Our goal in this thesis is to build a system that answers a natural language question (NL) by representing its semantics as a logical form (LF) and then computing the answer by executing the LF over a knowledge base. The core part of such a system is the semantic parser that maps questions to logical forms.

Our focus is how to build high-performance semantic parsers by learning from (NL, LF) pairs. We propose to combine recurrent neural networks (RNNs) with symbolic prior knowledge expressed through context-free grammars (CFGs) and automata. By integrating CFGs over LFs into the RNN training and inference processes, we guarantee that the generated logical forms are well-formed; by integrating, through weighted automata, prior knowledge over the presence of certain entities in the LF, we further enhance the performance of our models. Experimentally, we show that our approach achieves better performance than previous semantic parsers not using neural networks as well as RNNs not informed by such prior knowledge.

Résumé

Notre but dans cette thèse est de construire un système qui réponde à une question en langue naturelle (NL) en représentant sa sémantique comme une forme logique (LF) et ensuite en calculant une réponse en exécutant cette LF sur une base de connaissances. La partie centrale d'un tel système est l'analyseur sémantique qui transforme les questions en formes logiques.

Notre objectif est de construire des analyseurs sémantiques performants en apprenant à partir de paires (NL, LF). Nous proposons de combiner des réseaux neuronaux récurrents (RNN) avec des connaissances préalables symboliques exprimées à travers des grammaires hors-contexte (CFGs) et des automates. En intégrant des CFGs contrôlant la validité des LFs dans les processus d'apprentissage et d'inférence des RNNs, nous garantissons que les formes logiques générées sont bien formées; en intégrant, par le biais d'automates pondérés, des connaissances préalables sur la présence de certaines entités dans la LF, nous améliorons encore la performance de nos modèles. Expérimentalement, nous montrons que notre approche permet d'obtenir de meilleures performances que les analyseurs sémantiques qui n'utilisent pas de réseaux neuronaux, ainsi que les analyseurs à base de RNNs qui ne sont pas informés par de telles connaissances préalables.

Analyse Sémantique avec Apprentissage Neuro-Symbolique

Le but de l'analyse sémantique est de convertir un texte en langue naturelle (NL) en une représentation sémantique (MR) qui peut être utilisée ou non dans une tâche en aval. Selon le contexte applicatif ou formel, il existe de nombreux types de représentations sémantiques.

La Fig. 1 montre quelques exemples de paires (NL, MR) à partir de diérents jeux de données existants. En haut à gauche, nous montrons un exemple tiré de [Reddy et al., 2014] où une phrase de NL est associée à un lambda-terme. Comme l'illustre cet exemple, de telles MR peuvent être obtenues en analysant les phrases NL avec une grammaire catégorielle combinatoire (CCG) [Steedman, 1996]. En haut à droite se trouve un exemple tiré de l'ensemble de données Geoquery [START_REF] Zelle | [END_REF] où la sémantique d'une question NL est représenté par une requête Prolog qui peut être exécutée à partir d'une base de données logique pour obtenir la réponse. En bas à gauche se trouve un exemple tiré de l'ensemble de données Wikianswers [Fader et al., 2013] où une question NL est associée à un triplet qui contient à la fois la sémantique vi et la réponse à la question NL. Enn, en bas à droite se trouve un exemple tiré de l'ensemble de données SPO (Semantic Parsing Overnight) [Wang et al., 2015] où la MR est une requête complexe exécutable sur la base de connaissances associée (KB).

La recherche sur la construction d'analyseurs sémantiques a une longue histoire.

Par exemple, LUNAR [Woods et al., 1972], un système qui répond aux questions en langue naturelle sur les roches lunaires a été développé au début des années 70, parmi beaucoup d'autres systèmes similaires dont on trouvera un survol dans [Androutsopoulos, 1995]. Ces systèmes réussissaient à traiter des questions dans leurs domaines limités, mais comme ils étaient construits sur la base de règles spéciées manuellement, ils étaient diciles à appliquer à d'autres domaines.

Pour surmonter les limites des systèmes fondés sur des règles, les chercheurs ont commencé à étudier des systèmes d'apprentissage qui peuvent être entrainés sur des exemples, en particulier des paires annotées (NL, LF) [START_REF] Zelle | [END_REF][START_REF] Wong | [END_REF][START_REF][END_REF][START_REF] Zettlemoyer | [END_REF][START_REF] Zettlemoyer | [END_REF][START_REF] Kwiatkowski | [END_REF]. Les approches proposées utilisent souvent des connaissances préalables (ou hypothèses linguistiques plausibles) pour réduire le nombre de candidats LF puis apprennent un classicateur (e.g. modèle log-linéaire, SVM) pour sélectionner ces candidats. Les systèmes développés ont atteint de bonnes performances sur plusieurs ensembles de données diciles à l'époque, comme Geoquery [Zelle and Mooney, 1996] et ATIS [Dahl et al., 1994].

Dans cette thèse, nous nous concentrons sur un cas spécique d'analyse sémantique, appelée analyse sémantique exécutable dans la littérature [Liang, 2016], qui correspond à l'analyse de questions NL pour les convertir en requêtes sur une KB.

Dans ce contexte, les représentations sémantiques sont des requêtes KB formelles et les résultats sont évalués en exécutant ces requêtes sur le KB cible et en comparant la ou les valeurs renvoyées avec la ou les réponses attendues. La g. 2 illustre un tel processus. La phrase Which university did Obama go to ? est transformé en la représentation sémantique Type.University Education.BarackObama qui, lorsqu'elle est exécutée sur la KB fournit la réponse Occidental College, Columbia University ' .

Nous considérons deux types distincts de requêtes KB, à savoir (i) les requêtes simples telles que (1a) dont les réponses sont contenues dans une très grande KB tel que Reverb [Fader et al., 2011] et (ii) les requêtes complexes sur les KBs de petites et moyennes tailles [Wang et al., 2015] telles que (1b).

(1) a. What is the main language in Hong Kong ?

(cantonese.e, be-major-language-in.r, hong-kong.e) Pour les requêtes simples, [Bordes et al., 2014b] propose une approche d'apprentissage de la représentation qui apprend à la fois des représentations vectorielles de phrases/triplets KB et une fonction de score entre elles ce qui permet d'obtenir des résultats compétitifs. Nous suivons leur approche mais proposons certaines connaissances préalables que nous pouvons ajouter pour améliorer la performance. Dans le chapitre 4, nous montrons ainsi que la performance peut être améliorée en ajoutant un régularisateur d'orthogonalité qui distingue entre les entités et les relations.

Pour les requêtes plus complexes, à la suite de travaux réalisés par [Sutskever et al., 2014; Bahdanau et al., 2015] Certains analyseurs sémantiques traditionnels (e.g. [Liang et al., 2011; Berant et al., 2013]) identient les entités nommées en premier et utilisent les entités identiées comme connaissances préalables pour ensuite rechercher la MR tout entière. Nous examinons comment nous pouvons intégrer des connaissances préalables similaires, dans notre modèle basé sur les RNNs, qui garantissent la bonne formation des DS produites:

Question de recherche 1.2: Comment traiter les entités nommées ix comme des connaissances préalables supplémentaires dans notre modèle basé sur les RNNs?

Dans le chapitre 6, nous proposons d'aborder cette question en modélisant la probabilité que certaines règles correspondant à des entités nommées soient présentes, à travers l'utilisation d'automates pondérés (WFSA). Ces WFSAs permettent de fournir un biais à notre analyseur sémantique en favorisant ou désavantageant la présence de certaines règles lors de la prédiction. L'un des avantages de la modélisation de ce type de connaissances préalables par les WFSAs est qu'elles peuvent être combinées ecacement avec la WCFG que nous utilisons pour assurer la grammaticalité. Le résultat de la combinaison (qui est encore une WCFG) est utilisé comme `Background' pour guider les prédictions de la séquence dérivationnelle par le RNN.

Nous montrons empiriquement que cette approche RNN plus Background peut atteindre de meilleures performances que notre analyseur sémantique précédent, qui n'avait pas de connaissances préalables sur les entités nommées.

En conclusion, nous proposons d'utiliser les RNNs pour construire des systèmes d'analyse sémantique exécutables, comme l'ont aussi proposé d'autres chercheurs [Dong and [START_REF] Dong | Language to logical form with neural attention[END_REF][START_REF] Jia | Data recombination for neural semantic parsing[END_REF]Xiao et al., 2016b], et nous observons que bien que ces modèles puissent être bien adaptés à la tâche d'analyse sémantique, leurs performances peuvent être encore améliorées en incorporant des connaissances préalables dans le modèle. Nous proposons ainsi de construire des analyseurs sémantiques "neuro-symboliques" car ces connaissances préalables peuvent souvent être exprimées de manière appropriée sous certaines formes symboliques à travers l'utilisation d'automates et de grammaires.

Feuille de route

Nous divisons notre thèse en deux parties. Dans la première partie, nous présentons l'arrière-plan des outils qui seront utiles pour les analyseurs sémantiques que nous construirons dans les chapitres 5 et 6; cette première partie contient une revue historique des systèmes d'analyse sémantique et une introduction aux aspects des réseaux neuronaux et des automates/grammaires qui seront nécessaires plus tard.

Dans la deuxième partie, nous décrivons les contributions principales de la thèse, à savoir la manière dont nous incorporons les connaissances préalables symboliques dans des modèles basés sur les réseaux neuronaux an d'améliorer leurs performances pour l'analyse sémantique. Dans ce qui suit, nous résumons les diérents chapitres.

x Partie I Arrière-plan

Le chapitre 1 (Systèmes d'analyse sémantique exécutables) donne un aperçu de ces systèmes. Suivant le développement historique, nous présentations dans ce chapitre des analyseurs sémantiques classiques basés sur des règles (par exemple, [Woods et al., 1972]), puis des analyseurs statistiques qui peuvent apprendre à partir de données constituées de paires annotées (NL, LF) (par exemple, [START_REF] Wong | [END_REF][START_REF] Zettlemoyer | [END_REF]); puis, nous discutons de quelques directions de recherche récentes sur les analyseurs sémantiques visant à réduire les eorts d'annotation (e.g. [Liang et al., 2011]) et/ou à réduire les eorts d'ingénierie en utlisant des modèles plus puissants (e.g. [Bordes et al., 2014a]).

Le chapitre 2 (Réseaux neuronaux) traite de plusieurs architectures de réseaux neuronaux (i.e. Perceptrons multicouches (MLPs) et RNNs) qui sont largement utilisées actuellement pour l'apprentissage d'analyseurs sémantiques (e.g. [START_REF] Dong | Language to logical form with neural attention[END_REF]Xiao et al., 2016b]. Ces réseaux sont importants pour nous car il s'agit de modèles paramétriques expressifs que l'on peut apprendre à partir des données.
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DSP-CL is the model introduced in chapter 5 that guarantees the grammaticality of the produced DS. BDSP-CL is our model integrating various factors (e.g WCFG, WFSA) into the background. SPO (no-lex) is a feature-based system [Wang et al., 2015] 

Introduction

The aim of semantic parsing is to convert Natural Language (NL) into a meaning representation (MR) which may or not be used in a downstream task. Depending on the applicative or formal context, there are many dierent types of meaning representations.

Fig. 1 shows some examples of (NL, MR) pairs from dierent existing datasets.

On the top left is an example taken from [Reddy et al., 2014] where an NL sentence is mapped to a lambda term. As shown in this example, such MRs can be obtained by parsing NL sentences with a combinatorial categorical grammar (CCG) [Steedman, 1996]. On the top right is an example taken from the Geoquery dataset [START_REF] Zelle | [END_REF] where the meaning of an NL question is represented by a Prolog query which can be executed against a Prolog database to obtain the answer. On the bottom left is an example from the Wikianswers dataset [Fader et al., 2013] where an NL question is associated with a single triple that contains both the meaning and the answer to the NL question. Finally, on the bottom right is an example from the Semantic Parsing Overnight (SPO) dataset [Wang et al., 2015] where the MR is a complex query executable against the associated knowledge base (KB). Research on building semantic parsers has a long history. For example, LU-NAR [START_REF] Woods | [END_REF], a system that answers natural language questions about moon rocks was developped in the early 70's amongst many other similar systems for which a review can be found in [Androutsopoulos, 1995]. Those systems are successful at handling questions within their limited domains, however, as the systems were built on manually specied rules, they were dicult to apply to other domains.

To overcome the limitations of rule-based systems, researchers started to investigate machine learning systems that can learn from examples such as annotated (NL, LF) pairs [START_REF] Zelle | [END_REF][START_REF] Wong | [END_REF][START_REF][END_REF][START_REF] Zettlemoyer | [END_REF][START_REF] Zettlemoyer | [END_REF][START_REF] Kwiatkowski | [END_REF]. The approaches proposed rst use prior knowledge (or linguistic plausible hypotheses) to reduce the number of LF candidates and then learn a classier (e.g log-linear model, SVM) over those candidates. The systems developped achieved good performance on several challenging datasets at the time such as Geoquery [START_REF] Zelle | [END_REF] and ATIS [Dahl et al., 1994].

In this thesis, we focus on a specic case of semantic parsing dubbed executable semantic parsing in the literature [Liang, 2016], which is the parsing of NL questions into KB queries. In that setting, meaning representations are formal KB queries and results are evaluated by executing these queries on the target KB and comparing the returned value(s) with the expected answer(s). Figure 2 illustrates such a process.

The sentence Which college did Obama go to? is mapped to the meaning representation Type.University Education.BarackObama which, when executed on the KB yields the answer Occidental College, Columbia University .

We consider two distinct types of KB queries namely, (i) simple queries such as (2a) whose answers are contained in a very large KB such as Reverb [Fader et al., 2011] and (ii) complex NL queries on small to medium size KBs [Wang et al., 2015] such as (2b).

(2) a. What is the main language in Hong Kong ?

(cantonese.e, be-major-language-in.r, hong-kong.e) b. How many fouls were played by Kobe Bryant in 2004? count(R(fouls).(player.KobeBryant season.2004))

In the rst case, the query is structurally simple and the semantics is a fact which can be represented by a single triple. The diculty resides in appropriately mapping NL words to KB symbols. In the second case, the query can be structurally complex involving a fair amount of compositionality. For simple queries, [Bordes et al., 2014b] propose a representation learning approach that learns both vectorial representations of sentences/KB triples and a scoring function between them, which achieves competitive results. We follow their approach and consider the prior knowledge we can add to further improve the performance. In Chapter 4, we show that the performance can be improved by adding an orthogonality regularizer that distinguishes KB entities from relations.

For the more complex queries, following work by [Sutskever et al., 2014; Bahdanau et al., 2015] demonstrating the ability of recurrent neural networks (RNNs) to translate sentences, we propose to adapt RNN-based approaches to semantic parsing.

That is, instead of mapping a sentence to its translation, we propose to use RNNs to map an NL query to its (linearized) meaning representation. In this context, the main research question addressed in this thesis is the following:

Research Question 1: To what extent can RNN-based models capture the mapping between an NL query and its MR?

We start by applying an RNN-based model to fairly complex NL queries and nd that it can improve over a more traditional semantic parsing system based on handcrafted features [Wang et al., 2015].

However, with limited amount of data, the performance of RNN models can be further enhanced by incorporating prior knowledge into RNNs. An important issue when using RNNs for semantic parsing is that they do not include any explicit notion of syntax and therefore neither guarantee the well-formedness of the output meaning representations nor provide clear support for compositionality. In other words, RNNs for semantic parsing raise the following research question:

Research Question 1.1: How can a sequence-to-sequence model be constrained to support compositionality and guarantee the syntactic wellformedness of the output meaning representations ?

We address this issue in Chapter 5. First we note that the well-formedness of the output MR is ensured by a grammar which is known a priori. Based on this grammar, we propose to use our RNN-based model to predict derivation sequences (DS) that are derivation steps relative to the underlying grammar. Predicting DS eases the task of integrating grammatical prior knowledge thus guarantees that the produced DS is always grammatically correct. We show empirically that an RNNbased model integrating grammatical prior knowledge achieves better performance than various RNN baselines that do not integrate this prior knowledge.

Some traditional semantic parsers (e.g. [Liang et al., 2011; Berant et al., 2013])

often identify named entities rst and use identied entities as prior knowledge to then search for the whole MR. We examine how we can additionally integrate similar prior knowledge into our RNN-based model that guarantees the well-formedness of produced DS:

Research Question 1.2: How can named entities be handled as additional prior knowledge by our RNN-based model ?

In Chapter 6, we propose to address this issue by modeling the probability of certain rules corresponding to named entities being present, using weighted automata (WFSAs). These WFSAs can provide a bias to our semantic parser by favoring/disfavoring the presence of certain rules during DS prediction. An advantage of modelling this kind of prior knowledge by WFSAs is that they can be combined eciently with a WCFG that we use to ensure grammaticality. The result of the combination (which is still a WCFG) is used as `Background' to guide RNN DS predictions. We empirically show that our Background RNN approach can achieve better performance than our previous semantic parser that did not have the prior knowledge over named entities.

In conclusion, we propose to use RNNs to build executable semantic parsing systems, along with other researchers [Dong and [START_REF] Dong | Language to logical form with neural attention[END_REF][START_REF] Jia | Data recombination for neural semantic parsing[END_REF]Xiao et al., 2016b] and see that although these models can be well adapted for the semantic parsing task, their performance can be further enhanced by incorporating prior knowledge into the model. In this thesis, we focus on prior knowledge of various sources that can be combined with RNN models; we propose to build `neuralsymbolic' semantic parsers as we often nd that our prior knowledge can be expressed appropriately in some symbolic forms by using automata and grammars.

Roadmap

We divide our thesis into two parts. In the rst part, we introduce some background information that will be useful for the semantic parsers that we build in Chapter 5

and 6; the background part contains a historical review of semantic parsing systems and an introduction to aspects of neural networks and of automata/grammars that are needed later. In the second part, we describe the contributions of the thesis concerning how we incorporate symbolic prior knowledge into neural-network based models to enhance their performance for semantic parsing. In what follows, we summarize the dierent chapters.

Part I Background

Chapter 1 (Executable Semantic Parsing Systems) gives a review of these systems. Following the historical timeline, we discuss in this chapter rule-based semantic parsers (e.g. [Woods et al., 1972]), then statistical ones that can learn from data consisting of annotated (NL, LF) pairs (e.g. [START_REF] Wong | [END_REF][START_REF] Zettlemoyer | [END_REF]); then, we discuss some current research directions on semantic parsers aiming at reducing annotation eorts (e.g. [Liang et al., 2011])

and/or reducing engineering eorts by using more powerful learning machines (e.g. [Bordes et al., 2014a]).

Chapter 2 (Neural Networks) discusses several neural network architectures (i.e. Multilayer Perceptrons (MLPs) and RNNs) that are widely used for learning semantic parsers these days (e.g. [Dong and Lapata, 2016; Xiao et al., 2016b]).

These networks are important for us as they are expressive parametric models that can be learned from data. We largely use these neural networks in the contributions presented in Chapters 5 and 6.

Chapter 3 (Automata and Grammars) gives a brief introduction to automata and context-free grammars (CFGs) and their weighted versions. We also discuss the intersection algorithm between a weighted automaton and a weighted CFG. We use those symbolic objects to express prior knowledge for semantic parsing tasks.
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Part II Contributions

Chapter 4 (Orthogonal Embeddings for the Semantic Parsing of Simple Queries) discusses a semantic parsing task where to answer the question, one has to nd a correct triple of the form (e 1 , r, e 2 ) where e 1 , e 2 are entities and r is a relation.

As mentioned above, in that task, the main diculty resides in correctly identifying the mapping between NL tokens and KB symbols. Based on the embedding methods proposed by [Bordes et al., 2014b], we show that integrating prior knowledge which separates entity embeddings and relation embeddings, improves over previous results.

The content of this chapter is reported in [Xiao et al., 2016a].

Chapter 5 (Neural Semantic Parsing under Grammatical Prior Knowledge) focuses on the semantic parsing of more complex NL queries. We propose to use an RNN-based architecture to learn a semantic parser and show that it can perform better than semantic parsers based on more traditional learning machines.

We also show that its performance can be further enhanced by integrating the CFG known a priori over LFs. By integrating this CFG, we guarantee that the LFs produced by our system are grammatically correct. The content of this chapter is reported in [Xiao et al., 2016b].

Chapter 6 (Automata as Additional, Modular, Prior Knowledge Sources)

proposes an extension over the semantic parser described in Chapter 5 where we add additional prior knowledge about certain entities being present in the corresponding LF based on the observed NL; the prior knowledge is expressed using automata that can be combined eciently with the CFG that we used previously, via the intersection algorithm we discussed in Chapter 3. We show that the extended semantic parser improves in performance. The content of this chapter is reported in [Xiao et al., 2017].

In Chapter 7 we draw conclusions and give perspectives and pointers for future work.

2 Intersection algorithms are useful when we combine the prior knowledge of dierent sources. 

Early Developments

Figure 1.1: LUNAR question answering system with its main components.

Early Developments

The history of executable semantic parsing systems is rich and a survey of the early systems can be found in [Androutsopoulos, 1995]. In this section, we briey review one specic, probably the best known, early executable semantic parsing system, namely LUNAR [Woods et al., 1972]. LUNAR is a prototype which allows English language access to a large database of lunar sample information. The system is rulebased and is one of the earliest systems designed to handle natural language queries formulated by real users. LUNAR will also serve as a motivating example for us in this section to discuss two important developments around executable semantic parsing systems, namely powerful grammar formalisms that can take into account syntax and semantics at the same time and executable semantic parsing systems that can be learned from data.

LUNAR

To answer a natural language query (NL) formulated by a user, LUNAR proposes guages such as SPARQL etc.) is executed over an SQL database, then return the execution results to the user. COMPONENT is more related to research elds such as database and query language while we focus on semantic parsing in this thesis, in the following, we only describe the process of mapping NL to LF and do not discuss the RETRIEVAL COMPONENT further.

We will use the sentence Chomsky wrote Syntactic Structures as an illustration and show how LUNAR deals with this example to parse this sentence into a logical form (LF).

When receiving the input sentence, LUNAR will rst call a syntactic parser (PARSER) which analyses the sentence using a phrase structure grammar and produces the phrase structure tree shown in Fig. 1.2. Note that the terminals are numbered according to the convention dened in LUNAR. This parse tree will be passed to the next component to produce the LF.

The SEMANTIC INTERPRETER relies on semantic rules to extract the LF from the parse tree. Semantic rules consist of rules whose left-hand side (LHS) is a template composed of elements in the parse tree involving both terminals and nonterminals and whose right-hand side (RHS) is the semantic interpretation of such templates. For example, consider the rule in Fig. 1.3.

On its LHS, the rule species a template consisting of a tree fragment plus additional semantic conditions on the numbered nodes of the fragment. More precisely, the above LHS has two components: the rst component is an NP nonterminal and the second component is a V-OBJ nonterminal; the rst component needs to in addition satisfy the semantic condition (MEM 1 PERSON) stating that the node numbered 1 should be a person (MEM ... PERSON) and similar conditions exist for the second component. Thus, the LHS indicates that if the sentence has a subject which is a person, a verb write, 4 and an object of write which is a document then the template matches the string and will produce the semantic interpretation specied on the RHS.

The semantic interpretation specied by the RHS of this rule is (PRED (AU-THOR: (# 2 2) (# 1 1)) which is a predicate AUTHOR with two arguments. The RHS indicates that the meaning of the sentence is computed by substituting the interpretations of the node number 1 (# 1 1) in the rst component (# 1 1, which is the NP component in our example) and the node number 2 in the second component (# 2 2) into the indicated argument places.

This rule can be used to give a semantic interpretation for our sentence Chomsky wrote Syntactic Structures. The LHS of our semantic rule matches the parse tree as the sentence veries both syntactical and semantic conditions. Then the se- Limits of the system Despite the success and achievements of LUNAR, the system has several drawbacks. First, the system is not robust in several aspects. The system is based on a limited vocabulary (3500 words) and cannot deal with words out of this vocabulary.

In particular, the system cannot deal with spelling errors. The system will fail on ungrammatical sentences as the very rst component PARSER will fail.

Secondly, the engineering eort required to make such a system work in practice is considerable. In the LUNAR technical report [Woods et al., 1972], the authors describe in detail the grammatical rules (for PARSER) and semantic rules (for SE-MANTIC INTERPRETER) used in the system. The writing merely of these rules takes more than 100 pages in the report (grammatical rules in pages 159-214 and se-1.1. Early Developments mantic rules in pages 217-263) with semantic rules not transferable to other domains.

Discussion

• LUNAR calculates the semantics of a sentence in two steps: parse syntactically the sentence (PARSER) and then produce the semantics based on the syntax tree (SEMANTIC INTERPRETER). The SEMANTIC INTERPRETER is domain-specic and only the PARSER can be used to adapt to other domains.

One may hope for a general grammar formalism that is able to produce both syntax and semantics that are not domain specic. Several research directions have been raised (which we will discuss in subsection 1.1.2) with progress being made in the later research for building executable semantic parsing systems.

• With the rise of machine learning, one may hope to avoid writing rules and let a machine learn the mappings (under or not under the forms of rules)

between NL and LF using training data consisting of pairs (NL,LF). This new paradigm not only opens doors for a signicant reduction of engineering eort, but also improves robustness because problems such as spelling errors or ungrammatical sentences will be seen in training and the model will learn to deal with these aspects. In subsection 1.1.3 we review some early attempts trying to incorporate machine learning for building executable semantic parsing systems.

Remarks To reduce engineering eort to build executable semantic parsing systems, researchers in the 70s and the 80s proposed to focus on controlled languages [Hendrix et al., 1978;Warren and Pereira, 1982]. As this is not the focus of the thesis, we refer interested readers to the above references.

Grammar formalisms dealing with both syntax and semantics

Many grammar formalisms such as LFG (Lexical Functional Grammar) [Dalrymple, 2001], CCG (Combinatorial Categorical Grammar) [Steedman, 1996], UCG (Unication Categorical Grammar) [Calder et al., 1988], HPSG (Head-driven Phrase Structure Grammar) [START_REF] Pollard | Carl Pollard and Sag Ivan A. Head-driven phrase structure grammar[END_REF], and TAG (Tree Adjoining Grammar) [START_REF] Joshi | [END_REF] have been proposed so that both syntax and semantics can be analyzed simultaneously. We will give examples on LFG and CCG as illustrations.

LFG assumes two syntactic representation levels. Constituent structure (c-structure)

encodes the sentence into a phrase structure tree and Functional structure (f-structure) encodes the syntactic predicate argument structure of the sentence. LFG uses the following type of syntactic rules to produce the c-structure and f-structure:

S → NP((↑ SUBJ) =↓) VP(↑=↓) VP → V(↑=↓) NP((↑ OBJ) =↓)
These rules indicate the c-structure as in a CFG. For example, the nonterminal S expands to two nonterminals NP, VP.

The rules also indicate the f-structure by the content in the parenthesis. For example, the rule expanding S (noted by the metavariable ↑ on the NP node) says that S has a SUBJ attribute whose value is the f-structure for the NP daughter (noted by the metavariable ↓ on the NP node) , and that the S node corresponds to an f-structure which is the same as (i.e unied with) the f-structure for the VP daughter. A similar rule involving c-structure and f-structure also exists for VP. [ Dalrymple, 2001] proposes to use semantic rules to further construct the semantics of the whole sentence based on the f-structure of the sentence. For instance, a rule on predicate greet indicating that if the subject means X and the object means Y , then the sentence means greet(X, Y ) allows us to construct the semantics greet(Sam, T erry) for the sentence Sam greeted Terry.

CCG [Steedman, 1996] is a popular grammar formalism inside categorical grammar where elements like verbs are associated with a syntactic category which identies them as functions, and species the type and directionality of their arguments and the type of their result. For example, a transitive verb is a function from an (object) NP into a predicate that is, into a function from (subject) an NP into 1.1. Early Developments an S:

likes := (S\N P )/N P CCG uses the result leftmost notation in which a rightward-combining functor over a domain β into a range α is written α/β, while the corresponding leftward combining functor is written α\β. α and β may themselves be function categories: the CCG parsing procedure with classic CFG ones. Note that the major burden of specifying particular grammars is transferred from phrase structure rules to lexical rules.

• Forward Application (>): X/Y Y ⇒ X • Backward Application (<): Y X\Y ⇒ X
CCG categories can be regarded as encoding semantic types, making it possible to combine words to form the semantic interpretation of the sentence. For example, we can specify the semantic translation of the verb `likes' as:

likes := (S\N P 3s )/N P : like

where like is the semantics 5 . We also specify the Forward/Backward functional application on top of our category application:

• Forward Application (>): X/Y : f Y : a ⇒ X : f a • Backward Application (<): Y : a X\Y : f ⇒ X : f a
Applying these rules on the sentence `Mary likes musicals' yields the semantics like musicals mary as shown in Fig. 1.6.

As we shall see in the later chapters, these grammar formalisms, notably CCG have played important roles in the development of executable semantic parsing systems [START_REF] Zettlemoyer | [END_REF][START_REF] Reddy | [END_REF]. Using those formalisms, 5 3s in the CCG rule is a feature standing for third person singular. generic LFs that are close to the input sentence can be rst produced, before being further translated into specic query languages to be executed over the knowledge base [START_REF] Reddy | [END_REF].

1.1.3 Early executable semantic parsing systems learned from Data [Miller et al., 1996; Schwartz et al., 1996] are amongst the earliest approaches learning executable semantic parsing systems from data. Similar to LUNAR, [Miller et al., 1996; Schwartz et al., 1996] propose an architecture relying on the CFG-like syntactic tree to map NLs to LFs. The dierences with LUNAR are two folds: the models [START_REF] Miller | [END_REF]Schwartz et al., 1996] try to generate the syntactic trees directly labelled with semantic classes thus avoiding the two components design and they are directly learned from data.

To train their model, the authors use the ATIS corpus. ATIS is a dataset that contains air travel information such as ight departure/arrival cities, departure/arrival time, etc. In this corpus, each NL is paired with an LF written in frames. For example, the sentence in Fig. 1.7 will be paired with the LF (Frame: TOLOC.TIME Slots:

(FROMLOC.CITY: BOSTON, TOLOC.CITY=Atlanta)) where Frame denotes the required information and Slots list the constraints. A more detailed description of the ATIS dataset can be found in 1.2.1 inside this thesis.

The authors propose to enrich the initial ATIS dataset with syntactic trees whose nodes are also annotated with semantic classes. More precisely, each sentence is associated with a syntactic tree whose nodes are labelled with both a syntactic and sometimes a semantic class. tree to LFs written in frames if necessary. Either one can conceive a system using rules: for example, from the tree in Fig. 1.7, it is trivial to extract the Slots indicating the departure and arrival cities; the Frame can be further deduced as the /wh-question is associated with both 'arrival' and 'time' semantics; or one can use some probabilistic modelling when the semantics in the tree presents ambiguity. In either cases, the produced semantic/syntactic tree is directly useful for producing required LFs: semantic labels identify the basic units of meaning, while syntactic structures help identify relationships between those units. Thus, in the following, we will just focus on the methods proposed by the authors [Miller et al., 1996; Schwartz et al., 1996] to learn to generate the semantic/syntactic trees.

The authors choose probabilistic models to predict the semantic/syntactic tree; let W be a sentence and T be a semantic/syntactic parse tree. • P (W |T ) is modelled by word transition probability P (word n |word n-1 , preterminal) where word n-1 is the previous word and preterminal is the syntactic/semantic node directly associated with the word to be generated. For example, the probability of word `Boston' in Fig. 1.7 is conditioned on `from' (i.e word n-1 ) and city/npr (i.e preterminal) according to the model.

These probabilities can be estimated directly from counts in the data followed by smoothing techniques to take into account unseen words or nodes. 9

The authors [Schwartz et al., 1996] train their model on 4500 utterances of the ATIS dataset and test it on the ATIS DEC94 dataset [Dahl et al., 1994]. The system achieves an accuracy of 0.86 on the test data. For the test utterances of Class A (the sentences whose meanings do not depend on the context), the system achieves an accuracy of 0.91. 10

Discussion Compared to a manually written rule based system such as LUNAR, these works on executable semantic parsing show promising directions to learn a semantic parser from annotated data. However, a major issue with the above approaches is that they require a large amount of eort for actually annotating intermediate results (i.e. semantic/syntactic trees). As we shall see, approaches proposed later try to reduce this annotation eort by either treating the parse trees as hidden variables or by estimating a model directly mapping an NL to the corresponding LF.

1.2. Machine Learning Approaches

Machine Learning Approaches

In this section, we will discuss some semantic parsing approaches [Kate et al., 2005a; Kate and Mooney, 2006; Wong and Mooney, 2006; Wong and Mooney, 2007; Zettlemoyer and Collins, 2007; Zettlemoyer and Collins, 2005] having both machine learning and grammar aspects. We choose to discuss these approaches in this section for several reasons. First, they are natural improvements over the early semantic parsing systems learned from data that we have discussed in subsection 1.1.3 as they eliminate the needs for intermediate annotations. Secondly, those systems were state of the art systems tested on existing public datasets where the results can be directly compared. Finally, the drawbacks that those systems reveal (e.g the rule application is too strict to take into account many phenomena in natural language questions) and the questions that we have on those systems (e.g can those systems extend to much larger domains?) motivate further research on semantic parsing systems which we will describe in section 1.3. 11

Caveat. There is a lot of work around building semantic parsing systems that we will not discuss here. For example, we will not discuss inductive logic programming (ILP) approaches [START_REF] Zelle | [END_REF][START_REF] Tang | [END_REF] as the proposed systems learn rules to build deterministic semantic parsers thus do not reect the statistical machine learning aspects we focus on in this thesis 12 . We will also not discuss [START_REF] Papineni | [END_REF] which proposes to use a log-linear model to rank all logical forms (LFs) given an NL input. While the idea of simply ranking all LFs is very attractive as we do not need to rely on linguistic assumptions about the NL, unfortunately, the proposed approach can not generalize to situations where the number of LFs explode.

Datasets

Datasets play an important role in machine learning approaches. For semantic parsing, given a dataset consisting of (NL, LF) pairs, the systems t a model (parametrized or non-parametrized) on this training data with the objective that the learned model will perform well on test data by predicting a correct LF for an unseen NL. As said in the previous section, datasets can help to alleviate engineering eorts to write rules. One can instead try to make the system learn those rules (or other representations) so that the system generalizes well on test data. Another advantage of having datasets is that they are natural benchmarks for comparing dierent systems.

Machine Learning Approaches

We can indeed compare two systems learning from the same training data on their performance on the test data to see which system learns better on the dataset. As the comparison may generalize to other datasets, it can indicate promising approaches.

As we are interested in executable semantic parsing, a dataset must contain two things here. First, (NL,LF) pairs based on which the systems can perform learning.

Second, a knowledge base (KB) so that one can execute the LF on the KB. We will review two such datasets in this section.

Geoquery [Zelle and Mooney, 1996] is a dataset about the US geography. In its original version, the dataset contains 250 (NL, LF) pairs. Later on [START_REF] Tang | [END_REF] extended the dataset to include 880 (NL, LF) pairs with 600 training pairs and 240 test pairs. We refer by Geoquery to this larger extension which is a popular benchmark for many executable semantic parsing systems whose performances can be directly compared [START_REF] Tang | [END_REF][START_REF] Zettlemoyer | [END_REF][START_REF] Wong | [END_REF][START_REF] Zettlemoyer | [END_REF]. The KB accompanying this dataset contains about 800 Prolog facts providing basic information about the U.S states, including: population, area, capital city, neighboring states, major cities etc. tems [START_REF][END_REF][START_REF] Wong | [END_REF] cannot deal with LFs with logical variables, so to circumvent the problems, some authors propose to rewrite those LFs into a variable free formalism called FunQL [Kate et al., 2005b] and report the performance of their semantic parsers based on those LFs. ATIS [Dahl et al., 1994] is a dataset which contains air travel information such as ight departure city, destination city, departure time, ying time, etc. The initial ATIS dataset [Hirschman et al., 1993] contains ight information about 11 cities, 9

airports and 765 ights. Later on, the database was largely expanded to contain ight information about 46 cities, 52 airports and 23457 ights; new annotations were acquired accompanying the dataset [Dahl et al., 1994].

Inside the ATIS dataset, the logical forms (LFs) are rather `at' and do not have much structure. In consequence, while some researchers try to predict the LFs [START_REF] Zettlemoyer | [END_REF], many other researchers in the community [START_REF] He | Semantic processing using the hidden vector state model[END_REF][START_REF] Raymond | Christian Raymond and Giuseppe Riccardi. Generative and discriminative algorithms for spoken language understanding[END_REF][START_REF] Mesnil | [END_REF] learn to map NLs into LFs that are written in frames that have slots to be lled and propose to learn the mapping as a sequence tagging problem. See Fig. 1.9 for an example of (NL, LF) inside the dataset where LFs are written in frames. Inside each frame, the Frame indicates the required information (i.e. the ights in the example) and Slots list all the constraints concerning the required information.

For studying executable semantic parsing systems, the most popular benchmark is the ATIS dataset of Class A which contains only the sentences that can be understood (can be translated into LFs) without looking at the context. In the following, we will refer by ATIS dataset to this subset which contains 4978 (NL, LF) pairs in its training set. At least two test sets are available called Nov93 and DEC94 containing 448 and 445 sentences respectively. The authors choose to report their system performance on one test set [START_REF] Zettlemoyer | [END_REF] or both test sets [START_REF] Papineni | [END_REF][START_REF] He | Semantic processing using the hidden vector state model[END_REF][START_REF] Raymond | Christian Raymond and Giuseppe Riccardi. Generative and discriminative algorithms for spoken language understanding[END_REF].

Contrary to the evaluations in Geoquery, researchers studying the ATIS dataset compare their systems not by evaluating the precision and recall based on LFs (or frames in ATIS) but on the precision and the recall for each slot in the test data.

The evaluation based on slots is possible and justied inside the ATIS dataset but obviously cannot be used for evaluating more complex LFs which cannot be decomposed into slots.

Robocup [Kuhlmann et al., 2004] is a dataset about robotic soccer where commands to soccer robots from team coach written in natural language are paired with their formal language representation written in Clang [Chen et al., 2003]. Fig. 1.10

shows an example of a natural language command (noted with NL) paired with its corresponding Clang LF.

The Robocup dataset is a collection of total 300 such pairs. As the dataset is rather small, authors using the dataset [Kate et al., 2005a; Kate and Mooney, 2006; Wong and Mooney, 2006; Wong and Mooney, 2007] report their system performance on average accuracy during cross validations. This dataset will not be used as benchmark inside the thesis. Nevertheless, we introduce it here as several examples illustrating semantic parsing systems are taken from the dataset.

Semantic Parsing systems with linguistic hypothesis about NL

In this subsection, we review SCFG (Synchronous CFG) [Kate et al., 2005a; Kate and Mooney, 2006; Wong and Mooney, 2006; Wong and Mooney, 2007] and CCG based approaches [START_REF] Zettlemoyer | [END_REF][START_REF] Zettlemoyer | [END_REF] to semantic parsing. Like approaches described in subsection 1.1.3, these works also suppose that the input utterance (NL) can be parsed by a grammar. However, one dierence is that grammars used here seem to be more adapted to semantic parsing tasks as the produced LFs directly take the same form as the target LFs either to be evaluated or executed.
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For example, [START_REF] Wong | [END_REF] suppose that a SCFG (synchronous CFG)

generates both NLs and LFs; the same authors later extend SCFG to λ-SCFG [Wong and Mooney, 2007] so that LFs with binding variables can be handled; [START_REF] Zettlemoyer | [END_REF][START_REF] Zettlemoyer | [END_REF] suppose that NLs can be parsed by a certain CCG.

Another important dierence is that instead of requiring the parse trees to be annotated like [Miller et al., 1996; Schwartz et al., 1996], the parse trees here are regarded as hidden; having hidden parse trees makes the learning problem harder but allows to signicantly reduce annotation eorts. As a consequence, these methods can be directly applied to datasets such as Geoquery and ATIS without further annotations.

1.2.2.1 SCFG based approaches [Kate et al., 2005a] propose to learn an SCFG to map NLs into LFs. Analogous to an ordinary CFG, each SCFG rule consists of a single non-terminal on the left-hand side (LHS). The right-hand side (RHS) of an SCFG rule is a pair of strings (instead of a single string in CFG) (α, β), where the non-terminals in β are a permutation of the non-terminals in α. In our context, α is a string for the NL part and β for the LF part. Fig. 1.11 shows an SCFG example.

Consider the sentence (3a) from the RoboCup dataset [Chen et al., 2003] whose corresponding logical form (LF) is (3b).

(3) a. If our player 4 has the ball, then our player 6 should stay in the left side of our half.

b. ((bowner our {4})(do our {6} (pos (left (half our))))).

The SCFG shown in Fig. 1.11 generates both the NL and the LF (if our player 4 has the ball, bowner our 4 ) of the conditional part of this example.

In the following, it is assumed that the LFs can always be parsed by a certain CFG which is known a priori. As this condition holds true for almost all computer languages, it should hold true also for the LFs as the LFs need to be executed thus are actually some computer languages. Because this CFG is known a priori, `half ' of the SCFG is known a priori. To illustrate, suppose that the CFG known for LFs include the LF part of SCFG shown in Fig. 1.11; 14 it is as if we have an SCFG grammar including rules such as 14 We will refer to this CFG simply as CFG known a priori in the follwing of this subsubsection. where ? are the placeholders for the NL part. and one needs only to search for the NL part in each SCFG rule.

[ Kate et al., 2005a] propose to learn the SCFG rules (i.e ll in the NL part from 'half specied' rules (4a) (4b) etc.) by using a bottom-up rule induction process which infers general rules from maximally specic ones. At initialization, for each training pair (NL, LF), rules are created where the NL part contains the whole sentence. For example, given the (NL, LF) pair (3a, 3b) and the CFG known a priori for LFs, one would create the SCFG rule shown in ( 5) by lling the NL part of the rule (4a) with the whole sentence:

(5) TEAM → (If our player 4 ... our half, our).

This rule however is too specic to be applied for test sentences, so one needs to generalize those rules. Ideally, we want to induce from the above, very specic, SCFG rule, a rule like TEAM → (our, our) which is much more general. [Kate et al., 2005a] propose a procedure to generalize rules based on pair of rules with the same LF production. At each iteration, they sample two rules with the same LF production out of all the rules constructed so far;

15 when receiving the two rules, they rst compute the longest common subsequence (with gaps) of the two NL strings containing also non terminals and regard the subsequence as generalization 16 Authors dene a score of appropriateness for each rule which is the product of its accuracy and coverage.
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making the learned SCFG deterministic.

The above SCFG learning approach is tested on Geoquery showing an accuracy of 0.88 and a recall of 0.53. 17

There are two problems with this approach that learns a deterministic SCFG.

First, the SCFG is not very robust. For example, the learned rules can not deal with misspelled words never seen in training (the low recall of the system somehow indicates the non robustness of the system). Secondly, the learned SCFG is made deterministic at the price of making rules rather specic. One may want to have more general rules and learn a stochastic SCFG. If more than one derivation tree matches the sentence, one can learn a ranker to discriminate these derivation trees.

We will now see some approaches which are also based on learning an SCFG for semantic parsing, but propose to address the above issues.

[ [START_REF][END_REF] propose to deal with the robustness problems by using kernel-SVMs.

Recall that a CFG for LFs is known a priori ; for each CFG rule producing an LF string (i.e T EAM → our), they propose to learn a string kernel SVM [Lodhi et al., 2002] predicting if a certain rule should be used for a given sentence. More precisely, given a CFG rule noted π; at rst iteration, all the sentences where π is used are collected as positive examples and all the other sentences are used as negative examples to train the kernel SVM. For example, given (NL, LF) pair shown in (3a,3b), the authors use the kernel SVM to learn that the rule (T EAM → our)

should be predicted as the sentence is a positive example for this rule while the rule (REGI ON → penalty-area T EAM ) should not be predicted (sentence being a negative example for this rule).

Once these classiers are learned, they are used to parse the NL string where an additional constraint that substrings covered by the children of a node are not allowed to overlap is taken into account. For a given sentence, several parses are often possible, so a probability score for each rule application covering a certain NL substring is needed. Denote the NL substring L, authors propose to use the trained SVM to determine the probability score. For example, for the rule (T RAV ERSE → traverse) covering four consecutive words `which river runs through' in Fig. 1.13, authors use the trained SVM to predict its probability score based on this four word input. The probability is estimated based on the SVM margin with the input L.

With those probability scores, a given sentence is parsed producing the derivation The authors test their system on Geoquery and achieve a precision of 0.93 and a recall of 0.72. The proposed method is shown to be particularly robust to noise such as spelling errors.

Inspired by phrase based machine translation [Chiang, 2005], [START_REF] Wong | [END_REF] propose to use word alignment techniques to learn overgenerating SCFG rules and then rank possible derivations. 

Machine Learning Approaches

Figure 1.14: An example of alignment between words and CFG rules in [Wong and Mooney, 2006].

Then, with the help of these alignments an SCFG is constructed in a bottom-up manner. Similar to [Kate et al., 2005a], the system tries to construct an SCFG rule by adding an NL part for each LF production rule resulting rules like TEAM → our, our where rst `our' is an NL expression. Concretely, the system starts with LF production rules whose RHS is all terminals (e.g. TEAM → our and UNUM → 4).

For each of these productions, a rule X → (α, β) is constructed 20 where α consists of the words to which the production rule is linked where the `linking' is found by learned alignments.

For example, consider the alignments shown in Fig. 1.14. The rule expanding the nonterminal UNUM is linked to `4' while the rule expanding the nonterminal CONDITION is linked to `player', `has' and `ball'. According to the rule construction procedure just sketched, UNUM → 4, 4 can be extracted as `4' is the only word linked to the rule expanding UNUM.

Then the system considers the production rules whose RHS contain also nonterminals. In this case, a constructed pattern (the NL part of an SCFG rule) consists of words to which the production rule as well as the non-terminals inside the rule are linked. For example, one constructed rule would be: 21

CONDITION →< TEAM1 player UNUM2 has (1) ball, (bowner T EAM1 U N U M2) >
as all the NL words appearing in this rule link to either the rule expanding CON-DITION or to the nonterminals on its RHS shown in Fig. 1.14.

Once the SCFG is constructed, the next task is to learn a ranker to rank all the derivation sequences that can generate the NL. The authors use a log-linear model:

P λ (d|e) = 1 Z λ exp i λ i f i (d, e),
LFs may exhibit polysemy; we don't think this point is very relevant; in any case, polysemy is unavoidable for the NLs.

20 Note that similar to [Kate et al., 2005a] X and β is given by the LF production rule. 21 The (1) denotes a word gap of size 1, due to the unaligned word the.
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Figure 1.15: An example of alignment between words and CFG rules in [Wong and Mooney, 2006] where no rule can be extracted for REGION → penalty-area T EAM.

where e is the NL input, d is the derivation sequence (DS), f i are manually dened features involving d, e or both and λ are parameters to be learnt.

The whole system with the learned SCFG and the ranker achieves a precision of 0.87 and a recall of 0.73 on Geoquery dataset. Note that the system adopts the SCFG formalism thus cannot predict LFs with variables, so instead of learning to predict the Prolog queries in Geoquery, the system learns to predict the FunQL queries which are semantically equivalent LFs without variables.

According to the SCFG construction procedure described above, the model [START_REF] Wong | [END_REF]] is only eective when words linked to a specic LF production rule stay close to each other in the sentence. As a failure example, consider the sentence `our left penalty area' and its corresponding LF (left (penalty-area our)) with learned alignment shown in Fig. 1.15. In this case, no SCFG rule can be constructed to generate the LF (penalty-area TEAM) as we impose that all the words from the NL part in a rule should link to the production rule or its RHS nonterminal while the word `left' is not linked to this rule; the fact that `our' and `penalty area' is separated by `left' making the rule production impossible.

Discussion We can compare the work [Wong and Mooney, 2006] with previous work [Macherey et al., 2001] which has also proposed to use alignment models to learn a semantic parsing system. One major dierence and a contribution of [START_REF] Wong | [END_REF] is that authors propose to use CFG over the LFs as prior knowledge;

without using this CFG as prior knowledge, the LFs that a system produces can be syntactically ill-formed. Another dierence is that the model of [START_REF] Wong | [END_REF] uses SCFG from hierarchical phrase based machine translation [Chiang, 2005] while the model in [Macherey et al., 2001] is not based on hierarchical machine translation but simpler alignment models.

Techniques similar to [START_REF] Wong | [END_REF]] can be used to handle LFs with variables as shown in [START_REF] Wong | [END_REF]. One needs to extend SCFG to λ-SCFG in which each rule has the form:

A →< α, λx 1 . . . λx k .β >
Where α is an NL sentence and β is a string of terminals, non-terminals, and variables. The variable-binding operator λ binds occurrences of the logical variables x 1 , . . . , x k in β. Learning a λ-SCFG can be performed in a bottom up way, similar to the learning of a SCFG; the ranker can also be constructed similarly.

Being able to handle variables can ease the λ-SCFG learning. If the LF (a, b) is equivalent to (b, a), one can choose to represent the LF such that the LF is maximally isomorphic 22 to the input utterance (NL) thus ease the learning of λ-SCFG.

As a result, when authors [START_REF] Wong | [END_REF] test their system on the Geoquery dataset with LFs written in Prolog (and rearrange the LFs to be maximally isomorphic to the NLs), they found a large improvement over the system [START_REF] Wong | [END_REF]] and achieve a precision of 0.92 and a recall of 0.87.

1.2.2.2 CCG based approaches [START_REF] Zettlemoyer | [END_REF] propose to use PCCG (probabilistic CCG), an extension of CCG [Steedman, 1996] 23 to learn an executable semantic parser. Like [START_REF] Wong | [END_REF], the system both parses sentences using CCG rules also called lexicons and ranks them using a log-linear model; the dierence is that in [START_REF] Zettlemoyer | [END_REF] the lexicons and the feature parameters are learnt jointly.

A CCG parser parses a sentence with CCG rules. For example, consider the following subset of CCG rules. Each rule associates a lexical item with a syntactic category and a semantics written in lambda calculus. For instance, the rst rule associates the lexical item Utah with the syntactic category NP and the semantics utah.

• Utah := NP :utah

• Idaho := NP :idaho

• borders := (S\NP)/NP : λx.λy.borders(y, x)

With these 3 rules, one can parse the sentence Utah borders Idaho (with forward and backward applications) and produce the correct LF borders(utah, idaho). The central question is then how to successfully learn those rules (also called lexicons) together with their feature parameters based uniquely on (NL, LF) pairs when parsing steps are not available in the considered datasets.

22 Isomorphic in the sense that the structure of the LF being similar to that of the NL.

23 Inside this thesis, we briey discussed CCG in subsection 1.1.2.
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Figure 1.16: All the CCG rules used in [Zettlemoyer and Collins, 2005].

[ [START_REF] Zettlemoyer | [END_REF] propose an iterative procedure to learn the lexicon together with their feature parameters. First, they limit the forms of rules that the system will learn. In practice, all the learned rules will be in one of the forms shown in Fig. 1.16. Given an (NL, LF) pair, the system creates temporarily all the rules possibly useful to map the NL to the LF via a function called GENLEX, mathematically:

GENLEX(N L, LF ) = {x := y|x ∈ W (N L), y ∈ C(LF )}
In the above formula, W (N L) is the set of all subsequences of words in the NL and C(LF ) returns the rules involved in the LF that are in one of the forms shown in LF borders(utah, idaho). In this example, C(LF) will contain three elements: utah, idaho and λx.λy.borders(y, x); W(NL) will contain all the substrings such as `utah', `borders', `utah borders', etc. Thus, rules such as Utah := NP :utah and borders := NP :utah will all be considered as candidates initially. Note that the GENLEX function over-generates lexicons to map an NL into the corresponding LF, which guarantees that the system always nds a parse leading to the correct form.

P (LF, DS|N L, θ) = e f (LF,DS,N L)•θ LF,DS e f (LF,DS,N L)•θ
To distinguish between several possible parses, a PCCG is actually used. As shown in the equation above, the PCCG denes a probability distribution over (LF,DS) (DS is a derivation sequence) using a log-linear model; in the equation, f (LF, DS, N L) are manually dened features for a rule capturing interactions between the associated syntax/semantics. In the model [START_REF] Zettlemoyer | [END_REF],

only weights for each lexicon are used as features.

Note that the objective is to maximize the probability of the correct LF which can come from dierent DS's with P (LF |N L, θ) = DS;LF P (LF, DS|N L, θ);24 given a set of rules, parameters in the log-linear model (i.e the weight of each lexicon) can be updated using gradient descent so that the likelihood of the correct LF P (LF ) is maximized. 25

To output a compact set of rules 26 [START_REF] Zettlemoyer | [END_REF], [START_REF] Zettlemoyer | [END_REF] propose to iterate between lexicon generation steps (using GEN-LEX ) and parameter estimation steps. More precisely, after the initialization step that set weights for generated lexicons and initial lexicons Λ 0 , the system iterates between the following two steps at iteration t where a lexicon set Λ t is initialized to be empty before the iteration:

• For each sentence, the system calls the GENLEX procedure overgenerating lexicons and parses the sentence with their currently associated weights; then, only the rules that are used for the parse with the highest probability score are added to Λ t . The system parses the whole corpus this way and then set Λ t = Λ t ∪ Λ 0 .

• The feature parameters involving Λ t are optimized by using gradient descent.

After a xed number of iterations, the learning procedure stops and output the lexicons used at the last iteration Λ t together with their feature weights; this more compact lexicon is used at test time. The system was tested on Geoquery and achieves a precision of 0.96 and a recall of 0.79.

Discussion Compared with the performance of [Wong and Mooney, 2007] on the Geoquery dataset, the system of [START_REF] Zettlemoyer | [END_REF]] has a higher precision and lower recall. We think that the lower recall is due to the rigidity of the learned CCG grammar as it cannot parse ungrammatical sentences unseen at training time. For example, consider a CCG grammar with two rules in the ATIS domain:

• ights := N :λx.f light(x)

• one way := (N/N):λf.λx.f (x) ∧ one_way(x)
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Figure 1.17: ATIS annotated with concept sequences.

The grammar can successfully parse the sentence one way ights and give the correct corresponding parse λx.f light(x) ∧ one_way(x). However, the system will fail for the sentence 'ights one way (while one can argue that the sentence should be understood by the system) thus lowering the recall of the system.

[ [START_REF] Zettlemoyer | [END_REF] propose a remedy to the above problem by allowing more forms of rules in the system so that a larger number of sentences can be parsed by the considered CCG. The additional rules involve application and composition rules, type-raising rules and crossed composition rules. We discuss here the added functional application rules:

• A\B:f B:g ⇒ A:f (g) • B:g A/B:f ⇒ A:f (g)
These application rules are variants of the original application rules, where the slash direction on the principal categories (A\B or A/B) is reversed. With the second rule, one can correctly parse the sentence 'ights one way with the result being the same as one way ights.

Having additional rules lead to signicantly more parses for any sentence x. However, the authors found that the log-linear ranker 27 is still able to learn well to choose a correct parse among all the candidate parses. Authors test their system on the ATIS NOV93 dataset and achieves a precision of 0.95 with a recall of 0.97.

Remark As the semantics in the ATIS dataset is written in frames thus pretty `at', people have proposed to annotate each sentence in the dataset with a sequence of associated concepts as shown in Fig. 1.17. Under these conditions, one can apply sequence tagging techniques using models such as Conditional Random Fields (CRFs) [START_REF] Laerty | [END_REF] and Recurrent Neural Networks (RNNs) [Rumelhart et al., 1988]. Note however that annotations will be very dicult if not impossible when the logical forms (LFs) are not that `at' and have more structures. For this reason, approaches based on sequence tagging that we describe here cannot be applied for general semantic parsing tasks and we will not discuss them in detail inside the thesis.

27 Compared to [START_REF] Zettlemoyer | [END_REF], the ranker incorporates a richer set of features.
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CRFs are discriminative undirected graphical models which nd their applications in sequence tagging problems such as POS tagging and entity recognition. At each prediction step, the model makes a prediction based on manually dened features that take into account the current word, the context of the current word and the previous prediction (tag)

28 ; the model assigns a global score to each target sequence and learns its parameters to rank the correct target sequence highest amongst all the sequences, using a log-linear model. Mathematically, let y be the target sequence and x the input sequence; the model (rst-order CRF) is dened by a set of features f k with their associated weights λ k ; Z(x) is the normalization term summing over all the sequences y: [START_REF] Raymond | Christian Raymond and Giuseppe Riccardi. Generative and discriminative algorithms for spoken language understanding[END_REF] apply CRFs on the ATIS dataset where the features are mainly dened to link the words with corresponding concepts. For example, one can dene features such as if the word is `washington', it links to either the concept fromloc.city or the concept toloc.city; the ambiguity can be further resolved by applying more specic features, e.g. if the word `washington' is preceded by `from' then the tag is `fromloc.city'.

p(y|x) = exp( t K k=1 λ k f (y t-1 , y t , x)) Z(x)
The authors test their approach on the ATIS dataset (Nov93+Dec94) and achieve a F1 score of 0.96. [Mesnil et al., 2015] propose to use Recurrent Neural Networks (RNNs) for the semantic parsing problems seen as sequence tagging problems. Compared to CRF models, the main advantage of using such deep learning models is to avoid feature engineering as deep learning models integrate both feature design and classication into the learning procedure. Some discussions on RNNs can be found in section 3.2, 3.3 inside the thesis.

The considered neural network architecture runs an RNN through the input sequence x, calculates a hidden vector at each step (word) of x based on the word context and already predicted tags; then in the simplest case, the model learns to predict the tag at the current step based on this hidden vector through cross-entropy minimization.

More precisely, the network rst maps each 1-hot encoded word to a continuous 28 In [START_REF] Laerty | [END_REF], CRF is introduced so that the current tag depends only on the previous tag. However, the model can still be trained reasonably eciently with the current tag depending on the n previous tags when n is small [Cuong et al., 2014]. word embedding which is a real-valued vector of certain dimensions (typically several hundreds which is much less than the total number of words). Then an RNN is run through the word embeddings producing a hidden vector at each time step. Many variants of RNNs exist, the authors propose to use the following formulation which is a hybrid of Elman type [Elman, 1990] (i.e. the h(t -1) term which is the previous hidden vector in the equation below) and Jordan type [Jordan, 1986] (i.e. the C d term which is a context window of size d centered on the t-th word in the input sequence x and the y(t -1) term which is the previous predicted tag, in the equation below):
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h(t) = f (U C d + U P (y(t -1)) + U * h(t -1))
The class label at each time t is then calculated based on h(t) using softmax.

As said, one can train this RNN step by step (trying to make the predicted tag at each step correct). However, this standard RNN training (also called teacher forcing) can create the label bias problem [Bottou, 1991], 29 a problem that CRF models can solve. So the authors propose to build a CRF model on top of the RNN model where hidden states are regarded as CRF features.

The authors test their model (word embeddings+RNN+CRF) and observe improvements over CRF baselines on the ATIS dataset achieving an F1 score of 0.96.

We want to nally mention that the literature seeing ATIS as a sequence tagging problem is abundant. Just to mention a few of them, [START_REF] Kuhn | The application of semantic classication trees to natural language understanding[END_REF] propose to use classication trees to classify slots and [START_REF] He | Semantic processing using the hidden vector state model[END_REF] propose to use hidden a vector space (HVS) model.

Remark Tables 1.1 and 1.2 summarize the performance of the dierent systems on the Geoquery dataset discussed in this section and F1 [START_REF] He | Semantic processing using the hidden vector state model[END_REF] 0.90 [START_REF] Zettlemoyer | [END_REF] 0.96 [START_REF] Raymond | Christian Raymond and Giuseppe Riccardi. Generative and discriminative algorithms for spoken language understanding[END_REF] 0.96 [Mesnil et al., 2015] 0.96

Table 1.3: Results on ATIS dataset, note that the results of [Zettlemoyer and Collins, 2007] is tested only on the Nov93 dataset while other systems are tested both on the Nov93 and the Dec94 dataset.

performance of systems on ATIS. We have two remarks based on these tables.

• Systems based on CCG [Zettlemoyer and Collins, 2007] can perform well on both datasets. From the tables, we can see that they are amongst the best performing systems.

30 This suggests that when we can safely suppose that most of the sentences can be parsed by a certain grammar, the use of this linguistic prior knowledge (CCG in this case) can eciently reduce the search space thus largely ease the learning procedure [START_REF] Zettlemoyer | [END_REF].

More than that, it seems that this prior knowledge is so useful that even a relaxed form can largely benet the task [START_REF] Zettlemoyer | [END_REF].

• All the best performing systems use some discriminative models. One particularly interesting class of discriminative models are deep learning models as they avoid heavy feature engineering for a given task. However, at this stage, we have seen the application of deep learning models (RNNs, in particular) only to semantic parsing seen as a sequence tagging task [Mesnil et al., 2015] while as we have said, this form of semantic parsing is very limited compared to the task we focus on where one needs to generate a structured LF (which is not necessarily a linear chain and which can be of any length).

30 One should note that the CCG system is only tested on the NOV93 dataset on ATIS while most of other systems are tested on both the NOV93 and the DEC94 datasets.

1.3. New Challenges

New Challenges

In the previous section, we have seen some successful semantic parsing systems learned based on a training corpus that consists of (NL, LF) pairs. Despite of the success, there are two limits of those systems that more recent systems try to address:

• One may note that all the previous systems assume having access to annotated LFs, which requires a lot of annotation eorts: annotating LFs often require expertise for the language in which LFs are expressed. We will review in this section dierent proposals raised by researchers in recent years to train semantic parsers while reducing the annotation eorts. One important direction is to train the system based on (natural language question, answers) pairs [Liang et al., 2011; Berant et al., 2013; Berant and Liang, 2014; Pasupat and Liang, 2015] that we will note as (NL, A) in the following; this reduces the annotation eorts notably because annotating an answer does not require as much expertise as annotating a LF. Another idea of annotating LFs with less eorts is to turn the LF annotation problem to a simpler one such as creating paraphrases [Wang et al., 2015]. Finally, noting that text information is abundant and easy to access nowadays, we will review proposals to leverage these texts to learn semantic parsers [START_REF] Reddy | [END_REF].

• Previous semantic parsing systems require also much engineering eorts. For example, to build the semantic parsing system [START_REF] Zettlemoyer | [END_REF] based on PCCG, the authors need to specify the set of necessary CCG rules and also the features for the log-linear ranker. Also, although CCG-based semantic parser induction is language-and domain-independent as shown in [Kwiatkowski et al., 2011], sometimes minor changes in CCG rule specication are necessary to well adapt to a particular domain.

31 Thus, researchers have proposed machine learning models that learn semantic parsers with less engineering eorts [Bordes et al., 2014a; Yih et al., 2015] (e.g. by using end to end deep learning models). We will review those works as well in this section.

Reduce annotation eorts 1.3.1.1 Learning with QA pairs

In recent years, learning a semantic parser based on (NL, A) pairs has boosted the research for semantic parsing and a review of learning with QA pairs can be found 31 For example, [START_REF] Zettlemoyer | [END_REF] has to extend the CCG rules that they use previ- ously [START_REF] Zettlemoyer | [END_REF] when building a semantic parser for another domain.
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in [Liang, 2016]. The main problem in learning with QA pairs is that LFs are no more available thus have to be treated as hidden variables. Under this condition, suppose that we want to build a semantic parser using/extending previous approaches such as [START_REF] Wong | [END_REF][START_REF] Zettlemoyer | [END_REF] that rst induce a grammar that parses the natural language question while generating LF candidates, then use a ranker that learns to choose the best LF amongst the candidates, 32 learning with QA pairs implies two complications:

• For the ranker, instead of learning a log-linear ranker maximizing the likelihood of the annotated LF P (LF |N L, θ) = e f (LF,N L)•θ LF e f (LF,N L)•θ , one needs to learn to max- imize the probability of getting the correct answer P (A|N L, θ) by marginalizing over LFs, thus giving the objective function:

P (A|N L, θ) = LF ;A e f (LF,N L)•θ Z
where we use LF ; A to denote the LFs whose executions give the answer A; Z = LF e f (LF,N L)•θ is the normalizing factor summing over all possible LFs.

Note that as we sum on the numerator over all the LFs reaching the answer which is a set of LFs that don't factorize over the nodes inside a parse tree (e.g CFG parse tree, CCG parse tree etc.), there is no way to estimate the quantity P (A|N L, θ) or its gradient exactly besides rst enumerating all the LFs and execute each one of them. 33 Thus, to optimize the objective function P (A|N L, θ), beam search (to search for LFs reaching the correct answer) with approximate gradients (gradients calculated based on the beams) are generally used.

• For the grammar induction, rst note that all the learning approaches we describe in the previous section (e.g. [START_REF] Zettlemoyer | [END_REF][START_REF] Wong | [END_REF]) need the LFs to be given in the dataset: [START_REF] Zettlemoyer | [END_REF] rst decompose the LFs into elementary forms that are known a priori (see Fig. 1.16 for an example of the elementary forms) before trying to learn the NL expressions associated with these elementary forms; to learn an SCFG that can translate the NL into corresponding LFs, [START_REF] Wong | [END_REF] rst parse the LFs using a CFG over LFs known a priori before trying 32 As we shall see in this chapter, all the works we review in this subsection adopts this architecture using a grammar and a ranker but with important dierence on the role the grammar plays.
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to deduce the NL expressions that trigger the SCFG rules.

As the direct application of previous approaches [START_REF] Zettlemoyer | [END_REF][START_REF] Wong | [END_REF] are not possible, one may try to devise a two step approach to build a semantic parser where the rst step tries to nd all the correct LFs. However, as the number of LFs can be huge even for relatively small datasets due to the compositionality, the solution is not applicable in general cases.

To our best knowledge, the rst work proposing to learn a semantic parsing system with QA pairs (notably addressing the grammar induction diculty) is [START_REF] Liang | [END_REF]. We will rst give the general idea behind the approach before entering into more details.

As the LFs are not available in the dataset, the system we want to build has to explore the space of LFs randomly at the beginning. 34 During the random explo- ration, the system may nd LFs that give the correct answer for some NLs in the dataset; the semantic parser can then learn a model over these (NL,LF) pairs so that at the next iteration, the system can explore the LF space focusing on promising LFs by using the model it has learned. The system iterates this way each time switching between learning a semantic parser and exploring LFs using it, forming a bootstrapping approach; the system stops when it nds enough proportion of correct answers for the NL questions in the dataset, suggesting a good performance of the semantic parser. This bootstrapping approach is examined under a theoretical point of view in [START_REF] Daumé | Learning as search optimization: Approximate large margin methods for structured prediction[END_REF] where the authors name it LaSO (Learning as Search Optimization).

To implement the approach [Liang et al., 2011] learning a semantic parser by bootstrapping, one rst needs a exible grammar so that the system can explore randomly the LF space at rst place. Fig. 1.18 shows an example of parsing a sentence with a exible grammar. While the rules of type `lexicon' can be generated by using some prior knowledge, the rules of type `join' and `intersection' are generated randomly at the beginning before being generated by the semantic parser's guidance.

Fig. 1.18 also illustrates another exibility of the grammar as the sentence is not fully analyzed by the grammar and some tokens in the sentence (e.g. `was' and `?') are skipped.

34 With some exceptions where prior knowledge can be used. For example, to answer the question `States that border Utah', one may encode the prior knowledge into the semantic parser that if the NL contains `utah' or `Utah', the LFs have to contain utah ; however, this form of prior knowledge is generally limited to named entities. One can see that the grammar we are discussing here is very dierent from grammars such as CCG which do not generate rules on the y and which do not skip tokens. 35 .

A rich feature set is also needed for the semantic parser to implement the bootstrapping learning approach. When a correct LF is found, 36 the feature parameters of the corresponding rule application inside the LF will be updated (very often using gradient based optimization algorithms) to make sure that the correct rule will be applied in the future on this example; when the features associated with the rule application is rich enough, we can hope that some features will generalize over NLs allowing to nd more correct LFs at the next iterations.

For example, suppose that the system nds a correct LF (notably the `join' and `intersection' operations) for the given sentence in Fig. 1.18 through exploration. If the only feature associated with the `join' rule application is its frequency in the dataset (similar to [START_REF] Zettlemoyer | [END_REF]), the model will just try to apply `join' rules more often at the next iterations during bootstrapping. However, better generalization may be achieved if the `join' rule is also associated with the NL feature such as `PERSON born'; 37 in this case, the semantic parser will favor to apply the `join' rule at the next iterations when it sees the pattern `PERSON born' after parameter updates.

35 Note that constructing a semantic parser with CCG is indeed possible, but as the CCG will not produce semantics tailored to the domain of interest, some `semantic matching' module needs to be implemented [START_REF] Reddy | [END_REF].

36 The `correct' here means that the LF gives the correct answer under execution.

37 Suppose that the system can identify a `Obama' in the sentence as a person.
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By putting together a exible grammar and a rich feature set, [Liang et al., 2011] test the bootstrapping approach to learn a semantic parser based on QA pairs. 38

On the Geoquery dataset, the semantic parser can only nd 29% of the correct LFs at rst by `pure exploration', but training over these examples are enough to increase this ratio to 65% and then 95% after the next few iterations. Some patterns are discovered during bootstrapping through learning with the rich feature set; the system discovers for example that when a word `in' is seen in the NL, the relation `loc' (i.e. location) will be triggered with high probability.

The system overall achieves an accuracy of 91.1%, a new state of art on Geoquery while only trained on QA pairs (previous systems are trained on (NL, LF) pairs.).

Many recent works propose improvements of the above bootstrapping approach to learn a semantic parser with QA pairs. [Berant et al., 2013] propose two ways to better exploit prior knowledge to limit the LF space that the system searches. The rst way consists of constructing a larger lexicon set corresponding to the rules applied at the bottom level in the derivation tree (e.g. the `lexicon' rules in Fig. 1.18) that map NL expressions to LFs; the second way consists of using type constraints of the LFs to control generation of rules other than lexicons (e.g. the `join' and `intersect' rules in Fig. 1.18)).

Their system is tested on an RDF knowledge base Freebase [Bollacker et al., 2008] which contains about 2.5 billion triples in the form (e 1 , r, e 2 ); in the triple, e 1 , e 2 are entities forming the subject (e 1 ) and the object (e 2 ) respectively and r is a relation forming the predicate of the triple (e.g. (`barack_obama',`birthplace',`honolulu')).

A dataset called Webquestions containing QA pairs is constructed for which the questions can be answered by either a Freebase entity or a value or a list of Freebase entities. The questions are collected via Google suggest API and turkers are asked to answer the questions using only Freebase. A total number of 5810 QA pairs is collected, 35% is reserved for test; for the remaining 65%, a 80%-20% split is performed for training and validation.

Lexicons over entities are often constructed by string matching. However, such methods do not work well with relations as the relation mention often diers from its NL expressions. For example, in texts, we nd `Barack Obama was born in Honolulu' to express that `Barack Obama's birthplace is Honolulu'. To construct 38 Another main contribution of [START_REF] Liang | [END_REF] is to introduce a new semantic representation λ -DCS; we do not discuss further over this aspect inside the thesis as we do not focus on how the semantics is coded but rather how learning can be performed for given semantics. lexicons for relations, authors propose to use triples (e.g. `barack_obama', `born in', `Honolulu') extracted from free texts (texts that one can nd on the web) and align them with the knowledge base using the heuristics [START_REF] Cai | Large-scale semantic parsing via schema matching and lexicon extension[END_REF] which construct an alignment between a phrase and a relation if they co-occur with many same entities. For instance, in the above example, `born in' and `birthplace' co-occur with (`barack_obama', `honolulu'); if they co-occur with many other such pairs, an alignment (a lexicon on relation) will be constructed.

The construction of LFs obeys type constraints for which authors propose to exploit as prior knowledge. Similar to [Liang et al., 2011], in [Berant et al., 2013],

some LFs have to be generated on the y; however, to limit the LF search space, [Berant et al., 2013] note that one can generate LFs on the y while taking into account type constraints (an operation called `bridging'). Fig. 1.19 illustrates the `bridging' operation. Once rules of type `lexicons' are generated (which generate the LFs Type.Univesity and BarackObama), other rules such as `Education`need to be generated on the y. However, the predicates generated at this place which link Type.University and BarackObama must be binary predicates which operate on (Type.University, Type.Person) as type constraints; those constraints narrow down the search space of predicates.

The whole system (with predicate lexicons and bridging) is tested on Webquestions achieving 35.7% in accuracy.

[ [START_REF] Berant | Semantic parsing via paraphrasing[END_REF] propose to enrich the feature set in the semantic parser by exploiting existing resources such as paraphrase corpus and pretrained word vectors.

For each LF query, they propose to use prespecied templates to generate a question in natural language called `canonical form'. Using those templates, they are able to generate the question Who directed Top Gun ? from the LF query (? Directed.TopGun). 39

Once the canonical forms are generated, alignment features can be estimated between canonical forms and the NL using an alignment model pretrained on a paraphrase corpus; besides, the similarity can also be estimated using pretrained word vectors [Mikolov et al., 2013a] where both the representations of canonical forms and NLs are taken as the average of content word vectors (nouns, verbs and adjectives). The alignment features can detect dierent phrases expressing the same notion; for example, it can make `genres' close to `kinds' or `types'. On the other hand, vectorial representation can identify correct paraphrases when it is hard to directly associate phrases from NL to canonical forms; for example, it can make the NL `Where is made Kia car?' close to the canonical form `What city is Kia motors a headquarters of ?'.

Using those additional features, the semantic parser improves its ranker over LF candidates. When the system is tested on Webquestions dataset, it achieves an accuracy of 39.9%.

Smart Annotations

While annotation eorts can be reduced by replacing (NL, LF) pairs with (NL, A) pairs, annotation of LFs can itself be reduced as noted by [Wang et al., 2015].

Instead of asking experts to annotate LFs for a given NL, the annotation process proposed by [Wang et al., 2015] begins with LFs and is illustrated in The annotation process proposed by [Wang et al., 2015].

be collected where NLs are the paraphrases. This process allows to reduce annotation eorts as creating paraphrases is arguably much easier than annotating LFs.

1.3.1.3 Using Free Texts [Reddy et al., 2014] propose an approach to build a semantic parser without QA pairs (thus requiring no annotation eort). The key insight is to represent natural language (NL) as semantic graphs whose topology shares commonalities with the interested knowledge base (KB) such as Freebase; then the problem is reduced to learn to match graphs (between semantic graphs and the KB query graph). We will rst explain how to represent NL into semantic graphs before going into graph matching algorithms. Fig. 1.21 illustrates the steps to convert a sentence (`Austin is the capital of Texas.') rst into a semantic graph then into a Freebase grounded query graph.

To represent a sentence into a semantic graph, authors propose to rst obtain the semantic parse of the sentence by parsing the sentence using a CCG. graphs may be produced from one semantic parse due to ambiguity.

42

At test time, a natural language query can be transformed into a graph representation (e.g. semantic graph Fig. 1.21(c)) using the above proposed techniques;

however, the graph needs to be further transformed to make the graph representing a KB query so that it can be executed on the KB. The authors propose to use denotations as weak supervision to learn this transformation.

To learn the transformation, the authors propose to rst overgenerate the possible KB graphs corresponding to the semantic graph. To be more precise, entity nodes in the semantic graph are mapped to KB entities through entity recognition 43 , type nodes are mapped to all the possible KB types consistent with the entity; for example, the type `capital' in Fig. 1.21(b) is mapped to types such as location.city, location.capital_city, book.book_subject, broadcast.genre etc; similarly an edge between two entities is mapped to all the edges linking the two entities in the KB.

Obviously, only one (or a few) KB graphs will be faithful representation(s) of the sentence.

To (ĝ, û) = argmax g,u φ(g, u, N L, KB) • θ

In the equation, u is the semantic graph and g is the transformed KB graph; φ(g, u, N L, KB) are prespecied features and θ are the parameters to be learned.

Features characterizing the transformation include alignment between types (e.g. φ type (capital, location.city) in Fig. 1.21) and edges (e.g. directed, lm.directed_by), lexical similarity which counts the number of stems shared by the semantic graph and the KB graph (i.e. directed and lm.directed_by has one stem overlap), etc.

The parameters θ over features are learned using the averaged structured perceptron algorithm [Collins, 2002].

The whole model is tested on the a subset of Webquestions dataset involving questions on business, lm and people; the system achieves an precision of 41.9%, a recall of 37.0% thus a F1 score of 39.3%. The system performs better than the system of [START_REF] Berant | Semantic parsing via paraphrasing[END_REF]] on this subset.

Reduce engineering eorts

Most semantic parsing systems we have discussed till this point requires signicant engineering eorts. In [Berant et al., 2013; Berant and Liang, 2014], feature engineering is required to specify the set of features for the log-linear ranker. In [START_REF] Reddy | [END_REF], the authors need to specify rules to transform the semantics of the sentence (obtained from a CCG parser) into a semantic graph; also, features have to be manually specied to learn the matching function between the semantic graphs and the KB graphs.

We will describe in this subsection several works trying to reduce the engineering eorts [Bordes et al., 2014a;[START_REF] Yih | [END_REF]. The idea is to use models that can learn the features and the classier at the same time thus avoid having to specify features manually. 1.3.2.1 Matching answer subgraphs [Bordes et al., 2014a] propose an approach to answer natural language questions with few handcrafted features. The main idea is to represent both the semantics of the question (q) and the answer (a) into real-valued vectors (also called embeddings) of the same dimension and then learn a scoring function (i.e the dot product of the two vectors) between them. As we shall see that one can use the question or the answer directly to map them to the embedding space, the approach avoids manually specifying features (for the question or for the answer). Then embeddings of both the question and the answer subgraph are calculated.

Let N W denote the total number of words and N S the total number of entities and relations; with N = N W + N S , W is a matrix of R k×N and each column of W 44 Recall that the answers for the questions in Webquestions are either an entity or a value or a list of entities.

45 When several entities can be extracted, the entity with most connections in the KB is chosen.

46 To limit the search space at prediction time, the path involves only one or two predicates (1 predicate married_to in Fig. 1.23) 1.3. New Challenges corresponds to the embedding of either a word or a KB element (i.e. a relation or an entity) of dimension k where we force the norm L 2 of each embedding to be no more than 1. The question is rst mapped into a sparse vector φ(q) ∈ N N indicating the number of times each word appearing in the question; then the embedding of the question f (q) is calculated as W φ(q). Similarly, the subgraph representing the answer is mapped into another sparse vector ψ(a) ∈ N N indicating the number of times each KB element (an entity or a relation) appearing in the subgraph and the embedding of the answer subgraph g(a) is calculated as W ψ(a). The scoring function between the question and the answer subgraph S(q, a) is dened as the dot product between the two embeddings: S(q, a) = f (q) • g(a).

To learn the model (the embedding matrix W ), the authors propose to minimize a margin based loss. Let D = {(q i , a i ), i = 1, 2, . . . , |D|} be the training set of questions (q i ) paired with their answer subgraph (a i ). The loss to minimize is:

|D| i=1 ā∈ Ā(a i ) max{0, m -S(q i , a i ) + S(q i , ā)}
where m is the margin (xed to 0.1). ā is an incorrect answer subgraph sampled from Ā(a i ) the set of incorrect subgraphs for a i . The ā is sampled either by changing the candidate path (i.e. the path from the extracted entity in the question to the candidate entity in a i ) to point to another entity or directly changing the entity answer to another entity randomly generated. Optimization is accomplished via stochastic gradient descent. At test time, beam search is used to generate answer subgraphs that are ranked using the embedding model; the answer subgraph with the maximum score is returned.

Learning W (N × k parameters to learn) requires a lot of data and Webquestions alone is not enough. The authors propose to both use the KB and other resources (e.g Clueweb09) to generate question answer pairs using templates. For example, Freebase contains triples in the form of (entity1, type1.type2.predicate, entity2);

given the triple (barack_obama, person.country.nationality, united_states) and the template `what is the predicate of the type1 entity1 ?', one can generate a question answer pair (`what is the nationality of barack obama ?', united states).

The system is tested on Webquestions achieving a F1 score 39.2 (compared to 39.9 in [START_REF] Berant | Semantic parsing via paraphrasing[END_REF]).

Remark The main problem with the approach [Bordes et al., 2014a] is that the subgraph representing the answer does not necessarily match with the semantics of the question; notably, some semantics in the question will be missing from the subgraph. Consider the question `Who rst voiced Meg on Family Guy?' whose Freebase graph representation is shown in Fig. 1.24. The answer subgraph according to [Bordes et al., 2014a] will only contain an instantiation of the `core chain' F amily Guy cast --→ y actor ---→ x and the entities directly linked to x where x is instantiated with a certain entity; the entity Meg Grin and the constraint argmin indicated by `Meg' and `rst' respectively in the sentence will be omitted in the subgraph representation (if the entity Meg Grin is not connected with the instantiated entity x). The mismatch between the semantics actually expressed and the KB subgraph gives an unwanted bias to the system that can harm the performance.

Matching sentence semantic subgraphs

In [START_REF] Yih | [END_REF], contrary to [Bordes et al., 2014a], the KB graph represents reliably the semantics of the sentence (e.g. the Freebase graph representation of the sentence `Who rst voiced Meg on Family Guy?' is the one shown in Fig. 1.24), which is similar to [Reddy et al., 2014]. However, instead of constructing the graph from the semantics produced by a CCG parser like [Reddy et al., 2014], the authors propose to directly look for the KB subgraph which maps best to the sentence, in a spirit similar to [Bordes et al., 2014a].

The KB subgraph searching procedure in [Yih et al., 2015] consists of 3 stages as shown in Fig. 1.25. First, an entity is identied in the natural language question using an entity recognizer designed for short and noisy text [START_REF][END_REF].

The 10 top ranked entities are kept for later search stages together with their entity linking score. On the left of Fig. 1.25 shows the KB graph expanding from an empty graph to a graph with one entity node during the rst stage.

The second stage identies the `core chain' which is a chain graph starting from Figure 1.25: The subgraph search procedure for mapping a natural language question into a KB subgraph in [START_REF] Yih | [END_REF].

the identied entity node to the entity node being queried. To limit the search space, like [Bordes et al., 2014a], the `core chain' is limited to contain no more than two predicates. The middle of Fig. 1.25 shows the KB graph expanding from the entity node `Family Guy' to graphs containing a core chain. Note that as the entity node is given from the previous stage, only legitimate predicates are searched in this stage, similar to the subgraph construction procedure in [Bordes et al., 2014a] or λ -DCS tree construction procedure in [Berant et al., 2013].

To select the best `core chains' (i.e identifying the best sequences of predicates), the authors propose to use a CNN architecture to map both the natural language question and the `core chain' to an embedding space before calculating a matching score between the two embeddings. The CNN architecture is shown in Fig. 1.26 and applies to both the questions and the `core chains'. First, words are represented as a sparse vector of letter-trigrams (x t → f t ). Then convolutions are used to project the words (represented by vectors of letter-trigrams) to a local feature vector (f t → h t ), followed by max pooling operation extracting the most salient local features to form a global feature vector v. v is passed to an MLP (multilayer perceptron) to nally obtain the semantic feature y for either the question or the sequence of predicates.

Once the core chain is constructed, some constraints need to be added so that the subgraph reects the whole semantics of the sentence and executes to a correct answer. The authors propose to add constraints using simple rules. For example, the argmin/argmax constraints are triggered if the sentence contains words such as `rst', `latest'.

As several candidates are kept at each stage, many subgraphs are produced after the three stages; a log-linear ranker with features is used to choose the best KB subgraph. To train the ranker and the CNN identifying the core chain, the authors propose to rst nd the correct KB subgraphs for each question (which is found to be feasible over Webquesions) and then use these subgraphs as supervised signals for training. The whole system with three stages of search and the ranker is tested on Webquestions and achieves a F1 score 52.5, the best of all the systems we have reviewed so far.

Remark Both [Bordes et al., 2014a] and [Yih et al., 2015] learn embeddings of sentences and KB subgraphs for their QA systems with dierent choices on architectures. [Bordes et al., 2014a] learn the embedding of the sentence (or the subgraph) based on the bags of words representation; [Yih et al., 2015] learn the embedding based on letter-trigrams representation. The later one is more robust to spelling errors. The architecture of [Yih et al., 2015] is also more deep with convolution and max-pooling layers, possibly capturing more appropriate features to learn the scoring function between the question and the KB subgraph.

In the later chapters (chapter 5,6), we will discuss our works amongst others on constructing semantic parsers using Recurrent Neural Networks (RNNs). We (and probably other authors) are inspired by the work [Sutskever et al., 2014] in the eld of machine translation where the authors propose to use RNNs to map a sentence in the source language to a sentence in the target language. Some descriptions and use cases of RNNs are discussed inside this thesis in Chapter 3 about neural networks. 

Automata and Context-Free Grammars

In this section, we introduce the notions of nite state automata (FSA), context free grammars (CFG), and their weighted versions (WFSA,WCFG). These core concepts will be used in later chapters. The operations over these objects (notably intersections) together with the associated algorithms will be described in the next section.

Denition 2.1. A weighted nite state automaton (WFSA) is represented formally by a 6-tuple (Q, Σ, δ, i, f, ν), where: Q is a nite set of states, Σ is a nite set of symbols, called the alphabet of the automaton,

δ is the transition function, δ : Q × Σ → Q,
i is the start state (i ∈ Q), the state of the automaton before any input has been processed,

f is a set of states of Q (f ⊂ Q) called nal states,
ν is the weight function, ν : δ → K where K is a semiring.

Semirings used in NLP applications include boolean semirings, log semirings and tropical semirings. See Fig. 2.1 for some of their properties. We refer interested readers to [START_REF] Mohri | Weighted Automata Algorithms[END_REF] for detailed descriptions. WFSAs over boolean semirings instances of a, it will receive a weight of δ k which is much smaller than 1. So this automaton concisely expresses the belief that a sequence is unlikely to contain a instances. In this thesis, we use automata to express beliefs that we have over LFs in semantic parsing.

Denition 2.2. A weighted context free grammar (WCFG) is dened by the 5-tuple G = (V, Σ, R, S, µ) where:

V is a nite set; each element v ∈ V is called a nonterminal (sometimes also called syntactic category).

Σ is a nite set of terminals, disjoint from V , which make up the actual content of a sentence. The set of terminals is the alphabet of the language dened by the grammar G. R is a nite relation, R ⊆ V × (V ∪ Σ) * , where the asterisk represents the Kleene star operation. The members of R are called the rules or productions of the grammar. S is the start symbol, used to represent the whole sentence. It must be an element of V . µ is the weight function, µ : R → K where K is a semiring.

Non-weighted CFGs have equivalent representations as WCFGs over boolean semirings. In the thesis, we use WCFGs over both boolean semirings and probability semirings.

A WCFG provides a simple and mathematically precise mechanism for describing the methods by which sentences are built from smaller components, capturing the compositional structure of sentences. As an example, consider the following WCFG containing four rules dening arithmetic expressions with weights specied after `:':

(1) E → E + E : 0.8

(2) E → E * E : 0.9

(3) E → ( E ) : 1

(4) E → id : 1

Here, The only nonterminal is E (which is also the start symbol), the terminals are +, * , (, ) and id. Using this grammar, we can obtain complex arithmetic expresssions such as (id + id) * id.

We can consider a derivation tree (DT) that transforms the start symbol into this sentence. For each derivation tree (DT), the root is a rule identier associated with the start symbol, all internal nodes are labelled also with rule identiers 47 and all leaves are labelled with terminals. For example, Fig. 2.3 shows the derivation tree that generates the arithmetic expression (id + id) * id.

One can also associate a derivation sequence (DS) with the sentence which is a se- that if we construct a sequence of rules using the leftmost traversal of a derivation tree, we obtain a DS. For example, the leftmost traversal of the tree in Fig. 2.3 corresponds to the derivation sequence: (2),( 3),( 1),( 4),( 4),( 4). The weight associated to this DS/DT is the multiplication of the weights for each rule: 0.9*1*0.8*1*1*1=0.72.

One can note that this simple WCFG always guarantees a balanced parenthesis as the application of rule (3) implies that parentheses always come in pairs, something that one cannot guarantee using a WFSA. In fact, WCFGs are strictly more powerful than WFSAs and a proof for non weighted version (with CFG and FSA) can be found in [START_REF] Hopcroft | [END_REF].

Intersection between a WCFG and WFSA(s)

We will describe an intersection algorithm between WFSA(s) and WCFG in this section. Two elements motivate us for introducing the algorithm. Firstly, such algorithms are `historically' important for many computational linguistic tasks (i.e. syntactic parsing, hierarchical machine translation [Chiang, 2005]). Secondly, the symbolic models (i.e. based on WFSA(s) and WCFG) possess important `modularity properties' which is a consequence of having ecient intersection algorithms and those properties are typically missing for recently more popular deep learning models.

Historical importance Intersection algorithms are closely linked to the problem of syntactic parsing as noted by [START_REF] Billot | The structure of shared forests in ambiguous parsing[END_REF][START_REF] Nederhof | [END_REF].

One can formally see the problem of syntactic parsing as intersection between a CFG and a `sentence FSA'. 48 Furthermore, to model the preference amongst all the possible parses according to the grammar, one needs to weight the FSA and the CFG thus formally intersects a WFSA with a WCFG.

Intersection algorithms also play an important role in hierarchical machine translation [Chiang, 2005]. Under these translation models, a weighted SCFG (synchronous CFG) is used to translate a source sentence into a target sentence. At decoding time, given a source sentence, all possible target sentences according to the SCFG form a WCFG. To choose the target sentence among all these possibilities, one typically takes into account a language model by intersecting the WCFG with the language model. As language models are often WFSAs (i.e. n-grams models), the intersection operation is formally intersecting a WCFG and a WFSA as noted by [Aziz et al., 2014].

Modularity properties The use of intersection algorithms permits a modular design. For example, suppose one needs to produce a model producing sentences taking into account several constraints (i.e word coming from a dictionary, sentence being grammatically correct, etc.). Instead of building one single model at from scratch, one can build much `smaller models' each taking into account one type of constraints, which is arguably much easier; however, to solve the original task, one has the problem of combining these `smaller models' through intersection, so this modular design is feasible as long as ecient intersection algorithms exist between those `smaller models'.

One should remark that it is non trivial to ensure the existence of an ecient intersection algorithm between models and this property is indeed missing for many learning devices. For example, one could try to implement the `smaller models' above using neural networks instead of symbolic models. However, there are no obvious ways to combine (intersect) the neural networks to form a new model taking into account all the constraints. 49

Intersecting a WFSA with a WCFG

Intersection between an FSA and a CFG is a CFG. The proof [Bar-Hillel et al., 1961] relies on the construction of a CFG which represents the intersection. The 48 The sentence FSA is a linear automaton having the initial state as the start of the sentence; at each word it transits from one state to the next one till the end of the sentence, corresponding to the nal state.

49 To combine neural networks, some researchers have proposed to approximate them using nite state machines (WFSAs) [Deoras et al., 2011].

in which α has already been handled 54 and β is expected. As we apply a dynamic programming procedure (very similar to syntactic parsing) for the intersection, the dot notation helps to record the current state for the rules (i.e. rules in the items I and the agenda A in Fig. 2.4); in particular, it helps to distinguish two states involving the same rule but that are not `handled' till the same position inside the rule. Thus, compared to the bottom up procedure in [START_REF] Nederhof | [END_REF], we incorporate the calculation of weights into our algorithm. Furthermore, our algorithm explicitly outputs all the rules of the resulting WCFG (i.e R ∩ ).

We will rst give a high-level description of the algorithm in Fig. 2.4. In this description, we will not make any distinction between elements in I and elements in A; the distinction is only necessary at a later stage of the description.

Note that as in our previous algorithm, all the rules in the new grammar R ∩ are generated by `indexing' rules in the original grammar R. 55 The dierence is that now the algorithm will choose indexes that correspond to generating rules. To do this, at the intial state, we have all the rules with the dot at the beginning of each right-hand side. Then the algorithm advances by producing new dotted rules (i.e by advancing the dots) at each iteration from the current dotted rules and the nonterminals that are known to be generating (i.e N in Fig. 2.4); the algorithm stops when no more dotted rules can be further deduced from all the current dotted rules and the generating nonterminals. When the algorithm stops, R ∩ will consist of the set of all the rules with the dot situated at the end (or we can collect them during each iteration as in our algorithm). Now, let's consider how to produce new dotted rules from current dotted rules and generating nonterminals. There are two ways:

• Given a dotted rule (r, A w -→ α•Xγ, s) and knowing that (s, X, t) is a generating nonterminal, one can produce a new dotted rule by advancing the dot: (r, A w -→ α(s, X, t) • γ, t). This is shown in lines 22-25 in Fig. 2.4.

• Given a dotted rule where the dot is at the end of the rule (r, A w -→ α•, s), one can add the nonterminal (r, A, s) into the set of generating nonterminals N by 54 `Handled' in the sense that all the nonterminals involved in α will be generating. 55 Exceptions are the rules expanding the nonterminals in the form (s, a, t) where a is a terminal.

These rules are generated by examing the transitions in the automata; as they are all generating by construction, we simply add them in our algorithm in Fig. 2.4 (line 10-12). will further help to produce new dotted rules by advancing the dot.

To summarize this high-level description, to calculate the intersection between a WFSA M and a WCFG G, one uses two ways described above to generate exhaustively all the new dotted rules from the original rules dotted at the beginning and the initial generating nonterminals (lines 10-12); after the exhaustive generation, the rules of the new grammar consist of the dotted rules with the dot at the end.

Now to actually implement this idea, one needs to specify an order of generating new dotted rules through a loop (lines 13-16). 56 The dotted rules are now distin- guished by either belonging to the items I or to the agenda A. I are the passive dotted rules as at the beginning of each iteration, no more dotted rules can be further deduced from {N, I} they are all in {N, I, A}; on the contrary, A are the active dotted rules that may generate new dotted rules with current {N, I}.

With this distinction, at each iteration, we pop out an element from A and obtain either a dotted rule or a generating nonterminal and add it to the corresponding groups (i.e N or I); then new dotted rules are produced from the updated {N, I} and are added into A guaranteeing that all the dotted rules that can be deduced from the current {N, I} are always in {N, I, A} after each iteration ; this invariance in particular guarantees that all the dotted rules will have been produced when the loop is nished 57 (i.e. when no more elements can be popped from A).

The main loop of generating dotted rules is shown in lines 13-16 in Fig. 2.4; after popping an element from A, it calls the procedure add_item which rst either adds a nonterminal in N (i.e β = ) or adds a dotted rule in I (i.e. β = Xγ). In both cases, new dotted rules will be generated from the updated {N, I} and will be added into A. During the loop, a rule is added into R ∩ (line 21) only when the nonterminal on its LHS is known to be generating.

The way that our algorithm handles weights is very similar to [START_REF] Nederhof | [END_REF]], as we have described at the beginning of this subsection. For rules that are generated by indexing the rules in the original grammar (lines 36-37), their weights remain unchanged; for rules that are added by inspecting the transition in the automata (lines 33-34), their weights are the weights for the associated transition.

56 Specifying the generation order can avoid in particular performing the same operations several times.

57 Dotted rules (r, A w -→ α • β, t) are created from the rules in the original grammar (A w -→ αβ) by choosing r, t and the insertion place of the dot. As the number of choices for r, t and the insertion place are all nite, the number of all possible dotted rules is nite, which guarantees that the loop nishes. 

Multilayer Perceptrons

The Multilayer Perceptron model

A Multilayer Perceptron (MLP) is a neural network that can map an input vector x to an output vector y through a cascade of non-linear functions f i giving the following equation between the input and the output:

y = f n (f n-1 . . . f 1 (x)).
Given an input vector z ∈ R m 1 , all the functions f i in the MLP take a particular form: f i (z) = g i (W i (z)). 59 W i ∈ R m 2 ×m 1 is a matrix transforming the m 1 dimensional real-valued vector z into another m 2 dimensional real-valued vector and g i is a nonlinear dierentiable function applied to the m 2 dimensional real-valued output vector. Some popular choices of g i for the intermediate layers (f 1 , f 2 , . . . , f n-1 ) are elementwise sigmoid/tanh/relu. 60 Note that in neural network terminology, we refer to the function f i as the ith layer and say that the ith layer outputs a vector of dimension m 2 ; we refer to the number of layers in the neural network as its depth.

When the MLPs are used for multiclass classication, the g n of the last layer is generally a softmax function:

g n (z) j = e z j K k=1 e z k
where z is the real-valued output vector of the last layer (z j denotes the value of the jth coordinate in z) and K is its dimension.

MLPs possess some mathematical properties that may be related to their good performance in dierent machine learning tasks. One of the properties is being `universal approximators', given by the universal approximation theorem. The theorem states that an MLP can approximate any continuous function on a compact set of R n given enough neurons (i.e vector size of hidden layers). [Cybenko, 1989] proved a rst version of the theorem for sigmoid activation functions; the particular choice of sigmoids was generalized later to a wider range of activation functions [Hornik, 1991]. 61

The theorem shows that the MLPs are expressive models. However, it does not address the question of nding parameters such that the MLP approximates well a given continuous function.

Learning through BackPropagation

Now that we have specied and parametrized our model as MLPs, we discuss the learning procedure to choose parameters. In MLPs, the parameters to learn are the weight matrices W i for each layer. We suppose that we are in a supervised setting 59 More precisely, fi(z) = gi(Wi(z) + bi) where bi is referred as the bias term; as one can always extend Wn and x to integrate the bias, we omit it through the chapter for clarity.

60 The relu operator is not dierentiable at 0; however, all the presentations in this chapter can be easily adapted to the cases where the operator is dierentiable almost everywhere instead of being dierentiable. For clarity, we only discuss about dierentiable cases.

61 As both proofs only need to assume one single hidden layer for the MLPs to provide universal approximators, no advantages are shown here for having multiple hidden layers. We do not know of any formal proofs but there are many empirical results and intuitions [Bengio, 2009] related to the advantage of using `deep' neural networks.

where an x in the training data is annotated with its correct one-hot vector y 62 for the true label; we use softmax as the non-linear transformation for the last layer so that our neural network outputs a probability distribution over all the labels.

Before starting the learning procedure, we need to specify our loss function. A loss function for us is a non-negative function f (y, y ) which reects our belief about good models; y is the one-hot vector for the true label and y is our MLP output.

As our MLP predicts a probability distribution y on each input data x, the typical loss that we use is the cross-entropy loss: f (y, y ) = -y , log y =i y i log y i where index i iterates through the coordinates of y and y ; the cross entropy loss is minimized when y equals to y and intuitively the loss is smaller when y is closer to y . During our training procedure (i.e learning of parameters), we will tune our parameters to minimize the loss over the training data in the hope that the model may perform well on unseen test data.

To minimize the loss function, rst note that if it is dierentiable on the MLP output y, 63 then it is also dierentiable on all the parameters of the neural network (weight matrices W i of each layer) as the output vectors of each layer are dierentiable over their corresponding weight matrices and composition over dierentiable functions is dierentiable.

As the MLP parameters are all dierentiable for the loss function, a natural idea to minimize the loss function is to apply gradient descent algorithm (or its stochastic version) iteratively [START_REF] Bottou | Large-scale machine learning with stochastic gradient descent[END_REF].

As all the gradients are well dened, one can simply calculate each of them independently at every iteration. However, we shall see that many calculations are redundant and BackPropagation (BP) is an especially ecient algorithm to calculate the gradients of all the parameters of the model by exploiting this redundancy. We will use a slightly abusive notation dv du to denote derivatives, gradients or jacobians depending on the dimensions of v and u. For example, d(f (y,y )) dW i is a gradient vector containing all the partial derivatives of the form r,c] where W i [r, c] is the element in row r and column c of W i ; dy dW i is a jacobian matrix whose column j is the gradient of coordinate y j over W i :

∂(f (y,y )) ∂W i [
dy j dW i .
To illustrate BP, suppose that we have an MLP of depth n. Let's note the intermediate output vector after the input x to be y 1 , the output vector after y 1 to be y 2 , ..., and y n = y (i.e. we note f 1 (x) = y 1 , f 2 (f 1 (x)) = y 2 , etc.) Then, one can 62 The one-hot vector y for the true label is a vector lled with a 1 for the true label and 0s for the other labels.

63 This is the case for the cross-entropy loss, the log loss and many other losses used in machine learning. expand the gradients of W i according to the chain rule: d(f (y,y )) is needed to calculate the gradient on W i+1 as d(f (y,y )) d(W i+1 ) = d(f (y,y ))

d(W i ) = d(f (y,y )) dy i dy i d(W i ) .
dy i+1 dy i+1 d(W i+1 ) .
Thus, to save computation time to calculate the gradients on layer i, one can use the quantity d(f (y,y )) dy i+1 calculated at the layer i + 1.

This idea gives the BP algorithm where one starts by calculating the gradient on the output (y n ) of last layer, then descends layer by layer to calculate the gradients on the output vectors (y i ) at each layer, each time using the calculation performed by the previous step; once the gradient over an output vector (y i ) is calculated, it can be used to calculate the gradient over the parameters (W i ) of that layer.

Remark One can also think of algorithms exploiting the calculation redundancy by using `forward propagation'. The fact that backpropagation is used when training MLPs for label predictions is because the dimension of f (y, y

) (which is 1) is much smaller than the dimension of W i ∈ R m 2 ×m 1 (which is m 2 × m 1 ).
In this case, it can be shown that backpropagation is more ecient than forward propagation [Baydin et al., 2015].

Recurrent Neural Networks

Recurrent Neural Network model

To introduce recurrent neural networks (RNNs), let's consider the task of language modeling. A language model assigns a probability distribution P over all sequences of words (i.e sentences) w 1 , . . . , w m .

To estimate the distribution P , a natural way to tackle the problem is to use the Markov assumption. More precisely, for all words w i in the sentence w 1 , . . . , w m , we suppose that P (w i |w 1 , . . . , w i-1 ) = P (w i |w i-n , . . . , w i-1 ); in other words, the probability of the current word depends only on the n previous words which we call the `n-gram prex', an assumption that underlies the traditional n-gram models.

However, natural languages often exhibit long range dependencies over the words, which motivates the construction of a model being able to handle a long prex (i.e a `large n-gram prex'); traditional n-gram models cannot handle large n well due to data sparsity: larger n implies less data to estimate the conditional probabilities.

For example, suppose that we have a language of vocabulary size |V |. RNNs are models that can in theory handle a prex of any length without suffering such data sparsity problems; the main idea is to use parameter sharing to pass both long range and short range information. In particular, RNNs do not use additional parameters for handling long prexes inside the model; the number of parameters to estimate for an RNN no more depends on its specied prex length.

Parameter sharing implies that when an RNN traverses a prex, at each word (or each step) it produces another state (hidden vector) using the same function (i.e f in the following equation) applying to the current word and the current state, giving the following recurrence over states:

h t = f (h t-1 , x t , θ),
where h t is the state (hidden vector) at time t; x t is the input (input word w t in our language modeling example) received at time t and θ denotes the parameters of our RNN.

To further specify the model, the following equation provides a simple parametrization for the function f :

h t = tanh(W h t-1 + U x t ).
The above parametrization uses an input-to-hidden weight matrix U and a hiddento-hidden weight matrix W .

To make the RNN capable of predicting a sequence of discrete words, one can add a hidden-to-output weight matrix V and then use the softmax function to predict a probability distribution over all the vocabulary ŷt = sof tmax(V h t ) 64 . Fig. 3.1 illustrates this RNN architecture.

The recurrence in RNNs gives the model the theoretical power of being universal in the sense that any function computable by a Turing machine can be computed by such a recurrent neural network of a nite size. The proof [Siegelmann and Sontag, 1991] relies on using a theoretical RNN to simulate an unbounded stack 64 Note the dierence between ŷt and y t : ŷt is the output of the RNN while y t in Fig. 3.1 is the target value at t. by representing its activations and weights with rational numbers of unbounded precision. In practice, implementations use oating-point representations of limited precision and therefore are not Turing-complete.

Language modeling application

We can now describe how to use a trained RNN to generate texts with a probability score. For the input at each step i, we let x i = ỹi-1 65 in this case where ỹi-1 is sampled from the distribution ŷi-1 cal- culated by the RNN. At time t, the model calculates a hidden state h t based on the prex ỹ1 , . . . , ỹt-1 it has generated itself;66 the predicted probability distribu- tion for the current word at step t can then be calculated using the hidden state h t : ŷt = sof tmax(V h t ) according to our model. One can sample from this distribution to choose a word ỹt and continue generating texts using the same mechanism. When a sentence is nished generating, the associated score is the product of the sampling probabilities ỹi for all i in the sentence.

65 The beginning of the text x1 can also be handled by the same RNN but need some special treatment [START_REF] Goodfellow | [END_REF]. [Goodfellow et al., 2016].

Other NLP tasks as conditional language modeling Many NLP tasks can be seen as generating text based on some conditions. For example, machine translation can be seen as generating a text in the target language based on a sentence in the source language; natural language generation can be seen as generating a target text based on some meaning representation. We describe in this paragraph how to use one particular RNN architecture to generate a text based on some condition.

Our architecture supposes rst that the condition is modeled by a real-valued vector c. One can then integrate c into the recurrence model:

h t = f (h t-1 , x t , c, θ).
Fig. 3.2 illustrates the architecture; the interaction between the input vector c and each hidden unit vector h t is parametrized by a newly introduced weight matrix R that was absent from our previous model. The product Rc is added as an additional input to the hidden units at every time step allowing the RNN to take into account the condition information. The following equation shows a parametrization of the model:

h t = tanh(W h t-1 + U x t + Rc).

Training for RNNs

We now discuss the training (learning of parameters) for RNNs. For a guiding example, we will use the RNN architecture shown in Fig. 3.1 to address the language modeling task; other `conditional language modeling' tasks can be trained using similar algorithms. Given a sentence w 1 , . . . , w m , we have according to the probability chain rule:

P (w 1 , . . . , w m ) = m i=1 P (w i |w 1 , . . . , w i-1 ),
which decomposes the probability over sequences into a product of probabilities over words (or equivalently, sum of probabilities in log). Using this decomposition, instead of minimizing the loss over the whole sequence, one can minimize the loss over the prediction of each word. More precisely, for each step i, our model takes as input the prex y 1 , . . . , y i-1 given in the training corpus and tries to predict the target word y i . 67

The prediction of each word is then a multiclass classication task that we have discussed in the section about MLPs; similar to MLPs, the training over RNN parameters also uses the idea of BackPropagation (BP) with some modications. To calculate the gradient of parameters for the loss, one can unfold n times the RNN the way we show on the right of Fig. 3.1. 68 After the unfolding procedure, the RNN looks exactly like an MLP of n+1 layers with the dierence that 1) each layer receives an extra input word (i.e. w i 's ) 69 2) RNN parameters (e.g the hidden layer transition function parameters W ) are shared across all layers. To tackle the problem of shared parameters, one needs to apply a generalized BP (see section 6.5.6 in [START_REF] Goodfellow | [END_REF]) to the MLP unfolded from the RNN .

The BP algorithm for training RNNs is commonly called BPTT for BackPropagation Through Time as the algorithm involves unfolding the RNN by several previous steps and calculating the gradients over those steps.

67 When minimizing loss over words, the model always gets a `correct' prex y 1 , . . . , y 68 n can be regarded as a hyperparameter of the model specifying the number of steps back in RNN that one wants to apply Backpropagation.

69 One can note that the extra input does not complicate the gradient calculation.

Recurrent Neural Network Variants

Vanishing/exploding gradient problems

The RNNs are designed to be expressive models that are able to model long range dependencies. However, a problem of exploding or vanishing gradients [Hochreiter, 1991] appears when using BPTT to train RNNs. More precisely, when a gradient backpropagates to the nth previous layer through unfolding and when n is large enough, the norm of the gradient can be either too big (exploding) or too small (vanishing); the exploding gradients will harm the model performance by actually ignoring previous training steps and the vanishing gradients imply that the model does not take into account long range dependencies during training. In this subsection, we will briey describe the problem.

If we ignore the tanh activation function in the equation h t = tanh(W h t-1 +U x t ),

the recurrence between the hidden states resembles matrix multiplication (h t = W h t-1 ) with some `input perturbations'. Suppose that the matrix W admits an eigendecomposition, so W = QΣQ -1 where Σ is a diagonal matrix lled with eigenvalues and Q is invertible. Then running the RNN n steps gives:

h n = QΣ n Q -1 h 0 .
For the eigenvalues larger than 1, the power of n will make those values explode; in these circumstances, any change of h 0 in the direction given by the associated eigenvector will be much amplied in h n , giving an exploding gradient. On the other hand, for eigenvalues smaller than 1, any change of h 0 in the corresponding eigenvector direction will only cause a small change on h n , giving a vanishing gradient. Now let's examine the eect of adding a non-linear function such as tanh after each matrix application W . The gradient of tanh is bounded by 1 and goes to zero at innity. In fact, the gradient goes to zero quickly and the norm is less than 0.5 in the interval [-∞, 1] and the interval [1, ∞]. Thus, adding this non-linearity will decrease (sometimes signicantly) the gradient norm compared to the simplied case discussed above. As a consequence, the gradient backpropagated over a long range is now more likely to vanish than to explode after adding the non-linearity application.

Leaky units

There are several ways to make changes over the simple RNN model in Fig. 3.1 to take into account long range dependencies (by making sure that the gradient is able to backpropagate through a long range). Section 10.9 in [Goodfellow et al., 2016] gives a review of methods proposed in the literature. We here focus on one particular solution: Leaky units ; introducing leaky units helps us gain some insights on more complex RNN design such as LSTM (Long Short Term Memory) [START_REF] Hochreiter | [END_REF]] that we will discuss later in this section.

Suppose that apart from the recurrence on hidden states, we have another state c called memory state (or leaky unit) which also obeys some recurrence:

c t = αc t-1 + (1 -α)v t ,
where the parameter α is between 0 and xed prior to training, and v is some extra input. In the above equation, when α is near one, the current memory state will be inuenced by another memory state from many previous steps back, and we say that the memory state remembers information from the past for a long time; on the other hand, when α is near 0, the information from the past is rapidly discarded. [START_REF] Mozer | [END_REF] were the rst to the best of our knowledge to propose the above memory state and integrate it into an RNN where one replaces v by the hidden state of an RNN:

c t = αc t-1 + (1 -α)h t h t = tanh(W h t-1 + U x t ).
At test time, c can used for predictions of sequences. One notices that c t is modeled as a compromise between c t-1 and h: on the one hand, when α is near 1, information can be kept through many steps in the memory state c, which is useful when the current prediction depends on the long range information; on the other hand, when α is near 0, more `recent' information in h is used for predictions. [Mozer, 1992] shows that with well chosen α, the proposed architecture is able to better capture long range information compared to an RNN without memory states.

Some remarks on LSTMs

Leaky units allow an RNN to accumulate information (such as evidence for a particular feature) over a long range. However, once that information has been used, it might be also useful for the RNN to forget that information. For example, if a sequence is made of independent subsequences, then we may want to accumulate evidence inside each subsequence but forget the evidence at the end of each subsequence; if we choose to implement this mechanism with an RNN with leaky units, it means that we want to make α be near 1 inside each subsequence, but almost drop to near 0 when the RNN begins processing another subsequence. LSTMs [START_REF] Hochreiter | [END_REF] are RNNs that incorporate the idea of using memory cells that adapt the coecient α according to the context. Below are the equations that describe an LSTM:

f t = σ(W f x t + U f h t-1 ) i t = σ(W i x t + U i h t-1 ) o t = σ(W o x t + U o h t-1 ) c t = f t • c t-1 + i t • tanh(W c x t + U c h t-1 ) h t = o t • tanh(c t )
In the equations above, σ is the sigmoid function which is applied to its input in an elementwise way; • stands for elementwise multiplication; as in other sections of the chapter, we omit the bias term in the equations for clarity. x 1 , . . . , x n is the input sequence; the LSTM outputs a sequence of hidden vectors h 1 , . . . ,

h n . W f , W i , W o , W c , U f , U i , U o , U c are parameter matrices to be learned.
The f t , i t , o t , varying between 0 and 1, are called forget gate, input gate and output gate respectively. These gates control the information owing into the memory state (c t ) and output state (h t ). For example, the update on the memory state c t is written as

c t = f t • c t-1 + i t • tanh(W c x t + U c h t-1
) where the update is inuenced by the forget gate f t and the input gate i t . When f t is near 1, most of the information in the previous memory state c t-1 will be copied to c t ; when f t is near 0, the information in c t-1 will be mostly forgot. Similarly, when i t is near 1, the recent information (captured by tanh(W c x t + U c h t-1 )) will be mostly copied contrary to the case where the information is mostly discarded with i t near 0.

One should also notice the similarity between the recurrence in c t and the leaky units. The forget gate f t plays the role of α in the leaky units to control the ow of long range information. As

f t = σ(W f x t + U f h t-1
) which is between 0 and 1 and depends on the input x t , the LSTM has the possibility to learn how to choose dierent values of f t depending on the input at dierent steps t.

The LSTMs have been shown to learn long-term dependencies more easily than the simple recurrent architectures and have been very successful in many NLP applications such as machine translation [Sutskever et al., 2014], natural language generation [Wen et al., 2015] and syntactic parsing [Vinyals et al., 2014], to name just a few. We will use LSTMs as an important component for our semantic parsing systems in the later chapters.

Part II Contributions dataset, the underlying semantics is very simple: just one single triple (e 1 , r, e 2 )

involving two entities (e 1 , e 2 ) and one relation (r). However, the task remains challenging due to the large variety of lexicalizations for the same semantics.

We follow the approach of Bordes et al. [2014b] which learns the embeddings of words and KB elements. They model the semantics of natural language sentences and KB triples as the sum of the embeddings of the associated words and KB elements respectively. Then a scoring function involving the sentence embedding and the triple embedding is learned so that for a given natural language sentence the correct triple achieves a high score. We are particularly interested in this approach as it is robust to syntax errors that impact the performance of more traditional semantic parsers. For example, [START_REF] Reddy | [END_REF] propose to use a CCG parser [START_REF] Clark | [END_REF] to construct their model and achieve good results; however, for the WebQuestions dataset [START_REF] Berant | [END_REF], the authors observe that 25% of the system failures are due to the fact that the sentence cannot be parsed by the CCG parser. The situation is worse for more simple grammars, [START_REF] Berant | [END_REF] manually write a grammar to parse the questions in the WebQuestions dataset, however, this simple grammar seems to be able to parse no more than half of the questions. 70

In our work, we push the results of Bordes et .al [2014b] further when relying only on the KB to create training data 71 . Our contribution is to introduce a new orthogonality regularizer which distinguishes entities from relations. We also investigate the tradeo captured by the orthogonality constraints. With a toy example in section 4.4, we show that if the predictions of entities and relations are independent of each other given the input question, orthogonal embeddings we propose allow to

better learn to answer of these questions.

The orthogonality constraint in the context of question answering is new, although it has been successfully used in other contexts such as topic modelling [START_REF] Yao | [END_REF]. Like [Bordes et al., 2014b], we use almost no linguistic features such as POS tagging, parsing, etc.

70 In their experiments, authors report that if they let the grammar generate the 200 most probable parses given a sentence (beam size), only in 40% cases one of the parse may correspond to a parse whose execution gives the correct answer. (oracle accuracy) 71 Bordes et .al [2014b] use predened templates to create (q, a) pairs from KB; we adopt the same procedure in this work.

The ReVerb Question Answering Task

The ReVerb question answering task was rst introduced in [Fader et al., 2013] as follows. Given a large RDF KB and a natural language (NL) question whose answer is given by a triple contained in that KB, the task is to nd a correct triple. For example, a correct answer to the NL question What is the main language in Hong Kong ? would be the KB triple (cantonese.e, be-major-language-in.r, hong-kong.e).

RDF triples are assertions of the form (e 1 , r, e 2 ) where r is a binary relation from some vocabulary R and e 1 , e 2 are entities from a vocabulary E.

The KB used is ReVerb 72 , a publicly available set of 15 million extractions [Fader et al., 2011] dened over a vocabulary of approximately 600K relations and 3M entities. The test set used for evaluation consists of 698 questions extracted from the website Wikianswers, many of which involve paraphrases.

Embedding model

Word embeddings are generally learned [Deerwester et al., 1990; Mikolov et al., 2013b; Lebret and Collobert, 2015; Faruqui et al., 2014] such that words with similar context will naturally share similar embeddings as measured for instance by cosine similarity. The context are often words that co-occur in some xed window with the word in question.

The word embeddings learned in [Bordes et al., 2014b] encode a dierent context (arguably more suited for QA tasks) which are all the triple-answers co-occurred with the word as we shall see in subsection 4.3.1. While those embeddings are probably better for QA tasks, we nd that they do not reect all the prior knowledge we have for the task. Notably the embeddings for elements in answer triples do not encode the information whether it is an entity or a relation. We propose in subsection 4.3.4 to incorporate those prior knowledge using a novel regularizer orthogonality regularizer which favors entity embeddings orthogonal to relation embeddings.

Scoring function

The model learns the embedding of each word and KB element by trying to score the correct answers highest. 73 Mathematically, let q be the query in natural language, and a be the answer-triple to align. Denote the total number of words as N w and 72 http://reverb.cs.washington.edu

73 The model and training/inference procedures are similar to [Bordes et al., 2014a] that we have discussed in Chapter 1 (1.3.2.1).

1. Sample a positive training pair (q i , a i ) from D. 2. Create a corrupted triple a i 3. If S(q i , a i ) -S(q i , a i ) < 0.1 : make a stochastic gradient ascent on S(q i , a i ) -S(q i , a i ) -λ|E.R| we denote the sparse representation on the KB side as ψ(a). Let M ∈ R d×Nw be the embedding matrix for words and K ∈ R d×N kb be the embedding matrix for the elements in the KB. d is the low dimension chosen by the user.

The embedding of the sentence is then calculated as M φ(q) and similarly the embedding of the answer-triple as K ψ(a). We can score the matching of these embeddings:

S(q, a) = (M φ(q)) (K ψ(a))
which is the dot product between the embedding of the sentence and the embedding of the triple. The model is introduced in [Bordes et al., 2014b] and we use the same scoring function. Note that the model actually sums up each word embedding to form the embedding of the sentence. 74

Inference

The inference procedure is straightforward. Given a question q and a set of possible answer triples noted A(q), the model predicts the answer by returning the triple with the highest score: a = argmax a∈A(q) S(q, a)

Training

Originally in [Bordes et al., 2014b], given a question to be answered, training is performed by imposing a margin-constraint between the correct answer and negative ones. More precisely, note a a negative answer to the question q (the correct answer to q being a). Then for each question answer pair, the system tries to maximize the following function by performing a gradient ascent step:

74 We can see here that each word will encode information from triple answers if we use a gradient- like algorithm to maximize the scoring function. In fact, the gradient received by each word for a certain (q, a) pair will be exactly K ψ(a).

min( , S(q, a) -S(q, a ))

with the margin set to 0.1. In addition, the norms of columns in M and K are constrained to be inferior to 1. The training is done in a stochastic way by randomly selecting a question answer pair at each step. For each gradient step, the step size is calculated using Adagrad [Duchi et al., 2011]. For a given (q, a) pair, the negative example is created by randomly replacing each element of (e 1 , r, e 2 ) by another one in the KB with probability 2/3.

Enforcing Orthogonal Embeddings

In this chapter, we are especially interested in the additional assumptions we can make on the model in order to cope with data sparsity. Indeed, when the number of training data supporting the computation of embeddings is small, embedding models are brittle and can lead to disappointing results. We noticed that one important assumption that is not discussed in the basic approach is that the embedding space is the same for relations and entities. That approach has a tendency to learn similar embeddings for entities and relations, even if they have dierent meanings. Intuitively, we would like to balance that tendency by a prior knowledge preference towards choosing embeddings of entities and relations which are orthogonal to each other.

To justify this assumption, consider a simple case where the underlying semantics is (e, r) as in the sentence John eats. We will use the same letters e and r to indicate both an entity or relation words and their corresponding embeddings. In [Bordes et al., 2014b], the embedding of the sentence semantics is then calculated as e + r for this very simple case. Now suppose that ∀e = e, ||e -e || 2 ≥ (i.e John is dierent from Mary with margin ) and that the same kind of constraints also holds for relations. However, even when these constraints are satised, it is not guaranteed that ||e+r-e -r || 2 ≥ , which means that the model may still get confused on the whole semantics even if each part is clear.

One obvious and linguistically plausible solution is to say that entities and relations lie in orthogonal spaces. Indeed, if relations and entities are orthogonal (∀r, e (r ⊥ e)), then if two entities e, e and two relations r, r are distinct (i.e., ||e -e || 2 2 ≥ and ||r -r

|| 2 2 ≥ ), it follows that ||e + r -e -r || 2 2 = ||e -e || 2 2 + |||r -r || 2
2 ≥ 2 by Pythagorean theorem. That is, two sentences involving distinct entities and/or relations will have dierent representations in the embedding space.

In real problems, however, posing a hard orthogonality constraint largely reduces the model's expressive power 75 , so we decide to add it as a regularizer. More concretely, let the correct triple be (e 1 , r, e 2 ) and the negative one be (e 1 , r , e 2 ).

Consider that we are in a case not satisfying the margin constraint, then we will try to maximize the following regularized function S(q, a) -S(q, a ) -λ|E.R| 

Experiments

Toy example

In this section, we illustrate the benets of orthogonality via a toy example. We construct a KB containing 50 entities (E) and 50 relations (R) then generate all their cross products obtaining 2500 fact pairs. In consequence the entities and relations are independent.

For every e i ∈ E, we suppose that there is a single word lexicalizing the entity noted e i . Similarly, we note the lexicalization of r j r j . We separate these 2500 pairs into training (2450) and test (50). Notice that similar to Wikianswers, this toy dataset involves KB entities and relations whose type is known a priori.

The training corpus is built using one simple generation rule : (e i , r j ) → e i r j .

Negative examples are created by replacing with probability 1/2 both entity and relation with another one. We embed all the words and KB symbols in a space of 20 dimensions. We compare the model [Bordes et al., 2014b] with the model where we enforce E and R (and also their lexicalizations E and R) to be orthogonal. This means that words or KB symbols in fact live in an embedding space of dimension 10.

At test time, for a given sentence e i r j , a set of (e, r) pairs is ranked and we compute the proportion of cases where the rst ranked pair is correct. where the number of pairs to be ranked is 1250 and another (Accuracy(2)) with 2500 pairs. 76 In both cases, imposing the orthogonality constraint improves performance by a large margin.

Wikianswers

Wikianswers contains a set of possible triples for each question and we re-rank these triples to report our system's performance. This is the re-ranking setting used in [Bordes et al., 2014b].

Table 4.2 shows that our technique improves the performance also on the larger, non-synthetic, Wikianswers dataset provided by [START_REF] Fader | [END_REF] over the Bordes [2014b]'s method.

77 In addition, Fig. 4.1 shows some examples where the two systems dier and where the orthogonality regularized embeddings seem to better support the identication of similar relations. For instance, is the argument on is mapped to support.r rather than be-type-of.r and is the religious celebration of to be-mostimportant-holiday.r rather then be-all-about.r.

4.5 Related Work [START_REF] Fader | [END_REF] present one of the rst approaches for dealing with open domain question answering. The idea is to use certain templates (e.g. `what is the r of e ?') where r is a relation and e is an entity lexicalized that will be by their KB mentions. A semantic parsing system can be constructed by mapping questions to these templates through exact string matching (e.g., `what is the population of China' 76 In Accuracy(1) conguration, we make sure that the correct answer is included.

77 The scores are taken from [Bordes et al., 2014b] for which we have reimplemented and conrmed the results.

Sentence: What is the argument on gun control ? Embedding: (short-gun.e be-type-of.r gun.e) Ortho_Embedding: (giuliani.e support.r gun-control.e)

Sentence: What year did minnesota become part of US ? Embedding: (minnesota.e become-state-on.r may-11-1858.e) Ortho_Embedding: (minnesota.e be-part-of.r united-states.e)

Sentence: What is the religious celebration of christians ? Embedding: (christian.e be-all-about.r original-sin.e) Ortho_Embedding: (easter.e be-most-important-holiday.r christian.e)

Sentence: What do cassava come from ? Embedding: (cassava.e be-source-of.r security.e) Ortho_Embedding: (cassava.e be-grow-in.r africa.e)

Figure 4.1: Some examples for which our system diers from [Bordes et al., 2014b]. Gold standard answer triples are marked in bold.

matches the above template lexicalized by the relation `population' and the entity `china'). However, the system will fail against minor changes of the above sentence (e.g. `what is the number of habitants in China') making it of high precision but of low recall.

To improve the recall, the authors propose to use a paraphrase corpus. The sentences that match exactly to lexicalized templates in the paraphrase corpus are treated as annotated together with their paraphrases. Then an alignment is learned between sentences matching the templates and their paraphrases to enlarge the initial lexicons that consist of KB mentions. Finally, using this lexicon, multiple KB queries can be derived from a NL question. These queries are then ranked using a log-linear scoring function. The proposed method quadruples the recall with only 8% loss in precision compared to the above exact string matching approach using templates. Bordes et al. [2014b] introduce a linguistically leaner IR-based approach which identies the KB triple most similar to the input NL question by learning triple embeddings and question embeddings. We notice that Bordes' [2014b] system performs relatively well (MAP score 0.34) on the Wikianswers dataset even without using the paraphrase corpus. This suggests that the embedding method successfully captures the similarity between NL questions and KB queries. Our work continues this direction by further separating relations with entities.

The idea of distinguishing entities and relations in question answering can also be found in [Yih et al., 2014]. However, their work supposes that we can rst cut the sentence into entity part and relation part, then calculate the matching score of each part. Our model does not need this cut and simply enforces the entity embeddings and relation embeddings (on the KB side) to be dierent.

More generally, our model proposes to incorporate KB information into embedding models. A popular approach along this line is `retrotting' word vectors [START_REF] Faruqui | [END_REF]] so that words with same labels stay close in the embedding space. However, we doubt if the `retrotting' approach is useful in our case because the approach will tend to make all entities staying close together while we need to distinguish them for our QA task. Our approach does not favor all entity embeddings to stay closer instead.

Orthogonality or near orthogonality is a property which is desired in many embedding techniques. In random indexing [START_REF] Sahlgren | An introduction to random indexing[END_REF], a near orthogonality is ensured amongst the embeddings of dierent contexts used to learn the word vectors.

In [START_REF] Zanzotto | [END_REF], to approximate tree kernels in a distributed way, dierent subtree feature embeddings are also constructed to be near orthogonal.

This chapter gives yet another motivation for orthogonal embeddings for the special case where the semantics of a sentence is modeled as the sum of its associated word embeddings. As we have shown, in this case orthogonal word embeddings help to model their independence.

Conclusion

This chapter introduces an embedding model for question answering with orthogonality regularizer. We show that orthogonality helps to capture the dierences between entities and relations and that it helps to improve performance on the Wikianswers dataset.

NL: article published in 1950 CF: article whose publication date is 1950 LF: get [[lambda,s,[filter,s,pubDate,=,1950]],article] DT: s0(np0 (np1 (typenp0), cp0 (relnp0, entitynp0)) DS: s0 np0 np1 typenp0 cp0 relnp0 entitynp0 

Introduction

In this chapter, we focus on a semantic parsing task where the NL question may be semantically complex, leading to a logical form query with a fair amount of compositionality.

Given the recently shown eectiveness of RNNs (Recurrent Neural Networks), in particular Long Short Term Memory (LSTM) networks [START_REF] Hochreiter | [END_REF], for performing sequence prediction in NLP applications such as machine translation [Sutskever et al., 2014] and natural language generation [Wen et al., 2015], we try to exploit similar techniques for our task. However we observe that, contrary to those applications which try to predict intrinsically sequential objects (texts), our task involves producing a structured object, namely a logical form that is tree-like by nature and also has to respect certain a priori constraints in order to be interpretable against the knowledge base.

In our case, building on the work Building a Semantic Parser Overnight [START_REF] Wang | [END_REF], which we will refer to as SPO, the LFs are generated by a grammar which is known a priori, and it is this grammar that makes explicit the structural constraints that have to be satised by the LFs. The SPO grammar, along with generating logical forms, generates so-called canonical forms (CF), which are direct textual realizations of the LF that, although they are not natural English, transparently convey the meaning of the LF (see Fig. 5.1 for an example).

Based on this grammar, we explore three dierent ways of representing the LF structure through a sequence of items. The rst one (LF Prediction, or LFP), and simplest, consists in just linearizing the LF tree into a sequence of individual tokens;

the second one (CFP) represents the LF through its associated CF, which is itself a sequence of words; and nally the third one (DSP) represents the LF through a 5.2. Background on SPO derivation sequence (DS), namely the sequence of grammar rules that were chosen to produce this LF.

We then predict the LF via LSTM-based models that take as input the NL question and map it into one of the three sequentializations. In the three cases, the LSTM predictor cannot on its own ensure the grammaticality of the predicted sequence, so that some sequences do not lead to well-formed LFs. However, in the DSP case (in contrast to LFP and CFP), it is easy to integrate inside the LSTM predictor local constraints which guarantee that only grammatical sequences will be produced.

In summary, the contribution of this chapter is twofold. Firstly, we propose to use sequence prediction for semantic parsing. Our experimental results show some signicant improvements over previous systems. Secondly, we propose to predict derivation sequences taking into account grammatical constraints and we show that the model performs better than sequence prediction models not exploiting this knowledge. These results are obtained without employing any reranking or linguistic features such as POS tags, edit distance, paraphrase features, etc., which makes the proposed methodology even more promising.

Background on SPO

The SPO paper [Wang et al., 2015] proposes an approach for quickly developing semantic parsers for new knowledge bases and domains when no training data initially exists. In this approach, a small underlying grammar is used to generate canonical forms and pair them with logical forms. Crowdsourcing is then used to paraphrase each of these canonical forms into several natural utterances. The crowdsourcing thus creates a dataset (SPO dataset in the sequel) consisting of (NL, CF, LF) tuples where NL is a natural language question with CF and LF the canonical and the logical form associated with this question. In Chapter 1 (1.3.1.2), we have discussed this annotation approach which is arguably easier than annotating LFs based on NLs.

SPO learns a semantic parser on this dataset by rstly learning a log-linear similarity model based on a number of features (word matches, ppdb matches, matches between semantic types and POSs, etc.) between NLs and the corresponding (CF, LF) pairs. At decoding time, SPO parses a natural language utterance NL by searching among the derivations of the grammar for one for which the projected (CF, LF) is most similar to the NL based on this log-linear model. The search is based on a so-called oating parser [START_REF] Pasupat | Panupong Pasupat and Percy Liang. Compositional semantic parsing on semi-structured tables[END_REF], a modication of a standard 5.3. Neural Approach Integrating Grammatical Constraints chart-parser, which is able to guide the search based on the similarity features.

In contrast, our approach does not search among the derivations for the one that maximizes a match with the NL, but instead directly tries to predict a decision sequence that can be mapped to the LF.

The SPO system together with its dataset were released to the public 78 and we exploit this release in this chapter. The core grammatical resource released by SPO is a generic grammar connecting logical forms with canonical form realizations. They also provide seven domainspecic lexica that can be used in combination with the generic grammar to obtain domain-specic grammars which generate (LF, CF) pairs in each domain, in such a way that LFs can then be used to query the corresponding knowledge base.

While SPO also released a set of Java-based parsers and generators for these grammars, for our own purposes we found it convenient to translate the grammars into the formalism of Denite Clause Grammars [Pereira and Warren, 1980], a classical unication-based extension of CFGs, which through a standard Prolog interpreter such as Swipl 79 provide direct support for jointly generating textual realizations and logical forms and also for parsing text into logical forms; we found this translation process to be rather straightforward and we were able to cover all of the SPO grammars. We provide each rule with a unique identier (e.g. s0, np0, ...), which is obtained by get [[lambda,s,[lter,s,pubDate,=,1950]],article] s0 article whose publication date is 1950

get [[lambda,s,[lter,s,pubDate,=,1950]],article] concatenating the name of its head nonterminal with a position number relative to the rules that may expand this nonterminal; we can then consider that the nonterminal (e.g. np) is the type of all its expanding rules (e.g. np0, np1, ...).

According to standard DCG notation, uppercase items S, NP, CP, RELNP, ENTNP denote unication variables that become instantiated during processing. In our case unicaion variables range over logical forms and each nonterminal has a single argument denoting a partially instantiated associated logical form. For instance, in the cp0 rule, relnp is associated with the logical form RELNP, entitynp with the logical form ENTNP, and the LHS nonterminal cp is then associated with the logical form [lambda, s, [filter, s, RELNP, =, ENTNP]]. 80

In Figure 5.3, we display a derivation tree DT (or simply derivation ) relative to this grammar, where each node is labelled with a rule identier. This tree projects on the one hand onto the canonical form article whose publication date is 1950, on the 80 This logical form is written here in DCG list notation; in the more Lispian format used by SPO, it would be written (lambda s (filter s RELNP = ENTNP)).

other hand onto the logical form get [[lambda,s,[filter,s, pubDate,=,1950]],article]. For instance, the textual projection of node cp0 is obtained from the textual representations of nodes relnp0 and entitynp0, according to the RHS of the rule cp0, while its logical form projection is obtained by instantiation of the variables RELNP and ENTNP respectively to the LFs associated with relnp0 and entitynp0.

Relative to these projections, one may note a fundamental dierence between derivation trees DT and their projections CF and LF: while the well-formedness of DT can simply be assessed locally by checking that each node expansion is valid according to the grammar, there is in principle no such easy, local, checking possible for the canonical or the logical form; in fact, in order to check the validity of a proposed CF (resp. LF), one needs to search for some DT that projects onto this CF (resp LF). The rst process, of course, is known as parsing, the second process as generation. While parsing has polynomial complexity for grammars with a context-free backbone such as the ones considered here, deciding whether a logical form is well-formed or not could in principle be undecidable for certain forms of LF composition.
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To be able to leverage sequence prediction models, we can associate with each derivation tree DT its leftmost derivation sequence DS, which corresponds to a preorder traversal of the tree. For the tree of Figure 5.3,this sequence is [s0,np0,np1,typenp0,cp0,relnp0,entitynp0]. When the grammar is known (in fact, as soon as the CFG core of the grammar is known), two properties of the DS hold (we omit the easy algorithms underlying these properties; they involve using a prex of the DS for constructing a partial derivation tree in a top-down fashion):

1. knowing the DS uniquely identies the derivation tree.

2. knowing a prex of the DS (for instance [s0, np0, np1, typenp0]) completely determines the type of the next item (here, this type is cp).

The rst property implies that if we are able to predict DS, we are also able to predict DT, and therefore also LF and CF. The second property implies that the sequential prediction of DS is strongly constrained by a priori knowledge of the underlying grammar: instead of having to select the next item among all the possible rules in the grammar, we only have to select among those rules that are headed by a 81 The term `projection' is borrowed from the notion of bimorphism in formal language theory [START_REF] Shieber | [END_REF] and refers in particular to the fact that the overall logical form is constructed by bottom-up composition of logical forms associated with lower nodes in the derivation tree. In our DCG grammars, this composition actually involves more complex operations (such as betareduction) than the simple copyings illustrated in the small excerpt of Fig. 5.2. specic nonterminal. Under a simple condition on the grammar (namely that there are no unproductive rules, rules that can never produce an output 82 ), following such constrained selection for the next rule guarantees that the derivation sequence will always lead to a valid derivation tree.

At this point, a theoretical observation should be made: there is no nite-state mechanism on the sequence of rule-names that can control whether the next rulename is valid or not. 83 The relevance of that observation for us is that the RNNs that we use are basically nite-state devices (with a huge number of states, but still nite-state), and therefore we do not expect them in principle to be able to always produce valid derivation sequences unless they can exploit the underlying grammar for constraining the next choice.

Sequence prediction models

In all these models, we start from a natural language utterance NL and we predict a sequence of target items, according to a common sequence prediction architecture that will be described in section 5.3.3.

Predicting logical form (LFP model)

The most direct approach is to directly predict a linearization of the logical form from the NL, the input question. While an LF such as that of 

Predicting derivation sequence (DSP-X models)

Rather than predicting LF directly, we can choose to predict a derivation sequence DS, that is, a sequence of rule-names, and then project it onto LF. We consider three variants of this model.
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The general grammar ensures a good coverage of possible logical and canonical forms. However, when this general grammar is used in particular domains, some rules are not relevant any more (i.e.

become "unproductive"), but these can be easily eliminated at compile time.

83 This is easy to see by considering a CFG generating the non nite-state language a n b n .

DSP This basic derivation sequence prediction model is trained on pairs (NL, DS)

with the standard training regime. At test time, it is possible for this model to predict ill-formed sequences, which do not correspond to grammatical derivation trees, and therefore do not project onto any logical form.

DSP-C This is a Constrained variant of DSP where we use the underlying grammar to constrain the next rule-name. We train this model exactly as the previous one, but at test time, when sampling the next rule-name inside the RNN, we reject any rule that is not a possible continuation.

DSP-CL This last model is also constrained, but uses a dierent training regime, with Constrained Loss. In the standard learning regime (used for the two previous models), the incremental loss when predicting the next item y t of the sequence is computed as -log p(y t ), where p(y t ) is the probability of y t according to the RNN model, normalized (through the computation of a softmax) over all the potential values of y t (namely, here, all the rules in the grammar). By contrast, in the CL learning regime, the incremental loss is computed as -log p (y t ), where p (y t ) is normalized only over the values of y t that are possible continuations once the grammar-induced constraints are taken into account, ignoring whatever weights the RNN predictor may (wrongly) believe should be put on impossible continuations. In other words, the DSP-CL model incorporates the prior knowledge about well-formed derivation sequences that we have thanks to the grammar. It computes the actual cross-entropy loss according to the underlying generative process of the model that is used once the constraints are taken into account.

Predicting canonical form (CFP model)

The last possibility we explore is to predict the sequence of words in the canonical form CF, and then use our grammar to parse this CF into its corresponding LF, which we then execute against the knowledge base. 84 We see that, typically, for the dierent domains, DS is a shorter sequence than LF or CF, but its vocabulary size (i.e. number of rules) is larger than that of LF or CF. However DS is unique in allowing us to easily validate grammatical constraints.

We also note that the CF is less lengthy than the LF, which uses a number of non word-like symbols such as parentheses, lambda variables, and the like.

Sequence prediction architecture

Neural network model

The goal of our neural network is to estimate the conditional probability p(y 1 , . . . , y T |x 1 , . . . , x T )

where (x 1 , . . . , x T ) is a natural language question and (y 1 , . . . , y T ) is a target sequence (linearized LF, CF or derivation sequence). In all three cases, we use the same neural network model, which we explain in this subsection.

Suppose that the content of the NL is captured in a real-valued vector u b , while the prex of the target sequence up to time t is captured in another real-valued vector u l,t . Now, the probability of the target sequence given the input question can be estimated as: In all our systems, the u b capturing the content of the NL is calculated from the concatenation of a vector u 1 reading the sentence based on unigrams and another vector u 2 reading the sentence based on bigrams. Mathematically,

u 1 = tanh(W 1 v 1 )
where v 1 is the 1-hot unigram encoding of the NL and u 2 = tanh(W 2 v 2 ) where v 2 is its 1-hot bigram encoding. Then u b = tanh(W u), where u is the concatenation of u 1 and u 2 . W 1 , W 2 and W are among the parameters to be learnt. For regularization purposes, a dropout procedure [Srivastava et al., 2014] is applied to u 1 and u 2 .

The prex of the target sequence up to time t is modelled with the vector u l,t generated by the latest hidden state of an LSTM [START_REF] Hochreiter | [END_REF];

LSTM is appropriate here in order to capture the long distance dependencies inside the target sequence. The vector u l,t is then concatenated with u b (forming u bl in the equation below) before passing through a two-layer MLP (Multi-Layer Perceptron)

for the nal prediction:

p(y t+1 |u l,t , u b ) = softmax(W 2 tanh(W 1 u bl ))

Using deep structures such as this MLP for RNN prediction has been shown to be benecial in previous work [Pascanu et al., 2013].

The overall network architecture is summarized in Figure 5.5. We train the whole network to minimize the cross entropy between the predicted sequence of items and the reference sequence.

This network architecture can easily support other representations for the input sentence than unigrams and bigrams, as long as they are real-valued vectors of xed length. We can just concatenate them with u 1 and u 2 and generate u b as previously.

In fact, in initial experiments, we did concatenate an additional representation which reads the sentence through an LSTM, but the performance was not improved.

Decoding the target sequence

We implemented a uniform-cost search algorithm [START_REF] Russell | [END_REF]] to decode the best decision sequence as the sequence with the highest probability. The algorithm nishes in a reasonable time for two reasons: 1) as indicated by Table 5.1, the vocabulary size of each domain is relatively small, and 2) we found that our model predicts relatively peaked distributions. Of course, it would also be easy to use a beam-search procedure, for situations where these conditions would not hold.

Experiments

Setup

We conduct our experiments on the SPO dataset. To test the overall performance of a semantic parser, the SPO dataset contains seven domains focusing on dierent linguistic phenomena such as multi-arity relations, sublexical compositionality, etc. The utterances in each domain are annotated both with logical forms (LFs)

and canonical forms (CFs). The number of such utterances vary from 800 to 4000 depending on the domain. The size of training data is indeed small but as the target vocabulary is always in the domain, thus very small as well, it is actually possible to learn a reasonable semantic parser.

In the SPO dataset, the natural utterances were split randomly into 80%-20%

for training and test, and we use the same sets. We perform an additional 80%- words in NL and words in CF, semantic features on types and denotations, and also features based on PPDB [Ganitkevitch et al., 2013].

At test time, like SPO, we evaluate our system on the proportion of questions for which the system is able to nd the correct answer in the knowledge base.

Implementation details

We choose the embedding vectors u 1 for unigrams and u 2 for bigrams to have 50 word embedding layer has 100 dimensions, which is also the case of the hidden layer of the LSTM u l,t . Thus u bl which is the concatenation of u b and u l,t has 300 dimensions and we x the next layer to u bl to have 100 dimensions. The model is implemented in Keras 85 on top of Theano [START_REF] Bergstra | [END_REF]. For all the experiments, we train our models using rmsprop [START_REF] Tieleman | [END_REF] as the backpropagation algorithm 86 . We use our development set to select the number of training epochs, the dropout factor over unigrams representation and the dropout factor over bigrams representation, by employing a grid search over these hyperparameters: epochs in {20, 40, 60}, unigrams dropout in {0.05, 0.1} and bigrams dropout in {0.1, 0.2, 0.3}.

Experimental results

Results on test data

Table 5.2 shows the test results of SPO and of our dierent systems over the seven domains.

It can be seen that all of our sequence-based systems are performing better than SPO by a large margin on these tests. When averaging over the seven domains, our `worst' system DSP scores at 64.7% compared to SPO at 57.1%.

We note that these positive results hold despite the fact that DSP has the handicap that it may generate ungrammatical sequences relative to the underlying grammar, which do not lead to interpretable LFs. The LFP and CFP models, with higher performance than DSP, also may generate ungrammatical sequences. The best results overall are obtained by the DSP-C system, which does take into account the grammatical constraints. This model performs not only considerably better than its DSP baseline (72.7% over 64.7%), but also better than the models LFP and CFP. Somewhat contrary to our expectations, the DSP-CL model, which exploits constraints not only during decoding, but also during training, performs somewhat worse than the DSP-C, which only exploits them during decoding.

We note that, for all the sequence based models, we strictly base our results on the performance of the rst sequence predicted by the model. It would probably be possible to improve them further by reranking n-best sequence lists using a set of features similar to those used by SPO.

Analysis of results

Grammatical errors

We just observed that CFP and LFP perform well on test data although the sequences generated are not guaranteed to be grammatical. We analysed the percentage of grammatical errors made by these models and also by DSP for three domains, which we report in Table 5.3. 87

The table shows that LFP and especially CFP make few grammatical errors while DSP makes them more frequently. For DSP-C and DSP-CL, the error rate is always 0 since by construction, the derivations must be well-formed. Note that as DSP is not constrained by prior knowledge about the grammar, the grammatical error rate can be high even higher than CFP or LFP because DSP typically has to choose among more symbols, see Table 5.1.

Dierence between DSP-C and DSP-CL

We observed that the DSP-CL model performs somewhat worse than DSP-C in our experiments. While we were a bit surprised by that behavior, given that the DSP-87 Our DCG permits to compute this error rate directly for canonical forms and derivation se- quences. For logical forms, we made an estimation by executing them against the knowledge base and eliminating the cases where the errors are not due to the ungrammaticality of the logical form.

CL has strong theoretical motivations, let us note that the two models are quite dierent. To stress the dierence, suppose that, for a certain prediction step, only two rules are considered as possible by the grammar, among the many rules of the grammar. Suppose that the LSTM gives probabilities 0.004 and 0.006 respectively to these two rules, the rest of the mass being on the ungrammatical rules. While the DSP-C model associates respective losses of -log 0.004, -log 0.006 with the two rules, the DSP-CL model normalizes the probabilites rst, resulting in smaller losses -log 0.4, -log 0.6.

As we choose the best complete sequence during decoding, it means that DSP-C will be more likely to prefer to follow a dierent path in such a case, in order not to incur a loss of at least -log 0.006. Intuitively, this means that DSP-C will prefer paths where the LSTM on its own gives small probability to ungrammatical choices, a property not shared by DSP-CL. However, a more complete understanding of the dierence will need more investigation.

Related Work and Discussion

In recent work on developing semantic parsers for open-domain and domain-specic question answering, various methods have been proposed to handle the mismatch between natural language questions and knowledge base representations including, graph matching, paraphrasing and embeddings techniques. [START_REF] Reddy | [END_REF] exploits a weak supervision signal to learn a mapping between the logical form associated by a CCG based semantic parser with the input question and the appropriate logical form in Freebase [Bollacker et al., 2008].

Paraphrase-based approaches [START_REF] Berant | Semantic parsing via paraphrasing[END_REF] generate variants of the input question using a simple hand-written grammar and then rank these using a paraphrase model. That is, in their setting, the logical form assigned to the input question is that of the generated sentence which is most similar to the input question.

Finally, Bordes et al. [2014b;2014a] learn a similarity function between a natural language question and the knowledge base formula encoding its answer.

We depart from these approaches in that we learn a direct mapping between natural language questions and their corresponding logical form or equivalently, their corresponding derivation and canonical form. This simple, very direct approach to semantic parsing eschews the need for complex feature engineering and large external resources required by such paraphrase-based approaches as [START_REF] Berant | Semantic parsing via paraphrasing[END_REF].

It is conceptually simpler than the two steps, graph matching approach proposed by [START_REF] Reddy | [END_REF]. And it can capture much more complex semantic representations compared to our approach for the decoding strategy:

• The model learns to predict LFs while our DSP-C(L) models learn to predict derivation sequences. Using their way of predicting LFs can ensure wellbalanced parentheses as each layer predicts an LF with well-balanced parentheses; however, their model may fail to capture other grammatical constraints thus the produced LF is not guaranteed to be grammatically correct. Our DSP-C(L) models on the other hand always produce grammatically correct LFs.

• When predicting a certain LF token, the model [Dong and Lapata, 2016] is always conditioned on the hidden state of the nonterminal that the model is expanding (e.g. in Fig. 5.6, every prediction on the second layer is conditioned on the hidden state of <n> in the rst layer), a mechanism that the authors called `parent-feeding'. Explicitly conditioning on the parent node representation can help the performance, however, this mechanism is missing in our proposed model. Implementing a `parent-feeding' mechanism for our DSP-C(L) models doesn't pose theoretical diculties. For example, consider the DS prediction in Fig. 5.3, an example of `parent-feeding' for the DSP-C(L) will consist in condition also on np0 when trying to predict cp0.

[ [START_REF] Yin | A syntactic neural model for general-purpose code generation[END_REF] study the code generation problem (i.e generating machine readable codes based on a natural language description) and take the best of both our model and the model of [START_REF] Dong | Language to logical form with neural attention[END_REF]. Similar to our work, their neural code generator tries to predict the AST (abstract syntactic tree) to fully capture all the grammatical constraints; similar to the work of [Dong and [START_REF] Dong | Language to logical form with neural attention[END_REF], their neural network is equipped with the `parent-feeding' mechanism and the attention mechanism [START_REF] Bahdanau | [END_REF]. They have shown in their work that both are important to achieve state-of-the-art result for code generation.

Conclusion

In this chapter, we propose a sequence-based approach for the task of semantic parsing. We encode the target logical form, a structured object, through three types of sequences: direct linearization of the logical form, canonical form, derivation sequence in an underlying grammar. In all cases, we obtain competitive results with previously reported experiments. The most eective model is one using derivation sequences and taking into account the grammatical constraints.

In order to encode the underlying derivation tree, we chose to use a leftmost derivation sequence. But there are other possible choices that might make the encoding even more easily learnable by the LSTM, and we would like to explore those in future work. them with the grammatical one before integrating the result into RNN predictors.

To identify sources of prior knowledge for semantic parsing, we are inspired by traditional semantic parsing systems [Kwiatkowski et al., 2013; Berant and Liang, 2014; Reddy et al., 2014; Pasupat and Liang, 2015] which exploit rich prior knowledge in the form of features and grammars. In this chapter, we propose to integrate this type of prior knowledge into RNNs and particularly LSTMs [START_REF] Hochreiter | [END_REF] based deep learning models [START_REF] Jia | Data recombination for neural semantic parsing[END_REF][START_REF] Dong | Language to logical form with neural attention[END_REF]Xiao et al., 2016b;[START_REF] Neelakantan | [END_REF] for semantic parsing.

Deep learning models have shown to be successful for many NLP tasks; however, we notice that those models can be further enhanced by incorporating prior knowledge and this paper builds on two recent attempts to combine prior knowledge with neural networks in an NLP context.

In the context of Natural Language Generation (NLG), [START_REF] Goyal | [END_REF] describe an RNN model that generates sentences character-by-character, conditional on a semantic input. They use a form of prior knowledge, which they call a background, to guide the RNN in producing string of characters which are (i) valid common English words or (ii) named entities (e.g. hotel names, addresses, phone numbers, ...) for which evidence can be found in the semantic input.

In the context of Semantic Parsing, we propose in chapter 5 to use an RNN-based model to predict derivation sequences (DS) that are derivation steps relative to an a priori given underlying grammar. The grammar is used to incrementally lter out those derivation steps that may lead to non-interpretable LFs, something which is dicult for the RNN to learn on its own.

While the background used by [Goyal et al., 2016] is partially based on its actual semantic input, the prior employed by chapter 5 only exploits knowledge about output well-formedness. In both cases (NLG and Semantic Parsing) however, the output depends on the input; in semantic parsing, if the input question contains the string `Barack Obama', it is highly likely that the LF of that question involves the entity Barack Obama and therefore, that the rule expanding to barack obama is present in the output derivation sequence.

This chapter can be seen as an extension of the semantic parsing approach proposed in chapter 5 using ideas from [Goyal et al., 2016], where we use a background prior that combines the grammaticality constraints with certain types of prior beliefs that we can extract from the NL question.

Combining dierent sources of prior knowledge, which can also be seen as combining dierent factors in a graphical model, is a hard problem. In general, to compute the exact combination (with even two factors), one does not have other solutions than to go through an exhaustive enumeration of both factors and multiplying each pair of factors. Our proposed solution to this problem is to implement our inputdependent background through weighted nite-state automata (WFSAs), which we then intersect with a weighted context free grammar (WCFG) representing valid grammar derivations.

Intersecting a WFSA with a WCFG can be done through a dynamic programming procedure (thus ecient as it avoids exhaustive enumeration) closely related to chart-parsing. 90 The result of this intersection algorithm is a new WCFG, which can be normalized into a PCFG (Probabilistic CFG), which makes explicit the conditional probabilities for the dierent ways in which a given derivation sequence can be continued. 91

The obtained PCFG is then used as a background, and when making its next local choice, the RNN has only to learn to correct the choices of the PCFG. In the cases where the background is close to the true distribution, the RNN will learn to predict a uniform distribution thus always referring to the background for such predictions.

This is in fact a desirable behaviour as the background may contain prior knowledge that the RNN is not able to learn based on data (e.g. prior knowledge on entities unseen in training) and the best behavior for the model in those cases is to refer to the background.

We test our new Background RNN semantic parser on an extended version of the SPO dataset [Wang et al., 2015], which removes certain problematic aspects of the original dataset (that made the results too optimistic, as explained in section 6.4). By incorporating simple input-dependent prior knowledge via WFSAs, our model not only improves over its RNN baseline but also over the non-RNN system proposed in [Wang et al., 2015] which involves much richer hand-crafted features.

90 More on intersection algorithms can be found in chapter 2 (2.2) inside the thesis.

91 While on rst sight the whole procedure may appear somewhat involved, it has the crucial advantage that a global constraint, for instance the required appearance of a certain symbol at some unknown future point in the DS, has local consequences much earlier in the incremental process that the network is following. [Wang et al., 2015] (which we refer to as SPO) proposes a novel way to build datasets for training a semantic parser without having to manually annotate natural language sentences with logical forms (LFs). First a grammar (of which we provide an extract in Fig. 6.1, in the format of Denite Clause Grammars [Pereira and Warren, 1980], reproduced from chapter 5) is used to generate LFs paired with conventional surface realizations called canonical forms (CFs). For example, the rules shown in Fig. 6.1 support the generation of the LF get [[lambda,s,[lter,s,pubDate,=,1950]],article] along with the CF article whose publication date is 1950.

The CFs are not necessarily natural English but are supposed to be semantically transparent so that one can use crowdsourcing to paraphrase those CFs into natural utterances (NLs) e.g., Articles published in 1950. The resulting (NL, LF) pairs make up a dataset which can be used for learning semantic parsers.

After collecting all the paraphrases, the authors of SPO construct a dataset divided into training and test sets by performing a random 80%-20% split over all the (NL, LF) pairs. However, given the data collecting process, each LF tends to correspond to several (in general more than 5) paraphrases. In consequence, inside this original dataset, most of the LFs in the test set have already been seen in training, making the task close to a classication process and easier than it should be.

In addition, as pointed out by [START_REF] Jia | Data recombination for neural semantic parsing[END_REF], the original dataset contains very few named entities. In this work, we therefore construct a new dataset called Overnight+ xing some of the above issues. More details on our proposed dataset can be found in subsection 6.4.1.

The approach of chapter 5

To learn the semantic parser, SPO rst trains a log-linear model based on rich prior features dependent jointly on NL and the corresponding (LF, CF) pair. Then it searches for the derivation tree relative to the grammar for which the produced (LF, CF) pair has the highest score [START_REF] Pasupat | Panupong Pasupat and Percy Liang. Compositional semantic parsing on semi-structured tables[END_REF]. This chapter can be seen as extending DSP-CL by integrating some input-dependent prior knowledge into the RNN predictor, allowing it to improve its performance on the more challenging Overnight+ dataset.

6.3 Symbolic Background Neural Model 6.3.1 Background priors on RNNs [Goyal et al., 2016], in the context of NLG, propose to modify the standard generative procedure of RNNs: p θ (x t+1 |x 1 , . . . , x t , C) = rnn θ (x t+1 |x 1 , . . . , x t , C), where C is the observed input context (that is, the input of the seq2seq model), x 1 , . . . , x t the current output prex, rnn θ the softmax output of the RNN parametrized by θ, and p θ the probability distribution from which the next symbol x t+1 is sampled, with: p θ (x t+1 |x 1 , . . . , x t , C) ∝ b(x t+1 |x 1 , . . . , x t , C) • rnn θ (x t+1 |x 1 , . . . , x t , C), where the background b is an arbitrary non-negative function over C, x 1 , . . . , x t , x t+1 , which is used to incorporate prior knowledge about the generative process p θ . 92 On one extreme, taking b to be uniform corresponds to the situation where no prior knowledge is available, and one is back to a standard RNN, with all the discriminat-92 See also [START_REF] Dymetman | Log-linear rnns: Towards recurrent neural networks with exible prior knowledge[END_REF], for a more general presentation, of which the background- RNN can be seen as a special case.

ing eort falling on the rnn component and relying on whatever (possibly limited) training data is available in each context; on the other extreme, if the true process p is known, one may take b = p, and then the rnn component rnn θ (x t+1 |x 1 , . . . , x t , C) is only required to produce a close-to-uniform distribution over the target vocabulary, independently of x 1 , . . . , x t , C, which is an easy task to learn. In practice, the interesting cases fall between these two extremes, with the background b incorporating some prior knowledge that the rnn component can leverage in order to more easily t the training data. In the NLG application considered by [Goyal et al., 2016], the output of the seq2seq model is a string of characters, and the background implemented as a WFSA over characters is used to guide this output: (i) towards the production of valid common English words, and (ii) towards the production of named entities (e.g. hotel names, addresses, ...) for which evidence can be found in the semantic input.

The approach of chapter 5 can be reformulated into such a Background-RNN (BRNN) framework. In that work, the underlying grammar G acts as a yes-no lter on the incremental proposals of the RNN, and this ltering process guarantees that the evolving DS prex always remains valid relative to G. There: p θ (x t+1 |x 1 , . . . , x t , C) ∝ b(x t+1 |x 1 , . . . , x t ) • rnn θ (x t+1 |x 1 , . . . , x t , C), where C = N L is the input question, the x i 's are rule-names, and b takes a value in {0, 1}, with b(x t+1 |x 1 , . . . , x t ) = 1 indicating that x 1 , . . . , x t , x t+1 is a valid DS prex relative to G. With this mechanism in place, on the one hand the BRNN cannot produce ungrammatical (in the sense of being valid according to the grammar) prexes, and on the other hand it can exploit this grammatical knowledge in order to ease the learning task for the rnn component, which is not responsible for detecting ungrammaticality on its own anymore.

WCFG background

While the (implicit) background of chapter 5 shown in (6.3.1) is a binary function that does not depend on the NL input, but only on hard grammaticality judgments, in this paper, we propose to use the more general formulation (6.3.1). Now b is soft rather than hard, and it does exploit the NL input.

More specically, b(x t+1 |x 1 , . . . , x t , N L) is obtained in the following way. First, we use the original grammar G together with the input N L to determine a WCFG (weighted context-free grammar) GW N L over derivation sequences of the original CFG (that is, the terminals of GW N L are rule-names of the original G), as will state terms.

Why automata? In order to be eective, the background b has to be able to provide the rnn component with useful information on the next incremental step, conditional on the already generated prex. In addition, we would like the background to capitalize on dierent sources of information.

In connection with these desiderata, WCFG and WFSAs have the following remarkable properties: (1) the intersection of several WFSAs is a WFSA which can be eciently computed, (2) the intersection of a WCFG with a WFSA is a WCFG which can be eciently computed, (3) given a prex, the conditional probability of the next symbol relative to a WCFG (resp. a WFSA) can be eciently computed; here efciently computed means through Dynamic Programming and in polynomial time [START_REF] Nederhof | [END_REF]. These properties are conspicuously absent from most other generative devices. For instance it is far from obvious how to intersect two dierent RNNs to compute the conditional probability of the next symbol, given a common prex: while a certain symbol may have a large probability relative to both RNNs, the later (global) consequences of choosing this next symbol may be largely incompatible between the two RNNs; in other words, the local combined conditional probability cannot be computed solely on the basis of the product of the two local conditional probabilities.

Implementation principles. The fact that one can intersect a WCFG with a WFSA to produce another WCFG is a generalization of the classical result [START_REF] Bar-Hillel | [END_REF] concerning the non-weighted case. The implementation we use is based on the Earley-inspired intersection algorithm of [Dyer, 2010], obtaining a certain WCFG, which we normalize into probabilistic form [START_REF] Nederhof | [END_REF], nally obtaining a PCFG GW N L . In order to compute the background b(x t+1 |x 1 , . . . , x t , N L) we then need to compute the conditional probability relative to GW N L of producing the symbol x t+1 given the prex x 1 , . . . , x t . There are some special-purpose algorithms for doing that eciently, for instance [START_REF] Stolcke | An Ecient Probabilistic Context-Free Parsing Algorithm that Computes Prex Probabilities[END_REF], but in this work we use again (unoptimally) the generic Earley intersection algorithm, taking advantage of the fact that the probability mass relative to GW N L of the set of sequences starting with the prex x 1 , . . . , x t , x t+1 can be obtained by intersecting GW N L with the automaton generating the language of all sequences starting with this prex. a WCFG. The intersection algorithm results in a new WCFG, from which the background is computed through prex-conditional probabilities as explained in section 6.3.

We adopt the same neural network architecture that we have described in section 5.3. We represent the NL semantics by a vector u b calculated from the concatenation of a vector u 1 encoding the sentence at the level of unigrams and another vector u 2 at the level of bigrams. Dropout [Srivastava et al., 2014] is applied to u 1 (0.1) and u 2 (0.3). We model the DS up to time t with the vector u t generated by an LSTM [START_REF] Hochreiter | [END_REF]; we concatenate u t and u b and pass the concatenated vector to a two-layer MLP for the nal prediction. At test time, we use a uniform-cost search algorithm [START_REF] Russell | [END_REF] to produce the DS with the highest probability. All the models are trained for 30 epochs.

Experimental Results

Table 6.1 shows the results of dierent systems. The best average accuracy is achieved by our proposed system BDSP-CL. The system largely improves (48.8% over 34.5% in accuracy) over its RNN baseline DSP-CL which does not have input-dependent WFSA factors. Our system also improves largely over SPO (no-lex) i.e., SPO without alignment features (this system still has a rich feature set including string matching, entity recognition, POS tagging, denotation, etc).

In average, BDSP-CL also performs better than the system noted SPO* with the full set of features, but to a more moderate extent. However the results of this SPO* may be too optimistic: the so-called alignment features of SPO were obtained from a provided alignment le based on the original Overnight training dataset and not on the correct Overnight+, because we did not have access to easy means of recomputing this alignment le. The implication is that those features were calculated in a situation where most of the test LFs were already seen in training as explained in subsection 6.4.1, possibly unfairly helping SPO* on the Overnight+ test set.

Result Analysis

Examples We look into predictions of BDSP-CL, DSP-CL, SPO (no-lex) trying to understand the pros and the cons of our proposed model. Table 6.2 shows some typical cases. Because our current implementation with automata is limited to taking into account prior knowledge on only named entities and dates, our BDSP-CL can miss some important indications compared to SPO (no-lex). For example, for the sentence `what locations are the fewest meetings held', our model predicts a set of meetings while SPO (no-lex) detects through its features that the question asks about locations; our model seems better at discovering regularities in the data for which SPO (no-lex) does not have predened features. For example, for the sentence `which men are 180cm tall', our model successfully detects that the question asks about males.

Our model consistently performs better than DSP-CL. The example `what position is shaq oneal' in Table 6.2 illustrates the dierence. In this example, both BDSP-CL and SPO (no-lex) correctly predict the LF; however, DSP-CL fails because it cannot predict the entity `shaq oneal' as the entity is never seen in training.

Background Eect If our background is in average closer to the true distribution compared to the uniform distribution, we hypothesize that the RNN will learn to predict a more uniform distribution compared to an RNN without background as DSP-CL BDSP-CL Avg. KL-divergence 3.13 1.95 Table 6.3: Average KL-divergence to the uniform distribution when models predict rules corresponding to named entities.

explained in subsection 6.3.1. To test this hypothesis, we randomly sample 100 distributions in housing domain when the RNN needs to predict a rule corresponding to a named entity. We calculate the average KL-divergence from these distribution to the uniform distribution and report the results in Table 6.3. The results seem to conrm our hypothesis: the KL-divergence is much smaller for BDSP-CL where a background takes into account the presence of certain named entities depending on the input.

Related Work

This chapter makes important extensions over chapter 5. While chapter 5 incorporates grammatical constraints into RNN models, we incorporate additional prior knowledge about input dependency. We propose to take into account the wellformedness of LFs by a WCFG and depending on the input, take into account the presence of certain entities inside LFs by WFSA(s). We choose to use WFSA modeling our input-dependent prior knowledge as the algorithm of intersection can efciently combine WCFG and WFSA(s) to form the background priors guiding the RNN.

Taking into account prior knowledge about named entities is common in more traditional, symbolic semantic parsing systems [Liang et al., 2011; Berant et al., 2013; Kwiatkowski et al., 2013; Reddy et al., 2014]. For example, in [Berant et al., 2013],

named entities are rst identied before they are used to construct the whole derivation tree. We propose to incorporate those knowledge into an RNN-based model. This is arguably more principled than [START_REF] Jia | Data recombination for neural semantic parsing[END_REF]'s approach that incorporates such knowledge into an RNN using data augmentation.

The intersection algorithm used to compute the background allows local weight changes to propagate through the grammar tree thereby inuencing the weight of each node inside the tree. This is related to the recent reinforcement learning research for semantic parsing [Liang et al., 2016; Mou et al., 2016] where rewards are propagated over dierent action steps.

More generally, this chapter is another instance of incorporating prior knowledge 6.6. Conclusion into deep learning models. We do this using symbolic objects such as grammar and automata. [START_REF] Salakhutdinov | [END_REF] model prior knowledge over the structure of the problem by combining hierarchical bayesian models and deep models while Hu et al. [2016] handle prior knowledge that can be expressed by rst-order logic rules and uses these rules as a teacher network to transfer knowledge into deep models.

Conclusion

We propose to incorporate a symbolic background prior into RNN-based models to learn a semantic parser taking into account prior knowledge about LF wellformedness and about the likelihood of certain entities being present based on the input. We use a variant of a classical dynamic programming intersection algorithm to eciently combine these factors and show that our Background-RNN yields promising results on Overnight+. In the future, we plan to explore the use of WFSA(s)

with dierent topologies to model more prior knowledge.

Chapter 7

Conclusion and Perspectives

Summary

The main contribution of this thesis is the investigation of novel, neural approaches to executable semantic parsing. First, I showed that a standard sequence-to-sequence model could successfully be used to map natural language questions to logical forms (LFs), which are knowledge base queries for us. The approach was trained and tested on an existing dataset covering 7 domains and whose queries were compositionally non trivial. I then proposed dierent ways of integrating prior knowledge in neural approaches to semantic parsing with a focus on symbolic priors (grammars and automata). These contributions can be summarized as follows.

Orthogonal Embeddings for Simple queries. In the case where LFs are structurally simple (e.g. in the form of a triple (e 1 , r, e 2 ) in the Wikianswers dataset [Fader et al., 2011]), we follow the work of [Bordes et al., 2014b] that learns sentence/LF embeddings and a scoring function between them. We remark that their model does not distinguish between entity (e 1 , e 2 ) emeddings and relation (r) embeddings and propose an orthogonality regularizer to capitalize this prior knowledge (Chapter 4).

We show empirically that adding this prior knowledge improves performance.

Integrating Grammatical Knowledge. In the case where LFs are more complex involving a fair amount of compositionality as in the Semantic Parsing Overnight (SPO) dataset [Wang et al., 2015], we rst notice that we can use RNNs to learn an end-to-end model mapping NL questions to KB queries. While for neural machine translation [Sutskever et al., 2014], input and output are sentences, for semantic parsing, the input is a natural language sentence and the output a linearized logical formula. Based on the grammar developed by [Wang et al., 2015] to generate the SPO dataset, we compare (Chapter 5) dierent ways of linearizing logical formulae: a direct linearization of the LF, a linearization of the associated canonical realization (produced for each LF by the grammar), and a sequence consisting of derivation steps relative to the underlying grammar. We further propose two ways of integrating grammatical constraints on the derivation sequence inside the RNN-based sequential predictor. We show empirically that our RNN-based semantic parser that integrates grammatical prior knowledge performs better than both its RNN baselines and a more traditional semantic parser.

Modelling Input Dependency. If the input question contains the string `Barack Obama', it is highly likely that the LF of that question involves the entity Barack Obama and therefore, that the rule expanding to barack obama is present in the output derivation sequence. Remarking that our produced LFs have to be executable thus grounded to a particular knowledge base (KB), the contribution presented in Chapter 6 consists in integrating additional prior knowledge about input dependency into our previous RNN-based semantic parser integrating grammatical constraints.

Technically, we rst construct weighted automata (WFSAs) biasing the likelihood of certain rules corresponding to named entities being present inside the target derivation sequence. We model this prior knowledge using WFSAs because these can be combined eciently with the grammatical prior knowledge we use previously in the form of a weighted context free grammar (WCFG). This combination is then treated as `Background' for the RNN and we show that our extended `Background RNN' semantic parser can further improve the performance.

Perspectives

There are two main directions for further research which it would be interesting to explore.

Application to Other Semantic Parsing Tasks. Executable semantic parsing aims at predicting a target language grounded in a KB. This shares similarityies with tasks such as instructing robots (i.e. mapping natural language utterances to robot commands) [START_REF] Artzi | Weakly supervised learning of semantic parsers for mapping instructions to actions[END_REF] and code generation (i.e mapping natural language text to a piece of general-pupose code) [Quirk et al., 2015; Yin and Neubig, 2017] where the target languages are also grounded.

In Chapter 5, we show that having a grammar that constrains LF derivations is eective. Such grammars exist not only for knowledge base queries as we have considered in the thesis, but also for many other grounded languages such as robot commands and general-purpose codes. In the future, we would like to test the effectiveness of integrating grammatical prior knowledge on those tasks. An example of this line of research is [START_REF] Yin | A syntactic neural model for general-purpose code generation[END_REF] who shows that integrating such grammars into an RNN-based model is eective for code generation.

Other forms of Prior Knowledge. While we have shown some successful semantic parsing examples of incorporating prior knowledge into expressive learning machines, we believe that there are more forms of prior knowledge to consider in the future. In particular, the grammar or automata that we use express explicit prior knowledge / constraints over our considered target sequences while many forms of prior knowledge is implicit (e.g. answer to a LF query, a natural language feedback to a predicted LF). Implicit prior knowledge is arguably more common and abundant and some works start exploiting this form of prior knowledge for neural networks [START_REF] Liang | Neural symbolic machines: Learning semantic parsers on freebase with weak supervision[END_REF][START_REF] Mou | [END_REF]Guu et al., 2017]. It would be interesting to explore to what extent this type of knowledge could be exploited to guide neural semantic parsing.
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  démontrant la capacité des réseaux neuronaux récurrents (RNN) en traduction automatique, nous proposons d'adapter les approches basées sur les RNNs à l'analyse sémantique. En d'autres termes, au lieu de faire correspondre une phrase à sa traduction, nous proposons d'utiliser les RNNs pour transformer une requête NL en sa représentation de sémantique (linéarisée). Dans ce contexte, la principale question de recherche abordée dans cette thèse est la suivante: viii Question de recherche 1: Dans quelle mesure les modèles fondés sur les RNNs peuvent-ils calculer la correspondance entre une requête de NL et sa MR? Nous commençons par appliquer un modèle basé sur les RNNs à des requêtes NL relativement complexes et trouvons qu'il améliore les résultats par rapport à un système d'analyse sémantique plus traditionnel basé sur des traits [features] dénis manuellement [Wang et al., 2015]. Toutefois, avec une quantité limitée de données, il est possible d'améliorer davantage la performance des modèles RNN en intégrant des connaissances préalables dans ces modèles. Une question importante lors de l'utilisation des RNNs pour l'analyse sémantique est qu'ils n'incluent pas de notion explicite de syntaxe et ne garantissent donc pas la bonne formation des représentations sémantiques obtenues, ni ne fournissent un support direct pour la compositionnalité. Autrement dit, les RNNs pour l'analyse sémantique soulèvent la question de recherche suivante: Question de recherche 1.1: Comment un modèle de séquence à séquence peut-il être contraint de respecter la compositionnalité et de garantir la bonne forme syntaxique des représentations sémantiques produites? Nous abordons cette question au chapitre 5. Tout d'abord, nous remarquons que la bonne forme de la MR de sortie peut être assurée par une grammaire connue a priori. Sur la base de cette grammaire, nous proposons d'utiliser notre modèle basé sur les RNNs pour prédire les séquences de dérivation (DS) qui correspondent aux étapes de dérivation par rapport à la grammaire sous-jacente. La prédiction de DS facilite l'intégration des connaissances grammaticales préalables et garantit ainsi que la DS produite est toujours bien formée. Nous montrons empiriquement qu'un modèle basé sur les RNN intégrant ce type de connaissances grammaticales antérieures permet d'obtenir de meilleures performances que les méthodes RNN de base qui n'intègrent pas ces connaissances préalables.

Chapitre 3 (

 3 Automates et grammaires) propose une brève introduction aux automates et grammaires hors-contexte (CFGs) et à leurs versions pondérées. Nous discutons également de l'algorithme d'intersection entre un automate pondéré et une CFG pondérée. Nous utilisons ces objets symboliques pour exprimer des connaissances préalables pour des tâches d'analyse sémantique. 1 Partie II Contributions Le chapitre 4 (Plonglements Orthogonaux pour l'Analyse Sémantique de Requêtes Simples) discute d'une tâche d'analyse sémantique où pour répondre à la question, il faut trouver un triplet correct de la forme (e 1 , r, e 2 ) où e 1 , e 2 sont des entités et r est une relation. Comme nous l'avons mentionné plus haut, dans cette tâche, la principale diculté réside dans l'identication correcte de la transformation entre les mots NL et les symboles KB. Sur la base des méthodes de plongements
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 1 Figure 1: Examples of (NL, MR) pairs with types of MR.
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  design consisting of three components. The rst component (PARSER) syntactically analyses the input query NL and assigns it a parse tree. The second component (SEMANTIC INTERPRETER) uses this parse tree to produce the LF which is the semantic interpretation of the input utterance. 3 The third component (RE- TRIEVAL COMPONENT) directly executes the LF output from the SEMANTIC INTERPRETER, similar to the process where an SQL query (or other query lan-3 While the SEMANTIC INTERPRETER is dependent on the KB and its specied query lan- guage, the PARSER is more domain independent and can hopefully be easily adapted to other executable semantic parsing tasks.
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 1 Figure 1.2: Syntactic Tree produced by LUNAR for the sentence Chomsky wrote Syntactic Structures.
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 13 Figure 1.3: Semantic rule pattern matched for Chomsky wrote Syntactic Structures.
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 1 Fig. 1.1 shows the major components of LUNAR. As the design of RETRIEVAL

  mantic interpretation is constructed by substituting the rst argument of predicate AUTHOR by Syntactic Structures and the second argument by Chomsky and we obtain the semantics PRED (AUTHOR: (Syntactic Structures) (Chomsky)).
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 14 Figure 1.4: An example of the c-structure and the f-structure in LFG for Sam greeted Terry.

Fig. 1 .

 1 Fig. 1.4 shows an example of the resulting c-structure and f-structure after applying these rules to the sentence Sam greeted Terry. The c-structure is a typical derivation tree and the f-structure is encoded in key-value pairs.
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 15 Figure 1.5: Comparison of CCG and CFG for parsing the sentence Mary likes musicals.

Fig. 1 .

 1 Fig. 1.5 shows how CCG uses these types of rules to parse the sentence and compares
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 16 Figure 1.6: Semantics construction for the sentence Mary likes musicals.
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 18 Figure 1.8: Examples of (NL,LF) in the Geoquery dataset.
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 1 Fig. 1.8 shows some examples (NL, LF) pairs from this dataset. The LFs are written in Prolog programming languages where strings starting with capital letters (S,C,P in the two examples) are logical variables. Certain semantic parsing sys-
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 19 Figure 1.9: Examples of (NL,LF) in the ATIS dataset.
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 1 Figure 1.10: Examples of (NL,LF) in the Robocup dataset.
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 1 Figure 1.11: An SCFG example which can generate synchronously the NL part `if our player 4 has the ball' and the LF part bowner our 4.
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 1 Figure 1.12: Output rule generalizing on two NL strings with the same LF production (penalty-area T EAM ).

  (4) a. T EAM → (?, our) b. CON DIT ION → (?, bowner T EAM {U N U M })

  candidate. An example of this common subsequence computation is given in Fig.1.12 where two rules Pattern 1 and Pattern 2 (we only show the NL part of the rule indicated by `Pattern' as the LF production is the same) are merged into one more general rule candidate. If the rule is appropriate 16 , they add the rule to be a rule in the nal SCFG.The learned SCFG may have ambiguity, the authors propose to resolve these ambiguities by adding more context to the NL parts of each involved SCFG rule, 15 The rules initially are like (3a) before generalization.
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 1 Figure 1.13: A derivation tree that correctly parses the NL.

First

  , the authors propose to use the target side non-ambiguous CFG to parse each LF and produce the corresponding derivation sequence (DS) which is the sequence of rules used to produce the LF. A word alignment model then is learned between the NL and the DS. The authors argue that learning such an alignment model results more useful information compared to trying to align between NLs and LFs as not every token in LFs (e.g. the parentheses in the LF) carries specic meanings. 19 An example of such alignments is shown in Fig. 1.14.
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 1 Fig. 1.16. For example, consider the sentence Utah borders Idaho paired with the

  Figure 1.18: An example of a derivation tree for the sentence `Where was Obama born' using a exible grammar; the derivation steps are each labeled with the type of rule (in blue) and the logical form (in red).
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 1 Figure 1.19: An example where the binary predicate `Education' is generated on the y while obeying type constraints (i.e `bridging').

  Figure1.20: The annotation process proposed by[Wang et al., 2015].

  Figure 1.21: Steps involved in converting a natural language sentence to a Freebase grounded query graph [Reddy et al., 2014].
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 1 Figure 1.22: CCG derivation containing both syntactic and semantic construction.

  actually get a faithful KB representation, the authors propose to use denotations as criteria. First, an entity is removed from the sentence graph where the entity becomes the `target' (Fig. 1.21(c)); the same operation is performed also for each KB graph obtained by transforming the semantic graph. Then we consider a KB graph representation correct if its denotation (i.e. the result of the execution) is the same as the removed entity. Fig. 1.21(d) illustrates the procedure of selecting a correct KB graph representation. The two KB graphs in Fig. 1.21(d) dier from their 42 The authors give one specic kind of ambiguity where a number can either be directly linked to an entity or be produced by some count operations. 43 The web corpus Clueweb09 which the authors use already contain this mapping using entity recognition. 1.3. New Challenges relation transformation (i.e the left graph transforms capital.of into location.capital while the right graph transforms the same relation into location.containedby), the left one is correct while the right one is not as the denotation entity Austin must be unique according to the semantic graph Fig. 1.21(b). One can learn this graph transformation when semantic graphs are paired with their correct (in the sense of denotation) KB graphs. The authors propose to use a linear scoring function for the transformation where the KB graph with the maximum score is returned at test time:
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 1 Figure 1.23: Illustration of the subgraph embedding model scoring a candidate answer [Bordes et al., 2014a].

Fig. 1 .

 1 Fig. 1.23 gives a detailed illustration of the approach to answer the factoid questions like `Who did Clooney marry in 1987?' in Webquestions 44 using Freebase as the KB. First, an entity is extracted from the question using string matching between the words in the question and KB entity mentions 45 . Using this entity, a subgraph rep- resenting the answer (Freebase subgraph in Fig. 1.23) is calculated which involves 1) a path from the extracted entity to the candidate answer 46 2) other entities directly linked (via 1 predicate) to the candidate answer.
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 1 Figure 1.24: The Freebase graph representation for the question `Who rst voiced Meg on Family Guy?'.
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 1 Figure 1.26: The convolutional neural networks (CNN) used to score the match between the question and the core chain (a sequence of predicates).
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 2 Figure 2.1: Some examples of semirings.
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 2 Figure 2.3: The derivation tree producing the string (id+id)*id.
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 2 Fig. 2.4 describes the bottom up procedure for the intersection. For a state transition in the automata such as s a:w --→ t ∈ δ, the w denotes the weight associated with the transition; similarly, the w in A w -→ α ∈ R denotes the weight of the rule.

  Figure 2.4: The bottom up procedure of the intersection algorithm. Inputs are WCFG G = (V, Σ, R, S, µ) and WFSA M = (Q, Σ, δ, i, f, ν).

Figure 3

 3 Figure3.1: RNN computational graph that maps an input sequence x to a corresponding sequence of output o values. L stands for the loss computation, which computes ŷ = sof tmax(o) before comparing this with target y. The RNN has input-to-hidden connections parametrized by a weight matrix U , hidden-to-hidden recurrent connections parametrized by a weight matrix W , and hidden-to-output connections parametrized by a weight matrix V . On the left we draw the RNN with recurrent connections that we unfold on the right.
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  Figure taken from[START_REF] Goodfellow | [END_REF].

Figure 3

 3 Figure 3.2: An RNN that generates a distribution over sequences Y conditioned on a xed-length vector input c.Figure taken from[Goodfellow et al., 2016].

  Figure 3.2: An RNN that generates a distribution over sequences Y conditioned on a xed-length vector input c.Figure taken from[Goodfellow et al., 2016].
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  Normalize the embedding vector Algorithm 1: Training with orthogonality regularizer the number of KB elements as N kb . Then denote by φ(q) ∈ {0, 1} Nw the 1-hot representation indicating the presence or absence of words in the query. Similarly

  with a gradient step. The regularizer |E.R| = |e 1 .r| + |e 2 .r| + |e 1 .r | + |e 2 .r | is minimized when entities and relations live in orthogonal space. Algorithm 1 shows the whole training procedure; the regularization parameter λ is chosen via an automatically constructed development set for which we randomly selected 1/2000 of all the triples in the KB and generate associated questions. We discard these triples from training and choose the λ value based on the score on the development set. The λ value is by this means set to 0.01 with λ in {0.5,0.1,0.05,0.01,0.005,0.001}. Once the λ value is chosen, we retrain the whole system.
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 51 Figure 5.1: Example of natural language utterance (NL) from the SPO dataset and associated representations considered in this work. CF: canonical form, LF: logical form, DT: derivation tree, DS: derivation sequence.

Figure 5 . 2 :

 52 Figure 5.2: Some general rules (top) and domain-specic rules (bottom) in DCG format.

Figure 5 .

 5 Figure 5.2 lists a few DCG rules, general rules rst, then lexical rules, for the SPO publications domain. Nonterminals are indicated in bold, terminals in italics.

Figure 5

 5 Figure 5.3: A derivation tree. Its leftmost derivation sequence is [s0, np0, np1, typenp0, cp0, relnp0, entitynp0].

Figure 5 . 4 :

 54 Figure 5.4: Projection of the derivation tree nodes into (i) a canonical form and (ii) a logical form.

Figure 5 .

 5 Figure 5.4 shows how these projections are obtained by bottom-up composition.

Figure 5 .

 5 1 is really a structured object respecting certain implicit constraints (balanced parentheses, consistency of the variables bound by lambda expressions, and more generally, conformity with the underlying grammar), the linearization treats it simply as a sequence of tokens: get [ [ lambda s [ filter s pubDate = 1950 ] ] article ]. At training time, the LFP model only sees such sequences, and at test time, the next token in the target sequence is then predicted without taking into account any structural constraints. The training regime is the standard one attempting to minimize the cross-entropy of the model relative to the logical forms in the training set.
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 55 Figure 5.5: Our neural network model which is shared between all the systems where we illustrate its use for CFP. An MLP encodes the sentence in unigrams and bigrams and produces u b . An LSTM encodes the prex of the predicted sequence generating u l,t for each step t. The two representations are then fed into a nal MLP to predict the next choice of the target sequence.

  p(y 1 , . . . y T |x 1 , . . . , x T ) = T t=1 p(y t |u b , y 1 , . . . y t-1 ) = T t=1 p(y t |u b , u l,t-1 )

  20% random split on the SPO training data and keep the 20% as development set to choose certain hyperparameters of our model. Once the hyperparameters are chosen, we retrain on the whole training data before testing. For LFP experiments, we directly tokenize the LF, as explained earlier, and for CFP experiments we directly use the CF. For DSP experiments (DSP, DSP-C, DSP-CL) where our training data consist of (NL, DS) pairs, the derivation sequences are obtained by parsing each canonical form using the DCG grammar of section 5.3. We compare our dierent systems to SPO. While we only use unigram and bigram features on the NL, SPO uses a number of features of dierent kinds: linguistic features on NL such as POS tags, lexical features computing the similarity between

Figure 5 . 6 :

 56 Figure 5.6: Neural network architecture of [Dong and Lapata, 2016] for predicting LFs.

Figure 6

 6 Figure 6.1: Some general rules (top) and domain-specic rules (bottom) of the Overnight in DCG format.

  In contrast, in chapter 5 we propose to use RNN-based models to directly map the NL to its corresponding derivation sequence (DS), which are sequentialized representations of derivation trees in the grammar. Predicting DS provides an ecient sequentialization and makes it easy to guarantee the well-formedness of the predicted sequence. Chapter 5 shows that the model Derivation Sequence Predictor with Constraints Loss (DSP-CL) achieves good performance on the original Overnight dataset.
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 1 1: Results on the Geoquery dataset for systems learning to predict a Prolog query.
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 1 2: Results on the Geoquery dataset for systems learn to predict a FunQL query.
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  For traditional n-gram models which estimate each P (w i |w i-n , . . . , w i-1 ) by counting occurrences in the dataset, if we suppose a model with prex length 0, we just need to estimate the probability of occurrence for each word, so there are |V | parameters to estimate;if we suppose a model with prex length n, there are |V | n variations for the prex; as each prex can be followed by |V | possible words, there are |V | n+1 parameters to estimate which is too dicult for a large n as we have only a corpus of limited length.

  i-1 during training which is no more the case at test time, which creates unwanted asymmetry between training and test; this is a general problem for `teacher forcing' training techniques and we refer interested readers on this topic to section 10.2.1 in[START_REF] Goodfellow | [END_REF].

Table 4

 4 

	.1 shows

Table 4 .

 4 1: Experimental results on toy example.

	Method	Prec	Recall	F1	MAP
	Embedding	0.60	0.60	0.60	0.34
	Ortho_Embedding	0.63	0.63	0.63	0.36
	Table 4.2: Performance for re-ranking question answer pairs of test set for dierent systems
	on Wikianswers				

Table 5

 5 

	.1 provides length and vocabulary-size statistics for the LFP, DSP and
	CFP tasks.

Table 5 .

 5 2: Test results over dierent domains on SPO dataset. The numbers reported correspond to the proportion of cases in which the predicted LF is interpretable against the KB and returns the correct answer. LFP = Logical Form Prediction, CFP = Canonical

		Basketball	Social	Publication	Blocks	Calendar	Housing	Restaurants	Avg
	SPO	46.3	48.2	59.0	41.9	74.4	54.0	75.9	57.1
	LFP	73.1	70.2	72.0	55.4	71.4	61.9	76.5	68.6
	CFP	80.3	79.5	70.2	54.1	73.2	63.5	71.1	70.3
	DSP	71.6	67.5	64.0	53.9	64.3	55.0	76.8	64.7
	DSP-C DSP-CL	80.5 80.6	80.0 77.6	75.8 70.2	55.6 53.1	75.0 75.0	61.9 59.3	80.1 74.4	72.7 70.0
	Form Prediction, DSP = Derivation Sequence Prediction, DSP-C = Derivation Sequence	
	constrained using grammatical knowledge, DSP-CL = Derivation Sequence using a loss	
	function constrained by grammatical knowledge.					

dimensions. The vector u b representing the sentence content has 200 dimensions. The

Table 5 .

 5 3: Grammatical error rate of dierent systems on test.

	85 https://github.com/fchollet/keras
	86 All the hyperparameters of rmsprop as well as options for initializing the neural network are
	left at their default values in Keras.

  6.2 Background on Grammars and Automata 6.2.1 The approach of[START_REF] Wang | [END_REF], original and new datasets

	s0: s(S) → np(S).
	np0: np(get[CP,NP]) → np(NP), cp(CP).
	np1: np(NP) → typenp(NP).
	cp0: cp([lambda,s,[filter,s,RELNP,=,ENTNP]]) →
		[whose], relnp(RELNP), [is], entitynp(ENTNP).
	...	
	typenp0:	typenp(article) → [article].
	relnp0:	relnp(pubDate) → [publication, date]
	entitynp0: entitynp(1950) → [1950].
	...	

Table 6 .

 6 Table6.1: Test results over all the domains on Overnight+. The numbers reported correspond to the proportion of cases in which the predicted LF is interpretable against the KB and returns the correct answer. DSP-CL is the model introduced in chapter 5 that guarantees the grammaticality of the produced DS. BDSP-CL is our model integrating various factors (e.g WCFG, WFSA) into the background. SPO (no-lex) is a feature-based system[START_REF] Wang | [END_REF] where we desactivate alignment features. SPO* is the full feature-based system but with unrealistic alignment features (explained in subsection 6.4.3) and thus should be seen as an upper bound of full SPO performance. 2: Some prediction examples of BDSP-CL, DSP-CL and SPO (no-lex). For readability, instead of showing the predicted LF, we show the equivalent CF. Correct predictions are noted in italics.

	New split	Basketball	Social	Publication	Calendar	Housing	Restaurants	Blocks	Avg
	SPO (no-lex)	42.2		3.1		33.1	38.8	31.0	65.4	32.1	35.1
	SPO*	47.4		40.4	43.4		56.6	30.7	67.8	37.0	46.2
	DSP-CL	51.0		49.7	15.2	22.5	28.7	58.7	15.9	34.5
	BDSP-CL	63.0		57.3	25.5	36.4	60.7	64.3	34.7 48.8
	sentence		BDSP-CL					DSP-CL		SPO(no-lex)
	`what locations are the	`meetings that has the least	`location that is location of	`location that is location of
	fewest meetings held'	number of locations'			more than 2 meeting'	the least number of meet-
											ing'
	`which men are 180cm	`person	whose	gender	`person whose height is	`person whose height is at
	tall'		is male whose height is	180cm'		least 180cm'
			180cm'						
	`what position is shaq	`position	of	player	shaq	`position of player kobe	`position	of	player	shaq
	oneal'		oneal'					bryant'		oneal'

In practice, a morphological analyzer is used so that the rule recognizes the verb write as well as its variants such as writes, wrote, etc.

Fig. 1.7 illustrates this annotation. For example, the word `when' has the semantics `time' and has the syntactic structure `wh-head'; the vp node just below the /wh-question root is associated with the semantics `arrival', etc.Note that at test time, if one succeeds in producing such a semantic/syntactic tree, it may be easier in the following to convert the semantic information in the 6 Because not every word carries semantics (e.g. 'do', 'the' in the sentence of Fig.1.7), one can note in the gure that every node is associated with a syntactic class but not always with a semantic one.

We refer to preterminal nodes the nodes just above the words, which are sometimes called tags also in the literature.

We refer readers interested in smoothing techniques to the paper[START_REF] Miller | [END_REF].

Note that these scores are produced by evaluating the accuracy over LFs written in frames; the system evaluated thus contains the parsing model described so far and a model converting the semantics in the tree to LFs written in frames that we did not describe.

Another reason is that the works we choose to review in this section are between 2000-2010, so the section order also ts the timeline.

[Kate et al., 2005a] also builds a deterministic semantic parser, however their proposed method is based on SCFG and lays the ground for papers that later on incorporate statistical machine learning[START_REF][END_REF][START_REF] Wong | [END_REF][START_REF] Wong | [END_REF].

This is in contrast to the approach discussed in 1.1.3 where the produced semantics has to be further analyzed.

also includes syntactic information (e.g. several terminals grouped forming an NP nonterminal).

Note that to calculate the exact maximum, one has to consider every derivation as the classier assigns a nonzero score to all the rules, so approximate beam search based algorithms are derived to calculate the derivation with the maximum score.

Authors also argue that learning alignment between LFs and DSs is better because tokens in

We use DS ; LF denote all the DS that produce the concerned LF.

Even though the number of DS's is huge, the gradients can be calculated exactly in this case by using dynamic programming. We refer interested readers to the original paper[START_REF] Zettlemoyer | [END_REF]] on this aspect. This is notably contrary to some models we discuss in 1.3.1.1 where gradients can no more be calculated exactly (there is no ecient way).

In particular, we want the system to avoid outputting rules such as Idaho := NP :utah.

The label bias problem appears due to the asymmetry we create between training and test: at training time, the model always has access to the correct previous tags, which is not satised at test time.

This is contrary to the model[START_REF] Zettlemoyer | [END_REF] where the probability of the correct LF P (LF |N L, θ) and its gradient can be estimated exactly in an eecient way (by using dynamic programming).

More precisely, the prex is sampled from the probability distribution that the RNN predicts at each time step.

Although the general intention of SPO is to unambiguously reect the logical form through the canonical form (which is the basis on which Turkers provide their paraphrases), we do encounter some cases where, although the CF is well-formed and therefore parsable by the grammar, several parses are actually possible, some of which do not correspond to queries for which the KB can return an answer. In these cases, we return the rst parse whose logical form does return an answer. Such situations could be eliminated by rening the SPO grammar to a moderate extent, but we did not pursue this.

Acknowledgements i

construction can be easily extended to the weighted cases [START_REF] Nederhof | [END_REF] (i.e a WFSA and a WCFG) that we will describe here.

Given inputs a WCFG G = (V, Σ, R, S, µ) and a WFSA M = (Q, Σ, δ, i, f, ν), 50 the intersection between G and M results in a WCFG G ∩ = (V ∩ , Σ, R ∩ , S ∩ , µ ∩ )

where V ∩ = Q × (Σ ∪ V ) × Q, S ∩ = (i, S, f ) and R ∩ consists of the set of rules obtained as follows:

• For each rule π = (A → X 1 . . . X m ) ∈ R, 51 m ≥ 0 and each sequence of states r 0 . . . r m ∈ Q, add the rule π ∩ = ((r 0 , A, r m ) → (r 0 , X 1 , r 1 ) . . . (r m-1 , X m , r m ))

to R ∩ ; for m = 0, 52 let R ∩ contain the rule π ∩ = ((r 0 , A, r 0 ) → ) for all r 0 ∈ Q. In both cases, let µ ∩ (π ∩ ) = µ(π).

• For each transition τ = (r a -→ t) ∈ δ, let the rule π ∩ = (r, a, t) → a be in R ∩ and let µ ∩ (π ∩ ) = ν(τ ).

One can check that the resulting grammar G ∩ represents all the sentences accepted by both G and M . Furthermore, the weight for a sentence in G ∩ is the multiplication of its weights in G and M . Formal proof of correctness on this weighted intersection algorithm can be found in [START_REF] Nederhof | [END_REF]. However, the above intersection algorithm is too inecient to be useful in practice. For an automata M having n states and any rule π = (A → X 1 . . . X m ) ∈ R, the intersection algorithm described above constructs a G ∩ producing n m+1 rules out of the original rule π. 53

The resulting G ∩ contains many rules that are non-generating, meaning that no terminal string can be derived from the nonterminal on the LHS of these rules. One can use a bottom-up procedure to avoid generating these rules making the intersection algorithm less inecient and more useful in practice. The bottom-up procedure that we will describe is an adaption of that proposed by [START_REF] Nederhof | [END_REF] and is related to the syntactic parsing algorithm by [Graham et al., 1980].

Before entering into the intersection algorithm, we introduce the dot notation: given a production A → αβ ∈ R, the notation A → α • β represents a condition 50 Note that without loss of generality, we suppose that G and M share the same set of terminals

Σ.

51 Note that throughout the section, the Xi involved in the rule can be either terminals or nonterminals.

52

The cases m = 0 correspond to rules producing the empty string noted by A → .

53 To see the number of rules, one notes that the new rules are constructed by `inserting' states between two consecutive Xi, Xi+1 or at the beginning or at the end of the rule (m + 1 possibilities); as this holds true for each state insertion, the number is n m+1 .

Remark that the bottom up procedure described above eliminates non-generating nonterminals but does not eliminate `non reachable' nonterminals. A nonterminal is said to be `reachable' if a string involving that nonterminal can be derived from the start symbol (i.e S in G = (V, Σ, R, S, µ)). A top down procedure can be applied after the bottom up procedure [START_REF] Nederhof | [END_REF] to eectively eliminate non reachable nonterminals in the resulting intersected grammar. In practice, we use an intersection algorithm adapted from the Earley parsing algorithm [Dyer, 2010] 

Introduction

In this chapter, we consider a `simple' semantic parsing task by focusing on the Wikianswers [START_REF] Fader | [END_REF] dataset where the answers to the user query can be found in the Reverb [Fader et al., 2011] knowledge base (KB). In the Wikianswers than Bordes et al. [2014b;2014a]'s embeddings based method.

88

At a more abstract level, our approach diers from previous work in that it exploits the fact that logical forms are structured objects whose shape is determined by an underlying grammar. Using the power of RNN as sequence predictors, we learn to predict, from more or less explicit representations of this underlying grammar, equivalent but dierent representations of a sentence content namely, its canonical form, its logical form and its derivation sequence. The observation that one can incorporate the grammatical prior knowledge into a semantic parsing system is made by [Kate et al., 2005a;[START_REF][END_REF][START_REF] Wong | [END_REF][START_REF] Wong | [END_REF]. Our contribution is to incorporate this type of prior knowledge into RNN-based models.

We observe that the best results are obtained by using the derivation sequence, when also exploiting the underlying grammatical constraints. However the results obtained by predicting directly the linearization of the logical form or canonical form are not far behind; we show that often, the predicted linearizations actually satisfy the underlying grammar. This observation can be related to the results obtained by [START_REF] Vinyals | [END_REF], who use an RNN-based model to map a sentence to the linearization of its parse tree, 89 and nd that in most cases, the predicted sequence produces well-balanced parentheses. It would be interesting to see if our observation would be maintained for more complex LFs than the ones we tested on, where it might be more dicult for the RNN to predict not only the parentheses, but also the dependencies between several lambda variables inside the overall structure of the LF.

This chapter is closely related to [Dong and [START_REF] Dong | Language to logical form with neural attention[END_REF] which also proposes an RNN-based semantic parser. 89 Note a crucial dierence with our approach. While in their case the underlying (syntactic)

grammar is only partially and implicitly represented by a set of parse annotations, in our case the explicit (semantic) grammar is known a priori and can be exploited as such. be explained below. Second, we compute b(x t+1 |x 1 , . . . , x t , N L) as the conditional probability relative to GW N L of producing x t+1 in the context of the prex x 1 , . . . , x t .

Apart from our use of a much richer background than chapter 5, our overall training approach remains similar. Our training set consists in pairs of the form (N L, DS); the rnn θ component of the BRNN (6.3.1) is an LSTM-based network in which the input encoding is a vector based on the unigrams and bigrams present in N L, and where the DS output is a sequence of rule-names from G; the output layer of this network is then combined additively with log b before a softmax is applied, resulting in the probability distribution p θ (x t+1 |x 1 , . . . , x t , N L); nally the incremental cross-entropy loss of the network -log p θ (x t+1 |x 1 , . . . , x t , N L) is backpropagated through the network (where xt+1 is the observation in the training data).

Implementation details are provided in section 6.4.

Constructing the WCFG background, WFSA factors

As in the case of chapter 5, we still want our background to ensure grammaticality of the evolving derivation sequences, but in addition we wish it to reect certain tendencies of these sequences that may depend on the NL input. By stating these tendencies through a real-weighted, rather than binary, background b(x t+1 |x 1 , . . . , x t , N L), we make it possible for the rnn component to bypass the background preferences in the presence of a training observation x t+1 that does not agree with them, through giving a high enough value to rnn θ (x t+1 |x 1 , . . . , x t , N L).

Our approach is then the following. We start by constructing a simple WCFG GW 0 that (1) enumerates exactly the set of all valid derivation sequences relative to the original G, and (2) gives equal weight 1/n N T to each of the possible n N T expansions of each of its non-terminals N T . Thus GW 0 is actually a Probabilistic CFG (PCFG), that is, a WCFG that has the property that the sum of weights of the possible rules expanding a given nonterminal is 1. Thus GW 0 basically ensures that the strings of symbols it produces are valid DS's relative to G, but is otherwise non-committal concerning dierent ways of extending each prex.

The second step consists in constructing, possibly based on the input N L, a small number of WFSA's (weighted FSA's) each of which represents a certain aspect of the prior knowledge we have about the likely output sequences. These automata will be considered as factors (in the sense of probabilistic graphical models) that will be intersected (in other words, multiplied) with GW 0 , resulting in a nal WCFG GW N L which will then combine the dierent aspects and be used as our background. 93 In Fig. 6.2, we illustrate three possible such automata; here the output vocabulary consists of the symbols a, b, c, . . . (in our specic case, they will actually be DS symbols, but here we keep the description generic).

Let us rst describe the automaton on the left. Here each symbol appears on an edge with weight 1, with the exception of the edge associated with a, which carries a weight δ 1; this automaton thus gives a neutral weight 1 to any symbol sequence that does not contain a, but a much smaller weight δ k to one that contains k ≥ 1 instances of a. Once intersected with GW 0 , this automaton can be used to express the belief that given a certain input N L, a is unlikely to appear in the output.

The automaton in the middle expresses the opposite belief. Here the exit weight associated with the nal (also initial) state 0 is η 1. This automaton gives a weight 1 to any sequence that contains a, but a weight η to sequences that do not.

Once intersected with GW 0 , this automaton expresses the belief that given the input N L, a is likely to appear in the output.

The automaton on the right is a simple illustration of the kind of prior beliefs that could be expressed on output sequences, independently of the input. Here γ x denotes the unigram probability of the output symbol x. In the context of semantic parsing, such automata on the output could be used to express certain forms of regularities on expected logical forms, such as, like here, unigram probabilities that are not handled by the grammar GW 0 (which is concerned only by well-formedness constraints), or more generally, observations about certain patterns that are likely or unlikely to occur in the logical forms (e.g. the unlikeliness of mixing basketball players with scientic authors), insofar as such regularities can be reasonably expressed in nite-93 Formally, intersecting a WCFG GW with a WFSA A consists in applying a Dynamic Programming algorithm that constructs a new WCFG GW = GW ∩ A. If the weight of a certain sequence x1, . . . , xn is ωGW relative to GW (resp. ωA relative to A), then its weight relative to GW is ωGW • ωA.

Setup

The original Overnight dataset is a valuable data resource for studying semantic parsing as the dataset contains various domains focusing on dierent linguistic phenomena; the utterances in each domain are annotated both with logical forms (LFs) and canonical forms (CFs). However, as [START_REF] Jia | Data recombination for neural semantic parsing[END_REF] point out, this dataset has two main drawbacks: 1) it contains too few entities compared to real datasets, 2) most of the LFs in test are already seen during training. In consequence, the results achieved on this dataset by dierent systems [Wang et al., 2015; Jia and Liang, 2016] are probably too optimistic.

To remedy these issues, we release an extended Overnight+ dataset. 

Implementations

For our BRNN, the background b is composed of a WCFG factor (GW 0 in subsection 6.3.2) and depending on the input, zero to several WFSA factors favoring the presence of certain entities. In the current implementation, we only employ automata that have the same topology as the automaton shown in the middle of Fig. 6.2 where the output vocabulary consists in rule names (e.g. s0, np1, ...) and where the weight η is chosen in [0, 0.0001, 0.01] based on the results obtained on the development set.

Currently, we detect only named entities and dates by using mostly exact string matching (e.g. if we detect 'alice' in the input, we construct an automaton to favor its presence in the LF), as well as a small amount of paraphrasing for dates (e.g we detect both `jan 2' (as given by CFs) and `january 2' as January 2nd). We use a library developed by Wilker Aziz 96 for performing the intersection between WFSA(s) and 94 https://github.com/chunyangx/overnight_more 95 We use a high-precision heuristic substituting the named entities in the input string with new ones under certain conditions.

96 https://github.com/wilkeraziz/pcfg-sampling