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Estimation bayésienne dans les modèles de Markov partiellement observés Mots Clefs : Systèmes non-linéaires cachés, ltrage optimal, inférence paramétrique, systèmes à saut, volatilité stochastique, approximations stochastiques. Résumé : Cette thèse porte sur l'estimation bayésienne d'état dans les séries temporelles modélisées à l'aide des variables latentes hybrides, c'est-à-dire dont la densité admet une composante discrète-nie et une composante continue. Des algorithmes généraux d'estimation des variables d'états dans les modèles de Markov partiellement observés à états hybrides sont proposés et comparés avec les méthodes de Monte-Carlo séquentielles sur un plan théorique et appliqué. Le résultat principal est que ces algorithmes permettent de réduire signicativement le coût de calcul par rapport aux méthodes de Monte-Carlo séquentielles classiques.

Dans cette thèse, nous classions les POMPs suivant la nature de l'état: nous distinguerons entre les POMPs à états discrets nis, POMPs à états continus et POMPs à états hybrides (continus-discrets nis). L'estimation exacte rapide bayésienne de l'état n'étant généralement pas possible dans les POMPs, l'objectif de ce rapport est de présenter les méthodes d'estimation qui ont été développées pendant les études doctorales de l'auteur.

Conformément aux consignes ocielles de l'école doctorale, la suite de ce chapitre est décomposée en sections séparées, rédigées en français, qui contiennent des résumés détaillés des chapitres de la thèse, qui sont rédigés en anglais.

Résumé du chapitre 1

Le chapitre 1 présente la théorie générale des POMPs. Nous formalisons les problèmes p (h 1:N , y 1:N ) = p (h 1 , y 1 ) p (h 2 , y 2 |h 1 , y 1 ) . . . p (h N , y N |h N -1 , y N -1 ) ,

ce qui signie que (H 1:N , Y 1:N ) est de Markov.

La décomposition de H 1:N en une partie continue X 1:N et une partie discrète ni R 1:N , est :

∀n ∈ {1 : N }, H n = (X n , R n ).

( La distribution p (h n |y 1:n ) est appelée la distribution de ltrage à l'instant n. Cette distribution joue un grand rôle dans le traitement statistique à l'aide des POMPs. Formellement, cette distribution est donnée par récurrence grâce à la markovianité de (H 1:n , Y 1:n ): Initialisation: p (h 1 |y 1 ) = p(h 1 ,y 1 ) p(h 1 ,y 1 )dh 1 .

Récurrence: p (h n+1 |y 1:n+1 ) est calculée à partir de p (h n |y 1:n ) en trois étapes :

1. Calculer la distribution anticipée à un pas :

p (h n+1 , y n+1 |y 1:n ) = p (h n |y 1:n ) p (h n+1 , y n+1 |h n , y n ) dh n ;

(3) 2. Calculer le facteur de vraisemblance à n + 1 : c n+1 = p (y n+1 |y 1:n ) = p (h n+1 , y n+1 |y 1:n ) dh n+1 ;

(4)

3. Faire la mise à jour :

p (h n+1 |y 1:n+1 ) = p (h n+1 , y n+1 |y 1:n ) c n+1 .

(5)

Ce calcul récursif permet aussi de calculer la log-vraisemblance de la séquence observée 

Les méthodes de Monte-Carlo séquentielles permettent un calcul approché de la distribution de ltrage. L'idée est de tirer M ∈ N * réalisations {h (m) n } 1≤m≤M,n∈N * dans le but d'approcher empiriquement la distribution de ltrage. Les réalisations tirées dans les méthodes de Monte-Carlo séquentielles sont appelées des particules. Les méthodes de Monte-Carlo séquentielles de ltrage peuvent être très coûteuses en temps de calcul lorsque la dimension de l'espace d'état est grande [START_REF] Snyder | Obstacles to High-Dimensional Particle Filtering[END_REF], Ades and Van Leeuwen, 2015, Rebeschini et al., 2015]. Ces méthodes sont fondées sur le principe d'échantillonnage d'importance [Geweke, 1989], qui consiste à tirer les particules selon une distribution d'importance, puis à leur attribuer des poids an de corriger l'écart entre la distribution de ltrage et la distribution d'importance. Cependant, l'application directe de ce principe dans les POMPs échoue en pratique, car la plupart des poids se rapprochent de zéro, alors que seulement quelques particules ont des poids non-négligeables. En conséquence, l'échantillonnage d'importance seul devient de plus en plus inecace, car beaucoup de puissance de calcul est dépensée à l'échantillonnage des particules qui ne contribuent pas à l'estimation de la distribution de ltrage. Ce phénomène est connu sous le nom de la dégénérescence des poids [Cappé et al., 2005, Del Moral and[START_REF] Del Moral | Interacting particle ltering with discrete observations[END_REF]. L'approche classique contre la dégénérescence des poids consiste à re-échantillonner les particules à chaque itération ou selon un critère tel que le nombre de particules ecaces [Cornebise et al., 2008, Doucet andJohansen, 2011], c'est-à-dire de re-tirer chaque particule avec une probabilité égale à son poids. Cela donne la classe des algorithmes basés sur l'approche Sampling Importance Resampling (SIR) [Doucet et al., 2000, Douc andCappe, 2005]. Dans cette approche, la phase de ré-échantillonnage supprime les particules avec les poids faibles et les particules avec des poids signicatifs sont ré-échantillonnées plusieurs fois. Le ltre particulaire SIR classique est dénie par : 

p (h n |y 1:n ) ≈ 1 M M m=1 δ h n -h (m)
n , où δ est la distribution de Dirac.

Dans ce rapport, nous détaillons les méthodes alternatives à celles de Monte-Carlo qui ont fait l'objet d'étude de cette thèse. Cependant, les méthodes de Monte-Carlo séquentielles ont servi comme une référence pour quantier la précision des méthodes proposées.

Résumé du chapitre 2

Dans le chapitre 2, nous revoyons le modèle Conditionally Gaussian Observed Markov Switching Model (CGOMSM), qui est un POMP à états hybrides.

Soit (X 1:N , R 1:N , Y 1:N ) un processus stationnaire état-signal. Le CGOMSM est un triplet (R 1:N , X 1:N , Y 1:N ) tel que, pour tout r n:n+1 dans Ω 2 , nous avons :

La distribution de p (x n:n+1 , y n:n+1 |r n:n+1 ) est gaussienne de moyenne Υ(r n:n+1 ) et de matrice de covariance Ξ(r n:n+1 ).

La moyenne de p (x n:n+1 , y n:n+1 |r n:n+1 ) est de la forme :

Υ(r n:n+1 ) = M(r n ) M(r n+1 ) = E [X n Y n ] |R n = r n E [X n+1 Y n+1 ] |R n+1 = r n+1 ; (8) 
La matrice de covariance de p (x n:n+1 , y n:n+1 |r n:n+1 ) est de la forme :

Ξ(r n:n+1 ) = S(r n ) Σ(r n:n+1 ) Σ (r n:n+1 ) S(r n+1 ) ;

p (x n:n+1 , y n:n+1 |r n:n+1 ) est soumise à la contrainte :

p (y n+1 |x n , r n:n+1 , y n ) = p (y n+1 |r n:n+1 , y n ) .

Ce modèle permet une implémentation pratique d'algorithme de ltrage et de lissage exact [START_REF] Abbassi | Optimal Filter Approximations in Conditionally Gaussian Pairwise Markov Switching Models[END_REF], Abbassi et al., 2011, Gorynin et al., 2015, Gorynin et al., 2017a, Gorynin et al., 2017b].

Il a été observé dans [START_REF] Derrode | Exact Fast Computation of Optimal Filter in Gaussian Switching Linear Systems[END_REF] que la Probability Density Function (pdf) de (X n , Y n , X n+1 , Y n+1 ) dans le CGOMSM stationnaire est de la forme :

p (x 1 , y 1 , x 2 , y 2 ) = 1≤i,j≤K α ij p ij (x 1 , y 1 , x 2 , y 2 ), (10) 
avec {α ij } 1≤i,j≤K réels positifs et pour tout (i, j) dans {1 : K} [Gorynin et al., 2017a] et Learned Conditionally Gaussian Observed Markov Switching Model Smoother (LCGOMSMS) [START_REF] Gorynin | Switching conditional Gauss-Hermite lter with application to jump volatility model[END_REF], qui fonctionnent de la manière suivante :

1. Considérer une séquence d'apprentissage (x 1:N , y 1:N ) issue d'un processus de Markov stationnaire arbitraire. Cette séquence dénit une distribution empirique du quadruplet (X n , Y n , X n+1 , Y n+1 );

2. Approcher la distribution empirique du quadruplet (X n , Y n , X n+1 , Y n+1 ) par un CGOMSM;

3. Procéder au ltrage ou au lissage des donnés réelles (x 1:N , y 1:N ).

Le chapitre 2 détaille toutes les étapes de la construction du CGOMSM, le modèle Conditionally Markov Switching Hidden Linear Model (CMSHLM), les algorithmes de ltrage et de lissage exact et la contribution principale de l'auteur, qui est la conception d'algorithme de type Expectation-Maximization (EM) pour l'estimation des paramètres du modèle CGOMSM à partir d'une séquence d'apprentissage.

Résumé du chapitre 3

Dans le chapitre 3, nous présentons une approche générale de ltrage et de lissage dans les POMPs à états hybrides. Cette approche utilise les grilles d'intégration numérique. L'idée de l'application de ces grilles au problème d'estimation bayésienne est la suivante. Pour toute transformation mesurable f de la variable aléatoire H n , le calcul de l'espérance de f (H n ) sachant le signal observé y 1:N peut se résumer à un calcul d'intégrales : 

E [f (H n ) |y 1:N ] = f (h n )p (h n |y 1:N ) dh 1:N = f (h n )p (
γ 1:N ∈Λ N f γ (n)
1:N π (N ) (γ 1:N ) ≈ f (h n )p (h 1:N , y 1:N ) dh 1:N ;

(11a)

γ 1:N ∈Λ N π (N ) (γ 1:N ) ≈ p (h 1:N , y 1:N ) dh 1:N , (11b) 
où γ 1:N = γ 1:N } 1≤i≤N sont dans Λ. Cependant, le calcul direct de (11) serait de complexité exponentielle O Card(Λ) N , ce qui n'est pas compatible avec la majorité des applications pratiques. L'auteur introduit les grilles markoviennes, qui ont été développées dans le cadre de ce projet. Une grille markovienne est telle qu'il existe des fonctions q 1 , q 2 , . . . q N -1 dans F Λ 2 → R telles que la fonction de masse π de la grille vérie:

∀γ 1:N ∈ Λ N , π (N ) (γ 1:N ) = q 1 γ (1) 1:N , γ (2) 
1:N q 2 γ (2) 1:N , γ où Card(Λ L ) augmente avec L.

Nous fournissons des conditions susantes qui garantissent la consistance de la méthode, c'est-à-dire qui assurent la propriété :

lim L→∞ γ 1:N ∈Λ N L f γ (n) 1:N π (N ) L (γ 1:N ) γ 1:N ∈Λ N L π (N ) L (γ 1:N ) = E [f (H n ) |y 1:N ] (13) 
pour toute fonction f développable en série entière au voisinage de chacun des points de son domaine de dénition. Dans la littérature, nous pouvons trouver des méthodes analogues à MGSE : par exemple [START_REF] Gospodinov | A Moment-Matching Method For Approximating Vector Autoregressive Processes By Finite-State Markov Chains[END_REF], Farmer and Toda, 2017, Terry and Knotek, 2011, Tauchen, 1986, Lo et al., 2016]. La valeur ajoutée de la contribution de l'auteur par rapport aux résultats existants est la suivante :

Nous prouvons que MGSE converge vers la valeur de l'espérance a posteori ; 

p (r n+1 , y n+1 |r n , y n ) = p (r n+1 |r n , y n ) p (y n+1 |r n+1 , r n ) .
Y n = µ(r n ) + σ(r n )U n . (23)
Prenons par exemple Ω = {ω 1 , ω 2 }, alors ω 1 peut être associé à un état baissier du marché et ω 2 peut être associer à un état haussier du marché. En supposant que R 1:N est de Markov, (23) permet de dénir un HMM qui modélise les log-rendements.

An de proposer un modèle PMM compatible avec (23) et qui serait plus général que le HMM, l'auteur a proposé de modéliser la loi de Y 1:N sachant R 1:N par celle d'un processus autorégressif d'ordre 1, c'est-à-dire :

U n+1 = ρ(R n , R n+1 )U n + 1 -ρ(R n , R n+1 ) 2 V n+1 , (24) avec U 0 , {V n } n>0 des variables gaussiennes indépendantes identiquement distribuées et pour tout i, j ∈ Ω, |ρ(i, j)| < 1.
Ensuite, l'auteur a proposé de modéliser le lien probabiliste possible entre R n+1 et Y n sachant R n en utilisant la fonction logistique. Dans le cas où Ω = {ω 1 , ω 2 }, cela donne :

p (r n+1 = ω 1 |r n , u n ) = 1 1 + e -a(rn)-b(rn)un , (25) avec a(ω) ∈ R, b(ω) ∈ R pour tout ω ∈ Ω.
Finalement, le modèle proposé des log-rendements est donné par :

p (y 1 |r 1 ) = N y 1 ; µ(r 1 ), σ 2 (r 1 ) ; (26a) p (r n+1 = ω 1 |r n , y n ) = 1 1 + e -a(rn)- b(rn) σ(rn) (yn-µ(rn)) ; (26b) p (y n+1 |r n , r n+1 , y n ) = N y n+1 ; µ(r n+1 ) + ρ(r n , r n+1 )σ(r n+1 ) σ(r n ) (y n -µ(r n )) , σ(r n+1 ) 2 (1 -ρ(r n , r n+1 ) 2 ) . ( 26c 
)
Ce modèle a été implémenté et appliqué à des données historiques dans le cadre d'une simulation de trading (backtesting). Cette étude a mis en évidence les améliorations apportées par le passage du HMM au PMM.

Résumé du chapitre 5

Le chapitre 5 cherche à analyser les insusances du Gaussian Filter (GF), qui ont été corrigées par le Conditional Gaussian Filter (CGF). La contribution de l'auteur est de proposer une extension du CGF applicable dans le contexte des POMPs à états hybrides.

Cette extension est appelée le Switching Conditional Gaussian Filter (SCGF).

Le GF et le CGF s'appliquent dans le cadre d'un POMP à états continus, donné par le processus état-signal (X 1:N , Y 1:N ) de la forme :

X n+1 = f n+1 (X n , U n+1 ), n ∈ N * , n < N ; (27a) p (y n |x n ) ∝ h n (y n , x n ), n ∈ N * , n ≤ N, (27b) 
avec X 1:N un processus de Markov dans R 

avec x n+1|n ∈ R d , y n+1|n ∈ R d , P xx n+1|n ∈ R d×d , P xy n+1|n ∈ R d×d , P yx n+1|n ∈ R d ×d et P yy n+1|n ∈ R d ×d .
Cela implique que :

∀ ∈ N * , p n|n (x n ) = p (x n |y 1:n ) = N x n ; x n|n , Γ n|n ; (29a) ∀ ∈ N, p n+1|n (x n+1 ) = p (x n+1 |y 1:n ) = N x n+1 ; x n+1|n , Γ n+1|n , (29b) où x n|n ∈ R d , Γ n+1|n ∈ R d×d et ( x n|n , Γ n|n
) sont obtenus par le conditionnement gaussien de (28):

x n|n = x n|n-1 + P xy n|n-1 P yy n|n-1 -1
(y ny n|n-1 );

(30a)

Γ n|n = Γ n|n-1 -P xy n|n-1 P yy n|n-1 -1 P yx n|n-1 . (30b) 
Le GF calcule x n+1|n+1 et Γ n+1|n+1 à partir de x n|n , Γ n|n et y n+1 :

1. Prédiction

x n+1|n = f n+1 (x n , u n+1 )p n|n (x n ) p (u n+1 ) dx n du n+1 ; (31a) Γ n+1|n = f n+1 (x n , u n+1 )f n+1 (x n , u n+1 ) p n|n (x n ) p (u n+1 ) dx n du n+1 -x n+1|n x n+1|n . (31b) 
2. Mise à jour

y n+1|n = y n+1 h n+1 (y n+1 , x n+1 )p n+1|n (x n+1 ) dx n+1 dy n+1 ; (32a) 
P xy n+1|n = (x n+1 -x n+1|n )(y n+1 -y n+1|n ) h n+1 (y n+1 , x n+1 )p n+1|n (x n+1 ) dx n+1 dy n+1 . ( 32b 
) P yy n+1|n = y n+1 y n+1 h n+1 (y n+1 , x n+1 )p n+1|n (x n+1 ) dx n+1 dy n+1 -y n+1|n y n+1|n . (32c)
Ensuite, x n+1|n+1 et Γ n+1|n+1 sont obtenus en appliquant la formule (30) à x n+1|n , y n+1|n , Γ n+1|n , P xy n+1|n , P yy n+1|n et P yx n+1|n = (P xy n+1|n ) .

Les insusances du GF viennent de la forme d'approximation (28). Nous notons que :

L'approximation (28) peut induire la divergence du ltre dans le cas où la distribution de Y n sachant X n est à queue lourde cf. [START_REF] Roth | A Student's t lter for heavy tailed process and measurement noise[END_REF]. Cela vient du fait que seuls les deux premiers moments sont considérés dans l'approximation de la distribution jointe de (X n , Y n ). = 0.

Dans ce cas, l'étape de la mise à jour échoue systématiquement et le GF n'extrait aucune information de Y 1:N sur la distribution de X 1:N .

L'approche du CGF permet de corriger ces défauts. L'idée est de supposer une hypothèse moins forte que celle du GF, qui est :

p n|n (x n ) = p (x n |y 1:n ) = N x n ; x n|n , Γ n|n ; (33a) p n+1|n (x n+1 ) = p (x n+1 |y 1:n ) = N x n+1 ; x n+1|n , Γ n+1|n . (33b) 
L'algorithme du CGF est le suivant :

1. Prédiction

x n+1|n = f n+1 (x n , u n+1 )p n|n (x n ) p (u n+1 ) dx n du n+1 ; (34a) Γ n+1|n = f n+1 (x n , u n+1 )f n+1 (x n , u n+1 ) p n|n (x n ) p (u n+1 ) dx n du n+1 -x n+1|n x n+1|n . (34b) 
2. Mise à jour

c n+1 = h n+1 (y n+1 ; x n+1 )p n+1|n (x n+1 ) dx n+1 ; (35a) x n+1|n+1 = x n+1 h n+1 (y n+1 , x n+1 )p n+1|n (x n+1 ) c n+1 dx n+1 ; (35b) 
Γ n+1|n+1 = x n+1 x n+1 h n+1 (y n+1 , x n+1 )p n+1|n (x n+1 ) c n+1 dx n+1 -x n+1|n+1 x n+1|n+1 . (35c) 
Par construction, le CGF n'a pas les défauts annoncés du GF, car il évite de faire une approximation de la distribution de Y n sachant X n . Cela permet de justier l'intérêt à étendre le CGF pour pouvoir l'appliquer dans le contexte des POMPs à états hybrides.

Publications de l'auteur

Ce travail a fait l'objet de plusieurs articles dans des revues internationales (publiés, acceptés ou soumis) et dans des conférences internationales. Nous présentons ici la liste des diérentes publications de l'auteur. Leurs liens avec les diérentes sections sont donnés dans la Table 1.

Articles de revues internationales avec comité de lecture

Articles publiés 

p (h 1:N , y 1:N ) = p (h 1 , y 1 ) p (h 2 , y 2 |h 1 , y 1 ) . . . p (h N , y N |h N -1 , y N -1 ) , (1.1) 
which means that the pair (H

1:N , Y 1:N ) is Markovian.
Let us present a categorization of POMPs:

Card(Ω) = 1 and d > 0. In this case, we have H = R d up to a bijection and such a POMP is called a continuous-state POMP;

1 ≤ Card(Ω) < ∞ and d = 0. In this case, we have H = Ω up to a bijection and such a POMP is called a nite-discrete-state POMP;

0 ≤ Card(Ω) < ∞ and d ≥ 0. Such a POMP is called a hybrid-state POMP. In the literature, these models may also be called switching processes (systems), jump processes (systems), interacting multimodels and so on.

For the rest of the report, we consider the following decomposition of H 1:N into a continuous-valued component X 1:N and a nite-discrete-valued component R 1:N :

∀n ∈ {1 : N }, H n = (X n , R n ). (1.2) Therefore,
In a continuous-state POMP, the state-signal process is denoted as (X 1:N , Y 1:N );

In a nite-discrete-state POMP, the state-signal process is denoted as (R 1:N , Y 1:N );

In a hybrid-state POMP, the state-signal process is denoted as (R 1:N , X 1:N , Y 1:N ).

In the literature, the nite-discrete-state POMP is known as the Pairwise Markov Model (PMM), [Pieczynski, 2003]. The PMM may also be seen as a generalization of the Hidden Markov Model (HMM). The hybrid-state POMPs are sometimes referred as triplet systems. They may be seen as a simultaneous generalization of the continuousstate and nite-discrete-state POMPs.

Bayesian state estimation

Here we consider a hybrid-state POMP (H 1:N , Y 1:N ) dened by the distribution of the pair (H 1 , Y 1 ) and the transition kernel

∀n ∈ {1 : N -1}, p (h n+1 , y n+1 |h n , y n ) . (1.3)
We present general algorithms of Bayesian ltering, smoothing and forecasting.

Bayesian ltering

For each n in N * , let (H 1:n , Y 1:n ) be a POMP. The Probability Density Function (pdf) p (h n |y 1:n ) is called the ltering distribution. One may make use of the Markovianity of (H 1:n , Y 1:n ) in order to compute the ltering distribution as follows:

Initialization: we have p (h 1 |y 1 ) = p (h 1 , y 1 ) p (h 1 , y 1 ) dh 1 .
(1.4)

Iterative part : suppose that p (h n |y 1:n ) is given, then p (h n+1 |y 1:n+1 ) is classically computed in three steps:

1. Compute the following one-step predictive distribution:

p (h n+1 , y n+1 |y 1:n ) = p (h n |y 1:n ) p (h n+1 , y n+1 |h n , y n ) dh n ;
(1.5)

2. Compute the likelihood coecient at n + 1:

c n+1 = p (y n+1 |y 1:n ) = p (h n+1 , y n+1 |y 1:n ) dh n+1 ;
(1.6)

3. Update the ltering distribution:

p (h n+1 |y 1:n+1 ) = p (h n+1 , y n+1 |y 1:n ) c n+1 . (1.7)
This iterative method allows computing the log-likelihood of y 1:N . We have:

log p (y 1:N ) = log p (y 1 ) N -1 n=1 p (y n+1 |y 1:n ) = log p (y 1 ) + N -1 n=1 log c n+1 . (1.8)
This allows a maximum likelihood parameter estimation of POMPs by using the tools of the numerical analysis. Recall that the maximum likelihood estimator is dened by: θ = arg max θ log p θ (y 1:N ) .

(1.9) Such an estimator is convergent and asymptotically ecient [Wasserman, 2004, Douc et al., 2004, Douc and Matias, 2001, Douc et al., 2011].

The ltering distribution is generally not available exactly. Indeed, diverse POMP submodels presented in Figure 1 allow the following cases :

The models of type (C6) are classic linear Gaussian state-space systems. The Kalman lter allows exact Bayesian ltering in these models [START_REF] Cappé | Inference in Hidden Markov Models[END_REF];

The models of type (C5) are pairwise-linear Gaussian models [Gorynin et al., 2016a].

They may be seen as a generalization of (C6). A modied version of the Kalman lter allows exact Bayesian ltering in these models;

The models of type (C4) are linear, non-Gaussian state-space systems [START_REF] Harvey | Filtering with heavy tails[END_REF]. The ltering distribution in such models is generally not available exactly [START_REF] Cappé | Inference in Hidden Markov Models[END_REF];

The models of type (C3) are pairwise-linear, non-Gaussian state-space systems. The ltering distribution in such models is generally not available exactly;

The models of type (C2) are non-linear non-Gaussian state-space systems. The ltering distribution in such models is generally not available exactly. The stochastic volatility model [START_REF] Jacquier | Bayesian Analysis of Stochastic Volatility Models[END_REF], Jacquier et al., 2002] is an example of a model of type (C2);

The models of type (C1) are pairwise-non-linear and non-Gaussian. The ltering distribution in such models is generally not available exactly. The asymmetric stochastic volatility model [START_REF] Centeno | Estimation of Asymmetric Stochastic Volatility Models For Stock Exchange Index Returns[END_REF] is an example of a model of type (C1);

The models of type (D2) are classic HMMs with a nite-discrete state space. The forward-backward algorithm allows exact Bayesian state estimation in such models [START_REF] Cappé | Inference in Hidden Markov Models[END_REF];

The models of type (D1) are known as PMMs. They can be seen as a generalization of (D2). A modied version of the forward-backward algorithm allows exact Bayesian state estimation in such models [Pieczynski, 2003];

A model of type (H5) is a hybrid-state POMP which is linear Gaussian state-space conditional on R 1:N . Such a model is also known as a Switching Linear Dynamical System (SLDS) and Conditionally Gaussian Linear State-Space Model (CGLSSM) [START_REF] Cappé | Inference in Hidden Markov Models[END_REF]). The ltering distribution is generally not available exactly in such models;

A model of type (H3) is a hybrid-state POMP which is pairwise-linear Gaussian conditional on R 1:N . Such a model is also known as Conditionally Gaussian Pairwise Markov Switching Model (CGPMSM) [START_REF] Abbassi | Optimal Filter Approximations in Conditionally Gaussian Pairwise Markov Switching Models[END_REF]. The ltering distribution is generally not available exactly in such models;

Models of type (H2) represent the Conditionally Markov Switching Hidden Linear Model (CMSHLM), where one can compute exactly p (r n |y 1:n ), p (r n |y 1:N ) and the rst two moments of p (x n |r n , y 1:n ), p (x n |r n , y 1:N ) [Pieczynski, 2011a].

Models of type (H4), represent the Conditionally Gaussian Observed Markov Switching Model (CGOMSM). They are submodels of (H2) and (H3) simultaneously [START_REF] Abbassi | Optimal Filter Approximations in Conditionally Gaussian Pairwise Markov Switching Models[END_REF], Gorynin et al., 2017a].

A model of type (H1) is a hybrid-state POMP which is a non-linear, non-Gaussian state-space system conditional on R 1:N . The ltering distribution in such models is generally not available exactly. The switching stochastic volatility model [So et al., 1998, Carvalho andLopes, 2007] is an example of a model of type (H1);

Finally, the most general POMPs are hybrid-state POMPs which are not necessarily Gaussian nor linear conditional on R 1:N . The switching asymmetric stochastic volatility model [Gorynin et al., 2016c] is an example of such a model.

Bayesian smoothing

Let N in N * , (H 1:N , Y 1:N ) be a POMP. The pdf p (h n:N |y 1:N ) is called the smoothing distribution.

One may make use of the Markovianity of (H 1:N , Y 1:N ) in order to compute the smoothing distribution by the following recursion: given the ltering distribution p (h n |y 1:n ) and the smoothing distribution p (h n+1:N |y 1:N ), we compute p (h n:N |y 1:N ) by: Compute :

p (h n |h n+1 , y 1:n+1 ) = p (h n |y 1:n ) p (h n+1 , y n+1 |h n , y n ) p (h n |y 1:n ) p (h n+1 , y n+1 |h n , y n ) dh n ;
(1.10)

Compute :

p (h n:N |y 1:N ) = p (h n |h n+1 , y 1:n+1 ) p (h n+1:N |y 1:N ) .

( 1.11) This recursion iterates backward and is initialized by ltering distribution p (h N |y 1:N ).

The exact smoothing distribution is available in the same POMPs where an exact ltering distribution is available.

Bayesian smoothing is an essential component of diverse parameter estimation methods such as the Expectation-Maximization (EM), Stochastic Expectation-Maximization (SEM)

and Iterative Conditional Estimation (ICE) [START_REF] Banga | Unsupervised Bayesian classier applied to the segmentation of retina image[END_REF], Delmas, 1995].

Bayesian forecasting

The predictive distribution in a POMP at the horizon T ∈ N * is dened as the pdf p (h n+1:n+T , y n+1:n+T |y 1:n ).

Given the ltering distribution p (h n |y 1:n ), the predictive distribution at the horizon 1 is given by (1.5). One may make use of the Markovianity of (H 1:n+t , Y 1:n+t ) in order to compute the predictive distribution as follows. For each t in {1 : T -1}, the ltering distribution at the horizon t + 1 is given by : p (h n+1:n+t+1 , y n+1:n+t+1 |y 1:n ) = p (h n+1:n+t , y n+1:n+t |y 1:n ) p (h n+t+1 , y n+t+1 |h n+t , y n+t ) .

(1.12)

The ability of a POMP to accurately forecast the signal is extremely important for practical applications. The accuracy of the forecast of the model is often the main criterion of the model selection.

Parameter estimation

In this section, we consider a POMP (H 1:N , Y 1:N ) dened by the pdf p θ (h 1 , y 1 ) and the transition kernel ∀n ∈ 1 : N -1, p θ (h n+1 , y n+1 |h n , y n ) , (1.13) where p θ (.), p θ (. |. ) mean that the value of the pdf depends upon the value of θ, which is the parameter vector of the model. In this subsection, we recall diverse computational approaches for estimating θ from y 1:N or (h 1:N , y 1:N ). We distinguish the following two cases:

A supervised estimation consists in estimating θ from (h 1:N , y 1:N ); An unsupervised estimation consists in estimating θ from y 1:N .

Supervised estimation

A supervised estimator can be a maximum likelihood estimator, dened by: θ SUP (h 1:N , y 1:N ) = arg max θ log p θ (h 1:N , y 1:N ) . (1.14) In the case where this estimator is not available exactly, one can maximize the model's likelihood by using the tools of the numerical analysis. Specically, it consists in dening the objective function

θ → log p θ (h 1:N , y 1:N ) = log p θ (h 1 , y 1 ) + N -1 n=1 log p θ (h n+1 , y n+1 |h n , y n ) .
( 1.15) in order to maximize it over a given set Θ of acceptable parameter values.

Unsupervised estimation

In the context of the unsupervised estimation, the maximum likelihood estimator is dened by : θ UNSUP (y 1:N ) = arg max θ log p θ (y 1:N ) . (1.16) This estimator is generally not available exactly. However, one can dene the following objective function, known as the log-likelihood function: (1.17) where for each n in {1 : N -1}, c n+1 (θ) = p θ (y n+1 |y 1:n ) is computed by using (1.6) as an output of the Bayesian ltering procedure. Next, one maximizes this function by using the tools of the numerical analysis.

θ → log p θ (y 1 ) + N -1 n=1 log c n+1 (θ),
Alternatively, there exist iterative unsupervised estimation algorithms such as the EM [START_REF] Dempster | Maximum Likelihood from Incomplete Data via the EM Algorithm[END_REF], SEM [START_REF] Celeux | A classication EM algorithm for clustering and two stochastic versions[END_REF] and ICE [START_REF] Banga | Unsupervised Bayesian classier applied to the segmentation of retina image[END_REF]. All these methods require an initial guess, denoted by θ (0) , which may be chosen at random or determined somehow from y 1:N . These methods are based on the xed-point principle which means that they look for a value (or for a pdf in the case of the stochastic ICE and SEM) invariant to the transformation of the form: θ → κ θ, y 1:N .

(1.18) depending on the method considered.

The sequence of parameter estimates θ (1) , θ 2) , . . . , θ

dened by : .19) is supposed to converge to or to hover around some value which is then seen as the parameter estimate produced by the method.

∀k ≥ 0, θ (k+1) = κ θ (k) , y 1:N , ( 1 
In the case of the EM algorithm, the transformation (1.18) is :

κ θ (k) , y 1:N = arg max θ E θ (k) [log p θ (H 1:N , y 1:N ) |y 1:N ] .
(1.20)

In the case of the SEM algorithm, the transformation (1.18) is :

κ θ (k) , y 1:N = θ SUP ( H 1:N , y 1:N ), H 1:N ∼ p θ (k) (h 1:N |y 1:N ) . (1.21)
where θ SUP is the maximum likelihood supervised estimator.

In the case of the ICE algorithm, the transformation (1.18) is :

κ θ (k) , y 1:N = E θ (k) θ SUP (H 1:N , y 1:N ) |y 1:N , (1.22)
where θ SUP is a supervised estimator. In the case where the above expression cannot be computed exactly, one may use a Monte-Carlo method as an approximation, which denes a stochastic ICE.

Let us also outline the Markov chain Monte Carlo (MCMC) methods, which are particularly ecient in the context of machine learning [START_REF] Andrieu | An Introduction to MCMC for Machine Learning[END_REF], Andrieu et al., 2010].

Sequential Monte-Carlo methods

In this section, we present the sequential Monte-Carlo methods [START_REF] Doucet | A tutorial on particle ltering and smoothing: Fifteen years later[END_REF], Ristic et al., 2004, Carpenter et al., 1999, Andrieu and Doucet, 2002].

The sequential Monte-Carlo methods are used in POMPs where an exact Bayesian state estimation is not possible. The idea is to sample M ∈ N * particles {h (m) n } 1≤m≤M,n∈N * in order to approximate the ltering or smoothing distribution. These methods do generally converge to the exact Bayesian solution when M tends towards innity.

These methods realize the principle of importance sampling [Geweke, 1989], which is to sample particles according to a proposal density and then to attribute weights to them in order to correct the deviation of the proposal density from the posterior density. However, the sequential Monte-Carlo methods do not apply this principle directly, since most of the weights tend to zero and only few of them have signicant weights. Thus, the importance sampling becomes less and less ecient due to the necessity to process the particles which do not contribute to estimating the posterior density. This eect is known as the weight degeneracy [Cappé et al., 2005, Del Moral and[START_REF] Del Moral | Interacting particle ltering with discrete observations[END_REF]. The most widely used approach to overcome the weight degeneracy is to implement the Sampling Importance Resampling (SIR) [START_REF] Doucet | On sequential Monte Carlo sampling methods for Bayesian ltering[END_REF], which means to resample each particle with the probability proportional to its weight. This produces a range of SIR-based sequential Monte-Carlo methods [Douc andCappe, 2005, Li et al., 2015]. Indeed, the resampling stage removes the particle with low weights, and resamples the others multiple times, which creates a sort of dependency among the resampled particles and increases the variance of the estimate. Several approaches can overcome this increase of variance [START_REF] Beskos | A stable particle lter for a class of high-dimensional state-space models[END_REF], Verge et al., 2015, Lindsten et al., 2017]. Moreover, the sequential Monte-Carlo methods may have a heavy computational load in the case of high-dimensional state estimation [START_REF] Snyder | Obstacles to High-Dimensional Particle Filtering[END_REF], Ades and Van Leeuwen, 2015, Rebeschini et al., 2015].

Particle lter

Here we describe a simple SIR-based Particle Filter (PF), which is a widely used sequential

Monte-Carlo method to access the ltering distribution in a POMP. Let M ∈ N * be the number of particles to sample according to p (h n |y 1:n ), the SIR-PF consists in repeating the following steps. For each n ≥ 0: 

1. For each m in {1 : M }, sample h (m) n+1 from p h n+1 h (m) n , y n if n > 0, otherwise sample h (m) 1 from p (h 1 ); 2. For each m in {1 : M }, compute η (m) n+1 = p y n+1 h (m) n+1 , h (m) 
p (h n |y 1:N ) ≈ 1 M M m=1 δ h n -h (m) n ,
where M ∈ N * is the number of particles to sample according to p (h n |y 1:N ).

Here we consider the most known PS which is the forward-backward smoother [START_REF] Briers | Smoothing Algorithms for StateSpace Models[END_REF]. We suppose that we have already sampled particles {h

(m) n } 1≤m≤M,1≤n≤N
according to the ltering distribution as it was presented previously.

The particles {h (m) n } 1≤m≤M,1≤n≤N representing the smoothing distribution are obtained as follows:

Initialization: For each m in {1 : M }, let h (m) N = h (m) N .
For each n in {1 : N -1}, iterate: 

1. For each m in 1 : M , compute η (m) n = p h (m) n+1 ) h (m) n ,

Monte-Carlo forecasting

The Monte-Carlo forecasting is an approach to approximate, for each n in N * , the predictive distribution at horizon T ∈ N * dened by p (h n+1:n+T , y n+1:n+T |y 1:n ), as follows:

p (h n+1:n+T , y n+1:n+T |y 1:n ) ≈ 1 M M m=1 δ h n+1:n+T -h (m) n+1:n+T δ y n+1:n+T -y (m) n+1:n+T ,
where M ∈ N * is the number of particles to sample according to p (h n+1:n+T , y n+1:n+T |y 1:n ).

Here, each particle represents a trajectory of type (h n+1:n+T , y n+1:n+T ).

In the POMP framework, we suppose that we have already sampled {h

(m) n } 1≤m≤M,1≤n≤N
according to the ltering distribution as it was presented previously.

The particles {(h

(m) n+1:n+T , y (m) 
n+1:n+T )} 1≤m≤M,1≤n≤N are sampled as follows: Initialisation: For each m in {1 : M }, sample (h

(m) n+1:n+1 , y (m) n+1:n+1 ) from p h n+1 , y n+1 h (m)
n , y n ; For each t in {1 : T -1}, sample the particles according to the predictive distribution at horizon t + 1 by using those which were sampled according to the predictive distribution at horizon t. Thus, for each m in {1 : M }, sample (h

(m) n+1:n+t+1 , y n+1:n+t+1 ) from p h n+t+1 , y n+t+1 h (m) n+t , y (m) n+t .

Conclusion

We have presented the POMP framework and the sequential Monte-Carlo methods, which are widely used Bayesian state estimation approaches. These methods are generally based on the SIR principle. They are convergent asymptotically, but may need a considerable computational cost. The rest of the report is devoted to the alternative methods of state estimation in POMPs, which should allow an accurate state estimation for a low computational cost. The accuracy of these methods will be compared with that of sequential Monte-Carlo methods. In this chapter we rst dene the Conditionally Markov Switching Hidden Linear Model (CMSHLM) [Pieczynski, 2011a], then we move on to the Conditionally Gaussian Observed Markov Switching Model (CGOMSM) proposed in [START_REF] Abbassi | Optimal Filter Approximations in Conditionally Gaussian Pairwise Markov Switching Models[END_REF]. Next, we present the related exact Bayesian state estimation algorithms in Section 2.2. The author's contribution is given in Section 2.3. Extensive experiments on synthetic and real-world data are presented in Section 2.4.

Model denition and properties Denition 2. CMSHLM

Let X 1:N , R 1:N and Y 1:N be random sequences as specied previously. The triplet (X 1:N , R 1:N , Y 1:N ) is said to be a CMSHLM if The next denition concerns a particular CGOMSM used in this report. The general denition of the CGOMSM is given in [START_REF] Abbassi | Optimal Filter Approximations in Conditionally Gaussian Pairwise Markov Switching Models[END_REF]. Denition 3. CGOMSM Let (X 1:N , R 1:N , Y 1:N ) be a stationary Markov triplet and dene, for each n in {1 : N },

(X 1:N , R 1:N , Y 1:N ) is Markovian; (2.1a) ∀n ∈ {1 : N -1}, p (r n+1 , y n+1 |x n , r n , y n ) = p (r n+1 , y n+1 |r n , y n ) ; (2.1b) ∀n ∈ {1 : N -1}, X n+1 = F n+1 (R n:n+1 , Y n:n+1 )X n + G n+1 (R n:n+1 , Y n:n+1 )W n+1 + T n+1 (R n:n+1 , Y n:n+1 ), (2.1c) with F n+1 (R n:n+1 , Y n:n+1 ), G n+1 (R n:n+1 , Y n:n+1 ) matrices of appropriate dimensions, W 1:N is a zero-mean white noise and T n+1 (R n:n+1 , Y n:n+1 ) vectors of appropriate di- mension.
Z n = X n Y n ; (2.2)
We say that (X 

1:N , R 1:N , Y 1:N ) is a CGOMSM if for each n in {1 : N -1}, r n:n+1 in Ω 2 , X1 Y1 X2 X3 X4 R4 Y2 Y3 Y4 n R1
Υ(r n:n+1 ) = M(r n ) M(r n+1 ) = E [Z n |r n ] E [Z n+1 |r n+1 ] ;
( 2.4) the variance matrix of p (x n:n+1 , y n:n+1 |r n:n+1 ) is of the form 

Ξ(r n:n+1 ) = S(r n ) Σ(r n:n+1 ) Σ (r n:n+1 ) S(
A(r n:n+1 ) = Σ (r n:n+1 ) S -1 (r n ), (2.7) 
and consider B(r n:n+1 ) and Q(r n:n+1 ) such that

B(r n:n+1 )B (r n:n+1 ) = Σ (r n:n+1 )S -1 (r n )Σ(r n:n+1 ), (2.8) Q(r n:n+1 ) = Q 1 (r n:n+1 ) Q 2 (r n:n+1 ) Q 3 (r n:n+1 ) Q 4 (r n:n+1 ). = B(r n:n+1 )B (r n:n+1 ).
(2.9) Equation (2.6) induces that the matrix A(r n:n+1 ) has the following form:

A(r n:n+1 ) = A 1 (r n:n+1 ) A 2 (r n:n+1 ) 0 A 4 (r n:n+1
) .

(2.10)

Hence, we can state that the discrete time process Z 1:N satises the following recursion equation: 2.11) where W 1 , . . . , W N are Gaussian unit-variance white noise vectors. We split M(r n ) as M(r n ) = M 1 (r n ) M 2 (r n ) . Next, p (x n+1 , y n+1 |x n , r n:n+1 , y n ) is a multivariate normal distribution with variance matrix Q(r n:n+1 ) and mean vector given by A(r n:n+1 )

Z n+1 = A(R n:n+1 ) Z n -M (R n ) + B(R n:n+1 )W n+1 + M (R n+1 ), ( 
x n

y n + N 1 (r n:n+1 ) N 2 (r n:n+1 ) = A 1 (r n:n+1 )x n + A 2 (r n:n+1 )y n + N 1 (r n:n+1 ) A 4 (r n:n+1 )y n + N 2 (r n:n+1 ) , (2.12) 
where we set

N 1 (r n:n+1 ) = M 1 (r n+1 ) -A 1 (r n:n+1 )M 1 (r n )- A 2 (r n:n+1 )M 2 (r n ), N 2 (r n:n+1 ) = M 2 (r n+1 ) -A 4 (r n:n+1 )M 2 (r n ).
p (x n+1 |x n , r n:n+1 , y n:n+1 ) is also a multivariate normal probability density function with mean vector (2.13) and variance matrix

Q 2 (r n:n+1 )Q -1 4 (r n:n+1 )(y n+1 -A 4 (r n:n+1 )y n -N 2 (r n:n+1 )) +A 1 (r n:n+1 )x n + A 2 (r n:n+1 )y n + N 1 (r n:n+1 ),
Q 1 (r n:n+1 ) -Q 2 (r n:n+1 )Q -1 4 (r n:n+1 )Q 3 (r n:n+1 ).
( 2.14) This allows to complete the proof and to specify F n+1 (R n:n+1 , Y n:n+1 ), G n+1 (R n:n+1 , Y n:n+1 ) and T n+1 (R n:n+1 , Y n:n+1 ) :

F n+1 (r n:n+1 , y n:n+1 ) = A 1 (r n:n+1 ),

(2.15a) 

T n+1 (r n:n+1 , y n:n+1 ) = A 2 (r n:n+1 )y n + N 1 (r n:n+1 ) + (2.15b) Q 2 (r n:n+1 )Q -1 4 (r n:n+1 )(y n+1 -A 4 (r n:n+1 )y n -N 2 (r n:n+1 )), G n+1 (r n:n+1 , y n:n+1 )G T n+1 (r n:n+1 , y n:n+1 ) = (2.15c) Q 1 (r n:n+1 ) -Q 2 (r n:n+1 )Q -1 4 (r n:n+1 )Q 3 (r n:n+1 ).
Y n+1 = D(r n:n+1 )Y n + H(r n:n+1 ) + Λ(r n:n+1 )V n+1 ;
(2.16a) where R 1:N is a Markov chain, D(r n:n+1 ), H(r n:n+1 ), Λ(r n:n+1 ), A(r n:n+1 ), B(r n:n+1 ), C(r n:n+1 ), F (r n:n+1 ), Π (r n:n+1 ) are matrices dened by (2.21)-( 2.24) and U 1:N , V 1:N are standard independent and identically distributed Gaussian random vectors.

X n+1 = A(r n:n+1 )X n + B(r n:n+1 )Y n + C(r n:n+1 )Y n+1 + F (r n:n+1 ) + Π (r n:n+1 )U n+1 , (2.16b) X1 Y1 X2 X3 X4 R4 Y2 Y3 Y4 n R1
Proof. First, (R 

M X r n+1 M Y r n+1 + a 1 (r n:n+1 ) a 2 (r n:n+1 ) a 3 (r n:n+1 ) a 4 (r n:n+1 ) x n -M X rn y n -M Y rn = M X r n+1 + a 1 (r n:n+1 )(x n -M X rn ) + a 2 (r n:n+1 )(y n -M Y rn ) M Y r n+1 + a 3 (r n:n+1 )(x n -M X rn ) + a 4 (r n:n+1 )(y n -M Y rn )
, (2.19) and that the conditional variance matrix of

X n+1 Y n+1 is b(r n:n+1 )b (r n:n+1 ), written in block-form as b(r n:n+1 )b (r n:n+1 ) = γ 1 (r n:n+1 ) γ 2 (r n:n+1 ) γ 3 (r n:n+1 ) γ 4 (r n:n+1
) .

(2.20)

Since a 3 (r n:n+1 ) = 0 for each r n:n+1 in Ω 2 , equation (2.16a) holds for D(r n:n+1 ) = a 4 (r n:n+1 ),

(2.21a) 2.21b) and for some matrix Λ(r n:n+1 ) such that Λ(r n:n+1 )Λ (r n:n+1 ) = γ 4 (r n:n+1 ).

H(r n:n+1 ) = -a 4 (r n:n+1 )M Y rn + M Y r n+1 ( 
(2.22)

Likewise, X n+1 is also normally distributed given X n , R n:n+1 and Y n:n+1 . The conditional variance of X n+1 is

γ 1 (r n:n+1 ) -γ 2 (r n:n+1 )γ -1 4 (r n:n+1 )γ 2 (r n:n+1 ),
and its conditional mean is

M X r n+1 + a 1 (r n:n+1 )(x n -M X rn ) + a 2 (r n:n+1 )(y n -M Y rn ) + γ 2 (r n:n+1 )γ -1 4 (r n:n+1 ) y n+1 -(M Y r n+1 + a 3 (r n:n+1 )(x n -M X rn ) + a 4 (r n:n+1 )(y n -M Y rn )) .
Term-by-term identication of (2.16b) with the equation above gives

C(r n:n+1 ) = γ 2 (r n:n+1 )γ -1 4 (r n:n+1 ) (2.23a) A(r n:n+1 ) = a 1 (r n:n+1 ) -C(r n:n+1 )a 3 (r n:n+1 ) (2.23b) B(r n:n+1 ) = a 2 (r n:n+1 ) -C(r n:n+1 )a 4 (r n:n+1 ) (2.23c) F (r n:n+1 ) = M X rn+1 -A(r n:n+1 )M X rn -B(r n:n+1 )M Y rn -C(r n:n+1 )M Y rn+1 (2.23d)
and Π (r n:n+1 ) is a matrix such that Π (r n:n+1 )Π (r n:n+1 ) = γ 1 (r n:n+1 ) -C(r n:n+1 )γ 2 (r n:n+1 ).

(2.24)

The distribution of (X n , Y n , X n+1 , Y n+1 ) in stationary CGOMSM is of the form

p (x 1 , y 1 , x 2 , y 2 ) = 1≤i,j≤K α ij p ij (x 1 , y 1 , x 2 , y 2 ), (2.25) 
where {α ij } 1≤i,j≤K are positive scalars which sum up to one and for each (i, j) in {1 : 2.25) satises one of the two following equivalent properties

K} 2 , p ij (x 1 , y 1 , x 2 , y 2 ) is a Gaussian pdf. Proposition 3. For each (i, j) in {1 : K} 2 , p ij (x 1 , y 1 , x 2 , y 2 ) in (
p ij (y 2 |x 1 , y 1 ) = p ij (y 2 |y 1 ) ; (2.26) Σ X 1 Y 2 (ij) = Σ X 1 Y 1 (ij) Γ -1 Y 1 (ij) Σ Y 1 Y 2 (ij) , (2.27) 
where

Σ X 1 Y 2 (ij) ∈ R d×d , Σ X 1 Y 1 (ij) ∈ R d×d , Γ -1 Y 1 (ij) ∈ R d ×d , Σ Y 1 Y 2 (ij) ∈ R d ×d are sub-matrices of the variance matrix Γ ij ∈ R (d+d )×(d+d ) of p ij (x 1 , y 1 , x 2 , y 2 ) such that Γ ij =     Γ X 1 (ij) Σ X 1 Y 1 (ij) Σ X 1 X 2 (ij) Σ X 1 Y 2 (ij) Σ X 1 Y 1 (ij) Γ Y 1 (ij) Σ Y 1 X 2 (ij) Σ Y 1 Y 2 (ij) Σ X 1 X 2 (ij) Σ Y 1 X 2 (ij) Γ X 2 (ij) Σ X 2 Y 2 (ij) Σ X 1 Y 2 (ij) Σ Y 1 Y 2 (ij) Σ X 2 Y 2 (ij) Γ Y 2 (ij)     . (2.28) Proof. By stationarity assumption on (X 1:N , Y 1:N ), p (x n , y n , x n+1 , y n+1 ) does not depend on n, i.e. for any n, (X n , Y n , X n+1 , Y n+1 ) is equal in distribution to (X 1 , Y 1 , X 2 , Y 2 ): p (x n , y n , x n+1 , y n+1 ) = p (x 1 , y 1 , x 2 , y 2 ) . (2.29) p (x 1 , y 1 , x 2 , y 2 ) can obtained by marginalizing (r 1 , r 2 ) out from p (x 1 , y 1 , x 2 , y 2 , r 1 , r 2 ): p (x 1 , y 1 , x 2 , y 2 ) = r 1 ,r 2 ∈Ω p (r 1 , r 2 ) p (x 1 , y 1 , x 2 , y 2 |r 1 , r 2 ) . (2.30) Moreover, for each (r 1 , r 2 ) in Ω 2 , we have p (y 2 |x 1 , y 1 , r 1 , r 2 ) = p (y 2 |y 1 , r 1 , r 2 ) by CGOMSM property (2.6). Thus, p (x 1 , y 1 , x 2 , y 2 ) is of form (2.25) with ∀i, j ∈ {1 : K}, α ij = p (r 1 = i, r 2 = j) , p ij (x 1 , y 1 , x 2 , y 2 ) = p (x 1 , y 1 , x 2 , y 2 |r 1 = i, r 2 = j ) .
Let us show (2.26) and (2.27). For each (i, j) in {1 : K} 2 , (2.26) is the same as

p ij (y 2 , x 1 |y 1 ) = p ij (y 2 |y 1 ) p ij (x 1 |y 1 ) , that is to say that Y 2 and X 1 are independent given Y 1 . Since p ij (x 1 , y 1 , x 2 , y 2 ) is
Gaussian, we apply Lemma 1 from Appendix A to show that this is equivalent to (2.27).

Let us remember that CGOMSMs can be very close to the classic Conditionally Gaussian Linear State-Space Model (CGLSSM) [Derrode andPieczynski, 2013, Petetin and[START_REF] Petetin | [END_REF]. The interest of this remarks is that the which does not oer the CGLSSMs do not oer the possibility of a fast exact Bayesian smoothing [START_REF] Cappé | Inference in Hidden Markov Models[END_REF], as opposed to the CGOMSMs. Exact Bayesian smoothing and ltering algorithms for CGOMSMs are detailed in the following section.

Exact Bayesian state estimation

In this section, we present and prove exact Bayesian inference algorithms for the CMSHLM.

By Bayesian inference we mean computing posterior distribution of p (r n |y 1:n ) and posterior moments E [x n |y 1:n ] in the case of ltering, and p (r n |y 1:N ), E [x n |y 1:N ] in the case of smoothing. We have the following general result [Pieczynski, 2011a]. Proposition 4. Let (X 1:N , R 1:N , Y 1:N ) be a CMSHLM. Then, for each n in {1 : N } and

r n ∈ Ω, E [X n |r n , y 1:n ] and E X n X n |r n , y 1:n are computable with a complexity linear in N . Proof. Since for all n in {1 : N -1}, E [X n+1 |r n+1 , y 1:n+1 ] = rn∈Ω p (r n |r n+1 , y 1:n+1 ) F n+1 (r n:n+1 , y n:n+1 )E [X n |r n , y 1:n ] + T n+1 (r n:n+1 , y n:n+1 ) (2.31) and E X n+1 X n+1 |r n+1 , y 1:n+1 = rn∈Ω p (r n |r n+1 , y 1:n+1 ) F n+1 (r n:n+1 , y n:n+1 )E X n X n |r n , y 1:n F n+1 (r n:n+1 , y n:n+1 ) + F n+1 (r n:n+1 , y n:n+1 )E [X n |r n , y 1:n ] T n+1 (r n:n+1 , y n:n+1 )+ T n+1 (r n:n+1 , y n:n+1 )E X n |r n , y 1:n F n+1 (r n:n+1 , y n:n+1 ) + G n+1 (r n:n+1 , y n:n+1 )G n+1 (r n:n+1 , y n:n+1 ) + T n+1 (r n:n+1 , y n:n+1 )T n+1 (r n:n+1 , y n:n+1 ) , (2.32) thus E [X n |r n , y 1:n ] and E X n X n |r n , y 1:n can be computed recursively. Besides, it follows from hypothesis (2.1b) that V 1:N = (R 1:N , Y 1:N ) is Markovian. We can therefore calculate the needed probabilities p (r n |r n+1 , y 1:n+1 ) = p (r n+1 , y n+1 |r n , y n ) p (r n |y 1:n ) r * n ∈Ω p (r n+1 , y n+1 |r * n , y n ) p (r * n |y 1:n )
since p (r n+1 , y n+1 |r n , y n ) are known and p (r n |y 1:n ), p (r n |y 1:N ) can be computed by using the outputs of the classic forward-backward algorithm, which are α n (r n ) = p (r n , y 1:n )

and β n (r n ) = p (y n+1:N |v n ).
More precisely, we have:

α 1 (r 1 ) = p (v 1 ) ; α n+1 (r n+1 ) = rn∈Ω α n (r n )p (v n+1 |v n ); (2.33) β N (r N ) = 1; β n (r n ) = r n+1 ∈Ω β n+1 (r n+1 )p (v n+1 |v n ). (2.34) Then p (r n |y 1:n ) = α n (r n ) r * n ∈Ω α n (r * n ) , (2.35) and p (r n |y 1:N ) = α n (r n )β n (r n ) r * n ∈Ω α n (r * n )β n (r * n )
.

(2.36)

Filtering

For each n in {1 : N }, E [X n |y 1:n ] and E X n X n |y 1:n can be computed recursively with a complexity linear in n by

E [X n |y 1:n ] = rn∈Ω p (r n |y 1:n ) E [X n |r n , y 1:n ];
(2.37)

E X n X n |y 1:n = rn∈Ω p (r n |y 1:n ) E X n X n |r n , y 1:n .
(2.38)

Smoothing

We have the following general result [START_REF] Pieczynski | Exact Smoothing in Hidden Conditionally Markov Switching Linear Models[END_REF].

Proposition 5. Let (X 1:N , R 1:N , Y 1:N ) be a CMSHLM. Then, for each n in {1 : N },

E [X n |y 1:N ] = rn∈Ω p (r n |y 1:N ) E [X n |r n , y 1:n ]; (2.39) E X n X n |y 1:N = rn∈Ω p (r n |y 1:N ) E X n X n |r n , y 1:n , (2.40) 
both expectations being computable with a complexity linear in N .

Proof. Let us show (2.39) and (2.40). For all n in {1 :

N -1}, X n and Y n+1 are independent given (R n , Y n ) = (r n , y n ) cf. (2.1b). It follows that the variables X n and (R n+1:N , Y n+1:N ) are also independent given (R n , Y n ) = (r n , y n ). Thus, p (x n |r n , y 1:N ) = p (x n |r n , y 1:n ).
We have (2.39) and (2.40) from

p (x n |y 1:N ) = rn∈Ω p (r n |y 1:N ) p (x n |r n , y 1:N ) = rn∈Ω p (r n |y 1:N ) p (x n |r n , y 1:n ).
The fact that X n and (R

n+1:N , Y n+1:N ) are independent given (R n , Y n ) = (r n , y n )
could appear as somewhat limiting. However, this kind of assumptions is widespread. For example, in the classic Hidden Markov Model (HMM) (R 1:N , Y 1:N ) the variables R n and Y n+1 are independent given R n+1 = r n+1 , but they are not independent without this conditioning and it is well known that Y n+1:N can bring a large deal of information on R n .

Parameter estimation by the Expectation-Maximization (EM) algorithm

One can see from (2.16) that the problem of estimation of CGOMSM from y 1:N is illspecied: there is no way of estimating parameters in (2.16b) considering y 1:N only. Thus, here we consider the problem of estimating the parameters of CGOMSM from (x 1:N , y 1:N ).

This section presents an iterative estimation algorithm derived by the author and proven to be an EM algorithm. The related proof can be found in Appendix C.

We propose an iterative estimation technique described in Algorithm 1. At the q-th iteration of the algorithm, the parameters of CGOMSM is denoted by θ (q) , dened by:

θ (q) = µ (q) i , Γ (q) i , p (q) ij , A (q) ij , B (q) ij , C (q) ij , D (q) ij , F (q) ij , H (q) ij , Π (q) ij , Λ (q) ij |1 ≤ i, j ≤ K ,
where:

for each i in Ω, µ (q) i and Γ (q) i dene pdf p θ (q) (x 1 , y 1 |r 1 = i ); for each i, j in Ω, p (q) ij = p θ (q) (r 1 = i, r 2 = j) and A (q) ij , B (q) ij , C (q) ij , D (q) ij , F (q) ij , H (q) ij , Π (q) ij , Λ (q)
ij are dened cf. (2.16).

Algorithm 1. Parameter estimation of CGOMSM 1. Make an initial guess

θ (0) = µ (0) i , Γ (0) i , p (0) ij , A (0) ij , B (0) ij , C (0) ij , D (0) ij , F (0) ij , H (0) ij , Π (0) ij , Λ (0) ij |1 ≤ i, j ≤ K
as follows:

(a) Apply the K-means clustering method to x 1:N . We will denote by κ n (i) the function which assigns 1 if x n is within the i th cluster, and 0 otherwise. We also note

δ n (i, j) = κ n (i)κ n+1 (j); (b) For each i in Ω, µ (0) 
i and Γ (0) i are given by

µ (0) i = N n=1 z n κ n (i) N n=1 κ n (i) ; (2.41a) Γ (0) i = N n=1 z n -µ (0) i z n -µ (0) i κ n (i) N n=1 κ n (i) , (2.41b) 
where z n = x n y n , and for each

(i, j) in Ω 2 , p (0) ij is given by p (0) ij = 1 N -1 N -1 n=1 δ n (i, j). (2.42) (c) Compute intermediate matrices E (0) ij , S (0) ij , χ (0) ij , Φ (0) ij , G (0) ij , P (0) ij , ξ (0) ij and T (0) ij as follows: E (0) ij = 1 p (0) ij N -1 n=1 z n y n+1 δ n (i, j); (2.43a) S (0) ij = 1 p (0) ij N -1 n=1 z n z n z n y n+1 y n+1 z n y n+1 y n+1
δ n (i, j);

(2.43b)

χ (0) ij = 1 p (0) ij N -1 n=1
x n+1 z n x n+1 y n+1 δ n (i, j);

(2.43c)

Φ (0) ij = 1 p (0) ij N -1 n=1 x n+1 δ n (i, j); (2.43d) G (0) ij = 1 p (0) ij N -1 n=1 y n δ n (i, j);
(2.43e)

P (0) ij = 1 p (0) ij N -1 n=1 y n y n δ n (i, j); (2.43f ) ξ (0) ij = 1 p (0) ij N -1 n=1 y n+1 y n δ n (i, j); (2.43g) T (0) ij = 1 p (0) ij N -1 n=1 y n+1 δ n (i, j). (2.43h) (d) For each i, j in Ω, A (0) ij , B (0) ij , C (0) ij , D (0) ij , F (0) ij , H (0) ij , Π (0) ij and Λ (0) ij are given by F (0) ij A (0) ij B (0) ij C (0) ij = Φ (0) ij χ (0) ij   N -1 E (0) ij E (0) ij S (0) ij   -1
;

(2.44a)

H (0) ij D (0) ij = T (0) ij ξ (0) ij   N -1 G (0) ij G (0) ij P (0) ij   -1 ; (2.44b) (N -1)Λ (0) ij Λ (0) ij = 1 p (0) ij N -1 n=1 y n+1 y n+1 δ n (i, j) -H (0) ij T (0) ij -D (0) ij ξ (0) ij ; (2.44c) (N -1)Π (0) ij Π (0) ij = 1 p (0) ij N -1 n=1 x n+1 x n+1 δ n (i, j) -F (0) ij Φ (0) ij -A (0) ij B (0) ij C (0) ij χ (0) ij . (2.44d)
2. Find the new set of parameters θ (q+1) as follows:

(a) For each i in Ω, compute posterior probabilities

φ (q) n (i) = p θ (q) (r n = i |x 1:N , y 1:N ) ,
and for each i, j in Ω compute

ψ (q) n (i, j) = p θ (q) (r n = i, r n+1 = j |x 1:N , y 1:N ) cf. (2.48); (b) For each i in Ω, compute µ (q+1) i and Γ (q+1) i by substitution φ (q) n (i) for κ n (i) in (2.41); (c) For each i, j in Ω, p (q+1) ij is given by p (q+1) ij = 1 N -1 N -1 n=1 ψ (q)
n (i, j).

(2.45)

Then compute intermediate matrices

E (q+1) ij , S (q+1) ij , χ (q+1) ij , Φ (q+1) ij , G (q+1) ij , P (q+1) ij , ξ (q+1) ij and T (q+1) ij by substituting ψ (q) n (i, j), p (q+1) ij with δ n (i, j), p (0) ij in (2.43). Finally, compute A (q+1) ij , B (q+1) ij , C (q+1) ij , D (q+1) ij , F (q+1) ij , H (q+1) ij , Π (q+1) ij and Λ (q+1) ij by substituting E (q+1) ij , S (q+1) ij , χ (q+1) ij , Φ (q+1) ij , G (q+1) ij , P (q+1) ij , ξ (q+1) ij , T (q+1) ij with E (0) ij , S (0) ij , χ (0) ij , Φ (0) ij , G (0) ij , P (0) ij , ξ (0) ij , T (0) ij in (2.44).
(The algorithm ends here)

Let us recall the formulas for φ (q) n (i) and ψ

(q) n (i, j). Let us pose t n = (x n , r n , y n ), α n (r n ) = p θ (q) (r n , z 1:n ) and β n (r n ) = p θ (q) (z n+1:N |t n ).
Then, the forward-backward algorithm computes recursively α n (r n ) and β n (r n ) as follows:

α 1 (r 1 ) = p θ (q) (t 1 ) and α n+1 (r n+1 ) = rn∈Ω α n (r n )p θ (q) (t n+1 |t n ) (2.46) for n in {1 : N -1}. β N (r N ) = 1 and β n (r n ) = r n+1 ∈Ω β n+1 (r n+1 )p θ (q) (t n+1 |t n ) (2.47) for n in {1 : N -1}. where p θ (q) (t 1 ) = p θ (q) (r 1 ) p θ (q) (z 1 |r 1 ) p θ (q) (t n+1 |t n ) = p θ (q) (r n+1 |r n ) p θ (q) (x n+1 , y n+1 |x n , y n , r n:n+1 ) p θ (q) (r 1 = i) = j∈Ω p (q) ij p θ (q) (z 1 |r 1 = i ) = N z 1 ; µ (q) i , Γ (q) i p θ (q) (r n+1 = j |r n = i ) = p (q) ij p θ (q) (r 1 = i) p θ (q) (y n+1 |y n , r n:n+1 = (i, j) ) = N y n+1 ; D (q) ij y n + H (q) ij , Λ (q) ij Λ (q) ij p θ (q) (x n+1 |x n , y n:n+1 , r n:n+1 = (i, j) ) = N x n+1 ; A (q) ij x n + B (q) ij y n + C (q) ij y n+1 + F (q) ij , Π (q) ij Π (q) ij .
Thus,

ψ (q) n (i, j) = α n (r n )p θ (q) (t n+1 |t n ) β n+1 (r n+1 ) r n ,r n+1 α n (r n )p θ (q) t n+1 |t n β n+1 (r n+1 ) , (2.48) with t n = (x n , r n , y n ).
Proposition 6. Algorithm 1 is an EM algorithm of estimation of CGOMSM parameters in form (2.16).

Proof. See Appendix C.

It is noteworthy that one can see Algorithm 1 as an EM algorithm for parameter estimation of Gaussian mixture (2.25) with the variance of mixands constrained to (2.27).

That is why it is not a classic EM algorithm of estimating a Gaussian mixture, since in its classic version, the mixands' variances are not constrained.

Estimating mixture (2.25) is a necessary stage of the CGOMSM application to the Bayesian state estimation in non-linear non-Gaussian models, as detailed in the next section.

Application to Bayesian state estimation in non-linear non Gaussian models

Let us consider a Partially Observable Markov Process (POMP) with continuous state space (X 1:N , Y 1:N ), which can possibly be non-linear or/and non-Gaussian. For each n in

{1 : N }, X n takes its value in R d and Y n takes its value in R d with d ∈ N * , d ∈ N * . In this
Section, we consider an application of CGOMSMs to the problem of Bayesian inference, which consists in the sequential search of X 1:N from Y 1:N . We suppose that (X 1:N , Y 1:N ) is stationary, which means that for any n, 

(X n , Y n , X n+1 , Y n+1 ) is equal in distribution to (X 1 , Y 1 , X 2 , Y 2 ), what we note by p (x n , y n , x n+1 , y n+1 ) = p (x 1 , y 1 , x 2 , y 2 ).
n in {1 : N }. p (x 1 , y 1 , x 2 , y 2
) can be approximated using a mixture of K 2 components of form (2.25), where the mixands p ij (x 1 , y 1 , x 2 , y 2 ) are such that their variance matrices satisfy (2.27).

Denition 4. LCGOMSMF

We call LCGOMSMF the following algorithm:

1. Generate an articial sample (x 1:N , y 1:N ) according to a given model of type 

(X n+1 , Y n+1 ) = T(X n , Y n , W n ), where N ∈ N *
= N n=1 (x n -x n ) 2 , (2.49) 
where x 1:N is the ground-truth simulated and unknown to inference algorithms. MSE is a useful performance criterion for comparing the eectiveness of Bayesian inference algorithms.

The following subsections are examples of applications of LCGOMSMF and LCGOMSMS to dierent models belonging to the class of POMP with continuous state space. All the results presented below are averaged over 100 equivalent independent experiments, each of them being computed using N = 1000 simulated data points.

Bayesian state estimation in the stochastic volatility model

Here we consider the standard Stochastic Volatility (SV) model [START_REF] Jacquier | Bayesian Analysis of Stochastic Volatility Models[END_REF],

usually presented as follows:

X 1 = µ + U 1 ; (2.50a) ∀n ∈ N * , X n+1 = µ + φ(X n -µ) + σU n+1 ; (2.50b) ∀n ∈ N * , Y n = β exp (X n /2)V n , (2.50c) 
where

U 1:N , V 1:N are independent standard Gaussian variables in R and µ ∈ R, φ ∈]-1, 1[, β ∈ R * + , σ ∈ R * + are xed.
We compare the performance of the LCGOMSMF with that of the Particle Filter (PF)

and Gaussian Sum Filter (GSF) [START_REF] Simandl | Filtering, Prediction and Smoothing with Gaussian Sum Representation[END_REF], in the case of ltering in model (2.50). We set µ = 0.5, β = 0.5, and consider four dierent cases for φ and σ such that φ 2 + σ 2 = 1 (that is to ensure that the common variance of the variables X n is unitary). The results are reported in Table 2.1.

The details of each ltering method used in the experiments are the following:

For the LCGOMSMF, we test out dierent values of K and we infer the CGOMSM from an independently generated sample (x 1:N , y 1:N ) of size N = 20000, performing 100 EM iterations. See Figure 2.4 for an example of trajectories.

Cases 

φ σ 2 LCGOMSMF PF GSF K = 2 K = 3 K = 5 K = 7
(µ = 0.5, β = 0.5).
The PF implementation is that of Section 1.4.1 and uses M = 1500 particles. We found out empirically that PF behaves asymptotically for this number of particles or greater.

In order to use the GSF, we linearize the SV model by taking the logarithm of both sides of (2.50c) to get

X 1 = µ + U 1 ;
(2.51a)

X n+1 = µ + φ(X n -µ) + σU n+1 ;
(2.51b)

Y n = X n + V n , (2.51c) 
where

Y n = log (Y 2 n )-2 log β and V 1:N are independent, non-Gaussian variables, such that exp V 1 2 , . . . , exp V N 2 are standard Gaussians. Then, for each n in N * , the Probability Density Function (pdf) of V n is p (v n ) = exp v n 2 N exp v n 2 ; 0, 1 .
Following the general principle of the GSF, we approximate the latter pdf by a Gaussian mixture of r components :

p (v n ) ≈ r m=1 γ n N (v n ; v m , R m ).
We found that when r ≥ 5, the approximation is accurate enough to achieve a negligible residual eect. Since the number ξ n of mixands in the ltering pdf

p (x n |y 1:n ) = ξn j=1 α nj N (x n ; xnj , P nj ) (2.52)
grows exponentially with n, a reduction technique is implemented to keep computational demands of the algorithm within reasonable bounds.

For the experiments, we classically reduce the number of terms as follows: when ξ n becomes greater than r, we keep the r mixands in (2.52) which have the greatest weight coecients α nj , and we discard the remaining. Therefore, we impose the constraint that ξ n = r. We found out empirically that GSF behaves asymptotically for r ≥ 3, but does not attain the optimal MSE. We note that since the model (2.51) is linear, there is no reason for considering the extensions of the GSF for non-linear systems, such as the Gaussian Sum Unscented Kalman Filter (GSUKF) [START_REF] Straka | Gaussian sum unscented Kalman lter with adaptive scaling parameters[END_REF].

Contrary to the LCGOMSMF which makes use of a single global approximation, the GSUKF relies on multiple approximations: an approximation of the noise terms with a Gaussian mixture; some reduction technique to keep the number of mixands of the ltering pdf within reasonable bounds. Additionally, when the model is non-linear, the GSUKF uses the Unscented Transform (UT) for computing the approximate means and covariances. The UT relies, in turn, on its scaling parameters. Our experiments show that computing a single global approximation may be advantageous and helps to avoid the cumulative residual eect. However, unlike then LCGOMSMF, the GSUKF may be used for non-stationary systems.

Filtering in the asymmetric stochastic volatility model

Here we consider the Asymmetric Stochastic Volatility (ASV) model [START_REF] Omori | Block sampler and posterior mode estimation for asymmetric stochastic volatility models[END_REF], which may be presented as follows:

X 1 = µ + U 1 ;
(2.53a)

X n+1 = µ + φ(X n -µ) + σ ρY n β exp (X n /2)
+ λU n+1 ;

(2.53b)

Y n = β exp (X n /2)V n .
(2.53c)

Here, we compare the performance of the LCGOMSMF with that of the PF only, since the GSF and GSUKF would not take into account the value of the volatility asymmetry coecient ρ and therefore they are not suitable for this model. The experimental conguration is identical to the previous one. For the sake of consistency with the Asymmetric Volatility Phenomenon (AVP), ρ should be assumed negative.

We set µ = 0.5, β = 0.5, and consider ve dierent cases for ρ and λ such that

ρ 2 + λ 2 = 1; φ 2 + σ 2 = 1,
to ensure that for each n in N * , the variance of X n is unitary. The results are reported in Table 2.2 for φ = 0.5 and in Table 2.4 for φ = 0.8. According to these results, the LCGOMSMF is ecient for both SV and ASV models, and attains the same asymptotic performances as the PF. Regarding the processing time, we nd that after having it adjusted to the SV model, the LCGOMSMF is nearly ve times faster than the PF.

K = 2 K = 3 K = 5
At the moment, we have no computational technique to select the minimum number of classes allowing to obtain asymptotic performances. We only note the trade-o between the computational cost and the variance of the resulting estimates. Indeed, with a greater number of classes the former increases, while the latter decreases. In practice, ve classes seem to be enough for most of situations.

Filtering real-world data

Here we propose an application of the LCGOMSMF to recover volatility estimates of a real-world stock chart. Let us remind that if P n-1 denotes the stock price at the beginning of the previous trading day and if P n denotes the stock price at the beginning of the current trading day, then :

R n = Pn-P n-1 P n-1
is the current daily return on the stock investment;

u n = log (1 + R n ) = log Pn P n-1
is the continuously compounded daily return. It is also often called the log-return.

To see why u n is called the continuously compounded return, take the exponential of both sides to get exp (u n ) = Pn P n-1

. Rearranging, we get P n = P n-1 exp (u n ) so that u n is the continuously compounded growth rate in prices between the beginning of the previous and the current trading days. This has to be contrasted with R n , which is the simple growth rate in prices P n-1 and P n without any compounding.

Following [Durham, 2006] to examine the performance of the LCGOMSMF on the stock market data, we compute the log-returns u n over the daily Standard & Poor's 500 (S&P) index data from Jun. 23, 1980to Aug. 30, 2002 (N = 5604), then we calculate y n = u nµ r , where µ r is given in [Durham, 2007] and u n denotes pre-processed logreturn [Durham, 2006, Durham, 2007]. Next, we use the LCGOMSMF to compute the ltered volatility estimates within the ASV model, whose parameters are given in [Durham, 2007] and reported in Table 2.5. Our result is shown in Figure 2.7.

We nd that the volatility estimates produced by the LCGOMSMF are consistent with the log-return process: as we can see in Figure 2.7, the intervals where the uctuation of logreturns are low (e.g. between 1991 and 1995) match the intervals where the log-volatility 

Smoothing in dynamic beta models

The dynamic beta regression allows modeling monthly unemployment rate [START_REF] Da-Silva | Dynamic Bayesian beta models[END_REF]. More precisely, let N ∈ N * , Y n in [0, 1] be the unemployment rate at time n, the dynamic beta model [START_REF] Lopes | Particle lters and Bayesian inference in nancial econometrics[END_REF] for Y 1:N is:

Y n ∼ Beta 1 c(1 + exp(X n )) , exp(X n ) c(1 + exp(X n )) ; X n+1 = µ + φ(X n -µ) + σU n+1 , (2.54) 
where µ, φ, σ and c are xed and U 1:N are independent standard Gaussian vectors. We recall that for α, β in R * + , Beta(α, β) denotes the beta distribution: where Γ denotes the Gamma function Γ

Beta(x; α, β) = x α-1 (1-x) β-1 Γ(α+β) Γ(α)Γ(β) if x ∈ [0, 1] 0 otherwise , (2.55) K = 5 K = 7 K = 9 0.0022 0.0017 0.0015
(x) = ∞ 0 t x-1 exp(-t)dt. If |φ| < 1 and X 1 ∼ N(µ, σ 2 0 ) with σ 0 = σ √ 1-φ 2
, then the autoregressive process of X 1:N is stationary [START_REF] Dickey | Distribution of the estimators for autoregressive time series with a unit root[END_REF], as well as (X 1:N , Y 1:N ).

The conditional distribution of Y n is generally skewed. Besides, we have:

E [Y n |X n ] = 1 1 + exp(X n ) ; (2.56) Var [Y n |X n ] = exp(X n ) (1 + exp(X n )) 2 1 - 1 c + 1 , (2.57)
which means that c can be seen as a noise level of the observation of X n made through Y n .

When c = 0, Y n is a deterministic bijective function of X n , and when c tends to innity, the conditional variance of Y n tends to its maximum. See Figure 2.8 for an illustration. The parameter φ is the lag-one autocorrelation of the latent process.

The dynamic beta regression is a particular case of the dynamic generalized linear model [Lopes andTsay, 2011, West et al., 1985], where the latent process is Gaussian autoregressive and the observational distribution belongs to the exponential family.

Bayesian inference in model (2.54) is an established part of econometric and social analyses. We calibrated this model to a real-world data of the US monthly unemployment rate data from March 2002 to December 2015. The rounded values of the parameters are µ = -2.82, φ = 0.95, σ 0 = 0.17 and c = 0.005. In order to test the performance of LCGOMSMS in the case of model (2.54), we consider estimating X 1:N from Y 1:N when observed variables arise from (2.54) for various values of c and φ.

We use LCGOMSMS with dierent number of states K to estimate the latent variables from the N = 1000 observable ones, and we report our results in terms of the Relative Mean Squared Error (RMSE) for the mean of 100 independent experiments. The RMSE is relative to the common variance of variables in X 1:N which is σ 2 0 . The results are in comparison purpose, a similar outcome using a PF and Particle Smoother (PS) with M = 1500 particles is also given. We use the PS presented in Section 1.4.2.

We observe that for moderate values of K (e.g., K = 5), the accuracy of the LCGOMSMS is satisfactory. When the latent process is highly persistent (φ close to 1) and when the noise level c is signicant, one needs a greater number of states to estimate the latent process accurately.

The complexity of the particle smoother is N × m × T while the complexity of the LCGOMSMS is N × K 2 . In practice, the computation time of our method is quite the same as the one consumed by a particle smoother using K 2 particles, which is rather a small number of particles. As a consequence, one may use a large value of K if needed.

Smoothing in asymmetric stochastic volatility model

Here, we provide results of experiments of Bayesian smoothing in the ASV model 2.53.

The experiment protocol consists in estimating X 1:N from Y 1:N by using LCGOMSMS with dierent number of states K, N = 1000 observable ones, and we report our results in terms of RMSE for the mean of 100 independent experiments. The RMSE is relative to the common variance of variables in X 1:N which is σ 2 1-φ 2 . The results are provided in Table 2.8.

The dimensions of the latent variables and the observable ones are a = b = 1, the training sample size is N = 20000, and Q = 100 is the number of EM iterations. For comparison purpose, a similar outcome using a PF and PS with M = 1500 particles is also given. We use the PS presented in Section 1.4.2.

We observe that for moderate values of K (e.g., K = 5), the accuracy of the LCGOMSMS is satisfactory. [So et al., 1998, Carvalho andLopes, 2007] of (X 1:N , Y 1:N ) reads as follows: 

K ρ λ 2 2 
∀n ∈ {1 : N -1}, X n+1 = γ 1 + q j=2 γ j 1l [j;+∞] (S n+1 ) + φX n + σU n+1 ; (2.58) ∀n ∈ {1 : N }, Y n = exp (X n /2)V n , ( 2 
) = p (s n+1 |s n ); γ 1 , . . . , γ q , φ, σ are xed parameters in R U 1:N , V 1:
N are independent standard Gaussian vectors. We set q = 2, p 11 = p (s n+1 = 1 |s n = 1 ) and p 22 = p (s n+1 = 2 |s n = 2 ). Since random sampling is straightforward within the MSSV framework, LCGOMSMS is applicable. We observe that if K is large enough, the smoothed output of the LCGOMSMS is as good as the statistically optimal one, produced by the PS. Our smoothing procedure is riskless from the weight degeneracy phenomenon frequently encountered in particle methods and seems to be robust even in the case of the switching models.

Conclusion

CGOMSMs are POMPs with hybrid state space in which exact fast Bayesian inference is feasible. We presented the CGOMSM framework and the related algorithms of Bayesian inference. We also proposed LCGOMSMF and LCGOMSMS, which are CGOMSM-based methods for Bayesian inference in non-Gaussian non-linear systems. They rely on a single global approximation of the system done by the EM algorithm, the latter constitutes the major contribution of the author. LCGOMSMF and LCGOMSMS are very general and has several advantages over existing techniques. Their performances have been examined

on synthetic samples related to SV models as well as on real data. We found that the LCGOMSMF attains the asymptotic performances of the PF, what could not be obtained with GSF and GSUKF.

The ltering procedure which is the object of the Section is applicable in general stationary (or asymptotically stationary) Markov dynamic systems, provided that one can sample its realizations. It is as fast as the standard Kalman lter, provided that one adjusts the lter to a particular model via e.g. the EM algorithm.

Chapter 3

Markovian grid-based Bayesian state estimation The jump Markov system [Andrieu et al., 2003a], and, more generally, the hybrid-state Partially Observable Markov Process (POMP), allows modeling time series whose dynamics depend upon unknown exogenous discrete-valued factors. It applies in econometrics [Kim, 1994, Zhu and[START_REF] Zhu | [END_REF], nance [Azzouzi andNabney, 1999, Panopoulou andPantelidis, 2015], tracking [START_REF] Weiss | Multiple-model tracking for the detection of lane change maneuvers[END_REF], speech recognition [START_REF] Mesot | [END_REF]Barber, 2007, Rosti and[START_REF] Rosti | [END_REF], pattern recognition [START_REF] Pavlovic | Learning Switching Linear Models of Human Motion[END_REF], among others [Ristic et al., 2004, Ghahramani andHinton, 2000]. These models are also known as regime-switching models (processes) and interacting multiple models. Exact Bayesian state estimation in such a system is usually impossible [Lerner, 2002] unless the system is a hidden Markov chain with nite discrete state space [Andrieu et al., 2003a].

Switching lters are algorithms for Bayesian inference in hybrid-state POMPs. They include sampling-based approaches [START_REF] Kim | State-Space Models with Regime Switching: Classical and Gibbs-Sampling Approaches with Applications[END_REF], Doucet et al., 2001, Fong et al., 2002, Särkkä et al., 2012, Carter and Kohn, 1996] and deterministic ones [Zoeter andHeskes, 2006, Zhong et al., 2008]. Sampling-based lters rely on Monte Carlo and quasi-Monte

Carlo methods [Caisch, 1998, Niederreiter, 2010, Moroko and Caisch, 1995, Gerber and Chopin, 2015]. These lters are asymptotically optimal, but can be computationally intensive. Usual deterministic ones are modied versions of the Extended Kalman Filter (EKF), Unscented Kalman Filter (UKF) or Gauss-Hermite Filter (GHF) which handle the discretevalued process of switches. EKF, UKF, GHF and their variants are discussed in [START_REF] Afshari | Gaussian Filters for Parameter and State Estimation: A General Review of Theory and Recent Trends[END_REF]. However, sampling-based methods may be computationally expensive in the case of high-dimensional state space, while deterministic ones are generally not proven to converge to the Bayesian solution.

In this chapter, we introduce a novel approach for Bayesian inference in stationary hybrid-state POMPs, which we call Markovian Grid-Based State Estimator (MGSE). This method allows using sparse grids [START_REF] Bungartz | Sparse grids[END_REF] for reducing the dimensionality eect, what we presented in [START_REF] Gorynin | Fast ltering with new sparse transition Markov chains[END_REF], which allowed ecient state estimation even in the case of high-dimensional state space. We extend our previous study [START_REF] Gorynin | Fast ltering with new sparse transition Markov chains[END_REF] by proving the convergence of the MGSE towards the Bayesian solution in the POMPs.

The chapter is organized as follows. The next section is a background on the grid methods and quadrature rules. The second section is the main contribution of the author and introduces Markovian grids as a computational tool for statistical inference in hidden Markov and switching hidden Markov systems. The third section contains experiments and the last one contains conclusions and perspectives.

3.1 Background Denition 5. Monomial in R a of order t.

Let a in N, t in N. We say that m ∈ F R a → R is a monomial in R a of order t if there exists an a-uplet (α 1 , . . . , α a ) in N a such that

α 1 + . . . + α a = t, ∀z ∈ R a , m(z) = z[1] α 1 . . . z[a] αa ,
where for each i in {1 : a}, z[i] denotes the i-th coecient of vector z.

The set of all monomials in R a of order less than or equal to t is denoted by M t R a . Denition 6. Continuous-discrete domains.

We say that a set Γ is a continuous-discrete domain if there exist a non empty nite discrete set Ω and a ∈ N such that Γ = Ω × R a . The set of continuous-discrete domains is denoted as D and is dened as

D = 0<Card(Ω)<∞ a∈N Ω × R a . (3.1)
Note that for any a ∈ N and Ω such that Card(Ω) = 1, we have there is a trivial bijection between Ω × R a and R a . In this case, we pose for simplicity Ω × R a = R a , thus we have R a ∈ D.

Denition 7. Vector valued functions.

Let Γ ∈ D, the set of vector-valued functions on Γ is denoted by F(Γ), and is dened as

F(Γ) = d∈N F Γ → R d . (3.2) Denition 8. Analytic function on R a . Let a, b ∈ N, f ∈ F(R → R b ) is analytic on R if for each x 0 in R,
there exists an open neighborhood of x 0 in which f is equal to a convergent power series in R b [Gunning, 1965];

f ∈ F(R a → R b ) is analytic on R a if it is analytic in each variable separately, that
is for any xed (a -1) coordinates, the restriction of f is an analytic function of the remaining coordinate [Pedrick, 1994].

The set of analytic functions from R a to R b is denoted as A R a → R b . The subset of analytic functions in F(R a ) is denoted as A R a . Let us recall that the sums, products, and compositions of elements in A R a are also in A R a .

Let us extend the concept of analytic functions to the continuous-discrete domains.

Denition 9. Analytic function on Γ.

Let a, b ∈ N, Ω be a nite discrete set and

Γ = Ω × R a . We say that f ∈ F Γ → R b is analytic on Γ if for each ω in Ω, f is analytic on {(ω, z)|z ∈ R a }.
The remaining symbols are:

For Γ ∈ D, the set of positive measures on Γ is denoted by U(Γ);

For Γ ∈ D, µ ∈ U(Γ) and f ∈ F(Γ) µ-integrable, we denote < µ, f >= Γ f dµ = ω∈Ω R a f (ω, z)µ(ω, z)dz; (3.3)
For Γ, Γ ∈ D, the product measure of µ ∈ U(Γ) and µ ∈ U(Γ ), is denoted as µ ⊗ µ ; For Γ ∈ D and x ∈ Γ, the Dirac delta function is denoted by δ x ∈ U(Γ). Recall that for each f in F Γ such that f (x) is nite, we have

< δ x , f >= f (x);
The indicator function of a set S is denoted by 1l S ;

For k, n ∈ N, 0 ≤ k ≤ n, the binomial coecient dened by n! k!(n-k)! is denoted by C k n .
Denition 10. Tensor product of functions.

Let X 1 and X 2 be two sets, Denition 12. Γ-grid measure.

f 1 ∈ F X 1 → R and f 2 ∈ F X 2 → R . The tensor product of f 1 and f 2 is an element of F X 1 × X 2 → R denoted as f 1 ⊗ f 2 and dened by ∀x 1 ∈ X 1 , x 2 ∈ X 2 , (f 1 ⊗ f 2 )(x 1 , x 2 ) = f 1 (x 1 )f 2 (x 2 ). (3.4) Denition 11. Γ-grid. Let M ∈ N * , Γ ∈ D, Λ = {γ 1 , . . . , γ M } ⊂ Γ and π in F Λ → R . Then I = {Λ,
Let Γ ∈ D and I = {Λ, π} be a Γ-grid. The grid measure corresponding to I is dened as For the sake of simplicity, we denote in the same way < T I , f > and < I, f >. Denition 14. Degree of precision of a Γ-grid.

T I = γ∈Λ δ γ π(γ).
Let a ∈ N, t ∈ N, Ω be a nite discrete set, Γ = Ω × R a , µ ∈ U(Γ) and I = {Λ, π} be a Γ-grid. We say that I has a degree of precision t with respect to µ if for each monomial m in M t R a and each ω ∈ Ω, one has

z∈{x∈R a |(ω,x)∈Λ} m(z)π(ω, z) = µ(ω) < µ, m > . (3.7)
Additionally, for any g in F Γ → R + , we say that I has a degree of precision of t with respect to g if it has a degree of precision t with respect to T g ∈ U(Γ) dened by

∀f ∈ F Γ , < T g , f >= ω∈Ω R a f (ω, z)g(ω, z)dz. (3.8)
In the case where Ω = ∅, we have Γ = R a and we say that I has a degree of precision t with respect to µ if for each monomial m in M t R a , one has < I, m >=< µ, m > . (3.9) Similarly, for any g in F R a → R + , we say that I has a degree of precision of t with respect to g if it has a degree of precision t with respect to Let Γ ∈ D, µ ∈ U(Γ) and (I L ) L∈N * be a sequence of Γ-grids. We say that (I L ) L∈N * is strongly arbitrarily precise with respect to µ if for any t ∈ N, there exists L t ∈ N * such that for all L greater or equal to L t , I L has a degree of precision t with respect to µ.

T g ∈ U(R a ) dened by ∀f ∈ F R a , < T g , f >= R a f (z)g(z)dz.
Additionally, for any g in F Γ → R + , we say that (I L ) L∈N * is strongly arbitrarily precise with respect to g if it is strongly arbitrarily precise with respect to T g ∈ U(Γ) dened by (3.8).

Denition 16. Grid-by-scalar product.

Let Γ ∈ D, I = {Λ, π} be a Γ-grid and h in F Γ → R . We dene the grid-by-scalar product of I and h as follows:

Ih = {Λ, hπ}.
Note that we also have,

T Ih = T I h.
Let us now introduce the concept of consistency of a grid sequence with a measure in U(Γ).

Denition 17. Consistent sequences of Γ-grids.

Let Γ ∈ D, µ ∈ U(Γ) and (I L ) L∈N * be a sequence of Γ-grids. We say that

(I L ) L∈N * is consistent with µ if for any f in A Γ , (< I L , f >) L∈N * converges to < µ, f > in the sense of convergence of numerical sequences.
Additionally, for any g in F Γ → R , we say that (I M ) M ∈N * is consistent with g if it is consistent with T g ∈ U(Γ) dened by (3.8).

Denition 18. Union grid.

Let Γ ∈ D, I = {Λ, π} and I = {Λ , π } be two Γ-grids. We dene the union grid J on Γ as

J = Λ ∪ Λ , 1l Λ π + 1l Λ π ,
and we note it as

J = I + I .
Note that we also have,

T I+I = T I + T I .
Thus, for any f in F(Γ),

< I + I , f >=< I, f > + < I , f > .
Denition 19. Weekly arbitrarily precise sequence of Γ-grids.

Let Γ ∈ D, µ ∈ U(Γ) and (I L ) L∈N * be a sequence of Γ-grids. We say that (I L ) L∈N * is weekly arbitrarily precise with respect to µ if there exist Γ) and F sequences of Γ-grids I (1) L L∈N * , . . . , I (F ) L L∈N * strongly arbitrarily precise with respect to µ 1 , . . . , µ F respectively such that µ =

F in N * , h 1 , . . . , h F in A Γ → R , µ 1 , . . . , µ F ∈ U(
F f =1 µ f h f and for each L in N * , I L = F f =1 I (f ) L h f .
Weekly arbitrarily precise grid sequences will be simply referred as arbitrarily precise further in the text.

The following two propositions result from an original research of the author.

Proposition 7. Let

Γ ∈ D, µ ∈ U(Γ), h in A Γ → R such that µh would be in U(Γ).
Let (I L ) L∈N * = ({Λ L , π L }) L∈N * be a sequence of Γ-grids arbitrarily precise with respect to µ. Then (I L h) L∈N * is arbitrarily precise with respect to µh.

Proof. (I L ) L∈N * is arbitrarily precise with respect to µ, thus there exist

F in N * , h 1 , . . . , h F in A Γ → R , µ 1 , . . . , µ F ∈ U(Γ) and F sequences of Γ-grids I (1) L L∈N * , . . . , I (F ) L L∈N *
strongly arbitrarily precise with respect to µ 1 , . . . , µ F respectively such that µ =

F f =1 µ f h f and for each L in N * , I L = F f =1 I (f ) L h f . Since for each f in {1 : F }, h f h ∈ A Γ → R as the product of two analytical functions in A Γ → R , (I L h) L∈N * is arbitrarily precise with respect to µh, as we have µh = F f =1 µ f h f h and for each L in N * , I L = F f =1 I (f ) L h f h. Proposition 8. Let Γ ∈ D, µ, ν ∈ U(Γ), I L L∈N * and K L
L∈N * be two sequences of Γ-grids arbitrarily precise with respect to µ and ν respectively. Then I L + K L L∈N * is arbitrarily precise with respect to with µ + ν.

Proof. I L L∈N * and K L L∈N *
are arbitrarily precise with respect to µ and ν respectively, thus there exist

F 1 , F 2 in N * , u 1 , . . . , u F 1 , k 1 , . . . , k F 2 in A Γ → R , µ 1 , . . . , µ F 1 , ν 1 , . . . , ν F 2 ∈ U(Γ), F 1 sequences of Γ-grids I (1) L L∈N * , . . . , I (F 1 ) L L∈N *
strongly arbitrarily precise with respect to µ 1 , . . . , µ F 1 respectively and F 2 sequences of Γ-grids

K (1) L L∈N * , . . . , K (F 2 ) L L∈N *
strongly arbitrarily precise with respect to ν 1 , . . . , ν F 2 re- spectively such that µ =

F 1 f =1 µ f u f , ν = F 2 f =1 ν f k f and for each L in N * , I L = F 1 f =1 I (f ) L u f , K L = F 2 f =1 K (f ) L k f . Let F = F 1 +F 2 . Dene h 1 , . . . , h F in A Γ → R , σ 1 , . . . , σ F ∈ U(Γ) and F sequences of Γ-grids (S (1) 
L ) L∈N * , . . . , (S (F ) L ) L∈N * as follows:

h f = u f if f ≤ F 1 ; k f -F1 if f > F 1 ; σ f = µ f if f ≤ F 1 ; ν f -F1 if f > F 1 ; ∀L ∈ N * , S (f ) L = I (f ) L if f ≤ F 1 ; K (f -F1) L if f > F 1 . Thus, for each L in N * , I L + K L = F f =1 S (f ) L h f and µ + ν = F f =1 σ f h f . Since S (1) L L∈N * , . . . , S (F ) L L∈N *
are strongly arbitrarily precise with respect to σ 1 , . . . , σ F ,

I L + K L L∈N *
is arbitrarily precise with respect to µ + ν.

Proposition 9. Let Γ ∈ D, µ in U(Γ), (I L ) L∈N * be a sequence of Γ-grids.

If (I L ) L∈N *
is strongly arbitrarily precise with respect to µ, then (I L ) L∈N * is consistent with µ.

Proof. See [START_REF] Gerstner | Numerical integration using sparse grids[END_REF], Novak and Ritter, 1997, Wasilkowski and Wozniakowski, 1995].

The following corollary results from an original research of the author. 

I (i) L h i . Let f in A Γ , we have ∀L ∈ N * , < I L , f >=< F i=1 I (i) L h i , f >= F i=1 < I (i) L h i , f > . (3.11)
For each i in {1 : F }, we have

∀L ∈ N * , < I (i) L h i , f >= γ∈Λ (i) L f (γ)π (i) L (γ)h i (γ) =< I (i) L , f h i >, (3.12) 
where

I (i) L = Λ (i) L , π (i) 
L . Since f and h i are in A Γ , f h i is also in A Γ . Thus, lim L→∞ < I (i) L , f h i >=< µ i , f h i > since I (i) L L∈N *
is consistent with µ i cf. Proposition 9. By substituting (3.12) in the above equation, we have

lim L→∞ < I (i) L h i , f >=< µ i , f h i > .
Next, we have

< µ i , f h i >= ω∈Ω R a f (ω, z)h i (ω, z)µ i (ω, z)dz =< µ i h i , f >, thus lim L→∞ < I (i) L h i , f >=< µ i h i , f > . (3.13)
By substituting (3.13) in (3.11), we have

lim L→∞ < I L , f >= lim L→∞ F i=1 < I (i) L h i , f >= F i=1 lim L→∞ < I (i) L , f h i >= F i=1 < µ i h i , f >= < F i=1 µ i h i , f >=< µ, f >, thus (I L ) L∈N * is consistent with µ.
The following subsection focuses on the construction of grids on R [Luceno, 1999].

3.1.1 Construction of arbitrarily precise sequences of R-grids by Gaussian quadrature

Here we recall [Luceno, 1999] the construction of grids corresponding to the Gaussian quadrature rule.

Denition 20. Moments of a real-valued function.

Let g in F R → R + , i in N, the i-th moment of g is dened as

m i [g] = R z i g(z)dz. (3.14)
The Gaussian quadrature rule is used to dene a sequence of grids (G L ) L∈N * consistent with g.

Denition 21. R-grid corresponding to the M -point Gaussian quadrature rule.

Let M ∈ N * , g in F R → R + such that for each i in {0 : 2M -1}, the i-th moment of g is nite. Let P 1 , . . . , P M be polynomials computed recursively by

∀i ∈ {0 : M -1}, P i+1 (z) = (z -δ i+1 )P i (z) -γ 2 i+1 P i-1 (z), with P -1 (z) = 0, P 0 (z) = 1, γ 1 = 0 and ∀i ∈ {0 : M -1}, δ i+1 = R zP 2 i (z)g(z)dz R P 2 i (z)g(z)dz , γ 2 i+1 = R P 2 i (z)g(z)dz R P 2 i-1 (z)g(z)dz computed using {m i [g]} 1≤i≤2M -1 .
The R-grid G M = {Λ M , π M } corresponding to the M -point Gaussian quadrature rule with respect to g is dened by the grid nodes, which are the M distinct roots of P M , and the grid weights, which solve the linear system below [Luceno, 1999]

     z ∈Λ M π M (z )P 0 (z ) = 1; z ∈Λ M π M (z )P i (z ) = 0 ∀i ∈ {1, . . . , M -1}. (3.15) Proposition 10. Let M in N * , g in F R → R + such that for each i in {0 : 2M -1}, the i-th moment of g is nite. Let G M be the R-grid G M = {Λ M , π M } corresponding to the
M -point Gaussian quadrature with respect to g. Then G M has a degree of precision 2M -1 with respect to g.

Proof. See [Luceno, 1999].

Corollary 10.1. [Luceno, 1999] Let g in F R → R + such that for each i in N, the i-th moment of g is nite. For each M in N * , let G M be the R-grid corresponding to the M -point Gaussian quadrature with respect to g. Then (G M ) M ∈N * is strongly arbitrarily precise with respect to g.

Proof. For each t in N, one can choose M t in N * such that 2M t -1 > t, thus for each M in N * greater than or equal to M t , G M would have a degree of precision t with respect to g cf. Proposition 10. Therefore, (G M ) M ∈N * is strongly arbitrarily precise with respect to g.

Remark 1. Let g in F R → R + be a probability density function and G M = {Λ M , π M } be the R-grid corresponding to the M -point Gaussian quadrature with respect to g. For any f in A R → R , we have [Barrett, 1961] |

< G M , f > -< g, f > | = O 1 M 2 .
(3.16)

Remark 2. For a comparison purpose, let g in F R → R + be a probability density function, N ∈ N, f in A R → R . Consider a Dirac mixture distribution

D N = 1 N z ∈Ξ N δ z , (3.17) 
dened by points Ξ N = {Z 1 , . . . , Z N } independently distributed according to g. < D N , f > can be seen as a Monte Carlo approximation to

E[f (G)],
where G is the random variable distributed according to g. The law of large numbers ensures convergence of [Billingsley, 2013])

< D N , f > towards E[f (G)] =< g, f > at rate ( cf.
E < D N , f > -< g, f > = O 1 √ N .
(3.18)

The quasi-Monte Carlo methods use the same approximation to < g, f >, but the elements of Ξ N are obtained from deterministic low-discrepancy sequences. In this case, < D N , f > converges towards < g, f > at rate ( cf. [Caisch, 1998])

< D N , f > -< g, f > = O log N N . (3.19) 
By comparing (3.16), (3.18) and (3.19), we see that in the case of one-dimensional integration, the Gaussian quadrature method has the best convergence rate compared to the Monte-Carlo and quasi Monte-Carlo methods.

The following subsections result from an original research of the author. They focus on the construction of grids on R a for a > 1.

3.1.2 Construction of arbitrarily precise sequences of R a -grids by tensor product Denition 22. Tensor product grid.

Let Γ, Γ ∈ D, I = {Λ, π} and I = {Λ , π } be a Γ-grid and Γ -grid respectively. We dene the tensor product grid J on Γ × Γ as

J = Λ × Λ , π ⊗ π ,
and we note it as

J = I ⊗ I . Denition 23. Γ-tensor-product grid on Γ N . Let N ∈ N * , Γ ∈ D, we say that a Γ N -grid I = {Λ N , π (N ) } is Γ-tensor-product on Γ N if there exist π 1 , π 2 , . . . π N in F Γ → R such that ∀γ 1:N ∈ Γ N , π (N ) γ 1:N = π 1 γ (1) 1:N π 2 γ (2) 1:N . . . π N γ (N ) 1:N , (3.20)
where γ 1:N = γ (1) 

1:N γ (2) 1:N . . . γ (N ) 1:N . Proposition 11. Let a 1 , a 2 ∈ N, Ω 1 , Ω 2 be nite discrete sets. Dene Γ 1 = Ω 1 × R a 1 , Γ 2 = Ω 2 × R a 2 and let µ 1 ∈ U(Γ 1 ), µ 2 ∈ U(Γ 2 ). Let I (1) L L∈N * = Λ (1) L , π (1) L 
L∈N * be a sequence of Γ 1 -grids strongly arbitrarily precise with respect to µ 1 , I (2)

L L∈N * = Λ (2) L , π (2) L 
L∈N * be a sequence of Γ 2 -grids strongly arbitrarily precise with respect to µ 2 . Then I (1)

L ⊗ I (2) L L∈N
is a strongly arbitrarily precise sequence of

Γ 1 × Γ 2 -grids with respect to µ 1 ⊗ µ 2 . Proof. Let us pose Ω = Ω 1 × Ω 2 , a = a 1 + a 2 , µ = µ 1 ⊗ µ 2 and for each L in N * , Λ L = Λ (1) L × Λ (2) L , π L = π (1) L ⊗ π (2) L , I L = I (1) L ⊗ I (2)
L , thus we have

I L = {Λ L , π L } for each L in N * . Let t in N. Since I (1) L L∈N *
is strongly arbitrarily precise with respect to µ 1 and I

(2)

L L∈N *
is strongly arbitrarily precise with respect to µ 2 , there exist L

(1) t and

L

(2) t

such that for all L ∈ N * greater than or equal to max L (1) t , L

, I would both have a degree of precision t with respect to µ 1 and µ 2 respectively.

Let us prove that for each monomial m in M t R a and for each ω in Ω, we have ∀L ∈ N * , L > max L (1) t , L

t ⇒ z∈{x∈R a |(ω,x)∈Λ} m(z)π(ω, z) = µ(ω) < µ, m >, (3.21) (2) 
which would mean that (I L ⊗I L ) L∈N is strongly arbitrarily precise with respect to µ 1 ⊗µ 2 .

Let L in N * such that L > max L (1) t , L

t , ω = (ω 1 , ω 2 ) in Ω 1 × Ω 2 and a monomial m in M t R a . By denition, there exists (α 1 , . . . , α a 1 +a 2 ) in N a |α 1 + . . . + α a ≤ t such that ∀z ∈ R a 1 +a 2 , m(z) = z[1] α 1 . . . z[a] αa . (3.22) (2) 
The above equation can be rewritten as 

∀z ∈ R a 1 +a 2 , m(z) = z[1] β 1 . . . z[a 1 ] βa 1 z[a 1 + 1] γ 1 . . . z[
m = m 1 ⊗ m 2 , (3.24) 
with monomials m 1 and m 2 in

M t R a 1 and M t R a 2 dened by ∀z ∈ R a 1 , m 1 (z) = z[1] α 1 . . . z[a 1 ] αa 1 ; (3.25a) ∀z ∈ R a 2 , m 2 (z) = z[1] α a 1 +1 . . . z[a 2 ] α a 1 +a 2 .
(3.25b)

Next, we have

z∈{x∈R a |(ω,x)∈Λ L } m(z)π(ω, z) = z 1 ∈ x∈R a 1 |(ω 1 ,x)∈Λ (1) L z 2 ∈ x∈R a 2 |(ω 2 ,x)∈Λ (2) L m 1 (z 1 )m 2 (z 2 )π (1) 
L (z 1 , ω 1 )π (2) L (z 2 , ω 2 ) = z 1 ∈ x∈R a 1 |(ω 1 ,x)∈Λ (1) L m 1 (z 1 )π (1) 
L (ω 1 , z 1 ) 

z 2 ∈ x∈R a 2 |(ω 2 ,x)∈Λ (2) L m 2 (z 2 )π (2) L (ω 2 , z 2 ) = µ 1 (ω 1 )µ 2 (ω 2 ) < µ 1 , m 1 >< µ 2 , m 2 >= (µ 1 ⊗ µ 2 )(ω) < µ 1 ⊗ µ 2 , m 1 ⊗ m 2 >= µ(ω) < µ, m >, ( 3 
F 1 , F 2 in N * , u 1 , . . . , u F 1 in A Γ 1 → R , k 1 , . . . , k F 2 in A Γ 2 → R , µ 1 , . . . , µ F 1 in U(Γ 1 ), ν 1 , . . . , ν F 2 in U(Γ 2 ), F 1 sequences of Γ 1 -grids I (1) L L∈N * , . . . , I (F 1 ) L L∈N *
strongly arbitrarily precise with respect to µ 1 , . . . , µ F 1 re- spectively and F 2 sequences of Γ 2 -grids K

(1) L L∈N * , . . . , K

(F 2 ) L L∈N *
strongly arbitrarily precise with respect to ν 1 , . . . , ν F 2 respectively such that µ =

F 1 i=1 µ i u i , ν = F 2 j=1 ν j k j and for each L in N * , I L = F 1 i=1 I (i) L u i , K L = F 2 j=1 K (j)
L k j . For each L in N * , we have

I L ⊗ K L = F 1 i=1 I (i) L u f ⊗   F 2 j=1 K (j) L k f   = 1≤i≤F 1 1≤j≤F 2 I (i) L ⊗ K (j) L (u i ⊗ k j ).
For each (i, j) in {1 :

F 1 }×{1 : F 2 }, u i ⊗k j is in A Γ 1 ⊗Γ 2 → R , since u i ∈ A Γ 1 → R and k j ∈ A Γ 2 → R , and the sequence I (i) L ⊗ K (j) L L∈N *
is strongly arbitrarily precise with respect to µ i ⊗ ν j according to Proposition 11. Since

µ ⊗ ν = F 1 i=1 µ i u i ⊗   F 2 j=1 ν j k j   = 1≤i≤F 1 1≤j≤F 2 µ i ⊗ ν j (u i ⊗ k j ), I L ⊗ K L L∈N *
is arbitrarily precise with respect to µ ⊗ ν.

The above result allows constructing arbitrarily precise grid sequences with respect to product measures on R a . Arbitrarily precise grid sequences with respect to g in A R a → R can be obtained as follows.

Proposition 12.

Let a ∈ N, g in A R a → R , g 1 , . . . , g a , h in A R → R + , such that for each i in {1 : a}, j in N, m j [g i ] < ∞ and g = h • g 1 ⊗ g 2 ⊗ . . . ⊗ g a . (3.27) Let G (1) L L∈N * , . . . , G (a) L
L∈N * be sequences of R-grid corresponding to L-point Gaussian quadrature rules with respect to g 1 , . . . , g a respectively, then the sequence of R a -grids However, the number of grid points in a product of the same a grids grows exponentially with a. For instance, if G contains M distinct points, ⊗ a i=1 G would contain M a distinct points. Thus, a direct evaluation of (3.6) would be problematic or impossible even for moderate values of a. This is why we recall the sparse grids which are better suited for high-dimensional integration.

(I L ) L∈N * dened by ∀L ∈ N * , I L = h • G (1) L ⊗ . . . ⊗ G

Construction of arbitrarily precise sequences of R a -grids by Smolyak formula

Here we consider the Smolyak grids which are special case of sparse grids.

Denition 24. Smolyak grid product.

Let a ∈ N * , (I l ) 1≤l≤L grids on R. The Smolyak product grid of (I l ) 1≤l≤L on R a is dened as

S a (I l ) 1≤l≤L = L-1 q=L-a (-1) L-1-q C L-1-a a-1 l 1 ,...,la∈N * l 1 +...+la≤a+q I l 1 ⊗ . . . ⊗ I la . Proposition 13. Let a in N * , g 1 , . . . , g a in F R → R + and G (1) L L∈N * , . . . , G (a) L L∈N *
be sequences of strongly arbitrarily precise R-grids with respect to g 1 , . . . , g a respectively.

Then S a (G l ) 1≤l≤L L∈N * is strongly arbitrarily precise with respect to g 1 ⊗ . . . ⊗ g a .

Proof. See [START_REF] Garcke | Sparse Grids and Applications[END_REF].

A sparse grid sequence arbitrarily precise with respect to g in A R a → R can be obtained as follows. Let a ∈ N * , g in A R a → R , g 1 , . . . , g a , h in A R → R + satisfying (3.27) and such that for each i in {1 : d}, j in N, m j [g i ] < ∞. 

∀L ∈ N * , I M = q • S a (G m ) 1≤m≤M (3.29)
is arbitrarily precise with respect to g according to Corollary 11.1 and Proposition 7.

Remark 3. Let

M ∈ N * , g in F R → R + and let for each m ∈ N * , m ≤ M , G m
the R-grid corresponding to the M -point Gaussian quadrature with respect to g. The total number of points in S a (G m ) 1≤m≤M grows as O a M with M and a cf. [START_REF] Bungartz | Sparse grids[END_REF]. Asymptotically (in M ), the Smolyak grid method appears as less ecient compared to the product grid method, since one has M a grid points in the grid product of (G m ) 1≤m≤M . However, in practice, when the number of function evaluations in (3.6) is constrained, the sparse grids may allow achieving the same accuracy as a product grid but less points. This property is particularly important for high values of a and cases where M ≤ a. Besides, even if the asymptotic rate of convergence of the quasi-Monte Carlo method (3.19) is promising, the variance of its estimate may still be too high if the number of function evaluations is constrained. This is why the three methods should be taken in consideration for practical applications. 3.1.4 Construction of arbitrarily precise sequences of Ω × R a -grids Let Ω be a nite discrete set and a in N, Γ = Ω × R a , µ ∈ U(Γ). Here we consider constructing a sequence of Γ-grids arbitrarily precise with respect to µ in the case where Ω is a non-empty set, provided that constructions of sequences of R a -grids arbitrarily precise with respect to a measure in U(R a ) have been exposed previously.

Let us denote Ω = {ω 1 , . . . , ω K } the elements of Ω, where K = Card(Ω) > 0. Dene, for each i in {1 : K}, µ (1,i) ∈ U(Ω) and µ (2,i) ∈ U(R a ) as follows:

∀ω ∈ Ω, µ (1,i) (2,i) (z) = µ(ω i , z).

(ω) = 1 if ω = ω i ; 0 otherwise, ∀z ∈ R a , µ
(3.30)

In this way, we have µ = 1≤i≤K µ (1,i) ⊗ µ (2,i) .

(3.31) Proposition 14. Dene, for each i in {1 : K}, Ω-grid I (1,i) = {Ω, µ (1,i) }, thus I (1,i) has an innite degree of precision with respect to µ (1,i) . Consider, for each i in {1 : K}, a sequence of R a -grids I (2,i) L L∈N * arbitrarily precise with respect to µ (2,i) . Thus, for each i in {1 : K}, I (1,i) ⊗ I (2,i) L L∈N * is arbitrarily precise with respect to µ (1,i) ⊗ µ (2,i) according to Corollary 11.1. Dene, for each L in N * ,

I L = 1≤i≤K I (1,i) ⊗ I (2,i) L , (3.32) then I L
L∈N * is arbitrarily precise with respect to µ. Proof. The sum in the above equation is nite, it follows from Proposition 8 that I L L∈N * is arbitrarily precise with respect to µ due to (3.31).

Markovian grid-based state estimators

This section presents the main contribution of the author in the context of the chapter.

The following content results from an original research.

Markovian grids

Denition 25. Γ-Markovian grid on Γ N .

Let N ∈ N * , Γ ∈ D, we say that a Γ N -grid I = {Λ N , π (N ) } is Γ-Markovian on Γ N if there exist q 1 , q 2 , . . . q N -1 in F Γ 2 → R such that ∀γ 1:N ∈ Γ N , π (N ) (γ 1:N ) = q 1 γ (1) 1:N , γ (2) 1:N q 2 γ (2) 1:N , γ (3) 1:N . . . q N -1 γ (N -1) 1:N , γ (N ) 1:N , (3.33)
where γ 1:N = γ (1) 

1:N γ (2) 1:N . . . γ (N ) 1:N . Proposition 15. Let N ∈ N * , Λ = {γ 1 , . . . , γ K } be a non-empty nite discrete set of car- dinal S, I (N ) = {Λ N , π (N ) } be a Γ-Markovian grid on Γ N and h 1 , . . . , h n in F Γ 2 → R . For each n in {1 : N } and γ ∈ Λ, dene φ n (γ) = γ 1:N ∈Λ N ,γ (n) 1:N =γ π (N ) (γ 1:N ). (3.34)
Then for each n in {1 : N }, φ n (γ) can be evaluated with a complexity O N S 2 at each γ in Λ.

Proof. I (N ) is Γ-Markovian on Γ N , thus there exist q 1 , q 2 , . .

. q N -1 in F Γ 2 → R such that ∀γ 1:N ∈ Γ N , π (N ) (γ 1:N ) = q 1 γ (1) 1:N , γ (2) 1:N q 2 γ (2) 1:N , γ (3) 1:N . . . q N -1 γ (N -1) 1:N , γ (N ) 1:N and (3.34) becomes ∀n ∈ {1 : N }, γ ∈ Λ, φ n (γ) = γ 1:N ∈Λ N ,γ (n) 1:N =γ q 1 γ (1) 1:N , γ (2) 1:N q 2 γ (2) 1:N , γ (3) 1:N . . . q N -1 γ (N -1) 1:N , γ (N ) 1:N = γ 1:n-1 ∈Λ n-1 q 1 γ (1) 1:N , γ (2) 1:N q 2 γ (2) 1:N , γ (3) 1:N . . . q n-2 γ (n-2) 1:N , γ (n-1) 1:N q n-1 γ (n-1) 1:N , γ × γ n+1:N ∈Λ N -n q n γ, γ (n+1) 1:N q n+1 γ (n+1) 1:N , γ (n+2) 1:N . . . q N -1 γ (N -1) 1:N , γ (N ) 1:N . (3.35)
Dene, for each n in {1 : N } and γ in Λ, Observe that for each n in {1 : N -1} and γ in Λ,

α n (γ) = (3.36a) γ 1:n-1 ∈Λ n-1 q 1 γ (1) 1:N , γ (2) 1:N q 2 γ (2) 1:N , γ (3) 1:N . . . q n-2 γ (n-2) 1:N , γ (n-1) 1:N q n-1 γ (n-1) 1:N , γ ; (3.36b) β n (γ) = γ n+1:N ∈Λ N -n q n γ, γ (n+1) 1:N q n+1 γ (n+1) 1:N , γ (n+2) 1:N . . . q N -1 γ (N -1) 1:N , γ (N ) 1:N . (3.36c) We have from (3.35) ∀γ ∈ Λ, ∀n ∈ {1 : N }, φ n (γ) = α n (γ)β n (γ),
α n+1 (γ) = γ ∈Λ q n (γ , γ) γ 1:n-1 ∈Λ n-1 q 1 γ (1) 1:N , γ (2) 1:N . . . q n-2 γ (n-2) 1:N , γ (n-1) 1:N q n-1 γ (n-1) 1:N , γ = γ ∈Λ q n (γ , γ)α n (γ ), (3.39)
which is a recursive equation. Thus, evaluation of α n (γ) at n ∈ {1 : N } for each γ in Λ requires nS summations over Λ which results in a complexity O nS 2 . Let us also show for each γ in Λ, evaluation of β n (γ) can be achieved with a complexity O S 2 (Nn) . For each γ ∈ Λ,

∀n ∈ {1 : N -1}, ∀γ ∈ Λ, β n (γ) = γ n+1:N ∈Λ N -n q n γ, γ (n+1) 1:N q n+1 γ (n+1) 1:N , γ (n+2) 1:N . . . q N -1 γ (N -1) 1:N , γ (N ) 1:N = γ ∈Λ q n (γ, γ ) γ n+2:N ∈Λ N -n-1 q n+1 γ , γ (n+2) 1:N . . . q N -1 γ (N -1) 1:N , γ (N ) 1:N = γ ∈Λ
q n (γ, γ )β n+1 (γ ), (3.40) which is a recursive equation similar to (3.39). Evaluation of β n (γ) at n ∈ {1 : N } for each γ in Λ requires (Nn)S summations over Λ which results in a complexity O (Nn)S 2 . Finally, evaluating α n (γ) and β n (γ) at each n ∈ {1 : N } for each γ in Λ can be achieved with a complexity O N S 2 . As a result, evaluating φ n (γ) at each n ∈ {1 : N } for each γ in Λ can be achieved with a complexity O N S 2 due to (3.37). Remark 4. Despite the fact that an evaluation of (3.34) would a priori require M N -1 operations, we show that an evaluation of (3.34) in a Markovian grid can be achieved with a complexity linear in N , which is the key point of Proposition 15. The way we evaluate (3.34) in the proof is similar to the well-known forward-backward algorithm. Indeed, we can see that functions q 1 , q 2 , . . . q N -1 in F Γ 2 → R are not necessarily positive-valued, as it is the case in the classic version of the forward-backward algorithm. where for each n in

Application of

{1 : N }, (H n , Y n ) ∈ Γ × R d . Let y 1:N ∈ R dN such that p Y 1:N (y 1:N ) = 0, dene µ y 1:N ∈ U(Γ N ) by ∀h 1:N ∈ Γ N , µ y 1:N (h 1:N ) = p (h 1:N , y 1:N ) . (3.41) Let I L L∈N * = Λ N L , π (N ) L L∈N * be a sequence of Γ-Markovian grids on Γ N consistent with µ y 1:N . For each n in {1 : N } and L in N * , dene ∀γ ∈ Λ L , φ L,n (γ) = γ 1:N ∈Λ N L ,γ (n) 1:N =γ π (N ) (γ 1:N ) (3.42)
and a Γ-grid

P L,n = {Λ L , υ L,n } by ∀γ ∈ Λ L , υ L,n (γ) = φ L,n (γ) γ ∈Λ L φ L,n (γ ) , (3.43) then P L,n L∈N * is consistent with p Hn|y 1:N . Proof. Let n in {1 : N }, f in A Γ , we have < p Hn|y 1:N , f >= f (h n )p (h n |y 1:N ) dh 1:N = f (h n )p (h 1:N , y 1:N ) dh 1:N p Y 1:N (y 1:N ) = f (h n )µ y 1:N (h 1:N )dh 1:N µ y 1:N (h 1:N )dh 1:N . Since (I L ) L∈N * is consistent with µ y 1:N , we have lim L→∞ γ 1:N ∈Λ N L f γ (n) 1:N π (N ) L (γ 1:N ) = f (h n )µ y 1:N (h 1:N )dh 1:N ; lim L→∞ γ 1:N ∈Λ N L π (N ) L (γ 1:N ) = µ y 1:N (h 1:N )dh 1:N ,
and therefore lim L→∞ show that for all L in N * ,

γ 1:N ∈Λ N L f γ (n) 1:N π (N ) L (γ 1:N ) γ 1:N ∈Λ N L π (N ) L (γ 1:N ) = lim L→∞ γ 1:N ∈Λ N L f γ (n) 1:N π (N ) L (γ 1:N ) lim L→∞ γ 1:N ∈Λ N L π (N ) L (γ 1:N ) = f (h n )µ y 1:N (h 1:N )dh 1:N µ y 1:N (h 1:N )dh 1:N =< p Hn|y 1:N , f >, ( 3 
γ 1:N ∈Λ N f γ (n) 1:N π (N ) L (γ 1:N ) γ 1:N ∈Λ N L π (N ) L (γ 1:N ) =< P L,n , f > . (3.45)
We have 

∀L ∈ N * , γ 1:N ∈Λ N L f γ (n) 1:N π (N ) L (γ 1:N ) γ 1:N ∈Λ N L π (N ) L (γ 1:N ) = γ∈Λ L f (γ) γ 1:N ∈Λ N L ,γ (n) 1:N =γ π (N ) L (γ 1:N ) γ ∈Λ L γ 1:N ∈Λ N L ,γ (n) 1:N =γ π (N ) L (γ 1:N ) = γ∈Λ L f (γ)φ L,n (γ) γ ∈Λ L φ L,n (γ ) =< P L,n , f > . ( 3 
: N }, (H n , Y n ) ∈ Γ × R d . Let y 1:N ∈ R dN such that p Y 1:N (y 1:N ) = 0, (I L ) L∈N * = ({Λ L , π L }) L∈N * be a sequence of Γ-grids arbitrarily precise with respect to p H 1 ∈ U(Γ). Dene u 1 , u 2 , . . . u N -1 in F Λ 2 L → R by ∀(γ, γ ) ∈ Λ 2 L , u 1 (γ, γ ) = p (H 1 ,H 2 ,Y 1 ,Y 2 ) γ, γ , y 1 , y 2 ; ∀n ∈ {2 : N -1}, ∀(γ, γ ) ∈ Λ 2 L , u n (γ, γ ) = p (H n+1 ,Y n+1 )|(Hn,Yn) γ , y n+1 |γ, y n .
For each L ∈ N * , dene Γ N -grid

I (N ) L = {Λ N , π (N ) L } by ∀γ 1:N ∈ Λ N L , π (N ) L (γ 1:N ) = u 1 γ (1) 1:N , γ (2) 1:N u 2 γ (2) 1:N , γ (3) 1:N . . . u N -1 γ (N -1) 1:N , γ (N ) 1:N N n=1 p H 1 γ (n) 1:N N n=1 π L γ (n) 1:N , (3.48) then: For each L ∈ N * , I (N ) L is Γ-Markovian on Γ N ; If u 1 , u 2 , . . . u N -1 are in A Γ 2 → R and p H 1 is in A Γ → R , then (I L ) L∈N * is
arbitrarily precise with respect to µ y 1:N ∈ U(Γ N ) dened by (3.41).

Proof. Let us show that

I (N ) L is Γ-Markovian on Γ N . Dene q 1 , q 2 , . . . q N -1 in F Λ 2 L → R by ∀(γ, γ ) ∈ Λ 2 L , q 1 (γ, γ ) = u 1 (γ, γ )π L γ π L γ p H 1 γ p H 1 γ ; (3.49a) ∀n ∈ {2 : N -1}, ∀(γ, γ ) ∈ Λ 2 L , q n (γ, γ ) = u n (γ, γ )π L γ p H 1 γ . (3.49b) Thus, π (N ) L (γ 1:N ) veries (3.33), therefore I (N ) L is Γ-Markovian on Γ N .
Let us now show that

I (N ) L L∈N *
is consistent with µ y 1:N dened by (3.41) under 

condition that u 1 , u 2 , . . . u N -1 are in A Γ 2 → R and p H 1 is in A Γ → R .
h ∈ A Γ N → R dened by ∀h 1:N ∈ Γ N , h(h 1:N ) = u 1 h (1) 1:N , h (2) 
1:N u 2 h

(2)

1:N , h (3) 1 
:N . . . u N -1 h (N -1) 1:N , h (N ) 1:N N n=1 p H 1 h (n) 1:N , I (N ) L L∈N *
is arbitrarily precise with respect to µ y 1:N , since we have

∀h 1:N ∈ Γ N , N -1 n=1 u n (h 1:N ) = p (h 1:2 , y 1:2 ) N -1 n=2 p (h n+1 , y n+1 |h n , y n ) = p (h 1:N , y 1:N ) (3.50)
by Markovianity of (H 1:N , Y 1:N ).

As a result, given a stationary POMP (H 1:N , Y 1:N ), the Markovian-grid based method for Bayesian inference runs as follows:

Step 1 (preparatory): consider a sequence of Γ-grids (I L ) L∈N * = ({Λ L , π L }) L∈N * arbitrarily precise with respect to p H 1 . Such sequences can be constructed by using methods from Sections 3.1.1-3.1.4;

Step 2 : on receiving an observation y 1:N , compute values q n (γ, γ ) for each n in {1 : N -1} and (γ, γ ) in Λ 2

L by using (3.49);

Step 3 : compute α n (γ), β n (γ) for each n in {1 : N } and γ ∈ Λ L by using recursive

formulas ∀γ ∈ Λ L ,α n+1 (γ) = γ ∈Λ L q n (γ , γ)α n (γ ), β n (γ) = γ ∈Λ L q n (γ, γ )β n+1 (γ ) and initialization ∀γ ∈ Λ L , α 1 (γ) = β N (γ) = 1. (3.51) Provided that u 1 , u 2 , . . . u N -1 are in A Γ 2 → R and p H 1 is in A Γ → R , we have lim L→∞ γ∈Λ L f (γ)α n (γ)β n (γ) γ ∈Λ L α n (γ )β n (γ ) =< p Hn|y 1:N , f > (3.52)
for any f in A Γ .

Filtering in the multi-asset volatility model

We consider the application of the Markovian Grid-Based Filter (MGF) to the state estimation in a Hidden Markov Model (HMM).

We consider an example of a stochastic volatility model in the multi-asset framework [START_REF] Gouriéroux | The Wishart autoregressive process of multivariate stochastic volatility[END_REF]. Let Y n ∈ R 2 denote the log-returns of two correlated assets. We assume that

Y n ∼ N (0, Σ n ) , (3.53) 
where Σ n ∈ R 2×2 is the dynamic covariance of Y n . We assume that Σ n follows a Wishart autoregressive process [START_REF] Gouriéroux | The Wishart autoregressive process of multivariate stochastic volatility[END_REF] and we set for our example

Σ n = X n X n + Q; (3.54a) X n+1 = AX n + DU n , (3.54b) 
where

X n ∈ R 2 , Q, A and D are xed in R 2×2 , Q is positive denite, {U n } n≥1 is a
Gaussian white noise process in R 2 and X 0 = 0.

In the simulation study, we apply our algorithm to approximate {X n } n≥1 by {R n } n≥1 . Next, we estimate X n given Y 1:n by the MGF, then we compute ltered estimates of Σ n . 

Conclusion

We proposed a novel state estimator(MGSE) for general POMP with hybrid state space.

We applied it to the problem of Bayesian inference in POMPs. Experiments on the multivariate stochastic volatility model show that the method proposed is suitable for high-dimensional state spaces and may realize some speedups compared to the existing approaches. The Hidden Markov Model (HMM) [START_REF] Cappé | Inference in Hidden Markov Models[END_REF], Gobet and Maire, 2005[START_REF] Potin | An abrupt change detection algorithm for buried landmines localization[END_REF], Rabiner, 1989, Caron et al., 2006, Potin et al., 2006a, Benhamou et al., 2010] is an important tool in the modern modeling of various types of problems and is an active topic of research activity. This model is extensively reviewed in the literature [START_REF] Bhar | Hidden Markov Models: Applications to Financial Economics[END_REF], Mamon and Elliott, 2007, Koski, 2001, Vidyasagar, 2014]. Let N ∈ N * , d ∈ N * , we consider hidden random sequence {R 1 , . . . , R N } = R 1:N , where for each n in {1 : N }, R n is in a nite set Ω = {1 : K} and an observed sequence Y 1:N , where for each n in {1 : N },

Y n is in R d . If the pair (R 1:N , Y 1:N ) is a classic HMM, then R 1:N is a Markov chain.
The Pairwise Markov Model (PMM) extends HMMs by only assuming that (R 1:N , Y 1:N ) is Markovian [Pieczynski, 2003]. Since the hidden process R 1:N is not necessarily Markovian in PMMs, the latter are strictly more general than HMMs [START_REF] Lanchantin | Unsupervised segmentation of randomly switching data hidden with non-Gaussian correlated noise[END_REF]. In a stationary and time-reversible PMM, R 1:N is Markovian if and only if the conditional dependencies in the PMM verify specic conditions [START_REF] Lanchantin | Unsupervised segmentation of randomly switching data hidden with non-Gaussian correlated noise[END_REF]. Indeed, the classic Bayesian estimation algorithms, used in HMMs, such as the Baum-Welch algorithm and the Viterbi algorithm apply in PMMs as well, thanks to the fact that R 1:N is Markovian given Y 1:N . Let us note that PMMs have been shown to be more ecient than HMMs in the context of unsupervised image segmentation [START_REF] Derrode | Signal and image segmentation using pairwise Markov chains[END_REF].

Next, the Triplet Markov Model (TMM) [START_REF] Pieczynski | Triplet Markov chains in hidden signal restoration[END_REF] extends PMM by adding a discrete-valued latent process U 1:N = U 1:N , where each U n takes its value in a nite set {λ 1 , . . . , λ M }. In such a model, (R

1:N , Y 1:N , U 1:N ) is Markovian. Despite that none of processes R 1:N , Y 1:N , (R 1:N , U 1:N ), (R 1:N , Y 1:N ), (Y 1:N , U 1:N ) is neces-
sarily Markovian, the Baum-Welch algorithm (but not the Viterbi algorithm) applies in TMMs [START_REF] Lanchantin | Unsupervised segmentation of randomly switching data hidden with non-Gaussian correlated noise[END_REF]. Let us remark that a sub-class of TMMs is shown to be efcient in image processing in [START_REF] Lanchantin | Unsupervised segmentation of randomly switching data hidden with non-Gaussian correlated noise[END_REF], where it substantially outperforms HMMs. Further researches demonstrate that TMMs allow a semi-Markovian modeling of R 1:N [Lapuyade-Lahorgue and Pieczynski, 2012], which is a valuable result since the hidden semi-Markov models are particularly well-suited for a scope of applications [Yu, 2016, Barbu andLimnios, 2016]. Besides, the bivariate hidden Markov chains [Ephraim andMark, 2015, Sun et al., 2016], which are similar to a sub-class of TMMs, do also provide a framework for ecient data processing. For these reasons, we believe that researches on TMMs may have a considerable impact. TMMs apply in the context of signal processing [Lapuyade-Lahorgue andPieczynski, 2012, Cam et al., 2008], image processing [START_REF] Bricq | Triplet Markov chain for 3D MRI brain segmentation using a probabilistic atlas[END_REF] and canceling non-stationary noise [START_REF] Boudaren | Unsupervised segmentation of non stationary data hidden with non stationary noise[END_REF].

In this chapter, we consider HMMs, PMMs and TMMs with discrete state space. The object of the chapter consists in exploring whether using PMMs and TMMs instead of HMMs is meaningful for practical applications. This is done through simulation-based comparisons among several variants of PMMs and TMMs with respect to classic HMMs. Specically, we consider Gaussian and gamma observation distributions in order to quantify the impact of skewness and excess kurtosis of the latter on the estimation accuracy.

In the next section we present HMMs, PMMs and TMMs. Exact Bayesian inference algorithms for these models are detailed in Section 4.2. Section 4.3 contains a contribution of the author, which is an extensive performance comparisons across the estimators corresponding to HMMs, PMMs and TMMs with discrete state space. Section 4.4 contains another contribution of the author, which is a novel modeling of nancial time series with discrete-space PMMs, as well as an application to real-world data with an analysis of the results and discussion.

The section is mainly a compilation of authors' papers [START_REF] Gorynin | Assessing the segmentation performance of pairwise and triplet Markov models[END_REF], Gorynin et al., 2017d].

Hidden, pairwise and triplet Markov Models with discrete state space

The idea of hidden and pairwise Markov models is to describe the probability distribution of Y 1:N by using a hidden time series R 1:N , where for each n in {1 : N }, R n is in Ω = {1 : K}. Specically, one denes the probability distribution p (r 1:N , y 1:N ) of the pair (R 1:N , Y 1:N ). In this case, we have

p (y 1:N ) = r 1:N ∈Ω N p (r 1:N , y 1:N ) .
Both hidden and pairwise Markov models are used to dene p (r 1:N , y 1:N ). In this section we recall the denition and statistical properties of these models.

Denition 26. HMM

The pair (R

1:N , Y 1:N ) is a HMM if it veries p (r 1:N , y 1:N ) = p (r 1 ) N -1 n=1 p (r n+1 |r n ) N n=1
p (y n |r n ) . Denition 27. PMM

The pair (R This highlights the stronger assumptions which are made implicitly when a real-world system is modeled by HMM whereas the same system could possibly be represented as a PMM.

Let us consider stationary PMMs for which p (r n , y n , r n+1 , y n+1 ) does not depend on n. Thus, the whole distribution is dened by p (r 1 , y 1 , r 2 , y 2 ). In addition, we assume that the model is time-reversible, which means that for each ω i , ω j in Ω and y, y in R,

p r 1 = ω i , y 1 = y, r 2 = ω j , y 2 = y = p r 2 = ω i , y 2 = y, r 1 = ω j , y 1 = y . (4.6)
The following Proposition results from the general result shown in [START_REF] Lanchantin | Unsupervised segmentation of randomly switching data hidden with non-Gaussian correlated noise[END_REF]: Proposition 18. Let (R 1:N , Y 1:N ) be a stationary time-reversible PMM. The following conditions are equivalent: r 2 ,y 2 |r 1 ,y 1 ) = p (r 2 |r 1 ,y 1 ) p (y 2 |r 2 ,r 1 ,y 1 ) . (4.14) The whole distribution of a PMM-CN can be derived from p (r 1 , y 1 , r 2 , y 2 ). We consider the latter in the following form:

p (r 1 , y 1 , r 2 , y 2 ) = p (r 1 , r 2 ) p (y 1 , y 2 |r 1 , r 2 ) . (4.15)
The dependency graphs of the four sub-models of PMM are presented in Figure 4.2. The TMM makes use of an additional discrete-valued process U 1:N , where each U n takes its value in a nite set Λ = {λ 1 , . . . , λ M }.

PMMs-CN

HMMs-CN PMMs-IN HMMs-IN PMMs

Denition 28. TMM

The triplet (R 1:N , U 1:N , Y 1:N ) is a TMM if its distribution is of the following form:

p (r 1:N , u 1:N , y 1:N ) = p (r 1 , u 1 , y 1 ) p (r 2 , u 2 , y 2 |r 1 , u 1 , y 1 ) . . . p (r N , u N , y N |r N -1 , u N -1 , y N -1 ) , (4.16) which means that (R 1:N , U 1:N , Y 1:N ) is Markovian.
TMMs have a high potential of modeling; specically, U 1:N can be multivariate in a way that each sequence U 

Exact Bayesian state estimation

In this section, we recall exact Bayesian state estimation algorithms for the hidden, pairwise and triplet Markov models, known as the forward-backward algorithm. We begin by presenting the PMM version of the algorithm, and we detail how HMM and TMM versions can be derived from it.

The PMM forward-backward algorithm allows computing p (r n = ω |y 1:N ) for each n in {1 : N } and ω in Ω. Let us consider the following forward and backward probabilities, dened in a PMM by α n (r n ) = p (r n , y 1:n ) and β n (r n ) = p (y n+1:N |r n , y n ). The following recursions allow computing α n (r n ) and β n (r n ) for any r n : 

α 1 (r 1 ) = p (r 1 , y 1 ) ; (4.17a) α 1 (r n+1 ) = rn∈Ω p (r n+1 , y n+1 |r n , y n ) α n (r n ); (4.17b) β N (r N ) = 1; (4.17c) β n (r n ) = r n+1 ∈Ω p (r n+1 , y n+1 |r n , y n ) β n+1 (r n+1 ).
p (r n = ω |y 1:N ) = β n (r n )α n (r n ) r * n ∈Ω β n (r * n )α n (r * n ) . (4.18)
The complexity of this algorithm is linear in N .

The HMM and TMM versions of the forward-backward algorithm can be derived as follows.

The HMM version is derived under conditions (4.5a) and (4.5b), in which case

p (r n+1 , y n+1 |r n , y n ) = p (r n+1 |r n ) p (y n+1 |y n ) .
The TMM version is derived by considering the hidden process V 1:N , where for each We consider the case where Ω = {ω 1 , ω 2 } and for each n in {1 : N }, Y n is onedimensional.

n in {1 : N }, V n = (R n , U n ) in Ω × Λ. Thus, (V 1:N , Y 1:N ) is a PMM

Gaussian PMM estimators

We parameterize PMM-CN by ∈ [0, 0.5] and ρ ∈ [0, 1] as follows:

p (r 1 , r 2 ) = 0.5 - if r 1 = r 2 ; if r 1 = r 2 ; (4.21a) p (y 1 , y 2 |r 1 , r 2 ) = N y 1 y 2 ; µ 1 (r 1 , r 2 ) µ 2 (r 1 , r 2 ) , σ 2 1 (r 1 , r 2 ) ρσ 1 (r 1 , r 2 )σ 2 (r 1 , r 2 ) ρσ 1 (r 1 , r 2 )σ 2 (r 1 , r 2 ) σ 2 2 (r 1 , r 2 )
.

(4.21b)

The coecients and ρ depend on the experimental setting; the values of the remaining parameters per each pair (r 1 , r 2 ) are xed and presented in Table 4

.1. (r 1 , r 2 ) µ 1 (r 1 , r 2 ) µ 2 (r 1 , r 2 ) σ 1 (r 1 , r 2 ) σ 2 (r 1 , r 2 ) (ω 1 , ω 1 ) -5
-5 14 14

(ω 1 , ω 2 ) 

-3 3 7 9 (ω 2 , ω 1 ) 3 -3 9 7 (ω 2 , ω 2 ) 5 5 20 20
) = N y n+1 ; µ 2 (r n , r n+1 ) + ρ σ 2 (r n , r n+1 ) σ 1 (r n , r n+1 ) y n -µ 1 (r n , r n+1 ) , σ 2 2 (r n , r n+1 )(1 -ρ 2 ) .
µ (HMM-IN) 1 (r 1 ) = r 2 ∈Ω µ 1 (r 1 , r 2 )p (r 2 |r 1 ) ; (4.27a) σ 2(HMM-IN) 1 (r 1 ) = r 2 ∈Ω σ 2 1 (r 1 , r 2 ) + µ 1 (r 1 , r 2 ) -µ (HMM-IN) 1 (r 1 ) 2 p (r 2 |r 1 ) . (4.27b)
By the stationarity assumption, we have for any ω in Ω,

µ (HMM-IN) 2 (ω) = µ (HMM-IN) 1 (ω); (4.28a) σ 2(HMM-IN) 2 (ω) = σ 2(HMM-IN) 1 (ω). (4.28b)
In a Gaussian HMM-CN, one has p (y 1 |r 1 , r 2 ) = p (y 1 |r 1 ) and p (y 2 |r 1 , r 2 , y 1 ) = p (y 2 |r 2 , y 1 ). Thus, we consider the same distribution p (y 1 |r 1 ) as in the case of HMM-IN dened by (4.27). Regarding p (y 2 |r 2 , y 1 ), we have

p (y 2 |r 2 , y 1 ) = N y 2 ; µ (HMM-IN) 1 (r 2 ) + ρ σ (HMM-IN) 2 (r 2 ) σ (HMM-CN) 1|2 (r 2 ) y n -µ (HMM-CN) 1|2 (r 2 ) , σ 2(HMM-IN) 2 (r 2 )(1 -ρ 2 ) , (4.29) 
where {µ (HMM-CN) 1|2 (r 2 ), σ (HMM-CN) 1|2 (r 2 )} r 2 ∈Ω are computed by using the principle of moment matching:

µ (HMM-CN) 1|2 (r 2 ) = r 1 ∈Ω µ 1 (r 1 , r 2 )p (r 1 |r 2 ) ; (4.30a) σ 2(HMM-CN) 1|2 (r 2 ) = r 1 ∈Ω σ 2 1 (r 1 , r 2 ) + µ 1 (r 1 , r 2 ) -µ (HMM-CN) 1|2 (r 2 ) 2 p (r 1 |r 2 ) . (4.30b)
Finally, a Gaussian PMM-IN approximation of PMM-CN veries

p (y 1 |r 1 , r 2 ) = N y 1 ; µ 1 (r 1 , r 2 ), σ 2 1 (r 1 , r 2 ) ; (4.31a) p (y 2 |r 1 , r 2 ) = N y 2 ; µ 2 (r 1 , r 2 ), σ 2 2 (r 1 , r 2 ) , (4.31b) since p (y 2 |r 1 , r 2 , y 1 ) = p (y 2 |r 1 , r 2 ), which is equivalent to set ρ = 0.
The PMM-CN estimator is statistically optimal in terms of the classication rate and we consider its accuracy as a reference. The aim of the experiments is to study if the misclassication rate is sensitive to the choice of approximation PMM-IN, HMM-CN or HMM-IN, and up to which extent. We apprehend this sensitivity through the relative error rate, dened as follows:

τ (model) = L r 1:N , r 1:N (model) -L r 1:N , r 1:N (PMM-CN) L r 1:N , r 1:N (PMM-CN) , (4.32a) L r 1:N , r 1:N (model) = 1 N N n=1 δ r (model) n = r n , (4.32b)
where δ(.) is the indicator function and r 1:N (model) is the state estimate computed by using the Bayesian-optimal MPM state estimator related to the corresponding model.

For example, a relative error rate of 100% means that the reference model decreases the misclassication percentage by a half when compared to the proposal one. We report in Tables 4.3 and 4.4 relative error rates for various values of and ρ. We also report in 

Gamma PMM estimators

Here we introduce a class of non-Gaussian pairwise Markov models in order to study whether previous ndings generalize to a broader class of observation distributions. We consider hidden Markov models with exponential noise [START_REF] Lethanh | Use of exponential hidden Markov models for modelling pavement deterioration[END_REF] and we extend them to hidden Markov models with gamma noise. Then we introduce PMM-CN with gamma noise and we conduct similar experiments as in the previous subsection.

For shape parameter k in R * + and scale parameter θ in R * + , let us note with γ(k, θ) the corresponding gamma distribution. Its probability density function is (4.33) where δ(.) is the indicator function and Γ is the gamma function: to zero, the gamma distribution is highly asymmetric.

γ(y; k, θ) = y k-1 exp -y θ Γ(k)θ k 1l y>0 ,
Γ(k) = +∞ 0 t k-1 exp (-t) dt.
Let ρ ∈ [0, 1], we consider stationary gamma-autoregressive process [START_REF] Gourieroux | Autoregressive gamma processes[END_REF] dened by p (y 1 ) = γ(y 1 ; k, θ);

(4.36a) p (y n+1 |y n ) = γ y n+1 ; k, ρ θ(1 -ρ) y n , θ(1 -ρ) , (4.36b) 
where, for

β in R * + , γ(y; k, β, θ) is non-central gamma distribution γ(y; k, β, θ) = +∞ t=0 β t y k+t-1 exp -y θ t!Γ(k + t)θ k+t exp(β) 1l y>0 .
(4.37)

The mean and variance of γ(k, β, θ) are kθ + βθ and kθ 2 + 2βθ 2 respectively; besides, we have γ(k, 0, θ) = γ(k, θ). 

Hence, let σ 1 , σ 2 : Ω 2 → R * + ,µ 1 , µ 2 : Ω 2 → R, ρ ∈ [0,
p (y 1 |r 1 , r 2 ) = γ(y 1 -µ 1 (r 1 , r 2 ); k, θ 1 (r 1 , r 2 )); (4.38a) p (y n+1 |y n , r n , r n+1 ) = γ   y n+1 -µ 2 (r 1 , r 2 ); k, ρ y n -µ 1 (r 1 , r 2 ) θ 1 (r n , r n+1 )(1 -ρ) , θ 2 (r n , r n+1 )(1 -ρ)   , (4.38b) 
where

θ 1 (r n , r n+1 ) = σ 1 (rn,r n+1 ) √ k , θ 2 (r n , r n+1 ) = σ 2 (rn,r n+1 ) √ k .
This model is consistent with the denition of the autoregressive gamma process in the same way as the Gaussian PMM is consistent with the autoregressive Gaussian process.

Moreover, this model generalizes exponential hidden Markov models: in gamma HMMs, Similarly to the previous subsection, we report in Tables 4.6 and 4.7 relative error rates of the three sub-models of gamma PMM and we report in Table 4.5 the corresponding statistically optimal loss function values. We consider the case of exponential models i.e. This simulation study shows that non-Gaussian PMMs allow achieving substantial gains in accuracy, as well as the Gaussian ones. Moreover, PMMs seem outperform HMMs even more when the observation distributions are asymmetric. In order to validate this nding, we consider a xed pair ( , ρ) and we gradually increase the value of the shape parameter k from 0.1 to 10. We report the corresponding relative error rates of gamma HMM-IN with respect to gamma PMM-CN in Figure 4.5. When k = 1, the corresponding relative error rate is 118% and can be found in Table 4.7. When k = 10, the corresponding gamma distribution is close to the normal distribution, and the corresponding relative error rate can be found in Table 4.4.

ρ = 0, σ 1 (r n , r n+1 ), µ 1 (r n , r n+1 ) depend only on r n , σ 2 (r n , r n+1 ), µ 2 (r n , r 
k = 1. The values of σ 1 (r n , r n+1 ), µ 1 (r n , r n+1 ), σ 2 (r n , r n+1 ), µ 2 (r n ,

TMM estimators

We STMM is a stationary time-reversible TMM, whose distribution is dened by

p (r 1 , u 1 , y 1 , r 2 , u 2 , y 2 ) = p (u 1 , u 2 ) p (y 1 |u 1 ) p (r 1 |u 1 ) p (y 2 |u 2 ) p (r 2 |u 2 ) . (4.39)
The corresponding transition kernel is Relative error rate (%) (R 1:N , Y 1:N ) is not Markovian in STMM, so STMM is not a PMM. In fact, one can see an STMM as a hidden Markov model with U 1:N hidden and (R 1:N , Y 1:N ) observed, and it is well-known that the observed process is not Markovian in such a model. TMM-IN is an extension of the STMM on the one hand, and an extension of the classic HMM-IN on the other hand. Specically, let V 1:N = (R 1:N , U 1:N ), then we assume that (V 1:N , Y 1:N ) is a classic HMM-IN and this is why we denote it by TMM-IN. Thus, the distribution of a stationary TMM-IN is given by

p (r 2 , u 2 , y 2 |r 1 , u 1 , y 1 ) = p (u 2 |u 1 ) p (y 2 |u 2 ) p (r 2 |u 2 ) .
p (r 1 , u 1 , y 1 , r 2 , u 2 , y 2 ) = p (u 1 , u 2 , r 1 , r 2 ) p (y 1 |u 1 , r 1 ) p (y 2 |u 2 , r 2 ) , (4.41)
and the corresponding transition kernel is

p (r 2 , u 2 , y 2 |r 1 , u 1 , y 1 ) = p (u 2 , r 2 |u 1 , r 1 ) p (y 2 |u 2 , r 2 ) . (4.42)
The dependency graphs of STMM and TMM-IN are given in Figure 4.6.

We simulate data according to an STMM and we recover R 1:N from Y 1:N with the STMM on the one hand, and with an HMM-IN on the other hand.

Let Ω = {ω 1 , ω 2 } and Λ = {λ 1 , λ 2 }, we dene the following STMM, whose distribution (4.39) is specied as follows: where µ u (λ 1 ) = -1 and µ u (λ 2 ) = 1. We dene the distribution p (r 1 , y 1 , r 2 , y 2 ) in (4.10) of the HMM-IN approximation to (4.39) as follows:

p (u 1 , u 2 ) = 0.49 if u 1 = u 2 ; 0.01 if u 1 = u 2 ; (4.43a) p (r 1 |u 1 ) = 0.7 if r 1 = u 1 ; 0.3 if r 1 = u 1 ; (4.43b) p (y 1 |u 1 ) = N(y 1 ; µ u (u 1 ), σ 2 ), (4.43c) Y1 R1 Y2 Y3 R2 R3 U1 U2 U3 Y1 R1 Y2 Y3 R2 R3 U1 U2 U3 STMM TMM-IN
p (r 1 , r 2 ) = u 1 ,u 2 ∈Λ p (u 1 , u 2 ) p (r 1 |u 1 ) p (r 2 |u 2 ) ; (4.44a) p (y 1 |r 1 ) = N y 1 ; µ r (r 1 ), σ 2 r (r 1 ) , (4.44b) 
where the parameters of p (y 1 |r 1 ) are computed by the principle of moment-matching:

µ r (r 1 ) = u 1 ∈Λ p (u 1 |r 1 ) µ u (u 1 ); (4.45a) σ 2 r (r 1 ) = σ 2 + u 1 ∈Λ µ u (u 1 ) -µ r (r 1 ) 2 p (u 1 |r 1 ) . (4.45b) 
We computing misclassication rates for STMM and its HMM-IN approximation for various values of σ. We observe that HMM-IN approximation appears to be fairly suboptimal for several values of σ.

Next, we compare TMM-IN (4.41) with the classic HMM-IN and its three extensions.

The rst one is known as the mixture-HMM [Paul, 1991] 

(R 1:N , U 1:N , Y 1:N ) is the following: p (r 1:N , u 1:N , y 1:N ) = p (r 1 ) p (r 2 |r 1 ) . . . p (r N |r N -1 ) p (u 1 ) p (u 2 ) . . . p (u N ) p (y 1 |r 1 , u 1 ) . . . p (y N |r N , u N ) .
) = p (r 1 , r 2 ) p (r 3 |r 1 , r 2 ) . . . p (r N |r N -1 , r N -2 ) p (y 1 |r 1 ) . . . p (y N |r N ) . (4.47)
Thus, an HMM-IN-2 is technically a TMM-IN where Λ = Ω and for each n in {1 : N } , U n = X n-1 and p (y n |r n , u n ) = p (y n |r n ). Notice that if K is the number of elements in Ω, K is that of Λ, then the dimension of the hidden space of TMM is KK . Thus, 

4.8. X X X X X X X X X X X (r 1 , u 1 ) (r 2 , u 2 ) (ω 1 , λ 1 ) (ω 1 , λ 2 ) (ω 2 , λ 1 ) (ω 2 , λ 2 ) (ω 1 ,
{p(x 1 , u 1 , x 2 , u 2 )|x 1 , x 2 ∈ Ω, u 1 , u 2 ∈ Λ}.
Regarding the observation space, we set

p (y 1 |u 1 , r 1 ) = N (µ(u 1 , r 1 ), 1) . (4.48)
Let us consider three following cases of positioning of µ(u 1 , r 1 ) :

1. : µ(ω 1 , λ 1 ) < µ(ω 1 , λ 2 ) < µ(ω 2 , λ 2 ) < µ(ω 2 , λ 1 ); 2. : µ(ω 1 , λ 1 ) < µ(ω 2 , λ 1 ) < µ(ω 2 , λ 2 ) < µ(ω 1 , λ 2 ); 3. : µ(ω 1 , λ 1 ) < µ(ω 2 , λ 1 ) < µ(ω 1 , λ 2 ) < µ(ω 2 , λ 2 ).
Given the symmetries of p (r 1 , u 1 , r 2 , u 2 ), these cases are exhaustive regarding the problem of estimation of R 1:N from Y 1:N . We consider sampling (R In our experiments, we consider simulated samples of size 1000 and we average results over 100 independent identical experiments.

In Case 1, all the ve estimators yield pretty much the same result.

In Case 2, we consider ∆ > 0 and set

       µ(ω 1 , λ 1 ) = -2∆; µ(ω 2 , λ 1 ) = -∆; µ(ω 2 , λ 2 ) = ∆; µ(ω 1 , λ 2 ) = 2∆.
(4.49) Figure 4.8 presents error rates of the ve estimators. We observe that the non-mixture classic models are asymptotically sub-optimal.

In Case 3, we consider ∆ > 0 and set

       µ(ω 1 , λ 1 ) = -2∆; µ(ω 2 , λ 1 ) = -∆; µ(ω 1 , λ 2 ) = ∆; µ(ω 2 , λ 2 ) = 2∆.
(4.50) Figure 4.9 presents error rates of the ve estimators in Case 3. We observe that the nonmixture classic models diverge. Moreover, we see that the TMM-IN estimator may be signicantly more accurate than that of the classic models. The gap we observe between classic mixture-based and TMM-IN estimators may be due to taking the Markovianity of (R 1:N , U 1:N ) into account. We pointed out that extending the state space of classic models may not result in improving the accuracy of the corresponding estimators. 

Conclusions

We compared the accuracy of the MPM estimators based on the classic HMM and its extensions which are the PMM and the TMM. PMM and TMM frameworks allowed to achieve substantial improvements of the estimation accuracy. Such improvements were particularly visible when the observation distribution was heavily autocorrelated and/or if the hidden chain was far from being Markovian.

As it is known [START_REF] Derrode | Signal and image segmentation using pairwise Markov chains[END_REF], the parameter estimation in the models considered is quite robust, thus the present results conrm the suitability of PMM and TMM frameworks for real-world applications involving unsupervised learning.

Stock forecasting with PMMs

In this section, we investigate an application of PMMs to stock market prediction.

Universally acknowledged features of nancial time series include volatility clustering, autocorrelation in returns and the Asymmetric Volatility Phenomenon (AVP). A wellestablished methodology consists in using a mathematical model to describe available data and to project it into the future. The Autoregressive Integrated Moving Average (ARIMA)

and the Generalized Autoregressive Conditional Heteroscedasticity (GARCH) models are popular among practitioners. These models are reviewed in [START_REF] Montgomery | Forecasting and Time Series Analysis[END_REF].

In recent years, there was an increasing interest in the regime-switching models, reviewed e.g. in [START_REF] Mamon | Hidden Markov Models in Finance: Further Developments and Applications[END_REF]. In nancial markets, these models allow identifying bull and bear alternating regimes. A bull state is characterized by positive expectation of log-returns and low volatility, while a bear state is driven by negative expected log-returns and high volatility. Let also mention the technical analysis which provides a range of approaches for market prediction [START_REF] Blanchet-Scalliet | Technical Analysis Compared to Mathematical Models Based Methods under Parameters Mis-specication[END_REF].

The HMMs provide a suitable framework for modeling regime-switching. An important example of such framework is available in e.g. [START_REF] Hassan | Stock market forecasting using hidden Markov model: a new approach[END_REF]. These models use a hidden sequence of the same length as the sequence of observed log-returns. The HMMs are known to be robust and straightforward to implement. However, the HMMs do not take the following potential features of stock dynamics into account:

(F1): log-returns may be correlated given the state variables;

(F2): the future state and current log-return may not be independent given the current state.

PMMs are able to include both features (F1) and (F2) in the HMMs for the same processing cost. The purpose of this section is to introduce a modeling of nancial time series with the PMMs with discrete state space. Specically, we investigate if the PMMs can allow improving forecasting performance and if both features (F1) and (F2) should be taken into account. Consider the following decomposition of p (r n+1 , y n+1 |r n , y n ), for n in {1 : N -1}:

p (r n+1 , y n+1 |r n , y n ) = p (r n+1 |r n , y n ) p (y n+1 |r n , r n+1 , y n ) .
From the above equation, we see that a PMM is an HMM if, and only if, for each n in {1 : N -1} :

p (y n+1 |r n , r n+1 , y n ) = p (y n+1 |r n+1 ) ; Let us introduce a pairwise Markov modeling of asset log-returns. Specically, we explain how the PMMs allow modeling features (F1) and (F2). We also outline various types of PMM data processing, such as the state estimation, forecasting and parameter inference.

Y4 Y1 Y2 Y3 R4 R1 R3 R2 (b) Y4 Y1 Y2 Y3 R4 R1 R3 R2 (a)
Let S n be the stock price at time n, n ∈ N. The log-return Y n at time n > 0 is dened by Y n = log(S n )log(S n-1 ). (4.52) In the classic Black-Scholes model, the log-returns Y 1:N are assumed to be normally distributed and to have the same mean µ and standard deviation σ. In other words, we have, for each n > 0,

Y n = µ + σU n ,
where {U n } n>0 are zero-mean, unit-variance independent Gaussian random variables, also known as the standard Gaussian white noise. µ and σ are known as the average return (or drift) and the volatility of the stock.

The HMM allows extending the classic Black-Scholes model by making µ and σ dependent on hidden variables. Let R 1:N be a Markov chain, then let

Y n = µ(r n ) + σ(r n )U n , (4.53)
with {U n } 1≤n≤N standard Gaussian white noise variables. The parameters of this model include the initial state distribution, Markov chain transition matrix p (r n+1 = ω |r n = ω ) for each ω, ω ∈ Ω and the values of the drift and volatility per state {µ(ω), σ(ω)} ω∈Ω . For example, if ω 1 is associated with the bear market state and ω 2 with the bull state, one would expect µ(ω 1 ) < 0 < µ(ω 2 ) and σ(ω 1 ) > σ(ω 2 ). The Hidden Markov modeling of Y 1:N is given by (P1)-(P3) and

∀n, 1 ≤ n ≤ N, p (y n |r n ) = N y n ; µ(r n ), σ(r n ) 2 . (4.54)
The PMMs provide a more exible framework than that of HMMs. In order to fulll the requirement (F1), we dene a rst-order autoregressive model of Y 1:N given R 1:N . We set

U n+1 = ρ(R n , R n+1 )U n + 1 -ρ(R n , R n+1 ) 2 V n+1 , (4.55)
where n > 0, U 1 , {V n } n>0 are standard Gaussian white noise variables and for each ω, ω ∈ Ω, |ρ(ω, ω )| < 1.

As regards the feature (F2), we make R n+1 dependent on Y n given R n by using the concept of the logistic function. Specically, in the case where Ω contains only two elements {ω 1 , ω 2 }, we set 

p (r n+1 = ω 1 |r n , u n ) = 1 1 + e -a(rn)-b(rn)un , (4.56) where for each ω ∈ Ω, a(ω) ∈ R, b(ω) ∈ R.
p (y 1 |r 1 ) = N y 1 ; µ(r 1 ), σ 2 (r 1 ) ; (4.57a) p (r n+1 = ω 1 |r n , y n ) = 1 1 + e -a (rn)- b(rn) σ(rn) (yn-µ(rn)) 
;

(4.57b) p (y n+1 |r n , r n+1 , y n ) = N y n+1 ; µ(r n+1 ) + ρ(r n , r n+1 )σ(r n+1 ) σ(r n ) (y n -µ(r n )) , σ(r n+1 ) 2 (1 -ρ(r n , r n+1 ) 2 ) . (4.57c)
The parameters of this model are

θ = {π(ω), µ(ω), σ(ω), a(ω), b(ω), ρ(ω, ω )} ω,ω ∈Ω , (4.58) 
where π(ω) = P[R n = ω] for each ω ∈ Ω. This model is presented for Ω = {ω 1 , ω 2 }, but one can consider a more general denition by using the multinomial logistic function, as explained in [Böhning, 1992].

Processing of incoming data {Y n } n>0 in a PMM involves determining p (r n |y 1:n ). The ltering distribution is given by

p (r n |y 1:n ) = α n (r n ) rn∈Ω α n (r n ) , (4.59) 
where for all n in N and r n in Ω, α n (r n ) is computed as detailed in Section 4.2.

Forecasting consists in computing p (y n+1:n+p |y 1:n ) for p > 0. An important case of forecasting is the one-step-ahead forecasting, for which p = 1. In this case, it is also particularly important to forecast Z n+1 , where

Z n+1 = 1 if Y n+1 < 0; 2 otherwise. (4.60)
Z n+1 represents the direction of the stock price change during the day n + 1. The anticipated price change at n + 1 given the information available at n is dened by

z n+1|n = 1 if P[Y n+1 < 0|y 1:n ] > 0.5; 2 otherwise. (4.61)
size of the data set H is M = 1200. In every experiment, the state space consists of only two elements. Figures 4.12 and 4.13 display the values of risks R 1 (θ) and R 2 (θ) cf. (4.64) for θ minimizing (4.65), in function of λ. Absolute returns generated by four models on the test set are given in Table 4.9 for various values of λ. Let us make several brief observations. Figures 4.12 and 4.13 are consistent with the denition of θ as the minimum of (4.65). When λ increases, R * 1 (λ) = R 1 (θ) decreases and R * 2 (λ) = R 2 (θ) increases, and vice versa, and this holds for the four models.

Progressive inclusion of features (F1) and (F2) in the HMM improves both risk values computed on H training , as expected, independently of the value of λ.

We can see from Figure 4.14, that PMM-F1 implies a more risk-adverse trading strategy than that of HMM, and the related generated return increases almost monotonically.

However, PMM-F1 may not be well suited for a bull market. PMM-F2 and HMM appear to be better suited for bull dynamics, while PMM-F2 seems to be less vulnerable than HMM to abrupt drops of asset value.

As a discussion, we proposed a meaningful parameterization of PMM for modeling nancial time series. The results show that both features (F1) and (F2) can be captured by PMMs, which was expected. Another interesting point is that these features seem to be present in real-world data, and thus PMMs provide a better forecast. One can intuitively understand why using the feature (F1) should improve forecasting, while (F2) is more dicult to interpret. Suppose for example that during the bull state, the return Y n appears to be excessively negative compared to the average return of the bull market. In this case, the current state may become fairly uncertain in an HMM. The PMM incorporates (F2) by using the distribution p (r n+1 |r n , y n ) which allows to decide to which extent Y n should aect the expectation of R n+1 .

- Table 4.9 indicates that the outcome produced by each model is sensitive to the value of λ. In general, such a parameter should be chosen by a cross-validation procedure accordingly to the application considered.

Our experiments indicate that a more complex structure of PMMs may allow identifying better suited regimes for specic application. We believe that the presented way of use of the exibility of PMM will allow overcoming principal constraints of HMMs.

This study has several limitations. Firstly, we assume only two regimes in our models.

Next, the Gaussian mixture density and non-Gaussian heavy tailed observation distributions could be considered as well. We only consider closing price per day, while daily opening, low and high prices are also available as well. Finally, our study concerns only one period of stock prices and only one stock was used in the experiment.

Conclusion

We compared the accuracy of MPM estimators based on the classic HMM and its extensions which are the PMM and the TMM. PMM and TMM frameworks allowed to achieve substantial improvements of the estimation accuracy. Such improvements were particularly visible when the observation distribution was heavily autocorrelated and/or when the hidden chain was far from being Markovian.

We also introduced a pairwise Markov model of nancial time series, obtained by incorporating features such as the correlation of log-returns given the state variables and dependence of the future state upon the current log-return given the current state. The results show that both of these features contribute to improving the performance of the model in applications related to stock forecasting. [START_REF] Cappé | Inference in Hidden Markov Models[END_REF] is an important model which belongs to the class of Partially Observable Markov Process (POMP)s with hybrid state space. This model is also known as the Switching Linear Dynamical System (SLDS) [START_REF] Costa | Discrete-Time Markov Jump Linear Systems[END_REF].

The two sections of the chapter are devoted to the corresponding contributions of the author. The rst one presents a novel Bayesian inference algorithm for the SLDS, and more generally, for the Conditionally Gaussian Pairwise Markov Switching Model (CGPMSM) [START_REF] Abbassi | Optimal Filter Approximations in Conditionally Gaussian Pairwise Markov Switching Models[END_REF]. The second one presents a novel algorithm for ltering in switching systems, with an emphasis that these systems may be non-linear and/or non-Gaussian.

The section is mainly a compilation of authors' papers [Gorynin and Pieczynski, 2017a, Gorynin et al., 2016c, Gorynin and Pieczynski, 2017b].

Bayesian smoothing in conditionally linear POMPs with hybrid state space

The concept of the SLDS [START_REF] Costa | Discrete-Time Markov Jump Linear Systems[END_REF] is presented in dierent elds, such as econometrics [Kim, 1994], nance [START_REF] Azzouzi | Modelling nancial time series with switching state space models[END_REF], tracking [START_REF] Weiss | Multiple-model tracking for the detection of lane change maneuvers[END_REF],

speech recognition [START_REF] Mesot | Switching Linear Dynamical Systems for Noise Robust Speech Recognition[END_REF], pattern recognition [START_REF] Pavlovic | Learning Switching Linear Models of Human Motion[END_REF],

among others [START_REF] Ristic | Beyond the Kalman lter: particle lters for tracking applications[END_REF]. These systems are also known as jump Markov models (processes), switching conditional linear Gaussian state-space models, interacting multiple models. There is no exact Bayesian ltering or smoothing algorithm tractable in the general SLDS context [Lerner, 2002]. Previous research on smoothed inference in SLDSs includes the most popular Kim method [START_REF] Kim | State-Space Models with Regime Switching: Classical and Gibbs-Sampling Approaches with Applications[END_REF], simulation-based algorithms [START_REF] Doucet | Particle lters for state estimation of jump Markov linear systems[END_REF], Fong et al., 2002, Särkkä et al., 2012, Carter and Kohn, 1996],

recent smoothed inference by expectation correction [Barber, 2006] and various deterministic approximations [Zoeter and Heskes, 2006]. Simulation-based methods intrinsically use Monte-Carlo integration in the state space. Thus, the accuracy of such approaches depends on the number of simulated particles. Besides, if the number of simulated particles is insucient for the state space dimension, these estimators would have high variance, while achieving an acceptable variance would mean for them a high processing cost. Indeed, it is possible to bypass the need of numerical integration by assuming a conditional independence [Kim, 1994] and the eect induced by such assumption is insignicant [Barber, 2006]. We also note the Rao-Blackwellised particle lters [START_REF] Murphy | Rao-Blackwellised Particle Filtering for Dynamic Bayesian Networks[END_REF] which are designed to replace the problem of sampling in continuous state space by an explicit integration [Barber, 2006]. The algorithm is illustrated through an application to the problem of trend estimation.

In this section, we introduce an approach of fast smoothing in the Stationary Conditionally Gaussian Pairwise Markov Switching Model (SCGPMSM) [START_REF] Abbassi | Optimal Filter Approximations in Conditionally Gaussian Pairwise Markov Switching Models[END_REF].

The interest of the new method is that it uses Bayesian assimilation to obtain a smoothed estimate so the forward and backward passes can run independently. The main idea is to use the classic Switching Kalman Filter (SKF) twice: rstly, as usual, and a second time applied to time-reversed dynamics of the system. Then our smoothed solution is obtained by using standard Gaussian conditioning formulas to combine the two distributions computed by the SKF. We discovered that the resulting algorithm performs as well as the particle smoother both in terms of the mean squared error and regime misclassication rate. It also allowed substantial gains in processing cost when compared to the particle smoother. The main results are presented in the SCGPMSM framework rather than in that of the classic SLDS. Indeed, formally, SCGPMSMs are switching linear models which extend the classic SLDSs (see Figure 5.1 and Figure 5.2). Our decision to use the SCGPMSM framework is exclusively motivated by its suitability for presentation of our algorithms and its potential to enhance them with a greater degree of generality. We rst present the SLDSs and SCGPMSMs, as well as the SKF. Next, we describe the novel Reverse Switching Kalman Filter (RSKF) and the proposed Bayesian assimilation of estimates of SKF and RSKF.

Let Ω = {1 : K}, in an SLDS, we have:

p (x 1 |r 1 ) = N (x 1 ; m 1 (r 1 ), Σ 1 (r 1 )) ; (5.1a) ∀n ∈ {1 : (N -1)}, X n+1 = T n+1 (R n+1 )X n + a n+1 (R n+1 ) + Q n+1 (R n+1 )U n+1 ; (5.1b) ∀n ∈ {1 : N }, Y n = H n (R n )X n + b n (R n ) + S n (R n )V n ;
( 5.1c) ∀n ∈ {1 : (N -1)}, ∀r n , r n+1 ∈ Ω, p (r n+1 |r n , x n , y n ) = p (r n+1 |r n ) .

(5.1d)

Here, for each n in {1 : N }, the value of R n determines the data generating process used to create (X n , Y n ). The dependency graph of SLDSs is given in Figure 5.1.

. . . . . . If at time n + 1, the value of R n+1 is dierent from that of R n , we say that the system has switched at n + 1.

X 1 X 2 X 3 X N -1 X N Y 1 Y 2 Y 3 Y N -1 Y N R 1 R 2 R 3 R N -1 R N
It is also noteworthy that in an SLDS, ((R n , X n ), Y n ) 1≤n≤N is a hidden Markov chain with Y 1:N observed. Thus, SLDSs can be seen as hidden Markov models with hybrid state space: continuous-valued X 1:N and discrete-valued R 1:N . To summarize, in an SLDS,

R 1:N , (R n , X n ) 1≤n≤N and (R n , X n , Y n ) 1≤n≤N are Markov processes.
It is noticed [START_REF] Abbassi | Optimal Filter Approximations in Conditionally Gaussian Pairwise Markov Switching Models[END_REF] that in general, system (5.1) is not stationary, but may be asymptotically stationary. In this case, the stationary asymptote of (5.1) is of form (5.2).

We consider SCGPMSMs [START_REF] Abbassi | Optimal Filter Approximations in Conditionally Gaussian Pairwise Markov Switching Models[END_REF], where (R n , X n , Y n ) 1≤n≤N and R 1:N are stationary Markovian and

∀n ∈ {1 : (N -1)}, p (z n , z n+1 |r n , r n+1 ) = N z n z n+1 ; µ Z (r n ) µ Z (r n+1 ) , Γ Z (r n ) Γ Z 1 Z 2 (r n , r n+1 ) Γ Z 2 Z 1 (r n , r n+1 ) Γ Z (r n+1 ) , (5.2) with ∀n ∈ {1 : N }, Z n = X n Y n .
The direct dynamics of SCGPMSM are dened as ∀n ∈ {1 : (N -1)}, ∀r n , r n+1 ∈ Ω,

F (r n , r n+1 ) = Γ Z 2 Z 1 (r n+1 , r n )Γ Z (r n ) -1 ;
(5.3a)

L(r n , r n+1 ) = µ Z (r n+1 ) -F (r n , r n+1 )µ Z (r n );
(5.3b)

Q(r n , r n+1 ) = Γ Z (r n+1 ) -F (r n , r n+1 )Γ Z 1 Z 2 (r n , r n+1 ).
(5.3c)

The reversal dynamics of SCGPMSM are dened as ∀n ∈ {2 : N }, ∀r n-1 , r n ∈ Ω,

F * (r n-1 , r n ) = Γ Z 1 Z 2 (r n-1 , r n )Γ Z (r n ) -1 ;
(5.4a)

L * (r n-1 , r n ) = µ Z (r n-1 ) -F * (r n-1 , r n )µ Z (r n ); (5.4b) Q * (r n-1 , r n ) = Γ Z (r n-1 ) -F * (r n-1 , r n )Γ Z 2 Z 1 (r n , r n-1
).

(5.4c)

SCGPMSMs include stationary SLDSs (5.1) and allso allows incorparating complementary conditional dependencies. Their dependency graph is given in Figure 5.2.

. . . . . . . . . by Markovianity of (R n , Z n ) 1≤n≤N and p (z 1 |r 1 ) = N (z 1 ; µ Z (r 1 ), Γ Z (r 1 )).

X 1 X 2 X 3 X N Y 1 Y 2 Y 3 Y N -1 Y N R 1 R 2 R 3 R N -1 R N
Indeed, the same SCGPMSM can be also dened by using the reversal dynamics, since

p (z 1:N |r 1:N ) = p (z N |r 1:N ) p (z N -1 |r 1:N , z N ) . . . p (z 1 |r 1:N , z 2 ) = p (z N |r N ) p (z N -1 |r N -1 , r N , z N ) . . . p (z 1 |r 2 , r 1 , z 2 ) ; p (z N |r N ) = N (z N ; µ Z (r N ), Γ Z (r N )) ,
and the reversal dynamics (5.4) are such that

∀n ∈ {2 : N }, p (z n-1 |z n , r n-1 , r n ) = N (z n-1 ; F * (r n-1 , r n )z n+1 + L * (r n-1 , r n ), Q * (r n-1 , r n )) .
(5.6)

The reversal dynamics are used in the smoothed inference of SCGPMSM, specically in the backward pass. p (r n |y 1:n ) ;

(5.7a)

∀n ∈ {1 : (N -1)}, ∀r n , r n+1 ∈ Ω, π n+1 (r n , r n+1 ) def ===== approx.
p (r n , r n+1 |y 1:n+1 ) ;

(5.7b)

∀n ∈ {1 : (N -1)}, ∀r n , r n+1 ∈ Ω, π n+1 (r n |r n+1 ) def ===== approx.
p (r n |r n+1 , y 1:n+1 ) ;

(5.7c)

∀n ∈ {1 : N }, ∀r n ∈ Ω, x n|n (r n ) def ===== approx.
E [X n |y 1:n , r n ] ;

( 5.7d) ∀n ∈ {1 : (N -1)}, ∀r n , r n+1 ∈ Ω,

x n+1|n (r n , r n+1 ) def ===== approx.
E [X n+1 |y 1:n , r n , r n+1 ] ;

(5.7e)

∀n ∈ {1 : (N -1)}, ∀r n , r n+1 ∈ Ω, z n+1|n (r n , r n+1 ) def ===== approx.
E [Z n+1 |y 1:n , r n , r n+1 ] ;

(5.7f )

∀n ∈ {1 : N }, ∀r n ∈ Ω, Σ n|n (r n ) def ===== approx.
Var [X n |y 1:n , r n ] ;

(5.7g)

∀n ∈ {1 : (N -1)}, ∀r n , r n+1 ∈ Ω, Σ n+1|n (r n , r n+1 ) def ===== approx.
Var [X n+1 |y 1:n , r n , r n+1 ] ;

(5.7h)

∀n ∈ {1 : (N -1)}, ∀r n , r n+1 ∈ Ω, Γ n+1|n (r n , r n+1 ) def ===== approx.
Var [Z n+1 |y 1:n , r n , r n+1 ] .

(5.7i)

For each n in {1 : N }, the SKF uses the following assumption

p (x n |y 1:n , r n ) = N x n ; x n|n (r n ), Σ n|n (r n ) .
Indeed, the SKF was originally designed for SLDSs of form (5.1). Here we present a slightly enhanced version of the original SKF which is applicable to the SCGPMSM.

Algorithm 3. Switching Kalman lter

Initialization: for each r 1 in Ω,

π 1 (r 1 ) = p (r 1 ) N (y 1 ; µ Y (r 1 ), Γ Y (r 1 )) r 1 ∈Ω p (r 1 ) N (y 1 ; µ Y (r 1 ), Γ Y (r 1 )) ; x 1|1 (r 1 ) = µ X (r 1 ) + Γ XY (r 1 )Γ -1 Y (r 1 )(y 1 -µ Y (r 1 )); Σ 1|1 (r 1 ) = Γ X (r 1 ) -Γ XY (r 1 )Γ -1 Y (r 1 )Γ YX (r 1 )
,

where µ X (r 1 ) ∈ R d , µ Y (r 1 ) ∈ R d , Γ X (r 1 ) ∈ R d×d , Γ XY (r 1 ) ∈ R d×d , Γ YX (r 1 ) ∈ R d ×d , Γ Y (r 1 ) ∈ R d ×d are dened from µ Z (r 1 ) = µ X (r 1 ) µ Y (r 1 ) , Γ Z (r 1 ) = Γ X (r 1 ) Γ XY (r 1 ) Γ YX (r 1 ) Γ Y (r 1 )
.

Recursion: compute {π n+1 (r n+1 ), x n+1|n+1 (r n+1 ), Σ n+1|n+1 (r n+1 )} r n+1 ∈Ω from {π n (r n ), x n|n (r n ), Σ n|n (r n )} rn∈Ω for each n in {1 : (N -1)}. Let r n ,r n+1 in Ω, a)time update: z n+1|n (r n , r n+1 ) = F (r n , r n+1 ) x n|n (r n ) y n + L(r n , r n+1 ) =
x n+1|n (r n , r n+1 ) y n+1|n (r n , r n+1 ) ;

(5.8a)

Γ n+1|n (r n , r n+1 ) = F (r n , r n+1 ) Σ n|n (r n ) 0 0 0 F (r n , r n+1 ) + Q(r n , r n+1 ) = Σ n+1|n (r n , r n+1 ) C n+1|n (r n , r n+1 ) C n+1|n (r n , r n+1 ) S n+1|n (r n , r n+1 ) , (5.8b) 
where F (r n , r n+1 ), L(r n , r n+1 ), Q(r n , r n+1 ) are given by (5.3).

b)measurement update

x n+1|n+1 (r n , r n+1 ) = x n+1|n (r n , r n+1 )+ C n+1|n (r n , r n+1 ) S - 1 
n+1|n (r n , r n+1 )(y n+1y n+1|n (r n , r n+1 ));

(5.9a)

Σ n+1|n+1 (r n , r n+1 ) = Σ n+1|n (r n , r n+1 ) -C n+1|n (r n , r n+1 ) S -1 n+1|n C n+1|n (r n , r n+1 ); (5.9b) Next, let c n+1 (r n , r n+1 ) def ===== approx.
p (y n+1 |y 1:n , r n , r n+1 ), we have c n+1 (r n , r n+1 ) = N y n+1 ; y n+1|n (r n , r n+1 ), S n+1|n (r n , r n+1 ) ;

(5.10)

Update the posterior distribution of the discrete state:

∀r n , r n+1 ∈ Ω, π n+1 (r n , r n+1 ) = π n (r n )p (r n+1 |r n ) c n+1 (r n , r n+1 ) r n ,r n+1 ∈Ω
π n (r n )p r n+1 |r n c n+1 (r n , r n+1 ) ;

(5.11a)

∀r n+1 ∈ Ω, π n+1 (r n+1 ) = rn∈Ω π n+1 (r n , r n+1 ).
(5.11b)

Compute, for each r n+1 in Ω, x n+1|n+1 (r n+1 ) and Σ n+1|n+1 (r n+1 ):

x n+1|n+1 (r n+1 ) = rn∈Ω π n+1 (r n |r n+1 ) x n+1|n+1 (r n , r n+1 );

(5.12a)

Σ n+1|n+1 (r n+1 ) = rn∈Ω π n+1 (r n |r n+1 ) Σ n+1|n+1 (r n , r n+1 ) + rn∈Ω π n+1 (r n |r n+1 )× x n+1|n+1 (r n , r n+1 ) -x n+1|n+1 (r n+1 ) x n+1|n+1 (r n , r n+1 ) -x n+1|n+1 (r n+1 ) , (5.12b) 
with π n+1 (r n |r n+1 ) = π n+1 (r n , r n+1 ) π n+1 (r n+1 ) .

(5.13) (The algorithm ends here)

Let us now introduce another method of smoothing in SCGPMSMs we propose. The main particularity of the new method is that it is based on Bayesian assimilation. We rst introduce the reverse switching Kalman lter used to process Y 1:N in the reverse order by using the reversal dynamics.

By analogy with the SKF, let us dene the RSKF that is used to compute:

∀n ∈ {1 : N }, ∀r n ∈ Ω, π * n (r n ) def ===== approx.
p (r n |y n:N ) ; (5.14a)

∀n ∈ {2 : N }, ∀r n-1 , r n ∈ Ω, π * n-1 (r n-1 , r n ) def ===== approx.
p (r n-1 , r n |y n-1:N ) ; (5.14b)

∀n ∈ {2 : N }, ∀r n-1 , r n ∈ Ω, π * n-1 (r n |r n-1 ) def ===== approx.
p (r n |r n-1 , y n-1:N ) ; (5.14c) ∀n ∈ {1 : N }, ∀r n ∈ Ω,

x * n|n (r n ) def ===== approx.
E [X n |y n:N , r n ] ; (5.14d)

∀n ∈ {2 : N }, ∀r n-1 , r n ∈ Ω, x * n-1|n (r n-1 , r n ) def ===== approx. E [X n-1 |y n:N , r n-1 , r n ] ; (5.14e) (5.14f ) ∀n ∈ {2 : N }, ∀r n-1 , r n ∈ Ω, z * n-1|n (r n-1 , r n ) def ===== approx.
E [Z n-1 |y n:N , r n-1 , r n ] ;

(5.14g)

∀n ∈ {1 : N }, ∀r n ∈ Ω, Σ * n|n (r n ) def ===== approx.
Var [X n |y n:N , r n ] ;

(5.14h)

∀n ∈ {2 : N }, ∀r n-1 , r n ∈ Ω, Σ * n-1|n (r n-1 , r n ) def ===== approx.
Var [X n-1 |y n:N , r n-1 , r n ] ; (5.14i)

∀n ∈ {2 : N }, ∀r n-1 , r n ∈ Ω, Γ * n-1|n (r n-1 , r n ) def ===== approx.
Var [Z n-1 |y n:N , r n-1 , r n ] . (5.14j) under assumption that ∀n ∈ {1 : N }, p (x n |y n:N , r n ) = N x n ; x * n|n (r n ), Σ * n|n (r n ) .

(5.15)

The RSKF runs as follows:

Algorithm 4. Reverse switching Kalman lter Initialization: for each r N in Ω,

π * N (r N ) = p (r N ) N (y N ; µ Y (r N ), Γ Y (r N )) K r N =1 p r N N y N ; µ Y (r N ), Γ Y (r N ) ; x * N |N (r N ) = µ X (r N ) + Γ XY (r N )Γ -1 Y (r N )(y N -µ Y (r N )); Σ * N |N (r N ) = Γ X -Γ XY (r N )Γ -1 Y (r N )Γ YX (r N ). Recursion: compute {π * n-1 (r n-1 ), x * n-1|n-1 (r n-1 ), Σ * n-1|n-1 (r n-1 )} r n-1 ∈Ω from {π * n (r n ), x * n|n (r n ), Σ * n|n (r n )} rn∈Ω for each n in {2 : N }. Let r n-1 , r n in Ω, a)time update: z * n-1|n (r n-1 , r n ) = F * (r n-1 , r n ) x * n|n (r n ) y n + L * (r n-1 , r n ) = x * n-1|n (r n-1 , r n ) y * n-1|n (r n-1 , r n ) ; (5.16a) Γ * n-1|n (r n-1 , r n ) = F * (r n-1 , r n ) Σ * n|n (r n ) 0 0 0 F * (r n-1 , r n ) + Q * (r n-1 , r n ) = Σ * n-1|n (r n-1 , r n ) C * n-1|n (r n-1 , r n ) C * n-1|n (r n-1 , r n ) S * n-1|n (r n-1 , r n ) . (5.16b) b)measurement update x * n-1|n-1 (r n-1 , r n ) = x * n-1|n (r n-1 , r n )+ C * n-1|n (r n-1 , r n ) S * -1 n-1|n (r n-1 , r n )(y n-1 -y * n-1|n (r n-1 , r n )); (5.17a) Σ * n-1|n-1 (r n-1 , r n ) = Σ * n-1|n (r n-1 , r n ) -C * n-1|n (r n-1 , r n ) S * -1 n-1|n C * n-1|n (r n-1 , r n ); (5.17b) Next, let c * n-1 (r n-1 , r n ) def ===== approx. p (y n-1 |y n..N , r n-1 , r n ), we have c * n-1 (r n-1 , r n ) = N y n-1 ; y * n-1|n (r n-1 , r n ), S * n-1|n (r n-1 , r n ) .
(5.18)

Update the posterior distribution of the discrete state:

∀r n-1 , r n ∈ Ω, π * n-1 (r n-1 , r n ) = π * n (r n )p (r n-1 |r n ) c * n-1 (r n-1 , r n ) r n ,r n+1 ∈Ω π * n (r n )p r n-1 |r n c * n-1 (r n-1 , r n ) ; (5.19a) ∀r n-1 ∈ Ω, π * n-1 (r n-1 ) = rn∈Ω π * n-1 (r n-1 , r n ).
( 5.19b) Compute, for each r n-1 in Ω, x * n-1|n-1 (r n-1 ) and Σ * n-1|n-1 (r n-1 ):

x

* n-1|n-1 (r n-1 ) = K rn=1 π * n-1 (r n |r n-1 ) x * n-1|n-1 (r n-1 , r n ); (5.20a) Σ n-1|n-1 (r n-1 ) = K rn=1 π * n-1 (r n |r n-1 ) Σ * n-1|n-1 (r n-1 , r n ) + K rn=1 π * n-1 (r n |r n-1 )× (5.20b) ( x * n-1|n-1 (r n-1 , r n ) -x * n-1|n-1 (r n-1 ))( x * n-1|n-1 (r n-1 , r n ) -x * n-1|n-1 (r n-1 )) , (5.20c) with π * n-1 (r n |r n-1 ) = π * n-1 (r n-1 , r n ) π * n-1 (r n-1 )
.

(5.21) (The algorithm ends here)

Our idea to set up a Bayesian-assimilation-based smoothed inference is the following.

First, we use the estimates of {p (r n-1 |y 1:n-1 )} To this end we consider the following conditional distribution crucial for Bayesian assimi- 

lation ∀n ∈ {2 : (N -1)}, ∀r n-1 , r n , r n+1 ∈ Ω, p (r n |r n-1 , r n+1 , y n-1:n+1 ) = p (r n-1 , r n , r n+1 ) p (y n-1:n+1 |r n-1 , r n , r n+1 ) r n ∈Ω p (r n-1 , r n , r n+1 ) p (y n-1:n+1 |r n-1 , r n , r n+1 ) , ( 
{1 : N }, r n in Ω π n (r n ) def ===== approx. p (r n |y 1:n ) , π * n (r n ) def ===== approx.
p (r n |y n:N )

by the SKF and RSKF.

Let 

∀r 1 ∈ Ω, π 1|N (r 1 ) = π * 1 (r 1 ), ∀r N ∈ Ω, π N |N (r N ) = π N (r N ); For each n in {2 : N -1}, r n in Ω, π n|N (r n ) is
∀n ∈ {2 : N -1}, r n ∈ Ω, π n|N (r n ) = r n-1 ,r n+1 ∈Ω p (r n |r n-1 , r n+1 , y n-1:n+1 ) r n ∈Ω π n (r n-1 |r n )π * n (r n+1 |r n )π n|N (r n ).
(5.32) Note that the above equation denes {π n|N (r n )} rn∈Ω as the solution of a linear system. Specically, suppose that π n|N is a column vector whose consecutive elements are π n|N (ω 1 ), . . . , π n|N (ω K ). Thus, π n|N veries 5.33) where A n is dened as follows:

π n|N = A n π n|N , ( 
∀1 ≤ i, j ≤ M, A n (i, j) = rn-1,rn+1∈Ω p (ω i |r n-1 , r n+1 , y n-1:n+1 ) π n (r n-1 |ω j )π * n (r n+1 |ω j ).
Thus, π n|N is invariant with respect to multiplication by A n and therefore it can be approximated iteratively. Let us initialize this recursion by dropping conditional dependencies on r n in (5.32):

∀n ∈ {2 : N -1}, r n ∈ Ω, π (0) n|N (r n ) = r n-1 ,r n+1 ∈Ω p (r n |r n-1 , r n+1 , y n-1:n+1 ) r n ∈Ω π n-1 (r n-1 )π * n+1 (r n+1 )π n|N (r n ) = r n-1 ,r n+1 ∈Ω p (r n |r n-1 , r n+1 , y n-1:n+1 ) π n-1 (r n-1 )π * n+1 (r n+1 ).
(5.34) π n|N is therefore can be approximated by iterating

π (i+1) n|N = A n π (i)
n|N .

(5.35) However, in practice, iterating (5.35) does not seem to aect initialization (5.34) signicantly. That is why we suggest using closed-form formula (5.34), given in (5.23), as the smoothed estimate of the discrete state.

Next, we use estimates of E 5.36) as illustrated in Figure 5.5.

[X n-1 |y 1:n-1 , r n-1 ] rn-1∈Ω , E [X n+1 |y n+1:N , r n+1 ] rn+1∈Ω to compute estimates of E [X n |y 1:N , r n ] rn∈Ω . To this purpose, let us dene α 1 , α 2 , β 1 , β 2 , β 3 , γ dependent on r n-1:n+1 such that E [X n |X n-1 , X n+1 , r n-1:n+1 , y n-1:n+1 ] = α 1 (r n-1:n+1 )X n-1 + α 2 (r n-1:n+1 )X n+1 + + β 1 (r n-1:n+1 )y n-1 + β 2 (r n-1:n+1 )y n + β 3 (r n-1:n+1 )y n+1 + γ(r n-1:n+1 ), ( 
For each n in {2 : N -1}, r n in Ω, we dene

x - n-1|n (r n ) def = ==== = approx. E [X n-1 |r n , y 1..n ] ; x + n+1|n (r n ) def = ==== = approx. E [X n+1 |r n , y n..N ] ; ∀r n-1 , r n+1 ∈ Ω, π n|N (r n-1 , r n+1 |r n ) def = ==== = approx.
p (r n-1 , r n+1 |r n , y 1:N ) ;

x n|N (r n ) def = ==== = approx. E [X n |r n , y 1..N ] .
x n-1 5.36).

y n-1 x n+1 y n+1 y n E[X n |x n-1 , x n+1 , y n-1:n+1 , r n-1:n+1 ] α 1 (r n-1:n+1 ) α 2 (r n-1:n+1 ) β 1 (r n-1:n+1 ) β 2 (r n-1:n+1 ) β 3 (r n-1:n+1 ) Figure 5.5: α 1 , α 2 , β 1 , β 2 , β 3 , γ in (
These quantities are computed as follows:

x

- n-1|n (r n ) = rn-1∈Ω
x n-1|n-1 (r n-1 )π n (r n-1 |r n );

(5.37a) { x n|N (r n )} rn∈Ω are computed as follows: 5.38) which is illustrated in Figure 5.6.

x + n+1|n (r n ) = rn+1∈Ω x * n+1|n+1 (r n+1 )π * n (r n+1 |r n ); (5.37b) π n|N (r n-1 , r n+1 |r n ) = p (r n |r n-1 , r n+1 , y n-1:n+1 ) π n|N (r n ) r n ∈Ω π n (r n-1 |r n )π * n (r n+1 |r n )π n|N (r n ), (5.37c) where { x n-1|n-1 (r n-1 ), π n (r n-1 |r n )} rn-
x n|N (r n ) = rn-1,rn+1∈Ω π n|N (r n-1 , r n+1 |r n ) α 1 (r n-1:n+1 ) x - n-1|n (r n ) + α 2 (r n-1:n+1 ) x + n+1|n (r n )+ β 1 (r n-1:n+1 )y n-1 + β 2 (r n-1:n+1 )y n + β 3 (r n-1:n+1 )y n+1 + γ(r n-1:n+1 ) , ( 
x Let us justify formula (5.38).

Justication: First, observe that we have the following from the law of total expectation:

E [X n |r n , y 1:N ] = E [E [X n |X n-1 , X n+1 , r n-1:n+1 , y 1:N ] |r n , y 1:N ] .
We have the following from the Markovianity of (

X n , R n , Y n ) 1≤n≤N , p (x n |x n-1 , x n+1 , r n-1:n+1 , y 1:N ) = p (x n |x n-1 , x n+1 , r n-1:n+1 , y n-1:n+1 ) . Thus, E [X n |r n , y 1:N ] = E [E [X n |X n-1 , X n+1 , r n-1:n+1 , y n-1:n+1 ] |r n , y 1:N ] .
Next, by using α 1 , α 2 , β 1 , β 2 , β 3 , γ dened in (5.36), we have

E [X n |r n , y 1:N ] = rn-1,rn+1∈Ω p (r n-1 , r n+1 |r n , y 1:N ) α 1 (r n-1:n+1 )E [X n-1 |r n , y 1:N ] + α 2 (r n-1:n+1 )E [X n+1 |r n , y 1:N ] + β 1 (r n-1:n+1 )y n-1 + β 2 (r n-1:n+1 )y n + β 3 (r n-1:n+1 )y n+1 + γ(r n-1:n+1 ) . (5.39) Regarding E [X n-1 |r n , y 1..N ], we have E [X n-1 |r n , y 1..N ] = E [E [X n-1 |r n-1 , r n , y 1..N ] |r n , y 1..N ] = rn-1∈Ω p (r n-1 |r n , y 1..N ) E [X n-1 |r n-1 , r n , y 1..N ] .
(5.40)

Similarly, we have for E [X n+1 |r n , y 1..N ]:

E [X n+1 |r n , y 1..N ] = E [E [X n+1 |r n , r n+1 , y 1..N ] |r n , y 1..N ] = rn+1∈Ω p (r n+1 |r n , y 1..N ) E [X n+1 |r n , r n+1 , y 1..N ] .
( x n|N (r n )π n|N (r n ).

p (r n-1 , r n , r n+1 |y 1:N ) = p (r n |r n-1 , r n+1 , y n-1:n+1 ) r n ∈Ω p (r n-1 |r n , y 1:n ) p (r n+1 |r n , y n:N ) p (r n |y 1:N ) . Indeed, E [X n-1 |r n-1 ,
(The algorithm ends here)

Applications to trend estimation

Here we illustrate our smoothing algorithm applied to the problem of trend estimation in nancial time series. We will consider a classic model without switching and then extend it by incorporating a switching process. Let N ∈ N * be a sample size, the classic Local Trend Model (LTM) [Tsay, 2005] reads:

X 1 ∼ N (m 1 , Σ 1 ) ;

(5.42a) ∀n ∈ {1 : (N -1)}, X n+1 = φX n + qU n+1 + a;

(5.42b)

∀n ∈ {1 : N }, Y n = X n + σV n , (5.42c) 
where φ, q, a and σ are xed parameters in R, Y 1:N are log-returns computed from the price chart of an asset and X 1:N is their underlying trend. X 1:N is supposed to be estimated from Y 1:N ; σ is the standard deviation of price movements which are irrelevant to the underlying trend.

|φ| < 1, X 1:N ∈ R, Y 1:N ∈ R, U 2:N , V 1 
In other words, σ quanties the market noise; φ is the persistence of trend in time. In practice, it is common to consider that φ ≈ 1.

a can be seen as the intercept in linear regression equation (5.42b). This parameter is related to the ergodic mean of {Y n } ∈N as follows:

lim n→∞ 1 N N n=1 Y n = a 1 -φ .
q is known as the conditional variance of the trend. It determines how exible the trend is; m 1 and Σ 1 are chosen in a way that X 1:N would be stationary. Specically, one has

m 1 = a 1 -φ , Σ 1 = q 2 1 -φ 2 .
We consider extending this model by making a dependent on a stationary Markov chain R 1:N in Ω = {ω 1 , ω 2 }: ∀n ∈ {1 : (N -1)}, X n+1 = φX n + qU n+1 + a(R n+1 );

(5.43a)

∀n ∈ {1 : N }, Y n = X n + σV n , (5.43b) 
with the same assumptions as for (5.42). Thus, we obtain a Local Switching Trend Model (LSTM).

We suppose that Markov chain R 1:N is stationary and veries ∀ω ∈ Ω, p (r 1 = ω) = 0.5;

( 5.44a) ∀n ∈ {1 : (N -1)}, p (r n+1 = ω |r n = ω ) = δ.

(5.44b)

Here, both δ and φ specify the persistence of the trend. The SCGPMSM form (5.2) of (5.43) is computed as follows. Dene, for each r n , r n+1 ∈ Ω,

F (r n , r n+1 ) = φ 0 φ 0 , L(r n , r n+1 ) = a(r n+1 ) a(r n+1 ) ,Q(r n , r n+1 ) = q 2 q 2 q 2 σ 2 .
(5.45) Thus, SLDS (5.43) veries

∀n ∈ {1 : (N -1)}, p (z n+1 |z n , r n , r n+1 ) = N (z n+1 ; F (r n , r n+1 )z n + L(r n , r n+1 ), Q(r n , r n+1 )) , with ∀n ∈ {1 : N }, z n = x n y n . The SCGPMSM parameters (5.2) {µ Z (r n ), Γ Z (r n )} rn∈Ω of (5.43) verify ∀r n+1 ∈ Ω, µ Z (r n+1 ) = rn∈Ω p (r n |r n+1 ) F (r n , r n+1 )µ Z (r n ) + L(r n , r n+1 ) ;
(5.46a) We make vary parameter σ depending on our thoughts of the level of market noise. Finally, parameter q is chosen in a way that Regarding the parameters of LSTM (5.43), we set φ = 0.99, δ = 0.01, a(ω

∀r n+1 ∈ Ω, Γ Z (r n+1 ) + µ Z (r n+1 )µ Z (r n+1 ) = rn∈Ω p (r n |r n+1 ) F (r n , r n+1 )Γ Z (r n+1 )F (r n , r n+1 ) + F (r n , r n+1 )µ Z (r n )L(r n , r n+1 ) + L(r n , r n+1 )µ Z (r n ) F (r n , r n+1 ) + L(r n , r n+1 )L(r n , r n+1 ) + Q(r n , r n+1 ) .
1 N N n=1 (y n -x n ) 2 = σ 2 , ( 5 
1 ) = m -2s, a(ω 2 ) = m + 2s, where m = 1 N N n=1 y n , s = 1 N N n=1 (y n -m) 2 .
Similarly, we make vary σ and parameter q is chosen such that (5.49) is satised. We consider three cases:

The case of low market noise: σ = 0.0077. In this case, we nd q = 3 • 10 -3 for both LTM and LSTM. The two models produced nearly the same trend estimates.

The case of moderate market noise: σ = 0.0087. In this case, we nd q = 10 -3 for both LTM and LSTM. This case is illustrated in Figure 5.9;

The case of high market noise: σ = 0.0091. In this case, we nd q = 10 -4 for the LTM and q = 6 • 10 -5 for the LSTM. This case is illustrated in Figure 5.10.

Let us discuss these results.

We see that in the case of low market noise, LTM and LSTM produce nearly the same trend.

However, this trend may be of a limited use, since it changes direction too frequently and appears to be aected by some kind of noise. Thus, the low market noise assumption may be erroneous. SPX trend by LSTM, q = 0.00100, < = 0.0087. Regarding the case of moderate market noise, both models have produced trends in which one can identify distinct moves (upwards and downwards). However, these moves seem to be better presented by the switching model. An increased exibility of the LSTM compared to that of the LTM possibly allowed to nd a better suited trend. We also note that the moderate market noise assumption seems to be appropriate for trend estimation.

Finally, under the assumption of high market noise, the LTM trend degenerates to a constant function while the LSTM trend seems to overt the working sample. Indeed, this value of market noise is close to the standard deviation of the sample. Thus, this kind of behavior was expected from the LTM. However, we see that using a switching model may involve risks of overtting and therefore additional control measures should be considered.

In this study, we used a control parameter σ quantifying the market noise level. However, let us notice that a recent CGPMSM-based unsupervised smoothing technique [START_REF] Zheng | Parameter estimation in conditionally Gaussian pairwise Markov switching models and unsupervised smoothing[END_REF] may allow recovering the trend without considering the LSTM explicitly.

Bayesian ltering in non-linear non-Gaussian POMPs with hybrid state space

One can evaluate integrals in (5.54) exactly when function f n+1 : (x n , u n ) → x n+1 is linear in u n . Similarly, integrals in (5.55) can be evaluated exactly when h n : (y n , x n ) → R + is the Gaussian probability density of y n with constant variance and mean linear in x n . When both conditions are met, system (5.50) is known as linear Gaussian system, in which the Kalman lter allows computing the optimal ltering solution.

The Gaussian lters, which include e.g. the unscented and Gauss-Hermite Kalman lters, have demonstrated their suitability for a wide scope of application where the observation noise (5.50b) is additive and Gaussian.

The main drawbacks of the GF come from its fundamental approximation (5.51). Let us note the following:

If the observation noise is heavy-tailed or aected by large outliers, then approximation (5.51) may cause a divergence of the lter, since it lacks the high-order moments of Y n given X n -see, e.g., [START_REF] Roth | A Student's t lter for heavy tailed process and measurement noise[END_REF].

The GF would always yield P xy n|n-1 P yy n|n-1 -1

= 0 if the observation noise has an innite variance, unless the state posterior variance is innite too cf. (5.53). In this case, the GF never updates the measurement and therefore fails to extract any information from the observed data.

If the observation noise is multiplicative (for example, if h n (y n , x n ) is symmetric in y n and only the variance of Y n given X n depends on X n , as it is the case in the stochastic volatility models), then the GF always obtains P xy n+1|n = 0 cf. (5.55b). In this case, the GF does not extract any information from the observed data.

The recent CGF [Singer, 2015] has been designed to be able to take a specic form of the observation equation into account and overcome the outlined drawbacks of GF. The idea was to assume (5.52), which is a consequence of (5.51), without assuming (5.51) itself. In this sense, the CGF requires a strictly weaker assumption than the original GF. In the CGF, the ltering and one-step predicting densities are assumed Gaussian:

p n|n (x n ) = p (x n |y 1:n ) = N x n ; x n|n , Γ n|n ;

(5.57a) p n+1|n (x n+1 ) = p (x n+1 |y 1:n ) = N x n+1 ; x n+1|n , Γ n+1|n .

(5.57b)

It means that the CGF proceeds as if these densities were Gaussian, even if they are actually not.

The classic Bayesian equations allow deriving the CGF solution. The CGF computes x n+1|n+1 and Γ n+1|n+1 from x n|n , Γ n|n and y n+1 : Time update

x n+1|n = f n+1 (x n , u n+1 )p n|n (x n ) p (u n+1 ) dx n du n+1 ;

(5.58a) Γ n+1|n = f n+1 (x n , u n+1 )f n+1 (x n , u n+1 ) p n|n (x n ) p (u n+1 ) dx n du n+1x n+1|n x n+1|n .

(5.58b) Measurement update c n+1 = h n+1 (y n+1 ; x n+1 )p n+1|n (x n+1 ) dx n+1 ;

(5.59a)

x n+1|n+1 = x n+1 h n+1 (y n+1 , x n+1 )p n+1|n (x n+1 ) c n+1 dx n+1 ;

(5.59b)

Γ n+1|n+1 = x n+1 x n+1 h n+1 (y n+1 , x n+1 )p n+1|n (x n+1 ) c n+1 dx n+1x n+1|n+1 x n+1|n+1 .

(5.59c)

In general, one cannot compute integrals in (5.58) exactly unless f n+1 : (x n , u n ) → x n+1 is linear in u n . Similarly, one cannot compute integrals in (5.59) exactly unless the function h n : (y n , x n ) → R + is the Gaussian probability density of y n with constant variance and mean values are given in Table 5.6. However, these time values are supplied on an indicative basis only, since the processing time depends on the PC system conguration, processor type and settings, PF implementation and compilation details, software specications and so on.

The simulation study indicates that the accuracy of our method is improved compared to the SKF and is nearly optimal. Note that (5.68) is linear, so the switching versions of EKF, UKF and Quadrature Kalman Filter (QKF) would produce the same result as the classic SKF in this example. That is due to the same joint state-space Gaussian approximation (5.51) involved in these approaches. Fig. 5.13 suggests that the PF should use at least 500 particles to obtain satisfactory results. Regarding the computational load, our method used only an equivalent of 40

particles and thus realized a substantial speedup. Besides, the performance of the SCGHF was nearly optimal with only 3 integration nodes per dimension. A more extensive study, has shown that the autoregressive parameters and the Markov chain transition probabilities in (5.67) did not aect the performance of the SCGHF compared to the PF. As a general conclusion of this study, we observed that there is no notable dierence between the asymptotic solution of the PF and the output of the SCGHF.

An example of recovering a hidden trajectory by the SCGHF and the SKF is presented in 

Conclusion

In the rst section, we proposed an original algorithm for smoothing in stationary SLDSs, and, more generally, in CGPMSMs. The algorithm is based on two lters which run independently in the direct and reverse order. The outputs of these lters are combined by using the dynamics of the system. The algorithm is fast and appears as an interesting alternative to the particle smoother methods. Comparison with the results produced by the particle smoother show that the approximation error of our method is negligibly small.

In the second section, we introduced and tested a novel general deterministic method of ltering in switching systems. A simulation study conrmed that the new algorithm has an improved accuracy and robustness compared to the classic approach. Mean squared error measures of the proposed method are practically optimal, while its computational load is low when compared to the particle lter. The algorithm is applicable to a large class of switching models which involve regime changes, strong non-linearity and non-Gaussian distributions. Then the maximum of f with respect to A, B and R is given by: Let us rst prove that f R is concave. By the ane map invariance property of the concave functions, it is equivalent to proving that the real function h h (t) = f R (U + tV ) is concave in t for any U , V in R d ×(d+1) .

We have

h (t) = - W 2 (d log2π + log |R|) - 1 2 N n=1 π n tr R -1 (y n y n -2y n x n U + U x n x n U ) -t N n=1 π n tr R -1 (y n x n V -U x n x n V ) - t 2 2 N n=1 π n tr R -1 V x n x n V .
We see that h is a second order polynomial and thus h is concave if and only if

N n=1
π n tr R -1 V x n x n V ≥ 0.

Observe that we have:

N n=1 π n tr R -1 V x n x n V = N n=1 π n tr x n V R -1 V x n = N n=1 π n (V x n ) R -1 V x n .
Since R -1 ∈ S q ++ , for any n, (V x n ) R -1 V x n ≥ 0 and π n ≥ 0 so , and A 0 is a global maximum of f R .

N n=1 π n (V x n ) R -1 V x n ≥ 0,
Let us dene function g ∈ F S d ++ → R by:

g (R) = max A∈R d ×(d+1) f R A .
We have

g (R) = f (A 0 , B 0 , R) = - W 2 d log2π + log |R| + 1 W N n=1
π n tr R -1 y n -A 0 x n y n -A 0 x n . π n y n -A 0 x n y n -A 0 x n .

We then have

g (R) = - W 2 dlog2π + log |R| + tr R -1 R 0 .
Moreover,

g (R) = - W 2 d log2π -log R -1 + tr R -1 R 0 = - W 2 d log2π -Ψ d R -1 R 0 + log |R 0 | .
Since R 0 is independent from R, the optimization of g with respect to R is equivalent to maximizing Ψ d R -1 R 0 . Thus, we conclude from Lemma 2 that the unique maximum of g is R 0 . 

C.2 The EM algorithm for the CGOMSM

Here we suppose that we are given a training sample (x 1:N , y 1:N ). The object of this section is to present a derivation of the EM algorithm applied to estimate the CGOMSM parameters from (x 1:N , y 1:N ). We recall that the CGOMSM model of triplet (X 1:N , Y 1:N , R 1:

N ) in R d × R d × Ω is parameterized by θ, where θ = µ (θ) i , Γ (θ) 
i , p

(θ) ij , A (θ) ij , B (θ) ij , C (θ) ij , D (θ) ij , F (θ) ij , H (θ) ij , Π (θ) ij , Λ (q) ij |1 ≤ i, j ≤ K , (C.2)
and Ω = {1 : K}. Here, for simplicity, we use another parameterization of the CGOMSM, which is:

θ = p θ j|i , A (θ) ij , B (θ) ij , C (θ) ij , D (θ) ij , F (θ) ij , H (θ) ij , Π (θ) ij , Λ (q) 
ij |1 ≤ i, j ≤ K , The EM algorithm is an iterative method to nd parameter estimates of a statistical model, where the model depends on unobserved latent variables. The EM iteration alternates between performing an Expectation step of the EM algorithm (E-step), which creates a function for the expectation of the log-likelihood evaluated using the current estimate for the parameters, and an Maximization step of the EM algorithm (M-step), which computes parameters maximizing the expected log-likelihood found on the E-step.

Let q denote the iteration count of the EM algorithm. The parameter value at the q-th iteration is denoted by θ (q) , where we set for simplicity:

θ (q) = p (q) j|i , A (q) ij , B (q) ij , C (q) ij , D (q) ij , F (q) ij , H (q) ij , Π (q) ij , Λ (q) ij |1 ≤ i, j ≤ K ,
At the E-step, we compute Q θ, θ (q) = E θ (q) [logp θ (X 1:N , Y 1:N , R 1:N ) |X 1:N = x 1:N , Y 1:N = y 1:N ] .

In the case of the CGOMSM, it involves computing the posterior distribution of the hidden states R 1:N conditional on the input data (x 1:N , y 1:N ) and the current parameter value θ (q) . Specically, (2.48) computes ψ (q) n (i, j) = P θ (q) [R n = i, R n+1 = j|X 1:N = x 1:N , Y 1:N = y 1:N ] , in a CGOMSM, which appear when computing Q θ, θ (q) . At the M-step, the new parameter estimate θ (q+1) is computed as follows: θ (q+1) = argmax θ Q θ, θ (q) . We accomplish this step by using the formulas (2.43)-(2.44) from Chapter 2. The point of what follows is to clarify computing and maximization of Q θ, θ (q) . We have: Let us compute Q θ, θ (q) . An expression for log p (x 1:N , y 1:N , r 1:N ) is: Q 0 θ, θ (q) + Q 1 θ, θ (q) + Q 2 θ, θ (q) + Q 3 θ, θ (q) , where Q 0 θ, θ (q) = E θ (q) [logp θ (x 1 , y 1 , r 1 ) |X 1:N = x 1:N , Y 1:N = y 1:N ] ; 

Q 1 θ, θ (q) = N -1 n=1 E θ (q) [logp θ (r n+1 |r n )|X 1:N = x 1:N , Y 1:N = y 1:N ]; Q 2 θ, θ (q) = N -1 n=1 E θ (q) [logp θ (x n+1
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  d'estimation des paramètres des POMPs et les problèmes d'inférence bayésienne dans les POMPs, qui incluent le ltrage, le lissage et la prédiction. Nous présentons aussi les méthodes de Monte-Carlo séquentielles, qui sont des méthodes largement utilisées d'inférence bayésienne dans les POMPs. Nous notons H 1:N = (H 1 , . . . , H N ) une série temporelle des variables d'état à valeurs dans H = R d × Ω, avec Ω = {1 : K} ensemble discret ni. La série temporelle des variables du signal correspondant est notée Y 1:N et est à valeurs dans R d . Pour tout N dans N * , le couple (H 1:N , Y 1:N ) est un modèle de Markov partiellement observé (POMP) si sa distribution vérie:

) 1 ≤Figure 1 :

 11 Figure 1: Modèles de Markov partiellement observés usuels. A -→ B signie que le modèle B est un cas particulier de A. Les modèles dans lesquels les distributions exactes de ltrage et de lissage ne sont pas calculables en général sont représentés par des rectangles gris. Les modèles dans lesquels les distributions exactes de ltrage et de lissage sont calculables sont représentés par des rectangles verts. Les modèles dans lesquels uniquement les moments exacts de la distribution de ltrage et de lissage sont calculables sont représentés par des rectangles oranges.

  d'envisager une estimation des paramètres des POMPs par maximisation de la log-vraisemblance avec des méthodes numériques. L'estimateur du maximum de vraisemblance est déni par : θ = arg max θ log p θ (y 1:N ) .

  h 1:N , y 1:N ) dh 1:N p (h 1:N , y 1:N ) dh 1:N , sous réserve de l'existence de E [f (H n ) |y 1:N ], où dh 1:N dénote une mesure-hybride formée par les mesures de Dirac et Lebesgue. Un calcul approché des intégrales au dénominateur et au numérateur peut se faire grâce à des grilles d'intégration. Une grille d'intégration permet de dénir un sous-ensemble discret ni Λ ⊂ Ω × R d et une fonction de masse π (N ) ∈ F Λ N → R pour avoir :

  le chapitre 3, nous démontrons que les grilles markoviennes permettent d'évaluer (11) avec une complexité O N Card(Λ) 2 qui est linéaire en N . De plus, nous considérons des séquences des grilles markoviennes de type Λ N L , π (N ) L L∈N *

  L'algorithme MGSE est donné dans le cas le plus général, c'est-à-dire dans le cas des POMPs à états hybrides ; Le MGSE utilisé avec des grilles creuses (Sparse grids) permet d'estimer ecacement l'état de grande dimension. Résumé du chapitre 4 Le chapitre 4 est consacré à une étude de comparaison des performances des estimateurs optimaux d'états basés sur les sous-modèles des Pairwise Markov Model (PMM)s et Triplet Markov Model (TMM)s. Les PMMs sont vus comme une généralisation des HMMs. La contribution de l'auteur a consisté à conduire et rapporter des séries multiples d'expériences de comparaison des performances des estimateurs sur des données réelles et synthétiques. Rappelons qu'un HMM (R 1:N , Y 1:N ) a les propriétés suivantes : R 1:N est une chaîne de Markov ; les éléments de Y 1:N sont indépendants conditionnellement à R 1:N ; pour tout n dans {1 : N }, p (y n |r 1:N ) = p (y n |r n ). Dans un PMM, (R 1:N , Y 1:N ) est de Markov : p (r 1:N , y 1:N ) = p (r 1 , y 1 ) p (r 2 , y 2 |r 1 , y 1 ) . . . p (r N , y N |r N -1 , y N -1 ) .

  que la pdf de (R 1:N , Y 1:N ) dans un HMM est de la forme (14), car nous avons dans un HMM : p (r 1:N , y 1:N ) = p (r 1 ) p (y 1 |r 1 ) p (r 2 |r 1 ) p (y 2 |r 2 ) . . . p (r N |r N -1 ) p (y N |r N ) , (15) et la densité p (r n+1 , y n+1 |r n , y n ) peut être identiée à : p (r n+1 , y n+1 |r n , y n ) = p (r n+1 |r n , y n ) p (y n+1 |r n+1 , r n , y n ) .

  PMM est un HMM si et seulement si pour tout n dans {1 : N -1}, nous avons :p (r n+1 |r n , y n ) = p (r n+1 |r n ) ; (17a) p (y n+1 |r n+1 , r n , y n ) = p (y n+1 |r n+1 ) .

  17) sont en eet des hypothèses implicites qui sont admises lorsqu'un système est modélisé par un HMM. Les PMMs permettent de relâcher ces hypothèses supplémentaires. Nous considérons quatre sous-modèles des PMMs. Hidden Markov Model With Conditionally Independent Noise (HMM-IN) est le HMM classique. La densité de transition dans un HMM-IN est de la forme : p (r n+1 , y n+1 |r n , y n ) = p (r n+1 |r n ) p (y n+1 |r n+1 ) .

  With Conditionally Correlated Noise (HMM-CN) est un PMM où R 1:N est de Markov, les éléments de Y 1:N sont corrélés sachant R 1:N et qui n'est pas un HMM-IN (ce qui est schématisé dans la Figure 4.1). La densité de transition dans un HMM-CN est de la forme : p (r n+1 , y n+1 |r n , y n ) = p (r n+1 |r n ) p (y n+1 |r n+1 , y n ) .

  With Conditionally Independent Noise (PMM-IN) est un PMM où R 1:N n'est pas de Markov, les éléments de Y 1:N sont indépendants sachant R 1:N et qui n'est pas un HMM-IN. La densité de transition dans un PMM-IN est de la forme :

  With Conditionally Correlated Noise (PMM-CN) est un PMM où R 1:N n'est pas de Markov, les éléments de Y 1:N sont corrélés sachant R 1:N et qui n'est pas un HMM-IN, PMM-IN où HMM-CN. La densité de transition dans un PMM-CN est de la forme générale : p (r n+1 , y n+1 |r n , y n ) = p (r n+1 |r n , y n ) p (y n+1 |r n+1 , r n , y n ) .

  dépendance de ces sous-modèles de PMM sont présentés à la Figure 4.2. Dans ce chapitre, on cherche à quantier dans quelle mesure le fait de relâcher les deux hypothèses de (17) contribue à améliorer les performances de l'estimateur du Maximum Posterior Mode (MPM) du PMM en comparaison avec l'estimateur du MPM du HMM. Pour cela, on a déni les modèles HMM-CN et PMM-IN qui sont intermédiaires entre le HMM-IN et PMM-CN. Puis, l'auteur a proposé une technique d'approximation d'un PMM-CN par un HMM-IN, HMM-CN et PMM-IN en utilisant la méthode des moments. L'étude a consisté principalement à simuler une réalisation de PMM-CN et à restaurer les états cachés avec les estimateurs du MPM qui correspondent aux quatre sous-modèles dans le but de quantier les gains possibles liés à l'utilisation des PMMs. Nous avons considéré trois cas de distributions de Y 1:N sachant R 1:N : gaussienne, exponentielle et gamma. Dans tous ces cas, nous avons montré que les deux hypothèses (17) du HMM contribuent indépendamment à la dégradation de la qualité de restauration, ce qui a conrmé expérimentalement la préférence des PMMs aux HMMs. Une grande partie du chapitre est consacrée à une validation expérimentale sur des données réelles. Les HMMs et PMMs permettent d'étendre le modèle de Black-Scholes utilisé en modélisation nancière des rendements des actifs. Le modèle classique de Black-Scholes suppose que le logarithme du rendement d'un actif sur une durée xe a une distribution normale, c'est-à-dire que : Y n = µ + σU n , (22) où {Y n } 1≤n≤N sont les log-rendements sur une durée xe et {U n } 1≤n≤N des variables gaussiennes indépendantes identiquement distribuées. Les HMMs et PMMs permettent d'introduire un processus caché R 1:N à valeurs dans un ensemble discret ni Ω et supposer une dépendance de µ et σ des valeurs prises par les variables cachées et donc poser :

  Let R 1:N be a random sequence taking its values in Ω = {1 : K}, X 1:N and Y 1:N random sequences taking their values in R d and R d respectively, with d ∈ N * , d ∈ N * . R 1:N and X 1:N are hidden and Y 1:N is observed.
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 2 Figure 2.1 represents the dependency graph of CMSHLM.
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 21 Figure 2.1: Dependency graph of CMSHLM.

  p (x n:n+1 , y n:n+1 |r n:n+1 ) is of the form

Figure 2 . 2 :

 22 Figure 2.2: Dependency graph of CGOMSM.
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 23 Figure 2.3: Simulated log-volatility trajectory with an SV model (red, plain), simulated log-returns (black, dotted).

Figure 2 . 4 :

 24 Figure 2.4: Log-volatility estimates computed using K = 2 classes (blue, dotted), and K = 5 classes (green, dashed).

Figure 2 .

 2 6 shows an ASV trajectory, and its restoration with the LCGOMSMF for K = 2 and K = 5 classes.

  ρ and λ (µ = 0.5, β = 0.5, and σ 2 + φ 2 = 1), for φ = 0.8.
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 25 Figure 2.5: Simulated log-volatility trajectory with an ASV model (red, plain), simulated log-returns (black, dotted).

Figure 2 .

 2 Figure 2.6: Log-volatility estimates computed using K = 2 classes (blue, dotted), and K = 5 classes (green, dashed).

Figure 2 .

 2 Figure 2.7: Trajectories of the S&P log-returns (down) and log-volatility estimates (up). The x-axis represents the dates for both trajectories, the y-axis labelling on the left concerns the log-volatility values, and the y-axis labelling on the right is related to the log-return values.

  Figure 2.8: Distribution of Y 1 given x 1 = -2.82, for dierent values of the noise level c. The vertical red line locates the common mean of both distributions.

  k = 2, γ 1 = -5.0, γ 2 = -3.0, σ 2 = 0.1, φ = 0.5 and three dierent values of p 11 and p 22 .

( 3 . 5 )

 35 Denition 13. Quadrature rule induced by a grid. Let a ∈ N, Γ ∈ D, f in F Γ → R a and I = {Λ, π} be a Γ-grid. The quadrature rule for f induced by I is dened as < T I , f >, where T I is the grid measure corresponding to I. Specically, we have < T I , f >= γ∈Λ f (γ)π(γ).

  Strongly arbitrarily precise sequence of Γ-grids.

  is arbitrarily precise with respect to g Proof. It follows from Corollary 11.1 and Proposition 7.

  *be sequences of R-grids corresponding to the Mpoint Gaussian quadrature rules with respect to g 1 , . . . , g a respectively, then the sequence of R a -grids (I M ) M ∈N * dened by

  (3.35) at n = 1 and n = N , ∀γ ∈ Λ, α 1 (γ) = β N (γ) = 1.

  .44) since p Y 1:N (y 1:N ) = µ y 1:N (h 1:N )dh 1:N and we suppose that p Y 1:N (y 1:N ) = 0. Let us now

Figure 3 .

 3 Figure 3.1 illustrates an example of the realization of the multivariate stochastic volatility process and posterior estimation of the volatilities and correlations which we obtain by using the MGF. The parameters of the multivariate stochastic volatility model are in

Figure 3 . 1 :

 31 Figure 3.1: A realization of the multivariate stochastic volatility process {(3.53), (3.54)}. In gures (a), (b) and (d), the black line plots the ltering estimates of the volatilities and correlations.

  : R 1:N is a Markov chain; (P2): Y 1:N are independent conditional on R 1:N ; (P3): For each n in {1 : N }, p (y n |r 1:N ) = p (y n |r n ).

  n+1 |r n+1 , r n , y n ) = p (y n+1 |r n+1 ) .

R 1 :

 1 N is a Markov chain; for each n in {1 : N -1}, p (y n+1 |r n+1 , r n ) = p (y n+1 |r n+1 ); for each n in {1 : N }, p (y n |r 1:N ) = p (y n |r n ). Thus, in a stationary time-reversible PMM (R 1:N , Y 1:N ), R 1:N is Markovian if and only if p (y 2 |r 1 , r 2 ) = p (y 2 |r 2 ) , (4.7) which is equivalent to p (y 1 |r 1 , r 2 ) = p (y 1 |r 1 ) .

  the following sub-models of the PMM. The Hidden Markov Model With Conditionally Independent Noise (HMM-IN), which is the classic HMM. The related transition kernel p (r n+1 , y n+1 |r n , y n ) is p (r 2 , y 2 |r 1 , y 1 ) = p (r 2 |r 1 ) p (y 2 |r 2 ) (4.9) and p (r 1 , y 1 , r 2 , y 2 ) veries p (r 1 , y 1 , r 2 , y 2 ) = p (r 1 , r 2 ) p (y 1 |r 1 ) p (y 2 |r 2 ) .

  Model With Conditionally Correlated Noise (HMM-CN), where R 1:N is Markovian, observation variables Y 1:N are correlated given R 1:N , and which is not an HMM-IN (see Figure 4.1). The related transition kernel is p (r 2 , y 2 |r 1 , y 1 ) = p (r 2 |r 1 ) p (y 2 |r 2 , y 1 ) .

  Model With Conditionally Independent Noise (PMM-IN),where R 1:N is not Markovian, observation variables Y 1:N are independent given R 1:N , and which is not an HMM-IN. In PMM-IN, we have p (y 2 |r 1 , r 2 , y 1 ) = p (y 2 |r 1 , r 2 ) and p (r 2 , y 2 |r 1 , y 1 ) = p (r 2 |r 1 , y 1 ) p (y 2 |r 2 , r 1 ) ;(4.12) p (r 1 , y 1 , r 2 , y 2 ) = p (r 1 , r 2 ) p (y 1 |r 1 , r 2 ) p (y 2 |r 1 , r 2 ) .

  Model With Conditionally Correlated Noise (PMM-CN), where R 1:N is not Markovian and observation variables Y 1:N are correlated given R 1:N , which is neither HMM-IN, PMM-IN or HMM-CN (see Figure 4.1). The related transition kernel is of the general form p (

Figure 4 . 1 :Figure 4 . 2 :

 4142 Figure 4.1: Venn diagram for various sub-models of PMM. The area contained by all of the three circles represents PMM. PMM-CN is represented by the rock blue color, PMM-IN and HMM-CN is represented by rose and yellow respectively. The orange color represents HMM-IN.

  ] would map a separate property. For example, the non-stationary hidden semi-Markov models can be seen as a TMM (R 1:N , U stands for the non-stationarity[START_REF] Lapuyade-Lahorgue | Unsupervised segmentation of hidden semi-Markov non-stationary chains[END_REF].

  p (r n = ω |y 1:N ) is computed by:

  and it is possible to apply the PMM version of the forward-backward algorithm to compute p (r n , u n |y 1:N ) for each (r n , u n ) in Ω × Λ. Finally, one has p (r n |y 1:N ) = un∈Λ p (r n , u n |y 1:N ) .

  Mode (MPM) estimator is dened as ∀n ∈ 1 : N, r n = arg max ω∈Ω p (r n = ω |y 1:N ) .

( 4

 4 .20)We see that the MPM estimator is computable in HMMs and PMMs as well as in TMMs, despite the fact that (R 1:N , Y 1:N ) can be non Markovian in TMMs.

4. 3

 3 Performance comparison across PMM estimators Here we present dierent experiments comparing PMM-CN, PMM-IN, HMM-CN and HMM-IN from Section 4.1, in the case of Gaussian and gamma observation distributions.

1 ( 2 (

 12 experimental setting consists in sampling (r 1 , y 1 , . . . , r N , y N ) from a given PMM-CN, then estimating r 1:N from y 1:N by four MPM estimators corresponding to the original PMM-CN and its approximations which are PMM-IN, HMM-CN and HMM-IN. We dene the related parameters as follows.In a Gaussian HMM-IN, one has p (y 1 |r 1 , r 2 ) = p (y 1 |r 1 ) and p (y 2 |r 1 , r 2 , y 1 ) = p (y 2 |r 2 ), thus p (y 1 |r 1 ) = N y 1 ; µ (HMM-IN) 2 |r 2 ) = N y 2 ; µ(HMM-IN) 

  PMM-CN, we dene the parameters of the corresponding HMM-IN by adapting the general principle of moment-matching as follows:

Figure 4 . 3 :Figure 4 . 4 :

 4344 Figure 4.3: Relative error rate surface plot for Gaussian HMM-IN (4.32a) in function of ( , ρ). Sample size is 1000 and the results are averaged over 100 experiments.

  k, λ) = λ exp (-λy) 1l y>0 (4.35) is a special case of the gamma distribution, corresponding to k = 1 and θ = 1 λ . For large values of k, γ(k, θ) is well approximated by Gaussian distribution N(kθ, kθ 2 ); if k is close

  n+1 ) depend only on r n+1 and exponential HMMs verify additionally k = 1. Moreover, any gamma PMM can be approximated by gamma HMM-IN, gamma HMM-CN and gamma PMM-IN by using the corresponding formulas (4.27)-(4.28), (4.30) and (4.31).

ρ

  and = 0.125, k = 1. Sample size is 1000 and the results are averaged over 100 experiments.

  considered previously three extensions of the classic HMM-IN. Here we propose two other ones, which are based on TMMs: the Simplied Triplet Markov Model (STMM) and the Triplet Markov Model With Independent Noise (TMM-IN). They are dened as follows.

Figure 4 . 5 :

 45 Figure 4.5: Relative error rate (4.32a) of gamma HMM-IN with respect to gamma PMM-CN, for = 0.125 and ρ = 0, in function of the shape parameter k. Sample size is 1000 and the results are averaged over 100 experiments.
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 46 Figure 4.6: Dependency graphs of STMM and TMM-IN.

  and is a classic hidden Markov model where R 1:N is Markovian, observation variables Y 1:N are independent given R 1:N and the observation density is represented by a mixture of Gaussian distributions. We denote it as mixture-HMM-IN. The two others are obtained from HMM-IN and mixture-HMM-IN by considering Markovianity of order 2, cf. e.g. [Vidyasagar, 2014]. They are denoted by HMM-IN-2 and mixture-HMM-IN-2 respectively. We set Ω = {ω 1 , ω 2 } and Λ = {λ 1 , λ 2 }. The mixture-HMM-IN is a TMM-IN sub-model in which R 1:N and U 1:N are independent and variables U 1:N are independent too. The corresponding distribution of

  -IN-2, one has p (r 1:N , y 1:N

Figure 4 . 7 :

 47 Figure 4.7: Misclassication rates of STMM and HMM-IN for various values of σ in (4.43c). Sample size is 1000 and the results are averaged over 100 experiments.

  1:N , Y 1:N ) from TMM-IN and estimating R 1:N by HMM-IN, HMM-IN-2, mixture-HMM-IN, mixture-HMM-IN-2 and TMM-IN estimators.
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 4849 Figure 4.8: Performances comparison between the TMM-IN estimator and its approximations given by the classic models in Case 2, for various ∆ in (4.49). Sample size is 1000 and the results are averaged over 100 experiments.

Figure 4 .

 4 Figure 4.10 presents dependency graphs of the HMM and PMM.

Figure 4 .

 4 Figure 4.10: Dependency graphs of the HMM (a) and PMM (b).

  n+1 |r n , y n ) = p (r n+1 |r n ) .

  two subclasses of PMMs where only one of the constraints (4.51a)-(4.51b) is relaxed. Denition 29. Pairwise Markov models-F1 and pairwise Markov models-F2 PMM (R 1:N ,Y 1:N ) is called PMM-F1 (PMM-F2) if it veries, for each n in {1 : N -1},

( 4 .

 4 51b) (4.51a) respectively.

Figure 4 .

 4 Figure 4.11 presents dependency graphs of PMM-F1 and PMM-F2. In practice, one should specify the families of distributions to which p (y n |r n ), p (r n+1 |r n , y n ) and p (y n+1 |r n , r n+1 , y n ) belong to.

Figure 4 .

 4 Figure 4.11: Dependency graphs of PMM-F1 (a) and PMM-F2 (b).

Finally

  , we combine (4.53), (4.55) and (4.56) to dene a pairwise Markov modeling of Y 1:N :

Figure 4 .

 4 14 displays the returns produced per each model in function of time with λ = 0. λ = 10 -3 λ = 10 -2 λ = 1 λ = 10 2 λ = 10

Figure 4 .

 4 Figure 4.12: Values R * 1 (λ) = R 1 (θ) in function of λ, where θ minimizes (4.65).

Figure 4 .

 4 Figure 4.14: Absolute returns (4.67) from 12/14/1993 generated by PMM-based trading systems on NYSE:CLF historical data. PMM models are estimated on the data from 01/02/1990 to 12/13/1993 by minimizing (4.65) with λ = 0. Four charts (from top to bottom) relate to the four models. The last chart is the absolute return of the asset (4.66).
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 51 Figure 5.1: Dependency graph of classic SLDSs (5.1).
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 52 Figure 5.2: Dependency graph of SCGPMSMs (5.2).
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 55 These dynamics dene the SCGPMSM, sincep (r 1:N , z 1:N ) = p (r 1:N ) p (z 1:N |r 1:N ) ; p (z 1:N |r 1:N ) = p (z 1 |r 1:N ) p (z 2 |r 1:N , z 1 ) . . . p (z N |r 1:N , z N -1 ) = p (z 1 |r 1 ) p (z 2 |r 1 , r 2 , z 1 ) . . . p (z N |r N -1 , r N , z N -1 ) .
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 54 Figure 5.4: Evaluation conditional distribution in (5.22).

Figure 5 .

 5 Figure 5.6: Bayesian-assimilation-based smoothed inference of the continuous state.

  :N are zero-mean unit-variance Gaussian white noise in R. The terms involved in this model have the following meaning.

Figure 5 . 7 :Figure 5 . 8 :

 5758 Figure 5.7: Example of estimating a hidden trajectory in setting #1 from Table 5.1.

Figure 5 .

 5 Figure 5.9: S&P 500 index (SPX) trend estimates by LTM (5.42) and LSTM (5.43) assuming σ = 0.0087.

Fig. 5 .

 5 Fig. 5.14. Fig. 5.15 is related to Fig.5.14 and presents a comparative density plot with proles of p (x n |y 1:n ) estimated by the SKF, SCGHF and PF at n = 580. Indeed, the PF does not provide any analytic expression of the underlying distribution approximating p (x n |y 1:n ), as opposed to the SKF and SCGHF. Thus, we used a kernel smoothing technique to estimate the approximating distribution of the PF from the locations of the particles.

Figure 5 .

 5 Figure 5.12: The RMSE of the PF in the MSSV model compared in function of number of particles M , and minimum numbers of particles that would result in a nearly optimal solution which are M min = 100 for Test 1, M min = 120 for Test 2, M min = 200 for Test 3 and M min = 50 for Test 4.

Figure 5 .

 5 Figure 5.13: The RMSE of the PF in the MSSV model compared to that of the SKF and SCGHF in function of the number of particles. MSSV parameters are those from Test 3 in Table 5.3.

Figure 5 .

 5 Figure 5.14: Example of a state estimation in the MSSV model with the SCGHF and SKF. MSSV parameters are those from Test 3 in Table 5.3. The ground truth trajectory switches at n = 575.

Figure 5 .

 5 Figure 5.15: Comparative plot with proles of p(x n |y 1:n ) for n = 580 estimated by the SKF, SCGHF and PF, related to the trajectory from Fig. 5.14.

  y n -Ax n -B) R -1 (y n -Ax n -B), and N n=1 π n (y n -Ax n -B) R -1 (y n -Ax n -B) = N n=1 π n tr (y n -Ax n -B) R -1 (y n -Ax n -B) = N n=1 π n tr R -1 (y n -Ax n -B) (y n -Ax n -B) .

  y n -Ax n -B) R -1 (y n -Ax n -B) = N n=1 π n tr R -1 y n -A x n y n -A x n . R -1 y n -A x n y n -A x n .Recall that we can solve the optimization problem f (A, B, R) → max by considering the double optimization:max A∈R d ×d ,B∈R d ,R∈S d ++ f (A, B, R) = max R∈S d ++ max A∈R d ×(d+1) f R A , where f R A ∈ F R d ×(d+1) → R is dened by f R A = f (A, B, R).

  therefore f R is concave and we can nd its global maximum by solving ∂fR ∂ A = 0. The dierentiation of f R with respect to A yields: n -A x n x n . Since R ∈ S q ++ , ∂f R ∂ A A 0 = 0 is equivalent to N n=1 π n y n -A 0 x n x n = 0, which, in turn, is equivalent to N n=1π n y n x n = A 0

  R -1 y n -A 0 x n y n -A 0 x n = tr R -1 1 W N n=1 π n y n -A 0 x n y n -A 0 x n .

  Finally, R 0 = argmax R∈S d ++ max A∈R d ×d ,B∈R d f R (A, B) and A 0 B 0 = argmax A∈R d ×d ,B∈R d f R0 (A,B), which allows to accomplish the proof. n -A 0 x n y n -A 0 x n

  C.3) parameterizes only the transitions p (x n+1 , y n+1 , r n+1 | x n , y n , r n ) for n ∈ {1 : N -1} and is estimated by using the EM algorithm. Once (C.3) is estimated, (C.2) is chosen consistently with (C.3) knowing the fact that (X 1:N , Y 1:N , R 1:N ) is stationary.

p

  (x 1:N , y 1:N , r 1:N ) = p (x 1 , y 1 , r 1 )N -1 n=1 p (x n+1 , y n+1 , r n+1 | x n , y n , r n ), from the Markovianity of (X 1:N , Y 1:N , R 1:N ) . Next, p (x n+1 , y n+1 , r n+1 | x n , y n , r n ) = p (r n+1 | r n ) p (x n+1 | x n , y n , r n , y n+1 , r n+1 ) p (y n+1 | y n , r n , r n+1 ) , in a CGOMSM, with p (x n+1 | x n , y n , r n = i, y n+1 , r n+1 = j) =N x n+1 ; A ij x n + B ij y n + C ij y n+1 + F ij , Π ij (Π ij ) ; p (y n+1 | y n , r n = i, , r n+1 = j) = N y n+1 ; D ij y n + H ij , Λ ij (Λ ij ) .

  logp (x 1:N , y 1:N , r 1:N ) = logp (x 1 , y 1 , r 1 ) + N -1 n=1 logp(x n+1 , y n+1 , r n+1 |x n , y n , r n ) = logp (x 1 , y 1 , r 1 ) + n+1 |x n , y n , r n , y n+1 , r n+1 ) + N -1 n=1 logp(y n+1 |y n , r n , r n+1 ) .

  We haveQ θ, θ (q) = E θ (q) [logp θ (x 1 , y 1 , r 1 ) |X 1:N = x 1:N , Y 1:N = y 1:N ] + N -1 n=1 E θ (q) [logp θ (r n+1 |r n )|X 1:N = x 1:N , Y 1:N = y 1:N ] + N -1 n=1 E θ (q) [logp θ (x n+1 |x n , y n , r n , y n+1 , r n+1 )|X 1:N = x 1:N , Y 1:N = y 1:N ]+ N -1 n=1 E θ (q) [logp θ (y n+1 |y n , r n , r n+1 )|X 1:N = x 1:N , Y 1:N = y 1:N ] =

  |x n , y n , r n , y n+1 , r n+1 )|X 1:N = x 1:N , Y 1:N = y 1:N ] ; Q 3 θ, θ (q) = N -1 n=1 E θ (q) [logp θ (y n+1 |y n , r n , r n+1 )|X 1:N = x 1:N , Y 1:N = y 1:N ].

  Le modèle de Markov caché, connu comme Hidden Markov Model (HMM), est un modèle mathématique omniprésent dans le traitement statistique des données. Ce modèle se réfère à une analyse basée sur les concepts de signal et d'état. Le signal est l'objet principal de la modélisation et représente un processus stochastique dont une réalisation est visible à l'analyste. Les exemples typiques des signaux sont l'évolution d'un indice boursier, du PIB ou du taux d'intérêt. L'état est un processus stochastique auxiliaire qui aide à caractériser l'évolution du signal et qui n'est pas directement observable. Les exemples typiques d'états comprennent la tendance et la volatilité. Par dénition, l'état est de Markov dans les HMMs.

	CGPMSM	A non-bold lowercase non-italic symbol refers to a realization of a Conditionally Gaussian Pairwise Markov Switching Model
	CMSHLM	scalar random variable
	X 1:N	
	Introduction générale
	X	A non-bold uppercase non-italic symbol refers to a scalar random
		variable
	z, f	

A non-bold lowercase italic symbol refers to a scalar variable or to a scalar-valued function x Les HMMs ont été généralisés aux modèles semi-Markoviens cachés, modèles de Markov couples, modèles de Markov triplets et modèles de Markov à sauts. Ces modèles ont un aspect en commun. Nous justions que dans tous ces modèles, le processus couple étatsignal est de Markov, c'est pourquoi nous disons que ces modèles sont des cas particuliers du modèle de Markov partiellement observé, connus comme le Partially Observable Markov Process (POMP). En eet, le processus état-signal est de Markov et la partie qui correspond à l'état n'est pas observable.

  Ainsi, pour tout n dans {1 : N }, la distribution de ltrage p (h n |y 1:n ) est approximée par :

				(m) n+1 suivant la distribution p h n+1 h	(m) n , y n si n > 0,
	sinon tirer h	(m) 1	suivant p (h 1 );
				(m) n+1 = p y n+1 h (m) n+1 , h (m)
	proportionnelles à {η	(m) n+1 } 1≤m≤M ;	(m) n+1 } 1≤m≤M avec les probabilités

1. Pour m dans {1 : M }, tirer h 2. Pour m dans {1 : M }, calculer η n , y n ; 3. Obtenir {h (m) n+1 } 1≤m≤M en tirant M particules de { h

  2 , p ij (x 1 , y 1 , x 2 , y 2 ) est une distribution gaussienne qui vérie p ij (y 2 |x 1 , y 1 ) = p ij (y 2 |y 1 ) . ) arbitraire par la distribution marginale (10) de CGOMSM. En eet, la distribution d'un processus de Markov stationnaire (X 1:N , Y 1:N ) est donnée par p (x 1 , y 1 , x 2 , y 2 ), et nous voyons que le CGOMSM permet de représenter p (x 1 , y 1 , x 2 , y 2 ) comme un mélange de gaussiennes contraintes par p ij (y 2 |x 1 , y 1 ) = p ij (y 2 |y 1 ). Or, il est connu qu'un mélange de gaussiennes est très exible et permet d'approcher d'aussi prêt qu'on le souhaite les

L'idée est alors d'approcher un processus de Markov stationnaire (X 1:N , Y 1:N distributions susamment régulières. Cela a permis de concevoir le Learned Conditionally Gaussian Observed Markov Switching Model Filter (LCGOMSMF)

  Nous appelons cette méthode d'estimation de E [f (H n ) |y 1:N ] Markovian Grid-Based State Estimator (MGSE). Le MGSE appliqué au calcul approché de E [H N |y 1:N ] est appelé Markovian Grid-Based Filter (MGF). Le MGSE appliqué au calcul approché de E [H n |y 1:N ] pour n < N est appelé Markovian Grid-Based Smoother (MGS).

  la densité p (x n+1 , y n+1 |y 1:n ) est gaussienne :∀n ∈ N, p (x n+1 , y n+1 |y 1:n ) = N x n+1

	y n+1	;	x n+1|n y n+1|n	,	P xx n+1|n P xy n+1|n P yx n+1|n n+1|n P yy	,	(28)

d et les éléments de Y 1:N dans R d indépendantes conditionnellement à X 1:N . Les éléments de U 1:N sont des variables gaussiennes centrées réduites indépendantes dans R q .

Le principe du GF est implémenté dans l'Extended Kalman Filter (EKF), l'Unscented Kalman Filter (UKF) et le Gauss-Hermite Filter (GHF). L'idée du GF consiste à supposer que pour tout n,

  Si la distribution de Y n sachant X n est de variance innie, ou si les variables Y n et X n sont décorrélées mais pas indépendantes, alors nous avons P xy n|n-1 P yy

	-1
	n|n-1

Table

  

  We outline the general Bayesian state estimation procedure which is used in the Bayesian ltering, smoothing and forecasting. We also present the sequential Monte-Carlo methods, which are widely used in the context of POMPs. In this chapter and for the rest of the

	Chapter 1
	Introduction
	This chapter is a general presentation of the Partially Observable Markov Process (POMP).

: Correspondance entre les diérentes publications de l'auteur et des sections du document. report, we denote by H 1:N = H 1 , . . . , H N a time series, where for each n in {1 : N }, H n is a state vector and takes values in H = R d × Ω, where Ω = {1 : K} is a nite discrete set. The corresponding observed time series is denoted by Y 1:N and each Y n takes values in R d . 1.1 Partially observed Markov process Here we present the POMPs and their categorization. Denition 1. Partially observed Markov process (POMP) Let N be in N * , the pair (H 1:N , Y 1:N ) is a Partially observed Markov process (POMP) if:

  Thus, for each n in {1 : N }, the ltering distribution p (h n |y 1:n ) is approximated by

	p (h n |y 1:n ) ≈	1 M	M m=1	δ h n -h (m) n	,
	where δ denotes the Dirac distribution.				
	1.4.2 Particle smoothing				
	A Particle Smoother (PS) is a sequential Monte-Carlo method to access the smoothing
	distribution p (h n |y 1:N ) in a POMP. It approximates, for each n in {1 : N }, the smoothing distribution by
					n , y n ;
	3. Sample {h (m) n+1 } 1≤m≤M by resampling { h (m) n+1 } 1≤m≤M with probabilities proportional to {η (m) n+1 } 1≤m≤M ;

  n+1 |x n , r n:n+1 , y n ) = p (y n+1 |r n:n+1 , y n ) .

	r n+1 )	;	(2.5)
	p (x n:n+1 , y n:n+1 |r n:n+1 ) is such that		
	p (y (2.6)
	Proposition 1. A CGOMSM is a CMSHLM with F n+1 (R n:n+1 , Y n:n+1 ),	
	G n+1 (R n:n+1 , Y n:n+1 ) and T n+1 (R n:n+1 , Y n:n+1 ) given by (2.15).	
	Proof. (X 1:N , R 1:N , Y 1:N ) is Markovian in CGOMSM, thus (2.1a) is veried. According
	to (2.3) -(2.5), we have p (r n+1 |x n , r n , y n ) = p (r n+1 |r n ). We then use (2.6) to prove that a CGOMSM has property (2.1b) of the CMSHLM.
	To nd out the corresponding F n+1 , G n+1 and T n+1 in (2.1c), we set	

  , y n |r n , r n+1 ) = p (x n , y n |r n ) , and thus p (r n+1 |x n , r n , y n ) = p (r n+1 |r n ). n+1 |r n , y n ) = p (r n+1 |r n ),what removes the line between Y n and R n+1 .

	According to (2.3) -(2.5), we may state that for all n in {1 : N },
		p (x n This ensures that in CGOMSM seen as a
	subcase of CMSHLM, R 1:N is a Markov chain. Figure 2.2 represents the dependency
	graph of CGOMSM.	In contrast with the dependency graph of CMSHLM, we have
	p (r Proposition 2. A CGOMSM can be represented as

  1:N , Y 1:N ) is a Hidden Markov Model With Conditionally Correlated Noise (HMM-CN) with discrete state space. Thus,p (r n+1 , y n+1 |r n , y n ) = p (r n+1 |r n ) p (y n+1 |r n:n+1 , y n ) . (x n |r n:n+1 , y n:n+1 ) = p (x n |r n , y n ) , Since the distribution p (x n+1 |x n , r n:n+1 , y n:n+1 ) is Gaussian, X n+1 is Gaussian conditional on the pair (R n , R n+1) and on a linear combination of X n , Y n and Y n+1 . A similar reasoning holds for p (y n+1 |y n , r n:n+1 ) and summarizing, we have (2.16). Let us set M X rn = E [X n |r n ] and M Y rn = E [Y n |r n ].

			(2.17)
	Second, (2.6) is equivalent to	
			(2.18)
			It follows from (2.11) that
	X n+1 Y n+1	is normally distributed given X n Y n	and R n:n+1 . From (2.11), we
	nd that the conditional mean of X n+1 Y n+1 is	

p

  Filtering: when a new measurement y n+1 is received, compute p (r n+1 |y 1:n+1 ), E [X n+1 |r n+1 , y 1:n+1 ] and E X n+1 X n+1 |r n+1 , y 1:n+1 by using (2.31),(2.32), then E [X n+1 |y 1:n+1 ] and E X n+1 X n+1 |y 1:n+1 are given by (2.37),(2.38).

, T is a model transition kernel and W 1 , . . . , W N are independent variables; 2. Estimate CGOMSM parameters from (x 1:N , y 1:N ) by Algorithm 1;

3.

The LCGOMSMS is dened in the same way and uses (2.39),

(2.40) 

to compute E [X n+1 |y 1:N ] and E X n+1 X n+1 |y 1:N .

For an estimated scalar signal x 1:N obtained from y 1:N , the Mean Squared Error (MSE) is dened by MSE

Table 2 .

 2 1: Average MSE results for dierent SV models dened by φ and σ

	1	0.99	0.0199	0.41	0.27	0.20	0.19	0.18	0.21
	2	0.90	0.1900	0.55	0.49	0.47	0.46	0.46	0.50
	3	0.80	0.3600	0.63	0.59	0.58	0.57	0.57	0.60
	4	0.50	0.7500	0.72	0.71	0.70	0.70	0.70	0.72

Table 2

 2 

	.3 contains

This table is provided on an indicative basis only, since the processing time depends on the PC system conguration, processor type and settings, PF implementation and compilation details, software specications and so on.

Table 2 .

 2 2: Average MSE results for dierent ASV models dened by ρ and λ (µ = 0.5, β = 0.5, and σ 2 + φ 2 = 1), for φ = 0.5.

	Measure type	LCGOMSMF	PF
	Filtering time (s.)	0.003	0.004	0.010	0.20
	EM time (s.)	8.05	10.70	19.88	N/A

K = 2 K = 3 K = 5

Table 2 .

 2 3: Average computation time for the LCGOMSMF and PF.

	Cases	ρ	λ 2	LCGOMSMF	PF

Table 2 .

 2 4: Average MSE results for dierent ASV models dened by

	1	-0.9	0.19	0.22	0.21	0.19	0.18
	2	-0.8	0.36	0.33	0.31	0.29	0.29
	3	-0.5	0.75	0.52	0.49	0.48	0.47
	4	-0.3	0.91	0.59	0.55	0.54	0.54
	5	0.0	1.00	0.63	0.59	0.58	0.57

Table 2 .

 2 

5:

The parameters of the ASV model for the stock market data. is low, and vice versa. Moreover, we calculated the mean squared distance between the LCGOMSMF volatility estimates and those of the PF, and we nd that this distance is negligible compared to the variance of the log-volatility process. Furthermore, when the number K of classes in the LCGOMSMF increases, this distance decreases as shown in Table 2.6.

Table 2

 2 

.6: Mean square distances between the LCGOMSMF volatility estimates and those from the PF, with dierent number of classes. Here, V ar[X n ] = 0.6145.

Table 2 .

 2 7.The dimensions of the latent variables and the observable ones are a = b = 1, the training sample size is N = 20000, and Q = 100 is the number of EM iterations. For

					K				
		φ	c	2	3	5	7	PS	PF
	1	0.95	0.005	0.38	0.32	0.31	0.29	0.29	0.41
	2	0.95	0.01	0.54	0.43	0.39	0.38	0.38	0.50
	3	0.99	0.005	0.40	0.21	0.16	0.16	0.16	0.22
	4	0.99	0.01	0.42	0.37	0.31	0.24	0.23	0.28

Table 2 .

 2 7: The RMSE of smoothing in model(2.54) with µ = -2.82, σ 0 = 0.17 and four dierent values of lag-one autocorrelation φ and noise level c coecients. The RMSE values for asymptotically optimal PF and PS are present as a reference.

Table 2

 2 

					3	5	7	PS
	1	-0.90	0.19	0.23	0.21	0.20	0.20	0.19
	2	-0.80	0.36	0.36	0.34	0.32	0.32	0.32
	3	-0.50	0.75	0.57	0.55	0.55	0.55	0.54
	4	-0.30	0.91	0.65	0.63	0.62	0.62	0.62
	5	-0.00	1.00	0.70	0.67	0.66	0.66	0.66

.8: The MSE of smoothing in the ASV model with µ = 0.5, β = 0.5, φ = 0.5 and ve dierent values of λ 2 and ρ such that λ 2 + ρ 2 = 1 and σ 2 + φ 2 = 1 for a unitary unconditional variance of X n . 2.4.6 Smoothing in Markov-switching stochastic volatility model Let N in N * , the Markov Switching Stochastic Volatility (MSSV) model

  .59) where 1l A (.) is the indicator function of a set A; S 1:N is a stationary discrete Markov chain with k states; for all n in {1 : N -1}, p (s n+1 |x 1;n , y 1;n , s 1:n

Table 2 .

 2 9 shows its results for some MSSV parameters. We use the PS presented in Section1.4.2. 

					K			
		p 11	p 22	2	3	5	7	PS
	1	0.99	0.985	0.02	0.02	0.02	0.02	0.02
	2	0.85	0.25	0.71	0.38	0.38	0.38	0.38
	3	0.5	0.5	0.45	0.42	0 42	0.42	0.42

Table 2

 2 

.9: MSE of smoothing in the MSSV model with

  π} is called a Γ-grid. {γ i } 1≤i≤M are called grid nodes and {π(γ i )} 1≤i≤M are called grid weights.

  Corollary 9.1. Let a ∈ N, Ω be a nite discrete set, Γ = Ω × R a , µ in U(Γ), (I L ) L∈N * be a sequence of Γ-grids. If (I L ) L∈N * is arbitrarily precise with respect to µ, then (I L ) L∈N * is consistent with µ.Proof. (I L ) L∈N * is arbitrarily precise with respect to µ, thus there exist F in N * , h 1 , . . . , h F in A Γ → R , µ 1 , . . . , µ F ∈ U(Γ) and F sequences of Γ-grids I(1) strongly arbitrarily precise with respect to µ 1 , . . . , µ F respectively such that µ =

		L	(F ) L L∈N * , . . . , I	L∈N *
			F
				µ i h i
			i=1
	and for each L in N * , I L =	F i=1	

  a 1 + a 2 ] γa 2

	(3.23)

with (β 1 , . . . , β a 1 ) in N a 1 |β 1 +. . .+β a 1 ≤ t and (γ 1 , . . . , γ aa ) in N a 2 |γ 1 +. . .+γ a 2 ≤ t . Therefore, we have

  .26) which proves(3.21). Corollary 11.1. Let Γ 1 , Γ 2 ∈ D, µ ∈ U(Γ 1 ), ν ∈ U(Γ 2 ), I L L∈N * and K LL∈N * be two sequences of Γ 1 -grids and Γ 2 -grids arbitrarily precise with respect to µ and ν respectively. Then I L ⊗ K L L∈N * is arbitrarily precise with respect to with µ ⊗ ν.

	Proof. I L	L∈N *	and K L	L∈N *	are arbitrarily precise with respect to µ and ν respec-
	tively, thus there exist		

  Markovian grids to the Bayesian state estimation problem in POMPsNow we consider a partially observed Markov process (H 1:N , Y 1:N ). Let a in N * , N in N * , H 1:N be a hidden time series in Γ = R a × Ω with Ω a nite-discrete set and Y 1:N observed. Proposition 16. Let d, N ∈ N

* , Γ ∈ D, partially observed Markov process (H 1:N , Y 1:N )

Table 3 . 1

 31 

		Q	A	DD
	5 0 0 5	× 10 -4	0.8 0.2 0.2 0.8	2 1 1 2	× 10 -5

Table 3 .

 3 

1: The parameters of the volatility model {(3.53), (3.54)}

  (r 1:N , y 1:N ) = p (r 1 ) p (y 1 |r 1 ) p (r 2 |r 1 ) p (y 2 |r 2 ) . . . p (r N |r N -1 ) p (y N |r N ) , p (r n+1 , y n+1 |r n , y n ) from (4.2) can be written as p (r n+1 , y n+1 |r n , y n ) = p (r n+1 |r n , y n ) p (y n+1 |r n+1 , r n , y n ) : PMM is an HMM if and only if for each n in {1 : N -1}, p (r n+1 |r n , y n ) = p (r n+1 |r n ) ;

	The HMM distribution is
	(4.3)
	(4.4)
	we see that a

1:N , Y 1:N ) is a pairwise Markov model if its distribution is of the following form: p (r 1:N , y 1:N ) = p (r 1 , y 1 ) p (r 2 , y 2 |r 1 , y 1 ) . . . p (r N , y N |r N -1 , y N -1 ) , (4.2) which means that (R 1:N , Y 1:N ) is Markovian.

p and

Table 4 .

 4 Secondly, we sample y n+1 from p (y n+1 |r n , r n+1 , y n ), where p (y n+1 |r n , r n+1 , y n

	r * n+1 ∈Ω	p r n , r * n+1 p y n r n , r * n+1	,	(4.22)
				(4.23)

1: Mean and variance parameters of Gaussian distributions in (4.21b).

Let us specify the sampling procedure corresponding to Gaussian PMM-CN (4.21). We begin by sampling (r 1 , r 2 ) from (4.21a), then we sample (y 1 , y 2 ) given (r 1 , r 2 ) from (4.21b). Next, given (r n , y n ) for n ≥ 2, we sample (r n+1 , y n+1 ) as follows. Firstly, we sample r n+1 from p (r n+1 |r n , y n ), where p (r n+1 |r n , y n ) = p (r n , r n+1 ) p (y n |r n , r n+1 ) with p (y n |r n , r n+1 ) = N y n ; µ 1 (r n , r n+1 ), σ 2 1 (r n , r n+1 ) .

Table 4 .

 4 2 the corresponding statistically optimal loss function values. That is to illustrate that the chosen parameter set actually represents a considerable noise level. Figures 4.3and 4.4 present more exhaustive results regarding the relative error rate of the HMM-IN. Sample size is 1000 and the results are averaged over 100 experiments.

	H H H	ρ	0.00	0.35	0.70	0.90
	H				
		H H				
	0.05		0.20	0.24	0.25	0.24
	0.15		0.28	0.29	0.27	0.23
	0.20		0.29	0.29	0.25	0.21
	0.35		0.26	0.23	0.17	0.12
	Table 4.2: Error rate (4.32b) of model (4.21) for varying and ρ. HMM-IN HMM-CN PMM-IN
	0.05	41%		13%		38%
	0.15	47%		34%		25%
	0.20	56%		38%		24%
	0.35	58%		31%		37%
	Avg	51%	29%		31%

Table 4 . 3

 43 Sample size is 1000 and the results are averaged over 100 experiments.

	ρ	HMM-IN	HMM-CN	PMM-IN
	0.00	13%	13%	0%
	0.35	18%	14%	6%
	0.70	38%	26%	23%
	0.90	69%	52%	44%
	Avg	35%	26%	18%

: Relative error rates (4.32a) of the three Gaussian PMM sub-models for varying with ρ = 0.75.

Table 4 .

 4 4: Relative error rates (4.32a) of the three Gaussian PMM sub-models for varying ρ with = 0.125. Sample size is 1000 and the results are averaged over 100 experiments. 20% only if ρ < 0.4 and < 0.15, τ (HMM-IN) < 50% only if ρ < 0.6, and τ (HMM-IN) < 80% only if ρ < 0.85. For extreme values of in a neighborhood of 0.5 and for ρ in a neighborhood of 1, τ(HMM-IN) diverges.

	Regarding results presented in Tables 4.3 and 4.4, we notice that the HMM-IN ap-
	proximation seems to be the least accurate, while PMM-IN and HMM-CN have both
	fairly the same degree of performance. Regarding Figures 4.3 and 4.4, we observe that
	τ (HMM-IN) <

We notice that both features of PMM-CN, i.e. p (r n+1 |r n , y n ) = p (r n+1 |r n ) and p (y n+1 |r n+1 , r n , y n ) = p (y n+1 |r n+1 , r n ) contribute independently to improving its accuracy over the simpler models. For these reasons, PMM-CN may decrease the misclassication rate of HMM-IN by a half in several settings.

  r n+1 ) are the same as previously and given in Table4.1. Sample size is 1000 and the results are averaged over 100 experiments.

	H H H	ρ	0.00	0.35	0.70	0.90
	H				
		H H				
	0.05		0.34	0.38	0.40	0.38
	0.15		0.41	0.43	0.42	0.39
	0.20		0.43	0.43	0.42	0.38
	0.35		0.43	0.42	0.38	0.31
	Table 4.5: Error rate (4.32b) of gamma PMM (4.38) for varying and ρ. HMM-IN HMM-CN PMM-IN
	0.05	79%		75%		16%
	0.15	130%	115%		23%
	0.20	171%	125%		30%
	0.35	186%	125%		63%
	Avg 142%	29%		33%

Table 4 .

 4 6: Relative error rates (4.32a) of the three gamma PMM sub-models for varying and ρ = 0.75, k = 1. Sample size is 1000 and the results are averaged over 100 experiments.

	ρ	HMM-IN	HMM-CN	PMM-IN
	0.00	118%	118%	0%
	0.35	114%	112%	4%
	0.70	113%	109%	17%
	0.90	129%	108%	41%
	Avg 119%	112%	16%

Table 4

 4 

.7: Relative error rates (4.32a) of the three gamma PMM sub-models for varying

  λ 1 )

		0.22	0.01	0.01	0.01
	(ω 1 , λ 2 )	0.01	0.22	0.01	0.01
	(ω 2 , λ 1 )	0.01	0.01	0.22	0.01
	(ω 2 , λ 2 )	0.01	0.01	0.01	0.22
	Table 4.8: Probability values				

Table 4

 4 

	.9: Absolute returns (4.67) of HMM, PMM-F1, PMM-F2 and PMM-based trad-
	ing systems on NYSE:CLF historical prices. The returns are related to the period from
	12/14/1993 to 09/29/1994.				
	6.74	#10 -3					
							HMM
	6.72						PMM-F1
							PMM-F2
	6.7						PMM
	R$ 1						
	6.68						
	6.66						
	-15 6.64	-10	-5	0	5	10	15
					log 6		

  R 2 (θ) in function of λ, where θ minimizes (4.65).

		9.3	#10 -5					
				HMM				
		9.2		PMM-F1 PMM-F2				
	2 R$	9.1		PMM				
		9						
		8.9	15	-10	-5	0	5	10	15
						log 6		
	Figure 4.13: Values R * 01/01/94 0% 5% 10% 20% 25% PMM-F2 PMM PMM-F1 HMM 2 (λ) = 10/01/93 15% Asset		04/01/94	07/01/94		10/01/94

  r n-1 ∈Ω and {p (r n+1 |y n+1:N )} r n+1 ∈Ω computed by SKF and RSKF to compute estimates of {p (r n |y 1:N )} rn∈Ω at each n in {2 : N -1},

	as illustrated in Figure 5.3.							
	y 1	y 2	. . .	y n-2	y n-1	y n	y n+1	y n+2	. . .	y N -1	y N
				p(r n-1 |y 1:n-1 )	p(r n |y 1:N )	p(r n+1 |y n+1:N )			
	Figure 5.3: Bayesian-assimilation-based smoothed inference of the discrete state.

  computed as follows: can be expressed from the outputs of SKF and RSKF π n (r n-1 |r n )

	as follows:

def ===== approx. p (r n-1 |r n , y 1:n ) ; π n (r n+1 |r n ) def ===== approx.

p (r n+1 |r n , y n:N ) ,

  1,rn∈Ω are computed by the SKF; { x * n+1|n+1 (r n+1 ), π * n (r n+1 |r n )} rn,rn+1∈Ω are computed by the RSKF; {π n|N (r n )} rn∈Ω are computed by (5.23).

  .41) Recall that for each r n-1 ,r n ,r n+1 in Ω, p (r n-1 |r n , y 1..N ) = p (r n-1 |r n , y 1..n ) under assumption (5.24a); p (r n+1 |r n , y 1..N ) = p (r n+1 |r n , y n..N ) under assumption (5.24b);

	We have under assumptions (5.24a)-(5.24c)

  r n , y 1..N ] and E [X n+1 |r n , r n+1 , y 1..N ] are not easily accessible without further approximation. We propose to approximate them by E[X n-1 |r n-1 , y 1..n ] and E [X n+1 |r n+1 , y n..N ] respectively. Thus, Finally, E [X n |r n , y 1:N ] is approximated by x n|N (r n ) dened in(5.38) cf.(5.39). Run Algorithms 5 to obtain smoothed estimates of the discrete state {π n|N (r n )} rn∈Ω ; 3. For each n in 2 : N -1, r n in Ω, compute smoothed estimates of the continuous state { x n|N (r

	The whole algorithm runs as follows:
	Algorithm 6. Smoothed inference by Bayesian assimilation
	1. Run Algorithms 3 and 4 to obtain RSKF and SKF outputs (5.7), (5.14). SKF and RSKF
	may run in parallel;
	2.

E [X n-1 |r n , y 1..N ] is approximated by x - n-1|n (r n ) dened in

(5.37a) 

cf.

(5.40)

; E [X n+1 |r n , y 1..N ] is approximated by x + n+1|n (r n ) dened in

(5.37b) 

cf.

(5.41)

; For all r n-1 , r n , r n+1 , p (r n-1 , r n+1 |r n , y 1:N ) is approximated by π n|N (r n-1 , r n+1 |r n ) dened in (5.37c) since we have under assumptions (5.24a)-(5.24c):

p (r n-1 , r n+1 |r n , y 1:N ) = p (r n-1 , r n , r n+1 |y 1:N ) p (r n |y 1:N ) = p (r n |r n-1 , r n+1 , y n-1:n+1 ) p (r

n |y 1:N ) r n ∈Ω p (r n-1 |r n , y 1:n ) p (r n+1 |r n , y n:N ) p (r n |y 1:N ) ; n )} rn∈Ω by (5.37)-(5.38); 4. E [X n |y 1:N ] is then approximated by rn∈Ω

Table 5 .
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	1: Comparison of mean squared error (5.47) of smoothing with various param-
	eters of local switching trend model (5.43) by the Bayesian-assimilation based approach
	(Algorithm 6) and the PS .							
	# setting	a(ω 1 )	a(ω 2 )	σ	δ	q	φ	Algorithm 6	PS
	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	-2.5 • 10 -4 2.5 • 10 -4 0.01 0.01 10 -4 0.99 -2.5 • 10 -4 2.5 • 10 -4 0.01 0.01 10 -3 0.99 -2.5 • 10 -4 2.5 • 10 -4 0.01 0.10 10 -4 0.99 -2.5 • 10 -4 2.5 • 10 -4 0.01 0.10 10 -3 0.99 -2.5 • 10 -4 2.5 • 10 -4 0.05 0.01 10 -4 0.99 -2.5 • 10 -4 2.5 • 10 -4 0.05 0.01 10 -3 0.99 -2.5 • 10 -4 2.5 • 10 -4 0.05 0.10 10 -4 0.99 -2.5 • 10 -4 2.5 • 10 -4 0.05 0.10 10 -3 0.99 -5 • 10 -4 0.01 0.01 10 -4 0.99 5 • 10 -4 -5 • 10 -4 0.01 0.01 10 -3 0.99 5 • 10 -4 -5 • 10 -4 0.01 0.10 10 -4 0.99 5 • 10 -4 -5 • 10 -4 0.01 0.10 10 -3 0.99 5 • 10 -4 -5 • 10 -4 0.05 0.01 10 -4 0.99 5 • 10 -4 -5 • 10 -4 0.05 0.01 10 -3 0.99 5 • 10 -4 -5 • 10 -4 0.05 0.10 10 -4 0.99 5 • 10 -4 -5 • 10 -4 5 • 10 -4 0.05 0.10 10 -3 0.99	0.06 0.12 0.31 0.38 0.16 0.19 0.44 0.46 0.02 0.06 0.24 0.31 0.11 0.13 0.39 0.41	0.05 0.11 0.30 0.36 0.16 0.19 0.43 0.44 0.02 0.05 0.23 0.29 0.10 0.12 0.38 0.39
	Table 5.2: Comparison of mean misclassication error (5.48) of smoothing with various pa-
	rameters of local switching trend model (5.43) by the Bayesian-assimilation based approach
	(Algorithm 6) and the PS .							

Table 5 .

 5 3: MSSV parameters per each test.

		Test 1	Test 2	Test 3	Test 4
	α 1	-2.500	-1.500	-0.500	-2.500
	α 2	-1.000	-0.600	-0.200	-1.000
	φ	0.500	0.500	0.500	0.500
	σ	0.100	0.100	0.100	0.100
	p 1|1	0.990	0.990	0.990	0.500
	p 2|2	0.985	0.985	0.985	0.500
	x 0	-3.500	-2.100	-0.700	-3.500

Table 5 .

 5 4: The RMSE and MME statistics for the SKF, SCGHF and PF with dierent MSSV parameters from Table5.3. PF (M min ) refers to the PF algorithm which uses the minimal number of particle to obtain a quasi-optimal solution. We use M min = 100 for Test 1, M min = 120 for Test 2, M min = 200 for Test 3 and M min = 50 for Test 4.

			SKF	SCGHF	PF	PF (M min )
			RMSE	MME	RMSE	MME	RMSE	MME	RMSE	MME
	Test 1	0.1565	0.0630	0.0909	0.0402	0.0917	0.0405	0.1046	0.0437
	Test 2	0.3166	0.1118	0.1987	0.0729	0.2008	0.0735	0.2165	0.0775
	Test 3	0.7876	0.2808	0.6411	0.2137	0.6481	0.2160	0.6801	0.2274
	Test 4	0.8217	0.3624	0.7394	0.3326	0.7408	0.3334	0.7712	0.3479
			SKF		SCGHF		PF
		std[RMSE ] std[MME] std[RMSE] std[MME] std[RMSE] std[MME]
	Test 1	0.0206	0.0085	0.0130	0.0060	0.0132	0.0060
	Test 2	0.0402	0.0154	0.0243	0.0095	0.0247	0.0096
	Test 3	0.0518	0.0296	0.0488	0.0247	0.0510	0.0254
	Test 4	0.0148	0.0064	0.0138	0.0063	0.0140	0.0065

Table 5 .

 5 5: Standard deviations of the RMSE and MME statistics estimated for the SKF, SCGHF and PF with dierent MSSV parameters from Table 5.3.

		Test 1	Test 2	Test 3	Test 4
	SKF	0.05	0.05	0.05	0.05
	SCGHF	0.08	0.08	0.08	0.08
	PF	1.12	1.12	1.12	1.12
	PF (M min )	0.35	0.37	0.42	0.32

Table 5 .

 5 6: Processing times (in seconds) for SKF, SCGHF and PF required to process a trajectory of length N = 1000 in the framework of the MSSV model, per each test. PF (M min ) refers to the PF algorithm which uses the minimal number of particle to obtain a quasi-optimal solution. We use M min = 100 for Test 1, M min = 120 for Test 2, M min = 200 for Test 3 and M min = 50 for Test 4.

	2.5								
						PF RMSE for Test 1	
						PF RMSE for Test 2	
	2					PF RMSE for Test 3	
						PF RMSE for Test 4	
						M min per Test		
	1.5								
	RMSE								
	1								
	0.5								
	0								
	0	50	100	150	200	250	300	350	400
					M				

Markov-switching dynamical models (see, e.g.,[START_REF] Olteanu | Non-linear Analysis of Shocks when Financial Markets are Subject to Changes in Regime[END_REF], Wu et al., 2004, Doucet et al., 2001, Logothetis and Krishnamurthy, 1999, Olteanu and Rynkiewicz, 2007, Chen and Liu, 2000, Li and Jilkov, 2005, Andrieu et al., 2003a, Blanchet-Scalliet, 2001, Caron et al., 2007]) allow modeling situations where the dynamics of the system depend upon unknown exogenous discretevalued factors cf. Fig.5.11. Bayesian inference in these systems is usually dealt with switching
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Compute, for each r n , r n+1 in Ω, m n+1 (r n , r n+1 ) and s 2 n+1 (r n , r n+1 ):

s 2 n+1 (r n , r n+1 ) = (1ρ(r n , r n+1 ) 2 )σ 2 (r n+1 );

The predictive distribution p (y n+1 |y 1:n ) is a mixture of normal densities:

p (y n+1 |y 1:n ) = rn,r n+1 ∈Ω p (r n , r n+1 |y 1:n ) N y n+1 ; m n+1 (r n , r n+1 ), s 2 n+1 (r n , r n+1 )

Compute the one-step-ahead forecast

as the mean of the mixture, that is y n+1|n = rn,r n+1 ∈Ω p (r n , r n+1 |y 1:n ) m n+1 (r n , r n+1 ); (The algorithm ends here)

Contrary to the one-step-ahead forecasting, there is no apparent closed-form expression for p (y n+1:n+p |y 1:n ) in the case of multistep forecasting in PMMs.

Let N > 0, Y 1:N be an observed time series of log-returns. The next step is the PMM parameter estimation, whose goal is to infer the parameter vector θ (4.58) from the observed data Y 1:N .

The Expectation-Maximization (EM) and the Iterative Conditional Estimation (ICE) are well-known parameter estimation algorithms. These algorithms are well suited for both HMMs and PMMs, and the details may be found in [START_REF] Derrode | Signal and image segmentation using pairwise Markov chains[END_REF].

Alternatively, θ can be estimated by using the principle of Empirical Risk Minimization (ERM). Several methods for proving consistency of such estimators are provided in e.g. [START_REF] Lugosi | Nonparametric estimation via empirical risk minimization[END_REF]. Let us recall the general idea of the ERM. Assume a training set (x 1:N , y 1:N ) in (X × Y) N , a prediction function h : X → Y and a loss function L : Y × Y → R + . The empirical risk associated with the prediction function h is dened as

Thus, the idea of the ERM is to nd a function h for which the risk is minimal.

Regarding the context of forecasting, we have x n = y 1:n and h(x n ) = y θ n+1|n (y 1:n ), where y θ n+1|n (y 1:n ) is computed from θ and y 1:n by (4.62). We consider the following loss functions:

L 1 ( y θ n+1|n (y 1:n ), y n+1 ) = | y θ n+1|n (y 1:n )y n+1 |, L 2 ( y θ n+1|n (y 1:n ), y n+1 ) = ( y θ n+1|n (y 1:n )y n+1 ) 2 .

The associated risk functions are

(4.64b)

Let λ > 0, the following risk function realizes a trade-o between R 1 (θ) and R 2 (θ): R(θ; λ) = λ R 1 (θ) + R 2 (θ). We estimate θ by minimizing (4.65) for various values of λ. There is no closed expression known for the corresponding update equations and we solve the optimization problem by the Particle Swarm Optimization (PSO). PSO methods [START_REF] Poli | Particle Swarm Optimization[END_REF] are non-convex global optimization algorithms.

Let us present our methodology to compare the eciency of PMM with that of HMM on historical stock quotes. Given a data set H = {y 1 , .., y M } with successive daily logreturns of an asset E, we split H into two juxtaposed sets as follows: H training = {y 1 , .., y N } and H test = {y N +1 , .., y M }. The rst set is used to estimate the parameter θ by minimizing (4.65) for a given λ, while the second set only serves to assess the eciency of each model considered. The models are compared in terms of the outcome produced by the following trading system. At the beginning of each day n + 1, N ≤ n < M , the system buys asset E only if the one-day-ahead forecast (4.61) produced by the model is positive, i.e. if z n+1|n = 2, and sells the asset at the end of the day. In the case of a negative forecast, the system avoids any trading operations on E. Next, we compute the absolute return of the system on H test and compare it with that of the asset. Let us recall that the absolute return of E relative to date N is dened as

for n ≥ N . Equivalently, τ (n; N ) can be written as a function of the log-returns:

Thus, the absolute return of the trading system considered can be written as 

(5.23)

Note that {π n|N (r n )} rn∈Ω are computed using {π n-1 (r n-1 )} r n-1 ∈Ω , {π * n+1 (r n+1 )} r n+1 ∈Ω only and y n-1:n+1 . In other words, {π n|N } n∈1:N are computed independently from each other.

(The algorithm ends here) Let us justify formula (5.23).

Justication: Four our Bayesian assimilation technique, we assume the following:

(5.24c) Assumption (5.24a) is a classic one which can be found in the literature on smoothing in SLDSs [START_REF] Kim | State-Space Models with Regime Switching: Classical and Gibbs-Sampling Approaches with Applications[END_REF], while assumptions (5.24b) and (5.24c) are similar to (5.24a)

(5.25a)

In the above formula, . . .

for the rest of the report, and so on.

One has the following from the Markovianity of (

Assumption (5.24c) allows approximating p (r n |y 1:N ) as follows cf. (5.25):

(5.28) On the one hand, assuming (5.24a) 

On the other hand, assuming (5.24b) results in ∀n ∈ {1 : N -1}, ∀r n , r n+1 ∈ Ω, p (r n+1 |r n , y 1..N ) = p (r n+1 |r n , y n:N ) , (5.30) since

Thus, by substituting (5.29) and (5.30) in (5.28), we have p (r n |y 1:N )

The above equation can be solved in {µ Z (r n ), Γ Z (r n )} rn∈Ω analytically for parameters (5.45). In the general case, one usually uses iterative techniques to nd an approximate solution. Finally, regarding {Γ Z1Z2 (r n , r n+1 ), Γ Z2Z1 (r n , r n+1 )} rn,rn+1∈Ω in (5.2), we have

In order to nd realistic parameter values for (5.43), we estimated model (5.42) from the daily price chart of S&P 500 stock market index between 04-Jul-2014 and 02-Jun-2016. We found σ = 0.0090, q = 3 • 10 -4 ; φ = 0.9900, a = 1.172 • 10 -6 .

Therefore, we considered the following cases for the parameters of (5.43):

Regarding a(ω 1 ) and a(ω 2 ): the low-spread case -a(ω 1 ) = -2.5 • 10 -4 , a(ω 2 ) = 2.5 • 10 -4 )and the high-spread case -a(ω 1 ) = -5 • 10 -4 , a(ω 2 ) = 5 • 10 -4 ;

Regarding σ: the case of low market noise -σ = 0.01 -and the case of high market noiseσ = 0.05;

Regarding δ: the case of low-persistent trend -δ = 0.1 -and the case of highly persistent trend -δ = 0.01;

Regarding q: the case of low conditional variance of the trend -q = 10 -4 -and the case of high conditional variance -q = 10 -3 ;

Regarding φ, we x its value at 0.99. We observed that when low values of φ make the LSTM behave as a classic hidden Markov model with discrete state space.

Thus, we consider 16 dierent experiment settings in total, generated by combining the aforementioned cases. We perform the following experiment 100 times per each of these settings. First, we generate sample {x 1:N , y 1:N } from (5.43) with the parameters as in Table 5.1 with N = 1000. Next, we recover the smoothed trend estimates from y 1:N by applying the proposed method (Algorithm 6) and the Particle Smoother (PS). The PS we use is given in Section 1.4. We report in Tables 5.1 and 5.2 the average MSE and MME respectively over these experiments.

The simulation study indicates that the proposed method estimates nearly optimally the continuous state as well as the discrete state. Compared to the particle smoother, our method executes 20 times faster on average. An example of estimating a hidden trajectory x 1:N by our smoother is presented in Figure 5.7.

Next, we compare the trend estimates of the S&P 500 stock market index (SPX) between 04-Jul-2014 and 02-Jun-2016, produced by LTM (5.42) and LSTM (5.43). The historical data were taken from the Yahoo database and is displayed in Figure 5.8. The working sample y 1:N of log-returns contains N = 500 observations. The sample mean is 1.1720 • 10 -4 and its standard deviation is 0.0091.

We estimate the parameters of LTM (5.42) as follows. First, we set φ = 0.99 and we estimate a by the method of moments applied to the ergodic mean of log-returns in the LTM, that is by equating it with the empirical ergodic mean of y 1:N :

lters [START_REF] Wu | Modeling and decoding motor cortical activity using a switching Kalman lter[END_REF], Fu et al., 2010, Logothetis and Krishnamurthy, 1999, Zhao and Liu, 2012, Gao et al., 2012, Toledo-Moreo et al., 2007, Pieczynski, 2011a, Jilkov and Li, 2004, Liao and Chen, 2006, Togneri et al., 2001] or sequential Monte-Carlo methods [START_REF] Doucet | Particle lters for state estimation of jump Markov linear systems[END_REF], Andrieu et al., 2003a, Driessen and Boers, 2004, Chen and Liu, 2000, Doucet et al., 2000]. The simulationbased lters are asymptotically optimal, but can be computationally intensive. The usual switching lters are derived from the Extended Kalman Filter (EKF), Unscented Kalman Filter (UKF) or Gauss-Hermite Filter (GHF). EKF, UKF, GHF and their variants are discussed in [START_REF] Afshari | Gaussian Filters for Parameter and State Estimation: A General Review of Theory and Recent Trends[END_REF].

Indeed, the EKF, UKF and GHF evaluate local integrals by using a Gaussian approximation in the joint state-observation space. However, this joint Gaussian approximation does not lead to satisfactory results in many important applications. For example, in the Stochastic Volatility (SV)

model [START_REF] Jacquier | Bayesian Analysis of Stochastic Volatility Models[END_REF], the observed and hidden variables are uncorrelated but dependent.

The recent Conditional Gauss-Hermite Filter (CGHF), [Singer, 2015] uses a weaker assumption and is proven to be ecient in the cases where a specic form of the observation equation must be taken into account cf. [Singer, 2015, Zoeter et al., 2004].

Sequential Monte Carlo and quasi-Monte Carlo [Niederreiter, 2010] methods are important simulation-based methodologies to solve the ltering problem. Among them, the Particle Filter (PF), [START_REF] Doucet | A Tutorial on Particle Filtering and Smoothing: Fifteen years later[END_REF]] is a well-known stochastic algorithm. The Gaussian Particle Filter (GPF), [START_REF] Kotecha | Gaussian particle ltering[END_REF]] is a modication of the PF which avoids resampling and allows parallel processing. The CGHF is an accelerated version of the GPF [Zoeter, 2007, Singer, 2015, Zoeter et al., 2006, Zoeter et al., 2004, Nikolaev et al., 2014], where one uses the Gaussian quadrature to evaluate local integrals. Compared to the Monte Carlo integration, the Gaussian quadrature has a better convergence rate cf. e.g. [Luceno, 1999].

The novelty of the work presented in this section consists in extending the CGHF to handle Markov-switching dynamics. In fact, the CGHF is applicable only for recovering continuous variables, while our extension Switching Conditional Gauss-Hermite Filter (SCGHF) allows recovering both continuous and discrete states simultaneously. In other words, we introduce a switching version of the CGHF. This chapter also extends the conference paper [Gorynin et al., 2016c] whose scope was limited to specic volatility models; the general algorithm we introduce here is applicable to any switching system.

We rst recall the current approaches to solve the ltering problem. Next, we expose the algorithm we propose. We provide an empirical comparison of the proposed algorithm with the switching Kalman lter [START_REF] Wu | Modeling and decoding motor cortical activity using a switching Kalman lter[END_REF] and the particle lter [Gordon, 1997] in the context of the Markov-switching stochastic volatility model.

Filtering in non-linear non-Gaussian systems under the Gaussian conditional density assumption

Here we recall three general approaches to the problem of non-linear non-Gaussian ltering: the Gaussian Filter (GF) and the Conditional Gaussian Filter (CGF).

Let us consider the following general form of non-linear non-Gaussian systems:

for n ∈ N * , n < N ;

(5.50a)

with Markovian continuous states X 1:N in R d and observations Y 1:N in R d which are independent given X 1:N . Variables U 1:N are independent zero-mean unit-variance Gaussian vectors in R q . For each n ∈ N * , n < N , function f n+1 : R d ×R q → R d in (5.50a) determines the time evolution of the system. Equation (5.50b) means that for each n in {1 : N }, the Probability Density Function (pdf) of Y n given X n is available analytically. Note that even if U 1:N are Gaussian, the transition density p (x n+1 |x n ) is not Gaussian unless function f n+1 : (x n , u n+1 ) → x n+1 is linear in u n+1 . Since there is no assumptions on linearity of f n+1 , system (5.50) is non-linear non-Gaussian in general.

We consider the ltering problem, i.e. recursive estimation of p (x n |y 1:n ) for consecutive natural n.

The GF generalizes the unscented Kalman and Gauss-Hermite Kalman lters. The main idea is to assume that the following one-step predicting density is Gaussian: 

The above assumption means that the GF proceeds as if p (x n+1 , y n+1 |y 1:n ) was Gaussian, even if it is actually not. Indeed, it also implies that

where Γ n+1|n = P xx n+1|n . ( x n|n , Γ n|n ) are obtained as the parameters of the conditional Gaussian distribution of X n given Y 1:n from (5.51):

(y ny n|n-1 );

(5.53a)

(5.53b)

Then GF computes x n+1|n+1 and Γ n+1|n+1 from x n|n , Γ n|n and y n+1 as follows:

Time update

(5.54a)

(5.54b)

Measurement update

) dx n+1 dy n+1 ;

(5.55a)

) dx n+1 dy n+1 .

(5.55b)

P yy n+1|n = y n+1 y n+1 h n+1 (y n+1 , x n+1 )p n+1|n (x n+1 ) dx n+1 dy n+1y n+1|n y n+1|n .

(5.55c)

x n+1|n+1 and Γ n+1|n+1 are then obtained from by applying (5.53) to x n+1|n , y n+1|n , Γ n+1|n , P xy n+1|n , P yy n+1|n , and P yx n+1|n = (P xy n+1|n ) . Let z = [x n , u n+1 ]; the integrals in (5.54) are of the form g(z)ω(z)dz, (5.56) where ω(z) = p n|n (x n ) p (u n+1 ). Since p n|n (x n ) and p (u n+1 ) are Gaussian, we see that ω(z) is Gaussian too.

Similarly, by setting z = [y n+1 , x n+1 ] and ω(z) = h n+1 (y n+1 , x n+1 )p n+1|n (x n+1 ), the integrals in (5.55) are of the form (5.56) too. Thus, thanks to the GF, the ltering problem is reduced to evaluating integrals of the form (5.56) with Gaussian probability density function ω(z). In general, one cannot compute exactly (5.56). Approximate computing methodologies for such integrals is known as the Gaussian weighted integration methods and can be dealt, for example, with the Gauss-Hermite quadrature, as detailed in Appendix B. Other approaches include the Monte-Carlo integration [START_REF] Kotecha | Gaussian particle ltering[END_REF], quasi-Monte Carlo integration [START_REF] Moroko | Quasi-Monte Carlo Integration[END_REF], spherical-radial integration rules [START_REF] Monahan | Spherical-Radial Integration Rules for Bayesian Computation[END_REF], unscented transform [START_REF] Zoeter | Improved unscented Kalman smoothing for stock volatility estimation[END_REF], sparse grids [START_REF] Jia | Sparse-grid quadrature nonlinear ltering[END_REF] and many others [Miller III and Rice, 1983, Lu and Darmofal, 2004[START_REF] Gorynin | Fast ltering with new sparse transition Markov chains[END_REF].

linear in x n . The CGHF implements the Gauss-Hermite quadrature technique specied in Appendix B to compute these integrals in the case where the exact solution is unavailable.

To summarize, the PF (cf. Section 1.4.1) is an asymptotically optimal (in M ) method of ltering which makes no assumption on the form of the conditional density. However, the computational load of PF may be too heavy to ensure an acceptable variance of the state estimate. The GF and CGF are based on nested simplifying assumptions in order to reduce the problem of ltering to the problem of computing Gaussian-weighted integrals. The GF makes a strong assumption (5.51) on the form of the joint state-observation predictive density, which may be inappropriate for several important applications. The CGF makes a strictly weaker assumption which concerns only the predictive state density. Theoretical and empirical evidence presented in [Singer, 2015] demonstrates that CGF overcomes the outlined drawbacks of the GF. All the three methods approximate p (x n |y 1:n ) with the same complexity O (M n), where M is the number of simulated particles for the PF or the total number of integration nodes used by the GF or CGF cf. Appendix B.

Filtering in switching non-linear non-Gaussian systems under the Gaussian conditional density assumption

Here we present the main contribution of this section, which consists on extending the CGF to the switching systems. These systems may be seen as hidden Markov models of type (X

where (X 1:N , R 1:N ) is Markovian and hidden, while Y 1:N is observed. The state variables in switching systems are of two types: continuous-valued ones, denoted by X 1:N , and discrete-valued ones, denoted by R 1:N . It is also assumed that R 1:N is a Markov chain, while X 1:N is Markovian given R 1:N .

We consider the general form of switching systems:

(5.60a)

where R 1:N is a Markov chain in Ω = {1 : K}, K ∈ N * . We suppose that the dependency graph of this model is that of Fig. 5.11.

Let us announce the assumptions involved and derive the corresponding integral equations.

Let us assume K Gaussian ltering densities and K 2 Gaussian predicting densities:

(5.61a)

(5.61b)

There are K 2 Gaussian predicting densities since the one-step ahead prediction is based on both current r n and future r n+1 possible values of the discrete state.

The Switching Conditional Gaussian Filter (SCGF) computes, for each r n+1 in {1 : K}, x n+1|n+1 (r n+1 ), Γ n+1|n+1 (r n+1 ) and p (r n+1 |y 1:n+1 ) by using x n|n (r n ), Γ n|n (r n ), p (r n |y 1:n ), y n+1 as follows.

For each r n and r n+1 in Ω, Time update:

(5.62b)

The measurement update consists of multiple steps: a) for each r n and r n+1 in Ω:

x n+1|n+1 (r n , r n+1 ) x n+1|n+1 (r n , r n+1 ) . (5.64b) c) derive, for each r n+1 in {1 : K}, x n+1|n+1 (r n+1 ) and Γ n+1|n+1 (r n+1 ):

x n+1|n+1 (r n+1 ) = K rn=1 p (r n |r n+1 , y 1:n+1 ) x n+1|n+1 (r n , r n+1 );

(5.65a)

p (r n |r n+1 , y 1:n+1 ) = p (r n , r n+1 |y 1:n+1 ) p (r n+1 |y 1:n+1 ) .

(5.65c) d) the state estimates at the current iteration are:

x n+1|n+1 (r n+1 )p (r n+1 |y 1:n+1 ) ; 

Therefore, 

Applications to switching volatility estimation

Here we compare the performance of the proposed method with the classic particle lter and the switching Kalman lter [START_REF] Wu | Modeling and decoding motor cortical activity using a switching Kalman lter[END_REF]. Let us consider the Markov Switching Stochastic Volatility (MSSV) model [START_REF] Carvalho | Simulation-based sequential analysis of Markov switching stochastic volatility models[END_REF]:

{U n } n≥1 , {V n } n≥1 are i.i.d standard Gaussian variables and (α 1 , . . . , α K , φ, σ, x 0 ) are xed parameters. The initial state distribution p(r 1 ) is then the eigenvector of the corresponding Markov transition matrix. When K = 2, the Markov chain is dened by p 1|1 = p (r n+1 = 1 |r n = 1 ) and p 2|2 = p (r n+1 = 2 |r n = 2 ). Realistic parameter values for K = 2 which we use in the experiments can be found e.g. in [START_REF] Carvalho | Simulation-based sequential analysis of Markov switching stochastic volatility models[END_REF].

(5.68)

The model of (X n , Z n ) is switching linear and non-Gaussian. Thus, one can estimate the hidden variables by the switching Kalman lter. Indeed, it means approximating the distribution of log V 2

. As an experiment, we perform the following experiment 100 times per each test. We begin by sampling {x n , y n } n∈N * ,n≤N from (5.67) with the parameters as in Table 5.3 with N = 1000. Next, we recover the state estimates from {y n } 1≤n≤N by the SKF, the proposed method -SCGHF and the PF. The PF algorithm we use is given in Section 1.4.1. We use grids with a total of 9 integration nodes in SCGHF and 2000 particles in the particle lter. Finally, we compute the Relative Mean Squared Error (RMSE) and the MME dened by

Var(X n ) (5.70)

We report in Table 5.4 the average RMSE over these experiments, and Table 5.5 presents the corresponding standard deviations. In Tables 5.4 and 5.5, PF (M min ) refers to the PF algorithm which uses the minimal number of particle to obtain a quasi-optimal solution. We determined M min by hand for each experiment, and we found M min = 100 for Test 1, M min = 120 for Test The accuracy of the proposed methods has been compared with that of the sequential Monte-Carlo methods and has been shown to be competitive. The pertinence and suitability of the research for real-world applications has been conrmed by an extensive experiment-driven study. We also notice that the case of a high-dimensional state space should not be a problem for the methods proposed, while this case may be problematic for a range of sequential Monte-Carlo methods.

Appendix A

Matrix characterization of conditional independence in

Gaussian vectors

Here we recall a classic result which provides conditional distributions in a Gaussian vector.

We derive from it a matrix formula characterizing conditional independence of Gaussian variables which make part of a Gaussian vector.

Proposition 19. Let a, b ∈ N * , X ∼ N(µ, Σ ) be a Gaussian vector in R a+b partitioned as follows

where X 1 ∈ R a , X 2 ∈ R b , and µ and Σ accordingly partitioned as follows:

where

x 2 is Gaussian with mean vector µ 1|2 and covariance Γ 1|2 dened as follows:

The following lemma characterizes the conditional independence of Gaussian variables within a Gaussian vector.

Lemma 1. Let a, b, c ∈ N * , X ∼ N(µ, Σ ) be a Gaussian vector in R a+b+c partitioned as follows

where

, and µ and Σ accordingly partitioned as follows:

where

Then X 1 and X 3 are independent given X 2 if and only if

Proof. The distribution p (x 1 , x 3 |x 2 ) is Gaussian and cf. Proposition 19, and its covariance matrix is

X 1 and X 3 are independent given X 2 if and only if the matrix in the Right Hand Side Term (RHS) of the above equation is block-diagonal, i.e. Σ 13 -Σ 12 Γ -1

Constructing multivariate

Gauss-Hermite quadrature

Here we present the construction of one-dimensional and multidimensional Gauss-Hermite quadrature rules. The Gauss-Hermite quadrature which is an algorithm of approximation of the Gaussian-weighted integral, i.e. an integral of the form g(z)ω(z)dz,

with Gaussian probability density function ω(z).

Let us rst consider the case of one-dimensional Gaussian-weighted integral, where ω(z) is the standard normal distribution:

2 .

An N -point Gauss-Hermite quadrature rule is an approximation to (B.1) of the form

where points (ξ q ) 1≤q≤N (integration nodes) and weights (π q ) 1≤q≤N are such that (B.2) is exact if g is a polynomial up to the (2N -1) th order. In order to compute the parameters of the N -point Gauss-Hermite quadrature, one uses the rst (2N -1) moments of ω(z): ∀i ∈ N, i ≤ N -1, n i = z i ω(z)dz = (i -1)!! for even i 0 for odd i .

where i!! denotes the double factorial, i.e. the product of all numbers from i to 1 that have the same parity as i.

Next, one denes the following polynomial recursion {P i } N i=1 :

where ∀z, P -1 (z) = 0, P 0 (z) = 1, γ 1 = 0 and

.

The quadrature nodes are the roots of P N and the quadrature weights are the solution of the linear system N q=1 π q P i (ξ q ) = 1 for i = 0 0 for i ∈ {1, . . . , N -1} .

Now we consider the case of d-dimensional Gaussian-weighted integral: Here, the total number of grid points is N d . Finally, consider the general case of d-dimensional Gaussian-weighted integral: (B.9)

The Jacobian of (B.9) is ∇ v (z) = C and we have from (B.7) det(Σ ) 1/2 = detC = det∇ v (z), so we obtain by substituting (B.9) into (B.6): Then,

where I d is the identity matrix in R d×d .

Proof. In the case where d

and attains its maximum at x = 1. By induction, suppose that we have proven (C.1) for some d ∈ N * , let us prove it for d + 1. Let M be a matrix in S d+1

++ . It can be represented in a block-wise form as follows:

++ by:

The block determinant formula for the matrix M yields:

Next, we have

The M-step consists of maximization of Q (θ, θ q ) with respect to θ.

We assume that Q 0 θ, θ (q) does not contribute signicantly to the value of Q θ, θ (q) , thus we drop this rst term from the equation. The remaining component are Q 1 θ, θ (q) , Q 2 θ, θ (q) , Q 3 θ, θ (q) and they can be maximized independently, which leads to maximizing their sum and therefore maximizing Q θ, θ (q) .

The above expression can be developed to

where for each i ∈ Ω, T i, θ, θ

q) can be maximized by maximizing independently each T(i, θ, θ (q) ) constrained to K j=1 p θ j|i = 1, and for each value of i.

where λ is a Lagrange multiplier. The dierentiation of L i, θ, θ (q) with respect to p θ j|i yields which maximize T(i, θ, θ (q) ) constrained to

n (i, j). Therefore, the M-step formula for p (q) j|i is:

Let us recall that

Let us consider, for each i, j,

Each term U i, j, θ, θ (q) from the above equation can be maximized independently from each other.

The maximization of N n=1 π n logN(y n ; Ax n + B, R) for any x 1:N , y 1:N , π 1:N is the object of Proposition 20.

Thus, we can set:

n (i, j) p which maximize U i, j, θ, θ (q) are given by:

n (i, j)x n+1 x n n (i, j)y n+1 N -1

Maximizing Q 3 θ, θ (q) Let us recall that

Let us consider, for each i, j, 1 ≤ i, j ≤ K, V i, j, θ, θ (q) = N -1

V i, j, θ, θ (q) , and each term V i, j, θ, θ (q) can be maximized independently from each other.

Let us set then ∀n ∈ {1 : N -1}, y n → x n , y n+1 → y n , ψ

n (i, j) p ;

ψ (q) n (i, j)y n+1 .

As a result, we derived closed-form M-step update formulas for p