
HAL Id: tel-01704075
https://theses.hal.science/tel-01704075

Submitted on 8 Feb 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Integrated optimization in cloud environment
Hana Teyeb

To cite this version:
Hana Teyeb. Integrated optimization in cloud environment. Networking and Internet Architecture
[cs.NI]. Université Paris Saclay (COmUE); Université Tunis El Manar. Faculté des Sciences Mathé-
matiques, Physiques et Naturelles de Tunis (Tunisie), 2017. English. �NNT : 2017SACLL010�. �tel-
01704075�

https://theses.hal.science/tel-01704075
https://hal.archives-ouvertes.fr

Optimisation Intégrée dans un
Environnement Cloud

Thèse de doctorat de l'Université Paris-Saclay
Préparée à Télécom SudParis et la Faculté des Sciences de Tunis

École doctorale n°580 : Sciences et technologies de l'information et
de la communication (STIC)

Spécialité de doctorat : Informatique

Thèse présentée et soutenue à Tunis, le 18-12-2017, par

 Hana Teyeb

Composition du Jury:

Samir BEN AHMED
Professeur, FST, Université de Tunis-El Manar, Tunisie Président
Pierre SENS
Professeur, UMPC, France Rapporteur
Jouhaina CHAOUACHI
Professeur, IHEC, Université de Carthage, Tunisie Rapporteur
Sourour ELLOUMI
Maître de conférences, HDR, ENSTA, France Examinatrice
Samir Tata
Professeur, Télécom SudParis, (Samovar) Directeur de thèse
Nejib Ben Hadj-Alouane
Professeur, ENIT, Université de Tunis-El Manar, Tunisie (OASIS) Co-Directeur de thèse

Université Paris-Saclay
Espace Technologique / Immeuble Discovery
Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France

Titre : Optimisation intégrée dans un environnement Cloud

Mots clés : Cloud ; machine virtuelle ; communication ; migration ; placement ; ordonnancement ;
programmation linéaire.

Résumé : Dans les systèmes cloud
géographiquement distribués, un défi majeur
auquel sont confrontés les fournisseurs de cloud
consiste à optimiser et à configurer leurs
infrastructures. En particulier, cela consiste à
trouver un emplacement optimal pour les
machines virtuelles (VMs) afin de minimiser les
coûts tout en garantissant une bonne
performance du système. De plus, en raison des
fluctuations de la demande et des modèles de
trafic, il est essentiel d'ajuster dynamiquement le
schéma de placement des VMs en utilisant les
techniques de migration des VMs. Cependant,
malgré ses avantages apportés, dans le contexte
du Cloud géo-distribué, la migration des VMs
génère un trafic supplémentaire dans le réseau
backbone ce qui engendre la dégradation des
performances des applications dans les centres
de données (DCs) source et destination. Par
conséquent, les décisions de migration doivent
être bien étudiés et basées sur des paramètres
précis.
Dans ce manuscrit, nous étudions les problèmes
d'optimisation liés au placement, à la migration
et à l'ordonnancement des VMs qui hébergent

des applications hautement corrélées et qui
peuvent être placés dans des DCs géo-distribués.
Dans ce contexte, nous proposons un outil de
gestion de DC autonome basé sur des modèles
d'optimisation en ligne et hors ligne pour gérer
l'infrastructure distribuée du Cloud. Notre
objectif est de minimiser le volume du trafic
global circulant entre les différents DCs du
système.

Nous proposons également des modèles
d'optimisation stochastiques et déterministes
pour traiter les différents modèles de trafic de
communication. En outre, nous fournissons des
algorithmes quasi-optimales qui permettent
d'avoir la meilleure séquence de migration inter-
DC des machines virtuelles inter-
communicantes. En plus, nous étudions l'impact
de la durée de vie des VMs sur les décisions de
migration afin de maintenir la stabilité du Cloud.
Enfin, nous utilisons des environnements de
simulation pour évaluer et valider notre
approche. Les résultats des expériences menées
montrent l'efficacité de notre approche.

Université Paris-Saclay
Espace Technologique / Immeuble Discovery
Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France

Title : Integrated Optimization in Cloud Environment

Keywords: Cloud; virtual machine; communication; migration; placement; scheduling; linear
programming.

Abstract: In geo-distributed cloud systems, a key
challenge faced by cloud providers is to optimally
tune and configure their underlying cloud
infrastructure. An important problem in this
context, deals with finding an optimal virtual
machine (VM) placement, minimizing costs while
at the same time ensuring good system
performance. Moreover, due to the fluctuations of
demand and traffic patterns, it is crucial to
dynamically adjust the VM placement scheme over
time. Hence, VM migration is used as a tool to
cope with this problem. However, despite the
benefits brought by VM migration, in geo-
distributed cloud context, it generates additional
traffic in the backbone links which may affect the
application performance in both source and
destination DCs. Hence, migration decisions need
to be effective and based on accurate parameters.
In this work, we study optimization problems
related to the placement, migration and scheduling
of VMs hosting highly correlated and distributed
applications within geo-distributed DCs. In this
context, we propose an autonomic DC
management tool based on both

online and offline optimization models to manage
the distributed cloud infrastructure. Our objective
is to minimize the overall expected traffic volume
circulating between the different DCs of the
system.
To deal with different types of communication
traffic patterns, we propose both deterministic and
stochastic optimization models to solve VM
placement and migration problem and to cope with
the uncertainty of inter-VM traffic. Furthermore,
we propose near-optimal algorithms that provide
with the best inter-DCs migration sequence of
inter-communicating VMs. Along with that, we
study the impact of the VM's lifetime on the
migration decisions in order to maintain the
stability of the cloud system. Finally, to evaluate
and validate our approach, we use experimental
tests as well as simulation environments. The
results of the conducted experiments show the
effectiveness of our proposals.

Dedication

To the memory of my grandmother,
To my parents and lovely sister,

To my husband,

i

Acknowledgements

Foremost, I would like to thank my advisors, Prof. Nejib BEN HADJ-ALOUANE
and Prof. Samir TATA, for their outstanding support without which this thesis
would not have been possible. Despite their many responsibilities, they have always
found time to provide feedbacks, new ideas and suggestions on my work. I would
like to thank them for allowing me to grow as a research scientist and for giving
me wonderful opportunities to actively participate in renowned scientific events and
conferences.

I would like to extend my greatest gratitude to the members of the thesis commit-
tee for accepting to revue my work. I would like to thank the committee president
Prof. Samir BEN AHMED for accepting to chair my thesis defense, the reading
committee members Prof. Jouhaina CHAOUACHI and Prof. Pierre SENS for their
interest and Prof. Sourour ELLOUMI for evaluating my work and being part of the
defense committee.

A very special thanks to Dr. Ali Balma for his excellent advising and support
during the last three years. His wise guidance, for sure, helped me widen my research
from various perspectives. Without his insightful comments, it would not have
been possible to conduct this research. I want to express my sincere thanks to the
laboratory head, Prof. Atidel BEN HADJ-ALOUANE, who provided me with the
opportunity to join her team, who gave me access to research facilities and for her
help and her precious advices.

I also want to acknowledge all the people who have contributed to this work.
Special thanks go to the members of OASIS research lab whom I have had the plea-
sure to work with and share many memories. Many thanks to Amina BOUROUIS,
Anis ZEMNI and Walid HFAIEDH for all your help.

I express my sincere gratitude to all my family: my parents, my sister and my
husband, who have been always a great support and have pushed me toward through
hard times. Without you, none of this would have been possible. Thank you for
being part of my life.

ii

Notations

DDD The set of data centers.

VVV The set of virtual machines.

RRR The set of hardware resources (CPU, RAM, storage).

dijdijdij The amount of traffic exchanged between the VM i and the VM j (i ∈ V , j ∈ V).

akia
k
ia
k
i Takes 1 if the VM i can be placed in the DC k, 0 otherwise (i ∈ V , k ∈ D).

capkrcapkrcapkr The capacity of the DC k in terms of resource r (k ∈ D, r ∈ R).

uiruiruir The amount of resource r consumed by the VM i (r ∈ R, i ∈ V).

MiMiMi The migration cost of VM i ∈ V .

iii

List of Acronym

AM Autonomic Manager

AG Aggregated Formulation

CF Classical Formulation

CLT Central Limit Theorem

DC Data Center

DVMP Dynamic Virtual Machine Placement

EC2 Amazon Elastic Computing Cloud

EDFA Erbium-Doped Fiber Amplifier

GIS Geographic Information System

GP Geometric programming

HPC High Performance Computing

HL Hub Location

IaaS Infrastructure as a Service

ILP Integer Linear Program

IPs Infrastructure Providers

IoT Internet of Things

IVMP Initial Virtual Machine Placement

LAN Local Area Network

LP Linear Programming

MILP Mixed Integer Linear Program

MF Multi Flows

NIST National Institute of Standards and Technology

iv

v

NLP Non linear programming

OM Out of Memory

PaaS Platform as a Service

QoS Quality of Service

QP Quadratic Programming

SaaS Software as a Service

SAA Sample Average Approximation

SIP Stochastic Integer Program

SLA Service Level Agreement

SPs Service Providers

ToR Top-of-Rack

TSP Traveling Salesman Problem

VM Virtual Machine

VMMS Virtual Machine Migration Scheduling

WAN Wide Area Network

WDM Wavelength Division Multiplexing

Contents

1 Introduction 1
1.1 General Context . 1
1.2 Motivation and Problem Statement 2
1.3 Objectives and Contributions . 4

1.3.1 Traffic-aware VM Placement and Migration Problem 4
1.3.2 Traffic-aware VM Migration Scheduling Problem 4
1.3.3 Proactive VM Placement and Migration Problem for Risk

Management . 5
1.4 List of Publications . 5
1.5 Outline of the Thesis . 6

2 Background and State of the Art 8
2.1 Introduction . 8
2.2 Background and Context . 8

2.2.1 Cloud Computing . 9
2.2.2 Cloud Data Centers . 11
2.2.3 Cloud Applications and Communication Models 13
2.2.4 Virtual Machine Migration . 15
2.2.5 Autonomic Computing . 17
2.2.6 Optimization Problems . 18

2.3 State of the Art . 22
2.3.1 Offline VM Placement Problem 23
2.3.2 Online VM Placement Problem 24
2.3.3 Stochastic VM Placement Problem 25

2.4 Overview . 27
2.5 Conclusion . 30

3 Offline VM Placement Optimization in Geo-Distributed DCs 31
3.1 Introduction . 31
3.2 Problem Description . 31
3.3 First Proposal . 33

3.3.1 Hub Location Formulation . 33
3.3.2 Multicommodity Reformulation 34
3.3.3 Valid Inequalities . 36
3.3.4 Performance Evaluation . 37

3.4 Second Proposal . 40

vi

CONTENTS vii

3.4.1 The Classical Formulation . 40
3.4.2 Variable Aggregation . 41
3.4.3 Experiment Results . 43

3.5 Conclusion . 45

4 Online VM Placement and Migration Optimization in Geo-Distributed
DCs 46
4.1 Introduction . 46
4.2 Problem Description . 46
4.3 Problem Formulation . 47

4.3.1 Initial VM Placement Problem 47
4.3.2 Dynamic VM Placement Problem 49
4.3.3 A Numerical Example . 50

4.4 Performance Evaluation . 52
4.4.1 Experiments using CPLEX . 52
4.4.2 Simulations using CloudSim 56

4.5 Conclusion . 59

5 Traffic-aware VM Migration Scheduling Problem 60
5.1 Introduction . 60
5.2 Best Migration Sequence . 61

5.2.1 Migration Scheduling Example 61
5.2.2 Exact Solution . 62
5.2.3 Heuristic Solution . 64
5.2.4 Performance Evaluation . 66

5.3 VM Scheduling with Time-Window Constraints 68
5.3.1 Exact Solution . 69
5.3.2 Heuristic Solution . 71
5.3.3 Quality of the heuristic solution 72
5.3.4 System Stability . 73

5.4 Conclusion . 75

6 Proactive VM Placement Problem for Risk Management 76
6.1 Introduction . 76
6.2 Problem Description . 76
6.3 Problem Formulation . 78

6.3.1 Stochastic Optimization Model 78
6.3.2 Equivalent Optimization Formulation 80
6.3.3 Network-aware Stochastic VM Placement Algorithm 83

6.4 Performance Evaluation . 85
6.5 Conclusion . 87

7 Conclusion 88
7.1 Contributions . 88
7.2 Perspectives . 89

7.2.1 Short-term Perspectives . 89
7.2.2 Long-term Perspectives . 89

List of Figures

2.1 Cloud models [21]. 9
2.2 Three-tier network architecture [6]. 11
2.3 Distributed DCs Network Design [25]. 12
2.4 IP over WDM network [35]. 13
2.5 Example of distributed application. 14
2.6 Local-Area Network VM migration. 16
2.7 Wide-Area Network VM Migration. 17
2.8 Autonomic Manager. 18
2.9 Classification of VM Placement Approaches. 23
2.10 System Model. 27
2.11 Thesis Overview. 29

3.1 Placement Planner Overview. 32
3.2 Variation of the execution time between MF and HL for |V | = 60 and

|D| = 6. 38
3.3 Experiment results performed on MF. 39
3.4 Experiment results performed on CF and AG. 43
3.5 Backbone traffic for |V | = 1000, 2000 and 3000 VMs. 45

4.1 Dynamic Placement Planner Overview. 47
4.2 Initial Placement scenario (IVMP). 51
4.3 Example of VM placement with and without migration. 52
4.4 Comparing the incremental, IVMP and DVMP for static traffic ma-

trix. 53
4.5 Comparing the incremental, IVMP and DVMP models for a dynamic

traffic matrix. 54
4.6 Convergence time of the DVMP versus the number of VMs/Tenant. 55
4.7 Variation of the # migrations for both IVMP and DVMP. 56
4.8 Backbone traffic (Mean VM arrival = 20 VMs per hour). 57
4.9 Backbone traffic (Mean VM arrival = 60 VMs per hour). 58
4.10 Number of migrations during 24 hours. 58
4.11 Total Inter-DCs traffic Vs number of DCs. 59
4.12 Average number of migrations per DCs Vs number of DCs. 59

5.1 Example of three intercommunicating VMs. 61
5.2 Migration Scheduling Example. 62

viii

LIST OF FIGURES ix

5.3 Running Example. 63
5.4 Backbone traffic versus. number of VMs per tenant. 67
5.5 Running time versus. number of VMs per tenant. 67
5.6 Backbone traffic vs. number of migrated VMs. 67
5.7 Example of VMs migration with finite lifetime. 68
5.8 Number of migrations per instance for 2000 VMs/20 VMs per tenant. 73
5.9 Number of migrations per instance for 2000 VMs/80 VMs per tenant. 74
5.10 Number of migrations per instance for 4000 VMs/20 VMs per tenant. 74
5.11 Number of migrations per instance for 4000 VMs/80 VMs per tenant. 74

6.1 System Model. 77
6.2 Execution Time versus the total number of VMs. 84
6.3 Variation of the number of migrations for ε ∈ {0.1, 0.01, 0.001} with

loose bandwidth capacity. 85
6.4 Variation of the number of migrations for tight bandwidth capacity. 86
6.5 Inter-DCs traffic Vs the number of VMs. 87

List of Tables

2.1 Comparison of related works. 26

3.1 Experiment results for (MF) and (MFw). 39
3.2 Equivalence between (CF) and (AG). 44

4.1 Traffic Matrix values. 52
4.2 Host characteristics. 57
4.3 VM instance types. 57

5.1 Comparison between the VMMS heuristic and the exact method. . . 66
5.2 Notations. 69
5.3 Average optimality gap. 73

x

Chapter 1
Introduction

Contents
1.1 General Context . 1

1.2 Motivation and Problem Statement 2

1.3 Objectives and Contributions 4

1.3.1 Traffic-aware VM Placement and Migration Problem . . . 4

1.3.2 Traffic-aware VM Migration Scheduling Problem 4

1.3.3 Proactive VM Placement and Migration Problem for Risk
Management . 5

1.4 List of Publications . 5

1.5 Outline of the Thesis . 6

1.1 General Context

Cloud computing has emerged during the last years as a new adopted paradigm
where tenants can benefit from on-demand computing resources provided in a pay-
as-you-go manner [1]. Cloud computing is based on virtualization technologies that
enable the resource sharing. In fact, virtualization aims at partitioning physical
resources into logical resources that can be allocated to applications in a flexible
manner. For instance, server virtualization is a technology that partitions the phys-
ical machine into multiple virtual machines (VMs) and allows it to be executed on
the same physical host [2].

In such an environment, tenants may benefit from computing resources includ-
ing processing, memory, storage and networking. The adoption of this paradigm
provides many benefits such as cost savings, reliability, and scalability [1]. As a
result, cloud computing services are increasingly attracting companies to move their
business into the cloud. Consequently, the number of applications that are running
on the different VMs has also increased considerably [3, 4].

In order to achieve reliability and serve world-wide users, large-scale cloud providers
are relying on a geographically distributed infrastructure where data centers (DCs)
are built in different locations and interconnected with a backbone network [5]. In a
geo-distributed cloud infrastructure, DCs are hosting different types of distributed

1

1.2 Motivation and Problem Statement 2

applications including web applications, scientific workflows, parallel processing ap-
plications, etc. These applications are generally deployed among a number of VMs
that can be placed into distant DCs. In many cases, they may present a high com-
munication level between each other which could potentially produce a huge amount
of traffic exchange.

With the rise of cloud services popularity, the number of communication-intensive
applications has been growing considerably which has resulted in the increase of the
amount of inter-VMs traffic. Moreover, due the heterogeneity of the applications
hosted in cloud DCs, there exist wide variety of communication patterns ranging
from one-to-one and all-to-all traffic matrices. As a consequence, it is crucial to take
into consideration the different characteristics of inter-VMs traffic.

The efficiency of the DCs as well as the performance of the hosted applications
depend highly on the resource allocation and the placement scheme of the different
VMs [6]. One of the key challenges faced by cloud providers is network-aware VM
placement and migration problem which includes online/offline placement decisions,
migration scheduling decisions, minimization of inter-DCs traffic, risk management,
etc. This problem has attracted much attention in recent years as it aims to optimize
the cloud configuration while satisfying different objectives such as efficient resource
utilization, reducing energy consumption and minimizing network traffic.

1.2 Motivation and Problem Statement

Managing a geo-distributed infrastructure requires the cloud providers to solve a
number of challenges. A key challenge faced by the cloud providers is to optimize
the cloud infrastructure, which involves the optimization of the placement scheme of
the different VMs in the system. In fact, with the rise of cloud services popularity,
cloud computing-based traffic has been rapidly growing in recent years. Indeed,
the number of VMs that are hosting applications with critical network requirements
(e.g. message-based applications, web applications, video streaming servers, etc.)
has also increased. These applications are characterized by their large data volume
which will result in a high amount of communication traffic between DCs.

Most cloud Service Providers (SPs) are relying on Infrastructure Providers (IPs)
in order to connect their geo-distributed DCs. The backbone network is owned and
managed by the IPs. SPs are charged based on the total network Input/Output of
data transferred through the backbone links (i.e. from and to cloud servers) [7].

According to many recent studies [8, 9, 10], inter-DCs traffic is usually signifi-
cantly more expensive than intra-DC traffic. In fact, as shown in [11], communica-
tion costs are around 15% of operational expenditure incurred to a cloud provider.
Based on runtime measurements, the study presented in [12] shows that inter-DC
traffic accounts for up to 45% of the total traffic going through DC edge routers. In
addition, inter-VMs communication traffic is considered as one of the dominating
costs for communication intensive distributed applications [13]. Thus, it is impor-
tant to investigate how to maintain the inter-DCs traffic as minimum as possible.
Indeed, optimizing the VM placement has also an impact on the DCs energy con-
sumption. Efficient placement decisions will reduce inevitably the amount of energy
consumed as well as the amount of traffic transferred between geo-distributed DCs.

However, cloud systems are highly dynamic, the demand is changing constantly
making thus, current placement scheme ineffective. To tackle this problem, VM

1.2 Motivation and Problem Statement 3

migration techniques are commonly used in order to re-optimize the configuration
of the cloud system. In fact, VM migration is used as a tool to cope with the demand
fluctuations and the dynamic aspects of traffic patterns. As a matter of fact, VM
migration brings with it many benefits; (1) it provides flexibility in the management
of a DC, and (2) it enables moving VMs across DCs in order to adjust and optimize
the cloud infrastructure.

However, despite the benefits brought by VM migration technology, it rises also
many challenges. During the migration process, an additional traffic is sent through
the network links [2]. In addition, the performance of the VMs in source as well as
in destination can be affected during this process, especially, if the VM is migrated
from a DC to a distant one over a bandwidth-constrained network links. Hence,
it is important to ensure reliability and maintain system performance during the
migration process.

Efficient cloud DCs management has become a very complex task particularly,
for geographically distributed DCs. The main factors for such a complexity are the
heterogeneity of the VMs and their critical QoS requirements mentioned in the SLAs.
In this context, several crucial decisions need to be taken by the cloud manager:

• Where to place VMs while minimizing the inter-DCs traffic?

• When a system reconfiguration is needed?

• Which VM needs to be migrated and to which DC?

• If a set of inter-communicating VMs needs to be migrated, what is the best
migration sequence that minimizes the overall communication traffic?

• How to prevent from network overloading in the future while inter-VMs traffic
is uncertain? and how to minimize this risk?

Several attempts have been made over the past years to study the VM placement
and migration problem. However, most of the existing works were based on heuris-
tics and approximation algorithms which do not provide optimal solutions for the
problem. In addition, there are only few works that have considered the problem
within a geo-distributed cloud infrastructure where the minimization of the inter-
DCs traffic is a rising challenge. Moreover, the optimization of the VM placement
includes many other challenges to solve, for instance, offline and online placement
decisions, migration scheduling decisions, placement decisions with respect to the
uncertainty of inter-VMs traffic, etc.

In order to make the optimal decisions to answer the above questions, we pro-
pose a solution based on an autonomic management system. Autonomic computing
systems are capable of self-managing themselves by doing self-configuration and self-
optimization [14]. Such a system must be able to analyze itself at runtime, determine
its state and determine a desired state that maintains the QoS. The proposed tool
is based on optimization model providing the optimal solution for the VM place-
ment problem. To tackle the introduced sub-goals this thesis makes the following
contributions.

1.3 Objectives and Contributions 4

1.3 Objectives and Contributions

The main goal of this thesis is to propose a DC management tool based on network-
aware optimization programs that aim to provide, short as well as long-term, optimal
placement, migration and scheduling decisions for the different VMs within a geo-
distributed cloud infrastructure. The objective of these optimization programs is to
minimize the expected traffic volume circulating between the different DCs.

To tackle the introduced objectives, this thesis makes the following contributions:

• Traffic-aware offline/static optimization of the VM placement scheme in geo-
distributed DCs.

• Traffic-aware online/dynamic optimization of the VM placement scheme in
geo-distributed DCs.

• Traffic-aware inter-DCs VM migration scheduling optimization.

• Proactive optimization of the VM placement scheme for risk management with
uncertainty.

1.3.1 Traffic-aware VM Placement and Migration Problem

Finding the optimal placement and migration scheme is a challenging task. An
effective VM placement and migration plan can lower the energy consumption and
improve the whole system performance [3]. In our work, we have divided the problem
into two sub-problems.

First, we study the Offline VM placement problem where we consider that the
VMs will be placed for the first time in the cloud system. We propose exact offline
optimization programs that provide optimal placement scheme for the different VMs
while at the same time minimizing the inter-DCs traffic volume. Moreover, we use
different formulation strengthening techniques to reduce the computational time of
the proposed programs.

Then, we focus on the Online version of the problem which involves the VM
migration. We propose exact online optimization models that aim to find optimal
placement and migration plans while ensuring minimum backbone traffic.

Finally, in order to show the effectiveness of our approach, we use both experi-
mental tests and simulation tools.

1.3.2 Traffic-aware VM Migration Scheduling Problem

The migration of inter-communicating VMs over the backbone network can lead to
the increase of the traffic on the network links. Hence, it is important to find the
best migration sequence of VMs that minimizes the communication traffic. Hence,
we prevent network link congestion and maintain the performance of both VMs in
the source and destination as well as the migrating VM.

Because of the challenges risen by VM migration in geo-distributed cloud in-
frastructure, we propose near-optimal heuristics that provide effective migration
scheduling of inter-communicating VMs. Furthermore, extensive migrations may
impact the whole system performance, hence, it is crucial to keep the number of
migrations as small as possible. Besides, VMs have a finite execution time, thus,

1.4 List of Publications 5

it is interesting to study the impact of this parameter on the migration decisions.
Thus, we propose both exact and heuristic solutions to solve this problem.

1.3.3 Proactive VM Placement and Migration Problem for
Risk Management

Recent studies [15, 16, 17] have shown that the inter-VMs traffic is highly dynamic
and bursty which may cause the existent placement and migration schemes to be
inefficient. In addition, most of the existent works [18, 19, 20] make migration
decisions based on deterministic demand estimation and workload characterization
without considering stochastic properties. Many traffic-intensive applications have
highly non-uniform communication traffic patterns. For these reasons, placement
and migration decisions must be predictive and considering the different levels of
risk that can occur in the future. One of the main issues that we have studied in
this thesis is the network overloading problem. Due to the uncertainty of inter-VMs
traffic, the risk of overloading DC edge routers is very high. Therefore, placement
and migration decisions need to be proactive in order to minimize this risk.

Hence, we propose stochastic exact and heuristic optimization programs to deal
with the VM placement and migration problem within a geo-distributed cloud in-
frastructure. We further consider network overloading probability constraints to
minimize the risk of network congestion problem in the future.

1.4 List of Publications

The work presented in this thesis has let to the following publications1:

• H. Teyeb, N. B. Hadj-Alouane, S. Tata, and A. Balma, “Optimal dynamic
placement of virtual machines in geographically distributed cloud data cen-
ters,” International Journal of Cooperative Information Systems, p. 1750001,
2017. SJR 0.269.

• H. Teyeb, N. B. Hadj-Alouane, and S. Tata, “Network-aware Stochastic Vir-
tual Machine Placement in Geo-distributed Data Centers,” in 25th Interna-
tional Conference on Cooperative Information Systems CoopIs, Rhodes, Greece
2017, rank A.

• H. Teyeb, A. Balma, S. Tata, and N. B. Hadj-Alouane, “Traffic-aware vir-
tual machine migration scheduling problem in geographically distributed data
centers,” in IEEE CLOUD, San Francisco, USA, 2016, 2016, rank B.

• R. Benali, H. Teyeb, A. Balma, S. Tata, and N. B. Hadj-Alouane, “Evaluation
of traffic-aware VM placement policies in distributed cloud using CloudSim,”
in WETICE. IEEE Computer Society, 2016, pp. 95–100, rank B.

• H. Teyeb, A. Balma, N. B. Hadj-Alouane, and S. Tata, “Optimal virtual ma-
chine placement in large-scale cloud systems,” in IEEE CLOUD, Anchorage,
AK, USA. IEEE, 2014, pp. 424–431, rank B.

1The conferences ranking is based on the CORE 2017 classification available at http://portal.
core.edu.au/conf-ranks/

http://portal.core.edu.au/conf-ranks/
http://portal.core.edu.au/conf-ranks/

1.5 Outline of the Thesis 6

• H. Teyeb, A. Balma, N. B. Hadj-Alouane, and S. Tata, “Optimal virtual ma-
chine placement in a multi-tenant cloud,” in ICSOC Workshops, ser. Lecture
Notes in Computer Science, vol. 8954. Springer, 2014.

• H. Teyeb, A. Balma, N. B. Hadj-Alouane, S. Tata, and A. B. Hadj-Alouane,
“Traffic-aware virtual machine placement in geographically distributed clouds,”
in International Conference on Control, Decision and Information Technolo-
gies, CoDIT 2014, Metz, France, November 3-5, 2014. IEEE, 2014, pp.
24–29.

This work has also been the subject of a patent in collaboration with IBM, San
Francisco, USA.

• H. Teyeb, A. Balma, N. B. Hadj-Alouane, S. Tata, M. Mohamed, A. Mega-
hed, “Optimal Dynamic Placement of Virtual Machines in Geographically Dis-
tributed Cloud Data Centers,” U.S. Patent Application Number 15/493,034;
Filed on April 20, 2017.

1.5 Outline of the Thesis

This thesis is organized as follows:

• Chapter 2 covers the state of the art as well as some background knowledge
necessary for understanding our work. First, it presents the general context of
the thesis by giving a brief background on cloud computing, inter-VM commu-
nication, VM migration and autonomic computing. Then, existing optimiza-
tion approaches for the VM placement problem are reviewed and a summary
outlining our approach is given. Finally, an overview of the system model used
throughout this thesis is presented and explained.

• Chapter 3 presents offline optimization programs proposed to solve the VM
placement problem in geo-distributed DCs. The objective of these models is
to minimize the inter-DCs network traffic. We give the different mathematical
formulations to solve the problem which we have enhanced using formulation
strengthening techniques. Then, we present and analyze the results.

• In Chapter 4, we present online optimization programs to solve the VM place-
ment and migration problem within a geo-distributed cloud infrastructure.
Our objective is to minimize the inter-DCs network traffic. Simulation-based
evaluation is provided as well as experimental results, showing the effectiveness
of the proposed approach.

• Chapter 5 presents exact as well as heuristic solutions to solve the VM schedul-
ing problem in geo-distributed DCs. First, we focus on finding the best inter-
DCs migration sequence of inter-communicating VMs. Then, we study the
impact of VM’s lifetime period on the migration decisions. Experiment re-
sults are presented illustrating the effectiveness of the proposed solutions.

• As for Chapter 6, it presents online stochastic optimization models to solve the
VM placement and migration problem while considering bandwidth capacity

1.5 Outline of the Thesis 7

constraints on DC’s edge routers. The proposed algorithm aims to proactively
optimize placement and migration decisions in order to minimize the risk of
network overloading in the future while at the same time minimize the expected
inter-DCs traffic.

• Chapter 7 concludes this manuscript by summarizing our contributions and
presenting future research directions.

Chapter 2
Background and State of the Art

Contents
2.1 Introduction . 8

2.2 Background and Context 8

2.2.1 Cloud Computing . 9

2.2.2 Cloud Data Centers . 11

2.2.3 Cloud Applications and Communication Models 13

2.2.4 Virtual Machine Migration 15

2.2.5 Autonomic Computing . 17

2.2.6 Optimization Problems 18

2.3 State of the Art . 22

2.3.1 Offline VM Placement Problem 23

2.3.2 Online VM Placement Problem 24

2.3.3 Stochastic VM Placement Problem 25

2.4 Overview . 27

2.5 Conclusion . 30

2.1 Introduction

In this chapter, we present the general context of the thesis by giving first, a brief
background about cloud computing and cloud DCs. Second, a description of the
different concepts needed for understanding the rest of the given work . Among
these concepts, we define inter-VM communication and VM migration techniques.
Third, we introduce the concept of autonomic computing. Then, we review and
compare existing VM placement approaches. Finally, we outline our contributions
and we present the system model used throughout this thesis.

2.2 Background and Context

In this section, we present some background related to our work. First, we introduce
the context of our work which is the cloud computing. Then, we present some

8

2.2 Background and Context 9

Figure 2.1: Cloud models [21].

characteristics of the cloud DCs that are necessary for the comprehension of our
work. Afterwords, we provide a brief description on the inter-VM communication
and VM migration techniques in the cloud. Finally, we introduce the concept of
autonomic computing and give some background around autonomic managers.

2.2.1 Cloud Computing

According to the National Institute of Standards and Technology (NIST)[1], Cloud
computing is a model for enabling convenient, on-demand network access to a shared
pool of configurable computing resources (e.g., networks, servers, storage applica-
tions and services) that can be rapidly provisioned and released with minimal man-
agement effort or service provider interaction. Based on virtualization technologies,
cloud computing has gained popularity in recent years.

Virtualization technologies have several benefits. In fact, they enable efficient
resource allocation and management, in order to reduce operational costs while
improving application performance and reliability [22]. The aim of virtualization
is to partition physical resources into logical resources that can be allocated to
applications in a flexible manner. For instance, server virtualization enables the
resource sharing and allows to multiple VMs to be executed on the same physical
host. The isolation of logical resources from the underlying physical resources, server
virtualization enables flexible assignment of workloads to physical machines [23].

Cloud computing has five main characteristics. Namely, broad network access,
rapid elasticity, on-demand self-service, resource pooling, and measured service [1].

On demand self services: Cloud services such as email, network or service can
be provided without requiring human interaction with the service provider.

Broad network access: Cloud services are available via the network and can be
accessed from any networked device.

2.2 Background and Context 10

Resource pooling: The provider’s computing resources are shared and serve mul-
tiple consumers, with different physical and virtual resources dynamically as-
signed and reassigned according to consumer demand.

Rapid elasticity: Cloud services can be rapidly and elastically provisioned. Cus-
tomers can automatically provision and release resources whenever required.

Measured service: Cloud providers monitor the customers’ resource usage and
charge customers for the used resources based on a pay-as-you-go manner.

Cloud computing has mainly three service categories: Infrastructure-as-a-Service
(IaaS), Platform-as-a-Service (PaaS) and Software-as-a-Service (SaaS).

IaaS: In an IaaS model, a third-party provider hosts hardware, software, servers,
storage and other infrastructure components on behalf of its users. The IaaS
providers also host users’ applications and handle tasks including system main-
tenance, backup and resiliency planning.

PaaS: PaaS platforms offer developers the ability to deploy supported applications
onto the cloud. The developer does manage the underlying infrastructure how-
ever, it has control on the deployed application and the hosting environment
configurations.

SaaS: In SaaS model, consumers are able to access and use software applications
running on the cloud infrastructure over the internet. Google, Twitter and
Facebook are examples of SaaS.

In [1], the authors categorize the cloud into four deployment models as presented
below.

Private Cloud: In this category, the cloud infrastructure belongs to a single in-
stitution. Private clouds are either managed by the institution itself or by a
third-party. It is characterized by its limited access.

Public Cloud: Public clouds are commercial cloud systems operated and man-
aged by public cloud providers. They allow worldwide customers to provision
services and charge them in a pay-as-you-go manner.

Community Cloud: Community clouds allow infrastructure sharing among differ-
ent institutions having common interests (e.g. security requirements, policy
and compliance considerations).

Hybrid Cloud: Hybrid clouds are a combination of two or more cloud infrastruc-
tures (private, public or community) that are bound together by standardized
technology that enables data and application portability.

Figure (2.1) illustrates the introduced concepts of the cloud computing.

2.2 Background and Context 11

Figure 2.2: Three-tier network architecture [6].

2.2.2 Cloud Data Centers

In this section, we provide background knowledge on modern cloud data centers. In
particular, we present common architecture and network topology.

According to [24], DCs are organized in a multi-tiered network hierarchy. Figure
(2.2) presents the generic intra-DC network architecture. The network architecture
is mainly composed of three tiers where each tier has a specific role in the traffic
handling. In the Access Tier, every physical server is connected to one or two access
switches. In the Aggregation Tier, each access switch is connected to the aggregation
switches. In the Core Tier, each aggregation switch is connected to one or more
core switches.

In fact, the access switches are in charge of connecting the servers between each
other and to the upper tiers. As for the aggregate switches, they connect the ac-
cess switches between each other. In addition, they enable the localization of traffic
among the servers. Finally, core switches ensure the connection between the ag-
gregation switches in such a way that there exists a connection among each pair of
servers. It also includes gateways for the traffic to allow the communication outside
the DC.

In modern DCs, servers are generally organized in racks, where each rack has
a Top-of-Rack (ToR) switch. ToRs are connected to aggregation switches whereas
aggregation switches are connected to core switches in the top-tier.

In traditional DCs, Tree network architecture has been widely used because of
its simplicity in terms of reducing costs [24]. However, this network architecture
may present scaling issues and network congestion problems. To cope with these
issues, recent studies have proposed new network architectures, for instance, VL2

2.2 Background and Context 12

Figure 2.3: Distributed DCs Network Design [25].

[26], BCube [27], PortLand [28].
In order to serve world-wide end users, cloud providers are relying on a geograph-

ically distributed infrastructure where DCs are built in different locations. Many
public cloud providers have adopted this distributed infrastructure such as Amazon
Elastic Computing Cloud (EC2) [29] and Microsoft Azure [30]. This decentral-
ized service delivery architecture provides cost efficiency, ensures adequate Quality
of Service (QoS) and avoids potential performance problems [31]. Many studies
[32, 33, 31, 34] have shown that significant gains can be obtained from such decen-
tralized approach. According to [25], DC edge routers are responsible for connecting
the DC to the backbone network. Figure (2.3) shows an example of distributed DCs
network design.

Figure (2.4) shows another example of geo-distributed infrastructure where DCs
are connected with an IP over WDM network. The IP over Wavelength Division
Multiplexing (WDM) network is composed of two layers: the IP layer, and the opti-
cal layer. In the IP layer, each node has an optical switch which is connected to an
IP router. The router aggregates data traffic from access networks. The optical layer
can provide large capacity and wide bandwidth for data communication between IP
routers. Optical switches are connected to optical fiber links. On each fiber, a pair
of wavelength multiplexers/demultiplexers is used to multiplex/demultiplex wave-
lengths. Moreover, the erbium-doped fiber amplifiers (EDFAs) are used to amplify
the optical signal in each fiber for long distance transmission [35].

Cloud DCs continue to grow, over the last years, in terms of both hardware
resources and traffic volume, thus making cloud operation and management a chal-
lenging task. Therefore, the use of management tools is mandatory and very useful
in order to help DC administrators managing their infrastructure [36]. Data Center
Management tools (DCM) are designed to help organize a company’s infrastructure
and facilitate the DC management. Most of the existent DCM are used to gather and
monitor basic information about energy consumption, cooling etc. Others are used

2.2 Background and Context 13

Figure 2.4: IP over WDM network [35].

to help DC administrator planning the capacities of the IT facilities [37]. However,
existent commercial DCM tools (e.g CloudWatch [38], LogicMonitor[39], NimSoft
[40]) are lacking some important features and present several issues of inefficiency.
In fact, to be effective, a DCM should be dynamic and able to adapt itself auto-
matically, on a real-time basis, to the changes in the system. It should be aware of
other parameters such as the application workload, virtualization software, network
communication, SLAs, QoS, etc [41].

In particular, a DCM tool needs to be able to (re)optimize the DC infrastructure
and take automated decisions based on predefined criteria in order to satisfy some
business needs [37]. It should have automated and autonomic features that are able
to detect, solve and optimize several problems, such as VM placement, migration
and scheduling problems which are the focus of this thesis. More details on the
proposed DCM tool can be found in Section 2.4.

In the next section, we introduce the concept of inter-VM communication.

2.2.3 Cloud Applications and Communication Models

In geo-distributed cloud environment, cloud providers are deploying their DCs in
different locations. The cloud applications deployed in such an infrastructure, such
as web applications, scientific workflows and parallel processing applications are
composed of several VMs and storage components that present highly correlated
communication between them [6]. With the increasing number of traffic-intensive
application in the cloud, the inter-VM network bandwidth consumption is increasing
considerably. Moreover, the overall application performance depends mainly on the
underlying network resources [6].

With the rise of popularity of cloud services, the number of cloud applications
has also increased considerably. These applications are generally composed of multi-
ple inter-communicating VMs which may exchange a huge amount of data between
each other. Examples of traffic-intensive applications are scientific applications,

2.2 Background and Context 14

Data Center A Data Center B

Web Server Database Server

Cloud Infrastructure

Virtual Machine (a) Virtual Machine (b)

Figure 2.5: Example of distributed application.

video streaming servers, search engines and web browsers. Communication traf-
fic between VMs is considered as one of the dominating costs for communication
intensive distributed applications [13]. An example of data-intensive distributed ap-
plication is shown in Figure (2.5). Web applications are generally distributed among
different VMs. Web server running in one VM may need to communicate with a
database server running in another distant VM in order to satisfy client’s requests.
In such a context, it is important to ensure several application performance metrics
such as response time, round trip time (RTT), latency, etc. Thus, some DCs need
to be placed in proximity of end-users to provide better user’s experience [32]. In
[42], the authors have classified cloud application workloads into three categories:

Data-Intensive Workload: Such workloads may cause huge data transfer, how-
ever, they require less computational resources. As an example, we can think
of a video streaming application where each user request generates a new video
streaming process. For this type of application, it is important to maintain the
application performance and prevent from bottlenecks in the network. Hence,
it is crucial to take placement decisions according to network-status and levels
of congestion of communication links.

Computationally Intensive Workloads. This category represents the High Per-
formance Computing (HPC) applications that are used to solve complex and
advanced problems. These applications require high amounts of computing
capacity, however, it causes an insignificant data transfer over the communi-
cation links. For this category, we can use consolidation techniques in order
to reduce the number of active servers which will help in reducing the energy
consumption of the DC. VM consolidation technique tries to place VMs within
the same host in order to reduce the number of active hosts.

Balanced Workload: This category includes applications that require both com-
puting and data transfer among VMs. An example of such applications is
Geographic Information Systems (GISs) which need to transfer huge amounts
of graphical data and at the same time, need huge computing resources to
process these data.

2.2 Background and Context 15

Cloud DCs host heterogeneous applications which may produce different commu-
nication traffic patterns. As shown in [6], there are predominant types of inter-VM
network traffic that can be found in the literature [43, 17, 44].

• Stable Inter-VM communication traffic: At large timescale, the authors
of [43] have demonstrated that for a large proportion of VMs, the traffic rates
are stable despite the divergence of the average rate among VMs. Hence, it can
be concluded that the communication patterns among VMs can be estimated
and can be considered as known a priori to the users. For these types of
applications, deterministic optimization models can be applied.

• Highly non-uniform communication traffic: In [17], the authors have re-
ported, based on runtime measurements study, that the VMs generate uneven
traffic volumes. The study shows that inter-VM traffic rate varies significantly
and it is very bursty. Thus, it is hard to have an accurate estimation of the
inter-VM traffic. For this category, stochastic optimization models are the
most suitable.

In this thesis, we mainly focus on Data-Intensive distributed applications. We
propose placement and scheduling policies that minimize the communication traffic
between DCs. Furthermore, we study both types of traffic patterns (i.e. stable and
dynamic) and we propose placement and scheduling policies dealing with each type
of traffic pattern.

In the next section, we introduce VM migration techniques in cloud environment.

2.2.4 Virtual Machine Migration

VM migration is the process of dynamically moving a virtual machine from one phys-
ical machine to another. The destination host can be within the same DC or in a
distant one. The VM migration is a management technique that has many benefits.
In particular, it gives DC managers the ability to adapt the placement of the dif-
ferent VMs in order to optimize their infrastructure, to better satisfy performance
objectives, improve resource utilization and communication locality, achieve fault
tolerance, reduce energy consumption, and facilitate system maintenance activities
[2].

Local-Area Network Migration

There are mainly two types of VM migration techniques. The simplest one is called
Non-Live Migration (cold migration). This technique consists in suspending and
resuming the execution of VMs before and after the migration process, respectively.
However, this type of migration has not been widely used due to long VM downtime
during the migration process.

The second type of VM migration is called Live-VM migration. It is the most
common type of VM migration where the VM is maintained available during the
migration process. The goal of this type of VM migration is to reduce as much as
possible the total transfer time. There are mainly two approaches for live migration.

• Pre-Copy Migration: Memory contents are copied while the VM is still run-
ning. However, the memory content can be changed during the transfer pro-
cess, thus, the changed contents are iteratively copied to the destination. The

2.2 Background and Context 16

Migration
Source Server

Virtual Machines

LAN

Virtual Machines

Migration
Destination Server

Migration traffic

Communication traffic

Figure 2.6: Local-Area Network VM migration.

process continues until either the number of remaining pages is small, or a
fixed threshold is reached. In such cases, the VM is suspended allowing the
remaining pages to be copied. Then, the VM will resume its execution in the
destination and it will be destroyed at the source.

• Post-Copy Migration: In this approach, the memory content is transferred
after transferring the process state. First, the process states are copied to
the destination which allows the VM to resume quickly. Then, VM’s memory
contents are fetched from source to target. All access to memory contents that
have yet to be migrated are trapped by memory faults, causing the missing
content to be fetched from source machine.

Since the migrated VM remains running during the live migration process, it still
communicate with other VMs (in source or/and destination). We refer to this traffic
by communication traffic. In addition to communication traffic, there is also traffic
generated during the migration process which is composed of the data transferred
during the migration of the VM as illustrated by the Figure (2.6).

Wide-Area Network Migration

Most of the existing migration technologies focus on Local-Area Network (LAN)
migration. In fact, migration of VMs over a LAN is relatively simple since DC
LANs are provisioned using high-speed low-latency links [7].

In contrast to LAN VM migration, Wide-Area Network (WAN) VM migration
requires the transfer of the disk image in addition to CPU and memory states
[3]. Moreover, WAN links interconnecting DCs are bandwidth-constrained and the
network connection are less stable in WANs. In addition, inter-DCs latencies are
more important than in LAN environment. In such an environment, it may be
impossible to dedicate a certain amount of bandwidth capacity to transfer one VM
from one DC to another, especially when the disk is also transferred among WAN
links.

Hence, it is important to ensure the reliability during the migration while at
the same time minimizing the bandwidth usage and optimizing the data transfer

2.2 Background and Context 17

WAN

Virtual Machines Virtual Machines

LAN LAN

… …

VM disk Migration

VM state Migration

SANSAN

Communication traffic

Figure 2.7: Wide-Area Network VM Migration.

in order to reduce the migration costs [45]. Figure (2.7) represents an example of
WAN VM migration.

2.2.5 Autonomic Computing

Autonomic computing [46] was first introduced by IBM in 2001 as a vision of comput-
ing environments which can automatically observe and adapt themselves according
to high-level objectives. The driving motivation behind the autonomic computing
initiative was the fact that, the complexity of today’s large-scale distributed systems
makes it hard to develop, deploy, configure, and maintain them.

The main characteristic of any autonomic system is self-management [47]. Self-
management is the ability of a system to automatically adapt to changes that appear
in its environment without needing human interaction. In this context, Autonomic
managers (AM) [46] are software agents which implement self-management prop-
erties of the autonomic computing system. An AM must be able to collect and
store monitoring information. Once gathered, monitoring information is stored in a
knowledge base. It is then analyzed in order to decide whether actions need to be
taken or not. In case actions need to be taken a plan must be created, which will
generate a set of desired changes. Finally, the plan must be executed. Figure (2.8)
presents an example of an autonomic manager.

In a self-managing autonomic environment, system components are characterized
by embedded control loop functionality (or attributes) [48]. These functionalities are
divided into four main categories: self-configuration, self-healing, self-optimization
and self-protect.

Self-configuration: Self-configuring components are able to dynamically adapt to
the changes in the environment that can include the deployment or removal of

2.2 Background and Context 18

Analyze Plan

Monitor Execute

Autonomic Manager

Knowledge

Sensors Actuators

Figure 2.8: Autonomic Manager.

components, changes in the system characteristics, etc. The dynamic adapta-
tion is based on policies that are provided by the IT manager. This property
ensures flexibility of the system and allows productivity and business growth.

Self-healing: Self-healing components are able to detect system failure, diagnose
the problem and propose a corrective action based on policies without dis-
rupting the IT environment. Hence, the system becomes more resilient and
produces less failures.

Self-optimization: Self-optimizing components are able to monitor and tune re-
sources automatically in order to meet end-users or business needs. Some
tuning actions could be the migration/reallocation of certain resources in or-
der to improve for example energy utilization or ensure deadline constraints.
Self-optimizing components ensure the elasticity of the system and optimize
the resource utilization over time.

Self-protection: Self-protecting components are able to anticipate and detect hos-
tile behaviors. As a response to such behavior, they take corrective actions to
make themselves less vulnerable. Hence, the system security will be consis-
tently reinforced with new privacy policies.

In this thesis, we propose an autonomic DC management tool based on opti-
mization models aiming at providing periodically optimized plans which include
placement, migration and scheduling decisions in order to satisfy the objective of
minimizing the traffic volume between DCs.

2.2.6 Optimization Problems

Optimization is a sophisticated tool which is able to help decision makers solve
complex problems that arise when having limited resources and under different con-
straints. As a matter of fact, modeling consists of elaborating a simplified represen-
tation that can solve a given problem. Optimization modeling consists of identifying

2.2 Background and Context 19

the objective function, the design (or decision) variables and the constraints for the
problem [49]. However, the choice between the different representations has a huge
influence on the effectiveness of the obtained solution. Optimization brings sev-
eral benefits. In fact, it permits to discover unknown approaches and find the best
ones under several constraints. Moreover, using optimization, the decisions will
be automated and could be validated by exploring more scenarios and testing new
alternatives.

Classification of Optimization Problems

Optimization problems can be classified based on different criteria. For example,
based on the nature of equations (i.e. objective function and constraints), opti-
mization problems can be categorized into four main categories: linear, nonlinear,
geometric and quadratic [50].

• Linear Programming Problem (LP): This type of problem is the most
used type of constrained optimization model. The objective function and all
the constraints must be linear functions of the design variables. LP prob-
lems can be also classified as Integer Linear Programming (ILP) problems,
where all decision variables are integer, and Mixed Integer Linear Program-
ming (MILP) problems, where some, but not all decision variables are integer.
Integer optimization problems concern mainly problems of efficient allocation
of limited resources that need to meet a desired objective, in particular, when
the resources can only be divided into discrete parts. To model optimiza-
tion problems with discrete decisions, a common approach is to formulate the
problem as mixed integer optimization [51].

• Nonlinear Programming Problem (NLP): This category involves prob-
lems that have nonlinear functions among the objective and the constraints.

• Geometric Programming Problem (GP): If the objective function and
the constraints are expressed as polynomials, the problem is called geometric.

• Quadratic Programming Problem (QP): This type of problem has a
quadratic objective function and linear constraints. For maximization prob-
lems, the objective function is concave. It can be solved by adapting the linear
programming techniques.

We can also classify optimization problems based on deterministic nature of the
variables. Hence, optimization problems can be categorized as deterministic and
stochastic programming problems [50].

• Deterministic Programming Problem: In this class of problems, all the
variables are considered as deterministic. In a deterministic system, for the
same input, the system will produce the same output.

• Stochastic Programming Problem: In this type of problems, some or
all of the parameters are considered as random variables (non-deterministic
or stochastic) and are expressed probabilistically. A stochastic variable is a
random variable that evolves in time. A stochastic model takes into account
the element of risk and it is more difficult to formulate and solve efficiently.

2.2 Background and Context 20

Depending on the nature of equations involved in the problem, a stochas-
tic optimization problem is called a stochastic linear, geometric, dynamic, or
nonlinear programming problem.

Solving Optimization Problems

In the literature, there are several methods for solving different types of optimization
problems efficiently. The optimum methods known as mathematical programming
techniques provide best or optimal solution to a given problem [50]. Solving Integer
optimization problems is a very difficult task. Unlike continuous linear optimization
problems, the feasible regions of integer optimization problems consists of a discrete
set of points. In particular, for MILP, the feasible region is a set of disjoint polyhedra
[51]. Finding global optima for integer optimization problems requires to prove
that a particular solution dominates all others. To cope with these difficulties,
one approach is to find a valid upper bound, a relaxation or valid inequality (i.e.
cutting plane). The simplest approach to solve integer optimization problems is to
enumerate all possible outcomes. However, this can lead to a combinatorial explosion
due to the exponential number of variables. A more efficient solving approach is to
eliminate some solutions using feasibility or domination rules. This methods is called
branch and bound and is commonly used to solve integer optimization problems
efficiently.

In this thesis, we have used some of the above mentioned optimization techniques.
In particular, we have used MILP to model and solve the deterministic problem and
Stochastic integer programming (SIP) to solve stochastic problems with uncertainty.
Using a linear solver, the MILP models can provide optimal and exact solutions.

As discussed above, MILP are generally known as NP-hard problems [52] (i.e.
computational complexity), however, some particular models can be solved within
a reasonable period of time. There are several formulation enhancement methods
used to cope with the complexity of such problems. In this work, we have used some
well-known techniques, namely, valid inequalities [53] and variable aggregation [54].

Valid inequalities are additional constraints to the linear program that improve
tightness of relaxation and combine constraints in order to eliminate non-integer
solutions. As for the variable aggregation technique, it aims at reducing the number
of variables in the formulation.

On the other hand, to solve SIP problems, one common method is to use scenario-
based approach that consists in the enumeration of all possible outcomes and solve
the problem as an ILP. However, when the number of scenario is huge, this method
becomes inefficient. An alternative method is to apply sampling-based methods
which have been successfully used in many different fields of stochastic optimization
[55].

Many of the existing traditional optimization techniques applied to real world
problems suffer from many issues preventing them from determining a solution
within a reasonable amount of time. This is due to several reasons such as the
huge number of variables, difficulties of the constraints, symmetry of the formula-
tion, etc [56].

To cope with these problems, alternative methods were proposed. Among these
methods, we cite decomposition methods, such as Dantzig-Wolfe or Benders, heuris-
tic and metaheuristics. In particular, heuristics and metaheuristics, are able to
provide approximate solutions. In contrast to exact methods, (meta)heuristics are

2.2 Background and Context 21

generally simple to design and implement. A heuristic is often used to provide better
computational performance. However, the optimality of the obtained solution can-
not be guaranteed and has to be validated using experiments and simulations [57].
Metaheuristic is a class of algorithms, which is able to solve complex optimization
problems using a number of conventional heuristics. The main advantage of meta-
heuristic is the fact that it does not require any knowledge about the optimization
problem to be used [58].

Complexity of Optimization Problems

According to [59], there are mainly two classes of optimization problems: P and NP.
The class P includes all polynomial-time solvable decision problems. As forNP it
defines the class of all non-deterministic polynomial-time solvable decision problems.

Definition 1. A decision problem Pi is NP-Hard if, every problem in NP is polynomial-
time reducible to Pi.

Definition 2. A decision problem Pi is NP-Complete if, it is NP-Hard and it is also
in the class NP.

In fact, NP-hard problems are generally very complex and resource consuming.
Thus, approximation algorithms are often used to help decision-makers obtain a
feasible solution.

Definition 3. Given an optimization problem O, an algorithm A is an approxima-
tion algorithm for O if, for any given instance, it returns an approximate feasible
solution.

Although approximate algorithms provide feasible solutions, they are not optimal
ones. Therefore, it is important to investigate the quality of approximate solution
which commonly expressed by the relative error and the optimality gap.

Definition 4. Given an optimization problem O, for any given instance i of O and
for any feasible solution s of i, the relative error is defined as follows.

E(i, s) =
|m∗(i)−m(i, s)|

max{m∗(i),m(i, s)}
(2.1)

Where m∗(i) the optimal solution with respect to the instance i. For both max-
imization and minimization problems, if the relative error is equal to 0 then, the
obtained solution is optimal and it becomes close to 1 when the obtained solution
is very poor.

Definition 5. We denote by G, the optimality gap of an approximate solution. It
is expressed in % and defined as follows.

G = E(i, s)× 100 (2.2)

It is equal to 0% if the approximate solution is optimal. It becomes close to 100%
when the obtained solution is very poor.

One of the NP-hard problems that we are studying in this thesis is the Hub
Location problem which is a fundamental building block for the placement problems
that arise in Cloud Computing. It is an application of MILP models and network
flow models. Therefore, we define in the next section, this problem and we provide
some existent works dealing with it.

2.3 State of the Art 22

The Hub Location Problem

The main functionality of a traffic network is to establish the flow from a set of
source nodes to a set of destination nodes with minimum costs [60]. Let us consider
the complete graph G = (N, V) where N is the set of all nodes and E is the set
of edges. Suppose that the flow dij, (i ∈ N, j ∈ N) needs to be sent from the
source node i to the destination j. One solution is to connect the node i and j
directly. However, this solution is costly and inefficient as it requires that each
pair of nodes will be connected together. Another solution for the problem is to
select intermediary nodes, called hub nodes, which will consolidate the traffic and
redistribute it providing thus, an efficient routing of the flow within the network.

The hubs are nodes that receive the traffic from different sources and redirect it
to destination nodes or to other hub nodes. Using intermediary nodes will help to
consolidate the traffic in the hubs and minimize the total cost.

Hub location problem have many applications. It is mostly used in the telecom-
munication and transport fields. There are two version of the Hub location problem
namely, single and multiple allocation. In the single allocation problem, a simple
node can be connected to only one hub node. On the other hand, for the multiple
allocation version, one simple node can be connected to several hub nodes.

Several works dealing with the Hub location problem were undertake. The most
known formulation of the problem was proposed by Campbel in [61]. However, the
proposed formulation is hard to solve for medium and large size problems. The
number of variable of the proposed formulation is O|N4|. The main reason for the
complexity of the formulation is its symmetry. A formulation is called symmetric
if it generates several solutions having the same objective function. Therefore, the
Branch and Bound algorithm becomes inefficient. In this case, the formulation will
induce to a resource saturation before reaching the optimal solution [62].

Besides the classical formulation of the hub location problem, it can be com-
bined with the multi-commodity flow problem. A multi-commodity problem is the
generalization of the single-commodity problem where multiple demand flows exist
between different source and destination nodes within the same network. There are
many representation of the multi-commodity flow problem namely, (1) Path formu-
lation, which have an exponential number of variables, (2) Node-Arc formulation,
which is very hard to solve due to its symmetry, (3) Overflow variable formulation,
is a very compact formulation that is not suitable for large problem, and (4) Flow
aggregation formulation which we will use in the next chapters as it has been shown
as the most effective formulation for multi-commodity problem [63].

In the next section, we will review relevant work dealing with the VM placement
problem.

2.3 State of the Art

Virtual Machine Placement is the process of selecting the most suitable host for a
VM. The host can be a physical host within the same DC or in a distant one. The VM
placement problem has been studied from different perspectives. As shown in Figure
(2.9), the authors in [64] have classified the different VM placement approaches into
two categories: power based and application QoS based approach. Each approach
is divided into dynamic/online and static/offline placement.

2.3 State of the Art 23

Migration involved
(Online)

No Migration
(Offline)

Migration involved
(Online)

No Migration
(Offline)

Virtual Machine Placement

Power Based Application QoS
Based

Figure 2.9: Classification of VM Placement Approaches.

In online VM placement, VM migration is considered. In this category, the
placement and migration decisions are made during the runtime of the DCs where
there are new coming of consumer requests. On the other hand, offline placement
approach indicates generally the initial VM placement plan that will be running on
the different DCs.

The main difference between these two placement approaches is the fact that
online placement will require potential VM live migrations which will produce an
additional network traffic. This may affect the performance of the hosted applica-
tions as well as the migrated ones.

In the next sections, we review works related to offline, online and stochastic
VM placement problem in cloud systems.

2.3.1 Offline VM Placement Problem

In a static/offline VM placement [65], no system reconfiguration is considered and
all future demands are supposed to be known in advance. This problem can be seen
as the Initial VM placement problem, where we consider that all VMs will be placed
for the first time in the cloud system.

In [66], the authors presented a green resource management framework for em-
bedding virtual data centers across geographically distributed data centers. Their
aim was to maximize the cloud provider’s profit. A MILP formulation was pro-
posed in [67]. It aims at placing VMs in large-scale DCs while minimizing the power
consumption. The authors considered both inter- and intra-DC VM placement. In
[68], the authors propose algorithms to solve the coupled placement of application
storage and computation in modern DCs. In [69], the authors considered the place-
ment problem of VMs that host applications with intense bandwidth requirements.
In [70], the authors propose a network-aware VM placement approach that satisfies
traffic demands of the VMs in addition to hardware requirements. For that purpose,
they present different heuristics to solve this problem.

However, most of the aforementioned works proposed heuristic methods to solve
the static VM placement problem. In addition, most of them are not suitable for
geographically distributed cloud infrastructure.

2.3 State of the Art 24

2.3.2 Online VM Placement Problem

In a dynamic/online placement [71, 72], VM migration is used in order to cope with
the demand fluctuation and the dynamic aspect of traffic patterns.

The problem of VM placement in a Cloud environment has received particular
attention in recent years. The VM placement problem within a single DC has been
extensively studied in the literature. In particular, managing communication traffic
within a DC as it becomes a crucial issue.

In [73], the authors addressed the problem of VM placement while minimizing
the communication traffic. They proposed a heuristic algorithm to solve the offline
problem and a greedy algorithm to solve the online version of the problem. However,
they did not consider the migration cost for the online algorithm. In [43], the authors
proposed an approximate algorithm that solves the problem of VM placement with
traffic-awareness. However, the online version of the proposed solution consider the
re-solving of the offline problem. The VM migration cost is not considered. In [74],
the authors proposed an online VM placement algorithm based on the traffic matrix.
They aim to aggregate and allocate inter-communicating VMs to close servers in
order to reduce the traffic congestion. However, no migration or reallocation cost
is considered. In [75], the authors propose an approach for VM placement and
migration in order to minimize the data transfer time consumption. The main
limitation of the previous works is the fact they do not consider the migration cost
of VMs in the proposed dynamic methods.

There are only a few researches that have considered the migration cost in the
VM placement decisions with traffic awareness. In [71], the authors proposed an
algorithm that aims to improve communication performance by reducing the traffic
cost of VMs while decreasing the energy consumption of DCs. In [76], the authors
proposed Remedy as a cost estimation model that optimizes the VM placement ac-
cording to the associated cost of migration modeled by the network traffic generated
during migration. Most of the recent works consider the VM placement problem and
the migration problem as two separate problems. However, it would be interesting
to study the interaction between the initial placement and the migration decisions
as well as the impact of each on the other. In fact, an effective VMs initial placement
can improve the system performance. In [77], the authors investigated the problem
of joint VM placement and migration in DC via a multi-objective function. Their
aim was to reduce the energy consumption and the cross network traffic among
platforms.

However, the main limitation of the aforementioned works is the fact that the
proposed solutions only apply to intra-DC environment while the impact of geo-
graphical location of DCs was not considered. Hence, these approaches cannot be
applied in a geodistributed cloud infrastructure as in this context, the dynamic
placement of VMs involves the migration of both the memory and the disk state of
the VM.

Some recent researches have studied the problem of VM placement within geo-
graphically distributed DCs. A number of these works tried to reduce power con-
sumption or service delay of geographically distributed DCs by optimizing the loca-
tion of DCs [78], [79]. In [80], on the other hand, the authors proposed both offline
and online solutions based on scheduling techniques to solve the problem of energy
efficiency and load balancing for a geographically distributed Cloud infrastructure.
Whereas, in [81], the authors presented a framework for dynamic service placement

2.3 State of the Art 25

in geographically distributed clouds. Their approach is based on control and game-
theoretic models. They aimed to optimize the hosting cost dynamically according
to both demand and resource price fluctuations.

However, most of the existing works focus on minimizing the power consumption,
or maximizing resource usage. Our work can be considered as complementary to
the existing works as we aim to minimize the amount of traffic on the backbone
connecting different DCs. Thus, we prevent from possible congestion problems and
we reduce the data transport costs including energy consumption costs.

2.3.3 Stochastic VM Placement Problem

In [82], the authors have proposed a survey of the different optimization techniques
used to solve this problem. Among these techniques, there are deterministic integer
programming and Stochastic Integer Programming (SIP) [83].

In contrast to deterministic approach, the SIP technique considers uncertain pa-
rameters (e.g. future demand). It makes use of estimation models using probability
distributions. In a realistic Cloud environment, future demands are unknown. The
basic idea used in stochastic programming is to convert the stochastic problem into
an equivalent deterministic problem. The resulting deterministic problem is then
solved by using familiar techniques such as linear programming [50].

VMs workload is considered bursty according to recent studies [15, 16, 17]. SIP
has been used to solve load balancing and capacity planning problems in Cloud.
In [84], the authors propose an optimal placement algorithm to provision resources
of multiple cloud providers. Their objective was to reduce the cost of hosting the
VMs while considering future demand and cost. The proposed algorithm is based
on SIP to rent resources from providers. They used two-stage formulation. The first
stage defines the number of reserved VMs while the second defines the number of
VMs that are allocated in the utilization and on-demand phases. In [15], the authors
have proposed a stochastic load balancing scheme which aims to provide probabilistic
guarantee against the resource overloading with VMs migration, while minimizing
the total migration overhead. However, they address the problem within a single
DC and did not consider inter-VM communication traffic while making migration
decisions. In [85], the authors have studied the VM consolidation problem with
dynamic bandwidth demand. They have formulated the problem as a variant of the
stochastic bin-packing problem and they have proposed an approximate algorithm
to solve it.

In [86], the authors have considered a stochastic model of a cloud computing
cluster, where jobs arrive according to a stochastic process. They have focused
only on resource allocation problems, such as the design of algorithms for load
balancing among servers, and algorithms for scheduling VM configurations. In [87],
the authors have studied the VM placement in DCs with multiple deterministic and
stochastic resources. First, they have formulated the Multidimensional Stochastic
VM Placement problem, with the objective to minimize the number of required
servers and at the same time to satisfy a predefined resource availability guarantee.
They have shown that the problem is NP-hard, and have proposed a polynomial
time algorithm called Max-Min Multidimensional Stochastic Bin Packing. In [88],
the authors have studied two cost minimization problems to address the capacity
planning in an IaaS Cloud. They have used simulated annealing, a well-known

2.3 State of the Art 26

Table 2.1: Comparison of related works.

Approaches Objective Placement Type Optimization Technique Migration cost DCs topology

Cohen and al.
[69]

Communication
traffic

Offline Deterministic N/A Centralized

Zhang et al.
[73], Meng and
al. [43]

Communication
traffic

Offline and Online Deterministic N/A Centralized

Dias et al. [74] Traffic congestion Online Deterministic N/A Centralized

Vu et al. [71] Traffic and power Online Deterministic X Centralized

Mann et al. [76] Migration traffic Online Deterministic X Centralized

Duong-Ba et al.
[77]

Traffic and power Online Deterministic X Centralized

Goudarzi et al.
[80]

Energy efficiency,
load balancing

Offline and Online Deterministic X Distributed

Amokrane et al.
[66]

Provider’s profit Offline Deterministic N/A Distributed

Kantarci et al.
[67]

Energy consump-
tion

Offline Deterministic N/A Distributed

Zhang et al.
[81]

Hosting costs Online Deterministic X Distributed

Chaisiri et al.
[84]

Hosting costs Offline Stochastic N/A Distributed

Yu et al. [15] Load balancing Online Stochastic X Centralized

Chase et al.
[89]

Cost of resource
provisioning

Offline Stochastic N/A Distributed

Our approach Inter-VMs Com-
munication traffic

Offline and Online Deterministic and Stochastic X Distributed

randomized search algorithm, to solve these optimization problems.
In [90], the authors studied joint delay sensitive jobs (SENs) and delay tolerant

(TOLs) jobs. Their goal was to minimize total costs while guaranteeing QoS for
delay sensitive jobs and achieving a desirable delay performance to delay tolerant
jobs. They have proposed queue-based scheme for joint server provisioning, SEN
dispatching, TOL load shifting and capacity allocation in geo-distributed internet
DCs.

In [89], the authors have proposed a joint approach that combines VMs and
bandwidth allocation. They have used stochastic programming to take into account
the uncertainty of demand. They proposed multi-stage SIP formulation to solve the
problem. To improve the efficiency of the stochastic optimization formulation, they
have reduced the problem space with scenario tree reduction. However, the authors
did not consider VM migration problem. Furthermore, they did not consider inter-
VMs communication while making the placement decisions.

To the best of our knowledge, this work is the first effort addressing joint network-
aware VM placement and migration problem within geographically distributed DCs
with the objective of minimizing the backbone traffic (i.e. inter-DCs traffic). Table
(2.1) highlights and summarizes our contributions compared to the most relevant
existent works.

The present work is different from traditional VM placement proposals since
it considers exact methods that provide optimal placement and migration scheme.
In addition, it uses both offline and online approaches to solve the VM placement
problem.

Furthermore, we study the VM scheduling problem within a geo-distributed
cloud infrastructure. In particular, we propose heuristic methods that provide the
best inter-DCs migration sequence of inter-communicating VMs with the objective
of reducing the overall traffic during the migration process. We also study the effect

2.4 Overview 27

Cloud Monitor
(Resource monitoring)

Placement Planner
(Which VM to which DC?)

Migration Scheduler
(How?)

New VM request

• Resource consumption
• Location constraints
• Traffic Matrix

• DCs capacities
• VMs Placement scheme
• Global Traffic Matrix

4

6
8

Cloud Analyzer
(When?)

1

2 3 8
Executor

Backbone
Network

Data Center A

Data Center B

5

Data Center C1

Placement decision

vm7

vm8

vm4

vm6

vm5
vm7

4

4

6
8

Placement
decision

4vm4

vm6

vm5

9

3
Migration decision

Existent VMs

5

vm8

vm1 vm2

vm3

Best migration scheduling

8

vm1vm3 vm2

Best migration scheduling

7

8

6

Virtual Machine

Data Center

Mapping decisions
Communication Traffic

Figure 2.10: System Model.

of VM’s execution period on the migration decisions and we show its impact on the
stability of the cloud system.

Finally, in order to evaluate the proposed optimization approaches, we have used
simulation-based environment as well as experimental tests. We have used Amazon
EC2 hardware metrics values and we have generated the traffic matrix, representing
the data exchanged between each pair of VMs, randomly. In fact, as it was argued
by [91], [17], it is typically hard to obtain such data from real DCs because of the
required server level instruments.

In the next section, we present an overview of the system model used throughout
this thesis. We enumerate also the different assumptions that we have considered.
Then, we illustrate the different components of the autonomic DC management tool
proposed.

2.4 Overview

Throughout this thesis, we consider an IaaS environment represented by geographi-
cally distributed DCs that are interconnected through a backbone network as shown
in Figure (2.10). The different DCs are under the management of the same Service
Provider (SP). The backbone network is owned and managed by the Infrastructure
Providers (IPs). SPs are charged based on the total network Input/Output of data
transferred through the backbone links (i.e. from and to cloud servers) [7].

In this work, we focus only on placement problems. Routing and network design
are out of our scope. In such an environment, the cloud provider has a priori, no
knowledge about the VMs’ demand and the fluctuation of the traffic matrix. The
traffic matrix represents communication traffic or bandwidth requirements between
each pair of VMs.

In this work, we make the following assumptions:

• The entire infrastructure is owned and managed by the same IaaS provider.

• Each VM is characterized by its hardware configuration in terms of CPU,
RAM and Storage.

2.4 Overview 28

• Each DC is characterized by its capacity in terms of hardware resources CPU,
RAM, and Storage.

• Time is divided into slots [1..T].

• The metrics characterizing the DCs are assumed to be constant during each
time slot and are measured at the beginning of each time slot.

• Each VM may have a location constraint. Thus, it can only be placed in a
defined set of DCs.

• There are multiple independent clients submitting requests to provision VMs
that may be heterogeneous and may have both dynamic traffic and location
matrices.

Efficient cloud DCs management has become a very complex task, especially for
geographically distributed DCs. In this context, the cloud manager needs to take
several crucial decisions: (1) Where to place each VM while ensuring the proximity
location constraint and minimizing the backbone traffic? (2)When a system recon-
figuration is needed? (3) Which VM needs to be migrated and to which DC? (4)
If a set of inter-communicating VMs need to be migrated, what is the best VMs
migration scheduling that minimizes the overall traffic circulating in the backbone
network? (5) How to make placement and migration decisions such that the risk of
network overloading in the future is minimized?

In order to make the optimal decisions to answer the above questions, we propose
a DC management tool based on an autonomic system. Autonomic computing
systems are capable of self-managing themselves by doing self-configuration and
self-optimization [14]. Such a system must be able to analyze itself at runtime,
determine its state and determine a desired state that maintains the QoS.

As shown in the Figure (2.10), the system is divided into the following modules:

• The Monitor Module: It is responsible for (1) the collection of information
relative to the resource consumption of different VMs, the traffic matrix, his-
torical data collect, the location constraint matrix and the DCs’ hardware
capacities.

• The Analyzer Module: It is responsible for (2) analyzing the data collected by
The Monitor Module. This includes the analyze of the historical data collected
by the Monitor and the identification of the traffic distribution patterns.

• The Placement Planner Module: It is responsible for making placement and
migration decisions based on the information sent by The Analyzer Module
(3). This module is based on optimization models that aim to find the opti-
mal placement (4) and/or migration (5) plan for VMs while minimizing the
expected backbone traffic. It is composed of two sub-components: Initial
Placement Planner, which is based on offline optimization programs that aim
to place for the first time the different VMs in the system, and the Dynamic
Placement Planner, which is responsible for making both deterministic and
proactive placement and migration decisions.

2.4 Overview 29

Network-aware VM
Placement and

Migration

Placement
Type

Physical
Resources

Placement
Constraints

Objective/Goal

Migration Cost

Evaluation
Environment

Workload

Evaluation
Performance

Metrics

DCs
Architecture

Online

Offline

CPU, Memory and Storage

Location Constraints

DC capacity Constraints

Network Bandwidth Constraints

Minimization of traffic Volume

Simulation-based

Migration Cost-aware

Migration Cost-unaware

Experimental Tests

Synthetic Workload

Geo-distributed DCs

Optimization of the Objective Function

Placement Decision Time

Number of Migrations

Optimization
Technique

Deterministic Programming

Stochastic Programming

Figure 2.11: Thesis Overview.

• The Migration Scheduler Module: This module is based on heuristics. The
aim is to find the best inter-DCs migration scheduling for inter-communicating
VMs (7). The migration decision is provided by the Planner Module (6) and
validated/scheduled by the Migration Scheduler. In particular, this module
considers VMs having deadline and finite lifetime constraints.

• The Executor Module: It is responsible for (8) the execution of the placement
and/or migration decisions made by the Placement Planner Module and the
Migration Scheduler Module.

In this work, we focus only on the Placement Planner and the Migration Sched-
uler modules. The reconfiguration of the system is triggered periodically. At the
beginning of each period, the planner decides if the reconfiguration of the system
will generate a profit or not. If a reconfiguration is needed, the planner provides
the new placement scheme of the different VMs and the list of the VMs that will
be migrated. Then, the migration list is sent to the migration scheduler. The lat-
est provides the optimal migration sequence and sends it to the executor that will
perform the actual migration.

Figure (2.11) illustrates an overview of the work presented in this thesis. As
discussed in Section 2.2.3, we consider two types of inter-VM communication traffic

2.5 Conclusion 30

patterns: stable and Highly non-uniform traffic. To deal with these two types of
traffic, we propose deterministic programming models for applications with stable
communication traffic and stochastic programming models to deal with applications
having non-uniform and uncertain inter-VM traffic.

In addition, we consider that each VM has a location constraint. This constraint
restricts the placement of VMs in a certain set of DC known a priori. It aims at
maintaining service performance, reducing time-delay by placing high communicat-
ing VMs in proximity of end-users, or ensuring availability.

In contrast to existent works, we take into consideration the migration cost of
VMs. As we have mentioned in previous section, live WAN migration generates a
huge amount of traffic. Hence, this parameter cannot be neglected when making
migration decisions. The goal of this work is to provide optimized placement and
migration scheme in order to maintain the inter-DCs traffic volume as minimum as
possible.

For the experimental study, we have used the commercial solver CPLEX [92]
to solve the proposed optimization programs. Because of the required server level
instruments and the lack of benchmarks, it is typically hard to obtain data from
real DCs [91, 17]. Hence, to validate our approach under realistic conditions and
inputs, we have used the well-known simulation toolkit CloudSim [93].

In fact, CPLEX experiments and CloudSim simulations are complementary and
necessary for the evaluation of placement and migration policies in Cloud systems.
As we propose optimization based algorithms, it is important to evaluate its effec-
tiveness and the quality of the provided solutions using the solver CPLEX. However,
cloud systems are very complex and there are many aspects that may affect the
placement decisions such as DC network topology, energy consumption, etc. These
aspects are not taken into account in the proposed algorithms. Therefore, it is im-
portant to verify that our placement and migration policies still give effective plans
under different conditions and scenarios. To show the effectiveness of the proposed
approach, we have used different evaluation metrics such as, placement decision
time, number of migrations, quality of the objective function, etc.

2.5 Conclusion

In this chapter, we have introduced first, the general context of the thesis by giving
some background knowledge about cloud computing, cloud DCs architecture, inter-
VM communication, VM migration and autonomic computing. Then, we presented
a literature review on the VM placement problem. Finally, we gave a summary of
the relevant related works and presented the system model used throughout this
thesis.

Chapter 3
Offline VM Placement Optimization in
Geo-Distributed DCs

Contents
3.1 Introduction . 31

3.2 Problem Description . 31

3.3 First Proposal . 33

3.3.1 Hub Location Formulation 33

3.3.2 Multicommodity Reformulation 34

3.3.3 Valid Inequalities . 36

3.3.4 Performance Evaluation 37

3.4 Second Proposal . 40

3.4.1 The Classical Formulation 40

3.4.2 Variable Aggregation . 41

3.4.3 Experiment Results . 43

3.5 Conclusion . 45

3.1 Introduction

In this chapter, we present the different optimization models that we have proposed
to deal with the Initial (i.e. static/offline) VM placement problem in geo-distributed
DCs. The work presented in this chapter has been published in [94] and [65]. First,
we present the first formulation based on a well-known Hub Location formulation.
Then, we derive a more efficient formulation and enhance it with variable aggregation
technique. Finally, we present the results of experiments conducted on the different
formulations.

3.2 Problem Description

In the previous Chapter 2, we have presented the context of this work and we have
described the system model used throughout this thesis. The DC management tool

31

3.2 Problem Description 32

Initial Placement
Planner

Dynamic Placement
Planner

Placement Planner
• Number of VMs
• VMs resource capacities
• Traffic Matrix
• DCs capacities

Initial Placement Plan

Figure 3.1: Placement Planner Overview.

that we have proposed is based on optimization models that are able to solve the
problem efficiently and provide optimal placement scheme.

In this chapter, we focus in particular, on the problem of initial VM placement
in geo-distributed DCs. As shown in Figure (2.10), the studied system is composed
of different modules. Among these modules, there is the Placement Planner Module
which is responsible for making placement and migration decisions. Due to the com-
plexity of the problem, the Placement Planner is divided into two sub-components
as shown in Figure (4.1). The Initial Placement Planner will be executed when the
VMs will be placed for the first time in the system. It will be invoked once and it
will provide static placement scheme for different inter-communicating VMs. The
placement scheme will be considered as input for the Dynamic Placement Planner
in order to make migration decisions.

This chapter presents formal optimization models that will be implemented in
the Initial Placement Planner. We consider that the placement plan will remain
the same and there are no VM migration. We refer to this problem by the Initial
VM placement problem (IVMP). Our objective is to minimize the amount of traffic
between the different DCs.

The IVMP can be seen as a variant of the Hub Location problem[95], where DCs
are considered as Hub nodes. The problem of Hub Location is a class of optimization
problem that have been extensively studied in the literature. It has been used
to solve many problems such as network design planning in transportation and
telecommunication systems [95].

Proposition 1. The IVMP problem is NP-Hard.

Proof. The proof is based upon reduction of IVMP to a capacitated multicommodity
flow problem by considering DCs as hubs and where the flows are unsplittable, since
each demand node must be assigned to a single DC (hub) then to a single path. The
capacities on the DC can be considered as capacities on virtual links by splitting
the DCs into two connected virtual nodes. The capacity of this virtual link is the
same capacity of the DC. This problem is well known as being NP-hard [96].

Despite the NP-hardness of the IVMP model, we show using extensive experi-
ments that it can be solved for large problem sizes within a reasonable computational
time.

3.3 First Proposal 33

In the next section we present our first attempt to solve the Initial VM placement
problem (i.e static or offline) in geo-distributed DCs.

3.3 First Proposal

In this section, we present MILP formulations used to solve the IVMP problem in
geo-distributed DCs. First, we adapt a well-known Hub Location formulation to fit
our problem. Then, in order to enhance the execution time of the linear program,
we propose a new formulation and add new constraints called Valid inequalities.
Experiment results show the effectiveness of the strengthening techniques that we
have used.

3.3.1 Hub Location Formulation

The VM placement problem in geo-distributed cloud systems can be seen as a variant
of the well-known Hub Location problem [95], where the DCs are considered as hub
nodes. In this work, we try to optimally place VMs among different DCs in order to
minimize communication traffic within the backbone traffic. However, most existent
Hub Location formulations are not suitable for our problem since they consider that
all nodes can be hub nodes that is not the case in our problem. In contrast to hub
nodes, DCs are considered as intermediary nodes which cannot generate traffic.

The problem is considered as a graph G = (N,E), where N designates the set of
all the nodes and E the set of the edges of the graph. We are given a traffic matrix
that indicates the amount of communication traffic between each pair of VMs.

In this formulation, we consider the following decision variables:

• yki , takes 1 if the VM i ∈ V is placed in the DC k ∈ D, 0 otherwise.

• vkh, designates the amount of traffic exchanged between DCs k ∈ D and h ∈ D.

We denote by HL the model described as follows:

min
∑
k∈D

∑
h∈D
h6=k

vkh (3.1)

Subject to: ∑
k∈D

aki .y
k
i = 1 ∀i ∈ V (3.2)∑

i∈V

∑
j∈V

yki .y
h
j .dij = vkh ∀(k, h) ∈ D2, k 6= h (3.3)∑

i∈V

yki .uir 6
∑
k∈D

capkr ∀r ∈ R∀k ∈ D (3.4)

yki ∈ {0, 1} ∀i ∈ V, ∀k ∈ D
vkh > 0 ∀k, h ∈ D

The objective function (3.1) aims to minimize the amount of traffic between
DCs. This traffic is generated mainly due to the communication between the dif-
ferent VMs. The constraint (3.2) ensures that each VM is running on only one DC

3.3 First Proposal 34

while considering the location matrix which indicates if a VM can be assigned to
a certain DC. The constraint (3.3) is a demand satisfaction constraint, it ensures
the satisfaction of all traffic demand between different VMs. The constraint (3.4)
ensures that the amount of resources (CPU, RAM and storage) consumed by the
set of VMs assigned to a DC does not exceed its capacity.

The above model is not linear due to the constraint (3.3). In order to linearize
it, we introduce a new binary decision variable xkhij that takes 1 if the VM i ∈ V is
placed in the DC k ∈ D and the VM j ∈ V, j 6= i is placed in the DC h ∈ D, h 6= k.

Hence, the constraint (3.5) must be added to the model.

aki .y
k
i + ahj y

h
j 6 xkhij + 1 ∀(i, j) ∈ V 2, ∀(k, h) ∈ D2, i 6= j, h 6= k (3.5)

The constraint (3.3) becomes:∑
i∈V

∑
j∈V

xkhij .τij = vkh ∀(k, h) ∈ D2, k 6= h (3.6)

This first formulation is proved to be inefficient for medium and large problem
sizes. In fact, it is a symmetric formulation and it has a weak lower bound which
impacts the quality of the optimal solution and the execution time of the program.
Indeed, the (HL) formulation has a huge number of variables O|N |4. The results of
different experiments are presented in details in Section 3.3.4.

To cope with these problems, we reformulate in the next section, the problem
by considering a multicommodity formulation and by applying aggregation methods
[54, 97].

3.3.2 Multicommodity Reformulation

In this section, we present the reformulation of the VM placement problem into a
Multicommodity problem [98]. Our formulation is based on flow aggregation. In
fact, we aggregate all flows generated by a single source node [99]. In [63] and [100],
the authors outlined the computational advantages of this technique. In addition,
compared to the first formulation (HL), the number of variables has been reduced
to O|N |3 variables.

We consider the problem as a graph denoted by G = (N,E), where N designates
the set of all the nodes and E the set of the edges of the graph. We consider that
N = V ∪D and E = L∪C, where L designates the set of virtual links that connects
VMs and DCs. We denote by C the set of links that connects different DCs with
a complete graph. Each link is defined by a pair of source-destination nodes (i, j)
where i, j ∈ N .

• If (i, h) ∈ L, then i is settled as a VM node and h as a DC node.

• If (h, k) ∈ C, then h and k are both DCs nodes.

In practice, there are no physical links connecting VMs to DCs. We have used the
concept of virtual links in order to adapt our model to a multicommodity problem.
Virtual links translate the assignment of each VM to a particular DC.

In this formulation, we introduce the following decision variables:

• f ihk, designates the amount of traffic originated from the VM i ∈ V and circu-
lating on the directed link between the DCs h ∈ D and k ∈ D.

3.3 First Proposal 35

• ϕijh, designates the amount of traffic originated from the VM i ∈ V and
circulating on the virtual link between VM j ∈ V and DC h ∈ D.

• σik, is a binary variable that takes 1 if a VM i ∈ V is assigned to a DC k ∈ D,
0 otherwise.

• αkh, designates the amount of traffic exchanged between two nodes k and h. If
k ∈ D and h ∈ D, then αkh = 0. Otherwise, if i ∈ V and k ∈ D, then αik = 0.

The new linear model denoted by MFw is described as follows:

min
∑
i∈V

∑
k∈D

∑
h∈D
h6=k

f ikh (3.7)

Subject to:∑
h∈D

ϕiih =
∑
j∈V

αij ∀i ∈ V (3.8)∑
h∈D

ϕijh −
∑
h∈D

ϕihj = −αij ∀j 6= i ∈ V 2 (3.9)∑
k∈D

f ihk −
∑
k∈D

f ikh +
∑
j∈V

ϕhij −
∑
j∈V

ϕjih = 0 ∀i ∈ V, ∀h ∈ D (3.10)∑
k∈D

σik = 1 ∀i ∈ V (3.11)

σih 6 ahi ∀i ∈ V, ∀h ∈ D (3.12)∑
i∈V

ϕihj = σjh.
∑
i∈V

αij ∀j ∈ V, ∀h ∈ D (3.13)

ϕiih = σih.
∑
j∈V

αij ∀i ∈ V, ∀h ∈ D (3.14)∑
i∈V

uir.σih 6 caphr ∀r ∈ R, ∀h ∈ D (3.15)

f ikh > 0 ∀k ∈ D, ∀h ∈ D, ∀i ∈ V
ϕijh > 0 ∀i ∈ V, j ∈ V, h ∈ D
αhk > 0 ∀h ∈ N, k ∈ N
σik ∈ {0, 1} ∀k ∈ N, ∀i ∈ N

The objective function (3.7) aims to minimize the amount of traffic between
different DCs. The constraint (3.8), ensures that all the traffic originated from a
VM i ∈ V and circulating between all DCs is equal to the amount of traffic exchanged
between i and other VMs. As for the constraints (3.9) and (3.10), it ensure the flow
conservation; these constraints are only applied for the aggregated flows generated
by a source node regardless of the destination. The constraint (3.11) ensures that
each VM is running on only one DC. The constraint (3.12) is a location constraint, it
restricts the placement of a VM in a particular set of DCs defined in the matrix ahi .
The constraint (3.13) imposes that the amount of traffic, circulating on the virtual
link between the VM j ∈ V and the DC h ∈ D which is originated from the VM
i ∈ V , is equal to the amount of traffic exchanged between these two VMs (i and

3.3 First Proposal 36

j) if VM j is assigned to the DC h. The constraint (3.14) ensures that the amount
of traffic originated from VM i and circulating between i and DC h is equal to the
amount of traffic exchanged between i and other VMs if i is assigned to the DC h.
The constraint (3.15) ensures that the set of VMs placed in a given DC does not
exceed its resource capacities in terms of CPU, RAM and Storage.

Although the MFw formulation is better than the (HL) formulation regarding
the number of variables, it presents also many difficulties while trying to solve it
for large problem sizes. Thus, we propose to introduce additional constraints that
will tighten the linear relaxation of the previous formulation and reduce the search
space of the feasible region. This technique, the so called formulation strengthening,
is widely used in order to speed up the execution time of compact formulations [101].

3.3.3 Valid Inequalities

In this section, we present different valid inequalities, that we have added to strengthen
the MF formulation. Valid inequalities are redundant logical constraints that have
shown their efficiency during the testing phase [53]. The idea stems from adding ad-
ditional constraints to the linear program to improve tightness of relaxation and to
combine constraints to eliminate non-integer solutions. The guiding line for devising
these inequalities is to bind the values of the decision variables of the objective func-
tion f ikh with supplementary valid constraints. This will provide better bounds for
the Branch-and-Bound algorithm applied on the binary σik variables. We denote by
MF the multicommodity formulation enhanced with the following valid inequalities.

Proposition 2. For any given VM i ∈ V and a DC k ∈ D, the inequality (3.16) is
valid for (MF). ∑

h∈D

ϕiih >
∑
h∈D

f ikh ∀k ∈ D, ∀i ∈ V (3.16)

Proof. This inequality stems from the flow conservation constraints. In fact, all the
traffic issued by the VM i ∈ V is bifurcated at a DC k ∈ D: one part goes to other
VMs at the same DC k, and the other part traverses the inter-DC links (k, h) ∈ D2

to reach VMs at other DCs. This can be written as follows:∑
h∈D

ϕiih =
∑
j∈V

αij.σjh +
∑
h∈D

f ikh ∀i ∈ V (3.17)

Thus, (3.16) follows immediately.

Proposition 3. Let i ∈ V and j ∈ V such as i 6= j, the following inequality is valid
for (MF). ∑

j∈V

ϕikj > ϕiik −
∑
h∈D

f ikh ∀k ∈ D, ∀i ∈ V (3.18)

Proof. By writing the flow conservation constraints on the DC k ∈ D, while consid-
ering the flow emanating from a VM i ∈ V as a commodity, we obtain:

ϕiik −
∑
j∈V

ϕikj =
∑
h∈D

f ihk −
∑
h∈D

f ikh (3.19)

Then we get:

ϕiik −
∑
j∈V

ϕikj 6
∑
h∈D

f ihk (3.20)

3.3 First Proposal 37

After rearranging the terms of the inequality (3.20), we obtain immediately (3.18).

Proposition 4. Let l ∈ L, the following equation is valid for (MF)∑
i∈V

∑
k∈D

ϕikj =
∑
i

αij ∀j ∈ V (3.21)

Proof. This equation stipulates that the total traffic arriving at a VM j ∈ V is equal
to the total demand required by j. Assume that j is connected to a given DC k ∈ D
then. By virtue of the definition of σjk, we have:∑

i∈V

ϕikj = σjk.
∑
i∈V

αij (3.22)

By summing up the two members of (3.22) on all the DCs, we obtain:∑
k∈D

∑
i∈V

ϕikj =
∑
k∈D

σjk.
∑
i∈V

αij (3.23)

Since
∑

k∈D σjk = 1 by virtue of the constraint (3.11), we obtain immediately (3.21).
This equality ensures that the amount of traffic arriving to j ∈ V through the DC
k ∈ D is equal to the total demand of j. In fact, it is another formulation of the
demand satisfaction constraint.

In the next section, we present the different experiment results conducted on the
proposed formulations (HL) and (MF).

3.3.4 Performance Evaluation

In this section, we present the results of experiments conducted on the optimization
models (HL) and (MF) proposed for solving the offline VM placement problem in
geo-disributed DCs. We generated instances of different sizes in order to evaluate the
execution time of the linear programs and the amount of traffic reduced within the
backbone network. We also compared the (HL) and (MF) formulations presented
in Sections 3.3.1 and 3.3.2.

The different experiments were carried out on a machine that has an Intel Xeon
3, 3 GHz CPU and 8GB of RAM. We have used the commercial solver CPLEX 12.2
[92] to solve, evaluate and compare different ILP formulations. In all tests, we have
considered a general network topology modeling a geographically distributed Cloud
architecture.

We assume that VMs have three different instance types (Small, Medium and
Large). We have considered the different values of hardware metrics provided by
Amazon Elastic Computing Cloud (EC2) [29]. Without loss of generality, we assume
that all DCs have the same resource capacities. Each VM can be placed on two
possible DCs, known a priori, but effectively, each VM is assigned to only one DC.
The traffic matrix represents traffic bandwidth requirements between each pair of
VMs. The traffic matrix has been generated randomly. We assume that all VMs
can possibly communicate and exchange data with each others. The traffic matrix
values vary from 1 to 10 Mbps. All the results are averages in 10 groups of instances
generated randomly.

We denote by:

3.3 First Proposal 38

(a) The (HL) Formulation. (b) The (MF) Formulation.

Figure 3.2: Variation of the execution time between MF and HL for |V | = 60 and
|D| = 6.

• HL, the hub location formulation. 3.3.1.

• MF , the enhanced multicommodity formulation presented in Section 3.3.2.

• MFw, the multicommodity formulation without the valid inequalities.

• S, is the value of the optimal solution provided by CPLEX for (MF) expressed
in Mbps.

• Sw, is the value of the best solution provided by CPLEX for (MFw) expressed
in Mbps.

• T , is the execution time in seconds for (MF).

• Tw, is the execution time in seconds for (MFw).

• G, is the gap (%) between S and the lower bound provided by CPLEX for
MF .

• Gw, is the gap (%) between Sw and the lower bound provided by CPLEX for
MFw.

Note that if the gap is equal to zero, it means that the optimal solution is reached.
The OM acronym designates an out-of-memory problem of the CPLEX solver.

Comparison of MF and HL

In order to show the effectiveness of the (MF) formulation, we have compared it
with the (HL) formulation. The tests were performed using the same set of instances
and data inputs for |V | = 60 and |D| = 6. We plot the execution time for 10
instances generated randomly for both formulations. The experiment results are
shown in Figure (3.2a) and (3.2b). Although these two formulations are equivalent
and provide the same optimal solution, we observe a huge difference of the execution
time between the two formulations. We can conclude that the (HL) formulation is
not efficient for practical cases and for large problem sizes compared to the (MF)
formulation.

3.3 First Proposal 39

(a) Variation of the execution time with respect
to the number of VMs.

(b) Variation of the objective function with re-
spect to the number of VMs.

Figure 3.3: Experiment results performed on MF.

(|V |, |D|) (MF) (MFw)
S G T Sw Gw Tw

(100, 6) 15057,4 0 1,5738 - 100 OM
(150, 6) 33736,7 0 2,479 - 100 OM
(200, 6) 60037,2 0 7,8266 - 100 OM
(250, 6) 84294,5 0 18,3285 - 100 OM
(300, 6) 134690 0 25,9 - 100 OM
(350, 6) 183481,5 0 40,0093 - 100 OM

Table 3.1: Experiment results for (MF) and (MFw).

Impact of Valid Inequalities

It is interesting to observe the impact of the addition of valid inequalities presented
on Section 3.3.3 on the computational effort. For this particular purpose, we per-
formed a set of computational tests and we compared the (MF) formulation with
and without adding valid inequalities. The results are shown in Table (3.1). These
results show that the (MF) formulation is more efficient in terms of execution time
for large size instances. Moreover, the valid inequalities that we have added to this
formulation have proven its effectiveness. In fact, when we compare the formulations
(MF) and (MFw) we note that the (MFw) formulation presents in many cases an
out-of-memory problem when trying to solve it on CPLEX and no optimal solution
has been provided. On the other hand, (MF) is able to provide for all instances the
optimal solution in a short period of time which, in general, does not exceed one
minute.

Then, we have fixed the number of DCs |D| = 6 and we have plotted the ex-
ecution time and the values of the objective function for an increasing number of
VMs. The results are depicted in Figures (3.3a) and (3.3b). We remark that the
amount of traffic within the backbone network increases when we add more VMs.
This is due to the communication traffic between different VMs. In fact, we have
considered that all VMs are communicating with each other in order to increase the
problem difficulty and test the stability of our model.

3.4 Second Proposal 40

Despite the effectiveness of the proposed valid inequalities, the problem remains
complex and hard to solve for a number of VMs |V | > 400. Thus, in the next
section, we present another efficient formulation to solve the offline VM placement
in geo-distributed DCs.

3.4 Second Proposal

In this section, we present our second attempt to solve the static VM placement
problem in geo-distributed DCs. Due to the large number of VMs in real cloud
environment, the formulations presented in the previous sections cannot be used ef-
ficiently. Using extensive experiments, we show the effectiveness of this formulation.
This work has been presented in [65]. First, we present the classical formulation
of the hub location problem proposed [102] and we adapt it to fit our problem.
Then, in order to reduce the execution time of the linear program, we have used
variable aggregation technique. Finally, we present experiments results showing the
effectiveness of our proposal.

3.4.1 The Classical Formulation

The problem is considered as a complete graph G = (N,E), where N is the set of the
nodes constituted by VMs and DCs and E is the set of the edges. By considering
a complete graph structure, we aim to estimate the amount of traffic exchanged
between each pair of DCs so that we can dimension physical capacity links of the
backbone network. We consider that VMs are connected to DCs by virtual links.
We are given a traffic matrix that indicates the amount of communication traffic
between each pair of VMs. We assume that each VM can be assigned into two
possible DCs in order for example to satisfy geographical proximity considerations.
But only one DC is effectively assigned to each VM.

We adapt a well-established classical formulation presented in [102] for the single
allocation capacitated hub location problem. Although the two problems are quite
different, they have many similarities that permit the adaptation of the formulation
of [102] to fit our problem. This formulation had been largely used in the literature
as being the most efficient formulation for the problem of Hub Location [103].

In this formulation, we consider the following decision variables, similar to those
of [102].

• zhi , takes 1 if the VM i ∈ V is placed in the DC h ∈ D, 0 otherwise.

• f ikh, designates the amount of traffic generated by the VM i ∈ V and circulating
between DCs h ∈ D and k ∈ D.

We denote by Oi, the total flow emanating from a VM i. We have:

Oi =
∑
j∈V

dij ∀i ∈ V (3.24)

The linear model denoted by (CF) is described as follows:

min
∑
k∈D

∑
h∈D
h6=k

∑
i∈V

f ikh (3.25)

3.4 Second Proposal 41

Subject to:

zhi .Oi −
∑
j∈V

dij.z
h
j =

∑
k∈D

f ihk −
∑
k∈D

f ikh ∀i ∈ V, ∀h ∈ D (3.26)

zhi 6 ahi ∀i ∈ V, ∀h ∈ D (3.27)∑
h∈D

zhi = 1 ∀i ∈ V (3.28)∑
i∈V

uir.z
h
i 6 caphr ∀r ∈ R, ∀h ∈ D (3.29)

zhi ∈ {0, 1} ∀i ∈ V, ∀h ∈ D
f ihk > 0 ∀i ∈ V, ∀h, k ∈ D

The objective function (3.25) aims to minimize the amount of traffic generated
by communicating VMs on the backbone network. The constraint (3.26) ensures
the flow conservation. As for the constraint (3.27), it is a location constraint that
indicates that the placement of different VMs must be restricted to a particular
number of DCs that satisfy location constraint. This constraint aims to maintain
service performance and to reduce time delay by placing high-communicating VMs
in proximity of end-users. The matrix denoted by aki is an input of the problem.
It can be produced by measuring performance between each pair of nodes of the
graph G. The constraint (3.28) ensures that every VM is running on only one DC.
The final constraint (3.29) is a capacity constraint. It ensures that the amount of
hardware resources consumed by different VMs placed in a given DC does not exceed
the hardware capacities of this DC.

The aim of this formulation is to solve optimally the problem of placing communi-
cating VMs with correlated traffic in geographically distributed DCs for large-scale
Cloud system. Unfortunately, this formulation is time and resource consuming.
Thus, in order ro reduce the execution time of the linear programs, we have applied
variable aggregation techniques as shown in the next section.

3.4.2 Variable Aggregation

We note that the formulation presented above, can be reformulated to another
equivalent formulation that turns out to be more efficient as it reduces the number
of the variables.

In this formulation, we consider new decision variables:

• The first, designates the amount of traffic originated from a VM i ∈ V and
destined to a DC h ∈ D.

vih =
∑
k∈D

f ikh ∀i ∈ V, ∀h ∈ D (3.30)

• The second decision variable designates the amount of traffic generated by
VMs and sent to the backbone network.

ϕih =
∑
k∈D

f ihk ∀i ∈ V, ∀h ∈ D (3.31)

3.4 Second Proposal 42

Since we aim to minimize the amount of traffic circulating on the backbone
network and we do not consider any associated cost, there is no need to consider
the first decision variable in the objective function and in the flow conservation
constraint. Thus, this reformulation reduces considerably the number of variables
which becomes |V |.|D| instead of |V |.|D|2. A comparative experiment study will be
provided in next section.

Suppose that we have |V | = 1000 and |D| = 10, then the number of variables
of the classical formulation (CF) is equal to 105. However, when we adopt variable
aggregation approach, the number of variables is reduced to 104. Hence, the new
equivalent formulation denoted by (AG) is presented as follows:

min
∑
i∈V

∑
h∈D

ϕih (3.32)

Subject to:

Oi.z
h
i −

∑
j∈V

dij.z
h
j 6 ϕih ∀i ∈ V, ∀h ∈ D (3.33)

zhi 6 ahi ∀i ∈ V, ∀h ∈ D (3.34)∑
h∈D

zhi = 1 ∀i ∈ V (3.35)∑
i∈V

uir.z
h
i 6 caphr ∀r ∈ R, ∀h ∈ D (3.36)

zhi ∈ {0, 1} ∀i ∈ V, ∀h ∈ D
ϕih > 0 ∀i ∈ V, ∀h ∈ D

The new objective function (3.32) aims to minimize the amount of traffic sent
to the backbone network. By minimizing the traffic sent to the backbone network,
we implicitly reduce the traffic between the DCs that are connected through this
network. In the flow conservation constraint (3.33), we replace the decision variables
used in the first model by the new decision variables defined in (3.31) and (3.30).
The constraints (3.34), (3.35) and (3.36) are exactly the same constraints of the first
model (CF).

Theorem 1. The classical formulation (CF) and the aggregated formulation (AG)
are equivalent.

Proof. To prove the equivalence of the two formulations, we will show how to obtain
a CF solution from an AG solution and vice versa.

It is worth noting that the value of the objective function does not change. So
if we can obtain a CF (AG) solution from an AG (CF) solution, then the solution
that minimizes CF (AG) will minimize also a corresponding solution in AG and the
optimal solution for the problem can be obtained equivalently by means of CF or
AG.

Let us consider the AG formulation. The variable aggregation that has been
exploited to transform CF to AG formulation are the following:

vih =
∑
k∈D

f ikh ∀i ∈ V, ∀h ∈ D (3.37)

ϕih =
∑
k∈D

f ihk ∀ ∈ V, ∀h ∈ D (3.38)

3.4 Second Proposal 43

0

2

4

6

8

10

12

14

10 20 40 6 0 80 10 0

TI
M

E
(s

)

#VMS/TENANT

CF AG

(a) Time versus number of VMs per tenant for
CF and AG.

0

2

4

6

8

10

12

10 20 4 0 6 0 8 0 10 0

TI
M

E
(s

)

#VMS/TENANT

1000 VMs 2000 VMs 4000 VMs

(b) Variation of the execution time of AG with
respect to the number of VMs per tenant.

Figure 3.4: Experiment results performed on CF and AG.

The flow conservation constraint in CF can be written as follows:

xhi .Oi −
∑
j∈V

dij.x
h
i = ϕih − vih ∀i ∈ V, ∀h ∈ D (3.39)

From CF to AG: Let us consider a generic admissible solution for CF 〈fkhi , xhi 〉.
To obtain the AG formulation, just sum the flows originated from i (source node)
and destined to the backbone network. Since we aim to minimize the amount of
traffic circulating on the backbone network and we do not consider any associated
cost, there is no need to consider the first decision variable in the objective function
and in the flow conservation constraint.

Thus, the flow conservation constraint can be written as follows:

xhi .Oi −
∑
j∈V

dij.x
h
i 6 ϕih ∀i ∈ V, ∀h ∈ D (3.40)

From AG to CF: Let us consider a generic admissible solution for AG 〈ϕih, xhi 〉.
To obtain the flow conservation equality, we add an intermediary decision variable
as follows:

vih =
∑
k∈D

f ikh ∀i ∈ V, ∀h ∈ D (3.41)

Thus, we ensure the conservation of the flows destined to the backbone and the
flows received via the backbone. Hence, the flow conservation constraint follows
immediately.

In the next section, we present experiments results showing the effectiveness of
the proposed optimization model.

3.4.3 Experiment Results

In this section, we present the experiment results conducted on the optimization
models presented in Section 3.4.

We have used three instance types (Small, Medium and Large) which are pro-
vided by Amazon Elastic Computing Cloud (EC2). Without loss of generality, we

3.4 Second Proposal 44

(AG) (CF)
S T G S T G

(2000, 10) 31713 2,176 0 31713 7,538 0
(2000, 20) 65287 2,262 0 65287 6,684 0
(2000, 40) 132221 2,047 0 132221 7,842 0
(2000, 60) 197789 2,568 0 197789 9,202 0
(2000, 80) 255693 2,663 0 255693 10,748 0
(2000, 100) 314895 2,683 0 314895 12,229 0

Table 3.2: Equivalence between (CF) and (AG).

assume that all DCs have the same hardware capacities. We consider that the servers
are housed in racks. Every server has 8 cores and 16 GB of RAM. We consider that
each rack hosts 30 server and each DC has an average of 500 racks. For each ex-
periment, we randomly generate 10 groups of tenant requests. All the experiment
results are averaged.

Let us denote by:

• S, is the value of the optimal solution provided by CPLEX and expressed in
(Mbps).

• T , is the convergence time, expressed in seconds.

• G, is the gap between S and the lower bound provided by CPLEX and ex-
pressed in %. Note that G = 0 indicates that the optimal solution is reached.

The Table (3.2) demonstrates the equivalence between the two formulations (CF)
and (AG). Both formulations provide exactly the same values of the objective func-
tion.

In order to show the effectiveness of the strengthening technique that we have
used, we have compared the performance of the two formulations (CF) and (AG)
using the same data instances. We fixed |V | = 1000 and we plotted the execution
time for an increasing number of tenant requests. The results are depicted in Figure
(3.4a). The results show the effectiveness of the variables aggregation approach.
Moreover, the values of the execution time of (AG) are more stable than those of
(CF) as the number of VMs per tenant increases.

To verify the scaling properties of the final linear program (AG), we fixed the
number of DCs (|D| = 6), and plotted the execution time for an increasing number
of VMs (|V | = 1000 to 4000) while varying the number of VMs per tenant. Figure
(3.4b) shows the obtained results. We note that the execution time of the opti-
mization model increases with the number of inter-communicating VMs. However,
it remains reasonable even for 4000 VMs. Indeed, it does not exceed a dozen of
seconds.

In order to show the quality of the solution provided by AG in terms of minimiz-
ing the traffic volume, we have compared it with the well-known placement algorithm
First-Fit. We have chosen to compare our proposal with the First-Fit algorithm as
the use of the latter is very common in cloud systems [104], [105], [106]. We have
fixed the number of DCs to six and we have varied the number of VMs per tenant
from 20 to 100. We have plotted the values of the objective function of (AG), which

3.5 Conclusion 45

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

4500000

5000000

20 40 60 80 100

Ba
ck

bo
ne

 T
ra

ffi
c

(M
bp

s)

#VMs per Tenant

AG First-fit

(a) Backbone traffic versus the number of
VMs/tenant, |V | = 1000.

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

9000000

10000000

20 40 60 80 100

Ba
ck

bo
ne

 T
ra

ffi
c

(M
bp

s)

#VMs per Tenant

AG First-fit

(b) Backbone traffic versus the number of
VMs/tenant, |V | = 2000.

0

2000000

4000000

6000000

8000000

10000000

12000000

14000000

16000000

20 40 60 80 100

Ba
ck

bo
ne

 T
ra

ffi
c

(M
bp

s)

#VMs per Tenant

AG First-fit

(c) Backbone traffic versus the number of
VMs/tenant, |V | = 3000.

Figure 3.5: Backbone traffic for |V | = 1000, 2000 and 3000 VMs.

describes the amount of traffic in the backbone network in (Mbps). Then, we have
compared the values provided by the solver and the values provided by first-fit. We
have conducted this test for a range of VMs varying from 1000 to 3000. The results
are depicted in figure (3.5). Compared to the first-fit algorithm, it can be seen that
our model (AG) reduces the backbone traffic by 19% for symmetric traffic matrices.

In the next chapters, we will use the formulation denoted by (AG) to solve the
initial VM placement problem denoted by IVMP.

3.5 Conclusion

In this chapter, we have focused on the offline problem of VM placement in a geo-
graphically distributed DCs. We presented different ILP formulations to solve this
problem. Moreover, we used several strengthening techniques in order to enhance
the execution time of the linear programs. However, the proposed models are static
(i.e offline). They do not consider a reconfiguration of the cloud system and they are
often used to solve the initial VM placement problem. Hence, in the next chapter,
we study the online (i.e. dynamic) version of the problem which considers live VM
migration.

Chapter 4
Online VM Placement and Migration
Optimization in Geo-Distributed DCs

Contents
4.1 Introduction . 46

4.2 Problem Description . 46

4.3 Problem Formulation . 47

4.3.1 Initial VM Placement Problem 47

4.3.2 Dynamic VM Placement Problem 49

4.3.3 A Numerical Example . 50

4.4 Performance Evaluation 52

4.4.1 Experiments using CPLEX 52

4.4.2 Simulations using CloudSim 56

4.5 Conclusion . 59

4.1 Introduction

In this chapter, we formally define the online VM placement problem in geo-distributed
DCs. Due to the complexity of the problem, we divide it into two sub-problems.
First, we remind the formulation of the Initial (i.e. offline) VM placement prob-
lem that we have presented in the previous chapter. Second, we formally define
the dynamic (i.e. online) VM placement problem in geo-distributed DCs. Finally,
we detail and comment the experiment and simulation results conducted on the
proposed optimization models. This work has been presented in [107] and [108].

4.2 Problem Description

We model the physical infrastructure by a complete graph G(V ∪ D,E), where V
denotes the set of VMs and D the set of DCs. The set of edges E represents the set
of the links of the backbone network.

Due to the complexity of the problem, we divide it into two sub-problems:

46

4.3 Problem Formulation 47

Initial Placement
Planner

Dynamic Placement
Planner

Placement Planner

• Number of VMs
• VMs resource capacities
• Traffic Matrix
• DCs capacities

Initial Placement Plan

Placement and migration scheme

Migration Scheduler

Figure 4.1: Dynamic Placement Planner Overview.

• The Initial Placement Problem. It consists of finding the optimal initial (or
first) placement scheme for intercommunicating VMs such that the location
and capacity constraints are all satisfied while minimizing the amount of traffic
circulating on the backbone network. It is an offline model that provides static
placement plans.

• The Dynamic VM Placement Problem. It invokes the VM migration as well
as the interaction between the initial (or the previous) placement scheme and
the migration decisions.

We define the Dynamic VM Placement Problem (DVMP) by considering two
states of the system:

• Initial state: Refers to the initial (or the previous) placement scheme of the
VMs in the cloud system.

• New state: Refers to the new configuration of the cloud system, taking into
account the migration of the already existing VMs and the placement decisions.

In the next section, we present the optimization models used to solve the DVMP
in geo-distributed DCs.

4.3 Problem Formulation

In this section, we formally define the DVMP within a distributed Cloud infrastruc-
ture as a MILP programs.

4.3.1 Initial VM Placement Problem

The following formulation has been presented in Chapter 3, Section 3.4.2. We refer
to this formulation by the Initial VM Placement Problem (IVMP). For the sake of

4.3 Problem Formulation 48

simplicity, we consider the same decision variables indexed by (0) to indicate the
initial (previous) state of the system:

• We designate by ϕ
(0)h
i the amount of traffic originated from the VM i ∈ V and

sent from the DC h ∈ D.

• We define the decision variable x
(0)h
i as:

x
(0)h
i =

{
1 If the VM i is placed in the DC h

0 Otherwise

We denote by Oi the total traffic emanating from a VM i. We have:

Oi =
∑
j∈V

dij ∀i ∈ V (4.1)

Our objective is to minimize the amount of traffic generated by the communica-
tion between different VMs in order to prevent possible link congestion. Hence, the
objective function (4.2) can be defined as follows:

min
∑
i∈V

∑
h∈D

ϕ
(0)h
i (4.2)

Subject to the following constraints:

ϕ
(0)h
i > Oi.x

(0)h
i −

∑
j∈V

x
(0)h
j .dij ∀i ∈ V, ∀h ∈ D (4.3)∑

h∈D

x
(0)h
i = 1 ∀i ∈ V (4.4)∑

i∈V

uir.x
(0)h
i 6 caphr ∀r ∈ R, ∀h ∈ D (4.5)

x
(0)h
i 6 a

(0)h
i ∀i ∈ V, ∀h ∈ D (4.6)

ϕ
(0)h
i > 0 ∀i ∈ V, ∀h ∈ D

x
(0)h
i ∈ {0, 1} ∀i ∈ V, ∀h ∈ D

The first constraint (4.3) ensures the flow conservation. As for the constraint (4.4), it
ensures that every VM is running on only one DC. The constraint (4.5) represents the
capacity constraint on the DCs. It ensures that the amount of resources consumed by
different VMs placed in a given DC does not exceed the resource capacity of this DC.
The final constraint (4.6) is a location constraint that restricts the placement of VMs
to a particular number of DCs that satisfy a location constraint. This constraint aims
to maintain service performance and to reduce time delay by placing VMs with high
communication volumes in proximity of end-users. This MILP formulation provides
the initial (i.e. first) placement scheme of VMs. We consider that the cloud system
is in the initial sate.

In the next section, we present the dynamic version of the VM placement problem
in a distributed cloud infrastructure.

4.3 Problem Formulation 49

4.3.2 Dynamic VM Placement Problem

Because of the fluctuating demand, it is important to adjust the placement of dif-
ferent VMs dynamically and in an online manner. In this work, we consider live
migration of VMs over WAN that connects different DCs placed in different regions.
In fact, VM live migration is a technology that offers the ability to migrate VM
through WAN from one DC to another [109]. VM live migration brings multiple
benefits. It provides higher performance and improves the QoS [110].

However, in WAN VM live migration, a significant amount of traffic is generated
during the migration process. Literally, for a WAN live migration, it is crucial to
transfer the VMs images as well as its local persistent state and its on-going net-
work connections especially for distributed and intensive Input/Output applications.
Nevertheless, with the lack of high end-to-end network bandwidth over WANs and
the potential transfer of large amounts of data, the downtime and migration time
are expected to be high [45]. Hence, it is important to consider the minimization of
the backbone traffic in the migration decisions.

In a dynamic cloud environment, migration can be performed within different
scenarios. In this work, we consider two main scenarios of VM migration across
distributed cloud infrastructure:

1. The arrival or/and departing of VMs.

2. The change of the traffic matrix.

Let us consider Vo as the set of VMs that have been already placed in the system,
Vn as the set of new arriving VMs and Vd the set of departing VMs. We denote by
V = (Vo∪Vn)\Vd the set of VMs in the system at a certain time t. This formulation
takes as an input the solution of the initial or previous placement problem modeled
by x

(0)h
i which refers to the previous location of the VM i ∈ Vo in the system.

In fact, x
(0)h
i is provided for the first time by solving the optimization model

IVMP presented in the previous chapter. At the beginning of each time slot, the
DVMP program is executed and the values of x

(0)h
i are updated with the current

placement scheme before the reconfiguration of the system.
We consider the following decision variables indexed by (1) to identify the new

state of the system.

• We designate by ϕ
(1)h
i the amount of traffic originated from the VM i ∈ V and

sent from the DC h ∈ D.

• We define the binary decision variable x
(1)h
i as follows:

x
(1)h
i =

{
1 If the VM i is placed in the DC h

0 Otherwise

• To model the migration decision, we introduce the binary decision variable zi
as follows:

zi =

{
1 If the VM i ∈ Vo and i is migrated

0 Otherwise

4.3 Problem Formulation 50

The objective of this formulation is to minimize the traffic on the backbone network
(i.e. Inter-DCs traffic). In fact, we consider the sum of the traffic generated by
the communication between VMs and the traffic generated during the migration
process. The migration decision concerns only the VMs (i ∈ Vo) that are already
placed in the cloud system. Let us consider Mi the amount of traffic generated by
the migration of the VM i ∈ Vo. As we consider WAN migration, we define the
migration traffic as a function of the memory size of the VM and its local disk size.

The objective function (4.7) minimizes the amount of traffic circulating on the
backbone network, which consists in the communication traffic and the traffic gen-
erated during the migration process.

min
∑
i∈V

∑
h∈D

Mi.zi + ϕ
(1)h
i (4.7)

Subject to the following constraints:

zi > |x(1)hi − x(0)hi | ∀i ∈ V, ∀h ∈ D (4.8)

ϕ
(1)h
i > Oi.x

(1)h
i −

∑
j∈V

x
(1)h
j .dij ∀i ∈ V, ∀h ∈ D (4.9)∑

h∈D

x
(1)h
i = 1 ∀i ∈ V (4.10)∑

i∈V

uir.x
(1)h
i 6 caphr ∀r ∈ R, ∀h ∈ D (4.11)

x
(1)h
i 6 a

(1)h
i ∀i ∈ V, ∀h ∈ D (4.12)

ϕ
(1)h
i > 0 ∀i ∈ V

x
(1)h
i ∈ {0, 1} ∀i ∈ V, ∀h ∈ D
zi ∈ {0, 1} ∀i ∈ Vo

If a VM is migrated, its old location is obviously different from its new one.
This fact is modeled by the set of constraints (4.8). As for the constraint (4.9),
it is a flow conservation constraint. The constraint (4.10) ensures that a VM is
running on only one DC. The capacity constraint on the DCs is ensured by the
constraint (4.11). Finally, constraint (4.12) refers to the location constraint. This
model provides the optimal migration and placement scheme for different VMs that
minimizes the backbone traffic constituted by both communication and migration
traffic. However, it does not provide the migration scheduling plan of different VMs
to be migrated. Nevertheless, as we will show in the next chapter, the migration
sequence of inter-communicating VMs has an influence on the overall amount of
network traffic and may lead to link congestion and performance degradation of the
whole system.

In the next section, we present a numerical example showing the behavior of
both the Initial Placement Planner and the Dynamic Placement Planner.

4.3.3 A Numerical Example

In this section, we consider an example illustrating that the models of the prior
subsections work well with migration at minimizing backbone traffic. Let us consider

4.3 Problem Formulation 51

100

1030
100

VM1 VM
2

VM4VM3
30

50

A=DC2,
DC3

A=DC1,
DC2

A=DC1,
DC2

A=DC1,
DC3

Backbone
network

DC1 DC3

DC2

(1) Initial Placement

VM1

VM4

VM3

IVMP Objective function = 110 Mbps

VM
2

Figure 4.2: Initial Placement scenario (IVMP).

the example presented in Figure (4.2). We are given an application composed of
4 VMs, namely, VM1, VM2, VM3 and, VM4 exchanging data between them. For
simplicity purposes, we assume that the traffic matrices are symmetric. Tables (4.1a)
and (4.1b) present the amounts of network traffic exchanged between each pair of
VMs.

First, we need to place this application in the cloud system, for the first time,
while simply ensuring the location constraint (represented by the vector A in the
figure). This constraint restricts the placement of the VMs in a certain set of DCs.
In addition, the placement scheme must ensure minimum inter-DCs traffic. With
the above data, the IVMP model presented in Section 4.3.1, has been solved and has
provided an initial optimal placement scheme. We note that the objective function
of the IVMP model, which represents the overall traffic exchanged between DCs, is
equal to 110 Mbps.

A scenario we consider consists in the arrival of two VMs VM5 and VM6, that
need to be placed. The traffic matrix between all VMs has also been changed. Let
us consider a first situation where no VM migration is performed as illustrated by
Figure (4.3a). In this case, we need to simply place the new VMs and ignore the
change in the traffic matrix. We obtain thus, an overall backbone traffic that equals
to 380 Mbps.

Let us now solve the DVMP presented in Section 4.3.2. This model minimizes
both communication and migration traffic. The DVMP decides that VM2 must be
migrated from DC1 to the DC2 as presented in Figure (4.3b). The cost of migrating
the different VMs is illustrated by the letter M in the figure. We note that the
objective function of the DVMP represents the sum of the inter-DCs communication
traffic and the traffic generated during the migration process. After performing the
migration, the new objective function is equal to 103 Mbps. In contrast to the
example of Figure (4.3a), the migration of VM2 has minimized the backbone traffic
and has provided a better solution for the problem.

In the next section, we present the different experiments that we have conducted
on the proposed MILP formulations in order to evaluate the performance and the
effectiveness of our solutions.

4.4 Performance Evaluation 52

(b) Without migration

Objective function = 380 Mbps

Backbone
network

DC1 DC3

DC2

VM1

VM4

VM3 VM6
VM5

Placement
of new VMs

VM2VM1

VM2

VM4

VM6VM3

VM5

10

100

10

10

20

10

10

10

30

10100100

100

10

30

A=DC1, DC2; M=100

A=DC1, DC3; M=50

A=DC1, DC2; M=100

A=DC2, DC3; M=3

A=DC1, DC3; M=0

A=DC2, DC3; M=0New VMs: VM5, VM6
Workload changes

(a) Placement of new VMs without migration.

VM1

VM2

VM4

VM6VM3

VM5

10

100

10

10

20

10

10

10

30

10100100

100

10

30

(a) With migration

DVMP Objective function = 103 Mbps

A=DC1, DC2; M=100

A=DC1, DC3; M=50

A=DC1, DC2; M=100

A=DC2, DC3; M=3

A=DC1, DC3; M=0

A=DC2, DC3; M=0New VMs: VM5, VM6
Workload changes Backbone

network

DC1 DC3

DC2

VM2

VM1

VM4

VM3

Migration of the VM2

VM6
VM5

Placement
of new VMs

VM2

(b) Execution of DVMP (with migration).

Figure 4.3: Example of VM placement with and without migration.

VM1 VM2 VM3 VM4
VM1 0 100 30 100
VM2 100 0 50 10
VM3 30 50 0 30
VM4 100 10 30 0

(a) Initial Traffic Matrix.

VM1 VM2 VM3 VM4 VM5 VM6
VM1 0 10 10 30 10 10
VM2 10 0 100 10 100 100
VM3 10 100 0 30 30 20
VM4 30 10 30 0 10 10
VM5 10 100 30 10 0 100
VM6 10 100 20 10 100 0

(b) New Traffic Matrix.

Table 4.1: Traffic Matrix values.

4.4 Performance Evaluation

In order to evaluate the performance of our modules presented in the previous sec-
tions, we have first evaluated the effectiveness of the proposed exact methods in
terms of execution time and quality of the provided solutions using the commercial
solver CPLEX [92]. Then, to validate our approach under realistic conditions, we
have used the simulation toolkit CloudSim [93].

In the following, we present the configurations of the conducted experiments, the
performance metrics that we have evaluated as well as the obtained results.

4.4.1 Experiments using CPLEX

The different experiments were carried out on a machine that has an Intel Xeon 3;
3 GHz CPU and 8GB of RAM. We have used the commercial solver CPLEX 12.5
to solve and evaluate the different MILP formulations.

4.4 Performance Evaluation 53

0

2000000

4000000

6000000

8000000

10000000

12000000

1100 1200 1500 1600 1800 2000 2200 2400 2600 2800

B
ac

kb
o

n
e

Tr
af

fi
c

(M
b

p
s)

Total #VMs

Incremental DVMP IVMP

(a) Backbone traffic versus total # VMs (20 VMs/Tenant).

0

5000000

10000000

15000000

20000000

25000000

30000000

1100 1200 1400 1600 1800 2000 2200 2400 2600 2800

B
ac

kb
o

n
e

Tr
af

fi
c

(M
b

p
s)

Total #VMs

Incremental DVMP IVMP

(b) Backbone traffic versus total # VMs (40 VMs/Tenant).

Figure 4.4: Comparing the incremental, IVMP and DVMP for static traffic matrix.

Data Centers. Without loss of generality, we assume that all DCs have the same
hardware capacities. We consider that the servers are housed in racks. Every server
has 8 cores and 16 GB of RAM. We consider that each rack hosts 30 servers and
each DC has an average of 500 racks. In all experiments, we have fixed the number
of DCs to six.

VM Request. Each tenant may send a VM request. We consider that the VM
requests are independent. Each request represents a set of VMs that may exchange
data with each other. We assume that VMs have an instance type (Small, Medium
and Large). The different values of hardware metrics are provided by Amazon
Elastic Computing Cloud (EC2) [29]. Without loss of generality, we assume that
each VM can be placed on two possible DCs, known a priori, but eventually, each
VM is assigned to only one DC.

Traffic Matrix. In order to study the performance of our models, we consider
symmetric traffic matrices where its values vary between 1 and 100 Mbps. The
traffic matrix represents communication traffic or bandwidth requirement between
each pair of VMs. We have generated the traffic matrix randomly.

Performance of the Placement Planner Module

In this section, we present the experiment results conducted on the proposed for-
mulations. We study different performance evaluation metrics.

4.4 Performance Evaluation 54

0

200000

400000

600000

800000

1000000

1200000

1400000

1100 1200 1400 1600 1800 2000 2200 2400 2600 2800

B
ac

kb
o

n
e

Tr
af

fi
c

(M
b

p
s)

Total #VMs

Incremental DVMP IVMP

(a) Backbone traffic versus total # VMs (20 VMs/Tenant).

0

500000

1000000

1500000

2000000

2500000

3000000

1100 1200 1400 1600 1800 2000 2200 2400 2600 2800

B
ac

kb
o

n
e

Tr
af

fi
c

(M
b

p
s)

Total #VMs

Incremental DVMP IVMP

(b) Backbone traffic versus total # VMs (40 VMs/Tenant).

Figure 4.5: Comparing the incremental, IVMP and DVMP models for a dynamic
traffic matrix.

The Initial VM Placement Planner. The experiment results conducted on the
IVMP are presented in Chapter 3, Section 3.4.3. Please refer to the previous chapter
for more details.

The Dynamic Placement Planner. In this section, we present different exper-
iments conducted on the DVMP formulation presented in Section 4.3.2.

First, in order to test the efficiency of our solution, we have compared it with
other placement algorithms. First, we have implemented an incremental placement
algorithm. The main idea of this algorithm is to fix the placement scheme of the VMs
that are already placed in the system and try to place new arriving VMs according
to the residual capacities of DCs. In this case, VM migration is not considered and
the incremental algorithm takes placement decisions for the new arriving VMs only.

Then, we have executed the IVMP at the beginning of each time slot. In contrast
to the DVMP model, the IVMP model considers that all future demands are known
a priori and no migration cost is considered. It provides at the beginning of each time
slot new placement scheme of both the existing VMs and the new ones. This scheme
is considered as the ideal placement scheme since it does not consider migration
costs.

We have considered the case of a static traffic matrix, where the values of the
exchanged data between each pair of VMs do not vary over time. In this set of
tests, the number of initially placed VMs is fixed to 1000 VMs. The results of the
conducted tests are depicted in Figure (4.4).

We note that the incremental solution diverges and the gap between the DVMP

4.4 Performance Evaluation 55

0

2

4

6

8

10

12

14

16

18

20 40 60 80 100

Ti
m

e
(s

)

#VMs/Tenant

1000 2000 3000

Figure 4.6: Convergence time of the DVMP versus the number of VMs/Tenant.

algorithm and the incremental algorithm reaches 80%. On the other hand, we
observe that there is no gap between IVMP and DVMP. This result can be explained
by the fact that for a static traffic matrix, there is no change in the communication
pattern, hence, DVMP places the new arriving VMs without making any migration
since the residual capacities of the DCs are able to satisfy all new VMs requests.

In a dynamic environment, the inter-VM bandwidth requirement (i.e inter-VMs
communication) may change over time. Hence, it may be profitable to adjust the
VMs placement scheme according to the fluctuation of the traffic matrix. In this
set of tests, the number of initially placed VMs is fixed to 1000 VMs. The results
of the conducted tests are shown in Figure (4.5).

We can make the same observations regarding the gap between the incremental
algorithm and DVMP. The gap between the two solutions reaches almost 85%.
Furthermore, when the traffic pattern changes, we note that DVMP performs some
migrations. In contrast, the gap between the IVMP and the DVMP remains very
small. It can be explained by the fact that the number of migrations remains very
small compared to the total number of VMs in the system. Thus, the difference
between the two solutions is very small.

In order to evaluate the performance of the DVMP, we have varied the number
of VMs per tenant (from 20 to 100 VMs per tenant). We have plotted the execution
time of the DVMP. The results are shown in Figure (4.6). We note that the graph
is almost constant even when we increase the number of VMs per tenant for a total
number of VMs varying from 1000 to 3000. We can conclude that the number of
VMs per tenant has no impact on the execution time of DVMP.

Despite the benefits of VM migration, extensive migrations may impact the
whole system performance. Hence, it is crucial to keep the number of migrations as
small as possible. To study this metric, we have compared the number of migrations
considered by both DVMP and IVMP. In DVMP, we consider that each VM has
a migration cost as for the IVMP algorithm, which will be executed iteratively at
the beginning of each time slot, no migration cost is considered. The results are
depicted in Figure (4.7).

We note that for IVMP, the number of migrations is very high and varies a lot
over time. As for DVMP, the number of migrations is very small compared to the
total number of VMs in the system and it is more stable over time. Regardless
of this huge difference, the values of the objective solution for both algorithms are

4.4 Performance Evaluation 56

0

720

1200
1360 1388

1680
1520 1600

1892 1920

2188

2480

1708
1920

2320

2560

2320

3042

0 0 14 0 26 0 40 0 26 0 26 0 40 0 14 0 25 1

0

500

1000

1500

2000

2500

3000

3500

1
1

0
0

1
2

0
0

1
3

0
0

1
4

0
0

1
5

0
0

1
6

0
0

1
7

0
0

1
8

0
0

1
9

0
0

2
0

0
0

2
1

0
0

2
2

0
0

2
3

0
0

2
4

0
0

2
5

0
0

2
6

0
0

2
7

0
0

2
8

0
0

#
M

ig
ra

ti
o

n
s

Total #VMs

IVMP DVMP

Figure 4.7: Variation of the # migrations for both IVMP and DVMP.

very close. We can conclude that DVMP gives almost the same solution as IVMP,
which can be considered as the ”ideal” solution, but in contrast to IVMP ; it is
able to maintain the system performance and QoS by minimizing the number of
migrations.

In the next section, we present the simulation results conducted on the proposed
optimization models.

4.4.2 Simulations using CloudSim

Evaluating the performance and the efficiency of placement policies in real cloud en-
vironment under critical conditions and for different applications and service models
is challenging. In fact, the use of real cloud environment has several limitations such
as the system size and configuration which make the reproduction of some results
a very difficult task. Moreover, with a real cloud system, the evaluation of some
critical scenarios and failures is not supported. In addition, the access to real cloud
environment is costly [111].

To cope with these limitations, there are some simulation tools that offer the
possibility of evaluating different placement, allocation and scheduling policies under
different conditions. These tools, provide a controllable environment, free of cost,
that mimic the behavior of a real cloud environment. In such an environment, users
may test their models within critical situations in order to study the overheads of
their models and to cope with possible performance degradation before deploying
in real world [111].

In [112], the authors gave an analysis of the existent simulation tools in Cloud
Computing. Indeed, simulation techniques are used in several science research fields.
It is based on Information Technology, Principal of Similarity and Modeling Theory.
It uses simulation models of real or conceptual systems for dynamic experimentation
[113].

In this work, we have used the Cloud simulator CloudSim [111]. CloudSim is an
open source simulator, which enables seamless modeling, simulation, and experimen-
tation of cloud computing and application services. In addition, CloudSim has been
widely used in the literature to perform simulations in cloud systems [114, 72, 115].

We have implemented an extension of the CloudSim simulator that enables the

4.4 Performance Evaluation 57

Type Characteristics

HP ProLiant
ML110 G4

1 x [Xeon 3040 1860 MHz, 2 cores], 4GB

HP ProLiant
ML110 G5

1 x [Xeon 3075 2660 MHz, 2 cores], 4GB

Table 4.2: Host characteristics.

Instance MIPS PES RAM

High-CPU Medium Instance 2500 1 870

Extra Large Instance 2000 1 1740

Small Instance 1000 1 1740

Micro Instance 500 1 613

Table 4.3: VM instance types.

simulation of the communication between VMs placed in distant DCs. In addition,
the extension that we have implemented allows the migration of VM from a DC to
distant one. This work has been presented in [108].

We have varied the number of DCs D = 4, 6, 8, 10. The capacity of a DC is
directly related to its number of physical hosts. The DCs are considered heteroge-
neous. We have used two types of hosts. The host characteristics are presented in
the table (5.3). The VM instance types used in the simulation are presented in table
(4.3). We assume that each VM can be placed in two possible DCs, known a priory,
but eventually, each VM is assigned to only one DC. The number of applications as
well as the exchanged traffic are generated randomly.

To mimic realistic VM arriving process, we have generated the VMs arrival
request according to a Poisson distribution and we have varied the mean from 20
VMs per hour to 60 VMs per hour.

0

1000

2000

3000

4000

5000

6000

7000

8000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

B
ac

kb
o

n
e

tr
af

fi
c

(M
b

p
s)

Time (hour)

Random First Fit DVMP

Figure 4.8: Backbone traffic (Mean VM arrival = 20 VMs per hour).

First, we have compared some baseline placement algorithms (random and first-
fit) with our proposed one. We have run the simulation during 24 hours and have
plotted the amount of traffic exchanged between the DCs at the beginning of each
hour. The number of inter-communicating VMs is generated randomly according to

4.4 Performance Evaluation 58

0

500

1000

1500

2000

2500

3000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Ba
ck

bo
ne

 tr
af

fic
 (M

bp
s)

Time (hour)

Random First-Fit DVMP

Figure 4.9: Backbone traffic (Mean VM arrival = 60 VMs per hour).

52
86 109 110

142
202 209 234 252

292 280 308

251

296
343 362

391
455 434

555

452

526

605
562

18 19 8 25 12 6 23 14 3 2 7 14 4 3 2 1 16 13 11 8 19 31 12 27

0

100

200

300

400

500

600

700

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

#M
ig

ra
tio

ns

Time (Hour)

IVMP DVMP

Figure 4.10: Number of migrations during 24 hours.

the Poisson distribution. The results are depicted in Figures (4.8) and (4.9).
Our placement policy gives more efficient placement plan that reduces the amount

of the inter-DCs traffic compared to both random and first-fit algorithms.
Second, we have executed both IVMP and DVMP algorithms for 24 hours and

have plotted the number of performed migrations. The results are depicted in Figure
(4.10). As shown in the previous section, the number of migrations performed by
the IVMP algorithm is huge compared to the number of migrations performed by
the DVMP algorithm. We can conclude that the consideration of the migration cost
has an important impact on the placement and migration decisions. In addition,
excessive migrations may lead to a huge performance degradation in the cloud system
[116] [117]. Hence, the DVMP algorithm provides placement and migration plans
that aim to maintain the system stability and thus the system performance over
time.

In the Figure (4.11), we have plotted the traffic exchanged between the different
DCs and we have varied the number of DCs. The results show that the total inter-
DCs traffic decreases when we add more DCs to the system.

In the next set of test, we have studied the impact of the number of DCs on the

4.5 Conclusion 59

Figure 4.11: Total Inter-DCs traffic Vs number of DCs.

Figure 4.12: Average number of migrations per DCs Vs number of DCs.

number of performed migrations. Thus, we have varied the number of DCs from 4
to 10 and we have plotted the average number of migration per DCs. The results
are depicted in figure 4.12. The graph shows that the average number of migration
decreases when we add more DCs to the system.

4.5 Conclusion

In this chapter, we have proposed online MILP formulations that aim to solve the
problem of dynamic VM placement across geographically distributed DCs. Our
aim was to find an optimal placement and migration scheme for the different inter-
communicating VMs. Through the conducted experiments, we have shown that the
DVMP model is more efficient than the incremental model by almost 80%. In ad-
dition, the solution values of the DVMP model are very close to the solution values
of the IVMP problem in terms of the amount of the backbone traffic. However, the
variation of the number of migrations in the DVMP model remains very small com-
pared to the huge number of migrations proposed by the IVMP model. Thus, the
DVMP model ensures the stability of the system by minimizing the number of mi-
grations while reducing the inter-DC traffic. Live Migration of inter-communicating
VMs will produce additional traffic, as the VMs will continue to communicate with
each other. Hence, the migration ordering has a huge impact on the overall network
traffic during the migration process. In the next chapter, we will study this problem
by proposing both exact and heuristic solution to solve it.

Chapter 5
Traffic-aware VM Migration Scheduling
Problem

Contents
5.1 Introduction . 60

5.2 Best Migration Sequence 61

5.2.1 Migration Scheduling Example 61

5.2.2 Exact Solution . 62

5.2.3 Heuristic Solution . 64

5.2.4 Performance Evaluation 66

5.3 VM Scheduling with Time-Window Constraints 68

5.3.1 Exact Solution . 69

5.3.2 Heuristic Solution . 71

5.3.3 Quality of the heuristic solution 72

5.3.4 System Stability . 73

5.4 Conclusion . 75

5.1 Introduction

In this chapter, we focus on the VM migration scheduling problem within a geo-
distributed DCs. We propose both exact and heuristic methods to solve it. In fact,
the migration of inter-communicating VMs over the backbone network can lead to
the increase of the traffic on the network links. Hence, it is important to find the
best migration scheduling of VMs that minimizes the communication traffic. An
effective migration scheduling of VMs may prevent from network link congestion
and maintain the performance of both VMs in source and destination as well as the
migrating VM. The work presented in this chapter has been published in [107] and
[118].

60

5.2 Best Migration Sequence 61

VM 1

VM 2 VM 3

5 2

10

Virtual machine

Communication traffic

Figure 5.1: Example of three intercommunicating VMs.

5.2 Best Migration Sequence

In this section, we present both exact and heuristic solutions to solve the VM migra-
tion scheduling problem in geo-distributed DCs. Our aim is to minimize the traffic
volume within the backbone network.

Furthermore, this paper investigates the problem of VM migration scheduling
which aims to find the best migration sequence for inter-communicating VMs while
ensuring the minimum backbone traffic. In fact, few proposals have dealt with
the migration scheduling problem across WAN. However, their main concern was
to study of the migration techniques [119], to reduce migration time [120], or to
minimize the energy consumption during the migration [121].

In the following, we present an example showing the importance of VM schedul-
ing problem.

5.2.1 Migration Scheduling Example

Let us consider the solutions provided by the DVMP and the IVMP optimization
models presented in the previous chapters. Assume that some VMs, corresponding
to the nonzero values of the variables zi = 1, that must be moved from the DC h
(x

(0)h
i = 1) to the DC k (x

(1)k
i = 1). These VMs are exchanging data flows given

by the elements dij of the traffic matrix. At each step of the migration process,
there is a certain amount of data traffic exchanged between the two DCs on which
the migration is performed. The volume of this traffic depends on the migration
sequence of the VMs. For instance, we consider the three VMs network depicted in
Figure (5.1). A first order of migration could be VM1−VM2−VM3 as illustrated
in Figure (5.2a). By moving the VM #1 the traffic is equal to 7, and then it raises to
15 after migrating the VM #3 and the total traffic becomes 15+7=22. Nevertheless,
when considering the migration order of VM3− VM2− VM1 as depicted in figure
(5.2b), the total flow is equal to 19 leading to a better solution.

In the next section, we formally define the VM migration scheduling problem as
an optimization model.

5.2 Best Migration Sequence 62

VM1

2 10

5

2 + 5 = 7 10 + 5 = 15

Total traffic = 22

VM2 VM3

(a) First Scheduling scenario.

10 5

2

10 + 2 = 12 5 + 2 = 7

Total traffic = 19

VM3 VM2 VM1

(b) Second Scheduling scenario.

Figure 5.2: Migration Scheduling Example.

5.2.2 Exact Solution

In this section, we present the mathematical formulation proposed to solve the VM
migration scheduling problem in geo-distributed DCs. As shown in the example of
Section 5.2.1, we model the problem as a graph, where VMs (to be migrated) are
considered as nodes and the traffic exchanged between each pair of VMs as the flow
that will be sent.

In such a linear network, there is one single path for the flow between each pair
of VMs. The total traffic engaged in the network is the sum of the products of the
amounts of flow between each pair of VMs by the lengths of each path expressed
in number of hops. Consequently, obtaining a minimum value of the total traffic
consists in finding a Hamiltonian cycle of minimum value spanning all the VMs to
be migrated.

It is important to underline that the migration scheduling problem can be de-
composed by pairs of DCs, and thus, reducing its complexity. The order of DC pairs
has no influence on the value of the total flow generated during to the migration
process and injected into the backbone network.

Proposition 5. The total traffic caused by the migration scheduling is independent
of the data centers pairs ordering.

Proof. At any step of the migration process, we denote by xhi = 1 if the VM remains
connected to the DC h (i.e. placed in h). It takes the value 0 otherwise. The data
traffic injected to the backbone network and caused by the migration process can
be written as follows.

min
∑
i∈V

∑
j∈V

∑
h∈D

∑
k∈D

dijx
h
i x

k
j (5.1)

Subject to: ∑
h∈D

xhi = 1, ∀i ∈ V. (5.2)

But, from (5.2), we obtain:

xki +
∑
h6=k

xhi = 1, ∀i ∈ V. (5.3)

5.2 Best Migration Sequence 63

VM1

Data Center A

VM3

VM2

10
2

Migration Scheduling
Optimization

0

5
VM3 VM1

VM2

0 0

10 5

Optimal Migration Cycle

VM3

VM1VM2

10

5

Optimal Migration SequenceVirtual Machines to be migrated

Figure 5.3: Running Example.

After replacing (5.3) in (5.1), we have:

z =
∑
i∈V

∑
j∈V

∑
h∈D

dijx
h
i (1− xhj) (5.4)

From the new form of the expression (5.1) presented in equation (5.4), we deduce
that the total traffic due to the migration process does not depend on the DC pairs,
thus, independent from DC pairs ordering.

Consequently, the migration scheduling problem is also independent from the
DC pair ordering and can be considered by DC pairs separately. This problem can
be seen as a variant of the well-known Traveling Salesman Problem (TSP) [122]
where the aim is to find the tour of minimum total cost. In our case, the objective
is to minimize the communication traffic during the migration process.

The formulation proposed in [123] is the most efficient for the TSP problem as
it provides a polynomial number of constraints and have O(n2) variables.

In this formulation, we are given an undirected complete graph G = (M,E),
where M = N ∪ {0}. N denotes the set of VMs that will be migrated and E the
set of edges. Since there is no specified starting VM to migrate, we add a dummy
node 0, which refers to a starting point of the migration sequence. This particular
node does not exchange flow with other nodes. The optimal sequence is obtained by
omitting this extra node. We denote by cij the amount of traffic exchanged between
each pair of VMs that will be migrated. Figure (5.3) presents a numerical example
of the exact optimization model.

In this formulation, we are given the following decision variables:

• ui, designates the position of the VM i ∈M in the migration sequence.

• yij, is a binary decision defined as follows.

yij =

{
1 If the link (i,j) belongs to the tour

0 Otherwise

• We define the decision variable wij > 0 as the distance between VMs i and j.

The objective function can be denoted as follows:

min
∑
i∈N

∑
j∈N

wij.cij (5.5)

5.2 Best Migration Sequence 64

Subject to:

wij > ui − uj ∀i, j ∈M (5.6)

wij > uj − ui ∀i, j ∈M (5.7)∑
j∈M
i6=j

yij = 1 ∀i ∈M (5.8)

∑
j∈M
i6=j

yji = 1 ∀i ∈M (5.9)

ui − uj + n.yij + (n− 2).yji 6 n− 1 ∀i ∈ N,∀j 6= i ∈ N (5.10)

1 + (n− 2).yi0 +
∑
j∈N

yji 6 ui ∀i ∈ N (5.11)

n− (n− 2).y0i −
∑
j∈N

yij > ui ∀i ∈ N (5.12)

yij ∈ {0, 1} ∀i ∈M,∀j ∈M
wij > 0 ∀i ∈M,∀j ∈M

The aim of the objective function (5.5) is to minimize the overall network traffic
generated during the migration of inter-communicating VMs. The constraints (5.6)
and (5.7) ensure that the distance between the VMs i and j corresponds to the
difference of their respective positions. The set of constraints (5.8) and (5.9) ensure
that each node (VM) is migrated exactly once. As for the constraint (5.10), it ensures
the elimination of the subtours and guarantees a linear arrangement representing
the migration sequence. Finally, the constraints (5.11) and (5.12) eliminate tours
that serve more or less than exactly n VM nodes. The order of migration is directly
obtained from the solution to the problem above by eliminating the dummy node 0
and its arcs.

Proposition 6. The VM migration scheduling (VMMS) problem is NP-Hard.

Proof. The proof is based upon reduction of the VMMS problem to the well-known
Traveling Salesman problem (TSP). The TSP is well known as being NP-complete
[124]. Hence, the VM migration scheduling problem is NP-Hard.

In the next section, we propose a heuristic solution to solve the VMMS problem
efficiently.

5.2.3 Heuristic Solution

As proved in the previous section, the VMMS problem is NP-Hard. Hence, we
propose the heuristic described in Algorithm (1) which depicts the transformation
of the problem to the TSP. The underlying idea of the heuristic is to consider the
migration process as a network flow problem where the objective function minimizes
the total flow on the links. This network has a linear topology, yet to determine,
that represents the scheduling of the migration process of the VMs. The load on
each link is made up of the transiting traffic through it and the entering/exiting
traffic from/to its end nodes. Therefore, arranging the VMs in such a manner that
the heaviest flows are routed on the direct links would yield an effective solution.

5.2 Best Migration Sequence 65

Algorithm 1 VM Migration Scheduling heuristic.

Input: Number of VMs to migrate N , traffic matrix
Output: The best migration sequence

1: Initialize u1 = 1
2: Solve the TSPMax problem
3: Get the values of the variables ui and yij from the solution of the TSPMax
4: repeat
5: Eliminate an arc from the solution cycle. Let (i0, j0) be that arc
6: Compute the total flow
7: fi0j0 =

∑
i∈N

∑
j∈N |uj − ui| × cij

8: Reinstate the arc (i0, j0) to the solution
9: until All arcs have been removed exactly once

10: Find fibjb = inf(i,j)(fij)
11: The best migration sequence is the sequence obtained by eliminating the arc

(ib, jb).

Hence, we simply transform the TSP to a maximization problem that we refer to
as TSPMax. This transformation has as objective to route the heaviest traffic on
the direct links. Then, the heuristic consists in solving a TSP with a maximization
objective function, rather than a minimization one, where the links’ weights are
represented by the amount of flow exchanged between their end nodes. With such
an objective function, TSP is rapidly solved. Let fij be the total flow circulating
between the node i and j (i ∈ N , j ∈ N).

The objective function of the TSPMax is denoted as follows:

max
∑
i∈N

∑
j∈N
i6=j

yij.cij (5.13)

Subject to:∑
j∈N
i6=j

yij = 1 ∀i ∈ N (5.14)

∑
j∈N
i6=j

yji = 1 ∀i ∈ N (5.15)

ui − uj + (n− 1).yij + (n− 3).yji 6 n− 2 ∀i 6= 1 ∈ N, ∀j 6= 1 ∈ N (5.16)

1 + (n− 3).yi1 +
∑
j∈N
j 6=1

yji 6 ui ∀i 6= 1 ∈ N (5.17)

n− 1− (n− 3).y1i −
∑
j∈N
j 6=1

yij > ui ∀i 6= 1 ∈ N (5.18)

yij ∈ {0, 1} ∀i ∈ N,∀j ∈ N

The aim of the objective function (5.13) is to prioritize the migration of VMs that
are highly correlated and are exchanging an important amount of traffic. The set of
constraints (5.14) and (5.15) ensures that each node (VM) is migrated exactly once.

5.2 Best Migration Sequence 66

Heuristic Solver
#VMs Obj. fct (Mbps) Time (s) Obj. fct (Mbps) Time (s)

10 12758 0,3 11218 249
20 121724 0,48 - -
30 412040 1.8 - -

Table 5.1: Comparison between the VMMS heuristic and the exact method.

As for the constraint (5.16), it ensures the elimination of the subtours. Finally, the
constraints (5.18) and (5.17) eliminate tours that serve more or less than exactly n
VM nodes.

In the next section, we present the experiment results conducted on the proposed
VMMS heuristic.

5.2.4 Performance Evaluation

In order to evaluate the performance of the proposed solution, we have conducted
experiments on the heuristic proposed in Section 5.2.3. In this set of tests, we have
considered symmetric traffic matrices. First, we have compared the performance of
the heuristic and the exact model presented in Section 5.2.2.

Table (5.1) presents the comparison results. We note that the gap between the
objective function of the heuristic and the exact model is very small. In addition,
the results show that the migration scheduling heuristic takes a very short time
to provide the best migration sequence (less than 2 seconds). However, the exact
method, solved by the ILP solver, takes more than 4 minutes for 10 VMs. Note that,
the solver was not able to find the optimal solution for large size problems (20 and
30 VMs) due to a problem of memory. In fact, the exact method is very time and
resource consuming due to the Branch and Bound algorithm that performs poorly
because of the bad quality of the lower bound and the symmetry of the formulation.

Figure (5.4) shows the variation of the communication traffic generated during
the migration sequence of different numbers of inter-communicating VMs for both
symmetric and asymmetric traffic matrices. We note that the communication traffic
is more important if the migrated VMs have a symmetric traffic matrix.

As for the execution time of the heuristic, the results presented in Figure (5.5)
show that the execution time graphs are almost linear. However, it remains very
small and does not exceed a dozen seconds.

In order to show the interest in using the VMMS heuristic, we have compared
the amount of backbone traffic generated during the migration while using random
migration sequence and the solution obtained by the proposed VMMS. The results
are depicted in Figure (5.6). The figure shows a huge difference between the two
methods. It is clear that VMMS reduces the amount of traffic generated during the
migration.

In this section, we have proposed exact and heuristic solution to find the best
migration sequence of inter-communicating VMs within a geo-distributed cloud in-
frastructure. However, we assumed that the VMs will remain in the system for
the whole time. In a realistic cloud environment, some VMs have a fixed lifetime
and will leave the cloud system. Thus, it is important to take this parameter into
account when making the migration decisions in order to prevent from excessive or

5.2 Best Migration Sequence 67

0

5000000

10000000

15000000

20000000

25000000

30000000

35000000

2 0 4 0 6 0 8 0 1 0 0

B
ac

kb
o

n
e

Tr
af

fi
c

(M
b

p
s)

#VMs/Tenant

Asymmetric Traffic Matrix Symmetric Traffic Matrix

Figure 5.4: Backbone traffic versus. number of VMs per tenant.

0

2

4

6

8

10

12

14

16

2 0 4 0 6 0 8 0 1 0 0

Ti
m

e
(s

)

#VMs/Tenant

Asymmetric Traffic Matrix Symmetric Traffic Matrix

Figure 5.5: Running time versus. number of VMs per tenant.

0

100

200

300

400

500

600

700

20 VMs 40 VMs 60 VMs 80 VMs 100 VMs 120 VMs

Ba
ck

bo
ne

 T
ra

ff
ic

 (M
bp

s)

Number of migrated VMs

VMMS Random Migration Scheduling

Figure 5.6: Backbone traffic vs. number of migrated VMs.

unnecessary migrations and at the same time maintain the system stability.
In the next section, we propose both exact and heuristic solutions to solve the

VM scheduling problem with time-window constraints.

5.3 VM Scheduling with Time-Window Constraints 68

Figure 5.7: Example of VMs migration with finite lifetime.

5.3 VM Scheduling with Time-Window Constraints

In this section, we focus on the VM scheduling problem with time-window con-
straints.

In a dynamic cloud environment, there are new VMs arrivals and departures.
The traffic pattern of different VMs is dynamic and may change over time. We
assume that each VM has a fixed execution time that is known a priori. Our aim
is to optimize the placement and migration decisions by reducing the number of
migrations and while minimizing the inter-DCs traffic. Thus, we prevent from pos-
sible link congestion problems and maintain the system performance and stability.
In fact, the system stability is proportional to the number of performed migrations
[125]. A minimum number of migrations will improve the system performance [126].
During the live WAN migration of VMs, there are two types of traffic: (i) migration
traffic which includes memory and disk states, (ii) as well as communication traffic
produced by inter-VMs communication during the migration process as shown in
Figure (5.7). Therefore, migration decisions need to take into account the VM’s
lifetime period in order to prevent from performing useless and costly migrations.

Few recent works have considered the fact that VMs have a finite execution
period while making placement and migration decisions. In [127], the aim was to
minimize the overall energy consumption of the DCs. In [128], the authors have
proposed a deactivation-aware placement algorithm and a periodic defragmentation
algorithm that aim to minimize the total DC cost. In [129], two VM scheduling
algorithms were proposed to optimize the virtual-to-physical machine mapping. The
objective was to minimize the cumulative up time in order to save energy. In [130],
a formal definition of VM re-scheduling is given. However, none of aforementioned
works have studied the traffic-aware VM scheduling problem within a geo-distributed
DCs and none of them have considered inter-VM communication traffic.

5.3 VM Scheduling with Time-Window Constraints 69

Symbol Description

si The start time of the VM i ∈ V
ei The termination time of the VM i ∈ V
εi The VM’s life time.

τi The duration of the migration of the VM i (i ∈ V)

Table 5.2: Notations.

We make the following assumptions:

• The time is divided into time slots of equal length t ∈ [0..T].

• Each VM i has a start time si and a termination time ei. The VM lifetime εi
is fixed and considered as an input. Note that the VM’s lifetime is defined as
follows: εi = ei − si.

• Each request may include many inter-communicating VMs. However, VMs
requests are independent.

• The VM’s resource requirements are assumed to be static (i.e. it does not
change over time).

• We consider a sequence of migrations.

• A reserved bandwidth is allocated for the migration of different VMs.

• Migration may take several time slots.

5.3.1 Exact Solution

In this section, we formally define the traffic-aware VM scheduling problem. Table
(5.2) describes the notations used in the proposed formulation.

In this formulation, we consider the following decision variables:

• ϕtih, denotes the amount of traffic originated from the VM i ∈ V and sent from
the DC h ∈ D during the time slot t ∈ T .

• xtih, is equal to 1 if the VM i ∈ V is placed in the DC h ∈ D during the time
t ∈ T , 0 otherwise.

• zhkit , is equal to 1 if the VM i ∈ V is migrated from the DC h ∈ D to the DC
k ∈ D during the time t ∈ T , 0 otherwise.

• yti , is equal to 1 if the VM i ∈ V is being migrated during t ∈ T .

We denote by Oi the total traffic emanating from a VM i ∈ V .

Oi =
∑
j∈V

dij ∀i ∈ V (5.19)

The objective of this formulation is to minimize the backbone network traffic
(i.e. inter-DCs traffic). This traffic includes communication traffic and the traffic
generated by the VM migration.

5.3 VM Scheduling with Time-Window Constraints 70

Let us consider Ts = {∀t ∈ T : t 6 ei and t > si}.

min
∑
t∈T

∑
i∈V

∑
h∈D

ϕtih + yti .Mi (5.20)

Subject to the following constraints:

ϕtih > Oi.x
t
ih −

∑
j∈V

.dij.x
t
jh ∀i ∈ V, ∀h ∈ D, ∀t ∈ Ts (5.21)∑

i∈V

uir.x
t
ih 6 caphr ∀r ∈ R, ∀h ∈ D, ∀t ∈ T (5.22)∑

h∈D

xtih = 1 ∀t ∈ Ts,∀i ∈ V (5.23)

xtih 6 aih ∀i ∈ V, ∀h ∈ D, ∀t ∈ Ts (5.24)

t.xtih 6 ei ∀t ∈ Ts,∀i ∈ V, ∀h ∈ D (5.25)

t.xtih 6 xtih.ei ∀t ∈ T,∀i ∈ V, ∀h ∈ D (5.26)

xtih.t > xtih.si ∀t ∈ T,∀i ∈ V, ∀h ∈ D (5.27)

zhkit > xt−1ih + xtik − 1 ∀t ∈ T,∀i ∈ V, ∀k, h ∈ D, k 6= h (5.28)

yti > zhkit ∀i ∈ V, ∀t ∈ T,∀k, h ∈ D (5.29)

Oi.
∑
h∈D

xtih.(1−
∑
j∈V
i6=j

xtjh).(ei−t) > (yti .Mi+Oi.
∑
h∈D

xtih.(1−
∑

j∈V i6=j

xtjh).τi∀i ∈ V, ∀t ∈ Ts

(5.30)

zit ∈ {0, 1} ∀i ∈ V, ∀t ∈ T
xtih ∈ {0, 1} ∀i ∈ V, ∀h ∈ D, ∀t ∈ T
yti ∈ {0, 1} ∀i ∈ V, ∀t ∈ T
ϕtih > 0, ∀i ∈ V, ∀h ∈ D, ∀t ∈ T

The constraint (5.21) is a flow conservation constraint. The constraint (5.22) ensures
that the set of VMs placed in a DC at each time slot t does not exceed the capacity
of this DC. The constraint (5.23) ensures that each VM is running on only one DC at
each time slot t. The constraint (5.24) restricts the placement of VMs in a particular
number of DCs that satisfy a location constraint. The constraint (5.25) ensures that
each VM completes its segment continually. The set of constraints (5.26) and (5.27)
ensure that the VMs do not violate the deadline constraints. The set of constraints
(5.28) and (5.29) permit to know if a VM is actually being migrated and determine
the source and the destination of the migration. Finally, if the communication traffic
generated by a VM before finishing its execution is less than the migration traffic
produced during the migration of the same VM, it is obvious that no migration is
needed in this case. This fact is expressed by the set of constraints (5.30).

However, the constraint (5.30) is not linear. In order to linearize it, we introduce
a new decision variable whtij defined as follows:

whtij = xtih.x
t
jh ∀i ∈ V, ∀j ∈ V, ∀h ∈ D, ∀t ∈ Ts (5.31)

5.3 VM Scheduling with Time-Window Constraints 71

We replace the equation (5.31) in the constraint (5.30):

Oi.
∑
j∈V
i6=j

∑
h∈D

(xtih−whtij).(ei− t) > yti .Mi .τi +Oi.τi.
∑
j∈V
i6=j

∑
h∈D

xtih ∀i ∈ V, ∀t ∈ Ts (5.32)

Then, we must add the following logical constraint:

whtij > xtih + xtjh − 1 ∀t ∈ Ts,∀h ∈ D, ∀i, j ∈ V (5.33)

This formulation has turned out to be time and resource consuming as it presents
a huge number of variables (O|N |4) where N refers to the problem size. In the next
section, we propose the heuristic solution.

5.3.2 Heuristic Solution

The main idea of the heuristic is to reduce the number of migrations by considering
any placement algorithm which will be executed it at the beginning of each time
slot in order to find the VMs that are considered candidates for the migration. It
compares then the current placement scheme with the new one provided by the
placement algorithm. In fact, placement algorithms produce a huge number of
migrations. Excessive migrations may lead to a huge performance degradation of
the cloud system [116][117].

For each time slot, the heuristic selects the arriving VMs and removes the de-
parting ones. Then it executes the placement algorithm. We have decided to use our
placement algorithm proposed in 3 as we have shown its efficiency to solve VM place-
ment problem while minimizing the backbone traffic. However, this algorithm does
not take into consideration neither the migration costs, nor the remaining lifetime
of the VMs. It provides simply new VMs placement plan.

The heuristic calculates for each VM candidate, the migration traffic and the
communication traffic to ensure that the selected VM is worth being migrated. It
checks also if the migration of a VM does not violate the DC capacity constraints.
The migration sequence has also an important impact on the amount of traffic
circulating on the backbone network. Thus, the proposed heuristic sorts the list
of VMs that will be migrated by decreasing size and performs the migration. The
heuristic is presented in Algorithm 2.

Let us denote by:

• ListVMs , the list of all VM requests,

• S, the list of selected VM,

• L, the list of VMs to be migrated,

• CandidateMig , the list of VMs that are considered as candidate for the migra-
tion,

• Ct
i , the communication traffic originated from the VM i, (i ∈ V),

• MC t
i , the communication traffic originated from VM i during migration,

• M t
i , the traffic generated by the migration of the VM i over the WAN.

5.3 VM Scheduling with Time-Window Constraints 72

Algorithm 2 VM migration scheduling algorithm with time window constraints.

Input: List of VMs ListVMs , traffic matrix
Output: List of VMs to Migrate L

1: S ← ∅
2: for each t in T do
3: CandidateMig ← ∅
4: L← ∅
5: for each v in ListVMs do
6: if si = t then
7: S ← S ∪ {i}
8: else
9: if si ≥ t and ei ≤ t then

10: S ← S ∪ {i}
11: else
12: Remove the VM i from S
13: end if
14: end if
15: end for
16: Solve the placement problem for the VMs in S
17: Record the new placement decisions in CandidateMig
18: for each i in CandidateMig do
19: if VM i is candidate for migration then
20: Calculate the generated traffic for the VM i
21: if Ct

i >M t
i + MC t

i then
22: if the capacity constraint on the DC source is not violated then
23: L← L ∪ {i}
24: end if
25: end if
26: Sort L by size descending and migrate the VMs
27: end if
28: end for
29: end for

Ct
i = Oi.

∑
h∈D

xtih.(1−
∑
j∈V
i6=j

xtjh).(ei − t) ∀i ∈ V, ∀t ∈ Ts (5.34)

MC t
i = Oi.

∑
h∈D

xtih.(1−
∑
j∈V
i6=j

xtjh).τi ∀i ∈ V, ∀t ∈ Ts (5.35)

M t
i = yti .Mi.τi ∀i ∈ V, ∀t ∈ Ts (5.36)

In the next sections, we provide the obtained experiment results.

5.3.3 Quality of the heuristic solution

We have fixed the number of DCs to six. The VM’s start-time and end-time were
generated randomly. We have executed the algorithms during one day. The results

5.3 VM Scheduling with Time-Window Constraints 73

VMs Gap (G %)
20 VMs/Tenant 80 VMs/Tenants

1000 12, 32 12
2000 13 12, 45
3000 13, 57 12, 22
4000 12, 8 12, 5

Table 5.3: Average optimality gap.

Figure 5.8: Number of migrations per instance for 2000 VMs/20 VMs per tenant.

were taken at the beginning of each hour. The values of the traffic matrices were
generated randomly and ranged between 0 to 100 Mbps.

To evaluate the quality of the heuristic, we have compared the solution provided
by the heuristic with the solution provided by the placement algorithm presented in
[65]. Let us denote by:

• Sh, the heuristic solution,

• S∗, the optimal solution of [65],

• G, the optimality gap (%) defined as follows:

G =
Sh − S∗

Sh
× 100 (5.37)

Table 5.3, presents the average optimality gap G between the two approaches. We
note that the gap does not exceed 13, 57%. It means that the heuristic placement
solution is very close to the solution provided by the placement algorithm. However,
in contrast to the placement algorithm, the heuristic considers the VM’s lifetime and
the migration cost while making placement decisions.

5.3.4 System Stability

In order to show the impact of the number of migrations on the system stability,
we have compared the number of migrations of the heuristic with those obtained by
the optimal placement algorithm presented in [65]. The Figures (5.8), (5.9), (5.10)
and (5.11), show the variation of the number of migrations performed by both the

5.3 VM Scheduling with Time-Window Constraints 74

Figure 5.9: Number of migrations per instance for 2000 VMs/80 VMs per tenant.

Figure 5.10: Number of migrations per instance for 4000 VMs/20 VMs per tenant.

Figure 5.11: Number of migrations per instance for 4000 VMs/80 VMs per tenant.

VM placement model of [65] and the VM scheduling heuristic for 24 hours and for
a total number of VMs varying from 2000 to 4000 VMs.

We note that the number of migrations produced by the placement algorithm is
huge compared to the number of migrations obtained by the heuristic. We note also
that the number of performed migrations increases with the number of VMs. We
can conclude that the consideration of the VM’s lifetime in the migration decision
process helps to improve the system stability and prevent from performing excessive
migrations.

5.4 Conclusion 75

5.4 Conclusion

In this chapter, we have focused on the problem of VM migration scheduling in
geo-distributed DCs. We have proposed first, exact and heuristic solutions to find
the best migration sequence of inter-communication VMs. Then, we have studied
the impact of time constraints in the migration decisions. We have considered that
VMs have a fixed execution time and we proposed exact as well as heuristic solution
to solve the problem. Experiment results show the effectiveness of our approach. In
the next chapter, we will focus on the problem of stochastic VM placement within
a geo-distributed cloud infrastructure.

Chapter 6
Proactive VM Placement Problem for Risk
Management

Contents
6.1 Introduction . 76

6.2 Problem Description . 76

6.3 Problem Formulation . 78

6.3.1 Stochastic Optimization Model 78

6.3.2 Equivalent Optimization Formulation 80

6.3.3 Network-aware Stochastic VM Placement Algorithm . . . 83

6.4 Performance Evaluation 85

6.5 Conclusion . 87

6.1 Introduction

In this chapter, we tackle the network-aware stochastic version of the VM placement
problem in geo-distributed DCs. Due to the existence of highly non-uniform inter-
VMs communication traffic, it is impossible to have an accurate estimation of the
expected traffic volume within the backbone network. Hence, in this chapter, we
propose a proactive stochastic optimization model which ensures the minimization
of the overloading risk of the DC edge routers.

6.2 Problem Description

In a geo-distributed cloud infrastructure, network congestion is a crucial issue. The
increasing amounts of traffic generated by the traffic-intensive applications hosted in
the VMs may cause bottlenecks in the network resulting in performance degradation
of the whole system. Hence, VM placement plan must be optimized in order to
prevent from possible SLAs violations in the future. In particular, it is important
to minimize the expected traffic circulating within the backbone network (i.e. Inter-
DCs traffic) which is the aim of this work.

76

6.2 Problem Description 77

Backbone
Network

Edge Router

Data Center

Virtual Machine

VM Migration

Inter-VM communication

Figure 6.1: System Model.
.

To tackle this problem, VM migration techniques are commonly used in order
to optimize the configuration of the cloud system. In fact, VM migration is used
as a tool to cope with the demand fluctuations and the dynamic aspects of traffic
patterns. As a matter of fact, VM migration brings with it many benefits; (1) it
provides flexibility in the management of a DC, and (2) it enables moving VMs
across DCs in order to adjust and optimize the cloud infrastructure [7]. However,
the reconfiguration of the cloud system using VM migration rises many challenges
including:

• The DC in which VMs will be migrated to, must have enough resource capacity
in order to host these VMs.

• The overhead of VM migration, which consists in the amount of data trans-
ferred during the migration process, must be minimized.

• Due to the dynamic changes in the application’s workload, it is not efficient
to make migration decisions based only on the current state of the system.
Accurate traffic prediction is necessary, however, it is a very difficult task [15].

• Excessive migrations may lead to a huge performance degradation of the cloud
system [116, 117].

Recent studies [15, 16, 17] have shown that the workload of VMs is highly dy-
namic and bursty which may cause the existent placement and migration schemes
to be inefficient. These applications are characterized by highly non-uniform traffic
pattern. In this work, we consider that the workload consists in inter-VMs commu-
nication traffic. In addition, most of the existent works [18, 19, 20] make migration
decisions based on deterministic demand estimation and workload characterization
without considering stochastic properties.

As shown in Figure (6.1), we consider a geo-distributed cloud environment where
DCs are connected within a backbone network.

According to [25], DC edge routers are responsible for connecting the DCs to
WAN. The DC edge router has uplinks for the data transfer up to the WAN and
downlinks for receiving data from WAN. These links have fixed bandwidth capaci-
ties. In our work, we focus on minimizing the traffic sent to the backbone network.

6.3 Problem Formulation 78

Hence, we consider only the bandwidth capacity of the uplinks. In fact, by mini-
mizing the traffic sent from one DCs to other DCs over the network, we implicitly
minimize the traffic received by other DCs.

In the rest, we refer to the bandwidth capacity of uplinks by the bandwidth
capacity of the edge router.

In this work, VM migration is used as a tool to cope with the fluctuation of
inter-VMs bandwidth requirements as well as the variance of this demand in the
future.

In such an environment, the cloud provider has no knowledge about the inter-
VMs’ bandwidth demand. This parameter is considered as uncertain. The traffic
matrix represents communication traffic between each pair of VMs.

In this work, we make the following assumptions:

• The entire infrastructure is owned and managed by the same IaaS provider.

• Each VM is characterized by its hardware configuration in terms of CPU,
RAM and Storage.

• Each DC is characterized by its capacity in terms of hardware resources CPU,
RAM, and Storage.

• Each VM may have a location constraint. Thus, it can be only placed in a
defined set of DCs.

• There are multiple independent clients submitting requests to provision VMs
that may be heterogeneous.

6.3 Problem Formulation

In this section, we first present the problem as a Stochastic Integer Program. Then,
we present, an equivalent optimization formulation to solve it as an ILP.

Let us denote by Eh the bandwidth capacity of the edge router of the DC h ∈ D.
In the following, we use the decision variables defined bellow.

• ϕhi , defines the amount of traffic originated from the VM i ∈ V and sent from
the DC h ∈ D (i.e. the traffic sent to the backbone network).

• xhi , is equal to 1 if the VM i ∈ V is placed in the DC h ∈ D, 0 otherwise.

• zhi , is equal to 1 if the VM i is migrated from the DC h ∈ D.

• f ihk, which denotes the amount of traffic originated from the VM i ∈ V and
circulating between the DCs h ∈ D and k ∈ D.

6.3.1 Stochastic Optimization Model

In this section, we formally define the problem as a SIP. The purpose of stochastic
programming is to find an optimal solution with giving uncertainty in some param-
eters. In this paper, we allow uncertainty of the inter-VMs communication traffic.
Previous studies [15, 16, 17], have shown that the VM workload is bursty.

Network-aware stochastic VM placement problem rises new challenging problems
including:

6.3 Problem Formulation 79

• How to estimate stochastic inter-VM bandwidth resource demand?

• How to detect bottlenecks in the DC edge router?

• How to make VMs migration decisions while ensuring network and DC capacity
as well as proximity location constraints?

In this formulation, we consider a random variable d̃ij that describes the amount
of traffic exchanged between each pair of VMs (i.e. inter-VMs bandwidth demand).
The variable follows a probability distribution that can be estimated from runtime
measurement. We assume that the distribution can be obtained using statistical
process to analyze historical data. Many studies [85, 131, 15] have shown that the
resource demand of VMs follows a Normal distribution N (µ, σ2). Thus, we consider
that the inter-VMs bandwidth demand follows also the Normal distribution.

Our aim is to minimize the amount of traffic circulating between the different
DCs. This traffic includes by the communication traffic (i.e. inter-VMs communi-
cation) and the migration traffic (i.e. the amount of data transferred during the
migration process).

The objective function is defined as follows:

min
∑
i∈V

∑
h∈D

Mi.z
h
i + ϕhi (6.1)

Subject to the following constraints:

ϕhi >
∑
j∈V

d̃ij.x
h
i −

∑
j∈V

xhj .d̃ij ∀i ∈ V, ∀h ∈ D (6.2)∑
k∈D

f ihk −
∑
k∈D

f ikh =
∑
j∈V

d̃ijx
h
i −

∑
j∈V

d̃ij.x
h
j ∀i ∈ V, ∀h ∈ D (6.3)

Pr(
∑
i∈V

Mi.z
h
i +

∑
i∈V

ϕhi 6 Eh) > 1− ε ∀h ∈ D (6.4)∑
h∈D

xhi = 1 ∀i ∈ V (6.5)

xhi 6 ahi ∀i ∈ V, ∀h ∈ D (6.6)∑
i∈V

uir.x
h
i 6 caphr ∀r ∈ R, ∀h ∈ D (6.7)

zhi > xh0i − xhi ∀i ∈ V, h ∈ D (6.8)

zhi ∈ {0.1} ∀i ∈ V, h, k ∈ D
xki ∈ {0.1} ∀i ∈ V, k ∈ D
ϕhi > 0 ∀i ∈ V, h, k ∈ D
f ihk > 0 ∀i ∈ V, h, k ∈ D

The constraint (6.2) and (6.3) are both flow conservation constraints. They

are both stochastic due to the random variable d̃ij which refers to the inter-VMs
communication traffic.

The DC edge router, which ensures the connection between the DC and the
backbone network, has a fixed bandwidth capacity.

6.3 Problem Formulation 80

The constraint (6.4) ensures that for each DC edge router, the total traffic,
which includes the inter-VMs communication traffic and the migration traffic, does
not exceed the bandwidth capacity of the edge router with a high probability (1−ε).
A a matter of fact, ε is a QoS metric called overloading probability. The constraint
(6.4) ensures the service quality guarantee with a threshold ε and it minimizes the
risk of overloading the router in the future.

The constraint (6.5) is a demand satisfaction constraint. It ensures that every
VM is running on only one DC. As for the constraint (6.6) it stipulates that VM
i ∈ V cannot be assigned to all DCs. It restricts the placement of VMs in a
particular number of DCs that satisfy for example proximity to end-users, technology
constraint, etc. The constraint (6.7) represents the capacity constraint on the DCs.
It ensures that the amount of resources consumed by different VMs placed in a given
DC does not exceed the resource capacities of the DC. The constraint (6.8), ensures
that only already existing VMs can be considered as candidates for the migration.

The above presented model is a stochastic optimization program. Suppose that
it has finite support, hence, we can enumerate the set of all different uncertainty
scenarios. We can then formulate an equivalent deterministic optimization problem
that can be solved as a Mixed Integer Linear Program (MILP). However, the size
of the problem space can grow very large as the number of scenarios increases.
Therefore, in the next section, we propose an alternative solution to formulate the
problem as a MILP by applying sampling-based methods.

6.3.2 Equivalent Optimization Formulation

In order to solve the stochastic problem, we propose an equivalent formulation using
sampling methods.

Let us consider the function g(.) defined as follows.

g(x) =
∑
j∈V

d̃ij.x
h
i −

∑
j∈V

xhj .d̃ij ∀i ∈ V, ∀h ∈ D (6.9)

In such situations, it is clearly impossible to enumerate all the possible outcomes.
Hence, sampling techniques are a commonly used tool. In order to discretize the
stochastic function g(.), we apply Sample Average Approximation (SAA) method
[132].

In fact, sampling-based methods have been successfully used in many different
fields of stochastic optimization, such as, applications of vehicle routing, engineer-
ing design, supply chain network design, machine learning etc [55]. The appeal
of sampling-based methods results from the fact that they often approximate well,
with a small number of samples, problems that have a very large number of scenarios
[133].

In this work, we use Monte Carlo methods [134] to generate samples of N =

{1, .., n} replications of the random variable d̃ij using the Normal distribution N (µij, σ
2
ij),

where µij is the mean and σ2
ij is the variance.

Let us consider the function gn(.), presented in (6.10), as the discretization of
the stochastic function g(.) by applying SAA methods.

gn(x) =
1

n

n∑
i=1

g(x, ξi) (6.10)

6.3 Problem Formulation 81

Where ξi is a random element such that: d̃ij = 1
n

∑n
k=1 ξ

k
ij and n is the number of

iterations.
Hence, the equivalent deterministic constraint of (6.2) is obtained by replacing

g(x) by gn(x).

gn(x) =
∑
j∈V

(
1

n

n∑
k=1

ξkij).x
h
i −

∑
j∈V

(
1

n

n∑
k=1

ξkij).x
h
j ∀i ∈ V, ∀h ∈ D (6.11)

Thus, the constraint (6.2) becomes:

ϕhi > gn(x) ∀i ∈ V, ∀h ∈ D (6.12)

As mentioned above, we consider that the inter-VMs bandwidth demand d̃ij
follows the Normal distribution N (µij, σ

2
ij). Hence, we can estimate d̃ij by its mean

µij (d̃ij ' µij).
Let us consider the following equation:

ϕhi =
∑
k∈D

f ihk ∀h ∈ D, ∀i ∈ V (6.13)

The value of f ihk can be obtained from the folw conservation constraint (6.3) as
follows: ∑

k∈D

f ihk =
∑
k∈D

f ikh +
∑
j∈V

d̃ijx
h
i −

∑
j∈V

d̃ij.x
h
j ∀i ∈ V, ∀h ∈ D (6.14)

If we replace (6.13) in (6.4), we obtain:

Pr(
∑
i∈V

Mi.z
h
i +

∑
i∈V

(
∑
k∈D

f ikh +
∑
j∈V

d̃ijx
h
i −

∑
j∈V

d̃ij.x
h
j) 6 Eh) > 1− ε ∀h ∈ D (6.15)

Since, d̃ij follows the Normal distribution N (µij, σ
2
ij), then, because we assume

that the traffic of each pair of VM (i, j) ∈ V , is independent if i 6= j, the aggregate

traffic demand
∑

i∈V
∑

j∈V d̃ij follows the Normal distributionN (
∑

i∈V
∑

j∈V µij,
∑

i∈V
∑

j∈V σ
2
ij)

according to the property of normal distribution and Central Limit Theorem (CLT)
[135].

Note that, the term
∑

i∈V Mi.z
h
i is deterministic, thus, it does not follow a prob-

ability distribution. Let us denote by

αh =
∑
i∈V

∑
j∈V

d̃ijx
h
i −

∑
j∈V

d̃ij.x
h
j (6.16)

We need to estimate the Normal distribution parameters µαh and σ2
αh .

Since, xhi ∈ {0, 1},∀i ∈ V, h ∈ D, and because we assume that the traffic of each
pair of VM (i, j) ∈ V , is independent if i 6= j, then, by applying SAA methods, we
can estimate µαh and σ2

αh as follows:

µαh =
∑
i∈V

∑
j∈V

µijx
h
i −

∑
i∈V

∑
j∈V

µij.x
h
j ∀h ∈ D (6.17)

σ2
αh =

∑
i∈V

∑
j∈V

σ2
ijx

h
i +

∑
i∈V

∑
j∈V

σ2
ij.x

h
j ∀h ∈ D (6.18)

6.3 Problem Formulation 82

Hence, it easy to show that the constraint (6.15) is equal to the overloading prob-
ability constraint presented in (6.19), where φ−1(.) is the inverse of the cumulative
distribution function of the Standard Normal distribution. In this work, we consider
that ε 6 0.5 and φ−1(1− ε) > 0.

Eh −
∑

i∈V
∑

k∈D f
i
kh +

∑
i∈V Mi.z

h
i +

∑
i∈V

∑
j∈V µijx

h
i −

∑
i∈V

∑
j∈V µij.x

h
j√∑

i∈V
∑

j∈V σ
2
ijx

h
i +

∑
i∈V

∑
j∈V σ

2
ij.x

h
j

> φ−1(1−ε)

(6.19)
The deterministic equivalent formulation is presented as follows. The constraints

(6.21) and (6.22), are flow conservation constraints. As for the constraint (6.23), it
ensures that the amount of resource consumed by all the VMs placed in a DC, must
not exceed the capacity of the DC in term of resources r ∈ R. The constraint (6.24)
denotes the network overloading probability constraint for each DC edge router. The
constraint (6.25) ensures that each VM is running on only one DC. The constraint
(6.26), stipulates that VM cannot be assigned to all DCs. The constraint (6.27) is
a migration constraints.

min
∑
i∈V

∑
h∈D

Mi.z
h
i + ϕhi (6.20)

Subject to the following constraints:

ϕhi >
∑
j∈V

µij.x
h
i −

∑
j∈V

xhj .µij ∀i ∈ V, ∀h ∈ D (6.21)∑
k∈D

f ihk −
∑
k∈D

f ikh =
∑
j∈V

µij.x
h
i −

∑
j∈V

µij.x
h
j ∀i ∈ V, ∀h ∈ D (6.22)∑

i∈V

uir.x
h
i 6 caphr ∀r ∈ R, ∀h ∈ D (6.23)

Eh >
∑
i∈V

Mi.z
h
i +

∑
i∈V

∑
k∈D

f ikh + µαh + φ−1(1− ε).
√
σ2
αh ∀h ∈ D (6.24)∑

h∈D

xhi = 1 ∀i ∈ V (6.25)

xhi 6 ahi ∀i ∈ V, ∀h ∈ D (6.26)

zhi > xh0i − xhi ∀i ∈ V, h ∈ D (6.27)

zhi ∈ {0.1} ∀i ∈ V, h ∈ D
xki ∈ {0.1} ∀i ∈ V, k ∈ D
ϕhi > 0 ∀i ∈ V, h, k ∈ D
f ihk > 0 ∀i ∈ V, h, k ∈ D

SIP aims at taking into consideration the probabilistic information in the math-
ematical programs. One of the well-known approaches is Chance-constrained pro-
gramming where the aim is to find the best feasible solution for a given probability
tolerance which we refer to in this formulation by ε.

If we consider a finite number of scenarios, a chance-constrained program can
be equivalently written as an integer linear program as proposed in the formulation
above. However, one of the risen challenges is that the obtained equivalent model

6.3 Problem Formulation 83

is non-linear due to the constraint (6.24). In fact, when dealing with combinatorial
problems, we are lead to very hard integer non-linear programs [136].

The linearization of the constraint (6.24) leads to a very large number of variables
which will impact the efficiency of the formulation and will enlarge the research
space. Unfortunately, the application of this method seems restricted to small-size
problems [136].

To cope with this problem, we propose, in the next section, to adopt an iterative
two-step approach to solve the SIP model.

6.3.3 Network-aware Stochastic VM Placement Algorithm

In this section, we propose a heuristic to solve the network-aware stochastic VM
placement in geo-distributed DCs. It is presented in Algorithm 3.

Let us denote by:

βh = φ−1(1− ε).
√
σ2
αh (6.28)

γh =
∑
i∈V

Mi.z
h
i +

∑
i∈V

∑
k∈D

f ikh + µαh (6.29)

We denote by SIPγ+β,the optimization program presented in Section (6.3.2). We
define SIPγ, the optimization program where the constraint (6.24) is replaced by
the following constraint.

Eh > γh ∀h ∈ D (6.30)

Let us define the list PrefList which contains the different values of ε. PrefList
is sorted by increasing value of ε. Smaller ε means that the risk of overloading must
be very low.

The algorithm tries to solve the stochastic optimization problem within two
iterations. In the first iteration, it solves the SIPγ model without considering the non
linear term βh. In fact, the optimization program SIPγ provides a deterministic VM
placement scheme as it does not consider the variance of inter-VMs communication
traffic in the future. In addition, the term γ ensures that the overall traffic sent via
the DC edge router does not exceed its capacity.

Afterword, the algorithm evaluates the term βh by considering the solution pro-
vided by SIPγ. In the second iteration, it tries to solve the SIPγ+β model by adding
the term βh to the overloading probability constraint. If the SIPγ+β model is feasi-
ble, then the new placement scheme is the solution provided by SIPγ+β, otherwise,
we relax the value of ε and try to solve it again.

The new placement scheme is either the solution provided by SIPγ+β, if it exists,
or the solution provided by SIPγ with an SLA violation due to the high risk of
network overload.

Stochastic optimization is a simulation of different scenarios that can happen in
a realistic environment. The proposed algorithm helps Cloud managers to know in
advance, when SLA violations can take place and what is the threshold of service
guarantee. This can be helpful for dimensioning edge router bandwidth capacity in
order to handle dynamic bandwidth provisioning and prevent from possible network
overloading problems in the future.

The approach used in the proposed algorithm can be considered as iterative.
The quality of the solution can be improved by re-injecting the solution provided

6.3 Problem Formulation 84

Algorithm 3 Network-aware Stochastic VM Placement Algorithm.

Input: Initial Placement scheme, stochastic traffic matrix, PrefList
Output: New VMs Placement Plan

1: ε← PrefList[0]
2: Solve SIPγ
3: Record solutions
4: Calculate βh with the solutions provided by SIPγ
5: Solve SIPγ+β
6: if SIPγ+β is feasible then
7: New Placement Plan ← Solutions of SIPγ+β
8: else
9: i← i+ 1

10: end if
11: while SIPγ+β is not feasible and i 6 PrefList.size() do
12: ε← PrefList[i]
13: Check feasibility of SIPγ+β
14: i← i+ 1
15: end while
16: if SIPγ+β is feasible then
17: New Placement Plan ← Solutions of SIPγ+β
18: else
19: New Placement Plan ← Solutions of SIPγ
20: Add SLA violation
21: end if

0

2000

4000

6000

8000

10000

12000

600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800

Ti
m

e
(m

s)

#VMs

SIP 0.1 SIP 0.01 SIP 0.001

Figure 6.2: Execution Time versus the total number of VMs.

by SIPγ+β at line 7 and re-solving the program. However, we have noticed in the
experiments that there is no significant difference between the provided solutions.
Hence, for the sake of presentation and simplicity, we adopt a two-step approach as
described in Algorithm (3).

In the next section, we present the experiment results showing the effectiveness
of the proposed approach.

6.4 Performance Evaluation 85

0

10

20

30

40

50

60

600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800

#M
ig

ra
tio

ns

#VMS

SIP 0.1 SIP 0.01 SIP 0.001

Figure 6.3: Variation of the number of migrations for ε ∈ {0.1, 0.01, 0.001} with
loose bandwidth capacity.

6.4 Performance Evaluation

In this section, we present the parameter settings as well as the numerical results of
the conducted experiments.

The different experiments were carried out on a machine that has an Intel Xeon
3; 3 GHz CPU and 8GB of RAM. We have used the commercial solver CPLEX 12.5
[92] to solve and evaluate the different MILP formulations. In all tests, we have
considered a complete graph representing the network topology. Without loss of
generality, we assume that all DCs have the same hardware capacities. We consider
that the servers are housed in racks. Every server has 8 cores and 16 GB of RAM.
We consider that each rack hosts 30 servers and each DC has an average of 500
racks. In all experiments, we have fixed the number of DCs to six.

We generated for each pair of VMs traffic a sample of 10000 replications accord-
ing to Normal distribution. Then, we applied SAA to approximate the values of
the traffic matrix. We randomly generated groups of (mean, variance range) for the
inter-VM communication traffic and set each pair of VMs traffic to a value generated
by a randomly chosen group. At the beginning, the VMs are allocated randomly
to the different DCs while insuring only DC capacity and proximity location con-
straints.

We assume that client’s demands are independent. For simplicity of illustration,
we assume that the number of required VMs for each client is the same in a given
realization. In addition, we assume that the VMs belonging to the same client are
exchanging data and have inter-communication traffic.

We have implemented the deterministic equivalent model in Java with the above
listed parameters and have solved it using CPLEX [92]. At the beginning, the VMs
are allocated randomly to the different DCs according to their location constraints.
Then, the optimization model is executed at the beginning of each time slot.

We studied first the performance of the equivalent deterministic optimization
model in terms of running time. We have varied the value of ε and we plotted the
execution time of the model. The results are depicted in Figure (6.2). We note that
the value of ε has no considerable impact on the execution time of the model. We
can also note that the execution time does not exceed 10 sec for a total number of
VM |V | = 1800. We can conclude that the proposed algorithm is efficient in terms
of execution time.

6.4 Performance Evaluation 86

0

5

10

15

20

25

30

35

40

45

6 0 0 7 0 0 8 0 0 9 0 0 1 0 0 0 1 1 0 0 1 2 0 0 1 3 0 0 1 4 0 0 1 5 0 0 1 6 0 0 1 7 0 0 1 8 0 0

N
U

M
BE

R
O

F
M

IG
RA

TI
O

N
S

NUMBER OF VMS

SIP 0.1 SIP 0.01 SIP 0.001 SIP Gamma

Figure 6.4: Variation of the number of migrations for tight bandwidth capacity.

The value of the parameter ε controls the overloading probability constraint pre-
sented in the inequality (6.24). In addition, it also affects the bandwidth utilization.
Smaller ε requires the system to reserve more bandwidth in order to accommodate
the possible variance of Inter-VM communication demands. To ensure the non vi-
olation of the overloading probability with smaller ε, some VMs may have to be
migrated to another DC. We have varied the value of ε and we plotted the number
of migrations performed for each value. In order to study the impact of the differ-
ent values of the level of service quality ε, we have considered that the bandwidth
capacity of the DC edge router are large enough to satisfy the bandwidth demand
for all values of ε. The results are depicted in Figure (6.3).

We note that smaller ε produces less VM migration. This can be explained
by the fact that smaller ε means that the risk of network overloading is very small.
Since, migration produces additional traffic, SIPγ+β tries to minimize the number of
migration in order to prevent from extensive migrations and reduce the probability of
network overload in the future. We can also say that the total number of migrations
produced by SIP0.001 is less than the number of migration of SIP0.01 and SIP0.1

respectively (i.e. the number of migrations SIP0.001 6 SIP0.01 6 SIP0.1).
However, when the DC edge router bandwidth capacity is very tight, we note

that the number of migration for the SIPγ+β model increases comparing to SIPγ
when the total number of inter-communicating VMs increases. In fact, to ensure
the overloading probabilistic service guarantee with smaller ε and tight bandwidth
capacity, some VMs need to be migrated. As a matter of fact, VM migration tries
to place high-communicating VMs within the same DC in order to reserve more
bandwidth to accommodate future demand. Figure (6.4) illustrates the experiment
results performed on SIPγ+β, where ε ∈ {0.1, 0.01, 0.001}, and SIPγ respectively.

The SIPγ model provides deterministic schemes and do not consider the variance
of the inter-VM communication traffic. In contrast, the SIPγ+β model is able to
keep a long-term state while triggering smaller number of migrations. Moreover, we
can say that the SIPγ+β model proactively avoids the overload of DC edge router in
the future. As a conclusion, even in the worst case scenario, the algorithm provides
a feasible solution without exceeding the bandwidth capacity of the router. In the
best case scenario, the algorithm provides the best solution with the highest level of
service quality.

In order to show the quality of the solution provided by our approach, we have

6.5 Conclusion 87

0

200000

400000

600000

800000

1000000

1200000

1400000

600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800

O
bj

ec
tiv

e
Fu

nc
tio

n
(M

bp
s)

#VMs

SIP 0.001 SIP gamma

Figure 6.5: Inter-DCs traffic Vs the number of VMs.

compared the SIPγ, which provides a deterministic placement scheme for the dif-
ferent inter-communicating VMs, and SIPγ+β in terms of minimizing the inter-DCs
traffic. Thus, we plotted the objective function provided by both models and we
have varied the number of VMs. The results are depicted in Figure (6.5). In fact,
the objective function presents the overall traffic circulating between each pair of
DCs (i.e. within the backbone network). We note that SIPγ+β provides better
solution than SIPγ as it minimizes the inter-DCs traffic.

6.5 Conclusion

In this chapter, we proposed a Stochastic Integer Programming formulation that
aim to solve the VM placement problem in geo-distributed DCs while minimizing
the risk of network overload. We considered the uncertainty of inter-VMs communi-
cation traffic. Our objective was to minimize the expected overall traffic circulating
in the backbone network in order to prevent from congestion problems and maintain
the QoS in the future. In order to solve the problem, we proposed an equivalent
optimization model based on well-known sampling methods as well as an efficient
algorithm and we used the commercial solver CPLEX to solve the proposed opti-
mization models. The results of the conducted experiments show the effectiveness
of our proposed approach.

Chapter 7
Conclusion

Contents
7.1 Contributions . 88

7.2 Perspectives . 89

7.2.1 Short-term Perspectives 89

7.2.2 Long-term Perspectives 89

7.1 Contributions

Managing a geo-distributed cloud infrastructure is a very complex task. One of the
key challenges faced by cloud providers, is to find optimal placement and migration
scheme for the different VMs in the system. In this thesis, we addressed several
complex problems related to the placement of VMs in geo-distributed cloud envi-
ronment. To solve these problems, we proposed an autonomic DC management tool
based on optimization approaches.

In particular, we proposed network-aware placement and migration strategies
that have the objective of minimizing the traffic volume among the backbone network
(i.e. inter-DCs traffic). In addition, we proposed inter-DCs migration scheduling
policies for inter-communicating VMs aiming at reducing data transfer during the
migration process.

To deal with the above mentioned problems, we considered two types of inter-
VM communication traffic patterns. The first one tends to be stable and could
be estimated accurately. For this reason, we propose a deterministic optimization
models to find the optimal placement and migration scheme for the different VMs in
the cloud system. On the other hand, with non-uniform traffic pattern, stochastic
optimization models are proposed to solve the problem.

In order to validate our placement and scheduling approaches, we provided ex-
perimental tests as well as simulation results that have shown the effectiveness of
our optimization models in terms of execution time and reducing inter-DCs traffic
volume.

88

7.2 Perspectives 89

7.2 Perspectives

In this thesis, we studied several complex problems related to VM placement within
a geo-distributed cloud infrastructure. However, there are some extensions to this
work that we aim to address in our future work. In this section, we divide the
perspectives into short and long-term perspectives.

7.2.1 Short-term Perspectives

In this work, we studied the VM placement problem mainly form a point of view
of the cloud provider, having the objective to minimize data transfer costs over the
backbone network. However, we implicitly added constraints that aim at maintain-
ing the QoS and SLAs of the hosted applications. Thus, we also tackled the problem
from the consumer perspectives. In particular, we considered location constraints
that restrict the placement of VMs in a defined set of DCs. This information is gen-
erally provided by consumers. Furthermore, we considered service level constraints
as well as scheduling strategies aiming at preventing from performance degradation
issues during the migration process.

As an extension of this work, we aim at considering pricing models while making
migration and placement decisions. In fact, SLAs contracts have several levels of
QoS each one having a distinct price. Therefore, it is interesting to consider this
parameter while making placement and migration decisions. Pricing models can vary
form cloud provider to another. Even for the same provider, there are several pricing
policies according to the VM’s configuration or the QoS of the hosted application.
These parameters will increase the complexity of the placement problem. Hence,
from both consumer and provider perspectives, it is important to find a tradeoff
between QoS and costs/prices. We will try to study this particular problem within
our future work.

7.2.2 Long-term Perspectives

Internet of Things (IoT) is a new paradigm where many surrounding objects are
interconnected in a dynamic network infrastructure and exchanging data between
each other in order to offer a given service. These objects can be heterogeneous
including personal devices, sensors, cameras, etc [137]. IoT objects are characterized
by their limited computing and storage resources which rise many issues regarding
the availability, performance and security [138].

To cope with these limitations, cloud computing brings its unlimited resource
capabilities and its well-established technologies as a solution. As a matter of fact,
cloud and IoT are two complementary paradigms that can be merged together in
order to offer better quality and delivery of services [138]. This merged paradigm
is called CloudIoT. However, although cloud computing can improve for example,
IoT communication, there are some limitations that can be arisen when trying to
transfer a huge amount of data from the edge of the Internet onto cloud.

CloudIoT networks are considered as the ideal platform for implementing IoT
services for a wide variety of smart environment, such as smart grids, smart cities
and buildings. In this context, many problems need to be addressed. One of the
key issues, is to optimize the placement of edge nodes and finding the best routing

7.2 Perspectives 90

of flows circulating within the network in order to meet QoS requirements and save
the overall costs [139].

ClouIoT services involve several heterogeneous network technologies, where many
applications require continuous data transmission which will increase significantly
the consumption of bandwidth resources. Hence, optimizing bandwidth utilization
needs additional effort.

As a long-term perspectives, we aim to study and solve the above mentioned
problems with a highly distributed CloudIoT infrastructure where some of the open
issues are urgent especially with respect to network communication.

Bibliography

[1] P. M. Mell and T. Grance, “Sp 800-145. the nist definition of cloud comput-
ing,” Gaithersburg, MD, United States, Tech. Rep., 2011.

[2] R. Boutaba, Q. Zhang, and M. F. Zhani, “Virtual machine migration in cloud
computing environments: Benefits, challenges, and approaches,” Communica-
tion Infrastructures for Cloud Computing, pp. 383–408, 2013.

[3] F. Xu, F. Liu, H. Jin, and A. V. Vasilakos, “Managing performance overhead
of virtual machines in cloud computing: A survey, state of the art, and future
directions,” Proceedings of the IEEE, vol. 102, no. 1, pp. 11–31, 2014.

[4] L. Gu, D. Zeng, S. Guo, and B. Ye, “Joint optimization of vm placement and
request distribution for electricity cost cut in geo-distributed data centers,”
in Computing, Networking and Communications (ICNC), 2015 International
Conference on. IEEE, 2015, pp. 717–721.

[5] K. Church, A. G. Greenberg, and J. R. Hamilton, “On delivering embar-
rassingly distributed cloud services,” in 7th ACM Workshop on Hot Topics in
Networks - HotNets-VII, Calgary, Alberta, Canada, October 6-7, 2008. ACM
SIGCOMM, 2008, pp. 55–60.

[6] M. H. Ferdaus, M. Murshed, R. N. Calheiros, and R. Buyya, “Network-aware
virtual machine placement and migration in cloud data centers,” Emerging
research in cloud distributed computing systems, vol. 42, 2015.

[7] T. Wood, K. K. Ramakrishnan, P. J. Shenoy, J. E. van der Merwe, J. Hwang,
G. Liu, and L. Chaufournier, “Cloudnet: Dynamic pooling of cloud resources
by live WAN migration of virtual machines,” IEEE/ACM Trans. Netw.,
vol. 23, no. 5, pp. 1568–1583, 2015.

[8] Z. Zhang, M. Zhang, A. G. Greenberg, Y. C. Hu, R. Mahajan, and B. Chris-
tian, “Optimizing cost and performance in online service provider networks.”
in NSDI, 2010, pp. 33–48.

[9] K.-y. Chen, Y. Xu, K. Xi, and H. J. Chao, “Intelligent virtual machine place-
ment for cost efficiency in geo-distributed cloud systems,” in Communications
(ICC), 2013 IEEE International Conference on. IEEE, 2013, pp. 3498–3503.

91

BIBLIOGRAPHY 92

[10] L. Gu, D. Zeng, S. Guo, Y. Xiang, and J. Hu, “A general communication cost
optimization framework for big data stream processing in geo-distributed data
centers,” IEEE Transactions on Computers, vol. 65, no. 1, pp. 19–29, 2016.

[11] A. G. Greenberg, J. R. Hamilton, D. A. Maltz, and P. Patel, “The cost of a
cloud: research problems in data center networks,” Computer Communication
Review, vol. 39, no. 1, pp. 68–73, 2009.

[12] Y. Chen, S. Jain, V. K. Adhikari, Z.-L. Zhang, and K. Xu, “A first look at
inter-data center traffic characteristics via yahoo! datasets,” in INFOCOM,
2011 Proceedings IEEE. IEEE, 2011, pp. 1620–1628.

[13] J. Wang, “Survey of state-of-the-art in inter-vm communication mechanisms,”
Research Proficiency Report, 2009.

[14] B. Solomon, D. Ionescu, M. Litoiu, and G. Iszlai, “Designing autonomic man-
agement systems for cloud computing,” in ICCC-CONTI, 2010, 2010.

[15] L. Yu, L. Chen, Z. Cai, H. Shen, Y. Liang, and Y. Pan, “Stochastic load bal-
ancing for virtual resource management in datacenters,” IEEE Transactions
on Cloud Computing, vol. PP, no. 99, pp. 1–1, 2016.

[16] T. Benson, A. Akella, and D. A. Maltz, “Network traffic characteristics of data
centers in the wild,” in Proceedings of the 10th ACM SIGCOMM conference
on Internet measurement. ACM, 2010, pp. 267–280.

[17] S. Kandula, S. Sengupta, A. G. Greenberg, P. Patel, and R. Chaiken, “The
nature of data center traffic: measurements & analysis,” in Proceedings of the
9th ACM SIGCOMM Internet Measurement Conference, IMC 2009, Chicago,
Illinois, USA, November 4-6. ACM, 2009, pp. 202–208.

[18] A. Beloglazov and R. Buyya, “Managing overloaded hosts for dynamic con-
solidation of virtual machines in cloud data centers under quality of service
constraints,” IEEE Transactions on Parallel and Distributed Systems, vol. 24,
no. 7, pp. 1366–1379, 2013.

[19] Z. Xiao, W. Song, and Q. Chen, “Dynamic resource allocation using virtual
machines for cloud computing environment,” IEEE transactions on parallel
and distributed systems, vol. 24, no. 6, pp. 1107–1117, 2013.

[20] Z. Gong, X. Gu, and J. Wilkes, “Press: Predictive elastic resource scaling for
cloud systems,” in Network and Service Management (CNSM), 2010 Interna-
tional Conference on. Ieee, 2010, pp. 9–16.

[21] N. Serrano, G. Gallardo, and J. Hernantes, “Infrastructure as a service and
cloud technologies,” IEEE Software, vol. 32, no. 2, pp. 30–36, 2015.

[22] N. Manohar, A Survey of Virtualization Techniques in Cloud Computing. In-
dia: Springer India, 2013, pp. 461–470.

[23] Y. Jadeja and K. Modi, “Cloud computing-concepts, architecture and chal-
lenges,” in Computing, Electronics and Electrical Technologies (ICCEET),
2012 International Conference on. IEEE, 2012, pp. 877–880.

BIBLIOGRAPHY 93

[24] A. Headquarters, “Cisco data center infrastructure 2.5 design guide,” in Cisco
Validated Design I. Cisco Systems, Inc, 2007.

[25] C. Headquarters, “Data center networking: Enterprise distributed data centers
solutions reference nework design,” in Solutions Reference Network Design.
Cisco Systems, Inc, 2003.

[26] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri, D. A.
Maltz, P. Patel, and S. Sengupta, “Vl2: a scalable and flexible data center
network,” in ACM SIGCOMM computer communication review, vol. 39, no. 4.
ACM, 2009, pp. 51–62.

[27] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian, Y. Zhang, and S. Lu,
“Bcube: a high performance, server-centric network architecture for modular
data centers,” ACM SIGCOMM Computer Communication Review, vol. 39,
no. 4, pp. 63–74, 2009.

[28] R. Niranjan Mysore, A. Pamboris, N. Farrington, N. Huang, P. Miri, S. Rad-
hakrishnan, V. Subramanya, and A. Vahdat, “Portland: a scalable fault-
tolerant layer 2 data center network fabric,” in ACM SIGCOMM Computer
Communication Review, vol. 39, no. 4. ACM, 2009, pp. 39–50.

[29] Amazon inc., Amazon Elastic Compute Cloud Amazon EC2. http://aws.
amazon.com/ec2/. 2014.

[30] Azure services platform. http://www.microsoft.com/azure/default.mspx.

[31] J. M. Pujol, V. Erramilli, G. Siganos, X. Yang, N. Laoutaris, P. Chhabra, and
P. Rodriguez, “The little engine (s) that could: Scaling online social networks,”
IEEE/ACM Transactions on Networking, vol. 20, no. 4, pp. 1162–1175, 2012.

[32] V. Valancius, N. Laoutaris, L. Massoulié, C. Diot, and P. Rodriguez, “Greening
the internet with nano data centers,” in Proceedings of the 5th international
conference on Emerging networking experiments and technologies. ACM,
2009, pp. 37–48.

[33] R. Baeza-Yates, A. Gionis, F. Junqueira, V. Plachouras, and L. Telloli, “On
the feasibility of multi-site web search engines,” in Proceedings of the 18th
ACM conference on Information and knowledge management. ACM, 2009,
pp. 425–434.

[34] J. M. Pujol, V. Erramilli, and P. Rodriguez, “Divide and conquer: Partitioning
online social networks,” arXiv preprint arXiv:0905.4918, 2009.

[35] X. Dong, T. El-Gorashi, and J. M. Elmirghani, “Green ip over wdm networks
with data centers,” Journal of Lightwave Technology, vol. 29, no. 12, pp. 1861–
1880, 2011.

[36] B. Rochwerger, D. Breitgand, A. Epstein, D. Hadas, I. Loy, K. Nagin, J. Tords-
son, C. Ragusa, M. Villari, S. Clayman et al., “Reservoir-when one cloud is
not enough,” Computer, vol. 44, no. 3, pp. 44–51, 2011.

http://aws.amazon.com/ec2/
http://aws.amazon.com/ec2/
http://www.microsoft.com/azure/default.mspx

BIBLIOGRAPHY 94

[37] G. Aceto, A. Botta, W. De Donato, and A. Pescapè, “Cloud monitoring: A
survey,” Computer Networks, vol. 57, no. 9, pp. 2093–2115, 2013.

[38] AMAZON. Amazon cloudwatch user guide. [Online]. Available: http:
//docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/acw-ug.pdf

[39] LogicMonitor. Netapp. [Online]. Available: https://www.logicmonitor.com/
monitoring/netapp/

[40] NIMSOFT. Getting started guide. [Online]. Avail-
able: https://support.nimsoft.com/downloads/server60/NMS 6.00/en US/
NimsoftMonitorGettingStarted20Guide.pdf

[41] S. S. Manvi and G. K. Shyam, “Resource management for infrastructure as a
service (iaas) in cloud computing: A survey,” Journal of Network and Com-
puter Applications, vol. 41, pp. 424–440, 2014.

[42] D. Kliazovich, P. Bouvry, and S. U. Khan, “Dens: Data center energy-efficient
network-aware scheduling,” in Green Computing and Communications (Green-
Com), 2010 IEEE/ACM Int’l Conference on Int’l Conference on Cyber, Phys-
ical and Social Computing (CPSCom), Dec 2010, pp. 69–75.

[43] X. Meng, V. Pappas, and L. Zhang, “Improving the scalability of data center
networks with traffic-aware virtual machine placement,” in INFOCOM. IEEE,
2010, pp. 1154–1162.

[44] D. Ersoz, M. S. Yousif, and C. R. Das, “Characterizing network traffic in
a cluster-based, multi-tier data center,” in 27th International Conference on
Distributed Computing Systems (ICDCS ’07), June 2007, pp. 59–59.

[45] M. Mishra, A. Das, P. Kulkarni, and A. Sahoo, “Dynamic resource manage-
ment using virtual machine migrations,” IEEE Communications Magazine,
vol. 50, no. 9, pp. 34–40, 2012.

[46] P. Horn, “Autonomic Computing: IBM’s Perspective on the State of Informa-
tion Technology,” Tech. Rep., 2001.

[47] J. O. Kephart and D. M. Chess, “The vision of autonomic computing,” IEEE
Computer, vol. 36, no. 1, pp. 41–50, 2003.

[48] IBM, “An architectural blueprint for autonomic computing,” Tech. Rep., 2005.

[49] S. Bradley, A. Hax, and T. Magnanti, Applied Mathematical Programming.
Addison-Wesley Publishing Company, 1977. [Online]. Available: https:
//books.google.tn/books?id=MSWdWv3Gn5cC

[50] S. Rao, Engineering Optimization: Theory and Practice: Fourth Edition.
John Wiley and Sons, 6 2009.

[51] K. L. Hoffman and T. K. Ralphs, “Integer and combinatorial optimization,”
in Encyclopedia of Operations Research and Management Science. Springer,
2013, pp. 771–783.

http://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/acw-ug.pdf
http://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/acw-ug.pdf
https://www.logicmonitor.com/monitoring/netapp/
https://www.logicmonitor.com/monitoring/netapp/
https://support.nimsoft.com/downloads/server60/NMS_6.00/en_US/NimsoftMonitorGettingStarted20Guide.pdf
https://support.nimsoft.com/downloads/server60/NMS_6.00/en_US/NimsoftMonitorGettingStarted20Guide.pdf
https://books.google.tn/books?id=MSWdWv3Gn5cC
https://books.google.tn/books?id=MSWdWv3Gn5cC

BIBLIOGRAPHY 95

[52] M. W. Krentel, “The complexity of optimization problems,” in Proceedings of
the eighteenth annual ACM symposium on Theory of computing. ACM, 1986,
pp. 69–76.

[53] G. Cornuéjols, “Valid inequalities for mixed integer linear programs,” Mathe-
matical Programming, vol. 112, no. 1, pp. 3–44, 2008.

[54] D. F. Rogers, R. D. Plante, R. T. Wong, and J. R. Evans, “Aggregation
and disaggregation techniques and methodology in optimization,” Operations
Research, vol. 39, no. 4, pp. 553–582, 1991.

[55] A. I. Ettien, N. Ben Hadj-Alouane, and A. B. Hadj-Alouane, “A scenario
approach for a capacity planning problem with stochastic demands,” Inter-
national Journal of Logistics Systems and Management, vol. 3, no. 2, pp.
158–173, 2006.

[56] R. Fletcher, Practical Methods of Optimization. Wiley, 2013.

[57] J. Pearl, Heuristics: Intelligent Search Strategies for Computer Problem Solv-
ing. Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc., 1984.

[58] C. Blum and A. Roli, “Metaheuristics in combinatorial optimization:
Overview and conceptual comparison,” ACM Comput. Surv., vol. 35, no. 3,
pp. 268–308, Sep. 2003.

[59] D. P. Bovet and P. Crescenzi, Introduction to the theory of complexity, ser.
Prentice Hall international series in computer science. Prentice Hall, 1994.

[60] I. Correia, S. Nickel, and F. Saldanha-da Gama, “The capacitated single-
allocation hub location problem revisited: A note on a classical formulation,”
European Journal of Operational Research, vol. 207, no. 1, pp. 92–96, 2010.

[61] J. F. Campbell, “Hub location and the p-hub median problem,” Oper. Res.,
vol. 44, no. 6, pp. 923–935, Dec. 1996.

[62] T. Lee, K. Lee, and S. Park, “Optimal routing and wavelength assignment
in wdm ring networks,” IEEE Journal on Selected Areas in Communications,
vol. 18, no. 10, pp. 2146–2154, Oct 2000.

[63] M. Tornatore, G. Maier, and A. Pattavina, “Wdm network design by ilp
models based on flow aggregation,” IEEE/ACM Transactions on Networking
(TON), vol. 15, no. 3, pp. 709–720, 2007.

[64] A. Shankar and U. Bellur, “Virtual machine placement in computing clouds,”
Indian Institute of Technology Bombay, Technical Report, 2010.

[65] H. Teyeb, A. Balma, N. B. Hadj-Alouane, and S. Tata, “Optimal virtual
machine placement in a multi-tenant cloud,” in Service-Oriented Computing -
ICSOC 2014 Workshops - FOR-MOVES, Paris, France, November 3-6, 2014,
ser. Lecture Notes in Computer Science, vol. 8954. Springer, 2014, pp. 308–
319.

BIBLIOGRAPHY 96

[66] A. Amokrane, M. F. Zhani, R. Langar, R. Boutaba, and G. Pujolle, “Green-
head: Virtual data center embedding across distributed infrastructures,” IEEE
Trans. Cloud Computing, vol. 1, no. 1, pp. 36–49, 2013.

[67] B. Kantarci, L. Foschini, A. Corradi, and H. T. Mouftah, “Inter-and-intra
data center vm-placement for energy-efficient large-scale cloud systems,” in
Workshops Proceedings of the Global Communications Conference, GLOBE-
COM 2012, 3-7 December 2012, Anaheim, California, USA. IEEE, 2012, pp.
708–713.

[68] M. R. Korupolu, A. Singh, and B. Bamba, “Coupled placement in modern
data centers,” in IPDPS. IEEE, 2009, pp. 1–12.

[69] R. Cohen, L. Lewin-Eytan, J. Naor, and D. Raz, “Almost optimal virtual
machine placement for traffic intense data centers,” in INFOCOM, Turin,
Italy. IEEE, 2013, pp. 355–359.

[70] O. Biran, A. Corradi, M. Fanelli, L. Foschini, A. Nus, D. Raz, and E. Sil-
vera, “A stable network-aware VM placement for cloud systems,” in CCGRID.
IEEE Computer Society, 2012, pp. 498–506.

[71] T. Yapicioglu and S. Oktug, “A traffic-aware virtual machine placement
method for cloud data centers,” in Proceedings of the 2013 IEEE/ACM 6th In-
ternational Conference on Utility and Cloud Computing, ser. UCC ’13. Wash-
ington, DC, USA: IEEE Computer Society, 2013.

[72] A. Beloglazov and R. Buyya, “Optimal online deterministic algorithms and
adaptive heuristics for energy and performance efficient dynamic consolidation
of virtual machines in cloud data centers,” Concurrency and Computation:
Practice and Experience, vol. 24, no. 13, pp. 1397–1420, 2012.

[73] B. Zhang, Z. Qian, W. Huang, X. Li, and S. Lu, “Minimizing communication
traffic in data centers with power-aware VM placement,” in Innovative Mobile
and Internet Services in Ubiquitous Computing (IMIS), 2012 Sixth Interna-
tional Conference on, 2012.

[74] D. S. Dias and L. H. M. K. Costa, “Online traffic-aware virtual machine place-
ment in data center networks,” in Global Information Infrastructure and Net-
working Symposium, GIIS 2012, Choroni, Venezuela, December 17-19, 2012.
IEEE, 2012, pp. 1–8.

[75] J. T. Piao and J. Yan, “A network-aware virtual machine placement and mi-
gration approach in cloud computing,” in 2010 Ninth International Conference
on Grid and Cloud Computing. IEEE, 2010, pp. 87–92.

[76] V. Mann, A. Gupta, P. Dutta, A. Vishnoi, P. Bhattacharya, R. Poddar, and
A. Iyer, “Remedy: Network-aware steady state VM management for data
centers,” in Networking (1), ser. Lecture Notes in Computer Science, vol.
7289. Springer, 2012.

[77] T. Duong-Ba, T. P. Nguyen, B. Bose, and T. Tran, “Joint virtual machine
placement and migration scheme for datacenters,” in GLOBECOM, Austin,
TX, USA. IEEE, 2014.

BIBLIOGRAPHY 97

[78] I. Goiri, K. Le, J. Guitart, J. Torres, and R. Bianchini, “Intelligent place-
ment of datacenters for internet services,” in 2011 International Conference
on Distributed Computing Systems, ICDCS 2011, Minneapolis, Minnesota,
USA, June 20-24, 2011. IEEE Computer Society, 2011, pp. 131–142.

[79] F. Larumbe and B. Sansò, “Optimal location of data centers and software
components in cloud computing network design,” in 12th IEEE/ACM Inter-
national Symposium on Cluster, Cloud and Grid Computing, CCGrid 2012,
Ottawa, Canada, May 13-16, 2012. IEEE Computer Society, 2012, pp. 841–
844.

[80] H. Goudarzi and M. Pedram, “Geographical load balancing for online service
applications in distributed datacenters,” in IEEE CLOUD, Santa Clara, CA,
USA. IEEE, 2013.

[81] Q. Zhang, Q. Zhu, M. F. Zhani, R. Boutaba, and J. L. Hellerstein, “Dynamic
service placement in geographically distributed clouds,” IEEE Journal on Se-
lected Areas in Communications, vol. 31, no. 12-Supplement, pp. 762–772,
2013.

[82] Z. Usmani and S. Singh, “A survey of virtual machine placement techniques in
a cloud data center,” Procedia Computer Science, vol. 78, pp. 491–498, 2016.

[83] A. Shapiro, D. Dentcheva et al., Lectures on stochastic programming: modeling
and theory. SIAM, 2014, vol. 16.

[84] S. Chaisiri, B.-S. Lee, and D. Niyato, “Optimal virtual machine placement
across multiple cloud providers,” in Services Computing Conference, 2009.
APSCC 2009. IEEE Asia-Pacific. IEEE, 2009, pp. 103–110.

[85] M. Wang, X. Meng, and L. Zhang, “Consolidating virtual machines with dy-
namic bandwidth demand in data centers,” in INFOCOM, 2011 Proceedings
IEEE. IEEE, 2011, pp. 71–75.

[86] S. T. Maguluri, R. Srikant, and L. Ying, “Stochastic models of load balancing
and scheduling in cloud computing clusters,” in INFOCOM, 2012 Proceedings
IEEE, March 2012, pp. 702–710.

[87] H. Jin, D. Pan, J. Xu, and N. Pissinou, “Efficient vm placement with multiple
deterministic and stochastic resources in data centers,” in Global Communi-
cations Conference (GLOBECOM), 2012 IEEE, Dec 2012, pp. 2505–2510.

[88] R. Ghosh, F. Longo, R. Xia, V. K. Naik, and K. S. Trivedi, “Stochastic
model driven capacity planning for an infrastructure-as-a-service cloud,” IEEE
Transactions on Services Computing, vol. 7, no. 4, pp. 667–680, 2014.

[89] J. Chase and D. Niyato, “Joint optimization of resource provisioning in cloud
computing,” IEEE Transactions on Services Computing, vol. PP, no. 99, pp.
1–1, 2015.

[90] D. Xu, X. Liu, and Z. Niu, “Joint resource provisioning for internet datacenters
with diverse and dynamic traffic,” IEEE Transactions on Cloud Computing,
vol. PP, no. 99, pp. 1–1, 2015.

BIBLIOGRAPHY 98

[91] T. Benson, A. Anand, A. Akella, and M. Zhang, “Understanding data center
traffic characteristics,” Computer Communication Review, vol. 40, no. 1, pp.
92–99, 2010.

[92] IBM Corporation ILOG CPLEX. http://www.ilog.com/products/cplex/. Vis-
ited: 04-02-2013.

[93] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. D. Rose, and R. Buyya,
“Cloudsim: a toolkit for modeling and simulation of cloud computing envi-
ronments and evaluation of resource provisioning algorithms,” Softw., Pract.
Exper., vol. 41, no. 1, pp. 23–50, 2011.

[94] H. Teyeb, A. Balma, N. B. Hadj-Alouane, and S. Tata, “Optimal virtual ma-
chine placement in large-scale cloud systems,” in IEEE CLOUD, Anchorage,
AK, USA. IEEE, 2014, pp. 424–431.

[95] I. R. Mart́ın and J. J. S. González, “Solving a capacitated hub location prob-
lem,” European Journal of Operational Research, vol. 184, no. 2, pp. 468–479,
2008.

[96] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the
Theory of NP-Completeness. New York, NY, USA: W. H. Freeman & Co.,
1979.

[97] V. Mak, “Iterative variable aggregation and disaggregation in ip: An applica-
tion,” Operations research letters, vol. 35, no. 1, pp. 36–44, 2007.

[98] M. R. Garey and D. S. Johnson, Computers and Intractability; A Guide to the
Theory of NP-Completeness. New York, NY, USA: W. H. Freeman & Co.,
1990.

[99] D. Bienstock and O. Günlük, “Computational experience with a difficult
mixedinteger multicommodity flow problem,” Mathematical Programming,
vol. 68, no. 1-3, pp. 213–237, 1995.

[100] A. Balma, N. B. Hadj-Alouane, and A. B. Hadj-Alouane, “A near-optimal
solution approach for the multi-hop traffic grooming problem,” Journal of
Optical Communications and Networking, vol. 3, no. 11, pp. 891–901, 2011.

[101] L. A. Wolsey, “Strong formulations for mixed integer programs: valid inequal-
ities and extended formulations,” Mathematical programming, vol. 97, no. 1-2,
pp. 423–447, 2003.

[102] A. T. Ernst and M. Krishnamoorthy, “Solution algorithms for the capaci-
tated single allocation hub location problem,” Annals of Operations Research,
vol. 86, pp. 141–159, 1999.

[103] S. Alumur and B. Y. Kara, “Network hub location problems: The state of
the art,” European Journal of Operational Research, vol. 190, no. 1, pp. 1–21,
2008.

http://www.ilog.com/products/cplex/

BIBLIOGRAPHY 99

[104] E. Feller, “Autonomic and energy-efficient management of large-scale
virtualized data centers. (gestion autonome et économique en énergie des
grands centres de données virtualisés),” Ph.D. dissertation, University of
Rennes 1, France, 2012. [Online]. Available: https://tel.archives-ouvertes.fr/
tel-00785090

[105] B. Xia and Z. Tan, “Tighter bounds of the first fit algorithm for the bin-packing
problem,” Discrete Applied Mathematics, vol. 158, no. 15, pp. 1668–1675, 2010.

[106] Y. Li, X. Tang, and W. Cai, “On dynamic bin packing for resource allocation
in the cloud,” in Proceedings of the 26th ACM Symposium on Parallelism in
Algorithms and Architectures. ACM, 2014, pp. 2–11.

[107] H. Teyeb, N. B. Hadj-Alouane, S. Tata, and A. Balma, “Optimal dynamic
placement of virtual machines in geographically distributed cloud data cen-
ters,” International Journal of Cooperative Information Systems, p. 1750001,
2017.

[108] R. Benali, H. Teyeb, A. Balma, S. Tata, and N. B. Hadj-Alouane, “Evaluation
of traffic-aware VM placement policies in distributed cloud using cloudsim,”
in 25th IEEE International Conference on Enabling Technologies: Infrastruc-
ture for Collaborative Enterprises, WETICE 2016, Paris, France, June 13-15,
2016. IEEE Computer Society, 2016, pp. 95–100.

[109] R. Bradford, E. Kotsovinos, A. Feldmann, and H. Schiöberg, “Live wide-area
migration of virtual machines including local persistent state,” in VEE, San
Diego, California, USA. ACM, 2007.

[110] W. Voorsluys, J. Broberg, S. Venugopal, and R. Buyya, “Cost of virtual
machine live migration in clouds: A performance evaluation,” CoRR, vol.
abs/1109.4974, 2011.

[111] R. Buyya, R. Ranjan, and R. N. Calheiros, “Modeling and simulation of scal-
able cloud computing environments and the cloudsim toolkit: Challenges and
opportunities,” in HPCS. IEEE, 2009, pp. 1–11.

[112] R. Ashalatha, J. Agarkhed, and S. Patil, “Analysis of simulation tools in cloud
computing,” in Wireless Communications, Signal Processing and Networking
(WiSPNET), International Conference on. IEEE, 2016, pp. 748–751.

[113] Q. Pan, J. Pan, and C. Wang, “Simulation in cloud computing envrionment,”
in 2013 International Conference on Service Sciences (ICSS), April 2013, pp.
107–112.

[114] P. Humane and J. N. Varshapriya, “Simulation of cloud infrastructure us-
ing cloudsim simulator: A practical approach for researchers,” in ICSTM’15,
Chennai, India, 2015.

[115] J. T. Piao and J. Yan, “A network-aware virtual machine placement and
migration approach in cloud computing,” in Grid and Cooperative Computing
(GCC), 2010 9th International Conference on, 2010.

https://tel.archives-ouvertes.fr/tel-00785090
https://tel.archives-ouvertes.fr/tel-00785090

BIBLIOGRAPHY 100

[116] A. Koto, H. Yamada, K. Ohmura, and K. Kono, “Towards unobtrusive VM
live migration for cloud computing platforms,” in Asia-Pacific Workshop on
Systems, APSys ’12, Seoul, Republic of Korea. ACM, 2012.

[117] S. Lim, J. Huh, Y. Kim, and C. R. Das, “Migration, assignment, and schedul-
ing of jobs in virtualized environment,” in 3rd USENIX Workshop on Hot
Topics in Cloud Computing, HotCloud’11, Portland, OR, USA, I. Stoica and
J. Wilkes, Eds., 2011.

[118] H. Teyeb, A. Balma, S. Tata, and N. B. Hadj-Alouane, “Traffic-aware vir-
tual machine migration scheduling problem in geographically distributed data
centers,” in IEEE CLOUD, San Francisco, USA, 2016, 2016, accepted.

[119] H. Liu and B. He, “Vmbuddies: Coordinating live migration of multi-tier ap-
plications in cloud environments,” IEEE Trans. Parallel Distrib. Syst., vol. 26,
no. 4, pp. 1192–1205, 2015.

[120] S. Akiyama, T. Hirofuchi, R. Takano, and S. Honiden, “Fast wide area live
migration with a low overhead through page cache teleportation,” in CCGRID,
Delft, Netherlands. IEEE Computer Society, 2013.

[121] X. Guan, B. Choi, and S. Song, “Topology and migration-aware energy effi-
cient virtual network embedding for green data centers,” in ICCCN, Shanghai,
China. IEEE, 2014.

[122] C. E. Miller, A. W. Tucker, and R. A. Zemlin, “Integer programming formu-
lation of traveling salesman problems,” J. ACM, vol. 7, no. 4, pp. 326–329,
1960.

[123] M. Desrochers and G. Laporte, “Improvements and extensions to the Miller-
Tucker-Zemlin subtour elimination constraints,” Operations Research Letters,
1991.

[124] C. Rego, D. Gamboa, F. Glover, and C. Osterman, “Traveling salesman prob-
lem heuristics: Leading methods, implementations and latest advances,” Eu-
ropean Journal of Operational Research, vol. 211, no. 3, pp. 427–441, 2011.

[125] X. Chen, S. Chen, F. Tseng, L. Chou, and H. Chao, “Minimizing virtual ma-
chine migration probability for cloud environments,” in HPCC/EUC. IEEE,
2013.

[126] A. Strunk, “Costs of virtual machine live migration: A survey,” in SERVICES.
IEEE Computer Society, 2012.

[127] M. F. H. Bhuiyan and C. Wang, “Capability-aware energy-efficient virtual
machine scheduling in heterogeneous datacenters,” in IEEE SMC, San Diego,
CA, USA, 2014.

[128] S. Dutta and A. Verma, “Service deactivation aware placement and defrag-
mentation in enterprise clouds,” in CNSM 2011, Paris, France. IEEE, 2011.

BIBLIOGRAPHY 101

[129] T. Knauth and C. Fetzer, “Spot-on for timed instances: Striking a balance
between spot and the instances,” in CGC 2012, Xiangtan, Hunan, China.
IEEE, 2012.

[130] G. Luo, Z. Qian, M. Dong, K. Ota, and S. Lu, “Network-aware re-scheduling:
Towards improving network performance of virtual machines in a data center,”
in ICA3PP 2014, Dalian, China. Springer, 2014.

[131] H. Jin, D. Pan, J. Xu, and N. Pissinou, “Efficient vm placement with multiple
deterministic and stochastic resources in data centers,” in Global Communi-
cations Conference (GLOBECOM), 2012 IEEE. IEEE, 2012, pp. 2505–2510.

[132] S. Kim, R. Pasupathy, and S. G. Henderson, “A guide to sample average
approximation,” in Handbook of simulation optimization. Springer, 2015, pp.
207–243.

[133] T. Homem-de Mello and G. Bayraksan, “Monte carlo sampling-based methods
for stochastic optimization,” Surveys in Operations Research and Management
Science, vol. 19, no. 1, pp. 56–85, 2014.

[134] K. J. Preacher and J. P. Selig, “Advantages of monte carlo confidence intervals
for indirect effects,” Communication Methods and Measures, vol. 6, no. 2, pp.
77–98, 2012.

[135] A. DasGupta, Normal Approximations and the Central Limit Theorem. New
York, NY: Springer New York, 2010, pp. 213–242.

[136] O. Klopfenstein, “Solving chance-constrained combinatorial problems to opti-
mality,” Comp. Opt. and Appl., vol. 45, no. 3, pp. 607–638, 2010.

[137] M. I. Hussain, “Internet of things: challenges and research opportunities,” CSI
Transactions on ICT, vol. 5, no. 1, pp. 87–95, Mar 2017.

[138] A. Botta, W. de Donato, V. Persico, and A. Pescapé, “Integration of cloud
computing and internet of things: A survey,” Future Generation Computer
Systems, vol. 56, pp. 684 – 700, 2016.

[139] M. Barcelo, A. Correa, J. Llorca, A. M. Tulino, J. L. Vicario, and A. Morell,
“Iot-cloud service optimization in next generation smart environments,” IEEE
Journal on Selected Areas in Communications, vol. 34, no. 12, pp. 4077–4090,
Dec 2016.

