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UNIVERSITÉ DE BOURGOGNE

Laboratoire Interdisciplinaire Carnot de Bourgogne UMR CNRS 6303

NATIONAL ACADEMY OF SCIENCES OF ARMENIA

Institute for Physical Research

CONTROL OF PHOTOASSOCIATION OF ATOMIC BOSE-EINSTEIN

CONDENSATES BY LASER FIELD CONFIGURATION

by

Mariam Gevorgyan

A Thesis in Physics

Submitted for the Degree of Doctor of Philosophy

Date of defense: October 11, 2016

The Jury:

Artur ISHKHANYAN Professor Supervisor

Institute for Physical Research, NAS, Ashtarak, Armenia

Hans-Rudolf JAUSLIN Professor Supervisor
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Introduction

Relevance of the subject

The degenerate quantum gases (Bose-condensates and Fermi gases) are a hot topic of

contemporary physics research potent to substantially contribute both to high technology

and fundamental understanding of the nature. Our research is a part of the main stream

effort in this direction.

The level-crossing models are in the heart of quantum optics from the very beginning of

quantum physics. Because of the very limited number of exactly solvable models, each new

one is expected to lead to numerous essential developments revealing the principal qualitative

physical characteristics of many physical processes occurring in various domains.

The aim of the work

The goal of this work is to analyze the atom-molecule conversion dynamics in degenerate

quantum gases to create a molecular Bose-Einstein condensate (BEC). A particular task is to

control the photoassociation of atomic Bose-Einstein condensates by choosing the associating

laser-field configuration.

The essence of Bose-Einstein condensation is a macroscopic occupation of a single quan-

tum mechanical state. BEC is a state of matter, which occurs in a dilute bosonic gas (both

atomic and molecular) cooled down to temperatures very close to absolute zero. Under such

conditions, a large fraction of bosons occupy the lowest quantum state. For this reason, the

quantum effects become visible on a macroscopic scale. These effects are known as macro-

scopic quantum phenomena.

Photoassociation is a process in which two colliding atoms interact with a laser field to
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form an excited molecule. Thus, we deal with a chemical process.

The work concerns the control of the photoassociation process. The control can be

achieved by different approaches, for instance, by change of density or applying a magnetic

field. In our case the control is performed by choosing suitable field configurations.

The field configurations are described by the Rabi frequency and detuning. The Rabi

frequency is the product of the transition dipole moment and the field amplitude. Detuning

is the difference between transition and laser frequencies. The pair of the Rabi frequency and

detuning is referred to as a field configuration. In this work the Rabi frequency and detuning

are time-dependent functions.

The general idea is to search for the field configurations that will give the desired result.

The desired result is formulated as the given time evolution of the population.

The problem is nonlinear, which means that the set of equations describing the photoas-

sociation process are nonlinear. Hence, one needs new approaches, for which important steps

are made in the work.

We start with the two-level model. The physical process we study is the following: we

consider an initially pure-atomic condensate and would like to create a molecular state by

applying laser radiation. We consider the atomic condensate as one state and the molecular

state as the second. Such a process in the simplest approximation can be described by a

nonlinear two-state model. To make the model more realistic we consider the third-order

nonlinearities which describe the atom-atom, atom-molecule and molecule-molecule elastic

interactions.

Further, to bring weakly coupled molecules to the stable ground molecular state, we

use stimulated Raman adiabatic passage (STIRAP). A particular task here is to avoid the

losses from the intermediate excited molecular state as much as possible. Also, we analyze

robustness of linear and nonlinear STIRAP processes.

Finally, to advance in the approximate analytic description of the photoassociation by

a previously proposed two-term ansatz that involves the solution of the associated linear

problem, we consider the exact solutions of the linear two-state problem in terms of the bi-
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confluent Heun functions. As a result, we introduce a new level-crossing model for which the

solution of the linear two-state problem is written in terms of certain linear combinations of

the Hermite functions.

The objectives of the thesis are

XTo develop an efficient and robust adiabatic passage technique based on the tracking of

a desired solution for the transfer from an atomic to the molecular state.

X To explore if it is possible to achieve an efficient transfer in the presence of Kerr

nonlinearities.

XTo discuss the stimulated Raman exact tracking method as a possible efficient transfer

procedure. If possible, to include the irreversible losses from the second level.

X To identify the field configurations for which the linear quantum two-state problem is

solvable in terms of the Heun functions.

XTo identify the level-crossing models solvable in terms of linear combinations of special

functions simpler than the Heun functions.

Scientific novelty

We propose a technique of robust and efficient adiabatic passage from an atomic to a

molecular state, based on the tracking of a desired time evolution of the populations.

We show that it is possible to achieve a good transfer in the presence of Kerr nonlinearities

as well. This is achieved by a proper choice of the detuning that provides an efficient adiabatic

tracking.

We present a stimulated Raman exact tracking in a quadratic-nonlinear quantum three-

state system. We show that in the nonlinear case for an efficient transfer one needs to take

the pump pulse stronger than the Stokes one, in contrast to the ordinary linear case. This

transfer may also be robust.

We show that using stimulated Raman exact tracking technique it is possible to avoid

the irreversible losses from the intermediate weakly bound molecular state, in the one- and

two-photon resonance case.

We construct expansions of the solutions of the bi-confluent Heun equation in terms of
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incomplete Beta functions as well as other simpler mathematical functions.

We develop a linear dissipative level-crossing model solvable in terms of the Hermite

functions.

The practical value of the work

The results of the thesis can be used

Xfor creation of a priori given superposition states of simple quantum systems

Xfor achievement of prescribed population distribution

Xin physical situations where linear and nonlinear level-crossing models are applied (nu-

merous possibilities)

Xin mathematics, chemistry, engineering, etc.

The derived results belong to the general tools of precision control of nonlinear dynam-

ics of atomic systems. Hence, one may envisage numerous applications of the developed

nonlinear models [1–12] in atom lithography, precision measurement, quantum information

processing, nanotechnology, chemical dynamics, etc. As regards the linear models, the appli-

cation domain here varies from quantum mechanics, nuclear physics to quantum gravity and

cosmology.

Overview

In 1924-25, Satyendra Nath Bose and Albert Einstein predicted the phenomenon of Bose-

Einstein condensation [13, 14]. Though predicted so long ago, only recently the “pure”

Bose-Einstein condensation has been realized in practice. In 1995, the condensation was

observed in a remarkable series of experiments on vapors of rubidium [15] and sodium [16],

both in the atomic state, in which the atoms were confined within magnetic traps and cooled

down to extremely low temperatures, on the order of fractions of microkelvin (170nK).

If compared with more commonly encountered states of matter, the Bose-Einstein conden-

sates are seen to be extremely fragile. The slightest interaction with the external environment

can be enough to warm them above the condensation threshold, thereby eliminating their

interesting properties and forming a normal gas.

In the first experiments Rb atoms were used, since rubidium belongs to the alkali metal
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group and is easy to vaporize, also has a convenient spectral absorption range, which makes

it a frequently used choice for laser manipulation of atoms.

Ever since, the Bose-Einstein condensates and, generally, the physics of ultracold gases

have developed into a very important field of research on the frontier between atomic- and

condensed-matter physics, which allows to observe a whole series of unusual quantum phe-

nomena (for reviews see, e.g., [17–19]).

For instance, numerous exciting experiments demonstrated the interference between con-

densates due to wave-particle duality [20], many probed the superfluidity in quantum gases,

studied the creation of bright matter-wave solitons in condensates confined to one dimension,

and the slowing-down of light pulses in a BEC to very low speeds using electromagnetically

induced transparency [21], etc.

After the implementation of atomic BECs, the next step was to create a molecular BEC

[22–24]. This is a very appealing task because the ultracold molecules, due to their com-

plex internal structure, suggest a wider range of properties as compared to atoms. Such

molecules have important applications such as ultraprecise molecular spectroscopy and low

Doppler width studies of collision processes [25,26], quantum gases with anisotropic dipolar

interactions, precision tests of fundamental symmetries such as the search for a permanent

electron‘s electric dipole moment (with certain polar molecules) [27,28], study of rotational

and vibrational energy transfer processes and coherent chemistry, where reactants and prod-

ucts are in coherent quantum superposition states [29], quantum computing [30, 32], and

etc.

However, the complex internal structure precludes molecules from getting ultracold by

merely slowing down their translational motion, because they store some energy in inner

vibrational and rotational degrees of freedom. Laser cooling enables to freeze only the center

of mass of a quantum object. In the case of atoms it is sufficient [33–35] but not with

molecules.

A solution is to assemble molecules from ultracold bosonic atoms, a process which does

not produce any vibrational and rotational excitation.
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An interesting alternative is emerged by cooling fermionic atoms to extremely low tem-

peratures. Since fermions are subject to the Pauli exclusion principle, in order to exhibit

Bose-Einstein condensation, the fermions must “pair up” to form bosonic compound parti-

cles, e.g., Cooper pairs or molecules.

D. Jin created the first fermionic condensate composed of Cooper pairs [41]. The emer-

gence of a molecular Bose-Einstein condensate from a Fermi gas has led to the direct ob-

servation of a molecular Bose-Einstein condensate created only by adjusting the interaction

strength in an ultracold Fermi gas of atoms [40]. This process represents the predicted

crossover from weak coupling Bardeen-Cooper-Schrieffer (BCS) pairing to a Bose-Einstein

condensate of tightly bound pairs.

W. Ketterle and co-workers have used a sodium−23 BEC to help cool a gas of lithium−6

fermionic atoms to create a degenerate Fermi-gas. The fermionic atoms cannot fall into the

single state available to bosonic atoms, but they can, if cooled low enough, occupy all the

lowest energy quantum states, thereby forming a Fermi-sea.

A route (at least partial) to create a molecular BEC is cooling by evaporation. By using

this technique, R. Grimm and co-workers have provided an indirect evidence for a long-lived

condensate of lithium molecules [38]. They observed the formation of a condensate by

evaporative cooling of a molecular gas close to equilibrium.

In other experiments, molecules were formed by sweeping an external magnetic field

through a Feshbach resonance, adiabatically converting atoms to molecules. This atom-

molecule coupling is a coherent two-body process [39].

The concept of the experiment [40] is also to start with a Fermi gas, which is evapo-

ratively cooled to a high degree of quantum degeneracy, and adiabatically create molecules

with a magnetic-field sweep across a Feshbach resonance. If the molecule creation conserves

entropy and the initial atom gas is at sufficiently low temperature T compared to the Fermi

temperature TF , then the result should be a molecular sample with a significant condensate

fraction.

In brief, the laser cooling and trapping of fermionic atoms followed by evaporative cooling
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in a magnetic trap, owing to a Feshbach resonance, which occurs when the energy of a

quasibound molecular state becomes equal to the energy of two free atoms [40], resulted in

a molecular BEC. The BEC was detected through a bimodal momentum distribution, and

effects of the strong inter-particle interaction were investigated. The molecular BEC appears

on the repulsive side of the Feshbach resonance, which is related in a continuous way to

BCS-type fermionic superfluidity on the attractive side of the resonance [40].

The group of R. Grimm reported on the Bose-Einstein condensation of more than 105Li2

molecules in an optical trap starting from a spin mixture of fermionic lithium atoms. During

forced evaporative cooling, the molecules are formed by three-body recombination near a

Feshbach resonance and finally condense in a long-lived thermal equilibrium state. They

measured the characteristic frequency of a collective excitation mode and demonstrated the

magnetic field-dependent mean-field by a controllable condensate spilling [38]. The stability

allows to use bosonic molecules composed of fermionic atoms in order to achieve molecular

BEC.

Approaches

During the last years, various approaches have been used to create and manipulate

molecules via cooling and trapping techniques [36, 37]. Among these, as far as the very

molecule production from cold atoms is concerned, two main techniques are mostly used.

These are the magnetic Feshbach resonance [25–29] and optical laser photoassociation

[32,42].

A Feshbach resonance is a scattering resonance, for which the total energy of two colliding

atoms is equal to the energy of a bound molecular state, and an atom-molecule transitions

can occur during a collision. Feshbach resonances are routinely used tools to govern the

interaction strength between atoms in ultracold quantum gases [45].

This technique has also proved to be very efficient in controllably converting fermionic

atoms into bosonic molecules [31]. For instance, using a magnetic field ramp across a Fesh-

bach resonance is a clear evidence of diatomic molecule formation has been reported through

direct, spectroscopic detection of these molecules. In another experiment, the crossing of a
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Feshbach resonance was used to put the atomic condensates into an atom-molecule superpo-

sition state [31].

In the experiment [37], a mixture of atomic and molecular states of 85Rb atoms has

been created and probed by sudden changes in the magnetic field in the vicinity, but not

across the Feshbach resonance. In this experiment, the variation of the magnetic field gave

a rise to oscillations in the number of atoms that remain in the condensate. By measuring

the oscillation frequency, for a large range of magnetic fields, it has first been proved that a

quantum superposition of atoms and diatomic molecules has been created. Further, ultracold

molecules have been formed in degenerate Fermi gases of Li atoms [54,55] and, afterwards,

a BEC has been created in the obtained ensemble of molecules [22–24].

An alternative for the Feshbach resonances is the photoassociation of atoms using optical

laser fields. While Feshbach resonances have been efficient for the realization of molecular

condensates, photoassociation has been widely used to study long range molecular interac-

tions and to probe ultracold gases [53]. In addition, the photoassociation has also been used

to produce ultracold molecules from atomic BECs [43,44].

In the simplest case the photoassociation is described by a system of two coupled nonlinear

first-order differential equations [48–52] obtained within the framework of the semiclassical

mean-field Gross-Pitaevskii theory [37, 46, 47, 56]. This system can also be used for the

description of bosonic molecule formation in degenerate Fermi gases. Interestingly, it has

been noted in Ref. [57] that, within the mean-field approximation, association of diatomic

molecules from degenerate Fermi gases is equivalent to dissociation of a molecular condensate

into bosonic atoms, and vice versa, dissociation of a molecular condensate into degenerate

Fermi atoms is equivalent to association of diatomic molecules starting from ultracold bosonic

atoms.

Why we consider the photoassociation process? It is because we hope that with this

process it will be possible to achieve an efficient transfer to the stable molecular state having

an additional degree of freedom, which will be useful in various technological applications

(quantum lithography, atom interferometry, quantum information processing, etc.).
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To this end, it is important that in the framework of the basic quadratic-nonlinear quan-

tum two-state approximation in the non-dissipative case the set of equations are mathemat-

ically the same for both photoassociation and Feshbach resonance. However, the physical

meanings of the involved functions which define the field configurations are different. In the

Feshbach resonance the amplitude modulation function is proportional to the square root of

the magnetic-field width of the resonance, and the frequency modulation function is propor-

tional to the external magnetic field. Importantly, the magnetic-field width of the resonance

is always a fixed constant for a given Feshbach resonance.

In contrast, in the photoassociation process that we consider the field configuration is

defined by two time-variable functions - the Rabi frequency and the frequency detuning of

the applied optical laser field. In this case we have a large choice of field configurations due

to the freedom in varying the Rabi frequency.

Thus, comparing the photoassociation process with the Feshbach resonance we note that

in the case of photoassociation we have an additional degree of freedom. This is the Rabi

frequency which can be varied independently. It is understood that this degree of freedom

potentially may be useful for controlling the association process.

For instance, in the photoassociation process a major problem is caused by irreversible

losses by several different physical mechanisms (spontaneous decay, correlated pairs, etc.).

And the hope is that it will be possible to avoid the irreversible losses as well as other

disadvantages by choosing a proper Rabi frequency.

And if we can avoid these disadvantages without an essential decrease in the freedom, we

will get a tool which is more flexible compared with the Feshbach resonance.

Thus, in the present work we focus on the photoassociation which is currently considerably

less explored. Discussing some theoretical aspects of this process, we specifically study the

temporal dynamics of diatomic molecule formation by coherent photoassociation via one- or

two-color schemes, (correspondingly, within two- or three-state models).

In both two- or three-state cases our mathematical analysis is based on a nonlinear system

of coupled equations which was proposed in 1998-2000 simultaneously by two groups. Juha
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Javanainen and coworkers proposed a simple scheme for molecule formation in an atomic

BEC via photoassociation [48–51], and Peter Drummond et al. presented a quantum field

theory describing coherent dynamics of coupled atomic and molecular BECs produced via

photoassociation or Feshbach resonance [52].

The nonlinear two-state problem defined by the mentioned set of equations presents a

theoretical basis for successful examination of a notable part of the available experimental

data as discussed by many authors (see, e.g., Refs. [58] - [65]). However, for a deeper de-

scription of occurring physical processes, in many cases one needs a more elaborate approach

involving at least three states. The necessity of such a generalisation is readily understood

by noting that both Feshbach resonance and photoassociation lead to formation of molecules

being in excited states, so that the formation of really ultracold molecules, i.e., those at

deeply bound levels, remains an issue not described by the simple two-state model. The

transition to the stable groud molecular state avoiding the irreversible losses from the weakly

bound quasi-molecular state is one of the worthy topics of the research field that is possible

to address only on the basis of at least three-state representations.

Approbation of the thesis statements

The statements of the thesis were presented and discussed at the seminars of the Institute

for Physical Research, National Academy of Sciences of Armenia, at the Laboratoire Interdis-

ciplinaire Carnot de Bourgogne, Université de Bourgogne, Dijon, France, as well as reported

at the international conferences in Armenia, such as “IONS-2013” (Yerevan-Ashtarak, Arme-

nia, 2013), “OPTICS-2012-2016” (Yerevan-Ashtarak, Armenia, 2012-2016), “Laser Physics-

2013-2015” (Ashtarak, Armenia, 2013-2015) and “QuantArm-2014” (Yerevan-Tsaghkadzor,

Armenia, 2014) [1–12].

The main results of the thesis have been published as 4 articles in peer reviewed journals

and 8 abstracts in the conference book of abstracts represented in bibliography [1–12]. The

thesis, which consists of introduction, four chapters and references, comprises 137 pages,

contains 44 figures, 3 tables and 127 references.

In Chapter I we present the description of the nonlinear two-state system and discuss
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the general properties of the transition from an atomic state to a molecular one. We propose

a technique of robust adiabatic passage for a nonlinear quantum two-state system driven by

a laser field, which provides an efficient transfer. By tracking the dynamics derived from a

Hamiltonian formulation in the adiabatic limit we get the pulse characteristics. The dynamics

is analyzed by determining the fixed points and separatrices.

It is shown that this nonlinear system does not have any solution that leads exactly to

a complete population transfer in a finite time. For an infinite pulse area it can be reached

only asymptotically.

The robustness of the derived technique with respect to the variations in the pulse area and

detuning is anticipated to be a crucial property for practical implementations. The robustness

for a particular implementation could necessitate optimizing the tracking specifically, as

proposed for the linear case [66]. The achievement of an ultrahigh fidelity with an optimal

exponential efficiency (see, for instance, [67]) is an open question.

In Chapter II the adiabatic tracking method is extended to models including Kerr

nonlinearities. In the previous Chapter this tracking strategy was analyzed for a simplified

model, which did not include elastic collisions between particles. In this Chapter the main

point is to extend the analysis by including the Kerr nonlinearities. The developed tracking

avoids the crossing of the fixed points and separatrix. This crossing is a main source of the

molecular state’s population decrease.

We note that in general the Kerr terms have some strong qualitative influence on the

dynamics like the appearance of other hyperbolic points that can interfere with the desired

tracking. Hence, one should obtain a particular suitable detuning that produces efficient

tracking. Our main result is that it is still possible to have a good transfer and at the same

time to avoid oscillations also in the presence of Kerr terms.

As it was already mentioned, for creation of a molecular BEC one needs to bring molecules

to the ground state. Within the Rabi model, the particles stay in the weakly bound molecular

state longer than in the atomic state. Hence, because of losses from that molecular state,

the system will soon degrade. To avoid this, we need to bring the population to the ground
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molecular state as fast as possible. There are various approaches for such a transfer. An

advantageous one is the stimulated Raman adiabatic passage (STIRAP), which is a specific

three-state field-matter interaction model.

Next, in Chapter III we consider the nonlinear STIRAP. The goal is to create a molecu-

lar Bose-Einstein condensate by coupling the initial pure-atomic state and the final molecular

ground state by using a third, excited state of weakly bound molecules. We derive an efficient

technique of stimulated Raman exact tracking for a nonlinear quantum system driven by ex-

ternal fields, which provides an efficient transfer from an atomic to a molecular Bose-Einstein

condensate. The results show that for the transfer to be efficient, the technique features the

need of a pump pulse to be stronger than the Stokes pulse, unlike the situation in the linear

stimulated Raman adiabatic passage.

Since we have irreversible losses from the intermediate excited molecular state, we present

a stimulated Raman exact tracking technique that takes into account this dissipation. We

also show how to avoid the losses in the case of one- and two-photon resonances.

Further, we show the robustness for both linear and nonlinear STIRAP procedures.

In Chapter IV, we note that the approximate solution of the nonlinear two-level problem

for arbitrary field configuration is constructed by a two-term ansatz suggested earlier for

the general case [68]. One term of this ansatz contains the main features of the nonlinear

dynamics, and the second one is a correction obtained from a scaled linear model with

changed parameters. Since the solution of the first term is known for all models, the problem

is to study the second term. However, the exact solutions of the linear problem are very

rare. Only 5 models are known, which are the Landau-Zener, Rosen-Zener, Demkov-Kunike,

Nikitin and Crothers models.

To derive new exactly solvable linear models, we consider the cases when the linear two-

level problem is reduced to the bi-confluent Heun equation. Discussing the solutions of

this equation we construct an expansion of the bi-confluent Heun functions in terms of the

incomplete Beta-functions and present an expansion in terms of the Hermite functions of

non-integer order. We note that in general the latter functions are not polynomials.
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We apply the constructed expansion to identify the field configurations for which the

solution of the linear time-dependent two-state problem is written as a linear combination of

a finite number of the Hermite functions.

Further, we identify the level-crossing bi-confluent Heun models for which the solution

involves just two Hermite functions. We note that some of these models describe processes

including losses from the upper level.

Finally, we present a particular exactly solvable level-crossing model for the quantum

time-dependent linear two-state problem involving irreversible losses from the second level.

The model is given by an exponentially varying Rabi frequency and a level-crossing detuning

that starts from the exact resonance and exponentially diverges at the infinity. We derive the

exact solution of the problem and discuss the dynamics of levels’ populations of the system

under different regimes of interaction.
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Chapter 1

An efficient, robust adiabatic passage

from an atomic to a molecular state

In the present Chapter we propose a technique of robust and efficient adiabatic passage

for a nonlinear quantum two-state system driven by external optical fields to achieve the

transfer from an atomic Bose-Einstein condensate to a molecular state. The pulse ingredi-

ents are obtained by tracking the dynamics derived from a Hamiltonian formulation, in the

adiabatic limit. Its construction is based on a classical phase space representation, through

the analysis of fixed points and separatrices

We prove the property that this nonlinear system does not have any solution leading ex-

actly to a complete population transfer in a finite time. It can only be reached asymptotically

for an infinite pulse area.

1.1 General model

Nonlinear quantum systems play an important role in contemporary physics, such as

nonlinear optics and Bose-Einstein condensation (BEC). For instance, it has been established

that the formation of molecules from ultracold atom gases by external fields are well described

by a semiclassical mean-field Gross-Pitaevskii theory [69, 70]. More specifically, here we

consider a model that includes third-order nonlinearities. The nonlinear collisions between
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particles are important in the ultracold quantum degenerate atomic or molecular systems. A

driven two-level model already features a very good approximation accounting for the one-

color photoassociation and for magnetic Feshbach resonance [71–73]. This corresponds to

the following set of nonlinear equations which include Kerr terms:

iȧ1 = Ue−i
∫ t ∆(s)dsā1a2 + (Λ11|a1|2 + Λ12|a2|2)a1, (1.1)

iȧ2 =
U

2
ei

∫ t ∆(s)dsa1a1 + (Λ21|a1|2 + Λ22|a2|2)a2, (1.2)

where a1(t) and
√

2a2(t) are the atomic- and molecular-state probability amplitudes, re-

spectively, satisfying the normalization condition |a1|2 + 2|a2|2 = 1, U(t) is the (real) Rabi

frequency associated to the external field, and the atom-atom, atom-molecule, and molecule-

molecule elastic interactions are described by the terms proportional to the scattering lengths

Λ11, Λ12 = Λ21, and Λ22, respectively. In the photoassociation theory, the Rabi frequency is

proportional to the amplitude of the photoassociating laser field, ∆(t) is the detuning: dif-

ference between the frequency of the atom-molecule transition and the chirped driving laser

frequency [24].

In this Chapter, we first show the important result of nonexistence of a solution leading

exactly to the complete population transfer in a finite time. The complete transfer occurs

only for an infinite pulse area. By using the notation Ω(t) =
√

2U(t) and applying the

transformation

a1 = c1e
−i

∫
∆(s)ds/3, a2 = c2e

i
∫

∆(s)ds/3,

we can recast Eqs. (1.1) and (1.2) in the following form

iċ1 =
Ω(t)√

2
c̄1c2 +

[
−∆(t)

3
+ Λ11|c1|2 +

Λ12

2
|c2|2

]
c1, (1.3)

iċ2 =
Ω(t)

2
√

2
c1c1 +

[
∆(t)

3
+ Λ21|c1|2 +

Λ22

2
|c2|2

]
c2, (1.4)

with the normalization condition |c1|2 + 2|c2|2 = 1. We define P = 2|c2|2 and |c1|2 = 1− P .
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The function c1 is interpreted as the atomic state probability amplitude and the function
√

2c2 as the molecular state probability amplitude. Hence, we refer to |c1|2 as the atomic

state probability and to P = 2|c2|2, as the molecular state probability. We will consider a

condensate being initially in all-atomic state: |c1(−∞)| = 1, |c2(−∞)| = 0.

1.1.1 Analysis of the model without Kerr nonlinearities

1.1.1.1 Hamiltonian formulation

An adiabatic treatment of a nonlinear model, which will allow the extension of the

standard adiabatic passage in linear models, can be accomplished by a classical Hamiltonian

formulation of the problem. For (1.3) and (1.4) we can write the equations of motion as

i
∂c1

∂t
=
∂H

∂c̄1

,

i
∂c2

∂t
=
∂H

∂c̄2

with a Hamiltonian, given by

H = −∆

3
|c1|2 +

∆

3
|c2|2 +

Ω

2
√

2
(c2

1c̄2 + c̄1
2c2) (1.5)

The complex variables cj can be written in terms of standard real canonical coordinates pj,

qj as

cj =
(qj + ipj)√

2

Another pair of variables Ij and ϕj, defined from cj =
√
Ije
−iϕj are canonically conjugate:

{Ij, Ik} = 0; {ϕj, ϕk} = 0;

{Ij, ϕk} = δjk
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A new pair of angle variables (γ, α) can be determined from the original angles (ϕ1, ϕ2) by

the following canonical transformation of coordinates (J, γ, I, α) :

γ = ϕ1,

α = −2ϕ1 + ϕ2,

J = I1 + 2I2,

I = I2,

since they satisfy Poisson bracket relations {J, γ} = 1, {I, α} = 1 and the other brackets are

zero.

The solution of (1.3) and (1.4) can be thus parametrized in the most general way as:

c1 =
√
J − 2Ie−iγ,

c2 =
√
Ie−i(α+γ)e−iγ,

where γ is the global phase of the wave function, α+ γ is its internal relative phase. P = 2I

corresponds to the probability of the molecular state.

With the mentioned variables the Hamiltonian reads:

H = −∆

3
J + ∆I +

Ω√
2

(J − 2I)
√
I cosα (1.6)

The corresponding equations of motion, using J = 1, are

J̇ = −∂H
∂γ

= 0, (1.7)

İ = −∂H
∂α

=
Ω√
2

(1− 2I)
√
I sinα, (1.8)

α̇ =
∂H

∂I
= ∆ +

Ω

2
√

2

1− 6I√
I

cosα, (1.9)
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γ̇ =
∂H

∂J
= −∆

3
+

Ω√
2

√
I cosα = 0. (1.10)

We see that the Hamiltonian is independent of γ. This allows one to define a reduced phase

space of only two dimensions (I, α), and γ is determined from Eq. (1.10).

We notice, that the angle α is not well defined for I = 0, nor for I = 1/2. This is similar

to the linear two-state problem formulated on the Bloch sphere, on which the angle at the

poles is not well defined.

1.1.2 Necessity of infinite pulse area for the complete transition

to a molecular state

The main goal of the present Chapter is to analyze the dynamics of coherent molecule

formation for different external field configurations. We start from Eq. (1.8)

İ =
Ω√
2

(1− 2I)
√
I sinα.

Integrating (1.8) we obtain

∫ I

0

dI ′

(1− 2I ′)
√
I ′

=

∫ t

t0

Ω(s)√
2

sinα(s)ds.

By using the notations y =
√
I ′, I ′ = y2 we get:

∫ √I
0

2ydy

(1− 2y2)y
=

1√
2

∫ t

t0

Ω(s) sinα(s)ds.

Doing some simplifications we can write

∫ √I
0

dy

1− 2y2
=

1

2
√

2

∫ t

t0

Ω(s) sinα(s)ds
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After integration we have

tanh−2 P (t) =
1

2

∫ t

t0

Ω(s) sinα(s)ds

Thus, we get the following equation for P (t)

P (t) ≡ 2I(t) = tanh2

[∫ t

ti

Ω(s)

2
sinα(s)ds

]
. (1.11)

It shows directly the remarkable result that the targeted molecular state P (t) = 1 can be

reached only asymptotically, i.e. for
∫ tf
ti

Ω(s) sinα(s)ds → ∞, which is possible only for an

infinite pulse area, and with 0 < α(t) < π for large times [1].

A crossing model [74] leads also to a complete transfer in the limit of infinite pulse area

(adiabatic limit), like in the corresponding linear problem. However, unlike the corresponding

linear problem, near the end of the process, the transfer becomes oscillatory due to the

crossing of a separatrix which strongly reduces the expected efficiency [75–77]: a much

larger pulse area is needed to reach the same efficiency as in the corresponding linear model.

We can notice that an infinite area is not a sufficient condition since sin(α) can be positive

or negative. In absence of third-order nonlinearities, and for ∆ = 0, which corresponds to the

Rabi model, a solution is given by α = π/2. One can notice, that Eq. (1.11) shows that the

Rabi model is the most efficient one in terms of accuracy for a given pulse area. In the linear

case the π-pulse area corresponds to the smallest pulse area leading to a complete transfer

[78].

1.2 Adiabatic tracking

1.2.1 Adiabatic theorem

We start with explanation of quantum adiabatic process, which we can define as: grad-

ually changing conditions allow the system to adapt its configuration, hence the probability

density is modified by the process. If the system starts in an eigenstate of the initial Hamil-
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tonian, it will end in the corresponding eigenstate of the final Hamiltonian. Thus, it will

follow the corresponding instantaneous eigenstate of the slowly varying Hamiltonian [79].

The classical adiabatic theorem states that the instantaneous action variables are adia-

batic invariants. If the initial condition is an instantaneous elliptic fixed point, then in the

adiabatic limit, the solution follows the corresponding instantaneous fixed point, provided

that it does not cross other fixed points.

The classical adiabatic theorem for a system with one degree of freedom is generally

presented [80–82] as the statement that the action variable is an adiabatic invariant, i.e. it

stays constant in the asymptotic limit when the parameters of the system are slowly varying.

The relation between the classical and the quantum adiabatic theorem can be explained

by considering the example of a two-level system, i.e. four dimensional phase space. After

a change of coordinates, as we did in the nonlinear case, we can determine a reduced phase

space of two dimensions. The eigenvectors from the four dimensional phase space correspond

to fixed points in the two dimensional reduced phase space.

The adiabatic theorem that we apply in this work, in the adiabatic limit T → ∞, is a

particular case of this general adiabatic theorem [83], for which the initial condition is a

stable fixed point and the value of the corresponding action variable is equal to zero. The

statement that the value of the action variable stays constant implies in this case that the

adiabatic evolution follows the instantaneous stable fixed points. The adiabatic evolution

breaks down when there is a bifurcation, in which the followed stable elliptic fixed point

crosses an unstable hyperbolic fixed point and becomes itself hyperbolic.

1.2.2 Adiabatic passage for nonlinear systems and adiabatic track-

ing

The idea of adiabatic tracking is that first we choose a pulse shape Ω( t
T

) and a molecular

population evolution Ptrack(t) = f( t
T

) that one wishes to follow, then we find ∆track(
t
T

) such

that the exact solution P (t) of the equation defined by Ω( t
T

) and ∆track(
t
T

), in the adiabatic

limit T →∞ approache is P (t)→ Ptrack(t).
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In order to achieve this goal, by the first step we have to determine ∆track(
t
T

) such, that

the conditions for the adiabatic theorem (stated in the next section) are satisfied, i.e. the

instantaneous fixed point must have no crossing of a separatrix (nor other fixed points), and

should satisfy P (t) = Ptrack(t).

For Eqs. (1.8)-(1.10), (see for instance [1]) adiabatic passage can be defined as follows:

For a sufficiently slow evolution of the parameters Ω and ∆, featured by the quantity 1/T

(where T is characteristic duration), i.e. satisfying 1/T << ωd with ωd a typical frequency of

the dynamics, the solution follows the instantaneous fixed points of the reduced phase space,

given by İ = 0 and α̇ = 0 at the considered instantaneous values Ω and ∆. The obstacles to

the adiabatic following come

1. from regions surrounding the instantaneous separatrices involving arbitrary small fre-

quencies for the dynamics,

2. from the crossing of fixed points.

The conditions of validity of the adiabatic theorem are thus met if the adiabatically

followed fixed point does not cross any separatrix nor other fixed points, in the same manner

as crossing of eigenvalues has to be avoided in linear models.

The second step is to verify if the dynamics defined by this Ω(t), ∆track(t) satisfies the

conditions of validity of the adiabatic theorem. We should choose Itrack(t) and ∆track(t),

such that the conditions for the validity of the adiabatic theorem are satisfied, no crossing of

separatrices, nor of other fixed points. Thus, the main point is to verify whether there is a

crossing of the tracked fixed point (which starts out as a stable elliptic fixed point) and other

fixed points of hyperbolic type.

Below, we determine the fixed points and the separatrices, and show that any adiabatic

solution Itrack(t), which satisfies the appropriate initial and final conditions I(ti) = 0 and

I(tf ) = 1/2, can be obtained by a choice of Ω(t) and ∆track(t) satisfying the conditions of

the adiabatic theorem. This is referred as an adiabatic tracking.
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1.2.3 Determination of fixed points

In this section we start with fixed points

0 = İ =
Ω√
2

(1− 2I)
√
I sinα, (1.12)

0 = α̇ = ∆ +
Ω

2
√

2

1− 6I√
I

cosα. (1.13)

For I = 0, 1/2 the angle α is not defined. I = 1/2 is a hyperbolic (unstable) fixed point.

For I 6= 0 (1.13) can be written as

2
√

2
√
I∆ + (Ω− 6ΩI) cosα = 0 (1.14)

For given values Ω and ∆, the fixed points corresponding to α̇ = 0, İ = 0 are determined by

the relation

∆ = − Ω

2
√

2

1− 6I√
I

eiα; α = 0, π (1.15)

Thus, for a given Ptrack(t) and Ω(t), adiabatic limit lim1/T→0P (t) − Ptrack(t) = 0, i.e. for

∆(t) from (1.15) the solution P (t) will track Ptrack(t) in the adiabatic limit, if there is no

intersection with a separatrix.

Since P = 2I, we can present Eq. (1.15) also as:

∆ = −Ω

2

1− 3P√
P

eiα (1.16)

where P (t) is the probability of a molecular state.

From Eq. (1.14) we can find I as a function of detuning ∆(t) and the coupling Ω(t). For

the fixed point (I0, α = 0) we can write

∆
√
I02
√

2 + Ω− 6ΩI0 = 0. (1.17)
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For α = 0 we will get

I0 =
1

18
(2µ2 + 3 + 2µ

√
µ2 + 3), µ =

∆

Ω
(1.18)

and similarly for α = π:

Iπ =
1

18
(2µ2 + 3− 2µ

√
µ2 + 3). (1.19)

1.2.4 Global coordinates of the reduced phase space

From the previous section we know that α is not defined in the points I = 0, 1/2.

However, we need I = 0, because it is an initial condition and, according to the adiabatic

theorem, if the initial condition is a fixed point, the solution follows this fixed point.

Since α is not defined in the points when I = 0, 1/2, we need global coordinates, which

are well defined everywhere. Such coordinates are [84]:

Π0 ≡ J = |c1|2 + 2|c2|2, (1.20)

Π1 = |c1|2 − 2|c2|2, (1.21)

Π2 = 2(c2
1c̄2 + c̄1

2c2), (1.22)

Π3 = −2i(c2
1c̄2 − c̄1

2c2). (1.23)

Instead of Π1 we will use

P =
1− Π1

2
.

For J = 1 the three coordinates satisfy the relation

Π2
2 + Π2

3 = 8(1− P )2P.

This equation defines the nonlinear generalized Bloch sphere [84], which is the reduced

28



phase space of the model. The coordinates of the fixed points (α0 = 0, P0) are

P0 =
1

18
(2µ2 + 3 + 2µ

√
µ2 + 3),

Π2,0 =
4√
2

(1− P0)
√
P0,

Π3,0 = 0. (1.24)

We choose these coordinates, because they are defined everywhere. At the points, where

α is well defined, the relation with these global coordinates is

P = 2|c2|2,

Π2 = 2(c2
1c̄2 + c̄1

2c2) =
4√
2

(1− P )
√
P cosα,

Π3 = −2i(c2
1c̄2 − c̄1

2c2) =
4√
2

(1− P )
√
P sinα,

with the constraint Π2
2 + Π2

3 = 8(1− P )2P.

1.2.5 Separatrix

For the Hamiltonian (1.25)

H = −∆

3
+ ∆I +

Ω√
2

(1− 2I)
√
I cosα (1.25)

separatrices are curves Is, αs in the reduced phase space of energy Hs passing through the

hyperbolic fixed point, i.e. I = 1/2. From Eq. (1.25), if we put I = 1/2, we obtain

Hs =
∆

6
,
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and thus the equation for the separatrix is

∆

6
= −∆

3
+ ∆Is +

Ω√
2

(1− 2Is)
√
Is cosαs,

which leads to (1 − Ps)(∆ − Ω
√
Ps cosαs) = 0. We can thus write the equation for the

separatrix as:

cosαs = µ
1√
Ps
, µ ≡ ∆

Ω
. (1.26)

From this equation we can conclude that since | cosαs| ≤ 1, µ2

Ps
≤ 1, we can write Ps ≥ µ2.

Both, the separatrix and the hyperbolic fixed point exist only when |µ| ≤ 1 with µ2 ≤

Ps ≤ 1.

For µ > 0, the coordinates of the separatrix on the nonlinear Bloch sphere can be param-

eterized by:

Ps ∈ [µ2, 1],

Π2,s =
4√
2

(1− Ps)µ,

Π3,s = ± 4√
2

(1− Ps)
√
Ps − µ2.

1.2.6 Conditions for non-crossing of separatrix

According to the Eq. (1.24) the fixed points lie on the plane Π3,0 = 0. Therefore, we

have to determine the intersection of the separatrix with this plane to determine under which

conditions there is a crossing.

The separatrix intersects the plane Π3 at two points: P = 1 and at a second point whose

coordinate P we denote by Qs. This point has the coordinates

P = Qs = µ2, (1.27)
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Figure 1.1: Representation of the fixed point (1.15) with α = 0 for P = P0 = 0.4, 0.6, 0.8, 0.96
and the corresponding separatrix curve (1.26), (1.29) on the nonlinear generalized Bloch
sphere.

Π2,s =
4√
2

(1− µ2)µ,

Π3,s = 0,

and for the fixed point we have the equation

µ2 =
(3P0 − 1)2

4P0

. (1.28)
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Thus, the condition for a crossing of the fixed point and the separatrix is

Qs = µ2 =
(3P0 − 1)2

4P0

. (1.29)

If we put Qs = P0 in the Eq. (1.29), solutions will be P0 = 1 and P0 = 1/5, but the latter is

excluded since it gives µ < 0.

For µ < 0, Π2,s is negative, which excludes the intersection of the fixed point with the

separatrix. Thus we get Qs ≤ P0, where the equality arises only for P = 1. Thereby, there is

no crossing between the fixed point I0 and the separatrix except for µ = 1.

1.2.7 Implications of the choice of ∆(t), Ω(t)

We want to choose Ω(t) and ∆(t) such that

1. (α0, I0) is the fixed point followed by the adiabatic dynamics, with initial condition

I = 0. From Eq. (1.12) for the fixed point this condition is satisfied if Ω(ti) = 0 and ∆(ti) < 0,

where ti is the initial time.

2. limt→∞ I0(t) = 1. This is satisfied if µ(t)→ 1, when t→∞.

3. There are no crossings of the fixed point and the separatrix at any finite time. This is

satisfied if |µ(t)| < 1 for all times t.

If we choose µ(t) = ∆
Ω

such, that µ(t) < 1 for all finite t and µ(t) → 1 for t → ∞ there

will be no crossing of the fixed point with the separatrix.

Remark: When the fixed point disappears by collision with the hyperbolic point, the

adiabatic approximation is not valid anymore, and this leads to strong oscillations. If the

approach Ω(t)
∆(t)
→ 1 at the final time t→∞ is sufficiently slow, one can expect that there will

be no non-adiabatic effects due to the separatrix. There will just be the usual non-adiabatic

corrections due to the finite rate of variation of the parameters.
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1.2.8 Properties of adiabatic tracking

The principle of adiabatic tracking is that first we choose Ω( t
T

) and Ptrack(t) = f( t
T

).

Then we find ∆track(
t
T

) such, that the solution P (t) of the equation defined by Ω( t
T

), ∆track(
t
T

)

in the adiabatic limit T →∞, P (t)→ Ptrack(t).

In order to reach this aim we should choose ∆( t
T

) such, that the conditions for the

adiabatic theorem are satisfied, i.e. the instantaneous fixed point must have no crossing of

separatrix (nor other fixed points).

A possible choice consists in choosing P (t) such that the transfer tracks the solution given

by the linear case, in the adiabatic limit. This is achieved if one takes Ω(t) and the probability

P (t) from the corresponding linear model and determine the nonlinear ∆(t) from Eq. (1.15).

This allows one to define the corresponding nonlinear tracking models from a given linear

crossing model, whose dynamics is expected follow closely the corresponding P (t) dynamics

in the adiabatic limit.

We want to determine ∆(t) for a chosen equation Ptrack(t) = PL(t) from a linear model

and Ω(t) such that

1. the adiabatic approximation has no crossing of separatrix in finite times,

2. the adiabatic approximation reaches P = 1 for t→∞,

3. the adiabatic approximation is on a fixed point of the instantaneous Hamiltonian at

each t.

Remark: In the linear case adiabatic tracking is always possible. The only thing that has

to be avoided is the crossing of eigenvalues at finite times.

For linear two level systems with trace H = 0 the two eigenvalues cross only if H(ti) = 0

(if Ω(t0) = 0, ∆(ti) = 0).

Most of the usual models have a crossing of the separatrix, at finite times. For instance,

the Demkov-Kunike model.
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1.3 The Rabi model for linear and nonlinear cases

In the present section, we present the Rabi model for the linear and the nonlinear cases

and describe their main characteristics. This model has the feature, that both the linear

2 4 6 8 10
t

0.2

0.4

0.6

0.8

1.0

P

Figure 1.2: The linear Rabi model, resonance case, Ω0 = 1. The solid, dashed and dashed-
point lines correspond to δt = 0, 0.85, 2.

[85, 86] and nonlinear set of equations for two-level system are exactly solvable. The Rabi

model [87] is the simplest possible model, for which the Rabi frequency and detuning are

constant:

Ω(t) = Ω0, δt(t) = δ0. (1.30)

where Ω(t) is the Rabi frequency and δt(t) is the detuning. The solution of the problem is

written as:

(P ′)2 = P [Ω2
0(1− 2P )2 − δ2

0P ]. (1.31)

One can see, that in the case of the linear Rabi problem the probability to occupy a

certain state is an oscillatory periodic function of time for any Ω0 and δ0 (Fig. 1.2). Whereas,

in the nonlinear resonance case, where δ0 = 0 for certain initial conditions this probability

increases monotonically (Fig. 1.3). The details of the nonlinear Rabi problem solution is

presented in Ref. [87].

In absence of third-order nonlinearities, the Rabi model leads to a complete transfer
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Figure 1.3: The nonlinear Rabi model, Ω0 = 1. The solid, dashed and dashed-point lines
correspond to ∆0 = 0, 0.075, 0.85, 2.

(|a2(tf )|2 = 1/2 with tf the final time) only asymptotically, in the limit of an infinite pulse

area. The transfer is monotonic in time only for the exact resonance ∆ = 0.

Both, in the linear and nonlinear Rabi model there exist big oscillations of time, there

are not oscillations only in the nonlinear resonance case (see Fig. 1.3), however, the process

in the later case is not robust.

1.4 Adiabatic tracking. Example of linear Demkov-

Kunike model

The adiabatic dynamics can be designed by the tracking of a desired function P (t). A

possible choice, in the adiabatic limit, consists in choosing P (t) such, that the transfer tracks

the solution given by the linear case. This is achieved if one takes the probability P (t) and

Ω(t) from the corresponding linear model and determines the nonlinear ∆(t) from Eq. (2.20).

This allows to define the corresponding nonlinear tracking models from a given linear crossing

model [88–90].

This procedure is numerically shown in Fig. 1.4 for a specific example. We consider a
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Demkov-Kunike model for the corresponding linear model which has a symmetric detuning:

Ω(t) = Ω0sech(t/T ), ∆lin(t) = B tanh(t/T ) (1.32)

Figure 1.4: Numerical solution for (1) the DKAT model (solid line): Ω(t) = Ω0sech(t/T )
with Ω0T = 6 and ∆(t) (in units of 1/T ) determined from (1.15) with the tracked solution
P (t) (1.29), and (2) the standard nonlinear Demkov-Kunike model (dashed line), i.e. with
∆(t) = B tanh(t/T ), BT = 9 (both with Λij = 0). Upper: Populations P (t). Lower: Chirped
detuning. The superiority of the asymmetric DKAT detuning is shown.

We consider the special choice B = 3Ω0

2
.

In the adiabatic limit Ω0T >> 1 one has

P (t) = sin2

[∫ t

ti

sech(s/T )ds/2T

]
(1.33)
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For the numerics, we use the above Ω(t), and the modified detuning ∆track(t) from Eq. (2.20)

(with α = 0), which defines the corresponding nonlinear Demkov-Kunike adiabatic tracking

model (DKAT).

Fig. 1.4 shows the detuning falling to zero near the end of the dynamics, when the pulse

is switched off.

1.5 Analysis of robustness. Comparison with the Rabi

model

In this section we compare the robustness of the Rabi model and of the adiabatic tracking

technique. First we show that the Rabi solution is strongly non-robust with respect to the

detuning or to the presence of third-order nonlinearities. Then we show that adiabatic

tracking is robust with respect to the variation of these parameters.

The pulse ingredients are obtained by tracking the corresponding classical dynamics de-

rived from a Hamiltonian formulation, in the adiabatic limit. This leads to a non-symmetric

and non-monotonic chirp: the pulse parameters start, as in the linear case, out of resonance,

but end at the resonance (these all are in the case of the absent of third-order nonlinearities).

The Rabi model (for ∆ = 0) gives the highest fidelity molecular BEC transfer for a given

pulse.

The presence of a non-zero detuning, or of third-order nonlinearities, induces in general

oscillations in the integral of (1.11) due to sinα, which ruins the fidelity of the Rabi model.

This can be seen in Fig. 1.5 displaying the transfer profile as a function of a constant

detuning ∆0 for a Rabi model. The excitation profile oscillates more and more for a larger

pulse area.

The robustness of the tracking technique, with respect to the pulse area (as in traditional

adiabatic techniques for linear problems) and with respect to a static detuning (see Fig. 1.5),

is anticipated to be a decisive property for practical implementations.

Robustness for a particular implementation could necessitate optimizing the tracking
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Figure 1.5: Robustness of the final transfer probability P = 2|c2(tf )|2 = 2I(tf ) as a function
of a static detuning ∆0 (in units of 1/T ) for Ω(t) = Ω0sech(t/T ) with Ω0T = 3, Λij = 0 and
the detuning ∆(t) + ∆0 with (1) ∆(t) ≡ 0 (the Rabi model, solid line) and (2) ∆(t) [(1.15)
with α = 0], P (t) (1.33) (Demkov-Kunike nonlinear tracking model, dashed line).

specifically, as recently proposed for the linear case [91, 92].

1.6 Conclusion

In conclusion, we have studied the nonlinear dynamics of molecule formation by coherent

photo- and magneto-association of an atomic Bose-Einstein condensate. We have studied a

condensate initially in the all-atomic state, applying classical adiabatic theory. At first, we

have discussed the classical phase space of the time-independent version of the problem in

terms of the canonically conjugate variables α, I, that allow to describe the dynamics in a

two-dimensional reduced phase space.

Taking into account that the considered initial condition corresponds to a fixed point,

zero initial action, we obtain P (t).

Further, we have derived an efficient and robust adiabatic passage technique based on the
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tracking of a desired evolution scenario rather than imposing the parameters.

More generally, optimizing the tracking should be researched in order to improve the

fidelity and/or the robustness. The proposed method can be applied for other types of

nonlinearities, such as the ones described in [75] or in nonlinear optics [107]. One can also

treat more complicated problems, such as Λ systems with stimulated Raman processes. The

resulting non-monotonic chirps can be nowadays implemented in any timescale regime, even

in the picosecond and subpicosecond regimes where the pulse has to be shaped in the spectral

domain [94].

Thus, for a driven nonlinear quantum two-state system we present a technique of robust

and efficient adiabatic passage, which provides the transfer to a molecular state from an

atomic one by external optical fields. In the adiabatic limit we also obtained pulse parameters,

by tracking the dynamics derived from a Hamiltonian formulation.

The robustness of the derived technique, with respect to the pulse area and with respect

to a static detuning, is anticipated to be a decisive property for practical implementations.

Robustness for a particular implementation could necessitate optimizing the tracking specif-

ically, as proposed for the linear case [91]- [92]. The achievement of an ultrahigh fidelity

with an optimal exponential efficiency (see, for instance, [95]) is an open question.

We have shown that this nonlinear system does not have any solution that leads exactly

to the complete population transfer in a finite time. For an infinite pulse area it can be

reached only asymptotically.

In [1] it was shown that in the model without Kerr terms the tracking solution can be

chosen such, that there are no crossings with other fixed points at finite times when the laser

amplitude is non-zero, and thus the adiabatic approximation is justified and one obtains an

efficient tracking with the desired behaviour.
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Chapter 2

Adiabatic tracking for molecule

production in atomic Bose-Einstein

condensates with Kerr nonlinearities

In this Chapter we consider the influence of the third-order nonlinearities on the nonlin-

ear two-state dynamics. The third-order Kerr terms lead to a modified separatrix and fixed

points.

We derive the equation for the probability P (t) as a function of the Rabi frequency Ω(t)

and an evolution phase α(t). The equation is of the same form as the equation for P (t) from

the previous Chapter, i.e. the Kerr terms do not modify this equation.

We show, that the inclusion of Kerr terms can produce qualitatively important mod-

ifications in the adiabatic dynamics, in which the trajectory that is being tracked losses

its stability, so that the adiabatic theorem does not apply anymore. Thus, the adiabatic

transfer can be strongly degraded. We show, however, that this degradation can either be

compensated by using fields that are strong enough compared with the values of the Kerr

nonlinearities if α = 0 or can be avoided by taking a different branch of the tracking detuning

corresponding to the choice α = π.

Thus, the main result is that, despite the potentially detrimental features caused by the

40



Kerr nonlinearities, there always is a choice of the detuning that leads to an efficient adiabatic

tracking, even for a relatively weak fields.

The details of the development are as follows: In the case α = 0 there is an unavoidable

crossing of the tracking fixed point with another fixed point, after which the tracking fixed

point becomes hyperbolic, destroying the adiabaticity. In order to have a good transfer and

suppress the oscillations one needs to take Ω0 � Λs, where Ω0 is the peak Rabi frequency

of the associating lase field and Λs is an effective Kerr coefficient standing for the combined

action of the atom-atom, atom-molecule, and molecule-molecule elastic scattering described

by the third-order nonlinear Kerr terms. In this case we have a crossing of the separatrix

only at the end of the process, as it was in the model without Kerr nonlinearities. Thus, we

have an efficient transfer, without oscillation and crossing.

A further important observation is that the other possible choice of the detuning for

tracking, the one with α = π, leads to a stable adiabatic transfer to the target state for

arbitrary input parameters of the problem, that is, for the parameters involved in the Rabi

frequency and in the Kerr nonlinearities.

In summary, the main result of this Chapter is that in the presence of the Kerr terms

it is still possible to construct a detuning that leads to an efficient tracking for the chosen

population dynamics.

2.1 Nonlinear two-level model with Kerr terms

In the present section, we consider a two-state model including the third-order nonlin-

earities given as [96]:

iȧ1 = Ue−i
∫ t ∆(S)dS ā1a2 + (Λ11|a1|2 + Λ12|a2|2)a1, (2.1)

iȧ2 =
U

2
ei

∫ t ∆(S)dSa1a1 + (Λ21|a1|2 + Λ22|a2|2)a2 (2.2)
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with the first integral J = |a1|2+2|a2|2 = 1. Here a1 and
√

2a2 are the atomic- and molecular-

state probability amplitudes, respectively, U(t) is the Rabi frequency, which is chosen to be

real and positive: Ω ≥ 0, and ∆(t) is the detuning of the field frequency from the frequency of

the atom-molecule transition. The bar denotes complex conjugation and the Kerr coefficients

Λ11, Λ12 = Λ21 and Λ22 describe the atom-atom, atom-molecule, and molecule-molecule

elastic interactions, respectively. Some typical values for the Kerr coefficients, e.g. for a 87Rb

condensate with 4.3× 1020m−3 density are presented in Refs. [97,98].

We consider a condensate being initially in all-atomic state, hence, the initial condition

at ti = −∞ is

|a1(−∞)| = 1, |a2(−∞)| = 0.

Using the transformation a1 = c1e
−i

∫
∆(s) ds

3 , a2 = c2e
i
∫

∆(s) ds
3 , and Ω(t) =

√
2U(t), we can

rewrite Eqs. (2.1) and (2.2) as

iċ1 =
Ω√
2
c̄1c2 +

[
−∆

3
+ Λ11|c1|2 + Λ12|c2|2

]
c1, (2.3)

iċ2 =
Ω

2
√

2
c1c1 +

[
∆

3
+ Λ21|c1|2 + Λ22|c2|2

]
c2. (2.4)

2.1.1 Analysis of the model

A treatment of the nonlinear model in the adiabatic regime, which will allow the exten-

sion of the standard adiabatic passage in linear models, can be accomplished by a classical

Hamiltonian formulation of the problem. For Eqs. (2.3) and (2.4) we can write the following

equivalent classical equations of motion:

i
∂c1

∂t
=
∂H

∂c̄1

,

i
∂c2

∂t
=
∂H

∂c̄2

,
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derived from a Hamiltonian, that includes the third-order nonlinearities, written as

H =
∆

3
(|c2|2 − |c1|2) +

Ω

2
√

2
(c2

1c̄2 + c̄2
1c2) +

Λ11

2
|c1|4 +

Λ22

2
|c2|4 + Λ12|c1|2|c2|2. (2.5)

The complex variables cj can be written in terms of standard real canonical coordinates pj,

qj as

cj =
qj + ipj√

2

We now define another pair of the canonical variables Ij and ϕj by the relation cj =√
Ije
−iϕj . Further, making the canonical transformation from (I1, ϕ1, I2, ϕ2) to the new

variables (I, α, J, γ) defined as

γ = ϕ1,

J = I1 + 2I2,

α = −2ϕ1 + ϕ2,

I = I2,

we get the Hamiltonian

H = −∆

3
J + ∆I +

Ω√
2

(J − 2I)
√
I cosα +

Λ11

2
(J − 2I)2 +

Λ22

2
I2 + Λ12(J − 2I)I (2.6)

Introducing the notations

Λs = 2Λ11 +
Λ22

2
− 2Λ12, Λa = 2Λ11 − Λ12, (2.7)

and considering the example of a Rb condensate, we have Λs > 0 [98, 99]. We remark that

the equations of motion depend only on the combinations Λa and Λs. Thus, the Kerr terms

produce two distinct effects: the constant Λa produces only a constant shift in the detuning,

which can be trivially compensated in the adiabatic tracking, while Λs produces a nonlinear

term in the coupling. Therefore, only one effective parameter Λs can be taken into account
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in the analysis.

We explore in this Chapter a Rabi frequency up to the same order as the Kerr coefficients,

which will allow using weak fields. We show that a specifically shaped detuning can lead to

high-efficient transfer.

The Hamiltonian function is rewritten as

H = (∆− ΛaJ)I + ΛsI
2 +

Ω√
2

(J − 2I)
√
I cosα− C (2.8)

where C = ∆
3
J − Λ11

2
J2 is a constant, that can be omitted.

The Hamiltonian (2.8) leads to the following equations of motion (J = 1):

J̇ = −∂H
∂γ

= 0,

γ̇ =
∂H

∂J
= −∆

3
+

Ω√
2

√
I cosα− ΛaI + Λ11, (2.9)

İ = −∂H
∂α

=
Ω√
2

(1− 2I)
√
I sinα, (2.10)

α̇ =
∂H

∂I
= (∆− Λa) + 2ΛsI +

Ω

2
√

2

(1− 6I)√
I

cosα (2.11)

Since the Hamiltonian is independent of γ, we can define a reduced phase space of only two

dimensions with the variables (I, α):

İ =
Ω√
2

(1− 2I)
√
I sinα, (2.12)

α̇ = (∆− Λa) + 2ΛsI +
Ω

2
√

2

(1− 6I)√
I

cosα. (2.13)

We note that the angle α is not well-defined for I = 0 and I = 1/2. Denoting P = 2I, which

has the physical interpretation of the probability for the system to be in the molecular state,

the equations of motion are rewritten as follows

Ṗ = Ω(1− P )
√
P sinα, (2.14)
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α̇ = (∆− Λa) + ΛsP +
Ω

2

(1− 3P )√
P

cosα. (2.15)

2.1.2 Achieving the targeted molecular state

We notice that the Kerr nonlinearities appear only in the Eq. (2.15). As a consequence,

from Eq. (2.14) we can deduce the following result, that was derived for the model without

Kerr terms [2] (for the initial condition P (ti) = 0):

P (t) = 2I(t) = tanh2

[∫ t

ti

Ω(s)

2
sinα(s)ds

]
. (2.16)

It is seen that one cannot achieve a complete transfer with pulses of a finite area, as it was

already established for the case without Kerr nonlinearitiess.

2.2 Adiabatic tracking of driven quantum nonlinear sys-

tems with Kerr terms

2.2.1 Determination of the fixed points with Kerr terms

The instantaneous fixed points in the reduced phase space, for a given ∆ and Ω are

obtained by setting İ = 0, and α̇ = 0. We will start with fixed points determined from the

Eqs. (2.12) and (2.13).

0 = İ =
Ω√
2

(1− 2I)
√
I sinα, (2.17)

0 = α̇ = Ω

(
µ+ 2aI +

(1− 6I)

2
√

2
√
I

cosα

)
. (2.18)

Thus, İ = 0, α̇ = 0 are given by α = 0 or α = π. Introducing the notations a = Λs
Ω

and

µ = ∆−Λa
Ω

, one can determine I from the following equation, when α = 0:

µ = −2aI0 −
1

2
√

2

(1− 6I0)√
I0

(2.19)
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I = 1/2 corresponds more precisely to an hyperbolic (unstable) fixed point.

The points I = 0 and I = 1/2 are also fixed points. The coordinate α is not defined for

these points.

The dynamics is then realized if one assumes ∆(t) given by Eq. (2.19), which depends on

the initial sign of ∆(ti). For a given Ptrack(t) and Ω(t), in the adiabatic limit lim1/T→0P (t)−

Ptrack(t) = 0, i.e. for ∆(t) from (2.19) the solution P (t) will track Ptrack(t) in the adiabatic

limit, if there is no intersection with a separatrix.

Since P0 = 2I0, we can express Eq. (2.19) as:

µ = −aP0 −
1

2

(1− 3P0)√
P0

(2.20)

where P (t) is the probability of formation of a molecular state.

2.2.2 Adiabatic tracking with Kerr terms

The idea of adiabatic tracking is to choose a pulse shape Ω(t) and a molecular population

evolution Ptrack(t) that one wishes to follow, and then to determine a detuning ∆track(t) such,

that the exact solution corresponding to Ω(t), and ∆track(t) approaches the desired Ptrack(t)

in the adiabatic limit. In order to achieve this, first we determine ∆track(t) such that the

instantaneous fixed point of (2.17) and (2.18) satisfies P (t) = Ptrack(t). As in [1], we will use

for illustration pulse shapes of the form

Ω(t) = Ω0 sech(t/T ), (2.21)

and Ptrack(t) of the form

Ptrack(t) = sin2 1

2T

∫ t

−∞
sech(t′/T )dt′ = sin2

[
arctan(tanh[t/2] + π/4)

]
. (2.22)

The second step is to verify if the dynamics defined by this Ω(t), ∆track(t) satisfies the

conditions of validity of the adiabatic theorem. The main point is to verify whether there
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is a crossing of the tracked fixed point (which starts out as a stable elliptic fixed point) and

other fixed points of hyperbolic type. In references [100–103] it was shown that a crossings

of a separatrix associated to a hyperbolic fixed point can produce a big deviation from the

adiabatic approximation, and a strongly random behaviour (see also [104, 105] for further

developments in the subject). General methods to analyse the crossing of separatrices are

described in [80–82]. In [1] it was shown that in the model without Kerr terms the tracking

solution can be chosen such that there are no crossings with other fixed points at finite times

when the laser amplitude in non-zero, and thus the adiabatic approximation is justified and

one obtains a good tracking with the desired behaviour.

In order to analyze the properties of the adiabatic tracking, when the Kerr nonlinearities

are included, one should determine the instantaneous fixed points and the position of the

instantaneous separatrices. The first Eq. (2.17) has two solutions: α = 0 and α = π.

Inserting into Eq. (2.18) we get an algebraic equation for the corresponding fixed point

populations P0 and Pπ. Thus, from the Eq. (2.20), we can get the solution for adiabatic

tracking in the case of α = 0:

∆ = − Ω

2
√
P0

(1− 3P0) + 2Λ11(1− P0)− Λ22

2
P0 − Λ12(1− 2P0), (2.23)

and for α = π:

∆ =
Ω

2
√
P0

(1− 3P0) + 2Λ11(1− P0)− Λ22

2
P0 − Λ12(1− 2P0). (2.24)

We try to use one of these equations to construct a detuning for the desired tracking of

a given Ptrack. In the Fig. 2.2 we can show Demkov-Kunike Ω(t) = Ω0sech(t/T) [106] and

detuning, defined from the Eq. (2.23), for P0 = sin2
[∫ t

ti
sech(s/T)ds/2T

]
.

Thus, we can determine the fixed points for Ω(t) and ∆(t).

In the model without Kerr terms discussed in [1] the two choices (2.23) and (2.24) are

essentially equivalent and they lead to the same quality of transfer. As we will show below,
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Figure 2.1: Detunings for α = 0 and α = π. Ω(t) = Ω0sech(t/T), ∆(t) determined from
the Eqs. (2.23) and (2.24) (in units of 1/T , T = 10) with Ω0

Λs
= 0.5, Λ11 = 0.21328s−1,

Λ12 = −0.27962s−1, Λ22 = 0.10664s−1 and Λs = 2Λ11 + Λ22

2
− 2Λ12 = 1.03912s−1 parameters.

when Kerr terms are presented, the two choices lead to qualitatively different dynamics. In

one of the cases of Fig. 2.1 we display an example of the two choices of ∆. The second choice

(2.24) leads to significantly better transfer properties. We will show indeed that for (2.23)

the tracking fixed point, which starts being elliptic, goes inevitably through an intersection

with a hyperbolic fixed point, and its stability is lost by becoming hyperbolic. Once the

tracking fixed point is hyperbolic the classical adiabatic theorem does not apply anymore,

and thus the final stages of the process are non-adiabatic, which lead to an uncontrolled

dynamics failing in general to reach the target state. We will show that this difficulty can

be completely avoided by choosing the tracking (2.24) corresponding to the fixed point with

α = π [2].
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Figure 2.2: Ω(t) = Ω0sech(t/T) with red solid line, with ∆(t) determined from the Eq.
(2.23) with blue dashed line (in units of 1/T , T = 9). with Ω0 = 8, Λ11 = 0.21328s−1,
Λ12 = −0.27962s−1, Λ22 = 0.10664s−1 and Λs = 2Λ11 + Λ22

2
− 2Λ12 = 1.03912s−1 parameters.

Apart from the restrictions of crossing imposed in the phase space described below, adi-

abatic passage needs a sufficiently large pulse area, i.e. T >> 1: we have determined

numerically that the fidelity is already high (Pnum. & 0.99) for T & 5. T determines the

adiabatic scale.

2.2.3 Structure of the instantaneous phase portraits: fixed points

and sepatrices

We choose one instantaneous fixed point Ptrack(t) to construct the detuning by the

adiabatic tracking formulas (2.23) or (2.24). The dynamics defined by Ω(t) and ∆track(t),

have other fixed points, that we have to determine in order to analyze their possible effect on

the adiabatic evolution. In particular, when some other fixed points are hyperbolic, crossings

with them (or with the associated separatrices) can be the main obstacle for the adiabatic

following of the chosen Ptrack. Some general properties of the instantaneous phase portraits

of a class of models including the present one were presented by Itin and Watanabe in [75].
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We will present below the particular analysis required for the purpose of adiabatic tracking.

The main important point in this paragraph is that we remark that the continuity of the

flow in the reduced phase space imposes some restrictions on possible crossings of fixed points:

An elliptic fixed point can cross a hyperbolic fixed point, but not an elliptic one (unless it

also crosses simultaneously a hyperbolic fixed point). Furthermore, an elliptic fixed point

can cross a hyperbolic one, but it cannot cross any other part of the associated separatrix.

In general, when an elliptic and a hyperbolic fixed points cross, they exchange their stability

character, the elliptic one becomes hyperbolic and vice-versa [2].

2.2.4 Determination of the fixed points for given field configura-

tion

In order to analyze the properties of the adiabatic tracking when the Kerr terms are

included, we have to determine the instantaneous fixed points and the position of the instan-

taneous separatrices. From Eq. (2.20) we can find P as a function of detuning ∆(t) and the

coupling Ω(t). For the fixed point (P0, α = 0) from (2.20) we can write

µ+ 2aI0 +
(1− 6I0)

2
√

2
√
I0

= 0. (2.25)

From (2.25) the fixed points are the roots of the following third-order equation

2ΛsP0

√
P0 − 3ΩP0 + 2(∆− Λa)

√
P0 + Ω = 0, (2.26)

which can be written as

P0k =

(
− 1

3A

(
−3

2
Ω + ukC +

D0

ukC

))2

, k ∈ 1, 2, 3 (2.27)
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where u1 = 1, u2 = −1+i
√

3
2

, u3 = −1−i
√

3
2

are the three cube roots of unity, and

C =

(
D1 +

√
D2

1 − 4D3
0

2

) 3
2

,

D0 = 9
4
Ω2 − 3A(∆− Λa) and D1 = 27

4
Ω3 + 27

2
A(∆− Λa)Ω + 27

2
A2Ω.

For D we will get

D =
−D2

1 + 4D3
0

27A2

where D is the discriminant for cubic polynomial equation (2.27). From which we can get

three values for fixed points, since D > 0.

We remark that the points P = 1 and for Ω = 0, P = 0 are also fixed points. However, the

coordinate α is not defined for these points, it has to be verified in the original coordinates.

Fig. 2.3 corresponds to a small value of Ω0/ΛS and Fig. 2.4 to a larger one. The black

solid line is the exact solution P (t) obtained by numerical solution of the differential Eqs.

(2.3)-(2.4). The blue curve corresponds to the fixed point that has the same value of α = 0 as

the tracking fixed point, drawn in red, while the green curve corresponds to the other value;

α = π.

We observe that for any choice of the parameter Ω0/Λs there is a crossing of Ptrack with

the other fixed point for α = 0. The fixed point with α = π is on the other side of the phase

space, and thus it does not cross the tracking fixed point. Elliptic fixed points are displayed

as continuous lines while hyperbolic ones are displayed with dashed lines.

Before the crossing Ptrack is elliptic, but after the crossing it becomes hyperbolic and the

conditions for the adiabatic theorem are not satisfied anymore [80,83]. The end of the process

is always non-adiabatic, which may lead to a deterioration of the transfer to the all-molecules

state.

In numerical simulations we show when Ω0/Λs is large enough the crossing happens when

the population is close to P = 1 and in the end of the process there is still a good transfer

without oscillations, despite the loss of adiabaticity. Since, it is known that after crossing

of fixed points the adiabatic theorem is not valid anymore. If Ω0/Λs >> 1 the crossing can
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 -6 6 -4 
Time (in units of T) 

-2 2 4 

Figure 2.3: Tracking with ∆track,0, Ω0/Λs = 0.5, τ = 5. Exact (numerical) solution (black
solid line), and fixed points P0 (elliptic: solid lines, hyperbolic: dashed lines). The red
curve is the adiabatic tracking Ptrack and the blue and green curves are the two other fixed
points. The red and the blue curves are on the same side of phase space, and they intersect,
for the corresponding detuning [line α = 0, Eq. (2.24)]: while the green one in this panel
is on the opposite side, and corresponds to the other choice of detuning with α = π, Eq.
(2.24), at the times indicated by the arrows in panel. The colours of arrows correspond to
the colours of fixed points. Λ11 = 0.21328s−1, Λ12 = −0.27962s−1, Λ22 = 0.10664s−1 [97].
Λs = 2Λ11 + Λ22

2
− 2Λ12 = 1.03912s−1.

be pushed toward the end of the transfer, where the equation of motion (2.14) shows that,

because of the factor (1−P ), the population P (t) stays constant when (1−P )→ 0, and thus

the crossing has a negligible effect. This observation is consistent with the expected property

that when Λs/Ω is small enough, one should observe a behaviour close to the one of model

without Kerr terms. This is illustrated in Fig. 2.4.

P = 0 is an elliptic fixed point, and corresponds to the initial condition, which means the
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Figure 2.4: Tracking with ∆track,0, Ω0/Λs = 1.1, τ = 5.5. Exact numerical solution (black
solid line), and fixed points (elliptic: solid lines, hyperbolic: dashed lines). The red curve is
the adiabatic tracking Ptrack and the blue and green curves are the two other fixed points.
The red and the blue curves are on the same side of phase space, and they intersect, while the
green one is on the opposite side, at the times indicated by the arrows in panel. The colours
of arrows correspond to the colours of fixed points. Λ11 = 0.21328s−1, Λ12 = −0.27962s−1,
Λ22 = 0.10664s−1 [97]. Λs = 2Λ11 + Λ22

2
− 2Λ12 = 1.03912s−1.

condensate is in all-atomic state. P = 1 corresponds to the target all-molecular state. Its

stability character can change during the time evolution from elliptic to hyperbolic, as we

will see below.

In Figs. 2.3 and 2.4 we display the time evolution of the instantaneous fixed points for

two representative values of the parameter Ω0/ΛS. We can see the numerical exact solution

P (t), and positions of the three fixed points. These figures show, that if we take the line

corresponding to the adiabatic tracking (red line), we have a curve that is close to the exact

solution of P (t).
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2.2.5 Fixed points

P = 1 is always a fixed point, for any values of the parameters. This fixed point can be

stable (elliptic) or unstable (hyperbolic) at different times of the process.

Once ∆track is chosen, the fixed points other than P = 1 are solutions of the following

equations, determined from Eqs. (2.23), (2.24):

∆track = −ΛsP0 + Λa −
Ω

2
√
P0

(1− 3P0) for α = 0. (2.28)

or

∆track = −ΛsPπ + Λa +
Ω

2
√
Pπ

(1− 3Pπ) for α = π. (2.29)

These equations can be written as polynomial equation of degree 3 in the variable y :=
√
P .

Of the total of six roots,
√
Ptrack is one of them, and among the others one has to select the

ones that are real and are in the interval [0, 1]. The number of such solutions can be 0, 1 or

at most 2, and vary as a function of time.

P = 0 is a fixed point at the beginning and at the end of the pulse, when Ω = 0. Since

Ptrack(ti) = 0 and Ptrack(tf ) ' 1 the tracking is the adiabatic following of the family of fixed

points that starts as P = 0. The tracking fixed point is at all times either at α = 0 or at

α = π. The fixed points having the other value of α will thus never intersect it.

2.2.6 Separatrix

A separatrix is the energy curve that contains a hyperbolic fixed point. The energy of a

hyperbolic fixed point (P, α), is given by

H = (∆− 2Λ11 + Λ12)
P

2
+

Λs

4
P 2 +

Ω

2
(1− P )

√
P cosα,
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and thus, the points of the separatrix (Ps, αs) associated to this hyperbolic fixed point are

determined by the relation

H = (∆− 2Λ11 + Λ12)
P

2
+

Λs

4
P 2 +

Ω

2
(1− P )

√
P cosαs,

-1
0

1

P2

-1 0 1
P3

0

1

P

Figure 2.5: Tracking with ∆track,0, Ω0/Λs = 0.5, τ = 5. Exact (numerical) solution (black
line) and the adiabatic tracking Ptrack is with red line. Three values of fixed points for the
adiabatic tracking ∆(t) from the Eq. (2.23). The red and the blue curves are on the same
side of the phase space, and they intersect, while the green one is on the opposite side.
Instantaneous phase portrait, with fixed points and separatrices, at times indicated by the
arrows in the Fig. 2.3. The tracking fixed point (red dot) is elliptic for t = −T/2 (and
hyperbolic for t = T/2) after the bifurcation by crossing with the blue fixed point. Λ11 =
0.21328s−1, Λ12 = −0.27962s−1, Λ22 = 0.10664s−1 [97]. Λs = 2Λ11+ Λ22

2
−2Λ12 = 1.03912s−1.

one can obtain equation for separatrix:

cosαs =
H − (∆− 2Λ11 + Λ12)P

2
− Λs

4
P 2

Ω
2
(1− P )

√
P

In the Figs. 2.5 and 2.6 we show the time evolution of the instantaneous fixed points for

Ω0/Λs = 0.5, in the case when α = 0, at the times indicated by the arrows in panel of the Fig.

2.3. The position of the fixed points and of the separatrices associated with the hyperbolic
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Figure 2.6: Same as in the Fig. 2.5, and τ = 5.

one organize the global structure of the instantaneous phase portrait in the reduced phase

space.

-1
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-1 0 1
P3

0

1

P

Figure 2.7: Same as in the 2.5, but for ∆track,0, Ω0/Λs = 1.1, and τ = 5.5. The exact solution
is almost indistinguishable from Ptrack (red line). The green and the blue curves are on the
same side of the phase space and do not cross the red one, which is on the opposite side. The
tracking fixed point (red) stays elliptic at all finite times.

One can see that in the phase portraits for Ω0/Λs = 0.5 and Ω0/Λs = 1.1, for any choice of

the parameter Ω0/Λs there is a crossing of Ptrack with the other fixed point, which corresponds
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Figure 2.8: Same as in the Fig. 2.5, but for ∆track,0, Ω0/Λs = 1.1, and τ = 5.5.
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Figure 2.9: Same as in the Fig. 2.5, τ = 5.5, Λ11 = 0.21328s−1, Λ12 = −0.27962s−1,
Λ22 = 0.10664s−1 [97], Λs = 2Λ11 + Λ22

2
− 2Λ12 = 1.03912s−1.
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to α = 0. Before the crossing Ptrack is elliptic. However, after the crossing it becomes

hyperbolic and the conditions for the adiabatic theorem are not satisfied anymore [80, 83].

The end of the process is thus always non-adiabatic, which may lead to a deterioration of

the transfer to the all-molecules state. However, from the phase portraits for Ω0/Λs = 1.1

we show that by taking Ω0/Λs larger we will have a good transfer without oscillations.

When Ω0/Λs = 0.5 the tracking fixed point (red dot) in the Fig. 2.5 is elliptic. Whereas,

in the Fig. 2.6 it becomes hyperbolic, after the bifurcation by crossing with the blue fixed

point.

In the case of α = 0, when Ω0/Λs = 1.1 the tracking fixed point (red dot) in Figs. 2.7

and 2.8 is elliptic, then in the Fig. 2.9 it is hyperbolic.

2.2.7 Separatrix for P = 1

I = 1
2

is a hyperbolic fixed point, and from the Hamiltonian with Kerr terms the corre-

sponding energy is:

Hs = Ω
(µ

2
+
a

4

)
− ∆

3
+

Λ11

2
. (2.30)

The curve corresponding to this energy is the solution of

Ω
(µ

2
+
a

4

)
= Ω

(
µIS + aI2

S +
(1− 2IS)√

2

√
IS cosαs

)
(2.31)

(where IS 6= 1
2
, IS 6= 0).

Thus, the equation for the separatrix is

cosαs =
1√

P s(1− Ps)

(
µ+

a

2
− µPs −

aP 2
s

2

)
, (2.32)

cosαs =
1√
P s

(
µ+

a

2
(1 + Ps)

)
. (2.33)

2.2.8 Conditions for crossing of separatrix and fixed points, α = 0

In Figs. 2.10 we show exact solution P (t) for Ω0 > Λs and Ω0 < Λs.
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Since Ω→ 0 when t→∞ and P0 tends to a finite value (∼ 1), there is a crossing between

fixed points and this crossing can not be avoided. We observe that for any choice of the

parameter Ω0/Λs there is a crossing of Ptrack at the end of the pulse, with the other fixed

point with α = 0, since the fixed point with α = π is on the other side of the phase space,

and thus it does not cross the tracking fixed point.

From Figs. 2.10 one can see that there is no oscillation when Ω0 > Λs, and there are

oscillations when Ω0 < Λs.

Thus, one can have a good transfer by taking Ω0 bigger than Λs.
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Figure 2.10: Exact numerical solution of P (t), for the adiabatic tracking ∆(t) from Eq.
(2.23). T = 5, Λ11 = 0.21328s−1, Λ12 = Λ21 = −0.27962s−1, Λ22 = 0.10664s−1.
[97]. Λs = 2Λ11 + Λ22

2
− 2Λ12 = 1.03912s−1, Λa = 2Λ11 − Λ12. In the first figure

Ω0 < Λs, Ω0 = 0.5, whereas, in the second one Ω0 � Λs, Ω0 = 2.
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2.3 Adiabatic tracking of driven quantum nonlinear sys-

tems with inter-particle elastic scattering Kerr terms,

α = π

2.3.1 Determination of fixed points if α = π

In this paragraph for the fixed points we consider Eqs. (2.17) and (2.18). As it was

mentioned before, for I = 0, 1/2, the angle α is not defined. I = 1/2 is hyperbolic (unstable)

fixed point. The fixed points, corresponding to İ = 0 and α̇ = 0 conditions for given values

of Ω and ∆, can be given by α = 0 or α = π. In this paragraph, we will look at the case

when α = π.

With P0 = 2I0 we have

µ = −aP0 +
1

2

(1− 3P0)√
P0

(2.34)

P (t) is the molecular state probability, and the adiabatic tracking solution will be

∆ =
Ω

2
√
P0

(1− 3P0) + 2Λ11(1− P0)− Λ22

2
P0 − Λ12(1− 2P0). (2.35)

One can obtain ∆(t) from the Eq. (2.35), using Demkov-Kunike Ω(t) = Ω0sech(t/T)

[106] and P0 = sin2
[∫ t

ti
sech(s/T)ds/2T

]
.

For these Ω(t) and ∆(t) we can determine the fixed points. One can obtain I as a function

of the coupling Ω(t) and detuning ∆(t) from Eq. (2.19). From the Eq. (2.34), the fixed points

are the roots of the following third-order equation:

2ΛsP0

√
P0 + 3ΩP0 + 2(∆− Λa)

√
P0 − Ω = 0, (2.36)

In Figs. 2.11 and 2.12 we show the time evolution of the instantaneous fixed points for

two representative values of the parameter Ω0/ΛS. We can see the numerical exact solution

P (t), and three values of fixed points.
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Figure 2.11: Tracking with ∆track,π, Ω0/Λs = 0.2: Exact numerical solution (blue solid line),
τ = 6, and fixed points (elliptic: solid lines, hyperbolic: dashed lines). The red curve is
adiabatic tracking Ptrack and the orange and green curves are the two other fixed points. The
green and the orange curves are on the same side of the phase space and do not cross the red
one, which is on the opposite side. α = π. Ω0

Λs
= 0.2. Λ11 = 0.21328s−1, Λ12 = −0.27962s−1,

Λ22 = 0.10664s−1 [97]. Λs = 2Λ11 + Λ22

2
− 2Λ12 = 1.03912s−1.

For any values of the parameters P = 1 is always a fixed point. At different times of the

process it can be stable (elliptic) or unstable (hyperbolic).

The black full line is the exact solution P (t) obtained by numerical solution of the differ-

ential equations (2.3), (2.4). In the early times of the process the tracking fixed point (shown

in red) is the only fixed point (i.e. the only real root of the third-order polynomial equations

in (2.23), (2.35). At a critical time there is a bifurcation in which two roots become real, one

corresponding to an elliptic fixed point (shown as a full line) and the other to a hyperbolic

one (shown as a dashed line). The blue curve corresponds to the fixed points that have the
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Figure 2.12: Tracking with ∆track,π, Ω0/Λs = 0.2: Exact numerical solution (blue solid line),
τ = 9, and fixed points (elliptic: solid lines, hyperbolic: dashed lines). The red curve is the
adiabatic tracking Ptrack and the orange and green curves are the two other fixed points. The
green and the orange curves are on the same side of phase space and do not cross the red
one, which is on the opposite side. α = π. Ω0

Λs
= 1.1, Λ11 = 0.21328s−1, Λ12 = −0.27962s−1,

Λ22 = 0.10664s−1 [97]. Λs = 2Λ11 + Λ22

2
− 2Λ12 = 1.03912s−1.

same value of α = π as the tracking fixed point. The green curve corresponds to the other

value α = 0, i.e. to the fixed point that is on the other side of the reduced phase space and

thus does not cross the tracking fixed point. The full lines represent elliptic fixed points and

the dashed lines hyperbolic ones. We observe that the tracking fixed point has no crossings

at finite times, and it keeps its elliptic stable nature. Thus, the adiabatic theorem applies

until the end of the process and we have an efficient adiabatic transfer even for relatively

small values of Ω0/Λs. This is illustrated in Fig. 2.11 and Fig. 2.12 corresponds to a larger

value of Ω0/Λs.
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2.3.2 Determination of separatrix if α = π

In this paragraph we consider the Hamiltonian with Kerr nonlinearities

H = (∆− 2Λ11 + Λ12)
P

2
+

Λs

4
P 2 +

Ω

2
(1− P )

√
P cosαs

and

cosαs =
H − (∆− 2Λ11 + Λ12)P

2
− Λs

4
P 2

Ω
2
(1− P )

√
P

.

In the Figs. 2.13 - 2.16 the adiabatic tracking is with red line. One can define three

values of fixed points for the adiabatic tracking ∆(t) from the Eq. (2.35). The green and

the orange curves are on the same side of the phase space and do not cross the red one,

which is on the opposite side. It is shown instantaneous phase portrait, with fixed points

and separatrices. Red dot: tracking fixed point, which stays elliptic at all finite times. The

values of the Kerr terms are: Λ11 = 0.21328s−1, Λ12 = −0.27962s−1, Λ22 = 0.10664s−1 [97],

Λs = 2Λ11 + Λ22

2
− 2Λ12 = 1.03912s−1.

In Figs. 2.13 - 2.15 we show the time evolution of the instantaneous fixed points for

Ω0/Λs = 0.2, in the case when α = π, at the times indicated by the arrows in the panel of

Fig. 2.11, colours correspond to the colour of the separatrix in the phase portraits, with

fixed points and separatrix.

When α = π and Ω0/Λs = 1.1 the tracking fixed point (red dot) in the Fig. 2.16 is

elliptic. The blue curve corresponds to the fixed point when α = π, as for the tracking fixed

point. They are in the same side of the phase space. In the figures where Ω0/Λs = 0.2

we show that the tracking fixed point keeps its elliptic stable nature, since at finite times

there are no crossings, and the adiabatic theorem applies until the end of the process. Thus,

we have an efficient adiabatic transfer for small values of Ω0/Λs = 0.2. The Fig. 2.16

corresponds to a larger value of Ω0/ΛS. Here also there is no crossing, since the blue and the

adiabatic tracking (red) curves correspond to the fixed points, for which α = π. The green

curve corresponds to α = 0, which is on the other side of the phase space. Thus, in the case

of α = π we have an efficient transfer to the target state as in the case without Kerr terms.
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Figure 2.13: Tracking with ∆track,π. Ω0/Λs = 0.2,
τ = 6.
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Figure 2.14: Tracking with ∆track,π. Ω0/Λs = 0.2,
τ = 6.
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Figure 2.15: Tracking with ∆track,π. Ω0/Λs = 0.2,
τ = 6.
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Figure 2.16: Tracking with ∆track,π. Ω0/Λs = 1.1,
τ = 9.
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2.4 Exact tracking with Kerr nonlinearities

2.4.1 Determination of ∆(t) from Ω(t) and P (t)

We start with the Hamiltonian given by:

H = −∆

3
J + ∆I +

Ω√
2

(J − 2I)
√
I cosα +

Λ11

2
(J − 2I)2 +

Λ22

2
I2 + Λ12(J − 2I)I (2.37)

Introducing the notations

Λs = 2Λ11 +
Λ22

2
− 2Λ12, Λa = 2Λ11 − Λ12, (2.38)

f =
1√
2

(1− 2I)
√
I, (2.39)

and

g =
Λ11

2
(1− 2I)2 +

Λ22

2
I2 + Λ12(1− 2I)I = −ΛaI + ΛsI

2 + const,

also adopting the normalization J = 1, instead of (2.37) we will have:

H = −∆

3
+ ∆I + Ωf(I) cosα + g(I) (2.40)

from (2.40) one can obtain:

İ = −∂H
∂α

= Ωf(I) sinα (2.41)

α̇ =
∂H

∂I
= ∆ + Ωf ′(I) cosα + g′(I). (2.42)

where α̇ denotes the time derivative and f ′(I) the derivative with respect to I. Then, from

(2.41) we can get

sinα =
İ

Ωf
, cosα = ±

√
1− İ2

Ω2f 2

α = arcsin
İ

Ωf
, α̇ =

1

±
√

1− İ2

Ω2f2

d

dt

(
İ

Ωf

)
.
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Figure 2.17: In the first figure ∆(t) constructed by exact tracking, by Eq. (2.45) with P (t),
since we have two exact solutions for ∆(t) Eq. (2.53) for the parameters Ω0 = 1, T = 3 and
r = 0.6. In the second figure we present the exact tracking P (t) with exact solution of ∆(t)
from Eq. (2.45), for the parameters Ω0 = 1, T = 3.
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Inserting into (2.42) one can write the exact tracking formula:

∆ =
1

±
√

1− İ2

Ω2f2

[
Ï

Ωf
− İ2 f ′

f 2Ω
− İΩ̇

Ω2f

]
− f ′Ω

±
√

1− İ2

Ω2f 2

− g′ (2.43)

∆ =
1

±
√

Ω2f 2 − İ2

[
Ï − İ Ω̇

Ω
− İ2f

′

f
− ff ′Ω2 +

f ′

f
İ2

]
− g′ (2.44)

For f given by Eq. (2.39), we will have

∆ =
1

±
√

Ω2f 2 − İ2

[
Ï − Ω̇

Ω
İ − Ω2

4
(1− 8I + 12I2)

]
− g′ (2.45)

We obtain the formula for adiabatic tracking by neglecting İ ∼ ε ∼ 0, and Ï ∼ ε2 ∼ 0, from

which we will have ∆ ≈ −f ′Ω− g′. Thus, we have a solution for exact tracking.

2.4.2 Conditions for the choice of Ω(t) and P (t)

From (2.45) we see that ∆ will be well-defined (without divergence) if the denominator√
Ω2f 2 − İ2 6= 0 for any t. This condition is equivalent, by integration to

I(t) <
1

2
tanh2

[∫ t

ti

Ω(s)

2
ds

]
(2.46)

since we have

I(t) =
1

2
tanh2

[∫ t

ti

Ω(s)

2
sinα(s)ds

]
(2.47)

one way to choose I(t), is using Ω(t) and an arbitrary function sinα(t).

For the example we will choose the simplest case, where

sinα(t) =
r

T
= const < 1

and I(t) will be as we have in the Eq. (2.47). We cannot choose I(t) and Ω(t) independently,

but if we choose them such that they satisfy Eq. (2.46), then Ω2f 2 − İ2 6= 0, we will have
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the exact tracking formula, therefore, one can define ∆ from Eq. (2.45).

We can prove this by taking Ω2f 2 − İ2 = 0 from which we get

İ =
Ω√
2

(1− 2I)
√
I

In this section we are doing the same calculations as we did in the paragraph 1.1.2 with

α(t) = π
2
. We will obtain:

I(t) =
1

2
tanh2

[∫ t

ti

Ω(s)

2
ds

]
(2.48)

Thus, if

I(t) <
1

2
tanh2

[∫ t

ti

Ω(s)

2
ds

]
(2.49)

we will get

Ω2f 2 − İ2 6= 0.

The condition for existence of exact tracking (non divergent ∆(t)) is thus

P (t) < tanh2

∫ t

t0

Ω(t′)

2
dt′. (2.50)

On the other hand, from previous Chapter for P (t) we have the relation:

P (t) = tanh2

[∫ t

t0

Ω(t′)

2
sinα(t′)dt′

]

Since | sinα(t) |< 1, from the last two equations we get

P (t) = tanh2

[∫ t

t0

Ω(t′)

2
sinα(t′)dt′

]
≤ tanh2

∫ t

t0

Ω(t′)

2
dt′. (2.51)

2.4.3 An example

We choose Ω(t) as

Ω(t) = Ω0sech

(
t

T

)
(2.52)
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and sinα(t) = r
TΩ0

< 1, where r is constant. Since

Ω0

2

∫ t

−∞
sech

(
t

T

)
dt = TΩ0

[
arctan

(
tanh

t

2T

)
+
π

4

]
,

we can write

P (t) = tanh2

(
rΩ0

[
arctan

(
tanh

t

2T

)
+
π

4

])
(2.53)

where r < 1. In conclusion, the (2.52) and (2.53) provide a tracking solution, with a well-

defined ∆(t), without singularities.

2.4.4 Exact tracking with α = const including Kerr nonlinearities

From the following equations

Ṗ = Ω(1− P )
√
P sinα (2.54)

α̇ = (∆− Λa) + ΛsP +
Ω(1− 3P )

2
√
P

cosα (2.55)

and with the initial condition P (ti) = 0 the Eq. (2.54) we can present as

P (t) = tanh2

[∫ t

ti

Ω(t′)

2
sinα(t′)dt′

]
(2.56)

(assuming that P (t) ≥ 0). Thus, by choosing α(t), for a given Ω(t) one can determine P (t).

One should choose sinα(t) positive for small t− ti and for Ω(t) ≥ 0, to explain that P ≥ 0.

A possible simple choice is sinα(t) = S0

TΩ0
= const > 0. Remark: for exact tracking we

cannot choose α(t) = 0 for any t, since P (t) = 0 and would have a divergence due to Ω(t)√
P

.

Note, that we choose α ∈ [0, π]. Thus, sinα(t) = const, dα
dt

= 0, the exact tracking is

determined by:

∆± = Λa − ΛsP ∓
Ω(1− 3P )

2
√
P

√
1−

(
s0

TΩ0

)2

(2.57)
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This exact tracking can be compared with the adiabatic tracking

∆ad
± = Λa − ΛsP ∓

Ω(1− 3P )

2
√
P

(2.58)

Thus, the only thing that changes is the factor

√
1−

(
s0
TΩ0

)2

. This explains that after the

crossing of fixed points one still obtains an efficient transfer (see [2]), although the adiabatic

theorem is not valid.

2.5 Exact tracking with Kerr terms: a second approach

2.5.1 Determination of δ(t)

We consider the following nonlinear system, which describes atomic and molecular con-

densates [96] and includes third-order nonlinearities:

iȧ1 = Ue−iδ(t)ā1a2 + (Λ11|a1|2 + Λ12|a2|2)a1 (2.59)

iȧ2 =
U

2
eiδ(t)a1a1 + (Λ21|a1|2 + Λ22|a2|2)a2 (2.60)

One can get an exact third-order nonlinear differential equation for molecular state prob-

ability P = |a2|2 [112]:

(
d

dt
− 1

G

dG

dt

)[
1

U

d

dt

(
1

U

dP

dt

)
− 1

2
(1− 8P + 12P 2)

]
+G2dP

dt
= 0, (2.61)

where

G =
δt − Λa + 2ΛsP

U
, δt ≡

dδ

dt
. (2.62)

Λs = 2Λ11 +
Λ22

2
− 2Λ12, Λa = 2Λ11 − Λ12 (2.63)

From Eq. (2.61) after making some calculations, for δt one can obtain the following exact
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equation

δt = Λa − 2ΛsP ±
d2P
dt2
− 1

U
dU
dt

dP
dt
− U2

2
(1− 8P + 12P 2)√

|
(
dP
dt

)2 − U2

2
(1− 2P )2P + C0U2|

. (2.64)

For the initial condition P (−∞) = 0, we find C0 = 0. If in Eq. (2.64) we put the derivatives

of P equal to zero, we get an equation for adiabatic tracking.

2.6 Conclusion and discussion

In this Chapter we have analyzed the method of adiabatic tracking for nonlinear two-

state models of photoassociation of Bose-Einstein atomic condensates, which include the Kerr

type nonlinearities. The third-order nonlinearities result in a modified separatrix and fixed

points, imposing different form for the instantaneous detuning.

We can summarize the main results as follows: We have first found an equation for P (t),

which is of the same form as the one which we obtained without Kerr terms. The formula

shows that one cannot achieve a complete transfer with pulses of a finite area, one can only

approach asymptotically, as it was already established for the models without Kerr terms.

The presented analysis shows that a good adiabatic transfer can be achieved by the

adiabatic tracking approach also in the presence of the Kerr nonlinearities.

It is indeed still possible to construct a detuning that leads to an efficient tracking of the

chosen population dynamics despite the strong modifications of the structure of the adiabatic

phase portrait, through interfering fixed point trajectories, which induces bifurcation and loss

of stability of the adiabatic dynamics.

To show this result, we have first reduced the two-level model in order to highlight two

relevant combinations of Kerr terms Λa and Λs. They produce two distinct effects: The term

Λa is a shift that can be easily compensated via a static detuning term. The Λs term leads

to a behaviour qualitatively different from the nonlinear model without Kerr terms. We have

analyzed the method of adiabatic tracking to design the detuning and to determine the range

of pulse peaks, for a given pulse shape, allowing one to approach the complete transfer. We

have found two qualitatively different forms for the detuning.
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We have shown that if α = 0, we always have an unavoidable crossing between the

tracking and another fixed points that gives a hyperbolic character to the tracking fixed

point. And once the tracking fixed point is hyperbolic, the classical adiabatic theorem does

not apply anymore thus destroying the adiabaticity, and the final stage of the process is

non-adiabatic. This can strongly degrade the quality of the transfer for small amplitudes of

the driving pulse. However, we have shown that one can avoid oscillations by taking strong

enough pulses compared with the magnitude of the Kerr terms. Thus, the effect of this

non-adiabatic crossing can be made negligible [2].

The key result of this Chapter is that one can always design a path, i.e. a detuning for

a given field, that leads to a very efficient association even for strong Kerr terms as large as

the Rabi frequency.

Indeed, we found that the crossing of fixed points can be completely avoided by choosing

the tracking corresponding to the fixed point with α = π [2]. This leads to a stable adiabatic

transfer to the target molecular state as in the case without Kerr type nonlinearities [1].

From the practical point of view, in photo- and magneto-association of atomic BEC into

molecular state, the Kerr terms are proportional to the density while the coupling scales as

the square root of the density [99]. Some typical values, e.g. for a 87Rb condensate, are [98]:

Λ11 = 4.96×10−11ρ(s−1), Λ22 = 2.48×10−11ρ(s−1) Λ12 = Λ21 = −6.44×10−11ρ(s−1)

(2.65)

with ρ the density (in cm−3), typically ρ = ρ0 ≡ 4.2× 1014(cm−3), giving

Λs = 2.40× 10−10ρ(s−1), Λa = 1.64× 10−10ρ(s−1). (2.66)

Using these numbers, we have numerically found that

XKerr terms as strong as Λs ∼ Ω0/2 already lead to an infidelity of 10 % for the transfer

if one does not take into account the compensating term proportional to Λs in the design of

the detuning (2.23) or (2.24);

Xthe distinction between the dynamics induced by the two respective detunings (2.23)
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and (2.24) can be observed for Kerr terms as strong as Λs ∼ Ω0;

Xone can compensate the Kerr terms with a high-fidelity transfer using the design (2.24)

giving a high fidelity transfer for the peak Rabi frequency as low as Ω0 ∼ Λs/2.

This opens the possibility to achieve the association at (1) larger densities than usually

used (but not too large so that S-wave scattering is dominant) and (2) lower field amplitudes

by designing the control detuning according to (2.24). Note that, in any case, the field

duration T has to be adapted such that τ ≡ Ω0T & 5 in order to maintain adiabaticity. For

instance, typical coupling for photoassociation [98] Ω0 = 2.1 × 106
√
ρ/ρ0s

−1, i.e. Ω0/Λs ≈

1016
√

1/(ρρ0), allows one in principle to multiply the density of the condensate by up to

2500 or to divide the field amplitude by up to 50 (or any combination of these) to still reach

a high fidelity transfer.

One can mention the Λ-photoassociation configuration which has the potential to strongly

minimize loss and decoherence when the stimulated Raman adiabatic passage (STIRAP) pro-

cess is considered [97,99]. It has been shown [98] that a low density of a 87Rb condensate would

in principle enhance the molecular conversion efficiency by reducing the Kerr nonlinearities

compared to a standard density. However, it has been argued [99] that the reduction of the

density causes in general several practical problems. Our alternative strategy to maintain or

even increase the density appears thus in principle relevant in this configuration. Further,

we will explore the extension of our results in Λ systems, taking into account the additional

issue that the classical Hamitlonian for the three-state problem is non-integrable.

The language of photoassociation theory has been adopted in this Chapter, however,

the derived results are general for nonlinear problems that are described by (2.1) and (2.2),

arising also in other physical domains, for instance in nonlinear optics [93], such as frequency

conversion beyond the undepleted pump approximation [108].

The adiabatic tracking ensures a certain robustness of the dynamics and a very good

fidelity of the process. Achieving an ultrahigh fidelity comparable to the one obtained by

optimized adiabatic passage of linear systems (see for instance [95]) or for shortcut to adia-

baticity techniques [109] is an open question.
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Chapter 3

Nonlinear stimulated Raman exact

tracking

As it was already mentioned, the goal of the work is to present an analysis of the atom-

molecule conversion dynamics in degenerate quantum gases. The atom-molecule conversion

is performed within a two-step conversion process, which is known as the Raman transition.

A version of this kind of transition is the stimulated Raman adiabatic passage (STIRAP).

The STIRAP, a field-matter interaction model, is a well established process widely used by the

quantum physics community for more than 20 years. Here a counterintuitive sequence of two

laser fields is applied to create a molecular Bose-Einstein condensate by means of connecting

the initial free-atomic state and the final molecular ground state via a third excited state of

weakly bound molecules. Remarkably, with the appropriate time-dependent pulse shapes, the

STIRAP process permits the coherent transfer of the molecules to the ground state without

essentially populating the excited state, thereby removing the possibility of losses because of

spontaneous decay. In the considered model we obtain exact dynamics of quantum transfer by

stimulated Raman processes for nonlinear systems controlled by pulsed fields. The external

fields are designed by inverse-engineering construction, which allows to surpass the usual

nonlinear STIRAP efficiency.

It is shown, that in order to have an efficient transfer for nonlinear stimulated Raman
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exact tracking, one has to use a pump pulse stronger than the Stokes pulse, contrary to the

ordinary linear STIRAP case.

To avoid the losses from the weakly bound molecular state, we propose a technique for

stimulated Raman exact tracking including losses. We show how one can avoid these losses

from the intermediate state in the case of one- and two-photon resonances.

Finally, we present an analysis of the robustness for linear and nonlinear STIRAP proce-

dures.

3.1 Properties of the nonlinear model

The stimulated Raman processes for the nonlinear model are described by the equation

i
∂ψ

∂t
= HNLψ, (3.1)

with

ψ =


a1

a2

a3

 (3.2)

and

HNL =


0 2ΩP ā1 0

2ΩPa1 0 ΩS

0 ΩS 0

 , (3.3)

where ΩP and ΩS are the pump and Stokes Rabi frequencies, respectively. We suppose that

they are real and time-dependent. The normalization condition is:

|a1|2 + 2|a2|2 + 2|a3|2 = 1 (3.4)

In the variables a1 = c1, 2a2 = c2, 2a3 = c3, and taking into account the detunings, Kerr
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nonlinearities and losses, the governing equations are rewritten as

iċ1 = ΩP c̄1c2 + (Λ11|c1|2 + Λ12|c2|2 + Λ13|c3|2)c1

iċ2 = (−iΓ + ∆)c2 + ΩP c
2
1 + ΩSc3 + (Λ21|c1|2 + Λ22|c2|2 + Λ23|c3|2)c2

iċ3 = ΩSc2 + δc3 + (Λ31|c1|2 + Λ32|c2|2 + Λ33|c3|2)c3

(3.5)

with the normalization condition now given as

|c1|2 + |c2|2 + |c3|2 = 1. (3.6)

An important observation has to be highlighted: when starting with the initial condition

c1(ti) = 1 at the initial time ti, if the Rabi frequencies are real, from the form of the equations

(3.5) we can conclude that c1(t) and c3(t) are real, and c2(t) is purely imaginary for all times.

We will show that the nonlinear problem (3.3) is isomorphic to a modified nonlinear two-state

problem (with ψ2 = [b1 b2]t and |b1|2 + |b2|2 = 1):

i
∂ψ2

∂t
= HNL,2ψ2 (3.7)

with the following Hamiltonian

HNL,2 =
1

2

 −ΩS ΩP (|b1|2 − |b2|2)

ΩP (|b1|2 − |b2|2) ΩS

 . (3.8)

We note that the nonlinearlity which appears here is not the one usually encountered in

the Bose-Einstein condensation or in nonlinear optics.

3.2 Isomorphism

The density matrix ρ corresponding to the system (3.8) is defined by

ρij = 〈i|ψ2〉 〈ψ2|j〉 .
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and |j >j=1,2. We introduce the corresponding Bloch variables ρx, ρy, ρz defined by

ρx = ρ21 + ρ12 = b2b̄1 + b1b̄2,

ρy = i(ρ21 − ρ12) = i(b2b̄1 − b1b̄2),

ρz = ρ22 − ρ11 = |b2|2 − |b1|2,

(3.9)

The isomorphism is shown with the use of the density matrix formulation on the Bloch

sphere. Thereby, the system (3.7) expressed in these variables leads to the following differ-

ential equations:

d

dt


ρz

ρy

ρx

 =


0 ΩPρz 0

−ΩPρz 0 ΩS

0 −ΩS 0



ρz

ρy

ρx

 (3.10)

The population difference (or equivalently the coefficient c1 in the original three-state

representation) in front of ΩP can be expected to reduce the efficiency of the pump near the

end of the transfer while the transfer is being accomplished, | a1 |−→| a2 | (or equivalently

c1 −→ 0). We thus anticipate that a stronger pump pulse is needed, in contrast to the

ordinary linear STIRAP.

By comparing (3.10) with (3.3) we see that the equations are the same if we make the

identification

c1 = −ρz, c2 = −iρy, c3 = ρx

(under the condition that c1 and c3 are real and c2 is imaginary). Note, that in the current

Chapter for our calculations we consider ~ = 1. Thus, from each solution of (3.8) we obtain

a solution of Eq. (3.10).

We thus recover the initial three-state problem with the initial condition c1(ti) = 1. As

a consequence, the resonant nonlinear STIRAP equation can be mapped to a nonlinear two-

level model. From the definition of the variables (3.9) we see that a complete transfer of the

3 level system |c3(tf )| = 1, i.e. ρx(tf ) = ±1 at the final time tf , corresponds in the two-state

problem (3.8) to the passage from the initial state ρ11(ti) = 1, to the superposition of states:
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ρ12(tf ) = ρ21(tf ) = ±1
2
, (which is the maximal coherence in the density matrix formulation).

This shows a similar qualitative behaviour as for its linear analog.

3.3 Analysis of the model

We can rewrite the general solution of the two-state problem Eq. (3.8) parameterized

by three angles:  b1

b2

 =

 cos(θ/2)

sin(θ/2)e−iϕ

 e−iγ (3.11)

In terms of these three angles the time-dependent Schrödinger equations lead to the equations

θ̇ = 2ΩP cos θ sinϕ,

ϕ̇ = 2ΩS + 2ΩP
cos2 θ
sin θ

cosϕ,

γ̇ = −ΩS + ΩP cos θ tan(θ/2) cosϕ.

(3.12)

One can solve the first equation of (3.12) exactly [for any ΩP (t) and ΩS(t)]:

tanh(θ/2) = tanh

[
2

∫ t

ti

ΩP (s) sinϕ(s)ds

]
. (3.13)

This relation implies that in order to have a complete transfer from the first state to the

third one, in the original model, i.e. θ(ti) = 0 and θ(tf ) = π/4, we need an infinite pulse area

of ΩP (t).

This contrasts with the linear model where a complete population transfer is possible for

finite pulse area. It can be achieved for a so-called intuitive sequence, i.e. with the pump

pulse switched on first, or for a counterintuitive sequence in which the Stokes pulse is switched

on first. With the intuitive sequence the pump pulse transfers first the population from state

1 to state 2, and next the Stokes pulse leads the population from state 2 to state 3. However,

an overlap optimizes the time of interaction as shown in Ref. [110]. A counterintuitive

sequence requires larger pulse areas but allows a smaller transient on the intermediate state,

which is desirable since in practice this state is in general lossy. For the nonlinear model, we
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derive below solutions for finite pulse areas which lead to an approximate population transfer.

3.4 Derivation of an ordinary differential equation for

c3(t)

We now derive a second-order differential equation for c3. For convenience, we rewrite

here the equations (3.5) without detunings, Kerr nonlinearities and losses

iċ1 = ΩP c̄1c2

iċ2 = ΩP c1c1 + ΩSc3

iċ3 = ΩSc2

(3.14)

Since c2 is imaginary we can denote c2 = ib2 and insert it into the second equation of (3.14)

to obtain

−(ḃ2) = ΩP c1c1 + ΩSc3 (3.15)

Further, from the normalization condition we can write c2
1 = 1 − c2

2 − c2
3. Inserting this into

equation (3.15) we obtain

−(ḃ2) = ΩP (1− |c2|2 − |c3|2) + ΩSc3 = ΩP (1− b2
2 − c2

3) + ΩSc3 (3.16)

Dividing Eq. (3.16) by ΩS, we get

− db2
ΩSdt

= ΩP
ΩS

(1− b2
2 − c2

3) + c3 (3.17)

The advanches result is that here by introducing the notations c̃3 ≡ c̃3(z) = c3(t), z ≡

z(t) =
∫ t
ti

ΩS(t′), and also using the shortcut notations c̃3,z ≡ dc̃3
dz

, c̃3,zz ≡ d2c̃3
dz2

, for the third

state probability amplitude we obtain the nonlinear ordinary differential equation of the

second-order

c̃3, zz + c̃3 +
ΩP

ΩS

[1− c̃2
3,z − c̃2

3] = 0. (3.18)
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From this equation one can easily derive the values for pump or Stokes pulses for an exact

tracking.

3.5 An exact tracking: determination of the pump- and

Stokes-pulses

From Eq. (3.18) for any ΩS(t) and c(z) we have

ΩP

ΩS

=
−c̃3zz − c̃3

1− c̃2
3,z − c̃2

3

=
c̃3zz + c̃3

c̃2
3 + c̃2

3z − 1
. (3.19)

Thus, it is seen that we can determine ΩP (t) corresponding to a chosen ΩS(t) and c3(t):

ΩP (t) = −ΩS(t)
c3,tt − c3,tΩSt/ΩS + Ω2

Sc3

(1− c2
3)Ω2

S − c2
3,t

. (3.20)

(since z(t) =
∫ t
ti

ΩS(t′)). This is the tracking solution.

We remark that in order to obtain a finite ΩP (t), ΩS(t) and c3(t) have to satisfy a

compatibility condition, that can be expressed by requiring that the denominator in (3.20)

is not zero: (1− c2
3)Ω2

S − c2
3,t 6= 0.

Further, we choose an alternative parametrization, which is convenient to present as

follows:

c1 = cos Θ cosφ,

c2 = i sin Θ,

c3 = − cos Θ sinφ

(3.21)

where Θ(ti) = Θ(tf ) = 0 and φ(ti) = 0, φ(tf ) = ±π
2
.

One can derive the form of the pump and Stokes pulses using the time-dependent Schrödinger

equations. Inserting the values of c1, c2, and c3 from the Eq. (3.21) into the Eq. (3.3) we
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obtain

iΩP sin Θc̄1 = i(−Θ̇ sin Θ cosφ− φ̇ cos Θ sinφ)

Θ̇ cos Θ = −ΩP cos Θ cos2 φ+ ΩS sinφ

iΩS sin Θ = i(Θ̇ sin Θ sinφ− φ̇ cos Θ cosφ)

(3.22)

The last equation of (3.22) for the Stokes pulse gives

ΩS = −Θ̇ sinφ+ φ̇
cosφ

tan Θ
(3.23)

Further, inserting (3.23) into the second equation of (3.22) we obtain

ΩP = Θ̇
1

cos Θ

(
− 1

cos2 φ
+

sin2 φ

cos2 φ

)
− φ̇tanφ

sin Θ
(3.24)

and thus

ΩP = −Θ̇
1

cos Θ
− φ̇tanφ

sin Θ
. (3.25)

For the nonlinear case, only the form of the pump pulse differs from the one of the linear

case, which has the form

ΩP = Θ̇ cosφ+ φ̇
sinφ

tan Θ
. (3.26)

3.6 Parametrization of the tracking solution for two

angles

We can choose in the mentioned two cases the following simple parametrization Θ̃(φ) =

Θ(t):

Θ̃(φ) = ε
4

π

√
φ
(
±π

2
− φ
)
, (3.27)

which satisfies the boundary condition Θ̃(0) = Θ̃(±π
2
) = 0, and has the maximum value

Θ̃max = Θ̃
(
φ = ±π

4

)
= ε. Thus, the quantity ε allows the control of the maximum transient
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population in the upper state 2:

max|c2|2 = sin2(ε). (3.28)

For φ(t) one finally chooses the time parametrization as, for instance:

φ(t) = η
π

4

[
1 + tanh

(
t

T

)]
, (3.29)

where φ(ti = −∞) = 0, φf = φ(tf = +∞) = η π
2
. T is a normalized time, and 0 ≤ η ≤ 1

allows the control of the final transfer:

|c3(tf )|2 = cos2(Θ̃(φf )) sin2
(
η
π

2

)
. (3.30)

For the nonlinear case, η can be exactly one only for an infinite pump pulse area. In

practice, one thus takes it being less than one.

-4 -2 2 4
t

1

2

3

4

5

ΩS, ΩP

Figure 3.1: Nonlinear-system dynamics for the three-state problem, the Rabi frequencies:
Stokes (first) and pump (second). T = 1, ε = 0.2, η = 0.96, ∆ = 0.1. Kerr nonlinearities:
Λ11 = 0.212328ν, Λ13 = Λ31 = −0.27962ν, Λ33 = 00.10664ν, Λ12 = Λ21 = 0, Λ22 = 0,
Λ23 = Λ32 = 0, where ν = 0, 01.

In Figs. 3.1 and 3.3 we display the dynamics of the nonlinear model for ε = 0.2 and

η = 0.96, leading to a very efficient transfer |c3|2(tf ) ≈ 0.99 with a low transient population
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Figure 3.2: Nonlinear-system dynamics. The populations for three levels. T = 1, ε = 0.2,
η = 0.96, ∆ = 0.1. Kerr nonlinearities: Λ11 = 0.212328ν, Λ13 = Λ31 = −0.27962ν, Λ33 =
00.10664ν, Λ12 = Λ21 = 0, Λ22 = 0, Λ23 = Λ32 = 0, where ν = 0, 01.

in state 2. Here we consider Eqs. (3.5), where Γ = 0 and δ = 0.

We notice the counterintuitive sequence (Stokes pulse first) for both linear and nonlin-

ear models which results from this parametrization when a low transient transfer to the

intermediate state is imposed.

3.7 Comparison with the dynamics by delayed Gaus-

sian pulses

The results given by the tracking solution suggests to test the efficiency of the population

transfer for standard shapes, such as delayed Gaussian pulses.

The pump Rabi frequency amplitude is adapted for a given Stokes Rabi frequency. In

Fig. 3.3 we can see the transfer efficiency to state 3 for a counterintuitive Gaussian pulse

sequence with delay τ > 0 and pulse half-width T :

ΩP = ΩPmaxe
−[(t−τ)/T ]2 , ΩS = ΩSmaxe

−[(t+τ)/T ]2 .
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As expected, we retain a very good efficiency when the pump area is stronger than the

Stokes area with the use of Gaussian pulses as well. In Fig. 3.3 we can see the same dynamics

as in Fig. 3.2.

-20 -10 0 10 20
t

0.2

0.4

0.6

0.8

1.0
P1,P2,P3

Figure 3.3: Nonlinear system dynamics for the three-state problem with τP = τS = 5,
TP = TS = 8, ΩPmax = 5.1, ΩSmax = 2, ∆ = 0.1. Kerr nonlinearities: Λ11 = 0.212328ν,
Λ13 = Λ31 = −0.27962ν, Λ33 = 00.10664ν, Λ12 = Λ21 = 0, Λ22 = 0, Λ23 = Λ32 = 0, where
ν = 0, 01.

Thus, we observe a very good efficiency when ΩPmax is stronger than ΩSmax and for a

relatively wide region of τ . This efficiency appears robust with respect to the peak amplitudes

and the delay, similarly to the linear STIRAP.

We have derived an exact dynamics of quantum transfer by stimulated Raman processes

for nonlinear systems. This technique describes the transient from an atomic to a molecular

Bose-Einstein condensate. The main point is, that unlike in the linear stimulated Raman

adiabatic passage, for nonlinear systems the technique features the need of a pump pulse

stronger than the Stokes pulse.
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3.8 Nonlinear stimulated Raman exact tracking with

detuning and Kerr nonlinearities

We consider a nonlinear three-level system, without losses, including detuning and Kerr

nonlinearities:

iċ1 = ΩP c̄1c2 + (Λ11|c1|2 + Λ12|c2|2 + Λ13|c3|2)c1

iċ2 = ∆c2 + ΩP c
2
1 + ΩSc3 + (Λ21|c1|2 + Λ22|c2|2 + Λ23|c3|2)c2

iċ3 = ΩSc2 + (Λ31|c1|2 + Λ32|c2|2 + Λ33|c3|2)c3

(3.31)

We took the values for the third-order nonlinearities as [97]:

Λ11 = 0.212328ν, Λ13 = Λ31 = −0.27962ν, Λ33 = 0.10664ν

Λ12 = Λ21 = 0, Λ23 = Λ32 = 0, Λ22 = 0.

where ν = 0.01, ∆ = 0.1, δ = 0.

As we did without Kerr terms, we can choose the Rabi frequencies as Gaussian or via

mentioned parametrization.

We choose the parametrization:

Θ̃(φ) = ε
4

π

√
φ
(
±π

2
− φ
)

(3.32)

The time parametrization for φ(t):

φ(t) = η
π

4

[
1 + tanh

(
t

T

)]
, (3.33)

where T is a normalized time.

Thus, we can choose the Rabi frequencies as:

ΩP = ˙̃Θ(t)
1

cos(Θ̃(t))
+ Φ̇(t)

tan(Φ(t))

sin(Θ̃(t))
(3.34)
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ΩS = − ˙̃Θ(t) sin(Φ(t)) + Φ̇(t)
cos(Φ(t))

tan(Θ̃(t))
(3.35)

As a result, we can achieve an efficient transfer with third-order Kerr nonlinearities and

the second intermediate state can be less populated. Note, that here we do not take into

account losses: Γ = 0. Thus, in this paragraph we consider the three-level system with Kerr

nonlinearities and detuning Eqs. (3.31).

3.9 Nonlinear stimulated Raman exact tracking with

losses. Determination of c3(t)

In this paragraph we consider the dynamics of a nonlinear three-state system at one-

and two-photon resonance at the presence of irreversible losses from the intermediate second

level.
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Figure 3.4: Nonlinear stimulated Raman exact tracking. The Rabi frequencies, which are
taken as Gaussian. ΩPmax = 4, ΩSmax = 1, τP = τS = 5, TP = TS = 8, and Γ = 0.2.
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Figure 3.5: Nonlinear stimulated Raman exact tracking. Populations for three levels.
ΩPmax = 4, ΩSmax = 1, TP = TS = 8, τP = τS = 5, and Γ = 0.2.

In this case the governing Eqs. (3.5) are written as

iċ1 = ΩP c̄1c2

iċ2 = −iΓc2 + ΩP c
2
1 + ΩSc3

iċ3 = ΩSc2

(3.36)

where Γ > 0 presents the losses from the state 2.

As it was already mentioned, c1 and c3 can be chosen real, whereas c2 is imaginary. Using

the normalization condition and multiplying first equation of the Eq. (3.36) by c1 we get

i

2
ċ1

2 = ΩP (1− |c2|2 − |c3|2)c2 (3.37)

Also, from the second equation of the Eq. (3.36) we have

c2
1 =

i

ΩP

ċ2 −
Γ

ΩP

c2 −
ΩS

ΩP

c3 (3.38)
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and from the third equation of the Eq. (3.36):

c2 =
iċ3

ΩS

(3.39)
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Figure 3.6: Nonlinear stimulated Raman exact tracking. The first figure presents the Rabi
frequencies and the second one plots the populations for three levels. ΩS = ΩS0 sech(t),
c3 = c

2
(1 + tanh(t)) with ΩS0 = 1.5, Γ = 0.4, c = −0.85.
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Inserting the normalization condition, Eqs. (3.38), and (3.39) into Eq. (3.37), one gets

i

2
ċ1

2 = ΩP

(
1−

(
iċ3

ΩS

)2

− |c3|2
)
iċ3

ΩS

(3.40)

or

i

2

(
i

ΩP

ċ2 −
Γc2

ΩP

− ΩS

ΩP

c3

)
t

= ΩP

(
1−

(
iċ3

ΩS

)2

− |c3|2
)
iċ3

ΩS

.

Further, substituting Eqs. (3.38) and (3.39) into the Eq. (3.37) we obtain the equation

for c3:

c3t =
ΩS

2ΩP

d

dt
ln

(
1

ΩP

((
c3t

ΩS

)
t

+ Γ
c3t

ΩS

+ ΩSc3

))
(3.41)

The important remark is that Eq. (3.41) involves only the first derivative of ΩP and the

second derivative of ΩS (respectively, the equation for c1 involves only the first derivative of

ΩS and the second derivative of ΩP ). One can further check that, owing to this circumstance,

ΩP can be determined from this equation for any given c3 and ΩS. This is the idea of tracking.

We note that in the similar way one may take the corresponding equation for c1 and this

time determine ΩS for a given c1 and ΩP .

Thus, we have presented a stimulated Raman exact tracking model that takes into account

the irreversible losses from the intermediate second state. We have shown how to avoid these

losses in the one- and two-photon resonance case.

3.10 Nonlinear stimulated Raman robust exact track-

ing with detuning

The stimulated Raman processes for the nonlinear model we can present as:

i
d

dt


c1

c2

c3

 =


K1 ΩP c̄1 0

ΩP c1 −iγ + ∆ +K2 ΩS

0 ΩS δ +K3



c1

c2

c3

 (3.42)
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and then using anzats

c1 = |c1|e−iφ(t)eiΘ1 , c2,3 = |c2,3|eiΘ2,3e−2iφ(t)

where Θ1,2,3 are constant, and the Kerr terms are

K1 = Λ11|c1|2 + Λ12|c2|2 + Λ13|c3|2

K2 = Λ22|c2|2 + Λ12|c1|2 + Λ13|c3|2

K3 = Λ33|c3|2 + Λ13|c1|2 + Λ23|c2|2.

We get the following set of equations

i


˙|c1|eiΘ1

˙|c2|eiΘ2

˙|c3|eiΘ3

 =


−Φ̇ +K1 ΩP c̄1e

−iΘ1 0

ΩP |c1|eiΘ1 −iγ + ∆− 2Φ̇ +K2 ΩS

0 ΩS δ − 2Φ̇ +K3



|c1|eiΘ1

|c2|eiΘ2

|c3|eiΘ3


(3.43)

Further, we impose

Φ̇ = K1 (3.44)

∆ = 2Φ̇−K2 = 2K1 −K2 (3.45)

δ = 2Φ̇−K3 = 2K1 −K3 (3.46)

From the last equation we obtain:

δ = 2Λ11|c1|2 + 2Λ12|c2|2 + 2Λ13|c3|2 = (2Λ11−Λ13)|c1|2 + (2Λ12−Λ23)|c2|2 + (2Λ13−Λ33)|c3|2

(3.47)
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Using the last equations we get

i


˙|c1|eiΘ1

˙|c2|eiΘ2

˙|c3|eiΘ3

 =


0 ΩP c̄1e

−iΘ1 0

ΩP |c1|eiΘ1 −iγ ΩS

0 ΩS 0



|c1|eiΘ1

|c2|eiΘ2

|c3|eiΘ3

 (3.48)

Eg. Θ1 = 0, Θ2 = π
2

and Θ3 = 0.

i


˙|c1|

i ˙|c2|
˙|c3|

 =


0 ΩP |c1| 0

ΩP |c1| −iγ ΩS

0 ΩS 0



|c1|

i|c2|

|c3|

 (3.49)

Now we can do the same calculations. Considering the last equation, in the two-photon

resonance case we will have

i


i ˙|c1|

i ˙|c2|

i ˙|c3|

 =


0 ΩP |c1| 0

ΩP |c1| −iγ + ∆ ΩS

0 ΩS δ



|c1|

i|c2|

|c3|

 (3.50)

Eg. Θ1 = 0, Θ2 = π
2

and Θ3 = 0 one can come to the following equation:

iċ1 = c1φ̇(t)− c1θ̇1 + ΩP c1c2 + (K1 − φ̇)c1

iċ2 = −c2θ̇2 + 2c2(iφ̇(t)) + (∆− iγ)c2 + ΩP c
2
1 + ΩSc3 + (K2 − 2φ̇)c2

iċ3 = 2c3iφ̇(t)− c3(iθ̇3) + δc3 + ΩSc2 + (K3 − 2φ̇)c3

and using Eqs. (3.44)-(3.46) one can get:

iċ1 = ΩP c̄1c2 +K1c1

iċ2 = ΩP c
2
1 + ΩSc3 + (K2 − iγ + ∆)c2
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iċ3 = ΩSc2

which coincides with our starting equations.

3.11 Robustness for linear and nonlinear cases includ-

ing detuning

For a three-level system we have:

iċ1 = ΩP e
−i∆tc2

iċ2 = ΩP e
i∆tc2

1 + ΩSe
i(∆−δ)tc3

iċ3 = ΩSe
i(−∆+δ)tc2

(3.51)

Our technique is numerically examined for the robustness with respect to the pulse area,

to the detuning, or to both parameters.

From the previous paragraphs it is seen that the most efficient transfer takes place when

both the Stokes- and pump-pulses are in resonance. But, however hard the experimenter tries

to achieve it, there will always be an inevitable failure to do it strictly, because δ and ∆ are

constant throughout the experiment and thereby do not cross zero. For this reason, we are

interested in investigating the influence of incorrect settings of detuning on the experimental

results.

Note, that in the current paragraph we do not consider the effect of fluctuations in tem-

perature, pressure, and other extraneous parameters. Thus, we confine ourselves in choosing

though incorrect but still constant parameters, say, δ, ∆, ΩP0, ΩS0.

In the figures of 3.7 for the linear and nonlinear STIRAP we present contour plots, and

lines of equal probability versus δ and ∆.

It is seen that above the value P = 0.9 there exists a plateau in the graph, which indicates

the region of P -insensitivity to changes in δ and ∆. Thus, it is named robustness region,

which is marked white. We have the exact resonance case when δ and ∆ are equal to zero.

92



  

  

Figure 3.7: Two-photon resonance case where T = 8 and τ = 5. In the first figure presented
is the linear STIRAP and in the second figure nonlinear STIRAP, ΩPmax = ΩSmax = 1 and
ΩPmax = 3, ΩSmax = 1, respectively.
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Figure 3.8: Linear STIRAP for two-photon
resonance case.

Figure 3.9: Nonlinear STIRAP for two-photon
resonance case.

Figure 3.10: Linear STIRAP for two-photon
resonance case.

Figure 3.11: Nonlinear STIRAP for two-photon
resonance case.
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Figs. 3.8 - 3.11 give a view as a 3-D plots of the plateau shown in the figures of 3.7 for

T = 8 and τ = 5 parameters.

Thus, our scheme can be a powerful tool for coherent control in degenerate systems,

because of its robustness when the selective addressing of the states is not required or im-

possible.

3.12 Summary

In this Chapter we have discussed the nonlinear stimulated Raman exact tracking. The

idea is to create stable molecules in the ground state by coupling the initial pure-atomic

state and the final molecular ground state by using a third excited state of weakly bound

molecules.

As it was already mentioned, by transfering atoms to the weakly bound molecular state we

do not have a molecular Bose-Einstein condensate. For that, one needs to transfer molecules

to the ground molecular state.

We have shown that in the nonlinear case for an efficient transfer one needs the pump

pulse to be stronger than the Stokes one, in contrast to the ordinary linear case.

We have presented a field configuration, which provides an effective Raman transition

to the ground molecular state by exactly tracking the prescribed population dynamics. The

latter is implied to be such that the population of the unstable intermediate state is negligible

during the whole time evolution of the system.

In addition, there are irreversible losses from the weakly bound state. Hence, one needs

to suppress this dissipation. We have presented a stimulated Raman exact tracking model

that takes into account the irreversible losses from the intermediate second state. We have

shown how to avoid these losses in the one- and two-photon resonance case.

Finally, for both linear and nonlinear stimulated Raman exact tracking procedures, we

have shown their robustness. The most robust regime is achieved in the vicinity of the one-

and two-photon resonances.

95



Chapter 4

Linear time-dependent level-crossing

two-state models described by the

bi-confluent Heun functions

The starting observation for this Chapter is that the nonlinear mean-field dynamics of

coherent (photo- or magneto-) association of ultracold atoms within the one-color two-state

approximation for any configuration of the associating optical or magnetic field is rather

accurately described by a two-term variational ansatz written as [111–113]

p = p0(A, t) + C∗
pL(U∗0 , δ

∗
0, t)

pL(U∗0 , δ
∗
0,∞)

. (4.1)

Here p0(A, t) is the solution of an augmented limit nonlinear equation, C∗ is a variational

scaling factor, pL(U∗0 , δ
∗
0, t) is the solution of the corresponding linear problem with modified

parameters U∗0 and δ∗0, which are considered as variational parameters standing for the ef-

fective Rabi frequency and effective detuning, respectively. The possibility to make such a

decomposition is quite surprising since the Hamiltonian of the system is essentially nonlinear.

The ansatz provides a highly accurate approximation for the whole time domain for any set

of the input parameters involved in the associating field configuration. The absolute error of

the formula is less than 10−4 for the final transition probability, and for arbitrary times the
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absolute error is commonly of the order of 10−3 − 10−4.

If the molecule formation is performed through a level-crossing excitation scheme, it has

been shown that in the strong coupling limit the process is effectively described by the

first term of the approximation (4.1), while the second term, being a scaled solution of the

linear problem, describes the oscillations which come up some time after the system has

passed through the resonance. From this observation, one can conclude that in the strong

coupling limit the time dynamics of the atom-molecule conversion consists of an essentially

nonlinear process of resonance crossing followed by atom-molecular coherent oscillations that

are principally of linear nature [111–113].

The ansatz (4.1) is developed by application of the exact nonlinear ordinary differential

equation of the third order obeyed by the molecular state probability p(t) = |a2|2. For

any model with varying field amplitude U(t) and detuning δt(t) this equation is conveniently

written through an equivalent effectively constant Rabi frequency field configuration achieved

via the transformation of the independent variable

z(t) =

∫ t

t0

U(t′)

U0

dt′ (4.2)

with an effective U0 (a convenient choice here is U0 = max[U(t)]). The equation for the

molecular state probability then reads

(
d

dz
− δ∗zz
δ∗z

)[
pzz −

U2
0

2

(
1− 8p+ 12p2

)]
+ δ∗2z pz = 0 . (4.3)

The approximate solution of this equation for the large coupling and fast sweeping regime

is constructed by neglecting the two higher-order derivate terms originating from the second

derivative pzz and adding to the term in the square brackets an adjustable constant A. It has

been further shown that the exact solution p0(A, t) of the resultant augmented limit equation

is given by the solution of the following quartic algebraic equation:

U2
0

δ∗2z (z(t))
=
c0 + p0(p0 − β1)(p0 − β2)

9(p0 − α1)2(p0 − α2)2
, (4.4)
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where c0 is an integration constant and the parameters α1,2 and β1,2 are defined through the

variational constant A [111–113].

Since the solution p0(A, t) of equation (4.4) is known for any field configuration, we con-

clude that in order to construct an accurate description for the molecule formation dynamics

within the one-color two-state approach one should look for an appropriate second term of

the ansatz (4.1), that is, for the solution of the associated linear problem. For this reason, we

now proceed to the discussion of the solutions of the two-state problem in terms of the Heun

functions, which present the direct generalizations of the functions of the hypergeometric

class.

The Heun functions are the solutions of the equations of the Heun class [114–116]. There

are five Heun equations - the general Heun equation having four regular singularities [114]

and its four confluent reductions achieved by coalescence of the singularities of this equation:

single-confluent, double-confluent, bi-confluent and tri-confluent Heun equations [115, 116].

We focus here on the particular case of the bi-confluent Heun equation.

The bi-confluent Heun equation is widely involved in different domains of contemporary

pure and applied sciences such as quantum mechanics, general relativity, solid state physics,

atomic, molecular and optical physics, chemistry, etc. (see, e.g., [115, 116]). A recent ex-

ample is the inverse square root potential [117], a member of the bi-confluent Heun class of

potentials, which describes a less singular interaction than the Coulomb potential.

Though the properties of the bi-confluent Heun equation have been studied by many

authors, however, there are many open problems in the theory of this equation. Among

these, an important challenge is the construction of non-polynomial solutions [118]. Here

we make a step in this direction by constructing an expansion of the solutions of the bi-

confluent Heun equation in terms of the incomplete Beta functions. Further, we present the

solution of the bi-confluent Heun equation as a series in terms of the Hermite functions. We

note that the latter functions have an alternative representation through the Kummer or

Tricomi confluent hypergeometric functions. The coefficients of the expansion obey a three-

term recurrence relation between successive coefficients. We discuss the conditions for both
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left- and right-hand side terminations of the series. Finally, we apply the two-term Hermite

function solution achieved by means of such a termination to a particular dissipative level-

crossing field configuration. In general, the involved Hermite functions are of non-integer

order so that they do not reduce to polynomials.

The structure of this Chapter is as follows: The first task is to explore the reduction

of the linear quantum time-dependent two-state problem to the bi-confluent Heun equa-

tion [119]. Discussing the solutions of the latter equation, we construct expansions of the

bi-confluent Heun functions in terms of the incomplete Beta functions [3] and Hermite func-

tions of non-integer order [120]. We then apply the constructed expansions to identify the

field configurations for which the solution of the two-state problem (that is, the involved

bi-confluent Heun function) is written as a linear combination of two Hermite functions.

Finally, we present a conditionally integrable level-crossing model for the linear quantum

time-dependent two-state problem involving irreversible losses from the second level [4].

The model is given by an exponentially varying Rabi frequency and a level-crossing de-

tuning that starts from the exact resonance, then crosses the resonance at some finite time

point, and further exponentially diverges at the infinity. The model includes irreversible

losses from the second level, while the spontaneous relaxation to the first level is neglected.

We derive the exact solution of the two-level problem for this field configuration in terms of

two Hermite functions of a shifted and scaled argument and discuss the dynamics of levels’

populations under different regimes of excitation described by this model.

4.1 Two-state models solvable in terms of the bi-confluent

Heun functions

The bi-confluent Heun equation is a linear second-order ordinary differential equation

having two singularities: a regular singularity conventionally located at z = 0 and an irregular

singularity of rank 2 at infinity.

According to the general theory [115,116,121], this equation has four irreducible param-
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eters. A canonical form of the equation adopted in [115] is written as

d2u

dz2
+

1 + α− βz − 2z2

z

du

dz
+

(γ − α− 2)z − (δ + (1 + α)β) /2

z
u = 0. (4.5)

A different form also involving four independent parameters is adopted in [121]:

d2u

dz2
−
(γ
z

+ δ + ε z
) du

dz
+
α z − q

z
u = 0. (4.6)

Depending on the particular developments of interest and corresponding theoretical back-

ground, other canonical forms may be suitable, as stated in [115]. For the sake of generality,

here we adopt the following form of this equation:

d2u

dz2
+
(γ
z

+ δ + εz
) du

dz
+
α z − q

z
u = 0, (4.7)

where γ, δ, ε, α, q are arbitrary complex parameters. It is readily seen that the above two

forms as well as other forms applied in literature are derived from this form by straightforward

specifications of the involved parameters.

A few remarks concerning some elementary cases of the bi-confluent Heun equation are

relevant. First of all, we note that equation (4.3) is immediately reduced to the Kummer

confluent hypergeometric equation if ε = 0 and α = 0. Furthermore, in fact, the case ε = 0 is

always reducible, irrespective of the value of α, because in this case equation (4.3) is reduced to

the confluent hypergeometric equation by a simple transformation of the dependent variable

u = eszν(z). The general solution of the equation is then written as

u = esz [C1 · 1F1 ((q − γs)/s0; γ; s0z) + C2 · U ((q − γs)/s0; γ; s0z)] , (4.8)

where 1F1 and U are the Kummer and the Tricomi confluent hypergeometric functions,

respectively, C1,2 are constants and

s = −(δ + s0)/2, s0 = ±
√
δ2 − 4α. (4.9)
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Another known case when the solution of equation (4.3) is written in terms of the confluent

hypergeometric functions (this time, of the argument −εz2/2) is the case δ = q = 0 [111].

Finally, a simple case, in a sense degenerate, is the case α = 0 and q = 0 , when the general

solution of the bi-confluent Heun equation is readily written in quadratures:

u = C1 + C2

∫
e−δz−εz

2/2z−γdz, C1,2 = const. (4.10)

Taking into account above observations, below we suppose that ε 6= 0, as well as α and q are

not simultaneously zero.

To consider the reduction of the quantum time-dependent two-state problem

i a1t = U(t) e−iδ(t) a2 (4.11)

i a2t = U(t) eiδ(t) a1 (4.12)

to the bi-confluent Heun equation (4.7), we eliminate a1 from this system thus arriving at a

second-order linear differential equation for the second state‘s probability amplitude a2:

a2tt + (−iδt − Ut/U)a2t + U2 a2 = 0. (4.13)

According to the class property of the integrable models of the two-state problem, if the

function a∗2(z) is a solution of this equation rewritten for an auxiliary argument z for some

functions U∗(z), δ∗(z) then the function a2(t) = a∗2(z(t)) is the solution of equation (4.13)

for the field configuration defined as

U(t) = U∗(z)
dz

dt
, (4.14)

δt(t) = δ∗z(z)
dz

dt
(4.15)

for arbitrary complex-valued transformation function z(t). The pair of functions U∗(z) and

δ∗(z) is referred to as a basic integrable model.
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Transformation of variables a2 = ϕ(z)u(z), z = z(t) together with (4.14)-(4.15) reduces

equation (4.13) to the following equation for the new dependent variable u(z):

uzz +

(
2
ϕz
ϕ
− iδ∗z −

U∗z
U∗

)
uz +

(
ϕzz
ϕ

+

(
−iδ∗z −

U∗z
U∗

)
ϕz
ϕ

+ U∗2
)
u = 0, (4.16)

This equation is the bi-confluent Heun equation if

γ

z
+ δ + εz = 2

ϕz
ϕ
− i δ∗z −

U∗z
U∗

(4.17)

and

α z − q
z

=
ϕzz
ϕz

+

(
−i δ∗z −

U∗z
U∗

)
ϕz
ϕ

+ U∗ 2. (4.18)

These equations compose an under-determined system of two nonlinear equations for three

unknown functions, U∗(z), δ∗(z) and ϕ(z). The general solution of this system is not known.

However, many particular solutions can be found starting from specific forms of the involved

functions. We here present the known solutions following the approach of [119,122,123].

We search for the solutions of equations (4.17), (4.18) in the following form:

ϕz(z)

ϕ(z)
=
α1

z
+ α0 + α2 z ⇔ ϕ = zα1 eα0 z+

α2
2
z2 , (4.19)

U∗z
U∗

=
k

z
⇔ U∗ = U∗0 z

k, (4.20)

δ∗z =
δ1

z
+ δ0 + δ2 z. (4.21)

Multiplying equation (4.18) by z2 we get that for arbitrary δ0, 1, 2 the product U∗ 2
0 z2 k+2

should be a polynomial in z of the fourth degree at most. Hence, k is an integer or half-

integer obeying the inequalities 0 ≤ 2 k + 2 ≤ 4. This leads to five admissible cases of k,

namely, k = −1, −1/2, 0, 1/2, 1, generating five classes of two-state models solvable in terms

of the bi-confluent Heun functions.
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The amplitude modulation functions for these classes are

U∗z
U∗

=
1

z
,

1√
z
, 1,
√
z, z . (4.22)

According to equations (4.14)-(4.15), the field configurations, for which the solution of the

two-state problem is written in terms of the bi-confluent Heun functions, are then given as

U(t) = U∗0 z
k dz

dt
, (4.23)

δt(t) =

(
δ1

z
+ δ0 + δ2 z

)
dz

dt
(4.24)

with k = −1, −1/2, 0, 1/2, 1, and U∗0 , δ0, 1, 2 being complex constants which should be chosen

so that the functions U(t) and δ(t) are real for the chosen complex-valued z(t). Since these

parameters are arbitrary, all 5 classes are four-parametric. The classes are listed in Table

4.1, where for completeness we also present the field configurations for which the two-state

problem is solvable in terms of other Heun functions (there are in total 61 Heun classes of

basic integrable models) [119,122,123].

The solution of the initial two-state problem (4.11)-(4.12) is explicitly written as

α2 = zα1 eα0 z+
α2
2
z2 HB(γ, δ, ε; α, q; z), (4.25)

where the parameters of the bi-confluent Heun function γ, δ, ε, α, q are given as

γ = 2α1 − iδ1 − k, δ = 2α0 − i δ0, ε = 2α2 − i δ2, (4.26)

α = α0 (α0 − i δ0) + α1 (2α2 − i δ2) + α2 (1− k − i δ1) +Q′′(0)/2, (4.27)

q = α0 (k + i δ1)− α1 (2α0 − i δ0)−Q′(0), (4.28)
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Table 4.1: The 61 classes of basic models (U∗(z), δ∗z(z)) for which the quantum time-
dependent two-state problem is integrable in terms of the Heun functions.

with Q(z) = U∗ 2
0 z2 k+2, and

α0 ε− i α2 δ0 +Q′′′(0)/3! = 0, (4.29)

α2
1 − α1 (1 + k + i δ1) +Q(0) = 0, (4.30)

α2
2 − i α2 δ2 +Q(4)(0)/4! = 0. (4.31)
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4.2 Expansion of the solutions of the bi-confluent Heun

equation in terms of the incomplete Beta functions

The approach we apply for construction of series solutions of the bi-confluent Heun

equation is as follows: We consider the following representation of the first derivative of a

solution u(z) of the bi-confluent Heun equation:

du

dz
= z−γν(z). (4.32)

If now the function ν(z) allows an expansion of the form

v(z) =
+∞∑
n=0

cn(z − s)µ+n, (4.33)

then the term-by-term integration of equation (4.7) produces the following expansion in terms

of incomplete Beta functions (| z |≤| z0 |):

u = C0 +
+∞∑
n=0

cn (−s)nB
(

1− γ, 1 + n+ µ;
z

s

)
. (4.34)

A more elaborate example is constructed using a possible expansion for the function ν(z)

of the form:

v(z) = C1 +
+∞∑
n=0

cnB(an, bn; z/s). (4.35)

Then, the term-by-term integration produces an expansion in terms of combinations of in-

complete Beta functions:

u(z) = C0 +C1
z1−γ

1− γ
+

+∞∑
n=0

cn
1− γ

(
z1−γB(an, bn; z/s)− s1−γB(an + 1− γ, bn; z/s)

)
. (4.36)

Note that the integration constants C0 and C1 in above expansions are not arbitrary; rather,

they should be appropriately chosen in order to achieve a consistent solution.

In the force of the presented approach, it is understood that the task now is to look at
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different equations obeyed by functions involving the derivatives of the bi-confluent Heun

function and to construct expansions for the latter functions based on these equations.

To be more specific, consider, e.g., the details of derivation of the expansion (4.34). It is

readily shown, e.g., by dividing equation (4.7) by (αz− q)/z and further differentiating, that

a differential equation obeyed by the function ν(z) = zγdu/dz is written as:

d2v

dz2
+

(
1− γ
z

+ δ + ε z − α

α z − q

)
dv

dz
+

Π(z)

z(αz − q)
v = 0, (4.37)

where Π(z) is a quadratic polynomial in z:

Π(z) = α(α + ε− γε)z2 − (α(2q + γδ) + qε(2− γ))z + q(q + (γ − 1)δ). (4.38)

As compared with equation (4.7), it is seen that this equation has an additional regular

singularity at z0 = q/α. Let us now have α 6= 0 and q 6= 0 so that the additional singular

point is a finite point of the complex z-plane, not located at the origin: z0 6= 0. Then, taking

the Frobenius solution of equation (4.37) in the neighborhood of this singularity:

v = (z − z0)µ
+∞∑
n=0

a(z0)
n (z − z0)n, (4.39)

we get the expansion (4.33), and further term-by-term integrating equation (4.32) we arrive

at the expansion (4.34) finally written as (| z |≤| z0 |)

u = C0 +
+∞∑
n=0

a(z0)
n (−z0)nB

(
1− γ, 1 + n+ µ;

z

z0

)
. (4.40)

Substituting this expansion into equation (4.7) and taking the limit z → 0 we readily find

that C0 = 0 if Re(1− γ) > 0. The successive coefficients of the constructed expansion obey

a four-term recurrence relation:

Sna
(z0)
n +Rn−1a

(z0)
n−1 +Qn−2a

(z0)
n−2 + Pn−3a

(z0)
n−3 = 0, (4.41)
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where

Sna
(z0)
n +Rn−1a

(z0)
n−1 +Qn−2a

(z0)
n−2 + Pn−3a

(z0)
n−3 = 0, (4.42)

Sn = z0(n+ µ)(n+ µ− 2), (4.43)

Rn = z0(δ + z0ε)(n+ µ− 1) + (n+ µ)(n+ µ− 1− γ), (4.44)

Qn = −γ(δ + z0ε) + (δ + 2z0ε)(n+ µ), (4.45)

Pn = α + ε(n+ µ+ 1− γ). (4.46)

The series is left-hand side terminated at n = 0 if S0 = 0 , i.e., if µ = 0 or µ = 2. These

exponents differ in an integer, and it is readily checked that only the greater exponent µ = 2

produces a consistent power-series expansion; the second independent solution requires a log-

arithmic term. The series terminates from the right-hand side if three successive coefficients

vanish for some N = 1, 2, ... : αN 6= 0, αN+1 = αN+2 = αN+3 = 0. From the

condition αN+3 = 0 we find that the termination is possible if PN = 0, i.e., if

α = −ε(N + µ+ 1− γ), µ = 2. (4.47)

The remaining two equations, αN+1 = 0 and αN+2 = 0, then impose two more restrictions

on the parameters of the bi-confluent Heun equation.

4.3 Series solutions of the bi-confluent Heun equation

in terms of the Hermite functions

Following the lines of [120] we present the expansion of the solutions of the bi-confluent

Heun equation (4.7) in terms of the Hermite functions of a shifted and scaled argument:

u =
∑
n

cnun, un = Hα0+n (s0(z + z0)) , (4.48)
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where α0, s0 and z0 are complex constants to be defined afterwards. The involved Hermite

functions satisfy the following second-order linear differential equation:

d2un
dz2

− 2s2
0(z + z0)

dun
dz

+ 2s2
0αnun = 0, αn = α0 + n. (4.49)

Substituting equations (4.48) and (4.49) into equation (4.7) and multiplying the result by z

we get

∑
n

cn
[(
γ + z(δ + ε z) + 2s2

0z(z + z0)
)
u′n +

(
αz − q − 2s2

0αn z
)
un
]

= 0. (4.50)

By putting s0 = ±
√
−ε/2 and z0 = δ/ε, the terms proportional to zu′n and z2u′n are cancelled

so that using the recurrence identities

u′n = 2s0αnun−1, s0(z + z0)un = αnun−1 + un+1/2, (4.51)

we arrive at a three-term recurrence relation for coefficients cn:

Rncn +Qn−1cn−1 + Pn−2 cn−2 = 0, (4.52)

where

Rn =

√
2√
−ε

(α0 + n) (α + (α0 + n− γ) ε) , (4.53)

Qn = ∓α δ + (q + (α0 + n) δ )ε

ε
, (4.54)

Pn =
α + (α0 + n) ε√

−2 ε
. (4.55)

Here the signs ∓ in the equation for Qn refer to the choices s0 = ±
√
−ε/2 , respectively.

For left-hand side termination of the developed series at n = 0 provided that the initial

conditions c−1 = c−2 = 0 are fulfilled it should be R0 = 0. This is the case if α0 = 0 or

α0 = γ − α/ε. The first choice leads to the known polynomial solutions [115]. Hence, we
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discuss the second case

α0 = γ − α

ε
, (4.56)

which is applicable for non-zero ε. The final expansion is then written as

u =
∞∑
n=0

cnHn+γ−α/ε

(
±
√
−ε/2 (z + δ/ε)

)
. (4.57)

2 
 

 

 

 

 

 

  

N    q -equation Restrictions 

0 0 0q      

1 -1 2 0q q     0,   

2 -2 3 2 23 2(2 ) 4 0q q q           0,    

3 -3 

4 3 2 2

2 2

6 (10 11 10 )

6 (5 3 ) 9 ( 2( ) 0

q q q

q

   

       

   

      
 0, , 2      

4 -4 

5 4 2 3 2 2

2 2 2 2

2

10 5(4 7 6 ) 2 (60 25 69 )

(64 8 (26 3 ) 8 (24 18 9 ))

32 (4 3 9 ) 0

q q q q

q

       

       

    

      

     

   

 0, , 2 , 3        

Table 4.2: Equations for the accessory parameter q resulting from the condition cN+1 = 0.

The series will terminate from the right-hand side if two successive coefficients vanish for

some N = 1, 2, ...,, i.e., if cN 6= 0 and cN+1 = cN+2 = 0. From the last equation cN+2 = 0 we

find that the termination is possible if PN = 0. This condition is satisfied if

γ = −N. (4.58)

Since ε is non-zero, the remaining equation cN+1 = 0 presents a polynomial equation of the
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degree N + 1 for the accessory parameter q, defining, in general, N + 1 values of q for which

the termination of the series occurs (we refer to this equation as q-equation). For the first five

cases, that is for γ = 0, −1, −2, −3, −4 the corresponding q-equations are listed in Table

4.2. We note that the case γ = q = 0 is trivial since the bi-confluent Heun equation (4.7)

directly reduces to the Hermite equation (4.49). Starting from N = 1, however, the results

become highly non-trivial. Supporting this is the recent solution of the Schrödinger equation

for the inverse square root potential, which is achieved by applying the two-term Hermite

function solution of the bi-confluent Heun equation provided by the q-equation for N = 1:

q2 − δ q + α = 0 [117]. We will now apply the latter equation to obtain a conditionally

integrable level-crossing model for the quantum time-dependent two-state problem involving

irreversible losses from the second level [4].

4.4 Constant-amplitude two-state models solvable in

terms of the Hermite functions

Consider the excitation of an effective two-state quantum system by a constant-amplitude

laser field for which the two-state problem is solved in terms of the bi-confluent Heun func-

tions. The corresponding field configurations are derived from those presented in Table 4.1

if one requires U(t) = U0 = const. We then get from equation (4.23) that such field configu-

rations are achieved if the transformation of the time is chosen as

z(t) = et,
t2

4
, t,

(
3 t

2

)2/3

,
√

2 t (4.59)

for the classes with k = −1, −1/2, 0, 1/2, 1, respectively (without loss of the generality, we

put the time scale equal to unity). Equation (4.24), that is δt(t) = (δ1/z + δ0 + δ2 z) dz/dt,

then leads to the corresponding detuning modulation functions presented in Table 4.3.

Discussing now the question if the bi-confluent Heun function involved in the solution

of a two-state problem for these field configurations may allow a finite-sum expansion in
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terms of the Hermite functions, one should note the following. For a given field configuration

with input parameters U∗0 and δ0,1,2 the parameters of the bi-confluent Heun function and

those of the pre-factor ϕ(z) involved in solution (4.25) are calculated through the equations

(4.26)-(4.31). According to the above presented expansion, in order that the bi-confluent

Heun function could be written as a finite-sum linear combination of the Hermite functions,

the parameters of the bi-confluent Heun function should necessarily satisfy the condition

γ = −N with a non-negative integer N and the corresponding q-equation. Obviously, the

latter equations cannot be satisfied for arbitrary parameters U∗0 and δ0,1,2 involved in the field

configuration. The necessary conditions for termination of the series (4.57) are satisfied only

for some special sets of U∗0 and/or δ0,1,2.

1 
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Table 4.3: Detuning modulation functions for the bi-confluent Heun constant-amplitude field
configurations U(t) = U0 = const. The conditions for the two-state problem to be solved
through a two-term Hermite function expansion are presented in the last column.

For the constant-amplitude field configurations the conditions for the two-state problem

to be solved through a two-term Hermite-function expansion are presented in the last column
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of Table 4.3. We note that the first model corresponding to k = −1 is a particular case

of the Nikitin exponential level-crossing field configuration [124], while the fifth detuning

modulation function with k = +1 presents a new level-crossing model. A notable feature

of the three remaining detuning modulation functions for which k = −1/2, 0, 1/2 is that

they involve an imaginary term. This may correspond to a dissipative two-state model with

irreversible losses included. However, because the imaginary terms are not constants, these

models seem to have a limited applicability.

4.5 A time-dependent dissipative level-crossing two-state

model solvable in terms of the Hermite functions

There exist non-constant amplitude models for which the involved bi-confluent Heun

function reduces to a sum of a finite number of Hermite functions. It turns out, however,

that the termination conditions in many cases are such that some parameters of the field

configuration are expressed through other parameters. Since the amplitude- and detuning-

modulation functions do not vary independently, in these cases we meet conditionally inte-

grable two-state models. We will now present an example of such a non-constant amplitude

conditionally integrable model.

Consider the case of the two-term termination of the series (4.57), so that the solution

of the initial two-state problem is written as a sum of two Hermite functions. In this case

γ = −1 and the q-equation is a second-degree polynomial equation (see Table 4.2):

q2 − δ q + α = 0. (4.60)

Consider the class with k = 1/2. For this case equation (4.60) leads to just one possible value

for the parameter δ1:

δ1 = − i
2
. (4.61)
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The field amplitude- and detuning-modulation functions are then written as

U(t) = U∗0
√
z(t)

dz(t)

dt
, (4.62)

δt(t) =

(
− i

2 z
+ δ0 + z δ2

)
dz(t)

dt
. (4.63)

In order to make the imaginary term constant in equation (4.63), as an independent variable

transformation we take the real valued function z = exp(2 Γ t) and arrive at the following

three-parametric level-crossing field configuration:

U(t) = U0e
3t, (4.64)

δt(t) = δ̃t(t)− iΓ = 2
(
δ0e

2t + δ2e
4t
)
− i. (4.65)

where U0, δ0 and δ2 are arbitrary real parameters. We have here put U0 = 2 U∗0 and Γ = 1.

The last condition implies that hereafter all the involved parameters are supposed dimen-

sionless. Equations (4.64), (4.65) define a field configuration with a detuning-modulation

function δ̃t(t) describing an asymmetric-in-time level-crossing dissipative process. The field

configuration is presented in Fig. 4.1.

The crossing of the resonance occurs at the time point

t0 = ln(−δ0/δ2)/2. (4.66)

We note that in the vicinity of the resonance crossing point the behaviour of the detuning

δ̃t(t) is approximately modeled by the linear crossing law of the Landau-Zener type:

δt =
4δ2

0

δ2

t+O(t2), (4.67)

so that the resonance crossing rate is mostly defined by the combined parameter δ2
0/δ2.
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Figure 4.1: Conditionally integrable dissipative two-state level-crossing model (4.63)-(4.64).
The blue dashed line is the Rabi frequency (U0 = 1), the red solid line stands for the detuning
(δ2 = 1, δ0 = −3). The filled circle indicates the level-crossing time point t0 = ln(−δ0/δ2)/2.

4.6 Population dynamics of the dissipative two-state

system

We consider the semiclassical time-dependent two-state problem with a decaying upper

level. Let the probability amplitudes of the ground and excited states be a1(t) and b2(t),

respectively. If the decay of the excited state is supposed to be a third state, the equations

for the probability amplitudes read [125]

i
da1

dt
= U(t) b2, (4.68)

i
db2

dt
= U(t) a1 +

(
δ̃t(t)− iΓ

)
b2, (4.69)

where the Rabi frequency U(t) and the frequency modulation function δ̃(t) (the derivative

of this function δ̃t(t) is the detuning of the transition frequency from the field frequency) are

arbitrary real functions of time, and the parameter Γ defines the rate of the losses from the

upper level.
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By change of the variable b2 = a2(t) e−i δ(t) and further elimination of a1, system (4.68),

(4.69) is reduced to the following second-order linear differential equation for a2(t):

a2tt +

(
−iδt −

Ut
U

)
a2t + U2a2 = 0, (4.70)

δt = δ̃t − iΓ, (4.71)

where (and hereafter) the lowercase alphabetical index denotes differentiation with respect

to the corresponding variable.

According to the expansion (4.57), a fundamental solution of the initial two-state problem

(4.68), (4.69) is written through a linear combination of two Hermite functions:

bF2 (t) = zα1eα0z+α2z2/2 ei δ(t)
(
c0Hα/ε−1(y) + c1Hα/ε(y)

)
, (4.72)

where

y = s

√
−ε
2

(
z +

δ

ε

)
, z(t) = e2Γ t. (4.73)

The expansion coefficients c0,1 are conveniently written through the parameters of the bi-

confluent Heun function, which are readily calculated through the amplitude and detuning

modulation functions’ parameters and the auxiliary parameter s = ±1. The result reads

c0 = 1, c1 = s

√
−ε
2

(
δ − q
α

)
. (4.74)

We note that s = +1 and s = −1 produce linearly independent fundamental solutions.

This is readily verified by checking the Wronskian of the two solutions. Hence, the linear

combination of these fundamental solutions

b2(t) = C1 b
F
2

∣∣
s→+1

+ C2 b
F
2

∣∣
s→−1

. (4.75)

with arbitrary constant coefficients C1,2 presents the general solution of the problem.

We consider the situation when the system initially starts from the ground state, that is,
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we impose the initial conditions

a1(−∞) = 1, b2(−∞) = 0. (4.76)

In the Fig. 4.2 we present the graphs for the probability p1 = |a1(t)|2 for the atom to stay

on the first level and the probability p2 = |b2(t)|2 for the atom to be occupying the excited

state during the interaction. As it is clearly seen, for the chosen field parameters the result of

the dissipation is the complete removal of the population from both levels. It is understood

that this is because the chosen field parameters provide a sufficiently intensive interaction

with the field accompanied with a strong decay rate from the excited state. The analysis of

the asymptotes of the solution reveals that the physical parameter defining the interaction

regime is λ ∼ U2
0 /(δ0δ2). The strong interaction regime corresponds to large λ � 1, while

the weak interaction regime applies to small λ� 1.
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Figure 4.2: Probabilities p1 = |a1(t)|2 and p2 = |b2(t)|2 (blue solid and red dashed lines,
respectively) for the field configuration parameters U0 = 1, δ0 = −3, δ2 = 1.

As the field amplitude increases, the excitation of the atom intensifies, the second level

becomes more populated, hence, the losses from the second level become more pronounced
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(Fig. 4.3). In contrast, if the field amplitude decreases, the excitation process slows down,

the excited state becomes less populated so that the losses from the second level wash out

from the system a lesser population and, as a result, the system may end up with a not

depleted population in the ground state (Fig. 4.4).
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Figure 4.3: Occupation probabilities for the ground and excited states (blue solid and red
dashed lines, respectively) for the field configuration parameters U0 = 2, δ0 = −3, δ2 = 1.

From the Figs: 4.3 and 4.4 we conclude that if the field amplitude is small, then during

the interaction the population of the first level decreases, because of the resonance crossing;

however, at the end of the process the first level still possesses a remnant population, while

the second level always completely empties because of the losses. In other words, if the

coupling is weak (that is the Rabi frequency is small), then the interaction is not very

intensive (compared to the case presented in the Fig. 4.2), so that by the effective time of

the resonance crossing the population of the first level manages not to get fully exhausted.

Finally, even for a weak coupling (small Rabi frequency), complete transition to the second

level is possible if δ2 is sufficiently small (Fig. 4.5). In this case the system remains near the

resonance for a sufficiently long time period, hence, the second level may be well populated

thus resulting in complete decay of its population to a third state.
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Figure 4.4: Occupation probabilities for the ground and excited states (blue solid and red
dashed lines, respectively) for the field configuration parameters U0 = 0.2, δ0 = −3, δ2 = 1.
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Figure 4.5: Occupation probabilities for the first and second levels (blue solid and red dashed
lines, respectively) for the weak but long interaction: U0 = 0.2, δ0 = −3, δ2 = 0.2.

4.7 Discussion

Thus, we have presented an analytic model of a dissipative semiclassical quantum two-

state problem associated with an external optical field of a level-crossing configuration. The
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physical processes responsible for the dissipation may include photoinduced decomposition

of particles, spontaneous emission of photons, collision relaxation, and etc. In the model we

treat, the excited state is supposed to decay irreversibly out of the system, while the decay

transition from the excited to the ground state is neglected.

We have reviewed the specific field configurations for which the time-dependent two-

state problem is reduced to the bi-confluent Heun equation which is a second-order ordinary

linear differential equation having a regular singularity and an irregular singularity of rank

2. In order to treat the derived solution, we have applied an expansion of the involved bi-

confluent Heun function in terms of the non-integer order Hermite functions of a scaled and

shifted argument. The expansion is governed by a three-term recurrence relation between

the successive coefficients of the expansion. We have discussed the conditions for the derived

series to terminate thus resulting in finite-sum solutions.

As an application of such a termination to the two-state problem under consideration, we

have identified a conditionally integrable resonance-crossing field configuration for which the

termination results in a general solution written through fundamental solutions each of which

involves an irreducible linear combination of two Hermite functions. This is a configuration

given by an exponentially diverging Rabi frequency and a level-crossing detuning that starts

from the exact resonance and exponentially diverges at the infinity. Using the two-term

Hermite function explicit solution, we have studied the population dynamics in different

interaction regimes.
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Conclusion

The main conclusions that come out from this work are as follows:

It is possible an efficient adiabatic passage in a basic quadratic-nonlinear quantum two-

state system describing the weakly bound molecule formation in atomic Bose-Einstein con-

densates through photoassociation by laser fields. This passage may also be robust. We have

developed an example of such a transfer.

An efficient adiabatic transfer is also possible if the third-order nonlinearities describing

the atom-atom, atom-molecule, and molecule-molecule elastic scattering are taken into ac-

count. The transfer is achieved by choosing a proper detuning derived by solving the inverse

problem. One of the two branches of the derived tracking detuning provides an efficient

transfer if the Rabi frequency is larger than the Kerr scattering length. Whereas, in the

second case we always have an efficient transfer.

It is possible a stimulated Raman exact tracking in a quadratic-nonlinear quantum three-

state system. In contrast to the ordinary linear case, in the nonlinear case for an efficient

transfer one needs to take the pump pulse considerably stronger than the Stokes one. This

transfer may also be robust. The most robust regime is achieved in the vicinity of the one-

and two-photon resonances.

It is possible to avoid the irreversible losses from the intermediate weakly bound molecular

state in a passage of free atoms to the stable molecular state by a two-colour three-state

scheme in the case of one- and two-photon resonances for the associating laser fields. This

is achieved by the same above-mentioned exact tracking technique developed for a given

evolution scenario.
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The linear time-dependent two-state bi-confluent Heun models allow solutions in terms

of linear combinations of a finite number of the Hermite functions of non-integer order. We

have presented a model the solution for which involves just two Hermite functions. This is a

resonance-crossing field configuration given by an exponentially diverging Rabi frequency and

a detuning that starts from the exact resonance and exponentially diverges at the infinity. It

is worth mentioning that the model takes into account the irreversible losses from the second

state.

Bi-confluent Heun functions allow an expansion in terms of the incomplete Beta func-

tions. Such a series is governed by a three-term recurrence relation between the successive

coefficients of the expansion. This recurrence relation allows termination of the series.
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Appendix. Comparison of the linear

Demkov-Kunike model with the

nonlinear model

In this section we consider more physical model: Demkov-Kunike level crossing model,

for which the Rabi frequency and detuning are given by

U(t) = U0 sech(t), δt(t) = ∆0 tanh(t). (4.77)

For comparison are presented numerical calculations of linear and nonlinear Demkov-Kunike
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Figure 4.6: The Demkov-Kunike model. Red solid line is the Rabi frequency, and the blue
dashed line is the detuning.
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models, in the case of different values of parameters. We will start with linear set of equations

iȧ1L = Ω(t)e−i∆(t)a2L, (4.78)

iȧ2L = Ω(t)ei∆(t)a1L. (4.79)

This linear system describes the interaction of an isolated atom with an optical laser radiation

[126]. Demkov-Kunike model gives any value of transition probability. However, in this case

there exist big oscillations of populations in the system, which is not a desired result. There

is a crossing of resonance leading to strong oscillations, which is not acceptable.
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Figure 4.7: Transition probability P (t) for the Demkov-Kunike model, linear case. The solid,
dashed and dashed-point lines correspond to ∆0 = 0, Ω0 = 0.5, 0.825, 1, respectively.

For the nonlinear Demkov-Kunike model the set of equations are

iȧ1L = Ω(t)e−i∆(t)a2L ¯a1L, (4.80)

iȧ2L = Ω(t)ei∆(t)a1La1L. (4.81)

Note that

|a1|2 + |a2|2 = JL = 1

|a1|2 and |a2L|2 are interpreted as probabilities of the first and second states, respectively. It
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Figure 4.8: Transition probability P (t) for the Demkov-Kunike model, nonlinear case. The
solid, dashed and dashed-point lines correspond to Ω0 = 1, ∆0 = 0.5, 1, 2, respectively.

is followed by listing the model, which will be discussed in the present section. Also, will be

described their main characteristics.
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Figure 4.9: Transition probability P (t) for the Demkov-Kunike model, linear case. The solid,
dashed and dashed-point lines correspond to Ω0 = 1.5, 1.825, 2, ∆0 = 0, respectively.

Thus, we describe the linear two-state level-crossing and avoided-crossing model. Such a

model is the Demkov-Kunike level-crossing model, which has a bell-shaped coupling [106],

Fig. 4.6, for which the amplitude and detuning are defined as

Ω = Ω0sech(t/τ), ∆t = 2∆0 tanh(t/τ), (τ > 0). (4.82)
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Figure 4.10: Transition probability P (t) for the Demkov-Kunike model, linear case. The
solid, dashed and dashed-point lines correspond to Ω0 = 2.5, 2.825, 3, ∆0 = 0, respectively.

For the Demkov-Kunike model the exact solution of the linear set of equations (4.78) and

(4.79) is given in terms of the Gauss hypergeometric functions 2F1 [127].
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Figure 4.11: The nonlinear Demkov-Kunike model, with parameters Ω0 = 1, ∆0 = 0.

In the nonlinear case there exists transfer without oscillation, but for a narrow range of

parameters. According to the Fig. 4.8 (concerning nonlinear Demkov-Kunike model), the

model gives nonoscillatory regime. In the Fig. 4.11 we have a model, which will give as

nonoscillatory part, it is a resonance case, but the model is not robust.

These behaviours, which are obtained from different models are not acceptable. We need

to find a model, which will not have an oscillation. Thus, we need to find a model, which

will give as nonoscillatory regimes, a model will be robust.
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[2] M. Gevorgyan, S. Guérin, C. Leroy, A. Ishkhanyan, and H. R. Jauslin, “Adiabatic

tracking for photo- and magneto-association of Bose-Einstein condensates with Kerr

nonlinearities”, Eur. Phys. J. D 70, 253 (2016).

[3] T.A. Ishkhanyan, Y. Pashayan-Leroy, M.R. Gevorgyan, C. Leroy, and A.M. Ishkhanyan,

“Expansions of the solutions of the bi-confluent Heun equation in terms of incomplete

Beta and Gamma functions”, J. Contemp. Phys. (Armenian Ac. Sci.) 51, 229-236

(2016).

[4] M. Gevorgyan, “A dissipative conditionally integrable two-state level-crossing model

exactly solvable in terms of the bi-confluent Heun functions”, Armenian J. Physics 9,

192-200 (2016).

Conference thesis and abstracts

[5] M. Gevorgyan and A. Ishkhanyan, “A time-dependent level-crossing model solvable

in terms of the Hermite functions”, 4th International Symposium on Optics and its

Applications (OPTICS-2016), 25-28 July, Yerevan-Ashtarak, Armenia (2016). Book of

Abstracts, P-71.

126
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Résumé en Français

Pertinence du sujet

Les gaz quantiques dégénérés (condensats de Bose-Einstein et gaz de Fermi) sont un sujet

de recherche en physique contemporaine qui peut contribuer substantiellement à la fois à

la haute technologie et à la compréhension fondamentale de la nature. Notre recherche fait

partie intégrante des efforts dans cette direction.

Les modèles avec croisements de niveaux sont au coeur de l’optique quantique dès le

début de la physique quantique. En raison du nombre très limité de modèles exactement

résolus, tout nouveau modèle peut mener à de nombreux développements essentiels révélant

les principales caractéristiques physiques qualitatives de nombreux processus physiques se

produisant dans divers domaines.

But du travail

Le but de ce travail est d’analyser la dynamique de conversion atome-molécule dans les

gaz quantiques dégénérés pour créer un condensat de Bose-Einstein moléculaire (BEC). Une

tâche particulière est de contrôler la photo-association de condensats atomiques de Bose-

Einstein en choisissant la configuration du champ laser.

L’essence de la condensation de Bose-Einstein est une occupation macroscopique d’un

seul état quantique. Un BEC est un état de la matière, qui se produit dans un gaz bosonique

dilué (atomique ou moléculaire) refroidi à des températures très proches du zéro absolu. Dans

de telles conditions, une grande fraction de bosons occupe l’état quantique le plus bas. Pour

cette raison, les effets quantiques deviennent visibles sur une échelle macroscopique.

La photo-association est un processus dans lequel deux atomes en collision interagissent

avec un champ laser pour former une molécule excitée. Il s’aĝıt donc d’un processus chimique.

Ce travail concerne le contrôle du processus de photo-association. Le contrôle peut être

réalisé par différentes approches, par exemple, par changement de la densité ou par l’appli-

cation d’un champ magnétique. Dans notre cas, le contrôle est effectué en choisissant des

configurations de champs appropriées.
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Les configurations des champs sont décrites par la fréquence Rabi et le désaccord. La

fréquence Rabi est le produit du moment dipolaire de la transition et de l’amplitude du

champ. Le désaccord est la différence entre les fréquences de transition et du laser. La donnée

de la fréquence Rabi et du désaccord est appelée configuration du champ. Dans ce travail, la

fréquence et le désaccord de Rabi sont des fonctions dépendantes du temps.

L’idée générale est de rechercher des configurations de champs qui donneront le résultat

souhaité. Le résultat souhaité est formulé comme une évolution temporelle donnée de la

population.

Le problème est non linéaire, ce qui signifie que l’ensemble des équations décrivant le

processus de photo-association n’est pas linéaire. Par conséquent, on a besoin de nouvelles

approches, pour lesquelles des étapes importantes sont prises dans le travail.

Nous commençons par un modèle à deux niveaux. Le processus physique que nous étudions

est le suivant : nous considérons un condensat atomique initialement pur et nous souhaitons

créer un condensat moléculaire en appliquant un rayonnement laser. Nous considérons le

condensat atomique comme un seul état et l’état moléculaire comme le second. Un tel procédé

dans l’approximation la plus simple peut être décrit par un modèle non linéaire à deux états.

Pour rendre le modèle plus réaliste, nous considérons des non-linéarités du troisième ordre

qui décrivent les interactions élastiques atome-atome, atomes-molécule et molécule-molécule.

En outre, pour amener des molécules faiblement couplées à l’état fondamental moléculaire

stable, nous utilisons le passage adiabatique Raman stimulé (STIRAP). Une tâche particulière

ici est d’éviter autant que possible les pertes de l’état moléculaire excité intermédiaire. De

plus, nous analysons la robustesse des processus STIRAP linéaires et non linéaires.

Enfin, pour avancer dans la description analytique approximative de la photo-association

par un ansatz à deux termes proposée précédemment, qui implique la solution du problème

linéaire associé, nous considérons des solutions exactes du problème linéaire à deux états

en termes de fonctions de Heun bi-confluentes. Nous introduisons un nouveau modèle avec

croisement de niveaux pour lequel la solution du problème linéaire à deux états s’écrit avec

certaines combinaisons linéaires de fonctions d’Hermite.
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Les objectifs de la thèse

- Développer une technique de passage adiabatique efficace et robuste basée sur le suivi

d’une solution souhaitée pour le transfert d’un état atomique à l’état moléculaire.

- Explorer s’il est possible d’effectuer un transfert efficace en présence de non linéarités

de Kerr.

- Discuter de la méthode de suivi exacte Raman stimulée comme une procédure de trans-

fert efficace possible. Si possible, inclure les pertes irréversibles du deuxième niveau.

- Identifier des configurations de champs pour lesquelles le problème quantique à deux

états est résoluble avec des fonctions Heun.

- Identifier les modèles avec croisements de niveaux résolubles en termes de combinaisons

linéaires de fonctions spéciales plus simples que les fonctions de Heun.

Nouveauté scientifique

Nous proposons une technique de passage adiabatique robuste et efficace d’un état ato-

mique à un état moléculaire, basée sur le suivi d’une évolution temporelle souhaitée des

populations.

Nous montrons qu’il est possible de réaliser un bon transfert en présence de non-linéarités

de Kerr. Ceci est obtenu par un choix approprié du désaccord qui fournit un suivi adiabatique

efficace.

Nous présentons un suivi stimulant par effet Raman stimulé dans un système quantique

non-linéaire à trois états. Nous montrons que dans le cas non linéaire, pour un transfert

efficace il faut prendre l’impulsion de la pompe plus forte que celle de Stokes, contrairement

au cas linéaire ordinaire. Ce transfert peut également être robuste.

Nous montrons qu’en utilisant une technique de suivi exacte par effet Raman stimulé, il

est possible d’éviter les pertes irréversibles de l’état moléculaire intermédiaire faiblement lié,

dans le cas de résonances à un et deux photons.

Nous construisons des extensions des solutions de l’équation de Heun bi-confluente en

termes de fonctions bêta incomplètes ainsi que d’autres fonctions mathématiques plus simples.

Nous développons un modèle de croisement de niveaux dissipatif linéaire résoluble en
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termes de fonctions Hermite.

Résumé du mémoire

Dans le chapitre I, nous présentons la description du système non linéaire à deux états et

discutons les propriétés générales de la transition d’un état atomique à un état moléculaire.

Nous proposons une technique de passage adiabatique robuste pour un système quantique

non linéaire à deux états, piloté par un champ laser qui fournit un transfert efficace. En

suivant la dynamique dérivée d’une formulation hamiltonienne dans la limite adiabatique,

nous obtenons les caractéristiques des impulsions. La dynamique est analysée en déterminant

les points fixes et les séparatrices.

Nous démontrons que ce système non linéaire n’a aucune solution qui mène exactement à

un transfert de population complet dans un temps fini. Pour des impulsions avec aire infinie,

le transfert complet ne peut être atteint que de manière asymptotique.

La robustesse de cette technique par rapport aux variations de l’aire de l’impulsion et du

désaccord est une propriété cruciale pour les implémentations pratiques. La robustesse d’une

implémentation particulière nécessite l’optimisation du suivi précis, comme proposé pour

le cas linéaire. La possibilité d’une réalisation d’une fidélité ultra haute avec une efficacité

exponentielle optimale est une question ouverte.

Dans le chapitre II, la méthode de suivi adiabatique est étendue aux modèles, com-

prenant des non-linéarités Kerr. Dans le chapitre précédent, cette stratégie de suivi a été

analysée pour un modèle simplifié, qui ne comprenait pas les collisions élastiques entre les

particules. Dans ce chapitre, le point principal est d’étendre l’analyse en incluant les non

linéarités Kerr. Le suivi développé évite le croisement de points fixes et de séparatrices, qui

sont une source principale de la diminution de la population de l’état moléculaire.

Nous notons qu’en général, les termes de Kerr ont une forte influence qualitative sur la

dynamique, comme l’apparition d’autres points hyperboliques qui peuvent interférer avec le

suivi souhaité. Par conséquent, on doit obtenir un désaccord approprié particulier qui produit

un suivi efficace. Notre résultat principal est qu’il est possible d’avoir un bon transfert et, en

même temps, d’éviter les oscillations, en présence de termes de Kerr.
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Comme on l’a déjà mentionné, la création d’un BEC moléculaire doit amener les molécules

à l’état fondamental. Dans le modèle de Rabi, les particules restent dans l’état moléculaire

faiblement lié plus longtemps que dans l’état atomique. Par conséquent, en raison des pertes

de cet état moléculaire, le système se dégrade rapidement. Pour éviter cela, on doit amener

la population à l’état moléculaire fondamental aussi vite que possible. Il existe différentes

approches pour un tel transfert. Une méthode avantageuse est le passage adiabatique Raman

stimulé (STIRAP), qui est un modèle spécifique d’interaction champ-matière à trois états.

Dans le chapitre III, nous considérons le STIRAP non linéaire. Le but est de créer

un condensat moléculaire de Bose-Einstein en couplant l’état atomique pur initial et l’état

fondamental moléculaire final en utilisant un troisième état excité de molécules faiblement

liées. Nous dérivons une technique efficace de suivi exact par effet Raman stimulé pour un

système quantique non linéaire piloté par des champs externes, ce qui permet un transfert

efficace d’un condensat atomique à un condensat Bose-Einstein moléculaire. Les résultats

montrent que pour que le transfert soit efficace, on doit utiliser une impulsion pompe plus

forte que l’impulsion Stokes, contrairement à la situation dans le passage adiabatique Raman

stimulé linéaire.

Puisque nous avons des pertes irréversibles de l’état moléculaire excité intermédiaire,

nous présentons une technique de suivi exact Raman stimulée qui prend en compte cette

dissipation. Nous montrons également comment éviter les pertes dans le cas de résonances à

un ou deux photons. De plus, nous montrons la robustesse des procédures STIRAP linéaires

et non linéaires.

Dans le chapitre IV, nous notons que la solution approchée du problème non linéaire

à deux niveaux pour une configuration de champ arbitraire est construite par un ansatz à

deux termes suggéré précédemment pour le cas général. Un terme de cet ansatz contient les

principales caractéristiques de la dynamique non linéaire, et le deuxième est une correction

obtenue à partir d’un modèle linéaire avec des paramètres modifiés. Comme la solution du

premier terme est connue pour tous les modèles, le problème est d’étudier le deuxième terme.

Cependant, les solutions exactes du problème linéaire sont très rares. Seuls 5 modèles sont
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connus, ce sont les modèles Landau-Zener, Rosen-Zener, Demkov-Kunike, Nikitin et Crothers.

Pour construire des nouveaux modèles linéaires exactement résolubles, nous considérons

les cas où le problème linéaire à deux niveaux est réduit à l’équation de Heun bi-confluente. En

discutant les solutions de cette équation, nous construisons une expansion des fonctions Heun

bi-confluentes en termes de fonctions bêta incomplètes et nous présentons un développement

en termes de fonctions d’Hermite d’ordre non entier. Nous notons qu’en général ces dernières

fonctions ne sont pas des polynômes.

Nous appliquons ce développement pour identifier les configurations de champs pour

lesquelles la solution du problème de deux états linéaire dépendant du temps s’écrit comme

une combinaison linéaire d’un nombre fini de fonctions d’Hermite.

En outre, nous identifions les modèles de Heun bi-confluents avec croisements de niveaux

pour lesquels la solution implique seulement deux fonctions d’Hermite. Nous notons que

certains de ces modèles décrivent des processus avec pertes du niveau supérieur.

Enfin, nous présentons un modèle particulier avec croisement de niveaux résoluble, pour

le problème linéaire à deux états qui contient des pertes irréversibles du deuxième niveau.

Le modèle est donné par une fréquence de Rabi variant exponentiellement et un désaccord

de croisement de niveaux qui commence à partir de la résonance exacte et diverge exponen-

tiellement à l’infini. Nous déterminons la solution exacte du problème et nous discutons la

dynamique des populations des niveaux du système sous différents régimes d’interaction.
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Title : Control of photoassociation of atomic Bose-Einstein condensates by laser field
configuration

Summary : In this work we show that it is to perform an efficient adiabatic passage
in a basic quadratic-nonlinear quantum two-state system describing weakly bound molecule
formation in atomic Bose-Einstein condensates through photoassociation by laser fields.

An efficient adiabatic transfer is also possible if the third-order nonlinearities describing
the atom-atom, atom-molecule, and molecule-molecule elastic scattering are taken into ac-
count. The transfer is achieved by choosing a proper detuning derived by solving the inverse
problem.

We also show that one can perform a stimulated Raman exact tracking in a quadratic-
nonlinear quantum three-state system. The irreversible losses from the intermediate weakly
bound molecular state in a passage of free atoms to the stable molecular state can be avoided
by a two-colour three-state scheme in the case of one- and two-photon resonances for the
associating laser fields. This is achieved by an exact tracking technique.

We also studied the linear time-dependent two-state bi-confluent Heun models with solu-
tions in terms of linear combinations of a finite number of the Hermite functions of non-integer
order. We have presented a model the solution for which involves just two Hermite functions.
This is a resonance-crossing field configuration given by an exponentially diverging Rabi fre-
quency and a detuning that starts from the exact resonance and exponentially diverges at
the infinity. The model takes into account the irreversible losses from the second state.

Keywords : Molecular Bose-Einstein condensates, photo-association, magneto-association,
nonlinear adiabatic tracking, exact tracking, bi-confluent Heun functions.

Titre : Contrôle de la photo-association de condensats de Bose-Einstein atomiques par
configuration de champs laser

Résumé : Dans ce travail, nous montrons qu’il est possible d’effectuer un passage adia-
batique efficace dans un système quantique non-linéaire quadratique à deux états décrivant
la formation de molécules faiblement liées dans les condensats atomiques de Bose-Einstein
par la photo-association par champs laser.

Un transfert adiabatique efficace est également possible si on prend en compte les non-
linéarités de troisième ordre décrivant les collisions élastiques atome-atome, atome-molécule
et moléculaire-molécule. Le transfert est obtenu en choisissant un désaccord approprié calculé
en résolvant le problème inverse.

Nous montrons également que l’on peut effectuer un suivi Raman stimulé exact dans
un système non-linéaire quantique à trois états. Dans le passage d’atomes libres à l’état
moléculaire stable, les pertes irréversibles de l’état moléculaire intermédiaire faiblement lié
peuvent être évitées par un schéma à trois états en deux couleurs dans le cas avec résonances
à un ou deux photons. Ceci est obtenu par une technique de suivi exacte.

Nous avons également étudié des modèles linéaires à deux états bi-confluents de Heun,
dépendant du temps, avec des solutions en termes de combinaisons linéaires d’un nombre
fini de fonctions Hermite d’ordre non entier. Nous avons présenté un modèle dont la solu-
tion implique seulement deux fonctions Hermite. Il s’agit d’une configuration de champ avec
croisement par résonance donnée par une fréquence Rabi exponentiellement divergente et
un désaccord qui commence à partir de la résonance exacte et diverge exponentiellement à
l’infini. Le modèle prend en compte les pertes irréversibles du second état.

Mots clés : Condensats de Bose-Einstein moléculaires, photo-association, magneto-
association, suivi adiabatique non-linéaire, suivi exact, fonctions bi-confluentes de Heun.
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