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Title : Mathematical Modeling of enhanced drug delivery by mean of

Electroporation or Enzymatic treatment.

Abstract : This PhD thesis is devoted to the mathematical modeling and
simulation of two existing physical methods to overcome the biological barriers to
drug delivery. In the first part, several ways to model electroporation are
considered, from the cell scale to the tissue scale. Existing phenomenological
models of tissue electroporation are presented and numerically compared. Then a
macroscopic model of electroporation is derived from a well-established model of
cell elecroporation using homogenization techniques. In the second part, a new
poroelastic model for the flows in biological tissues is presented to account for
tissue degradation after an enzymatic treatment. To finish, an optimization
algorithm is suggested in attempt to determine an optimal protocol when
considering enzyme based therapies.

Keywords : modeling, simulation, drug delivery, electroporation,
homogenization, enzymatic treatment, optimization
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Titre : Modélisation de l’administration de médicaments par

électroporation ou suite à un traitement enzymatique.

Résumé : Cette thèse présente des travaux concernant la modélisation
mathématique de deux méthodes physiques existantes pour surmonter les
barrières biologiques s’opposant à l’administration efficace de médicaments. Dans
la première partie, plusieurs manières de modéliser l’électroporation sont
exposées, aux échelles tissulaire et cellulaire. Des modèles phénoménologiques
existants d’électroporation tissulaire sont présentés et comparés numériquement.
Puis un modèle macroscopique d’électroporation est déduit d’un modèle
d’électroporation cellulaire bien établi en utilisant des techniques
d’homogénéisation. Dans la seconde partie, un nouveau modèle poroélastique est
introduit pour décrire les écoulements dans un tissu biologique. Celui-ci prend en
compte la dégradation tissulaire consécutive à un traitement par enzyme. Pour
finir, un algorithme d’optimisation est proposé dans le but de déterminer un
protocole optimal pour effectuer un traitement enzymatique.

Mots clés : modélisation, simulation, administration de médicaments, électropo-
ration, homogénéisation, traitement enzymatique, optimisation
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Titolo : Modellizzazione della somministrazione di farmaci tramite elet-

troporazione o usando un trattamento enzimatico.

Sintesi : Questa tesi di dottorato presenta dei lavori relativi alla modellizzazione
matematica di due metodi fisici esistenti per sormontare le barriere biologiche che
si oppongono alla somministrazione efficace di farmaci. Nella prima parte, diversi
modi di modellizzare l’elettroporazione sono esposti, sia alla scala del tessuto che
della cellula. Alcuni modelli fenomenologici esistenti di elettroporazione tissutale
sono presentati e confrontati numericamente. Inoltre un modello macroscopico di
elettroporazione è ottenuto da un modello a scala cellulare consolidato usando
tecniche di omogeneizzazione. Nella seconda parte, un nuovo modello
poroelastico è introdotto per descrivere il flusso in tessuti biologici. Questo
modello tiene conto della degradazione del tessuto dopo un trattamento
enzimatico. Per finire, un algoritmo di ottimizzazione è proposto allo scopo di
determinare un protocollo ottimale per effettuare un trattamento enzimatico.

Parole chiave : modellizzazione, simulazione, somministrazione di farmaci,
elettroporazione, omogeneizzazione, trattamento enzimatico, ottimizzazione
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Résumé en français

Cette thèse de doctorat est le résultat de trois ans de recherche à l’Institut de
Mathématiques de Bordeaux, au sein de l’équipe INRIA MONC (Mathématiques
et ONCologie), sous la direction de Clair Poignard. Elle a été également supervisée
par Roberto Natalini, dans le cadre d’une cotutelle avec l’Université de Tor Vergata
(Rome, Italie).

Ce document traite de la modélisation de deux méthodes physiques qui ont pour
but d’améliorer l’administration de médicaments dans un contexte de traitement
contre le cancer ou de thérapie génique. Un agent thérapeutique, avant d’atteindre
sa cible finale, est confronté à une série complexe de barrières biologiques. Notre
recherche concerne deux de ces barrières biologiques, ainsi que les stratégies qui
existent pour les contourner.

Premièrement, on s’intéresse à l’espace interstitiel entre les cellules d’un tissu
biologique. Celui-ci contient un réseau complexe et dynamique fait de macro-
molécules, polysaccharides et glycosaminoglycanes, protéines fibreuses, connu sous
le nom de matrice extracellulaire (ECM). Celle-ci peut être un obstacle à la
diffusion et/ou au transport transcapillaire de molécules. Des thérapies à base
d’enzymes peuvent alors être utilisées pour dégrader l’ECM dans le but d’améliorer
la pénétration de certaines molécules.

Deuxièmement, on s’intéresse à la membrane cellulaire qui constitue le princi-
pal obstacle à la diffusion libre de macromolécules à l’intérieur du compartiment
intracellulaire. L’électroporation est une méthode physique qui, via l’application
d’un champ électrique pulsé, permet de perméabiliser la membrane cellulaire dans
le but de rendre possible l’internalisation de certaines molécules.

La modélisation mathématique présente dans ce document de ces deux méth-
odes physiques, l’électroporation tissulaire et le traitement enzymatique, utilise
des équations aux dérivées partielles ainsi que des méthodes numériques permet-
tant de simuler des solutions approchées. Le but est dans un premier temps de
reproduire les observations expérimentales à l’aide de ces modèles dans l’idée de
justifier leur usage pour optimiser des protocoles d’administration de médicaments
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faisant intervenir l’électroporation et/ou un traitement enzymatique.

Cette thèse est divisée en deux parties : la première est consacrée aux modèles
d’électroporation tissulaire et la deuxième concerne la construction d’un modèle
poroélastique de transport dans un tissu biologique. Ceci en est un résumé en
français. Toutes les parties abordées brièvement ici sont présentées plus précise-
ment dans les chapitres suivants, écrits en anglais.

1. Modéliser l’électroporation : de la cellule au tissu

La partie I est consacrée à la modélisation de l’électroporation à l’échelle du
tissu à l’aide d’équations aux dérivées partielles décrivant la distribution spatiale
et l’évolution temporelle du processus d’électroporation.

Dans le chapitre 1 sont présentés différents modèles d’électroporation cellulaire
tirés de travaux antérieurs à cette thèse [72, 97].

Dans le chapitre 2, on se concentre sur la modélisation phénoménologique de
l’électroporation tissulaire. Ce type de modèle est actuellement utilisé au sein de
la communauté de la bioingénierie. Le principe est de décrire les tissus biologiques
comme des milieux conductifs dont la conductivité dépend non linéairement du
champ électrique. Il est donc crucial de pouvoir simuler la distribution spatiale
du champ électrique dans le tissu afin d’envisager l’optimisation des protocoles
d’électroporation. Pour ce faire, il est nécessaire de construire une loi ad hoc pour
décrire la relation entre le champ électrique et la densité de courant totale insuite
dans le tissu. Jusqu’à présent, la plupart de ces lois sont basées sur des approx-
imations statiques [110, 28, 106, 131, 82, 44, 42]. Nous avons montré le caratère
bien posé de ce type de problème, assorti de conditions aux limites, dans le cas
d’une hypothèse statique non linéaire sur la conductivité tissulaire. De plus, au-
tant la modélisation dynamique à l’échelle de la cellule est assez avancée dans la
littérature, autant ce n’est pas nécessairement le cas à l’échelle du tissu. Dans
les études existantes [85, 123, 71], le principal objectif des auteurs est de repro-
duire les données quantitatives disponibles, à savoir les chronogrammes de courant
électrique obtenus expérimentalement lors d’un processus d’électroporation tissu-
laire. En se basant sur la littérature, nous présentons trois différents modèles
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d’électroporation tissulaire ainsi que les méthodes numériques que nous avons mis
en place pour résoudre les problèmes ainsi obtenus à l’aide de la méthode des élé-
ments finis. En particulier, nous proposons une méthode volumique pour calculer
le courant électrique simulé de manière précise et efficace. L’objectif principal de
ce chapitre est alors de comparer les résultats obtenus avec les différents modèles
numériquement avec les données expérimentales disponibles. Ainsi, il est possible
de déterminer rationnellement les traits principaux inhérents à chaque approche
phénoménologique.

Dans le chapitre 3, un lien est établi entre la modélisation à l’echelle de la
cellule et celle à l’échelle du tissu, au moyen d’un procédé d’homogénéisation.
Grâce à des techniques d’homogénéisation et des développements asymptotiques,
il est en effet possible d’obtenir un modèle homogénéisé en partant d’un modèle
statique bien établi à l’echelle de la cellule, avec un hypothèse non linéaire sur
la conductivité de la membrane cellulaire. Nous prouvons rigoureusement dans
ce chapitre la convergence double-échelle du problème initial avec cellules vers
le problème homogénéisé. La convergence numérique en norme L2 est ensuite
vérifiée avant de présenter quelques résultats numériques en simulant le modèle
bidomaine obtenu par homogénéisation. En particulier, l’influence de la structure
microscopique choisie sur le modèle macroscopique et son effet sur les tenseurs
homogénéisés de conductivité est étudiée.

2. Modéliser l’effet d’une thérapie enzymatique sur l’administration de

médicaments

La partie II est consacrée à la construction et à l’utilisation d’un modèle prenant
en compte la dégradation tissulaire et se basant sur une approche poroélastique.
Dans le chapitre 4, on présente un nouveau modèle poroélastique prenant en
compte l’effet d’une injection d’enzyme dégradant la matrice extracellulaire sur
le transport de molécules dans l’espace interstitiel. D’un point de vue biologique,
l’effet de ce type de thérapie enzymatique est bien connu. Cependant, il existe
un manque de modèles mathématiques dans la littérature décrivant ce type de
phénomène. Le modèle que nous proposons est composé d’équations aux dérivées
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partielles dérivées directement de lois de conservation. Nous avons adopté une ap-
proche poroélastique pour modéliser la mécanique d’un tissu biologique. Ce choix
a pour conséquence qu’il est nécessaire de dériver les équations dans un formalisme
eulérien dans un premier temps puis réduire le système obtenu dans une config-
uration de référence fixe afin de pouvoir simuler numériquement le modèle. Les
changements structurels dus à la thérapie enzymatique sont pris en compte via
l’introduction d’équations sur les fractions volumiques de chaque composant du
tissu. Les variables du modèle sont finalement les fractions volumiques de chaque
composant du tissu, la pression interstitielle, le déplacement élastique et les con-
centrations en enzyme et en agent thérapeutique. Nous proposons également une
méthode numérique pour calculer une solution approchée dans des configurations
unidimensionnelle, bidimensionnelle et axisymétrique. Les résultats obtenus sont
ensuite comparés avec les données qualitatives disponibles dans la littérature. Le
chapitre 5 est consacré à l’implémentation d’un algorithme d’optimisation dans
le but de déterminer un protocole optimal dans un contexte de thérapie enzy-
matique. L’objectif est de déterminer un ensemble de paramètres choisis pour
lesquels la zone où la concentration en médicaments est au-dessus d’un seuil min-
imum d’efficacité est maximale. Dans un contexte de thérapie génique, les deux
méthodes physiques présentées dans cette thèse (l’électroporation et les thérapies
enzymatiques) peuvent être combinées pour améliorer le rendement du traitement.
Il est alors crucial de connaitre le temps optimal auquel l’électroporation doit être
effectuée. En plus de la zone maximale obtenue avec l’algorithme d’optimisation,
le temps de l’expérience pour lequel cette zone est maximale est également une
donnée intéressante. L’algorithme d’optimisation présenté et utilisé est basé sur
la méthode d’interpolation de Krigeage. Après quelques généralités sur le principe
de cette méthode d’interpolation, l’algorithme est utilisé sur un cas test, avec une
géométrie bidimensionnelle simple et des paramètres fixes qui n’ont pas été calibrés
sur des données biologiques. Le chapitre se conclut sur une étude de sensibilité
des paramètres de contrôle.
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Introduction

0.1 Prelude

This PhD thesis is the result of three years of research at the Institut de Mathé-
matiques de Bordeaux (Bordeaux, France), within the INRIA team MONC (Math-
ematics for ONCology), under the supervision of Clair Poignard. This work was
equally supervised by Roberto Natalini, in the framework of a cotutelle with Uni-
versitá di Tor Vergata (Rome, Italy).

I was partly granted by Université Franco-Italienne (project VINCI C2-25),
INdAM, the Plan Cancer DYNAMO (Inserm 9749) and the Plan Cancer NUMEP
(Inserm 11099).

This document deals with the modeling of physical methods in order to over-
come the biological barriers to drug delivery. Before reaching their target, ther-
apeutic agents face a complex series of biological barriers. We focused on two
of these barriers, along with the strategies existing to overcome them. First, the
extracellular matrix (ECM) can generate diffusive hindrance and/or jeopardize
transcapillary transport, especially in the case of solid tumors. Enzyme-based
therapies can be used to degrade the ECM in order to improve the penetration of
therapeutic molecules. Secondly, the cell membrane is the main obstacle to the
free diffusion of macromolecules into the intracellular compartment. Electropora-
tion, which consists in applying short electric pulses in order to disrupt the cell
membrane can be used to facilitate the uptake of large molecules. The mathe-
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matical modeling done during the PhD of these two physical methods uses partial
differential equations (PDEs) and their numerical approximation. The goal is to
retrieve the experimental observations with the models in order to justify their use
to optimize future protocols of drug delivery by mean of electroporation and/or
enzymatic treatment.

In order to introduce the two modeling themes involved in this document,
this introducing chapter presents hereunder the biological background behind our
study. The main biological barriers to drug delivery are presented along with a
non exhaustive overview of the physical methods to increase drug penetration and
uptake in tissues. Then the organisation of this document is detailled, with an
overview of the main obtained results.

0.2 Biological background : enhancing penetration

of therapeutic molecules in biological tissues

0.2.1 Biological barriers to drug delivery

Before reaching their target, therapeutic agents face a complex series of biolog-
ical barriers (see Figure 1). These obstacles include degradation and/or clearance,
the vascular wall, the extracellular matrix, the cell membrane and potentially the
intracellular medium. In addition to the substantial challenges presented by each
individual biological barrier, it is important to note that they depend on factors,
such as the pharmacokinetics, the administration route (direct injection versus
intravenous) and the target tissue (cancer versus normal tissue) [89].

0.2.1.1 The cell membrane

The cell membrane is a physical barrier that separates the intracellular compo-
nents from the extracellular environment. It is the main physical barrier encoun-
tered by macromolecules, along with the nuclear envelope. It is composed of two
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Figure 1: After its injection into the target tissue, a therapeutic agent encounters
biological barriers from extracellular environment toward the interior of the target
cell.

main classes of molecules, proteins and lipids [49] (see Figure 2).

Membrane Lipids. The fundamental building blocks of all cell membranes are
phospholipids, which are amphipathic molecules, consisting of two hydrophobic
fatty acid chains linked to a phosphate-containing hydrophilic head group. Because
their fatty acid tails are poorly soluble in water, phospholipids spontaneously form
bilayers in aqueous solutions, with the hydrophobic tails buried in the interior of
the membrane and the polar head groups exposed on both sides, in contact with
water. Such phospholipid bilayers form a stable barrier between two aqueous
compartments and represent the basic structure of all biological membranes [36].

Membrane Proteins Proteins can either be inserted into the lipid bilayer or
associated with the membrane indirectly, by protein-protein interactions. While
phospholipids provide the basic structural organization of membranes, membrane
proteins carry out the specific functions of the different membranes of the cell [36].
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Figure 2: Schematic representation of a membrane portion.

Transport across Cell Membranes Exchanges between intracellular and ex-
tracellular compartments are limited by the plasma membrane. The entry of a
substance in a cell depends on the properties of the membrane and the substance
(ion or molecule) itself. From here, a fundamental concept emerges: plasma mem-
branes are selectively permeable [89]. Lipid bilayers are permeable only to small
uncharged molecules. Ions and most polar molecules are transported across cell
membranes by specific transport proteins [36] (see Figure 3).

Intracellular Transport The cytosol is a region with a high level of molecu-
lar crowding due to the presence of the cytoskeletal network, organelles, and a
high concentration of macromolecules. Transport or diffusion in such crowded me-
dia, especially for high molecular weight drugs, is generally described as hindered
diffusion. Thus, some molecules that enter the intracellular space cannot diffuse
freefly towards the various subcellular regions of interest. Instead, the molecule
may be subject to active transport within the cell [89]. For instance, plasmids
transport is a combination of very slow free diffusion and active transport along
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Figure 3: Transport of molecules accross the plasma membrane: schematic repre-
sentation of membrane selective permeability.

microtubules. Recent studies demonstrate that while the cytoskeleton acts as a
barrier to DNA plasmids movement in the cytoplasm, the microtubule network
is required for plasmid trafficking directed towards the nucleus [103]. The role of
cytoskeleton in intracellular DNA transport has been addressed in Notarangelo’s
PhD thesis [94], and a mathematical model for transport of DNA plasmids from
the external medium up to the nucleus by electroporation was proposed in [73].

0.2.1.2 The extracellular space

The interstitial space which surrounds the cells, called the extracellular space,
contains a complex and dynamic network of macromolecules, polysaccharides and
glycosaminoglycans, fibrous proteins, salts and water, known as the extracellular
matrix (ECM) [49]. Table 1 provides a list of several common ECM components
and where they are most abundantly found in the body [121].

The ECM provides mechanical support and determines the mechanical prop-
erties of the tissue. The physical, topological, and biochemical composition of the
ECM is tissue-specific and markedly heterogeneous. The main fibrous ECM pro-
teins are collagens, elastins, fibronectins and laminins. Proteoglycans, to which
characteristic glycosaminoglycan chains are attached, fill the majority of the ex-
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Table 1: Major components of the interstitium [121].

tracellular interstitial space within the tissue in the form of a hydrated gel and
have a wide variety of functions (see Figure 4) [51].

Collagen Collagen is the most abundant fibrous protein within the interstitial
ECM and constitutes up to 30% of the total protein mass of a multicellular animal.
Collagens, which constitute the main structural element of the ECM, provide ten-
sile strength, regulate cell adhesion, support chemotaxis and migration, and direct
tissue development [51].

Hyaluronan The most common glycosaminoglycan in connective and epithelial
tissues is hyaluronic acid (also called hyaluronan) [29]. Hyaluronan is a mega-
dalton molecule consisting of repeating disaccharide units that allows the extra-
cellular matrix to resist compressive forces. It creates a barrier to bulk fluid flow
through the interstitial collagenous matrix by way of its viscosity and water of
hydration [22].

Interstitial fluid It is estimated that up to 20% of the body’s mass is made up
of interstitial fluid, and much of this fluid is in constant slow motion [121]. Drugs
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Figure 4: Schematic representation of the extracellular matrix which surrounds
the cells.

penetrate normal tissues by both diffusion and convection, with a net flow of fluid
from blood vessels balanced by resorption into lymphatics. Thus, the interstitial
fluid flow is driven by the interstitial fluid pressure gradients and also influenced
by the hydraulic conductivity of the tissue [12]. The physicochemical properties
of drugs (for example, molecular weight, shape...) determine the rate of diffusion
through tissue. Figure 5 presents the main mechanisms of drug distribution in
tissue.

The particular case of solid tumors

Methods for studying drug penetration

In vitro and in vivo approaches have been used to examine how anticancer
drugs penetrate and distribute within tumors. A non exhaustive review of these
methods can be found in [83].

Multicellular spheroids. Multicellular spheroids are spherical aggregates of tu-
mour cells which reflect many of the properties of solid tumours, including the
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Figure 5: Schematic representation of how a drug penatrates a tissue from capil-
laries.

development of an ECM, gradients of nutrient concentration and cell prolifera-
tion from the exterior to the centre (Figure 6 a) [83]. Fluorescence microscopy of
sections of spheroids is used to observe the drug penetration into the spheroid [119].

Multilayered cell cultures. Multilayered cell cultures (MCC) are made of tu-
mour cells grown on a permeable plastic membrane. Like spheroids, MCCs have
been shown to reflect many of the properties of solid tumours, including the gen-
eration of an ECM, gradients of nutrient concentration and cell proliferation, and
regions of hypoxia and necrosis in thicker layers [83]. MCC can also be sectioned
and the distribution of fluorescent drugs can be visualized directly [59].

Although in vitro techniques offer the advantage of being able to qualitatively
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Figure 6: In vitro models used to study the penetration of anticancer drugs through
tumor tissue. a. Multicellular spheroid. b. Multilayered cell culture (MCC) on a
permeable membrane support. After [83].

and quantitatively assess drug penetration, they do not take some important fea-
tures of solid cancers into account, such as variable interstitial fluid pressure or the
influence of convection (which commonly occurs in the periphery of tumors and
plays an important part in the transport of large molecular weight drugs) [83],
[114].

In vivo methods. Several methods exist to study drug distribution in tumors
grown in experimental animals. For example, window chambers can be used to
study the distribution of naturally fluorescent or colored drugs in tumors of living
animals. An alternative in vivo method is to quantify the concentration of fluo-
rescent drugs in tissue sections [122].

Distribution of anticancer drugs in tissue

Transport through interstitial space within a tumor is determined by the physic-
ochemical properties of the drug (e.g., molecular or particle size, diffusivity...) and
the specific biologic properties of a tumor [e.g., tumor vasculature, extracellu-
lar matrix components, interstitial fluid pressure (IFP), tumor cell density, tissue
structure and composition] that are unique to tumors and are not found in normal
tissues. As a consequence of these factors, many anticancer drugs have limited
distribution in solid tumors, which limits their effectiveness.
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In spheroids and tumor histocultures (Figures 7a and 7b) high levels of dox-
orubicin accumulation in the cells at the tissue surface are observed [80], [11]. The
degree of accumulation is considerably reduced deeper than the first few cell layers,
to the point of observing no doxuribicin at all at the center of the spheroid or the
histocultutre. In vivo, the doxuribicin is distributed around tumor blood vessels
(Figure 7c).

(a) Doxorubicin uptake in
spheroid model [80]

(b) Doxorubicin uptake in tu-
mor histocultures [11]

(c) Doxorubicin uptake in vivo
[83]

Figure 7: Distribution of doxorubicin. (a) High level of doxorubicin accumulation
in the cells at the spheroid surface. (b) Great periphery-to-center concentration
gradients in tumor histocultures. (c) In vivo. A Section from a mouse mammary
tumour showing the distribution of doxorubicin (blue) in relation to tumour blood
vessels (red) and regions of hypoxia (green). Note that doxorubicin is distributed
around tumour blood vessels.

Key factors to understand the limited drug distribution within tumors

High cellular density. In [11], it was determined that tumor cell density is a
determinant of the drug penetration rate into a solid tumor. Indeed, a more rapid
distribution to the areas with a low cell density compared to areas with higher
cell density was observed. In [101], a computational model of interstitial transport
that incorporates the biophysical properties of the tumor tissue reproduced the
fact that the tissue cellular porosity and density influence the depth of penetra-
tion in a nonlinear way, with sparsely packed tissues being traveled through more
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slowly than the denser tissues.

ECM Composition. Abnormal ECM composition and structure in solid tu-
mors are major obstacles to penetration of anticancer drugs [68]. The matrix of
tumor tissue shows characteristic changes compared to normal connective tissue
[51]. Excessive ECM production is observed in tumor tissues, leading to deregu-
lated accumulation of various types of collagen networks [92], as well as hyaluronan
concentrations usually higher in tumors than in normal tissues [125], [57]. As a
result, tumors are characteristically stiffer than the surrounding normal tissue.

Elevated interstitial fluid pressure. Another consequence of the abnormal struc-
ture and composition of tumors, is the high interstitial fluid pressure (IFP) in
tumors. Since 1950, it has been known that IFP is significantly higher in tu-
mors compared to normal tissues [129]. IFP restricts the access of therapeutic
agents to tumor cells by reducing the driving forces for extravasation of fluid and
macromolecules and by generating a convective flux of fluid and solute towards
the periphery of tumors [24]. As far as the pressure profile in tumors is concerned,
a model developed in [63] suggests that the pressure is elevated throughout the
tumor, except for a sharp drop at the tumor-normal tissue interface.

0.2.2 Physical methods to increase drug penetration and

uptake

Several strategies exist to improve drug penetration and uptake in biological
tissues, and in solid tumors in particular (a review of those different methods in
the case of tumors can be found in [122]). We focused on two of these methods.
First, the electroporation, method used to overcome the barrier formed by the
cell membrane in the case of macromolecules. Second, the enzyme-based thera-
pies, method used to degrade the ECM in order to improve the penetration of
therapeutic molecules.
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0.2.2.1 Electroporation

The application of pulsed electric field induces transient or irreversible and lo-
calized cell membrane permeabilization, as well as an important increase of mem-
brane conductivity. When the applied voltage is high enough, the cell may re-
main permeable for several minutes, allowing the exchange of molecules between
the extracellular medium and the cytoplasm. The basic mechanisms of this phe-
nomenon, called electroporation or electropermeabilization, were mainly studied
at the single-cell level, although the situation is more complex in a tissue. The
tissue is composed of cells that are in close contact with each other and their
proximity affects electroporation. In addition, most tissues are not homogenous
structures. They are composed of different cell types that are irregularly shaped
and have different electrical properties that affect current density and electric field
distribution and consequently also electroporation effectiveness [66]. Several elec-
troporation regimes exist, depending mainly on the amplitude and the duration
of application of the electric field (Figure 8). If the electric field magnitude or
pulse duration is too small, there will be no effect. As soon as a certain voltage
threshold is locally overpassed, the cells membranes are permeabilized, and the
permeabilization is reversible if the voltage is not too high. For higher voltages,
the electropermeabilization is irreversible, the damages to the cells are too im-
portant and they eventually end up dying. If the pulse parameters are much too
intense, the Joule effect induced by the electric field leads to the destruction of the
cells due to thermal effects. For efficient tissue electroporation in vivo, the electric
field distribution, which depends on electrode geometry, position, and electrical
properties of the sample, is thus crucial.

Electroporation has many different application. The method is successfully
used in medicine in clinical practice as electrochemotherapy. The cells are treated
with cytotoxic drugs, such as bleomycin, while exposing them to pulsed electric
fields [58]. The main advantage of such a treatment is to avoid some of the sec-
ondary effects of classic chemotherapy, since the treatment is localized. Example of
treatments with bleomycin, application of electric pulses or electrochemotherapy
are shown in Figure 9.
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Figure 8: Schematic representation of the different modes of electroporation de-
pending on the duration and amplitude of the electric pulses applied (no scale).

Figure 9: Tumour sections 90 min after treatment with bleomycin, application of
electric pulses or electrochemotherapy. Brown regions are the cells stained with a
marker of tumour hypoxia [111].
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0.2.2.2 Enzyme-based therapies

Spreading agents containing interstitial matrix-degrading enzymes can be used
to facilitate the dispersion and absorption of other drugs. Modification of the ex-
tracellular matrix removes part of the diffusive hindrance, increasing the dispersion
of locally or systemically injected drugs.

Figure 10: Schematic representation of the effect of a localized injection of matrix
degrading enzymes on the extracellular matrix.

Studies have shown that significant transport improvements could be achieved
after pretreatment with matrix-degrading enzymes such as collagenase or
hyaluronidase [22]. Furthermore, this type of pretreatment is reversible, as the
interstitial viscoelastic barriers of the treated tissue are fully restored after some
time. In [22], hyaluronidase was shown to increase dispersion of different type of
molecules up to 200 nm in diameter (see Figure 11).

Furthermore, in the particular case of tumor therapy, it was proven that an
intratumoral injection of matrix degrading enzymes removes diffusive hindrance
to the penetration of therapeutic molecules in tumor models [47, 69, 54]. Those
enzymes also improve convection, as IFP may be temporarily reduced by degrading
the tumor ECM. It has been shown that collagenase and hyaluronidase reduce IFP,
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(a) Significantly increased infusion rates for FITC
Dextran particles up to 200 nm in diameter

(b) Significant effects of
hyaluronidase on viral disper-
sion

Figure 11: Determination of the gap sizes generated by the use of hyaluronidase
rHuPH20 in two different cases [22]. (a) FITC Dextran particles. (b) Adenoviral
particles.

thereby improving the uptake and distribution of molecules within solid tumors
[45, 46, 27, 48, 99].

0.2.3 Gene therapy

There are several physical approaches to perform nonviral gene therapy. The
simplest is the injection of naked DNA in the skeletal or cardiac muscle which
leads to some expression of the injected genes [126]. However, this expression is
very low and very variable from sample to sample. The main physical barrier
encountered by DNA plasmids, the cell membrane, can be overcome using DNA
electrotransfer [9]. But in the case of skeletal muscle, there is another limitation
which is the access of the plasmid DNA to the muscle fiber surface. Controlled
and partial degradation of ECM with matrix degrading enzymes is used to increase
the diffusion and distribution of plasmid DNA into the muscle fiber. It has been
shown that a pretreatment of skeletal muscle with hyaluronidase followed by DNA
electrotransfer improves gene expression [1, 108, 113] (see Figure 12).
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Figure 12: Sections through mouse muscle injected with plasmids and not su-
jected to electrotransfer (left), subjected to electrotransfer at 200 V/cm (center)
or electrotransfer at 200 V/cm with hyaluronidase pretreatment (right) [113].

0.3 Outline of the thesis

This PhD Thesis deals with models of electroporation at the tissue scale on one
hand, and the construction of a poroelastic model of enzyme and drug transport
in biological tissue on the other hand. It is composed of two parts.

0.3.1 Modeling electroporation: from cell to tissue

Part I deals essentialy with the modeling of the electroporation phenomenon
from the cell scale to the tissue scale, starting from partial differential equations to
describe the space distribution and time evolution of the electroporation process.
It is divided in three parts.

• Chapter 1 presents different models of cell electroporation. We first briefly
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present how to model the electric potential of a cell in the linear regime, be-
fore electroporation occurs, from the Schwan model to a more generic model
in which the thin membrane is accounted for by imposing equivalent trans-
mission conditions accross the interface between the cytoplasm and the outer
medium. We then focus on the electroporation phenomenon by presenting
a quick review of the existing models of electroporation at the cell scale.
Those models consist in introducing an ad hoc membrane conductivity law
to the equations established in the linear regime. The chapter lays down the
foundations of the study of the electroporation process at the tissue scale.
It rielaborates some works done before the PhD. A complete study of these
models can be found in [72] and [97].

• Chapter 2 is focused on the phenomenological modeling of the electropora-
tion process at the tissue scale. These models are used in the bioengineering
community. They consist in describing the biological tissues as conductive
media whose conductivity nonlinearly depends on the electric field. The
computation for the distribution of the electric field within biological tissues
is crucial in the treatment planning of electroporation-based procedures. To
perform this kind of simulations, an ad hoc law has to be built in order to
model the electrical properties of the tissue: it must establish the relation
between the electric field and the total current density induced inside the
tissue. Up to now, the constitutive laws commonly used in models are based
on static hypotheses. Numerous studies use this type of static approxima-
tion [110, 28, 106], including for treatment planning [131, 82, 44, 42]. We
propose a proof of well-posedness for a boundary value problem involving
such a nonlinear static hypothese on the tissue conductivity. Furthermore,
even though the dynamic modeling at the cell scale is quite advanced in the
literature, the attempts to model dynamically the process of electropora-
tion at the tissue scale are much more recent and sparse [85, 123, 71]. In
those studies, the main goal to reproduce the available and reliable data i.e.
the current chronograms obtained experimentally when performing electro-
poration. We present in this chapter three different mathematical models of
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tissue electroporation, based on the existing literature. An important part of
this chapter is devoted to presenting the numerical methods involved when
resolving the equations of these different models with the Finite Element
Method. In particular, we propose a volume method to compute the electric
current in order to readuce the computational time. The last part of this
chapter deals with the numerical results given by the different models, and
the varying knowledge they can bring to us about the electroporation pro-
cess. The comparison between the experimental data, namely the current
chronograms, and the results of the different models simulations makes it
possible to rationally determine the main features of each phenomenological
approach. The goal of this study can be summarized as

Studying numerically and comparing different models of tissue

electroporation.

• Chapter 3 consists in creating a link between the modeling at the cell scale
and the modeling at the tissue scale, by using an homogenization process.
We use homogenization techniques with asymptotic expansions to derive an
homogenized problem starting from a static problem at the cell scale, with
a nonlinear assumption on the membrane conductivity. We prove a rigorous
convergence of the initial problem to the homogenized problem via two-scale
convergence. We verified the L2 numerical convergence of the microscopic
model towards the homogenized model. We then present some numerical
results involving the bidomain model obtained by homogenization. We in-
vestigate first the influence of the cell geometry on the value of the ho-
mogenized conductivity tensors. Then we present some simulations of the
bidomain model and determine the spatial distribution of the electroporated
homogenized tissue. The goal of this study can be summarized as

Establishing a macroscopic model of tissue electroporation from a

well-established microscopic model of cell electroporation by

using a homogenization process.
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0.3.2 Modeling enzyme-based therapies

Part II deals with the construction and use of a new model of tissue degradation
based on a poroelastic medium approach. It is divided in two parts.

• Chapter 4 presents a new poroelastic model to account for tissue degradation.
From the biological point of view, the effects of matrix degrading enzymes on
drug transport are well known. However, the literature suffers from a lack of
models describing the active transport of those enzymes in the extracellular
medium and the resulting changes on the ECM. The aim of this chapter is
to provide a mathematical model that addresses this phenomenon in order
to provide a better understanding of the physical involved phenomena. The
model consists of a nonlinear system of partial differential equations. It is
derived directly from physical conservation laws. Constitutive relations are
added to close the system. We adopt a poroelastic approach to model the
mechanics of a biological tissue. This choice implies first to derive equations
with Eulerian formalism and then reduce them to a fixed reference domain
via a suitable change of variables in order to make the numerical processing
possible. In addition, equations on the volume fraction of each component
of the tissue are included to take the structural changes into account. In the
end, the main variables of interest are the three different volume fractions,
the interstitial pressure, the displacement and the concentrations of enzyme
and therapeutic agent respectively. We then provide a numerical method
that allows to simulate the complete model in 1D-, 2D-, and axisymmet-
ric configurations in order to compare the results with the qualitative data
available in the literature. The goal of this study can be summarized as

Establishing a new model to describe the effects of matrix

degrading enzymes on tissue porosity and their consequences on

drug transport.

The long-term goal of the project is to provide a first step towards the nu-
merical optimization of drug delivery with enzyme pretreatment, which is
the subject of the last chapter.
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• Chapter 5 is devoted to the implementation of an optimization algorithm in
an attempt to determine an optimal protocol when considering an enzyme
based therapy. The goal is to determine a set of chosen parameters for which
the area where the drug concentration is sufficiently high is maximal. In
the framework of gene therapy, both physical strategies (enzyme pretreat-
ment and electroporation) can be combined. Determining the optimal time
at which electroporation should be performed is then crucial. Thus, we also
retrieve the time at which this maximum area is reached. We use a strategy
based on Kriging interpolation. After some generalities about Kriging inter-
polation, we present the results obtained using this interpolation method on
a test case, using a simple 2D geometry and fixed parameters that were not
calibrated on biological data. The goal of this study can be summarized as

Numerical strategies to optimize the distribution of drugs in the

tissue after an injection of matrix degrading enzymes.

0.4 Main results

This goal of this section is to provide a substantial summary of the main results
obtained during this PhD. All the results are detailed in the different chapters of
this document.

0.4.1 Phenomenological models of tissue electroporation

Let us consider a bounded domain Ω, representing the tissue and let us assume
that an electric field is applied between two electrodes E+ and E−. All models of
tissue electroporation existing in the literature feature the same equation on the
electric current

−→
j flowing through the tissue:

−∇ · −→j = 0, in Ω. (1)

The differences come from how the total current is computed.
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0.4.1.1 Monophasic models

The standard monophasic approach consists in describing the tissue as a con-
ductive material of conductivity σ. The current

−→
j is computed as the product of

the tissue conductivity σ and the gradient of the electric potential ϕ

−→
j = σ · ∇ϕ,

where ϕ verifies the following set of boundary conditions:


ϕ = U(t) on E+,

ϕ = 0 on E−,

∂nϕ = 0 on ∂Ω,

(2a)

(2b)

(2c)

where ∂Ω stands for the outer surfaces of the domain Ω.

Static monophasic models. Assuming a static hypothesis, the conductivity σ
is chosen as a nonlinear function of ∇ϕ:

σ = σ(|∇ϕ|).

Different kinds of models have been considered in the literature but the most
suitable ones rely on sigmoid functions [28, 110]. Although appearing quite simple,
it is not trivial to show that the boundary value problem (1)-(2) is well-posed
(Theorem 1). The difficulty comes from the fact that the nonlinearity is given as
a function of the gradient of ϕ.
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Theorem 1. Assume the following assumptions on the function σ : R→ R:

σ is continuous on R,

s 7→ σ(s) is even on R,

0 < σmin ≤ σ(s) ≤ σmax,

σ is increasing on R+,

lim
s→+∞

σ(s) = σmax,


and take f ∈ L2(Ω). Then, the boundary value problem{∇ · (σ(|∇ϕ|)∇ϕ) = f, in Ω

ϕ|∂Ω
= 0, on ∂Ω.

is well-posed.

Dynaminal monophasic model. In a first attempt to take dynamical effects
into account, the conductivity σ can be chosen as a nonlinear function of the time
t and of ∇ϕ [67]:

σ = σ(t, |∇ϕ|) = σ0 + σ1X1(t,∇ϕ) + σ2X2(t,X1),

where σ1 and σ2 are the equivalent conductivities related respectively to an un-
pulsed tissue and a deeply electroporated tissue once the dynamics are complete.
X1 and X2 are functions whose values are between 0 and 1 given by:

dX1

dt
=

1

τ1

(β(∇ϕ)−X1), with β(∇ϕ) =
1 + tanh(k(|∇ϕ| − Eth))

2
,

dX2

dt
=

1

τ2

(X1 −X2).

Parameters τ1 and τ2 are the characteristic times of the two different dynamic
processes.



47

0.4.1.2 New biphasic model

The biphasic approach consists in computing
−→
j as the product of the sum of

two current densities:
−→
j = σe · ∇ϕ+

−→
J cells(t,∇ϕ),

where the current density
−→
J cells(t,∇ϕ) flows through the cells and the current

density σe · ∇ϕ flows through the extracellular medium.
−→
J cells is governed by the

a first order differential equation

(
1 +

σm(t, vm)

σc

)−→
J cells +

εm
σc

d
−→
J cells

dt
= σm(t, vm)∇ϕ+ εm

d∇ϕ
dt

,

where σm is the equivalent conductivity at the tissue scale for the membrane, whose
value is affected by the amplitude of the transmembrane voltage at the tissue scale,
denoted vm and defined as

vm(t, x) = dcell

∥∥∥∥∥1

2

(
∇ϕ(t, x)−

−→
J cells(t, x)

σc

)∥∥∥∥∥ in [0, T ]× Ω.

σm(t, vm) is obtained as:

σm(t, vm) = σm0 + σm1X1(t, vm) + σm2X2(t,X1),

where σm0, σm1 and σm2 are the equivalent membrane conductivities related respec-
tively to an unpulsed tissue and a deeply electroporated tissue once the dynamics
are complete. X1 and X2 are functions whose values are between 0 and 1 given
by:

dX1

dt
=

{
β1(vm)−X1

τ1
, if β1(vm) ≥ X1,

0, else,
, with β1(vm) =

1 + tanh(k1(vm − Vth))
2

,

dX2

dt
=

{
β2(X1)−X2

τ2
, if β2(X1) ≥ X2,

0, else,
with β2(X1) =

1 + tanh(k2(X1 −Xth))

2
.



48

Parameters τ1 and τ2 are the characteristic times of the two different dynamic
processes. In a steady-state approximation, the equivalent tissue conductivity σ is
obtained as:

σ = σe +
σcσm
σc + σm

.

This makes it possible to compare the monophasic and biphasic approaches.
The interesting features lies in the fact that even though the cell membrane con-
ductivity increases a lot, at the tissue scale σ stays between σe and σe + σc. Thus,
to compare numerically the three models of tissue electroporation, we observe the
tissue conductivity σ, whose spatial distribution is a good indicator to determine
the electroporated area, and the electric current, which can be easily compared
to experimental current chronograms.

We propose adapted numerical tools to study the three models, each solved us-
ing the Finite Element Method in 2D and 3D. Using the symmetry of the problem,
a simplified 2D computational domain (see Figure 13) is derived with boundary
conditions on the symmetric planes B1 and B2 (3) added to the original set of
boundary conditions (2). {

ϕ = 0 on B1,

∂nϕ = 0 on B2.

(3a)

(3b)

First, we show that, in the static case, the stiff nonlinear problem, which may
cause numeric instabilities, can be solved using a modified fixed point iteration
[28]. Then, we show that the choice of method when computing the simulated
current I is crucial. While the simulated current is usely computed as a surface

integral on one of the electrodes, namely

Isurf =

∫
E+

−→
j |E+ · −→n |E+dS,

we propose instead a volume method to calculate the current (see Figure 14 in
the linear case

−→
j = σ∇ϕ with σ = 1):

Ivol =

∫
Ω

−→
j · ∇w dx,
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Figure 13: 2D computational domain.

where w is the unique solution of the following Laplace problem

∆w = 0, in Ω,

w = 1, on E+,

∂nw = 0, on ∂Ω,

w = 0, on B1,

∂nw = 0, on B2.

The long-term goal of this study is to calibrate each model with biological
data. A comparison between the experimental data available, namely the
current chronograms, and the simulated current I obtained using the different
models permits to rationally determine the main features of each phenomenological
approach (see Figure 15).
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Figure 14: Value of Isurf and Ivol in the linear case (j = σ∇ϕ with σ = 1) for
different 2D mesh precisions from 5 points meshing the electrode surface E+ to 50
points using both P 1 and P 2 elements and both surface and volume methods.
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Figure 15: Comparison between experimental current and the computed currents
(P 2 elements, volume method) with three different phenomenological models for
an applied voltage of 875 V/cm.

0.4.2 A model of tissue electroporation obtained with a ho-

mogenization process

Even though the ad hoc biphasic tissue model seems to be validated with the
experiments, its physical meaning is poorly justified. To fill the gap between cell
scale and tissue, we propose here a rigorous homogenization process. To use a
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homogenization procedure, it is convenient to assume that biological tissues have
a periodic microstructure. Let ε > 0 be a small parameter. The domain Ω,
representing the tissue, contains a periodic array of cells whose size is controlled
by ε (see Figure 0.4.2). Let us denote [uε] = uεe − uεi , where uεe (resp. uεi ) is the

(a) Domain Ω

�Y

Yi

Ye

(b) Periodic cell Y

Figure 16: Schematic illustration of the periodic medium Ω and of a unit period
Y .

induced electric potential of the extracellular (resp. intracellular) medium in this
whole macroscopic domain Ω. (uεe, u

ε
i ) are proven to be solutions to the following

microscopic problem:



∇x · (σi∇xu
ε
i ) = 0, in Ωε

i ,

∇x · (σe∇xu
ε
e) = f, in Ωε

e,

σi∇xu
ε
i · ~ni = σe∇xu

ε
e · ~ni, on Γε,

εSm([uε])[uε] = σi∇xu
ε
i · ~ni, on Γε,

σi∇xu
ε
i · ~ni = σe∇xu

ε
e · ~ni = 0, on ∂Ω,

uεe|E+
= 0, on E+,

uεe|E−
= 0, on E−,

(4a)

(4b)

(4c)

(4d)

(4e)

(4f)

(4g)

where σi (resp. σe) is the conductivity of the intracellular (resp. extracellular)
medium and where Sm is a sigmoid function that accounts for the membrane
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conductivity, assumed to be a function of the transmembrane potential voltage
[uε] [67, 72]. This system is obtained once a proper scaling procedure has been
applied, the consequence being the appearance of the parameter ε in equation
(4d). We prove a rigorous convergence of the microscopic problem (4) to an
homogenized problem via two-scale convergence (see Theorem 2).

Theorem 2. The sequence of solutions (uεe, u
ε
i ) of problem (4) verify the following

two-scale convergences:

• uεe(x) two-scale converges to χYe(y)u0
e(x),

• uεi (x) two-scale converges to χYi(y)u0
i (x),

• ∇uεe(x) two-scale converges to χYe(y)(∇xu
0
e(x) +∇yu

1
e(x, y)),

• ∇uεi (x) two-scale converges to χYi(y)(∇xu
0
i (x) +∇yu

1
i (x, y)),

• vε(x) = uεe(x)|Γε − uεi (x)|Γε two-scale converges to v0(x) = u0
e(x)− u0

i (x),

where

u1
i (x, y) = −ψi(y)∇xu

0
i (x),

u1
e(x, y) = −ψe(y)∇xu

0
e(x),

with ψ the solution to the following cell problem

∇y · (σi∇yψi) = 0, in Yi,

∇y · (σe∇yψe) = 0, in Ye,

σi(∇yψ
1,2,3
i − e1,2,3) · ~ni = σe(∇yψ

1,2,3
e − e1,2,3) · ~ni = 0, on ΓY ,

ψ1,2,3
e,i is Y -periodic.

The limit (u0
e, u

0
i ) is the unique solution of the following two-scale homogenized

system given in Ω× Y

−∇x ·
(
σ̃i∇xu

0
i + σ̃e∇xu

0
e

)
=
|Ye|
|Y | f,

|ΓY |
|Y |

(
Sm(u0

e − u0
i )(u

0
e − u0

i )
)

= ∇x ·
(
σ̃e∇xu

0
e

)
.
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with
σ̃i,e = σi,e

|Yi,e|
|Y | I2 − σi,e

1

|Y |

∫
Yi,e

∇yψ(y)dy.

The convergence in L2 of the microscopic model (4) towards the homogenized
model is verified numerically.

In order to compare this model, obtained mathematically, to the phenomeno-
logical models of tissue electroporation previously presented, one must determine
the tissue conductivity σ, whose spatial distribution permits to determine the
electroporated area. The equivalent tissue conductivity of this model is obtained
using the following formula:

σ = σ̃e +
σ̃il

2
0
|ΓY |
|Y | Sm

σ̃i + l20
|ΓY |
|Y | Sm

,

where σ̃e and σ̃i are assumed to be scalar tensors. l0 is the characteristic length
of the tissue. One can see that this formula is very similar to the one obtained in
the case of the phenomenological model using two current densities. Nevertheless,
despite the similarities between the model using two current densities and the ho-
mogenized model, they give very different results. At the cell scale, the membrane
conductivity Sm is assumed to depend on the transmembrane potential voltage
[uε]. As a result, the tissue conductivity σ also depends on the homogenized

transmembrane potential voltage u0
e − u0

i . But the spatial distribution of
this physical quantity does not cope with the electroporated area observed in the
experiments (see Figure 17).

We believe that this indicates that we should go further in the formal expansion
of vε(x) = uεe(x)|Γε −uεi (x)|Γε . Formally, the first term of the expansion is the limit
v0 = u0

e−u0
i . But the next term reveals a dependence on ∇xu

0
e (and ∇xu

0
i ), whose

spatial distribution is closer to the experimental electroporated area (see Figure
18).
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Figure 17: Spatial distribution of the homogenized tissue conductivity σ(u0
e − u0

i )
computed with the static bidomain model.

Figure 18: Spatial distribution of the homogenized electric field ∇u0
e computed

with the static bidomain model.

0.4.3 A new poroelastic model of tissue degradation

We first present briefly the model established in Chapter 4 and we refer to
Chapter 4 for the significance of all constants. Biological tissue can be modeled
as a saturated poroelastic mixture made of three different constituants: the
interstitial fluid, the ECM and the cells. The medium is assumed to be saturated:

gE + g + f = 1,



55

where f is the volume fraction of fluid, gE is the volume fraction of extracellular
matrix and g is the volume fraction occupied by cells. The mechanics of the
mixture are described by the following poroelastic system:

∇ ·
(
(gE + g)

(
λ(∇ · u)I + µ(∇u +∇uT )

))
= ∇P,

(gE + g)s0
∂P

∂t
−∇ · (κ∇P ) = Qtot

inj + γ(Pv − P )

+

(
ρR,0s

ρRf
− 1

)
gE(Kh+ ar(f(0,x)− f))−∇ ·

(
∂u
∂t

)
,

where u is the displacement of the solid phase and P the interstitial fluid pressure.
The volume fractions of ECM and of cells are given as the solutions of the following
ODEs: 

∂g

∂t
+

(
s0
∂P

∂t
+∇ ·

(
∂u
∂t

))
g = 0,

∂gE
∂t

+

(
Kh+ ar(f(0,x)− f) + s0

∂P

∂t
+∇ ·

(
∂u
∂t

))
gE = 0.

The volume fraction of fluid f is obtained using the saturation condition. The
concentration of matrix-degrading enzyme is described by the following convection-
diffusion reaction equation:

∂h

∂t
= ∇ · (fD0

enz∇h+ hJenz) + h

(
−k

d
enz

f
−∇ ·

(
∂u
∂t

))
+ Senz,

where Jenz = 1
f
κ∇P−D0

enz∇f . The concentration of therapeutic agent, injected af-
ter the matrix-degrading enzyme, is described by the following convection-diffusion
reaction equation:

∂c

∂t
= ∇ · (fD0

drug∇c+ cJdrug) + c

(
−k

d
drug

f
−∇ ·

(
∂u
∂t

))
+ Sdrug,

where Jdrug = 1
f
κ∇P − D0

drug∇f . The complete model is coupled with a set
of boundary conditions that can vary with the different test cases that may be
considered. Namely, on the boundary, one can impose either
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- the displacement u or the stress SEs n,

- the pressure P or the pressure flux ∇P · n,

- the enzyme’s concentration h or flux
(
fD0

enz∇h+ hJenz

)
· n,

- the drug’s concentration c or flux
(
fD0

drug∇c+ hJdrug

)
· n.

The results given by the simulations are qualitatively compared to the

following experimental data for validation:

• Distribution of anticancer fluorescent agent (to be compared with the distri-
bution of the simulated drug’s concentration c),

• Experimental interstitial fluid pressure (IFP) (to be compared with the sim-
ulated normalized pressure P ).

We use the model to describe two situations: the incubation of a spheroid into
an ECM degradation enzyme and the intratumoral injection of enzyme in vivo.

Incubation of a spheroid. We observe that a pretreatment with ECM degra-
dation enzyme affects the distribution of therapeutic agents, thereby improv-
ing the diffusion process. Where without pretreatment, the macromolecules stay
mainly at the periphery of the spheroid, a pretreatment with hyaluronidase permit
to obtain a wider distribution (Figure 19).

Intratumoral injection of enzyme in vivo. Given the dependency of the
pressure on the porosity variable, an intratumoral injection of enzyme results in
a reduction of the IFP. This reduction depends on the enzyme’s concentration
and reaches a maximum value, a further increase of the dose resulting in a smaller
reduction, which is in accordance with the experiments (Figure 20).

It also appears that a pretreatment with ECM degradation enzyme affects

the distribution of therapeutic agents, thereby increasing its area of action by
improving both the diffusion and the convection processes. This is once more in
accordance with the experiments (data from [46]). Indeed, without pretreatment,
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Figure 19: Comparison between experimental doxuribicin fluorescence (left, data
from [69]) and numerically simulated concentration of anticancer agent c in a
spheroid previously incubated with hyaluronidase (B) or not (A).
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Figure 20: Comparison between experimental IFP (left, data from [46]) and nu-
merically simulated IFP. Normalized interstitial fluid pressure is represented in
both cases as a function of time after intratumoral injection of 150 U, 500 U, 1500
U and 3000 U hyaluronidase in tumors compared to no pretreatment (intratumoral
injection of saline solution).

the macromolecules stay only at the periphery of the tumor, the transcapillary
transport being greatly reduced by the high IFP inside the tumor. A pretreatment
with hyaluronidase permit to obtain a wider distribution. The molecules are thus
distributed all over the tumor (Figure 21).
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Figure 21: Comparison between experimental distribution of anticancer fluorescent
agent (left, data from [46]) and numerically simulated concentration of agent. In
case A, no pretreatment was previously performed on the tissue whereas in case
B, the tissue was pretreated with 1500 U hyaluronidase.

0.4.4 An optimization algorithm for enzyme based therapies

The last contribution of this PhD thesis lies within the nonlinear numerical
optimization framework. It consists in using mathematical modeling as a tool to
optimize drug delivery in enzyme-based therapies. We use the model de-
veloped in Chapter 4 and presented in the previous section to model the processes
that govern drug distribution in tissue after an injection of matrix-degrading en-
zyme. All the other parameters being fixed, three independent control variables
are at our disposal to optimize the protocol:

• T the time lag between the injection of enzyme and the injection of thera-
peutic agent,

• y0 the position of the injection point,

• cinj
drug the concentration of therapeutic agent in the fluid injected.

The goal of our optimization strategy is simple: find a set of parameters (T, y0, c
inj
drug)

for which the area where the concentration of drug c is above a minimum concen-
tration cmin is the widest possible. The quantity of interest is thus

Fmax = max
t∈[T,T+Tobs]

1

|Ω| ×
∫

Ω

[c(t, x)− cmin]
+

c(t, x)− cmin

dx,
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where T is the time at which the injection of drugs begins and Tobs is the time
of observation. Using an optimization strategy based on Kriging interpolation,
we can derive an optimized protocol in order to obtain the maximal area where
the drug concentration is sufficiently high. The results of this interpolation are
obtained on a test case, using a simple 2D geometry and fixed parameters that
were not calibrated on biological data. As the optimized protocol is obtained for
the maximal value of cinj

drug tested, visualization in the two-dimensional parameter
space (T, y0) gives some insights on the variations of Fmax (see Figure 22).

All the main results presented in this summary are now detailed in the differ-
ent chapters of this document, starting with the modeling of the electroporation
phenomenon.
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Figure 22: Visualization in the 2D parameter space of Fmax obtained using Kriging
interpolation.
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Part I

Modeling electroporation: from cell

to tissue
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Chapter 1

Models of electroporation at the cell

scale

Cell electroporation is a complex phenomenon in which cell membrane perme-
ability is increased by exposing the cell to short high electric pulses. Since the
end of the 90’s, biophysical models have been developed to explain and predict the
conditions of cell electroporation. In this chapter, we present a quick overview of
different models of cell electroporation. The idea is to lay down the foundations for
the study of the electroporation process at the tissue scale developed in Chapters
2 and 3. What is presented here does not fall within the actual work done during
the PhD.

1.1 Electric model for a biological cell in the linear

regime

1.1.1 The Schwan model

Analytical description of steady-state transmembrane voltage induced on spher-
ical cells was derived six decades ago by H. P. Schwan [109]. To simplify the
derivation, Schwan assumed the membrane to be nonconductive, which led to the
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well-known relation, often referred to as the (steady-state) Schwan’s equation

∆V =
3

2
ER cos(ϕ), (1.1)

where ∆V is the induced transmembrane voltage, E is the amplitude of the exter-
nal electric field, R is the cell radius, and ϕ is the polar angle measured from the
center of the cell with respect to the direction of the field. This model exhibits an
interesting linear dependency of the transmembrane voltage on the radius, but it
cannot describe the influence of the cell shape.

1.1.2 PDE model derived from Maxwell equations

To take the cell shape into account, one can derive a PDE model using Maxwell
equations on a simplified geometry: the biological cell is considered as an homo-
geneous medium protected by a thin membrane and embedded in an homoge-
neous extracellular medium. Nevertheless, to perform computations on realistic
cell shapes without meshing the cell membrane, it is possible to replace the mem-
brane by an equivalent condition on the boundary of the cytoplasm, see Figure
1.1.

Figure 1.1: Cell geometry from real membrane representation to equivalent simple
interface problem.
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Denoting by S0 the surface conductivity and by Cm the capacitance of the
membrane, the electric potential V is approached by u the solution of:



∇ · (σi∇u) = 0, in Yi,

∇ · (σe∇u) = 0, in Ye,

σi∇u · ~ni = σe∇u · ~ni, on Γm,

Cm
∂[u]

∂t
+ Sm[u] = σi∇u · ~ni, where [u] = u|

Γ+
m

− u|
Γ−m
, on Γm,

u|∂Ω
= g, u|t=0 = V0.

(1.2a)

(1.2b)

(1.2c)

(1.2d)

(1.2e)

The approximate potential u is discontinuous across the interface: this is the
effect of the high resistivity and the small thickness of the membrane. System (1.2)
takes the cell geometry and the electric field orientation into account thanks to the
fact that the Neumann derivative is linked to the Dirichlet jump of the potential.
When considering a spherical geometry, system (1.2) can be solved and (1.1) is
recovered. The mathematical proof of this approximation has been presented in
[96].

1.2 Model of Neu Krassowska

One of the most cited model in the literature was proposed by Neu and Kras-
sowska [93]. The main idea of this model is to add an electroporation current Iep
to the condition on the jump of the transmembrane voltage (1.2d):

Cm
∂[u]

∂t
+ Sm[u] + Iep = σi∇u · ~ni on Γm. (1.3)

To define this current, Neu and Krassowska [93] use a description of the mem-
brane permeabilization based on the creation of pores. This current is then de-
scribed as the product between the pore density Nep and the current through a
single pore iep:

Iep = iep ·Nep.
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Debruin and Krassowska [38] proposed the following formula for iep:

iep(νm) =
πr2

mσνmRT

Fh

eνm − 1
w0ew0−nνm−nνm

w0−nνm eνm − w0ew0+nνm+nνm
w0+nνm

, (1.4)

where

• νm is the non dimensionalized transmembrane potential: νm = [u]F
RT

, F is the
Faraday constant, R the universal gas constant and T the temperature in
Kelvin,

• rm the radius of the pore,

• σ the pore conductivity,

• w0 the membrane barrier energy inside a pore,

• n the relative entrance length of the pore

• h is the membrane thickness.

The pore density Nep follows the following first order differential equation:

dNep

dt
= αe([u]/[u]ep)2

(
1− Nep

N0

e−q([u]/[u]ep)2

)
, (1.5)

where

• N0 the pore density at rest,

• [u]ep the threshold membrane voltage above which electroporation occurs,

• α and q are ad hoc parameters.

The main drawback of this kind of approach lies in the number of non-measurable
parameters and the sensitivity of the results to the parameters which makes the
model calibration hardly obtainable [97]. In order to simplify this problem, one
can notice that linearizing iep around small values of the transmembrane potential
gives

iep ∼ K[u] =⇒ Iep ∼ NepK[u],
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where K = K(rm, σ, δ, n, w0) is a constant. NepK is found to be homogeneous to a
surface conductivity. The idea behind the models of cell electroporation presented
next is to determine a phenomenological law on this surface conductivity, and
explain how the transmembrane potential affects it.

1.3 Static model

In [62], the authors proposed a static model of conductivity, described as a
sigmoid function around the electroporation threshold value. When no voltage is
applied, the membrane conductivity Sm value is the one of a cell at rest, S0. When
the applied voltage is above the electroporation threshold Vth, the conductivity
tends toward its maximum value S1:

Sm([u]) = S0 + (S1 − S0)
1 + tanh(kep(|[u]| − Vth))

2
, (1.6)

where kep accounts for the speed of transition between the two states. A compar-
ative study of this model with the ones of Neu and Krassowska [93] and of Ivorra
[62] has been caried out in Leguèbe’s PhD thesis [72].

Remark 1. Other choices of sigmoid function are possible. For instance, one can
use

Sm([u]) = S0 + (S1 − S0)e−V
2
th/|[u]|2 . (1.7)

1.4 Dynamic model

The phenomenological model of membrane permeabilization proposed in [67]
is based on the following assumptions, which come from experimental experiments
[97]:

• Permeabilization results from a long-term effect of defects in the membrane.

• The dynamics of alteration and reconstruction of the membrane are quite
long.
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• Lipids diffuse along the membrane quite rapidly, so surface diffusion has to
be accounted for.

In [67, 72], a two-step model for membrane electroporation is proposed. The
membrane surface conductivity is given by

Sm(t, ·) = S0 + S1X1(t, ·) + S2X2(t, ·), (1.8)

where S0 is the membrane conductivity at rest, S1 is the conductivity of the fully
porated membrane, S2 is the membrane conductivity due to the long term effect of
electroporation. The dimensionless variables X1 and X2 refer to as the degree of
poration during the pulse, and the degree of long term changes in the membrane
respectively. They satisfy the following equations:

∂X1

∂t
=
β(Vm(t, ·))−X1(t, Vm(t, ·))

τ1

, t > 0

∂X2

∂t
− dΓ∆ΓX2 =

[
(X1 −X2)

τ2

]+

, t > 0

X1|t=0 = X0
1 , X2|t=0 = X0

2 .

(1.9a)

(1.9b)

(1.9c)

where [·]+ denotes the positive part, τ1 and τ2 are the characteric times of pore
creation and changes in the membrane. The β is a sigmoidal function, for instance

β(λ) =
1 + tanh(k1(|λ| − Vth))

2
.

1.5 Conclusion

In this first chapter, we presented some models of cell electroporation found in
the literature. From the general model of electric potential of a cell in the linear
regime, models of electroporation can be derived by either adding an electropora-
tion current or assuming an ad hoc on the membrane conductivity. In the second
case, the phenomenological law can be chosen based on a static hypothesis or can
take the dynamical effects of the phenomenon into account. Now, the idea is to
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generalize this second approach and derive an accurate model of tissue electropo-
ration. This can be done either by deriving phenomenological models directly at
the tissue scale (see Chapter 2) or by obtaning a macroscopic model starting from
a well-established model at the cell scale (see Chapter 3).
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Chapter 2

Numerical study of existing

phenomenological models of tissue

electroporation

This chapter is the result of a collaboration with the bioelectromagnetism lab
Ampère (Lyon, France).

Although a single-cell model is a valuable tool to study the basic mechanisms
of electroporation, it cannot describe tissue electroporation. For efficient in vivo
tissue electroporation, the electric field distribution, which depends on electrode
geometry, position, and electrical properties of the sample, is crucial [66]. The
electrical properties of biological tissue (conductivity and permitivity) change once
the tissue is permeabilized and the electric field distribution is changed. The largest
part of these changes is attributed to increased membrane conductivity due to
electroporation. In a medical framework, it is important to generate minimal
damage to the healthy tissue surrounding a tumor tissue, so it is desirable the use
of mathematical models and computational tools that allow the simulation of the
distribution of electric field applied to create an appropriate treatment strategy.
We present here a non exhaustive review of models of tissue electroporation in
order to compare their features.
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2.1 Experimental framework

2.1.1 Experimental set-up

We first present a typical experimental set up of tissue electroporation [110]:
100 µs pulses are delivered using needles inserted perpendicularly to the tissue
surface. Different applied pulse amplitudes are considered.

Figure 2.1: Needle electrodes used in experiments of [110].

2.1.2 Data available

The area of reversibly permeabilized tissue can be determined by means of
the bleomycin method. Experiment description and details of the method can
be found in [81]. When irreversible electroporation is performed on cell cultures,
the electroporated zone (ablation zone) can be imaged using green fluorescent
protein for living cells and red fluorescent protein for dead cells (see Figure 2.2)
[107]. Nevertheless, this type of data is not the most reliable to perform model
calibration, especially when in vivo experiments are considered.

The applied voltage and resulting current can be acquired much more eas-
ily using high voltage and current probes respectively with an oscilloscope. The
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Figure 2.2: Visualization of the area of tissue irreversibly electroporated. Cells
grown in (a) 3D Matrigel or (b) 2D media-only culture conditions [107].

chronograms of current thus obtained give valuable information on the dynamics
of the electroporation process. Indeed, in Figure 2.3 a typical behavior of the
current signal when a rectangular electroporating pulse is applied to a living tis-
sue is presented. This example does not correspond to an actual experiment but
it shows the main features that can be noticed in experimental measurements in
tissues [37]: after an initial peak due to cell membrane charging, current increases
exponentially and afterwards it seems to increase much slower in a linear fashion
or it stops increasing. The initial abrupt change in conductance is probably the
manifestation of the immediate and reversible membrane permeabilization. The
later exponential rise shows that membrane conductance increases slowly and mod-
erately during the pulse. The gray line in Figure 2.3 shows what would be the
behavior of the tissue in case the electroporation phenomenon did not exist [106].
Thus, observations made of a typical recording of current during the application
of a pulse underline the necessity to develop a time-dependent model in order to
provide accurate prediction of the electric current in the treated tissue throughout
the whole duration of applied electric pulses.
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Electroporating pulse
Non electroporating pulse

Figure 2.3: Typical recording (black line) of current during the application of a 100
µs pulse. The gray line indicates what would be the response if electroporation
did not occur [106].

2.2 Different approaches to model electroporation

at the tissue scale

2.2.1 Statement of the problem

Given the geometry presented in Figure 2.1, all models of tissue electroporation
presented next will be stated in a closed domain Ω, corresponding to the piece of
tissue on which electroporation is applied. Those models always feature an equa-
tion on the electric potential ϕ. To close the problem, boundary conditions must
be stated on ϕ. On the outer surfaces of the domain ∂Ω, a Neumann homogeneous
boundary condition is applied whereas a Dirichlet boundary condition is applied
on each electrode E+ and E−.


ϕ = U(t) on E+,

ϕ = 0 on E−,

∂nϕ = 0 on ∂Ω.

(2.1a)

(2.1b)

(2.1c)

We now present two different approaches to model tissue electroporation. The
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first one is based on the assumption that the tissue is made of a single phase
through which a single conductive current density is assumed to flow (see section
2.2.2). The second approach assumes that two kinds of current densities coexist
in the tissue: one flows through the cells and the other one flows through the ex-
tracellular medium. This assumption is made in an attempt to take into account
the biphasic biological composition of the tissue (see section 2.2.3).

The purpose of this chapter is to carry out a numerical comparison of different
models of tissue electroporation in the same configuration.

2.2.2 Monophasic models

2.2.2.1 Static model

Steady-state model of electroporation. In most cases, the model used to
simulate the electric field distribution at the tissue scale is based on a static hy-
pothesis, where the tissue is described as a conductive medium [110] :

∇ · (σ∇ϕ) = 0 in Ω, (2.2)

where σ and ϕ are the tissue conductivity and the electric potential, respectively.
This type of model describes only the steady-state that appears once the process
of electroporation is completed. First, a simple Laplace equation is considered,
together with two types of boundary conditions (Dirichlet on the electrodes and
Neumann on the outer boundaries), to describe the electric field inside the tissue
[78, 81]. It corresponds to taking the tissue conductivity σ as a constant. The
spatial distribution of the electric field is then correlated with the tissue necrosis
observed when irreversible electroporation is performed [81]. However, as electro-
poration leads to an increase of cell membrane permeability when the transmem-
brane potential (TMP) exceeds a certain threshold, and therefore an increase of
the membrane conductivity, a nonlinear model of the tissue conductivity σ(∇ϕ)

with respect to the local electric field ∇ϕ is later introduced. Different kinds of
models have been considered but the most suitable ones rely on sigmoid functions
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[28, 110]. For instance [28]

σ(∇ϕ) = σmin + (σmax − σmin)

(
1 + tanh(k(|∇ϕ| − Eth))

2

)
(2.3)

σmin and σmax are respectively, the conductivities for safe and electropermeabi-
lized tissues, Eth is the electric field threshold and k is a fitting coefficient that
modulates the transition to the electroporation.

Equation (2.2) is based on a static hypothese. In the literature, numerous stud-
ies use this static approximation [110, 28, 106], includind for treatment planning
[131, 82, 44, 42].

Well-posedness. Let Ω be an open closed set of Rn. Let f belong to L2(Ω) and
σ : R→ R be such that

σ is continuous on R,

s 7→ σ(s) is even on R,

0 < σmin ≤ σ(s) ≤ σmax,

σ is increasing on R+,

lim
s→+∞

σ(s) = σmax.


(2.4)

The goal of this paragraph is to show that the boundary value problem (2.5) is
well-posed. {∇ · (σ(|∇ϕ|)∇ϕ) = f, in Ω

ϕ|∂Ω
= 0, on ∂Ω.

(2.5a)

(2.5b)

Remark 2. In order to use classical results in the proof and to avoid some techni-
calities, boundary value problem (2.5) features a volumic source term f and ho-
mogeneous Dirichlet conditions. Let us remark that solving (2.5) does not exactly
correspond to solving equation (2.2) associated with non homogeneous Dirichlet
boundary conditions on the electrodes (such as (2.1)).

Definition 3. We define the functional J as the operator from H1
0 (Ω) to R such
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that

∀u ∈ H1
0 (Ω), J(u) :=

∫
Ω

∫ |∇u|(x)

0

sσ(s) dsdx−
∫

Ω

fu dx. (2.6)

• J is well defined: Let u ∈ H1
0 (Ω).

|J(u)| ≤ 1 + σmax
2

‖∇u‖2
L2(Ω) + ‖f‖L2(Ω) ‖u‖L2(Ω) < +∞,

so J is well defined.

• J is differentiable: Let us take (u, h) ∈ (H1
0 (Ω))2.

J(u+ h)− J(u) =

∫
Ω

∫ |∇(u+h)|(x)

|∇u|(x)

sσ(s) dsdx−
∫

Ω

fh dx

=

∫
Ω

σ(|∇u|)∇u · ∇h dx−
∫

Ω

fh dx+ o(h).

This guarantees that J is differentiable and that

J ′(u) · h =

∫
Ω

σ(|∇u|)∇u · ∇h dx−
∫

Ω

fh dx. (2.7)

• J is strictly convex: we show that J ′ is monotonous, meaning

(J ′(u)− J ′(v), u− v) ≥ 0, ∀(u, v) ∈ (H1
0 (Ω))2. (2.8)

First remark that

(J ′(u)− J ′(v), u− v) =

∫
Ω

σ(|∇u|)|∇u|2 dx−
∫

Ω

σ(|∇u|)∇u · ∇v dx

−
∫

Ω

σ(|∇v|)∇u · ∇v dx+

∫
Ω

σ(|∇v|)|∇v|2 dx,

=

∫
Ω

(
σ(|∇u|)∇u− σ(|∇v|)∇v

)
· ∇(u− v) dx.
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Denoting U = ∇u and V = ∇v, we can write

(σ(|U |)U − σ(V )V ) · (U − V ) =
n∑
i=1

(σ(|U |)Ui − σ(V )Vi)× (Ui − Vi)

=
n∑
i=1

σ(|U |)U2
i + σ(V )V 2

i − (σ(|U |) + σ(|V |))UiVi,

≥
n∑
i=1

σ(|U |)U2
i + σ(V )V 2

i −
σ(|U |) + σ(|V |)

2
(U2

i + V 2
i ),

=
n∑
i=1

σ(|U |)− σ(|V |)
2

(U2
i − V 2

i ),

=
σ(|U |)− σ(|V |)

2
(|U |2 − |V |2),

=
|U |+ |V |

2
(σ(|U |)− σ(|V |))(|U | − |V |) ≥ 0,

as σ is an increasing function. Thus (2.8) is satisfied, and J is convex.

• lim J(u) = +∞ when ‖u‖H1
0 (Ω) → +∞: Let u ∈ H1

0 (Ω) and α > 0 be a
positive constant.

J(u) ≥ 1 + σmin
2

‖∇u‖2
L2(Ω) −

∫
Ω

fu dx,

≥ 1 + σmin
2

‖∇u‖2
L2(Ω) −

α

2
‖u‖2

L2(Ω) −
1

2α
‖f‖2

L2(Ω) , using Young’s inequality,

≥
(

1 + σmin
2

C − α

2

)
‖u‖2

L2(Ω) −
1

2α
‖f‖2

L2(Ω) , using Poincaré’s inequality.

Choosing α such that C(1 + σmin) − α > 0, we obtain that lim J(u) = +∞
when ‖u‖H1

0 (Ω) → +∞.

J is a differentiable convex functional verifying lim J(u) = +∞ when ‖u‖H1
0 (Ω) →

+∞, which guarantees that there exists an unique ϕ ∈ H1
0 (Ω) that minimizes J ,

i.e. such that

J ′(ϕ) · h =

∫
Ω

σ(|∇ϕ|)∇ϕ · ∇h dx−
∫

Ω

fh dx = 0 ∀h ∈ H1
0 (Ω). (2.9)
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As (2.9) is exactly the variational formulation associated with the boundary value
problem (2.5), we have shown that problem (2.5) have an unique solution ϕ ∈
H1

0 (Ω).

Toward dynamic models. The static approach presents critical limitations
since electroporation is a complex dynamic phenomenon during which the phys-
iology of the membrane as well as the composition of the intra and extracellular
media change during and after pulse delivery [85]. A static model cannot describe
the dynamical behavior of the current signal measured during a pulse either. In
the literature, a very few attempts exist to take the time dependent effects of tissue
electroporation into account. In sections 2.2.2.2 and 2.2.3, we present two differ-
ent phenomenological approaches which claim to reproduce some of these time
effects. It is worth noticing that an other dynamic model of tissue electroporation,
constructed using inverse analysis, is presented in [71]. We did not include the
numerical study of this model in the comparison presented in this chapter. From
now on, we do not investigate the well-posedness of the different boundary value
problems stated. Each would necessit a full mathematical analysis, which is not
the goal of the following study.

2.2.2.2 A first dynamic model of tissue conductivity

As previously stated in section 1.4, a phenomenological model was proposed in
[67] in order to describe the dynamic related to the membrane alteration during cell
electroporation. To this end, undimensional functions are introduced to model the
degree of poration or permeabilization of the cell. Inspired by this approach, but
reducing the study to the dynamic response of the tissue during the application of
the pulse voltage, one can introduce two functions X1 and X2, which vary between
0 and 1 and are ruled by different dynamics: X1 is related to the process for the
pore creation while X2 reports the growing of the electroporation once it has been
initialized. In those conditions, the distribution of electric field is given by:

∇ · (σ(t,∇ϕ) · ∇ϕ) = 0 in Ω. (2.10)
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The membrane conductivity is given by:

σ(t,∇ϕ) = σ0 + σ1X1(t,∇ϕ) + σ2X2(t,X1), (2.11)

where σ0, σ1 and σ2 are the equivalent conductivities related respectively to an
unpulsed tissue and a deeply electroporated tissue once the dynamics are complete.
Concerning the pore creation, the dynamic for X1 satisfies the following equation:

dX1

dt
=

1

τ1

(β(∇ϕ)−X1), with β(∇ϕ) =
1 + tanh(k(|∇ϕ| − Eth))

2
, (2.12)

where the characteristic time τ1 is introduced to account for the increase of the
poration creation. The threshold effect is modeled by the sigmoid function β in a
similar way as equation (2.3). The appearance of pores in the membrane induces
an alteration of the membrane that goes on growing during the application of
the pulse voltage. The dynamic of this second phenomenum is governed by the
following equation:

dX2

dt
=

1

τ2

(X1 −X2), (2.13)

where the characteristic time τ2 is introduced to account for the increase of the
membrane alteration.

2.2.3 Biphasic model

The idea of introducing a phenomenological model of dynamic conductivity
based on [67, 72] was actually introduced in [85, 123] with an important addition
compared to what we just presented in section 2.2.2.2. Whereas a single conductive
current density is assumed in equation (2.10), two kinds of current densities are
considered in the dynamic modeling: one flows through the cells and the other
one flows through the extracellular medium. Namely, a dynamic equation on
the current flowing through one cell is introduced considering equivalent circuit
laws at the cell level and this equation is translated in terms of electric field
and macroscopic current density introducing the dimensions of the sample. This
addition is made in a attempt to reproduce the capacitive current peak observed
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in the experiments (see Figure 2.3). In those conditions, the distribution of electric
field is now given by:

∇ ·
(
σe · ∇ϕ+

−→
J cells(t,∇ϕ)

)
= 0 in Ω, (2.14)

where σe is the equivalent conductivity at the tissue scale for the extracellular
medium and

−→
J cells is the current density flowing through the cells, governed by

the following first order differential equation

(
1 +

σm(t, vm)

σc

)−→
J cells +

εm
σc

d
−→
J cells

dt
= σm(t, vm)∇ϕ+ εm

d∇ϕ
dt

, (2.15)

where σc and σm are the equivalent conductivity at the tissue scale for the intracel-
lular medium and the membrane, respectively and εm is the equivalent permittivity
of the membrane at the tissue scale. The equivalent membrane conductivity σm is
affected by the amplitude of the homogenised electric field around the membrane.
The homogenised electric field Em can be computed using the local electric field
defined at the tissue scale as

Em(t, x) =
1

2

(
∇ϕ(t, x)−

−→
J cells(t, x)

σc

)
at any time t and at any point x ∈ Ω.

(2.16)
The amplitude of the transmembrane voltage at the tissue scale, denoted vm, is
then defined as

vm(t, x) = dcell|Em(t, x)| at any time t and at any point x ∈ Ω. (2.17)

σm(t, vm) is obtained using phenomenological laws substantially similar to those
introduced in section 2.2.2.2:

σm(t, vm) = σm0 + σm1X1(t, vm) + σm2X2(t,X1), (2.18)

where σm0, σm1 and σm2 are the equivalent membrane conductivities related respec-
tively to an unpulsed tissue and a deeply electroporated tissue once the dynamics

83



CHAPTER 2. MODELS OF TISSUE ELECTROPORATION

are complete. Concerning the pore creation, the dynamic for the function X1,
which varies between 0 and 1, satisfies the following equation:

dX1

dt
=

{
β1(vm)−X1

τ1
, if β1(∇ϕ) ≥ X1,

0, else.
(2.19)

where τ1 is the the characteristic time for the increase of the pores creation. The
threshold effect is modeled by the sigmoid function β1 in a similar way as in
equations (2.3) and (2.12):

β1(vm) =
1 + tanh(k1(vm − Vth))

2
, (2.20)

except that the argument in the hyperbolic tangent is expressed in terms of am-
plitude of the transmembrane voltage vm. Concerning the second dynamic, the
function X2 verifies a dynamic similar to the one introduced in (2.13)

dX2

dt
=

{
β2(X1)−X2

τ2
, if β2(X1) ≥ X2,

0, else.
(2.21)

except here a sigmoid function β2 is introduced, with a threshold effect controlled
by parameter Xth, which is not especially sought:

β2(X1) =
1 + tanh(k2(X1 −Xth))

2
. (2.22)

Equivalent tissue conductivity. Let us remark that σm does not represent
the tissue conductivity. A steady-state approximation of equation (2.15) leads to
solving the following equivalent form of equation (2.14):

∇ ·
((

σe +
σcσm
σc + σm

)
· ∇ϕ

)
= 0 in Ω, (2.23)

An equivalent tissue conductivity can thus be defined as

σeq = σe +
σcσm
σc + σm

. (2.24)
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Remark 3. Formula (2.24) implies that at any time t and at any point x ∈ Ω,

σe ≤ σeq(t, x) ≤ σe + σc.

The tissue conductivity stays bounded, and cannot take high values (as it cannot
overpass σe + σc) whereas when the membrane of one cell is permeabilized, its
conductivity can take very high values (106 S/m). This difference between per-
meabilized membrane conductivity values and electroporated tissue conductivity
values has been observed experimentally.

Let us finish this section by noting that in the three modeling approaches pre-
sented, none takes the Joule effect into consideration. Indeed, the application of
high-voltage pulses to biological tissue causes not only electroporation but also
significant heating and can result in thermal damage to the tissues. The pre-
sented models do not take heating into account as electroporation, even when it
is irreversible, is not necessarily accompanied by thermal damage in the treated
region [40]. Nevertheless, thermal damage can appear in specific regions where the
electric field is too large, for instance, at the edges of the electrodes.

2.3 Numerical methods

2.3.0.1 Computational model.

2D configuration. To proceed to a valid comparison between models, the first
step is to choose a computational domain which must be the same for each sim-
ulation and each model considered, to be related to a single set of experiments.
We chose to use the computational domain presented in [85, 123], in order to use
both the experimental data and the parameters of [85, 123] in our simulations.
This 2D domain is in relation with the experimental set up presented in Figure
2.1. As the length of the needles is very large compared to the diameter of the
needles, the numerical problem can be reduced to a 2D problem. To model a piece
of tissue, a square with dimensions 32 mm × 32 mm is defined. As previously
stated, Neumann homogeneous boundary conditions are set on the outer bound-
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ary of this domain, and the potential is forced on the boundary of the electrodes,
which are positioned in the middle of the domain. Because of the symmetries, the
computational domain can be reduced to a quarter of the initial geometry with
the proper boundary conditions set (2.25) on the symmetric planes B1 and B2.

{
ϕ = 0 on B1,

∂nϕ = 0 on B2.

(2.25a)

(2.25b)

Figure 2.4: 2D full domain and final computational mesh obtained considering the
symmetry of the problem.

A discretization of the variables in the spatial domain is made using the finite
element method. Problem geometry was meshed (see Figure 2.4) and simulations of
electroporation are performed using Freefem++ [61]. To solve the elliptic equations
(2.2), (2.10) and (2.14), a discretization of the variables in the spatial domain is
made using the finite element method with Freefem++ [61]. For the static model,
the nonlinear model is solved using a modified fixed point method (see section
2.3.0.2). The discretization in time, when needed, is performed using a Runge
Kutta scheme of order 4 to solve equations (2.12), (2.13), (2.15), (2.19) and (2.21).
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3D configuration. Another possibility is to use a 3D domain for the simulations,
to account for the complete geometry of the experiment. To this end, we considered
to use the computational domain presented in [71]. To model a piece of tissue, a
box with dimensions 30 mm × 20 mm × 20 mm is defined. As always, Neumann
homogeneous boundary conditions are set on the outer boundary of this domain,
and the potential is forced on the boundary of the electrodes, which are positioned
in the middle of the domain, the tip 5 mm above the box boundary.

Figure 2.5: Numerical set-up of the 3D experiment.

Again, a discretization of the variables in the spatial domain is made using the
finite element method. Problem geometry is meshed with the GMSH mesher [31]
(see Figure 2.5) and the resulting mesh is imported to Freefem++ [61] in order to
perform simulations of electroporation.

Choice of elements. P 2 elements are the natural choice of function space to
apply the finite element method to our problems since the nonlinearity involves
the gradient of ϕ. Nevertheless, we also did simuations with P 1 elements for the
sake of comparison with standard numerical studies in the literature.
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2.3.0.2 Resolution of the nonlinear problem.

To solve the nonlinear problem (2.2) with σ as in (2.3), the most straightforward
approach is to use a fixed point algorithm:

• Initialization:

- Solve ∇ · (σmin∇ϕ0) = 0 in Ω + boundary conditions.

• Loop: while n < Nmax do

- Compute σ(∇ϕn) = σmin + (σmax − σmin)
(

1+tanh(k(|∇ϕn|−Eth))
2

)
,

- Solve ∇ · (σ(∇ϕn)∇ϕn+1) = 0 in Ω + boundary conditions.

Nevertheless, this scheme leads to a solution oscillating between two potential
values, when the sigmoid function σ is too stiff: indeed, the conductivity can go
directly from its initial value σmin to its maximum value σmax without stabilizing
at an intermediate value (see Figure 2.6). This issue was addressed in [28], where
a modified fixed point method is suggested to overcome this convergence problem.
We reproduce here this method in a variational from, adapted for the use of the
software FreeFem++ [61].

• The problem is: solve ∇ · (σ(∇ϕ)∇ϕ) = 0 + Dirichlet boundary conditions
on the electrodes and Neumann boundary condition on the outer boundaries.
In matricial form, this is equivalent to solving the nonlinear system A(ϕ)ϕ =

b.

• Initialization:

- Solve ∇ · (σmin∇ϕ0) = 0 in Ω + Dirichlet boundary conditions on the elec-
trodes and Neumann boundary condition on the outer boundaries.

- K = 1, ‖rold‖ = +∞.

• Loop: while ‖rold‖ > ‖r‖

- Compute σ(∇ϕn) = σmin + (σmax − σmin)
(

1+tanh(k(|∇ϕn|−Eth))
2

)
,
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- Get the FE matrix A and compute r = b− A(ϕn)ϕn.

- If ‖r‖ > ‖rold‖, take K = K/2.

- Solve ∇ · (σ(∇ϕn)∇(ϕn+1 + (1 − K)ϕn)) = 0 in Ω + Dirichlet boundary
conditions on the electrodes and Neumann boundary condition on the outer
boundaries.

For the two dynamic models, the choice of a sufficiently small time step can
free us from applying a fixed point algorithm (see [72]).

2.3.0.3 How to compute the numerical electric current?

The numerical current I is obtained when summing the total current density
−→
j over the surface of one electrode. Naming this electrode E+, we can state that

I =

∫
E+

−→
j |E+ · −→n |E+dS (2.26)

Compute I directly with the surface integral. With Freefem + +, it is
possible to compute I using directly formula (2.26) and surface integrals (1D in-
tegral in 2D, with a correction to relate to the 3D experiments, and 2D integral in
3D).

I = int1d(Sh,E+)( (N.x*J_x + N.y*J_y)* lenghtE ) in 2D

or

I = int2d(Sh,E+)( N.x*J_x + N.y*J_y + N.z*J_z ) in 3D

The drawback of such a calculus is the importance of the mesh precision around
the electrodes that greatly influences the output. This is already the case with a
simple Laplace equation:

∆ϕ = 0, in Ω,

ϕ = U+, on E+,

∂nϕ = 0, on ∂Ω.
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(b) Voltage applied = 875 V, k = 10−5
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(c) Voltage applied = 375 V, k = 0.0006
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Figure 2.6: Convergence study using the classical fixed point iterations and the
modified one to solve the nonlinear problem (2.2) for two different voltages: (a),
(c) 375 V, below Eth and (b), (d) 875 V, above Eth, and for two different values
of k: (a), (b) k = 10−5 and (c), (d) k = 0.0006.

In 2D, the following boundary conditions are added on the symmetric planes B1

and B2:

ϕ = 0, on B1,

∂nϕ = 0, on B2,
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while in 3D a Dirichlet boundary condition is added on E−:

ϕ = 0, on E−.

This corresponds to solving equation (2.2) in the linear case (
−→
j = σ∇ϕ with

σ = 1). Let us consider the quantity

I =

∫
E+

∂nϕdS.

In Figure 2.7, I is displayed for different 2D mesh precisions from 5 points meshing
the half-electrode surface to 50 points. A preoccupying feature is that it seems
that a very high precision around the electrode is needed to achieve convergence.

10 20 30 40 50

0.16

0.18

0.2

0.22

Number of points meshing the half-electrode

I
(A

)

FE P 1 - Isurf
FE P 2 - Isurf

Figure 2.7: Value of quantity I for different 2D mesh precisions from 5 points
meshing the (half-)electrode surface to 50 using both P1 and P2 elements.

In 3D, the exact same type of behavior can be observed when solving a simple
Laplace equation. When solving the nonlinear static model presented in section
2.2.2.1, one can compute the numerical current for different meshes. Figure 2.8
represents the four different surface meshes that we used to investigate the conver-
gence in space of the numerical scheme. Figure 2.9 presents the simulated currents
for all four meshes, computed with both P1 and P2 elements.
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Initial mesh Refined mesh 1

Refined mesh 2 Refined mesh 3

Figure 2.8: Four different meshes are used to investigate the convergence in space
of the numerical scheme. The initial mesh (top left) is the one used in [71], provided
by the authors.

In Figure 2.9, we can see that the simulated current amplitude increases when
refining the mesh, which is the sign that the convergence in space was not com-
pleted with the initial mesh. Our machine could not handle a finer mesh than the
refined mesh 3 presented in Figure 2.8, so we cannot even be sure that convergence
was achieved with P 2 elements and the finer mesh.

Compute I with a volume integral. All models presented in section 2.2 are
based on solving, at one point, the following PDE:

−∇ · −→j = 0 in Ω. (2.27)
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Figure 2.9: Simulated current I computed using a surface integral. I is obtained
from the static model of section 2.2.2.1 for the four different meshes presented in
Figure 2.8. Both P1 and P2 elements are used for comparison.

Multiplying (2.27) by a test function w, integrating on Ω and using Green’s
formula yields: ∫

Ω

−→
j · ∇w dx =

∫
∂Ω

−→
j · −→n |∂Ω

w dS. (2.28)

Let us consider the following test function: w is the unique solution of the
following Laplace problem

∆w = 0, in Ω,

w = 1, on E+,

∂nw = 0, on ∂Ω.

In 2D, the following boundary conditions are added on the symmetric planes B1

and B2:

w = 0, on B1,

∂nw = 0, on B2,
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while in 3D a Dirichlet boundary condition is added on E−:

w = 0, on E−.

Putting w in (2.28) yields∫
Ω

−→
j · ∇w dx =

∫
E+

−→
j · −→n |E+w dS = I. (2.29)

Equality (2.29) gives a method to compute the simulated current I using a volume
integral instead of a surface integral. The main advantage of this approach is to
free oneself from the mesh precision issue precedently raised. In Figure 2.10 are
displayed the same quantities Isurf displayed in Figure 2.7, with addition of the
quantities Ivol obtained using a volume integral to compute I in the linear case
(
−→
j = σ∇ϕ with σ = 1):

I =

∫
Ω

∇ϕ · ∇w dx.
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I
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FE P 1 - Ivol
FE P 2 - Isurf
FE P 2 - Ivol

Figure 2.10: Value of quantity I in the linear case (j = σ∇ϕ with σ = 1) for
different 2D mesh precisions from 5 points meshing the half-electrode surface to 50
using both P1 and P2 elements and both surface and volume methods to compute
I.

In Figure 2.11 are displayed the simulated currents computed using the nonlin-
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ear static model of section 2.2.2.1 for the four 3D meshes of Figure 2.8, with both
P1 and P2 elements, and with I calculated via a surface integral or a volumic one.
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Figure 2.11: Simulated current computed using the static model of section 2.2.2.1
for the four different meshes presented in Figure 2.8. Both P1 and P2 elements
are used. The current is computed with either the surface or volume method for
comparison.

It appears that the volume method, used with P 2 elements, gives right away
the limit value of the surfacic method even for a looser mesh, which results in a
very important gain when considering the computational cost of the simulation,
especially in 3D. We believe this is the right configuration to use in order to
compute the simulated current, and used it to compute the different currents of
each model presented in section 2.2.

2.4 Numerical comparison of 3 models of tissue

electroporation with experimental data

2.4.0.1 Numerical results obtained in 2D for the static model.

As presented in section 2.3.0.2, the nonlinear equation (2.2) is solved using a
modified fixed point iteration. Numerical simulations were done using the Finite
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Element software FreeFem++ [61] on the 2D-mesh featured in Figure 2.4. The pa-
rameters used for the simulations are those presented in Table 2.1. The simulated
currents are calculated with the volumic method (see section 2.3.0.3). Figure 2.12
shows the simulated currents flowing through the needles when a 100 µs pulse is
applied between the needles, with different nominal electric fields (375 V/cm, 625

V/cm, 875 V/cm, 1125 V/cm, 1375 V/cm), for electrodes of diameter 0.7 mm.
As we are working on a steady-state hypothesis, the current is logically constant
throughout the pulse.

Table 2.1: Parameters of the simulations for the static model of tissue electropo-
ration.

Parameter Symbol Value Unit

Initial conductivity σmin 0.065 S/m
Final conductivity σmax 0.39 S/m
Electric field threshold Eth 472 V/cm
Parameter in the sigmoid k 0.0006
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Figure 2.12: Simulated current of the static model for five different voltage applied.

The tissue conductivity shows where the tissue is electroporated. Figure 2.21
shows the spatial distribution of the simulated tissue conductivity σ for all different
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voltages applied.
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Figure 2.13: Spatial distribution of the conductivity σ with the static model.

In Figure 2.14 is displayed the value of σ locally in the middle point between
the two electrodes for all different fields applied. Two behaviors are observed:
below the electroporation threshold, the conductivity is constant (equal to σmin)
whereas above the electroporation threshold, the conductivity is constant (equal to
σmax). There is no distinction in the conductivity value between the four electric
fields which are above the electroporation threshold.
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Figure 2.14: Value of the conductivity σ computed with the static model in the
middle point between the two electrodes.
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2.4.0.2 Numerical results obtained in 2D for the first dynamic model.

Equations (2.12) and (2.13) are solved using a Runge Kutta scheme of order 4.
Choosing a sufficiently small time step ensures convergence without using a fixed
point method to solve (2.10). Numerical simulations were done using the Finite
Element software FreeFem++ [61] on the 2D-mesh featured in Figure 2.4. The
parameters used for the simulations are those presented in Table 2.2.

Table 2.2: Parameters of the simulations for the first dynamic model of tissue
electroporation.

Parameter Symbol Value Unit

Initial conductivity σ0 0.065 S/m
Conductivity for the 1st process σ1 0.257 S/m
Time constant for the 1st process τ1 1 µs
Conductivity for the 2nd process σ2 0.093 S/m
Time constant for the 2nd process τ2 80 µs
Electric field threshold Eth 472 V/cm
Parameter in the sigmoid k 0.0006

Figure 2.15 shows the simulated currents flowing through the needles when a
100 µs pulse is applied between the needles, with different nominal electric fields
(375 V/cm, 625 V/cm, 875 V/cm, 1125 V/cm, 1375 V/cm), for electrodes of
diameter 0.7 mm.

The spatial distribution of the different quantities involved in the model can
be analyzed. The tissue conductivity shows where the tissue is electroporated.
Figure 2.21 shows the spatial distribution of the simulated tissue conductivity σ
for a voltage of 875 V.

In Figure 2.17 is displayed the value of σ locally in the middle point between the
two electrodes for all different fields applied. Two behaviors are observed: below
the electroporation threshold, the conductivity stays more or less constant whereas
above the electroporation threshold, the conductivity rises rapidly and then slowly
during the pulse. There is almost no distinction in the conductivity behavior
between the four electric fields which are above the electroporation threshold.

The spatial distribution of both electroporation processes X1 and X2 is dis-
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Figure 2.15: Simulated current of the first dynamic model for five different voltage
applied.
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Figure 2.16: Spatial distribution over time of the conductivity σ computed with
the first dynamic model for an applied voltage of 875 V/cm.

played in Figure 2.18 for an applied voltage of 875 V, and locally at the central
point between the electrodes for all different applied voltage in Figure 2.19. X1

quickly reaches a stationary regime in the whole tissue, with two different ampli-
tudes only, for electric fields below or above the electroporation threshold. Con-
cerning X2, the time evolution is slower than the one of X1: the stationary regime
is not reached at the end of the pulse. As for X1, only two different amplitudes
are observed.
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Figure 2.17: Value of the conductivity σ computed with the first dynamic model
in the middle point between the two electrodes for an applied voltage of 875 V/cm.
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Figure 2.18: Spatial distribution over time of both electroporation processes X1

andX2 computed with the first dynamic model for an applied voltage of 875 V/cm.
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Figure 2.19: Evolution over time of the functions X1 and X2 computed with the
first dynamic model in the middle point between the two electrodes for an applied
voltage of 875 V/cm.

2.4.0.3 Numerical results obtained in 2D for the dynamic model with

two current densities.

Equations (2.15), (2.19) and (2.21) are solved using a Runge Kutta scheme
of order 4. To avoid the approximation of the time derivative of ∇ϕ in equation
(2.15), we solve equation (2.30) instead.

εm
σc

d
−→̃
J cells

dt
+
σm(t,∇ϕ)

σc

−→̃
J cells +

−→
J cells = 0, (2.30)

where
−→̃
J cells =

−→
J cells − σc∇ϕ. As precedently, choosing a sufficiently small time

step ensures convergence without using a fixed point method to solve (2.14). Nu-
merical simulations were done using the Finite Element software FreeFem++ [61]
on the 2D-mesh featured in Figure 2.4. The parameters used for the simulations
are those presented in Table 2.3. Figure 2.20 shows the simulated currents flowing
through the needles when a 100 µs pulse is applied between the needles, with dif-
ferent nominal electric fields (375 V/cm, 625 V/cm, 875 V/cm, 1125 V/cm, 1375

V/cm), for electrodes of diameter 0.7 mm. We noticed first that the curves of
current that we obtained does not fit the experimental data as well as the simula-
tions presented in [85] (data not shown). We assume this difference is due to the
way the simulated current is calculated (surface integral versus volume integral,
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Table 2.3: Parameters of the simulations for the dynamic model of tissue electro-
poration using two current densities.

Parameter Symbol Value Unit

Extracellular medium conductivity σe 0.08 S/m
Intracellular medium conductivity σc 0.35 S/m
Membrane relative permittivity εm 60000 F/m
Vacuum permittivity ε0 8.85 · 10−12 F/m
Typical size of a cell dcells 22 µm
Initial membrane conductivity σ0 0.01 S/m
Membrane conductivity for the 1st process σ1 3 S/m
Time constant for the 1st process τ1 1 µs
Membrane conductivity for the 2nd process σ2 7 S/m
Time constant for the 2nd process τ2 80 µs
Transmembrane voltage threshold Vth 0.52 V
Parameter in the sigmoid β1 k1 40 V −1

Threshold Xth in the sigmoid β2 Xth 0.33
Parameter in the sigmoid β2 k2 10

see section 2.3.0.3). Nevertheless, varying some parameters leads to obtaining a
better fit, at least for the first three voltages (see Figure 2.25, where parameter
Xth was changed from 0.33 to 0.25). However, it seems very unlikely to recover the
rightful current curves for the two highest voltages. This is probably due to the
fact that electrode/tissue reactivity is not taken into account by this model. The
impact of this phenomenon could induce nonlinear effects, especially for higher
electric fields.

This dynamic model brings some insights on the dynamics of electroporation
at the tissue scale. We propose to study the time evolution of the electroporation
process. The spatial distribution of the different quantities involved in the model
can be analyzed. We also consider the different quantities values localy at two dif-
ferent points of the computational domain: on the boundary of one needle (point
PE) and in the middle point between the two electrodes (point PM).

The distribution of the equivalent tissue conductivity (2.24) is a good indicator
of where the tissue is electroporated. Figure 2.21 shows the spatial distribution of
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Figure 2.20: Numerical chronograms of current for � 0.7 mm electrodes. The
simulations were done using the dynamic model using two current densities with
parameters reported in Table 2.3

the simulated tissue conductivity σeq for a voltage of 875 V/cm.
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Figure 2.21: Spatial distribution over time of the conductivity σeq computed with
the dynamic model using two current densities for an applied voltage of 875 V.

In Figure 2.22 is displayed the value of σeq locally at point PM for all different
fields.

Figure 2.23 shows the spatial distribution of the transmembrane potential vm
at the tissue scale, and both electroporation processes X1 and X2.

The amplitude of the transmembrane potential vm and both electroporation
processes X1 and X2 at points PM and PE are displayed in Figure 2.24. It appears
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Figure 2.22: Value of the conductivity σeq computed with the dynamic model using
two current densities in the middle point between the two electrodes for all applied
voltages.

that for the transmembrane potential, different behaviors coexist in the tissue, in
particular because of the heterogeneous distribution of the electric field between
the needles, the amplitude of the electric field being higher in the neighborhood
of the needles. The time evolution of X1 and X2 at the points PM and PE have
expected behaviors. X1 quickly reaches a stationary regime at both points, as it
is the case in the whole tissue, with different amplitudes due to the electric field
distribution. Concerning X2, the time evolution is slower than the one of X1: the
stationary regime is not reached at the end of the pulse. Let us also denote that
this process is much more important (in amplitude) at the vicinity of the electrode.

2.4.0.4 Comparison between the three 2D models and experimental

data.

Let us compare the different addings of the 3 models presented. In Figure
2.25 are presented the different simulated currents along with the experimental
current when a 875 V/cm is applied with electrodes of 0.7 mm of diameter (data
from [110]). It appears that the second dynamic model, with two different current
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Figure 2.23: Spatial distribution over time of the magnitude of the mean trans-
membrane potential vm and for both electroporation processes X1 and X2 com-
puted with the dynamic model using two current densities for an applied voltage
of 875 V/cm.

densities, is the one that permits to reproduce best the different features observed
on the current chronograms. Indeed, the capacitive peak is well captured, except
for the first value computed (peak amplitude) and both dynamics needed are well
captured. After an initial peak, current increases exponentially and afterwards it
seems to increase much slower or it stops increasing. The other dynamic model,
derived naively from [67], only capture well the second dynamic of slow increase
during the pulse.
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Figure 2.24: Evolution over time of the functions vm, X1 and X2 computed with
the dynamic model using two current densities at points PM (left) and PE (right)
for all applied voltages.

In Figure 2.25, parameters were found for all three models in order to fit the
experimental current in the case of an applied voltage of 875 V. A future work
would be to carry out calibration procedures for all three models in order to find
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Figure 2.25: Comparison between experimental current and the computed currents
with the three different phenomenological models for an applied voltage of 875
V/cm.

a set of parameters valid for all different voltages applied and for different sizes of
electrodes.

2.5 Conclusion

In this second chapter, three different phenomenological models of tissue elec-
troporation have been presented. These models, existing in (or inspired by) the
literature, are constructed based on two different hypothesis. The first one assumes
that the current density flowing through the homogeneous tissue can be expressed
as the product of the tissue conductivity and the electric field. The tissue con-
ductivity is assumed to verify an ad hoc law to fit the observations made during
the experiments. When this law is based on a static hypothesis, it is possible
to show that the associated boundary value problem admits an unique solution.
On the surface, this approach is a generalization of the approach adopted at the
cell scale (see Chapter 1). The second approach assumes that the total current
density of the tissue can be expressed as the sum of two current densities: one
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flowing through the extracellular medium and the other one flowing through the
cells. The equation on the current density flowing through the cells is derived by
considering an equivalent electrical circuit. The consideration, in this last model,
of the microscopic underlying structure of the tissue raises the question of whether
a macroscopic model of tissue electroporation could be derived mathematically
from a microscopic well-established model of cell electroporation (see Chapter 3).
The numerical part associated with this study also gave interesting results. We
established the importance in the choice of numerical tools when running simula-
tions on this type of problems, in 2D and in 3D. When using the Finite Element
Method, one should wisely choose the type of elements used, the way the nonlinear
problems are treated and the method applied to compute the simulated electric
current. The volume method for the current computation is proved to be more
precise that the surface method usely presented in the literature, while requiring
less mesh precision. Simulations of all models on the same test configuration and
using the same numerical tools to solve the equations permits to compare the main
features obtained with each model. A first comparison of all three models with
experimental data established that the biphasic dynamic model, with two different
current densities, is the one that permits to reproduce best the different features
observed on the current chronograms. Nevertheless, a further effort has to be done
to calibrate the models parameters with experimental data. Despite the fact that
the ad hoc biphasic tissue model seems to be validated with the experiments, its
physical meaning is poorly justified. To fill the gap between cell scale and tissue,
we propose in the next chapter a rigorous homogenization procedure (see Chapter
3).
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Chapter 3

Rigorous derivation of a static

model of tissue electroporation

using homogenization

This chapter is the result of a collaboration with A. Collin (Inria Bordeaux)
and S. Impériale (LMS, Inria Saclay).

In a biological tissue, there are at least two length scales that must be consid-
ered : a microscopic scale (for instance, the size of a single cell) and a macroscopic
scale (the size of a typical sample of tissue). As we have seen in chapter 1, at
the microscopic level, the partial differential equations based on first principles
or the phenomenological equations describing the phenomenon of electroporation
are well established and in good agreement with in vitro cell experiment. But at
the tissue scale, only macroscopic quantities can be computed by the biologist or
the engineer. Therefore, a homogenization procedure – see [3] for more details –
can be used to link the microscopic and macroscopic behaviors and leads to the
equations of the so called bidomain model presented hereunder. This model in-
volves two macroscopic electric potentials, corresponding to the electric potential
in the extracellular medium and the intracellular medium respectively. We recall
that in chapter 2, we studied a phenomenological model which takes into account
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the two different phases that exist at the cell scale, namely the intracellular and
the extracellular phases, by considering two different current densities, and this
phenomenological model was shown to give results that are in good agreement
with the experiments. The idea of this chapter is to recover a similar model, in
the static case, using a rigorous homogenization procedure.

3.1 Statement of the problem

3.1.1 Periodic domain.

To use a homogenization procedure, it is convenient to assume that biological
tissues have a periodic microstructure. Let ε > 0 be a small parameter. We
consider the domain Ω to be a bounded open set of R3. The domain contains
a periodic array of cells whose size is controlled by ε. Let the reference cell be
contained in the unit cube Y = [0, 1]3, see Figure 3.1b. We divide the domain Ω

periodically in each direction in identical squares (Y ε
n ) of size ε, where

Y ε
n = εn+ εY.

Here n ∈ N ε = {k ∈ Z3|Y ε
k ∩Ω 6= ∅}. We consider that a cell Y ε

i,n lives in each small
square Y ε

n . As shown in Figure 3.1a, all cells are identical, up to a translation and
scaling of size ε, to the reference cell Yi. So are their boundaries Γεn to the boundary
ΓY of Yi and so are the extracellular medium Y ε

e,n to the reference extracellular
medium Ye:

∀n ∈ N ε, Y ε
i,n = εn+ εYi,

∀n ∈ N ε, Y ε
e,n = εn+ εYe,

∀n ∈ N ε,Γεn = εn+ εΓY .
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Let us also assume that all the cells are strictly contained in Ω, that is for every
n ∈ N ε, the boundary Γεn of the cell Yi,n does not intersect the boundary ∂Ω:

∂Ω ∩ (∪nΓεn) = ∅.

The domain Ω is thus composed of two ε-dependent connected subdomains Ωε
i and

Ωε
e, see Figure 3.1a:

∪nΩε
e,n = Ωε

e, ∪nΩε
i,n = Ωε

i , ∪nΓεn = Γε.

(a) Domain Ω

�Y

Yi

Ye

(b) Periodic cell Y

Figure 3.1: Schematic illustration of the periodic medium Ω and of a unit period
Y .

3.1.2 Microscopic model.

In section 1.1.2, we stated the electric model at the cell scale. We recall it here
and assume a static hypothesis. Let us denote [u] = ue − ui, where ue (resp. ui)
is the electric potential of the extracellular (resp. intracellular) medium Oe (resp.
Oi). Both media are separated by an interface γ, standing for the cell membrane.
We chose to consider the static nonlinear model previously presented in section
1.3 for the sake of simplicity of the future analysis. We recall that the complete
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static microscopic model is given by



∇x · (σi∇xui) = 0, in Oi,
∇x · (σe∇xue) = 0, in Oe,
σi∇xui · ~ni = σe∇xue · ~ni, on γ,

Sm([u])[u] = σi∇xui · ~ni, on γ.

(3.1a)

(3.1b)

(3.1c)

(3.1d)

In this section, we will assume that Sm is a sigmoid function, as (1.6) was. We
will work with a general form of Sm:

Sm(λ) = Ssm +
1

η
β(λ), (3.2)

where Ssm is a positive constant, η is a given positive constant which can be small,
and β is a regularized Heaviside function such that:

β ∈ W 1,∞(R), λ 7→ β(λ) is even on R,

λ 7→ λβ′(λ) belongs to L∞(R),

0 ≤ β(λ) ≤ 1, β is non decreasing on (0,+∞),

lim
λ→+∞

β(λ) = 1.


(3.3)

We add a Lipschitz hypothesis on the function β:

∀(λ1, λ2),∃L > 0 such that |β(λ1)− β(λ2)| ≤ L|λ1 − λ2|. (3.4)

3.1.3 Normalization.

A normalization of the system is necessary in order to understand the relative
amplitudes of the different terms involved. Let l0 be a characteristic length of the
tissue, σ0 a characteristic conductivity, Cm,0 a characteristic membrane capacitance
and u0 a characteristic potential. We set

x = l0 x, ue = u0ue(x), ui = u0ui(x), σi = σ0σi, σe = σ0σe,
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where the bars denote the dimensionless variables. We also assume that Sm([u])

can be written as
Sm([u]) = Sm,0Sm([u]).

We obtain from (3.1) the dimensionless system



∇x · (σi∇xui) = 0, in Ol0i ,
∇x · (σe∇xue) = 0, in Ol0e ,
σi∇xui · ~ni = σe∇xue · ~ni, on γl0 ,
l0Sm,0
σ0

Sm([u])[u] = σi∇xui · ~ni, on γl0 ,

(3.5a)

(3.5b)

(3.5c)

(3.5d)

where Ol0e,i and γl0 are rescaled by l0. We define the ε−parameter which tends
to zero in the homogenization process as the ration between the length of a cell
denoted by dc = 10−5m and l0 = 10−2m. This implies that ε is of the order of
10−3. We assume that the term Sm,0 allows us to have the dimensionless quantity

l0Sm,0
σ0

∼ ε

of the order of ε, so we set this quantity to be equal to ε. For the sake of clarity,
from now on, we do not keep the bar notation, but we write the dependence in ε.
In the whole macroscopic domain Ω, the induced potential uε is given by



∇x · (σi∇xu
ε
i ) = 0, in Ωε

i ,

∇x · (σe∇xu
ε
e) = 0, in Ωε

e,

σi∇xu
ε
i · ~ni = σe∇xu

ε
e · ~ni, on Γε,

εSm([uε])[uε] = σi∇xu
ε
i · ~ni, on Γε.

(3.6a)

(3.6b)

(3.6c)

(3.6d)

On the outer boundaries, homogeneous Neumann conditions are imposed, except
on the surface of the electrodes, where non homogeneous Dirichlet conditions are
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imposed on uεe

σi∇xu
ε
i · ~ni = σe∇xu

ε
e · ~ni = 0, on ∂Ω,

uεe|E+
= u+, on E+,

uεe|E−
= u−, on E−.

(3.7a)

(3.7b)

(3.7c)

In order to use classical results of the homogenization theory, we will study for the
sake of simplicity problem (3.8) instead. A volumic source term f is added to the
Laplace equation on uεe and homogeneous Dirichlet conditions are imposed. Con-
sidering problem (3.6) with non homogeneous Dirichlet boundary conditions (3.7)
introduces technical difficulties but do not fundamentally change the reasoning.



∇x · (σi∇xu
ε
i ) = 0, in Ωε

i ,

∇x · (σe∇xu
ε
e) = f, in Ωε

e,

σi∇xu
ε
i · ~ni = σe∇xu

ε
e · ~ni, on Γε,

εSm([uε])[uε] = σi∇xu
ε
i · ~ni, on Γε,

σi∇xu
ε
i · ~ni = σe∇xu

ε
e · ~ni = 0, on ∂Ω,

uεe|E+
= 0, on E+,

uεe|E−
= 0, on E−.

(3.8a)

(3.8b)

(3.8c)

(3.8d)

(3.8e)

(3.8f)

(3.8g)

The well-posedness of problem (3.8) was investigated and proved in [67]. Thus,
problem (3.8) has an unique solution (uεe, u

ε
i ) with

uεe ∈ H1(Ωε
e) and uεi ∈ H1(Ωε

i ).

3.2 Formal derivation of the macroscopic model.

We introduce the microscopic variable y = x/ε and we assume that uεe and uεi
can be written as

uεe,i = u0
e,i(x, y) + εu1

e,i(x, y) + ε2u2
e,i(x, y) + . . .
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with uke,i(x, y) Y -periodic functions. Plugging this ansatz into the system of equa-
tions (3.6) leads to a cascade of equations with respect to the power of ε. We are
interested in the first three terms (order 0, 1 and 2) that allow us to obtain the
macroscopic problem. The following expressions of the Laplacian operator and of
the gradient operator are used:

∆uε =
1

ε2
∆yu

0 +
1

ε
(∆yu

1 + (∇y · ∇x +∇x · ∇y)u
0)

+ ∆yu
2 + (∇y · ∇x +∇x · ∇y)u

1 + ∆xu
0 + . . .

∇uε =
1

ε
∇yu

0 + (∇yu
1 +∇xu

0) + ε(∇yu
2 +∇xu

1) + . . .

where ∇x and ∇y denote the partial derivatives with respect to the first and
the second variable of uke,i(x, y). We can then obtain equations on u0, u1, u2, . . .

identifying the rightful powers of ε.
Power ε−2: u0 is solution of

∇y · (σi∇yu
0
i ) = 0, in Ωε

i × Yi,
∇y · (σe∇yu

0
e) = 0, in Ωε

e × Ye,
σi∇yu

0
i · ~ni = σe∇xu

0
e · ~ni = 0, on Γε × ΓY ,

+ periodic boundary conditions on ∂Y.

(3.9a)

(3.9b)

(3.9c)

(3.9d)

It guarantees that u0
e,i are independent of y i.e.

u0
e,i(x, y) = u0

e,i(x).

Power ε−1: u1 is solution of

∇y · (σi∇yu
1
i ) = 0, in Ωε

i × Yi,
∇y · (σe∇yu

1
e) = 0, in Ωε

e × Ye,
σi∇yu

1
i · ~ni + σi∇xu

0
i · ~ni = 0, on Γε × ΓY ,

σe∇yu
1
e · ~ni + σe∇xu

0
e · ~ni = 0, on Γε × ΓY ,

+ periodic boundary conditions on ∂Y.

(3.10a)

(3.10b)

(3.10c)

(3.10d)

(3.10e)
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From (3.10), we see that the terms u1
e,i can be expressed as functions of u0

e,i in a
standard way [7] asu1(x, y) = −ψ(y)∇xu

0
i (x) + ũi

1(x), in Ωε
i × Yi,

= −ψ(y)∇xu
0
e(x) + ũe

1(x), in Ωε
e × Ye.

(3.11)

where ψ is solution to the following cell problem



∇y · (σi∇yψi) = 0, in Yi,

∇y · (σe∇yψe) = 0, in Ye,

σi(∇yψ
1,2,3
i − e1,2,3) · ~ni = σe(∇yψ

1,2,3
e − e1,2,3) · ~ni = 0, on ΓY ,

ψ1,2,3
e,i is Y -periodic.

(3.12a)

(3.12b)

(3.12c)

(3.12d)

Power ε0: u2 is solution to

∇y · (σi∇yu
2
i ) = −∇x · (σi∇xu

0
i )−∇y · (σi∇xu

1
i )

−∇x · (σi∇yu
1
i ),

in Yi,

∇y · (σe∇yu
2
e) = −∇x · (σe∇xu

0
e)−∇y · (σe∇xu

1
e)

−∇x · (σe∇yu
1
e),

in Ye,

(σi∇yu
2
i + σi∇xu

1
i ) · ~ni =(σe∇yu

2
e + σe∇xu

1
e) · ~ni

=Sm([u0])[u0],
on ΓY .

(3.13a)

(3.13b)

(3.13c)

Note that the convergence of the nonlinear term Sm([uε])[uε] towards Sm([u0])[u0]

was assumed here to write the formal expansion. This convergence will be rightfully
justified in the next section. Integrating equation (3.13a) on Yi and (3.13b) on Ye
and summing, we obtain(∫

Yi

+

∫
Ye

)(
∇y · (σ∇yu

2 + σ∇xu
1)
)
dy = −

(∫
Yi

+

∫
Ye

)(
∇x · (σ∇xu

0 + σ∇yu
1)
)
dy.
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Integrating by part, the left-hand term is equal to zero as σi∇yu
2
i ·~ni+σi∇xu

1
i ·~ni =

σe∇yu
2
e · ~ni + σe∇xu

1
e · ~ni. Let’s focus on the right-hand term. As

−
∫
Yi

(
∇x · (σi∇xu

0
i + σi∇yu

1
i )
)
dy = −∇x ·

(
σi
|Yi,e|
|Y | ∇xu

0
i + σi

1

|Y |

∫
Yi

∇yu
1
i dy

)
= −∇x ·

((
σi
|Yi,e|
|Y | I − σi

1

|Y |

∫
Yi

∇yψ(y)dy

)
∇xu

0
i

)
(after (3.11)),

= −∇x ·
(
σ̃i∇xu

0
i

)
.

where
σ̃i,e = σi,e

|Yi,e|
|Y | I − σi,e

1

|Y |

∫
Yi,e

∇yψ(y)dy. (3.14)

Likewise, −
∫
Ye

(∇x · (σe∇xu
0
e + σe∇yu

1
e)) dy = −∇x · (σ̃e∇xu

0
e). Thus, we obtain

the first compatibily condition

−∇x ·
(
σ̃i∇xu

0
i + σ̃e∇xu

0
e

)
= 0. (3.15)

Next, integrating (3.13c) on ΓY reads∫
ΓY

Sm([u0])[u0]ds =

∫
ΓY

(
σi∇yu

2
i · ~ni + σi∇xu

1
i · ~ni

)
ds

=

∫
Yi

(
∇y ·

(
σi∇yu

2
i + σi∇xu

1
i

))
dy

= −
∫
Yi

(
∇x · (σi∇xu

0
i + σi∇yu

1
i )
)
dy (after (3.13a))

= −∇x ·
(
σ̃i∇xu

0
i

)
= ∇x ·

(
σ̃e∇xu

0
e

)
.

Finally, as u0 does not depend on y,
∫

ΓY
Sm([u0])[u0]ds = |ΓY |

|Y | (Sm([u0])[u0]) and
we obtain the second compatibility condition

|ΓY |
|Y |

(
Sm([u0])[u0]

)
= ∇x ·

(
σ̃e∇xu

0
e

)
. (3.16)

Homogenized problem. Equations (3.15) and (3.16) represent the homogenized
macroscopic problem, whose solution (u0

e, u
0
i ) is the formal limit of (uεe, u

ε
i ) when

119



CHAPTER 3. HOMOGENIZATION

ε→ 0, and does not depend on the small scale y. The small scale effects are taken
into account through the conductivity tensors σ̃i,e and parameter Am = |ΓY |

|Y | - the
ratio of membrane area by unit volume - that do not depend on the choice of Ω but
on the shape and size of the reference cell chosen. This dependance is investigated
in part 3.4.1.

This method of formal expansion leads to the homogenized system of equations
but as it is based on an ansatz, it is not in any case a proof of the convergence of
(uεe, u

ε
i ) to (u0

e, u
0
i ). Moreover the convergence of the nonlinear term Sm([uε])[uε]

to Sm([u0])[u0] has yet to be justifed. The rigorous proof of this convergence is
presented in the next section.

Bidomain model: existence and uniqueness. We can add boundary con-
ditions to equations (3.15) and (3.16) to obtain the so-called bidomain model:



−∇x ·
(
σ̃i∇xu

0
i + σ̃e∇xu

0
e

)
= 0, in Ω,

Am
(
Sm([u0])[u0]

)
= ∇x ·

(
σ̃e∇xu

0
e

)
, in Ω,

(σ̃e∇xu
0
e) · −→n ∂Ω = 0, on ∂Ω,

(σ̃i∇xu
0
i ) · −→n ∂Ω = 0, on ∂Ω,

u0
e = V +,−, on E+,−,

(σ̃i∇xu
0
i ) · −→n E+,− = 0, on E+,−.

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)

where
σ̃i,e = σi,e

|Yi,e|
|Y | I2 − σi,e

1

|Y |

∫
Yi,e

∇yψ(y)dy. (3.23)

The existence and uniqueness of the bidomain model has been studied for different
type of nonlinearity, mostly ionic models in the framework of electrocardiology
[25]. It is shown that - under assumptions on the nonlinear term - a unique
solution (u0

e, u
0
i ) of problem (3.17) exists. Nevertheless, most of the bidomain

models usually present a time evolution. In our case, as we considered the steady-
state equations from the start, we can show that problem (3.17) is well-posed by

120



CHAPTER 3. HOMOGENIZATION

using the same method presented in section 2.2.2.1. In this case, the functional J
should be chosen as

J(u0
e, u

0
i ) :=

1

2

∫
Ω

σ̃i∇u0
i · ∇u0

i dx+
1

2

∫
Ω

σ̃e∇u0
e · ∇u0

e dx

+ Am

∫
Ω

∫ |u0
e−u0

i |(x)

0

sSm(s) dsdx.

(3.24)

It can be shown that this functional is well defined, that its differential is exactly
the variational formulation associated with problem (3.17) and is monotone and
that J goes to +∞ when ‖(u0

e, u
0
i )‖ goes to +∞. This guarantees that problem

(3.17) has a unique solution (u0
e, u

0
i ) ∈ H1(Ω)2.

3.3 Two-scale convergence towards the macroscopic

model

In this section, η is fixed as a constant independent of ε.

3.3.1 Uniform bounds

In order to apply the process of two-scale convergence, we must first determine
uniform bounds on the unknowns. The derivation of estimates on the unknowns
is based on previous works, in particular on articles by Allaire, Damlamian, Hor-
nung and Murat [3, 4, 5] and on Giovangigli’s PhD thesis [55, 56]. In order to
use those previous results, we must introduce hypothesis on the geometry of the
domain Ω: let the macroscopic domain Ω be a bounded open set of class C2 with
Lipschitz boundary ∂Ω, Ω being locally located on one side of its boundary. At
the microscopic scale, we must assume that Ye is a connected open set of class C2

with Lipschitz boundary, and is locally located on one side of its boundary. Fur-
thermore, the material volume fraction |Ye|/|Y | must be strictly positive [5, 55].

We begin with citing three lemmas that are used to establish estimates (3.25).

Lemma 4 (Poincaré inequality in Ωε
e, Lemma A.4 p.93 [5]). There exists a constant
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C, which does not depend on ε, such that, for any gε ∈ H1(Ωε
e) satisfying gε = 0

on ∂Ωε
e ∩ ∂Ω, we have

||gε||L2(Ωεe)
≤ C||∇gε||L2(Ωεe)

.

Lemma 5 (Lemma Appendix C.1. p.657 [55]). There exists a constant C inde-
pendent of ε such that, for any gεe ∈ H1(Ωε

e) and gεi ∈ H1(Ωε
i ),∥∥gεe,i∥∥2

L2(Γε)
≤ C

(
ε−1
∥∥gεe,i∥∥2

L2(Ωεe,i)
+ ε

∥∥∇gεe,i∥∥2

L2(Ωεe,i)

)
.

Lemma 6 (Lemma Appendix C.2. p.658 [55]). There exists a constant C inde-
pendent of ε such that, for any gεi ∈ H1(Ωε

i ),

‖gεi ‖L2(Ωεi )
≤ C

(√
ε ‖gεi ‖L2(Γε) + ε ‖∇gεi ‖L2(Ωεi )

)
.

Now, we can state uniform bounds on the unknowns of problem (3.8).

Proposition 7. Denote vε = uεe − uεi and denote with .̃ the extension by zero of
functions on Ωε

e and Ωε
i in the respective domains Ωε

i and Ωε
e. If f is uniformly

bounded in L2(Ωε
e), then there exists a constant C independent of ε such that the

following uniform bounds hold∫
L2(Ω)

|∇̃uεe|2 ≤ C,

∫
L2(Ω)

|∇̃uεi |2 ≤ C,

ε

∫
L2(Γε)

|vε|2 ≤ C, ε

∫
L2(Γε)

|Sm(vε)vε|2 ≤ C,∫
L2(Ω)

|ũεe|2 ≤ C,

∫
L2(Ω)

|ũεi |2 ≤ C.

(3.25)

Proof. The variational problem associated to (3.8) is find (uεi , u
ε
e) ∈ H1(Ωε

i ) ×
H1(Ωε

e) such that ∀(vεi , vεe) ∈ H1(Ωε
i )×H1(Ωε

e),

(σi∇xu
ε
i ,∇xv

ε
i )Ωεi

+ (σe∇xu
ε
e,∇xv

ε
e)Ωεe

+ ε〈Sm(uεe − uεi )(uεe − uεi ), vεe − vεi 〉Γε = (f, vεe)Ωεe
.

(3.26)

122



CHAPTER 3. HOMOGENIZATION

We take vεi,e = uεi,e in (3.26) in order to derive an a priori estimate and we obtain

(σi∇xu
ε
i ,∇xu

ε
i )Ωεi

+ (σe∇xu
ε
e,∇xu

ε
e)Ωεe

+ εSsm〈uεe − uεi , uεe − uεi 〉Γε

+
ε

η
〈β(uεe − uεi )(uεe − uεi ), uεe − uεi 〉Γε = (f, uεe)Ωεe

.

We define

Eε = (σi∇xu
ε
i ,∇xu

ε
i )Ωεi

+ (σe∇xu
ε
e,∇xu

ε
e)Ωεe

+ εSsm ‖uεe − uεi‖2
Γε . (3.27)

As 0 ≤ β(uεe − uεi ) ≤ 1, we have that

Eε ≤ Eε +
ε

η
〈β(uεe − uεi )(uεe − uεi ), uεe − uεi 〉Γε ≤ Eε +

ε

η
‖uεe − uεi‖2

Γε ,

hence Eε ≤ (f, uεe)Ωεe
≤ Eε +

ε

η
‖uεe − uεi‖2

Γε .
(3.28)

Let us apply Cauchy-Schwarz inequality on one hand and Poincaré inequality
(Lemma 4) on the other hand on uεe ∈ H1(Ωε

e) on the left hand side of inequality
(3.28). Thus there exists a constant α independent of ε such that

α ‖uεe‖2
L2(Ωεe)

+ (σi∇xu
ε
i ,∇xu

ε
i )Ωεi

+ εSsm ‖uεe − uεi‖2
Γε ≤ Eε ≤ ‖f‖L2(Ωεe)

‖uεe‖L2(Ωεe)
.

As f is uniformly bounded in L2(Ωε
e), we obtain than uεe is uniformly bounded in

L2(Ωε
e). Thus, there exists a constant C independent of ε such that Eε ≤ C. As

Eε is the sum of three positive terms, each of them is also bounded by C. Thus
we obtain that

‖∇uεe‖L2(Ωεe)
≤ C, ‖∇uεi‖L2(Ωεi )

≤ C, ε ‖uεe − uεi‖2
L2(Γε) ≤ C.

Finally, using the Lipschitz condition on β (3.4), we also have that

ε ‖β(uεe − uεi )(uεe − uεi )‖2
L2(Γε) ≤ C.

It remains to show that uεi is uniformly bounded in L2(Ωε
i ) which is a direct con-

sequence of Lemmas 5 and 6. Indeed, as uεe and ∇uεe are uniformly bounded in
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L2(Ωε
e), using Lemma 5 yields

ε ‖uεe‖2
L2(Γε) ≤ C

(
‖uεe‖2

L2(Ωεe)
+ ε2 ‖∇uεe‖2

L2(Ωεe)

)
,

which guarantees that
√
ε ‖uεe‖L2(Γε) is controlled uniformly in ε. Then, we apply

Lemma 6 and the triangle inequality

‖uεi‖L2(Ωεi )
≤ C

(√
ε ‖uεe − uεi‖L2(Γε) +

√
ε ‖uεe‖L2(Γε) + ε ‖∇uεi‖L2(Ωεi )

)
.

We have previously shown that all three terms on the right-hand side of this last
inequality are bounded uniformly in ε so we obtain that uεi is uniformly bounded
in L2(Ωε

i ) which completes the proof.

3.3.2 Two-scale limits

The a priori estimates (3.25) allow to apply the 2-scale convergence. We first
recall the definition of two-scale convergence and a few results of this theory [3, 4].
The notion of two-scale convergence makes sense because of the next compactness
theorem.

Theorem 8 (Theorem 0.1 p.1483 [3]). Let f ε(x) be a bounded sequence in L2(Ω).
Then, there exists a subsequence (still denoted by ε) and a function f 0(x, y) ∈
L2(Ω × Y ) such that f ε two-scale converges to f 0(x, y) in the sense that, for any
function g ∈ C(Ω× C#(Y ))

lim
ε→0

∫
Ω

f ε(x)g(x,
x

ε
) dx =

∫
Ω

∫
Y

f 0(x, y)g(x, y) dydx.

Two-scale convergence can be extended to sequences defined on periodic sur-
faces.
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Theorem 9 (Theorem 2.1 p.2 [4]). Let f ε be a sequence in L2(Γε) such that

ε

∫
Γε
|f ε(x)|2 dΓε ≤ C,

where C is a positive constant independent of ε. Then, there exists a subsequence
(still denoted by ε) and a two-scale limit f 0(x, y) ∈ L2(Ω × L2(ΓY )) such that
f ε two-scale converges to f 0(x, y) in the sense that, for any function g ∈ C(Ω ×
C#(Y ))

lim
ε→0

ε

∫
Γε
f ε(x)g(x,

x

ε
) dΓε =

∫
Ω

∫
ΓY
f 0(x, y)g(x, y) dΓY dx.

In the case where f ε is the trace on Γε of some function in H1(Ω), a link can
be established between its usual and surface two-scale limits.

Proposition 10 (Proposition 2.6 p.3 [4]). Let f ε be a sequence in H1(Ω) such
that ‖f ε‖L2(Ω) + ε ‖∇f ε‖L2(Ω) ≤ C, where C is a positive constant independent of
ε. Then the trace of f ε on Γε satisfies the estimate

ε

∫
Γε
|f ε(x)|2dΓε ≤ C,

and up to a subsequence, it two-scale converges to a limit f 0(x, s) which is the trace
on Γ of the usual two-scale limit, also denoted f 0(x, y), a function in L2(Ω, H1

#(Y )).
More precisely, for any function g ∈ C(Ω× C#(Y )),

lim
ε→0

∫
Ω

f ε(x)g(x,
x

ε
) dx =

∫
Ω

∫
Y

f 0(x, y)g(x, y)dydx,

lim
ε→0

ε

∫
Γε
f ε(x)g(x,

x

ε
) dΓε =

∫
Ω

∫
ΓY
f 0(x, s)g(x, s) dsdx.

From the uniform bounds we obtained, by direct application of the theory
developed in [3, 4], we can state the following two-scale convergences:

Proposition 11. For all g ∈ C(Ω× C#(Y )) and ϕ ∈ C(Ω× C#(Y ))2

125



CHAPTER 3. HOMOGENIZATION

• lim
ε→0

∫
Ω

ũεe(x)g(x,
x

ε
) dx =

∫
Ω

∫
Y

χYe(y)u0
e(x)g(x, y) dydx,

• lim
ε→0

∫
Ω

ũεi (x)g(x,
x

ε
) dx =

∫
Ω

∫
Y

χYi(y)u0
i (x)g(x, y) dydx,

• lim
ε→0

∫
Ω

∇̃uεe · ϕ(x,
x

ε
) dx =

∫
Ω

∫
Y

χYe(y)(∇xu
0
e(x) +∇yu

1
e(x, y)) · ϕ(x, y) dydx,

• lim
ε→0

∫
Ω

∇̃uεi · ϕ(x,
x

ε
) dx =

∫
Ω

∫
Y

χYi(y)(∇xu
0
i (x) +∇yu

1
i (x, y)) · ϕ(x, y) dydx,

• lim
ε→0

ε

∫
Γε
vε(x)g(x,

x

ε
) dΓε =

∫
Ω

v0(x)

∫
ΓY
g(x, y) dΓY dx,

where v0(x) = u0
e(x)− u0

i (x) and vε(x) = uεe(x)− uεi (x),

• lim
ε→0

ε

∫
Γε
Sm(vε(x))vε(x)g(x,

x

ε
) dΓε =

∫
Ω

∫
ΓY
I#(x, y)g(x, y) dΓY dx,

for some functions u0
e,i ∈ H1(Ω), u1

e,i ∈ L2(Ω, H1
#(Y )) and I# ∈ L2(Ω, L2

#(Y )).

Proof. From the estimates (3.25), ũεe,i and ∇̃uεe,i are bounded sequences in L2(Ω).
Theorem 8 states that, up to a subsequence, they two-scale converge to τe,i(x, y)

and ξe,i(x, y). Since ũεe,i and ∇̃uεe,i vanish in Ωε
e,i, so do τe,i and ξe,i. Consider

ϕ ∈ C(Ω×C#(Y ))2 such that ϕ = 0 for y ∈ Yi. By integrating by parts, it follows
that

ε

∫
Ωεe

∇uεe(x) · ϕ(x,
x

ε
) dx =

∫
Ωεe

uεe(x)
(
divyϕ(x,

x

ε
) + εdivxϕ(x,

x

ε
)
)
dx.

We take the limit of this equality as ε goes to zero:∫
Ω

∫
Ye

τe(x, y)divyϕ(x,
x

ε
) dydx = 0,

therefore, τe does not depend on y in Ye which means that there exists a function
u0
e ∈ L2(Ω) such that τe(x, y) = χe(y)u0

e(x) for all (x, y) ∈ Ω × Y . Take now
ϕ ∈ C(Ω × C#(Y ))2 such that ϕ = 0 for y ∈ Yi and divyϕ = 0. Integrating by
parts and taking the limit as ε goes to zero yields∫

Ω

∫
Ye

ξe(x, y) · ϕ(x,
x

ε
) dydx = −

∫
Ω

∫
Ye

u0
e(x)divxϕ(x,

x

ε
) dydx.
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For ϕ independent of y, this implies that u0
e ∈ H1(Ω). Furthermore, integrating

by parts the right-hand side of this last inequality, we get∫
Ω

∫
Ye

ξe(x, y) · ϕ(x,
x

ε
) dydx =

∫
Ω

∫
Ye

∇u0
e(x) · ϕ(x,

x

ε
) dydx,

for all ϕ ∈ C(Ω × C#(Y ))2 such that divyϕ = 0 and ϕ(x, y) · ~ni = 0 for y on
Γ. Since the orthogonal of the divergence-free functions are exactly the gradients,
there exists a function u1

e ∈ L2(Ω, H1
#(Y )) such that

ξe(x, y) = χe(y)
(
∇u0

e(x) +∇yu
1
e(x, y)

)
,

for all (x, y) ∈ Ω × Y . Likewise, there exists functions u0
i ∈ L2(Ω) and u1

i ∈
L2(Ω, H1

#(Y )) such that

τi(x, y) = χi(y)u0
i (x) and ξi(x, y) = χi(y)

(
∇u0

i (x) +∇yu
1
i (x, y)

)
,

for all (x, y) ∈ Ω × Y . As estimates (3.25) hold, Theorem 9 states that there
exist two-scale limits v0(x, y) ∈ L2(Ω × L2(ΓY )) and I#(x, y) ∈ L2(Ω × L2(ΓY ))

such that vε two-scale converges to v0 and Sm(vε)vε two-scale converges to I#. It
remains to show that v0(x, y) = v0(x) = u0

e(x)−u0
i (x) for all (x, y) ∈ Ω×Y , which

is a direct consequence of Proposition 10.

3.3.3 Two-scale limit of the nonlinear problem

Proposition 12. For any (ue, ui), let us define the energy functional

W(ue, ui) =

∫
Ωεe

σe|∇ue|2 dx+

∫
Ωεi

σi|∇ui|2 dx.

Let (uεe, u
ε
i ) be the solution of problem (3.6). The energy functional W satisfies

W(uεe, u
ε
i ) + ε

∫
Γε
Sm(uεe − uεi )(uεe − uεi )2 dΓε =

∫
Ωεe

fuεe dx. (3.29)
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Let us take (zεe , z
ε
i ) and denote vεz = zεe − zεi . The following inequality holds

W(uεe − zεe , uεi − zεi ) + ε

∫
Γε

(Sm(vε)vε − Sm(vεz)v
ε
z) · (vε − vεz) dΓε ≥ 0. (3.30)

Proof. • ∀(ue, ui), W(ue, ui) ≥ 0 as sum of two positive terms.

• Let us show that ∀(v1, v2), (Sm(v1)v1 − Sm(v2)v2) · (v1 − v2) ≥ 0.

B(v1, v2) = (Sm(v1)v1 − Sm(v2)v2) · (v1 − v2)

= Sm(v1)(v1)2 ·
(

1− v2

v1

)(
1− Sm(v2)v2

Sm(v1)v1

)
.

Let us assume that v1 ≥ v2. The properties (3.3) guarantee that Sm(v1)(v1)2 ≥
0 and that Sm(v1)v1 ≥ Sm(v2)v2.

– If v1 ≥ v2 ≥ 0, then
(

1− v2

v1

)
≤ 0 and

(
1− Sm(v2)v2

Sm(v1)v1

)
≤ 0 so B(v1, v2) ≥

0.

– If 0 ≥ v1 ≥ v2, then
(

1− v2

v1

)
≥ 0 and

(
1− Sm(v2)v2

Sm(v1)v1

)
≥ 0 so B(v1, v2) ≥

0.

– If v1 ≥ 0 ≥ v2, then v2

v1
≤ 0 so B(v1, v2) ≥ 0.

Now we want to show the following result:

Proposition 13. For all g ∈ C(Ω× C#(Y )),

lim
ε→0

ε

∫
Γε
Sm(vε(x))vε(x)g(x,

x

ε
) dΓε =

∫
Ω

∫
ΓY
Sm(v0(x))v0(x)g(x, y) dΓY dx,

where v0(x) = u0
e(x)− u0

i (x) for all x ∈ Ω.
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Proof. We develop expression (3.30) as follows∫
Ωεe

σe|∇(uεe − zεe)|2 dx+

∫
Ωεi

σi|∇(uεi − zεi )|2 dx

+ ε

∫
Γε

(Sm(vε)(vε)2 − Sm(vε)vεvεz − Sm(v)vεzv
ε + Sm(vεz)(v

ε
z)

2) dΓε ≥ 0,

hence W(uεe, u
ε
i ) + ε

∫
Γε
Sm(vε)(vε)2 dΓε

+

∫
Ωεe

σe∇zεe · (∇zεe − 2uεe) dx+

∫
Ωεi

σi∇zεi · (∇zεi − 2uεi ) dx

+ ε

∫
Γε

(−Sm(vε)vεvεz − Sm(v)vεzv
ε + Sm(vεz)(v

ε
z)

2) dΓε ≥ 0.

Now we use the fact that (uεe, u
ε
i ) is the solution of problem (3.6), so equality (3.29)

holds. Hence, we can write∫
Ωεe

σe∇zεe · (∇zεe − 2∇uεe) dx+

∫
Ωεi

σi∇zεi · (∇zεi − 2∇uεi ) dx

+ ε

∫
Γε

(−Sm(vε)vεvεz − Sm(vεz)v
ε
zv
ε + Sm(vεz)(v

ε
z)

2) dΓε +

∫
Ωεe

fuεe dx ≥ 0.

(3.31)

Now let us choose zεe and zεi as follows

zεe(x) = u0
e(x) + αϕe(x) + εϕ1

e

(
x,
x

ε

)
,

zεi (x) = u0
i (x) + αϕi(x) + εϕ1

i

(
x,
x

ε

)
,

vεz(x) = zεe(x)− zεi (x) = v0(x) + αΦ(x) + ε
(
ϕ1
e

(
x,
x

ε

)
− ϕ1

i

(
x,
x

ε

))
,

where ϕ1
e,i

(
x, x

ε

)
are smooth functions that two-scale converge towards u1

e,i(x, y)

and where Φ(x) = ϕe(x) − ϕi(x). From the construction, we have the following
strong convergences in L2(Ω× Y ) :

zεe,i strongly converges to u0
e,i + αϕe,i,

∇zεe,i strongly converges to ∇u0
e,i + α∇ϕe,i +∇yu

1
e,i,

vεz strongly converges to v0 + αΦ.
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Thus, using Proposition 11 and classical results to pass to the limit in some product
of two-scale convergence (Theorem 1.8 p.1488 [3]), we obtain the following two-
scale convergences:

lim
ε→0

∫
Ωεe,i

σe,i∇zεe,i · (∇zεe,i − 2∇uεe,i)

=

∫
Ω

∫
Y

σe,iχe,i(y)(∇u0
e,i + α∇ϕe,i +∇yu

1
e,i) · (−∇u0

e,i + α∇ϕe,i −∇yu
1
e,i),

lim
ε→0

ε

∫
Γε
Sm(vε)vεvεz dΓε =

∫
Ω

∫
ΓY
I#(x, s)(v0(x) + αΦ(x)) dsdx,

lim
ε→0

ε

∫
Γε
Sm(vεz)v

ε
zv
ε dΓε =

∫
Ω

∫
ΓY
Sm(v0(x) + αΦ(x))(v0(x) + αΦ(x))v0(x) dsdx,

lim
ε→0

ε

∫
Γε
Sm(vεz)(v

ε
z)

2 dΓε =

∫
Ω

∫
ΓY
Sm(v0(x) + αΦ(x))(v0(x) + αΦ(x))2 dsdx.

Thus, passing to the two-scale limit in inequality (3.31), we have∫
Ω

∫
Y

fχe(y)u0
e(x) dydx−

∫
Ω

∫
ΓY
I#(x, s)v0(x) dsdx

+

∫
Ω

∫
Y

σeχe(y)
(
(α∇ϕe(x))2 − (∇u0

e(x) +∇yu
1
e (x, y))2

)
dydx

+

∫
Ω

∫
Y

σiχi(y)
(
(α∇ϕi(x))2 − (∇u0

i (x) +∇yu
1
i (x, y))2

)
dydx

+

∫
Ω

∫
ΓY
α2Sm(v0(x) + αΦ(x))Φ(x)2 dsdx

+

∫
Ω

∫
ΓY
−αI#(x, s)Φ(x) + αSm(v0(x) + αΦ(x))v0(x)Φ(x) dsdx ≥ 0.

(3.32)

Moreover, passing to the two-scale limit in equality (3.26) using test functions
ϕe,i(x) = u0

e,i(x) + εϕ1
e,i

(
x, x

ε

)
with ϕ1

e,i

(
x, x

ε

)
the previously introduced smooth

functions that two-scale converge towards u1
e,i(x, y) gives∫

Ω

∫
Y

σeχe(y)(∇u0
e(x) +∇yu

1
e(x, y))2 + σiχi(y)(∇u0

i (x) +∇yu
1
i (x, y))2 dydx

+

∫
Ω

∫
ΓY
I#(x, s)v0(x) dsdx =

∫
Ω

∫
Y

fχe(y)u0
e(x) dydx.

(3.33)
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Using this equality, and dividing every remaining term by α > 0, we obtain from
(3.32)

α

∫
Ω

∫
Y

σeχe(y)(∇ϕe(x))2 + ασiχi(y)(∇ϕi(x))2 dydx

+ α

∫
Ω

∫
ΓY
Sm(v0(x) + αΦ(x))Φ(x)2 dsdx

+

∫
Ω

∫
ΓY
−I#(x, s)Φ(x) + Sm(v0(x) + αΦ(x))v0(x)Φ(x) dsdx ≥ 0.

Then letting α go to zero, we obtain that for any functions Φ ∈ C(Ω× C#(Y ))∫
Ω

∫
ΓY

(
−I#(x, s) + Sm(v0(x))v0(x)

)
Φ(x) dsdx ≥ 0.

Thus we conclude that the two-scale limit of Sm(vε)vε is Sm(v0)v0.

3.3.4 Main convergence result

Theorem 14. Denote the sequence of solutions (uεe, u
ε
i ) of the problem (3.6). Hav-

ing the two-scale convergences previously stated, then (u0
e, u

0
i , u

1
e, u

1
i ) is the unique

solution of the following two-scale homogenized system given in Ω× Y

−∇x ·
[∫

Y

σiχi(y)(∇xu
0
i +∇yu

1
i (x, y))

]
−∇x ·

[∫
Y

σeχe(y)(∇xu
0
e +∇yu

1
e(x, y))dy

]
=
|Ye|
|Y | f

Am
(
Sm(u0

e − u0
i )(u

0
e − u0

i )
)

= ∇x ·
[∫

Y

σeχe(y)(∇xu
0
e +∇yu

1
e(x, y))dy

]
(3.34a)

(3.34b)

Furthermore, we can recover the classical homogenized and cell equations by unicity
if we use the relations

u1
i (x, y) = −ψi(y)∇xu

0
i (x),

u1
e(x, y) = −ψe(y)∇xu

0
e(x).
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Proof. To find the homogenized equations we choose the test funtion

ϕ(x) =ϕe(x) + εϕ1
e

(
x,
x

ε

)
ϕi(x) + εϕ1

i

(
x,
x

ε

)
with ϕe,i(x) ∈ D(Ω) and ϕ1

e,i(x, y) ∈ D(Ω;C#(Y )). Then by the partial integration
and passing to the two-scale limit, using the assumptions previously shown on the
nonlinear term, we derive the homogenized system of equations.

Remark 4. Note that, when cells in suspension are considered, the intracellular
medium is not connected. We can see then that the solution ψi(y) of problem
(3.12) is y. As a consequence, we have

σ̃i = σi
|Yi|
|Y | I + σi

1

|Y |

∫
Yi

−∇yψi(y) dy = σi
|Yi|
|Y | I + σi

1

|Y |

∫
Yi

−∇y(y) dy = 0.

Thus, problem (3.34) in Ω× Y becomes

−∇x ·
(
σ̃e∇xu

0
e

)
= 0,

Am
(
Sm(u0

e − u0
i )(u

0
e − u0

i )
)

= ∇x ·
(
σ̃e∇xu

0
e

)
= 0,

+ boundary conditions,

(3.35)

which implies that v0 = u0
e − u0

i = 0. Thus, u0
e can only be influenced by u0

i if the
cells are assumed to be connected.

Equivalent tissue conductivity. Let us remark that Sm, the homogenized
membrane conductivity, does not represent the tissue conductivity. Nevertheless,
one can obtain an equivalent tissue conductivity from Sm using the following for-
mula:

σeqm = σ̃e +
σ̃il

2
ΩAmSm

σ̃i + l2ΩAmSm
, (3.36)

where we assume that σ̃e and σ̃i are scalar and where lΩ is the characteristic length
of the domain Ω. Note that the right-hand term of (3.36) is homogeneous to a
conductivity (S/m).
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Remark 5. This formula is obtained from equations (3.34a)-(3.34b). Assume for
the sake of simplicity that Sm is a constant and assume that σ̃e and σ̃i are scalar.
The homogenized problem can then be written as

−∇ ·
(
σ̃e∇u0

e + σ̃i∇u0
i

)
= 0,(

id− σ̃i
AmSm

∆

)
u0
i = u0

e,

+ boundary conditions.

(3.37)

Denoting by L the linear inversible operator

L = id− σ̃i
AmSm

∆,

problem (3.37) is equivalent to

−∇ ·
(
(σ̃e + σ̃iL−1)∇u0

e + σ̃i[∇,L−1]u0
e

)
= 0,(

id− σ̃i
AmSm

∆

)
u0
i = u0

e,

+ boundary conditions.

(3.38)

Let us look at the symbol of the operator L in the domain Ω of length lΩ:

Σ(k) = 1 +
σ̃i

AmSml2Ω
|k|2.

In a first approximation, one can consider only the first mode (|k| = 1). Assuming
that the commutator [∇,L−1] is negligible, problem (3.38) is reduced to

−∇ ·
((

σ̃e + σ̃i

(
1 +

σ̃i
AmSml2Ω

)−1
)
∇u0

e

)
= 0,

+ boundary conditions,

(3.39)

where σ̃e + σ̃i

(
1 + σ̃i

AmSml2Ω

)−1

= σeqm .

Remark 6. Equation (3.39) can be related to the steady-state equation (2.23) ob-
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tained for the phenomenological model using two current densities presented in
Chapter 2. One can observe the formula of the equivalent tissue conductivity
obtained using a homogenization procedure is similar to the formula of the equiva-
lent tissue conductivity obtained for the phenomenological model using two current
densities.

3.3.5 Numerical convergence in the linear case

In this section, we assume that Sm = Ssm. We want to observe numerically the
convergence of problem (3.6) to the derived homogenized problem (3.34), and to
find the rate of convergence. In order to do this, we run simulations for problem
(3.6) for several values of ε and one simulation for the homogenized problem (3.34).
All simulations should be carried out on the same test case: we choose a two-
dimensional domain in the shape of a square of size 1. An electric field is applied
between two plate electrodes positionned along the left and right borders of the
domain. We assume the cells to be circular of radius 0.3×ε. We run the simulations
for several sizes of periodic cell:

ε ∈
(

1

5
,

1

10
,

1

15
,

1

20
,

1

25

)
.

In Figure 3.2, we display the quantity uε − u0 for several sizes of periodic cell to
observe how the error is spatially distributed.

Remark 7. We notice that the error is mainly localized next to the two borders
where Dirichlet boundary conditions are applied. It is possible to avoid this issue
by using a corrector.

To find the rate of convergence, we compute the relative L2 errors on uεe and
uεi , defined as

eεe,L2 =
‖uεe − u0

e‖L2(Ωεe)

‖uεe‖L2(Ωεe)

and eεi,L2 =
‖uεi − u0

i ‖L2(Ωεi )

‖uεi‖L2(Ωεi )

.

We use the log-log scale to obtain approximatively the convergence rate, which is
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Figure 3.2: Error between the microscopic model and the bidomain model (|u0
e−uεe|

outside the cells and |u0
i − uεi | inside the cells) for three different sizes of cells

ε ∈
(

1
10
, 1

15
, 1

25

)
.

1 for both quantities (see Figure 3.3b).
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Figure 3.3: Relative error in L2 norm between the microscopic model and the
bidomain model (eεe,L2 outside the cells and eεi,L2 inside the cells).

3.4 Numerical results on the bidomain model

To solve numerically the macroscopic problem (3.34), one must first compute
the homogenized conductivities σ̃e and σ̃i, that depend on the cell problem (3.12),
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that must then be solved first. In particular, it implies to choose a specific geometry
for one cell. In this section, we investigate first the influence of the choice of the 3D
cell geometry on the value of the homogenized conductivities. Then, we present
some 2D numerical results of the bidomain nonlinear static model.

3.4.1 Influence of the cell geometry on the homogenized

conductivities

The macroscopic model (3.34) obtained via the homogenization process presents
the advantage of containing some knowledge of the microscopic problem at the cell
scale. This knowledge manifests itself in particular when are computed the ho-
mogenized conductivities

σ̃e = σe
|Ye|
|Y | I3 + σe

1
|Y |

∫
Ye
−∇yψ(y)dy,

σ̃i = σi
|Yi|
|Y | I3 + σi

1
|Y |

∫
Yi
−∇yψ(y)dy.

They depend on ψ, which is the solution of the following cell problem:
−σ∆yψ = 0, in Ye ∪ Yi,
σi(∇yψ

1,2,3
i − e1,2,3) · ~ni = σe(∇yψ

1,2,3
e − e1,2,3) · ~ni, on ΓY ,

σe(∇yψ
1,2,3
e − e1,2,3) · ~ni = 0, on ΓY .

(3.40)

We want to investigate the effect of the chosen cell geometry on the value of the
homogenized conductivitie tensors σ̃e and σ̃i. In particular, we want to investigate
the difference between cells in suspension and connective tissues. We use the
software FreeFem++ to solve (3.40) and to compute σ̃e and σ̃i in four different
reference cases presented in Figure 3.4. We used the values of σe,i presented in
Table 3.2.

The computed value of the homogenized conductivitie tensors σ̃e and σ̃i are
presented in Table 3.4.1.

Let us remark first that in all chosen configurations, we never have that σ̃i =

σi×I3 and/or σ̃e = σe×I3. When cells in suspension are considered (Figure 3.4a),
it appears that σ̃i = 0 and σ̃e = |Ye|

|Y | σe × I3, which is in accordance with what
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(a) (b)

(c) (d)

Figure 3.4: Meshes of the two different cell geometries. External domain - [0, 1]×
[0, 1] × [0, 1]. Cell - (a) Centered sphere of radius 0.3. (b) Centered sphere of
radius 0.3 with cylindrical junctions of radius 0.1. (c) Centered cylinder of radius
0.1 and of axis (Ox). (d) Centered cylinder of radius 0.1 and of axis (Oy).

was stated in Remark 4. When cells are connected in all three directions (Figure
3.4b), σ̃i is no longer 0 but both tensors have diagonal forms, namely σ̃i = a× I3

and σ̃e = b × I3. This is a consequence of the symmetry in all three directions of
the domain. When cylindrical cells are considered (Figures 3.4c and 3.4d), the cell
domain is no longer symmetric in all three direction. The consequence is that the
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Geometry σ̃i(1, 1) σ̃i(1, 2) σ̃i(1, 3) σ̃i(2, 1) σ̃i(2, 2) σ̃i(2, 3) σ̃i(3, 1) σ̃i(3, 2) σ̃i(3, 3)
Fig. 3.4a 6.18e-17 -2.79e-17 -4.64e-17 -1.09e-16 2.49e-16 -9.11e-19 -5.19e-17 -9.62e-18 -5.38e-17
Fig. 3.4b 0.022 3.55e-7 7.34e-7 3.55e-7 0.022 1.33e-07 7.34e-7 1.33e-07 0.022
Fig. 3.4c 0.228 -2.92e-19 1.03e-19 -9.17e-18 1.17e-15 1.59e-16 3.73e-19 -1.99e-17 -3.66e-17
Fig. 3.4d 1.74e-16 -1.49e-18 8.73e-17 1.81e-20 0.228 2.41e-20 1.06e-16 -9.95e-19 1.30e-16
Geometry σ̃e(1, 1) σ̃e(1, 2) σ̃e(1, 3) σ̃e(2, 1) σ̃e(2, 2) σ̃e(2, 3) σ̃e(3, 1) σ̃e(3, 2) σ̃e(3, 3)
Fig. 3.4a 4.22 2.84e-4 -2.48e-4 2.84e-4 4.22 4.61e-05 -2.48e-4 4.61e-05 4.22
Fig. 3.4b 3.87 -2.64e-4 -1.67e-4 -2.09e-4 3.87 -9.48e-6 -1.13e-4 -9.48e-6 3.87
Fig. 3.4c 2.50 -5.21e-08 -9.61e-08 -5.21e-08 1.62 -8.03e-05 -9.61e-08 -8.03e-05 1.62
Fig. 3.4d 1.62 4.30e-08 7.36e-05 4.30e-08 2.50 2.72e-07 7.36e-05 2.72e-07 1.62

Table 3.1: Computed homogenized conductivities σ̃i and σ̃e in the four reference
cases presented in Figure 3.4.

tensors are no longer scalar, but remain diagonal. Should the symmetry be more
disrupted, both tensors could no longer be diagonal (data not shown).

3.4.2 Numerical results obtained in 2D with the homoge-

nized model

The nonlinear case. In this section, we used the following formula for the
nonlinear conductivity Sm

Sm = Sm(ue − ui) = Ssm +
1

η
× 1 + tanh(k(|ue − ui| − Vth))

2
. (3.41)

Problem (3.34) is solved using a classical fixed point iteration. Numerical
simulations were done using the Finite Element software FreeFem++ [61] on the
2D-mesh featured in Figure 3.5. This 2D domain is to be related to the experi-
mental set up presented in Figure 2.1. As the length of the needles is very large
compared to the diameter of the needles, the numerical problem is reduced to a
2D problem as we did already in Chapter 2.

The parameters used for the simulations are those presented in Table 3.2. The
simulated currents are calculated with the volumic method (see section 2.3.0.3).
Figure 3.6 shows the simulated currents flowing through the needles when a 100

µs pulse is applied between the needles, with different nominal electric fields (375

V/cm, 625 V/cm, 875 V/cm, 1125 V/cm, 1375 V/cm), for electrodes of diameter
0.7 mm. As we are working on a steady-state hypothesis, the current is logically
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Figure 3.5: Mesh of the computational domain used for the simulations of the
bidomain model.

constant throughout the pulse.

Table 3.2: Parameters of the simulations for the bidomain model.
Parameter Symbol Value Unit

Intracellular conductivity σi 0.455 S/m
Extracellular conductivity σe 5 S/m
Membrane conductivity at rest Ssm 1.9 S/m2

Maximal membrane conductivity 1/η 104 S/m2

Electroporation threshold Vth 1.5 V
Electric field threshold Eth 575 V/cm
Parameter in the sigmoid k 40 V −1

In Figures 3.7 and 3.8 are displayed the spatial distributions of the homogenized
electric field ∇ue and the homogenized transmembrane potential v = ue − ui for
an applied nominal electric field of 875 V/cm. Figure 3.7 was obtained while
calculating the homogenized conductivities using connected cells (see Figure 3.4b)
and Figure 3.8 was obtained while calculating the homogenized conductivities
using cells in suspension (see Figure 3.4a).

When cells in suspension are considered, the transmembrane potential v is
equal to zero (see Figure 3.8b). This result was expected (see Remark 4), but the
consequence is that the homogenized membrane conductivity Sm(ue−ui) is always
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Figure 3.6: Simulated current of the static homogenized model for five different
voltage applied.

equal to Ssm, its value at rest. When the cells are connected, the transmembrane
potential v presents a symmetry (see Figure 3.7b). To determine where the tissue
is electroporated, it is useful to consider the spatial distribution of the tissue con-
ductivity. The equivalent tissue conductivity σeqm , obtained using formula (3.36), is
displayed in Figure 3.9 for connected cells and cells in suspension. As v = 0 in the
case of cells in suspension, the conductivity σeqm (ue−ui) is equal to the conductivity
at rest all over the tissue (see Figure 3.4.2). As a consequence of the previously
noted symmetry of v = ue − ui in the case of connected cells, the conductivity
σeqm (ue − ui) is always equal to the conductivity at rest at the point between the
two electrodes for all applied voltages (see Figure 3.4.2). These features are not in
accordance with the experiments.

Back to the linear case. As the equivalent tissue conductivity obtained using
the bidomain model is not satisfying, we assume in this section that Sm = Ssm.
We want to observe, for all 4 cases of reference cells presented in Figure 3.4, how
the homogenized transmembrane potential v is distributed all over the tissue. We
solve system (3.34) taking Sm = Ssm and we display in Figure 3.10 the quantity |v|
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(a)

(b)

Figure 3.7: Spatial distribution of (a) the homogenized electric field ∇ue and of
(b) the homogenized transmembrane potential v = ue − ui computed with the
static bidomain model for an applied voltage of 875 V for connected cells (see
Figure 3.4b).

obtained using all 4 cases of reference cells. For the case of comparison, we also
display the quantity |∇ue|.

As it was previously noted in the nonlinear case, if the tissue is made of cells
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(a)

(b)

Figure 3.8: Spatial distribution of (a) the homogenized electric field ∇ue and of
(b) the homogenized transmembrane potential v = ue − ui computed with the
static bidomain model for an applied voltage of 875 V for cells in suspension (see
Figure 3.4a).

in suspension, v is zero all over the tissue. There is almost no difference between
connected cells and cylindrical cells of axis (Ox), as the electric field is applied in
the direction given by the axis (Ox). The distribution of v could be in accordance
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4.21651

4.74589

(a) Cells in suspension

3.86762

4.50385

(b) Connective tissue

Figure 3.9: Spatial distribution of the homogenized tissue conductivity σeqm (v)
computed with the static bidomain model.

(a) Distribution of the homogenized transmembrane potential |v|

(b) Distribution of the homogenized gradient of the extracellular potential |∇ue|

Figure 3.10: Spatial distribution of two homogenized quantities computed in the
linear case: (a) |v| and (b) |∇ue| are obtained in all 4 cases of reference cells
presented in Figure 3.4.

with the electroporated area observed in the experiments if v was not zero at the
middle point between the electrodes. When the electric field is applied perpendic-
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ular to the direction of the cells (cylindrical cells of axis (Oy)), the distribution of
v no longer corresponds directly or indirectly to the electroporated area observed
in the experiments. On the other hand, the distribution of the gradient of the
extracellular potential |∇ue| permits to identify a zone that seems to be in accor-
dance with what is observed during the experiments. For isotropic tissues, may
they be made of connected cells or of cells in suspension, the distribution of |∇ue|
is located all around the electrodes in the shape of an eight. This zone is similar
when anisotropic tissues are considered, nevertheless it appears wider in the case
of an electric field applied perpendicular to the direction of the cells (cylindrical
cells of axis (Oy)).

What quantity should the membrane conductivity Sm depend on? We
have just seen that, already in the linear case, the spatial distribution of |v| does
not correspond to the electroporated area expected from the experiments. On
the other hand, the spatial distribution of the quantity |∇ue| seems to fit bet-
ter the electroporated area expected from the experiments. It is then expected
that the conductivity should depend on the physical quantity ∇ue instead of
the homogenized transmembrane potential v. We artificially replace the way the
nonlinear function Sm is computed in system (3.34). Namely, instead of taking
Sm = Sm(v) = Sm(ue − ui), we took

Sm = Sm(∇ue) = Ssm +
1

η
× 1 + tanh(k(|∇ue| − Eth))

2
. (3.42)

Figure 3.11 shows the spatial distribution of the simulated equivalent tissue
conductivity σeqm (∇ue) for both types of tissues: cells in suspension and connected
cells.

As Figure 3.11 give more desirable results, we wonder how to obtain a depen-
dence on ∇ue for the membrane conductivity Sm. We believe we should go further
in the formal expansion of the transmembrane potential vε(x) = uεe(x)|Γε−uεi (x)|Γε .
Formally, the first term of the expansion is the limit v0 = u0

e − u0
i . As the spatial

distribution of |v0| does not correspond to the electroporated area expected from
the experiments, perhaps we need to take the next term in the expansion into
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(b) Connective tissue

Figure 3.11: Spatial distribution of the homogenized tissue conductivity σm(∇ue)
computed with the static bidomain model.

account. The next term reveals a dependence on ∇xu
0
e (and ∇xu

0
i ), whose spatial

distribution is closer to the experimental electroporated area.

3.5 Conclusion

In this third chapter, we investigated the possibility the derive a model of tis-
sue electroporation starting from a well-established model of cell electroporation.
The macroscopic model is obtained using a rigorous homogenization procedure,
and the numerical convergence of the microscopic model towards the macroscopic
one is verified. One interest of such an approach is that the microscopic struc-
ture of the tissue can affect the final macroscopic model through the reference cell
problem. Indeed, the cell geometry, that can be significatively different from one
type of tissue to another, influences the global result by modifying the value of
the homogenized conductivity tensors. Simulations of the bidomain model permit
to determine the spatial distribution of the electroporated homogenized tissue in
different configurations (cells in suspension and connected cells). The dependance
of the microscopic membrane conductivity on the transmembrane voltage, which
results in the dependance of the homogenized equivalent tissue conductivity on
the difference between the extracellular homogenized potential and the intracellu-
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lar homogenized potential, is proven to be not conclusive at the tissue scale. A
future work would be to modify the formal expansion in order to obtain, after
homogenization, a dependance of the homogenized equivalent tissue conductivity
on the gradient of the homogenized extracellular potential.
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Part II

Modeling enzyme-based therapies
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Chapter 4

A continuum mechanics model of

enzyme-based tissue degradation in

cancer therapies

This chapter is based on the submitted pre-print [43], which was written in
collaboration with R. Natalini (IAC-CNR) and C. Poignard (Inria Bordeaux).
Insights on the biological framework of the study and on the experiments were
provided by E. Signori (CNR).

4.1 Motivations

Transport through the extracellular matrix (ECM) is a critical step in cell
targeted drug delivery. To reach the cell membrane, the therapeutic agent must
diffuse through the ECM before being fully degraded by the extracellular nucleases
[30]. It is thought that treatment with agents that degrade the ECM components,
hyaluronidase for example [29, 57], have the potential to increase the drugs pene-
tration through the tissue and ultimately into cells [125]. They are therefore used
in medicine to improve drugs dispersion and delivery [18].
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DNA vaccination. There are several physical approaches to perform nonviral
gene therapy. The simplest is the injection of naked DNA in the skeletal or cardiac
muscle which leads to some expression of the injected genes [126]. However, this
expression is very low and very variable from sample to sample. The main physical
barrier encountered by DNA plasmids, the cell membrane, can be overcome using
DNA electrotransfer [9]. But in the case of skeletal muscle, there is another limita-
tion which is the access of the plasmid DNA to the muscle fiber surface. Controlled
and partial degradation of ECM with matrix degrading enzymes is used to increase
the diffusion and distribution of plasmid DNA into the muscle fiber. It has been
shown that a pretreatment of skeletal muscle with hyaluronidase followed by DNA
electrotransfer improves gene expression [113, 1, 108].

Chemotherapy. Delivery of drugs to tumor cells occurs by two independent
mechanisms: diffusion and convection. However, the composition and structure of
tumor-derived ECM can slow down the movement of therapeutic molecules within
the tumor [51, 34, 83]. In addition, the disorganized vascular network and the
absence of functional lymphatics cause increased interstitial fluid pressure (IFP),
which is a major obstacle to transcapillary transport [13]. As far as diffusion is
concerned, it was proven that an intratumoral injection of matrix degrading en-
zymes removes diffusive hindrance to the penetration of therapeutic molecules in
tumor models [47, 54]. As far as convection is concerned, IFP may be temporar-
ily reduced by degrading the tumor ECM. It has been shown that collagenase
and hyaluronidase reduce IFP, thereby improving the uptake and distribution of
molecules within solid tumors [45, 46, 27].

Need of numerical models. From the biological point of view, the effects of
matrix degrading enzymes on drug transport is well known. However, the littera-
ture suffers from a lack of models describing the active transport of those enzymes
in the extracellular medium and the resulting changes on the ECM. The aim of
this chapter is to provide a mathematical model that addresses this phenomenon
in order to offer a better understanding of the physical involved phenomena. The
model consists of a nonlinear system of partial differential equation (PDEs). It is
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derived directly from physical conservation laws. Constitutive relations are added
to close the system. The derivation’s steps are presented in Figure 4.4. We adopt
a poroelastic approach to model the mechanics of a biological tissue. This choice
is made to take into account the swelling of the tissue when fluid is added by
injection. It is also in accordance with the studies stating that biological tissue
deformations are not negligible in numerical models describing drug delivery [118].
This choice implies to first derive equations with Eulerian formalism and then re-
duce them to a fixed reference domain via a suitable change of variables in order
to make the numerical processing possible. In addition, equations on the volume
fractions of each component of the tissue are included to take into account the
structural changes. In the end, the main variables of interest of the model are the
three different volume fractions, the interstial pressure, the displacement and the
concentrations of enzyme and therapeutic agent respectively. The final formula-
tion of the model, system (4.55), is displayed in Section 4.4. To our knowledge,
this is the first model describing the alteration of a poroelastic medium produced
by chemical species injected directly in the medium. Alteration of a porous media
is taken into account in [2, 100] but within a rigid structure. Many mathematical
models of passive transport into a poroelastic medium do not take into account
exchanges between phases [16, 118]. In [53, 75, 74], models including exchanges
between phases are presented on closed poroelastic mixtures (no external sources
or sinks). However, the changes are not mediated by external species. In [115, 116],
magma is modeled as a poroelastic medium with varying porosity due to tempera-
ture changes. However, those changes are assumed to be infinitesimal. In [32, 10],
poroelastic models taking into account ECM degradation by matrix degrading
enzymes produced by tumor cells are presented within the particular framework
of tumor growth. Nevertheless, these models have a very different focus, namely
showing the formation of fibrosis. They also make slightly different assumptions:
the ECM is rigid, the matrix degrading enzymes are produced by tumor cells and
the cells’ movement is the one of an elastic fluid. The goal of the chapter is to
derive a model that combines the effect of an injection of ECM degradation en-
zyme with a poroelastic macroscopic model of biological tissue (skeletal muscle
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or tumor tissue), and to provide a numerical method that allows to simulate the
complete model in 1D-, 2D-, and axisymmetric configurations in order to compare
the results with the qualitative data available in the literature. Let us note that
the long-term goal of the project is to provide a first step towards the numerical
optimization of drug delivery with enzyme pretreatment.

4.2 Main results of the chapter

Numerical simulations illustrating biological phenomena. After testing
the model with a set of numerical simulations to investigate the effect of the
new parameters added (Figures 4.11 and 4.13), we use the model to describe two
situations: the incubation of a spheroid into an ECM degradation enzyme and
the intratumoral injection of enzyme in vivo. We observe that, in the first test
case, given the dependency of the diffusion tensor on the porosity variable [77], a
pretreatment with ECM degradation enzyme affects the distribution of therapeutic
agents, thereby improving the diffusion process. Where without pretreatment, the
macromolecules stay mainly at the periphery of the spheroid, a pretreatment with
hyaluronidase permit to obtain a wider distribution (Figure 4.1).

Figure 4.1: Comparison between experimental doxuribicin fluorescence (left, data
from [69]) and numerically simulated (see Figure 4.17 in Section 4.6) concentration
of anticancer agent in a spheroid previously incubated with hyaluronidase (B) or
not (A).
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In the second case, given the dependency of the pressure on the porosity vari-
able, an intratumoral injection of enzyme results in a reduction of the IFP. This
reduction depends on the enzyme’s concentration and reaches a maximum value, a
further increase of the dose resulting in a smaller reduction, which is in accordance
with the experiments (Figure 4.2).
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Figure 4.2: Comparison between experimental IFP (left, data from [46]) and nu-
merically simulated IFP (see 4.6.3.4). Normalized interstitial fluid pressure is rep-
resented in both cases as a function of time after intratumoral injection of 150 U,
500 U, 1500 U and 3000 U hyaluronidase in tumors compared to no pretreatment
(intratumoral injection of saline solution).

It also appears that a pretreatment with ECM degradation enzyme affects
the distribution of therapeutic agents, thereby increasing its area of action by
improving both the diffusion and the convection processes. This is once more in
accordance with the experiments (data from [46]). Indeed, without pretreatment,
the macromolecules stay only at the periphery of the tumor, the transcapillary
transport being greatly reduced by the high IFP inside the tumor. A pretreatment
with hyaluronidase permit to obtain a wider distribution. The molecules are thus
distributed all over the tumor (Figure 4.3).

4.2.1 Outline

In this chapter, we construct a nonlinear spatio-temporal model for the active

155



CHAPTER 4. A MODEL OF TISSUE DEGRADATION

Figure 4.3: Comparison between experimental distribution of anticancer fluores-
cent agent (left, data from [46]) and numerically simulated concentration of agent.
In case A, no pretreatment was previously performed on the tissue whereas in case
B, the tissue was pretreated with 1500 U hyaluronidase.

transport of ECM degradation enzyme into a poroelastic biological tissue coupled
with the passive transport of therapeutic agents. Section 4.3 is devoted to a pre-
cise description of our model following the scheme presented in Figure 4.4. It is
divided in two parts: in the first part, we derive some equations from physical con-
servation laws, while in the second part, we conclude the formulation of our model
stating some constitutive relations. Section 4.4 is devoted to the simplification of
the model. We formulate the equations of the model in a fixed reference domain
and assume a small displacement hypothesis that simplify the numerical process-
ing. Section 4.5 contains the numerical scheme used to solve our PDE simplified
model. The main features of the numerical model are then investigated in 1D-
and 2D-configurations. We conclude by numerical simulations that corroborate
experimental results in the framework of solid tumors in Section 4.6. To the best
of our knowledge, it is the first time that a PDE model describes the effect of an
injection of ECM degradation enzyme respectively on porosity, interstitial pressure
and drug delivery. Calibration of the model with experimental data are planned
in forthcoming works.
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4.3 Derivation of the model

4.3.1 Framework

Modeling the behavior of porous media in which different continua interact at
the microscopic level is not an easy task. In the current literature the mechanics of
a porous medium is typically described by two different approaches: the averaging
approach and the macroscopic approach [112], also known as mixture theory. The
basic premise of the mixture theory is that the space occupied by a mixture is
occupied co-jointly by the various constituents of the mixture, each considered as
a continuum of its own. Thus, at any point of the space occupied by the mixture,
there will be a particle belonging to each constituent [53].

We let x and t denote the space and time variables, respectively. To simplify
notations, we omit the dependence of all variables and model parameters on x and
t, except otherwise stated.

We denote by Ω0 = Ω(0) ⊂ Rd (d = 1, 2, 3) the initial spatial configuration, by
Ωt = Ω(t) the configuration at time t and by T the final time of the experiment.

The biological tissue is considered as a binary mixture of a solid and an inter-
stitial fluid. The solid phase consists of cells and extracellular matrix (ECM). In
what follows, the index ζ refers to one of the three constituents of the tissue: the
fluid (f), the ECM (E) or the cells (). The index s stands for the solid phase
(ECM + cells). The density of the ζth constituent is denoted by ρζ . It represents
the mass of the ζth constituent per unit volume of the mixture. The density for
the ζth constituent in a homogeneous state is denoted by ρRζ . It represents the
mass of the ζth constituent per unit volume of the ζth constituent. The quantity
defined by

ϕζ(t,x) =
ρζ(t,x)

ρRζ (t,x)
, (4.1)

is the volume fraction of the mixture occupied by the ζth constituent. This defi-
nition coincides with the classic definition given by [20]. The following standard
assumptions on the mixture are considered.
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Assumption 1. (Saturation) The mixture is fully saturated, i.e.

ϕE + ϕ + ϕf = 1 ∀x ∈ Ω, ∀t > 0 (4.2)

This saturation condition excludes the possibility of the formation of voids or air
bubbles inside the medium.

Assumption 2. (Incompressibility) The liquid is incompressible in its pure state
i.e. the density of the liquid in a homogeneous state is assumed to be a constant,
namely

ρRf (t, x) = ρR,0f (t, x) ∀x ∈ Ω, ∀t > 0. (4.3)

Assumption 3. All the solid matrix constituents (cells and ECM) have the same
density in a homogeneous state:

ρRE (t,x) = ρR (t,x) = ρRs (t,x). (4.4)

Assumption 4. (Slight compressibility) The solid phase (ECM+ cells) is slightly
compressible in its pure state i.e. the density of the solid constituents in a homo-
geneous state can be written as [33]:

ρRs (t,x) = ρR,0s (t,x)(1 + s0(p(t,x)− p(0,x))), ∀x ∈ Ω, ∀t > 0, (4.5)

where
s0(p(t,x)− p(0,x))� 1, ∀x ∈ Ω, ∀t > 0, (4.6)

and where p is the interstitial fluid pressure and where ρR,0s is a constant. s0 can be
related to the specific storage coefficient that appears in Biot’s constitutive theory
of consolidation [21].

Assumption 5. (Mass exchanges) We assume that mass exchanges occur only
among cells/ECM and fluid, meaning that degrading ECM is detoriated into extra-
cellular fluid, and conversely that the latter is consumed whenever ECM is created.
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Assumption 6. (Fluid source term) Fluid is exchanged between interstitial space
and the blood or lymph vessels: the fluid source term is then assumed to be driven
by the average transmural pressure. If fluid is directly injected in the tissue,
another external source of fluid is added during the injection.

4.3.2 Model derivation steps

The derivation’s steps are presented in Figure 4.4.

4.3.3 Balance laws

In this section we give the set of conservation laws that constitute our proposed
mathematical picture of the mechanobiological properties of the tissue using the
Eulerian formalism. All the solid matrix constituents (cells and ECM) are experi-
encing the same motion. Thus vE(t,x) = v(t,x) = vs(t,x). The motion function
refers to the solid phase, so it is useful to use the Eulerian velocity of the fluid
with respect to the solid phase defined by

w(t,x) = vf (t,x)− vs(t,x). (4.7)

4.3.3.1 Mass balance for each component of the mixture

The mass of the ζth constituent can change due to

1. the flux caused by the motion at the velocity vζ of the constituent,

2. the production that accounts for possible mass conversion between con-
stituents at a certain rate Qζ [53],

3. the source term Sζ .

One then has
∂ρζ
∂t

+∇ · (ρζvζ)− ρζQζ − Sζ = 0, (4.8)

where the source term Sζ is given as

Sζ = ρRζ Σζ . (4.9)
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Mass balance on fluid
(4.13c)

Mass balance law on
ECM (4.13a)

Mass balance law on
cells (4.13b)

Momentum balance law
on fluid phase (4.17a)

Momentum balance law
on solid phase (4.17b)

Mass balance law on
enzyme’s concentration

(4.25)

Mass balance law on
therapeutic agent’s
concentration (4.29)

Volume fraction of fluid
(Porosity) (4.55a)

Volume fraction of ECM
(4.55f)

Volume fraction of cells
(4.55e)

Interstitial pressure
(4.55c)

Displacement (4.55b)

Enzyme’s concentration
(4.55d)

Therapeutic agent’s
concentration (4.55g)

Constitutive Relations -
Darcy (4.30), Hooke
(4.33), Starling (4.31)

Figure 4.4: Schematic description of the derivation’s method of the model. The
first set of boxes contain the set of conservation laws and constitutive relations
considered while the other boxes contain the final equations on the variables of
interest derived from the physical laws. The numbering refers to the corresponding
equations in their final form stated further in the article.

Using definition (4.1) we get

∂(ρRζ ϕζ)

∂t
+∇ · (ρRζ ϕζvζ)− ρRζ ϕζQζ − Sζ = 0.
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To translate Assumption 5, we assume the following constraint [53]

ρRs ϕEQE + ρRf ϕfQf = 0. (4.10)

The production terms Qf and QE introduced here describe the mechanisms of
addition and/or removal of mass for each species constituting an isolated tissue.
We assume that the ECM is degraded proportionally to the enzyme’s concentration
[6], becoming fluid, and that the tissue recovers towards its initial state.

It is then relevant to choose the production term QE as

QE = −Kϕfcenz + ar (ϕf − ϕf (0,x)) . (4.11)

where K is the rate of deterioration of the solid phase when in contact with the
enzyme, represented by its concentration in the fluid phase ϕfcenz. As the ECM
is recovered a certain time after the injection of the enzyme [65, 60], the second
term in the expression of QE represents this reconstitution of the tissue towards
its initial state, at a certain rate of natural reconstruction ar.

To translate Assumption 6, we choose the fluid source term as

Σf = Qtot

inj +Qvas −Qlym where Qtot

inj = Qenz

inj +Qdrug

inj , (4.12)

where Qenz
inj represents the injection term of enzyme, Qdrug

inj represents the injection
term of therapeutic agent, Qvas is the transcapillary flow and Qlym is the lymphatic
drainage.

The mass balance equations for the tissue’s constituents are then expressed by
the following coupled system of PDEs in Ωt × (0, T ):

∂

∂t
(ρRs ϕE) +∇ · (ρRs ϕEvs) = ρRs ϕE(−Kϕfcenz + ar (ϕf − ϕf (0,x))),

∂

∂t
(ρRs ϕ) +∇ · (ρRs ϕvs) = 0,

∂

∂t
(ρRf ϕf ) +∇ · (ρRf ϕfvf ) = ρRs ϕE (Kϕfcenz − ar (ϕf − ϕf (0,x)))

+ ρRf (Qtot

inj +Qvas −Qlym).

(4.13a)

(4.13b)

(4.13c)
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Figure 4.5: Schematic description of exchange pathways and production terms of
the different phases.

4.3.3.2 Total mass balance for the mixture

Summing equations (1/ρR,0s )× (4.13a), (1/ρR,0s )× (4.13b) and (1/ρRf )× (4.13c),
using Assumptions 1 and 4.3, and conditions (4.6)-(4.10) we get

ϕss0

(
∂p

∂t
+∇p · vs

)
+∇ · (ϕsvs + ϕfvf ) = Qtot

inj +Qvas −Qlym

+

(
1− ρR,0s

ρRf

)
ϕE(−Kϕfcenz + ar (ϕf − ϕf (0,x))).

(4.14)

This equation expresses the conservation of the total mass of the tissue. A
simple manipulation allows us to write (4.14) as

ϕss0

(
∂p

∂t
+∇p · vs

)
+∇ · (vs + ϕfw) = Qtot

inj +Qvas −Qlym

+

(
1− ρR,0s

ρRf

)
ϕE(−Kϕfcenz + ar (ϕf − ϕf (0,x))).

(4.15)

Remark 8. The term ϕss0

(
∂p
∂t

+∇p · vs
)
in Equation (4.15) comes from Assump-

tions 4.5 and 4.6. If the density in an homogeneous state of the solid phase were
assumed to be a constant, this term would vanish.
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4.3.3.3 Momentum balance for each component of the mixture

The momentum of the ζth constituent can change due to

1. the momentum flux caused by the motion at the velocity vζ of the con-
stituent,

2. contact forces within the constituent acting through the boundary,

3. contact forces due to the interaction with the other constituents within the
domain through the interface separating the constituents,

4. momentum supply related to phase changes,

5. momentum supply related to external sources or sinks of mass,

6. body forces.

One can then write the following local form of the momentum balance in con-
servative form

∂

∂t
(ρζvζ) + ∇ · (ρζvζ ⊗ vζ) = ∇ · σζ + ρζb + πζ + ρζQζvζ + Sζvζ ,

where

• σζ is called the partial stress,

• πζ is called the interaction force,

• b is an external force applied to the system e.g., extra pressure due to the
injection.

Actually using the mass balance equation (4.8), this equation can be simplified
as

ρζ

(
∂

∂t
vζ + vζ ·∇vζ

)
= ∇ · σζ + ρζb + πζ , (4.16)

where the inertial term on the left-hand side can usually be neglected when de-
scribing biological tissues [14, 15]. Let’s recall that all the solid matrix constituents
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(cells and ECM) experience the same overall motion, so we can simplify the mo-
mentum balance equations for the tissue’s constituents into the a coupled system
of PDEs to be solved in Ωt × (0, T ):

{
∇ · σf + ρRf ϕfb + πf = 0,

∇ · σs + ρRs ϕsb + πs = 0,

(4.17a)

(4.17b)

where (4.17b) is the equation resulting from the sum of (4.16) for ζ = E , , and
expresses the total momentum of the solid phase as a whole. In the case of a
saturated mixture, it can be proved that [26]

{
σs = −ϕspI + ϕsσ

E
s

σf = −ϕfpI
(4.18a)

(4.18b)

where σEs is the effective stress tensor of the solid phase of the tissue, whose form
will be discussed in Section 4.3.4, and where p = p(t,x) is the pressure exerted
by the fluid phase and I is the identity tensor. The isotropic stress −pI accounts
for the coupling, typical of poroelasticity, between the low of the fluid and the
deformation of the solid matrix, and in particular describes the contribution to
the stress due to the fluid pressure within the structure.

The quantities σζ , ζ = s, f , are the total stress tensors of the solid and fluid
phases. As usual, we neglect the effective stress tensor of the fluid, meaning that
we assume that the internal fluid viscosity is negligible compared with the friction
between the fluid and the solid matrix [15].

We observe that, for all t ∈ (0, T ) and at all x ∈ Ω, it holds [98]

πs(t,x) + πf (t,x) = 0. (4.19)

4.3.3.4 Total momentum balance for the mixture

Summing equations (4.16) for ζ = s, f and using (4.18), we get

∇ · (ϕsσEs ) + (ρf + ρs)b = ∇p. (4.20)
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This equation expresses the conservation of total momentum of the tissue. In
what follows, we will assume the external body forces to be zero, such that equation
(4.20) becomes

∇ · (ϕsσEs ) = ∇p. (4.21)

4.3.3.5 Mass balance for ECM degradation enzyme’s concentration

Another fundamental quantity of interest from the modeling point of view is the
concentration in ECM degradation enzyme, such as hyaluronidase or collagenase,
per unit volume within the fluid phase of the tissue, cenz = cenz(t,x). However, the
concentration cenz has to be related to the volume ratio occupied by the interstitial
fluid. Finally the relevant entity for an overall balance over the whole tissue is
the reduced (or weighted) concentration, e.g. Cenz = ϕfcenz. The mass balance
system (4.13) for the solid and fluid phases of the tissue is thus accompanied by
a corresponding continuity equation for the hyaluronidase concentration that is
transported throughout the tissue by the interstitial fluid. We consider that the
reduced concentration can change due to

1. the motion of the fluid at the velocity vf ,

2. the diffusive flux,

3. natural degradation and/or the intake due to the source.

Therefore, the following reaction-convection-diffusion equation reads

∂

∂t
(ϕfcenz) +∇ · (ϕfcenzvf ) = −∇ · (ϕf jfenz)− kd,eff

enz ϕfcenz + Senz, (4.22)

where

• jfenz is diffusive flux inside the liquid phase,

• kd,eff
enz is the net natural degradation effective rate of the enzyme in the inter-

stitial fluid,

• Senz is the contribution consecutive to the injection (directly into the tissue
or intravenously) of enzyme.
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Fick’s law states that the diffusive flux can be assumed to be proportional to
the concentration gradient in the liquid, that is

jfenz = −Df
enz∇cenz, (4.23)

where Df
enz is the effective diffusion tensor in the liquid, that we choose to be a

tensor linearly dependent on the porosity [77]

Df
enz = ϕfD0

enz. (4.24)

Hence, equation (4.22) in terms of Cenz = ϕfcenz becomes

∂Cenz

∂t
+∇ · (Cenzvf ) = ∇ ·

(
ϕ2
fD

0
enz∇

(
Cenz

ϕf

))
− kd,eff

enz Cenz + Senz. (4.25)

4.3.3.6 Mass balance for drug concentration

The main quantity of interest from the modeling point of view is the concen-
tration in therapeutic agent per unit volume within the fluid phase of the tissue,
cdrug = cdrug(t,x). As previously, the concentration cdrug has to be related to the
volume ratio the interstitial fluid. The relevant entity for an overall balance over
the whole tissue is the reduced (or weighted) concentration, e.g. Cdrug = ϕfcdrug.
The continuity equation for the therapeutic agent’s concentration that is trans-
ported throughout the tissue by the interstitial fluid can be deduced considering
that the reduced concentration can change due to

1. the motion of the fluid

2. the diffusive flux

3. natural degradation and/or the intake due to the source.

Therefore, the following reaction-convection-diffusion equation can be deduced

∂

∂t
(ϕfcdrug) +∇ · (ϕfcdrugvf ) = −∇ · (ϕf jfdrug)− kd,eff

drugϕfcdrug + Sdrug, (4.26)

where
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• jfdrug is diffusive flux inside the liquid phase,

• kd,eff

drug is the net natural degradation effective rate of the drug in the interstitial
fluid,

• Sdrug is the contribution consecutive to the injection (directly into the tissue
or intravenously) of drug.

As before, Fick’s law states that the diffusive flux can be assumed to be pro-
portionnal to the concentration gradient in the liquid, that is

jfdrug = −Df
drug∇cdrug, (4.27)

where Df
drug is the effective diffusion coefficient in the liquid, that we choose to be

linearly dependent on the porosity [77]

Df
drug = ϕfD0

drug. (4.28)

Hence, using (4.13c), equation (4.22) simplifies to

∂Cdrug

∂t
+∇ · (Cdrugvf ) = ∇ ·

(
ϕ2
fD

0
drug∇

(
Cdrug

ϕf

))
− kd,eff

drugCdrug + Sdrug. (4.29)

4.3.4 Constitutive equations regarding the mechanical and

fluid subsystems

4.3.4.1 Darcy’s law

We assume the relative velocity to be expressed by Darcy’s law [8, 16, 10, 15]

ϕfw = ϕ(vf − vs) = −κ∇p (4.30)

where κ is the permeability tensor.
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4.3.4.2 Starling’s law

The transcapillary flow and the lymphatic drainage are taken into account in
(4.12). Both rates Qvas and Qlym can be evaluated throught Starling’s law. A
complete description of the formulation of this law can be found in [114]. The
final result is

Qvas −Qlym =
LpS + LPLSL

V
(pv − p), (4.31)

where Lp and LPL are the hydraulic conductivities of the microvascular wall and
of the lymphatic wall respectively; S/V and SL/V are the surface area per unit
volume of the vasculature and of the lymphatics respectively; and where pv is the
driving pressure. Equation (4.31) will be written as

Qvas −Qlym = γ(pv − p), (4.32)

where γ = (LpS + LPLSL)/V will be assumed to be a constant.

4.3.4.3 The linear elasticity framework

To complete our derivations of the equations of motion, we must know (or as-
sume) the relationships (constitutive laws) between effective stress and strain. The
classical theory of elasticity deals with the mechanical properties of elastic solids
for which the stress is directly proportional to the stress in small deformations.
Linear elastic theory can be satisfactorily applied for modeling the mechanical
properties of biological media [52, 86, 16, 23]: namely, we assume that biological
tissues are nearly linear elastic under small strain and follow a constitutive law
based on Hooke’s law. Specifically, a Hookean elastic solid is a solid that obeys
Hooke’s Law, that states that the first Piola-Kirchhoff stress tensor SEs is such
that

SEs;ij = Cijklεkl (4.33)

where Cijkl is the stiffness tensor and where ε is the infinitesimal strain (4.48)
defined later in Section 4.4.

Remark 9. For most materials, the linear elasticity framework is only valid for
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small displacements [104].

Remark 10. In biomechanics, biological tissues are thought to be better described
as viscoelastic solids [52, 41]. However, for the sake of simplicity, we choose here
to stay within the framework of the linear elasticity theory.

The first Piola-Kirchhoff stress tensor is then related to the Cauchy stress
tensor [17] via the deformation gradient A (4.47) defined in Section 4.4

σEs =
1

J
ASEs A

T . (4.34)

Isotropic media. In the most simple symmetry case of an isotropic elastic solid,
the material has only two independent elastic moduli, called the Lamé constants,
λ and µ . In such a medium the elastic properties at any point are independent
from direction. The Lamé constants are related to the stiffness tensor Cijkl by

Cijkl = λδijδkl + µ (δikδjl + δilδjk) ,

which gives us the following form for the effective stress SEs

SEs = 2µε+ λTr(ε)Id. (4.35)

As far as the diffusion tensors and the permeability tensor are concerned, in
the isotropic case, we take

D0
enz = D0

enzId, D0
drug = D0

drugId, κ = κId. (4.36)

Transverse isotropic media. It is now well established that anisotropy plays
a major role in the mechanical properties of biological media such as muscles, ten-
dons or bones [105]. The most simple anisotropic model is the transverse isotropy.
A transversely isotropic tissue is characterized by the existence of a single plane
of isotropy and one single axis of rotational symmetry, the normal to the isotropy
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plane. Skeletal muscle, for instance, consists of hundreds to thousands, sometimes
millions, of long, multinucleated fibers organized and held together by an ECM
thus it is relevant to model it as a transverse isotropic media.

In the case of a transverse isotropic medium in 2D, relation (4.33) reduces to
(4.35) in the plane of isotropy (xy). If we consider the plane (xz), (4.33) can be
written in the following fashion

SEs;11

SEs;33

SEs;13

 =


C1111 C1133 0

C1133 C3333 0

0 0 C1313



ε11

ε33

2ε13

 . (4.37)

It has been reported [121] that the permeability κ depends on many factors
including the geometry. Orientation can affect κ, with perpendicular fibers pro-
viding a larger resistance to flow κ⊥ than parallel fibers κ//. Consequently, in a
rightful vector basis, we take κ as

κ =

(
κ// 0

0 κ⊥

)
. (4.38)

As far as the diffusion tensors are concerned, it was also reported [35, 39] that
the diffusion coefficient parallel to a skeletal muscle fiber’s long axis D0

enz,// (resp.
D0

drug,//) is greater than the diffusion coefficient perpendicular to the fiber’s long
axis D0

enz,⊥ (resp. D0
drug,⊥). Consequently, in a rightful vector basis,

D0
enz =

(
D0

enz,// 0

0 D0
enz,⊥

)
, resp. D0

drug =

(
D0

drug,// 0

0 D0
drug,⊥

)
. (4.39)

4.3.4.4 Degradation rates

The degree of porosity has a significant impact on the net natural degradation
effective rate of the enzyme or the drug in the interstitial fluid kd,eff

enz , k
d,eff

drug . The ef-
fects are both attributed to a wall effect and a surface area effect because the media
with lower porosities or larger pores possess thicker pore walls and smaller surface
area, which depress the diffusion of degradation products [127]. Consequently, we
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choose
kd,eff

enz =
kdenz

ϕf
and kd,eff

drug =
kddrug

ϕf
, (4.40)

where kdenz and kddrug are positive constants.

4.3.4.5 Source terms.

Let the index ω denote either of the chemical species of interest (enzyme and/or
drug).

Injection. If the chemical specie is directly injected in the tissue, we can choose
to take the source term as

Sω = cωinjQ
ω
inj, (4.41)

where cωinj is the value of the specie concentration injected, which is assumed to be
a constant. In the numerical simulations of sections 4.5 and 4.6, Qω

inj is a Gaussian
function with a very small spread

Qω
inj = qωinj exp

(
−

d∑
i=1

(xi − x0
i )

2

2σ2
xi

)
, (4.42)

where qωinj, σxi are positive constants and where (x0
1, . . . , x

0
d) indicate the coordinates

of the injection point.

Incubation. If the tissue is incubated in the chemical specie, the source term Sω
is taken as zero and and we choose instead to apply a non homogeneous Dirichlet
boundary condition on Cω (cf section 4.6).

Transcapillary transport. If the chemical specie is injected intravenously, we
choose to take the source term accordingly with the pore model for transcapillary
exchange via convection stated in [19]

Sω = (1− γc)(Qvas −Qlym)cωv , (4.43)
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where γc represents the coupling between fluid and solute and cωv is the plasma
concentration of the chemical specie. In the numerical simulations of section 4.6,
for the sake of simplicity,

cωv = cωv,0 χ|t1≤t≤t2 , (4.44)

where cωv,0 is a constant, and [t1, t2] is the time interval of presence in the capillary
network. cωv can be chosen to follow any pharmacokinetic model of interest.

4.4 Formulation of the poroelastic model in a fixed

domain

4.4.1 Kinematics of the mixture

The motion of the constituents is described by the position occupied at time t
by the particle labelled X

x = Φ(t,X), (4.45)

X being the position of the particle in the reference configuration Ω0. The function
Φ(t, .) represents a mapping from initial (undeformed) configuration Ω0 to the
present (deformed) configuration Ωt.

Figure 4.6: Deformation from the fixed domain Ω0 via the application Φ

The velocity of a particle belonging to the ζth constituent, often termed the
Lagrangian velocity, Vζ(t,X), is the time rate change of the particle position
holding X fixed. As we will use the Eulerian formalism to state conservation
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equations, we recall that the Eulerian velocity at time t and position x, vζ(t,x),
is given by

vζ(t,x) = Vζ(t,X) when x = Φ(t,X). (4.46)

The configuration gradient, or deformation gradient, is defined by

A :=
∂x
∂X

=

(
∂xi
∂Xj

)
i,j=1..d

(4.47)

We also set B := A−1 and J := det(A). We stated that all the solid matrix
constituents (cells and ECM) experience the same overall motion [74]. The dis-
placement vector of the solid phase will be denoted u = u(t,X). Note that we
then have

Vs(t,X) =
∂

∂t
u(t,X).

We also define the associated infinitesimal deformation of the volume surrounding
the point X at time t as

ε(t,X) =
1

2

(
∇u(t,X) + (∇u(t,X)T

)
. (4.48)

It is also useful to define the material time derivative following the solid matrix

D(.)

Dt
=
∂(.)

∂t
+ (vs.∇) (.). (4.49)

4.4.2 Change of variables

From now on, the medium is assumed to be isotropic. The formulation in a
transverse isotropic medium will be similar as only equation (4.55b) will change.
To reduce the governing equations to the reference fixed domain Ω0, we introduce
a suitable change of variable, which is given by the motion function (4.45): x =

Φ(t,X).

If u(t,X) = x−X is the displacement vector, Φ is given by

Φ(t,X) = X + u(t,X). (4.50)
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Let us set

f(t,X) := ϕf (t,Φ(t,X)), gs(t,X) := ϕs(t,Φ(t,X)),

gE(t,X) := ϕE(t,Φ(t,X)), g(t,X) := ϕ(t,Φ(t,X)),

P (t,X) := p(t,Φ(t,X)), Pv(t,X) := pv(t,Φ(t,X)),

h(t,X) := Cenz(t,Φ(t,X)), c(t,X) := Cdrug(t,Φ(t,X)),

Recall that we have already from Section 4.3.4

vs(t,x) = Vs(t,X) =
∂

∂t
u(t,X), (4.51)

and
σEs =

1

J
B−1SEs B

−T with SEs = 2µε+ λTr(ε)Id, (4.52)

since we consider the isotropic case. Moreover, every time and space derivative are
affected by the change of variables in the following fashion (example on f = ϕf ):

Dϕf
Dt

=
∂f

∂t
, ∇x ϕf = B∇X f. (4.53)

4.4.3 Non-dimensionalization

We state that from now ∇ denotes the operator ∇X = (∂X1 , . . . , ∂Xd)
T . De-

note by l0 the typical length of the porous medium. We non-dimensionalize the
governing equations by letting

X = l0X, u = l0u, t =
l20

κ(λ+ 2µ)
t, Vs =

κ(λ+ 2µ)

l0
Vs,

P = (λ+ 2µ)P , h = c0h, c = c0c,

where we use bars to denote the dimensionless variables. The dimensionless Piola-
Kirchhoff and Cauchy stress tensors are defined as SEs = SEs /(λ + 2µ) and σEs =

σEs /(λ+ 2µ), respectively, and we define the dimensionless parameters
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µ =
µ

λ+ 2µ
, λ =

λ

λ+ 2µ
, s0 = s0(λ+ 2µ), κ =

1

κ
κ,

α =
l20

κ(λ+ 2µ)
, K = αc0K, ar = αar, γ =

l20
κ
γ,

D0
enz =

1

κ(λ+ 2µ)
D0

enz, kdenz = αkdenz, Pv =
Pv

λ+ 2µ
,

D0
drug =

1

κ(λ+ 2µ)
D0

drug, kddrug = αkddrug.

We choose the (λ + 2µ) parameter as a natural pressure scale; by this choice
the dimensionless elastic parameters λ, µ are of order 1 [70].

4.4.4 Simplification of the model

The governing equations in Ωt can be reformulated on the fixed reference do-
main Ω0 dimensionless. The first advantage of this process is to obtain a system
of equations in a fixed reference domain in order to make the numerical process-
ing possible. Second, the constitutive relation on the stress tensor SEs is given in
the lagrangian coordinates (t,X), so it is natural to work within this system of
coordinates. The third benefit is to elude the transport equations of the three
different volume fractions: in the fixed reference domain, those equations reduce
to ordinary differential equations. In particular, we don’t have to state boundary
conditions on the porosity.

The full derivation calculus in the general case can be found in Appendix A.
For the sake of simplicity, we will assume that our system undergo very small
perturbations (see Remark 9). One can see then that B = Id +M(∇u), where in
the case of very small deformations, the coefficients of matrixM(∇u) are negligible
before 1. Thus we can write the system with B = Id. Let us denote

Jenz =
1

f
κ∇P −D0

enz∇f and Jdrug =
1

f
κ∇P −D0

drug∇f. (4.54)

The equivalent system in Ω0 in dimensionless form in this simplified case reads
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

gE + g + f = 1,

∇ ·
(
(gE + g)

(
λ(∇ · u)I + µ(∇u +∇uT )

))
= ∇P,

(gE + g)s0
∂P

∂t
−∇ · (κ∇P ) = αQtot

inj + γ(Pv − P )

+

(
ρR,0s

ρRf
− 1

)
gE(Kh+ ar(f(0,x)− f))−∇ ·

(
∂u
∂t

)
,

∂h

∂t
= ∇ · (fD0

enz∇h+ hJenz) + h

(
−k

d
enz

f
−∇ ·

(
∂u
∂t

))
+
αSenz

c0

,

∂g

∂t
+

(
s0
∂P

∂t
+∇ ·

(
∂u
∂t

))
g = 0,

∂gE
∂t

+

(
Kh+ ar(f(0,x)− f) + s0

∂P

∂t
+∇ ·

(
∂u
∂t

))
gE = 0,

∂c

∂t
= ∇ · (fD0

drug∇c+ cJdrug) + c

(
−k

d
drug

f
−∇ ·

(
∂u
∂t

))
+
αSdrug

c0

.

(4.55a)

(4.55b)

(4.55c)

(4.55d)

(4.55e)

(4.55f)

(4.55g)

Remark 11 (Dynamics added on porosity’s behavior). In previous studies,
the porosity of the medium (or volume fraction of fluid) is often regarded as a
constant [16]. Models that include porosity changes [91] have used the following
relation between ∇ · u and ϕf :

f =
f(0,x) +∇ · u

1 +∇ · u ,

which is obtained traducing an hypothesis of infinitesimal displacement on the
variation of volume, or more recently [118]

f = 1− (1− f(0,x))e−∇·u,

which is obtained from Equation (4.55e) in the case of a biphasic system with
only incompressible cells and incompressible fluid. However, in our case, since our
main hypothesis is that the porosity is not only affected by the deformation of
the medium but mostly by the ECM degradation enzyme injected, we must derive
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an expression for the effective porosity directly from the mass balance laws of the
ECM and cells constituents.

An expression for the effective volume fraction occupied by cells can be de-
rived from the volume balance of the phase occupied by cells assuming the initial
conditions g(0,x) = g0

(x) and ∇ · u(0,x) = 0. Integrating Equation (4.55e),

g(t,x) = g0
(x)e−∇·u−s0(P−P 0). (4.56)

To obtain the effective volume fraction occupied by ECM, consider

g̃E = gEe
∇·u+s0(P−P 0). (4.57)

An equation for this quantity assuming the initial conditions ∇ · u(0,x) = 0,
P (0,x) = P 0(x) and g̃E(0,x) = gE(0,x) = g0

E(x), is given by

∂g̃E
∂t

+
(
Kh+ ar(f(0,x)− f)

)
g̃E = 0.

This equation reflects the fact that, regardless of the mechanical changes due
to the displacement and the compressibility of the tissue, the ECM is deteriorated
when in contact with the ECM degradation enzyme, but then reconstruct itself
towards its initial state.

Figure 4.7: g̃E is plotted versus time
for an initial volume fraction of ECM
of 0.3 and for different concentrations
of enzyme applied continuously during
30 minutes, regardless of the space de-
pendency. Both tendencies (degrada-
tion during injection - reconstruction)
can easily be observed.
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4.4.5 Boundary conditions

The primary variables of the problem are the displacement u, the pressure P
and the concentrations in ECM degradation enzyme h and in therapeutic agent
c. Define the boundary of the domain Ω, denoted Γ. We generically denote by n

the normal to Ω outwardly directed from the inside to the outside of the domain.
Next, define the portions of the boundary Γu and Γt on which displacement and
stress are defined, such as Γu ∪ Γt = Γ and

u = uΓu on Γu and SEs n = t on Γt. (4.58)

Applying the condition SEs n = 0 to the boundary amounts to considering a
free boundary, while setting uΓu = 0 amounts to considering a fixed boundary.

The portions of the boundary Γp and Γq are the parts of the boundary on which
pressure and pressure flux are specified, such as Γp ∪ Γq = Γ and

P = PΓp on Γp and ∇P · n = q on Γq. (4.59)

Setting a Dirichlet condition on the pressure amounts to considering a perme-
able boundary in contact with a surrounding medium where the pressure is fixed,
while applying the condition ∇P · n = 0 amounts to considering a wall boundary
condition.

The portions of the boundary Γh and Γβ are the parts of the boundary on
which the enzyme’s concentration and flux are specified, such as Γh ∪Γβ = Γ and

{
h = hΓh on Γh,(
fD0

enz∇h+ hJenz

)
· n = β1 on Γβ.

(4.60a)

(4.60b)

The same type of boundary conditions are applied to the therapeutic agent’s con-
centration and flux
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{
c = cΓh on Γh,(
fD0

drug∇c+ cJdrug

)
· n = β2 on Γβ.

(4.61a)

(4.61b)

4.5 Numerical simulations

4.5.1 Computational algorithm

We first need to reduce the whole coupled system (4.55) to a sequence of
linearized equations of simpler form. We subdivide the time interval [0, T ] into
N ≥ 1 uniform subintervals of length ∆t = T

N
, in such a way that the discrete

time levels tn = n∆t, n = 0, . . . , N , are obtained. We set

∇ · u0 = 0, g0
E = gE(0,x), g̃0

E = gE(0,x), g0
 = g(0,x), h0 = 0 and c0 = 0,

(4.62)
and P 0 is set as the solution of the steady-state pressure equation:

−∇ · (κ∇P 0) = γ(pv − P 0), (4.63)

coupled with the boundary conditions (4.59).

For n = 0, . . . , N − 1, we perform the following iteration:

1. We obtain fn using (4.55a): fn = 1− gnE − gn , and we set gns = gnE + gn .

2. We obtain un+1 and P n+1 solving the linear poroelastic system with the
finite element solver FreeFem++ [61], choosing P2 (resp. P1) elements for
un+1 (resp. P n+1) to guarantee stable Galerkin approximation [50, 87] and
discretizing in time with a first order backward Euler scheme [88]. Note that
having a parabolic equation on P , which is a consequence of Assumption 4.3,
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numerically permits to prevent element locking [64].



∇ ·
(
gns
(
λ(∇ · un+1)I + 2µε(un+1)

))
−∇P n+1 = 0,

gns s0
P n+1

∆t
−∇ · (κ∇P n+1) + γP n+1 +

∇ · un+1

∆t

= gns s0
P n

∆t
+
∇ · un

∆t
+ αQtot

inj (t
n+1)

+ γ peq +

(
ρR,0s

ρRf
− 1

)
gnE (Kh

n + ar(f(0,x)− fn)),

(4.64a)

(4.64b)

supplied by the approximation of the boundary conditions (4.58) and (4.59)

{
un+1 = uΓu on Γu and SE,n+1

s n = t on Γt,

P n+1 = PΓp on Γp and ∇P n+1 · n = q on Γq.

(4.65a)

(4.65b)

3. Let us denote

Jnenz =
1

fn
κ∇P n−D0

enz∇fn and Jndrug =
1

fn
κ∇P n−D0

drug∇fn. (4.66)

We obtain hn+1 and cn+1 solving the linear advection-diffusion-reaction equa-
tions still using the finite element solver FreeFem++ [61]

hn+1

∆t
−∇ · (fnD0

enz∇hn+1 + hn+1Jnenz)

− hn+1

(
−k

d
enz

fn
−
(∇ · un+1 −∇ · un

∆t

))
=
hn

∆t
+
α

c0

Senz(t
n+1),

(4.67)

and

cn+1

∆t
−∇ · (fnD0

drug∇cn+1 + cn+1Jndrug)

− cn+1

(
−k

d
drug

fn
−
(∇ · un+1 −∇ · un

∆t

))
=

cn

∆t
+
α

c0

Sdrug(t
n+1),

(4.68)

supplied by the following approximation of the boundary conditions (4.60)
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and (4.61): 

hn+1 = hΓh on Γh,(
fnD0

enz∇hn+1 + hn+1Jnenz

)
· n = β1 on Γβ,

cn+1 = hΓh on Γh,(
fnD0

drug∇cn+1 + cn+1Jndrug

)
· n = β2 on Γβ.

(4.69a)

(4.69b)

4. We obtain gn+1
E by first calculating

g̃n+1
E =

g̃nE
1 + ∆t(Khn+1 + ar(f(0,x)− fn))

.

and from (4.57), we deduce

gn+1
E = g̃n+1

E e−∇·u
n+1−s0(Pn+1−P 0).

To obtain gn+1
 , we use formula (4.56)

gn+1
 = g0

(x)e−∇·u
n+1−s0(Pn+1−P 0).

Remark 12 (Triangulation convergence tests). We checked numerically that
the relative error eh (resp. ef , eP ) on the total mass of enzyme (resp. the quantity
of fluid, the mean pressure) at t = 60 min decreases with order 1 when refining
the mesh (Figure 4.8).

Remark 13 (Conservation of mass). A test case is performed to check if the total
mass of enzyme injected is conserved when its degradation rate is zero. When the
degradation rate is nonzero, the enzyme’s total mass remains positive, and after
reaching a maximum amount at the end of the injection, it decreases gradually till
reaching zero as it has been observed in [90] (Figure 4.9).
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Figure 4.8: Results from the triangulation convergence simulations in 1D at t = 60
min (simulations from section 4.5.2). The relative error on

∫
Ω
Z(t = 60 min) dx

with Z = h, f, P is plotted using logarithmic scales on both the horizontal and
vertical axes.
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(a) Numerical mass conservation of enzyme.
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(b) ECM degradation enzyme’s total mass ver-
sus time when degradation rate is nonzero.

Figure 4.9: First numerical results on the total mass of enzyme. Numerically, the
mass is well conserved when the degradation rate is zero, while the curve has the
expected shape when the degradation rate is nonzero.

4.5.2 Numerical tests in 1D

The computational domain. In this section, we formulate the poroelastic
transport model in a one-dimensional geometrical configuration (1D). Figure 4.10
shows a schematic representation of the 1D reference domain we considered. De-
noting by x the spatial coordinate, the region x < 0 represents the tissue far away
from the site of injection, the open interval Ω = (0, L) is the tissue whereas the
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region x > L corresponds to the air surrounding the tissue.

Figure 4.10: Schematic representation of the 1D reference domain.

Simulation Tests. What we want here is to understand the qualitative effect on
the porosity of a injection of ECM degradation enzyme. Consequently, we consider
in this section system (4.55) without equation (4.55g). In the simulations, γ is
chosen so the initial pressure, derived from equation (4.63), is a constant.

To test the capability of the model, simulations are performed on the homoge-
nous domain represented in Figure 4.10. The border of the domain is divided in
two parts: Γ = Γ0∪Γf . On Γ0 (x = 0), Dirichlet boundary conditions are imposed,
i.e. displacement u and concentration h are set to zero, and pressure P is set to
pv. On Γf (x = 1), a free boundary condition is imposed on the displacement, i.e.
SEs n = 0, while a wall condition is imposed on the pressure and the concentration
h, i.e. ∇P · n = 0 and

(
D0

enz∇h+ hJenz

)
· n = 0. Visualization with the software

FreeFem++ allows us to plot the porosity f and any other quantities of interest
directly in a changing domain thanks to the function movemesh [61].

The principal scope of this serie of numerical experiments is to understand the
qualitative behavior of the porosity after an injection of ECM degradation enzyme.
Four sets of simulation tests are performed to investigate respectively the transport
and effect of a passive substance (like water), the sole effect of degradation of the
ECM by the enzyme injected, the effect of the enzyme on the ECM with recovery
and the effect of the enzyme on the ECM with natural degradation of the enzyme.
The fifth set of simulations corresponds to investigating how all the different effects
interact together. Table 4.1 sums up these five different sets of simulations.

Simulations are performed first on the computational domain described in Fig-
ure 4.10 and the effects on the porosity f are investigated. Figures 4.11 represent
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Table 4.1: Investigation of the effects on porosity of the parameters for each sim-
ulation test.

K ar kdenz Considered Phenomena

Simulation 1 0 0 0 Passive transport
Simulation 2 0.5 0 0 Effect on ECM
Simulation 3 0.5 0.01 0 Effect on ECM + Recovery
Simulation 4 0.5 0 0.001 Effect on ECM + Natural degradation
Simulation 5 0.5 0.01 0.001 Effect on ECM + Recovery + Natural degradation

the porosity of the medium at four different times for each simulation: after 1

minute, 10 minutes, 30 minutes and 1 hour.

In the case of passive transport of water, the porosity remains equal to its
initial value (0.1 in all four simulations). In reality, the porosity varies a little
bit because of the volume variation, but when plotted between 0 and 1 it is not
obvious and it seems legitimate to assume that the porosity is a constant in this
case (4.11a). In the second set of simulations, we want to investigate the sole
effect of degradation of the ECM by the enzyme, without recovery of the tissue
and without natural degradation of the enzyme. With K = 0.01, the effect of the
enzyme on the ECM is immediate: after 1 minute, the ECM around the injection
site has deteriorated. Then, with the diffusion of the enzyme, the area where the
ECM deteriorates expands mostly towards the boundary Γf as the enzyme flows
out the domain through boundary Γ0, without ever overcrossing the maximum
value possible f + gE = 0.5 (4.11b). When we add a recovery dynamic, we observe
that at some point, the area where the ECM has deteriorated stops expanding
and the porosity tends to get back to its initial state (4.11c). In the fourth set
of simulations, the recovery dynamic is not considered anymore but we take into
account the natural degradation of the enzyme. In this case, the area where the
ECM deteriorates starts expanding then reaches its equilibrium state (4.11d). In
the last set of simulations, all effects are considered together (4.11e).
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(a) Simulation 1
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(b) Simulation 2
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(d) Simulation 4
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Figure 4.11: Porosity changes at t = 1 min, 10 min, 30 min and 1 hour in the 1D
case.
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4.5.3 Numerical tests in 2D

The computational domain. Figure 4.12 shows a schematic representation of
the 2D reference domain we considered.

Figure 4.12: Schematic representation
of the 2D reference domain. As in the
1D case, the border of the domain was
divided in two parts: Γ = Γ0 ∪ Γf . On
Γ0, Dirichlet boundary conditions were
imposed, while on Γf , free boundary
conditions were imposed.

Simulation tests. As before, we consider in this section system (4.55) without
equation (4.55g) and γ is chosen so the initial pressure, derived from equation
(4.63), is a constant. Parameters K, ar and kdenz are set in order to mainly ob-
serve during the simulation’s time the deterioration effect of the enzyme on the
ECM. This second set of simulation tests in 2D consists mainly in comparing the
isotropic and transverse isotropic cases. As expected the main difference lies in the
shape of the area where the ECM has been deteriorated. These 2D simulations
emphasize mainly the possibility offered by the mathematical model we developed
of considering anisotropic media.

4.6 Comparison with experiments : drug penetra-

tion in solid tumors

4.6.1 Experimental framework

To be most effective, anticancer drugs must penetrate tumor tissue efficiently,
reaching all cells in a concentration suffcicient to exert a therapeutic effect. Nev-
ertheless, the distribution of many anticancer drugs in tumor tissue is incomplete,
as physiological transport barriers can strongly abate their efficiency [83, 122]. In
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(a) Porosity at t = 1, 10, 30, 60 minutes in the 2D isotropic case

(b) Porosity at t = 1, 20, 60, 120 minutes in the 2D anisotropic case

Figure 4.13: Porosity changes at t = 1 min, 10 min, 30 min and 1 hour in the 2D
case for K = 50, ar = 0.0005 and kdenz = 0.0001.

particular, the composition and structure of the extracellular matrix can slow down
the movement of molecules within the tumor [92]. Degradation of the ECM is as-
sumed to improve the penetration of drugs. Delivery of drug to tumor cells occurs
by two independent mechanisms: diffusion due to the concentration gradient and
convection due to pressure gradient. It has been shown that both those mecha-
nisms are enhanced when the tissue is previously injected or incubated with ECM
degradation enzymes such as hyaluronidase and collagenase [46, 47, 45]. Multicel-
lular spheroids are spherical aggregates of tumor cells that reflect many properties
of solid tumors, including the development of an ECM, therefore they have been
used to study the penetration of anticancer drugs into tumor tissue [83]. Exper-
imental results are consistent in showing limited drug penetration into spheroids
[119]. A pretreatment with hyaluronidase or collagenase was shown to increase the
diffusion coefficient of larger molecules in spheroids, and the enzymatic treatment
also improved the diffusion in the case of smaller molecules in tumor tissue [47],
thereby improving the tissue’s sensitivity to cytotoxic drugs [117, 69]. Spheroids
models allow to evaluate the influence of diffusion on drugs transport, but some
features of solid cancer such as variable IFP and the influence of convection (which
commonly occurs in the periphery of tumors) are not modeled [83]. In vivo, the
disorganized vascular network and the absence of functional lymphatics causes in-
creased interstitial fluid pressure (IFP), which is uniformly elevated throughout
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Table 4.2: Values of the model parameters in the simulations of Sections 4.5 and
4.6, except from K, ar, kdenz otherwise specified. Parameters indexed with a ∗ have
different values in Section 4.6 (see Table 4.3).
Parameter Symbol Value Unit Reference

Typical length l0 10−2 m
Reference concentration c0 109 kg/m3

Density of fluid phase ρRf 103 kg/m3 [128]
Density of solid phase ρR,0s 1.09× 103 kg/m3 [124]
Specific storage coefficient s0 10−6 Pa−1

Injected concentration cenz
inj 4× 10−2 U/µl [113]

Diffusion coefficient of the enzyme∗ D0
enz 10−8 m2/s

Permeability κ 10−11 m2Pa−1s−1 [121]
Lamé first parameter λ 7.14× 105 Pa [130]
Lamé second parameter µ 1.79× 105 Pa [130]

Diffusion coefficient perpendicular to a fiber’s axis D0
enz,⊥ 10−8 m2/s

Diffusion coefficient parallel to a fiber’s axis D0
enz,// 1.5×D0

enz,⊥ - [35]
Permeability perpendicular to a fiber’s axis κ⊥ 10−11 m2Pa−1s−1

Permeability parallel to a fiber’s axis κ// 1.5× κ⊥ -
Elastic constants (TI case) C1111 2.64× 106 Pa [76]

C1133 3.39× 106 Pa [76]
C1313 102 Pa [76]
C3333 4.4× 106 Pa [76]

Initial values Symbol Initial value Unit

Volume fraction of fluid ϕf (0,x) 0.1 -
Volume fraction of ECM ϕE(0,x) 0.4 -
Volume fraction of cells ϕ(0,x) 0.5 -
Network dilatation ∇.u(0,x) 0 -
Concentration in enzyme h(0,x) 0 Um−3

Pressure p(0,x) 0 Pa

a solid tumor and drops precipitously in the tumor periphery [63, 24]. The high
IFP is a major obstacle to penetration of therapeutic molecules, as the transcapil-
lary pressure gradient is low, and an outward interstitial flux is generated toward
the periphery of the tumor due to the steep pressure gradient in the periphery
of the tumor. It has been shown that hyaluronidase and collagenase reduce IFP,
thereby improving the tumor uptake and distribution of molecules within solid
tumors [46, 27]. The tumor (resp. spheroid) was modeled as a sphere and conse-
quently we chose to perform numerical simulations in axisymmetry. We used the
2D computational domain shown in Figure 4.18 and the computational algorithm
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presented in section 4.5.1. The variational formulations used in the algorithm are
written in an axisymmetric form (see Appendice B). No calibration of the pa-
rameters was done, our objective being to observe the qualitative effects of the
incubation with ECM degradation enzyme of a spheroid on diffusion on one hand,
and of an intratumoral injection of ECM degradation enzyme on transcapillary
transport on the other hand.

4.6.2 Effect of an ECM degradation enzyme on diffusion of

therapeutic agent

4.6.2.1 Boundary conditions

Define the portions of the boundary Γext, the surface of the spheroid, and Γint the
inner boundaries. To take into account the axisymmetric geometry of the domain,
we choose on the internal boundaries Γint homogeneous Neumann conditions on P ,
h and c and we impose that the displacement will only be radial. On the surface
of a spheroid, there are no contact forces and the pressure at the outer edge is the
same as the pressure in the surrounding medium, that we set to be equal to Pext.

{
SEs n = 0 on Γext, u · n = 0 on Γint,

P = Pext on Γext, ∇P · n = 0 on Γint,

(4.70a)

(4.70b)

During the first hour, the spheroid is incubated with the enzyme, so instead of
taking a source term in equation (4.55d), we choose a Dirichlet boundary condition
on h.

{
h =

α

c0

cenz

inj on Γext, ∇h · n = 0 on Γint, (4.71)

After one hour, the medium containing the enzyme is removed and a fresh
medium containing the molecule of interest is added. Consequently, we choose a
Dirichlet boundary condition on c and we set the outter flux of enzyme to be zero.
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
(
D0

enz∇h+ hJenz

)
· n = 0 on Γext, ∇h · n = 0 on Γint,

c =
α

c0

cdrug

inj on Γext, ∇c · n = 0 on Γint.

(4.72a)

(4.72b)

After a while, the spheroid can be removed from this second medium. In this
third case, we set the outter flux of enzyme and of therapeutic agent to be zero.

{ (
D0

enz∇h+ hJenz

)
· n = 0 on Γext, ∇h · n = 0 on Γint,(

D0
drug∇c+ cJdrug

)
· n = 0 on Γext, ∇c · n = 0 on Γint.

(4.73a)

(4.73b)

4.6.2.2 Effect on porosity

As expected, the porosity remains quasi constant and equal to its initial con-
stant value (0.1 in this case) when the spheroid is incubated in a medium with
no enzyme. On the contrary, it varies when the tissue is incubated with an ECM
degradation enzyme. Thus, at t = 60 minutes, the ECM has been degraded
substantially all over the spheroid, and although the degradation of the ECM is
slightly higher at the boundary, the effect is quite homogeneous (Figure 4.14a).
As far as the total mass of fluid within the spheroid is concerned, it increases
gradually while the enzyme degrades the ECM (Figure 4.14b).

4.6.2.3 Results

ECM degradation enzymes such as collagenase and hyaluronidase where shown
to increase the diffusion of macromolecules in spheroid and in tumor tissue, with a
greater impact witnessed in the case of collagenase compared to hyaluronidase [47].
We performed simulations to evaluate the effect of an incubation of a spheroid with
enzyme on the distribution of drugs with a low coefficient of diffusion (D0

drug = 10−9

ui), such as the one of a macromolecule. We simulate the incubation during 5
minutes with a therapeutic agent one hour after the incubation with collagenase
and we observed the behavior of the drug’s concentration for ten minutes, including
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(a) Porosity versus radial position at the end of
the incubation phase.
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(b) Quantity of fluid in the tissue versus time.

Figure 4.14: Effect on the porosity of a tissue incubated with collagenase (20 U)
during 60 minutes compared to incubated with a saline solution (0 U).

the 5 minutes of incubation. It can be observed that the area where the drug is
present above a certain minimum concentration is wider when the spheroid was
previously incubated with collagenase (Figure 4.15).

We then performed simulations to evaluate the effect of an incubation of a
spheroid with enzyme on the distribution of drugs with an higher coefficient of
diffusion (D0

drug = 10−6 ui), such as the one of a small molecule. In this case, the
whole domain is affected with or without pretreatment, but the degraded ECM
has two main effects: the drug reaches the whole domain faster, and naturally
degrades slower which results in a higher concentration of drug throughout the
tissue after 10 minutes (Figure 4.16).

We finally performed simulations with a quite low coefficient of diffusion (D0
drug =

10−8 ui), but for a tissue incubated longer (15 minutes) and we waited 15 more
minutes to look at the drug’s distribution. In this case, the result is qualitatively
in agreement with the experiments developed by [69] (cf Figure 4.1): with an en-
zyme pretreatment, the drug distribution after 30 minutes (including 15 minutes
of incubation) is way better than if the tissue was not pretreated (Figure 4.17).
The drug is not only present all over the tissue, its concentration is also higher,
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(a) Drug’s total mass in the tissue versus time.

0 0.2 0.4 0.6 0.8 1

0

10

20

30

40

50

r

T
h
er
ap

eu
ti
c
a
ge
n
t
co
n
ce
n
tr
at
io
n without pretreatment

with pretreatment

(b) Drug’s concentration plotted versus the pos-
tion in the tumor at time t = 10 minutes.

(c) 2D-drug’s concentration in the tumor at time
t = 10 minutes.

Figure 4.15: Numerical results for a therapeutic agent with a low coefficient of
diffusion incubated during 5 minutes.

improving thus the chances of uptake by the cells.

In the specific framework of an injection of DNA plasmids, a question of in-
terest would be to determine when to do electrotransfer. If the best moment is
when the area where the DNA plasmids concentration is above a certain minimum
concentration is the widest, then the model, rightfully calibrated, could allow to
calculate this optimized time.
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(a) Drug’s total mass in the tissue versus time.
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(b) Drug’s concentration plotted versus the pos-
tion in the tumor at time t = 1 minute.
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(c) Drug’s concentration plotted versus the pos-
tion in the tumor at time t = 10 minutes.

Figure 4.16: Numerical results for a therapeutic agent with an higher coefficient
of diffusion incubated during 5 minutes.

4.6.3 Effect of an ECM degradation enzyme on transcapil-

lary transport of therapeutic agent

4.6.3.1 Boundary conditions

Define the portions of the boundary Γext, the surface of the tumor, and Γint the
inner boundaries. On the surface of an isolated tumor, there are no contact forces
and the pressure at the outer edge is the same as the pressure in the surrounding
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(b) Drug’s concentration plotted versus the pos-
tion in the tumor at time t = 30 minutes.

(c) 2D-drug’s concentration in the tumor at time
t = 30 minutes.

Figure 4.17: Numerical results for a therapeutic agent with a quite low coefficient
of diffusion incubated during 15 minutes.

tissue, that we set to zero. On the concentration of the injected species, we assume
that their flux is zero on Γext. To take into account the axisymmetric geometry
of the domain, we choose on the internal boundaries Γint homogeneous Neumann
conditions on P , h and c and we impose that the displacement will only be radial.



SEs n = 0 on Γext, u · n = 0 on Γint,

P = 0 on Γext, ∇P · n = 0 on Γint,(
D0

enz∇h+ hJenz

)
· n = 0 on Γext, ∇h · n = 0 on Γint,(

D0
drug∇c+ cJdrug

)
· n = 0 on Γext, ∇c · n = 0 on Γint.

(4.74a)

(4.74b)

(4.74c)

(4.74d)
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Table 4.3: Values of the specific model parameters in the simulations of Section
4.6. All other parameters are taken from Table 4.2.
Parameter Symbol Value Unit Reference

Diffusion coefficient of the enzyme D0
enz 10−4 m2/s

Diffusion coefficient of the therapeutic agent D0
drug 10−9, 10−6, 10−8 m2/s

Starling’s coefficient γ 5× 10−5 Pa−1s−1 [114]
Fluid/solute coefficient γc 0.9 - [19]
Measure of treatment efficacity K 10−14 m3s−1U−1

Recovery coefficient ar 5× 10−4 s−1

Degradation rate of the enzyme kdenz 1× 10−4 s−1

Degradation rate of the therapeutic agent kddrug 2× 10−4 s−1

Driving pressure Pv 10−1 Pa

Initial values Symbol Initial value Unit

Concentration in drug c(0,x) 0 kg m−3

Pressure incubation case p(0,x) 0 Pa

4.6.3.2 Initial pressure profile

In the simulations, Pv and γ are chosen so the initial pressure profile, derived
from equation (4.63), fits the type of IFP profile observed in tumors (Figure 4.18).

(a) Normalized 2D-pressure in the tumor before
the experiment.
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(b) Normalized pressure in the tumor before the
experiment versus position.

Figure 4.18: Initial normalized pressure profile. This type of steep profile is in
agreement with previous studies [19].
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4.6.3.3 Effect on porosity

As it was previously observed in Section 4.5.2, the porosity remains quasi con-
stant when only a saline solution is injected. On the contrary, it varies when the
tissue is injected with an ECM degradation enzyme. At t = 60 minutes, we observe
that without enzyme, the porosity is equal to its initial constant value (0.1 in this
case) while in presence of enzyme, the ECM has been degraded substantially all
over the tissue. Although the degradation of the ECM is the slightly higher in the
vicinity of the injection point, the effect is quite homogeneous. As expected, the
total mass of fluid within the tissue increases gradually while the enzyme degrades
the ECM.
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(a) Porosity versus radial position 60 minutes
after the injection.
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(b) Quantity of fluid in the tissue versus time.

Figure 4.19: Effect on the porosity of a tumor injected with hyaluronidase (1500
U) compared to injected with a saline solution (0 U).

4.6.3.4 Effect on the IFP

The effect of hyaluronidase on IFP was demonstrated experimentally by [46]
and [27]. Intratumoral injection of hyaluronidase in tumors reduced IFP in a
dose-dependent manner up to a maximum reduction. However, by increasing the
dose further, IFP was reduced to a lesser extent. An initial increase in IFP was
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observed, explained by the increase in the volume and compression of the tissue
at the moment of the intratumoral injection.
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(a) Normalized IFP versus position at
time t = 60 minutes.
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Figure 4.20: Effect on the normalized interstitial fluid pressure of a tumor injected
with hyaluronidase (500 U, 1500 U, 3000 U) compared to injected with a saline
solution.

The simulation reproduces the three main effects observed in the experiments:
an initial increase in IFP due to the intratumoral injection, the fact that IFP
reaches a reduced value after some time and finally the nonlinear behavior regard-
ing the concentration.

4.6.3.5 Results

It was shown that both hyaluronidase and collagenase increase convection by
inducing transcapillary pressure gradients in human osteosarcoma xenografts [46,
45]. We have seen previously that an injection of enzyme has an effect on the
IFP, inducing a transcapillary pressure gradient in a dose-dependent manner up
to a maximum reduction. Increasing the dose further, IFP is reduced to a lesser
extent. This reduction was shown to improve both the distribution and the uptake
of drugs in tumors [46]. In this section, we focus on the distribution of drugs. We
simulate an injection during 1 minute of a therapeutic agent one hour after the
injection of enzyme and we observed the behavior of the drug’s concentration
for ten minutes, including during the injection. For all simulatiojns, the same
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value of cv(t,x) = χ{0≤t≤1 min}(t) cv is taken while different values of cenz
inj previously

injected are considered. For a drug with a low coefficient of diffusion, such as
the one of a macromolecule, several features are observed. First, the total mass
of therapeutic agent that actually reaches the tumor by transcapillary transport
varies with the concentration of enzyme previously injected (Figure 4.21a). Second,
while without enzyme the therapeutic agent only penetrates the periphery of the
tumor, we observe that with a pretreatment, the therapeutic agent is present all
over the tumor (Figure 4.21b). Finally, the same nonlinear behavior regarding
the concentration of enzyme previously injected is observed. In particular, if the
concentration of enzyme is too high, as the pressure is reduced to a lesser extent,
the drug’s penetration in the tumor by transcapillary transport is also reduced.

For a drug with an higher coefficient of diffusion, such as the one of a smaller
molecule, the transcapillary transport in the tumor is also improved, but the main
features of interest are different. In particular, as the drug reaches the whole
tumor mainly by diffusion in any case, the contributions of the pretreatment of
the tumor with an ECM degradation enzyme are the same as the ones developed
in the previous subsection concerning spheroids. In particular, it is when the
concentration of enzyme previously injected is the highest that the drug reaches
homogeneously the tumor the fastest and that the natural degradation process is
slowed the most. Nevertheless, the total mass of therapeutic agent that actually
reaches the tumor by transcapillary transport is consistent with the reduction of
IFP in the same nonlinear behavior regarding the concentration of enzyme, and
consequently, at t = 10 minutes, the best configuration is also obtained for the
concentration of enzyme that induces the highest reduction in IFP.

The distribution of the drug into the tissue is directly correlated with the tran-
scapillary pressure gradient created by the hyaluronidase injected. In particular,
it is for the hyaluronidase’s concentration value for which the maximum pressure
reduction is obtained that we obtained the best distribution profile. Increasing the
dose further, the pressure is reduced to a lesser extent and the consequence on the
distribution of drug is that the area where the concentration of therapeutic agent
is above a minimum concentration value is smaller. This result is in agreement
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(a) Drug’s total mass in the tissue versus time.
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(b) Normalized area reached by a minimal con-
centration of therapeutic agent versus time.
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(c) Drug’s concentration plotted versus the postion in the
tumor at time t = 5 minutes.

Figure 4.21: Numerical results for a therapeutic agent with a low coefficient of
diffusion injected intravenously.

with the experiments described by [46] where hyaluronidase was shown to improve
the distribution of doxorubicin considerably. To go further and consider the pos-
sibility of using the model as a strategie to optimize drug delivery, we would need
more experimental data to calibrate the model parameters.
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(a) Drug’s total mass in the tissue versus time.
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(b) Drug’s concentration plotted versus the pos-
tion in the tumor at time t = 1 minute.
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(c) Drug’s concentration plotted versus the postion in the
tumor at time t = 5 minutes.

Figure 4.22: Numerical results for a therapeutic agent with an higher coefficient
of diffusion injected intravenously.

4.7 Conclusion

In this chapter we developed a novel mathematical formulation to describe the
effect of an ECM degradation enzyme on a soft biological tissue. The principal
novelty of our contribution is the development of a model based on the use of Par-
tial Differential Equations (PDEs) that incorporates the effect of an ECM degra-
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dation enzyme within the general and well established framework of poroelastic
theory of mixtures. Specifically, where usually the fraction volumes of the differ-
ent phases are assumed to be constants, we derive evolutive equations to describe
them. Having defined the possible interactions between phases, our approach con-
sists in deriving a system of conservation laws (mass and linear momentum) for
the phases and components of the mixture that includes the enzyme’s concentra-
tion as main determinant of porosity evolution. The next step was to develop a
numerical approximation of the mathematical model introduced in the article. As
the medium is assumed to be poroelastic, it can undergo some deformation and
potentially change of shape if a boundary condition is applied on stress. It was
necessary to formulate our model in a reference fixed domain before developing a
computational algorithm to approximate the system’s solution. Below we address
the more significant outcomes of the conducted simulations.

1. The illustrated numerical tests conducted in 1D indicate the role of each new
parameter on the porosity evolution.

2. The illustrated numerical results in 2D can describe a well known principle of
prefential flow in the direction of the fiber tracts in the context of a transverse
anisotropic media.

3. Model simulations indicate that an intratumoral injection of hyaluronidase
results in a reduction of the IFP in a dose-dependent manner up to a maxi-
mum reduction, and that once that maximum reduction is achieved, a further
increase of the dose results in a smaller reduction. This finding represents
a favorable result from the experimentalist point of view, because it is in
agreement with several observations previously reported.

4. The injection of an ECM degradation enzyme was also shown to enhance
distribution, by improving diffusion and/or convection, of drug throughout
the tissue. This outcome reinforces the idea that, used in medicine, these
enzymes can improve a treatment by widening its field of action.

Further research effort will be devoted to calibrating the model’s parameters with
additional experimental data and to considering domains with more complex 3D
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geometries. An effort will also be made to rightfully coupled this model with an
electrical model in order to explain and quantify the uptake of DNA plasmids
observed by [113]. Note that some studies underline the fact that the activity of
matrix degrading enzymes can be pro-tumorigenic and pro-metastatic [79]. The
use of hyaluronidase (for instance) in order to improve the distribution of anti-
cancer drugs is thus controversial. Nevertheless, its interest in the framework of
gene therapy, combined with electroporation, has been well established. It is with
this application in mind that an optimization procedure is investigated in Chapter
5.
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Chapter 5

Optimization of drug delivery with

an enzyme pretreatment

This chapter is the result of a collaboration with D. Peri of the Istituto per le
applicazioni del calcolo M. Picone (Rome, Italy).

5.1 Motivations

In part I and chapter 4, we presented two differents methods to enhance drug
penetration and uptake in tissue: the use of permeabilizing electric pulses and the
degradation of the extracellular matrix by injecting specific enzymes. The logic
would be, in the case of macromolecules, to combine those two methods to obtain
even better penetration and uptake. To our knowledge, this combination has not
been tested for anticancer drugs, but has been quite widely studied in the frame-
work of gene therapy [1, 108, 113].

In this chapter, we propose an optimization strategy to determine a set of
chosen parameters for which the area where the drug concentration is sufficiently
high is maximal. First, a parameters space is chosen to work with. In section 5.2,
the mathematical modeling developed in Chapter 4 is used to analyse drug delivery
after a pretreatment with a matrix-degrading enzyme. A well-chosen objective

205



CHAPTER 5. OPTIMIZATION OF DRUG DELIVERY

function is found to optimize the protocol. Then, in section 5.3, the numerical
methods to construct an analytical approximation of the model based on a limited
number of sampling points are presented. The sampling points selection is done
by constructing an orthogonal array while the analytical approximation of the
model is derived from the sampling points using Kriging interpolation. Finally, we
present in section 5.4 the results obtained using this interpolation method on a test
case, using a simple 2D geometry and fixed parameters that were not calibrated on
biological data, even if the order of magnitude of those parameters was respected.

5.1.1 Optimizing gene therapy

DNA electrotransfer has been used with success since the 90s and is becom-
ing a real alternative to the viral methods for in vivo gene transfer [9]. It was
shown in 1990 [126] that direct injection of naked DNA in skeletal muscle in vivo
results in gene expression at low and variable levels. In 1998, different studies con-
sistently showed that good transfection levels could be obtained when combining
the injection of DNA and electroporation, in different types of tissues [102], [120],
[84]. Numerous efforts have been made to optimize gene expression. In particular
the respective influence of the pulse duration, voltage applied, number of pulses
and repetition frequency was analysed, showing for example that long pulses act
on DNA, provoking its electrophoretic displacement towards, or accross, the cell
membrane [9].

Another approach to increase the efficiency of gene electrotransfer is to increase
the diffusion and distribution of DNA plasmid into the tissue by controlling and
partially degrading the ECM using enzymes such as hyaluronidase and collage-
nase [49]. This approach is particularly efficient in skeletal muscle [113], [108],
for which it was shown that hyaluronidase induces a 10- to 25-fold increase of
gene expression in mice and rabbit skeletal muscle after intramuscular injection
and electroporation compared to no pretreatment. This is due to an improved
distribution of plasmids obtained prior to the electroporation treatment. In [113],
it is said that the electroporation procedure is carried out immediately after the
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injection of DNA plasmids, in order to avoid the very rapid degradation of the
intramuscular injected plasmids [30]. Although it has been determined that elec-
troporation should be carried out rapidly after the DNA injection, no investigation
has been made to optimize the exact time of electroporation.

5.1.2 Optimization strategy

Because DNA -or any therapeutic agent- concentration is time and space-
dependent, it is crucial to determine a rational drug delivery protocol. In the
current work, we used the mathematical modeling developed in Chapter 4 to anal-
yse drug delivery after a pretreatment with a matrix-degrading enzyme. The major
goal of the present work is thus the rational design of an optimal drug delivery
strategy. Three independent control variables are at our disposal:

• T the time lag between the injection of enzyme and the injection of thera-
peutic agent,

• y0 the position of the injection point,

• cinj
drug the concentration of therapeutic agent in the fluid injected.

The goal of our optimization strategy is simple: the area reached by a minimum
concentration of drug should be the widest possible. Another quantity of interest
is the time at which this area is the widest (or the first time at which this area
is reached), which, in case of electrotransfer or electrochemotherapy, would be the
optimal time to perform electroporation.

5.2 The model

We use the model developed in Chapter 4 to model the processes that govern
drug distribution in tissue after an injection of matrix-degrading enzyme. We recall
here the main features of this model. Let Ω be a bounded domain, and define the
boundary of Ω, denoted Γ. Define also the portions of the boundary Γ1 and Γ2 on
which mixed boundary conditions are defined, such as Γ1 ∪ Γ2 = Γ.
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5.2.1 PDE model

The mechanics of biological tissue are taken into account assuming that the
tissue can be modeled as a saturated poroelastic mixture made of three different
constituants: the interstitial fluid, the ECM and the cells. The medium is assumed
to be saturated:

gE + g + f = 1, (5.1)

where f is the volume fraction of fluid, gE is the volume fraction of extracellular
matrix and g is the volume fraction occupied by cells. The mechanics of the
mixture are described by the following poroelastic system:



∇ ·
(
(gE + g)

(
λ(∇ · u)I + µ(∇u +∇uT )

))
= ∇P,

(gE + g)s0
∂P

∂t
−∇ · (κ∇P ) = Qtot

inj + γ(Pv − P )

+

(
ρR,0s

ρRf
− 1

)
gE(Kh+ ar(f(0,x)− f))−∇ ·

(
∂u
∂t

)
,

(5.2a)

(5.2b)

where u is the displacement of the solid phase and P the interstitial fluid pressure.
Equations (5.2) are coupled with the following set of boundary conditions:



u = 0, on Γ1,

SEs n = 0, on Γ2,

P = Pv, on Γ1,

∇P · n = 0, on Γ2.

(5.3a)

(5.3b)

(5.3c)

(5.3d)

The volume fractions of ECM and of cells are given as the solutions of the
following ODEs:

∂g

∂t
+

(
s0
∂P

∂t
+∇ ·

(
∂u
∂t

))
g = 0,

∂gE
∂t

+

(
Kh+ ar(f(0,x)− f) + s0

∂P

∂t
+∇ ·

(
∂u
∂t

))
gE = 0.

(5.4a)

(5.4b)

208



CHAPTER 5. OPTIMIZATION OF DRUG DELIVERY

The volume fraction of fluid f is obtained using the saturation condition (5.1). The
concentration of matrix-degrading enzyme is described by the following convection-
diffusion reaction equation:

∂h

∂t
= ∇ · (fD0

enz∇h+ hJenz) + h

(
−k

d
enz

f
−∇ ·

(
∂u
∂t

))
+ Senz, (5.5)

where Jenz = 1
f
κ∇P −D0

enz∇f . Equation (5.5) is coupled with the following set
of boundary conditions:

{
h = 0, on Γ1,(
fD0

enz∇h+ hJenz

)
· n = 0, on Γ2.

(5.6a)

(5.6b)

The concentration of therapeutic agent, injected after the matrix-degrading en-
zyme, is described by the following convection-diffusion reaction equation:

∂c

∂t
= ∇ · (fD0

drug∇c+ cJdrug) + c

(
−k

d
drug

f
−∇ ·

(
∂u
∂t

))
+ Sdrug, (5.7)

where Jdrug = 1
f
κ∇P −D0

drug∇f . Equation (5.5) is coupled with the following set
of boundary conditions:

{
c = 0, on Γ1,(
fD0

drug∇c+ cJdrug

)
· n = 0, on Γ2.

(5.8a)

(5.8b)

We refer to Chapter 4 for the significance of all constants.

5.2.2 Computational domain and timeline

We chose the same computational domain as in the numerical tests in 2D in
Chapter 4 section 4.5.3 (see Figure 4.12). The computational domain is meshed
with additional precision in the vicinity of the injection point (dx = 0.01). In
Figure 5.1 are presented two different meshes of the computational domain: the
mesh presented in Figure 5.1b, being finer, will give a better approximation than
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the mesh presented in Figure 5.1a.

(a) dxmax = 0.05 (b) dxmax = 0.025

Figure 5.1: Two different meshes of the computational domain. Both are ajusted
around the injection point.

Scheme 5.2.1 shows the timeline of one experiment we considered. The injection
of enzyme is performed first (Senz 6= 0 at point (0, y0), where y0 is a parameter to
optimize). Then we supposingly wait for the enzyme to be effective during a lapse
of time T . This time T varies as it is another parameter to optimize. Finally,
the second injection of therapeutic agent is performed (Sdrug 6= 0 at point (0, y0)).
The drug concentration cinj

drug in the fluid injected is also a parameter to optimize.
We then dispose of a time of observation of 10 minutes to evaluate the spatial
distribution of drug in the tissue.

Scheme 5.2.1: Conduct of the test experiment.

5.2.3 Solving one experiment with Freefem++

Using the computational algorithm presented in Chapter 4 section 4.5, the set of
PDEs are solved numerically for a given set of parameters using the finite-element
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method implemented in the software FreeFem++ [61]. The objective function of
interest being the area reached by a minimal concentration cmin of therapeutic
drug, we compute the dimensionless function

F : t→ 1

|Ω| ×
∫

Ω

[cdrug(t, x)− cmin]
+

cdrug(t, x)− cmin

dx

for t ∈ [T, T + Tobs], where T is the time lag between the injection of enzyme and
the injection of therapeutic agent (i.e. the time when the injection of therapeutic
agent begins) and Tobs is the time of observation, here set to 10 minutes.

T T+5 T + 10

0

2

4

6

8

t (min)

F

Mesh (a)

Mesh (b)

Figure 5.2: Time evolution of the objective function F computed using the two
different meshes presented in Figure 5.1.

The time evolution of function F between T and T + Tobs for a given set
of parameters is featured in Figure 5.2. F was calculated using the two different
meshes presented in Figure 5.1. Both curves are quite irregular, even if the solution
calculated on the finer mesh seems smoother. Due to the additional computational
cost generated by the use of the finer mesh, we chose instead to apply a binomial
filter to the rough solution obtained with the mesh featured in Figure 5.1a.

The time evolution of function F between T and T + Tobs for different sets of
parameters is featured in Figure 5.4. F was calculated using the mesh in Figure
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t (min)

F

filtered data 
raw data

T+T+T+T+T+T+T+

Figure 5.3: Time evolution of the objective function F using mesh 5.1a. Both the
raw data obtained with Freefem++ and the data obtained once a binomial filter
has been applied are displayed.

5.1a. Different tendencies are observed but it seems that function F has always a
parabolic shape. This allows us to define the quantity

Fmax = max
t∈[T,T+Tobs]

F (t),

as the maximum value reached by the objective function F . Another quantity
of interest is the first time at which this maximum value is reached, which will be
denoted by tmax hereafter.

5.3 Numerical methods

To optimize the protocol with respect to the chosen variables, one cannot anal-
yse thousands of different configurations in order to determine the best one due
to extremely high computational cost. Different strategies exist to reduce the use
of time-consuming solvers, decreasing the total time for the optimization problem
solution. The idea is to substitute the time-consuming solver with an analytical
approximation based on a limited number of sampling points. The construction
of the approximated model requires the high-accuracy evaluation of the objective
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Ddrug < Ddrug
ref

Ddrug > Ddrug
ref

kdrugd > kdrugd,ref

K > Kref

Figure 5.4: Different shapes of the objective function F when changing some fixed
parameters. Ddrug is the diffusion coefficient of the therapeutic agent considered,
kdrugd its natural degradation rate. K is the cleavage rate of the hyaluronidase used
as a pretreatment.

function of interest on this set of sampling points, usually named training points.
In this section, we present the numerical methods that we used to construct the
approximated model. We first explain how to select the training points by con-
structing an orthogonal array. Then we present the interpolation method chosen
to construct the approximated model, called Kriging interpolation.

5.3.1 Selecting the training points : orthogonal arrays

Let k be the number of involved variables and L be the number of levels in
which each coordinate axis is subdivided. The most straight forward method to
explore uniformly the parameter space is the consider the complete Lk factorial
design i.e. the cartesian grid obtained by considering all the L possible values of
all k variables. But as the number of points to be placed in the training set grows
with the number of involved variables k and with the complexity of the objective
function itself, the operation of selecting the training points should be done using
a limited number of points while still exploring uniformly the parameter space. To
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overcome this difficulty, some strategies have been proposed in order to remove
some points from the complete Lk factorial design. In our case, orthogonal arrays
are used to design the experiments and define the values of the parameters for
each experiment. An orthogonal array of L elements, denoted by OAN(Lk) is an
N ×k matrix whose columns have the property that in every pair of columns each
of the possible ordered pairs of elements appears the same number of times. The
symbols used for the elements of an orthogonal array are arbitrary.

Table 5.1: Example of an Orthogonal Array for k = 5 parameters with L = 4
levels with N = 16 runs (written as its transpose for ease of viewing).

1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4
1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
1 2 3 4 4 3 2 1 2 1 4 3 3 4 1 2
1 2 3 4 2 1 4 3 3 4 1 2 4 3 2 1
1 2 3 4 3 4 1 2 4 3 2 1 2 1 4 3

Orthogonal arrays can be viewed as plans of multifactor experiments where the
columns correspond to the factors, the entries in the columns correspond to the
test levels of the factors and the rows correspond to the test runs. More specifically,
the N rows of an OAN(Lk) can be viewed as a subset of the possible Lk test runs of
a complete cartesian grid of k factors each having L test levels. Thus, an OAN(Lk)

can be viewed as a N/Lk fraction of a complete Lk factorial plan.

5.3.2 Kriging

When an outcome of interest cannot be easily directly measured, a model of the
outcome, called surrogate model, can be used instead. Kriging interpolation is one
of the most interesting techniques introduced in the field of surrogate modeling.
We present here the principles of this spatial interpolation method. The Kriging
bears the name of D.G. Krige who developed the approach for the location of
mining sites by using geological data. Nevertheless, the theory was formalized by
Matheron: looking at the distribution of drilled samples, he observed a susbtantial
continuity in the spatial variation of the samples, which may be expressed through
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a more or less important deviation between the values of two proximal samples.
This approach is based on the availability of the so-called variogram, defined as a
curve representing the degree of continuity of the observed quantity.

5.3.2.1 The variogram.

The empirical variogram provides a description of how the data are related
(correlated) with distance. The semivariogram function, γ(δ), is calculated from
the difference between points separated by a distance δ: given a set of data values
zi corresponding to the locations xi (i.e. zi = F (xi)),

γ(δ) =
1

2N(δ)

∑
N(δ)

(zi − zj)2, (5.9)

where N(δ) is the set of all pairwise Euclidean distances |xi − xj| = δ, |N(δ)| is
the number of distinct pairs in N(δ), and zi and zj are data values at locations
xi and xj, respectively. In general, the semivariogram is an increasing function
of the distance. The speed of increase of the semivariogram represents the speed
of deterioration of the influence of a given sample over more and more remote
regions.

Figure 5.5 shows how the central point is paired with every other surrounding
point.

Most of the time, each pair of points defines an unique distance. The empir-
ical semivariogram is first calculated using all pairs available. We denote by X

the maximum distance between the measured points. The interval [0, X] is then
divided in a certain number of subintervals, to be determine. The mean of the
empirical semivariogram is then calculated for each subinterval, and this mean
value is to be considered as the mean value of the derived continuous semivari-
ogram, that is obtained by spline interpolation using the available points of the
subinterval. An example of continuous semivariogram derived from an empirical
semivariogram in our configuration is shown in Figure 5.6.
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Figure 5.5: Calculus of the squared distance between the possible pairs of points.

Normalized distance (�0 = �/�max)

�(�0)

Figure 5.6: An example of variogram obtained with our algorithm. The purple
points form the empirical semivariogram while the blue line is the final variogram
calculated with a spline interpolation on each subinterval.

5.3.2.2 Spatial interpolation

Once we have defined a shape for the variogram, we have completely defined the
spatial relationship between samples: if we have a number of known samples of the
interpolating function, we are also able to define the function over the entire space,
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theoretically even outside the region included in the known samples. In fact, we
can assume that the function is obtained by the sum of the known samples times
a proper weight, determined by the variogram, so that

f(x) =
m∑
i=1

Wi · F (xi), (5.10)

under the condition that
m∑
i=1

Wi = 1,

where m is the number of available samples. It is then sufficient to build the
following system of equations

γ(h11)W1 + γ(h21)W2 + · · ·+ γ(hm1)Wm + λ1 = γ(h1p), (5.11)

γ(h12)W1 + γ(h22)W2 + · · ·+ γ(hm2)Wm + λ2 = γ(h2p), (5.12)

· · · (5.13)

γ(h1m)W1 + γ(h2m)W2 + · · ·+ γ(hmm)Wm + λm = γ(hmp), (5.14)

W1 +W2 + · · ·+Wm + 0 = 1, (5.15)

to determine the values of the weightsWi. γ(hij) is the value of the semivariogram
corresponding to the distance hij between the points xi and xj. The value γ(hij)

has already been computed from the sample points thanks to equation (5.9), while
γ(hip) is obtained using the analytical function that has been ajusted to the sample
points of the semivariogram with a spline interpolation (see Figure 5.6). As we need
to produce an estimate of the objective function over a large number of different
locations, we simply factorize the system matrix once, and only the right-end side
has to be recomputed when the computational point is changed. We can observe
that the training phase is accomplished by solving a single m×m system.

5.4 Results of the optimization strategy

We approach the problem considering the following steps:
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1. An orthogonal array OA512(163) is computed. A full cartesian grid where 3

different factors are to be screened and each is to be observed at 16 different
levels would require 163 = 4096 runs. The use of an OA512(163) allows us
to only perform 512 runs, separated on 8 different processors with a parallel
configuration.

2. For each of the 512 training points, the maximal area Fmax and the first
time at which this maximal area is reached tmax are computed. In Figure
5.7 are featured the training points derived with fixed parameters in Table
5.2. The three parameters chosen for the optimization strategy take values
in the intervals presented in Table 5.3.

3. Kriging is performed to obtain interpolation values on a Cartesian grid
100 × 100 × 100. Two test cases are considered for two different values of
D0
enz, the diffusion coefficient of the matrix degrading enzyme. Namely, for

D0
enz = 10−8 m2/s, the enzyme concentration is locally sufficiently high for

the volume fraction of ECM to become zero after some time. ForD0
enz = 10−6

m2/s, the enzyme spreads rapidly, modifying the volume fraction of ECM
value rapidly and quite homogeneously. The resulting tendencies of function
Fmax(T, y0, c

inj
drug) are very different.

4. The optimal solution is found with a localized search. It appears that the
maximum is reached in both cases for the maximum concentration value of
the interval. This is a consequence of the linear dependance of the model
to parameter cinj

drug. Thus, we visualize the different computed values of Fmax
in the 2D parameters space (T, y0) by fixing cinj

drug at its maximum value.
This enables a better visualization of the localization of the optimised con-
figuration. In Figure 5.9a, it appears that the area where the maximum is
localized is quite large with little sensitivity to a quite large variation of the
parameters. However, in Figure 5.11a, it appears that the maximum is much
more localized, which makes our optimization strategy both interesting and
valuable. In Figures 5.10a and 5.12a is displayed the way tmax varies with
the parameters.
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(a) Fmax values for the training points set

(b) tmax values for the training points set

Figure 5.7: Visualization in the parameter space of the training points set com-
puted.
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Table 5.2: Values of the fixed parameters in the simulations done with Freefem++
to obtain the training points set.
Parameter Symbol Value Unit

Typical length l0 10−2 m
Reference concentration c0 109 kg/m3

Density of fluid phase ρRf 103 kg/m3

Density of solid phase ρR,0s 1.09 · 103 kg/m3

Permeability κ 10−11 m2Pa−1s−1

Lamé first parameter λ 7.14 · 105 Pa
Lamé second parameter µ 1.79 · 105 Pa
Specific storage coefficient s0 10−6 Pa−1

Injected concentration of enzyme cenz
inj 4 · 10−2 U/µl

Diffusion coefficient of the enzyme D0
enz 10−8, 10−6 m2/s

Degradation rate of the enzyme kdenz 1 · 10−4 s−1

Minimal effective concentration of the therapeutic agent cmin 10−4 g/L
Diffusion coefficient of the therapeutic agent D0

drug 10−8 m2/s
Degradation rate of the therapeutic agent kddrug 1.7 · 10−3 s−1

Cleavage rate K 2.5 · 10−7 m3s−1U−1

Recovery coefficient ar 5 · 10−4 s−1

Starling’s coefficient γ 5 · 10−5 Pa−1s−1

Fluid/solute coefficient γc 0.9 -
Driving pressure Pv 10−1 Pa

Initial values Symbol Initial value Unit

Volume fraction of fluid ϕf (0,x) 0.1 -
Volume fraction of ECM ϕE(0,x) 0.4 -
Volume fraction of cells ϕ(0,x) 0.5 -
Network dilatation ∇.u(0,x) 0 -
Concentration in enzyme h(0,x) 0 Um−3

Concentration in drug c(0,x) 0 kg m−3

Pressure P (0,x) Pv Pa

Table 5.3: Interval values of the control variables in the simulations.
Parameter Symbol Interval value Unit

Time lap between the two injections T [0, 2] h
Injection position y0 [2, 4] mm
Concentration of therapeutic agent cinj

drug [1, 3] g/L

5.5 Comparison between Kriging and the Linear

Interpolation Method

In this section, we fix the control variable cinj
drug at its maximal value: cinj

drug = 3

g/L. Thus we work in the 2D parameters space generated by (T, y0). This time,
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the training set points are computed using a Cartesian grid 25 × 25 featured in
Figure 5.13. It is worth noticing that for several values of y0, the value of interest
Fmax could not be obtained, mainly because of numerical issues. As y0 is a spatial
data, we believe that refining the mesh would suffice to retrieve the missing points.

We compare the interpolated values obtained using Kriging on a Cartesian grid
100 × 100 and those obtained using another method of spatial interpolation: the
Linear Interpolation Method [95] (see Figure 5.14). The test case considered here
corresponds to the test featured in Figure 5.9 (D0

enz = 10−6). The general trend
of the objective function F is found to be the same in both cases, but the surface
obtained using the linear interpolation method, which supposingly is the closest
to the raw data, presents some non physical noise.

From this study, we decided that the interpolated values obtained using Kriging
form a more stable basis to perform a sensitivity analysis on the 3 control variables
of interest.

5.6 Sensitivity analysis

We performed a sensitivity analysis on the test case presented in Figure 5.9
(Kriging interpolation from an orthogonal array). This is the same test case that
what considered in Figure 5.14a (Linear interpolation from a cartesian grid): it
was then determined that given the intrinsic noise of the raw data, the sensitivity
study should be performed on the interpolated values obtained with Kriging (see
Section 5.5). In this example, the maximum area is found to be reached at point

Xmax = (Tmax, ymax0 , cinj,max

drug ) = (4842.634 s,−0.3677757 cm, 2.999855 g/L).

In particular, as previously noted, cinj,max
drug is the upper bound of the interval of

variation considered for the variable cinj
drug (see Table 5.3). Figure 5.15 shows how

the optimal area reached by the drug varies as the three control variables are
varied either side of their standard values. The format in Figure 5.15 allows easy
comparison of the relative impacts of these parameters when varied up to 3%

around the point at which the area is optimal. In this particular example, one can

221



CHAPTER 5. OPTIMIZATION OF DRUG DELIVERY

see that a little variation of the time lag between the two injections (of enzyme
and drug) has almost no impact of the optimal value, whereas the position at
which is performed the injection has a greater impact. As expected, a greater
concentration gives a greater value fot the area reached by the drug but as those
values are obtained out of the limits of the interval in which cinj

drug is allowed to vary,
there are not admissible.

In Figure 5.16 is featured the same sensitivity analysis on tmax, the time at
which Fmax is reached.

5.7 Conclusion

Optimizing the delivery of therapeutic drugs can remarkably improve their
efficacy, especially in cancer treatment. Systemic delivery (e.g., intraveneous in-
jection) or regional delivery (e.g., direct local injection) of drugs are hampered by
physiological barriers to drug uptake from the surrounding medium. We considered
a protocol with local infusion of therapeutic agents successively to local infusion of
matrix targeting enzyme. In this framework, where transcapillary transport is not
taken into account, the advantage is the removal of the diffusive hindrance, which
has been studied in detail in the literature, and recovered with a PDE model in
section 4.6. The present study uses mathematical modeling as a tool for determin-
ing the principal mechanisms during localized delivery of drugs and quantitatively
simulating drug concentration. Using an optimization strategy based on Kriging
interpolation, we can derive an optimized protocol in order to obtain both the
maximal area where the drug concentration is sufficiently high and the time at
which this maximum is reached. The results we presented are obtained on a test
case, using a simple 2D geometry and fixed parameters that were not calibrated
on biological data. Nevertheless, the idea behing this study was to construct an
optimization algorithm in order to demonstrate its potential utility. With proper
biological data, the model could be calibrated and an optimized protocol could be
proposed and tested for validation.
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(a) D0
enz = 10−8

(b) D0
enz = 10−6

Figure 5.8: Visualization in the 3D parameter space of Fmax obtained using Kriging
interpolation on the training points set previously computed for two different values
of D0

enz.
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interpolation on the training set previously computed for D0

enz = 10−8.

224



CHAPTER 5. OPTIMIZATION OF DRUG DELIVERY

0
-0.20

1

2

-0.25

3

2000

4

-0.3

Ti
m

e 
of

 M
ax

 A
re

a 
(m

in
)

Deepness (cm)

5

Time (s)

4000

6

-0.35

7

8

6000 -0.4
-0.458000

5.2

5.4

5.6

5.8

6

6.2

6.4

6.6

6.8

7

7.2

(a)

(b)
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Figure 5.11: Visualization in the 2D parameter space of Fmax obtained using
Kriging interpolation on the training set previously computed for D0
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Figure 5.12: Visualization in the 2D parameter space of tmax obtained using Krig-
ing interpolation on the training set previously computed for D0

enz = 10−6.
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Figure 5.13: Visualization in the 2D parameter space of the cartesian grid of
training points computed.
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Figure 5.14: Visualization in the 2D parameter space of Fmax obtained using two
different methods of interpolation on the training set shown in Figure 5.13 for
D0
enz = 10−6. (a) Linear Interpolation Method. (b) Kriging.
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Figure 5.15: Diagram showing the changes in the maximal area reached by the
drug Fmax when varying the three control variables T , y0 and cdrug around the
optimal point Xmax.
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Conclusion

This work of research is concluded with a summary on the main contributions,
the outstanding questions and the new prospects that are opening up through the
work done on the modeling of physical methods in order to overcome the biological
barriers to drug delivery.

Modeling of tissue electroporation. In the first part of this document, three
phenomenological models of tissue electroporation are presented, explored and
compared to one another and to experimental data. The three models are based
on the description of the biological tissues as conductive media whose conductivity
nonlinearly depends on the electric field. We recall that

• The first two models are based on a monophasic approximation while the
last model is derived using a biphasic approach with two different current
densities. The nonlinear monophasic static problem is shown to have an
unique solution.

• An equivalent tissue conductivity can be computed in all three cases. While
its value is obvious in the monophasic approach, a steady-state approxima-
tion is needed to obtain it in the biphasic approach.

• To calculate the simulated current, a volume method is presented instead of
the usual surface method presented in the literature. It enables to solve the
problem more accurately without increasing the computational cost.

• A comparison between the current chronograms and the simulated currents
obtained using the different models enables to rationally determine that the
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biphasic approach is the one that reproduces best the different features ob-
served on the current chronograms.

In attempt to justify the phenomenological biphasic approach at the tissue scale,
a homogenization procedure is used to fill the gap between cell scale and tissue.
It leads to the equations of the bidomain model.

• The two-scale convergence is established in the static nonlinear case.

• The cell geometry can influence the global result.

• An equivalent homogenized tissue conductivity can be derived from the bido-
main model. Its formula is very similar to the equivalent tissue conductivity
derived from the phenomenological model using two current densities.

• The dependance of the microscopic membrane conductivity on the trans-
membrane voltage results in the dependance of the homogenized equivalent
tissue conductivity on the difference between the extracellular homogenized
potential and the intracellular homogenized potential. The electroporated
area identified with the bidomain model is not conclusive.

***

Complete calibration has yet to be done to validate the different modeling
approaches (monophasic, biphasic, bidomain). Several biological phenomena could
also be added to the phenomenological modeling of tissue electroporation. Long-
term permeabilization and heating effects should be taken into account if the effects
should be observed on a longer time scale than one pulse of 100 µs. This is not a
difficult thing to add in terms of modeling, but it may complicate the calibration
procedure. We are confident that the rigorous derivation of the homogenized
macroscopic model may be a good start towards the mathematical justification
of the phenomenological biphasic approach. The homogenization procedure could
also be complexified by considering more accurate phenomenological laws at the
cell scale, with dynamical effects and/or surface diffusion taken into account in the
definition of the membrane conductivity.

***
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Modeling of tissue degradation by mean of enzymatic treatment. A
new poroelastic model to account for tissue degradation in the case of enzymatic
treatment is presented.

• The model is derived directly from physical conservation laws under the
assumption that the tissue is a poroelastic saturated mixture made of cells,
extracellular matrix and interstitial fluid.

• This model is written in a fixed reference domain to make the numerical
processing possible.

• The results given by the simulations are in accordance with the experimental
data: an intratumoral injection of enzyme results in a nonlinear reduction
of the interstitial pressure and affects the distribution of therapeutic agents,
thereby improving the diffusion and convection process.

The model is then used as a tool to optimize drug delivery in enzyme-based
therapies.

• Three independent control variables are chosen to optimize the protocol: the
time lag between the injection of enzyme and the injection of therapeutic
agent, the position of the injection point and the concentration of therapeutic
agent in the fluid injected.

• The optimization strategy is based on Kriging interpolation.

• The results of this interpolation are obtained on a test case, using a simple
2D geometry and fixed parameters that were not calibrated on biological
data. An optimal protocol is obtained.

***

Complete calibration with experiments has yet to be done to validate the poroe-
lastic model, even if the qualitative results we obtained are encouraging. Only once
the calibration is complete, the optimization algorithm may be used to determine
an optimal protocol, to be tested experimentally. Finally, the coupling between
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the modeling of tissue degradation by mean of enzymatic treatment and tissue
electroporation has yet to be done. In the framework of gene therapy, the use of
enzyme was shown to facilitate not only the distribution of plasmids but also their
access to the muscle fibers. The variable porosity could then be considered as a
parameter in a model of tissue electroporation.

***
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Appendix A

Formulation of the poroelastic

model in a fixed domain: the

general case

Let us derive the final equations of the model. The calculus in the general case
gives the final system of equations (A.3). Recall that matrix B is defined as the
inverse of matrix A given by (4.47). As,

(B−1)i,j = Ai,j =

(
∂Φ(t,X)

∂X

)
i,j

= δij +
∂ui
∂Xj

(t,X) = δij +
∂ui

∂Xj

(t,X), (A.1)

we kept the notation B to refer to B(u) in system (A.3). Note that we equally
dropped bars on dimensionless variables but kept them on dimensionless parame-
ters. Let us denote

JBenz =
1

f
κB∇P −D0

enzB∇f and JBdrug =
1

f
κB∇P −D0

drugB∇f. (A.2)

We recall that gs = gE + g.
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• The poroelasticity system. Let us start with the final form of equations
(4.21) and (4.15).

∇ · (ϕsσEs ) = ∇p

⇐⇒∇ ·
(
ϕs

1

J
B−1SEs B

−T
)

= ∇p

⇐⇒ B∇X1,X2 ·
(
gs

1

J
B−1SEs B

−T
)

= B∇X1,X2P

⇐⇒∇ ·
(
gs

1

J
B−1(2µε+ λTr(ε)I)B−T

)
= ∇P

⇐⇒∇ ·
(
gs

1

J
B−1(µ(∇u +∇uT ) + λ(∇ · u)I)B−T

)
= ∇P

⇐⇒ 1

l0
∇X1,X2

·
(
gs

1

J
B−1(µ(

1

l0
∇(l0u) +

1

l0
∇(l0uT )) + λ(

1

l0
∇ · (l0u))I)B−T

)
=

1

l0
∇X1,X2

((λ+ 2µ)P )

⇐⇒∇X1,X2
·
(
gs

1

J
B−1(µ(∇u +∇uT ) + λ(∇ · u)I)B−T

)
= ∇X1,X2

P

Dropping bars on the dimensionless variables u, P and x, we get equation
(A.3b).
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ϕss0

(
∂p

∂t
+∇p · vs

)
+∇ · (vs + ϕfw)

=

(
1− ρR,0s

ρRf

)
ϕE(−Kϕfcenz + ar (ϕf − ϕf (0,x)))

+Qtot

inj +Qvas −Qlym

⇐⇒ ϕss0
Dp

Dt
+∇ · (vs)−∇ · (κ∇P )

=

(
1− ρR,0s

ρRf

)
ϕE(−KCenz + ar (ϕf − ϕf (0,x)))

+Qtot

inj +Qvas −Qlym

⇐⇒ ϕss0
Dp

Dt
−∇ · (κ∇p)

=

(
1− ρR,0s

ρRf

)
ϕE(−KCenz + ar (ϕf − ϕf (0,x)))

+Qtot

inj + γ(p− pv)−∇ · (vs)

⇐⇒ gss0
∂P

∂t
−B∇X1,X2 · (κB∇X1,X2P )

=

(
1− ρR,0s

ρRf

)
gE(−Kh+ ar (f − f(0,x)))

+Qtot

inj + γ(P − Pv)−B∇X1,X2 · (Vs)

⇐⇒ gss0
κ(λ+ 2µ)

l20

∂(λ+ 2µ)P

∂t
− 1

l0
B∇X1,X2

·
(
κ

1

l0
B∇X1,X2

((λ+ 2µ)P )

)
=

(
1− ρR,0s

ρRf

)
gE(−Kc0h+ ar (f − f(0,x)))

+Qtot

inj + γ(λ+ 2µ)(P − P v)−
1

l0
B∇X1,X2

·
(
κ(λ+ 2µ)

l0
Vs

)
⇐⇒ gss0

∂P

∂t
−B∇X1,X2

·
(
κB∇X1,X2

P
)

=

(
1− ρR,0s

ρRf

)
gE(−Kh+ ar (f − f(0,x)))

+ αQtot

inj + γ(P − P v)−B∇X1,X2
·
(
Vs

)
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Dropping bars on the dimensionless variables P , h, Vs, t and x, we get
equation (A.3c).

• The equations on the volume fractions of the different components

of the mixture. Let us look at the final form of system (4.13). First,
equation (4.2) in the reference domain writes

gE + g + f = 1,

which is exactly equation (A.3a). As we already have this equation, we only
need two equations from system (4.13) to close the problem on ϕf , ϕE , ϕ.

∂

∂t
(ρRs ϕE) +∇ · (ρRs ϕEvs) = ρRs ϕE(−Kϕfcenz + ar (ϕf − ϕf (0,x)))

⇐⇒ ρR,0s

(
∂ϕE
∂t

+∇ϕE · vs
)

+ ρR,0s ϕE

(
s0

(
∂p

∂t
+∇p · vs

)
+ ∇ · vs

)
= ρR,0s ϕE(−KCenz + ar (ϕf − ϕf (0,x)))

⇐⇒ DϕE
Dt

+ ϕE

(
s0
Dp

Dt
+ ∇ · vs

)
= ϕE(−KCenz + ar (ϕf − ϕf (0,x)))

⇐⇒ ∂gE
∂t

+ gE

(
s0
∂P

∂t
+B∇X1,X2 ·Vs

)
= gE(−Kh+ ar (f − f(0,x)))

⇐⇒ κ(λ+ 2µ)

l20

∂gE
∂t

+ gE

(
s0
κ(λ+ 2µ)

l20

∂(λ+ 2µ)P

∂t
+

1

l0
B∇X1,X2

κ(λ+ 2µ)

l0
Vs

)
= gE(−Kc0h+ ar (f − f(0,x)))

⇐⇒ ∂gE
∂t

+ gE

(
s0
∂P

∂t
+B∇X1,X2

Vs

)
= gE(−Kh+ ar (f − f(0,x)))

Dropping bars on the dimensionless variables P , h, Vs, t and x, we get equa-
tion (A.3f). The same method applies for equation (4.13b) to get equation
(A.3e).

• The equations on the concentration of species. Finally, let us look at
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the final form of equations (4.25) and (4.29).

∂Cenz

∂t
+∇ · (Cenzvf ) = ∇ ·

(
ϕ2
fD

0
enz∇

(
Cenz

ϕf

))
− kenzd

ϕf
Cenz + Senz

⇐⇒ ∂Cenz

∂t
+∇ ·

(
Cenz

(
− 1

ϕf
κ∇p+ vs

))
= ∇ ·

(
ϕ2
fD

0
enz∇

(
Cenz

ϕf

))
− kenzd

ϕf
Cenz + Senz

⇐⇒ ∂Cenz

∂t
+∇Cenz · vs −∇ ·

(
Cenz

(
1

ϕf
κ∇p−D0

enz∇ϕf
))

= ∇ ·
(
ϕfD0

enz∇Cenz

)
−
(
kenzd

ϕf
+∇ · vs

)
Cenz + Senz

⇐⇒ DCenz

Dt
= ∇ ·

(
ϕfD0

enz∇Cenz

)
+∇ ·

(
Cenz

(
1

ϕf
κ∇p−D0

enz∇ϕf
))

−
(
kenzd

ϕf
+∇ · vs

)
Cenz + Senz

⇐⇒ ∂h

∂t
= B∇X1,X2 ·

(
fD0

enzB∇X1,X2h
)

+B∇X1,X2 ·
(
h

(
1

f
κB∇X1,X2P −D0

enzB∇X1,X2f

))
−
(
kenzd

f
+B∇X1,X2 ·Vs

)
h+ Senz

⇐⇒ κ(λ+ 2µ)

l20

∂c0h

∂t
=

1

l0
B∇X1,X2

·
(
fD0

enz

1

l0
B∇X1,X2

(c0h)

)
+

1

l0
B∇X1,X2

·
(
c0h

(
1

f
κ

1

l0
B∇X1,X2

((λ+ 2µ)P )−D0
enz

1

l0
B∇X1,X2

f

))
−
(
kenzd

f
+

1

l0
B∇X1,X2

· κ(λ+ 2µ)

l0
Vs

)
c0h+ Senz

⇐⇒ ∂h

∂t
= B∇X1,X2

·
(
fD0

enzB∇X1,X2
h
)

+B∇X1,X2
·
(
h

(
1

f
κB∇X1,X2

P −D0
enzB∇X1,X2

f

))
−
(
kenzd

f
+B∇X1,X2

·Vs

)
h+

α

c0

Senz

Dropping bars on the dimensionless variables h, P , Vs, t and x, we get equa-
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tion (A.3d). The same method applies for equation (4.29) to get equation
(A.3g).

The equivalent system in Ω0 in dimensionless form reads



gE + g + f = 1,

∇ ·
(

(gE + g)
1

J
B−1(µ(∇u +∇uT ) + λ(∇ · u)I)B−T

)
= ∇P,

(gE + g)s0
∂P

∂t
−B∇ · (κB∇P )

=

(
1− ρR,0s

ρRf

)
gE(−Kh+ ar (f − f(0,x)))

+ αQtot

inj + γ(Pv − P )−B∇ ·
(
∂u
∂t

)
,

∂h

∂t
= B∇ ·

(
fD0

enzB∇h
)

+B∇ ·
(
hJBenz

)
−
(
kenzd

f
+B∇ ·

(
∂u
∂t

))
h+

α

c0

Senz,

∂g

∂t
+ g

(
s0
∂P

∂t
+B∇ ·

(
∂u
∂t

))
= 0,

∂gE
∂t

+ gE

(
s0
∂P

∂t
+B∇ ·

(
∂u
∂t

))
= gE(−Kh+ ar (f − f(0,x))),

∂c

∂t
= B∇ ·

(
fD0

drugB∇c
)

+B∇ ·
(
cJBdrug

)
−
(
kdrugd

f
+B∇ ·

(
∂u
∂t

))
c+

α

c0

Sdrug,

(A.3a)

(A.3b)

(A.3c)

(A.3d)

(A.3e)

(A.3f)

(A.3g)

Writing the system with B = Id using Remark 9, we recover system (4.55).
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Axisymmetric variational

formulation of the poroelastic model

Writing an axisymmetric variational formulation of the problem allows to ana-
lyze a 3D domain which is rotationally symmetric about an axis. The input is 2D,
but because of the rotational symmetry, you are in fact analyzing a symmetric 3D
problem. While modeling a speroid or a tumor by a sphere, solving the problem
in axisymmetry allows us to consider the 2D input shown in Figure 4.18 while in
fact analyzing a sphere. To simplify the governing equations of the axisymmetric
problem, it is natural to use a global cylindrical coordinate system (r, z, θ) where
r is the radial coordinate, z is the axial coordinate and θ is the circumferential
coordinate.

The displacement field is a function of r and z only, defined by two components:

u(r, z) =

(
ur(r, z)

uz(r, z)

)
.

The circumferential displacement component uθ is zero on account of rotational
symmetry. The nonvanishing components of the infinitesimal strain tensor and
the stress tensor in cylindrical coordinates are, as usual in preparation for finite
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element work, arranged as 4× 1 vectors:

ε(u) =


err

ezz

eθθ

2erz

 and σ =


σrr

σzz

σθθ

σrz

 .

The strain-displacement equations for the axysymmetric problem are, in matrix
form:

ε(u) =


err

ezz

eθθ

2erz

 =


∂
∂r

0

0 ∂
∂z

1
r

0
∂
∂z

∂
∂r


(
ur(r, z)

uz(r, z)

)
.

For an isotropic material of Lamé ’s constants λ and µ, the constitutive equation
between stress and strain takes the form

σ =


λ+ 2µ λ λ 0

λ λ+ 2µ λ 0

λ λ λ+ 2µ 0

0 0 0 µ

× ε(u).

The calculus of ∇ · σ in cylindrical coordinates gives

∇ · σ =


1
r
∂(rσrr)
∂r

+ ∂σrz
∂z
− 1

r
σθθ

0
∂σzr
∂r

+ ∂σzz
∂z

+ 1
r
σzr


Thus, the variational formulation in axisymmetry of equation (4.55b) with

boundary conditions (4.74a) is: ∀w∫
Ω0

(
rσrr

∂wr
∂r

+ rσrz

(
∂wz
∂r

+
∂wr
∂z

)
+ rσzz

∂wz
∂z

+ σθθwr

)
dV

=

∫
Ω0

(
rP

(
∂wr
∂r

+
∂wz
∂z

)
+ Pwr

)
dV
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with

σrr = (λ+ 2µ)
∂ur
∂r

+ λ
∂uz
∂z

+ λ
ur
r

σzz = σrr = λ
∂ur
∂r

+ (λ+ 2µ)
∂uz
∂z

+ λ
ur
r

σθθ = σrr = λ
∂ur
∂r

+ λ
∂uz
∂z

+ (λ+ 2µ)
ur
r

σrz = µ

(
∂ur
∂z

+
∂uz
∂r

)
For the equations on the scalar variables P , h and c, the variational formula-

tions in axisymmetry are derived easily, taking into account the fact that for any
vector A, the divergence in cylindrical coordinates writes

∇ · A =
∂Ar
∂r

+
∂Az
∂z

+
Ar
r
,

as Aθ is zero on account of rotational symmetry. The variational formulation in
axisymmetry of equation (4.55c) with boundary conditions (4.74b) is: ∀Q∫

Ω0

(rgss0(P )tQ) dV +

∫
Ω0

(
rκ

(
∂P

∂r

∂Q

∂r
+
∂P

∂z

∂Q

∂z

))
dV =

∫
Ω0

(
αQtot

inj + γ(Pv − P )
)
Q dV

+

∫
Ω0

(
r

(
ρR,0s

ρRf
− 1

)
gE(Kh+ ar(f(0,x)− f))−

(
r

(
∂(ur)t
∂r

+
∂(uz)t
∂z

)
+ (ur)t

))
Q dV

The variational formulation in axisymmetry of equation (4.55d) with boundary
conditions (4.74c) is: ∀ψ∫

Ω0

(h)tψ dV +

∫
Ω0

(
rfD0

enz

(
∂h

∂r

∂ψ

∂r
+
∂h

∂z

∂ψ

∂z

))
dV

+

∫
Ω0

(
r

(
∂(h(Jenz)r)

∂r
+
∂(h(Jenz)z)

∂z

)
+ h(Jenz)r

)
ψ dV

= −
∫

Ω0

h

(
r

(
∂(ur)t
∂r

+
∂(uz)t
∂z

+
kenzd

f

)
+ (ur)t

)
ψ dV +

∫
Ω0

α

c0

Senzψ dV

The variational formulation in axisymmetry of equation (4.55g) with boundary
conditions (4.74d) is obtained with the same calculus.
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