI).
We reject directly the unmagnetized versions of this instability in the lower-hybrid range
because of the small ion Larmor radius and the high collisionality, as showed previously.
The classical Kelvin-Helmholtz instability is fed by shear flows and momentum transfer
between two adjacent drifting layers. This instability is generally invoked to explain the
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generation of vortex or eddy structures in the plasma flow. As one can see in fig.7.2(a) at 8
ns, such structures are clearly not seen but later, at 20 ns (fig.7.1(b)), it seems that plasma
spikes are slightly twisted. A good way to conclude on the possible presence of the KHI
is to estimate its growth rate/time. The dispersion equation leads to γKHI ∼ kVdr i f t /2
for flutelike modes (k ·B = 0) [24]. To obtain this expression we assumed homogeneous
density of the adjacent layers. Here the velocity Vdr i f t has to be understood as the char-
acteristic drift velocity (perpendicular to the magnetic field lines) between two layer of
plasma within the shell itself. In our simulation this velocity is relatively small leading to
growth times of several tens of nanoseconds but our single fluid model does not account
for the effect of the electron drift (i.e. Hall “velocity“) on the Kelvin-Helmholtz instability
(even if estimated to be relatively negligible since we are not in a current-driven plasma).
Thus, in any case, we can not exclude the presence of this instability but it is clear that it
is not the instability responsible for the spikes see near the stagnation point.

7.4.1 Rayleigh-Taylor instability in the MHD regime

In this section focus on the MHD RTI and we argue why this setup should allow its first
observation within a laser based experiments.

The MHD Rayleigh-Taylor instability growth rate (for a mode k) is given by the re-
lation γ2

RTI = kge f f − 2(k · B)2/(µ0ρ) where ge f f is the effective (de-)acceleration of the
plasma in the frame of the plasma-vacuum interface (corresponding to an Artwood num-
ber equal to one). A finite value of k·B opposes the effect of the destabilizing deceleration
thus this is of course the reason why we observe flutelike modes k · B = 0, clearly seen
through the magnetically-aligned elongated striations in the integrated electron density
maps (fig.7.1(e)).

Focusing our discussion on early times (up to ∼ 8ns, see 7.2(a)), there are two ef-
fective accelerations that are at play: the deceleration ge f f ,dec of the interface by the
Lorentz forces j×B and the centrifugal force that experiences, in its rest frame, the plasma
flow redirected near the interface. For the latter, the corresponding effective accelera-
tion can be approximated by ge f f ,c = v2

∥/Rc where v∥ is the velocity parallel to the field
lines and Rc the curvature radius of this field lines taken, as a first approximation, to be
equal to the cavity radius (∼ 1.2mm). The deceleration ge f f ,dec = j B/ρ can be roughly
approximated using the expression we already derived for the electrical current and we
get ge f f ,dec = v2

⊥/eshock , In both cases, the configuration is favorable to the growth of the
Rayleigh-Taylor instability (RTI) since in the frame of the interface, the effective acceler-
ation has the opposite direction to the density gradient. The ratio of both acceleration
ge f f ,dec /ge f f ,c = Rv2

⊥/(eshock v2
∥ ) is, using our characteristic values, close to unity. Thus,

both effect can play a role in the growth of the RTI. However, we see the flutes growing
before the redirection of the flow, so we consider here only the effect due to the decel-
eration of the cavity. However, it is worthwhile to note that in the case where one can
establish a stationary or long-lived cavity (for example using repeated laser pulses), the
configuration can still be unstable because of the centrifugal force. With v⊥ = 100km.s−1

and eshock = 200µm we have ge f f ∼ 5 ·1013 m.s−2, in agreement with our previous numer-
ical estimations. Now the fact that a particular mode is excited should be related to the
existence of a damping mechanisms which tends to stabilize short wavelength modes.
Indeed, it is well known that a large amount of different effects can mitigate the growth of
the Rayleigh-Taylor instability (see [25]). For example it has been shown that a finite ion
Larmor radius (FLR) tends to slow down the instability [26] but in our case, during initial
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expansion, ions are probably too collisional for FLR to be important. Here we consider
the effect of finite resistivity which can damp the RTI through diffusion of magnetic field
inside the cavity as well as the effect of viscosity which, through sheared velocities at fine
scales, can mitigate the instability growth on those scales. Even though in our code we
only use a non-physical numerical viscosity, which is only important at shocks, we want
to keep the discussion generally applicable to experiments and thus consider this effect
for the following analytical considerations. The electrical resistive contribution to the RTI
dispersion relation can be written DMk2 (where DM is the magnetic diffusivity) whereas
the viscous term is given by νk2, where ν is the ion kinematic viscosity (see [27]). The rel-
ative importance of viscosity and resistivity as damping processes can be estimated with
the ratio of the two terms which is also equal to the ratio of magnetic to hydrodynamic
Reynolds number: P = Rm/Re = ν/DM. Using the Spitzer conductivity [28] and the ion dy-
namic viscosity expression in the magnetized case given in [29], we obtain (considering
Te = Ti = T): P = 2.2·10−9

p
AT4/(ΛZ5ρ) with ρ in kg .m−3 and T in electronvolts andΛ is the

coulomb logarithm. Then we use our simulations to infer a reasonable range for the tem-
perature at the decelerating interface during the first ten nanoseconds. While initially the
temperature is ∼ 50eV (corresponding to P ∼ 3 ·10−4), because of the strong compression
of the magnetic field, in the cavity shell we observe temperatures very quickly exceeding
few hundreds of eV, and thus leading to values of P greater than unity (P = 1 at T ≈ 380eV).
The ion temperature structure is shown in fig.7.2(a) as two isocontour representing ion
temperatures of 200 eV (black dashed line) and 600 eV (white dashed line). As the cavity
increases its radius towards its stagnation point, viscous dissipation also increase and be-
comes larger than resistive damping. To take into account this variation we keep both pro-
cesses in our estimates. To determine the wavelength λmax of the fastest growing mode

we localize the extrema of the growth rate function γ(k) =
√

ge f f k −k2(ν+DM) to obtain:

λmax[mm] ≈ 1.1πg−1/3
e f f [

p
AT5/2

ΛZ4ρ
+4.5 ·108 Z

T3/2
]2/3 (7.1)

where ge f f and ρ are in SI units and T is in electronvolts. Using our previous estimate
of ge f f we can thus determine the behavior of the RTI in the presence of resistivity and
viscosity. In fig.7.2(c) we plot λmax(T) and the corresponding growth rate γmax(T), as a
function of ion temperature. One can see that, as the temperature increases, the fastest
growing mode wavelength decreases until it reaches a minimum at ∼ 0.7mm for a tem-
perature of ∼ 300eV. The corresponding characteristic growth time is ∼ 1.9ns,. These
results are in very good agreement with with the values inferred from our simulations,
thus strengthening the argument that it is indeed the MHD RTI that is observed in the
simulations.

7.5 The effects of the plasma beta on the instability

As a last point, we investigate the behavior of the instability for different plasma ther-
mal/dynamic beta. Keeping the same laser parameters, we increase or decrease the initial
magnetic field. We show in the top three images in fig.7.3 the integrated electron density
maps along the direction of the magnetic field, for B 5 T, 10 T and 100 T. The images show
the plasma 20 ns after the laser pulse. In the three cases, the field is strong enough to
confine the plasma within a cavity radius that varies approximately as B−2/3 (see [6]). In
all cases the RTI flutes are seen to develop, however we point out that for B = 5 T, the char-
acteristic ion Larmor radius would be of the order of ∼ 2mm, thus we may expect the
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Figure 7.3: 2D slices of the decimal logarithm of the electron density. The top three images repre-
sent three different fields (5, 10 and 100 T) at the same time (20 ns). The three bottom images are
for the same field (100 T) but at three different times (8, 30 ,50 ns).
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LHI to become important near plasma-vacuum interfaces in this case. For much larger
magnetic fields, B = 100 T, the structure consists of a very thin plasma slab (∼ 100µm)
with filaments anchored on knots corresponding to very small cavities. Another impor-
tant difference between the case at low fields (5, 10 T) and the case at 100 T, concerns
the much smaller spatial extension of the plasma in the z-direction. For the latter case
z ∼ 8.5mm instead of > 12.5mm, indicating a strong decelerating effect in this direction.
This enhanced deceleration is due to the larger magnetic tension caused by increasingly
bent field lines. In the top bottom images in fig.7.3 we show three different times (8, 20
and 50ns) for the B = 100 T case. As previously mentioned, we observe kink-like defor-
mations of the slab at later times. This acts as a limiting factor on the dimensions of the
slab that one may obtain when increasing the B-field: as the slab become thinner, it also
become more prone to kink-unstable modes and actually breaks up for very low plasma
betas, like in this case.
We elucidated the overall 3D dynamics of a laser-produced plasma in a 20 T magnetic
field, the resulting plasma shows structuring by instabilities in the MHD regime. These
numerical results are of interest for understanding forthcoming magnetized laser experi-
ments, with, in the not-so-distant future, magnetic fields reaching magnitudes as high as
100 T. We also demonstrated the possibility to generate with this setup the well-studied
(in solar physics research) plasma configuration of a magnetized "slender" slab.

7.6 Experimental results

In this section we present very recent experiments done with a setup similar to that stud-
ied numerically in this chapter. The experiments were performed on two different facili-
ties, the Elfie facility (LULI, Ecole Polytechnique) and the TITAN facility (Livermore). On
the Elfie facility, a chirped laser beam 0.6 ns/30 J, at the wavelength of 1057 nm and fo-
cused in a∼ 700 µm diameter spot on a Teflon (CF2) target placed in a vacuum chamber,
was used. This gives access to a maximum intensity on target of Imax = 1.31013 W.cm−2

allowing the ablation and ionization of the target material, into an expanding, relatively
hot (100eV) thermal plasma. The strength of the magnetic field was set to 20 T, via the
coupling with a 32 kJ/16 kV capacitor bank delivering 20 kA to a Helmholtz coil, specif-
ically designed to work in a laser chamber environment [5]. This coil allows a config-
uration where the plasma electron density is probed by interferometry collinear to the
magnetic field lines. The TITAN facility provided a long pulse of 1.2 ns/20 J, at the wave-
length of 527 nm and focalized in a∼ 300µm diameter spot on a Teflon (CF2) target placed
in a vacuum chamber. This allowed to access similar intensity into the target surface,i.e.
Imax = 1.21013 W.cm−2. For TITAN campaign, a different coil was used, The coil provided a
similar 20 T pulsed magnetic field, but the design allowed the probing of the plasma elec-
tron density along the line of sight perpendicular to the magnetic field. On both facilities,
interferometry was accomplished using a Mach-Zehnder with a 2ω laser pulse of energy
at Elfie Facility, while a 1ω laser pulse was used at the Titan facility. Both probe beams
where ∼ 1 ps duration and ∼ 100mJ energy (negligible effect on the plasma dynamics).

In fig.7.4 are shown 2D maps of the of the integrated electron density obtained form
these experiments. The three top images represents side views of the generated slab
whereas the two bottom images are front views. At early times (fig.7.4(a,d)) one can see
the initial development of the cavity with no real observation of magnetic effects (as ex-
plained before, because at these times the thermal/dynamic betas are much larger than
one). A little while later (fig.7.4(b,e)), the formation of the cavity is clearly observed with
the collimation of the flow being really important. These times correspond roughly to the
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Figure 7.4: 2D maps of the of the integrated electron density, showing the plasma dynamic at
different times and for two perpendicular probing lines of sight. (a)-(c) Three different times, 3
ns, 8ns and 29 ns respectively, coming from the Elfie campaign, i.e. the 20 T magnetic field being
perpendicular to the figure plane. (d) and (e) two different times, 2.5 ns and 12 ns respectively,
coming from the TITAN campaign, i.e. the 20 T magnetic field being in the figure plane.
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stagnation points where the plasma/vacuum interface deceleration has been the greatest
and thus, we observe very nicely the generation of the predicted flutelike RT filaments
(clearly seen in fig.7.4(e)). The measured wavelength is ≈ 0.6mm, very close to what we
observe numerically. At latter times (fig.7.4(c)), the fully-developed magnetic slab extend
on almost 2cm with the first ∼ 10mm been structured by the remaining of the RT fila-
ments whereas the upper part of the slab is strongly deformed by kinks. In this region the
slab is very thin (d y < 0.5mm) relative to its length leading to an aspect ratio > 20. Fur-
thermore we observe the shift of the slab (as it has been observed by Mostovych et al. [1])
towards the right. The attributed this effect to the presence of a E×B drift coming from
the generation of a polarizing electric field forming at the front of the jet as unmagnetized
ions shoot ahead of magnetized electrons. As a result, this effect, can be observed in our
MHD simulations (no polarizing fields). In any case, the experimental results presented
here are a terrific confirmation that the overall AND the unstable behaviors are well cap-
tured by our 3D GORGON simulations. These results should be soon submitted.
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8.1 Current picture of magnetospheric accretion onto young
stars (T Tauri stars)

One of the main goals of this thesis was to perform a study of the dynamic, in the labo-
ratory, of the accretion of matter in a strongly magnetized environment. Here, by "mag-
netized", we mean configurations where the thermal plasma-beta (the ration of thermal
pressure to magnetic pressure) is relatively close to unity. Before presenting our main
results in the next chapter 9, we give a small introduction to the topic with an overview
of the basic physics of accretion in the class of young stars known as Classical T Tauri
stars (CTTS). This introduction is largely based on a recent review by L.Hartmann [1]
and we refer the reader to this work for an in-depth discussion about many aspects we
will not present in this short introduction. These objects are young pre-main-sequence
stars where several specific features, all associated with accretion process, are often ob-
served in particular jets, winds and circumstellar disks [2]. Earlier in the manuscript we
have presented work related to jets and we now focus on accretion from a disk, and more
specifically on the interaction between the young star’s magnetosphere and the accretion
disk. There exist of course different phase in the evolution of young stars with the ini-
tial gas cloud collapsing to form the protostar accompanied of its accretion disk which is
then "cleaned up" by both star and planetary accretion processes over the course of typ-
ically tens of millions of years [3]. Here we are interested in the accretion of matter from
the disk toward the star surface through the existence of a sufficiently strong magnetic
field linking both objects. For CTTS, the total accreted mass during the lifetime of the
disk (∼ 3Myr ) represents only a small fraction of the total mass, typically estimated from
millimiter-wave emission to ∼ 10−2M⊙ [4; 5]. However, this mass is comparable with the
total mass present in the disk reservoir and thus this phase of mass accretion plays an im-
portant role in the evolution of circumstellar disks, where protoplanets are being formed.
Indeed, within ∼ 10Myr for low mass TTS, the disk is dispersed by planets formations
(among others) and thus the accretion process stops. In our current picture of the evolu-
tion of young stars, the earlier, more intense, phases of mass accretion onto the protostar
(. 1Myr ) are less understood, largely because the embryonic star is still embedded in a
dense and opaque (at optical and near-IR wavelengths) infalling envelope that feed the
mass onto the central objects (protostar+disk) [6].

In Fig.8.1, we present a schematic view, taken from [1], of a classical T Tauri star with
its circumstellar disk. Observations have confirmed that the disk experiences a Keplerian
rotation around the star [7] and its inner part couple to the stellar magnetic field at a
radius (the truncation radius RT, see 8.2 for the definition) corresponding to the point of
the disk where the ram pressure is approximately equals to magnetic pressure (B2/2µ0 ≈
ρv2). The coupling between the disk gas and the magnetic field is possible because the
stellar radiation field heats up the gas and establish a sufficiently high degree of ionization
to allow the gas (a plasma) to be not far from an ideal MHD regime [8].
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Figure 8.1: Schematic view a classical T Tauri star (from Hartmann L, et al., 2016. [1]). The disk ro-
tating around its pre-main sequence star exchanges both matter and angular momentum through
the existence of the stellar magnetic field (here represented as been dipolar). The coupling is done
in the inner part of the disk where the gas is heated and ionized by the stellar radiations. The fun-
neling of the disk material by the magnetic field to form the accretion flows leads to the generation
of the polar accretions shocks which radiate in X-ray, UV and optical domains.

The truncation radius RT

Here we derive an expression for the truncation radius.
In order to estimate this radius we suppose that at this point, RT the ram pres-
sure is equal to the magnetic pressure: ρv2 ≈ B2/2µ0. The magnetic field is
taken to be dipolar and thus, B? being the magnetic field on the star surface
and R? its radius, we can write B(R) = B?(R?/R)3. The velocity v in the expres-
sion of the ram pressure ρv2 is the characteristic speed of the material near the
edge of the disk that is falling inward towards the star. The mass flux ρv can be
related the accretion rate Ṁ by:

Ṁ = αR2ρv (8.1)

whereα< 4π is a correction coming from the fact that accretion is not spherical
(for a completely spherical accretion we would have α = 4π). Thus we have
ρv = Ṁ/αR2. Now if we make the rough approximation that the velocity at the
truncation radius is equal to the free-fall velocity (which can not be the case),
we can write: v ≈p

2GM?/R, where M? is the star mass. By gathering all these
terms and squaring the pressure equality expression, we get:

RT

R?
≈ ε B4/7

? R5/7
?

Ṁ2/7(2GM?)2/7
(8.2)

using characteristics values of classical T Tauri stars B? = 1kG, M? = 0.5M¯,
R? = 2R¯ and Ṁ = 10−8M¯yr−1 we get RT ≈ 7εR?. Adopting typical value ε ≈
0.7, we find that the truncation radius in TTS is roughly around five times the
star radius.
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This results in the funneling of material lifted from the disk into channels (accretion
columns) that connect to the star surface (generally near the poles). This matter falls onto
the star at velocities near the free-fall velocity (∼ 300−500km.s−1 for typical stellar param-
eters, see 8.5) and then shocks on the surface chromosphere, producing temperatures of
the order of 106 K ∼ 100eV [9]. This hot plasma radiates X-rays that are strongly absorbed
and re-irradiated at lower wavelengths, producing strong ultraviolet-optical continuum
in excess relative to the flux coming from the photosphere. The presence of these strong
shocks is invoked to explain the observed excess, especially at ultraviolet wavelengths,
which can be orders of magnitude higher than the flux of the "unperturbed" photosphere
[10–12].

In the range of optical and near-IR wavelength, the excess makes the absorption lines
of the photospheric flux appear less deep than in non-accreting stars. This is the so-called
"veiling". From measured broad emission lines, temperatures of the order 104 K are esti-
mated for the gas in the funnels; these are higher than the temperature of the inner part
of the disk, which is heated by the stellar radiations to ∼ 103 K. The origin of this heating
is still unknown but presumably, the magnetic field is involved.

The free fall velocity V f f

To find the free fall velocity of an object subject to the gravity of a star of mass
M? we must integrate the Newton’s law for motion:

d v(t )

d t
= −G

M?
r 2

(8.3)

using the fact that dt=dr/v, we can write d v(t )/d t = 1/2(d v2/d t ) and thus
eq.8.3 can be written:

d v2 = 2GM?d(
1

r
) (8.4)

integrating and using the initial condition v(r = RT) = 0, we get:

V f f =

√
2GM?

R?

√
1− R?

RT
(8.5)

where we used the notation V f f = v(r = R?). With typical TTS mass and radius,
and assuming RT = 5.5R?, we find V f f ≈ 280km.s−1.

Another important question concerns the mechanism by which material from the
outer parts of the disk is brought toward the inner parts. There is still no definitive answer
about this point but the magnetorotational instability (MRI) [13] is strongly suspected to
be involved through the generation of turbulence. It seems however that ambipolar dif-
fusion effects as well as the effect of resistivity on the nonlinear stage of the MRI growth
introduce difficulties in the original picture involving the MRI [14]. As a last important
point of this introduction, one can understand that the transport of angular momentum
must necessarily occur in this system, at least near the previously described truncation
radius. Indeed, for matter to fall onto the star, it must lose the angular momentum that
is associated with its Keplerian rotation. Several mechanisms are thought play a role to
explain this loss. First, if the star magnetic field lines are sufficiently coupled to the disk
material (high magnetic Reynolds numbers) then a differential rotation between the star
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and the disk can transfer angular momentum through the magnetic field [15]. For this
is the disk that transfer its momentum to the star, the magnetically-coupled parts of the
disk have to be located below the corotation radius Rco of the star (the radius for which the
matter has the same Keplerian velocity than the star angular velocity). For accretion onto
the star to proceed, it is almost always assumed that we must have RT < Rco because if it is
the opposite, the star actually tends to "push" away the disk matter through the increase
of its angular velocity (if the material is sufficiently coupled to the field of course). This
last situation is called the "propeller" regime [16]. Within this model, the accretion phe-
nomenon is thus, not only a transfer of mass but also a transfer of angular momentum, the
star increasing in the process both its total mass and its total angular momentum. In fact,
many T Tauri stars are observed to be slow rotators [17], indicating that a large amount of
angular momentum is transfered somewhere else, by an other mechanism. As shown in
fig.8.1, near the truncation radius, the magnetic field can be at the origin of winds and/or
jets (also discussed in this thesis) carrying angular momentum away from the star-disk
system. The ejection process of this wind/jet comes from the deformation of field lines
by differential rotation, thereby generating a Lorentz force directed perpendicular to the
plane of the disk [18; 19].

Another important incertitude is related to the structure of the magnetic field itself.
Indeed, it is well known that whereas far from the star surface the magnetic field is effec-
tively well described as being dipolar, closer to the star, much of the field is distributed
in quadrupolar or higher-order moments [20]. The consequence is that the measured
surface-averaged fields on typical solar-mass T-Tauri stars (1-2 kG [21]) could be associ-
ated to high-order moments and so the dipolar field used in the current accretion models
could be weaker than we think. In addition to the strength and order, it has been observed
(for example on V2129 Oph [22]), that the dipolar moment of TTS can be tilted relative to
the rotation axis of the star (and the disk). Two and three dimensional MHD simulations
have shown that generally, for high tilt angle (& 20°) the matter flows from the disk to-
ward the star in two funnels whereas for small tilt angle, the accretion process is realized
in multiple funnels [22].
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The cororation radius Rco

The corotation radius of a star can be derived assuming Keplerian orbits rota-
tions. The Keplerian velocity VKep of a body of mass m around a star is basically
obtained by equalizing the centrifugal force with the gravitation force:

mVKep

R
=

mGM?
R2

(8.6)

thus we get:

VKep =

√
GM?

R
(8.7)

The period of rotation of an object with this velocity is 2πR/VKep thus, in order
the find the corotation radius, we just need to equalize this expression with T?,
the rotational period of the star. After simplification we get:

Rco =

(
GM?T2

?
4π2

)1/3

(8.8)

The corotation radius is important when a disk is present because stellar field
lines which couple to the disk outside of Rco will act to slow the rotation of the
star down, while field lines which couple to the disk inside Rco will act to spin
the star up. Using the previously mentioned star mass and the typical rotation
period T? = 6d ay s we find a typical corotation radius of Rco ≈ 11R¯ ≈ 5.5R?.

8.2 The accretion shock

We now describe in details the physics of the accretion shock itself, focusing our discus-
sion only on a small part of the global astrophysical object described in the previous sub-
section. In terms of laboratory astrophysics, shocks have always been one of most stud-
ied phenomenon in the laboratory because of the relative ease with which they can be
produced, which is especially true since the advent of high-power lasers (see the thesis
introduction). The accretion shocks occurring on the surface of TTS are complex and
not fully understood. In fig.8.2 we show the currently accepted picture of the structure
of these shocks (from [1]). As previously explained, the matter coming from the disk is
accreted onto the stellar chromosphere at a velocity roughly equals to the free fall velocity
v f f (8.5).

In order to be shocked, this infalling gas must be sufficiently decelerated, which occurs
where the thermal pressure is comparable to its ram pressure. Generally it is assumed that
this occurs near the frontier between the chromosphere and the photosphere [10]. The
object "accretion shock" is composed of four parts: the precursor, the shock, the post-
shock region and the heated photosphere [10; 23; 24]. The precursor is located upstream
of the shock itself, inside the accretion column and consists of gas preheated by x-ray radi-
ation escaping the shock. These X-rays are produced because of the high typical tempera-
tures reached by the infalling matter after the shock. This temperatures can be estimated
from the Hankine-Hugoniot jump relations (see 8.10). We have: kB∆T = 3/16mHV2

f f and

using V f f = 280km.s−1 we find ∆T ≈ 1.8106 K ≈ 150eV, justifying the production of X-
rays.
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Figure 8.2: Schematic view of an accretion shock on the stellar surface (from Hartmann L, et al.,
2016.). The infalling accreting material impact the star chromosphere and forms, where its ram
pressure is comparable to the local thermal pressure, a shock. Temperature produced by this shock
are of the order of few millions of kelvins and thus a large amount of X-rays are emitted. These
radiations are then reprocessed by the preshock, the postshock and the ambient environment into
larger wavelengths which creates the features observed on the TTS spectra.

Postshock temperature derived from Rankine-Hugoniot relations

In order to derive the postshock temperature, we make the assumption of a
stationary shock, with the incoming flow indexed with the subscript "i" and
the postshock flow with the subscript "f". The easiest way here is to use the
conservation, along streamlines, of the sum of the specific kinetic energy 1/2v2

and the specific enthalpy hspe = εspe + p/ρ where εspe is the specific internal
energy and can be expressed as εspe = p/(γ− 1)ρ. Thus across the shock we
have

v2
i

2
+ pi

ρi

(
γ

γ−1

)
=

v2
f

2
+ p f

ρ f

(
γ

γ−1

)
(8.9)

Now, if we suppose a strong shock, as it is the case for the accretion shock be-
cause of the high Mach number (VALUE), we have ρ f = 4ρi and v f = vi /4. With
these values, expression 8.9 can be written as:

kB∆T = mH
15

32

γ−1

γ
v2

i (8.10)

with ∆T = T f −Ti . In the case where γ = 5/3 we find the well known relation
kB∆T = 3/16mHV2

f f . Estimates of the postshock temperature for a TTS accre-
tion shock is given in the main text.

The postshock region is composed of plasma having passed trough the shock and be-
ing in the process of cooling, mainly trough radiation. A very important physical param-
eter which determine the scale and the strength of each part is the opacity. Typically the
precursor can exist only if the incoming funneled flow can absorb a sufficient amount
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Preshock shock
Postshock/

heated photosphere~50 % ~50 %

x-rays x-rays

~25 %

~75 %~25 %

UV

optical

near-IR

uv

Figure 8.3: Schematization of the distribution of the total radiated energy by the accretion shock.
All percentages indicates the portion of this total energy. The flux is first absorbed roughly equally
by the preshock and the postshock/heated atmosphere whereas then the preshock radiates ∼ 50%
of it outside the accretion region (mainly in UV band) and the other ∼ 50% are reabsorbed and
then re-radiated (in otpical, near-Ir and UV bands) by the postshock/heated atmosphere which is
then finally responsible for emitting ∼ 75% of the initial shock radiation flux.

of radiations. This is why shocks where a precursor is present are often called "radiative
shocks" [25]. A strong indication of the presence of opaque material in the accretion pro-
cess comes from the fact that the excess of radiation flux inferred from star possessing a
disk is observed mainly in non-X-ray ranges, mainly optical, UV and near-IR wavelengths
[26].

The energy balance in the accretion process is schematically represented in fig.8.3.
This is of course a very rough estimate of how the kinetic energy of the infalling flow is
distributed and radiated. In the figure the percentages indicate the portion of the total
emitted radiation flux from the shock region (which emits mainly in the soft x-ray band).
About 50% of this emitted flux is radiated upwards and reabsorbed in the preshock re-
gion which reprocess this radiation, sending back toward the postshock/heated photo-
sphere roughly half of it and the other half in the outer space, mainly in the far-ultraviolet
domain. Thus, the postshock/heated photosphere receives ∼ 75% of the radiated shock
energy. This energy is reprocessed into UV, optical and near-IR radiations and then re-
radiated.

In the UV domain, the radiation excess is very conspicuous since the relatively cold
stellar photosphere produces weak UV fluxes whereas the preshock and the postshock/heated
photosphere emit strongly in this domain [27]. In optical and IR ranges almost all the radi-
ations comes from the postshock/heated photosphere region but the strong unperturbed
part of the stellar photosphere has comparable flux in this domain, so the excess mani-
fests as an increase of the continuum component of the spectrum (the so-called "veiling"
[28]). Of course, in addition to the UV, IR and optical fluxes, there is still a small amount of
x-rays escaping the shock region, but this generally represents less than ∼ 5 % of the total
radiated accretion energy [1].

Nevertheless, the x-ray spectrum typically has an important number of emission lines
which are very useful since recently, high-resolution spectra of some CTTS have enabled
measurement of individual emission lines sensitive to plasma density (i.e. He-like triplets).
This important point allows one to distinguish the X-ray flux coming from the stellar coro-
nae to the flux coming from the accretion process [29].

From the different spectra in the different bands (optical/IR, Uv, X-rays) we can re-
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trieve two crucial informations (using either the continuum, for optical/IR domain or the
lines for X-rays): the accretion rate Ṁ, as well as the structure of accretion shocks. The
accretion rate is the fundamental quantity that one wants to retrieve from observations,
since it plays a key role in disk, as well, as star evolution models [30]. To estimate the
accretion rate, one needs a measurement of the "magnitude" of the radiation flux in ex-
cess to the "unperturbed" stellar flux. Indeed, if we consider a complete conversion of the
kinetic energy of the falling matter into radiations, we can estimate the accretion shock
luminosity Lacc as:

Lacc =
1

2
Ṁv2

f f =
GM?Ṁ

R?

(
1− R?

RT

)
(8.11)

where we used equation 8.5 for the free fall velocity. Thus, if we know the mass of the star,
its radius and the truncation radius, measuring the total accretion (excess) luminosity
can provide a reasonable estimate of the accretion rate. Of course, a relatively high uncer-
tainty exists because of the presence of RT, but this estimate can be considered valid as
long as the truncation radius is at several stellar radii. Here, if we consider that the trunca-
tion radius is equal to the corotation radius, we have RT = 5.5R? (see the discussion about
the truncation and corotation radii) and so Lacc ≈ 0.8GM?Ṁ/R?.

Concerning the shock structure, the one shown schematically in fig.8.2 has been ex-
tensively used as the basis to build synthetic spectra for a direct comparisons to observed
spectra, and to derive accretion rates. The method is quite simple: the shocks are simu-
lated, generally using (magneto-)hydrodynamic codes, with a given amount of "physics"
included. For example, the models can include thermal conduction (sometimes with
anisotropic coefficient), radiation transport, resistivity, viscosity... The resulting shock
structure and plasma conditions are then used to compute synthetic spectra to compare
to observations. Thus, to determine the exact the structure of accretion shocks, it is not
only the "strength" of the excess luminosity that is important but also its "shape", that is
the width and the ratios of lines. This is especially true in domains where strong emis-
sion lines are observed (e.g. optical and x-ray ranges). Today, relatively simple one-fluid,
one-dimensional models coupled with an assumed uniform accretion around the star are
able to reproduce reasonably well many of the features observed on the spectra [10], no-
tably in the blue and the ultraviolet domains. However, with these uniform models, the
predicted fluxes in red-optical wavelengths are lower than those measured through veil-
ing [31]. This discrepancy can be eliminated by assuming accretion funnels of different
densities, with high density funnels (1011−1012 cm−3) representing spots covering at most
∼ 1% of the star surface and lower density (< 1011 cm−3) funnel spots covering up to 40%
of the star surface [1; 32]. However, it must be noted that no clear evidence of such vari-
ability in funnel densities have been observed and thus this problem is still largely model
dependent.

Another important discrepancy that has been extensively discussed in previous works
[24; 33] concerns the different mass accretion rates derived from UV/optical with the ones
derived from the X-rays. The photoelectric absorption of these X-rays, emitted mainly by
the postshock region, has been invoked to solve this discrepancy. Indeed, it has been
shown that high column densities tends to penetrate deep into the stellar photosphere,
leading to a much more favorable configuration for photon absorption [34; 35]. With this
effect taken into account, the discrepancy can be eliminated [36; 37].
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8.3 State of the art of numerical simulations of accretion
shocks.

In this section we present a brief overview of the state of the art of numerical model-
ing carried out to unveil the physical processes at work in the accretion of matter onto
TTS. First, the vast majority of the work being done on the accretion shocks simulations
use 1D or 2D models. Generally, one may approximate the accretion column to a one-
dimensional flow when its plasma (thermal) beta is very small, β << 1. To evaluate the
column plasma beta, we first need to express the column density which can be done us-
ing simple arguments. If A is the area of the star covered by accretion columns, the mass
density of the incoming material can be expressed as ρ = Ṁ/Av f f . Furthermore, introduc-
ing the well known "filling factor" f , the area A can be defined as A = f 4πR2

?. The filling
factor is actually estimated from observations to be close to ∼ 1% (J.F-Donati et al. 2007).
We can thus estimate the accretion column number density n (considering an hydrogen
plasma) as:

n[cm−3] = 6.9 ·10−3 f −1ṀM−1/2
? R−3/2

?
mH

(
1− R?

RT

)−1/2

(8.12)

Using the parameters we already used for TTS (M? = 0.5M¯, R? = 2R¯) with a filling
factor f = 0.01 and RT = 5.5M? we find n ≈ 5.5 · 1012 cm−3 ([10]). We also take a char-
acteristic magnetic field strength at the star surface B? = 1kG, bearing in mind that the
beta we will obtain will be certainly underestimated. We also take a column temperature
Tcol = 104 K, coherent with some observations [38] From βcol = nkBTcol /(B2

?/2µ0), we find
βcol ≈ 2.10−4, indicating that the magnetic field should dominate the dynamic and the
column should be relatively well described by 1D models. We must point out however
that far from the star surface, we expect the B-field to be much weaker and the beta to be
much higher. For example, taking the simple dipolar dependency of the magnetic field
(∝ R−3), the beta would be close to unity for a distance roughly equals to 4R?. One can
thus expect different behaviors in the "launching" region of the column, where material
from the disk is loaded onto the accretion columns.

From here we must note that both the incertitude and the variability on the surface
stellar magnetic field magnitudes can leads to accretion processes occurring within a
large range of beta’s. We show in figure 8.4 a table taken from [39] listing the predicted
dipolar fields strengths for several low-mass (< 2M¯) TTS. As one can see, the expected
fields range from 190 G to 10.6 kG and thus it represents a possible factor ∼ 3000 in terms
of magnetic pressure between the minimum and the maximum value.

The relevant parameter to estimate the plasma beta in the post-shock region is the dy-
namic beta of the column. Indeed, if we suppose a total conversion of incoming flow ki-
netic energy into thermal energy, we can estimate the postshock pressure as Pps ∼ 1/2(γ−
1)mHnV2

f f where γ is the adiabatic index, taken here equals to 5/3 (mono-atomic gas).

The thermal beta in the postshock region is thus given by βps = 1/2(γ− 1)βd yn
col where

β
d yn
col = ρV2

f f /(B2
?/2µ0) is the column dynamical beta. We can thus evaluate all the depen-

dencies of the postshock thermal beta using the approximate expressions already given
for the free-fall velocity (8.5), the column density (8.12) as well as the dependencies for
the stellar magnetic field, taken from [39]:
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Figure 8.4: Table presenting stelar parameters for sixteen TTS (from C.M. Johns-Krull, 1999 ([39]).
The main point regarding our discussion in the main text concerns the fact that surface magnetic
field strengths spread over three order of magnitude (from 190 G TO 10,4 Kg) and thus one can
expect a large range of plasma betas for the accretion process. The assumption of a 1D, 2D or 3D
accretion dynamic relies heavily on the assumed value for this plasma beta.
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B?∝ M5/6
? Ṁ1/2P7/6

?
R3
?

(8.13)

where P? is the stellar rotational period.
We finally get all the postshock beta dependencies:

βps ∝ M−7/6
? R7/2

? P−7/3
? (8.14)

One can see that the thermal beta, in this model, does not depend on the accretion
rate but instead of the intrinsic parameters of the star M?, R? and P?. Therefore we see
that stars with low mass, large radii and small rotation periods are more conducive to the
establishment of high-beta accretion processes.

When the postshock thermal pressure is not small compared to the local magnetic
field, the post-shock plasma is able to push aside the magnetic field and is then relatively
free to spread over a much more larger area than the column cross section (see below)
thus "breaking" the 1D behavior. If we take the previously used parameters, that is, a free
fall velocity, calculated using formula 8.5, of V f f ≈ 280km.s−1, a surface magnetic field of
B? = 1kG and the density already derived for the accretion column, we find in this case

β
d yn
col ≈ 6.10−2. Thus, with the TTS parameters used previously we thus find that both the

beta of the accretion column and the postshock region are much lower than unity. The as-
sumption of a 1D accretion shock appears then as reasonable in this case but, as we shall
see later, even in low beta situations, the presence of MHD instabilities make the accret-
ing flow intrinsically three dimensional. Furthermore, to obtain this postshock beta, we
have taken a field of 1kG but as we have seen (8.4), the variability in TTS magnetic fields
strengths leaves room for high-beta accretion dynamics and we show in this manuscript
for the very first time that 3D effects are important.

We shall now present a rapid overview of some of the work carried out on the topic of
accretion shocks. This is not an exhaustive list but it presents at least the main numerical
results already obtained in 2D and 3D.

• Sacco et al. (2008, [35]) used a 1D hydrodynamic model to describe the shock dy-
namic and stability, assuming an optically thin gas. The code included thermal con-
duction as well as tabulated cooling functions. The stellar atmosphere was setup us-
ing a heating function with the goal to retrieve the Sun chromosphere conditions. As
the output of their simulations, they simulated x-ray spectra and compared them,
with relatively good agreement, to observed spectra from the XMM-Newton satel-
lite. They also observed in the simulation "Quasi-Periodic Oscillations" or "QPO"
of the shock front. These oscillations are due to the cooling instability: as the ac-
creting flow stacks progressively to form a slab of shocked material, the cooling by
optically thin radiations reaches such a level that the slab collapses on itself. Then
the process repeats itself with a typical period ∼ 400 s. At present these oscillations
have not been observed [40] but if the accretion stream is strongly inhomogeneous,
as suggested by 3D simulations [41], these oscillations would be difficult to observe.

• More recently (de Sa et al. 2014) our group developed a 1D model that includes
radiative transfer as well as a self-consistent model for the stellar atmosphere struc-
ture. It was found that in this case the QPO’s can be annihilated by the absorption
of radiations in the slab which prevents the triggering of the cooling instability.
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• Koldoba et al. (2008, [42]) have used a 1D MHD model where the magnetic field
is tilted relatively to the star surface. They showed that in this case, and still in the
optically thin regime, the shocked slab is unstable but with a very small period < 1 s.

• Orlando et al. (2010, [43]) have used the PLUTO 2D MHD code ([44]) to study the
case of accretion shocks where the beta is closer to unity, or even greater. They
found that in these regimes, the shocked plasma is actually free to escape on the
sides and large streams of both accreting material and chromosphere material are
propelled by the high pressure core. These streams are found to be responsible of
the suppression of QPO. In fig.8.5 we show results from these simulations, both for
the case with gravity and the case without gravity (in order to quantify the impor-
tance of gravity in the dynamics, an important point for us since, in our experi-
ments, gravity will have no effects). For each image, the left side represents the
logarithm of the number density whereas the right side represents the logarithm of
the temperature. In the first case, the shocked plasma of the slab (red bottom) can
escape the sides forming what we will call the surrounding "shell". These process
is responsible for mitigation of the QPO’s. Very quickly, the ejected plasma is redi-
rected toward the central accretion column and disturbs it. At later times, the shell
collapses, because of the gravity, and the process repeats itself. In fact, a new oscil-
lating behavior of the accretion dynamic appears but the main responsible here is
not the cooling instability but rather the complex 2D geometry and the interaction
of the shocked plasma with the magnetic field. In the case where the gravity is nu-
merically removed (second column in fig.8.5), one can that the shell is still observed
but, contrary to the previous case, it does not collapses but is instead "funneled"
and stuck to the accretion column with a less disrupting effect. These simulations
seems to show that the shell existence is not really linked to the presence of grav-
ity but instead to the hot pressure slab at the base of the column which acts like a
"propeller", the role of gravity being to trigger the shell collapsing.

• Sutherland et al. (2003a, [45]) and more recently Matsakos et al. (2013, [46]) have
studied the effect of inhomogeneities on the accretion process. The first study, car-
ried out with a 2D hydrodynamic code (no magnetic field), showed that the tur-
bulent motion arising thanks to the additional dimension increase the cooling effi-
ciency. In the second author studied the effect of disturbances of the infalling flow
and showed that with a sufficiently strong magnetic field this flow is divided into
independent fibrils (filamentary accretion column). When taken separately, each
fibril behaves similarly to a 1D accretion column and shock, indeed showing QPO.
However, taken together, the random QPO of each fibril washes out the resultant
total radiation flux of the oscillations.

A central point emerging from this brief review concerns the impact of "dimensional"
effects on the accretion dynamic. Indeed, as seen previously with the 2D simulations
(fig.8.5), the material leaking on the sides of the accretion column changes strongly the
structure of the shock itself and even annihilate features predicted by 1D simulation (QPO’s).
Then, naturally, arise the question about what 3D effects can change in the accretion dy-
namic, compared to the 2D case. We will address this important question. In all case, a
better understanding of the complex 3D physics of accretion shocks would lead to better
models to interpret the observed emissions from TTS.
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With gravity Without gravity

Figure 8.5: Density and temperatures maps of 2D MHD simulations of accretion shocks using the
PLUTO code ([44]). On the left is shown the case where the gravity is included in the simulation
whereas the right panel shows the case were it is artificially removed. The accreting column is
coming from the top of the images, on each images, the left part represents the decimal logarithm
of the number density whereas the right part shows the decimal logarithm of the temperature. It
can be seen that in both cases, the dynamic reveals the development of a "shell" surrounding the
accreting flow. It is important to remark that this shell develops with or without gravity included,
indicating that the expulsion of material on the column sides is mainly pressure-driven. Courtesy
of S. Orlando
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Magnetized accretion in the laboratory
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CHAPTER 9. MAGNETIZED ACCRETION IN THE LABORATORY

9.1 Introduction

In the previous chapter 8 we have presented the general physics of accretion shocks in
the context of variable stars called T Tauri stars (TTS), a particular case of young stellar
object (YSO). The general picture used in the vast majority of accretion models is that
of a one-dimensional (1D) shock structure, a model valid only if the thermal beta (ther-
mal pressure/magnetic pressure) of the postshock plasma is much smaller than unity. It is
known that these pre-main-sequence stars exhibits a large range of different surface mag-
netic field strengths [1] and thus a large panel of plasma betas. We have briefly described
recent numerical works carried out to study the two-dimensional (2D) magnetohydrody-
namic (MHD) accretion dynamics in situations where the beta is close to unity or even
greater [2]. As explained it has been found that the supplementary dimension introduces
the possibility for the shocked plasma to escape on the sides of the accretion column,
forming a pressure-driven plasma "shell" composed of mixed materials from both the
column and the star photosphere/chromosphere. We highlighted the fact that some 1D
results were undermined by the presence of this shell in 2D simulations among which the
mitigation of the never observed "Quasi-Periodic Oscillations" ("QPO’s") citeSacco2008.
Relying on these previous works, we propose in this chapter to investigate, in the labo-
ratory, the possibility to produce accretion shocks using magnetically-collimated super-
sonic/superalfvenic jets impacting onto solid targets. We present, for the first time, a nu-
merical, fully three-dimensional (3D) MHD characterization of a laboratory astrophysics
experiment that allow, using existing facilities, to realize high-beta accretion shocks. As
in the chapter about laboratory supersonic jets, we first give in 9.2 some of the recent ex-
perimental results that have been obtained by our collaboration on the ELFIE installation
at the LULI laboratory. These experimental results are presented in [3] where the reader
can find more details. We then briefly describe the numerical setup (9.3) which is very
similar to the one used of the generation of supersonic jets (see 5.3). We also character-
ize in details our laboratory accretion column by introducing two important quantities:
the accretion rate as well as accretion kinetic energy flux (9.4). Then the 3D structure of
the shock region is analyzed (9.5) as well as the keV-temperatures et radiations generated
(9.6). We insist on the important role of the material coming from the target on which
the accreting flow is impacting (9.7). Finally, we investigate the influence, as suggested by
observations [4], of varying the orientation of the magnetic field in our initial setup (9.8).

9.2 Experimental results

The results presented here are taken from our paper [3], where the reader can find much
more details than presented in this section. The experiment was performed at the ELFIE
Nd:glass laser facility of the LULI laboratory, at Ecole Polytechnique (France) [6]. The
experimental setup used to study the accretion dynamic in the laboratory is shown in
fig.9.1. An Helmholtz coil delivering a relatively homogeneous magnetic field of 20 T is
used to embed two flat solid targets near its central region, the whole being disposed in
vacuum chamber at a pressure ≈ 1Pa ≈ 10−5 atm. The 40 J, 0.6 ns (FWHM), 700µm (laser
spot diameter) ELFIE pulse is used to generate a laser-produced expanding plasma from
a first target composed of PolyVinyl Chloride (PVC, (C2H3Cl )n ) whereas the second tar-
get, composed of Teflon (CF2), is placed at 18 mm away from the first target and serve
as the surface on which accretion is happening. As we have seen in section 5.6 (and re-
called in this chapter in 9.4), the interaction of the expanding plasma with the magnetic
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Figure 9.1: Cartoon showing the top view of the central coil-region of the experimental set-up and
the diagnostics paths. The grey rectangle represents the Helmholtz coil, inside the airtight struc-
ture, delivering a magnetic field in the central region up to 20 T [5]. The conical apertures allow
the insertion of the stream-source target as well as the main laser beam to reach the stream-source
target without clipping the obstacle target. The obstacle target is inserted from the bottom of the
coil through a vertical aperture. The probe beam travels along the coil following the perpendicular
aperture, going through the interaction region.

field results in its collimation in a ∼ 1.4mm cylinder, representing the accretion column
impacting the Teflon obstacle. The optical probing uses an interferometric technique to
retrieve the plasma electron density in the low-density regions (density below 1020 cm−3

) of the plasma. It consists in a standard Mach-Zehnder interferometer and uses a com-
pressed probe laser pulse delivering 100mJ in 350 f s, at the wavelength ofλ = 528.5nm, to
probe the plasma. The interferograms recorded on CCD cameras are analyzed using the
Neutrino code [7]. The very small energy of the probing pulse compared to the ablative
pulse provides the guarantee that the probing does not affect significantly the dynamics.
Then a wavelet model enables to fit the fringes arrangement, from which a phase map is
then unwrapped. Using an Abel transform [8], the plasma electron density ne is retrieved
from the phase map assuming an axisymmetric distribution of the plasma (a point, as we
shall see in our numerical analysis, that can be disputed).

In fig.9.2 are shown four different maps of the decimal logarithm of the electron den-
sity. Indicated times refer to the start of the accretion process, when the column head
reaches the Teflon obstacle. These images reveal the presence of three different structure
clearly identifiable. First, the accreting flow is seen, on all images, as the relatively low
dense ne ∼ 1018 cm−3 column at the center of the images, coming from the top. Then, a
dense ne ∼ 1019 cm−3 region is observed at the base of the obstacle and seems, as time
increases, climb along the column. As we will see in our numerical work, we identify this
region to the accretion shock itself as well as the resulting postshock plasma. We call this
region the "core". Finally we clearly see the generation of relatively symmetric, at least
at early times (i.e. 18ns), structures on the sides of both the column and the core. The
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Figure 9.2: 2D maps of the decimal logarithm of electron density inferred from interferograms
which have been Abel inverted (assuming axisymmetric distribution of the plasma). Times refer
to the start of the accretion process when the head of the column hit the obstacle. (see G.Revet,
PhD thesis, 2017)

plasma forming this structure is included in what we call the "shell". This last feature, as
we have already mentioned in the introduction and as we shall see later (9.5), is a fun-
damental consequence of the multidimensional aspect of our accretion experiments and
can be identified to structures observed in 2D MHD astrophysical simulations of accre-
tion shocks[2]. These experiments, which are a first, serve as a basis for the numerical
work we are going to present in the next sections.

On the obstacle pre-shock density profile

As we shall see later (9.7), the material from the obstacle plays a important role in the
laboratory accretion process. Thus, in order to perform consistent numerical simulations,
we have studied the structure of the obstacle itself when a laser pulse impact the first laser
target. Without magnetic field, the ablated plasma expands largely in all directions an no
measurable accreting flow is detected where the obstacle is located (∼ 10mm away from
the laser target). We have observed that the creation of the plasma on the first target was
responsible for the generation of x-rays which ablate the obstacle surface. As a result, an
other expanding plasma is created in front of the obstacle and a typical profile obtained
with interferograms is shown in fig.9.3. As one can see, the resulting profile (green line) is
best fitted with a 1/z function (blue line). Since no radiative transfer is performed in our
code, we can not simulate this ablative process and thus we have used this experimental
profile as an "input" for our simulations presented in the next sections.
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Figure 9.3: Profile of the decimal logarithm of electron density inferred from interferograms
(green) which have been Abel inverted (assuming axisymmetric distribution of the plasma). Also
shown is the density very close to the target (black dotted line) measured from x-rays absorption.
The blue curve is the best interpolation obtained and corresponds to a decrease of the density in
front of the obstacle inversely proportional to the distance. Here times refer to the start of the laser
pulse. (see G.Revet, PhD thesis, 2017)

9.3 Numerical setup

The simulation setup aiming to study the experiment is shown in fig.9.4. It consists of
two solid carbon targets separated by a distance 12.4mm. These will be referred to as
the "laser target" and the "obstacle". A homogeneous magnetic field is initialized, along
the z direction, perpendicular to both targets, with a strength B0 = 20T. The interaction
of the laser pulse with the laser target is again modeled in axisymmetric, cylindrical ge-
ometry with the two-dimensional, three-temperatures, Lagrangian, radiation hydrody-
namic code DUED ([9]). At the end of the laser pulse, the profiles of density, momen-
tum and electronic/ionic temperatures are linearly mapped onto the 3D grid of the Eu-
lerian, resistive MHD code GORGON (2.4). The simulation 3D domain is composed of
300×300×640 = 5.76·107 cells using a cartesian grid of dimension 6mm×6mm×12.8mm
thus corresponding to a uniform resolution of ∆ = 20µm. The lasers parameters are pre-
sented in the table at the top right of fig.9.4. The laser energy is 17J, the laser pulse dura-
tion (FWHM) τL = 0.5ns, the focal spot diameter ofφ = 750µm and thus the laser intensity
at the focal point is I ≈ 7.7 ·1012 W.cm−2. These values correspond to nominal parameters
that are accessible on current high-power laser facilities, and are directly relevant to ex-
isting experiments and the one we presented in the previous section [5].
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Figure 9.4: Left: 3D iso-volume of the decimal logarithm of the mass density at t = 8ns. The laser
target is located at the top whereas the collimated laser-produced plasma, forming our labora-
tory accretion column, is propagating towards the obstacle at the bottom of the image. The blue
tubes represent the magnetic field lines. On the right, the top table gives the relevant laser param-
eters used to generate the expanding plasma whereas the second table gives a comparison of the
important parameters for both the laboratory column and the TTS column.
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9.4 Generation and characterization of the accretion col-
umn

We now focus our discussion on the laboratory "accretion column" alone. Using the initial
setup described in the previous section, we have already demonstrated, both numerically
[10] and experimentally [11; 12], the possibility to produce astrophysically-relevant mag-
netically collimated flows (jets) which are well described by ideal MHD (see the dedicated
chapter 5). Indeed, one of the underlying mechanisms responsible for the generation
of these jets is linked to "flux freezing" in the plasma, which is a consequence of the high
plasma temperatures (& 100eV) reached with high power lasers (I& 1012 W.cm−2). Within
this condition, the laser-produced plasma is collimated by the magnetic field and essen-
tially forms an expanding, cylindrical magnetized "accretion column" which is made to
interact with the obstacle. The ideal MHD regime is in fact necessary for both the colli-
mation and the scaling [13].

The astrophysical relevance of our laboratory column can be evaluated by compar-
ing certain dimensionless parameters for both systems. In table 2 of fig.9.4 the relevant
parameters of the collimated flow from the laser-target (the "accretion column") are pre-
sented. These parameters have been averaged over all the column head, on a distance
of ≈ 3mm. Alongside these laboratory parameters, we also indicate the corresponding
values for the astrophysical system (TTS) taken from [3]. While the flow velocity is com-
parable between the two systems (500−1000km.s−1), the laboratory accretion column is
approximately ten million times denser and five hundred times warmer. In terms of di-
mensionless parameters, both systems are supersonic and have velocities greater than

the fast magneto-acoustic speed (
√

cs2 + v2
A, where cs is the sound speed and vA the

Alfven speed). Importantly, both the viscous and the magnetic Reynolds numbers are
much larger than unity, meaning that dissipative processes are not dominant. The col-
umn Peclet number (for heat conduction) is in both cases greater than one but in the lab-
oratory case it is low enough to not ignore thermal conduction effects. Finally, the plasma
betas (the thermal beta been the ratio of the kinetic pressure on the magnetic pressure
whereas the dynamic beta is the ratio of the ram pressure on the magnetic pressure) are
comparable in the two systems, with similarly large dynamic beta > 10 and small thermal
beta < 10−1. The values presented in fig.9.4 highlight the possibility to perform, at least
partially, the scaling between the laboratory and the astrophysical systems [13].

Two other parameters are useful in characterizing the accretion process, namely the
mass accretion rate Ṁacc , discussed earlier, as well as the accretion column flux of kinetic
energy 1/2Ṁacc v2

z , vz < 0 being the velocity of the flow in the z direction. As we have
seen in the previous chapter, the kinetic energy flux is crucial when studying accretion
processes in astrophysics because it provides an upper limit on the accretion shock lumi-
nosity, and helps to deduce the accretion rates [14].

For the laboratory accretion flows, and very likely for astrophysical accretion flows
([15]), both quantities are time-dependent and are not homogeneous over the cross sec-
tion of the column. Their temporal variation is shown in fig.9.5. Throughout this chapter,
all times are given relative to the end of the laser pulse, when the input data from the
DUED code are remapped in GORGON. The accretion rate and the kinetic energy flux are
computed by integrating over the column cross section, the local mass flux Φmass = ρ|vz |
and the local kinetic energy fluxΦener g y = 1/2ρ|v3

z |, where ρ is the plasma mass density. All
the integrated fluxes shown in fig.9.5 are calculated 2mm away from the obstacle surface
(corresponding to the point P in fig.9.4).
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Figure 9.5: (a) Time-dependence of the mass accretion rate of the laboratory column computed at
the altitude z = 2mm (the point P in fig.9.4) and integrated over the column cross section: Ṁacc =∫
ΦmassdS with Φmass = ρ|vz |. (b) Time-dependence of the accretion kinetic energy flux of the

laboratory column computed at the altitude z = 2mm (the point P in fig.9.4) and integrated over
the column cross section: 1/2Ṁacc v2

z =
∫
Φener g y dS with Φener g y = 1/2ρ|v3

z |. For each quantity, we
plot the case where the obstacle is removed, when it is present as well as when it is replaced by a
"perfect wall" (i.e. reflecting boundary condition).
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Three cases are shown in fig. 9.5. One where the obstacle was removed from the sim-
ulation and which provides the characterization of the accreting flow alone, without the
effects the presence of an obstacle would induce. In addition to the standard obstacle
case, the profiles for a simulation with a "perfect" wall (essentially a reflecting boundary
condition) are also shown.

We focus first on the case without the obstacle. The curves for the accretion rate and
kinetic energy flux then represent their nominal values for the case where the flow is un-
perturbed by back streaming plasma coming from the interaction with an obstacle. As we
shall discuss later, the post-shock plasma largely modifies the dynamics of the accreting
flow. It is clear from fig.9.5(a, b), that the accretion flow generated by the laser ablation
of the primary target is not steady state. The accretion rate rapidly increases to a maxi-
mum of Ṁacc ≈ 6.1 g .s−1 at about t = 22ns, before slowly decreasing to reach an almost
constant values of Ṁacc ≈ 2.3 g .s−1 at t ∼ 70ns. Remarkably, the variation between the
peak and the nearly steady state accretion rate is only a factor ∼ 2.6 during a time of 100
nanoseconds, which is 200 times the laser pulse duration, and that we can produce accre-
tion rates that are almost constant over ∼ 60 ns. Opening the door to long term evolution
studies of accretion flows using even longer laser pulses (5−20 ns).

The peak in the kinetic energy flux occurs slightly earlier than the mass accretion (∼
16 ns) and then decreases by almost two orders of magnitude over the next ∼ 80ns. This
very large variation is a consequence of the strong dependence of the flux with the velocity
(∝ v3

z ) which itself depends on the time with t−3 (for a given z, see the velocity profile
discussed in our chapter about laboratory jets 5.4.1).

Another interesting aspect of the curve of the kinetic energy flux is that it can be an
important tool in order to deconvolve time-integrated spectra used to estimate plasma
temperatures [16] since this curve should indicate the times at which the main contribu-
tions to the spectrum are realized by the emitting plasma. It is also interesting to note that
the kinetic energy flux peak value arrives ∼ 8ns before the accretion rate reaches its max-
imum and thus, following the previous discussion about the accretion shock luminosity,
an experimenter who would use a time-resolved diagnostic, for example an SOP [3], to
measure the luminosity of the shock should not consider that its brightest point corre-
sponds to the time of maximum mass inflow because of the ∼ 8ns delay between the two
maximums.

This last point is also experimentally-relevant since it could have a strong effect on
the times that are effectively "recorded" by the diagnostics using the radiations for their
measure. Indeed, these instruments are often protected with filters in order to limit the
flux of photons entering through their aperture and thus the radiations emitted late in the
experiment (& 50ns) could be largely attenuated, possibly below the detection threshold.

9.5 Accretion shock 3D structure

The general morphology of the shock region is presented in fig.9.6(a,b), which shows the
iso-volumes of the mass density in one-half of the computational domain. Fig.9.6(a) cor-
responds to t = 22ns whereas fig.9.6(b) corresponds to t = 40ns.

In both images, we identify three main structures: (1) the accretion column, (2) the
accretion shock, forming what has been called the "core" (see section 9.2) and (3) the
previously mentioned "shell" which is developing, in early times, on the sides of the core
and, as time increases, starts to enfold the column itself.
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Figure 9.6: (a-b) Iso-volume of the decimal logarithm of the mass density near the obstacle (in a
volume of 6mm x 6mm x 3mm). The gray slab is the solid obstacle material. The left image cor-
responds to t = 22ns whereas the right to t = 40ns. (c-d) 2D maps of the decimal logarithm of
the integrated (along y-direction) electron density. Both images correspond to the times indicated
above (left:22 ns, right:40 ns). (e-f) Iso-volume of the decimal logarithm of the obstacle mass den-
sity for the same times indicated above. The material from the obstacle is followed in GORGON
using a tracer.
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All these components of the laboratory magnetized accretion shock have been ob-
served experimentally and described in our recent paper [3], which strengthen the argu-
ment that the simulations capture correctly the dynamics of the accretion flow.

The shell dynamic is connected to the interaction of the shocked plasma with the mag-
netic field. The plasma beta of the core in our simulation is βcor e ≈ 8 at t = 22ns. Imme-
diately after the shock, the magnetic field is unable to prevent the core plasma escaping
laterally. We note that in all previous accretion experiments of which we are aware [see for
example [17; 18]] this lateral expansion can’t be observed because they were using solids
tubes instead of the magnetic field, which effectively model the interior of the accretion
column or the very low plasma beta case, but have unwanted side effects, for example
shock reflexions on the walls of the tube or "pollution" of the accreting column by the
material of the tube.

It is now conceivable that in the not so distant future it will be possible to perform
laboratory accretion shocks in the small beta limit, without any tubes. For example, with
our laser parameters (see table 1 in fig.9.4), a beta ≈ 1 would be obtained with a field of
≈ 50T, a field strength already within reach [5]. For much lower betas, e.g. β < 0.1, the
required fields would be & 180T, a range also started to be explored but on a much more
smaller scale [19]. Alongside the mass density presented in fig.9.6(a,b), magnetic field
lines are also shown. When the core plasma is expelled on the sides, the high magnetic
Reynolds numbers (Re ∼ lcor e ccor e /Dm ≈ 5000 implies that the field lines are advected
radially and that the core region is emptied progressively of its magnetic field to form
a diamagnetic cavity [20]. In the expression of the magnetic Reynolds number lcor e ≈
1mm is the characteristic core size, ccor e ≈ 400km.s−1 is core sound speed and Dm ≈
810−2 m2.s−1 the core magnetic diffusivity.

The lateral expansion of the plasma leads to the compression and bending of the mag-
netic field, and the resulting increase of magnetic force (j×B, where j is the electrical cur-
rent) on the edges of the cavity slows down the expansion. It is important to note that
the bending of the field lines is possible because they are anchored into the solid tar-
get. For more details about the process by which a plasma is decelerated by a magnetic
field at a plasma/vacuum interface, see [21]. The plasma being radially decelerated is
then forced, by the pressure forces, to "climb up" the accretion column forming a shell
of plasma around the shock and column. The image in fig.9.6(b) at t = 40ns represents
an advanced stage of the laboratory accretion process where the shell is fully formed and
interacting with the incoming flow.
The origin of the plasma present in the shell is actually more complicated than just as-
suming it is post-shock material being redirected around the column. Indeed, we observe
in our simulations the occurrence of an important mixing of plasma originating from the
column and from the obstacle. Figure 9.6(e,f) shows at 22 and 40 ns the effect of the im-
pact of the accretion flow on the obstacle material. The figure shows the isovolume of
mass density from the obstacle, which is followed in the simulation by advecting, with the
MHD velocity, a passive scalar tracer.

We observe that a large amount of obstacle material is ejected by the impacting accre-
tion flow. Comparing these images with the one showing the total mass density (fig.9.6(a,b))
reveals the origin of the dense twisted "branches" observed early in the accretion process
(fig.9.6(a)) and seen growing as time increases (fig.9.6(b)) from a height of ∼ 0.3mm to a
height of ∼ 1.5mm. These structures are in fact material of the obstacle set in motion and
"lifted" by the accreting flow to form a kind of ring encircling, at first, the core and then a
non negligible portion of the accretion column. We find for example that at t = 40ns and
at the altitude z = 1.5mm, the obstacle material account for roughly 23% of the total mass
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at this altitude, knowing that this ratio is even greater at as we look closer to the target
surface. For potential direct comparisons with experimental results, we give in fig.9.6(c,d)
the maps, corresponding to the two previous times (22 and 40 ns), of the integrated (along
the y-axis) electron density. These should be directly comparable with Mach-Zehnder
interferometric measurements frequently used as a diagnostic for the electron density
[11; 12; 22]. As one can see, at t = 22ns the relative good azimuthal symmetry of the ring
structure (see fig.9.6(e)) is well visible in the line integrated density. However, at later
times the obstacle ring is clearly deformed and the loss of symmetry means that the line
integrated electron density map appears blurred, thus washing out the detectability of the
ring structure (fig.9.6(f)).

In a previous paper [10], we have pointed out that the collimation of laser-produced
plasmas by magnetic fields is subject to the growth of the Rayleigh-Taylor instability which
develops on the plasma column outer surface, modulating these regions of the incoming
flow into filaments with dimensions of the order of the column radius. These radial pro-
trusions of matter out of the surface of the column, introduce inhomogeneities in both
the local accretion rate ρ|vz | and the kinetic energy flux ρ|v3

z |. For example, deviations of
the local kinetic energy flux relative to the mean kinetic energy flux on at a given height
of the accretion column can reach 70%. This aspect of the laboratory accretion columns
structure represents a crucial difference with the perfectly homogeneous accreting flow
assumed in the vast majority of 2D models [2]. We can however mention the recent work
by Bonito et al. [23] where they performed simulations introducing a 2D accretion col-
umn with a density decreasing towards the edges. The goal was to investigate the effect of
local absorption due to pre-shock material and surrounding chromosphere to resolve the
discrepancies between observed X-ray luminosities and the higher values that are pre-
dicted by models [24]. Nevertheless, they still assumed a symmetry of the flow around the
column main axis. We see here that inhomogeneities and filaments in the accretion flow
result in large asymmetries developing in the shell (fig.9.6(f)).

The first important conclusion resulting from these observations is that adding a sup-
plementary dimension when modeling the accretion problem, the shell observed in 2D
simulations is still present despite the possible instabilities that can arise because of 3D
effect (see below).

9.6 Temperatures and emission in the laboratory accretion
process

We now address the question of the coupling of electron and ion temperatures in the lab-
oratory accretion process. This point is of great importance if one wants to assess the
astrophysically-relevance of an experiment like the one we present in this paper. We
show in fig.9.7(a,b), at t = 22ns, two 2D slices of both the ion temperature (fig.9.7(a)) and
the electron temperature (fig.9.7(b)). The three distinct parts of the accretion region are
again clearly identifiable in these maps: (1) the accretion flow is seen as the relatively
cold (Ti ∼ Te ∼ 100eV, in blue in the images) column coming from the top of both im-
ages. We can however note that the center of the column is much hotter than its edges
with in this region Ti ∼ 2−3keV and Te ∼ 300−400eV. These high temperatures come
from the recollimation conical shock seen at z ≈ 2.4mm and x = 0mm (also observed
in the mass density map in fig.9.6(a)). This shock, which is an intrinsic feature of the
magnetically-collimated laboratory jets [10], introduces in the column a supplementary
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to the density shown in fig.9.6(a)). (b) Same as (a) but for the electron temperature (same time). (c)
Maximum ion (full line) and electron (dotted line) temperatures in the core as a function of time.
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internal structure which is absent in the idealized 2D astrophysical accreting flows [2].
A consequence of the presence of the conical shock in the column above the obstacle
is that when the plasma cross the accretion shock front (at z ≈ 0.6mm) it is already in
an post-shock state with ion temperatures much higher than electron temperatures. As
we have seen in our chapter about laboratory supersonic jets, this point out an impor-
tant aspect relevant for the experiments: when a longitudinal (z) magnetic field is used
to generated supersonic jets [11; 12] or, equivalently, accretion flows [3] from an initially
laser-produced expanding plasma, the collimation process is realized through successive
compression and rarefaction regions (similar to the shock diamonds patterns observed
in supersonic exhaust plumes of propulsion systems [25]) and thus, the distance cho-
sen between the laser target and the obstacle must be beforehand carefully considered.
In our simulation, we observed that if the obstacle is placed close after the first conical
shock, this one degenerate into a Mach disk and thus breaks the collimation of the col-
umn. The conical shock seen in fig.9.6(a) and fig.9.7(a,b) is actually the second one and
in this case does not degenerates into a Mach disk. The core temperatures show that the
post-shock plasma is brought into a state very far from a thermal equilibrium with, at
t = 22ns, Ti ∼ 10keV and Te ∼ 500eV because the temperature gain is proportional to
the mass of the shock particles and the equilibration time is ∼ 30ns in this region. We
plot in fig.9.7(c) the maximum ion (full line) and electron (dashed line) temperatures in-
side the core as a function of time. The red vertical dashed line indicates the time when
the incoming flow hit the obstacle surface (∼ 12ns). We see that during all the simula-
tion duration (100ns) the ions and electrons never reach a total thermal equilibrium but
as the time increases the temperature difference decreases from ∆T(t = 12ns) ≈ 31keV
to ∆T(t = 100ns) ≈ 50eV. The initial shock temperatures are Ti ≈ 32keV and Te ≈ 675eV
whereas at the end we have Ti ≈ 207eV and Te ≈ 155eV. These decreasing profiles of tem-
peratures are a direct consequence of the velocity profile which is in our case very well ap-
proximated by vz = (z − zt ar g et )/t with zt ar g et = 12.0mm is the position of the laser target
surface. This expression is valid for times greater than the laser pulse duration and for po-
sitions such that z <= Vmax t where Vmax ≈ 1000km.s−1 is the velocity of the propagating
front. Finally, in the shell we observe the result of the progressive equilibration between
ions and electrons. Because the post-shock equilibration time (∼ 30ns) is much greater
than the time needed by a fluid particle to exit the core region (∼ 2ns), the highest elec-
trons temperatures (∼ 1.4keV at t = 22ns) in the shell can be reached at more than 1mm
away from the core. From energy conservation and neglecting the post-shock electron
temperature, we can expect for an adiabatic and isochoric equilibration process the final
temperature to be close to Teq ∼ Ti /(1+Z) (Z been the mean degree of ionization taken to
be close to its maximum value for carbon (Z=6)). Taking for Ti the maximum from 9.7(c),
one would expect the electrons to reach, after equilibration, values up to Teq ∼ 4.5keV
(at early times). In fact we never observe electron temperatures as high as this idealized
value and instead maximum values of ∼ 3.7keV at t ≈ 16ns that is ∼ 4ns after the column
impact onto the target. These lower than expected temperatures are the result that both
the adiabatic and the isochoric assumptions are non verified. Indeed, as soon ass the par-
ticles escape the core their density decreases because of their expansion and moreover
they are cooled by radiations because of optically thin radiation losses.

Alongside the temperatures, our 3D simulations allow us to investigate the spatial
distribution of where the radiated energy has been emitted during the accretion pro-
cess. This spatial distribution is represented in fig.9.8 inside a cylinder of dimension
(r = 2.5mm,∆z = 6mm) with the base of this cylinder anchored on the solid surface of
the obstacle. The volume contained inside this cylinder thus includes all the regions of
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Figure 9.8: S

chematic representation of the spatial distribution of the total energy radiated during the
first 100 ns. The volume containing the accretion region is cut into cylinders, both

vertically (z) and radially (x/y). For the vertical cutting (red cylinders), each cylinder has
a radius of 2.5mm and a height of 1mm. For the radial cutting (blue cylinders), each

hollow cylinder has a thickness of 0.5mm and a height of 6mm. The percentages
indicate the portion of the total energy radiated in each cylinder during the first 100 ns.
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the accretion shock (column, shell and core) and we will call it Vc yl . In the azimuthal
direction, we slice Vc yl in five smaller hollow cylinders of thickness ∆r = 0.5mm and
heights ∆z = 6mm (the blue ones) and in the z direction we slice Vc yl in six smaller full
cylinders of heights ∆z = 1mm and radius r = 2.5mm (the red ones). Both colorbars in-
dicates the percentages of the total radiated energy which has been emitted in each vol-
ume throughout the 100ns simulated. With this definitions, the sum of radiated energy
in the red cylinders is thus equals to the sum of the radiated energy in the blue ones. As
one can see from the longitudinal (z) distribution, almost all the energy (∼ 95%) is lost
in the first 2mm away from the obstacle surface and, looking closer, ∼ 81% is lost be-
low 1mm. This region include the core and the base of the shell which is composed of
plasma particles having, shortly before, been shocked at the temperatures described in
the previous discussion. The conclusions drawn from the longitudinal direction is ac-
tually similar to what one could expect from a simple 1D accretion model since in this
case the shock/post-shock regions are obviously where almost all the energy is emitted
because of the conversion of kinetic energy into thermal energy. We now turn to a fun-
damental aspect concerning the radiative cooling in the laboratory system and deriving
directly from the electron-ion temperature decoupling explained before. In typical as-
trophysical TTS accretion regimes [3], as previously mentioned, the post-shock electron
population is sufficiently quickly heated after the shock to emit radiations inside the core
itself. Because of the strong density in this region, the cooling is even more enhanced
and thus one can expect, even in 2D/3D astrophysical models, that the core should be
responsible for the vast majority of the radiative losses. In our laboratory configuration
this situation is not true because electrons have the time to escape the core region before
to be equilibrated through the electron-ion collisions. Therefore, they can radiate much
farther in the azimuthal directions, far from the core, when they are traveling in the shell.
This is seen in the blue volumes in fig.9.8 where only ∼ 9% of the total energy is radiated
inside the core itself whereas more of 50% is lost outside the radius r = 1.5mm.

9.7 On the importance of the obstacle ablation

Astrophysical models and simulations of accretion shocks usually assume the shock to
occur in the stellar chromosphere, where the incoming ram pressure equals the local ther-
mal pressure [26]. Despite its large temperatures (∼ 100eV), the very low density corona
(∼ 108 cm−3) is supposed to have basically no influence on the propagation of the accre-
tion flow. Nevertheless it has been suggested that the accretion energy could be partially
responsible for heating the corona to such high temperatures [27; 28].

We now address the crucial question of the influence of the solid carbon obstacle on
the laboratory accretion dynamics. The obstacle "simulates" the atmosphere of TTS’s,
and we have seen that upon impact of the accretion flow its surface is strongly heated. It
is ejected and recollimated by the magnetic field forming a dense and cold "ring" around
the accretion shock and column (see fig.9.6(a)). This structure, as well as the mixing of
plasma from the obstacle and the accretion flow have been observed experimentally, and
the results are presented in our recent paper (see section 9.2 and [3]).

To assess the importance of correctly modeling the stream-obstacle interaction, we
performed a simulation where the obstacle is replaced by reflective boundary conditions
at z = 0 mm. This "perfect wall" essentially suppresses the effects of ablate obstacle ma-
terial on the acretion dynamics. The results are shown in fig.9.9. The times pictured cor-
respond to the same discussed in the previous sections (22ns and 40ns), the left column
shows the "real" carbon target case, whereas the right column shows the "perfect wall"
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case. At early times (22ns), we observe a similar shock structure for the two cases, how-
ever it is clear that the twisted ring, which has been discussed earlier, is almost entirely
composed of obstacle material and thus is absent in the "perfect wall" case. At latter times
(40ns), one can observe in the "perfect wall" case the development of a very tenuous shell
and an accretion shock/column that is essentially unperturbed. This is in stark contrast
with the more realistic obstacle case, where the column is largely disrupted by the back
flowing plasma. Indeed, the head of the shock is at z ≈ 1.7mm in the "perfect wall" case,
while it is hardly visible in the realistic obstacle simulations, because of the strong distur-
bances coming from the mixed shell. It should be noted that in the "perfect wall" case we
took care to anchor the feet of the magnetic field lines at z = 0mm. If this condition is not
set up and that instead the lines are free to move, the highly conductive plasma impact-
ing the bottom surface will bring the field laterally without inducing much bending and
consequently the feedback of the field on the post-shock dynamic will be much weaker.

The importance of correctly modeling the interaction of the accretion flow with the
obstacle is highlighted in fig.9.5(a,b), where the mass accretion rate and the kinetic energy
flux are plotted as a function of time. It is important to note that when computing these
rates, we only consider the incoming accretion flow and not the backstreaming plasma.
The incoming accretion flow is followed with a passive tracer and the rates are calculated
for vz < 0.

At early early times, t . 22ns, there is no substantial difference between the three
cases; the shell is not fully formed and has had little or no influence on the accretion flow.
After maxima in the profiles, we observe an increasing deviation from the free streaming
case, with a decrease of the accretion rate for both the obstacle and the perfect wall. It is
clearly more marked for the case where the carbon obstacle is present, with a rate equals
to ∼ 0.1 g .s−1 at t = 100ns, which represents a reduction of a factor ∼ 27 compared to the
rate without obstacle. In comparison, the perfect wall case shows a relatively small devia-
tion with a reduction of only ∼ 1.2. Looking at the accreting kinetic energy flux (fig.9.5(b)),
we observe globally the same trends but because of the dependency on v3

z , the deviations
are strongly amplified. For the case with the obstacle, the final flux at z = 2mm is ∼ 2000
times lower than the maximum free streaming case. These results demonstrate that in
the presence of a sufficiently developed shell composed of material coming from both
the column and the obstacle, the luminosity in the shock region may be largely attenu-
ated. We suggest in this regard the importance of obtaining experimental measurements
of mass ablation from the obstacle in order to quantify the mixing and to constrain the
numerical models.

9.8 Influence of the orientation

As a last point, we want to discuss the possibility to perform laboratory accretion experi-
ments where the magnetic field is oriented at an angle with respect to the laser target and
the obstacle. This configuration could be of interest to study the accretion dynamic in
complex magnetic field topologies, as it may be the case in many TTS [29–32].

For example, it has been shown that when a significant transverse component of the
magnetic field is present it can mitigate or even suppress cooling driven quasi-periodic
oscillation [33]. The initial simulation setup with a tilted magnetic field is shown in fig.9.10(a).
The laser target is still composed of carbon and the laser parameters are taken to be the
same as in the previous cases. The only difference is the angle θ with which the magnetic
field is inclined relative to the target normal and we note that the previous cases stud-
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Figure 9.10: (a) Schema of the numerical setup used to study the influence of the field orientation.
θ is the angle between the laser target normal and the magnetic field direction. The laser used is
the same as in the previous sections (17 J, 0.5 ns). The "probing plane" (red dotted line) is where
the quantities shown in (b-c-d) are analyzed. (b) "Shape" of the accretion column in the X-Y plane
at the probing plane (see (a)) and at t = 20ns for three different angles. The black cross section
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θ = 90°. (c) Z momentum as function of time for the three tilt angle. (d) Radial (X-Y) momentum
as function of time for the three tilt angle
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ied were corresponding to θ = 0°. Here we focus on the column generation and thus the
obstacle is removed from the simulation and the flow is free to exit the domain (no re-
flective boundaries or obstacle). All the characterization given here is performed 10mm
away from the laser target, a typical position for the introduction of a obstacle (the dis-
tance between the laser target and the obstacle is limited by both the necessary space
required to let the laser pulse impact the target and the maximum dimension on which
a current coil can produce an homogeneous magnetic field [12]). In fig.9.10(b), we show
a slice of the column for three different inclinations: θ = 0° (black), θ = 45° (yellow) and
θ = 90° (red). These images are given only to show the geometrical shape of the resulting
flow and we do not provide informations about the density, which we observe to be highly
inhomogeneous. As discussed earlier, the collimation of the laser-produced plasma is RT
unstable, and produces azimuthal perturbations of the column surface that extend axi-
ally along most of the column surface. These can be clearly seen in the cross section of
the column shown in fig.9.10(b) (black region). At the extreme case where θ = 90° (red)
we see that the column has changed into a thin slab of thickness ∼ 500µm aligned with
the magnetic field (along x) (we have studied in details this configuration in the dedicated
chapter 7). We do not see the Rayleigh-Taylor (RT) filaments anymore but it could be mis-
leading to think that this configuration is not subject to MHD instabilities. Indeed, first we
observe also RT filaments in this case but because this instability is flutelike, the presence
of these filaments is not seen when observing the column in a direction perpendicular
to the magnetic field. Secondly, we observe that the plasma slab is strongly deformed by
kink modes that can even be unstable and result in the break of the slab (7.5). The case at
θ = 45° (yellow in fig.9.10(b)) is an intermediate case where we see the column is shrinked
along the y-direction but where the RT filaments can still be observed. In fig.9.10(c-d) we
present the integral over a plane at z=10 mm of the column z-momentum (fig.9.10(c)) and
the azimuthal x/y-momentum (fig.9.10(d)) for all the three tilt angles. By showing these
quantities we want to bring out the possibility to "imprint", on the accretion column, ra-
dial (x/y) momentum through magnetic forces feedback.

In fig.9.10(c), we can see that in the three cases, the z-momentum is of the same order
of magnitude and more surprisingly the θ = 45° case is almost identical to the θ = 0° case,
excepting for small shift in time (∼ 2ns) due probably to a small initial deceleration of the
flow in the z-direction because of the existence of a x-y component of the magnetic field
(here 10T). Concerning the θ = 90°, we now clearly see the effects of the presence of the
RT instability that was mentioned earlier. Because the slab can be strongly kinked, the z-
momentum is here a rapidly varying function of time with amplitude variations that can
reach up to 80% on ∼ 2ns (the big jump at t ∼ 30ns). This behaviour could be of interest
to study accretion dynamic under strongly non-steady conditions.

In fig.9.10(d), one can see the possibility to induce non negligible and relatively stable
azimuthal momentum in the laser-produced plasma in the case where the field is tilted at
θ = 45°. At its maximum value, the azimuthal momentum of the column represents ∼ 16%
of its z-momentum. For the others cases (θ = 0° and θ = 90°), the azimuthal momentum
is globally less than ∼ 1% of the longitudinal one with the exception of a peak value of
∼ 1.5 ·10−8 kg .m.s−1 at t ∼ 27ns, originating from the kink action.
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Chapter 10

Conclusion and future prospects

The work performed during my three PhD years and presented in this manuscript has
contributed to the field of High Energy Density Laboratory Astrophysics (HEDLA) through
the study of several configurations coupling laser-produced plasmas with strong, eter-
nally applied magnetic fields. The first natural work performed has been an extension
of the study of hypersonic jets collimated by a poloidal magnetic fields. The underlying
processes by which such jets are formed have been studied in details. One of the most
important features is the generation of internal shocks which have been shown to be re-
sponsible for the redirection of the flow. Interestingly, through a numerical study of "ide-
alized" supersonic jets propagating in medium (magnetized or not), we have been able to
introduce general aspects of these objects especially concerning their stability. We have
seen that in the absence of background, jets are extremely stable thanks to the absence
of the Kelvin-Helmholtz instability. The jets produced with our setup are also, contrary
to the ones produced using pulsed-power devices (plasma guns, pinches...), not kink un-
stable. As an extension of the work on magnetized jets, we also studied the effect intro-
ducing multiple laser pulses in our setup. Notably, we demonstrated the robustness of
the jet generation when a precursor plasma is created by a low pulse energy. The life time
of internal structures such that the first conical shock was observed to be increased with
this modified configuration introducing the possibility to study strongly variable ejection
rates in the laboratory.

We then presented results concerning the structure of a laser produced plasma ex-
panding in a strong transverse magnetic field. We have shown, in remarkably good agree-
ment with experimental results, that this configuration results in the formation of "mag-
netic slabs" or "magnetic pancakes" with omnipresent MHD instabilities. The slab, whose
dimensions along the magnetic field can be dozens of times larger than perpendicular to
it, were observed to be strongly sensible to MHD instabilities occurring at two different
stages: in the collimating phase, the slab interfaces with vacuum see (as for the case of
jets) the apparition of Rayleigh-Taylor filaments whereas in the expansion region far from
the solid target, the slab can be kink unstable if the field is sufficiently strong. We suggest
the potential interest to study this configuration in the context of magnetic structures
present in stellar atmospheres.

In the last chapter we have presented state of the art modeling/experiments of lab-
oratory magnetized accretion. The astrophysical context concerns the accretions shocks
supposed to be responsible for the strong UV excess observed in almost every T Tauri stars
systems. We have demonstrated the relevance of using our previously characterized jets
as "accretion columns" and, by the addition of a second target to the original setup, we
have observed for the first time in the laboratory typical plasma structures suggested in
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the past by 2D MHD astrophysical simulations. One particularity of the presented work
is that we have undertaken a full three dimensional numerical study of these laboratory
shocks and found good agreement with the experimental results. Our work highlight the
strongly non-asymmetric structure of what we have called the "shell" as well as the fun-
damental non-equilibrium (ions much hotter than electrons) state obtained in the shock
region called here the "core". We also looked at the spatial distribution of the emitted
radiations in this configuration and observed that the larger part of the energy losses is
emitted far from the core region.

In term of the perspectives on the topic of accretion, since the vast majority of stud-
ies performed in the past have been focused on the case where the magnetic energy at
the shock spot is much larger than the thermal energy (small betas), it will be very in-
teresting to perform experiments with stronger fields and observe if the complete struc-
ture tends toward a one dimensional configuration. Notably, the presence of instabilities
could strongly thwart this possibility. Numerically, more work need to be done concern-
ing the modeling of the solid obstacle and the ablating which results from the accreting
flow impact. As we have demonstrated, this point seems crucial in order to reproduce
correctly the experimental structure observed. An interesting other point concerning the
necessity to correctly model the column-obstacle interaction is linked to the fact that if
dense and cold material from the obstacle is effectively lifted and mixed with the accret-
ing material, there could be some important impacts on the radiative properties of the
shell. This raises the necessity to perform in the future accretion simulations with radia-
tive transfer included in order to quantify the impact of this mechanism.

Finally, our collaboration, as well as other experimental teams, have observed recur-
rent generation of high energy particles in these type of laboratory astrophysics experi-
ments. We have notably observed energetic particles in the configuration of magnetized
jets produced by external poloidal magnetic fields. As we have mentioned, these jets are
relatively stable (at least there are no disruptive instabilities) by involved the generation of
shocks. Therefore the physical mechanism producing these energetic particles needs to
be identified and we have undertaken this work in our group by starting a project aiming
to implement a Particle-In-Cell module to our MHD code. The question of the possibility
to reproduce the observed spectra with our numerical tools is still open and is the topic
of an ongoing PhD work.
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Waves and instabilities
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APPENDIX A. WAVES AND INSTABILITIES

A.1 General formulation from the ideal MHD equations

We begin here with the ideal MHD set of equations:



∂ρ

∂t
+∇· (ρv) = 0

ρ(
∂v

∂t
+ (v ·∇)v) = −∇p + (B ·∇)B

µ0
−∇(

B2

2µ0
)+ρgeff

∂B

∂t
= (B ·∇)v− (v ·∇)B−B(∇·v)

∂p

∂t
+ (v ·∇)p = −γp∇·v

∇·B = 0

(A.1)

(A.2)

(A.3)

(A.4)

(A.5)

Equation (1) describes the mass conservation, equation (2) the momentum conser-
vation, equation (3) the magnetic induction, equation (4) the energy equation (since we
suppose here p = (γ−1)ε, where p is the total pressure (p = pe +pi ) and ε is the total inter-
nal energy density). The last equation (5) concerns the absence of magnetic monopoles.
If true initially it will remain so.

Now we want to linearize the previous system of equations to explore the reaction
of the magnetoplasma to a perturbation. The system is taken, at the zeroth-order, as a
stationary equilibrium medium. The configuration studied here is shown in Fig.A.1. The
plasma is structured along the x direction. The magnetic field is oriented in the z direction
and we allow a velocity in the y direction. The equilibrium variables are thus given by:


ρ0 = ρ0(x)

p0 = p0(x)

v0 = v0(x)ey

B0 = B0(x)ez

(A.6)

(A.7)

(A.8)

(A.9)

Furthermore, the effective acceleration is considered directed along x: geff = ge f f ex

Now we consider first order perturbations as plane waves of wave vector k = ky ey+kz ez

thus:


ρ(r, t ) = ρ0(x)+ρ1(x)exp(i k · r− iωt )

p(r, t ) = p0(x)+p1(x)exp(i k · r− iωt )

v(r, t ) = v0(x)+v1(x)exp(i k · r− iωt )

B(r, t ) = B0(x)+B1(x)exp(i k · r− iωt )

(A.10)

(A.11)

(A.12)

(A.13)

with r = xex+yey+zez The previous ideal MHD system of equations (eq (1)-(5)) is thus
given at the first order by:
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X

B0(x)

Y

v0(x)

Figure A.1: Equilibrium plasma configuration used for our study



iρ1(ky v0 −ω) = −(∂x p0)v1x −ρ0(∂x v1x + i k ·v1)

iρ0v1x(ky v0 −ω) = i kz
B0B1x

µ0
−∂x(p1 + B0B1z

µ0
)+ρ1ge f f

iρ0v1y (ky v0 −ω) = i kz
B0B1y

µ0
− i ky (p1 + B0B1z

µ0
)−ρ0(∂x v0)v1x

iρ0v1z(ky v0 −ω) = i kz
B0B1z

µ0
− i kz(p1 + B0B1z

µ0
)+ ∂xB0

µ0
B1x

B1x(ky v0 −ω) = kzB0v1x

i B1y (ky v0 −ω) = i kzB0v1y + (∂x v0)B1x

i B1z(ky v0 −ω) = i kzB0v1z − (∂xB0)v1x −B0(∂x v1x + i k ·v1)

i p1(ky v0 −ω) = −(∂x p0)v1x −γp0(∂x v1x + i k ·v1)

∂xB1x + i k ·B1 = 0

(A.14)

(A.15)

(A.16)

(A.17)

(A.18)

(A.19)

(A.20)

(A.21)

(A.22)

The first equation corresponds to the mass conservation, the next three (15-16-17) are
projections of the momentum equation. Equations (18-19-20) are projections of the in-
duction equation. Equation (21) is the energy conservation equation and the last (22) is
the magnetic divergence free equation. The system contains 8 unknown variables and 8
evolution equations plus the divergence free equation. With this system a very large panel
of physical phenomena can be derived, from permitted modes in a homogeneous/structured
magnetized medium (Alfven mode, fast and slow magnetoacoustic modes), to unstable
modes like the Kelvin-Helmoltz or the Rayleigh-Taylor instabilities. It is also possible to
switch to the incompressible limit (∇ · v = 0) with this system. Indeed, the velocity di-
vergence of the first order component is given by ∇ · (v1 exp(i k · r− iωt )) = (∂x v1x + i k ·
v1)exp(i k ·r− iωt ) so to obtain the incompressible limit one has to take the above system
of equations substituting the energy equation (21) by ∂x v1x + i k ·v1 = 0 (as discussed be-
fore, the energy equation (21) has no meaning in the incompressible limit).

Now we give, without detailing all the process, the solution of this system of equations.
The method consists to write equation (15) only in term of the component x of the first
order velocity v1x . First we get the expressions of ρ1, p1 +B0B1z/µ0 and B1x :
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

p1 + B0B1z

µ0
= Zv1x +W∂x v1x

ρ1 = − i

Ω2 (K1v1x +K2∂x v1x)

B1x =
kzB0

Ω
v1x

(A.23)

(A.24)

(A.25)

where:



Ω = ky v0 −ω
Z = Z1∂x v0 +Z2∂x pT0

Z1 = iρ0
ky

k2

k2
z v2

A0 −Ω2

Ω2 (Z3 −1)

Z2 = −i
Ω

k2(k2
z c2

s0 −Ω2)
(Z3k2

y +k2
z )

Z3 =
Ω4

c2
ma0(k2

z c2
T0 −Ω2)(m2 +k2

y )

W = i
ρ0

Ω

k2
z v2

A0 −Ω2

m2 +k2
y

m2 =
(k2

z c2
s0 −Ω2)(k2

z v2
A0 −Ω2)

c2
ma0(k2

z c2
T0 −Ω2)

K1 = i k2Z− ρ0ky

Ω2 (k2
z v2

A0 −Ω2)∂x v0 −Ω∂xρ0

K2 = i k2W + ρ0

Ω
(k2

z v2
A0 −Ω2)

(A.26)

(A.27)

(A.28)

(A.29)

(A.30)

(A.31)

(A.32)

(A.33)

(A.34)

In these equations we used the following notations:

cs0 =

√
γp0

ρ0
(sound speed)

va0 =
B0

µ0ρ0
(Al f ven speed)

cma0 =
√

c2
s0 + v2

a0 ( f ast mag netoacousti c speed)

cT0 =

√√√√ c2
s0v2

a0

c2
s0 + v2

a0

(to be named)

pT0 = p0 +
B2

0

2µ0
(tot al pr essur e)

(A.35)

(A.36)

(A.37)

(A.38)

(A.39)

Now we can write equation (15) only in terms of v1x :

− i

Ω
(ge f f

K1

Ω
+ρ0(k2

z v2
A0 −Ω2))v1x +∂x(Zv1x +W∂x v1x)− i ge f f

K2

Ω2∂x v1x = 0 (A.40)

This last equation contains all the phenomena described before (when adding the
proper boundary conditions). Of course there exist no universal analytical solution for
this system and one has to apply it to specific cases. In the following parts we will present
some of them.
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A.2 The case of motionless homogeneous unmagnetized com-
pressible plasma: sound waves

This case correponds to a situation where:



v0 = 0

Ω = −ω
ge f f = 0

B0 = 0

va0 = 0

Z = 0

K1 = 0

m2 =
k2

z c2
s0 −ω2

c2
s0

W = iρ0
ωc2

s0

k2c2
s0 −ω2

(A.41)

(A.42)

(A.43)

(A.44)

(A.45)

(A.46)

(A.47)

(A.48)

(A.49)

Thus, given the fact the medium is homogeneous, equation A.40 become:

c2
s0∂

2
x v1x − (k2c2

s0 −ω2) = 0 (A.50)

where here k2 = k2
y +k2

z . In the case with no magnetic field, we can of course consider
an isotropic form for the plane waves so we will assume that v1x ∝ exp(i kx x − iωt ) and
so in this case ∂2

x v1x = −k2
x v1x . We retrieve then the dispersion relation for sound waves:

ω2 = c2
s0k2 (A.51)

where in this isotropic case: k2 = k2
x +k2

y +k2
z . In the case of a bi-temperature model,

the sound speed is given by: cs0 =
√
γ(pe +pi )/ρ. This is considering ions and electrons

as ideal gases with the same adiabatic index γ.

A.3 The case of motionless homogeneous magnetized com-
pressible plasma: Alfven, slow and fast magnetoacous-
tic waves

In this case we have the following set of conditions:
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

v0 = 0

Ω = −ω
ge f f = 0

Z = 0

K1 = 0

m2 =
(k2

z c2
s0 −ω2)(k2

z v2
A0 −ω2)

c2
ma0(k2

z c2
T0 −ω2)

W = −i
ρ0

ω

k2
z v2

A0 −ω2

m2 +k2
y

(A.52)

(A.53)

(A.54)

(A.55)

(A.56)

(A.57)

(A.58)

With these values, the equation A.40 can be written:

(k2
z v2

a0 −ω2)[(m2 +k2
y )v1x −∂2

x v1x] = 0 (A.59)

From this equation, one can see that this leads to two different possibilities:

ω2 = k2
z v2

a0 (A.60)

and

(m2 +k2
y )v1x −∂2

x v1x = 0 (A.61)

Equation A.60 describes the propagation of Alfven waves, also present in the limit of an
incompressible plasma. The restoring force permitting their propagation is the magnetic
tension arising when plasma fluid particles disturb the equilibrium magnetic field lines
(consequence of a the ideal regime).

The second equation A.61 describes magnetoacoustic modes where effect of com-
pressibility is present. Thus, they are no magnetoacoustic modes in a incompressible
plasma. As in the previous case of sound waves, the fact that the medium is homoge-
neous allows us to suppose a normal wave behavior for the x component of the disturbed
velocity: v1x ∝ exp(i kx x − iωt ) and as previously: ∂2

x v1x = −k2
x v1x . So in this case, the

non-trivial solution of equation A.61 simplifies to:

m2 +k2
y +k2

x = 0 (A.62)

Now using the expression (57) for m2, we can write equation A.62 as:

ω4 −k2c2
ma0ω

2 +k2
z k2c2

s0v2
A0 = 0 (A.63)

Solutions can be found rewriting this equation as a second order equation (posing
W =ω2) and we get:

W± =ω2
± =

1

2
[k2c2

ma0 ±
√

k2(k2c4
ma0 −4k2

z c2
s0v2

A0)] (A.64)

This last equation represents actually two different solutions: the slow (-) and the fast
(+) magnetoacoustic modes. To retrieve the general behavior of these modes we analyse
the case of perpendicular and parallel propagation (relative to the magnetic field orienta-
tion) for both slow and fast mode.
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First, the slow magnetoacoustic mode, in perpendicular propagation (kz = 0) gives the
relation:

ω2
sl ow,⊥ = 0 (A.65)

So there is no propagation of the slow mode in perpendicular directions. In the case of
parallel propagation (k = kz), A.64 applied for the slow mode gives:

ω2
sl ow,∥ =

1

2
k2[c2

s0 + v2
A0 −

√
(c2

s0 − v2
A0)2] (A.66)

In this case, we see two different situations:

• if cs0 > vA0, then ω2
sl ow,∥ = k2

z v2
A0

• if cs0 < vA0, then ω2
sl ow,∥ = k2

z c2
s0

and we can summarize theses results by:

ω2
sl ow,∥ = k2

z mi n(c2
s0, v2

A0) (A.67)

Now, we look at the fast magnetoacoustic mode in perpendicular propagation (kz = 0).
In this case we get:

ω2
f ast ,⊥ = k2

⊥c2
ma0 (A.68)

Here we see the meaning of the fast magnetoacoustic speed introduced before (equa-
tion 36): it is the speed of the fast magnetocacoustic mode in propagating in the per-
pendicular direction. For experiments of plasma flows propagating against the imposed
magnetic field this speed is of great importance. Indeed, if in some regions the flow be-
come faster than the fast magnetoacoustic speed of the local medium then shocks will be
generated.

In the case of parallel propagation, the dispersion relation A.64 for the fast magnetoa-
coustic mode can be written:

ω2
f ast ,∥ =

1

2
k2[c2

s0 + v2
A0 +

√
(c2

s0 − v2
A0)2] (A.69)

Here we see, like in the case of the slow mode, two possibilities:

• if cs0 > vA0, then ω2
f ast ,∥ = k2

z v2
s0

• if cs0 < vA0, then ω2
f ast ,∥ = k2

z c2
A0

and we can summarize as:

ω2
f ast ,∥ = k2

z max(c2
s0, v2

A0) (A.70)

A first consequence from this analysis concerns the conditions to produce shocks in
magnetized plasma. Indeed, two possibilities are available:

• in the case where the flow is propagating along the magnetic field, its speed V f low

(relative to the medium where we define the sound and alfven speeds) must be
greater than max(cs0, vA0) and we can define an associated mach number: M∥ =
V f low /max(cs0, vA0). So in order to generated shocks in this configuration M∥ > 1,
the flow has to be supersonic if cs0 > vA0 and superalfvenic if cs0 < vA0.
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• in the case where the flow is propagating across the magnetic field, its speed V f low

(relative to the medium where we define the sound and alfven speeds) must be
greater than cma0 and we can define an associated mach number: M⊥ = V f low /cma0.

An other interesting conclusion from this discussion is the fact that it is clear that there is
no magnetoacoustic modes at all (in any direction) with phase speed between mi n(cs0, vA0)
and max(cs0, vA0).

A.4 The case of discontinuously stratified plasma without
magnetic field: the Raileygh-Taylor instability

The condition to see the growth of the Rayleigh-Taylor (RT) instability: in the frame of the
interface the effective acceleration MUST be opposite to the density gradient.

As a consequence, if we now look from the laboratory frame a interface delimiting two
regions of different density, the growth of the RT instability will be observed if,

• in the case of a accelerating interface, the density gradient is in the same direction
than the acceleration.

• in the case of a decelerated interface , the density gradient is also in the same direc-
tion than the deceleration.

The first step when trying to describes the Rayleigh-Taylor instability is to correctly
pose the initial equilibrium configuration. It has been known for a long time that gener-
ally the Rayleigh-Taylor instability is mathematically an ill-posed problem and the depen-
dence on initial conditions is still a topic of discussions (see D. Livescu, 2013), in particular
when we consider this instability in the general case of a compressible medium. The first
step is to apply our general equation A.40 to the Rayleigh-Taylor configuration. For the
main variables and characteristic speeds associated we have:



v0 = 0

Ω = −ω
B0 = 0

va0 = 0

cma0 = cs0

cT0 = 0

(A.71)

(A.72)

(A.73)

(A.74)

(A.75)

(A.76)

(A.77)

Then we derive all the terms for this configuration needed for the main equation A.40:
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

m2 = k2
z −

ω2

c2
s0

m2 +k2
y =

k2c2
s0 −ω2

c2
s0

Z3 = − ω2

k2c2
s0 −ω2

Z2 = i
ω

k2c2
s0 −ω2

Z = i
ω

k2c2
s0 −ω2

∂x p0

W = iω
ρ0c2

s0

k2c2
s0 −ω2

= i
ω

k2
α

K1 =ω∂xρ0 − k2ω

k2c2
s0 −ω2

∂x p0

K2 = ρ0ω−ωk2 ρ0c2
s0

k2c2
s0 −ω2

= ρ0ω−ωα

(A.78)

(A.79)

(A.80)

(A.81)

(A.82)

(A.83)

(A.84)

(A.85)

In these expressions we used the notation α = ρ0/(1−ω2/(k2c2
s0)). Now, as previously,

we need to apply our main equation A.40 to our problem. First we lightly rewrite this
equation:

∂x(W∂x v1x)+ (Z− i ge f f
K2

ω2
)∂v1x + (∂xZ− i ge f f

K1

ω2
− iρ0ω)v1x = 0 (A.86)

Now we must write the initial equilibrium condition for the first order variables p0, ρ0

are:

∂p0

∂x
= −ρ0ge f f (A.87)

It is important that this last relation implies the continuity of the pressure since the
density ρ0 is finite. Indeed, if we integrate equation A.87 around the interface, between
x = −ε and x = +ε, we get:∫ +ε

−ε
∂x p0d x = p0,+−p0,− = −ge f f

∫ +ε

−ε
ρ0d x = 0 (A.88)

This expresses the continuity of p0 because p0,+ = p0,− = p0,s . Here the indeces + and -
corresponds to values of quantities at ±ε for ε→ 0. Then using relation A.87, we have:


Z− i ge f f

K2

ω2
= 0

∂xZ− i ge f f
K1

ω2
− iρ0ω = −i∂x(

ωge f f

k2c2
s0

α)− i
g 2

e f f

ωc2
s0

α− iρ0ω− i
ge f f

ω
∂xρ0

(A.89)

(A.90)

After some arrangements, equation A.86 become:

∂x(α∂x v1x)− (ρ0k2 + k2

ω2
ge f f ∂xρ0 +

g 2
e f f k2

ω2c2
s0

α+ ge f f ∂x(
α

c2
s0

))v1x = 0 (A.91)
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Also, concerning the equilibrium configuration, we can deduce the expression for ρ0

and p0 if we assume that each region of the plasma (1/2) is isothermal (and iso-ionized)
with the temperatures defined by:{

(1+Z∗
0)T0(x) = (1+Z∗

0,1)T0,1 (x < 0)

(1+Z∗
0)T0(x) = (1+Z∗

0,2)T0,2 (x > 0)

(A.92)

(A.93)

The discontinuity of the temperature at the interface is a consequence of the discon-
tinuity in density at the interface between the two plasmas 1/2. Indeed, in our model, we
choose as the equation of state linking the density and the pressure the ideal gas law, for
electrons and ions:

p0 = Rρ0(1+Z∗
0)T0 (A.94)

with R = kB/mi where kB is the Boltzmann constant and mi the ion mass. Thus if we write
the relation expressing the jump of temperature at the interface, we get:

(1+Z∗
0,2)T0,2 − (1+Z∗

0,1)T0,1 = p0,s(
1

R2ρ0,+
− 1

R1ρ0,−
) (A.95)

We can see that the continuity of T0 will be realized only if R1ρ0,− = R2ρ0,+. In our
model we assume the temperature to be homogeneous in each medium 1/2 and this, as-
sociated to the equation of state A.94 leads to a plasma under what is called the barotropy
assumption: the pressure is a function only of the density. In this case, as it has been
noticed by (REF Plesset and Prosperetti), the constant density assumption coupled with
the constant sound speed (or the constant temperature) is inconsistent. Indeed, from
equation A.87 and equation A.94 we can deduce a relation expressing the variation of the
density with x:

∂ρ0

∂x
= −γge f f ρ0

c2
s0

(A.96)

We highlight the fact of this non-homegenous density inside each medium since in
numerous previous works (Vanderwoort), the authors assume the density to be constant
in each side. With the constant speed of sound, equation A.96 leads to:

ρ0,m(x) = C1,m exp(−γm ge f f

c2
s0,m

x) (A.97)

where m=1 refers to the medium 1 where x < 0 and m=2 to the medium 2 where x > 0.
C1,m are the densities near the interface at x=0 for each medium (and from our previous
notations we have: C1,1 = ρ0,− and C1,2 = ρ0,+). Then we can write the expression for the
pressure p0 using equation A.87:

ρ0,m(x) =
c2

s0,mC1,m

γm
exp(−γm ge f f

c2
s0,m

x)+C2 (A.98)

As discussed before, the pressure is continuous at x=0 (the interface) and we note its
value at this position PI, then we have C2 = 0 and C1,m = γmPI/c2

s0,m and this results in:
ρ0,+ =

γ2PI

c2
s0,2

ρ0,− =
γ1PI

c2
s0,1

(A.99)

(A.100)
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Before deriving the jump relation at the interface we want to justify a little bit more
the assumption of the constant value of (1+Z∗

0)T0 in each medium. In real gases, thermal
conduction processes (among others) have to be taken into account, and in this case we
need to add a term in the energy equation (or the pressure equation). In the zero order
equation, we can thus write:

∂p0

∂t
= (γ−1)

∂

∂x
(λ
∂T0

∂x
) (A.101)

where λ is the thermal conduction coefficient. In order to have an equilibrium (station-
ary) configuration we thus must have ∂t p0 = ∂x(λ∂xT0) = 0. It means that the fourier heat
flux qheat = λ∂xT0 has to be constant in the domain. If for example we consider a infinite
domain in both x directions, physically the flux should be taken to be null in each medium
and obviously it corresponds to two medium of constant temperatures. At the interface
There can exist a thermal flux but it will be constant. Another possibility is the existence
of perfectly adiabatic walls in each of the medium at a certain distance of the interface. In
this case the thermal flux at these walls has to be zero and thus null in all both mediums.
Here again it corresponds to constant temperatures in these medium.

Now we derive the jump relation at the interface using the main equation A.91. To do
that we integrate, has done previously, each term between −ε and +ε and then we take
the limit ε→ 0. The first gives:∫ +ε

−ε
∂x(α∂x v1x)d x = α+∂x v1x |x=+ε−α−∂x v1x |x=−ε (A.102)

where α± = ρ0,±/(1−ω2/k2cs0,±).
Here we see the need to find the solution of equation A.91 in order to compute the

derivatives in both sides of the interface. We will do that after expressing the integration
of the other terms.

Since the second term consists of an integration of a finite quantity, when taking the
limit ε→ 0 is value is given by: ∫ +ε

−ε
(ρ0k2v1x)d x = 0 (A.103)

The third term can be evaluated using the theory of distribution, in the context of the
integration and the small limit of ε, we can write ∂xρ0 = (ρ0,+−ρ0,−)δ(x) where δ(x) is the
dirac distribution. Thus in the integral we get:∫ +ε

−ε
(

k2

ω2
ge f f (∂xρ0)v1x)d x =

k2

ω2
ge f f (ρ0,+−ρ0,−)v1x(0) (A.104)

Then the fourth term can considered as the second one, that is to say an integration
of a quantity of finite value and so we get:

∫ +ε

−ε
(

g 2
e f f k2

ω2c2
s0

αv1x)d x = 0 (A.105)

Finally the last and fifth term can be treated as the third one with: ∂x(α/cs0) = (α+/cs0,2−
α−/cs0,1)δ(x) and we get:∫ +ε

−ε
(ge f f

α

c2
s0

v1x)d x = ge f f (
α+

cs0,2
− α−

cs0,1
)v1x(0) (A.106)
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Now we can rewrite equation A.91 as a jump condition at the interface by bringing
together all the terms and noting that the sum of the third and the fifth terms gives:

k2

ω2
ge f f (ρ0,+−ρ0,−)v1x(0)+ ge f f (

α+
cs0,2

− α−
cs0,1

)v1x(0) = ge f f
k2

ω2
(α+−α−)v1x(0) (A.107)

Finally the global jump relation is given by (and very importantly valid for ε→ 0):

α+∂x v1x |x=+ε−α−∂x v1x |x=−ε = ge f f
k2

ω2
(α+−α−)v1x(0) (A.108)

So now, as explained before we need to find the solution of equation A.91 in order to
get the derivatives present in the jump relation A.108. Noting that for each region 1/2 (in
which cs0 is constant) we have ∂xα = −ge f f γα/c2

s0 and furthermore, since we are look-
ing for only unstable modes, we have ω = i n where n is the growth rate, we can rewrite
equation A.91 as:

∂2
x v1x −

γge f f

c2
s0

∂x v1x −k2(1+ n2

k2c2
s0

+ (γ−1)
g 2

e f f

n2c2
s0

)v1x = 0 (A.109)

This is a second order differential equation. We write the general solution of A.109 as:
v1x = Aexp(r1x)+Bexp(r2x) where r1 and r2 are the solutions of the associated character-
istic equation:

r 2 − γge f f

c2
s0

r −k2(1+ n2

k2c2
s0

+ (γ−1)
g 2

e f f

n2c2
s0

) = 0 (A.110)

The constants A and B are to be determined by boundary conditions. It is a very im-
portant point and a misinterpretation of the variables that must be continuous can be
at the source of errors in the derivation of the dispersion relation. The most important,
physical quantity that must be continuous at the interface is the variable representing the
displacement of the interface. We call it δx(x) and it is of course a first order quantity
(considered as small). Saying that this variable must be continuous at x=0 is equivalent
to enforce the unicity of the interface. The equation describing the evolution of δx(x) is
given by:

∂δx

∂t
+ (v0 ·∇)δx = v1x (A.111)

Using the same convention as in equation (10,11,12,13), this equation gives:

δx = −i
v1x

ky v0 −ω
(A.112)

As we can see, the continuity of δx implies the continuity of v1x
ky v0−ω so of course if there

is no velocity v0 in the plasma (as in our present case) or a uniform velocity field then the
continuity of the displacement is strictly equivalent to the continuity of v1x at x=0 and
we must have for our general solution: A=B. However, we cant to highlight the fact that if
there exist a shear of velocity at the interface we must be careful of considering the correct
continuity condition because otherwise we will not retrieve the valid dispersion relation
for example, the Kelvin-Helmholtz instability.

The delta associated to the characteristic equation A.110 is given by:
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∆ = 4k2(1+ n2

k2c2
s0

+ (γ−1)
g 2

e f f

n2c2
s0

+
γ2g 2

e f f

4k2c2
s0

) (A.113)

And thus the solutions of the characteristic equation are:

r± =
γge f f

2c2
s0

±

√√√√1+ n2

k2c2
s0

+ (γ−1)
g 2

e f f

n2c2
s0

+
γ2g 2

e f f

4k2c2
s0

(A.114)

We clearly see that r+ > 0 and r− < 0 and so in order to have vanishing values of v1x for
x →±∞ we write solutions of the first order velocity (with A = B = vS the velocity at x=0)
as:

v1x(x) =

{
vS exp(r−x) if x > 0

vS exp(r+x) if x < 0
(A.115)

and for the derivatives which of interest for our jump relation A.108:

∂x v1x(x) =

{
r−v1x if x > 0

r+v1x if x < 0
(A.116)

To be explicit we write the expressions for r+ and r−:

r− =
γge f f

2c2
s0,2

−
√√√√1+ n2

k2c2
s0,2

+ (γ2 −1)
g 2

e f f

n2c2
s0,2

+
γ2

2g 2
e f f

4k2c2
s0,2

r+ =
γge f f

2c2
s0,1

+
√√√√1+ n2

k2c2
s0,1

+ (γ1 −1)
g 2

e f f

n2c2
s0,1

+
γ2

1g 2
e f f

4k2c2
s0,1

(A.117)

(A.118)

(A.119)

Now we can write the derivatives involved in the jump relation A.108 by taking the
limit ε→ 0:

∂x v1x(x) =

{
r−v1x(0) for x = +ε,ε→ 0

r+v1x(0) for x = −ε,ε→ 0
(A.120)

By inserting these expressions in A.108 and excluding the trivial solution v1x(0) = 0 we
get:

α+r−−α−r+ = ge f f
k2

ω2
(α+−α−) (A.121)

By noting µ+ = r−/k and µ− = r+/k we can simplify equation A.121 in:

ω2 =
ge f f k(α+−α−)

α+µ+−α+µ+
(A.122)
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A.5 The case of a discontinuisly sheared velocity unmagne-
tized compressible plasma: the Kelvin-Helmoltz insta-
bility

Now consider a configuration where there exist a velocity shear at an interface and initially
the plasma is in equilibrium. Here we don’t consider the effect of an effective acceleration.
We thus have the following set of variables:



Ω = ky v0 −ω
ge f f = 0

B0 = 0

va0 = 0

cma0 = cs0

cT0 = 0

(A.123)

(A.124)

(A.125)

(A.126)

(A.127)

(A.128)

(A.129)

Furthermore, the equilibrium configuration is very simple with:

∂x p0 = 0 (A.130)

it corresponds to a plasma with uniform pressure. Accordingly with this condition, we can
just consider the plasma as two regions of constant density and constant velocity defined
using the Heaviside function θ(x):

ρ0 = r ho0,1θ(−x)+ r ho0,2θ(x)

v0 = v0,1θ(−x)+ v0,2θ(x)

(A.131)

(A.132)

(A.133)

The terms needed for the main equation A.40:

m2 = k2
z −

Ω2

c2
s0

m2 +k2
y =

k2c2
s0 −Ω2

c2
s0

Z1 = iρ0
ky c2

s0

k2c2
s0 −Ω2

Z3 = − Ω2

k2c2
s0 −Ω2

Z = iρ0
ky c2

s0

k2c2
s0 −Ω2∂x v0

W = iΩ
ρ0c2

s0

k2c2
s0 −Ω2

(A.134)

(A.135)

(A.136)

(A.137)

(A.138)

(A.139)

(A.140)

In this configuration the main equation A.40 take the form:

∂x(W∂x v1x)+∂x(Zv1x)+ iρ0Ωv1x = 0 (A.141)
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As in the case of the Rayleigh-Taylor instability, we now derive the jump relation inte-
grating equation A.141 across the interface:

For the first term we get:∫ +ε

−ε
∂x(W∂x v1x)d x = W2∂x v1x |x=+ε−W1∂x v1x |x=−ε (A.142)

the second term gives: ∫ +ε

−ε
∂x(Zv1x)d x = [Zv1x]+ε−ε = 0 (A.143)

because in each region 1/2 the velocity is constant and thus Z(x = +ε) = Z(x = −ε) = 0.
The last and third term is zero because of the finitude of the variable v1x :∫ +ε

−ε
∂x(iρ0Ωv1x)d x = 0 (A.144)

Thus finally we can write the jump relation for this configuration:

W2∂x v1x |x=+ε−W1∂x v1x |x=−ε = 0 (A.145)

which has to be considered for ε→ 0.
Now, in the same way as in the case the Raileygh-Taylor instability, we must find the

expression for v1x in order to express the derivatives present in the jump relation A.145.
We consider the propagation equation A.141 for each region 1/2 of the plasma, where Z=0
because of the constant velocity field and W is constant. We thus have:

W∂2
x v1x + iρ0Ωv1x = 0 (A.146)

which can be, using the expression for W, rewritten as:

∂2
x v1x − (k2 −Ω

2

c2
s0

)v1x = 0 (A.147)

First we look for the incompressible limit of this equation. To do that we consider that
cs0 → 0 and thus we haveΩ2/cs0 → 0 and equation A.147 gives:

∂2
x v1x −k2v1x = 0 (A.148)

Since we need to have evanescent waves for x = ±∞, the solutions for our configura-
tion are:

v1x(x) =

{
Aexp(−kx) for x > 0

Bexp(kx) for x < 0
(A.149)

Now we need to express a continuity condition to find the relation between the constants
A and B. As discussed for the Rayleigh-Taylor instability, the most physically-obvious quan-
tity that must be continuous at the interface is the displacement δx of the latter. Using
equation A.112, we must have:

A

Ω2
=

B

Ω1
(A.150)

and thus: B =Ω1A/Ω2. With this relation we can obtain the expression for the deriva-
tives of v1x in both regions 1/2:
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∂x v1x(x) =

−kAexp(−kx) for x > 0
Ω1

Ω2
Aexp(kx) for x < 0

(A.151)

Still considering the incompressible limit we can simplify the expression of W: W ≈
−iρ0Ω/k2 and the resulting jump relation A.145 become (with ε→ 0):

iρ0,2
Ω2

k
A+ iρ0,1

Ω2
1

kΩ2
A = 0 (A.152)

And after a little bit of math, we can rewrite this expression:

ω2 −2ωky
ρ0,1v0,1 +ρ0,2v0,2

ρ0,1 +ρ0,2
+
ρ0,1v2

0,1 +ρ0,2v2
0,2

ρ0,1 +ρ0,2
= 0 (A.153)

We recognize a second order equation so we first find the delta:

∆ = −4k2 ρ0,1ρ0,2

(ρ0,1 +ρ0,2)2
(v0,2 − v0,1)2 (A.154)

As we can see the delta is always less than zero so the txo solutions are:

ω± = ky
ρ0,1v0,1 +ρ0,2v0,2

ρ0,1 +ρ0,2
± i k

p
ρ0,1ρ0,2

|v0,2 − v0,1|
ρ0,1 +ρ0,2

(A.155)

From this equation we see the existence of a imaginary part of the pulsation and re-
gardless of the sign of both velocities, if they are different there exist a unstable solution
and we recognize the Kelvin-Helmholtz growth rate for an incompressible plasma. For
example if we consider the two regions to have the same density then the growth rate is
very simply given by : n = k∆V/2 where∆V is the absolute value of the velocity shear.

Next we investigate the case of a compressible plasma and thus the propagation equa-
tion A.147. The jump relation is sill given by A.145. In order to have evanescent modes in
both regions 1/2 now we need to have:

k2 −Ω
2

c2
s0

= k2 −k2
y M2(1− ω

ky v0
)2 > 0 (A.156)

where M = v0/cs0 is the sonic mach number. In discussing condition A.156, we may
without loss of generality consider an antisymmetric velocity profile for which the real
part of ω is zero. Furthermore we do make the approximation n/ky v0 << 1. At the zero
order, we thus rewrite relation A.156 as:

k2 −k2
y M2 > 0 (A.157)

Interestingly, if we consider modes such as kz = 0, then this last condition transforms
to k2

y (1−M2) and finally to:

M < 1 (A.158)

One can see that in order to have evanescent modes the flow, in both sides, has to be
subsonic.
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A.6 The case of a single magnetic stable interface

Here we consider a situation where there is no effective (de-)acceleration, not velocity
field but an interface delimiting two regions of plasma with different parameters in the
presence of a magnetic field. This configuration is of interest for example in the solar
atmosphere where strong structuring can exist because of the magnetic field. Here we
have the following values:


v0 = 0

Ω = −ω
ge f f = 0

(A.159)

(A.160)

(A.161)

(A.162)

then we use again the same main equation A.40 and considering that in each regions
on both sides of the interface, the plasma parameters (ρ0, B0, cs0... are homogeneous we
get:

(kz v2
a0 −ω2)(∂2

x v1x − (m2 +k2
y )v1x) = 0 (A.163)

This is the equation describing the propagation of waves at a single magnetized inter-
face in the compressible case. The first obvious solution can be directly retrieved with the
left term which corresponds to incompressible Alfven waves:

ω2 = k2
z vA0 (A.164)

Thus one can see that this configuration allows the propagation of completely decoupled
Alfven waves on both sides of the interface. The Alfven waves propagating, for example,
on the right of the interface "don’t see" the Alfven waves propagating on the left. Next the
other solution is:

∂2
x v1x − (m2 +k2

y )v1x = 0 (A.165)

It represents the propagation of compressible magnetoacoustic waves. Now we see that
two cases are possible: 

m2 +k2
y > 0(surface waves)

m2 +k2
y < 0(body waves)

(A.166)

(A.167)

(A.168)

Here we use the same nomenclature that in the paper of (PAPIER SCOTLAND) where
by "surface wave" we mean that the energy of the wave stay confined near the location of
the interface. It corresponds in fact to the traditional evanescent waves. On this opposite,
by "body waves", we mean that the energy is not localized and the interface actually acts
like an "radiator" of waves (REF). Here we focus our discussion on the case of surface
waves, that is to say, waves such as m2+k2

y > 0. In this case, the solution of equation A.165
is given by:

v1x(x) =

Aexp(−
√

m2 +k2
y x) for x > 0

Bexp(
√

m2 +k2
y x) for x < 0

(A.169)
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Using again the same condition for the continuity of the displacement (see relation
A.112), we must have A = B (absence of velocity field).

Now, contrary to the case of the instabilities, here we use an second continuity relation
to express the link between both regions 1/2. We use the continuity of the first order total
pressure p1 +B0B1z/µ0 at the interface (x=0). We already have expressed this pressure in
Eq.(23). Here since in both regions we have homogeneous pressure and no velocity (Z = 0),
the last equation write:

p1 + B0B1z

µ0
= W∂x v1x (A.170)

and in our case we have:

W = −i
ρ0

ω

k2
z v2

A0 −ω2

m2 +k2
y

(A.171)

and for the derivatives of v1x we have:

∂x v1x(x) =

−
√

m2 +k2
y Aexp(−

√
m2 +k2

y x) for x > 0√
m2 +k2

y Aexp(
√

m2 +k2
y x) for x < 0

(A.172)

Using A.170 and A.171, the continuity of the total first order pressure is thus given by:

− i
ρ0,1

ω

k2
z v2

A0,1 −ω2

m2
1 +k2

y
A
√

m2
1 +k2

y = i
ρ0,2

ω

k2
z v2

A0,2 −ω2

m2
2 +k2

y
A
√

m2
2 +k2

y (A.173)

the term on the left side been the total pressure in the region 1 (x < 0) and the right
side been the total pressure in the region 2 (x > 0). After some manipulations one can
obtain a simpler expression:

ρ0,1(k2
z v2

A0,1 −ω2)
√

m2
2 +k2

y +ρ0,2(k2
z v2

A0,2 −ω2)
√

m2
1 +k2

y = 0 (A.174)

This last expression is the final dispersion relation for a single magnetized interface in
a compressible plasma. This relation can be expressed in two others forms which can be
more easily interpreted if we want to know the phase speed of waves along the magnetic
field direction (z): 

ω2

k2
z

= v2
A0,1 +

1

1+R
(v2

A0,2 − v2
A0,1)

ω2

k2
z

= v2
A0,2 −

R

1+R
(v2

A0,2 − v2
A0,1)

(A.175)

(A.176)

(A.177)

with R defined by:

R =
ρ0,1

ρ0,2

√√√√m2
2 +k2

y

m2
1 +k2

y
(A.178)

from the two variant (175,176), one can deduce bounds for the parallel phase speed of
waves allowed in the single magnetized interface:

mi n(v2
A0,1, v2

A0,2) ≤ ω2

k2
z
≤ max(v2

A0,1, v2
A0,2) (A.179)
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thus, the parallel phase speed of waves on a magnetized interface is necessarily greater
than the minimum Alfven speed of both mediums and lower than the maximum Alfven
speed of these mediums. Now, to obtain a maximum of information without numerical
resolution of A.174 we look at specific simpler situations.

First we consider shear waves, that is to say waves such as their propagation is mainly
perpendicular to the magnetic field (ky >> kz). Furthermore, if we consider that m2

1/2 <<
ky then we can say that R ∼ ρ0,1/ρ0,2 and thus inserting that in expression (175) we get:

ω2

k2
z

=
ρ0,1v2

A0,1 +ρ0,2v2
A0,2

ρ0,1 +ρ0,2
(A.180)

This dispersion relation corresponds to the propagation of waves with parallel phase
speed equals to the averaged (by densities) alfven speeds. If one medium is much more
dense than the other then it "imposes" its speed to the surface waves on the interface.

An other interesting case concerns the situation where the thermal beta is low every-
where, in both regions 1/2. In this case we have:

β≈ c2
s0

v2
A0

<< 1 (A.181)

We can thus simplify several expressions as:

c2
T0 =

c2
s0v2

A0

c2
s0 + v2

A0

≈ c2
s0

c2
ma0 = c2

s0 + v2
A0 ≈ v2

A0

m2 =
(k2

z c2
s0 −ω2)(k2

z v2
A0 −ω2)

c2
ma0(k2

z c2
T0 −ω2)

≈ k2
z −

ω2

v2
A0

(A.182)

(A.183)

(A.184)

(A.185)

with these simplified expressions we know can rewrite the main dispersion relation
A.174 in the low beta case as:

ρ0,1(k2
z v2

A0,1 −ω2)

√√√√k2 − ω2

v2
A0,2

+ρ0,2(k2
z v2

A0,2 −ω2)

√√√√k2 − ω2

v2
A0,1

= 0 (A.186)

As we can, see, since if the two terms inside the square roots are positive (and they
have to be since we are looking only at surface waves), there exist solutions (and thus
waves) to this equation because one term is negative and the other positive (a conse-
quence of the bounding of the parallel phase velocity, see A.179). Now in the particular
case where we are looking only at waves propagating along the magnetic field (ky = 0), the
dispersion equation A.186 transforms to:

ρ0,1(k2
z v2

A0,1 −ω2)

√√√√k2
z −

ω2

v2
A0,2

+ρ0,2(k2
z v2

A0,2 −ω2)

√√√√k2
z −

ω2

v2
A0,1

= 0 (A.187)

In this case it is not possible to have both terms inside the square roots positives, still
because of the parallel phase speed bounding. Thus, the conclusion is that in a low-beta
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single magnetized interface there exist no surface waves propagating only along the mag-
netic field. There must be a non-zero component ky in order to allow waves to propagate.

An other interesting situation can be analyzed with the case of one side (let’s say region
2) to be field-free, that is to say B0 = 0, vA0,2 = 0 and considering only parallel modes (ky =
0). In this case we have:

m2
2 = k2

z −
ω

c2
s0,2

(A.188)

and the general dispersion relation A.174 becomes:

ρ2,1(k2
z v2

A0,1 −ω2)
√

m2
2 −ρ0,2ω

2
√

m2
1 = 0 (A.189)

This last equation can be rewritten as:

ω2 =
k2

z v2
A0,1

1+ ρ0,2
ρ0,2

√
m2

1

m2
2

(A.190)

So of course, in coherence with the bounding on the phase speed established before
(see A.179), the phase speed of surface waves in the case where one side is field-free is
lower than the alfven speed in the magnetized medium. Also, since the stationary equilib-
rium configuration is defined by ∂x pT0 = 0 where pT0 is the total pressure (sum of thermal
and magnetic pressure), we must have the following relation:

ρ0,1

γ
c2

s0,1 +
ρ0,1

2
v2

A0,1 =
ρ0,2

γ
c2

s0,2 (A.191)

where we used the fact that the thermal pressure is given by p = ρcs/γ where γ is the
adiabatic index (and we supposed the same index in both regions) and the magnetic pres-
sure by pmag = ρv2

A/2. Now we assume that the sound speed is the same in both regions
1/2, that is to say that they both have the same temperature. Then the equilibrium rela-
tion A.191 can be rewritten:

v2
A0,1 =

2

γ
(
ρ0,2

ρ0,1
−1)c2

s0 (A.192)

As we can see, in order to be physical, this relation implies that ρ0,2 > ρ0,1. Further-
more, the ratio m2

1/m2
2 is given in this case by:

m2
1

m2
2

=
c2

s0

c2
ma0,1

k2
z v2

A0,1 −ω2

k2
z c2

T0,1 −ω2
(A.193)

(TO BE CONTINUED WITH NUMERICAL CALCULATIONS)

A.7 The case of a magnetic slab

The configuration consists here of a slab embedded in an external medium. We note
quantities related to the external medium with the index "e", whereas in the slab we use
the index "s". The dimensions of the slab in the x direction, where there exist inhomo-
geneities in terms of density, magnetic field and temperature, are noted ±x0. In the y and
z directions we consider an infinite slab. Here the general equation describing the propa-
gation of waves is exactly the same that in the case of the single magnetized interface. So
we come back to the equation A.163. For convenience purpose, we recall this equation:
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(kz v2
a0 −ω2)(∂2

x v1x − (m2 +k2
y )v1x) = 0 (A.194)

Here again we see that alfven waves can still propagates independently in each do-
main: external"e" and inside the slab "s". Concerning compressible waves, that is to say
magnetoacoustic waves, we have to deal with basically two regions:

• In the external medium (|x| > x0), we want the physical solution corresponding to
evanescent waves so it corresponds to the case where m2

e +k2
y > 0 and thus the gen-

eral solutions:

v1x(x) =

Ae exp(−
√

m2
e +k2

y (x −x0)) for x > 0

Be exp(
√

m2
e +k2

y (x +x0)) for x < 0
(A.195)

where Ae and Be are constants depending on the boundaries conditions.

• Inside the slab, we allow for solutions with both m2
s +k2

y > 0 and m2
s +k2

y < 0. The
first case to corresponds to "surface waves" whereas the second case corresponds to
"body waves". The general solution for waves allowed inside the slab can be written:

v1x(x) = Ascosh(Ms x)+Bs si nh(Ms x) (A.196)

where:

Ms =


√

m2
s +k2

y for m2
s +k2

y > 0

i
√
|m2

s +k2
y | for m2

s +k2
y < 0

(A.197)

Now, to go further, we need to use continuity/boundary conditions. Here we first use
as in all previous cases, the continuity of the displacement δx and thus in the case of no
velocity field, the continuity of the velocity v1x on both interfaces x = ±x0. The continuity
in x = −x0 gives:

Be = Ascosh(−Ms x0)+Bs si nh(−Ms x0) (A.198)

whereas at x = x0, we get:

Ae = Ascosh(Ms x0)+Bs si nh(Ms x0) (A.199)

Then, as in the previous case of a magnetic single interface, we use the continuity of
the first order pressure p1+B0B1z/µ0 = W∂x v1x (given by expression (23) with here Z=0 in
each medium). First we express p1 +B0B1z/µ0 in the external medium for |x| = x0:

(p1 +B0B1z/µ0)|"e" =


i Ae

ρe
ω

k2
z v2

Ae−ω2√
m2

e+k2
y

for x = x0

−i Be
ρe
ω

k2
z v2

Ae−ω2√
m2

e+k2
y

for x = −x0

(A.200)

and inside the slab, the total first order pressure is given by:

(p1 +B0B1z/µ0)|"e" = −i Ms
ρs

ω

k2
z v2

As −ω2

m2
s +k2

y
(As si nh(Ms x)+Bscosh(Ms x)) (A.201)
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Thus we can now write the continuity of the total first order pressure on both inter-
faces x = ±x0:

ρe Be
k2

z v2
Ae −ω2√

m2
e +k2

y

= ρsMs
k2

z v2
As −ω2

m2
s +k2

y
(Bscosh(Ms x0)−As si nh(Ms x0)) (A.202)

for x = −x0

ρe Ae
k2

z v2
Ae −ω2√

m2
e +k2

y

= −ρsMs
k2

z v2
As −ω2

m2
s +k2

y
(Bscosh(Ms x0)+As si nh(Ms x0)) (A.203)

for x = x0

then, in order to get an easier understanding of these dispersion relations, we split the
solutions into two different kind: "sausage" modes and "kink" modes. The first ones cor-
respond to the case where the first order velocity v1x given by A.196 is an odd function of
x and of course it corresponds to solutions associated with the hyperbolic sinus. Thus, for
"sausage" modes, we assume that As = 0. Concerning the "kink" modes, it corresponds to
the case where the first order velocity A.196 is a pair function of x so this is associated to
the presence of the hyperbolic cosinus and thus in this case we will assume that we have
Bs = 0.

First we deduce the dispersion relation for the sausage modes. From the fact that
we have here As = 0, we get, from A.198 and A.199, the equality Ae = −Be . Also, we have
Be = −Bs si nh(Ms x0) so, injecting this expression in A.202 leads to the equation:

ρe
k2

z v2
Ae −ω2√

m2
e +k2

y

t anh(Ms x0)+ρsMs
k2

z v2
As −ω2

m2
s +k2

y
= 0 (A.204)

This last equation is the dispersion relation for "sausage" body/surface waves allowed
in a magnetic slab of dimension 2x0. One can note that if we use the relation A.203 in-
stead of A.202, we get exactly the same result because we are looking here separately to
the "sausage" and the "kink" modes.

Then for the case of "kink" modes, using the fact that Bs = 0, we have , from A.198 and
A.199 the equality Ae = Be . We also have, from A.199 in this case Ae = Be = Ascosh(Ms x0).
Thus, injecting theses relations in A.202 or A.203, we obtain:

ρe
k2

z v2
Ae −ω2√

m2
e +k2

y

coth(Ms x0)+ρsMs
k2

z v2
As −ω2

m2
s +k2

y
= 0 (A.205)

Equation A.205 is the general dispersion relation for "kink" body/surface waves al-
lowed in a magnetic slab of dimension 2x0.

One of the first question that one can ask with this system concerns the stability of
the slab. Are they unstable modes in this configuration ? To answer this question, we first

look at the case of "surface" waves, that is to say when m2
s +k2

y > 0 and Ms =
√

m2
s +k2

y > 0.

This leads to have t anh(Ms x0) > 0 and coth(Ms x0) > 0. Furthermore, we have (because
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we want evanescent modes for x →±∞) m2
e +k2

y > 0. Thus, if we are looking for purely un-

stable modes, such thatω2 < 0, we see that it is not possible to satisfy both dispersion rela-
tion A.204 and A.205. The conclusion is that there exist no unstable surface sausage/kink
modes in a magnetic slab, regardless of the parameters in both the external medium and
the slab.

Now in the case of body waves, the situation is even simpler to analyze. Indeed, if we
have an unstable mode with ω2 < 0, then, from relation (32), one can see that we must
have m2

s > 0 and thus m2
s + ky > 0. This last inequality is precisely the opposite of the

condition for the existence of a body waves. Thus, also in the case of body waves, it is no
possible to see, from this configuration, unstable sausage/kink modes.

Now we ask the question of the possibility to obtain from this configuration purely
shear waves, that is to say waves such that kz = 0. In this case, we can write for the slab
and the external medium: 

m2
e = − ω2

c2
mae

m2
s = − ω2

c2
mas

(A.206)

(A.207)

(A.208)

thus, using these expressions, we get the dispersion relation for shear sausage(tanh)/kink(coth)
waves:

ρe√
k2

y − ω2

c2
mae

{
t anh(Ms x0)
coth(Ms x0)

+Ms
ρs

k2
y − ω2

c2
mas

= 0 (A.209)

Since, we are only looking at evanescent modes, we must always have m2
e +k2

y > 0 and
thus, using (206), we have the condition:

ω

cmae
< cmae (A.210)

It means that shear waves always propagate at speeds lower than the fast magnetoacous-
tic speed of the external medium. Now we can precise the conditions for shear waves in
both the case of surface waves and body waves. First, if we look at surface waves, we must
have k2

y −ω2/c2
mas > 0 and Ms > 0. It follows that it is not possible verify the dispersion

relation A.209, for sausage as well as kink modes. Thus, there exist no shear (k ·B = 0) sur-
face waves in a magnetic slab.

In the case of shear body waves, we must have k2
y−ω2/c2

mas < 0 and Ms = i
√
ω2/c2

mas −k2
y

is complex. It leads to the condition ω/ky > cmas . Thus, there can be shear body waves
with the following bounds on the phase speed:

cmas < ω

cmae
< cmae (A.211)

We thus see that if the fast magnetoacoustic speed in the slab cmas is higher that the
one in the external medium cmae then shear body waves can’t exists.
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The dispersion relation for shear waves A.209 can be developed more easily if we look
at the case of a "slender" slab, such that ky x0 << 1. If in addition it is supposed that |Ms |x0

then we have for the sausage and the kink modes:


t anh(Ms x0) ≈ Ms x0

coth(Ms x0) ≈ 1

Ms x0

(A.212)

(A.213)

For the shear sausage body waves, we get the dispersion relation from A.209:

ρe x0√
k2

y − ω2

c2
mae

+ ρs

k2
y − ω2

c2
mas

= 0 (A.214)

This last equation can be rewritten as a fourth order equation:

(
ρe x0

ρsc2
mas

)2ω4 + (
1

c2
mae

−2(
ρe ky x0

ρscmas
)2)ω2 +k2

y ((
ρe

ρs
)2(x0ky )2 −1) = 0 (A.215)

Defining W =ω2, this equation can be written as a second order equation and we get
the associated delta:

∆ =

(
ρe

ρs

)2 (ky x0)2

c4
mas

[(
ρs

ρe

)2 (
cmas

cmae

)4 1

(ky x0)2
+4

(
1−

(
cmas

cmae

)2)]
(A.216)

And since for body waves we must have the condition A.211 and thus cmas/cmae < 1,
we have∆> 0. The two possible solutions are thus:

ω2
± = c2

mas

k2
y −

(
ρsc2

maesp
2ρe cmae x0

)2

± ρsky c2
mas

2ρe x0

√√√√(
ρsc2

mas

ρe c2
mae x0ky

)2

+4(1− c2
mas

c2
mae

)

 (A.217)

This last equation can be rewritten in a somewhat more readable form:

ω2
± = c2

mas

[
k2

y +
1

2

ρs

ρe

1

x0

(
±ky

p
K−

(
cmas

cmae

)2 1

x0

)]
(A.218)

with K defined by:

K =

(
ρsc2

mas

ρe c2
mae x0ky

)2

+4(1− c2
mas

c2
mae

) (A.219)

Equation A.218 is the dispersion relation of shear body sausage waves in the case of a
slender slab (ky x0 << 1). As an particular case, we look at the case where the fast magne-
toacoustic speed is the same in both regions: cmas = cmae . In this case we have:

ω2
± = k2

y c2
mas +

1

2

ρs

ρe

c2
mas

x2
0

[
±ρs

ρe
−1

]
(A.220)

As a safety check of our expression, we can see that in the case where there is an uni-
form medium (no slab) such that ρs = ρe then we have the two following solutions:
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
ω2

+ = k2
y c2

mas

ω2
− =

c2
mas

x2
0

(
k2

y x2
0 −1

) (A.221)

(A.222)

the first solution corresponds to the already seen fast magnetic acoustic waves in a
uniform medium whereas the second solution is actually not possible since to obtain this
solution we have supposed that ky x0 << 1 so that the second solution would lead to a
imaginary pulsation, which is not possible in this case.
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