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Titre : Estimation bayésienne dans les modèles de Markov partiellement observés

Mots Clefs : Systèmes non-linéaires cachés, �ltrage optimal, inférence paramétrique,
systèmes à saut, volatilité stochastique, approximations stochastiques.

Résumé : Cette thèse porte sur l'estimation bayésienne d'état dans les séries tem-
porelles modélisées à l'aide des variables latentes hybrides, c'est-à-dire dont la densité ad-
met une composante discrète-�nie et une composante continue. Des algorithmes généraux
d'estimation des variables d'états dans les modèles de Markov partiellement observés à
états hybrides sont proposés et comparés avec les méthodes de Monte-Carlo séquentielles
sur un plan théorique et appliqué. Le résultat principal est que ces algorithmes permettent
de réduire signi�cativement le coût de calcul par rapport aux méthodes de Monte-Carlo
séquentielles classiques.

Title : Bayesian state estimation in partially observable Markov processes

Keys words : Nonlinear state-space model, jump systems, optimal �lter, stochastic
volatility, parameter inference, stochastic approximations.

Abstract : This thesis addresses the Bayesian estimation of hybrid-valued state variables
in time series. The probability density function of a hybrid-valued random variable has
a �nite-discrete component and a continuous component. Diverse general algorithms for
state estimation in partially observable Markov processes are introduced. These algorithms
are compared with the sequential Monte-Carlo methods from a theoretical and a practical
viewpoint. The main result is that the proposed methods require less processing time
compared to the classic Monte-Carlo methods.
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List of symbols and abbreviations

List of symbols

N Set of natural numbers

N
∗ Set of nonzero natural numbers

{1 : N} Set of natural numbers ranging from 1 to N inclusive, N ∈ N

R Set of real numbers

R
∗ Set of nonzero real numbers

R+ Set of positive real numbers

R
∗
+ Set of strictly positive real numbers

R
a Set of a-dimensional vectors with coe�cients in R, a ∈ N∗

R
a×b Set of matrices of dimension a× b with coe�cients in R, a, b ∈ N∗

Sd++ Set of positive de�nite matrices in Rd×d, d ∈ N∗

1lS Indicator function of a set S

Card(S) The number of distinct elements in a �nite set S

X ×Y Cartesian product of two sets X and Y

F(X →Y) Set of functions from X to Y

M A bold uppercase italic symbol refers to a matrix in Ra×b, where
a, b ∈ N∗

X A bold uppercase non-italic symbol refers to a vector-valued random
variable

f , v A bold lowercase italic symbol refers to a vector-valued function or to
a column vector in Rd, where d ∈ N∗

x A bold lowercase non-italic symbol refers to a realization of a
vector-valued random variable

X A non-bold uppercase non-italic symbol refers to a scalar random
variable

z, f A non-bold lowercase italic symbol refers to a scalar variable or to a
scalar-valued function

7



x A non-bold lowercase non-italic symbol refers to a realization of a
scalar random variable

X1:N Random variables X1, . . . ,XN , N ∈ N

x1:N Realizations of random variables X1, . . . ,XN , N ∈ N

M> Transpose of matrix M

|M | The determinant of matrix M

tr(M) The trace of matrix M

p(.) Probability distribution

E [.] Expected value operator

P [.] Probability operator

pθ(.) Probability distribution parameterized by θ

Eθ [.] Expected value operator parameterized by θ

Pθ [.] Probability operator parameterized by θ

p(.|.) Conditional probability distribution

E [.|.] Conditional expected value operator

P [.|.] Conditional probability operator

pθ(.|.) Conditional probability distribution parameterized by θ

Eθ [.|.] Conditional expected value operator parameterized by θ

Pθ [.|.] Conditional probability operator parameterized by θ

N (µ,S) The normal probability distribution de�ned by the mean vector µ and
the variance matrix S

N (x;µ,S) The value at x of the normal probability density function de�ned by
the mean vector µ and the variance matrix S :

N (x;µ,S) = |2πS|− 1
2 exp

(
−1

2(x− µ)>S−1(x− µ)
)

List of abbreviations

ARIMA Autoregressive Integrated Moving Average

ASV Asymmetric Stochastic Volatility

AVP Asymmetric Volatility Phenomenon

CGF Conditional Gaussian Filter

CGHF Conditional Gauss-Hermite Filter

CGLSSM Conditionally Gaussian Linear State-Space Model

CGOMSM Conditionally Gaussian Observed Markov Switching Model
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CGPMSM Conditionally Gaussian Pairwise Markov Switching Model

CMSHLM Conditionally Markov Switching Hidden Linear Model

D-graph Dependency graph (directed graph representing dependencies of
several random variables towards each other)

EKF Extended Kalman Filter

EM Expectation-Maximization

ERM Empirical Risk Minimization

E-step Expectation step of the EM algorithm

GARCH Generalized Autoregressive Conditional Heteroscedasticity

GF Gaussian Filter

GHF Gauss-Hermite Filter

GPF Gaussian Particle Filter

GSF Gaussian Sum Filter

GSUKF Gaussian Sum Unscented Kalman Filter

h-concat Horizontal concatenation of row vectors:
[
v>1 v

>
2

]

HMM Hidden Markov Model

HMM-CN Hidden Markov Model With Conditionally Correlated Noise

HMM-IN Hidden Markov Model With Conditionally Independent Noise

ICE Iterative Conditional Estimation

LCGOMSMF Learned Conditionally Gaussian Observed Markov Switching Model
Filter

LCGOMSMS Learned Conditionally Gaussian Observed Markov Switching Model
Smoother

LSTM Local Switching Trend Model

LTM Local Trend Model

MCMC Markov chain Monte Carlo

MGF Markovian Grid-Based Filter

MGS Markovian Grid-Based Smoother

MGSE Markovian Grid-Based State Estimator

MME Mean Misclassi�cation Error

MPM Maximum Posterior Mode

MSE Mean Squared Error

M-step Maximization step of the EM algorithm

9



MSSV Markov Switching Stochastic Volatility

pdf Probability Density Function

PF Particle Filter

PMM Pairwise Markov Model

PMM-CN Pairwise Markov Model With Conditionally Correlated Noise

PMM-IN Pairwise Markov Model With Conditionally Independent Noise

POMP Partially Observable Markov Process

PS Particle Smoother

PSO Particle Swarm Optimization

QKF Quadrature Kalman Filter

RHS Right Hand Side Term

RMSE Relative Mean Squared Error

RSKF Reverse Switching Kalman Filter

SCGF Switching Conditional Gaussian Filter

SCGHF Switching Conditional Gauss-Hermite Filter

SCGPMSM Stationary Conditionally Gaussian Pairwise Markov Switching Model

SEM Stochastic Expectation-Maximization

SIR Sampling Importance Resampling

SKF Switching Kalman Filter

SLDS Switching Linear Dynamical System

STMM Simpli�ed Triplet Markov Model

SV Stochastic Volatility

TMM Triplet Markov Model

TMM-IN Triplet Markov Model With Independent Noise

UKF Unscented Kalman Filter

UT Unscented Transform

v-concat Vertical concatenation of column vectors:
[
v>1 v

>
2

]>
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Introduction générale

Le modèle de Markov caché, connu comme Hidden Markov Model (HMM), est un modèle
mathématique omniprésent dans le traitement statistique des données. Ce modèle se réfère
à une analyse basée sur les concepts de signal et d'état. Le signal est l'objet principal de
la modélisation et représente un processus stochastique dont une réalisation est visible à
l'analyste. Les exemples typiques des signaux sont l'évolution d'un indice boursier, du PIB
ou du taux d'intérêt. L'état est un processus stochastique auxiliaire qui aide à caractériser
l'évolution du signal et qui n'est pas directement observable. Les exemples typiques d'états
comprennent la tendance et la volatilité. Par dé�nition, l'état est de Markov dans les
HMMs.

Les HMMs ont été généralisés aux modèles semi-Markoviens cachés, modèles de Markov
couples, modèles de Markov triplets et modèles de Markov à sauts. Ces modèles ont un
aspect en commun. Nous justi�ons que dans tous ces modèles, le processus couple état-
signal est de Markov, c'est pourquoi nous disons que ces modèles sont des cas particuliers
du modèle de Markov partiellement observé, connus comme le Partially Observable Markov
Process (POMP). En e�et, le processus état-signal est de Markov et la partie qui corre-
spond à l'état n'est pas observable.

Dans cette thèse, nous classi�ons les POMPs suivant la nature de l'état: nous dis-
tinguerons entre les POMPs à états discrets �nis, POMPs à états continus et POMPs
à états hybrides (continus-discrets �nis). L'estimation exacte rapide bayésienne de l'état
n'étant généralement pas possible dans les POMPs, l'objectif de ce rapport est de présenter
les méthodes d'estimation qui ont été développées pendant les études doctorales de l'auteur.
Conformément aux consignes o�cielles de l'école doctorale, la suite de ce chapitre est dé-
composée en sections séparées, rédigées en français, qui contiennent des résumés détaillés
des chapitres de la thèse, qui sont rédigés en anglais.

Résumé du chapitre 1

Le chapitre 1 présente la théorie générale des POMPs. Nous formalisons les problèmes
d'estimation des paramètres des POMPs et les problèmes d'inférence bayésienne dans les
POMPs, qui incluent le �ltrage, le lissage et la prédiction. Nous présentons aussi les méth-
odes de Monte-Carlo séquentielles, qui sont des méthodes largement utilisées d'inférence
bayésienne dans les POMPs. Nous notons H1:N = (H1, . . . ,HN ) une série temporelle des
variables d'état à valeurs dans H = R

d × Ω, avec Ω = {1 : K} ensemble discret �ni. La
série temporelle des variables du signal correspondant est notée Y1:N et est à valeurs dans
R
d′ .
Pour tout N dans N∗, le couple (H1:N ,Y1:N ) est un modèle de Markov partiellement

observé (POMP) si sa distribution véri�e:

p (h1:N ,y1:N ) = p (h1,y1) p (h2,y2 |h1,y1 ) . . . p (hN ,yN |hN−1,yN−1 ) , (1)

ce qui signi�e que (H1:N ,Y1:N ) est de Markov.

11



La décomposition de H1:N en une partie continue X1:N et une partie discrète �ni R1:N ,
est :

∀n ∈ {1 : N},Hn = (Xn,Rn). (2)

Nous considérons la classi�cation suivante des POMPs:

� Card(Ω) = 1 et d > 0. Dans ce cas, H = R
d à une bijection près et le modèle est dit

POMP à états continus. Dans ce cas, le processus état-signal est noté (X1:N ,Y1:N );

� 1 ≤ Card(Ω) < ∞ et d = 0. Dans ce cas, H = Ω à une bijection près et le modèle
est dit POMP à états discrets �nis. Dans ce cas, le processus état-signal est noté
(R1:N ,Y1:N );

� 0 ≤ Card(Ω) <∞ et d ≥ 0. Dans ce cas, le modèle est dit POMP à états hybrides.
Dans la littérature, ces modèles sont appelés également des modèles à sauts. Dans
ce cas, le processus état-signal est noté (R1:N ,X1:N ,Y1:N ).

Les POMPs abordés dans ce rapport sont reportés dans la Figure 1.

POMPs 

POMPs (C1)  
à états continus 

PMMs (C3) 
linéaires 

PMMs (C5) 
Linéaires 

gaussiennes 

HMMs(C4) 
linéaires 

HMMs (C6) 
Linéaires 

gaussiennes 

CGPMSMs (H3) 

Systèmes à sauts (H1) 

SLDSs (H5) 

POMPs (D1)  
à états discrets 

finis 

HMMs (D2) 
à états discrets 

finis 
CGOMSMs (H4) 

HMMs (C2) 

CMSHLM (H2) 

Figure 1: Modèles de Markov partiellement observés usuels. A −→ B signi�e que le modèle
B est un cas particulier de A. Les modèles dans lesquels les distributions exactes de �ltrage
et de lissage ne sont pas calculables en général sont représentés par des rectangles gris. Les
modèles dans lesquels les distributions exactes de �ltrage et de lissage sont calculables sont
représentés par des rectangles verts. Les modèles dans lesquels uniquement les moments
exacts de la distribution de �ltrage et de lissage sont calculables sont représentés par des
rectangles oranges.

La distribution p (hn |y1:n ) est appelée la distribution de �ltrage à l'instant n. Cette
distribution joue un grand rôle dans le traitement statistique à l'aide des POMPs. Formelle-
ment, cette distribution est donnée par récurrence grâce à la markovianité de (H1:n,Y1:n):

� Initialisation: p (h1 |y1 ) = p(h1,y1)∫
p(h1,y1)dh1

.

� Récurrence: p (hn+1 |y1:n+1 ) est calculée à partir de p (hn |y1:n ) en trois étapes :

1. Calculer la distribution anticipée à un pas :

p (hn+1,yn+1 |y1:n ) =

∫
p (hn |y1:n ) p (hn+1,yn+1 |hn,yn ) dhn; (3)
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2. Calculer le facteur de vraisemblance à n+ 1 :

cn+1 = p (yn+1 |y1:n ) =

∫
p (hn+1,yn+1 |y1:n ) dhn+1; (4)

3. Faire la mise à jour :

p (hn+1 |y1:n+1 ) =
p (hn+1,yn+1 |y1:n )

cn+1
. (5)

Ce calcul récursif permet aussi de calculer la log-vraisemblance de la séquence observée
y1:N :

log p (y1:N ) = log
(
p (y1)

N−1∏

n=1

p (yn+1 |y1:n )
)

= log p (y1) +
N−1∑

n=1

log cn+1. (6)

Cette possibilité permet d'envisager une estimation des paramètres des POMPs par max-
imisation de la log-vraisemblance avec des méthodes numériques. L'estimateur du maxi-
mum de vraisemblance est dé�ni par :

θ̂ = arg max
θ

log pθ (y1:N ) . (7)

Les méthodes de Monte-Carlo séquentielles permettent un calcul approché de la dis-
tribution de �ltrage. L'idée est de tirer M ∈ N∗ réalisations {h(m)

n }1≤m≤M,n∈N∗ dans
le but d'approcher empiriquement la distribution de �ltrage. Les réalisations tirées dans
les méthodes de Monte-Carlo séquentielles sont appelées des particules. Les méthodes de
Monte-Carlo séquentielles de �ltrage peuvent être très coûteuses en temps de calcul lorsque
la dimension de l'espace d'état est grande [Snyder et al., 2008, Ades and Van Leeuwen,
2015, Rebeschini et al., 2015]. Ces méthodes sont fondées sur le principe d'échantillonnage
d'importance [Geweke, 1989], qui consiste à tirer les particules selon une distribution
d'importance, puis à leur attribuer des poids a�n de corriger l'écart entre la distribution
de �ltrage et la distribution d'importance. Cependant, l'application directe de ce principe
dans les POMPs échoue en pratique, car la plupart des poids se rapprochent de zéro,
alors que seulement quelques particules ont des poids non-négligeables. En conséquence,
l'échantillonnage d'importance seul devient de plus en plus ine�cace, car beaucoup de
puissance de calcul est dépensée à l'échantillonnage des particules qui ne contribuent pas
à l'estimation de la distribution de �ltrage. Ce phénomène est connu sous le nom de la
dégénérescence des poids [Cappé et al., 2005, Del Moral and Jacod, 2001]. L'approche
classique contre la dégénérescence des poids consiste à re-échantillonner les particules à
chaque itération ou selon un critère tel que le nombre de particules e�caces [Cornebise
et al., 2008, Doucet and Johansen, 2011], c'est-à-dire de re-tirer chaque particule avec une
probabilité égale à son poids. Cela donne la classe des algorithmes basés sur l'approche
Sampling Importance Resampling (SIR) [Doucet et al., 2000, Douc and Cappe, 2005]. Dans
cette approche, la phase de ré-échantillonnage supprime les particules avec les poids faibles
et les particules avec des poids signi�catifs sont ré-échantillonnées plusieurs fois. Le �ltre
particulaire SIR classique est dé�nie par :

1. Pour m dans {1 : M}, tirer h̃
(m)
n+1 suivant la distribution p

(
hn+1

∣∣∣h(m)
n ,yn

)
si n > 0,

sinon tirer h̃
(m)
1 suivant p (h1);

2. Pour m dans {1 : M}, calculer η(m)
n+1 = p

(
yn+1

∣∣∣h̃(m)
n+1,h

(m)
n ,yn

)
;

3. Obtenir {h(m)
n+1}1≤m≤M en tirantM particules de {h̃(m)

n+1}1≤m≤M avec les probabilités

proportionnelles à {η(m)
n+1}1≤m≤M ;
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Ainsi, pour tout n dans {1 : N}, la distribution de �ltrage p (hn |y1:n ) est approximée
par :

p (hn |y1:n ) ≈ 1

M

M∑

m=1

δ
(
hn − h(m)

n

)
,

où δ est la distribution de Dirac.
Dans ce rapport, nous détaillons les méthodes alternatives à celles de Monte-Carlo qui

ont fait l'objet d'étude de cette thèse. Cependant, les méthodes de Monte-Carlo séquen-
tielles ont servi comme une référence pour quanti�er la précision des méthodes proposées.

Résumé du chapitre 2

Dans le chapitre 2, nous revoyons le modèle Conditionally Gaussian Observed Markov
Switching Model (CGOMSM), qui est un POMP à états hybrides.

Soit (X1:N ,R1:N ,Y1:N ) un processus stationnaire état-signal. Le CGOMSM est un
triplet (R1:N ,X1:N ,Y1:N ) tel que, pour tout rn:n+1 dans Ω2, nous avons :

� La distribution de p (xn:n+1,yn:n+1 |rn:n+1 ) est gaussienne de moyenne Υ(rn:n+1) et
de matrice de covariance Ξ(rn:n+1).

� La moyenne de p (xn:n+1,yn:n+1 |rn:n+1 ) est de la forme :

Υ(rn:n+1) =

[
M(rn)

M(rn+1)

]
=

[
E
[
[X>nY>n ]> |Rn = rn

]

E
[
[X>n+1Y

>
n+1]> |Rn+1 = rn+1

]
]

; (8)

� La matrice de covariance de p (xn:n+1,yn:n+1 |rn:n+1 ) est de la forme :

Ξ(rn:n+1) =

[
S(rn) Σ(rn:n+1)

Σ>(rn:n+1) S(rn+1)

]
; (9)

� p (xn:n+1,yn:n+1 |rn:n+1 ) est soumise à la contrainte :

p (yn+1 |xn, rn:n+1,yn ) = p (yn+1 |rn:n+1,yn ) .

Ce modèle permet une implémentation pratique d'algorithme de �ltrage et de lissage
exact [Abbassi et al., 2015, Abbassi et al., 2011, Gorynin et al., 2015, Gorynin et al.,
2017a, Gorynin et al., 2017b].

Il a été observé dans [Derrode and Pieczynski, 2013] que la Probability Density Function
(pdf) de (Xn,Yn,Xn+1,Yn+1) dans le CGOMSM stationnaire est de la forme :

p (x1,y1,x2,y2) =
∑

1≤i,j≤K
αijpij(x1,y1,x2,y2), (10)

avec {αij}1≤i,j≤K réels positifs et pour tout (i, j) dans {1 : K}2, pij(x1,y1,x2,y2) est une
distribution gaussienne qui véri�e

pij (y2 |x1,y1 ) = pij (y2 |y1 ) .

L'idée est alors d'approcher un processus de Markov stationnaire (X1:N ,Y1:N ) arbi-
traire par la distribution marginale (10) de CGOMSM. En e�et, la distribution d'un
processus de Markov stationnaire (X1:N ,Y1:N ) est donnée par p (x1,y1,x2,y2), et nous
voyons que le CGOMSM permet de représenter p (x1,y1,x2,y2) comme un mélange de
gaussiennes contraintes par pij (y2 |x1,y1 ) = pij (y2 |y1 ). Or, il est connu qu'un mélange
de gaussiennes est très �exible et permet d'approcher d'aussi prêt qu'on le souhaite les
distributions su�samment régulières. Cela a permis de concevoir le Learned Condition-
ally Gaussian Observed Markov Switching Model Filter (LCGOMSMF) [Gorynin et al.,
2017a] et Learned Conditionally Gaussian Observed Markov Switching Model Smoother
(LCGOMSMS) [Gorynin et al., 2017b], qui fonctionnent de la manière suivante :
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1. Considérer une séquence d'apprentissage (x?1:N ′ ,y
?
1:N ′) issue d'un processus de Markov

stationnaire arbitraire. Cette séquence dé�nit une distribution empirique du quadru-
plet (Xn,Yn,Xn+1,Yn+1);

2. Approcher la distribution empirique du quadruplet (Xn,Yn,Xn+1,Yn+1) par un
CGOMSM;

3. Procéder au �ltrage ou au lissage des donnés réelles (x1:N ,y1:N ).

Le chapitre 2 détaille toutes les étapes de la construction du CGOMSM, le modèle
Conditionally Markov Switching Hidden Linear Model (CMSHLM), les algorithmes de
�ltrage et de lissage exact et la contribution principale de l'auteur, qui est la conception
d'algorithme de type Expectation-Maximization (EM) pour l'estimation des paramètres
du modèle CGOMSM à partir d'une séquence d'apprentissage.

Résumé du chapitre 3

Dans le chapitre 3, nous présentons une approche générale de �ltrage et de lissage dans les
POMPs à états hybrides. Cette approche utilise les grilles d'intégration numérique. L'idée
de l'application de ces grilles au problème d'estimation bayésienne est la suivante. Pour
toute transformation mesurable f de la variable aléatoire Hn, le calcul de l'espérance de
f(Hn) sachant le signal observé y1:N peut se résumer à un calcul d'intégrales :

E [f(Hn) |y1:N ] =

∫
f(hn)p (hn |y1:N ) dh1:N =

∫
f(hn)p (h1:N ,y1:N ) dh1:N∫

p (h1:N ,y1:N ) dh1:N
,

sous réserve de l'existence de E [f(Hn) |y1:N ], où dh1:N dénote une mesure-hybride formée
par les mesures de Dirac et Lebesgue.

Un calcul approché des intégrales au dénominateur et au numérateur peut se faire grâce
à des grilles d'intégration. Une grille d'intégration permet de dé�nir un sous-ensemble

discret �ni Λ ⊂ Ω×Rd et une fonction de masse π(N) ∈ F
(

ΛN → R

)
pour avoir :

∑

γ1:N∈ΛN

f
(
γ

(n)
1:N

)
π(N)(γ1:N ) ≈

∫
f(hn)p (h1:N ,y1:N ) dh1:N ; (11a)

∑

γ1:N∈ΛN

π(N)(γ1:N ) ≈
∫
p (h1:N ,y1:N ) dh1:N , (11b)

où γ1:N =
[
γ

(1)
1:N γ

(2)
1:N . . . γ

(N)
1:N

]
et les coe�cients {γ(i)

1:N}1≤i≤N sont dans Λ. Cepen-

dant, le calcul direct de (11) serait de complexité exponentielle O
(
Card(Λ)N

)
, ce qui n'est

pas compatible avec la majorité des applications pratiques. L'auteur introduit les grilles
markoviennes, qui ont été développées dans le cadre de ce projet. Une grille markovienne

est telle qu'il existe des fonctions q1, q2, . . . qN−1 dans F
(

Λ2 → R

)
telles que la fonction

de masse π de la grille véri�e:

∀γ1:N ∈ ΛN , π(N)(γ1:N ) = q1

(
γ

(1)
1:N ,γ

(2)
1:N

)
q2

(
γ

(2)
1:N ,γ

(3)
1:N

)
. . . qN−1

(
γ

(N−1)
1:N ,γ

(N)
1:N

)
. (12)

Dans le chapitre 3, nous démontrons que les grilles markoviennes permettent d'évaluer (11)
avec une complexité O

(
NCard(Λ)2

)
qui est linéaire en N . De plus, nous considérons des

séquences des grilles markoviennes de type
{

ΛNL , π
(N)
L

}
L∈N∗

où Card(ΛL) augmente avec L.
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Nous fournissons des conditions su�santes qui garantissent la consistance de la méthode,
c'est-à-dire qui assurent la propriété :

lim
L→∞

∑
γ1:N∈ΛNL

f
(
γ

(n)
1:N

)
π

(N)
L (γ1:N )

∑
γ1:N∈ΛNL

π
(N)
L (γ1:N )

= E [f(Hn) |y1:N ] (13)

pour toute fonction f développable en série entière au voisinage de chacun des points de
son domaine de dé�nition.

Nous appelons cette méthode d'estimation de E [f(Hn) |y1:N ] Markovian Grid-Based
State Estimator (MGSE). Le MGSE appliqué au calcul approché de E [HN |y1:N ] est
appelé Markovian Grid-Based Filter (MGF). Le MGSE appliqué au calcul approché de
E [Hn |y1:N ] pour n < N est appelé Markovian Grid-Based Smoother (MGS).

Dans la littérature, nous pouvons trouver des méthodes analogues à MGSE : par
exemple [Gospodinov and Lkhagvasuren, 2014, Farmer and Toda, 2017, Terry and Knotek,
2011, Tauchen, 1986, Lo et al., 2016]. La valeur ajoutée de la contribution de l'auteur par
rapport aux résultats existants est la suivante :

� Nous prouvons que MGSE converge vers la valeur de l'espérance a posteori ;

� L'algorithme MGSE est donné dans le cas le plus général, c'est-à-dire dans le cas des
POMPs à états hybrides ;

� Le MGSE utilisé avec des grilles creuses (Sparse grids) permet d'estimer e�cacement
l'état de grande dimension.

Résumé du chapitre 4

Le chapitre 4 est consacré à une étude de comparaison des performances des estimateurs
optimaux d'états basés sur les sous-modèles des Pairwise Markov Model (PMM)s et Triplet
Markov Model (TMM)s. Les PMMs sont vus comme une généralisation des HMMs. La
contribution de l'auteur a consisté à conduire et rapporter des séries multiples d'expériences
de comparaison des performances des estimateurs sur des données réelles et synthétiques.

Rappelons qu'un HMM (R1:N ,Y1:N ) a les propriétés suivantes :

� R1:N est une chaîne de Markov ;

� les éléments de Y1:N sont indépendants conditionnellement à R1:N ;

� pour tout n dans {1 : N}, p (yn |r1:N ) = p (yn |rn ).

Dans un PMM, (R1:N ,Y1:N ) est de Markov :

p (r1:N ,y1:N ) = p (r1,y1) p (r2,y2 |r1,y1 ) . . . p (rN ,yN |rN−1,yN−1 ) . (14)

Nous pouvons voir que la pdf de (R1:N ,Y1:N ) dans un HMM est de la forme (14), car
nous avons dans un HMM :

p (r1:N ,y1:N ) = p (r1) p (y1 |r1 ) p (r2 |r1 ) p (y2 |r2 ) . . . p (rN |rN−1 ) p (yN |rN ) , (15)

et la densité p (rn+1,yn+1 |rn,yn ) peut être identi�ée à :

p (rn+1,yn+1 |rn,yn ) = p (rn+1 |rn,yn ) p (yn+1 |rn+1, rn,yn ) . (16)
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Ainsi, un PMM est un HMM si et seulement si pour tout n dans {1 : N − 1}, nous avons :

p (rn+1 |rn,yn ) = p (rn+1 |rn ) ; (17a)

p (yn+1 |rn+1, rn,yn ) = p (yn+1 |rn+1 ) . (17b)

Les équations (17) sont en e�et des hypothèses implicites qui sont admises lorsqu'un
système est modélisé par un HMM. Les PMMs permettent de relâcher ces hypothèses
supplémentaires.

Nous considérons quatre sous-modèles des PMMs.
� Hidden Markov Model With Conditionally Independent Noise (HMM-IN) est le

HMM �classique�. La densité de transition dans un HMM-IN est de la forme :

p (rn+1,yn+1 |rn,yn ) = p (rn+1 |rn ) p (yn+1 |rn+1 ) . (18)

� Hidden Markov Model With Conditionally Correlated Noise (HMM-CN) est un
PMM où R1:N est de Markov, les éléments de Y1:N sont corrélés sachant R1:N et qui n'est
pas un HMM-IN (ce qui est schématisé dans la Figure 4.1). La densité de transition dans
un HMM-CN est de la forme :

p (rn+1,yn+1 |rn,yn ) = p (rn+1 |rn ) p (yn+1 |rn+1,yn ) . (19)

� Pairwise Markov Model With Conditionally Independent Noise (PMM-IN) est un
PMM où R1:N n'est pas de Markov, les éléments de Y1:N sont indépendants sachant R1:N

et qui n'est pas un HMM-IN. La densité de transition dans un PMM-IN est de la forme :

p (rn+1,yn+1 |rn,yn ) = p (rn+1 |rn,yn ) p (yn+1 |rn+1, rn ) . (20)

� Pairwise Markov Model With Conditionally Correlated Noise (PMM-CN) est un
PMM où R1:N n'est pas de Markov, les éléments de Y1:N sont corrélés sachant R1:N et qui
n'est pas un HMM-IN, PMM-IN où HMM-CN. La densité de transition dans un PMM-CN
est de la forme générale :

p (rn+1,yn+1 |rn,yn ) = p (rn+1 |rn,yn ) p (yn+1 |rn+1, rn,yn ) . (21)

Les graphes de dépendance de ces sous-modèles de PMM sont présentés à la Figure 4.2.
Dans ce chapitre, on cherche à quanti�er dans quelle mesure le fait de relâcher les deux

hypothèses de (17) contribue à améliorer les performances de l'estimateur du Maximum
Posterior Mode (MPM) du PMM en comparaison avec l'estimateur du MPM du HMM.
Pour cela, on a dé�ni les modèles HMM-CN et PMM-IN qui sont intermédiaires entre
le HMM-IN et PMM-CN. Puis, l'auteur a proposé une technique d'approximation d'un
PMM-CN par un HMM-IN, HMM-CN et PMM-IN en utilisant la méthode des moments.
L'étude a consisté principalement à simuler une réalisation de PMM-CN et à restaurer
les états cachés avec les estimateurs du MPM qui correspondent aux quatre sous-modèles
dans le but de quanti�er les gains possibles liés à l'utilisation des PMMs. Nous avons
considéré trois cas de distributions de Y1:N sachant R1:N : gaussienne, exponentielle et
gamma. Dans tous ces cas, nous avons montré que les deux hypothèses (17) du HMM con-
tribuent indépendamment à la dégradation de la qualité de restauration, ce qui a con�rmé
expérimentalement la préférence des PMMs aux HMMs.

Une grande partie du chapitre est consacrée à une validation expérimentale sur des
données réelles.

Les HMMs et PMMs permettent d'étendre le modèle de Black-Scholes utilisé en modéli-
sation �nancière des rendements des actifs. Le modèle classique de Black-Scholes suppose
que le logarithme du rendement d'un actif sur une durée �xe a une distribution normale,
c'est-à-dire que :

Yn = µ+ σUn, (22)
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où {Yn}1≤n≤N sont les log-rendements sur une durée �xe et {Un}1≤n≤N des variables
gaussiennes indépendantes identiquement distribuées. Les HMMs et PMMs permettent
d'introduire un processus caché R1:N à valeurs dans un ensemble discret �ni Ω et supposer
une dépendance de µ et σ des valeurs prises par les variables cachées et donc poser :

Yn = µ(rn) + σ(rn)Un. (23)

Prenons par exemple Ω = {ω1, ω2}, alors ω1 peut être associé à un état baissier du
marché et ω2 peut être associer à un état haussier du marché. En supposant que R1:N est
de Markov, (23) permet de dé�nir un HMM qui modélise les log-rendements.

A�n de proposer un modèle PMM compatible avec (23) et qui serait plus général que le
HMM, l'auteur a proposé de modéliser la loi de Y1:N sachant R1:N par celle d'un processus
autorégressif d'ordre 1, c'est-à-dire :

Un+1 = ρ(Rn,Rn+1)Un +
√

1− ρ(Rn,Rn+1)2Vn+1, (24)

avec U0, {Vn}n>0 des variables gaussiennes indépendantes identiquement distribuées et
pour tout i, j ∈ Ω, |ρ(i, j)| < 1.

Ensuite, l'auteur a proposé de modéliser le lien probabiliste possible entre Rn+1 et Yn

sachant Rn en utilisant la fonction logistique. Dans le cas où Ω = {ω1, ω2}, cela donne :

p (rn+1 = ω1 |rn,un ) =
1

1 + e−a(rn)−b(rn)un
, (25)

avec a(ω) ∈ R, b(ω) ∈ R pour tout ω ∈ Ω.
Finalement, le modèle proposé des log-rendements est donné par :

p (y1 |r1 ) = N
(

y1;µ(r1), σ2(r1)
)

; (26a)

p (rn+1 = ω1 |rn, yn ) =
1

1 + e
−a(rn)− b(rn)

σ(rn)
(yn−µ(rn))

; (26b)

p (yn+1 |rn, rn+1, yn ) =

N
(

yn+1;µ(rn+1) +
ρ(rn, rn+1)σ(rn+1)

σ(rn)
(yn − µ(rn)) , σ(rn+1)2(1− ρ(rn, rn+1)2)

)
.

(26c)

Ce modèle a été implémenté et appliqué à des données historiques dans le cadre d'une
simulation de trading (backtesting). Cette étude a mis en évidence les améliorations ap-
portées par le passage du HMM au PMM.

Résumé du chapitre 5

Le chapitre 5 cherche à analyser les insu�sances du Gaussian Filter (GF), qui ont été
corrigées par le Conditional Gaussian Filter (CGF). La contribution de l'auteur est de
proposer une extension du CGF applicable dans le contexte des POMPs à états hybrides.
Cette extension est appelée le Switching Conditional Gaussian Filter (SCGF).

Le GF et le CGF s'appliquent dans le cadre d'un POMP à états continus, donné par
le processus état-signal (X1:N ,Y1:N ) de la forme :

Xn+1 = fn+1(Xn,Un+1), n ∈ N∗, n < N ; (27a)

p (yn |xn ) ∝ hn(yn,xn), n ∈ N∗, n ≤ N, (27b)

avec X1:N un processus de Markov dans Rd et les éléments de Y1:N dans Rd
′
indépendantes

conditionnellement à X1:N . Les éléments de U1:N sont des variables gaussiennes centrées
réduites indépendantes dans Rq.
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Le principe du GF est implémenté dans l'Extended Kalman Filter (EKF), l'Unscented
Kalman Filter (UKF) et le Gauss-Hermite Filter (GHF). L'idée du GF consiste à supposer
que pour tout n, la densité p (xn+1,yn+1 |y1:n ) est gaussienne :

∀n ∈ N, p (xn+1,yn+1 |y1:n ) = N

([
xn+1

yn+1

]
;

[
x̂n+1|n
ŷn+1|n

]
,

[
Pxx
n+1|n Pxy

n+1|n
Pyx
n+1|n Pyy

n+1|n

])
, (28)

avec x̂n+1|n ∈ Rd, ŷn+1|n ∈ Rd
′
, Pxx

n+1|n ∈ Rd×d, Pxy
n+1|n ∈ Rd×d

′
, Pyx

n+1|n ∈ Rd
′×d et

Pyy
n+1|n ∈ Rd

′×d′ .
Cela implique que :

∀ ∈ N∗, pn|n (xn) = p (xn |y1:n ) = N
(
xn; x̂n|n, Γ̂n|n

)
; (29a)

∀ ∈ N, pn+1|n (xn+1) = p (xn+1 |y1:n ) = N
(
xn+1; x̂n+1|n, Γ̂n+1|n

)
, (29b)

où x̂n|n ∈ Rd, Γ̂n+1|n ∈ Rd×d et (x̂n|n, Γ̂n|n) sont obtenus par le conditionnement gaussien
de (28):

x̂n|n = x̂n|n−1 + Pxy
n|n−1

(
Pyy
n|n−1

)−1
(yn − ŷn|n−1); (30a)

Γ̂n|n = Γ̂n|n−1 −Pxy
n|n−1

(
Pyy
n|n−1

)−1
Pyx
n|n−1. (30b)

Le GF calcule x̂n+1|n+1 et Γ̂n+1|n+1 à partir de x̂n|n, Γ̂n|n et yn+1 :

1. Prédiction

x̂n+1|n =

∫
fn+1(xn,un+1)pn|n (xn) p (un+1) dxndun+1; (31a)

Γ̂n+1|n =

∫
fn+1(xn,un+1)fn+1(xn,un+1)>pn|n (xn) p (un+1) dxndun+1 − x̂n+1|nx̂

>
n+1|n.

(31b)

2. Mise à jour

ŷn+1|n =

∫
yn+1hn+1(yn+1,xn+1)pn+1|n (xn+1) dxn+1dyn+1; (32a)

Pxy
n+1|n =

∫
(xn+1 − x̂n+1|n)(yn+1 − ŷn+1|n)>hn+1(yn+1,xn+1)pn+1|n (xn+1) dxn+1dyn+1.

(32b)

Pyy
n+1|n =

∫
yn+1y

>
n+1hn+1(yn+1,xn+1)pn+1|n (xn+1) dxn+1dyn+1 − ŷn+1|nŷ

>
n+1|n. (32c)

Ensuite, x̂n+1|n+1 et Γ̂n+1|n+1 sont obtenus en appliquant la formule (30) à x̂n+1|n, ŷn+1|n,

Γ̂n+1|n, Pxy
n+1|n, Pyy

n+1|n et Pyx
n+1|n = (Pxy

n+1|n)>.

Les insu�sances du GF viennent de la forme d'approximation (28). Nous notons que :

� L'approximation (28) peut induire la divergence du �ltre dans le cas où la distribution
de Yn sachant Xn est à queue lourde cf. [Roth et al., 2013]. Cela vient du fait
que seuls les deux premiers moments sont considérés dans l'approximation de la
distribution jointe de (Xn,Yn).
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� Si la distribution de Yn sachant Xn est de variance in�nie, ou si les variables Yn et Xn

sont décorrélées mais pas indépendantes, alors nous avons Pxy
n|n−1

(
Pyy
n|n−1

)−1
= 0.

Dans ce cas, l'étape de la mise à jour échoue systématiquement et le GF n'extrait
aucune information de Y1:N sur la distribution de X1:N .

L'approche du CGF permet de corriger ces défauts. L'idée est de supposer une hy-
pothèse moins forte que celle du GF, qui est :

pn|n (xn) = p (xn |y1:n ) = N
(
xn; x̂n|n, Γ̂n|n

)
; (33a)

pn+1|n (xn+1) = p (xn+1 |y1:n ) = N
(
xn+1; x̂n+1|n, Γ̂n+1|n

)
. (33b)

L'algorithme du CGF est le suivant :

1. Prédiction

x̂n+1|n =

∫
fn+1(xn,un+1)pn|n (xn) p (un+1) dxndun+1; (34a)

Γ̂n+1|n =

∫
fn+1(xn,un+1)fn+1(xn,un+1)>pn|n (xn) p (un+1) dxndun+1 − x̂n+1|nx̂

>
n+1|n.

(34b)

2. Mise à jour

cn+1 =

∫
hn+1(yn+1; xn+1)pn+1|n (xn+1) dxn+1; (35a)

x̂n+1|n+1 =

∫
xn+1

hn+1(yn+1,xn+1)pn+1|n (xn+1)

cn+1
dxn+1; (35b)

Γ̂n+1|n+1 =

∫
xn+1x

>
n+1

hn+1(yn+1,xn+1)pn+1|n (xn+1)

cn+1
dxn+1 − x̂n+1|n+1x̂

>
n+1|n+1.

(35c)

Par construction, le CGF n'a pas les défauts annoncés du GF, car il évite de faire une
approximation de la distribution de Yn sachant Xn. Cela permet de justi�er l'intérêt à
étendre le CGF pour pouvoir l'appliquer dans le contexte des POMPs à états hybrides.
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Chapter 1

Introduction

This chapter is a general presentation of the Partially Observable Markov Process (POMP).
We outline the general Bayesian state estimation procedure which is used in the Bayesian
�ltering, smoothing and forecasting. We also present the sequential Monte-Carlo methods,
which are widely used in the context of POMPs. In this chapter and for the rest of the
report, we denote by H1:N = H1, . . . ,HN a time series, where for each n in {1 : N}, Hn

is a state vector and takes values in H = R
d × Ω, where Ω = {1 : K} is a �nite discrete

set. The corresponding observed time series is denoted by Y1:N and each Yn takes values
in Rd

′
.

1.1 Partially observed Markov process

Here we present the POMPs and their categorization.

De�nition 1. Partially observed Markov process (POMP)

Let N be in N∗, the pair (H1:N ,Y1:N ) is a Partially observed Markov process (POMP)
if:

p (h1:N ,y1:N ) = p (h1,y1) p (h2,y2 |h1,y1 ) . . . p (hN ,yN |hN−1,yN−1 ) , (1.1)

which means that the pair (H1:N ,Y1:N ) is Markovian.

Let us present a categorization of POMPs:

� Card(Ω) = 1 and d > 0. In this case, we have H = R
d up to a bijection and such a

POMP is called a continuous-state POMP;

� 1 ≤ Card(Ω) < ∞ and d = 0. In this case, we have H = Ω up to a bijection and
such a POMP is called a �nite-discrete-state POMP;

� 0 ≤ Card(Ω) < ∞ and d ≥ 0. Such a POMP is called a hybrid-state POMP. In
the literature, these models may also be called switching processes (systems), jump
processes (systems), interacting multimodels and so on.

For the rest of the report, we consider the following decomposition of H1:N into a
continuous-valued component X1:N and a �nite-discrete-valued component R1:N :

∀n ∈ {1 : N},Hn = (Xn,Rn). (1.2)

Therefore,

� In a continuous-state POMP, the state-signal process is denoted as (X1:N ,Y1:N );
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� In a �nite-discrete-state POMP, the state-signal process is denoted as (R1:N ,Y1:N );

� In a hybrid-state POMP, the state-signal process is denoted as (R1:N ,X1:N ,Y1:N ).

In the literature, the �nite-discrete-state POMP is known as the Pairwise Markov
Model (PMM), [Pieczynski, 2003]. The PMM may also be seen as a generalization of
the Hidden Markov Model (HMM). The hybrid-state POMPs are sometimes referred as
�triplet systems�. They may be seen as a simultaneous generalization of the continuous-
state and �nite-discrete-state POMPs.

1.2 Bayesian state estimation

Here we consider a hybrid-state POMP (H1:N ,Y1:N ) de�ned by the distribution of the
pair (H1,Y1) and the transition kernel

∀n ∈ {1 : N − 1}, p (hn+1,yn+1 |hn,yn ) . (1.3)

We present general algorithms of Bayesian �ltering, smoothing and forecasting.

1.2.1 Bayesian �ltering

For each n in N∗, let (H1:n,Y1:n) be a POMP. The Probability Density Function (pdf)
p (hn |y1:n ) is called the �ltering distribution. One may make use of the Markovianity of
(H1:n,Y1:n) in order to compute the �ltering distribution as follows:

� Initialization: we have

p (h1 |y1 ) =
p (h1,y1)∫
p (h1,y1) dh1

. (1.4)

� Iterative part : suppose that p (hn |y1:n ) is given, then p (hn+1 |y1:n+1 ) is classically
computed in three steps:

1. Compute the following one-step predictive distribution:

p (hn+1,yn+1 |y1:n ) =

∫
p (hn |y1:n ) p (hn+1,yn+1 |hn,yn ) dhn; (1.5)

2. Compute the likelihood coe�cient at n+ 1:

cn+1 = p (yn+1 |y1:n ) =

∫
p (hn+1,yn+1 |y1:n ) dhn+1; (1.6)

3. Update the �ltering distribution:

p (hn+1 |y1:n+1 ) =
p (hn+1,yn+1 |y1:n )

cn+1
. (1.7)

This iterative method allows computing the log-likelihood of y1:N . We have:

log p (y1:N ) = log
(
p (y1)

N−1∏

n=1

p (yn+1 |y1:n )
)

= log p (y1) +

N−1∑

n=1

log cn+1. (1.8)

This allows a maximum likelihood parameter estimation of POMPs by using the tools of
the numerical analysis. Recall that the maximum likelihood estimator is de�ned by:

θ̂ = arg max
θ

log pθ (y1:N ) . (1.9)

Such an estimator is convergent and asymptotically e�cient [Wasserman, 2004, Douc et al.,
2004, Douc and Matias, 2001, Douc et al., 2011].

The �ltering distribution is generally not available exactly. Indeed, diverse POMP
submodels presented in Figure 1 allow the following cases :
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� The models of type (C6) are classic linear Gaussian state-space systems. The Kalman
�lter allows exact Bayesian �ltering in these models [Cappé et al., 2005];

� The models of type (C5) are pairwise-linear Gaussian models [Gorynin et al., 2016a].
They may be seen as a generalization of (C6). A modi�ed version of the Kalman
�lter allows exact Bayesian �ltering in these models;

� The models of type (C4) are linear, non-Gaussian state-space systems [Harvey and
Luati, 2014]. The �ltering distribution in such models is generally not available
exactly [Cappé et al., 2005];

� The models of type (C3) are pairwise-linear, non-Gaussian state-space systems. The
�ltering distribution in such models is generally not available exactly;

� The models of type (C2) are non-linear non-Gaussian state-space systems. The
�ltering distribution in such models is generally not available exactly. The stochastic
volatility model [Jacquier et al., 1994, Jacquier et al., 2002] is an example of a model
of type (C2);

� The models of type (C1) are pairwise-non-linear and non-Gaussian. The �ltering dis-
tribution in such models is generally not available exactly. The asymmetric stochastic
volatility model [Centeno and Salido, 2009] is an example of a model of type (C1);

� The models of type (D2) are classic HMMs with a �nite-discrete state space. The
forward-backward algorithm allows exact Bayesian state estimation in such mod-
els [Cappé et al., 2005];

� The models of type (D1) are known as PMMs. They can be seen as a generalization
of (D2). A modi�ed version of the forward-backward algorithm allows exact Bayesian
state estimation in such models [Pieczynski, 2003];

� A model of type (H5) is a hybrid-state POMP which is linear Gaussian state-space
conditional on R1:N . Such a model is also known as a Switching Linear Dynamical
System (SLDS) and Conditionally Gaussian Linear State-Space Model (CGLSSM)
[Cappé et al., 2005]). The �ltering distribution is generally not available exactly in
such models;

� A model of type (H3) is a hybrid-state POMP which is pairwise-linear Gaussian con-
ditional on R1:N . Such a model is also known as Conditionally Gaussian Pairwise
Markov Switching Model (CGPMSM) [Abbassi et al., 2015]. The �ltering distribu-
tion is generally not available exactly in such models;

� Models of type (H2) represent the Conditionally Markov Switching Hidden Linear
Model (CMSHLM), where one can compute exactly p (rn |y1:n ), p (rn |y1:N ) and the
�rst two moments of p (xn |rn,y1:n ), p (xn |rn,y1:N ) [Pieczynski, 2011a].

� Models of type (H4), represent the Conditionally Gaussian Observed Markov Switch-
ing Model (CGOMSM). They are submodels of (H2) and (H3) simultaneously [Ab-
bassi et al., 2015, Gorynin et al., 2017a].

� A model of type (H1) is a hybrid-state POMP which is a non-linear, non-Gaussian
state-space system conditional on R1:N . The �ltering distribution in such models is
generally not available exactly. The switching stochastic volatility model [So et al.,
1998, Carvalho and Lopes, 2007] is an example of a model of type (H1);

� Finally, the most general POMPs are hybrid-state POMPs which are not necessar-
ily Gaussian nor linear conditional on R1:N . The switching asymmetric stochastic
volatility model [Gorynin et al., 2016c] is an example of such a model.
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1.2.2 Bayesian smoothing

Let N in N∗, (H1:N ,Y1:N ) be a POMP. The pdf p (hn:N |y1:N ) is called the smoothing
distribution.

One may make use of the Markovianity of (H1:N ,Y1:N ) in order to compute the smooth-
ing distribution by the following recursion: given the �ltering distribution p (hn |y1:n ) and
the smoothing distribution p (hn+1:N |y1:N ), we compute p (hn:N |y1:N ) by:

� Compute :

p (hn |hn+1,y1:n+1 ) =
p (hn |y1:n ) p (hn+1,yn+1 |hn,yn )∫
p (hn |y1:n ) p (hn+1,yn+1 |hn,yn ) dhn

; (1.10)

� Compute :

p (hn:N |y1:N ) = p (hn |hn+1,y1:n+1 ) p (hn+1:N |y1:N ) . (1.11)

This recursion iterates backward and is initialized by �ltering distribution p (hN |y1:N ).
The exact smoothing distribution is available in the same POMPs where an exact �ltering
distribution is available.

Bayesian smoothing is an essential component of diverse parameter estimation methods
such as the Expectation-Maximization (EM), Stochastic Expectation-Maximization (SEM)
and Iterative Conditional Estimation (ICE) [Banga et al., 1992, Delmas, 1995].

1.2.3 Bayesian forecasting

The predictive distribution in a POMP at the horizon T ∈ N∗ is de�ned as the pdf
p (hn+1:n+T ,yn+1:n+T |y1:n ).

Given the �ltering distribution p (hn |y1:n ), the predictive distribution at the horizon
1 is given by (1.5). One may make use of the Markovianity of (H1:n+t,Y1:n+t) in order
to compute the predictive distribution as follows. For each t in {1 : T − 1}, the �ltering
distribution at the horizon t+ 1 is given by :

p (hn+1:n+t+1,yn+1:n+t+1 |y1:n ) =

p (hn+1:n+t,yn+1:n+t |y1:n ) p (hn+t+1,yn+t+1 |hn+t,yn+t ) . (1.12)

The ability of a POMP to accurately forecast the signal is extremely important for
practical applications. The accuracy of the forecast of the model is often the main criterion
of the model selection.

1.3 Parameter estimation

In this section, we consider a POMP (H1:N ,Y1:N ) de�ned by the pdf pθ (h1,y1) and the
transition kernel

∀n ∈ 1 : N − 1, pθ (hn+1,yn+1 |hn,yn ) , (1.13)

where pθ (.), pθ (. |.) mean that the value of the pdf depends upon the value of θ, which
is the parameter vector of the model. In this subsection, we recall diverse computational
approaches for estimating θ from y1:N or (h1:N ,y1:N ). We distinguish the following two
cases:

� A supervised estimation consists in estimating θ from (h1:N ,y1:N );
� An unsupervised estimation consists in estimating θ from y1:N .
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1.3.1 Supervised estimation

A supervised estimator can be a maximum likelihood estimator, de�ned by:

θ̂SUP(h1:N ,y1:N ) = arg max
θ

log pθ (h1:N ,y1:N ) . (1.14)

In the case where this estimator is not available exactly, one can maximize the model's
likelihood by using the tools of the numerical analysis. Speci�cally, it consists in de�ning
the objective function

θ → log pθ (h1:N ,y1:N ) = log pθ (h1,y1) +

N−1∑

n=1

log pθ (hn+1,yn+1 |hn,yn ) . (1.15)

in order to maximize it over a given set Θ of acceptable parameter values.

1.3.2 Unsupervised estimation

In the context of the unsupervised estimation, the maximum likelihood estimator is de�ned
by :

θ̂UNSUP(y1:N ) = arg max
θ

log pθ (y1:N ) . (1.16)

This estimator is generally not available exactly. However, one can de�ne the following
objective function, known as the log-likelihood function:

θ → log pθ (y1) +
N−1∑

n=1

log cn+1(θ), (1.17)

where for each n in {1 : N − 1}, cn+1(θ) = pθ (yn+1 |y1:n ) is computed by using (1.6) as
an output of the Bayesian �ltering procedure. Next, one maximizes this function by using
the tools of the numerical analysis.

Alternatively, there exist iterative unsupervised estimation algorithms such as the EM
[Dempster et al., 1977], SEM [Celeux and Govaert, 1992] and ICE [Banga et al., 1992]. All

these methods require an initial guess, denoted by θ̂
(0)
, which may be chosen at random

or determined somehow from y1:N . These methods are based on the �xed-point principle
which means that they look for a value (or for a pdf in the case of the stochastic ICE and
SEM) invariant to the transformation of the form:

θ → κ
(
θ,y1:N

)
. (1.18)

depending on the method considered.

The sequence of parameter estimates
(
θ̂

(1)
, θ̂

(2)
, . . . , θ̂

(q)
)
de�ned by :

∀k ≥ 0, θ̂
(k+1)

= κ
(
θ̂

(k)
,y1:N

)
, (1.19)

is supposed to converge to or to hover around some value which is then seen as the param-
eter estimate produced by the method.

� In the case of the EM algorithm, the transformation (1.18) is :

κ
(
θ̂

(k)
,y1:N

)
= arg max

θ
E
θ̂
(k) [log pθ (H1:N ,y1:N ) |y1:N ] . (1.20)

� In the case of the SEM algorithm, the transformation (1.18) is :

κ
(
θ̂

(k)
,y1:N

)
= θ̂SUP(H̃1:N ,y1:N ), H̃1:N ∼ p

θ̂
(k) (h1:N |y1:N ) . (1.21)
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where θ̂SUP is the maximum likelihood supervised estimator.
� In the case of the ICE algorithm, the transformation (1.18) is :

κ
(
θ̂

(k)
,y1:N

)
= E

θ̂
(k)

[
θ̂SUP(H1:N ,y1:N ) |y1:N

]
, (1.22)

where θ̂SUP is a supervised estimator. In the case where the above expression cannot be
computed exactly, one may use a Monte-Carlo method as an approximation, which de�nes
a stochastic ICE.

Let us also outline the Markov chain Monte Carlo (MCMC) methods, which are par-
ticularly e�cient in the context of machine learning [Andrieu et al., 2003b, Andrieu et al.,
2010].

1.4 Sequential Monte-Carlo methods

In this section, we present the sequential Monte-Carlo methods [Doucet and Johansen,
2011, Ristic et al., 2004, Carpenter et al., 1999, Andrieu and Doucet, 2002].

The sequential Monte-Carlo methods are used in POMPs where an exact Bayesian state
estimation is not possible. The idea is to sample M ∈ N∗ particles {h(m)

n }1≤m≤M,n∈N∗ in
order to approximate the �ltering or smoothing distribution. These methods do generally
converge to the exact Bayesian solution when M tends towards in�nity.

These methods realize the principle of importance sampling [Geweke, 1989], which is
to sample particles according to a proposal density and then to attribute weights to them
in order to correct the deviation of the proposal density from the posterior density. How-
ever, the sequential Monte-Carlo methods do not apply this principle directly, since most
of the weights tend to zero and only few of them have signi�cant weights. Thus, the
importance sampling becomes less and less e�cient due to the necessity to process the
particles which do not contribute to estimating the posterior density. This e�ect is known
as the weight degeneracy [Cappé et al., 2005, Del Moral and Jacod, 2001]. The most
widely used approach to overcome the weight degeneracy is to implement the Sampling
Importance Resampling (SIR)[Doucet et al., 2000], which means to resample each parti-
cle with the probability proportional to its weight. This produces a range of SIR-based
sequential Monte-Carlo methods [Douc and Cappe, 2005, Li et al., 2015]. Indeed, the
resampling stage removes the particle with low weights, and resamples the others multiple
times, which creates a sort of dependency among the resampled particles and increases the
variance of the estimate. Several approaches can overcome this increase of variance [Beskos
et al., 2017, Verge et al., 2015, Lindsten et al., 2017]. Moreover, the sequential Monte-
Carlo methods may have a heavy computational load in the case of high-dimensional state
estimation [Snyder et al., 2008, Ades and Van Leeuwen, 2015, Rebeschini et al., 2015].

1.4.1 Particle �lter
Here we describe a simple SIR-based Particle Filter (PF), which is a widely used sequential
Monte-Carlo method to access the �ltering distribution in a POMP. Let M ∈ N∗ be the
number of particles to sample according to p (hn |y1:n ), the SIR-PF consists in repeating
the following steps. For each n ≥ 0:

1. For each m in {1 : M}, sample h̃
(m)
n+1 from p

(
hn+1

∣∣∣h(m)
n ,yn

)
if n > 0, otherwise

sample h̃
(m)
1 from p (h1);

2. For each m in {1 : M}, compute η(m)
n+1 = p

(
yn+1

∣∣∣h̃(m)
n+1,h

(m)
n ,yn

)
;

3. Sample {h(m)
n+1}1≤m≤M by resampling {h̃(m)

n+1}1≤m≤M with probabilities proportional

to {η(m)
n+1}1≤m≤M ;
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Thus, for each n in {1 : N}, the �ltering distribution p (hn |y1:n ) is approximated by

p (hn |y1:n ) ≈ 1

M

M∑

m=1

δ
(
hn − h(m)

n

)
,

where δ denotes the Dirac distribution.

1.4.2 Particle smoothing

A Particle Smoother (PS) is a sequential Monte-Carlo method to access the smoothing
distribution p (hn |y1:N ) in a POMP. It approximates, for each n in {1 : N}, the smoothing
distribution by

p (hn |y1:N ) ≈ 1

M

M∑

m=1

δ
(
hn − h′(m)

n

)
,

where M ∈ N∗ is the number of particles to sample according to p (hn |y1:N ).
Here we consider the most known PS which is the forward-backward smoother [Briers

et al., 2010]. We suppose that we have already sampled particles {h(m)
n }1≤m≤M,1≤n≤N

according to the �ltering distribution as it was presented previously.
The particles {h′(m)

n }1≤m≤M,1≤n≤N representing the smoothing distribution are ob-
tained as follows:

� Initialization: For each m in {1 : M}, let

h
′(m)
N = h

(m)
N .

� For each n in {1 : N − 1}, iterate:

1. For each m in 1 : M , compute η′(m)
n = p

(
h
′(m)
n+1)

∣∣∣h(m)
n ,yn

)
;

2. Sample {h′(m)
n }1≤m≤M by resampling {h(m)

n }1≤m≤M with probabilities proportional

to {η′(m)
n }1≤m≤M .

1.4.3 Monte-Carlo forecasting

The Monte-Carlo forecasting is an approach to approximate, for each n inN∗, the predictive
distribution at horizon T ∈ N∗ de�ned by p (hn+1:n+T ,yn+1:n+T |y1:n ), as follows:

p (hn+1:n+T ,yn+1:n+T |y1:n ) ≈ 1

M

M∑

m=1

δ
(
hn+1:n+T − h

′′(m)
n+1:n+T

)
δ
(
yn+1:n+T − y

′′(m)
n+1:n+T

)
,

whereM ∈ N∗ is the number of particles to sample according to p (hn+1:n+T ,yn+1:n+T |y1:n ).
Here, each particle represents a trajectory of type (hn+1:n+T ,yn+1:n+T ).

In the POMP framework, we suppose that we have already sampled {h(m)
n }1≤m≤M,1≤n≤N

according to the �ltering distribution as it was presented previously.
The particles {(h′′(m)

n+1:n+T ,y
′′(m)
n+1:n+T )}1≤m≤M,1≤n≤N are sampled as follows:

� Initialisation: For each m in {1 : M}, sample (h
′′(m)
n+1:n+1,y

′′(m)
n+1:n+1) from

p
(
hn+1,yn+1

∣∣∣h(m)
n ,yn

)
;

� For each t in {1 : T − 1}, sample the particles according to the predictive distri-
bution at horizon t + 1 by using those which were sampled according to the predictive
distribution at horizon t. Thus, for each m in {1 : M}, sample (h

′′(m)
n+1:n+t+1,yn+1:n+t+1)

from p
(
hn+t+1,yn+t+1

∣∣∣h′′(m)
n+t ,y

′′(m)
n+t

)
.
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1.5 Conclusion

We have presented the POMP framework and the sequential Monte-Carlo methods, which
are widely used Bayesian state estimation approaches. These methods are generally based
on the SIR principle. They are convergent asymptotically, but may need a considerable
computational cost. The rest of the report is devoted to the alternative methods of state
estimation in POMPs, which should allow an accurate state estimation for a low compu-
tational cost. The accuracy of these methods will be compared with that of sequential
Monte-Carlo methods.
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Chapter 2

Conditionally Gaussian observed

Markov switching models

Let R1:N be a random sequence taking its values in Ω = {1 : K}, X1:N and Y1:N random
sequences taking their values in Rd and Rd

′
respectively, with d ∈ N∗, d′ ∈ N∗. R1:N and

X1:N are hidden and Y1:N is observed.
In this chapter we �rst de�ne the Conditionally Markov Switching Hidden Linear

Model (CMSHLM) [Pieczynski, 2011a], then we move on to the Conditionally Gaussian
Observed Markov Switching Model (CGOMSM) proposed in [Abbassi et al., 2015]. Next,
we present the related exact Bayesian state estimation algorithms in Section 2.2. The
author's contribution is given in Section 2.3. Extensive experiments on synthetic and
real-world data are presented in Section 2.4.

2.1 Model de�nition and properties

De�nition 2. CMSHLM

Let X1:N , R1:N and Y1:N be random sequences as speci�ed previously. The triplet
(X1:N ,R1:N ,Y1:N ) is said to be a CMSHLM if

(X1:N ,R1:N ,Y1:N ) is Markovian; (2.1a)

∀n ∈ {1 : N − 1}, p (rn+1,yn+1 |xn, rn,yn ) = p (rn+1,yn+1 |rn,yn ) ; (2.1b)

∀n ∈ {1 : N − 1},Xn+1 = Fn+1(Rn:n+1,Yn:n+1)Xn+

Gn+1(Rn:n+1,Yn:n+1)W n+1 + Tn+1(Rn:n+1,Yn:n+1), (2.1c)

with Fn+1(Rn:n+1,Yn:n+1), Gn+1(Rn:n+1,Yn:n+1) matrices of appropriate dimensions,
W 1:N is a zero-mean white noise and Tn+1(Rn:n+1,Yn:n+1) vectors of appropriate di-
mension.

Figure 2.1 represents the dependency graph of CMSHLM.
The next de�nition concerns a particular CGOMSM used in this report. The general

de�nition of the CGOMSM is given in [Abbassi et al., 2015].
De�nition 3. CGOMSM

Let (X1:N ,R1:N ,Y1:N ) be a stationary Markov triplet and de�ne, for each n in {1 : N},

Zn =

[
Xn

Yn

]
; (2.2)

We say that (X1:N ,R1:N ,Y1:N ) is a CGOMSM if for each n in {1 : N − 1}, rn:n+1 in Ω2,
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Figure 2.1: Dependency graph of CMSHLM.

� p (xn:n+1,yn:n+1 |rn:n+1 ) is Gaussian:

p(xn:n+1,yn:n+1|rn:n+1) = N

([
z>n z>n+1

]>
,Υ(rn:n+1),Ξ(rn:n+1)

)
; (2.3)

� the mean of p (xn:n+1,yn:n+1 |rn:n+1 ) is of the form

Υ(rn:n+1) =

[
M(rn)

M(rn+1)

]
=

[
E [Zn |rn ]

E [Zn+1 |rn+1 ]

]
; (2.4)

� the variance matrix of p (xn:n+1,yn:n+1 |rn:n+1 ) is of the form

Ξ(rn:n+1) =

[
S(rn) Σ(rn:n+1)

Σ>(rn:n+1) S(rn+1)

]
; (2.5)

� p (xn:n+1,yn:n+1 |rn:n+1 ) is such that

p (yn+1 |xn, rn:n+1,yn ) = p (yn+1 |rn:n+1,yn ) . (2.6)

Proposition 1. A CGOMSM is a CMSHLM with Fn+1(Rn:n+1,Yn:n+1),
Gn+1(Rn:n+1,Yn:n+1) and Tn+1(Rn:n+1,Yn:n+1) given by (2.15).

Proof. (X1:N ,R1:N ,Y1:N ) is Markovian in CGOMSM, thus (2.1a) is veri�ed. According
to (2.3) - (2.5), we have p (rn+1 |xn, rn,yn ) = p (rn+1 |rn ). We then use (2.6) to prove that
a CGOMSM has property (2.1b) of the CMSHLM.

To �nd out the corresponding Fn+1, Gn+1 and Tn+1 in (2.1c), we set

A(rn:n+1) = Σ>(rn:n+1) S−1(rn), (2.7)

and consider B(rn:n+1) and Q(rn:n+1) such that

B(rn:n+1)B>(rn:n+1) = Σ>(rn:n+1)S−1(rn)Σ(rn:n+1), (2.8)

Q(rn:n+1) =

[
Q1(rn:n+1) Q2(rn:n+1)
Q3(rn:n+1) Q4(rn:n+1).

]
= B(rn:n+1)B>(rn:n+1). (2.9)

Equation (2.6) induces that the matrix A(rn:n+1) has the following form:

A(rn:n+1) =

[
A1(rn:n+1) A2(rn:n+1)

0 A4(rn:n+1)

]
. (2.10)
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Hence, we can state that the discrete time process Z1:N satis�es the following recursion
equation:

Zn+1 = A(Rn:n+1)
(
Zn −M(Rn)

)
+B(Rn:n+1)W n+1 +M(Rn+1), (2.11)

where W 1, . . . ,WN are Gaussian unit-variance white noise vectors.
We split M(rn) as M(rn) =

[
M1(rn)> M2(rn)>

]>
. Next, p (xn+1,yn+1 |xn, rn:n+1,yn )

is a multivariate normal distribution with variance matrixQ(rn:n+1) and mean vector given
by

A(rn:n+1)

[
xn
yn

]
+

[
N1(rn:n+1)
N2(rn:n+1)

]

=

[
A1(rn:n+1)xn +A2(rn:n+1)yn +N1(rn:n+1)

A4(rn:n+1)yn +N2(rn:n+1)

]
, (2.12)

where we set

N1(rn:n+1) = M1(rn+1)−A1(rn:n+1)M1(rn)−
A2(rn:n+1)M2(rn),

N2(rn:n+1) = M2(rn+1)−A4(rn:n+1)M2(rn).

p (xn+1 |xn, rn:n+1,yn:n+1 ) is also a multivariate normal probability density function
with mean vector

Q2(rn:n+1)Q−1
4 (rn:n+1)(yn+1 −A4(rn:n+1)yn −N2(rn:n+1))

+A1(rn:n+1)xn +A2(rn:n+1)yn +N1(rn:n+1), (2.13)

and variance matrix

Q1(rn:n+1)−Q2(rn:n+1)Q−1
4 (rn:n+1)Q3(rn:n+1). (2.14)

This allows to complete the proof and to specify Fn+1(Rn:n+1,Yn:n+1), Gn+1(Rn:n+1,Yn:n+1)
and Tn+1(Rn:n+1,Yn:n+1) :

Fn+1(rn:n+1,yn:n+1) = A1(rn:n+1), (2.15a)

Tn+1(rn:n+1,yn:n+1) = A2(rn:n+1)yn + N1(rn:n+1) + (2.15b)

Q2(rn:n+1)Q−1
4 (rn:n+1)(yn+1 −A4(rn:n+1)yn −N2(rn:n+1)),

Gn+1(rn:n+1,yn:n+1)GT
n+1(rn:n+1,yn:n+1) = (2.15c)

Q1(rn:n+1)−Q2(rn:n+1)Q−1
4 (rn:n+1)Q3(rn:n+1).

According to (2.3) - (2.5), we may state that for all n in {1 : N},

p (xn,yn |rn, rn+1 ) = p (xn,yn |rn ) ,

and thus p (rn+1 |xn, rn,yn ) = p (rn+1 |rn ). This ensures that in CGOMSM seen as a
subcase of CMSHLM, R1:N is a Markov chain. Figure 2.2 represents the dependency
graph of CGOMSM. In contrast with the dependency graph of CMSHLM, we have
p (rn+1 |rn,yn ) = p (rn+1 |rn ), what removes the line between Yn and Rn+1.

Proposition 2. A CGOMSM can be represented as

Yn+1 = D(rn:n+1)Yn +H(rn:n+1) + Λ(rn:n+1)V n+1; (2.16a)

Xn+1 = A(rn:n+1)Xn +B(rn:n+1)Yn +C(rn:n+1)Yn+1

+ F (rn:n+1) + Π (rn:n+1)Un+1, (2.16b)
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Figure 2.2: Dependency graph of CGOMSM.

where R1:N is a Markov chain, D(rn:n+1), H(rn:n+1), Λ(rn:n+1), A(rn:n+1), B(rn:n+1),
C(rn:n+1), F (rn:n+1), Π (rn:n+1) are matrices de�ned by (2.21)-(2.24) and U1:N ,V 1:N are
standard independent and identically distributed Gaussian random vectors.

Proof. First, (R1:N ,Y1:N ) is a Hidden Markov Model With Conditionally Correlated Noise
(HMM-CN) with discrete state space. Thus,

p (rn+1,yn+1 |rn,yn ) = p (rn+1 |rn ) p (yn+1 |rn:n+1,yn ) . (2.17)

Second, (2.6) is equivalent to

p (xn |rn:n+1,yn:n+1 ) = p (xn |rn,yn ) , (2.18)

Since the distribution p (xn+1 |xn, rn:n+1,yn:n+1 ) is Gaussian, Xn+1 is Gaussian condi-
tional on the pair (Rn,Rn+1) and on a linear combination of Xn, Yn and Yn+1. A similar
reasoning holds for p (yn+1 |yn, rn:n+1 ) and summarizing, we have (2.16).

Let us set MX
rn = E [Xn |rn ] and MY

rn = E [Yn |rn ]. It follows from (2.11) that[
X>n+1 Y>n+1

]>
is normally distributed given

[
X>n Y>n

]>
and Rn:n+1. From (2.11), we

�nd that the conditional mean of
[
X>n+1 Y>n+1

]>
is

[
MX

rn+1

MY
rn+1

]
+

[
a1(rn:n+1) a2(rn:n+1)
a3(rn:n+1) a4(rn:n+1)

] [
xn −MX

rn

yn −MY
rn

]

=

[
MX

rn+1
+ a1(rn:n+1)(xn −MX

rn) + a2(rn:n+1)(yn −MY
rn)

MY
rn+1

+ a3(rn:n+1)(xn −MX
rn) + a4(rn:n+1)(yn −MY

rn)

]
, (2.19)

and that the conditional variance matrix of
[
X>n+1 Y>n+1

]>
is b(rn:n+1)b>(rn:n+1), written

in block-form as

b(rn:n+1)b>(rn:n+1) =

[
γ1(rn:n+1) γ2(rn:n+1)
γ3(rn:n+1) γ4(rn:n+1)

]
. (2.20)

Since a3(rn:n+1) = 0 for each rn:n+1 in Ω2, equation (2.16a) holds for

D(rn:n+1) = a4(rn:n+1), (2.21a)

H(rn:n+1) = −a4(rn:n+1)MY
rn +MY

rn+1
(2.21b)

and for some matrix Λ(rn:n+1) such that

Λ(rn:n+1)Λ>(rn:n+1) = γ4(rn:n+1). (2.22)

Likewise, Xn+1 is also normally distributed given Xn, Rn:n+1 and Yn:n+1. The conditional
variance of Xn+1 is

γ1(rn:n+1)− γ2(rn:n+1)γ−1
4 (rn:n+1)γ>2 (rn:n+1),
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and its conditional mean is

MX
rn+1

+ a1(rn:n+1)(xn −MX
rn) + a2(rn:n+1)(yn −MY

rn)

+ γ2(rn:n+1)γ−1
4 (rn:n+1)

{
yn+1 − (MY

rn+1
+ a3(rn:n+1)(xn −MX

rn)

+ a4(rn:n+1)(yn −MY
rn))

}
.

Term-by-term identi�cation of (2.16b) with the equation above gives

C(rn:n+1) = γ2(rn:n+1)γ−1
4 (rn:n+1) (2.23a)

A(rn:n+1) = a1(rn:n+1)−C(rn:n+1)a3(rn:n+1) (2.23b)

B(rn:n+1) = a2(rn:n+1)−C(rn:n+1)a4(rn:n+1) (2.23c)

F (rn:n+1) = MX
rn+1
−A(rn:n+1)MX

rn −B(rn:n+1)MY
rn −C(rn:n+1)MY

rn+1
(2.23d)

and Π (rn:n+1) is a matrix such that

Π (rn:n+1)Π>(rn:n+1) = γ1(rn:n+1)−C(rn:n+1)γ>2 (rn:n+1). (2.24)

The distribution of (Xn,Yn,Xn+1,Yn+1) in stationary CGOMSM is of the form

p (x1,y1,x2,y2) =
∑

1≤i,j≤K
αijpij(x1,y1,x2,y2), (2.25)

where {αij}1≤i,j≤K are positive scalars which sum up to one and for each (i, j) in {1 : K}2,
pij(x1,y1,x2,y2) is a Gaussian pdf.

Proposition 3. For each (i, j) in {1 : K}2, pij(x1,y1,x2,y2) in (2.25) satis�es one of
the two following equivalent properties

pij (y2 |x1,y1 ) = pij (y2 |y1 ) ; (2.26)

ΣX1Y2 (ij) = ΣX1Y1 (ij) Γ−1
Y1

(ij) ΣY1Y2 (ij) , (2.27)

where ΣX1Y2 (ij) ∈ Rd×d′ , ΣX1Y1 (ij) ∈ Rd×d′ , Γ−1
Y1

(ij) ∈ Rd′×d′, ΣY1Y2 (ij) ∈ Rd′×d′

are sub-matrices of the variance matrix Γ ij ∈ R(d+d′)×(d+d′) of pij(x1,y1,x2,y2) such that

Γ ij =




ΓX1 (ij) ΣX1Y1 (ij) ΣX1X2 (ij) ΣX1Y2 (ij)

Σ>X1Y1
(ij) ΓY1 (ij) ΣY1X2 (ij) ΣY1Y2 (ij)

Σ>X1X2
(ij) Σ>Y1X2

(ij) ΓX2 (ij) ΣX2Y2 (ij)

Σ>X1Y2
(ij) Σ>Y1Y2

(ij) Σ>X2Y2
(ij) ΓY2 (ij)


 . (2.28)

Proof. By stationarity assumption on (X1:N ,Y1:N ), p (xn,yn,xn+1,yn+1) does not depend
on n, i.e. for any n, (Xn,Yn,Xn+1,Yn+1) is equal in distribution to (X1,Y1,X2,Y2):

p (xn,yn,xn+1,yn+1) = p (x1,y1,x2,y2) . (2.29)

p (x1,y1,x2,y2) can obtained by marginalizing (r1, r2) out from p (x1,y1,x2,y2, r1, r2):

p (x1,y1,x2,y2) =
∑

r1,r2∈Ω

p (r1, r2) p (x1,y1,x2,y2 |r1, r2 ) . (2.30)

Moreover, for each (r1, r2) in Ω2, we have p (y2 |x1,y1, r1, r2 ) = p (y2 |y1, r1, r2 ) by CGOMSM
property (2.6). Thus, p (x1,y1,x2,y2) is of form (2.25) with

∀i, j ∈ {1 : K}, αij = p (r1 = i, r2 = j) ,

pij(x1,y1,x2,y2) = p (x1,y1,x2,y2 |r1 = i, r2 = j ) .
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Let us show (2.26) and (2.27). For each (i, j) in {1 : K}2, (2.26) is the same as

pij (y2,x1 |y1 ) = pij (y2 |y1 ) pij (x1 |y1 ) ,

that is to say that Y2 and X1 are independent given Y1. Since pij(x1,y1,x2,y2) is
Gaussian, we apply Lemma 1 from Appendix A to show that this is equivalent to (2.27).

Let us remember that CGOMSMs can be very close to the classic Conditionally Gaus-
sian Linear State-Space Model (CGLSSM) [Derrode and Pieczynski, 2013, Petetin and
Desbouvries, 2014]. The interest of this remarks is that the which does not o�er the
CGLSSMs do not o�er the possibility of a fast exact Bayesian smoothing [Cappé et al.,
2005], as opposed to the CGOMSMs. Exact Bayesian smoothing and �ltering algorithms
for CGOMSMs are detailed in the following section.

2.2 Exact Bayesian state estimation
In this section, we present and prove exact Bayesian inference algorithms for the CMSHLM.
By Bayesian inference we mean computing posterior distribution of p (rn |y1:n ) and poste-
rior moments E [xn |y1:n ] in the case of �ltering, and p (rn |y1:N ), E [xn |y1:N ] in the case
of smoothing. We have the following general result [Pieczynski, 2011a].

Proposition 4. Let (X1:N ,R1:N ,Y1:N ) be a CMSHLM. Then, for each n in {1 : N} and
rn ∈ Ω, E [Xn |rn,y1:n ] and E

[
XnX

>
n |rn,y1:n

]
are computable with a complexity linear in

N .

Proof. Since for all n in {1 : N − 1},

E [Xn+1 |rn+1,y1:n+1 ] =
∑

rn∈Ω

p (rn |rn+1,y1:n+1 )
(
Fn+1(rn:n+1,yn:n+1)E [Xn |rn,y1:n ] + Tn+1(rn:n+1,yn:n+1)

)

(2.31)
and

E
[
Xn+1X

>
n+1 |rn+1,y1:n+1

]
=

∑

rn∈Ω

p (rn |rn+1,y1:n+1 )
(
Fn+1(rn:n+1,yn:n+1)E

[
XnX

>
n |rn,y1:n

]
F>n+1(rn:n+1,yn:n+1)

+ Fn+1(rn:n+1,yn:n+1)E [Xn |rn,y1:n ] T>n+1(rn:n+1,yn:n+1)+

Tn+1(rn:n+1,yn:n+1)E
[
X>n |rn,y1:n

]
F>n+1(rn:n+1,yn:n+1)

+ Gn+1(rn:n+1,yn:n+1)G>n+1(rn:n+1,yn:n+1) + Tn+1(rn:n+1,yn:n+1)T>n+1(rn:n+1,yn:n+1)
)
,

(2.32)
thus E [Xn |rn,y1:n ] and E

[
XnX

>
n |rn,y1:n

]
can be computed recursively.

Besides, it follows from hypothesis (2.1b) that V 1:N = (R1:N ,Y1:N ) is Markovian. We
can therefore calculate the needed probabilities

p (rn |rn+1,y1:n+1 ) =
p (rn+1,yn+1 |rn,yn ) p (rn |y1:n )∑

r∗n∈Ω

p (rn+1,yn+1 |r∗n,yn ) p (r∗n |y1:n )

since p (rn+1,yn+1 |rn,yn ) are known and p (rn |y1:n ), p (rn |y1:N ) can be computed by
using the outputs of the classic forward-backward algorithm, which are αn(rn) = p (rn,y1:n)
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and βn(rn) = p (yn+1:N |vn ). More precisely, we have:

α1(r1) = p (v1) ;

αn+1(rn+1) =
∑

rn∈Ω

αn(rn)p (vn+1 |vn ); (2.33)

βN (rN ) = 1;

βn(rn) =
∑

rn+1∈Ω

βn+1(rn+1)p (vn+1 |vn ). (2.34)

Then

p (rn |y1:n ) =
αn(rn)∑

r∗n∈Ω

αn(r∗n)
, (2.35)

and

p (rn |y1:N ) =
αn(rn)βn(rn)∑

r∗n∈Ω

αn(r∗n)βn(r∗n)
. (2.36)

2.2.1 Filtering

For each n in {1 : N}, E [Xn |y1:n ] and E
[
XnX

>
n |y1:n

]
can be computed recursively with

a complexity linear in n by

E [Xn |y1:n ] =
∑

rn∈Ω

p (rn |y1:n )E [Xn |rn,y1:n ]; (2.37)

E
[
XnX

>
n |y1:n

]
=
∑

rn∈Ω

p (rn |y1:n )E
[
XnX

>
n |rn,y1:n

]
. (2.38)

2.2.2 Smoothing

We have the following general result [Pieczynski, 2011b].

Proposition 5. Let (X1:N ,R1:N ,Y1:N ) be a CMSHLM. Then, for each n in {1 : N},

E [Xn |y1:N ] =
∑

rn∈Ω

p (rn |y1:N )E [Xn |rn,y1:n ]; (2.39)

E
[
XnX

>
n |y1:N

]
=
∑

rn∈Ω

p (rn |y1:N )E
[
XnX

>
n |rn,y1:n

]
, (2.40)

both expectations being computable with a complexity linear in N .

Proof. Let us show (2.39) and (2.40). For all n in {1 : N−1}, Xn and Yn+1 are independent
given (Rn,Yn) = (rn,yn) cf. (2.1b). It follows that the variables Xn and (Rn+1:N ,Yn+1:N )
are also independent given (Rn,Yn) = (rn,yn). Thus, p (xn |rn,y1:N ) = p (xn |rn,y1:n ).
We have (2.39) and (2.40) from

p (xn |y1:N ) =
∑

rn∈Ω

p (rn |y1:N ) p (xn |rn,y1:N ) =
∑

rn∈Ω

p (rn |y1:N ) p (xn |rn,y1:n ).

The fact that Xn and (Rn+1:N ,Yn+1:N ) are independent given (Rn,Yn) = (rn,yn)
could appear as somewhat limiting. However, this kind of assumptions is widespread. For
example, in the classic Hidden Markov Model (HMM) (R1:N ,Y1:N ) the variables Rn and
Yn+1 are independent given Rn+1 = rn+1, but they are not independent without this
conditioning and it is well known that Yn+1:N can bring a large deal of information on Rn.
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2.3 Parameter estimation by the Expectation-Maximization
(EM) algorithm

One can see from (2.16) that the problem of estimation of CGOMSM from y1:N is ill-
speci�ed: there is no way of estimating parameters in (2.16b) considering y1:N only. Thus,
here we consider the problem of estimating the parameters of CGOMSM from (x1:N ,y1:N ).
This section presents an iterative estimation algorithm derived by the author and proven
to be an EM algorithm. The related proof can be found in Appendix C.

We propose an iterative estimation technique described in Algorithm 1. At the q-th
iteration of the algorithm, the parameters of CGOMSM is denoted by θ(q), de�ned by:

θ(q) =
{
µ

(q)
i ,Γ

(q)
i , p

(q)
ij ,A

(q)
ij ,B

(q)
ij ,C

(q)
ij ,D

(q)
ij ,F

(q)
ij ,H

(q)
ij ,Π

(q)
ij ,Λ

(q)
ij |1 ≤ i, j ≤ K

}
,

where:

� for each i in Ω, µ(q)
i and Γ

(q)
i de�ne pdf pθ(q) (x1,y1 |r1 = i);

� for each i, j in Ω, p(q)
ij = pθ(q) (r1 = i, r2 = j) and A(q)

ij , B
(q)
ij , C

(q)
ij , D

(q)
ij , F

(q)
ij , H

(q)
ij ,

Π
(q)
ij , Λ

(q)
ij are de�ned cf. (2.16).

Algorithm 1. Parameter estimation of CGOMSM

1. Make an initial guess

θ(0) =
{
µ

(0)
i ,Γ

(0)
i , p

(0)
ij ,A

(0)
ij ,B

(0)
ij ,C

(0)
ij ,D

(0)
ij ,F

(0)
ij ,H

(0)
ij ,Π

(0)
ij ,Λ

(0)
ij |1 ≤ i, j ≤ K

}

as follows:

(a) Apply the K-means clustering method to x1:N . We will denote by κn(i) the
function which assigns 1 if xn is within the ith cluster, and 0 otherwise. We
also note δn(i, j) = κn(i)κn+1(j);

(b) For each i in Ω, µ
(0)
i and Γ

(0)
i are given by

µ
(0)
i =

N∑

n=1

znκn(i)

N∑

n=1

κn(i)

; (2.41a)

Γ
(0)
i =

N∑

n=1

(
zn − µ(0)

i

)(
zn − µ(0)

i

)>
κn(i)

N∑

n=1

κn(i)

, (2.41b)

where z>n =
[
x>n y>n

]
, and for each (i, j) in Ω2, p

(0)
ij is given by

p
(0)
ij =

1

N − 1

N−1∑

n=1

δn(i, j). (2.42)

(c) Compute intermediate matrices E
(0)
ij , S

(0)
ij , χ

(0)
ij , Φ

(0)
ij , G

(0)
ij , P

(0)
ij , ξ

(0)
ij and T

(0)
ij
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as follows:

E
(0)
ij =

1

p
(0)
ij

N−1∑

n=1

[
zn

yn+1

]
δn(i, j); (2.43a)

S
(0)
ij =

1

p
(0)
ij

N−1∑

n=1

[
znz
>
n zny

>
n+1

yn+1z
>
n yn+1y

>
n+1

]
δn(i, j); (2.43b)

χ
(0)
ij =

1

p
(0)
ij

N−1∑

n=1

[
xn+1z

>
n xn+1y

>
n+1

]
δn(i, j); (2.43c)

Φ
(0)
ij =

1

p
(0)
ij

N−1∑

n=1

xn+1δn(i, j); (2.43d)

G
(0)
ij =

1

p
(0)
ij

N−1∑

n=1

ynδn(i, j); (2.43e)

P
(0)
ij =

1

p
(0)
ij

N−1∑

n=1

yny
>
n δn(i, j); (2.43f)

ξ
(0)
ij =

1

p
(0)
ij

N−1∑

n=1

yn+1y
>
n δn(i, j); (2.43g)

T
(0)
ij =

1

p
(0)
ij

N−1∑

n=1

yn+1δn(i, j). (2.43h)

(d) For each i, j in Ω, A
(0)
ij , B

(0)
ij , C

(0)
ij , D

(0)
ij , F

(0)
ij , H

(0)
ij , Π

(0)
ij and Λ

(0)
ij are given

by

[
F

(0)
ij A

(0)
ij B

(0)
ij C

(0)
ij

]
=
[
Φ

(0)
ij χ

(0)
ij

]

N − 1

(
E

(0)
ij

)>

E
(0)
ij S

(0)
ij



−1

; (2.44a)

[
H

(0)
ij D

(0)
ij

]
=
[
T

(0)
ij ξ

(0)
ij

]

N − 1

(
G

(0)
ij

)>

G
(0)
ij P

(0)
ij



−1

; (2.44b)

(N − 1)Λ
(0)
ij

(
Λ

(0)
ij

)>
=

1

p
(0)
ij

N−1∑

n=1

yn+1y
>
n+1δn(i, j)−H(0)

ij

(
T

(0)
ij

)>
−D(0)

ij

(
ξ

(0)
ij

)>
; (2.44c)

(N − 1)Π
(0)
ij

(
Π

(0)
ij

)>
=

1

p
(0)
ij

N−1∑

n=1

xn+1x
>
n+1δn(i, j)− F (0)

ij

(
Φ

(0)
ij

)>
−
[
A

(0)
ij B

(0)
ij C

(0)
ij

] (
χ

(0)
ij

)>
.

(2.44d)

2. Find the new set of parameters θ(q+1) as follows:
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(a) For each i in Ω, compute posterior probabilities

φ(q)
n (i) = pθ(q) (rn = i |x1:N ,y1:N ) ,

and for each i, j in Ω compute

ψ(q)
n (i, j) = pθ(q) (rn = i, rn+1 = j |x1:N ,y1:N )

cf. (2.48);

(b) For each i in Ω, compute µ
(q+1)
i and Γ

(q+1)
i by substitution φ

(q)
n (i) for κn(i)

in (2.41);

(c) For each i, j in Ω, p
(q+1)
ij is given by

p
(q+1)
ij =

1

N − 1

N−1∑

n=1

ψ(q)
n (i, j). (2.45)

Then compute intermediate matrices E
(q+1)
ij , S

(q+1)
ij , χ

(q+1)
ij , Φ

(q+1)
ij , G

(q+1)
ij ,

P
(q+1)
ij , ξ

(q+1)
ij and T

(q+1)
ij by substituting ψ

(q)
n (i, j), p

(q+1)
ij with δn(i, j), p

(0)
ij

in (2.43). Finally, compute A
(q+1)
ij , B

(q+1)
ij , C

(q+1)
ij , D

(q+1)
ij , F

(q+1)
ij , H

(q+1)
ij ,

Π
(q+1)
ij and Λ

(q+1)
ij by substituting E

(q+1)
ij , S

(q+1)
ij , χ

(q+1)
ij , Φ

(q+1)
ij , G

(q+1)
ij , P

(q+1)
ij ,

ξ
(q+1)
ij , T

(q+1)
ij with E

(0)
ij , S

(0)
ij , χ

(0)
ij , Φ

(0)
ij , G

(0)
ij , P

(0)
ij , ξ

(0)
ij , T

(0)
ij in (2.44).

(The algorithm ends here)

Let us recall the formulas for φ(q)
n (i) and ψ

(q)
n (i, j). Let us pose tn = (xn, rn,yn),

αn(rn) = pθ(q) (rn, z1:n) and βn(rn) = pθ(q) (zn+1:N |tn ). Then, the forward-backward
algorithm computes recursively αn(rn) and βn(rn) as follows:

� α1(r1) = pθ(q) (t1) and

αn+1(rn+1) =
∑

rn∈Ω

αn(rn)pθ(q) (tn+1 |tn ) (2.46)

for n in {1 : N − 1}.

� βN (rN ) = 1 and

βn(rn) =
∑

rn+1∈Ω

βn+1(rn+1)pθ(q) (tn+1 |tn ) (2.47)

for n in {1 : N − 1}.

40



where

pθ(q) (t1) = pθ(q) (r1) pθ(q) (z1 |r1 )

pθ(q) (tn+1 |tn ) = pθ(q) (rn+1 |rn ) pθ(q) (xn+1,yn+1 |xn,yn, rn:n+1 )

pθ(q) (r1 = i) =
∑

j∈Ω

p
(q)
ij

pθ(q) (z1 |r1 = i) = N
(
z1;µ

(q)
i ,Γ

(q)
i

)

pθ(q) (rn+1 = j |rn = i) =
p

(q)
ij

pθ(q) (r1 = i)

pθ(q) (yn+1 |yn, rn:n+1 = (i, j)) =

N

(
yn+1;D

(q)
ij yn +H

(q)
ij ,Λ

(q)
ij

(
Λ

(q)
ij

)>)

pθ(q) (xn+1 |xn,yn:n+1, rn:n+1 = (i, j)) =

N
(
xn+1;A

(q)
ij xn +B

(q)
ij yn +C

(q)
ij yn+1 + F

(q)
ij ,Π

(q)
ij

(
Π

(q)
ij

)> )
.

Thus,

ψ(q)
n (i, j) =

αn(rn)pθ(q) (tn+1 |tn )βn+1(rn+1)∑
r?n,r

?
n+1

αn(r?n)pθ(q)
(
t?n+1 |t?n

)
βn+1(r?n+1)

, (2.48)

with t?n = (xn, r
?
n,yn).

Proposition 6. Algorithm 1 is an EM algorithm of estimation of CGOMSM parameters
in form (2.16).

Proof. See Appendix C.

It is noteworthy that one can see Algorithm 1 as an EM algorithm for parameter
estimation of Gaussian mixture (2.25) with the variance of mixands constrained to (2.27).
That is why it is not a classic EM algorithm of estimating a Gaussian mixture, since in its
classic version, the mixands' variances are not constrained.

Estimating mixture (2.25) is a necessary stage of the CGOMSM application to the
Bayesian state estimation in non-linear non-Gaussian models, as detailed in the next sec-
tion.

2.4 Application to Bayesian state estimation in non-linear
non Gaussian models

Let us consider a Partially Observable Markov Process (POMP) with continuous state
space (X1:N ,Y1:N ), which can possibly be non-linear or/and non-Gaussian. For each n in
{1 : N}, Xn takes its value inRd and Yn takes its value inRd

′
with d ∈ N∗, d′ ∈ N∗. In this

Section, we consider an application of CGOMSMs to the problem of Bayesian inference,
which consists in the sequential search of X1:N from Y1:N . We suppose that (X1:N ,Y1:N )
is stationary, which means that for any n, (Xn,Yn,Xn+1,Yn+1) is equal in distribution
to (X1,Y1,X2,Y2), what we note by p (xn,yn,xn+1,yn+1) = p (x1,y1,x2,y2). Bayesian
�lter and smoother based on CGOMSMs are called the Learned Conditionally Gaussian
Observed Markov Switching Model Filter (LCGOMSMF) and the Learned Conditionally
Gaussian Observed Markov Switching Model Smoother (LCGOMSMS) respectively.

LCGOMSMF and LCGOMSMS approximate the corresponding Bayesian solution in
the POMP considered. Speci�cally, since (X1:N ,Y1:N ) is stationary, its distribution derives
from p (x1,y1,x2,y2), as the latter provides p (x1,y1) and p (xn+1,yn+1 |xn,yn ) for each

41



n in {1 : N}. p (x1,y1,x2,y2) can be approximated using a mixture of K2 components
of form (2.25), where the mixands pij(x1,y1,x2,y2) are such that their variance matrices
satisfy (2.27).

De�nition 4. LCGOMSMF

We call LCGOMSMF the following algorithm:

1. Generate an arti�cial sample (x?1:N ′ ,y
?
1:N ′) according to a given model of type

(Xn+1,Yn+1) = T(Xn,Yn,W n), where N ′ ∈ N∗, T is a model transition kernel
and W 1, . . . ,WN ′ are independent variables;

2. Estimate CGOMSM parameters from (x?1:N ′ ,y
?
1:N ′) by Algorithm 1;

3. Filtering: when a new measurement yn+1 is received, compute p (rn+1 |y1:n+1 ),
E [Xn+1 |rn+1,y1:n+1 ] and E

[
Xn+1X

>
n+1 |rn+1,y1:n+1

]
by using (2.31), (2.32), then

E [Xn+1 |y1:n+1 ] and E
[
Xn+1X

>
n+1 |y1:n+1

]
are given by (2.37), (2.38).

The LCGOMSMS is de�ned in the same way and uses (2.39), (2.40) to compute
E [Xn+1 |y1:N ] and E

[
Xn+1X

>
n+1 |y1:N

]
.

For an estimated scalar signal x̂1:N obtained from y1:N , the Mean Squared Error (MSE)
is de�ned by

MSE =
N∑

n=1

(xn − x̂n)2, (2.49)

where x1:N is the �ground-truth� simulated and unknown to inference algorithms. MSE
is a useful performance criterion for comparing the e�ectiveness of Bayesian inference
algorithms.

The following subsections are examples of applications of LCGOMSMF and LCGOMSMS
to di�erent models belonging to the class of POMP with continuous state space. All the
results presented below are averaged over 100 equivalent independent experiments, each of
them being computed using N = 1000 simulated data points.

2.4.1 Bayesian state estimation in the stochastic volatility model

Here we consider the standard Stochastic Volatility (SV) model [Jacquier et al., 1994],
usually presented as follows:

X1 = µ+ U1; (2.50a)

∀n ∈ N∗,Xn+1 = µ+ φ(Xn − µ) + σUn+1; (2.50b)

∀n ∈ N∗,Yn = β exp (Xn/2)Vn, (2.50c)

where U1:N ,V1:N are independent standard Gaussian variables in R and µ ∈ R, φ ∈]−1, 1[,
β ∈ R∗+, σ ∈ R∗+ are �xed.

We compare the performance of the LCGOMSMF with that of the Particle Filter (PF)
and Gaussian Sum Filter (GSF) [Simandl and Kralovec, 2000], in the case of �ltering in
model (2.50). We set µ = 0.5, β = 0.5, and consider four di�erent cases for φ and σ
such that φ2 + σ2 = 1 (that is to ensure that the common variance of the variables Xn is
unitary). The results are reported in Table 2.1.

The details of each �ltering method used in the experiments are the following:

� For the LCGOMSMF, we test out di�erent values of K and we infer the CGOMSM
from an independently generated sample (x1:N ′ , y1:N ′) of size N ′ = 20000, performing
100 EM iterations. See Figure 2.4 for an example of trajectories.
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Cases φ σ2 LCGOMSMF PF GSF
K = 2 K = 3 K = 5 K = 7

1 0.99 0.0199 0.41 0.27 0.20 0.19 0.18 0.21
2 0.90 0.1900 0.55 0.49 0.47 0.46 0.46 0.50
3 0.80 0.3600 0.63 0.59 0.58 0.57 0.57 0.60
4 0.50 0.7500 0.72 0.71 0.70 0.70 0.70 0.72

Table 2.1: Average MSE results for di�erent SV models de�ned by φ and σ (µ = 0.5,
β = 0.5).

� The PF implementation is that of Section 1.4.1 and uses M = 1500 particles. We
found out empirically that PF behaves asymptotically for this number of particles or
greater.

� In order to use the GSF, we linearize the SV model by taking the logarithm of both
sides of (2.50c) to get

X1 = µ+ U1; (2.51a)

Xn+1 = µ+ φ(Xn − µ) + σUn+1; (2.51b)

Y′n = Xn + V′n, (2.51c)

where Y ′n = log (Y 2
n )−2 log β and V′1:N are independent, non-Gaussian variables, such

that exp
(

V′1
2

)
, . . . , exp

(
V′N
2

)
are standard Gaussians. Then, for each n in N∗, the

Probability Density Function (pdf) of V′n is p (v′n) = exp
(

v′n
2

)
N
(

exp
(

v′n
2

)
; 0, 1

)
.

Following the general principle of the GSF, we approximate the latter pdf by a
Gaussian mixture of r components : p (v′n) ≈ ∑r

m=1 γnN (v′n; v̂′m, Rm). We found
that when r ≥ 5, the approximation is accurate enough to achieve a negligible residual
e�ect. Since the number ξn of mixands in the �ltering pdf

p (xn |y1:n ) =

ξn∑

j=1

αnjN (xn; x̂nj , Pnj) (2.52)

grows exponentially with n, a reduction technique is implemented to keep computa-
tional demands of the algorithm within reasonable bounds.

For the experiments, we classically reduce the number of terms as follows: when ξn
becomes greater than r, we keep the r mixands in (2.52) which have the greatest
weight coe�cients αnj , and we discard the remaining. Therefore, we impose the
constraint that ξn = r. We found out empirically that GSF behaves asymptotically
for r ≥ 3, but does not attain the optimal MSE.

We note that since the model (2.51) is linear, there is no reason for considering the
extensions of the GSF for non-linear systems, such as the Gaussian Sum Unscented
Kalman Filter (GSUKF) [Straka et al., 2011].

Contrary to the LCGOMSMF which makes use of a single global approximation, the
GSUKF relies on multiple approximations:

� an approximation of the noise terms with a Gaussian mixture;

� some reduction technique to keep the number of mixands of the �ltering pdf within
reasonable bounds.
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Figure 2.3: Simulated log-volatility trajec-
tory with an SV model (red, plain), simu-
lated log-returns (black, dotted).

Figure 2.4: Log-volatility estimates com-
puted using K = 2 classes (blue, dotted),
and K = 5 classes (green, dashed).

Additionally, when the model is non-linear, the GSUKF uses the Unscented Transform
(UT) for computing the approximate means and covariances. The UT relies, in turn, on its
scaling parameters. Our experiments show that computing a single global approximation
may be advantageous and helps to avoid the cumulative residual e�ect. However, unlike
then LCGOMSMF, the GSUKF may be used for non-stationary systems.

2.4.2 Filtering in the asymmetric stochastic volatility model

Here we consider the Asymmetric Stochastic Volatility (ASV) model [Omori andWatanabe,
2008], which may be presented as follows:

X1 = µ+ U1; (2.53a)

Xn+1 = µ+ φ(Xn − µ) + σ

(
ρYn

β exp (Xn/2)
+ λUn+1

)
; (2.53b)

Yn = β exp (Xn/2)Vn. (2.53c)

Here, we compare the performance of the LCGOMSMF with that of the PF only, since
the GSF and GSUKF would not take into account the value of the volatility asymmetry
coe�cient ρ and therefore they are not suitable for this model. The experimental con�g-
uration is identical to the previous one. For the sake of consistency with the Asymmetric
Volatility Phenomenon (AVP), ρ should be assumed negative.

We set µ = 0.5, β = 0.5, and consider �ve di�erent cases for ρ and λ such that

ρ2 + λ2 = 1;

φ2 + σ2 = 1,

to ensure that for each n in N∗, the variance of Xn is unitary. The results are reported in
Table 2.2 for φ = 0.5 and in Table 2.4 for φ = 0.8. Figure 2.6 shows an ASV trajectory,
and its restoration with the LCGOMSMF for K = 2 and K = 5 classes. Table 2.3 contains
indicative processing time required for the LCGOMSMF and PF to process a data sequence
of length N = 1000, or to learn the CGOMSM parameters from a sequence of length
N ′ = 20000. This table is provided on an indicative basis only, since the processing time
depends on the PC system con�guration, processor type and settings, PF implementation
and compilation details, software speci�cations and so on.
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Cases ρ λ2 LCGOMSMF PF
K = 2 K = 3 K = 5

1 -0.9 0.19 0.23 0.22 0.20 0.20
2 -0.8 0.36 0.36 0.35 0.34 0.33
3 -0.5 0.75 0.59 0.58 0.58 0.57
4 -0.3 0.91 0.68 0.67 0.66 0.65
5 0.0 1.00 0.72 0.71 0.70 0.70

Table 2.2: Average MSE results for di�erent ASV models de�ned by ρ and λ (µ = 0.5,
β = 0.5, and σ2 + φ2 = 1), for φ = 0.5.

Measure type LCGOMSMF PF
K = 2 K = 3 K = 5

Filtering time (s.) 0.003 0.004 0.010 0.20
EM time (s.) 8.05 10.70 19.88 N/A

Table 2.3: Average computation time for the LCGOMSMF and PF.

Cases ρ λ2 LCGOMSMF PF
K = 2 K = 3 K = 5

1 -0.9 0.19 0.22 0.21 0.19 0.18
2 -0.8 0.36 0.33 0.31 0.29 0.29
3 -0.5 0.75 0.52 0.49 0.48 0.47
4 -0.3 0.91 0.59 0.55 0.54 0.54
5 0.0 1.00 0.63 0.59 0.58 0.57

Table 2.4: Average MSE results for di�erent ASV models de�ned by ρ and λ (µ = 0.5,
β = 0.5, and σ2 + φ2 = 1), for φ = 0.8.
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Figure 2.5: Simulated log-volatility trajec-
tory with an ASV model (red, plain), sim-
ulated log-returns (black, dotted).

Figure 2.6: Log-volatility estimates com-
puted using K = 2 classes (blue, dotted),
and K = 5 classes (green, dashed).

According to these results, the LCGOMSMF is e�cient for both SV and ASV models,
and attains the same asymptotic performances as the PF. Regarding the processing time,
we �nd that after having it adjusted to the SV model, the LCGOMSMF is nearly �ve
times faster than the PF.

At the moment, we have no computational technique to select the minimum number
of classes allowing to obtain asymptotic performances. We only note the trade-o� between
the computational cost and the variance of the resulting estimates. Indeed, with a greater
number of classes the former increases, while the latter decreases. In practice, �ve classes
seem to be enough for most of situations.

2.4.3 Filtering real-world data

Here we propose an application of the LCGOMSMF to recover volatility estimates of a
real-world stock chart. Let us remind that if Pn−1 denotes the stock price at the beginning
of the previous trading day and if Pn denotes the stock price at the beginning of the current
trading day, then :

� Rn = Pn−Pn−1

Pn−1
is the current daily return on the stock investment;

� un = log (1 +Rn) = log
(

Pn
Pn−1

)
is the continuously compounded daily return. It is

also often called the log-return.

To see why un is called the continuously compounded return, take the exponential of
both sides to get exp (un) = Pn

Pn−1
. Rearranging, we get Pn = Pn−1 exp (un) so that un is

the continuously compounded growth rate in prices between the beginning of the previous
and the current trading days. This has to be contrasted with Rn, which is the simple
growth rate in prices Pn−1 and Pn without any compounding.

Following [Durham, 2006] to examine the performance of the LCGOMSMF on the
stock market data, we compute the log-returns un over the daily Standard & Poor's 500
(S&P) index data from Jun. 23, 1980 to Aug. 30, 2002 (N = 5604), then we calculate
yn = u?n − µr, where µr is given in [Durham, 2007] and u?n denotes pre-processed log-
return [Durham, 2006, Durham, 2007]. Next, we use the LCGOMSMF to compute the
�ltered volatility estimates within the ASV model, whose parameters are given in [Durham,
2007] and reported in Table 2.5. Our result is shown in Figure 2.7.

We �nd that the volatility estimates produced by the LCGOMSMF are consistent with
the log-return process: as we can see in Figure 2.7, the intervals where the �uctuation of log-
returns are low (e.g. between 1991 and 1995) match the intervals where the log-volatility
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Figure 2.7: Trajectories of the S&P log-returns (down) and log-volatility estimates (up).
The x-axis represents the dates for both trajectories, the y-axis labelling on the left concerns
the log-volatility values, and the y-axis labelling on the right is related to the log-return
values.

Parameter µr µ φ σ ρ β

Value 7 · 10−5 −9.54 0.98 0.17 −0.43 1.00

Table 2.5: The parameters of the ASV model for the stock market data.

is low, and vice versa. Moreover, we calculated the mean squared distance between the
LCGOMSMF volatility estimates and those of the PF, and we �nd that this distance is
negligible compared to the variance of the log-volatility process. Furthermore, when the
number K of classes in the LCGOMSMF increases, this distance decreases as shown in
Table 2.6.

2.4.4 Smoothing in dynamic beta models

The dynamic beta regression allows modeling monthly unemployment rate [Da-Silva et al.,
2011]. More precisely, let N ∈ N∗, Yn in [0, 1] be the unemployment rate at time n, the
dynamic beta model [Lopes and Tsay, 2011] for Y1:N is:

Yn ∼ Beta

(
1

c(1 + exp(Xn))
,

exp(Xn)

c(1 + exp(Xn))

)
;

Xn+1 = µ+ φ(Xn − µ) + σUn+1,

(2.54)

where µ, φ, σ and c are �xed and U1:N are independent standard Gaussian vectors. We
recall that for α, β in R∗+, Beta(α, β) denotes the beta distribution:

Beta(x;α, β) =

{
xα−1(1−x)β−1Γ(α+β)

Γ(α)Γ(β) if x ∈ [0, 1]

0 otherwise
, (2.55)

K = 5 K = 7 K = 9

0.0022 0.0017 0.0015

Table 2.6: Mean square distances between the LCGOMSMF volatility estimates and those
from the PF, with di�erent number of classes. Here, V ar[Xn] = 0.6145.
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where Γ denotes the Gamma function Γ(x) =
∞∫
0

tx−1 exp(−t)dt.

If |φ| < 1 and X1 ∼ N(µ, σ2
0) with σ0 = σ√

1−φ2
, then the autoregressive process of

X1:N is stationary [Dickey and Fuller, 1979], as well as (X1:N ,Y1:N ).
The conditional distribution of Yn is generally skewed. Besides, we have:

E [Yn |Xn ] =
1

1 + exp(Xn)
; (2.56)

Var [Yn |Xn ] =
exp(Xn)

(1 + exp(Xn))2

(
1− 1

c+ 1

)
, (2.57)

which means that c can be seen as a �noise level� of the observation of Xn made through Yn.
When c = 0, Yn is a deterministic bijective function of Xn, and when c tends to in�nity,
the conditional variance of Yn tends to its maximum. See Figure 2.8 for an illustration.
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Figure 2.8: Distribution of Y1 given x1 = −2.82, for di�erent values of the �noise level� c.
The vertical red line locates the common mean of both distributions.

The parameter φ is the lag-one autocorrelation of the latent process.
The dynamic beta regression is a particular case of the dynamic generalized linear

model [Lopes and Tsay, 2011, West et al., 1985], where the latent process is Gaussian
autoregressive and the observational distribution belongs to the exponential family.

Bayesian inference in model (2.54) is an established part of econometric and social
analyses. We calibrated this model to a real-world data of the US monthly unemployment
rate data from March 2002 to December 2015. The rounded values of the parameters
are µ = −2.82, φ = 0.95, σ0 = 0.17 and c = 0.005. In order to test the performance of
LCGOMSMS in the case of model (2.54), we consider estimating X1:N from Y1:N when
observed variables arise from (2.54) for various values of c and φ.

We use LCGOMSMS with di�erent number of states K to estimate the latent variables
from the N = 1000 observable ones, and we report our results in terms of the Relative
Mean Squared Error (RMSE) for the mean of 100 independent experiments. The RMSE
is relative to the common variance of variables in X1:N which is σ2

0. The results are in
Table 2.7.

The dimensions of the latent variables and the observable ones are a = b = 1, the
training sample size is N ′ = 20000, and Q = 100 is the number of EM iterations. For
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K

φ c 2 3 5 7 PS PF

1 0.95 0.005 0.38 0.32 0.31 0.29 0.29 0.41

2 0.95 0.01 0.54 0.43 0.39 0.38 0.38 0.50

3 0.99 0.005 0.40 0.21 0.16 0.16 0.16 0.22

4 0.99 0.01 0.42 0.37 0.31 0.24 0.23 0.28

Table 2.7: The RMSE of smoothing in model (2.54) with µ = −2.82, σ0 = 0.17 and four
di�erent values of lag-one autocorrelation φ and noise level c coe�cients. The RMSE values
for asymptotically optimal PF and PS are present as a reference.

comparison purpose, a similar outcome using a PF and Particle Smoother (PS) with M =
1500 particles is also given. We use the PS presented in Section 1.4.2.

We observe that for moderate values ofK (e.g.,K = 5), the accuracy of the LCGOMSMS
is satisfactory. When the latent process is highly persistent (φ close to 1) and when the
�noise level� c is signi�cant, one needs a greater number of states to estimate the latent
process accurately.

The complexity of the particle smoother is N × m × T while the complexity of the
LCGOMSMS is N × K2. In practice, the computation time of our method is quite the
same as the one consumed by a particle smoother using K2 particles, which is rather a
small number of particles. As a consequence, one may use a large value of K if needed.

2.4.5 Smoothing in asymmetric stochastic volatility model

Here, we provide results of experiments of Bayesian smoothing in the ASV model 2.53.
The experiment protocol consists in estimating X1:N from Y1:N by using LCGOMSMS
with di�erent number of states K, N = 1000 observable ones, and we report our results
in terms of RMSE for the mean of 100 independent experiments. The RMSE is relative
to the common variance of variables in X1:N which is σ2

1−φ2 . The results are provided in
Table 2.8.

The dimensions of the latent variables and the observable ones are a = b = 1, the
training sample size is N ′ = 20000, and Q = 100 is the number of EM iterations. For
comparison purpose, a similar outcome using a PF and PS withM = 1500 particles is also
given. We use the PS presented in Section 1.4.2.

We observe that for moderate values ofK (e.g.,K = 5), the accuracy of the LCGOMSMS
is satisfactory.

K

ρ λ2 2 3 5 7 PS

1 -0.90 0.19 0.23 0.21 0.20 0.20 0.19

2 -0.80 0.36 0.36 0.34 0.32 0.32 0.32

3 -0.50 0.75 0.57 0.55 0.55 0.55 0.54

4 -0.30 0.91 0.65 0.63 0.62 0.62 0.62

5 -0.00 1.00 0.70 0.67 0.66 0.66 0.66

Table 2.8: The MSE of smoothing in the ASV model with µ = 0.5, β = 0.5, φ = 0.5
and �ve di�erent values of λ2 and ρ such that λ2 + ρ2 = 1 and σ2 + φ2 = 1 for a unitary
unconditional variance of Xn.
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2.4.6 Smoothing in Markov-switching stochastic volatility model

Let N in N∗, the Markov Switching Stochastic Volatility (MSSV) model [So et al., 1998,
Carvalho and Lopes, 2007] of (X1:N ,Y1:N ) reads as follows:

∀n ∈ {1 : N − 1},Xn+1 = γ1 +

q∑

j=2

γj1l[j;+∞] (Sn+1) + φXn + σUn+1; (2.58)

∀n ∈ {1 : N},Yn = exp (Xn/2)Vn, (2.59)

where
� 1lA(.) is the indicator function of a set A;
� S1:N is a stationary discrete Markov chain with k states;
� for all n in {1 : N − 1}, p (sn+1 |x1;n, y1;n, s1:n ) = p (sn+1 |sn );
� γ1, . . . , γq, φ, σ are �xed parameters in R
� U1:N ,V1:N are independent standard Gaussian vectors.
We set q = 2, p11 = p (sn+1 = 1 |sn = 1) and p22 = p (sn+1 = 2 |sn = 2). Since ran-

dom sampling is straightforward within the MSSV framework, LCGOMSMS is applicable.
Table 2.9 shows its results for some MSSV parameters. We use the PS presented in Sec-
tion 1.4.2.

K

p11 p22 2 3 5 7 PS

1 0.99 0.985 0.02 0.02 0.02 0.02 0.02

2 0.85 0.25 0.71 0.38 0.38 0.38 0.38

3 0.5 0.5 0.45 0.42 0 42 0.42 0.42

Table 2.9: MSE of smoothing in the MSSV model with k = 2, γ1 = −5.0, γ2 = −3.0,
σ2 = 0.1, φ = 0.5 and three di�erent values of p11 and p22.

We observe that if K is large enough, the smoothed output of the LCGOMSMS is as
good as the statistically optimal one, produced by the PS. Our smoothing procedure is
riskless from the weight degeneracy phenomenon frequently encountered in particle meth-
ods and seems to be robust even in the case of the switching models.

2.5 Conclusion

CGOMSMs are POMPs with hybrid state space in which exact fast Bayesian inference is
feasible. We presented the CGOMSM framework and the related algorithms of Bayesian
inference. We also proposed LCGOMSMF and LCGOMSMS, which are CGOMSM-based
methods for Bayesian inference in non-Gaussian non-linear systems. They rely on a single
global approximation of the system done by the EM algorithm, the latter constitutes the
major contribution of the author. LCGOMSMF and LCGOMSMS are very general and
has several advantages over existing techniques. Their performances have been examined
on synthetic samples related to SV models as well as on real data. We found that the
LCGOMSMF attains the asymptotic performances of the PF, what could not be obtained
with GSF and GSUKF.

The �ltering procedure which is the object of the Section is applicable in general sta-
tionary (or asymptotically stationary) Markov dynamic systems, provided that one can
sample its realizations. It is as fast as the standard Kalman �lter, provided that one
adjusts the �lter to a particular model via e.g. the EM algorithm.
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Chapter 3

Markovian grid-based Bayesian state

estimation

The jump Markov system [Andrieu et al., 2003a], and, more generally, the hybrid-state
Partially Observable Markov Process (POMP), allows modeling time series whose dynamics
depend upon unknown exogenous discrete-valued factors. It applies in econometrics [Kim,
1994, Zhu and Rahman, 2015], �nance [Azzouzi and Nabney, 1999, Panopoulou and Pante-
lidis, 2015], tracking [Weiss et al., 2004], speech recognition [Mesot and Barber, 2007, Rosti
and Gales, 2003], pattern recognition [Pavlovic et al., 2001], among others [Ristic et al.,
2004, Ghahramani and Hinton, 2000]. These models are also known as regime-switching
models (processes) and interacting multiple models. Exact Bayesian state estimation in
such a system is usually impossible [Lerner, 2002] unless the system is a hidden Markov
chain with �nite discrete state space [Andrieu et al., 2003a].

Switching �lters are algorithms for Bayesian inference in hybrid-state POMPs. They
include sampling-based approaches [Kim and Nelson, 1999, Doucet et al., 2001, Fong et al.,
2002, Särkkä et al., 2012, Carter and Kohn, 1996] and deterministic ones [Zoeter and Hes-
kes, 2006, Zhong et al., 2008]. Sampling-based �lters rely on Monte Carlo and quasi-Monte
Carlo methods [Ca�isch, 1998, Niederreiter, 2010, Moroko� and Ca�isch, 1995, Gerber and
Chopin, 2015]. These �lters are asymptotically optimal, but can be computationally inten-
sive. Usual deterministic ones are modi�ed versions of the Extended Kalman Filter (EKF),
Unscented Kalman Filter (UKF) or Gauss-Hermite Filter (GHF) which handle the discrete-
valued process of switches. EKF, UKF, GHF and their variants are discussed in [Afshari
et al., 2017]. However, sampling-based methods may be computationally expensive in the
case of high-dimensional state space, while deterministic ones are generally not proven to
converge to the Bayesian solution.

In this chapter, we introduce a novel approach for Bayesian inference in stationary
hybrid-state POMPs, which we call Markovian Grid-Based State Estimator (MGSE). This
method allows using sparse grids [Bungartz and Griebel, 2004] for reducing the dimension-
ality e�ect, what we presented in [Gorynin et al., 2016b], which allowed e�cient state
estimation even in the case of high-dimensional state space. We extend our previous
study [Gorynin et al., 2016b] by proving the convergence of the MGSE towards the Bayesian
solution in the POMPs.

The chapter is organized as follows. The next section is a background on the grid
methods and quadrature rules. The second section is the main contribution of the author
and introduces Markovian grids as a computational tool for statistical inference in hidden
Markov and switching hidden Markov systems. The third section contains experiments
and the last one contains conclusions and perspectives.
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3.1 Background

De�nition 5. Monomial in Ra of order t.

Let a in N, t in N. We say that m ∈ F
(
R
a → R

)
is a monomial in Ra of order t if

there exists an a-uplet (α1, . . . , αa) in N
a such that

α1 + . . .+ αa = t, ∀z ∈ Ra,m(z) = z[1]α1 . . . z[a]αa ,

where for each i in {1 : a}, z[i] denotes the i-th coe�cient of vector z.

The set of all monomials in Ra of order less than or equal to t is denoted by Mt

(
R
a
)
.

De�nition 6. Continuous-discrete domains.
We say that a set Γ is a continuous-discrete domain if there exist a non empty �nite

discrete set Ω and a ∈ N such that Γ = Ω×Ra. The set of continuous-discrete domains is
denoted as D and is de�ned as

D =
⋃

0<Card(Ω)<∞
a∈N

Ω×Ra. (3.1)

Note that for any a ∈ N and Ω such that Card(Ω) = 1, we have there is a trivial
bijection between Ω×Ra and Ra. In this case, we pose for simplicity Ω×Ra = R

a, thus
we have Ra ∈ D.

De�nition 7. Vector valued functions.
Let Γ ∈ D, the set of vector-valued functions on Γ is denoted by F(Γ), and is de�ned

as
F(Γ) =

⋃

d∈N
F
(

Γ→ R
d
)
. (3.2)

De�nition 8. Analytic function on Ra.
Let a, b ∈ N,

� f ∈ F(R→ R
b) is analytic on R if for each x0 in R, there exists an open neighbor-

hood of x0 in which f is equal to a convergent power series in Rb [Gunning, 1965];

� f ∈ F(Ra → R
b) is analytic on Ra if it is analytic in each variable separately, that

is for any �xed (a− 1) coordinates, the restriction of f is an analytic function of the
remaining coordinate [Pedrick, 1994].

The set of analytic functions from R
a to Rb is denoted as A

(
R
a → R

b
)
. The subset of

analytic functions in F(Ra) is denoted as A
(
R
a
)
. Let us recall that the sums, products,

and compositions of elements in A
(
R
a
)
are also in A

(
R
a
)
.

Let us extend the concept of analytic functions to the continuous-discrete domains.

De�nition 9. Analytic function on Γ.

Let a, b ∈ N, Ω be a �nite discrete set and Γ = Ω×Ra. We say that f ∈ F
(

Γ→ R
b
)

is analytic on Γ if for each ω in Ω, f is analytic on {(ω, z)|z ∈ Ra}.

The remaining symbols are:
� For Γ ∈ D, the set of positive measures on Γ is denoted by U(Γ);
� For Γ ∈ D, µ ∈ U(Γ) and f ∈ F(Γ) µ-integrable, we denote

< µ,f >=

∫

Γ
fdµ =

∑

ω∈Ω

∫

Ra

f(ω, z)µ(ω, z)dz; (3.3)
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� For Γ,Γ′ ∈ D, the product measure of µ ∈ U(Γ) and µ′ ∈ U(Γ′), is denoted as µ⊗µ′;
� For Γ ∈ D and x ∈ Γ, the Dirac delta function is denoted by δx ∈ U(Γ). Recall that

for each f in F
(

Γ
)
such that f(x) is �nite, we have

< δx,f >= f(x);

� The indicator function of a set S is denoted by 1lS;
� For k, n ∈ N, 0 ≤ k ≤ n, the binomial coe�cient de�ned by n!

k!(n−k)! is denoted by

Ck
n.

De�nition 10. Tensor product of functions.

Let X1 and X2 be two sets, f1 ∈ F
(
X1 → R

)
and f2 ∈ F

(
X2 → R

)
. The tensor

product of f1 and f2 is an element of F
(
X1 ×X2 → R

)
denoted as f1 ⊗ f2 and de�ned

by
∀x1 ∈ X1,x2 ∈ X2, (f1 ⊗ f2)(x1,x2) = f1(x1)f2(x2). (3.4)

De�nition 11. Γ-grid.

LetM ∈ N∗, Γ ∈ D, Λ = {γ1, . . . ,γM} ⊂ Γ and π in F
(

Λ→ R

)
. Then I = {Λ, π} is

called a Γ-grid. {γi}1≤i≤M are called grid nodes and {π(γi)}1≤i≤M are called grid weights.

De�nition 12. Γ-grid measure.
Let Γ ∈ D and I = {Λ, π} be a Γ-grid. The grid measure corresponding to I is de�ned

as
TI =

∑

γ∈Λ

δγπ(γ). (3.5)

De�nition 13. Quadrature rule induced by a grid.

Let a ∈ N, Γ ∈ D, f in F
(

Γ→ R
a
)
and I = {Λ, π} be a Γ-grid. The quadrature rule

for f induced by I is de�ned as < TI,f >, where TI is the grid measure corresponding
to I. Speci�cally, we have

< TI,f >=
∑

γ∈Λ

f(γ)π(γ). (3.6)

For the sake of simplicity, we denote in the same way < TI,f > and < I,f >.

De�nition 14. Degree of precision of a Γ-grid.
Let a ∈ N, t ∈ N, Ω be a �nite discrete set, Γ = Ω×Ra, µ ∈ U(Γ) and I = {Λ, π} be

a Γ-grid. We say that I has a degree of precision t with respect to µ if for each monomial

m in Mt

(
R
a
)
and each ω ∈ Ω, one has

∑

z∈{x∈Ra|(ω,x)∈Λ}

m(z)π(ω,z) = µ(ω) < µ,m > . (3.7)

Additionally, for any g in F
(

Γ → R+

)
, we say that I has a degree of precision of t

with respect to g if it has a degree of precision t with respect to Tg ∈ U(Γ) de�ned by

∀f ∈ F
(

Γ
)
, < Tg,f >=

∑

ω∈Ω

∫

Ra

f(ω, z)g(ω, z)dz. (3.8)

In the case where Ω = ∅, we have Γ = R
a and we say that I has a degree of precision

t with respect to µ if for each monomial m in Mt

(
R
a
)
, one has

< I,m >=< µ,m > . (3.9)
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Similarly, for any g in F
(
R
a → R+

)
, we say that I has a degree of precision of t with

respect to g if it has a degree of precision t with respect to Tg ∈ U(Ra) de�ned by

∀f ∈ F
(
R
a
)
, < Tg,f >=

∫

Ra

f(z)g(z)dz. (3.10)

De�nition 15. Strongly arbitrarily precise sequence of Γ-grids.
Let Γ ∈ D, µ ∈ U(Γ) and (IL)L∈N∗ be a sequence of Γ-grids. We say that (IL)L∈N∗

is strongly arbitrarily precise with respect to µ if for any t ∈ N, there exists Lt ∈ N∗ such
that for all L greater or equal to Lt, IL has a degree of precision t with respect to µ.

Additionally, for any g in F
(

Γ → R+

)
, we say that (IL)L∈N∗ is strongly arbitrarily

precise with respect to g if it is strongly arbitrarily precise with respect to Tg ∈ U(Γ) de�ned
by (3.8).

De�nition 16. Grid-by-scalar product.

Let Γ ∈ D, I = {Λ, π} be a Γ-grid and h in F
(

Γ→ R

)
. We de�ne the grid-by-scalar

product of I and h as follows:
Ih = {Λ, hπ}.

Note that we also have,
TIh = TIh.

Let us now introduce the concept of consistency of a grid sequence with a measure in
U(Γ).

De�nition 17. Consistent sequences of Γ-grids.
Let Γ ∈ D, µ ∈ U(Γ) and (IL)L∈N∗ be a sequence of Γ-grids. We say that (IL)L∈N∗

is consistent with µ if for any f in A
(

Γ
)
, (< IL,f >)L∈N∗ converges to < µ,f > in the

sense of convergence of numerical sequences.

Additionally, for any g in F
(

Γ → R

)
, we say that (IM )M∈N∗ is consistent with g if

it is consistent with Tg ∈ U(Γ) de�ned by (3.8).

De�nition 18. Union grid.
Let Γ ∈ D, I = {Λ, π} and I′ = {Λ′, π′} be two Γ-grids. We de�ne the union grid J

on Γ as
J =

{
Λ ∪ Λ′, 1lΛπ + 1lΛ′π

′} ,
and we note it as

J = I + I′.

Note that we also have,
TI+I′ = TI + TI′ .

Thus, for any f in F(Γ),

< I + I′,f >=< I,f > + < I′,f > .

De�nition 19. Weekly arbitrarily precise sequence of Γ-grids.
Let Γ ∈ D, µ ∈ U(Γ) and (IL)L∈N∗ be a sequence of Γ-grids. We say that (IL)L∈N∗ is

weekly arbitrarily precise with respect to µ if there exist F in N∗, h1, . . . , hF in A
(

Γ→ R

)
,

µ1, . . . , µF ∈ U(Γ) and F sequences of Γ-grids
(
I

(1)
L

)
L∈N∗

, . . . ,
(
I

(F )
L

)
L∈N∗

strongly ar-

bitrarily precise with respect to µ1, . . . , µF respectively such that µ =
F∑
f=1

µfhf and for each

L in N∗, IL =
F∑
f=1

I
(f)
L hf .
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Weekly arbitrarily precise grid sequences will be simply referred as arbitrarily precise
further in the text.

The following two propositions result from an original research of the author.

Proposition 7. Let Γ ∈ D, µ ∈ U(Γ), h in A
(

Γ → R

)
such that µh would be in U(Γ).

Let (IL)L∈N∗ = ({ΛL, πL})L∈N∗ be a sequence of Γ-grids arbitrarily precise with respect to
µ. Then (ILh)L∈N∗ is arbitrarily precise with respect to µh.

Proof. (IL)L∈N∗ is arbitrarily precise with respect to µ, thus there exist F inN∗, h1, . . . , hF

inA
(

Γ→ R

)
, µ1, . . . , µF ∈ U(Γ) and F sequences of Γ-grids

(
I

(1)
L

)
L∈N∗

, . . . ,
(
I

(F )
L

)
L∈N∗

strongly arbitrarily precise with respect to µ1, . . . , µF respectively such that µ =
F∑
f=1

µfhf

and for each L in N∗, IL =
F∑
f=1

I
(f)
L hf . Since for each f in {1 : F}, hfh ∈ A

(
Γ→ R

)
as

the product of two analytical functions inA
(

Γ→ R

)
, (ILh)L∈N∗ is arbitrarily precise with

respect to µh, as we have µh =
F∑
f=1

µfhfh and for each L in N∗, IL =
F∑
f=1

I
(f)
L hfh.

Proposition 8. Let Γ ∈ D, µ, ν ∈ U(Γ),
(
IL

)
L∈N∗

and
(
KL

)
L∈N∗

be two sequences of

Γ-grids arbitrarily precise with respect to µ and ν respectively. Then
(
IL + KL

)
L∈N∗

is

arbitrarily precise with respect to with µ+ ν.

Proof.
(
IL

)
L∈N∗

and
(
KL

)
L∈N∗

are arbitrarily precise with respect to µ and ν respec-

tively, thus there exist F1, F2 in N∗, u1, . . . , uF1 , k1, . . . , kF2 in A
(

Γ→ R

)
,

µ1, . . . , µF1 , ν1, . . . , νF2 ∈ U(Γ), F1 sequences of Γ-grids
(
I

(1)
L

)
L∈N∗

, . . . ,
(
I

(F1)
L

)
L∈N∗

strongly arbitrarily precise with respect to µ1, . . . , µF1 respectively and F2 sequences of
Γ-grids(
K

(1)
L

)
L∈N∗

, . . . ,
(
K

(F2)
L

)
L∈N∗

strongly arbitrarily precise with respect to ν1, . . . , νF2 re-

spectively such that µ =
F1∑
f=1

µfuf , ν =
F2∑
f=1

νfkf and for each L in N∗, IL =
F1∑
f=1

I
(f)
L uf ,

KL =
F2∑
f=1

K
(f)
L kf .

Let F = F1 +F2. De�ne h1, . . . , hF in A
(

Γ→ R

)
, σ1, . . . , σF ∈ U(Γ) and F sequences

of Γ-grids (S
(1)
L )L∈N∗ , . . . , (S

(F )
L )L∈N∗ as follows:

hf =

{
uf if f ≤ F1;

kf−F1
if f > F1;

σf =

{
µf if f ≤ F1;

νf−F1
if f > F1;

∀L ∈ N∗,S(f)
L =

{
I

(f)
L if f ≤ F1;

K
(f−F1)
L if f > F1.

Thus, for each L in N∗, IL + KL =
F∑
f=1

S
(f)
L hf and µ + ν =

F∑
f=1

σfhf . Since
(
S

(1)
L

)
L∈N∗

, . . . ,
(
S

(F )
L

)
L∈N∗

are strongly arbitrarily precise with respect to σ1, . . . , σF ,(
IL + KL

)
L∈N∗

is arbitrarily precise with respect to µ+ ν.

Proposition 9. Let Γ ∈ D, µ in U(Γ), (IL)L∈N∗ be a sequence of Γ-grids. If (IL)L∈N∗

is strongly arbitrarily precise with respect to µ, then (IL)L∈N∗ is consistent with µ.

Proof. See [Gerstner and Griebel, 1998, Novak and Ritter, 1997, Wasilkowski and Wozni-
akowski, 1995].
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The following corollary results from an original research of the author.

Corollary 9.1. Let a ∈ N, Ω be a �nite discrete set, Γ = Ω×Ra, µ in U(Γ), (IL)L∈N∗ be
a sequence of Γ-grids. If (IL)L∈N∗ is arbitrarily precise with respect to µ, then (IL)L∈N∗

is consistent with µ.

Proof. (IL)L∈N∗ is arbitrarily precise with respect to µ, thus there exist F inN∗, h1, . . . , hF

inA
(

Γ→ R

)
, µ1, . . . , µF ∈ U(Γ) and F sequences of Γ-grids

(
I

(1)
L

)
L∈N∗

, . . . ,
(
I

(F )
L

)
L∈N∗

strongly arbitrarily precise with respect to µ1, . . . , µF respectively such that µ =
F∑
i=1

µihi

and for each L in N∗, IL =
F∑
i=1

I
(i)
L hi. Let f in A

(
Γ
)
, we have

∀L ∈ N∗, < IL,f >=<
F∑

i=1

I
(i)
L hi,f >=

F∑

i=1

< I
(i)
L hi,f > . (3.11)

For each i in {1 : F}, we have

∀L ∈ N∗, < I
(i)
L hi,f >=

∑

γ∈Λ
(i)
L

f(γ)π
(i)
L (γ)hi(γ) =< I

(i)
L ,fhi >, (3.12)

where I
(i)
L =

{
Λ

(i)
L , π

(i)
L

}
. Since f and hi are in A

(
Γ
)
, fhi is also in A

(
Γ
)
. Thus,

lim
L→∞

< I
(i)
L ,fhi >=< µi,fhi >

since
(
I

(i)
L

)
L∈N∗

is consistent with µi cf. Proposition 9. By substituting (3.12) in the

above equation, we have

lim
L→∞

< I
(i)
L hi,f >=< µi,fhi > .

Next, we have

< µi,fhi >=
∑

ω∈Ω

∫

Ra

f(ω, z)hi(ω, z)µi(ω, z)dz =< µihi,f >,

thus

lim
L→∞

< I
(i)
L hi,f >=< µihi,f > . (3.13)

By substituting (3.13) in (3.11), we have

lim
L→∞

< IL,f >= lim
L→∞

F∑

i=1

< I
(i)
L hi,f >=

F∑

i=1

lim
L→∞

< I
(i)
L ,fhi >=

F∑

i=1

< µihi,f >=

<

F∑

i=1

µihi,f >=< µ,f >,

thus (IL)L∈N∗ is consistent with µ.

The following subsection focuses on the construction of grids on R [Luceno, 1999].
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3.1.1 Construction of arbitrarily precise sequences of R-grids by Gaus-

sian quadrature

Here we recall [Luceno, 1999] the construction of grids corresponding to the Gaussian
quadrature rule.

De�nition 20. Moments of a real-valued function.

Let g in F
(
R→ R+

)
, i in N, the i-th moment of g is de�ned as

mi[g] =

∫

R

zig(z)dz. (3.14)

The Gaussian quadrature rule is used to de�ne a sequence of grids (GL)L∈N∗ consistent
with g.

De�nition 21. R-grid corresponding to the M -point Gaussian quadrature rule.

Let M ∈ N∗, g in F
(
R→ R+

)
such that for each i in {0 : 2M − 1}, the i-th moment

of g is �nite. Let P1, . . . , PM be polynomials computed recursively by

∀i ∈ {0 : M − 1}, Pi+1(z) = (z − δi+1)Pi(z)− γ2
i+1Pi−1(z),

with P−1(z) = 0, P0(z) = 1, γ1 = 0 and

∀i ∈ {0 : M − 1}, δi+1 =

∫
R

zP 2
i (z)g(z)dz

∫
R

P 2
i (z)g(z)dz

, γ2
i+1 =

∫
R

P 2
i (z)g(z)dz

∫
R

P 2
i−1(z)g(z)dz

computed using {mi[g]}1≤i≤2M−1.

The R-grid GM = {ΛM , πM} corresponding to the M -point Gaussian quadrature rule
with respect to g is de�ned by the grid nodes, which are the M distinct roots of PM , and
the grid weights, which solve the linear system below [Luceno, 1999]





∑
z∈ΛM

πM (z )P0(z ) = 1;

∑
z∈ΛM

πM (z )Pi(z ) = 0 ∀i ∈ {1, . . . ,M − 1}. (3.15)

Proposition 10. Let M in N∗, g in F
(
R→ R+

)
such that for each i in {0 : 2M − 1},

the i-th moment of g is �nite. Let GM be the R-grid GM = {ΛM , πM} corresponding to the
M -point Gaussian quadrature with respect to g. Then GM has a degree of precision 2M −1
with respect to g.

Proof. See [Luceno, 1999].

Corollary 10.1. [Luceno, 1999] Let g in F
(
R → R+

)
such that for each i in N, the

i-th moment of g is �nite. For each M in N∗, let GM be the R-grid corresponding to the
M -point Gaussian quadrature with respect to g. Then (GM )M∈N∗ is strongly arbitrarily
precise with respect to g.

Proof. For each t in N, one can choose Mt in N∗ such that 2Mt − 1 > t, thus for each M
in N∗ greater than or equal to Mt, GM would have a degree of precision t with respect to
g cf. Proposition 10. Therefore, (GM )M∈N∗ is strongly arbitrarily precise with respect to
g.
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Remark 1. Let g in F
(
R→ R+

)
be a probability density function and GM = {ΛM , πM}

be the R-grid corresponding to the M -point Gaussian quadrature with respect to g. For any

f in A
(
R→ R

)
, we have [Barrett, 1961]

| < GM , f > − < g, f > | = O

(
1

M2

)
. (3.16)

Remark 2. For a comparison purpose, let g in F
(
R → R+

)
be a probability density

function, N ∈ N, f in A
(
R→ R

)
. Consider a Dirac mixture distribution

D̃N =
1

N

∑

z∈ΞN

δz , (3.17)

de�ned by points ΞN = {Z1, . . . ,ZN} independently distributed according to g.
< D̃N , f > can be seen as a Monte Carlo approximation to E[f(G)], where G is the

random variable distributed according to g. The law of large numbers ensures convergence
of < D̃N , f > towards E[f(G)] =< g, f > at rate ( cf. [Billingsley, 2013])

E
[∣∣∣< D̃N , f > − < g, f >

∣∣∣
]

= O

(
1√
N

)
. (3.18)

The quasi-Monte Carlo methods use the same approximation to < g, f >, but the elements
of ΞN are obtained from deterministic low-discrepancy sequences. In this case, < D̃N , f >
converges towards < g, f > at rate ( cf. [Ca�isch, 1998])

∣∣∣< D̃N , f > − < g, f >
∣∣∣ = O

(
logN

N

)
. (3.19)

By comparing (3.16), (3.18) and (3.19), we see that in the case of one-dimensional
integration, the Gaussian quadrature method has the best convergence rate compared to the
Monte-Carlo and quasi Monte-Carlo methods.

The following subsections result from an original research of the author. They focus
on the construction of grids on Ra for a > 1.

3.1.2 Construction of arbitrarily precise sequences of Ra-grids by tensor

product

De�nition 22. Tensor product grid.
Let Γ,Γ′ ∈ D, I = {Λ, π} and I′ = {Λ′, π′} be a Γ-grid and Γ′-grid respectively. We

de�ne the tensor product grid J on Γ× Γ′ as

J =
{

Λ× Λ′, π ⊗ π′
}
,

and we note it as
J = I ⊗I′.

De�nition 23. Γ-tensor-product grid on ΓN .
Let N ∈ N∗, Γ ∈ D, we say that a ΓN -grid I = {ΛN , π(N)} is Γ-tensor-product on ΓN

if there exist π1, π2, . . . πN in F
(

Γ→ R

)
such that

∀γ1:N ∈ ΓN , π(N)
(
γ1:N

)
= π1

(
γ

(1)
1:N

)
π2

(
γ

(2)
1:N

)
. . . πN

(
γ

(N)
1:N

)
, (3.20)

where γ1:N =
[
γ

(1)
1:N γ

(2)
1:N . . . γ

(N)
1:N

]
.
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Proposition 11. Let a1, a2 ∈ N, Ω1,Ω2 be �nite discrete sets. De�ne Γ1 = Ω1 × Ra1 ,
Γ2 = Ω2 ×Ra2 and let µ1 ∈ U(Γ1), µ2 ∈ U(Γ2).

Let
(
I

(1)
L

)
L∈N∗

=
({

Λ
(1)
L , π

(1)
L

})
L∈N∗

be a sequence of Γ1-grids strongly arbitrarily

precise with respect to µ1,
(
I

(2)
L

)
L∈N∗

=
({

Λ
(2)
L , π

(2)
L

})
L∈N∗

be a sequence of Γ2-grids

strongly arbitrarily precise with respect to µ2. Then
(
I

(1)
L ⊗I

(2)
L

)
L∈N

is a strongly arbi-

trarily precise sequence of Γ1 × Γ2-grids with respect to µ1 ⊗ µ2.

Proof. Let us pose Ω = Ω1 × Ω2, a = a1 + a2, µ = µ1 ⊗ µ2 and for each L in N∗,
ΛL = Λ

(1)
L × Λ

(2)
L , πL = π

(1)
L ⊗ π

(2)
L , IL = I

(1)
L ⊗I

(2)
L , thus we have IL = {ΛL, πL} for

each L in N∗. Let t in N. Since
(
I

(1)
L

)
L∈N∗

is strongly arbitrarily precise with respect to

µ1 and
(
I

(2)
L

)
L∈N∗

is strongly arbitrarily precise with respect to µ2, there exist L
(1)
t and

L
(2)
t such that for all L ∈ N∗ greater than or equal to max

(
L

(1)
t , L

(2)
t

)
,
(
I

(1)
L

)
L∈N∗

and
(
I

(2)
L

)
L∈N∗

would both have a degree of precision t with respect to µ1 and µ2 respectively.

Let us prove that for each monomial m in Mt

(
R
a
)
and for each ω in Ω, we have

∀L ∈ N∗, L > max
(
L

(1)
t , L

(2)
t

)
⇒

∑

z∈{x∈Ra|(ω,x)∈Λ}

m(z)π(ω,z) = µ(ω) < µ,m >, (3.21)

which would mean that (IL⊗I′L)L∈N is strongly arbitrarily precise with respect to µ1⊗µ2.

Let L in N∗ such that L > max
(
L

(1)
t , L

(2)
t

)
, ω = (ω1, ω2) in Ω1 × Ω2 and a monomial m

in Mt

(
R
a
)
. By de�nition, there exists (α1, . . . , αa1+a2) in

{
N
a|α1 + . . . + αa ≤ t

}
such

that
∀z ∈ Ra1+a2 ,m(z) = z[1]α1 . . . z[a]αa . (3.22)

The above equation can be rewritten as

∀z ∈ Ra1+a2 ,m(z) = z[1]β1 . . . z[a1]βa1z[a1 + 1]γ1 . . . z[a1 + a2]γa2 (3.23)

with (β1, . . . , βa1) in
{
N
a1 |β1 + . . .+βa1 ≤ t

}
and (γ1, . . . , γaa) in

{
N
a2 |γ1 + . . .+γa2 ≤ t

}
.

Therefore, we have
m = m1 ⊗m2, (3.24)

with monomials m1 and m2 in Mt

(
R
a1
)
and Mt

(
R
a2
)
de�ned by

∀z ∈ Ra1 ,m1(z) = z[1]α1 . . . z[a1]αa1 ; (3.25a)

∀z ∈ Ra2 ,m2(z) = z[1]αa1+1 . . . z[a2]αa1+a2 . (3.25b)

Next, we have
∑

z∈{x∈Ra|(ω,x)∈ΛL}

m(z)π(ω,z) =

∑

z1∈
{
x∈Ra1 |(ω1,x)∈Λ

(1)
L

}

z2∈
{
x∈Ra2 |(ω2,x)∈Λ

(2)
L

}

m1(z1)m2(z2)π
(1)
L (z1, ω1)π

(2)
L (z2, ω2) =

∑

z1∈
{
x∈Ra1 |(ω1,x)∈Λ

(1)
L

}m1(z1)π
(1)
L (ω1, z1)

∑

z2∈
{
x∈Ra2 |(ω2,x)∈Λ

(2)
L

}m2(z2)π
(2)
L (ω2, z2) =

µ1(ω1)µ2(ω2) < µ1,m1 >< µ2,m2 >= (µ1 ⊗ µ2)(ω) < µ1 ⊗ µ2,m1 ⊗m2 >=

µ(ω) < µ,m >, (3.26)
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which proves (3.21).

Corollary 11.1. Let Γ1,Γ2 ∈ D, µ ∈ U(Γ1), ν ∈ U(Γ2),
(
IL

)
L∈N∗

and
(
KL

)
L∈N∗

be

two sequences of Γ1-grids and Γ2-grids arbitrarily precise with respect to µ and ν respec-

tively. Then
(
IL ⊗KL

)
L∈N∗

is arbitrarily precise with respect to with µ⊗ ν.

Proof.
(
IL

)
L∈N∗

and
(
KL

)
L∈N∗

are arbitrarily precise with respect to µ and ν respec-

tively, thus there exist F1, F2 inN∗, u1, . . . , uF1 inA
(

Γ1 → R

)
, k1, . . . , kF2 inA

(
Γ2 → R

)
,

µ1, . . . , µF1 in U(Γ1), ν1, . . . , νF2 in U(Γ2), F1 sequences of Γ1-grids(
I

(1)
L

)
L∈N∗

, . . . ,
(
I

(F1)
L

)
L∈N∗

strongly arbitrarily precise with respect to µ1, . . . , µF1 re-

spectively and F2 sequences of Γ2-grids
(
K

(1)
L

)
L∈N∗

, . . . ,
(
K

(F2)
L

)
L∈N∗

strongly arbitrarily

precise with respect to ν1, . . . , νF2 respectively such that µ =
F1∑
i=1

µiui, ν =
F2∑
j=1

νjkj and for

each L in N∗, IL =
F1∑
i=1

I
(i)
L ui, KL =

F2∑
j=1

K
(j)
L kj . For each L in N∗, we have

IL ⊗KL =

(
F1∑

i=1

I
(i)
L uf

)
⊗




F2∑

j=1

K
(j)
L kf


 =

∑

1≤i≤F1
1≤j≤F2

I
(i)
L ⊗K

(j)
L (ui ⊗ kj).

For each (i, j) in {1 : F1}×{1 : F2}, ui⊗kj is inA
(

Γ1⊗Γ2 → R

)
, since ui ∈ A

(
Γ1 → R

)

and kj ∈ A
(

Γ2 → R

)
, and the sequence

(
I

(i)
L ⊗K

(j)
L

)
L∈N∗

is strongly arbitrarily precise

with respect to µi ⊗ νj according to Proposition 11. Since

µ⊗ ν =

(
F1∑

i=1

µiui

)
⊗




F2∑

j=1

νjkj


 =

∑

1≤i≤F1
1≤j≤F2

µi ⊗ νj(ui ⊗ kj),

(
IL ⊗KL

)
L∈N∗

is arbitrarily precise with respect to µ⊗ ν.

The above result allows constructing arbitrarily precise grid sequences with respect
to product measures on Ra. Arbitrarily precise grid sequences with respect to g in

A
(
R
a → R

)
can be obtained as follows.

Proposition 12. Let a ∈ N, g in A
(
R
a → R

)
, g1, . . . , ga, h in A

(
R → R+

)
, such that

for each i in {1 : a}, j in N, mj [gi] <∞ and

g = h · g1 ⊗ g2 ⊗ . . .⊗ ga. (3.27)

Let
(
G

(1)
L

)
L∈N∗

, . . . ,
(
G

(a)
L

)
L∈N∗

be sequences of R-grid corresponding to L-point Gaus-

sian quadrature rules with respect to g1, . . . , ga respectively, then the sequence of Ra-grids
(IL)L∈N∗ de�ned by

∀L ∈ N∗,IL = h ·G(1)
L ⊗ . . .⊗G

(a)
L (3.28)

is arbitrarily precise with respect to g

Proof. It follows from Corollary 11.1 and Proposition 7.
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However, the number of grid points in a product of the same a grids grows exponentially
with a. For instance, if G contains M distinct points, ⊗a

i=1G would contain Ma distinct
points. Thus, a direct evaluation of (3.6) would be problematic or impossible even for
moderate values of a. This is why we recall the sparse grids which are better suited for
high-dimensional integration.

3.1.3 Construction of arbitrarily precise sequences of Ra-grids by Smolyak

formula

Here we consider the Smolyak grids which are special case of sparse grids.

De�nition 24. Smolyak grid product.

Let a ∈ N∗, (Il)1≤l≤L grids on R. The Smolyak product grid of (Il)1≤l≤L on Ra is
de�ned as

Sa

[
(Il)1≤l≤L

]
=

L−1∑

q=L−a
(−1)L−1−qCL−1−a

a−1

∑

l1,...,la∈N∗
l1+...+la≤a+q

Il1 ⊗ . . .⊗Ila .

Proposition 13. Let a in N∗, g1, . . . , ga inF
(
R→ R+

)
and

(
G

(1)
L

)
L∈N∗

, . . . ,
(
G

(a)
L

)
L∈N∗

be sequences of strongly arbitrarily precise R-grids with respect to g1, . . . , ga respectively.

Then
(
Sa

[
(Gl)1≤l≤L

])
L∈N∗

is strongly arbitrarily precise with respect to g1 ⊗ . . .⊗ ga.

Proof. See [Garcke and Griebel, 2013].

A sparse grid sequence arbitrarily precise with respect to g in A
(
R
a → R

)
can be

obtained as follows. Let a ∈ N∗, g in A
(
R
a → R

)
, g1, . . . , ga, h in A

(
R → R+

)
satisfy-

ing (3.27) and such that for each i in {1 : d}, j in N, mj [gi] <∞.

Let
(
G

(1)
M

)
M∈N∗

, . . . ,
(
G

(a)
M

)
M∈N∗

be sequences of R-grids corresponding to the M -

point Gaussian quadrature rules with respect to g1, . . . , ga respectively, then the sequence
of Ra-grids (IM )M∈N∗ de�ned by

∀L ∈ N∗,IM = q ·Sa
[
(Gm)1≤m≤M

]
(3.29)

is arbitrarily precise with respect to g according to Corollary 11.1 and Proposition 7.

Remark 3. Let M ∈ N∗, g in F
(
R → R+

)
and let for each m ∈ N∗,m ≤ M , Gm

the R-grid corresponding to the M -point Gaussian quadrature with respect to g. The total

number of points in Sa

[
(Gm)1≤m≤M

]
grows as O

(
aM
)
with M and a cf. [Bungartz and

Griebel, 2004]. Asymptotically (in M), the Smolyak grid method appears as less e�cient
compared to the product grid method, since one has Ma grid points in the grid product of
(Gm)1≤m≤M . However, in practice, when the number of function evaluations in (3.6) is
constrained, the sparse grids may allow achieving the same accuracy as a product grid but
less points. This property is particularly important for high values of a and cases where
M ≤ a. Besides, even if the asymptotic rate of convergence of the quasi-Monte Carlo
method (3.19) is promising, the variance of its estimate may still be too high if the number
of function evaluations is constrained. This is why the three methods should be taken in
consideration for practical applications.
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3.1.4 Construction of arbitrarily precise sequences of Ω×Ra-grids

Let Ω be a �nite discrete set and a in N, Γ = Ω × Ra, µ ∈ U(Γ). Here we consider
constructing a sequence of Γ-grids arbitrarily precise with respect to µ in the case where Ω
is a non-empty set, provided that constructions of sequences of Ra-grids arbitrarily precise
with respect to a measure in U(Ra) have been exposed previously.

Let us denote Ω = {ω1, . . . , ωK} the elements of Ω, where K = Card(Ω) > 0. De�ne,
for each i in {1 : K}, µ(1,i) ∈ U(Ω) and µ(2,i) ∈ U(Ra) as follows:

∀ω ∈ Ω, µ(1,i)(ω) =

{
1 if ω = ωi;
0 otherwise,

∀z ∈ Ra, µ(2,i)(z) = µ(ωi, z). (3.30)

In this way, we have
µ =

∑

1≤i≤K
µ(1,i) ⊗ µ(2,i). (3.31)

Proposition 14. De�ne, for each i in {1 : K}, Ω-grid I(1,i) = {Ω, µ(1,i)}, thus I(1,i)

has an in�nite degree of precision with respect to µ(1,i). Consider, for each i in {1 : K},
a sequence of Ra-grids

(
I

(2,i)
L

)
L∈N∗

arbitrarily precise with respect to µ(2,i). Thus, for

each i in {1 : K},
(
I(1,i) ⊗I

(2,i)
L

)
L∈N∗

is arbitrarily precise with respect to µ(1,i) ⊗ µ(2,i)

according to Corollary 11.1. De�ne, for each L in N∗,

IL =
∑

1≤i≤K
I(1,i) ⊗I

(2,i)
L , (3.32)

then
(
IL

)
L∈N∗

is arbitrarily precise with respect to µ.

Proof. The sum in the above equation is �nite, it follows from Proposition 8 that
(
IL

)
L∈N∗

is arbitrarily precise with respect to µ due to (3.31).

3.2 Markovian grid-based state estimators

This section presents the main contribution of the author in the context of the chapter.
The following content results from an original research.

3.2.1 Markovian grids

De�nition 25. Γ-Markovian grid on ΓN .
Let N ∈ N∗, Γ ∈ D, we say that a ΓN -grid I = {ΛN , π(N)} is Γ-Markovian on ΓN if

there exist q1, q2, . . . qN−1 in F
(

Γ2 → R

)
such that

∀γ1:N ∈ ΓN , π(N)(γ1:N ) = q1

(
γ

(1)
1:N ,γ

(2)
1:N

)
q2

(
γ

(2)
1:N ,γ

(3)
1:N

)
. . . qN−1

(
γ

(N−1)
1:N ,γ

(N)
1:N

)
, (3.33)

where γ1:N =
[
γ

(1)
1:N γ

(2)
1:N . . . γ

(N)
1:N

]
.

Proposition 15. Let N ∈ N∗, Λ = {γ1, . . . ,γK} be a non-empty �nite discrete set of car-

dinal S, I(N) = {ΛN , π(N)} be a Γ-Markovian grid on ΓN and h1, . . . , hn in F
(

Γ2 → R

)
.

For each n in {1 : N} and γ ∈ Λ, de�ne

φn(γ) =
∑

γ1:N∈ΛN ,γ
(n)
1:N=γ

π(N)(γ1:N ). (3.34)

Then for each n in {1 : N}, φn(γ) can be evaluated with a complexity O
(
NS2

)
at each γ

in Λ.
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Proof. I(N) is Γ-Markovian on ΓN , thus there exist q1, q2, . . . qN−1 in F
(

Γ2 → R

)
such

that

∀γ1:N ∈ ΓN , π(N)(γ1:N ) = q1

(
γ

(1)
1:N ,γ

(2)
1:N

)
q2

(
γ

(2)
1:N ,γ

(3)
1:N

)
. . . qN−1

(
γ

(N−1)
1:N ,γ

(N)
1:N

)

and (3.34) becomes

∀n ∈ {1 : N},γ ∈ Λ, φn(γ) =
∑

γ1:N∈ΛN ,γ
(n)
1:N=γ

q1

(
γ

(1)
1:N ,γ

(2)
1:N

)
q2

(
γ

(2)
1:N ,γ

(3)
1:N

)
. . . qN−1

(
γ

(N−1)
1:N ,γ

(N)
1:N

)
=

∑

γ1:n−1∈Λn−1

q1

(
γ

(1)
1:N ,γ

(2)
1:N

)
q2

(
γ

(2)
1:N ,γ

(3)
1:N

)
. . . qn−2

(
γ

(n−2)
1:N ,γ

(n−1)
1:N

)
qn−1

(
γ

(n−1)
1:N ,γ

)
×

∑

γn+1:N∈ΛN−n

qn

(
γ,γ

(n+1)
1:N

)
qn+1

(
γ

(n+1)
1:N ,γ

(n+2)
1:N

)
. . . qN−1

(
γ

(N−1)
1:N ,γ

(N)
1:N

)
. (3.35)

De�ne, for each n in {1 : N} and γ in Λ,

αn(γ) = (3.36a)
∑

γ1:n−1∈Λn−1

q1

(
γ

(1)
1:N ,γ

(2)
1:N

)
q2

(
γ

(2)
1:N ,γ

(3)
1:N

)
. . . qn−2

(
γ

(n−2)
1:N ,γ

(n−1)
1:N

)
qn−1

(
γ

(n−1)
1:N ,γ

)
;

(3.36b)

βn(γ) =
∑

γn+1:N∈ΛN−n

qn

(
γ,γ

(n+1)
1:N

)
qn+1

(
γ

(n+1)
1:N ,γ

(n+2)
1:N

)
. . . qN−1

(
γ

(N−1)
1:N ,γ

(N)
1:N

)
. (3.36c)

We have from (3.35)

∀γ ∈ Λ,∀n ∈ {1 : N}, φn(γ) = αn(γ)βn(γ), (3.37)

and by evaluating (3.35) at n = 1 and n = N ,

∀γ ∈ Λ, α1(γ) = βN (γ) = 1. (3.38)

Observe that for each n in {1 : N − 1} and γ in Λ,

αn+1(γ) =
∑

γ′∈Λ

qn(γ′,γ)
∑

γ1:n−1∈Λn−1

q1

(
γ

(1)
1:N ,γ

(2)
1:N

)
. . . qn−2

(
γ

(n−2)
1:N ,γ

(n−1)
1:N

)
qn−1

(
γ

(n−1)
1:N ,γ′

)
=

∑

γ′∈Λ

qn(γ′,γ)αn(γ′), (3.39)

which is a recursive equation. Thus, evaluation of αn(γ) at n ∈ {1 : N} for each γ in Λ
requires nS summations over Λ which results in a complexity O

(
nS2

)
. Let us also show

for each γ in Λ, evaluation of βn(γ) can be achieved with a complexity O
(
S2(N − n)

)
.

For each γ ∈ Λ,

∀n ∈ {1 : N − 1}, ∀γ ∈ Λ, βn(γ) =
∑

γn+1:N∈ΛN−n

qn

(
γ,γ

(n+1)
1:N

)
qn+1

(
γ

(n+1)
1:N ,γ

(n+2)
1:N

)
. . . qN−1

(
γ

(N−1)
1:N ,γ

(N)
1:N

)
=

∑

γ′∈Λ

qn(γ,γ′)
∑

γn+2:N∈ΛN−n−1

qn+1

(
γ′,γ(n+2)

1:N

)
. . . qN−1

(
γ

(N−1)
1:N ,γ

(N)
1:N

)
=

∑

γ′∈Λ

qn(γ,γ′)βn+1(γ′), (3.40)
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which is a recursive equation similar to (3.39). Evaluation of βn(γ) at n ∈ {1 : N} for each
γ in Λ requires (N−n)S summations over Λ which results in a complexity O

(
(N − n)S2

)
.

Finally, evaluating αn(γ) and βn(γ) at each n ∈ {1 : N} for each γ in Λ can be achieved
with a complexity O

(
NS2

)
. As a result, evaluating φn(γ) at each n ∈ {1 : N} for each γ

in Λ can be achieved with a complexity O
(
NS2

)
due to (3.37).

Remark 4. Despite the fact that an evaluation of (3.34) would a priori require MN−1

operations, we show that an evaluation of (3.34) in a Markovian grid can be achieved with a
complexity linear in N , which is the key point of Proposition 15. The way we evaluate (3.34)
in the proof is similar to the well-known forward-backward algorithm. Indeed, we can see

that functions q1, q2, . . . qN−1 in F
(

Γ2 → R

)
are not necessarily positive-valued, as it is

the case in the classic version of the forward-backward algorithm.

3.2.2 Application of Markovian grids to the Bayesian state estimation

problem in POMPs

Now we consider a partially observed Markov process (H1:N ,Y1:N ). Let a in N∗, N in N∗,
H1:N be a hidden time series in Γ = R

a×Ω with Ω a �nite-discrete set and Y1:N observed.

Proposition 16. Let d,N ∈ N∗, Γ ∈ D, partially observed Markov process (H1:N ,Y1:N )
where for each n in {1 : N}, (Hn,Yn) ∈ Γ×Rd.

Let y1:N ∈ RdN such that pY1:N
(y1:N ) 6= 0, de�ne µy1:N ∈ U(ΓN ) by

∀h1:N ∈ ΓN , µy1:N (h1:N ) = p (h1:N ,y1:N ) . (3.41)

Let
(
IL

)
L∈N∗

=
{

ΛNL , π
(N)
L

}
L∈N∗

be a sequence of Γ-Markovian grids on ΓN consistent

with µy1:N . For each n in {1 : N} and L in N∗, de�ne

∀γ ∈ ΛL, φL,n(γ) =
∑

γ1:N∈ΛNL ,γ
(n)
1:N=γ

π(N)(γ1:N ) (3.42)

and a Γ-grid PL,n = {ΛL, υL,n} by

∀γ ∈ ΛL, υL,n(γ) =
φL,n(γ)∑

γ′∈ΛL

φL,n(γ ′)
, (3.43)

then
(
PL,n

)
L∈N∗

is consistent with pHn|y1:N
.

Proof. Let n in {1 : N}, f in A
(

Γ
)
, we have

< pHn|y1:N
,f >=

∫
f(hn)p (hn |y1:N ) dh1:N =

∫
f(hn)p (h1:N ,y1:N ) dh1:N

pY1:N
(y1:N )

=

∫
f(hn)µy1:N (h1:N )dh1:N∫

µy1:N (h1:N )dh1:N
.

Since (IL)L∈N∗ is consistent with µy1:N , we have

lim
L→∞

∑

γ1:N∈ΛNL

f
(
γ

(n)
1:N

)
π

(N)
L (γ1:N ) =

∫
f(hn)µy1:N (h1:N )dh1:N ;

lim
L→∞

∑

γ1:N∈ΛNL

π
(N)
L (γ1:N ) =

∫
µy1:N (h1:N )dh1:N ,
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and therefore

lim
L→∞

∑
γ1:N∈ΛNL

f
(
γ

(n)
1:N

)
π

(N)
L (γ1:N )

∑
γ1:N∈ΛNL

π
(N)
L (γ1:N )

=

lim
L→∞

∑
γ1:N∈ΛNL

f
(
γ

(n)
1:N

)
π

(N)
L (γ1:N )

lim
L→∞

∑
γ1:N∈ΛNL

π
(N)
L (γ1:N )

=

∫
f(hn)µy1:N (h1:N )dh1:N∫

µy1:N (h1:N )dh1:N
=< pHn|y1:N

,f >, (3.44)

since pY1:N
(y1:N ) =

∫
µy1:N (h1:N )dh1:N and we suppose that pY1:N

(y1:N ) 6= 0. Let us now
show that for all L in N∗,

∑
γ1:N∈ΛN

f
(
γ

(n)
1:N

)
π

(N)
L (γ1:N )

∑
γ1:N∈ΛNL

π
(N)
L (γ1:N )

=< PL,n,f > . (3.45)

We have

∀L ∈ N∗,

∑
γ1:N∈ΛNL

f
(
γ

(n)
1:N

)
π

(N)
L (γ1:N )

∑
γ1:N∈ΛNL

π
(N)
L (γ1:N )

=

∑
γ∈ΛL

f(γ)
∑

γ1:N∈ΛNL ,γ
(n)
1:N=γ

π
(N)
L (γ1:N )

∑
γ′∈ΛL

∑

γ1:N∈ΛNL ,γ
(n)
1:N=γ′

π
(N)
L (γ1:N )

=

∑
γ∈ΛL

f(γ)φL,n(γ)

∑
γ′∈ΛL

φL,n(γ ′)
=< PL,n,f > . (3.46)

We conclude that
lim
L→∞

< PL,n,f >=< pHn|y1:N
,f > (3.47)

by substituting (3.46) in (3.44).

Remark 5. For each n ∈ N∗, n ≤ N , one can compute the quadrature weights (3.43) with
complexity O

(
NS2

)
according to Proposition (15).

Proposition 17. Let d,N ∈ N∗, Γ ∈ D, (H1:N ,Y1:N ) be a partially observed Markov
process where for each n in {1 : N}, (Hn,Yn) ∈ Γ × Rd. Let y1:N ∈ RdN such that
pY1:N

(y1:N ) 6= 0, (IL)L∈N∗ = ({ΛL, πL})L∈N∗ be a sequence of Γ-grids arbitrarily precise

with respect to pH1 ∈ U(Γ). De�ne u1, u2, . . . uN−1 in F
(

Λ2
L → R

)
by

∀(γ,γ ′) ∈ Λ2
L, u1(γ,γ ′) = p(H1,H2,Y1,Y2)

(
γ,γ ′,y1,y2

)
;

∀n ∈ {2 : N − 1}, ∀(γ,γ ′) ∈ Λ2
L, un(γ,γ ′) = p(Hn+1,Yn+1)|(Hn,Yn)

(
γ ′,yn+1 |γ,yn

)
.

For each L ∈ N∗, de�ne ΓN -grid I
(N)
L = {ΛN , π(N)

L } by

∀γ1:N ∈ ΛNL , π
(N)
L (γ1:N ) =

u1

(
γ

(1)
1:N ,γ

(2)
1:N

)
u2

(
γ

(2)
1:N ,γ

(3)
1:N

)
. . . uN−1

(
γ

(N−1)
1:N ,γ

(N)
1:N

)

N∏
n=1

pH1

(
γ

(n)
1:N

)
N∏

n=1

πL

(
γ

(n)
1:N

)
, (3.48)

then:

� For each L ∈ N∗, I(N)
L is Γ-Markovian on ΓN ;
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� If u1, u2, . . . uN−1 are in A
(

Γ2 → R

)
and pH1 is in A

(
Γ → R

)
, then (IL)L∈N∗ is

arbitrarily precise with respect to µy1:N ∈ U(ΓN ) de�ned by (3.41).

Proof. Let us show thatI(N)
L is Γ-Markovian on ΓN . De�ne q1, q2, . . . qN−1 inF

(
Λ2
L → R

)

by

∀(γ,γ ′) ∈ Λ2
L, q1(γ,γ ′) =

u1(γ,γ ′)πL

(
γ
)
πL

(
γ ′
)

pH1

(
γ
)
pH1

(
γ ′
) ; (3.49a)

∀n ∈ {2 : N − 1},∀(γ,γ ′) ∈ Λ2
L, qn(γ,γ ′) =

un(γ,γ ′)πL

(
γ ′
)

pH1

(
γ ′
) . (3.49b)

Thus, π(N)
L (γ1:N ) veri�es (3.33), therefore I

(N)
L is Γ-Markovian on ΓN .

Let us now show that
(
I

(N)
L

)
L∈N∗

is consistent with µy1:N de�ned by (3.41) under

condition that u1, u2, . . . uN−1 are in A
(

Γ2 → R

)
and pH1 is in A

(
Γ→ R

)
. The sequence

of Γ-tensor-product-grids
(
⊗N

n=1IL

)
L∈N∗

on ΓN is arbitrarily precise with respect to

the product measure ⊗N
n=1pH1 according to Corollary 11.1, since (IL)L∈N∗ is arbitrarily

precise with respect to pH1 . By applying Proposition 7 to
(
⊗N

n=1IL

)
L∈N∗

with

h ∈ A
(

ΓN → R

)
de�ned by

∀h1:N ∈ ΓN , h(h1:N ) =
u1

(
h

(1)
1:N ,h

(2)
1:N

)
u2

(
h

(2)
1:N ,h

(3)
1:N

)
. . . uN−1

(
h

(N−1)
1:N ,h

(N)
1:N

)

N∏
n=1

pH1

(
h

(n)
1:N

) ,

(
I

(N)
L

)
L∈N∗

is arbitrarily precise with respect to µy1:N , since we have

∀h1:N ∈ ΓN ,

N−1∏

n=1

un(h1:N ) = p (h1:2,y1:2)

N−1∏

n=2

p (hn+1,yn+1 |hn,yn ) = p (h1:N ,y1:N )

(3.50)
by Markovianity of (H1:N ,Y1:N ).

As a result, given a stationary POMP (H1:N ,Y1:N ), the Markovian-grid based method
for Bayesian inference runs as follows:

� Step 1 (preparatory): consider a sequence of Γ-grids (IL)L∈N∗ = ({ΛL, πL})L∈N∗
arbitrarily precise with respect to pH1 . Such sequences can be constructed by using
methods from Sections 3.1.1-3.1.4;

� Step 2 : on receiving an observation y1:N , compute values qn(γ,γ ′) for each n in
{1 : N − 1} and (γ,γ ′) in Λ2

L by using (3.49);

� Step 3 : compute αn(γ), βn(γ) for each n in {1 : N} and γ ∈ ΛL by using recursive
formulas

∀γ ∈ ΛL,αn+1(γ) =
∑

γ′∈ΛL

qn(γ′,γ)αn(γ′), βn(γ) =
∑

γ′∈ΛL

qn(γ,γ′)βn+1(γ′)

and initialization

∀γ ∈ ΛL, α1(γ) = βN (γ) = 1. (3.51)
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Provided that u1, u2, . . . uN−1 are in A
(

Γ2 → R

)
and pH1 is in A

(
Γ→ R

)
, we have

lim
L→∞

∑
γ∈ΛL

f(γ)αn(γ)βn(γ)

∑
γ′∈ΛL

αn(γ ′)βn(γ ′)
=< pHn|y1:N

,f > (3.52)

for any f in A
(

Γ
)
.

3.3 Filtering in the multi-asset volatility model

We consider the application of the Markovian Grid-Based Filter (MGF) to the state esti-
mation in a Hidden Markov Model (HMM).

We consider an example of a stochastic volatility model in the multi-asset frame-
work [Gouriéroux et al., 2009]. Let Yn ∈ R2 denote the log-returns of two correlated
assets. We assume that

Yn ∼N (0,Σn) , (3.53)

where Σn ∈ R2×2 is the dynamic covariance of Yn. We assume that Σn follows a Wishart
autoregressive process [Gouriéroux et al., 2009] and we set for our example

Σn = XnX
>
n +Q; (3.54a)

Xn+1 = AXn +DUn, (3.54b)

where Xn ∈ R2, Q, A and D are �xed in R2×2, Q is positive de�nite, {Un}n≥1 is a
Gaussian white noise process in R2 and X0 = 0.

In the simulation study, we apply our algorithm to approximate {Xn}n≥1 by {Rn}n≥1.
Next, we estimate Xn given Y1:n by the MGF, then we compute �ltered estimates of Σn.

Figure 3.1 illustrates an example of the realization of the multivariate stochastic volatil-
ity process and posterior estimation of the volatilities and correlations which we obtain by
using the MGF. The parameters of the multivariate stochastic volatility model are in
Table 3.1

Q A DD>[
5 0
0 5

]
× 10−4

[
0.8 0.2
0.2 0.8

] [
2 1
1 2

]
× 10−5

Table 3.1: The parameters of the volatility model {(3.53), (3.54)}

3.4 Conclusion

We proposed a novel state estimator(MGSE) for general POMP with hybrid state space.
We applied it to the problem of Bayesian inference in POMPs. Experiments on the
multivariate stochastic volatility model show that the method proposed is suitable for
high-dimensional state spaces and may realize some speedups compared to the existing
approaches.
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(a) Volatility of Asset 1 (b) Volatility of Asset 2

(c) Simulated prices (d) Correlations of log-returns

Figure 3.1: A realization of the multivariate stochastic volatility process {(3.53), (3.54)}.
In �gures (a), (b) and (d), the black line plots the �ltering estimates of the volatilities and
correlations.
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Chapter 4

Bayesian state estimation in partially

observed Markov processes with

discrete state space

The Hidden Markov Model (HMM) [Cappé et al., 2005, Gobet and Maire, 2005, Potin et al.,
2006b, Rabiner, 1989, Caron et al., 2006, Potin et al., 2006a, Benhamou et al., 2010] is an
important tool in the modern modeling of various types of problems and is an active topic
of research activity. This model is extensively reviewed in the literature [Bhar and Hamori,
2006, Mamon and Elliott, 2007, Koski, 2001, Vidyasagar, 2014]. Let N ∈ N∗, d′ ∈ N∗, we
consider hidden random sequence {R1, . . . ,RN} = R1:N , where for each n in {1 : N}, Rn

is in a �nite set Ω = {1 : K} and an observed sequence Y1:N , where for each n in {1 : N},
Yn is in Rd

′
.

If the pair (R1:N ,Y1:N ) is a classic HMM, then R1:N is a Markov chain. The Pairwise
Markov Model (PMM) extends HMMs by only assuming that (R1:N ,Y1:N ) is Marko-
vian [Pieczynski, 2003]. Since the hidden process R1:N is not necessarily Markovian in
PMMs, the latter are strictly more general than HMMs [Lanchantin et al., 2011]. In a
stationary and time-reversible PMM, R1:N is Markovian if and only if the conditional de-
pendencies in the PMM verify speci�c conditions [Lanchantin et al., 2011]. Indeed, the
classic Bayesian estimation algorithms, used in HMMs, such as the Baum-Welch algorithm
and the Viterbi algorithm apply in PMMs as well, thanks to the fact that R1:N is Marko-
vian given Y1:N . Let us note that PMMs have been shown to be more e�cient than HMMs
in the context of unsupervised image segmentation [Derrode and Pieczynski, 2004].

Next, the Triplet Markov Model (TMM) [Pieczynski et al., 2003] extends PMM by
adding a discrete-valued latent process U1:N = U1:N , where each Un takes its value in
a �nite set {λ1, . . . , λM}. In such a model, (R1:N ,Y1:N ,U1:N ) is Markovian. Despite
that none of processes R1:N , Y1:N , (R1:N ,U1:N ), (R1:N ,Y1:N ), (Y1:N ,U1:N ) is neces-
sarily Markovian, the Baum-Welch algorithm (but not the Viterbi algorithm) applies in
TMMs [Lanchantin et al., 2011]. Let us remark that a sub-class of TMMs is shown to be ef-
�cient in image processing in [Lanchantin et al., 2011], where it substantially outperforms
HMMs. Further researches demonstrate that TMMs allow a semi-Markovian modeling
of R1:N [Lapuyade-Lahorgue and Pieczynski, 2012], which is a valuable result since the
hidden semi-Markov models are particularly well-suited for a scope of applications [Yu,
2016, Barbu and Limnios, 2016]. Besides, the bivariate hidden Markov chains [Ephraim
and Mark, 2015, Sun et al., 2016], which are similar to a sub-class of TMMs, do also provide
a framework for e�cient data processing. For these reasons, we believe that researches on
TMMs may have a considerable impact. TMMs apply in the context of signal process-
ing [Lapuyade-Lahorgue and Pieczynski, 2012, Cam et al., 2008], image processing [Bricq
et al., 2006] and canceling non-stationary noise [Boudaren et al., 2011].
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In this chapter, we consider HMMs, PMMs and TMMs with discrete state space. The
object of the chapter consists in exploring whether using PMMs and TMMs instead of
HMMs is meaningful for practical applications. This is done through simulation-based
comparisons among several variants of PMMs and TMMs with respect to classic HMMs.
Speci�cally, we consider Gaussian and gamma observation distributions in order to quantify
the impact of skewness and excess kurtosis of the latter on the estimation accuracy.

In the next section we present HMMs, PMMs and TMMs. Exact Bayesian inference
algorithms for these models are detailed in Section 4.2. Section 4.3 contains a contribution
of the author, which is an extensive performance comparisons across the estimators cor-
responding to HMMs, PMMs and TMMs with discrete state space. Section 4.4 contains
another contribution of the author, which is a novel modeling of �nancial time series with
discrete-space PMMs, as well as an application to real-world data with an analysis of the
results and discussion.

The section is mainly a compilation of authors' papers [Gorynin et al., 2017c, Gorynin
et al., 2017d].

4.1 Hidden, pairwise and triplet Markov Models with dis-
crete state space

The idea of hidden and pairwise Markov models is to describe the probability distribu-
tion of Y1:N by using a hidden time series R1:N , where for each n in {1 : N}, Rn is in
Ω = {1 : K}. Speci�cally, one de�nes the probability distribution p (r1:N ,y1:N ) of the pair
(R1:N ,Y1:N ). In this case, we have

p (y1:N ) =
∑

r1:N∈ΩN

p (r1:N ,y1:N ) .

Both hidden and pairwise Markov models are used to de�ne p (r1:N ,y1:N ). In this
section we recall the de�nition and statistical properties of these models.

De�nition 26. HMM

The pair (R1:N ,Y1:N ) is a HMM if it veri�es

p (r1:N , y1:N ) = p (r1)

N−1∏

n=1

p (rn+1 |rn )

N∏

n=1

p (yn |rn ) . (4.1)

Any HMM has the following properties:

� (P1): R1:N is a Markov chain;

� (P2): Y1:N are independent conditional on R1:N ;

� (P3): For each n in {1 : N}, p (yn |r1:N ) = p (yn |rn ).

De�nition 27. PMM

The pair (R1:N ,Y1:N ) is a pairwise Markov model if its distribution is of the following
form:

p (r1:N ,y1:N ) = p (r1,y1) p (r2,y2 |r1,y1 ) . . . p (rN ,yN |rN−1,yN−1 ) , (4.2)

which means that (R1:N ,Y1:N ) is Markovian.
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The HMM distribution is

p (r1:N ,y1:N ) = p (r1) p (y1 |r1 ) p (r2 |r1 ) p (y2 |r2 ) . . . p (rN |rN−1 ) p (yN |rN ) , (4.3)

and p (rn+1,yn+1 |rn,yn ) from (4.2) can be written as

p (rn+1,yn+1 |rn,yn ) = p (rn+1 |rn,yn ) p (yn+1 |rn+1, rn,yn ) : (4.4)

we see that a PMM is an HMM if and only if for each n in {1 : N − 1},

p (rn+1 |rn,yn ) = p (rn+1 |rn ) ; (4.5a)

p (yn+1 |rn+1, rn,yn ) = p (yn+1 |rn+1 ) . (4.5b)

This highlights the stronger assumptions which are made implicitly when a real-world
system is modeled by HMM whereas the same system could possibly be represented as a
PMM.

Let us consider stationary PMMs for which p (rn,yn, rn+1,yn+1) does not depend on
n. Thus, the whole distribution is de�ned by p (r1,y1, r2,y2). In addition, we assume that
the model is time-reversible, which means that for each ωi, ωj in Ω and y, y′ in R,

p
(
r1 = ωi,y1 = y, r2 = ωj ,y2 = y′

)
= p

(
r2 = ωi,y2 = y, r1 = ωj ,y1 = y′

)
. (4.6)

The following Proposition results from the general result shown in [Lanchantin et al.,
2011]:

Proposition 18. Let (R1:N ,Y1:N ) be a stationary time-reversible PMM. The following
conditions are equivalent:

� R1:N is a Markov chain;

� for each n in {1 : N − 1}, p (yn+1 |rn+1, rn ) = p (yn+1 |rn+1 );

� for each n in {1 : N}, p (yn |r1:N ) = p (yn |rn ).

Thus, in a stationary time-reversible PMM (R1:N ,Y1:N ), R1:N is Markovian if and only
if

p (y2 |r1, r2 ) = p (y2 |r2 ) , (4.7)

which is equivalent to
p (y1 |r1, r2 ) = p (y1 |r1 ) . (4.8)

Let us consider the following sub-models of the PMM.
� The Hidden Markov Model With Conditionally Independent Noise (HMM-IN),

which is the classic HMM. The related transition kernel p (rn+1,yn+1 |rn,yn ) is

p (r2,y2 |r1,y1 ) = p (r2 |r1 ) p (y2 |r2 ) (4.9)

and p (r1,y1, r2,y2) veri�es

p (r1,y1, r2,y2) = p (r1, r2) p (y1 |r1 ) p (y2 |r2 ) . (4.10)

� The Hidden Markov Model With Conditionally Correlated Noise (HMM-CN), where
R1:N is Markovian, observation variables Y1:N are correlated given R1:N , and which is not
an HMM-IN (see Figure 4.1). The related transition kernel is

p (r2,y2 |r1,y1 ) = p (r2 |r1 ) p (y2 |r2,y1 ) . (4.11)
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� The Pairwise Markov Model With Conditionally Independent Noise (PMM-IN),
where R1:N is not Markovian, observation variables Y1:N are independent given R1:N , and
which is not an HMM-IN. In PMM-IN, we have p (y2 |r1, r2,y1 ) = p (y2 |r1, r2 ) and

p (r2,y2 |r1,y1 ) = p (r2 |r1,y1 ) p (y2 |r2, r1 ) ; (4.12)

p (r1,y1, r2,y2) = p (r1, r2) p (y1 |r1, r2 ) p (y2 |r1, r2 ) . (4.13)

� The Pairwise Markov Model With Conditionally Correlated Noise (PMM-CN),
where R1:N is not Markovian and observation variables Y1:N are correlated given R1:N ,
which is neither HMM-IN, PMM-IN or HMM-CN (see Figure 4.1). The related transition
kernel is of the general form

p (r2,y2 |r1,y1 ) = p (r2 |r1,y1 ) p (y2 |r2, r1,y1 ) . (4.14)

The whole distribution of a PMM-CN can be derived from p (r1,y1, r2,y2). We consider
the latter in the following form:

p (r1,y1, r2,y2) = p (r1, r2) p (y1,y2 |r1, r2 ) . (4.15)

The dependency graphs of the four sub-models of PMM are presented in Figure 4.2.

PMMs-CN 

HMMs-CN PMMs-IN HMMs-IN 

PMMs 

Figure 4.1: Venn diagram for various sub-models of PMM. The area contained by all of the
three circles represents PMM. PMM-CN is represented by the rock blue color, PMM-IN
and HMM-CN is represented by rose and yellow respectively. The orange color represents
HMM-IN.

Y1 Y2 Y3

R1 R3R2

PMM-CN 

Y1 Y2 Y3

R1 R3R2

PMM-IN 

Y1 Y2 Y3

R1 R3R2

HMM-CN 

Y1 Y2

R1 R2

HMM-IN 

Y3

R3

Figure 4.2: Dependency graphs of PMM-CN, PMM-IN, HMM-CN and HMM-IN.

The TMM makes use of an additional discrete-valued process U1:N , where each Un

takes its value in a �nite set Λ = {λ1, . . . , λM}.

De�nition 28. TMM

The triplet (R1:N ,U1:N ,Y1:N ) is a TMM if its distribution is of the following form:

p (r1:N ,u1:N ,y1:N ) =

p (r1, u1,y1) p (r2,u2,y2 |r1, u1,y1 ) . . . p (rN ,uN ,yN |rN−1, uN−1,yN−1 ) , (4.16)
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which means that (R1:N ,U1:N ,Y1:N ) is Markovian.

TMMs have a high potential of modeling; speci�cally, U1:N can be multivariate in a
way that each sequence U

(i)
1:N in U1:N = [U

(1)
1:N ; . . . ; U

(s)
1:N ]> would map a separate prop-

erty. For example, the non-stationary hidden semi-Markov models can be seen as a TMM
(R1:N ,U

(1)
1:N ,U

(2)
1:N ,Y1:N ) in which U

(1)
1:N models the semi-Markovianity and U

(2)
1:N stands for

the non-stationarity [Lapuyade-Lahorgue and Pieczynski, 2012].

4.2 Exact Bayesian state estimation

In this section, we recall exact Bayesian state estimation algorithms for the hidden, pair-
wise and triplet Markov models, known as the forward-backward algorithm. We begin by
presenting the PMM version of the algorithm, and we detail how HMM and TMM versions
can be derived from it.

The PMM forward-backward algorithm allows computing p (rn = ω |y1:N ) for each n
in {1 : N} and ω in Ω. Let us consider the following forward and backward probabilities,
de�ned in a PMM by αn(rn) = p (rn,y1:n) and βn(rn) = p (yn+1:N |rn,yn ). The following
recursions allow computing αn(rn) and βn(rn) for any rn:

α1(r1) = p (r1,y1) ; (4.17a)

α1(rn+1) =
∑

rn∈Ω

p (rn+1,yn+1 |rn,yn )αn(rn); (4.17b)

βN (rN ) = 1; (4.17c)

βn(rn) =
∑

rn+1∈Ω

p (rn+1,yn+1 |rn,yn )βn+1(rn+1). (4.17d)

Then p (rn = ω |y1:N ) is computed by:

p (rn = ω |y1:N ) =
βn(rn)αn(rn)∑

r∗n∈Ω

βn(r∗n)αn(r∗n)
. (4.18)

The complexity of this algorithm is linear in N .
The HMM and TMM versions of the forward-backward algorithm can be derived as

follows.
� The HMM version is derived under conditions (4.5a) and (4.5b), in which case

p (rn+1,yn+1 |rn,yn ) = p (rn+1 |rn ) p (yn+1 |yn ) .

� The TMM version is derived by considering the hidden process V1:N , where for each
n in {1 : N}, Vn = (Rn,Un) in Ω× Λ. Thus, (V1:N ,Y1:N ) is a PMM and it is possible to
apply the PMM version of the forward-backward algorithm to compute p (rn,un |y1:N ) for
each (rn,un) in Ω× Λ. Finally, one has

p (rn |y1:N ) =
∑

un∈Λ

p (rn, un |y1:N ) . (4.19)

The Maximum Posterior Mode (MPM) estimator is de�ned as

∀n ∈ 1 : N, r̂n = arg max
ω∈Ω

p (rn = ω |y1:N ) . (4.20)

We see that the MPM estimator is computable in HMMs and PMMs as well as in
TMMs, despite the fact that (R1:N ,Y1:N ) can be non Markovian in TMMs.
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4.3 Performance comparison across PMM estimators
Here we present di�erent experiments comparing PMM-CN, PMM-IN, HMM-CN and
HMM-IN from Section 4.1, in the case of Gaussian and gamma observation distributions.

We consider the case where Ω = {ω1, ω2} and for each n in {1 : N}, Yn is one-
dimensional.

4.3.1 Gaussian PMM estimators

We parameterize PMM-CN by ε ∈ [0, 0.5] and ρ ∈ [0, 1] as follows:

p (r1, r2) =

{
0.5− ε if r1 = r2;
ε if r1 6= r2;

(4.21a)

p (y1, y2 |r1, r2 ) = N

([
y1

y2

]
;

[
µ1(r1, r2)
µ2(r1, r2)

]
,

[
σ2

1(r1, r2) ρσ1(r1, r2)σ2(r1, r2)
ρσ1(r1, r2)σ2(r1, r2) σ2

2(r1, r2)

])
.

(4.21b)

The coe�cients ε and ρ depend on the experimental setting; the values of the remaining
parameters per each pair (r1, r2) are �xed and presented in Table 4.1.

(r1, r2) µ1(r1, r2) µ2(r1, r2) σ1(r1, r2) σ2(r1, r2)

(ω1, ω1) -5 -5 14 14

(ω1, ω2) -3 3 7 9

(ω2, ω1) 3 -3 9 7

(ω2, ω2) 5 5 20 20

Table 4.1: Mean and variance parameters of Gaussian distributions in (4.21b).

Let us specify the sampling procedure corresponding to Gaussian PMM-CN (4.21). We
begin by sampling (r1, r2) from (4.21a), then we sample (y1, y2) given (r1, r2) from (4.21b).
Next, given (rn,yn) for n ≥ 2, we sample (rn+1, yn+1) as follows. Firstly, we sample rn+1

from p (rn+1 |rn, yn ), where

p (rn+1 |rn, yn ) =
p (rn, rn+1) p (yn |rn, rn+1 )∑

r∗n+1∈Ω

p
(
rn, r∗n+1

)
p
(
yn
∣∣rn, r∗n+1

) , (4.22)

with

p (yn |rn, rn+1 ) = N
(

yn;µ1(rn, rn+1), σ2
1(rn, rn+1)

)
. (4.23)

Secondly, we sample yn+1 from p (yn+1 |rn, rn+1, yn ), where

p (yn+1 |rn, rn+1, yn ) =

N

(
yn+1;µ2(rn, rn+1) + ρ

σ2(rn, rn+1)

σ1(rn, rn+1)

(
yn − µ1(rn, rn+1)

)
, σ2

2(rn, rn+1)(1− ρ2)

)
.

(4.24)

The experimental setting consists in sampling (r1, y1, . . . , rN , yN ) from a given PMM-CN,
then estimating r1:N from y1:N by four MPM estimators corresponding to the original
PMM-CN and its approximations which are PMM-IN, HMM-CN and HMM-IN. We de-
�ne the related parameters as follows.
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� In a Gaussian HMM-IN, one has p (y1 |r1, r2 ) = p (y1 |r1 ) and p (y2 |r1, r2, y1 ) =
p (y2 |r2 ), thus

p (y1 |r1 ) = N
(

y1;µ(HMM-IN)1 (r1), σ2(HMM-IN)
1 (r1)

)
; (4.25)

p (y2 |r2 ) = N
(

y2;µ(HMM-IN)2 (r2), σ2(HMM-IN)
2 (r2)

)
. (4.26)

Given a Gaussian PMM-CN, we de�ne the parameters of the corresponding HMM-IN by
adapting the general principle of moment-matching as follows:

µ(HMM-IN)1 (r1) =
∑

r2∈Ω

µ1(r1, r2)p (r2 |r1 ) ; (4.27a)

σ2(HMM-IN)
1 (r1) =

∑

r2∈Ω

(
σ2

1(r1, r2) +
(
µ1(r1, r2)− µ(HMM-IN)1 (r1)2

))
p (r2 |r1 ) . (4.27b)

By the stationarity assumption, we have for any ω in Ω,

µ(HMM-IN)2 (ω) = µ(HMM-IN)1 (ω); (4.28a)

σ2(HMM-IN)
2 (ω) = σ2(HMM-IN)

1 (ω). (4.28b)

� In a Gaussian HMM-CN, one has p (y1 |r1, r2 ) = p (y1 |r1 ) and
p (y2 |r1, r2, y1 ) = p (y2 |r2, y1 ). Thus, we consider the same distribution p (y1 |r1 ) as in the
case of HMM-IN de�ned by (4.27). Regarding p (y2 |r2, y1 ), we have

p (y2 |r2, y1 ) =

N

(
y2;µ(HMM-IN)1 (r2) + ρ

σ(HMM-IN)2 (r2)

σ(HMM-CN)1|2 (r2)

(
yn − µ(HMM-CN)1|2 (r2)

)
, σ2(HMM-IN)

2 (r2)(1− ρ2)

)
,

(4.29)

where {µ(HMM-CN)1|2 (r2), σ(HMM-CN)1|2 (r2)}r2∈Ω are computed by using the principle of moment
matching:

µ(HMM-CN)1|2 (r2) =
∑

r1∈Ω

µ1(r1, r2)p (r1 |r2 ) ; (4.30a)

σ2(HMM-CN)
1|2 (r2) =

∑

r1∈Ω

(
σ2

1(r1, r2) +
(
µ1(r1, r2)− µ(HMM-CN)1|2 (r2)2

))
p (r1 |r2 ) . (4.30b)

� Finally, a Gaussian PMM-IN approximation of PMM-CN veri�es

p (y1 |r1, r2 ) = N
(

y1;µ1(r1, r2), σ2
1(r1, r2)

)
; (4.31a)

p (y2 |r1, r2 ) = N
(

y2;µ2(r1, r2), σ2
2(r1, r2)

)
, (4.31b)

since p (y2 |r1, r2, y1 ) = p (y2 |r1, r2 ), which is equivalent to set ρ = 0.
The PMM-CN estimator is statistically optimal in terms of the classi�cation rate and

we consider its accuracy as a reference. The aim of the experiments is to study if the
misclassi�cation rate is sensitive to the choice of approximation PMM-IN, HMM-CN or
HMM-IN, and up to which extent. We apprehend this sensitivity through the relative error
rate, de�ned as follows:

τ(model) =
L
(

r1:N , r̂1:N
(model)

)
− L

(
r1:N , r̂1:N

(PMM-CN)
)

L
(

r1:N , r̂1:N
(PMM-CN)

) , (4.32a)

L
(

r1:N , r̂1:N
(model)

)
=

1

N

N∑

n=1

δ
(

r̂(model)n 6= rn

)
, (4.32b)
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where δ(.) is the indicator function and r̂1:N
(model) is the state estimate computed by

using the Bayesian-optimal MPM state estimator related to the corresponding model.
For example, a relative error rate of 100% means that the reference model decreases the
misclassi�cation percentage by a half when compared to the proposal one. We report in
Tables 4.3 and 4.4 relative error rates for various values of ε and ρ. We also report in
Table 4.2 the corresponding statistically optimal loss function values. That is to illustrate
that the chosen parameter set actually represents a considerable noise level. Figures 4.3
and 4.4 present more exhaustive results regarding the relative error rate of the HMM-IN.

HH
HHHHε

ρ
0.00 0.35 0.70 0.90

0.05 0.20 0.24 0.25 0.24
0.15 0.28 0.29 0.27 0.23
0.20 0.29 0.29 0.25 0.21
0.35 0.26 0.23 0.17 0.12

Table 4.2: Error rate (4.32b) of model (4.21) for varying ε and ρ. Sample size is 1000 and
the results are averaged over 100 experiments.

ε HMM-IN HMM-CN PMM-IN
0.05 41% 13% 38%
0.15 47% 34% 25%
0.20 56% 38% 24%
0.35 58% 31% 37%
Avg 51% 29% 31%

Table 4.3: Relative error rates (4.32a) of the three Gaussian PMM sub-models for varying
ε with ρ = 0.75. Sample size is 1000 and the results are averaged over 100 experiments.

ρ HMM-IN HMM-CN PMM-IN
0.00 13% 13% 0%
0.35 18% 14% 6%
0.70 38% 26% 23%
0.90 69% 52% 44%
Avg 35% 26% 18%

Table 4.4: Relative error rates (4.32a) of the three Gaussian PMM sub-models for varying
ρ with ε = 0.125. Sample size is 1000 and the results are averaged over 100 experiments.

Regarding results presented in Tables 4.3 and 4.4, we notice that the HMM-IN ap-
proximation seems to be the least accurate, while PMM-IN and HMM-CN have both
fairly the same degree of performance. Regarding Figures 4.3 and 4.4, we observe that
τ(HMM-IN) < 20% only if ρ < 0.4 and ε < 0.15, τ(HMM-IN) < 50% only if ρ < 0.6, and
τ(HMM-IN) < 80% only if ρ < 0.85. For extreme values of ε in a neighborhood of 0.5 and for
ρ in a neighborhood of 1, τ(HMM-IN) diverges.

We notice that both features of PMM-CN, i.e. p (rn+1 |rn,yn ) 6= p (rn+1 |rn ) and
p (yn+1 |rn+1, rn,yn ) 6= p (yn+1 |rn+1, rn ) contribute independently to improving its accu-
racy over the simpler models. For these reasons, PMM-CN may decrease the misclassi�-
cation rate of HMM-IN by a half in several settings.
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Figure 4.3: Relative error rate surface plot for Gaussian HMM-IN (4.32a) in function of
(ε, ρ). Sample size is 1000 and the results are averaged over 100 experiments.
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Figure 4.4: Relative error rate (4.32a) contour plot for Gaussian HMM-IN in function of
(ε, ρ). The contour lines refer to relative error rates of 10%, 20%, ..., 90% and 100%.
Sample size is 1000 and the results are averaged over 100 experiments.

4.3.2 Gamma PMM estimators

Here we introduce a class of non-Gaussian pairwise Markov models in order to study
whether previous �ndings generalize to a broader class of observation distributions. We
consider hidden Markov models with exponential noise [Lethanh and Adey, 2013] and we
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extend them to hidden Markov models with gamma noise. Then we introduce PMM-CN
with gamma noise and we conduct similar experiments as in the previous subsection.

For shape parameter k in R∗+ and scale parameter θ in R∗+, let us note with γ(k, θ) the
corresponding gamma distribution. Its probability density function is

γ(y; k, θ) =
yk−1 exp

(
−y
θ

)

Γ(k)θk
1ly>0, (4.33)

where δ(.) is the indicator function and Γ is the gamma function:

Γ(k) =

+∞∫

0

tk−1 exp (−t) dt. (4.34)

The exponential distribution

E(y; k, λ) = λ exp (−λy) 1ly>0 (4.35)

is a special case of the gamma distribution, corresponding to k = 1 and θ = 1
λ . For large

values of k, γ(k, θ) is well approximated by Gaussian distribution N(kθ, kθ2); if k is close
to zero, the gamma distribution is highly asymmetric.

Let ρ ∈ [0, 1], we consider stationary gamma-autoregressive process [Gourieroux and
Jasiak, 2006] de�ned by

p (y1) = γ(y1; k, θ); (4.36a)

p (yn+1 |yn ) = γ̄

(
yn+1; k,

ρ

θ(1− ρ)
yn, θ(1− ρ)

)
, (4.36b)

where, for β in R∗+, γ̄(y; k, β, θ) is non-central gamma distribution

γ̄(y; k, β, θ) =
+∞∑

t=0

βtyk+t−1 exp
(
−y
θ

)

t!Γ(k + t)θk+t exp(β)
1ly>0. (4.37)

The mean and variance of γ̄(k, β, θ) are kθ + βθ and kθ2 + 2βθ2 respectively; besides,
we have γ̄(k, 0, θ) = γ(k, θ).

Hence, let σ1, σ2 : Ω2 → R
∗
+,µ1, µ2 : Ω2 → R, ρ ∈ [0, 1[, we de�ne gamma PMM-CN as

follows:

p (y1 |r1, r2 ) = γ(y1 − µ1(r1, r2); k, θ1(r1, r2)); (4.38a)

p (yn+1 |yn, rn, rn+1 ) = γ̄


yn+1 − µ2(r1, r2); k,

ρ
(

yn − µ1(r1, r2)
)

θ1(rn, rn+1)(1− ρ)
, θ2(rn, rn+1)(1− ρ)


 ,

(4.38b)

where θ1(rn, rn+1) = σ1(rn,rn+1)√
k

, θ2(rn, rn+1) = σ2(rn,rn+1)√
k

.
This model is consistent with the de�nition of the autoregressive gamma process in the

same way as the Gaussian PMM is consistent with the autoregressive Gaussian process.
Moreover, this model generalizes exponential hidden Markov models: in gamma HMMs,
ρ = 0, σ1(rn, rn+1), µ1(rn, rn+1) depend only on rn, σ2(rn, rn+1), µ2(rn, rn+1) depend only
on rn+1 and exponential HMMs verify additionally k = 1. Moreover, any gamma PMM
can be approximated by gamma HMM-IN, gamma HMM-CN and gamma PMM-IN by
using the corresponding formulas (4.27)-(4.28), (4.30) and (4.31).

Similarly to the previous subsection, we report in Tables 4.6 and 4.7 relative error rates
of the three sub-models of gamma PMM and we report in Table 4.5 the corresponding
statistically optimal loss function values. We consider the case of exponential models i.e.
k = 1. The values of σ1(rn, rn+1), µ1(rn, rn+1), σ2(rn, rn+1), µ2(rn, rn+1) are the same as
previously and given in Table 4.1.

78



H
HHHHHε

ρ
0.00 0.35 0.70 0.90

0.05 0.34 0.38 0.40 0.38
0.15 0.41 0.43 0.42 0.39
0.20 0.43 0.43 0.42 0.38
0.35 0.43 0.42 0.38 0.31

Table 4.5: Error rate (4.32b) of gamma PMM (4.38) for varying ε and ρ. Sample size is
1000 and the results are averaged over 100 experiments.

ε HMM-IN HMM-CN PMM-IN
0.05 79% 75% 16%
0.15 130% 115% 23%
0.20 171% 125% 30%
0.35 186% 125% 63%
Avg 142% 29% 33%

Table 4.6: Relative error rates (4.32a) of the three gamma PMM sub-models for varying ε
and ρ = 0.75, k = 1. Sample size is 1000 and the results are averaged over 100 experiments.

ρ HMM-IN HMM-CN PMM-IN
0.00 118% 118% 0%
0.35 114% 112% 4%
0.70 113% 109% 17%
0.90 129% 108% 41%
Avg 119% 112% 16%

Table 4.7: Relative error rates (4.32a) of the three gamma PMM sub-models for varying
ρ and ε = 0.125, k = 1. Sample size is 1000 and the results are averaged over 100
experiments.

This simulation study shows that non-Gaussian PMMs allow achieving substantial gains
in accuracy, as well as the Gaussian ones. Moreover, PMMs seem outperform HMMs even
more when the observation distributions are asymmetric. In order to validate this �nding,
we consider a �xed pair (ε, ρ) and we gradually increase the value of the shape parameter
k from 0.1 to 10. We report the corresponding relative error rates of gamma HMM-IN
with respect to gamma PMM-CN in Figure 4.5. When k = 1, the corresponding relative
error rate is 118% and can be found in Table 4.7. When k = 10, the corresponding gamma
distribution is close to the normal distribution, and the corresponding relative error rate
can be found in Table 4.4.

4.3.3 TMM estimators

We considered previously three extensions of the classic HMM-IN. Here we propose two
other ones, which are based on TMMs: the Simpli�ed Triplet Markov Model (STMM)
and the Triplet Markov Model With Independent Noise (TMM-IN). They are de�ned as
follows.

� STMM is a stationary time-reversible TMM, whose distribution is de�ned by

p (r1, u1,y1, r2, u2,y2) = p (u1,u2) p (y1 |u1 ) p (r1 |u1 ) p (y2 |u2 ) p (r2 |u2 ) . (4.39)

The corresponding transition kernel is

p (r2,u2,y2 |r1,u1,y1 ) = p (u2 |u1 ) p (y2 |u2 ) p (r2 |u2 ) . (4.40)
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Figure 4.5: Relative error rate (4.32a) of gamma HMM-IN with respect to gamma
PMM-CN, for ε = 0.125 and ρ = 0, in function of the shape parameter k. Sample size is
1000 and the results are averaged over 100 experiments.

(R1:N ,Y1:N ) is not Markovian in STMM, so STMM is not a PMM. In fact, one can see
an STMM as a hidden Markov model with U1:N hidden and (R1:N ,Y1:N ) observed, and it
is well-known that the observed process is not Markovian in such a model.

� TMM-IN is an extension of the STMM on the one hand, and an extension of the
classic HMM-IN on the other hand. Speci�cally, let V1:N = (R1:N ,U1:N ), then we assume
that (V1:N ,Y1:N ) is a classic HMM-IN and this is why we denote it by TMM-IN. Thus,
the distribution of a stationary TMM-IN is given by

p (r1, u1,y1, r2,u2,y2) = p (u1, u2, r1, r2) p (y1 |u1, r1 ) p (y2 |u2, r2 ) , (4.41)

and the corresponding transition kernel is

p (r2, u2,y2 |r1, u1,y1 ) = p (u2, r2 |u1, r1 ) p (y2 |u2, r2 ) . (4.42)

The dependency graphs of STMM and TMM-IN are given in Figure 4.6.
We simulate data according to an STMM and we recover R1:N from Y1:N with the

STMM on the one hand, and with an HMM-IN on the other hand.
Let Ω = {ω1, ω2} and Λ = {λ1, λ2}, we de�ne the following STMM, whose distribu-

tion (4.39) is speci�ed as follows:

p (u1, u2) =

{
0.49 if u1 = u2;
0.01 if u1 6= u2;

(4.43a)

p (r1 |u1 ) =

{
0.7 if r1 = u1;
0.3 if r1 6= u1;

(4.43b)

p (y1 |u1 ) = N(y1;µu(u1), σ2), (4.43c)
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Figure 4.6: Dependency graphs of STMM and TMM-IN.

where µu(λ1) = −1 and µu(λ2) = 1. We de�ne the distribution p (r1, y1, r2, y2) in (4.10)
of the HMM-IN approximation to (4.39) as follows:

p (r1, r2) =
∑

u1,u2∈Λ

p (u1, u2) p (r1 |u1 ) p (r2 |u2 ) ; (4.44a)

p (y1 |r1 ) = N
(

y1;µr(r1), σ2
r (r1)

)
, (4.44b)

where the parameters of p (y1 |r1 ) are computed by the principle of moment-matching:

µr(r1) =
∑

u1∈Λ

p (u1 |r1 )µu(u1); (4.45a)

σ2
r (r1) = σ2 +

∑

u1∈Λ

(
µu(u1)− µr(r1)

)2
p (u1 |r1 ) . (4.45b)

We computing misclassi�cation rates for STMM and its HMM-IN approximation for
various values of σ. We observe that HMM-IN approximation appears to be fairly sub-
optimal for several values of σ.

Next, we compare TMM-IN (4.41) with the classic HMM-IN and its three extensions.
The �rst one is known as the mixture-HMM [Paul, 1991] and is a classic hidden Markov
model where R1:N is Markovian, observation variables Y1:N are independent given R1:N

and the observation density is represented by a mixture of Gaussian distributions. We
denote it as mixture-HMM-IN. The two others are obtained from HMM-IN and mixture-
HMM-IN by considering Markovianity of order 2, cf. e.g. [Vidyasagar, 2014]. They are
denoted by HMM-IN-2 and mixture-HMM-IN-2 respectively. We set Ω = {ω1, ω2} and
Λ = {λ1, λ2}.

� The mixture-HMM-IN is a TMM-IN sub-model in which R1:N and U1:N are in-
dependent and variables U1:N are independent too. The corresponding distribution of
(R1:N ,U1:N ,Y1:N ) is the following:

p (r1:N , u1:N , y1:N ) =

p (r1) p (r2 |r1 ) . . . p (rN |rN−1 ) p (u1) p (u2) . . . p (uN ) p (y1 |r1,u1 ) . . . p (yN |rN , uN ) .
(4.46)

� In an HMM-IN-2, one has

p (r1:N , y1:N ) = p (r1, r2) p (r3 |r1, r2 ) . . . p (rN |rN−1, rN−2 ) p (y1 |r1 ) . . . p (yN |rN ) . (4.47)

Thus, an HMM-IN-2 is technically a TMM-IN where Λ = Ω and for each n in {1 : N} ,
Un = Xn−1 and p (yn |rn, un ) = p (yn |rn ). Notice that if K is the number of elements
in Ω, K ′ is that of Λ, then the dimension of the hidden space of TMM is KK ′. Thus,

81



0 10 20 30 40 50 60 70 80 90 100
       <

30

32

34

36

38

40

42

44

46

48

50

E
rr

or
 ra

te
 (%

)

STMM
HMM-IN

Figure 4.7: Misclassi�cation rates of STMM and HMM-IN for various values of σ in (4.43c).
Sample size is 1000 and the results are averaged over 100 experiments.

HMM-IN-2 is equivalent to TMM-IN in terms of the dimension of the hidden space if
K = K ′. Therefore, we �nd meaningful to compare TMMs-IN with HMMs-IN as well as
with HMMs-IN-2 in our experiments.

The state distribution p (r1,u1, r2,u2) within TMMs-IN considered for the experiments
is given in Table 4.8.

XXXXXXXXXXX(r1, u1)
(r2, u2)

(ω1, λ1) (ω1, λ2) (ω2, λ1) (ω2, λ2)

(ω1, λ1) 0.22 0.01 0.01 0.01

(ω1, λ2) 0.01 0.22 0.01 0.01

(ω2, λ1) 0.01 0.01 0.22 0.01

(ω2, λ2) 0.01 0.01 0.01 0.22

Table 4.8: Probability values {p(x1,u1, x2, u2)|x1, x2 ∈ Ω,u1, u2 ∈ Λ}.

Regarding the observation space, we set

p (y1 |u1, r1 ) = N (µ(u1, r1), 1) . (4.48)

Let us consider three following cases of positioning of µ(u1, r1) :

1. : µ(ω1, λ1) < µ(ω1, λ2) < µ(ω2, λ2) < µ(ω2, λ1);

2. : µ(ω1, λ1) < µ(ω2, λ1) < µ(ω2, λ2) < µ(ω1, λ2);

3. : µ(ω1, λ1) < µ(ω2, λ1) < µ(ω1, λ2) < µ(ω2, λ2).

Given the symmetries of p (r1,u1, r2,u2), these cases are exhaustive regarding the prob-
lem of estimation of R1:N from Y1:N . We consider sampling (R1:N ,Y1:N ) from TMM-IN
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and estimating R1:N by HMM-IN, HMM-IN-2, mixture-HMM-IN, mixture-HMM-IN-2 and
TMM-IN estimators. In our experiments, we consider simulated samples of size 1000 and
we average results over 100 independent identical experiments.

� In Case 1, all the �ve estimators yield pretty much the same result.
� In Case 2, we consider ∆ > 0 and set





µ(ω1, λ1) = −2∆;
µ(ω2, λ1) = −∆;
µ(ω2, λ2) = ∆;
µ(ω1, λ2) = 2∆.

(4.49)

Figure 4.8 presents error rates of the �ve estimators. We observe that the non-mixture
classic models are asymptotically sub-optimal.

� In Case 3, we consider ∆ > 0 and set





µ(ω1, λ1) = −2∆;
µ(ω2, λ1) = −∆;
µ(ω1, λ2) = ∆;
µ(ω2, λ2) = 2∆.

(4.50)

Figure 4.9 presents error rates of the �ve estimators in Case 3. We observe that the non-
mixture classic models diverge. Moreover, we see that the TMM-IN estimator may be
signi�cantly more accurate than that of the classic models. The gap we observe between
classic mixture-based and TMM-IN estimators may be due to taking the Markovianity of
(R1:N ,U1:N ) into account. We pointed out that extending the state space of classic models
may not result in improving the accuracy of the corresponding estimators.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
"

0

10

20

30

40

50

60

E
rr

or
 ra

te
 (%

)

TMM-IN
HMM-IN
mixture HMM-IN
2nd order Markov HMM-IN
2nd order Markov mixture HMM-IN

Figure 4.8: Performances comparison be-
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100 experiments.
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tween the TMM-IN estimator and its ap-
proximations given by the classic models in
Case 3, for various ∆ in (4.50). Sample size
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4.3.4 Conclusions

We compared the accuracy of the MPM estimators based on the classic HMM and its
extensions which are the PMM and the TMM. PMM and TMM frameworks allowed to
achieve substantial improvements of the estimation accuracy. Such improvements were
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particularly visible when the observation distribution was heavily autocorrelated and/or if
the hidden chain was far from being Markovian.

As it is known [Derrode and Pieczynski, 2004], the parameter estimation in the models
considered is quite robust, thus the present results con�rm the suitability of PMM and
TMM frameworks for real-world applications involving unsupervised learning.

4.4 Stock forecasting with PMMs
In this section, we investigate an application of PMMs to stock market prediction.

Universally acknowledged features of �nancial time series include volatility clustering,
autocorrelation in returns and the Asymmetric Volatility Phenomenon (AVP). A well-
established methodology consists in using a mathematical model to describe available data
and to project it into the future. The Autoregressive Integrated Moving Average (ARIMA)
and the Generalized Autoregressive Conditional Heteroscedasticity (GARCH) models are
popular among practitioners. These models are reviewed in [Montgomery et al., 1990].
In recent years, there was an increasing interest in the regime-switching models, reviewed
e.g. in [Mamon and Elliott, 2014]. In �nancial markets, these models allow identifying
bull and bear alternating regimes. A bull state is characterized by positive expectation of
log-returns and low volatility, while a bear state is driven by negative expected log-returns
and high volatility. Let also mention the technical analysis which provides a range of
approaches for market prediction [Blanchet-Scalliet et al., 2007].

The HMMs provide a suitable framework for modeling regime-switching. An important
example of such framework is available in e.g. [Hassan and Nath, 2005]. These models use
a hidden sequence of the same length as the sequence of observed log-returns. The HMMs
are known to be robust and straightforward to implement. However, the HMMs do not
take the following potential features of stock dynamics into account:

� (F1): log-returns may be correlated given the state variables;

� (F2): the future state and current log-return may not be independent given the
current state.

PMMs are able to include both features (F1) and (F2) in the HMMs for the same
processing cost. The purpose of this section is to introduce a modeling of �nancial time
series with the PMMs with discrete state space. Speci�cally, we investigate if the PMMs
can allow improving forecasting performance and if both features (F1) and (F2) should be
taken into account.

Figure 4.10 presents dependency graphs of the HMM and PMM.

Y4 Y1 Y2 Y3 

R4 R1 R3 R2 

Y4 Y1 Y2 Y3 

R4 R1 R3 R2 

(a) (b) 

Figure 4.10: Dependency graphs of the HMM (a) and PMM (b).

Consider the following decomposition of p (rn+1, yn+1 |rn, yn ), for n in {1 : N − 1}:

p (rn+1, yn+1 |rn, yn ) = p (rn+1 |rn, yn ) p (yn+1 |rn, rn+1, yn ) .
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From the above equation, we see that a PMM is an HMM if, and only if, for each n in
{1 : N − 1} :

p (yn+1 |rn, rn+1, yn ) = p (yn+1 |rn+1 ) ; (4.51a)

p (rn+1 |rn, yn ) = p (rn+1 |rn ) . (4.51b)

We also consider two subclasses of PMMs where only one of the constraints (4.51a)-
(4.51b) is relaxed.

De�nition 29. Pairwise Markov models-F1 and pairwise Markov models-F2

PMM (R1:N ,Y1:N ) is called PMM-F1 (PMM-F2) if it veri�es, for each n in {1 : N −1},
(4.51b)

(
(4.51a)

)
respectively.

Figure 4.11 presents dependency graphs of PMM-F1 and PMM-F2. In practice, one
should specify the families of distributions to which p (yn |rn ), p (rn+1 |rn, yn ) and
p (yn+1 |rn, rn+1, yn ) belong to.

Y4 Y1 Y2 Y3 

R4 R1 R3 R2 

(b) 

Y4 Y1 Y2 Y3 

R4 R1 R3 R2 

(a) 

Figure 4.11: Dependency graphs of PMM-F1 (a) and PMM-F2 (b).

Let us introduce a pairwise Markov modeling of asset log-returns. Speci�cally, we
explain how the PMMs allow modeling features (F1) and (F2). We also outline various
types of PMM data processing, such as the state estimation, forecasting and parameter
inference.

Let Sn be the stock price at time n, n ∈ N. The log-return Yn at time n > 0 is de�ned
by

Yn = log(Sn)− log(Sn−1). (4.52)

In the classic Black-Scholes model, the log-returns Y1:N are assumed to be normally
distributed and to have the same mean µ and standard deviation σ. In other words, we
have, for each n > 0,

Yn = µ+ σUn,

where {Un}n>0 are zero-mean, unit-variance independent Gaussian random variables, also
known as the standard Gaussian white noise. µ and σ are known as the average return (or
drift) and the volatility of the stock.

The HMM allows extending the classic Black-Scholes model by making µ and σ depen-
dent on hidden variables. Let R1:N be a Markov chain, then let

Yn = µ(rn) + σ(rn)Un, (4.53)

with {Un}1≤n≤N standard Gaussian white noise variables. The parameters of this model
include the initial state distribution, Markov chain transition matrix p (rn+1 = ω′ |rn = ω )
for each ω, ω′ ∈ Ω and the values of the drift and volatility per state {µ(ω), σ(ω)}ω∈Ω. For
example, if ω1 is associated with the bear market state and ω2 with the bull state, one
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would expect µ(ω1) < 0 < µ(ω2) and σ(ω1) > σ(ω2). The Hidden Markov modeling of
Y1:N is given by (P1)-(P3) and

∀n, 1 ≤ n ≤ N, p (yn |rn ) = N
(
yn;µ(rn), σ(rn)2

)
. (4.54)

The PMMs provide a more �exible framework than that of HMMs. In order to ful�ll
the requirement (F1), we de�ne a �rst-order autoregressive model of Y1:N given R1:N . We
set

Un+1 = ρ(Rn,Rn+1)Un +
√

1− ρ(Rn,Rn+1)2Vn+1, (4.55)

where n > 0, U1, {Vn}n>0 are standard Gaussian white noise variables and for each
ω, ω′ ∈ Ω, |ρ(ω, ω′)| < 1.

As regards the feature (F2), we make Rn+1 dependent on Yn given Rn by using the
concept of the logistic function. Speci�cally, in the case where Ω contains only two elements
{ω1, ω2}, we set

p (rn+1 = ω1 |rn,un ) =
1

1 + e−a(rn)−b(rn)un
, (4.56)

where for each ω ∈ Ω, a(ω) ∈ R, b(ω) ∈ R.
Finally, we combine (4.53), (4.55) and (4.56) to de�ne a pairwise Markov modeling of

Y1:N :

p (y1 |r1 ) = N
(

y1;µ(r1), σ2(r1)
)

; (4.57a)

p (rn+1 = ω1 |rn, yn ) =
1

1 + e
−a(rn)− b(rn)

σ(rn)
(yn−µ(rn))

; (4.57b)

p (yn+1 |rn, rn+1, yn ) =

N
(

yn+1;µ(rn+1) +
ρ(rn, rn+1)σ(rn+1)

σ(rn)
(yn − µ(rn)) , σ(rn+1)2(1− ρ(rn, rn+1)2)

)
.

(4.57c)

The parameters of this model are

θ = {π(ω), µ(ω), σ(ω), a(ω), b(ω), ρ(ω, ω′)}ω,ω′∈Ω, (4.58)

where π(ω) = P [Rn = ω] for each ω ∈ Ω. This model is presented for Ω = {ω1, ω2}, but
one can consider a more general de�nition by using the multinomial logistic function, as
explained in [Böhning, 1992].

Processing of incoming data {Yn}n>0 in a PMM involves determining p (rn |y1:n ). The
�ltering distribution is given by

p (rn |y1:n ) =
αn(rn)∑

rn∈Ω

αn(rn)
, (4.59)

where for all n in N and rn in Ω, αn(rn) is computed as detailed in Section 4.2.
Forecasting consists in computing p (yn+1:n+p |y1:n ) for p > 0. An important case of

forecasting is the one-step-ahead forecasting, for which p = 1. In this case, it is also
particularly important to forecast Zn+1, where

Zn+1 =

{
1 if Yn+1 < 0;
2 otherwise.

(4.60)

Zn+1 represents the direction of the stock price change during the day n + 1. The
anticipated price change at n+ 1 given the information available at n is de�ned by

ẑn+1|n =

{
1 if P [Yn+1 < 0|y1:n] > 0.5;
2 otherwise.

(4.61)
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Algorithm 2. One-step-ahead forecasting in PMMs

Let n > 0,

� Compute p (rn |y1:n ) cf. (4.59);

� Compute p (rn, rn+1 |y1:n ):

p (rn, rn+1 |y1:n ) = p (rn |y1:n ) p (rn+1 |rn, yn ) ;

� Compute, for each rn, rn+1 in Ω, m̂n+1(rn, rn+1) and ŝ2
n+1(rn, rn+1):

m̂n+1(rn, rn+1) = µ(rn+1) +
ρ(rn, rn+1)σ(rn+1)

σ(rn)
(yn − µ(rn))

ŝ2
n+1(rn, rn+1) = (1− ρ(rn, rn+1)2)σ2(rn+1);

� The predictive distribution p (yn+1 |y1:n ) is a mixture of normal densities:

p (yn+1 |y1:n ) =
∑

rn,rn+1∈Ω

p (rn, rn+1 |y1:n )N
(

yn+1; m̂n+1(rn, rn+1), ŝ2
n+1(rn, rn+1)

)

Compute the one-step-ahead forecast

ŷn+1|n
def
== E [Yn+1 |y1:n ]

as the mean of the mixture, that is

ŷn+1|n =
∑

rn,rn+1∈Ω

p (rn, rn+1 |y1:n ) m̂n+1(rn, rn+1); (4.62)

� Let Φ denote the normal cumulative distribution function, compute p (yn+1 < 0 |y1:n )
by

∑

rn,rn+1∈Ω

p (rn, rn+1 |y1:n )× Φ

(
−m̂n+1(rn, rn+1)

ŝn+1(rn, rn+1)

)
.

(The algorithm ends here)

Contrary to the one-step-ahead forecasting, there is no apparent closed-form expression
for p (yn+1:n+p |y1:n ) in the case of multistep forecasting in PMMs.

Let N > 0, Y1:N be an observed time series of log-returns. The next step is the
PMM parameter estimation, whose goal is to infer the parameter vector θ (4.58) from the
observed data Y1:N .

The Expectation-Maximization (EM) and the Iterative Conditional Estimation (ICE)
are well-known parameter estimation algorithms. These algorithms are well suited for both
HMMs and PMMs, and the details may be found in [Derrode and Pieczynski, 2004].

Alternatively, θ can be estimated by using the principle of Empirical Risk Minimiza-
tion (ERM). Several methods for proving consistency of such estimators are provided in
e.g. [Lugosi and Zeger, 1995]. Let us recall the general idea of the ERM. Assume a train-
ing set (x1:N , y1:N ) in (X ×Y)N , a prediction function h : X → Y and a loss function
L : Y ×Y → R+. The empirical risk associated with the prediction function h is de�ned
as

R̂(h) =
1

N

N∑

n=1

L(h(xn), yn).
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Thus, the idea of the ERM is to �nd a function h for which the risk is minimal.
Regarding the context of forecasting, we have xn = y1:n and h(xn) = ŷθn+1|n(y1:n),

where ŷθn+1|n(y1:n) is computed from θ and y1:n by (4.62). We consider the following loss
functions:

L1(ŷθn+1|n(y1:n), yn+1) = |ŷθn+1|n(y1:n)− yn+1|,
L2(ŷθn+1|n(y1:n), yn+1) = (ŷθn+1|n(y1:n)− yn+1)2.

The associated risk functions are

R̂1(θ) =
1

N − 1

N−1∑

n=1

|ŷθn+1|n(y1:n)− yn+1|, (4.64a)

R̂2(θ) =
1

N − 1

N−1∑

n=1

(ŷθn+1|n(y1:n)− yn+1)2. (4.64b)

Let λ > 0, the following risk function realizes a trade-o� between R̂1(θ) and R̂2(θ):

R̂(θ;λ) = λR̂1(θ) + R̂2(θ). (4.65)

We estimate θ by minimizing (4.65) for various values of λ. There is no closed expression
known for the corresponding update equations and we solve the optimization problem by
the Particle Swarm Optimization (PSO). PSO methods [Poli et al., 2007] are non-convex
global optimization algorithms.

Let us present our methodology to compare the e�ciency of PMM with that of HMM
on historical stock quotes. Given a data set H = {y1, .., yM} with successive daily log-
returns of an assetE, we splitH into two juxtaposed sets as follows: Htraining = {y1, .., yN}
and Htest = {yN+1, .., yM}. The �rst set is used to estimate the parameter θ by minimiz-
ing (4.65) for a given λ, while the second set only serves to assess the e�ciency of each
model considered. The models are compared in terms of the outcome produced by the
following trading system. At the beginning of each day n + 1, N ≤ n < M , the system
buys asset E only if the one-day-ahead forecast (4.61) produced by the model is positive,
i.e. if ẑn+1|n = 2, and sells the asset at the end of the day. In the case of a negative
forecast, the system avoids any trading operations on E. Next, we compute the absolute
return of the system on Htest and compare it with that of the asset. Let us recall that the
absolute return of E relative to date N is de�ned as

τ(n;N) =
Sn − SN
SN

, (4.66)

for n ≥ N . Equivalently, τ(n;N) can be written as a function of the log-returns:

τ(n;N) = exp

(
n∑

t=N+1

yt

)
− 1.

Thus, the absolute return of the trading system considered can be written as

τ∗(n;N) = exp

(
n−1∑

t=N

yt+1δ(ẑt+1|t = 2)

)
− 1. (4.67)

We apply this methodology to Cli�s Natural Resources Stock prices (NYSE:CLF).
Stock quotes are taken from the Yahoo! database and correspond to the business days
from 01/02/1990 to 12/13/1993 for Htraining and from 12/14/1993 to 09/29/1994 for Htest.
In this con�guration, the size of Htraining is N = 1000, the size of Htest is 200 and the total
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size of the data set H is M = 1200. In every experiment, the state space consists of only
two elements. Figures 4.12 and 4.13 display the values of risks R̂1(θ) and R̂2(θ) cf. (4.64)
for θ minimizing (4.65), in function of λ. Absolute returns generated by four models on
the test set are given in Table 4.9 for various values of λ. Figure 4.14 displays the returns
produced per each model in function of time with λ = 0.

λ = 10−3 λ = 10−2 λ = 1 λ = 102 λ = 103

HMM 17% 13% 10% 10% 10%

PMM-F1 16% 14% 11% 9% 9%

PMM-F2 21% 20% 19% 14% 16%

PMM 21% 20% 19% 14% 16%

Table 4.9: Absolute returns (4.67) of HMM, PMM-F1, PMM-F2 and PMM-based trad-
ing systems on NYSE:CLF historical prices. The returns are related to the period from
12/14/1993 to 09/29/1994.
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Figure 4.12: Values R̂∗1(λ) = R̂1(θ) in function of λ, where θ minimizes (4.65).

Let us make several brief observations.
Figures 4.12 and 4.13 are consistent with the de�nition of θ as the minimum of (4.65).

When λ increases, R̂∗1(λ) = R̂1(θ) decreases and R̂∗2(λ) = R̂2(θ) increases, and vice versa,
and this holds for the four models.

Progressive inclusion of features (F1) and (F2) in the HMM improves both risk values
computed on Htraining, as expected, independently of the value of λ.

We can see from Figure 4.14, that PMM-F1 implies a more risk-adverse trading strat-
egy than that of HMM, and the related generated return increases almost monotonically.
However, PMM-F1 may not be well suited for a bull market. PMM-F2 and HMM appear
to be better suited for bull dynamics, while PMM-F2 seems to be less vulnerable than
HMM to abrupt drops of asset value.

As a discussion, we proposed a meaningful parameterization of PMM for modeling
�nancial time series. The results show that both features (F1) and (F2) can be captured
by PMMs, which was expected. Another interesting point is that these features seem to be
present in real-world data, and thus PMMs provide a better forecast. One can intuitively
understand why using the feature (F1) should improve forecasting, while (F2) is more
di�cult to interpret. Suppose for example that during the bull state, the return Yn appears
to be excessively negative compared to the average return of the bull market. In this case,
the current state may become fairly uncertain in an HMM. The PMM incorporates (F2)
by using the distribution p (rn+1 |rn, yn ) which allows to decide to which extent Yn should
a�ect the expectation of Rn+1.
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Figure 4.13: Values R̂∗2(λ) = R̂2(θ) in function of λ, where θ minimizes (4.65).
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Figure 4.14: Absolute returns (4.67) from 12/14/1993 generated by PMM-based trading
systems on NYSE:CLF historical data. PMM models are estimated on the data from
01/02/1990 to 12/13/1993 by minimizing (4.65) with λ = 0. Four charts (from top to
bottom) relate to the four models. The last chart is the absolute return of the asset (4.66).

Table 4.9 indicates that the outcome produced by each model is sensitive to the value
of λ. In general, such a parameter should be chosen by a cross-validation procedure ac-
cordingly to the application considered.

Our experiments indicate that a more complex structure of PMMs may allow identifying
better suited regimes for speci�c application. We believe that the presented way of use of
the �exibility of PMM will allow overcoming principal constraints of HMMs.

This study has several limitations. Firstly, we assume only two regimes in our models.
Next, the Gaussian mixture density and non-Gaussian heavy tailed observation distribu-
tions could be considered as well. We only consider closing price per day, while daily
opening, low and high prices are also available as well. Finally, our study concerns only
one period of stock prices and only one stock was used in the experiment.
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4.5 Conclusion

We compared the accuracy of MPM estimators based on the classic HMM and its exten-
sions which are the PMM and the TMM. PMM and TMM frameworks allowed to achieve
substantial improvements of the estimation accuracy. Such improvements were particu-
larly visible when the observation distribution was heavily autocorrelated and/or when the
hidden chain was far from being Markovian.

We also introduced a pairwise Markov model of �nancial time series, obtained by
incorporating features such as the correlation of log-returns given the state variables and
dependence of the future state upon the current log-return given the current state. The
results show that both of these features contribute to improving the performance of the
model in applications related to stock forecasting.
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Chapter 5

Bayesian state estimation in partially

observed Markov processes with

hybrid state space

This chapter is devoted to the Bayesian inference in partially observed Markov processes
(POMPs) with hybrid state space. By Bayesian inference we mean estimating the �lter-
ing and smoothing distributions. The Conditionally Gaussian Linear State-Space Model
(CGLSSM)[Cappé et al., 2005] is an important model which belongs to the class of Partially
Observable Markov Process (POMP)s with hybrid state space. This model is also known
as the Switching Linear Dynamical System (SLDS) [Costa et al., 2006].

The two sections of the chapter are devoted to the corresponding contributions of
the author. The �rst one presents a novel Bayesian inference algorithm for the SLDS,
and more generally, for the Conditionally Gaussian Pairwise Markov Switching Model
(CGPMSM) [Abbassi et al., 2015]. The second one presents a novel algorithm for �ltering
in switching systems, with an emphasis that these systems may be non-linear and/or non-
Gaussian.

The section is mainly a compilation of authors' papers [Gorynin and Pieczynski, 2017a,
Gorynin et al., 2016c, Gorynin and Pieczynski, 2017b].

5.1 Bayesian smoothing in conditionally linear POMPs with
hybrid state space

The concept of the SLDS [Costa et al., 2006] is presented in di�erent �elds, such as econo-
metrics [Kim, 1994], �nance [Azzouzi and Nabney, 1999], tracking [Weiss et al., 2004],
speech recognition [Mesot and Barber, 2007], pattern recognition [Pavlovic et al., 2001],
among others [Ristic et al., 2004]. These systems are also known as jump Markov models
(processes), switching conditional linear Gaussian state-space models, interacting multi-
ple models. There is no exact Bayesian �ltering or smoothing algorithm tractable in the
general SLDS context [Lerner, 2002]. Previous research on smoothed inference in SLDSs
includes the most popular Kim method [Kim and Nelson, 1999], simulation-based algo-
rithms [Doucet et al., 2001, Fong et al., 2002, Särkkä et al., 2012, Carter and Kohn, 1996],
recent smoothed inference by expectation correction [Barber, 2006] and various determin-
istic approximations [Zoeter and Heskes, 2006]. Simulation-based methods intrinsically
use Monte-Carlo integration in the state space. Thus, the accuracy of such approaches de-
pends on the number of simulated particles. Besides, if the number of simulated particles
is insu�cient for the state space dimension, these estimators would have high variance,
while achieving an acceptable variance would mean for them a high processing cost. In-
deed, it is possible to bypass the need of numerical integration by assuming a conditional
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independence [Kim, 1994] and the e�ect induced by such assumption is insigni�cant [Bar-
ber, 2006]. We also note the Rao-Blackwellised particle �lters [Murphy and Russell, 2001]
which are designed to replace the problem of sampling in continuous state space by an
explicit integration [Barber, 2006]. The algorithm is illustrated through an application to
the problem of trend estimation.

In this section, we introduce an approach of fast smoothing in the Stationary Condi-
tionally Gaussian Pairwise Markov Switching Model (SCGPMSM) [Abbassi et al., 2015].
The interest of the new method is that it uses Bayesian assimilation to obtain a smoothed
estimate so the forward and backward passes can run independently. The main idea is to
use the classic Switching Kalman Filter (SKF) twice: �rstly, as usual, and a second time ap-
plied to time-reversed dynamics of the system. Then our smoothed solution is obtained by
using standard Gaussian conditioning formulas to combine the two distributions computed
by the SKF. We discovered that the resulting algorithm performs as well as the particle
smoother both in terms of the mean squared error and regime misclassi�cation rate. It also
allowed substantial gains in processing cost when compared to the particle smoother. The
main results are presented in the SCGPMSM framework rather than in that of the classic
SLDS. Indeed, formally, SCGPMSMs are switching linear models which extend the classic
SLDSs (see Figure 5.1 and Figure 5.2). Our decision to use the SCGPMSM framework is
exclusively motivated by its suitability for presentation of our algorithms and its poten-
tial to enhance them with a greater degree of generality. We �rst present the SLDSs and
SCGPMSMs, as well as the SKF. Next, we describe the novel Reverse Switching Kalman
Filter (RSKF) and the proposed Bayesian assimilation of estimates of SKF and RSKF.

Let Ω = {1 : K}, in an SLDS, we have:

p (x1 |r1 ) = N (x1;m1(r1),Σ1(r1)) ; (5.1a)

∀n ∈ {1 : (N − 1)},Xn+1 = T n+1(Rn+1)Xn + an+1(Rn+1) +Qn+1(Rn+1)Un+1; (5.1b)

∀n ∈ {1 : N},Yn = Hn(Rn)Xn + bn(Rn) + Sn(Rn)Vn; (5.1c)

∀n ∈ {1 : (N − 1)},∀rn, rn+1 ∈ Ω, p (rn+1 |rn,xn,yn ) = p (rn+1 |rn ) . (5.1d)

Here, for each n in {1 : N}, the value of Rn determines the data generating process
used to create (Xn,Yn). The dependency graph of SLDSs is given in Figure 5.1.

. . .

. . .

X1 X2 X3 XN−1 XN

Y1 Y2 Y3 YN−1 YN

R1 R2 R3 RN−1 RN

Figure 5.1: Dependency graph of classic SLDSs (5.1).

If at time n+ 1, the value of Rn+1 is di�erent from that of Rn, we say that the system has
switched at n+ 1.
It is also noteworthy that in an SLDS, ((Rn,Xn),Yn)1≤n≤N is a hidden Markov chain
with Y1:N observed. Thus, SLDSs can be seen as hidden Markov models with hybrid state
space: continuous-valued X1:N and discrete-valued R1:N . To summarize, in an SLDS,
R1:N , (Rn,Xn)1≤n≤N and (Rn,Xn,Yn)1≤n≤N are Markov processes.

It is noticed [Abbassi et al., 2015] that in general, system (5.1) is not stationary, but
may be asymptotically stationary. In this case, the stationary asymptote of (5.1) is of
form (5.2).
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We consider SCGPMSMs [Abbassi et al., 2015], where (Rn,Xn,Yn)1≤n≤N and R1:N

are stationary Markovian and

∀n ∈ {1 : (N − 1)}, p (zn, zn+1 |rn, rn+1 ) =

N

([
zn

zn+1

]
;

[
µZ(rn)
µZ(rn+1)

]
,

[
ΓZ(rn) ΓZ1Z2(rn, rn+1)

ΓZ2Z1(rn, rn+1) ΓZ(rn+1)

])
, (5.2)

with

∀n ∈ {1 : N},Zn =

[
Xn

Yn

]
.

The direct dynamics of SCGPMSM are de�ned as

∀n ∈ {1 : (N − 1)},∀rn, rn+1 ∈ Ω,

F (rn, rn+1) = ΓZ2Z1(rn+1, rn)ΓZ(rn)−1; (5.3a)

L(rn, rn+1) = µZ(rn+1)− F (rn, rn+1)µZ(rn); (5.3b)

Q(rn, rn+1) = ΓZ(rn+1)− F (rn, rn+1)ΓZ1Z2(rn, rn+1). (5.3c)

The reversal dynamics of SCGPMSM are de�ned as

∀n ∈ {2 : N},∀rn−1, rn ∈ Ω,

F ∗(rn−1, rn) = ΓZ1Z2(rn−1, rn)ΓZ(rn)−1; (5.4a)

L∗(rn−1, rn) = µZ(rn−1)− F ∗(rn−1, rn)µZ(rn); (5.4b)

Q∗(rn−1, rn) = ΓZ(rn−1)− F ∗(rn−1, rn)ΓZ2Z1(rn, rn−1). (5.4c)

SCGPMSMs include stationary SLDSs (5.1) and allso allows incorparating complemen-
tary conditional dependencies. Their dependency graph is given in Figure 5.2.

. . .

. . .

. . .

X1 X2 X3 XN

Y1 Y2 Y3 YN−1 YN

R1 R2 R3 RN−1 RN

Figure 5.2: Dependency graph of SCGPMSMs (5.2).

The direct dynamics (5.3) of an SCGPMSM are such that

∀n ∈ {1 : (N − 1)}, p (zn+1 |zn, rn, rn+1 ) =

N (zn+1;F (rn, rn+1)zn +L(rn, rn+1),Q(rn, rn+1)) . (5.5)

These dynamics de�ne the SCGPMSM, since

p (r1:N , z1:N ) = p (r1:N ) p (z1:N |r1:N ) ;

p (z1:N |r1:N ) = p (z1 |r1:N ) p (z2 |r1:N , z1 ) . . . p (zN |r1:N , zN−1 ) =

p (z1 |r1 ) p (z2 |r1, r2, z1 ) . . . p (zN |rN−1, rN , zN−1 ) .

by Markovianity of (Rn,Zn)1≤n≤N and p (z1 |r1 ) = N (z1;µZ(r1),ΓZ(r1)).
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Indeed, the same SCGPMSM can be also de�ned by using the reversal dynamics, since

p (z1:N |r1:N ) = p (zN |r1:N ) p (zN−1 |r1:N , zN ) . . . p (z1 |r1:N , z2 ) =

p (zN |rN ) p (zN−1 |rN−1, rN , zN ) . . . p (z1 |r2, r1, z2 ) ;

p (zN |rN ) = N (zN ;µZ(rN ),ΓZ(rN )) ,

and the reversal dynamics (5.4) are such that

∀n ∈ {2 : N}, p (zn−1 |zn, rn−1, rn ) =

N (zn−1;F ∗(rn−1, rn)zn+1 +L∗(rn−1, rn),Q∗(rn−1, rn)) . (5.6)

The reversal dynamics are used in the smoothed inference of SCGPMSM, speci�cally
in the backward pass.

5.1.1 Approximate Bayesian state estimation

Let us consider an SCGPMSM and let A
def

=====
approx.

B mean that A is computed in a way to

approximate the value of B. The SKF allows to compute:

∀n ∈ {1 : N},∀rn ∈ Ω, πn(rn)
def

=====
approx.

p (rn |y1:n ) ;

(5.7a)

∀n ∈ {1 : (N − 1)},∀rn, rn+1 ∈ Ω, πn+1(rn, rn+1)
def

=====
approx.

p (rn, rn+1 |y1:n+1 ) ;

(5.7b)

∀n ∈ {1 : (N − 1)},∀rn, rn+1 ∈ Ω, πn+1(rn|rn+1)
def

=====
approx.

p (rn |rn+1,y1:n+1 ) ;

(5.7c)

∀n ∈ {1 : N},∀rn ∈ Ω, x̂n|n(rn)
def

=====
approx.

E [Xn |y1:n, rn ] ;

(5.7d)

∀n ∈ {1 : (N − 1)},∀rn, rn+1 ∈ Ω, x̂n+1|n(rn, rn+1)
def

=====
approx.

E [Xn+1 |y1:n, rn, rn+1 ] ;

(5.7e)

∀n ∈ {1 : (N − 1)},∀rn, rn+1 ∈ Ω, ẑn+1|n(rn, rn+1)
def

=====
approx.

E [Zn+1 |y1:n, rn, rn+1 ] ;

(5.7f)

∀n ∈ {1 : N},∀rn ∈ Ω, Σ̂n|n(rn)
def

=====
approx.

Var [Xn |y1:n, rn ] ;

(5.7g)

∀n ∈ {1 : (N − 1)},∀rn, rn+1 ∈ Ω, Σ̂n+1|n(rn, rn+1)
def

=====
approx.

Var [Xn+1 |y1:n, rn, rn+1 ] ;

(5.7h)

∀n ∈ {1 : (N − 1)},∀rn, rn+1 ∈ Ω, Γ̂n+1|n(rn, rn+1)
def

=====
approx.

Var [Zn+1 |y1:n, rn, rn+1 ] .

(5.7i)

For each n in {1 : N}, the SKF uses the following assumption

p (xn |y1:n, rn ) = N
(
xn; x̂n|n(rn), Σ̂n|n(rn)

)
.

Indeed, the SKF was originally designed for SLDSs of form (5.1). Here we present a
slightly enhanced version of the original SKF which is applicable to the SCGPMSM.
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Algorithm 3. Switching Kalman �lter

Initialization: for each r1 in Ω,

π1(r1) =
p (r1)N (y1;µY(r1),ΓY(r1))∑

r1∈Ω

p (r′1)N (y1;µY(r′1),ΓY(r′1))
;

x̂1|1(r1) = µX(r1) + ΓXY(r1)Γ−1
Y (r1)(y1 − µY(r1));

Σ̂1|1(r1) = ΓX(r1)− ΓXY(r1)Γ−1
Y (r1)ΓYX(r1),

where µX(r1) ∈ Rd, µY(r1) ∈ Rd′ , ΓX(r1) ∈ Rd×d, ΓXY(r1) ∈ Rd×d′ , ΓYX(r1) ∈ Rd′×d,
ΓY(r1) ∈ Rd′×d′ are de�ned from

µZ(r1) =

[
µX(r1)
µY(r1)

]
, ΓZ(r1) =

[
ΓX(r1) ΓXY(r1)

ΓYX(r1) ΓY(r1)

]
.

Recursion: compute {πn+1(rn+1), x̂n+1|n+1(rn+1), Σ̂n+1|n+1(rn+1)}rn+1∈Ω from

{πn(rn), x̂n|n(rn), Σ̂n|n(rn)}rn∈Ω for each n in {1 : (N − 1)}. Let rn,rn+1 in Ω,
a)time update:

ẑn+1|n(rn, rn+1) = F (rn, rn+1)

[
x̂n|n(rn)

yn

]
+L(rn, rn+1) =

[
x̂n+1|n(rn, rn+1)

ŷn+1|n(rn, rn+1)

]
; (5.8a)

Γ̂n+1|n(rn, rn+1) = F (rn, rn+1)

[
Σ̂n|n(rn) 0

0 0

]
F (rn, rn+1)> +Q(rn, rn+1) =

[
Σ̂n+1|n(rn, rn+1) Ĉn+1|n(rn, rn+1)

Ĉ
>
n+1|n(rn, rn+1) Ŝn+1|n(rn, rn+1)

]
, (5.8b)

where F (rn, rn+1), L(rn, rn+1), Q(rn, rn+1) are given by (5.3).
b)measurement update

x̂n+1|n+1(rn, rn+1) = x̂n+1|n(rn, rn+1)+

Ĉn+1|n(rn, rn+1)Ŝ
−1

n+1|n(rn, rn+1)(yn+1 − ŷn+1|n(rn, rn+1)); (5.9a)

Σ̂n+1|n+1(rn, rn+1) = Σ̂n+1|n(rn, rn+1)− Ĉn+1|n(rn, rn+1)Ŝ
−1

n+1|nĈ
>
n+1|n(rn, rn+1); (5.9b)

Next, let cn+1(rn, rn+1)
def

=====
approx.

p (yn+1 |y1:n, rn, rn+1 ), we have

cn+1(rn, rn+1) = N
(
yn+1; ŷn+1|n(rn, rn+1), Ŝn+1|n(rn, rn+1)

)
; (5.10)

� Update the posterior distribution of the discrete state:

∀rn, rn+1 ∈ Ω, πn+1(rn, rn+1) =
πn(rn)p (rn+1 |rn ) cn+1(rn, rn+1)∑

r′n,r
′
n+1∈Ω

πn(r′n)p
(
r′n+1 |r′n

)
cn+1(r′n, r

′
n+1)

; (5.11a)

∀rn+1 ∈ Ω, πn+1(rn+1) =
∑

rn∈Ω

πn+1(rn, rn+1). (5.11b)

� Compute, for each rn+1 in Ω, x̂n+1|n+1(rn+1) and Σ̂n+1|n+1(rn+1):

x̂n+1|n+1(rn+1) =
∑

rn∈Ω

πn+1(rn|rn+1)x̂n+1|n+1(rn, rn+1); (5.12a)

Σ̂n+1|n+1(rn+1) =
∑

rn∈Ω

πn+1(rn|rn+1)Σ̂n+1|n+1(rn, rn+1) +
∑

rn∈Ω

πn+1(rn|rn+1)×

(
x̂n+1|n+1(rn, rn+1)− x̂n+1|n+1(rn+1)

)(
x̂n+1|n+1(rn, rn+1)− x̂n+1|n+1(rn+1)

)>
,

(5.12b)
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with

πn+1(rn|rn+1) =
πn+1(rn, rn+1)

πn+1(rn+1)
. (5.13)

(The algorithm ends here)

Let us now introduce another method of smoothing in SCGPMSMs we propose. The
main particularity of the new method is that it is based on Bayesian assimilation. We �rst
introduce the reverse switching Kalman �lter used to process Y1:N in the reverse order by
using the reversal dynamics.

By analogy with the SKF, let us de�ne the RSKF that is used to compute:

∀n ∈ {1 : N},∀rn ∈ Ω, π∗n(rn)
def

=====
approx.

p (rn |yn:N ) ; (5.14a)

∀n ∈ {2 : N},∀rn−1, rn ∈ Ω, π∗n−1(rn−1, rn)
def

=====
approx.

p (rn−1, rn |yn−1:N ) ; (5.14b)

∀n ∈ {2 : N},∀rn−1, rn ∈ Ω, π∗n−1(rn|rn−1)
def

=====
approx.

p (rn |rn−1,yn−1:N ) ; (5.14c)

∀n ∈ {1 : N},∀rn ∈ Ω, x̂∗n|n(rn)
def

=====
approx.

E [Xn |yn:N , rn ] ; (5.14d)

∀n ∈ {2 : N},∀rn−1, rn ∈ Ω, x̂∗n−1|n(rn−1, rn)
def

=====
approx.

E [Xn−1 |yn:N , rn−1, rn ] ; (5.14e)

(5.14f)

∀n ∈ {2 : N},∀rn−1, rn ∈ Ω, ẑ∗n−1|n(rn−1, rn)
def

=====
approx.

E [Zn−1 |yn:N , rn−1, rn ] ;

(5.14g)

∀n ∈ {1 : N},∀rn ∈ Ω, Σ̂
∗
n|n(rn)

def
=====
approx.

Var [Xn |yn:N , rn ] ;

(5.14h)

∀n ∈ {2 : N},∀rn−1, rn ∈ Ω, Σ̂
∗
n−1|n(rn−1, rn)

def
=====
approx.

Var [Xn−1 |yn:N , rn−1, rn ] ; (5.14i)

∀n ∈ {2 : N},∀rn−1, rn ∈ Ω, Γ̂
∗
n−1|n(rn−1, rn)

def
=====
approx.

Var [Zn−1 |yn:N , rn−1, rn ] . (5.14j)

under assumption that

∀n ∈ {1 : N}, p (xn |yn:N , rn ) = N
(
xn; x̂∗n|n(rn), Σ̂

∗
n|n(rn)

)
. (5.15)

The RSKF runs as follows:

Algorithm 4. Reverse switching Kalman �lter

Initialization: for each rN in Ω,

π∗N (rN ) =
p (rN )N (yN ;µY(rN ),ΓY(rN ))

K∑
r′N=1

p
(
r′N
)
N
(
yN ;µY(r′N ),ΓY(r′N )

) ;

x̂∗N |N (rN ) = µX(rN ) + ΓXY(rN )Γ−1
Y (rN )(yN − µY(rN ));

Σ̂
∗
N |N (rN ) = ΓX − ΓXY(rN )Γ−1

Y (rN )ΓYX(rN ).
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Recursion: compute {π∗n−1(rn−1), x̂∗n−1|n−1(rn−1), Σ̂
∗
n−1|n−1(rn−1)}rn−1∈Ω from

{π∗n(rn), x̂∗n|n(rn), Σ̂
∗
n|n(rn)}rn∈Ω for each n in {2 : N}. Let rn−1, rn in Ω,

a)time update:

ẑ∗n−1|n(rn−1, rn) = F ∗(rn−1, rn)

[
x̂∗n|n(rn)

yn

]
+L∗(rn−1, rn) =

[
x̂∗n−1|n(rn−1, rn)

ŷ∗n−1|n(rn−1, rn)

]
; (5.16a)

Γ̂
∗
n−1|n(rn−1, rn) = F ∗(rn−1, rn)

[
Σ̂
∗
n|n(rn) 0

0 0

]
F ∗(rn−1, rn)> +Q∗(rn−1, rn) =

[
Σ̂
∗
n−1|n(rn−1, rn) Ĉ

∗
n−1|n(rn−1, rn)

Ĉ
∗>
n−1|n(rn−1, rn) Ŝ

∗
n−1|n(rn−1, rn)

]
. (5.16b)

b)measurement update

x̂∗n−1|n−1(rn−1, rn) = x̂∗n−1|n(rn−1, rn)+

Ĉ
∗
n−1|n(rn−1, rn)Ŝ

∗−1

n−1|n(rn−1, rn)(yn−1 − ŷ∗n−1|n(rn−1, rn)); (5.17a)

Σ̂
∗
n−1|n−1(rn−1, rn) = Σ̂

∗
n−1|n(rn−1, rn)− Ĉ∗n−1|n(rn−1, rn)Ŝ

∗−1

n−1|nĈ
∗>
n−1|n(rn−1, rn);

(5.17b)

Next, let c∗n−1(rn−1, rn)
def

=====
approx.

p (yn−1 |yn..N , rn−1, rn ), we have

c∗n−1(rn−1, rn) = N
(
yn−1; ŷ∗n−1|n(rn−1, rn), Ŝ

∗
n−1|n(rn−1, rn)

)
. (5.18)

� Update the posterior distribution of the discrete state:

∀rn−1, rn ∈ Ω, π∗n−1(rn−1, rn) =
π∗n(rn)p (rn−1 |rn ) c∗n−1(rn−1, rn)∑

r′n,r
′
n+1∈Ω

π∗n(r′n)p
(
r′n−1 |r′n

)
c∗n−1(r′n−1, r

′
n)

; (5.19a)

∀rn−1 ∈ Ω, π∗n−1(rn−1) =
∑

rn∈Ω

π∗n−1(rn−1, rn). (5.19b)

� Compute, for each rn−1 in Ω, x̂∗n−1|n−1(rn−1) and Σ̂
∗
n−1|n−1(rn−1):

x̂∗n−1|n−1(rn−1) =

K∑

rn=1

π∗n−1(rn|rn−1)x̂∗n−1|n−1(rn−1, rn); (5.20a)

Σ̂n−1|n−1(rn−1) =

K∑

rn=1

π∗n−1(rn|rn−1)Σ̂
∗
n−1|n−1(rn−1, rn) +

K∑

rn=1

π∗n−1(rn|rn−1)× (5.20b)

(x̂∗n−1|n−1(rn−1, rn)− x̂∗n−1|n−1(rn−1))(x̂∗n−1|n−1(rn−1, rn)− x̂∗n−1|n−1(rn−1))>, (5.20c)

with

π∗n−1(rn|rn−1) =
π∗n−1(rn−1, rn)

π∗n−1(rn−1)
. (5.21)

(The algorithm ends here)
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Our idea to set up a Bayesian-assimilation-based smoothed inference is the following.
First, we use the estimates of {p (rn−1 |y1:n−1 )}rn−1∈Ω and {p (rn+1 |yn+1:N )}rn+1∈Ω com-
puted by SKF and RSKF to compute estimates of {p (rn |y1:N )}rn∈Ω at each n in {2 : N − 1},
as illustrated in Figure 5.3.

p(rn−1|y1:n−1)

yn−1

p(rn+1|yn+1:N )

yn+1

. . . . . .

yn−2y2y1 yn yn+2 yN−1 yN

p(rn|y1:N )

Figure 5.3: Bayesian-assimilation-based smoothed inference of the discrete state.

To this end we consider the following conditional distribution crucial for Bayesian assimi-
lation

∀n ∈ {2 : (N − 1)},∀rn−1, rn, rn+1 ∈ Ω,

p (rn |rn−1, rn+1,yn−1:n+1 ) =
p (rn−1, rn, rn+1) p (yn−1:n+1 |rn−1, rn, rn+1 )∑

r′n∈Ω

p (rn−1, r′n, rn+1) p (yn−1:n+1 |rn−1, r′n, rn+1 )
, (5.22)

illustrated in Figure 5.4.

rn−1

yn−1

rn+1

yn+1yn

p(rn|rn−1, rn+1,yn−1:n+1)

Figure 5.4: Evaluation conditional distribution in (5.22).

Let us de�ne for each n in {1 : N}, rn in Ω,

πn|N (rn)
def

=====
approx.

p (rn |y1:N )

computed by the algorithm below.

Algorithm 5. Smoothed inference of the discrete state

� Compute, for all n in {1 : N}, rn in Ω

πn(rn)
def

=====
approx.

p (rn |y1:n ) , π∗n(rn)
def

=====
approx.

p (rn |yn:N )

by the SKF and RSKF.

� Let

∀r1 ∈ Ω, π1|N (r1) = π∗1(r1), ∀rN ∈ Ω, πN |N (rN ) = πN (rN );

For each n in {2 : N − 1}, rn in Ω, πn|N (rn) is computed as follows:
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πn|N (rn) =
∑

rn−1,rn+1∈Ω

p (rn |rn−1, rn+1,yn−1:n+1 )πn−1(rn−1)π∗n+1(rn+1). (5.23)

Note that {πn|N (rn)}rn∈Ω are computed using {πn−1(rn−1)}rn−1∈Ω, {π∗n+1(rn+1)}rn+1∈Ω

only and yn−1:n+1. In other words, {πn|N}n∈1:N are computed independently from each
other.

(The algorithm ends here)

Let us justify formula (5.23).

Justi�cation: Four our Bayesian assimilation technique, we assume the following:

∀n ∈ {1 : (N − 1)},∀rn, rn+1 ∈ Ω, p (rn |rn+1,xn+1,y1:n+1 ) = p (rn |rn+1,y1:n+1 ) ;
(5.24a)

∀n ∈ {2 : N},∀rn−1, rn ∈ Ω, p (rn |rn−1,xn−1,yn−1:N ) = p (rn |rn−1,yn−1:N ) ; (5.24b)

∀n ∈ {2 : N − 1}, ∀rn−1, rn, rn+1 ∈ Ω, p (rn |rn−1, rn+1,xn−1,xn+1,yn−1:n+1 ) =

p (rn |rn−1, rn+1,yn−1:n+1 ) . (5.24c)

Assumption (5.24a) is a classic one which can be found in the literature on smooth-
ing in SLDSs [Kim and Nelson, 1999], while assumptions (5.24b) and (5.24c) are similar
to (5.24a). Let n in 2 : (N − 1), rn in Ω. Observe that

p (rn |y1:N ) =
∑

rn−1,rn+1∈Ω

∫
p (rn−1, rn, rn+1,xn−1,xn+1 |y1:N ) dxn−1dxn+1;

p (rn−1, rn, rn+1,xn−1,xn+1 |y1:N ) =

p (rn |rn−1, rn+1,xn−1,xn+1,y1:N ) p (xn−1,xn+1 |rn−1, rn+1,y1:N ) p (rn−1, rn+1 |y1:N ) .
(5.25a)

In the above formula, ∫
. . . dxn−1dxn+1

means ∫

Rd

∫

Rd

. . . dxn−1dxn+1.

Similarly, ∫
. . . dxn

means ∫

Rd

. . . dxn

for the rest of the report, and so on.
One has the following from the Markovianity of (Xn,Rn,Yn)1≤n≤N ,

∀rn−1, rn, rn+1 ∈ Ω,

p (rn |rn−1, rn+1,xn−1,xn+1,y1:N ) = p (rn |rn−1, rn+1,xn−1,xn+1,yn−1:n+1 ) . (5.26)

Assumption (5.24c) allows approximating p (rn |y1:N ) as follows cf. (5.25):

p (rn |y1:N ) =
∑

rn−1,rn+1∈Ω

p (rn |rn−1, rn+1,yn−1:n+1 ) p (rn−1, rn+1 |y1:N ) .
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Next, observe that

p (rn−1, rn+1 |y1..N ) =
∑

r′n∈Ω

p
(
rn−1, r

′
n, rn+1 |y1:N

)
=

=
∑

r′n∈Ω

p
(
rn−1

∣∣r′n,y1..N

)
p
(
rn+1

∣∣r′n,y1:N

)
p
(
r′n |y1:N

)
, (5.27)

thus

p (rn |y1:N ) =
∑

rn−1,rn+1∈Ω

p (rn |rn−1, rn+1,yn−1:n+1 )
∑

r′n∈Ω

p
(
rn−1

∣∣r′n,y1:N

)
p
(
rn+1

∣∣r′n,y1:N

)
p
(
r′n |y1:N

)
.

(5.28)

On the one hand, assuming (5.24a) results in

∀n ∈ 2 : N, ∀rn−1, rn ∈ Ω, p (rn−1 |rn,y1:N ) = p (rn−1 |rn,y1:n ) , (5.29)

since

∀n ∈ 2 : N, ∀rn−1, rn ∈ Ω, p (rn−1 |rn,y1:N ) =

∫
p (rn−1,xn |rn,y1:N ) dxn =

∫
p (rn−1 |rn,xn,y1:N ) p (xn |rn,y1:N ) dxn =

∫
p (rn−1 |rn,xn,y1:n ) p (xn |rn,y1:N ) dxn =

∫
p (rn−1 |rn,y1:n ) p (xn |rn,y1:N ) dxn = p (rn−1 |rn,y1:n ) .

On the other hand, assuming (5.24b) results in

∀n ∈ {1 : N − 1}, ∀rn, rn+1 ∈ Ω, p (rn+1 |rn,y1..N ) = p (rn+1 |rn,yn:N ) , (5.30)

since

∀n ∈ {1 : N − 1}, ∀rn, rn+1 ∈ Ω, p (rn+1 |rn,y1..N ) =

∫
p (rn+1,xn |rn,y1:N ) dxn =

∫
p (rn+1 |rn,xn,y1:N ) p (xn |rn,y1:N ) dxn =

∫
p (rn+1 |rn,xn,yn:N ) p (xn |rn,y1:N ) dxn =

∫
p (rn+1 |rn,yn:N ) p (xn |rn,y1:N ) dxn = p (rn+1 |rn,yn:N ) .

Thus, by substituting (5.29) and (5.30) in (5.28), we have

p (rn |y1:N ) =
∑

rn−1,rn+1∈Ω

p (rn |rn−1, rn+1,yn−1:n+1 )
∑

r′n∈Ω

p
(
rn−1

∣∣r′n,y1:n

)
p
(
rn+1

∣∣r′n,yn:N

)
p
(
r′n |y1:N

)
.

(5.31)

We see that our Bayesian-assimilation-based smoothing solution

∀n ∈ {2 : N − 1}, rn ∈ Ω, πn|N (rn)
def

=====
approx.

p (rn |y1:N )
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can be expressed from the outputs of SKF and RSKF

πn(rn−1|rn)
def

=====
approx.

p (rn−1 |rn,y1:n ) ;

πn(rn+1|rn)
def

=====
approx.

p (rn+1 |rn,yn:N ) ,

as follows:

∀n ∈ {2 : N − 1}, rn ∈ Ω, πn|N (rn) =
∑

rn−1,rn+1∈Ω

p (rn |rn−1, rn+1,yn−1:n+1 )
∑

r′n∈Ω

πn(rn−1|r′n)π∗n(rn+1|r′n)πn|N (r′n). (5.32)

Note that the above equation de�nes {πn|N (rn)}rn∈Ω as the solution of a linear sys-
tem. Speci�cally, suppose that πn|N is a column vector whose consecutive elements are
πn|N (ω1), . . . , πn|N (ωK). Thus, πn|N veri�es

πn|N = Anπn|N , (5.33)

where An is de�ned as follows:

∀1 ≤ i, j ≤M,An(i, j) =
∑

rn−1,rn+1∈Ω

p (ωi |rn−1, rn+1,yn−1:n+1 )πn(rn−1|ωj)π
∗
n(rn+1|ωj).

Thus, πn|N is invariant with respect to multiplication byAn and therefore it can be approx-
imated iteratively. Let us initialize this recursion by dropping conditional dependencies on
r′n in (5.32):

∀n ∈ {2 : N − 1}, rn ∈ Ω,

π
(0)
n|N (rn) =

∑

rn−1,rn+1∈Ω

p (rn |rn−1, rn+1,yn−1:n+1 )
∑

r′n∈Ω

πn−1(rn−1)π∗n+1(rn+1)πn|N (r′n) =

∑

rn−1,rn+1∈Ω

p (rn |rn−1, rn+1,yn−1:n+1 )πn−1(rn−1)π∗n+1(rn+1). (5.34)

πn|N is therefore can be approximated by iterating

π
(i+1)
n|N = Anπ

(i)
n|N . (5.35)

However, in practice, iterating (5.35) does not seem to a�ect initialization (5.34) signi�-
cantly. That is why we suggest using closed-form formula (5.34), given in (5.23), as the
smoothed estimate of the discrete state. �

Next, we use estimates of
{
E [Xn−1 |y1:n−1, rn−1 ]

}
rn−1∈Ω

,
{
E [Xn+1 |yn+1:N , rn+1 ]

}
rn+1∈Ω

to compute estimates of
{
E [Xn |y1:N , rn ]

}
rn∈Ω

.

To this purpose, let us de�ne α1,α2,β1,β2,β3,γ dependent on rn−1:n+1 such that

E [Xn |Xn−1,Xn+1, rn−1:n+1,yn−1:n+1 ] = α1(rn−1:n+1)Xn−1 +α2(rn−1:n+1)Xn+1+

+ β1(rn−1:n+1)yn−1 + β2(rn−1:n+1)yn + β3(rn−1:n+1)yn+1 + γ(rn−1:n+1), (5.36)

as illustrated in Figure 5.5.
For each n in {2 : N − 1}, rn in Ω, we de�ne

x̂−n−1|n(rn)
def

======
approx.

E [Xn−1 |rn,y1..n ] ;

x̂+
n+1|n(rn)

def
======
approx.

E [Xn+1 |rn,yn..N ] ;

∀rn−1, rn+1 ∈ Ω, πn|N (rn−1, rn+1|rn)
def

======
approx.

p (rn−1, rn+1 |rn,y1:N ) ;

x̂n|N (rn)
def

======
approx.

E [Xn |rn,y1..N ] .
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xn−1

yn−1

xn+1

yn+1yn

E[Xn|xn−1,xn+1,yn−1:n+1, rn−1:n+1]

α1(rn−1:n+1) α2(rn−1:n+1)

β1(rn−1:n+1)

β2(rn−1:n+1)

β3(rn−1:n+1)

Figure 5.5: α1,α2,β1,β2,β3,γ in (5.36).

These quantities are computed as follows:

x̂−n−1|n(rn) =
∑

rn−1∈Ω

x̂n−1|n−1(rn−1)πn(rn−1|rn); (5.37a)

x̂+
n+1|n(rn) =

∑

rn+1∈Ω

x̂∗n+1|n+1(rn+1)π∗n(rn+1|rn); (5.37b)

πn|N (rn−1, rn+1|rn) =
p (rn |rn−1, rn+1,yn−1:n+1 )

πn|N (rn)

∑

r′n∈Ω

πn(rn−1|r′n)π∗n(rn+1|r′n)πn|N (r′n), (5.37c)

where

� {x̂n−1|n−1(rn−1), πn(rn−1|rn)}rn−1,rn∈Ω are computed by the SKF;

� {x̂∗n+1|n+1(rn+1), π∗n(rn+1|rn)}rn,rn+1∈Ω are computed by the RSKF;

� {πn|N (rn)}rn∈Ω are computed by (5.23).

{x̂n|N (rn)}rn∈Ω are computed as follows:

x̂n|N (rn) =
∑

rn−1,rn+1∈Ω

πn|N (rn−1, rn+1|rn)
(
α1(rn−1:n+1)x̂−n−1|n(rn) +α2(rn−1:n+1)x̂+

n+1|n(rn)+

β1(rn−1:n+1)yn−1 + β2(rn−1:n+1)yn + β3(rn−1:n+1)yn+1 + γ(rn−1:n+1)
)
, (5.38)

which is illustrated in Figure 5.6.

x̂−
n−1|n(rn)

yn−1 yn+1

. . . . . .

yn−2y2y1 yn yn+2 yN−1 yN

p(xn|rn,y1:N ) x̂+
n+1|n(rn)

Figure 5.6: Bayesian-assimilation-based smoothed inference of the continuous state.

Let us justify formula (5.38).

Justi�cation: First, observe that we have the following from the law of total expectation:

E [Xn |rn,y1:N ] = E [E [Xn |Xn−1,Xn+1, rn−1:n+1,y1:N ] |rn,y1:N ] .

We have the following from the Markovianity of (Xn,Rn,Yn)1≤n≤N ,

p (xn |xn−1,xn+1, rn−1:n+1,y1:N ) = p (xn |xn−1,xn+1, rn−1:n+1,yn−1:n+1 ) .

Thus,

E [Xn |rn,y1:N ] = E [E [Xn |Xn−1,Xn+1, rn−1:n+1,yn−1:n+1 ] |rn,y1:N ] .
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Next, by using α1,α2,β1,β2,β3,γ de�ned in (5.36), we have

E [Xn |rn,y1:N ] =
∑

rn−1,rn+1∈Ω

p (rn−1, rn+1 |rn,y1:N )
(
α1(rn−1:n+1)E [Xn−1 |rn,y1:N ] +

α2(rn−1:n+1)E [Xn+1 |rn,y1:N ] + β1(rn−1:n+1)yn−1 + β2(rn−1:n+1)yn+

β3(rn−1:n+1)yn+1 + γ(rn−1:n+1)
)
. (5.39)

Regarding E [Xn−1 |rn,y1..N ], we have

E [Xn−1 |rn,y1..N ] = E [E [Xn−1 |rn−1, rn,y1..N ] |rn,y1..N ] =
∑

rn−1∈Ω

p (rn−1 |rn,y1..N )E [Xn−1 |rn−1, rn,y1..N ] . (5.40)

Similarly, we have for E [Xn+1 |rn,y1..N ]:

E [Xn+1 |rn,y1..N ] = E [E [Xn+1 |rn, rn+1,y1..N ] |rn,y1..N ] =
∑

rn+1∈Ω

p (rn+1 |rn,y1..N )E [Xn+1 |rn, rn+1,y1..N ] . (5.41)

Recall that for each rn−1,rn,rn+1 in Ω,

� p (rn−1 |rn,y1..N ) = p (rn−1 |rn,y1..n ) under assumption (5.24a);

� p (rn+1 |rn,y1..N ) = p (rn+1 |rn,yn..N ) under assumption (5.24b);

� We have under assumptions (5.24a)-(5.24c)

p (rn−1, rn, rn+1 |y1:N ) =

p (rn |rn−1, rn+1,yn−1:n+1 )
∑

r′n∈Ω

p (rn−1 |r′n,y1:n ) p (rn+1 |r′n,yn:N ) p (r′n |y1:N ) .

Indeed, E [Xn−1 |rn−1, rn,y1..N ] and E [Xn+1 |rn, rn+1,y1..N ] are not easily accessible without
further approximation. We propose to approximate them by E [Xn−1 |rn−1,y1..n ] and
E [Xn+1 |rn+1,yn..N ] respectively. Thus,

� E [Xn−1 |rn,y1..N ] is approximated by x̂−n−1|n(rn) de�ned in (5.37a) cf. (5.40);

� E [Xn+1 |rn,y1..N ] is approximated by x̂+
n+1|n(rn) de�ned in (5.37b) cf. (5.41);

� For all rn−1, rn, rn+1, p (rn−1, rn+1 |rn,y1:N ) is approximated by πn|N (rn−1, rn+1|rn) de�ned
in (5.37c) since we have under assumptions (5.24a)-(5.24c):

p (rn−1, rn+1 |rn,y1:N ) =
p (rn−1, rn, rn+1 |y1:N )

p (rn |y1:N )
=

p (rn |rn−1, rn+1,yn−1:n+1 )

p (rn |y1:N )

∑

r′n∈Ω

p (rn−1 |r′n,y1:n ) p (rn+1 |r′n,yn:N ) p (r′n |y1:N ) ;

� Finally, E [Xn |rn,y1:N ] is approximated by x̂n|N (rn) de�ned in (5.38) cf. (5.39).

�
The whole algorithm runs as follows:

Algorithm 6. Smoothed inference by Bayesian assimilation

1. Run Algorithms 3 and 4 to obtain RSKF and SKF outputs (5.7), (5.14). SKF and RSKF
may run in parallel;

2. Run Algorithms 5 to obtain smoothed estimates of the discrete state {πn|N (rn)}rn∈Ω;

3. For each n in 2 : N − 1, rn in Ω, compute smoothed estimates of the continuous state
{x̂n|N (rn)}rn∈Ω by (5.37)-(5.38);

4. E [Xn |y1:N ] is then approximated by
∑

rn∈Ω

x̂n|N (rn)πn|N (rn).

(The algorithm ends here)
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5.1.2 Applications to trend estimation
Here we illustrate our smoothing algorithm applied to the problem of trend estimation in �nancial
time series. We will consider a classic model without switching and then extend it by incorporating
a switching process. Let N ∈ N∗ be a sample size, the classic Local Trend Model (LTM) [Tsay,
2005] reads:

X1 ∼N (m1,Σ1) ; (5.42a)

∀n ∈ {1 : (N − 1)},Xn+1 = φXn + qUn+1 + a; (5.42b)

∀n ∈ {1 : N},Yn = Xn + σVn, (5.42c)

where φ, q, a and σ are �xed parameters in R, |φ| < 1, X1:N ∈ R, Y1:N ∈ R, U2:N ,V1:N are
zero-mean unit-variance Gaussian white noise in R. The terms involved in this model have the
following meaning.

� Y1:N are log-returns computed from the price chart of an asset and X1:N is their underlying
trend. X1:N is supposed to be estimated from Y1:N ;

� σ is the standard deviation of price movements which are irrelevant to the underlying trend.
In other words, σ quanti�es the market noise;

� φ is the persistence of trend in time. In practice, it is common to consider that φ ≈ 1.

� a can be seen as the intercept in linear regression equation (5.42b). This parameter is related
to the ergodic mean of {Yn}∈N as follows:

lim
n→∞

1

N

N∑

n=1

Yn =
a

1− φ.

� q is known as the conditional variance of the trend. It determines how �exible the trend is;

� m1 and Σ1 are chosen in a way that X1:N would be stationary. Speci�cally, one has

m1 =
a

1− φ, Σ1 =
q2

1− φ2
.

We consider extending this model by making a dependent on a stationary Markov chain R1:N

in Ω = {ω1, ω2}:
∀n ∈ {1 : (N − 1)},Xn+1 = φXn + qUn+1 + a(Rn+1); (5.43a)

∀n ∈ {1 : N},Yn = Xn + σVn, (5.43b)

with the same assumptions as for (5.42). Thus, we obtain a Local Switching Trend Model (LSTM).
We suppose that Markov chain R1:N is stationary and veri�es

∀ω ∈ Ω, p (r1 = ω) = 0.5; (5.44a)

∀n ∈ {1 : (N − 1)}, p (rn+1 6= ω |rn = ω ) = δ. (5.44b)

Here, both δ and φ specify the persistence of the trend.
The SCGPMSM form (5.2) of (5.43) is computed as follows. De�ne, for each rn, rn+1 ∈ Ω,

F (rn, rn+1) =

[
φ 0
φ 0

]
, L(rn, rn+1) =

[
a(rn+1)
a(rn+1)

]
,Q(rn, rn+1) =

[
q2 q2

q2 σ2

]
. (5.45)

Thus, SLDS (5.43) veri�es

∀n ∈ {1 : (N − 1)}, p (zn+1 |zn, rn, rn+1 ) = N (zn+1;F (rn, rn+1)zn +L(rn, rn+1),Q(rn, rn+1)) ,

with ∀n ∈ {1 : N}, zn =

[
xn

yn

]
. The SCGPMSM parameters (5.2) {µZ(rn),ΓZ(rn)}rn∈Ω of (5.43)

verify

∀rn+1 ∈ Ω,µZ(rn+1) =
∑

rn∈Ω

p (rn |rn+1 )
(
F (rn, rn+1)µZ(rn) +L(rn, rn+1)

)
; (5.46a)

∀rn+1 ∈ Ω,ΓZ(rn+1) + µZ(rn+1)µZ(rn+1)> =
∑

rn∈Ω

p (rn |rn+1 )
(
F (rn, rn+1)ΓZ(rn+1)F (rn, rn+1)> + F (rn, rn+1)µZ(rn)L(rn, rn+1)>+

L(rn, rn+1)µZ(rn)>F (rn, rn+1)> +L(rn, rn+1)L(rn, rn+1)> +Q(rn, rn+1)
)
. (5.46b)
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The above equation can be solved in {µZ(rn),ΓZ(rn)}rn∈Ω analytically for parameters (5.45). In
the general case, one usually uses iterative techniques to �nd an approximate solution. Finally,
regarding {ΓZ1Z2(rn, rn+1),ΓZ2Z1(rn, rn+1)}rn,rn+1∈Ω in (5.2), we have

∀rn, rn+1 ∈ Ω,ΓZ1Z2(rn, rn+1) = ΓZ(rn)F (rn, rn+1)>, ΓZ2Z1(rn, rn+1) = ΓZ1Z2(rn, rn+1)>.

In order to �nd realistic parameter values for (5.43), we estimated model (5.42) from the daily
price chart of S&P 500 stock market index between 04-Jul-2014 and 02-Jun-2016. We found

σ = 0.0090, q = 3 · 10−4;

φ = 0.9900, a = 1.172 · 10−6.

Therefore, we considered the following cases for the parameters of (5.43):

� Regarding a(ω1) and a(ω2): the low-spread case - a(ω1) = −2.5 · 10−4, a(ω2) = 2.5 · 10−4) -
and the high-spread case - a(ω1) = −5 · 10−4, a(ω2) = 5 · 10−4;

� Regarding σ: the case of low market noise - σ = 0.01 - and the case of high market noise -
σ = 0.05;

� Regarding δ: the case of low-persistent trend - δ = 0.1 - and the case of highly persistent
trend - δ = 0.01;

� Regarding q: the case of low conditional variance of the trend - q = 10−4 - and the case of
high conditional variance - q = 10−3;

� Regarding φ, we �x its value at 0.99. We observed that when low values of φ make the
LSTM behave as a classic hidden Markov model with discrete state space.

Thus, we consider 16 di�erent experiment settings in total, generated by combining the afore-
mentioned cases. We perform the following experiment 100 times per each of these settings. First,
we generate sample {x1:N , y1:N} from (5.43) with the parameters as in Table 5.1 with N = 1000.
Next, we recover the smoothed trend estimates from y1:N by applying the proposed method (Al-
gorithm 6) and the Particle Smoother (PS). The PS we use is given in Section 1.4.2. We use 2000
particles in the particle smoother. Finally, we compute the Mean Squared Error (MSE) and the
Mean Misclassi�cation Error (MME) de�ned by

MSE =
1

N

N∑

n=1

(x̂n − xn)
2 (5.47)

and

MME =
1

N

N∑

n=1

(̂rn 6= rn) (5.48)

respectively.
We report in Tables 5.1 and 5.2 the average MSE and MME respectively over these experiments.
The simulation study indicates that the proposed method estimates nearly optimally the con-

tinuous state as well as the discrete state. Compared to the particle smoother, our method executes
20 times faster on average. An example of estimating a hidden trajectory x1:N by our smoother is
presented in Figure 5.7.

Next, we compare the trend estimates of the S&P 500 stock market index (SPX) between
04-Jul-2014 and 02-Jun-2016, produced by LTM (5.42) and LSTM (5.43). The historical data
were taken from the Yahoo database and is displayed in Figure 5.8. The working sample y1:N of
log-returns contains N = 500 observations. The sample mean is 1.1720 · 10−4 and its standard
deviation is 0.0091.

We estimate the parameters of LTM (5.42) as follows. First, we set φ = 0.99 and we estimate
a by the method of moments applied to the ergodic mean of log-returns in the LTM, that is by
equating it with the empirical ergodic mean of y1:N :

a

1− φ =
1

N

N∑

n=1

yn ⇒ a = (1− φ)
1

N

N∑

n=1

yn.
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# setting a(ω1) a(ω2) σ δ q φ Algorithm 6 PS
1 −2.5 · 10−4 2.5 · 10−4 0.01 0.01 10−4 0.99 2.1 · 10−6 1.9 · 10−6

2 −2.5 · 10−4 2.5 · 10−4 0.01 0.01 10−3 0.99 5.5 · 10−6 5.4 · 10−6

3 −2.5 · 10−4 2.5 · 10−4 0.01 0.10 10−4 0.99 3.2 · 10−6 3.1 · 10−6

4 −2.5 · 10−4 2.5 · 10−4 0.01 0.10 10−3 0.99 5.9 · 10−6 5.8 · 10−6

5 −2.5 · 10−4 2.5 · 10−4 0.05 0.01 10−4 0.99 2.7 · 10−5 2.7 · 10−5

6 −2.5 · 10−4 2.5 · 10−4 0.05 0.01 10−3 0.99 3.5 · 10−5 3.5 · 10−5

7 −2.5 · 10−4 2.5 · 10−4 0.05 0.10 10−4 0.99 1.8 · 10−5 1.7 · 10−5

8 −2.5 · 10−4 2.5 · 10−4 0.05 0.10 10−3 0.99 3.1 · 10−5 3.0 · 10−5

9 −5 · 10−4 5 · 10−4 0.01 0.01 10−4 0.99 2.0 · 10−6 1.9 · 10−6

10 −5 · 10−4 5 · 10−4 0.01 0.01 10−3 0.99 6.0 · 10−6 5.8 · 10−6

11 −5 · 10−4 5 · 10−4 0.01 0.10 10−4 0.99 5.3 · 10−6 5.2 · 10−6

12 −5 · 10−4 5 · 10−4 0.01 0.10 10−3 0.99 7.1 · 10−6 6.9 · 10−6

13 −5 · 10−4 5 · 10−4 0.05 0.01 10−4 0.99 4.1 · 10−5 4.0 · 10−5

14 −5 · 10−4 5 · 10−4 0.05 0.01 10−3 0.99 4.6 · 10−5 4.5 · 10−5

15 −5 · 10−4 5 · 10−4 0.05 0.10 10−4 0.99 3.7 · 10−5 3.5 · 10−5

16 −5 · 10−4 5 · 10−4 0.05 0.10 10−3 0.99 4.5 · 10−5 4.3 · 10−5

Table 5.1: Comparison of mean squared error (5.47) of smoothing with various param-
eters of local switching trend model (5.43) by the Bayesian-assimilation based approach
(Algorithm 6) and the PS .

# setting a(ω1) a(ω2) σ δ q φ Algorithm 6 PS
1 −2.5 · 10−4 2.5 · 10−4 0.01 0.01 10−4 0.99 0.06 0.05
2 −2.5 · 10−4 2.5 · 10−4 0.01 0.01 10−3 0.99 0.12 0.11
3 −2.5 · 10−4 2.5 · 10−4 0.01 0.10 10−4 0.99 0.31 0.30
4 −2.5 · 10−4 2.5 · 10−4 0.01 0.10 10−3 0.99 0.38 0.36
5 −2.5 · 10−4 2.5 · 10−4 0.05 0.01 10−4 0.99 0.16 0.16
6 −2.5 · 10−4 2.5 · 10−4 0.05 0.01 10−3 0.99 0.19 0.19
7 −2.5 · 10−4 2.5 · 10−4 0.05 0.10 10−4 0.99 0.44 0.43
8 −2.5 · 10−4 2.5 · 10−4 0.05 0.10 10−3 0.99 0.46 0.44
9 −5 · 10−4 5 · 10−4 0.01 0.01 10−4 0.99 0.02 0.02
10 −5 · 10−4 5 · 10−4 0.01 0.01 10−3 0.99 0.06 0.05
11 −5 · 10−4 5 · 10−4 0.01 0.10 10−4 0.99 0.24 0.23
12 −5 · 10−4 5 · 10−4 0.01 0.10 10−3 0.99 0.31 0.29
13 −5 · 10−4 5 · 10−4 0.05 0.01 10−4 0.99 0.11 0.10
14 −5 · 10−4 5 · 10−4 0.05 0.01 10−3 0.99 0.13 0.12
15 −5 · 10−4 5 · 10−4 0.05 0.10 10−4 0.99 0.39 0.38
16 −5 · 10−4 5 · 10−4 0.05 0.10 10−3 0.99 0.41 0.39

Table 5.2: Comparison of mean misclassi�cation error (5.48) of smoothing with various pa-
rameters of local switching trend model (5.43) by the Bayesian-assimilation based approach
(Algorithm 6) and the PS .

We make vary parameter σ depending on our thoughts of the level of market noise. Finally,
parameter q is chosen in a way that

1

N

N∑

n=1

(yn − x̂n)
2

= σ2, (5.49)

where x̂1:N are smoothed estimates of the trend in the LTM computed with the Kalman smoother.
Equation (5.49) is general and ensures that the level of the market noise in the model is consistent
with the data and smoothed estimates computed using this model.
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Figure 5.7: Example of estimating a hidden trajectory in setting #1 from Table 5.1.
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Figure 5.8: Price chart and corresponding log-returns of the S&P 500 stock market index
between 04-Jul-2014 and 02-Jun-2016.

Regarding the parameters of LSTM (5.43), we set φ = 0.99, δ = 0.01, a(ω1) = m − 2s,
a(ω2) = m+ 2s, where

m =
1

N

N∑

n=1

yn, s =

√√√√ 1

N

N∑

n=1

(yn −m)
2
.

Similarly, we make vary σ and parameter q is chosen such that (5.49) is satis�ed. We consider
three cases:

� The case of low market noise: σ = 0.0077. In this case, we �nd q = 3 · 10−3 for both LTM
and LSTM. The two models produced nearly the same trend estimates.

� The case of moderate market noise: σ = 0.0087. In this case, we �nd q = 10−3 for both
LTM and LSTM. This case is illustrated in Figure 5.9;

� The case of high market noise: σ = 0.0091. In this case, we �nd q = 10−4 for the LTM and
q = 6 · 10−5 for the LSTM. This case is illustrated in Figure 5.10.

Let us discuss these results.

� We see that in the case of low market noise, LTM and LSTM produce nearly the same trend.
However, this trend may be of a limited use, since it changes direction too frequently and
appears to be a�ected by some kind of noise. Thus, the low market noise assumption may
be erroneous.
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Figure 5.9: S&P 500 index (SPX) trend estimates by LTM (5.42) and LSTM (5.43) as-
suming σ = 0.0087.
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Figure 5.10: S&P 500 index (SPX) trend estimates by LTM (5.42) and LSTM (5.43)
assuming σ = 0.0091.

� Regarding the case of moderate market noise, both models have produced trends in which
one can identify distinct moves (upwards and downwards). However, these moves seem to
be better presented by the switching model. An increased �exibility of the LSTM compared
to that of the LTM possibly allowed to �nd a better suited trend. We also note that the
moderate market noise assumption seems to be appropriate for trend estimation.

� Finally, under the assumption of high market noise, the LTM trend degenerates to a constant
function while the LSTM trend seems to over�t the working sample. Indeed, this value of
market noise is close to the standard deviation of the sample. Thus, this kind of behavior
was expected from the LTM. However, we see that using a switching model may involve
risks of over�tting and therefore additional control measures should be considered.

In this study, we used a control parameter σ quantifying the market noise level. However, let
us notice that a recent CGPMSM-based unsupervised smoothing technique [Zheng et al., 2016]
may allow recovering the trend without considering the LSTM explicitly.

5.2 Bayesian �ltering in non-linear non-Gaussian POMPs with
hybrid state space

Markov-switching dynamical models (see, e.g., [Olteanu et al., 2004, Wu et al., 2004, Doucet
et al., 2001, Logothetis and Krishnamurthy, 1999, Olteanu and Rynkiewicz, 2007, Chen and Liu,
2000, Li and Jilkov, 2005, Andrieu et al., 2003a, Blanchet-Scalliet, 2001, Caron et al., 2007]) allow
modeling situations where the dynamics of the system depend upon unknown exogenous discrete-
valued factors cf. Fig. 5.11. Bayesian inference in these systems is usually dealt with switching
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�lters [Wu et al., 2004, Fu et al., 2010, Logothetis and Krishnamurthy, 1999, Zhao and Liu,
2012, Gao et al., 2012, Toledo-Moreo et al., 2007, Pieczynski, 2011a, Jilkov and Li, 2004, Liao and
Chen, 2006, Togneri et al., 2001] or sequential Monte-Carlo methods [Doucet et al., 2001, Andrieu
et al., 2003a, Driessen and Boers, 2004, Chen and Liu, 2000, Doucet et al., 2000]. The simulation-
based �lters are asymptotically optimal, but can be computationally intensive. The usual switching
�lters are derived from the Extended Kalman Filter (EKF), Unscented Kalman Filter (UKF) or
Gauss-Hermite Filter (GHF). EKF, UKF, GHF and their variants are discussed in [Afshari et al.,
2017].

Indeed, the EKF, UKF and GHF evaluate local integrals by using a Gaussian approximation
in the joint state-observation space. However, this joint Gaussian approximation does not lead to
satisfactory results in many important applications. For example, in the Stochastic Volatility (SV)
model [Jacquier et al., 2002], the observed and hidden variables are uncorrelated but dependent.
The recent Conditional Gauss-Hermite Filter (CGHF), [Singer, 2015] uses a weaker assumption
and is proven to be e�cient in the cases where a speci�c form of the observation equation must be
taken into account cf. [Singer, 2015, Zoeter et al., 2004].

Sequential Monte Carlo and quasi-Monte Carlo [Niederreiter, 2010] methods are important
simulation-based methodologies to solve the �ltering problem. Among them, the Particle Filter
(PF), [Doucet and Johansen, 2009] is a well-known stochastic algorithm. The Gaussian Particle
Filter (GPF), [Kotecha and Djuric, 2003] is a modi�cation of the PF which avoids resampling and
allows parallel processing. The CGHF is an �accelerated� version of the GPF [Zoeter, 2007, Singer,
2015, Zoeter et al., 2006, Zoeter et al., 2004, Nikolaev et al., 2014], where one uses the Gaussian
quadrature to evaluate local integrals. Compared to the Monte Carlo integration, the Gaussian
quadrature has a better convergence rate cf. e.g. [Luceno, 1999].

The novelty of the work presented in this section consists in extending the CGHF to handle
Markov-switching dynamics. In fact, the CGHF is applicable only for recovering continuous vari-
ables, while our extension Switching Conditional Gauss-Hermite Filter (SCGHF) allows recovering
both continuous and discrete states simultaneously. In other words, we introduce a switching ver-
sion of the CGHF. This chapter also extends the conference paper [Gorynin et al., 2016c] whose
scope was limited to speci�c volatility models; the general algorithm we introduce here is applicable
to any switching system.

We �rst recall the current approaches to solve the �ltering problem. Next, we expose the
algorithm we propose. We provide an empirical comparison of the proposed algorithm with the
switching Kalman �lter [Wu et al., 2004] and the particle �lter [Gordon, 1997] in the context of
the Markov-switching stochastic volatility model.

5.2.1 Filtering in non-linear non-Gaussian systems under the Gaussian

conditional density assumption

Here we recall three general approaches to the problem of non-linear non-Gaussian �ltering: the
Gaussian Filter (GF) and the Conditional Gaussian Filter (CGF).

Let us consider the following general form of non-linear non-Gaussian systems:

Xn+1 = fn+1(Xn,Un+1) for n ∈ N∗, n < N ; (5.50a)

p (yn |xn ) ∝ hn(yn,xn) for n ∈ N∗, n ≤ N, (5.50b)

with Markovian continuous states X1:N in Rd and observations Y1:N in Rd′ which are independent
given X1:N . Variables U1:N are independent zero-mean unit-variance Gaussian vectors in Rq. For
each n ∈ N∗, n < N , function fn+1 : Rd×Rq → R

d in (5.50a) determines the time evolution of the
system. Equation (5.50b) means that for each n in {1 : N}, the Probability Density Function (pdf)
of Yn given Xn is available analytically.

Note that even if U1:N are Gaussian, the transition density p (xn+1 |xn ) is not Gaussian unless
function fn+1 : (xn,un+1)→ xn+1 is linear in un+1. Since there is no assumptions on linearity of
fn+1, system (5.50) is non-linear non-Gaussian in general.

We consider the �ltering problem, i.e. recursive estimation of p (xn |y1:n ) for consecutive
natural n.

The GF generalizes the unscented Kalman and Gauss-Hermite Kalman �lters. The main idea
is to assume that the following one-step predicting density is Gaussian:
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∀n ∈ N, p (xn+1,yn+1 |y1:n ) = N

([
xn+1

yn+1

]
;

[
x̂n+1|n
ŷn+1|n

]
,

[
Pxx

n+1|n Pxy
n+1|n

Pyx
n+1|n Pyy

n+1|n

])
, (5.51)

where x̂n+1|n ∈ Rd, ŷn+1|n ∈ Rd′ , Pxx
n+1|n ∈ Rd×d, Pxy

n+1|n ∈ Rd×d′ , Pyx
n+1|n ∈ Rd′×d and

Pyy
n+1|n ∈ Rd′×d′ .
The above assumption means that the GF proceeds as if p (xn+1,yn+1 |y1:n ) was Gaussian,

even if it is actually not. Indeed, it also implies that

∀n ∈ N∗, pn|n (xn) = p (xn |y1:n ) = N
(
xn; x̂n|n, Γ̂n|n

)
; (5.52a)

∀n ∈ N, pn+1|n (xn+1) = p (xn+1 |y1:n ) = N
(
xn+1; x̂n+1|n, Γ̂n+1|n

)
, (5.52b)

where Γ̂n+1|n = Pxx
n+1|n. (x̂n|n, Γ̂n|n) are obtained as the parameters of the conditional Gaussian

distribution of Xn given Y1:n from (5.51):

x̂n|n = x̂n|n−1 + Pxy
n|n−1

(
Pyy

n|n−1

)−1

(yn − ŷn|n−1); (5.53a)

Γ̂n|n = Γ̂n|n−1 −Pxy
n|n−1

(
Pyy

n|n−1

)−1

Pyx
n|n−1. (5.53b)

Then GF computes x̂n+1|n+1 and Γ̂n+1|n+1 from x̂n|n, Γ̂n|n and yn+1 as follows:
� Time update

x̂n+1|n =

∫
fn+1(xn,un+1)pn|n (xn) p (un+1) dxndun+1; (5.54a)

Γ̂n+1|n =

∫
fn+1(xn,un+1)fn+1(xn,un+1)>pn|n (xn) p (un+1) dxndun+1 − x̂n+1|nx̂>n+1|n.

(5.54b)

� Measurement update

ŷn+1|n =

∫
yn+1hn+1(yn+1,xn+1)pn+1|n (xn+1) dxn+1dyn+1; (5.55a)

Pxy
n+1|n =

∫
(xn+1 − x̂n+1|n)(yn+1 − ŷn+1|n)>hn+1(yn+1,xn+1)pn+1|n (xn+1) dxn+1dyn+1.

(5.55b)

Pyy
n+1|n =

∫
yn+1y

>
n+1hn+1(yn+1,xn+1)pn+1|n (xn+1) dxn+1dyn+1 − ŷn+1|nŷ>n+1|n. (5.55c)

x̂n+1|n+1 and Γ̂n+1|n+1 are then obtained from by applying (5.53) to x̂n+1|n, ŷn+1|n, Γ̂n+1|n,
Pxy

n+1|n, Pyy
n+1|n, and Pyx

n+1|n = (Pxy
n+1|n)>.

Let z = [xn,un+1]; the integrals in (5.54) are of the form
∫
g(z)ω(z)dz, (5.56)

where ω(z) = pn|n (xn) p (un+1). Since pn|n (xn) and p (un+1) are Gaussian, we see that ω(z) is
Gaussian too.

Similarly, by setting z = [yn+1,xn+1] and ω(z) = hn+1(yn+1,xn+1)pn+1|n (xn+1), the integrals
in (5.55) are of the form (5.56) too. Thus, thanks to the GF, the �ltering problem is reduced to
evaluating integrals of the form (5.56) with Gaussian probability density function ω(z). In general,
one cannot compute exactly (5.56). Approximate computing methodologies for such integrals is
known as the Gaussian weighted integration methods and can be dealt, for example, with the
Gauss-Hermite quadrature, as detailed in Appendix B. Other approaches include the Monte-Carlo
integration [Kotecha and Djuric, 2003], quasi-Monte Carlo integration [Moroko� and Ca�isch,
1995], spherical-radial integration rules [Monahan and Genz, 1997], unscented transform [Zoeter
et al., 2004], sparse grids [Jia et al., 2012] and many others [Miller III and Rice, 1983, Lu and
Darmofal, 2004, Gorynin et al., 2016b].
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One can evaluate integrals in (5.54) exactly when function fn+1 : (xn,un)→ xn+1 is linear in
un. Similarly, integrals in (5.55) can be evaluated exactly when hn : (yn,xn)→ R+ is the Gaussian
probability density of yn with constant variance and mean linear in xn. When both conditions
are met, system (5.50) is known as linear Gaussian system, in which the Kalman �lter allows
computing the optimal �ltering solution.

The Gaussian �lters, which include e.g. the unscented and Gauss-Hermite Kalman �lters, have
demonstrated their suitability for a wide scope of application where the observation noise (5.50b)
is additive and Gaussian.

The main drawbacks of the GF come from its fundamental approximation (5.51). Let us note
the following:

� If the observation noise is heavy-tailed or a�ected by large outliers, then approximation (5.51)
may cause a divergence of the �lter, since it lacks the high-order moments of Yn given Xn

- see, e.g., [Roth et al., 2013].

� The GF would always yield Pxy
n|n−1

(
Pyy

n|n−1

)−1

= 0 if the observation noise has an in�nite

variance, unless the state posterior variance is in�nite too cf. (5.53). In this case, the GF
never updates the measurement and therefore fails to extract any information from the
observed data.

� If the observation noise is multiplicative (for example, if hn(yn,xn) is symmetric in yn and
only the variance of Yn given Xn depends on Xn, as it is the case in the stochastic volatility
models), then the GF always obtains Pxy

n+1|n = 0 cf. (5.55b). In this case, the GF does not
extract any information from the observed data.

The recent CGF [Singer, 2015] has been designed to be able to take a speci�c form of the
observation equation into account and overcome the outlined drawbacks of GF. The idea was to
assume (5.52), which is a consequence of (5.51), without assuming (5.51) itself. In this sense, the
CGF requires a strictly weaker assumption than the original GF. In the CGF, the �ltering and
one-step predicting densities are assumed Gaussian:

pn|n (xn) = p (xn |y1:n ) = N
(
xn; x̂n|n, Γ̂n|n

)
; (5.57a)

pn+1|n (xn+1) = p (xn+1 |y1:n ) = N
(
xn+1; x̂n+1|n, Γ̂n+1|n

)
. (5.57b)

It means that the CGF proceeds as if these densities were Gaussian, even if they are actually
not.

The classic Bayesian equations allow deriving the CGF solution. The CGF computes x̂n+1|n+1

and Γ̂n+1|n+1 from x̂n|n, Γ̂n|n and yn+1:
� Time update

x̂n+1|n =

∫
fn+1(xn,un+1)pn|n (xn) p (un+1) dxndun+1; (5.58a)

Γ̂n+1|n =

∫
fn+1(xn,un+1)fn+1(xn,un+1)>pn|n (xn) p (un+1) dxndun+1 − x̂n+1|nx̂>n+1|n.

(5.58b)

� Measurement update

cn+1 =

∫
hn+1(yn+1; xn+1)pn+1|n (xn+1) dxn+1; (5.59a)

x̂n+1|n+1 =

∫
xn+1

hn+1(yn+1,xn+1)pn+1|n (xn+1)

cn+1
dxn+1; (5.59b)

Γ̂n+1|n+1 =

∫
xn+1x

>
n+1

hn+1(yn+1,xn+1)pn+1|n (xn+1)

cn+1
dxn+1 − x̂n+1|n+1x̂

>
n+1|n+1. (5.59c)

In general, one cannot compute integrals in (5.58) exactly unless fn+1 : (xn,un)→ xn+1

is linear in un. Similarly, one cannot compute integrals in (5.59) exactly unless the function
hn : (yn,xn)→ R+ is the Gaussian probability density of yn with constant variance and mean
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linear in xn. The CGHF implements the Gauss-Hermite quadrature technique speci�ed in Ap-
pendix B to compute these integrals in the case where the exact solution is unavailable.

To summarize, the PF (cf. Section 1.4.1) is an asymptotically optimal (inM) method of �lter-
ing which makes no assumption on the form of the conditional density. However, the computational
load of PF may be too heavy to ensure an acceptable variance of the state estimate. The GF and
CGF are based on nested simplifying assumptions in order to reduce the problem of �ltering to
the problem of computing Gaussian-weighted integrals. The GF makes a strong assumption (5.51)
on the form of the joint state-observation predictive density, which may be inappropriate for sev-
eral important applications. The CGF makes a strictly weaker assumption which concerns only
the predictive state density. Theoretical and empirical evidence presented in [Singer, 2015] demon-
strates that CGF overcomes the outlined drawbacks of the GF. All the three methods approximate
p (xn |y1:n ) with the same complexity O (Mn), where M is the number of simulated particles for
the PF or the total number of integration nodes used by the GF or CGF cf. Appendix B.

5.2.2 Filtering in switching non-linear non-Gaussian systems under the

Gaussian conditional density assumption

Here we present the main contribution of this section, which consists on extending the CGF to the
switching systems. These systems may be seen as hidden Markov models of type (X1:N ,R1:N ),Y1:N ),
where (X1:N ,R1:N ) is Markovian and hidden, while Y1:N is observed. The state variables in switch-
ing systems are of two types: continuous-valued ones, denoted by X1:N , and discrete-valued ones,
denoted by R1:N . It is also assumed that R1:N is a Markov chain, while X1:N is Markovian given
R1:N .

We consider the general form of switching systems:

Xn+1 = fn+1(Xn,Rn,Rn+1,Un+1) for n = 1 : N − 1; (5.60a)

p (yn |xn, rn ) ∝ hn(yn,xn, rn) for n = 1 : N, (5.60b)

where R1:N is a Markov chain in Ω = {1 : K}, K ∈ N∗. We suppose that the dependency graph
of this model is that of Fig. 5.11.

Let us announce the assumptions involved and derive the corresponding integral equations.
Let us assume K Gaussian �ltering densities and K2 Gaussian predicting densities:

∀rn ∈ {1 : K}, pn|n (xn|rn) = p (xn |rn,y1:n ) = N
(
xn; x̂n|n(rn), Γ̂n|n(rn)

)
; (5.61a)

∀rn, rn+1 ∈ {1 : K}, pn+1|n (xn+1|rn, rn+1) = p (xn+1 |rn, rn+1,y1:n ) =

N
(
xn+1; x̂n+1|n(rn, rn+1), Γ̂n+1|n(rn, rn+1)

)
. (5.61b)

There are K2 Gaussian predicting densities since the one-step ahead prediction is based on both
current rn and future rn+1 possible values of the discrete state.

The Switching Conditional Gaussian Filter (SCGF) computes, for each rn+1 in {1 : K},
x̂n+1|n+1 (rn+1), Γ̂n+1|n+1 (rn+1) and p (rn+1 |y1:n+1 ) by using x̂n|n(rn), Γ̂n|n(rn), p (rn |y1:n ),
yn+1 as follows.

For each rn and rn+1 in Ω,

� Time update:

x̂n+1|n(rn, rn+1) =

∫
fn+1(xn, rn, rn+1,un+1)pn|n (xn|rn) p (un+1) dxndun+1; (5.62a)

Γ̂n+1|n(rn, rn+1) =∫
fn+1(xn, rn, rn+1,un+1)fn+1(xn, rn, rn+1,un+1)>pn|n (xn|rn) p (un+1) dxndun+1−

x̂n+1|n(rn, rn+1)x̂n+1|n(rn, rn+1)>. (5.62b)

The measurement update consists of multiple steps:
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a) for each rn and rn+1 in Ω:

cn+1(rn, rn+1) =

∫
hn+1(yn+1,xn+1, rn+1)pn+1|n (xn+1|rn, rn+1) dxn+1; (5.63a)

x̂n+1|n+1(rn, rn+1) =

∫
xn+1

hn+1(yn+1,xn+1, rn+1)pn+1|n (xn+1|rn, rn+1)

cn+1(rn, rn+1)
dxn+1; (5.63b)

Γ̂n+1|n(rn, rn+1) =

∫
xn+1x

>
n+1

hn+1(yn+1,xn+1, rn+1)pn+1|n (xn+1|rn, rn+1)

cn+1(rn, rn+1)
dxn+1− (5.63c)

x̂n+1|n+1(rn, rn+1)x̂n+1|n+1(rn, rn+1)>. (5.63d)

b) update the posterior distribution of the discrete state:

p (rn, rn+1 |y1:n+1 ) ∝ p (rn |y1:n ) p (rn+1 |rn ) cn+1(rn, rn+1); (5.64a)

p (rn+1 |y1:n+1 ) =
K∑

rn=1

p (rn, rn+1 |y1:n+1 ) . (5.64b)

c) derive, for each rn+1 in {1 : K}, x̂n+1|n+1 (rn+1) and Γ̂n+1|n+1 (rn+1):

x̂n+1|n+1(rn+1) =
K∑

rn=1

p (rn |rn+1,y1:n+1 ) x̂n+1|n+1(rn, rn+1); (5.65a)

Γ̂n+1|n+1(rn, rn+1) =

K∑

rn=1

(
x̂n+1|n+1(rn, rn+1)x̂n+1|n+1(rn, rn+1)> + Γ̂n+1|n(rn, rn+1)

)
p (rn |rn+1,y1:n+1 )−

x̂n+1|n+1(rn+1)x̂n+1|n+1(rn+1)>; (5.65b)

p (rn |rn+1,y1:n+1 ) =
p (rn, rn+1 |y1:n+1 )

p (rn+1 |y1:n+1 )
. (5.65c)

d) the state estimates at the current iteration are:

x̂n+1|n+1 =

K∑

rn+1=1

x̂n+1|n+1(rn+1)p (rn+1 |y1:n+1 ) ; (5.66a)

r̂n+1|n+1 = arg max
rn+1∈{1:K}

p (rn+1 |y1:n+1 ) . (5.66b)

Equation (5.64a) and the idea to use the Gaussian quadrature to evaluate cn+1(rn, rn+1) is the
key part of this work. It allows updating the posterior distribution of the discrete states. In order
to justify the equation, let us decompose p (rn, rn+1,yn+1 |y1:n ) as follows:

p (rn, rn+1,yn+1 |y1:n ) = p (yn+1 |rn, rn+1,y1:n ) p (rn+1 |rn,y1:n ) p (rn |y1:n ) ,

where

p (rn+1 |rn,y1:n ) = p (rn+1 |rn ) .

cf. Fig. 5.11. It also follows from Fig. 5.11 that

p (yn+1 |xn+1, rn, rn+1,y1:n ) = p (yn+1 |xn+1, rn+1 ) ,

thus

p (yn+1 |rn, rn+1,y1:n ) =

∫
p (yn+1 |xn+1, rn, rn+1,y1:n ) pn+1|n (xn+1|rn, rn+1) dxn+1

∝
∫
hn+1(yn+1,xn+1, rn+1)pn+1|n (xn+1|rn, rn+1) dxn+1 = cn+1(rn, rn+1).

Therefore,

p (rn, rn+1,yn+1 |y1:n ) ∝ cn+1(rn, rn+1)p (rn+1 |rn ) p (rn |y1:n ) ,
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and p (rn, rn+1 |y1:n+1 ) ∝ p (rn, rn+1,yn+1 |y1:n ) which proves (5.64a).
Equation (5.65) is a classic moment-matching combination of the previous per-model estimates

given new observation.
Finally, we de�ne the SCGHF as an approximation of the SCGF which uses the Gaussian

quadrature to evaluate (5.62) and (5.63) cf. Appendix B. Our algorithm approximates p (rn,xn |y1:n )
with complexity O

(
K2Mn

)
, where M is the total number of integration nodes.

Y1 

R1 

Y2 Y3 Y4 

X4 

R2 R3 R4 

X1 X3 X2 

Figure 5.11: The dependency graph of Markov-switching system (5.60). Here, (Rn)n∈N∗ ,
(Rn,Xn)n∈N∗ and (Rn,Xn,Yn)n∈N∗ are Markovian.

5.2.3 Applications to switching volatility estimation

Here we compare the performance of the proposed method with the classic particle �lter and
the switching Kalman �lter [Wu et al., 2004]. Let us consider the Markov Switching Stochastic
Volatility (MSSV) model [Carvalho and Lopes, 2007]:

Xn+1 = αRn+1
+ φXn + σUn+1; X0 = x0; (5.67a)

Yn = exp(Xn\2)Vn, (5.67b)

where for each n ∈ N, Xn ∈ R, Yn ∈ R, {Rn}n≥1 is a stationary Markov chain in {1 : K},
{Un}n≥1, {Vn}n≥1 are i.i.d standard Gaussian variables and (α1, . . . , αK , φ, σ, x0) are �xed pa-
rameters. The initial state distribution p(r1) is then the eigenvector of the corresponding Markov
transition matrix. When K = 2, the Markov chain is de�ned by p1|1 = p (rn+1 = 1 |rn = 1) and
p2|2 = p (rn+1 = 2 |rn = 2). Realistic parameter values for K = 2 which we use in the experiments
can be found e.g. in [Carvalho and Lopes, 2007].

Let Zn = log Y2
n, then

Zn = Xn + log V2
n. (5.68)

The model of (Xn,Zn) is switching linear and non-Gaussian. Thus, one can estimate the hidden
variables by the switching Kalman �lter. Indeed, it means approximating the distribution of log V2

n

by N
(
E[log V2

n],Var[log V2
n]
)
.

As an experiment, we perform the following experiment 100 times per each test. We begin
by sampling {xn, yn}n∈N∗,n≤N from (5.67) with the parameters as in Table 5.3 with N = 1000.
Next, we recover the state estimates from {yn}1≤n≤N by the SKF, the proposed method - SCGHF
and the PF. The PF algorithm we use is given in Section 1.4.1. We use grids with a total of
9 integration nodes in SCGHF and 2000 particles in the particle �lter. Finally, we compute the
Relative Mean Squared Error (RMSE) and the MME de�ned by

RMSE =
1

N

N∑

n=1

(
x̂n|n(y1:n)− xn

)2

Var(Xn)
(5.69)

and

MME =
1

N

N∑

n=1

(
r̂n|n(y1:n) 6= rn

)
. (5.70)

We report in Table 5.4 the average RMSE over these experiments, and Table 5.5 presents the
corresponding standard deviations. In Tables 5.4 and 5.5, PF (Mmin) refers to the PF algorithm
which uses the minimal number of particle to obtain a quasi-optimal solution. We determined
Mmin by hand for each experiment, and we found Mmin = 100 for Test 1, Mmin = 120 for Test
2, Mmin = 200 for Test 3 and Mmin = 50 for Test 4, cf. Fig. 5.12. The related processing time
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Test 1 Test 2 Test 3 Test 4
α1 -2.500 -1.500 -0.500 -2.500
α2 -1.000 -0.600 -0.200 -1.000
φ 0.500 0.500 0.500 0.500
σ 0.100 0.100 0.100 0.100

p1|1 0.990 0.990 0.990 0.500
p2|2 0.985 0.985 0.985 0.500
x0 -3.500 -2.100 -0.700 -3.500

Table 5.3: MSSV parameters per each test.

values are given in Table 5.6. However, these time values are supplied on an indicative basis only,
since the processing time depends on the PC system con�guration, processor type and settings,
PF implementation and compilation details, software speci�cations and so on.

The simulation study indicates that the accuracy of our method is improved compared to
the SKF and is nearly optimal. Note that (5.68) is linear, so the switching versions of EKF,
UKF and Quadrature Kalman Filter (QKF) would produce the same result as the classic SKF in
this example. That is due to the same joint state-space Gaussian approximation (5.51) involved
in these approaches. Fig. 5.13 suggests that the PF should use at least 500 particles to obtain
satisfactory results. Regarding the computational load, our method used only an equivalent of 40
particles and thus realized a substantial speedup. Besides, the performance of the SCGHF was
nearly optimal with only 3 integration nodes per dimension. A more extensive study, has shown
that the autoregressive parameters and the Markov chain transition probabilities in (5.67) did not
a�ect the performance of the SCGHF compared to the PF. As a general conclusion of this study,
we observed that there is no notable di�erence between the asymptotic solution of the PF and the
output of the SCGHF.

An example of recovering a hidden trajectory by the SCGHF and the SKF is presented in
Fig. 5.14. Fig. 5.15 is related to Fig. 5.14 and presents a comparative density plot with pro�les of
p (xn |y1:n ) estimated by the SKF, SCGHF and PF at n = 580. Indeed, the PF does not provide
any analytic expression of the underlying distribution approximating p (xn |y1:n ), as opposed to
the SKF and SCGHF. Thus, we used a kernel smoothing technique to estimate the approximating
distribution of the PF from the locations of the particles.

SKF SCGHF PF PF (Mmin)
RMSE MME RMSE MME RMSE MME RMSE MME

Test 1 0.1565 0.0630 0.0909 0.0402 0.0917 0.0405 0.1046 0.0437
Test 2 0.3166 0.1118 0.1987 0.0729 0.2008 0.0735 0.2165 0.0775
Test 3 0.7876 0.2808 0.6411 0.2137 0.6481 0.2160 0.6801 0.2274
Test 4 0.8217 0.3624 0.7394 0.3326 0.7408 0.3334 0.7712 0.3479

Table 5.4: The RMSE and MME statistics for the SKF, SCGHF and PF with di�erent
MSSV parameters from Table 5.3. PF (Mmin) refers to the PF algorithm which uses the
minimal number of particle to obtain a quasi-optimal solution. We use Mmin = 100 for
Test 1, Mmin = 120 for Test 2, Mmin = 200 for Test 3 and Mmin = 50 for Test 4.

SKF SCGHF PF
std[RMSE ] std[MME] std[RMSE] std[MME] std[RMSE] std[MME]

Test 1 0.0206 0.0085 0.0130 0.0060 0.0132 0.0060
Test 2 0.0402 0.0154 0.0243 0.0095 0.0247 0.0096
Test 3 0.0518 0.0296 0.0488 0.0247 0.0510 0.0254
Test 4 0.0148 0.0064 0.0138 0.0063 0.0140 0.0065

Table 5.5: Standard deviations of the RMSE and MME statistics estimated for the SKF,
SCGHF and PF with di�erent MSSV parameters from Table 5.3.
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Test 1 Test 2 Test 3 Test 4
SKF 0.05 0.05 0.05 0.05

SCGHF 0.08 0.08 0.08 0.08
PF 1.12 1.12 1.12 1.12

PF (Mmin) 0.35 0.37 0.42 0.32

Table 5.6: Processing times (in seconds) for SKF, SCGHF and PF required to process a
trajectory of length N = 1000 in the framework of the MSSV model, per each test. PF
(Mmin) refers to the PF algorithm which uses the minimal number of particle to obtain a
quasi-optimal solution. We useMmin = 100 for Test 1, Mmin = 120 for Test 2, Mmin = 200
for Test 3 and Mmin = 50 for Test 4.
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Figure 5.12: The RMSE of the PF in the MSSV model compared in function of number
of particles M , and minimum numbers of particles that would result in a nearly optimal
solution which are Mmin = 100 for Test 1, Mmin = 120 for Test 2, Mmin = 200 for Test 3
and Mmin = 50 for Test 4.

5.3 Conclusion

In the �rst section, we proposed an original algorithm for smoothing in stationary SLDSs, and,
more generally, in CGPMSMs. The algorithm is based on two �lters which run independently in
the direct and reverse order. The outputs of these �lters are combined by using the dynamics
of the system. The algorithm is fast and appears as an interesting alternative to the particle
smoother methods. Comparison with the results produced by the particle smoother show that the
approximation error of our method is negligibly small.

In the second section, we introduced and tested a novel general deterministic method of �ltering
in switching systems. A simulation study con�rmed that the new algorithm has an improved
accuracy and robustness compared to the classic approach. Mean squared error measures of the
proposed method are practically optimal, while its computational load is low when compared to
the particle �lter. The algorithm is applicable to a large class of switching models which involve
regime changes, strong non-linearity and non-Gaussian distributions.
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Figure 5.13: The RMSE of the PF in the MSSV model compared to that of the SKF and
SCGHF in function of the number of particles. MSSV parameters are those from Test 3
in Table 5.3.
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Figure 5.14: Example of a state estimation in the MSSV model with the SCGHF and
SKF. MSSV parameters are those from Test 3 in Table 5.3. The ground truth trajectory
switches at n = 575.
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Figure 5.15: Comparative plot with pro�les of p(xn|y1:n) for n = 580 estimated by the
SKF, SCGHF and PF, related to the trajectory from Fig. 5.14.
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Chapter 6

Conclusion

This report is concerned with the Partially Observable Markov Process (POMP) framework which
is widely used in a range of important applications. The sequential Monte-Carlo methods are
common approaches of Bayesian state estimation in POMPs. They are asymptotically optimal, but
may need a considerable computational cost. The report is devoted to the alternative methods of
state estimation in POMPs, developed by the author in order to allow an accurate state estimation
for a lower computational cost.

Chapter 2 explores the Conditionally Gaussian Observed Markov Switching Model (CGOMSM).
This model allows a practical implementation of the corresponding exact �lter and smoother. The
chapter also details the principle of Learned Conditionally Gaussian Observed Markov Switching
Model Filter (LCGOMSMF) and Learned Conditionally Gaussian Observed Markov Switching
Model Smoother (LCGOMSMS). The Expectation-Maximization (EM) algorithm, derived by the
author for the CGOMSM framework, allows approximating an arbitrary stationary Markovian
process by a CGOMSM, which is used in both LCGOMSMF and LCGOMSMS.

Chapter 3 introduces a general-purpose computational technique for Bayesian state estimation
in POMPs, called Markovian Grid-Based State Estimator (MGSE). It is based on Markov-like
properties of the grid weight function. The author provides a construction allowing obtaining a
convergent solution.

Chapter 4 contains an extensive comparison among Maximum Posterior Mode (MPM) estima-
tors based on the classic Hidden Markov Model (HMM) and its extensions which are the Pairwise
Markov Model (PMM) and the Triplet Markov Model (TMM). PMM and TMM frameworks al-
lowed to achieve substantial improvements of the estimation accuracy. Such improvements were
particularly visible when the observation distribution was heavily autocorrelated and/or if the hid-
den chain was far from being Markovian. The author also contributed in de�ning an PMM-based
modeling of assets' log-returns and backtesting it.

Chapter 5 introduces a novel smoothing technique for the Switching Linear Dynamical System
(SLDS) and, more generally, for the Conditionally Gaussian Pairwise Markov Switching Model
(CGPMSM). This technique provided interesting results on a real-world data example. The
chapter also introduces an extension of the Conditional Gaussian Filter (CGF) to the hybrid-state
POMPs proposed by the author. The main reason for considering such an extension is that the
classic Gaussian Filter (GF) approach has several important drawbacks.

The accuracy of the proposed methods has been compared with that of the sequential Monte-
Carlo methods and has been shown to be competitive. The pertinence and suitability of the research
for real-world applications has been con�rmed by an extensive experiment-driven study. We also
notice that the case of a high-dimensional state space should not be a problem for the methods
proposed, while this case may be problematic for a range of sequential Monte-Carlo methods.
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Appendix A

Matrix characterization of

conditional independence in

Gaussian vectors
Here we recall a classic result which provides conditional distributions in a Gaussian vector.

We derive from it a matrix formula characterizing conditional independence of Gaussian variables
which make part of a Gaussian vector.

Proposition 19. Let a, b ∈ N∗, X ∼N(µ,Σ) be a Gaussian vector in Ra+b partitioned as follows

X =

[
X1

X2

]
, (A.1)

where X1 ∈ Ra, X2 ∈ Rb, and µ and Σ accordingly partitioned as follows:

µ =

[
µ1

µ2

]
, Σ =

[
Γ 1 Σ12

Σ>12 Γ 2

]
, (A.2)

where µ1 ∈ Ra, µ2 ∈ Rb, Γ 1 ∈ Ra×a, Γ 2 ∈ Rb×b and Σ12 ∈ Ra×b. Then the distribution of X1

given X2 = x2 is Gaussian with mean vector µ1|2 and covariance Γ 1|2 de�ned as follows:

µ1|2 = Σ12Γ−1
2 (x2 − µ2), Γ 1|2 = Γ 1 −Σ12Γ−1

2 Σ>12. (A.3)

The following lemma characterizes the conditional independence of Gaussian variables within
a Gaussian vector.

Lemma 1. Let a, b, c ∈ N∗, X ∼N(µ,Σ) be a Gaussian vector in Ra+b+c partitioned as follows

X =




X1

X2

X3


 , (A.4)

where X1 ∈ Ra, X2 ∈ Rb, X3 ∈ Rc, and µ and Σ accordingly partitioned as follows:

µ =



µ1

µ2

µ3


 , Σ =




Γ 1 Σ12 Σ13

Σ>12 Γ 2 Σ23

Σ>13 Σ>23 Γ 3


 , (A.5)

where µ1 ∈ Ra, µ2 ∈ Rb, µ3 ∈ Rc, Γ 1 ∈ Ra×a, Γ 2 ∈ Rb×b, Γ 3 ∈ Rc×c, Σ12 ∈ Ra×b, Σ13 ∈ Ra×c

and Σ23 ∈ Rb×c. Then X1 and X3 are independent given X2 if and only if

Σ13 = Σ>12Γ−1
2 Σ23. (A.6)

Proof. The distribution p (x1,x3 |x2 ) is Gaussian and cf. Proposition 19, and its covariance matrix
is
[

Γ 1 Σ13

Σ>13 Γ 3

]
−
[
Σ12

Σ>23

]
Γ−1

2

[
Σ>12 Σ23

]
=

[
Γ 1 −Σ12Γ−1

2 Σ>12 Σ13 −Σ12Γ−1
2 Σ23

Σ>13 −Σ>23Γ−1
2 Σ>12 Γ 3 −Σ>23Γ−1

2 Σ23

]
(A.7)

X1 and X3 are independent given X2 if and only if the matrix in the Right Hand Side Term
(RHS) of the above equation is block-diagonal, i.e. Σ13 −Σ>12Γ−1

2 Σ23 = 0.
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Appendix B

Constructing multivariate

Gauss-Hermite quadrature
Here we present the construction of one-dimensional and multidimensional Gauss-Hermite

quadrature rules. The Gauss-Hermite quadrature which is an algorithm of approximation of the
Gaussian-weighted integral, i.e. an integral of the form

∫
g(z)ω(z)dz, (B.1)

with Gaussian probability density function ω(z).
Let us �rst consider the case of one-dimensional Gaussian-weighted integral, where ω(z) is the

standard normal distribution:

ω(z) =
1√
2π

exp

(
−z2

2

)
.

An N -point Gauss-Hermite quadrature rule is an approximation to (B.1) of the form

I ≈
N∑

q=1

πqg(ξq), (B.2)

where points (ξq)1≤q≤N (integration nodes) and weights (πq)1≤q≤N are such that (B.2) is exact if
g is a polynomial up to the (2N − 1)th order.

In order to compute the parameters of the N -point Gauss-Hermite quadrature, one uses the
�rst (2N − 1) moments of ω(z):

∀i ∈ N, i ≤ N − 1, ni =

∫
ziω(z)dz =

{
(i− 1)!! for even i

0 for odd i
.

where i!! denotes the double factorial, i.e. the product of all numbers from i to 1 that have the
same parity as i.

Next, one de�nes the following polynomial recursion {Pi}Ni=1:

Pi+1(z) = (z − δi+1)Pi(z)− γ2
i+1Pi−1(z) for i ≥ 0,

where ∀z, P−1(z) = 0, P0(z) = 1, γ1 = 0 and

δi+1 =
E[zP 2

i (z)]

E[P 2
i (z)]

; γ2
i+1 =

E[P 2
i (z)]

E[P 2
i−1(z)]

.

The quadrature nodes are the roots of PN and the quadrature weights are the solution of the linear
system

N∑

q=1

πqPi(ξq) =

{
1 for i = 0
0 for i ∈ {1, . . . , N − 1} . (B.3)

Now we consider the case of d-dimensional Gaussian-weighted integral:

J =

∫
g(z)

1

(2π)d/2
exp

(
−z>z

2

)
dz, (B.4)
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where function g is weighted by standard normal distribution in Rd. Since this distribution is the
product of one-dimensional standard normal distributions, we can approximate (B.4) by succes-
sively applying (B.2) and obtain

J ≈
N∑

q1=1

N∑

q2=1

. . .
N∑

qd=1

πq1πq2 . . . πqdg([ξ1, ξ2, . . . , ξd]>). (B.5)

Here, the total number of grid points is Nd.
Finally, consider the general case of d-dimensional Gaussian-weighted integral:

K =

∫
g(z)

1

(2π)d/2det(Σ)1/2
exp

(
− (z− µ)>Σ−1(z− µ)

2

)
dz. (B.6)

where function g is weighted by a normal distribution in Rd with mean µ and variance Σ .
The technique of stochastic decoupling de�nes a linear transformation allowing to write (B.6)

in the form (B.4). Let us denote by C a Cholesky decomposition of Σ , i.e. a matrix that veri�es

CC> = Σ . (B.7)

Such a matrix exists and is invertible provided that Σ is positive de�nite. Consider the following
linear transformation:

v = C−1(z− µ), (B.8)

thus
z = µ+Cv. (B.9)

The Jacobian of (B.9) is ∇v(z) = C and we have from (B.7) det(Σ)1/2 = detC = det∇v(z), so
we obtain by substituting (B.9) into (B.6):

K =

∫
g(µ+Cv)

1

(2π)d/2
exp

(
−v>v

2

)
dv. (B.10)

Thus, we obtain the Gauss-Hermite quadrature rule for (B.6) by applying (B.5) to (B.10):

K ≈
N∑

q1=1

N∑

q2=1

. . .

N∑

qd=1

πq1πq2 . . . πqdg(µ+C[ξ1, ξ2, . . . , ξd]>). (B.11)

As a result, we see that once the integration nodes (ξq)1≤q≤N and weights (πq)1≤q≤N are known,
one can approximate (B.6) by (B.11). The complexity of computation of a Cholesky decomposition
of Σ is O

(
d3
)
, while the complexity of evaluating of (B.11) is O

(
Nd
)
.
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Appendix C

Proof of the EM algorithm for the

CGOMSM

This Annex is concerned with the derivation of the EM Algorithm presented in Section 2.3.
We begin with a recall of on the weighted least squares regression. Next, we use these results

in the derivation of the EM algorithm for the CGOMSM.

C.1 Weighted least squares regression

Let N ∈ N∗, d ∈ N, d′ ∈ N, x1:N , y1:N , π1:N sequences taking values in Rd, Rd′ and R+ re-
spectively. The weighted least squares regression consists in �nding parameters (A,B,R) in(
R

d′×d,Rd′ ,Sd′

++

)
which maximize

N∑

n=1

πnlogN(yn;Axn + B, R).

Proposition 20 establishes a closed-form expression of A, B and R in function of x1:N , y1:N

and π1:N .

Lemma 2. De�ne function Ψd : Sd
++ → R by:

Ψd (M) = log |M | − tr(M).

Then,
argmax M∈Sd

++
[Ψd (M)] = Id, (C.1)

where Id is the identity matrix in Rd×d.

Proof. In the case where d = 1, function Ψ1 is de�ned by

∀x ∈ R∗+,Ψ1(x) = log (x) −x

and attains its maximum at x = 1. By induction, suppose that we have proven (C.1) for some
d ∈ N∗, let us prove it for d+ 1. LetM be a matrix in Sd+1

++ . It can be represented in a block-wise
form as follows:

M =

[
M11 M12

M>
12 M22

]
,

where M11 ∈ Sd
++, M22∈ R∗+, M12 ∈ Rd×1. De�ne S in Sd+1

++ by:

S =

[
S11 S12

S>12 S22

]
= argmax M11,M12,M22,M∈Sd+1

++
[Ψd+1 (M)] .

The block determinant formula for the matrix M yields:

|M | = |M11|
∣∣∣M22 −M12M

−1
11 M

>
12

∣∣∣ .
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Then,

Ψd+1 (M) = log |M11| − tr (M11) + log
∣∣∣M22 −M12M

−1
11 M

>
12

∣∣∣− tr (M22) .

Since M11 ∈ Sd
++ , then M−1

11 ∈ Sd
++ and

M22 ≥M22 −M12M
−1
11 M

>
12,

with equality if and only if M12 = 0. Thus, S12 = 0. Next, we have

argmax M11,M12=0,M22,M∈Sq+1
++

[Ψd+1 (M)] =

argmax M11∈Sd
++,M22∈R∗+ [(log |M11| − tr (M11)) + (log |M22| − tr(M22))] .

Since we have:

max M11∈Sd
++,M22∈R∗+ [(log |M11| − tr (M11)) + (log |M22| − tr (M22))] =

max M11∈Sd
++

[log |M11| − tr (M11)] + max M22∈R∗+ [log |M22| − tr (M22)] =

max M11∈Sd
++

[Ψd (M11)] + max M22∈R∗+ [Ψ1 (M22)] ,

then, by induction,
S11= argmax M11∈Sd

++
[Ψd (M11)] = Id

and
S22 = argmax M22∈R∗+ [Ψ1 (M22)] = 1.

Therefore, S=Id+1 what proves the induction hypothesis.

Proposition 20. Suppose that W =
∑N

n=1 πn > 0.

f (A,B,R) =
N∑

n=1

πnlogN (yn;Axn + B, R) .

Then the maximum of f with respect to A, B and R is given by:

[
A0 B0

]
=
[ ∑N

n=1 πnynx
>
n

∑N
n=1 πnyn

] [ ∑N
n=1 πnxnx

>
n

∑N
n=1 πnxn∑N

n=1 πnx
>
n W

]−1

;

R0 =
1

W

(
N∑

n=1

πnyny
>
n −A0

N∑

n=1

πnxny
>
n −B0

N∑

n=1

πny
>
n

)
.

Proof. Observe that

f (A,B,R) =

−
N∑

n=1

πn
d′

2
(log2π)− 1

2

N∑

n=1

πnlog |R| − 1

2

N∑

n=1

πn(yn −Axn −B)
>
R−1 (yn −Axn −B),

and

N∑

n=1

πn(yn −Axn −B)
>
R−1 (yn −Axn −B) =

N∑

n=1

πntr
[
(yn −Axn −B)

>
R−1 (yn −Axn −B)

]
=

N∑

n=1

πntr
[
R−1 (yn −Axn −B) (yn −Axn −B)

>
]
.
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Let us de�ne, Ã ∈ Rd′×(d+1) by Ã =
[
A B

]
. Let x̃n =

[
xn

1

]
for each n, then

N∑

n=1

πn(yn −Axn −B)
>
R−1 (yn −Axn −B) =

N∑

n=1

πntr

[
R−1

(
yn − Ã x̃n

)(
yn − Ãx̃n

)>]
.

and

f (A,B,R) = −W

2

(
d′log2π + log |R|+ 1

W

N∑

n=1

πntr

[
R−1

(
yn − Ã x̃n

)(
yn − Ã x̃n

)>]
)
.

Recall that we can solve the optimization problem

f (A,B,R)→ max

by considering the double optimization:

max
A∈Rd′×d,B∈Rd′ ,R∈Sd′

++
f (A,B,R) = max

R∈Sd′
++

[
max

Ã∈Rd′×(d+1)fR

(
Ã
)]
,

where fR
(
Ã
)
∈ F

(
R

d′×(d+1) → R
)
is de�ned by fR

(
Ã
)

= f (A,B,R).

Let us �rst prove that fR is concave. By the a�ne map invariance property of the concave
functions, it is equivalent to proving that the real function h

h (t) = fR(U + tV )

is concave in t for any U, V in Rd′×(d+1).
We have

h (t) = −W

2
(d′log2π + log |R|)− 1

2

N∑

n=1

πntr
[
R−1(yny

>
n − 2ynx̃

>
nU
> +Ux̃nx̃

>
nU
>)
]

− t
N∑

n=1

πntr
[
R−1(ynx̃

>
nV

> −Ux̃nx̃
>
nV

>)
]
− t2

2

N∑

n=1

πntr
[
R−1V x̃nx̃

>
nV

>
]
.

We see that h is a second order polynomial and thus h is concave if and only if

N∑

n=1

πntr
[
R−1V x̃nx̃

>
nV

>
]
≥ 0.

Observe that we have:

N∑

n=1

πntr
[
R−1V x̃nx̃

>
nV

>
]

=

N∑

n=1

πntr
[
x̃nV

>R−1V x̃n

]
=

N∑

n=1

πn(V x̃n)
>
R−1V x̃n.

Since R−1 ∈ S
q
++, for any n, (V x̃n)

>
R−1V x̃n ≥ 0 and πn ≥ 0 so

N∑

n=1

πn(V x̃n)
>
R−1V x̃n ≥ 0,

therefore fR is concave and we can �nd its global maximum by solving ∂fR
∂Ã

= 0.

The di�erentiation of fR with respect to Ã yields:

∂fR

∂Ã
= R−1

N∑

n=1

πn

(
yn − Ã x̃n

)
x̃>n .

Since R ∈ S
q
++,

∂fR
∂Ã

(
Ã0

)
= 0 is equivalent to

N∑

n=1

πn

(
yn − Ã0 x̃n

)
x̃>n = 0,
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which, in turn, is equivalent to

N∑

n=1

πnynx̃
>
n = Ã0

N∑

n=1

πnx̃nx̃
>
n .

Moreover,

N∑

n=1

πnynx̃
>
n =

N∑

n=1

πnyn

[
x̃>n 1

]
=
[ ∑N

n=1 πnynx̃
>
n

∑N
n=1 πnyn

]

and

Ã0

N∑

n=1

πn x̃nx̃
>
n =Ã0

[ ∑N
n=1 πnxnx̃

>
n

∑N
n=1 πnxn∑N

n=1 πnx̃
>
n W

]
.

Therefore,

Ã0 =
[
A0 B0

]
=
[ ∑N

n=1 πnynx̃
>
n

∑N
n=1 πnyn

] [ ∑N
n=1 πnxnx̃

>
n

∑N
n=1 πnxn∑N

n=1 πnx̃
>
n W

]−1

,

and Ã0 is a global maximum of fR.

Let us de�ne function g ∈ F
(
Sd

++ → R
)
by:

g (R) = max
Ã∈Rd′×(d+1)fR

(
Ã
)
.

We have

g (R) = f (A0,B0,R) = −W

2

(
d′log2π + log |R|+ 1

W

N∑

n=1

πntr

[
R−1

(
yn − Ã0 x̃n

)(
yn − Ã0 x̃n

)>]
)
.

Next,

1

W

N∑

n=1

πntr

[
R−1

(
yn − Ã0 x̃n

)(
yn − Ã0 x̃n

)>]
= tr

[
R−1 1

W

N∑

n=1

πn

(
yn − Ã0 x̃n

)(
yn − Ã0 x̃n

)>
]
.

De�ne

R0 =
1

W

N∑

n=1

πn

(
yn − Ã0 x̃n

)(
yn − Ã0 x̃n

)>
.

We then have

g (R) = −W

2

(
dlog2π + log |R|+ tr

[
R−1R0

])
.

Moreover,

g (R) = −W

2

(
d′log2π − log

∣∣R−1
∣∣+ tr

[
R−1R0

])
=

− W

2

(
d′log2π −Ψd′

(
R−1R0

)
+ log |R0|

)
.

Since R0 is independent from R, the optimization of g with respect to R is equivalent to
maximizing Ψd′

(
R−1R0

)
. Thus, we conclude from Lemma 2 that the unique maximum of g is

R0. Finally,

R0 = argmax
R∈Sd′

++
maxA∈Rd′×d,B∈Rd′ fR (A,B)
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and
[
A0 B0

]
= argmaxA∈Rd′×d,B∈Rd′ fR0 (A,B), which allows to accomplish the proof. In

addition, we have

R0 =
1

W

N∑

n=1

πn

(
yn − Ã0 x̃n

)(
yn − Ã0 x̃n

)>
=

1

W

(
N∑

n=1

πnyny
>
n − Ã0

N∑

n=1

πnx̃ny
>
n −

N∑

n=1

πnynx̃
>
n Ã
>
0 + Ã0

N∑

n=1

πnx̃nx̃
>
n Ã
>
0

)
=

1

W

(
N∑

n=1

πnyny
>
n − Ã0

N∑

n=1

πnx̃ny
>
n

)
=

1

W

(
N∑

n=1

πnyny
>
n −

[
A0 B0

] N∑

n=1

πn

[
xn

1

]
y>n

)
=

1

W

(
N∑

n=1

πnyny
>
n −A0

N∑

n=1

πnxny
>
n −B0

N∑

n=1

πny
>
n

)
.

C.2 The EM algorithm for the CGOMSM

Here we suppose that we are given a training sample (x1:N ,y1:N ). The object of this section is
to present a derivation of the EM algorithm applied to estimate the CGOMSM parameters from
(x1:N ,y1:N ). We recall that the CGOMSM model of triplet (X1:N ,Y1:N ,R1:N ) in Rd×Rd′ ×Ω is
parameterized by θ, where

θ =
{
µ

(θ)
i ,Γ

(θ)
i , p

(θ)
ij ,A

(θ)
ij ,B

(θ)
ij ,C

(θ)
ij ,D

(θ)
ij ,F

(θ)
ij ,H

(θ)
ij ,Π

(θ)
ij ,Λ

(q)
ij |1 ≤ i, j ≤ K

}
, (C.2)

and Ω = {1 : K}. Here, for simplicity, we use another parameterization of the CGOMSM, which
is:

θ =
{
pθj|i,A

(θ)
ij ,B

(θ)
ij ,C

(θ)
ij ,D

(θ)
ij ,F

(θ)
ij ,H

(θ)
ij ,Π

(θ)
ij ,Λ

(q)
ij |1 ≤ i, j ≤ K

}
, (C.3)

where for each i, j in Ω, pθj|i in (C.3) is de�ned by

pθj|i =
pθi,j∑K

j′=1 p
θ
i,j′

.

θ in (C.3) parameterizes only the transitions p (xn+1,yn+1, rn+1 | xn,yn, rn) for n ∈ {1 : N − 1}
and is estimated by using the EM algorithm. Once (C.3) is estimated, (C.2) is chosen consistently
with (C.3) knowing the fact that (X1:N ,Y1:N ,R1:N ) is stationary.

The EM algorithm is an iterative method to �nd parameter estimates of a statistical model,
where the model depends on unobserved latent variables. The EM iteration alternates between
performing an Expectation step of the EM algorithm (E-step), which creates a function for the
expectation of the log-likelihood evaluated using the current estimate for the parameters, and an
Maximization step of the EM algorithm (M-step), which computes parameters maximizing the
expected log-likelihood found on the E-step.

Let q denote the iteration count of the EM algorithm. The parameter value at the q-th iteration
is denoted by θ(q), where we set for simplicity:

θ(q) =
{
p

(q)
j|i ,A

(q)
ij ,B

(q)
ij ,C

(q)
ij ,D

(q)
ij ,F

(q)
ij ,H

(q)
ij ,Π

(q)
ij ,Λ

(q)
ij |1 ≤ i, j ≤ K

}
,

At the E-step, we compute

Q
(
θ,θ(q)

)
= Eθ(q) [logpθ (X1:N ,Y1:N ,R1:N ) |X1:N = x1:N ,Y1:N = y1:N ] .

In the case of the CGOMSM, it involves computing the posterior distribution of the hid-
den states R1:N conditional on the input data (x1:N ,y1:N ) and the current parameter value θ(q).
Speci�cally, (2.48) computes

ψ(q)
n (i, j) = Pθ(q) [Rn = i,Rn+1 = j|X1:N = x1:N ,Y1:N = y1:N ] ,
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in a CGOMSM, which appear when computing Q
(
θ,θ(q)

)
.

At the M-step, the new parameter estimate θ(q+1) is computed as follows:

θ(q+1) = argmax θ

[
Q
(
θ,θ(q)

)]
.

We accomplish this step by using the formulas (2.43)-(2.44) from Chapter 2. The point of what

follows is to clarify computing and maximization of Q
(
θ,θ(q)

)
.

We have:

p (x1:N ,y1:N , r1:N ) = p (x1,y1, r1)
N−1∏

n=1

p (xn+1,yn+1, rn+1 | xn,yn, rn),

from the Markovianity of (X1:N ,Y1:N ,R1:N ) . Next,

p (xn+1,yn+1, rn+1 | xn,yn, rn) = p (rn+1 | rn) p (xn+1 | xn,yn, rn,yn+1, rn+1) p (yn+1 | yn, rn, rn+1) ,

in a CGOMSM, with

p (xn+1 | xn,yn, rn = i,yn+1, rn+1 = j) =N
(
xn+1;Aijxn +Bijyn +Cijyn+1 + F ij , Π ij(Π ij)

>
)

;

p (yn+1 | yn, rn = i, , rn+1 = j) = N
(
yn+1;Dijyn +Hij , Λij(Λij)

>
)
.

Let us compute Q
(
θ,θ(q)

)
. An expression for log p (x1:N ,y1:N , r1:N ) is:

logp (x1:N ,y1:N , r1:N ) =

logp (x1,y1, r1) +

N−1∑

n=1

logp(xn+1,yn+1, rn+1|xn,yn, rn) = logp (x1,y1, r1) +

N−1∑

n=1

logp(rn+1|rn) +
N−1∑

n=1

logp(xn+1|xn,yn, rn,yn+1, rn+1) +
N−1∑

n=1

logp(yn+1|yn, rn, rn+1) .

We have

Q
(
θ,θ(q)

)
= Eθ(q) [logpθ (x1,y1, r1) |X1:N = x1:N ,Y1:N = y1:N ] +

N−1∑

n=1

Eθ(q) [logpθ(rn+1|rn)|X1:N = x1:N ,Y1:N = y1:N ] +

N−1∑

n=1

Eθ(q) [logpθ(xn+1|xn,yn, rn,yn+1, rn+1)|X1:N = x1:N ,Y1:N = y1:N ]+

N−1∑

n=1

Eθ(q) [logpθ(yn+1|yn, rn, rn+1)|X1:N = x1:N ,Y1:N = y1:N ] =

Q0

(
θ,θ(q)

)
+ Q1

(
θ,θ(q)

)
+ Q2

(
θ,θ(q)

)
+ Q3

(
θ,θ(q)

)
,

where

Q0

(
θ,θ(q)

)
= Eθ(q) [logpθ (x1,y1, r1) |X1:N = x1:N ,Y1:N = y1:N ] ;

Q1

(
θ,θ(q)

)
=

N−1∑

n=1

Eθ(q) [logpθ(rn+1|rn)|X1:N = x1:N ,Y1:N = y1:N ];

Q2

(
θ,θ(q)

)
=

N−1∑

n=1

Eθ(q) [logpθ(xn+1|xn,yn, rn,yn+1, rn+1)|X1:N = x1:N ,Y1:N = y1:N ] ;

Q3

(
θ,θ(q)

)
=

N−1∑

n=1

Eθ(q) [logpθ(yn+1|yn, rn, rn+1)|X1:N = x1:N ,Y1:N = y1:N ].

132



Next, we have

Q1

(
θ,θ(q)

)
=

N−1∑

n=1

∑

i,j∈Ω

ψ(q)
n (i, j)logpθ(rn+1 = j|rn = i) =

N−1∑

n=1

∑

i,j∈Ω

ψ(q)
n (i, j)logpθj|i ;

Q2

(
θ,θ(q)

)
=

N−1∑

n=1

∑

i,j∈Ω

ψ(q)
n (i, j)logpθ(xn+1|xn,yn, rn = i,yn+1, rn+1 = j) =

N−1∑

n=1

∑

i,j∈Ω

ψ(q)
n (i, j)logN

(
xn+1;Aθijxn +Bθijyn +Cθijyn+1 + F θij , Π θ

ij

(
Π θ

ij

)>)
;

Q3

(
θ,θ(q)

)
=

N−1∑

n=1

∑

i,j∈Ω

ψ(q)
n (i, j)logpθ(yn+1|yn, rn = i, rn+1 = j) =

N−1∑

n=1

∑

i,j∈Ω

ψ(q)
n (i, j)logN

(
yn+1;Dθ

ijyn +Hθ
ij , Λθij

(
Λθij

)>)
.

The M-step consists of maximization of Q (θ,θq) with respect to θ.

We assume that Q0

(
θ,θ(q)

)
does not contribute signi�cantly to the value of Q

(
θ,θ(q)

)
, thus

we drop this �rst term from the equation. The remaining component areQ1

(
θ,θ(q)

)
, Q2

(
θ,θ(q)

)
,

Q3

(
θ,θ(q)

)
and they can be maximized independently, which leads to maximizing their sum and

therefore maximizing Q
(
θ,θ(q)

)
.

� Maximizing Q1

(
θ,θ(q)

)
:

Let us recall that

Q1

(
θ,θ(q)

)
=

N−1∑

n=1

∑

i,j∈Ω

ψ(q)
n (i, j)logpθj|i .

The above expression can be developed to

Q1

(
θ,θ(q)

)
=
∑

i∈Ω

∑

j∈Ω

N−1∑

n=1

ψ(q)
n (i, j)logpθj|i =

K∑

i=1

T(i,θ,θ(q)),

where for each i ∈ Ω, T
(
i,θ,θ(q)

)
=
∑K

j=1

∑N−1
n=1 ψ

(q)
n (i, j)logpθj|i . Since for each i ∈ Ω, pθj|i are

linked only by equation

∀i ∈ Ω,
K∑

j=1

pθj|i = 1,

Q1

(
θ,θ(q)

)
can be maximized by maximizing independently each T(i,θ,θ(q)) constrained to

∑K
j=1 p

θ
j|i = 1, and for each value of i.

Consider for each i ∈ Ω,

L
(
i,θ,θ(q)

)
= T

(
i,θ,θ(q)

)
− λ




K∑

j=1

pθj|i − 1


 ,

where λ is a Lagrange multiplier. The di�erentiation of L
(
i,θ,θ(q)

)
with respect to pθj|i yields

∂L
(
i,θ,θ(q)

)

∂pθj|i
=

N−1∑

n=1

ψ(q)
n (i, j)

1

pθj|i
−λ.
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We note by
{
p

(q+1)
j|i

}K

j=1
the values of

{
pθj|i

}K

j=1
which maximize T(i,θ,θ(q)) constrained to

K∑

j=1

pθj|i = 1.

From
∂L(i,θ,θ(q))

∂pθ
j|i

∣∣∣∣
p
(q+1)

j|i

= 0 for each j ∈ Ω, we have

p
(q+1)
j|i =

∑N−1
n=1 ψ

(q)
n (i, j)

λ

Since
∑K

j=1 p
(q+1)
j|i = 1, we have λ =

∑K
j=1

∑N−1
n=1 ψ

(q)
n (i, j). Therefore, the M-step formula for p(q)

j|i
is:

p
(q+1)
j|i =

∑N−1
n=1 ψ

(q)
n (i, j)

∑K
j=1

∑N−1
n=1 ψ

(q)
n (i, j)

.

� Maximizing Q2

(
θ,θ(q)

)

Let us recall that

Q2

(
θ,θ(q)

)
=

N−1∑

n=1

∑

i,j∈Ω

ψ(q)
n (i, j)logN

(
xn+1;Aθijxn +Bθijyn +Cθijyn+1 + F θij , Π θ

ij

(
Π θ

ij

)>)
.

Let us consider, for each i, j, 1 ≤ i, j ≤ K,

p
(q+1)
ij =

∑N−1
n=1 ψ

(q)
n (i, j)

N − 1
.

De�ne, for each i, j, 1 ≤ i, j ≤ K,

U
(
i, j,θ,θ(q)

)
=

N−1∑

n=1

ψ
(q)
n (i, j)

p
(q+1)
ij

logN
(
xn+1;Aθijxn +Bθijyn +Cθijyn+1 + F θij , Π θ

ij

(
Π θ

ij

)>)
,

Thus,

Q2

(
θ,θ(q)

)
=
∑

i,j∈Ω

U
(
i, j,θ,θ(q)

)

Each term U
(
i, j,θ,θ(q)

)
from the above equation can be maximized independently from each

other.
The maximization of

∑N
n=1 πnlogN(yn;Axn + B, R) for any x1:N , y1:N , π1:N is the object

of Proposition 20.
Thus, we can set:

∀n ∈ {1 : N − 1},




xn

yn

yn+1


→ xn, xn+1 → yn,

ψ
(q)
n (i, j)

p
(q+1)
ij

→ πn

thus W =
∑N

n=1 πn = (N−1) and we �nd from the Proposition 20 that the values A(q+1)
ij , B(q+1)

ij ,

C
(q+1)
ij , F (q+1)

ij , C(q+1)
ij , Π

(q+1)
ij which maximize U

(
i, j,θ,θ(q)

)
are given by:

[
A

(q+1)
ij B

(q+1)
ij C

(q+1)
ij F

(q+1)
ij

]
=[

1

p
(q+1)
ij

∑N
n=1 ψ

(q)
n (i, j)xn+1x

>
n

1

p
(q+1)
ij

∑N
n=1 ψ

(q)
n (i, j)xn+1y

>
n

1

p
(q+1)
ij

∑N
n=1 ψ

(q)
n (i, j)xn+1y

>
n+1

1

p
(q+1)
ij

∑N
n=1 ψ

(q)
n (i, j)xn+1

]
×



1

p
(q+1)
ij

∑N
n=1 ψ

(q)
n (i, j)xnx>n

1

p
(q+1)
ij

∑N
n=1 ψ

(q)
n (i, j)xny>n

1

p
(q+1)
ij

∑N
n=1 ψ

(q)
n (i, j)xny>n+1

1

p
(q+1)
ij

∑N
n=1 ψ

(q)
n (i, j)xn

1

p
(q+1)
ij

∑N
n=1 ψ

(q)
n (i, j)ynx>n

1

p
(q+1)
ij

∑N
n=1 ψ

(q)
n (i, j)yny>n

1

p
(q+1)
ij

∑N
n=1 ψ

(q)
n (i, j)yny>n+1

1

p
(q+1)
ij

∑N
n=1 ψ

(q)
n (i, j)yn

1

p
(q+1)
ij

∑N
n=1 ψ

(q)
n (i, j)yn+1x

>
n

1

p
(q+1)
ij

∑N
n=1 ψ

(q)
n (i, j)yn+1y

>
n

1

p
(q+1)
ij

∑N
n=1 ψ

(q)
n (i, j)yn+1y

>
n+1

1

p
(q+1)
ij

∑N
n=1 ψ

(q)
n (i, j)yn+1

1

p
(q+1)
ij

∑N
n=1 ψ

(q)
n (i, j)x>n

1

p
(q+1)
ij

∑N
n=1 ψ

(q)
n (i, j)y>n

1

p
(q+1)
ij

∑N
n=1 ψ

(q)
n (i, j)y>n+1 N − 1



−1
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Π
(q+1)
ij

(
Π

(q+1)
ij

)>
=

1

N − 1


N∑

n=1

ψ
(q)
n (i, j)xn+1x

>
n+1 −

[
A

(q+1)
ij B

(q+1)
ij C

(q+1)
ij

]


1

p
(q+1)
ij

∑N
n=1 ψ

(q)
n (i, j)xnx>n+1

1

p
(q+1)
ij

∑N
n=1 ψ

(q)
n (i, j)ynx>n+1

1

p
(q+1)
ij

∑N
n=1 ψ

(q)
n (i, j)yn+1x

>
n+1


− F

(q+1)
ij

1

p
(q+1)
ij

N∑
n=1

ψ
(q)
n (i, j)xn+1


.

� Maximizing Q3

(
θ,θ(q)

)

Let us recall that

Q3

(
θ,θ(q)

)
=

N−1∑

n=1

∑

i,j∈Ω

ψ(q)
n (i, j) logN

(
yn+1;Dθ

ijyn +Hθ
ij , Λθij

(
Λθij

)>)
.

Let us consider, for each i, j, 1 ≤ i, j ≤ K,

V
(
i, j,θ,θ(q)

)
=
∑N−1

n=1 ψ
(q)
n (i, j)logN

(
yn+1;Dθ

ijyn +Hθ
ij , Λθij

(
Λθij

)>)
. Next,

Q3

(
θ,θ(q)

)
=
∑

i,j∈Ω

V
(
i, j,θ,θ(q)

)
,

and each term V
(
i, j,θ,θ(q)

)
can be maximized independently from each other.

Let us set then

∀n ∈ {1 : N − 1},yn → xn, yn+1 → yn,
ψ

(q)
n (i, j)

p
(q+1)
ij

→ πn

thus W =
∑N

n=1 πn = (N−1) and we �nd from the Proposition 20 that the valuesD(q+1)
ij ,H(q+1)

ij ,

Λ
(q+1)
ij which maximize V

(
i, j,θ,θ(q)

)
are given by:

[
D

(q+1)
ij H

(q+1)
ij

]
=

[
1

p
(q+1)
ij

∑N
n=1 ψ

(q)
n (i, j)yn+1y

>
n

1

p
(q+1)
ij

∑N
n=1 ψ

(q)
n (i, j)yn+1

]
×




1

p
(q+1)
ij

∑N
n=1 ψ

(q)
n (i, j)yny>n

1

p
(q+1)
ij

∑N
n=1 ψ

(q)
n (i, j)yn

1

p
(q+1)
ij

∑N
n=1 ψ

(q)
n (i, j)y>n N − 1



−1

;

Λ
(q+1)
ij

(
Λ

(q+1)
ij

)>
=

1

N − 1

(
1

p
(q+1)
ij

N∑
n=1

ψ(q)
n (i, j)yn+1y

>
n+1 −D

(q+1)
ij

1

p
(q+1)
ij

N∑
n=1

ψ(q)
n (i, j)yny

>
n+1 −H

(q+1)
ij

1

p
(q+1)
ij

N∑
n=1

ψ(q)
n (i, j)y>n+1

)
.

As a result, we derived closed-form M-step update formulas for p(q+1)
j|i , A(q+1)

ij , B(q+1)
ij , C(q+1)

ij ,

F
(q+1)
ij , C(q+1)

ij , Π
(q+1)
ij , D(q+1)

ij , H(q+1)
ij and Λ

(q+1)
ij .
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