Juan Soler 
  
José Cañizo 
  
José Carrillo 
  
Oscar Sánchez 
  
María-José Cáceres 
  
Juan Calvo 
  
Pilar Guerrero 
  
Cada 
  
Myriam Aussi Je Voudrais Remercier 
  
Guillaume Beslon 
  
Carole Knibbe 
  
Hédi Soula 
  
Thibault, Hélène Monika Chris 
  
Albert Fathi 
  
Nathalie Aubrun 
  
Vincent Beara 
  
Vincent Borrelli 
  
Grégory Vial 
  
C Zarate 
  
C Lefranc 
  
Mr. Vivarelli Mr Rojas 
  
Mr Peurichard 
  
Pienso En Particular En Joaquín 
  
María Gaspar 
  
Eugenio. . . Y Maite Vicente Marco 
  
Diego Elisa Hugo 
  
David Gabriel 
  
I Met Mira 
  
Bogdan Alonso 
  
Nikolai Kenny 
  
Alex Charles 
  
Vincent Émeric 
  
Que J'admire 
  
Nils 
  
Loic 
  
Ulysse Maurizio Simon 
  
Dante Laurent 
  
Cristiano Loïc 
  
Rhône-Alpo 
  
Alexandre, Emmanuel, Jad, Florian Sam 
  
Pedro Akram 
  
Nathalie Bastien 
  
Frances Too ! 
  
Thomas Gabriel 
  
Maïté Quentin Stan 
  
Thomas, Thomas, (si, si Vincent Comptez-Vous 
  
Robin 
  
Matthias, Fred, Lauriane, Franzi, Maud Simon 
  
Raphaël Arnaud 
  
Julie But-But 
  
Jad Anne-Laure Silvia 
  
Mis Tíos Luisa 
  
Nuria Alain Y David 
  
Chari 
  
Marisa Abilio 
  
Paula Cuando Éramos Pequeños 
  
Juan Y Clara 
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
qui j'ai partagé des moments de bonheur

À toutes les personnes que j'oublierai de nommer dans les lignes qui suivent, merci d'avoir contribué à façonner cette oeuvre et son auteur. Je tiens tout d'abord à exprimer ma profonde gratitude à mes trois directeurs de thèse, Hugues Berry, Vincent Calvez et Thomas Lepoutre pour le temps qu'ils m'ont consacré et la conance qu'ils m'ont accordée et transmise, et ce dès avant le début de ma thèse. Leurs sourires, leurs créativités, leur clairvoyance et leur rigueur sont des qualités que j'admire et chéris, et dont les images m'habiteront longtemps. Je suis très honoré d'avoir pu partager avec eux de nombreuses séances de travail enthousiasmant mais aussi des moments de détente, sportive ou pas, et des conversations qui m'ont mené à grandir mathématiquement et en tant que personne.

Deseo agradecer a Miguel Ángel Herrero García su acogida durante dos estancias en la UCM.

Mi primer trabajo en matemáticas aplicadas a la biología lleva su sello, y sus enfoques sobre la modelización matemática constituyen una fuente de la que he alimentado y espero seguir alimentando mis reexiones y planteamientos.

Merci beaucoup à Pierre Gabriel, avec qui j'ai eu l'occasion d'apprendre à aronter un problème dur sous divers angles, et grâce à qui cela a été un plaisir.

Je tiens à exprimer mes remerciements et toute ma reconnaissance à Juan Soler et Stéphane Mischler, qui ont accepté la tâche ingrate de rapporter ce manuscrit pendant la période estivale, et de faire partie du jury. Merci pour leurs remarques et commentaires. Quisiera agradecer a María José Cáceres que haya aceptado ser miembro de mi jurado y desplazarse hasta Lyon para participar en él. Un grand merci aussi à Delphine Salort, qui a accepté de participer à mon jury, et à Paul Vigneaux, qui est bien plus pour moi qu'un de mes professeurs et membre de mon jury.

Je souhaiterais présenter ici

∂ t n(t, x, a) + ∂ a n(t, x, a) + β(a)n(t, x, a) = 0 , t ≥ 0, a > 0 , x ∈ R n(t, x, a = 0) = ∞ 0 β(a ) R ω(xx )n(t, x , a ) dx da n(t = 0, x, a) = n 0 (x, a). 

Dans le contexte de la sous-diusion et tout au long de cette thèse, le noyau de redistribution spatiale ω est considéré Gaussien centré en 0, et le taux de saut β satisfait (à perturbations près) :

β(a) = µ 1 + a . (5) 
L'originalité de notre approche est de d'étudier directement l'équation intégro-diérentielle précédente en se focalisant sur sa structure en âge. Cela dière de l'approche plus commune au sein de la communauté qui étudie la diusion anormale, qui consiste à étudier les équations macroscopiques aux dérivées fractionnaires déduites de ces équations mésoscopiques grâce à des transformées de Fourier-Laplace.

Convergence autosimilaire du problème en espace homogène 

Le premier Chapitre de cette thèse suit l'article publié en collaboration avec Thomas Lepoutre et Hugues Berry [START_REF] Berry | Quantitative convergence towards a self-similar prole in an age-structured renewal equation for subdiusion[END_REF]. Nous y étudions la décroissance autosimilaire des solutions de l'équation précédente. Nous y prouvons, sous des hypothèses raisonnables, que toute solution de [START_REF] Arnold | On convex Sobolev inequalities and the rate of convergence to equilibrium for Fokker-Planck type equations[END_REF] décroît suivant un prol autosimilaire.

Théorème 1 (Berry, Lepoutre, Mateos González).

Soient n 0 à support compact dans [0, 1) et β(a) = µ 1+a . Soit

N ∞ (t, a) = c∞ a µ (1+t-a) 1-µ , a < 1 + t, 0, a > 1 + t.
Alors, si µ = 1/2, il existe K > 0 tel que n(t, .) -N ∞ (t, .)

1 ≤ K (1 + t) µ + K (1 + t) 1-µ , xvi et si µ = 1/2, il existe K > 0 tel que n(t, .) -N ∞ (t, .) 1 ≤ K(1 + log(1 + t)) √ 1 + t .
La preuve du théorème précédent repose sur un résultat potentiellement plus fort. Il s'agit de la dénition du pseudo-équilibre W en Dénition 2 et du théorème de convergence 4. Ces nouveaux résultats ont une certaine stabilité par rapport à la perturbation du taux de saut. 

Cette équation non autonome admet un état stationnaire qui en satisfait formellement la limite quand τ → ∞ :

W ∞ (b) = c ∞ b µ (1 -b) 1-µ . ( 10 
)
Il s'agit de la distribution de Dynkin-Lamperti, ou la loi de l'arc-sinus. La constante de renormalisation c ∞ est dénie de sorte que W ∞ 1 = 1. Sous certaines hypothèses, nous pouvons nous attendre à la convergence de w(τ, b) vers cette distribution.

Le problème en variables autosimilaires (9) n'admet pas d'état stationnaire intégrable. Cela rend impossible l'application directe de méthodes d'entropie relative pour montrer la convergence en entropie de w vers W ∞ . Cela nous mène à introduire une fonction pivot, le pseudo-équilibre W (τ, •) -W ∞ 1 ≤ Ke (µ-1)τ , [START_REF] Bartier | Improved intermediate asymptotics for the heat equation[END_REF] où K est une constante ne dépendant que de µ et et w 0 .

W : (τ, b) ∈ R + × [0, 1) → W (τ, b) ∈ R + , tel que W (τ, •) converge en norme L 1 vers W ∞ quand
Par une stratégie inspirée de méthodes d'entropie relative [START_REF] Michel | General relative entropy inequality: an illustration on growth models[END_REF][START_REF] Perthame | Transport Equations in Biology[END_REF], nous prouvons une version généralisée du théorème suivant :

Théorème 4 (Berry, Lepoutre, Mateos González).

w(τ, •) -W (τ, •) 1 ≤ K(e -µτ + e -(1-µ)τ ), if µ = 1/2 Kτ e -τ /2 , if µ = 1/2. ( 13 
)
Des simulations numériques suggèrent que le taux réel de convergence d'une solution vers W est meilleur que le taux de convergence de W vers W ∞ . Cela est raisonnable étant donné que la décroissance exponentielle en e -µτ est intrinsèque, au sens où c'est le taux auquel deux solutions se rapprochent ; alors que la décroissance exponentielle en e (µ-1)τ est liée à une correction.

Notre contribution principale dans ce travail, à part l'obtention du taux de convergence en soi, est l'utilisation de techniques inspirées d'entropie relative ainsi que l'utilisation du pseudoéquilibre W dans la preuve.

Limite hyperbolique et équation de Hamilton-Jacobi

Les résultats présentés au second Chapitre ont été établis en collaboration avec Vincent Calvez et Pierre Gabriel dans le preprint [START_REF] Calvez | Limiting Hamilton-Jacobi equation for the large scale asymptotics of a subdiusion jump-renewal equation[END_REF]. Nous étudions la limite hyperbolique de l'équation [START_REF] Allaire | Analyse numérique et optimisation : Une introduction à la modélisation mathématique et à la simulation numérique[END_REF] pour ω distribution Gaussienne et β = µ 1+a . Nous prouvons un résultat de stabilité : les solutions des problèmes rééchelonnés à ε > 0 convergent lorsque ε → 0 vers la solution de viscosité de l'équation de Hamilton-Jacobi limite des problèmes à ε > 0.

Considérons donc l'équation (3) après rééchelonnement hyperbolique :

(t, x, a) -→ (t/ε, x/ε, a) et appliquons une transformation de Hopf-Cole à ce problème : n ε (t, x, a) = n (t/ε, x/ε, a) = exp (-φ ε (t, x, a)/ε) . [START_REF] Berry | Anomalous diusion due to hindering by mobile obstacles undergoing brownian motion or orstein-ulhenbeck processes[END_REF] L'étude de φ ε nous permet de quantier précisément le comportement des queues exponentielles de la fonction densité de probabilité n d'une façon inspirée de la théorie des grandes déviations.

Pour (t, x, a) tel que φ ε (t, x, a) < ∞, la fonction φ ε satisfait :

             ∂ t φ ε + 1 ε ∂ a φ ε -β = 0 , t ≥ 0, a > 0 , x ∈ R exp (-φ ε (t, x, 0)/ε) = 1+t/ε 0 R β(a)ω(z) exp (-φ ε (t, x -εz, a)/ε) dz da φ ε (0, x, a) = φ 0 ε (x, a) = -ε ln n 0 (x/ε, a) . (15) 
Nommons ψ ε la condition de bord à a = 0. Elle sera notre inconnue principale :

ψ ε (t, x) = φ ε (t, x, 0). (16) 
xviii Une idée intéressante dans cet article est celle de démontrer la convergence vers l'équation de Hamilton-Jacobi limite directement pour la condition de bord de notre équation au lieu d'utiliser les fonctions test perturbées introduites par Evans [START_REF] Evans | The perturbed test function method for viscosity solutions of nonlinear PDE[END_REF] sur la fonction φ ε , qui serait amenée à perdre sa dépendance en âge à la limite.

Nous exprimons la solution de [START_REF] Berry | Quantitative convergence towards a self-similar prole in an age-structured renewal equation for subdiusion[END_REF] le long des caractéristiques :

φ ε (t, x, a) =    ψ ε (t -εa, x) + ε a 0 β(s) ds, t > 0, εa < t φ 0 ε (x, a -t/ε) + ε a a-t/ε β(s) ds, t ≥ 0, a ≥ t/ε. (17) 
L'injection de [START_REF] Bingham | Regular Variation[END_REF] dans la condition de bord à a = 0 satisfaite par φ ε dans [START_REF] Berry | Quantitative convergence towards a self-similar prole in an age-structured renewal equation for subdiusion[END_REF] nous donne :

1 = Aε t/ε 0 Φ(a) R ω(z) exp 1 ε [ψ ε (t, x) -ψ ε (t -εa, x -εz)] dz da + 1+t/ε t/ε Φ(a) R ω(z) exp 1 ε ψ ε (t, x) -φ 0 ε (x -εz, a -t/ε) + a-t/ε 0 β dz da Bε , (18) 
où Φ est la distribution des temps d'attente introduite en 4. La limite formelle de [START_REF] Boltzmann | Lectures on Gas Theory[END_REF] lorsque ε → 0 est la suivante :

1 = ∞ 0 Φ(a) exp (a∂ t ψ 0 (t, x)) da R ω(z) exp (z∂ x ψ 0 (t, x)) dz. (19) 
Il s'agit d'une équation de Hamilton-Jacobi, équivalente à :

∂ t ψ 0 (t, x) + H(∂ x ψ 0 )(t, x) = 0, (20) 
où H est déni ci-dessous, avec Φ-1 la fonction inverse de la transformée de Laplace de Φ :

H(p) = Φ-1 1 R ω(z) exp(zp) dz . ( 21 
)
Le résultat principal du second Chapitre de ma thèse est la preuve de la convergence lorsque ε tend vers 0 de la fonction ψ ε vers l'unique solution de viscosité ψ 0 de l'équation de Hamilton-Jacobi limite [START_REF] Boltzmann | Further Studies on the Thermal Equilibrium of Gas Molecules[END_REF], sous les hypothèses raisonnables sur la condition initiale suivantes.

Hypothèse 1 (Condition initiale φ 0 ε ).

Nous faisons l'Ansatz de type WKB suivant :

φ 0 ε (x, a) = v ε (x) + εη ε (x, a) + χ [0,1) (a) (22) 
où χ [0,1) (a) vaut 0 pour a ∈ [0, 1) et ∞ pour a ≥ 1. Le support essentiel de φ 0 ε est donc [0, 1), en accord avec le choix de n 0 . Les fonctions φ 0 e , v ε et η ε satisfont les propriétés suivantes uniformément en ε :

1. v ε et φ 0 ε sont Lipschitz en x uniformément en a. 2. v ε et φ 0 ε sont sous-linéaires et bornées en-dessous : il existe des constantes positives K 0 , K 1 telles que pour tout x ∈ R et a ∈ [0, 1), pour tout ε > 0,

-K 0 ≤ v ε (x) ≤ K 0 + K 1 |x|, -K 0 ≤ φ 0 ε (x, a) ≤ K 0 + K 1 |x|. (23) 
xix Résumé de la thèse 3. φ 0 ε et v ε sont semi-concaves en x uniformément en a : il existe C xx ∈ R telle que pour tous x, h ∈ R et a ∈ [0, 1), pour tout ε > 0,

φ 0 ε (x + h, a) + φ 0 ε (x -h, a) -2φ 0 ε (x, a) ≤ C xx h 2 , v ε (x + h) + v ε (x -h) -2v ε (x) ≤ C xx h 2 . ( 24 
)
(Ou de façon équivalente, au sens des distributions,

∂ 2 x φ 0 ε ≤ C xx et ∂ 2 x v ε ≤ C xx .) 4.
Les convergences suivantes ont lieu, localement uniformément en x :

   v ε ---→ ε→0 v, εη ε (x, a) ---→ ε→0 0. ( 25 
)
Théorème 5 (Calvez, Gabriel, Mateos González). Sous les Hypothèses 1, la fonction ψ ε converge dans L ∞ loc vers ψ 0 , l'unique solution de viscosité de l'équation de Hamilton-Jacobi limite [START_REF] Boltzmann | Further Studies on the Thermal Equilibrium of Gas Molecules[END_REF] avec pour condition initiale v.

La stratégie de preuve est la recette classique présentée par Barles dans [START_REF] Barles | Solutions de viscosité des équations de Hamilton-Jacobi[END_REF]Chapter 2] pour des résultats de stabilité. Il s'agit de montrer des estimations a priori : ψ ε est localement bornée (dans notre cas, bornée inférieurement et sous-linéaire) et Lipschitz. L'ensemble (ψ ε ) ε est donc compact dans C(K) pour tout compact K grâce au théorème d'Arzela-Ascoli. À extraction diagonale près, ψ ε converge vers une fonction ψ 0 . On utilise le fait que ψ ε est sous-et sur-solution pour prouver que ψ 0 est solution de viscosité. Un résultat d'unicité permet de conclure que toute la suite ψ ε tend vers l'unique solution de viscosité ψ 0 de l'équation de Hamilton-Jacobi limite.

Malgré l'aspect classique de la preuve, nous y avons rencontré et résolu deux dicultés intéressantes. Je les présente ci-dessous, accompagnées d'heuristiques tirées de la décroissance autosimilaire du problème en espace homogène [START_REF] Berry | Quantitative convergence towards a self-similar prole in an age-structured renewal equation for subdiusion[END_REF].

Absence d'état stationnaire intégrable

Le problème homogène en espace (6) n'admet pas d'état stationnaire intégrable. Il en résulte que le principe du maximum ne peut pas être appliqué directement pour prouver des bornes sur ψ ε .

Cependant, des corrections dépendantes du temps nous permettent de prouver les bornes souhaitées. Ces corrections étaient attendues, grâce à l'heuristique suivante. Considérons le problème en espace homogène [START_REF] Arnold | On convex Sobolev inequalities and the rate of convergence to equilibrium for Fokker-Planck type equations[END_REF], et, suivant le résultat de décroissance autosimilaire de 

n(t, a) 1 1 + t W ∞ a 1 + t . ( 26 
)
Ceci se traduit dans notre contexte en une correction logarithmique en temps de la borne L ∞ de -ε ln(n), que l'on retrouve dans le second Chapitre de cette thèse. L'obtention de ces termes correcteurs est la première diculté abordée dans le second Chapitre.

Contrôle en temps long des sauts issus de la condition initiale

La stratégie de preuve du Théorème 5 conclut sur une procédure de limite de viscosité. Montrer que la limite ψ 0 d'une suite extraite de ψ ε est une sous-solution de viscosité de l'équation de Hamilton-Jacobi limite [START_REF] Boltzmann | Lectures on Gas Theory[END_REF] est relativement simple. Cependant, la preuve que ψ 0 est une sursolution est plus complexe.

xx La preuve requiert de contrôler nement la proportion de protéines B ε dans la formulation [START_REF] Boltzmann | Lectures on Gas Theory[END_REF] ayant subi un saut au temps t mais qui n'avait jamais sauté avant. Autrement dit, l'enjeu est de montrer que l'inuence de la condition initiale φ 0 ε sur le terme de bord ψ ε décroît. Or la queue lourde de la distribution Φ des temps d'attente mène à une décroissance très lente de B ε .

En montrant que la semi-concavité de la condition initiale est préservée et en appliquant le principe du maximum de façon ingénieuse, nous récupérons une l'estimation ne localement uniforme en temps suivante :

B ε ε µ . ( 27 
)
Encore une fois, une heuristique utilisant la décroissance autosimilaire prouvée dans le Chapitre 1 mène à un taux semblable.

L'obtention de ce type de ranement non-local de la borne Lipschitz en temps de ψ ε est le troisième aspect novateur du Chapitre 2.

Introduction

Motivation and framework

This dissertation treats the asymptotic analysis of age-structured partial dierential equations stemming from cellular biology. The main mathematical tools used are inspired by relative entropy methods and Hamilton-Jacobi techniques.

The biological motivation for such equations is the analysis of random motion of proteins inside the cytoplasm of a biological cell in cases when crowding and trapping phenomena cause such motion to deviate from standard diusion. I will begin by presenting the modelling, biological and mathematical contexts relevant to my work, and motivate why the study of anomalous diusion is a current topic of interest in biomathematics.

A historical introduction to the modelling of random motion

Let us rst introduce normal diusion from a historical point of view, so as to give some insight into the richness of links between dierent scales of modelling, and so as to explain the reason anomalous diusion bears that name.

The main message of this Section consists of the following points. Random motion is a very common phenomenon, whose most immediate intuitive description is at the microscopic level.

The mesoscopic equations of kinetic theory link the microscopic and macroscopic descriptions in a rich way. Mean squared displacement is a key observable magnitude which allows a certain characterisation of random motions. The type of diusion presented here is normal because it is the simplest: memory-less random motion. It is associated to a Gaussian random walk. The reader can nd more rened historical introductions at the beginning of the following articles [START_REF] Metzler | The random walk's guide to anomalous diusion: a fractional dynamics approach[END_REF][START_REF] Hänggi | Brownian motors[END_REF][START_REF] Metzler | Anomalous diusion models and their properties: non-stationarity, non-ergodicity, and ageing at the centenary of single particle tracking[END_REF], by which this presentation is heavily inspired.

First observations of random motion Many macroscopic systems, from inanimate solid particles in a uid to animals populations, exhibit some form of random motion. Consequently, the observation without a proper scientic explanation of random motion can be traced as far back as one may wish [103, verses 80 141].

In a scientically reproducible context however, the rst relevant observations occur in the late 18th and 19th century. In 1785, Jan Ingenhousz presents at the very beginning of [START_REF] Ingenhousz | Nouvelles Expériences et Observations Sur Divers Objets De Physique[END_REF] a chapter titled Observations sur l'usage du microscope, in which he describes how particles of ne charcoal move randomly in a water or alcohol microscope preparation due to the evaporation of the liquid. He states that this is an uninteresting technical issue that can be solved by covering the preparation with a small lm of glass. However, he does remark that the eect occurs for both living and inanimate particles, which is one of the key points of Brown's 1828 and [START_REF] Perrin | Les atomes[END_REF] describing the positions occupied by a grain after successive equal time intervals. In [the left gure] three diagrams are shown, the scale being such that sixteen divisions represent 50 microns. These diagrams were obtained by tracing the horizontal projections of the lines joining consecutive positions occupied by the same mastic grain (radius equal to .53µm); the positions were marked every 30 seconds. (Excerpt from the English translation [START_REF] Perrin | Atoms[END_REF].) The right diagram represents a large number of displacements traced on an arbitrary scale.

1829 papers [START_REF] Brown | additional remarks on active molecules[END_REF][START_REF] Brown | additional remarks on active molecules[END_REF]. The crucial contribution of Brown is to experimentaly refute known mechanistic causes of the motion, and posit the existence of molecules as a possible explanation.

The rst systematic recording of individual trajectories of particles can be credited to Jean Perrin, who observed small granules in emulsions see Figure 1.

Mathematical and physical description Close to the time of publication of Brown's cited articles, Fourier introduced the heat equation in his 1822 book [START_REF] Fourier | Théorie analytique de la chaleur[END_REF], as a description of heat transfer dynamics:

∂ t u(t, x) = D∆ x u(t, x), t ∈ R + , x ∈ Ω ⊂ R d . (1)
Here, u is a density function depending on the time variable t and the space variable x ∈ Ω, an open subset of R d . However, the rst sentence in Fourier's prologue states that the fundamental causes of heat are unknown 1 . This only became a model of diusion with Fick's derivation of the heat equation from his diusion laws [START_REF] Fick | Ueber diusion[END_REF], thus interpreting u as a density function.

The link between heat transfers and microscopic kinetic energy studied in kinetic theory was introduced in 1857 by Clausius [START_REF] Clausius | Über die Art der Bewegung, welche wir Wärme nennen[END_REF]: On the type of motion that we call heat. The subsequent works of Maxwell and Boltzmann led to an evolution equation for the velocity probability distribution function for a gas in equilibrium: the Boltzmann equation [START_REF] Boltzmann | Further Studies on the Thermal Equilibrium of Gas Molecules[END_REF]. It is also in that article that Boltzmann introduced his H-Theorem, to attempt to explain the irreversibility of gaz dynamics by showing that collisions tend to increase entropy. The study of rigorous mean-eld limits of 1 Les causes primordiales ne nous sont point connues ; mais elles sont assujetties à des lois simples et constantes, que l'on peut découvrir par l'observation, et dont l'étude est l'objet de la philosophie naturelle. [START_REF] Fourier | Théorie analytique de la chaleur[END_REF] The original causes [of heat] are unknown to us ; but they are subjet to simple and constant laws that we can discover by observation, and whose study is the object of natural philosophy.

1. A historical introduction to the modelling of random motion kinetic equations has provided many interesting mathematical problems (see for example [START_REF] Arnold | Entropies and equilibria of many-particle systems: An essay on recent research[END_REF])

and is a current research topic. We refer the reader to [START_REF] Cercignani | The Mathematical Theory of Dilute Gases[END_REF] for a historical introduction to kinetic theory, and provide some additional references in the modelling section 3.3.

The Boltzmann equation provides the basis for the random walk approach to Brownian motion, as Einstein writes2 in his 1905 paper [START_REF] Einstein | Über die von der molekularkinetischen Theorie der Wärme gefordert Bewegung von in ruhenden Flüÿigkeiten suspendierten Teilchen[END_REF]. In it, Einstein links the previous microscopic collisions description of Brownian molecular motion to the macroscopic diusion description by using kinetic theory and introducing the mean squared displacement. By interpreting the heat equation as describing the evolution of the probability density function of a single particle rather than the density distribution of a substance, Einstein derives an expression of the mean squared displacement which allows the experimental determination of Avogadro's number (number of molecules in a mole).

Let us dene the ensemble-averaged mean squared displacement for microscopic and macroscopic models.

Denition 1 (Microscopic Mean Squared Displacement (MSD)). Consider N particles at respective positions x 1 (t), . . . , x N (t) at time t. Their macroscopic ensemble-averaged mean squared displacement is:

x(t) 2 = 1 N N n=1 (x n (t) -x n (0)) 2 .
(

) 2 
The solution of (1) for a particle initially at x = 0 at time t = 0 in unbounded space is

u(t, x) = 1 √ 4πDt exp - x 2 4Dt . (3) 
Interpreting u as a probability density function allows us to give a macroscopic denition of the ensemble-averaged mean squared displacement as the second moment of u:

x(t) 2 M = R d x 2 u(t, x) dx. (4) 
This immediately gives us x(t) 2 M = 2Dt.

The works of Einstein [START_REF] Einstein | Über die von der molekularkinetischen Theorie der Wärme gefordert Bewegung von in ruhenden Flüÿigkeiten suspendierten Teilchen[END_REF][START_REF] Einstein | Zur Theorie der Brownschen Bewegung[END_REF] and Smoluchowski [START_REF] Smoluchowski | Zur kinetischen theorie der brownschen molekularbewegung und der suspensionen[END_REF] provide the physical and mathematical foundations of Brownian motion, linking the two previous denitions and deriving an expression of Avogadro's number from the diusion coecient D in the second one. We refer to [START_REF] Renn | Einstein's invention of Brownian motion[END_REF] for extensive historical details and to [START_REF] Gall | Mouvement brownien, martingales et calcul stochastique[END_REF] for a course on stochastic processes and Brownian motion.

Einstein and Smoluchowski rely on three assumptions [START_REF] Metzler | Anomalous diusion models and their properties: non-stationarity, non-ergodicity, and ageing at the centenary of single particle tracking[END_REF]: the independence of individual particles, the existence of a time scale below which individual displacements are statistically independent, and the property that particle displacements below that time scale correspond to a typical mean free path in a homogenous and isotropic space. These hypotheses allow the derivation of the heat equation ( 1) from a random walk by means of the central limit theorem.

In his book Les atomes [START_REF] Perrin | Les atomes[END_REF][START_REF] Perrin | Atoms[END_REF], from which Deviation from diusion However, from 1926 onwards, certain processes were observed whose mean squared displacements do not scale linearly with time. The rst of these was turbulent diusion [START_REF] Lewis | Atmospheric diusion shown on a distance-neighbour graph[END_REF], by Richardson. He observed the relative diusion of two particles in a turbulent ow could be better described by the following equation than by (1):

∂ t ρ(t, x) = D∂ x x 4/3 ∂ x ρ(t, x) ,
which leads to a mean squared displacement with a power-law scaling:

x 2 (t) M t 3 .

The following Section will introduce anomalous diusion as context for my work.

Subdiusion in crowded cellular environments

We wish to focus this Section as we do throughout the dissertation on a specic drawback of using normal diusion to model certain intracellular random motion processes. Namely, that the macroscopic ensemble-averaged mean squared displacement of Denition 1 does not match that predicted by the model, however we may t the modelling constants in a way that is consistent with the Denition hereafter. Hence, the observed motion is not standard diusion.

Denition 2 (Anomalous diusion). Consider a set of particles undergoing random motion whose mean squared displacement scales as t µ for some positive µ:

x(t) 2 t µ .

(5)

1. If 0 < µ < 1, the particles are undergoing subdiusion of exponent µ.

2. If µ = 1, the particles are undergoing diusion.

3. If µ > 1, the particles are undergoing superdiusion of exponent µ.

If µ = 2, that superdiusion is ballistic transport.

This dissertation consists in the study of mathematical tools that describe subdiusive processes, hence our focus on subdiusion. We note that the scaling of the mean squared displacement does not fully characterise the type of anomalous motion. The reader may nd dierent subdiusive processes that share the same MSD scaling in [START_REF] Metzler | Anomalous diusion models and their properties: non-stationarity, non-ergodicity, and ageing at the centenary of single particle tracking[END_REF][START_REF] Berry | Anomalous diusion due to hindering by mobile obstacles undergoing brownian motion or orstein-ulhenbeck processes[END_REF] and in [START_REF] Hancock | New Models of the Cell Nucleus: Crowding, Entropic Forces, Phase Separation, and Fractals[END_REF]Ch. 11].

Statistical dierences between diusion and subdiusion

The rst remarkable feature of systems exhibiting anomalous diusion a consequence of Denition 2 is that they do not satisfy the Gaussian limit behaviour which is a consequence of the Central Limit Theorem (CLT). It follows that models describing such systems must not satisfy the hypotheses of the CLT. We will expand on this comment in the Modelling sections 3.1 and 3.3.

Several important macroscopic dierences between diusion and subdiusion ensue, including the following. The fundamental solution of the heat equation is a Gaussian distribution that decays in time. A rst order expansion in the Fourier-Laplace space allows the authors of [START_REF] Metzler | The random walk's guide to anomalous diusion: a fractional dynamics approach[END_REF] to recover an approximation of the corresponding prole in a subdiusive problem, whose shape is dierent as illustrated in Figure 3. Two other macroscopic dierences include the dynamics of concentration in inhomogeneous media [START_REF] Fedotov | Subdiusive master equation with space-dependent anomalous exponent and structural instability[END_REF], and dierences in front propagation between reaction-diusion and reaction-subdiusion systems [START_REF] Volpert | Fronts in anomalous diusion-reaction systems[END_REF][START_REF] Nepomnyashchy | Mathematical modelling of subdiusion-reaction systems[END_REF]. The mathematical analysis of such problems is a logical continuations of this thesis, which we sketch in Sections 6.1 and 6.3 respectively.

We have dened subdiusion as motion whose mean squared displacement is proportional to t µ . However, that does not identify the process responsible for causing the subdiusion. The reader may nd in [START_REF] Tejedor | Quantitative analysis of single particle trajectories: Mean maximal excursion method[END_REF] an analysis of additional macroscopic statistical indicators of the nature of a random motion useful in the identication of normal diusion and anomalous dynamics such as diusion on fractals, continuous time random walks, and fractional Brownian motion.

Specically, the authors propose to use ratios of fourth moment versus the square of the second moment for normal moment statistics and mean maximal excursions statistics.

Biological instances of anomalous diusion

Before discussing the biological instances of subdiusion, we refer the reader to the classical reference [START_REF] Georey | The Cell: A Molecular Approach[END_REF] for an introduction to cell biology and to [START_REF] Ingalls | Mathematical Modeling in Systems Biology: An Introduction[END_REF] for an introduction to mathematical modelling of the cell. The reader may also consult [START_REF] Norregaard | Manipulation and motion of organelles and single molecules in living cells[END_REF], which presents elements of modelling The occurrence of subdiusive motion in cellular biology is illustrated in Figure 4, which is taken from [START_REF] Izeddin | Single-molecule tracking in live cells reveals distinct target-search strategies of transcription factors in the nucleus[END_REF]. We note that superdiusive motion also appears in intra-cellular processes involving some type of active transport, e.g. in active transport along microtubules [START_REF] Reverey | Superdiusion dominates intracellular particle motion in the supercrowded cytoplasm of pathogenic acanthamoeba castellanii[END_REF]. Such studies have taken advantage of recent advances in microscopy that give biologists access to data that becomes progressively ner and more precise. For instance, Figure 4 In addition to the two previous examples, anomalous random motion occurs in a wide variety of settings. We focus on subdiusion hereafter, and refer to [51, 1.3] and the bibliography therein for a synthetic presentation of the occurrence of subdiusion in dendritic spines, cell membranes and morphogenesis.

The reader can nd further examples of subdiusive motion in the references presented hereafter. The article [START_REF] Hornung | Morphogen gradient formation in a complex environment : An anomalous diusion model[END_REF] concerns carrier transport in amorphous materials, diusion in polymers, turbulent systems, ow through porous media, and movement of proteins on cell membranes and inside cells. Concerning Kinetics of protein/DNA interactions, observed through individual mRNA molecule tracking by uorescence in E. coli, the reader can consult [START_REF] Golding | Physical Nature of Bacterial Cytoplasm[END_REF]. The reader can nd an example of the transient subdiusion of certain telomeres in short time-scales of the order of 10 -2 to 10 3 seconds in [START_REF] Bronstein | Transient Anomalous Diusion of Telomeres in the Nucleus of Mammalian Cells[END_REF]. It is not uncommon for certain subdiusive processes to correspond to a transient phase between two diusive phases [START_REF] Soula | Anomalous versus slowed-down brownian diusion in the ligand-binding equilibrium[END_REF][START_REF] Berry | Anomalous diusion due to hindering by mobile obstacles undergoing brownian motion or orstein-ulhenbeck processes[END_REF][START_REF] Izeddin | Single-molecule tracking in live cells reveals distinct target-search strategies of transcription factors in the nucleus[END_REF]. Concerning subdiusion of proteins and lipids in plasma membranes we refer to [START_REF] Schwille | Fluorescence correlation spectroscopy with single-molecule sensitivity on cell and model membranes[END_REF]. Moreover, cells themselves may experience subdiusive motion [START_REF] Fedotov | Non-homogeneous random walks, subdiffusive migration of cells and anomalous chemotaxis[END_REF].

We refer the reader to [START_REF] Méndez | ReactionTransport Systems[END_REF]Ch. 2.3] as well as to the reviews [START_REF] Metzler | The random walk's guide to anomalous diusion: a fractional dynamics approach[END_REF][START_REF] Höing | Anomalous transport in the crowded world of biological cells[END_REF] and the bibliography therein for a much more complete landscape of the prevalence of subdiusion, including examples in porous systems, amorphous semiconductors, subsurface hydrology, proteins and lipids in plasma membranes, mRNA molecules in Escherichia coli cells, proteins in the nucleus, etc.

The dierence between diusion and subdiusion can have clear biological implications in certain situations. For instance, regarding morphogen gradient formation, in [START_REF] Yuste | Reaction-subdiusion model of morphogen gradient formation[END_REF][START_REF] Yuste | Application of fractional calculus to reactionsubdiusion processes and morphogen gradient formation[END_REF], the authors describe a model in which morphogens diuse or subdiuse from one end of a cell. They conclude that if the morphogens decay with spatially-dependent rates, the equilibrium concentrations in the diusive and subdiusive cases are signicantly dierent. And in what concerns the search of a protein for a nearby target, simulations made in [START_REF] Guigas | Sampling the cell with anomalous diusionthe discovery of slowness[END_REF] show that subdiusive motion can achieve faster results than diusive-mediated searching.

There are dierent proposed causes of subdiusion, each leading to a specic type of subdiusion. They stem from the crowded, heterogeneous and structured nature of cellular media, and the persistence that they induce on random motion taking place in them.

A proposed cause of subdiusive behaviour in biological media is that of trapping phenomena (i.e. binding to immobile traps) [START_REF] Havlin | Diusion in disordered media[END_REF][START_REF] Saxton | Single-particle tracking: the distribution of diusion coecients[END_REF][START_REF] Michael | A Biological Interpretation of Transient Anomalous Subdiusion. I. Qualitative Model[END_REF][START_REF] Malchus | Elucidating anomalous protein diusion in living cells with uorescence correlation spectroscopyfacts and pitfalls[END_REF] resulting from the high heterogeneity and very dense crowding that such media often present [START_REF] Weiss | Anomalous subdiusion is a measure for cytoplasmic crowding in living cells[END_REF], [START_REF] Hancock | New Models of the Cell Nucleus: Crowding, Entropic Forces, Phase Separation, and Fractals[END_REF]Ch. 7.1.1 and 11]. Quantitatively, cell cytoplasms bear densities of macromolecules such as proteins, DNA, RNA, and polysaccharides of the order of hundreds of grams per litre, up to 400 g/L [START_REF] Ellis | Cell biology: Join the crowd[END_REF]. We note that this highly exceeds the usual concentrations in in vitro experiments [START_REF] Banks | Anomalous Diusion of Proteins Due to Molecular Crowding[END_REF], hence the need for in vivo experiments. We refer the reader to [START_REF] Norregaard | Manipulation and motion of organelles and single molecules in living cells[END_REF] for a very complete review of experimental techniques for in vivo single molecule tracking. Figure 5 provides a striking illustration of presynaptic neuron crowding. A similar situation is described in [START_REF] Uesaka | Retrograde semaphorin signaling regulates synapse elimination in the developing mouse brain[END_REF].

Other proposed causes are linked to the fact that cellular media are structured. Hence, the random motion of larger organelles or molecules can be obstructed by smaller structural elements (see [START_REF] Hancock | New Models of the Cell Nucleus: Crowding, Entropic Forces, Phase Separation, and Fractals[END_REF]Ch. 7.1.1] and the bibliography therein). This leads to obstructed diusion.

The glassy properties of the cytoplasm [START_REF] Parry | The bacterial cytoplasm has glass-like properties and is uidized by metabolic activity[END_REF] can also play a role. Citing yet again [74, Ch. Dierent causes and models of subdiusion have dierent consequences on the coupling of subdiusion with reaction [START_REF] Soula | Anomalous versus slowed-down brownian diusion in the ligand-binding equilibrium[END_REF]: locally slowed-down Brownian motion and local hindrance by obstacles improve the apparent anity of the reaction whereas trapping decreases it.

Since the models we study correspond to continuous time random walks, as we will present in Section 3, the biological phenomena to whose comprehension our work might contribute the most are traps.

We refer the reader to [START_REF] Méndez | ReactionTransport Systems[END_REF][START_REF] Havlin | Diusion and Reactions in Fractals and Disordered Systems[END_REF] for a thorough introduction to dierent mathematical models of random motion and tools to analyse them. We introduce those that are relevant to this dissertation in the following Section.

3 Subdiusion at three modelling scales

In the historical introduction 1 we have seen that describing the same problem at dierent levels and studying the connections between these dierent models has been a fecund endeavour. We wish to formalise, in the context of our problem, the nature of these dierent levels of modelling and of the connections they bear to each other: in a nutshell, microscopic, mesoscopic and macroscopic models. In order to do so let us rst present certain reasons linked to experimental technology and modelling strategy that impact the type of model one may prefer in certain situations.

We now present three dierent mathematical modelling scales, namely microscopic, mesoscopic and macroscopic. We focus on the descriptions of subdiusive motion at each scale and the links between them. The equations studied in this thesis are presented in the mesoscopic scale section 3.3.

There are more ways of modelling anomalous diusion than those I present hereafter, such as fractional Brownian motion, generalised diusion equations, (generalised) Langevin equations, or generalised master equations. The reader may nd a detailed description of these models and their dierences in the review [START_REF] Metzler | Anomalous diusion models and their properties: non-stationarity, non-ergodicity, and ageing at the centenary of single particle tracking[END_REF]. Models that share the same evolution of the mean squared displacement can stem from dierent stochastic mechanisms. For instance, fractional Brownian motion and subdiusive CTRW share the evolution of their MSDs, but the rst is ergodic (read:

the ensemble-averaged MSD that we have dened is equal to the time-averaged MSD of one walker) whereas the latter is not [109, Table 1].

A Leitmotiv through the following models is how to deal with the memory terms inherent to anomalous diusion.

We do note that non-local in time terms do arise in other classes of macroscopic models, for instance in the context of asymptotic limits of transport processes in highly oscillating random media [START_REF] Poupaud | Classical and quantum transport in random media[END_REF][START_REF] Papanicolaou | Self-averaging from lateral diversity in the itôschrödinger equation[END_REF][START_REF] Luis | A non-markovian phase space approach to schrödinger dynamics: The space-time Wigner transform[END_REF].

Microscopic model: Continuous Time Random Walks

A microscopic model is one that describes the individual behaviour and interactions of a system of discrete particles or agents. Each particle is characterised by its position in an appropriate vector space at a given time.

For instance, in the context of the kinetic theory of gases, one considers a nite system of N particles. Each particle is characterised by its position X i (t) ∈ R d and speed V i (t) ∈ R d at time t ∈ R + . Particles may be subjected to external forces F i and interact due to collisions. Noise terms may also be taken into account.

These interactions can be described by a nite system of ordinary dierential equations of the form:

     d dt X i (t) = V i (t) d dt V i (t) = F i (t) + collisions + noise + . . . , (6) 
for 1 ≤ i ≤ N .

The microscopic model for subdiusion that we follow is of a dierent type: it is a continuous time random walk (CTRW), a concept introduced in 1965 by Montroll and Weiss [START_REF] Montroll | Random walks on lattices[END_REF], generalised by Scher and Montroll [START_REF] Scher | Anomalous transit-time dispersion in amorphous solids[END_REF] in a seminal article which strongly impacted the understanding of photoconductivity in disordered and amorphous semiconductors. Other early important contributions to the development of CTRW include works by Shlesinger [START_REF] Michael | Asymptotic solutions of continuous-time random walks[END_REF]. CTRW have played an important role in the description of transport in heterogeneous media. We refer to the extensive bibliography within [108, 2.3] for a detailed list of systems displaying anomalous random motion known before 2000 and to the more recent review [START_REF] Metzler | Anomalous diusion models and their properties: non-stationarity, non-ergodicity, and ageing at the centenary of single particle tracking[END_REF] for generalisations, updated references, and a comparison of CTRW to other descriptions of anomalous transport.

The reader may nd a comprehensive introduction to continuous time random walks in [START_REF] Metzler | The random walk's guide to anomalous diusion: a fractional dynamics approach[END_REF] and [START_REF] Méndez | ReactionTransport Systems[END_REF]Ch. 3.2]. The presentation of CTRW that follows is essentially taken from the previous references.

Continuous time random walks are a generalisation of random walks in which the space random variable X(t), describing the position of the walker at time t, experiences discontinuous jumps of random destination X(t) + Z i at times T i separated by random waiting times

Θ i = T i -T i-1 .
The jumps Z i are independent identically distributed (iid) random variables, and so are the waiting times Θ i . In general, Z i and Θ i are dependent, and their statistical characteristics are determined by a joint probability density function (pdf ) Ψ(t, x). The spatial jump pdf is then given by ω(x) = ∞ 0 Ψ(t, x) dt, and the waiting time pdf by

Φ(t) = d R Ψ(t, x) dx.
However, throughout this dissertation, we will only consider independent jump and waiting time distributions, hence

Ψ(t, x) = Φ(t)ω(x).
Let us dene the renewal process that counts the number of jumps that a random walker experiences up to time t:

N (t) = max {i ∈ N | T i ≤ t} . (7) 
The fact that N is a renewal process plays an important role in the results of Chapter 1. In the state of the art section 4.1, we will comment on results from probability and renewal theory previous and related to ours.

Let X(0) = 0. It follows from the denitions that the position X of the walker satises

X(t) = N (t) i=1 Z i . (8) 
The process X(t) is called a continuous time random walk. It is a semi-Markov process associated with the two-component Markov chain (X i , T i ). We refer the reader to [START_REF] Manca | Applied Semi-Markov Processes[END_REF] for an introduction to semi-Markov processes and to [START_REF] Wu | Control and Filtering for Semi-Markovian Jump Systems[END_REF] for a study of semi-Markov time delay and jump processes.

Figure 6 gives a 2D illustration of a CTRW X(t) and of the associated renewal process N (t).

Continuous time random walks can be characterised by the mean waiting time

T = ∞ 0 aΦ(a) da (9) T 1 T 2 T 3 Θ 1 Θ 2 Θ 4 N(t) t 0 1 2 3 4 5 6 7 T 4 T 5 T 6 T 7 Z 1 Z 2 X(0) X(t) ; t ∈ (T 1 , T 2 ) Z 4 Z 5 X(t) X(t) ; t ∈ (T 4 , T 5 ) Θ 7
Figure 6: Illustration of a CTRW X(t) and its associated renewal process N (t).

and the variance of the jump destination pdf, which we have assumed to be even:

σ 2 = R d z 2 ω(z) dz. (10) 
Specically, CTRW describe dierent types of motion depending on whether those quantities are nite or not. If T and σ 2 are nite, the hypotheses of the central limit theorem are satised.

This implies that the rescaled walker position √ εX(t/ε) converges in distribution to the Brownian motion as ε → 0. [START_REF] Méndez | ReactionTransport Systems[END_REF]:

lim ε→0 P √ εX t ε ≤ x = 1 √ 4πDt exp - x 2 4Dt , (11) 
where D = σ 2 /(2 T ).

If either T or σ 2 is innite, the central limit theorem does not apply. If T is innite but σ 2 is nite, the described process is asymptotically slower than diusion. This is the setting of my dissertation, in which I will consider that Φ is a heavy-tailed power-law distribution of the form µ(1 + a) -1-µ , with 0 < µ < 1, and ω is a Gaussian distribution. That results in subdiusive motion of exponent µ.

The cases when σ 2 is innite due to heavy-tailed jump distributions correspond to Lévy ights [START_REF] Sokolov | Lévy ights from a continuous-time process[END_REF][START_REF] Metzler | The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics[END_REF]. If T is nite and σ 2 is innite, the motion will be superdiusive. However, if both T and σ 2 are innite due to Φ and ω being two power law distributions, there is a form of competition between the two power laws that can lead to paradoxical diusion, as explained in [START_REF] Sokolov | Lévy ights from a continuous-time process[END_REF] and the bibliography therein. For a detailed introduction to Lévy ights, we also refer the reader to the eponymous chapter of [START_REF] Sokolov | Anomalous Transport: Foundations and Applications[END_REF].

Continuous time random walks are stochastic processes that exhibit spatial discontinuities, also called ights in the biophysical community. This does not mean that the modelled system consist in particles that alternate absolute immobility and teleportation, but rather that such particles are observed at punctual times and can remain trapped close to the locus of observation for a certain time.

There is class of related models usually called walks or runs in which the discontinuity is not spatial but in velocity. In such models, a particle follows a straight path with a (constant or decaying) velocity during a random time, then changes direction and repeats the process. The Introduction mesoscopic descriptions of such processes are kinetic run and tumble or Boltzmann equations.

We will expand on this remark in the appropriate Section 3.3.

Macroscopic model: time-fractional derivative

A macroscopic model describes a system as a continuous medium characterised by magnitudes that are locally averaged over the microscopic population or set of particles considered. Such quantities can be local population density, mean velocity, temperature, pressure, etc. Examples of macroscopic equations include uid mechanics equations such as Navier-Stokes, Euler, etc. In the context of mathematical biology, macroscopic models correspond to equations that describe a population by averaging it without accounting for individual deviations from the average, retaining only the time variable. Perthame's book [START_REF] Perthame | Transport Equations in Biology[END_REF] begins by presenting numerous examples of macroscopic population biology models (Fisher, Lotka-Volterra, chemostat equations and other ecology models, Hodgkin-Huxley and other models of neural networks, immunology models, SIR and other epidemiology models, etc.).

In the context of the modelling of subdiusion, from the microscopic continuous time random walk model formulated in Section 3.1, it is possible to recover macroscopic equations governing the spatiotemporal dynamics of the density of random walkers located at position x at time t.

∂ t ρ(x, t) = D µ D 1-µ t ∆ρ(x, t). (12) 
Here, D µ ∈ R + is a generalised diusion coecient and D 1-µ t is the Riemann-Liouville fractional derivative operator given by

D 1-µ t (f )(t) = 1 Γ(µ) d dt t 0 f (t ) (t -t ) 1-µ dt .
Such a fractional dynamics formulation is very attractive for modelling in biology, in particular because of its apparent similarity with the classical diusion equation. However, contrary to the diusion equation, the Riemann-Liouville operator is non-local in time. This translates the fact that what happens at a given time t depends on what has happened in the interval [0, t): the underlying CTRW is non-Markovian for most waiting time distributions. Indeed, memory terms play a crucial role in subdiusive processes. This non-Markovian property becomes a serious obstacle when one wants to couple subdiusion with chemical reaction [START_REF] Henry | Anomalous diusion with linear reaction dynamics: from continuous time random walks to fractional reaction-diusion equations[END_REF][START_REF] Bravo Yuste | Anomalous Transport, chapter Subdiusion-Limited Reactions[END_REF][START_REF] Fedotov | Nonlinear degradation-enhanced transport of morphogens performing subdiusion[END_REF].

The derivation of the macroscopic fractional equation [START_REF] Bartier | Improved intermediate asymptotics for the heat equation[END_REF] from CTRW is done in [START_REF] Méndez | ReactionTransport Systems[END_REF]Ch. 2.3.1] as follows (the derivation we present is adapted from the reference). The authors consider a particle that follows a 1 space-dimensional CTRW, described in the previous section. The (non-local) evolution equation for the probability density ρ(t, x) of that particle being at site x at time t given that it was at x = 0 at time 0 is given by the following Master equation:

ρ(t, x) = δ(x) 1 - t 0 Φ(t ) dt + ∞ 0 R Ψ(t -t , x -x )ρ(t , x ) dx dt . ( 13 
)
The authors denote the time Laplace transform of a function f : R

+ × R → R by f (s, x) = ∞ 0 f (t, x) exp(-st) dt
and the space Fourier transform of the same function f by

f (t, k) = R f (t, x) exp(ikx) dx.
They recover, in Laplace-Fourier space:

ρ(s, k) = 1 -Φ(s) s ρ0 (k) 1 -Ψ(s, k) , (14) 
where p0 (k) = 1 is the Fourier transform of the initial condition p 0 (x) = δ(x).

The authors then take rst non-constant order approximations of Φ and ω which allow them to simplify expression [START_REF] Berry | Anomalous diusion due to hindering by mobile obstacles undergoing brownian motion or orstein-ulhenbeck processes[END_REF]. If the second moment of ω and the mean of Φ are nite, the authors can then invert the Laplace and Fourier transforms and recover that ρ satises the diusion equation.

Let us now consider that the second moment of ω is nite but the mean of Φ is innite because Φ has a power-law tail of the form Φ(t) ∼ ∞ t -(1+µ) . The authors take again an approximation Φ(s) ∼ s=0 1 -(τ s) µ , which allows them to simplify the expression [START_REF] Berry | Anomalous diusion due to hindering by mobile obstacles undergoing brownian motion or orstein-ulhenbeck processes[END_REF] into:

ρ(s, k) = ρ0 (k) s + D µ s 1-µ k 2 . ( 15 
)
They invert the expression above thanks to properties of the Riemann-Liouville fractional derivative and recover equation [START_REF] Bartier | Improved intermediate asymptotics for the heat equation[END_REF] for 0 < µ < 1.

We note that the above derivation is not rigorous and lacks certain justications, such as a control of the error committed by truncating the expansions of Φ and ω. The fractional in time equation [START_REF] Bartier | Improved intermediate asymptotics for the heat equation[END_REF] belongs to a broader class of equations which also includes fractional in space equations [START_REF] Podlubny | Fractional Dierential Equations: An Introduction to Fractional Derivatives, Fractional Dierential Equations, to Methods of Their Solution and Some[END_REF][START_REF] Zhou | Basic Theory of Fractional Dierential Equations[END_REF].

The macroscopic fractional model is prevalent in the anomalous diusion literature see [START_REF] Méndez | ReactionTransport Systems[END_REF][START_REF] Höing | Anomalous transport in the crowded world of biological cells[END_REF][START_REF] Metzler | The random walk's guide to anomalous diusion: a fractional dynamics approach[END_REF][START_REF] Metzler | The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics[END_REF][START_REF] Metzler | Anomalous diusion models and their properties: non-stationarity, non-ergodicity, and ageing at the centenary of single particle tracking[END_REF][START_REF] Yuste | Reaction-subdiusion model of morphogen gradient formation[END_REF][START_REF] Volpert | Fronts in anomalous diusion-reaction systems[END_REF][START_REF] Nepomnyashchy | Mathematical modelling of subdiusion-reaction systems[END_REF] and the references therein. However, it does present certain drawbacks. It is notably complicated to include reaction terms in the fractional formalism, since for anomalous dynamics, reaction and transport are coupled at the macroscopic level [START_REF] Yadav | Propagating fronts in reactiontransport systems with memory[END_REF]. The authors of the cited article add the reaction terms into the mesoscopic non-local in time and space Master equation [START_REF] Becker | Kinetische behandlung der keimbildung in übersättigten dämpfen[END_REF] and derive the macroscopic equation from it. This strongly suggests that the study of the intermediate mesoscopic description is in itself an interesting goal.

Mesoscopic model: age-structured equations

The mesoscopic scale is that at which the object of study is a probability density function

f (t, x, v) ≥ 0, where t ∈ R + is time, x ∈ R d is space, and v ∈ R d is a structural variable.
It is the scale at which statistical physics operates: an intermediate between microscopic and macroscopic scales. In the context of kinetic equations, the structural variable v is a speed variable, and d = d . The reader may refer to the course [START_REF] Bouchut | Kinetic Equations and Asymptotic Theory[END_REF] for an introduction to kinetic equations, to [START_REF] Cercignani | The Mathematical Theory of Dilute Gases[END_REF][START_REF] Glassey | The Cauchy Problem in Kinetic Theory[END_REF] for more advanced material on Boltzmann, and Vlasov and Boltzmann equations (respectively), and to the preprint [START_REF] Calvez | Chemotactic waves of bacteria at the mesoscale[END_REF] for propagation phenomena in run-and-tumble equations.

We remark that it is possible to describe a microscopic N particle problem by means of a kinetic equation in which the probability density function f (t, x, v) is a sum of Dirac masses.

The scaling limit from kinetic equations to macroscopic ones is more arduous. In the context of uid mechanics, it consists in dening macroscopic observables by taking averages over the probability density function f . Important contributions to the understanding of such scalings have been made by Bardos, Golse, Levermore, Saint-Raymond, Masmoudi and Lions.

The models we consider bear certain similarities to kinetic equations, but they do not belong to that class. They are structured integro-dierential equations closely related to the renewal
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McKendrick equation [START_REF] Perthame | Transport Equations in Biology[END_REF]Ch. 3]: ∂ t n(t, a) + ∂ a n(t, a) + d(t, a)n(t, a) = 0, [START_REF] Biler | Intermediate asymptotics in L 1 for general nonlinear diusion equations[END_REF] and to the scattering equation [129, Ch.9] (albeit with an added age structure):

∂ t ρ(t, x) + k(x)ρ(t, x) = R d K(y, x -y)ρ(t, y) dy. (17) 
In Boltzmann and run-and-tumble equations, the motion of a single particle does not exhibit discontinuities in space, as is the case in scattering equations, but in velocity.

The reader may nd related scaling limits from microscopic models to their mesoscopic and macroscopic counterparts in the contexts of coagulation-fragmentation and phase transitions. For instance, the authors of [START_REF] Collet | Some Recent Results on the Kinetic Theory of Phase Transitions[END_REF] recover the Lifshitz-Slyozov model [START_REF] Lifshitz | The kinetics of precipitation from supersaturated solid solutions[END_REF] as a rst-order approximation of a limit of the microscopic Becker-Döring model [START_REF] Becker | Kinetische behandlung der keimbildung in übersättigten dämpfen[END_REF], by a process akin to a hydrodynamic limit [START_REF] Golse | Hydrodynamic limits of kinetic models[END_REF]. Non-local boundary terms are also present in such models [START_REF] Yvinec | From becker-döring to lifshitzslyozov: deriving the non-local boundary condition of a non-linear transport equation[END_REF]. In that context as well, the related Kolmogorov-Johnson-Mehl-Avrami model [START_REF] Fanfoni | The Johnson-Mehl-Avrami-Kolmogorov model: A brief review[END_REF] provides a description of nucleation and growth processes in cristallization [START_REF] Jun | Nucleation and growth in one dimension. I. The generalized Kolmogorov-Johnson-Mehl-Avrami model[END_REF][START_REF] Hömberg | A revisited Johnson-Mehl-Avrami-Kolmogorov model and the evolution of grain-size distributions in steel[END_REF] and also in DNA replication [START_REF] Jun | Nucleation and growth in one dimension. II. Application to DNA replication kinetics[END_REF].

In this dissertation, we consider two age-structured equations, corresponding to space-homogenous and space-inhomogeneous versions of the same problem. Since we wish to model a process of random motion in space, let us rst introduce the renewal-scattering equation presented in [START_REF] Ovidiu | Systematic derivation of reaction-diusion equations with distributed delays and relations to fractional reaction-diusion equations and hyperbolic transport equations: Application to the theory of neolithic transition[END_REF][START_REF] Yadav | Kinetic equations for reaction-subdiusion systems: Derivation and stability analysis[END_REF]. We take an alternative approach to the macroscopic fractional equation and the mesoscopic non-local Master equation of the previous Section. We associate each random walker with a residence time (age, in short) a which increases at speed 1 with time and is reset when the random walker jumps to another location. In one dimension of space, we note n(t, x, a) the probability density function of walkers at time t that have resided at location x exactly during the last span of time a. The dynamics of the CTRW are then described by means of an agerenewal equation with spatial jumps:

         ∂ t n(t, x, a) + ∂ a n(t, x, a) + β(a)n(t, x, a) = 0 , t ≥ 0, a > 0 , x ∈ R n(t, x, a = 0) = ∞ 0 β(a ) R ω(x -x )n(t, x , a ) dx da n(t = 0, x, a) = n 0 (x, a). (18) 
The functions β and ω are respectively the age-dependent jump rate of particles and their space redistribution kernel. The jump rate is related to the residence time distribution Φ dened in the previous section by the following expression:

Φ(a) = β(a) exp - a 0 β(s) ds . ( 19 
)
The boundary condition on n(t, x, 0) at age a = 0 accounts for the particles landing at position x at time t after having jumped from position x , at which they had remained during a time span exactly equal to a . The fact that the loss term β(a)n(t, x, a) is recovered in the boundary condition (and that ω is a probability distribution) leads to the conservation of the total population density ∞ 0 R n(•, x, a) dx da over time.

We note that this formulation is equivalent to the Master equation [START_REF] Becker | Kinetische behandlung der keimbildung in übersättigten dämpfen[END_REF]. However, the treatment it will receive relies fully on the age-structure, which is here explicit: that is their dierence. We remark that the renewal-scattering equation [START_REF] Boltzmann | Lectures on Gas Theory[END_REF] is local in time. This corresponds to a rescue of the Markovian property of the corresponding jump process at the expense of a supplementary structural age variable.

Let us now present the space-homogenous renewal-scattering equation that we study in Chapter 1. Subdiusive continuous time random walks have heavy-tailed residence times and localised space redistribution kernels. Hence, the anomalous dynamics are a consequence of the underlying renewal dynamics: it is interesting to study the space-homogenous version of equation [START_REF] Boltzmann | Lectures on Gas Theory[END_REF], which is a renewal equation:

         ∂ t n(t, a) + ∂ a n(t, a) + β(a)n(t, a) = 0 , t ≥ 0, a > 0 n(t, a = 0) = ∞ 0 β(a )n(t, a ) da n(t = 0, a) = n 0 (a). ( 20 
)
Throughout this doctoral dissertation, ω will be a Gaussian distribution and β(a) will be equal to µ/(1 + a) for 0 < µ < 1, or perturbations thereof.

The originality of our approach in the context of the anomalous diusion community is to study the above integro-dierential equations directly. This diers from the common strategy of using the mesoscopic equations only as a means to derive macroscopic fractional equations thanks to Fourier-Laplace tools, and manipulating the macroscopic equations. An interesting advantage of studying the mesoscopic integro-dierential equations rather than the fractional PDEs is related to the ability to introduce reaction terms with ease into the equations, which the age-structure allows. On the contrary, the fractional time-derivative in the macroscopic model induces a non-trivial coupling between reaction and anomalous diusion [START_REF] Yadav | Propagating fronts in reactiontransport systems with memory[END_REF]. Another signicant advantage is that there exist many asymptotic analysis tools that can be readily applied to the integro-dierential problem. [START_REF] Arnold | Entropies and equilibria of many-particle systems: An essay on recent research[END_REF] 

State of the art and mathematical tools

The study of the asymptotic limits of the renewal-scattering equations in this thesis has only been feasible thanks to mathematical tools developed mainly in the last 30 years, which we introduce hereafter.

Long time asymptotics of renewal equations

Intermediate asymptotics in the integrable case

We follow freely [START_REF] Perthame | Transport Equations in Biology[END_REF]Ch. 3 and 6.4]. Consider the renewal equation [START_REF] Bouchut | Kinetic Equations and Asymptotic Theory[END_REF] dened in the modelling section 3.3, and assume that n 0 L 1 = 1.

Contrary to the prevalent hypotheses throughout the dissertation, assume that (20) admits an integrable stationary state:

N (a) = exp - a 0 β(s) ds ∞ 0 exp - v 0 β(s) ds dv . ( 21 
)

Introduction

This is the eigenvector of the direct problem:

                 ∂ a N (a) + β(a)N = 0 N (0) = ∞ 0 β(a)N (a) da ∞ 0 N (a) da = 1 N (a) ≥ 0 (22) 
The adjoint problem is trivial in this case, so the adjoint eigenvector is φ ≡ 1. Let H ∈ C(R, R + )

be a convex function that reaches its minimum, 0 at 1. We dene the generalised relative entropy following [START_REF] Perthame | Transport Equations in Biology[END_REF]Ch. 3]:

H(t) = ∞ 0 H n(t, a) N (a) N (a)φ(a) da (23) 
We name u(t, a) = n(t, a) N (a) .

We wish to prove that H decays in time. We have:

H (t) = ∞ 0 H (u(t, a))∂ t u(t, a)N (a) da.
Dividing the transport equations satised by n and N respectively by n and N and subtracting the resulting equations gives us:

∂ t ln(u) + ∂ a ln(u) = 0, hence ∂ t u + ∂ a u = 0.
It follows that:

H(t) = - ∞ 0 ∂ a (H(u(t, a))) da = - ∞ 0 β(a)H(u(t, a))N (a) da - ∞ 0 ∂ a (H(u(t, a))N (a)) da = N (0)H(u(t, 0)) - ∞ 0 H(u(t, a))N (a) da.
Hence,

H (t) = N (0) H ∞ 0 u(t, a)β(a) N (a) N (0) da - ∞ 0 H(u(t, a))β(a) N (a) N (0) da . ( 24 
)
For any probability measure γ, we name DH(u|γ) the entropy dissipation with respect to γ and dene it as follows:

DH(u|γ) = ∞ 0 H(u(t, a))γ(a) da -H ∞ 0 u(t, a)γ(a) da . ( 25 
)
With that notation, equation [START_REF] Brillouin | La mécanique ondulatoire de schrödinger: une méthode générale de resolution par approximations successives[END_REF] reads:

H (t) = -N (0)DH(u|ν), (26) 
where ν dened as follows is a probability measure:

ν(a) = β(a) N (a) N (0) . ( 27 
)
Since H is convex, Jensen's inequality gives us that H is non-increasing. This formalism suces to prove convergence without a rate [START_REF] Perthame | Transport Equations in Biology[END_REF]Ch. 3.6].

The main idea at this point is to compare H and DH so as to recover a dierential inequality on H whose integration via Gronwall's Lemma yields an exponential decay rate for H. Dierent hypotheses on β allow doing so using techniques described in [START_REF] Perthame | Transport Equations in Biology[END_REF]Ch. 3.7 and 3.9] and in [START_REF] Gwiazda | Invariants and exponential rate of convergence to steady state in the renewal equation[END_REF]:

we refer the reader to those references for detailed computations.

Let us prove a similar result in a case where β is non-increasing and the initial condition n 0 is compactly supported, without loss of generality in [0, 1]. Here, we may choose H(x) = |x -1| [START_REF] Calvez | Limiting Hamilton-Jacobi equation for the large scale asymptotics of a subdiusion jump-renewal equation[END_REF] so that the entropy functional H is actually the L 1 distance between n and N . We compute directly:

N (0)DH(u|ν) = ∞ 0 |n(t, a) -N (a)|β(a) da - ∞ 0 β(a)n(t, a) da -N (0) = ∞ 0 |n(t, a) -N (a)|β(a) da - ∞ 0 β(a) (n(t, a) -N (a)) da = ∞ 0 |n(t, a) -N (a)|β(a) da - ∞ 0 (β(a) -β(1 + t)) (n(t, a) -N (a)) da
since the L 1 norms of n(t, •) and of N are conserved in time. Since n satises a transport equation, its support is propagated at a known speed here equal to 1 so n(t, •) = 0 over (t, ∞). Moreover, β(a) -β(1 + t) is non-negative over a ∈ [0, t]. It follows that:

N (0)DH(u|ν) ≥ ∞ 0 |n(t, a) -N (a)|β(a) da - ∞ 0 (β(a) -β(1 + t)) |n(t, a) -N (a)| da ≥ β(1 + t) ∞ 0 |n(t, a) -N (a)| da = β(1 + t)H(t). It follows that H (t) ≤ -β(1 + t)H(t). (29) 
Gronwall's Lemma allows us to prove that n converges in L 1 with a decay rate depending on β for instance, if β is bounded below, we recover exponential decay. We remark that the existence of the eigenvector N is a crucial element of this argumentation. However, no such integrable steady state N exists in the subdiusive case described in our model Section 3.3. Let us introduce the state of the art in probability theory corresponding to that case.

The Dynkin-Lamperti arc-sine law Introduction

We remark that in the context of our age-structured model in Section 3.3, Y (t) corresponds to the age of a particle.

Results on the asymptotic behaviour the processes N and Y for waiting time distributions of innite expectancy have been known since the works of Dynkin [START_REF] Dynkin | Markov jump processes[END_REF][START_REF] Dynkin | Some limit theorems for sums of independent random variables with innite mathematical expectations[END_REF] and Lamperti [START_REF] Lamperti | Some limit theorems for stochastic processes[END_REF][START_REF] Lamperti | An invariance principle in renewal theory[END_REF] in the late 1950s. Such and related results can be found in reference books [START_REF] Feller | An Introduction to Probability Theory and Its Applications[END_REF] tome II, chapters VI.6 and XI (where the reader can nd the case of nite expectancy) and [START_REF] Bingham | Regular Variation[END_REF]Ch. 8.6]. Let us specically state the Dynkin-Lamperti theorem [START_REF] Dynkin | Some limit theorems for sums of independent random variables with innite mathematical expectations[END_REF][START_REF] Lamperti | An invariance principle in renewal theory[END_REF] (see for instance [START_REF] Bingham | Regular Variation[END_REF]Ch. 8.6.2]).

We say a function l is slowly varying if it satises, for any positive λ f (λx)

f (x) ---→ x→∞ 1. (31) 
Theorem 3 (Dynkin-Lamperti Theorem). Assume the waiting time law Φ satises, for some 0 < µ < 1 and some slowly varying function l:

1 - a 0 Φ(s) ds ∼ l(a) a µ Γ(1 -µ) , a → ∞.
That is a necessary and sucient condition for the existence of a non-degenerate limit law as t → ∞ for each of Y (t)/t, R(t)/t and (Y (t), R(t)). The law for Y (t)/t is the Dynkin-Lamperti or arc-sine law. It is supported over (0, 1) and and has density

q µ (a) = sin(πµ) π a -µ (1 -a) µ-1 . (32) 
The limit law for R(t)/t is q µ (a/1 + a), and that for (Y (t), R(t)) is

r µ (u, v) = µ sin(πµ) π (u + v) -1-µ (1 -u) µ-1 .
However, no convergence rate is given for our innite mean waiting time problem in any of these books, and we have been unable to locate such a convergence rate in the subsequent literature up to [START_REF] Iksanov | Renewal Theory for Perturbed Random Walks and Similar Processes[END_REF]. Recent developments in Ergodic Theory for mildly related problems (see chapter 8.11 of [START_REF] Bingham | Regular Variation[END_REF] for an introduction to Darling-Kac theory), have yielded convergence rates, that are optimal in certain cases, as shown in [START_REF] Melbourne | Operator renewal theory and mixing rates for dynamical systems with innite measure[END_REF] and [START_REF] Terhesiu | Error rates in the Darling-Kac law[END_REF].

We refer the reader to the very thorough study of the existence, regularity and long-time behaviour of renewal equations done in [START_REF] Perthame | Transport Equations in Biology[END_REF]Ch. 3] 

Relative Entropy

The results of Chapter 1 rely on entropy methods and closely related ideas. The short introduction to entropy methods and the heat equation examples hereafter are based on the course by Dolbeault [START_REF] Dolbeault | Entropy and linear diusion equations[END_REF][START_REF] Dolbeault | Entropy methods and nonlinear diusions[END_REF] and some references therein: [START_REF] Arnold | Entropies and equilibria of many-particle systems: An essay on recent research[END_REF], [START_REF] Mischler | Stability in a nonlinear population maturation model[END_REF][START_REF] Michel | General relative entropy inequality: an illustration on growth models[END_REF] and [START_REF] Perthame | Transport Equations in Biology[END_REF]Ch. 3.5,3.6,4.2.2,6.3,6.4]. The rst reference presents the accomplishments of a research programme consisting in the application of entropy methods to kinetic equations. The last three introduce general relative entropy to PDEs stemming from biological models.

The illustration of entropy methods on the heat equation presented later follows [START_REF] Biler | Intermediate asymptotics in L 1 for general nonlinear diusion equations[END_REF][START_REF] Arnold | Improved entropy decay estimates for the heat equation[END_REF][START_REF] Bartier | Improved intermediate asymptotics for the heat equation[END_REF][START_REF] Dolbeault | Entropy and linear diusion equations[END_REF].

General considerations on entropy methods

The mathematical concept of entropy is linked to the physical one, which is a measure of the amount of microscopic states corresponding to a given macroscopic state. The second principle of thermodynamics asserts that (physical) entropy is an increasing function of time in a closed system. Hence Gibbs' principle, which states that the equilibrium distribution of such a system is the one which achieves maximum entropy under certain constraints. Analytically in the context of the Boltzmann equation, this corresponds to Boltzmann's H-Theorem which the reader may nd in [START_REF] Boltzmann | Lectures on Gas Theory[END_REF].

In a similar way, mathematical entropy methods allow the establishment of quantitative convergence to equilibrium in certain PDE. (Mathematical) Entropy H is a Lyapunov functional that is non-increasing along the solution, nding its minimum at the equilibrium: its opposite -H plays the role of the physical entropy. Specically, freely quoting [START_REF] Arnold | Entropies and equilibria of many-particle systems: An essay on recent research[END_REF], an entropy method consists in the following steps 3 Relative entropy and self-similar decay in the Heat Equation Following [START_REF] Biler | Intermediate asymptotics in L 1 for general nonlinear diusion equations[END_REF][START_REF] Arnold | Improved entropy decay estimates for the heat equation[END_REF][START_REF] Bartier | Improved intermediate asymptotics for the heat equation[END_REF][START_REF] Dolbeault | Entropy and linear diusion equations[END_REF], let us present a proof of the self-similar decay of a family of solutions of the heat equation. This will serve both as an illustration in a simpler case and as a rst heuristic for the work of Chapter 1. Even though our proof involves mostly L 1 norms, the underlying ideas are heavily inspired by the problem described hereafter.

Consider the heat equation

∂ t ρ(t, x) = ∆ρ(t, x), t > 0, x ∈ R d (33) 
coupled with a non-negative, integrable initial condition ρ 0 dened over R d . Without loss of generality, we take ρ 0 L 1 = 1.

Equation ( 33) can be explicitly solved by convolution with the fundamental solution of the heat equation, the Green kernel G:

ρ(t, x) = (G * ρ 0 )(t, x) = R d G(t, x -y)ρ 0 (y) dy, (34) 
where

G(t, x) = exp -|x| 2 4t (4πt) d/2 . ( 35 
)
It follows that ρ decays uniformly to 0 like O(t -d/2 ), since as t → ∞, ρ(t, x) ∼ G(t, x). It is classical to search for the rst order term of an asymptotic expansion of the solution as t → ∞. This amounts to estimating the decay of u(t, •) -G(t, •) in various L p norms. Such estimates are called intermediate asymptotics.

Since t d/2 G(t, x) = G(1, x/ √ t)
, the decay that we wish to study is self-similar. The reader may nd in [START_REF] Dolbeault | Entropy and linear diusion equations[END_REF] dierent self-similar rescalings, including the following time-dependent rescaling:

ρ(t, x) = 1 R d (t) v τ (t), x R(t) (36) 
for some positive increasing functions τ, R chosen so that v may satisfy a simple enough equation.

For

R(t) = √ 1 + 2t, τ (t) = ln (R(t)) = 1 2 ln (1 + 2t) , (37) 
the equation satised by v is the Fokker-Planck equation:

∂ τ v(τ, y) = δ y v + ∇ y (yv(τ, y)), y ∈ R d , τ > 0 (38) 
coupled with the same initial data as for ρ: v(τ = 0, y) = ρ 0 (y). We will hereafter drop the distinction between x and y.

Apart from the preservation of the initial condition, this time-dependent rescaling has the advantage of admitting a stationary solution v ∞ . The study of intermediate asymptotics for ρ now amounts to that of the convergence of v to v ∞ . Indeed, for the Fokker-Planck equation [START_REF] Binder | A Guide to Monte Carlo Simulations in Statistical Physics[END_REF],

v ∞ (x) = exp -|x| 2 2 (2π) d/2 . ( 39 
)
Let us consider a smooth, convex function H that reaches its minimum at 1. We dene the relative entropy:

H[v, v ∞ ](τ ) = R d H v(τ, x) v ∞ (x) v ∞ (x) dx, (40) 
and the relative entropy dissipation D as:

D[v, v ∞ ](τ ) = - d dτ H[v.v ∞ ](τ ). ( 41 
)
Since v is a solution of the Fokker-Planck equation ( 38), if we choose H(X) = X ln X.

(

) 42 
we recover that the entropy dissipation equals the Fisher information functional:

D[v, v ∞ ](τ ) = R d v(τ, x) ∇ ln v(τ, x) v ∞ (x) 2 dx = R d ∇v(τ, x) v(τ, x) + x 2 v(τ, x) dx. ( 43 
)
The control of the entropy by its dissipation (similar to equation ( 29)) is achieved in this context via the logarithmic Sobolev inequality [START_REF] Dynkin | Some limit theorems for sums of independent random variables with innite mathematical expectations[END_REF]:

H[v, v ∞ ](τ ) ≤ 1 2 D[v, v ∞ ](τ ). (44) 
The reader may nd a proof of the inequality in [START_REF] Dolbeault | Entropy and linear diusion equations[END_REF], generalisations in the bibliography therein and details on the application of such inequalities in the context of equations related to Fokker-Planck's in [START_REF] Arnold | On convex Sobolev inequalities and the rate of convergence to equilibrium for Fokker-Planck type equations[END_REF]. It follows by Gronwall's Lemma that the relative entropy decays exponentially:

H[v, v ∞ ](τ ) ≤ H[v 0 , v ∞ ]e -2τ . (45) 
The Csiszár-Kullback inequality (consult e.g. [START_REF] Unterreiter | On generalized Csiszár-Kullback inequalities[END_REF] and the bibliography therein) yields:

v(τ, •) -v ∞ 2 L 1 ≤ 4H[v, v ∞ ](τ ). (46) 
We have recovered an exponential convergence rate of v to v ∞ in the L 1 norm:

v(τ, •) -v ∞ L 1 ≤ 2 H[v 0 , v ∞ ]e -τ . (47) 
This amounts to an algebraic convergence rate of ρ towards the asymptotic prole

ρ ∞ (t, x) = 1 R(t) d v ∞ x R(t) , (48) 
in the sense that

ρ(t, •) -ρ ∞ (t, •) L 1 ≤ 2 H[ρ 0 , v ∞ ] √ 1 + 2t . (49) 
The reader can nd more general decay estimates proved by means of entropy methods in [START_REF] Bartier | Improved intermediate asymptotics for the heat equation[END_REF] in the context of the heat equation, or for instance in [START_REF] Nazaret | Weighted fast diusion equations (part II): Sharp asymptotic rates of convergence in relative error by entropy methods[END_REF] in that of fast diusion.

Viscosity solutions of Hamilton-Jacobi equations

Let us introduce the appropriate formalism on which the results from Chapter 2 rely: the viscosity solutions of Hamilton-Jacobi equations. The main bibliography for this section consists of the following books [START_REF] Barles | Solutions de viscosité des équations de Hamilton-Jacobi[END_REF][START_REF] Bardi | Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations[END_REF][START_REF] Evans | Partial Dierential Equations: Second Edition (Graduate Studies in Mathematics)[END_REF]2]. A useful uniqueness result is taken from [START_REF] Clarke | Functional Analysis, Calculus of Variations and Optimal Control[END_REF], in which Hamilton-Jacobi equations are presented in the context of control theory and convex analysis.

Hamilton-Jacobi equations

Let Ω be an open subset of R N and H be a continuous map from Ω × R × R N to R which we call the Hamiltonian. For any smooth enough function u : R + × R N → R, we denote by ∇u the space gradient of u and by ∇ 2 u the space Hessian matrix, respectively:

∇u(t, x) = (∂ x 1 u, . . . , ∂ x N u)(t, x) ∇ 2 u(t, x) = ∂ x i ∂ x j u 1≤i,j≤N (t, x).
The following is a rst-order evolution Hamilton-Jacobi (HJ) equation:

∂ t u(t, x) + H(x, u(t, x), ∇u(t, x)) = 0, (t, x) ∈ R + × Ω. (50) 
The equation can be coupled with initial and/or boundary conditions.

Second order HJ equations are those in which H depends on an additional variable corresponding to ∇ 2 u, and stationary HJ equations are those in which u does not depend on t.

Hamilton-Jacobi equations arise naturally in control theory [START_REF] Fleming | Controlled Markov processes and viscosity solutions[END_REF][START_REF] Bardi | Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations[END_REF][START_REF] Clarke | Functional Analysis, Calculus of Variations and Optimal Control[END_REF], in dierential games, in the study of propagation phenomena and large deviation theory [START_REF] Varadhan | Large Deviations and Applications[END_REF][START_REF] Freidlin | Geometric optics approach to reaction-diusion equations[END_REF][START_REF] Evans | A pde approach to geometric optics for certain semilinear parabolic equations[END_REF][START_REF] Varadhan | Large deviations[END_REF][START_REF] Rauch | Hyperbolic Partial Dierential Equations and Geometric Optics[END_REF], in image theory, and phase-transition problems. 50) is a function u ∈ C 1 (R + × Ω) which satises the equation ( 50) over R + × Ω as well as the corresponding initial or boundary condition.

Viscosity solutions Denition 4 (Classical solutions). A classical solution of the HJ equation (

The notion of classical solution is a natural one. However, as is generally the case with nonlinear PDEs, HJ equations do not generally admit classical solutions. Indeed, several problems arise even while attempting to dene a class of almost-everywhere or weak solutions. Four classical instructive examples of such issues are presented in the introduction of Barles' book [11,Ch. 1]. Namely, the equation or its boundary conditions may not have a well-dened meaning, there may exist an innite family of solutions (whose adherence, moreover, can include smooth functions that are not weak solutions), and within the framework of almost everywhere solutions, HJ problems may not be stable with respect to single perturbations.

Conversely, viscosity solutions introduced by Crandall and Lions in the early 1980s [START_REF] Michael | Viscosity solutions of Hamilton-Jacobi equations[END_REF] provide a reasonable framework that guarantees that HJ equations and their boundary conditions have meaning, admit a unique solution under reasonable hypotheses, and satisfy stability results for single perturbation problems.

Denition 5 (Continuous viscosity solutions). A function u ∈ C(Ω) is a viscosity solution of

the rst order evolution Hamilton-Jacobi equation ( 50) if and only if:

• for any test function φ ∈ C 2 (R + × Ω), at any point (t 0 , x 0 ) ∈ R + × Ω at which u -φ reaches a local maximum, ∂ t φ(t 0 , x 0 ) + H(x 0 , u(t 0 , x 0 ), ∇φ(t 0 , x 0 )) ≤ 0, (51) 
• and for any test function φ ∈ C 2 (R + × Ω), at any point (t 0 , x 0 ) ∈ R + × Ω at which uφ reaches a local minimum,

∂ t φ(t 0 , x 0 ) + H(x 0 , u(t 0 , x 0 ), ∇φ(t 0 , x 0 )) ≥ 0. ( 52 
)
If u satises (51) (respectively, ( 52)), we say that u is a viscosity subsolution of (50) (respectively, a viscosity supersolution).

There exist equivalent denitions of viscosity solutions by means of convex analysis tools.

The term viscosity solution is used because the solution obtained via the vanishing viscosity method is a viscosity solution. We refer the reader to [START_REF] Barles | Solutions de viscosité des équations de Hamilton-Jacobi[END_REF] for the details.

Existence results

There are several existence results for viscosity solutions of Hamilton-Jacobi equations, depending on the properties of the Hamiltonian H. Specically, if H is convex, it is possible to dene the Hopf-Lax value function as we do below, hence building a solution of the HJ equation thanks to its dual control problem. If the Hamiltonian is coercive and satises certain additional properties as is the case in [11, Ch. 2.6.1], it is possible to apply Perron's method to construct a solution.

In a nutshell, consider the set S of bounded subsolutions, dene a function f that takes at each point x the value: f (x) = sup v∈S v(x), and prove f is a viscosity solution. Under weaker hypotheses on the Hamiltonian, an interesting idea is to use a stability result for a class of approached problems. For instance, one may dene

P ε : ε∆u + ∂ t u + H(∇u) = 0,
use the regularising properties of the higher-order term to prove existence and uniqueness of the solution to P ε , and use a stability result that guarantees that the limit of the solutions to P ε is the solution to P 0 .

In this paragraph, we consider an existence theorem that applies in the context of Chapter 2, where H is convex and coercive, and the initial condition is bounded below and sublinear.

Consider the following HJ evolution problem

∂ t u(t, x) + H(∇u(t, x)) = 0, (t, x) ∈ (0, T ] × R n u(0, x) = u 0 (x), x ∈ R n . ( 53 
)
Let L be the Lagrangian dened as the Legendre-Fenchel transform of the convex, coercive Hamiltonian H:

L(v) = sup p∈R {pv -H(p)} . (54) 
We dene the value function f via the Hopf-Lax formula:

f (t, x) = min y∈R tL x -y t + u 0 (y) . (55) 
Proposition 6. Let H be a convex, coercive Hamiltonian, and let u 0 be a bounded below, sublinear, semi-concave and Lipschitz continuous functions over R. The Hopf-Lax value function f in ( 55) is well dened for the initial condition u 0 . Moreover, f (0, •) = u 0 and f is a viscosity solution of [START_REF] Hornung | Morphogen gradient formation in a complex environment : An anomalous diusion model[END_REF].

The reader may prove the Proposition by following the denitions, methods and computations in [49, Chapters 3.3.2 and 10.3.4] and generalising them from bounded Lipschitz functions to bounded below, sublinear, semi-concave, Lipschitz continuous functions.

In the cited reference [START_REF] Evans | Partial Dierential Equations: Second Edition (Graduate Studies in Mathematics)[END_REF], boundedness and uniform continuity of u 0 and the solutions are assumed as well, and a unicity result of the viscosity solution in the class of bounded uniformly continuous functions is derived from the existence of a Lipschitz continuous solution. Uniqueness of the viscosity solution of (83) holds under many dierent sets of hypotheses, among which there are trade-os between assumptions on u 0 and u on the one hand, and on H on the other.

Uniqueness results

There are many uniqueness results for viscosity solutions of Hamilton-Jacobi equations.

In the context of continuous viscosity solutions, uniqueness is usually proved within the class of uniformly continuous functions that are bounded or grow in a controlled way. Such results can rely on many dierent yet similar sets of hypotheses, usually involving some combination of coercivity, smoothness and convexity of the Hamiltonian H, and sometimes the existence of a solution in W 1,∞ .The proofs rely on the application of the maximum principle and the method of the doubling of variables, which consists in comparing a viscosity subsolution u and a viscosity supersolution v of the desired HJ equation taken at dierent points. The idea is to dene a penalised function

φ ε (t, s, x, y) = u(t, x) -v(s, y) - |t -s| ε - (x -y) 2 ε 2
that reaches its maximum at a certain (t ε , s ε , x ε .y ε ), and to prove that the penalised maximum converges to the maximum of uv. The end of the proofs rely on an estimate on the dierential of φ ε . We refer the reader to [START_REF] Barles | Solutions de viscosité des équations de Hamilton-Jacobi[END_REF][START_REF] Evans | Partial Dierential Equations: Second Edition (Graduate Studies in Mathematics)[END_REF] for extensive details.
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Certain uniqueness results hold in the context of half-relaxed limits for discontinuous viscosity solutions. The proofs follow a strategy similar to that sketched above. However, the convergence of the penalised maximum is harder to obtain. The proofs rely on a strong comparison principle between a locally bounded upper semi-continuous viscosity subsolution and a locally bounded lower semi-continuous viscosity supersolution. The reader may consult [2] for a presentation of the theory of half-relaxed limits.

This section follows the reference [START_REF] Clarke | Functional Analysis, Calculus of Variations and Optimal Control[END_REF], from which the existence results that are useful for Chapter 2 are taken.

Consider the following Cauchy problem in which we have a rst order evolution Hamilton-Jacobi equation where H does not depend on u(t, x):

∂ t u(t, x) + H(x, ∇u(t, x)) = 0, (t, x) ∈ R + × R N u(0, x) = l(x), x ∈ R N . ( 56 
)
Let us quote here the theorems taken from [START_REF] Clarke | Functional Analysis, Calculus of Variations and Optimal Control[END_REF] (a) l is locally Lipschitz and bounded below;

(b) H(x, p) is locally Lipschitz, and is convex as a function of p for each x;

(c) H has superlinear growth in p in the following sense: (d) There exist positive constants C, κ > 1 and σ < κ such that, for all

(x, p) ∈ R N × R N , H(x, p) ≤ C|p| κ (1 + |x|) σ .
Theorem 7 (Corollary 19.17 and Theorem 19.11). Under Hypothesis 1, there exists a unique viscosity solution u * of [START_REF] Fedotov | Nonlinear degradation-enhanced transport of morphogens performing subdiusion[END_REF] which is bounded below.

The reader may consult the proofs of these results in [START_REF] Clarke | Functional Analysis, Calculus of Variations and Optimal Control[END_REF]Ch. 19]. Such proofs rely on equivalent denitions of viscosity solutions by means of convex analysis tools.

WKB expansion and singular perturbation problems

In 1926, in the context of the high frequency limit of the wave equation and the semi-classical limit of the Schrödinger equation, Wentzel [START_REF] Wentzel | Eine verallgemeinerung der quantenbedingungen für die zwecke der wellenmechanik[END_REF], Kramers [START_REF] Kramers | Wellenmechanik und halbzahlige quantisierung[END_REF] and Brillouin [START_REF] Brillouin | La mécanique ondulatoire de schrödinger: une méthode générale de resolution par approximations successives[END_REF] (WKB) introduced a solution approximation method which now bears their initials 4 

. It consists in making an

Ansatz in the form of a series expansion of the fast oscillating complex phase of the solution to such problems, in which the highest order derivative is multiplied by a small parameter. Similar methods apply for hyperbolic scalings of parabolic and hyperbolic equations. The reader may consult [START_REF] Rauch | Hyperbolic Partial Dierential Equations and Geometric Optics[END_REF] for an in depth analysis of such methods. Let us present an application of this method to a parabolic equation.

Fisher-KPP front propagation

Let us illustrate a WKB-inspired technique on a parabolic reaction-diusion example. Consider the one-dimensional Fisher-KPP equation introduced simultaneously by Fisher [START_REF] Fisher | The wave of advance of advantageous genes[END_REF] and Kolmogorov, Petrovskii and Piskunov [START_REF] Kolmogorov | Research of the equation of the diusion connected to increase of quantity of substance, and its application to one biological problem[END_REF].

∂ t ρ = D∂ 2 x ρ + rρ(1 -ρ), (t, x) ∈ R + × R. ( 57 
)
Here, ρ(t, x) is the probability density function associated to some species (animal, bacterial, chemical...), D is its diusion coecient, and r its birth rate.

The reader may nd in [START_REF] Méndez | ReactionTransport Systems[END_REF]Ch. 4] a synthetic presentation of front propagation for the Fisher equation coupled with dierent reaction kinetics, sketches of the proofs, and a good physical intuition as well as an introduction of WKB and Hamilton-Jacobi methods for front propagation in Fisher-KPP.

We remark that ρ ≡ 1 is a stable steady state of ( 57) and ρ ≡ 0 is an unstable steady state.

Denition 8 (Travelling wave). A travelling wave solution of ( 57) is a solution of the form

ρ(t, x) = U(x -ct) ( 58 
)
where U is the prole of the wave and c its velocity of propagation.

It has been proved [START_REF] Fisher | The wave of advance of advantageous genes[END_REF][START_REF] Kolmogorov | Research of the equation of the diusion connected to increase of quantity of substance, and its application to one biological problem[END_REF][START_REF] Aronson | Nonlinear diusion in population genetics, combustion, and nerve pulse propagation[END_REF][START_REF] Paul | The approach of solutions of nonlinear diusion equations to travelling front solutions[END_REF] that Fisher-KPP (57) admits positive travelling wave solutions that connect the stable steady state to the unstable steady state:

lim -∞ U = 1; lim ∞ U = 0,
for any velocity c greater than a minimal velocity:

c ≥ c * = 2 √ rD.
Such solutions are unique up to translation.

It is possible to study the travelling wave solutions by considering exponentially decaying initial conditions [START_REF] Aronson | Multidimensional nonlinear diusion arising in population genetics[END_REF] and a prole U that is exponentially decaying to the right. A linearization of the problem at the front of the prole for ρ 1 yields an ODE from which the existence of travelling wave solutions is recovered by means of a phase portrait study [START_REF] Aronson | Nonlinear diusion in population genetics, combustion, and nerve pulse propagation[END_REF].

The geometric optics approach

Following [START_REF] Freidlin | Geometric optics approach to reaction-diusion equations[END_REF][START_REF] Evans | A pde approach to geometric optics for certain semilinear parabolic equations[END_REF], it is possible to decouple the study of the front prole and that of its velocity.

In order to do so, we take the hyperbolic rescaling ρ ε (t, x) = ρ(t/ε, x/ε) of the Fisher equation.

We remark that under this rescaling, the front prole dened in the previous paragraph becomes steeper as ε decreases and converges to the indicatrix function of a set.

ρ ε (t.x) = U x -vt ε ---→ ε→0 1 Ωt .
In order to study the transition zone between the space sets dened at a given time by ρ 1 and ρ 1, we make the WKB Ansatz:

∀(t, x) ∈ R + × R, ρ ε (t, x) = exp - φ ε (t, x) ε .
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The function φ ε is non-negative and satises a viscous Hamilton-Jacobi equation:

∂ t φ ε + D|∂ x φ ε | 2 + r = εD∂ 2 x φ ε + rφ ε , (P ε )
which in turn converges formally as ε → 0 to the constrained Hamilton-Jacobi equation

min ∂ t φ 0 + D|∂ x φ 0 | 2 + r, φ 0 = 0. (P 0 )
A stability result is required to conclude: the local uniform convergence of φ ε to φ 0 , which is a viscosity solution of the limiting problem P 0 . It corresponds to the following diagram.

φ ε solution of ------→ (P ε ) ↓ ↓ formal limit φ 0 visc. sol. -----→ (P 0 ). (59) 
A rigorous justication of this result appears in [START_REF] Evans | A pde approach to geometric optics for certain semilinear parabolic equations[END_REF]. The interest of this technique is that the theory of Hamilton-Jacobi equations can be applied to analyse the limit equation and Lagrangian dynamics can be used to follow the propagation of its nullset.

The ideas presented in this paragraph are the heuristic foundations of the work we present in Chapter 2. They are also useful in the context of kinetic equations [START_REF] Bouin | Large deviations for velocity-jump processes and non-local hamilton-jacobi equations[END_REF].

Main results of this thesis

The interaction between mathematics and biology, physics, medicine, etc. bears fruits in two ways: mathematical modelling helps understand certain processes, and certain phenomena inspire mathematical problems whose study is intrinsically interesting. This dissertation is the latter type of fruit: we have taken a model inspired by biological phenomena and have contributed to the mathematical study of the equations in which it consists. Hereafter, we present the results in question in an order that mimics the plan of the dissertation.

Self-similar decay in a homogenous space setting entropy methods

The work presented in Chapter 1 is based on the article [START_REF] Berry | Quantitative convergence towards a self-similar prole in an age-structured renewal equation for subdiusion[END_REF], co-authored with Hugues Berry and Thomas Lepoutre. In it we have investigated the asymptotic behaviour of the age distribution of an age-structured population that undergoes subdiusive motion as described by our model in Section 3.3, specically, equation [START_REF] Bouchut | Kinetic Equations and Asymptotic Theory[END_REF]. In that model, the space redistribution kernel that governs the destination of particles at each jump is decoupled from the the waiting time distribution. Moreover, the spatial redistribution kernel is Gaussian, and all subdiusive eects are a consequence of the heavy tailed waiting time distribution. It is therefore of interest to study the space-homogenous version of the problem, described by the age-structured integro-dierential renewal equation [START_REF] Bouchut | Kinetic Equations and Asymptotic Theory[END_REF], which we recall.

     ∂ t n(t, a) + ∂ a n(t, a) + β(a)n(t, a) = 0 , t ≥ 0, a > 0 n(t, a = 0) = ∞ 0 β(a )n(t, a )da n(t = 0, a) = n 0 (a). ( 60 
)
Under suitable hypotheses, we have proved that the solution of ( 60) decays following a selfsimilar prole.

Theorem 9 (Berry, Lepoutre, M.G.). Assume n 0 is supported in [0, 1) and β(a) = µ 1+a . We denote

N ∞ (t, a) = c∞ a µ (1+t-a) 1-µ , a < 1 + t, 0, a > 1 + t.
Then if µ = 1/2, there exists K > 0 such that

n(t, .) -N ∞ (t, .) 1 ≤ K (1 + t) µ + K (1 + t) 1-µ , and if µ = 1/2, there exists K > 0 such that n(t, .) -N ∞ (t, .) 1 ≤ K(1 + log(1 + t)) √ 1 + t .
However, this work contains a result namely, the denition of the pseudo-equilibrium W in Denition 10 and the subsequent Theorem 12 that is potentially stronger than that of the previous Theorem, while being instrumental in its proof. This new result holds for perturbed jump rates of the following form.

Hypothesis 2. Let the jump rate β be a positive, bounded, and non-increasing function satisfying

   lim a→∞ aβ(a) = µ ∈ (0, 1), β(a) = µ 1 + a + g(a), (61) 
where

g ∈ L 1 is such that there exist K, α > 0 satisfying ∞ a |g(s)|ds ≤ K (1 + a) α .
The result Theorem 12 is better stated in self-similar variables. Let us introduce them.

   τ = ln(1 + t), b = a 1 + t . (62) 
We set

n(t, a) = 1 1 + t w(τ, b). (63) 
The problem (60) becomes, in self-similar variables:

         ∂ τ w + ∂ b ((1 -b)w) + e τ β(e τ b)w = 0 w(τ, 0) = 1 0 e τ β(e τ b)w(τ, b)db w(0, b) = w 0 (b). (64) 
The previous equation preserves positivity and L 1 norm, but it is not autonomous. Hence it does not admit a classical integrable steady state. However, we may look for a stationary state satisfying the formal limit of the equation, since we consider here β(a) ∼ ∞ µ a :

∂ b ((1 -b)W ∞ ) + µ b W ∞ = 0.
The formal limit of the boundary condition cannot be stated as an equality since W ∞ is expected to blow up at 0, but it can be understood as an equivalence as ε tends to 0 of W ∞ (ε) and

1 ε µ b W ∞ (b)db.
This leads us to dene the self-similar equilibrium as:

W ∞ (b) = c ∞ b µ (1 -b) 1-µ (65)
which is called the arc sine distribution, or Dynkin-Lamperti distribution. We recall that the Dynkin-Lamperti Theorem 3 gives the distribution of Y (t)/t, which corresponds to a/t at the microscopic level in our problem. The renormalising constant c ∞ is dened such that W ∞ 1 = 1.

Under some conditions, we can expect that w(τ, b) will converge to equation [START_REF] Freidlin | Geometric optics approach to reaction-diusion equations[END_REF] when τ → ∞.

The non-existence of an integrable steady state renders impossible the direct use of relative entropy-type techniques: namely, the denition of a Lyapunov functional measuring some distance between w(t, •) and W ∞ that decreases with time. This has led us to introduce a pivot

function W : (τ, b) ∈ R + × [0, 1) → W (τ, b) ∈ R + , such that W (τ, •) converges in L 1 norm to W ∞ as τ → ∞ with a similar rate as w(τ, •) converges to W (τ, •) in L 1 as τ tends to ∞.
Denition 10. We dene the pseudo-equilibrium W over R + × [0, 1) as follows:

W (τ, b) = C(τ ) e B(e τ b) (1 -b) 1-µ , (66) 
where

B(a) = a 0 β(s)ds and C is dened so that W (τ, •) L 1 = 1.
In particular in the reference case β(a) = µ 1+a , the pseudo-equilibrium takes the following form:

W (τ, b) = C(τ )e -µτ (e -τ + b) µ (1 -b) 1-µ .
Proposition 11. Under Hypothesis 2, the pseudo-equilibrium W converges in L 1 norm to the stationary state W ∞ with the following quantitative rate:

W (τ, •) -W ∞ 1 ≤ K e (µ-1)τ + e -ατ , (67) 
where K is a constant whose value only depends on µ, α and w 0 .

We name H the L 1 distance between the solution of the rescaled equation ( 64) and the pseudo-equilibrium:

H(τ ) = w(τ, •) -W (τ, •) L 1 . (68) 
In Chapter 1, we shall dene H more generally as a relative entropy, the L 1 distance being a particular case more suited to our purposes.

Theorem 12 (Berry, Lepoutre, M.G.). Suppose Hypothesis 2 holds.

If α > 1 -µ, we recover the optimal rate of convergence If α ≤ 1 -µ, we need to distinguish between several cases:

H(τ ) ≤ K(e -µτ + e -(1-µ)τ ), if µ = 1/2 Kτ e -τ /2 , if µ = 1/2. ( 69 
)

Main results of this thesis

H(τ ) ≤                    K(e -ατ + e -µτ ), if µ = α < 1 -µ K(1 + τ )e -µτ , if α = µ < 1 -µ, K(τ e -(1-µ)τ + e -µτ ), if α = 1 -µ = 1/2, K(1 + τ 2 )e -τ /2 , if α = µ = 1 -µ = 1/2. (70) 
Here, K denotes some constant whose value only depends on µ, α and w 0 .

Theorem 9 is a Corollary of Proposition 11 and Theorem 12. Considering the convergence rates of Proposition 11 and Theorem 12, we may expect similar rates of convergence of w(τ, •) to W (τ, •) and to W ∞ (up to a multiplicative constant). However, interestingly, numerical simulations suggest that for µ close to 1 the pseudo-equilibrium W (τ, •) provides a much better asymptotic approximation in L 1 norm to w(τ, •) than the stationary state W ∞ does. Figure 7 is the result of a Monte Carlo simulation of the standard β(a) = µ/(1 + a) case. It depicts the L 1 distance between w(τ, •) and W (τ, •) in red, and the L 1 distance between w(τ, •) and W ∞ in black. For larger values of µ, the simulated rates of convergence dier more and more.

Our main contributions in this work are the quantitative convergence rate itself, and the use of techniques inspired by relative entropy methods as well as the pseudo-equilibrium W to prove it.

The corresponding renewal problem in probability theory has been studied extensively since the beginnings of renewal theory. We refer the reader to [START_REF] Lotka | A contribution to the theory of self-renewing aggregates, with special reference to industrial replacement[END_REF][START_REF] Feller | On the integral equation of renewal theory[END_REF][START_REF] Doob | Renewal theory from the point of view of the theory of probability[END_REF] and the references therein for the foundations of renewal theory, and to the pertinent sections of [START_REF] Feller | An Introduction to Probability Theory and Its Applications[END_REF][START_REF] Teugels | Regular variation. Encyclopedia of mathematics and its applications 27[END_REF][START_REF] Gut | Stopped random walks: limit theorems and applications[END_REF][START_REF] Iksanov | Renewal Theory for Perturbed Random Walks and Similar Processes[END_REF] for more and more recent approaches. Renewal problems in probability theory satisfying hypotheses similar enough to our own exhibit self-similar convergence towards a limiting arc sine (or Dynkin-Lamperti) distribution. It is a result similar to ours, but with an unknown rate of convergence.

It is presented in Feller's book [START_REF] Feller | An Introduction to Probability Theory and Its Applications[END_REF] tome II, chapter XI, especially in section 5 and onwards. A more recent presentation can be found in [START_REF] Gut | Stopped random walks: limit theorems and applications[END_REF], in which the bibliography given on the generalised arc sine distribution does not go beyond Feller, and in [START_REF] Iksanov | Renewal Theory for Perturbed Random Walks and Similar Processes[END_REF], which cites the Dynkin-Lamperti theorem [117, Theorem 8.6.3.] in that context. We have been unable to nd any rate of convergence in the literature. In this context, we believe our quantitative rate of convergence is interesting.

As for the use of a pivot function with respect to which we build a relative entropy, such an idea is of course not new. An application in a similar context can be found for example in [START_REF] Biler | Intermediate asymptotics in L 1 for general nonlinear diusion equations[END_REF].

However, we nd elegant the specic construction of W and the way it leads to suciently simple and general computations. We are also intrigued by the possible sub-optimality of our constants in the rates of convergence for higher µ that numerical simulations detect. 

         ∂ t n(t, x, a) + ∂ a n(t, x, a) + β(a)n(t, x, a) = 0 , t ≥ 0, a > 0 , x ∈ R n(t, x, a = 0) = ∞ 0 β(a ) R ω(x -x )n(t, x , a ) dx da n(t = 0, x, a) = n 0 (x, a),
compactly supported in age.

(

) 71 
As we have pointed out in the Modeling section 3.3, equation ( 71) describes an age-structured population of molecules undergoing a subdiusive process corresponding to a CTRW at the microscopic level. Here, β is an age-dependent jump rate and ω is a space redistribution kernel. The boundary condition on n(t, x, 0) at age a = 0 accounts for the particles landing at position x at time t after having jumped from position x , at which they had remained during a time span exactly equal to a . The fact that the loss term β(a)n(t, x, a) is recovered in the boundary condition (and that ω is a probability distribution) leads to the conservation of the total population density ∞ 0

R n(•, x, a) dx da over time.

Hypothesis 3 (Space jump kernel ω and jump rate β).

Throughout the article, we consider ω a Gaussian probability distribution of mean 0 and variance σ 2 , and β is dened as follows:

       ω(x) = 1 σ √ 2π exp - x 2 2σ 2 , σ > 0 β(a) = µ 1 + a , 0 < µ < 1 (72) 
where µ ∈ (0, 1) is the subdiusion exponent.

The stability result we prove follows the heuristics presented on the hyperbolic limit of the Fisher-KPP equation presented in Section 4.3. Here, we consider the hyperbolic rescaling (t, x, a) -→ (t/ε, x/ε, a) of Problem [START_REF] Guigas | Sampling the cell with anomalous diusionthe discovery of slowness[END_REF], and we apply a Hopf-Cole transform:

n ε (t, x, a) = n (t/ε, x/ε, a) = exp (-φ ε (t, x, a)/ε) . (73) 
Studying φ ε enables us to accurately quantify the behaviour of small tails of the probability density function n in a way that is reminiscent of the theory of large deviations.

Main results of this thesis

For (t, x, a) such that φ ε (t, x, a) < ∞, the function φ ε satises:

             ∂ t φ ε + 1 ε ∂ a φ ε -β = 0 , t ≥ 0, a > 0 , x ∈ R exp (-φ ε (t, x, 0)/ε) = 1+t/ε 0 R β(a)ω(z) exp (-φ ε (t, x -εz, a)/ε) dz da φ ε (0, x, a) = φ 0 ε (x, a) = -ε ln n 0 (x/ε, a) . (74) 
Let us denote by ψ ε the boundary value at a = 0, which will be our main unknown:

ψ ε (t, x) = φ ε (t, x, 0). ( 75 
)
An interesting idea present in this article is that of proving convergence to the limiting Hamilton-Jacobi equation directly on the boundary condition of our equation ( 71) instead of using the perturbed test function method introduced in [48] on φ ε .

We compute the solution of equation ( 74) along characteristic lines:

φ ε (t, x, a) =    ψ ε (t -εa, x) + ε a 0 β(s) ds, t > 0, εa < t φ 0 ε (x, a -t/ε) + ε a a-t/ε β(s) ds, t ≥ 0, a ≥ t/ε. (76) 
Injecting ( 76) into the a = 0 boundary condition satised by φ ε in (74) now yields:

1 = t/ε 0 Φ(a) R ω(z) exp 1 ε [ψ ε (t, x) -ψ ε (t -εa, x -εz)] dz da + 1+t/ε t/ε Φ(a) R ω(z) exp 1 ε ψ ε (t, x) -φ 0 ε (x -εz, a -t/ε) + a-t/ε 0 β dz da, ( 77 
)
where Φ(a) = β(a) exp a 0 β(s) ds is the distribution of waiting times, as presented in Section 3.3.

Let us formally derive the limiting Hamilton-Jacobi equation. Taking the formal limit of [START_REF] Harten | Uniformly high-order accurate nonoscillatory schemes[END_REF] when ε → 0 yields:

1 = ∞ 0 Φ(a) exp (a∂ t ψ 0 (t, x)) da R ω(z) exp (z∂ x ψ 0 (t, x)) dz. ( 78 
)
It is a Hamilton-Jacobi equation, since it is equivalent to:

∂ t ψ 0 (t, x) + H(∂ x ψ 0 )(t, x) = 0, (79) 
with H dened as follows, where Φ-1 is the inverse function of the Laplace transform of Φ:

H(p) = -Φ-1 1 R ω(z) exp(zp) dz . ( 80 
)
The main result of this paper is the proof of convergence as ε tends to 0 of the boundary value ψ ε to the unique solution ψ 0 of the limiting Hamilton-Jacobi equation [START_REF] Havlin | Diusion in disordered media[END_REF], under the suitable hypotheses on the initial condition that follow.
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Hypothesis 4 (Initial condition φ 0 ε ).

Ansatz: we take a WKB expansion of the initial condition:

φ 0 ε (x, a) = v ε (x) + εη ε (x, a) + χ [0,1) (a) (81) 
where χ [0,1) (a) is worth 0 for a ∈ [0, 1) and ∞ for a ≥ 1. Hence, the essential support of φ 0 ε is [0, 1), as expected from the choice of n 0 . The functions φ 0 e , v ε and η ε satisfy the following properties uniformly over ε:

1. v ε is sublinear and bounded below 2. η ε is bounded.

3. φ 0 ε and v ε are semi-concave in x uniformly in a: there exists C xx ∈ R such that for any x, h ∈ R and a ∈ [0, 1), for any ε > 0,

φ 0 ε (x + h, a) + φ 0 ε (x -h, a) -2φ 0 ε (x, a) ≤ C xx h 2 , v ε (x + h) + v ε (x -h) -2v ε (x) ≤ C xx h 2 . ( 82 
) (Or equivalently, in the sense of distributions, ∂ 2 x φ 0 ε ≤ C xx and ∂ 2 x v ε ≤ C xx .) 4. φ 0 ε is Lipschitz continuous in x uniformly in a ∈ [0, 1)
We note that semi-concavity is the most restrictive hypothesis.

Theorem 13 (Calvez, Gabriel, Mateos González). Assume Hypotheses 3 and 4 hold.

Then the boundary value ψ ε converges in L ∞ loc to ψ 0 , the unique viscosity solution of the limiting Hamilton-Jacobi equation [START_REF] Havlin | Diusion in disordered media[END_REF] with an initial condition that is an appropriate limit of the initial conditions at ε > 0.

The proof strategy we follow is the classical recipe given by Barles in [START_REF] Barles | Solutions de viscosité des équations de Hamilton-Jacobi[END_REF]Chapter 2] to tackle such problems. It consists in the following steps or close variations thereof namely, a stability result relying on a priori estimates and a viscosity limit procedure, and a uniqueness result.

1. Prove that ψ ε is locally bounded in L ∞ uniformly in ε > 0 In our case, we prove ψ ε is bounded below and sublinear.

2. Show that ψ ε is locally bounded in W 1,∞ (or in a Hölder C 0,α space for some 0 ≤ α < 1)

uniformly in ε > 0 In our case, a Lipschitz bound.

3. It follows from the rst two steps that the sequence (ψ ε ) ε is compact in C(K) for any compact set K thanks to the Arzela-Ascoli Theorem.

4. Apply a stability result to a convergent subsequence of (ψ ε ) ε obtained by diagonal extraction: if the ψ ε are sub-(respectively super-) solutions, then ψ 0 is a viscosity sub-(respectively super-) solution of the limit problem.

5.

A comparison result for a viscosity subsolution and supersolution of equation ( 79) is needed to prove that (79) admits a unique viscosity solution in a suitable class of regularity, for suitable initial conditions.

6. By local compactness of (ψ ε ) ε and Hausdor separation of C(K), ψ ε ---→ ε→0 ψ 0 , the unique viscosity solution of (79).

Main results of this thesis

An alternative proof strategy consists in using the half-relaxed limits methodology described in [START_REF] Barles | Solutions de viscosité des équations de Hamilton-Jacobi[END_REF]2]. However, we did not do so because of two reasons. First, the advantage of halfrelaxed limits is that they only require L ∞ a priori estimates. In our problem, semi-concavity plays a crucial role in the estimation of the lingering eect of initial conditions on the renewal boundary term. Hence, the natural regularity class for our solutions is at least locally Lipschitz, which greatly reduces the aforementioned advantage. However, and this is the second reason, the trade-o for that advantage is the requirement of a strong comparison result between the upper and lower semi-continuous envelopes of ψ ε in order to show that the limit ψ 0 of a convergent subsequence of ψ ε is the unique viscosity solution of the limiting Hamilton-Jacobi equation.

Since our Hamiltonian has exponential growth, Lipschitz continuity of the solution is a natural requirement to prove that type of result, and it is unclear whether uniqueness could be obtained without Lipschitz regularity in this problem.

Let us start by Point 5 of the strategy. Several dierent uniqueness results hold for the evolution Hamilton-Jacobi Cauchy problem:

∂ t u(t, x) + H(D x u(t, x)) = 0, (t, x) ∈ (0, T ] × R n u(0, x) = u 0 (x), x ∈ R n . ( 83 
)
They rely on dierent sets of hypotheses on H and on u 0 , with trade-os between the regularity of the initial condition and the solution of the Hamilton-Jacobi equation on the one hand, and hypotheses on the Hamiltonian on the other. In order to justify our choice of hypotheses imposed on the initial condition, let us present the properties satised by H and the uniqueness result that we use.

Proposition 14. The Hamiltonian H dened in equation [START_REF] Höing | Anomalous transport in the crowded world of biological cells[END_REF] satises the following properties:

(i) H ∈ C ∞ (R, R + ),
(ii) H is coercive:

H(p) p ---→ p→∞ ∞,
(iii) H is convex, but not strictly uniformly convex.

(iv) Behaviour around p = 0:

H(p) ∼ 0 (σp) 2/µ (2Γ(1 -µ)) 1/µ . (84) 
(v) Behaviour for large p:

H(p) ∼ ∞ µ exp σ 2 p 2 2 . ( 85 
)
Under such conditions, the uniqueness result in a suitable class of functions that we have found most relevant is a modication, for a homogenous Hamiltonian that is not polynomially bounded above, of [START_REF] Clarke | Functional Analysis, Calculus of Variations and Optimal Control[END_REF]Theorems 19.11 and 19.17] presented in the State of the Art 4.3.

Theorem 15 (Uniqueness theorem). Let H be locally Lipschitz, convex and superlinear. Let u 0 be bounded below and Lipschitz continuous. Then there exists a unique viscosity solution of [START_REF] Hornung | Morphogen gradient formation in a complex environment : An anomalous diusion model[END_REF] within the class of Lipschitz continuous functions.

Introduction

Apart from the result of Theorem 13 in itself, the most interesting points of our article concern the way we have dealt with three signicant complications on which we have already commented above. In a nutshell, the key aspects of this work are the following.

1. The choice of applying the limit procedure to the boundary value ψ ε rather than tackling the problem for φ ε by means of perturbed test functions.

2. The non-existence of an integrable stationary state of the space-homogenous problem, the resulting non applicability of the maximum principle to prove bounds on ψ ε , and the timedependent corrections that allow us to prove sublinear bounds.

3. The need for an accurate control of the fate of the population that has never jumped before.

Let us further develop these comments.

Boundary hyperbolic limit vs. perturbed test functions

We have a limit problem whose limiting equation has less variables than the equations at ε > 0.

The limiting equation is averaged over the fast variable a. Perturbed test functions introduced in [START_REF] Evans | The perturbed test function method for viscosity solutions of nonlinear PDE[END_REF] allow to tackle such problems by including a WKB-type Ansatz in the test functions themselves in order to deal with the vanishing dependency on the fast variable. The alternative approach we follow in Chapter 2 consists in considering the limit procedure directly on the boundary value ψ ε , which does not depend on the fast variable a, and dealing with the perturbations that appear as an expression of the initial condition along characteristic lines.

Non-existence of an integrable stationary state.

The proof of the lower boundedness estimate on ψ ε relies on the preservation of positivity of the transport equation and the boundary integral condition, as well as the lower boundedness of the initial condition in equation [START_REF] Hancock | New Models of the Cell Nucleus: Crowding, Entropic Forces, Phase Separation, and Fractals[END_REF]. The proof of the sublinear upper bound of ψ ε relies on a comparison of ψ ε to an expression that only depends on the initial condition φ 0 ε , and on the upper bound on φ 0 ε . None of the bounds on ψ ε relies on the maximum principle, which does not apply here in a satisfactory way: this is the rst main diculty tackled in this article. It is due to the fact that the space-homogenous version (60) of problem [START_REF] Guigas | Sampling the cell with anomalous diusionthe discovery of slowness[END_REF] does not admit an integrable stationary measure.

For the sake of clarity, consider a jump rate β dierent from those we study in this dissertation e.g. β ≡ K or β(a) = µ/(1 + a) for µ > 1. In such cases, an integrable stationary measure F does exist, and the maximum principle applies as follows.

If there exist constants 0 < c < C satisfying cF ≤ n 0 ≤ CF, [START_REF] Ingenhousz | Nouvelles Expériences et Observations Sur Divers Objets De Physique[END_REF] then for all positive time t, such bounds are preserved:

cF ≤ n(t, •) ≤ CF. ( 87 
)
In such a case, the particle mean waiting time equals F 1 : indeed, integrating by parts gives us

F 1 = ∞ 0 aβ(a) exp - a 0 β(s) ds da,
and we recover age-integrable estimates on n.

However, returning to our subdiusive case β(a) = µ/(1+a) for 0 < µ < 1 (and perturbations thereof ), F is not integrable. Hence, if the previous bounds [START_REF] Izeddin | Single-molecule tracking in live cells reveals distinct target-search strategies of transcription factors in the nucleus[END_REF] were to hold, the integrability of n with respect to age would be violated. The maximum principle does not apply in that way.

Despite that, it is still possible to prove suitable bounds by considering time-dependent corrections. Such corrections could be expected thanks to the following heuristic approach inspired by the quantitative self-similar decay shown in [START_REF] Berry | Quantitative convergence towards a self-similar prole in an age-structured renewal equation for subdiusion[END_REF] in Chapter 1. Taking the expression of the

self-similar prole W ∞ (b) = c ∞ b -µ (1 -b) µ-1 presented there, we intuitively expect n(t, a) 1 1 + t W ∞ a 1 + t . ( 88 
)
This translates in our context as a time logarithmic correction of the L ∞ bound of -ε ln(n),

which indeed clearly appears in the computations. The recovery of such corrective terms is the rst main complication tackled in this paper.

Lipschitz bounds technical considerations and link to uniqueness proofs

The proof of the space Lipschitz estimates is not overly original, but it does entail certain interesting technical aspects. It relies on applications of the maximum principle to equations involving integrals with respect to a certain probability measure that depends on ψ ε and the initial condition φ 0 ε , of the increase rates of ψ ε in x. The main diculty in these proofs is linked to the fact that the increase rates to which we wish to apply the maximum principle may not reach their extrema. In order to circumvent this problem, we pensalise the increase rates, guaranteeing the penalised increase rates reach their extrema at some (t 0 , x 0 ). We end up with a proof strategy reminiscent of the proof of uniqueness of the solution of a Hamilton-Jacobi equation by the method of doubling the variables. Hence, at one point, it is necessary to bound |x 0 |. The sublinear hypothesis on the initial condition is not strong enough to guarantee that the space penalisation -δ 2 x 2 0 vanishes as δ 2 tends to 0. However, contrary to the proof of uniqueness of the solution of a Hamilton-Jacobi equation by the method of doubling the variables, we already have uniqueness. Therefore, it is enough to dene a sequence of auxiliary functions that satisfy the Lipschitz bound and converge uniformly to ψ ε , which we do.

The proof of the time Lipschitz bounds relies on the similar tools.

Accurate control of the initial condition-renewal in long time

A viscosity limit procedure corresponding to Points 3 and 4 of the outlined strategy concludes the proof of Theorem 13. Proving that the limit ψ 0 of a subsequence of ψ ε is a viscosity subsolution of the limiting Hamilton-Jacobi equation ( 77) is simple enough. However, proving it is a supersolution requires more ingeniuity.

The proof requires an accurate control of the fate of the aging particles that come from the initial data φ 0 ε and have never jumped: namely, a sharp enough upper bound on B ε (t, x), which we dene as follows. We name B ε (t, x) the proportion among particles arriving at a given space location x at a given time t of those that had never jumped before. Due to the heavy tail of the waiting time distribution Φ, B ε decays very slowly in time. By using the preservation of the semi-concavity of the initial condition and applying the maximum principle to the right expressions, we recover a sharp anomalous scaling:

B ε ε µ (89)
locally uniformly in time. This sort of non-local renement of the time Lipschitz bound of ψ ε is the third main diculty tackled in this work. [START_REF] Arnold | On convex Sobolev inequalities and the rate of convergence to equilibrium for Fokker-Planck type equations[END_REF] Perspectives and work in progress Throughout this dissertation, I have studied structured linear PDE in homogenous space settings by means of methods that can be generalised to non-linear equations. I present hereafter certain logical generalisations of this work, namely the study of space-inhomogeneous settings, the coupling of space and age dynamics, and non-linear problems of propagation in a reaction-subdiusion setting.

Muti-compartment model

Relative entropy techniques

Particles undergoing diusion with a space-dependent diusion coecient tend to concentrate more in lower diusion zones. So do particles undergoing subdiusion with a space-dependent subdiusion exponent µ(x): they concentrate at zones where µ is lower. However, the equilibria dier: in the context of subdiusion, higher subdiusion regions seem to be completely depleted, whereas this is not the case for diusion. The reader can nd a derivation of the space-inhomogeneous master equation, heuristics and simulations in a discretised space in [START_REF] Fedotov | Subdiusive master equation with space-dependent anomalous exponent and structural instability[END_REF] In an ongoing work with Thomas Lepoutre, we propose studying concentration dynamics in the following toy model. We consider particles that jump alternatively between two space compartments, and remain at compartment i during a random time taken according to a law

Φ i (a) = µ i (1 + a) 1+µ i .
We have identied a reasonable Ansatz towards which the concentrations of each compartment seem to decay. However, the convergence by methods similar to those used in Chapter 1 has yet to be proven.

Coupled age and space dependencies

Hamilton-Jacobi techniques, numerical simulation, hyperbolic shock fronts

Certain intracellular proteins experience a random motion that deviates from normal diusion. We refer the reader to [START_REF] Höing | Anomalous transport in the crowded world of biological cells[END_REF] for a review. There exist signicant dierences between slow diusion and subdiusion [START_REF] Soula | Anomalous versus slowed-down brownian diusion in the ligand-binding equilibrium[END_REF], for instance in the context of the formation of morphogen gradients [START_REF] Yuste | Reaction-subdiusion model of morphogen gradient formation[END_REF][START_REF] Yuste | Application of fractional calculus to reactionsubdiusion processes and morphogen gradient formation[END_REF]. A bounded velocity morphogen movement has consequences that dier from a scenario in which arbitrarily high velocities are possible [START_REF] Verbeni | Morphogenetic action through ux-limited spreading[END_REF].

Starting from the previous considerations, I wish to study the pertinence and tractability of a generalisation of equation ( 71) which would incorporate an age dependency of the spatial redistribution kernel, for instance a compact age-dependent support, so as to avoid instantaneous propagation:

   ∂ t n + ∂ a n + β(a)n(t, x, a) = 0 n(t, x, 0) = ∞ -∞ ∞ 0 ω(x -x , a)β(a)n(t, x , a) da dx , (90) 
where β(a) = µ/(1 + a) with 0 < µ < 1.

I consider the following problems to be of interest in this context.

1. The generalisation the results of convergence to a limiting Hamilton-Jacobi equation proved in [START_REF] Calvez | Limiting Hamilton-Jacobi equation for the large scale asymptotics of a subdiusion jump-renewal equation[END_REF] (knowing certain hypotheses of the article would not hold any more and half-relaxed limits methods may be necessary).

2. The quantitative study of the eect of the new hypotheses on ∞ 0 n(t, x, a) da.

3. The introduction of reaction terms in equation ( 90) following the example detailed in 6.3

and the study of the eventual dierences between propagation phenomena in the model where ω does not depend on a and in the model above.

4. In [START_REF] Calvo | Pattern formation in a ux limited reactiondiusion equation of porous media type[END_REF], the authors study the nite speed propagation of morphogen molecules described by a porous medium equation and a relativist heat equation. They prove the existence of travelling waves and solutions in the form of shocks reminiscent of hyperbolic shock waves.

It could be interesting to study the solutions of similar problems where the nite speed displacement is subdiusive.

Reaction-subdiusion integro-dierential equations

Hamilton-Jacobi techniques, denition of fronts in an integro-dierential setting, numerical simulation, kinetic equations

The FisherKolmogorov-Petrovskii-Piskunov equation is a model of reaction-diusion which admits travelling wave solutions that propagate at a constant velocity. The reader may consult a very short introduction to front propagation in Fisher-KPP in Section 4.3. However, analogous models in reaction-subdiusion pose additional denition problems.

In [START_REF] Calvez | Limiting Hamilton-Jacobi equation for the large scale asymptotics of a subdiusion jump-renewal equation[END_REF], Calvez, Gabriel and I have studied a linear equation with no reaction terms. There exist an extensive literature treating anomalous diusion-reaction fronts: we refer the reader to two reviews [START_REF] Nepomnyashchy | Mathematical modelling of subdiusion-reaction systems[END_REF], [START_REF] Volpert | Fronts in anomalous diusion-reaction systems[END_REF] and the references therein. However, the form of the reaction term depends on the studied problem. That dependency has strong consequences on the propagation of fronts in the described systems. By quoting freely section 3.2 of [START_REF] Nepomnyashchy | Mathematical modelling of subdiusion-reaction systems[END_REF],

[In a reaction-subdiusion equation structured in time elapsed since the last space jump (= age), if the products of the reaction are introduced at an age equal to that of the reactants, the

global population] has a tendency of aging, which leads to the decrease of the jump probability and hence slowing down of all the processes, including the front propagation (propagation failure) [66,[START_REF] Schmidt-Martens | Front propagation in a one-dimensional autocatalytic reaction-subdiusion system[END_REF]. [...] Another approach is adopted in [START_REF] Ovidiu | Systematic derivation of reaction-diusion equations with distributed delays and relations to fractional reaction-diusion equations and hyperbolic transport equations: Application to the theory of neolithic transition[END_REF][START_REF] Yadav | Kinetic equations for reaction-subdiusion systems: Derivation and stability analysis[END_REF] where it is assumed that a molecule born in the course of reaction has zero age, as if it had arrived at the reaction point from somewhere else: the argument of the waiting time distribution is set to zero after the chemical transformation of the molecule. In that case, [they are introduced as a boundary term, and a death term is added in the equation describing the probability density function at positive age].

I would like to introduce reaction terms following the age structure of equation ( 71) in order to take into account the non-trivial interaction between reaction and random motion. Several options are sensible, including the following.

Collision-induced renewal

A rst interesting step is the study of the following toy model, which describes an A + A -→ 2A reaction whose products are born at age 0, i.e. renewal induced by collision.

       ∂ t n(t, x, a) + ∂ a n(t, x, a) + β(a)n(t, x, a) + Rn(t, x, a) ∞ 0 n(t, x, a ) da = 0 n(t, x, 0) = ∞ 0 R β(a)ω(x -x )n(t, x , a) dx da + R ∞ 0 n(t, x, a) da 2 . ( 91 
)

Introduction

Here, the renewal rate β(a) is replaced by an eective rate β(a) + R ∞ 0 n(t, x, a) da depending on the local density. I consider interesting to start by comparing the age distributions at xed x for this problem and for the problem without reaction.

Decoupled reaction and subdiusion

Let us consider the reaction A + B -→ 2A whose products are born at an age equal to that of the reactants. Let n 1 and n 2 be the respective concentrations of molecules A and B.

                         ∂ t n 1 (t, x, a) + ∂ a n 1 (t, x, a) + β(a)n 1 (t, x, a) = Rn 2 (t, x, a) ∞ 0 n 1 (t, x, a ) da ∂ t n 2 (t, x, a) + ∂ a n 2 (t, x, a) + β(a)n 2 (t, x, a) + Rn 2 (t, x, a) ∞ 0 n 1 (t, x, a ) da = 0 n 1 (t, x, 0) = ∞ 0 R β(a)ω(x -x )n 1 (t, x , a) dx da n 2 (t, x, 0) = ∞ 0 R β(a)ω(x -x )n 2 (t, x , a) dx da. ( 92 
)
The macroscopic equation describing that reaction is irreversible (see [66], II, B, b leading edge linearization, non-Markovian case), admits a minimal speed of propagation equal to 0 for a pulled, exponentially decaying, front of A particles. However, the reversible reaction admits a positive minimal speed of propagation of fronts (see [START_REF] Yadav | Propagating fronts in reactiontransport systems with memory[END_REF] use of Hamilton-Jacobi tools). The mesoscopic equation [START_REF] Jun | Nucleation and growth in one dimension. II. Application to DNA replication kinetics[END_REF] does not admit a non-0 steady state N that is homogenous in space and such that βN is integrable in age. Therefore, it is not possible to dene travelling wave solutions that link two homogenous steady states. However, equation [START_REF] Jun | Nucleation and growth in one dimension. II. Application to DNA replication kinetics[END_REF] preserves the information on the age structure. I would like to generalise the work done in [START_REF] Calvez | Limiting Hamilton-Jacobi equation for the large scale asymptotics of a subdiusion jump-renewal equation[END_REF] in order to treat, at rst, the invasion by species A of a domain initially containing only molecules of type B.

Chapter 1

Quantitative self-similar decay 

Abstract

In this joint work with Hugues Berry and Thomas Lepoutre [START_REF] Berry | Quantitative convergence towards a self-similar prole in an age-structured renewal equation for subdiusion[END_REF], we describe the convergence towards a self-similar prole of the solutions of a heavy-tailed renewal equation.An approach inspired by relative entropy techniques allows us to obtain quantitative explicit decay rates.

An important diculty arises from the fact that the equation in self-similar variables is not autonomous and we do not have a specic analytical solution. Therefore, in order to quantify the convergence, we estimate attraction to a time-dependent pseudo-equilibrium, which in turn converges to a stationary prole. [START_REF] Bronstein | Transient Anomalous Diusion of Telomeres in the Nucleus of Mammalian Cells[END_REF][START_REF] Parry | The bacterial cytoplasm has glass-like properties and is uidized by metabolic activity[END_REF][START_REF] Di Rienzo | Probing short-range protein brownian motion in the cytoplasm of living cells[END_REF]. This behaviour is usually referred to as anomalous diusion or subdiusion, since µ < 1 usually, for non-active transport (for a review see e.g. [START_REF] Höing | Anomalous transport in the crowded world of biological cells[END_REF]).

r 2 (t) ∝ t µ [69,
Continuous-time random walks (CTRW) are one of the main mechanisms that are recurrently evoked to explain the emergence of subdiusion in cells. CTRW were introduced fty years ago by Montroll and Weiss as a generalisation of random walks [START_REF] Montroll | Random walks on lattices[END_REF], where the residence time (the time between two consecutive jumps) is a random variable τ with probability distribution φ(τ ) (see [START_REF] Metzler | The random walk's guide to anomalous diusion: a fractional dynamics approach[END_REF] for a review). If the expectation of τ is dened, for instance when τ is dirac-distributed or decays exponentially fast, one recovers the normal Brownian motion. However, when the expectation of τ diverges, for instance when φ(τ ) is heavy-tailed, φ(τ ) ∝ τ -(1+µ) with 0 < µ < 1, the CTRW describes a subdiusive behaviour, with r 2 (t) ∝ t µ .

One great achievement of CTRW is that they can readily be used to derive mean-eld equations for the spatio-temporal dynamics of the random walkers. Indeed, starting from φ(τ ), combinations of Laplace and Fourier transforms lead to a subdiusion equation for the density of random walkers located at position x at time t:

∂ t ρ(x, t) = D µ D 1-µ t ∇ 2 ρ(x, t)
where D µ is a generalised diusion coecient and D 1-µ t is the Riemann-Liouville fractional derivative operator [START_REF] Metzler | The random walk's guide to anomalous diusion: a fractional dynamics approach[END_REF][START_REF] Méndez | ReactionTransport Systems[END_REF]. Such a fractional dynamics formulation is very attractive for modelling in biology, in particular because of its apparent similarity with the classical diusion equation. However, contrarily to the diusion equation, the Rieman-Liouville operator is non-Markovian. This non-Markovian property becomes a serious obstacle when one wants to couple subdiusion with chemical reaction [START_REF] Henry | Anomalous diusion with linear reaction dynamics: from continuous time random walks to fractional reaction-diusion equations[END_REF][START_REF] Bravo Yuste | Anomalous Transport, chapter Subdiusion-Limited Reactions[END_REF][START_REF] Fedotov | Nonlinear degradation-enhanced transport of morphogens performing subdiusion[END_REF].

Here, we take an alternative approach to CTRW that maintains the Markovian property of the transport equation at the price of a supplementary independent variable. We associate each random walker with an age a, that is reset when the random walker jumps. In one dimension of space, we note n(t, x, a) the density probability distribution of walkers at time t that have been residing at location x during the last span of time a. The dynamics of the CTRW is then described with an age-renewal equation with spatial jumps that reinitialise the age:

     ∂ t n(t, x, a) + ∂ a n(t, x, a) + β(a)n(t, x, a) = 0 , t ≥ 0, a > 0 , x ∈ R n(t, x, a = 0) = ∞ 0 R β(a )ω(x -x )n(t, x , a )dxda n(t = 0, x, a) = n 0 (x, a). (1.1)
The kernel ω describes the spatial distribution of jump destinations (typically a Gaussian distribution centered at the origin position), and the function β(a) gives the jump rate. Since we are mostly interested here in the subdiusive case (where the expectation of the residence time diverges), we will focus throughout this Chapter on the case:

aβ(a) ---→ a→∞ µ ∈ (0, 1). (1.2)
The precise meaning of the limit will be given later on. The limit µ in eq.(1.1) is the subdiusion exponent: for µ > 1, eq.(1.1) describes a diusive process, whereas for 0 < µ < 1 the mean time a particle has to wait between two consecutive renewals diverges and the mean squared displacement exhibits subdiusion with exponent µ. The distribution of residence time φ(τ ) evoked above is related to the jump rate as: φ(τ ) = β(τ ) exp -τ 0 β(s) ds . Note that this agestructured approach is not uncommon in the CTRW literature [START_REF] Méndez | ReactionTransport Systems[END_REF][START_REF] Fedotov | Subdiusive master equation with space-dependent anomalous exponent and structural instability[END_REF]. Our main contribution here is to use it in conjunction with approaches borrowed from the study of partial dierential equations.

In the present work, we restrict our attention to the temporal evolution of the age distribution of the walkers. To this end, we simplify the problem by considering its spatially-homogenous version, namely:

     ∂ t n(t, a) + ∂ a n(t, a) + β(a)n(t, a) = 0 , t ≥ 0, a > 0 n(t, a = 0) = ∞ 0 β(a )n(t, a )da n(t = 0, a) = n 0 (a). (1.3)

Self-similar solutions

The only steady state solution of eq.(1.3) in L 1 is 0, which doesn't allow us to describe the dynamics of the system in a satisfactory way. Hence the search for self-similar solutions. An educated guess is that they should be of the following form, with A(t) to be determined:

n(t, a) = 1 A(t) w ln(1 + t) τ , a/A(t) b .
Let us consider, for the sake of simplicity, an initial condition supported on [0, 1). By injecting the previous expression into eq. (1.4) Note that for an initial condition supported on [0, A + ), A(t) = A + + t is a better choice and leads to a similar analysis. If the initial condition is not compactly supported, the tail of the age distribution can inuence the convergence rate we give below.

It is important to note that the previous system is not autonomous, for the term e τ β(e τ b) depends on τ . This rescaling does not lead to a classical steady state, and we could not nd a particular solution of the previous equation. However, we may look for a stationary state satisfying formally the following equation, since we consider here β(a)

∼ µ a . ∂ b ((1 -b)W ∞ ) + µ b W ∞ = 0
where the boundary condition cannot be stated as an equality since W ∞ is expected to blow up at 0, but can be understood as an equivalence as ε tends to 0 of W ∞ (ε) and

1 ε µ b W ∞ (b)db.
This leads us to dene the self-similar equilibrium as:

W ∞ (b) = c ∞ b µ (1 -b) 1-µ (1.5) 1.1. Introduction which is called the arcsine distribution, or Dynkin-Lamperti distribution. c ∞ is dened such that W ∞ 1 = 1.
Under some conditions, we can expect that w(τ, b) will converge to eq.(1.5) when τ → ∞.

A similar result in probability theory appears in Feller's book [START_REF] Feller | An Introduction to Probability Theory and Its Applications[END_REF] tome II, chapter XI, especially in section 5 and onwards, where the renewal problem is tackled by considering the waiting time before the n th renewal. For an introduction to renewal theory, see the eponymous chapter (8.6) in [START_REF] Bingham | Regular Variation[END_REF]. However, no convergence rate is given for our innite mean waiting time problem in any of these books, and we have been unable to locate such a convergence rate in the subsequent literature. Recent developments in Ergodic Theory for mildly related problems (see chapter 8.11 of [START_REF] Bingham | Regular Variation[END_REF] for an introduction to Darling-Kac theory), have yielded convergence rates, that are optimal in certain cases, as shown in [START_REF] Melbourne | Operator renewal theory and mixing rates for dynamical systems with innite measure[END_REF] and [START_REF] Terhesiu | Error rates in the Darling-Kac law[END_REF].

Main results

Throughout the Chapter, the following set of hypotheses will intervene. Hypothesis (H1) will be used in properties of convergence without a rate while hypothesis (H2) will allow convergence rate estimates.

Hypothesis 5 (H1). β is a positive, bounded, and non-increasing function satisfying Remark. We will always assume β to be non-increasing for the sake of simplicity (in particular in theorem 20, propositions 18 and 35, and lemmas 28 and 37). The monotonicity can be replaced by the following hypothesis: This leads to minor changes in the proofs, the loss of a multiplicative constant in the aected results and replacing β by β where it corresponds. Hypothesis 6 (H2). β satises (H1). Additionally, β(a) = µ 1+a + g(a), where g ∈ L 1 and there exist K, α > 0 such that

∞ a |g(s)|ds ≤ K (1 + a) α .
Remark. For the sake of clarity we will investigate separately the particular case g = 0, called the "reference case". Then, all our results will be extended to the general case at the expense of the convergence rates.

Due to the specic shape of W ∞ and to the boundary condition, it is dicult to investigate in a direct way the evolution of w -W ∞ 1 : the methods we describe subsequently fail to do so. However, we could recover a quantitative explicit convergence rate with respect to a pseudo-equilibrium W which will be proved to converge in L 1 to W ∞ . Denition 16. We dene the pseudo-equilibrium W over R + × [0, 1) as follows:

W (τ, b) = C(τ ) e B(e τ b) (1 -b) 1-µ . (1.7)
where B(a) = a 0 β(s)ds and C is dened so that W (τ, •) L 1 = 1.

We nally reinterpret our results in terms of non-rescaled variables, for instance in the reference case β(a) = µ 1+a .

Corollary 21. Assume n 0 is supported in [0, 1) and β(a) = µ 1+a , then if we denote

N ∞ (t, a) = c∞ a µ (1+t-a) 1-µ , a < 1 + t, 0, a > 1 + t.
Then if µ = 1/2, there exists K such that

n(t, .) -N ∞ (t, .) 1 ≤ K (1 + t) µ + K (1 + t) 1-µ . If µ = 1/2, then we have n(t, .) -N ∞ (t, .) 1 ≤ K(1 + log(1 + t)) √ 1 + t .
Remark. An analogous version in non-rescaled variables can be given for theorem 20.

Outline of the Chapter

The Chapter is organised as follows. In Section 1.2 we set the entropic structure of the equation and the main properties of the pseudo equilibrium W . In particular we establish (non quantitatively) that

lim τ →∞ w(τ, •) -W (τ, •) 1 = 0, lim τ →∞ W ∞ (τ, •) -W (τ, •) 1 = 0, proving thereby lim τ →∞ w(τ, •) -W ∞ (τ, •) 1 = 0.
Section 1.3 deals with quantitative convergence rates towards the pseudo-equilibrium W , proving Theorems 19 and 20. A convergence rate for w -W ∞ 1 , some eects of initial conditions on the convergence rates, and convergence rates in non-rescaled variables are dealt with in Section 1.4. Finally, we show the results of some simulations in the eponymous section.

Entropic structure

Even if we are mainly estimating L 1 -norms, we see our proof as a specic case of relative entropy inequalities. Rates could be obtained following the lines of our proofs for other entropies.

L 1 contraction for compactly supported solutions

The rst evidence of an attractor is the L 1 contraction of compactly supported solutions. If we consider two initial data supported in [0, 1), w 0 1 , w 0 2 , non-negative and of mass 1 and the associated solutions w 1 , w 2 , then we have the following property (we take β(a) = µ 1+a for this computation)

d dτ 1 0 |w 1 (τ, b) -w 2 (τ, b)|db ≤ D(τ )
where

D(τ ) = 1 0 µ e -τ + b (w 1 (τ, b) -w 2 (τ, b))db - 1 0 µ e -τ + b |w 1 (τ, b) -w 2 (τ, b)| db.
Since mass is conserved i.e., 1 0 w 1 -w 2 = 0, we have easily

D(τ ) = 1 0 µ e -τ + b - µ e -τ + 1 (w 1 (τ, b) -w 2 (τ, b))db - 1 0 µ e -τ + b |w 1 (τ, b) -w 2 (τ, b)| db ≤ 1 0 µ e -τ + b - µ e -τ + 1 |w 1 (τ, b) -w 2 (τ, b)|db - 1 0 µ e -τ + b |w 1 (τ, b) -w 2 (τ, b)| db.
Thereby, we obtain d dτ

1 0 |w 1 (τ, b) -w 2 (τ, b)|db ≤ - µ 1 + e -τ 1 0 |w 1 (τ, b) -w 2 (τ, b)|db.
And this leads to

1 0 |w 1 (τ, b) -w 2 (τ, b)|db = O(e -µτ ).
In the next section we identify the attractor towards which solutions converge.

Pseudo equilibrium

We start by recalling the denition of what we call the pseudo equilibrium. We recall Denition 16:

W (τ, b) = C(τ ) (1 -b) 1-µ e B(e τ b)
where B(a) = a 0 β(s)ds and C is dened so that W (τ, •) L 1 = 1.

Remark. By denition,

W (τ, b = 0) = C(τ ).

(1.9)

Firstly we establish the fact that W (τ, •) is an approximation of W ∞ :

Lemma 22. Assume hypothesis (H1). Then, dening the Dynkin-Lamperti distribution as in

(1.5): W ∞ (b) = b -µ (1 -b) µ-1 1 0 b -µ (1 -b) µ-1 db we have lim τ =+∞ W (τ, •) -W ∞ 1 = 0.
Proof. We start with the model case β(a) = µ 1+a . In this case, we can write

W (τ, b) = (e -τ + b) -µ (1 -b) µ-1 1 0 (e -τ + b) -µ (1 -b) µ-1 db
, and the result is immediate.

For the general case, we use the following useful bound on W : Lemma 23. Under hypothesis (H1), for any η > 0 satisfying η < min(µ, 1 -µ), there exists a constant (depending on β, but not on τ ) C η > 0 such that

W (τ, b) ≤ C η (1 -b) µ-1 (e -τ + b) -(µ+η) 1 b (1 -b ) µ-1 (e -τ + b ) -(µ+η) db .
Proof. We rst notice that there always exists a function g η ≥ 0, compactly supported, such that Then we recall that by denition

β(a) ≤ µ + η 1 + a + g η (a).
W (τ, b) = e -B(e τ b (1 -b) µ-1 1 0 e -B(e τ b ) (1 -b ) µ-1 db ≤ (1 -b) µ-1 1 b e B(e τ b)-B(e τ b ) (1 -b ) µ-1 db
.

Inserting (1.10) in the latter, we obtain the result with C η = e gη 1 .

It is worth noticing that we can establish with the same proof

∀ε ≤ 1/2, ε 0 W (τ, b)db ≤ C η ε (1-(µ+η))
We denote W ref for β(a) = µ 1+a and notice that in our general case

β(a) = µ 1 + a + g(a)
.

We denote G(a) = a 0 g and we can write

W (τ, b) = K(τ )e G(e τ )-G(e τ b) W ref (τ, b).
for some K(τ ) > 0 that insures the normalisation

1 0 W = 1.
We introduce some η > 0 as in lemma 23. We already establish in the proof of lemma 23 that for ε ≤ 1/2, In particular, for ε > 0 xed, e G(e τ )-G(e τ b) → 1, uniformly on (ε, 1) as τ → +∞. As a consequence, we have for all ε > 0

ε 0 W ≤ C η ε 1-(µ+η) . Therefore, 1 ≥ K(τ ) 1 ε e G(e τ )-G(e τ b) W ref (τ, b)db ≥ 1 -C η ε 1-(µ+η) . Let ε > 0 be xed.
1 ε e G(e τ )-G(e τ b) W ref (τ, b)db - 1 ε W ref (τ, b)db → 0.
This leads, for any ε > 0, to the bounds:

lim sup +∞ K(τ ) ≤ 1 1 ε W ∞ , lim inf +∞ K(τ ) ≤ 1 -C η ε 1-(µ+η) 1 ε W ∞ . Letting ε → 0, we obtain lim +∞ K(τ ) = 1.
What we established proves that, for any ε > 0,

1 ε |W -W ref | → 0.
We can conclude using lemma 23 that we have

1 0 |W -W ref | → 0. Consequently, lim +∞ W -W ∞ 1 = 0.
This ends the proof of lemma 22.

The main property of the pseudo equilibrium is the following Proposition 24. W satises the following system:

∂ τ W (τ, b) + ∂ b ((1 -b)W (τ, b)) + e τ β(e τ b)W (τ, b) = W (τ, b)C(τ )δ(τ ) W (τ, 0) (1 + δ(τ )) = 1 0 e τ β(e τ b)W (τ, b)db, (1.11) 
where δ(τ ) is dened by the equation

δ(τ ) = C (τ ) (C(τ )) 2 - µ C(τ )
.

(1.12)

Proof. By computing the partial derivatives of W with respect to b and to τ , we obtain:

∂ b ((1 -b)W (τ, b)) = -W (τ, b) [µ + (1 -b)e τ β(e τ b)]
(1.13) and:

∂ τ W (τ, b) = W (τ, b) C (τ ) C(τ ) -be τ β(e τ b) .
Therefore, W satises:

∂ τ W (τ, b) + ∂ b ((1 -b)W (τ, b)) + e τ β(e τ b)W (τ, b) = W (τ, b) C (τ ) C(τ ) -µ .
If we take into account that ∀τ ≥ 0 W (τ, •) L 1 = 1, by integrating the previous equation over b ∈ [0, 1], we obtain the value of W (τ, 0), hence the claimed system.

Entropic structure

The next results justify that (1.11) is close to (1.4). Lemma 25. Under hypothesis (H1), we have

lim τ →+∞ C(τ )δ(τ ) = 0
where by computing the integral over (0, 1) of the rst line (1.11) taking into account (1.13) we obtain: 

C(τ )δ(τ ) = C (τ ) C(τ ) -µ =
I 2 (τ )
.

Firstly, we have

I 2 (τ ) ≤ sup (e τ /2 ,+∞)
|aβ(a) -µ| → 0, τ → +∞.

To estimate I 1 (τ ) we notice

I 1 (τ ) ≤ sup R + |aβ(a) -µ| e -τ /2 0 W ≤ sup R + |aβ(a) -µ| W -W ∞ 1 + e -τ /2 0 W ∞ .
We already know from lemma 22 W -W ∞ 1 → 0. Furthermore, for large τ we have

0 ≤ e -τ /2 0 W ∞ ≤ c ∞ (1 -e -τ /2 ) 1-µ e -τ (1-µ)/2 1 -µ → 0.
Therefore, we have lim +∞ I 1 = 0, which concludes the proof of the lemma.

Dissipation of entropy with respect to W

We now introduce the most important tool we will use: the relative entropy (similar to the entropy rate of a stochastic process, or the general relative entropy used in [START_REF] Michel | General relative entropy inequality: an illustration on growth models[END_REF][START_REF] Perthame | Transport Equations in Biology[END_REF]).

Denition 26. Let w be a solution of the equation (1.4) with support included in [0, 1). Let H be a convex, continuous function, C 1 by parts, which reaches its minimum, 0, at 1. We dene the generalised relative entropy as: Note that DH(u|ν) ≥ 0 if ν is a probability (by Jensen's inequality).

H(τ ) =
We are now in position to establish a rst important inequality on the relative entropy Proposition 27. Under (H1), the entropy H satises the following equality:

H (τ ) = -C(τ )DH(u|dγ τ ) + C(τ )δ(τ ) 1 0 H(u) -uH (u) W (τ, b)db (1.16)
where dγ τ (b) = e τ β(e τ b)W (τ,b)

W (τ,0)
db is a non-negative measure of mass (1 + δ(τ )) and u = w/W .

Proof. The mass of dγ is immediately derived from the equation on W (τ, 0).

We have then:

∂ τ w + ∂ b ((1 -b)w) + e τ β(e τ b)w = 0 ∂ τ W + ∂ b ((1 -b)W ) + e τ β(e τ b)W = W (τ, b)C(τ )δ(τ ).
Denoting u = w/W we arrive at

∂ τ u + (1 -b)∂ b u = -Cδu.
We multiply this equation by H (u) and get Remark. C(τ )δ(τ ) appears naturally as a remainder we will have to estimate in order to prove convergence-related properties for H, and also for W -W ∞ 1 .

∂ τ (H(u)) + (1 -b)∂ b (H(u)) = -CδuH (u).    W ∂ τ (H(u)) + (1 -b)W ∂ b (H(u)) = -W CδuH (u)

L 1 convergence (without a rate) to W

In this section we prove proposition 18. We take therefore H(x) = |x -1|, we have then,

DH(u|dγ

τ ) = 1 0 |u -1|dγ τ - 1 0 udγ τ -1 .
The core of the proof is the following Lemma 28. Under hypothesis (H1), we have Furthermore, since

1 0 (u -1)W = 1 0 w -W = 0, we have DH(u|dγ τ ) = 1 0 |u -1|dγ τ - 1 0 udγ τ -1 = 1 0 |u -1|dγ τ - 1 0 (u -1)dγ τ + δ(τ ) = 1 0 |u -1|dγ τ - 1 0 (u -1) (dγ τ -K(τ )W ) ≥0 +δ(τ ) ≥ K(τ ) 1 0 |u -1|W + 1 0 |u -1|(dγ τ -K(τ )W ) - 1 0 (u -1)(dγ τ -K(τ )W ) -|δ(τ )| ≥ K(τ ) 1 0 |u -1|W -|δ(τ )|.
Since we also have, for H(x) = |x -1|,

H(u) -uH (u) = | -sign(u -1)| ≤ 1,
we obtain for this case

1 0 (H(u) -uH (u))W ≤ 1.
And since C(τ )K(τ ) = e τ β(e τ ), we obtain equation (1.17).

Since we already have by hypothesis e τ β(e τ ) → µ > 0, standard ODE arguments yield lim sup

+∞ 1 0 |w -W |db ≤ 2 lim sup +∞ |C(τ )δ(τ )| µ .
We can conclude the proof of proposition 18 using lemma 25.

Remark. We let the reader check that, by dening β as in (1.6), we may replace the non-increasing β hypothesis by aβ(a) ---→ a→∞ µ, obtaining the following equation instead of (1.17 Remark. We have now nished developing a framework which allows us to deduce the behaviour of the entropy H from suitable hypotheses made on β, and showed that, under mild conditions, the entropy tends to 0. The following section will extract a convergence rate from more restrictive hypotheses.

1.3 Rates of convergence to the pseudo equilibrium We consider it best to start by presenting this simple case, since the following proofs contain the key innovative elements of the general case while simplifying the presentation of our results.

Here, the pseudo equilibrium W becomes, with c(τ ) = e -µτ C(τ ):

W (τ, b) = C(τ ) (1 -b) 1-µ (1 + e τ b) µ = c(τ ) (1 -b) 1-µ (e -τ + b) µ .
We can now compute δ as follows.

Lemma 29.

δ(τ ) = - e -τ 1 + e -τ .
(1. [START_REF] Boltzmann | Further Studies on the Thermal Equilibrium of Gas Molecules[END_REF] Proof.

C(τ )δ(τ ) = C (τ ) C(τ ) -µ = c (τ ) c(τ ) = 1 0 [be τ β(e τ b) -µ] W (τ, b)db = 1 0 µ e -τ +b [b -(e -τ + b)] W (τ, b)db = -e -τ 1 0 e τ β(e τ b)W (τ, b)db.
By applying Proposition 24, we obtain:

C(τ )δ(τ ) = -e -τ (1 + δ(τ ))W (τ, 0) = -e -τ (1 + δ(τ ))C(τ )
resulting in the claimed equality since C doesn't vanish.

Denition 30. We call c ∞ the limit at ∞ of c(τ ) when such limit exists. Here, it is easy to see c is a decreasing function and c ∞ is well dened.

Lemma 31.
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-(1-µ)τ ≤ C(τ )δ(τ ) ≤ - c ∞ 1 + e -τ e -(1-µ)τ ≤ 0. (1.20) Proof. We have c(τ ) = e -µτ C(τ ), thus C (τ ) C(τ ) -µ = c (τ )
c(τ ) , and we establish two trivial bounds on c(τ ). By denition:

1 c(τ ) = 1 0 1 (e -τ + b) µ (1 -b) 1-µ db hence, since τ ≥ 0 and 0 ≤ µ ≤ 1, we have: 1 c(τ ) ≥ 1 0 (1 + b) -µ (1 -b) µ-1 db ≥ 1 0 1 -b 1 + b µ db ≥ 1 0 1 2 (1 -b) µ db = 1 2(1 + µ) ≥ 1 4 ; 
and likewise:

1 c(τ ) ≤ 1 0 b -µ (1 -b) µ-1 db = 1 c ∞ .
It follows that:

0 ≤ c ∞ ≤ c(τ ) ≤ 2(1 + µ) ≤ 4.
(1.21)

The result of Lemma 29 allows us to conclude.

Putting together this lemma and equation (1.17) gives us Corollary 32. The following inequality holds

H (τ ) ≤ -µ - µ 1 + e τ H(τ ) + 8e -(1-µ)τ . (1.22)
All is ready to prove Theorem 19 by applying Gronwall's Lemma to the previous inequality.

Proof of Theorem 19. We set f (s) = -µ 1+e s , which gives τ 0 f (s)ds = +µ ln 1+e -τ

2

. Corollary 32 implies that:

d dτ exp τ 0 (µ + f (s))ds H(τ ) ≤ 8e -(1-µ)τ exp τ 0 (µ + f (s))ds .
By integrating over τ , we obtain:

H(τ ) ≤ H(0)e -τ 0 µ+f + 8 τ 0 e -(1-µ)τ e τ 0 µ+f e -τ 0 µ+f dτ ≤ e -µτ H(0)e -τ 0 f + 8e -µτ τ 0 e (2µ-1)τ e -τ τ f dτ ≤ e -µτ H(0) 2 1+e -τ µ + 8e -µτ τ 0 e (2µ-1)τ 1+e -τ 1+e -τ µ dτ ≤ e -µτ 2 1+e -τ µ H(0) + 8
τ 0 e (2µ-1)τ dτ .

A larger class of β

We now consider β satisfying (H2).

Remark. The bound on G is not necessary to prove lemmas 33 and 34: g ∈ L 1 is a strong enough hypothesis. However, that precise bound in necessary for our convergence rate estimates and as such, we assume it holds throughout the section.

We take the following notations:

G(a) = ∞ a |g(s)|ds W ref (τ, b) = C ref (τ ) (1-b) 1-µ (1+e τ b) µ W (τ, b) = C(τ ) exp -e τ b 0 g(s)ds (1-b) 1-µ (1+e τ b) µ where C ref and C ensure W ref (τ ) 1 = W (τ ) = 1.
(We use the same notation as in the proof of lemma 22).

We have: Lemma 33. Assume (H2) holds. Then there exists K > 0 such that for any τ ≥ 0 and

C(τ )δ(τ ) =
0 ≤ b ≤ 1: K -1 e µτ (1 + e τ b) µ (1 -b) 1-µ ≤ W (τ, b) ≤ Ke µτ (1 + e τ b) µ (1 -b) 1-µ . (1.23)
Proof. We have:

W (τ, b) W ref (τ, b) = C(τ ) C ref (τ ) exp - e τ b 0 g(s)ds ∈ C(τ ) C ref (τ ) e -g 1 , e g 1 .
And since

1 0 W (τ, b)db = 1 0 W ref (τ, b)db = 1, it follows that: e -g 1 ≤ C(τ ) C ref (τ ) ≤ e g 1 which gives us W W ref ∈ L ∞ in the sense given above.
This result leads, through a proof analogous to that of lemma 31, to the following Lemma 34. Under hypothesis (H2), there exists a positive M such that:

µ 1 0 e τ b 1 + e τ b -1 W (τ, b)db ≤ M e -(1-µ)τ .
(1.24)

We now give the strategy for estimating the rate of convergence. It is based on the same procedure as before. Consider a non-increasing β and equation (1.17), which measures the dissipation of entropy (or equation (1.18) under the corresponding hypothesis).

H (τ ) ≤ -e τ β(e τ )H(τ ) + 2|C(τ )δ(τ )|.

We have then He B(e τ ) (τ ) ≤ 2|C(τ )δ(τ )|e B(e τ ) .

(

We recall C(τ )δ(τ ) = And also by the denition of W and lemma 33

W (τ, b) ≤ K (e -τ + b) µ (1 -b) 1-µ .
Therefore, we easily obtain

|C(τ )δ(τ )| ≤ K 1 0 e τ b|g|(e τ b) (e -τ + b) µ (1 -b) 1-µ db + µ 1 0 e τ b 1 + e τ b -1 W (τ, b)db .
Lemma 34 then gives us Remark. We let the reader check that the non-increasing β hypothesis may be replaced by the following condition on the function dened in (1. 

|C(τ )δ(τ )| ≤ K 1 0 e τ b|g|(e τ b) (e -τ + b) µ (1 -b) 1-µ db + M e (µ-1)τ .
I(τ ) = 1 0 -G(e τ b) e µτ (e -τ + b) µ (1 -b) 1-µ τ 0 db + 1 0 τ 0 G(e τ b) µ e µτ (e -τ + b) µ (1 -b) 1-µ + µe -τ e µτ (e -τ + b) µ+1 (1 -b) 1-µ dτ db.
The rst term is bounded from above (since G ≥ 0) by We need a sharp estimate on the second term. We focus our eorts on the case G(a) ≤ K (1 + a) α for some α > 0.

1 0 g 1 (1 + b) µ (1 -b) 1-µ db.
Proof. We need an estimate of We essentially need to estimate the middle term. Lemma 36. The following holds true:

1 0 τ 0 1 (1 + e τ b) α e µτ (e -τ + b) µ (1 -b) 1-µ dτ db = 1 0 τ 0 e (µ-α)τ (e -τ + b) µ+α (1 -b) 1-µ dτ db.
1 0 τ 0 µ e (µ-α)τ (e -τ + b) µ+α (1 -b) 1-µ dτ db ≤              K τ 0 e (µ-α)τ dτ , if α < 1 -µ, K τ 0 e (2µ-1)τ dτ , if α > 1 -µ, K τ 0 (1 + τ )e (2µ-1)τ dτ , if α = 1 -µ.
Proof of the lemma. Case 1: α < 1 -µ.

For α < 1 -µ, we simply use the fact that

1 0 1 (e -τ + b) µ+α (1 -b) 1-µ db ≤ 1 0 1 b µ+α (1 -b) 1-µ db < +∞. Case 2: α > 1 -µ.
It is obvious that we can restrict to the case α < 1. We rst need a few intermediate computations. Firstly, for γ > 0, we have Therefore, we have

1 0 γ (e -τ + b) γ+1 (1 -b) 1-γ db = 1 1 + e -τ
1 0 γ (e -τ + b) γ+1 (1 -b) 1-γ db = 1 1 + e -τ - (1 -b) e -τ + b γ 1 0 = e γτ 1 + e -τ .
(1.29) Using this computation and noticing γ = µ + α -1, we can easily establish that, for α < 1,

1 0 1 (e -τ + b) µ+α (1 -b) 1-µ db = 1 0 (1 -b) 1-α (e -τ + b) γ+1 (1 -b) 1-γ db.
Applying then (1.29) and using (1 -b) 1-α ≤ 1, we arrive at

1 0 1 (e -τ + b) µ+α (1 -b) 1-µ db ≤ Ke γτ .
Injecting, we obtain 

I α (τ ) ≤ K τ 0 e (γ+µ-α)τ dτ = K τ 0 e (2µ-1)τ dτ .
I α (τ ) ≤ K τ 0 (2 + τ )e (2µ-1)τ dτ .
This ends the proof of lemma 36.

To end the proof of proposition 35, we essentially just need to discuss whether the integrals of type τ 0 e λτ dτ take value e λτ -1 λ or τ , and similarly for integrals of type τ 0 τ e λτ dτ .

1.4 Rates of convergence towards the equilibrium W ∞ .

1.4.1 Quantitative estimate of W -W ∞ 1
In what follows, we justify how the rate of convergence of w to W can be extended to quantify (up to a multiplicative constant) the rate of convergence towards W ∞ . The main remark is the following.

Lemma 37. Under hypothesis (H2), we have

W -W ∞ 1 ≤ 2 1 0 |e τ bβ(e τ b) -µ|W (τ, b)db.
Proof. We already know from lemma 22 lim +∞ W (τ, •) -

W ∞ 1 = 0. Therefore W (τ, •) -W ∞ 1 ≤ ∞ τ d dτ 1 0 |W (τ , b) -W ∞ (b)|db dτ ≤ ∞ τ 1 0 |∂ τ W (τ , b)|dbdτ .
Since we have

∂ τ W = C (τ ) C(τ ) W -e τ bβ(e τ b)W = C (τ ) C(τ ) -µ W + (µ -e τ bβ(e τ b))W, it follows that 1 0 |∂ τ W (τ, b)|db ≤ C (τ ) C(τ ) -µ + 1 0 |e τ bβ(e τ b) -µ|W (τ, b)db.
And since

C (τ ) C(τ ) -µ ≤ 1 0 |e τ bβ(e τ b) -µ|W (τ, b)db,
we can conclude.

Remark. The bound on G has not been used in the proof of the previous lemma, for which g ∈ L 1

is a strong enough hypothesis.

We encounter yet again the quantity 1 0 |e τ bβ(e τ b) -µ|W , for which we have already given a time-weighted average estimate in the form of an upper bound (1.28) on (1.27). Let us now provide a pointwise estimate. In the reference case, we have

W (τ, •) -W ∞ 1 ≤ K ∞ τ e (µ-1)τ
1 + e -τ dτ ≤ Ke (µ-1)τ .

In the situation described by proposition 35, with β = µ 1+a + g(a) and for some α > 0, we have,

∞ a |g| ≤ K (1 + a) α .
In this case, we can split 

|e τ bβ(e τ b) -µ| W ≤ ∞ τ 1 0 µb e -τ + b -µ 1 (e -τ + b) µ (1 -b) 1-µ dbdτ +K ∞ τ 1 0 |e τ bg(e τ b)| 1 (e -τ + b) µ (1 -b) 1-µ dbdτ .
The rst term is already know to be bounded by Ke (µ-1)τ by lemma 31 . The second term satises

∞ τ 1 0 |e τ bg(e τ b)| 1 (e -τ + b) µ (1 -b) 1-µ dbdτ ≤ ∞ τ 1 0 |e τ bg(e τ b)| 1 b µ (1 -b) 1-µ dbdτ ≤ 1 0 1 b µ (1 -b) 1-µ ∞ e τ b |g| db ≤ 1 0 1 b µ (1 -b) 1-µ 1 (1 + e τ b) α db ≤ Ke -ατ .
Hence the rate of convergence W (τ, •) -W ∞ 1 ≤ K e (µ-1)τ + e -ατ .

Possible inuence of the initial condition

Let us prove a lower bound on the convergence rate of ln w(τ, •) -W (τ, •) L 1 (0,1) for an initial age distribution w(0, b) = δ 0 (b).

Proposition 38. Consider the reference case

β(a) = µ 1 + a .
Suppose the initial age distribution satises:

w 0 (b) = δ 0 (b).
We can bound below the total variation:

W (τ, b) -w(τ, b) T V ≥ e -µτ .
(1.30)

Proof. For φ(τ ) = 1 -e -τ ξ(τ ) = exp τ 0 e s β(e s φ(s))ds

we have: w(τ, •) = e -µτ δ 1-e -τ + w j where w j ≥ 0 is the distribution of particles that have jumped at least once over (0, τ ].

d dτ [ξ(τ )w(τ, φ(τ )] = ξ ξ ξ w + ∂ τ w + φ ∂ b w = ξ [∂ τ w + ∂ b ((1 -φ)w) + e τ β(e τ φ)w] = 0.
Since W (τ, b)db is an atomless measure, any Dirac mass and W db are stranger measures, hence:

W (τ, b) -w(τ, b) T V ≥ e -µτ .
For µ < 1 2 , this lower bound agrees up to multiplication by a constant with the upper bound given in theorem 19: our convergence exponent is optimal for µ < 1 2 .

Remark. It is worth noting that we have the trivial bound:

H(0) ≤ 2.

(1.31) (H(0) can be greater than 1 if w 0 (b)db has atoms.) Remark. Our results are proved for compactly-supported initial age distributions, and they will most likely hold for initial age distributions that decrease fast enough. However, if this is not the case, the convergence rates might be aected in a way left for future investigation. 

Convergence rates for natural variables

N (t, a) = e -τ W (τ, b) = c(ln(1 + t)) (1 + a) µ (1 + t -a) 1-µ (1.32)
which leads to the following Proposition. Proposition 40. If

w(τ, •) -W (τ, •) L 1 ([0,1]) ≤ K 1 e -µτ + K 2 e -(1-µ)τ then: n(t, •) -N (t, •) L 1 (R + ) ≤ K 1 (1 + t) µ + K 2 (1 + t) 1-µ . (1.33)
Proof. The e -τ appearing as the Jacobian of the change of integration variables is compensated by the e -τ in the denition of w and we get the claimed result.

Therefore, in the reference case β(a) = µ 1+a , the distribution of walkers that have age a at time t converges to N (t, a) algebraically fast, with a rate that is essentially given by t -min{µ,1-µ} .

Through a similar proof, keeping in mind W (τ, •) -W ∞ 1 ≤ Ke -(1-µ)τ in the reference case, we recover corollary 21, which gives the natural variables version of an L 1 convergence of w(τ, •) to W ∞ .

Monte Carlo simulations

In order to illustrate the evolution of the age distribution of the system and check the accuracy of the convergence rates to self-similar equilibrium, we have carried out Monte-Carlo simulations for our reference case β(a) = µ 1+a . Consult the Appendix A for references.

In these simulations, we describe explicitly each individual walker i by associating it with an age a i and a rst jumping time τ i . The initial age of each walker is chosen according to some initial distribution, for instance uniform distribution in [0, 1] or a Dirac distribution at age a = 0. The rst jumping time of each random walker is sampled from the distribution φ(τ ) = µ/(1 + τ ) 1+µ , that corresponds to our reference jump rate β(a) = µ/(1 + a). The simulation then iterates the following steps: (i ) nd k, the walker with the earlier jump time: k = arg min i τ i , then (ii ) make it jump, i.e. reset its age a k = 0 and nally, (iii ) pick its next jump time τ k according to φ(τ ). During the simulation, we store the distance between the dynamic equilibrium W at that time and the observed distribution of rescaled ages b i = a i /(1 + t) of all the walkers i in the simulation:

w(τ, •) -W (τ, •) L 1 ([0,1]
) . We also compute at each time step the L 1 norm of the dierence w(τ, •) -W ∞ . Unless stated otherwise we use 20,000 random walkers in each simulation.

First, we note that in all cases, the simulated L 1 distance between w and the pseudoequilibrium W is indeed bounded above by the expression given in theorem 19 (except at very high τ , when our bound becomes lower than the numerical error of the simulation). The example given in gure 1.1 corresponds to µ = 0, 4 and µ = 0, 8, and an initial age distribution Dirac at 0 for the red dots, and uniform on [0, 1) for the blue dots, the black curve representing the upper bound proved in theorem 19 taken for H(0) = 2, which is an upper bound for H(0). As we see, the multiplicative constant we lose (the overestimation of K in theorem 19 corresponding to the losses throughout the inequalities used to prove our bound) is not too high. In order to illustrate graphically the behaviour of the solution to our equations and its convergence towards the pseudo-equilibrium, Figure 1.2 displays, for µ = 0, 6 and an initial age distribution n 0 = w 0 = δ 0 , the time evolution of the simulation results expressed either in the original variables n(t, •) (histograms), N (t, •) (full line) on the left-hand side column or in the rescaled variables w(τ, •) (histograms), W (τ, •) (full line) on the right-hand side column. Moreover, the rescaled variables panels also show as grey dotted lines the equilibrium W ∞ , to which W converges. From visual inspection of the is gure, it is clear that n(t, a) largely attens as t → ∞ (note the dierence in the y-axis scale between the panels). The gure depicts a pointwise convergence of the simulated w to the pseudo-equilibrium W which in turn converges pointwise to W ∞ . Moreover, it illustrates how rescaling allows a better description of the self-similar behaviour, which is dicult to grasp in natural variables since n converges pointwise to 0. The next sections quantify the simulated convergence rates.

Exponential t of w(τ, •) -W (τ, •) 1

To quantify the convergence rates in the simulations, we t the distance w(τ, •) -W (τ, •) by the following function:

f (λ, A, B) = Ae -λτ + Be -(1-λ)τ + C. (1.34)
Remark (Heuristic estimate of the error term). C is a simulation error, that we evaluate to C ≈ 0, 1. This is consistent both with empirical evidence and with a simple heuristic overevaluation of C as #bins/#particles, which is roughly 0, 16.

Remark. According to the above analysis one expects λ = µ. A and B are multiplicative parameters: we expect A around 2 and |B| close to 0, since H(0) = 2 and our upper boundary is of the form H(τ ) ≤ [H(0) -(≤ 0)] e -µτ + ke -(1-µ)τ , with k small. Remark. Another possible explanation of the predominance of e -µτ over e -(1-µ)τ in the convergence rate is linked to the fact that, for a given β, two solutions w 1 and w 2 corresponding to dierent, compactly supported initial conditions, satisfy, for a certain constant K (see Subsection We rst note that in the three panels of gure 1.3, C ≈ 0.1 as expected and our estimates for λ are very close to µ. Note that in the second panel, with µ = 0.5, the values of A and B cannot be estimated independently thus the large inaccuracy/variance on their determination. Finally, the third panel shows a marked discontinuity around τ = 6. This is due to the discretisation of the age distribution: with small values of µ, the number of random walkers that have never experienced a single renewal during the simulation period becomes large. Since, according to our initial conditions, all walkers have the same initial age, many walkers will enter the last age bin simultaneously thus causing the observed discontinuity. However even in this case, we obtain a very good t for λ by restricting the t to the values before the discontinuity and xing C to 0.8. Figure 1.4 summarises the values of λ determined from Monte-Carlo simulations identical to those shown in Fig. 1.3 (red crosses), together with the diagonal line λ = µ (blue). For all the values of µ tested, the simulations conrm that w tends to W with a sum of exponential rates given by µ and 1-µ. Therefore, taken together, those simulation results, while agreeing with our analytical estimations, suggest that our estimate of w -W 1 may not be optimal, in particular for larger values of µ. W (τ, •) 1 for µ ∈ {0, 1 ; 0, 2 ; . . . ; 0, 9}.

1.2.1): w(τ, •) -w 1 (τ, •) 1 ≤ Ke -µτ .
1.5.2 For large µ, W provides a better asymptotic approximation of w than W ∞ Figure 1.5 compares the distances between w and W (red dots) on one hand, and w and W ∞ (black dots) on the other, for three values of µ. For µ ≤ 0.5, these two distances are very similar (actually, W (τ, •) and W ∞ are much closer to each other than to w). However, as µ increases, this trend reverses: this gure shows that for large enough τ , w becomes signicantly closer to W than to W ∞ : the distance between w and W converges much faster to 0. Therefore, according to those simulation results W is a much better asymptotic approximation w for µ > 0.5, thus justifying further its utility here.

Future developments

Throughout the Chapter we have estimated L 1 norms, but we have presented the estimates in the context of an entropic structure. It is indeed possible by means analogous to ours to prove entropy inequalities for dissipations corresponding to other H functions than |1-•|. For instance, the classical H(x) = x ln xx + 1 also allows us to prove a convergence rate of the corresponding entropy to 0: it is also K(e -µτ + e (µ-1)τ ). Thanks to the Csiszár-Kullback inequality, it is also possible to prove a rate of convergence of w(τ, •) -W (τ, •) 1 to 0, albeit one worse than that obtained in theorems 19 and 20.

We may encounter inequalities such as that of proposition 27, bounding the derivative of an entropy with respect to a probability measure W db by an entropy dissipation with respect to another measure (which we can compare to the dissipation with respect to a probability measure dγ τ ). When the comparison of DH(u|W db) and DH(u|dγ) does not follow calculations as straightforward as ours, an alternative may be to rely on a precise Jensen estimate comparing the entropy dissipations with respect to two absolutely continuous probability measures.

Here, we have considered a spatially-homogeneous (zero-dimensional), age-dependent renewal probability β(a). We believe the ideas we have exposed may be used to tackle the problem with One major interest of our age-structure approach of CTRW is that the dynamics remain Markovian. We believe that keeping Markovian properties will be crucially helpful when introducing the coupling between sub-diusive CTRW and reaction, since the coupling should simply consist in the addition of the reaction and the subdiusion terms (contrarily to the case of fractional dynamics). However, the extent to which the supplementary age variable will make this process more complex remains to be evaluated.

Appendix

The case µ = 1

It is quite interesting to notice that even if the behaviour is not really self-similar, our method gives a precise asymptotic for the case µ = 1. To illustrate this, we focus on the reference case: β(a) = 1 1+a . In this case the 'pseudo equilibrium reads'

W (τ, b) = 1 (e -τ + b) log(1 + e τ )
.

This pseudo equilibrium tends to a Dirac mass but gives still quantitative information. Indeed, following the same computation than for equation (1.17) for the case µ < 1, we obtain easily

d dτ 1 0 |w -W | ≤ - e τ 1 + e τ 1 0 |w -W | + 2 |C(τ )δ(τ )| .
Where we also have

C(τ )δ(τ ) = 1 0 e τ b 1 + e τ b -1 W (τ, b)db.
This leads to

C(τ )δ(τ ) = - 1 0 e -τ (e -τ + b) 2 log(1 + e τ ) = e -τ log(1 + e τ ) 1 e -τ + 1 - 1 e -τ .
And nally,

C(τ )δ(τ ) = - e τ (1 + e τ ) log(1 + e τ )
→ 0.

And we can still claim that

1 0 |w -W | → 0.
We can give a (rough) estimate for a rate of convergence. Integrating, we have

1 0 |w -W | ≤ 1 1 + e τ 1 0 |w -W |(τ = 0) + 2 1 1 + e τ τ 0 e τ log(1 + e τ )
dτ .

We estimate the second term

1 1 + e τ τ 0 e τ log(1 + e τ ) dτ = 1 1 + e τ e τ 1 1 log(1 + u)
du.

This term behaves as 1/τ . Indeed, we have easily (splitting the integral at e ατ for α < 1):

1 log(1 + e τ ) ≤ 1 1 + e τ e τ 1 1 log(1 + u) du ≤ e (α-1)τ 1 + e -τ + 1 log(1 + e ατ ) 1 0 |w -W | ≤ 1 1 + e τ 1 0 |w -W |(τ = 0) + K 1 + τ ≤ K 1 + τ .
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Brief model description

Consistent experimental evidence stemming from recent methodological advances in cell biology such as in vivo single molecule tracking, report that the intra-cellular random motion of certain molecules often deviates from Brownian motion. Macroscopically, their mean squared displacement does not scale linearly with time, but as a power law t µ for some exponent 0 < µ < 1 [START_REF] Golding | Physical Nature of Bacterial Cytoplasm[END_REF][START_REF] Bronstein | Transient Anomalous Diusion of Telomeres in the Nucleus of Mammalian Cells[END_REF][START_REF] Parry | The bacterial cytoplasm has glass-like properties and is uidized by metabolic activity[END_REF][START_REF] Di Rienzo | Probing short-range protein brownian motion in the cytoplasm of living cells[END_REF][START_REF] Izeddin | Single-molecule tracking in live cells reveals distinct target-search strategies of transcription factors in the nucleus[END_REF]. This behaviour, due to crowding and trapping phenomena, is usually referred to as anomalous diusion or subdiusion. The reader may consult [START_REF] Höing | Anomalous transport in the crowded world of biological cells[END_REF] for a review.

One of the standard mechanisms used to describe the emergence of subdiusion in cells is continuous time random walks (CTRW), a generalisation of random walks that couples a waiting time random process at each jump of the random walk [START_REF] Montroll | Random walks on lattices[END_REF]. CTRW can be used [START_REF] Metzler | The random walk's guide to anomalous diusion: a fractional dynamics approach[END_REF][START_REF] Metzler | The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics[END_REF][START_REF] Méndez | ReactionTransport Systems[END_REF] to derive macroscopic equations governing the spatiotemporal dynamics of the density of random walkers located at position x at time t:

∂ t ρ(x, t) = D µ D 1-µ t ∆ρ(x, t).
Here, D µ is a generalised diusion coecient and

D 1-µ t (f )(t) = 1 Γ(µ) d dt t 0 f (t ) (t-t ) 1-µ dt is the
Riemann-Liouville fractional derivative operator. Such a fractional dynamics formulation is very attractive for modelling in biology, in particular because of its apparent similarity with the classical diusion equation. However, contrary to the diusion equation, the Riemann-Liouville operator is non-local in time. This is the trace of the non-Markovian property of the underlying CTRW process. Indeed, memory terms play a crucial role in subdiusive processes. This non-Markovian property becomes a serious obstacle when one wants to couple subdiusion with chemical reaction [START_REF] Henry | Anomalous diusion with linear reaction dynamics: from continuous time random walks to fractional reaction-diusion equations[END_REF][START_REF] Bravo Yuste | Anomalous Transport, chapter Subdiusion-Limited Reactions[END_REF][START_REF] Fedotov | Nonlinear degradation-enhanced transport of morphogens performing subdiusion[END_REF].

In this work, following [START_REF] Méndez | ReactionTransport Systems[END_REF], we take an alternative approach that rescues the Markovian property of the jump process at the expense of a supplementary age variable. We associate each random walker with a residence time (age, in short) a, which is reset when the random walker jumps to another location. In one dimension of space, we denote by n(t, x, a) the probability density function of walkers at time t that have been located at x exactly during the last span of time a. The dynamics of the CTRW are then described [START_REF] Ovidiu | Systematic derivation of reaction-diusion equations with distributed delays and relations to fractional reaction-diusion equations and hyperbolic transport equations: Application to the theory of neolithic transition[END_REF][START_REF] Yadav | Kinetic equations for reaction-subdiusion systems: Derivation and stability analysis[END_REF][START_REF] Méndez | ReactionTransport Systems[END_REF][START_REF] Fedotov | Subdiusive master equation with space-dependent anomalous exponent and structural instability[END_REF] by means of an age-renewal equation with spatial jumps:

         ∂ t n(t, x, a) + ∂ a n(t, x, a) + β(a)n(t, x, a) = 0 , t ≥ 0, a > 0 , x ∈ R n(t, x, a = 0) = ∞ 0 β(a ) R ω(x -x )n(t, x , a ) dx da n(t = 0, x, a) = n 0 (x, a).
(2.1)

The boundary condition on n(t, x, 0) at age a = 0 accounts for the particles landing at position x at time t after having jumped from position x , at which they had remained during a time span exactly equal to a . Here, β is the age-dependent rate of jump, and ω is the distribution of jump distances. They are chosen in the following way.

Hypothesis 7 (Space jump kernel ω and jump rate β).

We assume that ω is a Gaussian probability distribution of mean 0 and variance σ 2 , and that β is decaying for large age in a precise way:

       ω(x) = 1 σ √ 2π exp - x 2 2σ 2 , σ > 0 β(a) = µ 1 + a , 0 < µ < 1 (2.2)
The assumption of ω could be relaxed. However, we believe this would induce unnecessary technicality. The specic choice of the rate of jump β is crucial. Only the case µ ∈ (0, 1) yields subdiusion. This could be relaxed to an asymptotic equivalence see Chapter 1 , however we will stick to (2.2) for the sake of clarity.

The fact that the loss term β(a)n(t, x, a) is recovered in the boundary condition (and that ω will be taken to be a probability distribution) leads to the conservation of the total population density ∞ 0

R n(•, x, a) dx da along time.

For mathematical reasons, we restrict to initial conditions compactly supported in age.

Without loss of generality, we assume:

(∀x) supp(n 0 (x, •)) = [0, 1).

(

Further technical hypotheses will be made later on.

The probability that a particle reaches age a without jumping is exp -a 0 β(s) ds . On the other hand, the jump rate of particles at age a is β(a). Hence, the distribution of residence times Φ(a) (meaning the distribution of the age of particles when they jump) is given by

Φ(a) = β(a) exp - a 0 β(s) ds = µ (1 + a) 1+µ .
(2.4) A noteworthy observation is that the mean residence time of particles ∞ 0 aΦ(a) da is innite since µ ∈ (0, 1). This is a signature of subdiusion at a larger scale [START_REF] Méndez | ReactionTransport Systems[END_REF].

The motivation for our current work is the construction of tools that may allow us to better understand the behaviour of pulled reaction-subdiusion fronts, covered by an extensive literature [66,[START_REF] Froemberg | Asymptotic front behavior in an a + b → 2a reaction under subdiusion[END_REF][START_REF] Volpert | Fronts in anomalous diusion-reaction systems[END_REF][START_REF] Volpert | An exactly solvable model of subdiusionreaction front propagation[END_REF][START_REF] Kochanowski | The solution to subdiusion-reaction equation for the system with one mobile and one static reactant[END_REF][START_REF] Nepomnyashchy | Mathematical modelling of subdiusion-reaction systems[END_REF][START_REF] Hellander | Mesoscopic modeling of stochastic reaction-diusion kinetics in the subdiusive regime[END_REF]. The reader may nd a short and comprehensive review in [START_REF] Volpert | Fronts in anomalous diusion-reaction systems[END_REF]. We consider here the large scale asymptotics of equation (2.1) in the hyperbolic rescaling (t/ε, x/ε, a), suitable for the study of constant speed fronts. Note that the mean eld subdiusive eects appear at a scale t ε 2/µ , x ε , a (the reader may nd such results in [START_REF] Méndez | ReactionTransport Systems[END_REF]) and will not be captured by our analysis. This is consistent with the large deviations approach used to study rare events in probability theory. In the reaction-subdiusion setting, pulled fronts (as opposed to pushed fronts driven by reaction kinetics) are indeed driven by the few particles which jump ahead of the front and not by the mean movement of particles. We refer to the seminal articles by Freidlin [START_REF] Freidlin | Geometric optics approach to reaction-diusion equations[END_REF] and by Evans and Souganidis [START_REF] Evans | A pde approach to geometric optics for certain semilinear parabolic equations[END_REF] for the introduction of PDE tools inspired by large deviation methods in order to study geometric optics approximations for solutions of certain reactiondiusion equations containing a small parameter.

2.1.2 Hyperbolic limit and derivation of the Hamilton-Jacobi equation.

Let us study the large scale asymptotics of the probability density function n in a hyperbolic scaling. We make the following Ansatz (Hopf-Cole transformation):

n ε (t, x, a) = n (t/ε, x/ε, a) = exp (-φ ε (t, x, a)/ε) . (2.5) 
This enables us to accurately measure the behaviour of small tails of the probability density function n, reminiscent of large deviation principle theory. The function n ε satises the following equation,

             ∂ t n ε + 1 ε ∂ a n ε + 1 ε βn ε = 0 , t ≥ 0, a > 0 , x ∈ R n ε (t, x, 0) = 1+t/ε 0 R β(a)ω(z)n ε (t, x -εz, a) dz da n ε (0, x, a) = n 0 ε (x, a) = n 0 (x/ε, a). (2.6) 
Remark (Evolution of the support in age of n ε ). We recall that supp n 0 (x, •) ⊆ [0, 1), and note that the term ∂ t n ε + ∂ a n/ε in equation (2.6) corresponds to transport in age at speed 1/ε. The consequence of this transport is that the support in age of n ε at time t is [0, 1 + t/ε), whence the upper limit 1 + t/ε for the integral giving the boundary condition.

For (t, x, a) such that φ ε (t, x, a) < ∞, φ ε satises:              ∂ t φ ε + 1 ε ∂ a φ ε -β = 0 , t ≥ 0, a > 0 , x ∈ R exp (-φ ε (t, x, 0)/ε) = 1+t/ε 0 R β(a)ω(z) exp (-φ ε (t, x -εz, a)/ε) dz da φ ε (0, x, a) = φ 0 ε (x, a) = -ε ln n 0 (x/ε, a) . (2.7) 
Let us denote by ψ ε the boundary value at a = 0, which will be our main unknown:

ψ ε (t, x) = φ ε (t, x , 0). (2.8) 
We compute the solution of equation (2.7) along characteristic lines:

φ ε (t, x, a) =    ψ ε (t -εa, x) + ε a 0 β(s) ds, t > 0, εa < t φ 0 ε (x, a -t/ε) + ε a a-t/ε β(s) ds, t ≥ 0, a ≥ t/ε. (2.9) 
Injecting (2.9) into the a = 0 boundary condition satised by φ ε in (2.7) now yields:

1 = t/ε 0 Φ(a) R ω(z) exp 1 ε [ψ ε (t, x) -ψ ε (t -εa, x -εz)] dz da + 1+t/ε t/ε Φ(a) R ω(z) exp 1 ε ψ ε (t, x) -φ 0 ε (x -εz, a -t/ε) + a-t/ε 0 β dz da. (2.10)
Let us formally derive the limiting Hamilton-Jacobi equation. Taking the formal limit of (2.10) when ε → 0 yields:

1 = ∞ 0 Φ(a) exp (a∂ t ψ 0 (t, x)) da R ω(z) exp (z∂ x ψ 0 (t, x)) dz. (2.11)
It is a Hamilton-Jacobi equation, since it is equivalent to:

∂ t ψ 0 (t, x) + H(∂ x ψ 0 )(t, x) = 0, (2.12) 
with H dened as follows, where Φ-1 is the inverse function of the Laplace transform of Φ:

H(p) = Φ-1 1 R ω(z) exp(zp) dz . (2.13) 
Remark (Alternative choice of β). The limiting equation makes sense for a large class of functions β, including constant functions β ≡ K. Indeed, the scaling considered here does not depend on the diusive regime, whether it is anomalous or not. The reader may nd interesting situations for which the large deviation scaling is problem-dependent in [START_REF] Bouin | Large deviations for velocity-jump processes and non-local hamilton-jacobi equations[END_REF][START_REF] Méléard | Singular limits for reaction-diusion equations with fractional laplacian and local or nonlocal nonlinearity[END_REF].

Properties of the Hamiltonian

We will now prove that the Hamiltonian H satises some properties often encountered in the literature.

Proposition 41. The Hamiltonian H dened in (2.13) has the following properties:

(i) H ∈ C ∞ (R, R + ), (ii) F is coercive: H(p) p ---→ p→∞ ∞,
(iii) H is convex, but not strictly uniformly convex.

Proof.

(i) Let

F (p, h) = ∞ 0 Φ(a) exp (-ah) da - R ω (z) exp (zp) dz -1 . 
F is strictly decreasing with respect to its second variable over R. For all p ∈ R \ {0}, since ω is a Gaussian centred at 0 and Φ is a probability measure, it follows that F (p, 0) < 0. For any p ∈ R, we have lim ∞ F (p, •) = 0. Hence for each p ∈ R there exists a unique H ∈ R + such that F (p, H) = 0. This condition is equivalent to equation (2.11), hence H is well dened.

The function F is C ∞ , and F (0, 0) = 0. Strict monotonicity and an implicit functions result end the proof.

(ii) We have: R ω(z)e zp dz = exp σ 2 p 2 2 .

(2.14)

It follows from equation (2.11) that ∞ 0 Φ(a)e -aH(p) da ≥ 1 0 Φ(a)e -H(p) da ≥ Ce -H(p) , hence Ce -H(p) ≤ exp - σ 2 p 2 2 ,
which implies H(p) 1 + p 2 . Hence H is coercive.

(iii) Dierentiating equation (2.11) with respect to p yields:

0 = ∞ 0 R ∇ p H(p) - z a aΦ(a) exp (-aH(p)) ω(z) exp (zp) dz da,
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after which a second dierentiation gives us:

0 = ∞ 0 R aD 2 p H(p)dγ(z, a) - a 0 R a 2 ∇ p H(p) - z a 2 dγ(z, a),
where dγ(z, a) = Φ(a)ω(z) exp (-aH(p)) exp (zp) dz da is a non-negative measure. It follows that D 2 p H ≥ 0. However, the Hamiltonian H is not strictly uniformly convex, since D 2 p H(0) = 0. This is proved as follows. We rst remark, from (2.13) and (2.11), that H(0) = 0. We recover the following expression for ∇ p H(p):

∇ p H(p) = ∞ 0 R zΦ(a)ω(z) exp(zp) dz da ∞ 0 R aΦ(a)ω(z) exp(zp) dz da . Since ∞ 0 aΦ(a) da = ∞, we deduce that ∇ p H(0) = 0 and recover: D 2 p H(0) = R z 2 ω(z) dz ∞ 0 aΦ(a) da = 0.
Proposition 42 (Behaviour of H around 0). Suppose ω is a Gaussian function of variance σ 2 .

Around p = 0, we have

H(p) ∼ 0 (σp) 2/µ (2Γ(1 -µ)) 1/µ . (2.15) 
Proof. We have Φ(a) = µ(1 + a) -1-µ , hence, thanks to equations (2.11) and (2.14):

∞ 0 µ (1 + a) 1+µ (exp(-aH) -1) da = Φ(H) -1 = exp -(σp) 2 /2 -1 ∼ p=0 -(σp) 2 /2.
Denoting b = aH, since H(0) = 0 the left hand side becomes:

1 H ∞ 0 µ (1 + b/H) 1+µ (e -b -1) db =H µ ∞ 0 µ (H/b + 1) 1+µ b -1-µ (e -b -1) db ∼ H=0 H µ ∞ 0 µb -1-µ e -b -1 db.
Integrating that last expression by parts ends the proof.

Proposition 43 (Behaviour of H for large p). Suppose ω is a Gaussian function of variance σ 2 .

Around ∞, we have

H(p) ∼ ∞ µ exp σ 2 p 2 2 .
(2.16)

Proof. Retaking the computations of Proposition 42, we recover:

1 H(p) ∞ 0 µ 1 + b H(p) 1+µ e -b db = exp - σ 2 p 2 2 . 1 H(p) ∞ 0 µ 1 -(1 + µ) b H(p) e -b db ≤ exp - σ 2 p 2 2 ,
which by integration leads to µ H(p)

1 - 1 + µ H(p) ≤ exp - σ 2 p 2 2 
H(p) = µ exp σ 2 p 2 2 1 - 1 + µ H(p) .
The divergence of H (e.g. coercivity in Proposition 41) concludes the proof.

Remark. Boundedness above by a polynomial can be an important property in the calculus of variations approach to Hamilton-Jacobi equations. It implies that the Lagrangian dened by convex duality in equation (2.18) is coercive in the sense that there exist C > 0 and r > 1 such that L(v) ≥ C|v| r , allowing the application of Tonelli's direct method to the problem of minimising the corresponding action functional. However, as is often the case, it can be replaced by additional regularity hypotheses on the class of solutions. We will not elaborate further on this claim in this Remark, but we refer the reader to [START_REF] Clarke | Functional Analysis, Calculus of Variations and Optimal Control[END_REF]Chapter 19,Theorems 19.11 and 19.17] for a calculus of variations and proximal analysis approach to Hamilton-Jacobi equations. We state in Theorem 45 a variation of [START_REF] Clarke | Functional Analysis, Calculus of Variations and Optimal Control[END_REF]Theorems 19.11 and 19.17] that applies to our case.

We have computed the Hamiltonian for p ∈ [0, 0.5], dierent values of µ, and σ = 0.5, as depicted in Figure 2.1. Figure 2.2 shows how H and the asymptotic behaviour close to 0 proved in Proposition 42 grow apart for p large enough, as expected from the result of Proposition 43. For a visual representation of the evolution in time of the solution ψ 0 of the Hamilton-Jacobi equation (2.10), we refer to Figure 2.3, which is the result of a weighted essentially non-oscillatory (WENO) scheme of order 5, Lax-Friedrichs numerical scheme. We refer the reader to the Appendix A and to [START_REF] Vigneaux | Méthodes Level Set pour des problèmes d'interface en microuidique[END_REF] for a review of such numerical methods. In Figure 2.3, the initial data taken for the rst and third subgures is the same, in order to illustrate how subdiusion slows down signicantly as time advances. The initial conditions in the second and third subgures are such that H(∂ x ψ) = λ(t)ψ for ∂ x ψ close to 0 for the respective Hamiltonians, hence the preserved shape of the decaying proles, most noticeable in the log scale. Indeed, injecting the Ansatz ψ 0 (t, x) = c(t)x α into ∂ t ψ + H(∂ x ψ), with H given by the approached expression at 0 of H (2.15), leads to dening such initial conditions.

We recall that, under suitable hypotheses on H and on g, classical existence and uniqueness results hold for the evolution Hamilton-Jacobi Cauchy problem:

∂ t u(t, x) + H(D x u(t, x)) = 0, (t, x) ∈ (0, T ] × R n u(0, x) = g(x),
x ∈ R n .

(2.17)

Let L be the Lagrangian dened as the Legendre-Fenchel transform of the convex, coercive Hamiltonian H:

L(v) = sup p∈R {pv -H(p)} .
(2.18)

We dene the value function f via the Hopf-Lax formula:

f (t, x) = min y∈R tL x -y t + g(y) . (2.19) 
We recall the Proposition 6 from the state of the art Section 4.3, which applies to our problem.

- 

Subdiusive case with µ = 0.3 and β(a) = µ/(1 + a). ψ 0 (0, x) = 0.2(x -10) 2/2-µ . Proposition 44. Let H be a convex, coercive Hamiltonian, and let g be a bounded below, sublinear, semi-concave and Lipschitz continuous function over R. The Hopf-Lax value function f in (2.19) is well dened for the initial condition g. Moreover, f (0, •) = g and f is a viscosity solution of (2.17).

We state hereafter a relevant uniqueness theorem in a suitable class of functions: a version of [START_REF] Clarke | Functional Analysis, Calculus of Variations and Optimal Control[END_REF]Theorems 19.11 and 19.17] for a homogenous Hamiltonian that is not polynomially bounded above.

Theorem 45 (Uniqueness theorem). Let H be locally Lipschitz, convex and superlinear. Let g be bounded below and Lipschitz continuous. Then there exists a unique viscosity solution of (2.17) within the class of Lipschitz continuous functions. 

Main hypotheses and results

Throughout this Chapter, we will work over the set [0, T ] × R for some T > 0, and we will denote by C any real constant whose value is irrelevant.

The main result of this Chapter is that, under suitable hypotheses on the initial condition φ 0 ε , the boundary value ψ ε converges to the unique viscosity solution ψ 0 of the limiting Hamilton-Jacobi Cauchy problem (2.11) for an appropriate initial condition v. In this subsection we will state and justify which initial conditions we have chosen, justify our choice of proof strategy, and describe what we consider the crucial features of our work.

We will make the following hypotheses on the initial condition.

Hypothesis 8 (Initial condition φ 0 ε ).

We assume that the initial condition has the following form:

φ 0 ε (x, a) = v ε (x) + εη ε (x, a) + χ [0,1) (a) (2.20) 
where χ [0,1) (a) is worth 0 for a ∈ [0, 1) and ∞ for a ≥ 1. Hence, φ 0 ε takes nite value in [0, 1) only, according to the assumption on n 0 (2.3). The functions φ 0 e , v ε and η ε satisfy the following properties uniformly over ε:

1. v ε is bounded below, and has at most linear growth from above: there exist positive constants K 0 , K 1 such that for any x ∈ R and a ∈ [0, 1), for any ε > 0,

-K 0 ≤ v ε (x) ≤ K 0 + K 1 |x|. (2.21)
2. η ε is uniformly bounded.

φ 0

ε is semi-concave in x uniformly in a: there exists C xx ∈ R such that for any x, h ∈ R and a ∈ [0, 1), for any ε > 0,

φ 0 ε (x + h, a) + φ 0 ε (x -h, a) -2φ 0 ε (x, a) ≤ C xx h 2 , (2.22) 
(Or equivalently, in the sense of distributions,

∂ 2 x φ 0 ε ≤ C xx .)
4. φ 0 ε is Lipschitz continuous in x uniformly in a ∈ [0, 1): there exists C L such that, for any a ∈ [0, 1), for any x 1 , x 2 ∈ R and for any ε > 0,

φ 0 ε (x 1 , a) -φ 0 ε (x 2 , a) ≤ C L |x 1 -x 2 |.
(2.23)

5. We assume that there exists a limit function v such that v ε ---→ ε→0 v, locally uniformly in x, a.

Remark. When working at xed ε, since the previous hypotheses hold uniformly over ε ∈ (0, 1), we will abuse the notation and drop the ε subindices from v ε and η ε .

The following theorem is our main result. Remark (Initial conditions interpretation). We may interpret the additive perturbation η in the Ansatz (2.20) as a multiplicative perturbation in terms of n:

n 0 ε (x, a) = ñε (x, a) exp(-v ε (x)/ε)1 [0,1) (a),
where 1 A is worth 1 over the set A and 0 elsewhere, and ñε (x, a) = exp (-η ε (x, a)). We make the strong assumption that the support in age is uniformly bounded for x ∈ R. This is for technical reasons which are commented in Subsection 2.1.5.

Remark (Lack of compatibility of the initial condition). The initial condition that we take is smooth enough in x (Lipschitz continuous). However, we do not require for it to be compatible in the sense that the inux relation at age a = 0 is satised at time t = 0 in (2.1). As a consequence, we allow discontinuities along t = εa. This means that in general, we may have:

n ε (t, x, 0) = 1 0 R ω(z)Φ(a)n 0 ε (x -εz, a) dz da = n 0 ε (x, 0). (2.24) 
Such compatibility is assumed in [START_REF] Perthame | Transport Equations in Biology[END_REF]Chapter 3.4] to infer regularity with respect to a in the space-homogenous setting. Such regularity is not required in the present contribution.

Remark (Initial age prole). We make the strong assumption that the support in age is uniformly bounded for x ∈ R. This is for technical reasons on which we comment later on in Subsection 2.1.5. The discontinuity that results from χ [0,1) does not play a signicant role in the a priori estimates since it lies outside of the essential domain of φ 0 ε .

Remark. The second strong assumption is the semi-concavity of the initial condition. It is required for technical reasons, to handle the contribution of initial data (remaining) at time t.

This implies local Lipschitz continuity. Therefore, we have deemed reasonable to assume global Lipschitz continuity. This is also in accordance with the uniqueness result that we use.

Remark (Half-relaxed limits). The global proof strategies of this work follow the basic methodology described in [START_REF] Barles | Solutions de viscosité des équations de Hamilton-Jacobi[END_REF]Chapter 2]. This strategy relies on the proof of Lipschitz a priori estimates, the use of the Arzela-Ascoli theorem to extract a convergent subsequence ψ εn → ψ 0 , a stability result to show ψ 0 is a viscosity solution of the limiting problem, and a comparison result to show ψ 0 is its unique viscosity solution; hence by compactness and Hausdor separation arguments, the whole (ψ ε ) sequence converges to ψ 0 . An alternative toolkit by means of which Hamilton-Jacobi stability results are often tackled is the half-relaxed limits theory described in [START_REF] Barles | Solutions de viscosité des équations de Hamilton-Jacobi[END_REF]2]. It presents the advantage of only requiring L ∞ a priori estimates, rather than Lipschitz continuity.

In our case, this is no big improvement since the natural regularity of our initial condition is at least locally Lipschitz in x as stated in Remark 2.1.4. A drawback of this method is that one needs to prove a strong comparison result between the upper and lower semi-continuous envelopes of ψ ε in order to show that the limit ψ 0 of a convergent subsequence of ψ ε is the unique viscosity solution of the limiting Hamilton-Jacobi equation. Since our Hamiltonian H has exponential growth, such a strong comparison result is likely to require Lipschitz estimates as is already the case in the uniqueness Theorem 45 that we use. This seems to be the case as well in a related work in the context of evolutionary biology [START_REF] Samuel Nordmann | Dynamics of concentration in a population model structured by age and a phenotypical trait[END_REF]. Consequently, even in the event that half-relaxed limits methods would allow us to reach results similar to ours, it is not clear that they would provide any improvement.

Apart from the stability result of Theorem 46, the most interesting points of the present work concern the way we have dealt with two signicant complications, on which we will proceed to comment.

Main ideas and diculties

Usually, similar limit problems for which the limit equation is averaged with respect to the fast variable (age a) are handled with the perturbed test function method introduced in [START_REF] Evans | The perturbed test function method for viscosity solutions of nonlinear PDE[END_REF], see for instance [START_REF] Bouin | A kinetic eikonal equation[END_REF][START_REF] Bouin | A Hamilton-Jacobi approach for a model of population structured by space and trait[END_REF][START_REF] Caillerie | Large deviations of a velocity jump process with a Hamilton-Jacobi approach[END_REF]. However, in our setting the perturbed function would be naturally unbounded. Here, we by-pass this issue by working directly on the boundary value of our solution (2.1). Namely, we reduce the solution φ ε (t, x, a) to the knowledge of ψ ε (t, x) = φ ε (t, x, 0). Note that the reconstruction of φ ε from ψ ε along charactersitic lines makes the problem non local in time. That is the rst main idea in this work. The two following subsections describe the two major diculties that we have encountered.

Corrected maximum principle

While dening the waiting time distribution Φ in (2.4) in the model description subsection 2.1.1, we noted that the mean residence time of particles ∞ 0 aΦ(a) da is innite in the subdiusive case β(a) = µ/(1 + a) with µ ∈ (0, 1).

It is equivalent to say that N ∞ (a) = exp -a 0 β(s) ds is not an integrable function. This induces additional mathematical diculties in the proof of uniform bounds in Section 2.2, since N ∞ (a) would be the stationary age distribution of the space homogeneous problem (2.25), if integrable (as it is the case for µ > 1), see [START_REF] Perthame | Transport Equations in Biology[END_REF], Chapter 1 and classical renewal theory [START_REF] Feller | On the Integral Equation of Renewal Theory[END_REF].

In order to illustrate the consequence this has on the use of the maximum principle to prove bounds on ψ ε , let us rst consider the integrable case N ∞ ∈ L 1 for the space homogenous problem: (2.25)

         ∂ t n(t, a) + ∂ a n(t, a) + β(a)n(t, a) = 0 , t ≥ 0, a > 0 n(t, a = 0) = ∞ 0 β(a )n(t,
In the integrable case, provided n/N ∞ is initially bounded:

cN ∞ ≤ n 0 ≤ CN ∞ ,
an application of the maximum principle shows that the bounds are propagated for all positive time t: cN ∞ ≤ n(t, •) ≤ CN ∞ .

However, the fact that N ∞ is not integrable precludes any use of this reference function in the subdiusive case. Besides, it is well known that the long-time asymptotics of the space homogeneous problem (2.25) follow a self-similar scaling [START_REF] Feller | On the Integral Equation of Renewal Theory[END_REF]:

n(t, a) 1 1 + t W ∞ a 1 + t , (2.26) 
where W ∞ is the Dynkin-Lamperti arc-sine law. The precise description of the intermediate asymptotics (i.e. the estimate of the distance between the solution at time t and the self-similar prole) was the subject of [START_REF] Berry | Quantitative convergence towards a self-similar prole in an age-structured renewal equation for subdiusion[END_REF]. As a side remark, we expect a time correction in any L ∞ estimate of ln n, as it is the case in Proposition 48, equation (2.32).

Remark (Renormalisation by a non-stationary measure). It is a common idea to study a vanishing multiplicative perturbation of a steady state distribution in order to prove convergence to it. We refer the reader to an article related to our work, [START_REF] Bouin | A kinetic eikonal equation[END_REF], and to the WKB-type Ansatz the authors use to prove convergence to the Maxwellian of their equation. Following that idea while taking into account the non-existence of an integrable stationary age distribution N ∞ , it is tempting to make the Ansatz

n t ε , x ε , a = N t ε , a exp - φ ε (t, x , a) ε , 
where N corresponds to the pseudo-equilibrium of Chapter 1: an auxiliary function that approaches the formal steady state. Section 2.4.1 shows that such an Ansatz leads to the same limiting Hamilton-Jacobi equation and explains the drawbacks of such an approach by sketching the required computations. Such computations are very close to those present in this Chapter, but additional terms have to be estimated and proved to vanish. That is the reason why we have chosen not to renormalise n while dening φ ε in equation (2.5).

Contribution of initial data at time t

The second main diculty we have tackled appears in Section 2.3.2, in the proof that the limit ψ 0 of a subsequence of ψ ε is a viscosity super-solution of the limiting Hamilton-Jacobi equation (2.11). It stems from the long persistence of the initial condition in the renewal ux term.

In our proof, the renewal ux term at age a = 0 is split into 2 relative contributions: that of the particles which have already jumped before, and that of the particles which have never jumped before (respectively, A ε and B ε in equation (2.76)). Due to the heavy tail of the waiting time distribution, the latter decays very slowly. Thus, it has a relatively high contribution, that we must bound above in order to prove that ψ 0 is a viscosity supersolution. We solve this issue by a rened estimate of the relative contribution which expresses an anomalous exponent:

B ε = O(ε µ ).
(2.27)

We can connect this anomalous behaviour to the long-time asymptotics of the space-homogenous problem (2.25) through the following heuristics.

Let p(t) be the proportion, among the particles that jump at a given time t, of particles that had never jumped before hence p plays the role of B ε dened in equation (2.76). Introducing the characteristic lines in a similar way to that which led to equation (2.9), we recover:

p(t) = 1+t t β(a)n 0 (a -t) exp a a-t β(s) ds da n(t, 0)
.

Assume the initial condition n 0 is uniformly distributed over a ∈ [0, 1). Suppose that the denominator n(t, 0) behaves exactly like the self-similar prole as in (2.26). We recover that, up to multiplication by constants, the following quantities have the same asymptotic behaviour for large t:

n(t, 0) = O (1 + t) µ-1 .
Taking into account β(a) = µ/(1 + a), it follows that we expect p to decay in a polynomial way, as (1 + t) -2µ . It is very interesting to note that this expression is homogenous in t to equation (2.84), in which ε is homogenous to t -1 and T is homogenous to t.

The proof of the bound O(ε µ ) involves a semi-concavity assumption which is propagated for any t ∈ [0, T ].

Organization of the Chapter

Section 2.2 deals with the proof of Theorem 47, namely, a uniform in ε bound on ψ ε in W 1,∞ loc ([0, T ]× R), each subsection corresponding to the bounds on ψ ε and its rst partial derivatives. The proofs mainly involve comparison results stemming from the maximum principle. Section 2.3 proves that ψ 0 is a viscosity solution of the limiting Hamilton-Jacobi equation (2.11), which is the result of Theorem 46, and that it is its unique viscosity solution, thanks to Theorem 45. The rst subsection shows it is a subsolution, the second, a supersolution.

During the revision stage of this manuscript, the authors became aware of a preprint by Nordmann, Perthame, and Taing, which adresses similar questions, in the context of evolutionary biology. Our model is simpler as it is conservative, and jump rates are homogeneous with respect to the space variable. On the other hand, our results are stronger as we obtain the rigorous limit of the problem as ε → 0.

Uniform local boundedness and Lipschitz continuity of ψ ε

Remark. When working at xed ε, since the previous hypotheses hold uniformly over ε ∈ (0, 1), we will abuse the notation and drop the ε subindices from v ε and η ε .

This whole section deals with the proof of the following Theorem.

Theorem 47. a Let T > 0 and 0 < ε < 1. Under hypotheses 7 and 8, ψ ε is bounded in

W 1,∞ loc ([0, T ] × R
) uniformly in ε, with the following quantitative bounds, where (t, x) ∈ [0, T ] × R:

1. ψ ε (t, x) ≥ inf v -β(0) -sup ε∈(0,1) ln exp -inf x η ε (x, •) L 1 , (2.28) ψ ε (t, x) ≤ K 0 + K 1 |x| + C η + 2σ 2 K 2 1 + (1 + µ)T.
(2.29)

2.

Lip(ψ ε (t, •)) ≤ C L .

(2.30)

3.

Lip 

ψ ε (•, x) ≤ max µ(1 + µ), R ω(z) exp (C L |z|) dz . ( 2 
ψ ε (t, x) ≥ c = inf v -ε ln β(0) -ε ln exp -inf x η(x, a) L 1
(2.32)

ψ ε (t, x) ≤ C T = K 0 + C η + K 1 |x| + ε(1 + µ) ln 1 + t ε + ε2σ 2 K 2 1 (2.33)

Local boundedness of ψ ε

This subsection deals with the proof of Proposition 48.

Remark. As mentioned previously in Subsection 2.1.5, the space-homogenous problem does not admit an integrable stationary measure. Moreover, it has been shown in Chapter 1 that it exhibits a self-similar decay. The side eect in our context is a time-dependent correction term on the upper bound, of the following form:

-ε ln Let us start by bounding ψ ε from below, proving the rst half of the Proposition.

Proof of the lower bound (2.32) of Proposition 48.

From equation (2.7) and the Ansatz (2.20) made on the initial condition in Hypothesis 8 we gather that we may dene n 0 as follows:

n 0 (x, a) = n 0 ε (εx, a) = exp - v(εx) ε -η(εx, a) 1 [0,1) (a).
Remark. Bear in mind that ε is xed and that we have dropped the ε subindex from v ε = v and η ε = η, since our hypotheses on the initial condition hold uniformly over ε ∈ (0, 1).

Let us dene n : R + × R + → R + as the solution of the following equation: (2.34)

           ∂ t n(t, a) + ∂ a n(t,
Since β is a non-increasing function, ω is a probability measure, n is the solution of equation (2.1) for an initial condition n 0 and n0 (a) ≥ sup x n 0 (x, a), it follows that for any t, a ≥ 0:

n(t/ε, a) ≥ sup x n(t/ε, x/ε, a) = sup x n ε (t, x, a).
Moreover, since β is non-increasing and the L 1 norm of n is preserved,

n(t/ε, 0) = ∞ 0 β(a)n(t/ε, a) da ≤ β(0) ∞ 0 n(t/ε, a) da = β(0) n0 L 1 .
It follows that:

ψ ε (t, x) = -ε ln n ε (t, x, 0) ≥ -ε ln(β(0) n0 L 1 ).
After computing the L 1 norm of n0 :

n0 L 1 = exp(-inf x v/ε) ∞ 0 exp(-inf x η(x, a)) da,
and since η is bounded (Hypothesis 8.2), we obtain the claimed result (2.32).

The rest of this subsection is devoted to proving the upper bound (2.33) in Proposition 48.

Proof of the upper bound (2.33) of Proposition 48.

From equation (2.10) we recover:

exp - 1 ε ψ ε (t, x) = t/ε 0 R Φ(a)ω(z) exp - 1 ε ψ ε (t -εa, x -εz) dz da + 1 0 R Φ a + t ε ω(z) exp - 1 ε φ 0 ε (x -εz, a) exp a 0 β dz da.
Since the rst right-hand side term is non-negative and v is sublinear by Hypothesis 8.1, e -ψε(t,x)/ε ≥

1 0 R Φ a + t ε ω(z)e -1 ε (K 0 +K 1 |x-εz|) e -η(x-εz,a) e a 0 β dz da (2.35) ≥ Φ 1 + t ε Φ(0) 1 0 R Φ(a)e a 0 β ω(z) exp - K 0 ε - K 1 |x| ε -K 1 |z| e -η(x-εz,a) dz da ≥ e -K 0 ε e -K 1 |x| ε Φ 1 + t ε Φ(0) 1 0 R Φ(a)e a 0 β exp -z 2 2σ 2 -K 1 |z| σ √ 2π
e -η(x-εz,a) dz da.

Moreover,

1 0 R Φ(a)e a 0 β exp -z 2 2σ 2 -K 1 |z| σ √ 2π e -η(x-εz,a) dz da = 1 0 R Φ(a)e a 0 β e -η(x-εz,a) 1 σ √ 2π exp - z 2 2σ 2 -K 1 z 1 z≥0 + - z 2 2σ 2 + K 1 z 1 z<0 dz da.
Let us bound the quantity inside the exponential in the previous equation.

-

z 2 2σ 2 -K 1 z 1 z≥0 + - z 2 2σ 2 + K 1 z 1 z<0 = - 1 2σ 2 (z + 2σ 2 K 1 ) 2 1 z≥0 + (z -2σ 2 K 1 ) 2 1 z<0 + 2σ 2 K 2 1 ≥ - 1 2σ 2 (z + 2σ 2 K 1 ) 2 + (z -2σ 2 K 1 ) 2 + 2σ 2 K 2 1 ≥ - 2z 2 2σ 2 -2σ 2 K 2 1 .
The previous computations and the boundedness of η (Hypothesis 8.2) give us the existence of some C η ∈ R satisfying:

e -ψε(t,x)/ε ≥ e -K 0 ε e -K 1 |x| ε e -2σ 2 K 2 1 Φ 1 + t ε Φ(0) 1 0 R Φ(a)e a 0 β ω( √ 2z)e -η(x-εz,a) dz da ≥ exp - K 0 ε exp - K 1 |x| ε exp -2σ 2 K 2 1 Φ 1 + t ε Φ(0) exp - C η ε .
Taking the logarithm of the above expression yields the desired upper bound of equation (2.33):

ψ ε (t, x) ≤ K 0 + C η + K 1 |x| + ε(1 + µ) ln 1 + t ε + ε2σ 2 K 2 1 .
( 

Lip(ψ ε (t, •)) ≤ C L .
(2.37)

The keystone of our proof is an application of the maximum principle to the increase rate of ψ ε . Let us set useful notations. Let h ∈ (0, 1). We name the following dierences:

           Z(t, x, a, z) = ψ ε (t, x) -ψ ε (t -εa, x -εz) Z h (t, x, a, z) = Z(t, x + h, a, z) Y (t, x, a, z) = ψ ε (t, x) -φ 0 ε (x -εz, a -t/ε) Y h (t, x, a, z) = Y (t, x + h, a, z). (2.38)
We dene the increase rates

     u h (t, x) = 1 h (ψ ε (t, x + h) -ψ ε (t, x)) , w 0 h (x, a) = 1 h φ 0 ε (x + h, a) -φ 0 ε (x, a) .
(2.39)

Let us illustrate the application of the maximum principle in a situation with no added technical complications. In order to do so, we will suppose the increase rate u h reaches its extrema.

Proposition 50 (Lipschitz bounds for reached extrema). Assume u h reaches its extrema over [0, T ] × R. Then u h is bounded as follows:

u h L ∞ ([0,T ]×R) ≤ C L , (2.40) 
where C L is the Lipschitz constant in x of φ 0 ε uniformly in a ∈ [0, 1) dened in Hypothesis 8.4.

Proof. Let us begin by proving u h is bounded by specic increase rates of the initial condition:

inf R×[0,1)

w 0 h ≤ u h ≤ sup R×[0,1) w 0 h .
(2.41)

By subtracting equation (2.10) taken at (t, x) from the same equation taken at (t, x + h) we recover:

0 = t ε 0 R Φ(a)ω(z) [exp (Z h (t, x, a, z)/ε) -exp (Z(t, x, a, z)/ε)] dz da + 1 0 R Φ a + t ε ω(z)e a 0 β [exp (Y h (t, x, a, z)/ε) -exp (Y (t,
x, a, z)/ε)] dz da.

We will abuse the notation and write Z instead of Z(t, x, a, z) hereafter. By factoring, we recover:

0 = t ε 0 R Φ(a)ω(z) exp Z ε exp h ε [u h (t, x) -u h (t -εa, x -εz)] -1 dz da + 1 0 R Φ a + t ε ω(z)e a 0 β exp Y ε exp h ε u h (t, x) -w 0 h (t -εa, x -εz) -1 dz da. (2.42) 
We have supposed u h reaches its extrema over [0, T ] × R. Let us prove the upper bound of the Proposition by contradiction.

Assume u h reaches its maximum at (t 0 , x 0 ) and suppose that the upper bound does not hold:

u h (t 0 , x 0 ) > sup R×[0,1) w 0 h (x, a).

Let us take the previous equation at (t 0 , x 0 ) and apply the maximum principle. We obtain

0 = t 0 ε 0 R Φ(a)ω(z) exp Z ε exp h ε [u h (t 0 , x 0 ) -u h (t 0 -εa, x 0 -εz)] -1 •≥0 dz da + 1 0 R Φ a + t 0 ε ω(z)e a 0 β exp Y ε exp h ε u h (t 0 , x 0 ) -w 0 h (t 0 -εa, x 0 -εz) -1 •>0
dz da. This proves the upper bound of equation (2.41). The lower bound in that equation is proved in an analogous way.

By Lipschitz continuity with constant C L of φ 0 ε (Hypothesis 8.4), it follows that

w 0 h ∞ ≤ C L ,
hence the claimed bound (2.40).

However, the above expression u h does not necessarily reach its bounds. The strategy we follow to prove the bounds of Proposition 49 consists in the following truncation of ψ ε .

1. Let R > 0. We dene φ 0,R ε , which coincides with φ 0

ε over [-R, R] × R + and is such that v R ε is bounded over R by -K 0 ≤ v R ε (x) ≤ K 0 + K 1 R.
We prove the corresponding ψ R ε are bounded: they satisfy a modied, simpler version of bound (2.36).

2. We then dene u R h : the versions of u h corresponding to the ψ R ε . We add penalising terms to u R h and ensure that the penalised functions reach their extrema.

3. This allows us to apply the maximum principle to the penalised functions. The boundedness of u R h allows us to appropriately bound the space-coordinate at which the penalised modied functions reach their extrema. We conclude that the perturbed functions u R Let R > 0, and let us dene the following modied initial conditions φ 0,R ε :

φ 0,R ε (t, x) = v R ε (x) + εη ε (x, a) + χ [0,1) (a), where v R ε (x) = min (v ε (x), K 0 + K 1 R) .
(2.44)

It follows that φ 0,R ε ≤ φ 0 ε over R×R + , with equality over [-R, R] × R + . Moreover, v R ε is bounded.
The modied initial condition φ 0,R ε also satises Hypothesis 8.

Let ψ R ε be the solution of equation (2.10) corresponding to the initial condition φ 0,R ε . Let us prove ψ R ε is bounded by adapting the proof of Proposition 48.

Lemma 51 (L ∞ bounds of the perturbed function). With the denitions above, ψ R ε satises, for any (t, x) ∈ [0, T ] × R:

       ψ R ε (t, x) ≥ c R := -K 0 -ε ln β(0) -ε ln exp -inf x η(x, a) L 1 ψ R ε (t, x) ≤ C R T := K 0 + K 1 R + C η + ε(1 + µ) ln 1 + t ε .
(2.45)

Proof. The lower bound follows from that of Proposition 48, since Hypothesis 8 is satised by the perturbed initial condition φ 0,R ε .

As for the upper bound, it follows from a modication of the proof of the upper bound of Proposition 48. Specically, equation (2.35) becomes:

e -ψ R ε (t,x)/ε ≥ exp - 1 ε [K 0 + K 1 R] Φ(1 + t/ε) Φ(0) exp - C η ε .
(2.46)

Taking the logarithm concludes the proof of the modied upper bound.

Let us give the perturbed versions of equation (2.38)

           Z R (t, x, a, z) = ψ R ε (t, x) -ψ R ε (t -εa, x -εz) Z R h (t, x, a, z) = Z R (t, x + h, a, z) Y R (t, x, a, z) = ψ R ε (t, x) -φ 0,R ε (x -εz, a -t/ε) Y R h (t, x, a, z) = Y R (t, x + h, a, z), (2.47) 
and of the increase rates (2.39)

     u R h (t, x) = 1 h ψ R ε (t, x + h) -ψ R ε (t, x) , w 0,R h (t, x) = 1 h φ 0,R ε (x + h, a) -φ 0,R ε (x, a) .
(2.48)

Since ψ R ε ∈ L ∞ , it follows from Lemma 51 that its increase rate is bounded as follows over

(t, x) ∈ [0, T ] × R: |u R h (t, x)| ≤ 1 h C R T -c R , (2.49) 
where C R T and c R are the upper and lower bounds of ψ R ε over [0, T ] × R dened in equation (2.45).

However, the increase rate u R h may not reach its bounds.

Let us rst prove that u R h ≤ C L over [0, T ] × R by applying the maximum principle. In order to do so, we dene a penalised function that, as we prove in Lemma 52, reaches its upper bound.

Let δ 1 , δ 2 ∈ (0, 1). We dene the penalised increase rate

ũR h (t, x) = u R h (t, x) -δ 1 t -δ 2 x 2 .
(2.50)

Lemma 52. The penalised function ũR h (t, x) reaches its maximum over [0, T ] × R at some point (t 0 , x 0 ) satisfying, for some positive constant C:

|x 0 | ≤ R 2 (δ 2 ) := δ -1/2 2 h -1/2 2 C R T -c R .
(2.51)

Proof. 

u R h (t 0 , x 0 ) -δ 1 t 0 -δ 2 x 2 0 = ũR h (t 0 , x 0 ) ≥ ũR h (0, 0) = u R h (0, 0). Therefore, δ 2 x 2 ≤ u R h (t 0 , x 0 ) -u R h (0, 0) -δ 1 t 0 ≤ 1 h ψ R ε (t 0 , x 0 + h) -ψ R ε (t 0 , x 0 ) -ψ R ε (0, h) + ψ R ε (0, 0) -δ 1 t 0 ≤ 2 h C R T -c R ,
hence the upper bound on |x 0 |.

Remark. It follows that

δ 2 |x 0 (δ 1 , δ 2 )| ---→ δ 2 →0
0 uniformly over δ 1 ∈ [0, 1]. This allows us to control the penalising term in x as δ 2 → 0. That is the reason why we have taken a bounded approximation of the initial conditions.

Let δ 1 , δ 2 ∈ (0, 1), and let (t 0 , x 0 ) ∈ [0, T ] × R be a point at which ũR h reaches its maximum over [0, T ] × R.

Proposition 53 (Upper bound for the perturbed penalised increase rate).

There exists a positive constant C (depending on T, h, ε, R, which are xed in this Proposition) such that, if δ 2 < min δ 1 , Cδ 2 1 , the perturbed penalised increase rate ũR h is bounded above as follows:

ũR h (t 0 , x 0 ) ≤ C L .

(2.52)

The proof of the Proposition relies on Lemmas 54 and 55. It will be presented after that of the latter.

Lemma 54. Assume (2.52) does not hold, so the perturbed penalised function satises instead at its maximum point:

ũR h (t 0 , x 0 ) > C L . (2.53) Then 0 > A x (δ 1 , δ 2 , t 0 , x 0 ) + B x (δ 1 , δ 2 , t 0 , x 0 ), (2.54) 
where, evaluated at P = (δ 1 , δ 2 , t 0 , x 0 ), A x and B x are dened as follows:

A x (P) = t 0 ε 0 R Φ(a)ω(z) exp Z R ε [exp (δ 1 ha + δ 2 h(2x 0 -εz)z) -1] dz da, (2.55) B x (P) = 1 0 R Φ a + t 0 ε ω(z)e a 0 β exp Y R ε exp h ε δ 1 t 0 + δ 2 x 2 0 -1 dz da. (2.56)
Proof. Recall equation (2.42) in the proof of Proposition 50. Its perturbed version, which we take at (t 0 , x 0 ), holds as well:

0 = t 0 ε 0 R Φ(a)ω(z)e Z R ε exp h ε u R h (t 0 , x 0 ) -u R h (t 0 -εa, x 0 -εz) -1 dz da + 1 0 R Φ a + t 0 ε ω(z)e a 0 β e Y R ε exp h ε u R h (t 0 , x 0 ) -w 0,R h (t 0 -εa, x 0 -εz) -1 dz da.
(2.57)

Let us inject into the previous equation, for (t, x) ∈ {(t 0 , x 0 ), (t 0 -εa, x 0 -εz)}:

u R h (t, x) = ũR h (t, x) + δ 1 t + δ 2 x 2 .
We also recall that for any (z, ε, a) ∈ R × (0, 1) × [0, t 0 /ε), we have:

ũR h (t 0 , x 0 ) ≥ ũR h (t 0 -εa, x 0 -εz), ũR h (t 0 , x 0 ) > w 0,R h (t 0 -εa, x 0 -εz).
The expressions above allow us to recover the following inequality:

0 > t 0 ε 0 R Φ(a)ω(z) exp Z R ε exp h ε δ 1 t 0 + δ 2 x 2 0 -δ 1 (t 0 -εa) -δ 2 |x 0 -εz| 2 -1 dz da + 1 0 R Φ a + t 0 ε ω(z)e a 0 β exp Y R ε exp h ε δ 1 t 0 + δ 2 x 2 0
-1 dz da.

(2.58)

It follows that

0 > A x (δ 1 , δ 2 , t 0 , x 0 ) + B x (δ 1 , δ 2 , t 0 , x 0 ).
Let us now prove that (A x + B x )(δ 1 , δ 2 , t 0 , x 0 ) ≥ 0 for δ 1 , δ 2 small enough in a sense that we will quantify in the Lemma below. This will allow us to reach a desired contradiction, which will hold as we pass to the limit when δ 1 and δ 2 tend to 0 in a way that we will specify. We recall that (t Lemma 52). Since that relationship is not explicit, the result we prove takes the following form.

0 , x 0 ) ∈ [0, T ] × [-R 2 (δ 2 ), R 2 (δ 2 )] depends on (δ 1 , δ 2 ) (where R 2 (δ 2 ) is the upper bound of |x 0 | proved in
Lemma 55. For any δ 1 ∈ (0, 1) there exists δ2 ∈ (0, δ 1 ) such that for any δ 2 ∈ (0, δ2 ),

(A x + B x )(δ 1 , δ 2 , t 0 , x 0 ) ≥ 0.
Proof. Let us begin by providing rough yet suciently accurate lower bounds of A x and B x dened in equations (2.55) and (2.56).

Since |e X -1| ≥ X, we have:

A x (P) ≥ t 0 ε 0 R Φ(a)ω(z) exp Z R ε [δ 1 ha + δ 2 h(2x 0 -εz)z] dz da ≥ - t 0 ε 0 R Φ(a)ω(z) exp Z R ε δ 2 hεz 2 + 2 δ 2 √ h 2(C R T -c R )|z| dz da thanks to the bound on |x 0 |, equation (2.51). The dierence Z R ε is also bounded over [0, T ] × R: |Z R ε | ≤ C R T -c R .
It follows that:

A x (P) ≥ -δ 2 t 0 ε 0 Φ(a) da exp 1 ε [C R T -c R ] R ω(z) δ 2 hεz 2 + 2 2h(C R T -c R )|z| dz.
(2.59)

Since the rst and second moments of the Gaussian ω are bounded and t 0 ∈ [0, T ], the following expression is bounded uniformly in δ

2 : R ω(z) δ 2 hεz 2 + 2 2h(C R T -c R )|z| dz.
Since Φ is bounded, it follows that for some constant C A that only depends on T, ε, h, R (which are xed throughout this proof ),

A x ≥ -C A t 0 δ 2 .
(2.60)

In order to bound B x below, we take into account its positivity and use in a similar way as above the inequalities |e X -1| ≥ X and Y ε ≥ c R -K 0 -K 1 R (following from the denition of φ 0,R ε ). We recover:

B x (P) = 1 0 R Φ a + t 0 ε ω(z)e a 0 β exp Y R ε exp h ε δ 1 t 0 + δ 2 x 2 0 -1 dz da ≥ exp 1 ε c R -K 0 -K 1 R 1 0 R Φ a + t 0 ε ω(z)e a 0 β h ε δ 1 t 0 + δ 2 x 2 0 dz da ≥ δ 1 t 0 h ε exp 1 ε c R -K 0 -K 1 R 1 0 Φ a + t 0 ε e a 0 β da ≥ δ 1 t 0 h ε exp 1 ε c R -K 0 -K 1 R 1 0 Φ a + T ε e a 0 β da
We recover, here again, that for some constant C that only depends on T, ε, h, R (which are xed throughout this proof ),

B x ≥ C B t 0 δ 1 .
(2.61)

Let us now distinguish two cases:

1. Case 1: t 0 = 0.

In this case, for any δ 1 , δ 2 ∈ (0, 1), A x (δ 1 , δ 2 , t 0 , •) = 0 uniformly over R and B x (δ 1 , δ 2 , t 0 , x) ≥ 0 uniformly over x ∈ R, with equality if and only if x = 0. Hence for any δ 2 ∈ (0, δ 1 ), (A x + B x )(δ 1 , δ 2 , t 0 , x 0 ) ≥ 0.

2. Case 2: 0 < t ≤ T .

The bounds from equations (2.60) and (2.61) hold. Hence (A x +B x )(δ 1 , δ 2 , t 0 , x 0 ) is strictly positive for any 0 < δ 2 < δ 1 satisfying:

δ 2 < C B C A 2 δ 2 1 . 
( 

u R h (t, x) = ũR h (t, x) + δ 1 t + δ 2 x 2 ≤ C L + δ 1 t + δ 2 x.
Taking the limit as δ 1 and δ

2 < min δ 1 , C B C A 2 δ 2 1 converge to 0 allows us to recover the upper bound u R h (t, x) ≤ C L .
The lower bound is recovered by using the following perturbed function that reaches its minimum:

ûR h (t, x) = u R h (t, x) + δ 1 t + δ 2 x 2 ,
and following an analogous proof strategy.

Let M > 0. We denote by

K M the compact set [0, T ] × [-M, M ].
Proposition 57 (Uniform convergence over every compact). The perturbed functions ψ R ε converge to ψ ε uniformly over K M as R tends to innity.

Proof. Both the transport problem and the integral boundary condition of equation (2.7) preserve positivity. For R > R, it follows that the initial condition inequality φ

0,R ε ≤ φ 0,R ε ≤ φ 0 ε is propagated: for all (t, x) ∈ [0, T ] × R, we have: ψ R ε (t, x) ≤ ψ R ε (t, x) ≤ ψ ε (t, x).
The perturbed function ψ R ε is bounded below uniformly in R ∈ N, and ψ ε is bounded above over K. It follows that ψ R ε is bounded uniformly in R over K. By monotonicity and boundedness, ψ R ε converges to a function ψε as R → ∞ over K M . This convergence is uniform over K M by compactness.

Since this holds for all M > 0, it follows that ψ R ε converges to ψε pointwise over [0, T ] × R. Beppo Levi's monotone convergence theorem ensures that ψε is a solution of the integral formulation of the transport problem (2.10) for the initial condition φ 0 ε , which is the limit of φ 0,R ε as R → ∞. At xed ε > 0, that problem admits a unique solution: ψ ε . It follows that ψε = ψ ε , and that ψ R ε converges uniformly over K M towards ψ ε as R tends to innity.

We are now ready to prove Proposition 49.

Proof of the Proposition 49. Let us begin by bounding u h above: for (t, x) ∈ [0, T ] × R,

u h (t, x) ≤ C L . (2.64) 
From Proposition 56 we gather that for any positive R the modied increase rate u R h satises,

for (t, x) ∈ [0, T ] × R: u R h (t, x) ≤ C L . Moreover, Proposition 57 gives us the uniform convergence of ψ R ε to ψ ε over any compact K M = [0, T ]×[-M, M ], hence u R h R
also converges to u h uniformly over all compact subsets of [0, T ]×R. It follows that u h is bounded above by C L over K M . This holds for any positive M , hence the upper bound (2.64).

An analogous lower bound holds for u

h : for any (t, x) ∈ [0, T ] × R, u h (t, x) ≥ -C L .
This can be proved by using the following perturbed function that reaches its minimum:

ûR h (t, x) = u R h (t, x) + δ 1 t + δ 2 x 2 ,
and by modifying step by step the pertinent computations in the proofs of this Section.

It follows that u h L ∞ ([0,T ]×R) ≤ C L . Since this holds for any positive h, it follow that ψ ε is C L -Lipschitz continuous, as claimed.

Lipschitz continuity in t of ψ ε

This subsection will deal with the proof of Theorem 47.3, which we recall as Proposition 58.

Proposition 58. Let T > 0 and ε > 0. Under Hypotheses 7 and 8, ψ ε is Lipschitz continuous in t over (t, x) ∈ [0, T ] × R, with the quantitative bound stated below: 

Lip ψ ε (•, x) ≤ max µ(1 + µ), R ω(z) exp (C L |z|) dz . ( 2 
h ∈ [0, 1], |ψ R ε (t + h, x) -ψ R ε (t, x)| ≤ C R h ε .
Proof. From equation (2.10) we gather:

exp - 1 ε ψ R ε (t + h, x) -exp - 1 ε ψ R ε (t, x) = t/ε 0 R [Φ(a + h/ε) -Φ(a)] ω(z) exp - 1 ε ψ R ε (t -εa, x -εz) dz da + h/ε 0 Φ(a)ω(z) exp - 1 ε ψ R ε (t + h -εa, x -εz) dz da + 1+t/ε t/ε R [Φ(a + h/ε) -Φ(a)] ω(z) exp - 1 ε φ 0,R ε (x -εz, a -t/ε) exp a-t/ε 0 β dz da.
We recall that t ∈ [0, T ], ε is xed, and h ∈ [0, 1]. Φ is bounded and non-negative. It follows that for some C > 0,

Φ(a + h/ε) Φ(a) -1 ≤ C h ε .
That allows us to bound the rst and third right-hand-side terms as follows:

t/ε 0 R [Φ(a + h/ε) -Φ(a)] ω(z) exp - 1 ε ψ R ε (t -εa, x -εz) dz da ≤ C h ε t/ε 0 R Φ(a)ω(z) exp - 1 ε ψ R ε (t -εa, x -εz) dz da and 1+t/ε t/ε R [Φ(a + h/ε) -Φ(a)] ω(z) exp - 1 ε φ 0,R ε (x -εz, a -t/ε) exp a-t/ε 0 β dz da ≤ C h ε 1+t/ε t/ε R Φ(a)ω(z) exp - 1 ε φ 0,R ε (x -εz, a -t/ε) exp a-t/ε 0 β dz da.
Thanks to equation (2.10), the sum of the two previous upper bounds is

Ch ε exp - 1 ε ψ R ε (t, x) ,
and ψ R ε is bounded below over [0, T + h/ε] × R thanks to Proposition 48, so there exists some uniform-in-ε constant C such that their sum is less than or equal to Ch/ε. The lower boundedness of ψ R ε also yields a bound on the second right-hand-side term:

h/ε 0 R Φ(a)ω(z) exp - 1 ε ψ R ε (t + h -εa.x -εz) dz da ≤ C h ε with C = Φ ∞ ω ∞ exp -1 ε inf [0,T +h/ε]×R ψ R ε . It follows that: exp - 1 ε ψ R ε (t + h, x) -exp - 1 ε ψ R ε (t, x) ≤ h ε C + C . The function ln is Lipschitz continuous over [exp(-sup [0,T +h]×R ψ R ε /ε), exp(-inf [0,T +h]×R ψ R ε /ε)] with Lipschitz constant exp(sup [0,T +h]×R ψ R ε /ε) ≤ exp C R T /ε = L, where C R T dened in equa- tion (2.45) depends on R. Therefore, ψ R ε (t + h, x) -ψ R ε (t, x) ≤ L exp - 1 ε ψ R ε (t + h, x) -exp - 1 ε ψ R ε (t, x) ≤ h ε C + C L.
The Lipschitz bound in Lemma 59 implies, thanks to Rademacher's theorem, that the function

∂ t ψ R
ε is dened almost everywhere, and bounded over [0, T ] × R. Without loss of generality, we may prolong by 0 the function ∂ t ψ R ε at the points where it is not dened. We do not modify the notation for this prolongation. We may now apply the maximum principle directly to that derivative. This eliminates the need of using an increase rate as we did in the previous Subsection.

Dierentiating (2.10) with respect to t and multiplying by e

1 ε ψ R ε (t,x) = 0 yields: 0 = Φ t ε R ω(z)e -1 ε ψ(0,x-εz) dz - R ω(z)e -1 ε φ 0,R ε (x-εz,0) dz + R ω(z)e -1 ε φ 0,R ε (x-εz,1) e 1 0 β dz + t/ε 0 R Φω ∂ t ψ R ε (t, x) -∂ t ψ R ε (t -εa, x -εz) e -1 ε ψ R ε (t-εa,x-εz) dz da + 1+t/ε t/ε R Φω ∂ t ψ R ε (t, x) -β a - t ε - 1 ε ∂ a φ 0,R ε x -εz, a - t ε e -1 ε φ 0,R ε (x-εz,a-t ε ) e a-t/ε 0 β dz da.
(2.66)

where R ω(z) exp -1 ε φ 0,R ε (x -εz, 1) exp 1 0 β dz = 0 since n 0 (x -εz, 1) = 0, and ∂ a φ 0,R ε is dened in the sense of distributions.

We may now prove precise Lipschitz bounds on ψ R ε .

Proposition 60. The function ψ R ε is Lipschitz continuous in t over (t, x) ∈ [0, T ] × R, with the quantitative bounds stated below:

∂ t ψ R ε (t, x) ≥ - R ω(z) exp (C L |z|) dz (2.67) ∂ t ψ R ε (t, x) ≤ µ(1 + µ).
(2.68)

Proof of the upper bound (2.68).

Let us dene the following penalised function for δ 1 , δ 2 ∈ (0, 1):

ξ + (t, x) = ∂ t ψ R ε (t, x) -δ 1 t -δ 2 x 2 . Since ∂ t ψ R
ε is bounded over [0, T ] × R, the penalised function reaches its maximum over [0, T ] × R at some point (t 0 , x 0 ). Injecting the expression of ξ + into equation 2.66 yields:

0 =Φ t ε R ω(z) exp - 1 ε ψ R ε (0, x -εz) dz - R ω(z) exp - 1 ε φ 0,R ε (x -εz, 0) dz + t ε 0 R Φω ξ + (t, x) -ξ + (t -εa, x -εz) + δ 1 [t -(t -εa)] + δ 2 [x 2 -(x -εz) 2 ] e -1 ε ψ R ε (t-εa,x-εz) dz da + 1 0 R Φ a + t ε ω(z) ξ + (t, x) + δ 1 t + δ 2 x 2 -β(a) - 1 ε ∂ a φ 0,R ε (x -εz, a) exp - 1 ε φ 0,R ε (x -εz, a) exp a 0 β dz da.
(2.69) At (t 0 , x 0 ), the previous expression becomes:

0 ≥Φ t 0 ε R ω(z) exp - 1 ε ψ R ε (0, x 0 -εz) dz - R ω(z) exp - 1 ε φ 0,R ε (x 0 -εz, 0) dz + 1 0 R Φ a + t 0 ε ω(z) ξ + (t 0 , x 0 ) -β(a) - 1 ε ∂ a φ 0,R ε (x 0 -εz, a) exp - 1 ε φ 0,R ε (x 0 -εz, a) exp a 0 β dz da + t 0 ε 0 R Φω [δ 1 εa + δ 2 εz(2x 0 -εz)] e -1 ε ψ R ε (t-εa,x-εz) dz da + 1 0 R Φ a + t ε ω(z) δ 1 t + δ 2 x 2 exp - 1 ε φ 0,R ε (x -εz, a) exp a 0 β dz da.
(2.70)

It follows that:

ξ + (t 0 , x 0 ) ≤ 1 0 R Φ a + t 0 ε ω(z) β(a) -∂ a φ 0,R ε (x 0 -εz, a)/ε exp a 0 β(s) ds -1 ε φ 0,R ε (x 0 -εz, a) dz da 1 0 R Φ a + t 0 ε ω(z) exp a 0 β exp -1 ε φ 0,R ε (x 0 -εz, a) dz da + Φ t 0 ε R ω(z) exp -1 ε φ 0,R ε (x 0 -εz, 0) -exp -1 ε ψ R ε (0, x 0 -εz) dz 1 0 R Φ(a + t 0 /ε)ω(z) exp a 0 β exp -φ 0,R ε (x 0 -εz, a)/ε dz da + A 0 t + B 0 t , (2.71) 
where:

A 0 t = t 0 ε 0 R Φω [δ 1 εa + δ 2 εz(2x 0 -εz)] e -1 ε ψ R ε (t 0 -εa,x 0 -εz) dz da 1 0 R Φ(a + t 0 /ε)ω(z) exp a 0 β exp -φ 0,R ε (x 0 -εz, a)/ε dz da (2.72) B 0 t = 1 0 R Φ a + t 0 ε ω(z) δ 1 t 0 + δ 2 x 2 0 exp -1 ε φ 0,R ε (x 0 -εz, a) exp a 0 β dz da 1 0 R Φ(a + t 0 /ε)ω(z) exp a 0 β exp -φ 0,R ε (x 0 -εz, a)/ε dz da . (2.73)
Integrating the numerator of the rst term by parts yields:

∂ t ψ R ε (t 0 , x 0 ) ≤ A + t + B + t + A 0 t + B 0 t , (2.74) 
with: The expression A + t is non-positive, and -

A + t = - Φ t 0 ε R ω(z) exp -1 ε ψ R ε (0, x 0 -εz) dz 1 0 R Φ a + t 0 ε ω(z) exp a 0 β exp -1 ε φ 0,R ε (x 0 -εz, a) dz da and B + t = - 1 0 R Φ (a+ t 0 ε ) Φ(a+ t 0 ε ) Φ a + t 0 ε ω(z) exp a 0 β exp -1 ε φ 0,R ε (x 0 -εz, a) dz da 1 0 R Φ a + t 0 ε ω(z) exp a 0 β exp -1 ε φ 0,R ε (x 0 -εz, a) dz da
Φ (a+ t 0 ε ) Φ(a+ t 0 ε ) = µ(1+µ) 1+a+ t 0 ε , so B + t ≤ µ(1 + µ).
Those bounds are uniform in δ 1 , δ 2 ∈ (0, 1). As for A 0 t and B 0 t , their denominators are bounded uniformly in δ 1 , δ 2 and we will prove their numerators tend to 0 as δ 1 and δ 2 tend to 0. Indeed, by denition of (t 0 , x 0 ), we have ξ + (0, 0) ≤ ξ + (t 0 , x 0 ). Hence, the uniform-in-x Lipschitz bound of Lemma 59 allows us to bind |x 0 | as follows :

∂ t ψ R ε (0, 0) ≤ ∂ t ψ R ε (t 0 , x 0 ) -δ 1 t 0 -δ 2 x 2 0 , δ 2 x 2 0 ≤ ∂ t ψ R ε (t 0 , x 0 ) -∂ t ψ R ε (0, 0) ≤ 2 C R h ε , |x 0 | ≤ (δ 2 ) -1/2 2 C R h ε 1/2 . Hence δ 2 x 2 0 ---→ δ 2 →0
0. By boundedness of the factors under the numerator integrals, it follows that A 0 t and B 0 t converge to 0 as δ 1 and δ 2 tend to 0. Taking that limit concludes the proof of the upper bound (2.68).

Proof of the lower bound (2.67).

The same arguments as in the proof of the upper bound allow us to dene the penalised function

ξ -(t, x) = ∂ t ψ R ε (t, x) + δ 1 t + δ 2 x 2
which reaches its minimum over [0, T ] × R at a point we name (t 1 , x 1 ). Computations analogous to those above lead to the following inequality (after the same integration by parts):

∂ t ψ R ε (t 1 , x 1 ) ≥ A - t + B - t -A 0 t -B 0 t , (2.75) 
with: The expressions A 0 t and B 0 t dened in the proof of the upper bound are taken here at (t 1 , x 1 ). The waiting time distribution Φ is a decreasing function, so B - t ≥ 0. In order to bound A - t , we may notice:

A - t = - Φ t 1 ε R ω(z) exp -1 ε ψ R ε (0, x 1 -εz) dz 1 0 R Φ a + t 1 ε ω(z) exp a 0 β exp -1 ε φ 0,R ε (x 1 -εz, a) dz da and B - t = - 1 0 R Φ (a+ t 1 ε ) Φ(a+ t 1 ε ) Φ a + t 1 ε ω(z)e a 0 β e -1 ε φ 0,R ε (x 1 -εz,a) dz da 1 0 R Φ a + t 1 ε ω(z) exp a 0 β exp -1 ε φ 0,R ε (x 1 -εz, a) dz da
Φ(a)Φ t ε = Φ a + t ε µ 1 + a + t ε 1 + a + t ε + a t ε 1+µ ≤ Φ a + t ε .
Since at t = 0 we have exp -

1 ε ψ R ε (0, x 1 -εz) = 1 0 R Φ(a)ω(y) exp - 1 ε φ 0,R ε (x 1 -εz -εy, a) exp a 0 β dy da,
we recover: which is bounded above since ω is a Gaussian. As we have proved before, the expressions A 0 t and B 0 t converge to 0 as δ 1 and δ 2 tend to 0. Taking that limit concludes the proof of the lower bound (2.67).

A - t ≥ - 1 0 R Φ a + t 1 ε ω(z)e a 0 β e -1 ε φ 0,R ε (x 1 -εz,a) R ω(y)e 1 ε [φ 0,R ε (x 1 -εz,a)-φ 0,R ε (x 1 -εz-εy,a)] dy dz da 1 0 R Φ a + t 1 ε ω(z)e a 0 β e -1 ε φ 0,R ε (x 1 -εz,
Proof of Proposition 58. Thanks to Proposition 57, ψ R ε converges uniformly over compact sets to ψ ε . Therefore, the uniform-in-R bounds from Proposition 60 are preserved as R tends to innity. We recover the claimed Lipschitz estimate for ψ ε .

Viscosity limit procedure

In this section, we continue to work over [0, T ] × R.

We deduce from the Lipschitz estimates that there exists a Lipschitz function ψ 0 such that ψ ε → ψ 0 up to extraction. We do not specify the extracted sequence (ε n ), for the sake of clarity. We shall prove that ψ 0 is the unique viscosity solution of the Hamilton-Jacobi equation

1 = ∞ 0 Φ(a) exp (a∂ t ψ 0 (t, x)) da R ω(z) exp (z∂ x ψ 0 (t, x)) dz (HJ)
with initial condition ψ 0 (0, x) = v(x).

Equation (2.10) is equivalent to the following, which allows us to dene A ε and B ε and is better suited for the following proofs:

1 = (A ε + B ε ) (ψ ε )(t, x),
where: Proof. Let Ψ ∈ C 2 (R + ×R) be a test function such that ψ 0 -Ψ admits a maximum at (t 0 , x 0 ). By compactness in W 1,∞ loc ([0, T ] × R), thanks to the a priori estimates, we obtain for a subsequence of ε → 0 which we will not rename: (t ε , x ε ) -→ ε→0 (t 0 , x 0 ), where (t ε , x ε ) is a point at which ψ ε -Ψ reaches its maximum. We have then:

A ε (ψ ε )(t, x) = t/ε 0 R ω(z)Φ(a) exp 1 ε [ψ ε (t, x) -ψ ε (t -εa, x -εz)] dz da, B ε (ψ ε )(t, x) = 1 0 R ω(z)Φ(a + t/ε) exp 1 ε ψ ε (t, x) -φ 0 ε (x -εz, a) exp a 0 β dz da. ( 2 
∀ε > 0 ∀(z, a) ∈ R × [0, tε ε ], ψ ε (t ε , x ε ) -Ψ(t ε , x ε ) ≥ ψ ε (t ε -εa, x ε -εz) -Ψ(t ε -εa, x ε -εz).
Since B ε is non-negative, it follows that:

1 ≥ A ε (ψ ε )(t ε , x ε ) ≥ A ε (Ψ)(t ε , x ε ).
However: Ψ(t ε , x ε ) -Ψ(t ε -εa, x ε -εz) = εa∂ t Ψ(t ε , x ε ) + εz∂ x Ψ(t ε , x ε )

+ 1 2 ε 2 1 0 (1 -s) 2 a 2 ∂ 2 t Ψ(t ε -εsa, x ε -εsz) + 2az • ∂ t ∂ x Ψ(t ε -εsa, x ε -εsz) +z 2 ∂ 2
x Ψ(t ε -εsa, x ε -εsz) ds.

(2.77)

Therefore we have, for all A > 0:

1

≥ A 0 A -A
Φ(a)ω(z) exp a∂ t Ψ(t ε , x ε ) + z∂ x Ψ(t ε , x ε )

+ 1 2 ε 1 0 (1 -s) 2 a 2 ∂ 2 t Ψ(t ε -εsa, x ε -εsz) + 2az • ∂ t ∂ x Ψ(t ε -εsa, x ε -εsz) +z 2 ∂ 2
x Ψ(t ε -εsa, x ε -εsz) ds dz da.

Since Ψ is C 2 , the previous expression tends, for xed A, when ε → 0, to:

1 ≥ A 0 A -A
Φ(a)ω(z) exp [a∂ t Ψ(t 0 , x 0 ) + z∂ x Ψ(t 0 , x 0 )] dz da.

It follows that:

1 ≥ ∞ 0 R Φ(a)ω(z) exp [a∂ t Ψ(t 0 , x 0 ) + z∂ x Ψ(t 0 , x 0 )] dz da.

Therefore ψ 0 is a viscosity subsolution of (HJ).

Viscosity supersolution

In order to prove that ψ 0 is a viscosity supersolution of (HJ), we need to control the B ε term in equation (2.76), whose positivity suced in the previous subsection. This is tantamount to controlling the fate of the aging particles that come from the initial data and have never jumped.

We proceed in several steps. The key idea is to compare the relative weigths of A ε and B ε , by means of the quantity ψ ε (t, x) -ψ ε (0, x). Because the sum of the two contributions equals one, we shall deduce that A ε → 1, and B ε → 0. Interestingly enough, we get a quantitative estimate on the convergence rate.

Step 1: A crude estimate on B ε . The following Lemma boils down the estimate on B ε to some estimate on time increments of ψ ε . Here, the boundedness of the age support is crucial.

Lemma 62 (Simple bounds for B ε ).

Φ(t/ε) Φ(0) exp 1 ε [ψ ε (t, x) -ψ ε (0, x)] ≤ B ε (ψ ε )(t, x) ≤ Φ(1 + t/ε) Φ(1) exp 1 ε [ψ ε (t, x) -ψ ε (0, x)] (2.78)
Proof. This is a consequence of the following claim: for all h > 0, a → Φ(a + h)/Φ(a) Step 2: A lower bound for A ε . The goal of the following Lemma is to remove the x variations from the contribution in A ε . Hence, the problem will be reduced to estimate for a given x. This strongly relies on semi-concavity.

Semi-concavity is a natural regularity for Hamilton-Jacobi equations. It can result either from the propagation of regularity on the initial data, or on regularization property of the Hamilton-Jacobi equation [START_REF] Evans | Partial Dierential Equations: Second Edition (Graduate Studies in Mathematics)[END_REF]Chapter 3.3]. The latter usually relies on uniform convexity of the Hamiltonian, which is not the case here. Below, we derive propagation estimates for ε > 0.

Lemma 63 (Lower bound for A ε ). For ε small enough and (t, x) ∈ [0, T ] × R, (2.81)

A ε (ψ)(t, x) ≥ 1 -ε C xx 2 R ω(z)
Secondly, we deduce the following simple Taylor estimate,

exp - 1 ε [ψ ε (t -εa, x -εz) -ψ ε (t -εa, x)] ≥ 1 - 1 ε [ψ ε (t -εa, x -εz) -ψ ε (t -εa, x)] ≥ 1 - 1 ε -εz ∂ x ψ ε (t -εa, x) + C xx 2 ε 2 z 2 .
Then, since R zω(z ffl ) dz = 0, we have, R ω(z) exp -1 ε [ψ ε (t -εa, xεz) -ψ ε (t -εa, x)] dz ≥ 1 -ε C xx 2 R ω(z)z 2 dz.

(2.82)

The result of the Lemma follows.

Step 3: An upper bound on ψ ε (t, x) -ψ ε (0, x). We are now ready to apply the maximum principle on the time increment for a xed x.

Lemma 64 (Upper bound). Let us x x ∈ R. Let m be the maximum over t ∈ [0, T ] of ψ ε (t, x) -ψ ε (0, x). For K = (C xx /2) R ω(z)z 2 dz, we have: 

e m/ε ≤ 1 + T ε + Kε 1 + T ε 1+µ . ( 2 
B ε ≤ ε µ 2 1+µ t 1+µ T + K 1 ε 1-µ + K 2 ε , (2.84) 
for some explicit constants K 1 , K 2 .

Proof. Lemma Step 5: Conclusion of the proof. The accurate upper bound on B ε that we have just proved allows us to proceed to the crucial result of this section.

Proposition 66. Under hypotheses 7 and 8, ψ 0 is a viscosity supersolution of (HJ).

Proof. Let Ψ ∈ C 2 (R + × R) be a test function such that ψ 0 -Ψ admits a strict local minimum at (t 0 , x 0 ), with t 0 > 0. We make the distinction between two cases:

If ∂ t Ψ(t 0 , x 0 ) ≥ 0, then we get immediately 1 ≤ ∞ 0 Φ(a) exp (a∂ t Ψ(t 0 , x 0 )) da R ω(z) exp (z∂ x Ψ(t 0 , x 0 )) dz.

Indeed, if ∂ t Ψ(t 0 , x 0 ) > 0 then the right hand side is innite. Whereas, if ∂ t Ψ(t 0 , x 0 ) = 0, this equality follows from the symmetry of ω, see also (2.14).

If ∂ t Ψ(t 0 , x 0 ) < 0, then there exists ν > 0, and a ball of radius 0 < 2h < t 0 /10, B((t 0 , x 0 ), 2h) such that ∂ t Ψ(t, x) < -ν over the ball. On the other hand, by uniform convergence of ψ ε to ψ 0 , there exists (t ε , x ε ) such that ψ ε -Ψ reaches a local minimum at (t ε , x ε ).

We assume that ε is small enough such that (t ε , x ε ) ∈ B((t 0 , x 0 ), h).

The contribution B ε is handled thanks to Proposition 65, uniformly in t ∈ [t 0 /2, T ]:

∀δ > 0, ∃ ε δ > 0 | ∀ε ∈ (0, ε δ ), B ε (Ψ)(t ε , x ε ) < δ.
The contribution A ε is handled by splitting the time integral into two contributions: those ages which are smaller than h/ε, and those ages which are greater. The small ages are dealt with thanks to the local minimum property:

∀(z, a) ∈ B((t ε x ε ), h/ε) ψ ε (t ε , x ε ) -Ψ(t ε , x ε ) ≤ ψ ε (t ε -εa, x ε -εz) -Ψ(t ε -εa, x ε -εz).

Recalling the identity A ε + B ε = 1, we deduce

1 -δ ≤ A ε (ψ ε )(t ε , x ε ) ≤ I + II + III, (2.85) 
where we set h > 0 and dene:

I = h ε 0 h ε -h ε Φ(a)ω(z) exp 1 ε [ψ ε (t ε , x ε ) -ψ ε (t ε -εa, x ε -εz)] dz da, II = h/ε 0 R\[-h ε , h ε ] Φ(a)ω(z) exp 1 ε [ψ ε (t ε , x ε ) -ψ ε (t ε -εa, x ε -εz)] dz da, III = 1+ t ε h/ε R Φ(a)ω(z) exp 1 ε
[ψ ε (t ε , x ε ) -ψ ε (t ε -εa, x ε -εz)] dz da.

(2.86)

• Limit of I small ages and spaces.

Thanks to the local maximum property we have:

I ≤ h ε 0 h ε -h ε Φ(a)ω(z) exp 1 ε [Ψ(t ε , x ε ) -Ψ(t ε -εa, x ε -εz)] dz da,
on which we perform the same Taylor expansion as in (2.77), which yields:

I ≤ h ε 0 h ε -h ε Φ(a)ω(z) exp a∂ t Ψ(t ε , x ε ) + z∂ x Ψ(t ε , x ε ) + 1 2 ε 1 0 (1 -s) 2 a 2 ∂ 2 t Ψ(t ε -εsa, x ε -εsz) + 2az • ∂ t ∂ x Ψ(t ε -εsa, x ε -εsz) +z 2 ∂ 2
x Ψ(t ε -εsa, x ε -εsz) ds dz da.

Since Ψ ∈ C 2 only takes values over B((t 0 , x 0 ), 2h) in the expression above, uniformly in ε, a domination argument allows us to pass to the limit ε → 0 and recover the following limit for the right hand side: ∞ 0 R Φ(a)ω(z) exp ([a∂ t Ψ + z∂ x Ψ](t 0 , x 0 )) dz da.

• Limit of II small ages, large spaces.

Since ψ ε is Lipschitz continuous in x with some constant L, we can localise the expression of II at x ε at a price:

II ≤ h/ε 0 R\[-h ε , h ε ]
Φ(a)ω(z)e L|z| exp 1 ε [ψ ε (t ε , x ε ) -ψ ε (t ε -εa, x ε )] dz da.

Thanks to the local maximum property,

II ≤ h/ε 0 R\[-h ε , h ε ]
Φ(a)ω(z)e L|z| exp 1 ε [Ψ(t ε , x ε ) -Ψ(t ε -εa, x ε )] dz da.

And by negativity of ∂ t Ψ around (t 0 , x 0 ),

II ≤ h/ε 0 R\[-h ε , h ε ]
Φ(a)ω(z)e L|z| e -νa dz da, which converges to 0 as ε → 0.

• Limit of III large ages. Since ψ ε is Lipschitz continuous with some Lipschitz constant L, we recover:

III ≤ 1+ t ε h ε R Φ (a) ω(z)e |z|L exp 1 ε [ψ ε (t ε , x ε ) -ψ ε (t ε -εa, x ε )] dz da.
We have:

ψ ε (t ε , x ε ) -ψ ε (t ε -εa, x ε ) =
= ψ ε (t ε , x ε )-ψ ε (t ε -h, x ε )+Ψ(t ε -h, x ε )-Ψ(t ε , x ε )+Ψ(t ε , x ε )-Ψ(t ε -h, x ε )+(t ε -h, x ε )-ψ ε (t ε -εa, x ε )

Thanks to the local maximum property, the sum of the four rst terms is non-positive. Il follows that:

III ≤ 1+ t ε h ε R Φ (aε) ω(z)e |z|L exp 1 ε [Ψ(t ε , x ε ) -Ψ(t ε -h, x ε )] exp 1 ε [ψ ε (t ε -h, x ε ) -ψ ε (t ε -εa, x ε )] dz da.
Since ∂ t Ψ ≤ -ν over B((t ε , x ε ), h/ε), we can bound III as follows:

III ≤ 1+ t ε h ε R Φ (a) ω(z)e |z|L e -νh ε exp 1 ε [ψ ε (t ε -h, x ε ) -ψ ε (t ε -εa, x ε )] dz da ≤ 1+ t-h ε 0 R Φ a + h ε ω(z)e |z|L e -νh ε exp 1 ε [ψ ε (t ε -h, x ε ) -ψ ε (t ε -h -εa, x ε )] dz da.
We conclude thanks to the following semi-group property, which is proved mutatis mutandis in the same way as Lemma 64:

exp 1 ε [ψ ε (t ε , x ε ) -ψ ε (t ε -l, x ε )] ≤ 1 + l ε + Kε 1 + l ε 1+µ .
(2.87)

It follows that

III ≤ 1+ t-h ε 0 exp - νh ε Φ a + h ε [1 + a + o(a)] da R ω(z)e |z|L dz.
Since ω is a Gaussian distribution, the integral in z (right factor) is nite. Since νh > 0, t is bounded and Φ is algebraic, the integral in a (left factor) converges to 0 as ε → 0.

Passing to the limit ε → 0 in (2.85) now gives us:

1 -δ ≤ ∞ 0 R Φ(a)ω(z) exp ([a∂ t Ψ + z∂ x Ψ](t 0 , x 0 )) dz da.

By taking the limit when δ → 0 we recover:

1 ≤ ∞ 0 Φ(a) exp (a∂ t Ψ(t 0 , x 0 )) da R ω(z) exp (z∂ x Ψ(t 0 , x 0 )) dz.

Therefore, ψ 0 is a viscosity supersolution of (HJ).

Proof of Theorem 46. Propositions 61 and 66 prove ψ 0 is a viscosity solution of the Hamilton-Jacobi equation (2.11). Since ψ 0 is bounded below and Lipschitz continuous, and the Hamiltonian H satises the pertinent hypotheses, Theorem 45 proves that ψ 0 is the unique viscosity solution of (2.11). Local compactness of (ψ ε ) ε and standard Hausdor separation arguments prove that the whole sequence ψ ε tends to ψ 0 .

Discussion and Perspectives

There are two main aspects we would like to discuss in this section. First, we will support and elaborate on the claim we made in Remark 2.1.5, that equation (2.11) is the same as the limiting Hamilton-Jacobi equation derived after renormalising n by a non-stationary measure inspired by Chapter 1 that approaches a meaningful self-similar prole. Second, we will discuss a setting in which the jump rate β depends not only on age but also on space.

Renormalising by a non-stationary measure

The idea of renormalising the solution of a kinetic equation by a stationary measure and studying some multiplicative perturbation term is classical. However, as has been shown in Chapter 1, it cannot be applied here in a straightforward way because, were a steady state to exist in selfsimilar variables for our equation, it would be innite at age 0, rendering the boundary condition a meaningless ∞ = ∞ equality. Let us attempt to remain as close as possible to the underlying principle by using a function that corresponds to the pseudo-equilibrium of Chapter 1.

For any t > 0 and 0 < a < 1 + t, let N (t, a) = (1 + a) -µ (1 + ta) µ-1 .

(2.88)

We also set, for any x ∈ R, t > 0 and 0 < a < 1 + t: u(t, x, a) = n(t, x, a) N (t, a) .

(2.89)

We dene the following measure, for t > 0 and 0 < a < 1 + t: where χ A is worth 0 over the set A and +∞ outside of A.

With the previous denitions, φε satises the following equation, which is analogous to (2.10): Remark. In order to prove convergence of this newly dened ψε to ψ0 , solution of the limiting Hamilton-Jacobi equation, the computations required are more or less the same as those presented in this Chapter, but they contain an additional term that must be estimated: This is due to the fact that ν t/ε is not a probability measure over [0, 1 + t/ε]. Since ν t/ε does approach a probability measure for any t > 0 as ε → 0, this is not a major problem. Remark. It follows that n(t, x, a) = n ε (εt, εx, a) satises the problem below, with a jump rate that varies slowly in space:

1 = t/ε 0 R exp 1 ε ψε (t,
1 2 + t/ε = t/ε 0 R exp 1 ε ψε (t,
        
∂ t n(t, x, a) + ∂ a n(t, x, a) + β(εx, a)n(t, x, a) = 0 , t ≥ 0, a > 0 , x ∈ R n(t, x, 0) = (2.104)

Passing to the limit rigorously is left for further work.

A.3. WENO discretisation of Hamilton-Jacobi equations as to be roughly equal over smooth regions and roughly 0 near discontinuities. Thus, an ENO scheme behaves as a centred scheme over regions where the solution is smooth, and as an ENO scheme at around discontinuities.

Let us present the oder 5 WENO approach (WENO5) for the discretisation of the Hamilton-Jacobi equation below. The approach taken from [START_REF] Vigneaux | Méthodes Level Set pour des problèmes d'interface en microuidique[END_REF] is based on [START_REF] Jiang | Ecient implementation of weighted eno schemes[END_REF][START_REF] Jiang | Weighted ENO schemes for Hamilton-Jacobi equations[END_REF] and is explained in detail in [START_REF] Osher | Level Set Methods and Dynamic Implicit Surfaces[END_REF]. It is the approach that we use in Chapter 1.

Consider the 1D evolution Hamilton-Jacobi equation ∂ t u(t, x) + H(∂ x u(t, x)) = 0,

(A.3)
and keep the notation introduced in the previous paragraph for the discretisations.

We dene the left and right discretizations of ∂ x u at (t j , x i ) as follows: where the coecients are those given by the expressions (A.5), (A.6), (A.7), and (A.8) below.

∂ x u +,- i,j = w 1 v 1 3 - 7v 
Note that the expressions dier for the left and right versions. However, in order to lighten the notation, we will not add superindices. We consider the discretisation at time t j and also omit the subindex j in the following expressions. For ∂ x u - i , we let:

v 1 = (u i-2 -u i-3 ) ∆x , v 2 = (u i-1 -u i-2 ) ∆x , v 3 = (u i -u i-1 ) ∆x , v 4 = (u i+1 -u i ) ∆x , v 5 = (u i+2 -u i+1 ) ∆x .
(A.5) For ∂ x u + i , we let:

v 1 = (u i+3 -u i+2 ) ∆x , v 2 = (u i+2 -u i+1 ) ∆x , v 3 = (u i+1 -u i ) ∆x , v 4 = (u i -u i-1 ) ∆x , v 5 = (u i-1 -u i-2 ) ∆x . (A.6)
We dene the regularity coecients:

S 1 = 13 12 (v 1 -2v 2 + v 3 ) 2 + 1 4 (v 1 -4v 2 + 3v 3 ) 2 , S 2 = 13 12 (v 2 -2v 3 + v 4 ) 2 + 1 4 (v 2 -v 4 ) 2 , S 3 = 13 12 (v 3 -2v 4 + v 5 ) 2 + 1 4 (3v 3 -4v 4 + v 5 ) 2 .
(A.7)

We take a small enough ε, for instance ε = 10 -6 for data of order of magnitude 1, and we dene the weights: (A.8)

( 3 )

 3 Les fonctions β et ω sont respectivement le taux de saut dépendant de l'âge et le noyau de redistribution spatiale des particules. Le taux de saut est relié à la distribution des temps de résidence Φ comme suit : Φ(a) = β(a) exp -a 0 β(s) ds .

L∂

  'aspect anormal du déplacement aléatoire décrit par (3) provient exclusivement de la queue lourde de la loi des temps d'attente Φ, et non pas de la redistribution spatiale ω. Il est donc utile de commencer par étudier une version plus simple du problème (3) intégrée en espace. Il s'agit de l'équation de renouvellement suivante : t n(t, a) + ∂ a n(t, a) + β(a)n(t, a) = 0 , t ≥ 0, a > 0 n(t, a = 0) = ∞ 0 β(a ) R n(t, a ) da n(t = 0, a) = n 0 (a).

  Le résultat en question, le Théorème 4, s'énonce plus clairement dans les variables autosimilaires que voici.

( 8 )∂ 1 0e

 81 Le problème 6 devient, en variables autosimilaires : τ w + ∂ b ((1 -b)w) + e τ β(e τ b)w = 0 w(τ, 0) = τ β(e τ b)w(τ, b)db w(0, b) = w 0 (b).

τ

  → ∞ avec un taux similaire à celui où w(τ,•) converge vers W (τ, •) in L 1 quand τ tend vers l'inni. Dénition 2. Soit W le pseudo-équilibre déni sur R + × [0, 1) comme suit : W (τ, b) = C(τ ) e B(e τ b) (1 -b) 1-µ , (11) où B(a) = a 0 β(s)ds et C est déni de sorte à ce que W (τ, •) L 1 = 1.En particulier, dans le cas de référence β(a) = µ 1+a dans lequel nous nous plaçons par la suite , le pseudo-équilibre prend la forme :W (τ, b) = C(τ )e -µτ (e -τ + b) µ (1 -b)1-µ . xvii Proposition 3. Le pseudo-équilibre W converge en norme L 1 vers l'état stationnaire W ∞ avec le taux quantitatif suivant :

  la Proposition 3 et du Théorème 4, considérons le prol limite W ∞ (b) = c ∞ b -µ (1 -b) µ-1 . Nous nous attendons intuitivement à avoir :

Figure 1 :

 1 Figure 1: Figures 7 and 8 of Perrin's book [127] describing the positions occupied by a grain

Figures 1 and 2 Figure 2 :

 22 Figure 2: Figure 10 of Perrin's book [127]. Consider an emulsion of gamboge granules in a medium limited by a glass wall to which the granules remain stuck upon contact. The gure represents the square root of the times at which a given number of gamboge granules are stuck to the glass. The squared root of time increases linearly with respec to that number.

Figure 3 :

 3 Figure 3: This gure is taken from [108, Fig. 6, 7]. The left hand panel depicts the fundamental solution of the heat equation at times 0.05, 0.2 and 1. The right hand side panel depicts the propagator for subdiusion with anomalous exponent 1/2, drawn at times 0.1, 1 and 10. The cusp shapes of the probability density functions dier.

  was made possible thanks to the development of tracking of individual particles inside living cells. The reader may consult a review of experimental techniques in [121, Sections 3 and 4].

Figure 4 :

 4 Figure 4: This gure is taken from Izeddin et al. [87]. It describes the intracellular motion of three proteins in the nucleoplasm of a U2OS cell. The mean squared displacement of Dendra-2 isproportional to t, as is the case in diusive motion. However, c-Myc and P-TEFb exhibit mean squared displacements proportional to t α , for α < 1: their motion, in the long term, is slower than any positive diusion. These proteins experience subdiusion.

Figure 5 :

 5 Figure 5: This gure is taken from [164, Fig. 3 B]. It is a reconstruction based on stimulated emission depletion (STED) [165] imaging of endocytose-related proteins present at a presynaptic (rat) neuron connection. The vertical scale is 200 nm. Around 60 dierent types of molecules are present. The reader can nd a video of presynaptic organisation among the online supplementary materials of the article.

7. 1 . 1 ]

 11 , the compression of a macromolecule by another one passing close-by induces an elastic 3. Subdiusion at three modelling scales response of the squeezed molecule: hence a memory, and an anomalous diusion governed by a fractional Brownian motion in this case.

  , p)/|p| = ∞ uniformly for x in bounded sets;

Figure 7 :

 7 Figure 7: Inuence of µ on the decay of ln w(τ, •) -W (τ, •) 1 (red dots) and ln w(τ, •) -W ∞ (black dots). The green curves represent ln W (τ, •) -W ∞ . For higher values of µ, w is signicantly closer to W than to W ∞ .

5. 2

 2 Large scale asymptotics and limiting Hamilton-Jacobi equation The work presented in Chapter 2 is based on the preprint [28], co-authored with Vincent Calvez and Pierre Gabriel. In it we have studied the hyperbolic rescaling in time and space of the age-structured jump-renewal problem hereafter introduced in Section 3.3. It is known that the rescaled problems admit a formal limiting Hamilton-Jacobi equation. In Chapter 2 we show a rigorous stability result: we proved the convergence of the solutions of the rescaled problem to the solution of the limiting Hamilton-Jacobi equation. Let us recall the jump-renewal equation:

Résumé

  Dans ce travail en collaboration avec Hugues Berry et Thomas Lepoutre[START_REF] Berry | Quantitative convergence towards a self-similar prole in an age-structured renewal equation for subdiusion[END_REF], nous décrivons la convergence vers un prol autosimilaire des solutions d'une équation de renouvellement à queue lourde. Une approche inspirée de techniques d'entropie relative nous permet de quantier explicitement le taux de décroissance. Une diculté importante apparaît, dû au fait que l'équation en variables auto-similaires n'est pas autonome et que nous ne disposons pas d'une expression analytique d'une solution. An de quantier la convergence, nous estimons l'attraction vers un pseudo-équilibre ayant une dépendance en temps. Celui-ci converge à son tour vers un prol stationnaire.

∂ 1 0

 1 (1.3), we nd that the natural choice A(t) = 1 + t preserves the initial condition n(0, b): = n 0 (b) = w(0, b): = w 0 (b), and yields: τ w + ∂ b ((1 -b)w) + e τ β(e τ b)w = 0 w(τ, 0) = e τ β(e τ b)w(τ, b)db w(0, b) = w 0 (b).

  lim a→∞ aβ(a) = µ ∈ (0, 1).

β

  is a positive, bounded function satisfying lim a→∞ aβ(a) = µ ∈ (0, 1), such that β dened as follows β(a) = inf x∈[0,a] β(x) (1.6) also satises lim a→∞ aβ(a) = µ.

Thereby, for all

  b ≥ b and all τ ≥ 0, we have B(e τ b) -B(e τ b ) = -e τ b e τ b β(s)ds ≥ (µ + η) ln 1 + e τ b 1 + e τ b -g η 1 , and e B(e τ b)-B(e τ b ) ≥ e -gη 1 (e -τ + b ) -(µ+η) (e -τ + b) µ+η (1.10)

  Furthermore, since g(a) = o( 1 a ), we have sup b≥ε |G(e τ ) -G(e τ b)| = o e τ e τ ε da a = o (ln ε) = o(1).

1 0[

 1 be τ β(e τ b) -µ] W (τ, b)db.

(1. 14 ) 1 0 2 0 1 e

 14121 Proof. We recall rst, by denition|C(τ )δ(τ )| ≤ |e τ bβ(e τ b) -µ|W (τ, b)db.We can split then the integral into two parts|C(τ )δ(τ )| ≤ e -τ /|e τ bβ(e τ b) -µ|W (τ, b)db I 1 (τ ) + -τ /2 |e τ bβ(e τ b) -µ|W (τ, b)db

(1. 15 ) 1 0H

 151 And for a non-negative measure ν on [0, 1) the entropy dissipation DH(u|ν) is dened byDH(u|ν) = (u(b))dν(b) -H 1 0 u(b)dν(b) .

H∂ τ W + ( 1 -. 1 0e

 11 b)H∂ b W + (e τ β(e τ b) -1) HW = CδHW ∂ τ (H(u)W ) + ∂ b ((1 -b)H(u)W ) + e τ β(e τ b)H(u)W = W Cδ H(u) -uH (u) η Taking the integral over b of the previous expression yields: )W db -W (τ, 0)H(u(τ, 0)) + τ β(e τ b)H(u)W db = denition of the entropy dissipation, proves the proposition.

d dτ 1 0 1 0

 11 |w -W |db ≤ -e τ β(e τ ) |w -W |db + 2|C(τ )δ(τ )|.(1.17) Proof. By denition (abusing the notation), dγ τ (b) = e τ β(e τ b)W (τ, b) W (τ, 0) ≥ e τ β(e τ ) C(τ ) W (τ, b) = K(τ )W (τ, b).

): d dτ 1 0 1 0

 11 |w -W |db ≤ -e τ β(e τ ) |w -W |db + 2|C(τ )δ(τ )|.

1. 3 . 1

 31 The key situation: β(a) = µ 1+a

1 0 1 0

 11 [e τ bβ(e τ b) -µ] W (τ, b)db = e τ bg(e τ b)W db + µ 1 0 e τ b 1+e τ b -1 W (τ, b)db.

1 0(

 1 e τ bβ(e τ b) -µ)W (τ, b)db.

0 e B(e τ ) 1 0e 1 0e

 011 The constant K may change value from line to line.We integrate equation(1.25) and getH(τ )e B(e τ ) ≤ H(0) + K τ τ b|g|(e τ b) (e -τ + b) µ (1 -b) 1-µ dbdτ + K τ 0 e (µ-1)τ +B(e τ ) dτ . Using the fact the B(e τ ) -µτ is bounded from above and below, we can replace B(e τ ) by µτ with just a change of constants. H(τ )e µτ ≤ K 1 + τ 0 µτ e τ b|g|(e τ b) (e -τ + b) µ (1 -b) 1-µ dbdτ + τ 0 e (2µ-1)τ dτ .

1 0e

 1 6): aβ(a) ---→ a→∞ µ. Replacing the use of B by that of B(a) = a 0 β, we still obtain equation (1.26) up to multiplication by a constant, since B(e τ ) -µτ is also bounded from above and below. Now the work is focused on the estimate of the middle quantity I(τ ) = τ 0 µτ e τ b|g|(e τ b) (e -τ + b) µ (1 -b) 1-µ dbdτ .

( 1 . 27 )

 127 We integrate by parts with respect to τ and recall that d dτ G(e τ b) = -e τ b|g(e τ b)|. We have

  τ b) e µτ (e -τ + b) µ (1 -b) 1-µ db.

1 0 τ 0 e

 10 Putting all together with (1.26), we haveH(τ ) ≤ K e -µτ + e -µτ (µ-α)τ (e -τ + b) µ+α (1 -b) 1-µ dτ db + e -µττ 0 e (2µ-1)τ dτ .

  b) db. Where f (b) = -γ ln(e -τ + b) + γ ln(1 -b).

Case 3 :ee

 3 α = 1 -µ. (2µ-1)τ (e -τ + b)(1 -b) 1-µ dbdτ ,Cutting the integral on b at 1/2 for instance, it is easy to establish I α (τ ) ≤ K (2µ-1)τ 1 + log(1 + e τ ) dτ , thereby, we have

1 0

 1 |e τ bβ(e τ b) -µ|W into two parts and use the previous arguments of the proof of lemma 34 to claim 1 0

  It follows that w(τ, φ(τ )) = exp -τ 0 e s β(e s φ(s))ds w(0, φ(0)) which, after injecting the corresponding values, yields w(τ, 1 -e -τ ) = e -µτ δ with δ a Dirac mass. Therefore:

  We recall: n(t, a) = e -τ w(τ, b) where τ = ln(1 + t) b = a 1+t . Consider the reference case β(a) = µ 1+a (for which we have set in subsection 1.3.1 c(τ ) = C(τ )e -µτ , the interest being that c tends to a constant). Let us dene the natural variables version of W : Denition 39. We set, for a < 1 + t:

Figure 1 . 1 :

 11 Figure 1.1: w(τ, •) -W (τ, •) 1 lies under the theoretical bound (black curve) for an initial age distribution δ 0 (red dots) and U(0, 1) (blue dots).

Figure 1 . 2 :

 12 Figure 1.2: Evolution of n, N , w, W and W ∞ along time, for µ = 0, 6 and an initial age distribution n 0 = w 0 = δ 0 .

Figure 1 .

 1 Figure 1.3 presents as examples three cases that exhibit a certain diversity: µ = 0, 9, µ = 0, 5 and µ = 0, 2. We plot in red dots the evolution along τ of the simulated value of w(τ, •) -W (τ, •) 1 and use function f dened in equation (1.34) to t the results (blue curves). The t results are given in the gures, ± one standard deviation.

λλFigure 1 . 3 :1Figure 1 . 4 :

 1314 Figure 1.3: Fit by f dened in equation (1.34) (blue curves), for dierent µ, of the simulated 0

Figure 1 . 5 :

 15 Figure 1.5: Inuence of µ on ln w(τ, •) -W (τ, •) 1 (red dots) and ln w -W ∞ (black dots): for higher values of µ, w is signicantly closer to W than to W ∞ .

1. 7 .

 7 Appendixa spatial extension, for instance in a discrete space setting.

Figure 2 . 1 : 1 .

 211 Figure 2.1: ln(H(p)) plotted against ln(p) for p ∈ [0, 0.5] for values of µ ranging from 0.12 (lower line) to 0.98 (upper line) (the successive graph positions rise monotonically with respect to µ). H(p) behaves as a power of p for p 1. This illustrates Proposition 42.

Figure 2 . 2 :

 22 Figure 2.2: Comparison of H and its asymptotic behaviour near 0 for µ = 0.3. Far from 0, they do not match, as expected from Proposition 43. Here K = (2Γ(1 -µ)) -1/µ .

4

 4 Subdiusive case with µ = 0.3 and β(a) = µ/(1 + a). ψ 0 (0, x) = 0.2(x -10) 2 .

4

 4 Diusive case with D = 0.01 and β(a) = D. ψ 0 (0, x) = 0.2(x -10) 2 .

Figure 2 . 3 :

 23 Figure 2.3: Decay of ψ 0 (t, •) (left) and ln(ψ 0 (t, •)) (right) for σ = 1, t ∈ [0, 100000] (shown in the color bar) and x ∈ [0, 20] with periodic boundary conditions. The presented plots are taken at 20 regular intervals in ln(t) ∈ [0, 11.5]. As t increases, each successive graph lies below the previous one for the larger values of |x|.

Theorem 46 .

 46 Under Hypotheses 7 and 8, ψ ε L ∞ loc ---→ ε→0 ψ 0 , which is the unique viscosity solution of the limiting Hamilton-Jacobi equation (2.11) with initial condition v(x) among the class of bounded below, Lipschitz continuous and semi-concave functions.

  a ) da n(t = 0, a) = n 0 (a).

  ω(z) exp (-η(x -εz, a)) dz da .

  a) + β(a)n(t, a) n(t, a) da n0 (a) = exp -inf x v(εx)/ε exp -inf x η(εx, a) 1 [0,1) (a) ≥ sup x n 0 (x, a).

(2. 43 )

 43 Since over (a, z) ∈ (0, 1) × R, the right-hand side of equation (2.43) is positive: we have reached the desired contradiction.

h

  are bounded by the expressions stated in Proposition 50. This means the perturbed functions ψ R ε are C L -Lipschitz continuous in x uniformly over a ∈ [0, 1).

4 .

 4 Finally, we show that (ψ R ε ) R converges to ψ ε uniformly over any compact [0, T ] × [-M, M ]. The uniqueness of the solution of the transport problem at xed ε is crucial. It follows that ψ ε satises the Lipschitz bounds of Proposition 49 over every compact, hence over [0, T ] × R.

.

  

.

  

1 ε

 1 a) dz da . Under Hypothesis 8.4, φ 0 ε is Lipschitz continuous in x with Lipschitz constant C L , and so are the functions φ 0,R ε , with the same Lipschitz continuity constant uniformly over R. It follows that R ω(y)e [φ 0,R ε (x 1 -εz,a)-φ 0,R ε (x 1 -εz-εy,a)] dy ≤ R ω(y) exp (C L |y|) dy,

2 β 1 0Φ

 21 + h)Φ(a) -Φ (a)Φ(a + h) (a + h)β(a) -β (a)β(a + h) + β(a)β(a + h)[β(a) -β(a + h)] ≥0 , which is positive since, β(a) = µ/(1 + a) being non-increasing and convex, β (a + h) ≥ β (a) by convexity and β(a) ≥ β(a + h) ≥ 0. This proves the claim.We now write B ε as follows:B ε (ψ ε )(t, x) = (a + t/ε) Φ(a) Φ(a) R ω(z) exp 1 ε ψ ε (t, x) -φ 0 ε (x -εz, a) exp a 0β dz da and recover the lower and upper bounds by monotonicity and thanks to (2.10).

ν

  t (a) = β(a) N (t, a) N (t, 0) = µ(1 + t) 1-µ (1 + a) 1+µ (1 + ta) 1-µ .

( 2 . 90 )∂

 290 Direct computation gives us∂ t ln N + ∂ a ln N + β(a) = 0,which is also satised by n. Hence, u satises: t u(t, x, a)+ ∂ a u(t, x, a) = 0 , t ≥ 0, a > 0 , x ∈ R u(t, x, 0) = 1+t 0 R ν t (a)ω(x -x )u(t,x , a) dx da u(0, x, a) = u 0 (x, a) = n 0 (x, a)N (0, a) with supp(u 0 (x, •)) = [0, 1).

( 2 . 91 )

 291 Let us take a hyperbolic time -space scaling and a Hopf-Cole transform: u ε (t, x, a)

(2. 92 )

 92 Characteristic ow of (2.91) leads us to dene:φε (t, x, a) = φ0 ε (x, at/ε), a > t/ε ψε (t -εa, x), a ≤ t/ε.

(2. 93 )

 93 Let us also set, in agreement with the Ansatz (2.20) in Hypothesis 8:φ0 ε (x, a) = v(x) + εξ(x, a) + χ [0,1) (a) = v(x) + ε [η(x, a) -(1 + µ) ln(1 + a) -(1 -µ) ln(1 -a)] + χ [0,1) (a),(2.94)

  x) -ψε (t -εa, xεz) ν t/ε (a)ω(z) dz da + x) -φ0 ε (x -εz, a) ν t/ε (a + t/ε)ω(z) dz da.

1 .R

 1 Assuming sucient regularity,(2.95) gives us: exp a∂ t ψε (t, x) exp z∂ x ψε (t, x) exp (o(1)) ω(z)Φ(a)1 + t/ε 1 -a + t/ε 1-µ dz da.Hence the formal limit of (2.95) is the same Hamilton-Jacobi equation as (2.11): exp a∂ t ψ0 (t, x) da R ω(z) exp z∂ x ψ0 (t, x) dz, with the same initial condition v.

  x) -ψε (t -εa, xεz) -1 ν t/ε (a)ω(z) dz da + x) -φ0 ε (x -εz, a) -1 ν t/ε (a + t/ε)ω(z) dz da.

2. 4 . 2 ∂

 42 Space-dependent jump rateOur study, as briey mentioned in the Introduction, has a biological motivation. The random motion we model takes place in cellular media in which heterogeneities are often prevalent. Hence the relevance of considering a space-dependant jump rate β(x, a). There are dierent pertinent ways of dening the jump rate, depending on what we intend to model. Here, we will only consider the simple case of a slow space variation of the jump rate, in the sense that follows. We dene µ < 1 is Lipschitz continuous, and consider the following problem:t n ε (t, x, a) + 1 ε ∂ a n ε (t, x, a) + 1 ε β(x, a)n ε (t, x, a) = 0 , t ≥ 0, a > 0 , x ∈ R n ε (t, x, 0) = 1+t/ε 0 R β(xεz, a)ω(z)n ε (t,xεz, a) dz da n ε (0, x, a) = n 0 ε (x, a) = n 0 (x/ε, a).

  , a)ω(xx )n(t, x , a) dx da n(0, x, a) = n 0 (x, a).

(2. 98 )

 98 Since µ is Lipschitz continuous,β(xεz, a) = µ(x) + O(εz) 1 + a .

(2. 99 )

 99 The formulation of (2.97) along characteristic lines allows us to recover, for ψ ε and φ0 )Φ(xεz, a) exp 1 ε [ψ ε (t, x) -ψ ε (t -εa, xεz)] dz da + )Φ(xεz, a) exp 1 ε ψ ε (t, x) -φ 0 ε (x -εz, at/ε) + a-t/ε 0 β(x, s) ds dz da,(2.100)where Φ(x, a) = β(x, a) exp -

(2. 101 )

 101 Thanks to (2.99) and since ω is a Gaussian, it follows that (2.100) admits a formal limiting Hamilton-Jacobi equation, similar to the space-independent case (2.11). Here however, the Hamiltonian depends on space:1 = ∞ 0 Φ(x, a) exp (a∂ t ψ 0 (t, x)) da R ω(z) exp (z∂ x ψ 0 (t, x)) dz.

(2. 102 ) 1 1R

 1021 Chapter 2. A limiting Hamilton-Jacobi equationYet again, that is a Hamilton-Jacobi equation, since it is equivalent to:∂ t ψ 0 (t, x) + H(x, ∂ x ψ 0 )(t, x) = 0,(2.103) with H dened as follows, where Φ(x, •) -1 is the inverse function of the Laplace transform of Φ(x, •): H(x, p) = -Φ(x, •) ω(z) exp(zp) dz .

  S 2 ) 2 , w 2 = a 2 a 1 + a 2 + a 3 , S 3 ) 2 , w 3 = a 3 a 1 + a 2 + a 3 .

  

  : the identication of an equilibrium state F ∞ ; the denition of a relative entropy H[f, F ∞ ]; the denition of an entropy dissipation functional D, which is the opposite of the derivative of the entropy; and the proof that H decays in time, i.e. f converges in entropy to F ∞ .

	Such methods apply to a wide variety of problems. For instance, in the context of PDE
	stemming from biology, [114, 111] and [128, Ch. 3.5, 3.6, 4.2.2, 6.4] treat parabolic and hyperbolic
	equations and models of growth, chemostats, fragmentation and renewal ; and entropy methods
	for parabolic equations also appear throughout [129].
	The reader can nd a description of entropy methods in the context of Perron-Frobenius and
	Floquet eigenvalue theorems in [128, Ch. 6.3.1, 6.3.2]. For entropy methods in the context of
	kinetic equations, the reader may refer to [4] and the bibliography therein. The reader can also
	nd a presentation of entropy methods in the context of optimal transport in [156, Ch. 9].
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  This uniqueness theorem is a corollary of[START_REF] Clarke | Functional Analysis, Calculus of Variations and Optimal Control[END_REF] Corollary 19.17], which follows from[START_REF] Clarke | Functional Analysis, Calculus of Variations and Optimal Control[END_REF]. In that last theorem it is assumed that H has polynomial growth for |p| → ∞, which is nor our case, as stated in Proposition 43. We overcome this issue by assuming that u is globally Lipschitz continuous so that H takes values only over a compact set. The reader can nd the proof of the theorems we have cited in[START_REF] Clarke | Functional Analysis, Calculus of Variations and Optimal Control[END_REF] Chapter 19.4].

  .31) Subsection 2.2.1 proves the more accurate ε-dependant bounds of Propositions 48 from which the uniform bounds of Theorem 47.1 follow. The Lipschitz continuity results of Theorem 47.2 and Theorem 47.3 are proved in Subsections 2.2.2 and 2.2.3 respectively. Proposition 48. Let T > 0 and ε > 0. Under hypotheses 7 and 8, ψ ε ∈ L ∞ ([0, T ] × R), with the quantitative bounds stated below: for any (t, x) ∈ [0, T ] × R,

  .36) 2.2.2 Lipschitz continuity in x of ψ ε This subsection deals with the proof of Theorem 47.2, which we recall as Proposition 49.Proposition 49. Let T > 0 and ε > 0. Under hypotheses 7 and 8, ψ ε is Lipschitz continuous in x over R uniformly in t ∈ [0, T ] with a Lipschitz constant less than or equal to that of φ 0

ε in x:

  The function ũR h is continuous, bounded above over [0, T ] × R, and tends to -∞ as |x| tends to ∞, uniformly over t ∈ [0, T ]. It follows that ũR h reaches its maximum over [0, T ] × R at some point (t 0 , x 0 ). By denition,

  .62) Proof of Proposition 53. For δ 2 < min δ 1 , C B > A x + B x ≥ 0.The left inequality is the result of Lemma 54, and the second is that of Lemma 55. Therefore, equation 2.52 holds.

	C A	2	δ 2 1 , the negation of equation (2.52) allows us
	to reach the contradiction 0 Proposition 56 (Bounds for the perturbed increase rate). The perturbed increase rate u R h is bounded over (t, x) ∈ [0, T ] × R as follows:
	u R h (t, x) ≤ C L .	(2.63)
	Proof.		

Let (t, x) ∈ [0, T ] × R. By denition of ũR h and thanks to Proposition 53, we have for any δ 1 , δ 2 small enough:

  .[START_REF] Freidlin | Geometric optics approach to reaction-diusion equations[END_REF] Remark. The proof we present relies heavily on the methods introduced in the previous Subsection. A more powerful version of the proof can be achieved by direct adaptation of that of the previous Subsection. Indeed, considering the increase rate in time instead of the derivative allows for weaker hypotheses on the waiting time distribution. However, doing so leads to merely technical complications the resolution of which is not of great interest. The proof we present is shorter and clearer. We will prove that ψ R ε dened above Lemma 51 is Lipschitz continuous in t over [0, T ] × R with a Lipschitz constant that does not depend on R. Then, by uniform convergence over compact sets Proposition 57 we will recover the same Lipschitz estimates for ψ ε . Let us start by showing ψ R ε is Lipschitz continuous in t with a suboptimal Lipschitz constant that does depend on R. Lemma 59. There exists a positive constant C R depending on R such that for all

Let R > 0.

  Under hypotheses 7 and 8, ψ 0 is a viscosity subsolution of (HJ).

	.76)
	2.3.1 Viscosity subsolution
	Proposition 61.

  z 2 dz C xx is the upper bound of ∂ 2 x φ 0 ε from Hypothesis 8.3. Proof. Firstlt, let us prove that the semi-concavity of the initial condition is preserved. By dierentiating (2.10) twice with respect to x, we obtain: (∂ x ψ ε (t, x) -∂ x ψ ε (t -εa, xεz)) 2 + Since ψ ε and φ 0 ε are Lipschitz continuous in x and thanks to Rademacher's theorem they are almost everywhere dierentiable, the squared terms are well dened and non-negative. Moreover, Hypothesis 8.3 gives us ∂ 2 x φ 0 ε ≤ C xx in the sense of distributions. We recover an upper bound for ∂ 2 x ψ ε . Indeed, at (t 0 , x 0 ) = arg max ∂ 2 x ψ ε 5 , an application of the maximum principle allows us to recover: ∂ 2 x ψ ε (t 0 , x 0 ) ≤ C xx .

	t/ε
	t/ε x ψ ε (t -εa, x -εz) exp 0 Φ(a) exp ω(z)Φ(a) 1 0 R ε ∂ 2 x ψ ε (t, x) -∂ 2 + 1 0 R ω(z)Φ(a + t/ε) ∂ x ψ ε (t, x) -∂ x φ 0 ε (x -εz, a) 1 ε 1 ε [ψ ε (t, x) -ψ ε (t -εa, x -εz)] dz da 2 + 1 ε ∂ 2 x ψ ε (t, x) -∂ 2 x φ 0 ε (x -εz, a) exp 1 ε ψ ε (t, x) -φ 0 ε (x -εz, a) exp a 0 β dz da, [ψ 0 = (2.80)

ε (t, x) -ψ ε (t -εa, x)] da

(2.79) 

where

  .[START_REF] Hornung | Morphogen gradient formation in a complex environment : An anomalous diusion model[END_REF] Proof. We deduce from the identity A ε + B ε = 1, from Lemma 63 and from the lower bound in ∂ 2x ψε may not reach its maximum. The bounds over ∂xψε of Proposition 49 allow us to dene a modied function that does reach its maximum and to proceed as in subsection 2.2.2.Applying the maximum principle and denoting t 0 = arg max [0,T ] ψ ε (•, x) -ψ ε (0, x) results in 1 ≥ [1 -Kε] An upper bound on B ε . Back to the upper bound in Lemma 62, we are in position to conclude. Proposition 65 (Upper bound for B ε ). Under hypotheses 7 and 8, for any (t, x) ∈ [0, T ] × R,

									0	t 0 /ε	Φ(a) da +	Φ(t 0 /ε) Φ(0)	e m/ε ,
	hence:									
		e m/ε ≤	Φ(0) Φ(t 0 /ε)	1 -(1 -Kε)	0	t 0 /ε	Φ(a) da
				≤ 1 +	t 0 ε	1+µ	∞ t 0 /ε	Φ(a) da + Kε	0	t 0 /ε	Φ(a) da
				≤ 1 +	t 0 ε	+ Kε 1 +	t 0 ε	1+µ	-1 +	t 0 ε	,
	hence the result.									
	Step 4:									
	Lemma 62, that,							
	1 ≥ [1-Kε]	0	t/ε	Φ(a) exp		1 ε	[ψ ε (t, x) -ψ ε (t -εa, x)] da+	Φ(t/ε) Φ(0)	exp	1 ε	[ψ ε (t, x) -ψ ε (0, x)] .

5

B ε decays in the following way as ε → 0:

  [START_REF] Fourier | Théorie analytique de la chaleur[END_REF] and the upper bound in Lemma 62 give us:

	B ε (ψ ε )(t, x) ≤ [ψ ≤ Φ(1 + t/ε) Φ(1) exp 1 ε 2 1+µ (2 + t/ε) 1+µ e m/ε		
	≤ 2 1+µ ε t	1+µ	1 +	T ε	+ Kε 1 +	T ε

ε (t, x) -ψ ε (0, x)] 1+µ .

In dieser Arbeit soll gezeigt werden, daÿ nach der molekularkinetischen Theorie der Wärme in Flüssigkeiten suspendierte Körper von mikroskopisch sichtbarer Gröÿe infolge der Molekularbewegung der Wärme Bewegungen von solcher Gröÿe ausführen müssen, daÿ diese Bewegungen leicht mit dem Mikroskop nachgewiesen werden können.[START_REF] Einstein | Über die von der molekularkinetischen Theorie der Wärme gefordert Bewegung von in ruhenden Flüÿigkeiten suspendierten Teilchen[END_REF] In this work we show, by use of the kinetic theory of heat, that microscopic particles which are suspended in uids undergo movements of such size that these can be easily detected with a microscope. freely translated in[START_REF] Hänggi | Brownian motors[END_REF].

In the article[START_REF] Arnold | Entropies and equilibria of many-particle systems: An essay on recent research[END_REF], the authors dene their entropy functional E as the opposite of our H. As such, their denition corresponds to the physical convention but its manipulation as a Lyapunov functional seems less intuitive.

Precursors include works by Jereys[START_REF] Jereys | On certain approximate solutions of lineae dierential equations of the second order[END_REF], and even Liouville and Green.

The proof of the result follows Barles's recipe as stated. The specic a priori estimates involved in Points 1 and 2 are lower boundedness, sublinearity and space and time Lipschitz estimates.
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In particular in the reference case β(a) = µ 1+a , it may be written as W (τ, b) = C(τ )e -µτ (e -τ + b) µ (1 -b) 1-µ .

Note the similarity between this expression and that for W ∞ in eq. (1.5). In the following, we obtain explicit convergence rates of w(τ, b) to W , developing proofs based on Relative Entropy estimates. Importantly, we show that W converges to W ∞ at the same rate (up to multiplication by a constant) as the rate with which w converges to W . Hence, the convergence to the pseudoequilibrium W yields a very good estimate of the convergence to the self-similar equilibrium W ∞ . Finally, we carry out Monte-Carlo simulations of zero-dimensional CTRW to illustrate and question the optimality of our main analytical results. Denition 17. For the moment and for the sake of simplicity, let us dene:

Remark. Later on, we shall dene more generally H as a relative entropy, the L 1 distance being a particular case more suited to our purposes.

In this Chapter, we prove the following propositions: Proposition 18. Under hypothesis (H1), we have:

Our rst quantitative result is a convergence rate for the reference case of hypothesis (H2). Theorem 19. Let β(a) = µ 1+a . Then we have the following convergence rates:

(1.8)

A modied, yet analogous, convergence rate still holds for g = 0:

Theorem 20. Suppose hypothesis (H2) holds.

If α > 1 -µ, we recover the optimal rate of convergence

If α ≤ 1 -µ, we need to distinguish between several cases:

Proposition 35. Assume hypothesis (H2).

Then, if µ = 1/2

Note that for α > (1 -µ) the rate is the same than the one for g = 0.

Chapter 2 

Abstract

Subdiusive motion takes place at a much slower timescale than diusive motion. As a preliminary step to studying reaction-subdiusion pulled fronts, we consider in this joint work with Vincent Calvez and Pierre Gabriel [START_REF] Calvez | Limiting Hamilton-Jacobi equation for the large scale asymptotics of a subdiusion jump-renewal equation[END_REF] the hyperbolic limit (t, x) → (t/ε, x/ε) of an agestructured equation describing the subdiusive motion of, e.g., some protein inside a biological cell. Solutions of the rescaled equations are known to satisfy a Hamilton-Jacobi equation in the formal limit ε → 0. In this work we derive uniform Lipschitz estimates, and establish the convergence towards the viscosity solution of the limiting Hamilton-Jacobi equation. The two main obstacles overcome in this work are the non-existence of an integrable stationary measure, and the importance of memory terms in subdiusion.

Appendix A Numerical methods and simulations

Within this thesis I have used several numerical simulations. However, I do not present them within the chapters where they are used. I will give here some background and bibliography.

A.1 Monte Carlo simulations

Monte Carlo simulations consist in the (computer-assisted) random sampling of many occurrences of a random process and rely on the expectation that the results satisfy the convergence predicted by the Central Limit Theorem. Buon's needle experiment (the approximation of π by means of repeated random throws of a needle on a surface patterned by parallel lines) can be considered a precursor of such methods, which were formalised by Fermi, Ulam and von Neumann and are today useful in the context of physical, biological, engineering and economic problems that exhibit many coupled degrees of freedom.

In the context of our work, the renewal-scattering equations that we study rely on a microscopic stochastic continuous time random walk model. Hence, our Monte Carlo simulations are relatively straightforward. We refer the reader to [START_REF] Binder | A Guide to Monte Carlo Simulations in Statistical Physics[END_REF] for a detailed introduction to Monte Carlo methods and to the article that introduced the Mersenne twister random number generator that we use [START_REF] Matsumoto | Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator[END_REF].

A.2 Finite Volume schemes

Certain simulations that I have done within the context of Chapter 1 use upwind nite volume schemes. Let us illustrate the concept on a 1D transport equation:

which we consider to have periodic boundary conditions. The velocity v is supposed known. We discretise the equation over a space grid:

in which we identify x N to x 0 , with a discretization step ∆x. We also consider a time discretisation of step ∆t: for j ≥ 0, we set t j = j∆t. We denote by the subindex i, j the approximation at (t j , x i ) given by the considered numerical scheme for the corresponding function.

The upwind approach consists in approximating the space derivatives of ρ at each x i in a way that depends on the direction in which the density ρ is transported at that point. The idea is to use the values of ρ on the stencils upwind from x i to approximate ∂ ρ (t, x i ). We refer by the superindicesand + to the respective discretisations using the left and the right stencils with respect to the point at which we discretise. In a nutshell,

In a rst order explicit upwind nite volume numerical scheme, ∂ x ρ ± i,j are given by:

The reader may consult [START_REF] Allaire | Analyse numérique et optimisation : Une introduction à la modélisation mathématique et à la simulation numérique[END_REF] for an introduction to numerical simulations and for an analysis of numerical schemes related to the above.

A.3 WENO discretisation of Hamilton-Jacobi equations

This section is taken and summarized from Paul Vigneaux's Doctoral Dissertation [START_REF] Vigneaux | Méthodes Level Set pour des problèmes d'interface en microuidique[END_REF], which elaborates much further than is here required and contains useful bibliography on the discretisation of Hamilton-Jacobi equations by means of Essentially Non Oscillating (ENO) and Weighted

Essentially Non Oscillating (WENO) schemes. A more complete source can be found in Chapters 3 and 5 of [START_REF] Osher | Level Set Methods and Dynamic Implicit Surfaces[END_REF].

Essentially Non Oscillating (ENO) schemes were rst developped by Harten and Osher [START_REF] Harten | Uniformly high-order accurate nonoscillatory schemes[END_REF] and Engquist, Osher, Chakravarty [START_REF] Harten | Uniformly high-order accurate essentially nonoscillatory schemes[END_REF] for the numerical simulation of conservation laws. They were simplied and perfected by Shu and Osher [START_REF] Shu | Ecient implementation of essentially nonoscillatory shock-capturing schemes[END_REF][START_REF] Shu | Ecient implementation of essentially nonoscillatory shock-capturing schemes[END_REF]. The rst application of ENO schemes to Hamilton-Jacobi equations is due to Osher and Sethian [START_REF] Osher | Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations[END_REF]. Even though the idea of applying ENO schemes to Hamilton-Jacobi equations stemmed from the link that such equations share only in one space dimension, the resulting numerical schemes can be extended to higher space dimensions.

ENO schemes rely on a polynomial interpolation of the approximate solution in order to compute the boundary ux on the discretisation cells. A choice is made in ENO schemes to interpolate over the region in which the polynomial is the smoothest so as to have a high order precision and to avoid oscillations near shock proles.

ENO schemes are robust and high order uniformly up to shocks. However, since they choose the stencil over which they approximate the space dierential of the solution of the studied equation, rounding errors around points at which the solution or its derivatives vanish may lead to abrupt changes in the stencil choice. This can reduce the precision of ENO schemes over sets on which the solution is smooth. We refer to [155, Ch. 2.1.1] and the bibliography therein for a concrete description of ENO schemes.

WENO schemes were introduced by Liu, Osher and Chan [START_REF] Liu | Weighted essentially non-oscillatory schemes[END_REF] as an improvement on ENO schemes. They avoid the instabilities of ENO schemes over regions where the solution is smooth by using a convex combination of the three dierent ENO discretisation choices ponderated by ad hoc coecients. Such coecients take into account the local smoothness of the solution so A.4 Lax-Friedrichs scheme for Hamilton-Jacobi equations Lax-Friedrichs numerical schemes were introduced by Crandall and Lions in [START_REF] Crandall | Two approximations of solutions of Hamilton-Jacobi equations[END_REF]. The reader may consult [START_REF] Osher | Level Set Methods and Dynamic Implicit Surfaces[END_REF]Ch. 5.3] for a much more detailed presentation than that given hereafter.

Consider the 1D evolution Hamilton-Jacobi equation (A.3). The Lax-Friedrichs numerical scheme is the following approximation of the Hamiltonian H:

where α x is a dissipation coecient that controls the amount of numerical viscosity, taken to be worth:

Finding the maximum can be subtle.

Increasing the dissipation coecient α x increases the amount of articial dissipation, which decreases the quality of the solution. However, taking α x too low may induce oscillations. It follows that the maximisation over the whole domain used for the classical Lax-Friedrichs scheme is not optimal. Renements of the Lax-Friedrichs (LF) scheme that seek to take α x as low as feasable include the Stencil LF scheme, in which the minimisation is done over the grid nodes used to evaluate u +,-, and the Local LF scheme, where only u + and u -are used to compute α x .

For extensive details the reader may consult [START_REF] Osher | Level Set Methods and Dynamic Implicit Surfaces[END_REF]Ch. 5.3.1], and for a synthetic presentation, [START_REF] Vigneaux | Méthodes Level Set pour des problèmes d'interface en microuidique[END_REF]Ch. 3.1.3].

Abstract

This thesis is devoted to the asymptotic analysis of partial dierential equations modelling subdiusive random motion in cell biology. The biological motivation for this work is the numerous recent observations of cytoplasmic proteins whose random motion deviates from normal Fickian diusion.

In the rst part, we study the self-similar decay towards a steady state of the solution of a heavy-tailed renewal equation. The ideas therein are inspired from relative entropy methods.

Our main contributions are the proof of an L 1 decay rate towards the arc-sine distribution and the introduction of a specic pivot function in a relative entropy method.

The second part treats the hyperbolic limit of an age-structured space-jump renewal equation.

We prove a stability result: the solutions of the rescaled problems at ε > 0 converge as ε → 0 towards the viscosity solution of the limiting Hamilton-Jacobi equation of the ε > 0 problems.

The main mathematical tools used come from the theory of Hamilton-Jacobi equations. This work presents three interesting ideas. The rst is that of proving the convergence result on the boundary condition of the studied problem rather than using perturbed test functions.

The second consists in the introduction of time-logarithmic correction terms in a priori estimates that do not follow directly from the maximum principle. That is due to the non-existence of a suitable equilibrium for the space-homogenous problem. The third is a precise estimate of the decay of the inuence of the initial condition on the renewal term. This is tantamount to a rened estimate of a non-local version of the time derivative of the solution.

Throughout this thesis, we have performed numerical simulations of dierent types: Monte Carlo, nite volume schemes, Lax-Friedrichs schemes and Weighted Essentially Non Oscillating schemes.
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