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Avant-propos 

Depuis les débuts de l’agriculture, les humains ont simplifiés la composition 

végétale des parcelles cultivées. Cette simplification s’est encore renforcée au 

XXème siècle avec l’avènement de la mécanisation et de l’utilisation des produits 

phytosanitaires. Le principe que les mélanges d’espèces doivent amener une 

meilleure production n’est pas nouveau. Déjà en 1859, Charles Darwin suggérait: 

“It has been experimentally proved that if a plot of ground be sown with one 

species of grass, and a similar plot be sown with several distinct genera of 

grasses, a greater number of plants and a greater weight of dry herbage can thus 

be raised.” (On the origins of species, first British edition (1859), page 113). 

Actuellement, de nombreuses études d’écologie sur les systèmes naturels ont 

montrées que dans de nombreuses conditions, un plus grand nombre d’espèces 

amène à une plus grande productivité, une meilleure stabilité de cette 

productivité, et une amélioration de la résilience aux perturbations naturelles. 

Cependant, l’influence de la diversité spécifique sur la production agronomique 

est moins évidente et pas toujours vérifiée. Aujourd’hui la diversification végétale 

des agrosystèmes est souvent présentée comme une perspective prometteuse, 

même si les systèmes complexes qui en résultent sont forcément plus difficiles à 

gérer au niveau agronomique. Il est donc opportun de mieux caractériser les 

règles qui lient la diversité végétale et les performances agronomiques.  

La recherche étudie de plus en plus les systèmes agroforestiers tropicaux comme 

un modèle alternatif à l’agriculture intensive. Les chercheurs ont  décrits comment 

ces systèmes participent à la conservation de la biodiversité et à la fourniture de 

services écosystémiques. Dans la perspective de mieux gérer ces systèmes, il 

est devenu important de démêler les interactions entre la diversité végétale 

(incluant ses organisations horizontales et verticales) avec les processus de 

l’écosystème (partage des ressources lumineuse et en nutriments, recyclage des 

éléments…). Aborder ces questions dans le cas des systèmes agroforestiers 

tropicaux est clairement une tâche difficile, mais cela représente aussi un cas 

extrême qui devrait être utile pour mieux comprendre les autres systèmes plus 

simples. 
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En tant que chercheur à l’Institut technologique du Costa Rica (Tecnológico de 

Costa Rica, TEC) depuis 2010, j’ai mené des recherches dans la région de 

Talamanca dans la province de Limón (sud-est du Costa Rica) avec l’objectif de 

combiner les savoirs indigènes ancestraux avec des techniques agronomiques 

innovantes afin de tenter d’améliorer la production de ces systèmes 

agroforestiers. Cette activité a souvent été limitée par le niveau d’éducation assez 

bas des populations, le manque d’infrastructures et le niveau de développement 

global de la région. Le sujet de la thèse présenté ici est une suite logique qui 

devait me permettre de disposer d’éléments quantifiés sur le rôle de la 

composition spécifique de ces systèmes sur leur production, mais aussi de mieux 

comprendre leurs limites. Le travail expérimental de cette thèse a été possible 

grâce à l’aide et l’intérêt des agriculteurs de la région de Talamanca. J’ai mené 

ce travail depuis décembre 2015 jusqu’à septembre 2017. La partie 

expérimentale a été réalisée dans la région de Talamanca entre mars 2015 et 

mai 2016, ensuite de juin 2016 à septembre 2017, j’ai travaillé à Montpellier au 

sein de l’équipe GECO du CIRAD. 

Dans ma thèse, le focus a été fait sur la quantification de la relation 

diversité/productivité dans le cas des systèmes agroforestiers de Talamanca ; 

avec à la fois de implications ‘fondamentales’ et appliquées. Cela m’a permis 

d’établir des règles générales liant la diversité des plantes cultivées (et leur 

organisation spatiale) avec la productivité de ces systèmes de manière globale, 

mais aussi avec celle de deux cultures clés de ces systèmes : les bananiers et 

les cacaoyers. Il a été particulièrement intéressant d’examiner mes résultats à la 

lumière de grandes questions d’écologie, comme par exemple la « gradient 

stress hypothesis » qui suppose que la relation entre la diversité végétale et la 

productivité est positivement affectée par la compétition pour les ressources. 

D’un point de vu appliqué, mon travail a été l’opportunité de quantifier la 

production globale de ces systèmes et de comprendre jusqu’où la diversité 

fonctionnelle peut la modifier. Cela a été particulièrement stimulant d’interpréter 

ces résultats à la fois avec le regard de l’agronome et celui de l’écologue. 

L’originalité de mon approche a été de mobiliser une approche individu-centrée 

pour tenter de comprendre comment l’organisation spatiale pouvait modifier la 

production des deux principales cultures de rente (bananiers et cacaoyers). Cette 
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approche a permis de déterminer comment l’abondance des voisins d’une plante 

donnée dans un rayon donné influence son rendement. De manière 

complémentaire, j’ai mené une méta-analyse qui visait à étudier la relation 

diversité végétale-productivité dans un grand nombre de conditions et de mieux 

comprendre le rôle de facteurs tels que la latitude, le type de plante considéré ou 

la structure verticale de la canopée. Il a été particulièrement riche d’analyser les 

résultats de cette méta-analyse et de la partie expérimentale en mobilisant les 

mêmes concepts. 

Ce  travail a donné  lieu à trois publications (chapitre 3, 4, 5), ainsi qu'à cinq 

présentations lors de congrès (3 communications orales et 2 posters) :  

 

Articles soumis, en révision 

· Salazar-Diaz, R. & Tixier, P., 2016. Effect of plant diversity on income 

generated by agroforestry systems in Talamanca, Costa Rica. 

Agroforestry System Journal 

 

· Salazar-Diaz, R. & Tixier, P., 2017. Responses of productivity to plant 

richness: A meta-analysis relevant to the diversification of agricultural 

ecosystems. Agronomy for Sustainable Development 

 

· Salazar-Diaz, R. & Tixier, P., 2017. Individual-based analysis of 

interactions between plants: a statistical modelling approach applied to 

banana and cacao in heterogeneous multistrata agroecosystems. 

European Journal of Agronomy 

 

Communications orales 

· Salazar-Diaz, R. & Tixier, P., 2016. Effect of plant diversity on the global 

productivity of agroforestry systems in Talamanca Costa Rica. 3rd 

European Agroforestry Conference. 23-25 May 2016, Montpellier France.  
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· Salazar-Diaz, R. & Tixier, P., 2016. Productivity of agroforestry systems 

in Talamanca, Costa Rica.  WCF/USDA Cocoa Borlaug Fellowship 

Program. 20-24 Feb 2017, Guayaquil, Ecuador.  

 

· Salazar-Diaz, R. & Tixier, P., 2016. Effect of plant diversity on the 

production of multi-species cropping systems, case of agroforestry 

systems in Talamanca. Réunion PITTA-CACAO, Ministère de l'Agriculture 

de Costa Rica. 26 Aug 2017, San Jose, Costa Rica.  

 

Posters 

· Salazar-Diaz, R. & Tixier, P., 2016. Effect of multi-species cropping 

system on agricultural performance in Talamanca Costa Rica. 5th 

International EcoSummit, 29 Aug-1 Sep 2016, Montpellier, France. 

 

· Salazar-Diaz, R. & Tixier, P., 2016. Effect of plant diversity on the global 

productivity of agroforestry systems in Talamanca Costa Rica. 3emes 

Journées des Doctorants de I’M2E, 22-23 Mars 2017, Montpellier, France. 
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Chapter 1 – General Introduction  

 

1. Understanding the  heterogeneity of plant  association 

and productivity 

 

1.1 General relation between diversity and productivity 

The agricultural revolution of the 20th century is associated with intensification 

and simplification of agricultural practices with the aim to increase yield which 

was in detriment of biodiversity, affecting both wild species whose habitat 

disappears and cultivated species whose genetic diversity was often greatly 

reduce. The expansion and intensification of agricultural activities are causing the 

progressive fragmentation of forest habitats and a significant loss of biodiversity 

(Tilman et al. 2002). The impact on the environment of the massive use of 

fertilizers, phytosanitary products and fossil energies to attend the mechanization 

of works of these simple agricultural systems, is now well known and documented 

(Eddleston et al. 2002, Aubertot et al. 2005).  

Biodiversity in agricultural systems is now a major concern and promises to be a 

major issue of the 21st century (Plantureux et al. 2005) Biodiversity was often 

presented as increasing the efficient use of resources and promoting positive 

interaction between species and other ecosystem processes (Tilman and Pacala 

1993, Hooper et al. 2005, Nakamura 2008, Smith et al. 2008, Cardinale et al. 

2012b). The effect of plant diversity on productivity has long been studied in 

natural systems (Naeem et al. 1994, Loreau et al. 2001). But in agricultural 

systems there is still debate about how plant diversity can be increased without 

decreasing productivity and making management too difficult for farmers (Swift 

et al. 2004). According to Lehman and Tilman (2000), diversity increases 

community productivity but may reduce the productivity of individual species.  

There is thus a need to understand the type of plant to be used for the 

diversification of agricultural ecosystems and the optimal degree of 

diversification, regarding the exact role of biodiversity in ecosystem functioning 
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and the approaches that should be adopted to enhance crop productivity (Huston 

1997, Tilman 1997, Loreau et al. 2001, Aarssen et al. 2003).  

 

 

 

Figure 1. General arguments over two types of mechanisms invoked to explain 
how and why a mixture of species outperforms monocultures: Sampling effect 
and complementarity. Sampling effect occur when the most productive species 
come to dominate the biomass of species rich polyculture. Complementarity 
hypothesis propose that species rich plantation are able to more efficiently access 
and utilize limiting resources because they contain species with diverse array 
ecological attributes. Generally, the complementarity effect includes both niche 
differentiation and facilitation; in practice, it is usually difficult to distinguish them. 
Complementarity effects may increase total ecosystem production, sometimes 
leading to a production higher than that of the most productive monoculture. This 
is called transgressive overyielding. 
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1.2 Mechanisms influencing biodiversity-productivity 

relationship 

The net effect of biodiversity enhancing productivity in agricultural ecosystems 

has been traditionally explained by potentially important types of mechanisms 

such complementarity and sampling effects  (Hector et al. 1999, Yachi and 

Loreau 2007) (see Figure 1). Sampling effect occur when the most productive 

species come to dominate the biomass of species rich polyculture, and the 

probability to have very productive species increase (which should also be strong 

competitive and should dominate the community) when the number of species of 

the community increases (Cardinale et al. 2007), but the most common 

assumption is complementarity hypothesis, that propose that species rich 

plantation are able to more efficiently access and utilize limiting resources 

because they contain species with diverse array ecological attributes (Kelty 1992, 

Tilman 1999). Generally, the complementarity effect include both niche 

differentiation (differential resource utilization for coexistence of species) and 

facilitation (positive interactions between organisms that benefit at least one of 

the participants and cause harm to neither), because distinguish between them 

is difficult in practice (Loreau and Hector 2001, Bruno et al. 2003, Begon et al. 

2006). 

There are differences between agronomists and ecologists in addressing the 

development of more sustainable production systems (see Figure 2). Ecologists 

usually focus on understanding the mechanisms of species coexistence (Kneitel 

and Chase 2004, Roxburgh et al. 2004) and agronomists focus on management 

strategies to increase and stabilize yield (Malézieux 2012). To favor this 

development, there are considerable interests to unify these points of view and 

methods to better understand the competition / complementarity processes in 

diversified plant communities and not only address coexistence questions (Bruno 

et al. 2003, Malézieux 2012, Barot et al. 2017). It is of major importance to 

quantify the tight balance between negative effects of competition (which can lead 

to lower productivity of some species) and complementarity and facilitation 

effects (which can enable greater productivity at the community level). 
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Figure 2. Passage of certain differences across the emphases in the agronomist 
and ecologist areas on the biodiversity-productivity relationship, (top row), 
distinction between main focus mechanisms across areas (second row), 
differences between the main purposes (third row), and finally the outcome 
expected.     
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 Effects of environmental factors on ecosystem productivity 

Fridley (2002) suggested that environmental factors should have a much stronger 

effect on local ecosystem functions (including productivity) than the diversity of 

the species pool, for example local environmental may or may not promotes 

resource partitioning and facilitation processes. Cardinale, Nelson & Palmer 

(2000) argued that the diversity-productivity relationship changes with 

environmental context and that the form and causes of this relationship may be 

highly dynamic over time and space. 

In productive ecosystems with high plant biomass, competitive exclusion by a 

small number of highly competitive species is hypothesized to constrain species 

richness (Grime 1998). According to Mulder et al. (2001), environmental stress 

favors a positive relationship between plant species richness and productivity 

because such stress limits the importance of competition. However, Maestre et 

al. (2005) rejected the stress-gradient hypothesis (which states that stress 

enhances facilitation between neighbors) and concluded that neither positive nor 

negative effects of neighbors increased with abiotic stress because species 

interactions across abiotic stress gradients do not follow a simple pattern. To 

date, there is a lack of general knowledge on the conditions in which overyielding 

is likely or not likely to occur.  

 

1.3 Role of spatial organization  

Even in a local environmental context and in a field composed of plants of the 

same species, the processes that determine how individual plants compete for 

resources are complex. (Sinoquet and Cruz 1995). The spatial organization of 

individuals in a community may be one of the most important structural 

characteristics that influence complementarity between species, biodiversity, and 

ecosystem functioning (Mokany et al. 2008, Perfecto and Vandermeer 2008, 

Pringle et al. 2010). To our knowledge, there is a lack of tools able to disentangle 

the effect of spatial organization of the plant community on plant performances, 

especially in complex systems. 

Cardinale, Nelson & Palmer (2000) showed that the amount of variation in 

productivity explained by species diversity increased with spatial heterogeneity. 
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Grime (1998) suggested that the relationship between diversity and ecosystem 

properties could be usefully investigated by classifying species according to their 

architecture. However, few authors have tried to link the structural complexity of 

different land uses to productivity, but see (Steffan-Dewenter et al. 2007). 

Understanding how the spatial organization of plants affects productivity is 

important for improving the design and management of complex systems 

(Baskent and Jordan 1996). However, the substantial spatial heterogeneity of 

highly diversified systems makes this task challenging. In such complex systems, 

each plant has a unique “neighborhood”, making the establishment of generic 

rules at the field scale extremely difficult.  

 Although spatial heterogeneity of plants is recognized as a powerful promoter of 

coexistence between plants (Monzeglio and Stoll 2005), explaining species 

performances remains challenging in fields where the main characteristics of 

multispecies communities is the wide range of spatial (vertical and horizontal)  

structure of species mixture (Bhagwat et al. 2008, Malézieux et al. 2009, 

Lamanda et al. 2012).  

Complex multispecies system can include a high associated plant species; there 

is thus a need for farmers to understand the optimal degree of diversification that 

should be adopted to enhance crop productivity, reason why spatial organization 

is an important factor to study because farmers can manage it and it is a way to 

optimize the system. 

 

1.4  An agroecology approach to improve production  

Intensive agriculture, which attempts to maximize yield under favorable abiotic 

and biotic conditions allowed by the large use of chemical inputs and 

mechanization, has led to an important reduction in plant diversity and had 

important detrimental environmental impacts (Tilman et al. 2002). There is now 

increasing interest in developing agricultural systems that i) limit the use of 

chemical inputs and fuel, ii) tolerate unpredictable climate and biotic stresses 

(Lane and Jarvis 2007, Varshney et al. 2011), iii) maintain acceptable yields. The 

complementarity between plants of diverse species or genotypes may be a useful 

way to improve crop production and its stability (Vandermeer 1992, Isbell et al. 
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2015a).  The diversification of agricultural systems can be achieved through a 

variety of options, according to a gradient of complexity, including the number 

and type of plant species, the horizontal and vertical structure of the mixture, and 

the life cycle duration of the species, for example: row intercropping, mixed 

intercropping, row agroforestry, complex agroforestry (Altieri 2002, Malézieux et 

al. 2009).  

Study, which factors affect the relationship between diversity and productivity? is 

an important step to better understand how agroecology may be used  to improve 

production.  

 

1.5 Case of tropical agroforestry   

Agroforestry is an example of such diverse system. It is expected that in tropical 

agroforestry systems where semi-perennial and perennial crops are associated 

with trees, productivity will be enhanced by diversity, since biodiversity increase 

the range of services that these agroecosystems provide (Nair 1993) with the aim 

of improving social, economic and environmental benefits  (Torquebiau 2007). 

Researchers are increasingly studying tropical agroforests as models for 

sustainable agricultural systems, proposed as a sustainable alternative to 

modern intensive agricultural systems; conserving biodiversity and ecosystem 

services, while providing significant local livelihood (Sperber et al. 2004, Leakey 

et al. 2005, Tscharntke et al. 2011, Ngo Bieng et al. 2013). 

Tropical agroforests are characterized by associations of multi-strata, multi-

functional, and uneven-aged trees and crops, resulting in high species richness 

and complexity of spatial structure (Sanchez 1995, Ngo Bieng et al. 2013). The 

importance of agroforestry systems in providing ecosystem services (such as 

carbon sequestration and biodiversity conservation) has been documented, but 

have paid far less attention to how the overall productivity of such agroforests is 

related to their structure (Somarriba and Harvey 2003, Suatunce et al. 2003).  

Many people in developing tropical countries depend on agroforestry systems for 

subsistence, economic income, and other services (Malézieux et al. 2009, Cerda 

et al. 2014, Paul et al. 2015). In addition to generating timber and firewood as a 

long-term income, agroforestry can also provide supplementary income from 
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associated perennial and semi-perennial crops as a short-term income (Nair 

2007). In many systems, however, the efficiency of agroforestry farms have not 

been determined, i.e., there is still a need to quantify the costs and benefits of 

agroforestry farms in order to justify their propagation and adoption (Molua 2003). 

From both private and social perspectives, the economic potential of agroforestry 

farms still need to be well studied (Franzel and Scherr 2002, Molua 2003, Rasul 

and Thapa 2006). The combined productivity and profitability of all cultivated 

plants in the system, have scarcely been addressed in complex agroforestry 

systems.  

 

 

2. Scientific questions 

 

The central objective of my thesis is to understand how plant diversity (mainly 

functional diversity), its spatial organization, and its management, alter the 

yield of cacao-banana agroforestry systems in the region of Talamanca, 

Costa Rica. Understanding the link between biodiversity and productivity is 

pivotal in the context of the diversification of agricultural systems. On a 

methodological point of view, it is necessary to develop tools able to tackle the 

diversity-productivity issue in multi-strata systems under the management of 

farmers. To our knowledge, sufficient measurements to build such tools have only 

been obtained in relatively homogeneous multi-strata systems as coffee 

agroforestry systems that are less diverse and complex than cacao-banana 

agroforestry systems (Roupsard et al. 2011, Charbonnier et al. 2013). 

Few quantitative syntheses regarding the relationship between diversity and 

productivity have included a wide range of species in different ecosystems with 

different environmental gradients from both agricultural and natural systems. To 

help to establishing global trends, it is important to comparison standardized 

measures of the effect of plant diversity on system productivity across a wide 

range of conditions (latitudes, climates, number of canopy strata, and types of 

plants) in both agricultural and natural ecosystems. In agricultural systems, the 

debate is still about how plant diversity can be increased without decreasing 
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productivity. There is thus a need to understand i) the type of plant to be used for 

the diversification of agricultural ecosystems, ii) the optimal degree of 

diversification, and iii) in which conditions biodiversification is more likely to be an 

efficient option. My first scientific question is thus: 

 

Question 1 

Which factors affect the relationship between plant diversity and 

productivity? 

 

Traditional agroforestry systems have been suggested to be a promising land use 

strategy, conserving a significant proportion of tropical rain forest diversity while 

providing significant economic returns (Steffan-Dewenter et al. 2007, Perfecto 

and Vandermeer 2008). The biodiversity benefits of traditional tropical 

agroforestry systems, have already received considerable attention from 

conservation biologist, yet only few of these studies have assessed the impact of 

agricultural intensification on multiple taxa (De Beenhouwer et al. 2013). However 

the low levels of traditional crop systems and silvicultural managements decrease 

the potential for higher yields and other market advantages of tropical 

agroforestry systems. The evaluation of the productivity on a methodological 

point of view is also challenging because products issued from these systems are 

highly diversified. The standardization of the value of these products cannot be 

overlooked. The evaluation of global productivity is an important step to 

understand how diversification can be a good option for farmers. Such an 

approach should help addressing my second specific scientific question: 

 

Question 2 

How plant diversity influences the global productivity of agroforestry 

systems? 

 

Spatial organization of plants could strongly influence the production. 

Understanding how the spatial organization of diversified plant communities 
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alters their productivity is an important step in designing and managing diversified 

agroecosystems (Monzeglio and Stoll 2005). Explaining species performances 

remains challenging in fields where plant spatial organization is heterogeneous. 

There is still a need to develop methods to unravel how the spatial structure of 

diversified plants can alter the productivity of cultivated plants. Spatial 

organization is an important factor to study, because farmers can manage it and 

it is an option to optimize the system. First, it requires a precise description of the 

composition and structure of the agroforestry systems. Then, there is a need to 

develop innovative methods to disentangle the effect of plant community 

structure on productivity. This issues it the core of the third scientific question 

addressed in my thesis: 

 

Question 3 

How the spatial structure of the plant community affects yields? 

 

 

 

3. Approached proposed  

 

In my thesis, I addressed these three scientific questions using bibliographical 

analysis to understand the factors that affect the diversity-productivity relationship 

and using a field study carried out in the region of Talamanca Costa Rica, to 

understand how plant diversity and its spatial organization alter the productivity 

of agroforestry systems.  

To address the specific question 1, we conducted a meta-analysis on the 

relationship between plant diversity and system productivity across a wide range 

of conditions involving different latitudes, climates, and canopy layers; agricultural 

and natural ecosystems; and annual and perennial crops. In this analysis we used 

both an effect size of the plant richness on the productivity and the land equivalent 
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ratio (LER) to evaluate whether productivity was positively or negatively related 

to plant richness. 

To address the specific questions 2, we evaluated the effect of plant species 

diversity on the yield of agroforestry systems in the region of Talamanca, Costa 

Rica. We conducted field survey to investigate how the cultivated plant diversity 

affects global productivity (the overall production of the system) per type of plant 

species. The production of each individual plant was estimated and converted 

into income according to local market prices. 

To address the specific questions 3, we used a statistical modelling approach, to 

analyze the effect of the spatial structure of the plant community in the 

neighborhood on the yield of each cacao tree and on the growth of banana plant. 

We developed an individual-based analysis to determine i) the distance at which 

the number of neighboring plants alters the growth of banana plants or the yield 

of cacao trees, and ii) the magnitude of this neighbourhood effect (see Figure 3). 

We finally discussed how the production of these agricultural systems can be 

optimized to suggest improvements in spatial structure to increase productivity. 
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Figure 3. Disentangle the effect of functional plant diversity and its spatial 
organization on the agronomic performances of the agricultural systems, taking 
the case of the region of Talamanca Costa Rica as a model.  

Spatial organization 

Potential yield model

Plant diversity 

     

Productivity 
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Chapter 2 – General Methodology  

 

In this section, I first present the overall field protocols and then the chosen 

models to analyze the role of diversity and its spatial organization on the 

productivity of plants in agroforestry systems. 

 

 

1. Study area and field protocol 

 

1.1 The Talamanca region  

In Costa Rica, one of the more ecologically diverse areas and with presence of 

diversified cropping systems is Talamanca, which is the largest region in the 

province of Limón and one of the largest land areas in the country with 576.5 

km2. This research was performed in the Bribri indigenous territory, district of 

Bratsi in Talamanca, Limón Province, south-eastern Costa Rica (9°00′–9°50′ N, 

82°35′–83°05′ W). The average annual precipitation is 3570 mm, and the average 

annual temperature is 25.9˚C. The climate is classified as tropical rain forest (bh-

T) (Holdrige 1978). The studied sites could be considered a large share of 

subsystem such as agroforestry systems that provides environmental services 

such as soil conservation and biodiversity and improve microclimates. In the role 

of survival and livelihood, the subsystem produces a wide variety of food and 

products during all the year, ensuring economic incomes and food security. Food 

security that has been given independence and autonomy to the Bribri indigenous 

culture (Guiracocha 2000).   

This region presents rich soils, of volcanic origin, with good texture suitable for 

cacao-banana agroforestry systems, in some parts of the hills. The high content 

of clay and dense texture confers a less favorable for cropping systems. They are 

susceptible to erosion events, such as floods and landslides. 
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Figure 1. Geographical location of Bratsi, Costa Rica 

(Google Maps, 2015) 

 

The natural environment of the area of Talamanca has been an inherent part of 

the life of the indigenous Bribris and Cabecares (Boza 2014) . The productivity of 

farmers in this region is limited by low levels of education, infrastructure, and 

community development (Borge and Castillo 1997). The spatial design of the 

architecture of Bribris and Cabécar cropping systems mimic the forest, in which 

each species has a mythical origin, a story. The association of species follows 

ancestral rules linked to their functional role (Borge and Castillo 1997).  

 

1.2 The agroforestry systems in Talamanca 

In a diagnosis presented by (Somarriba et al. 2014) it is mentioned that cacao 

plantations in Talamanca agroforest have an average yields between 100 and 

200 Kg.ha-1 year-1. The cacao trees have 3.5-m diameter crowns, intersecting 

with neighboring plants and thus favoring the emergence of diseases and 

dissemination of monilia spores (Moniliophthora roreri). Most of the cacao trees 

reach from 6 meters up to 8 meters in height, which make it difficult to perform 

tasks such as clearing, pruning, removing diseased fruits and harvesting. In 
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addition many have empty spaces that need to be re-planted. There are useful 

timber species (dap> 45 cm) of natural regeneration that represents the main 

sources of wood in the area for the construction of houses and boats. Producers 

receive from timber and fruit species additional benefits for consumption and sale.  

On the other hand, Borge (1997) classified the agroforestry systems in 

Talamanca according to the banana cropping system; in complex systems (low 

densities of 156  or 277 plants/ha) and simple systems (higher densities of 1666, 

1111 or 833 plants/ha). In the complex systems, low cropping management is 

done, little sucker removing and deleafing, little weed control (participating to 

maintain soil moisture and to prevent erosion by rainfall). The simple systems use 

commercial varieties introduced by the United Fruit Company (UFCO) such as 

Gros Michel and the Cavendish Lacatan and Congo. These are less resistant 

than local varieties, to pests and diseases but are much more productive in weight 

and size. The quantity and diversity of trees is much smaller than in the complex 

system. There were very few plantain plants within these agroforestry systems, 

probably because plantains are less tolerant to shade and requires particularly 

well drained soils (Borge and Castillo 1997). 

 

Although there is a gradient of systems in Talamanca, four types of multi-species 

systems could be defined: 

 

A- Multi-strata: With more than three timber species remnant from natural 

forest or from natural regeneration, a canopy with more than three strata. 

Naturally regenerated timber species present, belong to a small group of 

successfully reproducing, native species representatives of the local flora, 

at low population densities (5–20 trees ha1) (Somarriba et al. 2014)  in 

patterns of highly diverse structural and compositional complexity of 

diversified systems that combine  timber species with fruit crops. These 

agroforests were the most heavily shaded, with almost 93% of shade 1 m 

above the ground (Deheuvels et al. 2012)  with low proportions of weeds. 
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Figure 2. Example of a multi-strata cropping system: in an agroforestry 
system in the region of Talamanca in Costa Rica (photograph by Ricardo 
Salazar). 
 

 

B- Timber and fruits: With more than two timber species remnants from 

natural forest or from natural regeneration and fruit species, a canopy with 

more than two strata. Timber species associated mainly with Theobroma 

cacao (cacao) and some other fruit trees as Bactris gasipaes (palm fruit), 

Citrus sp., (orange) and Persea sp. (Avocado) without any chemical 

inputs. These agroforests were still heavily shaded, with almost 88% of 

shade 1 m above the ground (Deheuvels et al. 2012). Musa were almost 

absent in this system and weeds are presented in low proportions. 

 

. 
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Figure 3. Example of a cacao associated with timber: in an agroforestry 
system in the region of Talamanca in Costa Rica (photograph by Ricardo 
Salazar). 

 

 

C- Timber and Musa: With more than two timber species remnants from 

natural forest or from natural regeneration associated with Musa; a canopy 

with more than two strata. These agroforests had 70% of shade 1 m above 

the ground (Deheuvels et al. 2012). Their ground cover had a high 

proportion of weeds. 
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Figure 4. Example of a banana associated with timber: in an agroforestry 
system in the region of Talamanca in Costa Rica (photograph by Ricardo 
Salazar). 
 
 
 

D- Single strata: These agrosystems are cultivated at the foot of the hill on 

the river shore, therefore most of them are flooded at least once a year, 

reason why included almost no tree seedlings. Not more than two species 

for shade from natural regeneration, one or two strata. Musa are the 

dominant genus, commercial varieties growing, such as Gross Michel and 

Cavendish, Lacatan, and Congo. Weeds are presented in high 

proportions. 
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Figure 5. Example of banana single strata: in the region of Talamanca in 
Costa Rica (photograph by Ricardo Salazar). 

 

 

 

1.3 Selection of plots and data collection 

For this thesis, we had the collaboration of APPTA (Asociación de Pequeños 

Productores de Talamanca) that is an association of small agroecological farmers 

in Talamanca, conformed by more than 1000 indigenous farmers who are 

engaged in the production of organic cacao and banana that are marketed in the 

fair trait market, certificated Bio-Suisse and USDA Organic Farming.  

We selected a network of 20 agroforestry fields (Table 1) that included a wide 

range of diversity and spatial organization. Each field was 900 m2 (30 m x 30 m). 

The fields were in four villages (Amubri, Dururpe, Katsi, and Watsi) and were 

located 200-400 m.a.s.l. The farms were selected according to the following 

criteria: (i) the farmer was available and willing to participate in the research, (ii) 

the farm area was relatively flat, and (iii) the farm had the potential to produce at 

least one commercial crop. The selected farms represent indigenous smallholder 

farms (2 ha on average) in the Talamanca region. 
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Table 1. Selected plots in the four localities of the study. 

# Plot Farmer Locality # Plot Farmer Locality 

1 MARINA WATSI 11 ANABELLE AMUBRI 

2 ELSA WATSI 12 RICARDO KATSI 

3 CARMEN WATSI 13 ALONSO KATSI 

4 ASDRUBAL WATSI 14 TONY KATSI 

5 WILFREDO WATSI 15 MARIA KATSI 

6 SARA WATSI 16 RUTH KATSI 

7 JOSE MARIA AMUBRI 17 ISMAEL KATSI 

8 ROSEMARY AMUBRI 18 LAYAN DURURPE 

9 ELISEO AMUBRI 19 AMADEO DURURPE 

10 DARIA AMUBRI 20 ANA DURURPE 
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Figure 6. Geographical representation of the selected plots in the four localities 

of the study, a) Amubri, b) Dururpe, c) Katsi, d) Watsi 

 

As show in Figure 7, each field was divided into nine plots (10 m X 10 m); the 

plot was the statistical unit used in one part of the analysis of the study and the 

individual plants was the statistical unit used in another part of the analysis of the 

study. We identified and determined the coordinates for all of the cultivated plants 

(with a commercial value) in all plots. Each plant was tagged, allowing multiple 

measures over time. Overall, our dataset included 2299 plants. Herbaceous 
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plants were not recorded. I received assistance to collect the data of two students 

and two local technicians.     

 

Figure 7. Example of how we determined the coordinates for all of the cultivated 
plants (with a commercial value) in 9 plots (10 m X 10 m each plot) of the 20 
studied fields (30 m X 30 m each field).    

 

1.4 Composition of vegetation and spatial structure  

These agroforestry systems include as main cash crops: cacao (Theobroma 

cacao L.) and organic banana (Musa spp. AAA). Cacao is usually grown with 

other fruit trees and with shade trees, such as laurel (Cordia alliodora Ruiz and 

Pav.) or cedar (Cedrela odorata L.). These shade trees represent species from 

the natural forest and are either planted or are naturally growing remnants. 

Banana is an important crash crop for farmers and is usually grown with citrus 

(Citrus spp.), avocado (Persea americana Mill.), peach palm (Bactris gasipaes 

Kunth), and other fruit trees. Farmers claim that these other fruit trees grow well 

with cacao and banana (farmers’ personal communication). Other species, such 

as jicaro (Crescentia cujete L.) and senko (Carludovica palmata Ruiz and Pav.), 
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are used for crafts, while guava (Inga sp.) and turkey tail (Cupania cinerea 

Poepp.) are used for firewood. Figure 8 presents an image of the vertical 

structure of a typical agroforestry system in Talamanca, in which the different 

strata can be found very well. 

Cultivated plant diversity in each plot was calculated using the Shannon–Wiener 

index, (Shannon 1948), which was calculated with the ‘diversity’ function of the 

‘vegan’ package, version 2.2-1 (Oksanen et al. 2015). 

We also assigned each plant to one of five categories: (i) banana, (ii) cacao, (iii) 

other fruit trees, (iv) timber, and (v) firewood. Cacao and banana are mainly sold 

for the international market, while other fruit, timber, and firewood are sold locally 

or used for self-consumption.  

 

The selected fields have diverse spatial arrangements with different crops 

densities. We identified and determined the coordinates for all of the cultivated 

plants (with a commercial value) in each plot. Plants without commercial value 

(only herbaceous weeds in the lower strata) were not included in this study. 

Plants with commercial value were identified to either the species or family level 

and were assigned to one of five categories: banana plants, cacao trees, timber 

wood trees, firewood trees and fruits trees. Wood trees were the tallest, forming 

the top canopy layer (with a maximum height of 40 m). The intermediate 

vegetation layers were represented by fruit trees (with a maximum height of 26 

m), and cacao and banana were located in the lower strata (with an average 

height of 6 m). Plants shorter than 1.5 m were not recorded.  
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Table 2. The plant taxa measured in this study and their assignment to the five 

functional groups. Abundance refers to the number of plants in all 20 fields. 

 Abundance 
 

Group / Taxa Abundance 

Cacao group  
 

Timber group  

Hybrid 750 
 

Cordia alliodora 178 

    
 

Cedrela odorata 15 

Banana group  
 

Dipteryx panamensis 3 

Cavendish AAA 340 
 

Hyeronima alchorneoides 1 

Grosmichel AAA 277 
 

Chloroleucon eurycyclum 3 

Lacatan AA 158 
 

Gliricidia sepium 2 

Musa spp. AAA 248 
 

Brosimum alicastrum 1 

Musa spp. AAB 92 
 

Diphysa americana 1 

   
Enterolobium cyclocarpum 1 

Fruits group   
 

Brosimum lactensis 2 

Citrus × sinensis 38 
   

Citrus x paradisi 1 
   

Citrus × tangerina 5 
   

Citrus x aurantifolia 3 
 

Firewood group  

Citrus × limonia 2 
 

Cupania cinerea 24 

Bactris gasipaes 32 
 

Inga edulis 19 

Persea americana 19 
 

Cecropia obtusifolia 2 

Crescentia cujete 10 
 

Erythrina costaricensis 1 

Nephelium mutabile 8 
 

Cordia panamensis 8 

Artocarpus communis 7 
 

Palicourea tetragona 2 

Averrhoa carambola 5 
 

Croton billbergianus   3 

Licania platypus 5 
 

Neea psychotrioides 3 

Eugenia malaccensis 3 
 

Naucleopsis naga 1 

Eugenia stipitata 3 
 

Trichospermum grewiifolium                                1 

Cocos nucifera 2 
 

Cordia lucidula 3 

Annona purpurea 1 
 

Bursera simaruba 2 

Annona muricata 1 
 

Miconia trinerve 1 

Mangifera indica 1 
 

Spondias mombin 2 

Carica papaya 1 
 

Cestrum schlechtendalii 1 

Morinda citrifolia 1 
 

Alchornea costaricensis 1 

Bixa orellana 1 
 

Ocotea mollifolia 1 
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Figure 8. Example of the vertical structure of a typical agroforestry system in 
Talamanca, different strata is indicated with the most common species 
represented, (photograph by Ricardo Salazar). 
 

 

 

As show in Figure 9, the 20 selected plots of agroforestry systems in 

Talamanca covered a broad range of cultivated diversity, from relatively 

simple systems (fields 06, 14 and 15) associating  one species to banana, to 

the most complex systems with often more than 20 plant species (fields 16 

and 17), they present a multi-strata structuration of the canopy. Figure 9 show 

how the spatial structure of the plot could be related with the objective of the 

farmer in terms of productivity, for example in field 08 there is a remarkable 

interest for fruit trees, probably related to one species of citrus spp for 

example, in fields 04, 09 and 10 timber species are an important component, 

in fields 02 and 12 cacao is the most important crop, others fields like 03, 11 

and 13 the different crops are very well distributed. Fields like 19 and 20 have 

a combination of banana and cacao as the main two cash crops.    
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Figure 9. Maps of the diversity and spatial distribution of individual cultivated 
plants in the 20 studied plots in Talamanca, Costa Rica. Each plant was assigned 
to one of the five categories (green: banana plants, brown: cacao trees, grey: fruit 
trees, pink: firewood trees, yellow: timber trees). The X and Y coordinates are in 
meters. 
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Figure 10 shows the general distribution of densities of plants of each categorical 

group in the 20 studied plots. Due to the density of crops, there was interest in 

the production of cacao and banana in all plots (except field 5 witout banana 

plants). In some of them, there was interest in supplementing production with 

timber and fruit species. This is in line with what has been reported by several 

authors (Kapp 1989, Borge and Castillo 1997, Guiracocha 2000, Deheuvels et 

al. 2012) when referring to the structure of land use in the indigenous area of 

Talamanca. 

 

Figure 10. Distribution of the number of plants of each group in the 20 studied 
plots in Talamanca, Costa Rica.  

 

2. Productivity of the agrosystems 

 

The evaluation of productivity in the agroforestry systems in the Talamanca is 

challenging because of the diversity of the plants that are grown. Guiracocha 

(2001) reported more than 30 associated tree species in these systems; we 

identified 56 different commercial species assignment to the five functional 

groups (see Table 2). To estimate the global productivity of the studied fields, we 

measure the productivity according to our different analysis and to the 

specification of each functional group presented below. 
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Banana productivity 

Analysis 1 – To estimate banana yield, we measured the weight of bunches and 

counted their fruits. Every banana plant was followed during 1 year to precisely 

measure those that were harvested or lost when plants were pruned or toppled-

over.  

 

Analysis 2 - To calculate the potential growth for banana plants, we estimated 

the increase in vegetative biomass during the 17 weeks (in April 2015 and them 

again in July 2015) by measuring the circumferences of the pseudostem of each 

plant (1 m above ground level). We assumed that the potential growth of banana 

followed a parabolic curve, that show how the vegetative growth rate increased 

up to the reproductive stage and then slightly declined (see Figure 11). Similar 

to classical yield gap analyses, we define an envelope curve that represent the 

potential yield. The percentage of potential yield for each banana plant was then 

calculated dividing the measured yield with the potential yield:  

PPY=   "#$%&'#(  )*+#,+-$.  
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Figure 11. Example of a parabolic curve followed to determine the potential 
growth of bananas plants. 

 

Cacao productivity 

Analysis 1 – To estimate cacao yield, we counted healthy cacao pods during the 

two peak of harvest in May and November. According to Braudeau (1969) cited 

by (Deheuvels et al. 2012), each pod produces an average of 185 grams of fresh 

cacao beans that we multiplied by 0.56 (W. Rodriguez personal communication) 

to estimate the commercial yield of dry cacao. 

 

Analysis 2 – We determined the potential yield for each tree based on the 

circumference of the tree at 1 m above ground level in April 2015. Similarly to 

banana plants (see Figure 11), we determined the gap between the observed 

and potential yield for each cacao tree. We assumed that the number of cacao 

pods increased as the initial tree circumference increased and then greatly 

decreased following a parabolic curve and that the potential number of pods 

depended on the tree girth. The potential yield of cacao tree was then calculated 

as the ratio between the measured number of pods and the potential number of 

pods for the same girth, similarly to banana PPY. 

 

 

Timber productivity 

For every timber tree, total height, commercial height, and DBH (diameter at 

breast height) were measured with a hypsometer and a diametric tape. Cubic 

meters of wood were calculated based on empirical relationships reported by 

Almendarez et al. (2013) and with a form factor of 0.7 for timber species. With 

firewood species, we applied the same method using a form factor of 0.5.  

 

Fruit productivity 

For other fruits than banana and cacao productivity was estimated for each tree 

using theoretical values reported by another study in the same region (Burgos et 

al. 2008). 
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We estimated the incomes generated by each category of plant according to local 

market surveys of product prices provided by an association of smallholder 

farmers from Talamanca (APPTA); the estimates were converted into US dollars. 

Costs of labour, crop management, and land use were not included in our 

analysis. The market prices of the products considered in our study were: banana 

$0.14/kg, cacao $2.25/kg, timber $0.18/m3   (regardless of species), firewood 

$0.03/m3, and other fruits between $0.18 and $1.80/kg depending on the species.  

 

 

3. Models as tools to analyze the relationship between 

productivity, cultivated diversity and spatial of plants 

 

We analysed the relationship between productivity and diversity with two points 

of view:  

 

Analysis 1 - To examine the relationship between the income generated by each 

group cultivated plants and plant diversity, we used generalized linear mixed-

effects models (Bolker et al. 2009). In these models, the plot was the statistical 

unit used in the study (180 plots), and the field was considered as a random 

effect.  

 

Analysis 2 - We analysed the effect of the structure of the plant community in the 

neighbourhood of each individual cacao tree and banana plant on their yield. We used a 

linear mixed-effect model with the PPY as a response variable and the number of 

neighboring plants of each category as predictors, the individual plant was the statistical 

unit used in the study. All models were fitted with the ‘lmer’ function in the ‘lme4’ package 

(Bates et al. 2011). All statistical analyses were performed with R 3.3.0  (R Core Team 

2016) and with an alpha level of 0.05. 
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3.1 Modelling interactions at the local and individual 

scale 

 

Our aim was to determine the effect of neighboring plants on the potential yield of banana 

and cacao plants. To this end, we developed an individual-based analysis considering 

the plot as a random factor, which enabled us to take account for the variability due to 

the conditions of each plot: pest and diseases, soil, landscape context, and crop 

management. We carried out the analysis in two steps. First, we determined, without a 

priori assumptions, the distance at which the number of neighbouring plants of a given 

functional group (banana plants, cacao trees, fruit trees, or wood trees) best explain the 

potential yield of cacao and banana plants in a GLMM (Figure 12).  

 

 

 

Figure 12. Likelihood of the model that predicts PPY as a function of the radius at which 

the abundance of neighboring plants is considered. The distance selected corresponds 

to the highest values of likelihood observed in the explored range of radii. 

 

In the second step, we tested the significance of the abundances of the functional groups 

of plants in a complete model that predicted the PPY of banana and cacao plants. 
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Chapter 3 – Effect of plant richness on the 

productivity of multi-species cropping 

systems 

 

The effect of plant richness on the productivity is often assumed to be a well-

known relationship or considered to be characterized in a given condition. 

However, there is lack of a quantification and comparison of this effect in diverse 

conditions, especially in agricultural systems. A meta-analysis is a powerful and 

informative tool to provide a statistical framework for synthesizing and comparing 

the results of studies which have all tested a particular hypothesis (Harrison 

2011). We conducted a meta-analysis to search general rules that link plant 

richness and the productivity of the agroecosystem. The specificity of our analysis 

was to disentangle the plant richness – productivity relation according to the 

climatic area of each study and the type of plants involved in the plant mixtures. 

Among the hypotheses tested here, this analysis allowed us to question whether 

the solar radiation resource (supposed to be linked to the latitude) and the vertical 

structure of the canopy are good predictors of the response of productivity to plant 

richness. In an agriculture perspective, this meta-analysis aims at identifying the 

conditions in which plant diversification could generally be a promising option to 

improve production. 

This meta-analysis followed the main steps presented by (Philibert et al. 2012). 

After a thorough search of articles in Web of Knowledge database and a careful 

selection of articles that fit meta-analysis requirements, 66 articles were ultimately 

selected corresponding to 343 experiments.  

 

This study is currently submitted (in revision) in the journal Agronomy for 

Sustainable Development. 
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Abstract. Plant diversification is increasingly presented as a promising way to increase 

agricultural sustainability. Despite long struggle to understand the mechanisms of coexistence 

in plants mixtures, it is now certain that knowledge from both ecology and agronomy have to 

contribute to improve plant productivity in agroecosystems. In this study, we present a meta-

analysis that aims to increase our understanding of how plant richness alters the productivity 

under a wide range of factors (latitude, climate, canopy structure) across annual and perennial 

plant diversity experiments in agricultural and natural ecosystems. The 66 selected articles 

included 343 experiments. For each experiment, we extracted all of the information on potential 

predictor variables; we used both, the land equivalent ratio (LER) and the effect size (Z), to assess 

the response of productivity to plant richness in the broad range of effects. Overall, productivity 

was strongly and positively correlated with plant richness. However, the gain per unit of diversity 

added decreased as plant richness increased. We found that LER values decreased with latitude 

and suspect that the availability of solar radiation, which decreases with latitude, might alter the 

relationship between plant richness and productivity. Our findings also showed that the 

response of productivity to plant richness largely depends on the type of plants in the 

community. The presence of trees in the canopy reduced the effect of plant richness on 

productivity but also reduced the variability in the relationship, suggesting that trees may help 

stabilize productivity. From an agricultural perspective, our results suggest that productivity 

could be maximized by a relatively low number of plant species.  
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1. Introduction 

Intensive agriculture of the 20th century is associated with an intensification and 

simplification of agricultural practices with the aim to increase yield, often in 

detriment of biodiversity, affecting both wild species whose habitat disappeared 

and cultivated species whose genetic diversity was often greatly reduced (Tilman 

et al. 2002). Biodiversity in agroecosystems is now a major concern and promises 

to be a major issue of the 21st century (Plantureux et al. 2005, Isbell et al. 2015a).  

.The diversification of agricultural systems can be achieved through a variety of 

options ranging from the intercropping of two species to the assembly of very 

complex systems that mimic nature (Altieri 2002, Malézieux et al. 2009). The 

effect of plant diversity on productivity has long been studied in natural systems 

(Naeem et al. 1994, Loreau et al. 2001), but there is still debate about how plant 

diversity can be increased in agricultural systems without decreasing productivity 

and making management too difficult for farmers (Swift et al. 2004). There is thus 

a need to understand the type of plant to be used for the diversification of 

agricultural ecosystems and the optimal degree of diversification. (Huston 1997, 

Tilman 1997, Loreau 1998, Hector et al. 1999, Malézieux 2012) 

Positive effects of species richness on yield in agroecosystems, and on biomass 

production in natural ecosystems, have been shown to arise due to two types of 

mechanisms: sampling effects and complementarity between species (that 

include both niche differentiation and facilitation because distinguish between 

them is difficult in practice) (Loreau and Hector 2001). Recent meta-analyses 

underlay the important potentially role of these mechanisms on overyielding in 

experimental plant mixtures. For instance, Li et al. (2014) have shown that plant 

diversity may enhance productivity by facilitation of nutrients acquisition in annual 

and herbaceous perennial intercropping systems. Craven et al. (2016) also found 

that the diversity and complementarity of species are important regulators in 

grassland ecosystem productivity. Yu et al. (2015), who studied how the 

productivity of mixed cropping systems is affected by intercropping system design 

and species traits, reported that crop diversity can substantially enhance 

productivity. In a field experiment, Fridley (2003)  found that the effects of diversity 

on productivity depended on fertility and that overyielding in diversified systems 

was only evident under conditions of high fertility. According to Mulder et al. 
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(2001), environmental stresses favor positive relationships between plant species 

richness and productivity; suggesting stresses limit the importance of 

competition. However, a recent meta-analysis rejected the stress-gradient 

hypothesis (stating that stress enhances facilitation between neighbors) and 

concluded that neither positive nor negative effects of neighbors increased with 

abiotic stress because species interactions across abiotic stress gradients do not 

follow a simple pattern (Maestre et al. 2005).  While the effect of plant diversity 

received a great attention in others meta-analysis (Cardinale et al. 2007, Yu et 

al. 2015, Craven et al. 2016) different environmental gradients have been 

neglected, our analysis is important because it cover a wide gradient of 

ecosystems in a wide range of environmental conditions. 

The diversity-productivity relationship is expected to change with environmental 

context (Cardinale et al. 2000). Fridley (2002) even suggested that the local 

environmental factors should have a much stronger effect on local ecosystem 

functions than the diversity of the species pool. The climate is the primary driver 

of these conditions, it is thus crucial to analyze the richness-productivity 

relationship taking climate into account. Other factors including the type of plants 

(Lavorel et al. 1997) and the canopy structure (Grime 1998) are also major drivers 

that need to be considered when analyzing this relationship. Our aim was to 

define the conditions favorable to plant diversification in agroecosystems, we thus 

included these different factors in our analysis. 

In this article, we conducted a meta-analysis on the relation between plant 

diversity and system productivity considering the effect of latitude, climate, and 

number of strata in the canopy across a wide range of annual and perennial plant 

diversity experiments in agricultural and natural ecosystems. To assess the 

response of productivity to plant richness, we used both, the land equivalent ratio 

(LER) and the effect size, to cover a broad range of plant diversity effects. These 

two complementary indicators were used to investigate the following questions: 

(1) does the relationship between plant diversity and productivity differ between 

agricultural systems and natural systems? (2) How do latitude and climate affect 

the plant richness-productivity relationship? (3) How does canopy structure affect 

the plant diversity-productivity relationship? (4) Does the relationship between 
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plant diversity and productivity differ depending on the type of plants in the 

system? 

 

2. Methods    

 

2.1 Review and study selection 

In November 2016, we selected articles through a literature search on the Web 

of Science Core Collection and using the following search terms: (“overyield” OR 

“intercrop”) AND (“plant diversity” OR “plant richness”). Over 500 abstracts were 

reviewed for relevance, and 66 articles were ultimately selected using the 

criterion that they contained data on the relationship between plant diversity and 

productivity. These articles were published between 1993 and 2016. 

The 66 selected articles reported on 343 experiments. For each experiment, we 

extracted all of the information on: i) potential predictor variables (independent 

variables) and ii) response variables (dependent variables) that characterize the 

effect of plant richness on the productivity: the land equivalent ratio (LER) and 

the effect size. 

 

2.2 Response variables 

The LER is the sum of the relative yields of component species in an intercrop as 

compared to their respective sole crop. The effect size was calculated to estimate 

the magnitude of the relationship between the variable and its response to 

productivity when LER is not reported. the LER was calculated as the sum of the 

relative yields of component species in an intercrop as to their respective sole 

crops (Yu et al. 2015).  

LER is defined as: 

/01 = 2141 + 2242 
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where Y1 and Y2 are the yields (per unit of total areas of the intercrops) of species 

1 and 2 when intercropped, and M1 and M2 are the yields of the species in 

monoculture (per unit area of the respective single crop).  

Effect size estimates the magnitude of the relationship between a predictor 

variable and its response using any test statistic derived from independent 

research studies. It is a statistics that provide a standardized, directional measure 

of the mean change in the dependent variable in each study (Harrison 2011). The 

effect size was estimated with the Fisher’s Z, which was defined using the 

equation of Rosenthal and DiMatteo (2001).  

Z = 12  log [(1 + R/(1 − R)] 
The sign of R was deducted from the sign of the effect in the studies. To compute 

Fisher’s Z, we converted the test statistic (df, P, t, or R²) from each response 

reported in a study to the correlation coefficient R as a standard statistic. The 

coefficient R of correlation was directly extracted from the studies, calculated from 

R², or calculated from n the number of data and t the value of the Student test of 

each response following: 

1 =  ; 1< − 2>? + 1 

 

2.3 Predictor variables 

In the analyses, we defined five categorical predictor variables: (i) ecosystem 

(natural or agricultural); (ii) climate (tropical, subtropical, temperate, continental, 

or semi-arid); (iii) plant duration (annual or perennial); (iv) plant type 

(vegetables/legumes, grains/cereals, perennial grass, agroforestry, natural 

forests), and (v) strata number (i.e., number of canopy layers). We also defined 

two continuous predictor variables: latitude and magnitude of plant richness. 

Magnitude of plant richness was the maximal number of plant species present in 

a defined geographical unit. 
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2.3.1 Predictor variables classification 

We classified data from the relevant selected papers according to seven predictors: 

(1) The magnitude of plant richness (continuous variable): number of plant species 

growing together reported in experiments.  

(2) The latitude (continuous variable). 

(3) The type of system: natural ecosystem or agricultural system. We considered natural 

and planted forest experiments as natural ecosystem and intercropping of annual 

plants, perennial grass and agroforestry experiments as agricultural system.  

(4) The climate type: based on the Köppen-Geiger system (Peel et al. 2007). 

(5) The annual and perennial status of plants: determined based on the phenology of 

plants (Rathcke and Lacey 1985). Perennials grass mixtures were classified as 

perennial.  

(6) The cropping system type: seven groups were defined (vegetables, legumes, grains, 

cereals, perennial grass, agroforestry, forests). 

(7) The number of strata layers in the canopy:  

i) one stratum (for vegetables, legumes and some grains, cereals 

mixtures),  

ii) two strata (for perennial grass and some grains, cereals mixtures),  

iii) three (or more) strata (for agroforestry and forest).   

 

2.4 Statistical analysis 

Using the data from the 343 experiments in the 66 studies, we generated 95 effect 

sizes (Z values) and 248 LER values. We used the generalized linear model 

(GLM) to test the significance of predictors on the LER and on the effect size Z. 

Statistical analyses were performed with R 3.3.1 (R Core Team 2016) and with 

an alpha level of 0.05. On most relevant models, we carried out a sensitivity 

analysis by removing separately the responses from each studies and assessing 

how the estimate of the factors (plant richness and latitude) were altered. We also 

conducted an analysis of the bias of publication searching whether the number 

of citation of each study was correlated (linear model) with the effect size Z or 

with the LER. 
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3. Results 

 

3.1 General features of the studies 

The 66 studies used in our meta-analysis were published within the past 23 years 

(Table 1) and were conducted in different countries located between 70°N and 

40°S latitude. 12 studies were conducted in the Southern Hemisphere and 54 in 

the Northern Hemisphere. Most of the studies appeared in 32 journals, with 36 

falling in the domain of agronomy and 30 in ecology. Of the 66 studies, 10 were 

conducted in multi-strata ecosystems and 56 were conducted in mono-strata 

ecosystems.   

We retrieved a total of 343 productivity responses to plant diversity. Of the 

productivity responses, 248 from 36 studies were expressed as LER values, and 

95 from 30 studies were expressed as effect size.  

 

Table 1. Background information for the 66 selected studies for the  meta-

analysis, that characterize the effect of plant richness on the productivity,  using 

the extracted  information on the potential predictor variables (Plant richness, 

Ecosystem, Latitude, Climate, Plant type, Crop system, Strata level) and the 

number of LER or Z values responses. Plant richness represents maximum 

number of plant species in the system. 

 

Plant 

richness Ecosystem Latitude Climate 

Plant 

type 

Crop 

system 

Strata 

level LER Z 

(Agegnehu et al. 2006) 2 agricultural 9'03'N Tropical  annual cereal 1 5 - 

(Andersen et al. 2005) 3 agricultural 55'4'N Temperate annual cereal 1 8 - 

(Baldé et al. 2011) 2 agricultural 16'23'S subtropical annual grain 1 4 - 

(Holger Bessler et al., 

2009) 16 agricultural 50'96'N Temperate perennial 

grass 

2 - 3 

(Biondini 2007) 50 agricultural 46'33'N Continental perennial grass 1 - 3 

(Bisseleua et al. 2009) 11 agricultural 2'35'S Tropical  perennial agroforestry 3 - 1 

(Bonin and Tracy 2012) 2 agricultural 37'12'N subtropical perennial grass 1 - 4 

(Borer et al. 2012) 16 agricultural 45'4'N Continental perennial grass 1 - 1 

(Byrnes et al. 2014a) 18 agricultural 45'45'N Temperate perennial grass 1 - 2 
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(Chu et al. 2004) 2 agricultural 32'03'N Semiarid annual grain 1 2 - 

(Craine et al. 2003) 12 agricultural 45'41'N Continental perennial grass 1 - 2 

(de Aguiar et al. 2013) 5 agricultural 3'41'S Tropical  perennial agroforestry 3 - 2 

(Dhima et al. 2007) 2 agricultural 40'32'N subtropical annual cereal 1 8 - 

(Dodd et al. 2004) 8 agricultural 37'48'S subtropical perennial grass 1 - 2 

(Echarte et al. 2011) 2 agricultural 37'45'S Temperate annual grain 1 11 - 

 (Elba et al. 2014) 2 agricultural 37'2'S Temperate annual grain 1 1 - 

(Erskine et al. 2006) 3 agricultural 18'51'S Tropical  perennial forest 3 - 1 

(Franco et al. 2015) 2 agricultural 20'37'N Semiarid annual vegetables 1 10 - 

(Fridley 2003) 7 agricultural 35'9'N subtropical perennial grass 2 - 1 

(Gao et al. 2014) 2 agricultural 40'54'S Semiarid annual grain 1 3 - 

(Ghosh 2004) 2 agricultural 21'31'N Semiarid annual cereal 1 5 - 

(Hauggaard-Nielsen 

and Jensen 2001) 2 agricultural 55'41'N Temperate annual 

grain 

1 12 - 

(Hauggaard-Nielsen et 

al. 2001) 2 agricultural 55'41'N Temperate annual 

grain 

1 3 - 

(Hauggaard-Nielsen et 

al. 2009) 2 agricultural 55'4'N Temperate annual 

grain 

1 14 - 

(Hauggaard-Nielsen et 

al. 2006) 2 agricultural 55'4'N Temperate annual 

grain 

1 2 - 

(He et al. 2013) 2 agricultural 23'18'S subtropical annual grain 1 5 - 

(Hector et al. 2010) 16 agricultural 47'N Temperate perennial grass 1 - 1 

(Hector et al. 2011) 16 natural 5'N Tropical perennial 

planted 

trees 3 - 1 

(Kahmen et al. 2005) 78 natural 50'24'N Temperate perennial grass 1 - 1 

(Karpenstein-Machan 

and Stuelpnagel 2000) 3 agricultural 51'41'N Temperate annual 

grain 

1 6 - 

(Lamošová et al. 2010) 8 agricultural 49'45'N Continental perennial grass 1 - 4 

(Lanta and Lepš 2007) 16 agricultural 49'92'N Temperate perennial grass 1 - 3 

(Laossi et al. 2008) 4 agricultural 5'16'S Tropical  annual grass 1 - 4 

(Li et al. 1999) 2 agricultural 37'5'N Continental annual vegetables 2 2 - 

(Li et al. 2009) 2 agricultural 25'22'N subtropical annual grain 1 8 - 

(Lithourgidis et al. 2011) 2 agricultural 40'39'S subtropical annual cereal 1 6 - 

(Mao et al. 2012) 2 agricultural 38'37'N Continental annual grain 1 8 - 

(Mei et al. 2012) 2 agricultural 38'37'N Continental annual grain 1 5 - 

(Méndez et al. 2009) 20 agricultural 13'54'N subtropical perennial agroforestry 3 - 1 

(Midmore 1993) 2 agricultural 22'59'N subtropical annual vegetables 1 6 - 

(Nassab et al. 2011) 2 agricultural 48'12'N Temperate annual grain 1 25 - 

(Neugschwandtner and 

Kaul 2014) 2 agricultural 48'14'N Temperate annual 

cereal 

1 8 
 

(Neto et al. 2012) 3 agricultural 5'11' S Semiarid annual vegetables 1 4 - 

(Ni et al. 2007) 8 natural 45'25'N Temperate perennial grass 1 - 1 

(Peeters et al. 2003) 13 agricultural 16'75'N Tropical  perennial agroforestry 3 - 2 

(Pelzer et al. 2012) 2 agricultural 48'8'N Continental annual cereal 1 2 - 

(Piper 1998) 3 agricultural 38'44'N Continental perennial grass 1 - 1 
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(Qin et al. 2013) 2 agricultural 37'96'N Continental annual grain 1 2 - 

(Ravenek et al. 2014) 60 agricultural 50'95'N Temperate perennial grass 2 - 4 

(Romero-Alvarado et al. 

2002) 5 agricultural 26'03'N subtropical perennial 

agroforestry 

3 - 1 

(Roscher et al. 2011) 60 natural 55'55'N Temperate perennial grass 3 - 10 

(Rusinamhodzi et al. 

2012) 2 agricultural 18'46'S Tropical  annual 

grain 

1 16 - 

(Sadeghpour et al. 

2013) 2 agricultural 35'48'N Semiarid annual 

cereal 

1 2 - 

(Sanderson 2010) 7 agricultural 41'81'N Temperate perennial grass 1 - 4 

(Seidel et al. 2013) 3 natural 51'05'N Temperate perennial forest 3 - 1 

(Stoltz and Nadeau 

2014) 2 agricultural 56'1'N Temperate annual 

grain 

1 3 - 

(Van Eekeren et al. 

2010) 2 agricultural 51'39'N Temperate perennial 

grass 

1 - 1 

(Vilà et al. 2013) 3 natural 50'44'N Continental perennial forest 3 
 

11 

(Worster and Mundt 

2007) 2 agricultural 44'48'N Temperate annual 

cereal 

1 - 20 

(Wu et al. 2012) 2 agricultural 25'22'N subtropical annual grain 1 6 - 

(Yang et al. 2013) 2 agricultural 23'8'N subtropical annual cereal 1 21 - 

(Yang et al. 2011) 2 agricultural 37'52'N Continental annual grain 1 9 - 

(Zhang et al. 2011) 2 agricultural 36'09'N Temperate annual grain 1 12 - 

(Zhang et al. 2004) 2 agricultural 36'09'N Semiarid annual grain 1 2 - 

(Zhang et al. 2007) 2 agricultural 36'07'N Semiarid annual cereal 1 12 - 

(Zhu et al. 2010) 16 agricultural 29'53'N subtropical annual vegetable 1 - 4 

 

 

3.2 Global effects of plant richness on plant productivity 

Overall, productivity showed a strong, positive response to plant richness, with a 

similar trend for effect size (Figure 2A) and LER (Figure 3A). All statistical results 

are presented in Table 2. Interestingly, there was a negative relationship between 

the effect size and the magnitude of plant richness (Figure 1A; Table 2). The 

relationship between LER and the magnitude of the plant richness also tended to 

be negative but was not statistically significant (Figure 1B). There were more 

productivity responses from agricultural systems (318 responses) than from 

natural ecosystems (25 responses), and the response of productivity to plant 

richness differed between the two systems (Figure 2B) with a strong significant 
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positive response for agricultural systems and a neutral response for natural 

systems (Table 2).  

 

 

 

 

 

 

 

Figure 1. Response of the effect of plant richness (log scale) on  productivity, as 
evaluated based on the effect size (A) and the LER (B). The horizontal dotted 
lines indicate the neutral effect.  

 

A                                  B 
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Figure 2. Boxplot of the plant productivity response to plant richness estimated 
though the effect size (calculated using 96 responses from 31 studies). For each 
category, the vertical black bar shows the median value of the effect size, the box 
show the upper and lower limits of its 25% quartiles and the whiskers show its 
maximum and minimum values excluding outliers. The numbers in parentheses 
indicate the total number of responses/total number of studies included in each 
category. The vertical grey dotted line indicates the neutral effect. 
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Figure 3. Boxplot of the plant productivity responses to plant richness estimated 
with the LER from 248 responses from 36 studies. For each category, the vertical 
black bar shows the median value of the effect size, the box show the upper and 
lower limits of its 25% quartiles and the whiskers show its maximum and minimum 
values excluding outliers.  The numbers in parentheses indicate the total number 
of responses/total number of studies included in each category. The vertical 
dotted line indicates the neutral effect. 
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Table 2. Statistics of the linear models that were used to determine the effects 

of the plant richness on the effect size and LER as affected by the predictor 

variables (Ecosystem, Climate, Plant type, Crop system, Strata level). 

Grouping factor df F p r 

Effect size response to plant richness 

 Total response 94 27.72 <0.0001 -0.48 

     
 Agricultural 70 28.15 <0.0001 -0.54 

 Natural 22 1.52 0.2301 -0.25 

     
 Tropical 7 1.36 0.2822 -0.40 

 Subtropical 11 0.09 0.7722 -0.09 

 Temperate 46 25.49 <0.0001 -0.60 

 Continental 20 3.45 0.0779 -0.38 

     
 Perennial 64 5.18 0.0262 -0.27 

 Annual 27 5.28 0.0296 -0.40 

     
 1 stratum 60 26.94 <0.0001 -0.56 

 3 strata 27 1.57 0.2209 -0.23 

     
 Natural forest nc nc nc nc 

 Agroforestry 4 0.73 0.4411 -0.39 

 Perennial grass 48 13.79 0.0005 -0.47 

 Cereals & grains nc nc nc nc 

 Vegetables & legumes nc nc nc nc 

     
LER response to plant richness 

Total response 246 1.75 0.1877 -0.08 

     
Tropical nc nc nc nc 

Subtropical nc nc nc nc 

Semiarid 38 5.76 0.0214 -0.38 

Temperate 101 11.46 0.0010 0.32 

Continental nc nc nc nc 

     
Cereals & grains 200 0.03 0.8681 -0.01 

Vegetables & legumes 44 10.28 0.0025 -0.46 

df: residual degrees of freedom; F: F value of the Fisher test; p: p value of the linear model; r: 

correlation coefficient, nc: not calculated. 
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3.3 Effect of “abiotic conditions” on the response of productivity 

to plant richness 

Our results showed a negative response of LER to latitude (Figure 4B, df=246, 

F=65.61, P=<0.0001). This relationship was not significant for effect size (Figure 

4A, df=83, F=1.657, P=0.2015). Productivity responses to plant richness differed 

among climatic region (Figure 2C and 3B). The effect size was significantly 

altered by plant richness in regions with subtropical and continental climates, 

while the LER was significantly altered by plant richness only in regions with a 

tropical climate (Table 2). Over the entire data set, the response of productivity 

in terms of both effect size and LER to plant richness tended to be stronger in 

regions with a tropical climate than in those with other climates. 

 

 

Figure 4. Effect of latitude (absolute values) on the response of plant productivity 
to plant diversity, as evaluated based on the effect size (A) and the LER (B). The 
horizontal dotted lines indicate the neutral effect. 

 

  

3.4 Effects of the “plant type” and canopy structure on the 

response of productivity to plant richness 

The effect size was smaller in study systems with perennial plants than in those 

with only annual plants (Figure 2D). This was confirmed by the larger effect size 

A                                B 
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when ecosystems included only one stratum (as is typical for systems with only 

annual plants) rather than multiple strata (as is typical for systems with perennial 

plants) (Figure 2E). In line with these results, effect sizes were larger for systems 

with cereals/grains and vegetables/legumes than for agroforestry or perennial 

grass systems (Figure 2F), although variation in the effect size was smaller for 

the latter systems. The LER values tended to be higher for systems with 

cereals/grains than for those with vegetables/legumes (Figure 3C). The 

response of productivity (in terms of LER) to plant richness was significant but 

negative for vegetable/legume systems (Table 2).  

Finally, we tested the effect of plant richness, latitude, type of cropping system, 

and canopy structure on the effect size and the LER in two complete linear 

models. Interestingly, there was a significant interaction between plant richness 

and the presence/absence of perennial plants in the system (Table 3). Model 

predictions confirmed that the effect size of plant richness declined as the 

magnitude of plant richness increased and that the decline was faster for systems 

with only annual plants than for systems that included perennial plants (Figure 

6A). In the complete model that predicted LER values, the effect of latitude was 

highly significant, the plant richness effect was barely significant, and the type of 

cropping systems was not significant (Table 3). The standard error of this model 

progressively increased with plant richness (Figure 6B).  

The effect of plant richness on Z and LER was not altered by study removal 

(Figure 5). There was no bias of publication (number of citation of each article) 

for Z (p=0.081) but it was slightly significant for LER (p=0.022 with an estimate of 

0.0016).  
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Table 3. Statistics of the complete linear models that were used to determine the 

effects of plant richness, latitude, the presence of perennial plants, and 

ecosystem (natural vs. agricultural) on the effect size and LER. 

 
df SS F p 

Effect size response  

Latitude 1 1.18 2.79 0.0990 

Plant richness 1 18.58 44.00 <0.0001 

Annual/Perenial 2 5.41 6.41 0.0026 

Natural/Agricultural 1 0.02 0.04 0.8343 

Plant richness : Annual/Perenial 1 1.99 4.71 0.0331 

Residuals 78 32.94     

LER response 

Latitude 1 4.29 66.00 <0.0001 

Plant richness 1 0.21 3.21 0.0443 

Annual/Perenial 1 0.02 0.26 0.6112 

Residuals 244 15.85     

df: degrees of freedom; SS: sum of squares; F value of the Fisher test; p: p value of the linear 
model. 
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Figure 5. Sensitivity analysis of the estimate of the plant richness on the size 
effect Z (A) and the latitude on the LER (B) to the removal of one study. The y 
axis show the rank of the study removed.  The vertical line represents the 
estimate obtained without study removed (see Table 3 for details on the models 
without removal). 

 

 

4. Discussion 

 

Across the 66 papers analyzed, plant richness tended to have a positive effect 

on plant productivity in both natural and managed ecosystems. The available 

evidence indicates that plant richness matters more in agricultural ecosystems 

than in natural ecosystems. The analysis on effect size and LER provides a 

general perspective on the most promising grade of plant richness to be used in 

agricultural systems. Studies reported LER are studies focusing on intercropping 

with low plant diversity, effect size is reported for multi-species studies.      
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4.1 Global effects of plant diversity on plant productivity 

In our meta-analysis, we found that plant richness increases the overall 

ecosystem productivity but that the effect size decreased as the magnitude of 

plant richness increased. A similar but not statistically significant trend was 

observed for the LER. In other words, the results suggest that the gain in 

productivity per unit of diversity added decreases as diversity increases. This 

finding is varying with those of other meta-analyses perhaps because the other 

analysis focused on short-term experiments with annual plants (Yu et al. 2015) 

or on grasslands that lack an upper canopy layer (Cardinale et al. 2007, Li et al. 

2014, Craven et al. 2016). Our results differ in the magnitude of plant richness 

with those of a number of other studies that found a positive relationship between 

plant richness and (Craine et al. 2003, Bessler et al. 2009, Hector et al. 2011, 

Byrnes et al. 2014b). In the latter studies, however, there was a tendency for 

productivity to plateau at higher levels of plant richness. Along with our results, 

this suggests that productivity is maximized by a relatively low number of plant 

species and that rare plant species contribute less than expected to productivity, 

probably because of functional redundancy. Our modelling efforts confirmed that 

increases in diversity should increase productivity but also highlighted that the 

gain per unit of diversity added decreases as diversity increases, i.e., that the 

relationship has a plateau (Turnbull et al. 2013). As noted earlier, our meta-

analysis revealed that productivity had a positive response to plant richness. This 

positive response results was stronger in agricultural systems than in natural 

systems. This is in line with Barot el al. (2017) that argued that since in agricultural 

systems are driven by human, it should be possible to maximize the ultimate 

benefits of mixtures. 
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4.2 Effect of climate on the response of productivity to plant 

diversity 

We found that LER values decreased with latitude (Figure 1B). We suspect that 

the availability of solar radiation, which decreases with latitude (Budyko 1969), 

might alter the relationship between plant richness and productivity. The strong 

solar radiation at lower latitudes might promote complementarity between plant 

species, while the weaker radiation at higher latitudes might promote competition 

and thereby dampen the effect of plant richness. These explanations, however, 

are not consistent with two studies that were performed below 10° latitude and 

that reported low LER values. One of these studies (Agegnehu et al. 2006) was 

conducted at a high altitude, however, and therefore had conditions that were 

more similar to those at higher than at lower latitudes. The other study was 

conducted under arid climatic conditions (Neto et al. 2012) under which water 

availability probably limited productivity. Our findings are consistent with the 

resource availability—competition intensity hypothesis, which predicts that 

competition increases with productivity. We showed that the LER tends to 

decrease with scarcity of solar radiation (Figure 4B.), we suggest that  our 

findings are opposed to the stress-gradient hypothesis (SGH), which predicts a 

linear increase in the intensity of facilitation as environmental conditions become 

increasingly stressful (Bakker et al. 2013). This confirms that the design of plant-

diversified systems should take into account the local availability or resources. 

Our results suggest that for mono-strata systems (mostly cereal, grain, vegetable, 

and legumes) diversification is more likely to be effective in tropical conditions 

(Figure 2.). 

 

4.3 Effect of canopy structure on response of productivity to 

plant diversity 

We found that the response of productivity to plant richness was affected by the 

type of plants in the community and the number of strata in the canopy. The effect 

of plant richness on the productivity, for example, was reduced by the presence 

of trees in the canopy (Figure 2D, E, F). We suspect that trees, by greatly 

reducing the solar radiation for the lower strata (Parker 1995, Fridley 2003). 
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Possibly, high variances in some architectural traits could also impact the 

microclimate in and below the canopy and finally modify the productivity (Barot et 

al. 2017). However, our complete statistical model predicted that the variability in 

effect size for systems increases with the level of the plant richness in systems 

with annuals but is stable in systems with perennials (Figure 6A). This suggests 

that perennial plants may help stabilize the productivity across a broad range of 

plant richness. Despite there are many studies on the biodiversity and ecosystem 

functioning, in future meta-analysis, it would be valuable to further evaluate the 

relationship between productivity stabilization and plant richness.  

 

 

 

Figure 6. Prediction of the effect size of plant richness on productivity as a 
function of the plant richness for systems with only annuals plants or with 
perennial plants (A), and of the LER as a function of the plant richness for two 
latitudes (B). The horizontal dotted lines indicate the neutral effect, and the grey 
areas show the standard error predicted by the models. All statistics of the 
complete models used for these predictions are presented in Table 3.  

 

 

From an agricultural perspective, our results suggest that the intercropping with 

plant occupying different position in the canopy does not result in systematic 

overyielding. This is especially likely to be the case for high productivity systems, 

in which light is often a limiting factor and in which tall plants out compete shorter 

ones (Rajaniemi 2003). In such systems, different species are more likely to 

A                                   B 
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compete for light than participate in light partitioning. More research is needed to 

better understand light partitioning between crops because light partitioning is 

often assumed in the design of intercropping systems  (Allen et al. 1976, Ewel 

1986).  

 

4.4 Implications for plant diversification of agricultural 

systems 

Agriculture must develop the capacity to moderate the level of diversity in 

response to yield or harness the ecosystem services provided by biodiversity in 

terms of sustainable agriculture (Isbell et al. 2015b). There is no absolute answer 

to the question of how much biodiversity is enough because all systems are 

dynamic (Main 1999). This means that farmer intervention may be necessary to 

determine the degree of plant diversity in cropping systems; although simpler 

agricultural systems are easier to manage.  

Intercropping has long been considered a useful approach to the sustainable 

intensification of agriculture (Bedoussac et al. 2015). On the one hand, we found 

that most intercropping research has focused on annual plant combinations and 

has documented that productivity is higher with multiple crops than with 

monoculture. On the other hand, we found that productivity in multistrata systems 

was lower than we expected. Additional studies on multistrata intercrops are 

needed to determine whether they can attain high levels of productivity. 

From a practical agricultural perspective, we concluded that moderate plant 

richness seems sufficient to maximize the productivity. However the provision of 

other ecosystems services should be considerate. Cardinal et al. (2012a) 

proposed a framework that links biodiversity to the goods and services provided 

by ecosystems. Future studies and meta-analyses should determine how plant 

diversity affects the ability of systems to provide multiple ecosystem services and 

not simply productivity or yield. The trade-offs among services will not be easy to 

assess because both the services and the trade-offs occur at very different spatial 

and temporal scales.  
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Chapter 4 – Effect of plant diversity on the 

productivity of multi-species tropical 

agroforestry systems 

 

This chapter is composed of a study that questions how plant diversity affects the 

crop performance in tropical agroforestry systems. Taking the case of the 

Talamanca agroforestry systems, we addressed the question: Do more diverse 

agroforestry systems provide more income to farmers? 

The originality of this study was to intend estimating the global production of 

agroforestry systems. It was particularly interesting to separate the effect of plant 

diversity for the different functional groups of the plant communities. This helped 

to better understanding the rules that govern the production in multi-strata 

systems.  

We addressed this question in a broad gradient of systems with 180 plots in 20 

farmer fields. The evaluation was as meticulous as possible, with the estimation 

of the production of each plant in these 180 plots during 1 year. Each individual 

production was converted into incomes according to local market prices. We 

analysed the plant diversity – income relation globally (all incomes together) and 

separately for the incomes generated by each functional group (also 

corresponding to different strata). This relation was extremely different between 

functional groups suggesting contrasted complementary/competition for solar 

radiation according to the strata of the canopy. Complementarity seemed to 

dominate for plant groups in the upper strata while competition seemed to 

dominate for plant groups in the lower strata. The detection of complementarity 

and competition in the different strata enabled us to suggest how management 

of tropical agroforestry systems can be improved.  

This study is currently published in the journal Agroforestry Systems. 
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Abstract. Optimal use of resources in agroforestry requires the evaluation of multi-species and 

multi-strata cropping systems. The current study evaluated the effect of plant diversity on the 

performance of agroforestry systems in Talamanca, Costa Rica. 

Plants in nine 100-m2 plots in each of 20 fields were classified into five groups (banana, cacao, 

other fruits, timber, and firewood), and diversity was assessed by the Shannon–Wiener index. 

The production of each individual plant was estimated and converted into income according to 

local market prices.  

Our results indicated that as plant diversity increased, the income derived per plant increased 

for other fruits, firewood, and timber and also when all cultivated plants were considered as one 

group. In contrast, the income derived per plant decreased for banana and cacao as diversity 

increased.  

This suggests that complementarity between plants was stronger than competition for those 

plants occupying the higher strata of the canopy (i.e., other fruits, firewood, and timber) but 

that competition was stronger than complementarity for plants occupying the lower strata of 

the canopy (i.e., banana and cacao). These results increase our understanding of how the 

composition and the organisation of these agroforestry systems may be optimized. 

 

 



70 
 

 

1. Introduction 

Tropical agroforestry systems are often complex associations of multi-functional 

and uneven-aged trees and crops (Sanchez 1995). Such systems also have a 

complex spatial and temporal structure (Bhagwat et al. 2008) and are frequently 

presented as a sustainable alternative to modern intensive agricultural systems 

(Leakey et al. 2005, Ngo Bieng et al. 2013). 

Many people in developing tropical countries depend on agroforestry systems for 

subsistence, economic income, and other services (Malézieux et al. 2009, Cerda 

et al. 2014, Paul et al. 2015). In addition to generating timber and firewood, 

agroforestry can also provide supplementary income from associated tree crops 

(Nair 2007). In many systems, however, the economic productivity, efficiency, 

and profitability of agroforestry farms have not been determined, i.e., there is 

need to quantify the costs and benefits of agroforestry farms in order to justify 

their propagation and adoption (Molua 2003). From both private and social 

perspectives, the economic potential of agroforestry farms has not been well 

studied (Franzel and Scherr 2002, Molua 2003, Rasul and Thapa 2006). The 

combined productivity and profitability of all cultivated plants in the system, i.e., 

have scarcely been addressed in complex agroforestry systems. This led us to 

determine whether farmers derive more income from complex than from simple 

agroforestry systems. The evaluation of multi-species and multiple-strata 

cropping systems remains a major challenge (Lamanda et al. 2012).  

The practice of agroforestry, i.e., of growing trees and crops together, is 

frequently promoted based on the idea that trees benefit crops; otherwise, 

farmers would probably not include the trees (Vandermeer et al. 2002). Species 

richness and vegetation structure are key components of structural complexity 

and form the basis of biodiversity (Hooper et al., 2005b). Biodiversity increases 

he efficient use of resources and promotes positive interaction between species 

and other ecosystem processes (Tilman and Pacala 1993, Hooper et al. 2005, 

Nakamura 2008, Smith et al. 2008, Cardinale et al. 2012b). According to Lehman 

and Tilman (2000) and de Aguiar et al. (2013), diversity increases community 

productivity but may reduce the productivity of individual species. The negative 
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effects of competition, which can lead to lower productivity in some species, are 

offset by complementarity and facilitation between other species, enabling 

greater productivity at the community level, i.e., greater global productivity.  

The Talamanca region in Costa Rica is characterized by highly diversified 

cropping systems. The natural environment of the Talamanca region has been 

an inherent part of the life of the indigenous Bribris and Cabecares (Boza 2014). 

In this region, agroforestry systems tend to mimic the forest both in structure and 

in species. The association of species follows ancestral rules linked to their 

functional role (Borge and Castillo 1997). The variability in the composition and 

structure of the agroforestry systems, however, have been poorly described, and 

their relevance to ecosystem performance has been little investigated (Deheuvels 

et al. 2012). The evaluation of the global productivity in these systems is 

challenging because of the diversity of the plants that are grown.  

The agroforestry systems in the Talamanca region include cacao (Theobroma 

cacao L.) and organic banana (Musa spp. AAA). Cacao is usually grown with 

other fruit trees and with shade trees, such as laurel (Cordia alliodora Ruiz and 

Pav.) or cedar (Cedrela odorata L.). These shade trees represent species from 

the natural forest and are either planted or are naturally growing remnants. 

Banana is an important crop for farmers and is grown with citrus (Citrus spp.), 

avocado (Persea americana Mill.), peach palm (Bactris gasipaes Kunth), and 

other fruit trees. Farmers claim that these other fruit trees grow well with cacao 

and banana (Farmers’ personal communication). Other species, such as jicaro 

(Crescentia cujete L.) and senko (Carludovica palmata Ruiz and Pav.), are used 

for crafts, while guava (Inga sp.) and turkey tail (Cupania cinerea Poepp.) are 

used for firewood. 

In this study, we estimated the productivity and associated income of all plants 

cultivated in nine 100-m² plots in each of 20 agroforestry fields in the Talamanca 

region. We provide the first assessment of the global income generated by these 

systems. We also investigated how the cultivated plant diversity affects the global 

income and per type of plant.  
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2. Methods    

 

2.1 Experimental site 

This research was performed within the Bribri indigenous territory of Talamanca 

in Limón Province, south-eastern Costa Rica (9°00′–9°50′ N, 82°35′–83°05′ W). 

In this region, most people obtain their livelihood from agriculture. The average 

annual precipitation is 3570 mm, and the average annual temperature is 25.9˚C. 

The climate is classified as tropical rain forest (bh-T) (Holdrige 1978).  

 

2.2 Data collection 

We studied a network of 20 agroforestry fields that included a wide range of 

diversity and spatial organization. Each field was 900 m2 (30 m x 30 m). The fields 

were in four villages (Amubri, Dururpe, Katsi, and Watsi) and were located 200-

400 m a.s.l. The farms were selected according to the following criteria: (i) the 

farmer was available and willing to participate in the research, (ii) the farm area 

was relatively flat, and (iii) the farm had the potential to produce at least one 

commercial crop. Each field was divided into nine plots (10 m X 10 m), and plot 

was the statistical unit used in the rest of the study.  

We identified and determined the coordinates for all of the cultivated plants (with 

a commercial value) in all plots. Each plant was tagged, allowing multiple 

measures over time. Overall, our dataset included 2299 plants. Herbaceous 

plants were not recorded. 

 

2.3 Global productivity 

To estimate banana yield, we measured the circumference of the pseudostem 

of the mother plant (1 m above ground level) and the heights of the sucker plants. 

Using allometric relationships, we estimated the potential production of banana 

and vegetative tissue for each banana plant (Fernándes and García 1972). In 

addition, we measured the weight of available bunches and counted the fruits. 
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Every banana stem was followed during 1 year to precisely measure those that 

were harvested or lost when plants were pruned or toppled-over. 

 

To estimate cacao yield, we counted healthy cacao pods during the peak 

harvests in May and November. According to Braudeau cited by (Deheuvels et 

al. 2012), each pod produces an average of 185 grams of fresh cacao beans. 

We multiplied this estimate of bean fresh weight by 0.56 to estimate the dry 

cacao commercial yield. 

 

For every timber tree, total height, commercial height, and DBH (diameter at 

breast height) were measured with a hypsometer and a diametric tape. Cubic 

meters of wood were calculated based on empirical relationships reported by 

Almendarez et al. (2013) and with a form factor of 0.7 for timber species. With 

firewood species, we applied the same method using a form factor of 0.5.  

 

Production of fruits other than banana and cacao was estimated for each tree 

using theoretical values reported by another study in the same region (Burgos et 

al. 2008). 

 

We estimated the incomes generated by each category of plant according to local 

market surveys of product prices provided by an association of smallholder 

farmers from Talamanca (APPTA); the estimates were converted into US dollars. 

Costs of labour, crop management, and land use were not included in our 

analysis. The market price of the products considered in our study were: banana 

$0.14/kg, cacao $2.25 kg, timber $0.18/m3   (regardless of species), firewood 

$0.03/m3, and other fruits between $0.18 and $1.80/kg depending on the species.  

 

2.4 Plant diversity 

Cultivated plant diversity in each plot was calculated using the Shannon–Wiener 

index, (Shannon 1948), which was calculated with the ‘diversity’ function of the 

‘vegan’ package, version 2.2-1 (Oksanen et al. 2015). 

We also assigned each plant to one of five categories: (i) banana, (ii) cacao, (iii) 

other fruit trees, (iv) timber, and (v) firewood. Cacao and banana are mainly sold 
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for the international market, while other fruit, timber, and firewood are sold locally 

or used for self-consumption.  

Table 1. Names and abundances of the plants in the 20 agroforestry fields 

studied in Talamanca Costa Rica. The plants were assigned to five categories or 

groups. Abundance refers to the number of plants in all 20 fields. 

Group / Taxa Abundance 
 

Group / Taxa Abundance 

Cacao group  
 

Timber group  

Hybrid 750 
 

Cordia alliodora 178 

    
 

Cedrela odorata 15 

Banana group  
 

Dipteryx panamensis 3 

Cavendish AAA 340 
 

Hyeronima alchorneoides 1 

Grosmichel AAA 277 
 

Chloroleucon eurycyclum 3 

Lacatan AA 158 
 

Gliricidia sepium 2 

Musa spp. AAA 248 
 

Brosimum alicastrum 1 

Musa spp. AAB 92 
 

Diphysa americana 1 

   
Enterolobium cyclocarpum 1 

Fruits group   
 

Brosimum lactensis 2 

Citrus × sinensis 38 
   

Citrus x paradisi 1 
   

Citrus × tangerina 5 
   

Citrus x aurantifolia 3 
 

Firewood group  

Citrus × limonia 2 
 

Cupania cinerea 24 

Bactris gasipaes 32 
 

Inga edulis 19 

Persea americana 19 
 

Cecropia obtusifolia 2 

Crescentia cujete 10 
 

Erythrina costaricensis 1 

Nephelium mutabile 8 
 

Cordia panamensis 8 

Artocarpus communis 7 
 

Palicourea tetragona 2 

Averrhoa carambola 5 
 

Croton billbergianus   3 

Licania platypus 5 
 

Neea psychotrioides 3 

Eugenia malaccensis 3 
 

Naucleopsis naga 1 

Eugenia stipitata 3 
 

Trichospermum grewiifolium                                1 

Cocos nucifera 2 
 

Cordia lucidula 3 

Annona purpurea 1 
 

Bursera simaruba 2 

Annona muricata 1 
 

Miconia trinerve 1 

Mangifera indica 1 
 

Spondias mombin 2 

Carica papaya 1 
 

Cestrum schlechtendalii 1 

Morinda citrifolia 1 
 

Alchornea costaricensis 1 

Bixa orellana 1 
 

Ocotea mollifolia 1 
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2.5 Statistical analyses 

Generalized linear mixed-effects models (Bolker et al. 2009) [79]were used to 

examine the relationship between the income generated by each group cultivated 

plants and plant diversity in each of the 180 plots. We considered the field as a 

random effect. To analyse the effect of plant diversity on each group, income was 

expressed per plant to remove the effect of density. Income was considered 

globally when considered at plot scale. The GLMMs were fitted by the Laplace 

approximation using the ‘lmer’ function in the ‘lme4’ package (Bates et al. 2011). 

All statistical analyses were performed with R 3.3.1 (R Core Team 2016) and with 

an alpha level of 0.05. 

 

3. Results 

 

3.1 Cultivated plant diversity 

Based on plant composition and spatial structure, the fields ranged from the 

relatively specialized (e.g., field 6 and 14) to the very complex (e.g., field 16 and 

17) (Figure 1). We identified 56 taxa (species and varieties) of cultivated plants 

in the 20 fields (Table 1). The timber category included 11 species; Cordia 

alliodora Ruiz and Pav was the most abundant, representing 84% of the 

individuals. Cedrela odorata L., Dipteryx panamensis, and Chloroleucon 

eurycyclum were much less abundant species in the timber category. Cupania 

cinerea Poepp. and Inga edulis represented 56% of the 18 firewood species. 

Fruits other than banana or cacao was the most diverse group with 22 taxa; Citrus 

x sinensis, Bactris gasipaes Kunth, and Persea americana Mill represented 26, 

21, and 13%, respectively, of the trees in this category. Annona muricata, 

Morinda citrifolia, and Carica papaya were also in the other fruits category but 

were represented by only one individual on specific farms. Cacao (Theobroma 

cacao L.) trees were all hybrids belonging to the Trinitarian variety. We identified 

eight varieties of banana Musa spp., and these were from the AA, AAA, AAB, and 

ABB groups.  
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Figure 1. The diversity and spatial distribution of individual cultivated plants in 
20 agroforestry fields in Talamanca, Costa Rica. Each plant was assigned to 
one of the five categories indicated at the top. The X and Y coordinates are in 
meters. Plots within fields are delineated by dotted lines. 

 

 

Income generated per plant was highest for the other fruits group, followed by the 

banana, cacao, and timber groups, which had similar incomes (Figure 2). Income 

generated was much lower for the firewood group than for the other four groups. 

Annually, the average production was 7351 Kg.ha-1 kg for banana, 191 Kg.ha-1 

for cacao, 26 m3 ha-1 for timber, and 5.25 m3 ha-1 for firewood.  
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Cultivated plant diversity had a significant effect on the income generated per 

plant in each category. As diversity increased, income per plant decreased for 

banana and cacao but increased for other fruits, timber, and firewood, and also 

increased when all cultivated plants were considered as one group, i.e., global 

income increased with diversity (Table 2, Figure 3).  

 

 

 

 

Figure 2. Estimated mean incomes (log transformed) for each plant group 
summed in each of the 180 plots in 20 agroforestry fields in Talamanca, Costa 
Rica.  
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Table 2. Relationship between income generated per plant (in each of five 

categories plus all categories of plants) and plant diversity in 180 plots in 20 

agroforestry fields in Talamanca Costa Rica. A generalized linear model including 

field as a random effect was used for the analysis. The significance of plant 

diversity was tested against the null model. Note that increases in diversity 

decreased income per plant for banana and cacao but increased income per plant 

for the other categories. 

Response 

variable Df Estimate AIC ΔAIC 

log-

Likelihood Chi-sq P 

All plants 3 66.61 2059.35 20.48 -1026.67 22.48 <0.0001 

banana 3 -0.12 10.01 5.25 -2.01 7.25 0.0071 

cacao 3 -0.23 240.90 5.03 -117.45 7.03 0.0080 

fruits 3 3.70 1197.72 7.15 -595.86 9.15 0.0025 

firewood 3 0.01 -753.33 2.50 379.67 4.50 0.0340 

timber 3 0.26 288.56 5.30 -141.28 7.30 0.0069 

Df: degrees of freedom, AIC: Akaike information criterion, ΔAIC: difference of AIC with the null 
model, Chi-sq: value of the Chi-square test, P: P-value of the Chi-square test. 

 

 

 

4. Discussion 

 

4.1 Cultivated plant diversity  

The 180 agroforestry plots in Talamanca, Costa Rica, exhibited a large range of 

plant diversity (the Shannon–Wiener index ranged from 0 to > 2), and the high 

diversity in some of these fields confirmed previous reports (Kapp 1989, Borge 

and Castillo 1997, Guiracocha 2000, Deheuvels et al. 2012). Plant density and 

spatial organization (Figure 1) suggested that farmers consider banana and 

cacao as the primary crops and timber and other fruits as secondary or 

complementary crops.  

As pointed out by the farmers interviewed, these complex cultivated plant 

communities reflect two main management strategies: i) to establish cacao and 
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banana in remnant forests and ii) to establish other fruits during the natural 

regeneration of timber and firewood trees. Trees from natural regeneration are 

usually preferred because they do not have to be purchased. In addition, 

regenerated trees are generally thought to be better adapted than planted trees 

to site conditions (de Sousa et al. 2016). The range in species diversity observed 

in this study was similar to that observed in previous studies (Anglaaere et al. 

2011, Deheuvels et al. 2012, Ngo Bieng et al. 2013).  

 

4.2 Global productivity 

Banana was the most abundant group with an average population density of 1100 

plants ha-1, which is not very different from the population density in intensively 

managed commercial plantations (1600 to 1900 plants ha-1). This highlights the 

importance of banana to the agroforestry farmers in Talamanca, Costa Rica. 

The average productivity of cacao was 191 Kg.ha-1 year-1, which was somewhat 

higher than the 136 Kg.ha-1 year-1 reported by Deheuvels et al. (2012) for similar 

agroforestry systems in Talamanca. Such yields are substantially lower than 

those of cacao agroforestry systems in Ghana and Ivory Coast, which average 

456 and 214 Kg.ha-1 year-1, respectively (Gockowski and Sonwa 2011). As noted 

by Deheuvels et al. (2012), the low cacao yields in Talamanca result from the 

absence of chemical input and from losses caused by the fungus Moniliophtora 

roreri, the agent of cacao frosty pod rot disease.  

The average C. alliadora timber production in the current study (26 m3 ha-1) was 

substantially lower than the 48 m3 ha-1 recently reported for Central America 

(Somarriba et al. 2014). This may result from differences in sites and planting 

densities. Although the yields in the current study are low, they clearly represent 

a key economical input for smallholders, especially when cacao prices are low 

(Ramírez et al. 2001). Relative to timber, firewood is not a key economic input 

and averaged 43 trees ha-1, which corresponds to 5.25 m3 ha-1. According to the 

farmers interviewed, these species are not sold but are used by the farmers 

themselves.  

The evaluation of the productivity of other fruits trees was difficult because of their 

seasonal variation. Our estimation of income from these fruits tree is clearly 
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higher than other cultivated plants (Figure 2). Although farmers don’t have 

production records, this result is consistent with farmer’s perception since they 

claim good yielding for fruit trees.  

 

 

4.3 Relationships between income and plant diversity 

Our results indicate that the effect of plant diversity on income depended on the 

plant group producing the income (Figure 3). Income generated by higher strata 

plant groups (other fruit trees, timber, and firewood) were positively correlated 

with plant diversity, while income generated by lower strata plant groups (banana 

and cacao) were negatively correlated with plant diversity. These results suggest 

that complementarity rather than competition dominated for the higher strata 

plants. Similar results have been reported in tropical and temperate forests 

(Hooper et al. 2005, Zhang et al. 2012, Jucker et al. 2014). In contrast, 

competition rather than complementarity apparently dominated for the lower 

strata cultivated plants. We suspect that the negative relationship between 

income generated by banana and cacao and plant diversity mainly resulted from 

competition for light.  
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Figure 3. Total mean income for all plants (global income) and in each group in 
response to plant species diversity in 20 agroforestry fields in Talamanca, Costa 
Rica. Diversity was assessed using the Shannon–Wiener index. Each circle 
indicates the mean value from one of the 180 plots. The lines show the prediction 
of the generalized linear model that included field as a random effect. 
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For the higher strata, our results are in-line with other studies that showed that 

functional complementary or facilitation may occur in complex plant communities 

(Hooper and Vitousek 1997, Smith et al. 2008, de Aguiar et al. 2013, Franco et 

al. 2015). As noted, however, the effect of diversity became negative at a lower 

canopy level in the current study. This suggests that when light becomes scarce, 

complementarity is reduced. This hypothesis is consistent with previous studies 

that found that overyielding is reduced when the availability of an essential 

resource (mineral nitrogen in soil) decreases (Reich et al. 2003, Dybzinski et al. 

2008, Lebauer and Treseder 2008, Jarchow and Liebman 2012). Our result is 

inconsistent with the gradient stress hypothesis, which predicts that interactions 

among plants shift from facilitation to competition as environmental stress 

decreases (Maestre et al. 2009). When all cultivated plants were treated as one 

group in the current study, the income per plant was positively related to plant 

diversity. This positive relationship was largely explained by the other fruits group, 

whose positive relationship with diversity more than countered the negative 

relationships for banana and cacao. Although we tried our best to assess the real 

value of other fruits, we may have slightly overestimated the value because some 

fruits are consumed by the grower and are not sold. This study suggests that an 

increase in the density of other fruit trees and therefore in fruit production could 

increase farmer income, but this possibility is limited by the poor access to 

markets in the region. Extension services and government incentives should 

probably focus on organizing distribution channels to facilitate the sale of fruit 

produced from these systems.  

Our results show that the effect of diversification on farmer income reflects a close 

balance between complementarity and competition. The results also suggest that 

complementarity might be increased by increasing plant diversity within the same 

stratum of the canopy. This could lead to some specialisation within fields such 

that banana are grown in one part of the field and other trees are grown in other 

parts.   
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Chapter 5 – Modelling and design of multi-

species cropping systems, case of 

agroforestry systems 

 

This chapter is complementary to the Chapter 4; it addresses specifically how the 

structure of the plant community affects productivity of crops in complex 

agroforestry systems. Here, the focus was made on the production of banana 

plants and cacao tree according to the composition of their neighbourhood.  

To improve the management of diversified cropping systems is crucial to 

understand how plants interact in spatially heterogeneous communities. 

However, in such complex systems, methods to disentangling these interactions   

are lacking, because each plant is embedded in a unique assemblage of 

associated plants, i.e., in a unique “neighbourhood”, and process-based models 

are difficult to parameterize. Here, we present an original individual-based 

statistical approach that allows the assessment of interactions in highly complex 

agroforestry systems. We applied our methodology in 19 plots (1 plot is missing, 

because the absent of banana plants) in farmer fields in Talamanca, Costa Rica 

to analyse the production of banana and cacao. One strength of our method is 

that we did not choose on a priori distance assumptions regarding of effect 

between plants. Our results highlight how yield can be improved in these systems 

and allow us to discuss the characterization of competition/facilitation processes 

concern to specific tropical systems. However, the individual-based approach 

used should be applicable to other complex plant communities.   

 

This study is currently submitted in the journal European Journal of Agronomy. 
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Abstract. Understanding how the spatial organization of diversified plant communities 

alters their performance is an important step in designing and managing diversified 

agroecosystems. The high level of spatial heterogeneity in tropical agroforests makes 

this task challenging. In 19 agroforestry plots in Talamanca (Costa Rica), we analyzed 

the effect of the structure of the plant community in the neighborhood of each individual 

cacao tree and banana plant on their yield. We developed an individual-based analysis 

in two steps. First, we selected without a priori assumptions on the distance at which the 

number of neighboring plants of a given functional group (banana plants, cacao trees, 

fruit trees, or wood trees) best explained the proportion of potential yield (PPY) of cacao 

and banana plants. In a second step, we tested the significance of the abundances of 

the four groups of plants in a complete model that predicted the PPY of banana and 

cacao plants. The abundance of neighboring plants did not increase banana PPY expect 

in the case of other banana plants, suggesting that banana plants yield better when 

aggregated. All other groups of plants reduced both banana and cacao PPY, except that 

the effects of wood trees were not significant. The optimal plant densities suggested by 

our analysis are similar to those recommended in monoculture. The two complete linear 

models predicted about 60% of the variance of the average response of the PPY to the 

neighboring plant assemblage. Our results also suggest that banana productivity may be 

increased by growing bananas in association with trees, especially with cacao trees and 

with moderate densities of larger trees.  
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1. Introduction 

 

Researchers are increasingly studying tropical agroforests as models for 

sustainable agricultural (Sperber et al. 2004, Leakey et al. 2005, Tscharntke et 

al. 2011). Tropical agroforests are characterized by associations of multi-strata, 

multi-functional, and uneven-aged trees and crops, resulting in high species 

richness and high structural complexity of the vegetation  (Sanchez 1995, Ngo 

Bieng et al. 2013). Few authors have tried to link the structural complexity of 

different land uses to productivity (Steffan-Dewenter et al. 2007). Understanding 

how the spatial organization of plants affects productivity is important for 

improving the design and management of complex systems  (Baskent and Jordan 

1996). However, the substantial spatial heterogeneity of highly diversified 

systems makes this task challenging. In such complex systems, each plant has 

a unique “neighborhood”, making the establishment of generic rules at the field 

scale extremely difficult.  

In the Talamanca region of Costa Rica, researchers have described how 

agroforests provide ecosystem services (such as carbon sequestration and 

biodiversity conservation) but have paid far less attention to how the overall 

productivity of such forests is related to their structure (Somarriba and Harvey 

2003, Suatunce et al. 2003). These descriptive studies led the authors to suggest 

that improvements in crop management, including improvements in spatial 

structure, are needed to increase productivity. The evaluation of productivity in 

the agroforestry systems in the Talamanca is challenging because of the diversity 

of the plants that are grown. These systems can include from one to more than 

30 associated tree species (Guiracocha et al. 2001). Two important cash crops 

in this region are cacao (Theobroma cacao L.) and organic banana (Musa spp.), 

which are perennial and semi-perennial, respectively. In addition to often being 

grown together, cacao and banana are usually grown with other fruit trees such 

as citrus (Citrus spp.), avocado (Persea americana Mill.), and peach palm 

(Bactris gasipaes Kunth), and also with shade trees, such as laurel (Cordia 

alliodora Ruiz and Pav.) or cedar (Cedrela odorata L.). These shade trees 
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represent species from the natural forest and are either planted or are naturally 

growing remnants.  

Even when a field is composed of plants of the same species, the processes that 

determine how individual plants compete for resources are complex, because 

plants are  forced to share limited resources (Sinoquet and Cruz 1995). The 

spatial organization of individuals in a community may be one of the most 

important structural characteristics that influence complementarity between 

species, biodiversity, and ecosystem functioning (Mokany et al. 2008, Perfecto 

and Vandermeer 2008, Pringle et al. 2010). Few studies of vegetation structure 

in agroforests, however, have dealt with spatial structure, i.e., the horizontal 

organization of individuals in space and  the relationships between individuals in 

a “neighborhood”  (Illian et al. 2008, Ngo Bieng et al. 2011). Although spatial 

heterogeneity of plants is recognized as a powerful promoter of coexistence 

between plants (Monzeglio and Stoll 2005), explaining species performances 

remains challenging in fields where plant spatial organization is heterogeneous. 

In such fields, an individual-based analysis (i.e., an analysis of individual plants, 

their properties, and their surroundings) may be useful (DeAngelis and Grimm 

2014).  

In this paper, we analyzed how the structure of the plant community in the 

neighborhood of individual cacao and banana trees affects their yield (assessed 

by the proportion of potential yield, PPY). We used a data set of 19 plots of 

agroforestry systems in Talamanca, Costa Rica.  The analyses had two steps. 

First, we determined the area around each banana plant or cacao tree (as 

indicated by a radius) in which the number of trees of a given neighboring group 

(including banana plants, cacao trees, fruit trees, or wood trees) best explained 

the PPY of cacao and banana. Second, we tested the significance of the 

abundance of the four groups of plants in a complete model that predicted the 

PPY of banana and cacao plants. Based on the results, we finally discuss how 

the production of banana and cacao can be optimized in complex, multistrata 

agroecosystems.  
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2. Methods    

 

2.1 Field sites 

This research was performed in the Bribri indigenous territory of Talamanca, 

Limón Province, south-eastern Costa Rica (9°00′–9°50′ N, 82°35′–83°05′ W). 

The average annual precipitation is 3570 mm, and the average annual 

temperature is 25.9˚C. The climate is classified as tropical rain forest (bh-T) 

(Holdrige 1978). The studied sites contain typical agroforestry systems in which 

the principal commercial crops, banana and cacao, are accompanied by a wide 

range of other tree species. The selected fields have diverse spatial 

arrangements with densities of banana ranging from 22 to 1778 plants per ha and 

those of cacao ranging from 0 to 900 plants per ha (see Figure 1 for maps of 

plots). 

We studied a network of 19 agroforestry fields; each field was 900 m2 (30 m x 30 

m). The selected cropping systems represent the smallholder farms (2 ha on 

average) in the Talamanca region, and the species spatial design follows 

ancestral rules that are linked to the trees’ functional roles in natural forests. The 

productivity of farmers in this region is limited by low levels of education, 

infrastructure, and community development (Borge and Castillo 1997). 
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Figure 1. Maps of the diversity and spatial distribution of individual cultivated 
plants in the 19 studied plots in Talamanca, Costa Rica. Each plant was assigned 
to one of the four categories (green: banana plants, brown: cacao trees, orange: 
fruit trees, grey: wood trees). The X and Y coordinates are in meters. 
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Table 1. The plant taxa measured in this study and their assignment to the four 

functional groups. 

Cacao group Wood tree group 

Theobroma cacao - Trinitarian Cordia alliodora 

Banana group Cedrela odorata 

Musa - Cavendish AAA Dipteryx panamensis 

Musa - Grosmichel AAA Hyeronima alchorneoides 

Musa - Lacatan AA Chloroleucon eurycyclum 

Fruits tree group Gliricidia sepium 

Citrus × sinensis Brosimum alicastrum 

Citrus x paradisi Diphysa americana 

Citrus × tangerina Enterolobium cyclocarpum 

Citrus x aurantifolia Brosimum lactensis 

Citrus × limonia Cupania cinerea 

Bactris gasipaes Inga edulis 

Persea americana Cecropia obtusifolia 

Crescentia cujete Erythrina costaricensis 

Nephelium mutabile Cordia panamensis 

Artocarpus communis Palicourea tetragona 

Averrhoa carambola Croton billbergianus   

Licania platypus Neea psychotrioides 

Eugenia malaccensis Naucleopsis naga 

Eugenia stipitata Trichospermum grewiifolium                                

Cocos nucifera Cordia lucidula 

Annona purpurea Bursera simaruba 

Annona muricata Miconia trinerve 

Mangifera indica Spondias mombin 

Carica papaya Cestrum schlechtendalii 

Morinda citrifolia Alchornea costaricensis 

Bixa orellana Ocotea mollifolia 
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2.2  Determination of plant community structure  

From February to April 2015, we identified and determined the coordinates for all of the 

cultivated plants (with a commercial value, we did not accounted for weeds that are 

regularly control manually all over the fields) in each plot. Plants without commercial 

value were not included in this study. Plants with commercial value were identified to 

either the species or family level and were assigned to one of four categories: banana 

plants, cacao trees, wood trees, and fruits trees. Wood trees include timberwood trees 

and firewood trees, this group were the tallest, forming the top canopy layer (with a 

maximum height of 40 m). The intermediate vegetation layers were represented by fruit 

trees (with a maximum height of 26 m), and cacao and banana were located in the lower 

strata (with an average height of 6 m). The locations of plants of each category in each 

plot are shown in Figure S1. Plants shorter than 1.5 m were not recorded. The data set 

included 2299 plants, and the plant taxa in the data set are listed in Table 1. 

 

2.3 Determination of the PPY for banana plants and cacao trees 

Our goal was to determine for each banana plant or cacao tree how much of 

their potential growth or production was achieved. We assumed that the potential 

growth (banana plants) and potential production (cacao trees) was depending 

on the size of each plant at the first date of measure. By plotting the growth or 

the production according to the initial biomass or circumference, we were able 

to define an envelope curve that we assumed to represent the potential of growth 

or production of a plant for a given initial size. This potential growth or production 

represents the maximal values in the conditions of our plot networks. Similar to 

classical yield gap analyses (Neumann et al. 2010), we selected the shape of 

the envelop curves according to biological hypotheses with the stop of the growth 

after flowering for banana plants and a decrease of the production for older 

cacao trees.  

The study included three varieties of banana: Cavendish, Gros Michel, and 

Lacatan. In April 2015, we used allometric relationships (Fernándes and García 

1972, Yamaguchi and Araki 2004, Damour et al. 2012, Ripoche et al. 2012) to 

estimate banana vegetative dry biomass based on the circumference of the 

pseudostem of each mother plant (1 m above ground level), following the 

equation:  
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Dry Biomass= 0,31287 + 0,09546 * Girth 

With the Dry Biomass in Kg and the Girth measured at 1m (in cm). 

 

By measuring the circumferences again in July 2015, we were able to estimate 

the increase in vegetative biomass during the 17 weeks between measurements. 

The interval between measurements was identical for all plants. We assumed 

that the potential growth of banana followed a parabolic curve. In this curve, the 

decrease in vegetative biomass growth for plants with bigger initial biomass 

corresponds to the progressive switch of banana from vegetative to reproductive 

growth (this later was not taken into account in our study). The proportion of 

potential yield (PPY) for each banana plant was then calculated as the ratio of 

measured increase in biomass to potential increase in biomass. 

We estimated cacao yields by summing the healthy cacao pods counted on each 

tree during the two peaks of harvests in May and November 2015 (Deheuvels et 

al. 2012). We determined the potential yield for each tree based on the 

circumference of the tree at 1 m above ground level in April 2015. Similarly to 

banana plants, we determined the gap between the observed and potential yield 

for each cacao tree. We assumed that the potential number of pods depended 

on the tree girth (measured in April 2015 and assumed not to dramatically change 

during the year of measures) following a log-normal curve. This type of curve 

allows taking into account the increase of the yield potential from small to medium 

size trees and then its decrease for bigger (older) trees. The PPY of cacao tree 

was then calculated as the ratio between the measured number of pods and the 

potential number of pods for the same girth.  

 

2.4 Statistical analysis 

Our aim was to determine the effect of neighboring plants on the PPY of banana 

and cacao plants. To this end, we used a linear mixed-effect model with the PPY 

as a response variable and the number of neighboring plants of each category 

as predictors. In all cases, the plot was included as a random factor on the 

intercept of the model, which enabled us to take account for the variability due to 

the conditions of each plot: pest and diseases, soil, landscape context, and crop 

management. We carried out the analysis in two steps. First, we determined the 
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radius that best explained the PPY. We used linear mixed models, with the 

number of plants of one category at a time (banana, cocoa, wood trees, fruit 

trees) as a predictor. The log-likelihood of the model was used as an estimator of 

the goodness of fit (McCullagh 1984). For each category of plants, we selected 

the radius with the greatest log-likelihood. When more than one peak was 

observed, we selected the one with the smaller radius because a small radius 

has a minimal implication in terms of management for farmers (smaller area to 

consider). In the second step, we tested the significance of the effect of the 

predictors (number of plants of each category of plants that were within the radius 

determined in the first step of the analysis) on the PPY in a complete model. We 

also determined whether the quadratic value of each predictor was significant 

(significance would indicate a non-linear response to the predictor). All models 

were fitted with the ‘lmer’ function in the ‘lme4’ package (Bates et al. 2011). All 

statistical analyses were performed with R 3.3.0  (R Core Team 2016) and with 

an alpha level of 0.05. 

 

3. Results 

The patterns of biomass increase plotted on initial circumference were similar for 

the three varieties of banana (Figure 2A, B, C). The vegetative growth of the 

banana plants increased as their initial biomass increased but then decreased 

slightly when reproductive growth began. The maximal increase in biomass 

differed among varieties; at 4 months, when the increase was greatest, the 

increase was 12, 10, and 9 kg for Gros Michel, Cavendish, and Lacatan varieties, 

respectively. For cacao most of the trees produced a small number of cacao 

pods, i.e., between 0-10 pods/tree (Figure 2D). Only a few cacao trees produced 

more than 10 pods. The potential number of pods produced increased as the 

stem circumference increased up to 13 cm and then decreased. 
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Figure 2. Relationship between biomass increase and initial plant circumference 
for the three varieties of banana and between pod number and initial tree 
circumference for the one variety of cacao. Circumference was measured 1 m 
above soil level. Each dot represents the data from a single banana plant or 
cacao tree. The increase in banana biomass was estimated over a 17-week 
period. Cacao pod numbers are the totals of two harvest periods. For the three 
banana varieties, the curves show that the vegetative growth rate increased up 
to the reproductive stage and then slightly declined. For cacao, the curve shows 
that the number of cacao pods increased as the initial tree circumference 
increased up to 13 cm and then greatly decreased.  
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The radii that best predicted banana and cacao PPY based on the abundance of 

neighboring plants, i.e.,  banana plants (vb), cacao trees (vc), fruit trees (vf), and 

wood trees (vt), are presented in Figures 3 and 4. The radius that best explained 

the variability in the PPY of banana plants was 2.6 m for other banana plants, 2.9 

m for cacao trees, 6.2 m for fruit trees, and 7.8 m for wood trees (Figure 3). The 

radius that best explained the variability in the PPY of cacao trees was 3.9 for 

banana plants, 5.5 m for other cacao trees, 3.9 m for fruit trees, and 5.1 m for 

wood trees (Figure 4). After backward selection, three predictors for banana PPY 

(vb2.6, vc2.9, and vf6.2) and three for cacao PPY (vb3.9, vc5.5, and vf3.9) were 

significant in a complete model; vt was not significant in either model (Table 2 

and 3). For the banana PPY model, the quadratic terms of vc and vf were also 

significant or nearly significant. We graphically verified the normality of the 

residues of the two complete models (see Figure S1). 

 

Table 2. Results of the analysis of deviance on the effect of neighboring plants 

on the proportion of potential yield (PPY) of banana plants with a mixed-effect 

linear model (with the plot as a random factor on the intercept).  

 Predictors Df AIC  LRT P 

Vb 1 -80.953 156.298 0.00007 

Vc 1 -94.413 21.704 0.14069     

vc² 1 -92.689 38.944 0.04845 

vf² 1 -92.995 35.886 0.05818   

vt 1 -94.685 18.984 0.16826 

 
Df: degrees of freedom, AIC: Akaike information criterion, LRT: Likelihood-ratio test, P: p-value of 
the Chi-square test, vb: number of banana plants within a 2.6-m radius, vc: number of cacao trees 
within a 2.9-m radius, vf: number of fruit trees within a 6.2-m radius, vt: number of wood trees 
within a 7.8-m radius.  
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Figure 3. Selection of the distances (radii) at which each category of neighboring 
plant had the most effect on the log-likelihoods of the predictions of the proportion 
of potential yield (PPY) of banana. The distances correspond to the highest 
differences in AIC values from the null model (AIC). The distance or radius that 
best predicted the PPY of banana plants was 2.6 m for other banana plants, 2.9 
m for cacao trees, 6.2 m for fruit trees, and 7.8 m for wood trees. 
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Figure 4. Selection of the distances (radii) at which each category of neighboring 
plants had the most effect on the log-likelihoods of the predictions of the 
proportion of potential yield (PPY) of cacao. The distances correspond to the 
highest differences in AIC values from the null model (AIC). The distance or 
radius that best predicted the PPY of cacao trees was 3.9 m for banana plants, 
5.5 m for other cacao trees, 3.9 m for fruit trees, and 5.1 m for wood trees.  
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Table 3. Results of the analysis of deviance on the effect of neighboring plants 

on the proportion of potential yield (PPY) of cacao trees with a mixed-effect linear 

model (with the plot as a random factor on the intercept). 

 Predictors Df AIC  LRT P 

vb 1 461.79   5.9602    0.01463 

vc 1 474.66 18.8301 0.00001 

vf² 1 462.44   6.6052    0.01017 

vt² 1 455.89   0.0630    0.80185   

Df: degrees of freedom, AIC: Akaike information criterion, LRT: Likelihood-ratio test, P: p-value of 
the Chi-square test, vb: number of banana plants within a 3.9-m radius, vc: number of cacao trees 
within a 5.5-m radius, vf: number of fruit trees within a 3.9-m radius, vt: number of wood trees 
within a 5.1-m radius.  

 

Interestingly, only vb2.6 had a positive effect on banana PPY, and the relationship 

plateaued above 6 banana plants (Figure 5). The other three predictors had a 

negative effect on banana PPY (Figure 5). When the number of cacao trees 

exceeded 3 within a 2.9-m radius, the banana PPY clearly decreased. The three 

significant predictors had a negative effect on cacao PPY (Figure 6). The 

negative slope was steepest for the effect of vc.  

When the PPY values predicted by the complete model (a model that included all 

significant predictors; see Table 2 and 3) were plotted on the observed PPY 

values, the R2 value was 0.60 for banana and 0.57 for cacao (Figure 6). In other 

words, the models that included the effects of all three categories of neighboring 

plants performed well. 
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Figure 5. Model fit of the predictions of the proportion of potential yield (PPY) of 
banana according to the number of banana plants in a 2.6 m radius, fruit trees in 
a 6.2 m radius, cacao trees in a 2.9 m radius, and wood trees in a 7.8 m radius. 
The black lines show the mean responses, and the grey lines show the standard 
errors predicted by the ´lmer´ (dashed-lines show non-significant relations). 
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Figure 6. Model fit of the predictions of the proportion of the cacao potential yield 
(PPY) according to the number of banana plants in a 3.9 m radius, fruit trees in a 
3.9 m radius, cacao trees in a 5.5 m radius, and wood trees in a 5.1 m radius. 
The black lines show the mean responses, and the grey lines show the standard 
errors predicted by the ´lmer´ (dashed-lines show non-significant relations).  
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4. Discussion 

 

Overall, we found that the area around a banana or cacao plant (as indicated by 

a radius) that had the greatest effect on PPY was greater for larger neighbouring 

plants than for smaller neighbouring plants. In the banana PPY model, for 

example, the radius that had the largest effect on banana PPY was greater for 

the larger neighbors (fruit or wood trees) than for smaller neighbors (cacao trees 

or banana plants). The radii that had the greatest effect on PPY were smaller in 

the cacao PPY model than in the banana PPY model probably because cacao 

trees are larger than banana plants. We found that the number of banana plants 

in a radius of 2.6 m had a significant positive influence on banana PPY, while 

cacao trees in a 2.9 m radius and fruit trees in a 6.2 m radius had significance 

negative influence. We suggest that this surprising result may be attributed to 

crop management, which tends to be better when banana density is high rather 

than low (unpublished observations).  

Wood trees in the neighborhood of banana plants and cacao trees tended to 

reduce the PPY but the effect was not statistically significant. Even though wood 

trees were more numerous than fruit trees in the neighborhood of banana plants 

and cacao trees, the effect of fruit trees was statistically significant but that of 

wood trees was not. This difference may be attributed to the position of the trees 

in the canopy and to the resulting effects on shade intensity (Gidoin et al. 2014), 

fruit trees also have denser canopies than wood trees (Somarriba et al. 2014). 

Because wood trees are high in the canopy (Ngo Bieng et al. 2013), they provide 

a low level of uniform shading to the shorter banana plants and cacao trees. This 

suggests that wood trees at an adequate density and spatial distribution should 

not affect banana and cacao productivity, which is important because wood trees 

help provide other ecosystem services in cropping systems (Tscharntke et al. 

2011). Relative to wood trees, fruits trees provide more localized and more 

intensive shade (Gidoin et al. 2014). This more localized shade may reduce 

banana and cacao productivity. Ours results agree with previous studies that 

described a positive correlation between yields and light availability when growth 

is not limited by nutrient availability (Vernon 1967, Jucker et al. 2014). This 

suggests that when light becomes scarce, complementarity is reduced. The latter 
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hypothesis is consistent with findings of Zuidema et al. (2005), who showed that 

heavy shading (>60%) in agroforestry systems reduced yields by more than one-

third. 

 Because our study was carried out on individual plants, it generated a large 

quantity of field data and was statistically powerful. Furthermore, the analysis of 

the most important distance (radius) for each type of neighboring plant without 

any a priori assumption provided new information on the distance at which plants 

interact. This assessment of distance also provides practical guidance for how 

neighboring plants may be organized to increase banana and cacao productivity. 

For example, our analysis (Figure 4) suggests that 4 banana plants in a 2.6-m 

radius, 2 cacaos trees in 2.9-m radius, 2 fruit trees in 6.2-m radius, and 2 wood 

trees in 7.8-m radius should not reduce banana productivity. These values 

correspond to densities per ha of 1884, 757, 166, and 105 for banana plants, 

cacao trees, fruit trees, and wood trees, respectively. In the case of cacao (Figure 

5), 4 banana plants in a 3.9-m radius, 2 cacaos trees in 5.5-m radius, 2 fruit trees 

in 3.9-m radius, and 1 wood tree in 5.1-m radius should not reduce the cacao 

productivity. These values correspond to densities per ha of 838, 210, 421, and 

122 banana plants, cacao trees, fruit trees, and wood trees, respectively.  

For monocultures, the recommended densities are 1600–1900, 900–1100, 200–

300, and 80-120 individuals ha-1 for banana plants, cacao trees, fruit trees, and 

wood trees, respectively (Robinson and Nel 1985, Wheaton et al. 1986, Wood 

and Lass 2008, Suatunce et al. 2009). These recommended densities in 

monoculture are similar to the optimal densities suggested by our models. For 

cacao, the average production measured in this study (191 Kg ha-1) was low 

compared to the potential production (as high as 1800 Kg ha-1 in Malaysia, 800 

Kg ha-1 in Ivory Coast, 350 Kg ha-1 in Ghana, and 250 Kg ha-1 in Central America) 

(Dormon et al. 2004). One likely reason for the low production of cacao trees in 

the current study was disease caused by the fungus Moniliophthora roreri and 

other pathogens (Leach et al. 2002).  

In contrast to the production of cacao, the vegetative growth of bananas in the 

current study (which ranged from 9 and 11 Kg per banana plant in 17 weeks 

depending on the variety) is close to the potential of bananas as measured in 

intensively managed monoculture (Tixier et al. 2008, Ripoche et al. 2012). The 
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high productivity may be explained by the low levels of pests and diseases on 

bananas grown in agroforestry systems (Schroth et al. 2000, Staver et al. 2001). 

This suggests that the negative effects of neighboring trees on banana plants in 

our study resulted from competition for light and mineral resources. On an applied 

perspectives, it thus seems possible to grow highly productive banana plants in 

association with trees, especially with cacao trees and with moderate densities 

of bigger trees (about 100 fruit trees or 150 wood trees per ha). This result is 

consistent with Deheuvels et al., (2012), who showed that cacao yield per tree 

was significantly higher in combination with high than with low Musa densities, 

suggesting that the spatial distribution of plants may be more important than their 

botanical composition.  

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Predicted vs. measured proportion of the potential yield (PPY) for 
banana plants and cacao trees for each existing assemblage of neighboring 
plants (i.e., number of banana plants, cacao trees, and fruits trees within the 
radius considered in the PPY models). Horizontal bars indicate the standard 
error, and vertical bars indicate the prediction error. The two models used for 
banana and cacao PPY predictions are presented in Table 1. 
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Our statistical PPY models were relatively accurate in predicting the average 

effect of all plant assemblages (Figure 7); both models explained about 60% of 

the variance in PPY was explained, which could be considered as satisfying, 

especially when considering the low number of parameters used. It is not sure 

that process-based models can better explain the variance of plant productivity. 

However, it would certainly valuable to intend linking statistical models with more 

process-based models. The development of process-based models will certainly 

require a huge amount of measurements not only of plant growth (by organ) but 

also of environmental variables linked to the availability of resources (e.g., local 

soil nutrient content and radiation available for each plant). To our knowledge, 

sufficient measurements to build such process-based model have only been 

obtained in relatively homogeneous systems as coffee agroforestry systems 

(Roupsard et al. 2011, Charbonnier et al. 2013). Process-based models would 

be useful to better understand processes at play although there is a risk that they 

would be over-parameterized compared to statistical approaches as presented 

here. 
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Figure S1. Distribution of the residuals of the two complete models that predict 

the banana and cacao PPY based on the number of neighboring plant as 

presented in Table 1. 
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Chapter 6 – General Discussion  

 

In this section, I aimed at discussing globally the findings from the meta-analysis 

presented in Chapter 3 and the results from the analysis of the field study carried 

out in agroforestry systems of Talamanca presented in Chapter 4 and 5. My 

objective here is to synthesize the knowledge related to the plant 

richness/productivity hypothesis in order to draw directions to improve multi-

species cropping systems. 

 

 

1. The contribution of the study 

 

1.1 Reconciling plant richness and productivity  

Plant richness tends to have a positive effect on plant productivity in both natural 

and managed ecosystems (Barot et al. 2017). Although debates and 

controversies remain on the exact role of biodiversity in productivity (Loreau et 

al. 2001). Both ecology and agronomy can contribute to improvements of 

intercropping systems, even available evidence indicates that plant richness 

matters more in agricultural ecosystems than in natural ecosystems (Barot et al. 

2017). In line with our meta-analysis, previous studies confirmed that annual 

intercropping and grassland mixtures experiments are likely to be more 

productive than monocropping (Li et al. 2014, Craven et al. 2016). The originality 

of our meta-analysis lies in the fact that we included a wide range of 

agroecosystems. We found that plant richness increases the overall ecosystem 

productivity but that the magnitude of this positive effect tends to decrease with 

the plant richness. In other words, the results suggest that the gain in productivity 

per unit of diversity added decreases as diversity increases. It suggests that if the 

objective is solely the productivity, highest yield may be obtained with moderate 

plant richness. Our meta-analysis also showed, that the responses of productivity 

to plant richness were smaller for agroforestry systems than for annual plants 

systems (estimated though the effect size) (see figure 2F, Chapter 3, p55). This 



107 
 

suggests that the issue of light partitioning is probably a strong factor that may be 

taken in consideration when designing “biodiversified” schemes.   

 

Our study of multispecies agroforestry fields in Talamanca confirmed these 

findings for the main cash crops (banana and cacao). Although the global income 

per plant was positively correlated with plant diversity, the values of banana and 

cacao were clearly negatively correlated with plant diversity. The positive 

relationship between global incomes and plant diversity was largely explained by 

income generated by higher strata plant groups (wood and fruit trees). We can 

hypothesize that there was no (or few) complementarity between lower and 

higher strata plants. The asymmetry in accessing light probably explains the 

inverse production/diversity relation observed between strata. Our meta-analysis 

suggests that plant diversification is more likely to increase production when it 

occurs in a single stratum. However in our measures in agroforestry systems, the 

negative correlation between income from low strata plants and plant richness is 

rather weak (Figure 1), this finding could also depends on the shading tolerance 

of species. 

 

Figure 1. Total mean income (global income) for higher strata plant groups 
(timber wood and other fruit trees) and lower strata plant groups (banana and 
cacao) in response to plant species diversity in 20 agroforestry fields in 
Talamanca, Costa Rica. Diversity was assessed using the Shannon–Wiener 
index. Each circle indicates the mean value from one of the 180 plots. The lines 
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show the prediction of the generalized linear model that included field as a 
random effect. 

 

1.2  Application of the statistical modelling to complex 

agroforestry systems 

Methods for technology development in complexity multispecies systems barely 

exist. In particular, the modelling tools widely used in agronomy are not well 

adapted to assess and design sustainable multispecies cropping systems 

(Malézieux et al. 2009). In our meta-analysis the complete statistical model 

suggests that perennial plants may help stabilize the productivity across a broad 

range of plant richness, a general idea that is in line with agroecology. To tackle 

the very high level of complexity of agroforestry fields in Talamanca, we 

developed a statistical approach based on the response of individual plants to 

their neighbours. The originality of this method lies in: 

i) The individual analysis. This was particularly crucial because in such 

diversified systems, the spatial structure may display a high variability 

that makes the neighborhood of each plant different. 

ii) The use of a method similar to yield gap analysis to determine the 

potential growth of banana and cacao according to their initial size 

(called percentage of the potential yield PPY). This approach allowed 

us to take into account the fact that the growth or the yield of a given 

plant is not only depending on its environment but also to its size. 

Through this approach, it was possible to take into account the fact that 

the vegetative growth of banana stop after flowering and that young 

and old cacao trees produce less pods than mid-age ones. 

iii) The fact that we did not choose an a priori distance of effect between 

plants. Knowing at what distance plants are likely to interact is useful 

1) to build a model and 2) to provide practical guidance on how plants 

may be organized in the fields to increase banana and cacao 

productivity. 
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Our study generated a large quantity of field data from individual plants that allow 

us to analyze the productivity according to the specification of the four categories 

of plants groups assigned: i) banana, ii) cacao, iii) wood trees, and iv) fruits trees, 

we defined this approximation because it is closer to the reality of farmers in terms 

of commercial products. However, it may have some limits to deal with functional 

groups rather that with species or varieties of plants, for instance in a same group, 

some species could be more productive than others. 

 

1.3  Competition versus complementarity 

Multispecies systems may maximize beneficial interactions while minimizing 

competition for space, competition for light between canopies, and competition 

for water and nutrients between root systems. The ecologist provides a rich 

theoretical framework for approaching the role of biodiversity in productivity. 

However in cultivated ecosystems there is few application for this theoretical 

framework (Malézieux et al. 2009). Mixed plants species in cropping systems 

requires a carefully analysis, because of triggered complementarity effect 

hypothesis (Barot et al. 2017). 

In our meta-analysis, we found that the response of productivity to plant richness 

was affected by the type of plants (annual or perennial) in the community and the 

strata level layers of the canopy structure (multi-strata, mono-strata). The effect 

of plant richness on the productivity, for example, was reduced by the presence 

of trees in the canopy (see figure 2E, Chapter 3, p55). These findings are in line 

with the results of our models of agroforestry systems in Talamanca. We suggest 

that the negative relationship between income generated by lower strata plant 

group (banana and cacao) and the positive relationship between income 

generated by higher strata plant group (wood trees and other fruit trees) with plant 

diversity, are resulted from belowground and aboveground competition, but 

mainly we suspect that trees, by greatly reducing the solar radiation for the lower 

strata plant group. Similar results have been reported in tropical and temperate 

forests (Hooper et al. 2005, Zhang et al. 2012, Jucker et al. 2014). 
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Competition rather than complementarity apparently dominated for the lower 

strata cultivated plants. When light becomes scarce, complementarity is reduced 

(Reich et al. 2003, Dybzinski et al. 2008, Lebauer and Treseder 2008, Jarchow 

and Liebman 2012). Barot et al. (2017) also add that possible high variances in 

architectural traits could also impact the microclimate in and below the canopy 

structure and modify productivity.  

The capture and use of solar radiation received an important attention in multi-

species systems, overyielding by mixtures have often been attributed to more 

efficient use of light by their canopies. (Keating and Carberry 1993, Malézieux et 

al. 2009). We suspect that the availability of solar radiation, which decreases with 

latitude (Budyko 1969), might alter the relationship between plant richness and 

productivity. The strong solar radiation at lower latitudes might promote 

complementarity between plant species, while the weaker radiation at higher 

latitudes might promote competition and thereby dampen the effect of plant 

richness (see figure 6B, Chapter 3, p64). We confirm that the design of plant-

diversified systems should take into account the local availability of solar radiation 

as determinant environmental factor. 

Our findings also triggers paradigmatic–stress gradient hypothesis which predicts 

a linear increase in the intensity of facilitation (that is a type of complementarity) 

as environmental conditions become increasingly stressful (Bakker et al. 2013). 

Our results are consistent with the resource availability—competition intensity 

hypothesis, which predicts that competition increases with productivity of the 

species involved and on the nature of the stress (Maestre et al. 2009). However, 

the slower decrease of the effect size in the case of systems that includes 

perennials compared to those with only annuals (see figure 6A, Chapter 3, p64), 

suggests that for systems that are prone to strong variation (environmental, 

compositional and temporal) the addition of trees may be an option to stabilize 

yield. 

 

1.4  Implication of results for the management of AFS 

As mentioned before, previous meta-analyses showed how mixtures of plants 

could be beneficial to the yield; However, it should be addressed that these 
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studies focused either on short-term experiments with annual (Yu et al. 2015) 

either on grasslands without an upper canopy layer (Cardinale et al. 2007, Li et 

al. 2014, Craven et al. 2016). Our results failed to show that the stratification of 

canopy layers promotes complementary effects in resources exploitation (Parker 

1995, Fridley 2003). However, our analysis predicted that the variability in effect 

size for systems increases with the level of the plant richness in systems with 

only annuals but is stable in systems with perennials. This suggests that perennial 

plants may help stabilize the productivity across a broad range of plant richness. 

In future meta-analyses and field studies, it would be valuable to further evaluate 

the relationship between productivity stabilization and plant richness. 

From an agroforestry perspective, our results suggest that the intercropping with 

plants that occupy different canopy strata does not lead to overyielding. This is 

especially likely to be the case for high productivity systems, in which light is often 

a limiting factor and in which tall plants out compete shorter ones (Rajaniemi 

2003). In such systems, different species are more likely to compete for light than 

participate in light partitioning. More research is needed to better understand light 

partitioning between crops because light partitioning is often considered in the 

design of intercropping systems (Allen et al. 1976, Ewel 1986, Cruz and Sinoquet 

1994).  

Overall, we found that the number of plants inside an area around a banana or 

cacao plant (as indicated by a radius) had a greater negative effect on PPY for 

larger neighbouring plants (fruit or wood trees)  than for smaller neighbouring 

plants (cacao trees or banana plants). In the banana PPY model, the radius that 

had the largest effect on banana PPY was greater for the larger neighbors than 

for smaller neighbors (see figure 5 Chapter 5, p99). We found that the number 

of banana plants in a radius of 2.6 m had a significant positive influence on 

banana PPY, while cacao trees in a 2.9 m radius and fruit trees in a 6.2 m radius 

had significance negative influence. We suggest that this surprising result may 

be attributed to crop management, which tends to be better when banana density 

is high rather than low (unpublished observations).  
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1.4.1 Application to the Talamanca case 

The 180 agroforestry plots on the 20 fields in Talamanca, Costa Rica, exhibited 

a large range of plant diversity (the Shannon–Wiener index ranged from 0 to > 2, 

with a total of 56 species of cultivated plants). The high range in species diversity 

observed in this study was similar to that observed in previous studies (Borge 

and Castillo 1997, Guiracocha 2000, Anglaaere et al. 2011, Deheuvels et al. 

2012, Ngo Bieng et al. 2013). Plant density and spatial organization suggested 

that farmers consider banana and cacao as the primary crops and timber and 

other fruits as secondary or complementary crops.  

As pointed out by the farmers interviewed, these complex cultivated plant 

communities, reflect two main management strategies: i) to establish cacao and 

banana in remnant forests and ii) to establish other fruits during the natural 

regeneration of timber and firewood trees. Trees from natural regeneration are 

usually preferred because they do not have to purchase plantlets. In addition, 

regenerated trees are generally thought to be better adapted than planted trees 

to site conditions (de Sousa et al. 2016).  

Banana was the most abundant group with an average population density of 1100 

plants ha1, which is not very different from the population density in intensively 

managed commercial plantations (1600 to 1900 plants ha-1). This highlights the 

importance of banana to the agroforestry farmers in Talamanca. 

Recommended densities in monoculture are similar to the optimal densities 

suggested by our models. However for cacao, the average production measured 

in this study (191 Kg.ha-1) was low compared to the potential production (1800 

Kg.ha-1 in Malaysia, 800 Kg.ha-1 in Ivory Coast, 350 Kg.ha-1 in Ghana, and 250 

Kg.ha-1 in Central America) (Dormon et al. 2004). In contrast to the production 

of cacao, the vegetative growth of bananas in the current study (which ranged 

from 9 and 11 Kg per banana plant in 17 weeks depending on the variety) is close 

to the potential of bananas as measured in intensively managed monoculture 

(Tixier et al. 2008, Ripoche et al. 2012). This result is consistent with Deheuvels 

et al., (2012) , who showed that cacao yield per tree was significantly higher in 

combination with high than with low Musa densities, suggesting that the spatial 

distribution of plants may be more important than their botanical composition. 
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This finding also suggest that low strata crops (banana and cacao) could be more 

productive when there are less competing of high strata crops (fruits and wood 

trees)  

The average productivity of cacao was 191 Kg.ha-1 year-1, which was somewhat 

higher than the 136 Kg.ha-1 year-1 reported by Deheuvels et al. (2012) for similar 

agroforestry systems in Talamanca. Such yields are substantially lower than 

those of cacao agroforestry systems in Ghana and Ivory Coast, which average 

456 and 214 Kg.ha-1.year-1, respectively (Gockowski and Sonwa 2011). As 

noted by Deheuvels et al. (2012) and Leach et al. (2002), the lower cacao yields 

in Talamanca result from the absence of chemical input and from losses caused 

by the fungus Moniliophtora roreri, the agent of cacao frosty pod rot disease.  

The average Cordia alliadora timber production in the current study (26 m3.ha-1) 

was substantially lower than the 48 m3.ha-1 recently reported for Central America 

(Somarriba et al. 2014). This may result from differences in sites and planting 

densities. Although the yields in the current study are low, they clearly represent 

a key economical input for smallholders, especially when cacao prices are low 

(Ramírez et al. 2001). Compared to timber, firewood is not a key economic input 

and averaged 43 trees per ha, which corresponds to 5.25 m3.ha-1. According to 

the farmers interviewed, these species are not sold but are used by the farmers 

themselves.  

The evaluation of the productivity of other fruits trees was difficult because of their 

seasonal variation. Our estimation of income from these fruits tree is clearly 

higher than other cultivated plants (see figure 2, Chapter 4, p77). Although 

farmers have no production records, this result is consistent with farmer’s 

perception since they claim good yielding for fruit trees. 

Even though wood trees were more numerous than fruit trees in the 

neighborhood of banana plants and cacao trees, the effect of fruit trees on 

productivity was statistically significant while the effect of wood trees was not. 

This difference may be attributed to the position of the trees in the canopy and to 

their effects on shade intensity (Gidoin et al. 2014). Because wood trees are high 

in the canopy (Ngo Bieng et al. 2013), they provide a low level of uniform shading 

to the shorter banana plants and cacao trees. This suggests that wood trees at 
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an adequate density and spatial distribution should not strongly affect banana 

and cacao productivity. This result is very important because maintaining high 

trees in the system helps providing other ecosystem services in cropping systems 

(Tscharntke et al. 2011). Compared to wood trees, fruits trees provide more 

localized and more intense shade (Gidoin et al. 2014). This more localized shade 

was showed to reduce significantly banana and cacao productivity. Ours results 

agree with previous studies that described a positive correlation between yields 

and light availability when growth is not limited by nutrient availability (Vernon 

1967, Jucker et al. 2014). The latter hypothesis is consistent with findings of 

Zuidema et al. (2005), who showed that heavy shading (>60%) in agroforestry 

systems reduced yields by more than one-third. 

By opposition to the production of cacao, the high productivity of bananas may 

be explained by the low levels of pests and diseases on bananas grown in 

agroforestry systems (Schroth et al. 2000, Staver et al. 2001). On an applied 

perspectives, it seems possible to grow highly productive banana plants in 

association with trees, especially with cacao trees and with moderate densities 

of bigger trees (about 100 fruit trees or 150 wood trees per ha).  

This could lead to some specialization within fields such that banana is grown in 

one part of the field and other trees are grown in other parts (Figure 2). 
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Figure 2. Possible evolutions of the organization of agroforestry fields. Each point 
represents a plant from one of the four categories (green: banana plants, brown: 
cacao trees, orange: fruit trees, grey: wood trees).  “A” represents an example of 
the current spatial distribution in agroforestry systems (field 5). “B” and “C” 
represent two possible spatial organizations that should make possible growing 
highly productive banana plants and cacao trees in association with high strata 
trees.  
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2 Perspectives 

 

2.1  Reflections on the approach of future studies 

Main (1999) suggest that there is no absolute answer to the question of how much 

biodiversity is enough because all systems are dynamic. Our methodology 

approach and the field protocol confirmed this, suggested that the effect of plant 

diversity on the performance of agroforestry systems is a tight balance between 

objectives of farmers and the manageability that they assumed in the design of 

multispecies cropping systems. The originality of this thesis was to adapted 

methods to develop some approaches to access the relationship between 

diversity and productivity. My recommendation for future works is to develop 

models that combine statistical approaches and process-based methods that  will 

require more measurements not only of plant growth (by organ) but also of 

environmental variables linked to the availability of resources (e.g., local soil 

nutrient content and radiation available for each plant). Obtaining such 

measurements for individual plants is difficult in highly diversified and complex 

systems. To our knowledge, sufficient measurements to build such process-

based model have only been obtained in relatively homogeneous systems as 

coffee agroforestry systems (Roupsard et al. 2011, Charbonnier et al. 2013). This 

approach will help us to simplify the effect of crops on local resources, while 

maintaining a mechanistic approach to crop yield, disease regulation and 

pollination services, to determine whether they can attain high levels of 

productivity. 

This thesis could feed the framework proposed by Cardinal et al. (2012a)  that 

links biodiversity to the goods and services provided by ecosystems, mainly in 

productivity or yield terms. Future studies and meta-analyses should determine 

how plant diversity affects the ability of systems to provide multiple ecosystem 

services and not simply productivity or yield.  

 

2.2  Reflections on modelling approaches  

Multispecies systems are today a real challenge for systemic agronomy research. 

Modelling research on multispecies systems still remain reduced, although many 
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models have been developed to simulate the growth and activity of weed, pest 

and diseases populations (Malézieux et al. 2009). Integration of scientific and 

empirical knowledge is particularly needed to represent interaction between 

management practices, biodiversity, and ecosystems services. Model-based 

processes approaches seem a promising way to support stakeholders involved 

in a biodiversity-based agricultural process. This raises question about how to 

build for a wide diversity agricultural context, the appropriate level for analytical 

and modelling methods of agroecological practices required to deliver expected 

ecosystems services (Duru et al. 2015). 

The present thesis used individual based statistical models to analyze the 

interactions between plants among the community of agroforestry systems. The 

results of this research provide new information on the effect of spatial 

organization on productivity and contribute to propose new organizations for 

these agroforestry systems. Future studies may try to tackle how such statistical 

models may be linked or used jointly with processes based models. For example, 

it could include processes that link pest and disease damages on the plant growth 

or an explicit partitioning of resources (nutrients and light). 

 

 

3 General conclusion  

 

As pointed by Malézieux et al. (2009), even when advantages are recognized, 

multispecies systems are sometimes more difficult to manage and require 

substantial farmers skills and specific research effort to develop knowledge on 

more biological models. In particular for complex agroforestry studies is more 

complicated to define a proper methodology compared with studies involving 

simple multispecies systems, because is due to the specificity of their vertical and 

horizontal organization that is particularly diverse. More generally, the 

interpretation of mechanisms influencing biodiversity-productivity relationship 

and resources in the environment is extremely complex. It remains very difficult 

to disentangle those processes experimentally. From a methodological point of 

view the specificity of my thesis is that the statistical approach was carried out at 
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the individual plant scale. At this scale, it was possible to take into account the 

particular neighborhood of each plant. My meta-analysis suggests that perennial 

plants may stabilize productivity, the individual-based analysis suggest that for 

moderate densities of trees do not decrease dramatically the cash crops yield. 

Put together, this knowledge suggests that we can optimize and stabilize the 

productivity by keeping adequate densities of trees in the system. The results of 

this research provide new information that allow better understanding these 

agroforestry systems and that would be helpful to establish recommendations to 

farmers on how to increase productivity.  

These results emphasize that future studies on the effects of species richness on 

productivity should include a wide range of biotic and environmental factors, and 

a large strata level gradients in the above-ground vegetation. This would make 

easier identifying conditions under which species richness is most likely to have 

a positive effect on productivity. We confirm that the design of plant-diversified 

systems should take into account the local availability or resources.  

Our analysis of productivity of banana and cacao suggests that complementarity 

might be increased by increasing plant diversity within the same stratum of the 

canopy or with moderate abundance of very high stratum. In the case of fruit 

trees, our results suggest that the planting densities should be choose according 

to a trade-off:  a small to moderate increase in the density of fruit trees may 

significantly increase farmer income, but when densities of fruit trees are too high 

the shading effect implies production loss on the main cash crops (cacao and 

banana).  However fruit trees production is limited by a poor access to markets 

in the region. It would be easier to farmers to improve their livelihood by valuing 

fruit tree production than to improve management practices related to 

specialization of their farms by decreasing plant diversity. Extension services and 

government incentives should probably focus on organizing distribution channels 

to facilitate the sale of fruits from these systems. 
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Annexes  

A. Annexes - Soil sampling 

 

Initially the objective was to use the information of soils for the analysis in this 

thesis, but the results were not conclusive, so this information is given here as 

descriptors of the studied agrosystems. The description of the analysis of the soil 

samples of the 20 plots was relatively constant between them. 27 soil samples 

were taken per plot, collected at a depth of 30 cm. Once the 27 samples were 

obtained they were well mixed in a clean bucket until having a sample as 

composed as possible. The 20 total samples were sent to the University of Costa 

Rica, Agronomic Research Center (CIA) for the soil analysis. A chemical KCl-

OLSEN (pH, acidity, Ca, Mg, K, P, Cu, Fe, Zn, Mn), organic matter and total N 

was analyzed. 
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Table 1. Total soil chemical analysis of the 20 plots in study. 

Extract 

Solution: pH cmol(+)/L % mg/L 

KCl-Olsen  H2O ACIDITY Ca Mg K CICE SA P Zn Cu Fe Mn 

ID Farmer 5,5 0,5 4 1 0,2 5 
 

10 3 1 10 5 

RICARDO 6,2 0,16 11,26 2,10 0,19 13,71 1 7 1,0 6 144 14 

LAYAN 5,3 0,69 15,20 9,02 0,13 25,04 3 1 4,5 10 91 61 

ALONSO 6,6 0,13 10,58 1,60 0,23 12,54 1 7 0,9 5 91 12 

AMADEO 4,9 5,42 6,91 3,89 0,28 16,50 33 2 3,5 8 177 102 

RUTH 5,4 0,82 24,41 10,08 0,20 35,51 2 1 4,4 9 58 75 

ISMAEL 5,9 0,23 18,82 4,93 0,25 24,23 0,9 4 1,3 6 89 15 

ANA 5,0 1,89 4,13 1,52 0,15 7,69 25 2 1,9 6 218 41 

TONY 5,0 3,16 10,24 7,51 0,15 21,06 15 3 4,7 9 173 100 

MARIA 6,3 0,18 11,34 2,43 0,17 14,12 1 9 1,2 7 161 34 

ELSA 6,2 0,18 30,90 6,93 0,51 38,52 0,5 7 2,7 18 56 13 

CARMEN 5,0 2,79 6,46 3,58 0,14 12,97 22 1 3,8 4 167 123 

ASDRUBAL 6,6 0,13 30,56 5,15 0,31 36,15 0,4 4 2,9 7 55 8 

DARIA 5,4 0,77 6,57 1,85 0,11 9,30 8 7 0,7 7 227 10 

ANABELLE 5,6 0,59 6,72 1,66 0,13 9,10 7 9 0,7 8 180 11 

WILFREDO 5,8 0,25 24,65 6,31 0,36 31,57 0,8 2 5,5 5 95 23 

ROSEMARY 5,7 0,33 8,88 2,17 0,20 11,58 3 12 0,9 11 236 13 

ELISEO 6,1 0,15 8,15 2,28 0,24 10,82 1 9 0,9 9 152 12 

JOSE MARIA 6,1 0,17 7,64 1,56 0,15 9,52 2 4 0,7 8 127 9 

SARA 5,6 0,26 24,21 6,68 0,42 31,57 0,8 1 4,8 6 74 56 

MARINA 5,5 0,23 19,43 5,51 0,44 25,61 0,9 4 7,3 5 82 38 

The values below each element correspond to the General Critical Levels for the used extract 
solution 

CICE = Cation exchange capacity Effective = Acidity + Ca + Mg + K 

SA = Percentage of Acidity Saturation = (Acidity / CICE) * 100 
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Table 2. Organic matter and total nitrogen soil chemical analysis of the 20 plots 

in study.  

 

mS/cm Relation 
 
ID Farmer CE C N C/N 

RICARDO 0,1 1,45 0,13 11,2 

LAYAN 0,1 1,71 0,20 8,6 

ALONSO 0,1 0,92 0,08 11,5 

AMADEO 0,1 1,58 0,19 8,3 

RUTH 0,1 2,19 0,24 9,1 

ISMAEL 0,1 1,26 0,15 8,4 

ANA 0,1 1,40 0,15 9,3 

TONY 0,1 2,25 0,26 8,7 

MARIA 0,1 0,90 0,10 9,0 

ELSA 0,1 1,13 0,14 8,1 

CARMEN 0,1 1,18 0,17 6,9 

ASDRUBAL 0,1 1,08 0,15 7,2 

DARIA 0,1 1,37 0,17 8,1 

ANABELLE 0,1 1,29 0,17 7,6 

WILFREDO 0,1 1,49 0,20 7,4 

ROSEMARY 0,1 1,58 0,19 8,3 

ELISEO 0,1 0,96 0,12 8,0 

JOSE 

MARIA 0,1 0,95 0,12 7,9 

SARA 0,2 1,89 0,30 6,3 

MARINA 0,1 1,75 0,21 8,3 
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Abstract  

Adding plant diversity is increasingly presented as a mean to improve the sustainability of 
agrosystems. However, there is still a lack of knowledge on how plant functional diversity alters 
processes that support production. Because they cover a broad range of plant diversity, 
agroforestry systems in the tropics are a good case study to better understand the diversity-
production relation. Agroforestry systems in the Talamanca region in Costa Rica are particularly 
interesting because among the cultivated plants they encompass, banana and cacao are two 
cash crops of major importance and for which production can easily be quantified and analyzed. 
Another specificity of these systems is that their vertical and horizontal organization is particularly 
diverse. Understanding how plant diversity and its organization alter the performances of these 
complex systems is particularly challenging and requires developing new approaches. The 
objectives of this thesis were to address the following questions: i) Which factors affect the 
relationship between plant diversity and productivity? ii) How plant diversity influences the global 
productivity of agroforestry systems? and iii) How the spatial structure of the plant community 
affects yields? 

First, a meta-analysis was carried out to address the diversity-production issue among a very 
broad range of systems world-wide. This analysis focused on how latitude, climate, and canopy 
structure modify the effect of plant richness on productivity of agricultural and natural ecosystems. 
It showed that the gain per unit of diversity added decreased as plant richness increased. Our 
findings also showed that the response of productivity to plant richness largely depends on the 
type of plants in the community, especially if the community includes trees. 

Then, we extensively studied the diversity and the productivity of 180 plots (100 m² each) located 
within 20 fields in the Talamanca region. A global evaluation of the productivity of these systems 
was possible with the estimation of the production of each plant during 1 year. This production 
was converted into income according to local market prices. While we observed a global positive 
effect of plant diversity on global income, this effect was contrasted according to the functional 
group considered (banana, cacao, other fruits, timber, and firewood). When considering the 
functional group separately, there was a positive effect of plant diversity for higher strata groups 
(other fruits, firewood, and timber) and a negative effect for lower strata groups (banana and 
cacao). This suggested that complementarity between plants was stronger than competition for 
those plants occupying the higher strata of the canopy but that competition was stronger than 
complementarity for plants occupying the lower strata of the canopy. 

The second part of the analysis of the Talamanca fields dataset focused on the effect of 
neighbouring plants on the production of banana and cacao plants. An individual-based analysis 
was developed to determine whether the number of neighbouring plants of a given functional 
groups explained the potential yield of each banana or cacao plant. We found that the distance 
at which other plants alters the yield of banana or cacao plants was greater for larger functional 
groups (fruit or wood trees) than for smaller ones (cacao trees or banana plants). Interestingly, 
higher strata trees had a smaller effect than lower strata trees, suggesting that moderate densities 
of tall trees could be compatible with high banana and cacao production. These findings were 
discussed in terms of complementary and competition with respect to the availability of light at 
higher and lower strata of the canopy. On an applied perspective, our results suggest that 
productivity could be maximized by a reasonably number of plant species, and then we proposed 
new direction to organize fields in order to maximize the production of cash crops while providing 
supplementary income for farmers and ecosystem services. 
 
 

Keywords 
Multistrata agroforestry systems, Productivity, Plant richness, Biodiversity, Potential yield, Spatial 
organization, Costa Rica. 
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Résumé  

L’ajout de diversité végétale est présenté comme un moyen d’améliorer la durabilité des 
agrosystèmes. Cependant, il y a encore des manques importants de connaissances sur 
l’effet de la diversité végétale sur les processus à la base de l’élaboration des 
rendements. Les systèmes agroforestiers tropicaux couvrent une large gamme de 
diversité végétale ; ce sont donc de bons modèles pour étudier la relation entre diversité 
et productivité. Les systèmes agroforestiers de la région de Talamanca au Costa Rica 
sont particulièrement intéressants car au sein de communautés végétales complexes. 
Ils comprennent des bananiers et des cacaoyers qui sont des cultures de rente 
importantes et dont la production peut facilement être quantifiée et analysée. Une autre 
spécificité de ces systèmes est qu’ils présentent des organisations spatiales 
particulièrement diverses. Analyser comment la diversité des plantes et son organisation 
influencent les performances de ces systèmes est particulièrement complexe et 
nécessite le développement de nouvelles approches. Les objectifs de cette thèse étaient 
d’étudier : i) quels facteurs affectent la relation entre diversité végétale et productivité ? 
ii) Comment la diversité végétale influence la productivité globale des systèmes 
agroforestiers ? et iii) Comment la structure spatiale des communautés de plantes 
cultivées influence leurs rendements ? 

Tout d’abord une méta-analyse a été menée afin d’étudier la relation entre diversité 
végétale et production dans une très large gamme de systèmes naturels et cultivés. 
Cette analyse a notamment traité du rôle de la latitude, du climat et de la structure de la 
canopée sur cette relation. Elle a montré que le gain lié à la diversité végétale tend à 
diminuer avec la magnitude de cette diversité. Nos résultats montrent également que la 
réponse de la productivité à la richesse spécifique en plantes dépend énormément du 
type de communauté considéré, notamment si la communauté comprend des arbres. 

Ensuite un réseau de 180 placettes situées dans 20 parcelles d’agriculteurs a été étudié 
dans la région de Talamanca. Pendant un an, la production de chaque plante a été 
évaluée. Cette production a ensuite été convertie en revenus en accord avec les prix du 
marché local. Alors qu’un effet positif de la diversité végétale cultivée a été observé sur 
le revenu globale (de chaque placette), cet effet était très contrasté si on le considérait 
séparément pour les différents groupes fonctionnels. Cet effet était positif pour les 
plantes des groupes appartenant aux strates hautes et négatif pour les plantes des 
groupes appartenant aux strates basses. Ces résultats suggèrent que la 
complémentarité entre plantes était plus forte pour les plantes des strates hautes et 
qu’inversement la compétition était plus forte dans les strates plus basses. 

La seconde phase de l’analyse des données de ce réseau de parcelles a visé à étudier 
l’effet du voisinage de chaque bananier ou cacaoyer sur leur production. Une approche 
d’analyse individu-centrée a été développée afin de déterminer si le nombre de voisins 
d’un groupe donné dans un rayon donné était un bon prédicteur de la croissance ou du 
rendement de chaque bananier ou cacaoyer. Les résultats montrent que la distance à 
laquelle la production d’un bananier ou d’un cacaoyer est affectée par ses voisins 
dépend de leur taille. De manière surprenante, les grands arbres ont eu un effet plus 
faible que les arbres plus petits. Cela suggère que des densités modérées de grands 
arbres pourraient être compatibles avec une production de bananiers et de cacaoyer 
avec un haut niveau de rendement. Ces résultats ont été discutés en termes de 
complémentarité et de compétition pour la lumière. Des pistes d’organisation sont 
proposées et discutées au regard de la maximisation des rendements des cultures de 
rente et des autres cultures mais aussi pour la provision de services écosystémiques au 
sens large. 

Mots-clés 
Systèmes agroforestiers multistrates, Productivité, Richesse spécifique, Biodiversité végétale, 
Rendement potentiel, Organisation spatiale, Costa Rica. 


