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Résumé

L’informatique est devenue un outil central dans de nombreux domaines scientifiques. La majorité des
recherches menées dans le domaine scientifique et technologique reposent sur la simulation numérique.
Ce besoin croissant en simulation a conduit à l’élaboration de supercalculateurs complexes et d’un nombre
croissant de logiciels hautement parallèles.

Ces supercalculateurs requièrent un rendement énergétique et une puissance de calcul de plus en plus
importants. Les récentes évolutions matérielles consistent à augmenter le nombre de noeuds de calcul et
de coeurs par noeud. Cette augmentation continuera certainement jusqu’à atteindre plusieurs milliers de
noeuds de calcul, eux-mêmes composés d’un millier de coeurs. Certaines ressources n’évoluent cependant
pas à la même vitesse. La multiplication des coeurs de calcul implique une diminution de la mémoire
par coeur, plus de trafic de données, un protocole de cohérence plus coûteux et requiert d’avantage de
parallélisme. De plus, les architectures actuelles sont de plus en plus hétérogènes.

De nombreuses applications et modèles actuels peinent ainsi à s’adapter à ces nouvelles tendances.
En particulier, générer du parallélisme massif dans des méthodes d’éléments finis utilisant des maillages
non structurés, et ce avec un nombre minimal de synchronisations et des charges de travail équilibrées,
s’avèrent particulièrement difficile. Les approches actuelles basées sur la décomposition de domaine et
le coloriage se retrouvent confrontées à ce problème, en particuliers avec les architectures hautement
multicoeurs. Il devient donc nécessaire d’explorer de nouvelles approches parallèles.

Afin d’exploiter efficacement les multiples niveaux de parallélisme des architectures actuelles, dif-
férentes approches parallèles doivent être combinées. Le parallélisme massif de données se limite
habituellement aux problèmes réguliers pouvant être décomposés en grilles de calcul. Ces problèmes
sont adaptés aux exécutions de type programme unique, données multiples (SPMD) sur CPUs ou flux
d’instruction unique, flux d’exécution multiples (SIMT) sur GPUs.

Cette thèse propose plusieurs contributions destinées à aller au-delà de cette limitation en adressant
les codes et les structures irrégulières de manière efficace. Nous avons développé une approche parallèle
hybride par tâches à grain fin combinant les formes de parallélisme distribuée, partagée et vectorielle sur
des structures irrégulières.

De plus, une application industriel pouvant difficilement être intégralement réécrite, nous avons
exploré le concept de proto-application en offrant une représentation simplifiée. Nous avons développé
Mini-FEM, une proto-application représentative de l’application DEFMESH développée par Dassault
Aviation. Nous avons ensuite développé la librairie D&C à partir de cette proto-application, puis l’avons
validée sur DEFMESH. Nous avons également porté la librairie D&C sur AETHER, un autre code de
mécanique des fluides développé par Dassault Aviation. Les résultats obtenus sur la proto-application ont
ainsi pu être reproduits sur des applications grandeur réelle utilisant des schémas de calcul similaires.

Nous avons testé notre approche sur des multicoeurs Xeon classiques et sur le Xeon Phi type KNC.
Sur 512 coeurs Sandy Bridge avec seulement 2000 sommets par coeur, D&C dépasse l’approche purement
MPI de 3.47× et atteint 77% d’efficacité parallèle. Sur 4 KNC, D&C obtient 96% d’efficacité parallèle et
une accélération de 2.9× comparé à l’approche MPI commune basée uniquement sur la décomposition de
domaine. De plus, la performance obtenue avec D&C est équivalente à 96 coeurs de type Xeon Sandy
Bridge. En réduisant l’intensité arithmétique du code, l’efficacité parallèle de D&C sur les 4 KNC descend
à 92% mais l’écart avec la version purement MPI augmente à 6.56×.

Mots-clés: HPC, multitâche, FEM, maillage non structuré, D&C, Cilk, vectorisation, PGAS, GASPI
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Abstract

Computing science is at the center of a wide range of scientific domains. Almost all current scientific
and technological research activity relies on numerical simulations to solve new problems or to design
new products. This growing need for numerical simulations results in larger and more complex computing
centers and more HPC softwares.

Actual HPC system architectures have an increasing requirement for energy efficiency and perfor-
mance. Recent advances in hardware design result in an increasing number of nodes and an increasing
number of cores per node. In future post-exascale systems, one can reasonably foresee thousands of nodes
composed of thousand cores. However, some resources do not scale at the same rate. The increasing
number of cores and parallel units implies a lower memory per core, higher requirement for concurrency,
higher coherency traffic, and higher cost for coherency protocol. Moreover, current trends result in an
increasing usage of heterogeneous architectures.

Most of the applications and runtimes currently in use struggle to scale with the present trend. In the
context of finite element methods, exposing massive parallelism on unstructured mesh computations with
efficient load balancing and minimal synchronizations is challenging. Current approaches relying on do-
main decomposition and coloring exacerbate these issues, especially with parallel manycore architectures.
HPC users have to explore new paradigms for applications, runtimes, and programming models.

To make efficient use of these architectures, several parallelization strategies have to be combined
together to exploit the multiple levels of parallelism. Parallelization approaches exposing massive data
parallelism are usually bounded to regular problems. These problems can be decomposed in compute grids
and are well suited to Single Program Multiple Data (SPMD) executions on CPUs or Single Instruction
Multiple Threads (SIMT) executions on GPUs.

This P.h.D. thesis proposes several contributions aimed at overpassing this limitation by addressing
irregular codes and data structures in an efficient way. We developed a hybrid parallelization approach
combining the distributed, shared, and vectorial forms of parallelism in a fine grain task-based approach
applied to irregular structures.

Moreover, since very large industrial codes cannot be rewritten from scratch, we experimented the
concept of proto-application as a proxy between computer scientists and application developers on a
real industrial use case. We developed the Mini-FEM proto-application representative of the DEFMESH
application from Dassault Aviation. Then, we built the D&C library on top of the proto-application
and validated it on the original DEFMESH application. We also ported the D&C library to another
fluid dynamic application, AETHER, also developed by Dassault Aviation. The results show that the
speedup validated on the proto-application can be reproduced on other full scale applications using similar
computational patterns.

We experiment our approach using standard Xeon multicores and Xeon Phi KNC manycores. On
512 Sandy Bridge cores, we overpass the pure MPI approach by up to 3.47× and reach 77% of parallel
efficiency with only 2000 vertices per core. By running an intensive computation kernel on 4 Xeon Phi,
we achieve an excellent parallel efficiency of 96% and a 2.9× speedup compared to the common approach
only based on MPI domain decomposition. By reducing the arithmetic intensity by a factor of 100×, the
parallel efficiency of the D&C library decreases to 92% but becomes 6.56 times faster than the pure MPI
version. Finally, running on 4 Xeon Phi, D&C has similar performance to 96 Intel Xeon Sandy Bridge
cores.

Keywords: HPC, multithreading, FEM, unstructured mesh, D&C, Cilk, vectorization, PGAS, GASPI
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General Context

Computing science is at the center of a wide range of scientific domains. Most of research programs rely
on numerical simulations to solve new problems and to design new products. Many examples can be
found in various domains. In the context of aviation, planes, which were originally designed through
drawing-boards and improved after flight tests, have since early 1970s started to be computer-aided
designed. Today, they are fully conceived through computers and involve different domains of research
such as structural mechanic, aerodynamic, and electromagnetism. At the end of 2013, a large human brain
project aimed to simulate and better understand the human brain has started and should continue until
2024. Numerical simulation has also advantageously replaced nuclear weapons tests which were made up
to 1974 in France. Recently, deep learning approach on HPC system has defeated the best world player of
the Go game. Nowadays, simulation is present everywhere. It includes the elaboration of car engines and
car design, the conception of new pharmaceuticals, the simulation of chemical reactions, the analysis of
huge amount of data, and so on.

Computational Fluid Dynamics

The domain of Computational Fluid Dynamics (CFD) in particular is closely linked to computing science.
CFD is a branch of fluid mechanics which consists in simulating the interaction of liquids and gases
through the resolution of numerical equations involving the fluid flows. Fluid mechanics is a broad topic.
It has a wide range of applications including for instance mechanics, chemistry, geophysics, aerospace,
astrophysics, biology, life science, or yet numerical weather prediction.

The first step of a CFD problem is the definition of the geometry representing the initial problem.
Then, the computational domain is transformed into a mesh. A mesh is a discretization of a space into
cells, typically millions to tens of billions, which can have different shapes, e.g. triangle in 2D and
tetrahedron in 3D. Meshes can be regular, i.e. all the cells have the same shape and geometry, or not.
Irregular meshes as the one illustrated in Figure 1 are mostly used in CFD problems. Indeed, some parts
of the computational domain, such as the surfaces generating turbulences and their neighboring areas, are
more important than others. The cells are therefore smaller and in bigger quantities in those areas. Several
discretization methods exist such as Finite Volume Method (FVM), Finite Element Method (FEM), or
Finite Difference Method (FDM). In this thesis we focus on FEM applications. They are presented in
more details in Section 3.2.

Once the mesh is constructed, the numerical methods to use have to be defined. Depending on

Figure 1: Example of 3D unstructured mesh.
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the problem to solve and the desired level of approximation, the numerical equations may vary. The
fundamental CFD numerical equations are the Navier-Stokes equations. They are used in most of CFD
simulations. However, these equations can be simplified into Euler equations, simplified again into full
potential equations, or linearized potential equations. There is a trade-off between the desired accuracy of
the problem to solve and the resources and amount of time allocated to it.

Lastly, the boundary conditions and the initial values are defined. The former corresponds to the
fluid properties at the boundaries of the problem. The numerical simulation can start once all these
preprocessing steps are completed.

High Performance Computing

The needs in accuracy and the complexity of problems, as those encountered in CFD applications, are
increasing as well as the size of problems to solve. This leads to a growing need for performance in
numerical simulations and as a result to larger and more complex computing centers. Before 2000s, the
evolution of computers performance was mostly due to the increase of frequency of the Central Processing
Unit (CPU) and of the memory bus. But this race for higher frequencies has reach a wall of energy
consumption and heat dissipation. The performance evolution has therefore take a turn which consist in
increasing the number of computing units composing a CPU, i.e. the cores, instead of increasing their
frequency. However, designing such new architectures and developing applications able to efficiently
make use of them is complex. This is the essence of High Performance Computing (HPC).

Evolution of Hardware Architectures

The evolution of hardware architectures driven by the increasing requirement for performance and energy
efficiency has led to more and more complex HPC systems. Recent advances in hardware design result in
an increasing number of distributed compute nodes, an increasing number of cores per node, and larger
vectorial instruction units. In future post-exascale systems, one can reasonably foresee thousands of nodes
with thousand cores. However, some resources do not scale at the same rate. The increasing number of
parallel units implies a lower memory per core, higher requirement for concurrency, higher coherency
traffic and higher cost for coherency protocol. Additionally, the development of new parallel architectures
has explored different ways. On the one hand, there is the classical CPU model which consists in a small
number of powerful cores aiming at executing as quickly as possible a sequential workload. On the
other hand, there is the Graphic Processing Units (GPUs) model originally designed for graphic purpose.
It is composed of an important number of simple cores and relies on the available parallelism within
an application to hide computation latency. However, while CPUs are evolving to become more and
more parallel, GPUs have became more generic and more programmable. These two models may in the
future lead to a unified architecture model. The recent Xeon Phi manycore from Intel is at the frontier
between these two models and illustrates this new trend. The different evolutions of parallel models result
in an increasing usage of heterogeneous architectures. Modern supercomputers are composed of many
distributed compute nodes able to contain at the same time several multicore CPUs and several manycore
or GPU accelerators.

Parallel Programming Models

In order to exploit this variety of computing resources, a variety of parallel programming models has
emerged. Recent architectures and their associated parallel execution models involves multiple cooperating
processes simultaneously executing the same program on different data. Parallel programming approaches
have to exploit distributed and shared memory systems, but also vector operators.
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Processes are commonly used across distributed compute nodes. They are independent compute flows
with their own private memory. Interactions between processes are handled by messages evolving through
the network. The message passing model and its Message Passing Interface (MPI) Application Program-
ming Interface (API) has become a standard to handle communications and synchronizations [1, 2, 3].
MPI provides an API to perform one-to-one and collectives operations. However, other approaches exist
such as the Partitioned Global Address Space (PGAS) model. The Global Address Space Programming
Interface (GASPI) API [4, 5, 6] is one of the most advanced implementations today. PGAS model consists
in a global memory space shared among the distributed processes. Remote process can directly write to
another process memory through Remote Direct Memory Accesses (RDMA).

On the other hand, threads are used to generate parallel streams of execution in a shared memory
context. Threads are entities within a process which rely on its virtual address space and executable code.
They are therefore lighter than the processes and exploit the shared memory to communicate or synchronize
themselves. Several programming interface for multithread parallelism exist. The most common are the
POSIX threads, a.k.a. pthreads, the widely used OpenMP pragma-based model [7, 8, 9, 10], or yet the
Intel Cilk Plus [11, 12, 13] and Threading Building Blocks (TBB) [14] task-based models.

The lower memory consumption and lower overheads of the multithread approach have advocated for
hybrid programming models. Only one process is map to each compute node, or eventually processor,
while all shared resources within the node are handled by threads. Distributed memory libraries such as
MPI or GASPI have adapted to handle multithreaded communications.

In addition to these hybrid process and thread models, the vector resources located at core level
advocate for Single Instruction Multiple Data (SIMD) vectorization. Moreover, GPUs commonly uses the
Single Instruction Multiple Thread (SIMT) model in which a large amount of threads execute in parallel
exactly the same instruction flow on different data. As a result, combining all these programming models
in an efficient way leads to a severe challenge for performance scalability.

Problematic

To make efficient use of recent heterogeneous architectures, several parallelization strategies have to
be combined together to take advantage of the multiple levels of parallelism. The resulting hybrid
programming models combining distributed communications and shared memory threading models are
difficult to implement. Each layer of parallelism have to efficiently exploit the corresponding architecture
level, while the different layers have to properly cohabit with each others. The message passing model, e.g.
MPI, constraints to split and duplicate work and memory which may strongly degrade the code efficiency
at scale. The OpenMP loop parallelization is commonly used in addition to MPI to reduce the number of
duplications. However, this loop parallelization approach lets many sequential parts in the code which
also degrades the scalability. For instance, according to Amdahl’s law, an application parallelized at 97%
and executed on 256 cores, can only attain a 29.6× speedup with 11% of parallel efficiency. Even with
99.9% of the code parallelized, the maximal speedup is 204× with only 79% of parallel efficiency. This is
illustrated in Figure 2.

As a result, most of the applications and runtimes currently in use struggle to scale with the present
trend [9]. In the context of finite element methods, exposing massive parallelism on 3D unstructured
meshes computation with efficient load balancing and minimal synchronizations is challenging. Current
approaches relying on domain decomposition and mesh coloring exacerbate these issues, especially with
new manycore accelerators. In particular, the FEM assembly state-of-the-art parallelization approaches [15,
16, 17, 18], discussed in details in Chapter 3, show inherent limitation preventing them to be efficient on
future manycore systems.

To take benefit from the new systems, two major aspects prevail when designing an application:
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Figure 2: Speedup according to the proportion of parallelized code on a 256 cores execution.

concurrency and locality. Concurrency consists in creating enough independent compute tasks to feed
all the concurrent resources, i.e. nodes, cores and vectors. Every single serialization and sharing on
the critical path is a future bottleneck. Remember Amdahl: the more parallelism in the system, the
higher the time proportion of the sequential code is. We also need to expose locality at core level, i.e.
caches, socket level including hardware accelerators, and network level. But, we cannot only rely on
static locality at core, socket and network level, we should also ensure data communication locality. The
implicit assumption that memory coherency protocol between cores is a free resource for data sharing
does not hold anymore [19, 20]. The communication cost to exchange data and to synchronize in shared
memory has to be taken into account when conceiving parallel algorithms. Therefore, shared memory
programming is getting conceptually closer to distributed programming.

Moreover, a well performing application on a small number of cores, e.g. a compute node, is not
necessarily efficient on a larger number of compute nodes. Conversely, a perfectly scaling application does
not necessarily exploit efficiently the underlying resources and can be far from the peak performance of
the compute nodes. As illustrated in Figure 3, an application developed with a badly performant threading
model and having poor node performance, will easily scale without loosing in parallel efficiency compared
to its sequential execution. In the opposite, a well optimized application which exploits efficiently the
shared resources of a compute node, will be difficult to scale up without sacrificing parallel efficiency.
Indeed, a perfectly efficient application which runs on a single thread and uses 100% of the computation
and memory resources, will necessarily reduce its resource usage per thread when increasing their number.
Therefore, when developing new applications, if developers have a high scalability but a low usage of
the FLOP peak performance, it is time to optimize the core performance and the threading model at
node level. If the optimized threading model does not scale anymore, it is then time to rework on the
distributed communication pattern. Both node performance and scalability are necessary to efficiently
take advantage of supercomputer resources. Another important aspect when developing new applications
is the programmability. An algorithm optimized with the greatest care but impossible to develop and
maintain will highly loose in interest.
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Contributions

In this thesis, we propose a hybrid parallelization approach for finite element methods. Our hybrid
approach targets the three main levels of parallelism within a supercomputer. The distributed memory
parallelism between compute nodes, the shared memory parallelism inside a compute node, and lastly
the vectorial parallel units within a compute core. It is based on domain decomposition at distributed
memory level using asynchronous and multithreaded one-sided communications, recursive Divide &
Conquer (D&C) at shared memory level, and finely tuned coloring heuristic for vectorization at core
level. The rational is to adopt the best suited strategy at each level of the architecture while using
architecture oblivious design for the algorithms. Therefore, our code can adapt with a low intrusion and
few architecture aware parameters to the underlying hardware characteristics such as cache sizes or vector
lengths.

The first contribution concerns the shared memory parallelism. We replace the rigid loop-based
approach by a versatile and efficient recursive approach with architecture oblivious design. This approach
relies on the divide & conquer principle coupled with the Intel Cilk Plus runtime to generate concurrency
and locality with unstructured meshes used in FEM applications. The D&C recursive approach naturally
exposes parallelism and allows to improve locality both in the mesh computation and in the associated
sparse matrix system. In this method, we recursively bisect the mesh and permute the elements, which
results in a parallel and recursive tree of tasks. The Cilk Plus runtime allows to generate a large amount of
parallel tasks and to minimize the synchronizations between them. It also efficiently handles dynamic load
balancing through a work-stealing scheduler. This first contribution resulted in a publication published at
the PARCO workshop [21] and a second one at the HPCC workshop [22].

The second contribution targets the vectorization in very small data partitions of unstructured meshes.
To exploit the vectorial resources of compute cores, we propose an approach which efficiently exposes
vectors of independent elements within each previously generated task. This approach is based on mesh
coloring and uses the Cilk Plus Array Notation to generate the vectorial instructions. This second contri-
bution together with the D&C approach led to another publication published at the PPoPP international
conference [23].

The third contribution concerns distributed memory parallelism. In our approach, we use the standard
domain decomposition approach coupled with GASPI asynchronous one sided communications. We
propose a communication pattern compatible with the D&C fine grain task parallelism used at shared
memory level to multithread the communications and overlap them with computation. This contribution
is about to be submitted in a journal.
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Finally, since very large industrial codes cannot be easily rewritten from scratch without a proven
reason and measured risks, we experiment the concept of proto-application as a proxy between computer
scientists and application developers on a real industrial use case. We developed a proto-application, called
Mini-FEM, representative of our target CFD applications from Dassault Aviation, named DEFMESH.
Then, we developed on the proto-application an open-source library, called DC-lib, implementing the
three contributions described above. The D&C library have been successfully ported back into the original
DEFMESH application and validated in another industrial application, AETHER, developed by Dassault
Aviation. The results show that the speedup obtained on the proto-application can be reproduced on other
full scale applications using similar computational patterns. Dassault Aviation is currently integrating
the D&C library in its production codes and starts to reproduce the same proto-application based code
modernization on other applications. This last contribution has led to a publication at the Alchemy
workshop [24].

We have evaluated our D&C library on different systems based on standard clusters of NUMA nodes
using Xeon multicores and on a cluster of Intel Xeon Phi manycores. D&C achieves a high parallel
efficiency, a good data locality, an improved bandwidth usage, and competes on current nodes with the
state-of-the-art pure MPI version with a minimum 10% speedup. By using 512 Sandy Bridge cores and
only 2000 vertices per core, D&C achieves 77% parallel efficiency and overpasses the pure MPI approach
by 3.47×. On 4 Xeon Phi, D&C has a performance similar to 96 Intel E5-2665 Xeon Sandy Bridge
cores and 96% parallel efficiency on the 240 physical cores. It shows an impressive 373× strong scaling
speedup and is 2.9× faster than the common approach using only MPI domain decomposition. Using a
lower intensive computation kernel, the speedup over the pure MPI version grows up to 6.56×.

Overview

The first part of this thesis presents the context and the state-of-the art in the domain of parallelization
of irregular applications based on unstructured meshes. The Chapter 1 details the evolution of hardware
architectures which has led to heterogeneous and complex architectures more difficult to exploit efficiently.
Chapter 2 presents the existing programming models in use to parallelize applications at distributed,
shared, and core level of such new architectures. Finally, Chapter 3 describes the different approaches
used in FEM applications to generate concurrency and to improve data storage locality.

Then, the second part contains the contributions made during this thesis. Chapter 4 explains the
concept of proto-applications used to ease the development of new algorithms and largely exploited
during the thesis. It also presents the different industrial applications which have been modified to
incorporate our contributions and their associated use cases. The Chapter 5 targets the contributions
made at node level on shared memory parallelism and presents in details our D&C approach. Then, we
have focused on the development of a new vectorization heuristic to improve the vectorization ratio of
small data sets fitting in core caches as detailed in Chapter 6. Lastly, we propose in Chapter 7 a new
approach to communicate between distributed processes in an asynchronous manner using the PGAS
model and one-sided communications. This approach exploits the D&C multithreaded tasks to parallelize
the communications and to recover communication and computation.

The last concluding part summarizes all the contributions to give a global picture of the work achieved
during this Ph.D. thesis and proposes future works.
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CHAPTER 1

HETEROGENEOUS HARDWARE
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1.1 Introduction

The need for computation aid has arisen thousands years ago. It first appeared as counting devices
such as the Sumerian abacus around 2500 BC. While computing devices have hardly evolved during
millenniums, they have considerably changed our lifestyle starting from the second half of the 20th century.
Nowadays, the needs for computation are entirely handled by computers. The progresses made in the
different domains of research have drastically increased the computation power but also the complexity
of computing devices. The general purpose Central Processing Unit (CPU) model which marked the
beginning of the computers has pursued its evolution. It results in smaller manufacturing processes, higher
frequencies, and later, in more parallel resources. This is detailed in Section 1.2. But other models have
appeared. The specific needs of parallelism in the domain of graphic processing have led to the Graphic
Processing Unit (GPU) model described in Section 1.3. More recently the Intel Xeon Phi manycore model,
presented in Section 1.4, has appeared as a compromise between these CPU and GPU model. The larger
computing centers, a.k.a supercomputers, are a clustering of distributed computed nodes composed of
these different technologies. Most of modern supercomputers compute nodes contains at the same time
several multicore CPUs, and several accelerators which can be either GPGPUs or Xeon Phi. It results
in a severe challenge for performance scalability. The most powerful supercomputers are presented in
Section 1.5 as well as those used during this thesis in Section 1.6.
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Chapter 1. Heterogeneous Hardware Architectures

1.2 80 Years of Innovations Leading to the Multicore

Charles Babbage is often cited as the father of the computer. In 1833, he conceived the idea of an
Analytical Engine composed of mechanical arithmetic units and punched card memory. This Analytical
engine is considered as the first general-purpose computer. A century later, in 1936, Alan Mathison Turing
conceived a mathematic model aimed to manipulate a list of symbols recorded on a strip according to a
table of rules. This model known as the Turing machine was at the origin of what will become the modern
computer. Then, the Second World War was an important driving force in the elaboration of computers. In
1943, many scientists including John von Neumann searched for a way to increase the computation rate
of ballistic trajectory originally handled by humans and analog computers. Research resulted to the von
Neumann architecture which is still used in modern computers. This model, illustrated in Figure 1.1, is
composed of an Arithmetic-Logic Unit (ALU), a control unit which schedules the operations, a memory
containing the program and the data, and input and output (I/O) operations. Their work led in 1945 to
a huge machine of 160 square meters named Electronic Numerator, Integrator, Analyzer and Computer
(ENIAC). The ENIAC was able to sum 5000 numbers in one second and to compute in 20 seconds ballistic
trajectory which would have required 3 days for humans. In 1945, inspired by the von Neumann works,
Alan Mathison Turing wrote the first detailed project of a computer, the Automatic Computing Engine
(ACE).

Central Processing Unit (CPU)

Control Unit

Registers

Main Memory
(Program and Data)

Input 
Unit

Output
Unit

Address
Interconnect

Program and Data
Interconnect

ALU (+ - * / )

Figure 1.1: Representation of the Von Neumann architecture. It is composed of an Arithmetic-Logic Unit
(ALU), a control unit, a main memory, and I/O operations.

Later, in 1971, Marcian Hoff, an Intel’s engineer, designed the first processor integrated in a single
ship which rapidly resulted in the first public microprocessor, the Intel 4004. In 1977, Apple released its
first computer and four years later, IBM presented its first Personal Computer (PC). The microprocessor
has then quickly evolved, following a law conceived by Gordon Moore, a co-founder of Intel Corporation.
The Moore’s law indicates that the number of transistors per chip doubles every two years. Following this
law had been a challenge for the industry during 50 years but it had relentlessly continued to apply until
recently. As illustrated in Table 1.1, in 1971, the Intel 4004 microprocessor executed 60,000 instructions
per second, i.e. around 2.5 million times less than the actual Intel Core i7 6700K. The manufacturing
process has been divided by more than 700 resulting in 760,000 times more transistors per chip which are
smaller than most viruses.

In parallel to the increasing number of transistors, several new technologies have emerged. Originally,
an instruction flow was sequentially executed by a processor. Each instruction requires one to several clock
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Table 1.1: Evolution of microprocessors over 45 years.

Date Name Transistor count Process Frequency Address space MIPS

1971 Intel 4004 2300 10 µm 108 kHz 4 bits 0.06
2015 Intel i7 6700K 1,750,000,000 14 nm 4 GHz 64 bits ∼ 160,000

cycles. In 1960, IBM introduced the instruction parallelism, also known as pipelining [25]. Pipelining
permits the execution of several independent instructions in a same clock cycle. The processors using
this technology were named superscalar processors. Tomasulo et al. from IBM also tried to reduce the
execution time of a set of instructions by sorting them while preserving the dependencies in order to fill
all the pipeline stages [25]. This optimization is called out-of-order execution and is still in use in modern
CPUs. The Control Data Corporation (CDC) 6600 created in 1965 was the first supercomputer designed
by Seymour Cray making use of multicore superscalar out-of-order processors. Intel had waited until
1993 to produce its first superscalar processor, the P5 Pentium.

Later, to improve memory access latencies, the idea appeared to reduce the distance between the main
memory and the processor. A small amount of very fast memory, called cache memory, was integrated
to the CPU [26]. Least recently accessed data from main memory are stored in caches by continuous
chunks of memory, called cache lines. If any data in the cache line is reused in the near future before
being evicted by new data, there is no need to access main memory again. This way, the short distance
with the caches enables fast memory accesses. However, the capacity of these caches is reduced. Indeed,
as illustrated in Table 1.2, there is a trade-off between memory capacity versus latency and bandwidth.
The closer to the memory is the processing unit, the faster and the smaller it is. Therefore, to benefit from
this acceleration, it is required to enable spatial and temporal locality. Several optimizations appeared
to improve the cache benefits such as the prefetching, which aims to bring data blocks to cache before
it is actually needed. An ensuing branch predictor optimization, such as the L-TAGE branch predictor
proposed by Seznec et al. [27], has followed to anticipate which branch in a code is most likely to be
taken and enable appropriate prefetching.

Table 1.2: Trade-off between memory capacities and latencies.

Memory Register Cache Main Memory Storage Disk

Capacity (byte) O(Kilo) O(Mega) O(Giga) O(Tera)
Latency (cycle) O(1) O(10) O(100) O(10,000)

Moreover, to save cycles during context switch or when waiting for new instructions, a Simultaneous
Multi-Threading (SMT) technology has emerged [28]. It permits the simultaneous execution of multiple
independent threads. In early 2000s, Intel introduced with its Pentium 4 a two-thread SMT technology,
known as Hyper-threading. Two threads can be simultaneously executed and share the same pipelines,
caches and registers.

In the early 2000s, when the manufacturing process continued below 90 nanometers, the automatic
benefit brought by the increasing number of transistors and the higher frequencies began to fail because
of overheat issues. To overcome this new limitation in sequential performance gains, the performance
gain has continued, not by increasing frequency but by multiplying the number of cores [29]. The
microprocessors evolution has led to the actual multicore CPUs. The IBM POWER4 created in 2001
was the first commercially available multicore chip. However, while in the past applications could freely
benefit from most of the previous hardware evolution, this new trend necessitates to raise parallelism in
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Table 1.3: Increasing vector length of modern microarchitectures and their associated Instruction Set
Architecture (ISA).

ISA SSE AVX AVX-2 AVX-512 IMCI

Size (bit) 128 256 256 512 512
Year 1999 2011 2013 2016 2012

Microarchitecture Pentium III Sandy Bridge Haswell KNL KNC

the code to get performance improvements. Additionally, microprocessors start to integrate larger and
larger vectorial units which allow to apply simultaneously a same instruction on a vector of data up to 512
bits. This is illustrated in Table 1.3.

But the increasing number of cores accessing a shared memory at a same time has induced critical
memory contentions. Non Uniform Memory Access (NUMA) architectures have been introduced to
address this problem by providing separate memory for each core. As described in Figure 1.2, each
distributed compute node, i.e. NUMA node, has its own separate memory. Inside the NUMA nodes, each
core has its own private Level 1 (L1) cache, and one or two additional cache levels shared with the other
cores of the same processor. The main Random Access Memory (RAM) is shared among all the processors
of the node. While data exchanges between distributed processes are handled trough communications
as explained in the next chapter, every core within a shared memory space has a global vision of the
main memory. However, the access times may vary a lot according to the proximity of the accessed
data. Moreover, since multiple cores can work on a same cache line, NUMA systems provide a costly
coherency protocol to move data between memory banks in order to maintain cache coherence across
shared memory. This protocol uses inter-processor communications between cache controllers to keep a
consistent memory image over the caches storing a same memory location. This may induce important
overheads if several cores attempt to access the same memory region in rapid succession. Data locality is
therefore more and more critical as the size of the NUMA nodes increases to reduce memory duplication
and bandwidth contention. AMD implemented NUMA in 2003 with the Opteron using HyperTransport
interconnection, while Intel provided NUMA compatibility in 2007 with its Nehalem using Intel Quick
Path Interconnect (QPI) interconnection.

Similarly, the increasing number of cores and larger caches within a same processor led to studies
on Non Uniform Cache Access (NUCA) [30, 31]. The traditional cache design consists of a centralized
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RAM 1 RAM 2
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Core 1 Core 2
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Processor 1

Core 1 Core 2
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Processor 2

Core 1 Core 2
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Figure 1.2: Cluster representation with two distributed NUMA nodes, two processors per node, and two
cores per processor.
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decoder which drives physically partitioned memory banks accessed with a homogeneous time. Data
access is therefore limited by the slowest memory bank. The increasing wire delays induced by larger and
more distant caches increase the access times. In NUCA architectures, the cache is broken into smaller
memory banks which can be accessed at different latencies. The D-NUCA design proposed in [30] has
better scalability properties since accesses are serviced with different close banks.

Despite all the recent innovations, after 50 years of efforts, the end of Moore law has been officially
announced. The More than Moore industry roadmap released in 2010 [32] will for the first time lay out a
research and development plan that is not centered on Moore’s law. The projection of the law to 2020
would lead to a two or three nanometers process. This represents about ten atoms length. At this scale,
with the actual silicon CMOS technology, transistors are going to be unreliable due to quantum effects.
The recent extreme UV process with its 13.5 nm wavelength, compared to the actual 193 nm, will not
overcome this.

However, it is unlikely that the evolution stops. It will lead to innovations in other domains. Several
new approaches are currently developed in laboratories and may bring back the scaling of the last decades.
Among them, we can cite the research made on carbon nanotubes and graphene transistors, but also on
superconductors. The quantum computing might also bring significant speedups in certain domains of
application. There are also the tri-gate transistors or yet the 3D chips with multiple layers of components
on a single die. Lastly, more and more devices are likely to be integrated inside CPUs as it is already
the case with the integrated GPU-CPU approach named Accelerated Processing Unit (APU). The lower
distance between devices will result in faster data transfer and lower power requirements.

1.3 GPU Architecture

Image processing naturally offers large amount of parallelism. To speed up such parallel applications,
specific architectures called Graphics Processing Units (GPUs) have been designed. GPUs are composed
of a large number of simple dedicated cores efficient to handle this kind of applications. These cores
have low frequencies and small caches and allow to execute a large number of threads in parallel. They
exploit SIMD paradigm where a same operation is applied to a vector of contiguous data. They are used
as complementary devices, known as accelerators, linked to the CPU through the parallel PCI-Express
interconnect.

Graphic chips were initially used to accelerate the memory-intensive work of texture mapping and
rendering polygons of arcade games since 1970. Then, exploiting GPU architecture stayed very specific to
graphical applications such as video games. However, due to their performance potential on embarrassingly
parallel applications, GPUs started to become popular especially in domains involving matrix and vector
operations. In order to be easier to program, actors have developed simpler dedicated programing
languages such as CUDA for Nvidia GPUs, or OpenCL, for a wide range of architectures including both
Nvidia and AMD GPUs. GPUs have then evolved to incorporate new features enabling general purpose
programming and getting conceptually closer to CPUs. Among them, there is the integration of double
precision units for scientific application, and the apparition of hardware-managed multi-level caches.
Most modern supercomputers at the top of the Green500 [33] which rewards the most power efficient
machines are equipped with GPUs.

The Nvidia Maxwell GM200 architecture created in 2015 is illustrated in Figure 1.3. It is composed
of 24 Streaming Multiprocessors (SMM) grouped in 6 Graphics Processing Cluster (GPC), a shared L2
cache of 3 MB, and 6 64-bit memory controllers resulting in a 384-bit memory interface. Each SMM is
composed of a 96 KB shared memory, 32 load / store units, 32 Special Function Units (SFU) (e.g. sin,
cosine, reciprocal, square root), and 128 cores resulting in a total of 3072 cores and 8 billions transistors.
The Nvidia GeForce GTX Titan X is the only card embedding the Maxwell GM200 GPU in addition to
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Figure 1.3: Nvidia Maxwell GM200 Architecture.

12 GB of GDDR5 VRAM clocked at 1753 MHz Quad Data Rate (QDR), i.e. with 4 data transfers per
clock cycle, which leads to the equivalent of 7 GHz. It can reach a processing power of 6156 Gflops in
single precision and of 206 Gflops in double precision.

1.4 Manycore Architecture

Recently, Intel has proposed with its Many Integrated Core (MIC) architecture a trade-off between GPUs
and classical CPUs. The Intel Xeon Phi is the latest commercial release of the MIC architecture. It is a
x86 compatible coprocessor connected to the PCI-Express interface and composed of several Atom like
processors with extended vectorial operations. This x86 compatibility is aimed at simplifying code porting
but in practice, it requires important optimization effort. Although it can be seen as an accelerator such as
GPUs, it can be standalone and an Operating System (OS) can directly be installed on it. It is designed to
exploit existing x86 parallel applications originally conceived for standard multicores. However, most
applications designed for multicores will not have good performance when running on a Xeon Phi. In the
opposite, when an application has been finely tuned to exploit efficiently the Phi, we can expect that this
application will have good performances on a multicore architecture.

The MIC architecture inherits many design elements from the Larrabee research project from 2008 [34].
A first prototype, called Knights Ferry (KNF), has been released to developers in 2010. It was composed
of 32 cores clocked at 1.2 GHz and allowing to run up to four threads per core. It was built at a 45nm
process size and possessed 2 GB of GDDR5 memory.

In 2011, Intel officially released the Knights Corner (KNC) architecture under the Xeon Phi com-
mercial name. It is built at a 22nm process size equivalently to the Intel Ivy Bridge multicore. Different
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variants of the KNC architecture with minor distinctions have been released. The memory architecture of
the KNCs experimented during our evaluations is illustrated in Figure 1.4. It is composed of 61 cores
clocked at around 1 GHz and possesses 8 to 16 GB of GDDR5 memory depending on the version. Since
the KNC can run an OS inside, a core is often used to service requests like interrupts and it may end up
with 60 cores available for the user application. Each core has its own L1 cache of 32KB and a coherent
L2 cache of 512KB connected by a bidirectional ring interconnect. To exploit ILP despite the in-order
architecture, the cores support four hyper-threads totalizing 240 threads on a single KNC card. Unlike
standard Xeon, the Intel documentation claims that reaching optimal performance on the KNC requires
the hyper-threads. KNC proposes also large SIMD units of 512 bits and an adapted x86 Instruction Set
Architecture (ISA) called Initial Many Core Instructions (IMCI). Contrary to GPUs, the IMCI ISA allows
irregular memory accesses through built-in gather and scatter operations making easier the execution of
irregular applications. However, large access ranges involve more cache lines and therefore negatively
impact the performance [35]. There is also support for masked instructions, where specific vector lanes
can be excluded from an instruction. This KNC architecture has been integrated in many modern super-
computers present in the Top500 [36]. Twice a year, the 500 most powerful supercomputers in the world
are listed by the Top500 as detailed in the next section.
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Figure 1.4: Memory architecture of the Intel KNC.

A performance evaluation of the SpMV kernel on the KNC manycore reveals the importance of
data locality among cores but also inside cores [37]. According to the authors, the SpMV kernel on
this architecture is more memory latency bound than memory bandwidth bound. Well separate the
data used among the different cores in order to avoid cache conflicts and resulting data moved by the
coherency protocol through the interconnection ring is primordial to obtain good performance. We show in
Section 6.3.3 the importance of blocking the data in the L1 caches of the KNC. However, the recent studies
in NUCA architectures introduced in Section 1.2 could mitigate this problem in future architectures.
Additionally, exploiting the wide 512 bits SIMD instructions enables an acceleration factor up to 16 on
single precision values.

A new architecture, named Knights Landing (KNL), is still waiting for commercial release. It will be
composed of up to 72 Atom cores built at a 14 nm process size and will have up to 16 GB of 3D memory.
It will still use 512 SIMD units but with the more generic AVX-512 ISA.
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1.5 Supercomputers

Supercomputers are large and powerful computational centers, a.k.a clusters. The first supercomputer was
designed by Saymour Cray. At this time it was composed of a small number of processors and of specific
vectorial computing units. In the 1990s, supercomputers reached thousands of processors gathered in
several distributed computing nodes interconnected by a high performance network such as Myrinet,
RapidIO, or Quadrics. Nowadays, Infiniband and Gigabit Ethernet interconnection networks are present
in most supercomputers. Each compute node is composed of several processing units following a NUMA
topology as explained in Section 1.2. Almost all modern supercomputers are heterogeneous, which means
that they are composed of various type of compute units. Most of the compute nodes are composed of one
or several multicores, but they can also contain accelerators such as GPGPUs or manycores as the Xeon
Phi.

Supercomputers performance are measured in FLoating-point OPerations per Second (FLOPS). As
stated in previous section, the 500 most powerful supercomputers around the world are ranked twice
a year in lists made by the Top500 organization [36]. They are ranked according to their maximal
performance, RMax, achieved using the High Performance LINPACK (HPL) benchmark [38] proposed
by Dongarra et al. HPL consists in generating a dense linear system of equation and solve it using
LU decomposition. However, LINPACK benchmarks in general have been criticized because of their
non representativeness of common production codes. The resolution of dense linear system does not
stress memory bandwidth and communication networks as sparse irregular applications would do. To
address this issue, Dongarra et al. propose a new benchmark more representative of real case applications,
named High Performance Conjugate Gradient (HPCG) [39]. HPCG consists in solving a preconditioned
conjugate gradient parallelized with MPI and OpenMP, both described in the next chapter.

According to the last list of November 2015 summarized in Table 1.4, the actual most powerful
supercomputer is for the six time Tianhe-2, meaning Milky Way-2, from China. It is composed of
3,120,000 cores coming from Intel Ivy Bridge Xeon multicores and KNC manycores. It reached a
maximal performance of 33.86 PFLOPS while consuming 17.8 MW.

In addition to RMax, the theoretical peak performance, RPeak, is also indicated. The ratio between

Table 1.4: Top 5 supercomputers from Top500 list of November 2015.

Rank Country Name System Cores RMax Power
(PFLOPS) (MW)

1 China Tianhe-2 NUDT TH-IVB-FEP 3,120,000 33.86 17.8
Intel Xeon E5

& Intel Xeon Phi

2 USA Titan Cray XK7 560,640 17.59 8.2
AMD Opteron
& Nvidia K20x

3 USA Sequoia IBM BlueGene Q 1,572,864 17.17 7.9
Power BQC

4 Japan K computer Fujitsu 705,024 10.51 12.7
SPARC64

5 USA Mira IBM Blue-Gene Q 786,432 8.59 3.9
Power BQC
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RMax and RPeak gives an indication of the efficiency of the system. While the peak performance has
almost followed the Moore’s law, the sustained performance achieved by applications is far behind [40].
Reaching high efficiency with real-world applications on such machines is almost impossible. Achieving
10 to 15% efficiency of the peak performance for a production code at scale is considered as acceptable.
Showcasing applications optimized to sustained petaflopic performance, achieve 30 to 50% efficiency.
Even the highly parallel HPL benchmark achieved only 62.3% efficiency on the rank 1 Tianhe-2 super-
computer. The second Titan machine based on AMD multicores and Nvidia GPUs and the third ranked
Sequoia BlueGene machine provide a slightly better power efficiency. Another important metric is the
power efficiency of the machine given by the ratio between performance and power consumption in
FLOP/watt. Similarly to the Top500, the most power efficient supercomputers are ranked in the Green500
lists [33].

The first supercomputer to reach the petascale, i.e. 1015 FLOPS, was the Roadrunner, built by IBM
in 2008. The number of cores has then continued to grow until reaching the million with the IBM
Sequoia supercomputer and more than three millions with Tianhe-2. Given the current speed of progress,
supercomputers are projected to reach the exascale around 2023. However, mainly due to economical
reasons, it is unlikely to reach the exascale by just increasing the number of parallel resources exploiting
actual technologies. The projection of actual technologies used in Tianhe-2 or Titan into exascale machines
leads to energy consumption of around 500 MW which is closed to the electric production of the first
nuclear stations. Evolutions driven by energy efficiency will be needed at hardware level to enable a
theoretical peak performance of 1 EFLOP. This will probably concern compute units architecture, memory
technologies, interconnects, or yet cooling systems. But this will not be enough. Changes at software
level will also be required to efficiently exploit such new architectures. More details on the evolutions of
runtimes and programming models are given in the next chapter.

1.6 Experimental Environment

During this thesis, all the experiments were made with four different supercomputers: Curie, Anselm,
Salomon, and MareNostrum, described in more details in the following sections. These supercomputers
have similar architectures mainly based on Sandy Bridge multicores, briefly presented in the next section,
and of some Intel Xeon Phi manycores (KNC architecture) previously detailed in Section 1.4.

1.6.1 Intel Sandy Bridge

The Intel Sandy Bridge is a 32 nm CPU microarchitecture developed by Intel since 2005 and released in
2011. Its core architecture is illustrated in Figure 1.5. This architecture succeeding to the Intel Nehalem
has provided several ameliorations.

Among them, the apparition of the Advanced Vector eXtensions (AVX) with a 256 bits instruction
set and vectorial units replacing the previous Streaming SIMD Extensions (SSE) instructions. Sandy
Bridge additionally introduced a new cache able to store around 1500 decoded micro-operations (µops).
It is aimed to optimize the energy consumption by avoiding frequent decoding of µops. The branch
predictor has also been improved with a bigger and more efficient historic. Furthermore, the Sandy Bridge
architecture embeds a graphic unit aimed to compete with low-end GPUs from Nvidia or AMD.

Concerning cache memories, in addition to the L0 like µop cache, each core has its own L1 instruction
cache and L1 data cache, both of 32 KB, and a L2 data cache of 256 KB. The Last Level Cache (LLC) of
8 MB which may correspond to a L3 cache is shared between the different cores and the graphic unit. The
cores, the graphic unit, the LLC and the system agent, a.k.a uncore, are interconnected through ring bus to
handle coherency and minimize latency. The system agent is the set of functions, such as the memory
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Figure 1.5: Presentation of the Intel Sandy Bridge core architecture from Intel Developer Forum.

controller or the PCI-Express controller, which are not in the core but which must be closely connected to
it to achieve high performance. Sandy Bridge also enables the hyper-threading technology allowing to
assign two different threads to a single core and the Turbo Boost technology. Turbo Boost consists in
increasing the frequency depending on the activity of the CPU and on its Thermal Design Power (TDP),
i.e. its maximum amount of heat generated.

Several variants of the Sandy Bridge microarchitecture exist. The Xeon versions present in the
supercomputers used during our experiments are octa-cores used without hyper-threading and without
Turbo Boost. Indeed, these optimizations are often disabled on supercomputers due to their lack of
efficiency and the poor acceleration ratio on applications that are not CPU bound. Moreover, using the
Single Program Multiple Data (SPMD) model, two threads having similar workloads will require the
same resources. If applied to a same core, there will be nothing to gain and these threads may conflict
with each other.

1.6.2 Curie

Curie is a French supercomputer designed by Bull and owned by the Grand Equipement National de
Calcul Intensif (GENCI). It is located at Bruyères-le-Châtel into the Très Grand Centre de Calcul (TGCC).
In June 2012, it was the ninth most powerful computer in the world with a 1.67 PFLOPS peak performance
and a consumption of 2.25 MW.

As illustrated in Figure 1.6, Curie is composed of different kinds of compute nodes. There are 360 fat
nodes composed of four sockets of Nehalem-EX X7560 octa-cores totalizing 11,520 cores. Curie also
contains 5045 two-sockets compute nodes using 10,080 Sandy Bridge E5-2680 octa-cores, totalizing
80,640 cores. And lastly, it contains 144 BullX racks composed of 288 Westmere multicores and 288
Nvidia M2090 T20A GPUs. All these nodes are interconnected through InfiniBand Quad Data Rate
(QDR) network with a fat tree topology. We also made some additional experiments on extra compute
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Figure 1.6: Presentation of the Curie supercomputer taken from CEA website [41].

nodes from the Cirrus cluster equipped with KNC manycores.

1.6.3 Anselm and Salomon

Anselm and Salomon are two distinct supercomputers from the IT4I computing center at Technical
University of Ostrava in Czech Republic. The Salomon cluster, illustrated in Figure 1.7, consists of 1,008
compute nodes, totaling 24,192 cores with 129 TB RAM and giving over 2 PFLOPS theoretical peak
performance. All nodes share a 0.5 PB NFS disk storage and a DDN Lustre shared storage of 1.69 PB.
There are 576 regular nodes composed of two twelve-core Intel Xeon E5-2680v3 processors running at
2.5 GHz and 128 GB RAM and 432 nodes equipped with two additional Intel Xeon Phi 7120P. Nodes are
interconnected by 7D enhanced hypercube topology with Infiniband FDR56 and Ethernet network.

Figure 1.7: Presentation of the Salomon supercomputer and of its 7D enhanced hypercube topology taken
from IT4I website [42].

Anselm is smaller than Salomon with only 209 compute nodes, totalizing 3,344 cores, 15 TB RAM,
and 506 TB of disk storage separated in two shared file systems. It has a theoretical peak performance
of 94 TFLOPS . There are 180 regular nodes composed of two octa-cores Intel Sandy Bridge E5-2665
running at 2.4 GHz and 64 GB of physical memory. There are also 23 additional nodes equipped with a
GPU Kepler K20 accelerators, 4 nodes with an Intel Xeon Phi P5110, and lastly 2 fat nodes equipped
with 512 GB RAM and two 100 GB SSD drives. Nodes are interconnected by a fat tree topology using
Infiniband and Ethernet network.
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1.6.4 MareNostrum

The last supercomputer used during this thesis is MareNostrum, which is the Roman name for the
Mediterranean Sea meaning "our sea". It is part of the Barcelona Supercomputing Center and of the
PRACE Research Infrastructure and results from a partnership between IBM and the Spanish government.
It is the most powerful supercomputer in Spain. As illustrated in Figure 1.8, the supercomputer is housed
in the deconsecrated Chapel Torre Girona at the Polytechnic University of Catalonia at Barcelona.

Figure 1.8: Presentation of the MareNostrum supercomputer.

It has a peak performance of 1.1 PFLOPS and was ranked 29 in the Top500 list of June 2013 [36].
It is composed of 6112 Sandy Bridge E5-2670 octa-cores clocked at 2.6 GHz which are divided into
3,056 two-sockets compute nodes and it totalizes 48,896 cores. It also includes 42 compute nodes with
two additional Xeon Phi 5110P. MareNostrum has 115.5 TB of DDR3 memory and 2 PB of GPFS disk
storage. It consumes 1015.60 kW. The nodes are interconnected through Infiniband FDR-10 and Ethernet
network.
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2.1 Introduction

To make efficient use of the recent heterogeneous architectures presented in the previous chapter, several
parallelization strategies have to be combined together to exploit the multiple levels of parallelism. Usually
at top level, there is the distributed memory parallelization model which consists in distributing the problem
across a number of compute nodes with explicit message passing between them for synchronizing the
application or exchanging data between the remote processes. The Message Passing Interface (MPI)
presented in Section 2.2 has become the default implementation of this model. A recent alternative to
message passing is the Partitioned Global Address Space (PGAS) model presented in Section 2.3. It
consists in splitting a memory region over distributed processes and providing them a direct remote access.

Until recently, many applications only use distributed memory parallelization model by assigning
one process to each CPU core. However, on modern multicore CPUs, it becomes difficult to maintain
such a coarse level of parallelism due to the increasing number of cores on a single compute node.
By relying solely on a distributed memory model, the contention for these shared resources results in
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increasing communications and memory bottlenecks. Multiplying the number of processes leads to
memory overheads caused not only by the large number of processes created and their associated file
descriptors but also by the required data and work duplication at program level, as detailed in Section 3.4.
The cores of a same compute node share several resources such as memory and caches which should be
used to replace message communications and data duplications.

Distributed model has to be combined with shared memory parallelism to make efficient use of
the shared resources and to limit the number of process per node. A shared memory parallelization
approach allows to reduce the number of communications between cores and to lower the overhead of
data duplications. However, it makes the application development more complex. Threads are used as the
execution unit inside each node, and the processes are only used between the distributed compute nodes.
Multiple threads can share a block of memory while a process maintains its own private memory block.
Multithreading allows to independently execute various threads in a single program but with their own
execution path and their own data locations. The most popular threading interface is the POSIX Thread
(PThread) programming interface used by several higher level programming models. The pragma-based
OpenMP runtime detailed in Section 2.4 has became prominent thanks to its simplified way to parallelize
applications. However, task-based parallelism is getting popular. The Cilk Plus runtime [11, 12] proposed
by Intel and described in Section 2.5.2 and the Intel Threading Building Blocks (TBB) [14] implement
this model. OpenMP has also evolved to handle task parallelism as detailed in Section 2.5.1.

Modern architectures have also brought the Single Instruction Multiple Data (SIMD) model up to
date. Past vector machines with large data vectors have been put aside. Vector units have been reduced
to small size vectors at core level using limited set of vector operations. But recently, we have seen the
emergence of manycore processors such as the Intel Xeon Phi using large 512 bits vector instructions.
More generally, as illustrated in the Figure 1.3 of previous chapter, the vector units embedded in modern
microarchitectures are getting larger. SIMD vectorization consists in packing blocks of data into vector
registers and applying a same operation to an entire data vector. To maintain correctness of the code
and performance gain when dealing with SIMD parallelism, data packed into vectors must have distinct
memory locations to avoid data corruption and have to be contiguously stored to efficiently use the cache
memory.

Additionally, many supercomputers make use of General Purpose GPUs (GPGPUs) mostly from
Nvidia. These GPGPUs consist of a large number of low frequency cores with small caches which allow
to execute a large number of threads in parallel. The standard programming model for GPGPUs is the
Single Instruction Multiple Thread (SIMT) model implemented by Nvidia. SIMT implies a large number
of threads which execute the same instructions at the same time. But when different threads take divergent
flow paths, their execution is concatenated. All the threads execute the flow path corresponding of the
first branch condition, then the second one, and so on. The threads not supposed to be active during
the currently executed branch are ignored by the hardware using masks. In a same way, threads have
to access coalesced memory addresses with a single memory transaction to avoid important impacts on
performance. This GPGPUs are addressed using specialized programming languages such as CUDA [43],
which only handle the Nvidia’s GPUs, or the OpenCL [44] open-source language aimed to support a large
variety of architectures.

When developing large scale applications, several of these programming models have to be combined
to achieve high performance. However, managing efficiently the parallelization at each level and the
interactions across the different levels is challenging.
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2.2 MPI Model - Message Passing Interface

To exploit the ensuing parallelism between the previously created subdomains, the MPI model has become
a standard. Several MPI implementations exist such as MPICH [1], OpenMPI [45], or Intel MPI [46]. The
idea of MPI is to provide an interface to parallelize an application by creating several processes, called
MPI ranks or tasks, and to exchange data between them using messages. Each MPI rank is mapped to a
distinct compute core. A subdomain part of the problem is assigned to each MPI rank. Historically, the
first version of MPI has been designed to exploit distributed computing units linked together by network,
e.g. InfiniBand or Gigabit Ethernet, using two-sided communications. Two-sided communication means
that both sender and receiver processes have to participate to the communication. There are different kinds
of point-to-point and collective two-sided communication functions respectively detailed in Sections 2.2.1
and 2.2.2.

However, MPI also handles shared memory resources to communicate between ranks on a same
NUMA node. Furthermore, thread-based version of MPI such as TMPI [47], Adaptive MPI (AMPI) [48],
or MPC-MPI [49] have appeared. They map MPI ranks to threads instead of processes inside each NUMA
node using process virtualization. Nevertheless, this process virtualization method requires to restrict the
use of global variables since all the MPI ranks associated to threads share a unique address space. The
goal is to reduce the memory overheads induced by a large number of processes by light-weight threads,
but also to reduce the context switch and synchronization costs. The communications are optimized to
take benefit from the shared resources, but the MPI programming model core concept remains unchanged.
As shown in Figure 2.1a, MPI enforces data duplications and intermediate message buffers which lead to

Network Communication

MPI Internal Buffers

Sender Local Memory Receiver Remote Memory

Memory Copies

(a) MPI-1 copy-based mechanism

Network Communication

Sender Local Memory Receiver Remote Memory

(b) MPI-2 RMA mechanism

Figure 2.1: Comparison between MPI standard copy-based mechanism and zero-copy mechanism using
remote memory accesses.
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increased memory usage. Moreover, the MPI send / receive model induces synchronization overheads
between the two communicating processes. This becomes a bottleneck on large clusters especially when
transferring big messages.

To tackle this problem, a Remote Memory Access (RMA) mechanism, a.k.a zero copy message
transfer, has been added to MPI [50, 51] in its second version. RMA relies on lower communication
layers involving pinned physical memory regions which can be shared with other remote processes. RMA
mechanism enables one-sided communications requiring only one process to transfer data. Sender local
memory is directly transferred to the remote pinned memory regions of the receiver without any memory
duplication. This also reduces the synchronization needs between sender and receiver processes. This is
illustrated in Figure 2.1b. Moreover, recent network hardwares support Remote Direct Memory Accesses
(RDMA). Using RDMA, the data to communicate can be directly handled by the network and neither the
sender nor the receiver CPUs or Operating System (OS) are involved in the communications. One-sided
communications are presented in further details in Section 2.2.3.

2.2.1 Two-sided Communications

The standard MPI communication model is based on two-sided point-to-point communications. In this
model, data are exchanged between two distinct processes with their private memory region. Both sender
and receiver have to participate to the communications, which requires synchronization between the
processes. The sender process has to explicitly send to its receiver a given memory location and the
message size. This memory location is copied to an internal communication buffer, sent to the receiver,
and is copied again to its memory. For each message sent, there must be a corresponding reception call
from the remote process. The sender is therefore forced to wait for the receiver to be ready before sending
the data, as seen in Figure 2.2a.

To mitigate this problem, MPI proposes two different synchronization modes, a blocking one, and a
non blocking one. Blocking communications, illustrated in Figure 2.2a, are done using the MPI_Send and
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Figure 2.2: MPI two-sided synchronization modes.
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MPI_Recv functions. The call to MPI_Send does not return until MPI has duplicated the transferred data in
a communication buffer, or until data have been received by the remote process. Similarly, MPI_Recv only
returns when the communication is complete. Non-blocking communications, illustrated in Figure 2.2b,
are done through the MPI_Isend and MPI_Irecv. These functions return immediately. This way, the
sender is free to continue its computation while the receiver process gets ready. The completion of the
communication is ensured by the MPI_Wait function which may be called further. The MPI_Probe
function can also be used to see whether the communication has finished and go back to computation
if it is not the case. This allows computation and communication to overlap and therefore, hide at least
partially, the communication latencies.

In both blocking and non blocking modes, MPI can use two different communication protocols
depending on the size of the message. For smaller messages, MPI generally uses the Eager protocol
illustrated in Figure 2.3a. With the Eager protocol, the data to communicate are copied into an intermediate
communication buffer. This reduces the synchronization delays, since the sender can continue its work
before the completion of the communication. As soon as it has been acknowledged that the data to
communicate have been copied into the intermediate buffer, the sender can reuse this memory region
without waiting for the receiver acknowledgment. However this induces memory waste and copy delay
for both sender and receiver, and it assumes that receiver has enough place to unpack the data. For bigger
messages, MPI uses the Rendezvous protocol shown in Figure 2.3b. The sender process requests the
receiver for an incoming communication of a given size. Then, the receiver allocates the required memory
if necessary and confirms to the sender that it is ready to receive. Lastly, the sender can send the message
and wait for reception acknowledgment. This way, the sender is sure that the remote process is able to
receive the message. Moreover there is no extra data copy nor memory duplication in an intermediate
communication buffer. But this synchronization between sender and receiver is costly since it implies
several remote communication latencies.
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Figure 2.3: MPI two-sided communication protocols.

2.2.2 Collective Communications

In addition to point-to-point communications, MPI proposes a set of collective communications involving
a group of MPI ranks. The groups, called communicators, contain at least two MPI ranks. Since MPI-3,
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collective communications can be either blocking or non-blocking. Several categories of collective
communications have been implemented in MPI. Some of them are used to exchange data between
processes within an MPI communicator, while others are used to apply operations on distributed values
spread among the communicator’s processes.

Concerning data movement collectives, there is the All-to-All illustrated in Figure 2.4a in which data
are switched between all processes. The i-th part of the local buffer is sent to the i-th process while data
coming from the j-th process are stored to the j-th position of the local buffer. The Broadcast represented
in Figure 2.4b is used to send a local data to all the other processes within the communicator. There are
also the Gather and Scatter operations which are two opposite functions both illustrated in Figure 2.4c.
The Gather consists in aggregating data coming from the other processes into their corresponding rank
index. In the opposite, the Scatter is used to split local data to the other remote processes. A piece of data
located at the i-th position is sent to i-th rank.
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Figure 2.4: Set of MPI global communications.

Concerning the reduction collectives, MPI implements several operations aiming at computing the
minimum, maximum, sum, or even logical operations between the data of an MPI communicator. An
example of the Sum Reduction is given in Figure 2.4d. Lastly, MPI provides a collective synchroniza-
tion used to block all MPI ranks of the communicator until they are all at the same point. All these
collective communications are very sensitive to load balancing issues since the processes involved in the
communications have to wait for the slower one.

2.2.3 One-sided Communications

As stated in previous sections, two-sided communications induce memory copies and costly synchro-
nizations which negatively impact the overall performance. To address this issue and take advantage
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of RMA capabilities, MPI has extended its traditional two-sided communication model with one-sided
communications. This version 2 of MPI is described in more details in [2, 52]. MPI-2 uses abstract objects
called Window to specify memory regions of processes made available for remote operations by other
processes. Creation and deletion of windows are done through collective operations, MPI_Win_create and
MPI_Win_free, implying all the processes intending to use this window. One-sided RMA operations are
applied to a window, an offset in the window, and a target rank. But the creation of the window does not
make the corresponding memory regions available to the other processes. An RMA epoch must be opened
through a synchronization call to make the window accessible. All RMA operations of a given window
take place in a single epoch delimited by a start and an end calls at a given point of the code. There are
three different one-sided operations:

• The remote write operation MPI_Put illustrated in Figure 2.5a, which transfers data from the sender
local window to the receiver remote window.

• The remote read operation MPI_Get seen in Figure 2.5b and used to retrieve data from a remote
window and to copy it to the local window.

• And a remote update operation called MPI_Accumulate which allows to accumulate a local value to
an other remote value. Making a call to MPI_Accumulate is equivalent to retrieve a remote data
using MPI_Get, update it locally, and send it back to the remote process using MPI_Put. Several
accumulation operations are available such as the sum reduction.

These operations are non-blocking, however, a synchronization call is required to ensure that the
communication is achieved. Indeed, the read or written memory region should not be updated before
the end of the data transfer. The MPI_Win_flush function can be used to ensure the completion of all
one-sided operations initiated by the caller process to a remote receiver process. In any case as shown in
Figure 2.5, the end of the epoch guarantees the completion of all occurring one-sided operations.
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29



Chapter 2. HPC Parallel Programming Models

The synchronization between emitter and receiver ranks depends on the chosen mode between active
or passive target. Active target implies that the emitter and the receiver processes call the synchronization
epoch functions. Two different synchronization calls are available in active target mode, the Fence
Synchronization and the Post-Start-Complete-Wait (PSCW). Fence Synchronization is very similar to a
standard MPI barrier. All the processes involved in an epoch have to call the collective MPI_Win_fence at
the beginning and at the end of that epoch. This model is well adapted to bulk-synchronous paradigm
where computation and communication are separated but is incompatible with asynchronous programming.

To avoid global synchronizations for each epoch, MPI provides a Post-Start-Complete-Wait model
illustrated in Figure 2.6a. In PSCW, emitters have to call the MPI_Win_start and MPI_Win_complete
functions which are similar to MPI_Win_fence excepted that they only involve a subgroup of processes.
Receivers must call the corresponding MPI_Win_post and MPI_Win_wait functions to acknowledge the
start and the end of an epoch. The period between the start and complete calls defines an Access Epoch
during which RMA communications are possible. The period between the post and wait calls defines an
Exposure Epoch corresponding to the time in which the target window is exposed or accessible to RMA
calls. This model is similar to the non-blocking mode used in two-sided communications and reduces the
synchronization needs between the processes participating to a same epoch. But the cooperation between
emitter and receiver processes destroys the possibilities of true one-sided asynchronous communications.
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Figure 2.6: MPI one-sided synchronization modes.

The last type of synchronization is the Lock-Unlock passive target mode shown in Figure 2.6b.
Here, only the emitter process calls the synchronization functions to delimit an epoch. In this case the
synchronization corresponds to a lock on the window using the MPI_Win_lock and MPI_Win_unlock
functions. This lock restricts the access to a target window to only one process at a time preventing from
concurrent interference during the communication. Locks can be either shared or exclusive. Exclusive
locks enforce mutual exclusion on the window and the associated RMA operations within the epoch. No
other process can access that epoch or create another epoch until the lock is taken. If the lock is shared,
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other processes can open other concurrent epochs. However users have to ensure that there is no different
RMA operations updating data on the same window memory location at the same time to avoid errors.

To improve the performance of MPI-2, several optimizations have been proposed [53]. Later, a third
version of MPI has been released to revise the existing one-sided communication model in order to better
exploit the recent RDMA network possibilities [54, 55]. MPI-3 has also added some extensions to this
model. Among them, MPI-3 has introduced a request-based mechanism to the one-sided operations. This
mechanism enables the use of different test and wait functions, as those used in traditional two-sided
point-to-point communications. MPI-3 has also added a global lock-unlock mechanism which allows to
simultaneously control access to all processes sharing a window. These new features help programmers to
overlap parts of the communications with computation. Another novelty of MPI-3 are the shared memory
windows which take benefit from the shared resources to handle communications and synchronizations.
Programmers have to ensure that all the processes intending to use a same shared memory window are
on a same NUMA node. This is de facto reducing the interest of thread-based MPI approaches such as
TMPI [47], AMPI [48], or MPC-MPI [49].

All-in-all, MPI one-sided communication model is complex to use. Memory emplacements specified
by windows cannot be updated by a remote RMA operation and locally stored during the same epoch,
even on non-overlapping locations. Moreover, RMA operations within an epoch are not allowed to access
the memory of different processes. This would require to create a distinct window for each target process
and to serialize the operations. Furthermore, we observe that while the documentation indicates that
all the RMA operations are ensured to be completed at the end of an epoch, in practice, all the RMA
operations posted during an epoch are only handled when calling the end of this epoch. With the current
implementation, even if an RMA operation is ready to be sent at the beginning of an epoch, it will be
delayed with all the other RMA operations occurring during that epoch to the end call.

To overcome these drawbacks, a new version of MPI is being created. MPI-4, which is proposed by
Hoefler et al. [56], will reuse a notification driven model enabling remote completion already demonstrated
in GASPI [4, 5]. In this model, once a sender has complete its one-sided writes, it can send a notification
identified by a unique ID. The receiver can then wait for incoming notifications and be ensured of the
incoming communication completion. This model in use in the GASPI library will be presented in more
details in Section 2.3.2.

2.3 PGAS Model - Partitioned Global Address Space

A more recent approach used to exploit distributed memory parallelism is the Partitioned Global Address
Space (PGAS) model. PGAS model consists in allocating a global memory space which is partitioned
among the distributed processes resources. Each process has a local part of the segment and a direct
access to the other remote parts of the segment. It is therefore possible to access, both in read and write,
the memory of remote processes without their active involvement. These processes can be assigned to
heterogenous architectures.

In our case, we use the GASPI API [4, 5] implemented in the GPI-2 library [57] described in
Section 2.3.2. But many other PGAS languages exist such as Unified Parallel C (UPC) [58], Titanium [59],
Co-Array Fortran [60], Chapel [61], or yet X10 [62]. MPI-RMA could also have been used for PGAS
languages, but the strong restrictions on memory access pattern, the lack of semantic guarantees, and the
absence of the remote completion concept restrain it [63].
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2.3.1 Pros and Cons of One-sided Communications

PGAS languages exploit one-sided communications and are well suited to clusters allowing Remote Direct
Memory Access (RDMA). RDMA enables direct memory accesses to all processes sharing data on the
partitioned global address space without involving the operating system nor the CPU. Communications
are directly done through network interface controllers. This approach brings several advantages and is
well suited to unstructured applications with irregular communication patterns [64].

• It allows to reduce the data movement and memory duplication. Using one-sided operations, a
sender process specifies the communication parameters both for the local and the remote side and
then directly writes data to the receiver’s memory. In a two-sided approach, the process sending
data needs to pack its local data and copy them to an intermediate communication buffer. Then, the
receiver has to wait for the incoming of this buffer and to copy it again to its local memory. This
requires twice as much data movement than a process directly writing to its receiver’s memory,
increasing by the same way the memory bandwidth requirements.

• One-sided communications using RDMA compatible network consume less CPU resources. Neither
the sender, nor the receiver CPU is involved in the communication. This way, there is no context
switch, no cache pollution, and no CPU cycles wasted. This is directly handled by the network
controller.

• One-sided operations also reduce the needs of synchronization. In two-sided approach, for each
call to a send, there must be a corresponding receive call. A sender process stays involved in the
communication while the remote process has not acknowledged the reception. Moreover, the sender
cannot reuse its communication buffer until the receiver has unpacked its data. Using one-sided, as
soon as a piece of data is ready to communicate, the sender can directly write it to the receiver’s
memory and continue its execution even if the latter is not ready to receive. Receiver has just to
check when it is ready whether the incoming data are ready or not.

• Lastly, the communications are handled in parallel with the rest of the computations which allows
to recover more easily the network delays by computation. Overlapping communication with
computation becomes crucial to scale on modern architecture. This problem occurs in various
domains. For instance, Ghysels et al. have developed a pipelined version of the conjugate gradient,
Pipelined CG [65]. It aims at removing the global synchronization step at each iteration and
increasing the overlap possibilities, trading numerical accuracy for a better scalability.

However, using one-sided communications also brings new complications. Once again, in two-sided
approach, the process sending data only needs to gather its local data and pack them to communication
buffers. Concerning the receiver, it receives the buffer and unpacks the data to its local position. In both
cases, all the informations required to achieve these tasks are known by the process handling it. When
using one-sided communications, the sender has to know its local information to pack its data, but also all
its receivers information. If a process sends scatter data to several other processes having different offsets,
it needs to know the destination offsets of each of its receivers.

As previously stated, most of the scientific applications have already been designed following a
domain decomposition pattern using the MPI library. Although it is possible to mimic the behavior of
two-sided bulk-synchronous pattern using one-sided communications, to fully exploit their underlying
possibilities of asynchronism and communications recovery, the communication pattern needs to be fully
redesigned as well as the data layout. This may imply deep changes in the code which can be blocking on
large industrial applications.
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For instance, in the DEFMESH application from Dassault Aviation presented in Section 4.2.1, all
processes have an interface index giving them the local emplacement of all the elements on each of their
interfaces. With the actual MPI two-sided implementation, the receivers loop over the interfaces and wait
for incoming data. This way, when a communication is complete, the receiver knows exactly where to
store its data. When passing to one-sided communications, each process needs to know the destination
emplacement of all its neighbors, i.e. needs to have their interface index, which increases the memory
requirements of the application.

2.3.2 GASPI and its GPI-2 Implementation

GASPI, for Global Address Space Programming Interface, is an API based on the PGAS model enabling
asynchronous and fault tolerant data-flow programming using non-blocking one-sided communications [4,
5]. It has been developed by Fraunhofer ITWM since 2005 and was originally named Fraunhofer Virtual
Machine (FVM). In 2009, FVM was renamed into Global Address Programming Interface (GPI) and in
2011, the GASPI standard was created. GPI-2 is the first open-source implementation of this standard [57].

As a PGAS model, each GASPI process has a local and a global memory region which is partitioned
among the distributed processes resources. These distributed resources can be either NUMA partitions,
HDDs, SSDs, or even GPUs memory and more recently Xeon Phi memory. The local memory of a GASPI
process is private while the global memory space, called segment, is shared with the other processes
and has to be allocated at the beginning of the application. Each GASPI process has read and write
accesses to the whole segment and can directly access the memory of remote processes without their
active involvement through RDMA interconnect. This is illustrated in Figure 2.7. The GASPI segment are
comparable to the MPI windows described in Section 2.2.3. However, these segments can be mapped
to memory of heterogeneous architectures such as GPGPUs, Xeon Phi, and multicores. The GPI-2
implementation supports both InfiniBand and Ethernet interconnects.

RDMA Interconnect

NUMA Node 1 NUMA Node 2

Multicore

Core 1 Core 2

Core 3 Core 4

Multicore

Core 1 Core 2

Core 3 Core 4

Manycore

C1 C2 C3 C4
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Manycore

C1 C2 C3 C4
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Global Address Space

RAM 1 RAM 2 RAM 1 RAM 2

Figure 2.7: PGAS model - Each process owns a local part of the segment and has a direct access to the
other remote parts of the segment through the RDMA interconnect.

GASPI API provides several ways to exchange data between processes. A process can directly
read from, or write to, a remote process memory address located inside a GASPI segment, using the
gaspi_read or gaspi_write functions. It is also possible to communicate data from a list of distinct memory
addresses using the gaspi_read_list or gaspi_write_list functions. Similarly to MPI, GASPI provides both
synchronous and asynchronous collective operations involving a group of GPI processes. As for MPI, the
default group contains all the ranks. Two collectives are provided in GASPI: the gaspi_barrier and the
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gaspi_allreduce. The all reduce function comes with a list of pre-made operations such as the min, max or
sum, but it also offers the possibility to apply a user reduction operation using the gaspi_allreduce_user
function.

A complete communication involves two calls, the first one initiates the communication and posts a
communication request directly to the network. All the communication requests are enqueued by default
into a unique queue. However, many different queues can be created simultaneously to separate different
types of requests and synchronize them independently. The second call waits for the completion of
the communication. Unlike MPI one-sided using specific epochs to communicate, GASPI uses remote
completion through notifications. Data may be asynchronously written as soon as it is ready and followed
by a corresponding notification identified by a unique ID, aimed at informing the remote process of
the completion of all the foregoing communications in a given queue. Once the notification is sent, the
sender process is done with the communication. As soon as it is ready, the remote process can wait for
a range of notification IDs and can reset them using the gaspi_notify_waitsome and gaspi_notify_reset
functions as viewed in Figure 2.8. It is then ensured that all the corresponding incoming data are locally
available. A process can also wait for the completion of all the requests stacked in a given queue using
the gaspi_wait function. An example of two equivalent communication patterns using GASPI_write and
GASPI_notify functions or GASPI_write_notify is given in Figure 2.8. This GASPI mechanism is highly
more scalable than the MPI model based on windows and epochs and brings several advantages. Remote
completion using notifications enables more true asynchronous programming and allows to better overlap
communication with computation. It also avoids the ping-pong between sender and receiver and therefore
the number of messages on the network and the resulting latency overhead. Incidentally, this idea has
been picked up by Hoefler et al. in their MPI 4.0 model [56].

GASPI supports the notion of non coalesced data accesses with the GASPI_write_list. GASPI_write_list
consists in sending to a remote process a list of local offsets, each of them with a specific size. Addi-
tionally, GASPI provides atomic operations which can be used to manipulate variables as if they were
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Figure 2.8: Presentation of GASPI_write, GASPI_notify, and GASPI_write_notify one-sided operations.
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global shared variables in order to synchronize processes or events. Only one process at a time can
access and modify these variables. These atomic operations are the gaspi_atomic_fetch_add and the
gaspi_atomic_compare_swap. The fetch_and_add can be used to get the value of a global variable and
then to increment it by any value. The compare_and_swap is used to compare the value of a global
variable to any other value and if equal, apply the given value to the global variable.

Lastly, GASPI is tolerant to hardware failure. Unlike MPI applications, if one or more nodes fail
during a GPI run, the remaining processes are not stuck when trying to communicate with a failing node.
GASPI offers the possibility to the user to detect that the remote nodes do not respond and adapt his
algorithm to handle such issues. Indeed, GASPI communication calls are non-blocking and it provides a
timeout mechanism for blocking procedures. There are two predefined timeout values: GASPI_BLOCK
value blocks the procedure call until completion while GASPI_TEST stays in the procedure call for the
shortest time possible.

Since GASPI is likely to be used in a hybrid parallelism context in addition to multithreading libraries
such as OpenMP or Cilk presented later, it allows multithreaded communications. All the operations
presented above can be called in parallel from different threads. In our case, as described in Chapter 7, we
make parallel calls to the write and notify functions inside the leaves of our divide and conquer recursive
tree. The wait and the reset of the incoming notifications, so as the unpacking of incoming data, are also
handled in a parallel loop.

In order to convince developers to use the GASPI library, even if they have already developed MPI
applications, GASPI can interoperate with MPI. GASPI sections can be created inside MPI sections. In
this case, MPI starts the binary and creates the processes. Then, at the beginning of the GASPI section,
the MPI processes are recovered by GASPI, and at its end, the processes are given back to MPI. The only
limitation is that MPI communications cannot coexist with GASPI communications at a same time. All
MPI operations must be terminated at the beginning of the GASPI sections and vice versa. This way,
users can try GASPI on a specific part of the application without having to modify the whole application.

GASPI Performance Comparison

GPI-2 has recently been experimented to parallelize a SpMV kernel and a fluid flow solver in [66] and
adaptive local search approaches in [67]. They show that the algorithms have to be redesigned to fully
exploit GPI. But when properly used, this allows to recover an important part of the communications and
gain a significant speedup compared to MPI implementation. Simmendinger et al. [68] have compared
several halo exchange implementations using MPI and GASPI in strong scaling experiments. They
have implemented many different communication patterns and experimented them on standard Xeon Ivy
Bridge processors and on Xeon Phi manycores. The Ivy Bridge experiment is illustrated in Figure 2.9. It
compares 10 distinct implementations:

• The communication free version which uses no communication at all, only the compute phase. This
is the ideal performance to reach by entirely overlapping communication by computation. This
version is called comm_free in the Figure 2.9.

• The standard MPI bulk-synchronous approach using two-sided communications, in which the
communication phase only starts at the end of the computation phase. It is called mpi_bulk_sync.

• An early-receive MPI version using two-sided communications where the calls to the non-blocking
receive procedures are posted before the beginning of the computation phase. Similarly to the
bulk-synchronous version, the sends are only executed once the computation phase is completed.
This version is named mpi_early_recv.
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• A two-sided asynchronous MPI version similar to the previous early-receive version but where the
sending operations are processed as soon as the data involved in the corresponding communication
are available. This is the mpi_async version.

• A bulk-synchronous version and an asynchronous version, both using MPI one-sided and fence
synchronization as explained in Section 2.2.3. They are respectively named mpi_fence_bulk_sync
and mpi_fence_async in the Figure 2.9.

• And two other bulk and asynchronous MPI one-sided versions, but using the PSCW synchronization
mechanism explained in Section 2.2.3. These versions are respectively called mpi_pscw_bulk_sync
and mpi_pscw_async.

In addition to this communication free version and these 7 MPI versions, they have implemented 2
different GASPI communication patterns:

• A bulk-synchronous version similar to the MPI one, but using GASPI one-sided communications.
It is named gaspi_bulk_sync.

• And an asynchronous GASPI version, called gaspi_async, in which the data involved in the
communication are directly written to the appropriate neighbor, as soon as they are available.

The conclusions are similar on both of these architectures. The overlap possibilities of the asyn-
chronous versions increase the gap compared to bulk-synchronous version as the number of cores increases.
These experiments also highlight the poor performance of the MPI one-sided communications compared
to GASPI ones, or even to standard MPI two-sided.

Figure 2.9: Comparison between different communication patterns on 48 two-socket nodes of 12-core
Xeon Ivy Bridge EP. With courtesy of Simmendinger et al..

2.4 OpenMP Worksharing Model

OpenMP [7] is a shared memory parallelization runtime using pragmas to create and manage threads. It
first appeared in late 1990s and was initially published for the Fortran language and quickly after released
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for C and C++ languages. It is a bulk-synchronous fork-join model originally based on loop parallelization.
As illustrated in Figure 2.10, the master thread creates as many new threads as required by the user at
each new parallel region and synchronizes them at their end. This is done by the omp parallel pragma.
To parallelize loops, the omp parallel for pragma splits the loop iterations into independent chunks and
schedules then among the different threads. Scheduling can follow different heuristics:

• Static - The loop is divided in equal-sized chunks and a tail chunk statically distributed to the
threads.

• Dynamic - The chunks are dynamically distributed to the threads with a synchronization at each
assignment. This allows to dynamically balance the load of irregular loop iterations but it generates
an important overhead.

• Guided - Similar to Dynamic but with decreasing chunk size in order to increase load balancing
opportunities.

• Auto - The compiler automatically choose between the three previous scheduling strategies.

The pragma approach of OpenMP makes it easy to use and has been widely used during the last decade.
However, its loop-based model is in essence limited by the Amdahl law. The sequential remaining parts of
the computation will be more and more critical as the parallelism increase. The bigger the compute nodes
will be, the less efficient this model will be. Nevertheless, OpenMP is well suited to handle dense regular
application composed of hot loops representing an important proportion of the total execution time on
a small number of cores. In [69], authors experiment OpenMP loop parallelization in an FE academic
application, called FEAP. Synchronizations are handled using the atomic directive. They obtain good
speedup and efficiency at 12 cores but they only measure the time spent in the parallelized loop and do
not scale beyond 12 cores. Exploring strong scaling experiments would be necessary to have an idea of
the potential bottlenecks of their algorithm.
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Figure 2.10: Bulk-synchronous fork-join parallelization model using 3 threads per parallel region.

2.5 Task Model

Task-based parallelism enables easier expression of unbalanced applications with complicated control
structures and dynamic data decompositions. The task model has been explored both at shared and
distributed memory levels.

At distributed memory level, several runtimes such as StarPU [70], PaRSEC [71], or OpenCL [44]
have appeared to generate parallel tasks able to be executed over various heterogeneous architectures
such as multicores, manycores, or GPUs. Using StarPU [70], the programmer has to specify the data
accessed by each task and how they are accessed, e.g. read, write, or read an write. Then, the StarPU
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runtime automatically generates the dependencies between tasks and schedules them over the different
units, depending on the cost of the tasks and the charge of the units, in order to exploit as much as
possible the different resources and to schedule their charge. StarPU has also been extended to handle MPI
communications between tasks [72]. At higher level, the PaRSEC runtime [71] expresses an algorithm as
a dataflow of tasks, i.e. a flow of tasks scheduled according to their data dependencies and represented
as a Direct Acyclic Graph (DAG). Then, PaRSEC manages and schedules these tasks over distributed
architectures. At the opposite, the low-level OpenCL programming model [44] requires the programmer
to manually define parallel tasks, manage the memory allocation, and perform the transfers between
hosts and devices. Lastly, the YML framework and its associated YvetteML workflow language [73]
provide an interface to develop and execute parallel applications. Similarly to PaRSEC, the YvetteML
language permits to describe an algorithm as a dependency graph of tasks. YML does not rely on specific
middleware and aims to stay independent of the underlaying environment.

At shared memory level, task-based parallelism allows programmers to easily assign concurrent blocks
of code to independent tasks rather than directly creating, joining, and managing threads. The runtime
automatically handles the generated tasks and schedules them on the different threads. This way, the
number of spawned tasks can be arbitrarily large and is not linked to the number of threads and the targeted
hardware architecture. This model is well suited to recursive splitting which results in a large amount
of parallel tasks. This fine-grain parallelism enables very efficient load balancing using for instance
work-stealing schedulers as those used in the Intel TBB library [14] or the Intel Cilk Plus runtime [11, 12]
presented in Section 2.5.2. OpenMP has also evolved to handle task-based parallelism in its third version
presented in the next section. Moreover it has been extended by Duran et al. with the OmpSs programming
model [74]. Contrary to OpenMP, OmpSs generates all the threads at the beginning of the execution. The
master thread executes normally while the other worker threads wait for work generated by the master
thread. But worker threads can generate nested work. Moreover, OmpSs extends the OpenMP task model
with automatic dependencies generation. Similarly to StarPU, the user defines the tasks as input, output,
or inout tasks and OmpSs schedules them according to the resulting dependency graph. Recently, a novel
approach has been proposed by Gonnet et al. with the QuickSched scheduler [75]. It differs from the
implicit task dependencies model used in Cilk, TBB, or OpenMP 3.0, which is inherently defined by
the spawning and the synchronization of the tasks. Instead, it extends the dependency-only model using
automatic generation of task dependencies used in StarPU, PaRSEC, or OmpSs, with task conflicts. The
concept of conflicts consists in explicitly defining the shared resources needed by a task to execute. Tasks
requiring the same shared resources cannot execute concurrently. However, as soon as there is no explicit
dependency, they can execute in any order. Once a task’s dependencies have been resolved, it is put in one
of the thread queues and is executed when it is not involved in any shared resources conflict. This lets
more possibilities to the scheduler removing irrelevant execution order between independent tasks.

2.5.1 OpenMP Tasks

Standard OpenMP model has been very successful last decade to exploit regular loop parallelism. In order
to address the growing need for irregular parallelism in modern applications, preliminary versions of
OpenMP exploiting task parallelism have been explored. In [76] and [77] authors highlight the limitations
of OpenMP model to handle nested parallelism. While OpenMP is initially designed to parallelize
the outer level of parallelism, they show the importance of taking into account the multiple levels of
parallelism available in the algorithm. To tackle this problem, they propose an algorithm aimed at creating
tasks and explicitly assigning them to OpenMP threads. The work-queuing model proposed in [77] is
representative of how OpenMP 3.0 has evolved later. It has been integrated as an extension into the Intel
OpenMP compiler [78]. This model is basically composed of two pragmas. The first one, taskq, initializes
a single empty queue and starts a block which specifies the environment within which the tasks will be
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executed. The second one, task, is enclosed to the taskq block and specifies a unit of work, i.e. a task,
which is enqueued on the previously created queue.

This results in the very similar OpenMP 3.0 tasking model presented in [79]. Firstly, programmers
have to initialize a parallel region using the omp parallel pragma. Then he needs to restrict its execution
to a single thread using the omp single nowait pragma. The tasks are generated by this single thread
using the omp task pragma and enqueued into a workqueue. The runtime automatically schedules the
tasks among the different threads as illustrated in Figure 2.11. Lastly, the synchronization of the tasks
is handled by the omp taskwait pragma. This synchronization waits for the completion of the generated
children tasks.

Available
Tasks

Thread 1

Workqueue
Thread 2

Thread 3

Thread 4

Generate
Tasks

Execute
Tasks

Figure 2.11: OpenMP 3.0 task workqueuing model.

An experimental evaluation of the OpenMP 3.0 tasking model is proposed in [80]. According to the
authors, this new OpenMP model is promising for a wide range of irregular application parallelization.
Although it is a recent model which still can be improved in programming facilities and performance, it
can be easily used and provides good performance scalability. However in our sense, the generation of all
the tasks by a single thread and their centralization in a single work-queue is in essence not scalable.

Duran et al. have compared different scheduling strategies for OpenMP tasks and concluded that
work-first schedules provide the best performance [81]. However due to OpenMP restrictions, they opted
for a breadth-first scheduler which gets along better with OpenMP. The breadth-first scheduling consists
in placing each new created task into a pool of tasks associated with a team of threads. Only the threads
of the team can execute tasks from that pool. The scheduling of these new tasks is delayed after the end of
the parent tasks execution. This way, all tasks in the current recursion level are generated before a thread
executes tasks from the next level. In OpenMP implementation, there are also tied tasks which are owned
by only one thread and which are not shared in the team pool. These private tasks are scheduled in priority
to the shared tasks located in the team pool.

As breadth-first scheduling generates an important amount of tasks before executing them, it is
important to be able to limit their number. This is called a cutting off strategy. Two different policies are
compared in [81]. The first one fixes a maximal number of tasks which can be created simultaneously
inside each pool. Once the maximal number of tasks is reached, newly created tasks are directly executed.
This maximal number is function of the number of threads. The second cutting off policy limits the
maximal number of recursion levels. When a new task is created, if it exceeds the maximal number of
ancestors, it is directly executed.

Different implementations of OpenMP 3.0 have been compared to the standard OpenMP implementa-
tion without tasks and to the Intel Cilk Plus runtime presented in next section [82]. They evaluated these
different versions on the Unbalanced Tree Search (UTS) benchmark [83] aimed at testing the scheduling
and load balancing strategies of parallel runtimes. They concluded on the poor behavior of the different
OpenMP 3.0 implementations on this benchmark. The Intel implementation behaves significantly better
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than the others in terms of load balancing but is still outperformed by the Cilk Plus runtime.

2.5.2 Cilk Plus

Cilk is a task-based runtime designed for multithreaded parallel programming and developed as an
extension to the C programming languages [11, 12]. The C elision of a Cilk program produces a
syntactically and semantically correct C code. Cilk was originally developed at the MIT in 1994 by
Leiserson et al. The name of Cilk is an allusion to the silk, which can be described as "nice threads", and
to the C programming language. In 2006, Leiserson launched Cilk Arts and decided to modernize it into
Cilk++ [13]. Cilk++ integrates the support for the C++ language, loop parallelization, and hyperobjects
such as reducers or thread local storages named holders [84]. Since 2009, Cilk Arts is part of Intel
corporation and has been renamed into Cilk Plus.

Similarly to OpenMP, Cilk uses fork-join parallelism, a.k.a. fully strict parallelism. In this model,
a task can create an arbitrary large number of children tasks which can freely execute in parallel. Then,
it needs to wait for the completion of its children tasks before ending. But it cannot wait for tasks that
are not its children. All the dependencies of a task subtree come from the subtree’s root. This allows to
simplify and alleviate the runtime. Moreover, Cilk enables nested parallelism. It means that any generated
task applied over a set of values can in turn generates other parallel tasks over other sets of values. This
model is well adapted to divide and conquer algorithms.

Cilk Plus allows users to generate and synchronize efficiently many parallel tasks using respectively
the spawn and the sync keywords. Newly created tasks can be used to spawn again other tasks, forming a
very large recursive tree in which the depth corresponds to the critical path and the width corresponds to
the available parallelism. The synchronization of the tasks is local to the subtree of a given task. The task
making the sync call is blocked until the completion of all its descendant tasks. Cilk Plus also provides a
loop parallelization using the cilk_for keyword which automatically generates a recursive tree assigning
the different loop iterations to distinct tasks. All these tasks are organized in queues and executed by
threads, named workers.

Concerning load balancing, the Cilk Plus runtime uses a work-stealing scheduler. As explained in the
previous section, work-first scheduling strategies obtain in general better performances [81]. However,
such strategies were not chosen in OpenMP due to internal restrictions. In Cilk, there is no such restriction
and a work-first scheduler has been implemented [11, 12]. The idea of the work-first scheduling is to
follow the serial execution path to benefit from the data locality of the sequential algorithm. Moreover, it
is better to remove overheads from work than from critical path. Indeed, in Cilk scheduler, the parallel
running time can be bounded by the following formula [12]:

TP ≤C1
T1

P
+C∞T∞ (2.1)

Where P is the number of processors, T1 the sequential execution time, i.e. the work, Tp the execution
time on the P processors, T∞ the execution time on an infinite number of processors, i.e. the critical path,
and lastly C1 and C∞ are constant due to overhead in the system. Even with a large number of processors,
we have T1

P � T∞. Therefore, in order to optimize performances, it is better to move the overhead from C1
to C∞.

Contrary to the breadth-first scheduling strategy, in work-first schedulers, when a new task is created,
the current thread directly switches from the parent task to the new task. The tasks which have been
suspended, either because of the creation of a new task or because of a synchronization, are pushed into a
pool local to the current thread. Threads execute in priority their local pool, following a LIFO strategy.
When it is empty, they will steal parent tasks in priority and if not possible, they will steal tasks from other
thread pools following a FIFO strategy. Work stealing algorithms are presented in more details in [85].

40



2.5. Task Model

During the compilation, two clones of every Cilk procedure are produced, a fast clone and a slow
clone [12]. The fast clone is almost identical to the C elision of the Cilk procedure and is executed in the
common case. The slow clone, which is around 20 to 30% slower than the fast clone, is executed in the
infrequent cases where a task is stolen from another worker thread. Since Cilk scheduler steals in priority
parent tasks, a fast clone is ensured to be executed by the same worker than its parent task. However, a
slow clone needs to load additional variables stored in a shadow stack for parallel bookkeeping. This is
illustrated in Figure 2.12.

Fast
Clones

Slow
Clones

Worker

Empty
Queue

Stealer

Execute
Fast Clones

Steal
Slow Clones

Figure 2.12: Cilk Plus work-stealing scheduler.

Cilk Plus is accompanied with two powerful and helpful tools which are part of the Intel Cilk Plus
Software Development Kit. These tools are Cilkscreen [86] and Cilkview [87] which has recently been
refactored as Cilkprof [88]. The Cilkview tool, and by extension Cilkprof, are designed to profile and
estimate the scalability of Cilk Plus applications. Contrary to Cilkview which only collects data at
application level, Cilkprof is able to collect data for each call site. Both of these tools monitor Cilk
Plus applications and report parallel statistics and performance prediction on multi-processor systems.
They analyze the logical dependencies within the computation and extrapolate speedups based on the
algorithmic measures of the work and span metrics. The work is the total time spent to sequentially
solve the initial problem. The span corresponds to the critical path length which is the execution time
on an infinite number of processors. These metrics are used to predict how the application will scale.
Cilkview and Cilkprof tools also analyze scheduling overheads which may be due to insufficient grain
size of parallel tasks. Experiments made on CilkView during this thesis are presented below.

The Cilkscreen tool is designed to detect the race conditions which may occur between tasks executed
simultaneously on different Cilk workers. In practice, it checks that every possible scheduling of the
program execution produces the same behavior. It must determine if two tasks which access the same
memory location can be scheduled at the same time, or if there is a serial relationship between the
tasks. To do so, Cilkscreen dynamically instruments memory accesses of a Cilk binary. If no race is
detected, Cilkscreen guarantees that there will not be any race condition, at least on the actual data set, no
matter how it is scheduled. If a race exists, Cilkscreen localizes the bug and provides many debugging
informations such as variable name, file name, line number, or dynamic context.

Finally, Cilk Plus has provided a useful array notation [89] which have been integrated in the Intel
2011 C++ compiler. It is described in more details in Section 6.2.1. As explained in the previous section,
the evaluation made on the UTS benchmark shows the potential of the Cilk Plus runtime [82].
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2.5.3 An Example of CilkView Usage

CilkView [87] monitors a Cilk Plus binary application and reports parallel statistics and performance
prediction on multi-processor systems. During this thesis, we used this tool to analyze the unexplained
poor scalability observed at some steps of the integration of the D&C library. To present it, we compare
two reports obtained on two different applications, both of them using our D&C library and running a
similar use case. Let us call these two generic applications, the Application 1 and the Application 2. The
two reports provided by CilkView are presented in Figure 2.13.

The Work corresponds to the number of executed instructions. This indicates that the Application 1 has
a much higher computation ratio than the second one. The Span and Burdened span indicate the number of
instructions on the critical path. The second one includes the runtime’s overhead for scheduling, stealing
and synchronization. Due to the more complex computation, the runtime overhead is more than 25 times
smaller in the first application. The number of spawns, synchronizations and strands, i.e. sequences of
sequential instructions, are similar. It makes sense since the meshes have similar sizes and the D&C tree
topologies are analogous.

Work: 72,508,999,092
Span: 273,655,307
Burdened Span: 275,295,307
Parallelism: 264.96
Number of spawns/syncs: 7,901
Average instructions/strand: 3,098,145
Strands along span: 66
Average instructions on span: 4,146,292
Total number of atomic inst.: 1,957,609
Frame count: 30,174,937

(a) Application 1

Work: 2,886,380,280 instructions
Span: 10,734,061 instructions
Burdened Span: 12,261,716 instructions
Parallelism: 268.90
Number of spawns/syncs: 7,515
Average instructions/strand: 128,021
Strands along span: 61
Average instructions on span: 175,968
Total number of atomic inst.: 7,518
Frame count: 22,659,845

(b) Application 2

Figure 2.13: Comparison between CilkView scalability reports.

The larger difference involves the number of atomic operations. The ratio between these atomic
operations and the amount of work is 10 times higher for the first application. A rapid experiment putting
some local variables on the stack by using local static declarations in conjunction with the recursive
Fortran keyword, drastically reduced the number of atomic operations. We deduced that the high number
of atomic operations was the result of the high number of dynamic allocations involved. Based on this
observation, we privatized all the shared variables using the threads’ private stack. This is explained in
more details in a previous publication [24]. As a result, CilkView report shows a significant decrease of
atomic operations, the remaining ones corresponding to the spawn and sync operations of the Cilk Plus
runtime. Therefore, CilkView permitted us to detect a scalability bottleneck during the D&C integration
and to restore the expected scalability.
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PARALLELIZATION STRATEGIES FOR
FINITE ELEMENT METHODS
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3.1 Introduction

As explained in previous chapters, the evolution of the hardware architectures results in an increasing
number of compute nodes and cores per node, and a decreasing memory per core. To make efficient use of
these new concurrent resources, applications have to combine multiple levels of parallelism. In this thesis,
we focus on irregular applications based on Finite Element Method (FEM), presented in Section 3.2,
and working on 3D unstructured meshes. FEM applications commonly use the domain decomposition
approach presented in Section 3.4 to generate data parallelism. Each process is assigned to the execution of
a mesh subdomain and the communications between processes are usually handled by MPI. Unfortunately,
most of the FEM applications currently in use exploit MPI domain decomposition both at distributed and
shared memory levels. This results in increasing communication and memory bottlenecks. As explained in
Section 3.4, in the FEM context, the large number of processes and subdomains induces data duplication
of the frontier values, a.k.a halos, and a larger amount of communications.

The coloring approach, introduced in Section 3.5.1, is commonly used in shared memory systems to
complement the domain decomposition approach. To exploit the shared memory parallelism, coloring is
often associated to the OpenMP runtime. Divide & Conquer (D&C) algorithms have also been explored to
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replace coloring at shared level. D&C consists in recursively dividing a problem into smaller independent
subproblems and solve them in parallel. Several parallelization approaches based on D&C, similarly to
the one developed during this thesis, are presented in Section 3.5.2. Moreover, in addition to distributed
and shared parallelization strategies, modern supercomputers enable significant speedup by using their
vector units. Researches on efficient vectorization are detailed in Section 3.6.

Lastly, to obtain good performance on modern architectures, it is crucial to optimize data locality.
However, this is a challenging task when dealing with highly unstructured meshes parallelized among
various levels of heterogeneous architectures. Data have to be uniformly distributed among the processing
units and to fit into the lowest cache levels. Moreover, data brought to caches must be fully exploited
before being evicted. Discussion on locality improvements strategies in mesh computation and how they
differ from our approach is given in Section 3.7.

3.2 FEM Computation over Elements

In the context of finite element method, the main computational workloads consist of loops iterating over
elements, nodes, or edges. These loops are non trivial to parallelize in shared memory since they access
large amount of data, generate many indirections, and bring several dependencies between iterations. In
addition, most of the industrial HPC applications work on unstructured meshes with irregular geometries
and variable number of neighbors, making their parallelization even more challenging.

An illustration of the iterating process over elements in a simplified FEM application working a 2D
regular mesh is presented in Figure 3.1 with its associated sparse matrix built from the mesh values. A
coefficient is computed for each element from the values of their neighboring nodes or edges, depending
on the application. Additionally, the calculation of the coefficient depends on the chosen operator. Once
the coefficients are computed, the contribution of all the elements is reduced to the neighboring nodes
or edges. The nonzero values of the resulting matrix correspond to these node and edge values. In
Figure 3.1, the coefficient of the element E1 is computed from the values of the nodes N1, N2, N3, and
N4. Then, the coefficient of the elements E1 and E2 are reduced to the nodes N3 and N4 and on the edge
(N3,N4). Let ⊕ be our reduction operation. Then we have, N3 = E1⊕E2, N4 = E1⊕E2⊕E3⊕E4,
and (N3,N4) = (N4,N3) = E1⊕E2. The resulting symmetric and sparse matrix represents the linear
system to solve. In 3D, even with a fixed number of edges per element, the number of neighboring
elements can be arbitrarily large.

E2 E4

E3E1

N3 N4

N3

N4

E1+E2

E1+E2E2 E4

E3E1
N3 N4

N2N1

N6N5

N3 N4

Figure 3.1: 2D illustration of a basic iteration over elements in FEM application working on a regular 2D
mesh.
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3.3 Compressed Storage Formats for Sparse Matrices

Sparse and symmetric matrices are mainly composed of zero values. In order to avoid the storage of
these useless zero values and to save memory consumption and memory bandwidth when accessing the
matrix elements, most algorithms use a compressed format. Let us consider a n× n sparse matrix A
composed of nnz nonzero values. The naive approach, called coordinate format (COO), consists in storing
for each nonzero values a tuple composed of the matrix element value, its row index, and its column index.
However, this approach requires to store two additional values per non zero entry, resulting in O(3nnz)
memory consumption.

The state-of-the-art storage format for sparse matrix is the Compressed Sparse Rows (CSR) [90]
format. This format permits to store only n+2nnz values. A first array dimensioned at nnz contains the
nonzero values of each matrix row stored consecutively. A second array dimensioned at n contains the
position in the value array of the first nonzero value of each row, as well as the total number of nonzero
values at the end. In Figure 3.2, the first value of the first row, i.e. 1, is located at index 0 in the value array.
The first value of the second row, i.e. 4, is located at index 3 in the value array, and so on until reaching
the last ninth value. Lastly, a third array dimensioned at nnz, stores the column index of each nonzero
value. The transposed version of the CSR format, called Compressed Sparse Columns (CSC) [90], also
exists. It contains the nonzero values of each columns stored in consecutive memory locations, the index
of the first nonzero value of each column, and the index of each row. The CSR storage of A corresponds
exactly to the CSC storage of A>. These three versions are compared in Figure 3.2.
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0

COO
values = [1, 2, 3, 4, 5, 6, 7, 8, 9]

rows = [0, 0, 0, 1, 2, 2, 3, 3, 3]
columns = [0, 1, 3, 2, 1, 3, 0, 2, 3]

CSR
values = [1, 2, 3, 4, 5, 6, 7, 8, 9]

row ptr = [0, 3, 4, 6, 9]
columns = [0, 1, 3, 2, 1, 3, 0, 2, 3]

CSC
values = [1, 7, 2, 5, 4, 8, 3, 6, 9]

col ptr = [0, 2, 4, 6, 9]
rows = [0, 3, 0, 2, 1, 3, 0, 2, 3]

Figure 3.2: Presentation the COO, CSR, and CSC formats on a 4×4 sparse matrix.

However, applications dealing both with a matrix A and its transposed A>, will at some point be
penalized using either the CSR format favoring rows over columns or vice versa using CSC. Buluç et al.
have proposed a new storage format, named Compressed Sparse Blocks (CSB) [91] which does not favor
nor rows nor columns. CSB partitions the n×n matrix A into square blocks, or submatrices, of size β ×β ,
with β � n. While CSR stores rows contiguously and CSC stores columns contiguously, CSB stores
blocks contiguously. It is illustrated in Figure 3.3. Inside each block, nonzero values are stored following
a Z-Morton ordering [92]. Top-left values are stored first, then top-right values, then bottom-left values
and finally the bottom-right values. In Figure 3.3, the matrix values 1 and 2 are contiguously stored in first
block, the 3 and 4 in the second block, and so on. Contrary to CSR or CSC format, the row and column
indices indicate the position of a nonzero value within a block and not in the entire matrix. Therefore,
the indices values are smaller and the row and column indices can be stored inside a unique integer. In
Figure 3.3, the value 9 is located at row index 1 and column index 1 of the bottom right block. Lastly, a
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block array dimensioned at n2/β 2 indicates the first index of each block. For instance, the bottom right
block starts at value 6 which is located at the sixth index of the value array. All-in-all, the CSB format
uses the same amount of memory than the CSR and CSC formats. According to the authors, the CSB
version benefits from a better scalability than standard CSR in a parallel Sparse Matrix Vector (SpMV)
multiplication. However, it suffers of a higher consumption in memory bandwidth. Buluç et al. found a
way to reduce the memory bandwidth consumption by up to two on SpMV using the CSB format [93].
They achieve that by using bitmasked register blocks and propose a new algorithm which better exploits
symmetric matrices. In our D&C approach proposed in this thesis, the matrix values are gathered to the
diagonal due to the applied permutations, as explained in more details in Section 5.2.3. This CSB format
is then not the best suited to our needs. Indeed, since CSB partitions a sparse matrix into equal-sized
blocks, using it with our D&C library would results in dense blocks along the diagonal and almost empty
blocks beside.

CSB

values = [1, 2, 3, 4, 5, 7, 6, 8, 9]

(rows, column) = [(0,0), (1,0), (1,0), (0,1),
                                    (1,0), (0,1), (1,0), (0,1), (1,1)]

blocks = [0, 2, 4, 6]
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n/ß
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Figure 3.3: Presentation of the CSB format on a 4×4 sparse matrix with block size β = 2.

Another similar approach for cache blocking of sparse matrices was proposed by Nishtala et al. [94]
as well as a block version of CSR, called BCSR [95]. Martone et al. also propose a recursive storage
format for sparse matrices using Morton Z-ordering named Recursive CSR (RCSR) [96, 97] and a hybrid
recursive format based on both CSR and COO formats, called RSB for Recursive Sparse Blocks [98, 99].
They evaluate their formats on sparse matrix-vector multiplication, BLAS operations, and matrix assembly.
Other methods used to compress both the nonzero values and their indices in order to reduce the memory
bandwidth requirements of the SpMV kernel have also been proposed [100]. Kreutzer et al. propose
another sparse matrix format, called SELL-C-σ [101], derived from a version of the ELLPACK [102]
matrix format designed for GPGPUs. The SELL-C-σ format is aimed to enable vectorization on wide
SIMD units which can be found on modern multicores (e.g. IvyBridge), manycores (e.g. Xeon Phi), but
also GPGPUs. The initial sparse matrix is cut into chunks of C rows. C contains the whole matrix rows
in Figure 3.4a and half of them in Figure 3.4b. These chunks are consecutively stored in memory. The
matrix nonzero values within a chunk are stored in column order. The first values of the rows form the
first column, the second values form the second column, and so on. The columns of a chunk with less than
C nonzero values are padded with zero values. The rows are also padded with zero values to match the
length of the longest row of the chunk. In Figure 3.4a, the second values of each row, i.e. 2, 6, and 8, form
the second column. Since the second row of the matrix has only one nonzero value, it is padded with zeros
until reaching the longest row of size 3. The second column of value is then 2, 0, 6, and 8. This way, each
column within a chunk forms an equal-sized vector of C nonzero values. To reduce the difference of size
between rows of a same chunk, and therefore the padding overhead, the rows are sorted according to their
length by chunks of size σ , where σ is a multiple of C. In Figure 3.4b, there are 2 chunks composed of 2
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rows and σ = 4, therefore, the 4 matrix rows are sorted together. First and last rows of length 3 are firstly
stored, third row of length 2 next, and lastly the second row of size 1. This allows to save 2 extra zero
values in the second chunk. Nevertheless, this approach can induce important padding memory overhead,
especially on highly irregular meshes.

1 2

0 4

5 6

7 8

0 3

0

9

0

0

0

0 [1    2    3
 4    0    0
 5    6    0 
  7    8    9]

Storage

C

! = 1

(a) SELL-4-1

1 2

0 8

5 6

0 4

0 3

9

0

0

0

0

7 [1    2    3
 7    8    9
 5    6    0 
  4    0]    0

Storage
C

C

! = 4

(b) SELL-2-4

Figure 3.4: Presentation the SELL-C-σ sparse matrix format.

Many sparse matrix storage formats exist and choosing the optimal one is really domain and hardware
specific. With the actual heterogeneous architectures exploiting several parallelization patterns, this
becomes a complex topic, especially on large industrial applications. Tools like Kokkos Array [103]
appeared to help users to abstract the use of multidimensional arrays for computational kernels able to
run on various architectures. Kokkos is a package of the Trilinos project [104] which is an API aimed to
help the development of mathematical libraries. It provides several interoperable packages which cover a
large range of applications, such as algebraic preconditioners or non linear solvers. The Kokkos Array
library provides a collection of sparse and dense kernels, such as SpMV that are portable to multicores,
manycores, and GPGPUs and a multidimensional array API. The selection of the appropriate data access
pattern is internally handled by Kokkos at compile-time through C++ template meta-programming.

During this thesis, we investigated several matrix storage formats for our divide and conquer approach.
In our opinion, a natural storage enabling efficient and scalable parallelization consists in storing the
matrix values according to the leaves of the D&C tree. The nonzero values are reordered in order to follow
the execution order of the D&C leaves. To avoid memory fragmentation, the matrix values accessed by
the different leaves are contiguously stored in a single array. We have chosen the CSR format to store
their indices. Our storage format is described in more details in Section 5.2.5.

3.4 Domain Decomposition Method

With the evolution of the computing resources and the increasing size of problems to solve, almost all
scientific applications have taken the plunge of parallelism. But as stated in Section 3.2, in the context
of Finite Element Methods, FEM, parallelism cannot be generated using a simple parallel loop due to
the irregularity of the structure and the serialization of the reduction. The easiest solution to handle the
reduction on mesh edges is to use locks or atomic operations. However, as the computation per edge is
usually low, this approach is inefficient.

FEM applications are typically executed on 3D unstructured meshes as illustrated in the Figure 1
of the introduction. To generate parallelism, most of these applications use the domain decomposition
method, illustrated in Figure 3.5. The initial mesh domain is split in as many subdomains as the number
of cores required for the run. Each subdomain can compute its inner part in parallel. For each domain,
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the frontier values are duplicated in a buffer, commonly named halo, which is exchanged after each
computation phase.

Duplicated

Figure 3.5: 2D illustration of domain decomposition.

3.4.1 Halo Exchange

As explained in Section 3.2, during the computation, values are computed on each cell of the mesh from
the values of the neighboring edges or vertices, depending on the application. To maintain the correctness
of the numerical results, the cells located at the frontiers between subdomains need to know the values of
their neighbors located in another subdomain. Therefore, the slice of cells at the frontiers, called ghost
cells or halos, are duplicated among the neighbor subdomains so that they can add their contributions.
Then, these halos are exchanged at each time step to reduce the different contributions and obtain the final
correct result. This is illustrated in Figure 3.6.
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Figure 3.6: Halo exchange - At each time step, the halos are exchanged between neighbor subdomains.
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3.4.2 Multilevel Graph Partitioning

To produce the subdomains, the first step consists in transforming the initial mesh into a graph. This graph
can be either a primal or a nodal graph, depending if we want a partition based on vertices or on elements
of the mesh. Once the graph is produced, it is then partitioned.

Graph partitioning is a broad topic and a NP-complete problem. There are many different approaches
to partition irregular meshes. The most intuitive is the geometric partitioning where a graph is cut at
fixed geometrical coordinates in order to produce equals parts [105, 106]. Some examples of geometric
partitioner are the Recurse Coordinate Bisection (RCB) [107], the Recursive Inertial Bisection (RIB) [108],
and the greedy algorithm [109]. However, if the geometry of the graph evolves during the computation,
which is the case in the DEFMESH application for instance, the balancing between parts will change from
an iteration to another. Most of the graph partitioners produce topological cuts, i.e. cuts done on vertices
of the graph. Each of these partitioners focuses on different criteria such as the number of edges on the
cut, the balancing between partitions, or yet the speed of the partitioning process.

In some problems, the topology of the mesh can also evolve during the computation. As an example,
Adaptive Mesh Refinement (AMR) which is a method frequently used in numerical analysis, consists in
dynamically adapting the accuracy of a problem to the most sensitive parts of the simulation. The mesh is
refined by adding extra cells during the execution of the solver and it is therefore required to produce a
new partitioning after each refinement step. To limit the impact on performance, the partitioning has to be
quick and to induce few memory overhead. Recent researches on this topic have been explored such as
the PaMPA project [110]. PaMPA aims at partitioning and remeshing in parallel. It uses the PT-Scotch
partitioner [111] to transform a mesh into a dual graph and partition it. Partitions are then remeshed in
parallel by third party sequential remeshers, e.g. MMG3D [112]. Lastly, the partitions are reintegrated
together to reform the initial mesh.

The standard approach for topological partitioning is the Recursive Graph Bisection (RGB) [113].
Another well known technic is the multilevel spectral bisection [114]. However, this approach is slow

Coarsening
Phase

Uncoarsening
Phase

Partitioning Phase

Graph 0

Graph 1

Graph 2

Figure 3.7: 2D illustration of the k-way partitioning process.
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to produce partitions [115]. Most modern graph partitioners such as the well known METIS [116], use
the multilevel k-way partitioning proposed by Karypis et al. [117, 118]. As many other partitioning
methods [119, 120], k-way partitioning is based on the multilevel graph partitioning approach. In this
approach, illustrated in Figure 3.7, the original graph is coarsened until it is composed of a small number of
vertices. During this coarsening phase, a sequence of smaller graphs is constructed by collapsing together
the vertices which are incident on each edge. Then the coarsened graph is cut in k equal parts using one of
the various existing partitioning approaches presented above. Lastly, the initial partition is successively
refined and projected back to the original graph and is based on the Kernighan-Lin algorithm [121].

A distributed version of multilevel k-way partitioning has also been proposed by Karypis et al. [115].
They use graph coloring to produce independent parts of the graph and parallelize the coarsening and
the refinement during the uncoarsening phase. Few years later, they propose another parallel version,
called MT-METIS [122], based on OpenMP multithreaded parallelism instead of the previous ParMETIS
version using MPI [123]. They observe a significant gain in memory consumption and a speedup of 2
compared to ParMETIS and PT-Scotch [111]. The benefits of exploiting shared memory parallelism in
addition to distributed memory parallelism are explained in more details in the following sections.

3.5 Hybrid Parallelism

Using thread parallelism in addition to distributed domain decomposition brings several opportuni-
ties [124, 125]. This reduces the memory requirements, enables cache sharing, reduces the number of
communications and I/O overhead. Indeed, at scale, a larger number of smaller subdomains leads to an
increased communication volume and to load balancing issues. Moreover, the decreasing memory per core
is not compatible with the increasing ratio of duplicated halos. For instance, as illustrated in Figure 3.8,
on the 512 subdomains decomposition of our million vertices EIB use case, the ratio of nodes in halos to
duplicate and to communicate at each iteration is over 60%. Solely relying on domain decomposition
and distributed memory parallelism can limit the performance on current supercomputers, and this will
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Figure 3.8: Ratio of the number of interface nodes to duplicate and communicate compared to the number
of subdomains on the EIB use case.
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even worsen on upcoming manycore systems. Williams et al. highlight the memory bandwidth bottleneck
that occurs on many different parallel architectures when dealing with the SpMV kernel [124]. They list
different ways to reduce the memory bandwidth requirements in SpMV, such as blocking, to reuse as
much as possible the data bring to cache, or padding to avoid cache conflicts. They also highlight the
importance of reducing the amount of communications on modern architectures using hybrid parallelism.
Gourdain et al. also demonstrate the scalability issues of two different applications based on pure MPI
domain decomposition [125].

We can also note that on certain iterative approaches, the domain decomposition negatively impacts the
convergence [126, 127], regardless of whether it is implemented with processes or thread parallelism [127],
and induces rounding errors [125, 128]. Therefore, using shared memory parallelism instead of domain
decomposition can be beneficial for the convergence rate. This is not the case for the matrix assembly part
and therefore, the observed improvements are only related to our new parallelization strategy. But this
advocates for hybrid parallelization of the solver step inside each subdomain.

Several advanced parallelizations have been proposed for the FEM-assembly step. We identify four
main groups of methods in the literature for mesh assembly parallelization in shared memory. Recent
performance evaluations of all these methods on CPUs and GPUs can be found in [15, 16].

• Assembly by mesh element with coloring [17].
This approach is discussed in details in next section.

• Local assembly by mesh element followed by global assembly in a reduction step [15].
In this approach, all elements are computed in parallel without synchronization. To avoid data races,
coefficients are duplicated and reduced in parallel during a second phase. Since each coefficient
needs to be stored multiple times, this approach is limited by the available memory. Moreover, it
increases the bandwidth requirements since the data have to be accessed twice.

• Assembly by nonzero coefficient [15, 18].
This approach consists in creating parallelism between all the nonzero entries of the sparse matrix.
This method has a very fine grain thread parallelism and therefore is better suited to GPUs than
multicore architectures. Moreover, it introduces a large amount of redundant computation.

• The local matrix approach [16].
In this approach, the reduction is deported to the solver phase. It requires no synchronization during
the assembly but it increases the bandwidth requirements and the amount of computation in the
solver. Moreover, it breaks the abstraction between the solver and the rest of the application.

3.5.1 Coloring of Unstructured Meshes

Thread Level Parallelism

A popular complementary approach to domain decomposition on current NUMA systems is to use shared
memory parallelism. However, efficient parallelization in shared memory is challenging [127, 8] and
recent manycore architectures expose the limit of current loop-level strategy [127, 9]. The common
approach in use is mesh coloring [127, 17, 129, 10, 130].

Coloring avoids race conditions by assigning a different color to the elements sharing a reduction
variable. Therefore, colors must be sequentially treated but elements of a same color are independent and
can be processed in parallel by SIMD units, with no risk of race conditions. This is illustrated by a regular
2D coloring example in Figure 3.9 and a pseudo-code given in Algorithm 1.

Determining a minimal coloring is NP-complete. However, well-known heuristics can create efficient
colorings with only a few more colors [17]. The state-of-the-art coloring algorithm, known as First-Fit,
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Figure 3.9: 2D illustration of mesh coloring.

Algorithm 1: Pseudo code for coloring and assembly.

1 NodeToElem← Build_node_to_element (ElemToNode)
2 ElemToElem← Build_element_to_element (NodeToElem)
3 ElemToColor← Build_element_to_color (ElemToElem)
4 ColorToElem← Build_color_to_element (ElemToColor)

5 foreach color ∈ ColorToElem do
6 foreach element ∈ color do in parallel
7 Compute_element_contribution (element)
8 end
9 end

or greedy coloring, is a polynomial algorithm which consists in visiting every element of the mesh and
assigning it the smallest color available, i.e the smallest color which has not already been assigned to a
neighbor element [127, 129]. To improve data locality and vectorization efficiency, elements of a same
color can be contiguously stored. This algorithm produces the longest possible colors since as soon as a
color is available, this color is reused.

In adaptive algorithms, the topology of the mesh regularly evolves. It is therefore necessary to
recompute at each time a new coloring. Optimizations have been explored to reduce the compute time of
the coloring algorithm by parallelizing it and removing costly synchronizations [131, 132, 133].

One drawback of this approach is the need of a costly global synchronization between each color.
The more unstructured is the graph, the more colors are required [129], and therefore the more global
synchronizations are on the critical path. The increasing core count will make global events induce
prohibitive costs that must be avoided. Moreover, the global barriers make the approach sensitive to load
balancing within each color.

Furthermore, since colors cover a large part of the mesh domain, they access almost all the nodes
and edges of the domain, i.e. the CSR values. Therefore, treating one color will trigger the transfer of a
large part of the mesh domain. Additionally, these CSR values are updated by several different colors
and loaded multiple times into caches [127]. As large meshes do not fit in cache, data are accessed from
the main memory. This multiplies the bandwidth requirement by a factor proportional to the number
of colors. That can be mitigated by doing cache blocking before coloring. However, this multiplies the
global barriers by the number of blocks, increasing the runtime overhead.
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Vectorization

Originally, coloring was designed for vector machines. Indeed, the elements in a single color can be
computed by vectors. In the current architectures, multicores and manycores are not pure vector machines,
but, the CPU core itself contains vector operators and can be considered as a vector machine. While
the coloring strategy is not efficient at system and node level for both data locality and synchronization,
there are no such issues at core level. However, since unstructured meshes are reluctant to expose data
parallelism, vectorization is a challenging task to solve. Furthermore, considering the block size required
by the cache, either we color the domain before blocking and therefore, sacrifice locality, or, we color at
block level. But as shown in Section 6.2.3, the data parallelism per block is too small for state-of-the art
heuristics. Different approaches using coloring to enable vectorization are presented in Section 3.6.

3.5.2 Divide And Conquer Parallel Algorithms

Divide & conquer is a standard computation approach where the solution to a problem is obtained
by recursively solving subproblems. D&C computations generate a tree structure where each node is
associated to a problem instance and its children are associated to its subproblems. D&C computation are
composed of two phases. The first one, called the divide phase, corresponds to the recursive division of
an initial problem into subproblems. After the creation of the D&C tree, the leaves execute their local
problem and return the results to their parents. The results of the local problem and of the subproblems
are combined together until reaching the root of the tree. That’s the combine phase.

Divide and conquer paradigm and recursion in general have been extensively explored for parallel al-
gorithms [134]. One of the most famous algorithm using the D&C approach is the quick sort method [135].
Alternatively, the memory locality improvement brings by divide and conquer algorithms is known for a
long time [136].

Martone et al. [99] describe a matrix assembly approach for Recursive Sparse Blocks, RSB, matrix on
CPUs. Despite this format can provide good results in solver algorithms [98], the FEM assembly on RSB
matrix is very demanding on memory bandwidth [99].

D&C algorithms have also been used to increase locality and to enable task parallelism for mesh
visualization in [137, 138, 139] and for wave propagation in [140]. Despite the computation is not
presenting patterns similar to mesh assembly, it might be possible to find other parts of FEM applications,
such as mesh update or adaptation, which can use parts of their solutions. In [89], the authors propose
a methodology based on Cilk with many similarities to ours. However, the study deals with a set of
synthetic examples based on regular or naturally recursive structures, such as grids and trees. Therefore,
it does not deal with revealing data parallelism for vectorization, partitioning unstructured meshes, and
composing parallelism strategies with the distributed level. This limitation makes it difficult to apply to
use cases coming from real applications.

Other examples using D&C can be found in dense linear algebra problems such as Qu et al. precondi-
tioner [126] and Dongarra et al. LU [141]. They use nested dissection for numerical purpose and benefit
from the concurrency. However, since it impacts the numerical results, they are limited in the level of
dissection and therefore have limited concurrency and locality. Some gains can still be found in dense
linear algebra [142]. In our approach, we use shared memory locality to reduce the synchronization cost
of the original algorithm semantic and data dependencies. Therefore, we can produce concurrency without
impacting the numerical results.

Frigo et al. [143] propose several cache oblivious algorithms, such as the matrix multiplication, matrix
transposition, and Fast Fourier Transform (FFT) based on the recursive divide and conquer approach.
They exhibit the performance advantage of using recursive algorithms over iterative algorithms for
computers with caches, due to their native blocking properties. This observation is shared among several
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researchers [144, 145, 146].
Divide & conquer algorithms are also used in the LAPACK library [147] to solve eigenvalues problems.

In [148], authors adapt them to handle heterogeneous architectures composed of multicore CPUs and
manycore GPUs. Their ideas are implemented in the Matrix Algebra on GPU and Multicore Architectures
(MAGMA) project [149].

Similarly to our work, Goudin et al. propose a parallel algorithm for matrix assembly on irregular
meshes [150]. They use nested dissection to produce a topological decomposition of a mesh into several
subdomains and to reorder the mesh elements. They order the elements according to the number of
subdomains updating one of their nodes. The non-local elements updated by a high number of processors
are scheduled first and the local elements updated by only one processor are scheduled at last. The
computation of the local elements only starts when all the processing of the non-local elements is
complete. This way, the communications between the different processors contributing to a same non-
local element can be recovered by the computation of the local elements mapped to only one process.
This approach is also similar to Simmendinger et al. works [68]. However, to generate a large amount
of parallelism, the mesh has to be divided in an important number of subdomains, leading to a higher
proportion of non-local elements. This implies a larger number of communications and a smaller number
of local elements, which can be used to recover the communications.

A recent work by Park et al. on HPCG [127] also finds the block coloring to have a bad locality. They
propose the P2P approach, which aims at increasing data and communication locality while having one
task per operation and coarsening them. This, in essence, is a D&C approach. However, they have to
increase the number of parallel domains. In their case, this has a negative impact on the convergence rate
and the final parallelism is much smaller than with block coloring. According to the authors, P2P is in
general not suitable on Xeon Phi. Therefore they have to choose the coloring approach despite its bad
locality.

Wu et al. provide a theoretical study on the communication complexity for divide & conquer parallel
algorithms [151]. They quantify the trade-off between balancing the computation loads and minimizing
the communication costs and establish lower bounds on the communication cost depending on the
computation load balancing.

Most of the current D&C approaches search the concurrency in the algorithm instead of in the data [3].
In this thesis we advocate that, when applicable, producing efficient data decomposition and reordering to
expose parallelism provides both locality and parallelism, without changing the numerical algorithm.

3.6 Vectorization on Unstructured Meshes

In addition to distributed and shared memory parallelism, vectorization units are present inside the
compute cores. SIMD parallel units are available in processors for a long time, but this kind of parallelism
has mainly been exploited by regular applications. Additionally, as explained in Chapter 1, the SIMD
units are getting larger in both multicores and manycores. To achieve optimal performance on these
new architectures, it is required to make an efficient use of the vector units. However, exploiting the
underlying SIMD parallelism combined to the increasing MIMD parallelism provided by the larger
number of cores of modern architectures is a challenging task. This is especially true when dealing with
unstructured meshes where each vertex, edge, or element can be connected to an arbitrary large number
of neighbors. The easiest way to vectorize an application is the compilers auto-vectorization which
target loops iterating over arrays and try to vectorize them [152]. But auto-vectorizing compilers have a
poor vectorization ratio, especially on irregular applications with non predictable memory accesses and
computational patterns [153]. As soon as the compiler cannot ensure that the different iterations of a loop
access independent memory locations, it does not vectorize this loop for semantic reasons. Fortunately,
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more flexible programming APIs, such as the or Cilk array notation presented in Section 6.2.1, have
emerged and provides new opportunities to tackle this challenge.

In a vectorized application, operations are handled by packed vector of values varying from 64 to 512
bits, depending on the target architecture. An example of vectorized sum of two arrays A and B into a
third array C with a vector length of 4 integer values is given in Figure 3.10. When running an application
dealing with double precision variables, such as those used during this thesis, on a Xeon Phi composed
of 512 bits SIMD units, there is a theoretical speedup of 8× to reach by vectorizing perfectly the code.
However, in order to load contiguous and large enough data to fill the SIMD units and that, on each one
of the 60 physical cores of the KNC, it is crucial to save as much memory bandwidth as possible. Data
blocking is then required to efficiently exploit data brought to caches, and cache line conflicts between
cores have to be avoided. Moreover, while write conflicts can be protected through locking mechanisms at
the price of costly overheads and critical contentions among threads, they are prohibited at SIMD level
since there is no such locking mechanism.

Vector of Size 4 

Array A

+

12106 8

7 865

1 2 43

=
Array B

Array C

Figure 3.10: Example of a vectorized sum over 4 integer values.

Chen et al. explore good data placement in irregular applications to exploit recent SIMD archi-
tectures [35]. Their work is very close and posterior to our. They actually cite our work published at
the PPoPP conference [23]. They show the impact on performance of the access stride size, i.e. the
distant between accessed data, on the Intel Xeon Phi. Indeed, larger strides involve more cache lines and
therefore more memory and bandwidth consumption. They propose a hierarchical matrix storage, named
hierarchical tiling. The sparse matrix is stored into tiles, i.e. small square portions of the matrix, using
the COO format presented in Section 3.3. Similarly to our observations made in Chapter 6, these tiles
have to be large enough to fill the SIMD units, but small enough to fit in cache and have good locality.
Since their tile sizes correspond to a number of values in the "virtually dense" sparse matrix and since
the concentration of nonzero values is irregular, the tiles can have different sizes. A tile is processed
by only one thread and exploit SIMD vectorization among values inside the tile. To avoid SIMD write
conflicts, they partition the nonzero values inside each tile into conflict-free groups. The creation of these
conflict-free groups is similar to the coloring approach presented in Section 3.5.1. But contrary to coloring
where a nonzero value can belong to a color, i.e. a conflict-free group, if it has neither edge, nor vertex in
common with the other nonzeros of this group, they build their conflict-free groups with nonzero values
having neither common row ID, nor column ID. The conflict-free group is limited to the vector length
of the target architecture. A similar approach is also applied between the different tiles in order to avoid
thread conflicts among tiles.

Reguly et al. [154] highlight the difficulties of vectorizing efficiently unstructured meshes applications
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on multicores and manycores. Their work makes use of the OP2 framework [155]. OP2 is a framework
based on OPlus [156, 157], providing an API to develop applications based on unstructured meshes.
It handles data partitioning, through ParMETIS and PT-Scotch, data dependencies, data layouts (SoA,
AoS), and can support a large variety of architectures. OP2 supports MPI and OpenMP parallelism on
multicore CPUs, and also CUDA and OpenCL on GPUs. Reguly et al. [154] use it to generate a wide
range of vectorizing implementations for multicores and Intel Xeon Phi, and benchmark these different
implementations. They explore the Intel implementation of OpenCL, which rely on TBB, to generate
parallel tasks at the outermost level of parallelism. Then, they make use of the vector intrinsics of the
Intel’s Initial Many Core Instructions (IMCI) to vectorize the innermost level. IMCI is more flexible
than the AVX instruction set and offers more vectorization possibilities. However, it is restrained to the
Intel Knights Corner (KNC) architecture. Lastly, Löhner et al. propose a renumbering strategy aimed to
minimize the cache misses and avoid memory contention for edge-based solvers running on unstructured
grids [158]. Groups of independent edges are created similarly to a coloring technic applied to the edges.
The edges are ordered according to their first node. When iterating over the edges, the first edge-node
increases monotonically. Then, the second edge-node of current groups must be reused by the edges of
the next group.

3.7 Optimizing Locality in Mesh Computation

In Section 5.2.3, we show the positive impact of D&C on data and communication locality, and by
extension on bandwidth. Other approaches for locality in FEM computations have been explored. Most
of these approaches consider the sparse matrix product locality since this is the most consuming part of
solvers. Many softwares in use, as DEFMESH, are based on the Reverse Cuthill-Mckee (RCM) [159]
ordering to improve the locality in SpMV. As shown in Section 5.2.3, we obtain a much higher locality in
the studied problems by using our recursive D&C reordering.

In a previous study, Oliker et al. [160, 161] already evaluate METIS as a strategy for locality in sparse
matrix and compare it to the Reverse Cuthil-McKee (RCM) approach [159] and to the self-avoiding walk
(SAW) approach [162]. But they do not apply a recursive strategy to permute the nodes and they do not
decompose the separator part. As a result, they have not fully exploited the sparsification of the elements
outside the diagonal block, and they have not exploited the associated parallelism. According to Oliker,
METIS does not appear to be the best strategy; still, when applying our recursive D&C strategy over it,
the graph dissection provides better results on our use cases, as shown in Section 5.2. One of the best
approaches tested by Oliker et al. is the Self-Avoiding Walk [162], SAW, a space-filling curve approach.
The principle is to run over the elements with a pattern minimizing the spatial distance between the current
element and the next one. We do not plan to use it directly for the ordering. However, as a future work,
we consider using a similar approach for region coarsening as a cost effective alternative to METIS. The
objective is to produce smaller partitions with a better load-balancing.

Yzelman et al. introduce a matrix reordering method based on a recursive partitioning of the initial
matrix [163]. The matrix is initially stored in a variant of the CSR data format using a Z-ordering, a.k.a
Morton ordering, space filling curve [164]. This format is aimed to prevent the jump between the last
to the first column index when iterating over the matrix rows. In standard CSR order, values are stored
from the first column to the last one. Once reordered, when iterating to a new row, the first value accessed
is located at the same column index than the previous value from previous row. Nonzero values are
then accessed in reverse order. This process is repeated at each new row, changing each time the access
order. The matrix is then transformed into an hypergraph, recursively partitioned in one dimension, and
reordered. Later, they extend their approach to exploit blocking properties. They process nonzero values
block by block using two-dimensional partitioning and block data structure [165].
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Nested dissection is used to improve locality in mesh computation for a long time [166]. In [167],
authors use nested-dissection for reordering the columns of sparse matrices in sparse LU factorization.
Authors show that nested-dissection reordering allows to reduce the amount of memory required and the
amount of work.
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4.1 Introduction

As we have seen in the previous part, to take full advantage of future HPC systems, hybrid parallelization
strategies are required. However, very large industrial codes cannot be rewritten from scratch. To cope
with the rapid evolution of the underlying hardware, these legacy codes need a profound refactoring,
known as the code modernization issue. We experiment the concept of proto-application as a proxy for
complex scientific simulation codes optimization. We explore the possibility of using proto-applications to
allow early phase exploration of technologies and design options in order to make better and safer choices
when it comes to modernize the full scale application. The Section 4.3 presents the proto-application
concept and our implementation.

In this thesis, we propose an original approach for efficient parallelization of Finite Element Method
(FEM) applications presented in the next chapters. This approach has been developed in a C++ library,
called DC-lib, which can be interfaced with minimum intrusion to the original code. The D&C library
has been used to modernize two industrial applications from Dassault Aviation. The DEFMESH mesh
deformer presented in Section 4.2.1 and AETHER, a very large Computational Fluid Dynamics (CFD) ap-
plication presented in Section 4.2.2 and using an approach comparable to DEFMESH. The modernization
scenario of these Dassault Aviation applications is summarized in Figure 4.1.

As a first step we built Mini-FEM, a proto-application extracted from the assembly step of DEFMESH
to simplify the development and the validation of our D&C library. Then, the performance gain brought
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Figure 4.1: Code Modernization Scenario.

by our D&C library originally applied to Mini-FEM have been ported back to the original DEFMESH
application. It produced impressive results in terms of speedup and efficiency on both superscalar multicore
clusters and Xeon Phi manycores. However, it does not demonstrate the ability of a proto-application to
generate generic approaches for a class of applications using unstructured meshes computation. Moreover,
it was not clear if different runtimes and optimizations can be experimented with a single proto-application
and have similar conclusion in the real applications. Therefore in a third time, we have ported the D&C
library to the AETHER industrial code and validated the performance gain brought by the DC-lib. This is
presented in Section 4.4.

Lastly, we made from the Mini-FEM proto-application an additional experiment which consists in
replacing the Cilk Plus runtime by OpenMP 3.0 tasks. The proto-application approach allows a quick
prototyping, implementation, and debugging of the OpenMP version. The comparison between these two
runtimes is detailed in Section 5.2.8.

4.2 Dassault Aviation’s Industrial Applications

4.2.1 DEFMESH Mesh Deformer Application

The DEFMESH application is an industrial fluid dynamics Fortran code based on FEM. It is originally
parallelized using MPI domain decomposition as presented in Section 3.4. This unstructured mesh
deformation code for CFD application is an important numerical module in Dassault Aviation aerodynamic
optimization environment. It is also used in other simulations which may include surface variations of
larger magnitude, such as in aero-elastic interactions or dynamics of moving bodies.

DEFMESH implements a three-dimensional elasticity-like system of equations from given surface
data. These equations are solved by two different algorithms. The first one is a linear algorithm used
when the magnitude of the surface data is small: the equations can be linearized into a system of linear
equations. The second one is a non-linear algorithm where surface data of large magnitude are cut into a
succession of small increments. The original equations are solved as a non-linear succession of linearized
sub-problems, consisting of systems of linear equations. Each linear system is described as a symmetric
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definite positive matrix. The systems are solved by a standard Conjugate Gradient (CG) algorithm.
DEFMESH implements two options for the definition of the operator for its system of volume

equations. The first one is the laplacian operator. It calls three times the CG algorithm at each linearized
step. Each CG call computes the solution of a scalar system of linear equations. The second operator
is the elasticity one. This option implements the full 3D linear elasticity operator. It couples the three
coordinates of the nodes. Therefore, at each linearized step, the CG algorithm has to solve a 3 by 3 system
of linear equations. The elasticity operator permits smoother mesh deformations of greater magnitude
than the laplacian operator.

The DEFMESH main kernel is performed in three steps. The first one is the FEM assembly, where
mesh data are gathered into a sparse matrix. The second step is the solver which works on this matrix
and computes optimal displacements. The final step is the update of mesh coordinates, using previously
computed deformations.

4.2.2 AETHER Aerodynamic and Thermodynamic Application

AETHER is a large CFD simulation framework, developed for more than 30 years. It roughly contains
130,000 lines of code, combining different versions of Fortran and different programming styles. It solves
Navier-Stokes equations with a finite element method on unstructured meshes. Like DEFMESH, it is
composed of three main steps which consist in building the linear system of equations, solving it, and
updating the mesh values for the next iteration.

AETHER is parallelized using MPI domain decomposition. For each domain, the frontier values
are duplicated in a buffer exchanged after each computation phase. At scale, a larger number of smaller
subdomains leads to an increased communication volume and to load balancing issues. For instance, as
illustrated in Figure 3.8, on the 512 subdomains decomposition of our 1 million vertices EIB use case, the
ratio of values to duplicate and to communicate at each iteration reaches 60%.

To take benefit from the SIMD architectures, AETHER is vectorized using a traditional coloring
technique as the one presented in Section 3.5.1. In order to mitigate the data locality issue of the coloring
approach, AETHER uses a function which retrieves data from a main global array and transfers them
into a local and smaller block. This data block is temporarily stored in a contiguous layout in order to be
treated vectorially. Results are then written back to the global structure. This method requires a lot of
redundant random data accesses and leads to a significant overhead.

A preliminary version of hybrid parallelization using MPI and OpenMP has been proposed by Dassault.
It reuses the blocks obtained with the coloring algorithm initially developed for vectorization. The main
assembly loop is parallelized using the omp parallel do pragma. Since only loops are parallelized, the
sequential part remains large. Therefore, the parallel efficiency is very low and cannot compete with the
pure MPI version.

4.2.3 List of Use Cases

During this thesis, we performed our experiments on several unstructured meshes from Dassault Aviation.

• The first one, LM6, is a small mesh composed of 27,499 vertices and 152,086 elements used for
developing and debugging.

• The second one, called EIB, is illustrated in the Figure 4.2 and represents the displacements of a
fuel tank along an airplane fuselage. It is composed of 1,079,758 vertices and 6,346,108 elements.

• Another use case, named F7X and with a size similar to EIB, has also been used on the AETHER
application. This F7X mesh represents the Falcon 7X jet.
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• Lastly, the FGN use case is the larger mesh used during this thesis. It is composed of 7,173,650
vertices and 42,574,409 elements and it represents a generic Falcon jet.

Figure 4.2: Illustrations of the 3D EIB fuel tank position optimization use case.

4.3 Proto-Application Concept

This section presents the proto-application concept [168, 169], also known as proxy-app (e.g. NERSC
trinity, Argonne CESAR). The objective of a proto-application is to reproduce, at scale, a specific behavior
of a set of HPC applications and support the development of optimizations that can be translated into the
original applications. It should be easier to execute, modify, and re-implement than the original full-scale
applications, but still be representative of the targeted problems. It represents a key opportunity to simplify
the performance analysis and accelerate the decision making process. Barret et al. [170] give an overview
of successful uses of this approach. For instance, MiniFE is a mini application representing finite element
methods on GPUs on which a register spilling issue has been identified and solved. However, the feedback
to the end-user has not yet been clearly identified and demonstrated.

The process of building a proto-application is based on an intensive profiling of the original application
to be able to localize and characterize the targeted issues to optimize. Then, either we strip-down the
original application to the essence of the problem, or we build-up a synthetic benchmark that exposes the
same behavior. The idea is to support research on representative use cases of actual applications, instead
of generic benchmarks. The message to the application developers is the following: "if you cannot open
your applications and use cases, you can open the problems". It will leverage:

• Community engagement, by providing up-to-date realistic use cases.
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• Reproducible and comparable results on a common reference set of applications.

• Direct valorisation of the community improvements by providing a close to application code
interface between the community and the application developers. They will be able to implement
the relevant improvements into their codes.

The proto-application concept is central in the FP7 EXA2CT european project [68]. Our Mini-FEM
proto-application, built during this thesis, is a collaboration between UVSQ and Dassault Aviation. It
is a strip-down version of the DEFMESH application from Dassault Aviation. The Mini-FEM proto-
application consists of the first step of DEFMESH: the FEM assembly. The FEM matrix assembly step
has been chosen since it is the first step of many applications, such as seismic simulation, metal forming
simulation, or crash test simulation. It consists on building the matrix describing the linear system of
equations to solve from a given mesh.

Mini-FEM captures the input data of the DEFMESH assembly step and changes its internal com-
putation to remove the exact physical model while keeping its complexity and data parallelism. The
variable’s names are also changed to be related to the algorithm and not to the physical problem. To
validate our results, Mini-FEM captures the output of the DEFMESH assembly step and compares the
results. In addition to the initial MPI domain decomposition version, the algorithm is parallelized with
the D&C library. The two open-source use case LM6 and EIB from Dassault Aviation are shared with
the proto-application. The optimizations we made have been implemented in the original DEFMESH
application and are currently being integrated in the AETHER application.

4.4 D&C Library Integration in AETHER

Integrating the D&C library into the AETHER code was straightforward. However, we still encountered
difficulties with some incompatible Fortran constructs detailed in a previous publication [24]. As shown
in more details in Section 5.2.6, the original Fortran code has been modified with minimum intrusion.
Integrating the D&C library into an application consists in two calls to our C++ library which can be
commented out to fall back on the original pure MPI application. The first call triggers the initialization
phase required by our D&C library. The second call triggers the parallel execution of the original FEM
user function.

Moreover, the D&C library improves the data locality of the target applications by recursively
reordering the data as explained in Section 5.2.3. Firstly, inside a leaf, the nodes and elements are
permuted in order to place consecutively all to those from the left leave, then the right and at last the
separator. Secondly, since the task distribution follows a recursive tree, the neighboring leaves are stored
contiguously. Therefore, data locality is improved both inside a domain and between the neighboring
domains. By using the D&C library, the L3 cache misses in the AETHER application have been divided
by 15.

4.5 Conclusion

In this chapter, we have introduced the proto-application concept used to ease the development and the
experimentation of new algorithm. We have presented the targeted DEFMESH and AETHER FEM
applications from Dassault Aviation and the striped-down Mini-FEM proto-application which we released
open-source under the LGPL 3.0 license. Thanks to the positive results obtained on the proto-application,
the D&C library is currently being incorporated in the DEFMESH and AETHER industrial applications.
Moreover, the D&C library is planned to be used by other applications in the near future.
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5.1 Introduction

Current algorithms and runtimes struggle to scale to a large number of cores and show a poor parallel
efficiency. The increasing number of cores and parallel units described in Chapter 1 results in a severe
challenge for performance scalability. Relying solely on domain decomposition and distributed memory
parallelism limits the performance on current supercomputers. At scale, a larger number of smaller
domains can lead to an increased communication volume and to load balancing issues. When using a
finer domain decomposition, the ratio of frontier elements which are duplicated and communicated is
growing and therefore, the memory and bandwidth consumption rise. This limits the scalability when the
communications become predominant. Moreover, the decrease of the memory per core is not compatible
with the memory overhead of a finer domain decomposition.

In order to mitigate the node scalability issues, users can modify their application using hybrid process
and thread parallelism to take advantage of the full topology of the machine, and enhance data and
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synchronization locality. However, efficient parallelization in shared memory is a challenging and error
prone task. A common hybrid implementation uses OpenMP loop parallelization in addition to MPI
domain decomposition. But while MPI executions are usually 100% parallel, the loop parallelization
approach results in many remaining sequential parts. According to Amdahl’s law, by increasing the
number of cores, the time proportion of the sequential part increases. Therefore, the traditional loop
approach using OpenMP for shared memory parallelization fails to scale efficiently. This is illustrated in
the Figure 2 of the general introduction.

In this chapter, we propose and evaluate a new approach based on the Divide and Conquer (D&C)
principle to efficiently exploit shared memory parallelism on FEM applications working on unstructured
meshes. Our implementation relies on the Intel Cilk Plus task-based runtime [12] presented in Section 2.5.2.
We compare this hybrid approach using D&C to the pure domain decomposition and to a state-of-the-art
hybrid approach using mesh coloring. Our target application is the DEFMESH application parallelized
with MPI domain decomposition and presented in Section 4.2.1. As explained in the previous chapter,
we build a proto-application, named Mini-FEM, representative of the assembly step of the DEFMESH
application to ease the development process. Our D&C approach has been developed from this proto-
application and has led to a library, called DC-lib. The D&C library outperforms the coloring version and
the original implementation only based on MPI domain decomposition.

In a second step, we used the proto-application as a basis for the development of an OpenMP version
of the D&C library, which consists in replacing the Cilk Plus runtime by OpenMP 3.0 tasks [79]. The
proto-application allows a quick prototyping, implementation, and debugging of the OpenMP version.
We experiment in Section 5.3 this new version in the Mini-FEM proto-application and the AETHER
application to measure the optimization portability from the proto-application to a real application.
OpenMP tasks are simple to program and provide comparable but sensibly lower performance than the
Cilk implementation. As confirmed in the literature [171], this comes from the lower overhead of the
Cilk Plus runtime at scale and from the scheduler which provides effective dynamic load balancing with
work-stealing. These experiments lead us to the conclusion that proto-applications are a great opportunity
to develop and validate code optimization while preserving the portability into large industrial applications.

5.2 Shared Memory Divide and Conquer on Unstructured Meshes

As stated above, to exploit shared memory parallelism when dealing with unstructured mesh applications,
a common approach consists in using a mesh coloring algorithm with SPMD models of parallelization.
However, as described in Section 3.5.1, mesh coloring allows a very efficient vectorization but has a
poor locality and requires global synchronizations. Therefore, we focus on replacing this approach
by a task-based approach using the D&C principle. As viewed in Section 2.5, shared memory task-
based runtimes present many interesting advantages. Their very fine grain parallelism allows weak
synchronization and gives slack for better load balancing techniques such as work stealing [11, 12]. With
a small number of cores, the scalability of the D&C parallelization is expected to be equivalent to the MPI
domain decomposition. Furthermore, contrary to the MPI approach, the D&C algorithm complexity is
independent from the number of cores and should continue scaling.

The main idea of our D&C parallelization approach is to enable shared memory parallelism while
preserving a good data locality and minimizing the synchronization costs. With a higher number of cores,
we increase the number of threads instead of increasing the number of MPI domains. This way, we take
benefit from replacing communication by data sharing. Moreover, global synchronizations from MPI
domain decomposition are broken into small synchronizations in shared memory at node, socket, and core
level. The D&C approach is also particularly interesting for its ability to scale naturally to an increasing
number of nodes thanks to its architecture oblivious concept. Each D&C task is responsible of its own
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data and there is a very minimal amount of sharing, avoiding costly locks and coherency protocols.
D&C consists of two steps described in following subsections. The first step is the recursive decompo-

sition and permutations within each MPI domain and the second step is the recursive execution of the
D&C recursive tree using Cilk. Since the computation may be low in some FEM loops, it is essential
to save bandwidth, reduce the CPU idle time, and minimize the runtime overhead to reach maximal
performance. This is the goal of our D&C approach. With the experiments presented in this chapter,
we want to demonstrate that recursive algorithms coupled to task-based runtime have the potential to
overcome this challenge.

5.2.1 Notations Used

A D&C tree is called a (N,h,d)− tree where,

• N is the number of nodes in the tree,

• h is the height of the tree,

• d is the maximal number of children of a node, in our case 3.

A node is at tree level i if it is the i-th node on the path from the root to the node. The root is node
located at tree level 1. The height of the tree is the maximum tree level. The creation of the D&C tree is a
recursive process where each node starting from the root of the D&C tree spawns a maximal number d of
children. When a node does not spawn any children, the node is a leaf, else it is an internal node.

5.2.2 Recursive Bisection

D&C is based on topological recursive bisections of the mesh. As shown in Figure 5.1, the rational is
to recursively divide the work in parallel tasks and to synchronize these tasks locally. At each recursion
level, three partitions are created. Two independent left and right partitions, and a separator partition
composed of the elements on the cut. The left and right partitions created by these bisections do not share
any element and can be executed in parallel. However, the separator elements in the middle have edges
on both sides and must be processed after the left and right partitions. All the partitions, including the
separators, are recursively partitioned providing a large amount of parallelism. In a pure architecture
oblivious D&C approach, the mesh would be partitioned until it only remains one element per partition.
However, to exploit core level parallelism, the L1 cache size is a better choice for the partitions size.

Figure 5.1: D&C recursive tree. The left and right partitions are executed in parallel before their separator
elements on the cut.

The resulting global tree is not a simple binary tree as shown in Figure 5.1, but a more complex and
unbalanced tree structure. The load balancing between the partitions is important since it influences the
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depth of the recursive tree. A balanced tree will minimize the maximum depth and therefore the number
of synchronizations on the critical path. Therefore, it is important to use a good partitioner to build equal
partitions. In this study, we use the METIS graph partitioner [116] presented in Section 3.4.2 to obtain
a good balance between the domains size while keeping a reasonable interface size. The partitioning
computed by METIS is topological, cuts are done on edges rather than on geometrical coordinates.
Therefore, it is independent from the rest of the computation and allows to compute partitions only once
for a mesh. This partitioning is precomputed and the associated permutation is stored with the mesh file.
During the run, the application needs to apply the precomputed permutation before executing the recursive
FEM routine.

5.2.3 Locality Improvement

During the creation of the D&C recursive tree, in order to increase the data locality, we permute the
nodes and the elements arrays, as shown in Figure 5.2. Inside each MPI domain, the recursive bisection
using METIS results in discontinuous storing of the element and node values inside the D&C partitions.
Therefore, after each recursive bisection, the node and element values are reordered according to the
execution order of the D&C tasks, i.e. the left and right partitions followed by their associated separator.
As a result, these permutations improve the locality between tasks as their distribution is following the
recursive domain decomposition. Secondly, the nodes and the elements are consecutively stored in
memory inside each D&C partition, improving intra-task locality. Since these permutations are applied to
all MPI domains, we renumber the values at the frontier so that exchanged data are consistent.

D&C Left Partition D&C Right Partition Sep

METIS Partitioning Applied to Initial Mesh Ordering

Permutations

D&C Single Bisection

Figure 5.2: D&C permutations. For each cut, elements are reordered in left, right and separator partitions.

The impact of reordering a CSR matrix is illustrated in Figure 5.3. The matrices represent the LM6
small use case provided by Dassault Aviation before and after applying the recursive D&C permutations.
Each pixel on the graph represents a nonzero value in the node to node symmetric CSR matrix. The closer
to the diagonal are the nonzero values, the closer are stored the elements in memory. Figure 5.3a is the
initial matrix. Figure 5.3b corresponds to the matrix after one bisection. The top left corner contains the
left partition nonzero values. The bottom right corner contains the right partition values. The interactions
between left and right partitions are symmetrically stored on the top right and bottom left corners. Since
the separator is a slice splitting the left and right partitions, the values are one order of magnitude less
dense in the separator part of the matrix. Figures 5.3c, 5.3d, 5.3e, and 5.3f represent the matrix after further
bisection iterations. As expected, the resulting permutation concentrates the elements corresponding to
the D&C left and right leaves along the diagonal, with very sparse elements outside which correspond to
the separator leaves.

This permutation not only benefits to the assembly step locality, but also to the SpMV kernel in
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Figure 5.3: Impact of the D&C reordering on the CSR matrix associated to the LM6 use case.
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on the F7X use case.
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the solver step. We observe an empirical speedup up to 10% depending on the use case. Figure 5.4
highlights the locality improvement of our D&C version on the F7X use case, which originally uses the
Cuthill-McKee [159] ordering. It represents the percentiles distribution of the distances to the diagonal.
More than 95% of the matrix values are closer to the diagonal in our D&C version than in the reference
version. Only the last 5%, mostly representing the sparse separators, are spread far from the diagonal.
In comparison, the initial mesh has two parallel lines along the main diagonal which are reflected by a
plateau getting further away after the median.

L3 Cache Misses Experiment

The locality improvement brought by the D&C library and the bad cache utilization and bandwidth
contention of the coloring version are confirmed in Figure 5.5 giving the L3_miss hardware counter. We
measured on the Anselm cluster, presented in Section 1.6.3, the L3 cache misses of, the pure domain
decomposition version Ref, the hybrid domain decomposition plus coloring version, called Coloring,
and our D&C version. For the Coloring and D&C versions, we explored three different configurations
of processes and threads. We compared the results running on full processes, full threads, or with a
mix of 4 processes and 3 threads per process. As illustrated in Figure 5.5, by running the Mini-FEM
proto-application on the EIB use case, all the variants of the D&C version have almost 5 times less L3
cache misses than the pure MPI. In the opposite, all the variants of the Coloring version have more than 8
times more cache misses than D&C. In the AETHER application running the F7X use case, the impact of
the D&C permutations is even more important. The L3 cache misses have been divided by 15 using the
D&C library.

Figure 5.5: Comparison of the L3 cache misses between pure MPI domain decomposition, hybrid MPI +
coloring, and hybrid MPI + D&C, using the Mini-FEM proto-application

5.2.4 Numerical Stability of the Results

The partitioning of the mesh subdomains using METIS and the resulting D&C permutations slightly
impact the numerical accuracy of the initial problem. However, this loss in accuracy also applies to the MPI
domain decomposition [126, 127]. Since the D&C recursive bisections and permutations replace the need
for further domain decomposition, their impact on the numerical results is equivalent. Moreover, contrary
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to MPI domain decomposition, increasing the number of D&C workers does not degrade the numerical
stability. The experiments made on the DEFMESH application showed that the global convergence of the
iterative algorithm remains unchanged.

5.2.5 D&C Matrix Storage Format

As explained in Section 5.2.3, the matrix values are recursively reordered following the left, right, and
separator permutation order. To store the matrix nonzero values, we have chosen the CSR matrix storage
format presented in Section 3.3. The nonzero values are stored in the CSR according to the D&C leaves
accessing them. However, using a separate CSR arrays stored inside each D&C leaf would result in a
fragmentation of the CSR matrix. To avoid this memory fragmentation, we contiguously store the nonzero
values in a single CSR matrix which is ordered according to the execution of the D&C leaves. The leaves
only contain the index intervals of elements, nodes, and edges which are accessed. Therefore, our matrix
storage format results in a D&C recursive tree and a CSR matrix. This D&C CSR sparse matrix format is
illustrated in Figure 5.6.

Row Pointer

Column

Value

D&C
Recursive Tree

CSR
Matrix Format

Figure 5.6: D&C CSR sparse matrix storage format. CSR values are contiguously stored following the
left, right, and separator partition order.

5.2.6 Precomputation of the D&C Tree

The creation of the D&C tree using the METIS graph partitioner and the creation of the permutation tables
of elements and nodes are costly. However, since the topology of the mesh is constant, there is no need to
recompute them at each iteration. Therefore, as illustrated in Figure 5.7, the creation of the D&C tree and
the permutation table can be done only once as a pre-treatment phase.

Since the same use case is used multiple times during the aircraft design process at Dassault Aviation,
we offer the possibility to save and reload the permutation table and the recursive tree into a file, to avoid
their computation in successive experiments. The only interactions with the original application are the
call to the building or loading process, the call to the D&C tree traversal at the assembly step, and the
cilk_for addition in the preconditioner. The present version of the CG solver used in the DEFMESH
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application is an OpenMP version with a low efficiency that will be addressed in future work using our
D&C strategy.
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Figure 5.7: Integration of D&C and coloring in the FEM pipeline with constant mesh topology.

5.2.7 Cilk Plus Implementation

Cilk Plus [12] is a task-based runtime presented in further details in Section 2.5.2. It allows users to spawn
and synchronize efficiently many parallel tasks. All these tasks are organized in queues and executed by
worker threads. For load balancing, Cilk runtime uses a work-stealing scheduler [85]. When a worker
completes its queue, it can steal additional tasks from slower workers.

Each leaf of the D&C tree is associated with an independent Cilk task which executes the FEM
assembly process on its partition. The Cilk Plus implementation of the tree traversal is straightforward and
very similar to the pseudo-code given in Algorithm 2. It only uses the two keywords cilk_spawn and
cilk_sync, which are respectively used to spawn a new parallel task and to synchronize all tasks in the
current node. Once the D&C recursive tree is created, a Cilk Plus task is executed on each partition. Left
and right partitions of each node are split in two parallel tasks, as long as the recursion has not reached a
leaf. When the recursion reaches the leaves, the original sequential FEM routine is executed in parallel
on each leaf partition. As shown in Algorithm 2, the current worker spawns a new task which will be
executed on the right partition and continues its execution on the left partition. Once the left and right
tasks are completed and synchronized, the current worker executes the associated separator computation.

The unbalancing between branches of the D&C tree is compensated by the fine grain task-based
implementation which produces a very large number of tasks, leveraging the work-stealing of Cilk Plus to
offer a near optimal load-balancing. Cilk authors recommend to have a large number of tasks per CPU
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Algorithm 2: FEM assembly using D&C recursive tree traversal.

1 Function Compute (D&C partition)
2 begin
3 if D&C partition 6= lea f then
4 cilk_spawn Compute (D&C partition→ right)
5 Compute (D&C partition→ le f t)
6 cilk_sync
7 Compute (D&C partition→ sep)
8 else
9 FEM_assembly (D&C partition)

10 end
11 end

thread [12]. On a million nodes domain, we create more than 30,000 parallel tasks to distribute among the
16 cores of a standard Xeon cluster node, or among the 60 cores of a Xeon Phi. When all elements are
accessed in a regular loop, there is no need to use a recursive task tree. In this case, similarly to OpenMP,
Cilk Plus provides a convenient way to parallelize loops using the cilk_for keyword. By substituting the
original for with the cilk_for keyword, iterations of the loop are split recursively into several parallel
tasks. For the DEFMESH application, we observe a better scalability with the cilk_for than with the
OpenMP parallel for pragma.

However, Cilk Plus is only supported on x86 architectures and intended to run on Unix-like systems.
This is mostly due to the memory model assumptions to handle the dequeue, i.e. spawning, stealing
and returning from a spawned function. Nevertheless, it should also run on other systems, provided
that GCC, POSIX threads, and GNU autotools are available. In the next section, we propose another
implementation based on OpenMP nested sections and tasks. As a future work, we also plan to explore
the Intel Threading Building Blocks (TBB) library [14]. The advantage of the TBB library approach is
that it can be recompiled by any compiler and adapted to various platforms with minor changes. We have
adopted the same approach for DC-lib.

5.2.8 OpenMP Implementation

OpenMP is a portable programming interface for shared memory parallel computers supported on
many architectures. It provides a platform-independent set of compiler pragmas and directives. The
execution model is based on the fork-join principle presented in Section 2.4. OpenMP 2.5 uses thread
parallelism through work-sharing. This mechanism of work distribution is enabled by two methods: loop
parallelization and parallel sections. In both cases, work units are static and distributed to assigned threads
which will execute them from the beginning to the end [79]. As shown in Algorithm 3, OpenMP 2.5
allows recursive parallelism by nested declarations of parallel regions. Unfortunately, this approach leads
to overhead due to the cost of creating new parallel regions and to load balancing issues [79].

Hierarchical Task-Based Parallelism in OpenMP

OpenMP 3.0 introduces the task proposal to enable dynamic work unit generation [79], irregular par-
allelism, and recursion. OpenMP 3.0 tasks are introduced in Section 2.5.1. They allow to express the
same recursive parallelism replacing the nested parallel regions by tasks spawning other tasks. The task
construct permits the creation of explicit tasks. The tasks are added to a pool of tasks executed by the team
of threads from the parallel region. Tasks are guaranteed to be executed at the end of the parallel region,
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but it is possible to synchronize them at finer grain using the keyword taskwait. The taskwait construct
suspends the execution of a task until all the children tasks are completed.

In the D&C library, tasks are spawned during the recursive D&C tree traversal. This imposes to
authorize nested parallelism through the associated OpenMP system variable. Algorithm 4 shows how
the assembly step has been parallelized using OpenMP tasks. Only one parallel region is created and the
recursive algorithm spawns the tasks. All new tasks are added to the pool of work and there is only one
team of threads.

Algorithm 3: Recursion with nested parallel sections.

1 Function Recursive_assembly (D&C tree)
2 begin
3 #pragma omp parallel section
4 begin
5 #pragma omp section
6 Recursive_assembly (D&C tree→ le f t)

7 #pragma omp section
8 Recursive_assembly (D&C tree→ right)

9 #pragma omp barrier

10 if D&C tree→ sep 6= null then
11 Recursive_assembly (D&C tree→ sep)
12 end
13 end
14 end

Algorithm 4: Recursion with nested parallel tasks.

1 Function Recursive_assembly (D&C tree)
2 begin
3 #pragma omp task de f ault (shared)
4 Recursive_assembly (D&C tree→ le f t)

5 #pragma omp task de f ault (shared)
6 Recursive_assembly (D&C tree→ right)

7 #pragma omp taskwait

8 if D&C tree→ sep 6= null then
9 Recursive_assembly (D&C tree→ sep)

10 end
11 end

12 Function D&C_assembly ()
13 begin
14 #pragma omp parallel
15 #pragma omp single nowait
16 Recursive_assembly (D&C tree)
17 end
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5.3 Experimental Results

To validate our novel approach, we have applied our D&C library using the Cilk Plus runtime and MPI
domain decomposition on the Mini-FEM proto-application presented in the previous chapter. We have
also measured the solver step in the DEFMESH application presented in Section 4.2.1 with and without
the D&C library to estimate the impact of the D&C data permutations on the rest of the code. Lastly, we
have compared the Intel Cilk Plus runtime initially used in our D&C library to the OpenMP 3.0 task-based
runtime, on the Mini-FEM proto-application and the AETHER application presented in Section 4.2.2. We
perform our experiments on five different platforms.

• The MareNostrum cluster presented in Section 1.6.4.

• The Anselm and Salomon clusters described in Section 1.6.3.

• The KNC nodes of Cirrus presented in Section 1.6.2

• And a cluster of Sandy Bridge from Dassault Aviation.

During these experiments, we compare four different implementations.

• The original pure MPI version using domain decomposition from Dassault Aviation called Ref (MPI).

• The state-of-the-art hybrid version called Coloring (MPI+Cilk), using MPI domain decomposition
and mesh coloring at thread level as detailed in Section 3.5.1 This version exploits Cilk Plus to
parallelize the loop elements of a same color within each MPI domain.

• Our divide and conquer version, called D&C (MPI+Cilk). This version uses the recursive parti-
tioning of each domain of the mesh. In addition to MPI, it exploits task parallelism using Cilk
Plus.

• And lastly, an alternative version of the D&C library using OpenMP 3.0 tasks instead of Cilk Plus.
This version is named D&C (MPI+OpenMP).

5.3.1 Experimental Setup

The running time of the assembly step is short and slightly fluctuates. As explained in [172], making
precise measures is a complicated task. In our case, we run 50 iterations of the algorithm and we repeat
the run 4 times. The first iteration is ignored since it is delayed by different initialization processes such
as the network card. For each time step, we measure the number of elapsed CPU cycles using the RDTSC
counters. The measures correspond to the average time of one iteration. We ensured that the numerical
results at each step and the number of solver iterations needed to converge are stable for all versions.

The results are presented both in terms of relative speedup compared to the best sequential time and
in terms of parallel efficiency. In the following figures, the x axis represents the number of cores. For
speedup experiments, the y axis represents the relative speedup S given by Equation 5.1, where TS is the
sequential time and TP is the parallel time on P processors.

S =
TS

TP
(5.1)

Concerning parallel efficiency, the y axis represents the efficiency EP on P processors, given by
Equation 5.2.

EP =
TS

P∗TP
(5.2)
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For each experiment, we vary the number of processes of the reference versions only based on domain
decomposition. For the hybrid versions of the code using processes and threads, we use only one process
per compute node and we vary the number of Cilk or OpenMP threads up to the node size. According
to the Cilk documentation, a minimum of 10 tasks per core is appropriate. In our case, as explained in
Section 5.2.2, we downsize the tasks in order that they fit in L1 caches. This results in hundreds of tasks
per core depending of the size of the input mesh.

In all the experiments made on the Intel Xeon Phi, the figures are cut in two parts. The left white
background part on the left corresponds to the 60 physical cores of the KNC. And the grey background
part on the right of the figures corresponds to the 4 hyper-threads available per core, which results in up to
240 threads per KNC.

For each experiment, the OpenMP affinity is set to scatter and the Cilk worker threads are not pinned
as recommended in the Cilk documentation.

5.3.2 FEM Assembly

The experiments made in this section are done on the Mini-FEM proto-application running the EIB use
case on the MareNostrum cluster. The application is compiled with Intel composers 14.0.2 and Intel
MPI 4.1.3. We first compare the state-of-the-art Ref (MPI) and Coloring (MPI+Cilk) versions to our
D&C (MPI+Cilk) version on a single node composed of 16 Sandy Bridge cores detailed in Section 1.6.1.
Then we extend our comparison to a strong scaling experiment on up to 32 nodes totalizing 512 cores. We
also compare these versions on up to 4 Intel Xeon Phi 7120P.

Single Node Experiment

Figure 5.8 presents a speedup and parallel efficiency comparison on a single node of 16 Sandy Bridge
cores from MareNostrum. As expected, the Ref (MPI) version efficiently scales on a single Sandy Bridge
node while the Coloring (MPI+Cilk) version has poor performance and ends far behind the other versions.
The sequential performance of Coloring (MPI+Cilk) is 3.9 times slower than D&C (MPI+Cilk). However,
it benefits more from the growing parallel resources than the other versions and has a better parallel
efficiency, being only 3.7 times slower than D&C at 16 cores. Indeed, the large amount of accessed data
for each color has more chance to fit in cache as the number of cores and caches increases. Moreover,
the memory accesses benefit from a larger memory bandwidth. As viewed in Figure 5.8b, this leads the
Coloring (MPI+Cilk) version to a super-linear speedup using 4 cores.

The D&C (MPI+Cilk) and Ref (MPI) versions are closer to each other but the D&C version overpasses
the reference version with a 1.24× speedup at 16 cores. The 16 subdomains and processes used by the
pure MPI version are replaced by a single domain and a single process using D&C. The resulting MPI
duplications and communications are replaced by data sharing. Furthermore, unlike the original version
which makes irregular accesses to the matrix values, D&C packs the matrix values contiguously inside
each Cilk tasks. Lastly, for any problem size, by using D&C (MPI+Cilk) we can increase the number of
partitions in order that the tasks working-set always fit in cache. This makes D&C a competitive solution
not only for future exascale systems, but also for current platforms.

This first experiment illustrates the phenomena explained in the general introduction: improving the
code performance reduces its parallel time and therefore, increases its proportion of sequential time while
decreasing its parallel efficiency. This emphasizes the fact that scalability does not reflect an application
performance, it must be completed by relative speedup or raw performance.
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Figure 5.8: FEM assembly speedup and parallel efficiency comparison on the EIB use case running on a
single node of the MareNostrum cluster.

Strong Scaling Experiment

Production runs at the scale of the EIB use case, i.e. around a million vertices, are usually done on
32 cores. In this experiment illustrated in Figure 5.9, we run the Ref (MPI) and our D&C (MPI+Cilk)
versions on a higher number of cores to test the strong scalability in extreme conditions. The objective is
to test whether future systems can improve the time to solve problems of current size. We put aside the
Coloring (MPI+Cilk) version because of its poor performance.

At 512 cores, by using the 1 million vertices EIB use case, there are only 2000 vertices accessed per
core. At that scale, the overhead of the runtime has an important impact on performance. Every single
serialization in the code represents a higher part of the total execution time as explained by the Amdahl
law. Moreover, as shown in Section 3.5, when cut in 512 subdomains, the ratio of duplicated values in the
halos of EIB reaches 60%.

These different reasons explain the increasing gap between the Ref (MPI) and the D&C (MPI+Cilk)
version. While the Ref (MPI) version ends at only 25% of parallel efficiency, the D&C (MPI+Cilk) version

79



Chapter 5. Node Level Parallelism

●

●

●

●

●

 

 

 

 

 

1
4

8

16

32

1 4 8 16 32
Number of Nodes (16 Cores)

S
pe

ed
−

U
p

 

●

Ideal scaling

D&C (MPI+Cilk)

Ref (MPI)

(a) Speedup compared to the best sequential performance

●

●

●

●

●

     

0.0

0.2

0.4

0.6

0.8

1.0

1 4 8 16 32
Number of Nodes (16 Cores)

P
ar

al
le

l E
ffi

ci
en

cy

 

●

Ideal scaling

D&C (MPI+Cilk)

Ref (MPI)

(b) Parallel Efficiency

Figure 5.9: FEM assembly speedup and parallel efficiency comparison on the EIB use case running on up
to 32 nodes (512 cores) of the MareNostrum cluster.

is 2.4 times faster and ends at 50% of parallel efficiency. This is due to the very fine grain parallelism, the
lower amount of communications and data duplications, and the improved locality brought by the D&C
permutations. However, there is still an important gap compared to the ideal scaling curve which makes
room for further optimizations. Even with the lower amount of communications of the D&C (MPI+Cilk)
version, the remaining ones between the distributed nodes negatively impact the performance. We propose
in Chapter 7, a new communication pattern aimed at exploiting the D&C shared parallelism among the
communications and enabling communication and computation overlap. Moreover, the vector resources
within the compute cores are not exploited in this early version. The next chapter presents our approach to
enable vectorization within the small D&C tasks.

Single KNC Experiment

The Figure 5.10 presents the performance and the parallel efficiency comparison on an Intel Xeon Phi
based on the KNC architecture presented in Section 1.4. Surprisingly, the Ref (MPI) version with its
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Figure 5.10: FEM assembly speedup and parallel efficiency comparison on the EIB use case running on a
Xeon Phi (KNC) of the Salomon cluster.

message passing model scales pretty well on the 60 physical cores of the shared memory KNC architecture,
with 76% of parallel efficiency. But it rapidly stagnates when using the hyper-threads and ends at less
than 30% of parallel efficiency. The Coloring (MPI+Cilk) version has the lowest sequential and parallel
performance. This is mostly due to a bad locality and bandwidth usage.

But as stated in the previous single node experiment and in the general introduction, this poor
performance leads to a good scalability. By increasing the number of cores, the data per cache and the
available bandwidth increase, which benefits to the parallel efficiency metric. Indeed, the coloring version
is 2.17 times slower than D&C on the 60 physical cores and only 1.47 times slower when using the 240
hyper-threads. This confirms once again that the scalability and the parallel efficiency do not reflect the
performance.

Concerning our D&C (MPI+Cilk) approach, it has an impressive 96% parallel efficiency on the 60
physical cores of the KNC and a speedup of 44% over the Ref (MPI) version using the KNC hyper-threads.
The performance is equivalent to 10 Intel E5-2665 Xeon Sandy Bridge cores.
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Multiple KNC Experiment

We extend our Xeon Phi experiment on 4 KNC. Figure 5.11 presents the scalability and parallel efficiency
results on the 7 million vertices FGN use case. The experiments done on the Ref (MPI) version are limited
to 512 cores. This limitation corresponds to the highest domain decomposition provided by Dassault
Aviation. In the pure MPI approach, the high numbers of communications and data duplications inside
and between the 4 KNC degrade the performance. By increasing the number of processes per KNC,
the parallel efficiency stabilizes since the MPI communications are recovered by the hyper-threads. In
contrast, our D&C approach only uses 1 MPI process per KNC. Therefore, the number of communications
inside and between KNC is drastically reduced. As a result, D&C perfectly scales with 92% parallel
efficiency on the 240 physical cores of the 4 KNC and is 2.5 times faster than Ref (MPI). D&C achieves a
final speedup of 360× compared to its sequential execution and obtains similar performance to 33 Intel
E5-2665 Xeon Sandy Bridge cores.

To conclude, focusing on high concurrency and good locality produces a code which works out of
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Figure 5.11: FEM assembly speedup and parallel efficiency comparison on the FGN use case running on
4 Xeon Phi (KNC) of the Salomon cluster.
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the box when porting from conventional multicore CPUs to manycores. However, when comparing to
different generations of Xeon, we notice that a single KNC has equivalent performance to 25 Westmere
cores, to 16 Sandy Bridge cores, or to 10 current generation Xeon E5 cores fitting in a single socket. This
can be explained by the KNC age. Current Xeon Phi roadmap is slower than standard Xeon and is de
facto becoming an experimentation platform to test manycore programming approach. The comparison
should be done again with the next generation of Xeon Phi, i.e. the KNL architecture.

5.3.3 Solver

In this section, we measure the performance of the solver step with and without the permutations of our
D&C library. Although we did not modify the solver part, we measure its execution time to estimate
the impact of the locality improvements brought by the D&C library. This experiment was made on the
DEFMESH application running the EIB use case. We observe in Figure 5.12 an average 6% speedup
for D&C (MPI+Cilk) compared to Ref (MPI) with a maximum speedup of 10.2% on twelve cores. This
improvement is only due to the better data locality enabled by the permutations explained in Section 5.2.3.
The L3 cache misses occurring in the solver are 23% lower with D&C (MPI+Cilk) than with Ref (MPI).

Additionally, to show the impact of locality, we randomly permute the data in the Ref (MPI) version
of the code. We observe a degradation of 30% in performance between this RandomRef (MPI) version
and D&C (MPI+Cilk) and 18% between Random Ref (MPI) and Ref (MPI). These results highlight the
strong impact of the locality on the solver performance.
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Figure 5.12: Solver execution time and speedup using D&C permutations.

5.3.4 Comparison Between Cilk Plus and OpenMP 3.0 Tasks

In the following experiments, we compare the performance of the Intel Cilk Plus runtime to the OpenMP
3.0 runtime based on task parallelism. We have integrated these two versions in our D&C library. The
experiments are made on a single Sandy Bridge node and on 4 Intel Xeon Phi based on the KNC
architecture using the Mini-FEM proto-application. And on up to 1024 Sandy Bridge cores using
AETHER, the industrial CFD code from Dassault Aviation presented in Section 4.2.2.

Sandy Bridge Experiment on the Mini-FEM Proto-Application

At first, we experiment the Mini-FEM proto-application running the EIB use case on the Anselm cluster.
The Figure 5.13 shows the comparison between the OpenMP and Cilk versions of the D&C library on
a single compute node. These two versions are also compared to the Ref (MPI) version. The Cilk Plus

83



Chapter 5. Node Level Parallelism

 

 

 

 

 

●

●

●

●

●

 

 

 

 

 

1

4

8

12

16

1 4 8 12 16
Number of Cores

S
pe

ed
up

●

 

 

D&C OpenMP

D&C Cilk

Ref

Ideal scaling

(a) Speedup compared to the best sequential performance

 

 

 

 

 

●

●

●

●
●

     

0.0

0.2

0.4

0.6

0.8

1.0

1 4 8 12 16
Number of Cores

E
ffi

ci
en

cy

●

 

 

D&C OpenMP

D&C Cilk

Ref

Ideal scaling

(b) Parallel Efficiency

Figure 5.13: FEM assembly speedup and parallel efficiency comparison between Cilk Plus and OpenMP
3.0 tasks. Mini-FEM running the EIB use case on Anselm cluster.

version shows the best performance, both in terms of speedup and efficiency. However, there is only 6%
improvement over OpenMP tasks on 16 cores.

It is also interesting to note that the D&C (MPI+Cilk) version using Cilk Plus on the Anselm cluster,
similarly behaves on the larger memory nodes of the MareNostrum cluster used in previous experiments.
However, this larger memory benefits to the Ref (MPI) version which scales slightly better to 16 cores on
MareNostrum than on Anselm.

KNC Experiment on the Mini-FEM Proto-Application

Then, we compare the OpenMP 3.0 tasks to the Cilk Plus runtime on a single Intel Xeon Phi using KNC
architecture. This is illustrated in Figure 5.14. By using the 60 physical cores, Cilk Plus scales almost
ideally with 97% efficiency. The OpenMP 3.0 version suffers from the runtime overhead and achieves 81%
parallel efficiency. At 60 cores, Cilk Plus is 16.3% faster than OpenMP tasks. This falls to 6.5% by using
the hyper-threads. Indeed, since the performance of the OpenMP version is not optimal, hyper-threads
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Figure 5.14: FEM assembly speedup and parallel efficiency comparison between Cilk Plus and OpenMP
3.0 tasks. Mini-FEM running the EIB use case on an Intel Xeon Phi KNC.

have more improvement opportunities to hide the latencies and overheads.
In Figure 5.15, we compare this two runtimes in a weak scalability experiment by using up to 960

threads distributed over 4 Intel Xeon Phi. In this experiment, we use the larger 7 million nodes FGN
use case. On the physical cores, we obtain similar results than on a single Phi. But once again, the
hyper-threads allows to hide the OpenMP runtime overhead. Its final performance is close to Cilk with
only 4.2% less.

Strong Scaling Experiment on the AETHER Application

To validate the results obtained with our Mini-FEM proto-application developed from the DEFMESH
application, we apply the same experiment on the AETHER application. AETHER is compiled with
Intel 11 composers, while the D&C library is compiled with Intel 13 due to the Cilk Plus requirements.
The experiments are performed with the F7X use case on a Sandy Bridge cluster from Dassault Aviation
with similar nodes as Anselm. We fully use the 16 cores of a node and increase the nodes count from
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Figure 5.15: FEM assembly speedup and parallel efficiency comparison between Cilk Plus and OpenMP
3.0 tasks. Mini-FEM running the FGN use case on 4 Intel Xeon Phi KNC.

1 to 64, totalizing a maximum of 1024 cores. To measure and compare the Cilk Plus and OpenMP
runtime overhead, we measure the computation time without any MPI communication in a strong scaling
experiment. Indeed, since the mesh contains around 6 million elements and is partitioned until all leaves
contain 200 elements, we obtain 30,000 tasks spread over 1024 cores. This results in about 30 tasks per
core.

Figure 5.16 shows a speedup comparison between Ref (Comm Free), and the two D&C (MPI+Cilk)
and D&C (MPI+OpenMP) versions. At 1024 cores, Cilk speedup overpasses OpenMP by 9%. The Cilk
Plus implementation of task parallelism benefits from lighter overhead and dynamic load balancing via
work-stealing [11, 12]. As a result, Cilk Plus shows a better scalability than OpenMP, which is consistent
with the results previously obtained on the proto-application.
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Figure 5.16: Performance comparison between Ref (Comm Free), D&C (MPI+Cilk), and D&C
(MPI+OpenMP) on AETHER with F7X mesh on 1024 Sandy Bridge cores.

5.4 Conclusion

In this chapter, we have proposed and evaluated a new hybrid approach based on MPI domain decomposi-
tion and divide & conquer to efficiently parallelize unstructured mesh applications. In this approach, we
recursively partition each mesh subdomain in two partitions. For each cut, the partitions are split in a left
and a right partition. The values at the frontier between left and right partitions form the separator parti-
tions. These separators are executed after the completion of their corresponding left and right partitions.
The recursive bisection continues until reaching the desired partition size which typically corresponds to
the L1 cache size.

At each recursion level, the data are permuted to be contiguously stored inside each partition. This
enables a good intra-task data locality. Moreover, the contiguous data partitions are stored according to
their execution order. The left and right partitions are stored first, followed by their associated separator.
This improves the inter-tasks locality.

The contribution presented in this chapter provides efficient utilization of modern shared memory
resources. The hybrid parallelization allows to reduce the synchronization needs and the data duplications
induced by the classical pure MPI approach. The increasing core count within compute nodes is filled
by the large amount of D&C parallel tasks. Lastly the D&C data permutations improve the locality and
enable an efficient use of the small cache memories, especially concerning the recent Xeon Phi manycore
architecture.

Our results have been validated on the Mini-FEM proto-application. Our D&C library overpasses in
performance and scalability the pure MPI domain decomposition and the hybrid approach using mesh
coloring on two different Sandy Bridge clusters and on up to 4 Xeon Phi. Even without exploiting thread
level parallelism, the permutations brought by the D&C library significantly improve the locality, the
scalability, and the execution time. Two versions of the library are available using either the Intel Cilk
Plus runtime or the OpenMP 3.0 tasks. The Cilk Plus implementation is significantly faster than OpenMP
at scale.
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CORE LEVEL VECTORIZATION
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6.1 Introduction

In 1986, at the crossing between vector machines and multiprocessor supercomputers, Padua et al.
proposed different code transformations which can be used to optimize compilers auto-vectorization and
later to detect parallel constructions [152]. Recently, they evaluate the evolution of auto-vectorization
in modern compilers [153]. Although many progresses have been made during these 40 years, the
vectorization ratio of compilers on real application loops is still very low. Yet, we have seen in Chapter 1
that the vectorization units integrated within the cores of modern multicores and manycores are getting
larger. This makes the vectorization critical to get close to the peak FLOP performance of a system.

In the same time, the cache memories available in these cores tend to decrease. And we have also
seen in the previous chapter, the importance of the locality and the positive impact of data blocking. In
this context, it becomes challenging to enable a good vectorization ratio while preserving locality. The
creation of many data vectors while working on small datasets is particularly difficult, especially when
dealing with irregular application working on unstructured meshes.
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In this chapter, we extend the D&C approach presented in previous chapter to efficiently handle
vectorization of unstructured mesh applications on modern architectures. As explained in Section 3.5.1,
the coloring approach was originally designed for vector machine. Considering current CPU cores as
vector machines, coloring can be viewed as a good strategy for vectorization. We observe that current
coloring strategies [127, 17, 129] are not efficient on the very small data partition size of the fine grain
task-based parallelism. In Section 6.2.4, we propose a new coloring heuristic, named bounded colors,
to reveal data-parallelism in small partitions. The selected runtime, Cilk Plus, provides a useful array
notation to implement the vectorization at core level. The effective implementation of the vectorization
using coloring is described in Section 6.2.1.

Lastly, we propose a vectorization ratio prediction model as a function of the vector length and the
data partition size. We apply it to evaluate the state-of-the-art longest colors and our original bounded
colors strategies described in Sections 6.2.3 and 6.2.4. It reveals the critical influence of the coloring
strategy and the new arising trade-off on manycores between structuredness, memory locality, and vector
length in upcoming manycore systems. We show in Section 6.3.3 that a better speedup can be achieved by
limiting the vector length. The overall objective is to produce an application which makes no compromise
on current performing solutions and which is able to scale with current trends in system design.

6.2 Coloring for Efficient Vectorization

In previous chapter, we have built a D&C recursive tree containing a large amount of parallel tasks shared
among the compute cores. To build vector parallelism and exploit the vectorial units integrated within
these cores, the idea is to use mesh coloring inside each partition of the D&C tree. While the coloring
strategy is not efficient at system and node level for both data locality and synchronization, there are
no such issues at core level. Indeed, as explained in Section 5.2.2, we choose the locality parameter for
the D&C partitions to be the L1 cache size, in order to benefit from the highest core level bandwidth.
Moreover, synchronizations between colors are local to each partition and therefore affect a single core.
By applying mesh coloring on each of these partitions, we build independent and contiguous vectors that
all fit in cache.

To reach optimal performances, the vectors have to be large enough to fill the vector instructions. Many
coloring technics exist for large domains [129], but an extensive study of coloring for small partitions
remains unexplored. However, our current coloring strategy provides sufficient improvement with current
cache sizes and vector lengths. We tuned it with a vector length aware strategy presented in Section 6.2.4.

6.2.1 Implementing the Vectorization

Exposing data parallelism on unstructured meshes is a challenging task to solve in order to take the
best advantage of the increasing vector size of the architectures. To make the approach practical for the
developers, we use the Cilk Plus array notation [89] as an entry level. We explore good code constructs
and data structures for efficient and portable vectorization. A simple example of the Cilk Plus array
notation usage is given in Figure 6.1. Additional examples can be found in [89].

Contrary to the array notation in Fortran, which is equivalent to loop over the index in sequence,
the Cilk Plus array notation has a data parallel meaning. In the first loop of the pseudo-code given in
Figure 6.1b, the vectors a and b are summed into a. This supposes that vectors a and b do not alias. As
shown in the example of Figure 6.1, indirections and conditional branches are perfectly taken into account.
From our experiments, as we checked the generated assembly code, this array notation is efficiently
transformed in vectorial loops by the compiler and makes the usage of intrinsics in the source code
obsolete. We also find that for unstructured meshes, the Cilk Plus array notation can be used to write
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f o r ( i = 0 ; i < ARRAY_SIZE ; i ++) {
i f ( a [ i ] == LAMBDA) a [ i ] += b [ i ] ;
e l s e a [ i ] = b [ c [ i ] ] ;

}

(a) Original C code

i f ( a [ : ] == LAMBDA) a [ : ] += b [ : ] ;
e l s e a [ : ] = b [ c [ : ] ] ;

(b) Array notation code

cond [ : ] = ( a [ : ] == LAMBDA) ;
a [ : ] = cond [ : ] ? a [ : ] + b [ : ] : b [ c [ : ] ] ;

(c) Predicated array notation code

Figure 6.1: Cilk Plus array notation examples.

predicated vectorial code as shown in Figure 6.1c. The generated loops are perfectly fused by the compiler
to handle the iteration in SIMD by executing divergent branches in a single instruction flow. It results in
an execution model close to the Nvidia GPUs [173]. Coupled with the IMCI mask system of the Intel
Xeon Phi, we believe that generalizing such a programing model can mitigate the increasing vector length
constraint on irregular codes, as demonstrated in the experiments of Section 6.3.3.

6.2.2 Color-Based Vectorization Model

From the coloring description, it is possible to build a model to predict the code vectorization ratio. This
model is described as a function of the vector length, vecSize, and the colors cardinality, colorCard.
Let us consider a color i of size colorCardi. The vectorized, vecCardi, and not vectorized, noVecCardi,
elements cardinality are given by the following equation:

vecCardi = colorCardi− colorCardi%vecSize

noVecCardi = colorCardi%vecSize
(6.1)

The global vectorization ratio is given by the Equation 6.2, where nbElem is the total number of elements,
nbColors is the number of colors used, and colorVecRatioi corresponds to the vectorization ratio of the
i-th color.

globalVecRatio =
1

nbElem
∗

nbColors

∑
i=1

colorCardi ∗ colorVecRatioi (6.2)

To compute colorVecRatioi, we consider two distinct models: the first one only deals with full vectors,
while the second one supports the masked vector execution, such as the one used in the Xeon Phi. The
masks allow to compute on incomplete vectors and are an efficient and generic alternative to padding
technics. By using this model, we can vary the vector size even on non available lengths to evaluate their
impact.

Model 1. The vectorization ratio local to a color is simply given by:

colorVecRatioi =
vecCardi

colorCardi
(6.3)
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The global vectorization ratio given by Equation 6.2 can then be simplified in:

globalVecRatio =
1

nbElem
∗

nbColors

∑
i=1

vecCardi (6.4)

Model 2. Using mask instruction does not change the full vectors ratio but it allows to take into account
incomplete vectors. Since colorCardi%vecSize < vecSize, there is a single additional incomplete vector
per color containing noVecCardi elements. Its completeness ratio is given by noVecCardi/vecSize. The
vectorization ratio local to a color becomes:

colorVecRatioi =
vecCardi

colorCardi
+

noVecCardi

colorCardi
∗ noVecCardi

vecSize
(6.5)

In the next sections, we use our models to evaluate the two proposed coloring strategies.

6.2.3 Longest Colors Strategy

The rational of the longest colors strategy is to preferentially use the colors already allocated. The common
way to do this is to look at the color of all the neighbor elements and pick-up the first available one [129].
Therefore, a new color is created only if all the other allocated colors are used by the neighbors. The
algorithm of the longest colors strategy is given in Algorithm 5. The variable mask is a bit field where
each bit represents a color. The elemToColor[nbElem] array contains the bit value of the color allocated
to each element. In our use case with the optimal leaf size, the maximum number of colors required is
lower than 128 and therefore, a simple uint128_t integer can be used as a bit field. However, having
multiple color sets or a larger bit field is trivial to implement.

The resulting element per color distribution is shown in Figure 6.2a. Each histogram represents the
distribution of the population per color for all leaves. The x axis represents the colors size and the y axis
represents the number of elements which are part of a color of size x. The plots sharing a same row have a
fixed partition size and an increasing vector length. The plots sharing a same column have a fixed vector
length and an increasing partition size. We compare three vector lengths: the SSE instructions containing
2 elements (e.g. Westmere), the AVX instructions containing 4 elements (e.g. Sandy Bridge), and the
AVX512 instructions containing 8 elements (e.g. Xeon Phi). The maximum size of the D&C partitions
varies between 50, 200, and 500 elements. The lower part of the bars, in light color, represents the fully

Algorithm 5: Longest colors strategy pseudo-code.

1 foreach element do
2 myColor← 0
3 mask← 1
4 foreach neighbor element NE do
5 neighborColor |= elemToColor[NE]
6 end
7 while neighborColor & mask do
8 neighborColor← neighborColor >> 1
9 myColor++

10 end
11 elemToColor[E]← (mask << myColor)
12 end
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6.2. Coloring for Efficient Vectorization

vectorized elements and the upper part, in dark color, represents the scalar elements. The repartition is
computed by using the first vectorization model and has been empirically checked against the loop trip
counters. For instance, with a color of 5 elements and SSE vector instructions of length 2, 4/5 of the
elements will be vectorized and 1/5 will not. In our use case, the maximum leaf size to fit in L1 is 200
elements.

With SSE instructions, the vectorization ratio for very small leaves of 50 elements, is only 70% but it
grows to more than 90% when using bigger leaf size. When the vector length increases, the partition size
must increase too, to keep a high vectorization ratio. Considering the AVX512 vector length, we must use
at least 500 elements per partition to have a reasonably good vectorization ratio of 66.3%. However, since
the L1 cache of 32 KB can only store 200 elements, the vectorization ratio is limited to 43.8%.

The vector length effect could be mitigated using padding but this requires either profound changes
to the global element to node structure, or a local padded copy of the elements resulting in memory and
performance overhead. We will not study this solution for two reasons. Firstly, we do not want to make
profound architecture-dependent changes to the data and code structure. Secondly, it is not influencing the
theoretical conclusion since it just shifts the problem to larger vector sizes. However, to avoid the intrusive
padding, it is possible to influence the vectorization ratio by only changing the coloring strategy. Our
intuition is that with different choices, the incomplete vectors could be recombined with other elements to
form vectors. The next section presents our original coloring strategy for small partitions optimized for a
given vector size.

6.2.4 Bounded Colors Strategy

The rational of the bounded colors strategy is to relax the constraint on the number of colors used to fill in
priority all the colors up to the vector size. The major drawback of this approach is the increasing number
of colors required. However, as explained in the next section, we do not need to store the color of each
element and we do not loop and synchronize for each color. Therefore, the number of colors is not a
critical factor for our implementation of the vectorization, contrary to standard usage of coloring [129].
Furthermore, in our case, it is still possible to keep the number of colors to 128 when using leaf sizes
that fit in L1 caches. The modifications compared to the longest color strategy are minor and detailed in
Algorithm 6. They correspond to the additional storage of the color cardinality in colorCard[nbColors]
and to the modification of the color selection of an element. The new version uses the first available color

Algorithm 6: Bounded colors strategy pseudo-code.

1 foreach element do
2 myColor← 0
3 mask← 1
4 foreach neighbor element NE do
5 neighborColor |= elemToColor[NE]
6 end
7 while neighborColor & mask or colorCard[myColor]>= vectorSize do
8 neighborColor← neighborColor >> 1
9 myColor++

10 end
11 elemToColor[E]← (mask << myColor)
12 colorCard[myColor]++

13 end
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Figure 6.2: Vectorization ratio for various leaf and vector sizes.
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which is not used by a neighbor and with a cardinal lower than the vector length. In order to explore new
vector sizes, it is possible to change the vecSize parameter to produce the associated distribution and
then apply the model described in Section 6.2.2. Such projections are given in Table 6.1 of Section 6.3.3.

The results of our bounded colors strategy are given in Figure 6.2b. On very small leaves size, the
median number of elements neighbors is close to the leaves size. Therefore, there is not much data
parallelism available and our optimization has a limited influence. For bigger leaves, we benefit from a
significant improvement for all vector sizes. The vectorization ratio for a 200 leaf size increases from 73%
to 83% for AVX and from 43% to 54% for AVX512.

6.2.5 Reduction of Memory Consumption and Synchronization Needs

We have seen in Section 5.2.6 that the coloring is done only once at the beginning of the program,
outside the iterative process of the finite element method. Therefore, the cost of the coloring is negligible.
However, storing the color of each element is expensive. Furthermore, as shown in Algorithm 7, coloring
introduces an extra loop level to sequentially iterate over the colors. For each color, a tail loop handles the
elements which are not part of a full vector.

Algorithm 7: Loops on elements using longest colors strategy.

1 foreach color ∈ lea f do
2 foreach element ∈ [0 : colorsize%vectorsize[ do vectorially
3 ...
4 end
5 foreach element ∈ [colorsize%vectorsize : colorsize] do sequentially
6 ...
7 end
8 end

Algorithm 8: Loops on elements using bounded colors strategy.

1 foreach element ∈ [0 : o f f set[ do vectorially
2 ...
3 end
4 foreach element ∈ [o f f set : lea fsize] do sequentially
5 ...
6 end

We solve this issue by using a well chosen permutation of the element array shown in Figure 6.3.
Full vectors are stored firstly and the remaining elements are stored afterward. Since the vectors are
computed by a single core, the targeted construction is a sequential loop of vectors. By aligning the
inter-vectors dependencies and the frontiers of the iterations, there is no need to store the color of the
vectorized elements. Ideally, the remaining elements represent a small fraction that will be computed
sequentially. Therefore, as shown in Algorithm 8, we can do a loop over vectors of elements on the first
part, and the second part can safely be executed as a sequential scalar loop. Despite producing a code
aware of the vector length, the interesting side effect is that we only need to store the offset of the end of
the vectorial loop for each leaf of the D&C tree.
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Offset
AVX loop Seq loop

Figure 6.3: Permutation of the elements after bounded coloring. Only the offset needs to be stored to
execute the vector loop.

6.2.6 Structuredness, Vectorization and Locality

To reach maximal performance and scalability, there must be enough partitions to expose massive
parallelism and the D&C partitions have to fit in cache. This implies small partitions. However, the
smaller the D&C partitions are, the smaller the colors are, and therefore, as shown in Section 6.2.3
and 6.2.4, the smaller the vectors are. If the domain was more structured, the density of data parallelism
would have been higher and we could have used smaller partitions without loosing vectorization potential.

The global trade-off is described in Figure 6.4. A pure D&C strategy with the leaves as small
as possible would make impossible to find independent vector operations inside the final partition.
Vectorization across partitions would be possible, but at the cost of complex gathering operations and
ninja programing skills, which are incompatible with the portability and maintainability of the solutions
required by an industrial application. Having a structured mesh would allow to have locality and vectors at
the same time with a simple geometrical decomposition and an optimal coloring. A pure coloring version,
sacrificing the locality, would produce efficient vectorization with very long colors. Our hybrid approach
is tuned to present the best empirical compromise. The structuredness parameter cannot be controlled and
is related to the use case.

This small study allows us to draw the pessimistic conclusion that with decreasing memory per
core and increasing vector size, the efficiency of computation on unstructured meshes will rapidly hit a

Data Locality

Data Structuredness Data Parallelism

Pu
re

 D
&C

Structured

Pure coloring

D&C Vec

Figure 6.4: Trade-off representation between memory locality, structuredness and vector length.
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bottom. Users will have to choose between locality and vectorization, or to consider using more structured
meshes. Higher order methods could also be explored to expose other vectorization directions than current
element-wise approach.

6.2.7 Vector Length Sensitivity Study

We evaluate the vectorization effect on larger leaves to experiment the trade-off between locality and
vectorization. To look at the impact of the vector size, we combine our first model of Section 6.2.2
and the Amdahl law. Assuming that the speedup is only due to vector operations and is limited by the
vectorization ratio, a simple system of linear equations allows us to deduce the total execution time on
which the optimization apply. This is illustrated in Figure 6.5.

In this figure, tDC and tDCVec respectively correspond to the execution time using the original D&C
version and the vectorized D&C version, introduced in this chapter. tvec represents the proportion of
time on which the vectorization applied, while B represents the proportion of time which will really
be vectorized. B is lower than tvec as long as the vectorization ratio, vecRatio, is lower than 100%.
Once vectorized, the B part is accelerated by a factor equivalent to the size of the vectors, vecSize. This
corresponds to C. Lastly, A represents the sequential execution time.

A A

B
Ctvec

tDC tDCVec

B = tDC− tDCVec +C

C = B/vecSize

}
B =

tDC− tDCVec

1− 1
vecSize

and

tvec = B/vecRatio

tvec =
tDC− tDCVec

1− 1
vecSize

∗ 1
vecRatio

(6.6)

Figure 6.5: Proportion of time impacted by the vectorization.

Starting from the equations obtained in Figure 6.5, we can deduce the proportion of time, popt , which
can benefit from the vectorization:

popt =
B

tDC
=

tDC− tDCVec

tDC
∗ vecSize

vecSize−1
(6.7)

Furthermore, we assume that the gain for other vector instruction sets will be proportional to their
length. The vectorization ratio, vecRatio, for leaves of size 200 and the studied vector lengths are given by
the first model of Section 6.2.2 and summarized in Table 6.1. By applying the Amdahl law, the expected
speedup is given by:

expectedSU =
B
C

=
1

1− popt ∗ (1− 1
vecSize)

(6.8)

The point of this experiment is not to compute exact predictions but to illustrate that we can compute
an ideal vector length for a given mesh and locality parameter. Unlike the first thought, trying to generate
larger vectors does not necessarily lead to higher speedups. The higher vectorization ratio obtained with
smaller vector sizes compensates the loss of data parallelism. In the case of EIB with a leaf size of 200,
by using the measured time obtained with the original D&C library and the new vectorized version, the
best trade-off for the vector length is 4. This is detailed in Table 6.1. By using the mask instructions of the
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Intel Xeon Phi, it is possible to constraint the usage of the vector operation to 256 bits in software to get
the maximum speedup. Furthermore, by using our model, we can predict that the upcoming 1024 bits
vector size will be problematic for unstructured meshes, even with the same cache size, with an expected
speedup of only 1%. Fortunately, these future architectures will still be able to handle smaller vector
lengths.

Table 6.1: Vectorization expected speedups for a leaf size of 200.

vecSize 2 3 4 5 6 7 8 (native) 16

vecRatio 0.96 0.90 0.83 0.76 0.69 0.62 0.55 0.02
expectedSU 1.27 1.36 1.38 1.37 1.34 1.31 1.27 1,01

However, this study only deals with full vectors and does not take into account the remaining
incomplete vector sizes generated during the coloring. Indeed, these incomplete vectors could be
vectorized using padding or the Xeon Phi masked instructions. While the actual implementation will be
addressed in a future work, we can extend the study to handle the incomplete vectors by using our second
vectorization model presented in Section 6.2.2.

Let us consider a partition colored with our bounded coloring strategy and running on an AVX512
target architecture. The color distribution is illustrated in Figure 6.6. The colors are sorted by decreasing
size. For now, only the colors composed of 8 elements are vectorized and are taken into account in the
computed expected speedups. But the colors varying between 2 to 7 elements could be partly vectorized
by using padding or Xeon Phi masked instructions.
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Figure 6.6: Color distribution sorted by decreasing size using our bounded coloring strategy.

6.3 Experimental Results

To measure the impact of our new vectorial algorithm using D&C and mesh coloring, we apply and
measure it on our Mini-FEM proto-application presented in Chapter 4. We performed our experiments
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on the EIB and FGN 3D unstructured meshes from Dassault Aviation presented in Section 4.2.3. In the
following experiments, we compare three versions of the FEM assembly step.

• The original pure MPI version using domain decomposition, called Ref (MPI).

• Our D&C version using MPI at distributed memory level and Cilk Plus at shared memory level,
presented in previous chapter and called D&C (MPI+Cilk).

• And our new vectorial D&C version, called D&C Vec (MPI+Cilk), using MPI at distributed memory
level, Cilk Plus at shared memory level, and coloring at core level to express the vectorization.

We perform our experiments on three different platforms. The first one is the Anselm cluster described
in Section 1.6.3. The second platform is a cluster of Intel Xeon Phi from Cirrus presented in Section 1.6.2.
And the last one is the MareNostrum cluster presented in Section 1.6.4. The experimental setup is identical
to the one used in previous chapter and is detailed in Section 5.3.1. The application is compiled with Intel
composers 13.1 and Intel MPI 4.1. Similarly to the experiments presented in Section 5.3.1 of previous
chapter, we present the results in terms of relative speedup compared to the best sequential solution and in
terms of parallel efficiency.

6.3.1 Single Node Experiment

We start our experiments on a single node of 16 Sandy Bridge cores, as illustrated in Figure 6.7. While
both D&C approaches benefit from the better scalability and efficiency obtained in previous chapter
compared to the pure MPI version, the impact of the vectorization is negligible. The D&C Vec (MPI+Cilk)
version has equivalent behavior than the previous D&C (MPI+Cilk). We checked that the generated
assembly code is well vectorized. However, the proportion of vectorized code is negligible compared to
the entire assembly time. Indeed, the assembly step has a very low arithmetic intensity and is dominated
by the non vectorized CSR traversal and mesh data gathering.

Increased Arithmetic Intensity

To give opportunity to the vectorization to pay-off and highlight its benefits, we increase the arithmetic
intensity of the assembly step and therefore, the time proportion of vectorized code. The higher arithmetic
intensity of the assembly kernel makes it closer to other computation kernels, such as the solver step of
FEM applications. It is obtained by looping over the computation of the elements coefficient a hundred
times. The speedup and the parallel efficiency of the 100× arithmetic intensity experiment are presented
in Figures 6.8a and 6.8b.

At first, we observe that while the standard D&C version is not much impacted by the higher arithmetic
intensity, the pure MPI one scales more efficiently. The higher overhead of the communications and data
duplications induced by MPI compared to the Cilk Plus runtime is partly hidden by the higher computation
ratio. This way, Ref (MPI) and D&C (MPI+Cilk) get closer to each other. But this larger computation
part mainly benefits to the D&C Vec (MPI+Cilk) version since the vectorized part of the computation
represents a higher proportion of the overall assembly step. The sequential execution of the vectorized
version of the D&C library is 14.8% faster than the standard one. At full node, it ends 13.5% faster since
the higher computation benefit is slightly attenuated by the parallelization overhead. In the end, both
D&C versions achieve 89% of parallel efficiency.
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Figure 6.7: FEM assembly speedup compared to the best sequential time and parallel efficiency on a
single Sandy Bridge two-socket node.

6.3.2 Strong Scaling Experiment with Increased Arithmetic Intensity

Similarly to previous chapter, we extend the vectorization experiments in a 512 cores run to test the strong
scalability of the new D&C Vec (MPI+Cilk) version. This experiment is presented in Figure 6.9. The
increased arithmetic intensity of the assembly operator improves the scalability of all the experimented
versions. This is due to the higher proportion of computation compared to the runtimes overhead and to
the amount of communications. This way, the Ref (MPI) version already evaluated at that scale in previous
chapter, moves up from 25% of parallel efficiency to 57%. Similarly, the D&C (MPI+Cilk) version,
which uses MPI communications between the 32 compute nodes, reaches 71% of efficiency compared to
50% with the standard assembly operator. Concerning the new D&C Vec (MPI+Cilk) vectorized version,
it reaches 77% of parallel efficiency with only 2000 vertices per core, which leads to an impressive
speedup of 323× compared to its sequential execution. The largest computation ratio enables a 13.5%
speedup at 512 cores compared to the standard D&C version. This is equivalent to the performance gain
obtained in previous section on a single node. This makes sense since the vectorization effort applied
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Figure 6.8: FEM assembly speedup compared to the best sequential time and parallel efficiency with
arithmetic intensity increased by a factor of 100×.

to the D&C tasks allows to take advantage of the vector units within the compute cores and to achieve
higher performance. But, it does not change the scalability of the algorithm, which is mainly dragged
down by the communications and synchronizations between compute nodes. This last obstacle will be
addressed in the next chapter. Nevertheless, results are encouraging for future systems that will probably
reach thousands of nodes composed of a thousand cores.

6.3.3 KNC Experiments

Similarly to the first experiment presented in Section 6.3.1, we have evaluated the vectorized version of the
D&C library on the original assembly kernel with a low arithmetic intensity. But this time, we experiment
the D&C Vec (MPI+Cilk) on a Xeon Phi KNC composed of larger 512 bits vectorization units and smaller
caches, as detailed in Section 1.4. This experiment is illustrated in Figure 6.10. Once again, the two D&C
versions have equivalent behavior. Before doing this experiment, we varied the size of the D&C partitions
from 50 to 500 elements. We measured that the smaller the D&C leaves are, the better the performances
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Figure 6.9: FEM assembly speedup and parallel efficiency using 100× increased arithmetic intensity and
running on 512 Sandy Bridge cores.

are. As shown in Section 6.2.4, when choosing a leaf size of 50, the vectorization ratio is close to 0.
Therefore, vectorization has a limited 1% impact on performance. As a result, although the time spent
per element is lower in the vectorial D&C Vec (MPI+Cilk) version than in the pure D&C (MPI+Cilk)
version, the higher vectorization ratio brought by larger partitions does not compensate the loss in locality,
because of the low arithmetic intensity of the FEM assembly step.

Increased Arithmetic Intensity

To ensure it, we have tested our vectorized D&C version on the more intensive matrix assembly kernel. As
illustrated in Figure 6.11, this reveals the difference between D&C (MPI+Cilk) and D&C Vec (MPI+Cilk).
It is even more pronounced on the KNC than on the previous increased arithmetic intensity experiments
made on Sandy Bridge multicores. The KNC architecture with its low power cores, small caches, and
large vectorial units benefits more from the higher computation ratio. As a result, the vectorized version
of D&C is 1.2× faster than pure D&C on the 60 physical cores of the KNC and 1.19× using the 240
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Figure 6.10: FEM assembly speedup and parallel efficiency with standard arithmetic intensity on a single
KNC.

hyper-threads. Both of the D&C version achieve exactly the same parallel efficiency of 98% on the 60
physical cores compared to 85% for the pure MPI version. We note that with the increased arithmetic
intensity, the Ref (MPI) version benefits from the physical core count increase from 30 to 60. This is
certainly due to cache or bandwidth saturation effects.

Lastly, we applied the same experiment on 4 KNC. This is illustrated in Figure 6.12. This results in only
1000 vertices per threads when using the 960 hyper-threads. The difference between D&C Vec (MPI+Cilk)
and D&C (MPI+Cilk) on the single thread execution is even more pronounced by running on 4 KNC
with a 1.52× speedup in favor of the vectorized version. Indeed, by running the same use case on 4
KNC instead of a single one, the memory bandwidth requirements per KNC decrease. This enables
higher performance gains brought by the vectorized version which is more bandwidth greedy. On the
240 physical cores, the vectorization brings a 1.44× speedup compared to the standard D&C version
and a 1.22× speedup using the 960 threads. However, the vectorization decreases the time proportion of
the parallel part of the code. This makes the sequential part more important and therefore, decreases the
parallel efficiency of the code. While the pure D&C version has a parallel efficiency of 94% on the 240

103



Chapter 6. Core Level Vectorization

●

●

●

●
● ●

 

 

 

 

 

 

Hyper−threading

1

30

60

120

180

240

1 30 60 120 180 240
Number of Threads

S
pe

ed
−

U
p

 

●

Ideal scaling

DC Vec (MPI+Cilk)

D&C (MPI+Cilk)

Ref (MPI)

(a) Speedup compared to the best sequential solution

● ● ●

●

●

●

      

Hyper−threading

0.0

0.2

0.4

0.6

0.8

1.0

1 30 60 120 180 240
Number of Threads

P
ar

al
le

l E
ffi

ci
en

cy

 

●

Ideal scaling

DC Vec (MPI+Cilk)

D&C (MPI+Cilk)

Ref (MPI)

(b) Parallel Efficiency

Figure 6.11: FEM assembly speedup and parallel efficiency with 100× increased arithmetic intensity on a
single KNC.

cores, the vectorized version has dropped to 90%.

6.4 Conclusion

This chapter presents our vectorized version of the D&C library. It proposes a new strategy for unstructured
mesh assembly computation which takes fully advantage of the modern multicore and manycore resources.
Our strong scaling experiment is very encouraging for an efficient support of upcoming systems. The
original bounded colors strategy exposes most of the data parallelism available in cache. However,
the current trend which consists in limiting the memory per core and increasing the vector size, is
not compatible with the complexity and precision of the new physical models which requires more
unstructured meshes. This is even more true on low intensive compute kernels, such as the FEM assembly
step.

Using more intensive compute kernels reduces this problem since it decreases the proportion of
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Figure 6.12: FEM assembly speedup and parallel efficiency with 100× increased arithmetic intensity on 4
KNC.

communication and the runtime overhead. But this is not enough to perfectly scale on an important
number of compute nodes. Moreover, the vectorization brings significant speedups, especially on the
Xeon Phi manycore, but it does not improve the scalability. In the strong scaling experiment made on
4 KNC with 960 hyper-threads and only 1000 vertices per thread, the scalability is reduced by a few
percents compared to the non vectorized D&C execution but is still over 90% of parallel efficiency.

The major remaining obstacle to enhance the scalability of our library is the communication layer
between distributed nodes. For now, we have proposed an efficient approach to address the shared memory
parallel resources within compute nodes and to exploit the cores vectorial resources on small partitions of
unstructured meshes. In the next chapter, we propose a new communication pattern aimed at overlapping
the communications and reducing the synchronizations.
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DISTRIBUTED LEVEL PARALLELISM
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7.1 Introduction

In Chapter 5, we have built a parallelization scheme optimized to exploit shared memory parallelism
inside each MPI distributed domain, using the divide and conquer approach. Then, in Chapter 6, we have
addressed the vector units embedded in modern compute cores using a tuned coloring heuristic for small
D&C partitions. Our last contribution focuses on replacing the standard MPI two-sided communication
model, presented in Section 2.2.1, by a multithreaded and asynchronous communication model based
on PGAS, detailed in Section 2.3, and on one-sided communications. We use the GASPI API [6, 4, 5]
viewed in Section 2.3.2 which enables asynchronous one-sided transfers using RDMA interconnect.

A study on the potential performance gain brought by the optimization of the communication model is
given in Section 7.2. Then, we have developed a bulk-synchronous GASPI implementation mimicking the
MPI approach, but using one-sided communications to compare GASPI one-sided performance to MPI
two-sideds. This experiment is detailed in Section 7.3. Lastly, we propose two different approaches both
aimed at exploiting the multithreaded parallelism between D&C tasks and overlapping communication
by computation. As soon as a D&C task achieves the computation of a part of the interface, it can
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directly send it without waiting for the rest of the computation. However, a trade-off between earlier
communication and their number must be explored.

We propose two different approaches. The first one consists in fixing a communication level at a
given height of the D&C tree below which no communication is done. This version is explained in more
details in Section 7.4.1. However, by using this approach, all the descendants of the tasks located at
the communication level must be ended before they can start to communicate. This reduces the overlap
possibilities between communication and computation. Our second approach presented in Section 7.4.2,
consists in buffering the data to communicate according to their remote receiver, and to send the buffer as
soon as it reaches the chosen size. This version allows better balancing between communications and
increases the communication overlap possibilities. As shown in Section 7.5, both of these two versions
benefit from a better performance and scalability, and decrease the memory consumption induces by the
MPI model.

7.2 Potential Gain of Communication Optimization

The contributions proposed in the two previous chapters have permit to notably increase the performance
compared to our reference version only based on MPI domain decomposition. This node performance
gain between D&C and the reference version in our strong scaling experiments made at 512 cores using
2000 vertices per core, is illustrated in Figure 7.1. In this chapter, we focus on the impact of the distributed
communications on the performance. To estimate their overhead, we comment out the communication
calls. The resulting D&C Comm Free version represents the best performance that is possible to attain
by using our shared memory model. It includes all the node performance improvements brought in the
previous chapters, such as the D&C locality gains, the Cilk Plus threading model, and the vectorization of
the D&C tasks.
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Figure 7.1: Potential gain brought by overlapping communication by computation.

The difference between the communication free version and our D&C version represents the maximal
performance gain which can be obtained by optimizing the communication pattern. The threading model
is no more a limitation. It scales almost perfectly with 96% of parallel efficiency on the Xeon Phi physical
cores. The main bottleneck is the communication model. It could be optimized by changing the numerical
algorithm using communication avoiding approaches like the one used in pipelined CG [65]. However, this
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is not our research topic. Our optimization opportunities include the parallelization of the communications
and of the scatter and gather operations, the removal of synchronization points, and the overlap of the
communications by computation. The goal of the contributions proposed in this chapter is to bring D&C
closer to the ideal D&C Comm Free performance.

7.2.1 Benefits and Limitations of Communication Overlap

Recovering the communications by computation may lead to significant performance improvements.
However, the performance gains depend on the ratio between communication and computation. The
overall execution time is bounded to the maximum between execution and communication time. Therefore,
the maximum speedup brought by communication overlapping can be reached if the time spent in the
communications is equivalent to the time spent computing and if both of them entirely overlap. This is
illustrated in Figure 7.2d. Communicating includes all the remote and network operations while computing
includes the local shared memory operations and I/Os.
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Figure 7.2: Synthetic illustration of attainable speedups with a complete overlap of communication and
computation.

More formally, let comm be the proportion of time spent in the communications, comp the proportion
of time spent computing, and overlap the proportion of time in which computation and communication
are done simultaneously. The performance gain brought by entirely overlapping the communications is
given by:

speedup =
comp+ comm

max (comp,comm)
≤ 2 (7.1)

The maximal speedup is obtained if max(comp,comm) is minimal, i.e. if comp = comm = 50. Therefore,
the maximal speedup that can be reached by doing communication overlap is 2.

However in practice, computation and communication are unlikely to entirely recover with each other.
In the context of FEM, the communications involve the halo exchanges between distributed subdomains.
In this case, the computation of the interface value has to be achieved, at least partially, before starting to
communicate. This way, the maximal expected speedup is lower than 2. It can be computed according to
the following equation:

speedup =
comp+ comm

comp+ comm−overlap
≤ 2 (7.2)
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Figure 7.3: Incomplete overlap with equilibrated computation and communication loads.

In Figure 7.3, comp= comm= 50% and half of them are executed simultaneously, i.e. overlap= 25%.
The speedup compared to the bulk-synchronous execution with no overlap is equal to 1.33×.

Furthermore, during the strong scaling experiments, the computation part tends to 0% while the
communication part tends to 100%. This way, the expected speedup tends to 1. In that case, there is
little interest to invest in communication overlapping. At scale, the performance gain gets similar to
bulk-synchronous approaches. However, the parallelization of the communications and of the pack/unpack
and gather/scatter operations is critical to improve the scalability of the code since it directly impacts the
communication time that will become predominant.

7.3 Bulk-Synchronous Communications Using GASPI

As discussed in Section 3.5, a pure domain decomposition approach requires to increase the number
of subdomains, and consequently the number of duplicated ghost cells and communications in order
to increase the amount of parallelism. This way, the more subdomains there are, the smaller these
subdomains are, and the higher the proportion of time spent communicating is. The common approach
when using MPI consists in executing the computation phase entirely before launching the communication
phase. This bulk-synchronous approach is illustrated in Figure 7.4.

To measure the GASPI one-sided communication performances, we built a preliminary bulk-synchronous
version of the halo exchange step, called GASPI Bulk. This version is really similar to standard MPI
two-sided communications. Each process loops over its neighbors in parallel, packs the data to the GASPI

Input SolutionUpdateSolverHalo 
ExchangeAssembly

Figure 7.4: Bulk-synchronous approach - The halo exchange communication phase starts after the end of
the assembly computation phase.
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segment, and write data directly to the neighbors. Just after, the process waits for any communication
coming from one of its neighbors in any order. As soon as it receives one notification, it will be able to
unpack the corresponding data and to wait for the next communication.

In strong scaling experiments, the computation phase tends to zero as the parallelism grows, while the
time spent in the communications gets bigger and bigger. As stated in previous section, the communication
overlap opportunities are then limited. The major expected performance gain during this experiment
comes from the parallelization of the communications exploiting the parallelism offered by the recent
networks technologies, such as the RDMA. Moreover, the number of subdomains must be reduced to
its minimum, i.e. one per distributed computing unit, and we need to exploit shared memory resources
inside each distributed subdomain. Section 5.2 explains how we use the D&C approach to enable shared
memory parallelism by creating a large amount of parallel tasks. This allows to create more concurrency
by increasing the number of threads instead of increasing the number of distributed domains, and to
replace communications and halo duplications by data sharing inside each NUMA node. However, the
communications between the distributed NUMA nodes still represent a non negligible part of the execution
time on large clusters.

7.4 Asynchronous and Multithreaded Communications Using GASPI

To take full advantage of GASPI one-sided asynchronous communications, we replace our bulk-synchronous
implementation of the halo exchange by an asynchronous and multithreaded version illustrated in Fig-
ure 7.5. The idea is to exploit the parallelism of the D&C tasks when packing the communication buffers
and sending them. Moreover, to minimize the impact of communications, it is also crucial to overlap
them with computation. Therefore, communications have to start as soon as a piece of data is ready
to be sent. Our actual standard MPI two-sided halo exchange needs to wait for the end of the D&C
parallel region before starting the communication process. This process consists in packing all required
data into the communication buffers, sending to all neighbors the corresponding interface, and finally
receiving and unpacking the data from all neighbors. Conversely, by using GASPI asynchronous one-sided
communications, it is possible to directly start this process inside the D&C tasks running in parallel. This
way, once a piece of data handled by a D&C task is ready, it can be directly packed and written to the
appropriate neighbor. Then, the computation of the other D&C tasks will overlap this communication.
Moreover, since the communications are handled by the InfiniBand cards, the cost of the write is low.
Once the D&C parallel region comes to its end, most of the communications are completed and the data
unpacking can start with minimal waiting times.

Input SolutionUpdateSolver
Assembly

Halo 
Exchange

One-sided
sends

Figure 7.5: Asynchronous approach - As soon as a piece of data to communicate is ready, it is sent.
Once the D&C parallel region comes to its end, most of the communications are completed and the data
unpacking can start with minimal waiting times.
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The aim of the D&C decomposition is to build a large number of very fine grain tasks. This
granularity is incompatible with the latency of remote operations. Therefore, we have to limit the number
of communicating tasks. We have built two asynchronous one-sided versions implementing different
approaches to reduce the amount of communications. They are explained in the following sections.

7.4.1 Communication Level Version

To control the number of communications outgoing from the D&C tree, we firstly define a communication
level. This communication level corresponds to a customizable depth of the D&C tree below which no
communication is done. Only the tasks upper this level can handle communications. Let us call these
D&C tasks, the communicating tasks. All the D&C tasks located under the communication level only deal
with computation. We call them the standard tasks. Therefore, the interface values owned by the standard
tasks have to be exchanged via other communicating tasks. The D&C nodes located at the communication
level handle the interface values of their whole subtree. The communicating tasks corresponding to the
leaves of the D&C tree just have to pack and send their local interface values.

This first version is called GASPI Async v1 and is illustrated in Figure 7.6. The internal D&C nodes a
and b have to communicate the interface values contained in their respective subtree while the D&C leaf c
only sends its local interface values. With this communication level version, it is possible to configure
the number of D&C tasks involved in the communications and therefore, the number of communications
and indirectly their size. The upper the communication level is, the less communications there are,
and the bigger they are. The lower it is, the more parallelism there is to handle communications, and
the more overlapping possibilities there are between communication and computation. We empirically
found, as shown in Table 7.1, that a third of the D&C tree is a good compromise between the number of
communications and the amount of parallelism.

a b c Communication
level

One-sided
sends

Figure 7.6: GASPI Async v1 - Illustration of the communication level version using GASPI one-sided in
the D&C tasks located above the level.

However, this approach has two main drawbacks. Firstly, it leads to unbalanced communication sizes.
Indeed, there may be a huge difference between the D&C nodes handling a large subtree and the leaves
handling sometimes only one value to communicate. Lastly, increasing the size of the communications

Table 7.1: Communication level impact between a quarter, a third, and half of the D&C tree.

Height o f the communication level 1/2 1/3 1/4

Speedup compared to sequential at 128 cores 5.85 6.31 6.06
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to better exploit the network bandwidth and reducing the number of tiny communications, implies to
bring the communication level closer to the root of the D&C tree. This results in a lower amount of
parallelism available to pack the data. And more importantly, this reduces the amount of computation
which can be used to overlap the communications since the main part of the computation is located under
the communication level and has already been executed. In the opposite, if the communication level is
too low, there are too many communications. The best trade-off at 1/3 is limited by this large number of
communications.

Moreover, in practice the development of this first asynchronous and multithreaded version using
GASPI one-sided communications was not straightforward. It requires several modifications in the
code and additional data structures. A pseudo-code of the additional pre-computations required for this
version is given in Algorithm 9. We have to split the original interface index into as many parts as

Algorithm 9: Required pre-computations for the communication level approach.

1 Function D&C_tree_second_traversal (D&C tree)
2 begin
3 Compute_offset_in_GASPI_segment (D&C tree→ partition)
4 cilk_spawn
5 D&C_tree_second_traversal (D&C tree→ le f t)
6 D&C_tree_second_traversal (D&C tree→ right)
7 cilk_sync
8 if D&C tree→ sep 6= null then
9 D&C_tree_second_traversal (D&C tree→ sep)

10 end
11 end

12 Function D&C_tree_first_traversal (D&C tree)
13 begin
14 Compute_list_of_interface_nodes (D&C tree→ partition)
15 if D&C tree→ level = communication level then
16 Compute_list_of_subtree_interface_nodes (D&C tree→ partition)
17 Compute_number_of_communications (D&C tree→ partition)
18 end
19 cilk_spawn
20 D&C_tree_first_traversal (D&C tree→ le f t)
21 D&C_tree_first_traversal (D&C tree→ right)
22 cilk_sync
23 if D&C tree→ sep 6= null then
24 D&C_tree_first_traversal (D&C tree→ sep)
25 end
26 end

27 Function D&C_communication_level (D&C tree)
28 begin
29 D&C_tree_first_traversal (D&C tree→ head)
30 D&C_tree_second_traversal (D&C tree→ head)
31 Exchange_number_of_incoming_GASPI_notifications ()
32 end
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the number of D&C tasks handling values on the interfaces. We also need to compute the number of
incoming communications for each process and their size. And lastly, we compute the offset of each
communicating task to give them a unique emplacement in the GASPI segments, and we exchange the
number of communications between neighbor processes. This requires an additional tree traversal in the
pre-computation phase in order to at first, reduce to the root the number of interface values handles by
each left, right, and separator D&C task, and secondly, to spread to the communicating tasks the number
of interface values handled before them.

7.4.2 Bounded Communication Size Version

To solve the communication balancing and overlap issues of the previous version, we have developed
a new asynchronous and multithreaded version still using GASPI one-sided communications. The
idea of this new version is to balance the size of the communications while increasing the amount of
parallelism available to pack the data and increasing the overlap possibilities. To this end, we remove the
communication level and replace it by a customizable communication size parameter. In this version, all
the D&C tasks handling values on the interface are eligible to append interface elements into the GASPI
segment. Only the tasks attaining the communication size and the tasks handling the last value on the
interface send the values appended in the buffer from the previous communication.

a b c d

e

One-sided
sends

b c e eSent by

GASPI segment

Figure 7.7: GASPI Async v2 - Illustration of the bounded communication size using GASPI one-sided
inside any D&C tasks attaining the communication size.

This new version, called GASPI Async v2, is illustrated in Figure 7.7. The D&C task a is the first
task to pack data in the GASPI segment. The task b appends its data to those of a and reaches the first
communication, therefore it has to send the first chunk of the GASPI segment containing a part of its
data, and the data of a. Then, the task c reaches the second communication and sends the beginning of
its data and the end the data of b. Lastly, e sends the last part of c data, the data of d and the beginning
of its data, and then makes a second communication when it attains the last interface value even if the
communication size is not reached. However, this version requires two additional counters per interface.
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For each interface, the first counter indicates how many values have been packed into its communication
buffers and the second one indicates until which offset the values have already been sent. In the previous
version, only the D&C tasks upper the communication level containing themselves or in their subtree,
values on the interfaces, handle the communications. Moreover, they systematically send them if they
are eligible, no matter if there are 1 or 1000 values to communicate. In this new version, any D&C
task, provided that it contains values on the interface, packs its data to the communication buffer of the
appropriate neighbor and increments the first counter of values contained in the buffer. If the task does not
reach the communication size, it is done. However, if it reaches the size, it sends all the data packed in the
current interface buffer since the last communication, coming from different tasks, and increments the
second counter to the last sent value. In the same way, the task which access the last value to communicate,
will send all the data packed since last communication, even if the communication size is not reached.

As the different tasks run in parallel, the accesses to the counters have to be protected by a lock in
order to avoid race conditions. Since all interfaces have their own communication buffers and their own
counters, they are protected by independent locks. These locks still negatively impact the performance by
delaying the tasks accessing to the same interface buffers at the same time. But in order to minimize the
time spent in the locks, the pointers values are only read and updated if necessary, and then the locks are
immediately released. The lock contention could be reduced again by splitting each interface into several
buffers, using independent locks or even by using double-ended buffering. However, these locks are not
the bottleneck for now. The rest of the execution is done with local copies of the counters.

This new version with fixed communication size requires less modifications in the code than the
previous version using the communication level. Indeed, the number of communications can simply be
computed knowing the number of values on the interface and the size of the communications. This is
illustrated by a pseudo-code given in Algorithm 10. The size of the incoming communications are even
more trivial to know, except for the last one which requires to be explicitly sent. There is no more offset
to compute the position of the data in the GASPI segment since the values are appended in the order
of execution of the D&C tasks. This allows us to save the additional tree traversal required in previous
version.

Algorithm 10: Required pre-computations for the bounded communication size approach.

1 Function D&C_tree_traversal (D&C tree)
2 begin
3 Compute_list_of_interface_nodes (D&C tree→ partition)
4 Compute_number_of_communications (D&C tree→ partition)
5 cilk_spawn
6 D&C_tree_traversal (D&C tree→ le f t)
7 D&C_tree_traversal (D&C tree→ right)
8 cilk_sync
9 if D&C tree→ sep 6= null then

10 D&C_tree_traversal (D&C tree→ sep)
11 end
12 end

13 Function D&C_bounded_communication_size (D&C tree)
14 begin
15 D&C_tree_traversal (D&C tree→ head)
16 Exchange_number_of_incoming_GASPI_notifications ()
17 end
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Impact of the Size of the Communications

In order to have an estimation on the way the size of the communications impacts their number, we
vary the communication size from 100 to 2000 values and measure the total number of communications.
The numbers of GASPI processes and of Cilk threads remain fixed. We use 8 nodes of 16 cores using
1 process and 16 Cilk threads per node and we run the EIB use case. This experiment is illustrated in
Figure 7.8. Contrary to our first thought, the size of the communications is not linearly correlated to
their number. Indeed, at the scale of our experiment, i.e. using 128 cores with around 7800 vertices per
core and 36% of the mesh values in the interfaces, the interface halos are small and irregular. Most of
them are composed of less than 1500 values. This way, the communication count is almost unchanged by
increasing the communication size from 1500 to 2000 values. Since the communications are triggered
if their maximal size is reached, or, if the last interface value is attained, most of them are smaller than
the fixed size. In the opposite, all the interfaces are composed of more than 200 values. Therefore, the
number of communications is divided by two, by increasing the communication size from 100 to 200.
There is then no need to strongly increase the communication size to maintain a reduced number of
communications. In the example of Figure 7.8, using 500 values per communication seems to be a sweet
spot between the amount of parallelism in the communications and their number.

In a second time, to measure the impact of the communication size parameter on the performance,
we vary it from 100 to 2000 values by using different sizes of D&C partitions. The D&C partitions
vary from 50 to 400 elements. This experiment is illustrated in Figure 7.9. Although the curves are not
smooths and the differences are not really pronounced, we can observe different behaviors. Firstly, the
two parameters, i.e. the size of the communications and the size of the D&C partitions are not strongly
correlated. The "bowl" shape of the curves does not change significantly depending on the partitions size.
This makes sense since no matter how small the partitions are, the interface values will only be sent when
the communication size will be reached. Secondly, the optimal communication size is located around 500
values. Lastly, the bigger the D&C partitions are, the worst the performance is.

Since the arithmetic intensity during the assembly step is low, we reproduce the same experiment
with an artificially increased intensity. The idea is to increase the proportion of work compared to the
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Figure 7.9: Impact of the communication and the D&C partition size on the performance.
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Figure 7.10: Impact of the communication and the D&C partition size with a hundred times more work.
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computation, to increase the overlap possibilities. To do so, we compute a hundred times the coefficient of
each cell of the mesh. This new experiment is illustrated in Figure 7.10. The impact of the communication
size becomes more negligible and it’s difficult to determine an optimal. However, the impact of the
partition size is more pronounced. Smaller partitions result in more locality, as explained in Section 5.2.3,
and in more parallelism without impacting the size of the communications.

7.5 Experimental Results

To validate our new approaches, we apply them on the Mini-FEM proto-application, presented in Sec-
tion 4.3. We compare six versions of the halo exchange implementation on 512 Sandy Bridge cores.

• The original bulk-synchronous version using domain decomposition in addition to MPI two-sided
communications, called Ref (MPI).

• The original bulk-synchronous version using domain decomposition with GASPI one-sided com-
munications, called Ref (GASPI).

• The D&C bulk-synchronous version using domain decomposition with MPI two-sided communica-
tions and our divide and conquer approach using Cilk inside each MPI subdomain. This version is
called D&C (MPI+Cilk).

• The D&C bulk-synchronous version using domain decomposition with GASPI one-sided communi-
cations and our divide and conquer approach using Cilk inside each GASPI subdomain. This is the
D&C Bulk (GASPI+Cilk) version.

• The D&C asynchronous version using domain decomposition and divide and conquer with GASPI
one-sided communications inside the D&C tasks above a communication level, called D&C Async
v1 (GASPI+Cilk).

• And the D&C asynchronous version using domain decomposition and divide and conquer with
GASPI one-sided communications inside any D&C tasks with a fixed communication size, called
D&C Async v2 (GASPI+Cilk).

Lastly, we evaluate the all-in-one D&C Vec Async v2 (GASPI+Cilk) version. This version combines
all the contributions presented during this thesis. The D&C parallelization at shared level using the Cilk
Plus runtime, the vectorization using coloring at task level, and our last version of the multithreaded
and asynchronous communication pattern using GASPI one-sided. The experiments are made on the
MareNostrum cluster, presented in Section 1.6.4, and on Salomon cluster’s KNC described in Section 1.6.3.
The experimental setup presented in Section 5.3.1 remains unchanged. The application are compiled with
the Intel composers 14.0.2. We use the Intel MPI 4.1.3 library and the GPI-2 version 1.3 of GASPI.

7.5.1 Impact of the Number of Processes per Node

As a first experiment, we tried to determine which of the two options between using one process per
node, or one process per socket, results to the best performance. We compare these two options on the
D&C MPI, the D&C GASPI Bulk, and the D&C GASPI Async versions. The experiment was made on 8
distributed nodes. It is illustrated in Figure 7.11. For all hybrid versions, using either MPI or GASPI, the
best performance is achieved by only using one process per node. We observe a 10% speedup using only
one process per node on both the MPI and GASPI bulk-synchronous versions and a 20% speedup on the
GASPI asynchronous version. Indeed, having one process per node instead of one per socket involves less
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communications per node and bigger subdomains. Therefore, the ratio of communication compared to
computation decreases inside each distributed node. Moreover, the smaller number of communications
can be more easily recovered by the larger amount of computation per process.
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Figure 7.11: Performance comparison between one process per node and one process per socket.

7.5.2 Bulk-Synchronous Comparison on a Single Node Experiment

In the first experiment, we compare the performance of the Intel MPI library to the GPI-2 GASPI
library using the shared memory resources of a single node. The MPI and GASPI bulk-synchronous
implementations are also compared to the Cilk version of the D&C library. Since this D&C version only
uses a single process, whether we choose MPI, GASPI, a bulk-synchronous, or an asynchronous version,
has no influence on the performance. We reproduce the same experiment twice. The first time by using the
original assembly operator, and the second time by using the 100× higher computation intensive operator
presented in Section 6.3. In this bulk-synchronous single node experiment, the increased arithmetic
intensity is expected to improve the scalability by decreasing the communication ratio and so reducing the
communication latencies impact.

Standard Arithmetic Intensity

The first experiment using the standard arithmetic intensity kernel running on the EIB use case is illustrated
in Figure 7.12. While as expected, the Cilk version of the D&C library scales better than both of the
communication libraries, we note that the Intel MPI library exploits more efficiently the shared memory
resources of a single compute node. This is not surprising since MPI has been optimized to replace
the distributed communications by data movement when running on several processes bound to a same
NUMA node. At the opposite, GASPI is mainly designed for distributed communications. Even if two
GASPI processes are on a same processor, the communications between them will be handled by the
network card. Still, this only results in a 6.9% speedup in favor of MPI compared to GASPI since there
are not many communications at that scale.
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Figure 7.12: Single node experiment with standard arithmetic intensity using the EIB use case.

Increased Arithmetic Intensity

In this second experiment, we increase the arithmetic intensity by a factor of 100. As shown in Figure 7.13,
the difference between MPI and GASPI completely disappears. The higher ratio of computation compared
to communication on a single node execution, hides the performance advantage of MPI compared to
GASPI when running on shared memory resources. We can also note that the Ref (MPI) and Ref (GASPI)
versions benefit more from the higher arithmetic intensity than the pure D&C version. Indeed, on a
single node, the D&C version execution has no communication, only data sharing. Since D&C already
scales almost perfectly by using the original assembly operator with a lower arithmetic intensity, the
higher computation ratio is more negligible. The final 12.8% performance advantage of the D&C version
compared to pure GASPI or pure MPI is due to the absence of communication and to the improved data
locality brought by the D&C permutations.
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Figure 7.13: Single node experiment with 100× increased arithmetic intensity using the EIB use case.

7.5.3 Strong Scaling Experiment Using Standard Arithmetic Intensity

The next experiment consists in comparing the six different versions previously described running on up
to 512 Sandy Bridge cores. Contrary to the previous experiments made to compare the behavior of the
GASPI and MPI libraries on shared memory resources, the following experiments reflect the standard
setup for hybrid parallelized applications. This setup consists in a single process per distributed node and
a thread per core inside each node.

As illustrated in Figure 7.14a, the two pure domain decomposition Ref (MPI) and Ref (GASPI) versions
have the poorest performance. Indeed, at 32 nodes, i.e. 512 processes, there are only 2000 vertices per
subdomains and a non negligible part of the mesh is located in the ghost cells: around 60% as seen in
Figure 3.8 of Section 3.5. This leads to important data duplications. The Ref (GASPI) version has failed
to execute up to 512 processes because of its too high memory requirements. The four other versions
only use one process per node, therefore 32 subdomains instead of 512. This drastically reduces the data
duplication and the number of communications, which leads to better performances.

As seen in Chapter 5, the D&C (MPI+Cilk) version is 2.4 times faster than Ref (MPI) and ends at
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50% of parallel efficiency compared to 25%. However, without changing the communication pattern,
this D&C (MPI+Cilk) version is overpassed by 21.5% by its counterpart bulk-synchronous version using
GASPI one-sided communications. With a simple bulk-synchronous communication scheme using a
single GASPI process per distributed node in addition to the D&C library, it is possible to reach 60% of
parallel efficiency at 512 cores with only 2000 vertices per core. Our two asynchronous versions with a
new multithreaded communication scheme at D&C task level permit to go even further. The D&C Async
v1 (GASPI+Cilk) version gains additional 11% speedup compared to D&C (GASPI+Cilk) with a very
close parallel efficiency. And lastly our D&C Async v2 (GASPI+Cilk) version brings 18.3% speedup
compared to D&C (GASPI+Cilk) and attains 65% of parallel efficiency. In the ends, it is 3.47 times faster
than the reference version only parallelized through MPI domain decomposition. The better scalability
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Figure 7.14: Strong scaling experiment with standard arithmetic intensity using the EIB use case on 512
Sandy Bridge cores.
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of the second asynchronous version using fixed communication sizes is due to the higher overlap of
communication by computation. However, further investigations could be led to increase the proportion
of overlapped communications. There is still 19.4% to gain to reach the theoretical maximal speedup
represented by the D&C Comm Free (GASPI+Cilk) version. This version corresponds to our D&C Async
v2 (GASPI+Cilk) version in which the communications have been disabled.

7.5.4 Multiple KNC Experiment Using Standard Arithmetic Intensity

This experiment compares the four main different approaches used on a very strong scaling experiment
using 960 KNC hyper-threads on the 1 million vertices EIB use case, i.e. 1000 vertices per thread.
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Figure 7.15: Strong scaling experiment with standard arithmetic intensity using the EIB use case on 4
KNC manycores.
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Moreover, in this case we use the original assembly operator with the low arithmetic intensity to bring out
as much as possible the bottlenecks of the different implementations.

The reference implementation Ref (MPI), only parallelized through MPI domain decomposition, still
scales up to around half of the 240 physical cores of the 4 KNC with 76% of parallel efficiency. Beyond,
the scalability drastically dropped and ends 6.56 times slower than the best D&C version with only 11%
of efficiency using 512 subdomains, i.e. the maximal decomposition provided. The three other approaches
based on hybrid parallelization scale way better. The standard D&C (MPI+Cilk) implementation achieves
85% of parallel efficiency on the 240 physical cores and is 2.5 times faster than Ref (MPI). The similar
version D&C Bulk (GASPI+Cilk) using GASPI one-sided communications gains additional 5.8% speedup.
The performance advantage brought by the asynchronous D&C Async v2 (GASPI+Cilk) version is reduced
compared to the previous strong scaling experiment made on Sandy Bridge multicores. It is still the fastest
version but by only a few percents. Nevertheless, it obtains an impressive 92% of parallel efficiency on
the 240 physical cores running with few elements per core and using a very low compute intensive kernel.

7.5.5 All-in-One D&C Version

To sum up all the contributions presented during this thesis, we evaluate an all-in-one version containing
all the advantages of the different presented versions.

• The D&C recursive tasks creation using the Cilk Plus runtime, bringing concurrency and improving
locality as explained in Chapter 5.

• The vectorization of the D&C tasks using our bounded colors strategy tuned for small unstructured
mesh partitions presented in Chapter 6.

• And lastly, our asynchronous and multithreaded communication pattern using GASPI one-sided
communications detailed in this chapter. We choose the second implementation presented in
Section 7.4.2 based on fixed communication size.

We compare in two strong scaling experiments this D&C Vec Async v2 (GASPI+Cilk) version to the
Ref (MPI) reference version and to our three versions implementing the contributions described above.
The D&C (MPI+Cilk) version corresponds to the first contribution of Chapter 5. D&C Vec (MPI+Cilk)
corresponds to our second contribution of Chapter 6. And D&C Async v2 (GASPI+Cilk) implements the
contribution presented in this chapter.

The first experiment is made on the MareNostrum cluster and uses 512 Sandy Bridge cores. The second
one is made on 4 KNC of the Salomon cluster. For both of these experiments, we use the 100× increased
arithmetic intensity assembly operator to enhance the vectorization performance gains. Moreover, the
higher computation ratio should improve the balancing between computation and communication loads
and increase the overlap opportunities. This is discussed in further details in Section 7.2.1.

Parameters Setting

Before doing the two strong scaling experiments, we analyzed the performance evolution depending
on the size of the D&C partitions and of the communication buffers. The Figure 7.16 illustrates this
preliminary experiment made on the 32 nodes of MareNostrum. The maximal performance on the 512
Sandy Bridge cores is reached with D&C partitions composed of 150 elements. However, the variation of
the communication size does not truly impact the performance.

We applied the same analysis on the 960 threads of the 4 KNC experiment. We empirically found that
the size of the communications has once again no strong impact on performance. In the opposite, the size
of the D&C partitions is more sensitive. This is illustrated in Figure 7.17. As shown in Chapter 6, the
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Figure 7.16: Impact of the communications and the D&C partitions size on the performance with 32
Sandy Bridge nodes.
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impact of vectorization is more pronounced on the Xeon Phi than on standard Xeon multicores. The D&C
partitions composed of 400 elements represent the best trade-off between vectorization opportunities, data
locality, and communication overlap.

Strong Scaling Experiment on Sandy Bridge multicores

Figure 7.18a presents the performance gain provided by each of the presented contributions on the 32
Sandy Bridges nodes. The first contribution, implemented in the D&C (MPI+Cilk) version, benefits first
of all from the replacement of the 512 processes of Ref (MPI) and the resulting communications and
data duplications. Moreover, it brings an improved locality and load balancing. This results in 1.43×

●

●

●

●

●

 

 

 

 

 

1

4

8

16

32

1 4 8 16 32
Number of Nodes (16 Cores)

S
pe

ed
−

U
p

 

●

Ideal scaling

D&C All−in−One

D&C Vec (MPI+Cilk)

D&C Async v2 (GASPI+Cilk)

D&C (MPI+Cilk)

Ref (MPI)

(a) Speedup compared to the best sequential solution

●

●
●

●

●

     

0.0

0.2

0.4

0.6

0.8

1.0

1 4 8 16 32
Number of Nodes (16 Cores)

P
ar

al
le

l E
ffi

ci
en

cy

 

●

Ideal scaling

D&C Async v2 (GASPI+Cilk)

D&C All−in−One

D&C (MPI+Cilk)

D&C Vec (MPI+Cilk)

Ref (MPI)

(b) Parallel Efficiency

Figure 7.18: Strong scaling experiment with 100× increased arithmetic intensity using the EIB use case
on 512 Sandy Bridge cores.
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speedup compared to the common implementation only parallelized through MPI domain decomposition.
The second contribution, corresponding to D&C Vec (MPI+Cilk), brings additional 13.5% speedup by
exploiting the 256 bits AVX vectorial units. Similarly, the asynchronous GASPI one-sided communication
pattern represented by the D&C Async v2 (GASPI+Cilk) version provides a 11.1% speedup compared to
D&C (MPI+Cilk). Merging the previous contributions in the D&C Vec Async v2 (GASPI+Cilk) version
results in 24.4% speedup compared to D&C (MPI+Cilk). In the end, our all-in-one version overpasses the
reference pure MPI version by 77.7%, running on standard Xeon multicores.

As illustrated in Figure 7.18b, the D&C Async v2 (GASPI+Cilk) version benefits from the higher
scalability with 78% of parallel efficiency at 512 cores and only 2000 vertices per core. The higher
scalability is due to the parallelization of the communications and their overlap with computation.
However, the vectorization of D&C Vec (MPI+Cilk) improves the performance but does not benefit to the
scalability. Indeed, the additional memory consumption and control flow overhead start to degrade the
performance at that scale of strong scaling experiments. Moreover, the acceleration of the parallel part of
the code increases the proportion of sequential code and degrades the parallel efficiency. The all-in-one
version is logically located half between the D&C Vec (MPI+Cilk) and D&C Async v2 (GASPI+Cilk)
versions with 73% of parallel efficiency.

Strong Scaling Experiment on KNC manycores

We observe in Figure 7.19 similar behavior on the KNC manycore architecture, excepted that the
vectorization has a stronger impact on KNC than on Sandy Bridge multicores. The GASPI one-sided
asynchronous communications bring only 4% improvement compared to D&C (MPI+Cilk) while D&C
Vec (MPI+Cilk) is 21.6% faster. Bringing them together, the all-in-one version is 25.9% faster than the
original D&C implementation using the 960 hyper-threads and 54.4% on the 240 physical cores. The
reference Ref (MPI) version, limited to 512 subdomains, is 2.9 times slower than D&C Vec Async v2
(GASPI+Cilk) on the physical cores.

Concerning the scalability metric, the two vectorized versions reach an impressive 96% of parallel
efficiency running on the 240 physical cores with 4000 vertices per core. This higher scalability compared
to the 87% obtained on 256 Sandy Bridge cores is due to the poor sequential performance of the KNC and
the strong needs of memory and bandwidth of the vectorized computation kernels. This results in a 1.11×
super-linear speedup moving from 1 to 30 cores per KNC with the D&C Vec Async v2 (GASPI+Cilk)
version.

The maximal performance is reached with 180 hyper-threads per KNC by using our all-in-one version.
The 4 KNC performance is roughly equivalent to the one achieved by using 6 nodes of the MareNostrum
cluster, which corresponds to 96 Sandy Bridge cores.

7.6 Conclusion

This chapter presents our last contribution, a tuned communication pattern aimed at exploiting the D&C
task parallelism to communicate and to overlap communication by computation. We replace the original
bulk-synchronous halo exchange using MPI two-sided communications used in most FEM applications, by
an asynchronous version using GASPI one-sided communications and taking advantage of recent RDMA
interconnects. The use of GASPI communications forces us to rethink the communication pattern in the
right way. The interface values computed by the D&C tasks are appended to the communication buffer
which corresponds to the appropriate neighbor process. The task that reaches the chosen communication
size, directly writes the values packed in the communication buffer, starting from previous communication
to the remote process memory through RDMA. The write is non blocking and handle by the network
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Figure 7.19: Strong scaling experiment with 100× increased arithmetic intensity using the EIB use case
on 4 KNC.

card. Therefore, the thread involved in the communication can after the write call, directly continues its
execution of the remaining D&C tasks in parallel to the data transfer.

This approach enables many additional sources of parallelism. The gathering and scattering operations
are handled in parallel. The communications are also triggered in parallel and handled by the network
parallel resources releasing the constraints on the CPU. Lastly, the communications are executed in parallel
to the computation. However, in strong scaling experiments, the overlap opportunities are reduced since
the computation part highly decreases. In the opposite, the parallel communications and gather/scatter
operations become critical.

The contributions proposed in this chapter, results in an impressive 3.47× speedup compared to the
state-of-the-art MPI domain decomposition approach used in many FEM applications. This speedup is
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7.6. Conclusion

obtained on a low intensive computation kernel launched on 512 Sandy Bridge cores with only 2000
vertices per core. Running the same experiment on 4 Xeon Phi manycores, our asynchronous D&C
approach achieves 92% of parallel efficiency on their 240 physical cores and is 2.58 times faster than the
pure MPI approach.

Lastly, we have merged the different contributions proposed during this thesis in a single all-in-
one version, which combines the D&C approach proposed in Chapter 5, the vectorization detailed in
Chapter 6, and the new communication pattern described above. We experimented it with a more intensive
computation kernel and concluded on the performance improvement brought by the different contributions.
This all-in-one version reaches 96% of parallel efficiency on the 240 cores of 4 Xeon Phi KNC and a
2.9× speedup compared to pure MPI. The 4 KNC execution provides performance similar to 96 Sandy
Bridge cores.
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Thesis Contributions

For years, applications had relied on the ever growing sequential performance of CPU cores. We believe
that nowadays and in the future, it will be necessary to modernize the applications for a better parallel
efficiency, concurrency, and locality, to subscribe to the next free lunch provided by the core count increase.
This modernization is a costly process, but the difference of performance observed on current multicores
and manycores, e.g. Xeon Phi, already makes it worthwhile.

In this thesis, we propose an holistic approach, detailed in Figure 8.1, to efficiently parallelize irregular
applications based on finite element methods and dealing with highly unstructured meshes. We have
demonstrated that the parallelization technics developed during this thesis efficiently scale on modern
multicore CPUs and modern manycore accelerators. We have also built a proto-application, named
Mini-FEM, representative of the assembly step of FEM real world applications. Mini-FEM has eased the
development, the debugging, and the experimentation of the algorithms developed during the thesis. Our
different contributions have been implemented in the D&C library, used on top of Mini-FEM. We have
released our D&C library and the Mini-FEM proto-application open-source, under the LGPL 3.0 licence,
to disseminate widely to other users working on similar unstructured meshes. The current implementation
is already in used in the production version of DEFMESH and AETHER, two industrial CFD softwares
from Dassault Aviation. The integration in other parts of the very large computer assisted aircraft design
framework at Dassault Aviation is in progress, with the objective to be prepared for the next generation of
systems.

From a software engineering point of view, the lessons learned from our experiments are twofold. At

Inter-Nodes
Asynchronous
and Multithreaded
Communications

…

Domain Decomposition
at Distributed Memory
Level

Divide & Conquer
at Shared Memory
Level

Rank 1 Rank 2 Rank n

Initial Use Case

Coloring
at Core Level

One-Sided Communications

Figure 8.1: Summary of the contributions proposed during the thesis.
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first, from an algorithmic point of view, focusing on architecture oblivious design and then, introducing
architecture aware parameters, produces easily re-targetable solutions with tuning parameters. Secondly,
it is possible to separate the physic modeling concerns and the parallelization implementation in different
units, using different languages. In our case, the original Fortran code is interfaced to our C++ and Cilk
Plus implementation of the parallelism with minor intrusion.

The main ideas developed during this thesis were to recursively partition meshes used by irregular
FEM applications using the divide and conquer approach, and to use these partitions to parallelize the
communications at distributed level, to exploit shared parallel resources at node level, and lastly to take
advantage of the vectorial resources at core level. All these contributions are summarized in Figure 8.1.
The top part of the figure corresponds to the domain decomposition approach used between processes
mapped to the distributed compute nodes. This approach is used in most FEM applications and we have
built our contributions on its top. Despite the fact that the pure MPI domain decomposition approach
scales well on current scale of data-set and node count, our D&C library proves to be more efficient and
performant, paving the way to future manycore systems.

At scale, the final speedup brought by our D&C hybrid approach on 512 Xeon cores reaches 3.47×
compared to the state-of-the-art domain decomposition method using MPI two-sided communications.
The Xeon Phi manycore architecture enables even larger speedups with a 6.56× compared to MPI domain
decomposition on 4 KNC, a performance similar to 96 Xeon cores, and 96% parallel efficiency on the 240
physical cores.

Divide & Conquer at Shared Memory Level

The second part of Figure 8.1 corresponds to our first contribution and refers to the Chapter 5. It consists in
recursively partitioning each mesh subdomain in several partitions using the divide and conquer approach.
This D&C approach brings many advantages and provides all the characteristics necessary to scale on
manycore systems.

• Concurrency. The recursive sharing naturally exposes high concurrency. As long as the data-set is
large enough, it is possible to produce a deeper recursive tree to get more concurrency and match
the higher requirements of manycore systems.

• Load-balancing. Using a large number of recursive decomposition levels, leverages efficient
work-stealing for dynamic load-balancing and offsets the irregularity of METIS partitioning.

• Local synchronization. Unlike the coloring approach, no global barriers are needed. There is
only one local synchronization per task between its two local children. This results in log(n)
synchronizations on the critical path, which becomes quickly negligible with the increasing mesh
sizes.

• Data locality. The data locality is improved by recursively reordering the data. At first, the nodes
and elements are permuted in order to consecutively place them inside the left, right and separator
leaves. Secondly, since the task distribution follows a recursive tree, the neighboring leaves are
contiguously stored. Therefore, data locality is improved both inside a domain and between the
neighboring domains. This leads to a better locality than the original ordering using the Reverse
Cuthill-McKee approach [159]. Moreover, leaves dataset can be downsized to fit into caches.

The experiments made with the D&C library on 4 Intel Xeon Phi based on KNC architecture result
in a perfect scaling on the 240 physical cores. D&C achieves 92% parallel efficiency and is 2.5 times
faster than the pure MPI approach. It attains a final speedup of 360× compared to its sequential execution
and obtains similar performance to 33 Intel E5-2665 Xeon Sandy Bridge cores. Moreover, even without
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exploiting thread level parallelism, the permutations brought by the D&C library significantly improve the
locality, the scalability, and the execution time.

Coloring at Core Level

The third part of Figure 8.1 illustrates our second contribution presented in Chapter 6. This contribution
targets the large vectorial resources contained in modern multicores and manycores. We use the coloring
approach to generate independent data vectors. The coloring is applied to each D&C parallel task of
the first contributions. Since the D&C tasks consist of very small partitions of unstructured meshes,
the resulting vectorization ratio is low. We propose a new coloring heuristic especially tuned for small
unstructured partitions. Our first criteria is to increase the vectorization ratio. Therefore, we relax the
constraint of classical coloring approaches, which consists in minimizing the number of colors used. This
helps us to increase the number of vectors dimensioned to the target vector length since as soon as a vector
is full, it is no longer extended. The remaining values can be reused to fill other vectors.

Full vectors are contiguously stored at first and are followed by the remaining values which cannot
form a full vector. This allows to not store the color of the vectorized values, but only the offset between
full and partial vectors. Moreover, the full vectors are aligned to the loop iteration frontiers. This way, the
loop over colors can be removed. The first part of the loop iterates by chunk dimensioned to the vector
size until reaching the offset. Then, the remaining values are sequentially executed.

We also propose a vectorization model used to predict the code vectorization ratio depending on the
target vector size, the number of values contained in full vectors, and the remaining values. This leads us
to the conclusion that larger vectors do not necessarily lead to bigger speedups. Smaller vector sizes allow
higher vectorization ratios, especially when dealing with small partitions of unstructured meshes. And
this higher ratio compensates the loss of data parallelism. Therefore, we can predict that future 1024 bits
vector size will be problematic for unstructured meshes, even if the cache size is not reduced. Given our
experiment, this contribution has led to a 13% speedup over our non-vectorized D&C version on actual
Xeon multicores and a 20% speedup on the KNC manycore.

Inter-Nodes Asynchronous and Multithreaded Communications

Lastly, the bottom part of Figure 8.1 concerns our last contribution dealing with one-sided asynchronous
communications. This refers to the Chapter 7. In this chapter, we have replaced the state-of-the-art MPI
bulk-synchronous halo exchange based on two-sided communications. Instead, we use the GASPI library
based on the PGAS model. GASPI provides a collection of asynchronous one-sided operations using
RDMA interconnect and remote completion.

We use it to build two different communication patterns both using the D&C parallel tasks to parallelize
the communications and recover them with computation. For these two versions, the idea is to directly
write to the neighbors their corresponding interface values as soon as they are ready instead of waiting for
the update of the latest interface value before starting to communicate. This way, when the last interface
value is ready to be sent, most of the communications are already achieved. However, since there may
be lots of interface values, this would led to a large amount of small communications. The differences
between the two versions come from the approach used to reduce the number of communications.

In the first version, we fix an empirically chosen level in the D&C tree, called the communication
level, below which no communication is done. During our experiments, we determined that a third of
the tree height is our optimal. The tasks located above this level, which are the last to update a set of
interface values, handle the communications of their whole subtree. However, this approach has two main
drawbacks. The first one is the unbalanced between communication sizes. Indeed, the interface values
are irregularly spread among almost all the D&C tasks. The second one is the reduction of the overlap
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possibilities. The less communications we want, the more computation will be ended before starting to
communicate.

Therefore, we have developed a second version in which the fixed communication level is replaced by
a fixed communication size. In this version, a communication buffer is created per interface. The last
tasks that update an interface value, push it to the appropriate communication buffer and continue their
execution. Once a task reaches the predefined communication size, it sends the whole chunk of values and
updates the communication pointer. One of the advantage of this approach is that each communication
has a balanced size, excepted the communications containing the last remaining interface values. Another
advantage are the increased communication overlap opportunities. Indeed, interface data are sent as
soon as their communication buffer is full. This last version provides a 1.44× speedup over the MPI
two-sided version of the D&C library and an impressive 3.47× speedup compared to the pure MPI domain
decomposition approach by using 512 Sandy Bridge cores.

Perspectives

Our ongoing developments are many folds and consist of two main categories: the improvement and the
development of new features in our D&C library, and the integration of the library in other industrial and
academic large scale applications.

Evolutions of the D&C Library

One of the targeted evolutions is to implement padding for incomplete vectorization to improve flops
performance on Intel Xeon Phi. The idea is to improve the way we store the colors generated by our
bounded coloring strategy, in order to enable vectorization of incomplete vectors. The actual execution of
the coloring, detailed in Section 6.2.5, consists in vectorially executing at first the full vectors, and then
sequentially looping over the remaining values. To reduce this sequential loop, it is possible to store partial
vectors in decreasing order and to aligned them on the loop iteration frontiers by using padding. The
appropriate padding values still need to be defined in order to not impact the numerical results. Another
alternative would be to use the vectorization masks available in the Intel Xeon Phi. However, even by
using the vectorization masks, it would be better to use padding in order to align the memory loads. With
this approach, we do not have to store the colors used, but contrary to the actual implementation of the
bounded coloring, we need to store as much offsets as there are different vector sizes. This approach
based on variable vector sizes is illustrated in Figure 8.2.

Vectors of Size N 
Vectors of 
Size N-1 

Remaining 
Sequential 

Values
…

Padding
Offset Offset

Figure 8.2: Bounded coloring approach using decreasing vector size and memory padding.
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We also plan to replace the METIS graph partitioner used during the creation of the D&C tree and to
replace it by our own partitioner. The goal is to produce a simpler but quicker partitioner for the shared
memory level. Indeed, all the partitions including the separators which contain the elements on the cuts
are recursively bisected until reaching few tens of elements. Therefore, we do not need to minimize as
most as possible the number of cutting edges. Moreover, the small generated partitions are dynamically
balanced through the work-stealing scheduler of the Cilk Plus runtime. A slight imbalance between the
partition sizes is then not critical.

Furthermore, it would be possible to directly partition an initial single domain use case. This way, we
could handle ourselves the interface data structures between distributed domains and optimize them to be
better suited to our communication pattern using GASPI one-sided communications at task level.

Similarly, we want to explore the behavior of the Threading Building Blocks (TBB) library [14] com-
pared to Cilk Plus. Cilk Plus is an extension of the C and C++ languages and is limited to these languages.
Moreover, it is limited to x86 architecture and is therefore not compatible with every architecture such as
the IBM Blue Genes. In contrast, the TBB library approach allows to be recompiled by any compiler and
to be adapted to various platforms with minor changes. This wider compatibility may result in a small
loss in performance that we want to characterize.

Another evolution in progress, is the development of a dynamic scheduler at distributed level, named
TIny Task Unified Scheduler (TITUS), within the LI-PARAD laboratory of the UVSQ. As a future
work, the TITUS scheduler is intended to be used on top of the D&C library in order to equilibrate the
unbalancing among distributed nodes, similarly to what is done within the nodes with Cilk Plus.

Lastly, another future work would be to enhance the Mini-FEM proto-application with a representative
FEM solver. This would help to estimate the future evolutions of the D&C library and what could be
added to handle efficiently shared memory parallelized solvers. We plan to enhance the actual CG solver
used in the DEFMESH application by using our D&C strategy. For now, it is based on MPI domain
decomposition and OpenMP loop parallelization and it has a low efficiency. Integrating the solver within
the D&C library would allow to also integrate the communication layer in the library and to provide a
new level of abstraction to the end-user. Indeed, we believe that the future of HPC applications executed
on increasingly complex systems is to concentrate on expressing the science. The complexity of the
parallelism should rely on finely tuned runtime systems with minimal interfaces.

Industrial and Academic Collaborations

Alternatively to the enhancement of our D&C library, it is also important to develop new partnerships
with application developers. This thesis has been made in collaboration with Dassault Aviation. There are
other parts of their applications, such as the solver part, that could be improved using our D&C library.

Additionally, in the next few years, we plan to experiment our D&C library in other CFD applica-
tions. One of the targets is YALES2, a large academic application from the COmplexe de Recherche
Interprofessionnel en Aérothermochimie (CORIA) [174]. As a first step, we will experiment the D&C
library on the proto-application of YALES2 developed by Guillet et al. as part of the FP7 EXA2CT
european project [68]. Similarly to the work made on the AETHER application from Dassault Aviation
and described in Chapter 4, the YALES2 proto-application should allow a quick integration and debugging
of the D&C library. The experiments made on the proto-application are supposed to be representative of
what would happen on the full size YALES2 application and ease the decision for the final integration.
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Conclusion

In this thesis, we propose strong scientific results which have led to several publications including a top
international conference. Two industrial applications have been strongly improved by using our D&C
holistic approach implemented in an open-source library. The creation of a proto-application has also been
a good time investment to ease the development of our new parallelization strategies and to accelerate
the code modernization process. The work produced during this P.h.D. thesis will be continued with two
others P.h.D. thesis exploring complementary approaches.
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Titre : Algorithmes Parallèles Efficaces Appliqués aux Calculs sur Maillages Non
Structurés

Mots clefs : HPC, FEM, maillage non structuré, D&C, vectorisation, PGAS

Résumé : Le besoin croissant en simulation a
conduit à l’élaboration de supercalculateurs com-
plexes et d’un nombre croissant de logiciels hau-
tement parallèles. Ces supercalculateurs requièrent
un rendement énergétique et une puissance de cal-
cul de plus en plus importants. Les récentes évolu-
tions matérielles consistent à augmenter le nombre
de noeuds de calcul et de coeurs par noeud. Cer-
taines ressources n’évoluent cependant pas à la
même vitesse. La multiplication des coeurs de cal-
cul implique une diminution de la mémoire par
coeur, plus de trafic de données, un protocole de co-
hérence plus coûteux et requiert d’avantage de pa-
rallélisme. De nombreuses applications et modèles
actuels peinent ainsi à s’adapter à ces nouvelles
tendances. En particulier, générer du parallélisme
massif dans des méthodes d’éléments finis utilisant

des maillages non structurés, et ce avec un nombre
minimal de synchronisations et des charges de tra-
vail équilibrées, s’avèrent particulièrement difficile.
Afin d’exploiter efficacement les multiples niveaux
de parallélisme des architectures actuelles, diffé-
rentes approches parallèles doivent être combinées.
Cette thèse propose plusieurs contributions desti-
nées à paralléliser les codes et les structures irré-
gulières de manière efficace. Nous avons développé
une approche parallèle hybride par tâches à grain
fin combinant les formes de parallélisme distribuée,
partagée et vectorielle sur des structures irrégu-
lières. Notre approche a été portée sur plusieurs
applications industrielles développées par Dassault
Aviation et a permis d’importants gains de perfor-
mance à la fois sur les multicoeurs classiques ainsi
que sur le récent Intel Xeon Phi.

Title : Scalable and Efficient Algorithms for Unstructured Mesh Computations

Keywords : HPC, FEM, unstructured mesh, D&C, vectorization, PGAS

Abstract : The growing need for numerical simu-
lations results in larger and more complex com-
puting centers and more HPC softwares. Actual
HPC system architectures have an increasing re-
quirement for energy efficiency and performance.
Recent advances in hardware design result in an
increasing number of nodes and an increasing num-
ber of cores per node. However, some resources do
not scale at the same rate. The increasing num-
ber of cores and parallel units implies a lower me-
mory per core, higher requirement for concurrency,
higher coherency traffic, and higher cost for cohe-
rency protocol. Most of the applications and run-
times currently in use struggle to scale with the
present trend. In the context of finite element me-
thods, exposing massive parallelism on unstructu-

red mesh computations with efficient load balan-
cing and minimal synchronizations is challenging.
To make efficient use of these architectures, seve-
ral parallelization strategies have to be combined
together to exploit the multiple levels of paralle-
lism. This P.h.D. thesis proposes several contribu-
tions aimed at overpassing this limitation by ad-
dressing irregular codes and data structures in an
efficient way. We developed a hybrid parallelization
approach combining the distributed, shared, and
vectorial forms of parallelism in a fine grain task-
based approach applied to irregular structures. Our
approach has been ported to several industrial ap-
plications developed by Dassault Aviation and has
led to important speedups using standard multi-
cores and the Intel Xeon Phi manycore.
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