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This thesis involves different scientific domains in which a lot of acronyms are used. The used
acronyms are summarized below to facilitate the reading of the text by readers.

AC Alternative Current

AgNP Silver NanoParticle

BF Bright Field

BSA Bovine Serum Albumin
CAH Contact Angle Hysteresis
C-FEG Cold Field Emission Gun
DC Direct Current

DP Diffranction Pattern

DsRed Discosoma Recombinant Red
Fluorescent

EC Effective Concentration

EELS Electron Energy Loss Spectroscopy
EPS Extracellular Polymeric Substance
ERDA Elastic Recoil Detection Analysis

FTIR Fourier Transform Infrared
Spectroscopy

HMDSO Hexamethyldisiloxane

HREM High Resolution Electron
Microscopy

IBS Ion Beam Synthesis

ICP-MS Inductively Coupled Plasma Mass
Spectrometry

LE-IBS Low Energy lon Beam Synthesis
LSPR Localized Surface Plasmon Resonance
NP NanoParticle

0.D. Optical Density

OES Optical Emission Spectroscopy

PAM Pulse Amplitude Modulation

PECVD Plasma Enhanced Chemical Vapor
Deposition

PEG PolyEthylene Glycol
PL PhotoLuminescence
PVD Physical Vapor Deposition

PV-TEM Plan View Transmission Electron
Microscopy

RBS Rutherford Back Scattering
spectrometry

RF Radio Frequency
ROS Reactive Oxygen Species

SACTEM Spherical Aberation Corrected
Trasmission Electron Microscope

SDS-PAGE Sodium Dodecyl Sulphate
PolyAcrylamide Gel
Electrophoresis

SERS Surface Enhanced Raman Scattering
S-FEG Schottky Field Emission Gun
TEM Transmission Electron Microscopy
TEOS Tetraethoxysilane

TO Transvers Optic

ULE-IBS Ultra Low Energy lon Beam
Synthesis

ULE-II Ultra Low Energy lon Implantation

XS-TEM Cross Section Transmission
Electron Microscopy
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Résumé étendu de these en Francais

Au cours des vingt derniéres années, il y a eu une augmentation rapide dans le développement, la
production et I'application des nanomatériaux manufacturés, qui jouent actuellement un réle croissant
dans de nombreux domaines, y compris les produits de consommation liés a divers secteurs: la santé,
la cosmétologie, l'agriculture, l'alimentation, l'environnement, la communication, le transport et
I'énergie [Peralta-Videa et al., 2011]. Ces nanomatériaux pourraient apporter des solutions aux défis
technologiques dans les domaines de la conversion de 1'énergie solaire, de la catalyse, de la médecine,
et de l'eau, et du traitement de l'air a des fins de purification [Sharma et al., 2009]. Il est largement
admis que I’émergence des matériaux a I'échelle nanométrique est due a leur grand rapport
surface/volume et a leurs propriétés physiques exceptionnelles.

L'exemple le plus souvent cité concernant les nanoparticules métalliques et leur utilisation dans les
applications industrielles est celui des nanoparticules d'argent (AgNPs). Les AgNPs sont bien connues
non seulement pour leur activité chimique, mais aussi pour leurs propriétés plasmoniques. En effet,
elles sont la meilleure antenne pour amplifier des signaux électroniques et vibratoires locaux a
1'échelle nanométrique dans le domaine visible, fournissant des informations moléculaires uniques en
champ lointain. Depuis sa découverte en 1974 sur les molécules de pyridine adsorbées sur des surfaces
rugueuses d'argent, la Spectroscopiec Raman Exaltée de Surface (SERS) s’est révélée étre une
technique analytique puissante pour la spectroscopie moléculaire, la reconnaissance biomoléculaire et
la détection ultra-sensible (jusqu’a la molécule unique). Toutefois, la limitation dans la fabrication de
substrats SERS reste un inconvénient majeur pour les applications potentielles.

En ce qui concerne leur activit¢é chimique, les AgNPs ont montré la plus grande efficacité
antimicrobienne contre les bactéries, les virus et autres micro-organismes eucaryotes. Elles sont
maintenant présentes dans une gamme croissante de produits industriels [Silver et coll., 2006 ; Le
Ouay et Stellacci, 2015]. Le "Nano-argent" est d’ailleurs une marque déposée (Samsung Company,
2003). AgNPs sont utilisées comme nouvelle génération de produits antimicrobiens dans les
réfrigérateurs, les climatiseurs, les claviers d’ordinateurs, etc. [Rai et al., 2009]. Elles sont également
exploitées pour leurs propriétés antimicrobiennes afin d’empécher 1’encrassement par les algues
[Russell et Hugo, 1994]. Bien que certains de ces effets sont connus depuis I'Antiquité et que le
nombre d'industries utilisant AgNPs dans leurs produits est en trés forte augmentation de nos jours, les
mécanismes exacts au niveau moléculaire de leurs effets sont encore mal compris.

Les applications les plus répandues des nanocomposites a base de AgNPs concernent les revétements
antibactériens. Il est généralement admis que l'adhésion microbienne représente une complication
majeure pour toutes les applications biomédicales. Afin d’inhiber le développement d'un biofilm sur
une surface, une possibilité consiste a utiliser des revétements contenant un agent antibactérien comme

les AgNPs, qui sont d'excellents candidats pour préserver simultanément une grande efficacité
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antibactérienne et une exaltation importante des signaux vibratoires et luminescents provenant de
molécules situées dans leur voisinage. C’est précisément cette ambivalence que nous souhaitons

exploiter au moyen de couches diélectriques spécifiques contenant des AgNPs.

Les objectifs de cette thése sont de développer des nanocomposites multifonctionnels a base de AgNPs
enrobées dans un diélectrique permettant la libération controlée de I'agent antibactérien. Cela devrait
permettre a la fois de cibler le type de micro-organisme a combattre et délivrer la bonne dose pour son
inhibition, tout en préservant la microflore environnante. Pour atteindre ces objectifs, nous proposons
d'utiliser la multifonctionnalité des AgNPs, qui sont a la fois des antennes plasmoniques pour détecter
l'interaction avec les micro-organismes et des réservoirs d'ions connus pour leurs propriétés
antibactériennes. Afin de stabiliser les nanoparticules et de controler la dose toxique (a savoir la
concentration en ions Ag' relargués) les AgNPs seront intégrées dans des matrices diélectriques. Les
AgNPs dont la taille et la densité seront ajustées, seront positionnées a des distances variables de la

surface du substrat, sur lequel les micro-organismes adhérent.
Pour atteindre ces objectifs, deux étapes préalables sont demandées:

(1) Evaluer la capacité des AgNPs enrobées dans les diélectriques a libérer des quantités contrdlées
d’Ag ionique (Ag") et / ou d’AgNPs, responsables de l'effet biocide. Cette étape constitue le
cceur de ce travail de thése. L'originalité de notre approche est double. Elle est d'abord basée sur
l'ingénierie rationnelle de ces nanocomposites a base d’AgNPs: les nanoparticules sont
incorporées dans des matrices diélectriques qui permettront un contréle précis de la libération
d’Ag en controlant les caractéristiques structurales des NPs. En second lieu, la libération d’Ag
est évaluée par une méthode originale utilisant des algues vertes comme biocapteurs. Ainsi, la
toxicité a court terme de AgNPs sur la photosynthése des Chlamydomonas reinhardtii sera
étudiée en utilisant la fluorométrie et la libération d'argent sera mesurée par spectrométrie de
masse a plasma par couplage inductif (ICP-MS).

(i) Effectuer une analyse détaillée de la localisation et des interactions des molécules et des
protéines déposées sur la surface de ces substrats contenant AgNPs enterrées en utilisant
I'imagerie optique et les spectroscopies moléculaires. Cette étape sera initiée dans le dernier

chapitre de ce manuscrit.

Ce travail, réalisé en co-direction entre CEMES et LAPLACE, est a l'interface entre la science des

matériaux et de la biologie.

Le chapitre I rassemble 1’état de 1’art des différentes facettes qui constituent ce travail: I'élaboration
des nanocomposites a base d’AgNPs en utilisant des méthodes physiques, l'interaction des AgNPs
avec leur environnement (air et eau), l'activité biologique des AgNPs et leur propriétés optiques

(plasmonique).
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Les dispositifs expérimentaux principaux (¢élaboration et caractérisation) et les techniques utilisées au

cours de cette thése sont décrits dans le chapitre II.

Deux approches physiques ont été utilisées pour élaborer ces nanocomposites: (i) 1’implantation
ionique a basse énergie (LE-IBS) et (ii) la pulvérisation combinée a la polymérisation plasma. Ces
techniques permettent I'élaboration d'une couche unique de AgNPs incorporées dans des films de
silice, a des distances définies nanométriques (0-7 nm) au-dessous de la surface libre. La premiére
technique (LE-IBS de AgNPs incorporées dans des couches de silice) a été développée au CEMES
dans un précédent travail [Carles et al., 2009; Benzo et al, 2013], mais la quantité¢ d'Ag qui peut étre
introduite dans le diélectrique est limitée, ce qui limite donc la taille, la densité et la fraction surfacique
des AgNPs formées. C’est pour cette raison, qu’une technique complémentaire basée sur le dépot par

plasma a été développée dans ce travail a LAPLACE et est présentée dans le chapitre I11.

Les propriétés structurales et optiques des nanocomposites ont été étudiées par microscopie
¢lectronique a transmission, spectroscopie de réflexion et ellipsométrie. Cette derniére technique,
couplée a une modélisation basée sur l'approximation quasi-statique du formalisme classique de
Maxwell-Garnett, a permis la détection de petites variations dans la taille et la densité¢ des AgNPs. La

potentialité de cette technique pour caractériser notre systeme est traitée dans le chapitre IV.

Le chapitre V est le coeur de ce travail et décrit la capacité de nos AgNPs enrobées a libérer des ions
Ag’ lorsque les nanocomposites sont immergés dans l'eau. Pour cette évaluation, une méthode
originale est présentée, ce qui utilise des algues vertes comme biocapteurs. Ce travail a été effectué a
I'Instituto Pirenaico de Ecologia (IPE-CSIC) a Saragosse (Espagne) au cours de 2 séjours d'un mois

chacun.

Une derniére partie de ce travail, décrite dans le chapitre VI, est consacrée a I'étude des propriétés de
stabilit¢ et d'adsorption de protéines fluorescentes Discosoma rouge (DsRed) sur ces surfaces
diélectriques. Ce travail a été réalisé en étroite collaboration avec le Laboratoire de Génie Chimique

(LGC) a Toulouse.

Nous présentons dans ce résumé étendu les principaux résultats de cette thése décrits dans les chapitres

III, IV, V et VI du manuscrit.

Une premicre ¢étape de cette theése concerne donc la synthése par voie physique de ces
nanocomposites. Le but est d'élaborer des structures nanocomposites de SiO, / AgNPs / SiO, / Si
(avec une seule couche de AgNPs, de taille, densité et distances entre nanoparticules bien controlées,

et insérée dans une matrice SiO, a une distance donnée de la surface). L'épaisseur de la couche de
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silice incluant les NPs a été choisie de facon a ce que, pour des longueurs d'onde spécifiques, la

réflectivité soit minimale; et par conséquent le champ ¢€lectrique a la surface libre maximum.

La premiere technique de fabrication de AgNPs enrobées dans une matrice de silice utilisée dans ce
travail est ’implantation ionique a basse énergie (ULE-IBS). Elle a été développée au CEMES dans le
cadre de travaux antérieurs. Elle permet la synthése d'un seul plan ("delta-layer") de AgNPs enterré
pres de la surface libre d'une couche de SiO, thermique que 1’on a fait croitre sur une plaquette de Si
[Carles et al., 2009]. Sur la figure 1 (2 gauche), une image typique de Microscopie Electronique en
Transmission (MET) d'une coupe transverse (XS-MET) d’un échantillon implanté révele la présence
de AgNPs sous la forme d’un plan unique situé a quelques nanométres sous la surface. Comme prévu,
ces particules se forment au cours du processus d'implantation, sans la nécessité d’un recuit
additionnel. Cela est di au fort coefficient de diffusion de I’Ag dans la silice. Les AgNPs sont
sphériques, cristallines, réparties de fagcon homogene et en argent pur, comme révélé par l'observation
en Microscopie Electronique a Haute Résolution (MEHR, encart de la Fig.1). Elles sont réparties de
facon homogene. En utilisant cette technique, différentes architectures a trois dimensions composées
de AgNPs noyées dans la silice ont été ainsi congues pour exploiter simultanément le phénomene
d'interférence optique dans les milieux stratifiés et la résonnance plasmon de surface (LSPR) de
nanoparticules métalliques [Carles et al., 2011]. Ces structures sont basées sur un contréle simultané
des propriétés optoélectroniques a trois échelles (3S) (~ 2 /20 /200 nm) et le long des trois directions
de I’espace (3D). En particulier, I'épaisseur de la couche diélectrique a été choisie pour avoir des

propriétés antireflets imposant un maximum du champ électrique a proximité de la surface.

Figure 1: Coté gauche: image MET en champ clair (XS-MET) et vue sur la tranche d'un plan de
AgNPs élaboré par ULE-IBS (énergie 3 keV et dose 4,7 x 10" ions/cm®) avec en insert une image
MEHR d'une AgNP. Cété droit: zoom d'images XS-MET des échantillons implantés (a) a (d) avec une
énergie croissante et des doses conduisant a une concentration fixe de 20% atomique et (e) a (g) une
faible énergie d'implantation (10 keV) et des doses croissantes. De [Benzo et al., 2013].

Controler I'énergie cinétique des ions implantés dans la gamme de la basse énergie offre la possibilité
de contrdler a 1’échelle nanométrique le positionnement sous la surface du plan des nanoparticules
métalliques. Ainsi, la distance des NPs a la surface peut étre variée entre 3,5 et 12 nm lorsque I'énergie

d'implantation augmente de 0,6 a 10 keV (Fig. 1, du coté droit, (a) a (c)). Ces valeurs sont en bon
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accord avec les valeurs théoriques du maximum (rang projeté, R,) du profil implanté calculé par
TRIDYN [Moller et Eckstein, 1984]. L'augmentation supplémentaire de 1'énergie d'implantation
conduit a un élargissement du profil implanté et a la formation d'une bande de NPs spatialement
réparties (Fig. 1 (d)). L’augmentation de I'énergie conduit également a une 1égeére augmentation de la
taille moyenne des particules de 2,5 nm a 4,9 nm, en raison d'un élargissement du profil d'implantation
[Benzo et al., 2013].

Une saturation de la taille moyenne des AgNPs est clairement observée lorsque 1'on augmente la dose
d'implantation (Fig. 1(e) a (h)). En outre, la quantit¢é d'Ag mesurée expérimentalement dans des
nanoparticules a partir d'images MET est beaucoup plus faible que la dose nominale implantée, en
particulier pour les doses élevées [Benzo et al., 2013]. Cette saturation est prédite dans la littérature
par des simulations balistiques, et attribuée a la pulvérisation de surface et aux changements de
steechiométrie au cours de l'implantation [Stepanov et al., 2000; Stepanov, 2010]. Néanmoins, la dose
maximale mesurée ici (environ 10'® atomes/cm?) est beaucoup plus faible que celle prédite en utilisant
le logiciel TRIDYN. Cet écart est la conséquence d’effets de diffusion. En effet, en plus de
l'enrichissement en Ag dans la région proche de la surface en raison des effets balistiques, on observe
une augmentation de la quantité d'Ag au voisinage de la surface due a la diffusion thermique de I’Ag.
Les atomes d'Ag sont alors pulvérisés provoquant une diminution de la quantité totale de Ag dans la
couche. A un certain point, les nanoparticules elles-mémes sont pulvérisées par l'implantation en
cours. [Benzo et al., 2013].

11 a ainsi été montré que I’implantation ionique a basse énergie était une technique prometteuse pour la
fabrication d’un réseau 2D de AgNPs noyées dans une couche de silice. Le principal avantage de cette
méthode reste l'incorporation directe des AgNPs dans une matrice diélectrique transparente, ce qui
évite leur diffusion et leur altération, tout en préservant leurs propriétés plasmoniques et en gardant
une surface plane et réutilisable. En particulier, un recuit post-implantation réduit fortement
'oxydation de l'argent, qui est la principale limitation pour l'utilisation de AgNPs déposées sur des
surfaces [Benzo et al., 2011]. Néanmoins, la saturation de la quantité d'Ag introduite dans la matrice
pour des doses ¢levées, limite le contrdle de la taille et de la fraction surfacique (et volumique) des
AgNPs. Par conséquent, la synthése d’AgNPs avec une taille moyenne supérieure a 10 nm et une
fraction surfacique supérieure a 20% reste impossible avec cette méthode. Pour cette raison, nous
avons développé dans cette thése une nouvelle méthode, utilisant des techniques de dépdt de plasma,
afin de fabriquer des AgNPs de taille moyenne > 10 nm noyées dans la silice a des distances
nanométriques contrdlées de la surface, avec une fraction surfacique élevée (supérieure a 20%). Ce
procédé implique la pulvérisation cathodique d'argent, suivie par le dépot chimique a phase vapeur

assisté par plasma, comme décrit dans la section suivante.
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Les nanocomposites ont été élaborés en utilisant le dépot physique en phase vapeur (PVD) comme
premiére étape, et le dépot chimique en phase vapeur assisté par plasma (PECVD) comme deuxiéme

étape comme représenté sur la Fig. 2.

Figure 2: Elaboration d’un plan ("delta-layer") de AgNPs enrobées dans une matrice de SiO, par
procédé plasma.

La figure 3 montre une image MET en champ clair en vue sur la tranche d’un échantillon élaboré par
cette méthode. Il s’agit d’un plan de AgNPs déposé avec une puissance injectée P = 40 W pour un
temps de pulvérisation de ¢ = 5 sec et recouvert par une couche SiO, plasma d'épaisseur
dsiozpasma = 13 nm (temps de dépot pour la couche SiO, plasma, 3= 60 s). Les observations en MEHR
(voir I'image en insert de la figure 3) montrent que les nanoparticules d'Ag sont cristallines et en argent

pur. L'épaisseur totale de la structure est de 105 nm, qui remplit la condition anti-reflet.

i nm Si substrate
o m=m

Figure 3: Image MET en champ clair en section transverse d'un échantillon élaboré par pulvérisation
d'argent combinée au PECVD. Conditions: t,=5s, P =40 W (V.. = -750 V). Le temps de dépo6t du
Si0, plasma est #; = 60 s. En insert, image MEHR d’un nanoparticule d’Ag.
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La taille, la densité et la forme des AgNPs varient avec la puissance injectée ou le temps de
pulvérisation comme montré sur la figure 4. Lorsque le temps de pulvérisation est fixé, on observe en
effet une augmentation de la taille et une diminution de leur densité, avec une surface de couverture a
peu pres constante. La méme tendance est observée lorsque la puissance injectée est fixe et le temps de
pulvérisation est augmenté. Pour un temps de pulvérisation fixé, 1’augmentation de la puissance
injectée modifie la forme des AgNPs de sphérique (P = 10 W) a sphéroide (P > 60 W).
L'augmentation du temps de pulvérisation de 5 s & 30 s n'influence pas la forme des AgNPs pour une
faible puissance injectée (P = 10 W), alors qu'il conduit a dépasser le seuil de percolation pour la
puissance injectée élevée (P = 80 W). Par conséquent, pour obtenir une couche unique de grandes

AgNPs, une puissance injectée ¢levée et de courts temps de pulvérisation doivent étre privilégiés.

Figure 4. Images MET en vue plane observées en champ clair des substrats nanocomposites obtenus
pour 2 puissances (a) 40W et (b) 80W et un temps de pulvérisation fixé z, = 5 s, et pour 2 temps
(c) 10 s et (d) 30 s et une puissance injectée fixée P = 10W.

Un second défi dans I'élaboration de plasma de ces substrats est celle de la couche de couverture en
Si0,. Pour obtenir une couche SiO, plasma ayant des propriétés proches d’une couche de silice
thermique, la composition du plasma est ajustée en faisant varier le mélange gazeux. Ainsi, I’injection
d'oxygéne dans le mélange Ar-HMDSO du plasma introduit des espéces réactives qui favorisent

l'oxydation des groupes méthyle et les especes volatiles telles que l'eau et le dioxyde de carbone.

XVl



L’injection pulsée de HMDSO et une des originalités de ce procédé et permet un contréle précis des
parametres du plasma. L’analyse par Spectroscopie Infra-Rouge a Transformée de Fourier (FTIR) de
la couche de couverture en SiO, plasma ainsi €laborée montre une configuration proche de celle de la
silice thermique.

Ainsi, nous avons montré comment les paramétres structuraux des nanostructures enterrées (taille,
densité, distance a la surface) peuvent étre contr6lés en réglant les conditions d'élaboration combinant
pulvérisation d'argent et polymérisation plasma. En couplant ces échantillons a ceux élaborés par
LE-IBS, nous avons maintenant deux techniques pour la fabrication d'une seule couche de AgNPs
enrobées dans des couches minces de silice localisées a une distance nanométrique controlée sous la
surface libre du diélectrique. Elles offrent la possibilité d'explorer différentes distributions de taille,

densités surfaciques, et en particulier manipuler la distance de ces NPs a la surface libre.

Une fois les nanocomposites ¢laborés, nous nous sommes donc intéressés au développement, au test et
a l'application d'un modéle prédictif pour l'interprétation des spectres ellipsométriques enregistrés sur
les structures plasmoniques. L’ellipsométrie a en effet ¢té utilisée comme technique de diagnostic
efficace pour étudier ces systémes nanostructurés et en particulier pour détecter de petites variations
dans la taille et la densité des AgNPs.

Ce modele est basé sur I'approximation quasi-statique du formalisme classique de Maxwell-Garnett,
auquel est ajouté la prise en compte de l'effet de confinement électronique par l'intermédiaire du
parameétre d'amortissement. Des échantillons ont été ¢laborés en utilisant: (i) I’implantation ionique a
basse énergie et (ii) la polymérisation couplée a la pulvérisation cathodique. Le modéle permet
l'extraction a partir des spectres ellipsométriques expérimentaux des caractéristiques de la population
de NPs: taille moyenne, fraction volumique et distance de la couche de AgNPs a la surface libre de la
matrice. La comparaison avec les résultats obtenus par microscopie électronique a transmission
confirme I'applicabilité de ce procédé. Les limites de la méthode de diagnostic proposée ainsi que la
poursuite du développement li¢ a la qualité de la comparaison entre les spectres générés par le modéle
et les données expérimentales sont également abordés. Cet aspect de mon travail a été développé en
étroite collaboration avec Maxime Bayle au cours de son doctorat au laboratoire CEMES.

La représentation schématique des structures plasmoniques modélisées est donnée sur la Fig. 5. Les
structures plasmoniques sont considérées comme des systémes multicouches. Chacune des couches est
décrite par sa permittivité diélectrique. Les couches contenant des AgNPs sont considérées comme
milieu effectif ayant donc une permittivité dié¢lectrique effective. Cette hypothése offre la possibilité

de décrire par exemple la double couche de NPs avec des tailles et fractions volumiques différentes.
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Structure Parameters of the simulation

—}—> cover layer 1= thickness of cover layer
(0] .
D AeNps diameter of AgNPs
. AgNPs+SiO,
1
Layer (1) tAg_SiOZ( = thickness of AgNPs +SiO, layer (1)
W _ . . .
ng:SM = volume fraction of AgNPs in the S102 layer (1)
@) .
D, \» = diameter of AgNPs
AgNPs + SiO, €
Layer (2) ts 02(2) = thickness of AgNPs +SiO, layer (2)
f AgSi 02(2) = volume fraction of AgNPs in the SiO, layer (2)
\\
SiOz layer [ thickness of SiOZ layer
Si substrate t.= total thickness of the plasmonic structure

Figure 5: Représentation schématique des structures plasmoniques et des parametres issus du modele.

Cette structure stratifiée est bien adaptée pour tenir compte des différentes situations physiques qui

peuvent survenir dans la représentation de I’empilement en fonction du type de procédé d'élaboration

utilisé. Les propriétés diélectriques du substrat de Si ont été prises dans la référence [Palik, 1985] pour

toute la gamme de longueurs d'onde, celles de la couche SiO, dans la base de données SOPRA

[SOPRA Database, 1999] et la fonction diélectrique des AgNPs a été calculée selon I'équation (1) en

utilisant les propriétés optiques de 1’argent [Palik, 1985; Bayle, 2014].
£y —Ew _ Na

Eq 2, 3,

(1)

Apres l'introduction de la fraction volumique de AgNPs dans la matrice de silice f = NV et le
remplacement de a par son expression pour les NPs de forme sphérique (a = 2) [Garnett, 1904], on
trouve l'expression générale de Maxwell-Garnett. Pour des fractions volumique suffisamment petites,

la permittivité effective ¢.; prend la forme:

=£m+3fgmm. (2)

Eor
Ep +2€,

avec eyp qui représente la permittivité diélectrique des nanoparticules.
La réponse optique des métaux est affectée par trois caractéristiques principales: la taille, la forme et
milieu environnant du métal [Kreibig et Vollmer, 1995; Maier, 2007]. La fonction diélectrique
complexe des nanoparticules devient dépendante de la taille. En supposant que les nanoparticules
sphériques métalliques, leur fonction di¢lectrique complexe peut étre écrite suivant I’expression:

2

w
Ee (0 Dye) = 21 (@) =252 s N
NP
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ou ¢ (w) est la partie de la fonction diélectrique complexe due aux transitions interbandes dans les
métaux massifs et y (Dyp) est liée au paramétre d'amortissement y, représentant les collisions des
¢électrons avec d’autres électrons, avec le réseau cristallin (phonons), les défauts de réseau, ou des
impuretés et prenant compte 1'effet de la taille des nanoparticules. En conséquence, la dépendance de
la fonction diélectrique avec la taille reste négligeable pour sa partie réelle tandis que sa partie

imaginaire est fortement affectée.

Comme paramétres d'entrée dans le modéle nous commengons par faire des hypothéses sur les
épaisseurs des différentes couches de la structure et les fractions volumiques des NPs. Aprés
convergence des calculs de modélisation, les parameétres de sortie de la simulation sont répertoriés sur
Fig. 5 ainsi que les spectres ellipsométriques (tan (V) et cos (A)) dans la gamme de longueur d'onde
250-850 nm correspondant a la structure considérée. Ces spectres théoriques ont été comparés avec les
spectres expérimentaux.

Le code numérique développé fonctionne sur le logiciel Matlab [Matlab, 2012] et utilise le formalisme
d’Abéles pour le calcul du champ électrique dans les systémes multicouches. Plus d'informations sur
la modélisation et les hypotheses retenues peuvent étre trouvées dans les références [Lariviére et al.,
1992; Poinsotte, 2006; Bayle, 2014].

Les spectres expérimentaux ont été acquis avec un ellipsométre SOPRA GESS dans la gamme de
longueurs d'onde de 250 a 850 nm avec un angle d'incidence de 75°. Les parametres des structures
plasmoniques obtenues a partir de la modélisation ont été comparés de manicre systématique aux
résultats extraits des observations MET. La figure 6 montre les spectres ellipsométriques obtenus par
modélisation superposés aux spectres expérimentaux sur 1’échantillon implanté E1. L.’image de MET

en vue sur la tranche correspondant a cet échantillon est également montrée.

Figure 6 (a) Spectres d’ellipsométrie mesurés expérimentalement (points) et obtenus par modélisation
(ligne rouge), et (b) images MET (champ clair) en vue sur la tranche de 1’échantillon E1 implanté.
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Les paramétres obtenus a partir de la modélisation et ceux mesurés sur les images MET sont résumés
dans le Tableau 1. Une forte particularité de 1’échantillon E1 est la présence d'un second plan de
AgNPs en profondeur de I'échantillon. Dans ce cas, les couches constitutives de la structure modélisée
sont au nombre de cing, comme représenté sur la Fig. 5. Cet échantillon témoigne de la pertinence du
modele théorique développé.

Les spectres de la figure 7 correspondent a 1’échantillon E3 déposé par plasma. La planéité de la
couche de AgNPs dans ce cas permet de générer des spectres ellipsométriques identiques a ceux
enregistrés expérimentalement. La trés 1égeére ondulation de la surface de 1'échantillon imposée par le
procédé de dépdt plasma ne conduit pas & la dépolarisation de la lumiére incidente dans toute la

gamme de longueurs d'onde.

Figure 7: (a) Spectres d'ellipsométrie expérimentaux (points) et comme obtenus a partir de la
modélisation (ligne rouge), et (b) images XS-MET en champ clair de 1’échantillon E3 (dépdt plasma).

On peut remarquer l'excellent accord entre les parameétres décrivant les deux structures plasmoniques
(E1 et E3) obtenus a partir de la modélisation des spectres ellipsométriques et ceux mesures sur les
images MET (tableau 1).

Le point commun de ces deux exemples est que leurs paramétres structurels satisfont complétement
les hypothéses du modele de Maxwell-Garnett. Les AgNPs sont de forme sphérique. Elles sont bien
alignées dans un plan et ne forment qu’une seule couche dans laquelle 1'épaisseur du milieu effectif
peut étre considérée comme égale au diamétre des AgNPs. La fraction volumique de AgNPs est
suffisamment faible pour ne pas induire une forte modification du champ électromagnétique et étre
considérée comme une perturbation.

Des tests sur d’autres échantillons montrent un excellent accord entre les spectres calculés
théoriquement et les spectres enregistrés expérimentalement lorsque les AgNPs sont quasi-sphériques

avec une fraction volumique dans la matrice hote jusqu'a 15-17%. En outre, une distribution de taille
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étroite des AgNPs est nécessaire afin de permettre la représentation de 1'épaisseur de la couche du
milieu effectif par le diametre des AgNPs. Une analyse statistique basée sur 1’excentricité des
échantillons montre qu'une valeur de 0,4 en terme d’écart a la sphéricité ne doit pas étre dépassée, afin

de rester dans le cadre de 1’approximation de Maxwell-Garnett.

Tableau 1: Paramétres décrivant les échantillons E1 and E3 obtenus par ellipsometrie et MET.

Parameters Sample E1 Sample E3
SE TEM SE TEM
Cover layer thickness - 1 (nm) 7.0 7.0+£2.0 5.0 4.7+0.5
Layer 1: thickness - tagsioo" (nm) 9.0 10.0+0.5 6.0 6.0+0.3
AgNPs size - Dagups (nm) 9.0 7.0+2.0 6.0 6.0+1.0
Volume fraction of AgNPS - fy,si0"" 0.13 0.13 0.17 0.16
Eccentricity -e, n/a 0.35 n/a 0.36
Layer 2: thickness - tAg:sm(z) (nm) 4.0 4.1+0.5 n/a n/a
AgNPs size - Dagup,” (nm) 4.0 32+09 n/a n/a
fagsion” 0.042 0.012 n/a n/a
Silica layer thickness - ts;o; (nm) 75.0 69.0+3.0 75.5 76.0 4.0
Total thickness of the structure - t,, (nm) 95.0 90.0£5.0 86.5 87.0+4.0

Nous avons ensuite testé la capacité de nos AgNPs enrobées, élaborées par LE-IBS (E1, E2) d’une
part et par le procédé plasma décrit ci-dessus d’autre part (E4, E5), a libérer des ions Ag" lorsque les
nanocomposites sont immergés dans 1'eau. Les images MET en XS et en VP de ces échantillons ainsi
que leurs distributions de tailles sont données sur la Fig. 8.

Pour I’évaluation du relargage d’Ag par nos nanocomposites, une méthode originale a été mise au
point utilisant des algues vertes comme biocapteurs. La libération d'argent a été mesurée par ICP-MS.
La toxicité a court terme des AgNPs sur la photosynthése des Chlamydomonas reinhardtii a été
étudiée en utilisant la fluorométrie. La culture de Chlamydomonas reinhardtii a été préparée selon les
modes opératoires décrits dans la référence [Le Faucheur et al., 2005]. Pour évaluer la libération
d'argent, nous avons suivi la procédure décrite suivante (Fig. 9). Dans une premiére étape, on introduit
6 ml de solution 10 mM MOPS a pH ajusté de 7,5 (eau tamponnée) dans chacun des trois flacons.
L'eau tamponnée a été préparée conformément a la procédure indiquée dans la référence [Navarro et
al., 2008]. Nous utilisons 1'un d'entre eux comme contrdle négatif. Dans le second, nous ajoutons une
quantité appropriée de sel de nitrate d'argent (AgNO;) dissous dans de l'eau pure. Ce flacon est utilisé
pour suivre les effets de la toxicité d'une quantité connue d'argent dissous (ions Ag") sur les algues.
Dans les conditions expérimentales adoptées, 'AgNO; est complétement dissocié [Navarro et al.,

2008].
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Figure 8: (a)-(d) Images XS-MET en champ clair, avec une zoom sur la partie supérieure des couches
nanocomposites et (e) - (h) images en VP des échantillons exploités pour la mesure du relargage
d'argent et distribution de taille associée.

Dans le troisiéme flacon nous ajoutons un échantillon solide avec AgNPs enrobées dans les couches
minces de silice. Afin de comparer les différents échantillons, la méme surface (4 cm?) a été utilisée.
Tous les flacons sont agités doucement a température ambiante dans I'obscurité. Afin d'améliorer la
libération d'argent, une durée d'immersion de 20 heures a été choisie, 1’essentiel du relargage d’Ag

ayant lieu pendant les 24 premieres heures d'immersion [Saulou et al., 2009].

Figure 9: Schéma montrant la procédure pour la mesure du relargage d’Ag.
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Dans une deuxiéme étape, nous enlevons I'échantillon solide de la solution et 2 ml de chaque flacon
sont extraits pour les mesures ICP-MS afin d’évaluer la quantité totale d'argent en solution. Dans une
troisiéme étape, on ajoute les algues dans les 3 ml de solution restante. Aprés une heure d'exposition,
les mesures de fluorométrie sont effectuées sur 2 ml de cette solution. Pour assurer 1'activité normale

des algues, la solution a été maintenue sous un éclairement continu.

Pour une description précise du processus de libération d'argent, nous avons introduit trois parameétres
caractéristiques des assemblées de AgNPs qui peuvent jouer un rdle important dans le relargage d’Ag”
lorsque les échantillons sont immergés en solution. Le premier est la quantité maximale d'argent dans
la couche de silice (réservoir initial d’Ag, K, exprimé en unité molaire). Le second paramétre que 1’on
peut estimer a partir de la taille et de la densité de surface des mesures est la surface totale des AgNPs,
appelé M. Enfin, le troisiéme parameétre essentiel extrait des images XS-MET est la distance / séparant
chaque AgNP de la surface de la silice libre.

Pour caractériser la dispersion spatiale dans la couche de SiO, des AgNPs nous évaluons /.., leur
distance moyenne et /" la distance la plus probable. Celle-ci est définie comme étant la distance a
laquelle le plus grand nombre de particules (7,,,) sont situés. Dans le cas des échantillons implantés,
on observe en particulier une répartition spatiale non négligeable des AgNPs dans la couche (Fig. 8 (a)

et (b)). Toutes ces valeurs sont compilées dans le tableau 2.

Tableau 2: Caractéristiques des AgNPs mesurées directement sur les images MET (taille, densité,
distance moyenne et la distance la plus probable a la surface libre) et déduites de ces valeurs (surface
totale des AgNPs, réservoir initial d’Ag). L'argent libéré mesuré par ICP-MS est également donné. Le
pourcentage se référe au réservoir Ag initial K.

Structural Characteristics Implanted samples Deposited samples
E1l E2 E4 ES
Mean size [nm] 6.1 6.5 7.9 18.5
St. Dev. of size-distribution [nm] 2.2 3.0 4.3 5.6
AgNPs surface density [10"" NPs/cm?] 104+0.7 10.1+08 { 69+04 1.7+0.2
Average distance AgNPs-free surface, /.4, [nm] 7.4 53 5.6 55
St. Dev. of the average distance, o [nm] 2.4 4.2 0.4 0.4
The most probable distance AgNPs-free surface, /" [nm] 7.5 0.5 5.5 5.5
Total AgNPs surface, M [sz] 47+0.5 54+0.5 56+0.6 57+0.6
Initial Ag reservoir, K [UM] 9+1 12+£2 1713 29+4
Released silver * [uM] 0.021 0.491 0.500 0.480
(0.2%) (4.1%) (2.9%) (1.7%)
St. Dev. of the released silver [uM] 0.008 0.053 0.075 0.053

“ La seuil de détection des mesures du relargage d’Ag par ICP-MS est de 0.003 uM.
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Les mesures de spectroscopie de masse montrent pour les échantillons déposés E4 et ES, qui
présentent une faible dispersion des distances, des valeurs similaires de /” et des valeurs similaires de
M, un relargage d’Ag identique indépendamment de leur réservoir initial, K (ES contient 74% atomes
d'Ag en plus par unité de surface par rapport a E4). D'autre part, pour les échantillons implantés, bien
que M soit multiplié¢ que par 1,15 et K par 1,3 quand on passe de E1 a E2 (tableau 2), la perte d'argent
est multipliée par 20 (de 0,2% d'Ag du réservoir initial pour E1 a 4,1% pour E2). Comme on le voit
sur la Fig. 10, la principale différence entre ces deux échantillons réside dans la valeur /” (7,5 nm dans
El, comparativement a 0,5 nm dans E2). Enfin, a partir de ces observations, on peut conclure que,
dans tous les échantillons étudiés: (i) le nombre d'atomes d’Ag disponibles dans les AgNPs est
largement suffisant et ne constitue pas un facteur limitant pour le relargage, et (ii) le paramétre clé qui

régit ce relargage est la distance /" la plus probable.

Figure 10: (a) distribution spatiale des AgNPs par rapport a la surface libre (distance /) pour chaque
échantillon; la distance la plus probable [* est indiquée; (b) réservoir initial d’Ag (barre grise) et
d'argent libéré (barre verte) pour chaque échantillon.

De manié¢re plus quantitative, la distance seuil pour le relargage est comprise entre 5,5 et 7,5 nm
puisque 1'échantillon E1 a une trés faible libération d’Ag. La libération d'argent la plus efficace est
observée pour I'échantillon E2, qui posséde la méme distance moyenne que les échantillons E4 et ES
(Lyean ~ 5,5 nm), mais un grand nombre de AgNPs plus proches de la surface libre (Fig. 10).

Les images XS-MET en champ clair (Fig. 11) montrent I'impact de 1'eau tamponnée sur 1'échantillon
E2. En comparant les images avant (Fig. 11(a)) et aprés (Fig. 11(b)) immersion dans I'eau, on observe

une diminution sensible du nombre de AgNPs touchant la surface libre.
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Figure 11: XS-MET de l'échantillon E2 et distribution des distances associée avant (a) et apres (b)
immersion dans l'eau tamponnée. (¢) Distributions de tailles des AgNPs mesurées a partir des images
en VP, avant (noir) et aprés (vert) immersion dans l'eau tamponnée.

Cela signifie que la libération d'argent est accompagnée par une dissolution partielle des AgNPs
situées pres de la surface libre. La distribution de la distance / entre AgNPs et la surface libre est
représentée graphiquement sur la Fig. 11(b) avant et aprés immersion dans I'eau. Aprés immersion, la
densité surfacique de AgNPs reste inchangée alors que la distance /” augmente de 0,5 nm a 5,5 nm.
Cela signifie que le nombre de AgNPs touchant la surface libre (/ <1 nm) diminue fortement, tandis
que celles enterrées plus profondément avec une distance 5 </ < 6 nm augmente considérablement.
Au-dela de 6 nm, la forme de la répartition de distances ne change pas de maniére significative. Ceci
montre que la distance critique au-dela de laquelle la libération d'argent est négligeable, est de 'ordre
de 6 nm. Ce résultat est en bon accord avec la distance seuil (entre 5,5 et 7,5 nm) évaluée plus haut.

En ce qui concerne la distribution de tailles mesurée a partir d'images VP-MET (Fig. 11(c)) on observe
une diminution nette de la classe de AgNPs avec une taille supéricure a 6 nm, et en méme temps une
augmentation relative des classes comprises entre 3 et 5 nm. Les deux évolutions confirment la
dissolution des plus grandes AgNPs situées a proximité de la surface libre aprés interaction avec I'eau.
La perte d’atomes d’Ag peut étre estimée a partir des images VP-MET de ces échantillons comme la
différence entre le réservoir d'Ag ("Initial Ag reservoir", 12 + 2 uM) avant et aprés immersion dans
I'eau (11 & 2 pM). Méme si la barre d'erreur cumulée sur cette mesure est importante (30%), cette
valeur est du méme ordre de grandeur que celle mesurée par ICP-MS (4,1%).

Pour mettre en évidence l'origine de la toxicité de 1’argent observée sur les algues (les ions d'argent
Ag’ et/ou des AgNPs), nous avons effectué des mesures de fluorométrie sur les solutions en présence
de cystéine, connu comme ligand d'argent solide [Navarro et al., 2008]. La complexation équimolaire
de Ag' par la cystéine a été précédemment démontrée dans des conditions expérimentales similaires
[Navarro et al, 2008; Navarro et al, 2015]. En raison des 30% d’AgNPs situés a 2 nm ou moins de la
surface de la silice libre, l'échantillon E2 est le meilleur candidat pour évaluer la source de 1'argent
libéré. La Fig. 12 représente les mesures de fluorométrie, prises 1 heure aprés l'injection d'algues,

d'une solution contenant de I'argent libéré par 1'échantillon E2 et deux quantités différentes de cystéine.
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Nous comparons les valeurs de fluorométrie obtenues sur I'échantillon E2 (triangles magenta) avec
celles d'une solution de référence contenant de I’AgNOj; avec une concentration de 0,714 £+ 0,060 uM
et différentes quantités de cystéine (cercles noirs). Les concentrations de cystéine d'environ 0,7 a
0,9 uM suppriment la toxicité pour la photosynthése des algues de Ag" (a partir d’AgNOs), ce qui
confirme a la fois le role clé des ions Ag" dans la toxicité observée pour la photosynthése des algues et
la complexation équimolaire de cystéine et de Ag" [Navarro et al., 2008; Navarro et al, 2015].
L’échantillon E2 présente une restauration partielle de la photosynthése des algues lorsque la
concentration de cystéine est d'environ 0,35 uM, ce qui indique la présence d'une plus grande quantité
d'Ag" en solution. Une nouvelle addition de cystéine (1,5 pM) abolit la toxicité pour la photosynthése
des algues, en accord avec d'autres études [Navarro et al, 2008; Navarro et al, 2015]. Ces résultats
confirment que la globalité de la toxicité de la suspension apres contact avec I'échantillon E2 est due a

la présence d’Ag’ en solution.

Figure 12: Mesures de rendement photosynthétique des algues aprés 1 heure d'exposition a l'argent
libéré par 1'échantillon E2 ou par une concentration fixe d’AgNOj; (0.714 M) et différentes quantités de
cystéine. La ligne noire retrace les quatre parameétres sous une forme logistique.

En regroupant les informations obtenues a partir des mesures de fluorométrie et des observations MET
nous pouvons conclure que l'argent libéré en solution a partir des AgNPs enterrées est sous forme
d’argent ionique.

L'architecture des échantillons utilisés dans cette étude est particuliérement bien adaptée pour
controler la libération d'argent et par conséquent la toxicité de ces couches nanocomposites. En effet,
les AgNPs enterrées sont situées a proximité de la surface libre du diélectrique et bien séparées les
unes des autres permettant ainsi de maximiser leur surface de relargage. La distance nanométrique
entre la couche de AgNPs et la surface libre, autrement dit I’épaisseur la fine couche de couverture de
silice, agit comme une barricre protégeant l'argent métallique contre un relargage rapide et/ou un

vieillissement prématuré, principalement par oxydation des AgNPs [Benzo et al., 2011].
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Cependant, pour initier la libération d’Ag" les molécules d'eau doivent arriver a la surface des AgNPs.
Les propriétés de la matrice environnante sont d'une importance capitale lorsque les structures de
nanocomposites contenant des nanoparticules métalliques sont exposées a des agents externes de
vieillissement (air, milieu aqueux, différents solvants, etc.). La libération d’Ag" se révéle étre plus
rapide lorsque la matrice hote est moins stable, comme pour une matrice amorphe oxygénée et
hydrophile a base d'hydrocarbures (a-CH:O) [K&rner et al, 2010; Drabik et al, 2015] ou les groupes
d'oxygéne fonctionnel permettent une pénétration de l'eau plus rapide. L'augmentation de
I'hydrophobie de la matrice hote, comme pour les matrices organo-siliciées amorphes (a-SiOC:H)
[Saulou et al, 2009; Beer et al, 2012; Alissawi et al, 2013], conduit a plus lente libération d’Ag"
principalement en raison du retard dans la pénétration des molécules d'eau. L'augmentation de la
stabilit¢ de la matrice par densification, comme pour les matrices de SiO, amorphes (ce travail),
permet un réglage fin de la libération d’Ag’. L'absorption de molécules d’ H,O de I'air a été étudiée
dans le cas de fines couches de SiO, implantées (moins de 10 nm) [Schmidt et al., 2002; Claverie et
al., 2006]. Le grand nombre de liaisons brisées dans les tétracdres de SiO, en raison des atomes de Si
et O déplacés au cours du processus d'implantation résulte dans des réarrangements de la structure
fondamentale au sein du réseau vitreux, dans lequel I'humidité de I'air ambiant peut étre absorbée. Les
molécules d'eau adsorbées a la surface diffusent ensuite de maniere accélérée dans la matrice
endommagée. Par conséquent, des réactions chimiques des impuretés implantées avec I'hydrogeéne et
l'oxygeéne peuvent se produire. Deux possibilités peuvent étre envisagées: soit les molécules d'eau
diffusent directement dans le réseau de SiO, endommagé par I’implantation, car H,O est une molécule
de petit diamétre (inférieur a 0,3 nm) soit les molécules d’H,O se dissocient a la surface du
diélectrique et ce sont les ions H™ et OH™ qui diffusent dans la silice. Les molécules et les complexes
riches en O sont ainsi entrainés dans les couches jusqu'a environ 10 nm en profondeur. En fait,
I'absorption et la concentration finale des molécules d'eau ne sont limitées que par le degré de
dommage, a savoir la concentration des défauts dans la matrice de SiO..

Dans le cas de la silice implantée avec de I’Ag, le recuit des couches a basse température
(400-500°C) sous atmosphére N, permet une récupération partielle des dommages causés par
I'implantation. Cette étape de recuit de la couche de silice est cependant suffisante pour éviter, ou tout
au moins retarder la pénétration des complexes riches en O, de l'air [Benzo et al., 2011]. Dans le
présent travail, nous démontrons que la silice implantée et recuite permet une forte interaction de
I’argent avec les especes réactives de I'eau jusqu'a 3 nm en profondeur. Au-dela de cette valeur, la
pénétration d'especes réactives diminue et devient négligeable a des profondeurs supérieures a 7 nm,
tel que confirmé par la faible quantité d'argent libérée de I'échantillon E1. Cette profondeur critique
peut étre comparée a la longueur de diffusion de la vapeur d'eau dans la silice, qui est de 3 nm en une
semaine [Muscat et al., 2001]. La diffusion de l'eau semble étre accélérée dans nos échantillons. Ceci
est probablement dii a la plus faible densité de la matrice de silice et a une porosité plus élevée

comparée a la silice thermique pure, en particulier pour les échantillons implantés.

XXVII



Dans las des échantillons déposés LI stabilit¢ de la matrice SiO, lors de l'exposition a l'eau est
également un processus dépendant des défauts. Elle est déterminée par la trés petite quantité de
groupes CH résiduels présents dans le réseau de la silice en raison du procédé de dépot par
polymérisation plasma. D'autres défauts structuraux dans le réseau de la silice plasma ne sont pas
exclus. Une comparaison quantitative précise de la libération Ag” pour différents types de matrices
hote est difficile d’autant plus que les caractéristiques de surface des échantillons étudiés ne sont
généralement pas rapportées dans la littérature. Cependant il semblerait que le taux de libération d’Ag”
soit le plus ¢élevé lors des premiéres 24 heures. Par ailleurs, il a été montré [Schmidt et al., 2003] que
les étapes consécutives d'interaction de l'oxygeéne et de 1’argent impliquent une physisorption initiale
de 1’0, suivie par un état ou 1’0, est moléculairement chimisorbé précédant 1’accrochage de 1’0, aux
clusters d'argent. En régle générale, la probabilité d'adsorption d'O, augmente avec la taille des
AgNPs. Ce mécanisme est toutefois pondéré par les propriétés intrinséques de la matrice de SiO,,
notamment par I'épaisseur de la couche de couverture.

En conclusion, nous avons donc mis au point une méthode originale pour évaluer le relargage d’Ag a
partir d’AgNPs enrobées dans les nanocomposites, sur la base de la toxicité de I’Ag bio-disponible sur
l'activité photosynthétique des algues. La distance des AgNPs a la surface libre du nanocomposite est
le parameétre clé affectant la libération d'argent. En fonction de cette distance, la libération d'argent
varie entre 0,2 et 4,1% de la quantité initiale d’Ag présente dans les échantillons. Les observations
MET aprés immersion indiquent que la libération d’Ag est accompagnée par la dissolution des AgNPs
qui sont situées a proximité immédiate de la surface libre alors que la densité d’AgNPs reste
inchangée. Ceci permet de conclure que ces AgNPs sont la source de l'argent libéré en solution. Les
mesures de réflectance confirment la présence d'argent métallique dans les NPs aprés immersion dans
I'eau. La toxicité de l'argent libéré par ces nanocomposites sur la photosynthése des algues est
comparable a des concentrations similaires d’Ag" libérés par un sel d’argent AgNO;. Ce résultat, ainsi
que la capacité de la cystéine pour supprimer la toxicité des suspensions expérimentales démontrent
que I’essentiel de l'argent libéré par les nanocomposites est sous forme d’Ag’. Pour la libération
d'argent ionique, le contact avec les molécules d'eau est nécessaire, cette étape étant fortement
dépendante des propriétés de la matrice.

Nos résultats montrent une approche physique pour moduler l'activité des surfaces d’argent
nanostructurées. Ces nanocomposites sont donc de bons candidats comme revétements pour inhiber le
développement de films microbiens sur des surfaces solides. En outre, en couplant les propriétés
bactéricides de ces AgNPs enterrées et leur qualité d'antenne plasmonique, ces revétements peuvent
étre utilisés pour détecter et empécher les premiers stades de formation de biofilms. De plus en plus,
I'adhésion microbienne et la formation de biofilms provoquent des complications majeures dans le
domaine biomédical et dans l'industrie alimentaire. Nous avons démontré dans une premiére partie de
ce travail que la premiere condition nécessaire pour la fabrication de nanocomposites a propriétés anti-

microbiennes est remplie. En effet, nos AgNPs enterrées dans la silice sont capables de libérer des ions
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Ag et nous pouvons moduler ce relargage en jouant avec la distance des AgNPs et la surface libre
dié¢lectrique, en d'autres termes avec 1'épaisseur de la couche de couverture en silice.

Dans ce contexte et fondé sur des modifications observées précédemment de la structure des protéines
induites par le contact des AgNPs avec des micro-organismes I'étape suivante concerne la
caractérisation physico-chimique de cette interaction. Ainsi la protéine fluorescente Discosoma rouge
(DsRed) a été utilisée en raison de ses propriétés fluorescentes trés prometteuses pour des applications
en biotechnologie et en biologie cellulaire.

Une variété de techniques expérimentales ont été utilisées pour accéder et évaluer les propriétés
structurales des protéines adsorbées sur des surfaces solides menant & la formulation d'un certain
nombre de tendances communes [Arai et Norde, 1990; Matz et al., 1999; Baird et al., 2000; Vrzheshch
et al., 2000; Wall et al., 2000; Larsericsdotter et al., 2005; Vo-Dinh, 2005; Barth, 2007; Hughes, 2012;
Jachimska et Pajor, 2012]. Il est ainsi généralement admis que les protéines ayant une forte cohérence
interne vont s’adsorber sur des surfaces hydrophobes. Au contraire, l'attraction électrostatique est
nécessaire pour leur adsorption sur des surfaces hydrophiles. En revanche, les protéines a stabilité
structurelle beaucoup plus faible vont s’adsorber librement sur les deux surfaces hydrophobes et
hydrophiles, méme dans des conditions défavorables, comme c’est le cas des surfaces hydrophiles
¢lectrostatiquement répulsives.

Nous nous sommes donc intéressés au comportement des protéines DsRed et aux mécanismes sous-
jacents en terme de stabilité et d'adsorption sur des surfaces de silice « nues » puis contenant des
AgNPs enterrées. Par ailleurs, ces mémes AgNPs enterrées prés de la surface libre d’une couche anti-
reflet en SiO, peuvent étre utilisées pour la détection de substances chimiques sur leurs surfaces
[Carles et al., 2011]. Dans ce contexte, nous illustrons les résultats préliminaires d’un effet SERS
observé sur la protéine DsRed déposée sur nos substrats nanocomposites.

Quand une gouttelette contenant une concentration donnée de protéines est amenée en contact avec
une surface solide, l'organisation et le comportement des protéines reposent principalement sur
I'hystérésis de I'angle de contact aux interfaces solide-vapeur et liquide-vapeur. La figure 13 montre le
comportement lors de la déshydratation de DsRed pour différentes concentrations de protéine. La
décroissance linéaire au cours du temps de l'angle de contact est observée pour toutes les
concentrations de DsRed étudiées. La déshydratation des gouttelettes est plus rapide pour les faibles
concentrations de DsRed (jusqu'a 0,1 g/L). Cet effet est li¢ a la grande variation de I'énergie de surface
du profil de gouttelettes a proximité du point triple (solide-liquide-vapeur) et aux mécanismes
d'adsorption des protéines induits par la convection du liquide a l'intérieur de la gouttelette (effet

Marangoni).
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Figure. 13: Mesure des angles de contact a 23°C en fonction du temps au cours de la déshydratation de
gouttes sessiles pour différentes concentrations de DsRed.

Comme on le voit dans le tableau 3, toutes les valeurs caractéristiques des gouttelettes sont augmentées

lorsque la concentration de la DsRed est plus grande.

Tableau 3: Dynamiques de la déshydration des gouttes sessiles.

DsRed . Optical image after Dehydrated
(/L) Droplet image at s Contact angle -0, dehydration sessile droplet”
Control pH=7.0 el / /
ontro =7. n/a n/a
P A £0.1°
d=2.8 mm,;
65.4° e =20 nm,;
0.05 +0.2° I =46 um:;
h=0.6 um
d=2.8 mm,;
65.5° e =30 nm;
0.10 +1.6° [=67 pm;
h=1.4pm
d=2.7 mm,;
73.7° e =30 nm,;
0.25 +1.5° /=84 pm;
h=3.0 um
d=2.6 mm;
72.0° e =60 nm;
1.00 +2.7° /=200 pm;
h=5.2pm

“ Les caractéristiques de la gouttelette de DsRed aprés déshydratation sont les suivantes: "d" est le diamétre de
la gouttelette; "e" est I'épaisseur de la gouttelette mesurée a l'intérieur de la gouttelette, juste avant I’anneau de
la gouttelette; "l" est la largeur de l'anneau de la gouttelette; et "h" est la hauteur de l'anneau de gouttelette.
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Cela signifie que la DsRed s’adsorbe sur l'ensemble de la zone couverte par la gouttelette avec dépot
préférentiel pres de la ligne triple, a savoir a la frontiére des gouttelettes. L'épaisseur de la couche de DsRed
adsorbée sur des surfaces solides peut-étre finement contrélée par la concentration en protéines.

Les spectres de photoluminescence obtenus sont présentés sur la Fig. 14. L’intensité de 1’émission de
photoluminescence augmente lorsqu’augmente la concentration de DsRed. Cependant, cette variation
n’est pas linéaire trés probablement due a des phénoménes de "quenching" (Fig. 14, encart). La bande
d'émission de photoluminescence présente un pic a 590 nm. Le 1éger décalage vers le rouge par rapport a
I'émission de la DsRed en solution peut étre attribué a des effets de conformation et d'interaction de la
DsRed avec la couche mince de silice. L’analyse physico-chimique des interactions de la protéine
fluorescente rouge DsRed avec des surfaces de SiO, thermique montre que I'épaisseur de la couche
adsorbée peut étre ajustée finement par la concentration en protéines. Les angles de contact mesurés a
partir de trés petites gouttelettes sessiles contenant différentes concentrations de DsRed montrent que
l'interaction est hydrophile. Les protéines DsRed semblent stables aux variations de pH. L'adsorption
de DsRed sur les surfaces de SiO, et les processus de déshydratation suivants ne conduisent pas a la
dénaturation des protéines. Le pic d'émission de photoluminescence des protéines DsRed déshydratées
adsorbées sur des couches de SiO; est situé¢ a 590 nm, ce qui est légérement décalé vers le rouge par

rapport a la valeur mesurée pour une solution (583 nm).

Figure 14. Spectres de photoluminescence des gouttelettes déshydratées de DsRed adsorbées sur la
surface de SiO, pour différentes concentrations a pH = 7.0 et 23°C. L'encart représente l'intensité
intégrée du pic de photoluminescence en fonction de la concentration de DsRed.

L'interaction des protéines avec nos substrats nanocomposites contenant les AgNPs présente un
caractére hydrophobe (6 > 90°). Le tableau 4 montre les caractéristiques morphologiques obtenues
pour deux concentrations de DsRed (0,1 et 0,25 g/L). Les gouttelettes s’étalent et atteignent leur
diamétre maximal immédiatement. Aprés séchage des gouttelettes sur le substrat, 1'aspect visuel du

dépodt des gouttelettes est plus homogene lorsque la teneur en Ag augmente (tableau III). En outre, les
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substrats Ag nanocomposites élaborés par procédé plasma présentent des angles de contact supérieurs
(120°) a ceux élaborées par LE-IBS (90°). Cela influe sur le diamétre final de la goutte sessile avec

une réduction de son diamétre lorsque 1'angle de contact augmente (tableau 4).

Tableau 4: Caractéristiques des gouttelettes de DsRed déposées sur les échantillons E2 et ES, pour des
concentrations comprises entre 0.1 et 0.25 g/L. a pH = 7.0 et 23°C.

Elaboration DsRed Droplet Contact angle - Optical image Dehyd.rated
process (/L) image 0 after sessile
& at Is A dehydration droplet
0.10 ‘ 91.8° d=2.4mm
LE-IBS
(E2)
0.25 ‘ 89.7° d=2.4mm
117.8° d=1.7 mm
deposited
samples
(ES)
095 120.8 d=1.8 mm

La figure 15 présente les spectres Raman de la DsRed obtenus en utilisant deux substrats différents
(E2 et ES). Un spectre théorique de la DsRed a été utilisé comme référence pour déterminer la
signature de la protéine. Les fréquences de vibration caractéristiques des liaisons moléculaires DsRed
correspondent aux positions de la bande dans le spectre Raman.

Un effet SERS sur la protéine DsRed est observé pour I'échantillon E5 élaboré par procédé plasma. En
particulier, un effet de clignotement est observé, ce qui correspond a des variations d'intensité des
différents pics Raman. Ceci est dii aux changements et aux fluctuations de I'orientation moléculaire et
la conformation de la protéine DsRed sous I'excitation laser (532 nm). Au contraire, le signal Raman
est faible lorsque les protéines DsRed sont déposées sur 'échantillon élaboré par LE-IBS (E2) et le
phénoméne de "clignotement" n’est pas détecté. La différence de comportement entre ces deux
échantillons peut étre attribuée a plusieurs facteurs: (i) la fraction la plus élevée de la surface de
AgNPs pour 'échantillon ES conduisant a une forte concentration de points chauds, (ii) 'effet de la

rugosité de surface, qui permet le piégeage des protéines dans les vallées entre deux NPs.
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Figure 15: Spectres Ramans obtenus en excitant avec un laser a une longueur d'onde d'excitation de
532 nm lorsque les protéines Dsred sont déposées sur les substrats E2 (a) et E5 (b).

En conclusion de ce travail de these, les objectifs de cette thése étaient de fabriquer des
nanocomposites multifonctionnels a base de nanoparticules d'Ag enrobées dans des diélectriques a
libération controlée de 1’agent antibactérien. Ces revétements innovants devraient permettre a la fois
de cibler le type de micro-organisme a combattre et de délivrer la juste dose pour son inhibition, tout
en préservant la microflore environnante. Pour atteindre ces objectifs, nous avons proposé d'utiliser la
multifonctionnalité de nanoparticules d'Ag, qui sont a la fois (i) des antennes plasmoniques permettant
d’exalter les signaux optiques et de détecter l'interaction avec les micro-organismes et (ii) des
réservoirs d'ions connus pour leurs propriétés antibactériennes. Afin de stabiliser les nanoparticules et
contrdler la dose toxique (i.e., la concentration en ions Ag’ libérés) les AgNPs ont été incorporées
dans des matrices dié¢lectriques et positionnées a des distances variables de la surface du substrat, sur

lequel les micro-organismes adhérent.

Des couches de silice contenant des AgNPs ont été fabriquées par deux procédés trés différents, mais
complémentaires: (i) Synthése par implantation ionique a basse énergie et (ii) Pulvérisation plasma
d’Ag combinée a la polymérisation. Ces techniques permettent 1'élaboration d’un plan unique de
AgNPs enterrées dans des films de silice, a des distances nanométriques définies (0-7 nm) au-dessous
de la surface libre du diélectrique. En ce qui concerne la technique de dépot, spécialement développée
dans ce travail de thése, nous avons montré comment les parameétres clés des nanostructures enrobées
(taille, densité, distance a la surface) peuvent étre controlés en modifiant les conditions d'élaboration
combinant pulvérisation d'argent et polymérisation plasma. Ces deux techniques offrent la possibilité
d'explorer différentes distributions de taille, densités surfacique, et en particulier différentes distances
de ce plan de NPs a la surface libre. Les propriétés structurales et optiques de ces nanocomposites ont
été étudiées par microscopie €lectronique a transmission, spectroscopie de réflexion et ellipsométrie.

Cette dernicére technique, associée a une modélisation basée sur l'approximation quasi-statique du
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formalisme classique de Maxwell-Garnett s’est révélée étre une technique efficace de diagnostic pour

la détection de petites variations dans la taille et la densité des AgNPs.

Afin d'évaluer la capacité des AgNPs enrobées dans des diélectriques pour libérer des quantités
contrdlées d'ions Ag, nous avons mis au point une méthode originale, ou I'évaluation de la dose et de
l'activité biocide de lion Ag' a été testée en utilisant un systéme modele eucaryote, les
Chlamydomonas reinhardtii. Le systéme photosynthétique de ces algues vertes a été utilisé comme
biocapteur sensible et fiable pour détecter I'argent ionique bio-disponible en solution. La distance des
AgNPs a la surface libre du nanocomposite est le parametre clé affectant la libération d'argent. En
fonction de cette distance, la libération d'argent varie entre 0,2 et 4,1% de la quantité d'Ag initialement
présente dans les échantillons. Les observations MET aprés immersion indiquent que la libération
d’Ag est accompagnée par la dissolution des AgNPs qui sont situées a proximité immeédiate de la
surface libre alors que la densité de AgNPs reste inchangée, suggérant que ces AgNPs sont la source
de l'argent libéré en solution. La toxicité de 'argent libéré par ces nanocomposites sur la photosynthese
des algues est comparable a des concentrations similaires a celle du sel d’argent. Ce résultat, ainsi que
la capacité de la cystéine a abolir la toxicité des suspensions expérimentales, démontre que 1’essentiel
de I’argent relargué par ces nanocomposites est sous la forme d'Ag’, excluant ainsi I'implication de
AgNPs directement relarguées. Pour la libération de I’argent ionique, le contact avec les molécules
d'eau est nécessaire, cette étape étant fortement dépendante des propriétés de la matrice. Nos résultats
montrent une approche physique pour moduler 'activité des surfaces nanostructurées d’argent. Ces
nanocomposites sont donc de bons candidats comme revétements pour inhiber le développement

microbien de films sur des surfaces solides.

Pour aller plus loin dans cette voie, 1'analyse physico-chimique des interactions de la protéine
fluorescente rouge (DsRed) avec des surfaces de SiO, thermique a été réalisée visant & mieux
comprendre la stabilité structurale des protéines DsRed et leur comportement d'adsorption. Les
caractéristiques obtenues sur des gouttelettes de DsRed déshydratées montrent que 1'épaisseur de la
couche adsorbée sur des surfaces solides peut étre modulée finement par le biais de la concentration en
protéines. Les angles de contact mesurés sur de trés petites gouttelettes contenant différentes
concentrations de protéines DsRed montrent une interaction de type hydrophile, mais avec de plus
grands angles de contact pour de plus grandes concentrations DsRed. L'adsorption de DsRed sur les
surfaces SiO, et les processus de déshydratation suivants ne conduisent pas a la dénaturation des
protéines. L'émission de photoluminescence des protéines DsRed déshydratées adsorbées sur des
couches de SiO, est conservée avec un pic caractéristique de la DsRed situé¢ a 590 nm, ce qui est
légeérement décalé vers le rouge par rapport a la valeur indiquée pour une solution. Enfin, des résultats
préliminaires montrent un effet SERS pour les protéines DsRed déposées sur nos AgNPs enrobées en
particulier pour I'échantillon élaboré par procédé plasma présentant la fraction surfacique de AgNPs la

plus élevée, et des NPs situées a 5 nm de la surface conforme du diélectrique. Ce résultat préliminaire
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nous encourage a poursuivre dans l'avenir avec l'optimisation des conditions d'élaboration afin
d'obtenir un effet SERS encore plus prononcé. Pour les échantillons déposés, ou un réseau 2D des
AgNPs de taille moyen environ 20 nm et superiore est obtenu, l'influence de la densité/porosité de la
couche de couverture sera par exemple étudiée. En ce qui concerne les échantillons élaborés par LE-
IBS, le module basse température qui sera disponible au CEMES trés prochainement, devrait
permettre 'insertion dans la matrice d'une plus grande quantité d’Ag en supprimant sa diffusion vers la
surface pendant le processus d'implantation. Des réseaux 2D percolés de AgNPs devraient étre donc

formés au cours du recuit post-implantation.

A court terme, la prochaine étape sera maintenant d'utiliser ces nanocomposites anti-bactériens dans
des «conditions réelles» pour traiter la prolifération de micro-organismes, par exemple Candida
Albicans TP48.72, qui peuvent coloniser les surfaces des instruments chirurgicaux, les dispositifs
implantables (prothéses, stents) ou percutanés (cathéter) et les murs des salles d'interventions dans les

hopitaux. Cette étude sera réalisée en collaboration avec le LGC a Toulouse.

En paralléle, il serait intéressant d'effectuer une étude approfondie des mécanismes de libération des
ions Ag et de leur diffusion a travers la couche mince de silice. Des expériences dédi¢es seront menées
afin de mieux comprendre le relargage des ions Ag aprés immersion dans l'eau, impliquant FTIR,
XPS, STEM-EELS et EDX. Elles devraient mettre en évidence la présence éventuelle d’une fine
coquille d’Ag,0O entourant les AgNPs. L'effet sur la libération des ions Ag de la densité (porosité) de
la couche de couverture sera également exploré. La modélisation a 1'échelle atomique du processus de
libération des ions Ag pour des NPs enrobées dans de la silice et de la diffusion de ces ions dans la
matrice devrait permettre de mieux appréhender les mécanismes réactionnels et les forces motrices

impliquées dans le relargage.

A plus long terme, ce type d'étude approfondie des propriétés des matériaux nanocomposites et de
l'interaction des nanoparticules métalliques avec des molécules biologiques (protéines et cellules) est
trés demandé pour mieux appréhender les principaux effets causés par ces matériaux ainsi que leurs
effets secondaires. L'application généralisée des nanocomposites & base de AgNPs dans les produits de
consommation de la vie quotidienne devrait inciter les acteurs de la recherche et les industriels a
mieux évaluer les avantages de ce type de matériau versus les éventuels risques de santé et
environnementaux. Ce genre d'étude multidisciplinaire sur l'ingénierie rationnelle de matériaux

nanocomposites multifonctionnels s’inscrit ainsi dans une démarche de type "safe-by-design".

XXXVI



Introduction

In the last twenty years there has been a rapid increase in the development, production and application
of engineered nanomaterials, which are currently playing a growing role in many fields, including
consumer products related to various sectors: health, cosmetology, agriculture, food, environment,
communication, transport and energy [Peralta-Videa et al., 2011]. Especially, nanomaterials might
provide solutions to technological challenges in the areas of solar energy conversion, catalysis,
medicine, water, and air treatment for purification purposes [Sharma et al., 2009]. It is largely
accepted that the nanoscale materials have emerged up owing to their high surface area to volume ratio
and their unique chemical and physical properties. In particular, in the time of fast development and
application of nanocomposite containing customer products, it is highly demanded to develop a new
class of nanocomposites based on nanosized metal and/or metal oxide inclusions in dielectric matrices.
The most frequently given example about metallic nanoparticles and their large use in the industrial
applications, and the only one discussed here, concerns silver nanoparticles (AgNPs). The AgNPs are
well known above all for their plasmonic properties. Indeed, they realize the best nanoscale antenna in
the visible range for amplifying local electronic and vibrational signals, providing unique molecular
information in the optical far-field regime. In the field of scientific research, two main spectroscopies
have emerged based on Localized Surface Plasmon Resonance (LSPR) and Surface-Enhanced Raman
Scattering (SERS). Since its discovery in 1974 on pyridine molecules adsorbed on rough silver
surfaces [Fleischmann, 1974], SERS has received a great deal of attention as a powerful analytical
technique for molecular spectroscopy, biomolecular recognition and ultra-sensitive detection (down to
a single molecule). However, the limitation in fabricating SERS substrates remains a major drawback
for potential applications.

Nevertheless, most of the applications of AgNPs rely on their chemical activity. The AgNPs have
indeed proved the largest antimicrobial efficiency against bacteria, viruses and other eukaryotic micro-
organisms. They are now present in an expanding range of industrial products [Silver et al., 2006; Le
Ouay and Stellacci, 2015]. “Nano-silver” is even a trademark name (Samsung Company, 2003).
AgNPs are used as a new generation of antimicrobials in refrigerators, air conditioners, computers
keyboards, etc. [Rai et al., 2009] They are also exploited for their antimicrobial properties to prevent
of algal fouling [Russell and Hugo, 1994]. Although some of these effects are known since Antiquity,
and the number of industries using AgNPs in their products is rapidly increasing nowadays, the exact
mechanisms at molecular level are still poorly understood. In general, the antibacterial activity and
toxicity of AgNPs is reported in terms of a dose, which should be respected for the purpose of drawing
benefits rather than suffering hazards. It seems more objective to consider the beneficial effects of

these products to prevent microbial contamination versus their potentially toxic risks. Nevertheless,



knowledge on the causes and the consequences provoked by the AgNPs is strongly required in order to
completely reveal the potentialities of using these nanocomposite materials.

One of the most widespread applications of AgNPs based nanocomposites is the antibacterial coating.
It is generally acknowledged that the microbial adhesion represents a major complication for all
biomedical applications. To inhibit the development of biofilm on a surface, one possibility is to use
coatings containing an antibacterial agent as AgNPs, which are excellent candidates for supporting
simultaneously high antibacterial efficiency and huge enhancement of vibrational and luminescent
signals originating from molecules located in their vicinity. We would like to exploit this ambivalence
by means of specific dielectric layers containing AgNPs.

The objectives of this PhD work is to develop multifunctional nanocomposites based on Ag
nanoparticles embedded in dielectric allowing controlled release of the antibacterial agent. This should
allow both to target the type of microorganism to fight and to deliver it the right dose for its inhibition,
while preserving the surrounding microflora. To achieve these objectives we propose to use the
multifunctionality of Ag nanoparticles, which are both plasmonic antennas for detecting interaction
with microorganisms and ion reservoirs known for their antibacterial properties. In order to stabilize
the nanoparticles and control the toxic dose (i.e. the released Ag' ion concentration) the AgNPs will be
embedded in dielectric matrices. Ag nanoparticles with adjusted size and density will be positioned at
varying distances from the surface of the substrate, on which microorganisms will adhere. These
different degrees of freedom provide precise control of the amount of Ag" released.

To achieve these objectives, two prerequisite steps are requested:

(1) To assess the ability of the AgNPs embedded in dielectrics to release controlled amounts of
ionic Ag (Ag") and/or AgNPs, both responsible of the biocide effect. This point is the core of
this work. The originality of our approach is here twofold. First, it is based on rational
engineering of these AgNPs based nanocomposites: the nanoparticles are embedded in dielectric
matrices which will allow fine control over the Ag release by controlling the NPs structural
characteristics. Second, the Ag release will be evaluated by an original method using green
algae as biosensors. Hence, the short-term toxicity of AgNPs to photosynthesis in
Chlamydomonas reinhardtii will be studied using fluorometry and the silver release will be
measured through inductively coupled plasma mass spectrometry.

(ii)) To perform a detailed analysis of the localization and interactions of molecules and proteins
deposited on the surface of these substrates containing buried AgNPs by using enhanced optical
imaging and molecular spectroscopies. This step will be just touched in the last chapter of

this manuscript.

This work, performed in co-direction between CEMES and LAPLACE, is at the interface between

material science and biology.



Chapter I gathers the state-of-the-art of the different facets that constitute this work: the elaboration
of Ag based nanocomposites using physical methods, the interaction of AgNPs with their environment
(air and water), the biological activity of AgNPs and their particular optical (plasmonics) properties.
The main experimental (elaboration and characterization) techniques used during this PhD work are
described in Chapter II.

Two physical approaches were used to elaborate these nanocomposites: (i) Low Energy Ion Beam
Synthesis (LE-IBS) and (ii) combined silver sputtering and plasma polymerization. These techniques
allow elaboration of a single layer of AgNPs embedded in silica films at defined nanometer distances
(from 0 to 7 nm) beneath the free surface. The first technique (LE-IBS of AgNPs embedded in silica
layers) has been developed at CEMES in a previous work [Carles et al., 2009; Benzo et al., 2013] but
the amount of Ag that can be introduced in the dielectric is limited, limiting hence the size, density and
surface fraction of the formed AgNPs. For this reason, a complementary technique based on plasma
deposition has been developed in this work at LAPLACE and is presented in Chapter III.

The structural properties and optical of the nanocomposites were studied by transmission electron
microscopy, reflectance spectroscopy and ellipsometry. This last technique, coupled to modelling
based on the quasi-static approximation of the classical Maxwell-Garnett formalism, allowed detecting
small variations in the size and density of AgNPs. The potentiality of this technique for characterizing
our system is treated in Chapter IV.

Chapter V is the core of this work and is focused on the ability of our embedded AgNPs to release
Ag" ions when submersed in water. For this assessment, an original method, implying green algae as
biosensors was employed. This work has been performed at Instituto Pirenaico de Ecologia (IPE-
CSIC) laboratory in Zaragoza (Spain) during 2 stays of one month each.

The last part of this work, described in Chapter VI is dedicated to the study of the structural stability
and adsorption properties of Discosoma Red (DsRed) fluorescent proteins on these dielectric surfaces.
This work has been performed in close collaboration with Laboratoire de Génie Chimique (LGC) in

Toulouse.






Chapter I: State of the Art

1. Introduction: bactericide activity of silver and “nanosilver”

Silver species (salt, powder, nanoparticles, etc.), even in low concentration, possess very high activity
(that is, the capacity to disturb cell biochemical processes) against a broad range of microbes
(antibacterial [Sondi and Salopek-Sondi, 2004], antifungal [Panacek et al., 2006], antiviral
[Elechiguerra et al., 2005a] capabilities) and parasites, yet presenting very little systemic toxicity
toward humans [Rai et al., 2009; Schrofel et al., 2014]. This harmful effect is mainly due to the
interaction between cells and Ag’, which are released in aqueous media from silver structures [Liu and
Hurt, 2010]. In particular ionic Ag (Ag") is a soft Lewis acid that has affinity to sulphur, but also to
nitrogen. Thereby, there are many possibilities for the Ag’ to disturb biochemical processes of cell,
e.g. interacting with thiol (-SH) and amino groups (—NH,) of proteins, with nucleic acids, with cell
wall, and with internal cell components (plasma membrane, DNA, ribosome, protein, enzyme)
[McDonnell and Russell, 1999; Chernousova and Epple, 2013]. These multifaceted bactericidal
mechanisms acting in synergy to perturb a broad range of targets in the cell metabolism are the key to
low microbial resistance rates observed towards elemental silver. In fact, the microorganisms would

have to develop a host of simultaneous mutations to protect themselves from this type of attacks.

1.1 History of silver use in human life

The antimicrobial properties of silver in the form of different silver compound, i.e. metallic silver or
silver salt, are known to successfully fight infections and prevent spoilage since time immemorial. For
example, going as far back as to the ancient Greece and Rome the antimicrobial property of silver was
exploited by using Ag pots, vessels and coins to keep water sterile [Brett, 2006, Silver et al., 2006].
This particular application is preserved even today. The ionic silver is currently used for purifying and
storing water on the space shuttle fleet and international space station [Barillo and Marx, 2014].
Further, since the seventeenth century by varying the concentration of Ag compounds, i.e. silver
nitrate (AgNO;) or silver sulfadiazine (C,o0HsAgN4O,S), Ag compounds have been applied for the
treatment of burns, chronic wounds and several bacterial infections [Klasen, 2000; Castellano et al.,
2007; Rai et al., 2009; Barillo and Marx, 2014]. The discovery of penicillin by Alexander Fleming in
1929 and the consecutive emergence of several antibiotics in 1940, made that the use of silver
compounds has been minimized for the treatment of bacterial infections. The recent development of
antibiotic-resistant microorganisms was prompting to the clinicians to return their attention to silver
wound dressings containing various levels of silver amount [McDonnell and Russell, 1999; Chopra,
2007]. In the present scenario, Ag nanoparticles (AgNPs) sometimes called “nano-silver”, have

emerged up as innovative and powerful antimicrobial agents with high efficacy owing to their high



surface area to volume ratio, possessing high thermal stability and low volatility, and maintaining most
importantly lower toxicity to humans [Foldbjerg and Autrup, 2013; Barillo and Marx, 2014]. Besides,
AgNPs can release continuously a quite high concentration of ions over a long time. Beyond the
highly efficient Ag' reservoir, AgNPs have intrinsic antibacterial properties that do not depend on the
elution of Ag". In fact, the AgNPs can induce the production of Reactive Oxygen Species (ROS), such

as oxygen superoxide O, that can potentially be formed at the surface of the AgNPs inside the cell or

directly can damage and penetrate the cell wall and plasma membrane [Schrofel et al., 2014]. To

illustrate these processes some examples will be given in section 5 of this chapter.

1.2 Recent applications of Ag compounds and AgNPs as antimicrobial agent

In medicine the Ag compounds and “nano-silver” are exploited in diverse forms ranging from silver
based dressings, burn treatment, wound dressings, dental materials, AgNPs impregnated textile
fabrics, silver coated medicinal devices, etc. [Duran et al., 2007; Rai et al., 2009]. Different examples
of the usefulness for human health of both Ag compounds and AgNPs are presented in figure 1.1
[Chaloupka et al., 2010]. Beyond the known antibacterial effects, there are also recent evidences that
AgNPs possess a potential anti-inflammatory [Nadworny et al., 2008] and anti-tumor [Ortega et al.,
2015] effects and, they can accelerate wound healing [Tian et al., 2007; Sundaramoorthi et al., 2009].

Figure 1.1: Uses of Ag compounds (right-hand side) and AgNPs (left-hand side) in medicine for
human health. From [Chaloupka et al., 2010].



In food industry and consumer products “nano-silver” has been integrated into various materials to
inhibit the growth of microorganisms. This is useful for food industry to preserve the aliments within
longer time (spoilage control). Some examples in the food domain can be found in food packaging or
for refrigerator surfaces [Chaudhry et al., 2008]. In consumer area, i.e. water or air quality and
personal healthcare, AgNPs are applied inside water or air filters for disinfection, or to elaborate
antimicrobial surfaces of electronic appliances, to product odor-resistant textile fabrics and cosmetic
products such as deodorants [Rai et al., 2009].

Because of their antimicrobial properties, the AgNPs have the potential of impacting on human and
environmental health. These issues have been addressed by no less than 25 reviews during the period
2008-2015 [Hansen and Baun, 2012; Reidy et al., 2013; Haider and Kang, 2015; Le Ouay and
Stellacci, 2015]. The development of reliable diagnostic methods for evaluating the biological activity
of AgNPs, and to disentangle the contribution of the silver ions and silver nanoparticles to the whole
antibacterial effect of AgNPs [Agnihotri et al., 2013], would be an asset for the appropriate design and
use of silver-based nanotechnologies. The modulation of the silver ion release from AgNPs would
eventually allow the release of the appropriate dose of Ag’ for biomedical uses and the environmental
protection [Liu et al., 2010; Sabella et al., 2014]. One of the methods for controlling the Ag release
from AgNPs is their inclusion in nanocomposites. The host matrices can stabilize AgNPs and at the
same time allow a controlled release of ionic silver to inhibit the microbial colonization and biofilms
formation in biological and medical applications [Despax et al., 2011; Beer et al., 2012; Alissawi et
al., 2013]. In this PhD thesis, two physical approaches were applied to elaborate the nanocomposite
structures: (i) low energy ion beam synthesis and (ii) combined silver sputtering and plasma
polymerization. These techniques allow fabricating of a single layer of AgNPs embedded in thin silica
films at controlled nanometric distance beneath the free surface. The physical principles of these two
elaboration techniques are described in section 2 and 3 of this chapter. The biological activity of
AgNPs being closely related to ionic Ag (Ag") activity, the way that the AgNPs interact with the
environment (air and water) and give rise to this Ag™ release will be discussed in section 4. The
biocide properties of AgNPs and the way they interact with micro-organisms will be described in
section 5. At last, in section 6, another facet of AgNPs, i.e. their particular optical properties, that have
lead in the 2000’s to the emergence of a growing thematic called “plasmonics” [Maier et al., 2001]

will be described.

2. Ion Beam synthesis (IBS) of AgNPs in silica matrix

2.1. Principles of Ion Beam Synthesis of nanostructures
Nanostructure formation by means of ion beam synthesis (IBS) has now been studied for many years,
but has not lost its initial appeal. With the combined use of ion-solid interactions that lead to far-form-

equilibrium states and thermodynamic processes through which these could relax toward equilibrium,



tiny nanostructures of controlled composition can be formed in virtually any matrix. By now literature
contains a wealth of publications on different ion-matrix combinations that potentially might trigger
applications of these novel nanoscale materials. A review of various dielectrics with implanted silver
nanoparticles can be found in references [Stepanov, 2010; Stepanov et al., 2013]. The basics principles
of ion implantation are described in Chapter II.

Phenomenologically, IBS can be divided into several stages, described below.

2.1.1 Accumulation and supersaturation

After ions have been slowed down by electronic and nuclear stopping to thermal energy, they are
incorporated into the target material. Thermal activation at common implantation temperatures is
usually too low to allow for impurity diffusion over larger length scales. The impurity distribution
remains frozen in, especially at low impurity concentrations. This is the case for low diffusing species
as of Si* implanted at high doses into SiO, matrices [Bonafos et al., 2004; Bonafos et al., 2012]. This

is not the case for fast diffusing species as Ag” implanted in SiO,, as we will see in the following.

2.1.2 Nucleation or early phase separation
In high dose implantation, nucleation of NPs can be encountered during implantation and/or during a

post-implantation heat treatment. For a given ion-substrate system, the primary nucleation stage can

roughly be classified with respect to the diffusion length Ly, = /2Dyt of impurity monomers during

implantation, with t = ¢,/ j the implantation time (¢, being the nominal fluence or dose and j the ion
flux) and Dy the diffusion coefficient of the implanted species in the matrix. Furthermore, the local
accumulation of impurities is function of the ratio j / Dy Different scenario can be proposed

depending on the comparison of Ly with the two following characteristics distances [Strobel, 1999]:

Ii, which is the radius of the hypothetical sphere defined by (4/3) zR*C(¢) <i” (T(¢) denotes

the averaged local concentration after a fluence ¢ has been implanted and i” the number of atoms
in the critical nucleus).

— 4R, which corresponds to the width of the implanted profile. The ions species are indeed
distributed into the matrix according to a Gaussian law around the mean projected range R, with a

mean square deviation given by AR, (see Chapter II).

() Ly <R: this condition states that thermal fluctuation do not initiate nucleation during the

implantation process. A thermal treatment is necessary for the phase separation. This is the case of Si
or Ge implantation in SiO, at room temperature [Bonafos et al., 2004; Bonafos et al., 2012]. Upon
annealing thermal fluctuations could initiate phase separation through the (homogeneous) nucleation

of precipitates.



(i) Lyg =~4R, > R : nucleation starts during implantation when the monomer concentration exceeds

the nucleation threshold. Due to the implantation profile, the first stable precipitates appear close to Ry,
the projected range of the implantation profile. Since the concentration increase is proportional to the
implanted profile, a larger supersaturation is reached in the centre of the profile than in the tails.
Accordingly, the critical NP size is supposed to increase in the centre to the tails. In the course of
implantation, the nucleation region spreads outside, whereas behind the nucleation front, the growth
stage sets in. In this case, the NPs are formed essentially across the whole deposition range with a

density roughly proportional to the impurity profile.
(iii) Ly >> 4R, > R : the resulting monomer fluxes prevent spreading of the nucleation region across

the profile, because in the tails the critical monomer concentration will not be exceeded. Therefore, the

nucleation region is restricted close to R,.

Implantation modes (ii) and (iii) are usually met for metal implantation into insulators. These
processes are named “lon Beam Direct Synthesis”. This is in particular the case for Ag® implanted in
SiO, for which the high diffusion coefficient allows for the NPs nucleation during the implantation
process itself [Carles et al., 2009; Stepanov, 2010]. In the case of low energy ion implantation of Ag*
(typically less than 10 keV), the implantation profiles are so narrow that the NPs form a plane (delta-
layer) located at R, [Carles et al., 2009; Benzo et al., 2013].

2.1.3 Growth processes

Nucleation can be followed by 3 growth regimes.

Pure growth: Second phase precipitates formed by nucleation grow as long as the local monomer
concentration is above the equilibrium concentration of these precipitates. All precipitates grow on the

expense of the reservoir of dissolved impurity atoms.

Coarsening and Ostwald ripening: The monomer concentration decreases during further annealing
and a competitive coarsening process called Ostwald ripening. Large NPs grow on the expense of

smaller ones, which finally dissolve [Bonafos et al., 2002].

Coalescence and percolation: During NP growth, neighboring NPs might touch each other and

coalesce to a larger one. This process is more likely for high ion-fluences.

The division of IBS in a set of consecutive stages is to some degree artificial. The borders between the
individual steps are rather ill-defined and depend on the specific implantation and annealing

parameters. These three stages are resumed in Figure 1.2.



Figure 1.2: Basic physical processes (from left to right) involved in the formation of NPs from an
implant versus the ion dose with regard to surface sputtering under irradiation. From [Stepanov et al.,
2013].

2.2. High-fluence ion implantation: reaching far-from-equilibrium states
High-fluence ion implantation as used for IBS leads to cumulative effects as surface erosion by
sputtering, target swelling due to the incorporated atoms and ion beam mixing that might alter the

target composition and it depth dependence.

Target swelling: implanted material has to be accommodated within the host material and requires
additional volume there. Consequently, high fluence implantation leads to swelling of the implanted
target and distortion of the impurity profile. The total target swelling is roughly given by the
equivalent layer thickness of the implanted (deposited) material ¢N~' with ¢ being the ion fluence

(dose) and N the density of atomic ion species.

Ion sputtering: The opposite is achieved by ion sputtering, which is the erosion of the target surface
by energetic ions. Part of the recoil cascade created by the ion impact could reach the target surface.
Some of such backward recoils will approach the surface with enough energy to escape the surface.
During implantation, ion erosion removes target atoms as well as implanted species. Eventually, some
equilibrium is reached where on average one implanted atom is sputtered for each introduced ion. The
concentration distribution peaks under these conditions at the target surface and falls of over a distance
comparable to the projected ion range. For high fluences, where sputtering becomes dominating, the
concentration profile becomes asymptotically an error function (instead of a Gaussian distribution for
low fluences). We will see in section 2.3.3 that sputtering effects lead to a saturation of the quantity of
the Ag introduced and therefore of the average size and surface fraction of AgNPs.

High-fluence ion implantation as used for IBS leads to cumulative effects as surface erosion by

sputtering, target swelling due to the incorporated atoms and ion beam mixing that might alter the
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2.3. Ion beam (direct) synthesis of AgNPs in SiO; matrix

Ion implantation technique, which can control energy and dose amount of ions, is one of the candidate
methods to obtain embedded metal nanoparticles in a desired size and depth distribution. As
mentioned before, the nucleation of the AgNPs occurs usually during the implantation process of
silver ions in silica matrix without the need of any annealing step as widely reported in the literature
[Liu et al., 1998; Tsang et al., 2006; Arai et al., 2007; Xiao et al., 2007]. This takes place when the Ag
concentration is higher than the solubility threshold, which ranges between 3 and 14 x 10" atom/cm’
in silica matrix [Carles et al., 2009], and it is due to the high diffusion coefficient of Ag in silica

[Nason et al., 1991; Stepanov, 2010].

2.3.1. Conventional energy ion beam synthesis

In the literature, most of the papers dealing with the synthesis of AgNPs in silica matrix concern the
conventional energy range, typically of the order of 100 keV. At these energies, a large AgNPs band is
usually formed following the profile of implanted ions with the biggest ones in correspondence of the
projected range R, [Tsang et al., 2006; Yang et al., 2014]. The exo-diffusion of Ag is often observed,
leading to the formation of a plane of big AgNPs close to the silica free surface [Ren et al., 2007; Xiao
et al., 2007; Takahiro et al., 2012]. For similar reasons, a plane of smaller AgNPs can be observed at
the interface between silica and its supporting silicon substrate [Takahiro et al., 2012]. Owing to their
optical properties, these nanocomposite materials have been studied for different application domains
such as optical detectors, laser, sensor, imaging, display, solar cell, photocatalysis,
photoelectrochemistry and biomedicine [Zhang, 2009]. For example, exploiting their large third-order
nonlinear susceptibility with picoseconds response time, these materials are also interesting for the
elaboration of nonlinear optical devices [Takahiro et al., 2012]. Another example concerns the field
emission properties of AgNPs elaborated by ion beam synthesis for applications in flat panel displays
and as an electron source in vacuum microelectronic devices [Tsang et al., 2006]. There is no example

in the literature of the use of AgNPs ion beam synthesized in SiO, used for antibacterial coatings.

2.3.2. Low Energy Ion Beam Synthesis (LE-IBS)

Only few work concern low energy (typically less than 30 keV) implantation of Ag" ions for the
synthesis of AgNPs embedded in silica matrix. LE-IBS leads to non-uniform distribution of Ag" ions
in the depth of the silica matrix, which is different from the Gaussian profile traditionally predicted by
statistical theory. This is mainly due to the effective atom sputtering of silica matrix free surface
during the implantation, the implantation profile being very close to the surface. At these energies,
both sharp size and spatial distributions of nanoparticles are obtained [Stepanov, 2010]. Some of these
works concern implantation of negative silver ions (Ag"), which is possible in specific ion implanters

and requires a mandatory subsequent heat treatment to nucleate the AgNPs [Arai et al., 2006; Arai et
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al., 2007]. A recent research about the synthesis of quasi two-dimensional AgNPs arrays involves the
irradiation of silica substrate by Xe ion before the Ag ion implantation at low energy (21 keV). This
irradiation process allows the formation of localized defects inside the silica matrix, which in turn will

be preferential nucleation and growth sites for AgNPs [Wang et al., 2013].

2.3.3. Previous work at CEMES

At CEMES, Ultra Low (i.e., few keV) Energy lon Beam Synthesis (ULE-IBS) was first used in the
2000’s to synthesize a single plane of Si nanocrystals embedded in the thin gate oxide of MOS
devices, for nonvolatile memory applications [Bonafos et al. 2005]. We recently extended this concept
to the synthesis of a single plane (delta-layer) of AgNPs is embedded near the free surface of a SiO,
layer thermally grown on a Si wafer [Carles et al., 2009]. In figure 1.3 (left), a typical TEM image of a
cross section on an implanted sample reveals the presence of AgNPs in a single plane located a few
nanometers under the surface. As expected these particles are formed during the implantation process;
they are spherical, crystalline, homogeneously distributed and made of pure silver, as revealed by
HREM observation (inset of Fig.I.3). They are homogeneously distributed. Different architectures
consisting of three-dimensional (3D) patterns of AgNPs embedded in silica have been thus conceived
to simultaneously exploit the optical interference phenomenon in stratified media and LSPR of metal
nanoparticles [Carles et al., 2011]. These structures are based on a simultaneous control of
optoelectronic properties at three scales (3S) (~ 2/20/200 nm) and along three directions (3D). In
particular, the thickness of the dielectric layer has been chosen to have antireflective properties
imposing maximum of the electric field close to the surface. It has been shown that the reflectance
contrast is strongly enhanced when resonance conditions between the stationary electromagnetic field
in the dielectric matrix and the LSPR in the AgNPs are realized. Silica has been preferred to SiN as
antireflective and embedding layer for the AgNPs despite the highest electromagnetic confinement
obtained in the last matrix, as mentioned previously. This choice is justified by the better control of the
matrix properties (porosity, density) obtained in particular for thermal silica. More details in the
optical and vibrational properties of these systems can be found in [Carles et al., 2009; Farcau et al.,
2010; Carles et al., 2011; Bayle et al., 2014; Bayle et al., 2015; Carles et al, 2015]. In the following
section, the main results concerning the control of the main characteristics of the AgNPs delta layer
(distance to the surface, average size, surface density) are briefly resumed. More details can be found

in refs [Benzo et al., 2011; Benzo et al., 2013].
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Figure 1.3: Left side: XS-TEM bright-field image of a plane of AgNPs elaborated by ULE-IBS (energy
3 keV and dose 4.7 x 10" ion/cm?) with in inset HREM image of a AgNP. Right side: zoom of XS-
TEM images of the samples implanted with, from (a) to (d) an increasing energy and doses leading to
a fixed concentration of 20 at.% and from (e) to (g) a fixed low implantation energy (10 keV) and
increasing doses. From [Benzo et al., 2013].

Effect of implantation energy. Controlling the kinetic energy of the implanted ions in the low energy
range offers the possibility to control in the nanometer range the subsurface positioning of the delta-
layer of metal nanostructures. Hence, the distance to the surface can be tuned from 3.5 to 12 nm when
the implantation energy increases from 0.6 to 10 keV (Fig. 1.3, right side, (a) to (c)). These values are
in good agreement with the projected range R, of the implanted profile calculated by TRIDYN [Moller
and Eckstein, 1984]. The further increase of the implantation energy leads to an expected broadening
of the implanted profile and to the formation of a spatially distributed band of NPs (Fig. 1.3(d)).
Energy increase also leads to a slight growth of the mean particle size, from 2.5 nm to 4.9 nm due to a

widening of the implantation profile [Benzo et al., 2013].

Effect of implantation dose. The three main effects are related to the increase of the implanted dose
are: (i) shift of the nanoparticles towards the surface, (ii) the loss of the 2D organization of AgNPs,
and (iii) the growth of the Ag nanoparticles (Fig. 1.3, (e) to (h)). In particular, high implanted doses
lead to the formation of bimodal size distribution of AgNPs with large nanoparticles located near the
surface (up to touch the free surface) and small ones deeper into the silica matrix. [Benzo et al., 2013]
This is due to Ag diffusion in the volume, where the Ag excess becomes then larger than the solubility

threshold, allowing for nucleation of additional small Ag nanoparticles.

Dose saturation. A saturation of the average size of the AgNPs is clearly observed when increasing
the implantation dose. In addition, the quantity of Ag experimentally measured in the nanoparticles
from TEM images is much smaller than the nominal implanted dose, especially in the high dose range
[Benzo et al., 2013]. Saturation effects have been predicted in the literature by ballistic simulations,
and attributed to surface sputtering and stoichiometry changes during implantation [Stepanov et al.,
2000; Stepanov, 2010]. Nevertheless, the measured dose saturation (around 10'° atoms/cm?) is also
much lower than those predicted using TRIDYN. This discrepancy has been attributed as originating

in diffusion effects. Indeed, in addition to Ag enrichment in the region close to the surface due to pure
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ballistic effects, the Ag redistribution results in an increase of the quantity of Ag at the surface
vicinity. Ag atoms are sputtered instead of Si and O atoms causing a decrease of the total amount of
Ag finally remaining in the layer. At some point, the nanoparticles themselves are sputtered by the
ongoing implantation. [Benzo et al., 2013].

Hence, ULE-IBS is a promising technique for the wafer-scale fabrication of AgNPs planar arrays
embedded in a silica layer on a silicon substrate. The main advantage of this method remains the direct
embedding of the AgNPs in a transparent dielectric matrix, which avoids their dissemination and their
alteration, while preserving their plasmonic properties and keeping a flat and reusable surface. In
particular, a post-implantation annealing strongly limits silver oxidation, which otherwise excludes the
use of AgNPs on free surfaces [Benzo et al., 2011]. An overview of the reactivity of AgNPs in contact
with environment will be discussed in Section 4 of this chapter. Nevertheless, the saturation of the
quantity of Ag introduced in the matrix saturates at high doses thus limiting the control of the size and
surface (and volume) fraction of the AgNPs. Hence, AgNPs with average size significantly larger than
10 nm and coverage surface fraction larger than 20% could not be reached. The fabrication of
percolated array of NPs, which is easily obtained by ULE-IBS of Si at high dose in SiO, [Bonafos et
al., 2005] cannot be obtained in the case of Ag. For this reason, we have developed in this work a new
method, using plasma deposition techniques, in order to fabricate a plane of large (>10 nm) AgNPs
embedded in silica at controlled nanometric distances from the surface, with high surface coverage
(much larger than 20%). This method involves silver sputtering followed by Plasma Enhanced

Chemical Vapor Deposition (PECVD), which are described in the next section.

3. Plasma deposition techniques for synthesis of AgNPs in silica matrix

Plasma based deposition of thin films is largely applied in industrial applications [Lieberman and
Lichtenberg, 2005]. Starting in the microelectronic domain in the early 80’s of the last century, the
plasma technologies for deposition have now place in different areas of our every day’s life, like for
example in optics for coating layers, for surface treatment in the food industry, for biomedical
applications, in photovoltaics’, etc. Depending on the type of the used gas discharge, the main plasma
characteristics (electron density and electron energy), the reactive gases injected as precursors and the
gas pressure, one can obtain a quite large variety of composition of deposited thin layers, including
elaboration of nanocomposite materials. Principally, the Physical Vapor Deposition (PVD) and the
Plasma Enhanced Chemical Vapor Deposition (PECVD) are used in the surface modification of a
wide range of substrates. In particular, PVD involves the evaporation or sputtering of a solid material
while in PECVD the plasmas are used to activate the chemical precursors and consists of applying
different types of gas discharges. The advantage of these deposition methods concerns the huge
versatility and the excellent control of thin film growth at micrometric and nanometric scale [Kay and

Hecq, 1984; Massines et al. 2004; Despax and Raynaud, 2007; Kortshagen, 2009; Belmonte et al.,
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2011; Despax et al., 2011; Lukaszkowicz, 2011]. Industrial plasma reactors are usually supplied with
alternative current (AC) and depending on the used gas discharge they work in the whole range of
pressure variation, from low pressure up to atmospheric pressure. Without loss of generality the
discussion here is limited to an axially-asymmetric radio-frequency (RF) capacitively-coupled
discharge sustained at 13.56 MHz at low gas pressure. This plasma deposition process has been
chosen to elaborate a single layer of AgNPs embedded in the silica layer for our studies. At first, we
recall the principals of plasma physics and the key points of using plasmas for thin film deposition

Pprocesses.

3.1. Generalities on plasmas and in particular of RF capacitively-coupled discharges

Ignition of a gas discharge between two conductive plates requires an electric field with strength
higher than the dielectric strength of the medium. For this reason, one applies a voltage higher than the
breakdown voltage V;, depending on the pressure p and the nature of the gas as well as the inter-
electrode distance d. This breakdown voltage is defined by the Paschen’s law: V, = f (p X d)
[Lieberman and Lichtenberg, 2005; Moisan and Pelletier, 2006;]. When the applied field is sufficiently
high, the free electrons present in the media acquire energy required to ionize the atoms/molecules of
the gas after electron impact. The gas ionization allows development of the electron avalanche. This
charge multiplication phenomenon leads to a self-sustained discharge, called plasma [Lieberman and
Lichtenberg, 2005; Moisan and Pelletier, 2006;]. Plasma is a collection of charged particles (electrons
and ions) free to move in random directions. One of the main characteristics of the plasma is its global

electrical neutrality (Fig. 1.4), the other specific characteristic being its collective behavior.
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Figure 1.4: Schematic view of (a) a plasma and (b) a discharge. From [Lieberman and Lichtenberg,
2005].

The laboratory plasmas and their industrial counterparts are usually far from thermodynamic
equilibrium. The average energy of electrons in the plasma (characterized by the associated
temperature 7T.) is much greater than that of the ions (7}) with the latter being not much far from the

room temperature, i.e. T, >> T;. The electrons give rise to energy transfer toward heavy species of gas
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(atoms, molecules) through elastic collisions for momentum transfer or inelastic collisions for

excitation, dissociation and ionization of these species.

3.1.1. Density of species

The species that can be found in the plasma are: electrons n, positive n;" and negative n;” ions, neutral
species (atoms and/or molecules) no, radicals n, and species in an excited state. The density of a given
type of species is defined by the average number of these species per unit volume and time. Owing to
the global neutral character of the plasma, the electron density is almost identical to the density of
positive ions. In the general case of presence of negative ions and multi-charged ions, the quasi-

neutrality condition takes the form:

~(en,+en )+y Zen; =0. (1.1)

In laboratory plasmas sustained at low pressures the quasi-neutrality condition is fulfilled and the

density of charged species is typically in the range of 10* + 10" cm™ [Moisan and Pelletier, 2006].

3.1.2. Plasma frequency

After applying a local perturbation to initially neutral plasma, the charged species (electrons and ions)
undergo a displacement from their equilibrium position. Under electric field, electrons displace
collectively in the opposite direction with respect to the positive ions determining a temporary
separation. Space charge field develops counteracting this displacement and leading the species toward
their initial equilibrium state. This behavior of charged species defines another important characteristic

of the plasma: the plasma frequency @,. Hence, the angular electron plasma frequency is:

= | (1.2a)
gOme

where n is the density of electrons in unperturbed plasma and m, is their mass, e being the elementary

charge and g, the vacuum permittivity. In a similar way, one can define the ion plasma frequency as:

2
o = |2 (1.2b)
£,m;

where n; and m; are the density and mass of ions, respectively.

The value of plasma frequency affects the ability of the charged species to follow the periodic
variation of the applied electric field. Therefore, if the frequency of electric field is greater than the
plasma frequency of a type of charged species, this kind of species cannot follow the oscillations of
the electric field. The common excitation frequency of RF discharges at 13.56 MHz allows instant

oscillation of electrons (electron plasma frequency of about 1 GHz). Because m; >> m,, the ion plasma
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frequency is much lower than the electron one (ion plasma frequency of approximately 1 MHz). For
RF discharges, the ions remain virtually immobile and only experience the averaged value of the

oscillating electric field.

3.1.3. Plasma potential V, and electrostatic sheaths

For a RF discharge with electrodes of given cross sectional area separated by a given distance, the
sinusoidal current flows across the electrodes. Because of the quasi-neutrality, the density of electrons
and ions is equal almost everywhere except within thin sheaths near the electrodes (or near the reactor

walls) where the n;” >> n, (Fig. 1.5) [Lieberman and Lichtenberg, 2005].

Figure 1.5: The schematic formation of plasma sheaths in axially-asymmetric RF capacitively-coupled
discharge.

It is possible then to distinguish three different zones: plasma (central zone) and two electrostatic
sheaths (near electrodes). Because of the formation of these sheaths, a drop in the electrical potential
occurs in these zones. On contrary, a stationary potential V), (called plasma potential) takes place at the
plasma region. In these conditions, the space charge region is defined by the electrostatic sheath

whose width /, is represented by [Chapman, 1980]:

L4, [M] | w3

kT,

where V; is the floating potential (due to the presence of a foreign body in the plasma), Ap is the
Debye length (i.e. the maximum distance at which the plasma quasi-neutrality condition breaks down).

These sheaths are then called capacitive and the RF capacitively-coupled discharge.
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3.1.4. Self-bias potential V. of the RF electrode
In an asymmetric RF discharge (Fig. 1.5) the ratio between the potential located at the sheath of the
smaller electrode (V,;) and the one of the larger electrode (V,,) varies following the inverse of ratio of

the electrode surfaces (4;) at power m.
V A m
L [—2] . (1.4)

For low pressure, m experimentally ranges between 1.5 and 2 [Pointu et al., 1997]. This relation of
electrode surfaces is the source of continuous self-bias potential V. on the electrode wherein the RF
field is applied with respect to the ground. This asymmetry gives rise to Vy; # Vgo. If 4; < A, the self-
bias potential of the electrode with smaller area 4, is generally negative. In addition, the spontaneous
polarization is favored by the presence of the capacity that blocks the reverse conduction current from
the plasma to the generator [Bergmann, 2014]. Hence, one obtains a variable charge density as

function of the polarity of the applied RF field (Fig. 1.6).

Figure 1.6: RF potential and current on the electrode with the blocking capacity. From [Bergmann,
2014].

3.2. Sputtering in an axially-asymmetric RF discharge

Sputtering, as deposition process, results from the momentum transfer between incident ions from the
plasma and atoms of a solid source (target). There are several sputtering systems for deposition
purposes among which: ion beam, DC, RF and magnetron sputtering [Wasa et al., 2004]. In axially-
asymmetric RF capacitively-coupled plasma, the efficiency of the sputtering depends among other
parameters on the geometrical configuration of the reactor. A strong asymmetry between the two
electrodes promotes the sputtering of the smaller electrode (which is often the electrode connected to
the RF signal) (Fig. 1.5). In an axially-asymmetric RF discharge maintained in argon at low pressure in
which the smaller electrode is a silver target, the atoms from the silver target are ejected under the
action of bombardment with argon ions (Ar"). To ensure the beginning of the sputtering mechanism,

the ions have to acquire threshold energy E; following the expression [Bohdansky et al., 1980]:
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where Eg is the surface binding energy which is approximated by the heat of sublimation and v is the
mass ratio of the impinging ion over the released atom. At low pressure, the sheaths are non-
collisional. Thus, ions acquire an energy E determined by the value of the self-bias potential to

bombard the target.

The influence of the RF injected power and of gas pressure on nanoparticle growth can be described as
follows. After imposing a specific injected power with the RF generator the estimation of the
transmitted energy to the plasma becomes more complex due to the electric line losses. It requires the
use of an impedance matching network to maximize the injected power into the plasma [Chapman,
1980]. In addition, in an RF capacitively-coupled discharge, it is more correct to describe the injected
power through the self-bias potential. Because of the conduction stating that the output current of the
plasma is zero, an increase of injected power intensifies the self-bias potential [Lieberman and
Lichtenberg, 2005]. In this case, the bombarding Ar* and free electrons of plasma acquire a higher
energy. This leads to a strong intensification of the flow of sputtered silver species (i.e. atoms and/or
clusters) and determines an increase of the rate of AgNPs growth. As the ion dynamic is strongly
involved in the sputtering process, the gas pressure is the second important parameter after the injected
power in this process. A gas pressure increase might influence the silver sputtering in the following
ways: (i) through an increase of the plasma density, thus the ion density, if quasi-neutrality of the
plasma is considered; (ii) through the plasma sheath close to the smaller electrode, mainly through its
width and its nature (collisional or collisionless) and (iii) through the effect of scattering of sputtered
atoms. The experimental results show that for a fixed injected power the self-bias voltage decreases
when increasing the gas pressure [Milliere et al., 2016]. It is due to the thinner plasma sheath close to
the powered electrode that will have a larger capacitance per unit area, thus setting up a smaller self-
bias voltage. Moreover, the electrons can transfer their energy through elastic collisions to the
deposited silver species on the substrate. This allows improving the surface diffusion of these species
favoring the AgNPs growth. Summarizing, the AgNPs size is mainly controlled by the balance of two
parameters in the gas discharge: injected power and gas pressure.

3.3. Elaboration of silica layers by PECVD

The use of silica thin films in many applications in different domains (like optics, food packaging
interlayer dielectrics and corrosion protection layer) explains the increasing interest for these films.
Among different deposition techniques, the PECVD has become one of the most important thin film
deposition processes because of the possibility of preparing good quality coatings at low substrate
temperature. High quality silica thin films are deposited by plasma processes from the most utilized

silicon precursors (silane (SiH,), Tetraethoxysilane (TEOS; Si—(O—(C,Hs))4) or Hexamethyldisiloxane
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(HMDSO; O—(Si~(CHs;)3),)) together with noble gas (normally helium or argon) and mixed with
molecular oxygen (O,) or nitrous oxide (N,O). When using organosilicon precursors the gases forming
the mixture are added to the organosilicon vapor in order to oxidize organic groups and to deposit near
stoichiometric silica film. Both TEOS and HMDSO are non-toxic, nonexplosive, and much safer than
silane. HMDSO has the further advantage of a higher room temperature vapor pressure which offers

easier use.

Deposition of silica film by PECVD in RF capacitively-coupled discharge at 13.56 MHz. HMDSO
molecule presents the advantage to be in liquid stable form at 25°C and atmospheric pressure (boiling
point 101°C) with purity of 99.5% in the gas form. However, the pure use of HMDSO in the plasma
process yields polymer-like films on a substrate temperature as low as 50°C [Tkachuk et al., 1968].
This is an advantage for temperature sensitive substrates like polymers [Milliere et al., 2016]. A Cram

representation of HMDSO molecule is illustrated in figure 1.7.
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Figure 1.7: The Cram representation of the HMDSO molecule (C¢H50S1,).

Formation of organosilicon film from HMDSO precursor by PECVD was studied for the first time in
the 70s [Vasile and Smolinsky, 1972]. The results of this study indicate that the deposited film is
composed of an organosilicon polymer of type SiO«C,:H. Hence, the elaboration of silica film from
plasma polymerization of HMDSO requires the elimination of carbon (C) and hydrogen (H) from the
organosilicon polymer. To perform this, two operating parameters have to be taken in account:

injected power in the plasma and introduction of oxygen in the gas mixture.

Injected power in the plasma. An increase of the injected power per monomer flow provokes a
stronger fragmentation of the HMDSO molecules due to the increase of the electron energy
[Lamendola et al., 1997; Aumaille et al., 2000; Goujon et al., 2004; Despax and Raynaud, 2007].
However, the dissociation of the HMDSO molecules may be not complete whether electron density
and temperature are lower, as this is the case in RF discharges. In situ FTIR absorption analyses of a
pure HMDSO gas for two different RF injected powers (100 and 150 W) show that the absorption
bands that are the fingerprint of CHs, Si(CH;), Si—O-Si in the HMDSO molecule decrease when the
RF injected power is increased (Fig. 1.8, left image) [Goujon et al., 2004] and (Table 1.1) [Despax and
Raynaud, 2007]. FTIR analysis of thin films deposited after HMDSO decomposition in the plasma
when the RF injected power increases is represented in figure 1.8, right image [Despax and Raynaud,

2007].
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Figure 1.8: FTIR spectra obtained under different RF injected power of: (left image) pure HMDSO gas
(in situ measurement at RF injected power: (A) plasma off; (B) 100 W; (C) 150 W. No absorption of
the plasma species can be investigated below 1000 cm ). From [Goujon et al., 2004]. (Right image)
Si0,CyH, deposited films (spectra normalized with respect to the film thickness). From [Despax and
Raynaud, 2007].

A higher dissociation of the precursor and of its by-products occurs when the injected power is
increased. Increasing the RF injected power up to 100 W, leads to the CH; band and Si(CH;), peak
decrease until complete disappearance, while the aromatic C=C bands (1 539 cm ™) appear, confirming
the dissociation and the subsequent polymerization of HMDSO molecule [Despax and Raynaud,
2007]. Quantitative analysis of O/Si, C/Si and H/Si ratios as a function of the RF injected power
carried out by Rutherford Back Scattering spectrometry (RBS) and Elastic Recoil Detection Analysis
(ERDA) confirms the chemical evolution of the deposited film as a function of the injected power

[Despax and Raynaud, 2007].

Introduction of oxygen in the gas mixture. A further reduction of the C and H content can be
achieved by adding oxygen into the plasma. This generates new reactions that give rise to new species
inside the plasma gas phase. This oxygen induced combustion process produces formaldehyde
(COH,), formic acid (CO,H;), carbon monoxide (CO), carbon dioxide (CO,) and water vapor (H,O
molecules) [Magni et al., 2001]. Moreover, the carbonated radicals of high masses resulting from the
incomplete fragmentation of the HMDSO molecule, such as SiO.C,:H, first diffuse to the surface and
then the carbon is removed by oxygen etching to form CO,. Hence, the oxygen content as well as the
chemical kinetics in the gas phase of O,-HMDSO plasma will largely control the stoichiometry and
the characteristics of the deposited SiO, film [Hegemann et al., 1999; Aumaille et al., 2000; Magni et
al., 2001; Goujon et al., 2004; Barni et al., 2012].
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Table I.1: Infrared absorption bands (in cm ') of the HMDSO plasma deposits obtained under different
power conditions. The values come from FTIR spectra of figure 1.8 right image. From [Despax and
Raynaud, 2007].

5W 20 W 40W 100 W Mode Chemical Groups
3024 (vw) H-C=C
2960 (s) 2960 (s) 2960 (qs) 2954 (vw) v? C-Hj sp* CH;
2906 (w) 2906 (w) 2906 (w) 2910 (w) v C-Hs sp’ CH;
2876 (w-sh) 2876 (w-sh) 2875 (sw) v C-H, sp’ CH,
2131 (w) 2140 (w) 2131 (qs)
1870 (vw)
1721 (vw) 1718 (vw) 1716 (w) v:C=0
1575 (vw) 1570 (vw) 1556 (w) 1539 (qs) X-C=C aromatic (X is H or Si)
1410 (vw) 1410 (vw) 1410 (vw) 8" C-Hs SiMe, (Me is CH;)
1358 (vw) 1359 (vw) 1359 (vw) 5 C-H, Si-CH,-Si
1255 (vs) 1256 (vs) 1257 (s) 5° C-H; SiMe,
1034 (vs) 1031 (vs) 1026 (vs) 1000 (vs) v? Si-O-Si Si-O-Si
o Si-CH,-Si
839 (vs) 837 (vs) 835 (w-sh) 835 (vw-sh) v Si-C
p CH SiMe,
H-SiO
796 (s) 796 (vs) 794 (vs) 802 (vs) v Si-C or & Si-O SiCy
p* CH SiMe SiMe,
756 (w-sh) 754 (vw-sh) SiC; in Si(Me);
686 (Vvw) -
613 (w) -

Summarizing, high RF injected power and O,-HMDSO ratio have to be used in order to obtain high
quality plasma silica films. However, one should bear in mind that a small but detectable amount of

carbon is always present into the deposited films elaborated in different experimental conditions.

3.4. Elaboration of nanocomposite thin layer containing of AgNPs nanocomposite using
plasma processes. Previous work at LAPLACE

A way to elaborate nanocomposite thin layers containing metal nanoparticles by plasma process is to
utilize the energetic ion-enhanced plasma sputtering of a metal in an axially-asymmetric RF discharge.
The sputtered metal atoms are then present in the plasma volume as a volatile species and
subsequently incorporated into the film formed in the same reactor [Kay and Hecq, 1984]. Exploiting
this approach, for the first time, gold nanoparticles were uniformly dispersed into polymeric dielectric
films (fluorocarbon matrix) combining PVD and PECVD simultaneously in one process [Kay and
Hecq, 1984]. Controlled metal incorporation into polymeric dielectric matrices is of considerable
interest because the metal species can dramatically influence both the chemical and physical properties

of the resultant nanocomposites. Several ways can be applied to obtain metallic nanocomposite [Perrin
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et al., 1985; Despax and Flouttard, 1989; Dilonardo et al., 2010; Alissawi et al., 2013; Drabik et al.,
2015]. These include plasma polymerization of organometallic gaseous monomers or their
copolymerization with other organic monomers. However, both the metal nanoparticles and the
surrounding matrix can be modified to obtain a huge variety of metallic nanocomposites. This can be
further increased by thermally induced processes, also occurring in the plasma gas phase and/or by

post-deposition annealing.

By exploiting the deposition process that involves simultaneous silver sputtering and HMDSO plasma
polymerization in an axially-asymmetric RF capacitively-coupled discharge at 13.56 MHz, one can
grow Ag containing nanocomposites with well dispersed Ag nanoparticles in an Si0,Cy:H matrix (Fig.
1.9). A strong originality of this plasma process is the pulsed injection of the reactive gas [Despax and
Flouttard, 1989]. The silver volume fraction is controlled by adjusting the pulsed gas injection of

HMDSO in argon (Fig. 1.9) [Despax et al., 2011; Despax and Raynaud, 2007].

Figure 1.9: XS-TEM bright field image of the nanocomposite thin layer containing dispersed pure Ag
nanoparticles in SiO,C,:H matrix deposited on a silicon substrate (silver volume fraction 0.25; RF
injected power 80W). In the corner, the electron diffraction pattern of Ag nanoparticles in which are
indicated Ag plane distances. From [Despax et al., 2011]

On the contrary, continuous injection of precursor gas determines a progressive coverage of the silver

target up to the total target poisoning. In these conditions, the Ag containing nanocomposite present a
gradient in the Ag content [K&rner et al., 2012]. In fact the pulsation of the HMDSO mass flow rate
with a given period (T = t,, + to) and a variable duty cycle (t,,) allows monitoring the HDMSO
amount in the plasma chamber. The coverage rate on the silver target and, thus, the Ag sputtering and

the Ag volume fraction into the nanocomposite, are adjusted through the t,, parameter at a given RF
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injected power. This method requires a period of stabilization in which the polymer deposition and the
sputtering rate reach a steady state.

FTIR measurements show that deposited Ag nanoparticles in SiO4C,:H matrix exhibit qualitatively the
same spectra of SiOCy:H films (Fig. 1.10, left image) [Despax and Raynaud, 2007]. The only
difference concerns the relatively marginal changes in composition which are revealed by the shift
or/and the increase of some bands. In particular, the bands at around 1 000 cm™ associated to the Si—
O-Si stretching mode shift to greater energy while the CH; peaks (1 410, 1 256, 835 cm™') and Si—
CH,-Si peak reappear with the increase in silver volume fraction. These results indicate that the
presence of silver seems to favor the incorporation of both oxygen (1 024 cm™) and methyl groups in
the film network. RBS and ERDA measurements of the C/Si, O/Si and H/Si ratios plotted as a
function of the Ag/Si atomic ratio show that the H, C and O percentages rise in respect to the Ag
amount present in the layers (Fig. 1.10, right image). These results are in perfect agreement with the
presence of methyl groups and with the shift of Si—O-Si stretching mode to the greater energy in the
FTIR spectra.

Figure 1.10: FTIR spectra of SiO,Cy:H films containing different Ag-volume fractions (RF power of
100 W) (left panel). Evolution of the film composition as a function of the Ag/Si ratio obtained by
RBS and ERDA measurements (right panel). From [Despax and Raynaud, 2007].

Two dimensional (2D) arrangements of Ag nanoparticles can be prepared by successive plasma
deposition: sputtering of Ag-atoms (Fig. 1.11) [Makasheva et al., 2013] to form the AgNPs, then
covered by plasma deposited thin layer. The basic model of nucleation and growth processes occurring
during the initial stages of Ag deposition. The arriving Ag atoms diffuse on the surface for certain time
duration until they encounter each other on their diffusing path and the nucleation starts. Tiny Ag
clusters are formed at certain sites on the substrate which grow by continued deposition via surface
diffusion and direct impingement. Afterwards, this single layer of Ag nanoparticles can be coated in

the same reactor, obtaining finally Ag nanoparticles embedded in plasma elaborated host matrix.
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Figure I.11: Tilted at 30° degrees SEM image of the Ag-nanoparticle single layer deposited on SiO,-
layer over Si-substrate. From [Makasheva et al., 2013].

The preliminary results of a single layer of AgNPs embedded in organosilicon matrix [Makasheva et
al., 2013] obtained by successive plasma deposition, alongside with the long time accumulated
experience in LAPLACE in plasma deposition of thin layers, including nanocomposites [Despax and
Flouttard, 1989; Despax and Raynaud, 2007; Despax et al., 2011], served as a basis for the developed
in this work method to elaborate a plane of large AgNPs embedded in silica matrix at well controlled

nanometric distances from the surface.

4. AgNPs reactivity in different environments

The interaction of AgNPs with different species (like chemical elements, inorganic or organic
compounds) is of primary importance to understand the AgNP environmental behavior. The result of
this interaction can affect silver reactivity, bioavailability and, eventually, toxicity towards the
environmental media. In the following sections, the life-cycle of AgNPs will be discussed first and
afterward the main abiotic (without organisms) interactions between AgNPs and two important

environments: (i) ambient air and (ii) water.

4.1. Life-cycle of AgNP and alteration of AgNPs in the environment

Once synthesized, AgNPs can undergo chemical and physical alterations, which strongly influence
both their unique optical properties and their availability towards any biological system, if released
into the environment. In general, the abiotic interaction between NPs and different agents in
atmospheric, aquatic or terrestrial environment (for example, presence of light, oxidative species,
presence of other potential ligands for silver, ionic strength, etc.) is the first step of their structural
modification (graphically represented as changes at the NPs’ surface in figure 1.12) [Navarro et al.,

2008a].
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Figure 1.12: General chain of events that can lead NPs to be a potential risk for the environment. From
[Navarro et al., 2008a].

The alterations of AgNPs will greatly determine their fate in the environment and thus their
bioavailability to organisms for a given biological system. They can increase, or reduce, different
mechanisms determining the interaction at biological interfaces (biotic interactions), like AgNPs or
their sub-products (such as silver ions) uptake, the route of entrance in the organisms or their
availability inside the cell. All these interactions may cause toxic effects on the targeted organisms by
AgNPs and also offer the possibility of transferring these effects to the food webs, thus affecting
communities and ecosystems. In the next sections we will focus our attention on two particular

environments, ambient air and water, which are of primary importance to the fate of AgNPs.

4.2. Interaction of AgNPs with ambient air
Two well-known elements present in atmospheric air can mainly interact with AgNPs: (i) oxygen to

form silver oxide (oxidation) and (ii) sulphur to obtain silver sulphide (sulfidation).

4.2.1. Silver oxidation mechanism, from Ag0 to Ag"

The oxygen, present naturally in ambient air at standard environmental conditions (temperature 25°C
and total pressure 100 kPa [Lide, 2009]), is the main element, which strongly reacts with silver. It is
now known that at least three states of oxygen can be identified on Ag surfaces: (i) physisorbed
molecular species (O,), which are very close to the gas phase structure, (ii) chemisorbed molecular
species (the superoxide molecule O; ), and (iii) atomically adsorbed states (O7) [Campbell, 1985]. At
standard environment conditions, the oxygen chemisorption gives rise to oxidation of metallic silver

(Ag) following the reaction [Kilty and Sachtler, 1974]:
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4Ag(5) + 02(9) ~ 4Ag++ 2O(Za;dsorbed) . (1.6)

The following series of charge transfer events between silver and oxygen can explain the formation of
reactive oxygen atoms from oxygen molecules at room temperature (Fig. 1.13) [Czanderna, 1964;
Campbell, 1985; Katz et al., 1999]:

Eg" EQ?SS
E— — - RN 2- - N 2-
OZ (gas) ~ OZ(physisorbed) o +02(chemisorbed) o +OZ d 2()(ads.) 0 . 2()(ads.)' (|7)
Ag” —>Ag Ag” —>Ag 2Ag" —>2Ag

After physisorption of the oxygen molecule, the electron transfer from silver to oxygen during the

oxygen molecule adsorption on the silver surface provokes weakening of the oxygen molecular bonds
(0-0) [Yoshida et al., 1973]. After overcoming the activation barrier with energy EY (Fig. 1.13), the
interaction between silver atom and physisorbed molecular oxygen allows obtaining chemisorbed

superoxide molecule O, . Afterwards, by overcoming the activation barrier with energy EY | the

diss !

interaction Agi) — O, leads the peroxide molecule O3, which is instable and dissociates in two
reactive oxygen atoms O~ (highlighted by the one direction of the reaction) [Birks et al., 2006].
Finally, interacting with other two metallic silver atoms, the two anions O~ can reach the oxidation
state of 2— (eq. 1.6) [Backx et al., 1981]. At standard temperature, this adsorbed reactive oxygen atom
in the state 2— will strongly interact with metallic silver [Bukhtiyarov et al., 2003], allowing possible
formation of different silver oxide forms (AgO, Ag,O and Ag,0O3). Typically, a layer of the silver
oxide in the form of Ag,O (the most common one) forms on the metallic silver surface following the

reaction [Cai et al., 1998]:

4Ag,+ 0O, = 2Ag,0. (1.8)
Case of Ag Bulk. For bulk silver at chemical equilibrium, the standard molar formation free energy of
AQ0 (i.e. the change of Gibbs free energy that accompanies the formation of 1 mole of silver oxide

from molecular oxygen and solid silver at standard environmental conditions [Lide, 2009]) following

the reaction 1.8 can be written as [ Cai et al., 1998]:

AG™ (T)=%RT In pg, , (1.9)

where R, T, and pg2 are the gas constant, the absolute temperature and the equilibrium partial

pressure of oxygen, respectively. At 25°C and oxygen equilibrium partial pressure of pgz =1243Pa,
the formation of Ag,O compound is thermodynamically favored due to the negative standard molar

formation free energy (AG?, (25°C) = -11.25 kJ/mol ) [Lide, 2009].

bulk
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Figure 1.13: Potential energy diagram for the interaction of O, with a silver surface. From [Campbell,
1985]).

In ambient air, at standard environmental conditions, the oxygen partial pressure is increased, about

20.26 kPa ( p, ) and the molar formation free energy of Ag,O for the bulk silver AGpux remains

negative (AGpy (25°C) = —8.43kJ/mol) [Bi et al., 2002]). It implies that the oxidation of Ag may also
occur in ambient air. Moreover, the Ag,O compounds are stable at atmospheric pressure up to 200°C
[Benton and Drake, 1932], the threshold temperature at which thermal decomposition of bulk Ag,O
begins production of O, and Ags).

Case of AgNPs. The oxidation mechanism of bulk silver can also apply to silver nanoparticles. In
particular, for silver cluster, the oxygen chemisorption is favored at temperatures above —196°C if the
loss of one electron optimizes the cluster free electron configuration [Schmidt et al., 2003]. Moreover,
the smaller the AgNPs are, the easier they would be oxidized [Bi et al., 2002]. This is due to the free
energy changes depending both of surface and curvature effect of the nanosized particle, unlike bulk in
which these effects are negligible [Cai et al., 1998]. The free energy variation, Ag, to form a spherical
silver nanoparticle of radius r is inversely proportional to its radius according to the expression

[Verhoeven, 1975]:

2g ()= 220 (110)

Ag

where o is the surface energy per unit area of silver nanoparticles, M is the silver atomic weight and
pag 18 the silver density. Hence, the standard formation free energy AGN'(T, 1) of Ag,0 for the silver

nanoparticles with radius r at oxygen equilibrium partial pressure poo; " will be [Cai et al., 1998]:
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AGYP(T, 1) = AG™(T) - 2Ag™ (r) . (1.11)

Considering a surface energy (defined as the energy involved in forming a new surface) per unit area
equal to 0.97 J/m? for a free silver nanoparticle of radius 2.5 nm according to reference [Medasani et
al., 2007], the standard molar formation free energy of Ag,O for silver nanoparticles at standard
temperature is AG),(25°C, 2.5 nm) =-19.3kJ/mol. This increment of AGY,(25°C, 2.5nm) in

module is more than 70% compared with that of the bulk silver. This implies that, thermodynamically,
Ag,0 formation on AgNPs should occur more easily than that on bulk silver at room temperature.
Theoretical studies of the surface energy per unit area for free AgNPs show also that the surface
energy increases significantly when the nanoparticle size decreases below 1 nm [Medasani et al.,
2007]. It means that these small nanoparticles would be oxidized easier than the big ones. Moreover,
the high ratio of surface to bulk atoms for Ag nanoparticles that increases drastically with reduction of
their size can modify their chemical activity [Beyer et al., 1975; Henglein, 1988]. Usually, oxidation

begins from the surface of AgNPs and forms Agc@ Ag,Osen Structure. During oxidation, the

thickness of the Ag,O shell increases and, consequently, the size of Ag core decreases. The oxidation
of originally pure Ag nanoparticles can occur and a stable Ag,O shell can exist even for nanoparticles
of radius of 6 nm. Moreover, the Ag,O shell becomes larger when decreasing the nanoparticle size and

the possibility of AgNPs complete oxidation can even occur.

Dependence of AgNPs oxidation on the relative humidity. Another key parameter for the kinetics
of Ag nanoparticles oxidation is the relative humidity of ambient air. High level of moisture enhances
Ag nanoparticle oxidation. More details on this effect are given in section 4.3 where we consider the
interaction between silver and water. For example, although embedded in porous silica, Ag
nanoparticle with mean radius 1.5 nm exposed to the air with relative humidity of 80% at room
temperature can form a dense oxide film in 2 h. On contrary, the same system exposed to the air with
relative humidity less than 30% do not show important oxidation over several months [Cai et al.,
1998]. However, for Ag nanoparticles with larger radius (R, = 30nm) deposited on silica the
oxidation effects appear within 20 days of exposure and a strong oxidation within 50 days when
exposed to the air with relative humidity of 40% at 22°C [Sachan et al., 2013]. It means that the

AgNPs oxidation upon variation of the relative humidity is size dependent effect.

4.2.2. Silver sulfidation mechanism

The presence of common gaseous sulphur compounds in the atmosphere (hydrogen sulphide H,S,
carbonyl sulphide OCS, sulphur dioxide SO, and carbon disulphide CS;) can provoke formation of
silver sulphide Ag,S (argentite) on Ag surfaces (sulfidation process). This phenomenon causes the
tarnishing for example of jewellery, household silverware or electrical equipment [Franey et al., 1985].
At total gas exposure of 100 ppm/h, temperature of 21°C and relative humidity of 92% the thickness
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of Ag,S due to H,S and OCS (over 20 nm) is at least one order of magnitude more than that of SO,
and CS; (under 2 nm). Starting from pure solid Ag and H,S gas, the initial step of Ag,S formation is
the adsorption of H,S molecules, probably at grain boundaries or defects in the surface structure where
the normal bonding in the silver crystal is unsatisfied [Phillips, 1962]. At the end of process, a

molecular hydrogen is released. The Ag,S is thus formed following the reaction:

ZAg(s)+ HZS(g) ?\Agzs(s)'i' HZ(g) ; (1.12)

with standard formation free energy of AgQ,S, AGg‘f’Agzs(25°C): —7.1kJ/mol at thermodynamic

equilibrium, standard temperature and oxygen equilibrium partial pressure. Once the nucleation of
Ag,S occurs, the growth of sulphide proceeds laterally across the silver surface until formation of a
continuous layer. Further growth involves diffusion of the H,S molecules through the Ag,S layer. This
diffusion process provides the limit to sulfidation by H,S at long exposure times [Graedel et al., 1985].

Sulfidation dependence on the relative humidity. Similar to the case of silver oxidation discussed
previously, the sulfidation rate could be increased by more than an order of magnitude if the relative
humidity is increased from 0 to 100% [Graedel et al., 1985]. Moreover, when the relative humidity is
over 90% the formation of several monolayers of water on silver surface can occur [Graedel et al.,

1985]. Since the interaction of OCS with water gives rise to H,S as a final product of the reaction and
the H,S is very soluble in water, it seems likely that the function of the water is to absorb H,S and

make it more readily available to the silver [Graedel et al., 1985].

Case of AgNPs. Since sulfidation Kkinetics partly depends on the surface orientation and the presence
of steps, AgNPs can sulfidize faster than bulk Ag due to the intrinsic characteristic of NPs related to
both the edge-dominated structure and the high surface exposed. For example, bare AgNPs when
exposed to laboratory air, present sulfidation rate of 7.5 times higher than that the one of bulk silver
under the same conditions, giving a Ag,S growth rate around 3 nm per day, even at low relative
humidity (~ 20%) [Mcmahon et al., 2005].

4.3. Interaction of AgNPs with water

4.3.1. Phenomena affecting AgNPs dissolution in water

The formation of all environmentally relevant Ag-species from metallic AgNPs in water can be
modified by several parameters, either inherent to the nanoparticles (size, shape, coating), or
attributable to the medium (presence of light, oxidative species, presence of other potential ligands for
silver, ionic strength, pH, electrolyte species) [Le Ouay and Stellacci, 2015]. These parameters have
influence on several phenomena that can contribute to the increase or the decrease of the solubility of

Ag-species in water. A summary of the phenomena affecting the AgNPs is presented in figure 1.14.
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Figure 1.14: Summary of different phenomena affecting AgNPs dissolution in water. From [Le Ouay
and Stellacci, 2015].

Among the different phenomena affecting AgNPs dissolution in water, one can distinguish four
important categories: (i) corrosion by reactive species (oxygen, sulphurous and chloride) [Liu and
Hurt, 2010; Liu et al., 2010; Levard et al., 2011], (ii) aggregation of the nanoparticles [El Badawy et
al., 2010; Prathna et al., 2011] (iii) Ag" reduction (chemical- or photo-induced) [Liu et al., 2010;
Glover et al., 2011], and (iv) surface passivation by inorganic (insoluble silver oxide, sulfide or halide,
and colloidal ligand) or organic (thiols - R — SH, where R represents an carbon-containing group of
atoms and colloidal ligand, such as the most used PVP and citrate) capping layer [Liu et al., 2010]. In
the following sections, we focus our attention on the first two categories of AgNPs transformations
that are primary critical steps for understanding the environmental fate, transport, and biological

impacts of AgNPs.

4.3.2. Phenomena affecting AgNPs dissolution in water

When AgNPs are dispersed in water, various and rather complex processes can take place.
Characterization of Ag" release by AgNPs dissolution is an important environmental behavior of
AgNPs. In any case, the initiation of AgNPs dissolution takes into account the oxidation of atomic Ag
by the release of Ag" because the zero-valent silver metal (Ag’) is insoluble in water [Petruci et al.,
1997; Sotiriou et al., 2012]. Similar to the impact of molecular oxygen on AgNPs in ambient air,
discussed in the previous section, the molecular oxygen dissolved in water (Oxuq) represents an

essential oxidizing species for the AgNPs surface [Lide, 2009; Liu and Hurt, 2010;]. However, the
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solution pH-value is an important parameter for the Ag” release because protons (H*g) and Opgg

cooperate to oxidize the AgNPs surface [Liu and Hurt, 2010].

lon Release Mechanisms. In water environment, the AgNPs oxidation to give Ag” is not likely to
take place through a four-electron transfer process that reduces O, but rather through simpler redox
reactions that produce reactive oxygen intermediates (hydrogen peroxide H,O,, superoxide anion
radical O, , and hydroxyl radical “OH ) that are more powerful oxidizing agent and stronger
nucleophile (i.e. more likely to share an electron pair and form a chemical bond) than Oyq [Liu and

Hurt, 2010]. The most probable mechanism of AgNPs dissolution can be written as follows:

Ag0 Ago
O,y *t Hay —=> Ag™ + reactive oxygen intermediates f_t) Ag" +H,0. (1.13)
slow as

In this mechanism, the initial nanoparticle oxidation via reaction with oxygen is a limiting factor. In
the first part of the reaction the possibility that a strong oxidant like H,O, could reduce Ag” just
present in solution to Ag’ is also taken into account [He et al., 2011; He et al., 2012a]. This effect can
produce either a shape change of the AgNPs or a particle reformation, or an increase of the NPs sizes
[Liu et al., 2010; Peretyazhko et al., 2014].

Another scenario has to be considered for AgNPs coated by Ag,O surface layer. One or more atomic
layers of Ag,O can be formed as a consequence of the exposure of AgNPs to oxygen either dissolved
in solution or present in ambient air before water immersion. In water, the Ag,O layer is covered with

surface hydroxyl groups (Ag — OH) [Peretyazhko et al., 2014]. Although the Ag,O solubility in water
is low (0.0025 g Ag,0O /100 g H,O at 25°C - solubility product Kg*° =4x10™ [Lide, 2009]), in

acidic agueous environment (pH<7, excess of protons H*), the Ag—-O bonds weaken and break because
the hydroxyl groups undergo protonation (Ag-OH,") [Stumm et al., 2012]. In this condition the Ag*

release into solution can occur following the reaction [Peretyazhko et al., 2014]:

+ 2H

(a)

Ag,0 <= 2Ag" +H,0. (1.14)

©)

Incomplete dissolution of nanoparticles. Dispersed AgNPs in aqueous environment can dissolve
partially or completely depending of different factors like AgNPs functionalization and concentration,
environmental temperature, amount of dissolved molecular oxygen in water, solution pH and
nanoparticle aggregation [Kittler et al., 2010; Liu et al., 2010; Sotiriou et al., 2012; Mittelman et al.,
2013]. In any case, the AgNPs dissolution follows the same distinct two-step behavior observed for
the time release of Ag™ [Mittelman et al., 2013]. The first step concerns an initial rapid release of Ag*
in the first few hours after exposure to water. Afterwards, the second step involves a gradually
declining Ag” release, tending to a saturation value, observed over long water exposure time (several
days). The interpretation of this AgNPs dissolution behavior remains controversial in the literature

because of different experimental conditions [Liu et al., 2010; Mittelman et al., 2013].
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Interpretation of Ag” release behavior. Recently, a new conceptual approach was used to interpret
the large range of phenomena influencing the Ag” release in solution [Molleman and Hiemstra, 2015]
considering previously developed ideas [Schmidt et al., 2003]. It includes the particle size [Zhang et
al., 2011; Ma et al., 2012; Peretyazhko et al., 2014], the solid-solution ratio [Kittler et al., 2010; Zhang
et al., 2011;], the pH of the solution [Liu and Hurt, 2010; Peretyazhko et al., 2014;], the quantity of
dissolved oxygen [Liu and Hurt, 2010; Xiu et al., 2012;]) and their consequences (i.e. incomplete
dissolution of AgNPs [Kittler et al., 2010; Zhang et al., 2011; Sotiriou et al., 2012; Ma al., 2012;
Peretyazhko et al., 2014]). In this approach the subvalence of Ag (i.e. +1/3 valence unit per Ag atom),
which can be created upon partial oxidation of the AgNPs surface, is the key to understand the oxygen
induced release of Ag” from AgNPs. In this context, the solid-water interface of AgNPs will release
Ag" upon a circular process with: (1) the oxidative dissolution of =Ag;OH® groups with a two-electron
step (eqg. 1.15), (1I) the creation of new metallic sites at the underlying lattice, and (Il1) subsequent

oxidation to =Ag;0H’.

= Ag,0H’, + 0, + 3Hiy = 3Ag", +2H,0,, +O" (1.15)

(s) 2 (aq) (aq) 1

where =Agjy represents the underlying metallic Ag lattice with which OH" (or O*) interacts.

Moreover, the released radicals O° penetrate inside the lattice and contribute to the formation of

highly stable =Ags0° groups (eq. 1.16) that protect AgNPs from further oxidation:
=Ag, + 0", = =Ag,0,. (1.16)

In conclusion, the Ag” release is rather the result of formation of a protective oxidized Ag layer that
kinetically prevents from full oxidation of AgNPs [Molleman and Hiemstra, 2015].

4.3.3. Implication of AgNPs sulfidation in the Ag” release

The sulfidation process of AgNPs in water, to form Ag.S, is strongly enhanced because of the high
solubility of H,S in this liquid [Lee and Mather, 1977]. Acting the water as an appropriate
intermediary liquid, the contact probability between the solid Ag surface and H,S increases and the

formation of stable Ag,S in solution can occur because of the insolubility of this compound in water

(solubility product K2%° =6x10") [Franey et al., 1985; Graedel et al., 1985; Lide, 2009]. Moreover,

spa
Ag" released in solution tends to complex with soft bases such as sulphur [Stumm et al., 2012],
reducing Ag" availability in solution. In the case of AgNPs the sulfidation in water is enhanced owing
to its edge-dominated surface structure affecting AgNPs surface properties in terms of aggregation
state and surface charge. This leads to a decrease of the AgNPs dissolution rate [Levard et al., 2012].

In addition to inorganic sulphurous compounds, AgNPs or released Ag* species can also bind strongly
to organosulfur compounds. The strong affinity of Ag™ is illustrated by the high stability constant of

Ag" -organosulfur complexes [Bell and Kramer, 1999]. Indeed, Ag™ have the greatest affinity for thiol-
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containing ligands as cysteine. In particular, cysteine can form two complexes AgCys and AgCys,,
with a ratio of Cys/Ag in the range of 1-2, depending on the concentrations of Cys and Ag" [Adams
and Kramer, 1999].

4.3.4. Interaction between AgNPs and chloride

The dissolution behavior of AgNPs in the presence of CI” depends on the chloride concentration in the
solution. In the presence of low concentration of CI', the dissolution rate of AgNPs in presence of
oxygen can be decreased because of the formation of relatively insoluble AgCl shells on the surfaces
of AgNPs, which inhibits the molecular oxygen penetration and as a consequence the Ag" release [Li
et al., 2010]. At high concentration of CI’, possible formation of bioavailable anionic Ag complexes
(such as AgCl*, AgCl*;, and AgCl¥,,) can modify the dissolution rate of AgNPs. The formation of
these complexes leads to enhancement of bioavailability of silver for the microorganisms [Gupta et al.,

1998].

4.3.5. Aggregation state of AgNPs

Aggregation is another parameter that might have an important impact on silver release rate in
solution. This mainly concerns “free” (non embedded) AgNPs in solution but also embedded AgNPs
that have left their matrix after water immersion. The main effect imposed by AgNPs aggregation is
the reduction of reactive surface exposed to the environment [Levard et al., 2012]. The high surface
area to volume ratio and the surface charge of AgNPs determinate a high reactivity of nanoparticles
with each other. Considering Brownian diffusion in liquid, nanoparticle surfaces can be in contact with
each other and short-range attractive interactions (like van der Waals attraction forces) can overcome
the electrostatic repulsion forces allowing particle—particle attachment to occur [Hotze et al., 2010].
This aggregation process is strongly affected by both AgNPs coating layer and by the surrounding
environmental conditions, such as pH, ionic strength and electrolyte species in solution [El Badawy et
al., 2012]. High level of aggregation can result in AgNPs settling out, making these particles able to

release in the environment small amount of ionic silver for long time.

5. Interaction between AgNPs and micro-organisms

5.1. Structural parameters of AgNPs influencing the antimicrobial activity of silver

AgNPs morphology of both physically or chemically elaborated AgNPs can influence (enhance or
reduce) their antimicrobial activity that is strictly related to the toxicity on microorganisms present in
the environment [Misra et al., 2012]. Relation can be established according to the three main physical
characteristics of AgNPs (Fig. 1.15): size, shape and crystalline direction of the nanoparticle core,

and the nature of nanoparticle shell (for surface-coated or embedded AgNPs).
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Figure 1.15: Typical AgNPs structure with a polymorph metallic silver core and a continuous or
discontinuous capping layer (shell). Double arrows represent the reactions that might occur between
the shell (organic or inorganic) or silver core (directly or indirectly) with the environment and also at
the interface between core and shell. From [Levard et al., 2012].

5.1.1. Effect of the NP size on the antimicrobial activity of silver

Numerous experimental studies, sometimes coupled with modelling, show a size dependency of the
antimicrobial activity of (quasi-spherical) AgNPs; smaller (with diameter less than 10 nm) being more
active on the basis of equivalent total silver mass content [; Morones et al., 2005; Lok et al., 2007;
Sortiriou and Pratsinis, 2010; Zhang et al., 2011]. The improved antimicrobial activity can stem from
two main factors. The first one is the AgNPs dissolution in the form of Ag" that plays the most
important role in toxicity against microorganisms. Considering spherical AgNPs of uniform size, a
reduction in the particle size from 10 um to 10 nm will increase the surface area by a factor of 10°.
Hence, smaller AgNPs exhibit more active surface (that is, reacting to the oxidative species in solution
to obtain Ag’, also in chemisorbed state) per unit of mass and are thus more prone to high grade of
dissolution [Lok et al., 2007; Sortiriou and Pratsinis, 2010]. However, a constant release of Ag" ion per
unit surface area was not observed as expected for such nanoparticles [Ma et al., 2012]. This indicates
that the surface area alone does not explain the high dissolution rate of smaller AgNPs. A possible
reason for this behavior can be found in connection with the nanoparticles enhanced curvature (highly
convex surface) that facilitates mass transfer from their surface [Sortiriou and Pratsinis, 2010; Ma et
al., 2012;]. As a consequence, aggregates of AgNPs possess lower antimicrobial impact because they
have less exposed surface to the medium. [Baker et al., 2005; Bae et al., 2010].

The second factor that may also explain the size-dependent antimicrobial activity is the difference in
the levels of association of the AgNPs with cells. Smaller AgNPs still present in solution can directly
and more easily attach to the surface of the cell membrane and drastically disturb its proper function
[Morones et al., 2005]. This effect can be related to the electronic structure of metal nanoparticles

smaller than 5 nm. When the nanoparticle size is reduced, the number of surface atoms increases and
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the mean coordination of these atoms decreases. This provokes three effects: the valence band
becomes sharper, the density of state at the Fermi level drops and the gravity centre of this band can
shift. The latter can significantly influence the reactivity of nanoparticle surface. A shift of the valence
band toward the Fermi level can determine a strong interaction between the electrons of this band and

ones of species close to the nanoparticle surface [Henry, 1998].

Figure 1.16: Size-dependent antimicrobial behavior expressed in terms of toxicity on the basis of
equivalent total silver mass content. From [Sotiriou and Pratsinis, 2011].

These two size-dependent features are in competition with each other and contribute in different
importance degrees to the antimicrobial activity. For small AgNPs (less than 10 nm), this activity is
dominated by Ag" rather than undissolved nanoparticles. In fact, the survival small AgNPs do not have
a chance to play a significant role on toxicity against microorganisms. On the contrary, for relatively
large (average size larger than 10 nm) AgNPs, the toxicity against microorganisms is lower than the
previous case but nanoparticles and ions influence the antimicrobial activity in similar proportion
[Sortiriou and Pratsinis, 2010]. In figure 1.16 is shown a general picture resuming the size-dependent
antimicrobial behavior (expressed in terms of toxicity as a function of the AgNPs size) [Sotiriou and
Pratsinis, 2011]. This emphasizes the importance of the released Ag" and nanoparticles in the

mechanisms of the antimicrobial activity of nanosilver.
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5.1.2. Effect of the shape and crystalline direction

Although the interactions between microorganisms and AgNPs can be similar for nanoparticles with
similar size for markedly different shapes the antimicrobial activity can differ. This difference can be
explained in terms of crystallographic nature of facets, of sharp edges and corners, and of
polycrystalline structure present in AgNPs of different shapes. It is well-known that different
crystallographic surfaces of bulk solids (and, on particular, of nanoparticles) have different reactivity.
It was extensively explored theoretically and experimentally in surface passivation or heterogeneous
catalysis [Xu et al., 2006; Kilin et al., 2008]. AgNPs with the same surface areas but different shapes
may have different effective surface areas in terms of facets with antimicrobial activity. These
differences concern the packing densities of different crystal planes; more packing means lower
energy and higher stability. In the case of silver, the close-packed {111} family planes (facets) are the
lowest energy crystal planes with maximum packing, and therefore have the lowest surface tension
[Marzbanrad et al., 2015]. In the mechanism of small AgNPs formation the cost of an increase in the
internal strain is offset by the reduction in surface tension achieved through growth of the lower
energy {111} facets [Wiley et al., 2004]. In biology, this finding promotes enhancement of the direct
reactivity of AgNPs containing mainly {111} facets (i.e. quasi-spherical nanoparticles with
icosahedral, twinned, or decahedral morphologies (Fig. 1.17)) towards sulphur containing proteins
present at the microorganism surface [Morones et al., 2005]. In this context, sulphur presents a high
affinity towards these high atom density surfaces of silver due to, likely, easier formation of the

stoichiometric Ag,S on the silver surface [Hatchett and White, 1996].

Figure 1.17: The most common morphologies of the quasi-spherical AgNPs. The {111} facets are
labelled and their respective models are shown as insets: (a) icosahedral particle, (b) twinned particle
and (c) decahedral particle seen in the [100] direction. From [Morones et al., 2005].

The second aspect of shape dependency of AgNPs antimicrobial activity concerns the presence of
sharp edges and corners mainly in non-spherical AgNPs (i.e. triangular nanoplates, nanorod,
nanocubes). These portions of nanoparticles possess a locally enhanced curvature, which determines a
preferential Ag” dissolution at these locations [Zhang et al., 2005; Sortiriou and Pratsinis, 2010;].

Additionally, polycrystalline silver nanostructures will dissolve more rapidly than the single-
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crystalline ones because of, likely, the high-energy defects contained at the grain boundaries that
provide active sites for their oxidative dissolution in Ag" [Wiley et al., 2004; Elechiguerra et al.,

2005bs].

5.1.3. Nature of nanoparticle shell

AgNPs need a shell to stabilize them in the environment (stabilizing coating). These coatings do not
concern only the AgNPs elaborated by chemical ways and coated by ligants but also the AgNPs
elaborated by physical routes and embedded in dielectric matrices, the coating being here the matrix
itself. The nature of the coating can affect physicochemical properties of the nanoparticles provoking
changes in their antimicrobial activity [Navarro et al., 2015]. One of these changes concerns the

release of Ag’.

Physical effect of coating implies modification of the exposed silver surface to the aqueous solution,
which involves changes in the amount of released Ag'. Decrease of Ag' can occur when the
aggregation state of nanoparticles increases, as detailed before. The AgNPs aggregation depends on
the shell category. For example, AgNPs coated with organic polymers have worse surface stabilization
(corresponding to high aggregation state of NPs) and therefore weaker antimicrobial activity than
those coated with organic anionic surfactant [Kvitek et al., 2008]. The released Ag" amount can be
reduced by the partial or total coverage of the AgNPs surface by a shell. This effect is observed both in
organic coating discussed previously and in inorganic coating like insoluble silver oxide, sulphide and
halide (produced through interaction of silver with environment) [Levard et al., 2012]. In the case of
nanoparticles embedded in a solid matrix, such as silica, it has been shown an increase of the Ag"
release proportional to the NP surface (without coating) directly exposed to the medium [Sotiriou and

Pratsinis, 2010; Sotiriou et al., 2011].

Chemical effect of coating can influence the released amount of silver ions in solution by Ag"
complexation due to the nature of coating. Citrate (a carboxylic acid) and PEG (a polymer) coatings
are the two examples that highlight the modification of Ag" concentration in solution. In particular,
citrate might complex Ag' retaining the ions at the AgNP surfaces [Tejamaya et al., 2012] and
possibly leads to renewed reduction of dissolved Ag" to metallic Ag [Rivas et al., 2001]. This leads to

a decrease the Ag" concentration in solution and the related toxicity on different organisms [Yang et

al., 2012; Navarro et al., 2015]. Despite the fact that the PEG shell is not a good Ag" ligand, this
polymeric coating can retain Ag" close to the nanoparticle surface that can be released by interactions
with microorganisms or their by-product, increasing the antimicrobial activity of nanoparticle
[Navarro et al., 2015]. Another example of chemical effect concerns biological macromolecules such
as proteins like bovine serum albumin (BSA) that, at low concentration, increases stability and allows
AgNPs to exert bactericidal effects. On the contrary, an excess of BSA in solution appears to block the

activities of Ag' ions delivered from the nanoparticles [Lok et al., 2007].
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Another important antimicrobial activity alteration associated to the stabilizing coating involves the
physical interactions between the AgNPs and the microorganisms. These alterations concern mainly
the surface charge and hydrophobicity of AgNPs. The modification of surface charge due to the
coating plays also a role in the Ag" release. Indeed, uncoated AgNPs possess a natural negative surface
charge throughout the pH range (2 to 10) common in the environment [El Badawy et al., 2010]. This is
due to the surface atoms that are coordinately unsaturated and can interact with nucleophilic molecules
(i.e. OH and H,0) leading to negative charge excess in the metal interior. This charge excess can be
picked up by electron acceptors [Mulvaney et al., 1991]. Applying a stabilizing coating, the AgNPs
surface charge, at solution pH 7, can be modified from more positive or more negative values
compared to the one of uncoated nanoparticles [El Badawy et al., 2010; El Badawy et al., 2011; Ivask
et al., 2014]. This variable surface charge may play a large role in AgNPs antimicrobial activity,
depending on the charge type of both cell and nanoparticle. For example, when the magnitude of
negative surface charge of AgNPs decreases, the AgNPs toxicity on microorganisms with negative
charge wall (i.e. Gram-positive bacteria) exhibits an increase due to reducing of the electrostatic
barrier that limits the cell-nanoparticle interactions [El Badawy et al., 2011]. In this case, AgNPs with
positive surface charge coating show electrostatic cell-nanoparticle attraction determining a
significantly higher toxicity than both nanoparticles with negative surface charge and positively
charged silver ions. The attachment of AgNPs to the negatively charged bacterial cell walls is the
primary mechanism for enhancement of AgNPs antimicrobial activity when compared to the only

chemical effect caused by the Ag™ alone [El Badawy et al., 2011].

An additional factor that plays an important role in the antimicrobial activity is the hydrophobicity of
AgNPs, which is the affinity of a surface to receive water and polar solvent. To evaluate the
antimicrobial activity of AgNPs with respect to their hydrophobicity, it must be taken into account that
different categories of microorganisms can possess hydrophobic or hydrophilic behaviour. Generally,
microorganisms with hydrophilic characteristics (i.e. yeasts) prefer to adhere to hydrophilic material
surfaces, such as metals or glasses (i.e. stain steel or silica, respectively); ones with hydrophobic
properties (i.e. bacteria) prefer hydrophobic material surfaces, such as polymers [An and Friedman,
1998; Saulou et al., 2009;]. Considering these phenomena, hydrophobic microorganisms (in particular

bacteria) adhere to a greater extent than hydrophilic ones [An and Friedman, 1998].

5.1.4. Effects of exposure medium on AgNPs antimicrobial activity

Solution chemistry must also be considered when studying AgNPs antimicrobial activity because its
role can be crucial for the ultimate form of silver (Ag speciation) that organisms will encounter in the
exposure medium [Liu et al., 2010]. Solution pH, ionic strength and electrolyte species (e.g. NaCl,
NaNOj; and CaCl,), generally influence the amount of released silver through changes in aggregation

state and dissolution rate of AgNPs [Fabrega et al:, 2009; Liu and Hurt, 2010; Loza et al., 2014]. For
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example, AgNPs are more likely to be found as aggregates in high ionic strength media [Li et al.,
2010] or in presence of electrolytes [Zhang et al., 2011]. Moreover, an increase of the solution
temperature leads to an increased degree of dissolution [Kittler et al., 2010]. All these parameters can
provoke changes in the antimicrobial activity of nanoparticles [Axson et al. 2015]. Also, ligand (e.g.
CI, S, SO, *, PO, *, Ca®" and cysteine) and Natural Organic Matter (NOM), which has mostly a
biological origin including the organic matter released from plants, algae and fungi (e.g. proteins,
polysaccharides, nucleic acids, lipids, etc.), present in solution might chelate free Ag" (i.e. to create a
strong bonding of ions and molecules to metal ions). They may also chemically reduce Ag" to Ag” or
cause Ag' to precipitate in one of its many insoluble complexed forms (such as AgCl or Ag,S, as
discussed in the previous paragraph). They can at last alter the reactivity of AgNPs by displacing the
surface coating and adsorbing to their surfaces [Navarro et al., 2008a; Choi et al. 2009; Fabrega et al.,
2009; Liu and Hurt, 2010; Levard et al., 2011; Xiu et al., 2011; Levard et al., 2012; Cumberland and
Lead, 2013].

Another important example concerns cysteine, a common amino acid representative of thiol ligands
that bind monovalent silver. Cysteine is widely used in AgNPs toxicity experiments to assess the
effects of dissolved Ag". This proteinogenic amino acid is able to reduce silver toxicity to organisms
exposed to silver nanomaterials due to the relatively strong affinity between Ag  and cysteine
[Navarro et al., 2008b]. Although the complexation of dissolved Ag” by cysteine is the likely mode of
action, an excess of cysteine (Cysteine/Ag concentration ratio about 50) can also induce aggregation of
the AgNPs over long exposure time, leading to a secondary mechanism by which the presence of

cysteine could decrease AgNPs toxicity [Gondikas et al., 2012].

5.2. Interaction between Ag and microorganisms: the particular case of green algae
Chlamydomonas reinhardtii

In the literature, antimicrobial and toxicity effects of AgNPs were studied for two main categories of
micro-organisms: prokaryotes and eukaryotes [Marambio-Jones and Hoek, 2010; Chernousova and
Epple, 2013]. The main difference between the two categories involves the cell structure. Prokaryotes
are organisms in which cells have a simpler internal structure without organelles (membrane-enclosed
structures in the cytoplasm). In contrast, eukaryotes present different kinds of organelles inside the
cytoplasm [Madigan et al., 2012]. These organelles include, first and foremost, the nucleus, which
house the cell’s genome and key processes of DNA like replication and transcription, but also
mitochondria and chloroplasts, which are dedicated to energy conservation and carry out respiration
and photosynthesis, respectively. However, chloroplasts are only present in photosynthetic cells of
organisms like plants or algae. One of the two prokaryotic groups is that of bacteria. Among them,
some are pathogenic bacteria and are at origin of related human diseases. For this reason, a lot of Ag
toxicity and release studies are performed on bacteria evaluating mainly the antibacterial efficiency

and mechanism of Ag nanocomposites [Sondi and Salopek-Sondi, 2004; Shahverdi et al., 2007; Ivask
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et al., 2014; Le Ouay and Stellacci, 2015]. Moreover, these microorganisms are relatively easy to
culture and can be considered a “screening tool” for the toxicity of nanosilver. Animals, plants, fungi
and algae are different types of eukaryotic organisms. In particular, fungi cells are most closely related
to animal ones and some fungi grow as single-celled forms (the yeasts). Among yeasts,
Saccharomyces Cerevisiae has been studied as a model eukaryote for many years. For this reason,
studies of the interactions between Saccharomyces Cerevisiae and Ag nanocomposites is an important
step to evaluate both toxicity consequences and antifouling properties of these nanomaterials [Saulou
etal., 2010; Despax et al., 2011].

Owing to the random dispersion of AgNPs contained into the Ag nanomaterials in ecosystem, many
researches are performed now to evaluate the risk of these nanomaterials towards organisms in the
environment [Behra et al., 2013]. Algae are sensible and powerful tools to understand effects of these
nanocomposite materials [Navarro et al., 2008b; Miao et al., 2009; He et al. 2012b;]. The unicellular
green algae belong to a particular class of algae, with chloroplasts containing a and b chlorophylls,
which give them their characteristic green color. By the composition of their photosynthetic pigments,
they are similar to plants and are phylogenetically closely related to land plants. Among these algae,
Chlamydomonas reinhardtii represents a model eukaryotic organism to study the toxicity effect of
dispersed AgNPs. It is mandatory to highlight that the bacteria, yeast, and unicellular green algae
present an additive external structure with respect to other eukaryotic organisms. This is the rigid cell
wall that is the first protective barrier against toxic agents. However, the toxicity effects of Ag are
similar towards internal components of cell for together organisms (with and without cell wall).
Similar to bacteria, Chlamydomonas reinhardtii is a microorganism relatively easy to culture (for
details see Chapter 2). Moreover, this alga presents two important advantages to evaluate the Ag

release from AgNPs:

e Aguptake in Chlamydomonas reinhardtii from AgNPs has been observed to occur rapidly [Fortin
and Campbell, 2001] and to be dependent on dissolved Ag". No evidence of substantial AgNPs
uptake was found for this microorganism [Piccapietra et al., 2012; Navarro et al., 2015;]. In
contrast, bactericidal properties of the AgNPs were mainly related to direct effects based on
nanoparticles found to accumulate intracellularly and at the cell membrane [Morones et al.,
2005].

e Chlamydomonas reinhardtii is an extremely sensitive tool for the indirect measurement of Ag"
released in solution under realistic exposure scenarios due to changes in its chlorophyll
fluorescence (inhibition of algal photosynthesis yield). Moreover, its photosynthetic yield is not
affected by the algal translocation into buffered water or by exposure to Ag-ligand like cysteine

[Navarro et al., 2008b; Navarro et al., 2015].

However, during the normal living cycle of algae, H,O, is a metabolic product of algae, which may be

secreted in the nearest layer of exposure medium around the cell depending on the algae species and
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conditions [Suggett et al., 2008; He et al., 2012¢; Pospisil, 2012]. AgNPs in contact with H,O, would
lead to an enhancement of the Ag” release as discussed previously. These reactions would result in
increasing Ag” availability close to algae cells and thus in increased Ag -uptake (enhanced toxicity
effect) [Navarro et al., 2015; Sigg and Lindauer, 2015]. In this context, the Ag release from solid Ag
nanocomposite can be tested in both absence (abiotic condition) and presence (biotic condition) of

algae.

5.3. Interaction between AgNPs and proteins

Microbial adhesion to surfaces followed by cell growth and colonization results in the formation of an
Extracellular Polymeric Substance (EPS) capable of protecting the underlying microorganisms from
antimicrobials, chemical biocides and host defense mechanisms [Hoyle and Costerton, 1991;
Costerton et al., 1999]. The system composed by the microbial population adhered to a surface and
surrounded by EPS represents a biofilm. The formation of biofilms is a significant problem in various
areas (medical device, food industry, distribution of drinking water etc.) [Briandet et al., 1999; Pradier
et al., 2005; Ramage et al., 2006]. A surface treatment can prevent biofilm formation by limiting the
initial microbial adhesion and/or by killing microorganisms as they come in close contact with the
solid surface. This microbial adhesion on the solid surface is induced by proteins [Saulou et al., 2010].

In the last decade, a growing interest has been focused on nanocomposite coatings containing AgNPs
as antimicrobial agent [Favia et al., 2000; Jiang et al., 2004; Saulou et al., 2012; Sambhy et al., 2006;
Sardella et al., 2006]. These nanocomposite coatings (about 300-400 nm thickness) are typically
consisted of AgNPs (< 50 nm in size) embedded in polymer or polymer-like matrices. Vet chemical or
plasma assisted methods were used to mediate the coatings. The interaction between microorganisms
and nanocomposite containing AgNPs leads to changes in structures of intracellular (like enzymes)
and cell wall (like mannoproteins) protein, probably through interacting with their thiol groups [Feng
et al., 2000; Saulou et al., 2010; Saulou et al., 2012;]. In the literature, the first studied step was the
protein adsorption on a solid surface [Jenney and Anderson, 2000; Wyre and Downes, 2002; Sakiyama
et al., 2004; Shen and Zhu, 2016]. Understanding of interaction mechanisms between proteins and
AgNPs represents a route to elucidate the role of proteins in the formation of biofilms. A brief

description of proteins and solid surface properties related to their mutual interaction is given below.

5.3.1. Proteins properties affecting their interaction with solid surface

A protein is an assembly of amino acids (i.e. an organic compound containing amine (-NH,) and
carboxylic (-COOH) functional groups) held together by covalent bonds between a carbon atom and a
nitrogen atom of two amino acids. More than 100 amino acids linked in a chain are required to create a
simple protein. Owing to the chemical and physical properties of amino acids, one or more amino acid
chains forming the protein fold into three-dimensional shapes held by chemical bonds. This three-

dimensional shape of a protein is critical to its function. Principal bonds holding the protein three-
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dimensional shape typically are hydrogen bonds that are weaker than the covalent ones [Lartundo-
Rojas, 2007]. These bonds can easily be broken by chemical product or heat. In this context, protein
properties important for their adsorption on sample surface can be summarized as [Lartundo-Rojas,

2007; Shen and Zhu, 2016]:

e Size. Big proteins present more contact sites to interact with the surface;

e Structure stability. Proteins that have a less stable structure (i.e. ones presenting less
intramolecular bonds) can easily enlarge on surface. As consequence, these proteins improve the
number of contact sites with the surface;

e Charge. Depending on the amino acid sequences in a given region, the outer hydrophilic
surface of a protein is heterogeneously charged at neutral pH;

e Hydrophobicity. A protein consists of hydrophobic/hydrophilic domains in structure. The inner
hydrophobic core of the protein is favorable for a hydrophobic surface with a relatively high
water contact angle;

e Heterogeneity. Protein surface can present regions with different charge and

hydrophobic/hydrophilic behavior.

All these properties give to the proteins the ability to adapt to different solid surfaces.

5.3.2. Surface properties related to proteins absorption
In the same way, the surface properties implied to the protein adsorption process involve chemical and

physical characteristics of solid surfaces [Shen and Zhu, 2016]. Principal surface characteristics are:

e Topography. High roughness of the solid surface improves the exposed surface able to interact
with the proteins;

e Charge. The electrical surface potential influences the charge distribution at solid surface which
in turn modifies ions in solution close to the interface between the solution and the solid surface.
As consequence, this alters the electrostatic interaction between proteins and substrate surface;

e Composition. Surface chemical composition determines the kind of intermolecular forces that
rules the interaction between proteins and the surface;

e Hydrophobicity. Hydrophobic surfaces promote the formation of bonds between proteins and the
surface. Together with the topography characteristic, a curved hydrophobic surface enhances the
amount of adsorbed proteins;

o Heterogeneity. The presence of heterogeneity on the surface, such as heterogeneously charged or
amphiphilic surfaces (e.g. possessing at the same time hydrophobic and hydrophilic groups),

define regions that can interact with proteins in different way.

However, the protein adsorption mechanisms are not only due to the proteins and surface properties.

This adsorption also depends on the availability of proteins. Moreover, proteins can be brought to the
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surface by one or more of the four main transport mechanisms: diffusion, natural convection, forced
convection and coupled transport. Variables such as the concentration and size of the proteins are
important to determine their access to the surface [Ratner et al., 2004]. Once proteins are present on
the surface, they can interact with the substrate via intermolecular forces such as ionic bonding
(electrostatic interactions), hydrophobic interactions and charge transfer interactions (electron
exchange) [Lartundo-Rojas, 2007]. Hydrogen bonds, which are important as stabilizers for the protein
structure, do not play a key role in the interactions between proteins and the surface. Protein
adsorption is virtually irreversible except if dramatic changes occur in the environment, such as an

increment of ionic strength, a decrease in pH or the use of detergents.

6. Optical properties of AgNPs

In addition to their bactericide properties, nanocomposite materials containing noble metallic NPs are
widely studied for their exceptional optical properties. In the past decade, attention was focused on
nanoparticles composed of noble metals, because they support localized surface plasmon resonances
(LSPRs). These collective oscillations of the conduction band electrons enable strong optical
absorption and scattering in subwavelength structures, with spectral properties dependent on the NP
material, size, shape, electronic charge and surrounding medium. The LSPR of noble metal NPs is
widely exploited for enhanced optical spectroscopies of molecules, [Nie and Emory, 1997] nonlinear
optics, [Toudert et al., 2008; Traverse et al., 2008] photothermal therapy, [Baffou and Quidant, 2013]
photovoltaics, [Atwater and Polman, 2010; Linic et al., 2011] or more recently in plasmoelectronics
[Spinelli and Polman, 2012; Warren et al., 2012] and photocatalysis. [Prieto et al., 2012; Mukherjee et
al., 2013; Zhang et al., 2013]. Among the noble metal NPs, we will see that AgNPs realize the best
nanoscale antennae. In this last section, we will describe the electronic and optical properties of noble
metals, from the bulk material to the NPs. Development of solid Surface Enhanced Raman Scattering
(SERS) substrates based on metal nanostructures embedded in dielectrics will be introduced. Even if
not the heart of this work, this other facet of our nanocomposite materials could be coupled to their
bactericide properties for a multifunctional use in the biofilm detection and prevention (see Chapter 6).
In addition, their optical response has been used all along this work for a fast and non-destructive
characterization of these nanocomposite materials. In particular, ellipsometry measurements have been

shown to be a wealth of information, as it will be shown in Chapter [V.

6.1. Electronic properties of noble metals

To understand the optical properties of noble metal nanoparticles, we have to start with the electronic
band structure a bulk noble metal. The classification of noble metals requires a solid with fully
occupied d-valence levels and energy Er of Fermi level, which identifies the last occupied energy level

at temperature of 0 K in metals that does not cross the d-valence levels (Fig. 1.18). The three metallic
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elements that satisfy these conditions are copper, silver and gold [Eckardt et al., 1984]. These metals
have an atomic structure of electron configuration: [noble gas] (#-1) d'’ ns’. From the point of view of
solid state physics, the electronic band structure of noble metals is composed by a band of fully
occupied levels (called valence band - blue in Fig. 1.18) and a band of partially occupied levels (called
conduction band - green in Fig. 1.18) [Kittel, 2004]. The overlapping of (n-1) d'’ discrete atomic levels
gives rise to the valence band while the hybridization of discrete atomic levels ns and np leads to the

formation of the conduction band.

Figure 1.18: Schematic of the electronic structure evolution of noble metals Cu, Ag and Au with n =3,
4 and 5, respectively, starting from atomic levels towards the band structure of the bulk solid. Two
types of band transitions (interband and intraband), the energy threshold of interband transitions
between valence and conduction band £z and the energy of Fermi level Er are shown. The atomic
structure of these noble metals is reported on the left side.

The valence band of noble metals results from 5 overlapping d electronic dispersion curves, each one
varying in a narrow energy range (orange points in figure 1.19). On the contrary, the conduction band
contains only the hybrid sp dispersion curve that varies in a broad energy range (blue points in figure
1.19).

Figure 1.19: Electronic energy dispersion curves in Cu, Ag and Au as function of the wave vector k.
From [Eckardt et al., 1984]. In the ordinate axis, the zero value corresponds to the Fermi level. In the
abscissa axis, the standard labels of symmetry points and axes of the Brillouin zone (i.e. face centred
cubic (fcc) are reported [Kittel, 2004]).
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This implies that the density of electronic states (i.e. the number of electronic states per unit of energy)
in the valence band is much higher than the one in the conduction band, in particular close to the
energy of Fermi level. This finding will strongly affect the electronic transition rates of these metals
due to an external excitation (e.g. an electromagnetic wave as the light). In this context, optical
characteristics of noble metals are strictly related to their band structure.

6.2. Optical properties of noble metals (bulk Electronic properties of noble metals

6.2.1. Drude model

The properties of the metal free electrons can be adequately explained by using the Drude model. This
model describes the metals as a system in which the free electron gas of density n can move in a fixed
array of positive ions. When an oscillating external electric field E is applied, the electrons collectively
oscillate around their equilibrium position. This motion in bulk metals is damped via collisions of
electrons with other electrons, crystal lattice (phonons), lattice defects, or impurities. This occurs with
a characteristic collision frequency y, = 1/7, where ¢ is the time between two consecutive collisions
(known as the relaxation time of the free electron gas).

The motion of an electron in the plasma sea subjected to an external electric field E(t), is described by

the fundamental classical equation of motion:

o°r

6r —iat
m, meybazeEoe g (1.17)
where mq is the electron mass, e is the elementary charge, o is the electric field angular frequency.

The particular solution of this equation describing the forced oscillation of the electron is:

e
m, (@* + iy, )

r(t) = Et). (1.18)

The ensemble of displaced electrons provokes a macroscopic polarization of metal P = —ng e r(t).

Inserting this expression for P into the equation for dielectric  displacement

D(r,t)=¢, E(r,t)+P(r,t) yields:

a)Z
D(t) =&, (1—2—?J E(t), (1.19)
o +iy,0
where @, = "€~ is the Drude plasma frequency of the free electron gas. This angular frequen
o, = s s the Drude plasma frequency of the free electron gas. This angular frequency

can be recognized as the natural frequency of a free oscillation of the plasma sea around a positive
background of the ion cores in which all electrons move in phase (collective oscillations). In a
quantum description of this harmonic oscillation, one introduces energy quanta E, called volume

plasmons. For most of the metals, the energy associated with these excitations ranges between 5 and
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15 eV depending on the band structure details [Kittel, 2004]. E, of noble metals ranges between 9 and
11 eV [Rakic¢ et al., 1998]. Considering equation 1.17, the complex dielectric function of the free

electron gas &(w) in the Drude model is expressed as:

COZ

& (@) =1-——2—. (1.20a)
o’ +iy,o

The dielectric response is thus described by a complex function where the real part &', (@) accounts

for the dispersion and the imaginary part &", (@) for the absorption:

2 2
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The remarkable feature of the real part of the dielectric function for bulk metals is its ability to be
positive (propagation) or negative (extinction) following the frequency and to be zero at =, when

the damping factor y, is negligible (w >> y,). ¢'p(w)=0 defines the resonance condition of bulk

metals. At the plasma frequency @, we can observe two important features of the free electron gas.
First, the propagation direction of the collective oscillation of the free electron gas is parallel to the
applied electric field (longitudinal waves) [Maier, 2007]. Due to the longitudinal nature of this
excitation, volume plasmons do not couple to transverse electromagnetic waves, and can be excited
only by particle impact. Second, the electric field becomes a pure depolarization field (E = —P/g).

This provokes a restoring force on displaced free electrons.

6.2.2. Intraband and interband transitions in noble metals
In the band structure described in figures 1.18 and 1.19, two types of electronic transitions can be

distinguished:

¢ Intraband transitions within the sp hybrid band (conduction band) involving the direct excitation
of electrons in levels close to the Er. At room temperature (T = 25°C equivalent to 26 meV by the
relation E o« k,T, where k;, is the Boltzmann constant), electrons have enough energy to reach the
empty levels. These electrons can be considered as free electrons and the Drude model is a good
approximation.

o Interband transitions between the d valence band and the conduction hybrid sp band allowing
electrons of full levels of valence band to directly reach empty ones of conduction band. The

minimum energy required for this type of interband transition is E;s, which is of the order of
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magnitude of few eV (Fig. 1.18). These electrons are considered bound electrons at room

temperature.

The frequency (or wavelength) dependence of the dielectric function of a bulk noble metal does result
from these two types of electronic transitions. When plotting the real and imaginary parts of the
dielectric function, we can see that after the energetic threshold of £;, = 3.9 eV for Ag (2 eV and 2.1
eV for Au and Cu, respectively), the experimental data move away from the Drude model predictions
(Fig. 1.20). Above this energy, the interband transitions become important and strongly modify the

imaginary part of the metal dielectric function.

Figure 1.20: Experimental & (4) and &, (4) of Cu, Ag and Au (color points). It also reports the real
and imaginary part of gy(4) of Ag calculated using equations 1.20 (at room temperature, in energy
units, @, is 9.08 eV and y, is 0.28 eV [Hollstein et al., 1977]) (blue line). It is possible to distinguish
the energy threshold of interband transition £3 of each noble metal (around 2.1 eV (590 nm) for Cu,
3.9 eV (320 nm) for Ag and 2.4 eV (520nm) for Au [Kreibig and Vollmer, 1995]). For each element,
dielectric function points are extracted from experimental ellipsometric spectrum. From [McPeack et
al., 2015].

6.3. Optical response of noble metal nanoparticles

Scaling down to nanometer size, the optical response of metals is affected by three features: size,
shape and surrounding medium of the metal [Kreibig and Vollmer, 1995; Maier, 2007]. In this section,
we focus our attention to small and spherical metallic nanoparticles with dimensions much lower than
the bulk electronic mean free path /, (around 50 nm for noble metals) and greater than the Fermi
wavelength Ay (around 0.5 nm for noble metals) [Maier, 2007; Hartland, 2011]. The latter defines the
3D-0D quantum limit for which the spacing between electronic states at the Fermi level becomes
larger than k,7. As a consequence, the band structure of metallic nanoparticles does not change for

nanoparticle dimensions above one nm.
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6.3.1. Size effect

The complex dielectric function of metals nanoparticles develops size dependency for nanoparticle of
dimensions in the nanometer range. The size dependency of dielectric function stems from both
interband transitions and damping contributions. The contribution of interband transitions is related to
local changes in the properties, like electron density and atomic distances, close to the particle surface,
for example. The damping contribution involves changes in the electronic mean free path due to the
scattering of conduction electrons against the nanoparticle surface. Usually, the latter contribution
exceeds the former one by far [Coronado and Schatz, 2003]. Hence, when the nanoparticle size is

smaller than I, the damping increases and can be written as [Coronado and Schatz, 2003]:

VF

7(Dye ) =1, + 9 (on)’ (1.21)
where g5 is dimensionless parameter depending on the surface scattering, usually assumed to be close
to unity [Coronado and Schatz, 2003; Baida et al., 2009], vg is the Fermi velocity, and Il is the
effective electronic mean free path. The latter depends on the size and shape of the nanoparticles and
can be expressed by le = 4V/S where V is the volume and S is the surface area of the nanoparticle. For
spherical nanoparticles, the effective electronic mean free path is directly proportional to the size Dyp
of nanoparticles, i.e. leg (Dnp) [Kreibig and Vollmer, 1995; Coronado and Schatz, 2003]. Finally, the

complex dielectric function of metallic spherical nanoparticles &yp(@, Dyp) can be written as:

2
[0
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where gg(w) is the part of complex dielectric function due to the interband transitions in bulk metals.

In the visible frequency range, the condition @ >> y(Dyp) remains valid and the real &',,(®) and

imaginary ¢",(@,D,,) components of eyp(w, Dyp) read:

0)2
E'Np(w)=€'(a))5€'|a(w)——g, (1.23)
W
" D) =e” @ Ve 1.24
&" (@, Np)=5(w)+ggsm- (1.24)

Hence, the size dependency of the dielectric function is negligible for the real component of the
dielectric function (which is equal to the bulk value) meanwhile it significantly influences the

imaginary part.
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6.3.2. Localized Surface Plasmon Polariton (LSPP)
To describe the electric interaction between metal nanoparticles and an electromagnetic wave, the
quasi-static approximation is fulfilled because the nanoparticle size Dyp is much smaller than the

wavelength A of the external electric field E(z, f) in the visible range (Dyr << 1) (Fig. 1.21).

Figure [.21: Interaction between the electromagnetic wave of harmonic time dependence and metallic
spherical nanoparticles under quasi-static approximation. The displacement of conduction electronic
cloud with respect to positive charges is shown at minimum (Ey;n) and maximum (Eyax) of electric
field.

Within this approximation, the phase of the harmonically oscillating electromagnetic field is
practically constant over the particle volume and this allows neglecting the spatial retardation effects
over this volume. Therefore a uniform displacement of the conduction electrons cloud from the
positive charges occurs (Fig. 1.21).

One can calculate the spatial field distribution by assuming the simplified problem of a homogeneous
isotropic spherical nanoparticle of radius R = Dyp/2 and dielectric function gyp(@, Dyp) located at the
origin in an uniform static electric field Eg = E( z. The surrounding medium is assumed to be isotropic
and non-absorbing with a real dielectric constant ¢, (Fig. 1.22).

We only report here (for an overview see [Maier, 2007]) the final result concerning the spatial

distribution of the electric field inside (Ei,) and outside (E,u) the spherical nanoparticle due to the

applied electric field E(z,t) =E,e ™ :

3¢
L= 2 E(z,t 1.25
" 8NP(a)’D)+28m (Z ) ( )
E,, =E(s0+ PP 1 (1.26)
drs,e, 1
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where n and r are the unit vector and the module of the vector position (the origin is taken at the center
of the nanoparticle), respectively. p is the dipolar moment of the nanoparticle induced by the applied

—iwt

electric field and defined as p(z,?) =¢,¢,,a(w,D,,) E,e”, where a(w, Dyp) is the polarizability.

Figure 1.22: Sketch of a spherical nanoparticle placed into an electrostatic field.

The latter can be expressed as:

3 Ewl(@,Dyp)—¢, T3 Exp(@,Dy)—¢,

a(w,D,,)=—D .
&yp(@,D,,) +2¢, (@ D) 2 e (@,Dy)+2e,

Via
a(w,D,,) = EDNP (1.27)
The polarizability presents a resonance when the term | evp 28, | is minimal, i.e., for gyp =-2¢,. For
this value, a resonance of the electric field inside and outside the nanoparticle is also observed.

In the same way that we have described the volume plasmons for bulk materials, we can define the
localized surface plasmon as the quantum of collective oscillations in a NP. The corresponding

resonance or LSPR (for Localised Surface Plasmon Resonance) takes place for a frequency:

w
T — (1.28)

e ,/5,3 +2¢, '
This frequency depends on the NP material and shape (here the factor 2 is the shape factor for a
sphere) but also on the environment (g,) of the NP. Thanks to their small size, the NPs allow to
concentrate the electromagnetic field at a scale drastically smaller than the corresponding wavelength.
Indeed, following Eqs 1.25 and 1.26, one sees that the electromagnetic energy will be concentrated
inside the NP and at its immediate vicinity. This is particularly suitable to the use of the exaltation
effects of the light diffusion by objects localized in their near field as the well-known SERS (Surface
Raman Spectroscopy) effect [Cho et al., 2012]). In addition, according to equation [.27, this

phenomenon will be particularly exalted at frequencies near that of the LSPR.
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6.3.3. Absorption and diffusion cross-sections

When an electromagnetic wave interacts with a NP, the NP absorbs a part of the incident power and
another part is diffused. Using the Mie theory [Maier, 2007], one can calculate the associated cross-
sections. They are defined as the ratio between the electromagnetic power absorbed, or radiated, and

the incident energy flux. Their sum is called “extinction cross-section”.

Cexr = Cahs + Cd{{/' s (129)
with,
3 E—¢&
C,, =kIm(a)=4rkR ImL z J , (1.30)
e+2¢,
and Cy = af = 87 kR 1| £ 2 (L31)
W 6r 3 e+2¢s,| '

The absorption cross-section varies with R’ meanwhile the diffusion one is function of R°. In the

dipolar approximation R<<A, the absorption clearly dominates the diffusion and we can write:

C o~C - 247’ R’e,? &"(1)
ext abs 67[ |8'(ﬂ/)+2¢9m|+5" 2(/1)

(132)

These quantities are homogeneous to surfaces and can be represented in a schematic way (Fig. 1.23):
in resonant conditions (LSPR frequency), the “effective projected area” of the NP becomes larger than

its geometrical value.

Fig. 1.23: Schemes representing the extinction cross-section Ce of a metal NP in an electromagnetic
field, out of resonance (a) and at the resonance (b). From [Bayle, 2014]

Consequently, in order to compare the amplitude and acuity of the LSPR of different systems
(NP+matrix), we can define the extinction efficiency as the ratio between the extinction cross-section

and the geometric surface:

O.=—5. (1.33)
T
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The resonance frequency w;spr 0f a spherical NP, and therefore the associated photon energy, depend
on the nature of NP material but also on that of its embedding matrix. We can hence calculate the
resonance energy of the composite system if we know the dielectric functions of the both materials
[Polyanskiy, 2016]. The calculation of the extinction efficiency gives information on the resonance
profile (frequency location, width and intensity) and allows the best choice of the couple (NP
material/matrix). In figure 1.24, the extinction coefficient for NPs made of 3 noble metals (Ag, Au and
Cu) in two different matrices (SiO, and Si;Ny) is plotted [Bayle et al., 2014]. The relative amplitude of
each curve clearly shows an important resonance for Ag and Au that can be used for plasmonic
applications in these two types of matrices. Nevertheless, the Ag resonance is clearly higher than the
one of Au and this material will be chosen for maximum field exaltation. Indeed, the resonance quality
factor, defined as Q = A spr/AN Where AL is the FWHM, is higher for AgNPs than for AuNPs (metal
effect) because of the supplementary damping by interband transitions in Au. As discussed in section
6.2.2 of this chapter, the interband transitions are located at higher energy for Ag (3.9 eV) compared to
Au (2 eV).

Now by changing the embedding medium from SiO, to SizN, for example a strong enhancement of the
LSPR and its tuning in the middle of the visible were obtained. The LSPR of Ag-NPs shifts from the
near UV range (400 nm) to the visible range (475 nm). Owing to the fact that the higher the refractive
index, the better the electromagnetic energy confinement is, the quality factor is doubled when
changing the surrounding medium from SiO, to SizN4 for example. Nevertheless, most of the studies
in the literature involving AgNPs embedded in dielectrics for plasmonic applications involve silica

matrices, this material being widespread and easiest to synthesize.

Figure 1.23: Extinction efficiency of noble metal NPs embedded in a SiO, (a) and SizN4 (b) matrix
[Bayle et al., 2014].

6.4. Use of embedded AgNPs for SERS substrates
Hence AgNPs realize the best nanoscale antenna for amplifying local electronic and vibrational signals

in the visible range, providing unique molecular information in the optical far-field regime. In the field
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of scientific research, two main spectroscopy techniques have emerged based on localized surface
plasmon resonance (LSPR) and surface-enhanced Raman scattering (SERS). Advances in micro and
nano-fabrication technology have made available integration of sensitive LSPR to lab-on-a-chip
platforms. They are increasingly popular in fundamental biological studies, health science research
and environmental monitoring [Vo-dinh et al., 2005; Stewart et al., 2008; Rycenga et al., 2011]. Since
its discovery in 1974 on pyridine molecules adsorbed on rough silver surfaces [Fleischmann et al.,
1974], SERS has received a great deal of attention as powerful analytical technique for molecular
spectroscopy, biomolecular recognition and ultra-sensitive detection (down to a single molecule).
Many effective ways have been explored [Lacy et al., 1996; Evanoff and Chumanov, 2005; Rycenga
et al., 2011] for the synthesis of Ag plasmon-active surfaces as an aggregation of colloids,
electrochemically roughened electrodes, atom beam sputtering, or pulsed laser deposition. Most of the
currently available lithographic techniques are developed for the fabrication of two-dimensional
metallic nanostructure arrays and often carry with them limitations that prohibit their widespread use
for biological spectroscopy and imaging [Le Ru et al., 2006; Jones et al., 2011;]. In particular, the
limits imposed by the fabrication of SERS substrates remain the major drawback for their large
application, due to the drastic requirements for controlling on large area and, in a reproducible way, a
well-defined spacing between the metallic nanostructures and the probing molecules. Generally, the
enhancement of the scattering cross-section for SERS substrates is attributed to an electromagnetic
mechanism (based on surface “plasmon resonance”) and/or to a chemical one (based on “charge
transfer””). Whatever the mechanism, the requirement for an efficient SERS substrate is the fine control
on nanometer scale of size and shape of the metallic particles, and of the distance between their
surface and the probed molecules. A key point to overcome is control of the thickness and porosity of
the coverlayer. The thickness of the coverlayer must be selected at nanoscale level as a compromise
between the preservation of SERS enhancement and the protection of AgNPs against oxidation, for
example [Benzo et al., 2011], and against direct interaction of the AgNPs with the probing molecules
[Vo-Dinh et al., 2005].

Development of solid SERS substrates based on metal nanostructures covered by a polymer [Pal et al.,
1995], or by inorganic materials (ultrathin SiO, layers) [Lacy et al., 1996] allowed improving their
stability and performance. The SiO,-coated SERS substrates proved to be especially useful in SERS-
based biosensors because of the well-defined hydrophilic and stabilizing properties, which actually
motivated the current study. Different elaboration methods have been applied for the synthesis of solid
SERS substrates. The explored ways are either via chemical reactions, lithographic fabrication, and
template-direct growth [Stewart et al., 2008 and the references therein; Rycenga et al., 2011], via
thermal evaporation [Lacy et al., 1996] or more recently via low energy ion implantation beam
synthesis (LE-IBS) [Carles et al., 2009; Carles et al., 2011; Bayle et al., 2014], all of them
emphasizing the large interest for applications and the importance of strict control during the synthesis

of SERS substrates. This recent work on “embedded” plasmonics is the starting point of this work.
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7. Conclusions

In this Chapter, we have presented the two facets of AgNPs that are at the same time (i) Ag" ion
reservoirs with powerful bactericide and anti-microbial properties and (ii) the best plasmonic antenna
in the UV-visible range. The main results on the physical approaches used in the literature to elaborate
solid nanocomposite substrates based on AgNPs embedded in dielectrics have been introduced. These
nanocomposites being intended to interact with biological objects, the reactivity of AgNPs with the
different media (air, water) has also been described. In the next Chapter, the main techniques used in
this work for the elaboration of these nanocomposites and the characterization of their structural and
optical properties are presented. In addition, the original method that we have used for the assessment

of the Ag" released and implying green algae as biosensors is detailed.
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Chapter II: Experimental techniques

In this chapter, the main experimental techniques used in this work will be detailed.

1. lon Implantation

lon implantation is a process of material engineering used as ages for semiconductor doping. This
technique has been diverted from its initial use to introduce high doses and perform lon Beam
Synthesis (IBS) as explained in Chapter I. Hence, tiny nanostructures of controlled composition can be

formed in virtually any matrix.

1.1. Basics of lon Implantation

After each interaction with the target atoms, nuclear or electronic, the impinging ion losses part of its
energy until it implants into the matrix. The total path travelled by the ion, due to all the random
collisions, is R. However, the important distance is the projected range along the axis normal to the
matrix surface, R,. During the implantation process, the ions species are distributed into the matrix
according to a Gaussian law: ions are distributed around the mean projected range R, with a mean

square deviation given by AR,:

N(z) = _M}, (11.1)

F
— 0  ex
V27AR, p{ 2(AR,)?

@ denotes the implanted fluence (or dose), R, the projected range along the normal axis and 4R, is the
width of the profile due to straggling. Energy transfer by nuclear stopping the primary ions creates
recoils which themselves could displace further substrate atoms giving rise to a recoil cascade. This is
achieved if energy higher than a threshold value — the displacement threshold E4 — is transferred in a
collision to a target atom. In this case a stable Frenkel pair being a pair of interstitial and vacancy is
created, which is immobile at low temperatures. Then, damages can accumulate during implantation
and eventually lead to the amorphization of the crystal structure. At higher temperatures though
damages could anneal out dynamically in the course of implantation the number of Frenkel pairs does
not exceed a temperature dependent steady state level.

The depth profiles of implanted impurity atoms are usually calculated with the help of Monte Carlo
methods using the binary collision approximation codes among which TRIM/SRIM [Ziegleret al.,
2010] is the most common one. For the extreme case of high dose implantation, Méller et al. [Moller
et al., 1984] developed a dynamic modification of TRIM — TRIDYN - that accounts for target changes

during the course of the implantation (sputtering, stoichiometry changes, swelling, ion mixing...).
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1.2. Ion Implanter

The simplified scheme of an ion implanter is shown in Figure II.1. Ions are generated from a solid
source (or a powder) in a plasma and then are extracted and accelerated. A separating magnet coupled
to a selection slit allows the ions selection as a function of their ratio mass versus charge. In this work,
silver ions '”’Ag of atomic mass 106,90 uma are selected. They are then accelerated with the selected
energy. The ion beam is shaped by using electrostatic lenses and a scanning system in X and
Y-directions allows a uniform wafer implantation. The ion beam is deviated just before reaching the
implantation chamber in order to eliminate the neutralized ions. The decelerator located just after the
implantation chamber allows, by the application of a potential, to decelerate the ions, in order to reach
kinetic energy lower than 5 keV. The initial energy Ei of the incoming ions delivered by the ion
implanter is divided by 8 before bombarding the wafer. This means that for initial energies Ei ranging
from 5 to 25 keV, the final implantation energies Ef range from 0.6 to 3.1 keV [Benassayag et al.,
2000]. The ion flux (ions/cm?/s) reaching the sample surface can be deduced from the current

measurement and is defined by:

I
= 11.2
=< (I.2)

By integration of this flux over time one obtains the amount of impurities implanted in the matrix.

This quantity is called dose (or fluence) @.

Figure II.1: Simplified scheme of the ion implanter.

1.3. Ion Beam Synthesis

The ion beam synthesis of AgNPs embedded in dielectrics is a one-step process (Fig. 11.2). Substrate is
composed of thermal silica layer grown on top of a Si wafer. As explained in Chapter I, the thickness
of the dielectric layer has been chosen to be an antireflective layer (90 nm) with maximum of the
electric field close to the surface [Carles et al., 2011]. Ag" are implanted for a fixed energy (in the
range from 0.6 to 20 keV), which determined the projected range of the implanted profile. In this
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energy range, a quasi 2D array of NPs can be formed. The ion dose is varied from some 10" to some
10" cm™ and fixes the amount of Ag introduced in the matrix. These high doses correspond to Ag
concentrations at the mean projected range (R,) larger than 10 at.%. The ion current plays a key role
for the silver diffusion in the silica matrix and has been fixed to 5 pA for all the implantations. Finally,
to recover the matrix damage and protect the AgNPs from fast oxidation [Benzo et al., 2011] a post-
implantation rapid-thermal-annealing is carried out under N, atmosphere at 500°C for 30 minutes. The
choice of the annealing time and the temperature is restricted as to maintain unchanged the AgNPs
size distribution and their position inside the SiO, matrix.

Patterning in the plane of such AgNPs assembly can be obtained by implanting Ag" ions through a
stencil mask in close contact with the SiO, surface. Hence different embedded plasmonic architectures
(lines or dots arrays, gratings) made of AgNP metallic assemblies can fabricated. This stencil mask is
fabricated by focused ion beam milling of a 200 nm thick Si;N; membrane. After implantation, the
mask is simply removed from the substrate leaving the patterns implanted on it ready to be
investigated. More details on this masking process can be found in [Benassayag et al., 2012]. These

particular masked samples have been fruitfully exploited for the optical studies.

Figure 11.2: Scheme of the implantation process in the case of low energy ion implantation (some
keV).

The conditions for the controlled ion beam synthesis of AgNPs embedded in silica matrix have been
previously optimized in the group [Benzo et al., 2011; Benzo et al., 2013] and resumed in Chapter 1.
In this PhD thesis, we have selected 2 sets of operating conditions from this previous work,
representing samples implanted with Ag” at a fixed energy of 10 keV and two different doses, 0.71
and 3.8 x 10'° jons/cm’. These two samples present a quasi 2D array of AgNPs, with similar mean

diameter and surface density (see Figs. 1.9 (e) and (h)). The main difference consists in the distance of
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the AgNPs from the free surface, which slightly increases when increasing the implantation dose. The

samples obtained by ULE-II are called hereafter “implanted samples”.

2. Plasma processes

Plasma-based deposition processes are versatile techniques largely applied in industrial applications
for elaboration of thin layers including nanocomposites containing metal clusters. In this section, at
first we will present the specific details of the plasma reactor used for nanocomposite synthesis, after
that the diagnostic method to monitor the plasma characteristics and, finally, the experimental
procedure for the elaboration of a layer of AgNPs embedded in silica matrix. For simplicity the plasma

elaborated samples are called hereafter “plasma deposited samples”.

2.1. Plasma reactor description

The reactor used in this study exploits the plasma of an axially-asymmetric capacitively-coupled RF
(13.56 MHz) discharge sustained at low gas pressure. This reactor was built in LAPLACE by Bernard
Despax and coworkers. It is illustrated in Figure I1.3. For dimensional and other details see Despax
and Raynaud, 2007.

The axial-asymmetry of the discharge is related to the large difference between the surface area of the
RF powered (upper) smaller electrode and the grounded (lower) electrode, including the reactor walls.
This type of discharges allows efficient sputtering from the powered electrode which in the current
case is a silver target. The inter-electrode distance is of 35 mm. The RF electrode is coupled to a
Sairem generator (delivered power up to 300 W) by means of a LC matching network. The axially-
asymmetric design of that RF capacitively-coupled discharge produces axially-asymmetric plasma
inducing a self-bias voltage on the powered electrode (the smaller electrode). The self-bias voltage
scales up with the injected power in the discharge for a fixed gas pressure.

The vacuum chamber is evacuated by a standard pumping system sustained of primary (rotary) and
secondary (turbomolecular) pumps. Before performing the deposition the reactor is usually pumped
overnight by the turbomolecular pump (down to 5 x 10 Pa). The working gas pressure is of few Pa. It
is measured by a Baratron gauge. The operating gases used in this study are Ar (Air Liquide alphagaz
2, 99.9995%) and O, (Air Liquide alphagaz 2, 99.9995%). As silicon precursor we have used HMDSO
purchased from Sigma Aldrich (purity greater than 99.5%). The HMDSO line and the reactor walls are
constantly heated at 50°C to avoid condensation of the HMDSO monomer. The purely technological
interest of using HMDSO as precursor in plasma processing is maintained by the possibility of
deposition of plasma polymers or thin oxide films (in HMDSO-O, mixture) depending on the ratio of
the partial pressures of injected gases. Furthermore, HMDSO is non-toxic, non-explosive, and much

safer than silane.
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Figure I1.3: Schematic representation of the plasma reactor: (a) image of the inner upper part of the
reactor chamber. (b) image of the reactor when the plasma is switched on.

One of the unique features of the experimental procedure is the pulsed injection of HMDSO with an
injection time, t.,, and a total period, T (T = t,, + tof), see Figure 11.4. The maximum accessible
HMDSO flow rate is 0.4 sccm, which actually corresponds to a continuous HMDSO gas injection. The
HMDSO flow rate is adjusted by a mass flow controller OMICRON, switched by a pulse generator
AGILENT.

Figure 11.4: Illustration of duty cycle of HMDSO injection.
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The Ar gas and the Ar-HMDSO mixture are introduced into the reactor by means of a ring gas injector
located in the upper part of the reactor at the periphery of the RF electrode. The Ar and HMDSO are
mixed in a buffer chamber before being injected in the reactor. The O, is introduced in the plasma by a
port located at the sample holder (lower electrode) level. A metallic shutter is positioned in the lower
part of the reactor to hide the substrate during the plasma stabilization phase in order to prevent from
continuous deposition on the sample once the plasma is switched on. It allows strict control over the
deposition time.

The plasma electrical behavior is followed through measurements of the self-bias voltage Vq.. Due to
the asymmetrical design of the used plasma process the self-bias voltage of the RF electrode is strictly
related to the acceleration of Ar" ions towards the silver target, thus to the Ag-sputtering. The glow
emission from the plasma is followed by Optical Emission Spectroscopy (OES). OES spectra are
acquired through an optical fiber positioned at 5 mm above the grounded electrode, connected to a

spectrometer Princeton Instrument (Acton Advanced Sp 2500A) for further analysis.

2.2. Monitoring of the plasma process by OES

The Optical Emission Spectroscopy is a non-contact diagnostic method largely applied for
characterization of the main plasma parameters (electron energy and electron density) by means of
measurements of the atomic optical transitions. The analysis consists of collecting light directly
emitted by the excited species present in the discharge and further signal processing using theoretical
models to describe the plasma [Donnelly, 1990].

In the plasma the glow emission occurs when species, atomic or molecular, in an excited energy
(initial) level Ey totally or partially lose the acquired energy by a radiative decay mechanism (de-
excitation) into a lower (final) energy level E;, if the radiative transition between two energy levels is
permitted. During this transition, a photon of wavelength A, corresponding to the difference of the two
energy levels is emitted. According to the Einstein relation of spontaneous emission the intensity of

emitted light 1, can be written as:

|AOCENKAkj (11.3)
/ij
where Ny is the population density of the initial excited level, Ay is the transition probability between
the energy levels k and j; h and c¢ being the Plank constant, and the speed of light in vacuum,
respectively.
The most convenient way to use OES for real-time monitoring of a plasma process is to rely on the

ratio between the intensities of two spectral lines. At steady state conditions it reads:

L_ glAl/IZ EZ_El
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where kg is the Boltzmann constant, T, is the mean electron energy and g; and g, are the corresponding

atomic level degeneracies. The selection rules for a couple of emission lines are as follow:

e (uite intense emission lines in order to collect a sufficient number of photons;

¢ high enough transition probabilities A,

e emission lines with close to each other wavelengths.
In our plasma process, we follow the ratio between an argon emission line and a silver one. Both
emission lines originate from highly excited atomic levels (Table 11.1). It is important to estimate both
the quantity of sputtered silver for the AgNPs deposition and the plasma efficiency for the elaboration

of the plasma silica layers and the line ratio method appears the most appropriate one.

Table 11.1:  Physical parameters of the selected optical emission lines [NIST].

A A E; Ex

Element Energy level - j Energy level - k

(nm)  (10°s)  (eV) (eV)
Agl 5465  86.0 3.78 6.05 4d™ (*s) 5p [*P°] 4d™ (*s) 5d [*D]
Ar | 5496 169  13.08 15.33 35%3p° (%P°31,) 4p 35%3p° (?P°3),) 6d

2.3. Experimental procedure for the elaboration of embedded AgNPs by plasma
deposition process

Given the targeted architecture of the samples consisting of a stack of plasma SiO,/AgNPs/thermal
SiO, layers on a Si-substrate (Fig. 11.5) that fulfill the antireflective condition (Chapter I, indispensable
one for reflectance and ellipsometric analysis as well as for SERS measurement [Carles et al., 2011]),
the plasma deposited samples are elaborated according the procedure described below. Moreover, the
gas pressure, the self-bias voltage and the line intensity ratio are monitored during the plasma

deposition process.

1% step: substrates pre-treatment. Substrates (thermally grown SiO, layer of thickness of 90 nm on a
Si substrate) of surface 1 cm? are cleaned in Piranha solution (H.O, + H,SO,) for 2 min to remove
surface contaminations. Afterwards, a chemical etching using HydroFluoric acid (HF) removes the
native oxide and reduces the SiO, layer thickness to 80 nm. After each step of the cleaning procedure
the substrates are rinsed with deionized water until obtaining zero conductivity. After the pre-

treatment the samples are immediately transferred to the reactor for plasma deposition.

2" step: single layer of AgNPs. The silver sputtering is performed in argon plasma, which is
maintained at gas pressure of 5.32 Pa. Ar flow of 2.8 sccm fixes this gas pressure in the reactor. The
plasma is ignited and the targeted input power is set. Cautions are taken to avoid signal reflection by
adjusting the impedance of the matching network. Maximum of the self-bias voltage is used as

criterion for efficient power absorption in the plasma. After a short stabilization time (usually 3
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minutes) the plasma is ready for the Ag-sputtering. The Ag-sputtering is performed at fixed input
power in the range 10-80 W and sputtering time in the range 5-30 s for the given Ar-gas pressure of
5.32 Pa. These parameters control the size, density and shape of the obtained AgNPs. OES spectra are
recorded during the stabilization phase and the Ag-sputtering.

3" step: plasma silica layer. The elaboration of a plasma silica layer requires a gas mixture of
HMDSO and O,. We use a mixture of Ar-HMDSO-0,. The HMDSO is injected by pulses. The
procedure for silica deposition was optimized and the following operating parameters were identified:
Ar flow of 2.8 scem, O, flow of 1.25 sccm and HMDSO pulses with t,, = 3.1 s over a period of 5 s,
which corresponds to an average flow of 0.248 sccm. With the above gas flows, the total gas pressure
is set to pyt = 7.68 Pa, slightly oscillating according to the pulsed injection of HMDSO. To achieve a
strong decomposition degree of the HMDSO the discharge is sustained by injected power of 120 W.
Similar to the sputtering process, the plasma sustained in Ar-HMDSO-O, mixture requires a
stabilization period. In this type of deposition, the plasma stabilization phase takes typically 30 min.
Again the OES spectra are recorded during both the stabilization phase and during silica layer

deposition.

Figure 11.5: Typical architecture of plasma deposited samples.

In summary, the typical architecture of the samples is composed by a sequential superposition of
single layer of AgNPs covered by thin plasma silica layer (Fig. I1.5). The total thickness of the
nanocomposite is about 90 nm in which the AgNPs with size in the ten — twenty nanometer range are

covered by a this silica layer of thickness of few nanometers.

3. Transmission Electron Microscopy

The main contributions of Transmission Electron Microscopy (TEM) are its high resolution in real
space, down to the atomic scale, with magnifications ranging from 10’ to 10°, and also the possibility

to combine information obtained in the real space in image mode with the information obtained in the
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Fourier space (or reciprocal space) in diffraction mode. Moreover, the nature of the interaction

electron-matter provides a link between structural or morphological and chemical local studies.

3.1. Image formation in a TEM
The overall process of the image formation in TEM can be summarized in 6 steps, which follow the

electron wave trajectory:

- creation and acceleration of an electron beam from the electron source,
- illumination of the specimen with (coherent) electron probe,

- scattering of the electron wave by the specimen,

- formation of a diffraction pattern in the objective lens back focal plane,

- projection of the image (or the diffraction pattern) on the detector plane.

In the first step, electrons are generated either by thermionic emission if a filament (tungsten or LaBy)
is heated at high temperatures, by the cold-field emission (C-FEG) extraction from an extremely sharp
tungsten tip at room temperature, or by the combination of both methods in a so-called Schottky Field
Emission Gun (S-FEG). The C-FEG and S-FEG gun are highly coherent and bright electron sources
while thermionic source provides more intense but poorly coherent beam. In the second step, the
electron wave is accelerated (typically up to 60 kV - 300 kV) and the illumination system (a set of 2 or
3 condenser lenses) allows defining the beam (probe size, convergence angle, electron dose) but
irradiates the top surface of the specimen. The electron wave then interacts with the sample through
various processes of scattering (elastic and inelastic). The exit electron wave coming out from the
specimen is processed by the objective lens to form a diffraction pattern of the specimen in the back
focal plane and subsequently an image of the object. A schematic representation of the image
formation in TEM is displayed on Figure I1.6.

The electron-specimen interaction makes that the incident electron wave changes its initial state by
elastic and inelastic scattering phenomena. Different signals are generated, resulting from the electron-
specimen interaction. In the inelastic scattering processes, the electrons lose a small amount of their
energy that is transferred to the specimen, producing the emission of a wide range of secondary signals
(x-rays, visible light, secondary electrons, phonons and plasmons excitations), also damaging the
specimen. The secondary signals are very useful to perform analytical TEM experiments such as X-ray
Energy-Dispersive-Spectroscopy (XEDS) or Electron Energy loss spectroscopy (EELS). On the other
hand, in the elastic processes the electrons are scattered without energy loss. In crystalline materials,
the elastic scattering gives rise to Bragg diffraction related to the constructive interference of the
scattered electron waves in a periodic crystal. Thus Bragg scattering results in a series of diffracted
beams scattered at angles dependent on the lattice periodicities of the crystal structure. The elastically
scattered electron beams are the ones used to form images in TEM techniques such as conventional

(diffraction contrast) TEM and phase contrast High Resolution Electron Microscopy (HREM).
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Figure 11.6: The two basic operations of the TEM imaging system involve (left) diffraction mode:
projecting the Diffraction Pattern (DP) onto the viewing screen and (right) image mode: projecting the
image onto the screen. From [Williams and Carter, 2009].

3.2. Conventional Bright Field TEM

In the Bright Field (BF) mode of the TEM, an aperture is placed in the back focal plane of the
objective lens, which allows only the transmitted beam to pass. In this case, the image results from a
weakening of the direct beam by its interaction with the sample. Therefore, mass-thickness and
diffraction contrast contribute to image formation: thick areas, areas in which heavy atoms are
enriched, and crystalline areas appear with dark contrast. In the case of AgNPs embedded in silica, the
difference in atomic number between Ag and SiO, is high so that the NPs show high amplitude
contrast. In particular defocused bright-field imaging has proved to be successful for imaging
individual nanocrystals at low magnification. The electrostatic potentials being strongly different in
Ag and SiO,, a phase shift indeed exists between electron waves having propagated (or not) through
the NPs. Provided the incident beam being highly coherent, this phase shift can be imaged by using
defocused bright-field conditions, to reveal interfaces between the AgNPs and the surrounding silica
matrix. The contrast in the image is increased by a pair of Fresnel fringes (black/white or white/black)
that are located at the AgNPs/SiO, interface [Bonafos et al., 2001]. These imaging conditions are
suitable for probing the spatial depth distribution of the AgNPs in cross-sectional specimen and for

measuring their size-distribution in plan-view preparation (see Figure 11.7).
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Figure 11.7: TEM Bright Field image of AgNPs embedded in silica matrix observed in (a) cross-
section and (b) in plan-view. (c) HREM of a AgNP.

3.3. High Resolution Electron Microscopy (HREM)

Contrast in the HREM image arises from the coherent superposition of the primary and elastically
scattered beams. For a thin enough imaged area, it is directly connected to the projected atomic
structure of the NPs. A crystal can be observed in HREM with significant contrast if it is crystalline, in
Bragg orientation with respect to the incident electrons, and if the thickness of the imaged area is not
greater than two or three times the diameter of the NPs. Thus, amorphous and misoriented particles are
excluded from this image. Moreover, thin edges of the NPs are too thin to be imaged as atomic
columns which results in slightly underestimated size of the NPs [Schamm et al., 2008].

TEM resolution is limited by the acceleration voltage of the electron beam and the ability to correct
the spherical aberration of the objective lens. The most modern TEM microscopes operated at 300 kV
and are equipped with Cs correctors that are able to reach a point-to-point resolution down to 0.5 A.
The TECNAI F20 SACTEM has been used in this work to acquire HREM images. It is equipped with
spherical aberration corrector located below the objective lens, which achieves a spatial resolution of
1.2 A. Nevertheless, in HREM images of AgNPs embedded in silica, the minimum detectable size that
can be measured is equal to 4-5 planes, i.e. around 1 nm. A typical HREM image of an AgNP is

shown in Figure II.7c.
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3.4. Specimen preparation

To be observable in Transmission Electron Microscope the specimen must be thin enough to be
transparent to the electrons, typically less than 100 nm for conventional TEM and 10 nm for HREM.
Specimens from all samples were prepared for cross-sectional (XS-TEM) and plan-view (PV-TEM)

observations using the standard procedure involving mechanical polishing and Ar" ion milling.

4. Optical based techniques

Optical based diagnostic techniques used in this thesis, and detailed in the following sections, (i.e.
FTIR, Raman spectroscopy, reflectance spectroscopy and ellipsometry) allow us studying the
composition, structural properties or the optical response of materials exploiting the interaction
between light beam and the studied material. In this context, one distinguishes different kind of

light/matter interactions:

e Absorption that occurs when the light beam passes through the material and part of it is
absorbed. This interaction is important for FTIR spectroscopy, especially when the sample is
studied in transmission mode like for the experiments performed in this PhD thesis.

e Elastic diffusion (or elastic scattering) that happens when photons of the scattered beam have
identical energies as the ones of the incident beam. In this case, no energy exchange occurs
between the light and the scattering material. If the material is homogeneous, it leads to well-
known phenomena: reflection and refraction. If the medium is heterogeneous (defects,
roughness), it diffuses the incident light beam into random-directions. This is the Rayleigh
scattering. Reflectance and ellipsometric spectroscopy are based on this light behavior.

o Inelastic diffusion (or inelastic scattering) that occurs when photons of the diffused beam have
different energy with respect to the ones of incident beam. In this case, the electromagnetic
wave transfers energy to the material by phonons, the energy quantum of a lattice vibration in

condensed matter. This kind of scattered light is fundamental for Raman spectroscopy.

4.1. Fourier Transform InfraRed spectroscopy (FTIR)

FTIR absorption spectroscopy is a non-destructive technique that allows studying the structural
properties of materials, in particular, the nature of molecular bonds. This technique is based on the
interaction between infrared light and vibrational states of the matter. At temperatures above absolute
zero, all atoms are in continuous vibration with respect to each other. Atoms in molecules are able to
vibrate in several modes. When the frequency of a specific vibration mode is equal to the frequency of
the incident infrared radiation, the molecule absorbs the radiation. For this reason, FTIR spectroscopy
is a powerful tool for structural clarification and compound identification in the sample and is even a

common spectroscopic technique used for quantitative determination of compounds in mixtures.
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Infrared radiation is absorbed and the associated energy is converted into different types of motions.
The absorption involves discrete and quantized energy levels. However, the individual vibrational
motion is usually accompanied by other rotational motions. These combinations lead to the absorption
bands, not the discrete lines, commonly observed in the middle infrared region. The major modes of

molecular vibrations are stretching, bending and rocking (Fig. I1.8).

Stretching mode Bending mode Rocking mode

oA A

Figure I1.8: Schematic representation of principal vibrational molecular modes, on the top, and of
main vibration modes of silica structure, on the bottom. From [Salh, 2011].

FTIR spectra are obtained by detecting changes in transmitted (transmittance, 7) or absorbed
(absorbance, A4) intensity as a function of frequency. Transmittance is the ratio of radiant power
transmitted by the sample to the radiant power incident on the sample. Absorbance is the logarithm to
the base 10 of the reciprocal of the transmittance. The infrared spectra presented in this thesis were
performed on a Bruker spectrometer Vertex70 a resolution of 0.2 cm™. This spectrometer sends the

infrared radiation onto the sample through a Michelson interferometer, which allows the simultaneous
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collection information to all the wavelengths. For this, a pyroelectric detector DTGS is used, which
enables measurement over a spectral range of 400 to 4000 cm™. The interferogram obtained is then
converted to an infrared spectrum using the Fourier transform. The measurement enclosure, wherein
the sample is placed, is continuously purged with a dry nitrogen flow, to remove water and carbon
dioxide molecules present in the ambient atmosphere. The measurements are performed in
transmission mode and the spectra are shown as the difference between the sample absorbance (A4 aumpre)

and the reference one (4, eference) following the relation:

T;umple ) 1 sample
Ad{[f = Axample - Areference = logl() = _logIO > (IIS)

reference reference

where ILgmpie and Lioprence are the intensities transmitted through the sample and the reference,

respectively. The reference is an intrinsic silicon substrate which is transparent to infrared light.

4.2. Raman spectroscopy

As FTIR, Raman spectroscopy provides information about the composition and structural properties of
material observing the vibrational, rotational and low-frequency modes in a material. In this technique,
a laser beam is sent to a given material, and it is possible to measure the scattered light intensity, or the
number of scattered photons, as function of the difference between the frequency of the incident
photons and that of the scattered ones expressed in cm”. At the microscopic level, the Raman
scattering can be explained as a process of transitions between electronic states. In general, one
distinguishes in Raman spectroscopy three different kinds of random scattering of light: Rayleigh,

Raman Stokes and anti-Stokes scattering (Fig. 11.9).

Figure 11.9: Schematic representation of Rayleigh (a), Raman Stokes (b) and anti-Stokes (c) scattering.

All these processes have the same initial step. This concerns the transition of one electron from the
real lower energy level i toward the virtual upper energy level « by the absorption of an incident

photon of energy /m;. Afterward the three processes follow different routes:

e Rayleigh scattering: this is a two-step process (Fig 11.9a). The second step concerns the de-

excitation of the electron of energy level « toward the initial energy level i. This provokes the
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emission of a photon of energy %wy = ha. This kind of process represents the largest
contribution to the random scattered light giving an intense peak at 0 cm™ in Raman spectra.

e Raman Stokes scattering: that is a three-step process (Fig 11.9b). In the second step, the excited
electron of energy level « transfers a part of its energy to create a phonon of energy Z . In this
case, the electron goes toward a virtual energy level g. Afterward, from this energy level, the
electron reaches the initial energy level i emitting a photon of energy %y = haw; — hawph.

e Raman anti-Stokes scattering: that is also a three-step process (Fig 11.9¢). In this process the
second step involves the absorption of a phonon of energy Zmy,. This permits to the excited
electron of the energy level « to reach a virtual energy level g% From this energy level, the
electron undergo a de-excitation towards the initial energy level i emitting a photon of energy

hag = hay + hap.

The probability to have the emission of a photon of energy 7wy depends on the ability of a crystal to
absorb or to emit a phonon of energy %y, This is related to populations of levels g and g’ The
statistic Boltzmann distribution relates the intensities of Raman Stokes and anti-Stokes scattering with
populations of virtual energy levels as function of angular frequency w at fixed temperature by the

following equation:

ho

IStokes _n(w)+l_ kTT
g =gkl | (11.6)

anti—Stokes

where n(w)+1 and n(w) are the populations of levels g and £’ respectively. From equation 11.6 is
evident that the energy level 4 is more occupied than that of g’ For this reason, the intensity of the
Stokes scattering is higher than that of the anti-Stokes scattering.

Moreover, when the energy of the incident (or scattered) photon coincides with an electronic transition
of the studied material, the energy level « (5 or £) is real. In this case, the transition probability is
exalted and the Raman process is named resonant incident photon (or scattered). By selecting an
opportune energy of the incident photon (excitation energy), it is possible to fully exploit the
exaltation of the Raman scattering.

For the studies presented in this PhD work a high resolution Raman spectrometer (Horiba Jobin-Yvon
Xplora) equipped with three lasers 532, 632 and 785 nm and a standard confocal microscope was

used.

4.3. Optical reflectance spectroscopy

Optical reflectance spectroscopy is a macroscopic nondestructive technique useful to determinate
rapidly relevant structural parameters at the nanoscale. For example, this technique has the potential of
evaluating the average size of noble metal nanoparticles exploiting their LSPR for appropriately

designed architectures [Carles et al., 2011].
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4.3.1. Reflectance definition
The reflectance is defined as the ratio between the reflected, /., and incident, /;, intensities of an
impinging light beam expressed in percentage. Considering that the intensity scales as the square of

the electric field, 7 = |E|*, the reflectance can be written as:

L _|E[

R= . 1.7
R (a7

4.3.2. Experimental spectrophotometer

In our work, we used a commercial spectrophotometer (Agilent Cary 5000 UV-Vis-NIR) equipped
with a module measuring the specular reflectance. The measurement principle is the following: a light
beam of variable wavelength incoming the module is sent on the sample by a conveniently placed
mirror. The reflected from the sample beam is sent outside the module in the same direction as the
incoming beam by another mirror (Fig. I1.10). Hence, the reflected intensity is measured and
compared to the incident one. The reflectance of sample is deduced from this comparison and
expressed as a percentage. All measurements were performed in a wavelength range from 200 nm to
800 nm (6.2 eV to 1.55 eV) to cover a spectrum from the ultraviolet to the near infrared, with a

resolution of 1 nm.

Figure 11.10: Schematic diagram of the optical reflectance measurement. The incidence and reflected
angle on the sample were deliberately emphasized in the figure.

Exploiting this configuration, the angle of incidence of the light beam 6; (as well as the reflected one)
is tilted of 6° with respect to the sample normal direction. According to the Snell-Descartes law, the

angle of the refracted light beam 6, can be calculated from the relation:
n, sind =n, sin9, (I11.8)

where n; and n, are the air and matrix refractive indexes, respectively. Since the matrix refractive
index is greater than the refractive index of the air, the refractive angle in the matrix will be less than
the incidence angle in the air, i.e. below 6°. In this case, we will consider that this module provides the

experimental reflectance to a quasi-normal incidence at the sample surface.
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4.3.3. Characteristic reflectance spectrum of a thin silica layer on Si substrate and
interest of using antireflective layers

When the incident light wave reaches the sample surface, part is directly reflected by the silica free
surface (silica / air interface), while the other part passes through the layer to reach the silica / silicon
interface (Fig. II.11). At this point, part of the wave is transmitted in the substrate and the remaining
part is reflected and returns to the surface. The total reflected wave results from the different

reflections and transmissions at the interfaces.

Figure I1.11: Schematic diagram of the paths of light rays in our samples. The optical path difference
is causing interferences observed on the reflectance response. From [Bayle, 2014]

Silicon is a high refractive index absorbing material in the visible range (%o, = 3.86 against ngc, =
1.45) and therefore well reflects the light rays in this range. Thus, the silica layer plays the role of
Fabry-Perot half-cavity and one can therefore observe a reflection interference phenomenon. We can
relate the various observed orders of interference m with the thickness e of the silica layer of refractive
index 7, that weakly depends on the wavelength. Since the measurement is performed at normal

incidence, reflectance minima appear due to the destructive interference and follow the relation:
1 -1
A, = ZnZe(m + Ej , (IL.9)

where A is the wavelength of the incident beam.
This reflectance curve can also be expressed as a function of the energy on the incident photons. The
reflectance minima of a monochromatic electromagnetic wave enlightening a SiO,/Si sample under an

oblique incidence occur for specific photon energies E,. The phase condition corresponding to the

successive destructive interference orders (m = 0,1,2, . . .) in the silica layer writes, for an oblique
incidence:
E, :@QjL, (IL.10)
2 )2n,ecos I,
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where L is the optical path in the SiO, layer, h is the Planck constant, c is the light speed in vacuum,

and 6, is the refracted angle inside the silica layer.

Figure I1.12 shows experimental reflectance (black curve) measured for our multilayer samples
composed of 90 nm thick silica on top of a Si substrate, without (black curve) and with AgNPs
localized just under the surface (red curve). The two reflectance minima (at m=0 and m=1) predicted
by the anti-reflective condition appear at Ay = 527 nm and A4; = 203 nm. In the UV range, the m=1
shows high sensitivity to the presence of AgNPs by the absorption increase (i.e., decrease in the
reflectance). On the contrary, due to the synergetic effect between plasmon resonance and optical
interference, the fundamental mode m=0 gives rise to a highest sensitivity in almost all the visible
range (400-800 nm). Thus, when AgNPs are embedded in these layers and located close to the surface
(red curve) a strong modulation of the reflectance spectra is observed near the LSPR resonance (413
nm). More generally, by selecting such anti-reflective condition, we can get an enhanced sensitivity to
any modification at the surface of the sample. As a matter of fact, this high sensitivity comes out from
the fact that the electromagnetic field is maximum at the surface in antireflective conditions.
Localization of the AgNPs at the vicinity of the free surface (at an antinode of the electric field) has a
strong effect: the resonant absorption by the AgNPs drastically modifies the electric field and in
particular strongly reduces the reflected field amplitude in the air. At the end, the antireflective
conditions will enhance coupling between the AgNPs and the electromagnetic field (for more details

see [Carles et al., 2014]).

Figure 11.12: Reflectance spectra of a 90 nm thick silica layer on top of silicon (black points) and silica
layer with implanted AgNPs (red points) as function of wavelength.
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4.4. Ellipsometry

The ellipsometric spectroscopy is an optical technique commonly used in microelectronics for
characterization of transparent thin layers, which enables to determine their optical and structural
properties. As the optical reflectance, the advantages of this technique involve its non-destructive and
non-contaminant character. The sensibility of this technique to the structural changes is at nanoscale.
In this section, we present briefly the theoretical operation of ellipsometry. For more details about the
technique refer to [Bernoux et al., 2003].

When an electromagnetic plane wave arrives on the flat surface of a sample, it can be transmitted,
absorbed or reflected by this surface. The principle of spectroscopic ellipsometry consists in analyzing
the variation of two important parameters of the electric field of an electromagnetic wave, i.e. the

amplitude and the phase, after reflection on the sample (Fig. 11.13).

Figure 11.13: Schematic representation of the principle of ellipsometric measurement. The polarization
of the incidence and reflected beam on the sample are marked.

The electric field of a polarized incident electromagnetic wave E; is represented by two components:
one with parallel, E,;, and the other one with perpendicular, Ey;, directions with respect to the incidence
plane of the impinging beam. The two components (£, and E,) of the electric field after reflection E,
on the sample surface undergo modifications that can be represented by the reflection coefficients of

parallel, 7, and perpendicular, r,, polarization to the incidence plane as:

r,= E: —|rp|ei§” , (IL.10)
7, =%=|rs|eia’ . (IL1T)

i

The real parts of these two complex coefticients (|r,| and |r,|) represent the attenuation of the amplitude
of the two electromagnetic wave components. The complex parts (5, and o) involve the phase change
of these two components induced by the reflection. This provokes a change of the incident beam

polarization (i.e., from linear to elliptical polarization). Finally, spectroscopic ellipsometry measures
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the ratio of these two coefficients (p. = ry/rs) that depends on the wavelength of the incident beam. p,

can be written as:
p, = tan e, (1.12)

where tan't = [rp|/|r | is related to the amplitude of the two electromagnetic wave components and
A = 6, - o; is the difference of phase change of these two components after reflection.

The measurement of p. is performed by measuring the two quantities, tan® and cosA. Thus,
measurement of these quantities at a fixed incidence angle as a function of the wavelength allows
determining optical and structural properties of the sample by using different theoretical models.

In our study, the samples are composed by successive nanometric layers of different composition
elaborated on a silicon substrate that well reflects the light in the UV-visible-near infrared range. One
or more parameters of each layer are unknown. For interpretation of the recorded ellipsometry spectra
modeling of the structure of these nanocomposites is required. The use of models as Effective Medium
Approximation (EMA) turns to be appropriate for a quite accurate description of this kind of systems.
The hypothesis and the model description developed in this study are detailed in Chapter 1V along
with the obtained results and the model validation.

The spectroscopic ellipsometer used in this work is a Sopra GES 5 phase modulated system operating
in the UV-visible-infrared range of the light spectrum from 0.2 to 2.8 microns (6.2 — 0.4 eV). This
ellipsometer exploits the measurement method with rotating polarizer and fixed analyzer. The
advantage of this method is that measurements are not affected by the sensor sensitivity to the

polarization.

5. Algae culture

The evaluation of bio-available silver released in environment requires specific analysis. To achieve
this we employed a specific technique that uses algae as a sensible and reliable bio-sensor for
measuring the dissolved silver released from silver nanoparticles. For this, we measured by
fluorometry the extremely sensitive chlorophyll fluorescence changes of algae under realistic toxic

exposure scenarios.

5.1. Algae preparation

The experiments were performed with eukaryote unicellular green algae Chlamydomonas reinhardtii
(strain CR137C). Batch cultures were prepared by transferring an inoculum of algae (approx. 1 x 10°
cells/mL with an O.D.ggs = 0.05) to fresh growth media [Le Faucheur et al., 2005]. Algae were grown
during 72 hours until reaching exponential growth phase at 25°C with continuous illumination of 120

uMol photons s™ em™ (Philips Coolwhite TLD 15W fluorescent lamps) and shaken at 90 rpm to avoid
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algae aggregation and sedimentation in order to keep an homogeneous solution. The growth media
culture was Talaquil, prepared as described in reference [Le Faucheur et al., 2005].

Experimental batch cultures were harvested by centrifugation (1500 g, 10 min), and then resuspending
the cell pellet in the appropriate volume of 10 mM MOPS buffered solution
(3-morpholinepropanesulfonic acid in double distilled water (Milli-Q)) adjusted at 7.5 pH using KOH.
The resuspension of algae in MOPS solution is a fundamental step to avoid the presence of growth
media during the experiments, since it can alter the speciation of silver. As example, EDTA
(Ethylenediaminetetraacetic acid disodium salt dehydrate) is an important compound in growth media,
and it is a well-known chelating agent that can capture the metal ions in solution.

Algae concentration in suspension (cells/mL) has been assessed by measuring the optical density
(O.D.) at wavelength of 685 nm with a spectrophotometer Thermo Helios Alpha. Experimental batch
cultures were prepared by transferring an inoculum of algae in the experimental growth phase at a
starting density of approximately 6 x 10° cells/mL, which corresponds to O.D.¢ss = 0.15. All control
and experimental flasks have got the same amount of algae and at the same stage of their growth
phase.

Reliable and quick measurements of cell number require two common measures: cell count by
microscope and turbidity by spectrophotometer [Madigan et al., 2012]. Cells were counted using a

microscope equipped with a Neubauer counting chamber (Fig. 11.14).

Figure I1.14: Direct microscopic counting procedure using counting chamber. From [Madigan et al.,
2012].

5.2. Turbidity and Optical Density

The turbidity is a quick and easy method to estimate cell numbers based on property of cells
suspension to scatter light without destroying or significantly disturbing the sample. This phenomenon
is measured using a spectrophotometer (Fig,. II.15a). The unit of turbidity is called optical density
(0.D.) at the specified wavelength. The Beer—Lambert’s law I = I,¢* allows measuring the unscattered
light, 1, passing through the suspension of cells measured by photocell, knowing the incident light
intensity Iy, the thickness z, and the extinction coefficient k, of the cells suspension. Using a solution

without algae, called blank solution, the O.D. is defined as:
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I
O.D.=L0gl—", (I1.13)
where [, and I, are the unscattered light intensities after passage through the blank solution and the
cells suspension, respectively. Considering that the incident light is equal to the addition of scattered,
unscattered and absorbed light interacting with cell suspension, the O.D. is direct proportionally to the

absorption from cell suspension [Mitchell and Kiefer, 1988].

Figure II.15: (a) Measurements of turbidity made in a spectrophotometer. (b) Relation between cell
number and turbidity readings. From [Madigan et al., 2012].

To avoid cell clumping and to have a one-to-one proportionality, typically, the O.D. measurements are
performed at low cell concentrations accomplished by stirring, keeping the cells well mixed to prevent
the formation of cell aggregates. After combining microscopic cell count and turbidity, it is possible to
correlate O.D. measurements to the cell concentration for each growth phase of the algae cultures
(Fig,. I1.15b).

In the morphology of green algae Chlamydomonas reinhardtii, the chloroplast containing chlorophylls
a and b occupies the largest part in the algae volume. This alga presents a sharp absorption peak
related to the chlorophylls a in the red part of light spectrum around 685 nm (Fig. 11.16).
Consequently, all the O.D. measurements were carried out at this wavelength (O.D.¢s5) [Berberoglu et

al., 2008].
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Figure I1.16: Experimental O.D. spectrum of green algae Chlamydomonas reinhardtii. The associated
chlorophylls @ and b absorption peaks are indicated.

6. Principle of fluorometry

Fluorometry is routinely used as a method to assess the impact of different toxicants on the algal
physiology; with specific demonstration of its suitability for nano-ecotoxicology [Navarro, 2008;
Navarro, 2015]. This technique is based on the measurement of the fluorescence emitted from the
photosynthetic system II in vegetal cells under excess light conditions [Schreiber et al., 2004;
Consalvey et al.,, 2005]. In all eukaryotic plants and algae, photosynthetic systems are part of
chloroplast in which different functional reactions take place during the photosynthesis to transform
light energy in chemical energy (photochemistry) (for details see references [Schreiber et al., 1995]
and [Consalvey et al., 2005]).

6.1. Principle of fluorometry

Light absorption in photosynthetic system II creates excited states for electrons in the reaction centre
chlorophyll a-protein complex (energy captured) [Consalvey et al., 2005]. In ambient light conditions
(normal state), this energy is divided in three competitive processes: photochemistry conversion, heat
dissipation and fluorescence emission (Fig. 11.17).

In excess light conditions (saturation state), molecules responsible of photochemistry conversion are
saturated and this process is temporarily suppressed [Consalvey et al., 2005]. In this case the main part

of absorbed light is re-emitted through fluorescence in the red band of visible spectrum (Fig. 11.17).
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Figure I11.17: Diagram showing the principle of Pulse-Amplitude-Modulation (PAM) fluorometer to
determinate the effective quantum yield of photochemical energy conversion (PHOTOSYNTHETIC
YIELD).

Short saturating amplitude modulated pulse (PAM) of a fluorometer is an efficient way to produce an
excess light in the vegetal cell. Hence, we can define the characteristic parameter of fluorometry, the
photosynthetic yield, as: the effective quantum yield of photochemical energy conversion
(PHOTOSYNTHETIC YIELD). This parameter can be calculated by two consecutive measurements
of the fluorescence yield, one briefly before (F) and one during a short pulse of saturating light (Fyax),

following the expression:

PHOTOSYNTHETIC YIELD = Duax =F (IL.14)

MAX

6.2. Procedure to evaluate released silver by fluorometry measurements
To evaluate the effects of released silver on algae and well understand the fluorometry results, we
followed the general procedure schematized in figure 11.18.

e In a first step, we introduce fixed amount of buffered water (in our study 6 ml of MOPS) in each
one of three flasks. We use one of them as control (black flask - control). This flask allows
control of the algae behaviour in an ambient without nutrient and toxicant (normal health stage
of algae). In the second flask, we add an appropriate amount of silver nitrate salt (AgNO;) (blue
flask - control Ag") dissolved in pure water. This flask allows following the toxicity effect of a
well-known amount of bioavailable ionic silver (Ag") on algae (under the adopted experimental
conditions, the AgNO; is completely dissociated [Navarro et al., 2008]). In the third flask, we
add the sample containing AgNPs to analyse (red flask — AgNPs; in our study, a solid sample
with AgNPs embedded in thin silica layers). All three flasks were kept at the same conditions of

light, temperature, shaking and incubation time.
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e In a second step, we take 2 ml from each flask for Inductively-Coupled Plasma Mass
Spectrometry (ICP-MS) measurements to evaluate the total amount of silver in solution. In our
study, at this procedure point, the solid sample with embedded AgNPs was removed from the
solution (for details see Chapter V, section 4.5).

In the experiment, that involves cysteine, an appropriate amount of this strong silver-ligand was
introduced to catch the Ag" present in the solution [Navarro et al., 2008].

e In a third step, we add the same amount of algae in the solution left in the flasks (in our study

3 mL) up to a concentration of O.D.¢ss = 0.15. After one hour of the algae exposure, we perform

the fluorometry measurements on 2 ml of solution.

Figure I1.18: Diagram showing the procedure pathway for silver release measurement.

After algae injection, all solutions were kept under continuous illumination of 65 pMol photons s cm™
to ensure normal activity of the algae. Each fluorometry experiment was repeated twice and three
fluorometry measurements were taken for each experimental condition to assess the reproducibility of
fluorometry results. The time delay between two consecutive fluorometry measurements was at least
30 seconds to allow the complete recovery of the photosynthetic activity of algae after the saturating
pulse. The algal photosynthetic yield measured by fluorometry was not affected by the algal
translocation into MOPS or by exposure to cysteine (for details see references [Navarro et al., 2008]
and [Navarro et al., 2015]).

In our study three parameters were taken into account: (i) the surface sample exposed to buffered
water that was fixed at 4 cm’ for all elaborated samples. This is important to compare samples

elaborated at different conditions and to have enough silver in solution to obtain toxicity effect; (ii) the
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immersion duration of samples in buffered water that was 20 h to improve the silver release from
the coated or embedded silver nanocomposite samples as it has been shown in the literature where the
most important delivery of silver takes place during the first 24 h of immersion [Saulou et al., 2009;
Mittelman et al., 2013]; (iii) darkness, samples were kept in the dark to avoid redox reaction due to
the light exposure [Liu et al., 2010].

Moreover, different experimental conditions were explored to obtain a good interpretation and
comparison of the fluorometry measurements. The first one is the amount of buffered water that
allows maximizing the concentration of the released in the solution silver from the embedded AgNPs
and having enough solution to perform both the fluorometry and the ICP-MS analysis. The second one
is the algae concentration of O.D.¢gs = 0.15 that permits to have enough bioavailable silver per cell to
provoke detectable in fluorometry toxicity effect on the algae. The third one is the continuous shaking
at 90 rpm of all solutions at room temperature during the entire fluorometry experiment. This is
important to keep a homogeneous solution in the case of: (i) silver released from elaborated samples or
AgNOs salt, (ii) the system silver-cysteine and (iii) the interaction silver-algae. The last one is the
algae short-term exposure to silver that allows minimizing accumulation of algal products in the

exposure media and, thus, changes in the silver speciation.

6.3. Concentration-response curves

The interpretation of fluorometry measurements is based on concentration-response curve of algal
photosynthetic yield after short-term exposure to increasing bioavailable ionic silver in solution
[Navarro et al., 2008].

In the figure 11.19 we represent the experimental algal photosynthetic yield concentration-response
curve after short-term (1 hour) exposure to bioavailable ionic silver measured by ICP-MS. In this
graph, the photosynthetic yield of algae in MOPS (the green point - control) denotes a reference in
each fluorometry experiment for normal health stage of algae. The algal photosynthetic yields in
presence of different ionic silver amounts (the black point — control Ag") are expressed in percentage
of control yield. This allows comparing different experiments performed in similar conditions (same
light exposure, temperature, algae concentration) referring the algal photosynthetic yield of samples to
its own control solution. A decrease of algal photosynthetic yield indicates an alteration in the
physiological state of algae affected by the ionic silver. A characteristic value mostly used in biology
is the half-maximum effective concentration (ECsy) of released ionic silver corresponding to a
reduction of 50% of the photosynthetic yield.

This parameter is calculated using a four-parameter logistic fitting and identifies the threshold below
which the ionic silver in solution has strong toxicity effect on algae. Algae concentration of O.D.gg5 =
0.15, used to perform this concentration-response curve is a sensible and reliable sensor of silver

concentration in solution ranging between 0.3 and 0.8 uM .
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Figure I1.19: Experimental algal photosynthetic yield concentration-response curve after short-term
(1 hour) exposure to ionic silver measured by ICP-MS (released silver). The algae concentration was
with O.D.685 =0.15.

7. Inductively Coupled Plasma Mass Spectrometry (ICP-MS)

Inductively Coupled Plasma Mass Spectrometry (ICP-MS) is an analytical technique used for
elemental analyses. In our study, this technique allows evaluating the total amount of Ag released in
solution. ICP-MS combines an inductively coupled plasma source with a mass spectrometer. The ICP
discharge is used for ionization of the atoms of the sample. The created ions are then separated and
detected by the mass spectrometer (Fig. 11.20) [Nelms, 2005].

Argon gas flows inside the coaxial channels of the ICP torch. When power from a RF generator is
supplied to the RF load coil, oscillating electric and magnetic fields are established at the end of the
torch. Application of a spark to the argon gas flowing through the ICP torch part leads to creation of
electrons and argon ions after ionization of the argon atoms. These primary electrons follow the
oscillating fields acquiring enough energy to ionize other argon atoms after collisions and to initiate
thus the avalanche and establish the argon plasma. The sample is typically introduced into the ICP
plasma as an aerosol, either by aspirating a liquid or dissolved solid sample into a nebulizer or using a
laser to directly convert solid samples into an aerosol. Once the sample aerosol is introduced into the
ICP torch, the elements in the aerosol are converted first into gaseous atoms and then positively
ionized towards the plasma end. The created in the plasma ions are then brought into the mass

spectrometer via the interface cones.
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Figure I1.20: A cross section through a typical quadrupole ICP-MS showing the three stages of
differential pumping. From [Nelms, 2005].

The interface region in the ICP-MS transmits the ions traveling in the argon stream at atmospheric
pressure into the low pressure region of the mass spectrometer (< 1 x 10 Pa). This is done through the
intermediate vacuum region created by the two interface cones, the sampler and the skimmer (Fig.
I1.20) in the expansion chamber. The sampler and skimmer cones are metal disks with a small hole (~
1 mm in diameter) in the center. The purpose of these cones is to sample the center portion of the ion
beam coming from the ICP torch. The ions from the ICP source are then focused by electrostatic
lenses (ion optics part). Owing to this ion optic system in the intermediate chamber, it is possible to
collimate the positively charged ion beam coming from the system and focus it into the entrance
aperture of the mass spectrometer.

Once the ions enter into the analyzer chamber, they are separated through mass spectrometer by their
mass-to-charge ratio. The most commonly used type of mass spectrometer is the quadrupole mass
filter made by 4 rods. In this kind of mass spectrometer, AC and DC voltages are applied to opposite
pairs of the rods. These voltages are then rapidly switched along with an RF-field. The result is that an
electrostatic filter is established and ions of a single mass-to-charge ratio (m/e) can pass through the

rods to the detector at a given instant in time for their identification.
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Chapter III: Controlled elaboration of
AgNPs embedded in dielectric matrix by
plasma process

1. Introduction

Two physical approaches are used in this work to elaborate AgNPs embedded in thin silica layers are:
(1) low energy ion beam synthesis (LE-IBS) and (ii) plasma deposition techniques comprising silver
sputtering followed by plasma polymerization. The purpose is to fabricate multifunctional substrates
that can be used for both (i) controlled Ag release and biocide action and (ii) efficient plasmonic
enhancement. The two elaboration techniques are complementary and give the prospect to consider
different physical situations. However, to overcome the main drawback of low energy ion beam
synthesis which is the lack of possibility to attend a percolated array of NPs, as discussed in Chapter I,
and to enlarge the variety of structures containing a single layer of AgNPs we have applied plasma
deposition techniques. In order to fabricate a plane of large (>10 nm) AgNPs at controlled nanometric
distances from the surface and to attain a high surface coverage (larger than 20%) we have developed
in this PhD a new method. It consists of successive steps of plasma deposition techniques combining
silver sputtering and plasma polymerization, and will be described here. In this Chapter are presented
the main results on the developed plasma deposition process to elaborate in a controlled way of large-
area plasmonic substrates consisted of a single layer of AgNPs deposited on SiO, layer and coated by

ultrathin SiO, plasma layer.

2. Plasma deposition process

Plasma based deposition processes are known to be quite versatile for deposition of nanocomposite
thin layers containing metal clusters. Intensive research on the possibilities to obtain thin
nanocomposite layers sustained of metallic nanoparticles embedded in dielectric matrices started with
the works of E. Kay et a/l. [Kay and Hecq, 1984] where Physical Vapor Deposition (PVD) and Plasma
Enhanced Chemical Vapor Deposition (PECVD) were combined in one process to obtain gold
nanoparticles dispersed in fluorocarbon matrices. This approach, privileged also by other research
groups [Kay and Hecq, 1984; Perrin et al., 1985; Laurent and Kay, 1989; Despax and Flouttard, 1989;
Despax and Raynaud, 2007; Korner et al., 2009; Dilonardo et al., 2010; Kylian et al., 2013; Drabik et
al., 2015], offers several advantages compared to other deposition techniques. It allows: (i) a quite
easy control of the metal content in the thin film only by controlling the partial pressures of the plasma

feeding gas and the gas precursors in the discharge, leading to the possibility to obtain materials with
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metallic concentration from a few percent up to 100%; (i7) homogeneous dispersion of the metal
nanoparticles in the film and (i) fine control over the size of the metal nanoparticles.

Optical properties of this type of nanocomposite structures can finely be tuned by simply varying the
metal volume fraction in the layer [Perrin et al., 1985]. Strong structural modifications of both the
metal nanoparticles and the surrounding matrix can be achieved by thermally induced processes
occurring in the plasma gas phase and/or by post-deposition annealing [Perrin et al., 1985; Laurent and
Kay, 1989; Despax and Flouttard, 1989]. Stability of the plasma elaborated host matrix to exposure to
different aging agents (air, aqueous media, etc.) is shown to be superior for amorphous hydrophilic
matrices (plasma silica — a-Si0,, organosilicon — a-SiOC:H or oxygenated hydrocarbon — a-CH:O)
compared to amorphous hydrophobic ones (fluorocarbon — a-F-C or hydrocarbon — a-C-H) [Perrin et
al., 1985; Laurent and Kay, 1989; Despax and Flouttard, 1989; Despax and Raynaud, 2007; Drabik et
al., 2015; Korner et al., 2009; Dilonardo et al., 2010; Kylian et al., 2013]. Although the stability of
amorphous hydrophilic matrices is generally good, the more resistant matrix is the silica, compared to
organosilicon or oxygenated hydrocarbon matrices, as it is the densest one. Moreover, release of
metallic ions and/or metallic nanoparticles from the plasma mediated nanocomposite thin films, in
particular Ag" and AgNPs [Saulou et al., 2009; Kérner et al., 2010; Despax et al., 2011; Alissawi et
al., 2012; Drabik et al., 2015], shows dependence on the size and density of metal nanoparticles and on
the type of the host dielectric matrix (hydrophilic/hydrophobic properties and porosity) and the
distance from the AgNPs to the substrate surface. Additionally to the possibility of large variation of
the optical, structural and electrical properties of the nanocomposites, offered by the above described
plasma process, the stability related issues must be considered when a given application of the
nanocomposite thin films is pursued.

The purpose in this part of the study is to elaborate nanocomposite structures of SiO,/AgNPs/Si0,/Si
(a single layer of AgNPs, with well controlled size, density and distance among the nanoparticles, is
inserted in a SiO, matrix at a given distance from the surface) with highly pronounced anti-reflective
properties. The thickness of the whole structure must be selected in a way that for specific
wavelengths the reflectance is at minimum and consequently the electric field at the free surface is at
maximum, as accounted for by modelling the propagation of electromagnetic waves in stratified media
[Carles et al., 2011; Bayle et al., 2014]. In the current study a total thickness of 100 nm of the
nanocomposite structure was intended.

The nanocomposite structures were elaborated by using the plasma of an axially-asymmetric
capacitively-coupled RF (13.56 MHz) discharge combing PVD, as a first step, and PECVD as a
second step in the applied deposition procedure as described in Chapter II and shown in Fig. 1. The
discharge powered electrode (smaller electrode) was an Ag-made target to bear the silver sputtering.
The axially-asymmetric design of this RF discharge induces a self-bias voltage V4. on the powered
electrode, controlling in that way the metal sputtering. Deposition of plasma silica coverlayer was

performed in the same reactor. The plasma reactor and the experimental techniques for real-time
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monitoring were described in details in Chapter II. The plasma behaviour during deposition was
controlled by Optical Emission Spectroscopy (OES) and electrical measurements. For both deposition
steps — sputtering and plasma polymerization — variation of the Iag(s4s.enm)/Iars49.6nm) Tatio as a function
of the injected power or the gas mixture composition was recorded. This kind of chart constitutes

useful data to obtain reproducible results [Despax and Raynaud, 2007].

Figure III.1: Pathway for elaboration of large-area plasmonic substrates (single layer of AgNPs
embedded in SiO, matrix) by plasma process.

The used plasma process is fully compatible with the standard microelectronic technologies. As
discussed above it is versatile in terms of experimental conditions which enlarges the possibility to
probe and, consequently, to optimize the optical response of the elaborated plasmonic structures. To
realize the plasmonic structures a single layer of AgNPs was deposited by Ag-sputtering on the
surface of thermally grown SiO,-layer (thickness of 80 nm) on Si-substrate (2” in diameter) in Ar-
discharge maintained at low gas pressure (pa, =5.2 Pa). The substrate was fixed to the grounded
electrode. It was previously cleaned in Piranha solution for 2 min, followed by chemical etching for 30
seconds in hydrofluoric acid (HF). At each step of the cleaning procedure the substrates were rinsed
with deionized water. The cleaning procedure is indispensable for the elaboration of plasmonic
substrates because it guarantees the removal of the surface contamination and the native oxide, known
to be badly organized from structural point of view and presenting poor electrical properties.

The AgNPs size, density and shape were controlled through tuning the sputtering operating conditions.
The sputtering time was varied between 5s and 30 s for different input powers (P = 10— 80 W),
corresponding to a self-bias voltage variation in the range V4 =-400--1000 V (Fig. IIl.2a). The
plasma process was monitored by OES through the ratio of Ixgsas.6nm) t0 Iars49.6nm) line intensities. For
the sputtering step the evolution of Ixg(sas.enm)/Iars49.6nm) Tatio gives an image of the Ag amount in the
plasma which can be related to the Ag volume fraction deposited on the substrate. Figure I11.2a shows
the measured self-bias voltages as a function of the applied power during the Ag-sputtering and the

corresponding line intensity ratio of the silver line Iagsas6nm) to the argon line Iaxs49.6nm)- Prior to each
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sputtering the Ag-target was mechanically polished, then cleaned in the Ar-discharge and the plasma
process stability was followed by OES. When the emission spectrum from the plasma (Fig. 111.2b),
and in particular the Iag(sss.6nmy/Iars49.6nm) ratio, was found to be constant throughout at least 5 minutes
the Ag-sputtering was performed. During the plasma stabilization phase the substrate was hidden
behind a shutter [Despax and Raynaud, 2007]. Once the plasma process stability was attained, the
shutter was removed for the time of sputtering. The possibility to hide the substrate during the plasma
stabilization phase, and ones the Ag-sputtering step has been performed, allows us to use very short

deposition times (only of few seconds) and to obtain a strict control of the plasma deposition process.
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Figure II1.2: (a) Evolution of the self-bias voltage V4. and the ratio of the line intensities Ig(s46.6nm) tO
TAr(s49.6nm) @s a function of the applied discharge power during the sputtering step (par = 5.2 Pa) and (b)
OES spectra from the plasma sustained in Ar at po, = 5.2 Pa and P =80 W during the Ag sputtering
step (black curve) and of the plasma sustained in AryHMDSO/O, mixture at average total pressure
Prot = 7.68 Paand P = 120 W for the SiO, plasma deposition step (red curve).

3. Plasma silica (SiO,"*™) cover layer

plasma

The plasma silica (SiO, ) coverlayer embedding the AgNPs was deposited in the plasma sustained
in a gas mixture of argon (Ar flow - 2.8 sccm, where sccm stands for standard cubic centimeters) -
hexamethyldisiloxane (HMDSO - [CHj3]¢S1,0) - oxygen (O, flow — 1.25 sccm) at average total gas
pressure py,c = 7.68 Pa. The HMDSO (Sigma Aldrich product with purity larger than 99.5%) and argon
(AirLiquid AlphaGaz 2 - 99.9995%) flows were mixed in a buffer chamber before being introduced
into the plasma chamber. The high quality oxygen flow (AirLiquid AlphaGaz 2 - 99.9995%) was
introduced into the plasma chamber by means of an appropriate port situated at the level of the
grounded electrode where the substrate was fixed. Strong particularity of our plasma process which
makes it original and highly efficient is the pulsed introduction of the precursor. The HMDSO was
introduced in the discharge by pulses with period T=5s (T = t,, + tor) and injection time to, =3.1's
which corresponds to an average HMDSO flow of 0.248 sccm. The maximal fluctuation of the total

gas pressure induced by the pulsed injection of the HMDSO was of 0.4 Pa. The combined effect of

pulsed introduction of HMDSO in the plasma and the specific location of O, introduction, in the
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plasma

vicinity of the substrate, has finally a strong impact on the quality of the deposited SiO,
coverlayer. It allows deposition of high quality SiO, plasma layers for relatively low O, to HMDSO
ratios. The injected RF power for the SiO,”*™ deposition was fixed to 120 W assuring high degree of
HMDSO decomposition in the plasma. Obtaining high quality SiO,”®™ layers, in a plasma process by
using HMDSO as precursor, requires diagnostic of the plasma parameters as a function the gas
discharge operating conditions - type of gas discharge, injected power, gas pressure and gas mixture
[Lamendola et al., 1997; Hegemann et al., 1999; Aumaille et al., 2000; Goujon et al., 2004; Prasad et
al., 2005; Camacho et al., 2008]. Once more, like in the Ag-sputtering step, previous to the SiO,"*™
deposition the stability of plasma process was followed until obtaining constant values for the self-bias
voltage, the total average gas pressure and the glow emission from the discharge for at least 5 minutes.
For the SiO,"™™ deposition step the plasma stabilization phase takes typically 30 minutes. All
experiments for the SiO,”*™ deposition were carried without any silver atomic presence in the plasma
gas phase. This point was controlled through the absence of silver lines in the recorded optical
emission spectra, like the example shown in Fig. II11.2b (red curve). It is worth to point here that the
OES shown in Fig. III.2b, corresponding to the plasma polymerization step, reflects the elementary
processes occurring in the plasma gas phase. After each SiO."™™ deposition the plasma reactor walls
and the Ag-target were cleaned, so that the initial conditions for the next deposition remained
unchanged, guaranteeing in that way reproducibility of the elaborated plasmonic substrates. The
thickness of the SiO."™™ coverlayer was controlled by the deposition time after a preliminary study
on the deposition rate. The deposition rate, resultant from the above described plasma conditions, was

found to be low, only of 13 nm/min. The low deposition rate used in this study gives place to

plasma plasma

deposition of a dense SiO, coverlayer with well-ordered matrix. The SiO, coverlayer should
not only be of high quality (no C-H or Si-H content) but also exempt of any silver presence in it.

To achieve a SiO,"™™ layer with properties close to thermal silica layer the plasma composition was
adjusted by varying the gas mixture. The oxygen injection into the plasma maintained in Ar-HMDSO
mixture introduces reactive species that promote oxidation of the methyl groups and the volatile
species, such as water and carbon dioxide. To improve the oxidation efficiency in the plasma reactor
used for this study, the oxygen flow was introduced grazing the surface of the samples by means of an
appropriate port. The parameters for plasma polymerization phase, like applied power, HMDSO
injection time and O, flow were optimized by OES and electrical measurements of the self-bias
voltage. Typical OES spectrum of the plasma emission is shown in Fig. II1.2b. The real-time
monitoring of the plasma process by OES [Despax and Raynaud, 2007] is indispensable for obtaining
plasma silica layers of high quality.

The pulsed injection of the precursor is one of the originality of the applied plasma process. Indeed,
pulsed injection of HMDSO allows fine control over the plasma parameters. The suitable HMDSO

injection time was determined in relation with the O, flow in order to ensure both complete plasma

organosilicon covering of the Ag-made electrode to prevent from Ag-sputtering and a plasma
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deposition of SiO, layer with properties close to a thermal silica layer. It was found that the slot of
plasma operation parameters that satisfies the above two requirements for the quality of SiO,”™*™ layer
is very narrow. In the preliminary study, where the optimization of the plasma operation conditions
was performed, it was found that in the plasma of Ar-HMDSO-0, gas mixture, for HMDSO injection
times larger than 3.0's, over 5s period, in the used in this study, axially-asymmetric capacitively-
coupled RF discharge, the silver sputtering did not occur because of the rapid plasma polymer
covering of the silver electrode with a thin SIOC:H film. One can see on Fig. II1.3 that a slight increase
of HMDSO injection time over the same period in insufficiently oxygen flow introduced in the plasma
(HMDSO t,, =4.0 over T=15 s period with O, flow = 1.0 sccm, green curve) leads to a very broad
massive between 800 cm-' and 1000 cm™. It signifies the presence of the asymmetric stretching Si-O-
Si mode together with the CH,(x<2)-Si wagging mode although other carbon groups are not observed
in the spectrum. Reducing the HMDSO injection time to t,, = 3.1 for the same injected power in the
discharge (Fig. I11.3, blue curve) provides condition for deposition of SiO,"*™ layer. Effect of rapid
thermal annealing (400°C for 30 min) of the plasma silica layer (Fig. I11.3, red curve) did not induced
any further changes in the silica matrix (densification or structural reorganization). The FTIR spectrum

of thermal SiO, layer (Fig. I11.3, black curve) is shown for comparison purposes only.
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Figure II1.3: FTIR spectra showing the evolution of the layer composition with the gas mixture
parameters: t,, and O, flow. The spectra are normalized to the corresponding layer thickness. The
black curve represents FTIR spectrum of thermal silica layer.

Finally, to avoid Ag presence in the discharge, and consequently in the SiO,"*™ layer, the HMDSO
injection time must be longer than 3.0 s, over 5 s period, for the O, gas flows of 1.25 sccm. However,
to prevent from possible C-H content in the SiO,"*™ layer the HMDSO injection times must not be
longer than 3.2 s for the O, gas flows of 1.25 sccm. The composition of deposited SiO, layer was
determined by FTIR and ellipsometry. It is in accordance with the SiO, layers obtained by other
authors using O, and HMDSO as precursors for silica deposition in a plasma process [Hegemann et

al., 1999; Aumaille et al., 2000; Goujon et al., 2004].
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The FTIR spectrum of SiO"™™ layer used to cover the AgNPs, in order to complete the plasmonic
substrate, is shown in Fig. II1.4. One can observe the three typical TO modes of molecular vibrations
of amorphous silicon dioxide [Kirk, 1988]. In particular, the FTIR spectrum shows the Si-O-Si
rocking vibration at 457 cm™, the symmetric stretching mode at 810 cm™, and the asymmetric
stretching mode at 1062 cm™. The shoulder centred around 1250 cm™, characteristic of thermal SiO, is
clearly observable on the spectrum. The lack of Si-H stretching bond at 2250 cm™, the C-H symmetric
stretching bond in CH; environment at 2900 cm™, the C-H asymmetric stretching bond at 2960 cm™
and the OH bonds, both associated at 3450 cm™ and free at 3630 cm™, that appear in plasma deposited
organosilicon layers [Makasheva et al., 2013] when only HMDSO is used as precursor, testifies for the
efficient process of oxidation and the high quality of the elaborated SiO,”™™ layer. The FTIR
spectrum presents a weak shift to lower frequencies in the peak position of the Si-O-Si asymmetric
stretching mode, 1062 cm™ instead of 1076 cm™ as expected for thermal SiO, layer, most likely due to
the slight SiO, disorder. Due to the small thickness of SiO,”*™ layer, only 96 nm as measured by

spectroscopic ellipsometry, a slight noise in the absorption FTIR spectrum is observed in Fig. I11.4.

Figure I11.4: FTIR spectrum of a deposited Si0,"*™ layer of thickness dsiozplasma = 96 nM.

4. Structural and optical properties of the deposited plasmonic structures

Figure IIL.5 represents a bright field TEM image in cross-section view of typical elaborated sample. It
corresponds to the following structure: single layer of AgNPs deposited at injected power of P =40 W
for sputtering time of #, = 5 sec and covered by SiO,™™ layer of thickness dsionpiasms = 13 nm
(deposition time for the SiO,”*™ layer, 14 = 60 s).

One can clearly notice the planarity in the AgNPs single layer (the AgNPs layer average thickness is
of 9 nm). High Resolution Electron Microscopy (HREM) observations (see image in insert of Fig.
I11.5) show that the Ag nanoparticles are crystalline and made of pure silver. The total thickness of the
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structure is 105 nm, which fulfils the condition for anti-reflectivity of optical waves in the middle of
the visible range [Carles et al., 2011; Bayle et al., 2014].

The evolution of the AgNPs size, density and shape with the injected power for Ag-sputtering is
shown in Fig. I11.6 for a fixed sputtering time ¢, = 5 s and two different powers 40W (Fig. I11.6a) and
80W (Fig. IIL.6b) covered by a SiO,”™™ layer of thickness dsiozpiasma = 13 nm (SiO"™™ layer
deposition time, 73 = 60 s). The size of AgNPs increases from 11.1 2.4 nm to 19.6 = 7.8 nm. Their
density is reduced from 4.6 x 10" NPs/cm” to 1.7 x 10" NPs/cm®, covering an area of 45.8% and
42.6%, respectively. The same trend is observed when the injected power is fixed and the sputtering

time is increased.

Si substrate

Figure II1.5: Bright field TEM cross-section image of a sample elaborated by combined silver
sputtering and PECVD. Conditions for the AgNPs single layer deposition ¢, = 5s, P =40W (V4. =-
750 V). The SiO,"™™ deposition time, 74 = 60 s. In insert HREM image of a single nanocrystal.

For P =10 W, increasing the sputtering time from 10 s (Fig. I11.6¢) to 30 s (Fig. 111.6d) leads to an
increase of the mean diameter of the AgNPs from 4.5+ 1.7 nm to 7.7 + 2.8 nm corresponding to a
coverage area of 13% and 19%, respectively. The density of AgNPs however decreases from 7.6 x
10" NPs/cm® to 6.9 x 10" NPs/cm?, for the two sputtering times (¢, =10 s and #, =30 s), respectively.

For a fixed sputtering time by scaling up the injected power the shape of AgNPs changes from
spherical (P =10 W) to prolate spheroid (P > 60 W). This property has been observed for other types
of metal nanoparticles embedded in dielectric matrices, like Au-nanoparticles dispersed in
fluorocarbon or hydrocarbon matrices, in the same type of gas discharges [Perrin et al., 1985; Laurent
and Kay, 1989]. Increasing the sputtering time from 5 s up to 30 s does not influence the AgNPs shape
for low injected power (P =10 W), while it leads to overtaking the percolation threshold for high
injected power (P = 80 W). Consequently, to obtain a single layer of large AgNPs, high injected power

and small sputtering times must be privileged.
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The ellipsometric spectroscopy is an extremely sensitive and powerful method largely applied for
diagnostic of thin transparent layers with the main advantage of being non-destructive. The
ellipsometric spectrum of SiO,"™™ layer (Fig. II.7a) was used to determine the refractive index and
the thickness of the layer by applying the Forouhi-Bloomer dispersion low [Forouhi and Bloomer,
1986]. The obtained values are n = 1.45 (at A = 632.8 nm) and dsiooplasma = 96 nm, respectively. The
ellipsometric spectrum of SiO,"*™ layer is identical to the one of thermal SiO, layer for the same
thickness, which testifies for the high quality of the plasma deposited silica layer in this study. It
means that the layer composition is close to thermal silica one and there is no silver contamination in

this layer.

Figure III.6: Bright field TEM plan-view images of the obtained plasmonic substrates by using
different powers (a) 40W and (b) 80W at fixed Ag-sputtering time # = 5 s or increasing the Ag-
sputtering time from (c) 10 s to (d) 30 s for fixed injected power P =10 W.

In fact, due to the electric field polarization, the ellipsometric measurements are extremely sensitive to
changes in the refractive index and the extinction coefficient due to any silver presence inside the SiO,
matrix. Even a very small fraction of Ag-atoms in the SiO, layer leads to a departure in the cosA
variation, that gives the phase difference, induced by the reflection, between the perpendicular and

parallel components of the polarized electric field as shown in Fig. I11.7a.
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To guarantee the performance of plasmonic substrates when integrated in devices one needs to
characterize their dielectric response. A good way is to use reliable non-destructive diagnostic
methods like ellipsometry and reflectometry. When AgNPs are embedded in the SiO, layer, the
ellipsometric spectra indicate their presence by shift of the peak to higher energies in the tan't
variation and by appearance of a peak in the cosA variation at the same wavelength as for the tan'¥
variation, as shown in Fig. III.7b for the two plasmonic substrates presented on the TEM plan-view
images in Fig. II.6a,b. The tan'V variation is closely related to changes in the amplitudes of the
polarized electric field after reflection. It means that even small variations in the size and density of
AgNPs will be detected by spectroscopic ellipsometry. The larger the size of AgNPs, the larger the
energy shift of their peak on the ellipsometric spectra is. This is an expected behaviour of
ellipsometric spectra for AgNPs with different size and density as already presented in other studies

[Kreibig and Vollmer, 1985; Oates and Miicklich, 1995].
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Figure II1.7: Ellipsometry spectra of elaborated samples: (a) SiO,”™™ layer for t,, = 3.1s (black
curve), Si0,"™™ layer for to, = 3.0s (red curve) where one can see departure on the cosA variation due
to small quantity of Ag in the SiO,"*™ layer and SiO,™™ layer (blue curve) and (b) SiO,”™™ layer
(black line) and two plasmonic substrates P = 40 and 80 W, £, = 5 s, and deposition time for the
SiO,"™™ coverlayer 74 = 60 s.

Alternatively to the ellipsometric spectra analysis presented by Oates et al. [Oates and Miicklich,
1995] where AgNPs deposited on SiO, layer are surrounded by air, the present plasmonic structures
appear more complex as the AgNPs are embedded in the SiO, matrix and an appropriate description of
the dielectric functions of different media and of the interface-related artefacts requires an in-depth
analysis. Modelling of the recorded ellipsometric spectra, based on the quasi-static approximation of
the classical Maxwell-Garnett formalism, however accounting for the electronic confinement effect
through the damping parameter was developed in this PhD work and will be presented in Chapter 1V.

Details on the theoretical model, the developed diagnostic procedure and the interpretation of
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ellipsometric spectra recorded on the plasma deposited thin silica layers containing AgNPs are
described and commented alongside with the model limits.

Visible-UV reflectance spectra are particularly easy to obtain experimentally or model theoretically,
and furthermore they display a notable sensitivity to the incorporation of AgNPs in the dielectric
matrix, as shown in Figs. I11.8a and II1.8b. By changing either the injected power (Fig. 111.8a) or the
sputtering time (Fig. I11.8a) one drastically affects the reflectance in the visible range (400 — 750 nm)
where most of the potential applications of plasmonic substrates are expected. This enhanced
sensitivity is a direct consequence of the design of our specific substrates, which allows
simultaneously combining strong absorption at the LSPR (near 413 nm for spherical AgNPs in SiO,
host matrix) and antireflective effect of the multilayer structure (near 600 nm) [Carles et al., 2011]. On
Figs. 1I1.8a and IIL.8b, one clearly observes that higher the embedded Ag amount, by increasing the
deposition time or the injected power respectively, higher the reflectance in the middle of the visible

range is (near 500 nm).

Figure I11.8: Reflectance spectra of SiO,"™™ layer (thickness dsiozplasma = 96 nm, black line in figure
III.7a) and the elaborated plasmonic substrates. (a) The AgNPs delta-layers were deposited with
P=40 W (red line), 60 W (green line) and 80 W (blue line) for fixed sputtering time #,= 5 s. The
deposition time of the SiO,"™™ coverlayer is #y = 60 s (dsiozplasma = 13 nm). (b) The AgNPs delta-
layers were deposited with P = 10 W for increasing sputtering times #, = 10 s (red line), 20 s (green
line), 30 s (blue line). The deposition time of the SiO,"*™ coverlayer is 7 = 30 s (dsiozplasma = 5 nM).

One thus expects a high sensitivity in the elastic scattering response for LSPR-sensitive devices or
inelastic scattering response for SERS substrates. It is worth to underline here the high sensitivity of
the plasma elaborated plasmonic substrates for optical applications in the visible range: the reflectance

is modified around 25% (on average) at 500 nm.
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5. Towards elaboration of plasmonic substrates by simultaneous Ag-

sputtering and plasma polymerization

Given the shape evolution of AgNPs (from spherical to prolate spheroid) in the Ag-sputtering step
when increasing the injected power to sustain the discharge in order to obtain large particles, our next
goal was to improve the properties of the nanocomposite layer through deposition of a single layer of
large spherical AgNPs, with a narrow size-distribution of the NPs, embedded in silica matrix and
covered by a flat silica coverlayer of few nanometers. Indeed, playing on the HMDSO injection time
t,n, one can control the poisoning effect of the Ag-target. As discussed earlier, when depositing the
Si0,P*™ Jayer, HMDSO injection times of less than 3.1 s over 5 s period leads to deposition of silica
layers containing a very small Ag-fraction (Fig. [11.7a). It means that for these operating conditions the
Ag-sputtering from the target occurs during the plasma polymerization process. To fully benefit the
capacities of our plasma deposition system we have initiated a study on the elaboration and structural
properties of plasmonic substrates by using simultaneously metal sputtering and plasma
polymerization.

In the past, this method was exploited in LAPLACE to elaborate carbonaceous or organosilicon
matrices containing dispersed metal nanoparticles aiming at applications in electrical systems for their
modulated dielectric properties [Despax and Flouttard, 1989; Canet et al, 1992] or as coating layers
containing AgNPs with antiadhesive and antimicrobial properties [Despax and Raynaud, 2007; Saulou

et al., 2009; Despax et al., 2011; Saulou et al., 2012].

Figure II1.9: Bright field TEM cross-section image of a sample elaborated by combined
simultaneously Ag-sputtering and plasma polymerization. Conditions for the AgNPs single layer
deposition #,, = 1.75 s, P =120W (V; =-1040 V) and deposition time 1 min.

The preliminary deposition was performed by using the same operating conditions exploited for the
plasma silica layer deposition, to keep the gas mixture and the O, flow proper for the silica matrix,
except for the HMDSO injection time that was fixed to t,, = 1.75s over 5s period. The deposition time
was of 1 minute. Figure I11.9 shows the bright field TEM cross-section image of a sample elaborated
under these conditions on silica surface. One can see in the figure the formation of a single layer of
spherical AgNPs touching the free surface. The nanocomposite layer thickness is of 10 nm. These first

results open the way for future studies on the synthesis and applications of embedded AgNPs targeting
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both their use as plasmonic substrate and as coating layers containing strong biocide agent, and

confirming their multifunctionality.

6. Conclusions

In this Chapter, we have shown that the potentialities of plasma based deposition can be exploited to
perform rational engineering of targeted nanostructures, in this case plasmonic substrates and how the
key parameters of the embedded AgNPs (size, density, distance to the surface) can be controlled by
tuning the plasma operating conditions combining silver sputtering and plasma polymerization in one
process. Two different deposition routes were followed: the first one based on successive silver
sputtering and plasma deposition of silica cover matrix and the second one (although only in
preliminary phase of development) consisting of simultaneous Ag-sputtering and plasma
polymerization. The structural and optical characterizations of the obtained plasmonic structures
confirm the efficiency of the plasma deposited plasmonic substrates. By coupling these samples to the
ones elaborated by LE-IBS, we have now two techniques for fabricating of a single layer of AgNPs
embedded in thin silica films at controlled nanometric distance beneath the free surface. They offer the
possibility to explore different AgNPs size distributions, surface densities and particularly their
separation from the free surface. This set of samples will be used in Chapter V to evaluate if, even if
embedded in a dielectric matrix, our AgNPs are able to release Ag' ions when submersed in water. For
this assessment, an original method will be described, implying green algae as biosensors. Before
testing the biocide properties of these solid layers, the next chapter (Chapter IV) will be focused on the
optical properties of these layers by going deeper in the potentialities of ellipsometry as an efficient

diagnostic technique for the detection of small variations in the size and density of AgNPs.
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Chapter IV: Fully predictive modeling of
ellipsometric spectra describing the
dielectric response of plasmonic
substrates

1. Introduction

The properties of nanocomposite materials are nowadays widely studied aiming at a large spectrum of
applications. In particular, nanostructures containing a layer of silver nanoparticles (AgNPs)
embedded in silica matrix close to the free surface have a strong potential for plasmonic devices. The
main advantage of these structures is the possibility to manipulate, localize and enhance the
electromagnetic field at their surface. Currently, well-established microscopy techniques, including
Atomic Force Microscopy (AFM), Scanning Electron Microscopy (SEM) and TEM allow
visualisation and characterisation of the nanostructures, although being “local”, intrusive, and
unsuitable for real-time and in-line monitoring of the processes, especially on the surface/interfaces
modifications [Losurdo et al., 2009]. However, to guarantee the performance of plasmonic structures
when integrated in devices one needs to characterize their dielectric response during the elaboration
phase. A good way is to use reliable non-destructive diagnostic methods. In general, many
fundamental and functional properties of nanocomposites can be conveniently probed using several
variants of optical spectroscopy. In particular, using polarized light in ellipsometric measurements
proves to be highly efficient. Spectroscopic ellipsometry (SE) actually turns out to be the most
appropriate among the various tools for characterization of nanocomposite materials. It is a non-
destructive, non-intrusive, and non-invasive, contactless optical technique, that has been developed
and applied extensively over the last 50 years, not only for the optical characterization of bulk
materials and thin films, but also for in situ real-time measurement of multilayered film structures,
interfaces, and composites, during fabrication and processing [Tompkins and Irene, 2005].
Ellipsometry is routinely used to measure thickness and optical constants of dielectric, semiconductor,
and metal thin films and a critical review discussing how to reduce the correlation between film
thickness and optical constants was recently provided in the literature [Hilfiker et al., 2008].

In this Chapter we report on the development, test and application of a fully predictive model
appropriate for interpretation of ellipsometric spectra recorded on plasmonic structures. It is based on
the quasistatic approximation of the classical Maxwell-Garnett formalism, however accounting for the
electronic confinement effect through the damping parameter. Samples were elaborated by using: (i)
low energy ion beam synthesis and (ii) combined sputtering and plasma polymerization. The model

allows extracting from the experimental ellipsometric spectra the characteristics of the NPs
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population: average size, volume fraction and distance of the AgNPs layer from the matrix free
surface. Comparison with results obtained from transmission electron microscopy confirms the
applicability of this method. The limits of the proposed diagnostic method along with further
development related to the quality of comparison between the model-generated spectra and
experimental data is also discussed. This aspect of my work was developed in close collaboration with

Maxime Bayle during his PhD at CEMES laboratory.

2. Studied samples

The two different elaboration techniques described previously were applied here to elaborate the
AgNPs embedded in 90 nm thick silica layers thermally grown on (100) Si substrate: ion implantation
and plasma deposition process. They offer the possibility to explore different AgNPs shapes, size
distributions, surface densities and particularly their separation from the free surface. For clarity of
presentation the selected samples elaborated by ion implantation are called “implanted samples” and
labelled E1 and E2 hereafter, and those prepared by plasma deposition process are called “plasma
deposited samples” and labelled E3 and E4. The elaboration conditions of the studied samples by

using these two physical methods are described below.

2.1. Ion Implantation

As described in Chapter I, we have recently developed a synthesis technique based on implantation of
Ag' ions with low kinetic energy (few keV) and doses of few 10'® ions/cm® by which a layer of
AgNPs is embedded near the free surface of a SiO, layer thermally grown on a Si wafer [Carles et al.,
2009; Benzo et al., 2013]. A specifically modified Varian 200A2 implanter was used in order to work
in the low energy range. The layers have been implanted at fixed energy E of the Ag" ions and with
two ion doses D (see Table IV.1). The ion density current / plays a key role for the silver diffusion in
the silica matrix and has been fixed to 5 pA for all the implantations. Under these conditions the
nucleation of the AgNPs takes place during the implantation process without the need of any
annealing step [Liu et al., 1998; Tsang et al., 2006; Benzo et al., 2013] due to the high diffusivity of
Ag in SiO, [Nason et al., 1991; Stefanov, 2010].

To recover the matrix damage and protect the AgNPs from fast oxidation [Benzo et al., 2011] a post-
implantation rapid-thermal-annealing was carried out under N, atmosphere at 500°C for 30 minutes.
The choice of the annealing time and temperature was restricted as to maintain unchanged the AgNPs
size distribution and their position inside the SiO, matrix.

By ion implantation technique, it has been demonstrated the possibility of accurate tuning of the
AgNPs average size, surface density and position with respect to the free surface [Benzo et al., 2013].
Nevertheless, for implanted doses larger than 3 x 10'® ions/cm®, sputtering and diffusion effects

towards the free surface limit the amount of Ag that can be introduced in the dielectric and thus the
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final average diameter of the formed nanocrystals, that cannot exceed 15 nm. To obtain bigger AgNPs
and a larger silver amount, another elaboration technique has been applied, as described in the next

section.

Table IV.1: Parameters used to elaborate the samples by ion implantation.

Ag’
Sample
Implantation conditions
Energy, Dose, Density current, Time,
E ¢ 1 t

[keV]  [10'®ions/cm?] [nA] [hours]

El 10 0.715 5 4.5

E2 10 3.8 5 22

2.2. Plasma deposition process

As described in Chapter III the plasma deposition process consists of an axially-asymmetric RF
capacitively-coupled discharge maintained at 13.56 MHz at low gas pressure that successfully
combines metal sputtering (PVD) and plasma polymerization (PECVD) [Despax and Raynaud, 2007].
It allows a fine control over the size and density of the metal nanoparticles along with homogeneous

dispersion for metallic concentrations from a few percent up to 100% (continuous metallic nanolayer).

Table IV.2: Parameters used to elaborate AgNPs by sputtering deposition process (PVD).

Ag
Sample deposition conditions
(PVD step)
Applied Power,  Self-bias Ar Ar Time,
Voltage, pressure, flow,

P Vae p t
[W] [V] [Pa] [sccm] [sec]

E3 10 -390 52 2.8 10

E4 10 -390 5.2 2.8 30

The AgNPs single layer was deposited on thermally grown SiO, thin films on Si substrate by means of
Ag sputtering of the powered electrode (silver target) in argon plasma sustained at low gas pressure. It

was subsequently covered by a high quality very thin SiO, plasma layer during the plasma
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polymerization step to form the stack. The evolution of the AgNPs with the plasma operating
conditions was described in details in Chapter III. The selected plasma operating conditions for the
sputtering process leading to the deposition of AgNPs are presented in Table IV.2. As mentioned
above after the PVD step, the AgNPs plane was covered by a very thin SiO, layer deposited in the
same plasma reactor. In the latter deposition step, the plasma is obtained in a mixture of argon (Ar)-
hexamethyldisiloxane (HMDSO, [CH;]6S1,0)-oxygen (O;) (Chapter III). The deposition of SiO; is
performed for a fixed deposition time ¢ (to always achieve the same thickness as the deposition time
controls the layers thickness) and a constant RF power P (Table 1V.3). The relatively high applied
power for the plasma polymerization phase ensures deposition of high quality plasma silica layers.
Details of sample preparation, including the cleaning procedure of substrates, and elaboration process
as well as the optimized parameters for both sputtering and silica deposition steps, and the plasma

process monitoring are given in Chapter II and Chapter III.

Table IV.3: Parameters used to elaborate the SiO, plasma layer by PECVD.

SiOz Plasma
Sample deposition conditions
(PECVD step)
Applied  Self-bias Total Ar 0, HMDSO HMDSO HMDSO Time,
Power, Voltage, Pressure, flow flow injection time, period, average flow
P Vdc DProt ton T= Ton + toff t
[W] [V] [Pa] [sccm]  [sccm] [sec] [sec] [scem] [sec]
E3
120 - 880 7.68 2.8 1.25 3.1 5 0.25 30
E4

3. Description of the theoretical model used for simulation of plasmonic

structures

The optical frequency range (3 x 10" Hz — 3 x 10'® Hz) extends from far-infrared (FIR) to vacuum-
ultraviolet (VUV) spectral regions with longest and shortest wavelength of 1 mm and 10 nm,
respectively. Since the atomic dimensions are of the order of 0.1 nm, matter behaves as continuum at
the optical frequencies and below (microwave and radiofrequency range). Although the discrete
atomic structure of matter induces strong spatial variation of the quantities describing optical fields,
the response at macroscopic level is smooth and usually detected by light probes in the optical range.
The nanostructured materials can be considered as a mixture of individual components each of them
possessing their own continuum-like optical response. The advantage of treating a nanostructured

material as a mixture having continuum behavior is the possibility of finding the macroscopic

102



(averaged) field quantities by using approximate treatment (effective media approximation, EMA). If
the composite material consists of dissimilar regions that are small compared to the wavelength of
probing light but large enough to express their own dielectric identity, the local fields and the
subsequently obtained averaged quantities are impacted by the presence of screening charge that
develops at the boundaries between regions [Aspnes, 2011]. The screening charge modifies locally the
electric field which yields modifications in the averaged macroscopic polarization. However, under
certain conditions we can perform a second average and find the dielectric function, but the one that
describes the macroscopic response of the nanocomposite material to the applied field. If the geometry
of the nanostructured material is sufficiently simple so that we can solve the Maxwell equations
analytically, we can obtain expression relating the averaged dielectric function to the structural
parameters of the nanocomposites on the basis of EMA. We have performed such treatment on the
nanocomposites elaborated in this work and described above plasmonic structures by using the
prototype of EMA, the one developed by Garnett [Garnett, 1904].
The physical situation that we wish to describe is an ensemble of AgNPs included in a silica matrix.
Following the EMA rules, and in particular the Maxwell-Garnett approximation, we convert this
heterogeneous system in a homogeneous effective media. To describe the interaction between the
AgNPs and the electromagnetic wave we limit the case to the quasi-static approximation. This
consideration is based on the fact that the size of AgNPs in the system is much smaller than the
wavelength of the external electric field in the visible range. Additional condition is that the density of
AgNPs inclusions (their volume fraction) remains small so that their impact on the system can be
considered as perturbation only. Accordingly, the electromagnetic field does not experience the
detailed structure of the nanocomposite.
The effective permittivity of the media &g is then available according to the Clausius Mossotti relation
where N is the number of NPs in a unit volume, V and &, is the dielectric permittivity of the host
matrix:

it —€m _ Na

Eq +2€, 3&

(IV.1)

m

After introducing the volume fraction of AgNPs f = NV in the silica matrix and by replacement of a by
its expression for NPs of spherical shape (o = 2) [Garnett, 1904] one finds the general expression of

Maxwell-Garnett:

Cot _Em_ _ ¢ Ene " (IV.2)

Eg +26, e +2€,

with gy representing the dielectric permittivity of the nanoparticles.

For sufficiently small volume fractions the effective permittivity of the media & takes the form:
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£y =&, +3fgmﬁ. (IV.3)
As already discussed in Chapter | (Section 6.3) when scaling down to nanometer size, the optical
response of metals is affected by three main features: size, shape and surrounding medium of the metal
[Kreibig and Vollmer, 1995; Maier, 2007]. The complex dielectric function of nanoparticles becomes
size dependent. Assuming metallic spherical nanoparticles, their complex dielectric function can be

written as:

2
@

Enp (@, DNP):EIB(w)_m, (Iv.4)

where gg(w) is the part of complex dielectric function due to the interband transitions in bulk metals
and y(Dnp) is related to the damping parameter » accounting for collisions of electrons whit other
electrons, crystal lattice (phonons), lattice defects, or impurities and considering the size effect of
nanoparticles (see Chapter I, Eq. 1.21). Accordingly, the size dependency of the dielectric function
remains negligible on its real part while its imaginary part is significantly impacted.

Considering the dielectric permittivity of the nanoparticles as given by Eq. IV.4 in the expression of
effective permittivity of the media (Eq. IV.3) allows for accounting the size effects imposed by the

AgNPs in the theoretical model of plasmonic structures.

4. Numerical procedure for the simulations

Schematic representation of the modeled plasmonic structures is given in Fig. IV.1. The plasmonic
structures are considered as multi-layer systems. Each of the layers is described by its dielectric
permittivity. The layers containing AgNPs are taken as effective media and are represented by the
corresponding effective dielectric permittivity. As can be noticed on the figure such consideration of
the plasmonic structure offers the possibility to describe double layer of NPs with different size and
volume fraction. This stratified structure is well adapted to account for different physical situations
that can arise in the stack representation according to the type of applied elaboration method.

The dielectric properties of the Si-substrate were taken from [Palik, 1985] for the whole wavelength
range, those of the SiO, layer from SOPRA Database [SOPRA Database, 1999] and the AgNPs
dielectric function was calculated according Eq. IV.4 by using the optical properties of bulk silver
[Palik, 1985]. As input parameters in the model we start with guesses for the thicknesses of different
layers in the structure and the corresponding volume fractions of the NPs. After convergence of the
model calculations the output parameters of the simulation are as listed in the Fig. 1V.1 along with
ellipsometric spectra (tan(¥) and cos(A)) in the 250 — 850 nm wavelength range, corresponding to the

considered structure. These theoretical spectra were compared with experimental ellipsometric spectra.
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Structure Parameters of the simulation

—}—> cover layer 1= thickness of cover layer

[¢)] .

D Aps diameter of AgNPs

. AgNPs+SiO,
1
“-6- i----i- | Layer (1) tAg:SiOZ( = thickness of AgNPs +SiO, layer (1)

f\sor = Volume fraction of AgNPs in the SiO, layer (1)
2 .

D, e = diameter of AgNPs

AgNPs + SiO, ¢

Layer (2) tAg:Siozm = thickness of AgNPs +SiO, layer (2)

f @ volume fraction of AgNPs in the SiO, layer (2)

AgSio2

Si02

\ SiO, layer tgo, = thickness of SiO, layer

Si substrate t = total thickness of the plasmonic structure

Figure IV.1: Schematic representation of the plasmonic structures and parameters issued from the
model.

The developed numerical code runs on Matlab software [Matlab, 2012] and uses Abeles formalisms
for calculations of the electric field in multilayer systems. More information on the basis and the
adopted hypotheses is given elsewhere [Lariviére et al., 1992; Poinsotte, 2006; M. Bayle, 2014].

The experimental ellipsometric spectra to compare with on a given plasmonic structure were acquired
with a SOPRA GESS5 spectroscopic ellipsometer in the wavelength range from 250 to 850 nm at
incidence angle of 75°. Systematically the parameters of tested plasmonic structures obtained from

modelling were compared with results extracted from TEM observations of the same samples.

Figure IV.2: Benchmark of the model: (a) ellipsometric spectra of pristine SiO, layer grown on Si
substrate as recorded experimentally (dots) and as obtained from modelling (red line), and (b) XS-
TEM Bright Field images of the pristine SiO, layer.
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Before going further in the modeling of plasmonic substrates we have used a 90 nm thick SiO, layer
grown on Si-substrate as a model benchmark. The obtained from modelling results are shown in Fig.
IV.2 along with the experimentally recorded spectra. This test-sample approves the theoretical model
and the selected numerical procedure. Several indicators are used to estimate the sensitivity and
uniqueness of the model. The first estimate is related to quality of the comparison between the model-
generated ellipsometric spectra and the experimentally obtained ones in the entire spectral range.
Additional verification for the benchmark sample is performed by using the EMA model for
ellipsometric spectra processing on the WinElli Software available by SOPRA [SOPRA Database,
1999]. The XS-TEM image of the studied benchmark sample is shown in Fig. IV.2(b) as

complementary indicator for comparison of the obtained SiO, layer thickness.

5. Results and discussions

5.1. Advantages of the model describing the dielectric response of plasmonic structures
The advantage of using two different in their basic principles but complementary in terms of final
solution physical methods to elaborate the plasmonic structures is above all the possibility to cover
different architectures of the nanostructures, evolution of the size, density and shape of the AgNPs and
the nanometric distance from the sample free surface.

Figure 1V.3 represents the obtained from modelling and the experimentally recorded ellipsometric

spectra on the implanted sample E1. The XS-TEM of this sample is also shown in the figure.

Figure 1V.3: (a) ellipsometric spectra as recorded experimentally (dots) and as obtained from
modelling (red line), and (b) XS-TEM Bright Field images of the implanted sample E1

The parameters of the plasmonic structure obtained from modelling and those extracted from the

TEM-images processing are summarized in Table IV.4. A strong particularity of this sample E1 is the
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presence of a second plane of AgNPs in-depth of the sample. In this case the constituent layers of the
modeled structure are five, as represented in Fig. IV.1. This sample testifies for the appropriateness of
the developed theoretical model with respect to the stratified structure comprising effective media with
different size and volume fraction of the AgNPs. The represented plasmonic structure on Fig. IV .4

corresponds to the plasma deposited sample E3.

Figure IV.4: (a) ellipsometric spectra as recorded experimentally (dots) and as obtained from
modelling (red line), and (b) XS-TEM Bright Field images of the plasma deposited sample E3.

The planarity of the AgNPs layer in this case allows for model-generated ellipsometric spectra
identical to the experimentally recorded ones. The very slight waviness of the sample surface imposed
by the plasma deposition method (Chapter I1I) does not lead to depolarization of the probe light in the
entire wavelength range.

One can notice the excellent agreement between the parameters describing the two plasmonic
structures (E1 and E3) obtained from modeling of the ellipsometric spectra and those extracted from
TEM measurements (Table 1V.4). The common point of these two examples is that their structural
parameters completely satisfy the hypotheses of the Maxwell-Garnett approximation. The AgNPs are
spherical in shape. They are well aligned in a plane so that they form a single layer in which the
thickness of the effective media can be considered equal to the diameter of the AgNPs. The AgNPs
volume fraction is small enough not to induce strong modification of the electromagnetic field and can

be considered as perturbation only.
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Table 1V.4 Parameters describing the studied samples E1 and E3 as obtained from ellipsometry and
TEM.

Parameters Sample E1 Sample E3
SE TEM SE TEM
Cover layer thickness - 1 (nm) 7.0 7.0+2.0 5.0 47+0.5
Layer 1: thickness - tagsio2" (nm) 9.0 10.0+0.5 6.0 6.0+0.3
AgNPs size - Dagup, " (nm) 9.0 7.0+2.0 6.0 6.0+ 1.0
Volume fraction of AgNPs - fy.si02"" 0.13 0.13 0.17 0.16
Eccentricity -e n/a 0.35 n/a 0.36
Layer 2: thickness - tagsio” (nm) 4.0 41+05 n/a n/a
AgNPs size - DAngs(z) (nm) 4.0 32409 n/a n/a
fagsion” 0.042 0.012 n/a n/a
Silica layer thickness - ts;o, (nm) 75.0 69.0+3.0 75.5 76.0+4.0
Total thickness of the structure - t;, (nm) 95.0 90.0+5.0 86.5 87.0+4.0

5.2. Critical assessment of the applicability of the model
Departure from the hypotheses of the Maxwell-Garnett approximation leads to a strong discrepancy
between the model-generated and the experimentally obtained -ellipsometric spectra. This is

demonstrated on Fig. IV.5 for the implanted sample E2 and on Fig. IV.6 for the plasma deposited
sample E4.

Figure 1V.5: (a) ellipsometric spectra as recorded experimentally (dots) and as obtained from
modelling (red line), and (b) XS-TEM Bright Field images of the plasma deposited sample E2.
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The discrepancy occurs mainly in the wavelength range around 400 nm where the surface plasmon
resonance response is detected. It results from dispersion of AgNPs in a band that cannot be
represented by one or two layers of aligned AgNPs for the implanted sample E2 and from the
evolution in shape of the AgNPs from spherical to prolate spheroid for the plasma deposited sample

E4. Additional reason is the large size-distribution of AgNPs for both samples (E2 and E4).

Figure IV.6: (a) ellipsometric spectra as recorded experimentally (dots) and as obtained from
modelling (red line), and (b) XS-TEM Bright Field images of the plasma deposited sample E4.

The parameters describing samples E2 and E4 obtained from modelling the ellipsometric spectra and
those extracted from TEM images are given in Table IV.5. The largest error stems from the AgNPs
size as obtained from SE and TEM measurements which prevents from correct description of the
thickness and dielectric function of the effective media and further reflects on the calculation of the
thickness of SiO, layer on which the AgNPs rely. Additional error results from the poor calculation of
the SiO, cover layer thickness. Finally, some of the errors accumulate to arrive to more than 10%
difference in the total thickness as for the sample E4 or compensate as for sample E2 but the
uniqueness of the solution is not guaranteed.

Eccentricity-based statistical analysis of the two implanted samples (E1 and E2) and the two plasma
deposited samples (E3 and E4) based on TEM-images processing gives additional information on the
influence of AgNPs shape evolution and the AgNPs size distribution on the theoretical model
hypotheses. The analysis was performed on a large ensemble of AgNPs and is shown in Fig. IV.7 for
the four samples. At least 1100 AgNPs have been considered for each sample. Different levels of
eccentricity refer to different shapes of the NPs starting from zero for spherical NP and evolving to 0.8

for a spheroid shape for which the minor axis is 40% smaller than the major axis.
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Table IV.5 Parameters describing the studied samples E2 and E4 as obtained from ellipsometry and

TEM
Sample E2 Sample E4
Parameters P P
SE TEM SE TEM
Cover layer thickness - 1 (nm) 0.5 50+4.0 5.0 5.6+04
Layer 1: thickness - tagsiop' (nm) 9.0 18.0£2.0 12.0 13.0+ 1.0
AgNPs size - Dagup, " (nm) 9.0 8.0+2.0 12.0 7.9 +4.0
Volume fraction of AgNPs - ng:SiOZ(l) 0.169 0.10 0.211 0.20
Eccentricity -e, n/a 0.37 n/a 0.45
Layer 2: thickness - tAg:Sioz(z) (nm) 4.0 6.8+0.7 n/a n/a
AgNPs size - DAngS(Z) (nm) 4.0 32+0.8 n/a n/a
fagsion” 0.19 0.08 n/a n/a
Silica layer thickness - ts;o; (nm) 60.5 47.0+2.0 74.5 83.0+4.0
Total thickness of the structure - t;, (nm) 74.0 72.0+4.0 91.5 102.0+5.0

The excellent agreement between theoretical and experimental ellipsometric spectra is observed for

plasmonic structures (samples E1 and E3) containing AgNPs with shape close to spherical one. The

permitted level of eccentricity of AgNPs is limited to 0.4 in order to fulfill the hypotheses of Maxwell-

Garnett approximation. Moreover, the size distribution of AgNPs should be quite narrow. Large size

distribution of AgNPs leads to ill-defined effective dielectric permittivity of the corresponding layer.

Figure IV.7: Eccentricity of the AgNPs in the studied samples: implanted samples E1 and E2, and
plasma deposited samples E3 and E4. Analysis based on minimum 1100 AgNPs per sample. Left
panel: evolution of the NPs shape for different eccentricity levels.
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When the large size distribution is accompanied by eccentricity level over 0.4, the error accumulation
in the calculated ellipsometric spectra leads to a large discrepancy of the obtained parameters of
plasmonic structures compared to TEM observations although the mean square error (MSE) that
quantifies the difference between theoretically obtained and experimentally recorded spectra remains

small like in the case of sample E4.

6. Conclusions

The results presented in this Chapter concern the development, test and application of a fully
predictive model appropriate for interpretation of ellipsometric spectra recorded on plasmonic
structures. The model is based on the quasistatic approximation of the classical Maxwell-Garnett
formalism, however accounting for the electronic confinement effect through the damping parameter.
It is found that excellent agreement between theoretically calculated and experimentally recorded
spectra can be achieved for quasi-spherical AgNPs with volume fraction in the host matrix up to 15-
17%. Additionally, a narrow size distribution of the AgNPs is required in order to allow representation
of the thickness of the effective media layer by the diameter of the AgNPs. Eccentricity-based
statistical analysis of the samples shows that a level of 0.4 of the eccentricity of AgNPs should not be
exceeded in order to remain in the frame of Maxwell-Garnett approximation.

Further improvement of the theoretical model with respect to correlation with experimentally recorded
spectra will be performed. In particular, the results interpretation will be related to the theoretical
model sensitivity. This includes calculation of the mean square error (MSE) curve that quantifies the
difference between model and experience for all regressed quantities. Other indicators to consider will
be the figure of merit (or 90% confidence limit), two-parameters correlation to indicate the
independency nature of any two fit parameters. Moreover, the uniqueness test of the model will be
performed to guarantee the less than 10% Unique Range which spans above and below the best fit that
provide 10% variance on the global MSE minimum when compare theoretical and experimental

ellipsometric spectra.
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Chapter V: Assessing bio-available silver
released from silver nanoparticles
embedded in silica layers using the
green algae Chlamydomonas reinhardtii
as bio-sensors

1. Introduction

Because of their antimicrobial properties, the silver nanoparticles (AgNPs) have the potential to
impact on human health and environmental equilibrium. These issues have been addressed by no less
than 25 reviews during the period 2008-2015 [Hansen and Baun, 2012; Reidy et al., 2013; Haider and
Kang, 2015; Le Ouay and Stellacci, 2015].

The biological activity of AgNPs is twofold. It is either closely related to the activity of ionic Ag (Ag")
and the AgNPs themselves resulting in protein denaturation at different cell locations; specially
sensible are those enzymes of the respiratory chain and transport channels [Holt and Bard, 2005;
Despax et al., 2011]. The development of reliable diagnostic methods for evaluating the biological
activity of AgNPs, and to disentangle the contribution of the silver ions and silver nanoparticles to the
whole antibacterial effect of AgNPs [Agnihotri et al., 2013], would be an asset for the appropriate
design and use of silver-based nanotechnologies.

The modulation of the silver ion release from AgNPs would eventually allow the release of the
appropriate dose of Ag" for biomedical uses and protecting thus the environmental equilibrium [Liu et
al., 2010; Sabella et al., 2014]. One of the methods to control Ag release from AgNPs is by their
inclusion in nanocomposite materials. The host matrices can stabilize AgNPs and at the same time
allow a controlled release of ionic silver and or AgNPs to inhibit the microbial colonization and
biofilms formation for biological and medical applications [Despax et al., 2011; Beer et al., 2012;
Alissawi et al., 2013].

In this chapter, we propose an original method for assessing the release and biocide activity of silver
released from AgNPs embedded in silica (SiO,) matrix submersed in water. It is based on the
photosynthesis of the green alga Chlamydomonas reinhardtii used as a sensible and reliable sensor of
ionic silver. This unicellular alga with well-known genetics is a simple model of eukaryotes [Merchant
et al., 2007] and extensively applied for toxicity tests. During the last years, this alga has been used as
a bio-sensor for measuring the dissolved silver released from silver nanoparticles, under realistic

exposure scenarios [Navarro et al., 2008b; Navarro et al., 2015].
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The two physical approaches were applied to elaborate the nanocomposite structures (previous
Chapters): (i) low energy ion beam synthesis and (ii) combined silver sputtering and plasma
polymerization allow fabricating of a single layer of AgNPs embedded in thin silica films at controlled
nanometric distance beneath the free surface. To relate the silver release from the elaborated structures
with their microbial activity, the structural and optical properties of the resulting composite layers
were studied by Transmission Electron Microscopy (TEM) and by optical reflectance, respectively.
The silver release was measured through Inductively Coupled Plasma-Mass Spectrometry (ICP-MS).
The short-term toxicity of AgNPs to photosynthesis in Chlamydomonas reinhardtii was studied using
fluorometry. The working hypothesis is the following: the amount of biologically active silver (bio-
available -Agyio.,-, and operationally defined as that provoking effect on the algal photosynthesis
mechanism) would mainly depend on both the density of silver nanoparticles and their in-depth
location below the free surface. The role of the host silica matrix in the process of silver release is

discussed as well.

2. Experimental

2.1. Synthetic procedures

The samples used for this study, and the conditions for their elaboration, have been described in the
previous Chapters. To recall the structures we will say that these contain a single layer of AgNPs
embedded in silica layers at a controlled distance from the free surface elaborated by two physical
methods: ion implantation and plasma deposition process. For clarity of presentation the samples
elaborated by ion implantation are called hereafter “implanted samples” and labelled E1 and E2. The
elaboration of these samples has been described in details in a past work [Benzo et al., 2013] and
recalled in Chapter I (section 2.3.3) and Chapter IV. The layers have been implanted at fixed energy E
of the Ag" ions and with two ion doses ¢ (see Table V.1).

Table V.1: Parameters used to elaborate the samples by ion implantation.

Ag’
Sample
Implantation conditions
Energy, Dose, Density current, Time,
E ¢ 1 t

[keV] " [10'° ions/cm?] [MA] [hours]

E1l 10 0.715 5 4.5

E2 10 3.8 5 22
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The ion density current plays a key role for the silver diffusion in the silica matrix and has been fixed
to 5 pA for all the implantations. As mentioned in Chapter I, under these conditions the nucleation of
the AgNPs takes place during the implantation process without the need of any annealing step. These
two samples present a quasi 2D array of AgNPs, with similar mean diameter and surface density and
therefore a similar initial Ag amount in the NPs. The main difference consists in the distance of the
AgNPs from the free surface, which slightly increases when increasing the implantation dose. The
experimental conditions for their elaboration are summarized in the Table V.1. To recover the matrix
damage and protect the AgNPs from fast oxidation (Benzo et al., 2011) a post-implantation rapid-
thermal-annealing was carried out under N, atmosphere at 500°C for 30 minutes. The choice of the
annealing time and temperature was restricted as to maintain unchanged the AgNPs size distribution

and their position inside the SiO, matrix.

Table V.2: Parameters used to elaborate AgNPs by sputtering deposition process (PVD).

Ag
Sample deposition conditions
(PVD step)
Applied Power,  Self-bias Ar Ar Time,
Voltage, pressure, flow,

P Vdc p t
[W] [V] [Pa] [sccm] [sec]

E4 10 -390 52 2.8 30

E5 80 - 995 52 2.8 5

Table V.3: Parameters used to elaborate the SiO, plasma layer by PECVD.

SiOz Plasma
Sample deposition conditions
(PECVD step)
Applied  Self-bias Total Ar 0, HMDSO HMDSO HMDSO Time,
Power, Voltage,  Pressure, flow flow injection time, period, average flow
P Vd(f Prot Ton = Ton + toﬁ' t
[W] [V] [Pa] [sccm]  [scem] [sec] [sec] [scem] [sec]
E4
120 - 880 7.68 2.8 1.25 3.1 5 0.25 30
ES
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The second type of used samples are those prepared by plasma deposition process and called “plasma
deposited samples”. These are samples E4 and ES5. A change in the plasma operation conditions for
silver sputtering time was made in order to obtain even bigger AgNPs than those used in Chapter V.
The conditions for elaboration of the SiO, plasma cover layer were the same as in Chapter IV. To
avoid any misleading the plasma operation conditions for elaboration of samples E4 and E5 are given

in Tables V.2 and V.3.

2.2. Structural and optical characterization of the nanocomposite layer

Microscopy imaging was performed using a field emission Transmission Electron Microscope, FEI
Tecnai™ F20 microscope operating at 200 kV, equipped with a spherical aberration corrector
dedicated for high quality High Resolution Electron Microscopy (HREM) images with an increased
signal/moise ratio and nearly no delocalization effect at surfaces and interfaces. To achieve
observation, specimens transparent to electrons have been prepared in accordance with the standard
procedure, i.e., mechanical polishing and Ar’ ion milling in both cross-section (XS) and plan view
(PV) configurations. The former configuration is used for the accurate measurement of the position of
AgNPs with respect to the free surface while the later one allows measurement of the total Ag-amount
contained within the NPs by deduction from their size-distribution and surface density.

Optical reflectance spectra of the samples were recorded using a Cary 5000 UV-visible spectrometer
to check the evolution of the LSPR resonance that is expected around 410 nm for spherical AgNPs
embedded in silica. Moreover the choice of the thickness of the nanocomposite layer around 90 nm
provides antireflective conditions in the UV-visible range. The combination of these two effects
results in a “plasmonic interference” phenomenon that has been shown to be very sensitive to small

changes in the optical path of the nanocomposite layer [Carles et al. 2011, Cacciato et al., 2015].

2.3. Experimental procedure for silver release assessment

To evaluate the silver release, we have followed the procedure schematized in Fig. I1.18 of Chapter II.
In a first step, we introduce 6ml of 10mM 3-morpholinepropanesulfonic acid (MOPS) solution at
adjusted

pH = 7.5 (buffered water) in each one of three flasks. The buffered water was prepared in accordance
with the procedure given in reference Navarro et al., 2008b. We use one of the flasks as negative
control (black flask - control). In the second flask we add an appropriate amount of silver nitrate salt
(AgNO;) (blue flask - control Ag") dissolved in pure water. This flask is used to follow the toxicity
effect of a well-known amount of dissolved silver (Ag" ions) on the algae. Under the adopted
experimental conditions, the AgNQOj; is completely dissociated [Navarro et al., 2008b]. In the third
flask we add a solid sample with AgNPs embedded in thin silica layers (red flask - AgNPs). In order to
compare the different samples, the same surface (4 cm?) of samples is used in all cases. All flasks are

gently shaken at 90 rpm at room temperature in the dark. In order to improve the silver release from
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the samples, immersion duration of 20 h was chosen as it has been shown in the literature that the most
important delivery of silver takes place during the first 24 h of immersion [Saulou et al., 2009]. In a
second step we remove the solid sample from the solution and take 2 ml from each flask for ICP-MS
measurements to evaluate the total amount of silver in solution. In a third step, we add algae in the
3 mL of solution left up to a concentration of 0.15 O.D.gs (O.D.ggs stands for optical density at
wavelength 685 nm). More details are given in Chapter II (section 6).

After one hour of the algae exposure, we perform the fluorometry measurements on 2 ml of solution.
To ensure normal activity of algae, the solution was kept under continuous illumination of 65 uMol
photons sem™. To avoid the algae aggregation and sedimentation, the solution was continuously

shaken at 90 rpm during the experiment.

2.4. Inductively Coupled Plasma—Mass Spectrometry measurements

Analysis of '’Ag was carried out with a quadrupole ICP-MS instrument (Agilent 7500), equipped
with a babington nebulizer and a double pass spray chamber. Samples were evaporated in a hot plate
and re-dissolved in 2 ml HNO; 1%, transferred to polyethylene vials and maintained at 4°C until ICP-
MS analysis. The linear calibration curve was adopted between 0.003 and 5 uM Ag in 10 mM MOPS
(buffered at pH = 7.5) to account for any matrix effect. It was prepared from TraceCERT® Ag
standard solution for ICP (1000 mg/l) (Fluka Analytical) and the same procedure as for samples
(evaporation and re-dissolution in HNO; 1%) was followed before measurement in the ICP. The
calibration curve was recorded at every measuring sequence. Important instrumental settings, like
plasma position, radiofrequency power, nebulizer gas flow, and lens voltage were carefully optimized

before analysis.

2.5. Algal culture

Chlamydomonas reinhardtii culture was prepared according to the procedures described in reference
[Le Faucheur et al., 2005]. Chlamydomonas reinhardtii shows a good absorption in the red part of
light spectrum around 685 nm [Berberoglu et al., 2008]. In short, experimental batch cultures were
prepared by transferring an inoculum of algae (approx. 1 x 10° cells/mL with an O.D.s 0.05) to fresh
growth media [Le Faucheur et al., 2005]. Algae were grown during 72 h until reaching exponential
growth phase at 25°C with continuous illumination of 120 pMol photons s™ cm™ (Philips Coolwhite
TLD 15W fluorescent lamps) and shaken at 90 rpm. Experimental cell densities (6 x 10° cells/mL,
0.15 O.D.¢s5) were obtained by centrifuging (1500 g, 10 min) and then resuspending the cell pellet in
the appropriate volume of 10 mM MOPS (adjusted to pH =7.5).

2.6. Fluorometry measurement

The algal photosynthetic yield of the photosystem II in light was measured by fluorometry using a
PHYTO-PAM (Heinz Walz GmbH) equipped with an Optical Unit ED-101US/MP. This parameter
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reflects the efficiency of the photochemical energy conversion process [Schreiber et al., 1995]. Each
fluorometry experiment was repeated twice and three fluorometry measurements were taken for each
experimental condition. Photosynthetic yield measured by fluorometry was not affected by the algal

translocation into MOPS (for details see references Navarro et al., 2015 and Navarro et al., 2008b).

3. Results and discussion

3.1. Structural analysis: silver reservoir in nanocomposite layer

The structural characteristics of the samples (size distribution, location and density of the AgNPs,
silver amount, etc.) have been analyzed by TEM. Figure V.1 shows Bright Field TEM and HREM
images of a typical elaborated structure. These images refer to sample El. In the cross-section view
shown in Fig. V.la it is possible to distinguish two important zones for our study: (i) the nanometric
layer of AgNPs embedded in SiO, and (ii) the nanometric SiO, cover layer. Figure V.1b represents
plan-view of the same sample. HREM image (Fig. V.1c) of an isolated particle shows interplanar
distance of 2.36 A characteristic of Ag (111) planes. This verification appears necessary for all
samples in order to know the initial state of the AgNPs before their immersion in solution and

following interaction with algae.

Figure V.1: (a) XS-TEM and (b) PV-TEM Bright Field images of the implanted sample E1 describing
the typical architecture of the samples. (c) HREM image of an isolated nanoparticle oriented following
(110) zone axis.

TEM observations reveal that the selected experimental conditions for sample synthesis lead to
formation of: (i) spherical-like AgNPs covered by a flat thin dielectric silica layer for the implanted
samples (Fig. V.2a-b, e-f) and (ii) prolate spheroid AgNPs with a conformal silica cover layer for the
deposited samples (Fig. V.2c-d, g-h). These results are in accordance with the enlarged capacities of
the two physical elaboration methods to control the parameters of the embedded AgNPs and the
characteristics of the silica cover layer. The ion implantation process preserves the composition of the
host matrix and respects the planarity of the surface (Fig. V.2a-b). The plasma deposition processes

are known to be conformal to the surface on which the layer is deposited. This surface conformity
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allows coatings of patterned substrates. In this study, as the plasma deposited SiO, cover layer is very
thin, it envelops the AgNPs and spreads between them, finally imposing a slight waviness on the

surface (Fig. V.2¢-d).

Figure V.2: (a)-(d) Bright Field XS-TEM zooming on the upper part of the nanocomposite layers and
(e)-(h) PV-TEM images of the samples exploited for silver release measurement and associated size-
distribution.

From the PV-TEM images we have determined on more than 1000 AgNPs the size-distribution (Fig.
V.2), the mean size and the surface density. The obtained results are summarized in Table V.1. For the
implanted samples, we observe similar AgNPs mean diameter with different doses, 6.1 nm and 6.5 nm
for samples E1 and E2, respectively, and a similar surface density of AgNPs (Fig. V.2e-f). When
increasing the dose, a saturation of the quantity of implanted Ag is indeed observed due to sputtering
effects and Ag diffusion towards the surface, as reported earlier [Benzo et al., 2013]. This saturation
effect is accompanied by localization of the AgNPs closer to the free surface. In both samples E1 and
E2, some small AgNPs are also formed slightly deeper in the silica layer in the tail of the rather wide
implanted ion profile. The implanted sample with the lower dose (sample E1), i.e., during the shortest
implantation time (Table V.1), presents a size-distribution in good agreement with the theoretical
distributions predicted by the Lifshitz—Slyosov—Wagner (LSW) theory for Ostwald ripening, as
observed in a previous work [Carles et al., 2009]. When increasing the implanted dose and thus the
implantation time (sample E2), the size histogram evolves towards a log-normal distribution. This

evolution is related to the system’s memory loss of initial nucleation and growth processes, which take
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place for no uniform solute concentration (e.g. implantation) [Espiau de Lamaéstre and H. Bernas,
2006].

Concerning the plasma deposited samples (samples E4 and E5), the major axis length of the observed
prolate spheroid AgNPs increases, scaling up from 7.9 nm to 18.5 nm (Fig. V.2g-h). This behavior is
explained by the respective role of the injected power in the gas discharge and the sputtering time on
the formation and organization of AgNPs, when shifting from low-injected power for long time (Fig.
V.2g) to high-injected power for short time (Fig. V.2h) (Table V.2). Moreover, the distribution of the
AgNPs size population evolves from log-normal (sample E4) to normal (Gaussian) one (sample E5).
The log-normal distribution of AgNPs cannot be simply explained on the basis of nucleation and pure
growth mechanisms during the deposition process. Most likely, the Ostwald ripening also takes place
when the AgNPs are deposited at low injected power in the plasma for longer times. The AgNPs size
increase is accompanied here by surface density decrease (Table V.3). This effect is a direct
consequence of the increased injected power in the plasma. Scaling up the injected power to such a
high level imposes an increase of the self-bias voltage to almost 1 kV (Table V.2) which impacts the
deposition of AgNPs in two ways. It leads (i) to a strong intensification of the flow of sputtered Ag-
atoms increasing thus the rate of pure growth of AgNPs and (ii) to a rise of the mean energy of both
main categories of species in the plasma, electrons and heavy particles (ions, excited and ground state
atoms), which means that the Ag-atoms arrive at the sample surface with higher kinetic energy
determining a higher surface diffusion to favor nucleation and growth mechanisms of AgNPs.

For an accurate description of the silver release process, we have introduced three characteristic
parameters of the AgNPs assemblies that can play a significant role in the Ag® release when the
samples are immersed in solution. The first one is the maximum amount of silver in the silica layer
(“initial Ag reservoir”) K in molar unit.

Considering each nanoparticle as a prolate spheroid (sphere being a particular case where the two axes
are equal) the total Ag mass per unit surface (Gag) stored inside the AgNPs for each sample can be

evaluated from the following expression:

Gy :%%Z BC? (V.1)
where pagq is the silver density, B; is the major and C; is the minor axis length of each AgNP, and S is
the total surface of the analyzed image. Hence, one can calculate the initial Ag reservoir as the
maximum amount of releasable silver if all the AgNPs are completely dissolved in the solution.
Considering the total Ag mass per unit surface, G, and the total surface (4 cm®) of each sample
immersed in 6 mL of MOPS, we estimate this initial Ag reservoir K in molar units. Owing to the
elaboration conditions K increases from sample E1 to sample E5 by a factor of three (Fig. V.3b and

Table V.3).
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Figure V.3: (a) Spatial distribution of the AgNPs with respect to the free surface (distance 1) for each
sample; the most probable distance 1* is indicated; (b) Initial Ag reservoir (grey bar) and released
silver (green bar) for each sample.

The second parameter to be estimated from size and surface density measurements is the total surface
of AgNPs, called M. Owing to the synthesis conditions M is similar for samples E2, E4 and ES (see
Table V.3).

Finally, the third essential parameter extracted from the XS-TEM images is the distance / separating
each AgNP from the free silica surface (Fig. V.1a). To characterize the AgNPs spatial dispersion in
SiO, layer we evaluate the average distance /.., and the most probable distance I". The latter is
defined as the distance where the greatest number of particles (Nyax) are located. In the case of
implanted samples, we observe a non-negligible spatial distribution of the AgNPs in the layer (Fig.
V.3a). The small satellite AgNPs that are formed below the main layer are neglected in the procedure,
being far from the surface and containing a very small Ag amount. The values /.., are 7.4 nm and
5.3 nm for samples E1 and E2, with a standard deviation o of 2.4 nm and 4.2 nm, respectively. This
spatial dispersion simply reflects the width of the implantation profile. As shown in Fig. V.3a where
the histograms of distances (with a step of 1 nm) are reported, the values /" are 7.5 nm and 0.5 nm for
sample E1 and E2, with Nyax equal to 19.0% and 18.8% of the total number of NPs, respectively (Fig.
V.3a). In spite of a large spatial dispersion of AgNPs for sample E2, a consistent number of NPs are
located just under the free surface. On the contrary, for the plasma deposited samples that have
conformal cover layer, the dispersion of the distances is reduced (Fig. V.3a). The values of /,,,, are 5.6

nm and 5.7 nm for sample E4 and ES, respectively, with a standard deviation o of 0.4 nm for both
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samples. Moreover, the most probable distance [ is identical for these two samples and equals to 5.5
nm, i.e., very close to the averaged value, with Nyax that overcomes 70 % (Fig. V.3a). This is a proof
of the good reproducibility in terms of deposition of the SiO, cover layer, whatever the size and shape

of AgNPs.

Table V.3: AgNPs characteristics directly measured on TEM images (mean size, density, average
distance and the most probable distance to the free surface) and deduced from these values (total
AgNPs surface, initial Ag reservoir). The released silver measured by ICP-MS is also given. The
percentage refers to the initial Ag reservoir K.

Structural Characteristics Implanted samples Deposited samples
E1l E2 E4 E5
Mean size [nm] 6.1 6.5 7.9 18.5
St. Dev. of size-distribution [nm] 2.2 3.0 4.3 5.6
AgNPs surface density [10'" NPs/cm?] 104+0.7 101+08 i 69+04 1.7+0.2
Average distance AgNPs-free surface, /,,.,, [nm] 7.4 53 5.6 55
St. Dev. of the average distance, o [nm] 2.4 4.2 0.4 0.4
The most probable distance AgNPs-free surface, /" [nm] 7.5 0.5 5.5 5.5
Total AgNPs surface, M [cm?] 47+0.5 54+0.5 5.6+0.6 5.7+£0.6
Initial Ag reservoir, K * [uM] 9+1 12+2 17+3 20+4
Released silver ° [uM] 0.021 0.491 0.500 0.480
(0.2%) (4.1%) (2.9%) (1.7%)
St. Dev. of the released silver [uM] 0.008 0.053 0.075 0.053

“ The initial Ag reservoir K can be considered as the maximum amount of releasable silver if all the AgNPs are
completely dissolved in the solution.

b The detection threshold of ICP-MS measurement of released silver is 0.003 uM.

The above described characteristic parameters (K, M, /.., and l*) are listed in Table V.3 for the four
analyzed samples. The precision on size and distance values, near 5%, is linked to the magnification

uncertainty in conventional TEM.

3.2. Silver release in water

3.2.1. ICP-MS analysis

The measurements of the Ag amount released in solution were performed by ICP-MS and the results
are reported in Table V.3. Two lessons can be learned from these data. First, for the plasma deposited
samples E4 and E5, which present a low dispersion of distances, identical values of /" (Fig. V.3a) and
similar values of M (see Table V.3), the final Ag release is rather identical (Fig. V.3b), independently

of their initial Ag reservoir, K (E5 contains 74 % more Ag atoms per unit surface compared to E4).
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Second, for the implanted samples, although M is multiplied only by 1.15 and K by 1.3 when going
from E1 to E2 (Table V.3), the loss of silver is multiplied by 20 (from 0.2% of the initial Ag reservoir
for E1 to 4.1 % for E2). As shown in Fig. V.3a, the main difference between these two samples lies in
the value /° (7.5 nm in E1 compared to 0.5 nm in E2). Finally, from these observations one can
conclude that in all the explored samples: (7) the number of available Ag atoms in the AgNPs is largely
sufficient and is not a limiting factor for the release, and (if) the key parameter that governs the Ag
release is the most probable distance I (see Fig. V.3a).

More quantitatively, the threshold distance is between 5.5 and 7.5 nm since sample E1 has a very
weak Ag release. The most efficient silver release is observed for sample E2, which has the same
average distance as samples E4 and E5 (/,,.., ~ 5.5 nm) but a large number of AgNPs closer to the free
surface (Fig. V.3a). As it will be commented later, this could be explained by the fact that the driving
force for silver release is the penetration of water molecules into silica. As a matter of fact, the
diffusion length of water molecules well compares with critical values of / as it can reach few

nanometers at room temperature, especially if the matrix is damaged as in the case of ion implantation.

3.2.2. TEM Analysis

In Fig. V.4a-b, the Bright Field XS-TEM images (taken in regions of the specimen with similar
thicknesses) show the impact of immersion in buffered water on sample E2. We present this sample
because the percentage of released silver was the greatest one among all nanocomposite layers.
Comparing the TEM images before (Fig. V.4a) and after (Fig. V.4b) water immersion, we observe at a
first sight a sensible decrease of the number of AgNPs touching the free surface. It means that the
silver release is accompanied by shrinkage of the AgNPs located closely to the free surface. The
distribution of the distance / between AgNPs and the free surface is plotted in Fig. V.4a-b before and
after water immersion. After plunging and comparing with the as-implanted sample, the AgNPs
surface density remains unchanged meanwhile the distance /” increases from 0.5 nm to 5.5 nm. This
means that the number of AgNPs touching the free surface (/ < 1 nm) strongly decreases while those
buried more deeply with distance 5 </ < 6 nm significantly increases. Beyond 6 nm the shape of the
distance distribution does not change significantly. This shows that the critical distance beyond which
the silver release is negligible, is around 6 nm. This result is in good agreement with the threshold
distance (between 5.5 and 7.5 nm) for silver release found in Section 3.2.1.

Concerning the size-distributions measured from PV-TEM images (Fig. V.4c) one observes a net
decrease of the class of AgNPs with size larger than 6 nm, and simultaneously a relative increase of
the classes ranging between 3 and 5 nm. Both evolutions confirm the shrinkage of the largest AgNPs

located close to the free surface after interaction with water.
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Figure V.4: XS-TEM of sample E2 and the associated spatial distribution of distance / before (a) and
after (b) immersion in buffered water. (¢) AgNPs size-distributions, measured from PV-TEM images,
before (black) and after (green) immersion in buffered water. The lines in the graph are shown as
guide to the eye.

The Ag-atom loss can be estimated from the PV-TEM images of these samples as the difference
between the Ag reservoir before (initial Ag reservoir, 12 = 2 uM) and after water immersion (11 £ 2
uM). Even if the cumulated error bar on this measurement is large (30 %) this value is of the same

order of magnitude as the one measured by ICP-MS (4.1 %).

3.2.3. Optical Analysis

Another point in the current study concerning the evolution of the silver amount is the possible
oxidation of the AgNPs during water immersion. To elucidate this point we have used reflectance
spectroscopy to check the presence of pure metallic AgNPs in the elaborated nanostructures [Carles et
al., 2009]. Visible-UV reflectance spectra are particularly easy to obtain experimentally and display a
notable sensitivity to the presence of this kind of NPs in the dielectric matrix. This enhanced
sensitivity is a direct consequence of the design of our specific nanocomposites that combine strong
absorption at the LSPR (near 410 nm for spherical AgNPs in SiO,) and antireflective effect of the
multilayer structure (near 600 nm for the AgNPs-SiO, nanocomposite layer). Hence, we can detect
modification in the AgNPs assembly as a modulation of the reflectance spectrum in the 400-500 nm
range [Carles et al., 2011; Chapter III]. Figure V.5 shows the reflectance spectra of samples E1 (Fig.
V.5a) and E2 (Fig. V.5b) for which the Ag loss percentage is respectively minimal and maximal
before (black points) and after (colored points) plunging in buffered water. In both cases, we observe
the presence of the LSPR (indicated with an arrow) even after the interaction of the nanocomposites
with water. The presence of LSPR indicates that there is still a significant amount of NPs made of pure
silver inside the silica layer. For sample E1, which has lost only 0.2% of Ag released in solution, the

two spectra are nearly identical.
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Figure V.5: Reflectance spectra of: (a) samples E1 and (b) sample E2, before (black lines) and after
buffered water immersion (colored lines).

For sample E2, for which the silver release is accompanied by AgNPs shrinkage, a change in the
reflectance spectrum is clearly observed. This can be interpreted as changes in the average diameter
and in the depth position of the AgNPs, which modify both the plasmonic signature and the
interference conditions. Correlation between these non-destructive and rapid optical observations and
our detailed analyses for a quantitative evaluation of the Ag release is of prime interest for
forthcoming in situ characterizations. Presence of AgNPs made of pure silver after water immersion
qualifies the analyzed nanocomposites as reusable. They can be successfully applied for optical

spectroscopy in liquid environment or for bio-sensors, for example.

3.3. Silver toxicity on algal photosynthesis

The toxicity of the silver released from AgNPs embedded in silica matrices was assessed as the
inhibition of the photosynthetic activity of the green algae Chlamydomonas reinhardtii. As it has been
demonstrated previously [Navarro et al., 2008b], under these experimental conditions the toxicity to
the algal photosynthesis is due to the dissolved silver bioavailable for the algae (Agpicay). The
evaluation of Agy.y released from the AgNPs embedded in the different nanocomposites requires
removing the samples from solution before the addition of algae. That would avoid the interaction of
the reactive oxygen species produced by algae and the AgNPs present in the nanocomposites [Navarro
et al., 2015]. Moreover, the use of AgNO; as a positive control for Agp.., toxicity, would allow
estimating the amount of Ag,,, released from nanocomposites based on the toxicity to the
photosynthesis (Fig. V.6).

Toxicity of AgNPs and AgNO; were examined upon short-term exposures (1 and 2h) in order to
minimize accumulation of algal products in the exposure media and thus changes in the silver
speciation [Navarro et al., 2008b]. The photosynthetic values of all the experiments are presented as

percentage of the respective controls. These percentages are plotted as function of the released silver,
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measured by ICP-MS. In Fig. V.6 we show the reduction of the photosynthetic yield of AgNO;

solution, after 1 hour exposure assessed by concentration-response experiments (black circles).

Figure V.6: Fluorometry measurements of solutions containing silver released from the elaborated
samples and photosynthetic yield concentration-response curve of AgNQO;, after 1 hour. The black line
traces the four-parameters logistic fit. The ECs, value is reported.

A four-parameter logistic fitting permits to evaluate the toxicity of AgNO;, hence the Agpipay, by
defining the half maximal effective concentration (ECsy) of released silver corresponding to a
reduction of 50% of the photosynthetic yield: ECs, = 0.444 uM (Fig. V.6).

In the same figure the toxicity effect of samples containing AgNPs (colored symbols) on algal
photosynthesis is also evaluated by the corresponding reduction of the photosynthetic yield. For
sample E1 (blue triangle), the amount of released silver is not enough to provoke a significant decrease
of the photosynthetic yield. The toxicity of Ag released from the other samples is comparable with the
toxicity of Ag" from AgNO; (Fig. V.6) indicating that the released silver from synthetized samples is
bio-available for algae. Measurements of O.D.gs of the algae solutions were carried out twice,
3 minutes and 2 hours after the algae injection, to follow the silver toxicity impact on the algal
population (Fig. V.7). For each solution, the recorded O.D.¢s5 changes confirm the silver toxicity trend
observed in the fluorometry measurements.

To reveal the origin of the observed silver toxicity to algae (silver ions Ag  and/or AgNPs), we
performed fluorometry measurements of solutions in presence of cysteine, known as a strong silver
ligand [Navarro et al., 2008b]. The equimolar complexation of Ag" by cysteine has been previously
demonstrated in similar experimental conditions [Navarro et al., 2008b; Navarro et al., 2015]. Owing
to the 30% of AgNPs located at 2 nm or less from the free silica surface, sample E2 is the favorite
candidate to assess the source of released silver. In Fig. V.8, we represent the fluorometry
measurements, taken 1 hour after the algae injection, of a solution containing silver released from

sample E2 and two different amounts of cysteine.
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Figure V.7: Measurements of the Optical Density at 685nm of the algae solutions carried out twice, 3
minutes and 2 hours after the algae injection. These measurements assess the toxicity trend of silver
observed in the fluorometry analysis.

We compare the fluorometry values obtained on sample E2 (magenta triangles) with the ones of a
reference solution containing AgNOj; at concentration of 0.714 + 0.060 uM and different amounts of
cysteine (black circles). Cysteine concentrations of about 0.7 - 0.9 uM abolishes the toxicity of Ag"
(from AgNO;) to the algae photosynthesis, confirming both the key role of Ag" on explaining the
observed toxicity to the algal photosynthesis and the equimolar complexation of cysteine and Ag"
[Navarro et al., 2008b; Navarro et al., 2015].

Sample E2 presents a partial restoring of the algae photosynthesis when the cysteine concentration is
about 0.35 uM, indicating the presence of a higher amount of Ag” in solution. Further addition of
cysteine (1.5 uM) in this case also abolishes the toxicity to the algal photosynthesis. This finding
agrees with other studies [Navarro et al., 2008b; Navarro et al., 2015] confirming that all the toxicity
exerted by the suspension after contact with sample E2 is due to the presence of Ag” in the solution.
Merging the information obtained from fluorometry and TEM observations makes possible to

conclude that the silver released in solution from the embedded AgNPs is prevalently ionic silver.
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Figure V.8: Algal photosynthetic yield measurements, after 1 hour of exposure to silver released from
sample E2 or to a fixed concentration of AgNO; (0.714 uM) and different amounts of cysteine. The
black line traces the four-parameters logistic fit.

3.4. Proposed mechanisms for Ag' release: water molecules uptake in silica matrix

The architecture of the samples used in this study is particularly well adapted to control the silver
release and as a consequence the toxicity of these nanocomposite layers. Indeed, the embedded AgNPs
are located close to the free surface and well separated from each other providing possibility to
maximize the AgNPs surface. The nanometric distance between the AgNPs layer and the free surface,
i.e. the cover silica layer, acts as a barrier layer protecting the metallic silver against quick
disappearance and/or a premature aging, mainly through oxidation of AgNPs [Benzo et al., 2011].
However, for the Ag” release to be initiated the water molecules should arrive at the surface of AgNPs.
The properties of the surrounding matrix are of primary importance when nanocomposite structures
containing metal nanoparticles are exposed to external aging agents (air, aqueous media, different
solvents, etc.). The release of Ag’ is found to be faster when the host matrix is less stable, like for
hydrophilic amorphous oxygenated hydrocarbon matrix (a-CH:O) [Korner et al., 2010; Drabik et al.,
2015] where the oxygen functional groups allow quicker water penetration. Increasing the
hydrophobicity of the host matrix, like for the amorphous organosilicon matrices (a-SiOC:H) [Saulou
et al., 2009; Beer et al., 2012; Alissawi et al., 2013], leads to slower Ag' release mainly due to the
delayed water molecules uptake. Increasing the matrix stability through densification, like for the
amorphous SiO, matrices (this work), allows fine tuning of the Ag" release.

The absorption of H,O molecules from the air has been studied in very thin implanted SiO, matrix
(less than 10 nm) [Schmidt et al., 2002; Claverie et al., 2006]. The large number of broken bonds in
the SiOs-tetrahedra due to displaced Si and O atoms during implantation process results in
rearrangements of the fundamental ring structure within the glassy network in which moisture from
the ambient can be absorbed. Water molecules adsorb on the surface and damage-enhanced diffusion

in the matrix can take place. Therefore, chemical reactions of the implanted impurities with hydrogen
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and oxygen are expected. There are two possibilities for the adsorption and room temperature inward
diffusion of water molecules into ion-damaged SiO,. Either the water molecules directly diffuse into
the open SiO, network because H,O is a molecule with small diameter (less than 0.3 nm), or the H,O
molecules dissociate at the SiO, surface and H™ and OH ions diffuse into SiO,. The O-rich molecules
and complexes are driven in the layers up to some 10 nm in depth. Actually, the absorption and final
concentration of water molecules are only limited by the degree of damage, i.e. the concentration of
defects in the Si0, matrix.

In the case of Ag implanted silica, annealing of the layers at low temperature (400-500°C) under N,
atmosphere allows a partial recovering of the implantation damage as the total recovering of a
stoichiometric SiO, requires higher temperature. This annealing step of the silica cover layer is
nevertheless sufficient to avoid, or at least to retard the penetration of O rich complexes from the air
[Benzo et al., 2011]. In the present work we demonstrate that the recovered implanted silica allow a
strong interaction silver-water reactive species up to 3 nm in depth (Fig. V.4a-b). Over this value, the
penetration of H,O reactive species should decrease (Fig V.4b) and becomes negligible at depths
greater than 7 nm, as confirmed by the low amount of released silver from sample E1. This critical
depth can be compared with the diffusion length of water vapour in silica found in the literature, which
is 3 nm in one week. [Muscat et al., 2001]. Water diffusion seems to be enhanced in our samples. This
is due to lower silica-matrix density and higher porosity comparing to pure thermal silica, in particular
for the implanted samples.

The stability of SiO, matrix in the plasma deposited samples when exposed to water media is also a
defect dependent process. It is determined by the very small amount of residual CH-groups present in
the silica network due to the plasma polymerization deposition process used to obtain the plasma silica
cover layer. Other structural defects in the silica network arrangement during the plasma deposition
are not excluded.

Accurate quantitative comparison of the Ag" release for different types of host matrices is not possible
as the sample surface characteristics are usually not reported in the literature but the main trend
confirms that the highest rate of Ag" release appears during the first 24 hours. As far as the mechanism
of Ag' release is concerned it was shown [Schmidt et al., 2003; Molleman and Hiemstra, 2015] that
the consecutive steps of oxygen-silver interaction are related to initial O, physisorption followed by O,
molecularly chemisorbed state and sticking of O, to the silver clusters. Generally, the adsorption
probability of O, increases with the AgNPs size. This mechanism is complemented by the intrinsic
properties of the SiO, matrix, in particular by the thickness of the cover layer. However, as discussed
in Chapter I, the small AgNPs are easily oxidized [Bi et al., 2002] due to the free energy changes
depending both of surface and curvature effect of the nanosized particle. If the oxidative dissolution of
Ag ions from “free” AgNPs has already been modeled in the literature by using DFT approaches
[Molleman and Hiemstra, 2015], the atomic scale modeling of this process for embedded NPs coupled

to the modeling of Ag” diffusion in silica should be of great help in understanding the reactional
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mechanisms and driving forces implied in Ag” release. In particular, a key point will be the modeling
of the SiO,/Ag interface for hydrated silica and the study of the influence of water content on the

mechanisms of Ag ion diffusion.

4. Towards reusable nanocomposite samples: assessment of the Ag release

from already used nanocomposites

Earlier in this Chapter we have demonstrated that the amount of released in solution Ag is only of few
percentages of the total Ag amount stored in the nanocomposite layer as AgNPs. It was also shown
that the stratified structure of the layers, a single layer of AgNPs embedded in silica matrix, remains
after water immersion although some structural modifications appear. An addition, the optical analysis
confirmed the metallic character of AgNPs left in the nanocomposite structure after water immersion.

These findings encouraged us to launch a study of the possibility to reuse the nanocomposite samples
to access and to assess a second Ag release in the water solution. Fig. V.9 shows ICP-MS
measurements of the second Ag release from each one of the already used nanocomposite samples

after 24h immersion in buffered water.

Figure V.9: Comparison of Ag released from a pristine nanocomposite (green column) with a used one
(blue column).

The general trend is that all samples release Ag when re-immersed in water. Moreover, the released
Ag amount from reused nanocomposite samples is comparable to one from the pristine nanocomposite
samples. This behavior is expected for samples E1 for which the analysis from first immersion in
water shows no changes in the structure and almost no release of Ag. The amount of Ag released after
second immersion in water of sample E2 is a bit higher that the first try in spite of the sensible
decrease of the number of AgNPs touching the free surface (Figure V.4). This result can be explained

by the presence of a large number if big particles localized close to the free surface. One can also
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suppose an increase of the matrix porosity due to the departure of Ag atoms from the AgNPs leaving
behind structural defects in the surrounding matrix. Such mechanism can facilitate the Ag release for
this sample. Concerning the plasma deposited samples E4 and ES, the Ag amount released from the
pristine nanocomposites and the reused ones is similar. This finding allows us to consider both
nanocomposite structures, implanted samples and plasma deposited ones, as candidate systems that
release a constant amount of Ag in solution over time, finding applications in sensors. Further analysis
however, and statistic measurements have to be performed in order to confirm the observed trends and

to evaluate the stability of the nanocomposite structures with respect to the Ag release.

5. Conclusions

This work presents an original method to assess the release of Ag from AgNPs embedded in silica
matrices, based on the Agy,,, toxicity to the algal photosynthetic activity. The distance of the AgNPs to
the free surface of the silica matrix was found to be the key parameter controlling the silver release.
Depending on that distance, the release of silver is found to vary between 0.2 and 4.1% of the initial
Ag-amount present in the samples. The TEM observations after immersion in water indicate that the
Ag release is accompanied by shrinkage of the AgNPs that are located in the immediate proximity of
the free surface meanwhile the AgNPs density remains unchanged, suggesting that these AgNPs are
the source of the silver released into the solution. Reflectance measurements confirm the presence of
pure metallic silver in the NPs after water immersion.

The toxicity of silver released from these nanocomposites to algal photosynthesis is comparable to
similar concentrations of Ag" released from AgNOs. This result, together with the ability of cysteine to
abolish the toxicity of experimental suspensions, demonstrates that most of the silver released from
nanocomposites was in the form of Ag’. As for the release of ionic silver, contact of water molecules
with the AgNPs is necessary, being this step strongly dependent on the properties of the surrounding
matrix. Our findings show a physical approach to modulate the activity of silver nanostructured layers.
These nanocomposites are thus good candidates as coatings for inhibiting the development of

microbial films on solid surfaces by controlled dose of the antimicrobial agent.
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Chapter VI: Physico-chemical
characterization of the interaction of
red fluorescent protein - DsRed with
thin silica layers containing AgNPs

1. Introduction

Increasingly, the microbial adhesion, and following biofilm formation, on dielectric surfaces causes
major complications in the biomedical domain and food industry. The general context of this PhD
work is the attempt to answer biofilm formation issues by designing nanocomposite materials
containing AgNPs to address the underlying mechanisms. We have demonstrated in Chapter V that the
first condition, necessary for fabricating biocide nanocomposites which is their capacity to release
Ag’, is fulfilled. Indeed, our AgNPs embedded in silica are able to release Ag ions and we can
modulate this release by playing with the distance of the AgNPs to the dielectric free surface, in other
words with the thickness of the silica cover layer.

In this context and based on previously observed modifications of the protein structure of the model
yeast Saccharomyces cerevisiae, induced by the interaction at contact of the microorganisms with
AgNPs [Saulou et al., 2010], the current study focuses on the physico-chemical characterization of the
interactions of proteins with AgNPs. Two proteins were used for the study: the well-studied bovine
serum albumin (BSA) which, as a model protein, served to the preliminary step of this investigation
and the Discosoma Red fluorescent protein (DsRed) used because of its fluorescent properties holding
great promise for applications in biotechnology and cell biology. However, before being used for
rational engineering, knowledge on the behavior of DsRed and the underlying mechanisms relating its
structural stability and adsorption properties on silica surfaces is highly demanded.

The fluorescent proteins are a family of proteins of 25 — 30 kDa, mainly applied to study the
organization and function of living systems [Matz et al., 1999; Baird et al., 2000; Vrzheshch et al.,
2000; Wall et al., 2000; Chudakov et al., 2010]. The most extensively characterized member of this
family is the green fluorescent protein (GFP). The recently cloned from reef coral Discosoma sp.
DsRed protein [Matz et al., 1999] has the longest, for a wild-type spontanecously fluorescent protein,
excitation and emission maxima at 558 nm and 583 nm, respectively. The DsRed is tetrameric in
nature and a spectrally distinct companion or substitute for the GFP.

A variety of experimental techniques have been employed to access and to assess the structural
properties of adsorbed proteins on solid surfaces leading to formulation of a number of common trends
[Arai and Norde, 1990; Matz et al., 1999; Baird et al., 2000; Vrzheshch et al., 2000; Wall et al., 2000;
Larsericsdotter et al., 2005; Vo-Dinh, 2005; Barth, 2007; Hughes, 2012; Jachimska and Pajor, 2012].
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It is generally acknowledged that proteins having strong internal coherence adsorb on hydrophobic
surfaces. However, the electrostatic attraction is necessary for their adsorption on hydrophilic surfaces.
In contrary, proteins with much lower structural stability adsorb freely on both hydrophobic and
hydrophilic surfaces, even under unfavorable conditions of hydrophilic, electrostatically repelling
surfaces. Most of the applied diagnostic methods are adapted for studying the structural stability of
proteins in solution. Nevertheless, some advanced diagnostic methods are based on probing proteins
adsorbed on solid surfaces after dehydration. It is the case, for example, with matrix assisted laser
desorption/ionization (MALDI) [Larsericsdotter et al., 2005; Hughes, 2012] or the FTIR spectroscopy
[Barth, 2007; Gruian et al., 2012].

In this chapter we report results on the interaction of DsRed proteins with solid silica surfaces
containing or not AgNPs. It also demonstrates a way to explore very small quantities of proteins,
which allows investigation of rare proteins and/or of proteins demanding costly procedures for their
extraction. Finally, when properly dimensioned, AgNPs embedded close to the free surface of anti-
reflective thin SiO, layer can be used as substrates allowing detection of chemical substances on their
surfaces [Carles et al., 2011]. In this context, we illustrate preliminary results about SERS effect of
DsRed protein deposited on these kinds of Ag nanocomposite substrate elaborated by plasma
processes and LE-IBS. This part of my work was performed in close collaboration with Marvine
Soumbo during his Master degree training of 6 months at LAPLACE laboratory in collaboration with
CEMES and LGC laboratory.

2. Experimental conditions

2.1. SiO; thin film preparation

For the part of this study concerning SiO, layers without AgNPs, 100 nm-thick silica layers, were
thermally grown on intrinsic Si-substrates at 1100°C under slightly oxidizing atmosphere using a N-
O, gas mixture containing 1.0% of O,. Before being exposed to protein deposition, the SiO,/Si
substrates were consecutively cleaned in ethanol (95% vol.) and acetone (95% vol.) and then rinsed in
deionized water. The deionized water was filtered through 200 nm pore size filter. The rinsing
procedure continued until attaining zero surface conductivity on the SiO, surfaces. Cleaning the SiO,
surface is an essential step in this study because of avoiding electrostatic interactions and offering a
better control of the experimental conditions. It was performed in a clean room with well controlled
environmental conditions, temperature and relative humidity.

The SiO, layers containing AgNPs were the already described in previous Chapters layers elaborated

by plasma deposition processes and LE-IBS.
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2.2. DsRed protein and preparation procedure

DsRed (Fig. VI.1a) is a tetrameric protein (120 kDa, 4 x 225 aa) derived from a coral (Discosoma sp.)
having the intrinsic property of emitting a red fluorescence. DsRed has a maximum excitation
wavelength of 558 nm (green light). It has a large "tail" at high energy (wavelength of maximum
emission at 583 nm). DsRed forms a very stable tetrameric structure [Verkhusha and Lukyanov,
2004]. The chromophore of DsRed is formed of amino acids 66-68 (GIn-Tyr-Gly). Its maturation takes
place through a folding mechanism and intramolecular rearrangement comprising 5 steps (Fig. VI.1b):
(1) rearrangement of the chromophore by twisting, (2) cyclization, (3) dehydration, (4) oxidation and
(5) the dehydrogenation at Gln. After the last step, the protein becomes fluorescent. DsRed also is
stable between pH 5 and 12 [Vrzheshch et al., 2000]. The chromophore of DsRed is shown in Fig.
Vl.lc.

Figure VI.1: (a) Secondary structure of DsRed, (b) the five stages of the formation of the chromophore
of DsRed and (c) the chromophore of DsRed.

DsRed was purchased from Biovision. According to the SDS-PAGE, the recombinant DsRed was at
least 97% pure and in a freeze dried form. A stock solution of DsRed was made to a concentration of
I mg/mL in water for injectable preparations (European Pharmacopoeia, COOPER) [European
Pharmacopoeia, 2008]. The pH-value of water for injection was measured to 7.0 with conductivity of
1.2 uS/cm. The pH-value of DsRed stock solution was also determined to 7.0 and its stability was
repetitively controlled during all the measurements. The assays were performed at room temperature
(23°C). Aliquots of DsRed stock solution were diluted 4-20 times into water for injectable

preparations for characterization of DsRed sessile droplets with different protein concentrations.
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2.3. Deposition of DsRed proteins on the silica layers containing or not AgNPs

Sessile droplets of different concentrations of DsRed and with very small volume (3.8 = 0.1 pL) were
deposited on the surface of silica layers by using Digidrop goniometer, a Contact Angle Meter from
GBX Scientific Instruments to measure the adhesion process of DsRed proteins on silica surfaces. The
droplets were deposited with microsyringe Gastight 1700 series fixed on the goniometer giving the
possibility of fine control of the droplet volume. To record and analyze the sessile droplets a Visiodrop
software was coupled to the contact angle meter. The measurement precision of the applied method is
of = 0.1° degree. The results given in this work are averaged over three independent measurements per
sample.

Optical images of sessile droplets after their dehydration were recorded with a digital microscope
Keyence VHX-1000. The droplet diameter (d) was measured on the images using the associated to the
microscope VHX 1.3.0.7 software. The other parameters of the dehydrated droplet: thickness (e)
measured inside the droplet just before the droplet ring, droplet ring width (/) and droplet ring height
(h), were measured with a 2D surface profilometer Alpha-Step 1Q from KLA-Tencor. The
photoluminescence emission of the DsRed was excited with an argon ion laser operating at 514 nm.
The emitted light was dispersed using a Jobin Yvon spectrometer with a 150 grooves/mm grating.
FTIR spectra were acquired with a Brucker Vertex 70 spectrometer in transmission mode in the range
400 — 4000 cm™ with a resolution of 2 cm™ to obtain information about the composition of dehydrated
protein layers. The transmission mode was attainable due to the transparency of the used intrinsic Si-

substrates to infrared light.

3. Study of the interaction DsRed/SiO, surfaces

The interaction of DsRed proteins with SiO, surfaces was analyzed on the basis of the adhesion
process of diluted protein solutions when approaching the SiO, surface, their subsequent behavior

during the droplet dehydration, and the related DsRed morphological modifications.

3.1. Adsorption and optical properties of DsRed sessile droplets

The adsorption of DsRed proteins on silica surfaces is an interdependent process involving the protein
concentration, the solution in which the proteins are diluted, the silica surface state and the
environmental air conditions. When a droplet containing given concentration of proteins is brought to
a contact with a solid surface, the organization and protein behavior rely primarily on the Contact
Angle Hysteresis (CAH) at the solid-vapor and liquid-vapor interfaces [Chen et al., 1991; Delmas et
al., 2011; Deegan et al., 2012; Trantum et al., 2013]. The dehydration process however, involves
mechanisms related to irreversible thermodynamic functions giving rise to mechanical hysteresis, due
to topographical surface defects, and to chemical hysteresis associated with rearrangements of

chemical groups due to positional and orientational changes of the surface molecules. To reveal the
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DsRed interaction with the SiO, surface we compare the measured advancing contact angles when
droplets with very small volume of the control solution (water for injection, pH = 7.0) and of the

DsRed (concentration of 0.05 g/L diluted in the control solution) are brought to contact (Table VI.1).

Table VI.1: Dehydration dynamics of sessile droplets.

OA" GRb eR eR eR

t=1s t=1 min t=15min t=10 min t=15 min

Control solution sessile droplet, pH = 7.0 and 23°C

y - . A A —ii ——
55.3° 51.2° 50.4° 47.3° 26.8°

DsRed sessile droplet with 0.05g/L, pH = 7.0 and 23°C

65.4° 60.1° 40.3° 5.0° n/a

* Advancing contact angle - 0,4.
®Receding contact angle - Og.
¢Standard deviation of the contact angle measurements for all the presented times does not exceed + 1.7°.

The obtained value for the control solution (04 = 55.3°) is consistent with values measured on SiO,
surfaces with deionized water (0, = 54.7°) confirming the hydrophilic nature of the used SiO,
surfaces. The contact angle measured with DsRed is higher (05 = 65.4°) suggesting chemical
hysteresis induced by the presence of proteins and their organization on the silica surface. Most likely
the DsRed proteins adsorb on the SiO, surface with their polar side chains towards the available a-
polar bonds of the clean SiO, surface. The droplet diameter is determined at the moment of contact
and remains constant till full dehydration of the droplet.

The very small droplet volume leads to a rapid dehydration. The dehydration process of DsRed (¢ =
0.05 g/L) solution is completed for 10 min at 23°C. In the same experimental conditions, the water
droplet is not evaporated for the same duration; it lasts for almost 20 min. It is also worth to notice that
whereas the contact angle of the control solution is preserved for the whole process of dehydration
except at the very end due to very small residues present in the water for injection, i.e. the contact
angle remains almost constant, the contact angle for different DsRed solutions varies with time (Fig.
VI1.2) expressing a CAH. The latter observation is related to the adsorption of proteins on the SiO,
surface. The physical description of this effect is the following. The DsRed proteins deposit at the
contact line due to surface tension interactions. They pin the contact line and prevent from receding
during the evaporation process. Consequently, they impose a diffusion-limited evaporation process
with a larger evaporation rate at the edge as for the water droplet the evaporation is rather uniform

over the droplet surface.

137



Figure V1.2 shows the DsRed behavior during dehydration for different protein concentrations. The
droplet dehydration is more rapid for small concentrations of DsRed (up to 0.1 g/L). The linear
decrease over time of the contact angle is common for all the studied DsRed concentrations. This
effect can be related to a large surface energy variation on the droplet profile close to the triple line
(solid-liquid-vapor) and to protein adsorption mechanisms induced by the liquid convective drive
inside the droplet (Marangoni effect) [Trantum et al., 2013]. According to theory, a region with high
surface tension exerts a pulling force on neighboring regions with lower surface tension inducing a
flow across the gradient. For an evaporating droplet [Deegan et al., 2000], the contact line is the place
where the lowest surface tension occurs. It will induce an outward flow resulting in accumulation of
proteins at the contact line. Given the dependence of Marangoni stress on the contact angle, it is
stronger for larger contact angles [Hu and Larson, 2005], the dehydration process takes longer times
for larger DsRed concentrations as observed here. Additional reason, to the surface energy variation, is
the tetrameric nature of the DsRed protein that can be at the origin of imprisonment of extremely small
volumes of water, thus slightly delaying the dehydration process. However, to go further in this
explanation by quantification of the dehydration process a thorough theoretical analysis must be

performed considering also in details the proteins as surfactant in the sessile droplets.

Figure V1.2: Measured contact angles at pH = 7.0 and 23°C as a function of time during sessile droplet
dehydration for different concentrations of DsRed.

Table VI.2 summarizes the characteristics of sessile droplets with different concentrations of DsRed
diluted in water for injection (pH = 7.0) studied at room temperature (23°C). Due to the hydrophilic
properties of SiO, surface the measured contact angles for droplets containing DsRed proteins remain
in the range 0, = 65° — 75° determining the interaction as hydrophilic one, however with larger contact
angles for larger DsRed concentrations. Because of the adsorption of the proteins on the silica surface,

the wettability of the DsRed droplet is reduced in comparison with water for injection (control solution
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droplet). The increased standard deviation for larger DsRed concentrations reflects the dynamic
character of the interaction between DsRed proteins and silica surface in relation with the large
DsRed-interfaces imposed by its tetramerization [Wall et al., 2000].

The optical images of dehydrated DsRed droplets indicate that the visual aspect of the sessile droplet
becomes more homogeneous with increasing DsRed concentrations. The droplet diameter (d) remains
almost unchanged over the wide DsRed concentration range from 0.05 to 1.0 g/L. A slight reduction
of the diameter of dehydrated droplets is observed with increasing concentration of DsRed. As it is
shown in Table VI.2, all the other droplet characteristics (droplet thickness, e, measured inside the
droplet, just before the droplet ring, droplet ring width, /, and droplet ring height, /) are increased
when the concentration of DsRed in solution is larger. It means that the DsRed adsorbs on the entire

area covered by the droplet with preferential deposition close to the triple line as discussed earlier.

Table VI.2: Dehydration dynamics of sessile droplets.

DsRed . Optical image after Dehydrated
(/L) Droplet image at 1s  Contact angle -0, dehydration sessile droplet”
Control pH=7.0 e / /
ontro =/. n/a n/a
P AE 010
d=2.8 mm;
65.4° e =20 nm,;
0.05 +0.2° [= 46 pm;
h=0.6 um
d=2.8 mm;
65.5° e =30 nm,;
0.10 +1.6° =67 um;
h=14pum
d=2.7 mm;
73.7° e =30 nm;
0.25 +1.5° /=84 um,;
h=3.0 um
d=2.6 mm,;
72.0° e =60 nm,;
1.00 +2.7° =200 pum;
h=52pum

* The DsRed sessile droplet characteristics after dehydration are as follows: d is the droplet diameter; e is the
droplet thickness measured inside the droplet, just before the droplet ring; / is the droplet ring width; and % is
the droplet ring height.

The obtained results imply that the thickness of the adsorbed DsRed layer on solid surfaces (SiO,) can

finely be controlled by the protein concentration. Moreover, the DsRed layer thickness can be varied
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in the nanometer range. DsRed layers as thin as 20 nm (¢ = 0.05 g/L) can be deposited. The
characteristics of dehydrated DsRed droplets are important to be determined for future Raman and
fluorescence spectroscopy studies of DsRed adsorbed on silica surfaces requiring very thin protein
layers.

The photoluminescence (PL) of the DsRed inside sessile droplet was excited using the 514 nm line of
an Argon laser focused to 1 um® spot size. The incident laser power was limited to 5 mW in order to
avoid laser induced heating and subsequent degradation of the samples. Uniform regions of the
dehydrated droplets containing DsRed (pH = 7.0) with different concentrations were selected for the
optical measurements. During measurements, the photoluminescence signal of the DsRed exhibited
photo-bleaching on the time scale of 2 minutes [Garcia-parajo et al., 2001; Lounis et al., 2001]. After 3
minutes the PL intensity was quite stable and the spectra were acquired with 10 s accumulation time.
The so-obtained photoluminescence spectra are presented in figure VI.3. As can be noticed PL
emission increases with increasing DsRed concentration. However, it does not scale up linearly most
likely due to quenching induced by protein aggregation at high concentration (Fig. V1.3, inset). The
PL emission band is peaking at 590 nm. The slight red-shift with respect to the DsRed emission in
solution (583 nm) [Matz et al., 1999] can be attributed to conformation effects and to interaction of the

DsRed with the silica substrate.

Figure VI.3: Photoluminescence spectra of DsRed dehydrated droplets adsorbed on SiO, surface for
different concentrations at pH = 7.0 and 23°C. The inset represents the integrated intensity of the
photoluminescence peak as a function of the DsRed concentration.

3.2. On the possibility to perform FTIR analysis of dehydrated DsRed adsorbed on solid

surfaces
The recorded FTIR spectrum of dehydrated DsRed droplet (¢ = 1.0 g/L, pH = 7.0) adsorbed on SiO,
surface is presented in figure VI.4. Due to the fine protein layer thickness after dehydration, the

concentration of 1.0 g/L is the only one authorizing acquisition of FTIR spectra in transmission mode.
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For lower concentrations the dehydrated protein layer is very thin to allow detectable absorbance. The
FTIR spectrum contains all characteristic bond vibrations of the SiO, layer and those typically
associated with the secondary structure of proteins. The three typical TO modes of amorphous silicon
dioxide, the Si-O-Si rocking vibration at 457 cm™, the symmetric stretching mode at 810 cm™, and the
asymmetric stretching mode at 1067 cm™, are clearly observable on the spectrum [Kirk, 2001]. One
can also notice the SiO, characteristic shoulder centered around 1250 cm™.

In general, the protein structures are relatively unstable when exposed to solid surfaces, allowing
internal protein regions to interact with the surface. Proteins tend to unfold in this case. Protein
denaturation is often associated with complete loss of their secondary structure. The recorded FTIR
spectrum (Fig. V1.4) suggests that the DsRed protein is not fully denaturized after dehydration and
adsorption on the silica surface in accordance with the observed photoluminescence. The Amide I
band with peaks centered at 1654 cm™, assigned the protein a-helix, and the one at 1684 cm™,
belonging to the protein B-sheet are well present on the spectrum [Barth, 2007]. Amide II band
centered at 1530 cm™, and most likely the Amide III band around 1340 cm’™, are also detectable. Other
bands on the spectrum are the Amide A (N-H) one (3300-3500 c¢m™) and the C-H bonds in CHj
environment (symmetric at 2900 cm™ and asymmetric at 2960 cm™ stretching bonds). The large band
around 670 cm™ can be attributed to possible N-H out-of-plane bending vibrations (640 — 750 cm™)
[Smith, 1999]. Further studies will be directed to deconvolution of the FTIR spectrum consistent with
identification of positions of the protein secondary structure and possible protein-protein interactions.
However the applied here procedure to study dehydrated proteins adsorbed on solid surfaces by FTIR
analysis in transmission mode offers the possibility to work on reduced quantities of proteins,
especially for quite costly proteins, like DsRed and/or for rare proteins. This attempt will be further

developed to extract information about the structural stability of proteins

Figure V1.4: FTIR spectrum of DsRed dehydrated droplet adsorbed on SiO, surface for ¢ = 1.0 g/L at
pH =7.0 and 23°C.
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4. Preliminary results of SERS effect of DsRed proteins deposited on AgNPs

based plasmonic substrates

4.1. Selection of samples for the SERS study

Fabrication of nanostructured substrates for molecular plasmonics is hampered by the requirement to
maintain on large areas, in a reproducible way, a well-defined spacing between metallic nanostructures
and molecules: their mutual interaction is indeed governed by the local topography of the
electromagnetic field [Maier, 2007]. In that sense, the emission of a fluorescent molecule placed in the
vicinity of a metallic nanostructure can be either amplified or quenched, depending on its position and
orientation [Bharadwaj et al., 2007; Sau et al., 2010]. Hence, the separation between emitting or
scattering objects deposited near plasmonic antenna has to remain constant in the range of few
nanometers and be easily tunable. In that sense, our nanocomposites samples, with delta-layers of
AgNPs at tunable nanometric distances from the silica surface are designed to be efficient SERS
substrates. They combine several advantages: (i) the choice goes with AgNPs which possess the best
features to realize plasmonic antennae, (ii) the AgNPs are embedded in silica matrix which avoids
their dissemination and/or their alteration, while preserving their plasmonic properties and retaining
the surface reusable and (iii) the thickness of the whole structure is specifically parametrized to
provide antireflective effects and to add optical enhancement to the plasmonic effect. In SERS
applications, the control over both field enhancement and plasmon resonance is of importance for a
high amplification of the Raman signal (“hot spots”) coming from the deposited molecules. It is
therefore interesting to select samples with either (i) a percolated array of particles, to exploit the
localization by disorder effects of electromagnetic modes [Cang et al., 2011] or (ii) a high density of
big particles to exploit the field enhancement in small gaps between particles [Schuck et al., 2005]. In
any case, it is necessary to incorporate a large amount of big AgNPs in the plane.

Preliminary promising tests of SERS effects have been performed on the implanted samples [Carles et
al., 2011]. Raman signal originating in a micrometer-sized droplet of pure pyridine molecules that
have been deposited on the free surface of one of our plasmonic devices was recorded. The Raman
signal originating from implanted areas was compared to that recorded on AgNPs-free zones. By
taking into account that most of the signal comes from the volume of the liquid located around the
focal point of the microscope objective (around 1 um-thick), we have deduced that the enhancement of
the signal coming from molecules located at the near vicinity of the substrate (in a sub-nanometer
range), was of several orders of magnitude (around 10° to 10%). This was typical of a SERS gain
expected from the solely electromagnetic field mechanism. Indeed, in our case the chemical
mechanism is excluded due to the presence of a dielectric spacer between the metal surface and the
molecules. Although these preliminary results were promising further efforts had to be done for a
precise quantitative analysis. In particular, the surface coverage of AgNPs in the studied implanted

sample was quite low (<20%) to achieve the best conditions for a strong SERS effect. More recently
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SERS has been demonstrated on 2D sheets (graphene and TMD) deposited on top of the dielectric
surface of our implanted samples, evidencing the efficient coupling between the embedded AgNPs and
these layers [M. Bayle, 2014].

For the present SERS study on DsRed, we have selected two samples studied and described in the
previous Chapters, elaborated with each of the two techniques: the E2 (implanted sample) and the E5S
(plasma deposited sample). Again, the two elaboration elaboration techniques are complementary and
give the prospect to consider different physical situations. From the series of elaborated and studied
plasmonic substrates by each of the techniques (LE-IBS and plasma deposition), these 2 samples
represent the highest rate of big AgNPs localized close to each other, which should lead to hot spots,
and at vicinity of the free surface. The structural characteristics of these two samples are nevertheless
clearly different: the AgNPs are quite large for the plasma deposited sample — ES with mean size of
18.5 nm and surface fraction of 42.6 % while for the implanted sample E2, they are of mean size
6.5 nm and covering a surface in the plane of 32.8 %. In addition, the AgNPs are all located at a
distance of 5.5 nm from the surface for sample E5 for which the cover layer is conformal to the
AgNPs while, even if the average distance to the surface is 5.3 nm for sample E2, the in-depth
distribution of AgNPs is not narrow and a significant part of the AgNPs are touching the dielectric
surface. At last, due to the different elaboration techniques the free surface remains flat for sample E2
but having waviness for sample E5 due to the tiny cover layer, with “peaks” on top of the AgNPs and
“dips” in between two AgNPs. The width of the formed dips increases with the AgNPs size and for
sample ES5 is evaluated from the XS-TEM image to be of around 4 nm (red dashed line).

Figure VI1.5: (a) and (b) XS and (c) and (d) PV TEM images of the two samples tested for SERS effect
on DsRed
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4.2. Interaction of DsRed with thin silica layers with embedded AgNPs

Table VI.3 summarizes all the morphological characteristics obtained for droplets containing two
DsRed concentrations (0.1 and 0.25 g/L) deposited on thin silica layers with embedded AgNPs. The
droplet spreads and reaches the maximum diameter immediately after contact. After droplet
dehydration the visual appearance of the protein layer is more homogeneous when the Ag content in

the substrate increases (Table VI.3).

Table VI.3: Characteristic DsRed droplets on samples E2 and ES5, for concentrations of 0.1 and
0.25 g/ L atpH=7.0 and 23°C.

Elaboration DsRed Droplet Contact angle - Optical image Dehyd.rated
process (@/L) image 0 after sessile
& at Is A dehydration droplet
0.10 ‘ 91.8° d=2.4mm
LE-IBS
(E2)
0.25 ‘ 89.7° d=2.4mm
0.10 117.8 d=1.7 mm
Plasma
deposited
samples
(ES)
0.25 120.8 d=1.8 mm

Substantial increase with respect to the contact angle is observed for the silica layers containing
AgNPs. The interaction of DsRed proteins with these nanocomposite substrates presents rather
hydrophobic character (6, > 90°). The measured contact angles are of 90° for the implanted samples
and of 120° for the plasma deposited samples. To recall, contact angles of only 65.5° and 73.7° were
measured for the silica layers without AgNPs for DsRed concentration of 0.1 and 0.25 g/L,
respectively. It signifies that in presence of AgNPs one observes a transition from hydrophilic to
hydrophobic character of the DsRed interaction. However, nothing changes from the point of view of
DsRed solution. The observed transition is solely due to the surface of silica layer when AgNPs are

embedded in it. Different reasons might be at the origin of the transition from hydrophilic to
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hydrophobic character for the interaction of DsRed with silica layers without and with AgNPs.
Typically polar bonds (C-C or CHy <2 groups) drive the surface hydrophobic. Given the used
precursor (HMDSO) for the plasma polymerization process to obtain the cover silica layer (Chapter 3)
the plasma deposited simples most likely contain a small amount of CHy <2 groups which are
activated after the cleaning procedure. Another reason is the surface waviness for the plasma deposited
samples (Chapter 5). Although the surface of the implanted samples is flat, the implantation process
itself causes damages in the silica matrix after Ag" implantation. Some of the SiO,-tetrahedra are with
broken bonds and the ring structure is rearranged due to displacement of O and Si atoms during the
implantation. In addition, Ag nanocomposite substrates elaborated by plasma processes have higher
contact angles (120°) than ones elaborated by LE-IBS (90°). This influences the final diameter of the
sessile droplet resulting in the reduction of its diameter when the contact angle increases (Table VI.3).
To go further in the understanding of this issue complementary studies combining contact angle
measurements in dynamic mode and x-ray photoelectron spectroscopy (XPS) to quantify the surface

composition are necessary.

4.3. SERS effect on DsRed proteins deposited on AgNPs based nanocomposites

Here we present the preliminary results of SERS obtained for DsRed protein with dehydrated droplet
concentration of 0.25g/L deposited on samples E2 and ES5. Raman spectra were recorded by using a
high resolution Raman spectrometer (Horiba Jobin-Yvon Xplora) equipped with three lasers 532, 632
and 785 nm and a standard confocal microscope. The 532 nm laser was used for this experiment. The
laser beam was focused on a uniform area of the DsRed using a x100 objective. To avoid possible
degradation of proteins due to laser heating, the intensity and time exposure of the incident beam were
limited to 1% of its maximum (about 0.15 mW) and s, respectively.

Figure VI.6 presents the experimental Raman spectra of DsRed obtained using the two different
substrates (E2 and ES5). A theoretical spectrum of DsRed was used as reference to identify the protein
signature (black spectrum). The characteristics vibration frequencies of DsRed molecular bonds
correspond to the band positions in the Raman spectrum. The average spectrum for each substrate was
calculated from the accumulation of 10 acquired spectra.

A strong SERS effect of DsRed protein is observed for sample ES elaborated by plasma processes
(Fig. VL.6). In particular, a blinking effect is observed, corresponding to intensity fluctuations of the
different Raman peaks. This is due to changes and fluctuations in the molecular orientation and
conformation of DsRed protein under the laser excitation (532 nm). On the contrary, the Raman signal
is low when the DsRed proteins are deposited on top of the sample elaborated by LE-IBS (E2) and the
phenomenon of "blinking" is not detected. The difference in behavior between these two samples can
be ascribed to several factors: (i) the highest surface fraction of AgNPs for the sample ES leading to a

high concentration of hot spots, (ii) the effect of the surface waviness which allows trapping of
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proteins in the dips in between two AgNPs where; the size of the DsRed protein (molecular weight of

the DsRed monomer is 27.6 kDa) being 4.2 nm i.e., comparable to the dip width.
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Figure VI.6: Raman spectra obtained with the laser at excitation wavelength of 532nm: (a) E2 sample
elaborated by LE-IBS and (b) ES plasma deposited sample.

5. Conclusions

Physico-chemical analysis of the interactions of red fluorescent protein, DsRed with thermal SiO,
surfaces was performed aiming at identification of the relation between structural stability of DsRed
proteins and their adsorption behavior. The obtained characteristics of dehydrated DsRed droplets
imply that the thickness of the adsorbed DsRed protein layer on solid surfaces can finely be tuned by
the protein concentration. The measured contact angles of very small droplets containing different
concentration of DsRed proteins deposited on silica layers without AgNPs determine the interaction as
hydrophilic one, however with larger contact angles for larger DsRed concentrations. Transition from
hydrophilic to rather hydrophobic interaction of DsRed is observed when the silica layers contain
AgNPs. The adsorption of DsRed on SiO, surfaces and the following dehydration processes do not
lead to complete protein denaturation. The photoluminescence emission of dehydrated DsRed proteins
adsorbed on SiO, layers is preserved and found to peak at 590 nm, which is slightly red-shifted
compared to the reported value for a solution (583 nm). The procedure for recording FTIR spectra in
transmission mode confirms the possibility to explore the protein secondary structure after dehydration
and adsorption on SiO, surfaces. It also largely supports future spectroscopic studies about the
behavior of the proteins with modified surfaces (less hydrophilic), taking advantage of the silica layer
and the fact that its surface can be easily functionalized. Potential modification of the DsRed
excitation and emission spectra due to the DsRed-SiO, interactions in solution will also be addressed
further. Finally, preliminary results of SERS effect obtained for DsRed proteins deposited on top of
the AgNPs based nanocomposite substrates were presented in this Chapter. The sample elaborated by
plasma processes with the highest surface fraction of AgNPs, located at 5 nm from the dielectric
surface, conformal to the AgNPs with waviness imposed by the nanoparticles, shows promising SERS

properties SERS properties to study the interaction of DsRed proteins with AgNPs.
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Conclusions and outlooks

The objectives of this PhD was to develop multifunctional nanocomposites based on Ag nanoparticles
embedded in dielectric matrices allowing controlled release of Ag (under Ag” and/or AgNPs forms) as
antibacterial agent. This should allow both to target the type of microorganism to fight and to deliver it
the right dose for its inhibition, while preserving the surrounding microflora. To achieve these
objectives we have proposed to use the multifunctionality of Ag nanoparticles, which are both
(i) plasmonic antennas for detecting interaction with microorganisms and (ii) ion reservoirs known for
their antibacterial properties. In order to stabilize the nanoparticles and control the toxic dose (i.e. the
released Ag' ion concentration) the AgNPs were embedded in silica matrix and positioned at varying
distances from the surface of the substrate, on which microorganisms will adhere.

Specific silica layers containing AgNPs were developed by two very different but complementary
processes: (i) low energy ion beam synthesis and (ii) combined silver sputtering and plasma
polymerization. These techniques allow elaboration of a single layer of AgNPs embedded in silica
films at defined nanometer distances (from 0 to 7 nm) beneath the free surface. Concerning the
deposition technique, specially developed for the purpose of this work, we have shown how the key
parameters of the embedded nanostructures (size, density, shape, and distance to the surface) can be
controlled by tuning the elaboration conditions combining silver sputtering and plasma polymerization
in successive deposition steps. By coupling these samples to the ones elaborated by LE-IBS, we
obtained two routes for fabricating of a single layer of AgNPs embedded in thin silica films at
controlled nanometric distance beneath the free surface. They offer the possibility to explore different
AgNPs size distributions, shapes of the AgNPs, surface densities and particularly their separation from
the free surface. The structural and optical properties of the nanocomposites were studied by
transmission electron microscopy, reflectance spectroscopy and ellipsometry. This last technique,
coupled to modelling based on the quasi-static approximation of the classical Maxwell-Garnett
formalism however, accounting for the electronic confinement effect through the damping parameter,
has been shown to be an extremely efficient diagnostic tool for the detection of small variations in the
size and density of AgNPs.

To assess the ability of the AgNPs embedded in dielectrics (silica layers) to release controlled amounts
of Ag ions, we have developed an original method where the evaluation of the dose and the biocidal
activity of the ion Ag  has been leached using a eukaryotic model system, Chlamydomonas
reinhardtii. The photosynthetic system of these green algae has been used as sensitive and reliable
biosensor to detect bio-available ionic silver in solution. Distance of the AgNPs to the free surface of
the nanocomposite was found to be the key parameter affecting the silver release. Depending on that
distance, the release of silver is found to vary between 0.2 and 4.1% of the initial Ag amount present

in the samples. The TEM observations after immersion in buffered water indicate that the Ag release is
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accompanied by shrinkage of the AgNPs that are located in the immediate proximity of the free
surface meanwhile the AgNPs density remains unchanged, suggesting that these AgNPs are the source
of the silver released into the solution. The toxicity of silver released from these nanocomposites to
algal photosynthesis is comparable to similar concentrations of Ag" released from AgNOj. This result,
together with the ability of cysteine to abolish the toxicity of experimental suspensions, demonstrates
that most of the silver released from our nanocomposites was in the form of Ag” and exclude the
implication of released AgNPs. For the release of ionic silver, penetration till and contact of water
molecules with the AgNPs is necessary, being this step strongly dependent on the matrix properties.
Our findings show a physical approach to modulate the activity of silver nanostructured surfaces.
These nanocomposites are thus good candidates as coatings for inhibiting the development of
microbial films on solid surfaces.

To go further in the understanding of underlying mechanisms of adhesion of microorganisms to
dielectric surfaces, physico-chemical analysis of the interactions of red fluorescent protein (Discosoma
Red - DsRed) with thermal SiO, surfaces was performed aiming at identification of the relation
between structural stability of DsRed proteins and their adsorption behavior. The obtained
characteristics of dehydrated DsRed droplets imply that the thickness of the adsorbed DsRed protein
layer on solid surfaces can finely be tuned by the protein concentration. The measured contact angles
of very small droplets containing different concentration of DsRed proteins determine their interaction
with silica layers as hydrophilic one, however with larger contact angles for larger DsRed
concentrations. The adsorption of DsRed on SiO, surfaces and the following dehydration processes do
not lead to complete protein denaturation. The photoluminescence emission of dehydrated DsRed
proteins adsorbed on SiO, layers is preserved and found to peak at 590 nm, which is slightly red-
shifted compared to the reported value for a solution (583 nm). The procedure for recording FTIR
spectra in transmission mode confirms the possibility to explore the protein secondary structure after
dehydration and adsorption on SiO; surfaces. Finally, we present preliminary results of SERS effect
obtained for DsRed proteins deposited on top of our AgNPs based nanocomposite substrates. The
sample elaborated by plasma processes with the highest surface fraction of AgNPs, located at 5 nm
from the dielectric conformal surface, shows promising SERS properties.

The preliminary results of SERS effects encourage us to pursue in the future optimization of the
elaboration conditions in order to get the highest SERS enhancement. For the plasma deposited
samples, where a quasi-percolated 2D array is obtained, the influence of the thickness of the cover
layer and the imposed by the cover layer waviness of the surface will be for example further
examined. Concerning the samples elaborated by LE-IBS, the improved low temperature ion
implantation system that will be available at CEMES very soon, should allow inserting in the matrix a
higher amount of Ag by suppressing its diffusion towards the surface during the implantation process.
2D percolated arrays of AgNPs should be hence formed during the post-implantation annealing

process and will be better candidates for plasmonic enhancement.
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Shortly, the next step would be to use these anti-bacterial nanocomposites in “real conditions” to treat
the overgrowth of microorganisms for instance Candida albicans 1P48.72, that can colonize the
surfaces of surgical instruments, implantable devices (prosthesis, stents) or percutaneous (catheter) and
the walls of the rooms of interventions in hospitals. This study will be performed in collaboration with
LGC laboratory in Toulouse.

In parallel, it would be interesting to perform an in-depth study of the Agions release mechanisms and
of their diffusion through the thin silica cover layer. Dedicated experiments will be carried out in order
to better understand the Ag ions release after water immersion, implying FTIR, XPS and STEM-EELS
and EDX. In particular, the formation and existence of Ag,0O thin shell surrounding the AgNPs will be
tracked. The effect on the release of the density (porosity) of the cover layer will be also explored by
progressive change of the matrix composition. In addition, the oxidative dissolution of Ag ions from
“free” AgNPs has already been modelled in the literature by using DFT approaches. Nevertheless the
atomic scale modelling of this process for embedded NPs coupled to the modelling of Ag” diffusion in
silica should be of great help in understanding the reactional mechanisms and driving forces implied in
Ag release. Such considerations are already under discussions and shortly be launched with SINanO
group of CEMES.

In a long term, this type of extensive study of both the properties of nanocomposite materials
themselves and the interaction of metallic nanoparticles with biological-like molecules and biological
targets (proteins and cells) is highly demanded to fully uncover the principal effects caused by these
materials as well as their side effects. The widespread application of nanoscale metallic
nanocomposites challenges many agencies and stakeholders to assess and to balance benefits against
the possible health-care hazards and environmental risks. The above particular point represents the
main motivation line to pursue in the future this kind of multidisciplinary study on rational
engineering of nanocomposite materials in order to better understand their behaviour and to create
multifunctional nanocomposites which will reply to issues related to safe application in customer

products following the “safe-by-design” concept.
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Abstract

Elaboration of thin nanocomposite layers based on Ag nanoparticles embedded in silica for

controlled biocide properties

Silver nanoparticles (AgNPs) because of their strong biocide activity are widely used in health-care
sector, food industry and various consumer products. Their huge surface-volume ratio enhances the
silver release compared to the bulk material, leading to an increased toxicity for microorganisms
sensitive to this element. This work presents an assessment of the biocide properties on algal
photosynthesis of small (<20 nm) AgNPs embedded in silica layers. Two physical approaches were
used to elaborate these nanocomposites: (i) low energy ion beam synthesis and (ii) combined silver
sputtering and plasma polymerization. These techniques allow elaboration of a single layer of AgNPs
embedded in silica films at defined nanometer distances (from 0 to 7 nm) beneath the free surface. The
structural and optical properties of the nanocomposites were studied by transmission electron
microscopy, reflectance spectroscopy and ellipsometry. This last technique, coupled to modelling
based on the quasi-static approximation of the classical Maxwell-Garnett formalism, allowed detection
of small variations over the size and density of the embedded AgNPs. The silver release from the
nanostructures after immersion in buffered water was measured by inductively coupled plasma mass
spectrometry. The short-term toxicity of Ag to the photosynthesis of green algae, Chlamydomonas
reinhardtii, was assessed by fluorometry. Embedding AgNPs reduces their interactions with the
buffered water, protecting the AgNPs from fast oxidation. The release of bio-available silver
(impacting on the algal photosynthesis) is controlled by the depth at which AgNPs are located for the
given host silica matrix. This provides a procedure to tailor the biocide effect of nanocomposites
containing AgNPs. By coupling the controlled antimicrobial properties of the embedded AgNPs and
their quality as plasmonic antenna, these coatings can be used to detect and prevent the first stages of
biofilm formation. Hence, the last part of this work is dedicated to a study of the structural stability
and adsorption properties of Discosoma recombinant red (DsRed) fluorescent proteins deposited on

these dielectric surfaces with perspectives of development of SERS devices.



Résumé

Elaboration de couches minces nanocomposites a base de nanoparticules d’Ag enrobées dans la

silice pour des propriétés antimicrobiennes contrélées

Les nanoparticules (NPs) d’Ag sont trés utilisées dans le secteur de la santé, dans I’industrie
alimentaire et dans les produits de consommation pour leurs propriétés antimicrobiennes. Le grand
rapport surface sur volume des NPs d’Ag permet une augmentation importante du relargage d’Ag
compar¢ au matériau massif et donc une toxicité accrue vis a vis des micro-organismes sensibles a cet
¢lément. Ce travail de thése présente une évaluation des propriétés antimicrobiennes de petites NPs
d’Ag (<20 nm) enrobées dans des matrices de silice sur la photosynthése d’algues vertes. Deux
techniques d’élaboration par voie physique ont été utilisées pour fabriquer ces nanocomposites: (i)
I’implantation ionique a basse énergie et (ii) la pulvérisation d’Ag couplée avec la polymérisation
plasma. Les propriétés structurales et optiques de ces nanostructures ont été étudiées par microscopie
¢lectronique a transmission, réflectivité et ellipsométrie. Cette derniére technique, couplée a un modele
basé sur I'approximation quasi-statique de type Maxwell-Garnett, a permis la détection de petites
variations dans la taille et la densité des NPs d’Ag. Le relargage d'argent de ces NPs d’Ag enrobées
dans des diélectriques a été mesuré par spectrométric de masse aprés immersion dans de l'eau
tamponnée. La toxicité a court terme de 1'Ag sur la photosynthése d’algues vertes, Chlamydomonas
reinhardtii, a été évaluée par fluorométrie. L’enrobage des nanoparticules dans un diélectrique réduit
leur interaction avec I’environnement, et les protége d’une oxydation rapide. La libération d’Ag bio-
disponible (impactant sur la photosynthése des algues) est contrélée par la profondeur a laquelle se
trouvent les NPs d’Ag dans la matrice hote de silice. Cette étude permet d’envisager le design de
revétements a effet biocide contrélé. En couplant les propriétés antimicrobiennes de ces NPs d’Ag
enrobées a leur qualité d’antenne plasmonique, ces nanocomposites peuvent étre utilisés pour détecter
et prévenir les premieres étapes de la formation de biofilms sur des surfaces. Ainsi, une dernicre partie
de ce travail est dédi¢e a 1'étude de la stabilité et de I’adsorption de protéines fluorescentes Discosoma
rouges recombinantes (DsRed) sur ces surfaces diélectriques avec la perspective du développement de

dispositifs SERS.



