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brother, Birkan, for their sel�ess support in all the stages of my life. Without their endless

love and support I would not be where I am now.

3





Contents

Résumé en Français iii

List of Figures xi

List of Tables xv

1. Introduction 1

1.1. General Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2. Related works among others . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3. Outline of thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2. Formulation of the Direct Problem 13

2.1. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2. Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3. Discretization of the problem . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4. Validation of the model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5. Comparison of the data with di�erent models . . . . . . . . . . . . . . . . 22

2.6. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3. Methods to Solve Nonlinear Inverse Problem 27

3.1. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2. Soft Shrinkage Method for Nonlinear equations . . . . . . . . . . . . . . . . 28

3.2.1. Gradient K ′ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2.2. Smooth Gradient K ′s . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2.3. The Step Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2.4. Soft Thresholding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2.5. Positivity Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2.6. Stopping Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

i



Contents

3.3. Soft Shrinkage Method in Wavelet Transform . . . . . . . . . . . . . . . . 38

3.3.1. Review of wavelet representation and the wavelet transform . . . . 39

3.3.2. Forward Problem in the Wavelet Domain . . . . . . . . . . . . . . . 40

3.3.3. Inverse Algorithm in Wavelet Domain . . . . . . . . . . . . . . . . . 42

3.4. Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.4.1. Choice of Regularization Parameters . . . . . . . . . . . . . . . . . 44

3.4.2. Addition of Projection . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.4.3. Analysis of Proposed Approaches . . . . . . . . . . . . . . . . . . . 56

3.5. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4. Two-Step Inversion Method 69

4.1. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.2. Two-Step Inversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.2.1. First step: Reconstruction of the equivalent currents . . . . . . . . . 70

4.2.2. Second step: Reconstruction of the contrast function . . . . . . . . 72

4.2.3. Two-Step Inversion Method Results in 2D . . . . . . . . . . . . . . 72

4.2.4. Two-Step Inversion Method: Preliminary Results in 3D . . . . . . . 77

4.3. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5. Summary, Conclusions and Future Work 89

5.1. Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.2. Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

A. Adjoint Gradient of Cost Function 105

A.1. Adjoint Gradient of Cost Function . . . . . . . . . . . . . . . . . . . . . . 105

B. The Wavelet Theory 109

B.1. The Wavelet Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

B.1.1. Approximation theory and multiresolution analysis . . . . . . . . . 109

B.1.2. Continuous Wavelet Transform . . . . . . . . . . . . . . . . . . . . 110

B.1.3. Multiband coding in wavelet domain . . . . . . . . . . . . . . . . . 111

ii



Résumé en Français

Ce manuscrit de thèse décrit mes travaux de recherche dans le domaine de l'imagerie

micro-onde, qui fait l'objet d'un intérêt de recherche important en raison de son potentiel

en tant que technique pratique et e�cace pour des systèmes médicaux [1, 2], des carac-

térisations de matériaux [3], la caractérisation du sous-sol, la télédétection, et les essais

et évaluations non destructifs [4, 5]. L'objectif de l'imagerie micro-onde est notamment

d'estimer l'emplacement de di�racteurs dans une région d'intérêt, en accédant en sus à la

distribution de leurs propriétés électromagnétiques.

Ces dernières années, le besoin de méthodes et de techniques de reconstruction e�-

caces a fortement émergé pour résoudre les problèmes de di�raction inverse électromag-

nétique qui se posent dans l'imagerie micro-onde a�n d'en réduire au mieux les di�cultés

théoriques et pratiques. La demande dans diverses applications impose le développement

de méthodes e�caces et précises. Cependant, la mise en ÷uvre d'algorithmes de recon-

struction qui soient stables, �ables et e�caces est un dé� en raison de la non-linéarité des

équations de la di�raction et du caractère mal-posé du problème auquel on se confronte

[4, 6, 7].

En mathématique, il y a souvent deux problèmes qui font face l'un à l'autre, le prob-

lème direct et le problème inverse. Dans le problème direct, l'état observable d'un système

est déterminé en utilisant tous les paramètres nécessaires. En comparaison, le problème

inverse se préoccupe de la condition préalable qui crée une donnée observée. Mathéma-

tiquement, nous avons y = K(x), où x ∈ X est l'inconnue et y ∈ Y est le vecteur des

observations. Habituellement, K() est un opérateur continu bien posé et la solution du

problème direct (trouver y donné x) ne rencontre aucun obstacle signi�catif. D'autre

part, le mapping inverse de y à x dans les problèmes d'intérêt n'est pas aisé à traiter.

Normalement, les problèmes inverses sont tels que les modèles mathématiques ne sont pas

bien posés dans le sens de Hadamard, signi�ant pas de solution unique, pas d'existence de

solution et la non-dépendance des données de manière continue [6, 7]. Ces problèmes sont

dits mal-posés et ils sont la source de nombreuses di�cultés numériques car ils rendent

la plupart des algorithmes numériques instables pour des perturbations de données [4, 8].
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Les méthodes numériques qui peuvent traiter ces problèmes sont appelées méthodes de

régularisation.

Les problèmes de di�raction électromagnétique inverse possèdent donc deux propriétés

fondamentales qui font de leur résolution une tâche di�cile, la première est la non-linéarité

des équations de di�raction [5, 9], la seconde le caractère mal-posé du problème [5, 9].

Le champ di�racté est une fonction intégrale du champ total induit dans le domaine

investigué, multiplié par le contraste (ici la di�érence entre les permittivités complexes du

domaine d'investigation et du milieu environnant). Le champ total induit est également

une fonction non linéaire de la permittivité [5, 9]. En conséquence, la reconstruction de

cette permittivité à partir de champs di�ractés est un problème non linéaire.

En outre, le fait que le champ di�racté soit une fonction intégrale du champ total et

de la permittivité dans le domaine sous investigation conduit à un problème inverse mal-

posé [5, 9]. L'opérateur intégral supprime la contribution des composantes à variation

rapide de la permittivité au champ di�racté et rend di�cile leur identi�cation [5, 9].

Cette nature physique du phénomène de di�raction est combinée avec le fait que seul un

ensemble �ni d'échantillons, non nécessairement aussi de distribution optimale par rapport

aux di�racteurs recherchés et insu�samment indépendants les uns des autres, peut être

collecté par les mesures, mesures qui ne fournissent pas su�samment d'information, et

que ces échantillons sont presque toujours corrompus par le bruit, de sorte qu'un modèle

approximatif discrétisé doit remplacer la description mathématique exacte du problème.

Ainsi, cela rend le problème inverse sévèrement mal posé [5, 9].

La force de la non-linéarité dans le problème de di�raction s'accroît avec l'amplitude

des champs di�ractés couplés avec le/les objet/s dans le domaine investigué. Par con-

séquent, une permittivité supérieure (cette notion étant aussi dépendante de la taille des

di�racteurs) signi�e une non-linéarité plus forte. La plupart des méthodes déterministes

qui se révèlent e�caces pour résoudre des problèmes inverses électromagnétiques impli-

quant des faibles di�racteurs utilisent des approximations linéaires de premier ordre [10],

telles que la tomographie par di�raction [11], l'approximation de Born de premier or-

dre [5, 12], l'approximation de Kirchho� [5] et l'approximation de Rytov [5, 12]. Bien

que ces méthodes soient moins exigeantes sur le plan informatique, elles ne fournissent

pas de solutions précises lorsque de puissants di�racteurs sont présents dans le domaine

étudié. Dans de tels cas, lorsque la non-linéarité est forte, la linéarisation ne produit pas

une approximation précise du problème non linéaire et il faut utiliser des techniques plus

rigoureuses telles que le solveur non linéaire de Newton combiné avec des formulations

de champ de contraste ou de source de contraste [5, 13], la méthode de gradient con-
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jugué non linéaire [14], l'algorithme de descente de plus grande pente non linéaire (par

ex. Landweber non-linéaire) [15, 16], et le schéma de Levenberg-Marquardt [17], ainsi

que les méthodes de Born distordu [18]. Ces méthodes sont de plus exigeantes en terme

de calcul comparativement à celles qui utilisent les schémas de linéarisation du premier

ordre. D'autres méthodes qui béné�cient du meilleur des deux mondes ont également été

développées. Celles-ci utilisent des schémas de linéarisation d'ordre supérieur ou une appli-

cation itérative de premier ordre. Les exemples incluent l'approximation de Born étendu

[19] et les approximations de Born d'ordre supérieur [5, 20], la méthode itérative de Born

(BIM) [21] et la méthode itérative variationnelle [22], respectivement. Les méthodes de ce

dernier groupe sont plus e�caces en terme de calcul par rapport aux méthodes d'inversion

non linéaires, et s'appliquent également à une plus grande gamme de force des di�racteurs

que les méthodes de linéarisation de premier ordre.

Indépendamment de la méthode utilisée pour s'attaquer à la non-linéarité, le caractère

mal-posé du problème inverse de di�raction doit être pris en compte [9, 23, 24]. À cette

�n, des méthodes de régularisation linéaires et non linéaires, qui minimisent une fonction

de coût pondérée entre mesure/inadéquation des données et un terme de pénalité, ont

été développées. Le choix le plus populaire du terme de pénalité est la norme l2 de la

solution [23, 24]. Le problème de minimisation qui en résulte peut être résolu en utilisant

le schéma bien connu de Tikhonov [23, 24]. En outre, l'utilisation d'itérations tronquées de

Landweber ou de gradient conjugué conduit à un type similaire de régularisation [5, 23].

En programmation linéaire, toutes ces méthodes �ltrent e�cacement les valeurs singulières

du problème de minimisation discrétisé, qui sont inférieures à un niveau de seuil spéci�é,

ou font appel à un paramètre de régularisation pour atténuer le caractère mal-posé.

La régularisation est utilisée pour résoudre des problèmes mal-posés en incorporant des

connaissances a-priori sur l'objet de façon à stabiliser le problème et fournir des solutions

raisonnables et utiles. Par exemple, si l'on sait que la solution doit être une discrétisation

d'une fonction continue, cette connaissance nous permet de rejeter les candidats les plus

variables et de réduire considérablement l'ensemble des solutions possibles. Le choix d'une

régularisation appropriée dépend étroitement de la propriété que l'on souhaite mettre en

avant, et cela dépend de l'application particulière.

Dans de nombreux problèmes inverses mathématiques, les choix a-priori sont des formes

di�érentes de régularités, et les pénalités correspondantes sont les normes l2 de x ou de ses

dérivése. Des a priori de parcimonie sont utiles lorsque les signaux que nous recherchons

doivent être parcimonieux. Nous dé�nissons la parcimonie d'un vecteur par la présence

d'un petit nombre d'éléments non nuls comme dans le travail de Mallat [25], celui de

v



Résumé en Français

Donoho [26], et celui de Rao [27], entre autre, à propos de l'approximation de fonctions

et la sélection optimale de bases.

La régularisation par la parcimonie a été un domaine de recherche fort de ces dernières

années. Le caractère bien posé et la convergence des méthodes ont été analysés pour des

problèmes inverses linéaires dans [28] et pour des problèmes inverses non linéaires dans

[29]. Il a été démontré que la régularisation par parcimonie est simple à utiliser et très

e�cace pour des problèmes inverses avec des solutions parcimonieuses. Cette méthode

a été appliquée aux problèmes d'imagerie compressive et de tomographie par impédance

électrique (EIT) [30�32]. Cette méthode de régularisation conduit à des minimiseurs parci-

monieux lorsque p = 1 pour la norme lp et favorise la parcimonie pour 1 < p < 2 [28].

Dans ce travail, nous avons exclu p = 0 puisque l0 est une pseudo-norme (la propriété

de distance des normes n'est pas satisfaite), qui compte le nombre d'éléments non nuls.

Même si la parcimonie est le plus favorisé lorsque p = 0, notre problème d'optimisation

devient NP-hard [33]. De plus, ce problème est non-convexe, ce qui crée un problème de

minima multiples et la recherche des minima globaux optimaux nécessite une recherche

intensive très exigeante en calcul [24]. Pour éviter l'apparition de minima multiples, la

norme l1 (quand p ≤ 1) est utilisée comme la meilleure approximation convexe du prob-

lème d'optimisation en norme l0. Ce concept est connu sous le nom de relaxation convexe

[24] en tant qu'alternative au problème NP-Hard. En outre, la norme l1 propose en général

une solution avec d'excellentes caractéristiques de parcimonie. Par conséquent, nous choi-

sissons une pénalité l1 a�n de promouvoir la connaissance a-priori de parcimonie tout au

long de ce travail de thèse.

L'utilisation de normes l1 pour assurer la parcimonie est connue depuis près d'une

décennie. L'opérateur LASSO ou Least Absolute Shrinkage and Selection Operator a été

introduit dans la littérature statistique [34] et l'algorithme dit de Basis Pursuit [35] a été

proposé dans la communauté du signal à peu près au même moment. Les avantages les plus

importants des systèmes de pénalisation l1 sont leur convexité, et la forte parcimonie des

résultats. Di�érentes versions de problèmes de régularisation l1 peuvent être reformulées

en tant que programmation quadratique linéaire ou convexe, contrainte ou non, ou de

second ordre (SOC), ce qui autorise des algorithmes e�caces et globalement convergents.

Un autre avantage important de l'utilisation de la pénalisation l1 est l'existence d'un

certain nombre de résultats théoriques récents (par exemple [36]) montrant que, sous

certaines conditions de parcimonie sur le signal inconnu sous-jacent, le signal peut être

récupéré exactement.

En fait, la fonction inconnue (par exemple, la fonction de contraste ou le courant équiv-
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alent dans les problèmes inverses électromagnétiques) peut être considérée comme parci-

monieuse (ou compressible) dans une base appropriée, du fait qu'elle puisse n'occuper

qu'une petite partie d'un scénario autrement connu ou qu'elle puisse représenter une

anomalie étendue presque homogène contenue dans un milieu de fond. En d'autres ter-

mes, un di�racteur peut être parcimonieux par rapport à une base et non parcimonieux

par rapport à une autre. En outre, dans de nombreux cas pratiques, seul un nombre limité

de mesures sont permises, de sorte que des outils de traitement appropriés pour gérer ce

type de complexité sont nécessaires.

La question de choisir une base appropriée pour une famille de signaux a fait l'objet

de beaucoup d'attention cette dernière décennie, et de nombreuses nouvelles bases ont

été introduites, telles les bases d'ondelettes, les ridgelets et curvelets, parmi beaucoup

d'autres [35]. Bien que toute base d'extension minimale pour un espace à dimension �nie

puisse représenter parfaitement tout signal dans l'espace, lorsque seul un sous-ensemble

de signaux possibles est intéressant, certaines bases possèdent de meilleures propriétés de

représentation parcimonieuse que d'autres. Certaines applications qui béné�cient grande-

ment de la parcimonie de la représentation sont la compression du signal, le débruitage et

l'estimation des paramètres [37�39]. En compression pour la transmission de l'information,

si la représentation du signal n'est pas parcimonieuse, nous devons transmettre le signal

complet. Cependant, si, sous un changement de base, la représentation devient parci-

monieuse, des économies substantielles sont possibles. La plupart des coe�cients de la

représentation sont très petits (par dé�nition de la parcimonie) et si nous les mettons

à zéro, la qualité perceptuelle du signal sera très peu a�ectée. Par conséquent, on ne

transmet que les grands coe�cients, qui sont peu nombreux.

Dans cette thèse, nous avons proposé des méthodes qui exploitent la parcimonie en tant

que brique principale a�n de résoudre le problème inverse non linéaire. Initialement, nous

avons proposé une méthode où la contrainte de parcimonie est directement appliquée au

problème de la reconstruction des propriétés diélectriques internes complexes d'un objet en

fonction de la connaissance du champ di�racté extérieur qui est généré par l'interaction

entre l'objet et un champ incident connu. Le problème d'optimisation non linéaire est

résolu par un algorithme itératif de contraction douce a�n d'appliquer la contrainte de

parcimonie. Cette parcimonie est appliquée à chaque itération par une fonction de seuillage

doux. En outre, nous utilisons une sélection de pas adaptative selon la règle de Barzilai et

Borwein (BB) et une projection sur le contraste inconnu de telle sorte que les contraintes

de positivité soient prises en compte.

La base adoptée joue un rôle clé, car celle-ci doit être tant précise qu'e�cace. L'e�cacité

vii



Résumé en Français

nécessite un nombre réduit de coe�cients dans la représentation, tandis que la précision

implique une faible erreur de représentation, qui quanti�e la désadaptation entre la fonc-

tion réelle et sa projection sur la base considérée. Étant donné que le problème inverse

de di�raction électromagnétique que nous considérons n'est pas linéaire et est mal posé,

la réduction du nombre de paramètres inconnus est importante pour réduire le caractère

mal posé [25, 40, 41]. En fait, la décomposition en ondelettes permet de réduire le nombre

de paramètres inconnus par rapport à la représentation en pixels habituellement exploitée

a�n d'accroître la �abilité de l'inversion [42]. À cet égard, après notre première méthode

proposée avec un seuillage doux, nous avons étendu l'application du paradigme d'imagerie

micro-onde aux fonctions non-pixelisées, élargissant ainsi l'ensemble des distributions de

di�racteurs pouvant être considérés aux cibles de forme et taille arbitraires, sous réserve

qu'elles soient parcimonieuses par rapport à une base appropriée. Dans ce but, les on-

delettes sont utilisées et nous avons étudié si la base d'ondelettes est un bon choix pour

tenir compte ou non du compromis entre l'e�cacité et la précision de la représentation

dans notre cas.

La transformée en ondelettes permet d'avoir des informations tant sur la variation

spatiale que sur le contenu fréquentiel de la fonction, en la représentant en tant que

somme pondérée de la version dilatée et translatée de l'ondelette dite mère [25, 39]. En

particulier, les fonctions de base à grande échelle codent le contenu à basse fréquence de la

fonction traitée, tandis que celles à petites échelles prennent compte des détails de haute

fréquence ou des détails �ns, [25, 39]. Ceci réduit le nombre de paramètres inconnus par

rapport à la représentation habituellement exploitée des pixels, améliorant ainsi la �abilité

de l'inversion [42, 43]. En conséquence, de telles bases sont intrinsèquement capables de

conduire à aborder le problème de di�raction inverse dans un cadre multi-échelle, ce qui

s'est révélé être un moyen e�cace d'améliorer les résultats d'imagerie [44, 45].

Une grande variété d'études considère dorénavant l'information structurelle des solu-

tions a�n de faciliter leur estimation. Par exemple, la structure dite de �group sparsity� ou

de parcimonie structurée [46] a été mise en ÷uvre dans de nombreuses applications, où les

composantes des solutions sont susceptibles d'être soit toutes nulles soit non nulles dans

un groupe. Ainsi, on vise à diminuer la dispersion a�n d'améliorer la solution en tenant

compte de ce regroupement préalable. Dans ce cadre, nous nous sommes concentrés sur

la parcimonie conjointe, ce qui constitue un cas particulier de la parcimonie structurée.

Nous avons proposé une approche d'inversion en deux étapes a�n de résoudre un prob-

lème inverse non linéaire en appliquant une parcimonie commune pour obtenir les sources

équivalentes puis le contraste inconnu. Plus précisément, la parcimonie conjointe signi�e
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que des vecteurs parcimonieux inconnus partagent le même support non nul [46, 47].

Pour conclure, deux algorithmes d'inversion sont proposés pour une imagerie micro-onde

e�cace et précise de domaines d'investigation parcimonieux dans ce manuscrit. Le premier

dépend du seuil de contraction douce avec des contraintes di�érentes et le second exploite

une parcimonie conjointe a�n de retrouver les propriétés électromagnétiques inconnues

des di�racteurs. Nous avons travaillé sur di�érents di�racteurs a�n de montrer la �abilité

des méthodes et nous avons proposé des résultats numériques qui illustrent leur e�cacité,

tout en proposant des améliorations complémentaires dans certains cas.
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1. Introduction

1.1. General Context

This thesis presents my research work in the area of microwave imaging which has been

attracting momentous research interests due to its potential as a convenient and e�cient

technique for medical systems [1, 2, 49], material characterization [3], subsurface probing,

remote sensing, and non-destructive testing and evaluation [4, 5]. The main goal of mi-

crowave imaging is to retrieve the distribution of the dielectric properties in a region of

interest, with usual options of quantitative imaging (wherein the values of the electromag-

netic parameters are sought within this region) and qualitative imaging (wherein what in

�ne matters is to identify certain zones in which such properties di�er from those of the

embedding medium).

It is well known that the electromagnetic inverse scattering problem is the basic formu-

lation for microwave imaging methods. Although this problem has been suitably studied

from a theoretical point of view, new methods are continuously developed to face new and

challenging applications. To inspect dielectric targets, several techniques can be adopted

[14, 44, 49�53]. There are diverse research studies in this area and we only mentioned few

of them here.

The need of e�cient reconstruction methods and techniques has widely emerged for

solving inverse electromagnetic scattering problems arising in microwave imaging in order

to mitigate theoretical and practical di�culties. High demand of such methods in various

applications enforces the importance and the development of e�ective and accurate meth-

ods. However, implementation of stable, reliable, and e�cient reconstruction algorithms

is challenging because of the nonlinearity of the scattering equations and ill-posedness of

the problem [4, 6, 7].

In mathematics, there are often two problems which are opposite to each other. One of

them is called direct (forward) and the other one is called inverse problem. In the forward

problem, the observable state of a system is determined by using all needed parameters.

However, the inverse problem is about the precondition which creates observed data.
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1. Introduction

Mathematically, we have y = K(x), where x ∈ X is the unknown and y ∈ Y is the vector

of observations. Usually, K() is a well-behaved continuous operator, and the solution

of the forward problem (�nd y given x) meets no signi�cant obstacles. On the other

hand, the inverse mapping from y to x in the problems of interest is not easy to deal

with. Normally, inverse problems cause mathematical models not to be well-posed in the

sense of Hadamard such as no unique solution, no solution existence and non dependence

on the data continuously [6, 7]. These problems are called ill-posed and they lead to

many numerical di�culties as it makes most numerical algorithms unstable under data

perturbations [4, 8]. Numerical methods that can deal with these problems are called

regularization methods.

Regularization is used to solve ill-posed problems by incorporating a-priori knowledge

about x to stabilize the problem and to provide reasonable and useful solutions. For exam-

ple, if it is known that the solution should be a discretization of a continuous function, this

knowledge allows us to discard the wildest looking candidates, and to considerably reduce

the set of possible solutions. The task is to minimize some measure J1(x) of proximity

of y (observation data), as well as to satisfy as much as possible the a-priori informa-

tion about x (the unknown parameter), by minimizing some appropriate measure J2(x).

The two objectives typically cannot be both reached at the same time, so we need a

compromise, which can be simply obtained by taking a linear combination of the two:

J(x) = J1(x) + αJ2(x) (1.1)

Scalar α is the regularization parameter balancing the tradeo� between the �delity to the

data, J1(x), and the �delity to the prior information, J2(x). There is a whole family of

solutions indexed by α, with the non-regularized (least squares) solution if α = 0, and a

solution strongly favoring the a-priori information when α is large. In general, choosing

an appropriate α is problem-dependent, and is a nontrivial task. With an appropriate

choice for J(x), regularization e�ectively deals with all the three aspects of ill-posedness.

Also, proper choice of J2(x) deals with lack of uniqueness and can dramatically reduce

sensitivity to noise (improve the Lipschitz constant of the inverse function), making it

continuous enough for practical applications.

The selection of a proper regularizer intimately depends on the property of (x) that one

wishes to enforce, and that depends on the particular application. In many mathematical

inverse problems, priors of choice are di�erent forms of smoothness or constraints, and the

corresponding regularizers are the l2 norms of (x) or its derivatives. Sparsity prior is useful
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when signals x that we look for have to be sparse. Sparsity of a vector (x) can be de�ned

by the presence of a number of non-zero elements and zeros elsewhere, with respect to an

appropriate basis, introducing the notion of L-sparse signal wherein this number is L. An

appropriate numerical measure of sparsity is the count of non-zero elements. The base for

this discussion is the work of Mallat [25], Donoho [26], Rao [27] and others on function

approximation and optimal basis selection.

The problem of choosing an appropriate basis for a family of signals has received a

great deal of attention over the past decade, and many new bases were introduced, such as

wavelet bases, ridgelets, and curvelets, among many others [35]. Despite the fact that any

minimal spanning basis for a �nite-dimensional space can represent perfectly any signal

in the space, when only a subset of possible signals is of interest, some bases have better

representational properties than others. Some applications which greatly bene�t from

sparsity of representation are signal compression, denoising, and parameter estimation.

In compression for information transmission, if the representation of the signal is not

sparse then we need to transmit the whole signal. However, if under a change of basis the

representation becomes sparse, then substantial savings are possible. Most coe�cients of

the representation are very small and if we set them to zero the perceptual quality of

the signal will be a�ected very little. Hence, we are left with transmitting only the large

coe�cients, which are few in number. This idea found use in commercial compression

algorithms.

Another application where sparsity plays a key role is denoising. If the signal is sparse

then separating it from the noise requires considerably less e�ort than when signal power

is evenly distributed along the support of the signal. Therefore, for the purpose of facility

of denoising of a class of signals, it is worthwhile to �nd a basis in which the representation

of all signals belonging to this class is as sparse as possible.

An inverse problem is often formulated in order to compute an approximation to a

solution of the operator equation such as

K(x) = y, (1.2)

where K is an ill-posed operator and with the case of noisy data yδ

∥∥y − yδ
∥∥ ≤ δ (1.3)

is available. For the stable approximation of a solution (1.2), a sparsity regularization
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method is used to minimize the functional

Θ(x) :=
1

2

∥∥K(x)− yδ
∥∥2

+ α
∑
k∈Λ

wk|〈x, ϕk〉|p (1 ≤ p ≤ 2) (1.4)

or more generally

Θ(x) := F (K(x),yδ) + α
∑
k∈Λ

wk|〈x, ϕk〉|p (1.5)

where α > 0 is a regularization parameter, ϕkk∈Λ is a basis and wk ≥ wmin > 0,∀k is a

weight parameter. The functional F (K(x),yδ) measures the error between K(x) and yδ.

If we let J1(x) = 1
2

∥∥K(x)− yδ
∥∥2

, and J2(x) =
∑

k∈Λwk|〈x, ϕk〉|p , then we have nothing

but a regularized inverse problem of the form in (1.1). When p = 1 this method is called

basis pursuit [35] (or LASSO [34] in the statistical literature). The prior term, J2(x) has

an e�ect of enforcing sparsity. Figure 1.1 gives some insight into why p-regularization with

p ≤ 1 favors sparse x. In Fig. 1.1b, we show the level sets of p norms to the p-th power

( ‖x‖p ) for p = 0.5, p = 1, and p = 2 of a two-dimensional vector. For a �xed l2-norm,

i.e, for all vectors that lie on a circle with �xed radius, p norms with p ≤ 1 are minimized

on the coordinate axes, i.e. preferring that some of the coe�cients are set exactly to zero,

while others are large. In other words, p norms with p ≤ 1 maintains sparse solutions.

This argument can be generalized to vectors in higher dimensions.

Figure 1.1a shows lp norms for the same p's in one dimension. It shows that the penalty

on large features (large xi) is less for smaller p. Strong features are penalized much less

severely in lp penalization with p ≤ 1 than in l2 penalization (Tikhonov regularization).

This motivates the smoothing e�ect of l2-penalization, and the feature-preserving behavior

of p for p ≤ 1. It is well known that l2-norm regularizers are known to promote the

smoothness in the solution and hence do not e�ciently produce accurate solutions when

applied in domains with sharp variations, discontinuities, or sparse content (i.e., scatterers

occupy much smaller volumes/areas in comparison to the whole investigation domain) [24].

Such domains exist in many practical applications, such as see-through-the-wall imaging,

hydrocarbon reservoir detection, radar imaging, and crack detection.

Another observation from Figure 1.1 is that l1-norm is convex, whereas when p < 1,

lp-norm is no longer convex. The computational complexity for the minimization of some

non-convex cost functions (p in particular) can be improved by using the half-quadratic

regularization method [54]. The key idea is to introduce a supplementary vector s, and an

extended cost function,Q(x, s), which is quadratic in x for a �xed s, and argminsQ(x, s) =

J(x), for any x. If Q(x, s) is also easy to minimize in s (or even better if there is a closed-
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form solution), then the resulting extended cost function can be optimized with reasonable

e�ciency by iterative methods.

(a) 1-D plot

(b) 2-D plot

Figure 1.1.: (a) 1-D plot of ‖x‖p, p = 0.5, 1, 2. (b) 2-D level sets of ‖x‖p, same p.

Sparsity regularization has been the foremost research area for the last years. The

well-posedness and convergence rates of the method have been analyzed for linear inverse

problems in [28] and for nonlinear inverse problems in [29]. It has been shown that sparsity

regularization is simple for use and very e�ective for inverse problems with sparse solu-

tions. This method has been applied to Compressive Imaging and Electrical Impedance

Tomography (EIT) problems [30�32]. This regularization method leads sparse minimizers

of (1.4) for p = 1 and promotes sparsity for 1 < p < 2 [28].

In this manuscript we have excluded p = 0 since l0 is a pseudo-norm (the distance

property of norms is not satis�ed), which counts the number of non-zero elements. Even

if sparsity is most favored when p = 0, the above optimisation problem will become NP-

hard [33]. In other words, this creates a problem of multiple in�ma and solving it for

the optimal global minima requires an intensive search that is computationally a burden

[24]. To avoid the occurrence of multiple in�ma, the l1-norm (when p ≤ 1) is used as the

best convex approximation to the l0 -norm optimization problem. This concept is known

as convex relaxation [24] as an alternative to the NP-hard problem. Furthermore, the l1-

norm has been veri�ed to elect a solution with excellent sparsity features. Therefore, we

choose l1 penalty to promote a-priori knowledge of the sparse representation throughout

the work in this thesis.
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The use of l1-norms to achieve sparsity has been known for almost a decade as already

mentioned. The Least Absolute Shrinkage and Selection Operator (LASSO) has been in-

troduced in the statistics literature [34], and Basis Pursuit algorithm [35] for choosing

a sparse basis has been proposed in the signal representation community at around the

same time. The most important advantages of l1 penalization schemes are their convex-

ity, and the strong sparsity of the results (most indices of the result are set exactly to

zero). Di�erent versions of l1-regularization problems can be reformulated as linear, con-

vex constrained or unconstrained quadratic, or second order cone (SOC) programming,

all of which allow e�cient and globally convergent algorithms. Another signi�cant bene�t

of using l1 penalization is a number of theoretical (e.g. [36]) results showing that under

certain sparsity conditions on the underlying unknown signal, the signal can be recovered

exactly. This is quite surprising since the direct combinatorial formulation of the problem

requires comparing solutions with all possible permutations of non-zero indices, which is

very hard.

As a matter of fact, the unknown function (e.g., the contrast function or the equivalent

current) can be considered as sparse (or compressible) in some suitable basis, due to the

fact it may occupy a small portion of an otherwise known scenario or that may represent

an almost homogeneous extended anomaly hosted in a background medium. In other

words, a scatterer can be sparse with respect to a basis and not sparse versus another

one. Moreover, in many practical cases, only a limited number of measurements is allowed,

so that proper processing tools to handle this kind of complexity are needed.

One of the aims of this thesis is to extend the application of the microwave imaging

paradigm to nonpixel basis functions, thus enlarging the set of retrievable scatterer distri-

butions to targets of arbitrary shape and size provided that they are sparse with respect

to a suitable chosen basis. Toward this end, wavelet basis functions will be used.

The wavelet transform stores information on both the spatial variation and the fre-

quency content of the processed function, by representing it as a weighted sum of dilated

and translated version of the so-called mother wavelet [25, 39]. In particular, large scale

basis functions encode the low frequency content of the processed function, while small

scale ones account for high frequency or �ne details. Such an encoding can be replicated

by considering mother wavelets at di�erent scales, thus decomposing the functions into a

coarse approximation and detail coe�cients at di�erent levels [25, 39].

Moreover, di�erently from other representation bases, such as Fourier harmonics, the

wavelet expansion enables a selective allocation of the unknown coe�cients within the

investigated domain, thus allowing to concentrate them only where the object is located
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and to consider a �ner texture only where needed. It allows to reduce the number of

unknown parameters, as compared to the usually exploited pixel representation, thus im-

proving inversion reliability [42, 43]. As such, they are intrinsically capable of approaching

the inverse scattering problem within a multiscale framework, which has been shown to

be an e�ective way to improve imaging results [44, 45].

After years of intensive research on l1-problem solving, it would appear that most

relevant algorithmic ideas have been either tried or, in many cases, re-discovered. Yet

interestingly, additionally to the existing methods we also studied the classic idea of soft

shrinkage in the application of nonlinear inverse problem (considering wavelet domain as

well) where the inverse problem is solved without linearization and the application of the

joint sparsity within microwave imaging.

1.2. Related works among others

As stated in above, inverse electromagnetic scattering problems have two fundamental

properties that make their solution a challenging task, the �rst one is the nonlinearity

of the scattering equations [5, 9] and the second one is the ill-posedness of the problem

[5, 9]. The scattered �eld is an integral function of the total �eld induced inside the

investigation domain multiplied by the contrast (the di�erence between the permittivities

of the investigation domain and the background medium). The induced total �eld is

also a nonlinear function of the permittivity [5, 9]. Consequently reconstruction of the

permittivity from scattered �elds is a nonlinear inverse problem.

Additionally, the fact that the scattered �eld is an integral function of the total �eld

and the permittivity inside the investigation domain leads to an ill-posed inverse problem

[5, 9]. The integral operator suppresses the contribution of the fast-varying components

of the permittivity to the scattered �eld and makes them di�cult to retrieve from the

measurements [5, 9]. This physical nature of the scattering phenomena when combined

with the fact that only a �nite set of samples, possibly not at optimal location with re-

spect to the sought scatterers and possibly as well not su�ciently independent from one

another, can be collected by the measurements, which overall does not provide su�cient

information. These samples are almost always corrupted by noise, and a discretized ap-

proximate model has to replace the exact mathematical description of the problem. Thus,

this makes the inverse problem severely ill-posed [5, 9].

The strength of the nonlinearity in the scattering problem increases with the strength
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of the scattered �elds due to the object(s) in the investigation domain. Hence, higher

permittivity (this notion being size-dependent as well) means stronger non-linearity. Most

of the deterministic methods shown to be e�ective in solving electromagnetic inverse

problems involving weak scatterers make use of linear �rst-order approximations [10],

such as di�raction tomography [11], �rst-order Born approximation [5, 12], Kirchho�

approximation [5] and Rytov approximation [5, 12].

Even though these methods are computationally less demanding, they fail to provide

accurate solutions when strong scatterers are present in the domain being investigated. In

such cases, where the nonlinearity is strong, linearization does not produce an accurate

approximation of the nonlinear problem and one needs to use more rigorous techniques

such as inexact Newton nonlinear solver combined with either contrast-�eld or contrast-

source formulations [5, 13], nonlinear conjugate gradient method [14], nonlinear steepest

descent (e.g. nonlinear Landweber) algorithm [15, 16], and Levenberg-Marquardt scheme

[17], and distorted Born methods [18]. These methods are computationally more demand-

ing when compared to those that make use of the �rst order linearization schemes. Besides

these deterministic methods, there are also nonlinear approaches based on stochastic (mul-

tiple/single agent) techniques such as simulated annealing [55], genetic algorithms [56],

di�erential evolution [57], etc. Other methods that bene�t from the best of the both

worlds have also been developed. These make use of higher order linearization schemes

or iterative application of the �rst-order ones. Examples include extended Born approx-

imation [19] and the higher-order Born approximations [5, 20], Born iterative method

(BIM) [21] and the variational Born iterative method [22], respectively. The methods in

this last group are computationally more e�cient when compared to nonlinear inversion

methods but also applicable for a wider range of scatterer strength when compared to the

�rst-order linearization methods.

Regardless of the method used for tackling the nonlinearity, the ill-posedness of the

inverse scattering problem should be accounted for [9, 23, 24]. For this purpose, linear

and nonlinear regularization methods, which minimize a cost function weighted between

measurement/data mis�t and a penalty term, have been developed. The most popular

choice of the penalty term is the l2-norm of the solution [23, 24]. The resulting minimiza-

tion problem can be solved using the well-known Tikhonov scheme [23, 24]. Additionally,

using truncated Landweber or conjugate gradient iterations leads to a similar type of

regularization [5, 23]. In linear programming, all these methods e�ectively �lter singu-

lar values of the discretized minimization problem, which are smaller than a speci�ed

threshold level or a regularization parameter to alleviate its ill-posedness.
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1. Introduction 1.2. Related works among others

As stated before, one common alternative is the convex relaxation of this combinatorial

problem which consists in replacing the l0-norm by the convex l1-norm to take advantage

of well-known algorithms in convex optimization. The basis pursuit (BP) principle or its

denoising (BPDN) adaptation, proposed in [35], deals with the l1 relaxation of problems

using linear and quadratic programming algorithms (e.g., simplex, active set, or interior-

point methods). Iterative thresholding algorithms (ISTA) [28] and its accelerated version

FISTA [58], belonging to the family of forward-backward algorithms [59], are now well

known to be very e�cient for such l1 relaxed problems. The fact that this convex relaxation

provides sparse solutions comes from the singularity of the l1-norm at zero [60].

On the other hand, the Compressive Sensing (CS) theory has been introduced for models

relating the data to the unknowns that are linear [61]. As a consequence, a number of

di�erent CS toolboxes are available to tackle linear problems, whereas the development

of such tools for the nonlinear case is ongoing and not yet fully assessed [62, 63]. For such

a reason, the application of CS to inverse scattering problems has been �rst explored in

those cases that can be handled through linear scattering approximations. These include

the Born [4, 50, 64] and Rytov [65] approximations for weak scatterers, as well as the

approximation based on the recently proposed virtual experiments framework [51, 66].

However, inverse scattering problems are non-linear, so that such an issue has to be

addressed to gain a full advantage of CS in this framework. To this end, several authors

are developing methods to take advantage of CS within inverse scattering approaches that

are not limited to the range of validity of linear approximations.

For instance, the authors of [52, 65] have proposed an approach that is based on the

solution of a number of linear inverse source problems. Such an approach does not consider

approximations in modelling the non-linear scattering interactions and it can be applied

to all cases in which the contrast source is sparse.

Another possible way to extend the applicability of CS for the solution of inverse scat-

tering problems is to exploit distorted wave methods or distorted-iterated methods, in

which the solution is iteratively achieved through a succession of linear inversion steps

[49, 67�69]. Because of the linearity of the models considered at each step, these latter

methods naturally lend themselves to be paired with CS. CS-based method based on

l1 norm minimization [61] was used to �nd the sparse solution in a sparse domain. In

[52, 65], a method based on Bayesian framework [70] in compressive sensing [71] was

utilized to solve an inverse scattering problem. The Bayesian framework has been sug-

gested for some time for microwave medical imaging [70]. Compared with the traditional l1
norm minimization [61], BCS searches for the sparse solution from a Bayesian probability
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1. Introduction

perspective.

Two popular non-quadratic cost functions are total variation and entropy [72]. Total

variation puts a penalty on the sum of variations of the signal J2 = ‖Cx‖1, where C

is a discrete approximation to the gradient operator. Total variation is most frequently

used in image processing applications, such as image restoration. In comparison to the

Tikhonov regularization with L = C, the penalty on strong features is less severe, and the

reconstruction can contain sharp edges. It works very well in practice with images that

can be described as piecewise-smooth. Even if the regularizing function with l1-penalty

is similar with the total-variation we take the l1 norm of the values of x instead of their

derivatives. Total variation allows sparse jumps of the gradient of x, whereas the l1 penalty

favors sparse values of x. To lower the penalty on strong features even further, several

non-convex functions have also found use [73].

It is also worthwhile to mention that unlike inexact Newton [74] and Born iterative [67,

75] methods with sparsity constraints, the proposed scheme in Chapter 3 avoids generation

of a sequence of linear sparse optimization problems and requires only one regularization

parameter, which directly penalizes the nonlinear problem, to be set. Consequently, it

simpli�es the task of heuristic parameter tweaking, which is oftentimes very cumbersome

for existing inversion algorithms.

1.3. Outline of thesis

While describing the contents of the thesis chapter by chapter, we brie�y summarize our

main contributions. The �rst major contribution is the development of a sparse signal

reconstruction framework for microwave imaging. In this framework we formulate various

optimization problems for microwave imaging scenarios. We adapt and use two paradigms

for the numerical solution of the optimization problems. Finally, we carry out an extensive

performance analysis of the proposed methods.

Chapter 2: Problem Statement

In this chapter, we presented the formulation of the direct problem modeling where

incident wave and object are known by using a Method of Moments as discussed in [76].

We show numerical results in order to illustrate the sensitivity of the model to various

noise levels and how the same level of noise has di�erent randomization.

Chapter 3: Methods to solve Nonlinear Inverse Problem

We start by giving a brief overview of discrete ill-posed inverse problems, and motivate
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1. Introduction 1.3. Outline of thesis

the need for regularization. Then, we describe an important nonlinear inverse problem,

sparse representation of signals using suitable bases. This problem serves a central role in

the thesis: the basis of our work is the transformation of the microwave imaging problem

into the problem of sparse signal representation. In this chapter we describe numerical

optimization of the objective functions corresponding to l1 regularization.

Next, we introduce our nonlinear inversion method in wavelet domain so that it takes the

advantage of the adaptive multiresolution features of the wavelet basis to accommodate

the trade o� between spatial resolution and inversion stability. Speci�cally, we represent

the unknown contrast sources in terms of the wavelet basis functions to reduce the number

of nonzero coe�cients whereas this proposed approach augments the work that has been

done previously in this research area.

Chapter 4: Two-Step Inversion Method

This chapter is another contribution of our thesis. We address the analysis of the joint

sparsity, a special case of group sparsity, which gives multiple sparse solutions that share

a common nonzero support. We o�er numerical results which demonstrate the potential

of the proposed two-step inversion approach both in 2D and 3D.

Chapter 5: Summary, Conclusion and Future Work

This chapter summarizes the main ideas of the thesis and gives suggestions for further

research in the area.
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2. Formulation of the Direct

Problem

2.1. Motivation

Modeling the associated direct problem in electromagnetic scattering is an initial yet es-

sential step to describe how the parameters of the model are translated into observable

e�ects. The direct problem consists in modeling the physics of the interaction between a

known interrogating wave and the object which is supposed to be known as well. This

interaction is described here by the Helmholtz wave equation. Applying the Green's theo-

rem to this equation and taking into account the conditions of continuity of the �elds and

of radiation at in�nity [77], we are led to an integral representation of the electric �eld

consisting of two coupled integral equations, observation and coupling equation (or state),

respectively. The solution of the direct problem that requires the discrete counterparts of

these integral equations which are obtained in an algebraic framework using the �method

of moments� [76, 78].

Validation of the direct model is a necessary step before switching to inversion. This is to

verify that the direct model well describes the phenomena (in our case the scattered �elds)

to be observed in a controlled situation. Note that, in this thesis, we have no experimental

data. This is why, when solving the inverse problem, we will generate synthetic data using

a di�erent direct model than the one used during the inversion. Therefore, we will avoid

committing an `inverse crime' in the sense of [9] which would consist in testing the inversion

algorithm on the data obtained by means of a model closely related to the one used in

the inversion. The validation of the direct model will thus consist in verifying that the

di�erences between the scattered �elds produced by these two models remain weak.
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2. Formulation of the Direct Problem

2.2. Formulation

In the following we consider homogeneous, non-magnetic and isotropic media and we place

ourselves in a 2D imaging model in a transverse magnetic con�guration (TM) where we

consider that the object is of in�nite extension and invariant according to one of its axes

and is illuminated by a wave whose electric �eld (Einc(r) = Eincz) is polarized parallel

to this axis (perpendicular to the plane of the �gure), which generates a scattered �eld

perpendicular to the plane of the �gure.

We now establish the equation of propagation of the electromagnetic wave on the basis

of the Maxwell equations which constitute the basis of electromagnetism and which are

written at an observation point r and at time t such as

∇ ·D(r, t) = ρ(r, t) (2.1)

∇×E(r, t) = −∂B(r, t)

∂t
(2.2)

∇×H(r, t) = J(r, t) +
∂D(r, t)

∂t
(2.3)

∇ ·B(r, t) = 0, (2.4)

where D(r, t) is the electric displacement �eld in [Cb/m2], E(r, t) is the electric �eld in

V/m, H(r, t) is the magnetic intensity or magnetic �eld in [A/m], J(r, t) is the current

density in [A/m2] and B(r, t) is the magnetic induction �eld in [Wb/m2], t ∈ R, r =

(x1 , x2 , x3 ), ∇× denotes curl operator and ∇· denotes divergence operator. To solve the

system of equations (2.2)-(2.4), one needs to introduce two additional equations, i.e.,

the so-called constitutive relations. Such equations enable to express the magnetic �ux

density B(r, t) and the electric displacement D(r, t) as a function of the electromagnetic

parameters of the medium where Maxwell equations are set. The constitutive relations

read as

B(r, t) = µH(r, t) (2.5)

D(r, t) = εE(r, t), (2.6)

where ε is the dielectric permittivity and µ is the magnetic permeability of the medium
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at r. We now �nd ourselves in the framework of a time-harmonic regime where a source

emits a wave of pulsation ω and an implicit time dependence of the �elds in e−iωt is chosen

so that it will be omitted in the remainder of the discussion leading replacement of the

derivations with respect to time appearing in the equations of Maxwell by a factor −iω.
To establish the equation of propagation in electric �eld, we now place ourselves in a

medium without sources or charges. From Maxwell's equations and taking into account

constitutive relations, we arrive at

∇×∇×E − ω2µεE = 0. (2.7)

By developing the vector operator appearing in this equation, remembering that the

electric �eld has only one component along the z-axis that we write E and introducing the

propagation constant k of the medium considered (k2 = ω2εµ), we obtain the equation of

scalar Helmholtz waves veri�ed by the electric �eld

∇2E(r) + k2E(r) = 0. (2.8)

We shall now suppose that the object which we are interested in is immersed in a homo-

geneous medium D and is contained in a test domain C (C ⊂ D). The di�erent media are

non-magnetic (magnetic permeability equal to the one of vacuum µ0 = 1, 256×10−6Hm−1)

and are characterized by their propagation constant such that k(r)2 = ω2ε0εr(r)µ0 +

iωµ0σ(r), where ε0 and µ0 are the permittivity and the permeability of air, respectively

εr(r) and σ(r) are the relative permittivity and conductivity of the medium as r ∈ D is

an observation point. The dielectric properties of D are described by the inhomogeneous

contrast function de�ned as χ(r) = (k(r)2 − k2
B), where k2

B = ω2ε0µ0 is the propagation

constant of the embedding medium D. We assume that sources and receivers are located

at the positions rs and rr, respectively.

The scattered electric �eld Edi�(rr, rs) measured via a receiver placed at rr due to the

incident wave emitted by a source placed at rs adheres to the following domain integral

equation [5]

Edi�(rr, rs) =

∫
D

G(rr, r
′)χ(r′)E(r′, rs)dr

′ (2.9)

with E(r, rs) being the total electric �eld induced within the object by the incident wave,

and G(r, r′) is a Green`s function which represents the electromagnetic response to a line

source radiating in free-space. In a homogeneous medium, in the case of two dimension

15



2. Formulation of the Direct Problem

that concerns us, it is given by:

G(r, r′) =
−iωµ0

4
H

(1)
0 (kB‖r− r′‖) (2.10)

and H
(1)
0 is the zero-th order Hankel function of the 1st kind for the 2D case. Furthermore,

E(r, rs) is obtained as

E(r, rs) = Einc(r, rs) +

∫
D

G(r, r′)χ(r′)E(r′, rs)dr
′ ∀r ∈ D. (2.11)

The direct problem is de�ned as the calculation of Edi�(rr, rs) by solving (2.9) and (2.11)

when χ(r), G(r, r′) and Einc(r, rs) are known whereas the inverse problem (or imaging

problem) is de�ned as the determination of χ(r) within a prescribed domain D from the

knowledge of Edi�(rr, rs), G(r, r′) and Einc(r, rs) for Ns sources and Nr receivers.

Formulation of Contrast Source

We now rewrite the observation and coupling equations for the contrast source which is

induced inside the object by the incident wave such as

Edi�(rr, rs) =

∫
D

G(rr, r
′)J(r′, rs)dr

′ (2.12)

and

J(r, rs) = J inc(r, rs) + χ(r′)

∫
D

G(r, r′)J(r′, rs)dr
′ ∀r ∈ D. (2.13)

the contrast source being de�ned as

J(r, rs) = χ(r)E(r, rs). (2.14)

Solving equations (2.12) and (2.13) is done from their discrete counterparts obtained by

using the method of moments. The domainD containing the unknown object is discretized

in N = Nx × Ny small square pixels so that the electric �eld and the contrast can be

considered as constants in each of them (Fig. 2.1).
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+ ⇝Source(s) b Receiver(s)
D

Ω

ε (r) , µ0

ε0, µ0

ŷ

x̂
b

ẑ
b

rs

1

Figure 2.1.: Geometry of scattering experiment.

2.3. Discretization of the problem

The method of moments is a method commonly used to transform functional equations

into matrix equations by projection on sets of basis functions and of test functions [76].

The problem being reduced under the form AX = B, where A is a matrix,X is a vector

of unknown and B is a known vector, intuitively, when the matrix A is invertible, this

allows us to get the desired solutions.

Let L be a linear operator L : G −→ H, and two functions g ∈ G and h ∈ H such as

h = L(g). One seeks to determine g knowing L and h. The function g can be written in

the form g =
∑

i=1,··· ,I giui, where u1, u2, · · · , uI are constant coe�cients which are a set

of basis functions ui. The property of linearity of the operator L gives us

h = L(g) = L

(
I∑
i=1

giui

)
=

I∑
i=1

giLui (2.15)

The goal is to approach equation (2.15) by a discrete linear system. It de�nes a set of

test functions t1, t2, · · · , tN on which projected the two members of this equation:

〈tn, h〉H =
I∑
i=1

gi〈tn, Lui〉H , ∀n = 1, · · · , N, (2.16)

where 〈., .〉H is a scalar product on H such as 〈tn, h〉H =
∫
H
tn(x)h∗(x)dx.
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Thus, by omitting the index H, one obtains the algebraic writing h = Lg with

L =


〈t1, Lu1〉 〈t1, Lu2〉 · · · 〈t1, LuI〉
〈t2, Lu1〉 〈t2, Lu2〉 · · · 〈t2, LuI〉

...
...

. . .
...

〈tN , Lu1〉 〈tN , Lu2〉 · · · 〈tN , LuI〉

 , g =


g1

...

gI

 , h =


〈t1, h〉

...

〈tN , h〉

 ,

The choice of basic functions and test functions depends essentially upon the nature of

the physical problem to be treated. Note that, if we choose test functions identical to the

basis functions, we come across with the special case of the Galerkin method [79].

The two coupled equations (2.9) and (2.11) have a bilinearity property with respect

to the two variables χ and E. Then, the method of moments can be applied to these

equations. Indeed, if one considers the equations of observation and of state like two

equations linear with respect to the variable E, equations (2.9) and (2.11) can be written

as follows

Edi�(rr, rs) =

∫
D

G(rr, r
′)χ(r′)E(r′, rs)dr

′ ⇒ Edi� = L1E (2.17)

Einc(r, rs) = E(r, rs)−
∫
D

G(r, r′)χ(r′)E(r′, rs)dr
′ ⇒ Einc = L2E, (2.18)

where L1 and L2 are linear operators.

Then, in order to apply the principle of the method of moments, we must choose the

basis functions u1i and u2i and the test functions t1i and t1i in order to construct scalar

products 〈∫
D

G(rr, r
′)χ(r)E(r, rs)dr

′, t1i

〉
= L1ij (2.19)

Einc(r, rs) = E(r, rs)−
∫
D

G(r, r′)χ(r)E(r, rs)dr
′ ⇒ Einc = L2E, (2.20)

Here, we will take basis functions as the characteristic functions of the pixels partitioning

the domain D and test functions as distributions of Dirac δ located at the centers of each

of the elementary pixels for the coupling equation and at the points of measurement for

the observation equation.

Thanks to a classical method of moments using pulse basis/point matching method

[80] where the domain under test D is discretized into N = Nx ×Ny pixels, a discretized

version of the previous equations is obtained. In so doing χ(r) is approximated by using
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pulse basis functions de�ned over square cells:

χ(r) =
N∑
n=1

χnCn(r), (2.21)

where Cn(r) is the basis function de�ned as

Cn(r) =

1, r ∈ Dn

0, r /∈ Dn,
(2.22)

in a `pixel' representation. Here, χ is a N × 1 vector storing the samples of χ(r). Addi-

tionally, the discretized version of (2.9) stands as

Edi�
i = GorJi, i = 1, . . . , Ns, (2.23)

where Edi�
i and Ji are complex vectors of size Nr and N respectively and Gor a complex

matrix of size Nr ×N . The discretized version of (2.14) is then

Ji = diag (χ)Ei, i = 1, . . . , Ns, (2.24)

where Ei and χ are complex vectors of size N and diag (χ) is a diagonal matrix of size

N ×N obtained from χ. Finally the discretized version of (2.11) is

Ei = Einc
i + GooJi, i = 1, . . . , Ns (2.25)

where Einc
i is a complex vector of size N and Goo a matrix of size N ×N .

Thus, if we denote the center of the elementary pixel µi (permeability) by ri and as-

suming that the contrast χ and the electric �eld E are constant in each pixel µi and equal

to χ(ri) and E(ri) respectively, the elements of the coupling matrix are written as

L2ij = δij − χ(ri)

∫
µj

G(ri, r
′)dr′, (2.26)

where δij is Kronecker delta. The numeric integration of the Green's function on the square

cell ∆i is analytical following [76] where the square cell is approximated by a circular cell
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of the same surface leading to:

∫
∆i

G(rj, r
′)dr′ =


1

k2
B

[
i

2
πkBRH

(1)
1 (kBR)− 1

]
, if i = j,

i

2kB
πRH

(1)
0 (kBrij) J1 (kBR) , if i 6= j,

(2.27)

with rij = |xj − xi| and R =
√

∆x∆y

π
; H

(1)
1 being the Hankel function of �rst order and

�rst kind and J1 the Bessel function of the �rst kind.

2.4. Validation of the model

Firstly our numerical code has been validated by comparison with numerical results pro-

vided by an analytical solution available for the case of a cylindrical obstacle illuminated

by a line source for a single frequency and a single incidence.

The validation in Fig. 2.2 has been done with the frequency being 3GHz and the radius

of the cylinder equal to λ0/2 whereas λ0 = 1. The relative permittivity of the object is 2

whereas it is 1 for the embedding medium. The source is located at (0, 2λ0) while there

is 36 receivers.

Generally the di�erence between the model and the data is low but increases with

frequency. This is explained by the fact that the discretization, i.e. pixel size, is constant

whatever the frequency is. Thus, we have seen that a good convergence of the calculations

carried out using the method of moments requires to index this size to the wavelength.

Fig. 2.2 validates that with a high discretization (N = 125) our model is well-�tted with

the data. On the other hand, Fig. 2.3 shows the evolution of the normalized error on to

the total �eld and the scattered �eld as a function of the discretization number N .

It is also worthwhile to mention that we are not in Born approximation case as it

can be seen in Fig. 2.6. The scattered �elds are calculated for the case of without Born

approximation throughout this manuscript.

20



2. Formulation of the Direct Problem 2.4. Validation of the model

-0.5 0 0.5

-0.5

0

0.5

0.02

0.04

0.06

0.08

0.1

0.12

(a) Modulus of the exact total �eld

-0.5 0 0.5

-0.5

0

0.5

0.02

0.04

0.06

0.08

0.1

0.12

(b) Modulus of the total �eld ob-
tained via MoM

-0.5 0 0.5
-0.5

0

0.5

0

20

40

60

80

100

(c) Discretization of the obstacle
125× 125

-0.5 0 0.5
0

0.05

0.1

0.15

(d) Comparison of the modulus of the ex-
act and the computed total �eld at the
center of the cylinder

Figure 2.2.: Validation of the model when N = 125× 125.
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Figure 2.3.: Evolution of the normalized error of the total �eld (left) and on the scattered
�eld (right) as a function of the discretization number N .
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2.5. Comparison of the data with di�erent models

In this section we studied an example where has the true value of the relative permittivity

of the object is 2 whereas it is 1 for embedding medium. The scattering object which is

a dielectric square sided λ (1m) under test is contained in a l = 3 × λ-sided square

investigation area D centered at the origin, and the discretization size is n× n = 36× 36

for the forward problem. The number of transmitters and receivers located around the

investigation area is 29. The frequency of the transmitters is 300MHz. The measured �eld

samples are generated by adding either 10 dB or 20 dB noise with a zero mean additive

Gaussian noise with unknown variance.

From Fig. 2.4 we notice that the outputs of the models coincide relatively well with

the data, both in modulus and in phase. However, as we increase the level of noise,

the discrepancy between the model and the data increases. On the other hand, Fig. 2.5

shows us that whenever we add noise of the same level to our model we get di�erent

randomization of the same noise level with respect to each other and also to the data.

This speci�ed issue led us to be careful while choosing the model to solve the inverse

problem due to the sensitivity of the data to noise.

22



2. Formulation of the Direct Problem 2.5. Comparison of the data with di�erent models

1 6 12 18 24 30
0

0.02

0.04

0.06

0.08

Without noise

10dB noise

20dB noise

0 10 20 30

-3

-2

-1

0

1

2

3
Without noise

10dB noise

20dB noise

Module Phase

1 6 12 18 24 30
-0.08

-0.06

-0.04

-0.02

0

0.02

Without noise

10dB noise

20dB noise

1 6 12 18 24 30
-0.02

-0.01

0

0.01

0.02

0.03

Without noise

10dB noise

20dB noise

Real part Imaginary part

Figure 2.4.: Example for 1 source and N = 29 receivers for various SNR.
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Figure 2.5.: Example for 1 source and N = 29 receivers for various 10dB noise level.
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Figure 2.6.: Di�erence of scattered �eld obtained with and without Born approximation.
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2.6. Conclusion

In this chapter, we presented the modeling of the direct problem where incident wave

and object are known. Primarily, we are interested in the calculation of the scattered

�eld resulting from their interaction. The resolution of the latter corresponds to a �rst

necessary step to solve the inverse problem in which it is a matter of reconstructing

the unknown object, the incident wave and the scattered �eld then being known. In

the absence of experimental data, we have studied the electromagnetic �eld calculations

carried out using this forward model by comparison with synthetic results obtained using

the forward model added with noise.
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Inverse Problem

3.1. Motivation

In this chapter we propose two methods in order to solve the nonlinear inverse problem.

Initially, we propose a method where sparsity constraint is directly applied to the problem

of reconstructing the complex internal dielectric properties of an object based on knowl-

edge of the external scattered �eld which is generated by the interaction between the

object and a known incident �eld. The nonlinear optimization problem is solved by the

iterative algorithm of soft shrinkage in order to enforce the sparsity constraint. Sparsity

is applied at each iteration by a soft thresholding function.

Since the electromagnetic inverse scattering problem which we consider is nonlinear and

ill-posed, the reduction of the number of unknown parameters is important to alleviate the

ill-posedness [25, 40, 41]. As a matter of fact, wavelet expansion (as considered hereafter)

should allow (this is in e�ect a topic of discussion in the present work, noticing that

optimality of a basis is strongly linked to the way the scatterers at hand �t it) to reduce the

number of unknown parameters with respect to the usually exploited pixel representation

so that it advances the inversion reliability [42].

Moreover, the adopted basis plays a key role as it has to be accurate and e�cient.

E�ciency requires a reduced number of coe�cients in the representation, while accuracy

involves a low representation error, which quanti�es the mismatch between the actual

function and its projection onto the considered basis. In this respect, this chapter argues a

second approach which studies whether the wavelet basis is a good choice to accommodate

for the trade o� between e�ciency and accuracy of the representation or not in microwave

imaging with simulation results provided.
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3.2. Soft Shrinkage Method for Nonlinear equations

Soft shrinkage is an approach which minimizes a nonlinear Tikhonov functional with

sparsity promoting penalty term. The algorithm is based on the iterated soft shrinkage

approach originated for linear operators in the work [28]. A generalization to nonlinear

inverse problems has been studied in [7, 81].

The algorithm performs a gradient descent step which involves the adjoint gradient of

the cost function with a step size τ , like Landweber method, and then a shrinkage step.

The latter enforces the sparsity of the reconstruction by setting the small coe�cients to

zero. Following this, Barzilai and Borwein (BB) method is suggested in order to choose

the step size to overcome the slow convergence of the iterative soft shrinkage algorithm

with �xed step size. The solution of the inverse problem can be obtained by minimizing

the cost function which is the di�erence, in other words called an error, between the

measured quantity and the solution obtained by a forward problem. The cost function to

be minimized is of the form

F (χ) =
1

2

∥∥ζ(χ)− Edi�
∥∥

2︸ ︷︷ ︸
K(χ)

+α‖χ‖1. (3.1)

In other words, by combining (2.23) and (2.25) and using Jinc
i = diag (χ)Einc

i i = 1, . . . , Ns

the inverse problem can be rewritten as

χ? = argmin
χ

∥∥ζi −Gor diag (χ) [I− diag (χ)Goo]−1 Jinc
i

∥∥
2

+ α‖χ‖1, (3.2)

where ζi is a vector of size Nr which gathered the signal due to the source #i measured

by the Nr receivers. It can be seen from (3.2) that the inverse problem is nonlinear in χ

and ill-posed. The dimensions of these matrices may become quickly important as soon as

the domain D is more than a few wavelengths. Indeed, the convergence of the calculations

carried out using the method of moments imposes an upper limit on the size of the pixels

to be considered [76, 82]. Pixel sides a ≤ λ/10 generally ensure a good convergence.

Iterative soft shrinkage is a standard approach for minimizing a functional involving the

l1-penalty and it has the form as in (3.1) where ζ : X 7→ Y is a bounded and nonlinear

operator. The l1 penalty can promote a-priori knowledge of the sparse representation. At

�rst, the algorithm is started by choosing an initial guess χ1, and the iteration continues
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3. Methods to Solve Nonlinear Inverse Problem 3.2.1. Gradient K ′

as

χk+1 = Sα

(
χk − τζ ′∗(χk)

[
ζ(χk)− Edi�

])
, (3.3)

where τ is the step size, ζ ′(χ) is the gradient of the nonlinear function ζ(χ) with respect

to χ, and ζ
′∗(χ) is the adjoint of the operator ζ ′(χ). Sα is the soft shrinkage operator

de�ned componentwise by

(Sα(χ))i =

(|χi| − α)sign(χi), if |χi| > α

0, otherwise.
(3.4)

The term ζ
′∗(χk)

[
ζ(χk)− Edi�

]
is the gradient of the discrepancy 1

2

∥∥ζ(χ)− Edi�
∥∥2
.

3.2.1. Gradient K ′

The gradient is obtained by using the adjoint method. The main idea is to obtain the

gradient (Fréchet derivative) of the whole discrepancy term and avoid calculating ζ ′∗(χ)

in the iteration rule (3.3). For the calculation of K(χ) we use the adjoint method which

is presented in [54] to reduce the calculation costs. This has been achieved by solving the

adjoint problem as in A.1. For simplicity, at �rst it can be again stated with simpler nota-

tions that the least squared cost function describing the goodness of �t of a hypothesized

case to a measured case can be written as

K(χ) =
1

2

∥∥ζ (χ)− Edi�
∥∥2

=
1

2
〈ζ (χ)− Edi�, ζ (χ)− Edi�〉 (3.5)

If χ is perturbed by a small amount δχ, then the K(χ) changes according to

K (χ+ δχ) = K (χ) + 〈δχ, ζ (χ)∗
(
ζ (χ)− Edi�

)
〉+ 〈δχ, ζ (χ)∗ (ζ (χ)− Edi�)〉+O (δχ) .

(3.6)

By de�nition of the Fréchet derivative,

∇χK = ζ (χ)∗ (ζ (χ)− Edi�), (3.7)

where the overlined terms are the complex conjugate ones and gradientK ′ (χ) = ∇χK (χ)|χ.
The detailed work can be found in A.1 as stated above.
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3.2.2. Smooth Gradient K ′s

It is emerged in practice that the gradient K ′(χ) has unnatural oscillating properties

which can be avoided by using the smoother gradient. This process is also called denoising

[54]. Therefore, we look for a Sobolev smoothed gradient K ′s(χ). For instance, K ′(χ)ζ is

the image of ζ ∈ D under application of the adjoint operator considered as an operator

mapping from D into P = L2(Ω). Its image denoted by K ′s(χ) under the adjoint operator

with respect to the newly de�ned weighted inner product mapping into the smaller space

P̂ such as

〈K ′(χ)x, ζ〉D = 〈x,K ′(χ)ζ〉P = 〈x,K ′s(χ)ζ〉P̂ (3.8)

following

K ′s(χ)ζ = (δI − β∆)−1K ′(χ)ζ, (3.9)

where I refers to the identity, and ∆ refers to the Laplacian operator. A proper choice of

the weighting parameters δ and β will allow us to drive the regularization properties of

our algorithm in an e�cient and predictable way. We should choose β close to one in order

not to lose the di�erentiability for the next iteration. For theoretical justi�cation we refer

to [83]. Applying Green`s formula to the right hand side of equation (3.8) yields equation

(3.9). Following this, we can rewrite the iteration formula with this property following as

χk+1 = Sα(χk − τK ′s(χk)). (3.10)

3.2.3. The Step Size

The step size τ can be determined in order to fasten the algorithm. The motivation

for increasing the rate of convergence is the comparison with the classical Landweber

iteration whose slow convergence results from using a constant step size which is very

small. Therefore, we select the step size in a way to increase the convergence speed where

we consider only the steepest descent operation χk − τK ′s(χ
k) of the algorithm. The

selection is done by the two-point rule of Barzilai and Borwein (BB) which calculates the

step size as

τk = arg min
τ

∥∥τ(χk − χk−1)− (K ′s(χ
k)−K ′s(χk−1))

∥∥
2
. (3.11)

The choice of this functional is motivated by the secant equation K ′(χk) = K ′χk−1 +

B(χk − χk−1) with τ times the identity operator as the approximation of the Hessian B

and describes the approximation performance of the last iteration step. This equation does

30



3. Methods to Solve Nonlinear Inverse Problem 3.2.3. The Step Size

not necessarily have a solution, so it is solved in a least-squared sense. In one-dimensional

real case of this procedure implies the secant method. By minimizing the functional we

get the following formula for the step size

τk =

〈
χk − χk−1,χk − χk−1

〉
〈χk − χk−1, K ′s (χk)−K ′s (χk−1)〉

. (3.12)

Another approach, also from BB, is that τ times the identity operator imitates the inverse

of the Hessian B over the last step. This results in

τk = arg min
τ

∥∥(χk − χk−1)− τ(K ′s(χ
k)−K ′s(χk−1)

∥∥ (3.13)

and therefore we get [30, 83]

τk =

〈
χk − χk−1, K ′s

(
χk
)
−K ′s

(
χk−1

)〉
〈K ′s (χk)−K ′s (χk−1) , K ′s (χk)−K ′s (χk−1)〉

(3.14)

with

K ′s
(
χk
)

= (δI − β∆)−1ζ
′∗(χk)

[
ζ(χk)− Edi�

]
. (3.15)

In the implementation we use this step size as an initial guess and it is decreased geomet-

rically until the Armijo condition [84] is satis�ed. In general, descent methods determine

a descent direction dk with a step size αk ∈ (0, 1] by an inexact line search such as Armijo,

Wolfe or Goldstein backtracking [84] schemes forming xk+1 = xk + τkdk. The scheme is

repeated until a stopping criteria is reached. Firstly, choosing a suitable inexact line search

maintains that the sequence of function values is monotonically decreasing (fk+1 ≤ fk).

Secondly, the sequence xk is converging globally. In other words, the method is conver-

gent even if the initial point is far away from the minimizer. The �rst case implies the

minimization of the objective function and the second case provides that the method is

not depending on the initial point. Particularly, Armijo`s line search satis�es

f (xk + τkdk) ≤ f(xk) + c1τk∇f(xk)dk, (3.16)

where c1 ∈ (0, 1
2
) and τk is the largest τ ∈ {s, ρs, . . .} with s > 0 and ρ ∈ (0, 1) such that

(3.16) is satis�ed. This concludes that function values satisfy the condition f(xk+1) ≤
f(xk) imposing the monotonicity to the sequence of functions generated by this scheme

and this scheme is globally convergent [84, 85].
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However, in [85] a modi�ed version of Armijo condition is proposed such as

F
(
χ1 + Sα

(
χk − τK ′s

(
χk
)))
≤ max

k−M+1≤n≤k
F (χn)

− τs
∥∥Sα (χk − τK ′s (χk))− χk∥∥, (3.17)

where s is a small number andM is an integer. The right hand side of the new Armijo type

line search is greater than the original Armijo`s rule implying that the new method can

take bigger step sizes compared to the descent methods using original Armijo condition.

Thus, we can get faster convergence. This is also called weaker monotonicity. In original

Armijo condition if no step size can be obtained to satisfy the condition the algorithm

usually stops by rounding errors and preventing further progress. Further details can be

found in [30, 85]. The equation in (3.17) is motivated by the Taylor approximation of

F
(
χk+1

)
as following

F
(
χk+1

)
= F

(
χk
)

+ F ′
(
χk + ξ

(
χk+1 − χk

)) [
χk+1 − χk

]
, (3.18)

where ξ ∈ (0, 1). We can now restrict the gradient to a negative direction by choosing τ

such that F
(
χk+1

)
≤ F

(
χk
)
. Hence,

F
(
χk+1

)
= F

(
χk
)
−
∣∣F ′ (χk + ξ

(
χk+1 − χk

)) [
χk+1 − χk

]∣∣ . (3.19)

Furthermore, we take a su�ciently small and �xed s > 0 such as

sτ
∣∣〈χk+1 − χk,χk+1 − χk〉

∣∣ ≤ ∣∣F ′ (χk + ξ
(
χk+1 − χk

)) [
χk+1 − χk

]∣∣ . (3.20)

The aim is to get a negative direction, therefore we can estimate it as

F
(
χk+1

)
≤ F

(
χk
)
− sτ

∣∣〈χk+1 − χk,χk+1 − χk〉
∣∣ . (3.21)

However, this estimation causes slow convergence because of strong monotonicity. There-

fore, we change F
(
χk
)
to maxk−M+1≤n≤k F (χn).

Adding χk+1 = Sα
(
χk − τK ′s

(
χk
))

leads us back to equation (3.17).

We should point out that we cannot use the rule developed by Brazilai and Borwein

and the monotonicity criterion in the �rst iteration of the algorithm. Therefore, we use

an initial step size obtained by `fminsearch' which �nds the minimum of a scalar function

of several variables, starting at an initial estimate zero. This is generally referred to as
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unconstrained nonlinear optimization [86]. In our simulations, we follow the BB method in

Figure 3.1.: Comparison between weak monotonicity and back-tracking with Armijo con-
dition, error on cost function (vertical axis) w.r.t iteration number (horizontal
axis).

order to obtain the required step size τ . We have also discovered that weak monotonicity

does not improve the convergence rate of the cost function in our formulations compared

with the back tracking line search with Armijo condition as can be seen in Fig. 3.1

where iteration number which is 300 is our stopping criteria for the scatterer Fig. 3.4f. A

standard monotonicity condition holds for M = 1. We have used the value M = 2 in our

reconstructions.

Algorithm 1 The Barzilai-Borwein (BB) approach for choosing τ in line 6 of Algorithm
1.
1: Input The iteration counter k, τ0 = 0, hk = χk − χk−1 and gk = K ′(χk)−K ′(χk−1)
2: if k = 0 then
3: τ = fminsearch(K(χ1), τ0)
4: else

5: output τk = 〈hk, hk〉/〈hk, gk〉
6: end for

3.2.4. Soft Thresholding

Recently, algorithms known as iterative soft-thresholding (or forward-backward splitting)

for optimization with sparse regularizers, including [28, 59, 87, 88] have been used in many
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applications. These methods address problems of the form

min
x
f(x) = J1(x) + J2(x) (3.22)

wherein J2(x) is convex and possibly non-di�erentiable while J1(x) is assumed to be dif-

ferentiable and convex with a Lipschitz-continous gradient as stated before. These algo-

rithms solve the non-smooth optimization problem directly with a projection-like operator

instead of converting this problem into a constrained optimization problem. Particularly,

these methods take the form of

xk+1 ← SJ2 (xk − αOJ1(xk), α) , (3.23)

where SJ2(x, α) is the solution of a `soft-threshold' problem at x with step size α and

regularizer J2(x). Moreover, the soft-threshold operator is given by the solution to the

soft-threshold problem

SJ2(x, α) = argmin
x

1

2
‖y − x‖2

2 + αJ2(x). (3.24)

In our case, J2(x) =
∑
λ‖x‖1 so the soft-threshold step for problem

min
x
f(x) = J1(x) +

∑
λ‖x‖1 (3.25)

would be

argmin
x

1

2

∥∥y − (xk − α∇J1(xk)
)∥∥2

2
+ α

∑
λ‖x‖1. (3.26)

The soft-threshold rule is the nonlinear function de�ned as

(Sα(t)) =


t− α, t > α

0, |t| ≤ α

t+ α t < −α

(3.27)

or more compactly the shrinkage function de�ned as [28, 30, 32, 83]

(Sα(χ))i =

(|χi| − α) sign(χi), if |χi| > α

0, otherwise.
(3.28)
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It truncates small values to zero and shrinks large values as in Fig. 3.2. If we consider

J2(x) =
∑
λ‖x‖0, Sα(t) is termed hard thresholding function [89]. However, we apply the

sparsity constraint through the soft-thresholding function because of the reasons men-

tioned in the Introduction section recalling that the l0 norm counts the number of non-zero

elements in the solution, which is directly related to the solution's sparseness. However,

this makes the minimization problem non-convex such that the problem might contain

more than a single in�mum [58]. Moreover, a global minimization of the cost function

under l0-norm penalty is NP-hard problem (extensively burden computational cost is

required to achieve the solution) [29].
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Figure 3.2.: Performance of soft and hard thresholding.

We �rst take a step along the negative gradient of the function, and then compute this

projection-like soft-threshold operator to take into account the e�ect of the regularizer.

The latter step e�ectively sparsi�es the result of the (generally dense) gradient step.

As discussed by [59], the soft-threshold operator is a generalization of the projection

operator, and we recognize the iterative soft-thresholding algorithm as the classic gradient-

projection algorithm but with projection replaced by soft-thresholding. Similar with the

classic gradient projection algorithm, this algorithm may converge very slowly. However,

analogous to the SPG algorithm which is a non-monotone projected gradient algorithm

that combines the classical projected gradient method with the spectral gradient choice

of step length and a non=monotone line-search strategy, [89] proposes to use Barzilai-

Borwein steps and a non-monotonic line search which we have discussed in previous section
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3. Methods to Solve Nonlinear Inverse Problem

to speed up the convergence of the method.

It is important to underline that the regularization parameter determines the relative

weight of the regularization term with respect to the other terms of the cost functional.

Therefore, if it is too small the sparsity regularization does not play a signi�cant role in

the minimization process, whereas a large value entails that less importance is given to

the �tting of the data with respect to the sparsity enforcement. As we are dealing with a

nonlinear problem, an optimal choice of this parameter is not straightforward and in any

case depends on the available a-priori information.

3.2.5. Positivity Constraints

Imposing a priori constraints can improve the quality of solutions to the inverse problems

in a great portion [54]. Non-negativity is important in applications like imaging [28, 54].

We know that in order to have a physical solution with a convergence, there should not

be a negative conductivity arising after a few iterations. However, the real and imaginary

parts of the contrast function are not necessarily non-negative. On the other hand, there

are possible ways which enforce the positivity constraints.

Projection Operator: One possible way is to de�ne a closed set such as C = {χ ∈
Ren |χ ≥ 0} so that this condition can be imposed to our concerned problem. Thus, we

can demonstrate the projection of χ onto a set C as

PC(χ) = arg min
v∈C
‖χ− v‖. (3.29)

In other words, PC(χ) is the closest point to χ in C [54]. We drop the subscript C from

the projection operator for simplicity and de�ne the ith component of P (χ) as

[P (χ)i] = max(χi, 0) =

χi if χi ≥ 0

0 if χi < 0.
(3.30)

Reformulation of Parameters: The other possibility can be to choose two new real-

valued unknowns κ and η such that they can keep a-priori information. Let εr(r) = 1+κ2

and σ(r) = η2 with εr(r) ≥ 1 and σ(r) ≥ 0. Thus, we can write the gradient of contrast

36



3. Methods to Solve Nonlinear Inverse Problem 3.2.6. Stopping Criteria

function with respect to these unknowns such as

dχ(r)

dκ(r)
= 2k2

0κ(r), and
dχ(r)

dη2(r)
=

2k2
0η(r)

ωε0(r)
. (3.31)

Hence, by applying a chain rule, the gradient of the cost functional is obtained as

dK(χ(η, κ))

dκ(r)
=

dK(χ(η, κ))

dχ(η, κ)
× dχ(η, κ)

dκ(r)
. (3.32)

In our simulations we have applied positivity constraint by projection rather than the

reformulation of parameters. The reason for this is that positivity constraint by reformu-

lation of parameters has a computationally burden and it slows down the convergence of

cost function.

3.2.6. Stopping Criteria

The algorithm is terminated if the following holds

max
k−ς+16n6k

‖K(χn+1)−K(χn)‖
‖K(χn+1)‖

< s. (3.33)

This means the algorithm is terminated if the last ς steps have su�ciently small changes.

Another possible stopping criterion is to check τ when falling below a small positive

constant. It can be interpreted as when maximum absolute value of step size times search

direction goes below a small positive constant.

One other termination criteria can be the number of iterations. Having enough number

of iterations can lead us to have a convergence in the cost function. In our simulations we

have used 100 iterations unless it is stated otherwise.
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The algorithm which has been put forth, is as follows:

Algorithm 2 Steepest descent reconstruction algorithm (+ sparsity constraint)

1: Initialization χ1 and α
2: for k = 1, · · · , T do

3: Solve the direct problem Edi�
(
χk
)

4: Compute the gradient K ′
(
χk
)

= ∇χK (χ)|χk . Adjoint method
5: Smooth the gradient K ′s

(
χk
)

. by solving (3.9)
6: Determine the step size τj
7: Update inhomogeneity by χk+1 = χk − τkK ′s

(
χk
)

8: Threshold χk+1 by Sα
(
χk+1

)
(3.4) . Sparsity constraint

9: Imposing prior constraint via projection . Positivity constraint
10: check stopping criterion.

11: end for

12: output approximate the minimizer of (3.1)

We have used this algorithm throughout our simulations with addition of projection

constraint when we call projection and the algorithm without projection constraint when

we call pixel basis approach.

3.3. Soft Shrinkage Method in Wavelet Transform

The intrinsic multiresolution feature of the wavelet transform [25] allows an accurate rep-

resentation of the unknown function with a reduced number of coe�cients. In particular,

the wavelet transform decomposes a given pro�le into two sets of coe�cients: coarse and

detail. The coarse coe�cients account for the pro�le's low frequency content acting as a

low-pass �lter of the original function, while detail coe�cients account for high frequency

content and allow representing the �ner details of the function [25]. As the decomposition

level increases, the number of nonzero coe�cients is reduced. These properties motivate

an approach that starts from a high level of decomposition, which is gradually reduced to

retrieve �ner details in the image. In practice, this is achieved by starting from a high order

coarse representation and progressively moving to lower order coarse images to improve

resolution.

In this section we will give a brief �avor about the wavelet transform and reformulate

the forward and the inverse problem of interest in terms of wavelet decomposition.
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3.3.1. Review of wavelet representation and the wavelet

transform

Any continuous function in R2 can be approximated in terms of scaling and wavelet

functions up to some decomposition level J according to the following formula [41]

y(r) =
∑
k,l

aJ0,k,lΦJ0,k,l(r) +
3∑
s=1

J∑
j=J0

2J−1∑
k,l=0

wsj,k,lΨ
s
j,k,l(r), (3.34)

where r = (x, y) represents the spatial coordinates in the Cartesian system and J0 is the

initial decomposition level. Scaling functions ΦJ0,k,l and wavelet function Ψs
j,k,l are de�ned

as tensor products of the scaled and translated scaling and wavelet functions in R such as

Φj,k,l(r) = φj,k(x)φj,l(y), (3.35)

ΨV
j,k,l(r) = φj,k(x)Ψj,l(y), (3.36)

ΨH
j,k,l(r) = Ψj,k(x)φj,l(y), (3.37)

ΨD
j,k,l(r) = Ψj,k(x)Ψj,l(y), (3.38)

where Ψj,k(x) is derived from the mother wavelet Ψ(x) as follows:

Ψj,k(x) = 2−j/2Ψ(2jx− k), (3.39)

and φj,k(x) is the corresponding scaling function. This means that there is a unique scale

function to compute the low frequency components in the previous decomposition level

and three wavelet functions to compute the detail coe�cients along horizontal, vertical

and diagonal directions (H,V,D).

The coe�cients aJ0,k,l and w
s
j,k,l are obtained by inner products in R2,

aj,k,l = 〈y,Φj,k,l〉 wj,k,l = 〈y,Ψj,k,l〉. (3.40)

For the sake of simplicity, we rewrite the equation (3.34) as

y(r) =
∑
j

cjCj(r), (3.41)

where cj and Cj(r) are wavelet coe�cients and scaling basis functions for j = 1, · · · , 22J0
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3. Methods to Solve Nonlinear Inverse Problem

and for j = 22J0 + 1, · · · , 22J . We denote the calculations in (3.40) in an operator form

following as

c =Wy, (3.42)

where W is a wavelet transform operator which maps y from R to a sparse set of co-

e�cients, c [25]. In our application, we are dealing with complex-valued functions. For

instance, by using the linear property of wavelet transforms we obtain

c =Wyre + iWyim = cre + icim. (3.43)

As in the case of 1D wavelet transform (see appendix B), the 2D wavelet could be

implemented using Low pass L and High pass H �lters, respectively, as shown in Fig. 3.3.

By this way, the two-dimensional signal, generally images, is divided into four subbands

Figure 3.3.: Filter bank of the 2D wavelet transform [48].

LL,HL,LH and HH. The band HL indicates the variation of the original signal along

the horizontal direction x and the subband LH for the vertical variation y.

3.3.2. Forward Problem in the Wavelet Domain

First, we explore the applicability of the wavelet representation for the contrast sources

by solving the forward scattering problem. We start by rewriting the domain integral

equation which is in the form of contrast source such as

J inc(r, rs) =

∫
Ω

[I − χ(r)G(r, r′)]︸ ︷︷ ︸
A(r,r′)

J(r′, rs)dr
′. (3.44)
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3. Methods to Solve Nonlinear Inverse Problem 3.3.2. Forward Problem in the Wavelet Domain

Using the same basis decomposition as in (2.21) along r′ we can write

J inc(r, rs) =
∞∑
i=1

Ai(r,Ω)Ji(rs) (3.45)

with Ai(r,Ω) =
∫

Ω
A(r, r′)ψi(r

′)dr′, ψi(r′) being wavelet basis and rs represents the posi-

tion of sources. Applying basis decomposition along r on (3.45) leads to

J inc
j (Ω, rs) =

∞∑
i=1

Aij(Ω,Ω)Ji(rs), j = 1, · · · ,∞ (3.46)

with Aij(Ω,Ω) =
∫

Ω
Ai(r,Ω)ψi(r)dr. Moreover, N pixels leads to N basis functions so

that

J inc(r, rs) =
N∑
i=1

Ai(r,Ω)Ji(rs. (3.47)

Applying the basis decomposition along r on (3.47) leads to

J inc
j (Ω, rs) =

N∑
i=1

Aij(Ω,Ω)Ji(rs), j = 1, · · · , N (3.48)

with Aji(Ω,Ω) =
∫

Ω
Ai(r,Ω)ψi(r)dr. Solving the state equation in the wavelet domain

can be obtained as


J1(rs)

J2(rs)
...

Jj=N(rs)

 =


A1,1(Ω,Ω) A1,2(Ω,Ω) · · · A1,N(Ω,Ω)

A2,1(Ω,Ω) A2,2(Ω,Ω) · · · A2,N(Ω,Ω)
...

...
. . .

...

AN,1(Ω,Ω) AN,2(Ω,Ω) · · · AN,N(Ω,Ω)


−1
J inc

1 (Ω, rs)

J inc
2 (Ω, rs)

...

J inc
N (Ω, rs)

 (3.49)

Combining (3.48) and (3.49) shows that the direct problem can be worked in the wavelet

basis domain.
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3. Methods to Solve Nonlinear Inverse Problem

3.3.3. Inverse Algorithm in Wavelet Domain

Since we would like to represent the contrast function in the wavelet domain, we �rst

write the data equation as follows:

Edi�(rr, rs) =

∫
Ω

G(rr, r
′)W∗(W(χ(r′)E(r′, rs)))dr

′, (3.50)

where W∗ is the inverse wavelet transform operator which maps χ back to a spatial

domain. Similarly, the domain equation is written in terms of the contrast sources in the

wavelet domain

W ((χ(r))E(r, rs)) =W
(
χ(r)Einc(r)

)
−W

(
χ(r)

∫
D

G(r, r′)W∗ (W (χ(r′)E(r′, rs)))

)
.

(3.51)

By using the above equations, we solve the nonlinear problem which minimizes the fol-

lowing cost functional:

F (χ) = ‖ζ(χ)−G(rr, r
′)W∗ (W (χ(r′)E(r′, rs))‖2︸ ︷︷ ︸

K(χ)

+‖W(χ)‖1. (3.52)

We update the unknown wavelet domain contrast function with the formula

W(χk+1) =W(χk)− τkW(K ′ (χk)), (3.53)

where

τk =

〈
W(χk)−W(χk−1),W(K ′

(
χk
)
)−W(K ′

(
χk−1

)
)
〉

〈W(K ′ (χk))−W(K ′ (χk−1)),W(K ′ (χk))−W(K ′ (χk−1))〉
. (3.54)

In other words, to retrieve the unknown contrast function by solving (2.9), a wavelet

expansion of the problem unknown in discretized form is considered as

Edi�(rr, rs) =
N∑
i=1

ci

∫
D

Gor(rr, r
′)Ci(r

′)E(r′, rs)dr
′ (3.55)

The algorithm used to solve inverse scattering problem is stated below:
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3. Methods to Solve Nonlinear Inverse Problem 3.4. Simulations

Algorithm 3 Steepest descent reconstruction algorithm with sparsity constraint in
wavelet domain
Initialize χ1 and α
for k = 1, · · · , T do

Solve the direct problem Edi�
(
χk
)

Compute the gradient W(K ′
(
χk
)
) = ∇χK (χ)|χk

Determine the step size τk
Update inhomogeneity by W(χk+1) =W(χk)− τkW(K ′

(
χk
)
)

Threshold W(χk+1) by Sα
(
W(χk+1)

)
Back to spatial domain W∗(χk+1)
check stopping criterion

end for

3.4. Simulations

In this chapter, we present a number of numerical results to justify the e�ectiveness

and accuracy of the proposed methods. We have tried di�erent scatterers having di�erent

permittivities and conductivities in order to identify and compare the performance and ef-

�ciency of each method with di�erent constraints (i.e, addition of smoothness, projection,

etc.). The description of physical characteristics scatterers and simulation con�guration

for each scatterer has been given in Tabs. 3.1 and 3.2 and in Fig. 3.4. The relative error

norms as a comparison criterion are expressed as

εerrr =
‖εrecr − εr‖2

‖εr‖2

, σerr =
‖σrec − σ‖2

‖σ‖2

, (3.56)

where εrecr and σrec are the reconstructed permittivity and conductivity, respectively, and

εr and σ the exact ones. The minimum of the cost function is the one reached at the end

of the process for each regularization parameter α. Additionally, the relative error norm

on χ is de�ned as

χerr =
Tr (‖diag(χ)− diag(χtrue)‖2)

Tr (‖diag(χtrue)‖2)
, (3.57)

where χtrue is the true contrast to be found and Tr (A) stands for the trace of the matrix

A. The discrepancy between the model and the measurement is as

Edi� =

∑Ni

i=1

∥∥ζi − Edi�
i (χ)

∥∥
2∑Ni

i=1 ‖ζi‖2

(3.58)
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3. Methods to Solve Nonlinear Inverse Problem

.

Scatterer # x y Lx Ly εr σ

1 -1.5 −1.5 0.5 0.5 1.5 0.002 20
2 -0.33 0.44 0.5 0.5 2.25 0

3.4a 3 1.5 −1.5 0.5 0.33 3 0.004 45
4 0 1.5 0.5 0.33 4 0.022 25
5 1 1.33 0.5 0.5 1 0.022 25

1 -1.5 −1.5 0.5 0.5 1.5 0.002 20
2 -0.33 0.44 0.5 0.5 2.25 0

3.4b,3.4g 3 1.5 −1.5 0.5 0.33 2 0.004 45
3.4j,3.4k 4 0 1.5 0.5 0.33 2 0.022 25

5 1 1.33 0.5 0.5 1 0.022 25

3.4c,3.4d,3.4f 1 -0.3 −0.3 1 1 2 0
3.4h,3.4l

1 0 0 1 1 2 0
3.4e 2 -0.68 −0.68 0.33 0.33 1.5 0

1 0.5 0.5 1 1 2 0.008 30
3.4i 2 -0.5 −0.5 1 1 2 0.004 45

Table 3.1.: Description of the scatterers, x, y being the coordinate of the center of the
obstacle (in m), Lx, Ly its lengths (in m) and εr and σ its relative permittivity
and conductivity (the latter in Sm−1)

where Edi�(χ) is computed by solving the direct problem with the reconstructed χ. The

laptop that has been used in order to run the simulations has a processor such as: Intel

Core i7−4600U CPU@2.10 GHz×4

3.4.1. Choice of Regularization Parameters

One of the key points of such an inversion either in spatial domain (pixel basis decomposi-

tion) or wavelet domain is the choice of the regularization parameters α in (3.4) and β in

(3.9) (δ being kept constant and equal to 1). Di�erent tests have been performed in order

to evaluate the sensitivity of the choice of those parameters on the solution in spatial

domain. The weighting parameters α and β should be chosen suitably so that we can

drive the regularization properties of our algorithm in an e�cient and predictable way.

In order to achieve a reconstruction which is close to the real case we make modi�cations

that a�ect the parameters.
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3. Methods to Solve Nonlinear Inverse Problem 3.4.1. Choice of Regularization Parameters
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(h) Scatterer 8
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(i) Scatterer 9
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(j) Scatterer 10
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(k) Scatterer 11
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(l) Scatterer 12

Figure 3.4.: Measured con�guration of actual permittivity pro�les for di�erent scatterers
and source-receiver locations.
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3. Methods to Solve Nonlinear Inverse Problem

Scatterer ROI frequency (MHz) Discretization Nsources Nreceivers

3.4a 6× λ 200MHz Forward P.= 80× 80 36 36
Inverse P.= 30× 30 r= 7m r= 7m

θ = [0, 2π] θ = [0, 2π]

3.4b 6× λ 300MHz Forward P.= 80× 80 36 36
Inverse P.= 30× 30 r= 7m r= 7m

θ = [0, 2π] θ = [0, 2π]

3.4c 3× λ 300MHz Forward P.= 36× 36 36 36
Inverse P.= 18× 18 r= 7m r= 7m

θ = [0, 2π] θ = [0, 2π]

3.4d 3× λ 300MHz Forward P.= 36× 36 36 36
Inverse P.= 18× 18 r= 7m r= 7m

θ = [π/2,−π/2] θ = [3π/2, π/2]

3.4e,3.4f 3× λ 300MHz Forward P.= 64× 64 29 29
3.4g,3.4i Inverse P.= 32× 32 r= 7m r= 7m

θ = [0, 2π] θ = [0, 2π]

3.4h,3.4k 3× λ 300MHz Forward P.= 64× 64 29 29
Inverse P.= 32× 32 r= 7m r= 7m

θ = [0,−π] θ = [0,−π]

3.4j,3.4l 3× λ 300MHz Forward P.= 64× 64 29 29
Inverse P.= 32× 32 r= 7m r= 7m

θ = [π/2,−π/2] θ = [3π/2, π/2]

3.4g, 3× λ 300MHz Forward P.= 64× 64 36 36
Inverse P.= 32× 32 r= 7m r= 7m

θ = [0,−π] θ = [0,−π]

Table 3.2.: Properties of the geometry of each system: Description of the region of in-
terest (ROI), frequency, discretization, and number of sources (Nsources) and
receivers (Nreceivers).
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3. Methods to Solve Nonlinear Inverse Problem 3.4.2. Addition of Projection

From a practical point of view, supported by an extensive numerical analysis, it has

been observed that a convenient choice for α can be 1/#ofpixels. This choice is suggested

by the fact that the penalty functions acts on the amplitude of the unknowns and it is so

normalized by their number. On the other hand, this value is not the optimal one in our

case. We have followed trial and error approach to be able to choose the most appropriate

regularization parameter α in this application.

At �rst we consider the reconstruction as a function of α with a constant β as in

Fig. 3.5 for the scatterer in Fig. 3.4f. Secondly, we examine the same reconstruction with

a constant α as a function of β as in Fig. 3.6.

In the �rst case we observe a better reconstruction of the exact case by increasing the

parameter α such as in Figs. 3.8e and 3.8g or in Figs. 3.9e and 3.9g. The higher the

value we choose for α the sharper the reconstructions are. However, the choice of α is not

arbitrary as can be seen in Fig. 3.5. The error in permittivity gets larger for larger α. We

get a minimum error when α is 2.5× 10−2.

In the other case, we would expect the inclusion to get smoother when we increase β.

However, in Fig. 3.6 it can be observed that there are no crucial di�erences when β is

1, 1.5 and 2.5 di�erently than 2. Fig. 3.7 shows that even if we do not have smoothness,

small error can be obtained by a properly chosen regularization parameter. However, if we

cannot choose the appropriate regularization parameter, addition of smoothness can help

us to improve the quality of reconstruction. Nevertheless, we should choose β carefully

and close to 1 in order not to loose the di�erentiability for the next iteration. Using β as

1.5 shows that the reconstruction becomes smoother as can be seen in Figs. 3.8i, Figs. 3.8j,

3.9i, and 3.9j compared to the �gures without any smoothness.

3.4.2. Addition of Projection

Addition of projection to the sparsity reconstruction method improves the quality of the

reconstruction even more and the error range for both permittivity and conductivity

decreases until a value of α such as 1.5× 10−2 for permittivity as in Figs. 3.10b and 3.11b

in spatial domain. In here, di�erent randomization of 10dB noise levels have been tested

to see how the addition of noise data can be discretized. Figs. 3.10b, 3.10d, 3.11b, and

3.11d show us that we can choose the regularization parameter in a wider range when we

add projection to our algorithm. On the other hand, we cannot base our solutions on the

minimum cost function as it does not give us the best solution even if we add projection as

in Fig. 3.14. This shows us that our problem is ill-posed and we need a-priori information.
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Figs. 3.12 and 3.13 present a comparison of the maps of the permittivity and conduc-

tivity, respectively for various inversion parameters where Tab.3.3 exhibits the error in

permittivity in each case. The in�uence of the α parameter without any projection con-

straint onto the permittivity and conductivity is important as we get better reconstruction

when α is 5× 10−3 than when α is 1× 10−6.

On the other hand, a clearer image is obtained by addition of projection and choice of

α has wider range. Comparing Figs. 3.12 and 3.13 shows us that when the permittivity

is low, the reconstruction quality is better. Moreover, Tab.3.3 highlights that we can get

the minimum error no matter the regularization parameter is, if we have addition of

projection. Even if we have less sparsity enforcement (smaller regularization parameter),

addition of projection to our inverse problem yields a better quality of reconstruction.
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Figure 3.8.: Scatterer 6 (Fig. 3.4f): Retrieval of permittivity εr (left) and conductivity σ
(right) using sparsity and smoothness without noise.

50



3. Methods to Solve Nonlinear Inverse Problem 3.4.2. Addition of Projection

-1 0 1

-1

-0.5

0

0.5

1
0.5

1

1.5

2

(a) Exact

-1 0 1

-1

-0.5

0

0.5

1
-0.01

-0.005

0

0.005

0.01

(b) Exact

-1 0 1

-1

-0.5

0

0.5

1
0.5

1

1.5

2

(c) Without sparsity

-1 0 1

-1

-0.5

0

0.5

1
-0.01

-0.005

0

0.005

0.01

(d) Without sparsity

-1 0 1

-1

-0.5

0

0.5

1
0.5

1

1.5

2

(e) α = 1× 10−3
-1 0 1

-1

-0.5

0

0.5

1
-0.01

-0.005

0

0.005

0.01

(f) α = 1× 10−3

-1 0 1

-1

-0.5

0

0.5

1
0.5

1

1.5

2

(g) α = 2.5× 10−2
-1 0 1

-1

-0.5

0

0.5

1
-0.01

-0.005

0

0.005

0.01

(h) α = 2.5× 10−2

-1 0 1

-1

-0.5

0

0.5

1
0.5

1

1.5

2

(i) α = 2.5× 10−2,
β = 1.5

-1 0 1

-1

-0.5

0

0.5

1
-0.01

-0.005

0

0.005

0.01

(j) α = 2.5× 10−2,
β = 1.5

Figure 3.9.: Scatterer 6 (Fig. 3.4f): Retrieval of permittivity εr (left) and conductivity σ
(right) using sparsity and smoothness with 10dB noise data.
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Figure 3.10.: Scatterer 1 (Fig. 3.4a): Error in εr and error in σ as a function of α by using
sparsity with (w) and without (w/o) projection with 20 noise levels of 10dB
(vertical axis corresponds to an error and horizontal axis corresponds to a
regularization parameter α).

Scatterer Scenario α εerrr σerr

Without projection α = 1× 10−5 0.1714 0.9072
Fig. 3.4a Without projection α = 5× 10−3 0.1546 0.8673

With projection α = 1× 10−6 0.0976 0.4493

Without projection α = 1× 10−5 0.21226 0.8760
Fig. 3.4b Without projection α = 5× 10−3 0.0952 0.7767

With projection α = 1× 10−6 0.0654 0.3879

Without projection α = 1× 10−5 0.1460
Fig. 3.4c Without projection α = 2.5× 10−2 0.0690

With projection α = 2.5× 10−2 0.0494

Without projection α = 1× 10−5 0.2719
Fig. 3.4d Without projection α = 2.5× 10−2 0.1079

With projection α = 2.5× 10−2 0.0947

Table 3.3.: Error on permittivity with or without addition of projection
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Figure 3.11.: Scatterer 2 (Fig. 3.4b): Error in εr and error in σ as a function of α by using
sparsity with (w) and without (w/o) projection with 5 noise levels of 10dB
(vertical axis corresponds to an error and horizontal axis corresponds to a
regularization parameter α).
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Figure 3.13.: Scatterer 2 (Fig. 3.4b): Retrieval of permittivity εr (top) and retrieval of
conductivity σ (bottom) by using sparsity and projection with 10dB noise
data.
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Figure 3.15.: Scatterer 3 (Fig. 3.4c): Retrieval of permittivity (εr, top) and conductivity
(σ, bottom) by using sparsity and projection with 10dB noise data.
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Figure 3.16.: Scatterer 4 (Fig. 3.4d): Retrieval of permittivity (εr, top) and conductivity
(σ, bottom) by using sparsity and projection with 10dB noise data.

55



3. Methods to Solve Nonlinear Inverse Problem

3.4.3. Analysis of Proposed Approaches

In this section, the e�ectiveness of the proposed approaches has been assessed and com-

pared against di�erent scatterers as in Fig.3.4. In particular, we study the Stationary

Wavelet Transform (SWT) in terms of Haar basis of level two and three, and the Discrete

Wavelet transform (DWT).

The SWT is a wavelet transform achieving translation invariance, a property that is

missing in the DWT [38]. Translation-invariance is achieved by removing the downsam-

plers and upsamplers in the DWT and by upsampling the �lter coe�cients by a factor of

2j at the (j − 1) level of the algorithm. For this reason, the output of each level of the

SWT contains the same number of samples as the input. In comparison with the previ-

ous case of step functions, this means that the unknown is now expressed by means of

a redundant dictionary in which there are more columns than rows [38]. In other words,

such a representation is not univocal, as the considered functions are not orthonormal.

The use of these overcomplete dictionaries is now widespread in signal processing and

data analysis, as there are numerous practical examples in which a signal is not sparse in

an orthonormal basis or incoherent dictionary, but it is instead sparse in terms of a truly

redundant dictionary [38].

On the other hand, `Wavelab' which is a library of Matlab routines for wavelet analysis,

wavelet-packet analysis, cosinepacket analysis and matching pursuit is used in Matlab to

study our problem in Discrete Wavelet Transform. DWT is any wavelet transform where

the wavelets are discretely sampled. In practice, we only have a �nite number of values

of the contrast function in a rectangular domain D, which is discretized into 2J × 2J grid

cells. The values of the contrast function on these cells represent the scaling coe�cients

at the highest scale J (decomposition level). In our case, we have used 32 × 32 (J = 5)

discretization for each geometry while solving our inverse problem in the wavelet domain.

As mentioned before the choice of the wavelet family plays an important role since

the priority is to choose a wavelet basis that produces as many zero coe�cients as pos-

sible. This choice is based on the analysis of three main criteria which are the vanishing

moments, support size and the regularity. High-amplitude coe�cients occur when the

support of the wavelet overlap with transitions such as edge and they are proportional

to the width of the wavelet support, which needs preferably to be as small as possible.

However, the number of vanishing moments is proportional to the support size so that the

choice of the optimal wavelet is a trade-o� between the number of vanishing moment and

support size. Furthermore, the wavelet regularity can reduce the visibility of artifacts.
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Considering all these features and the Tab.3.4 it can be observed that the Daubechies

and Symmlet families represent good options to be employed in the numerical analysis.

However, as it was pointed out before, support size with respect to our unknown scatterers

plays an important role. Taking account the sparsity of our unknown scatterers within

these wavelet basis, we will �rstly exploit the `Haar' (db1) wavelet and do the comparison

with Daubechies (db4) wavelet basis.

Secondly, we will do the optimization on detail coe�cients of the contrast function,

which are its �ner details by exploiting Haar basis for SWT (swt-db1-opt.details) and

Wavelab case (WL-db1-opt.details). Before passing to the comparisons of the methods

with di�erent characteristic properties of wavelet functions, we would like to provide

some notations for simplicity:

• Haar wavelet: db1

• Daubechies 4 wavelet: db4

• Optimization on both detail and approximation coe�cients by wavelet decomposi-

tion using Wavelab: WL

• Optimization on both detail and approximation coe�cients by wavelet decomposi-

tion using Stationary Wavelet Transform: SWT

• Optimization on detail coe�cients by exploiting Haar basis through SWT: swt-db1-

opt.details

• Optimization on detail coe�cients by exploiting Haar basis through Wavelab: WL-

db1-opt.details

• level two: l = 2 and level three: l = 3.

We have used 20 dB and 10 dB noise data set in order to illustrate our proposed ap-

proaches. Moreover, we exclude the smoothing the gradient constraint in soft-shrinkage

algorithm both in spatial and wavelet domains for the rest of the simulations since ad-

dition of smoothness does not improve the solution accuracy with the proper choice of

regularization parameter.

20 dB noise data: For instance, the plots of the real part and the imaginary one in

Fig. 3.17 of the contrast retrieved from blurred scattering data with a SNR on the scattered

�eld amplitude equal to 20 dB prove a good reconstruction of the actual contrast despite its

nonsparse nature with respect to a standard single-pixel basis. Comparing the performance
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Property Haar Daubechies N Symmlet N Coi�et N Bi-orthogonal Bi-orthogonal
Reverse

Nr.Nd Nr.Nd

Support width 1 2N − 1 2N − 1 6N − 1 2Nr + 1 2Nd + 1
Number of 1 N N 2N Nr Nd

vanishing moments
Regularity ≈ 0.2 ≈ 0.2N 2N Not de�ned Nr − 1 Nd − 1

Table 3.4.: Features of the main wavelet families

of the approach in the wavelet domain with the one in pixel basis, wavelet based soft

shrinkage reconstruction scheme is faster. However, as it can be noticed in Tab. 3.5, the

wavelet based approach improvement is of about 0.3% which is quite low. Moreover,

addition of projection to the pixel based reconstruction algorithm gives us better result.

On the other hand, choosing Daubechies (db4) basis decomposition does not give us a

good quality of reconstruction while its performance is slower when compared to others.

For the case of Scatterer 9 (Fig. 3.4i), we can see from Tab. 3.5 when we increase the

decomposition level from level 2 to 3 we get a slightly better solution. Even if there is not

a big di�erence in the reconstruction error of permittivity between Haar and Daubechies

(db4) basis decompositions, the reconstruction obtained by Wavelab with Haar basis is

smoother than the one obtained with db4.

10 dB noise data: When we increase the noise such as in Tab. 3.6, the reconstruction

error increases directly. However, interestingly, the error di�erence between WL-db1 and

pixel reconstruction schemes is around 0.0015, which is not remarkable while the scatterer

is not exactly sparse in the domain of the pixel basis function. On the contrary, the

performance of WL-db1 is better than the one with pixel basis decomposition.

When we consider scatterer 7 (Fig. 3.4g), which counts as sparse with respect to the

pixel basis, we can see in Tab. 3.5, 3.6 that the soft shrinkage algorithm gives a slightly

better reconstruction in the spatial domain. On the other hand, it is worthwhile to men-

tion that the algorithm in wavelet decomposition also achieves a good resolution of the

image whereas wavelet decomposition in terms of swt is not preferable because of its low

performance and lower reconstruction quality.

We also consider the applicability of the proposed methods with the scatterers which

have partial views (Fig. 3.4d, 3.4j) and a case where the sources and receivers are located

on the top half of the region of interest as in Fig. 3.4h and Fig. 3.4k. Compared to the full

view scatterers, these con�gurations have worse reconstruction quality. However, scatterer
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4 (Fig. 3.4d) has lower error in permittivity compared to its full view case (Fig. 3.4f) as

can be seen in Tab. 3.7 and Tab. 3.8 especially when we have the wavelet decomposition

with swt. For the scatterer 11 (Fig. 3.4k) we have better results by using wavelet basis

functions than the pixel functions albeit the scatterer is sparse with respect to pixel basis.

When we have both re�ection and transmission con�gurations the e�ectiveness of the

proposed approaches reduces as the a-priori information is limited due to the information

obtained at the receivers. However, we can still obtain the best approximation to the

actual pro�les by enforcing sparsity through projection as it can be seen in Tabs. 3.7

and 3.8. Like for all other results, application of projection gives us the better minimum

error for the permittivity and conductivity for both 20dB and 10dB noise data sets while

keeping its slow performance compared to performances of other approaches.

It is also worthwhile to mention that in [90] the authors studied wavelet decomposition

in breast cancer imaging and according to their results the wavelet decomposition recovers

the unknown pro�le around 15% more than the pixel basis case based on the fact that

there is no frequency hopping for wavelet decomposition. However, in studies [41, 91, 92]

wavelet decomposition gives better results than pixel basis decomposition taking into

consideration scatterers which are sparse in wavelet domain and not in spatial one.
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Table 3.5.: Error and average simulation time in seconds with 20dB
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Scatterer Test Time (s) χerr εerr σerr
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Table 3.6.: Error and average simulation time in seconds with 10dB
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Scatterer Test Time (s) χerr εerr σerr
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Table 3.7.: Error and average simulation time in seconds with 20db
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Scatterer Test Time (s) χerr εerr σerr
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Table 3.8.: Error and average simulation time in seconds with 10dB
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Figure 3.17.: Retrieval of permittivity (εr, 1st and 3rd column) and conductivity (σ, 2nd and 4th
column) with 20dB and 10dB noise data (α = 2.5× 10−2 without projection and
smoothness).
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Figure 3.18.: Retrieval of permittivity (εr, 1st and 3rd column) and conductivity (σ, 2nd and 4th
column) with 20dB and 10dB noise data (α = 2.5× 10−2 without projection and
smoothness).
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Figure 3.19.: Retrieval of permittivity (εr, 1st and 3rd column) and conductivity (σ, 2nd and 4th
column) with 20dB and 10dB noise data (α = 2.5× 10−2 without projection and
smoothness).
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Figure 3.20.: Retrieval of permittivity (εr, 1st and 3rd column) and conductivity (σ, 2nd and 4th
column) with 20dB and 10dB noise data (α = 5× 10−3 without projection and
smoothness).
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3.5. Conclusion

Two imaging techniques have been introduced in this Chapter in order to solve the nonlin-

ear inverse scattering problem. The �rst technique is based on the iterative algorithm of

soft shrinkage type which enforces the sparsity constraint at each nonlinear iteration. We

have introduced constraints such as Barzilai and Borwein (BB) step size selection criteria

and projection constraint on contrast in order to favor the performance and quality of the

proposed algorithm.

We extend our proposed inversion algorithm based on soft shrinkage enforcement over

the reconstruction of small isolated scatterers. By adopting wavelet basis functions we

discretized the formulation of the 2D inverse scattering problem where the imaging prob-

lem has been solved with a soft shrinkage reconstruction algorithm as a second technique.

Selected results from numerical experiments have been presented and discussed to give

some insights about the robustness, the �exibility, and the accuracy of the proposed ap-

proaches as well as to illustrate their advantages and limitations with respect to di�erently

constrained inversion methods.

Since sparsity is a relative concept, the e�ectiveness of each approach depends on the

actual scatterer and the adopted representation basis, i.e, on the available a-priori in-

formation on the scattering scenario to be used for choosing the basis. We have studied

di�erent scatterers within this respect. The results showed us that whenever the proper

wavelet basis is selected for the scenario at hand (Fig. 3.4), the proposed method based

on soft shrinkage enforcement gives good results in terms of computational e�ciency and

accuracy (Tabs. 3.5, 3.6, 3.7, 3.8). The wavelet based method can be reliably applied to

a wide set of scattering con�gurations by handling a reduced set of scattering data.

Overall, even if the soft shrinkage algorithm which has been studied both in spatial

domain and wavelet domain gives us satisfactory results, an inversion based on projection

constraint gives us slightly better results yet its performance is more time consuming.
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4.1. Motivation

Additional to the interest of exploiting sparsity which has been mentioned in previous

chapters, the other key point of the sparse estimation problem is to reveal the identi�ca-

tion of the support, which denotes the indices of the nonzeros. If the support is known,

the estimation of the sparse vectors reduces to a standard overdetermined linear inverse

problem [93].

A wide variety of the studies starts to contemplate the structure information of the

solutions in order to facilitate a better estimation. For instance, `group sparsity' structure

[46] has been presented in many applications, where the components of solutions are likely

to be either all zero or all nonzero in a group. Thus, one aims to decrease the dispersion

to enhance the solution by taking account the grouping prior. In this chapter, we focus

on joint sparsity, which is a special case of the group sparsity. Speci�cally, joint sparsity

means that multiple unknown sparse vectors (xj ∈ Rn, j = 1, · · · , s) share a common

unknown nonzero support set [46, 47].

We propose a two-step inversion approach in order to solve a nonlinear inverse problem

as ours by applying joint sparsity to get the equivalent current, then the unknown contrast.

We show the e�ciency, accuracy and the limitations of our proposed method with the

results obtained in 2D and 3D.

4.2. Two-Step Inversion

In compressive sensing, joint sparsity desires to reconstruct unknown signals from m

measurement vectors based on a common measurement matrix. This is also called the

multiple measurement vectors (MMV) problem [94]. Given the vectors yj,∈ Rm, and a

measurement matrix A ∈ Rm×n, we want to recover the xj from the noisy underdetermined

systems yj = Axj +nj (j = 1, · · · , s), where nj is the noise vector. The vectors x1, · · · ,xs
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share the sparsity pattern M , i.e., the nonzero entries of x1, · · · ,xs appear at the same

positions. A common recovery model is

min
X
|M | s.t yj = Axj + nj, j = 1, · · · , s, (4.1)

where |M | is the cardinality of M [95]. Since (4.1) is NP-hard [33, 96], this problem is

usually relaxed with a convex alternative which is computationally e�cient at the expense

of more being required measurements. Like l1-norm being the convex relaxation of l0-norm

[24], the (weighted) l2,1-norm is widely used as the convex replacement of |M | as stated
below [46, 95]:

min
X
‖X‖w,2,1 :=

n∑
i=1

wi
∥∥xi∥∥

2
s.t AX = B +N, (4.2)

where A ∈ Rm×n and B ∈ Rm×l is an available measurement matrix consisting of l

measurement vectors, and xj ∈ Rn denote the i-th row and the j-th column of X, whereas

X = [x1, · · · ,xs] ∈ Rn×l denotes a collection of l jointly sparse solutions (unknown source

matrix) while wi ≥ 0. N ∈ Rm×l is an unknown noise matrix.

A key assumption in the MMV model is that the support of every column of X is iden-

tical. Similarly with the constraint in the single measurement vector model, the number

of nonzero rows in X has to be below a threshold to maintain a unique global solution

[97]. This leads to the fact that X has a small number of nonzero rows.

Following all the above properties, the other study of the thesis is coming from adopting

a two-step method which �rstly consists of �nding the equivalent current Ji for i =

1, . . . , Ns (Ns represents the number of sources) using (2.9) and then looking for χ by

combining (2.14) and (2.11) instead of solving directly the nonlinear inverse problem given

by (3.2) as we studied in Chapter 3. This approach leads us to have two linear minimization

problems solved by exploiting the jointly-sparse aspect of the sought equivalent currents

solution of the �rst step and a classical l2-minimization of a linear problem for the second

step.

4.2.1. First step: Reconstruction of the equivalent currents

The following optimization problem is solved

J?i = argmin
Ji

[
1

2
‖ζi −GorJi‖2

]
i = 1, · · · , Ns. (4.3)
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where ζi is a vector of size Nr which gathered the signal due to the source #i measured

by the Nr receivers.

The main idea of the approach is to take into account that, as shown by (2.24), Ji and χ

share the same support which means that when χj = 0 then J ji = 0,∀i = 1, . . . , Ns where

χj and J ji are the j
th element of χ and Ji respectively. Taking into account this hypothesis,

(4.3) based on the original joint sparsity model (4.2) can be recast as a minimization

problem under the constraints that Ji has the same sparse support for each source i

leading to the use of a (weighted) l2,1-regularization to enforce joint sparsity such as

min
J
‖J‖w,2,1 :=

N∑
j=1

wj‖Jj‖2 s. t. GorJi = ζi (4.4)

while wj is the corresponding weight [46].

In [98], Yong et al. applied the alternating direction method (ADM) technique to solve

the l1 problem in compressed sensing and developed the corresponding MATLAB package

termed Your ALgorithms for L1 (YALL1). Furthermore, Deng et al. extended the YALL1

to the group version for solving the group sparse optimization with l2,1-norm regularization

in [46]. In this respect, we use YALL1 Group [46] package which encodes the joint sparsity

model in order to solve (4.4).

Alternatively, we use T-MSBL which is a block sparse Bayesian learning to solve (4.4).

T-MBSL identi�es the MMV model in order to exploit the correlation that exists in

each nonzero row of X while automatically choosing the optimal regularization value.

More details related to this algorithm can be found in [99]. The MATLAB code for both

algorithms can be obtained online as well.

In [98], it has been also proved that YALL1 gives better performance and solution

accuracy compared to state of art algorithms such as spectral projection gradient method

(SPGL1) [35], SpaRSA (a sparse reconstruction algorithm for more general regularizers)

[89], FISTA (a fast iterative shrinkage thresholding algorithm that attains an optimal

convergence rate in function values) [58]. Therefore, we have used YALL1 toolbox and

T-MSBL which applies joint sparsity approach by adopting a probabilistic approach to

incorporate correlation structure in each nonzero row of the solution matrix di�erently

than the existing algorithms to apply our proposed method.
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4.2.2. Second step: Reconstruction of the contrast function

Once Ji is known, the contrast function is obtained by solving the following minimization

problem [100]

χ? = argmin
Ns∑
i=1

‖Ji − diag (χ)Ei‖2 =

∑Ns

i=1 Ji · Ēi∑Ns

i=1 Ei · Ēi

, (4.5)

where Ei has been obtained using (2.25) and Ēi being its conjugate.

4.2.3. Two-Step Inversion Method Results in 2D

It is worthwhile to restate that sparseness is a relative concept with respect to a basis [4].

In the case of a pixel basis a fast way to estimate the sparsity of our problem is to de�ne

it as the ratio of the obstacle's areas to the investigation domain D area. By this way,

sparseness of the �rst example (Fig. 3.4b) is around 3% whereas the one of the second

example (Fig. 3.4f) is around 11%. One of the key points of our examples is that in the

�rst one the scatterers are sparse with respect to their pixel expansion basis while in the

second one the scatterer is less sparse and our proposed approach in this chapter performs

di�erently for these two cases.

We exploit the joint sparsity by using YALL1 and T-MSBL algorithms in our two-

step inversion method. Thereafter, we compare these approaches with SpaRSA and Born

Approximation (B.A). SpaRSA is a method based on iterative shrinkage/thresholding

(IST) [89]. It computes the steepest descent direction on the l2 norm in (4.3) and uses a

very simple soft thresholding function related to the regularization term.

As for the parameters of YALL1 algorithm we choose the primal-based solver where the

linear system is exactly solved. The weights have been chosen as wi = 1 (i = 1, · · · , N)

and the initialization J ≡ 0 (no prior information). We have also not added projection

while keeping the number of iterations as 10×# of measurements.

It can be observed that when we have sparse scatterers (as in Fig. 4.1) the two-step in-

version approach gives a better reconstruction in terms of quality of χ and the processing

time compared to the soft shrinkage algorithm as shown in Tab. 4.1. However, applica-

tion of joint sparsity through T-MSBL is more favorable than the YALL1 when we have

sparse scatterers with respect to their basis function. Error on contrast and permittivity

is calculated as in equations 3.56 and 3.57

On the other hand, even if the two-step inversion approach is faster in the reconstruction
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of the scatterer in Fig. 4.2, the soft shrinkage algorithm yields a better reconstruction

quality with an appropriate regularization parameter. Furthermore, one can also observe

that when we decrease the number of discretization (comparing Fig. 3.4b to Fig. 3.4g), the

di�erence in reconstruction quality is quite small such as 1.21%. Also, Born approximation

and SpaRSA approaches give us poor reconstruction even if they are less time consuming

as it can be seen in Tab. 4.1.

When we transform the two-step inversion approach from spatial to wavelet domain,

our minimization problem transforms into

min
J̃
‖J̃‖w,2,1 :=

N∑
j=1

wj‖J̃j‖2 s. t. W(GorJi) =W(ζi), (4.6)

where J̃ =
∑N

j=1 JjCj implying J̃ = W(J) as in (3.42). {Cj}Nj=1 represent the wavelet

functions and {Jj} are the decomposition coe�cients.

When we compare both scatterers (Fig. 3.4f and Fig. 3.4g) in the wavelet domain (WD)

and the spatial domain, soft shrinkage algorithm provides approximately the same error.

However, the soft shrinkage algorithm in wavelet domain achieves slightly better results

than the two-step inversion method applied through YALL1 and T-MSBL as shown in

Tab. 4.2. On the other hand, when we compare the approaches studied in the spatial and

the wavelet domain, we can see in Tab. 4.1 and Tab. 4.2 for the case of Fig. 3.4g where

we have 5 small scatterers, the two-step inversion method through T-MSBL gives better

results in the spatial domain than is the wavelet domain.

Furthermore, as it can be seen in Fig. 4.3 when we reduce the noise level on our synthetic

data, the error on the contrast function shows us that the e�ectiveness of the approxi-

mation gets better. For instance, when the scatterer is as in Fig. 3.4f, the error obtained

through the soft shrinkage algorithm gives us better estimate than the other methods

applied.

Contrarily, the two-step inversion method applied by T-MSBL in the spatial domain

reduces the error more than the other methods are doing when the scatterer is small as in

Fig. 3.4g. On the other hand, we can observe that the soft shrinkage algorithm provides

a good approximation both in the spatial and the wavelet domains even if we have our

data disturbed with a high level of noise.
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Figure 4.1.: Scatterer 2 (Fig. 3.4b): Retrieval of permittivity (εr, left) and conductivity (σ,
right) both in the spatial domain and the wavelet domain (WD) by using sparsity
with 10dB noise data.

74



4. Two-Step Inversion Method 4.2.3. Two-Step Inversion Method Results in 2D

-1 0 1

-1

0

1

1

1.5

2

(a) Exact

-1 0 1

-1

0

1

×10
-3

-5

0

5

(b) Exact

-1 0 1

-1

0

1

1

1.5

2

(c) Soft Shrinkage Alg.
α = 1× 10−6

-1 0 1

-1.5

-1

-0.5

0

0.5

1

1.5

×10
-3

-5

0

5

(d) Soft Shrinkage Alg.
α = 1× 10−6

-1 0 1

-1

0

1

1

1.5

2

(e) Soft Shrinkage Alg.
α = 2.5× 10−2

-1 0 1

-1.5

-1

-0.5

0

0.5

1

1.5

×10
-3

-5

0

5

(f) Soft Shrinkage Alg.
α = 2.5× 10−2

-1 0 1

-1

0

1

1

1.5

2

(g) Jointly-sparse
model-YALL1

-1 0 1

-1.5

-1

-0.5

0

0.5

1

1.5

×10
-3

-5

0

5

(h) Jointly-sparse
model-YALL1

-1 0 1

-1

0

1 0.5

1

1.5

2

(i) Soft Shrinkage Alg.
α = 2.5× 10−2-
WD

-1 0 1

-1.5

-1

-0.5

0

0.5

1

1.5

×10
-3

-6

-4

-2

0

2

4

6

(j) Soft Shrinkage Alg.
α = 2.5× 10−2

WD

-1 0 1

-1

0

1 0.5

1

1.5

2

(k) Jointly-sparse
model-YALL1-WD

-1 0 1

-1.5

-1

-0.5

0

0.5

1

1.5

×10
-3

-6

-4

-2

0

2

4

6

(l) Jointly-sparse
model-YALL1-WD

Figure 4.2.: Scatterer 6 (Fig.3.4f): Retrieval of permittivity (εr, left) and conductivity (σ,
right) both in the spatial domain and the wavelet domain (WD) by using sparsity
with 10dB noise data.
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Table 4.1.: Error and average simulation time in seconds with 10dB
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Table 4.2.: Error and average simulation time in seconds with 10dB-Wavelet Domain
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Figure 4.3.: Error in χ (χerr) against varying SNR both in the spatial and the wavelet
domain

4.2.4. Two-Step Inversion Method: Preliminary Results in 3D

Let us consider a complex, multi-layer structure, where each of the n layers is assumed to

be non-magnetic (µ = µ0) homogeneous uniaxial. (This type of structure usually results

from a large-scale (homogenized) view of �bered planar laminates as in aeronautics.) In

the local coordinate system (material frame), each layer is characterized by a diagonal

complex permittivity tensor

¯̄ε(n)
e =

ε
(n)
11 0 0

0 ε
(n)
22 0

0 0 ε
(n)
22

 ¯̄Ξ (θn) =

 cos θn sin θn 0

− sin θn cos θn 0

0 0 1

 . (4.7)
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One is able to carry the local coordinate system to the global Cartesian one where θn is the

rotation Euler angle. The electromagnetic response of such a structure which satis�es the

radiation condition at in�nity (the Sommerfeld condition) and in a complex multi-layer

continuity conditions at each interface is computed as

Edi�
j (r) = iωµ0

∫
V

¯̄Gee (r, r ′)· ¯̄χ (r ′)·Etot
j (r ′) dr ′, with ¯̄χ (r) = −iωε0

¯̄Ξ−1 (θn)·
(
¯̄εi − ¯̄ε(n)

e

)
· ¯̄Ξ (θn)

(4.8)

¯̄χ(r) · Einc
j (r) =

Jj(r)

−iωε0
− ¯̄χ(r) · iωµ0

∫
V

¯̄Gee(r, r′) · Jj(r′) d r′ (4.9)

where ¯̄Gee (r, r ′) is the electric-electric dyadic Green's function, ¯̄εi the background per-

mittivity tensor, ¯̄εe the permittivity tensor of an inclusion of volume V within the back-

groundand volume V . Edi�
j (r), Etot

j (r) and Einc
j (r) are the scattered, total and incident

�elds respectively due to the jth source. For theoretical and numerical details one should

refer to [80], [101] and [102].

(a) Side view (x, y/λ0)
(b) 3D view (x, y/λ0)

Figure 4.4.: Con�guration for inverse imaging testing.

Here is the description of the con�guration on which the two-step inversion is applied:

• Frequency f = 6GHz; λ0 = 5 cm; λ1 = 2.1 cm

• Acquisition:

� Surface area of Lx × Ly at height Lacquisition

Lx = Ly = 6λ1, Lacquisition = 0.3λ0

� Number of antennas: Nx ×Ny; Nx = Ny = 13

� Each antenna: 3 orthogonal unit dipoles along x, y and z
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Figure 4.5.: Convergence of the cost function, vertical axis corresponds to number of it-
erations and horizontal axis corresponds to error on cost function (two-step
method applied via YALL1).

• Fiber-glass composite ¯̄ε1 = ε0diag [5.46 + i2.29, 5.21 + i2.08, 5.21 + i2.08] θ1 = 0◦

• Two inclusions of complex permittivity εΩ = (6, 0), ¯̄εinclusion = ¯̄Iε0εΩ

� Size (0.2× 0.2× 0.2)λ1, centered at (1.4, 0.7, 0.7)× λ1

� Size (0.2× 0.2× 0.2)λ1, centered at (0.5, 1.4, 1.4)× λ1

• Region Of Interest:

� Size: lx × ly × lz with lx = ly = 2λ1 and lz = 2λ1

� Discretization: nx × ny × nz, nx = ny = nz = 10

� Depth of top of ROI z = 0.25λ1

In this section, the unknown scatterer is not too large and/or its contrast not too high.

The preliminary results obtained using two-step inversion method already show some good

results. In [103] a Bayesian Compressive Sensing solver, is used whereas, in this work, an

algorithm exploiting a joint sparsity regularization is proposed. Let us notice that results

using the one-shot MUSIC retrieval method and the iterative Subspace Optimization

Method in the 3D anisotropic case are put in perspective in [104], this being behind the

scope of our discussion here however.

From Fig. 4.6 we can see that the two-step inversion method applied through YALL1

gives us a good localization and estimation of the contrast when there is no noise and it

maintains a good convergence as shown in Fig. 4.5. However, the method does not give

us good results when we have noise in our data as in Fig. 4.7.

Similarly, the two-step inversion method applied through T-MSBL gives us a good

reconstruction for the real and imaginary parts of the contrast (see Fig. 4.8 and Fig. 4.9)
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when there is no noise. However, it can still keep its good reconstruction quality with the

addition of the noise to the data as can be seen Fig. 4.10 and Fig. 4.11. We have used

3000 iterations while running our simulations. On the other hand, this method is sensitive

to initialization.

In 3D, nonlinearity and ill-posedness become even more severe than 2D applications.

This reminds us of the importance of the enforcement of the sparsity constraint. As it

can be observed, the two-step inversion gives better results when it is applied through

T-MSBL than the ones of YALL1. This might be due to the stronger correlation that

applied through T-MSBL to the coe�cients of each row of the unknown contrast. This

point as well as other open questions will be considered in the Conclusion chapter.
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4. Two-Step Inversion Method 4.3. Conclusion

4.3. Conclusion

In this chapter, we presented a two-step inverse process which allows sparse recovery of the

unknown (complex) dielectric pro�les of scatterers. The proposed approach is correlated

with joint sparsity which gives multiple sparse solutions that share a common nonzero

support. The principal interest of such a method is that it accurately reconstructs the

unknown scatterers without linear approximation and presents an e�cient recovery al-

gorithm of sparse scatterers by reducing possible ambiguities on the scatterer sparsity

deduced from the null values of the equivalent current [4, 105].

Thereafter, we compared the method proposed in this chapter with the approach that

directly obtains the contrast through enforcement of sparsity by soft shrinkage thresh-

olding. Both approaches produce sharp and good reconstruction of dielectric pro�les in

sparse domains and keep their convergence during the reconstruction.

On the other hand, when we have a scatterer which is sparser with respect to pixel

basis then two-step inversion method through T-MSBL gives better results in the spatial

domain than the wavelet domain. This might be due to the correlation of the nonzero

rows of the unknown contrast that we are interested in. When we have a scatterer which

is not that sparse in spatial domain then there is not a big di�erence for both two-step

inversion and soft-shrinkage approaches either in spatial or wavelet domains.

Moreover, a three-dimensional inversion strategy is introduced for the detection of scat-

terer in uniaxially anisotropic layered media having principal axes with arbitrary orien-

tation. The two-step method is adopted for the solution of the imaging problem. A set of

preliminary numerical results is reported to assess the accuracy of the proposed method

even if more studies have to be done in order to evaluate the limitations of the proposed

method.

Recently, several computational advances have been made in the nonconvex sparse reg-

ularization since its performance is better than the one of the convex sparse regularization.

While there exist many algorithms for solving the nonconvex sparse regularized models,

it is still a challenging problem to obtain the global optimal solution e�ciently. In addi-

tion, the behavior of a local solution is hard to analyze and, more importantly, structural

information of the solution is also hard to be incorporated into these algorithms [47].
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5. Summary, Conclusions and Future

Work

In this last chapter, the work that has been done and presented in the previous chapters

is summarized. The main points, contributions, results and inferences are summarized to

provide a global view and highlight the goal of the project. The conclusions are subse-

quently followed by a list of suggestions and ideas for future work. These perspectives

aspire to complement the work carried out and presented here and, if possible, to bring

it closer to real life applications.

5.1. Summary and Conclusions

In this dissertation, we have considered the non-linear microwave imaging problem by

transforming it into a problem of sparse signal representation using dictionaries. This is

a very attractive way of looking at retrieving pro�les of unknown scatterers in a region

of interest because when the scatterers can be well-modeled with an appropriate basis,

and the number of their unknown coe�cients is small, then the true underlying spatial

spectrum is sparse. The problem of signal representation in bases is an ill-posed non-

linear inverse problem, and as such, it requires regularization to have unique well-behaved

solutions. We are interested in sparse signal representations, so the regularization has to

enforce sparsity.

To enforce sparsity we utilized lp penalties with p ≤ 1. There is an important distinction

between l1 penalties (p = 1), and penalties with p < 1. For the l1 case, the penalty

leads to convex optimization problems, whereas for p < 1, the associated optimization is

nonconvex. For the sake of simplicity in terms of computational complexity we focused on

optimization involving l1 penalties for which we used an algorithm that is a special case

of gradient descent. The algorithm has the important bene�t of allowing e�cient global

solutions by adapting di�erent properties.
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In this work, thresholded nonlinear Landweber iterations (special case of gradient de-

scent) are used to solve the sparse minimization problem constructed directly from the

nonlinear scattering equations. It is adapted from the classical iterative soft shrinkage al-

gorithm, and its main ingredients include a Sobolev smoothing of the estimated gradients,

a soft shrinkage iteration, and an adaptive step size selection based on the Barzilai and

Borwein rule. The resulting scheme requires the user to set only one simulation parameter

before the execution, which signi�cantly simpli�es the application of the method to dif-

ferent problems. Additionally, since the regularization is applied directly to the nonlinear

problem without any linearization approximation, the scheme can be applied to higher

contrast level of scatterers.

Furthermore, a projected steepest descent algorithm, which increases convergence rate

of the nonlinear Landweber iterations, is used for reducing potential high computational

cost. The projection operator replaces the thresholding function and enforces the sparsity

constraint. Indeed, numerical results demonstrate that the resulting projection scheme is

very e�cient in recovering permittivity pro�les.

We adopted as already said the Barzilai-Borwein direction as a step size selection,

and the numerical results show the signi�cant development in e�ciency of the gradient

method. Being computationally e�cient and needing low memory requirement makes this

scheme interesting to solve large-scale optimization problems.

On the other hand, the decoding process requires �nding a sparse solution of an under-

determined linear system. What makes such a scheme work is sparsity; i.e., the original

signal must have a sparse or nearly sparse representation under some known basis. Fol-

lowing this fact, we used the wavelet transform to retrieve the unknown scatterer pro�le

by solving the sparse Tikhonov minimization problem constructed directly from the non-

linear scattering equations. This inversion is usually more robust than simultaneously

inverting all the pixels in the spatial domain because the number of unknowns is less and

the non-uniqueness is thereby reduced. We explained how to extract the di�erence of in-

formation between successive resolutions and thus de�ne a new (complete) representation

called the wavelet representation. This representation is computed by decomposing the

original signal using a wavelet orthonormal basis.

Let us remind that the scatterers are sparse with respect to their expansion basis.

In this work, we have studied di�erent pro�les of scatterers which are sparse in pixel

basis and/or sparse in Haar or in Daubechies basis. The integration of wavelet bases

within sparseness-regularized formulations for microwave imaging has been done. Then,

the introduction of a generalized regularized imaging strategy applicable to a very wide
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set of scattering scenarios depending on the chosen wavelet family (i.e., the available a-

priori information about the scattering scenario) has been worked out while keeping the

advantages of pixel-basis optimization techniques.

The wavelet transform is localized in space, and we can �rst invert only the lower

level wavelet coe�cients to get a rough image. This inversion is usually more robust

than simultaneously inverting all the pixels in the spatial domain because the number of

unknowns is less and the non-uniqueness is thereby reduced. After this, we can improve

the inversion results by adding wavelet coe�cients at higher levels. On the other hand,

when we increase the decomposition level in order to have the optimization on sparser

coe�cients, there is no such large di�erence both in accuracy and in performance for the

examples that we have studied.

The analysis in Chapter 3 shows that a soft shrinkage algorithm is su�ciently robust

to work even when the a-priori knowledge about the scatterer is only approximate, that

is, the scatterer is not exactly sparse within the domain of the considered basis func-

tions. Moreover, the reconstruction accuracy turns out to be acceptable also when higher

contrast and lower SNRs are.

It has been analysed that the discrete wavelet transform shows a better performance

and e�ectiveness in the reconstructions compared to the stationary wavelet transform in

some cases. However, the error on retrieving various pro�les is quite small between each

transformation. One can also conclude that the accuracy, the convergence rate, and the

robustness vs. noise of the proposed approaches are not dependent only on the problem

setup, but also on the choice of the wavelet basis for the contrast expansion, which is of

course strongly related to the available a-priori information.

The third direction of the work carried out in the thesis is exploiting the joint-sparsity

bene�ts by applying a two-step method to solve our non-linear problem of concern. The

two-step inversion method uses the contrast-source formulation of the scattering equa-

tions, which allows for straightforward application of the sparsity constraint to the solu-

tion. The nonlinear system of equations is solved using an iterative scheme, which calls

for the solution of a linear system at every iteration.

The two-step inversion method is applied through available YALL1 and T-MSBL algo-

rithms both in spatial and wavelet domains. Both methods exploit joint-sparsity which

reduces possible ambiguities on the scatterer sparsity deduced from the null values of the

equivalent current. This approach consumes less time and ensures better imaging quality

compared to an iterative method with soft thresholding in the reconstruction of sparse

scatterers. However, even if the two-step method is faster than the usual soft shrinkage
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algorithm, the reconstruction of the scatterers is better with soft shrinkage algorithm in

wavelet domain. Above of all this, addition of projection to our proposed methods always

gives us better approximation for the unknown.

5.2. Future Work

A very important issue in the framework of this work is the choice of the regularization

parameters, α in the l1 formulations and β and δ in smooth gradient formulations. It is

worthwhile to continue the investigation of methods for regularization parameter selection

from other �elds since being able to identify the most accurate parameter is challenging.

In our application we have not be able to use `L-curve'. There are other methods such

cross-validation, and universal and min-max regularization parameter selection rules as

well. The viability of these methods for our problem is on discussion for our speci�c

case of application. However, much more work has to be made to get insights into how

to select the regularization parameter for our problem, or to dismiss these methods as

inappropriate for our problem.

In the thesis we exclusively used l1 regularization for enforcing sparsity. However, reg-

ularization that favors sparsity is not limited to this. Many other forms exist, such as

Huber regularization, entropy-based regularization [72], and the other ones stated in In-

troduction section. Also, an analysis of the speci�c features that are necessary for the

regularizing term to favor sparsity would provide much insight into the selection of a

particular functional. Such analysis has been previously done at some level [26, 96], but

deeper understanding can be gained by putting the analysis on �rm theoretical grounds

and considering much wider sets of regularizing functionals.

All of the schemes proposed in this work, namely soft shrinkage algorithm in spatial and

wavelet domain, and two-step inversion method, can be extended to imaging of domains

residing in layered media. This extension calls for replacing the free-space Green function

with the planary or cylindrically layered medium Green functions. The resulting inversion

tools have applications in subsurface and borehole imaging, as an example.

The e�ciency of the sparsity-constrained regularization can be increased by making

use of the fact that scatterers are represented as block sparse vectors after discretization

[53, 89]. This a-priori information about the distribution of non-zero elements can be

incorporated within the regularization scheme to increase the robustness of the solution

and the quality of the recovered images.
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According to some studies such as [41, 91, 92], wavelet decomposition is an e�cient

transformation while retrieving scatterers which are sparse with respect to their expan-

sion functions. In our speci�c cases, the proposed methods do not exhibit a remarkable

di�erence between wavelet and pixel basis functions. This might be due to the fact that

the scattering matrix, which is obtained by sampling the Green function between inves-

tigation domain and receiver locations, does not satisfy the restricted isometry property

[106, 107]. Following the work done in [107], we have adapted our scattered �eld by adding

a constant parameter to its diagonal entries. However, we have not been able to get better

results so that it can be a good idea to investigate the problem within this perspective in

the future.

Although Haar and Daubechies wavelet basis functions beside pixel basis function are

studied in this work to represent the unknown model in Sec. 3.3, the optimal choice of

the basis set is an application-dependent open problem. The recovery problem solution is

the sparsest one with respect to a basis function and the sparsest reconstruction (fewest

non-zero coe�cients) has to be picked up. Therefore, the available a-priori (physical)

solution information plays a fundamental role in the selection of the most suitable basis

for a given application. Within this respect, more research can be carried out in order to

deduce which basis function can be the most appropriate to speci�c applicative domains

in a more practical and faster manner. Other options such as Curvelets [40] are of interest

to a future research also. Future works can be aimed at extending the validation of the

proposed inversion scheme to other wavelet families more suitable for dealing with di�erent

applicative domains such as nondestructive testing/evaluation.

Furthermore, more investigations can be performed for 3D electromagnetic imaging,

where the nonlinearity and ill-posedness become even more severe. For instance, we have

already started looking into this direction of study in which reconstruction of 3D defects

a�ecting an anisotropic laminate is dealt with the two-step inversion method as stated in

Sec. 4.2.4. We can obtain good localization and estimation of the contrast by applying

joint sparsity through T-MSBL. However, this method is applicable for small scatterers

so far and more work needs to be performed for larger scatterers. This method can also be

studied for the localization and estimation of the contrast of a small defect in a complex

anisotropic structure. Improvements with respect to the convergence speed and radius of

the convergence of the method should be investigated as well.
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A. Adjoint Gradient of Cost

Function

A.1. Adjoint Gradient of Cost Function

The discrepancy D under consideration is the standard least squared cost function such

as

K =
1

2

∥∥ζ(r)− Edi�(r)
∥∥2

L×S

=
1

2
‖Θ(r)‖2

L×S

(A.1)

where ζ(r) is the measured scattered �eld at the receiver position L while Edi� is the

scattered �eld obtained analytically and S is the source position. By multiplying both

sides of the state equation by χ(r), the following equation

J(r) = χ(r)Einc + χ(r)

∫
Ω

G(r,r′)χ(r)Etot(r,r′)dr′ (A.2)

is obtained where J(r) = χ(r)Etot(r) and χ(r) = χreal(r)+χimag(r). Taking the �rst-order

development of the kind K(χ(r) + δχreal(r):

K + δK =
1

2

∥∥ζ(r)− (Edi�(r) + δEdi�(r))
∥∥2

L

=
1

2
〈ζ − (Edi�(r) + δEdi�(r)), ζ − (Edi�(r) + δEdi�(r))〉

=
1

2

∫
S

∫
L

[ζ − (Edi�(r) + δEdi�(r))][ζ(r)− Edi�(r) + δEdi�(r)]

=
1

2

∫
S

{∫
L

Θ(r)Θ(r)d(r)−
∫
L

δEdi�(r)Θ(r)−
∫
L

δEdi�(r)Θ(r)dr +

∫
L

δEdi�(r)δEdi�(r)
}

(A.3)
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A. Adjoint Gradient of Cost Function

so that a small change in the cost function w.r.t the real part of contrast is described as

δK ' Re

∫
S

∫
L

Θ(r,r′)δEdi�(r,r′)drdr′, (A.4)

where overlined terms are denoted as complex conjugate ones [108].

Considering the terms forming the δK, δEdi� can be expressed as

δEdi�(r) =

∫
D

Gor(r,r′)δJ(r)dr′. (A.5)

where δJ(r) can be also de�ned as

δJ(r) = δχ(r)Einc + δχ(r)

∫
D

Goo(r, r)χ(r)Etot(r)dr + χ(r)

∫
D

Goo(r, r)δJ(r)dr

= δχ(r)Etot(r) + χ(r)

∫
D

Goo(r, r)δ(χ(r)Etot(r))dr

= δχ(r)Etot + χ(r)

∫
D

Goo(r, r)δJ(r)dr

(A.6)

Considering

Goo(r,r
′) = Goo(r

′, r)T

Gro(r,r
′) = Gor(r

′, r)T

and substituting A.5 into A.4 we can write δK as follows

δK = Re

∫
S

{∫
L

Θ(r).

∫
D

Gor(r,r
′)δJ(r′)dr′dr

}
= Re

∫
S

{∫
L

Θ(r)dr.

∫
D

Gor(r,r
′)δJ(r)drdr′

}
= Re

∫
S

{∫
D

δJ(r).

∫
L

Gor(r,r
′)Θ(r)drdr′

} (A.7)

By de�nition as in [108], the adjoint is

P (r) =

∫
L

Gro(r, r
′)Θ(r)dr +

∫
D

Goo(r, r
′)χ(r)P (r′)dr′ (A.8)
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A. Adjoint Gradient of Cost Function A.1. Adjoint Gradient of Cost Function

so that substituting A.8 into A.7, δK becomes

δK = Re

∫
S

{∫
D

δJ(r).
[
P (r)−

∫
D

Goo(r,r
′)χ(r′)P (r′)dr′

]
dr
}

= Re

∫
S

{∫
D

[
P (r).δJ(r)− δJ(r)

∫
D

Goo(r,r
′)χ(r)P (r′)dr′

]
dr
}

= Re

∫
S

{∫
D

P (r)
[
δJ(r)− χ(r)

∫
D

Goo(r,r
′)δJ(r′)dr′

]
dr
}

= Re

∫
S

{∫
D

P (r, rs)δχ(r)Etot(r, rs)dr
}
.

(A.9)

Therefore, the gradient of the discrepancy K w.r.t χreal(r) is given by

K ′(χreal(r)) = 2× Re(P (r)Etot(rs, r)) (A.10)

The same process can be followed for the gradient w.r.t χimag(r) as well. It is known that
dK(χ(r))

dχ(r)
= dK(χ(r))

dχreal(r)
− i dK(χ(r))

dχimag(r)
. Therefore,

K ′(χ(r)) = 2× P (r)Etot(rs, r) (A.11)

It can be noted that the equation in (A.8) has the same form as equation (7). Therefore,

it can be solved through MoM in the same way. By discretization, we can obtain

Pi =

NR∑
r=1

GirΘ
∗
k +

N∑
j=1

GijχjPj j = 1, 2, . . . , N (A.12)

where NR is the number of receivers, Gir is the Green`s function between the position of

the ith point in the region of interest and the position of the kth receiver. The equation

above can also be written as the following linear equations such as


P1

P2

...

PN

 =


∑NR

r=1 G1rΘ
∗
k∑NR

r=2 G2rΘ
∗
k

...∑NR

r=N GNrΘ
∗
k

+


G11χ1 G12χ2 · · · G1NχN

G21χ1 G22χ2 · · · G1NχN
...

...
. . .

...

GN1χ1 GN2χ2 · · · GNNχN



P1

P2

...

PN

 (A.13)
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Solving for P gives


P1

P2

...

PN

 =


1−G11χ1 −G12χ2 · · · −G1NχN

−G21χ1 1−G22χ2 · · · −G1NχN
...

...
. . .

...

−GN1χ1 −GN2χ2 · · · 1−GNNχN


−1

∑NR

r=1G1rΘ
∗
k∑NR

r=2G2rΘ
∗
k

...∑NR

r=N GNrΘ
∗
k

 (A.14)

whereas
∑NR

r=1G1rΘ
∗
k∑NR

r=2G2rΘ
∗
k

...∑NR

r=N GNrΘ
∗
k

 =


G11 G12 · · · G1NR

G21 G22 · · · G2NR

...
...

. . .
...

GNR1 GNR2 · · · GNNR




ξ1

ξ2

...

ξNR

−

Edi�

1

Edi�
2
...

Edi�
NR



∗

(A.15)

Furthermore, 
Edi�

1

Edi�
2
...

Edi�
NR

 =


∑N

i=1Gi1χiE
tot
i∑N

i=1Gi2χiE
tot
i

...∑N
i=1GiNR

χiE
tot
i

 (A.16)


Edi�

1

Edi�
2
...

Edi�
NR

 =


G11 G21 · · · GNR1

G12 G22 · · · GNR2

...
...

. . .
...

G1NR
G2NR

· · · GNNR



χ1 0 · · · 0

0 χ2 · · · 0
...

...
. . .

...

0 0 · · · χN



Etot

1

Etot
2
...

Etot
NR



Edi�

1

Edi�
2
...

Edi�
NR

 =


G11 G12 · · · G1NR

G21 G22 · · · G2NR

...
...

. . .
...

GNR1 GNR2 · · · GNNR


†

χ1 0 · · · 0

0 χ2 · · · 0
...

...
. . .

...

0 0 · · · χN



Etot

1

Etot
2
...

Etot
NR

 (A.17)
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B. The Wavelet Theory

B.1. The Wavelet Transform

The wavelet transform has been proposed to overcome the limits of the Fourier transform.

However, if we apply the Fourier transform on a given signal, we cannot determine the

moments corresponding to high frequencies. The Short Fourier Transform (SFT) uses

a windowing technique to calculate the spectrogram, which provides information in the

time-frequency domain.

The problem of the SFT is the Heisenberg uncertainty principle [109]. This princi-

ple states that it is impossible to know the exact time frequency correspondence of a

signal, i.e., we cannot know which spectral component corresponds to a signal at given

instant. Although the temporal and frequency resolution problems come from physical

phenomenon and they are independent of the used transform, it is possible to analyze any

signal using an alternative approach called wavelet transform (WT). This transform al-

lows to analyze the signals at di�erent frequencies resolutions unlike the Fourier transform

that perform a unique frequency resolution analysis. The wavelet transform is designed

to give a poor temporal resolution and good frequency resolution at high frequencies and

vice-versa at low frequencies. This compromise makes sense especially when the analyzed

signal has short duration high frequency components and long duration low frequencies

components. This is the case of most biological and natural signals [37]. So the major

di�erence between the Fourier and wavelet transforms is that the window length varies

with the transform computed for each spectral component.

B.1.1. Approximation theory and multiresolution analysis

The theory of multiresolution analysis in wavelet domain is founded by Mallat in 1989

[39]. Its principle consists to assume that there is a series of closed subsets Vjj∈Z that

approximate the integrable L2(R) functions. The subsets Vj are designed in such a way

that Vj ⊂ Vj+1 . Let set Wj the orthogonal complement of Vj in Vj+1, i.e., Vj+1 = Vj ⊕Wj
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. Then, for a given function f ∈ L2(R), there are fN ∈ VN approximating f . If we set

gi ∈ Wi and fi ∈ Vi then we can write:

fN = fN−1 + gN−1 =
M∑
i=1

gN−i + fN−M . (B.1)

This is the wavelet decomposition of the function f . In the signal processing context, this

decomposition is established under a pyramidal coding algorithm. The time frequency

representation of a signal in wavelet domain is obtained using �ltering techniques. The

series h(k), and g(k), k ∈ Z are quadrature mirror �lters and the relationship between h

and g is given by:

g(k) = (−1)nh(1− n) (B.2)

The series h(k) is a family of low pass �lters and g(k) are high pass �lters. These two

�lters families belong to the Finite Impulse Response (FIR) �lters. By using the Fourier

transform and the orthogonality property between h and g, we can prove that [110]:∑
k

h(k) =
√

2 and
∑
k

g(k) = 0 (B.3)

The wavelet decomposition process begins by passing the signal through the low fre-

quency band h(n). The �ltering operation of the signal consists to calculate its convolution

with the impulse response of the �lter. Note that a half band low pass �lter removes all

frequencies that are higher than half of the maximum frequency in the signal. So after

applying the low pass �lter, half of the samples will be eliminated and the �ltered signal

will have only half of samples in the next decomposition level. On other hand, the low

pass �ltering divides the resolution of the signal by two since this resolution depends only

on the quantity of information in the signal. Then, the signal is undersampled by two

since redundancy of the half of the samples and this operation doubles the scale.

B.1.2. Continuous Wavelet Transform

The continuous wavelet transform coe�cients applied to a given signal f are de�ned as

follows [110]:

C(a, b) =

∫ +∞

−∞
f(t)Θa,b(t)d(t) (B.4)
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where

Θa,b(t) = a
−1
2 Θ

(
t− b
a

)
(B.5)

is the window function of the WT, a is the scale parameter and b is the translation

parameter.

The translation coe�cient b is related to the window location, it corresponds to the

temporal information in the wavelet domain. On the other hand, we have not the same

parameter for the frequency information, like in the Fourier transform, but the scale

parameter a. This latter is used to delay or compress the transformed signal. The small

scale values correspond to a dilation and the large values correspond to a compression.

Note that the relationship between the scale and the frequency is reverse, i.e., low scale

values correspond to high frequencies and vice-versa.

B.1.3. Multiband coding in wavelet domain

Figure B.1.: Filter bank of the 2D wavelet transform.

To express the multiband coding process in the wavelet domain, let us set the series

f = fn that represents the discrete signal to be decomposed and the operators H and G

de�ned as follows:

(Hf)k =
∑
n

h(n− 2k)f(n)(Gf)k =
∑
n

h(n− 2k)f(n) (B.6)
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These two equations refer to the �ltering operation made by �lters h(k) and g(k) using

the convolution products of f with their impulse responses respectively, and the factor

2k refers to the undersampling. Therefore, the discrete wavelet transform (DWT) can be

summarized as follows:

f −→ (Gf,GHf,GH2f, · · · , GHj−1f,Hjf) = (d(j−1), d(j−2), · · · , d(0), c(0)) (B.7)

where d(j−1), d(j−2), · · · , d(0) are the details and a(0) is the approximation coe�cient

de�ned as:

c(j−1) = Hc(j) and d(j−1) = Gd(j) (B.8)

The reconstruction process is similar with the decomposition. For each decomposition

level, the signal is oversampled by two and passed by the synthetic high pass and low pass

�lters Ḡ and H̄ that will be added later. Therefore, we de�ne the operators Ḡ and H̄ as

follows:

(H̄f)k =
∑
n

h(n− 2k)f(n)(Ḡf)k =
∑
n

h(n− 2k)f(n). (B.9)

The recursive calculation gives:

f =
n−1∑
j=0

(H̄)jḠdj + (H̄f)nc(0) (B.10)

or in the temporal domain:

Dj = (H̄)jḠdj and A = (H̄)na(0) (B.11)

where Dj and A are the details and the approximation, respectively.
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Titre : Parcimonie et imagerie électromagnétique dans des situations non-linéaires

Mots clefs : imagerie électromagnétique, non-linéarité, parcimonie, décomposition en ondelettes

Résumé : L'imagerie électromagnétique est le pro-
blème de la détermination de la distribution de
matériaux à partir de champs di�ractés mesurés
venant du domaine les contenant et sous investiga-
tion. Résoudre ce problème inverse est une tâche
di�cile car il est mal posé en raison de la présence
d'opérateurs intégraux (de lissage) utilisés dans la
représentation des champs di�ractés en terme de
propriétés des matériaux, et ces champs sont obte-
nus à un ensemble �ni et non nécessairement opti-
mal de points via des mesures bruitées. En outre, le
problème inverse est non linéaire simplement en rai-
son du fait que les champs di�ractés sont des fonc-
tions non linéaires des propriétés des matériaux.
Le travail décrit traite du caractère mal posé de
ce problème d'imagerie électromagnétique en utili-
sant des techniques de régularisation basées sur la
parcimonie, qui supposent que le(s)di�racteurs(s)
ne capture(nt) de fait qu'une petite fraction du do-
maine d'investigation.

L'objectif principal est d'étudier de manière ap-
profondie la régularisation de parcimonie pour les
problèmes inverses non linéaires. Par conséquent,
nous nous concentrons sur la méthode de Tikho-
nov non linéaire normalisée qui résout directement
le problème de minimisation non linéaire en utili-
sant les itérations de Landweber, où une fonction
de seuillage est appliquée à chaque étape pour pro-
mouvoir la contrainte de parcimonie. Ce schéma
est accéléré à l'aide d'une méthode de descente de
plus grande pente projetée et remplace l'opération
de seuillage pour faire respecter cette contrainte.
Cette approche a également été implémentée dans
un domaine d'ondelettes qui permet une repré-
sentation précise de la fonction inconnue avec un
nombre réduit de coe�cients. En outre, nous étu-
dions une méthode corrélée à la parcimonie qui
o�re de multiples solutions parcimonieuses qui par-
tagent un support commun non nul a�n de résoudre
le problème non linéaire concerné.

Title : Sparsity and electromagnetic imaging in non-linear situations

Keywords : electromagnetic imaging, non-linear, sparsity, wavelet decomposition

Abstract : So-called quantitative electromagnetic
imaging focused onto here is the problem of de-
termining material properties from scattered �elds
measured away from the domain under investiga-
tion. Solving this inverse problem is a challenging
task because it is ill-posed due to the presence of
(smoothing) integral operators used in the repre-
sentation of scattered �elds in terms of material
properties, and scattered �elds are obtained at a �-
nite set of points through noisy measurements. Mo-
reover, the inverse problem is nonlinear simply due
the fact that scattered �elds are nonlinear functions
of the material properties. The work described in
this thesis deals with the ill-posedness of the elec-
tromagnetic imaging problem using sparsity-based
regularization techniques, which assume that the
scatterer(s) capture only a small fraction of the
investigation domain and/or can be described in
sparse fashion on a certain basis.

The primary aim of the thesis is to intensively in-
vestigate sparsity regularization for nonlinear in-
verse problems. Therefore, we focus on sparsity-
regularized nonlinear Tikhonov method which di-
rectly solves the nonlinear minimization problem
using Landweber iterations, where a thresholding
function is applied at every iteration step to pro-
mote the sparsity constraint. This scheme is ac-
celerated using a projected steepest descent me-
thod and replaces the thresholding operation to
enforce the sparsity constraint. This approach has
also been implemented in wavelet domain which
allows an accurate representation of the unknown
function with a reduced number of coe�cients. Ad-
ditionally, we investigate a method correlated with
the joint sparsity which gives multiple sparse so-
lutions that share a common nonzero support in
order to solve concerned nonlinear problem.
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