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Résumé en Français

Durant ma thèse, j’ai travaillé à la conception de méthodes automatisées permettant l’identification
d’algorithmes cryptographiques dans des programmes compilés en langage machine. Ce besoin bien
spécifique trouve une partie de son origine dans le domaine de l’évaluation logicielle. L’utilisation
d’algorithmes cryptographiques se fait dans le but d’obtenir des fonctions de sécurité telles que
la confidentialité, l’intégrité et l’authenticité pour la cryptographie symétrique ou des fonctions
plus diverses comme la signature numérique, l’établissement de secrets partagés ou le chiffre-
ment à clé publique pour la cryptographie asymétrique. Cependant le choix des algorithmes, leur
implémentation et leur utilisation au sein d’un programme informatique sont autant de points
sensibles pouvant remettre en cause la robustesse de ces fonctions de sécurité. Il est donc primor-
dial dans le cadre de l’évaluation logicielle d’analyser les implémentations cryptographiques afin
de s’assurer de leur bon niveau de sécurité. Si dans bien des cas il est possible et plus commode
de conduire cette analyse à partir du code source, il n’en demeure pas moins important de pouvoir
également opérer à partir du code machine. En effet le code source n’est ni toujours disponible
(évaluation pour le compte d’une tierce partie ou avec des informations limitées dans le but de
simuler un attaquant réel) ni toujours fiable (biais délibéré ou non entre le code source et le code
machine, dû par exemple aux optimisations du compilateur [5]).

L’idée n’est pas ici d’automatiser un type d’analyse particulier (par exemple: vérifier l’absence
de corrélation entre temps d’exécution et paramètres secrets pour empêcher les attaques par canaux
temporels), mais d’automatiser l’identification des algorithmes cryptographiques, première étape
nécessaire à toute analyse plus approfondie. À ce titre, les résultats obtenus ne permettront pas
directement dans bien des cas de juger du bon niveau de sécurité des mécanismes cryptographiques,
mais serviront de socle à l’évaluateur pour débuter son analyse. Pour ce travail, je me suis limité
à la cryptographie symétrique, proposant deux méthodes: une pour l’identification des primitives
cryptographiques et l’autre pour l’identification des modes opératoires. Note: ces deux méthodes
n’ayant pas été conçues pour l’analyse de code obfusqué, elles n’offrent aucune garantie de bon
fonctionnement dans ce domaine.

1 Identification des Primitives

Il est possible, à l’aide d’heuristiques simples (instructions particulières, constantes particulières,
taille des blocs de base, fréquence d’exécution, position dans l’arbre d’appels), d’identifier efficace-
ment et de façon sûre un petit nombre de parties du code comme étant de possibles implémentations
cryptographiques [33, 81]. La méthode proposée pour l’identification des primitives a donc été
conçue pour s’exécuter non sur l’ensemble du programme, mais sur des portions de taille restreinte
pouvant être sélectionnées à l’aide de ces heuristiques. Elle utilise des signatures. Une approche
par signatures est particulièrement adaptée dans le cas des primitives puisque le nombre de prim-
itives fréquemment utilisées en pratique est faible et que leurs implémentations sont peu sujettes
aux variations.

1.1 Graphe de Flot de Données

Le code machine est représenté par une structure de données appelée DFG (pour Data Flow Graph).
Bien qu’initialement conçue de façon indépendante, cette structure de données se rapproche des
Term Graphs [60] et des jungles [39]. Elle permet de représenter une ou plusieurs expressions
composées de symboles d’opération et de symboles de variable sous forme de multigraphe orienté

4



acyclique. Un sommet v possède une étiquette notée labV (v) qui est soit un symbole d’opération,
soit un symbole de variable. Chaque sommet v représente une expression, notée term(v), qui se
définit récursivement de la façon suivante:

term(v) =

{
labV (v) si v est étiqueté avec un symbole de variable

labV (v)(term(v1), ..., term(vn)) si v est étiqueté avec un symbole d’opération

Dans le second cas, v1, ..., vn désignent les prédécesseurs directs de v ordonnés d’après les étiquettes
des arêtes les reliant respectivement à v. L’organisation sous forme de graphe a l’avantage par
rapport à une organisation plus naturelle sous forme d’arbre, de permettre le partage des sous-
expressions communes réduisant fortement les besoins en mémoire et les temps de traitement.

La portion du programme à analyser est vue comme une séquence d’instructions. Cette
hypothèse simplificatrice s’explique par le fait que les primitives symétriques contiennent peu
d’instructions conditionnelles et que celles-ci ne dépendent généralement pas des arguments d’entrée
et de sortie. Par conséquent, le chemin d’exécution ne varie pas d’une exécution à l’autre à
l’intérieur du code cryptographique qui peut donc être assimilé à une séquence d’instructions.

Les DFGs sont construits par compositions successives. Chaque instruction de la séquence à
analyser est convertie vers un petit DFG. Ceux-ci sont ensuite composés pour obtenir le DFG
final représentant la totalité de la séquence. Ce mode de construction se révèle particulièrement
utile par la suite puisque même une fois modifiés il sera toujours possible de composer les DFGs
(technique utilisée lors de l’agrandissement de la fenêtre d’analyse par exemple). Un effort partic-
ulier a été apporté à la traduction des instructions vectorielles (couramment utilisées par certaines
implémentation cryptographique).

L’utilisation de DFGs pour représenter le code machine permet de répondre à un certain nombre
de besoins: réécriture d’expressions tout en préservant une certaine notion de sémantique appelée
similarité observable, comparaison d’expressions et recherche de sous-expressions à travers la notion
d’isomorphisme de graphes, slicing, et même visualisation par un opérateur d’une partie du code.
Cette représentation sera également utilisée pour l’identification des modes opératoires.

1.2 Normalisation

Le but de la phase de normalisation est de supprimer au maximum les différences qui peuvent
exister entre plusieurs implémentations d’une même primitive afin de pouvoir détecter avec un petit
nombre de signatures une grande variété d’implémentations. Durant la phase de normalisation, un
ensemble de règles de réécriture est appliqué itérativement au DFG à normaliser jusqu’à l’obtention
d’un point fixe appelé forme normale. Une version réduite de la phase de normalisation est utilisée
pour l’identification des modes opératoires.

Deux DFGs sont similaires de façon observable si pour toutes affectations identiques de leurs
variables d’entrée on obtient le même ensemble de valeurs pour leurs sommets de sortie. On
démontre que si chaque règle de réécriture préserve localement la similarité observable alors un
DFG et sa forme normale sont similaires de façon observable. Bien que cette propriété seule
ne permette pas de démontrer la validité de la méthode d’identification des primitives, elle n’en
demeure pas moins capitale pour obtenir une solution fiable en pratique.

Par facilité d’implémentation mais aussi de présentation, les règles de réécriture sont regroupées
en familles appelées mécanismes de normalisation. Onze mécanismes de normalisation sont utilisés.
(1) Constant folding : diverses simplifications numériques, possibles dès lors qu’une opération
possède un ou plusieurs opérandes constants. (2) Détection d’expressions constantes: utilisation de
masques d’influence pour identifier les expressions ne pouvant prendre qu’une seule valeur et rem-
placement de ces expressions par les constantes adéquates. (3) Suppression des sous-expressions
communes: fusion de plusieurs opérations partageant les mêmes opérandes. (4) Simplification
des accès mémoire: parmi les opérations utilisées dans les DFGs, deux permettent d’accéder
à la mémoire: load (lecture) et store (écriture). Les motifs suivants sont simplifiés dans la
séquence des accès effectués à une même adresse mémoire: (loadi, loadi+1), (storei, loadi+1)
et (storei, storei+1). La comparaison des adresses mémoire est un point particulièrement sen-
sible. Pour l’identification des primitives, les adresses sont comparées statiquement de façon
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sûre. Pour l’identification des modes opératoires, on utilise en revanche des valeurs d’adresse
concrètes obtenues pour une exécution donnée. (5) Distribution des constantes: développement
des expressions mettant en jeu des constantes réparties sur plusieurs opérations distributives.
(6) Élargissement des opérations: chaque sommet d’un DFG possède un attribut de taille. Les
opérations de petite taille sont élargies jusqu’à l’obtention d’une taille canonique. (7) Memory
coalescing : regroupement des accès mémoire de petite taille effectués à des adresses contiguës. (8)
Simplification des expressions affines: règles de réécriture dédiées à la simplification d’expressions
complexes composées exclusivement d’additions, de soustractions et de multiplication par des con-
stantes. (9) Fusion des constantes: regroupement de deux opérations commutatives et associatives
possédant toutes deux au moins un opérande constant. Remarque: ce mécanisme de normalisation
diffère du suivant. Son objectif est de provoquer de nouvelles situations propices aux simplifica-
tions numériques et non de normaliser des ensembles d’opérations commutatives et associatives.
(10) Normalisation des opérations commutatives et associatives: même transformation que pour le
précédent mécanisme de normalisation, mais déclenchée par des conditions différentes (absence de
successeur, appartenance à une même fonction). (11) Divers: règles de réécriture n’appartenant
à aucune des catégories précédemment citées, effectuant principalement des remplacements entre
des opérations équivalentes.

1.3 Détection de Signatures par Isomorphisme de Sous-Graphe

Grâce à la phase de normalisation un grand nombre d’implémentations d’une même primitive
converge vers une même forme normale. Cette forme normale constitue une signature permet-
tant d’identifier la primitive en question. Les signatures sont ici de grande taille: elles ne sont
pas limitées à quelques opérations distinctives, mais couvrent la majeure partie des algorithmes
auxquels elles se rapportent. Cela permet d’obtenir des informations détaillées sur la totalité
de l’algorithme et notamment de localiser les paramètres d’entrée et de sortie ce qui se révélera
indispensable par la suite pour l’identification des modes opératoires.

Afin d’augmenter la robustesse de la méthode et notamment de faire face à d’inévitables
défaillances de la phase de normalisation, on a recours à la composition de signatures. Grâce
à ce mécanisme des parties disjointes, d’une primitive peuvent être identifiées séparément par de
petites signatures spécifiques. Les informations ainsi obtenues sont alors rassemblées par une signa-
ture principale couvrant la totalité de la primitive. Deux niveaux sont décrits ici, mais la solution
se généralise à un nombre quelconque de compositions.

Tout comme lors de la phase de normalisation, la forme normale est obtenue par compositions
successives de règles de réécriture, la détection de la signature principale repose sur la composition
de signatures partielles. La ressemblance pourrait être confondante, si ce n’est que les règles de
réécritures opèrent par substitution alors que l’on choisit de rechercher les signatures composées
en effectuant des superpositions. En procédant à une superposition au lieu d’une substitution, on
écarte au prix d’une complexité accrue le délicat problème de la convergence (un DFG peut avoir
plusieurs formes normales), laissant toute liberté à l’utilisateur pour la création des signatures.

La recherche des signatures se fait grâce à l’algorithme d’Ullmann [72] qui permet d’énumérer
les isomorphismes de sous-graphe. Celui-ci fait l’objet de quelques ajustements afin de permettre
la recherche de signatures composées par superposition ainsi que mentionné précédemment.

2 Identification des Modes Opératoires

L’identification des modes opératoires s’inscrit dans le prolongement de l’identification des primi-
tives. En effet, la méthode proposée requiert en entrée des informations détaillées sur la localisation
des primitives et de leur paramètres d’entrée et de sortie. Il est donc nécessaire d’identifier d’abord
les primitives pour pouvoir ensuite identifier les modes opératoires. Le constat qui avait motivé
l’usage des signatures pour l’identification des primitives (peu d’algorithmes utilisés en pratique et
une forte stabilité de leur implémentations) ne semble pas se reproduire pour les modes opératoires.
En revanche, bon nombre de modes opératoires sont relativement peu complexes. Cela n’étant plus
strictement nécessaire, l’idée est alors de ne plus avoir recours à une méthode automatisée pour
la reconnaissance des motifs distinctifs, mais de laisser cette tâche à l’utilisateur pour bénéficier
d’une plus grande flexibilité. L’essentiel de la méthode se résume alors à extraire d’un DFG une
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slice (terminologie empruntée au domaine du program slicing auquel notre méthode s’apparente),
c’est-à-dire une représentation synthétique des principaux transferts de données intervenant en-
tre les différentes exécutions des primitives. Cette slice est retournée à l’utilisateur pour une
interprétation manuelle.

2.1 Définition d’une Slice

A partir d’un DFG contenant plusieurs exécutions de primitives, une slice se définit comme le
plus petit sous-graphe préservant les distances entre les paramètres d’entrée et de sortie de ces
primitives. De façon informelle, une slice est complète si elle inclut suffisamment d’éléments pour
permettre l’identification du mode opératoire et elle est lisible si elle n’inclut que des éléments
strictement nécessaires à cette identification. Si, intuitivement, il est évident qu’une slice doit
être complète, il est également important qu’elle soit lisible: malgré un motif distinctif simple
si, la recherche doit s’effectuer dans un DFG de grande taille, elle risque de s’avérer longue et
fastidieuse pour l’utilisateur. La définition d’une slice donnée précédemment permet d’atteindre
un bon compromis entre ces deux notions qui en pratique sont difficilement conciliables.

Cette définition repose exclusivement sur des aspects syntaxiques. Cela a l’avantage d’imposer
des contraintes fortes sur la forme, garantissant une bonne lisibilité. Cependant certains aspects
sémantiques doivent être impérativement pris en compte conduisant à quelques ajustements. Le
premier concerne les opérations d’accès à la mémoire. Lorsqu’une opération de lecture accède un
emplacement mémoire déjà précédemment accédé par une autre opération du DFG, son résultat
dépend de cette seconde opération. Par défaut cette dépendance n’est pas représentée par une
arête dans les DFGs. Pour y remédier nous avons recours au mécanisme de normalisation intitulé
simplification des accès mémoire, en utilisant des valeurs concrètes pour comparer les adresses. Le
second ajustement utilise des masques d’influence afin de filtrer les chemins ne représentant pas
une relation d’influence effective entre deux opérations d’un DFG.

2.2 Extraction d’une Slice

L’identification des modes opératoires nécessite souvent une fenêtre d’analyse plus large que celle(s)
ayant pu être utilisée(s) pour l’identification des primitives. Une première étape consiste donc à
construire le DFG de cette fenêtre d’analyse élargie en utilisant notamment la composition de
DFGs afin de pouvoir importer directement les résultats ayant été obtenus lors de l’identification
des primitives.

Le DFG subit alors une étape de normalisation qualifiée de légère en comparaison à la phase
de normalisation utilisée pour l’identification des primitives. L’objectif est d’une part de forcer la
représentation de certains aspects sémantiques au niveau de la syntaxe (ajustement relatif aux accès
mémoire précédemment mentionné) et d’autre part de réaliser un certain nombre de simplifications
à moindre coût qui ne seront que bénéfiques pour la lisibilité des slices.

Á notre connaissance, il n’existe pas d’algorithme polynomial permettant de calculer le plus pe-
tit sous-graphe préservant les distances pour un ensemble de sommets avec un facteur d’approximation
qui serait pertinent pour notre problème (graphes peu denses). A défaut, nous décomposons le
problème entre d’une part la recherche des plus courts chemins pour chaque paire de sommets
concernés, et d’autre part la résolution d’un problème de couverture minimale. Le premier point
ne pose pas de difficulté en pratique malgré un nombre de plus courts chemins pouvant être
théoriquement exponentiel par rapport au nombre de sommets. Le second point qui revient à
sélectionner k ensembles parmi n ensembles tel que leur union soit minimale, est résolu de façon
approchée et sans garantie aucune par un algorithme glouton.

3 Évaluation Expérimentale

Pour évaluer ces deux méthodes d’identification, nous avons eu recours à un ensemble de courts
programmes de test. Cet ensemble couvre différents algorithmes (AES, MD5, RC4, SHA1 et
XTEA pour les primitives et CBC, CTR et HMAC pour les modes opératoires), différentes
implémentations dont une grande partie est issue de bibliothèques cryptographiques renommées et
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différentes conditions de compilation (compilateurs et options de compilation). Enfin, pour mettre
en pratique l’ensemble de la démarche, elle a été appliquée à des programmes réels.

4 Organisation du Manuscrit

Un premier chapitre introductif permet de présenter le contexte, les motivations et propose un bref
aperçu des deux méthodes d’identification. Le chapitre 1 est dédié à l’état de l’art. Il évoque les
techniques pouvant être facilement utilisées en pratique: recherche de constantes et identification
de bibliothèques liées statiquement, ainsi que des problèmes proches: récupération de paramètres
cryptographiques (clé de chiffrement et message en clair) et comparaison de codes binaires. Mais
il s’agit surtout de revenir en détails sur les deux méthodes concurrentes pour l’identification des
primitives, à savoir: la recherche de relations particulières entre valeurs d’entrée et de sortie et la
détection de l’effet d’avalanche dans le graphe de flot de données. Des résultats expérimentaux sont
fournis afin de pouvoir comparer ces deux méthodes à celle que nous proposons. Le graphe de flot de
données est présenté au chapitre 2. L’étape de normalisation est abordée au chapitre 3. Le chapitre
4 conclut la présentation de la méthode d’identification des primitives, en détaillant la recherche
de signatures dans le graphe de flot de données et en proposant des résultats expérimentaux.
Le méthode d’identification des modes opératoires est décrite au chapitre 5. Enfin, le chapitre
6 propose deux cas d’utilisation concrets qui permettent de préciser la mise en application des
méthodes précédemment décrites dans une contexte opérationnel réel. Pour le lecteur qui ne serait
pas familier avec les algorithmes cryptographiques abordés tout au long de ce document, un rappel
est disponible dans l’annexe A.

5 Implémentation

Une implémentation complète des deux méthodes d’identification ainsi que la totalité des cas de
test ayant servis à l’obtention des résultats expérimentaux sont disponibles à l’adresse suivante:
https://github.com/plestrin/bacs. Remarque: cette implémentation ne permet l’analyse que
de programmes compilés pour l’architecture IA-32.
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Network Security - ACNS 2016.

• Pierre Lestringant, Frédéric Guihéry and Pierre-Alain Fouque. Automated Identification of
Cryptographic Primitives in Binary Code with Data Flow Graph Isomorphism. In ACM Sym-
posium on Information, Computer and Communications Security - ASIA CCS 2015.
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Introduction

1 Reverse Engineering

Reverse engineering is the process of extracting knowledge from a technological object to under-
stand how it was built or how it works. This practice exists in many technological fields such as
chemistry, electronics or biology. This work deals exclusively with reverse engineering of computer
programs, and more particularly, of programs compiled into machine code.

There are various reasons for reverse engineering programs compiled into machine code (also
called binary programs). For instance, one may need to fix a bug in a legacy system the source
code of which no longer exists, or one may want to bypass a restriction in a program without the
consent of its creator (to create unauthorized duplicates or to access restricted content) or, as a last
example, one may need to build a system which interfaces with another system the specifications
of which are not available. The reverse engineering techniques presented in this document, because
they target cryptographic algorithms, are mainly motivated by security concerns. These techniques
can be used either to find security flaws in binary programs or, on the contrary, to verify that none
exists. Yet, because they contribute to the global understanding of binary programs containing
cryptographic algorithms, they have an interest in many other situations, including those mentioned
previously.

1.1 Black Box and White Box

A program is analysed in black box if the analyst has no access to its machine code. In this
situation, the only way to obtain knowledge on the program is to observe its executions. The
analysis is either passive if the analyst is only able to monitor inputs and outputs of executions
of the program, or active if the analyst is also able to submit chosen inputs to the program. [68]
is an example of passive black box reverse engineering of cryptographic algorithms. By looking at
an RSA public key, the authors are able to classify with a high accuracy the RSA implementation
which generated that key.

By contrast, a program is analysed in white box if the analyst has access to its machine code.
In this work we only consider the white box situation.

1.2 Obfuscation

An obfuscation technique is a program transformation which does not alter the program func-
tionalities but makes the reverse engineering task more difficult. There are as many obfuscation
possibilities as there are reverse engineering techniques. For instance, obfuscation may target static
or dynamic analysis and manual or automated inspection. To the best of our knowledge, there is
no obfuscation technique able to defeat a wide range of reverse engineering attempts with only a
minor performance penalty. To achieve a large and efficient protection, one needs to use simul-
taneously multiple weak obfuscation techniques. The quality of the protection depends on the
number of obfuscation techniques as well as on their rarity. If an obfuscation technique is broadly
used, specific tools will be developed to mitigate its impact on reverse engineering procedures. By
combining several obfuscation techniques together and by introducing variations, one will have
better chances to obtain a protection that will require specific reverse engineering effort to remove.

Obfuscated code is not addressed by this work. It means that the methods presented in this
document were not devised to deal with obfuscated code specifically. But it does not mean that
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they are totally worthless to analyse obfuscated programs. If it is possible to undo the obfuscation
transformations or if they do not directly affect parts of a program execution which contains
cryptographic algorithms, it will be possible to use our methods nonetheless. For instance, a basic
but common obfuscation strategy which consists in using packing plus various anti-debug and
anti-virtualization tricks remains perfectly compatible with our identification methods. In fact,
these methods rely on execution traces, thus they are unaffected by whatever packing method is
used. And anti-debug and anti-virtualization tricks which may prevent us from collecting execution
traces, can be removed manually before executing our identification method.

2 Cryptographic Notions

2.1 Symmetric and Asymmetric Cryptography

In symmetric cryptography a secret is shared by the communicating parties. This secret is used
to fulfil two security notions: confidentiality and authenticity. Confidentiality ensures that an
encrypted message does not leak any information about its initial content to a party with no
knowledge of the shared secret. Authenticity ensures that only parties in possession of the shared
secret can write messages. A third security notion, called integrity, falls within the realm of
symmetric cryptography even though it does not require a shared secret. Integrity ensures that a
message is not altered during its storage or transmission.

By opposition, all other cases where communicating parties do not possess a shared secret,
belong to the field of asymmetric cryptography. Asymmetric cryptography relies on strong math-
ematical constructions to achieve richer and more diverse security notions. The most well known
usage of asymmetric cryptography is perhaps public-key encryption. In public-key encryption
anyone can encrypt messages using a public key but only those who possess the private key se-
cretly attached to the public key are able to decrypt messages. Other commonly used asymmetric
schemes are: key exchange and digital signature algorithms.

From a practical point of view, symmetric algorithms are simple, fast and they are used to
process large amount of data. Meanwhile, asymmetric algorithms are complex, slow and they
are only used at key points of cryptographic protocols to provide security properties which are
impossible to fulfil otherwise.

This work is limited to the identification of symmetric algorithms. There are two main reasons
to explain this choice.

• First, programs are unlikely to contains their own implementation of asymmetric schemes.
Instead they probably use one of the few available cryptographic libraries. From our ex-
perience, it takes a software developer at most a couple of days to implement a symmetric
scheme from scratch, while it would probably take a cryptographer more than a month to
do the same for an asymmetric scheme. As an example, we did a survey of open source SSL
libraries and it showed that a large number of them relies on the same library to implement
big integers. Hence, in our opinion, the problem of identifing asymmetric schemes can be
solved in many cases by looking for external libraries (refer to Section 1.1.1).

• Second, because asymmetric schemes are significantly more complex than symmetric ones,
the analysis of their binary implementations is also more challenging. In our opinion it was
more reasonable to start with symmetric cryptography and unfortunately we ran out of time
before starting anything serious regarding asymmetric cryptography. Note that the methods
we devised cannot be easily adapted to work with asymmetric schemes. First, the additional
complexity diminishes the chance of success and second these methods rely on specificities
of the cryptographic objects they target, specificities which are unlikely to be shared by
asymmetric schemes.

2.2 Primitives and Modes of Operation

Symmetric schemes are composed of two abstract types of constructions: primitives and modes of
operation. Primitives are the most fundamental constructions: they do not rely on any other. Yet
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primitives on their own are limited and a second layer of cryptographic constructions is necessary to
obtain security notions such as confidentiality and authenticity. For instance a block cipher, which
is a particular type of primitive, can only encrypt or decrypt small messages of fixed length. To
obtain confidentiality for messages of arbitrary length, one needs a mode of operation to specify
how to repeatedly execute the block cipher. For reasons which are explained in the following
sections, the distinction between primitives and modes of operation is essential for this work.

3 Motivation

3.1 Security Concerns about Cryptography in Software

Design and implementation of cryptographic schemes in software is a difficult and error prone task
especially for non-cryptographers. We give below a brief overview of common mistakes which affect
the design and implementation of cryptographic schemes and can compromise the very security
notions they were initially supposed to achieve. This summary is mostly focused on symmetric
cryptography.

• The choice of algorithms may be problematic. Algorithms for which practical attacks have
been published, must no longer be used. For instance practical collisions were found for
MD5 [79] and SHA1 [67], but yet these hash functions are still used in many applications.
Furthermore algorithms which have not been thoroughly analysed by cryptographers should
be considered as insecure. This includes any software developers’ attempt to devise their
own cryptographic schemes. For instance in the XBox security system, Microsoft’s engineers
used successively RC4 and TEA to authenticate the bootloader [66]. But none of these
two authentication schemes were able to prevent practical attacks from altering the boot
sequence.

• Algorithm implementations may be problematic. Poorly implemented algorithms may leak
information about secret data. The cache timing attack against table implementations of
AES [71] and the recent attack based on acoustic leakage against RSA [30] are good example
of practical side-channel attacks. Modes of operation are also subtle to securely implement.
It is well-known that padding schemes used in modes of operation are highly sensitive. For
instance bad paddings have led to devastating attacks on many IETF standards [73].

• Finally input parameters may be problematic. Here by input parameters we refer to the
key and to the Initialisation Vector (IV). For schemes with keys of variable length, keys
must be sufficiently long. Keys must be unpredictable (hard coded keys for instance only
provide a false sense of security). IVs must be compliant with the requirements of the mode
of operation. For instance predictable IVs in CBC mode have led to practical attacks against
SSL and TLS [63].

The conclusion to be drawn is that cryptographic schemes used in software need to be analysed
to determine the actual level of security they provide. The objective is, for an attacker, to find
security flaws in order to exploit them and, for a concerned user, to check that he does not put
himself at risk using a particular piece of software.

A first step to analyse the security of cryptographic schemes used in software is to identify and
locate their main algorithms. Identity information can be used to flag deprecated algorithms and
location information can be use to start an in-depth analysis of their implementation. The goal of
this work is to propose automated solutions to identify and locate both primitives and modes of
operation in binary programs.

3.2 Native Code Analysis

Obviously, it is easier to verify the security of cryptographic schemes by examining their source
code or high level descriptions. Yet the ability to perform this verification directly on binary
programs remains of great importance for several reasons.
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First, source code and documentation are not always available. This is the case for an attacker
which tries to find security flaws in a closed source program without the consent of its creator.
This is also the case for a security analyst which tries to assess the security of a program on behalf
of a third party, or with only limited information in order to simulate a real attacker.

Second, source code and documentation are not always to be trusted. One does not execute
documentation nor source code. Only the security of binary programs really matters. There
can be unintended deviations from source code and documentation. For instance compilers may
introduce security breaches [9]. In this regard, we found during this work that in one of the AES
implementation of the Crypto++ library, compiler optimizations remove the protection designed
to avoid cache timing attacks [5]. Besides, one may suspect deliberate deviations. In fact, without
the compiler toolchain, it may be difficult to determine with accuracy if a binary program truly
derives from a given source code. In the context of software evaluation, compiler toolchains are
not always provided by software development companies nor is the totality of source code.

3.3 Additional Reasons to Identify Cryptographic Algorithms

As explained previously, the main reason to reverse engineer cryptographic schemes is to test their
security. But the ability to rapidly identify cryptographic algorithms has other advantages. In fuzz
testing for instance, if the targeted application performs integrity checks on its input, malformed
inputs will systematically be rejected. With the ability to automatically identify checksums and
hash functions, one can devise a fuzzing system able to bypass integrity checks [75]. As another
example, one may be interested in identifying cryptographic schemes not for the schemes themselves
but for the data they manipulate. For instance, dumping decrypted data may be useful to remove
Digital Right Management (DRM) protections [74] or to analyse communication of malware [15].
Finally, as implicitly pointed out by this work, detecting symmetric schemes is relatively easy
compared to other types of algorithms. It might be a good idea to start the reverse engineering of
a binary program by looking for cryptographic algorithms, especially if it can be done at a minimal
cost. Knowledge retrieved from this first step may be providential to understand how a program
processes its input / output.

4 Solution Overview

To identify cryptographic schemes we use a bottom-up approach. We devised two identification
methods: one for primitives and one for modes of operation. The primitive identification method
is executed first and its results are passed to the mode of operation identification method. Both
methods rely on the same data structure to represent assembly code. This data structure, called
a Data Flow Graph (DFG) has several advantages. It can be used to rewrite code, that is to say,
modify code expressions without breaking their original semantics. It can also be used to search
code for known expressions. And finally, it can be used to a certain extent by human analysts to
visualize piece of code. DFGs are constructed from sequences of instructions. In practice, to obtain
sequences of instructions, programs are executed in a monitored environment and the executed
instructions are recorded in execution traces. A flowchart which summarizes both identification
methods is given in Figure 1.

4.1 Primitive Identification

We use signatures to identify primitives. A signature is a DFG which represents one or several
distinctive expressions. Signatures are compared to the DFG representing the program to analyse.
To minimize the number of signatures, the DFG representing the program to analyse is first
normalized. The goal of the normalization process is to remove some of the small variations which
may exist between different machine-code implementations of the same algorithm.

The signature approach is particularly effective to identify primitives for two reasons. First, the
number of primitives which are frequently used in software is relatively small. Among the possible
reasons to explain this observation is the existence of well established standards such as AES and
SHA. Second, there are not many variations among implementations of these primitives. The
existence of reference implementations is a possible explanation. Moreover, these implementations
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have carefully been studied in term of both performance and security, leaving not much room
for creative software engineering. As a consequence, the number of signatures should remain
relatively small. Note that the signature approach is extremely accurate and provides a level of
details which outperforms any other identification methods. By creating large signatures, one can
even automatically locate the input and output parameters of primitives.

In a nutshell, our primitive identification method is a three step process. First, starting from an
execution trace segment, we create its DFG representation. Second, we normalize this DFG using
rewrite rules. And third, we search the normalized DFG for signature instances using a subgraph
isomorphism algorithm. These three steps are represented on the top left of Figure 1.

Claim: It is possible to detect a wide range of primitive instances using only a few signatures.

4.2 Mode of Operation Identification

We do not use signatures to identify modes of operation. Instead, we produce a synthetic rep-
resentation of the main data transfers occurring between primitive executions. This synthetic
representation, called a slice, is extracted from the DFG representing the program to analyse.
To extract a slice, we need to know the location of each primitive execution. This knowledge is
obtained from the primitive identification method which must be executed prior to the mode of
operation identification method. Slices are manually interpreted by users.

Manual interpretation of slices is possible on two conditions. First, modes of operation must be
relatively simple. Otherwise it will be difficult for a human analyst to recognize their complex data
flow patterns. Second, slices must only contain what is strictly necessary for mode of operation
identification. Otherwise it will be difficult for a human analyst to search slices for distinctive data
flow patterns.

Manual interpretation has two advantages over automated pattern matching techniques. First,
manual interpretation is more flexible than automated pattern matching techniques. Second,
returning a synthetic representation seems a good solution to bridge the gap between automated
processing and manual analysis. Automated pattern matching techniques often produce fully
processed results which may be hard to seize by a human analyst should he have to pursue the
analysis manually.

We chose automated signature detection to identify primitives because it requires to find few
but complex data flow patterns. On the contrary, we chose automated synthesis and manual
interpretation to identify modes of operation because it requires to find numerous1 but simple
data flow patterns.

To conclude, our mode of operation identification method is only partly automated since slices
must be interpreted manually. The method is divided into three steps. First, we delete parts of
DFGs which correspond to primitives executions. DFGs are obtained from the primitive identifi-
cation method. In case these DFGs do not cover sufficiently large trace segments, it is possible to
extend their coverage thanks to DFG composition. Second DFGs go through a light normaliza-
tion process the objective of which is to prepare DFGs for slice extraction. And finally slices are
extracted. The mode of operation identification method is depicted on the bottom right of Figure
1.

Claim: It is possible to manually identify most modes of operation based on a synthetic represen-
tation of the data transfers occurring between primitive executions.

5 Layout of the Thesis

Related works are presented in Chapter 1. This chapter contains detailed descriptions of existing
solutions to identify cryptographic algorithms as well as experimental results which can be used
for comparative purpose. DFGs are presented in Chapter 2. Chapter 3 is dedicated to the nor-
malization mechanisms, used for the most part by the primitive identification method. Signature
detection is discussed in Chapter 4. This chapter contains experimental results for the primitive

1Compared to primitives, implementations of modes of operation are more diverse and there is a greater number
of commonly used modes of operation.
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identification method. The mode of operation identification method is described in Chapter 5.
This chapter also contains experimental results for the mode of operation identification method.
Finally in Chapter 6 we conclude this work with two practical examples. In Appendix A, we give
a short description of the main cryptographic algorithms mentioned in this document.
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Chapter 1

Related Work

Identification of cryptographic algorithms in binary programs has already been studied. Practical
solutions exist in the industry (Section 1.1) and more elaborate solutions have been proposed in
the academic world (Section 1.4). We also mention in this chapter two closely related fields of
research which are: automatic cryptographic parameters retrieval (Section 1.2) and binary code
comparison (Section 1.3).

Contents
1.1 Basic Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.1.1 Statically Linked Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.1.2 Specific Constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.2 Cryptographic Parameters Retrieval . . . . . . . . . . . . . . . . . . . 18

1.2.1 Plaintext Extraction from Running Programs . . . . . . . . . . . . . . . 18

1.2.2 Key Extraction from Memory Dumps . . . . . . . . . . . . . . . . . . . 18

1.3 Binary Code Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.3.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.3.2 Relevance to Cryptographic Algorithm Identification . . . . . . . . . . . 20

1.4 Primitive Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.4.1 Input/Output Relation . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.4.2 Avalanche Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.1 Basic Techniques

In this section we present two solutions that are commonly used in practice to reverse engineer
binary programs which contain cryptographic code. The first one deals with the identification of
statically linked libraries. The second one is related with the identification of specific constants.

1.1.1 Statically Linked Libraries

Many programs that use cryptography do not contain their own implementation of cryptographic
algorithms. Instead, they use external cryptographic libraries. When it is the case, the task
of the analyst may be considerably facilitated. If the cryptographic library is documented and
trustworthy, the analyst will be able to answer most questions by simply looking at the functions
of the library which are executed by the program. Unfortunately, for portability reasons, these
libraries are often statically linked. When it happens, there is no way at first glance to distinguish
the code of the program from the code of the library. A basic idea is then to compare the program
with every known cryptographic library to see if they share common parts. This simple strategy
can benefit from the following improvements.

• The space required to store all versions of all libraries produced for all platforms is relatively
important. To reduce storage consumption, we can only store for each function a hash value
instead of its full content.
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• Some addresses are modified at link time and at load time. We must identify these addresses
and skip them while comparing the content of two functions.

• Several functions may be perfectly similar except that they themselves call different sub-
functions. To distinguish them, we must characterize similar functions according to the
identity of the sub-function(s) they call. As a consequence, several passes are now necessary
to completely identify some functions.

This solution was implemented at a large scale in IDA [2] (that is to say not only for cryp-
tographic libraries). IDA comes with a database of signatures covering the most commonly used
libraries, compilers and platforms. When a function is identified, it is automatically renamed. It is
possible to create new signatures for libraries or compilation environments which are not covered
by the initial database. A similar feature also exists in Radare2 [61] under the name of zignature
but very little documentation is available on the subject.

To conclude, identification of statically linked libraries is not specific to cryptographic libraries.
It is probably the first technique to try while starting to reverse engineer a piece of software. In
its most basic form, it is precise and extremely efficient. But to get positive results, one needs
to possess a signature covering the exact library version compiled with the exact compiler and
compiler options for the exact architecture. More flexible techniques to compare two pieces of
binary code are presented in Section 1.3.

1.1.2 Specific Constants

Symmetric cryptographic algorithms often contain specific constants. These constants range from
a single value of a few bits to large lookup tables of several kilobytes. Because it is unlikely to find
them in different algorithms, they can be used to identify cryptographic code. This is a widely
used technique and it has been implemented in several publicly available tools, such as Findcrypt2
(IDA plugin) [34], KANAL (PEiD plugin), or H&C Detector, to name but a few. Apart from
Findcrypt2 which has the advantage to be integrated within an interactive disassembler, we do not
recommend to use any of them. As illustrated in [33], most of them are incomplete, target specific
architecture or operating system and suffer from poorly usable interfaces. It should be noted that
it is not necessary to disassemble and even to parse the executable file format in order to search
for cryptographic constants.

As far as we know all tools based on constant identification solely rely on static analysis.
However we should bear in mind that constant identification can also be performed using dynamic
analysis. This is particularly useful in the case of packed programs, or for constants which are
dynamically computed. We developed a proof of concept based on PIN [52] which instruments a
binary program to monitor its memory access and to detect dynamically computed cryptographic
constants. We run it on a simple program (that just encrypts few blocks of data using a table
implementation of AES) packed with ASProtect [7], and on 7-Zip [34] (a well known compression
tool that has cryptographic capabilities as part of the specifications of the different archive formats).
In 7-Zip, the AES lookup tables are computed dynamically. As expected for both programs a static
search failed to find the lookup tables, but our tool was able to detect them.

Constant identification is a very effective first step, but it is insufficient to precisely and com-
pletely uncover cryptographic primitives and modes of operation. We exhibit some of its limitations
with the following example, that uses an AES table implementation as a target. Given a binary
program, let us assume an AES substitution box has been detected by one of the previously listed
tools. The precise location of the AES encryption/decryption routines still needs to be investi-
gated. In fact multiple parts of the program can access the substitution box, such as: the AES key
schedule (either for encryption or decryption) or a 4 kilobytes lookup tables generation routine.
Moreover the parameters have not been identified. And last but not least, the detected algorithm
could be another cryptographic primitive that uses the AES substitution box such as the Peli-
can Message Authentication Code (MAC) function [22], the Fugue hash function [36] or the LEX
stream cipher [13]. Even though this last point is very unlikely in practice, this example is far from
being only theoretical. For instance, a constant search on EasyLock [27] (a commercial solution
to encrypt files on USB flash drives) reveals an AES substitution box. This substitution box is
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accessed by two different functions but none of them is the encryption or the decryption routine,
albeit AES is actually used to encrypt and decrypt files.

1.2 Cryptographic Parameters Retrieval

1.2.1 Plaintext Extraction from Running Programs

Let us consider a program which decrypts its input or encrypts its output. The line of work
presented here provides solutions to automatically retrieve plaintext data from the memory of the
program either before its encryption or after its decryption. This problem deserves to be mentioned
here, since it requires to detect when and where the encryption / decryption algorithm takes place
and to identify the output parameter (for a decryption) or one of the input parameters (for an
encryption). The following works are all focused on the decryption problem.

Lutz [26] was the first to address this problem in the context of malware analysis. A Dynamic
Binary Instrumentation (DBI) framework is used to perform dynamic data tainting (the taint
source is the encrypted data) and to collect an execution trace containing the list of executed
basic blocks and the list of tainted memory values. A dynamic Control Flow Graph (CFG) is first
constructed out of the execution trace and this CFG is then exploited to recover loops (here a
loop is defined as a back edge in the CFG). The decryption algorithm is supposed to be a loop
which uses integer arithmetic and XOR operations and which decreases the entropy of tainted
memory. Reformat [76] is a tool designed to automate protocol reverse engineering when messages
are encrypted. It also uses data tainting to track encrypted data in memory, but solely relies on
the ratio of arithmetic and bitwise instructions to detect the turning point between encrypted and
decrypted data. Wang et al. [74] proposed an automatic mechanism to remove DRM protection
of several popular streaming services. Their approach is driven by real-time constraints. Program
executions are split according to the loop abstraction (here a loop is defined as a repetition of
a sequence of basic blocks). For each loop, input and output memory buffers are reconstructed
using relatively complex rules. Finally the decryption algorithm is characterized by a randomness
decrease between and input and an output buffer. According to this work randomness (evaluated
using the Chi-Square randomness test) should be preferred over entropy to distinguish encrypted
data from compressed data.

To conclude, these three approaches seem relatively similar: they all rely on heavy dynamic
instrumentation, use approximatively the same set of heuristics (loops, arithmetic and bitwise
instructions and entropy / randomness) and do not require any knowledge on the decryption
algorithm. But, apart from very basic location information, they provide almost no information
about the cryptographic algorithm(s) themselves.

1.2.2 Key Extraction from Memory Dumps

A second line of work aims at extracting cryptographic keys from memory dumps. It addresses
the following situation. One needs to obtain the key used by a running program to perform
cryptographic operations but the only possible way to interact with the program is to dump
its memory once. This situation is particularly important in the field of digital forensics. An
investigator may have a physical access to a running system but also may lack credential to perform
privileged actions on it. A possibility then, is to read either the physical memory or the storage
device on which swap or hibernate files may be located. The techniques presented here, unlike
those mentioned in the previous paragraph, depends on algorithms. They are also, for the most
part, fast and accurate.

Symmetric Keys. Many block ciphers use a key schedule algorithm to expand a key into several
round keys. For performance reasons, round keys are usually computed once for several executions
of the block cipher. Due to their size and to their number, round keys are usually stored in a
memory buffer during the different executions of the block cipher. As a consequence, a memory
dump collected during an encryption or a decryption will contain the round keys. If it is possible
to reverse part of the key schedule and obtain the key from a subset of round keys, then Algorithm
1 can be used to extract the key from any memory dump containing the round keys. The efficiency
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of the method greatly depends on the difficulty to the reverse the key schedule: it can be extremely
simple such as in AES (the key is equal to first round key(s)) or computationally intensive such as
in Twofish.

Algorithm 1 Key Extraction

Notations: ks is the key schedule algorithm, reverse ks is the reverse key schedule, sr is the
size of the round key buffer in bytes, m is a memory dump formalized as a sequence of bytes
and m[i : j] denotes the subsequence of m starting at offset i and ending at offset j − 1.

for all offset i in [0, lenght(m)− sr] do
key ← reverse ks(m[i : i+ sr]) . we suppose that m[i : i+ sr] is the round key buffer
if ks(key) is equal to m[i : i+ sr] then

return key
end if

end for

This technique was first used in [35] for AES, DES and also to extract tweak values used in
LRW and XTS. It was later extended to Serpent and Twofish [53]. Even though it may be of
limited practical interest, we noticed that this technique can also be applied to SHA1, SHA-256
and SHA-512 in order to recover the last message block that was processed.

Asymmetric Keys. The format of RSA public and private keys is standardized as part of
PKCS #1 [3]. RSA keys are defined as ASN.1 objects and they are encoded according to the DER
encoding for storage and exchange. A possibility to efficiently detect RSA keys in a memory dump
is to search for memory segments which satisfy the DER syntax and define the right type of ASN.1
object [35].

1.3 Binary Code Comparison

A second closely related area is binary code comparison. It is a more general problem but some of
the techniques used might be of some interest for cryptographic algorithm identification. Binary
code comparison is a vast field of research. It is itself related with malware analysis (the objective
of which is to determine if a binary program is benign or malicious and in this latter case to
determine if it belongs to a previously known family of malware) and source code comparison.
We do not pretend to give here a comprehensive summary of all research works on binary code
comparison. Instead we only present three different solutions to give a brief but limited overview
of the kind of techniques which may be used in this field. We conclude this section by explaining
why, in our opinion, dedicated solutions to identify cryptographic algorithms tends to produce
better results than binary code comparison.

1.3.1 Examples

Sæbjørnsen et al. [65] proposed a solution to detect code clones in binary programs. At a high level
their solution follows a classical approach. Programs are first divided into several pieces. A piece
is either a function as in [43, 28] or simply a sliding window over the disassembled instructions as it
is the case here. Each piece of code is characterized by a feature vector. To determine whether two
code pieces are alike, their feature vector are compared. Binary code comparison methods usually
differ in the composition of feature vectors and in the way feature vectors are compared. In the
solution proposed by Sæbjørnsen et al., a piece of code is characterized by bags of mnemonics,
types of operands 1 and various combination of mnemonics and operand types. Bags are converted
to feature vectors by counting the number of occurrences of each of their elements. And feature
vectors are compared using the `1 distance.

1The type of an operand is either memory, register or immediate value.

19



In Rendezvous [43], features vectors are made of mnemonics n-grams, CFG subgraphs, and
constants. A text search engine is used to compare feature vectors. To this end feature vectors are
first converted to string expressions.

Instead of relying exclusively on static characteristics to compare pieces of code one can also take
their dynamic behaviour into account. For instance in BLEX [28], two pieces of code are deemed
similar if they exhibit similar behaviour while executed under the same controlled randomized
environment. Feature vectors in BLEX are made of runtime values read to or written from memory,
calls to dynamically linked libraries and system calls made during the execution. Features are set
of values. To compare two feature vectors, the authors of BLEX compute a weighted arithmetic
mean of the Jaccard index2 of each of their features.

1.3.2 Relevance to Cryptographic Algorithm Identification

To identify the algorithm implemented in a piece of code, one can compare this piece of code with
reference implementations of known algorithms. It is possible in order to increase the recall3 to
compare not only with one reference implementation per algorithm but with several.

Success of binary code comparison methods depends on the capacity of selected features to
abstract characteristics of algorithms from implementation noise. This hazardous extraction has
to be done twice: once per piece of binary code. It seems more reliable, in order to identify
algorithms, to start with an abstract description of the algorithm rather than with a particular
implementation. In the context of binary clone detection, the analyst is not necessarily aware
of which algorithms are duplicated. Whereas in the context of algorithm identification, we can
suppose that the analyst has access to an abstract description of the algorithms he wants to identify.
In this context, it is suboptimal to reject an abstract description of the algorithm in favour of a
reference implementation which will have to undergo a phase of abstraction anyway. This is the
first argument against the usage of binary code comparison for algorithm identification.

In the case of cryptographic algorithms it seems interesting to devise specific identification
method. In fact, symmetric cryptographic algorithms share common characteristics. For instance,
they have very simple CFG, they do not call any sub-function (only true for primitives) or make any
system call, they contain large amount of bitwise and arithmetic instructions and their operands
are memory buffers. By taking these characteristics into account a dedicated identification method
will have a better efficiency and will produce more accurate results. For instance it is ineffective
to classify cryptographic primitives according to their CFG, the sub-functions they call or their
count of XOR instructions. Yet these characteristics are extremely interesting to devise efficient
front end filters to rapidly detect possible cryptographic algorithms in large programs.

To conclude, it is possible to use binary code comparison to identify algorithms, but it is more
effective to devise an identification method which takes as input abstract description of algorithms.
And creating dedicated solutions to identify cryptographic algorithms is interesting since they have
pronounced characteristics.

1.4 Primitive Identification

In this section we present two existing techniques to identify cryptographic primitives. The first
one is based on the unique relationship that exists between the input and output values of a
cryptographic primitive. To some extent this technique may be considered as a specialized version
of the dynamic approach used in BLEX [28]. The second technique relies on the avalanche effect
of cryptographic functions.

2The Jaccard index measures the similarity of two finite sets. It is defined as the size of the intersection of the
two sets divided by the size of their union.

3The recall is equal to the fraction of relevant instances returned by the identification method, over all relevant
instances. It is used along with the precision to measure the relevance of an identification method. The precision
is equal to the fraction of relevant instances among all instances returned by the identification method.
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1.4.1 Input/Output Relation

Input/Output Relation (IOR) is a dynamic technique. It relies on the following principle: given
a cryptographic primitive f : I → O, the relation between an input value and the corresponding
output value identifies f with an overwhelming probability. In other words, if during an execution,
a sequence of instructions reads a value i ∈ I and writes a value o ∈ O such that f(i) = o then we
can conclude that this sequence implements f .

In its most basic form, this technique can be implemented using a debugger. Breakpoints are
set manually before and after a given function. After hitting the breakpoints the parameters of
the function are dumped and tested against known cryptographic primitive(s). However, due to
the large number of functions to test and to the difficulty to manually find the right parameters,
it makes sense to automate this technique to perform a more systematic search.

IOR on the Full Execution Trace.

Gröbert et al. [33] were the first to use IOR to automatically identify cryptographic primitives.
Their main hypothesis is that the cryptographic parameters, at some point of the program execu-
tion, will be read from memory and written to memory. From an implementation perspective, the
targeted program is executed in a DBI environment. The value and the address of every memory
access are recorded in an execution trace. Because cryptographic parameters are generally larger
than the word size of the architecture, they are accessed using several operations. To reconstruct
possible cryptographic parameters, memory operands are regrouped according to the following
rules:

• parameters are stored in continuous memory locations ;
• parameters are accessed by operations of equal size ;
• parameters are accessed either in ascending or in descending order ;
• operations used to access the same parameter are close to each other.

The first rule is always satisfied. The three others are used, when several accesses are made at
the same address, to decide how to organize them: in one, or in several parameters. A detailed
pseudo code of their parameter reconstruction algorithm is given in [32]. Although the authors
published their implementation, we were unable to get it to work properly. None of our AES
synthetic samples (refer to Section 4.3.1) was detected. It may be due to a misunderstanding from
our side or to their implementation that might not be sufficiently mature.

IOR on Function Traces.

Zhao et al. [81, 80] also used IOR to automatically identify cryptographic primitives. But instead
of running IOR on the whole execution trace, IOR is only executed on preselected trace segments.
In their work, a trace segment corresponds to the execution of a function. Trace segments are
selected based on three simple heuristics: they must contain specific constants (refer to Section
1.1.2), they must contain at least one XOR instruction and they must not call any sub-functions.
The latter criterion comes from the fact that cryptographic primitives are usually implemented as
a single function that does not rely on any sub-functions.

For each memory address that is accessed within a trace segment, the first value which is
read (if there is no previous write) and the last value which is written are recorded. This way,
two partial memory snapshots are reconstructed. The first one corresponds to the memory state
before the execution of the trace segment. It contains only the memory locations that are read
in the trace segment. The second one corresponds to the memory state after the execution of the
trace segment. It contains only the memory locations that are written in the trace segment. A
cryptographic parameter can be any continuous memory location of the right size that is either in
the first snapshot (for an input parameter) or in the second snapshot (for an output parameter).

Experimental Results. We have implemented our own version of the identification scheme
proposed by Zhao et al. This implementation is limited to the IOR part. We did not implement
their segment selection heuristics. Therefore, in the following experiments, trace segments were
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selected manually. The results we obtained on the set of synthetic samples are given in Table 1.1.
The set of synthetic samples is presented in Section 4.3.1. Despite a few corner cases which are
detailed as follows, primitive identification was successful for most synthetic samples.

The synthetic sample based on the AES implementation of Crypto++ was not correctly iden-
tified for a key of 192-bit and 256-bit. It comes from the fact that the endianness of the four
first round keys is different from the endianness of the others. The reference implementation that
was used to verify the IOR is not compatible with this peculiar round keys format. The syn-
thetic sample based on the AES implementation of OpenSSL was not correctly identified. The
function that implements the AES primitive is written in assembly language and does not use
standardized calling conventions. Parameters are read from XMM registers. However, if the trace
segment includes the wrapper function that reads the parameter from the memory and writes them
in the XMM registers, the identification is successful. For every synthetic samples based on our
own implementation of MD5, the identification failed. In our own implementation of MD5 the
compression function is not implemented as a separate function but directly in the code of the
hash function. Because we verified IOR using only a reference implementation of the compression
function, we did not find any match. None of the synthetic samples based on RC4 was correctly
identified. The message that is being encrypted by the synthetic samples is not sufficiently large
to access the whole permutation. Thus, the initial permutation state, which is an input parameter
for RC4, cannot be reconstructed. The SHA1 implementation given in RFC 3174 compiled with
MSVC -O2 was only partially identified. The compression function is inlined and we had to extract
trace segments corresponding to the caller functions. One of these caller functions also pads the
last message block. Consequently, only the unpadded message block was considered to be an input
parameter and the last execution of the compression function was not identified. Finally, synthetic
samples based on the XTEA implementation of Botan and TomCrypt were not correctly identified.
It is due to specific round keys format. To conclude, we observed the following limitations:

• specific calling conventions in which parameters are passed to the callee through registers ;
• specific parameters format ;
• small parameters (for instance the two 8-bit index pointers of RC4). It increases the number

of candidates and it makes a systematic search more difficult. It should be noted than in the
results presented in [81] none of the RC4 test scenarios was correctly detected ;

• the totality of parameters has to be accessed in the recorded execution ;
• specific Application Programming Interface (API) such as in our own implementation of

MD5.

However, the method described by Zhao et al. is simple and gives satisfying results in most of
the cases. Because the analysis is limited to trace segments, the sets of input and output values
can be determined precisely. Moreover, extracting candidates at the function granularity increases
the chance of finding the parameters written in memory in a sensible format. In our opinion, this
method has the best performance over complexity ratio.

IOR on Loop Traces.

More recently, Calvet et al. [16] proposed a complete and detailed tool named Aligot based on IOR.
According to its authors the main contribution of Aligot is to deal with obfuscated programs. In
this context, the segment selection method proposed by Zhao et al. is no longer applicable. In fact,
constants can be easily hidden or even modified, junk code can be inserted to disturb heuristics
based on mnemonics and function boundaries can be hard to detect (API obfuscation).

Instead, Aligot relies on loop abstraction to extract trace segments. Symmetric cryptographic
primitives usually execute a round function multiple times. Therefore, a repetition of a portion
of the code indicates a possible implementation of a cryptographic primitive. Notice that loops
of primitives should not be mistaken with loops of modes of operation. To resist obfuscation,
Aligot uses its own loop definition which is a slight modification of the definition proposed by
Kobayashi [44]. According to Kobayashi, a loop is defined as a repetition of a sequence of dynamic
instructions. The authors of Aligot claim that this dynamic loop definition is well suited to deal
with obfuscated code. In fact, unlike the usual loop definition used in static analysis (a loop is
defined as an edge of the CFG that goes from a vertex to one of its dominant), their definition
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Table 1.1: Results obtained on the set of synthetic samples with our own implementation of the
identification method described by Zhao et al.

Primitive Source Compiler Opt. Result
Gladman V0 ∗ ∗ ok
Gladman V1 ∗ ∗ ok
Gladman V2 ∗ ∗ ok

AES-128 Gladman V3 ∗ ∗ ok
AES-192 Botan - - ok
AES-256 Crypto++ - - AES-128: ok, AES-192,256: nok

Nettle - - ok
OpenSSL - - nok
TomCrypt - - ok

MD5 Compress

Own Source ∗ ∗ nok
Botan - - ok
Crypto++ - - ok
Nettle - - ok
OpenSSL - - ok
TomCrypt - - ok

RC4 ∗ ∗ ∗ nok

SHA1 Compress

RFC 3174

GCC4.9.2 ∗ ok
Clang3.5.0 ∗ ok

MSVC18.0
-O0 ok
-O2 ∼ 1 execution out of 2 was detected

Botan - - ok
Crypto++ - - ok
Nettle - - ok
OpenSSL - - ok
TomCrypt - - ok

XTEA

Wikipedia ∗ ∗ ok
Botan - - nok
Crypto++ - - ok
TomCrypt - - nok

does not consider control flow flattening4 as a loop. Moreover, the authors claim that their loop
definition is also able to detect unrolled loops.

Unrolled Loops. Loop unrolling is a common technique used by software developers and com-
pilers to reduce the number of instructions that are required to control loops, to minimize branch
penalties and to increase instruction level parallelism. Unrolled loops are common in cryptographic
implementations as performance is a major concern. For instance, in most implementations of MD5
and SHA1, the Feistel network is fully unrolled. But in our opinion and according to our exper-
iments, the loop definition used by Aligot is unable to cope with unrolled loops. This statement
is illustrated by the example of Figure 1.1. This figure is an assembly code sample taken from
and unrolled implementation of MD5. It contains the 17th and 18th step. The same boolean
function is used by these two steps but nevertheless they were compiled to different sequences of
instructions. Loop unrolling is not the final stage of the compilation process. Loops may even be
unrolled directly in the source code as it was the case for the example of Figure 1.1. Thus, further
optimizations passes will continue to modify the code after it. For instance, in Figure 1.1 a com-
mon subexpression has been eliminated between the 16th and 18th step. Instruction scheduling
and instruction selection are different in the 17th and 18th step. And finally, several early memory

4Control flow flattening is an obfuscation technique that modifies the CFG to reduce its readability [45]. All
transitions between basic blocks are regrouped into a single switch statement called a dispatcher. An additional
variable is used by the dispatcher to determine which basic block should be executed next. The CFG is flattened in
the sense that all basic blocks are at the same level. Their initial hierarchy is now hidden in the dispatcher.
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loads mix the code of the different steps. To conclude, if loops are unrolled in the source code or
during compilation, there is no guarantee that the different repetitions of the loop body will result
in the exact same sequence of instructions. In practice it is almost never the case for the first and
the last iteration due to side effects.

Parameter Reconstruction. But the most serious problem with the method described by
Calvet et al. comes from parameter reconstruction. For trace segments based on functions (Zhao
et al.), parameter reconstruction is relatively easy. Parameters are stored in memory and their
format is intelligible (at least by the software developer). But for trace segments based on loops,
none of that is true any more. Parts of parameters may have been loaded into registers prior
to the loop. They may also have been copied into separate local variables the organization of
which on the stack does not abide by any particular rule. To address this problem, Calvet et al.
proposed to include in the execution trace, the values that are read from registers and written to
registers. Unfortunately the set of rules that is given to reconstruct parameters from the list of
memory and register values, is incorrect and incomplete. It includes two rules based on spatial
proximity in both code and memory. Spatial proximity in code, means that an instruction in a
loop body manipulates always the same parameter during all its executions. Spatial proximity in
memory, means that non-adjacent memory locations cannot belong to the same parameter. As
previously mentioned, a parameter may have been copied into several local variables before the
loop execution. If these local variables are declared as separate variables and not as an array, they
might be mixed with others local variables on the stack. In that case, the second rule will miss this
parameter. This scenario is illustrated by the following code snippet taken from the AES source
code of Nettle [48]. The plaintext buffer src is read in little-endian mode (LE READ UINT32) and
then it is XORed with the first set of round keys. The result which is one of the input parameters
of the loop, is stored in four separate 32-bit variables.

uint32_t w0, w1, w2, w3;

/* [...] */

w0 = LE_READ_UINT32(src) ^ keys[0];

w1 = LE_READ_UINT32(src + 4) ^ keys[1];

w2 = LE_READ_UINT32(src + 8) ^ keys[2];

w3 = LE_READ_UINT32(src + 12) ^ keys[3];

for (i = 1; i < rounds; i++){

/* [...] */

}

Moreover, nothing was proposed to regroup register values together and with memory values.
Consequently, if we assume that a parameter may be scattered throughout memory and registers,
we must resort to a brute force approach to find it. Given n memory or register values, the
number of parameters resulting from every combination and permutation of k values, is

(
n
k

)
k!

This is not tractable in practice. Note that this problem only affects input parameters. In fact
output parameters can be reconstructed a posteriori. Once input parameters are recovered, the
corresponding output parameters can be computed using a reference implementation. Finally, one
simply needs to determine if every part of the output parameters is within the list of values that
are written to memory and registers.

Experimental Results. The authors of Aligot published their implementation. However, it
suffers from very poor performances. For none of our AES synthetic samples (refer to Section
4.3.1) we obtained a result during the first hour of computation. We did not continue the execution
after this time limit. We have implemented our own version of Aligot. Parameter reconstruction
is done as follows. First memory values of equal size which form a continuous memory segment
are regrouped. These memory segments are then combined with the register values using a brute
force approach. To limit the combinatorial complexity, register values are not inserted inside
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; Step 16

mov esi, eax

not esi

mov [esp], esi

mov esi, [ebp + 0x3c]

lea edi, [ebx + esi*1 + 0x49b40821]

mov ebx, [esp]

mov esi, eax

and esi, edx

and ebx, ecx

or ebx, esi ; φ16(C,D,A) = (C ∧D) ∨ (¬C ∧A)
mov esi, [ebp + 0x4]

add ebx, edi ; B + φ16(C,D,A) + Msg [15] + 0x49b40821

ror ebx, 0xa

add ebx, eax ; B ← C+ 	 (B + φ16(C,D,A) + [...], 22)

; Step 17

lea edi, [esi + ecx*1 - 0x9e1da9e]

mov esi, [esp + 0x1c]

mov ecx, ebx

and ecx, edx

and esi, edx

or ecx, esi ; φ17(B,C,D) = (B ∧D) ∨ (C ∧ ¬D)
mov esi, [esp] ; ¬C
add ecx, edi ; A+ φ17(B,C,D) + Msg [1] + 0xf61e2562

mov edi, [ebp + 0x18]

ror ecx, 0x1b

add ecx, ebx ; A← B+ 	 (A+ φ17(B,C,D) + [...], 5)

; Step 18

and esi, ebx

lea edi, [edi + edx*1 - 0x3fbf4cc0]

mov edx, ecx

and edx, eax

or edx, esi ; φ18(A,B,C) = (A ∧ C) ∨ (B ∧ ¬C)
lea esi, [edi, edx*1]

mov edi, [ebp + 0x2c]

ror esi, 0x17

add esi, ecx ; D ← A+ 	 (A+ φ18(A,B,C) + [...], 9)

Common subexpression
elimination

Instruction
scheduling

Early loads

Instruction
selection

Figure 1.1: Assembly code sample taken from an unrolled implementation of MD5. This sample
contains the 16th, 17th and 18th step. Even though the 17th and 18th step realize the same com-
putation, the compiler returned different sequences of instructions for each of them. Consequently,
they are not detected as a loop body by Aligot. Some of the mechanisms of the compiler that were
responsible for the differences between the two sequences are highlighted in the figure.
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memory segments. We only consider the cases where they are appended at the beginning or at
the end of memory segments. We do not combine memory segments together neither. Finally, a
parameter can be any frame of the right size inside these groups of aggregated values. Although
our implementation is not an exact replica of Aligot (the rules are a little bit different), it should
have essentially the same limitations.

The results we obtained on the set of synthetic samples are given in Table 1.2. Some of the
synthetic samples were removed because they contain MMX and SSE instructions which are not
supported by our implementation. The RC4 and MD5 synthetic samples were not explicitly tested
and are only mentioned for completeness. As previously stated, the message that is being encrypted
by the RC4 synthetic samples is not sufficiently large to access the entire permutation. Thus, there
is no way the permutation can be reconstructed. In every MD5 synthetic samples, the loop of the
Feistel network is unrolled directly in the source code. Thus, it is very unlikely that the loop can be
detected5. Note that for MD5 and SHA1, we could have used the loop over the message blocks to
identify either the compression function (one execution of the loop body) or directly the full hash
function. But, since this loop is more related with the mode of operation than with the primitive
itself (which we consider to be the compression function in our experiments) we did not do it. For
short messages the loop over the message blocks will contain a single execution of the loop body.
Depending on how the message chunks are passed to the hash function API, the loop over the
messages blocks may not even be detected by Aligot.

Because trace segments are extracted based on the loop abstraction, we must limit reference
implementations which are used to verify IOR to the part of primitives which are executed inside
a loop. The set of reference implementations, also called verifiers, that we used is as follows:

AES There is no MixColumns in the last round of AES. Because of this difference, the last round
is not executed as part of the main loop. To deal with the different keys sizes, we used a
9, 11 and 13 round verifier. A classical AES optimization consists in manually unrolling the
loop by a factor of two (an iteration computes two rounds). Therefore, we also used a 8, 10
and 12 round verifier.

SHA1 We used a verifier for the key schedule (noted ks) and a verifier per groups of step functions.
There are four groups of step functions. The verifiers are respectively noted h0, h1, h2 and
h3. For a perfect detection, we must find match for the five verifiers.

XTEA We used a single verifier that covers the 32 cycles and the key schedule.

Table 1.2 only mentions the name of the verifiers that were found. The loop of the primitive is
fully unrolled in the following synthetic samples: Gladman V0, SHA1 Botan, SHA1 Crypto++ and
SHA1 Nettle. We can see that for all these samples no verifier was found. For several synthetic
samples (Gladman V1 for instance) the one hour time limit was reached before any result was
returned. It may be due to a large number of loops that need to be processed. This is the case
for the synthetic samples based on Botan. Because this library performs a lot of processing during
its initialisation, many more loops are detected in its execution trace than for any other synthetic
samples (more than 1800 for AES Botan compared to 35 for AES OpenSSL for instance). But it
is also due to the high combinatorial complexity of parameter reconstruction combined with the
large number of verifiers (six only for AES, but that number must be doubled if we also want
to detect big endian implementations such as in TomCrypt). For the synthetic samples based on
AES and SHA1 less than half of the expected verifiers were actually found. These results are
significantly worse than those obtained with the method of Zhao et al. presented in Table 1.16.
For the synthetic samples based on XTEA, the detection rate is higher. This is not surprising
because the size of the message block is small (64 bits). Fewer operands need to be combined to
reconstruct the input message block.

5Unrolled loops detection is illustrated with other tests such as Gladman V0 and SHA1 synthetic samples.
6However, we should bear in mind while comparing theses two sets of results, that for the Table 1.1 the trace

segments were manually selected, whereas in Table 1.2 we rely on the loop detection to select trace segments.
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Table 1.2: Results obtained on the set of synthetic samples with our own implementation of the
identification method described by Calvet et al. Execution times were measured on a i5-3320M
processor.

Primitive Source Compiler Opt. Result Time

Gladman V0

GCC4.9.2

-O0 ∅ 1 min 39 s
-O1 ∅ > 1 h
-O2 ∅ > 1 h
-O3 ∅ > 1 h

Clang3.5.0 -O0 ∅ 54 min 23 s

MSVC18.0
-O0 ∅ > 1 h
-O2 ∅ > 1 h

Gladman V1

GCC4.9.2

-O0 8 rounds 1 min 36 s
-O1 ∅ > 1 h
-O2 ∅ > 1 h
-O3 ∅ > 1 h

Clang3.5.0 -O0 ∅ 54 min 39 s

MSVC18.0
-O0 ∅ > 1 h
-O2 ∅ > 1 h

AES-128

Gladman V2

GCC4.9.2

-O0 9, 11, 13 rounds 1 min 39 s
AES-192 -O1 9, 11, 13 rounds 1 min 30 s
AES-256 -O2 9, 11, 13 rounds 1 min 29 s

-O3 9, 11, 13 rounds 1 min 29 s
Clang3.5.0 -O0 ∅ 52 min 9 s

MSVC18.0
-O0 ∅ > 1 h
-O2 ∅ > 1 h

Gladman V3

GCC4.9.2

-O0 ∅ 3 min 20 s
-O1 ∅ 2 min 28 s
-O2 ∅ 2 min 17 s
-O3 ∅ 2 min 19 s

Clang3.5.0 -O0 9 rounds 2 min 13 s

MSVC18.0
-O0 9 rounds 5 min 18 s
-O2 ∅ 19 min 35 s

Botan - - ∅ > 1 h
Nettle - - ∅ 1 min 47 s
TomCrypt - - ∅ 7 min 33 s

MD5 ∗ ∗ ∗ ∅ -
RC4 ∗ ∗ ∗ ∅ -

SHA1

RFC 3174

GCC4.9.2

-O0 ks 12 s
-O1 ∅ > 1 h
-O2 h0, h1, h2, h3 1 min 32 s
-O3 h0, h1, h2, h3 5 min 32 s

Clang3.5.0

-O0 ks 2 s
-O1 ks, b0 8 min 1 s
-O2 ks, b0 7 min 58 s
-O3 ks, b0 7 min 53 s

MSVC18.0
-O0 ks 5 min 26 s
-O2 ∅ > 1 h

Botan - - ∅ > 1 h
Crypto++ - - ∅ 55 min 16 s
Nettle - - ∅ 33 min 42 s
TomCrypt - - b0 14 min 1 s

XTEA Wikipedia GCC4.9.2

-O0 ∅ 41.2 s
-O1 32 cycles 45.2 s
-O2 32 cycles 45.6 s
-O3 32 cycles 45.2 s
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Primitive Source Compiler Opt. Result Time

XTEA

Wikipedia
Clang3.5.0

-O0 ∅ 0.4 s
-O1 32 cycles 1.6 s
-O2 32 cycles 1.6 s
-O3 32 cycles 1.6 s

MSVC18.0
-O0 ∅ 6 min 20 s
-O2 32 cycles 6 min 20 s

Botan - - ∅ > 1 h
Crypto++ - - 32 cycles 11.8 s
TomCrypt - - ∅ 29.2 s

Conclusion

To summarize, we have seen three different methods based on Input/Output Relation. The first
method was proposed by Gröbert et al. The execution trace is analysed as a whole. Because
data stored at a given address may change during the execution of the program, memory buffers
must be reconstructed based on spatial proximity in memory and also temporal proximity in the
execution trace. The implementation published by the authors gave no positive result on our set of
synthetic samples. The second method was proposed by Zhao et al. Trace segments are extracted
based on the function abstraction. Parameter reconstruction relies on two memory snapshots:
one before and one after the execution of the trace segment. The evaluation conducted on our
own implementation, gave good results. The third method was proposed by Calvet et al. Trace
segments are extracted based on the loop abstraction. Parameters must be reconstructed from
memory and register values. The evaluation conducted on our own implementation gave poor
results for both loop detection in case of unrolled loops and parameter reconstruction. We do not
deny that for obfuscated programs, the method presented by Calvet et al. may outperform the
others. Still, for regular programs we would rather recommend the method of Zhao et al.

1.4.2 Avalanche Effect

A transformation from n bits to m bits satisfies the strict avalanche criterion if for any randomly
chosen input and any i ∈ {1, ..., n} and j ∈ {1, ...,m} when the ith input bit is flipped there
is a 50% probability that the jth output bit will also be flipped [77]. Intuitively it means that
each output bit depends on all the input bits. From a cryptographic point of view, it is a highly
desirable property. We assume that it is always satisfied by cryptographic algorithms but almost
never satisfied by non-cryptographic algorithms. Thus, to identify cryptographic primitives, one
could search for sets of variables which verify the avalanche property. The main advantage of this
method is that it does not require any a priori knowledge of the primitive. As long as the primitive
satisfies the avalanche property, it can be detected. But as such, this method is not capable of
revealing the identity of the primitive. It can only return the location of the primitive and of its
parameters.

The traditional way to implement this method is to use memory tainting. Data which is sup-
posed to be processed by a cryptographic primitive is tainted. A different taint value is associated
to each byte (or bit, depending on the granularity). If at some point during the program execution
there is a set of variables which are tainted with all the different taint values, these variables might
be the output of a cryptographic primitive. Note that this condition is necessary but not sufficient
to satisfy the strict avalanche criterion. Such an implementation was used in TaintScope [75] to
detect hash functions and checksums, and later in CipherXRay [47] to identify cryptographic prim-
itives and modes of operation. In the remainder of this section, we detail the solution proposed by
CipherXRay and give some experimental results.

Two additional assumptions are made in CipherXRay. First, cryptographic parameters are
contained at some point of the program execution in continuous memory buffers. Thus, one does
not need to check the avalanche property for any set of intermediate variables but only for memory
buffers. Second, cryptographic primitives are implemented in their own dedicated functions. Thus
one can limit the search to the input and output of functions. These assumptions are very similar
to those made by Zhao et al. in Section 1.4.1. Consequently, for known primitives, CipherXRay is
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going to have at least the same limitations as the method of Zhao et al. (results presented in Table
1.1). CipherXRay only returns the largest memory buffers which satisfy the avalanche property.
CipherXRay does not consider implicit dependencies. Even though we did not test it, the authors
of CipherXRay claim that their solution is also able to detect modes of operation and asymmetric
cryptography.

Experimental Results. Since the authors did not release their implementation, we implemented
our own version of CipherXRay. Instead of performing live memory tainting, using Valgrind for
instance as suggested by the authors, we perform the complete analysis based on execution traces.
We did it to reuse part of the framework that was developed for our own primitive identification
solution. Starting from an execution trace segment containing a sequence of dynamic instructions
and runtime address values, we build the corresponding DFG (DFGs are detailed in the following
chapter). Then we search for any two sets of vertices such that:

• the first set is made of memory read operations which access a continuous memory buffer ;
• the second set is made of memory write operations which also access a continuous memory

buffer and which are reachable from all the vertices of the first set ;
• they are not strictly included in sets which also satisfy the previous two points. Thereby we

only consider local maximums.

By searching for paths in DFGs, we dot not precisely track dependencies at the bit or byte granu-
larity. Instead for each operation, that is to say for each vertex, we consider that every output bit
depends on all input bits regardless of the exact computation performed by the operation. Thanks
to runtime address values it is easy check whether or not a set of memory operations accesses a
continuous memory buffer. To accurately track data flow as variables are written and read from
memory our initial idea was to reuse some form of memory access simplification based on runtime
address values such as presented in Section 5.3.1. But it was inappropriate. In fact, according to
memory access simplification, if two read operations access the same memory location, the result
of the second read is replaced by the result of the first read. And as a consequence, the dependency
between the address of the second read operation and its result is deleted. This problem happens
for instance for the AES lookup tables. To solve this issue we adopted a more traditional memory
tainting approach for memory operations:

• a memory write is tainted if either its address operand or its value operand is tainted ;
• a memory read is tainted if its address operand is tainted or if the last memory write occurring

at the same address is tainted.

The results we obtained on the set of synthetic samples are given in Table 1.4. We ran the
analysis on the exact same trace segments as in Table 1.1 (IOR on function traces). To remove
some obvious false positives and to return a primitive name, we filter sets of memory buffers subject
to the avalanche property based on their size. For instance, given a primitive P with two input
parameters of size s1 and s2 and one output parameter of size s3, we consider that P was detected
if we found two couples of memory buffers subject to the avalanche property (x1, y1) and (x2, y2)
such that y1 = y2, the size of x1 is equal to s1, the size of x2 is equal to s2 and the size of y1 is
equal to s3. For each primitive involved in the set of synthetic samples, its number of parameters
as well as their respective size are given in Table 1.3. To determine whether a detection is a false
positive or not, we run a countercheck using IOR. The number of detections that were successfully
verified using IOR is given on the right of oblique strokes in Table 1.4. A first observation is that
many primitives were missed because parameters returned by our implementation of CipherXRay
are larger than the real parameters. If a real input parameter is stored next to a variable which also
has an influence on every part of the output then it is impossible to separate the real parameter
from the other variable. It happens for instance with our own implementation of MD5, with
the MD5 implementation of Botan and with the SHA1 implementation of RFC 3174. A second
observation is that there are many false positives. This is not utterly surprising. For instance, if
we consider AES, which is the primitive with the highest rate of false positive, every time four
adjacent locations are accessed in a lookup table it creates a false positive. In fact, it forms a
128-bit memory buffer, which verifies the avalanche property with the output and therefore can
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Table 1.3: Bits affected by the avalanche property for primitives involved in the set of synthetic
samples.

Primitive Prototype
AES-128 (key schedule not included) {0, 1}128 × {0, 1}1280 → {0, 1}128

AES-192 (key schedule not included) {0, 1}128 × {0, 1}1536 → {0, 1}128

AES-256 (key schedule not included) {0, 1}128 × {0, 1}1792 → {0, 1}128

MD5 (compression function) {0, 1}128 × {0, 1}512 → {0, 1}128

SHA1 (compression function) {0, 1}160 × {0, 1}512 → {0, 1}160

XTEA (key schedule included) {0, 1}64 × {0, 1}128 → {0, 1}64

be mistaken with the message block. It happens for AES-192 which in all synthetic samples has
exactly two more false positives than AES-128 and AES-256. Note that only the implementation
changes from one synthetic samples to another, not the value of the parameters.

As a conclusion, the avalanche property provides a generic criterion to detect cryptographic
primitives. Compared to IOR, it does not require any a priori knowledge of primitives. But for
known primitives, it is less accurate than IOR regarding both the false positive and the false
negative ratio. It should be noted that detection methods based on the avalanche property need
only runtime address values whereas IOR also needs runtime memory values. We did not evaluate
the avalanche criterion to detect modes of operation as described in CipherXRay. It may help to
reduce the number of false positives. For instance, the key is always the same for every execution of
a block cipher within a mode of operation and message blocks are likely to be adjacent in memory.
But it implies that one has to create signatures for modes of operation which consist in influence
patterns. And as such, it contradicts the simplicity and the genericity of the original idea.
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Table 1.4: Results obtained on the set of synthetic samples with our own implementation of
CipherXRay. For each primitive which was detected, two numbers are given. They are separated
by an oblique stroke. On the left is the number of solutions returned by our own implementation
of CipherXRay, and on the right is the number of these solutions which also satisfy the IOR
criterion. Depending on whether these numbers are below, equal or above the expected value, they
are printed in red, green or orange respectively.

Primitive Source Compiler Opt. Result

Gladman

GCC4.9.2

-O0 128: 1/1, 192: 3/1, 256: 1/1

V0

-O1 128: 2/1, 192: 4/1, 256: 2/1, XTEA: 5/0
-O2 128: 1/1, 192: 3/1, 256: 1/1, XTEA: 84/0
-O3 128: 1/1, 192: 3/1, 256: 1/1, XTEA: 84/0

Clang3.5.0

-O0 128: 1/1, 192: 3/1, 256: 1/1
-O1 128: 1/1, 192: 3/1, 256: 1/1
-O2 128: 1/1, 192: 3/1, 256: 1/1, MD5: 4/0
-O3 128: 1/1, 192: 3/1, 256: 1/1, MD5: 4/0

MSVC18.0 ∗ 128: 1/1, 192: 3/1, 256: 1/1

Gladman

GCC4.9.2 ∗ 128: 1/1, 192: 3/1, 256: 1/1

V1
Clang3.5.0

-O0 128: 1/1, 192: 3/1, 256: 1/1
-O1 128: 1/1, 192: 3/1, 256: 1/1, XTEA: 84/0
-O2 128: 2/1, 192: 4/1, 256: 2/1, XTEA: 136/0
-O3 128: 2/1, 192: 4/1, 256: 2/1, XTEA: 136/0

MSVC18.0 ∗ 128: 1/1, 192: 3/1, 256: 1/1

Gladman

GCC4.9.2 ∗ 128: 1/1, 192: 3/1, 256: 1/1
AES-128

V2

Clang3.5.0

-O0 128: 1/1, 192: 3/1, 256: 1/1
AES-192 -O1 128: 3/1, 192: 5/1, 256: 3/1
AES-256 -O2 128: 2/1, 192: 4/1, 256: 2/1
(encryption only) -O3 128: 2/1, 192: 4/1, 256: 2/1

MSVC18.0
-O0 128: 1/1, 192: 3/1, 256: 1/1
-O2 128: 0/0, 192: 3/1, 256: 1/1

Gladman

GCC4.9.2

-O0 128: 4/1, 192: 6/1, 256: 4/1

V3

-O1 128: 5/1, 192: 7/1, 256: 5/1, XTEA: 2/0
-O2 128: 4/1, 192: 7/1, 256: 5/1, XTEA: 214/0
-O3 128: 4/1, 192: 7/1, 256: 5/1, XTEA: 214/0

Clang3.5.0

-O0 128: 4/1, 192: 6/1, 256: 4/1
-O1 128: 4/1, 192: 6/1, 256: 4/1
-O2 128: 5/1, 192: 7/1, 256: 5/1
-O3 128: 5/1, 192: 7/1, 256: 5/1

MSVC18.0
-O0 128: 4/1, 192: 6/1, 256: 4/1
-O2 128: 0/0, 192: 6/1, 256: 4/1

Botan - - 128: 0/0, 192: 0/0, 256: 0/0
Crypto++ - - 128: 6/1, 192: 6/0, 256: 3/0

Nettle - - 128: 0/0, 192: 2/0, 256: 0/0
OpenSSL - - 128: 0/0, 192: 0/0, 256: 0/0
TomCrypt - - 128: 1/1, 192: 3/1, 256: 1/1

MD5

Own Src. ∗ ∗ 0/0
Botan - - 0/0

Crypto++ - - 2/2
Nettle - - 2/2

OpenSSL - - 2/2
TomCrypt - - 2/2

RC4 ∗ ∗ ∗ not tested

SHA1

RFC 3174 ∗ ∗ 0/0
Botan - - 1/1

Crypto++ - - 2/2
Nettle - - 2/2
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Primitive Source Compiler Opt. Result

SHA1
OpenSSL - - 4/2
TomCrypt - - 2/2

XTEA
Wikipedia

GCC4.9.2

-O0 3/1

(encryption only)

-O1 1/1
-O2 1/1
-O3 1/1

Clang3.5.0

-O0 4/1
-O1 1/1
-O2 1/1
-O3 1/1

MSVC18.0
-O0 0/0
-O2 0/0

Botan - - 0/0
Crypto++ - - 2/1
TomCrypt - - 0/0
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Chapter 2

Data Flow Graph

In order to modify, compare and visualize assembly code, we use a graph representation called
a DFG. In this chapter, we first give a definition of a DFG. Then, we explain how a DFG
representation can be computed out of a sequence of assembly instructions. We finally describe
some built-in features which facilitate DFG manipulation.
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2.1 DFG Definition

The definition of a DFG given below is heavily inspired on the literature on rewrite systems and
on term graphs (in particular [24] and [60]). In fact, we show in Chapter 3 that many normal-
ization mechanisms can be formalized as term rewrite rules and that the set of all normalization
mechanisms forms a reduction system. This formal definition is followed by more practical aspects
that were introduced to specifically represent x86 assembly code.

2.1.1 Formal Definition

Terms. Let Σ be a set of operation symbols and X be a set of variable symbols such that
Σ ∩ X = ∅. The arity function defines the number of arguments an operation symbol takes.
Operation symbols with arity 0 are called constant. To extend the arity function to Σ ∪ X, we
define arity(x) = 0 for all x ∈ X. A term or an expression over Σ and X is a variable symbol, a
constant, or a string of the form f(t1, ..., tn) where f is an operation symbol of arity n and t1, ..., tn
are terms. We note TΣ,X the set of all terms over Σ and X. The subterms of a term t are t plus, if
t is a composite term such as t = f(t1, ..., tn), all the subterms of t1, ..., tn. Terms will be written
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with the prefix notation even for symbols that represent basic arithmetic or logical operations.
This way, it will be possible to differentiate terms from others mathematical expressions.

We assume there is a set D such that every operation f , the symbol of which is in Σ, is a
mapping from Dn to D (with n = arity(f)). We define an assignment as a mapping from X to D.
Given an assignment θ, we can evaluate every term of TΣ,X to an element of D (composite terms
are evaluated by applying operations to the evaluation of their operands). By extension, the value
of a term t ∈ TΣ,X under an assignment θ, is called θ(t) and θ is considered to be a mapping from
TΣ,X to D.

Terms have a natural ordered tree structure. Leaves are labelled with variables symbols or
constants and internal vertices are labelled with operation symbols of strictly positive arity. The
indegree of the internal vertices is equal to the arity of their label. However, tree representations
can be extremely costly in both time and space: each instance of a subterm has to be stored and
processed separately. When working with terms that contain numerous common subterms, it is
more efficient to adopt a graph representation where they can be shared.

Directed Multigraphs. A directed multigraph G is a 4-tuple G = (VG, EG, srcG, dstG) where
VG is a set of vertices, EG is a set of edges, srcG : EG → VG assigns to each edge its source vertex
and dstG : EG → VG assigns to each edge its destination vertex. Unlike graphs, multigraphs can
have parallel edges, that is to say, edges which have the same source and destination vertices.
Multigraphs are well suited to represent terms, since a subterm may appear several times in a
composite term resulting in parallel edges. In the sequel, directed multigraphs are simply called
graphs unless explicitly stated otherwise.

Given an edge e in a graph G, srcG(e) is said to be a direct predecessor of dstG(e) and conversely
dstG(e) is said to be a direct successor of srcG(e). Given a vertex v in G, indegreeG(v) and
outdegreeG(v) denote the number of direct predecessors of v and the number of direct successors
of v respectively. Given two vertices u and v in G, a path from u to v is a sequence of edges
(ei)1≤i≤n such that srcG(e1) = u, dstG(en) = v and dstG(ei) = srcG(ei+1) for all i ∈ {1, ..., n−1}.
If there is a path from u to v, we say that v is reachable from u. The successors of v are the vertices
that are reachable from v and the predecessors of v are the vertices from which v is reachable. A
graph is acyclic if there is no vertex that is reachable from itself via a non-empty path. Given
two graphs G and H, H is a subgraph of G if VH ⊂ VG, EH ⊂ EG and ∀e ∈ EH , srcH(e) =
srcG(e) and dstH(e) = dstG(e).

Definition 1 (DFG). A Data Flow GraphG is a 6-tuple (VG, EG, srcG, dstG, labVG, labEG), where:

• (VG, EG, srcG, dstG) is an acyclic directed multigraph ;
• labVG : VG → Σ ∪ X is a vertex labelling function which maps vertices to variable symbols

and operation symbols such that indegreeG(v) = arity(labVG(v)) for all v ∈ VG ;
• labEG : EG → N is an edge labelling function which maps edges to positive integers. Two

distinct edges e1, e2 ∈ EG that have the same destination vertex dstG(e1) = dstG(e2) have
distinct labels labEG(e1) 6= labEG(e2). This ensures that the edge labelling function labEG
defines a total order relation over any set of edges associated to a given destination vertex.
To guarantee the uniqueness of the edge labelling function labEG, we also impose that for
every edge e: labEG(e) < indegreeG(dstG(e)).

The function termG : VG → TΣ,X maps every vertex of G to a term of TΣ,X . It is defined as follows:

termG(v) =

{
labVG(v), if indegreeG(v) = 0

labVG(v)(termG(v1), ..., termG(vn)), if indegreeG(v) = n

where v1, ..., vn are the direct predecessors of v. These vertices are ordered according to the ordering
of the edges e1, ..., en that connects them to v (i.e. according to labEG ◦ srcG). Note that this
recursive definition is correct since DFGs are acyclic.

Many properties can be proven on DFGs using one of the following induction principles. Given
a DFG, if a property P holds for all the vertices with no ingoing edge and if P holds for a vertex
on condition it holds for all its direct predecessors, then P holds for every vertex. Conversely, if a

34



x y z

⊕

−∧4

�

disp

sub

Figure 2.1: A DFG example. We will use the same format to depict DFGs throughout this
document. Vertices labelled with a variable symbol have a rectangle shape to distinguish them
from those labelled with a operation symbol. For commutative operation symbols, the label of
ingoing edges is omitted. For non-commutative operation symbols, a letter/symbol is used to
clearly identify the role of each operand.

property P holds for all vertices with no outgoing edge and if P holds for a vertex on condition it
P holds for all its direct successors, then P holds for every vertex. These induction principles are
correct because DFGs are acyclic.

DFGs are used to represent one or several terms in a concise and efficient way. The DFG given
in Figure 2.1 is a possible representation for the following two terms:{

� (∧(z,⊕(x, y)), 4)

−(⊕(x, y), z)

In the literature, DFGs are comparable to term graphs [60] and jungles [39]. Definitions of
term graphs usually rely on hypergraphs as underlying structures. Hyperedges in term graphs
play the role of vertices in DFGs. They are labelled with variable or operation symbols and
they connect a set of operand vertices to a result vertex. Term graphs have a single root vertex
that is reachable from any other vertex. As such, they can only be used to represent a single
term. Jungles are an extension of term graphs. They can have several root vertices and thus
represent several possibly independent terms. Another difference between term graphs and jungles
is that, in jungles, the input and output arguments of operations symbols are characterized by
a type. Types are represented as vertex labels. For this work, we could have reused the exact
formalism and structure of jungles to represent expressions that are computed in x86 assembly
code. Unfortunately, we became aware of the literature on this field of research only once most of
the work had been done according to our own DFG definition. Despite some formalization details,
the two notions (DFG and jungle) are rather similar. In this document we will keep our original
DFG definition to more accurately describe what has actually been implemented.

Definition 2 (DFG Morphism). A DFG morphism f : G → H between two DFGs G and H
consists of two functions: fV : VG → VH and fE : EG → EH such that:

• fV ◦ srcG = srcH ◦ fE and fV ◦ dstG = dstH ◦ fE ;
• labVG(v) = labVH(fV (v)) for all v ∈ VG such that labVG(v) /∈ X ;
• labEG(e) = labEH(fE(e)) for all e ∈ EG such that labVG(dstG(e)) is non-commutative ;
• fV (u) = fV (v) for all u, v ∈ VG such that labVG(u) = labVG(v) ∈ X1.

A DFG morphism f is surjective (respectively injective) if both fV and fE are surjective (respec-
tively injective). A morphism is an isomorphism if it is injective and surjective.

A term or more generally a set of terms can be represented by different DFGs. These DFGs
differ in the way common subterms are shared. At one extreme, there is a tree representation
which has a separate vertex to represent each subterm. And at the other extreme, there is a graph
representation, called fully collapsed, which maximizes the sharing of common subterms. More
formally, a DFG G is fully collapsed if termG is injective. The DFG depicted in Figure 2.1 is fully

1This last condition can be removed if we assume that for every variable symbol x ∈ X there is at most one
vertex v in G such that labVG(v) = x.
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collapsed. Two DFGs representing the same set of terms are said to be bisimilar. Given a DFG
G, the bisimilarity class of G contains, up to isomorphism, a single tree element noted ∆G and a
single fully collapsed element noted ∇G. There is a surjective morphism from ∆G to G and from
G to ∇G.

The DFG definition that has been given so far is abstract. It can be used to represent a wide
range of functional expressions. In this work, we will use DFGs to represent the expressions that
are computed during the execution of a sequence of assembly instructions. In the remainder of
this section, we will describe the specificities that were introduced to adapt this abstract DFG
definition for this specific usage.

2.1.2 Memory Operations

In this section we will present the two operations that are used to access the memory. The load

operation is used to read the value that is stored at a given address and the store operation is
used to update the value that is stored at a given address. They are defined more formally as
follows. A memory state is represented by a mapping from D to itself. The set of all memory
states is noted M. load and store are defined by:

load : M×D → D
(m, a) 7→ m(a)

store : M×D ×D → M
(m, a, v) 7→ m′ where m′(a) = v and m′|D\{a} = m|D\{a}

When these two operations are used in DFGs, their memory state operand is omitted. Instead,
all the memory operations of a DFG are organized in a sequence. Given such a sequence of memory
operations (opi)1≤i≤n, it is implicit that the memory state operand of opj is equal to the memory
state returned by the last store operation in (opi)1≤i<j . Therefore in DFGs, load operations have
a single input operand and store operations have two input operands and do not explicitly return
any result. Terms rooted by a store operation cannot be subterms for any other term. That is
to say, vertices labelled with store operation symbol do not have any outgoing edges. The size
of a memory access is specified by its size attribute (size attributes will be presented in the next
section).

Graphically, vertices labelled with a memory operation symbol will have an index to specify
their position in the sequence of memory operations. Vertices labelled with load are depicted
in the same way as vertices labelled with a variable symbol. Intuitively, if a load accesses a
memory location for the first time, its result is considered to be an input variable. To that extent,
assignments also define the values of the initial memory state. Vertices labelled with store are
depicted in the same way as final vertices (refer to Section 2.4.1 for information on final vertices),
that is to say, they have an ellipsis shape. Intuitively, if a store accesses a memory location for
the last time, it is considered to be an output variable.

2.1.3 Practical Aspects

Operation Symbols

The set Σ of operation symbols with a strictly positive arity that we use to represent sequences
of x86 instructions is given in Table 2.1. This set is sufficient for the test scenarios and the use
cases presented in this document. But it is clearly far from being sufficiently complete to represent
any sequence of x86 instructions. The main design principle is to keep a small number of simple
operations to facilitate the normalization phase. Specific instructions such as SSE instructions,
should be converted or decomposed into more common operations. Thereby, the influence of
instruction selection is reduced. Moreover, fewer operations generally means fewer rewrite rules to
normalize them.

Nearly every operation symbol that is used in this work represents not only a single operation
but a family of operations. A family of operation regroups operations which basically perform
the same transformation but on a different number of operands or on operands of different sizes.
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For instance if we take the + operation symbol, it refers to the family of operations of the form
(+s,arity : {0, 1}s× ...×{0, 1}s → {0, 1}s)s∈N,arity>1 which compute the sum their operands modulo
2s. The parameter s which defines the size of operands and the value of the modulus is equal to
the size attribute (refer to Section 2.1.3). The arity is defined by the indegree of the vertex. Oper-
ations have been regrouped into families to simplify the normalization phase. Many normalization
mechanisms are applied to families of operations regardless of the exact characteristics of each of
their members. Using the same label to represent every member of a family is an effective way to
implement generic normalization mechanisms.

Variable Symbols

There is one variable per x86 register, except for the EIP and the EFLAGS register. For reasons
that are detailed in the following section and in the footnote of Table 2.1, modifications affecting
these two registers are not transcribed in DFGs. SIMD registers are represented by several vari-
ables. The association between registers and variables is important only during DFG construction.
It has no influence on the normalization and identification phase.

Size Attribute

Each vertex v of a DFG G has a size attribute, called sizeG(v). The size attribute of a vertex v
specifies the exact operation inside the family of operations associated with labVG(v). It generally
defines the size of the operands and the size of the result. Vertices labelled with variable symbols
also have a size attribute. All the vertices labelled with the same variable symbol must have the
same size attribute. DFGs have the following property: for any edge e, the size of the result re-
turned by src(e) (or the size attribute of src(e) if its label is a variable symbol) is equal to the size
of the ith operand of dst(e), where i is the position of e in the sequence of edges which have the
same destination vertex than e ordered according to their label. This property is obtained while
constructing DFGs by adding explicit size modifier operations such as movzx, part18, part28 and
part116 (refer to Section 2.3.3 for an example). This property is preserved during the normal-
ization process. The size attribute may be assimilated to types in jungles. In the rest of this
document, we will only consider assignments which map variable symbols to bit strings the size of
which is equal to the size attribute.

2.2 Sequence of Dynamic Instructions

2.2.1 Straight-Line Code Hypothesis

Due to performance and security considerations (typically to resist timing attacks), implementa-
tions of symmetric cryptographic algorithms tend to avoid conditional branches. For instance,
there is no conditional statement in the implementation of the compression function of MD5 given
in the RFC [62]. As another example, in the most widespread implementation of AES (tables im-
plementation), the only branching instruction is for the main loop that iterates the round function.
Besides, most of the times this loop is partially unrolled. This observation has two consequences.

• Even though lack of conditional branches is a good indication of cryptographic code, control
flow information is of no use to precisely identify primitives. In fact, the only control flow
patterns that may be encountered in cryptographic code are common (loop structure) and
may be subject to variations (loop unrolling). Therefore, modifications of the EIP and the
EFLAGS register are not represented in DFGs, since they probably cannot be used to create
distinctive patterns.

• The number of branching instructions which are dependent on input data should be ex-
tremely small. Thus, execution paths inside cryptographic code are not supposed to change
significantly from one execution to another. To take advantage of this observation, we as-
sume that the code to be analysed is a sequence of instructions which are executed from the
first to the last. This sequence of instructions corresponds to one possible execution path. It
can easily be obtained in practice by recording the instructions that are executed during a
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Table 2.1: List of the operation symbols in Σ. The size attribute is noted s.

Symbol Prototype Description
adc ({0, 1}s × {0, 1}s → {0, 1}s)s Modular addition with carry2.
+ ({0, 1}s × ...× {0, 1}s → {0, 1}s)s,arity>1 Modular addition (the modulus is equal to the size attribute).
∧ ({0, 1}s × ...× {0, 1}s → {0, 1}s)s,arity>1 Bitwise AND.
cmov ({0, 1}s × {0, 1}s → {0, 1}s)s Conditional move2.
divq ({0, 1}2s × {0, 1}s → {0, 1}s)s Divide the first argument by the second, returns the quotient.
divr ({0, 1}2s × {0, 1}s → {0, 1}s)s Divide the first argument by the second, returns the remainder.
idivq ({0, 1}2s × {0, 1}s → {0, 1}s)s Signed division, returns the quotient.
idivr ({0, 1}2s × {0, 1}s → {0, 1}s)s Signed division, returns the remainder.
imul ({0, 1}s × ...× {0, 1}s → {0, 1}s)s,arity>1 Signed multiplication.
movzx ({0, 1}∗ → {0, 1}s)s Zero-extend (similar to the x86 instruction).
× ({0, 1}s × ...× {0, 1}s → {0, 1}s)s,arity>1 Modular multiplication (the modulus is equal to the size attribute).
neg ({0, 1}s → {0, 1}s)s Two’s complement.
¬ ({0, 1}s → {0, 1}s)s Bitwise NOT.
∨ ({0, 1}s × ...× {0, 1}s → {0, 1}s)s,arity>1 Bitwise OR.
part18 {0, 1}∗ → {0, 1}8 Extracts bit segment [0:7] (0 refers to the least significant bit). The size attribute is equal to 8.
part28 {0, 1}∗ → {0, 1}8 Extracts bit segment [8:15] (0 refers to the least significant bit). The size attribute is equal to 8.
part116 {0, 1}∗ → {0, 1}16 Extracts bit segment [0:15] (0 refers to the least significant bit). The size attribute is equal to 16.
	 ({0, 1}s × {0, 1}8 → {0, 1}s)s Rotate to the left the first operand by the number of bits specified by the second operand.
� ({0, 1}s × {0, 1}8 → {0, 1}s)s Rotate to the right the first operand by the number of bits specified by the second operand.
sbb ({0, 1}s × {0, 1}s → {0, 1}s)s Modular subtraction with borrow2.
� ({0, 1}s × {0, 1}8 → {0, 1}s)s Shift to the left the first operand by the numbers of bits specified by the second operand.
shld ({0, 1}s × {0, 1}8 × {0, 1}s → {0, 1}s)s Shift to the left and shift in from the right bits from the third operand.
� ({0, 1}s × {0, 1}8 → {0, 1}s)s Shift to the right the first operand by the numbers of bits specified by the second operand.
shrd ({0, 1}s × {0, 1}8 × {0, 1}s → {0, 1}s)s Shift to the right and shift in from the left bits from the third operand.
− ({0, 1}s × {0, 1}s → {0, 1}s)s Modular subtraction (the modulus is equal to the size attribute).
⊕ ({0, 1}s × ...× {0, 1}s → {0, 1}s)s,arity>1 Bitwise XOR.
load ({0, 1}32 → {0, 1}s)s∈{8,16,32,64} Memory read operation. We assume here that the size of an address is 32 bits.
store ({0, 1}32 × {0, 1}s → void)s∈{8,16,32,64} Memory write operation. We assume here that the size of an address is 32 bits.

2Because the EFLAGS register is not represented at the DFG level, it is impossible to correctly specify these operations. They definitely have to be represented in DFGs since
we cannot ignore the effect they have on their operand(s). But they are unaffected by the normalizations mechanisms. The EFLAGS register has been dropped for simplicity reason
only. In fact, operations which rely on the EFLAGS register do not play an important role in the cryptographic algorithms that have been tested so far. Consequently, there was no
need to normalize them and thus to accurately specify them.
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given execution. This hypothesis, called the straight line code hypothesis, greatly simplifies
what our DFG model would have been otherwise. In fact, according to the straight line code
hypothesis we know exactly which instructions are executed and in which order.

2.2.2 Execution Trace

The sequence of dynamic instructions which are executed during a given execution, is called an
execution trace. Depending on the architecture, the operating system, or if the code runs in kernel
or user space different tools can be used to record execution traces. For the experimental results
presented in this document, we used PIN [52], a DBI framework that is able to instrument x86
programs on both Windows and Linux. As a substitute for PIN, one could have used other DBI
framework such as DynamoRio, Valgrind or Qemu to name but a few.

To reduce the size of execution traces, the sequence of dynamic instructions is divided into
basic blocks. The basic blocks partitioning is obtained from the DBI framework. Because basic
blocks are computed dynamically by the DBI framework, their definition may differ from what is
traditionally considered in static analysis. In fact, as new branches in the CFG are encountered,
already existing basic blocks may be subdivided. Therefore, a single instruction at a given address
may belongs to several basic blocks of different sizes.

We adopt a simple trace format based on two structures: an array of basic blocks and a
sequence of basic block indices. For multi-threaded programs there is one sequence of basic block
indices per thread. This simple format could benefit from many improvements to reduce its storage
consumption. It is mentioned here as an example in order to provide a complete description of the
solution. The design of efficient execution trace formats is out of the scope of this work.

For reasons that will be detailed in Section 3.6.5, we also add the possibility to record in the
execution trace the value of the address of every memory access.

2.2.3 Segment Selection

An important design principle is to limit the analysis to a trace segment. Previous works in the
domain have already proposed numerous heuristics to locate with more or less precision possible
locations of cryptographic algorithms. The idea is to use some of them as front end filters to select
interesting trace segments. There is no hard constraint on the precision of the segment selection
method. Obviously, at least one execution of the algorithm that we want to identify must be
included in the segment. But using large segments should not affect too much the reliability of the
primitive and mode of operation identification methods. Some of the heuristics which can be used
to select suitable trace segments are discussed in Section 6.2.2.

Working only on small segments and not on the full execution trace has several advantages.
The first and the most obvious one is performance. Some of the algorithms which are involved in
the normalization phase and in the primitive identification phase have a high complexity. Some
of them, such as the subgraph isomorphism algorithm, would not even be tractable if they were
executed directly on a full execution trace. To give orders of magnitude, an execution trace
for a realistic program contains billions of dynamic instructions whereas trace segments that are
usually converted to DFGs only contain thousands of dynamic instructions. Simplicity is another
advantage. Only x86 instructions which are frequent in cryptographic implementations need to
be translated into DFGs. Normalization mechanisms only need to be effective for operations and
terms which are common in cryptographic implementations. Finally, even though we claimed that
our methods can process large trace segments, the smaller the trace segment is, the higher are
the chances of success. This is especially true for primitive identification. Mode of operation
identification should not be disturbed by large trace segments.

As explained at the end of Section 2.3.3 it is possible to increase the size of trace segment
without needing to rerun the complete analysis. A common strategy is to first consider a small
trace segment for the primitive identification (around one thousand dynamic instructions) and
then to increase its size (up to a hundred thousand dynamic instructions) for mode of operation
identification.
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Figure 2.2: DFG associated with the instruction pop eax.

2.3 Construction

In this section we describe the method that is used to construct DFGs. This method takes as
input an execution trace segment and returns a DFG that represents the different computations
occurring in this segment. Iteratively, each instruction is mapped to a separate DFG. Then these
small DFGs are concatenated to form a larger DFG that represents a sequence of instructions.

2.3.1 Mapping x86 Instructions to DFGs

Each x86 instruction is associated with a DFG that represents the different expressions that are
evaluated by the instruction. These expressions are defined by the semantics of the assembly
language. Immediate operands are represented by constants, register operands by variables symbols
and memory accesses are explicitly transcribed using the load and store operation symbols. For
instance, the DFG associated with the instruction pop eax is given in Figure 2.2. Operations
affecting the EIP and the EFLAGS register are discarded.

Along with a DFG Gi, a mapping σi : Xi → VGi is also returned for each instruction i. Xi ⊂ X
is the set of registers that are modified by instruction i. This mapping is used to record the state of
the registers after instruction i. If a register is modified by instruction i, σi will map it to its new
content, that is to say, to the term that was written in it. For instance, the mapping associated
with the instruction pop eax is: {

σpop eax(esp) = +(esp, 4)

σpop eax(eax) = load(esp)

These mappings are called substitutions and they will be used in Section 2.3.3 to compose DFGs.

2.3.2 SIMD Instructions

Single Instruction Multiple Data (SIMD) instructions, such as MMX or SSE instructions are rel-
atively frequent in implementations of cryptographic primitives. Their use might be a deliberate
choice made by software developers to achieve better performance. In that case, the code is likely
to be written directly in assembly. But plain C/C++ code can also be compiled to SIMD instruc-
tions due to optimizations of the compiler. For instance, Gladman’s implementation of AES [31]
compiled with the newest versions of Clang (at least from version 3.5.0) with optimization level
-O2 includes numerous SSE instructions.

As motivated at the end of Section 2.1.3, it is better for SIMD instructions not to have their
own equivalent in Σ. Therefore, we must try to decompose and translate SIMD instructions using
only the operations given in Table 2.1. It involves two distinct mechanisms, namely instruction
splitting and partial evaluation. They are detailed as follows.

Instruction Splitting

As suggested by their name SIMD instructions execute the same operation on multiple operands
in parallel. Thus it is possible to transcribe SIMD instructions into smaller operations that process
each, one part of the operands. The only difficulty is to determine in how many parts instructions
they should be divided in. For some mnemonics such as paddb (modular addition on 8 bits) the
answer is straightforward. There is only one partition of paddb that can be represented with
the operations listed in Table 2.1: eight 8-bit words if it is applied to 64-bit operands or sixteen
8-bit words if it is applied to 128-bit operands. But, for other mnemonics such as pxor (bitwise
XOR) several partitions are possible. In this latter case, we perform a backward search in the

40



sequence of instructions. If a partition has already been defined for one of the input register, we
use it. Otherwise, we split the instruction according to the word size of the architecture. Because
of specific mnemonics (which have a single valid partition), at some point in the sequence of
instructions, we could determine with certainty the size of the individual variables that are stored
in a SIMD register. The idea is to propagate this information to choose the right partition when
translating others instructions that would access the same register. Obviously, a partition stands
as long as the register is not overwritten. To be more complete, we could also have done a forward
search to see if any following instruction imposes some constraints on the way registers must be
partitioned. However, searching for a partition requires a good understanding of each instruction
semantics as illustrated in the following code snippet.

pxor xmm2, [esp] ; bitwise XOR

movdqa xmm1, xmm2 ; move aligned double quad word

psllw xmm1, xmm2 ; shift word left

If we perform a forward search, the partition of the pxor xmm2, [esp] instruction will depend
on the following accesses to xmm2. xmm2 is read by movdqa, but this mnemonic does not impose
any particular partition. The partition of movdqa itself depends on the following accesses to xmm1.
xmm1 is next read by psllw and is interpreted as eight 16-bit words. Thus, pxor should be split into
eight ⊕ operations. For practical reasons, in our implementation the execution trace is processed
in a single pass over the sequence of instructions. Therefore, partition information is only available
for the precedent instructions that have already been processed.

Notice that this scheme breaks the formalism of the DFG construction that has been introduced
so far. Instructions cannot be processed separately. The context in which they are executed also
needs to be taken into account to construct their DFG counterpart.

Partial Evaluation

We can take advantage of immediate operands to associate SIMD instructions to simpler seman-
tically equivalent DFGs. Let us consider for instance the mnemonic pinsrw. It inserts in its first
operand (which is either an MMX or an SSE register) the first least significant word of its second
operand at the word position specified by its third operand. A first possibility is to associate in-
structions based on pinsrw to a series of cmov operations, one for each word of their first operand.
Thereby, whichever position the word must be inserted at, the behaviour of the instructions will
correctly be transcribed. A second possibility is to take the value of the third operand (which is
always an immediate operand) into account, to determine the position of the insertion. Interpreted
as such, instructions based on pinsrw are semantically equivalent to mov instructions. Thus, they
can be associated with an empty DFG and a substitution that maps the right part of the destina-
tion register to the least significant word of the second operand. We call this mechanism partial
evaluation. Part of an instruction is interpreted with respect to the value of an immediate operand
to obtain a simpler expression. In our work, partial evaluation mostly concerns mnemonics that
perform bits manipulation such as palignr, pinsrw, pshufd and pslldq.

2.3.3 DFG Composition

To obtain the DFG representing a sequence of instructions, we compose the DFGs associated with
each of its instructions. A composition of two DFGs is defined with respect to a substitution.

Definition 3 (DFG Composition). Let G and H be two DFGs and σ : X ′ → VG be a substitution.
The composition of H with G with respect to σ (noted H ◦σ G) is equal to the union of G and
H where every vertex v ∈ VH such that labVH(v) ∈ X ′ has been replaced by σ(labVH(v)). More
precisely:

• VH◦σG = VG ∪ VH \ {v s.t. labVH(v) ∈ X ′} ;
• EH◦σG = EG ∪ EH ;
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• srcH◦σG(e) =


srcG(e), if e ∈ EG
σ(labVH(srcH(e))), if e ∈ EH and labVH(srcH(e)) ∈ X ′

srcH(e), otherwise

• dstH◦σG(e) =

{
dstG(e), if e ∈ EG
dstH(e), otherwise

The definitions of labVH◦σG and labEH◦σG are straightforward and are not detailed here.

Let us consider two instructions i1 and i2 mapped respectively to (Gi1 , σi1) and (Gi2 , σi2). The
DFG representing the sequence i1 ‖ i2 is equal to Gi2 ◦σi1 Gi1 . The substitution associated with
i1 ‖ i2 is equal to:

Xi1 ∪Xi2 → VGi2◦σi1Gi1

x 7→

{
σi2(x), if x ∈ Xi2

σi1(x), otherwise

By induction, this construction method can be extended to arbitrary long sequences of instruc-
tions.

From an implementation perspective, a substitution corresponds to an array that maps registers
to vertices. But because of nested registers, its manipulation is not as straightforward as one may
think. Let us consider the following assembly code snippet:

mov al, [eax]

add eax, 1

The first instruction modifies the least significant bits of eax. The second instruction reads the
totality of eax. To compose the DFGs associated with these two instructions we need to replace
the vertex labelled with eax in the second DFG by σ1(eax). Unfortunately σ1 is undefined for eax
and we cannot consider that eax is an input variable, and leave it as it is, because part of it was
assigned during the first instruction. The solution is to explicitly insert a term equal to the value
of eax after the first instruction and to map it to eax in σ1. This new term takes as input σ1(al)
and the most significant bits of eax. Then, we can perform the replacement as described in the
composition definition. This example is illustrated in Figure 2.3.

Arrays implementing substitutions are manipulated using two functions:

• set exp: This function takes two operands: a register r and a vertex v. It maps v to r.
Every previous association made with a register that is included in r is deleted. This function
is called every time an instruction writes a register.

• get exp: This function takes as input a register r. It returns the vertex which is currently
mapped to r or a vertex representing a new term. This latter case happens if either there
is no vertex associated with r or if a register that is included in r has been modified more
recently than r. This new term aggregates the vertices that were mapped to registers after
the last modification of r and which are included in r. If there is none, the new term is a
variable symbol. This function is called every time an instruction reads a register.

Inserting Annotated DFGs

Let GS be a DFG representing a sequence of instructions S. With our construction method,
it is possible to reuse GS to construct the DFG representing any sequence of instructions that
includes S. For instance to construct the DFG representing the sequence S′ ‖ S, we construct
GS′ and then we compose GS with GS′ . During the normalization phase, σS can be updated
so that it points to terms which are semantically equivalent3 to the original ones. Altogether

3A notion of equivalence between terms, called observable similarity, is defined more formally in Section 3.1.1.
Since the normalization process preserves the observable similarity for the vertices of σS(XS), it is possible to update
σS so that it keeps pointing to observably similar vertices.
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σ2(eax)→ σ1‖2(eax)→

mov al, [eax]

add eax, 1

Figure 2.3: Combination of two DFGs with nested registers.

it is possible to reuse a DFG that has already been normalized and annotated (as a result of
the primitive identification phase) to construct new DFGs. There are two advantages of doing
so. First, parts of large DFGs intended for mode of operation identification can be processed for
primitive identification separately at a lesser cost and with a higher chance of success. Despite
a relative resistance to segment selection, the primitive identification method generally produces
better results if it is executed on trace segments of limited size. Ideally, trace segments should
contain a single execution of a primitive. However, the DFGs required for mode of operation
identification are by definition much larger. The solution is to first extract small trace segments
corresponding each to an execution of a primitive. Then, once primitives have been identified,
these small DFGs are inserted along with their annotations to compute the larger DFGs which are
required for mode of operation identification. The second advantage is to process only once the
parts of large DFGs which are similar. If a cryptographic primitive is executed several times and if
the sequence of instructions is the same for each of its executions (which is likely to be the case as
explained in Section 2.2.1), only one of its executions needs to be analysed. To construct a DFG
representing a segment including several executions, the same DFG can be inserted multiple time.

2.4 Built-in Mechanisms

In this section we present two mechanisms that facilitate the rewriting of DFGs. These mechanisms
are transparently executed every time DFGs are modified. The first one is called dead code removal.
It deletes every vertex that does not have at least one final vertex among its successor(s). The
second one is called value range analysis. It over-approximates the set of values that a vertex could
have under any assignment.

2.4.1 Dead Code Removal

Definition 4 (Final Vertices). LetGS be a DFG and σS : XS → VGS be the substitution associated
with GS resulting from the construction method described in Section 2.3. A vertex v ∈ VGS is
said to be final if v ∈ σS(XS). Intuitively, a vertex is final if it represents a term that is either
stored in a register or in a memory location at the end of the sequence of instructions S. A vertex
labelled with store is always considered to be final. The set of all the final vertices of GS is called
RootGS . Final vertices are depicted with an ellipsis shape.

We call dead code any vertex that is not final and that does not have any final vertex among
its successors. Dead code corresponds to terms which are computed but which are not stored in
a register nor in a memory location at the end of the sequence of instructions. These terms are
considered to be irrelevant and can be deleted to reduce the size of DFGs. Dead store elimination
(if several store occur at the same address) is not handled by dead code elimination but by a
normalization mechanism called memory access simplification (refer to Section 3.6).

A first pass to delete dead code is performed immediately after the DFG construction. Even
if the initial code was correctly optimized, dead code can still be found. For instance, terms that
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are only used to control the execution flow (such as a loop iteration counter) are dead code. If
the directed acyclic graph is in inverse topological order4 dead code removal can be implemented
with a single pass over the vertices. If a vertex is not in RootG and has no outgoing edge, it is
deleted. Later during the normalization phase, dead code removal is triggered every time an edge
is deleted. Recursively, if its source endpoint is left with no outgoing edge and is not final, it is
deleted.

2.4.2 Value Range Analysis

The goal of value range analysis is to compute the set of all the values that a register or a memory
location can have at runtime. In other words, given a DFG G and a vertex v ∈ VG we want to
determine the set of the evaluations of v under every possible assignment. This set is called the set
of reachable values of v and it is noted DG(v). If termG(v) is a constant, DG(v) is a singleton. If
termG(v) is a variable symbol, DG(V ) = {0, 1}sizeG(v). If termG(v) is a composite term of the form
f(t1, ..., tn), DG(v) can be computed based on the set of reachable values of each of its operands
DG(v) = f(DG(t1), ..., DG(tn)). Value range analysis is extensively used during the normalization
phase, mostly by alias analysis but also by some other normalization mechanisms. Refer to Section
3.4.2, 3.5 and 3.6 for examples of normalization mechanisms that use value range analysis.

In practice, it is often impossible to efficiently compute and store exact sets of reachable values.
Therefore, instead of working with the exact sets, we will consider over-approximations (supersets)
that can be manipulated more easily. Working with over-approximations does not break the sound-
ness of the normalization phase. In fact, value range analysis is used to ensure that modifications
of the DFG are valid for any reachable value. Thus, any additional element to the set of reachable
values, adds a new constraint on the modifications that can be applied to the DFG. But in any
case, if a modification is valid for an over-approximated set of reachable values, it will still be valid
for the real set of reachable values. In this work, sets of reachable values are over-approximated
by RICs.

Definition 5 (RIC). A Reduced Interval Congruence (RIC) is a finite set of integers of the form:
{2a×x+ c (mod 2d), with x ≤ b and x ∈ N} where a, b, c and d ∈ N. A RIC is represented by the
tuple made of these four positive integers (a, b, c, d). The RIC domain is noted R.

To the best of our knowledge, RICs were first introduced in [8]5. Their main benefit is their
capacity to represent non-convex sets of integers. For instance, {1, 3, 5, 7} is equal to the RIC
{2x+ 1 (mod 8) | x ≤ 3}. The following operations have been implemented for RICs.

Bitwise AND: R ×R → R, given two RICs R1 and R2, it returns an over-approximation
of the set {x1 ∧ x2 | x1 ∈ R1 and x2 ∈ R2}. This set is not always a RIC: for instance [0, 7]
masked by 5 is equal to {0, 1, 4, 5} which is not a RIC. Thus, in order to return a RIC, it
has to be over-approximated.

Bitwise OR: R×R→ R, given two RICs R1 and R2, it returns an over-approximation of
the set {x1 ∨ x2 | x1 ∈ R1 and x2 ∈ R2}. This set is not always a RIC: for instance [0, 7]
ORed by 2 is equal to {2, 3, 6, 7} which is not a RIC. Thus, in order to return a RIC, it has
to be over-approximated.

Include: R×R→ B, given two RICs R1 and R2, it returns true if R1 ⊂ R2, false otherwise.

Intersect: R × R → B, given two RICs R1 and R2, it returns true if R1 ∩ R2 6= ∅, false
otherwise.

4A topological ordering of a directed graph is an ordering over its vertices such that the source vertex of an edge
is placed before its destination vertex. Topological orderings exist if an only if the graph is acyclic.

5Compared to previous definitions, we add the congruence modulo 2d to deal more naturally with modular
operations and two’s complement. In most of the cases d is equal to the size attribute. Another difference concerns
the multiplication factor. In our definition it must be equal to a power of two. This choice was made for simplicity
reasons. Multiplications by an integer which is not a power of two are not so common in cryptographic code.
Therefore, the capacity to better approximate the result of such multiplications does not seem to be worth the extra
complexity.
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Modular Addition: R × R → R, given two RICs R1 and R2, it over-approximates the
set {x1 + x2 (mod size) | x1 ∈ R1 and x2 ∈ R2}. This set is not always a RIC: for instance
{0, 1} plus {1, 5} is equal to {1, 2, 5, 6} which is not a RIC. Thus, in order to return a RIC,
it has to be over-approximated. Note that if one of the RICs is a singleton or if both the
multiplication factor and the modulus are equal, the set of reachable values is a RIC and no
over-approximation is required.

Modular Subtraction: R × R → R, given two RICs R1 and R2, it returns an over-
approximation of the set {x1 − x2 (mod size) | x1 ∈ R1 and x2 ∈ R2}. This operation is
implemented using modular addition and two’s complement on RICs.

Shift Right: R× N→ R, given a RIC R = (a, b, c, d) ∈ R and an integer n ∈ N it returns
{bx/2nc | x ∈ R}. This set is a RIC and it is equal to:

{0} if n ≥ d
(a− n, b, bc/2nc, d− n) if n ≤ a
(0, b(b+ bc/2ac)/2n−ac − bc/2nc, bc/2nc, d− n) otherwise

Shift Left: R × N → R, given a RIC R = (a, b, c, d) and an integer n ∈ N it returns
{2nx | x ∈ R}. This set is a RIC and it is equal to (a+ n, b, 2nc, d+ n).

Two’s Complement: R → R, given a RIC R = (a, b, c, d) it returns {−x (mod 2d) | x ∈
R}. This set is a RIC and it is equal to (a, b,−c− 2ab, d).

For operations that are not listed above, their result is simply over-approximated by {0, 1}s,
where s denotes the size attribute. We dot not try to compute any tight over-approximation for the
result of load operations as it is the case for instance in Value Set Analysis (VSA) [8]. In VSA, the
result of a load is over-approximated based on prior store operations, the address of which may
alias the address of the load. In our work, the simplest scenarios (when it is possible to determine
exactly which expression was previously stored at a given address) are handled by memory access
simplification. Memory access simplification occurs during the normalization phase and replaces
load by expressions. Value range analysis is regularly updated during the normalization phase.
Thereby, better over-approximations might become available for the result of load operations as
the DFG is normalized. However, in more complex scenarios (when there is at least one prior
store, the address of which may not alias the address of the load) load operations will not be
replaced by any expression and no tight over-approximation will ever become available. Refer to
Section 3.6 for memory access simplification and alias analysis.

The complexity of value range analysis is kept to a minimum. In fact, we do not really need
super accurate over-approximations for intricate terms. The solution we have described so far,
with its limitations (over-approximated sets must fit the RIC format, multiplication factors must
be equal to a power of two, only few operations are supported, no complex over-approximations for
load operations), is sufficient in practice. Typical terms that we would like to over-approximate
are: byte masking (in order to extract a byte from a 32-bit word for instance, which is a recurring
feature in many cryptographic algorithms), scale multiplication (in x86 addressing mode) and
addition by a constant. Our value range analysis is perfectly capable of computing a satisfactory
result for these simple expressions.
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Chapter 3

Normalization

The goal of the normalization phase is to reduce the differences that may exist between several
implementations of the same algorithm. These differences are introduced by the software developer
and by the compiler. Removing them is the key to producing generic signatures that cover a large
scope of primitive implementations. Ideally, every implementation of a primitive should converge
towards a single normal form. In this chapter, we will present the different transformations that are
used to normalize DFGs. Normalization is essential for primitive identification. It is not strictly
necessary for mode of operation identification except for memory access simplification. However a
light normalization phase (made of a subset of the normalization mechanisms) can usually improve
the quality of the results returned by mode of operation identification.
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3.1 Formal Presentation

In this section we give the definition of a rewrite rule and of a rewrite step (application of a rewrite
rule to a given DFG). Every normalization mechanism can be modelled by rewrite rules. We
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prove that if a rewrite rule preserves a certain equivalence property called observable similarity,
this property is also preserved during a rewrite step. The set of all rewrite rules, that is to say
the set of all the normalization mechanisms, forms a reduction system. We finally introduce three
properties of a DFG reduction system, namely termination, convergence and context-insensitivity.
For each of them we explain why they are advantageous or mandatory and we discuss if they are
satisfied or not in practice.

3.1.1 Rewrite Rules

Let us consider two DFGs G and H and a DFG morphism f : G → H. f induces a substitution
σ : X ∩ labVG(VG)→ VH defined for all x ∈ X ∩ labVG(VG) by σ(x) = fV (v) where labVG(v) = x.
This definition is correct, because according to the definition of a DFG morphism fV (u) = fV (v)
for all u, v ∈ VG such that labVG(u) = labVG(v).

Definition 6 (Rewrite Rule). A rewrite rule is defined by a tuple (L,R, ψ), where:

• L is a DFG ;
• R is a DFG such that the variables symbols occurring in R occur also in L ;
• ψ is a surjective mapping from RootL to RootR.

Definition 7 (Rewrite Step). Let G be a DFG and r = (L,R, ψ) a rewrite rule. Let f be an
injective morphism from L to G. We call σ the substitution induced by f and l the morphism
from R to R ◦σ G defined by:

lV (v) =

{
σ(labVR(v)), if labVR(v) ∈ X and σ is defined for labVR(v)

v, otherwise

lE(e) = e

Then, there is a rewrite step from G to H (noted G→r,f H), where H is the DFG obtained from
R ◦σ G by replacing the source vertex of every edge e ∈ ER◦σG such that srcR◦σG(e) ∈ fV (RootL)
by lV (ψ(w)) where w is the preimage of srcR◦σG(e) under fV . Note that srcR◦σG(e) has a unique
preimage under fV because srcR◦σG(e) ∈ fV (RootL) and fV is injective. RootH is obtained from
RootG by replacing every v ∈ fV (RootL) by lV (ψ(w)), where w is the preimage v under fV . Dead
code removal is implicitly triggered during the replacement operations.

The condition that imposes to f to be injective can be replaced by a weaker one: for every
u, v ∈ RootL, ψ(u) 6= ψ(v) implies that fV (u) 6= fV (v). Note that searching for an injective
morphism from L to G is the same thing that searching for a subgraph of G that is isomorphic to
L.

An example of rewrite rule and an example of a rewrite step associated with this rewrite rule
are given in Figure 3.1.

Definition 8 (Observable Similarity). Let G and H be two DFGs such that the variable symbols
occurring in H occur also in G. H is observably similar to G, if there is a surjective mapping
φ : RootG → RootH such that θ ◦ termG|RootG = θ ◦ termH ◦ φ for every assignment θ.

Intuitively, H is observably similar to G if, given as input a subset of the input values of G,
H computes the same set of output values as G. Different implementations of the same algorithm
are not necessarily isomorphic since they may contain non-equal terms. But they are observably
similar.

Theorem 3.1.1. Given a rewrite rule r = (L,R, ψ) if R is observably similar to L according to
ψ, then for any rewrite step G→r H, H is observably similar to G.

Proof. Let θ be an assignment. We will first prove that:

∀v ∈ RootL, θ(termG(fV (v))) = θ(termH(lV (ψ(v)))) (1)

Let θ′ be an assignment defined by:
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Figure 3.1: Example of a rewrite rule and of a rewrite step. The rewrite rule is given at the top.
It illustrates the distributive property of the multiplication over the addition. The function ψ
is represented by a dashed arrow and the final vertices are depicted with an ellipsis shape. The
intermediate steps that are involved in the construction of H are given at the bottom from left to
right. Vertices of G belonging to fV (L) are highlighted in grey. Note that in this example f is not
injective but fV |RootL is. As explained on the paragraph that follows definition of rewrite step,
this is sufficient.

θ′(x) =

{
θ(termG(σ(x))) if σ is defined for x

any element of D otherwise

Let us consider the following statement: θ(termG(fV (v))) = θ′(termL(v)) for v ∈ VL. If v is
labelled with a constant then fV (v) is labelled with the exact same constant. Every possible
assignment maps a constant to the same element of D, hence the statement is true in that case.
If v is labelled with a variable symbol then:

θ′(termL(v)) = θ(termG(σ(termL(v)))) according to the definition of θ′

= θ(termG(fV (v))) according to the definition of σ

Hence the statement is also true in that case. For the remaining case, where v is labelled
with non-constant operation symbol, let us assume that the statement is true for all the direct
predecessors v1, ..., vn of v. Then, we have:

θ′(termL(v)) = labVL(v)(θ′(termL(v1)), ..., θ′(termL(vn)))
= labVG(fV (v))(θ(termG(fV (v1))), ..., θ(termG(fV (vn))))
= θ(termG(fV (v)))

Thus, according to the induction principle mentioned in Section 2.1.1, the statement is true for
all v ∈ VL. We can show using the exact same proof that θ(termG◦σR(lV (v))) = θ′(termR(v))
for all v ∈ VR. R is observably similar to L according to ψ, thus in particular θ′(termL(v)) =
θ′(termR(ψ(v))) for all v ∈ RootL. If we combine this equality, with the two that we just proved,
we obtain for all v ∈ RootL:
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θ(termG(fV (v))) = θ(termG◦σR(lV (ψ(v))))

= θ(termH(lV (ψ(v)))) by construction of H

It concludes the first part of this proof. In the second part of this proof, we will show that:

∀v ∈ VG ∩ VH , θ(termG(v)) = θ(termH(v)) (2)

We will proceed according to the induction principle. Given v ∈ VG∩VH then by construction of
H, labVG(v) = labVH(v). Hence, if v is labelled with a constant or with a variable, the equality
holds. Now, let assume that the equality is true for all the direct predecessors of v that are in
VG ∩ VH . For simplicity, we assume that v has two direct predecessors in G: v1 ∈ VG ∩ VH and
v2 ∈ fV (RootL). We do not lose generality with this last assumption, since any other case can
be proved in the same way. We have:

θ(termG(v)) = labEG(v)(θ(termG(v1)), θ(termG(v2)))
= labEH(v)(θ(termH(v1)), θ(termG(v2))) induction hypothesis
= labEH(v)(θ(termH(v1)), θ(termG(fV (v′2)))) v′2 ∈ VL s.t. fV (v′2) = v2

= labEH(v)(θ(termH(v1)), θ(termH(lV (ψ(v′2))))) according to 1
= θ(termH(v)) by construction of H

It concludes the proof of 2. Let ψ′ be a mapping from RootG to RootH defined for all v ∈ RootG
by:

ψ′(v) =

{
lV (ψ(w)), if v ∈ fV (RootL), where w is the preimage of v under fV

v, otherwise

We have θ(termG(v)) = θ(termH(ψ′(v))) for all v ∈ RootG. The case where v ∈ fV (RootL) is
covered by 1 and the case where v /∈ fV (RootL) is covered by 2. By definition of RootH , ψ′ is
surjective. That concludes the proof of the theorem.

Observable similarity is a transitive relation. Therefore, for any sequence of rewrite steps
involving observably similar rewrite rules, the final DFG will be observably similar to the first
one. Every rewrite rule that takes part in the normalization phase has the observable similarity
property. Hence, the whole normalization phase also has it. This is an essential observation. It
guarantees that if for every rewrite steps there is no deviation from the original behaviour, then
at the end there will be no deviation either. In fact, we cannot tolerate even a slight deviation
from the original behaviour because once amplified by the whole set of rewrite rules, it could have
dramatic effects on the primitive identification method (for both the false positive and the false
negative ratio). The importance of the observable similarity property for primitive identification
is discussed in Section 4.1.3.

3.1.2 Reduction System

We note GΣ,X the set of all possible DFGs over Σ and X. Let R be a set of rewrite rules. We
note → the binary relation over GΣ,X defined by →=

⋃
r∈R →r. The transitive-reflexive closure

of → is noted →∗. The tuple (GΣ,X ,→) is a reduction system. An element G ∈ GΣ,X is a
normal form if there is no H ∈ GΣ,X such that G → H. We say that G is a normal form of
H if H →∗ G and G is a normal form. The relation → is terminating if there is no infinite
sequence of the form: G0 → G1 → G2 → ... If → is terminating then every element of GΣ,X has a
normal form. The relation→ is convergent if every element of GΣ,X has a unique normal form up to
isomorphism. These two properties can be defined for any reduction system. The following property
is specific to DFG reduction systems. A convergent relation over GΣ,X is context-insensitive if for
any G,H ∈ GΣ,X such that there is a DFG morphism from G to H, there is also a DFG morphism
from the normal form of G to the normal form of H.
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In the remainder of this section, we explain why we would like these three properties to be
satisfied by the reduction system used in the normalization phase. The objective is to point out
constraints that need to be satisfied by the reduction system. While most of this chapter describes
a reduction system which works relatively well in practice, it seems important to understand that
some transformations cannot be performed during the normalization phase (or, at least, not without
serious consequences on the primitive identification method). For each of the three properties we
discuss whether or not they hold in practice. This informal discussion is by no mean a proof of
any sort.

Termination. Termination is absolutely mandatory. Otherwise the normalization phase will last
forever unless it is stopped at an arbitrary point. But in this case the reduction system is almost
certainly not going to be convergent. If there is a rewrite rule in R which is not terminating then
R is not terminating. But the fact that all rewrite rules of R are terminating does not imply that
R is terminating. One of the main argument to prove that many rewrite rules are convergent is to
compare the size of their input with the size of their output: if a transformation always decreases
the number of vertices then it is convergent. The reduction system described in this chapter is
not convergent unless rewrite rules are executed in a specific order. In fact it contains rewrites
which counteract each other. But when rewrite rules are executed in the right order we did not
face during our experiments a DFG with no fixed point. Therefore, we assume that termination is
satisfied by our reduction system in practice.

Convergence. Convergence is highly recommended. Ideally every implementation of a primitive
should converge towards the same normal form. In other words, there should be a single normal
form per ‘class’ of observably similar DFGs. It clearly implies convergence. As for termination,
a single non-convergent rewrite rule is sufficient to break convergence of R; but proving that all
rewrite rules in R are convergent is not sufficient to prove that R is convergent. An example of a
non-convergent term rewrite rule is given below:

+(x, x, x)→ +(×(x, 2), x)

Based on our experiments it is hard to determine whether or not our reduction system is
convergent in practice. In our implementation, rewrite rules are always executed in the same
order, thus even if we try to normalize several times the same DFG it will always produce the same
sequence of rewrite steps. We have not tried to randomize the order in which rewrite rules are
executed. In practice tough, the number of signatures per primitive is relatively small compared
with the number of implementations that are successfully identified. Moreover, as detailed in
Section 4.3.2, the differences between these signatures are generally not related with possible
convergence issues. Thus, we assume that our system is convergent in practice.

Context-Insensitivity. Finally the primitive identification method should be independent of
the segment selection. We should be able to identify a primitive in a trace segment, as long as it
contains one execution of this primitive. It implies the context-insensitivity property. But context-
insensitivity is not satisfied in practice. If the left hand side DFG of a rewrite rule contains
two or more vertices that are connected and labelled with operation symbols, this rewrite rule
does not satisfy the context-insensitivity property. Very few of the normalization mechanisms
presented in this chapter satisfy the context-insensitivity property. It causes many problem in
practice and reduces the chance of success for large trace segments. To mitigate this issue some
rewrite rules (refer to section 3.8) implement mechanisms to limit the code distance between the
different vertices involved in a single rewrite step. Thereby an instruction that is too far from a
primitive implementation cannot directly influences the way this primitive implementation will be
normalized. To conclude, formulated as such context-insensitivity is almost impossible to satisfy
and in practice the success rate of the primitive identification method depends on the size of the
segments.
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3.2 Practical Aspects

Unique Set of Rewrite Rules. DFGs are always normalized with the same set of rewrite rules.
The alternative approach is to use different sets of rewrite rules depending on the primitive that
is to be identified. This latter approach has several advantages at first glance. Let us assume
we want to insert a new rewrite rule into the reduction system to deal with a corner case that is
specific to a given primitive. There is a risk that this new rule will break the termination or the
convergence property of the system for primitives that were correctly detected so far. At least, it is
highly probable that it will modify the normal form of other primitives breaking the compatibility
with existing signatures. For these reasons, we may be tempted to use the new rewrite rule only
to detect the specific primitive it was intended for. But, in our opinion this is not a good solution.
First, if one wants to test several primitives, the same DFG will have to be normalized several
times. Second, if a rewrite rule is useful for a primitive it may be useful for other primitives too.
It seems a better practice to devise a rewrite rule once and for all than to let users craft their own
rewrite rules every time they need to support new primitives. With our approach (a single set of
rewrite rules for every signature), users do not need any particular knowledge of the normalization
mechanisms to write new signatures (refer to Section 4.1.4 for more details on signature creation).
Of course, it comes at a cost. Creating new rewrite rules requires extra caution to be compliant
with the rest of the system and existing signatures will probably have to be updated.

Implementation. Despite the fact that every normalization mechanism can be formalized as a
rewrite rule, we did not implement a unified algorithm to apply any rewrite rule. Instead each
rewrite rules or each family of rewrite rules, is applied using its own specific algorithm. DFGs
involved in rewrite rules are usually small. Hence a generic subgraph isomorphism algorithm such
as the one presented in Section 4.2 is not mandatory. Some rewrite rules must only be applied if
some additional conditions are met. Those conditions can be easily and efficiently be checked by a
dedicated algorithm. This is the case for instance for memory access simplification. Many rewrite
rules can be regrouped and applied efficiently in a single pass over the vertices whereas a generic
subgraph isomorphism algorithm would probably have to be reset after each rewrite step. Moreover,
a rewrite step can immediately create a new opportunity for its direct successors. If tested in the
right order, some rewrite steps can be applied in a cascading fashion for an optimal efficiency. This
is the case for instance for common subexpression elimination and constant folding. Finally, some
families of rewrite rules contain an infinity of rewrite rules. Obviously we cannot search each of
them independently. This the case for instance for common subexpression elimination and affine
expression simplification.

Relation with Compiler Optimizations. Many of the normalization mechanisms presented
in this chapter are in fact compiler optimization techniques. This is not a surprising observation.

Many terms represented in DFGs can still be optimized even though they were obtained from
correctly optimized code. Because of machine code specificities (number and size of registers, in-
struction set, memory addressing mode and so on), the most efficient machine code does not always
correspond to the smallest or most concise terms. This is especially true for SIMD instructions. For
instance in the OpenSSL AES synthetic sample (refer to Section 4.3.1 for more details on synthetic
samples), the AES encryption function which makes an intensive use of SIMD instructions, is first
translated to a DFG of nearly 6000 vertices. Due to the popularity of the OpenSSL library, we
have every reason to believe that its AES implementation was correctly optimized. However, after
the normalization phase, the DFG contains less than 2500 vertices. Straight line code hypothesis
is another source of possible optimizations. Unlike compilers, we normalize a single execution
path. Local optimization techniques can be applied at a much larger scale resulting in many new
optimization possibilities.

We will now explain, why terms represented in DFGs must be optimized as part of the normal-
ization process. Here the word ‘optimization’ means reduction of the size of expressions. First, it
goes without saying that from a performance perspective it is faster to work with small DFGs than
with large ones. Second and most importantly, normalization mechanisms that reduce the size of
DFGs are terminating and have a chance to be convergent. Their inverse transformations however,
have very little chance to be terminating. Hence if a single normal form has to be reached from two
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Table 3.1: Ordered list of normalization mechanisms. For each of them, we specify the complexity
to the number of vertices and whether or not the vertices need to be in a topological ordering.
We provide two estimations of the complexity: the one on the left corresponds to the worst case
complexity where vertices have a number of direct predecessors and direct successors which is
linear in the number of vertices and the one on the right corresponds to a more realistic situation
where vertices only have a constant number of direct predecessors and direct successors. The cost
of sorting the vertices in a topological ordering is not included in these complexity estimations.

Id Name Complexity Topo. Order
1 Constant Folding O(n2) O(n) yes
2 Constant Expression Detection O(n2) O(n) yes
3 Miscellaneous Rewrite Rules O(n2) O(n) no
4 Common Subexpression Elimination O(n3.log(n)) O(n2) yes
5 Memory Access Simplification O(n2) O(n2) no
6 Constant Distribution O(n2) O(n) no
7 Operation Size Expansion O(n2) O(n) no
8 Memory Coalescing O(n.log(n)) O(n.log(n)) no
9 Affine Expression Simplification O(n2.log(n)) O(n2.log(n)) no
10 Constant Merging O(n2) O(n) no
11 Comm. & Asso. Operation Normalization O(n2) O(n) no

observably similar DFGs, one well optimized and the other not, the most reasonable solution is to
optimize the DFG that is not. Third, smaller expressions can be compared and over-approximated
more precisely. This is especially important for address expressions. Simplification of address
expressions leads to more precise address comparisons and as explained in Section 3.6 to more
thorough memory access simplifications. Not every rewrite rule directly modifies expressions that
will be involved in the primitive signature. Some of them, such as affine expression simplification,
are just supposed to simplify the surrounding expressions, so that side conditions (aliasing in the
case of memory access simplification) can be verified more precisely.

Overview. The list of rewrite rules presented in this chapter has been constructed progressively.
New rewrite rules were inserted only when necessary. Thus, this list is by no means complete
nor definitive. Important rewrite rules, to normalize primitives which are not covered by our
experiments, may still be missing.

There are eleven families of rewrite rules also called normalization mechanisms. They are given
in Table 3.1 in the same order as the order in which they are applied to DFGs. This order is not
particularly important except for constant merging, constant folding and common subexpression
elimination. Constant folding must be executed at least once between constant merging and
common subexpression elimination otherwise the system is not terminating. This list is executed
repeatedly until a fixed point is eventually reached.

In the remainder of this chapter, there is one section dedicated to each family of rewrite rules.
The rewrite rules the left hand side graph of which has a single final vertex will be formulated
as term rewrite rules. A term rewrite rule is a tuple of terms. There is no need to specify the
mapping ψ because terms have a single root element.

3.3 Common Subexpression Elimination

Common subexpression elimination is a classical compiler optimization technique. If two vertices
have the same label and share the same set of direct predecessors in the same order, they represent
the same expression. Consequently they can be merged into a single vertex. This transformation
correspond to a DFG morphism which maps the two equivalent vertices to a single one. It also
corresponds to a rewrite step for the rewrite rule given at the top of Figure 3.2. This rewrite
rule can be applied to any operation symbol except load and store which are handled by the
memory access simplification mechanism. This rewrite rule is terminating, convergent [60] and
context-insensitive. The normal form associated with this rewrite rule is called fully collapsed.
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Figure 3.2: The three rewrite rules involved in common subexpression elimination. * is a place-
holder for an operation symbol. For Rule 1, it can be substituted by any operation symbol except
load and store. For Rule 2 and 3, it must be substituted by an commutative and associative
operation symbol.

As motivated at the beginning of Chapter 2, fully collapsed representations are preferred to tree
representations for performance reasons.

Two additional rewrite rules are involved in common subexpression elimination. These rewrite
rules, noted Rule 2 and Rule 3 in Figure 3.2, are to be applied on commutative and associative
operation symbols only. If two commutative and associative operations share at least two input
operands, theses shared operands can be replaced by their partial result. These two rules are
terminating. In fact, the number of edges is reduced by at least one. But they are not convergent.
A counterexample is as follows. If a vertex shares input operands with two other vertices, then one
rewrite step is possible for each of theses vertices. If the two sets of shared operands are neither
disjoint nor equal, we will only be able to perform a single rewrite step at a time. Hence we can
obtain two different normal forms, depending on which one is executed first. In practice though,
we have never faced this issue.

Rule 1, 2 and 3 can be applied simultaneously using Algorithm 2. Each vertex is compared
with all the other vertices to determine which input operands do they have in common. Since
vertices are first sorted into topological order, we have the guarantee that when processing vertex
v, every predecessor of v is fully collapsed. Hence at the end of the algorithm, when every final
vertex has been processed, we have the guarantee that the DFG is fully collapsed. Assuming that
the comparison of two sets of vertices takes time O(n.log(n)), where n is the number of vertices
in the DFG, then the complexity of Algorithm 2 is O(n3.log(n)). It corresponds to the worst case
complexity, when every vertex can have O(n) direct predecessors.
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Algorithm 2 Common Subexpression Elimination (Rule 1, 2 and 3)

sort VG into topological order
for all v in VG do

for all u in VG such that labVG(u) = labVG(v) do
compare the direct predecessors of v with the direct predecessors u
if the two sets are equal then

apply Rule 1
else if one set is included in the other then

apply Rule 2
else if if the intersection of the two sets contains more than one element then

apply Rule 3
end if

end for
end for

3.4 Constant Simplification

In this section we present three families of rewrite rules, namely constant folding, constant distri-
bution and constant merging. They have been regrouped because they are all related with constant
terms and because they are highly dependent on each other. In fact, the only goal of constant
distribution and constant merging is to leverage the effect of constant folding.

3.4.1 Constant Folding

We regroup by the name of constant folding, several rewrite rules that are triggered when an
operation has one or several constant operands. Depending on the value of these constant operands
and on their number, parts of or even the whole term can be replaced by a constant. These rewrite
rules are given below for the × operation symbol:

×(0, x2, ..., xn)→ 0

×(1, x2, ..., xn)→ ×(x2, ..., xn)

×(c1, ..., cn)→ c1 × ...× cn
×(c1, ..., cj , xj+1, ..., xn)→ ×(c1 × ...× cj , xj+1, ..., xn)

Variables xi refer to non-constant terms and variables ci refer to constant terms. Similar rewrite
rules exist for other operation symbols: +, ∧, imul, ∨, �, � and ⊕. For functions that do not
have an absorbing element, the first rule is omitted. Constant folding can be applied efficiently in
a single pass over the vertices if they are in a topological order.

Many normalization mechanisms, such as common subexpression elimination and memory ac-
cess simplification, are unlocked by evaluating constant subterms. Constant folding rules play a
key role in the normalization process even if the code has been correctly optimized. In fact, due
to the straight line code hypothesis, many constant folding scenarios that were not possible at
compile time, are now possible. For instance, memory offsets in loops that are computed based on
the induction variable, can be partially evaluated once the loop is unrolled.

However, it is often necessary to rearrange groups of operations to efficiently implement constant
folding. In fact, constants that are spread over several subterms need to be regrouped in order
to apply constant folding rules. For this purpose, we devise two additional sets of rewrite rules:
constant distribution and constant merging (detailed respectively in Section 3.4.2 and 3.4.3).

The following example illustrates the rewriting system composed of constant folding, constant
distribution and constant merging. It is based on the following C code snippet (which computes
the sum of an array):
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disp disp

Figure 3.3: Illustration of the rewriting system composed of constant folding, constant distribution
and constant merging. The rewriting starts at the top left and ends at the bottom right. The
vertices which are directly involved in each rewrite step are highlighted in grey.

do {

b += ptr[a --];

} while(a);

The x86 code returned by GCC 5.2.1 (with the -O2 option) for this code snippet is as follows:

sub edx,0x1

add eax,[ecx+edx*4+0x4]

test edx,edx

jne 0xf5

In this example we only consider one iteration of the loop. Figure 3.3 details step by step how
the rewriting system transforms the DFG. The initial DFG is given at the top left (part of it has
been omitted for simplicity). From left to right and top to bottom, the rules that are applied to the
DFG are: constant distribution, constant folding, merging and constant folding. We first notice
that without regrouping the constant terms on the same operation, no constant folding would have
been possible. Second, this example underlines that even for optimized code, constant folding is
essential to simplify expressions.

One important drawback of constant folding is that it causes the rewriting system to become
more sensible to the context. For instance, if a variable is initialised in the trace segment, constant
folding will completely remove that variable from the DFG. Thus, the normalized DFG will greatly
differ from the one that would have been obtained if this variable was left uninitialised. During
our experiments, we faced this issue for the MD5 synthetic samples.

3.4.2 Constant Distribution

We regroup in this section rewrite rules based on the distribution property. These rules have been
introduced to create new constant folding possibilities. Given two operations that both have a
constant operand, if we distribute one over the other (assuming that this is a valid transformation),
at least one of the newly created terms could benefit from constant folding. We extend this criterion
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8

movzx�

∨ 0xff

∧

disp

Figure 3.4: A typical DFG that could highly benefit from constant distribution rules. Such DFGs
are common in cryptographic code. If an algorithm operates on variables that are smaller than
the architecture word size and if several of these variables are stored in the same word, similar
expressions will appear.

for certain pairs of distributive operations as follows. If in the distributed expression one of the
newly created terms is constant according to value range analysis, then we perform the replacement.
Rules based on this latter criterion are especially important to simplify expressions such as the
one shown in Figure 3.4. The complete list of rewrite rules that compose the constant distribution
subsystem is given below:

×(+(c1, x), c2)→ +(×(c1, c2),×(x, c2))

� (+(c1, x), c2)→ +(� (c1, c2),� (x, c2))

� (∧(x1, x2), c2)→ ∧(� (x1, c2),� (x2, c2)) if DG(x1 � c2) is a singleton

� (∧(x1, x2), c2)→ ∧(� (x1, c2),� (x2, c2)) if DG(x1 � c2) is a singleton

� (∨(x1, x2), c2)→ ∨(� (x1, c2),� (x2, c2)) if DG(x1 � c2) is a singleton

� (∨(x1, x2), c2)→ ∨(� (x1, c2),� (x2, c2)) if DG(x1 � c2) is a singleton

∧(∨(x1, x2), c2)→ ∨(∧(x1, c2),∧(x2, c2)) if DG(x1 ∧ c2) is a singleton

3.4.3 Constant Merging

Let u and v be two vertices such that there is an edge from u to v. If u and v have the same label
and if this label is the symbol of a commutative and associative operation, we can collapse u and
v into a single vertex w. The label of w will be equal to the label of u and v and w will have the
operands of both u and v. As explained in Section 3.8, this transformation plays a key role in the
normalization of commutative and associative operations. In that context, this transformation has
many drawbacks and it must be limited to very specific scenarios. But here the situation is quite
different. If both u and v have constant operands, merging them will create a new constant folding
possibility since w will have at least two constant operands. For the same reason that motivated
us to introduce constant distribution in the previous section, we will merge commutative and
associative operations that have constant operands. This transformation is formalized by the
following rewrite rule:

+(c1,+(c2, y2, ..., ym), x3, ..., xn)→ +(c1, c2, x3, ..., xn, y2, ..., ym)

Here + acts as a placeholder for any commutative and associative operation symbol. Currently
in our solution, this rewrite rule has been implemented for + and ∧. In Figure 3.5 there is an
example of a normalization phase that involves a constant merging rewrite step. This example
illustrates clearly that if constant folding is not executed between constant merging and common
subexpression elimination, the reduction system is not terminating. This example also shows that,
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Figure 3.5: Example of a normalization phase that involves a constant merging rewrite step. Note
that if common subexpression elimination is executed immediately after constant merging, there
is a cycle.

once constants have been simplified, shared operands are regrouped due to common subexpression
elimination (Rule 1 and 2 , refer to Section 3.3) and a hierarchical expression involving several
operations is recreated. This is the main difference with commutative and associative expression
normalization which is also based on the collapsing of commutative and associative operations.

3.5 Constant Expression Detection

The goal of constant expression detection is to find expressions that always evaluate to the same
value for every assignment and to replace them by the corresponding constants. Stated as such
constant expression normalization seems to encompass constant folding. This is true only in certain
scenarios. Constant expression detection is very different from constant folding in the way it is
implemented. It only supports a subset of the operations supported by constant folding and it
cannot deal with identity elements. Constant expression detection relies on value range analysis
and on influence measurement.

Influence Mask. To measure at the bit granularity the influence other vertices have on a given
vertex v, we use a bit mask M←v : VG → {0, 1}∗. If the ith bit of M←v (u) is equal to 0, it means
that v is not influenced by the ith bit of u. That is to say, for every assignment θ, θ(v) is not
modified if we flip the ith bit of θ(u). Conversely, if the ith bit of M←v (u) is equal to 1, it means
that v may be influenced by the ith bit of u. This latter relation is treated in a conservative way.
In particular it does not imply that there is an assignment θ such that flipping the ith bit of θ(u)
modifies θ(v). This is the default value if we cannot prove that a bit has no influence on v.

To compute M←v , we start with M←v (v) = 11...1 and we propagate backward the mask along
the edges. For every edge e it traverses, the mask is updated. This update process is formalized
by a function I−e : {0, 1}size(dst(e)) → {0, 1}size(src(e)) which takes as input an influence mask for
dst(e) and returns an influence mask for src(e). Let m be a mask in {0, 1}size(dst(e)). The ith

bit of I−e(m) is equal to 0 if, assuming that e is the only outgoing edge of src(e), there is no
j ∈ {1, ..., size(dst(e))} such that the jth bit of m is equal to 1 and the ith bit of src(e) influences
the jth bit of dst(e). Otherwise the ith bit of I−e(m) is equal to 1. The update function I−e takes
every available information into account: the label of e, the label of dst(e) and over-approximations
of the other operands of dst(e). M←v (u) is equal to the bitwise OR of the masks obtained from all
the outgoing edges of u, in other words:

M←v (u) =
∨

e∈EG,srcG(e)=u

I−e(M
←
v (dstG(e)))

As an example let us consider the DFG on the left hand side of Figure 3.6. We assume that
the size attribute of every vertex is equal to 32 bits. In this example our objective is to compute
M←v5 . We start with M←v5 (v5) = 0xffffffff. From v5 to v4 the mask is updated as follows. v5

is labelled with ∧ which is one of the few operations with � and � to have a specific update
mechanism. In the case of ∧, we first over-approximate the result of the bitwise AND over its
other operands. Luckily in this example there is only one other operand and it is a constant. To
update the influence mask, we simply compute the bitwise AND of M←v5 (v5) and of this constant.
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Figure 3.6: Example of a normalization phase that involves a constant expression detection rewrite
step. {x ∧Mv5(v2), where x ∈ D(v2)} = {0}, thus v2 can be replaced by a 0 constant according
to the constant expression detection mechanism. Finally, a constant folding rewrite step simplifies
the ∨ operation.

v4 has a single outgoing edge thus M←v5 (v4) = 0x000000ff. Vertices v3 and v4 are treated in similar
ways. They are both labelled with bitwise operation symbols that do not have a specific update
mechanism. The mask is kept unchanged and M←v5 (v3) = M←v5 (v2) = 0x000000ff. Finally from v2

to v1 the mask is updated as follows. v2 is labelled with � and v1 is its first operand. In that case
we right shift the influence mask by the value obtained from the over-approximation of its second
operand: M←v5 (v1) = 0x000000ff� 8 = 0x00000000. As a conclusion v1 has no influence on v5.

Influence masks are used for constant expression detection and also in Chapter 5 to filter paths
that do not reflect actual influence relations.

A rewrite step, which modifies parts of terms that do not influence the set of final vertices,
preserves the observable similarity. More formally, given a rewrite rule r = (L,R, ψ), a rewrite step
G→r,f H preserves the observable similarity if for every assignment θ and every vertex v ∈ RootL:

θ(termL(v)) ∧M←RootG(fV (v)) = θ(termR(ψ(v))) ∧M←RootG(fV (v))

The influence mask M←RootG is equal to the bitwise OR of the influence masks on each of the vertices
of RootG. Applied to constant expression detection, this property states that if there is a vertex v
such that DG(v)∧M←RootG(v) contains a single element, we can replace v by a vertex labelled with
the corresponding constant without breaking the observable similarity.

This normalization mechanism is illustrated in Figure 3.6. According to value range analysis,
D(v2) = {28×x, with x ∈ [0, 224]} and according to influence measurement M←v5 (v2) = 0x000000ff

(refer to the example in the previous paragraph). Thus D(v2) ∧M←v5 (v2) = {0}. We can replace
the � operation by a 0 constant. Although they share several characteristics, the examples of
Figure 3.4 and 3.6 are not equivalent. In fact, in Figure 3.4, the ∨ operation can have several
outgoing edges. For this reason, its influence mask over the final vertices is not necessarily equal
to 0x000000ff. Hence constant expression detection cannot be applied in that case. Conversely
in Figure 3.6 the ∧ operation must be distributed over the ⊕ and the ∨ operation to obtain a
constant term. Such a sequence of distributions is out of the scope of constant distribution.

One may argue that the example of Figure 3.6 is unrealistic since it has very little chance to
be encountered in correctly optimized code. Nevertheless, this exact example was found in the
OpenSSL AES synthetic sample and motivated by itself the introduction of constant expression
detection. Although no software developer would write such an expression in plain C code, it may
still appear, as it is the case in OpenSSL, due to side effects of SIMD register manipulation.

If the vertices are sorted in inverse topological order, M←Root can be computed for all the vertices
in a single pass. Thus, the worst case complexity of this normalization mechanism is O(n2) and
the average case complexity is O(n).
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a = a + b;

/* [...] */

a = a + c;

add [esp], ebx

; [...]

add [esp], ecx

mov eax, [esp]

add eax, ebx

; [...]

add eax, ecx

mov [esp], eax

esp

load1ebx

+

store2

load3 ecx

+

store4

@ @

@ @

esp

load1

+

ebx

+

ecx

store2

@

@

Figure 3.7: C code snippet compiled with two different register allocation strategies, resulting into
different DFGs.

3.6 Memory Access Simplification

During construction of DFGs, memory accesses are replaced by load and store operations. Many
of them are caused by register filling and spilling. Register allocation is highly dependent on
the compiler and on its optimization level. Thus, these accesses reflect more implementation
specificities than a generic characteristic of the algorithm. In the example of Figure 3.7, the same
C code snippet is compiled using two different register allocation strategies. On the right the
intermediate result is stored in a register whereas on the left it is stored in the stack. The DFGs
that would have been obtained for these two strategies (given at the bottom of the figure) are
rather different. Normalization must abstract DFGs from the way local variables are stored (either
in registers or in memory). Moreover, for mode of operation identification, we will be interested
in tracking values as they are written and read from memory (refer to Chapter 5). To fulfil these
objectives, we rely on a normalization mechanism called memory access simplification. It tries to
remove unnecessary memory operations. That is to say load operations, the address of which has
already been accessed in the DFG and store operations, the address of which will be overwritten
without any prior load. Ideally, normalized DFGs should be free of any memory operation except
those corresponding to input or output variables.

3.6.1 Naive Solution

First we compute sequences of memory operations that have the same vertex for their address
operand. Then, we traverse theses sequences and perform simplifications based on the following
rules:

Rule 1 store1, store2 → store2

Rule 2 store1, load2 → store1

Rule 3 load1, load2 → load1

In Rule 1, store1 is simply deleted. This rewriting is more related with dead code removal than
with a rewrite step. Since the value written by store1 is overwritten by store2, store1 is not
a final vertex. It does not have any successor. Thus it can be deleted according to the dead
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Figure 3.8: DFG rewrite rules resulting from Rule 2 and 3. The memory state, which is the first
argument of both load and store operation, is explicitly depicted.
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Figure 3.9: Memory simplification applied to the DFG on the left column of Figure 3.7. The
simplification process goes from the left to the right.

code removal principle given in Section 2.4.1. In Rule 2, load2 is replaced by the data operand
of store1. In Rule 3, load2 is replaced by load1. The DFG rewrite rules that result from Rule
2 and 3 are given in Figure 3.8. Any sequence of memory operations converges either to a single
operation or to the sequence: (load, store). Defined as such, memory access simplification fulfils
our objective: there is at most one load per input variable and one store per output variable. As
illustrated in Figure 3.9, the DFG on the left hand side of Figure 3.7 converges toward the DFG
on the right hand side of Figure 3.7. Even with two different register allocation strategies, once
normalized the two DFGs are isomorphic.

3.6.2 Aliased Pointers

However, stated as such, Rule 1, 2 and 3 do not always result in observably similar rewrite steps
(or in proper dead code removal). A vertex that is an operand of type address for at least one
memory operation is called a pointer. Two pointers p1 and p2 are aliased if there is an assignment
θ such that θ(p1) = θ(p2). Given the naive solution that has been presented so far, one sequence
of memory operations is obtained per pointer. These sequences are simplified independently. It
leads to observably non-similar rewrite steps (or non-proper dead code removal) in the following
scenarios.

• Rule 1: if an aliased load happens between store1 and store2. The value written by store1

is accessed by the aliased load. Hence store1 must not be deleted according to the dead
code removal principle.

• Rule 2: if an aliased store happens between store1 and load2. The value read by load2
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might differ from the value that was written by store1. We have no guarantee that the
observable similarity still holds.

• Rule 3: if an aliased store happens between load1 and load2. The value read by load2

might differ from the value that was first read by load1. We have no guarantee that the
observable similarity still holds.

Therefore, we must ensure that there is no problematic aliased memory access before performing
memory simplifications. Aliasing is a well known problem in static analysis and in compiler theory.
Aliased pointers are common in DFGs representing x86 code, especially at the early stages of the
normalization process. For instance, before common subexpression elimination, different vertices
may represent the exact same expression. If these vertices are pointers then they will obviously
be aliased. To detect aliasing we must be able to compare any two pointers. The result of the
comparison of two pointers p1 and p2 is either:

• must alias if θ(termG(p1)) = θ(termG(p2)) for all assignment θ ;
• cannot alias if θ(termG(p1)) 6= θ(termG(p2)) for all assignment θ ;
• may alias if none of the previous properties is true or if we are unable to prove that any of

them is true.

For this work two methods have been proposed to compare pointers: a static one based on
formal expression simplification and on value range analysis and a dynamic one that relies on
concrete address values. They are respectively presented and discussed in Sections 3.6.4 and 3.6.5.

3.6.3 Correct Solution

Let (Opi)1≤i≤l be the sequence of all the memory operations. Iteratively, each element Opi is
processed as follows. The address operand of Opi is compared with the address operand of Opi−1.
If they must alias and if a rule applies to (labVG(Opi−1), labVG(Opi)), we perform the corresponding
transformation. If they may alias and if Opi−1 is problematic with respect to any possible rule
that could be applied later on Opi, we stop. Otherwise, we move to the previous element and we
compare the address operand of Opi to the address operand of Opi−2. We repeat this process until
the first element of (Opi)1≤i≤l is reached or until we stop. A pseudo code of this algorithm is given
in Algorithm 3. It has been greatly simplified for the sake of clarity. For instance, it does not take
the size of memory accesses into account.

The pointer comparison method is used to determine both, when to apply a memory access
simplification rule and when to stop the search because a problematic aliased operation has been
found. Let Opi and Opj be two memory operations such that j < i and the addresses of Opi
and Opj may alias. If labVG(Opi) = store and labVG(Opj) = load then Opj is problematic
with respect to Opi. This case corresponds to the alias scenario associated with Rule 1. If
labVG(Opi) = load and labVG(Opj) = store then Opj is problematic with respect to Opi. This
case corresponds to the alias scenarios associated with Rule 2 and 3. Once a problematic aliased
operation is found, no further simplification are possible for the current memory access. It is
important for the comparison method to be accurate and not to conclude too quickly that pointers
may alias. Otherwise we will miss many memory access simplifications.

This algorithm requires O(l2) pointer comparisons. A single execution is sufficient to perform
every possible memory access simplifications. However, the precision of the static pointer compar-
ison method increases during the normalization phase. Therefore, when this comparison method
is used, this algorithm will have to be executed regularly during the normalization phase.

3.6.4 Static Pointer Comparison

Given two pointers p1 and p2, our goal is to determine whether they can be equal or not at runtime.
For this purpose, we over-approximate their difference. That is to say, we search a set ∆p1,p2 , such
that: θ(termG(p1)) − θ(termG(p2)) ∈ ∆p1,p2 for all assignment θ. If ∆p1,p2 = {0} then (p1, p2)
must alias. If 0 /∈ ∆p1,p2 then (p1, p2) cannot alias. Otherwise (p1, p2) may alias. It is important
for the precision of the comparison method to find the smallest over-approximated sets possible.
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Algorithm 3 Memory Access Simplification

for i = 1 to length(Op) do
for j = i− 1 to 0 do

compare addr(Op[i]) with addr(Op[j])
if addr(Op[i]) must alias addr(Op[j]) then

if labVG(Op[i]) = store and labVG(Op[j]) = store then
apply Rule 1

else if labVG(Op[i]) = load and labVG(Op[j]) = store then
apply Rule 2 and break

else if labVG(Op[i]) = load and labVG(Op[j]) = load then
apply Rule 3 and break

end if
else if addr(Op[j]) may alias addr(Op[j]) and labVG(Op[i]) 6= labVG(Op[j]) then

break
end if

end for
end for

We consider differences between pointers because it gives us the opportunity to perform formal
simplifications before computing over-approximations. Another possibility would be to compute
directly and independently over-approximations for each pointer and to reach a conclusion based
on the intersections of their over-approximated sets of reachable values. However, this latter
solution would be much less effective. Let us consider for instance the two pointers defined as
follows: p1 = +(eax, 10) and p2 = eax. Without any additional information on eax, the best
over-approximations we can compute leads to: D(p1) ∩ D(p2) = {0, 1}32. Consequently, we can
only conclude that (p1, p2) may alias which is correct but unsatisfactory. If we consider instead
the difference between the two pointers, say the subtraction of p2 from p1, we obtain the following
expression: −(+(eax, 10), eax). This expression can be simplified using the following term rewrite
rule: −(+(x1, x2), x1) → x2. Thereby we can establish that −(p2, p1) = 10 and we finally obtain:
∆p1,p2 = {10}. With this comparison method we are able to conclude that (p1, p2) cannot alias.

The initial idea to simplify expressions resulting from pointers subtraction, was to reuse some
of the rewrite rules that have been implemented for the normalization phase. Affine expression
simplification (refer to Section 3.9) seemed particularly appropriate for this purpose. Due to
performance reasons we limit the size of pointer expressions that are compared. Subtraction and
simplification of large pointer expressions may not be worth the computing cost. It can be explained
as follows. First, the complexity of pointer expressions may decrease during the normalization
phase. It seems more efficient to wait for pointer expressions to be normalized before trying to
simplify their difference. Otherwise, one will have to perform some internal rewritings that would
have been taken care of by the normalization process anyway, every time one wants to compare
two pointers. Second, it is not because one considers larger pointer expressions that one would be
able to perform more simplifications while subtracting them. Therefore, we limit the depth and
also the operation symbols that can be involved in expressions that represent pointers during alias
analysis. Unfortunately the simplification of these partial expressions cannot be achieved through
affine expression simplification and requires a specific algorithm.

Definition 9 (Partial Additive Tree). Let v be a vertex in a DFG G and Y a sufficiently large set
of variable symbols: |Y | ≥ |VG|. A partial additive tree rooted by v is a DFG T over Y and {+}
such that:

• T is a tree (it has a single root element and outdegreeT (u) ≤ 1 for all u ∈ VT ) ;
• there is a morphism f from T to G such that the root of T is mapped to v.

A pointer p is represented by the largest partial additive tree rooted by p, the maximum depth
of which is capped at a fix amount. This latter limit is mostly important during the early stage
of the normalization process, when very high additive expressions may be encountered (induction
variables for instance). The largest partial additive tree is extremely simple to compute. We start
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Figure 3.10: Example of two partial additive trees. The maximum depth is 1.

from the root element. If the current vertex is labelled with a + and if the maximum depth has not
been reached, we insert it in T and recursively process each of its direct predecessors. Otherwise,
insert in T a new vertex labelled with a variable symbol that must be unique for each vertex of G.
Examples of partial additive trees can be found in Figure 3.10.

Partial additive tree comparison is more subtle than classical expression simplification. Due
to the depth limit, sums represented by partial additive trees may correspond to only one part
and not the totality of the original sums represented in DFGs. For this reason, leaves of a partial
additive tree can correspond to any type of vertices in another partial additive tree. This scenario
is depicted in Figure 3.10. The image of p1 in the partial additive tree at the top right is the root
element whereas its image in the partial additive tree at the bottom right is a leaf (either y3 or y4).
As a consequence, the difference between two partial additive trees is not equal to the difference
of their leaves.

Let p1 and p2 be two pointers, T1 and T2 be the largest partial additive trees rooted by p1 and
p2 respectively and let f1 and f2 be two morphisms from T1 (respectively T2) to G which satisfy
the condition given in the definition of a partial additive tree. We devised a specific algorithm to
compare T1 and T2. It returns ∆p1,p2 . Its pseudo code is given in Algorithm 4.

Algorithm 4 Partial Additive Tree Comparison

tag every vertex in T1 and T2 with no predecessor
for all tagged vertices v1 in T1 do

if there is a vertex v2 in T2 such that f1,V (v1) = f2,V (v2) then
remove v1 from T1

remove the subtree rooted by v2 from T2

end if
end for
for all tagged vertices v2 in T2 do

if there is a vertex v1 in T1 such that f2,V (v2) = f1,V (v1) then
remove v2 from T2

remove the subtree rooted by v1 from T1

end if
end for
initialise ∆ as the zero singleton
for all tagged vertices v1 left in T1 do

∆← ∆ +DG(f1,V (v1)) . the addition is an operation on RICs
end for
for all tagged vertices v2 left in T2 do

∆← ∆−DG(f2,V (v2)) . the subtraction is an operation on RICs
end for
return ∆

Limitations. Of course, the precision of this static pointer comparison method, can benefit from
many refinements. For instance, partial additive trees are not yet capable of simplifying pointer
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expressions which include multiplication or left shift operations. These operations are extremely
frequent in pointer expressions. For instance, to access an element in a buffer its index has to
be multiplied by the size of an element. However, we did not address this particular issue. The
reason is that the main limitation of static pointer comparison has nothing to do any more with the
precision level of the comparison method. As motivated in Section 2.2.3 our identification methods
(for both primitives and modes of operation) are only executed on small trace segments. In the
following paragraph we explain why lack of context information greatly reduces the efficiency of
static pointer comparison regardless of its own precision level.

If the initialisation of a pointer (or even the initialisation of a subterm of a pointer expression)
happens before the beginning of the trace segment, it will be represented by a variable symbol.
Unfortunately, no tight over-approximation can be made for a variable symbol and it cannot be
simplified with any other expressions that do not dependent on it. Therefore, this pointer will
automatically become a possible alias for any other pointers that are not connected with the same
variable symbol. For primitive identification, we are able to cope with this issue thanks to a highly
arguable heuristic presented in the next paragraph. But for mode of operation identification it is
not possible. Modes of operation manipulate many data buffers (at least one for the plaintext, one
for the ciphertext, one for the key and one the nonce) the addresses of which are usually defined
outside of the analysis window. These buffers are accessed with mixed load and store operations.
In this situation, very few memory access simplifications remain possible. Unfortunately mode of
operation identification is extremely dependent on memory access simplification (refer to Section
5.3.1). Therefore, for mode of operation identification, we use dynamic pointer comparison instead
of static pointer comparison.

ESP Heuristic. To introduce the esp heuristic we rely on a very simple primitive model. Ac-
cording to this model a primitive interacts with three groups of pointers. The first group contains
pointers to input data. Input data is accessed at the beginning of the primitive by load operations.
The second group contains pointers to output data. Output data is accessed at the end of the
primitive by store operations. The third group contains stack pointers. Stack data is accessed
throughout the primitive by both load and store operations. There is no problematic alias access
inside each of these groups: the first one contains only load operations, the second one contains
only store and since every pointer in the third group derive from esp we suppose that the com-
parison method will eventually return either must or cannot alias. There is no problematic aliased
access between the first and the second group, since one happens before the other. However, there
are plenty of problematic aliased accesses between the first and the third group and between the
second and the third group.

The esp heuristic relies on the following intuition. The current stack frame is not supposed
to overlap buffers that are allocated in other stack frames, in the heap or in any other memory
region. We also assume that pointers that are used to access the current stack frame, depend
on esp and that pointers that are used to access other memory regions, do not depend on esp.
Consequently, a pointer that is reachable from a vertex labelled with esp cannot alias a pointer
that is not reachable by any vertex labelled with esp.

Of course this heuristic is highly arguable. It may be ineffective: it may conclude that two
pointers may alias even though in reality they cannot. And more preoccupying, it may be unsafe:
it may conclude that two pointers cannot alias even though in reality they can. This is the case
for instance if ebp is used to the access the current stack frame and if the link between ebp and
esp does not appear in the trace segment. A solution to mitigate this particular issue is to always
start trace segments at the beginning of a function.

However, the esp heuristic is a necessary evil. It solves completely the aliasing issues we had
in our simple primitive model. In fact, according to the esp heuristic, the third group of pointers
cannot alias the two other groups. Furthermore for reasons that are detailed in the following
section, static pointer comparison is the only possible pointer comparison method for primitive
identification.
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3.6.5 Dynamic Pointer Comparison

For a given execution, we record in the execution trace the value of the address of every memory
access. Those address values are then attached to memory operations during the DFG construction.
To compare the addresses of two memory operations, we just compare their runtime values.

Obviously, the results returned by this comparison method are only valid for a single execution,
that is to say, for a single assignment. If this comparison method is used for memory access
simplification, we will probably lose the observable similarity property. The normalized DFG will
be observably similar to its original form only with respect to the set of assignments that do not
modify the relative ordering of memory addresses. This approximation is acceptable on condition
that this set of assignments is somehow representative of every possible execution. In other words,
it is acceptable if collisions between memory addresses remain more or less the same from one
execution to another.

We assume that this hypothesis is valid for modes of operation. Two types of input data
may be subject to variations: the address of memory buffers and the content of memory buffers.
Here, by memory buffers, we mean cryptographic parameters such as the plaintext buffer or the
key buffer for instance. The addresses of memory buffers vary if they are, for instance, allocated
dynamically on the heap. We suppose that if they do not overlap for one execution they will never
overlap and vice versa. We also suppose that the content of memory buffers is not used to compute
new memory addresses. In fact any complex transformation performed on the content of memory
buffers can be seen as a distinct primitive and be dealt with separately.

We cannot make the same assumption for primitives. In fact, in primitives the content of
memory buffers can be used to compute new memory addresses. Substitution boxes are a perfect
example. If for a given set of cryptographic parameters, the same location in a substitution box
is read twice, Rule 3 will apply. As a consequence any expression involved in the computation
of the second address will be deleted according to dead code removal principle and an edge will
be inserted between the first and the direct successors of the second load. These are important
modifications and they will prevent the creation of a generic signature that would be able to match
every possible execution. For this reason, we cannot use dynamic pointer comparison for primitive
identification.

Another disadvantage of dynamic pointer comparison is that the program really needs to be
executed in a monitored environment. We can imagine several techniques to obtain straight line
code without having to execute the program. Some primitives are implemented as a single basic
block and hence, they already satisfy the straight line code hypothesis. In C code, function inlining
is not always a difficult problem. We can enumerate every possible execution path and use external
methods to filter execution paths that are clearly impossible. We do not claim that it is always
possible to obtain, at a small cost, straight line code that is representative of a real program
execution. But still, we have good hopes that in certain scenarios, where monitoring a program
execution is difficult (privileged code for instance), the straight line code hypothesis could be
satisfied without having to really execute the program. This is no longer the case with dynamic
pointer comparison. Moreover, in practice, recording address values increases the size of execution
traces and the time required to collect them, by at least one order of magnitude.

Limited Use of Address Values. In a classical analysis scenario we collect a single execution
trace for both primitive and mode of operation identification. As a consequence, address values
are available during primitive identification even though we cannot use them directly for pointer
comparison. In this paragraph we describe two strategies, that are compatible with primitive
identification, to exploit these runtime values.

• A first strategy is to use address values to determine if two pointers may alias. As explained
in Section 3.6.4, the esp heuristic might erroneously conclude, in specific situations, that two
pointers cannot alias whereas in reality they can. To reduce this risk, we can systematically
check address values when the esp heuristic concludes that two pointers cannot alias. If
the address values are equal, we change the result to may alias. Thereby, we correct the
esp heuristic using runtime values. This strategy only deals with a corner case and it has a
limited effectiveness.
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• A second strategy is to use address values to determine if two pointers cannot alias. If their
runtime values are not equal, then we automatically conclude that they cannot alias. Notice
that to conclude that two pointers must alias, we still have to prove it using partial additive
trees. This strategy is much more aggressive than the previous one and it clearly breaks the
observable similarity. That being said, it is also very effective and it solves every aliasing
conflict (that is to say, simplifications that are being blocked because we are unsure whether a
possible alias exists or not). Let us apply this strategy to the substitution box example which
caused the dynamic address comparison method to be rejected in a first place. To conclude
that two accesses are made at the same location in a substitution box, we must be able to
prove that their addresses are equal under any assignment. If this is untrue, we will not
succeed and no memory access simplifications will ever be performed inside the substitution
box. This strategy does not have the same problem as dynamic pointer comparison. At
the same time, accesses to the substitution box do not interfere with other memory accesses
because we can determine that they cannot alias based on their runtime values. This strategy
is both conservative when it has to conclude that two pointers are equal and speculative when
it has to reject possible alias.

We have implemented and tested these two strategies. The experimental results presented in
Chapter 4 are only related with primitive identification. For these experiments we relied only on
what was strictly necessary (that is to say, additive tree comparison and the esp heuristic) and
we did not use any runtime address value. The experimental results presented in Chapter 5 cover
both primitive and mode of operation identification. For these experiments we use simultaneously
the two strategies. These two sets of experiments can easily be compared since they contain more
or less the same primitive implementations. We did not notice much change though. Results were
already good for static pointers comparison so there was not much room for improvement. The
good news is that the second strategy, which is unsafe in theory since it breaks the observable
similarity, does not lower the detection rate.

3.6.6 Conclusion

To conclude this section on memory access simplification, we summarize the main reasons that led
us to choose different pointer comparison methods for primitive and mode of operation identifi-
cation. We cannot use dynamic pointer comparison for primitive identification because of substi-
tution boxes. The alternative is static pointer comparison. To improve the precision and reduce
the complexity of static pointer comparison we use partial additive trees. But the most serious
limitation of static pointer comparison comes from lack of context information. The esp heuristic
is a possible workaround. It has multiple flaws and it only works in a simple primitive model.
Another workaround is to make a limited use of runtime address values (if they are available) to
decide, for instance, if two pointers cannot alias. For reasons that have not been revealed yet,
mode of operation identification is extremely dependent on memory access simplification. At the
same time, from a memory access perspective, modes of operation are much more complex than
primitives. As a result, aliasing conflicts are extremely frequent and the esp heuristic is ineffective.
Therefore, we have to use dynamic pointer comparison for mode of operation identification. It has
an important impact on the usability of the method, since the program to analyse definitely has
to be executed in monitored environment.

3.7 Memory Coalescing

To introduce memory coalescing, let us consider the following example. There are several possi-
bilities to access 32 bits of data in memory. One can use, for instance, a single 32-bit memory
operation or four 8-bit memory operations. This choice is usually made by the software developer
even though some compiler optimizations are still able to modify it afterwards. There is no real
argument from a performance perspective to prefer four 8-bit operations over a single 32-bit oper-
ation. But in practice, both versions can be encountered in different implementations of the same
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Figure 3.11: Examples of memory coalescing rewrite rules. The first rule at the top combines two
16-bit load into a single 32-bit load. The second rule at the bottom combines two 16-bit store

into a single 32-bit store.

algorithm. For instance, to modify the endianness of a memory buffer1, depending on the imple-
mentations, memory is accessed either by 8-bit reads or by 32-bit reads. From a normalization
point of view, it is important to remove this difference.

We assume that the normalized size for memory operations is equal to the architecture word
size. Larger memory operations should be fragmented and smaller memory operations should be
combined. Fragmentation happens exclusively during the DFG construction when SIMD instruc-
tions are split. Combination is done through a set of rewrite rules called memory coalescing.

A memory coalescing rewrite rule replaces a set of memory operations, which access adjacent
memory locations, by a single memory operation the size of which is equal to the sum of the sizes
of the memory operations of the set. Examples of memory coalescing rewrite rules are given in
Figure 3.11. Two rewrite rules are depicted, one for load operations and one for store operations.
They both combine two 16-bit operations into a single 32-bit operation. Similar rewrite rules exist
to combine every set of memory operations such that the sum of their sizes is equal to 32 bits.

A possibility to find sets of memory operations that access adjacent memory locations, is to
reuse the pointer comparison methods that were presented in Section 3.6. But we did not do it,
mostly for historical reasons. At the time when memory coalescing was implemented, the static
pointer comparison method was much less efficient and generic than it currently is. In particular,
it was not able to determine if there was a fixed offset between two memory addresses. We devised
a specific method to determine sets of adjacent memory operations, the pseudo code of which
is given in Algorithm 5. This method is rather basic. It only considers memory operations the
address of which is the sum of two terms: one which is constant, called the offset, and one which is

1Endianness conversion is a common operation in cryptographic implementations, at least on little endian ar-
chitecture. Some primitives have to be implemented with a particular endianness. For instance, SHA1 has to be
implemented in big endian. But surprisingly, some primitives that do not have any endianness constraint, are still
implemented in the inverse endianness. This is the case for some AES table implementations [49] that are in big
endian even though the architecture is little endian. This mistake is so common that FindCrypt2 [34] only includes
the big endian tables of AES.
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not, called the base. If two memory operations have the same base then it is easy to see that their
addresses differ by a fixed amount which is equal to the difference of their offsets. In Algorithm
5 two important points are mentioned: scheduling and alignment. They will be detailed in the
followings paragraphs.

Algorithm 5 Memory Coalescing

initialise S as an empty set
for all v in VG such that labVG(v) is either load or store do

let addr(v) be the address operand of v
if labVG(addr(v)) = + and addr(v) has two operands one of which is a constant then

insert v in S
let off(v) be the value of the constant operand of addr(v)
let base(v) refer to the non-constant operand of addr(v)
if base(v) is an address operand for a vertex u and u /∈ S then

insert u in S and define off(u) = 0 and base(u) = v
end if

end if
end for
while there is an unprocessed vertex v in S do

Sv ← {u ∈ S such that labVG(u) = labVG(v) and base(u) = base(v)}
for all sequences (u1, ..., un) of vertices of Sv such that:

•
∑

1≤i≤n sizeG(ui) = 32
• ∀i < n, sizeG(ui) = off(ui+1)− off(ui)

do
if (u1, ..., un) satisfies the scheduling and the alignment condition then

coalesce (u1, ..., un) and break
end if

end for
tag every element of Sv as processed

end while

Memory coalescing rewrite rules are the only rewrite rules which try to vectorize similar op-
erations. It would make sense to create rewrite rules to vectorize other types of operations, such
as bitwise operations for instance. But since we have not encountered during our experiments any
scenario that requires such rules, we did not implement them.

Scheduling. Let us consider a memory coalescing rewrite step which replaces the memory op-
erations op1 and op2 by op1‖2. Let i1 and i2 be the position of op1 and op2 in the sequence of
memory operations. Let j be the position where op1‖2 is scheduled. We assume without losing
generality that i1 < i2. Let us first consider the simple case where i2 = i1 + 1 and j = i1. In
that case the rewrite step preserves the observable similarity. In fact, the sequence of memory
operations from 0 to j is unchanged, hence the memory state at position j is the same before and
after the rewrite step. Consequently, if op1 and op2 are load operations, the result returned by
op1‖2 will be equal to the concatenation of the results returned by op1 and op2. And if op1 and
op2 are store operations, the memory state returned by op1‖2 will be equal to the memory state
returned by op2. Thus, the following memory operations will not be affected. Now, let us consider
the general case. In the general case, the rewrite step does not preserve the observable similarity.
For instance in the following assembly code snippet, if we apply the rewrite rule given at the top of
Figure 3.11 to the first and the last load operation and if we schedule the result at the beginning
of the sequence of memory operations, we will break the observable similarity.

mov ax, [esp] ; op1, i1 = 0
mov [esp + 0x2], bx

mov cx, [esp + 0x2] ; op2, i2 = 2
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To detect whether or not a rewrite step breaks the observable similarity we proceed as follows.
If we can move, in the sequence of memory operations, op1 from i1 to j and op2 from i2 to j+1, then
we obtain the simple case that was first detailed. We showed, in that case, that the observable
similarity is preserved. Moving a load operation from position i to j preserves the observable
similarity if there is no store operation which accesses the same memory location between i and
j. Otherwise the load operation may return different results if placed at position i and j since
the memory state is different at those two positions. Moving a store operation from position
i to j preserves the observable similarity if there is no load or store operation which accesses
the same memory location between i and j. In fact, moving a store operation across a load

operation may modify its memory state argument and, consequently, the load operation may
return a different result. And moving a store operation across another store operation, may
modify the memory state at the end of the sequence of memory operations. Thus, it clearly breaks
the observable similarity. To test these conditions we reuse the static pointer comparison method
that is presented in Section 3.6. To determine where we should place op1‖2, we must find a position
j such that moving op1 and op2 from their original position to j, (respectively j + 1) preserves
the observable similarity. For instance, in the previous assembly code snippet, we can swap the
op1 with the next memory operation (they do not access the same memory location). Thus, op1‖2
must be placed at the end of the sequence of memory operations.

In practice, to limit the complexity of finding the right position to schedule op1‖2, we only test
a small number of positions which are equal to the positions of the memory operations that are to
be replaced. That is to say, we test j = i1 and j = i2. Even though none of them preserves the
observable similarity, we stop the analysis afterwards2.

Alignment. Memory coalescing rewrite rules are terminating (every rewrite step reduces the
number of memory operations by at least one) but they are not convergent. Let us consider the
following assembly code snippet:

mov ax, [esp]

mov bx, [esp + 0x2]

mov cx, [esp + 0x4]

Two rewrite steps are possible for the rewrite rule given at the top of Figure 3.11. Either we
combine the first two load operations or the last two load operations. Different normal forms are
obtained for each of them. To solve this convergence issue we choose to only rewrite sets of memory
operations the smallest address of which is aligned. A memory address p is said to be aligned if for
every assignment θ, θ(p) is a multiple of the architecture word size. We choose to align the smallest
address because it will become the address of the new memory operation. Assuming that there
is an implementation in which memory operations already have the size of an architecture word,
their addresses are most likely to be aligned. Therefore, if we have to limit memory coalescing
rewrite steps, it seems a good idea to only keep those that will produce aligned memory operations.
In the code snippet above, the smallest address of the two possible sets of memory operations is
respectively esp and esp + 2. If we assume that esp is always aligned on 32 bits then only the
first address is aligned on 32 bits. Hence, according to the alignment condition, only the first two
load operations can be rewritten. If we suppose that there is at most one memory operation of
each type per memory location (which is the ideal result of memory access simplification), this
alignment constraint solves the convergence issue. A memory operation can only be combined with
the memory operations that access the same aligned word.

The difficult question is how to determine whether or not an address is aligned. A first method
is to use runtime address values when they are available. Notice that here, using runtime address
values does not break the observable similarity. In fact, rewrite steps preserve the observable
similarity regardless of the alignment condition. But, different executions of the same code may
lead to different normal forms. We devised a second method that does not depend on runtime
address values. This method is not strictly accurate and reliable. But since there is no risk to

2Note that there is no need to test positions which are before the first operation or after the last operation that
has to be replaced. In fact, if it is not possible to move the other memory operations up to those positions, it will
neither be possible to move them beyond.
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Figure 3.12: Example of two DFGs over {+} and {x1, x2, x3, x4} which are observably similar but
do not converge to the same normal form.

break the observable similarity it is better than nothing. As previously mentioned we only consider
addresses which are a sum of two terms: one called offset which is constant and one called base
which is shared by several other addresses. We assume that base terms are always aligned. Thus,
an address is aligned if and only if, its offset is a multiple of the architecture word size. This
condition can be checked very easily. The arguable part concerns the alignment assumption on the
base term. Because of other rewrite rules (mostly constant folding and constant merging), the base
term is not, at least at the end of the normalization phase, a sum that involves a constant term. For
this reason, it differs from the other, possibly misaligned, memory addresses. In a simple memory
access model, where every address is equal to a buffer address plus a fixed displacement (this is
the exact memory model that is being targeted by our implementation of memory coalescing), we
have every reason to believe that the base term corresponds to a buffer address. And it makes
sense to assume that memory buffers are aligned.

3.8 Commutative and Associative Operation Normalization

Let op be the symbol of a commutative and associative operation. Let G be a DFG of G{op},X
such that G has a single root vertex. Because of the commutativity and associativity properties of
op, the vertices of G labelled with variable symbols can be reorganized in many configuration of
subterms without breaking the observable similarity3. These reorganizations may strongly affect
the structure of DFGs. In particular, it is possible to find DFGs which are reorganizations of
one another and thus observably similar, but which do not converge towards the same normal
form, with the set of rewrite rules that we have described so far. This situation is illustrated by
an example in Figure 3.12. We used G{op},X to introduce this normalization issue, but it also
clearly affects GΣ,X . Given a DFG G in GΣ,X , there is a normalization issue for every part of
G which is isomorphic to an element of G{op},X and which is sufficiently large to allow multiple
reorganizations. In practice we faced this issue for +, ∨ and ⊕.

The solution we come up with to normalize elements of G{op},X , is to merge their internal
vertices (an internal vertex is a vertex which is neither final nor labelled with a variable symbol).
Instead of having a cascading set of op vertices, each of them having exactly two input operands, we
have a single vertex with multiple input operands. The structure of the internal vertices is totally
hidden inside this new operation. This transformation can be implemented using the following
rewrite rule:

op(op(x1, ..., xn), y1, ..., ym)→ op(x1, ..., xn, y1, ..., ym)

This rewrite rule is a generalization of the rewrite rule called constant merging which was presented
in Section 3.4.3. This rewrite rule is terminating and convergent but not context-insensitive. As
explained in the first section of this chapter, a rewrite rule which is not context-insensitive can
prevent rightful signature detections. This is the case if parts of an expression which was supposed
to match a signature, are combined with surrounding expressions resulting in new expressions which
could not have been anticipated at the time the signature was created. As we said previously, the

3The observable similarity is preserved as long as, for each variable symbol x in G, the number of paths between
vertices labelled with x and the root vertex stays unchanged.
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Figure 3.13: A DFG and its normal form. The distinctive structure of the round function which
is clearly visible in the initial DFG on the left, was destroyed by commutative and associative
operation merging during the normalization phase.

large majority of the rewrite rules presented in this chapter does not meet the strict context-
insensitivity definition given in Section 3.1.2. In practice though, lack of context-insensitivity does
not affect too much the primitive identification method. Unfortunately this last remark does not
apply to the rewrite rule given above. An example is given in Figure 3.13. The DFG on the left
represents two executions of a toy round function defined by x 7→ x ⊕ f(x), where f denotes an
unspecified function. It also contains at the top expressions corresponding to a piece of code that
was executed before the round function. This piece of code might belong to the implementation
of a mode of operation such as Cipher Block Chaining (CBC) for instance. To detect the round
function we create a signature representing the expression: ⊕(x, f(x)). This is a sensible choice
since this pattern appears twice (once per round) in the DFG on the left. But its normal form on
the right, does not contain any subgraph which matches this pattern. The first round was mixed
with expressions of the mode and the second round was mixed with expressions of the first round.

Lack of context-insensitivity is particularly harmful for commutative and associative operation
merging, because it affects operations (+, ∨ and ⊕) which are frequent in cryptographic code
and especially on signature boundaries (first and last iteration of an add round key for instance).
To overcome this issue, we limit the situations in which we perform commutative and associative
operation merging. Let u and v be two vertices of a DFG G such that there is an edge from u to v
and both u and v are labelled with the same symbol of a commutative and associative operation.
We merge u and v only if the following conditions are satisfied.

u must have no other direct successor than v. To show the interest of this condition, let us
assume that u has another direct successor, called w. Let S be a signature and f be a matching
of this signature in G, that is to say, an injective morphism from S to G. Let us assume that
u, v, w ∈ fV (VS) and that labVS(f−1

V (u)) ∈ X. This last assumption means that u belongs to
the image of the boundary of S. The label of u is not specified by S, but our detection method
must work whatever the label of u is. Let us first assume labVG(u) 6= labVG(w). According to
the commutative and associative operation rewrite rule, we merge u and v but not u and w. The
newly created vertex and w do not have any common direct predecessor. Thus, there is no injective
morphism from S to the normal form of G. This is the exact situation that is being illustrated in
Figure 3.13. The case where labVG(u) = labVG(w) is also problematic. We call v ◦ u (respectively
w ◦ u) the vertex resulting from the merging of u and v (respectively u and w). v ◦ u and w ◦ u
share more direct predecessors than v and w did. There are more possibilities to map the vertex of
S that was at first mapped to u. It induces parasitic signature detections which are problematic.

But in practice this condition is a little bit too strict. There are situations where we still
want to merge commutative and associative operations even if some of their intermediate results
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are reused by other expressions. For instance let us consider a DFG that computes the exclusive
or of four variables. If, because of register allocation, an intermediate result is stored on the
stack, then the vertex corresponding to that intermediate result will have two direct successors:
the next ⊕ operation and a store. Consequently, it will not be possible to merge the concerned
vertices. To allow more flexibility, we introduced several exceptions to the condition presented
in this paragraph. These exceptions concern the + and ⊕ operations. Typically, they authorize
merging if the other direct successor(s) satisfy additional criteria. Merging vertices which have
several direct successors, is in conflict with Rule 2 and 3 of common subexpression elimination
presented in Section 3.3. To avoid creating a non-terminating reduction system, we exceptionally
perform those rewrite steps at the end of the normalization phase.

u and v must originate from the same function execution. We introduced this condition
in a first place to cope with AES CBC. The simplest way to analyse mode of operation is to
consider trace segments which contain several executions of the primitive. In the case of AES CBC
these trace segments contains the XOR operation of CBC followed by the XOR operation of the
first add round key of AES. If these two XOR operations are merged, the identification of AES
will be imprecise (we will not be able to pinpoint its input parameters). To separate expressions
of the primitive from expressions of the mode of operation, we introduce the notion of function. In
fact, primitives are usually implemented in a single function which is different from the function
which implements the mode of operation4. To determine whether or not u and v originate from the
same function execution, we proceed in two steps. First, we map u and v back to an index in the
sequence of instructions. This conversion from vertices to dynamic instructions also plays a key
role to exploit the result returned by the primitive identification method. It will be discussed in
more details in Section 6.1.4. Second, we count the number of call and ret instructions between
u and v. A counter is incremented for every call instruction and decremented for every ret

instruction. If the counter falls below zero or if its final value is different than zero, u and v do not
occur in the same function execution.

3.9 Affine Expression Simplification

As suggested by its name, this normalization mechanism tries to simplify affine expressions. Here,
we only consider expressions which are affine with respect to the addition and the multiplication
over Z. An affine expression of the form +(c0,×(c1, x1), ...,×(cn, xn)) can be simplified if there
are i and j such that xi = xj . If that is the case, affine expression simplification will replace this
expression by +(c0,×(c1, x1), ...,×(ci + cj , xi), ...,×(cn, xn)). However, affine expressions in DFGs
are usually not formatted as neatly as the expression above. They are made of an arbitrary number
of nested subterms involving operation symbols taken from {+,×, imul, neg,�,−}. For this reason
it is hard to devise a set of rewrite rules that will be able to simplify any affine expression. Instead,
we have implemented affine expression simplification through a custom algorithm. This algorithm
is made of three steps which are detailed below.

1. Given as input a vertex u, this step returns a set of tuples (ci, ui) where ci is a constant and
ui is a vertex. This set is computed as follows. We recursively traverse the DFG, starting
from u, using a backward Depth First Search (DFS) algorithm. As we traverse the graph, we
use a variable noted c to keep track of the constant which multiples the subterm represented
by the current vertex. If the current vertex corresponds to an addition, a subtraction or
a multiplication by a constant, we update the variable c and recursively process its direct
predecessors (those which are not labelled with a constant). Otherwise we add to the set the
tuple made of the current value of c and the current vertex.

2. Every pair of tuples which contains the same vertex, is replaced by a new tuple the first
element of which is equal to the sum of the first elements of the pair.

3. If at least one simplification was performed during the previous step, we replace u in G with
a DFG representation of the set of remaining tuples.

4Actually we found some exceptions to this observation during our experiments. They are discussed in Section
4.3.3.
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This algorithm should not be mistaken for the partial additive tree comparison algorithm presented
in Section 3.6.4. Here the maximum depth of the graph traversal is unbounded. Thus it makes
sense to only compare the topmost vertices since they will eventually be reached regardless of the
size of the different paths that lead to them. Complexity is not too much of an issue since, unlike
static pointer comparison, this algorithm is only executed a number of times which is linear in the
number of vertices. Unsurprisingly, one of the main motivation of affine expression simplification is
to simplify pointer expressions so that more precise static pointer comparisons can be performed.
As far as we are aware, there is no termination, convergence or practical context-insensitivity issue
with this normalization mechanism.

3.10 Operation Size Expansion

Operation size expansion is a normalization mechanism which modifies the size attribute of vertices.
The following example serves as an introduction and illustrates the interest of this normalization
mechanism. Let us consider the two assembly code snippets given below:

; Code Snippet 1

add al, bl

movzx eax, al

; Code Snippet 2

add eax, ebx

and eax, 0xff

In Code Snippet 1, there is a modular addition on 8 bits the result of which is padded with zeros.
In Code Snippet 2, there is a modular addition on 32 bits the result of which is masked to keep
only the least significant byte. These two code snippets compute the exact same value, but if
we construct their corresponding DFGs, it is clear that they will be different. We see with this
example, that observably similar DFGs5 can differ only because of the size of some of their vertices.
To make such DFGs converge to the same normal form, we propose to equalize the size of their
vertices. We define a reference size which is equal to the architecture word size. This choice is
coherent with how SIMD instructions are split and with memory coalescing. Moreover, there are
very few vertices which have a size that is larger than the architecture word size. Hence, we will
only have to deal with size increase and not with size decrease. We call Sexp the set of operation
symbols which are affected by operation size expansion.

Sexp = {+,∧, cmov, neg,¬,∨,�,−,⊕}

The principle of operation size expansion is to replace every operation which is smaller than the
reference size, by an observably equivalent expression which contains the same operation but the
size of which is equal to the reference size. Operation size expansion can be modelled by a set
of rewrite rules. For instance, the pair of DFGs corresponding to Code Snippet 1 and 2 forms
a rewrite rule which can be one of those. For simplicity and efficiency reasons, operation size
expansion is applied using a specific method. This method has the particularity to perform every
possible size modification at once and to minimize the number of size modifier operations6 that are
inserted. The remainder of this section will be focused on this method rather than on the rewrite
rule aspect. It is made of three steps, namely size increase, obsolete size modifier deletion and new
size modifier insertion. A pseudo code of this method is given in Algorithm 6.
This method is illustrated in Figure 3.14. This figure shows that if we normalize the DFG corre-
sponding to Code Snippet 1 with the operation size expansion method given above, we obtain a
normal form which contains a subgraph which is isomorphic to the DFG corresponding to Code

5To be perfectly accurate, in this example the two DFGs are not observably similar because they dot not have
the same set of variable symbols. It is a minor deviation from the definition and it does not affect the general idea.

6Size modifier operation symbols are: movzx, part18, part28, part116. The only purpose of these operations is
to modify the size of a variable, either by padding it with zeroes or by extracting a subset of its bits. They receive
a specific treatment during operation size expansion.

7Size modifier operations have a single operand.
8If labVG(v) = movzx, a masking operation needs to be inserted between u and dstG(e). The mask is equal to

2i − 1 where i denotes the initial size (before operation size expansion) of u. If labVG(v) = part28, a right shift
operation needs to be insert between u and dstG(e).

9If sizeG(srcG(e)) < sizeG(dstG(e)), this size modifier operation will be movzx, otherwise it will be part18 or
part116.
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Algorithm 6 Operation Size Expansion (assuming a 32-bit architecture)

for all vertices v in G do . Step 1
if labVG(v) ∈ Sexp and sizeG(v) < 32 then

sizeG(v)← 32
end if

end for
for all vertices v in G such that labVG(v) is a size modifier operation symbol do . Step 2

let u be the only direct predecessor of v 7

for all edges e in G such that srcG(e) = v do
if sizeG(dstG(e)) = sizeG(u) then

add a new edge from u to dstG(e) and remove e 8

end if
end for

end for
for all edge e in G such that sizeG(srcG(e)) 6= sizeG(dstG(e)) do . Step 3

if the size of either srcG(e) or dstG(e) was increased during step 1 then
add a new vertex, noted v. v is labelled with a size modifier operation symbol 9

add two new edges, one from srcG(e) to v and one from v to dstG(e), and remove e
end if

end for

al bl

+

movzx

al bl

+

movzx

al bl

+ 0xff

∧

al bl

movzx movzx

+ 0xff

∧

Step 1 Step 2 Step 3

Initial DFG of
Code Snippet 1

size = 8 size = 32 size = 32

size = 32

Figure 3.14: Example of an operation size expansion. The initial DFG on the left corresponds to
Code Snippet 1 in Section 3.10. The three steps of the operation size expansion method are detailed:
first size increase, then obsolete size modifier deletion and finally new size modifier insertion. Note
that the final DFG contains a subgraph that is isomorphic to the DFG which corresponds to Code
Snippet 2 in Section 3.10.

Snippet 2. Hence Algorithm 6 successfully solves the issue that was initially raised by Code Snippet
1 and 2.

Observable Similarity. In this paragraph we justify why the operation size expansion method
given in Algorithm 6 preserves the observable similarity. The problem is the following. Let v be a
vertex the size of which was increased during operation size expansion. v now takes wider input
operand(s) and returns a wider result. Regarding the input operands, there are two possibilities:
either they were replaced with movzx operations to adapt their size in Step 3 or they were subject
to operation size expansion. In that latter case, the most significant bits which were appended to
them, are not necessarily equal to zero. That being said, what guarantee do we have that the least
significant bits return by v, those that were already returned by v before operation size expansion,
will keep the same value for all the assignments?

A first observation is that the modulo operation distributes over every operation of Sexp. A
second observation is that, given any operation in Sexp, the size of its operand(s) is equal to the
size of its result. These two observations play a key role in the following proof. Let G and H be
two DFGs such that H is the result of operation size expansion on G. Given a vertex v ∈ VH ,
according to Algorithm 6, either v ∈ VG or v is labelled with a size modifier operation symbol and
was inserted during Step 3. Let us assume v ∈ VG and arity(labVG(v)) > 0. The operands of v in
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G are noted v1, ..., vn and w1, ..., wn in H (v have the same number of operand in G and H but
they might be different as explained previously).

Proposition. Given an assignment θ, if θ(termG(vi)) = θ(termH(wi)) mod sizeG(vi) for all i ∈
{1, ..., n} then we have θ(termG(v)) = θ(termH(v)) mod sizeG(v).

Proof. Let θ be an assignment which satisfies the initial hypothesis, then:

θ(termG(v)) = labVG(v)(θ(termG(v1)), ..., θ(termG(vn)))

= labVG(v)((θ(termH(w1)) mod sizeG(vi)), ..., (θ(termH(wn)) mod sizeG(vi)))

According to the second observation:

θ(termG(v)) = labVG(v)((θ(termH(w1)) mod sizeG(v)), ..., (θ(termH(wn)) mod sizeG(v)))

And according to the first observation:

θ(termG(v)) = labVH(v)(θ(termH(w1)), ..., θ(termH(wn))) mod sizeG(v)

= θ(termH(v)) mod sizeG(v)

Using this property, we can prove by induction that θ(termG(v)) = θ(termH(v)) mod sizeG(v)
for all vertices v ∈ VH ∩ VG and all assignments θ. And finally, we conclude that operation size
expansion, implemented as described in Algorithm 6, preserves the observable similarity.

3.11 Miscellaneous Rewrite Rules

Last but not least, we list in this section miscellaneous rewrite rules that do not belong to any
particular category or family of rewrite rules. These rules pursue different objectives. Some of
them were introduced to simplify expressions (the third rewrite rule of Table 3.2 for instance).
Some others arbitrarily replace an expression by an equivalent one and they would probably have
worked just the same if they had performed the inverse transformation (the fourth rewrite rule of
Table 3.2 for instance). There is no particular convergence or termination issue to be reported for
these rules. These rules are not implemented through a unified algorithm but instead they each rely
on a specific routine to find injective morphisms, check side conditions and perform substitutions.
The full list is given in Table 3.2.

3.12 Conclusion

The set of normalization mechanisms that has been presented in this chapter is by no means
definitive. One may freely add new rewrite rules or even new normalization mechanisms if it
helps to reduce the number of signatures that he needs in order to detect new implementations or
new primitives. Rewrite rules have to preserve the observable similarity, otherwise normal forms
may greatly differ from their original DFGs in terms of behaviour. One should also pay attention
that the reduction system remains terminating, convergent and does not raise too many context-
sensitivity issues in practice. To fix a non-terminating system one may impose a strict scheduling
of the normalization mechanisms to avoid that those which are in conflict are executed immediately
one after the other. This is the solution we adopted for common subexpression elimination and
commutative and associative operation merging. We have no general advice or trick of any sort to
address possible convergence issues. A possibility though, would be to delay the resolution of the
problem. Instead of creating a write rule that would be applied during the normalization phase,
one can create compound signatures (refer to Chapter 4). Compound signatures are very similar
to rewrite rules but they are processed in a way that is unaffected by convergence problems. To
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Table 3.2: Full list of miscellaneous rewrite rules.

∧(x, c)→ x if DG(∧(x,¬c)) = {0}
×(x, 2c)→ � (x, c)

∨(..., x, x, ...)→ ∨(..., x, ...)

	 (x, c)→� (x, size− c)
� (� (x, c1), c2)→ � (x, c1 + c2)

� (� (x, c1), c2)→

{
∧(� (x, c1 − c2), (2size−c2 − 1)� c2), if c1 ≥ c2
∧(� (x, c2 − c1), (2size−c2 − 1)� c2), otherwise

shld(x1, x2, x1)→ 	 (x1, x2)

� (� (x, c1), c2)→ � (x, c1 + c2)

� (� (x, c1), c2)→

{
∧(� (x, c1 − c2), 2size−c2 − 1), if c1 ≥ c2
∧(� (x, c2 − c1), 2size−c2 − 1), otherwise

shrd(x1, x2, x1)→ � (x1, x2)

−(x, c)→ +(x,−c)
⊕(..., x, x, ...)→ ⊕(..., 0, ...)

⊕(x, c)→ ¬(x) if c = 2size − 1

mitigate context-insensitivity, one can try to avoid rewrite steps which mix instructions of different
functions. This is one of the solutions we adopted for commutative and associative operations
normalization. It relies on the hypothesis that the primitive is implemented in a single function
and since normalization essentially concerns primitive identification there is no need to normalize
expressions that belongs to different functions (except maybe to simplify expressions to produce
better over-approximations or to improve alias analysis).

That being said, we still believe that the mechanisms described in this chapter provide a solid
basis for further developments.
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Chapter 4

Subgraph Isomorphism for
Primitive Identification

Signatures are distinctive DFG subgraphs which are used to identify terms which are specific to a
given primitive. In this chapter, we first introduce the concept of signature. Then we explain how
signatures are detected in normalized DFGs using a subgraph isomorphism algorithm. Finally, we
present and discuss experimental results on primitive identification.
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4.1 Signature

4.1.1 Introduction

In its most basic form, a signature is a DFG subgraph which is specific to a given primitive. The
content of a signature is a trade-off between flexibility and precision. On one hand, a signature
should be able to match a wide range of implementations. In this respect, we may be tempted to
create very small signatures with only a few distinctive operations that we are sure to find in every
possible implementation. This solution was adopted in [58]. But on the other hand, a signature
should be complete and precise to reduce the number of false positives and to reveal every feature
of the primitive we might be interested in. In particular, as motivated in Chapter 5, we want to
locate parameters of primitives. Consequently, signatures must contain vertices corresponding to
those parameters and thus they usually cover the full length of primitives.

Ideally the normalization process should be able to transform any implementation of a given
primitive into a unique normalized DFG. Unfortunately the level of analysis required is sometimes
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far beyond the reach of our normalization mechanisms. When several non-isomorphic normal forms
exist for the same primitive, our last resort is to increase the number of signatures. To mitigate
this issue, we introduce the concept of composite signatures.

Let us consider a primitive divided into n disjoint parts, each of them with xi different normal
forms. To detect the entire primitive, a signature must match its n parts simultaneously. The
number of signatures required to detect every possible implementation is

∏n
1 xi. The idea behind

composite signatures is to create small signatures, that cover each a limited portion of the primitive,
and to compose them in order to detect the entire primitive. Signature composition is implemented
through special vertices which are labelled with signature symbols. Every signature exports a
symbol. Intuitively, the composition of a signature S1 with a signature S2 is obtained by replacing
every vertex of S1 labelled with the symbol exported by S2, by the graph of S2. A signature S
which contains a vertex labelled with a signature symbol s is called a composite signature, and we
say that S imports the symbol s. The key point is that several signatures can export the same
symbol. Signature symbols form an abstraction layer between a composite signature and the exact
definition of the signatures it imports. A composite signature delegates to a set of signatures,
which all export the same symbol, the task of detecting one or several of its subterms. Back to our
example, for every part of the primitive, we create xi non-composite signatures which all export
the same symbol si. With theses non-composite signatures, we can identify independently each
part of the primitive. Then, we create a composite signature which assembles symbols s1, ... to sn
and which covers the entire primitive. To conclude, we can detect every possible implementation
with only

∑n
1 xi non-composite signatures and one composite signature.

Composite signatures have several other advantages. They can help to write signatures in
a compact way. For instance, let us assume that we want to write a signature for a primitive
that executes several times the same round function. Instead of writing a single signature that
duplicates the round function expression, we create a non-composite signature which detects only
one execution of the round function, and we create a composite signature which contains as many
references to the one round function signature as necessary. Breaking down large signatures into
smaller ones may also improve performance. This strategy is illustrated at the end of Section
4.3.4. Finally, dividing primitives into multiple parts and detecting each of them separately is of
high interest for debugging purposes. If, for some reason, the normal form of a part of a primitive
is not as expected, the other parts will still be correctly detected providing partial identification
information and pointing out the problematic part.

4.1.2 Definition

We had difficulties trying to formalize the notion of signatures in a definition that would be coherent
with the DFG definition given in Section 2.1.1. These difficulties come from the fact that in DFGs,
vertices labelled with an operation symbol represent both an operation and the result of that
operation. This has not been problematic so far, because we have only been interested in simple
operations with a single output value. Unfortunately, it prevents a straightforward implementation
of composite signatures for two reasons.

• As mentioned earlier, composite signatures contain special vertices labelled with signature
symbols. These vertices were supposed to play a role similar to the role played by the vertices
labelled with operation symbols. That is to say, they were supposed to represent both the
computations defined by their corresponding signatures and the result of these computations.
But in the general case, signatures define several expressions and thus can have several output
values. Because we cannot dissociate operations from their result(s), there is no coherent
way to represent an operation with several output values.

• To detect composite signatures we superimpose on normalized DFGs vertices representing the
signature matches that have been found so far. The resulting graph is called an augmented
DFG. Both composite signature detection and augmented DFGs are presented more clearly
in Section 4.2.2. In an augmented DFG, a single value can result from several equivalent
expressions. Let us consider a DFG G, a signature S and a matching f from S to G (that
is to say an injective morphism). If a vertex v is equal to the image under fV of an output
value of S, then once the new vertex representing f has been superimposed on G, the output
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value of v has two definitions: v and the newly inserted vertex. Here again, since we cannot
dissociate operations from their result, there is no coherent way to represent a value resulting
from several operations.

In our opinion the best solution to this problem would be to use hypergraphs instead of graphs
as underlying structures for DFGs. For instance in term graphs [60] and in jungles [39], an operation
is represented by an hyperedge with one source endpoint per input parameter and one destination
endpoint per output parameter and a value is represented by a vertex. In this model a vertex can
have several ingoing edges, that is to say, a value can result from several operations. Unfortunately,
when we became aware of this solution it was too late to implement it. Therefore, in the rest of
this chapter, we only present the workaround that was originally devised to address this problem.
Note that this is mostly a formulation problem and it does not impact the success rate and the
performance of our solution.

Definition 10. A non-composite signature S is defined by a DFG (VS , ES , srcS , dstS , labVS , labES),
a symbol s and two sequences of vertices noted respectively IS and OS . s is the symbol exported
by S, IS represents the input parameter(s) of S and OS the output parameter(s) of S. If several
signatures export the same symbol, we assume that they all have the same number of input and
output parameters.

A composite signature S′ is defined in a similar way, except (VS′ , ES′ , srcS′ , dstS′ , labVS′ , labES′)
is not quite a DFG. As previously stated, it contains vertices labelled with signature symbols. Let
v be such a vertex and let s be its label. v has one ingoing edge per input parameter of s and
one outgoing edge per output parameter of s. Its ingoing edges, respectively outgoing edges, are
labelled with distinct positive integer ranging from 0 to indegreeS′(v) − 1, respectively from 0 to
outdegreeS′(v)− 1. For a reason that will be explained in Section 4.2.2, the direct successors of v
are labelled with operation symbols. But they do not represent any operation. They only represent
the different output values of v. This is why they have no other direct predecessor than v.

An example of a composite signature is given on the right of Figure 4.1. Vertices labelled with
signature symbols are depicted with rounded rectangle shape, input parameters have a rectangle
shape and output parameters have a circle shape. We do not explicitly give the function which maps
vertices of composite signatures to terms, because it is relatively complex due to the violations of
the original DFG syntax mentioned above. But it remains possible to associate terms to vertices:
for instance, the term associated with the bottom-most vertex of the composite signature given in
Figure 4.1 is 1R(y, 1R(x, y)).

4.1.3 Observable Similarity

At the beginning of Chapter 3 we presented a certain notion of semantics called observable simi-
larity. Two DFGs are observably similar if for any set of input values they return the same set of
output values. In respect to this definition, it seems reasonable to assume that two implementa-
tions of the same primitive are observably similar. The main steps of our primitive identification
method are summarized as follows. First, we create a DFG G which represents a sequence of
dynamic instructions. Then, during the normalization phase, we modify G using transformations
which preserve the observable similarity. We note Ḡ the normal form of G. We assume here that
the normalization process is working in the best possible way. That is to say, any possible imple-
mentation of a primitive P converges to a single normal form noted S. Finally, we search for S in
Ḡ or more formally, we search for an injective morphism from S to Ḡ.

Our primitive identification method is correct if finding S in Ḡ implies that G contains an
implementation of P and reciprocally. More formally, our primitive identification method is correct
if the following proposition holds.

Proposition (Primitive Identification Correctness). There is an injective morphism from S to Ḡ,
if and only if there is a DFG H such that H is observably similar to S and there is an injective
morphism from H to G.

If S is isomorphic to Ḡ then S is also observably similar to Ḡ. Since G and Ḡ are observably
similar, S is observably similar to G. Conversely, if S is observably similar to G then according
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to our hypothesis regarding the normalization phase, Ḡ is isomorphic to S. Consequently the
proposition above is valid in this corner case.

Unfortunately, in the general case where the morphism from S to Ḡ is not surjective and where
S is not observably similar to G, this proposition is not true. First, the normalization phase is
not context-insensitive: the fact that there is an injective morphism from H to G does not imply
that there is an injective morphism from H̄ to Ḡ. Second, the normalization process does not
preserve the observable similarity for any subgraph of G and any subgraph of Ḡ does not have an
observably similar subgraph in G. More pragmatically the fact that this property does not hold
has two consequences.

• First, if G contains an implementation of P then Ḡ does not necessarily contain an instance
of S. It means that, regardless of the capabilities of the normalization mechanisms, there can
be false negatives. We have presented this problem from a theoretical point of view but it has
rather serious repercussions in practice. For instance let us consider a trace segment which
contains one execution of a hash function. Let us assume that for some reason, this trace
segment contains additional instructions after the execution of the hash function and that
these instructions discard one part of the hash value. Observable similarity will only concern
the remaining part of the hash value. Thus, according to the dead code removal mechanism,
the portion of the DFG which produces the part of the hash value that has been discarded will
be deleted. This problem does not exclusively affect the dead code normalization mechanism,
but it affects any normalization mechanism which is not context-insensitive.

• Second, if Ḡ contains an instance of S then G does not necessarily contain an implementation
of P. It means that there can be false positives. This problem is a lot less concerning in
practice than the first one though. From a theoretical point of view, a rewrite rule can insert
a new expression in a DFG in such a way that this expression has no influence on the final
vertices. But in practice this scenario is highly improbable: expressions covered by signatures
are very large and most normalization mechanisms reduce the size of expressions.

4.1.4 Signature Creation

For the time being, signatures still have to be generated manually. We choose to put more effort into
the normalization mechanisms to reduce the number of signatures rather than to try to automate
their creation process. That being said, signature creation might not be particularly difficult
to automate or, at least, to partially automate. For instance, given a primitive implementation
in assembly language, one can annotate its parameters, construct its DFG representation while
keeping track of the annotated parameters, normalize it, and finally delete every vertex that is not
located on a path between an input and an output parameter.

Manual signature creation requires some knowledge of the assembly language and a good un-
derstanding of the different implementations of the primitive. If signatures had been syntactically
correct DFGs, there would have been no prerequisite regarding the normalization mechanisms. In
fact, it would have been possible to normalize signatures like any other DFG. But since it is not
the case, one should have a clear vision of what the normal forms will look like in order to create
signatures. And this implies to be well aware of the different normalization mechanisms. This is
an important drawback of having syntactically incorrect signatures.

From an implementation perspective, signatures are specified using a textual graph description
language of our own making, largely inspired by the DOT language [25]. A formal grammar
specification of this language is given in Table 4.1. Basically, a signature is a list of edges, an edge
is pair of vertices and a vertex is a number. We can optionally specify a symbol for signatures1,
edges and vertices. A parameter attribute can also be specified for vertices.

1Each signature also has a unique name. Signature names differ from signature symbols which may be shared
by several signatures.
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Table 4.1: Formal grammar specification of the signature language. Terminals are printed in
bold font and non-terminals in italic. Literals are enclosed by quotes ‘and ’. Optional items are
surrounded by square brackets [ and ]. A vertical bar | is used to separate different alternatives. ID
is a numeral. NAME is a string of alphabetic characters, digits, underscores and spaces. SYMBOL
is either a string of alphabetic characters, digits and underscores or an asterisk *.

sig list : sig sig list
sig : ‘”’NAME ‘”’ [‘(’SYMBOL‘)’] edge list

edge list : edge edge list
edge: vertex ‘->’ [‘(’SYMBOL‘)’] vertex

vertex : ID [‘(’SYMBOL‘)’] [parameter ]
parameter : ‘[’‘I’|‘O’‘:’ID‘:’ID‘]’

4.2 Signature Detection

In this section we present the algorithms which are used for signature detection. Given a signature
S and a DFG G, we want to find all the subgraphs of G which are isomorphic to S. To put it
differently, we want to find all the injective morphisms from S to G. This problem is referred to as
the subgraph isomorphism problem. The two most popular algorithms to solve it are Ullmann’s
algorithm [72] and VF2 [20, 19]. In this work, we arbitrarily chose to use Ullmann’s algorithm. As
illustrated in Section 4.3.4, this algorithm has acceptable performance when applied in the context
of signature detection. This section is structured as follows: first we present Ullmann’s algorithm
for subgraph isomorphism, then we introduce some additional mechanisms which are required to
detect composite signatures.

4.2.1 Simple Signature Detection

As stated in Definition 2 (Section 2.1.1) a DFG morphism from G to H is defined by two mappings:
one from VG to VH and one from EG to EH . To justify more clearly that the algorithms presented
in this section return valid DFG morphisms, we consider a slightly different definition for DFG
morphisms. According to this new definition and on condition that every vertex of G has at least
one ingoing edge or one outgoing edge, a DFG morphism can be fully specified by a single mapping
from EG to EH

2. This definition is as follows.

Definition 11. Given two DFGs G = (VG, EG, srcG, dstG) and H = (VH , EH , srcH , dstH), a
morphism from G to H is defined by a mapping fE : EG → EH which satisfies the following
properties3:

•


srcG(e1) = srcG(e2)⇒ srcH(fE(e1)) = srcH(fE(e2))

dstG(e1) = srcG(e2)⇒ dstH(fE(e1)) = srcH(fE(e2))

dstG(e1) = dstG(e2)⇒ dstH(fE(e1)) = dstH(fE(e2))

for all e1, e2 ∈ EG ;

• labVG(srcG(e)) = labVH(srcH(fE(e))) for all e ∈ EG such that labVG(srcG(e)) /∈ X, and
labVG(dstG(e)) = labVH(dstH(fE(e))) for all e ∈ EG ;

• labEG(e) = labEH(fE(e)) for all e ∈ EG such that labVG(dstG(e)) is non-commutative.

This definition is equivalent to Definition 2 if every vertex of G has at least one ingoing edge or
one outgoing edge. In practice every signature satisfies this last requirement. In fact, there is no
point in creating a signature with a unique vertex or in creating a disconnected4 signature. These

2Because DFGs are build on top of multigraphs, the opposite is not true: a DFG morphism cannot be fully
specified by a mapping from VG to VH .

3For simplicity this definition does not include the last requirement of the Definition 2, that is to say: fV (u) =
fV (v) for all u, v ∈ VG such that u and v are labelled with the same variable symbol. This requirement is not
ensured by the algorithms presented in this section. Though, we can easily assume that in practice signatures have
at most one vertex labelled with each variable symbol.

4A graph G is disconnected if there is pair of vertices (v1, v2) ∈ V 2
G such that there is no undirected path from

v1 to v2.
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are the only two scenarios that would result in a vertex with no ingoing and outgoing edge. The
following proof should be skipped on first reading.

Proof. Let (fV , fE) be a morphism from G to H according to Definition 2. Let e1, e2 be two
vertices of G such that srcG(e1) = srcG(e2), then:

srcH(fE(e1)) = fV (srcG(e1))

= fV (srcG(e2))

= srcH(fE(e2))

It proves the first implication of Definition 11. The other two implications can be proved in a
similar way. The second point of Definition 11 comes from the second point of Definition 2, that
is to say: labVG(v) = labVH(fV (v)) for all v ∈ VG such that labVG(v) /∈ X. And finally, the last
point of Definition 11 is exactly the same that the third point of Definition 2. Conclusion: fE
also satisfies Definition 11.

Let fE be a morphism from G to H according to Definition 11. Let fV be a mapping from
VG to VH defined as follows:

fV (v) =

{
srcH(fE(e)), if there is e ∈ EG such that srcG(e) = v

dstH(fE(e), otherwise. In that case e ∈ EG and dstG(e) = v.

The definition of fV is correct because if two edges of G have the same endpoint, their image
under fE will also have the same endpoint. According to this definition we have:

fV ◦ srcG = srcH ◦ fE

Let e1 be an edge of G. If there is e2 ∈ EG such that dstG(e1) = srcG(e2) then:

dstH(fE(e1)) = srcH(fE(e2))

= fV (srcG(e2)) by definition of fV

= fV (dstG(e1))

Otherwise, by definition of fV : fV (dstG(e1)) = dstH(fE(e1)). It proves that:

fV ◦ dstG = dstH ◦ fE

Now, let v be a vertex of G which is not labelled with a variable symbol. If there e ∈ EG such
that srcG(e) = v then:

labVG(v) = labVG(srcG(e))

= labVH(srcH(fE(e))) according to the second point of Definition 11

= labVH(fV (v)) by definition of fV

Otherwise, there is e ∈ EG such that dstG(e) = v and we can prove similarly that labVG(v) =
labVH(fV (v)). Conclusion: (fV , fE) satisfies Definition 2.

Naive Enumeration Algorithm for Subgraph Isomorphism. Let S be a signature and G
be a DFG. Finding all the subgraph isomorphisms from S to G can be achieved using a rather
simple DFS algorithm. For each edge e of S, we maintain a set of possible assignments called AE(e).
AE(e) is initialised with the edges of G which have the same label than e and the endpoints of
which have the same label than the endpoints of e. Thereby if we assign fE(e) to any element
of AE(e), the last two points of Definition 11 will be satisfied. The algorithm expands a partial
solution (initially empty) by recursively picking one element in each possible assignment set. Before
picking e′ in AE(e), we check that, if fE has been defined for an edge which shares an endpoint
with e, its image under fE shares the same endpoint with e′ (first point of Definition 11). After
picking e′ in AE(e), we delete all instances of e′ in the possible assignment sets that have not yet
been processed. This ensures that the solution is injective. Eventually, the algorithm either finds
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a complete solution or reaches a point where the partial solution cannot be further expanded. In
that latter case, we backtrack until we find a point where the partial solution can be expanded in
a different way. A pseudo code of this algorithm is given in Algorithm 7. It is divided into three
procedures. The first procedure initialises the sets of possible assignments. The second procedure
performs the DFS. And the third procedure, called Filter, checks that the first point of Definition
11 is satisfied by all selected edges. Unfortunately this algorithm is not tractable for the graphs
which are used in the context of primitive identification.

Ullmann’s Algorithm for Subgraph Isomorphism. Ullmann introduced a refinement pro-
cedure which preventively checks, for all possible assignments, whether or not they have a chance
to satisfy the three implications given at the beginning of Definition 11. Its objective is to prune
as early as possible unfruitful search paths. Let e1 and e2 be two edges of S with a shared end-
point. Let us assume, for instance, that srcS(e1) = srcS(e2). Given e′1 ∈ AE(e1), if there is no
e′2 ∈ AE(e2) such that srcG(e′1) = srcG(e′2) then, according to the first implication of Definition
11, we cannot assign fE(e1) to e′1. Consequently, we can remove e′1 from AE(e1). A pseudo code
of Ullmann’s refinement procedure is given in Algorithm 8. It replaces the Filter procedure of
Algorithm 7 (the other two procedures remain unchanged). For a better efficiency, we adopt a
slightly different formulation in Algorithm 8. Instead of filtering independently the set of possible
assignments associated with each edge, we regroup the edges with a shared endpoint and we filter
them simultaneously. Let us consider a group of edges with a shared endpoint v. Their possible
assignments must all define the same set of vertices for the image of v. This set of vertices is noted
AV (v) in Algorithm 8. If a possible assignment defines an image of v that is not also defined by
at least one possible assignment for all the other edges, it can be deleted.

This filtering process is executed iteratively until a fixed point is eventually reached. The set
V is used to keep track of the vertices that need to be (re-)filtered. Given an edge e ∈ ES , if a
possible assignment was removed from AE(e) after filtering one endpoint of e, further deletions
may become possible for the edges attached to the other endpoint of e. Thus we add this other
endpoint to V.

Despite a high theoretical complexity (the subgraph isomorphism problem is NP complete),
we were able to achieve acceptable performance using Ullmann’s algorithm in our context (some
typical computation time measurements are presented in Section 4.3.4). It can be explained by
two factors. First, DFGs have specific characteristics and they usually differ from the worst case
scenario. For instance, DFGs have a low density (probability for any two vertices to be adjacent)
and their vertices have highly heterogeneous indegree and outdegree. Second, labels of vertices
and edges dramatically reduce the search space.

4.2.2 Composite Signature Detection

For introductory purposes let us consider the example of Figure 4.1. In this example, our objective
is to identify a toy block cipher. This toy block cipher is a two branch Feistel network. Its internal
state consists of two registers (Xi, Yi). At each round i, its internal state is updated as follows:{

Xi+1 ← Yi

Yi+1 ← +(	 (⊕(Xi, Yi), 1), Xi)

To identify this block cipher we create two signatures. The first one covers the execution of one
round and exports the symbol ‘1R’. The second one covers the execution of two rounds and exports
the symbol ‘2R’. This last signature is a composite signature: instead of including two times the
round function expression, it contains two vertices labelled with the ‘1R’ symbol. To detect these
two signatures we proceed as follows. First, we search for the one-round signature using Ullmann’s
algorithm. For the DFG represented in Figure 4.1, two matches are found: one is highlighted on
the top left and the other on the bottom left. Then, we add to the DFG one vertex labelled with
the ‘1R’ symbol per signature match. This transformation is called a push transformation. It is
described more precisely in the next paragraph. We finally search for the two-round signature
using a slightly modified version of Ullmann’s algorithm to deal with the newly inserted vertices.
One match is found; the block cipher has correctly been identified.
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Algorithm 7 DFS Subgraph Isomorphism

function Subgraph Isomorphism(S,G)
for all e ∈ ES do

AE(e)←

e′ ∈ EG such that


labES(e) = labEG(e′)

labVS(srcS(e)) = labVG(srcG(e′))

labVS(dstS(e)) = labVG(dstG(e′))


assign fE(e) to undefined

end for
return Recursive Search(S,G, fE , AE)

end function

function Recursive Search(S,G, fE , AE)
if fE(e) is defined for all e ∈ ES then

return {fE}
end if
Result ← ∅
pick an edge e1 ∈ ES such that fE(e1) is undefined
Filter(S,G, fE , AE , e1)
for all e′1 ∈ AE(e1) do

f ′E ← copy(fE) and assign f ′E(e1) to e′1
A′E ← copy(AE)
A′E(e2)← A′E(e2) \ {e′1} for all e2 ∈ ES
A′E(e1)← {e′1} . necessary for Algorithm 8
Result ← Result ∪ Recursive Search(S,G, f ′E , A

′
E)

end for
return Result

end function

function Filter(S,G, fE , AE , e1)
for all e′1 ∈ AE(e1) do

if ∃e2 ∈ ES s.t. fE(e2) is defined and

{
srcS(e1) = srcS(e2)

srcG(e′1) 6= srcG(fE(e2))
then

remove e′1 from AE(e1)
break

end if

if ∃e2 ∈ ES s.t. fE(e2) is defined and

{
srcS(e1) = dstS(e2)

srcG(e′1) 6= dstG(fE(e2))
then

remove e′1 from AE(e1)
break

end if

if ∃e2 ∈ ES s.t. fE(e2) is defined and

{
dstS(e1) = srcS(e2)

dstG(e′1) 6= srcG(fE(e2))
then

remove e′1 from AE(e1)
break

end if

if ∃e2 ∈ ES s.t. fE(e2) is defined and

{
dstS(e1) = dstS(e2)

dstG(e′1) 6= dstG(fE(e2))
then

remove e′1 from AE(e1)
break

end if
end for

end function
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Algorithm 8 Refinement Procedure Ullmann

function Filter(S,G, fE , AE)
V ← VS
while V 6= ∅ do

pop any vertex v from V
AV (v)← (

⋂
e∈ES ,srcS(e)=v

srcG(AE(e))) ∩ (
⋂

e∈ES ,dstS(e)=v

dstG(AE(e)))

for all e ∈ ES s.t. srcS(e) = v do
A′E(e)← {e′ ∈ AE(e) s.t. srcG(e′) ∈ AV (v)}
if A′E 6= AE then
V ← V ∪ {dstS(e)}

end if
AE ← A′E

end for
for all e ∈ ES s.t. dstS(e) = v do

A′E(e)← {e′ ∈ AE(e) s.t. dstG(e′) ∈ AV (v)}
if A′E 6= AE then
V ← V ∪ {srcS(e)}

end if
AE ← A′E

end for
end while

end function

Push and Pop Transformation. Let G be a DFG, S be a signature and f be an injective
morphism from S to G. The vertices of IS , respectively OS , are noted x1, ..., xn, respectively
y1, ..., ym. When we say that we push f on G, we refer to the following modifications of G:

1. we insert a new vertex v and we assign its label to the symbol exported by S ;
2. for every vertex xi ∈ IS , we insert an edge from fV (xi) to v and we assign its label to i ;
3. for every vertex yi ∈ OS , we insert an edge from v to fV (yi) and we assign its label to i.

In the example of Figure 4.1, when we push the one-round signature match highlighted on the
top left, we obtain a vertex labelled with the ‘1R’ symbol and connected to eax (image of the I1
parameter), ebx (image of the I2 parameter) and + (image of the O2 parameter). The opposite
of a push transformation is a pop transformation. A pop transformation consists in removing all
the vertices labelled with a given signature symbol. For the two reasons given in Section 4.1.2,
vertices resulting from push transformations break the DFG definition. We will refer to the graph
resulting from push transformation(s) as an augmented DFG.

Subgraph Isomorphism in Augmented DFGs. Intuitively a signature S defines an equiva-
lence relation between two graphs: one is the DFG which is explicitly defined by S, that is to say
(VS , ES , srcS , dstS , labVS , labES), and the other corresponds to the small graph which is superim-
posed on a given DFG during a push transformation. As a reminder, this small graph is composed
of a vertex v labelled with the symbol exported by S plus one vertex per input and output pa-
rameter of S, all directly connected to v. In this regard, signatures are very similar to rewrite
rules. One may think of a push transformation as a rewrite step, but instead of substituting one
graph by the other, we superimpose them. As a consequence, augmented DFGs contain multiple
equivalent subgraphs. To detect a composite signature, we let the subgraph isomorphism algorithm
pick among these equivalent subgraphs those that better match the signature. Intuitively, a match
of composite signature in an augmented DFG G is valid, if it is possible to create an equivalent
non-composite signature that matches either the same vertices of G or equivalent ones. A valid
match is defined more formally as follows.

Definition 12 (Valid Match). Let f1 be an injective morphism from a signature S1 to an aug-
mented DFG G. f1 is a valid match if:
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Figure 4.1: Example of a composite signature detection. This example involves two signatures: a
one-round signature which exports the ‘1R’ symbol and a two-round signature which contains two
references to the ‘1R’ symbol. First, on the left, we search for the one-round signature in the initial
DFG. Two matches are found. Then, on the right we append these two matches to the initial
DFG using push transformations and we search for the two-round signature. One match is found.
Matches are depicted in black while the rest of the DFGs are depicted in light grey. Dashed lines
are used to symbolize subgraph isomorphisms. Vertices labelled with a signature symbol have a
rounded rectangle shape.
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• S1 does not contain any vertex labelled with a signature symbol ;

• given any vertex v in S1 labelled with a signature symbol, let S2 be the signature and f2 be the
injective morphism from S2 to G such that fV,1(v) has resulted from the push transformation
of f2. We note S′1 the signature which is obtained from S1 by replacing v by S2

5. Let f ′V,1
and f ′E,1 be two mappings defined as follows:

f ′V,1 : VS′
1
7→ VG

v →

{
fV,2(v) if v ∈ VS2

fV,1(v) otherwise

f ′E,1 : ES′
1
7→ EG

e →

{
fE,2(e) if e ∈ ES2

fE,1(e) otherwise

f1 is a valid match if f ′1 = (f ′1,V , f
′
1,E) is an injective morphism from S′1 to G and if f ′1 is a

valid match.

In particular, a match f of a signature S is not valid if f(S) contains two equivalent subgraphs.
Equivalent subgraphs only exist simultaneously in augmented DFGs. They are reformulations
of a single initial set of expressions. If f(S) contains two equivalent subgraphs, sooner or later
in the recursive definition above, we will replace one of this subgraphs by the other and the
resulting morphism will be non-injective. To determine which elements of an augmented DFG
can be simultaneously selected by a valid match, we introduce two relations over the edges of an
augmented DFG.

• Direct collision relation: an edge e1 is in direct collision with an edge e2, noted e1 / e2, if e2

results from the push transformation of a match f of a signature S such that e1 ∈ fE(ES).

• Indirect collision relation: en edge e1 is in indirect collision with an edge e2, noted e1 ./ e2, if
e1 and e2 do not result from the same push transformation and if there is an edge e3 such that
e3 /

∗ e1 and e3 /
∗ e2, where /∗ denotes the reflexive-transitive closure of the direct collision

relation /.

Even though we are not going to prove it, we assume that the following claim is true.

Claim 4.2.1. A match f of a signature S in an augmented DFG G is valid if only and if there
are no two distinct edges e1 and e2 in fE(SE) such that e1 is in indirect collision with e2.

From an implementation perspective, the indirect collision relation is modelled by an undirected
graph. This graph is updated every time a signature match is pushed or popped. During Ullmann’s
algorithm for subgraph isomorphism, after each edge selection, we filter the remaining sets of
possible assignments to remove any edge that is in indirect collision with the newly selected edge.
Thereby only valid matches are returned by the algorithm.

Processing a Set of Composite Signatures. To minimize the number of push and pop trans-
formations and also to minimize the DFG size6, we devised a simple strategy to efficiently search
for all the elements of a set of composite signatures. Let SIG be a set of signatures such that all

5We referred to this transformation as a signature composition in Section 4.1.1. More precisely, S′1 is equal to
the union of S1 and S2, where:

– every input parameter xi of S2 has been replaced by srcS1
(e) where e is the edge of S1 such that dstS1

(e) = v
and labES1 (e) = i ;

– every output parameter yi of S2 has been replaced by dstS1
(e) where e is the edge of S1 such that srcS1

(e) = v
and labES1 (e) = i ;

– and v has been deleted.

6Pushing signature matches may significantly increase the size of a DFG. For instance, for certain signatures
with a large number of automorphisms, such as the AT4 signature (refer to Section 4.3.2), it nearly doubles the size
of the initial DFG.
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the signature symbols imported by an element of SIG is also exported by at least one element
of SIG . We define a directed graph structure over the elements of SIG . There is an edge from
a signature S1 to a signature S2, if S2 imports the symbol exported by S1. Based on this graph
structure, we perform a Breadth First Search (BFS) starting from the elements of SIG with no
predecessor. A more detailed description of the algorithm is given below.

1. Pick any signature S1 in SIG such that S1 has not been processed and all the direct prede-
cessors of S1 have been processed.

2. Push all the matches of the direct predecessors of S1 which have not been pushed yet.
3. Run the algorithm for subgraph isomorphism on S1 and mark S1 as processed.
4. For every signature S2 such that all the direct successors of S2 have been processed, pop all

matches of S2. If there is still a signature in SIG which has not been processed, go back to
step 1.

Note that this algorithm does not work with recursive signatures, that is to say, signatures that
import the symbol they export.

4.2.3 Difference between Signatures and Rewrite Rules

As pointed out in the previous section, composite signatures are very similar to rewrite rules. The
only noticeable difference is that during a rewrite step we substitute a subgraph by an equivalent
one, whereas during a push transformation we superimpose on a subgraph an equivalent one. Two
questions are worth to be asked. Can we replace signatures by rewrite rules? And conversely, can
we replace rewrite rules by signatures?

• Is it possible to detect composite signatures by performing a substitution instead of a su-
perposition? The answer is yes in most of the cases but there is a risk to miss detections.
Rewrite rules suffer from a problem that does not affect composite signatures, this problem
is convergence. When several rewrite rules can be applied to the same vertices, depending
on the rewrite rule that we decide to apply, we may obtain different results. With composite
signatures, every match that is found is pushed on the augmented DFG, and we let the
subgraph isomorphism algorithm select those which are relevant and discard those which are
not. The benefit of composite signatures over rewrite rules is clearly visible in the example of
Figure 4.2. The same DFG is processed using both, rewrite rules (on the left) and composite
signatures (on the right). Unfortunately, on the left the algorithm stalls after the first rewrite
step (rewrite rule R1) and, in particular, it was not possible to apply the last rewrite rule R3.
On the right however, after pushing the two matches of the first signature and the one match
of the second signature, the last signature is correctly detected. To conclude, our composite
signature detection scheme offers more flexibility than classical rewrite rules do. One can
write new signatures without bothering about possible convergence issues.

• Can we remove the normalization phase and transform every normalization mechanisms into
a set of composite signatures? The answer is clearly no. First as explained in Chapter
3, not all the normalization mechanisms can be implemented using a finite set of rewrite
rules. Second, composite signatures are significantly less efficient than rewrite rules. We can
assume that the size of DFGs does not increase with the number of rewrite steps whereas
it increases linearly in the number of push transformations. In practice, the number of
rewrite steps to reach a normalized DFG is several orders of magnitude larger the number of
push transformations required to identify a primitive. Thus, it will not be tractable to use
composite signatures instead of rewrite rules.

4.3 Experimental Evaluation

The goal of this section is to demonstrate the validity of our solution. In particular the following
two fundamental points need to be verified in practice. First, is the normalization process able
to effectively remove implementation variations? That is to say, can we make all the possible
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Figure 4.2: Comparison between rewrite rules and composite signatures. At the top we give three
signatures and their equivalent rewrite rules. The first two are non-composite signatures and they
both export the symbol ’Sa’. The third is a composite signature and it contains two vertices
labelled with the ‘Sa’ symbol. The DFG depicted in the middle is processed in two different ways:
on the left we use rewrite rules and on the right we use signatures. The graph on left is the outcome
of a possible sequence of rewrite steps (R1). The graph on right is the augmented DFG where the
matches of the first two signatures have been pushed.
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implementations of a given primitive converge to a small set of normal forms? Second, can we
efficiently detect large expressions using subgraph isomorphisms?

We have implemented a prototype of our solution. This prototype is divided into two parts.
The first part collects execution traces. It is based on the PIN DBI framework and works on both
Linux and Windows. The second part analyses execution traces. It performs everything from
DFG construction to subgraph isomorphism. It is written in C and relies on the XED library
[40] to disassemble execution traces. For the time being it can only analyse Intel Architecture
32-bit (IA-32) execution traces.

This prototype was evaluated against a large set of test programs. These test programs, also
called synthetic samples, cover five different cryptographic primitives, namely AES, MD5, RC4,
SHA1 and XTEA and for each primitive several implementations and a broad range of compilation
conditions. The results presented in this section are limited to synthetic samples. For results on
real life programs refer to Chapter 6.

4.3.1 Description of the Set of Synthetic Samples

Synthetic samples are very simple programs. They focus on a single cryptographic primitive, that
they execute a small number of times. Compared to more realistic programs, synthetic samples
provide well-controlled environments to extensively test our solution. It is easy to create a large
amount of synthetic samples to thoroughly investigate if a given parameter has an influence on the
detection rate. Because our method takes only preselected trace segments as input, the detection
rate is not supposed to change significantly moving from synthetic samples to real life programs7.
For each primitive, we created two kinds of synthetic samples.

The first kind of synthetic samples results from a publicly available source code implementa-
tion that we compiled using different compilers and different optimization levels. We used three
compilers, namely GCC, Clang and MSVC, and at least two optimization levels per compiler. The
objective is to evaluate the influence of the compiler and of its optimization level on the detection
rate. For AES we used Gladman’s implementation [31]. Gladman’s AES implementation is written
in C and can be configured in many different ways. We selected four different configurations, noted
respectively V0, V1, V2 and V3. Their characteristics are detailed in Table 4.2. For MD5 we used a
C implementation of our own. It is almost the same than the one given in the appendix of the RFC
[62], except that it uses the slightly more efficient version of the first and second round function.
For RC4 we used a C implementation of our own. For SHA1 we used the C implementation given
in the RFC [6]. And finally for XTEA we used the C source code given on its Wikipedia web
page8.

The second kind of synthetic samples are made of well known cryptographic libraries that were
used as distributed in their respective Debian package (that is to say, we did not recompile them).
The objective is to test our solution on real cryptographic binaries and to show its resilience to
source code variation. The list of the cryptographic libraries that was used, as well as the specific
functions that were analysed for each of them, is given in Table 4.3.

The following listing specifies the actual computation that is performed by each synthetic
samples.

• The AES synthetic samples encrypt and decrypt one block of data for the three standardized
key lengths: 128, 192 and 256 bits.

• The MD5 synthetic samples hash an 80-byte message. Due to the message size, the compres-
sion function is executed two times.

• The RC4 synthetic samples encrypt a 12-byte message with a 4-byte key. Note that the size
of the key is not particularly important here, since our tests only target the Pseudo Random
Generation Algorithm (PRGA) and not the key schedule algorithm.

7It is true that dealing with larger programs puts more pressure on the segment selection method. But assuming
that the segment selection method is working correctly, we should obtain similar segments whenever a primitive
implementation is executed from a synthetic sample or from a real piece of software. And if the primitive was
correctly detected in the first situation, there is no reason why it should not be correctly detected in the second
situation.

8http://en.wikipedia.org/w/index.php?title=XTEA&oldid=618892433 This implementation is adapted from
the source code that was initially published by Needham et al. [78].
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Table 4.2: Description of the synthetic samples based on Gladman’s AES implementation.

Unrolling Table
Gladman V0 Full 4 Tables
Gladman V1 Partial 4 Tables
Gladman V2 None 4 Tables
Gladman V3 Full 1 Table

• The SHA1 synthetic samples hash a 112-byte message. Due to the message size, the com-
pression function is executed two times.

• The XTEA synthetic samples encrypt and decrypt one block of data.

4.3.2 Description of the Set of Signatures

In this section we describe the set of signatures that we used for our experiments. Signature names
are usually structured in two parts separated by an underscore. The first part specifies the coverage
of the signature and the second part its version. A signature is declined into different versions
when the portion of the algorithm it covers has several normal forms. In this regard, describing
the different versions of a signature helps to understand the weakness of the normalization process.
Multiplying the number of signatures is a way to artificially boost the detection rate. But it
will go against our objective which is to show that with only a limited number of signatures we
can detect a wide range of primitive implementations. Conversely, relying on too few signatures
artificially deteriorates the detection rate. It will be difficult to extrapolate the detection rate for
more realistic sets of signatures. We hope that we have found, for each primitive, the right number
of signatures to convincingly evaluate our method.

We use the term layer to describe the organization of composite signatures. Every signature
is assigned to a layer. A signature imports symbols defined by the signatures of lower layers and
exports its symbol to signatures of higher layers.

AES. We use a set of fourteen signatures to detect AES (encryption and decryption). These
signatures are detailed in Table 4.4. They are organized in four layers. The first layer contains
signatures that cover one round of AES. The higher layers contain composite signatures that
cover 10, 12 and 14 rounds of AES respectively. Composite signatures play a key role here. In
fact for reasons that are discussed below, an AES round has many normal forms, and different
normal forms can occur within a single AES implementation. Testing extensively every possible
combination would have required many more signatures. Note that all these signatures only target
table implementations of AES.

The number of tables differs between AT4 and AT1 V* signatures. The most common imple-
mentations of AES use four 256× 32 bits lookup tables. These four lookup tables are rotations of
each other. To save memory and to mitigate timing attacks, some implementations only keep a
single table and use rotation operations to compute the result of the other lookups. AT1 V1 and
AT1 V2 were created to deal with those single table implementations. Depending on the table
that is kept two different normal forms are obtained. To detect both we created two versions of
this single table signature.

Signatures AL V1 to AL V8 specifically target the last round. Their specificities are presented
in Table 4.5. There are two reasons why we need such a large amount of signatures to detect the
last round of AES.

• There is no MixColumns in the last round. The original substitution box S seems perfectly
sufficient to fulfil any reasonable performance requirements. There is no clear reason to
use large lookup tables. Yet to save a few shift operations or to guarantee aligned memory
accesses, many implementations have devised their own custom table format for the last
round. Unfortunately, these different table formats often result in different normal forms.
For instance, let us consider the following two code snippets.
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Table 4.3: List of cryptographic libraries which are involved in the set of synthetic samples. For
each of them, the exact functions that were analysed, as well as the programming language they
are written in, are specified.

AES
Botan 1.10.8 C++

AES 128::encrypt n, AES 128::decrypt n, AES 196::encrypt n,

AES 196::decrypt n, AES 256::encrypt n, AES 256::decrypt n,

Crypto++ 5.6.1 ASM, C++
Rijndael Enc AdvancedProcessBlock, Rijndael::Dec::ProcessAndXorBlock

Nettle 2.7.1 C
nettle aes encrypt, nettle aes decrypt

OpenSSL 1.0.1t ASM
AES encrypt

TomCrypt 1.17 C
rijndael ecb encrypt, rijndael ecb decrypt

MD5
Botan 1.10.8 C++

MD5::compress n

Crypto++ 5.6.1 C++
IteratedHashBase<unsigned int, HashTransformation>::HashMultipleBlocks

Nettle 2.7.1 C
nettle md5 compress

OpenSSL 1.0.1t ASM
MD5 Update, MD5 Final

TomCrypt 1.17 C
md5 process, md5 done

RC4
Botan 1.10.8 C++

ARC4::generate

Crypto++ 5.6.1 C++
ARC4 Base::ProcessData

Nettle 2.7.1 C
nettle arcfour crypt

OpenSSL 1.0.1t ASM
RC4

TomCrypt 1.17 C
rc4 read

SHA1
Botan 1.10.8 C++

SHA 160::compress n

Crypto++ 5.6.1 C++
SHA1::Transform

Nettle 2.7.1 C
nettle sha1 compress

OpenSSL 1.0.1t ASM
SHA1 Update, SHA1 Final

TomCrypt 1.17 C
sha1 process, sha1 done

XTEA
Botan 1.10.8 C++

XTEA::encrypt n, XTEA::decrypt n

Crypto++ 5.6.1 C++
XTEA::Enc::ProcessAndXorBlock, XTEA::Dec::ProcessAndXorBlock

TomCrypt 1.17 C
xtea ecb encrypt, xtea ecb decrypt
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Table 4.4: List of AES signatures.

Name Coverage Exported Symbol Imported Symbol(s)
AT1 V1, AT1 V2 1 AES round, 1 Table A1 -
AT4 1 AES round, 4 Tables A1 -
AL V1, ..., AL V8 Last AES round A1 -
A10 10 AES rounds A10 A1
A12 12 AES rounds A12 A1, A10
A14 14 AES rounds A14 A1, A12

/* Code Snippet 1 */

static const uint8_t S[256] = {

0x63, 0x7c, ...

..., 0xbb, 0x16};

uint32_t x = (uint32_t)S[i];

/* Code Snippet 2 */

static const uint32_t table[256] = {

0x00000063, 0x0000007c, ...

..., 0x000000bb, 0x00000016};

uint32_t x = table[i];

They both assign the same value to variable x. The second code snippet is quite representative
of the so-called optimizations that are used in practice for the last round. However their
normal forms differ. In the second code snippet there is a � operation that does not exist
in the first, and in the first code snippet there is a movzx that does not exist in the second.
For the time being there is no normalization mechanism capable of eliminating this kind of
differences.

• Another source of variations is the formula that is used to merge the results of four lookups
into a 32-bit word. This formula depends on the table format, but also on the compiler
and on its optimization level. In this respect, we have identified two types of expressions
which are not normalized in a satisfactory manner even though they result from different
compilations of the same source code.

The first one is related to the distribution of left shifts over bitwise XORs. It is illustrated
by signatures AL V1 and AL V3. If we were able to distribute left shifts over bitwise XORs,
signature AL V3 would converge to signature AL V1. Conversely, if we were able to factor-
ize some of the terms of AL V1 by 28 it would converge to AL V3. Unfortunately, inserting
a generic rewrite rule to either distribute or factorize bit shifts over logical bitwise opera-
tions raises many concerns. Unlike the constant distribution normalization mechanism, such
a rewrite rule would not directly result in expression simplification. On the contrary, it
would possibly lead to a significant increase of DFG size. But even more concerning it would
strongly affect the structure of many expressions and blatantly break the context-insensitivity
property. If we factorize, bitwise XORs will be moved upward and if we distribute, bitwise
XORs will be moved downward. In any case bitwise XORs that are located on a signature
boundary (such as the first and last addRoundKey for AES) will be mixed with any surround-
ing bit shit operation (coming for instance from an non-optimized endianness shift). With
those difficulties in mind, we chose not to implement a generic rewrite rule to distribution
or factorize bit shifts over logical bitwise operations. Of course it remains possible to add an
ad hoc rewrite rule that would directly replace the merge expression of AL V1 by the merge
expression of AL V3 (or the other way around).

The second type of expressions is related to the equivalence between bitwise OR and bitwise
XOR when they are applied on variables with disjoint sets of active bits. We say that a bit
is active if there is at least one assignment for which it is equal to 1. Conservatively, we
consider that a bit is active if we cannot prove that it is equal to 0 for all the assignments.
This problem is illustrated by signatures AL V1 and AL V2. To solve it we tried to insert
the following rewrite rule.

⊕(x1, x2)→ ∨(x1, x2) if D(∧(x1, x2)) = {0}
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Table 4.5: Specificities of each of the eight versions of the last AES round signature.

Name Table Size Access Size Merge Expression
AL V1 256 × 8 8 bits ⊕(x1,� (x2, 8),� (x3, 16),� (x4, 24))
AL V2 256 × 8 8 bits ∨(x1,� (x2, 8),� (x3, 16),� (x4, 24))
AL V3 256 × 8 8 bits ⊕(x1,� (⊕(x2,� (⊕(x3,� (x4, 8)), 8)), 8))
AL V4 256 × 32 16 and 32 bits ∨(⊕(x1, x2),� (⊕(x3, x4), 16))
AL V5 256 × 32 8 and 32 bits ⊕(x1, x2, x3, x4)
AL V6 256 × 32 8 bits ⊕(x1,� (x2, 8),� (x3, 16),� (x4, 24))
AL V7 256 × 32 32 bits ⊕(x1,� (x2, 8),� (x3, 16),� (x4, 24))
AL V8 256 × 32 32 bits ⊕(x1,� (⊕(x2,� (⊕(x3,� (x4, 8)), 8)), 8))

However because we use RICs to represent sets of reachable values, this rewrite rule is not
convergent. Let us consider the following expression as a counterexample: ⊕(x1,� (x2, 8),�
(x3, 16)) and let us assume that D(x1) = D(x2) = D(x3) = [0x0, 0xff]. A first possible
sequence of rewrite steps is as follows.

⊕(x1,� (x2, 8),� (x3, 16)) → ⊕(∨(x1,� (x2, 8)),� (x3, 16))
(D(� (x2, 8)) = {28x| x ∈ [0x0, 0xff]} and D(∧(x1,� (x2, 8)),� (x3, 16)) = {0})

→ ∨(∨(x1,� (x2, 8)),� (x3, 16))
(D(∨(x1,� (x2, 8))) = [0x0, 0xffff] and D(∧(∨(x1,� (x2, 8)),� (x3, 16))) = {0})

→ ∨(x1,� (x2, 8),� (x3, 16))

In that case the reduction system behaves as expected. In particular, if we extend this rewrite
sequence to the merge expression of AL V1 it will converge to AL V2. However, a second
possible sequence of rewrite steps is as follows.

⊕(x1,� (x2, 8),� (x3, 16)) → ⊕(� (x2, 8),∨(x1,� (x3, 16)))
(D(� (x3, 16)) = {216x| x ∈ [0x0, 0xff]} and D(∧(x1,� (x3, 16))) = {0})

No more rewrite steps are possible since D(∨(x1,� (x3, 16))) = [0x0, 0xffffff]. RICs are
not well suited to represent the set of reachable values of ∨(x1,� (x3, 16)). We have to
perform a large over-approximation to represent this set by a RIC. Unfortunately, based
on this over-approximation we cannot conclude that � (x2, 8) and ∨(x1,� (x3, 16)) have
disjoint sets of active bits. RICs were introduced to accurately over-approximate additions
and bit shifts (they are the most common operations in address expressions), but they perform
very poorly with logical bitwise operations such as ∧, ¬, ∨ and ⊕. In this example, a good
way to over-approximate those operations would be to use an active bit mask. The idea is
not to definitely replace RICs by active bit masks since they are much less accurate in many
situations, but it is to use them simultaneously. Thereby depending on the type of operations,
we could switch between the different representations to always rely on the most accurate
one. None of this has been implemented though and the rewrite rule was not included in the
normalization process since at the moment it raises as many issues as it actually solves.

As a partial conclusion, the two situations that we have described (distribution of bit shifts
over logical bitwise operations and replacement of bitwise XORs by bitwise ORs) are due to
weaknesses of the normalization process which are yet unaddressed. We had no other choice
but to increase the number of signatures to correctly detect the last round of AES.

Note that none of the signatures A10, A12 and A14 covers the first AddRoundKey. In fact as
explained in Section 5.1.3, lack of context at the beginning of the signature makes it very difficult
to break the symmetries of AddRoundKey. As a consequence, inserting the first AddRoundKey in
a signature will lead to many problematic false positive detections.
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MD5. We use nine signatures to detect MD5. They are organized in two layers. The first layer
contains the following signatures:

• M1 V1 and M1 V2 cover one execution of the step function used in the first round ;
• M2 V1 and M2 V2 cover one execution of the step function used in the second round ;
• M3 V1 and M3 V2 cover one execution of the step function used in the third round ;
• M4 V1 and M4 V2 cover one execution of the step function used in the fourth round.

Every step function includes a rotation. Because there is no rotation operator in the C language,
the easiest way to implement a rotation is to use a right shift, a left shift and a bitwise OR. We
will refer to this expression as the expanded form of the rotation. Some compilers, with the right
optimization level, recognize the expanded form of the rotation and translate it into the rotation
instruction of the x86 instruction set. But compilers do not always perform this translation and
sometimes they keep the expanded form in the assembly code they produce. To fix this issue,
our initial idea was to perform the missing transformation in the normalization phase. It can be
achieved using the following rewrite rule.

∨(� (x, c1),� (x, c2))→	 (x, c1) if c1 + c2 = size

Unfortunately, in the case of MD5, this rewrite rule happened to be ineffective. In fact, the x
variable in the above formula corresponds, in the case of MD5, to a sum that involves a constant
term (refer to Section A.1.2). According to the constant distribution normalization mechanism,
the left shift contained within the expanded form of the rotation is distributed over the addition.
The result cannot be identified by the above rewrite rule. A second possibility would be to perform
the inverse transformation, that is to say, to replace the rotation operation by its expanded form.
We have not investigated this second option though. Instead we simply created two signatures for
each step function: M* V1 to detect implementations that use the rotation instruction and M* V2
to detect implementations that use its expanded form.

The second layer contains a single signature called MC. It covers the MD5 Compression func-
tion. It was necessary to use a composite signature to detect MD5. Since each step has two different
normal forms, the overall number of combinations for the 64 steps is 264. It is obviously impossible
to test 264 signatures. Thanks to composite signatures we only have to double the number of step
signatures.

RC4. We use four signatures to detect RC4. They are called respectively RP V1, RP V2, RP V3
and RP V4. They all cover one iteration of the RC4 Pseudo random generation algorithm. To
explain why four signatures are necessary to detect a wide range of RC4 implementations, let us
consider the following C code snippet.

j += S[++i];

tmp = S[i];

S[i] = S[j];

S[j] = tmp;

key_stream = S[(S[i] + S[j]) & 0xff];

/* [...] */

This code is a possible implementation of the loop body of the PRGA. This is the part of the algo-
rithm that is covered by our four signatures. Variables i and j are two 8-bit internal counters and
variable S is the permutation array. We have identified three causes of variation in the normalized
DFG of the PRGA. They are detailed below.

• Internal counter initialisation. This variation is due to segment selection. Variables i and j

are initialised to zero. If the trace segment contains this initialisation step, constant folding
will simplify the terms +(S, i0) and +(j0, load(S)) for the first iteration. Furthermore, since
variable i is incremented by a fixed amount at each iteration, the term +(S, in) will also be
simplified for every iteration n.
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• The size of the permutation representation. This variation is due to a difference at the source
code level. Most implementations use an 8-bit array, but some others use a 32-bit array. As
a consequence the address expressions that are used to access the permutation differ (an
additional � is necessary to address a 32-bit array). This issue is out of the scope of our
normalization mechanisms.

• Redundant memory load. This variation is due to a difference at the source code level. The
sequence of memory operations for the C code snippet given above is as follows9:

(load1(i), load2(i), load3(j), store4(i), store5(j), load6(i), load7(j))

This sequence of memory operations can be simplified according to the memory access sim-
plification mechanism, and we finally obtain:

(load1(i), load3(j), store4(i), store5(j), load6(i))

load6 cannot be simplified. In fact, j is a possible alias for i and thus it is perfectly correct
not to simplify load6. But if i = j, according to the rest of the algorithm the value written
by store4 will be equal to the value written by store5. Consequently, performing the
simplification will nevertheless preserve the observable similarity. This reasoning is far out
of the reach of our normalization mechanisms though. Some RC4 implementations, to save
one memory read, manually perform this simplification by replacing the last line of the C
code snippet by: key_stream = S[(tmp + S[i]) & 0xff];

SHA1. The tests presented in this chapter are limited to the message schedule10. We use two
signatures, namely SMS V1 and SMS V2, to detect the SHA1 Message Schedule. The difference
between these two signatures is due to a variation at the source code level. In [51] optimizations
that make a better use of SIMD instructions are presented. Let Wi denote the ith expanded
message word. The original formula to compute Wi is as follows:

	 (⊕(Wi−3,Wi−8,Wi−14,Wi−16), 1)

One of the sore point of this formula is the dependency between Wi and Wi−3. It prevents
straightforward vectorization with four-element SIMD instructions. A possible optimization is to
compute Wi using the following equivalent formula:

	 (⊕(Wi−6,Wi−16,Wi−28,Wi−32), 2)

Unfortunately implementations resulting from this last formula are not detected by SMS V1 which
was designed to detect implementations based on the original formula. The root cause is that
we do not distribute rotations over bitwise XORs during the normalization phase. This issue has
already been discussed in the paragraph dedicated to AES signatures. In the case of SHA1, we
simply created a new signature called SMS V2 to address this issue.

XTEA. We use six signatures to detect XTEA. Even though it was not strictly necessary in
this case11, we created two layers of signatures. The first layer contains two signatures, one
for encryption and one for decryption named XE1 and respectively XD1. They both cover one
cycle. They have three input arguments and one output argument. The second and the third
input arguments are round keys. As a reminder, the round keys of round 2i − 1 and 2i are
equal to s + key[(s >> 11) & 3] and s + key[s & 3] respectively. The key schedule of XTEA
is extremely simple. In practice it is implemented either directly in the encryption/decryption
function, and as such it is executed every time a block is processed, or in a separate function that

9For simplicity we have omitted variable S. Every address is the sum of S plus either i or j, thus removing
variable S does not affect the reasoning.

10Originally, the SHA1 message schedule was used to test the memory access simplification mechanism at the time
it was developed. In fact, in most SHA1 implementations, expanded message words are stored in a large memory
buffer. This memory buffer is extensively accessed through mixed load and store. We assume that the rest of the
compression function is similar to the MD5 compression function. And therefore we could expect similar results.

11In practice a cycle of XTEA has a unique normal form. Thus searching for cycles independently of the rest of
the algorithm does not help to reduce the number of signatures which need to be searched.
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is executed only once for all blocks. In this latter scenario, there is no guarantee that the key
schedule will be contained within the trace segment. Therefore XTEA signatures do not cover the
key schedule. The second layer contains four signatures, two for Encryption and two for Decryption
noted respectively XE32 V1, XE32 V2, XD32 V1 and XD32 V2. They all cover 32 cycles. The
differences between the two versions of both the encryption and the decryption signature are due
to segment selection and to the key schedule implementation. There are some values of the counter
s such that (s >> 11) & 3 is equal to s & 3. When it happens the 2i − 1th round key is equal
to the 2ith round key. Assuming that the counter initialisation and the key schedule are part of
the trace segment, the counter will be replaced by a constant for every round according to the
constant folding mechanism, and the round keys which are equal will be pruned according to the
common subexpression elimination mechanism. As a result in signature XE32 V2 and XD32 V2,
some of the round keys are shared by several rounds and the number of fragments of the round key
argument input is reduced. Conversely, none of this will happen if either the counter initialisation
or the key schedule is not part of the trace segment. It corresponds to signatures XE32 V1 and
XD32 V1.

4.3.3 Results

In this section we present experimental results for primitive identification. We follow the same
methodology for all the synthetic samples. First, execution traces are divided in terms of func-
tion executions. A function execution is a trace segment which starts immediately after a call

instruction and ends with a ret instruction. Two dynamic instructions are separated by fewer
ret instructions than call instructions if they belong to the same function execution. Then,
we manually select the smallest function execution which contains the primitive that we want to
detect.

We use the same format to present all the results. For brevity, only signatures belonging to the
highest layer are reported. Green indicates a correct detection, orange indicates a partial detection
and red indicates a missed detection. For partial detections we also specify what was the expected
number of signature matches. Execution time measurements were performed on a Pentium Dual-
Core T4200 processor. They correspond to the execution time of the complete analysis process,
including both the normalization and the subgraph isomorphism.

AES. Primitive identification results for AES synthetic samples are given in Table 4.6. For each
key length we analysed both the encryption and the decryption primitive. Every signature of the
first layer (namely AT4, AT1 V1, AT1 V2 AL V1, ... and AL V8) has either 4 or 24 automorphisms
(automorphisms are discussed in Section 5.1.3). There is no way to avoid these automorphisms.
We did not count them as false positives though, because they all return the same correct set of
vertices for each parameter. Only the ordering of the parameter fragments varies. Automorphisms
are propagated to the upper layers. Consequently, signatures A10, A12 and A14 also have either 4
or 24 automorphisms. If we sum signature matches that are found for the encryption and for the
decryption, we finally obtained a total of either 8 or 48 signature matches. We detail below the
synthetic samples that were not correctly identified.

• Gladman V3 Clang -O0, -O2, -O3 & MSVC -O0. No signature was found for Clang -O0 and
MSVC -O0 and round signatures are missing for Clang -O2 and -03. As indicated in Table 4.2,
Gladman V3 synthetic samples use a single large lookup table. The missing tables are replaced
by rotations. As explained in Section 4.3.2 in the paragraph dedicated to MD5 signatures,
depending on the compiler and on its optimization level, rotations are implemented using
either their expanded form or a dedicated x86 instruction. Unfortunately, our normalization
mechanisms are not able to eliminate this variation. None of the two signatures, AT1 V1
and AT2 V2, that are supposed to detect the single table implementation of AES, covers
the expanded form of the rotation. Thus, if an AES round uses the expanded form of the
rotation it will not be detected by our solution.

• Botan. The last round was not detected. For the last AddRoundKey, data is manipulated at
the byte granularity. This case is not covered by any version of the last round signature. To
remove this specificity we need normalization mechanisms able to vectorize bitwise XORs.
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The only normalization mechanism that can vectorize operations is memory coalescing but it
only affects load and store. In this regard, memory coalescing was not even possible in this
case. The round key buffer and the output buffer are both accessed at the byte granularity
and can therefore benefit from memory coalescing. But possible aliasing conflicts (mixed
read access to the substitution box, the round key buffer, and write access to the output
buffer) prevent any application of memory coalescing.

• Crypto++. We found 64 signature matches for the encryption where four were expected,
and four signature matches for the decryption which is the correct result. The functions
which implement AES encryption in Crypto++ also XOR the ciphertext with a given mem-
ory buffer. The bitwise XORs corresponding to that extra computation are merged with
the bitwise XORs of the last AddRoundKey according to the commutative and associative
operation normalization mechanism. It results in bitwise XORs with three operands: one
corresponding to a fragment of the internal state, one corresponding to a round key and one
corresponding to a fragment of the additional memory buffer. The subgraph isomorphism
algorithm tries to match these bitwise XORs with those of the signature which only have two
operands. There is two possible matchings per fragment and a total of 16 possible matchings
per initial signature match (64 = 16×4). These are considered to be true false positives since
they provide incorrect information regarding the location of the last round key. This issue
would also have affected the detection of the first round key for the decryption if the first
AddRoundKey was covered by the signatures. In fact, in a symmetric way, the ciphertext is
XORed with a given memory buffer before decryption.

• OpenSSL. No signature was found. The AES implementation provided in OpenSSL does not
use large lookup tables. Instead, it explicitly computes the xtime transformation using SIMD
instructions.

MD5. Primitive identification results for MD5 synthetic samples are given in Table 4.7. The
compression function is executed twice per synthetic sample. Consequently we expect to find two
matches of the MC signature per synthetic sample. The detection was only partial for all the
synthetic samples based on our own implementation of MD5. Only the second execution of the
compression function was correctly detected. As a reminder, the chaining value for the first message
block is initialised with a fixed constant. If this initialisation happens within the trace segment,
which is the case for all the synthetic samples based on our own implementation of MD512, due
to constant folding, important simplifications will occur within the first two steps of the Feistel
network. Consequently, no signature (neither M1 V1 nor M1 V2) will be found for these two steps
and that will prevent the detection of the MC signature.

The first layer signatures that were detected are also mentioned in Table 4.7. We notice that
for MSVC -O2 both versions of the third step function signature are found simultaneously. This
means that the third step function is, for some steps, implemented using the expanded form of the
rotation and, for some other steps, implemented using the rotation instruction.

RC4. Primitive identification results for RC4 synthetic samples are given in Table 4.8. These
synthetic samples encrypt a 12-byte message. Thus, we expect to find a total of 12 signature
matches per synthetic sample. Results were successful except for the Botan library. In that case
we had to stop the computation after one hour without getting any result. The RC4 implementation
provided in Botan uses a buffering mechanism to XOR the key stream with the message. First, the
library generates a key stream of 256 bytes, then this key stream is XORed with the message. As a
first consequence the trace segment is very large: around 88000 dynamic instructions. It explains

12Usually hash function APIs are structured in three functions. The first one, often called hash init, initialises
some internal data structure such as the chaining value and the length counter. The second one, often called
hash update, takes a message of any length, split it into blocks and calls the compression function as many times as
necessary. The third one, often called hash final, pads the remaining data, calls the compression function one last
time and returns the hash value. If a MD5 implementation follows this API structure, there will be little chance for
hash init to be included in the trace segment. But in our MD5 implementation we condensed these three functions
into a single one. As a consequence, the initialisation of the chaining value is always included in the trace segment.
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Table 4.6: Primitive identification for AES synthetic samples.

Source Compiler Opt. Result 128 Result 196 Result 256 Time

Gladman V0

GCC4.9.2

-O0 A10:48 A12:48 A14:48 2.78 s
-O1 A10:48 A12:48 A14:48 2.58 s
-O2 A10:48 A12:48 A14:48 2.58 s
-O3 A10:48 A12:48 A14:48 2.57 s

Clang3.5.0

-O0 A10:48 A12:48 A14:48 2.9 s
-O1 A10:48 A12:48 A14:48 2.7 s
-O2 A10:48 A12:48 A14:48 2.68 s
-O3 A10:48 A12:48 A14:48 2.68 s

MSVC18.0
-O0 A10:48 A12:48 A14:48 2.52 s
-O2 A10:48 A12:48 A14:48 2.35 s

Gladman V1

GCC4.9.2

-O0 A10:48 A12:48 A14:48 2.77 s
-O1 A10:48 A12:48 A14:48 2.56 s
-O2 A10:48 A12:48 A14:48 2.58 s
-O3 A10:48 A12:48 A14:48 2.58 s

Clang3.5.0

-O0 A10:48 A12:48 A14:48 2.87 s
-O1 A10:48 A12:48 A14:48 2.65 s
-O2 A10:48 A12:48 A14:48 2.56 s
-O3 A10:48 A12:48 A14:48 2.57 s

MSVC18.0
-O0 A10:48 A12:48 A14:48 2.73 s
-O2 A10:48 A12:48 A14:48 2.36 s

Gladman V2

GCC4.9.2

-O0 A10:48 A12:48 A14:48 2.77 s
-O1 A10:48 A12:48 A14:48 2.6 s
-O2 A10:48 A12:48 A14:48 2.59 s
-O3 A10:48 A12:48 A14:48 2.59 s

Clang3.5.0

-O0 A10:48 A12:48 A14:48 2.88 s
-O1 A10:48 A12:48 A14:48 2.69 s
-O2 A10:48 A12:48 A14:48 2.55 s
-O3 A10:48 A12:48 A14:48 2.54 s

MSVC18.0
-O0 A10:48 A12:48 A14:48 2.75 s
-O2 A10:48 A12:48 A14:48 2.53 s

Gladman V3

GCC4.9.2

-O0 A10:48 A12:48 A14:48 2.85 s
-O1 A10:48 A12:48 A14:48 2.72 s
-O2 A10:48 A12:48 A14:48 2.71 s
-O3 A10:48 A12:48 A14:48 2.71 s

Clang3.5.0

-O0 ∅ ∅ ∅ 1.38 s
-O1 A10:48 A12:48 A14:48 2.85 s
-O2 A10:48 A10:48/192 A10:48/432 1.98 s
-O3 A10:48 A10:48/192 A10:48/432 1.99 s

MSVC18.0
-O0 ∅ ∅ ∅ 0.92 s
-O2 A10:8 A12:8 A14:8 2.31 s

Botan - - AT4:384, AT1 V2:8 A10:56/104 A12:56/104 2.01 s
Crypto++ - - A10:68/8 A12:68/8 A14:68/8 2.93 s
Nettle - - A10:8 A12:8 A14:8 2.36 s
OpenSSL - - ∅ ∅ ∅ 0.82 s
TomCrypt - - A10:48 A12:48 A14:48 2.43 s
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Table 4.7: Primitive identification for MD5 synthetic samples. Name of the signatures that were
detected in the lower levels are given in brackets.

Source Compiler Opt. Result Time

Own Source

GCC4.9.2

-O0 MC:1/2 (M1 V1, M2 V1, M3 V1, M4 V1) 0.16 s
-O1 MC:1/2 (M1 V1, M2 V1, M3 V1, M4 V1) 0.13 s
-O2 MC:1/2 (M1 V1, M2 V1, M3 V1, M4 V1) 0.13 s
-O3 MC:1/2 (M1 V1, M2 V1, M3 V1, M4 V1) 0.13 s

Clang3.5.0

-O0 MC:1/2 (M1 V2, M2 V2, M3 V2, M4 V2) 0.2 s
-O1 MC:1/2 (M1 V1, M2 V1, M3 V1, M4 V1) 0.13 s
-O2 MC:1/2 (M1 V1, M2 V1, M3 V1, M4 V1) 0.13 s
-O3 MC:1/2 (M1 V1, M2 V1, M3 V1, M4 V1) 0.13 s

MSVC18.0
-O0 MC:1/2 (M1 V2, M2 V2, M3 V2, M4 V2) 0.29 s
-O2 MC:1/2 (M1 V2, M2 V2, M3 V1, M3 V2, M4 V2) 0.16 s

Botan - - MC:2 (M1 V1, M2 V1, M3 V1, M4 V1) 0.3 s
Crypto++ - - MC:2 (M1 V1, M2 V1, M3 V1, M4 V1) 0.48 s
Nettle - - MC:2 (M1 V1, M2 V1, M3 V1, M4 V1) 0.17 s
OpenSSL - - MC:2 (M1 V1, M2 V1, M3 V1, M4 V1) 0.18 s
TomCrypt - - MC:2 (M1 V1, M2 V1, M3 V1, M4 V1) 0.14 s

Table 4.8: Primitive identification for RC4 synthetic samples.

Source Compiler Opt. Result Time

Own Source

GCC4.9.2

-O0 RP V1:1, RP V2:11 11 s
-O1 RP V1:1, RP V2:11 9.6 s
-O2 RP V1:1, RP V2:11 9.6 s
-O3 RP V1:1, RP V2:11 9.87 s

Clang3.5.0

-O0 RP V1:1, RP V2:11 12.5 s
-O1 RP V1:1, RP V2:11 10 s
-O2 RP V1:1, RP V2:11 1.12 s
-O3 RP V1:1, RP V2:11 1.29 s

MSVC18.0
-O0 RP V1:1, RP V2:11 11.2 s
-O2 RP V1:1, RP V2:11 10 s

Botan - - ∅ > 1 h
Crypto++ - - RP V3:12 0.42 s
Nettle - - RP V3:12 0.03 s
OpenSSL - - RP V4:12 0.1 s
TomCrypt - - RP V2:12 0.02 s

why the analysis did not return in a reasonable time. As a second consequence, if we try to reduce
the size of the trace segment to capture just a few iterations of the PRGA, we will miss the final
XOR. This final XOR is contained in every RC4 signatures and thus, without it, no signature will
be found.

SHA1. Primitive identification results for SHA1 synthetic samples are given in Table 4.9. The
compression function is executed twice per synthetic sample and so is the message schedule. Con-
sequently we expect to find two matches of the SMS V* signatures per synthetic sample. Results
were successful except for RCF 3174 Clang -O0 & MSVC -O0. No signature were reported for these
two synthetic samples. When every optimization is disabled, Clang and MSVC keep the expanded
form of the rotation in the assembly code they produce. This raises a normalization issue that
has been discussed in Section 4.3.2. Unfortunately none of the two signatures employed to detect
SHA1 targets the expanded form of the rotation.

XTEA. Primitive identification results for XTEA synthetic samples are given in Table 4.10.
These synthetic samples encrypt and decrypt one block of data. Thus, we expect to find for each
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Table 4.9: Primitive identification for SHA1 synthetic samples.

Source Compiler Opt. Result Time

RFC 3174

GCC4.9.2

-O0 SMS V1:2 0.26 s
-O1 SMS V1:2 0.25 s
-O2 SMS V1:2 0.25 s
-O3 SMS V1:2 0.23 s

Clang3.5.0

-O0 ∅ 0.01 s
-O1 SMS V1:2 0.22 s
-O2 SMS V1:2 0.22 s
-O3 SMS V1:2 0.22 s

MSVC18.0
-O0 ∅ 1.25 s
-O2 SMS V1:2 0.3 s

Botan - - SMS V1:2 0.35 s
Crypto++ - - SMS V1:2 0.5 s
Nettle - - SMS V1:2 0.18 s
OpenSSL - - SMS V2:2 0.3 s
TomCrypt - - SMS V1:2 0.23 s

Table 4.10: Primitive identification for XTEA synthetic samples.

Source Compiler Opt. Result Time

Wikipedia

GCC4.9.2

-O0 XE32 V2:1, XD32 V2:1 0.09 s
-O1 XE32 V2:1, XD32 V2:1 0.08 s
-O2 XE32 V2:1, XD32 V2:1 0.08 s
-O3 XE32 V2:1, XD32 V2:1 0.08 s

Clang3.5.0

-O0 XE32 V2:1, XD32 V2:1 0.09 s
-O1 XE32 V2:1, XD32 V2:1 0.08 s
-O2 XE32 V2:1, XD32 V2:1 0.08 s
-O3 XE32 V2:1, XD32 V2:1 0.08 s

MSVC18.0
-O0 XE32 V2:1, XD32 V2:1 0.1 s
-O2 XE32 V2:1, XD32 V2:1 0.09 s

Botan - - XE32 V1:1, XD32 V1:1 0.23 s
Crypto++ - - XE32 V2:1, XD32 V1:1 0.28 s
TomCrypt - - XE32 V1:1, XD32 V1:1 0.07 s

synthetic sample, one match of an encryption signature and one match of a decryption signature.
The detection was successful for all the synthetic samples.

4.3.4 Performance

In this section we present some detailed execution time measurements. The objective is not to
thoroughly investigate the influence of a given parameter on the execution time. In fact, predicting
the execution time of both, the normalization phase and the signature detection phase, seems to be
a rather difficult problem. It is out of the scope of this work. All the execution time measurements
were obtained with a Pentium Dual-Core T4200 processor13.

The first series of results, given in Table 4.11, concerns the normalization phase. Columns
correspond to trace segments and rows to normalization mechanisms. Trace segments were taken
from the LibTomCrypt synthetic samples. For each trace segment we specify the size of the initial
DFG. The theoretical complexity of many normalization mechanisms (refer to Table 3.1) is either
linear or quadratic in the number of vertices. In practice though, the relation between the number
of vertices and the execution time is less clear. For instance, the SHA1 trace segment is slightly
larger than the AES trace segment, but it took less than half the time of the AES trace segment

13This processor is relatively old. It was commercialized in 2009. We could expect a performance increase by a
factor of at least two with a more recent CPU.
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Table 4.11: Detailed execution times for the normalization phase.

AES256 Enc MD5 RC4 SHA1 XTEA Enc
(3209 vertices, (1327 vertices, (663 vertices, (3333 vertices, (771 vertices,

3747 edges) 1801 edges) 795 edges) 4267 edges) 1029 edges)

Const. Folding 2 ms 1 ms < 1 ms 3 ms < 1 ms
Const. Expr. Detection 3 ms 1 ms < 1 ms 5 ms 1 ms
Misc. Rewrite Rules 3 ms 1 ms < 1 ms 3 ms < 1 ms
Comm. Subexpr. Eli. 3 ms 1 ms < 1 ms 5 ms 1 ms
Mem. Access Simpl. 121 ms 11 ms 3 ms 41 ms 6 ms
Const. Distribution 1 ms < 1 ms < 1 ms 1 ms < 1 ms
Oper. Size Expansion 1 ms < 1 ms < 1 ms 2 ms < 1 ms
Mem. Coalescing 7 ms 1 ms < 1 ms 2 ms < 1 ms
Affine Expr. Simpl. 3 ms 2 ms < 1 ms 4 ms 1 ms
Const. Merging < 1 ms < 1 ms < 1 ms 1 ms < 1 ms
Total 152 ms 19 ms 6 ms 66 ms 10 ms

to be normalized. We should bear in mind that normalization mechanisms are iteratively applied
until a fixed point is eventually reached. Thus the execution time depends not only on the size of
the DFG but also on the distance between the initial DFG and its normal form. Memory access
simplification is by far the most time consuming normalization mechanism.

The second series of results, given in Table 4.11, concerns the signature detection phase.
Columns correspond to trace segments and rows to signatures. We used the same trace segments
as in Table 4.12. The number of vertices and edges are different though, because they correspond
to the size of the DFGs after the normalization phase. Subgraph isomorphism is a well known
NP-complete problem, but, as illustrated in Table 4.12, it can be solved efficiently in the majority
of the cases encountered in our context. A grey cell indicates that the corresponding signature was
not found. We notice that our tool quickly returns (≤ 1 ms) when there was no signature to be
found. This is a reassuring result since it will be the most common scenario while testing large
databases of signatures with weak segment selection heuristics. The AES trace segment was much
slower than the other trace segments. This is not a surprising result. First the DFG associated
with the AES trace segment is the largest. Second, the set of signatures used to detect AES has a
relatively complex structure (signatures are organized into four layers) and covers a large amount
of code. By comparison, the SHA1 trace segment has a DFG of similar size, but the SMS signa-
ture only covers a small portion of it (corresponding to the message schedule). And last but not
least, AT4 has 24 automorphisms and so do A10, A12 and A14. This is the largest quantity of
automorphisms that any signature used in those experiments has. The complexity of the subgraph
isomorphism algorithm is, in the worst case, linear in the number of automorphisms.

Dividing large signatures into smaller ones using composite signatures may have a positive
impact on performance. For instance, in Table 4.12, if we had used a single large signature per
primitive instead of using several composite signatures as we did for AES, MD5 and XTEA, we
would have obtained the following execution time measurements:

• 1.072 s in total for AES instead of 495 ms ;
• 29 ms in total for MD5 instead of 38 ms ;
• 84 ms in total for MD5 instead of 41 ms.

For both AES and XTEA, execution times were divided by a factor two, thanks to composite sig-
natures. However as illustrated by MD5, the performance increase is not guaranteed. Sometimes,
smaller signatures have fewer structural constraints leading to a greater number of automorphisms.
And sometimes, the benefit of smaller signatures does not compensate the overhead implied by the
composite signature mechanism.

4.3.5 Conclusion

Problems that were raised during the experimental evaluation are summarized in Table 4.13. They
concern either signature versions that could have been avoided, or synthetic samples that were
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Table 4.12: Detailed execution times for the subgraph isomorphism.

AES-256 Enc MD5 RC4 SHA1 XTEA Enc
(1693 vertices, (802 vertices, (425 vertices, (1354 vertices, (741 vertices,

2154 edges) 1206 edges) 545 edges) 2139 edges) 997 edges)

AT4 109 ms < 1 ms < 1 ms < 1 ms < 1 ms
A10 187 ms - - - -
A12 44 ms - - - -
A14 36 ms - - - -
M1 V1 < 1 ms 3 ms < 1 ms < 1 ms < 1 ms
M2 V1 < 1 ms 5 ms < 1 ms 1 ms < 1 ms
M3 V1 < 1 ms 10 ms < 1 ms 5 ms < 1 ms
M4 V1 < 1 ms 1 ms < 1 ms < 1 ms < 1 ms
MC - 11 ms - - -
RP V2 < 1 ms < 1 ms 1 ms < 1 ms < 1 ms
SMS V1 < 1 ms < 1 ms < 1 ms 49 ms < 1 ms
XE1 < 1 ms < 1 ms < 1 ms < 1 ms 6 ms
XE32 V1 - - - - 33 ms
Total 495 ms 38 ms 1 ms 59 ms 41 ms

not correctly identified. We organized them into two groups. The first group contains problems
which, in our opinion, can be solved with additional normalization mechanism(s). The second
group however, contains problems that seem more difficult to solve with our current solution.
It includes problems which are related to the context-insensitivity property for instance, such as
unintended constant folding and unintended associative and commutative operation merging. Most
of the problems listed in Table 4.13 are caused by variations at the source code level and not by
compilers. At the end of Table 4.13 we gathered implementations which are difficult to normalize
and which have a low probability of occurrence. It is almost impossible to efficiently detect those
implementations with our solution. Here by efficient, we mean, without creating a dedicated set
of signatures. The efficiency of our primitive identification method depends on the stability of
primitive implementations.

From a performance perspective our solution is perfectly relevant. In average a primitive is
detected in less than one second. The only exceptions are the AES synthetic samples and some
of the RC4 synthetic samples. The AES synthetic samples are identified in approximately 2.5
seconds. But we should bear in mind that it is not one, but six primitives which are identified:
three key lengths for both encryption and decryption. Thus these results are in fact compliant
with our conclusion. Some of the RC4 synthetic samples took around 10 seconds to be identified.
For a reason that has not been investigated the normalization phase was extremely slow for these
synthetic samples (the signature detection took the usual time, that is to say around 15 ms).
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Table 4.13: List of problems that were raised during the experimental evaluation.

may be solved with additional normalization mechanism(s)

Affected Signature(s) Affected Synthetic Sample(s)
Distribution/Factorization of
bit shifts over logical bitwise
operations

AL V3, -
AL V8,
SMS V2

Equivalence OR/XOR AL V2 -

Rotation

M1 V2, AES Gladman V3 Clang -O0,
M2 V2, AES Gladman V3 Clang -O2,
M3 V2, AES Gladman V3 Clang -O3,
M4 V2 AES Gladman V3 MSVC -O0,

SHA1 RFC 3174 Clang -O0,
SHA1 RFC 3174 MSVC -O0

Operation vectorization - AES Botan

difficult to solve with the current solution

Affected Signature(s) Affected Synthetic Sample(s)

Unintended constant folding
RP V1 MD5 Own Source GCC *,

MD5 Own Source Clang *,
MD5 Own Source MSVC *

Unintended associative and
comm. operation merging

- AES Crypto++

Unprovable aliasing
RP V1, AES Botan
RP V2

Memory data format

AL V4, -
AL V5,
AL V6,
AL V7,
RP V4

Uncommon API

- AES Crypto++,
MD5 Own Source GCC *,
MD5 Own Source Clang *,
MD5 Own Source MSVC *,
RC4 Botan

Uncommon primitive implemen-
tation

SMS V2 AES OpenSSL
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Chapter 5

Dynamic Slicing for Mode of
Operation Identification

Relying on primitive identification methods, in particular on DFG isomorphism, we devise a semi-
automated solution to identify modes of operation. This solution returns a concise representation,
called a slice, which summarizes the main data transfers occurring within an implementation of a
mode of operation. The task of interpreting slices to identify modes of operation is the responsibility
of human analysts.

In a first section, we present the requirements in terms of primitive identification. Then, we
formally define a slice using syntactic concepts and discuss the advantages and disadvantages of this
definition with respect to the notion of completeness and readability. In the following sections, we
present adjustments based on semantics and we describe an approximation algorithm to compute
slices. Finally, the last section of this chapter is dedicated to experimental results obtained for
several modes of operation including CBC, HMAC and OCB.
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5.1 Primitive Identification

At the beginning of this section, we detail the requirements for the primitive identification method.
Then we justify, why the DFG isomorphism method described in the previous chapter meets
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Table 5.1: Comparison of three main primitive identification methods based on the requirements
of the mode of operation identification method.

IOR Avalanche Effect DFG Isomorphism
Primitive Identity Yes No Yes
Parameter Location Yes Yes Yes
Data Flow Separation Not directly Not directly Yes
False Positive None Numerous (Table 1.4) Few (Section 5.1.3)

these requirements quite well. Finally, we describe a common issue, caused by automorphisms of
signatures, which may affect the parameter localisation and, by extension, the mode of operation
identification method.

5.1.1 Requirements

Given a segment of an execution trace, our mode of operation identification method needs the
following information.

• The identity of each primitive executed within the trace segment. It includes the type of
the primitives (for instance whether they are block ciphers, hash functions, stream ciphers,
or key schedules) and ideally their name as well as their main characteristics (size of the
key, number of rounds). This information is replicated in slices. It does not affect the inner
computation of our mode of operation identification method. Nevertheless, it is of great
importance for the value of slices. If primitive executions are not precisely identified, it will
be harder for human analysts to interpret slices and to recognize modes of operation.

• The location of the input and output parameters of the primitives. Our solution summa-
rizes the data transfers between the output and the input parameters of different primitive
executions. Thus it is crucial to know the location of these parameters as a starting point
for our solution. This information can either be expressed in terms of registers and memory
locations in the execution trace or in terms of vertices in a DFG.

• The part of the data flow which corresponds to primitive executions. A trace segment is a
sequence of dynamic instructions where every function call is inlined. In particular, large
trace segments which are used to identify modes of operation, contain inlined primitive
executions. It is essential to dissociate instructions (or edges in a DFG representation)
belonging to primitive executions from those belonging to the mode of operation. Since we
are only interested in the data transfers implemented by modes of operation, we must be
able to exclude the data flow of primitives from our analysis.

Finally we assume that the primitive identification method is reliable. There is no filter or
manual interaction between the output of the primitive identification method and the input of
the mode of operation identification method. Thus, if the primitive identification method returns
erroneous results they will be taken into account nonetheless by the mode of operation identification
method.

5.1.2 Subgraph Isomorphism

A brief comparison of the three main primitive identification methods is given in Table 5.1. We
choose to rely on DFG isomorphism to identify primitives. This method is relatively fast (the
maximum execution time does not exceed a few seconds), efficient for non-obfuscated programs
and it does not require heavy instrumentation. Furthermore, our mode of operation identification
method uses the same DFG model. Thus, from an implementation perspective we can reuse part
of the code that was developed for primitive identification, and from a performance perspective, we
only have to create DFGs once for both methods. Finally, DFG isomorphism tells very precisely
which vertices and edges belong to a primitive and which ones belong to the mode of operation.
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DFG isomorphism returns augmented DFGs. In order to use augmented DFGs as input for
our mode of operation identification method, we perform the following transformation. Let G be
an augmented DFG.

1. We select all the matches of the signatures covering entire primitives.
2. For each selected match f of a signature S, we delete all the edges of fE(ES) and all the

vertices of fV (VS \ IS) in G. And for every vertex of fV (VS \ IS) labelled with a signature
symbol resulting from the push transformation of a match f ′ of a signature S′, we recursively
delete f ′E(ES′) and f ′V (VS′) in G.

3. We delete all the vertices of G labelled with a signature symbol as well as the edges attached
to them, including vertices resulting from push transformations of the selected matches.

4. For each selected match f , we mark every input parameter of f as final and label every
output parameter of f with a variable symbol.

In Step 2, we delete part of the DFG corresponding to primitive executions. In Step 3, we delete
irrelevant signature matches but also the selected matches. This last point is a technical detail.
If we keep the vertices corresponding to the selected matches, there will be obvious paths going
from their input parameter(s) to their output parameter(s) reflecting nothing but the internal data
flow of primitives which will ruin the slice definition given in Section 5.2. Still, as explained at the
beginning of Section 5.5, these vertices appear in the graphical representation of slices. Finally
in Step 4 we try to preserve as much as possible the DFG syntax: input parameters may be left
with no successor so they should be declared as final and output parameters may be left with no
predecessor so they should be labelled as input variables.

As we can see in the last row of Table 5.1, DFG isomorphism sometimes produces false positives.
They are caused by symmetries in signatures. This phenomenon is discussed in detail in the next
section.

5.1.3 Detection Issues - Automorphism

An isomorphism from a DFG G to itself is called an automorphism. Let G be a DFG, S be a
signature and f be an injective morphism from S to G. For every non-trivial automorphism h of
S (h 6= id), f ◦ h is an injective morphism from S to G which differs from f . In other words, the
number of matches of S in G is a multiple of the number of automorphisms of S.

Automorphisms are problematic with respect to the primitive and mode of operation identifica-
tion problem, if they affect the input or output parameters. In that case, they generate signature
matches with different mappings for the input or output parameters. Of course, in practice it is
impossible to tell which detection corresponds to the correct mapping and which one is a false
positive. An example of a signature with problematic automorphisms is given on the left hand
side of Figure 5.1. This example is based on a simple toy cipher defined by: C = S(M ⊕ k1)⊕ k2

where C is a ciphertext, S a public permutation implemented as a lookup table, M a plaintext
and k1 and k2 two keys. The problematic automorphism maps M to k1 and vice versa. Thus, it
is impossible with this signature to dissociate the plaintext from the first key; this is going to be
a serious problem for mode of operation identification.

Note that automorphisms often concern the input parameters since they lack operand con-
straints. A solution then, since we cannot modify the expressions of the primitive, is to add
additional constraints on one of the parameter to break existing symmetries. This strategy is
illustrated by the signature depicted in the middle of Figure 5.1. This enhanced signature works
under the assumption that the keys are accessed through the same pointer. It has no symmetry
any more. Yet, if we consider the DFG on right hand side of Figure 5.1, the enhanced signature
will still produce false positive detections. In fact, all the three input parameters are read from
the stack in a symmetric way. As a consequence there are two subgraphs which are isomorphic to
the enhanced signature, each of them with different vertices for M and k1. Again, we are unable
to dissociate the plaintext from the key.

This issue happens for real cryptographic primitives such as AES for instance (because bitwise
XOR are commutative, the first add round key has symmetries, and thus it is hard to correctly
dissociate the plaintext from the first round key). In the case of AES, we applied the fix described
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Figure 5.1: Two signatures and a possible DFG for the toy cipher S(M ⊕ k1) ⊕ k2. The graph
on the left is a basic signature with a problematic automorphism. The graph in the middle is an
attempt to fix the basic signature. And the graph on the right is a possible DFG which defeats
this attempt.

above with moderate success. Another solution would be to filter incorrect parameters using the
IOR method described in Chapter 1.

5.2 Slicing Definition

As motivated in the introduction, DFGs need to be simplified if they are to be manually interpreted
by human analysts. To this end, we propose to extract pieces of DFGs which are connected to
cryptographic parameters. Described as such, this step can be seen as a program slicing process.
As in program slicing, our goal is to extract pieces of a program which are affected by or have
an effect on points of interest (which are, in our case, the cryptographic parameters). But unlike
usual definitions of program slicing [70], we do not impose the slice to maintain the semantics of the
original program with respect to the points of interest. In fact, we favour readability over semantic
equivalence. Thus, not every part of a DFG which is connected with a cryptographic parameter
is included in the simplified graph. Because of the proximity to the program slicing domain, we
borrow the terminology and call the simplified graph a slice. This section is structured as follows:
first we give a formal definition of a slice and then we justify informally why this definition is a
good compromise between completeness and readability.

5.2.1 Formal Definition

Given two vertices v and w in a directed graph G, an undirected path between v and w is defined
by a sequence of edges (ei)1≤i≤n and a sequence of vertices (ui)0≤i≤n such that v = u0, w = un
and the endpoints of ei are equal to ui−1 and ui for all i ∈ {1, ..., n}. We say that two vertices
are connected if there is at least one undirected path between them. The length of an undirected
path is equal to its number of edges. The distance between two connected vertices u and v in
G, noted dG(u, v), is defined as the length of the shortest path between u and v. By extension,
two sets of vertices V1 and V2 are connected if there is at least one vertex in each set v1 ∈ V1

and v2 ∈ V2 such that v1 and v2 are connected. And the distance between V1 and V2 is equal to
minv1∈V1,v2∈V2

(dG(v1, v2)).

Definition 13 (Slice). Given a DFG G and a set of cryptographic parameters PAR, a slice Γ is
the smallest subgraph of G such that:
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• every cryptographic parameter P ∈ PAR has a least one vertex in Γ ;
• for any two cryptographic parameters P1 and P2 in PAR, if P1 and P2 are connected in G,

then P1 ∩ VΓ and P2 ∩ VΓ are also connected in Γ and the distance between P1 ∩ VΓ and
P2 ∩ VΓ in Γ is equal to the distance between P1 and P2 in G.

5.2.2 Completeness-Readability Trade-off

This section is an informal discussion to justify why the slice definition given above is a good trade-
off between completeness and readability. A slice is complete if it is possible to accurately identify
the mode of operation with the information it contains. A slice is readable if it does not contain
significantly more information than what is strictly necessary to identify the mode of operation.
If a slice is both complete and readable and on condition that the mode of operation is not too
complex, a human analyst should have no trouble to interpret the slice and to identify the mode
of operation.

Initial Approach

Initially slices were defined in a much less generic way. Instead of considering undirected paths
between any two cryptographic parameters, we only considered paths with a predefined structure
between specific cryptographic parameters. For instance, to correctly characterize CBC imple-
mentations, we first defined a slice Γ as the smallest subgraph of G which satisfies the following
conditions.

• If there is a directed path from an output parameter O to an input parameter I in G, there
is also a path from O to I in Γ and its length is equal to the length of the shortest directed
path from O to I in G. With this condition we capture any chaining value between two
executions of a block cipher such as in CBC.

• If two input parameters I1 and I2 have a common predecessor in G they also have a common
predecessor in Γ and the distances between their lowest common predecessor and I1, respec-
tively I2 are equal in G and in Γ. With this condition we capture any value which is shared
by two input parameters such as the key in CBC.

But there is clearly a risk for this list of predefined connections to be incomplete and to become
more and more complex as new modes of operation are considered. For instance in the DFG given
in Figure 5.2, the part of data flow between the input parameter and the output of Ek cannot
be summarized in terms of shortest directed paths or lowest common predecessors. To obtain
complete slices without a priori knowledge of the types of connections that may be encountered,
we adopt a more generic definition and we consider shortest undirected paths between any two
cryptographic parameters. As a consequence, if two cryptographic parameters are connected in a
DFG, they will also be connected in the slice. Unfortunately this is not sufficient to always obtain
complete slices. For instance, if the relevant path to identify a given mode of operation is not a
shortest path between a pair of cryptographic parameters, there is no guarantee that it will be
reported in the slice. In the next paragraph this issue is illustrated by an example and a possible
workaround is mentioned.

Connection-Preserving Subgraphs

It would make sense to define a slice as the smallest connection-preserving subgraph. The differ-
ence between distance-preserving and connection-preserving subgraphs is faint and only concerns
a minority of modes of operation. Though, from a completeness perspective there is a slight
advantage to prefer distance-preserving subgraphs over connection-preserving subgraphs. This
advantage is illustrated in the example of Figure 5.3. This example is based on the Rand add

function of OpenSSL. This function is one of the principal component of the Random Number
Generator (RNG) of OpenSSL. It is used to increase the entropy level of the RNG internal state
given as input a memory buffer. The input memory buffer and the internal state are divided into
20-byte blocks noted respectively b0, ..., bn and s0, ..., sm. c denotes a 32-bit constant. Rand add

mixes the input memory buffer with the internal state by iterating the following computation:
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Ek

⊕

⊕

M h(T )

*

I1

O1

Figure 5.2: Example of a DFG where the data flow between the cryptographic parameters I1 and
O1 cannot be reduced to a directed path nor to a common predecessor. The mode of operation
which is depicted here, was introduced in [50] to construct a tweakable block cipher out of an
ordinary block cipher. It behaves according to the following formula: Ek(M ⊕h(T ))⊕h(T ), where
Ek denotes a block cipher encryption under a key k, M a message bloc, h a hash function and T
a tweak.

md i ← SHA1 (md i−1 || bi || sj || c || ...)
sj ← sj ⊕md i

A simplified DFG of the Rand add function is given on the left of Figure 5.3. In this example we
only focus on the connections between the input and the output parameter of the SHA1 execu-
tions. These parameters are surrounded by dashed rectangles. If we define a slice as the smallest
connection-preserving subgraph, the information regarding the counter c will be lost. This sce-
nario is illustrated on the right hand side of Figure 5.3. Whereas if we define a slice as the smallest
distance-preserving subgraph, the slice will contain both the internal state sj and the counter c
since the shortest path between the message and the output parameter of the first SHA1 execution
goes through sj and the shortest path between the message parameter of the two SHA1 executions
goes through c. The smallest distance-preserving subgraph is sometimes larger than the smallest
connection-preserving subgraph and thus it may be able to reveal connections that would have
otherwise been concealed. But as discussed in Section 5.2.2, if the connections which are thereby
revealed are redundant with already existing connections, there will be no completeness benefit
but only a readability penalty.

Minimality Property

A slice is the smallest subgraph to preserve a certain relation between cryptographic parameters.
This minimality property ensures readability. It has two practical consequences. First a slice does
not contain superfluous elements, that is to say, edges or vertices which are not connected to at
least two different cryptographic parameters. Second a slice does not contain redundant elements,
that is to say, edges or vertices which are involved in a connection which is somehow already
represented in the slice.

However, the minimality property may also cause some perfectly relevant elements to be dis-
carded. As mentioned earlier, if relevant elements are not located on a shortest path between a
pair of cryptographic parameters, they will not be included in the slice. This is illustrated by an
example in Figure 5.4. On the left there is a possible DFG of a CTR implementation and on the
right its corresponding slice. The counter is implemented using two variables, as it could be the
case for a 128-bit counter on 64-bit architecture. For a large majority of executions, including the
one depicted in the example, only the least significant part of the counter is incremented. Of the
two existing paths between the input parameter of the two executions of the block cipher Ek, only
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Figure 5.3: Simplified DFG of the loop body of the Rand add function of OpenSSL and its smallest
connection-preserving subgraph. The primitive noted comp is the SHA1 compression function.
The smallest connection-preserving subgraph is depicted in black and part of the initial graph
containing the primitive executions is recalled in light grey.

Ek Ek

y

1x

+

Ek Ek

y
Slicing

I1

I1

Figure 5.4: DFG of a CTR implementation and its corresponding slice. The counter is implemented
using two variables: x is the least significant part and y is the most significant part. The input
parameter of the two executions of Ek are surrounded with dashed rectangles.

the shortest one is included in the slice. Thus, the information about the addition, which would
have been helpful to identify CTR, is lost.

Including every path and not only the shortest one is not a possible solution. In fact, some pairs
of parameters are connected by numerous paths which are all strictly equivalent. For instance, the
round key parameter of an AES-128 implementation is usually made of 44 32-bit words. Thus,
there are at least 44 paths between two AES-128 executions which take as input the same round
key buffer. To avoid redundant paths (representing the same information several times) we stick
to the original slice definition. A possible workaround for the example of Figure 5.4 would be to
split the input parameter of the block cipher into two parts. Since the two parts would be seen
as independent parameters, both paths would be included in the slice (which as a matter of fact
would be isomorphic to the original DFG). Obviously, this solution requires a priori knowledge of
the mode of operation that is going to be identified. As such, it cannot be used directly in a first
approach, but can be used during a refinement phase to get details about a particular connection.

Approximate Distance Preserving Subgraph

Distance preserving sometimes limits readability without providing any real completeness improve-
ment in return. In the example of Figure 5.5 three cryptographic parameters P1, P2 and P3 depend
on the same two input values. The directed paths from load1 to P1 and from load2 to P3 are
altered by two operations: movzx and part18. These operations have no influence on the set of
reachable values of P1 and P3 and thus are irrelevant to identify the mode of operation. But since
they modify the distance between P1 and P3 they have an impact on the slice. P1 and P2 have
two common predecessors in the slice. We consider that this slice is not perfectly readable since
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load1 load2
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part18

movzx
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P1 P2 P3

Slicing

load1 load2

movzx

part18
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Figure 5.5: Example of a DFG where strict distance-preserving reduces the readability.

it contains duplicate information. A solution to this problem would be to consider approximate
distance-preserving subgraphs instead of strict distance-preserving subgraphs. Given an approxi-
mation parameter α, a slice is α-distance-preserving if for any pair of cryptographic parameters P1

and P2, |dG(P1, P2)− dΓ(P1 ∩ VΓ, P2 ∩ VΓ)| ≤ α. Such a slice would probably be less impacted by
noise. A typical noise example is the operations which are used to extract bytes of an architecture
word or to swap endianness. These operations are not particularly interesting to identify modes
of operation yet they slightly modify length of paths. Noise is frequent in DFGs used for mode
of operation identification because they are not always completely normalized. In the example of
Figure 5.5, a perfectly readable slice is obtained with an approximation parameter of two.

5.3 Adjustments Based on Semantics

This section is related to the notion of influence which was introduced in Section 3.5. As a reminder,
given two vertices u and v, we say that u does not influence v, if for every assignment θ and every
value x ∈ {0, 1}size(u), θ(v) will be unaffected if we replace θ(u) by x. Conversely, we say that u
influences v if there is an assignment θ and a value x ∈ {0, 1}size(u) such that replacing θ(u) by
x modifies θ(v). In practice influence is treated in a conservative way, meaning that if we cannot
explicitly prove that u does not influence v we will consider that it influences v.

Our slice definition is purely based on the syntax of DFGs. In fact, it exclusively relies on the
graph structure and does not contain any reference to the underlying operations. This definition
has several advantages: it is concise and by putting constraints on the syntax it ensures maximal
readability. Semantics is reduced to a syntactic concept according to the following statements:

• if a vertex u is a predecessor of a vertex v, then u influences v ;
• if a vertex u is not a predecessor of a vertex v, then u does not influence v.

These two statements which have been kept implicit so far, are fundamental to understand
the slice definition. When we try to extract parts of a DFG which are close to the cryptographic
parameters, we are actually interested in parts of this DFG which are related with the cryptographic
parameters according to the symmetric transitive closure of the influence relation. According
to these two statements the predecessor relation is equivalent to the influence relation. As a
consequence it is possible to adopt a purely syntactical formulation for the slice definition which,
as we said, has the advantage of homogeneously integrating the readability requirements.

Unfortunately none of these two statements is true. To repair the first statement, load-value in-
fluence needs to be taken into account in DFG syntax. This is done through a DFG transformation
called concrete memory access simplification described in the second paragraph of Section 5.3.1.
And to improve on the veracity of the first statement, we introduce in Section 5.3.2 a minor ad-
justment to the slice definition to filter paths that do not reflect actual dependencies (fined-grained
influence tracking).

We also present, in Section 5.3.1, a particular type of influence relation, called address influence,
which is not to be included in slices even though it complies with the two previous statements.
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5.3.1 Memory Operations

Address Influence

Assuming realistic memory states (not all memory locations are equal to the same value) a memory
access is influenced by its address operand. Yet we consider that a pointer and the variable pointed
to are independent. There are two reasons to explain this choice.

• We suppose that modes of operation are limited to simple computations. Otherwise the
most complex parts must be identified separately using for instance a primitive identification
method. In particular, it seems reasonable to assume that parts of DFGs which are relevant
to identify modes of operation are unlikely to contain any indirection. Thus, there is no
absolute need to take address influence into account.

• If we consider that there is a dependency between a memory operation and its address
operand, it will create many connections which do no reflect anything but implementation
noise. For instance, given a function with the following prototype:

void function(char* plaintext, char* ciphertext);

If, according to the calling convention, arguments are pushed onto the stack, the plaintext
and the ciphertext will automatically be connected through the stack pointer. Yet they may
be perfectly independent and the fact that they are two arguments of the same function is not
worth to figure in a slice. As a less radical solution one may suggest to limit the number of
indirections along a path. For this idea to be effective, the maximum number of indirections
must be strictly lower than two. In fact, if two cryptographic parameters are stored in the
same structure or if the same offset is used to access two cryptographic parameters (as it
might be the case for the plaintext and the ciphertext in a stream cipher for instance), there
will be undirected paths between these parameters with only two indirections but which
are nevertheless irrelevant to mode of operation identification. We did not implement this
solution though.

To conclude a path cannot contain indirections, that is to say, edges labelled as an address
operand and the destination vertex of which is labelled with a memory operation.

Load-Value Influence

The result returned by a load operation is either an input value, if it is the first time in the sequence
of memory operations that its address is accessed, or is equal to the last value that was read or
written at its address. In the latter case, there is no edge to explicitly reflect these equalities in
our DFG model. Yet we absolutely need to consider them while searching for relations between
cryptographic parameters, otherwise we will lose track of cryptographic parameters as soon as they
leave the general purpose registers.

A solution to make load-value influence explicit is to use memory access simplification. This
normalization mechanism (refer to Section 3.6) replaces load operations, the address of which
was previously accessed in the sequence of memory operations, by the value that was read or
written then. The sore point of memory access simplification is accurate pointer comparison.
Two approaches have been presented: static and dynamic pointer comparison. Static pointer
comparison is necessary and also sufficient for primitive identification. But modes of operation
differ from primitives.

• As mentioned earlier, modes of operation are only supposed to contain simple computation.
In particular the content of a cryptographic parameter is not supposed to be involved in
address expressions. Thus, if it varies from one execution to another, it will have no effect on
the relative ordering of addresses. The address of cryptographic parameters may also vary
between two executions, but then, since they are probably obtained from a dynamic heap or
stack allocator, if they do not overlap for one execution we can assume that they never will.
Under these conditions, the loss of generality induced by dynamic pointer comparison seems
acceptable.
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Figure 5.6: Example of a DFG where the influence relation is not preserved along certain paths.
The size attribute of x1 and x2 is equal to 16 bits.

• Modes of operation usually manipulate several memory buffers (at least one for the plaintext,
one for the ciphertext, one for the key and one for the nonce) with mixed load and store

operations. Pointers to these buffers are generally defined outside the trace segment. Thus,
it will be impossible to produce accurate static comparisons for these pointers. Because we
have to deal with possible aliasing conservatively, if we cannot compare pointers accurately
we will miss many simplifications, that is to say, many load-value influence relations.

For these two reasons we use dynamic pointer comparison to simplify memory accesses of modes
of operation. We refer to this transformation as concrete memory access simplification.

5.3.2 Fine-Grained Influence Tracking

When we reduce the influence relation to a syntactic concept, we lose the ability to perform fined
grained influence tracking. In fact, we are forced to admit that, for any operation, every bit of its
input operand(s) influences every bit of its result. Hence, the granularity of the influence tracking
depends on the size of vertices. This approximation can lead us to falsely conclude that a vertex
influences another one based on the fact that there is a directed path between them. For instance
in the example of Figure 5.6, there is a directed path from x1 to y2 but x1 does not influence y2.
As a second example, y1 and y2 have a common predecessor but no bit of this common predecessor
simultaneously influences y1 and y2. Including such connections in a slice will reduce its readability
and could also be misleading by letting the analyst think that there is an influence relation between
a pair of cryptographic parameters while in reality there is none.

To solve this issue we perform fined grained influence tracking using influence masks. Given two
vertices u and v, influence masks were used in Section 3.5 to determine which bits of u influence
v. Here our objective is slightly different: we only want to consider the influence along a single
path, and since we are interested in undirected paths, we also want to consider indirect influence.
Let p be an undirected path characterised by a sequence of edges (ei)1≤i≤n and a sequence of
vertices (ui)0≤i≤n. The indirect influence mask on u0 along p, noted M↔u0|p, is a mapping from

{ui, 0 ≤ i ≤ n} to {0, 1}∗ recursively defined as follows:

M↔u0|p(ui) =


11...1 if i = 0

I−ei(M
↔
u0|p(ui−1)) if ui = src(ei)

I+ei(M
↔
u0|p(ui−1)) if ui = dst(ei)

We associate to each edge e a function I−e and a function I+e. The function I−e has already
been presented in Section 3.5. It propagates an influence mask from the destination vertex of e
to the source vertex of e. The function I+e performs the opposite transformation, that is to say,
it propagates an influence mask from the source vertex of e to the destination vertex of e. For
instance, in the example of Figure 5.6, if e1 denotes the edge between x1 and �, then:
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I−e1 : {0, 1}16 → {0, 1}16

m 7→ m� 8

I+e1 {0, 1}16 → {0, 1}16

m 7→ m� 8

We consider that p truly reflects an indirect influence relation between u0 and un, if M↔u0|p(un) 6=
00...0. With that in mind, we modify the notion of distance in the original slice definition: the
distance between u and v is now equal to the length of the shortest path p between u and v such
that M↔u|p(v) contains at least one 1 bit.

5.4 Slice Construction

At the beginning of this section we briefly mention the light normalization process which takes
place prior to slice extraction. Then we present the slice extraction algorithm. This presentation
is divided in two parts: first we give a naive algorithm which returns optimal solutions but which
is not tractable in practice, then we describe an approximation algorithm.

5.4.1 Light Normalization

The light normalization process is made of the following normalization mechanisms: concrete mem-
ory simplification (Section 5.3.1), common subexpression elimination (Section 3.3) and a subset of
the rewrite rules presented in Section 3.11. Apart from concrete memory simplification which is
specific to mode of operation identification, the other normalization mechanisms are also involved
in the standard normalization process. Thus, they only affect DFGs which are not entirely nor-
malized. A DFG is not entirely normalized if, for instance, it was built using pre-existing DFGs
already annotated with primitive information. In that case, there is no need to search for primi-
tives in the entire DFG and hence only the pre-existing parts are likely to be normalized. There
are two reasons to apply common subexpression elimination and other miscellaneous rewrite rules
to DFGs before extracting slices.

• To simplify DFGs. It is clear that the simpler DFGs are, the more readable slices will be.
• To replace constant expressions by constant terms. A constant expression does not depend on

its input operand(s). It would be inappropriate to include in a slice a connection between a
constant term and one of its operand(s). Thus it is important to detect constant expressions
and to replace them by constant terms. A typical example of a constant term which is
handled by the light normalization process is: ⊕(x, x).

We did not include in light normalization all the normalization mechanisms that were devised
for primitive identification. Most of them are not directly related to constant expression detec-
tion nor produce tangible simplifications for expressions which are usually reported in slices. For
instance many normalization mechanism were introduced to simplify pointer expressions and to fa-
cilitate static pointer comparison. These normalization mechanisms are of no direct interest in our
context. There is a second reason which is purely practical. Since light normalization is executed
on augmented DFGs, we must pay special attention to vertices which break the DFG syntax. As
a consequence implementation of normalization mechanisms needs to be slightly modified to run
on augmented DFGs.

5.4.2 Naive Algorithm

Finding a minimum distance-preserving subgraph is a difficult task. A basic idea is to search for a
shortest path for every pair of PAR and to take the union of these shortest paths. Since the length
of a path is equal to its number of edges, a BFS algorithm can be used to compute the shortest
path between two vertices. For a sparse graph with a number of edges linear in the number of
vertices (as it is the case in our DFG model) the complexity of the BFS algorithm is linear in the
number of vertices. Thus, the overall complexity of this simplistic algorithm is O(|V |.|PAR|2).
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Figure 5.7: A data flow with two possible distance-preserving subgraphs

However, the resulting subgraph is not necessarily the smallest. If there are several shortest paths
for a pair of vertices, the size of the union may depend on which one is chosen. This is illustrated
by an example in Figure 5.7. We want to find a slice for the DFG on the left assuming a set
of parameters PAR = {P1,P2,P3}. By using the algorithm we just described, we may obtain
the slice given on the top right which is equal to the union of (P1, key2,P2), (P1, key1,P3) and
(P2, key2,P3). However, the slice given on the bottom right is smaller. This problem is common
in practice. In fact, a cryptographic parameter is almost always defined by a set of vertices. For
instance on a 32-bit architecture, a 128-bit plaintext is usually split into four 32-bit fragments.
At least one shortest path for each of these fragments is to be expected. Back to the example of
Figure 5.7, key1 and key2 could be two fragments of the same key parameter.

In the field of graph spanners, Coppersmith et al. [18] describe an approximate algorithm to
compute pair-wise preservers. Given a graph G = (VG, EG) and P a set of vertices, a pair-wise
preserver of G with respect to P is a subgraph G′ = (VG, E

′) that is distance-preserving for the
elements of P . Their algorithm produces a pair-wise preserver the number of edge of which is
bounded by O(|VG| +

√
|VG|.|P 2|). The idea behind their algorithm is to modify slightly the

weight of the edges to enforce the uniqueness of the shortest paths. If this upper-bound is relevant
from the graph spanner perspective, in our case it does not provide any guarantee at all. The DFG
is already sparse. Thus, all its subgraphs are under that bound. Apart from this work, we have
not been able to find any work or study addressing directly our problem.

An exact solution can be computed using the following algorithm. First, search for the set of
shortest paths for every pair of parameters. Then, pick one path from each set, such that their
union is minimum. This algorithms suffers from a very high complexity. The number of shortest
paths can be exponential in the number of vertices. Evaluating every possible selection of paths
to find the smallest union also has an exponential complexity.

5.4.3 Greedy Algorithm

To reduce the complexity of this former algorithm and to make it tractable in practice, we introduce
the following adjustments. First, we limit to a fixed amount the number of paths returned by the
BFS shortest path computation. And second, we use a greedy algorithm to find the set of paths
with the smallest union. Iteratively, for each pair of parameters, we insert the shortest path which
shares the largest number of edges with the current selection. A pseudo-code for this new algorithm
is given in Algorithm 9.

The complexity of this greedy algorithm is O(|VG|.|PAR2|). Although there is no theoretical
guarantee that the returned subgraph would be the smallest, it is often the case in practice. A
list of remarks is given as follow to justify this observation. First, the fixed upper-bound on the
number of shortest paths is almost never reached. In fact, as previously said, when several shortest
paths are found it is often due to parameter fragmentation. Because fragments are rarely mixed
together outside of the cryptographic primitives, the number of shortest paths is almost always
linear in the number of fragments. Second, not every pair of parameters has several shortest paths.
Thus, the greedy selection mechanism starts with a non empty set of edges. As a consequence, the
first path is not chosen randomly. Finally, some sets of shortest paths are disjoints. For instance,
in an usual mode of operation, the plaintext paths do not intersect the key paths. We define a
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Algorithm 9 Greedy Algorithm

for all pairs (P1, P2) of PAR do
PathP1,P2

= shortestPath(P1, P2)
end for
initialise Γ as an empty graph
repeat

pick an unprocessed pair (P1, P2) such that |PathP1,P2 | is minimal
pick a path p ∈ PathP1,P2

such that |EΓ ∪ p| is minimal
add p to Γ and mark (P1, P2) as processed

until all pairs of PAR have been processed
return Γ

binary relation ∼ on PAR2, such that given Q1, Q2 ∈ PAR2, Q1 ∼ Q2 if the shortest paths of
Q1 intersect the shortest paths of Q2. The transitive closure of ∼ is an equivalence relation on
PAR2 and its equivalence classes form a partition of PAR2. Each equivalence class of PAR2 can be
processed separately. This mitigates the influence of the selection algorithm on the solution. If a
suboptimal solution is returned for an equivalence class it will not deteriorate the results returned
for the other equivalence classes. Moreover, we insert an extra clustering phase after computing
the sets of shortest paths and prior to the selection loop. During this phase we compute the
equivalence classes of P 2. For each class, either the exhaustive search or the greedy algorithm is
used depending on its cardinality and on the cardinality of its elements.

5.5 Experimental Evaluation

In this section we describe the experiments we conducted to evaluate the mode of operation iden-
tification method. In a first time, we give a batch of results obtained on a set of synthetic samples
covering very basic modes of operation. As in Chapter 4, the idea is to extensively test different
compilers, optimization levels and well known cryptographic libraries. In a second time, we present
in detail two slices that were obtained for more challenging modes of operation.

Graphical Representation of Slices. Slices are depicted using the following convention. Let
Γ be a slice and e be an edge in EΓ. If srcΓ(e) is labelled with an operation symbol and has a single
outgoing edge and if dstΓ(e) is also labelled with an operation symbol and has a single ingoing
edge, then the endpoints of e are condensed into a single vertex. This vertex is labelled with a
sequence of operation symbols: first the label of srcΓ(e), then the label of dstΓ(e). Accordingly, a
directed path with no intersection is compacted into a single vertex, in the same way a basic block
is depicted by a single vertex in traditional CFG representations. Even though slices do not contain
any vertex labelled with a signature symbol, we use some of them to mark the emplacement of the
cryptographic primitives. If a cryptographic parameter is not connected to anything apart from
the vertex marking the emplacement of its primitive, it will not be depicted. The vast majority of
edge labels are not depicted. The only edges with a visible label connect a cryptographic parameter
to the vertex marking the emplacement of its primitive. These labels specify the identify of the
parameters: plaintext, ciphertext or key for a block cipher for instance.

5.5.1 Extensive Evaluation on Basic Modes of Operation

The set of synthetic samples covers three modes of operation: CBC (encryption and decryption),
CTR and HMAC. It contains implementations taken from five well known cryptographic libraries:
Botan, Crypto++, Nettle, OpenSSL and TomCrypt. CBC and CTR were tested with AES and
HMAC was tested with MD5. For CBC and CTR we also recompiled the implementation of
Gladman using different compilers and optimization levels (arbitrarily we used configuration V1

but this choice has no impact on the implementation of the different modes of operation).

117



Methodology

For each synthetic sample we collect an execution trace including runtime address values. Depend-
ing on the difficulty to identify primitive executions in large trace segments, we either extract a
single trace segment (corresponding to the complete execution of the mode of operation) or one
trace segment per primitive execution. For instance due to constant folding the first execution of
the MD5 compression function cannot be identified if the trace segment also contains the initialisa-
tion of the chaining value. Thus, for all HMAC MD5 synthetic samples, we identified the different
executions of the MD5 compression function separately. Once primitive executions are identified,
we perform the transformation described in Section 5.1.2. If primitive executions were identified
separately, we extract a trace segment containing the execution of the whole mode of operation
and we construct its DFG using DFG composition as explained in Section 2.3.3. Then we perform
light normalization and finally we compute the slice.

To save some space, we do not detail all the slices that we obtained. Instead, to assess their
usability by a human analyst, we provide measurements of their completeness and of their read-
ability. We define these two notions with respect to an ideal slice. Let Γ be a slice, Γopt be the
ideal slice for the targeted mode of operation, and Msc be a function which returns, for a pair
of graphs, their maximum common subgraph. The completeness Cp and the readability Rd are
defined as follows:

Cp(Γ) =
|Mcs(Γ,Γopt)|
|Γopt |

Rd(Γ) =
|Mcs(Γ,Γopt)|

|Γ|

Here, the size of a graph (denoted by |.|) is equal to its number of edges. If their is an injective
morphism from Γopt to Γ then the completeness is equal to one, otherwise it is less than one.
If their is an injective morphism from Γ to Γopt then readability is equal to one, otherwise it is
less than one. Ideally Γ and Γopt are isomorphic and both the completeness and the readability
are equal to one. During our experiments, the completeness and the readability were evaluated
manually.

In Figure 5.8, we give what we consider to be the ideal slice for CBC encryption, CBC decryp-
tion, CTR and HMAC. The * label refers to any path which does not intersect the rest of the graph.
In CBC encryption and in CTR the primitive noted enc is a block cipher encryption function. It
has two input parameters (noted pt for plaintext and key) and one output parameter (noted ct for
ciphertext). In CBC decryption the primitive noted dec is a block cipher decryption function. In
HMAC the primitive noted comp is a compression function. It has two input parameters (noted
state and msg for message block) and one output parameter (noted hash). These ideal slices only
contain the minimal number of executions of the primitives allowing identification. The dotted
edges mark the emplacement where the slices must be extended if larger trace segments were to
be analysed.

Results

Completeness and readability measurements are given in Table 5.2. The completeness is always
equal to one. It means that the slicing process did not miss any important connection specified
in the ideal slices. The majority of the readability values are also equal to one, except for HMAC
MD5. We detail below the synthetic samples with a readability value lower than one.

HMAC MD5. For HMAC MD5 synthetic samples, slices contain an additional connection be-
tween the message parameter of the last compression function of the inner hash function and the
message parameter of the last compression function of the outer hash function. It appears that this
additional connection is caused by the size of a message block. In fact, according to the specifica-
tions the size of k⊕opad and k⊕ipad are both equal to the size of a message block. Thus, the size
of k⊕opad || H(k⊕ipad || m) and k⊕ipad || m depend on the size of a message block. And since
the message padding includes the length of the message, it is perfectly legitimate for the content
of the last block to depend on the size of a message block. Note that for trace segments limited
to the HMAC execution, it is generally impossible to determine that the size of a message block is
a constant. In fact, HMAC implementations are generally hash function-agnostic. Thus the size

118



x

enc

*

enc

key

key

key

ct

pt

ct

CBC Encryption

x

* y

dec dec *

*

*

ct

pt

key

ct
key

key

CBC Decryption

x

*

y

enc enc

pt

pt

key
key

key

CTR

x

* *

comp

compcomp

*

comp

*

msg

msg

state

hashhash

state msg

HMAC

Figure 5.8: Ideal slice for CBC encryption, CBC decryption, CTR and HMAC.

of a message block is an input parameter for HMAC implementations. We count this additional
connection as superfluous since it can be misleading for inexperienced human analysts. It decreases
the readability score from 1 to 0.8. The readability score obtained for the HMAC MD5 synthetic
samples based on Botan and Nettle are even lower. In the case of Botan, after computing an
authentication tag the internal HMAC data structure is reinitialised to be ready to compute a new
authentication tag. As part of this reinitialisation process the compression function is executed
on k ⊕ ipad. Thus the slice contains an additional execution of the compression function which is
connected to the key parameter. In the case of Nettle, the key parameter is manually realigned. In
our synthetic samples the message and the key parameter are declared as C strings. As such they
were not aligned by the compiler and they overlap over an architecture word. In this context, the
manual memory realignment computation creates a connection between the key and the message
that seriously spoils the readability of the slice.

CBC AES. The readability score is lower than one for some specific compilation conditions of
Gladman V1 CBC AES. At the beginning of the AES primitive, Clang -O2 and -O3 produces a
rather complex sequence of SIMD instructions to read the plaintext memory buffer. It includes
a 128-bit mask which is stored in the .rodata segment. This mask is a common predecessor for
every plaintext parameter. This issue does no affect Gladman V1 CTR AES since there is a shorter
path between the plaintext parameters. The easiest way to solve this issue would be to establish
that the 128-bit mask is a constant value. As future work one can extend the constant expression
detection mechanism to replace by a constant term any load operation the address of which is a
constant and which accesses read only memory segments.

5.5.2 Examples on More Complex Modes of Operation

The objective of this section is to present real slices obtained for more challenging modes of
operation. In the first example we apply our mode of operation identification method to an OCB
AES implementation. OCB is an authenticated encryption mode of operation. With this example
we show that our solution can scale to complex modes of operation. In the second example we
apply our solution to a malicious CBC implementation containing a back door. With this example
we demonstrate that our solution can provide valuable information even for modes of operation
that would have been difficult to anticipate.

Authenticated Encryption: OCB

There are three versions of OCB. This example is based on the implementation of OCB given in
the TomCrypt library which corresponds to the first version, described in [64]. The slice given in
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Table 5.2: Mode of operation identification for CBC, CTR and HMAC synthetic samples. For
cells highlighted in yellow, primitives were identified in small trace segments limited to a single
primitive execution, whereas for the other cells, primitives were identified directly in the trace
segment containing the whole mode of operation execution.

CBC AES Enc. CBC AES Dec. CTR AES HMAC MD5

G
la

d
m

an
V

1

GCC

O0 Cp = 1,Rd = 1 Cp = 1,Rd = 1 Cp = 1,Rd = 1
O1 Cp = 1,Rd = 1 Cp = 1,Rd = 1 Cp = 1,Rd = 1
O2 Cp = 1,Rd = 1 Cp = 1,Rd = 1 Cp = 1,Rd = 1
O3 Cp = 1,Rd = 1 Cp = 1,Rd = 1 Cp = 1,Rd = 1

Clang

O0 Cp = 1,Rd = 1 Cp = 1,Rd = 1 Cp = 1,Rd = 1
O1 Cp = 1,Rd = 1 Cp = 1,Rd = 1 Cp = 1,Rd = 1
O2 Cp = 1,Rd = 0.4 Cp = 1,Rd = 0.4 Cp = 1,Rd = 1
O3 Cp = 1,Rd = 0.4 Cp = 1,Rd = 0.4 Cp = 1,Rd = 1

MSVC
O0 Cp = 1,Rd = 1 Cp = 1,Rd = 1 Cp = 1,Rd = 1
O2 Cp = 1,Rd = 1 Cp = 1,Rd = 1 Cp = 1,Rd = 1

Botan Primitive not detected Cp = 1,Rd = 0.7
Crypto++ Primitive not detected Cp = 1,Rd = 0.8
Nettle Cp = 1,Rd = 1 Cp = 1,Rd = 1 Cp = 1,Rd = 1 Cp = 1,Rd = 0.6
OpenSSLa Cp = 1,Rd = 1 Prim. not detected Cp = 1,Rd = 1 Cp = 1,Rd = 0.8
TomCrypt Cp = 1,Rd = 1 Cp = 1,Rd = 1 Cp = 1,Rd = 1 Cp = 1,Rd = 0.8

aCompared to the experiments conducted in Chapter 4, here we used a specific signature to detect the AES
implementation of OpenSSL. Due to the MixColumns operation, different signatures are required for the encryption
and for the decryption. Unfortunately we did not have time to create the decryption signature.

Figure 5.9, was obtained after encrypting a 34-byte message with OCB AES. We used the set of
signatures described at the end of Chapter 4 to detect the AES primitive.

To justify why this slice correctly reflects the algorithm and to underline some of its imprecisions
we divide the slice into four parts.

• The first part is coloured in blue and is located at the top of the figure. It computes the
first offset which is equal to: Ek(N ⊕Ek(00...0)), where N denotes a nonce and Ek an AES
encryption under a key k. The two AES executions and the bitwise XOR in between are
visible in the slice.

• The second part is coloured in orange and is located at the bottom left of the figure. It
encrypts the two first message blocks by evaluating the expression: Ek(M [i] ⊕ Z[i]) ⊕ Z[i],
where M [i] denotes the ith message block and Z[i] the ith offset (random mask). Here
again the slice perfectly transcribes the algorithm specifications. The two message blocks
correspond to the two load vertices at the centre of the slice. The offset Z[i] is XORed two
times, before and after the encryption. The bitwise OR and part18 operations are due to
size changes from 32-bit to 8-bit variables and conversely.

• The third part is coloured in violet and is located on the right of the figure. It corresponds to
the last block encryption defined by: Ek(len(M)⊕L(−1)⊕Z[m])⊕M [m]. The last message
block M [m] does not appear in the slice. M [m] is read only once for the whole scheme. Thus,
it does not belong to any path, and consequently it was not reported in the slice.

• The last part is coloured in green and is located at the bottom right of the figure. It computes
the authentication tag defined by: Ek(M [1]⊕ ...⊕M [m− 1]⊕ (C[m] || 0∗)⊕ Y [m]⊕Z[m]),
where C[m] || 0∗ is the last encrypted block padded with zeros and Y [m] = Ek(len(M) ⊕
L(−1) ⊕ Z[m]). As previously said, the message used for this slice is 34-bytes long. Thus,
the size of C[m] is 2 bytes. These two bytes are obviously not on any shortest path, since
they involved an additional XOR operation compared to Y [m]. With this remark in mind,
the slice appears to contain the right dependencies: the two message blocks, Y [m] and Z[m]
are XORed together and the result is encrypted.
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Figure 5.9: Experimental slice obtained for the OCB AES implementation of the TomCrypt library
executed on a 3-block message. Colours were added manually to point out the different parts of
the algorithm:

− : first offset computation ;
− : encryption of the first two blocks ;
− : encryption of the last block ;
− : authentication tag computation.

This slice was generated in 0.5 s on a Pentium Dual-Core T4200 processor out of a DFG with
14187 vertices and 19630 edges.
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For brevity, we will not dig into how the different offsets are generated. As far as we conducted
our inspection, no inconsistency between the slice and the specifications was discovered. To con-
clude, the slice contains most of the interesting connections even though some are missing (the
bitwise XOR with C[m] || 0∗ for instance). Obviously the complexity of this mode of operation
reduces the advantage of a graph representation for a human analyst. However, as demonstrated
above, it is still possible to understand it with the help of the specifications.

IV-Replacement Attack

An Algorithm Substitution Attack (ASA) consists in replacing the original encryption algorithm
by a malicious one containing backdoor capabilities. There has been a renewed attention in the
past few years for ASA, as shown by recent publications in that domain [12, 11]. Closed source
implementations of symmetric cryptography are attractive targets for ASA. Thus, while evaluating
binary software, security experts could be interested in detecting ASA. This example shows that
our mode of operation identification method can automatically discloses an IV-replacement attack.

An IV-substitution attack is a simple ASA that was first described in [12]. It can be used
against any encryption scheme that surfaces its IV, such as CBC or CTR. Two keys are used: the
legitimate encryption key k defined by the user and a second key k′ known only by the attacker.
The IV is replaced by k encrypted under k′. Anyone with the knowledge of k′ can decrypt the IV,
recover k and finally decrypt the data.

For this experiment, we implemented a very simple CBC AES encryption subject to an IV-
replacement attack. The encryption key k is also encrypted using AES. To start the analysis, we
located the AES key schedule and the AES encryption, using our primitive identification method.
The slice that was returned by our mode of operation identification method is given in Figure 5.10.
It is easy to recognize three CBC patterns in the middle: encryption executions chained by bitwise
XORs. Notice that encryptions depend on both the result of the key schedule and the key (vertices
labelled with load). It is perfectly correct since the first four round keys are equal to the key. The
key schedule is executed two times: once for k′ and once for k. The IV generation happens on
the top left corner: we notice that the first AES encryption takes as a plaintext parameter a value
read from the memory which is later used as an input by a key schedule execution. This is the
encryption key k. The IV-substitution pattern is thus clearly visible.

5.5.3 Conclusion

We demonstrate through experimental results on CBC, CTR and HMAC that, in practice, slices
produced by our method are complete and also readable apart from a few corner cases which were
clearly identified. We hope that the two slices given at the end of this section have convinced the
reader that security analysts can take advantage of the results returned by our solution to quickly
identify modes of operation and to get a good understanding of their internal structure. We believe
that our solution is highly profitable for black box audits and any other activities which require to
reverse engineer binary implementations of modes of operation.
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Figure 5.10: Experimental slice obtained for an CBC AES encryption subject to an IV-replacement
attack. This slice was generated in 4 ms on a Pentium Dual-Core T4200 processor out of a DFG
with 675 vertices and 968 edges.
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Chapter 6

Detailed Use Cases

In this chapter we present two practical examples of automated reverse engineering of cryptographic
algorithms. In the first example we explain how one can make use of our primitive identification
method to run test vectors in an automated way. In the second example, we detail a complete
analysis of mode of operation in an instant messaging application. With these two examples we
confront our solution with real life programs.
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6.1 Automatic Test Vectors Verification

The most common way to check that a given cryptographic implementation truly behaves according
to its specifications is to run test vectors. A test vector is a couple of values (x, y) such that any
implementation f of some given specifications must verify f(x) = y. As a first step to check
whether or not this relation holds in practice, security experts have to locate the algorithm along
with its input and output parameters. With this knowledge, they should be able to selectively
execute the algorithm on any chosen inputs and to monitor the output. In this section, we propose
to use our primitive identification method to automatically retrieve the location of the input and
output parameters.

In this example we analyse 7-Zip [59]. It is a well known and widely used file archiver and
compression tool for Windows. In our context, we got interested in 7-Zip because it allows users to
encrypt compressed data. In the remainder of this section we describe step by step how, with only
minimal human interactions, we can identify the encryption primitive used by 7-Zip and check the
correctness of its implementation.

The materials presented in this section have been published in a blog post [46].
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6.1.1 Execution Trace

The binary that was used in this example is 7-Zip version 16.04 compiled for a 32-bit architecture.
As a first step we need to collect an execution trace which contains at least one execution of the
encryption primitive. It was done using the following command line:

./pin.exe -t lightTracer.dll -w whl.lst -- ./7z a -p123passwd file.7z file.txt

We used a pintool of our own making, called lightTracer.dll, that has briefly been introduced
in Section 2.2.2. The -w option specifies the name of the file, here whl.lst, which contains a list
of white-listed shared libraries. Shared libraries white-listing is a simple but efficient technique to
reduce the tracing overhead. Only the shared libraries mentioned in whl.lst are instrumented by
lightTracer.dll. For this example the only white-listed shared library was 7z.dll. The other
libraries imported by 7z.exe are related to the operating system and thus, can rapidly be excluded
from our analysis. 7-Zip is invoked with the a and -p options to create an encrypted archive. For
simplicity, we add to the archive a single file called file.txt which contains 12 bytes of data.

The tracing process took a few seconds and returned an execution trace of 185 MB. A total of
four threads were executed. The first thread executed 376 million dynamic instructions, the second
thread 770 million dynamic instructions and the last two threads around ten thousand dynamic
instructions each.

6.1.2 Fragment Selection

We know from the information available on the 7-Zip website, that the encryption primitive should
be AES. Our initial idea was to search for constants because many implementations of AES use
large lookup tables. FindCrypt2 did not find any constant related to AES, but a manual search
revealed an AES substitution box at virtual address 0x100d5e28 in 7z.dll. The reason why
FindCrypt2 failed is that it only looks for the large lookup tables, which are neither contained
within 7z.exe nor within 7z.dll. Using IDA [38], we found that the AES substitution box is used
by four different functions.

• The first function F1 starts at virtual address 0x100bfba0. It was executed once by the
second thread after 770755330 dynamic instructions.

• The second function F2 starts at virtual address 0x100bfcd0. It was not executed.
• The third function F3 starts at virtual address 0x100bfd60. It was executed once by the

second thread after 770757133 dynamic instructions.
• The fourth function F4 starts at virtual address 0x100c08d0. It was executed once by the

first thread after 202452 dynamic instructions.

Functions F1, F3 and F4 are possible implementations of the AES encryption algorithm. From
our experience we know that the length of a typical AES encryption algorithm does not exceed
1000 dynamic instructions. Thus we selected the three trace segments of 1000 dynamic instructions
each, starting from the entry point of F1, F3 and F4 respectively. These trace segments are given
below:

• [770755330:770756330] for the second thread ;
• [770757133:770758133] for the second thread ;
• [202452:203452] for the first thread.

6.1.3 Primitive Identification

To detect AES we used the set of signatures that is described in Section 4.3.2 plus two addi-
tional signatures called AL V9 and AF256. AL V9 is the 9th version of the last round signature.
It targets implementations that use the AES substitution box and ∨(x1,� (∨(x2,� (∨(x3,�
(x4, 8)), 8)), 8)) as the merge expression. AF256 stands for AES Full 256. It is a wrapping of A14
which includes the first AddRoundKey. To break the symmetries of the first AddRoundKey, that
is to say to dissociate the plaintext from the first round keys, the signature also includes the load
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Table 6.1: Signatures detected for the second trace segment [770757133:770758133]. Execution
time measurements were performed on a Pentium Dual-Core T4200.

Signature Number of Occurrence Time (s)
AL V9 4 0.003
AT4 312 0.096
A10 100 0.153
A12 52 0.030
A14 4 0.001
AF256 4 0.032

operations that access the round keys and their address expressions. This workaround is discussed
in Section 5.1.3.

We did not find any signature in the first and in the third trace segment. But we detected an
AF256 signature in the second trace segment. The exact signatures, their number of match and
the time spent for their detection are given in Table 6.1. Note that AT4 has 24 automorphisms and
AL V9 has four automorphisms. It explains why we detected four matches of the AF256 signature
when the trace segment contains at most only one complete execution of the encryption primitive.
Interestingly, we observe that even if the four large lookup tables are not contained within the
binaries, 7-Zip still uses a table implementation of AES. We can guess that the large lookup tables
are dynamically computed.

A manual analysis later revealed that F1 implements the key scheduling for the encryption, F2

the key scheduling for the decryption and F4 the large lookup table computation.

6.1.4 From Vertices to Instruction Operands

For each signature match, he subgraph isomorphism algorithm returns a mapping from parameter
fragments to vertices. To be usable by security experts, this result needs to be converted back to
the assembly language representation. To do so, during DFG construction, vertices are associated
with the index of the dynamic instruction they are originated from. We assume that a vertex
corresponds, in the assembly language representation, to the destination operand of the dynamic
instruction it is associated with. This naive scheme has several flaws though.

First, an instruction may have several explicit and implicit destination operands. For instance,
the instruction div ebx modifies the value of both eax (quotient) and edx (remainder). If a vertex
is associated with this instruction, how can we tell to which register it corresponds? Second, not all
the vertices that are used to represent an instruction correspond to their destination operand(s).
For instance in the DFG that represents xor eax, [esp + 0x10], there is one vertex labelled
with a variable symbol to represent the initial value of eax and one vertex labelled with a +
to represent the address computation. But none of them corresponds to the final value of eax.
Third, during the normalization phase, vertices that do not correspond to any particular dynamic
instruction may be inserted. There is no easy way to convert those vertices back to the assembly
language representation. In the context of test vectors, we should either characterize those vertices
by their direct predecessors or by their direct successors depending on whether we need to write
or to read their assembly counterparts. We proceed recursively until vertices that are associated
with dynamic instructions are eventually reached.

The first two points are not addressed by this work and the last point only received a partial
solution.

Fortunately, none of these complications happened in our 7-Zip example. The following lines are
the exact result that was returned by our analysis tool about the location of the AF256 parameters.

Parameter I0 = {IMEM@15 IMEM@10 IMEM@11 IMEM@9}

Parameter I1 = EAX[16:256]@1

Parameter O0 = {@868 @891 @911 @845}

There is one line per parameter. The first line is about the plaintext parameter. This parameter
is divided into four 32-bits fragments. The first fragment corresponds to the Input MEMory
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operand of the 15th dynamic instruction1, the second fragment corresponds to the input memory
operand of the 10th dynamic instruction, and so on. The second line is about the round keys
parameter. This parameter is divided into sixty 32-bit fragments. Luckily we were able to employ
a condensed formulation to report their location. When all the fragments of a parameter are
mapped to memory operations (either load or store), we try to find whether they belong to the
same memory buffer. That is to say, we try to find if their addresses are equal to x + ci, where
x is the same term for every address and ci is a constant term such that ci+1 = ci + si, where
si denotes the size of the ith fragment. If this is the case, the parameter is simply reported as
x[min(ci),max(ci + si)]. Back to our example, the round keys parameter is located in a memory
buffer that starts at address eax1 + 16 and ends at address eax1 + 256, where eax1 denotes the
value of eax before the 1st dynamic instruction. The third line is about the ciphertext parameter.
This parameter is divided into four 32-bit fragments. The first fragment corresponds to destination
operand of the 868th dynamic instruction, the second fragment to the destination operand of the
891st dynamic instruction, and so on.

Note that our analysis tool reports only one possible location for the parameters even though
four matches of the AF256 signature were found. As previously explained, the four matches of
the AF256 signature are caused by symmetries in the underlying AT4 and AL V9 signatures. The
only difference between these four concurrences is the ordering of the parameter fragments. For
simplicity we have presented only the first possible ordering. As we will see in the next paragraph,
for this example it is relatively easy to determine the right ordering in practice.

6.1.5 Test Vectors

In order to check the 7-Zip AES implementation, we relied on the test vector of the NIST for AES
256 [1]. Using a debugger, we can dynamically assign a new value to the input parameters. Then,
once the algorithm has been executed, we can check that we obtained the expected results. We
wrote a simple WinDbg [56] script to perform these actions. This script was written manually, but
writing it in an automated way should not raise any significant difficulty. It is given below.

££ Set the plaintext

bp 0x100bfd78 "ed @edi 0x33221100; g"; ££ @11: 0x100bfd78 xor edx, [edi]

bp 0x100bfd72 "ed @edi+0x4 0x77665544; g"; ££ @9 : 0x100bfd72 xor esi, [edi+0x4]

bp 0x100bfd83 "ed @edi+0x8 0xbbaa9988; g"; ££ @15: 0x100bfd83 xor ecx, [edi+0x8]

bp 0x100bfd75 "ed @edi+0xc 0xffeeddcc; g"; ££ @10: 0x100bfd75 xor ebx, [edi+0xc]

££ Set the round keys @1: 0x100bfd63 mov edx, [eax+0x10]

bp 0x100bfd63 "ed @eax+0x10 0x03020100 0x07060504 [...] 0x36de686d; g"

££ Check the ciphertext

bp 0x100c018e "r @edx; g"; ££ @868: 0x100c018b xor edx, [eax+0x14]

bp 0x100c01e6 "r @ebp; g"; ££ @891: 0x100c01e3 xor ebp, [eax+0x18]

bp 0x100c0237 "r @ecx; g"; ££ @911: 0x100c0234 xor ecx, [eax+0x1c]

bp 0x100c0136 "r @edx; g"; ££ @845: 0x100c0133 xor edx, [eax+0x10]

For each dynamic instruction index, we recall in the comments the address and the value of the
instruction. Even though our analysis tool failed to detect it as such, the plaintext parameter
is located in a memory buffer: edi9[0, 16], where edi9 denotes the value of edi before the 9th
dynamic instruction. That being said, the correct ordering of the plaintext parameter is easy to
guess. The first fragment (test vector value: 0x33221100) goes to [edi], the second fragment
(test vector value: 0x77665544) goes to [edi + 0x4] and so on. The round keys parameter is
quite long and for brevity most of it has been omitted in the code above. This script returned the
following output:

1For clarity, we use here a sub-index to count dynamic instructions. It is initialised to zero at the beginning of
the current trace segment, that is to say, after 770757133 dynamic instructions if we count from the beginning of
the execution trace of the second thread.
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edx=cab7a28e, edx=bf456751, ebp=9049fcea, ecx=8960494b

Fragments of the NIST test vector are all found back. The AES implementation used in 7-Zip is
compliant with the NIST standard.

6.1.6 Conclusion

The first objective was to demonstrate that our solution is able to cope with real life software. The
7-Zip example is well suited since the traditional approach based on constant detection gives poor
results. A manual search revealed the encryption function but mixed with three other functions.
The inverse substitution box is computed dynamically. Thus the decryption algorithm could not
have been found using static constant detection. A second objective was to illustrate how one can
take advantage of precise parameter location to evaluate the correctness of an implementation by
running test vectors. Translation from vertices back to assembly instructions still suffers from a
couple of imprecisions but we have never experienced them in practice.

6.2 Complete Analysis of an Instant Messaging Application

For simplicity reasons, most of the experiments presented in Chapter 4 and 5 were limited to
synthetic samples. In this section, we apply our solution to a more substantial program: the
Telegram client for Linux. Telegram is an instant messaging service that uses a custom encryption
scheme called MtProto. Brief specifications of this protocol can be found on the editor’s website
[69]. Official client applications are available for several operating systems and they are all open
source. Thus, it will be easy to check the validity of our findings.

6.2.1 Execution Trace

This example is based on the official Telegram client for Linux 32-bit, version 32.1.0.29. The size
of the binary is 74 MB. It is partially stripped. Based on the remaining symbols, it is clear that it
includes several statically linked libraries such as Qt.

We used our pintool to collect an execution trace. The only white-listed shared library was the C
standard library. We know from our experience that many implementations of modes of operation
use memcpy. We preventively decided to trace the C standard library to cover completely any
modes operation even when they use memcpy. To be able to analyse modes of operation, we also
saved runtime address values in the execution trace. During the recorded execution, we simply
launched the program, waited for the main window to appear and closed the main window which
caused the program to return.

The tracing process was rather long and took approximatively 30 minutes. More than a dozen
of threads were executed. The size of the trace is around 6 GB and 90% of it consists of runtime
address values. In this example we limit our analysis to the first thread. More than 1 billion
dynamic instructions were recorded for the first thread.

6.2.2 Basic Heuristics for Segment Selection

We used four simple heuristics to rapidly discover the location of possible cryptographic primitives.
The first three are based on the notion of basic block and the last one on the notion of function
execution.

• We discard basic blocks which contains fewer than 40 instructions. Symmetric cryptography
algorithms have very few conditional statements resulting in large basic blocks.

• We discard basic blocks which contain less than 25% of logical bitwise instructions.

• We discard basic blocks which were executed fewer than five times. This threshold was fixed
rather arbitrarily. The general idea is to consider only basic blocks which are executed a large
number of times. In fact, if a basic block belongs to a round function, it will be executed
several times as part of the primitive and the primitive itself is likely to be executed several
times depending on the amount of data to be processed.
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Table 6.2: List of functions returned by the segment selection method described in Section 6.2.2.
In the last column we specify for each of them the name of primitive that was detected.

Start Address Number of Execution Result
0x09abfe00 131 ∅
0x09abe820 40 AES-256 Encryption OpenSSL
0x0846b2a0 54 Compression Function MD5
0x099e1db0 54 Compression Function MD5
0x09ab8cc0 379 Compression Function SHA1

• We discard function executions which contain function calls. Symmetric cryptographic al-
gorithms are usually implemented in a single function that does not call any sub-function.
Note that compiler tricks to retrieve the program counter value such as the function given
below, do not count as sub-functions.

mov ebx, dword ptr [esp]

ret

First we select all basic blocks which simultaneously satisfy the first three heuristics. From the
sixteen thousands basic blocks originally included in the execution trace, only 42 survive this first
selection process. Then, we select every function all executions of which satisfy the last heuristic
and contain at least one of the previously selected basic block. Function executions are determined
based on the count of call and ret instructions. At the end we obtain four functions.

6.2.3 Primitive Identification

The four functions returned by the segment selection method described above are given in Table
6.2. For each of them we randomly extracted one of their executions and we analysed it with our
primitive identification method. Results are given in the last column of Table 6.2. No primitive was
detected for the first function. It is probably the AES-256 decryption implementation of OpenSSL,
but this specific implementation was not covered by our set of signatures. If this hypothesis
is correct, the heuristics used to rapidly locate the cryptographic primitives returned no false
positive. To analyse the mode operation we used the location of the AES-256 encryption primitive
as a starting point.

6.2.4 Block Cipher Mode of Operation

The AES-256 encryption primitive is executed 40 times in the execution trace. Each execution is
separated by exactly 71 dynamic instructions. This regularity suggests that AES-256 is executed as
part of a mode of operation. The function that calls the AES-256 encryption primitive is probably
just a wrapper since it contains very few instructions of its own and only executes AES-256 once.
The function that calls the wrapper may correspond to the encryption mode of operation since it
contains all the 40 executions of AES-256. The execution trace of this latter function is quite large
(72 thousand dynamic instructions), thus we only analysed a piece of it containing five executions
of AES-256. The slice that was obtained is given in Figure 6.1.

It is not easy to recognize this mode of operation at first glance. We can make two observations
though. First the key seems to be the same for every execution of AES-256 and second, the same
data is XORed with the input of the ith encryption and with the output of the (i+1)th encryption.

As stated in the specifications of MtProto this mode of operation should be Infinite Garble
Extension (IGE). IGE has practically never been used apart by Telegram. A message block M [i]
is encrypted in a ciphertext block C[i] according to the following formula:

C[i] = Ek(M [i]⊕ C[i− 1])⊕M [i− 1]

One should have no trouble to recognize IGE in the slice of Figure 6.1. The completeness and
the readability are optimal.
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Figure 6.1: Experimental slice obtained for a trace segment containing five executions of the AES256

encryption primitive. The bottom-most edges are depicted with dotted lines to symbolize how one
could extrapolate the current slice for a larger trace segment. This slice was generated in 8 ms on
a Pentium Dual-Core T4200 processor out of a DFG with 531 vertices and 853 edges.
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Figure 6.2: Synthesis of the call stack. Edge labels specify the number of times sub-functions are
called. We did not investigate precisely the number of intermediate functions along the dotted
edges.

6.2.5 Key and IVs Derivation Function

In this section we analyse how the key and the two IVs required by IGE are generated. To find
a relevant trace segment we proceed as we did for IGE, that is to say, we go upward in the call
stack. Our starting point is the IGE function that we uncovered in the previous section. The
caller function executes 750 instructions before the IGE function and 4 instructions after. We
extracted in a trace segment the 750 instructions which precede the IGE function, and with our
primitive identification method we found out that they implement an AES256 key schedule. This
function is related to the AES encryption but does not contains what we are looking for, so we move
to the caller function. We had difficulties to estimate the size of the caller function because we
reached pieces of code which belong to black-listed shared libraries. The one thing that is certain
though, is that the function contains several executions of the SHA1 compression function which
was previously identified in Section 6.2.3. A synthesis of the call stack that has been described so
far is given in Figure 6.2.

According to the specification of MtProto four SHA1 hashes are computed from a message key
and different parts of a so called shared key. These four hashes are noted respectively sha1 a,
..., sha1 d. For none of them the input of the SHA1 function exceed 447 bits, thus the SHA1
compression function is only called once for each of these hashes. The AES key and the two IGE
IVs derive from these four hashes according to the following formulae:

Key ← sha1 a[0 : 7] || sha1 b[8 : 19] || sha1 c[4 : 15]

IV 1← sha1 a[8 : 19] || sha1 b[0 : 3]

IV 2← sha1 b[4 : 7] || sha1 c[16 : 19] || sha1 d[0 : 7]

To capture this computation in a slice, we extracted a trace segment containing the first AES256

encryption (to easily visualize the two IVs), the AES256 key schedule and the last four executions
of the SHA1 compression function. Each primitive was identified separately. The resulting slice is
presented in Figure 6.3. It correctly reflects the specifications. To facilitate its interpretation we
have pinpointed the location of the two IVs and we have identified each hash function with respect
to the notation introduced above. The completeness and the readability of this slice are optimal.

6.2.6 Conclusion

We show with this example that our solution is usable even on large programs. With a few basic
heuristics and a little bit of human interaction it is easy to find the right trace segments. We do
not deny that having access to the specifications of MtProto was of great help to both, select the
right trace segment (especially for the key and the IVs derivation function) and to interpret the
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Figure 6.3: Experimental slice obtained for a trace segment containing the first AES256 encryption,
and the last four executions of the SHA1 compression function. This slice was generated in 9 ms
on a Pentium Dual-Core T4200 processor out of a DFG with 2535 vertices and 2818 edges. The
two dashed rectangle boxes as well as the mentions of sha1 a, ..., sha1 d were added manually to
clarify the figure.

slices. With respect to this last point, we acknowledge that without any prior knowledge on the
mode of operation it is relatively difficult to draw reliable conclusions from the manual study of
a slice. As future work to improve on this aspect, we plan to add a size attribute to the edges
of a slice. The size of an edge could be defined as the minimal operation size along a path sum
over all the parallel paths (that is to say all the paths of equal length which connect the same
two parameters but do not intersect). With this kind of information, one would have known from
the study of the key derivation slice (Figure 6.3) how many bits of the AES key come from each
hash function. The idea is to increase the accuracy of the information reported in slices without
inserting additional connections which would probably ruin their readability. Here, instead of only
reporting that a connection exists between two parameters, we want to specify the number of bits
which are concerned.
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Appendix A

Cryptographic Algorithms
Background

In this appendix, we give a short description of the main cryptographic algorithms mentioned in
this document.

A.1 Primitives

A.1.1 Description of AES

The Advanced Encryption Standard [21] is a Substitution Permutation Network (SPN) that can be
instantiated using three different key lengths: 128-bit, 192-bit, and 256-bit. The 128-bit plaintext
initialises the internal state viewed as a 4 × 4 matrix of bytes seen as elements of the finite field
GF (28), which is defined via the irreducible polynomial x8 +x4 +x3 +x+1 over GF (2). Depending
on the version of Advanced Encryption Standard (AES), Nr rounds are applied to that state:
Nr = 10 for AES-128, Nr = 12 for AES-192 and Nr = 14 for AES-256. Each of the Nr AES round
applies four operations to the state matrix (except the last one where the MixColumns is omitted):

• AddRoundKey : adds a 128-bit round key to the state ;
• SubBytes: applies the same 8-bit to 8-bit invertible S-Box S sixteen times in parallel on each

byte of the state ;
• ShiftRows: shifts the ith row left by i positions ;
• MixColumns: replaces each of the four columns C of the state by M × C where M is a

constant 4× 4 maximum distance separable matrix over GF (28).

After the N th
r round has been applied, a final round key is added to the internal state to produce

the ciphertext. A key expansion algorithm is used to produce the Nr + 1 round keys required for
all AES variants.

Implementation Remarks. The ShiftRows and the MixColumns can be combined with the
SubBytes resulting in four lookup tables of one kilobyte each. We introduce the following notations:
Ai is the state at round i, divided in four 32-bits word and Ti (0 ≤ i ≤ 3) is a function that given
a 32-bit word, extracts the ith most significant byte and returns the associated 32-bit word in
the ith lookup table. For each full round (1 ≤ i ≤ Nr − 1), the combination of the ShiftRows,
MixColumns and SubBytes can be implemented using the following pseudo-code (we have omitted
the AddRoundKey for brevity):
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Ai+1[0] = T0(Ai[0])⊕ T1(Ai[1])⊕ T2(Ai[2])⊕ T3(Ai[3])

Ai+1[1] = T0(Ai[1])⊕ T1(Ai[2])⊕ T2(Ai[3])⊕ T3(Ai[0])

Ai+1[2] = T0(Ai[2])⊕ T1(Ai[3])⊕ T2(Ai[0])⊕ T3(Ai[1])

Ai+1[3] = T0(Ai[3])⊕ T1(Ai[0])⊕ T2(Ai[1])⊕ T3(Ai[2])

This implementation is the most widespread and it is usually referred to as the table imple-
mentation. However, it is not the only way to efficiently implement AES. Matsui et al. [54] and
Käsper et al. [41] proposed two bitsliced implementations. In bitsliced modes, several blocks are
processed in parallel taking advantage of the SIMD architecture. Nevertheless bitsliced can only
be used in parallel modes of operation (such as CTR for instance). Hamburg [37] demonstrated
that it is feasible to implement a single block AES encryption with vector permute instructions.
Finally recent CPUs have dedicated AES instructions to reach the best performance and the high-
est security levels. These alternative implementations have been mentioned here for completeness.
This work only covers the table implementation.

A.1.2 Description of MD5

MD5 [62] is a cryptographic hash function which produces 128-bit hashes. At a high level, MD5
is structured according to the Merkle-Damg̊ard construction [23, 55]. The message is divided into
512-bit blocks with a padding being applied to the last block. Each message block Mi is processed
by a compression function f which also takes as input argument a 128-bit chaining value. The
chaining value, noted Hi, is updated as follows:

Hi+1 = f(Mi, Hi)

H0 is initialised with a fixed constant. The last value Hi is the output of the hash function. The
structure of the compression function follows a Davies-Meyer construction. Its underlying block
cipher is a four-branch Feistel network that operates on a 128-bit state. The step function is
executed 64 times. Steps are regrouped in four rounds of 16 consecutive steps each. The internal
state is divided in four 32-bit words Ai, Bi, Ci and Di. At each step i, a 32-bit word of the message
block, noted Wi, is used to update the internal state according to the following formulae:

Ai+1 ← Di

Bi+1 ← Bi+ 	 (Ai + φi(Bi, Ci, Di) +Wi +Ki), Si)

Ci+1 ← Bi

Di+1 ← Ci

Ki and Si are fixed constants and φi denotes one of the four following boolean functions:

for i ∈ [1, 16] φi(x, y, z) = (x ∧ y) ∨ (¬x ∧ z)
for i ∈ [17, 32] φi(x, y, z) = (x ∧ z) ∨ (y ∧ ¬z)
for i ∈ [33, 48] φi(x, y, z) = x⊕ y ⊕ z
for i ∈ [49, 64] φi(x, y, z) = y ⊕ (x ∧ ¬z)

Implementation Remarks. Usually the 64 steps are directly unrolled in the source code. This
is for instance the case of the reference implementation given in the RFC [62]. Many MD5 imple-
mentations use alternative formulae for the boolean function φi used in the first and in the second
round. These alternative formulae take on less operator and therefore, are supposed to be more
efficient. They are given below:

for i ∈ [1, 16] φi(x, y, z) = z ⊕ (x ∧ (y ⊕ z))
for i ∈ [17, 32] φi(x, y, z) = y ⊕ (z ∧ (y ⊕ x))
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A.1.3 Description of RC4

RC4 is a stream cipher also known as ARC4 (for Alleged RC4). Its internal state consists of a
permutation of all the 256 possible bytes noted S and two 8-bit index pointers noted respectively
i and j. The initial state of the permutation derives from a variable-size key. This first part of
the primitive is called the Key Schedule Algorithm (KSA) and is not covered by this work. The
key-stream is generated by the second part of the primitive called the PRGA. Each iteration
of the PRGA updates the permutation S and outputs one byte of key-stream according to the
pseudo code given in Algorithm 10. The PRGA is executed as many times as necessary to obtain
a key-stream of the desired size.

Algorithm 10 RC4 PRGA

i← i+ 1
j ← S[i] + i
swap S[i] and S[j]
output S[S[i] + S[j] (mod 256)]

A.1.4 Description of SHA1

SHA1 [4] is hash function which produces 160-bit hashes. It shares many characteristics with
MD5. At a high level it is also structured according to the Merkle-Damg̊ard construction and
its compression function also follows a Davies-Meyer framework. Its underlying block cipher is
a five-branch Feistel network that operates on a 160-bit state divided into five 32-bit words Ai,
Bi, Ci Di and Ei. The step function is executed 80 times. Steps are regrouped in four rounds of
20 consecutive steps each. At each step i, a 32-bit expanded message word Wi derived from the
message block is used to update the internal state according to the following formula:

Ai+1 ←	 (Ai, 5) + φi(Bi, Ci, Di) + Ei +Wi +Ki

Bi+1 ← Ai

Ci+1 ←	 (Bi, 30)

Di+1 ← Ci

Ei+1 ← Di

Ki is a fixed constant and φi denotes one of the four following boolean functions:

for i ∈ [1, 20] φi(x, y, z) = (x ∧ y) ∨ (¬x ∧ z)
for i ∈ [21, 40] φi(x, y, z) = x⊕ y ⊕ z
for i ∈ [41, 60] φi(x, y, z) = (x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z)
for i ∈ [61, 80] φi(x, y, z) = x⊕ y ⊕ z

The expanded message words Wi derive from the 512-bit message block. The message block
is divided into sixteen 32-bit words, W1 is assigned to the first word, W2 to the second word and
so on up to W16. The remaining expanded message words: W17 to W80, are computed recursively
according to the following formulae:

Wi ←	 (Wi−3 ⊕Wi−8 ⊕Wi−14 ⊕Wi−16, 1)

Implementation Remarks. Unlike MD5, the 80 steps are generally not unrolled in the source
code. To reduce memory consumption the message expansion can be done gradually during the 80
steps. Only the sixteen last expanded message words are required to compute the next expanded
message word. Thus, the space needed to store the expanded message words can be reduced from
eighty 32-bit words to sixteen 32-bit words. Another possibility regarding message expansion is to
use SIMD instructions as described in [51]. Finally the exact boolean expression used by the φi
functions may vary from one implementation to another. For instance in OpenSSL the majority
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function (the third boolean function used from step 41 to step 60) is either implemented using
(x ∧ y) ∨ (z ∧ (x⊕ y)) or ((x⊕ z) ∧ (y ⊕ z))⊕ z depending on the version.

A.1.5 Description of TEA & XTEA

Tiny Encryption Algorithm (TEA) [57] is a 64-bit block cipher with a 128-bit key. It is based on a
two-branch Feistel network that operates on a 64-bit state. Rounds are usually regrouped in pairs
forming cycles. The recommended number of cycles is 32. TEA suffers from related-key attacks
[42]. To solve this weakness Needham and Wheeler proposed an extended version of TEA named
XTEA. XTEA has a different key scheduling and a different round function.

Implementation Remarks. Both TEA and XTEA have been designed as small C programs
performing simple operations on 32-bit words. The only implementation variation we are aware of
concerns the key scheduling. Since the key scheduling is extremely simple some implementations
do not compute the round keys separately but they do it directly in each round.

A.2 Modes of Operation

A.2.1 CBC

The CBC mode of operation is one of the most-used chaining mode. It is used to encrypt large
messages using a block cipher. To encrypt a message M , it is split into blocks Mi, the size of which
is equal to the input length of the block cipher. If the length of the message is not a multiple of
the block size, the message is padded. The most-used padding scheme simply consists in adding a
bit 1 and as many bits set to 0 as needed. Then the idea consists in randomizing the input of the
block cipher using a random value. The first message block is randomized using an initialisation
vector, while block Mi is randomized using the output of Mi−1. We choose C0 = IV uniformly
and we compute iteratively:

Ci ← Ek(Mi ⊕ Ci−1)

This makes the scheme non-parallelizable. But it has the advantage of being self-synchronizing:
an error in one block Ci only affects two blocks Mi and Mi−1. The decryption is parallelizable and
it is done according to the following formula:

M [i]← Ci−1 ⊕Dk(Ci)

A.2.2 CTR

The counter mode, abbreviated CTR, is used to encrypt arbitrarily long messages using a block
cipher. The idea is to use a block cipher to encrypt a counter. It generates a bit-string which is
indistinguishable from a random bit-string up to the birthday bound. Then we perform a one-time
pad with this bit-string and the message. More precisely, a message M is divided in blocks Mi the
size of which is equal to the input length of the block cipher, except for the last block which might
be shorter (no padding is necessary). The first ciphertext block C0 is set with the initial counter
value. Then:

Ci ←Mi ⊕ Ek(C0 + i)

The decryption is exactly the same as the encryption. This mode is parallelizable.

A.2.3 HMAC

HMAC, standing for keyed-Hash Message Authentication Code, was defined by Bellare, Canetti
and Krawczyk in 1995 and it has been extensively used in many RFCs [10] since. It is a message
authentication code based on a cryptographic hash function. It is compliant with the cryptographic
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hash functions following the Merkle-Dang̊ard construction such as MD5 and SHA1. The Merkle-
Dang̊ard construction is prone to length extension attack. In particular if H is a hash function of
the Merkle-Dang̊ard family, the construction H(k || M) is not secure. The idea to avoid length
extension attack consists in hashing the output of this former expression with another key. Given
a hash function H, a message M and a key k, HMAC outputs:

H(k ⊕ opad || H(k ⊕ ipad || M))

A.2.4 OCB

The Offset Codebook Mode (OCB) has been defined by Rogaway [64]. It is an authenticated
encryption mode of operation. It ensures confidentiality and authentication through a single pass
over the message. The idea consists in XORing a random mask Zi over the plaintext Mi and on
the ciphertext:

Ci ← Ek(Mi ⊕ Zi)⊕ Zi
The mask evolves between each call based on a linear relation Zi ← γi ·L⊕R, where L = Ek(0n)

and R = Ek(N ⊕ L) and N is a random nonce and the multiplication is performed in some finite
field of 2128 elements. There is a much more efficient way of computing Zi from Zi−1 but we do
not need such details. Finally the authentication tag T is equal to:

T ← Ek((⊕mi=1Mi)⊕ Zm)

In Section 5.5.2 we describe more precisely how the last message block is encrypted. There are
some technicalities in order to make a ciphertext stealing mode, so that the output length of the
ciphertext part is as long as the plaintext.
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